1 //===-- ObjectFileMachO.cpp -------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/ADT/StringRef.h"
10 
11 #include "Plugins/Process/Utility/RegisterContextDarwin_arm.h"
12 #include "Plugins/Process/Utility/RegisterContextDarwin_arm64.h"
13 #include "Plugins/Process/Utility/RegisterContextDarwin_i386.h"
14 #include "Plugins/Process/Utility/RegisterContextDarwin_x86_64.h"
15 #include "lldb/Core/Debugger.h"
16 #include "lldb/Core/FileSpecList.h"
17 #include "lldb/Core/Module.h"
18 #include "lldb/Core/ModuleSpec.h"
19 #include "lldb/Core/PluginManager.h"
20 #include "lldb/Core/Section.h"
21 #include "lldb/Core/StreamFile.h"
22 #include "lldb/Host/Host.h"
23 #include "lldb/Symbol/DWARFCallFrameInfo.h"
24 #include "lldb/Symbol/ObjectFile.h"
25 #include "lldb/Target/DynamicLoader.h"
26 #include "lldb/Target/MemoryRegionInfo.h"
27 #include "lldb/Target/Platform.h"
28 #include "lldb/Target/Process.h"
29 #include "lldb/Target/SectionLoadList.h"
30 #include "lldb/Target/Target.h"
31 #include "lldb/Target/Thread.h"
32 #include "lldb/Target/ThreadList.h"
33 #include "lldb/Utility/ArchSpec.h"
34 #include "lldb/Utility/DataBuffer.h"
35 #include "lldb/Utility/FileSpec.h"
36 #include "lldb/Utility/Log.h"
37 #include "lldb/Utility/RangeMap.h"
38 #include "lldb/Utility/RegisterValue.h"
39 #include "lldb/Utility/Status.h"
40 #include "lldb/Utility/StreamString.h"
41 #include "lldb/Utility/Timer.h"
42 #include "lldb/Utility/UUID.h"
43 
44 #include "lldb/Host/SafeMachO.h"
45 
46 #include "llvm/Support/MemoryBuffer.h"
47 
48 #include "ObjectFileMachO.h"
49 
50 #if defined(__APPLE__) &&                                                      \
51     (defined(__arm__) || defined(__arm64__) || defined(__aarch64__))
52 // GetLLDBSharedCacheUUID() needs to call dlsym()
53 #include <dlfcn.h>
54 #endif
55 
56 #ifndef __APPLE__
57 #include "Utility/UuidCompatibility.h"
58 #else
59 #include <uuid/uuid.h>
60 #endif
61 
62 #include <memory>
63 
64 #define THUMB_ADDRESS_BIT_MASK 0xfffffffffffffffeull
65 using namespace lldb;
66 using namespace lldb_private;
67 using namespace llvm::MachO;
68 
69 // Some structure definitions needed for parsing the dyld shared cache files
70 // found on iOS devices.
71 
72 struct lldb_copy_dyld_cache_header_v1 {
73   char magic[16];         // e.g. "dyld_v0    i386", "dyld_v1   armv7", etc.
74   uint32_t mappingOffset; // file offset to first dyld_cache_mapping_info
75   uint32_t mappingCount;  // number of dyld_cache_mapping_info entries
76   uint32_t imagesOffset;
77   uint32_t imagesCount;
78   uint64_t dyldBaseAddress;
79   uint64_t codeSignatureOffset;
80   uint64_t codeSignatureSize;
81   uint64_t slideInfoOffset;
82   uint64_t slideInfoSize;
83   uint64_t localSymbolsOffset;
84   uint64_t localSymbolsSize;
85   uint8_t uuid[16]; // v1 and above, also recorded in dyld_all_image_infos v13
86                     // and later
87 };
88 
89 struct lldb_copy_dyld_cache_mapping_info {
90   uint64_t address;
91   uint64_t size;
92   uint64_t fileOffset;
93   uint32_t maxProt;
94   uint32_t initProt;
95 };
96 
97 struct lldb_copy_dyld_cache_local_symbols_info {
98   uint32_t nlistOffset;
99   uint32_t nlistCount;
100   uint32_t stringsOffset;
101   uint32_t stringsSize;
102   uint32_t entriesOffset;
103   uint32_t entriesCount;
104 };
105 struct lldb_copy_dyld_cache_local_symbols_entry {
106   uint32_t dylibOffset;
107   uint32_t nlistStartIndex;
108   uint32_t nlistCount;
109 };
110 
111 class RegisterContextDarwin_x86_64_Mach : public RegisterContextDarwin_x86_64 {
112 public:
113   RegisterContextDarwin_x86_64_Mach(lldb_private::Thread &thread,
114                                     const DataExtractor &data)
115       : RegisterContextDarwin_x86_64(thread, 0) {
116     SetRegisterDataFrom_LC_THREAD(data);
117   }
118 
119   void InvalidateAllRegisters() override {
120     // Do nothing... registers are always valid...
121   }
122 
123   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
124     lldb::offset_t offset = 0;
125     SetError(GPRRegSet, Read, -1);
126     SetError(FPURegSet, Read, -1);
127     SetError(EXCRegSet, Read, -1);
128     bool done = false;
129 
130     while (!done) {
131       int flavor = data.GetU32(&offset);
132       if (flavor == 0)
133         done = true;
134       else {
135         uint32_t i;
136         uint32_t count = data.GetU32(&offset);
137         switch (flavor) {
138         case GPRRegSet:
139           for (i = 0; i < count; ++i)
140             (&gpr.rax)[i] = data.GetU64(&offset);
141           SetError(GPRRegSet, Read, 0);
142           done = true;
143 
144           break;
145         case FPURegSet:
146           // TODO: fill in FPU regs....
147           // SetError (FPURegSet, Read, -1);
148           done = true;
149 
150           break;
151         case EXCRegSet:
152           exc.trapno = data.GetU32(&offset);
153           exc.err = data.GetU32(&offset);
154           exc.faultvaddr = data.GetU64(&offset);
155           SetError(EXCRegSet, Read, 0);
156           done = true;
157           break;
158         case 7:
159         case 8:
160         case 9:
161           // fancy flavors that encapsulate of the above flavors...
162           break;
163 
164         default:
165           done = true;
166           break;
167         }
168       }
169     }
170   }
171 
172   static size_t WriteRegister(RegisterContext *reg_ctx, const char *name,
173                               const char *alt_name, size_t reg_byte_size,
174                               Stream &data) {
175     const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
176     if (reg_info == NULL)
177       reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
178     if (reg_info) {
179       lldb_private::RegisterValue reg_value;
180       if (reg_ctx->ReadRegister(reg_info, reg_value)) {
181         if (reg_info->byte_size >= reg_byte_size)
182           data.Write(reg_value.GetBytes(), reg_byte_size);
183         else {
184           data.Write(reg_value.GetBytes(), reg_info->byte_size);
185           for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n;
186                ++i)
187             data.PutChar(0);
188         }
189         return reg_byte_size;
190       }
191     }
192     // Just write zeros if all else fails
193     for (size_t i = 0; i < reg_byte_size; ++i)
194       data.PutChar(0);
195     return reg_byte_size;
196   }
197 
198   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
199     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
200     if (reg_ctx_sp) {
201       RegisterContext *reg_ctx = reg_ctx_sp.get();
202 
203       data.PutHex32(GPRRegSet); // Flavor
204       data.PutHex32(GPRWordCount);
205       WriteRegister(reg_ctx, "rax", NULL, 8, data);
206       WriteRegister(reg_ctx, "rbx", NULL, 8, data);
207       WriteRegister(reg_ctx, "rcx", NULL, 8, data);
208       WriteRegister(reg_ctx, "rdx", NULL, 8, data);
209       WriteRegister(reg_ctx, "rdi", NULL, 8, data);
210       WriteRegister(reg_ctx, "rsi", NULL, 8, data);
211       WriteRegister(reg_ctx, "rbp", NULL, 8, data);
212       WriteRegister(reg_ctx, "rsp", NULL, 8, data);
213       WriteRegister(reg_ctx, "r8", NULL, 8, data);
214       WriteRegister(reg_ctx, "r9", NULL, 8, data);
215       WriteRegister(reg_ctx, "r10", NULL, 8, data);
216       WriteRegister(reg_ctx, "r11", NULL, 8, data);
217       WriteRegister(reg_ctx, "r12", NULL, 8, data);
218       WriteRegister(reg_ctx, "r13", NULL, 8, data);
219       WriteRegister(reg_ctx, "r14", NULL, 8, data);
220       WriteRegister(reg_ctx, "r15", NULL, 8, data);
221       WriteRegister(reg_ctx, "rip", NULL, 8, data);
222       WriteRegister(reg_ctx, "rflags", NULL, 8, data);
223       WriteRegister(reg_ctx, "cs", NULL, 8, data);
224       WriteRegister(reg_ctx, "fs", NULL, 8, data);
225       WriteRegister(reg_ctx, "gs", NULL, 8, data);
226 
227       //            // Write out the FPU registers
228       //            const size_t fpu_byte_size = sizeof(FPU);
229       //            size_t bytes_written = 0;
230       //            data.PutHex32 (FPURegSet);
231       //            data.PutHex32 (fpu_byte_size/sizeof(uint64_t));
232       //            bytes_written += data.PutHex32(0); // uint32_t pad[0]
233       //            bytes_written += data.PutHex32(0); // uint32_t pad[1]
234       //            bytes_written += WriteRegister (reg_ctx, "fcw", "fctrl", 2,
235       //            data);   // uint16_t    fcw;    // "fctrl"
236       //            bytes_written += WriteRegister (reg_ctx, "fsw" , "fstat", 2,
237       //            data);  // uint16_t    fsw;    // "fstat"
238       //            bytes_written += WriteRegister (reg_ctx, "ftw" , "ftag", 1,
239       //            data);   // uint8_t     ftw;    // "ftag"
240       //            bytes_written += data.PutHex8  (0); // uint8_t pad1;
241       //            bytes_written += WriteRegister (reg_ctx, "fop" , NULL, 2,
242       //            data);     // uint16_t    fop;    // "fop"
243       //            bytes_written += WriteRegister (reg_ctx, "fioff", "ip", 4,
244       //            data);    // uint32_t    ip;     // "fioff"
245       //            bytes_written += WriteRegister (reg_ctx, "fiseg", NULL, 2,
246       //            data);    // uint16_t    cs;     // "fiseg"
247       //            bytes_written += data.PutHex16 (0); // uint16_t    pad2;
248       //            bytes_written += WriteRegister (reg_ctx, "dp", "fooff" , 4,
249       //            data);   // uint32_t    dp;     // "fooff"
250       //            bytes_written += WriteRegister (reg_ctx, "foseg", NULL, 2,
251       //            data);    // uint16_t    ds;     // "foseg"
252       //            bytes_written += data.PutHex16 (0); // uint16_t    pad3;
253       //            bytes_written += WriteRegister (reg_ctx, "mxcsr", NULL, 4,
254       //            data);    // uint32_t    mxcsr;
255       //            bytes_written += WriteRegister (reg_ctx, "mxcsrmask", NULL,
256       //            4, data);// uint32_t    mxcsrmask;
257       //            bytes_written += WriteRegister (reg_ctx, "stmm0", NULL,
258       //            sizeof(MMSReg), data);
259       //            bytes_written += WriteRegister (reg_ctx, "stmm1", NULL,
260       //            sizeof(MMSReg), data);
261       //            bytes_written += WriteRegister (reg_ctx, "stmm2", NULL,
262       //            sizeof(MMSReg), data);
263       //            bytes_written += WriteRegister (reg_ctx, "stmm3", NULL,
264       //            sizeof(MMSReg), data);
265       //            bytes_written += WriteRegister (reg_ctx, "stmm4", NULL,
266       //            sizeof(MMSReg), data);
267       //            bytes_written += WriteRegister (reg_ctx, "stmm5", NULL,
268       //            sizeof(MMSReg), data);
269       //            bytes_written += WriteRegister (reg_ctx, "stmm6", NULL,
270       //            sizeof(MMSReg), data);
271       //            bytes_written += WriteRegister (reg_ctx, "stmm7", NULL,
272       //            sizeof(MMSReg), data);
273       //            bytes_written += WriteRegister (reg_ctx, "xmm0" , NULL,
274       //            sizeof(XMMReg), data);
275       //            bytes_written += WriteRegister (reg_ctx, "xmm1" , NULL,
276       //            sizeof(XMMReg), data);
277       //            bytes_written += WriteRegister (reg_ctx, "xmm2" , NULL,
278       //            sizeof(XMMReg), data);
279       //            bytes_written += WriteRegister (reg_ctx, "xmm3" , NULL,
280       //            sizeof(XMMReg), data);
281       //            bytes_written += WriteRegister (reg_ctx, "xmm4" , NULL,
282       //            sizeof(XMMReg), data);
283       //            bytes_written += WriteRegister (reg_ctx, "xmm5" , NULL,
284       //            sizeof(XMMReg), data);
285       //            bytes_written += WriteRegister (reg_ctx, "xmm6" , NULL,
286       //            sizeof(XMMReg), data);
287       //            bytes_written += WriteRegister (reg_ctx, "xmm7" , NULL,
288       //            sizeof(XMMReg), data);
289       //            bytes_written += WriteRegister (reg_ctx, "xmm8" , NULL,
290       //            sizeof(XMMReg), data);
291       //            bytes_written += WriteRegister (reg_ctx, "xmm9" , NULL,
292       //            sizeof(XMMReg), data);
293       //            bytes_written += WriteRegister (reg_ctx, "xmm10", NULL,
294       //            sizeof(XMMReg), data);
295       //            bytes_written += WriteRegister (reg_ctx, "xmm11", NULL,
296       //            sizeof(XMMReg), data);
297       //            bytes_written += WriteRegister (reg_ctx, "xmm12", NULL,
298       //            sizeof(XMMReg), data);
299       //            bytes_written += WriteRegister (reg_ctx, "xmm13", NULL,
300       //            sizeof(XMMReg), data);
301       //            bytes_written += WriteRegister (reg_ctx, "xmm14", NULL,
302       //            sizeof(XMMReg), data);
303       //            bytes_written += WriteRegister (reg_ctx, "xmm15", NULL,
304       //            sizeof(XMMReg), data);
305       //
306       //            // Fill rest with zeros
307       //            for (size_t i=0, n = fpu_byte_size - bytes_written; i<n; ++
308       //            i)
309       //                data.PutChar(0);
310 
311       // Write out the EXC registers
312       data.PutHex32(EXCRegSet);
313       data.PutHex32(EXCWordCount);
314       WriteRegister(reg_ctx, "trapno", NULL, 4, data);
315       WriteRegister(reg_ctx, "err", NULL, 4, data);
316       WriteRegister(reg_ctx, "faultvaddr", NULL, 8, data);
317       return true;
318     }
319     return false;
320   }
321 
322 protected:
323   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
324 
325   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
326 
327   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
328 
329   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
330     return 0;
331   }
332 
333   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
334     return 0;
335   }
336 
337   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
338     return 0;
339   }
340 };
341 
342 class RegisterContextDarwin_i386_Mach : public RegisterContextDarwin_i386 {
343 public:
344   RegisterContextDarwin_i386_Mach(lldb_private::Thread &thread,
345                                   const DataExtractor &data)
346       : RegisterContextDarwin_i386(thread, 0) {
347     SetRegisterDataFrom_LC_THREAD(data);
348   }
349 
350   void InvalidateAllRegisters() override {
351     // Do nothing... registers are always valid...
352   }
353 
354   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
355     lldb::offset_t offset = 0;
356     SetError(GPRRegSet, Read, -1);
357     SetError(FPURegSet, Read, -1);
358     SetError(EXCRegSet, Read, -1);
359     bool done = false;
360 
361     while (!done) {
362       int flavor = data.GetU32(&offset);
363       if (flavor == 0)
364         done = true;
365       else {
366         uint32_t i;
367         uint32_t count = data.GetU32(&offset);
368         switch (flavor) {
369         case GPRRegSet:
370           for (i = 0; i < count; ++i)
371             (&gpr.eax)[i] = data.GetU32(&offset);
372           SetError(GPRRegSet, Read, 0);
373           done = true;
374 
375           break;
376         case FPURegSet:
377           // TODO: fill in FPU regs....
378           // SetError (FPURegSet, Read, -1);
379           done = true;
380 
381           break;
382         case EXCRegSet:
383           exc.trapno = data.GetU32(&offset);
384           exc.err = data.GetU32(&offset);
385           exc.faultvaddr = data.GetU32(&offset);
386           SetError(EXCRegSet, Read, 0);
387           done = true;
388           break;
389         case 7:
390         case 8:
391         case 9:
392           // fancy flavors that encapsulate of the above flavors...
393           break;
394 
395         default:
396           done = true;
397           break;
398         }
399       }
400     }
401   }
402 
403   static size_t WriteRegister(RegisterContext *reg_ctx, const char *name,
404                               const char *alt_name, size_t reg_byte_size,
405                               Stream &data) {
406     const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
407     if (reg_info == NULL)
408       reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
409     if (reg_info) {
410       lldb_private::RegisterValue reg_value;
411       if (reg_ctx->ReadRegister(reg_info, reg_value)) {
412         if (reg_info->byte_size >= reg_byte_size)
413           data.Write(reg_value.GetBytes(), reg_byte_size);
414         else {
415           data.Write(reg_value.GetBytes(), reg_info->byte_size);
416           for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n;
417                ++i)
418             data.PutChar(0);
419         }
420         return reg_byte_size;
421       }
422     }
423     // Just write zeros if all else fails
424     for (size_t i = 0; i < reg_byte_size; ++i)
425       data.PutChar(0);
426     return reg_byte_size;
427   }
428 
429   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
430     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
431     if (reg_ctx_sp) {
432       RegisterContext *reg_ctx = reg_ctx_sp.get();
433 
434       data.PutHex32(GPRRegSet); // Flavor
435       data.PutHex32(GPRWordCount);
436       WriteRegister(reg_ctx, "eax", NULL, 4, data);
437       WriteRegister(reg_ctx, "ebx", NULL, 4, data);
438       WriteRegister(reg_ctx, "ecx", NULL, 4, data);
439       WriteRegister(reg_ctx, "edx", NULL, 4, data);
440       WriteRegister(reg_ctx, "edi", NULL, 4, data);
441       WriteRegister(reg_ctx, "esi", NULL, 4, data);
442       WriteRegister(reg_ctx, "ebp", NULL, 4, data);
443       WriteRegister(reg_ctx, "esp", NULL, 4, data);
444       WriteRegister(reg_ctx, "ss", NULL, 4, data);
445       WriteRegister(reg_ctx, "eflags", NULL, 4, data);
446       WriteRegister(reg_ctx, "eip", NULL, 4, data);
447       WriteRegister(reg_ctx, "cs", NULL, 4, data);
448       WriteRegister(reg_ctx, "ds", NULL, 4, data);
449       WriteRegister(reg_ctx, "es", NULL, 4, data);
450       WriteRegister(reg_ctx, "fs", NULL, 4, data);
451       WriteRegister(reg_ctx, "gs", NULL, 4, data);
452 
453       // Write out the EXC registers
454       data.PutHex32(EXCRegSet);
455       data.PutHex32(EXCWordCount);
456       WriteRegister(reg_ctx, "trapno", NULL, 4, data);
457       WriteRegister(reg_ctx, "err", NULL, 4, data);
458       WriteRegister(reg_ctx, "faultvaddr", NULL, 4, data);
459       return true;
460     }
461     return false;
462   }
463 
464 protected:
465   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
466 
467   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
468 
469   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
470 
471   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
472     return 0;
473   }
474 
475   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
476     return 0;
477   }
478 
479   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
480     return 0;
481   }
482 };
483 
484 class RegisterContextDarwin_arm_Mach : public RegisterContextDarwin_arm {
485 public:
486   RegisterContextDarwin_arm_Mach(lldb_private::Thread &thread,
487                                  const DataExtractor &data)
488       : RegisterContextDarwin_arm(thread, 0) {
489     SetRegisterDataFrom_LC_THREAD(data);
490   }
491 
492   void InvalidateAllRegisters() override {
493     // Do nothing... registers are always valid...
494   }
495 
496   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
497     lldb::offset_t offset = 0;
498     SetError(GPRRegSet, Read, -1);
499     SetError(FPURegSet, Read, -1);
500     SetError(EXCRegSet, Read, -1);
501     bool done = false;
502 
503     while (!done) {
504       int flavor = data.GetU32(&offset);
505       uint32_t count = data.GetU32(&offset);
506       lldb::offset_t next_thread_state = offset + (count * 4);
507       switch (flavor) {
508       case GPRAltRegSet:
509       case GPRRegSet:
510         for (uint32_t i = 0; i < count; ++i) {
511           gpr.r[i] = data.GetU32(&offset);
512         }
513 
514         // Note that gpr.cpsr is also copied by the above loop; this loop
515         // technically extends one element past the end of the gpr.r[] array.
516 
517         SetError(GPRRegSet, Read, 0);
518         offset = next_thread_state;
519         break;
520 
521       case FPURegSet: {
522         uint8_t *fpu_reg_buf = (uint8_t *)&fpu.floats.s[0];
523         const int fpu_reg_buf_size = sizeof(fpu.floats);
524         if (data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
525                               fpu_reg_buf) == fpu_reg_buf_size) {
526           offset += fpu_reg_buf_size;
527           fpu.fpscr = data.GetU32(&offset);
528           SetError(FPURegSet, Read, 0);
529         } else {
530           done = true;
531         }
532       }
533         offset = next_thread_state;
534         break;
535 
536       case EXCRegSet:
537         if (count == 3) {
538           exc.exception = data.GetU32(&offset);
539           exc.fsr = data.GetU32(&offset);
540           exc.far = data.GetU32(&offset);
541           SetError(EXCRegSet, Read, 0);
542         }
543         done = true;
544         offset = next_thread_state;
545         break;
546 
547       // Unknown register set flavor, stop trying to parse.
548       default:
549         done = true;
550       }
551     }
552   }
553 
554   static size_t WriteRegister(RegisterContext *reg_ctx, const char *name,
555                               const char *alt_name, size_t reg_byte_size,
556                               Stream &data) {
557     const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
558     if (reg_info == NULL)
559       reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
560     if (reg_info) {
561       lldb_private::RegisterValue reg_value;
562       if (reg_ctx->ReadRegister(reg_info, reg_value)) {
563         if (reg_info->byte_size >= reg_byte_size)
564           data.Write(reg_value.GetBytes(), reg_byte_size);
565         else {
566           data.Write(reg_value.GetBytes(), reg_info->byte_size);
567           for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n;
568                ++i)
569             data.PutChar(0);
570         }
571         return reg_byte_size;
572       }
573     }
574     // Just write zeros if all else fails
575     for (size_t i = 0; i < reg_byte_size; ++i)
576       data.PutChar(0);
577     return reg_byte_size;
578   }
579 
580   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
581     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
582     if (reg_ctx_sp) {
583       RegisterContext *reg_ctx = reg_ctx_sp.get();
584 
585       data.PutHex32(GPRRegSet); // Flavor
586       data.PutHex32(GPRWordCount);
587       WriteRegister(reg_ctx, "r0", NULL, 4, data);
588       WriteRegister(reg_ctx, "r1", NULL, 4, data);
589       WriteRegister(reg_ctx, "r2", NULL, 4, data);
590       WriteRegister(reg_ctx, "r3", NULL, 4, data);
591       WriteRegister(reg_ctx, "r4", NULL, 4, data);
592       WriteRegister(reg_ctx, "r5", NULL, 4, data);
593       WriteRegister(reg_ctx, "r6", NULL, 4, data);
594       WriteRegister(reg_ctx, "r7", NULL, 4, data);
595       WriteRegister(reg_ctx, "r8", NULL, 4, data);
596       WriteRegister(reg_ctx, "r9", NULL, 4, data);
597       WriteRegister(reg_ctx, "r10", NULL, 4, data);
598       WriteRegister(reg_ctx, "r11", NULL, 4, data);
599       WriteRegister(reg_ctx, "r12", NULL, 4, data);
600       WriteRegister(reg_ctx, "sp", NULL, 4, data);
601       WriteRegister(reg_ctx, "lr", NULL, 4, data);
602       WriteRegister(reg_ctx, "pc", NULL, 4, data);
603       WriteRegister(reg_ctx, "cpsr", NULL, 4, data);
604 
605       // Write out the EXC registers
606       //            data.PutHex32 (EXCRegSet);
607       //            data.PutHex32 (EXCWordCount);
608       //            WriteRegister (reg_ctx, "exception", NULL, 4, data);
609       //            WriteRegister (reg_ctx, "fsr", NULL, 4, data);
610       //            WriteRegister (reg_ctx, "far", NULL, 4, data);
611       return true;
612     }
613     return false;
614   }
615 
616 protected:
617   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
618 
619   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
620 
621   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
622 
623   int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
624 
625   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
626     return 0;
627   }
628 
629   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
630     return 0;
631   }
632 
633   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
634     return 0;
635   }
636 
637   int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
638     return -1;
639   }
640 };
641 
642 class RegisterContextDarwin_arm64_Mach : public RegisterContextDarwin_arm64 {
643 public:
644   RegisterContextDarwin_arm64_Mach(lldb_private::Thread &thread,
645                                    const DataExtractor &data)
646       : RegisterContextDarwin_arm64(thread, 0) {
647     SetRegisterDataFrom_LC_THREAD(data);
648   }
649 
650   void InvalidateAllRegisters() override {
651     // Do nothing... registers are always valid...
652   }
653 
654   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
655     lldb::offset_t offset = 0;
656     SetError(GPRRegSet, Read, -1);
657     SetError(FPURegSet, Read, -1);
658     SetError(EXCRegSet, Read, -1);
659     bool done = false;
660     while (!done) {
661       int flavor = data.GetU32(&offset);
662       uint32_t count = data.GetU32(&offset);
663       lldb::offset_t next_thread_state = offset + (count * 4);
664       switch (flavor) {
665       case GPRRegSet:
666         // x0-x29 + fp + lr + sp + pc (== 33 64-bit registers) plus cpsr (1
667         // 32-bit register)
668         if (count >= (33 * 2) + 1) {
669           for (uint32_t i = 0; i < 29; ++i)
670             gpr.x[i] = data.GetU64(&offset);
671           gpr.fp = data.GetU64(&offset);
672           gpr.lr = data.GetU64(&offset);
673           gpr.sp = data.GetU64(&offset);
674           gpr.pc = data.GetU64(&offset);
675           gpr.cpsr = data.GetU32(&offset);
676           SetError(GPRRegSet, Read, 0);
677         }
678         offset = next_thread_state;
679         break;
680       case FPURegSet: {
681         uint8_t *fpu_reg_buf = (uint8_t *)&fpu.v[0];
682         const int fpu_reg_buf_size = sizeof(fpu);
683         if (fpu_reg_buf_size == count * sizeof(uint32_t) &&
684             data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
685                               fpu_reg_buf) == fpu_reg_buf_size) {
686           SetError(FPURegSet, Read, 0);
687         } else {
688           done = true;
689         }
690       }
691         offset = next_thread_state;
692         break;
693       case EXCRegSet:
694         if (count == 4) {
695           exc.far = data.GetU64(&offset);
696           exc.esr = data.GetU32(&offset);
697           exc.exception = data.GetU32(&offset);
698           SetError(EXCRegSet, Read, 0);
699         }
700         offset = next_thread_state;
701         break;
702       default:
703         done = true;
704         break;
705       }
706     }
707   }
708 
709   static size_t WriteRegister(RegisterContext *reg_ctx, const char *name,
710                               const char *alt_name, size_t reg_byte_size,
711                               Stream &data) {
712     const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
713     if (reg_info == NULL)
714       reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
715     if (reg_info) {
716       lldb_private::RegisterValue reg_value;
717       if (reg_ctx->ReadRegister(reg_info, reg_value)) {
718         if (reg_info->byte_size >= reg_byte_size)
719           data.Write(reg_value.GetBytes(), reg_byte_size);
720         else {
721           data.Write(reg_value.GetBytes(), reg_info->byte_size);
722           for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n;
723                ++i)
724             data.PutChar(0);
725         }
726         return reg_byte_size;
727       }
728     }
729     // Just write zeros if all else fails
730     for (size_t i = 0; i < reg_byte_size; ++i)
731       data.PutChar(0);
732     return reg_byte_size;
733   }
734 
735   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
736     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
737     if (reg_ctx_sp) {
738       RegisterContext *reg_ctx = reg_ctx_sp.get();
739 
740       data.PutHex32(GPRRegSet); // Flavor
741       data.PutHex32(GPRWordCount);
742       WriteRegister(reg_ctx, "x0", NULL, 8, data);
743       WriteRegister(reg_ctx, "x1", NULL, 8, data);
744       WriteRegister(reg_ctx, "x2", NULL, 8, data);
745       WriteRegister(reg_ctx, "x3", NULL, 8, data);
746       WriteRegister(reg_ctx, "x4", NULL, 8, data);
747       WriteRegister(reg_ctx, "x5", NULL, 8, data);
748       WriteRegister(reg_ctx, "x6", NULL, 8, data);
749       WriteRegister(reg_ctx, "x7", NULL, 8, data);
750       WriteRegister(reg_ctx, "x8", NULL, 8, data);
751       WriteRegister(reg_ctx, "x9", NULL, 8, data);
752       WriteRegister(reg_ctx, "x10", NULL, 8, data);
753       WriteRegister(reg_ctx, "x11", NULL, 8, data);
754       WriteRegister(reg_ctx, "x12", NULL, 8, data);
755       WriteRegister(reg_ctx, "x13", NULL, 8, data);
756       WriteRegister(reg_ctx, "x14", NULL, 8, data);
757       WriteRegister(reg_ctx, "x15", NULL, 8, data);
758       WriteRegister(reg_ctx, "x16", NULL, 8, data);
759       WriteRegister(reg_ctx, "x17", NULL, 8, data);
760       WriteRegister(reg_ctx, "x18", NULL, 8, data);
761       WriteRegister(reg_ctx, "x19", NULL, 8, data);
762       WriteRegister(reg_ctx, "x20", NULL, 8, data);
763       WriteRegister(reg_ctx, "x21", NULL, 8, data);
764       WriteRegister(reg_ctx, "x22", NULL, 8, data);
765       WriteRegister(reg_ctx, "x23", NULL, 8, data);
766       WriteRegister(reg_ctx, "x24", NULL, 8, data);
767       WriteRegister(reg_ctx, "x25", NULL, 8, data);
768       WriteRegister(reg_ctx, "x26", NULL, 8, data);
769       WriteRegister(reg_ctx, "x27", NULL, 8, data);
770       WriteRegister(reg_ctx, "x28", NULL, 8, data);
771       WriteRegister(reg_ctx, "fp", NULL, 8, data);
772       WriteRegister(reg_ctx, "lr", NULL, 8, data);
773       WriteRegister(reg_ctx, "sp", NULL, 8, data);
774       WriteRegister(reg_ctx, "pc", NULL, 8, data);
775       WriteRegister(reg_ctx, "cpsr", NULL, 4, data);
776 
777       // Write out the EXC registers
778       //            data.PutHex32 (EXCRegSet);
779       //            data.PutHex32 (EXCWordCount);
780       //            WriteRegister (reg_ctx, "far", NULL, 8, data);
781       //            WriteRegister (reg_ctx, "esr", NULL, 4, data);
782       //            WriteRegister (reg_ctx, "exception", NULL, 4, data);
783       return true;
784     }
785     return false;
786   }
787 
788 protected:
789   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
790 
791   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
792 
793   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
794 
795   int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
796 
797   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
798     return 0;
799   }
800 
801   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
802     return 0;
803   }
804 
805   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
806     return 0;
807   }
808 
809   int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
810     return -1;
811   }
812 };
813 
814 static uint32_t MachHeaderSizeFromMagic(uint32_t magic) {
815   switch (magic) {
816   case MH_MAGIC:
817   case MH_CIGAM:
818     return sizeof(struct mach_header);
819 
820   case MH_MAGIC_64:
821   case MH_CIGAM_64:
822     return sizeof(struct mach_header_64);
823     break;
824 
825   default:
826     break;
827   }
828   return 0;
829 }
830 
831 #define MACHO_NLIST_ARM_SYMBOL_IS_THUMB 0x0008
832 
833 void ObjectFileMachO::Initialize() {
834   PluginManager::RegisterPlugin(
835       GetPluginNameStatic(), GetPluginDescriptionStatic(), CreateInstance,
836       CreateMemoryInstance, GetModuleSpecifications, SaveCore);
837 }
838 
839 void ObjectFileMachO::Terminate() {
840   PluginManager::UnregisterPlugin(CreateInstance);
841 }
842 
843 lldb_private::ConstString ObjectFileMachO::GetPluginNameStatic() {
844   static ConstString g_name("mach-o");
845   return g_name;
846 }
847 
848 const char *ObjectFileMachO::GetPluginDescriptionStatic() {
849   return "Mach-o object file reader (32 and 64 bit)";
850 }
851 
852 ObjectFile *ObjectFileMachO::CreateInstance(const lldb::ModuleSP &module_sp,
853                                             DataBufferSP &data_sp,
854                                             lldb::offset_t data_offset,
855                                             const FileSpec *file,
856                                             lldb::offset_t file_offset,
857                                             lldb::offset_t length) {
858   if (!data_sp) {
859     data_sp = MapFileData(*file, length, file_offset);
860     if (!data_sp)
861       return nullptr;
862     data_offset = 0;
863   }
864 
865   if (!ObjectFileMachO::MagicBytesMatch(data_sp, data_offset, length))
866     return nullptr;
867 
868   // Update the data to contain the entire file if it doesn't already
869   if (data_sp->GetByteSize() < length) {
870     data_sp = MapFileData(*file, length, file_offset);
871     if (!data_sp)
872       return nullptr;
873     data_offset = 0;
874   }
875   auto objfile_up = llvm::make_unique<ObjectFileMachO>(
876       module_sp, data_sp, data_offset, file, file_offset, length);
877   if (!objfile_up || !objfile_up->ParseHeader())
878     return nullptr;
879 
880   return objfile_up.release();
881 }
882 
883 ObjectFile *ObjectFileMachO::CreateMemoryInstance(
884     const lldb::ModuleSP &module_sp, DataBufferSP &data_sp,
885     const ProcessSP &process_sp, lldb::addr_t header_addr) {
886   if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
887     std::unique_ptr<ObjectFile> objfile_up(
888         new ObjectFileMachO(module_sp, data_sp, process_sp, header_addr));
889     if (objfile_up.get() && objfile_up->ParseHeader())
890       return objfile_up.release();
891   }
892   return NULL;
893 }
894 
895 size_t ObjectFileMachO::GetModuleSpecifications(
896     const lldb_private::FileSpec &file, lldb::DataBufferSP &data_sp,
897     lldb::offset_t data_offset, lldb::offset_t file_offset,
898     lldb::offset_t length, lldb_private::ModuleSpecList &specs) {
899   const size_t initial_count = specs.GetSize();
900 
901   if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
902     DataExtractor data;
903     data.SetData(data_sp);
904     llvm::MachO::mach_header header;
905     if (ParseHeader(data, &data_offset, header)) {
906       size_t header_and_load_cmds =
907           header.sizeofcmds + MachHeaderSizeFromMagic(header.magic);
908       if (header_and_load_cmds >= data_sp->GetByteSize()) {
909         data_sp = MapFileData(file, header_and_load_cmds, file_offset);
910         data.SetData(data_sp);
911         data_offset = MachHeaderSizeFromMagic(header.magic);
912       }
913       if (data_sp) {
914         ModuleSpec spec;
915         spec.GetFileSpec() = file;
916         spec.SetObjectOffset(file_offset);
917         spec.SetObjectSize(length);
918 
919         spec.GetArchitecture() = GetArchitecture(header, data, data_offset);
920         if (spec.GetArchitecture().IsValid()) {
921           spec.GetUUID() = GetUUID(header, data, data_offset);
922           specs.Append(spec);
923         }
924       }
925     }
926   }
927   return specs.GetSize() - initial_count;
928 }
929 
930 ConstString ObjectFileMachO::GetSegmentNameTEXT() {
931   static ConstString g_segment_name_TEXT("__TEXT");
932   return g_segment_name_TEXT;
933 }
934 
935 ConstString ObjectFileMachO::GetSegmentNameDATA() {
936   static ConstString g_segment_name_DATA("__DATA");
937   return g_segment_name_DATA;
938 }
939 
940 ConstString ObjectFileMachO::GetSegmentNameDATA_DIRTY() {
941   static ConstString g_segment_name("__DATA_DIRTY");
942   return g_segment_name;
943 }
944 
945 ConstString ObjectFileMachO::GetSegmentNameDATA_CONST() {
946   static ConstString g_segment_name("__DATA_CONST");
947   return g_segment_name;
948 }
949 
950 ConstString ObjectFileMachO::GetSegmentNameOBJC() {
951   static ConstString g_segment_name_OBJC("__OBJC");
952   return g_segment_name_OBJC;
953 }
954 
955 ConstString ObjectFileMachO::GetSegmentNameLINKEDIT() {
956   static ConstString g_section_name_LINKEDIT("__LINKEDIT");
957   return g_section_name_LINKEDIT;
958 }
959 
960 ConstString ObjectFileMachO::GetSegmentNameDWARF() {
961   static ConstString g_section_name("__DWARF");
962   return g_section_name;
963 }
964 
965 ConstString ObjectFileMachO::GetSectionNameEHFrame() {
966   static ConstString g_section_name_eh_frame("__eh_frame");
967   return g_section_name_eh_frame;
968 }
969 
970 bool ObjectFileMachO::MagicBytesMatch(DataBufferSP &data_sp,
971                                       lldb::addr_t data_offset,
972                                       lldb::addr_t data_length) {
973   DataExtractor data;
974   data.SetData(data_sp, data_offset, data_length);
975   lldb::offset_t offset = 0;
976   uint32_t magic = data.GetU32(&offset);
977   return MachHeaderSizeFromMagic(magic) != 0;
978 }
979 
980 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
981                                  DataBufferSP &data_sp,
982                                  lldb::offset_t data_offset,
983                                  const FileSpec *file,
984                                  lldb::offset_t file_offset,
985                                  lldb::offset_t length)
986     : ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset),
987       m_mach_segments(), m_mach_sections(), m_entry_point_address(),
988       m_thread_context_offsets(), m_thread_context_offsets_valid(false),
989       m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) {
990   ::memset(&m_header, 0, sizeof(m_header));
991   ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
992 }
993 
994 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
995                                  lldb::DataBufferSP &header_data_sp,
996                                  const lldb::ProcessSP &process_sp,
997                                  lldb::addr_t header_addr)
998     : ObjectFile(module_sp, process_sp, header_addr, header_data_sp),
999       m_mach_segments(), m_mach_sections(), m_entry_point_address(),
1000       m_thread_context_offsets(), m_thread_context_offsets_valid(false),
1001       m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) {
1002   ::memset(&m_header, 0, sizeof(m_header));
1003   ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
1004 }
1005 
1006 bool ObjectFileMachO::ParseHeader(DataExtractor &data,
1007                                   lldb::offset_t *data_offset_ptr,
1008                                   llvm::MachO::mach_header &header) {
1009   data.SetByteOrder(endian::InlHostByteOrder());
1010   // Leave magic in the original byte order
1011   header.magic = data.GetU32(data_offset_ptr);
1012   bool can_parse = false;
1013   bool is_64_bit = false;
1014   switch (header.magic) {
1015   case MH_MAGIC:
1016     data.SetByteOrder(endian::InlHostByteOrder());
1017     data.SetAddressByteSize(4);
1018     can_parse = true;
1019     break;
1020 
1021   case MH_MAGIC_64:
1022     data.SetByteOrder(endian::InlHostByteOrder());
1023     data.SetAddressByteSize(8);
1024     can_parse = true;
1025     is_64_bit = true;
1026     break;
1027 
1028   case MH_CIGAM:
1029     data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1030                           ? eByteOrderLittle
1031                           : eByteOrderBig);
1032     data.SetAddressByteSize(4);
1033     can_parse = true;
1034     break;
1035 
1036   case MH_CIGAM_64:
1037     data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1038                           ? eByteOrderLittle
1039                           : eByteOrderBig);
1040     data.SetAddressByteSize(8);
1041     is_64_bit = true;
1042     can_parse = true;
1043     break;
1044 
1045   default:
1046     break;
1047   }
1048 
1049   if (can_parse) {
1050     data.GetU32(data_offset_ptr, &header.cputype, 6);
1051     if (is_64_bit)
1052       *data_offset_ptr += 4;
1053     return true;
1054   } else {
1055     memset(&header, 0, sizeof(header));
1056   }
1057   return false;
1058 }
1059 
1060 bool ObjectFileMachO::ParseHeader() {
1061   ModuleSP module_sp(GetModule());
1062   if (module_sp) {
1063     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
1064     bool can_parse = false;
1065     lldb::offset_t offset = 0;
1066     m_data.SetByteOrder(endian::InlHostByteOrder());
1067     // Leave magic in the original byte order
1068     m_header.magic = m_data.GetU32(&offset);
1069     switch (m_header.magic) {
1070     case MH_MAGIC:
1071       m_data.SetByteOrder(endian::InlHostByteOrder());
1072       m_data.SetAddressByteSize(4);
1073       can_parse = true;
1074       break;
1075 
1076     case MH_MAGIC_64:
1077       m_data.SetByteOrder(endian::InlHostByteOrder());
1078       m_data.SetAddressByteSize(8);
1079       can_parse = true;
1080       break;
1081 
1082     case MH_CIGAM:
1083       m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1084                               ? eByteOrderLittle
1085                               : eByteOrderBig);
1086       m_data.SetAddressByteSize(4);
1087       can_parse = true;
1088       break;
1089 
1090     case MH_CIGAM_64:
1091       m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1092                               ? eByteOrderLittle
1093                               : eByteOrderBig);
1094       m_data.SetAddressByteSize(8);
1095       can_parse = true;
1096       break;
1097 
1098     default:
1099       break;
1100     }
1101 
1102     if (can_parse) {
1103       m_data.GetU32(&offset, &m_header.cputype, 6);
1104 
1105       if (ArchSpec mach_arch = GetArchitecture()) {
1106         // Check if the module has a required architecture
1107         const ArchSpec &module_arch = module_sp->GetArchitecture();
1108         if (module_arch.IsValid() && !module_arch.IsCompatibleMatch(mach_arch))
1109           return false;
1110 
1111         if (SetModulesArchitecture(mach_arch)) {
1112           const size_t header_and_lc_size =
1113               m_header.sizeofcmds + MachHeaderSizeFromMagic(m_header.magic);
1114           if (m_data.GetByteSize() < header_and_lc_size) {
1115             DataBufferSP data_sp;
1116             ProcessSP process_sp(m_process_wp.lock());
1117             if (process_sp) {
1118               data_sp =
1119                   ReadMemory(process_sp, m_memory_addr, header_and_lc_size);
1120             } else {
1121               // Read in all only the load command data from the file on disk
1122               data_sp = MapFileData(m_file, header_and_lc_size, m_file_offset);
1123               if (data_sp->GetByteSize() != header_and_lc_size)
1124                 return false;
1125             }
1126             if (data_sp)
1127               m_data.SetData(data_sp);
1128           }
1129         }
1130         return true;
1131       }
1132     } else {
1133       memset(&m_header, 0, sizeof(struct mach_header));
1134     }
1135   }
1136   return false;
1137 }
1138 
1139 ByteOrder ObjectFileMachO::GetByteOrder() const {
1140   return m_data.GetByteOrder();
1141 }
1142 
1143 bool ObjectFileMachO::IsExecutable() const {
1144   return m_header.filetype == MH_EXECUTE;
1145 }
1146 
1147 uint32_t ObjectFileMachO::GetAddressByteSize() const {
1148   return m_data.GetAddressByteSize();
1149 }
1150 
1151 AddressClass ObjectFileMachO::GetAddressClass(lldb::addr_t file_addr) {
1152   Symtab *symtab = GetSymtab();
1153   if (symtab) {
1154     Symbol *symbol = symtab->FindSymbolContainingFileAddress(file_addr);
1155     if (symbol) {
1156       if (symbol->ValueIsAddress()) {
1157         SectionSP section_sp(symbol->GetAddressRef().GetSection());
1158         if (section_sp) {
1159           const lldb::SectionType section_type = section_sp->GetType();
1160           switch (section_type) {
1161           case eSectionTypeInvalid:
1162             return AddressClass::eUnknown;
1163 
1164           case eSectionTypeCode:
1165             if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
1166               // For ARM we have a bit in the n_desc field of the symbol that
1167               // tells us ARM/Thumb which is bit 0x0008.
1168               if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB)
1169                 return AddressClass::eCodeAlternateISA;
1170             }
1171             return AddressClass::eCode;
1172 
1173           case eSectionTypeContainer:
1174             return AddressClass::eUnknown;
1175 
1176           case eSectionTypeData:
1177           case eSectionTypeDataCString:
1178           case eSectionTypeDataCStringPointers:
1179           case eSectionTypeDataSymbolAddress:
1180           case eSectionTypeData4:
1181           case eSectionTypeData8:
1182           case eSectionTypeData16:
1183           case eSectionTypeDataPointers:
1184           case eSectionTypeZeroFill:
1185           case eSectionTypeDataObjCMessageRefs:
1186           case eSectionTypeDataObjCCFStrings:
1187           case eSectionTypeGoSymtab:
1188             return AddressClass::eData;
1189 
1190           case eSectionTypeDebug:
1191           case eSectionTypeDWARFDebugAbbrev:
1192           case eSectionTypeDWARFDebugAbbrevDwo:
1193           case eSectionTypeDWARFDebugAddr:
1194           case eSectionTypeDWARFDebugAranges:
1195           case eSectionTypeDWARFDebugCuIndex:
1196           case eSectionTypeDWARFDebugFrame:
1197           case eSectionTypeDWARFDebugInfo:
1198           case eSectionTypeDWARFDebugInfoDwo:
1199           case eSectionTypeDWARFDebugLine:
1200           case eSectionTypeDWARFDebugLineStr:
1201           case eSectionTypeDWARFDebugLoc:
1202           case eSectionTypeDWARFDebugLocLists:
1203           case eSectionTypeDWARFDebugMacInfo:
1204           case eSectionTypeDWARFDebugMacro:
1205           case eSectionTypeDWARFDebugNames:
1206           case eSectionTypeDWARFDebugPubNames:
1207           case eSectionTypeDWARFDebugPubTypes:
1208           case eSectionTypeDWARFDebugRanges:
1209           case eSectionTypeDWARFDebugRngLists:
1210           case eSectionTypeDWARFDebugStr:
1211           case eSectionTypeDWARFDebugStrDwo:
1212           case eSectionTypeDWARFDebugStrOffsets:
1213           case eSectionTypeDWARFDebugStrOffsetsDwo:
1214           case eSectionTypeDWARFDebugTypes:
1215           case eSectionTypeDWARFAppleNames:
1216           case eSectionTypeDWARFAppleTypes:
1217           case eSectionTypeDWARFAppleNamespaces:
1218           case eSectionTypeDWARFAppleObjC:
1219           case eSectionTypeDWARFGNUDebugAltLink:
1220             return AddressClass::eDebug;
1221 
1222           case eSectionTypeEHFrame:
1223           case eSectionTypeARMexidx:
1224           case eSectionTypeARMextab:
1225           case eSectionTypeCompactUnwind:
1226             return AddressClass::eRuntime;
1227 
1228           case eSectionTypeAbsoluteAddress:
1229           case eSectionTypeELFSymbolTable:
1230           case eSectionTypeELFDynamicSymbols:
1231           case eSectionTypeELFRelocationEntries:
1232           case eSectionTypeELFDynamicLinkInfo:
1233           case eSectionTypeOther:
1234             return AddressClass::eUnknown;
1235           }
1236         }
1237       }
1238 
1239       const SymbolType symbol_type = symbol->GetType();
1240       switch (symbol_type) {
1241       case eSymbolTypeAny:
1242         return AddressClass::eUnknown;
1243       case eSymbolTypeAbsolute:
1244         return AddressClass::eUnknown;
1245 
1246       case eSymbolTypeCode:
1247       case eSymbolTypeTrampoline:
1248       case eSymbolTypeResolver:
1249         if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
1250           // For ARM we have a bit in the n_desc field of the symbol that tells
1251           // us ARM/Thumb which is bit 0x0008.
1252           if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB)
1253             return AddressClass::eCodeAlternateISA;
1254         }
1255         return AddressClass::eCode;
1256 
1257       case eSymbolTypeData:
1258         return AddressClass::eData;
1259       case eSymbolTypeRuntime:
1260         return AddressClass::eRuntime;
1261       case eSymbolTypeException:
1262         return AddressClass::eRuntime;
1263       case eSymbolTypeSourceFile:
1264         return AddressClass::eDebug;
1265       case eSymbolTypeHeaderFile:
1266         return AddressClass::eDebug;
1267       case eSymbolTypeObjectFile:
1268         return AddressClass::eDebug;
1269       case eSymbolTypeCommonBlock:
1270         return AddressClass::eDebug;
1271       case eSymbolTypeBlock:
1272         return AddressClass::eDebug;
1273       case eSymbolTypeLocal:
1274         return AddressClass::eData;
1275       case eSymbolTypeParam:
1276         return AddressClass::eData;
1277       case eSymbolTypeVariable:
1278         return AddressClass::eData;
1279       case eSymbolTypeVariableType:
1280         return AddressClass::eDebug;
1281       case eSymbolTypeLineEntry:
1282         return AddressClass::eDebug;
1283       case eSymbolTypeLineHeader:
1284         return AddressClass::eDebug;
1285       case eSymbolTypeScopeBegin:
1286         return AddressClass::eDebug;
1287       case eSymbolTypeScopeEnd:
1288         return AddressClass::eDebug;
1289       case eSymbolTypeAdditional:
1290         return AddressClass::eUnknown;
1291       case eSymbolTypeCompiler:
1292         return AddressClass::eDebug;
1293       case eSymbolTypeInstrumentation:
1294         return AddressClass::eDebug;
1295       case eSymbolTypeUndefined:
1296         return AddressClass::eUnknown;
1297       case eSymbolTypeObjCClass:
1298         return AddressClass::eRuntime;
1299       case eSymbolTypeObjCMetaClass:
1300         return AddressClass::eRuntime;
1301       case eSymbolTypeObjCIVar:
1302         return AddressClass::eRuntime;
1303       case eSymbolTypeReExported:
1304         return AddressClass::eRuntime;
1305       }
1306     }
1307   }
1308   return AddressClass::eUnknown;
1309 }
1310 
1311 Symtab *ObjectFileMachO::GetSymtab() {
1312   ModuleSP module_sp(GetModule());
1313   if (module_sp) {
1314     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
1315     if (m_symtab_up == NULL) {
1316       m_symtab_up.reset(new Symtab(this));
1317       std::lock_guard<std::recursive_mutex> symtab_guard(
1318           m_symtab_up->GetMutex());
1319       ParseSymtab();
1320       m_symtab_up->Finalize();
1321     }
1322   }
1323   return m_symtab_up.get();
1324 }
1325 
1326 bool ObjectFileMachO::IsStripped() {
1327   if (m_dysymtab.cmd == 0) {
1328     ModuleSP module_sp(GetModule());
1329     if (module_sp) {
1330       lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1331       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1332         const lldb::offset_t load_cmd_offset = offset;
1333 
1334         load_command lc;
1335         if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL)
1336           break;
1337         if (lc.cmd == LC_DYSYMTAB) {
1338           m_dysymtab.cmd = lc.cmd;
1339           m_dysymtab.cmdsize = lc.cmdsize;
1340           if (m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
1341                             (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2) ==
1342               NULL) {
1343             // Clear m_dysymtab if we were unable to read all items from the
1344             // load command
1345             ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
1346           }
1347         }
1348         offset = load_cmd_offset + lc.cmdsize;
1349       }
1350     }
1351   }
1352   if (m_dysymtab.cmd)
1353     return m_dysymtab.nlocalsym <= 1;
1354   return false;
1355 }
1356 
1357 ObjectFileMachO::EncryptedFileRanges ObjectFileMachO::GetEncryptedFileRanges() {
1358   EncryptedFileRanges result;
1359   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1360 
1361   encryption_info_command encryption_cmd;
1362   for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1363     const lldb::offset_t load_cmd_offset = offset;
1364     if (m_data.GetU32(&offset, &encryption_cmd, 2) == NULL)
1365       break;
1366 
1367     // LC_ENCRYPTION_INFO and LC_ENCRYPTION_INFO_64 have the same sizes for the
1368     // 3 fields we care about, so treat them the same.
1369     if (encryption_cmd.cmd == LC_ENCRYPTION_INFO ||
1370         encryption_cmd.cmd == LC_ENCRYPTION_INFO_64) {
1371       if (m_data.GetU32(&offset, &encryption_cmd.cryptoff, 3)) {
1372         if (encryption_cmd.cryptid != 0) {
1373           EncryptedFileRanges::Entry entry;
1374           entry.SetRangeBase(encryption_cmd.cryptoff);
1375           entry.SetByteSize(encryption_cmd.cryptsize);
1376           result.Append(entry);
1377         }
1378       }
1379     }
1380     offset = load_cmd_offset + encryption_cmd.cmdsize;
1381   }
1382 
1383   return result;
1384 }
1385 
1386 void ObjectFileMachO::SanitizeSegmentCommand(segment_command_64 &seg_cmd,
1387                                              uint32_t cmd_idx) {
1388   if (m_length == 0 || seg_cmd.filesize == 0)
1389     return;
1390 
1391   if (seg_cmd.fileoff > m_length) {
1392     // We have a load command that says it extends past the end of the file.
1393     // This is likely a corrupt file.  We don't have any way to return an error
1394     // condition here (this method was likely invoked from something like
1395     // ObjectFile::GetSectionList()), so we just null out the section contents,
1396     // and dump a message to stdout.  The most common case here is core file
1397     // debugging with a truncated file.
1398     const char *lc_segment_name =
1399         seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT";
1400     GetModule()->ReportWarning(
1401         "load command %u %s has a fileoff (0x%" PRIx64
1402         ") that extends beyond the end of the file (0x%" PRIx64
1403         "), ignoring this section",
1404         cmd_idx, lc_segment_name, seg_cmd.fileoff, m_length);
1405 
1406     seg_cmd.fileoff = 0;
1407     seg_cmd.filesize = 0;
1408   }
1409 
1410   if (seg_cmd.fileoff + seg_cmd.filesize > m_length) {
1411     // We have a load command that says it extends past the end of the file.
1412     // This is likely a corrupt file.  We don't have any way to return an error
1413     // condition here (this method was likely invoked from something like
1414     // ObjectFile::GetSectionList()), so we just null out the section contents,
1415     // and dump a message to stdout.  The most common case here is core file
1416     // debugging with a truncated file.
1417     const char *lc_segment_name =
1418         seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT";
1419     GetModule()->ReportWarning(
1420         "load command %u %s has a fileoff + filesize (0x%" PRIx64
1421         ") that extends beyond the end of the file (0x%" PRIx64
1422         "), the segment will be truncated to match",
1423         cmd_idx, lc_segment_name, seg_cmd.fileoff + seg_cmd.filesize, m_length);
1424 
1425     // Truncate the length
1426     seg_cmd.filesize = m_length - seg_cmd.fileoff;
1427   }
1428 }
1429 
1430 static uint32_t GetSegmentPermissions(const segment_command_64 &seg_cmd) {
1431   uint32_t result = 0;
1432   if (seg_cmd.initprot & VM_PROT_READ)
1433     result |= ePermissionsReadable;
1434   if (seg_cmd.initprot & VM_PROT_WRITE)
1435     result |= ePermissionsWritable;
1436   if (seg_cmd.initprot & VM_PROT_EXECUTE)
1437     result |= ePermissionsExecutable;
1438   return result;
1439 }
1440 
1441 static lldb::SectionType GetSectionType(uint32_t flags,
1442                                         ConstString section_name) {
1443 
1444   if (flags & (S_ATTR_PURE_INSTRUCTIONS | S_ATTR_SOME_INSTRUCTIONS))
1445     return eSectionTypeCode;
1446 
1447   uint32_t mach_sect_type = flags & SECTION_TYPE;
1448   static ConstString g_sect_name_objc_data("__objc_data");
1449   static ConstString g_sect_name_objc_msgrefs("__objc_msgrefs");
1450   static ConstString g_sect_name_objc_selrefs("__objc_selrefs");
1451   static ConstString g_sect_name_objc_classrefs("__objc_classrefs");
1452   static ConstString g_sect_name_objc_superrefs("__objc_superrefs");
1453   static ConstString g_sect_name_objc_const("__objc_const");
1454   static ConstString g_sect_name_objc_classlist("__objc_classlist");
1455   static ConstString g_sect_name_cfstring("__cfstring");
1456 
1457   static ConstString g_sect_name_dwarf_debug_abbrev("__debug_abbrev");
1458   static ConstString g_sect_name_dwarf_debug_aranges("__debug_aranges");
1459   static ConstString g_sect_name_dwarf_debug_frame("__debug_frame");
1460   static ConstString g_sect_name_dwarf_debug_info("__debug_info");
1461   static ConstString g_sect_name_dwarf_debug_line("__debug_line");
1462   static ConstString g_sect_name_dwarf_debug_loc("__debug_loc");
1463   static ConstString g_sect_name_dwarf_debug_loclists("__debug_loclists");
1464   static ConstString g_sect_name_dwarf_debug_macinfo("__debug_macinfo");
1465   static ConstString g_sect_name_dwarf_debug_names("__debug_names");
1466   static ConstString g_sect_name_dwarf_debug_pubnames("__debug_pubnames");
1467   static ConstString g_sect_name_dwarf_debug_pubtypes("__debug_pubtypes");
1468   static ConstString g_sect_name_dwarf_debug_ranges("__debug_ranges");
1469   static ConstString g_sect_name_dwarf_debug_str("__debug_str");
1470   static ConstString g_sect_name_dwarf_debug_types("__debug_types");
1471   static ConstString g_sect_name_dwarf_apple_names("__apple_names");
1472   static ConstString g_sect_name_dwarf_apple_types("__apple_types");
1473   static ConstString g_sect_name_dwarf_apple_namespaces("__apple_namespac");
1474   static ConstString g_sect_name_dwarf_apple_objc("__apple_objc");
1475   static ConstString g_sect_name_eh_frame("__eh_frame");
1476   static ConstString g_sect_name_compact_unwind("__unwind_info");
1477   static ConstString g_sect_name_text("__text");
1478   static ConstString g_sect_name_data("__data");
1479   static ConstString g_sect_name_go_symtab("__gosymtab");
1480 
1481   if (section_name == g_sect_name_dwarf_debug_abbrev)
1482     return eSectionTypeDWARFDebugAbbrev;
1483   if (section_name == g_sect_name_dwarf_debug_aranges)
1484     return eSectionTypeDWARFDebugAranges;
1485   if (section_name == g_sect_name_dwarf_debug_frame)
1486     return eSectionTypeDWARFDebugFrame;
1487   if (section_name == g_sect_name_dwarf_debug_info)
1488     return eSectionTypeDWARFDebugInfo;
1489   if (section_name == g_sect_name_dwarf_debug_line)
1490     return eSectionTypeDWARFDebugLine;
1491   if (section_name == g_sect_name_dwarf_debug_loc)
1492     return eSectionTypeDWARFDebugLoc;
1493   if (section_name == g_sect_name_dwarf_debug_loclists)
1494     return eSectionTypeDWARFDebugLocLists;
1495   if (section_name == g_sect_name_dwarf_debug_macinfo)
1496     return eSectionTypeDWARFDebugMacInfo;
1497   if (section_name == g_sect_name_dwarf_debug_names)
1498     return eSectionTypeDWARFDebugNames;
1499   if (section_name == g_sect_name_dwarf_debug_pubnames)
1500     return eSectionTypeDWARFDebugPubNames;
1501   if (section_name == g_sect_name_dwarf_debug_pubtypes)
1502     return eSectionTypeDWARFDebugPubTypes;
1503   if (section_name == g_sect_name_dwarf_debug_ranges)
1504     return eSectionTypeDWARFDebugRanges;
1505   if (section_name == g_sect_name_dwarf_debug_str)
1506     return eSectionTypeDWARFDebugStr;
1507   if (section_name == g_sect_name_dwarf_debug_types)
1508     return eSectionTypeDWARFDebugTypes;
1509   if (section_name == g_sect_name_dwarf_apple_names)
1510     return eSectionTypeDWARFAppleNames;
1511   if (section_name == g_sect_name_dwarf_apple_types)
1512     return eSectionTypeDWARFAppleTypes;
1513   if (section_name == g_sect_name_dwarf_apple_namespaces)
1514     return eSectionTypeDWARFAppleNamespaces;
1515   if (section_name == g_sect_name_dwarf_apple_objc)
1516     return eSectionTypeDWARFAppleObjC;
1517   if (section_name == g_sect_name_objc_selrefs)
1518     return eSectionTypeDataCStringPointers;
1519   if (section_name == g_sect_name_objc_msgrefs)
1520     return eSectionTypeDataObjCMessageRefs;
1521   if (section_name == g_sect_name_eh_frame)
1522     return eSectionTypeEHFrame;
1523   if (section_name == g_sect_name_compact_unwind)
1524     return eSectionTypeCompactUnwind;
1525   if (section_name == g_sect_name_cfstring)
1526     return eSectionTypeDataObjCCFStrings;
1527   if (section_name == g_sect_name_go_symtab)
1528     return eSectionTypeGoSymtab;
1529   if (section_name == g_sect_name_objc_data ||
1530       section_name == g_sect_name_objc_classrefs ||
1531       section_name == g_sect_name_objc_superrefs ||
1532       section_name == g_sect_name_objc_const ||
1533       section_name == g_sect_name_objc_classlist) {
1534     return eSectionTypeDataPointers;
1535   }
1536 
1537   switch (mach_sect_type) {
1538   // TODO: categorize sections by other flags for regular sections
1539   case S_REGULAR:
1540     if (section_name == g_sect_name_text)
1541       return eSectionTypeCode;
1542     if (section_name == g_sect_name_data)
1543       return eSectionTypeData;
1544     return eSectionTypeOther;
1545   case S_ZEROFILL:
1546     return eSectionTypeZeroFill;
1547   case S_CSTRING_LITERALS: // section with only literal C strings
1548     return eSectionTypeDataCString;
1549   case S_4BYTE_LITERALS: // section with only 4 byte literals
1550     return eSectionTypeData4;
1551   case S_8BYTE_LITERALS: // section with only 8 byte literals
1552     return eSectionTypeData8;
1553   case S_LITERAL_POINTERS: // section with only pointers to literals
1554     return eSectionTypeDataPointers;
1555   case S_NON_LAZY_SYMBOL_POINTERS: // section with only non-lazy symbol pointers
1556     return eSectionTypeDataPointers;
1557   case S_LAZY_SYMBOL_POINTERS: // section with only lazy symbol pointers
1558     return eSectionTypeDataPointers;
1559   case S_SYMBOL_STUBS: // section with only symbol stubs, byte size of stub in
1560                        // the reserved2 field
1561     return eSectionTypeCode;
1562   case S_MOD_INIT_FUNC_POINTERS: // section with only function pointers for
1563                                  // initialization
1564     return eSectionTypeDataPointers;
1565   case S_MOD_TERM_FUNC_POINTERS: // section with only function pointers for
1566                                  // termination
1567     return eSectionTypeDataPointers;
1568   case S_COALESCED:
1569     return eSectionTypeOther;
1570   case S_GB_ZEROFILL:
1571     return eSectionTypeZeroFill;
1572   case S_INTERPOSING: // section with only pairs of function pointers for
1573                       // interposing
1574     return eSectionTypeCode;
1575   case S_16BYTE_LITERALS: // section with only 16 byte literals
1576     return eSectionTypeData16;
1577   case S_DTRACE_DOF:
1578     return eSectionTypeDebug;
1579   case S_LAZY_DYLIB_SYMBOL_POINTERS:
1580     return eSectionTypeDataPointers;
1581   default:
1582     return eSectionTypeOther;
1583   }
1584 }
1585 
1586 struct ObjectFileMachO::SegmentParsingContext {
1587   const EncryptedFileRanges EncryptedRanges;
1588   lldb_private::SectionList &UnifiedList;
1589   uint32_t NextSegmentIdx = 0;
1590   uint32_t NextSectionIdx = 0;
1591   bool FileAddressesChanged = false;
1592 
1593   SegmentParsingContext(EncryptedFileRanges EncryptedRanges,
1594                         lldb_private::SectionList &UnifiedList)
1595       : EncryptedRanges(std::move(EncryptedRanges)), UnifiedList(UnifiedList) {}
1596 };
1597 
1598 void ObjectFileMachO::ProcessSegmentCommand(const load_command &load_cmd_,
1599                                             lldb::offset_t offset,
1600                                             uint32_t cmd_idx,
1601                                             SegmentParsingContext &context) {
1602   segment_command_64 load_cmd;
1603   memcpy(&load_cmd, &load_cmd_, sizeof(load_cmd_));
1604 
1605   if (!m_data.GetU8(&offset, (uint8_t *)load_cmd.segname, 16))
1606     return;
1607 
1608   ModuleSP module_sp = GetModule();
1609   const bool is_core = GetType() == eTypeCoreFile;
1610   const bool is_dsym = (m_header.filetype == MH_DSYM);
1611   bool add_section = true;
1612   bool add_to_unified = true;
1613   ConstString const_segname(
1614       load_cmd.segname, strnlen(load_cmd.segname, sizeof(load_cmd.segname)));
1615 
1616   SectionSP unified_section_sp(
1617       context.UnifiedList.FindSectionByName(const_segname));
1618   if (is_dsym && unified_section_sp) {
1619     if (const_segname == GetSegmentNameLINKEDIT()) {
1620       // We need to keep the __LINKEDIT segment private to this object file
1621       // only
1622       add_to_unified = false;
1623     } else {
1624       // This is the dSYM file and this section has already been created by the
1625       // object file, no need to create it.
1626       add_section = false;
1627     }
1628   }
1629   load_cmd.vmaddr = m_data.GetAddress(&offset);
1630   load_cmd.vmsize = m_data.GetAddress(&offset);
1631   load_cmd.fileoff = m_data.GetAddress(&offset);
1632   load_cmd.filesize = m_data.GetAddress(&offset);
1633   if (!m_data.GetU32(&offset, &load_cmd.maxprot, 4))
1634     return;
1635 
1636   SanitizeSegmentCommand(load_cmd, cmd_idx);
1637 
1638   const uint32_t segment_permissions = GetSegmentPermissions(load_cmd);
1639   const bool segment_is_encrypted =
1640       (load_cmd.flags & SG_PROTECTED_VERSION_1) != 0;
1641 
1642   // Keep a list of mach segments around in case we need to get at data that
1643   // isn't stored in the abstracted Sections.
1644   m_mach_segments.push_back(load_cmd);
1645 
1646   // Use a segment ID of the segment index shifted left by 8 so they never
1647   // conflict with any of the sections.
1648   SectionSP segment_sp;
1649   if (add_section && (const_segname || is_core)) {
1650     segment_sp = std::make_shared<Section>(
1651         module_sp, // Module to which this section belongs
1652         this,      // Object file to which this sections belongs
1653         ++context.NextSegmentIdx
1654             << 8, // Section ID is the 1 based segment index
1655         // shifted right by 8 bits as not to collide with any of the 256
1656         // section IDs that are possible
1657         const_segname,         // Name of this section
1658         eSectionTypeContainer, // This section is a container of other
1659         // sections.
1660         load_cmd.vmaddr, // File VM address == addresses as they are
1661         // found in the object file
1662         load_cmd.vmsize,  // VM size in bytes of this section
1663         load_cmd.fileoff, // Offset to the data for this section in
1664         // the file
1665         load_cmd.filesize, // Size in bytes of this section as found
1666         // in the file
1667         0,                // Segments have no alignment information
1668         load_cmd.flags); // Flags for this section
1669 
1670     segment_sp->SetIsEncrypted(segment_is_encrypted);
1671     m_sections_up->AddSection(segment_sp);
1672     segment_sp->SetPermissions(segment_permissions);
1673     if (add_to_unified)
1674       context.UnifiedList.AddSection(segment_sp);
1675   } else if (unified_section_sp) {
1676     if (is_dsym && unified_section_sp->GetFileAddress() != load_cmd.vmaddr) {
1677       // Check to see if the module was read from memory?
1678       if (module_sp->GetObjectFile()->GetBaseAddress().IsValid()) {
1679         // We have a module that is in memory and needs to have its file
1680         // address adjusted. We need to do this because when we load a file
1681         // from memory, its addresses will be slid already, yet the addresses
1682         // in the new symbol file will still be unslid.  Since everything is
1683         // stored as section offset, this shouldn't cause any problems.
1684 
1685         // Make sure we've parsed the symbol table from the ObjectFile before
1686         // we go around changing its Sections.
1687         module_sp->GetObjectFile()->GetSymtab();
1688         // eh_frame would present the same problems but we parse that on a per-
1689         // function basis as-needed so it's more difficult to remove its use of
1690         // the Sections.  Realistically, the environments where this code path
1691         // will be taken will not have eh_frame sections.
1692 
1693         unified_section_sp->SetFileAddress(load_cmd.vmaddr);
1694 
1695         // Notify the module that the section addresses have been changed once
1696         // we're done so any file-address caches can be updated.
1697         context.FileAddressesChanged = true;
1698       }
1699     }
1700     m_sections_up->AddSection(unified_section_sp);
1701   }
1702 
1703   struct section_64 sect64;
1704   ::memset(&sect64, 0, sizeof(sect64));
1705   // Push a section into our mach sections for the section at index zero
1706   // (NO_SECT) if we don't have any mach sections yet...
1707   if (m_mach_sections.empty())
1708     m_mach_sections.push_back(sect64);
1709   uint32_t segment_sect_idx;
1710   const lldb::user_id_t first_segment_sectID = context.NextSectionIdx + 1;
1711 
1712   const uint32_t num_u32s = load_cmd.cmd == LC_SEGMENT ? 7 : 8;
1713   for (segment_sect_idx = 0; segment_sect_idx < load_cmd.nsects;
1714        ++segment_sect_idx) {
1715     if (m_data.GetU8(&offset, (uint8_t *)sect64.sectname,
1716                      sizeof(sect64.sectname)) == NULL)
1717       break;
1718     if (m_data.GetU8(&offset, (uint8_t *)sect64.segname,
1719                      sizeof(sect64.segname)) == NULL)
1720       break;
1721     sect64.addr = m_data.GetAddress(&offset);
1722     sect64.size = m_data.GetAddress(&offset);
1723 
1724     if (m_data.GetU32(&offset, &sect64.offset, num_u32s) == NULL)
1725       break;
1726 
1727     // Keep a list of mach sections around in case we need to get at data that
1728     // isn't stored in the abstracted Sections.
1729     m_mach_sections.push_back(sect64);
1730 
1731     if (add_section) {
1732       ConstString section_name(
1733           sect64.sectname, strnlen(sect64.sectname, sizeof(sect64.sectname)));
1734       if (!const_segname) {
1735         // We have a segment with no name so we need to conjure up segments
1736         // that correspond to the section's segname if there isn't already such
1737         // a section. If there is such a section, we resize the section so that
1738         // it spans all sections.  We also mark these sections as fake so
1739         // address matches don't hit if they land in the gaps between the child
1740         // sections.
1741         const_segname.SetTrimmedCStringWithLength(sect64.segname,
1742                                                   sizeof(sect64.segname));
1743         segment_sp = context.UnifiedList.FindSectionByName(const_segname);
1744         if (segment_sp.get()) {
1745           Section *segment = segment_sp.get();
1746           // Grow the section size as needed.
1747           const lldb::addr_t sect64_min_addr = sect64.addr;
1748           const lldb::addr_t sect64_max_addr = sect64_min_addr + sect64.size;
1749           const lldb::addr_t curr_seg_byte_size = segment->GetByteSize();
1750           const lldb::addr_t curr_seg_min_addr = segment->GetFileAddress();
1751           const lldb::addr_t curr_seg_max_addr =
1752               curr_seg_min_addr + curr_seg_byte_size;
1753           if (sect64_min_addr >= curr_seg_min_addr) {
1754             const lldb::addr_t new_seg_byte_size =
1755                 sect64_max_addr - curr_seg_min_addr;
1756             // Only grow the section size if needed
1757             if (new_seg_byte_size > curr_seg_byte_size)
1758               segment->SetByteSize(new_seg_byte_size);
1759           } else {
1760             // We need to change the base address of the segment and adjust the
1761             // child section offsets for all existing children.
1762             const lldb::addr_t slide_amount =
1763                 sect64_min_addr - curr_seg_min_addr;
1764             segment->Slide(slide_amount, false);
1765             segment->GetChildren().Slide(-slide_amount, false);
1766             segment->SetByteSize(curr_seg_max_addr - sect64_min_addr);
1767           }
1768 
1769           // Grow the section size as needed.
1770           if (sect64.offset) {
1771             const lldb::addr_t segment_min_file_offset =
1772                 segment->GetFileOffset();
1773             const lldb::addr_t segment_max_file_offset =
1774                 segment_min_file_offset + segment->GetFileSize();
1775 
1776             const lldb::addr_t section_min_file_offset = sect64.offset;
1777             const lldb::addr_t section_max_file_offset =
1778                 section_min_file_offset + sect64.size;
1779             const lldb::addr_t new_file_offset =
1780                 std::min(section_min_file_offset, segment_min_file_offset);
1781             const lldb::addr_t new_file_size =
1782                 std::max(section_max_file_offset, segment_max_file_offset) -
1783                 new_file_offset;
1784             segment->SetFileOffset(new_file_offset);
1785             segment->SetFileSize(new_file_size);
1786           }
1787         } else {
1788           // Create a fake section for the section's named segment
1789           segment_sp = std::make_shared<Section>(
1790               segment_sp, // Parent section
1791               module_sp,  // Module to which this section belongs
1792               this,       // Object file to which this section belongs
1793               ++context.NextSegmentIdx
1794                   << 8, // Section ID is the 1 based segment index
1795               // shifted right by 8 bits as not to
1796               // collide with any of the 256 section IDs
1797               // that are possible
1798               const_segname,         // Name of this section
1799               eSectionTypeContainer, // This section is a container of
1800               // other sections.
1801               sect64.addr, // File VM address == addresses as they are
1802               // found in the object file
1803               sect64.size,   // VM size in bytes of this section
1804               sect64.offset, // Offset to the data for this section in
1805               // the file
1806               sect64.offset ? sect64.size : 0, // Size in bytes of
1807               // this section as
1808               // found in the file
1809               sect64.align,
1810               load_cmd.flags); // Flags for this section
1811           segment_sp->SetIsFake(true);
1812           segment_sp->SetPermissions(segment_permissions);
1813           m_sections_up->AddSection(segment_sp);
1814           if (add_to_unified)
1815             context.UnifiedList.AddSection(segment_sp);
1816           segment_sp->SetIsEncrypted(segment_is_encrypted);
1817         }
1818       }
1819       assert(segment_sp.get());
1820 
1821       lldb::SectionType sect_type = GetSectionType(sect64.flags, section_name);
1822 
1823       SectionSP section_sp(new Section(
1824           segment_sp, module_sp, this, ++context.NextSectionIdx, section_name,
1825           sect_type, sect64.addr - segment_sp->GetFileAddress(), sect64.size,
1826           sect64.offset, sect64.offset == 0 ? 0 : sect64.size, sect64.align,
1827           sect64.flags));
1828       // Set the section to be encrypted to match the segment
1829 
1830       bool section_is_encrypted = false;
1831       if (!segment_is_encrypted && load_cmd.filesize != 0)
1832         section_is_encrypted = context.EncryptedRanges.FindEntryThatContains(
1833                                    sect64.offset) != NULL;
1834 
1835       section_sp->SetIsEncrypted(segment_is_encrypted || section_is_encrypted);
1836       section_sp->SetPermissions(segment_permissions);
1837       segment_sp->GetChildren().AddSection(section_sp);
1838 
1839       if (segment_sp->IsFake()) {
1840         segment_sp.reset();
1841         const_segname.Clear();
1842       }
1843     }
1844   }
1845   if (segment_sp && is_dsym) {
1846     if (first_segment_sectID <= context.NextSectionIdx) {
1847       lldb::user_id_t sect_uid;
1848       for (sect_uid = first_segment_sectID; sect_uid <= context.NextSectionIdx;
1849            ++sect_uid) {
1850         SectionSP curr_section_sp(
1851             segment_sp->GetChildren().FindSectionByID(sect_uid));
1852         SectionSP next_section_sp;
1853         if (sect_uid + 1 <= context.NextSectionIdx)
1854           next_section_sp =
1855               segment_sp->GetChildren().FindSectionByID(sect_uid + 1);
1856 
1857         if (curr_section_sp.get()) {
1858           if (curr_section_sp->GetByteSize() == 0) {
1859             if (next_section_sp.get() != NULL)
1860               curr_section_sp->SetByteSize(next_section_sp->GetFileAddress() -
1861                                            curr_section_sp->GetFileAddress());
1862             else
1863               curr_section_sp->SetByteSize(load_cmd.vmsize);
1864           }
1865         }
1866       }
1867     }
1868   }
1869 }
1870 
1871 void ObjectFileMachO::ProcessDysymtabCommand(const load_command &load_cmd,
1872                                              lldb::offset_t offset) {
1873   m_dysymtab.cmd = load_cmd.cmd;
1874   m_dysymtab.cmdsize = load_cmd.cmdsize;
1875   m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
1876                 (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2);
1877 }
1878 
1879 void ObjectFileMachO::CreateSections(SectionList &unified_section_list) {
1880   if (m_sections_up)
1881     return;
1882 
1883   m_sections_up.reset(new SectionList());
1884 
1885   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1886   // bool dump_sections = false;
1887   ModuleSP module_sp(GetModule());
1888 
1889   offset = MachHeaderSizeFromMagic(m_header.magic);
1890 
1891   SegmentParsingContext context(GetEncryptedFileRanges(), unified_section_list);
1892   struct load_command load_cmd;
1893   for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1894     const lldb::offset_t load_cmd_offset = offset;
1895     if (m_data.GetU32(&offset, &load_cmd, 2) == NULL)
1896       break;
1897 
1898     if (load_cmd.cmd == LC_SEGMENT || load_cmd.cmd == LC_SEGMENT_64)
1899       ProcessSegmentCommand(load_cmd, offset, i, context);
1900     else if (load_cmd.cmd == LC_DYSYMTAB)
1901       ProcessDysymtabCommand(load_cmd, offset);
1902 
1903     offset = load_cmd_offset + load_cmd.cmdsize;
1904   }
1905 
1906   if (context.FileAddressesChanged && module_sp)
1907     module_sp->SectionFileAddressesChanged();
1908 }
1909 
1910 class MachSymtabSectionInfo {
1911 public:
1912   MachSymtabSectionInfo(SectionList *section_list)
1913       : m_section_list(section_list), m_section_infos() {
1914     // Get the number of sections down to a depth of 1 to include all segments
1915     // and their sections, but no other sections that may be added for debug
1916     // map or
1917     m_section_infos.resize(section_list->GetNumSections(1));
1918   }
1919 
1920   SectionSP GetSection(uint8_t n_sect, addr_t file_addr) {
1921     if (n_sect == 0)
1922       return SectionSP();
1923     if (n_sect < m_section_infos.size()) {
1924       if (!m_section_infos[n_sect].section_sp) {
1925         SectionSP section_sp(m_section_list->FindSectionByID(n_sect));
1926         m_section_infos[n_sect].section_sp = section_sp;
1927         if (section_sp) {
1928           m_section_infos[n_sect].vm_range.SetBaseAddress(
1929               section_sp->GetFileAddress());
1930           m_section_infos[n_sect].vm_range.SetByteSize(
1931               section_sp->GetByteSize());
1932         } else {
1933           Host::SystemLog(Host::eSystemLogError,
1934                           "error: unable to find section for section %u\n",
1935                           n_sect);
1936         }
1937       }
1938       if (m_section_infos[n_sect].vm_range.Contains(file_addr)) {
1939         // Symbol is in section.
1940         return m_section_infos[n_sect].section_sp;
1941       } else if (m_section_infos[n_sect].vm_range.GetByteSize() == 0 &&
1942                  m_section_infos[n_sect].vm_range.GetBaseAddress() ==
1943                      file_addr) {
1944         // Symbol is in section with zero size, but has the same start address
1945         // as the section. This can happen with linker symbols (symbols that
1946         // start with the letter 'l' or 'L'.
1947         return m_section_infos[n_sect].section_sp;
1948       }
1949     }
1950     return m_section_list->FindSectionContainingFileAddress(file_addr);
1951   }
1952 
1953 protected:
1954   struct SectionInfo {
1955     SectionInfo() : vm_range(), section_sp() {}
1956 
1957     VMRange vm_range;
1958     SectionSP section_sp;
1959   };
1960   SectionList *m_section_list;
1961   std::vector<SectionInfo> m_section_infos;
1962 };
1963 
1964 struct TrieEntry {
1965   TrieEntry()
1966       : name(), address(LLDB_INVALID_ADDRESS), flags(0), other(0),
1967         import_name() {}
1968 
1969   void Clear() {
1970     name.Clear();
1971     address = LLDB_INVALID_ADDRESS;
1972     flags = 0;
1973     other = 0;
1974     import_name.Clear();
1975   }
1976 
1977   void Dump() const {
1978     printf("0x%16.16llx 0x%16.16llx 0x%16.16llx \"%s\"",
1979            static_cast<unsigned long long>(address),
1980            static_cast<unsigned long long>(flags),
1981            static_cast<unsigned long long>(other), name.GetCString());
1982     if (import_name)
1983       printf(" -> \"%s\"\n", import_name.GetCString());
1984     else
1985       printf("\n");
1986   }
1987   ConstString name;
1988   uint64_t address;
1989   uint64_t flags;
1990   uint64_t other;
1991   ConstString import_name;
1992 };
1993 
1994 struct TrieEntryWithOffset {
1995   lldb::offset_t nodeOffset;
1996   TrieEntry entry;
1997 
1998   TrieEntryWithOffset(lldb::offset_t offset) : nodeOffset(offset), entry() {}
1999 
2000   void Dump(uint32_t idx) const {
2001     printf("[%3u] 0x%16.16llx: ", idx,
2002            static_cast<unsigned long long>(nodeOffset));
2003     entry.Dump();
2004   }
2005 
2006   bool operator<(const TrieEntryWithOffset &other) const {
2007     return (nodeOffset < other.nodeOffset);
2008   }
2009 };
2010 
2011 static bool ParseTrieEntries(DataExtractor &data, lldb::offset_t offset,
2012                              const bool is_arm,
2013                              std::vector<llvm::StringRef> &nameSlices,
2014                              std::set<lldb::addr_t> &resolver_addresses,
2015                              std::vector<TrieEntryWithOffset> &output) {
2016   if (!data.ValidOffset(offset))
2017     return true;
2018 
2019   const uint64_t terminalSize = data.GetULEB128(&offset);
2020   lldb::offset_t children_offset = offset + terminalSize;
2021   if (terminalSize != 0) {
2022     TrieEntryWithOffset e(offset);
2023     e.entry.flags = data.GetULEB128(&offset);
2024     const char *import_name = NULL;
2025     if (e.entry.flags & EXPORT_SYMBOL_FLAGS_REEXPORT) {
2026       e.entry.address = 0;
2027       e.entry.other = data.GetULEB128(&offset); // dylib ordinal
2028       import_name = data.GetCStr(&offset);
2029     } else {
2030       e.entry.address = data.GetULEB128(&offset);
2031       if (e.entry.flags & EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER) {
2032         e.entry.other = data.GetULEB128(&offset);
2033         uint64_t resolver_addr = e.entry.other;
2034         if (is_arm)
2035           resolver_addr &= THUMB_ADDRESS_BIT_MASK;
2036         resolver_addresses.insert(resolver_addr);
2037       } else
2038         e.entry.other = 0;
2039     }
2040     // Only add symbols that are reexport symbols with a valid import name
2041     if (EXPORT_SYMBOL_FLAGS_REEXPORT & e.entry.flags && import_name &&
2042         import_name[0]) {
2043       std::string name;
2044       if (!nameSlices.empty()) {
2045         for (auto name_slice : nameSlices)
2046           name.append(name_slice.data(), name_slice.size());
2047       }
2048       if (name.size() > 1) {
2049         // Skip the leading '_'
2050         e.entry.name.SetCStringWithLength(name.c_str() + 1, name.size() - 1);
2051       }
2052       if (import_name) {
2053         // Skip the leading '_'
2054         e.entry.import_name.SetCString(import_name + 1);
2055       }
2056       output.push_back(e);
2057     }
2058   }
2059 
2060   const uint8_t childrenCount = data.GetU8(&children_offset);
2061   for (uint8_t i = 0; i < childrenCount; ++i) {
2062     const char *cstr = data.GetCStr(&children_offset);
2063     if (cstr)
2064       nameSlices.push_back(llvm::StringRef(cstr));
2065     else
2066       return false; // Corrupt data
2067     lldb::offset_t childNodeOffset = data.GetULEB128(&children_offset);
2068     if (childNodeOffset) {
2069       if (!ParseTrieEntries(data, childNodeOffset, is_arm, nameSlices,
2070                             resolver_addresses, output)) {
2071         return false;
2072       }
2073     }
2074     nameSlices.pop_back();
2075   }
2076   return true;
2077 }
2078 
2079 // Read the UUID out of a dyld_shared_cache file on-disk.
2080 UUID ObjectFileMachO::GetSharedCacheUUID(FileSpec dyld_shared_cache,
2081                                          const ByteOrder byte_order,
2082                                          const uint32_t addr_byte_size) {
2083   UUID dsc_uuid;
2084   DataBufferSP DscData = MapFileData(
2085       dyld_shared_cache, sizeof(struct lldb_copy_dyld_cache_header_v1), 0);
2086   if (!DscData)
2087     return dsc_uuid;
2088   DataExtractor dsc_header_data(DscData, byte_order, addr_byte_size);
2089 
2090   char version_str[7];
2091   lldb::offset_t offset = 0;
2092   memcpy(version_str, dsc_header_data.GetData(&offset, 6), 6);
2093   version_str[6] = '\0';
2094   if (strcmp(version_str, "dyld_v") == 0) {
2095     offset = offsetof(struct lldb_copy_dyld_cache_header_v1, uuid);
2096     dsc_uuid = UUID::fromOptionalData(
2097         dsc_header_data.GetData(&offset, sizeof(uuid_t)), sizeof(uuid_t));
2098   }
2099   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS));
2100   if (log && dsc_uuid.IsValid()) {
2101     log->Printf("Shared cache %s has UUID %s", dyld_shared_cache.GetPath().c_str(),
2102                 dsc_uuid.GetAsString().c_str());
2103   }
2104   return dsc_uuid;
2105 }
2106 
2107 size_t ObjectFileMachO::ParseSymtab() {
2108   static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
2109   Timer scoped_timer(func_cat, "ObjectFileMachO::ParseSymtab () module = %s",
2110                      m_file.GetFilename().AsCString(""));
2111   ModuleSP module_sp(GetModule());
2112   if (!module_sp)
2113     return 0;
2114 
2115   struct symtab_command symtab_load_command = {0, 0, 0, 0, 0, 0};
2116   struct linkedit_data_command function_starts_load_command = {0, 0, 0, 0};
2117   struct dyld_info_command dyld_info = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
2118   typedef AddressDataArray<lldb::addr_t, bool, 100> FunctionStarts;
2119   FunctionStarts function_starts;
2120   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
2121   uint32_t i;
2122   FileSpecList dylib_files;
2123   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS));
2124   static const llvm::StringRef g_objc_v2_prefix_class("_OBJC_CLASS_$_");
2125   static const llvm::StringRef g_objc_v2_prefix_metaclass("_OBJC_METACLASS_$_");
2126   static const llvm::StringRef g_objc_v2_prefix_ivar("_OBJC_IVAR_$_");
2127 
2128   for (i = 0; i < m_header.ncmds; ++i) {
2129     const lldb::offset_t cmd_offset = offset;
2130     // Read in the load command and load command size
2131     struct load_command lc;
2132     if (m_data.GetU32(&offset, &lc, 2) == NULL)
2133       break;
2134     // Watch for the symbol table load command
2135     switch (lc.cmd) {
2136     case LC_SYMTAB:
2137       symtab_load_command.cmd = lc.cmd;
2138       symtab_load_command.cmdsize = lc.cmdsize;
2139       // Read in the rest of the symtab load command
2140       if (m_data.GetU32(&offset, &symtab_load_command.symoff, 4) ==
2141           0) // fill in symoff, nsyms, stroff, strsize fields
2142         return 0;
2143       if (symtab_load_command.symoff == 0) {
2144         if (log)
2145           module_sp->LogMessage(log, "LC_SYMTAB.symoff == 0");
2146         return 0;
2147       }
2148 
2149       if (symtab_load_command.stroff == 0) {
2150         if (log)
2151           module_sp->LogMessage(log, "LC_SYMTAB.stroff == 0");
2152         return 0;
2153       }
2154 
2155       if (symtab_load_command.nsyms == 0) {
2156         if (log)
2157           module_sp->LogMessage(log, "LC_SYMTAB.nsyms == 0");
2158         return 0;
2159       }
2160 
2161       if (symtab_load_command.strsize == 0) {
2162         if (log)
2163           module_sp->LogMessage(log, "LC_SYMTAB.strsize == 0");
2164         return 0;
2165       }
2166       break;
2167 
2168     case LC_DYLD_INFO:
2169     case LC_DYLD_INFO_ONLY:
2170       if (m_data.GetU32(&offset, &dyld_info.rebase_off, 10)) {
2171         dyld_info.cmd = lc.cmd;
2172         dyld_info.cmdsize = lc.cmdsize;
2173       } else {
2174         memset(&dyld_info, 0, sizeof(dyld_info));
2175       }
2176       break;
2177 
2178     case LC_LOAD_DYLIB:
2179     case LC_LOAD_WEAK_DYLIB:
2180     case LC_REEXPORT_DYLIB:
2181     case LC_LOADFVMLIB:
2182     case LC_LOAD_UPWARD_DYLIB: {
2183       uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
2184       const char *path = m_data.PeekCStr(name_offset);
2185       if (path) {
2186         FileSpec file_spec(path);
2187         // Strip the path if there is @rpath, @executable, etc so we just use
2188         // the basename
2189         if (path[0] == '@')
2190           file_spec.GetDirectory().Clear();
2191 
2192         if (lc.cmd == LC_REEXPORT_DYLIB) {
2193           m_reexported_dylibs.AppendIfUnique(file_spec);
2194         }
2195 
2196         dylib_files.Append(file_spec);
2197       }
2198     } break;
2199 
2200     case LC_FUNCTION_STARTS:
2201       function_starts_load_command.cmd = lc.cmd;
2202       function_starts_load_command.cmdsize = lc.cmdsize;
2203       if (m_data.GetU32(&offset, &function_starts_load_command.dataoff, 2) ==
2204           NULL) // fill in symoff, nsyms, stroff, strsize fields
2205         memset(&function_starts_load_command, 0,
2206                sizeof(function_starts_load_command));
2207       break;
2208 
2209     default:
2210       break;
2211     }
2212     offset = cmd_offset + lc.cmdsize;
2213   }
2214 
2215   if (symtab_load_command.cmd) {
2216     Symtab *symtab = m_symtab_up.get();
2217     SectionList *section_list = GetSectionList();
2218     if (section_list == NULL)
2219       return 0;
2220 
2221     const uint32_t addr_byte_size = m_data.GetAddressByteSize();
2222     const ByteOrder byte_order = m_data.GetByteOrder();
2223     bool bit_width_32 = addr_byte_size == 4;
2224     const size_t nlist_byte_size =
2225         bit_width_32 ? sizeof(struct nlist) : sizeof(struct nlist_64);
2226 
2227     DataExtractor nlist_data(NULL, 0, byte_order, addr_byte_size);
2228     DataExtractor strtab_data(NULL, 0, byte_order, addr_byte_size);
2229     DataExtractor function_starts_data(NULL, 0, byte_order, addr_byte_size);
2230     DataExtractor indirect_symbol_index_data(NULL, 0, byte_order,
2231                                              addr_byte_size);
2232     DataExtractor dyld_trie_data(NULL, 0, byte_order, addr_byte_size);
2233 
2234     const addr_t nlist_data_byte_size =
2235         symtab_load_command.nsyms * nlist_byte_size;
2236     const addr_t strtab_data_byte_size = symtab_load_command.strsize;
2237     addr_t strtab_addr = LLDB_INVALID_ADDRESS;
2238 
2239     ProcessSP process_sp(m_process_wp.lock());
2240     Process *process = process_sp.get();
2241 
2242     uint32_t memory_module_load_level = eMemoryModuleLoadLevelComplete;
2243 
2244     if (process && m_header.filetype != llvm::MachO::MH_OBJECT) {
2245       Target &target = process->GetTarget();
2246 
2247       memory_module_load_level = target.GetMemoryModuleLoadLevel();
2248 
2249       SectionSP linkedit_section_sp(
2250           section_list->FindSectionByName(GetSegmentNameLINKEDIT()));
2251       // Reading mach file from memory in a process or core file...
2252 
2253       if (linkedit_section_sp) {
2254         addr_t linkedit_load_addr =
2255             linkedit_section_sp->GetLoadBaseAddress(&target);
2256         if (linkedit_load_addr == LLDB_INVALID_ADDRESS) {
2257           // We might be trying to access the symbol table before the
2258           // __LINKEDIT's load address has been set in the target. We can't
2259           // fail to read the symbol table, so calculate the right address
2260           // manually
2261           linkedit_load_addr = CalculateSectionLoadAddressForMemoryImage(
2262               m_memory_addr, GetMachHeaderSection(), linkedit_section_sp.get());
2263         }
2264 
2265         const addr_t linkedit_file_offset =
2266             linkedit_section_sp->GetFileOffset();
2267         const addr_t symoff_addr = linkedit_load_addr +
2268                                    symtab_load_command.symoff -
2269                                    linkedit_file_offset;
2270         strtab_addr = linkedit_load_addr + symtab_load_command.stroff -
2271                       linkedit_file_offset;
2272 
2273         bool data_was_read = false;
2274 
2275 #if defined(__APPLE__) &&                                                      \
2276     (defined(__arm__) || defined(__arm64__) || defined(__aarch64__))
2277         if (m_header.flags & 0x80000000u &&
2278             process->GetAddressByteSize() == sizeof(void *)) {
2279           // This mach-o memory file is in the dyld shared cache. If this
2280           // program is not remote and this is iOS, then this process will
2281           // share the same shared cache as the process we are debugging and we
2282           // can read the entire __LINKEDIT from the address space in this
2283           // process. This is a needed optimization that is used for local iOS
2284           // debugging only since all shared libraries in the shared cache do
2285           // not have corresponding files that exist in the file system of the
2286           // device. They have been combined into a single file. This means we
2287           // always have to load these files from memory. All of the symbol and
2288           // string tables from all of the __LINKEDIT sections from the shared
2289           // libraries in the shared cache have been merged into a single large
2290           // symbol and string table. Reading all of this symbol and string
2291           // table data across can slow down debug launch times, so we optimize
2292           // this by reading the memory for the __LINKEDIT section from this
2293           // process.
2294 
2295           UUID lldb_shared_cache;
2296           addr_t lldb_shared_cache_addr;
2297           GetLLDBSharedCacheUUID (lldb_shared_cache_addr, lldb_shared_cache);
2298           UUID process_shared_cache;
2299           addr_t process_shared_cache_addr;
2300           GetProcessSharedCacheUUID(process, process_shared_cache_addr, process_shared_cache);
2301           bool use_lldb_cache = true;
2302           if (lldb_shared_cache.IsValid() && process_shared_cache.IsValid() &&
2303               (lldb_shared_cache != process_shared_cache
2304                || process_shared_cache_addr != lldb_shared_cache_addr)) {
2305             use_lldb_cache = false;
2306           }
2307 
2308           PlatformSP platform_sp(target.GetPlatform());
2309           if (platform_sp && platform_sp->IsHost() && use_lldb_cache) {
2310             data_was_read = true;
2311             nlist_data.SetData((void *)symoff_addr, nlist_data_byte_size,
2312                                eByteOrderLittle);
2313             strtab_data.SetData((void *)strtab_addr, strtab_data_byte_size,
2314                                 eByteOrderLittle);
2315             if (function_starts_load_command.cmd) {
2316               const addr_t func_start_addr =
2317                   linkedit_load_addr + function_starts_load_command.dataoff -
2318                   linkedit_file_offset;
2319               function_starts_data.SetData(
2320                   (void *)func_start_addr,
2321                   function_starts_load_command.datasize, eByteOrderLittle);
2322             }
2323           }
2324         }
2325 #endif
2326 
2327         if (!data_was_read) {
2328           // Always load dyld - the dynamic linker - from memory if we didn't
2329           // find a binary anywhere else. lldb will not register
2330           // dylib/framework/bundle loads/unloads if we don't have the dyld
2331           // symbols, we force dyld to load from memory despite the user's
2332           // target.memory-module-load-level setting.
2333           if (memory_module_load_level == eMemoryModuleLoadLevelComplete ||
2334               m_header.filetype == llvm::MachO::MH_DYLINKER) {
2335             DataBufferSP nlist_data_sp(
2336                 ReadMemory(process_sp, symoff_addr, nlist_data_byte_size));
2337             if (nlist_data_sp)
2338               nlist_data.SetData(nlist_data_sp, 0,
2339                                  nlist_data_sp->GetByteSize());
2340             if (m_dysymtab.nindirectsyms != 0) {
2341               const addr_t indirect_syms_addr = linkedit_load_addr +
2342                                                 m_dysymtab.indirectsymoff -
2343                                                 linkedit_file_offset;
2344               DataBufferSP indirect_syms_data_sp(
2345                   ReadMemory(process_sp, indirect_syms_addr,
2346                              m_dysymtab.nindirectsyms * 4));
2347               if (indirect_syms_data_sp)
2348                 indirect_symbol_index_data.SetData(
2349                     indirect_syms_data_sp, 0,
2350                     indirect_syms_data_sp->GetByteSize());
2351               // If this binary is outside the shared cache,
2352               // cache the string table.
2353               // Binaries in the shared cache all share a giant string table, and
2354               // we can't share the string tables across multiple ObjectFileMachO's,
2355               // so we'd end up re-reading this mega-strtab for every binary
2356               // in the shared cache - it would be a big perf problem.
2357               // For binaries outside the shared cache, it's faster to read the
2358               // entire strtab at once instead of piece-by-piece as we process
2359               // the nlist records.
2360               if ((m_header.flags & 0x80000000u) == 0) {
2361                 DataBufferSP strtab_data_sp (ReadMemory (process_sp, strtab_addr,
2362                       strtab_data_byte_size));
2363                 if (strtab_data_sp) {
2364                   strtab_data.SetData (strtab_data_sp, 0, strtab_data_sp->GetByteSize());
2365                 }
2366               }
2367             }
2368           }
2369           if (memory_module_load_level >=
2370                      eMemoryModuleLoadLevelPartial) {
2371             if (function_starts_load_command.cmd) {
2372               const addr_t func_start_addr =
2373                   linkedit_load_addr + function_starts_load_command.dataoff -
2374                   linkedit_file_offset;
2375               DataBufferSP func_start_data_sp(
2376                   ReadMemory(process_sp, func_start_addr,
2377                              function_starts_load_command.datasize));
2378               if (func_start_data_sp)
2379                 function_starts_data.SetData(func_start_data_sp, 0,
2380                                              func_start_data_sp->GetByteSize());
2381             }
2382           }
2383         }
2384       }
2385     } else {
2386       nlist_data.SetData(m_data, symtab_load_command.symoff,
2387                          nlist_data_byte_size);
2388       strtab_data.SetData(m_data, symtab_load_command.stroff,
2389                           strtab_data_byte_size);
2390 
2391       if (dyld_info.export_size > 0) {
2392         dyld_trie_data.SetData(m_data, dyld_info.export_off,
2393                                dyld_info.export_size);
2394       }
2395 
2396       if (m_dysymtab.nindirectsyms != 0) {
2397         indirect_symbol_index_data.SetData(m_data, m_dysymtab.indirectsymoff,
2398                                            m_dysymtab.nindirectsyms * 4);
2399       }
2400       if (function_starts_load_command.cmd) {
2401         function_starts_data.SetData(m_data,
2402                                      function_starts_load_command.dataoff,
2403                                      function_starts_load_command.datasize);
2404       }
2405     }
2406 
2407     if (nlist_data.GetByteSize() == 0 &&
2408         memory_module_load_level == eMemoryModuleLoadLevelComplete) {
2409       if (log)
2410         module_sp->LogMessage(log, "failed to read nlist data");
2411       return 0;
2412     }
2413 
2414     const bool have_strtab_data = strtab_data.GetByteSize() > 0;
2415     if (!have_strtab_data) {
2416       if (process) {
2417         if (strtab_addr == LLDB_INVALID_ADDRESS) {
2418           if (log)
2419             module_sp->LogMessage(log, "failed to locate the strtab in memory");
2420           return 0;
2421         }
2422       } else {
2423         if (log)
2424           module_sp->LogMessage(log, "failed to read strtab data");
2425         return 0;
2426       }
2427     }
2428 
2429     ConstString g_segment_name_TEXT = GetSegmentNameTEXT();
2430     ConstString g_segment_name_DATA = GetSegmentNameDATA();
2431     ConstString g_segment_name_DATA_DIRTY = GetSegmentNameDATA_DIRTY();
2432     ConstString g_segment_name_DATA_CONST = GetSegmentNameDATA_CONST();
2433     ConstString g_segment_name_OBJC = GetSegmentNameOBJC();
2434     ConstString g_section_name_eh_frame = GetSectionNameEHFrame();
2435     SectionSP text_section_sp(
2436         section_list->FindSectionByName(g_segment_name_TEXT));
2437     SectionSP data_section_sp(
2438         section_list->FindSectionByName(g_segment_name_DATA));
2439     SectionSP data_dirty_section_sp(
2440         section_list->FindSectionByName(g_segment_name_DATA_DIRTY));
2441     SectionSP data_const_section_sp(
2442         section_list->FindSectionByName(g_segment_name_DATA_CONST));
2443     SectionSP objc_section_sp(
2444         section_list->FindSectionByName(g_segment_name_OBJC));
2445     SectionSP eh_frame_section_sp;
2446     if (text_section_sp.get())
2447       eh_frame_section_sp = text_section_sp->GetChildren().FindSectionByName(
2448           g_section_name_eh_frame);
2449     else
2450       eh_frame_section_sp =
2451           section_list->FindSectionByName(g_section_name_eh_frame);
2452 
2453     const bool is_arm = (m_header.cputype == llvm::MachO::CPU_TYPE_ARM);
2454 
2455     // lldb works best if it knows the start address of all functions in a
2456     // module. Linker symbols or debug info are normally the best source of
2457     // information for start addr / size but they may be stripped in a released
2458     // binary. Two additional sources of information exist in Mach-O binaries:
2459     //    LC_FUNCTION_STARTS - a list of ULEB128 encoded offsets of each
2460     //    function's start address in the
2461     //                         binary, relative to the text section.
2462     //    eh_frame           - the eh_frame FDEs have the start addr & size of
2463     //    each function
2464     //  LC_FUNCTION_STARTS is the fastest source to read in, and is present on
2465     //  all modern binaries.
2466     //  Binaries built to run on older releases may need to use eh_frame
2467     //  information.
2468 
2469     if (text_section_sp && function_starts_data.GetByteSize()) {
2470       FunctionStarts::Entry function_start_entry;
2471       function_start_entry.data = false;
2472       lldb::offset_t function_start_offset = 0;
2473       function_start_entry.addr = text_section_sp->GetFileAddress();
2474       uint64_t delta;
2475       while ((delta = function_starts_data.GetULEB128(&function_start_offset)) >
2476              0) {
2477         // Now append the current entry
2478         function_start_entry.addr += delta;
2479         function_starts.Append(function_start_entry);
2480       }
2481     } else {
2482       // If m_type is eTypeDebugInfo, then this is a dSYM - it will have the
2483       // load command claiming an eh_frame but it doesn't actually have the
2484       // eh_frame content.  And if we have a dSYM, we don't need to do any of
2485       // this fill-in-the-missing-symbols works anyway - the debug info should
2486       // give us all the functions in the module.
2487       if (text_section_sp.get() && eh_frame_section_sp.get() &&
2488           m_type != eTypeDebugInfo) {
2489         DWARFCallFrameInfo eh_frame(*this, eh_frame_section_sp,
2490                                     DWARFCallFrameInfo::EH);
2491         DWARFCallFrameInfo::FunctionAddressAndSizeVector functions;
2492         eh_frame.GetFunctionAddressAndSizeVector(functions);
2493         addr_t text_base_addr = text_section_sp->GetFileAddress();
2494         size_t count = functions.GetSize();
2495         for (size_t i = 0; i < count; ++i) {
2496           const DWARFCallFrameInfo::FunctionAddressAndSizeVector::Entry *func =
2497               functions.GetEntryAtIndex(i);
2498           if (func) {
2499             FunctionStarts::Entry function_start_entry;
2500             function_start_entry.addr = func->base - text_base_addr;
2501             function_starts.Append(function_start_entry);
2502           }
2503         }
2504       }
2505     }
2506 
2507     const size_t function_starts_count = function_starts.GetSize();
2508 
2509     // For user process binaries (executables, dylibs, frameworks, bundles), if
2510     // we don't have LC_FUNCTION_STARTS/eh_frame section in this binary, we're
2511     // going to assume the binary has been stripped.  Don't allow assembly
2512     // language instruction emulation because we don't know proper function
2513     // start boundaries.
2514     //
2515     // For all other types of binaries (kernels, stand-alone bare board
2516     // binaries, kexts), they may not have LC_FUNCTION_STARTS / eh_frame
2517     // sections - we should not make any assumptions about them based on that.
2518     if (function_starts_count == 0 && CalculateStrata() == eStrataUser) {
2519       m_allow_assembly_emulation_unwind_plans = false;
2520       Log *unwind_or_symbol_log(lldb_private::GetLogIfAnyCategoriesSet(
2521           LIBLLDB_LOG_SYMBOLS | LIBLLDB_LOG_UNWIND));
2522 
2523       if (unwind_or_symbol_log)
2524         module_sp->LogMessage(
2525             unwind_or_symbol_log,
2526             "no LC_FUNCTION_STARTS, will not allow assembly profiled unwinds");
2527     }
2528 
2529     const user_id_t TEXT_eh_frame_sectID =
2530         eh_frame_section_sp.get() ? eh_frame_section_sp->GetID()
2531                                   : static_cast<user_id_t>(NO_SECT);
2532 
2533     lldb::offset_t nlist_data_offset = 0;
2534 
2535     uint32_t N_SO_index = UINT32_MAX;
2536 
2537     MachSymtabSectionInfo section_info(section_list);
2538     std::vector<uint32_t> N_FUN_indexes;
2539     std::vector<uint32_t> N_NSYM_indexes;
2540     std::vector<uint32_t> N_INCL_indexes;
2541     std::vector<uint32_t> N_BRAC_indexes;
2542     std::vector<uint32_t> N_COMM_indexes;
2543     typedef std::multimap<uint64_t, uint32_t> ValueToSymbolIndexMap;
2544     typedef std::map<uint32_t, uint32_t> NListIndexToSymbolIndexMap;
2545     typedef std::map<const char *, uint32_t> ConstNameToSymbolIndexMap;
2546     ValueToSymbolIndexMap N_FUN_addr_to_sym_idx;
2547     ValueToSymbolIndexMap N_STSYM_addr_to_sym_idx;
2548     ConstNameToSymbolIndexMap N_GSYM_name_to_sym_idx;
2549     // Any symbols that get merged into another will get an entry in this map
2550     // so we know
2551     NListIndexToSymbolIndexMap m_nlist_idx_to_sym_idx;
2552     uint32_t nlist_idx = 0;
2553     Symbol *symbol_ptr = NULL;
2554 
2555     uint32_t sym_idx = 0;
2556     Symbol *sym = NULL;
2557     size_t num_syms = 0;
2558     std::string memory_symbol_name;
2559     uint32_t unmapped_local_symbols_found = 0;
2560 
2561     std::vector<TrieEntryWithOffset> trie_entries;
2562     std::set<lldb::addr_t> resolver_addresses;
2563 
2564     if (dyld_trie_data.GetByteSize() > 0) {
2565       std::vector<llvm::StringRef> nameSlices;
2566       ParseTrieEntries(dyld_trie_data, 0, is_arm, nameSlices,
2567                        resolver_addresses, trie_entries);
2568 
2569       ConstString text_segment_name("__TEXT");
2570       SectionSP text_segment_sp =
2571           GetSectionList()->FindSectionByName(text_segment_name);
2572       if (text_segment_sp) {
2573         const lldb::addr_t text_segment_file_addr =
2574             text_segment_sp->GetFileAddress();
2575         if (text_segment_file_addr != LLDB_INVALID_ADDRESS) {
2576           for (auto &e : trie_entries)
2577             e.entry.address += text_segment_file_addr;
2578         }
2579       }
2580     }
2581 
2582     typedef std::set<ConstString> IndirectSymbols;
2583     IndirectSymbols indirect_symbol_names;
2584 
2585 #if defined(__APPLE__) &&                                                      \
2586     (defined(__arm__) || defined(__arm64__) || defined(__aarch64__))
2587 
2588     // Some recent builds of the dyld_shared_cache (hereafter: DSC) have been
2589     // optimized by moving LOCAL symbols out of the memory mapped portion of
2590     // the DSC. The symbol information has all been retained, but it isn't
2591     // available in the normal nlist data. However, there *are* duplicate
2592     // entries of *some*
2593     // LOCAL symbols in the normal nlist data. To handle this situation
2594     // correctly, we must first attempt
2595     // to parse any DSC unmapped symbol information. If we find any, we set a
2596     // flag that tells the normal nlist parser to ignore all LOCAL symbols.
2597 
2598     if (m_header.flags & 0x80000000u) {
2599       // Before we can start mapping the DSC, we need to make certain the
2600       // target process is actually using the cache we can find.
2601 
2602       // Next we need to determine the correct path for the dyld shared cache.
2603 
2604       ArchSpec header_arch;
2605       GetArchitecture(header_arch);
2606       char dsc_path[PATH_MAX];
2607       char dsc_path_development[PATH_MAX];
2608 
2609       snprintf(
2610           dsc_path, sizeof(dsc_path), "%s%s%s",
2611           "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR
2612                                                        */
2613           "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */
2614           header_arch.GetArchitectureName());
2615 
2616       snprintf(
2617           dsc_path_development, sizeof(dsc_path), "%s%s%s%s",
2618           "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR
2619                                                        */
2620           "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */
2621           header_arch.GetArchitectureName(), ".development");
2622 
2623       FileSpec dsc_nondevelopment_filespec(dsc_path, false);
2624       FileSpec dsc_development_filespec(dsc_path_development, false);
2625       FileSpec dsc_filespec;
2626 
2627       UUID dsc_uuid;
2628       UUID process_shared_cache_uuid;
2629       addr_t process_shared_cache_base_addr;
2630 
2631       if (process) {
2632         GetProcessSharedCacheUUID(process, process_shared_cache_base_addr, process_shared_cache_uuid);
2633       }
2634 
2635       // First see if we can find an exact match for the inferior process
2636       // shared cache UUID in the development or non-development shared caches
2637       // on disk.
2638       if (process_shared_cache_uuid.IsValid()) {
2639         if (FileSystem::Instance().Exists(dsc_development_filespec)) {
2640           UUID dsc_development_uuid = GetSharedCacheUUID(
2641               dsc_development_filespec, byte_order, addr_byte_size);
2642           if (dsc_development_uuid.IsValid() &&
2643               dsc_development_uuid == process_shared_cache_uuid) {
2644             dsc_filespec = dsc_development_filespec;
2645             dsc_uuid = dsc_development_uuid;
2646           }
2647         }
2648         if (!dsc_uuid.IsValid() &&
2649             FileSystem::Instance().Exists(dsc_nondevelopment_filespec)) {
2650           UUID dsc_nondevelopment_uuid = GetSharedCacheUUID(
2651               dsc_nondevelopment_filespec, byte_order, addr_byte_size);
2652           if (dsc_nondevelopment_uuid.IsValid() &&
2653               dsc_nondevelopment_uuid == process_shared_cache_uuid) {
2654             dsc_filespec = dsc_nondevelopment_filespec;
2655             dsc_uuid = dsc_nondevelopment_uuid;
2656           }
2657         }
2658       }
2659 
2660       // Failing a UUID match, prefer the development dyld_shared cache if both
2661       // are present.
2662       if (!FileSystem::Instance().Exists(dsc_filespec)) {
2663         if (FileSystem::Instance().Exists(dsc_development_filespec)) {
2664           dsc_filespec = dsc_development_filespec;
2665         } else {
2666           dsc_filespec = dsc_nondevelopment_filespec;
2667         }
2668       }
2669 
2670       /* The dyld_cache_header has a pointer to the
2671          dyld_cache_local_symbols_info structure (localSymbolsOffset).
2672          The dyld_cache_local_symbols_info structure gives us three things:
2673            1. The start and count of the nlist records in the dyld_shared_cache
2674          file
2675            2. The start and size of the strings for these nlist records
2676            3. The start and count of dyld_cache_local_symbols_entry entries
2677 
2678          There is one dyld_cache_local_symbols_entry per dylib/framework in the
2679          dyld shared cache.
2680          The "dylibOffset" field is the Mach-O header of this dylib/framework in
2681          the dyld shared cache.
2682          The dyld_cache_local_symbols_entry also lists the start of this
2683          dylib/framework's nlist records
2684          and the count of how many nlist records there are for this
2685          dylib/framework.
2686       */
2687 
2688       // Process the dyld shared cache header to find the unmapped symbols
2689 
2690       DataBufferSP dsc_data_sp = MapFileData(
2691           dsc_filespec, sizeof(struct lldb_copy_dyld_cache_header_v1), 0);
2692       if (!dsc_uuid.IsValid()) {
2693         dsc_uuid = GetSharedCacheUUID(dsc_filespec, byte_order, addr_byte_size);
2694       }
2695       if (dsc_data_sp) {
2696         DataExtractor dsc_header_data(dsc_data_sp, byte_order, addr_byte_size);
2697 
2698         bool uuid_match = true;
2699         if (dsc_uuid.IsValid() && process) {
2700           if (process_shared_cache_uuid.IsValid() &&
2701               dsc_uuid != process_shared_cache_uuid) {
2702             // The on-disk dyld_shared_cache file is not the same as the one in
2703             // this process' memory, don't use it.
2704             uuid_match = false;
2705             ModuleSP module_sp(GetModule());
2706             if (module_sp)
2707               module_sp->ReportWarning("process shared cache does not match "
2708                                        "on-disk dyld_shared_cache file, some "
2709                                        "symbol names will be missing.");
2710           }
2711         }
2712 
2713         offset = offsetof(struct lldb_copy_dyld_cache_header_v1, mappingOffset);
2714 
2715         uint32_t mappingOffset = dsc_header_data.GetU32(&offset);
2716 
2717         // If the mappingOffset points to a location inside the header, we've
2718         // opened an old dyld shared cache, and should not proceed further.
2719         if (uuid_match &&
2720             mappingOffset >= sizeof(struct lldb_copy_dyld_cache_header_v1)) {
2721 
2722           DataBufferSP dsc_mapping_info_data_sp = MapFileData(
2723               dsc_filespec, sizeof(struct lldb_copy_dyld_cache_mapping_info),
2724               mappingOffset);
2725 
2726           DataExtractor dsc_mapping_info_data(dsc_mapping_info_data_sp,
2727                                               byte_order, addr_byte_size);
2728           offset = 0;
2729 
2730           // The File addresses (from the in-memory Mach-O load commands) for
2731           // the shared libraries in the shared library cache need to be
2732           // adjusted by an offset to match up with the dylibOffset identifying
2733           // field in the dyld_cache_local_symbol_entry's.  This offset is
2734           // recorded in mapping_offset_value.
2735           const uint64_t mapping_offset_value =
2736               dsc_mapping_info_data.GetU64(&offset);
2737 
2738           offset = offsetof(struct lldb_copy_dyld_cache_header_v1,
2739                             localSymbolsOffset);
2740           uint64_t localSymbolsOffset = dsc_header_data.GetU64(&offset);
2741           uint64_t localSymbolsSize = dsc_header_data.GetU64(&offset);
2742 
2743           if (localSymbolsOffset && localSymbolsSize) {
2744             // Map the local symbols
2745             DataBufferSP dsc_local_symbols_data_sp =
2746                 MapFileData(dsc_filespec, localSymbolsSize, localSymbolsOffset);
2747 
2748             if (dsc_local_symbols_data_sp) {
2749               DataExtractor dsc_local_symbols_data(dsc_local_symbols_data_sp,
2750                                                    byte_order, addr_byte_size);
2751 
2752               offset = 0;
2753 
2754               typedef std::map<ConstString, uint16_t> UndefinedNameToDescMap;
2755               typedef std::map<uint32_t, ConstString> SymbolIndexToName;
2756               UndefinedNameToDescMap undefined_name_to_desc;
2757               SymbolIndexToName reexport_shlib_needs_fixup;
2758 
2759               // Read the local_symbols_infos struct in one shot
2760               struct lldb_copy_dyld_cache_local_symbols_info local_symbols_info;
2761               dsc_local_symbols_data.GetU32(&offset,
2762                                             &local_symbols_info.nlistOffset, 6);
2763 
2764               SectionSP text_section_sp(
2765                   section_list->FindSectionByName(GetSegmentNameTEXT()));
2766 
2767               uint32_t header_file_offset =
2768                   (text_section_sp->GetFileAddress() - mapping_offset_value);
2769 
2770               offset = local_symbols_info.entriesOffset;
2771               for (uint32_t entry_index = 0;
2772                    entry_index < local_symbols_info.entriesCount;
2773                    entry_index++) {
2774                 struct lldb_copy_dyld_cache_local_symbols_entry
2775                     local_symbols_entry;
2776                 local_symbols_entry.dylibOffset =
2777                     dsc_local_symbols_data.GetU32(&offset);
2778                 local_symbols_entry.nlistStartIndex =
2779                     dsc_local_symbols_data.GetU32(&offset);
2780                 local_symbols_entry.nlistCount =
2781                     dsc_local_symbols_data.GetU32(&offset);
2782 
2783                 if (header_file_offset == local_symbols_entry.dylibOffset) {
2784                   unmapped_local_symbols_found = local_symbols_entry.nlistCount;
2785 
2786                   // The normal nlist code cannot correctly size the Symbols
2787                   // array, we need to allocate it here.
2788                   sym = symtab->Resize(
2789                       symtab_load_command.nsyms + m_dysymtab.nindirectsyms +
2790                       unmapped_local_symbols_found - m_dysymtab.nlocalsym);
2791                   num_syms = symtab->GetNumSymbols();
2792 
2793                   nlist_data_offset =
2794                       local_symbols_info.nlistOffset +
2795                       (nlist_byte_size * local_symbols_entry.nlistStartIndex);
2796                   uint32_t string_table_offset =
2797                       local_symbols_info.stringsOffset;
2798 
2799                   for (uint32_t nlist_index = 0;
2800                        nlist_index < local_symbols_entry.nlistCount;
2801                        nlist_index++) {
2802                     /////////////////////////////
2803                     {
2804                       struct nlist_64 nlist;
2805                       if (!dsc_local_symbols_data.ValidOffsetForDataOfSize(
2806                               nlist_data_offset, nlist_byte_size))
2807                         break;
2808 
2809                       nlist.n_strx = dsc_local_symbols_data.GetU32_unchecked(
2810                           &nlist_data_offset);
2811                       nlist.n_type = dsc_local_symbols_data.GetU8_unchecked(
2812                           &nlist_data_offset);
2813                       nlist.n_sect = dsc_local_symbols_data.GetU8_unchecked(
2814                           &nlist_data_offset);
2815                       nlist.n_desc = dsc_local_symbols_data.GetU16_unchecked(
2816                           &nlist_data_offset);
2817                       nlist.n_value =
2818                           dsc_local_symbols_data.GetAddress_unchecked(
2819                               &nlist_data_offset);
2820 
2821                       SymbolType type = eSymbolTypeInvalid;
2822                       const char *symbol_name = dsc_local_symbols_data.PeekCStr(
2823                           string_table_offset + nlist.n_strx);
2824 
2825                       if (symbol_name == NULL) {
2826                         // No symbol should be NULL, even the symbols with no
2827                         // string values should have an offset zero which
2828                         // points to an empty C-string
2829                         Host::SystemLog(
2830                             Host::eSystemLogError,
2831                             "error: DSC unmapped local symbol[%u] has invalid "
2832                             "string table offset 0x%x in %s, ignoring symbol\n",
2833                             entry_index, nlist.n_strx,
2834                             module_sp->GetFileSpec().GetPath().c_str());
2835                         continue;
2836                       }
2837                       if (symbol_name[0] == '\0')
2838                         symbol_name = NULL;
2839 
2840                       const char *symbol_name_non_abi_mangled = NULL;
2841 
2842                       SectionSP symbol_section;
2843                       uint32_t symbol_byte_size = 0;
2844                       bool add_nlist = true;
2845                       bool is_debug = ((nlist.n_type & N_STAB) != 0);
2846                       bool demangled_is_synthesized = false;
2847                       bool is_gsym = false;
2848                       bool set_value = true;
2849 
2850                       assert(sym_idx < num_syms);
2851 
2852                       sym[sym_idx].SetDebug(is_debug);
2853 
2854                       if (is_debug) {
2855                         switch (nlist.n_type) {
2856                         case N_GSYM:
2857                           // global symbol: name,,NO_SECT,type,0
2858                           // Sometimes the N_GSYM value contains the address.
2859 
2860                           // FIXME: In the .o files, we have a GSYM and a debug
2861                           // symbol for all the ObjC data.  They
2862                           // have the same address, but we want to ensure that
2863                           // we always find only the real symbol, 'cause we
2864                           // don't currently correctly attribute the
2865                           // GSYM one to the ObjCClass/Ivar/MetaClass
2866                           // symbol type.  This is a temporary hack to make
2867                           // sure the ObjectiveC symbols get treated correctly.
2868                           // To do this right, we should coalesce all the GSYM
2869                           // & global symbols that have the same address.
2870 
2871                           is_gsym = true;
2872                           sym[sym_idx].SetExternal(true);
2873 
2874                           if (symbol_name && symbol_name[0] == '_' &&
2875                               symbol_name[1] == 'O') {
2876                             llvm::StringRef symbol_name_ref(symbol_name);
2877                             if (symbol_name_ref.startswith(
2878                                     g_objc_v2_prefix_class)) {
2879                               symbol_name_non_abi_mangled = symbol_name + 1;
2880                               symbol_name =
2881                                   symbol_name + g_objc_v2_prefix_class.size();
2882                               type = eSymbolTypeObjCClass;
2883                               demangled_is_synthesized = true;
2884 
2885                             } else if (symbol_name_ref.startswith(
2886                                            g_objc_v2_prefix_metaclass)) {
2887                               symbol_name_non_abi_mangled = symbol_name + 1;
2888                               symbol_name = symbol_name +
2889                                             g_objc_v2_prefix_metaclass.size();
2890                               type = eSymbolTypeObjCMetaClass;
2891                               demangled_is_synthesized = true;
2892                             } else if (symbol_name_ref.startswith(
2893                                            g_objc_v2_prefix_ivar)) {
2894                               symbol_name_non_abi_mangled = symbol_name + 1;
2895                               symbol_name =
2896                                   symbol_name + g_objc_v2_prefix_ivar.size();
2897                               type = eSymbolTypeObjCIVar;
2898                               demangled_is_synthesized = true;
2899                             }
2900                           } else {
2901                             if (nlist.n_value != 0)
2902                               symbol_section = section_info.GetSection(
2903                                   nlist.n_sect, nlist.n_value);
2904                             type = eSymbolTypeData;
2905                           }
2906                           break;
2907 
2908                         case N_FNAME:
2909                           // procedure name (f77 kludge): name,,NO_SECT,0,0
2910                           type = eSymbolTypeCompiler;
2911                           break;
2912 
2913                         case N_FUN:
2914                           // procedure: name,,n_sect,linenumber,address
2915                           if (symbol_name) {
2916                             type = eSymbolTypeCode;
2917                             symbol_section = section_info.GetSection(
2918                                 nlist.n_sect, nlist.n_value);
2919 
2920                             N_FUN_addr_to_sym_idx.insert(
2921                                 std::make_pair(nlist.n_value, sym_idx));
2922                             // We use the current number of symbols in the
2923                             // symbol table in lieu of using nlist_idx in case
2924                             // we ever start trimming entries out
2925                             N_FUN_indexes.push_back(sym_idx);
2926                           } else {
2927                             type = eSymbolTypeCompiler;
2928 
2929                             if (!N_FUN_indexes.empty()) {
2930                               // Copy the size of the function into the
2931                               // original
2932                               // STAB entry so we don't have
2933                               // to hunt for it later
2934                               symtab->SymbolAtIndex(N_FUN_indexes.back())
2935                                   ->SetByteSize(nlist.n_value);
2936                               N_FUN_indexes.pop_back();
2937                               // We don't really need the end function STAB as
2938                               // it contains the size which we already placed
2939                               // with the original symbol, so don't add it if
2940                               // we want a minimal symbol table
2941                               add_nlist = false;
2942                             }
2943                           }
2944                           break;
2945 
2946                         case N_STSYM:
2947                           // static symbol: name,,n_sect,type,address
2948                           N_STSYM_addr_to_sym_idx.insert(
2949                               std::make_pair(nlist.n_value, sym_idx));
2950                           symbol_section = section_info.GetSection(
2951                               nlist.n_sect, nlist.n_value);
2952                           if (symbol_name && symbol_name[0]) {
2953                             type = ObjectFile::GetSymbolTypeFromName(
2954                                 symbol_name + 1, eSymbolTypeData);
2955                           }
2956                           break;
2957 
2958                         case N_LCSYM:
2959                           // .lcomm symbol: name,,n_sect,type,address
2960                           symbol_section = section_info.GetSection(
2961                               nlist.n_sect, nlist.n_value);
2962                           type = eSymbolTypeCommonBlock;
2963                           break;
2964 
2965                         case N_BNSYM:
2966                           // We use the current number of symbols in the symbol
2967                           // table in lieu of using nlist_idx in case we ever
2968                           // start trimming entries out Skip these if we want
2969                           // minimal symbol tables
2970                           add_nlist = false;
2971                           break;
2972 
2973                         case N_ENSYM:
2974                           // Set the size of the N_BNSYM to the terminating
2975                           // index of this N_ENSYM so that we can always skip
2976                           // the entire symbol if we need to navigate more
2977                           // quickly at the source level when parsing STABS
2978                           // Skip these if we want minimal symbol tables
2979                           add_nlist = false;
2980                           break;
2981 
2982                         case N_OPT:
2983                           // emitted with gcc2_compiled and in gcc source
2984                           type = eSymbolTypeCompiler;
2985                           break;
2986 
2987                         case N_RSYM:
2988                           // register sym: name,,NO_SECT,type,register
2989                           type = eSymbolTypeVariable;
2990                           break;
2991 
2992                         case N_SLINE:
2993                           // src line: 0,,n_sect,linenumber,address
2994                           symbol_section = section_info.GetSection(
2995                               nlist.n_sect, nlist.n_value);
2996                           type = eSymbolTypeLineEntry;
2997                           break;
2998 
2999                         case N_SSYM:
3000                           // structure elt: name,,NO_SECT,type,struct_offset
3001                           type = eSymbolTypeVariableType;
3002                           break;
3003 
3004                         case N_SO:
3005                           // source file name
3006                           type = eSymbolTypeSourceFile;
3007                           if (symbol_name == NULL) {
3008                             add_nlist = false;
3009                             if (N_SO_index != UINT32_MAX) {
3010                               // Set the size of the N_SO to the terminating
3011                               // index of this N_SO so that we can always skip
3012                               // the entire N_SO if we need to navigate more
3013                               // quickly at the source level when parsing STABS
3014                               symbol_ptr = symtab->SymbolAtIndex(N_SO_index);
3015                               symbol_ptr->SetByteSize(sym_idx);
3016                               symbol_ptr->SetSizeIsSibling(true);
3017                             }
3018                             N_NSYM_indexes.clear();
3019                             N_INCL_indexes.clear();
3020                             N_BRAC_indexes.clear();
3021                             N_COMM_indexes.clear();
3022                             N_FUN_indexes.clear();
3023                             N_SO_index = UINT32_MAX;
3024                           } else {
3025                             // We use the current number of symbols in the
3026                             // symbol table in lieu of using nlist_idx in case
3027                             // we ever start trimming entries out
3028                             const bool N_SO_has_full_path =
3029                                 symbol_name[0] == '/';
3030                             if (N_SO_has_full_path) {
3031                               if ((N_SO_index == sym_idx - 1) &&
3032                                   ((sym_idx - 1) < num_syms)) {
3033                                 // We have two consecutive N_SO entries where
3034                                 // the first contains a directory and the
3035                                 // second contains a full path.
3036                                 sym[sym_idx - 1].GetMangled().SetValue(
3037                                     ConstString(symbol_name), false);
3038                                 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3039                                 add_nlist = false;
3040                               } else {
3041                                 // This is the first entry in a N_SO that
3042                                 // contains a directory or
3043                                 // a full path to the source file
3044                                 N_SO_index = sym_idx;
3045                               }
3046                             } else if ((N_SO_index == sym_idx - 1) &&
3047                                        ((sym_idx - 1) < num_syms)) {
3048                               // This is usually the second N_SO entry that
3049                               // contains just the filename, so here we combine
3050                               // it with the first one if we are minimizing the
3051                               // symbol table
3052                               const char *so_path =
3053                                   sym[sym_idx - 1]
3054                                       .GetMangled()
3055                                       .GetDemangledName(
3056                                           lldb::eLanguageTypeUnknown)
3057                                       .AsCString();
3058                               if (so_path && so_path[0]) {
3059                                 std::string full_so_path(so_path);
3060                                 const size_t double_slash_pos =
3061                                     full_so_path.find("//");
3062                                 if (double_slash_pos != std::string::npos) {
3063                                   // The linker has been generating bad N_SO
3064                                   // entries with doubled up paths
3065                                   // in the format "%s%s" where the first
3066                                   // string in the DW_AT_comp_dir, and the
3067                                   // second is the directory for the source
3068                                   // file so you end up with a path that looks
3069                                   // like "/tmp/src//tmp/src/"
3070                                   FileSpec so_dir(so_path, false);
3071                                   if (!FileSystem::Instance().Exists(so_dir)) {
3072                                     so_dir.SetFile(
3073                                         &full_so_path[double_slash_pos + 1],
3074                                         false);
3075                                     if (FileSystem::Instance().Exists(so_dir)) {
3076                                       // Trim off the incorrect path
3077                                       full_so_path.erase(0,
3078                                                          double_slash_pos + 1);
3079                                     }
3080                                   }
3081                                 }
3082                                 if (*full_so_path.rbegin() != '/')
3083                                   full_so_path += '/';
3084                                 full_so_path += symbol_name;
3085                                 sym[sym_idx - 1].GetMangled().SetValue(
3086                                     ConstString(full_so_path.c_str()), false);
3087                                 add_nlist = false;
3088                                 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3089                               }
3090                             } else {
3091                               // This could be a relative path to a N_SO
3092                               N_SO_index = sym_idx;
3093                             }
3094                           }
3095                           break;
3096 
3097                         case N_OSO:
3098                           // object file name: name,,0,0,st_mtime
3099                           type = eSymbolTypeObjectFile;
3100                           break;
3101 
3102                         case N_LSYM:
3103                           // local sym: name,,NO_SECT,type,offset
3104                           type = eSymbolTypeLocal;
3105                           break;
3106 
3107                         //----------------------------------------------------------------------
3108                         // INCL scopes
3109                         //----------------------------------------------------------------------
3110                         case N_BINCL:
3111                           // include file beginning: name,,NO_SECT,0,sum We use
3112                           // the current number of symbols in the symbol table
3113                           // in lieu of using nlist_idx in case we ever start
3114                           // trimming entries out
3115                           N_INCL_indexes.push_back(sym_idx);
3116                           type = eSymbolTypeScopeBegin;
3117                           break;
3118 
3119                         case N_EINCL:
3120                           // include file end: name,,NO_SECT,0,0
3121                           // Set the size of the N_BINCL to the terminating
3122                           // index of this N_EINCL so that we can always skip
3123                           // the entire symbol if we need to navigate more
3124                           // quickly at the source level when parsing STABS
3125                           if (!N_INCL_indexes.empty()) {
3126                             symbol_ptr =
3127                                 symtab->SymbolAtIndex(N_INCL_indexes.back());
3128                             symbol_ptr->SetByteSize(sym_idx + 1);
3129                             symbol_ptr->SetSizeIsSibling(true);
3130                             N_INCL_indexes.pop_back();
3131                           }
3132                           type = eSymbolTypeScopeEnd;
3133                           break;
3134 
3135                         case N_SOL:
3136                           // #included file name: name,,n_sect,0,address
3137                           type = eSymbolTypeHeaderFile;
3138 
3139                           // We currently don't use the header files on darwin
3140                           add_nlist = false;
3141                           break;
3142 
3143                         case N_PARAMS:
3144                           // compiler parameters: name,,NO_SECT,0,0
3145                           type = eSymbolTypeCompiler;
3146                           break;
3147 
3148                         case N_VERSION:
3149                           // compiler version: name,,NO_SECT,0,0
3150                           type = eSymbolTypeCompiler;
3151                           break;
3152 
3153                         case N_OLEVEL:
3154                           // compiler -O level: name,,NO_SECT,0,0
3155                           type = eSymbolTypeCompiler;
3156                           break;
3157 
3158                         case N_PSYM:
3159                           // parameter: name,,NO_SECT,type,offset
3160                           type = eSymbolTypeVariable;
3161                           break;
3162 
3163                         case N_ENTRY:
3164                           // alternate entry: name,,n_sect,linenumber,address
3165                           symbol_section = section_info.GetSection(
3166                               nlist.n_sect, nlist.n_value);
3167                           type = eSymbolTypeLineEntry;
3168                           break;
3169 
3170                         //----------------------------------------------------------------------
3171                         // Left and Right Braces
3172                         //----------------------------------------------------------------------
3173                         case N_LBRAC:
3174                           // left bracket: 0,,NO_SECT,nesting level,address We
3175                           // use the current number of symbols in the symbol
3176                           // table in lieu of using nlist_idx in case we ever
3177                           // start trimming entries out
3178                           symbol_section = section_info.GetSection(
3179                               nlist.n_sect, nlist.n_value);
3180                           N_BRAC_indexes.push_back(sym_idx);
3181                           type = eSymbolTypeScopeBegin;
3182                           break;
3183 
3184                         case N_RBRAC:
3185                           // right bracket: 0,,NO_SECT,nesting level,address
3186                           // Set the size of the N_LBRAC to the terminating
3187                           // index of this N_RBRAC so that we can always skip
3188                           // the entire symbol if we need to navigate more
3189                           // quickly at the source level when parsing STABS
3190                           symbol_section = section_info.GetSection(
3191                               nlist.n_sect, nlist.n_value);
3192                           if (!N_BRAC_indexes.empty()) {
3193                             symbol_ptr =
3194                                 symtab->SymbolAtIndex(N_BRAC_indexes.back());
3195                             symbol_ptr->SetByteSize(sym_idx + 1);
3196                             symbol_ptr->SetSizeIsSibling(true);
3197                             N_BRAC_indexes.pop_back();
3198                           }
3199                           type = eSymbolTypeScopeEnd;
3200                           break;
3201 
3202                         case N_EXCL:
3203                           // deleted include file: name,,NO_SECT,0,sum
3204                           type = eSymbolTypeHeaderFile;
3205                           break;
3206 
3207                         //----------------------------------------------------------------------
3208                         // COMM scopes
3209                         //----------------------------------------------------------------------
3210                         case N_BCOMM:
3211                           // begin common: name,,NO_SECT,0,0
3212                           // We use the current number of symbols in the symbol
3213                           // table in lieu of using nlist_idx in case we ever
3214                           // start trimming entries out
3215                           type = eSymbolTypeScopeBegin;
3216                           N_COMM_indexes.push_back(sym_idx);
3217                           break;
3218 
3219                         case N_ECOML:
3220                           // end common (local name): 0,,n_sect,0,address
3221                           symbol_section = section_info.GetSection(
3222                               nlist.n_sect, nlist.n_value);
3223                         // Fall through
3224 
3225                         case N_ECOMM:
3226                           // end common: name,,n_sect,0,0
3227                           // Set the size of the N_BCOMM to the terminating
3228                           // index of this N_ECOMM/N_ECOML so that we can
3229                           // always skip the entire symbol if we need to
3230                           // navigate more quickly at the source level when
3231                           // parsing STABS
3232                           if (!N_COMM_indexes.empty()) {
3233                             symbol_ptr =
3234                                 symtab->SymbolAtIndex(N_COMM_indexes.back());
3235                             symbol_ptr->SetByteSize(sym_idx + 1);
3236                             symbol_ptr->SetSizeIsSibling(true);
3237                             N_COMM_indexes.pop_back();
3238                           }
3239                           type = eSymbolTypeScopeEnd;
3240                           break;
3241 
3242                         case N_LENG:
3243                           // second stab entry with length information
3244                           type = eSymbolTypeAdditional;
3245                           break;
3246 
3247                         default:
3248                           break;
3249                         }
3250                       } else {
3251                         // uint8_t n_pext    = N_PEXT & nlist.n_type;
3252                         uint8_t n_type = N_TYPE & nlist.n_type;
3253                         sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
3254 
3255                         switch (n_type) {
3256                         case N_INDR: {
3257                           const char *reexport_name_cstr =
3258                               strtab_data.PeekCStr(nlist.n_value);
3259                           if (reexport_name_cstr && reexport_name_cstr[0]) {
3260                             type = eSymbolTypeReExported;
3261                             ConstString reexport_name(
3262                                 reexport_name_cstr +
3263                                 ((reexport_name_cstr[0] == '_') ? 1 : 0));
3264                             sym[sym_idx].SetReExportedSymbolName(reexport_name);
3265                             set_value = false;
3266                             reexport_shlib_needs_fixup[sym_idx] = reexport_name;
3267                             indirect_symbol_names.insert(
3268                                 ConstString(symbol_name +
3269                                             ((symbol_name[0] == '_') ? 1 : 0)));
3270                           } else
3271                             type = eSymbolTypeUndefined;
3272                         } break;
3273 
3274                         case N_UNDF:
3275                           if (symbol_name && symbol_name[0]) {
3276                             ConstString undefined_name(
3277                                 symbol_name +
3278                                 ((symbol_name[0] == '_') ? 1 : 0));
3279                             undefined_name_to_desc[undefined_name] =
3280                                 nlist.n_desc;
3281                           }
3282                         // Fall through
3283                         case N_PBUD:
3284                           type = eSymbolTypeUndefined;
3285                           break;
3286 
3287                         case N_ABS:
3288                           type = eSymbolTypeAbsolute;
3289                           break;
3290 
3291                         case N_SECT: {
3292                           symbol_section = section_info.GetSection(
3293                               nlist.n_sect, nlist.n_value);
3294 
3295                           if (symbol_section == NULL) {
3296                             // TODO: warn about this?
3297                             add_nlist = false;
3298                             break;
3299                           }
3300 
3301                           if (TEXT_eh_frame_sectID == nlist.n_sect) {
3302                             type = eSymbolTypeException;
3303                           } else {
3304                             uint32_t section_type =
3305                                 symbol_section->Get() & SECTION_TYPE;
3306 
3307                             switch (section_type) {
3308                             case S_CSTRING_LITERALS:
3309                               type = eSymbolTypeData;
3310                               break; // section with only literal C strings
3311                             case S_4BYTE_LITERALS:
3312                               type = eSymbolTypeData;
3313                               break; // section with only 4 byte literals
3314                             case S_8BYTE_LITERALS:
3315                               type = eSymbolTypeData;
3316                               break; // section with only 8 byte literals
3317                             case S_LITERAL_POINTERS:
3318                               type = eSymbolTypeTrampoline;
3319                               break; // section with only pointers to literals
3320                             case S_NON_LAZY_SYMBOL_POINTERS:
3321                               type = eSymbolTypeTrampoline;
3322                               break; // section with only non-lazy symbol
3323                                      // pointers
3324                             case S_LAZY_SYMBOL_POINTERS:
3325                               type = eSymbolTypeTrampoline;
3326                               break; // section with only lazy symbol pointers
3327                             case S_SYMBOL_STUBS:
3328                               type = eSymbolTypeTrampoline;
3329                               break; // section with only symbol stubs, byte
3330                                      // size of stub in the reserved2 field
3331                             case S_MOD_INIT_FUNC_POINTERS:
3332                               type = eSymbolTypeCode;
3333                               break; // section with only function pointers for
3334                                      // initialization
3335                             case S_MOD_TERM_FUNC_POINTERS:
3336                               type = eSymbolTypeCode;
3337                               break; // section with only function pointers for
3338                                      // termination
3339                             case S_INTERPOSING:
3340                               type = eSymbolTypeTrampoline;
3341                               break; // section with only pairs of function
3342                                      // pointers for interposing
3343                             case S_16BYTE_LITERALS:
3344                               type = eSymbolTypeData;
3345                               break; // section with only 16 byte literals
3346                             case S_DTRACE_DOF:
3347                               type = eSymbolTypeInstrumentation;
3348                               break;
3349                             case S_LAZY_DYLIB_SYMBOL_POINTERS:
3350                               type = eSymbolTypeTrampoline;
3351                               break;
3352                             default:
3353                               switch (symbol_section->GetType()) {
3354                               case lldb::eSectionTypeCode:
3355                                 type = eSymbolTypeCode;
3356                                 break;
3357                               case eSectionTypeData:
3358                               case eSectionTypeDataCString: // Inlined C string
3359                                                             // data
3360                               case eSectionTypeDataCStringPointers: // Pointers
3361                                                                     // to C
3362                                                                     // string
3363                                                                     // data
3364                               case eSectionTypeDataSymbolAddress: // Address of
3365                                                                   // a symbol in
3366                                                                   // the symbol
3367                                                                   // table
3368                               case eSectionTypeData4:
3369                               case eSectionTypeData8:
3370                               case eSectionTypeData16:
3371                                 type = eSymbolTypeData;
3372                                 break;
3373                               default:
3374                                 break;
3375                               }
3376                               break;
3377                             }
3378 
3379                             if (type == eSymbolTypeInvalid) {
3380                               const char *symbol_sect_name =
3381                                   symbol_section->GetName().AsCString();
3382                               if (symbol_section->IsDescendant(
3383                                       text_section_sp.get())) {
3384                                 if (symbol_section->IsClear(
3385                                         S_ATTR_PURE_INSTRUCTIONS |
3386                                         S_ATTR_SELF_MODIFYING_CODE |
3387                                         S_ATTR_SOME_INSTRUCTIONS))
3388                                   type = eSymbolTypeData;
3389                                 else
3390                                   type = eSymbolTypeCode;
3391                               } else if (symbol_section->IsDescendant(
3392                                              data_section_sp.get()) ||
3393                                          symbol_section->IsDescendant(
3394                                              data_dirty_section_sp.get()) ||
3395                                          symbol_section->IsDescendant(
3396                                              data_const_section_sp.get())) {
3397                                 if (symbol_sect_name &&
3398                                     ::strstr(symbol_sect_name, "__objc") ==
3399                                         symbol_sect_name) {
3400                                   type = eSymbolTypeRuntime;
3401 
3402                                   if (symbol_name) {
3403                                     llvm::StringRef symbol_name_ref(
3404                                         symbol_name);
3405                                     if (symbol_name_ref.startswith("_OBJC_")) {
3406                                       static const llvm::StringRef
3407                                           g_objc_v2_prefix_class(
3408                                               "_OBJC_CLASS_$_");
3409                                       static const llvm::StringRef
3410                                           g_objc_v2_prefix_metaclass(
3411                                               "_OBJC_METACLASS_$_");
3412                                       static const llvm::StringRef
3413                                           g_objc_v2_prefix_ivar(
3414                                               "_OBJC_IVAR_$_");
3415                                       if (symbol_name_ref.startswith(
3416                                               g_objc_v2_prefix_class)) {
3417                                         symbol_name_non_abi_mangled =
3418                                             symbol_name + 1;
3419                                         symbol_name =
3420                                             symbol_name +
3421                                             g_objc_v2_prefix_class.size();
3422                                         type = eSymbolTypeObjCClass;
3423                                         demangled_is_synthesized = true;
3424                                       } else if (
3425                                           symbol_name_ref.startswith(
3426                                               g_objc_v2_prefix_metaclass)) {
3427                                         symbol_name_non_abi_mangled =
3428                                             symbol_name + 1;
3429                                         symbol_name =
3430                                             symbol_name +
3431                                             g_objc_v2_prefix_metaclass.size();
3432                                         type = eSymbolTypeObjCMetaClass;
3433                                         demangled_is_synthesized = true;
3434                                       } else if (symbol_name_ref.startswith(
3435                                                      g_objc_v2_prefix_ivar)) {
3436                                         symbol_name_non_abi_mangled =
3437                                             symbol_name + 1;
3438                                         symbol_name =
3439                                             symbol_name +
3440                                             g_objc_v2_prefix_ivar.size();
3441                                         type = eSymbolTypeObjCIVar;
3442                                         demangled_is_synthesized = true;
3443                                       }
3444                                     }
3445                                   }
3446                                 } else if (symbol_sect_name &&
3447                                            ::strstr(symbol_sect_name,
3448                                                     "__gcc_except_tab") ==
3449                                                symbol_sect_name) {
3450                                   type = eSymbolTypeException;
3451                                 } else {
3452                                   type = eSymbolTypeData;
3453                                 }
3454                               } else if (symbol_sect_name &&
3455                                          ::strstr(symbol_sect_name,
3456                                                   "__IMPORT") ==
3457                                              symbol_sect_name) {
3458                                 type = eSymbolTypeTrampoline;
3459                               } else if (symbol_section->IsDescendant(
3460                                              objc_section_sp.get())) {
3461                                 type = eSymbolTypeRuntime;
3462                                 if (symbol_name && symbol_name[0] == '.') {
3463                                   llvm::StringRef symbol_name_ref(symbol_name);
3464                                   static const llvm::StringRef
3465                                       g_objc_v1_prefix_class(
3466                                           ".objc_class_name_");
3467                                   if (symbol_name_ref.startswith(
3468                                           g_objc_v1_prefix_class)) {
3469                                     symbol_name_non_abi_mangled = symbol_name;
3470                                     symbol_name = symbol_name +
3471                                                   g_objc_v1_prefix_class.size();
3472                                     type = eSymbolTypeObjCClass;
3473                                     demangled_is_synthesized = true;
3474                                   }
3475                                 }
3476                               }
3477                             }
3478                           }
3479                         } break;
3480                         }
3481                       }
3482 
3483                       if (add_nlist) {
3484                         uint64_t symbol_value = nlist.n_value;
3485                         if (symbol_name_non_abi_mangled) {
3486                           sym[sym_idx].GetMangled().SetMangledName(
3487                               ConstString(symbol_name_non_abi_mangled));
3488                           sym[sym_idx].GetMangled().SetDemangledName(
3489                               ConstString(symbol_name));
3490                         } else {
3491                           bool symbol_name_is_mangled = false;
3492 
3493                           if (symbol_name && symbol_name[0] == '_') {
3494                             symbol_name_is_mangled = symbol_name[1] == '_';
3495                             symbol_name++; // Skip the leading underscore
3496                           }
3497 
3498                           if (symbol_name) {
3499                             ConstString const_symbol_name(symbol_name);
3500                             sym[sym_idx].GetMangled().SetValue(
3501                                 const_symbol_name, symbol_name_is_mangled);
3502                             if (is_gsym && is_debug) {
3503                               const char *gsym_name =
3504                                   sym[sym_idx]
3505                                       .GetMangled()
3506                                       .GetName(lldb::eLanguageTypeUnknown,
3507                                                Mangled::ePreferMangled)
3508                                       .GetCString();
3509                               if (gsym_name)
3510                                 N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
3511                             }
3512                           }
3513                         }
3514                         if (symbol_section) {
3515                           const addr_t section_file_addr =
3516                               symbol_section->GetFileAddress();
3517                           if (symbol_byte_size == 0 &&
3518                               function_starts_count > 0) {
3519                             addr_t symbol_lookup_file_addr = nlist.n_value;
3520                             // Do an exact address match for non-ARM addresses,
3521                             // else get the closest since the symbol might be a
3522                             // thumb symbol which has an address with bit zero
3523                             // set
3524                             FunctionStarts::Entry *func_start_entry =
3525                                 function_starts.FindEntry(
3526                                     symbol_lookup_file_addr, !is_arm);
3527                             if (is_arm && func_start_entry) {
3528                               // Verify that the function start address is the
3529                               // symbol address (ARM) or the symbol address + 1
3530                               // (thumb)
3531                               if (func_start_entry->addr !=
3532                                       symbol_lookup_file_addr &&
3533                                   func_start_entry->addr !=
3534                                       (symbol_lookup_file_addr + 1)) {
3535                                 // Not the right entry, NULL it out...
3536                                 func_start_entry = NULL;
3537                               }
3538                             }
3539                             if (func_start_entry) {
3540                               func_start_entry->data = true;
3541 
3542                               addr_t symbol_file_addr = func_start_entry->addr;
3543                               uint32_t symbol_flags = 0;
3544                               if (is_arm) {
3545                                 if (symbol_file_addr & 1)
3546                                   symbol_flags =
3547                                       MACHO_NLIST_ARM_SYMBOL_IS_THUMB;
3548                                 symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
3549                               }
3550 
3551                               const FunctionStarts::Entry
3552                                   *next_func_start_entry =
3553                                       function_starts.FindNextEntry(
3554                                           func_start_entry);
3555                               const addr_t section_end_file_addr =
3556                                   section_file_addr +
3557                                   symbol_section->GetByteSize();
3558                               if (next_func_start_entry) {
3559                                 addr_t next_symbol_file_addr =
3560                                     next_func_start_entry->addr;
3561                                 // Be sure the clear the Thumb address bit when
3562                                 // we calculate the size from the current and
3563                                 // next address
3564                                 if (is_arm)
3565                                   next_symbol_file_addr &=
3566                                       THUMB_ADDRESS_BIT_MASK;
3567                                 symbol_byte_size = std::min<lldb::addr_t>(
3568                                     next_symbol_file_addr - symbol_file_addr,
3569                                     section_end_file_addr - symbol_file_addr);
3570                               } else {
3571                                 symbol_byte_size =
3572                                     section_end_file_addr - symbol_file_addr;
3573                               }
3574                             }
3575                           }
3576                           symbol_value -= section_file_addr;
3577                         }
3578 
3579                         if (is_debug == false) {
3580                           if (type == eSymbolTypeCode) {
3581                             // See if we can find a N_FUN entry for any code
3582                             // symbols. If we do find a match, and the name
3583                             // matches, then we can merge the two into just the
3584                             // function symbol to avoid duplicate entries in
3585                             // the symbol table
3586                             std::pair<ValueToSymbolIndexMap::const_iterator,
3587                                       ValueToSymbolIndexMap::const_iterator>
3588                                 range;
3589                             range = N_FUN_addr_to_sym_idx.equal_range(
3590                                 nlist.n_value);
3591                             if (range.first != range.second) {
3592                               bool found_it = false;
3593                               for (ValueToSymbolIndexMap::const_iterator pos =
3594                                        range.first;
3595                                    pos != range.second; ++pos) {
3596                                 if (sym[sym_idx].GetMangled().GetName(
3597                                         lldb::eLanguageTypeUnknown,
3598                                         Mangled::ePreferMangled) ==
3599                                     sym[pos->second].GetMangled().GetName(
3600                                         lldb::eLanguageTypeUnknown,
3601                                         Mangled::ePreferMangled)) {
3602                                   m_nlist_idx_to_sym_idx[nlist_idx] =
3603                                       pos->second;
3604                                   // We just need the flags from the linker
3605                                   // symbol, so put these flags
3606                                   // into the N_FUN flags to avoid duplicate
3607                                   // symbols in the symbol table
3608                                   sym[pos->second].SetExternal(
3609                                       sym[sym_idx].IsExternal());
3610                                   sym[pos->second].SetFlags(nlist.n_type << 16 |
3611                                                             nlist.n_desc);
3612                                   if (resolver_addresses.find(nlist.n_value) !=
3613                                       resolver_addresses.end())
3614                                     sym[pos->second].SetType(
3615                                         eSymbolTypeResolver);
3616                                   sym[sym_idx].Clear();
3617                                   found_it = true;
3618                                   break;
3619                                 }
3620                               }
3621                               if (found_it)
3622                                 continue;
3623                             } else {
3624                               if (resolver_addresses.find(nlist.n_value) !=
3625                                   resolver_addresses.end())
3626                                 type = eSymbolTypeResolver;
3627                             }
3628                           } else if (type == eSymbolTypeData ||
3629                                      type == eSymbolTypeObjCClass ||
3630                                      type == eSymbolTypeObjCMetaClass ||
3631                                      type == eSymbolTypeObjCIVar) {
3632                             // See if we can find a N_STSYM entry for any data
3633                             // symbols. If we do find a match, and the name
3634                             // matches, then we can merge the two into just the
3635                             // Static symbol to avoid duplicate entries in the
3636                             // symbol table
3637                             std::pair<ValueToSymbolIndexMap::const_iterator,
3638                                       ValueToSymbolIndexMap::const_iterator>
3639                                 range;
3640                             range = N_STSYM_addr_to_sym_idx.equal_range(
3641                                 nlist.n_value);
3642                             if (range.first != range.second) {
3643                               bool found_it = false;
3644                               for (ValueToSymbolIndexMap::const_iterator pos =
3645                                        range.first;
3646                                    pos != range.second; ++pos) {
3647                                 if (sym[sym_idx].GetMangled().GetName(
3648                                         lldb::eLanguageTypeUnknown,
3649                                         Mangled::ePreferMangled) ==
3650                                     sym[pos->second].GetMangled().GetName(
3651                                         lldb::eLanguageTypeUnknown,
3652                                         Mangled::ePreferMangled)) {
3653                                   m_nlist_idx_to_sym_idx[nlist_idx] =
3654                                       pos->second;
3655                                   // We just need the flags from the linker
3656                                   // symbol, so put these flags
3657                                   // into the N_STSYM flags to avoid duplicate
3658                                   // symbols in the symbol table
3659                                   sym[pos->second].SetExternal(
3660                                       sym[sym_idx].IsExternal());
3661                                   sym[pos->second].SetFlags(nlist.n_type << 16 |
3662                                                             nlist.n_desc);
3663                                   sym[sym_idx].Clear();
3664                                   found_it = true;
3665                                   break;
3666                                 }
3667                               }
3668                               if (found_it)
3669                                 continue;
3670                             } else {
3671                               const char *gsym_name =
3672                                   sym[sym_idx]
3673                                       .GetMangled()
3674                                       .GetName(lldb::eLanguageTypeUnknown,
3675                                                Mangled::ePreferMangled)
3676                                       .GetCString();
3677                               if (gsym_name) {
3678                                 // Combine N_GSYM stab entries with the non
3679                                 // stab symbol
3680                                 ConstNameToSymbolIndexMap::const_iterator pos =
3681                                     N_GSYM_name_to_sym_idx.find(gsym_name);
3682                                 if (pos != N_GSYM_name_to_sym_idx.end()) {
3683                                   const uint32_t GSYM_sym_idx = pos->second;
3684                                   m_nlist_idx_to_sym_idx[nlist_idx] =
3685                                       GSYM_sym_idx;
3686                                   // Copy the address, because often the N_GSYM
3687                                   // address has an invalid address of zero
3688                                   // when the global is a common symbol
3689                                   sym[GSYM_sym_idx].GetAddressRef().SetSection(
3690                                       symbol_section);
3691                                   sym[GSYM_sym_idx].GetAddressRef().SetOffset(
3692                                       symbol_value);
3693                                   // We just need the flags from the linker
3694                                   // symbol, so put these flags
3695                                   // into the N_GSYM flags to avoid duplicate
3696                                   // symbols in the symbol table
3697                                   sym[GSYM_sym_idx].SetFlags(
3698                                       nlist.n_type << 16 | nlist.n_desc);
3699                                   sym[sym_idx].Clear();
3700                                   continue;
3701                                 }
3702                               }
3703                             }
3704                           }
3705                         }
3706 
3707                         sym[sym_idx].SetID(nlist_idx);
3708                         sym[sym_idx].SetType(type);
3709                         if (set_value) {
3710                           sym[sym_idx].GetAddressRef().SetSection(
3711                               symbol_section);
3712                           sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
3713                         }
3714                         sym[sym_idx].SetFlags(nlist.n_type << 16 |
3715                                               nlist.n_desc);
3716 
3717                         if (symbol_byte_size > 0)
3718                           sym[sym_idx].SetByteSize(symbol_byte_size);
3719 
3720                         if (demangled_is_synthesized)
3721                           sym[sym_idx].SetDemangledNameIsSynthesized(true);
3722                         ++sym_idx;
3723                       } else {
3724                         sym[sym_idx].Clear();
3725                       }
3726                     }
3727                     /////////////////////////////
3728                   }
3729                   break; // No more entries to consider
3730                 }
3731               }
3732 
3733               for (const auto &pos : reexport_shlib_needs_fixup) {
3734                 const auto undef_pos = undefined_name_to_desc.find(pos.second);
3735                 if (undef_pos != undefined_name_to_desc.end()) {
3736                   const uint8_t dylib_ordinal =
3737                       llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
3738                   if (dylib_ordinal > 0 &&
3739                       dylib_ordinal < dylib_files.GetSize())
3740                     sym[pos.first].SetReExportedSymbolSharedLibrary(
3741                         dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
3742                 }
3743               }
3744             }
3745           }
3746         }
3747       }
3748     }
3749 
3750     // Must reset this in case it was mutated above!
3751     nlist_data_offset = 0;
3752 #endif
3753 
3754     if (nlist_data.GetByteSize() > 0) {
3755 
3756       // If the sym array was not created while parsing the DSC unmapped
3757       // symbols, create it now.
3758       if (sym == NULL) {
3759         sym = symtab->Resize(symtab_load_command.nsyms +
3760                              m_dysymtab.nindirectsyms);
3761         num_syms = symtab->GetNumSymbols();
3762       }
3763 
3764       if (unmapped_local_symbols_found) {
3765         assert(m_dysymtab.ilocalsym == 0);
3766         nlist_data_offset += (m_dysymtab.nlocalsym * nlist_byte_size);
3767         nlist_idx = m_dysymtab.nlocalsym;
3768       } else {
3769         nlist_idx = 0;
3770       }
3771 
3772       typedef std::map<ConstString, uint16_t> UndefinedNameToDescMap;
3773       typedef std::map<uint32_t, ConstString> SymbolIndexToName;
3774       UndefinedNameToDescMap undefined_name_to_desc;
3775       SymbolIndexToName reexport_shlib_needs_fixup;
3776       for (; nlist_idx < symtab_load_command.nsyms; ++nlist_idx) {
3777         struct nlist_64 nlist;
3778         if (!nlist_data.ValidOffsetForDataOfSize(nlist_data_offset,
3779                                                  nlist_byte_size))
3780           break;
3781 
3782         nlist.n_strx = nlist_data.GetU32_unchecked(&nlist_data_offset);
3783         nlist.n_type = nlist_data.GetU8_unchecked(&nlist_data_offset);
3784         nlist.n_sect = nlist_data.GetU8_unchecked(&nlist_data_offset);
3785         nlist.n_desc = nlist_data.GetU16_unchecked(&nlist_data_offset);
3786         nlist.n_value = nlist_data.GetAddress_unchecked(&nlist_data_offset);
3787 
3788         SymbolType type = eSymbolTypeInvalid;
3789         const char *symbol_name = NULL;
3790 
3791         if (have_strtab_data) {
3792           symbol_name = strtab_data.PeekCStr(nlist.n_strx);
3793 
3794           if (symbol_name == NULL) {
3795             // No symbol should be NULL, even the symbols with no string values
3796             // should have an offset zero which points to an empty C-string
3797             Host::SystemLog(Host::eSystemLogError,
3798                             "error: symbol[%u] has invalid string table offset "
3799                             "0x%x in %s, ignoring symbol\n",
3800                             nlist_idx, nlist.n_strx,
3801                             module_sp->GetFileSpec().GetPath().c_str());
3802             continue;
3803           }
3804           if (symbol_name[0] == '\0')
3805             symbol_name = NULL;
3806         } else {
3807           const addr_t str_addr = strtab_addr + nlist.n_strx;
3808           Status str_error;
3809           if (process->ReadCStringFromMemory(str_addr, memory_symbol_name,
3810                                              str_error))
3811             symbol_name = memory_symbol_name.c_str();
3812         }
3813         const char *symbol_name_non_abi_mangled = NULL;
3814 
3815         SectionSP symbol_section;
3816         lldb::addr_t symbol_byte_size = 0;
3817         bool add_nlist = true;
3818         bool is_gsym = false;
3819         bool is_debug = ((nlist.n_type & N_STAB) != 0);
3820         bool demangled_is_synthesized = false;
3821         bool set_value = true;
3822         assert(sym_idx < num_syms);
3823 
3824         sym[sym_idx].SetDebug(is_debug);
3825 
3826         if (is_debug) {
3827           switch (nlist.n_type) {
3828           case N_GSYM:
3829             // global symbol: name,,NO_SECT,type,0
3830             // Sometimes the N_GSYM value contains the address.
3831 
3832             // FIXME: In the .o files, we have a GSYM and a debug symbol for all
3833             // the ObjC data.  They
3834             // have the same address, but we want to ensure that we always find
3835             // only the real symbol, 'cause we don't currently correctly
3836             // attribute the GSYM one to the ObjCClass/Ivar/MetaClass symbol
3837             // type.  This is a temporary hack to make sure the ObjectiveC
3838             // symbols get treated correctly.  To do this right, we should
3839             // coalesce all the GSYM & global symbols that have the same
3840             // address.
3841             is_gsym = true;
3842             sym[sym_idx].SetExternal(true);
3843 
3844             if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O') {
3845               llvm::StringRef symbol_name_ref(symbol_name);
3846               if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) {
3847                 symbol_name_non_abi_mangled = symbol_name + 1;
3848                 symbol_name = symbol_name + g_objc_v2_prefix_class.size();
3849                 type = eSymbolTypeObjCClass;
3850                 demangled_is_synthesized = true;
3851 
3852               } else if (symbol_name_ref.startswith(
3853                              g_objc_v2_prefix_metaclass)) {
3854                 symbol_name_non_abi_mangled = symbol_name + 1;
3855                 symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size();
3856                 type = eSymbolTypeObjCMetaClass;
3857                 demangled_is_synthesized = true;
3858               } else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) {
3859                 symbol_name_non_abi_mangled = symbol_name + 1;
3860                 symbol_name = symbol_name + g_objc_v2_prefix_ivar.size();
3861                 type = eSymbolTypeObjCIVar;
3862                 demangled_is_synthesized = true;
3863               }
3864             } else {
3865               if (nlist.n_value != 0)
3866                 symbol_section =
3867                     section_info.GetSection(nlist.n_sect, nlist.n_value);
3868               type = eSymbolTypeData;
3869             }
3870             break;
3871 
3872           case N_FNAME:
3873             // procedure name (f77 kludge): name,,NO_SECT,0,0
3874             type = eSymbolTypeCompiler;
3875             break;
3876 
3877           case N_FUN:
3878             // procedure: name,,n_sect,linenumber,address
3879             if (symbol_name) {
3880               type = eSymbolTypeCode;
3881               symbol_section =
3882                   section_info.GetSection(nlist.n_sect, nlist.n_value);
3883 
3884               N_FUN_addr_to_sym_idx.insert(
3885                   std::make_pair(nlist.n_value, sym_idx));
3886               // We use the current number of symbols in the symbol table in
3887               // lieu of using nlist_idx in case we ever start trimming entries
3888               // out
3889               N_FUN_indexes.push_back(sym_idx);
3890             } else {
3891               type = eSymbolTypeCompiler;
3892 
3893               if (!N_FUN_indexes.empty()) {
3894                 // Copy the size of the function into the original STAB entry
3895                 // so we don't have to hunt for it later
3896                 symtab->SymbolAtIndex(N_FUN_indexes.back())
3897                     ->SetByteSize(nlist.n_value);
3898                 N_FUN_indexes.pop_back();
3899                 // We don't really need the end function STAB as it contains
3900                 // the size which we already placed with the original symbol,
3901                 // so don't add it if we want a minimal symbol table
3902                 add_nlist = false;
3903               }
3904             }
3905             break;
3906 
3907           case N_STSYM:
3908             // static symbol: name,,n_sect,type,address
3909             N_STSYM_addr_to_sym_idx.insert(
3910                 std::make_pair(nlist.n_value, sym_idx));
3911             symbol_section =
3912                 section_info.GetSection(nlist.n_sect, nlist.n_value);
3913             if (symbol_name && symbol_name[0]) {
3914               type = ObjectFile::GetSymbolTypeFromName(symbol_name + 1,
3915                                                        eSymbolTypeData);
3916             }
3917             break;
3918 
3919           case N_LCSYM:
3920             // .lcomm symbol: name,,n_sect,type,address
3921             symbol_section =
3922                 section_info.GetSection(nlist.n_sect, nlist.n_value);
3923             type = eSymbolTypeCommonBlock;
3924             break;
3925 
3926           case N_BNSYM:
3927             // We use the current number of symbols in the symbol table in lieu
3928             // of using nlist_idx in case we ever start trimming entries out
3929             // Skip these if we want minimal symbol tables
3930             add_nlist = false;
3931             break;
3932 
3933           case N_ENSYM:
3934             // Set the size of the N_BNSYM to the terminating index of this
3935             // N_ENSYM so that we can always skip the entire symbol if we need
3936             // to navigate more quickly at the source level when parsing STABS
3937             // Skip these if we want minimal symbol tables
3938             add_nlist = false;
3939             break;
3940 
3941           case N_OPT:
3942             // emitted with gcc2_compiled and in gcc source
3943             type = eSymbolTypeCompiler;
3944             break;
3945 
3946           case N_RSYM:
3947             // register sym: name,,NO_SECT,type,register
3948             type = eSymbolTypeVariable;
3949             break;
3950 
3951           case N_SLINE:
3952             // src line: 0,,n_sect,linenumber,address
3953             symbol_section =
3954                 section_info.GetSection(nlist.n_sect, nlist.n_value);
3955             type = eSymbolTypeLineEntry;
3956             break;
3957 
3958           case N_SSYM:
3959             // structure elt: name,,NO_SECT,type,struct_offset
3960             type = eSymbolTypeVariableType;
3961             break;
3962 
3963           case N_SO:
3964             // source file name
3965             type = eSymbolTypeSourceFile;
3966             if (symbol_name == NULL) {
3967               add_nlist = false;
3968               if (N_SO_index != UINT32_MAX) {
3969                 // Set the size of the N_SO to the terminating index of this
3970                 // N_SO so that we can always skip the entire N_SO if we need
3971                 // to navigate more quickly at the source level when parsing
3972                 // STABS
3973                 symbol_ptr = symtab->SymbolAtIndex(N_SO_index);
3974                 symbol_ptr->SetByteSize(sym_idx);
3975                 symbol_ptr->SetSizeIsSibling(true);
3976               }
3977               N_NSYM_indexes.clear();
3978               N_INCL_indexes.clear();
3979               N_BRAC_indexes.clear();
3980               N_COMM_indexes.clear();
3981               N_FUN_indexes.clear();
3982               N_SO_index = UINT32_MAX;
3983             } else {
3984               // We use the current number of symbols in the symbol table in
3985               // lieu of using nlist_idx in case we ever start trimming entries
3986               // out
3987               const bool N_SO_has_full_path = symbol_name[0] == '/';
3988               if (N_SO_has_full_path) {
3989                 if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) {
3990                   // We have two consecutive N_SO entries where the first
3991                   // contains a directory and the second contains a full path.
3992                   sym[sym_idx - 1].GetMangled().SetValue(
3993                       ConstString(symbol_name), false);
3994                   m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3995                   add_nlist = false;
3996                 } else {
3997                   // This is the first entry in a N_SO that contains a
3998                   // directory or a full path to the source file
3999                   N_SO_index = sym_idx;
4000                 }
4001               } else if ((N_SO_index == sym_idx - 1) &&
4002                          ((sym_idx - 1) < num_syms)) {
4003                 // This is usually the second N_SO entry that contains just the
4004                 // filename, so here we combine it with the first one if we are
4005                 // minimizing the symbol table
4006                 const char *so_path =
4007                     sym[sym_idx - 1]
4008                         .GetMangled()
4009                         .GetDemangledName(lldb::eLanguageTypeUnknown)
4010                         .AsCString();
4011                 if (so_path && so_path[0]) {
4012                   std::string full_so_path(so_path);
4013                   const size_t double_slash_pos = full_so_path.find("//");
4014                   if (double_slash_pos != std::string::npos) {
4015                     // The linker has been generating bad N_SO entries with
4016                     // doubled up paths in the format "%s%s" where the first
4017                     // string in the DW_AT_comp_dir, and the second is the
4018                     // directory for the source file so you end up with a path
4019                     // that looks like "/tmp/src//tmp/src/"
4020                     FileSpec so_dir(so_path);
4021                     if (!FileSystem::Instance().Exists(so_dir)) {
4022                       so_dir.SetFile(&full_so_path[double_slash_pos + 1],
4023                                      FileSpec::Style::native);
4024                       if (FileSystem::Instance().Exists(so_dir)) {
4025                         // Trim off the incorrect path
4026                         full_so_path.erase(0, double_slash_pos + 1);
4027                       }
4028                     }
4029                   }
4030                   if (*full_so_path.rbegin() != '/')
4031                     full_so_path += '/';
4032                   full_so_path += symbol_name;
4033                   sym[sym_idx - 1].GetMangled().SetValue(
4034                       ConstString(full_so_path.c_str()), false);
4035                   add_nlist = false;
4036                   m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
4037                 }
4038               } else {
4039                 // This could be a relative path to a N_SO
4040                 N_SO_index = sym_idx;
4041               }
4042             }
4043             break;
4044 
4045           case N_OSO:
4046             // object file name: name,,0,0,st_mtime
4047             type = eSymbolTypeObjectFile;
4048             break;
4049 
4050           case N_LSYM:
4051             // local sym: name,,NO_SECT,type,offset
4052             type = eSymbolTypeLocal;
4053             break;
4054 
4055           //----------------------------------------------------------------------
4056           // INCL scopes
4057           //----------------------------------------------------------------------
4058           case N_BINCL:
4059             // include file beginning: name,,NO_SECT,0,sum We use the current
4060             // number of symbols in the symbol table in lieu of using nlist_idx
4061             // in case we ever start trimming entries out
4062             N_INCL_indexes.push_back(sym_idx);
4063             type = eSymbolTypeScopeBegin;
4064             break;
4065 
4066           case N_EINCL:
4067             // include file end: name,,NO_SECT,0,0
4068             // Set the size of the N_BINCL to the terminating index of this
4069             // N_EINCL so that we can always skip the entire symbol if we need
4070             // to navigate more quickly at the source level when parsing STABS
4071             if (!N_INCL_indexes.empty()) {
4072               symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back());
4073               symbol_ptr->SetByteSize(sym_idx + 1);
4074               symbol_ptr->SetSizeIsSibling(true);
4075               N_INCL_indexes.pop_back();
4076             }
4077             type = eSymbolTypeScopeEnd;
4078             break;
4079 
4080           case N_SOL:
4081             // #included file name: name,,n_sect,0,address
4082             type = eSymbolTypeHeaderFile;
4083 
4084             // We currently don't use the header files on darwin
4085             add_nlist = false;
4086             break;
4087 
4088           case N_PARAMS:
4089             // compiler parameters: name,,NO_SECT,0,0
4090             type = eSymbolTypeCompiler;
4091             break;
4092 
4093           case N_VERSION:
4094             // compiler version: name,,NO_SECT,0,0
4095             type = eSymbolTypeCompiler;
4096             break;
4097 
4098           case N_OLEVEL:
4099             // compiler -O level: name,,NO_SECT,0,0
4100             type = eSymbolTypeCompiler;
4101             break;
4102 
4103           case N_PSYM:
4104             // parameter: name,,NO_SECT,type,offset
4105             type = eSymbolTypeVariable;
4106             break;
4107 
4108           case N_ENTRY:
4109             // alternate entry: name,,n_sect,linenumber,address
4110             symbol_section =
4111                 section_info.GetSection(nlist.n_sect, nlist.n_value);
4112             type = eSymbolTypeLineEntry;
4113             break;
4114 
4115           //----------------------------------------------------------------------
4116           // Left and Right Braces
4117           //----------------------------------------------------------------------
4118           case N_LBRAC:
4119             // left bracket: 0,,NO_SECT,nesting level,address We use the
4120             // current number of symbols in the symbol table in lieu of using
4121             // nlist_idx in case we ever start trimming entries out
4122             symbol_section =
4123                 section_info.GetSection(nlist.n_sect, nlist.n_value);
4124             N_BRAC_indexes.push_back(sym_idx);
4125             type = eSymbolTypeScopeBegin;
4126             break;
4127 
4128           case N_RBRAC:
4129             // right bracket: 0,,NO_SECT,nesting level,address Set the size of
4130             // the N_LBRAC to the terminating index of this N_RBRAC so that we
4131             // can always skip the entire symbol if we need to navigate more
4132             // quickly at the source level when parsing STABS
4133             symbol_section =
4134                 section_info.GetSection(nlist.n_sect, nlist.n_value);
4135             if (!N_BRAC_indexes.empty()) {
4136               symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back());
4137               symbol_ptr->SetByteSize(sym_idx + 1);
4138               symbol_ptr->SetSizeIsSibling(true);
4139               N_BRAC_indexes.pop_back();
4140             }
4141             type = eSymbolTypeScopeEnd;
4142             break;
4143 
4144           case N_EXCL:
4145             // deleted include file: name,,NO_SECT,0,sum
4146             type = eSymbolTypeHeaderFile;
4147             break;
4148 
4149           //----------------------------------------------------------------------
4150           // COMM scopes
4151           //----------------------------------------------------------------------
4152           case N_BCOMM:
4153             // begin common: name,,NO_SECT,0,0
4154             // We use the current number of symbols in the symbol table in lieu
4155             // of using nlist_idx in case we ever start trimming entries out
4156             type = eSymbolTypeScopeBegin;
4157             N_COMM_indexes.push_back(sym_idx);
4158             break;
4159 
4160           case N_ECOML:
4161             // end common (local name): 0,,n_sect,0,address
4162             symbol_section =
4163                 section_info.GetSection(nlist.n_sect, nlist.n_value);
4164             LLVM_FALLTHROUGH;
4165 
4166           case N_ECOMM:
4167             // end common: name,,n_sect,0,0
4168             // Set the size of the N_BCOMM to the terminating index of this
4169             // N_ECOMM/N_ECOML so that we can always skip the entire symbol if
4170             // we need to navigate more quickly at the source level when
4171             // parsing STABS
4172             if (!N_COMM_indexes.empty()) {
4173               symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back());
4174               symbol_ptr->SetByteSize(sym_idx + 1);
4175               symbol_ptr->SetSizeIsSibling(true);
4176               N_COMM_indexes.pop_back();
4177             }
4178             type = eSymbolTypeScopeEnd;
4179             break;
4180 
4181           case N_LENG:
4182             // second stab entry with length information
4183             type = eSymbolTypeAdditional;
4184             break;
4185 
4186           default:
4187             break;
4188           }
4189         } else {
4190           // uint8_t n_pext    = N_PEXT & nlist.n_type;
4191           uint8_t n_type = N_TYPE & nlist.n_type;
4192           sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
4193 
4194           switch (n_type) {
4195           case N_INDR: {
4196             const char *reexport_name_cstr =
4197                 strtab_data.PeekCStr(nlist.n_value);
4198             if (reexport_name_cstr && reexport_name_cstr[0]) {
4199               type = eSymbolTypeReExported;
4200               ConstString reexport_name(
4201                   reexport_name_cstr +
4202                   ((reexport_name_cstr[0] == '_') ? 1 : 0));
4203               sym[sym_idx].SetReExportedSymbolName(reexport_name);
4204               set_value = false;
4205               reexport_shlib_needs_fixup[sym_idx] = reexport_name;
4206               indirect_symbol_names.insert(
4207                   ConstString(symbol_name + ((symbol_name[0] == '_') ? 1 : 0)));
4208             } else
4209               type = eSymbolTypeUndefined;
4210           } break;
4211 
4212           case N_UNDF:
4213             if (symbol_name && symbol_name[0]) {
4214               ConstString undefined_name(symbol_name +
4215                                          ((symbol_name[0] == '_') ? 1 : 0));
4216               undefined_name_to_desc[undefined_name] = nlist.n_desc;
4217             }
4218             LLVM_FALLTHROUGH;
4219 
4220           case N_PBUD:
4221             type = eSymbolTypeUndefined;
4222             break;
4223 
4224           case N_ABS:
4225             type = eSymbolTypeAbsolute;
4226             break;
4227 
4228           case N_SECT: {
4229             symbol_section =
4230                 section_info.GetSection(nlist.n_sect, nlist.n_value);
4231 
4232             if (!symbol_section) {
4233               // TODO: warn about this?
4234               add_nlist = false;
4235               break;
4236             }
4237 
4238             if (TEXT_eh_frame_sectID == nlist.n_sect) {
4239               type = eSymbolTypeException;
4240             } else {
4241               uint32_t section_type = symbol_section->Get() & SECTION_TYPE;
4242 
4243               switch (section_type) {
4244               case S_CSTRING_LITERALS:
4245                 type = eSymbolTypeData;
4246                 break; // section with only literal C strings
4247               case S_4BYTE_LITERALS:
4248                 type = eSymbolTypeData;
4249                 break; // section with only 4 byte literals
4250               case S_8BYTE_LITERALS:
4251                 type = eSymbolTypeData;
4252                 break; // section with only 8 byte literals
4253               case S_LITERAL_POINTERS:
4254                 type = eSymbolTypeTrampoline;
4255                 break; // section with only pointers to literals
4256               case S_NON_LAZY_SYMBOL_POINTERS:
4257                 type = eSymbolTypeTrampoline;
4258                 break; // section with only non-lazy symbol pointers
4259               case S_LAZY_SYMBOL_POINTERS:
4260                 type = eSymbolTypeTrampoline;
4261                 break; // section with only lazy symbol pointers
4262               case S_SYMBOL_STUBS:
4263                 type = eSymbolTypeTrampoline;
4264                 break; // section with only symbol stubs, byte size of stub in
4265                        // the reserved2 field
4266               case S_MOD_INIT_FUNC_POINTERS:
4267                 type = eSymbolTypeCode;
4268                 break; // section with only function pointers for initialization
4269               case S_MOD_TERM_FUNC_POINTERS:
4270                 type = eSymbolTypeCode;
4271                 break; // section with only function pointers for termination
4272               case S_INTERPOSING:
4273                 type = eSymbolTypeTrampoline;
4274                 break; // section with only pairs of function pointers for
4275                        // interposing
4276               case S_16BYTE_LITERALS:
4277                 type = eSymbolTypeData;
4278                 break; // section with only 16 byte literals
4279               case S_DTRACE_DOF:
4280                 type = eSymbolTypeInstrumentation;
4281                 break;
4282               case S_LAZY_DYLIB_SYMBOL_POINTERS:
4283                 type = eSymbolTypeTrampoline;
4284                 break;
4285               default:
4286                 switch (symbol_section->GetType()) {
4287                 case lldb::eSectionTypeCode:
4288                   type = eSymbolTypeCode;
4289                   break;
4290                 case eSectionTypeData:
4291                 case eSectionTypeDataCString:         // Inlined C string data
4292                 case eSectionTypeDataCStringPointers: // Pointers to C string
4293                                                       // data
4294                 case eSectionTypeDataSymbolAddress:   // Address of a symbol in
4295                                                       // the symbol table
4296                 case eSectionTypeData4:
4297                 case eSectionTypeData8:
4298                 case eSectionTypeData16:
4299                   type = eSymbolTypeData;
4300                   break;
4301                 default:
4302                   break;
4303                 }
4304                 break;
4305               }
4306 
4307               if (type == eSymbolTypeInvalid) {
4308                 const char *symbol_sect_name =
4309                     symbol_section->GetName().AsCString();
4310                 if (symbol_section->IsDescendant(text_section_sp.get())) {
4311                   if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS |
4312                                               S_ATTR_SELF_MODIFYING_CODE |
4313                                               S_ATTR_SOME_INSTRUCTIONS))
4314                     type = eSymbolTypeData;
4315                   else
4316                     type = eSymbolTypeCode;
4317                 } else if (symbol_section->IsDescendant(
4318                                data_section_sp.get()) ||
4319                            symbol_section->IsDescendant(
4320                                data_dirty_section_sp.get()) ||
4321                            symbol_section->IsDescendant(
4322                                data_const_section_sp.get())) {
4323                   if (symbol_sect_name &&
4324                       ::strstr(symbol_sect_name, "__objc") ==
4325                           symbol_sect_name) {
4326                     type = eSymbolTypeRuntime;
4327 
4328                     if (symbol_name) {
4329                       llvm::StringRef symbol_name_ref(symbol_name);
4330                       if (symbol_name_ref.startswith("_OBJC_")) {
4331                         static const llvm::StringRef g_objc_v2_prefix_class(
4332                             "_OBJC_CLASS_$_");
4333                         static const llvm::StringRef g_objc_v2_prefix_metaclass(
4334                             "_OBJC_METACLASS_$_");
4335                         static const llvm::StringRef g_objc_v2_prefix_ivar(
4336                             "_OBJC_IVAR_$_");
4337                         if (symbol_name_ref.startswith(
4338                                 g_objc_v2_prefix_class)) {
4339                           symbol_name_non_abi_mangled = symbol_name + 1;
4340                           symbol_name =
4341                               symbol_name + g_objc_v2_prefix_class.size();
4342                           type = eSymbolTypeObjCClass;
4343                           demangled_is_synthesized = true;
4344                         } else if (symbol_name_ref.startswith(
4345                                        g_objc_v2_prefix_metaclass)) {
4346                           symbol_name_non_abi_mangled = symbol_name + 1;
4347                           symbol_name =
4348                               symbol_name + g_objc_v2_prefix_metaclass.size();
4349                           type = eSymbolTypeObjCMetaClass;
4350                           demangled_is_synthesized = true;
4351                         } else if (symbol_name_ref.startswith(
4352                                        g_objc_v2_prefix_ivar)) {
4353                           symbol_name_non_abi_mangled = symbol_name + 1;
4354                           symbol_name =
4355                               symbol_name + g_objc_v2_prefix_ivar.size();
4356                           type = eSymbolTypeObjCIVar;
4357                           demangled_is_synthesized = true;
4358                         }
4359                       }
4360                     }
4361                   } else if (symbol_sect_name &&
4362                              ::strstr(symbol_sect_name, "__gcc_except_tab") ==
4363                                  symbol_sect_name) {
4364                     type = eSymbolTypeException;
4365                   } else {
4366                     type = eSymbolTypeData;
4367                   }
4368                 } else if (symbol_sect_name &&
4369                            ::strstr(symbol_sect_name, "__IMPORT") ==
4370                                symbol_sect_name) {
4371                   type = eSymbolTypeTrampoline;
4372                 } else if (symbol_section->IsDescendant(
4373                                objc_section_sp.get())) {
4374                   type = eSymbolTypeRuntime;
4375                   if (symbol_name && symbol_name[0] == '.') {
4376                     llvm::StringRef symbol_name_ref(symbol_name);
4377                     static const llvm::StringRef g_objc_v1_prefix_class(
4378                         ".objc_class_name_");
4379                     if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) {
4380                       symbol_name_non_abi_mangled = symbol_name;
4381                       symbol_name = symbol_name + g_objc_v1_prefix_class.size();
4382                       type = eSymbolTypeObjCClass;
4383                       demangled_is_synthesized = true;
4384                     }
4385                   }
4386                 }
4387               }
4388             }
4389           } break;
4390           }
4391         }
4392 
4393         if (add_nlist) {
4394           uint64_t symbol_value = nlist.n_value;
4395 
4396           if (symbol_name_non_abi_mangled) {
4397             sym[sym_idx].GetMangled().SetMangledName(
4398                 ConstString(symbol_name_non_abi_mangled));
4399             sym[sym_idx].GetMangled().SetDemangledName(
4400                 ConstString(symbol_name));
4401           } else {
4402             bool symbol_name_is_mangled = false;
4403 
4404             if (symbol_name && symbol_name[0] == '_') {
4405               symbol_name_is_mangled = symbol_name[1] == '_';
4406               symbol_name++; // Skip the leading underscore
4407             }
4408 
4409             if (symbol_name) {
4410               ConstString const_symbol_name(symbol_name);
4411               sym[sym_idx].GetMangled().SetValue(const_symbol_name,
4412                                                  symbol_name_is_mangled);
4413             }
4414           }
4415 
4416           if (is_gsym) {
4417             const char *gsym_name = sym[sym_idx]
4418                                         .GetMangled()
4419                                         .GetName(lldb::eLanguageTypeUnknown,
4420                                                  Mangled::ePreferMangled)
4421                                         .GetCString();
4422             if (gsym_name)
4423               N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
4424           }
4425 
4426           if (symbol_section) {
4427             const addr_t section_file_addr = symbol_section->GetFileAddress();
4428             if (symbol_byte_size == 0 && function_starts_count > 0) {
4429               addr_t symbol_lookup_file_addr = nlist.n_value;
4430               // Do an exact address match for non-ARM addresses, else get the
4431               // closest since the symbol might be a thumb symbol which has an
4432               // address with bit zero set
4433               FunctionStarts::Entry *func_start_entry =
4434                   function_starts.FindEntry(symbol_lookup_file_addr, !is_arm);
4435               if (is_arm && func_start_entry) {
4436                 // Verify that the function start address is the symbol address
4437                 // (ARM) or the symbol address + 1 (thumb)
4438                 if (func_start_entry->addr != symbol_lookup_file_addr &&
4439                     func_start_entry->addr != (symbol_lookup_file_addr + 1)) {
4440                   // Not the right entry, NULL it out...
4441                   func_start_entry = NULL;
4442                 }
4443               }
4444               if (func_start_entry) {
4445                 func_start_entry->data = true;
4446 
4447                 addr_t symbol_file_addr = func_start_entry->addr;
4448                 if (is_arm)
4449                   symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4450 
4451                 const FunctionStarts::Entry *next_func_start_entry =
4452                     function_starts.FindNextEntry(func_start_entry);
4453                 const addr_t section_end_file_addr =
4454                     section_file_addr + symbol_section->GetByteSize();
4455                 if (next_func_start_entry) {
4456                   addr_t next_symbol_file_addr = next_func_start_entry->addr;
4457                   // Be sure the clear the Thumb address bit when we calculate
4458                   // the size from the current and next address
4459                   if (is_arm)
4460                     next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4461                   symbol_byte_size = std::min<lldb::addr_t>(
4462                       next_symbol_file_addr - symbol_file_addr,
4463                       section_end_file_addr - symbol_file_addr);
4464                 } else {
4465                   symbol_byte_size = section_end_file_addr - symbol_file_addr;
4466                 }
4467               }
4468             }
4469             symbol_value -= section_file_addr;
4470           }
4471 
4472           if (!is_debug) {
4473             if (type == eSymbolTypeCode) {
4474               // See if we can find a N_FUN entry for any code symbols. If we
4475               // do find a match, and the name matches, then we can merge the
4476               // two into just the function symbol to avoid duplicate entries
4477               // in the symbol table
4478               std::pair<ValueToSymbolIndexMap::const_iterator,
4479                         ValueToSymbolIndexMap::const_iterator>
4480                   range;
4481               range = N_FUN_addr_to_sym_idx.equal_range(nlist.n_value);
4482               if (range.first != range.second) {
4483                 bool found_it = false;
4484                 for (ValueToSymbolIndexMap::const_iterator pos = range.first;
4485                      pos != range.second; ++pos) {
4486                   if (sym[sym_idx].GetMangled().GetName(
4487                           lldb::eLanguageTypeUnknown,
4488                           Mangled::ePreferMangled) ==
4489                       sym[pos->second].GetMangled().GetName(
4490                           lldb::eLanguageTypeUnknown,
4491                           Mangled::ePreferMangled)) {
4492                     m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
4493                     // We just need the flags from the linker symbol, so put
4494                     // these flags into the N_FUN flags to avoid duplicate
4495                     // symbols in the symbol table
4496                     sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
4497                     sym[pos->second].SetFlags(nlist.n_type << 16 |
4498                                               nlist.n_desc);
4499                     if (resolver_addresses.find(nlist.n_value) !=
4500                         resolver_addresses.end())
4501                       sym[pos->second].SetType(eSymbolTypeResolver);
4502                     sym[sym_idx].Clear();
4503                     found_it = true;
4504                     break;
4505                   }
4506                 }
4507                 if (found_it)
4508                   continue;
4509               } else {
4510                 if (resolver_addresses.find(nlist.n_value) !=
4511                     resolver_addresses.end())
4512                   type = eSymbolTypeResolver;
4513               }
4514             } else if (type == eSymbolTypeData ||
4515                        type == eSymbolTypeObjCClass ||
4516                        type == eSymbolTypeObjCMetaClass ||
4517                        type == eSymbolTypeObjCIVar) {
4518               // See if we can find a N_STSYM entry for any data symbols. If we
4519               // do find a match, and the name matches, then we can merge the
4520               // two into just the Static symbol to avoid duplicate entries in
4521               // the symbol table
4522               std::pair<ValueToSymbolIndexMap::const_iterator,
4523                         ValueToSymbolIndexMap::const_iterator>
4524                   range;
4525               range = N_STSYM_addr_to_sym_idx.equal_range(nlist.n_value);
4526               if (range.first != range.second) {
4527                 bool found_it = false;
4528                 for (ValueToSymbolIndexMap::const_iterator pos = range.first;
4529                      pos != range.second; ++pos) {
4530                   if (sym[sym_idx].GetMangled().GetName(
4531                           lldb::eLanguageTypeUnknown,
4532                           Mangled::ePreferMangled) ==
4533                       sym[pos->second].GetMangled().GetName(
4534                           lldb::eLanguageTypeUnknown,
4535                           Mangled::ePreferMangled)) {
4536                     m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
4537                     // We just need the flags from the linker symbol, so put
4538                     // these flags into the N_STSYM flags to avoid duplicate
4539                     // symbols in the symbol table
4540                     sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
4541                     sym[pos->second].SetFlags(nlist.n_type << 16 |
4542                                               nlist.n_desc);
4543                     sym[sym_idx].Clear();
4544                     found_it = true;
4545                     break;
4546                   }
4547                 }
4548                 if (found_it)
4549                   continue;
4550               } else {
4551                 // Combine N_GSYM stab entries with the non stab symbol
4552                 const char *gsym_name = sym[sym_idx]
4553                                             .GetMangled()
4554                                             .GetName(lldb::eLanguageTypeUnknown,
4555                                                      Mangled::ePreferMangled)
4556                                             .GetCString();
4557                 if (gsym_name) {
4558                   ConstNameToSymbolIndexMap::const_iterator pos =
4559                       N_GSYM_name_to_sym_idx.find(gsym_name);
4560                   if (pos != N_GSYM_name_to_sym_idx.end()) {
4561                     const uint32_t GSYM_sym_idx = pos->second;
4562                     m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx;
4563                     // Copy the address, because often the N_GSYM address has
4564                     // an invalid address of zero when the global is a common
4565                     // symbol
4566                     sym[GSYM_sym_idx].GetAddressRef().SetSection(
4567                         symbol_section);
4568                     sym[GSYM_sym_idx].GetAddressRef().SetOffset(symbol_value);
4569                     // We just need the flags from the linker symbol, so put
4570                     // these flags into the N_GSYM flags to avoid duplicate
4571                     // symbols in the symbol table
4572                     sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 |
4573                                                nlist.n_desc);
4574                     sym[sym_idx].Clear();
4575                     continue;
4576                   }
4577                 }
4578               }
4579             }
4580           }
4581 
4582           sym[sym_idx].SetID(nlist_idx);
4583           sym[sym_idx].SetType(type);
4584           if (set_value) {
4585             sym[sym_idx].GetAddressRef().SetSection(symbol_section);
4586             sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
4587           }
4588           sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4589 
4590           if (symbol_byte_size > 0)
4591             sym[sym_idx].SetByteSize(symbol_byte_size);
4592 
4593           if (demangled_is_synthesized)
4594             sym[sym_idx].SetDemangledNameIsSynthesized(true);
4595 
4596           ++sym_idx;
4597         } else {
4598           sym[sym_idx].Clear();
4599         }
4600       }
4601 
4602       for (const auto &pos : reexport_shlib_needs_fixup) {
4603         const auto undef_pos = undefined_name_to_desc.find(pos.second);
4604         if (undef_pos != undefined_name_to_desc.end()) {
4605           const uint8_t dylib_ordinal =
4606               llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
4607           if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize())
4608             sym[pos.first].SetReExportedSymbolSharedLibrary(
4609                 dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
4610         }
4611       }
4612     }
4613 
4614     uint32_t synthetic_sym_id = symtab_load_command.nsyms;
4615 
4616     if (function_starts_count > 0) {
4617       uint32_t num_synthetic_function_symbols = 0;
4618       for (i = 0; i < function_starts_count; ++i) {
4619         if (!function_starts.GetEntryRef(i).data)
4620           ++num_synthetic_function_symbols;
4621       }
4622 
4623       if (num_synthetic_function_symbols > 0) {
4624         if (num_syms < sym_idx + num_synthetic_function_symbols) {
4625           num_syms = sym_idx + num_synthetic_function_symbols;
4626           sym = symtab->Resize(num_syms);
4627         }
4628         for (i = 0; i < function_starts_count; ++i) {
4629           const FunctionStarts::Entry *func_start_entry =
4630               function_starts.GetEntryAtIndex(i);
4631           if (!func_start_entry->data) {
4632             addr_t symbol_file_addr = func_start_entry->addr;
4633             uint32_t symbol_flags = 0;
4634             if (is_arm) {
4635               if (symbol_file_addr & 1)
4636                 symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB;
4637               symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4638             }
4639             Address symbol_addr;
4640             if (module_sp->ResolveFileAddress(symbol_file_addr, symbol_addr)) {
4641               SectionSP symbol_section(symbol_addr.GetSection());
4642               uint32_t symbol_byte_size = 0;
4643               if (symbol_section) {
4644                 const addr_t section_file_addr =
4645                     symbol_section->GetFileAddress();
4646                 const FunctionStarts::Entry *next_func_start_entry =
4647                     function_starts.FindNextEntry(func_start_entry);
4648                 const addr_t section_end_file_addr =
4649                     section_file_addr + symbol_section->GetByteSize();
4650                 if (next_func_start_entry) {
4651                   addr_t next_symbol_file_addr = next_func_start_entry->addr;
4652                   if (is_arm)
4653                     next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4654                   symbol_byte_size = std::min<lldb::addr_t>(
4655                       next_symbol_file_addr - symbol_file_addr,
4656                       section_end_file_addr - symbol_file_addr);
4657                 } else {
4658                   symbol_byte_size = section_end_file_addr - symbol_file_addr;
4659                 }
4660                 sym[sym_idx].SetID(synthetic_sym_id++);
4661                 sym[sym_idx].GetMangled().SetDemangledName(
4662                     GetNextSyntheticSymbolName());
4663                 sym[sym_idx].SetType(eSymbolTypeCode);
4664                 sym[sym_idx].SetIsSynthetic(true);
4665                 sym[sym_idx].GetAddressRef() = symbol_addr;
4666                 if (symbol_flags)
4667                   sym[sym_idx].SetFlags(symbol_flags);
4668                 if (symbol_byte_size)
4669                   sym[sym_idx].SetByteSize(symbol_byte_size);
4670                 ++sym_idx;
4671               }
4672             }
4673           }
4674         }
4675       }
4676     }
4677 
4678     // Trim our symbols down to just what we ended up with after removing any
4679     // symbols.
4680     if (sym_idx < num_syms) {
4681       num_syms = sym_idx;
4682       sym = symtab->Resize(num_syms);
4683     }
4684 
4685     // Now synthesize indirect symbols
4686     if (m_dysymtab.nindirectsyms != 0) {
4687       if (indirect_symbol_index_data.GetByteSize()) {
4688         NListIndexToSymbolIndexMap::const_iterator end_index_pos =
4689             m_nlist_idx_to_sym_idx.end();
4690 
4691         for (uint32_t sect_idx = 1; sect_idx < m_mach_sections.size();
4692              ++sect_idx) {
4693           if ((m_mach_sections[sect_idx].flags & SECTION_TYPE) ==
4694               S_SYMBOL_STUBS) {
4695             uint32_t symbol_stub_byte_size =
4696                 m_mach_sections[sect_idx].reserved2;
4697             if (symbol_stub_byte_size == 0)
4698               continue;
4699 
4700             const uint32_t num_symbol_stubs =
4701                 m_mach_sections[sect_idx].size / symbol_stub_byte_size;
4702 
4703             if (num_symbol_stubs == 0)
4704               continue;
4705 
4706             const uint32_t symbol_stub_index_offset =
4707                 m_mach_sections[sect_idx].reserved1;
4708             for (uint32_t stub_idx = 0; stub_idx < num_symbol_stubs;
4709                  ++stub_idx) {
4710               const uint32_t symbol_stub_index =
4711                   symbol_stub_index_offset + stub_idx;
4712               const lldb::addr_t symbol_stub_addr =
4713                   m_mach_sections[sect_idx].addr +
4714                   (stub_idx * symbol_stub_byte_size);
4715               lldb::offset_t symbol_stub_offset = symbol_stub_index * 4;
4716               if (indirect_symbol_index_data.ValidOffsetForDataOfSize(
4717                       symbol_stub_offset, 4)) {
4718                 const uint32_t stub_sym_id =
4719                     indirect_symbol_index_data.GetU32(&symbol_stub_offset);
4720                 if (stub_sym_id & (INDIRECT_SYMBOL_ABS | INDIRECT_SYMBOL_LOCAL))
4721                   continue;
4722 
4723                 NListIndexToSymbolIndexMap::const_iterator index_pos =
4724                     m_nlist_idx_to_sym_idx.find(stub_sym_id);
4725                 Symbol *stub_symbol = NULL;
4726                 if (index_pos != end_index_pos) {
4727                   // We have a remapping from the original nlist index to a
4728                   // current symbol index, so just look this up by index
4729                   stub_symbol = symtab->SymbolAtIndex(index_pos->second);
4730                 } else {
4731                   // We need to lookup a symbol using the original nlist symbol
4732                   // index since this index is coming from the S_SYMBOL_STUBS
4733                   stub_symbol = symtab->FindSymbolByID(stub_sym_id);
4734                 }
4735 
4736                 if (stub_symbol) {
4737                   Address so_addr(symbol_stub_addr, section_list);
4738 
4739                   if (stub_symbol->GetType() == eSymbolTypeUndefined) {
4740                     // Change the external symbol into a trampoline that makes
4741                     // sense These symbols were N_UNDF N_EXT, and are useless
4742                     // to us, so we can re-use them so we don't have to make up
4743                     // a synthetic symbol for no good reason.
4744                     if (resolver_addresses.find(symbol_stub_addr) ==
4745                         resolver_addresses.end())
4746                       stub_symbol->SetType(eSymbolTypeTrampoline);
4747                     else
4748                       stub_symbol->SetType(eSymbolTypeResolver);
4749                     stub_symbol->SetExternal(false);
4750                     stub_symbol->GetAddressRef() = so_addr;
4751                     stub_symbol->SetByteSize(symbol_stub_byte_size);
4752                   } else {
4753                     // Make a synthetic symbol to describe the trampoline stub
4754                     Mangled stub_symbol_mangled_name(stub_symbol->GetMangled());
4755                     if (sym_idx >= num_syms) {
4756                       sym = symtab->Resize(++num_syms);
4757                       stub_symbol = NULL; // this pointer no longer valid
4758                     }
4759                     sym[sym_idx].SetID(synthetic_sym_id++);
4760                     sym[sym_idx].GetMangled() = stub_symbol_mangled_name;
4761                     if (resolver_addresses.find(symbol_stub_addr) ==
4762                         resolver_addresses.end())
4763                       sym[sym_idx].SetType(eSymbolTypeTrampoline);
4764                     else
4765                       sym[sym_idx].SetType(eSymbolTypeResolver);
4766                     sym[sym_idx].SetIsSynthetic(true);
4767                     sym[sym_idx].GetAddressRef() = so_addr;
4768                     sym[sym_idx].SetByteSize(symbol_stub_byte_size);
4769                     ++sym_idx;
4770                   }
4771                 } else {
4772                   if (log)
4773                     log->Warning("symbol stub referencing symbol table symbol "
4774                                  "%u that isn't in our minimal symbol table, "
4775                                  "fix this!!!",
4776                                  stub_sym_id);
4777                 }
4778               }
4779             }
4780           }
4781         }
4782       }
4783     }
4784 
4785     if (!trie_entries.empty()) {
4786       for (const auto &e : trie_entries) {
4787         if (e.entry.import_name) {
4788           // Only add indirect symbols from the Trie entries if we didn't have
4789           // a N_INDR nlist entry for this already
4790           if (indirect_symbol_names.find(e.entry.name) ==
4791               indirect_symbol_names.end()) {
4792             // Make a synthetic symbol to describe re-exported symbol.
4793             if (sym_idx >= num_syms)
4794               sym = symtab->Resize(++num_syms);
4795             sym[sym_idx].SetID(synthetic_sym_id++);
4796             sym[sym_idx].GetMangled() = Mangled(e.entry.name);
4797             sym[sym_idx].SetType(eSymbolTypeReExported);
4798             sym[sym_idx].SetIsSynthetic(true);
4799             sym[sym_idx].SetReExportedSymbolName(e.entry.import_name);
4800             if (e.entry.other > 0 && e.entry.other <= dylib_files.GetSize()) {
4801               sym[sym_idx].SetReExportedSymbolSharedLibrary(
4802                   dylib_files.GetFileSpecAtIndex(e.entry.other - 1));
4803             }
4804             ++sym_idx;
4805           }
4806         }
4807       }
4808     }
4809 
4810     //        StreamFile s(stdout, false);
4811     //        s.Printf ("Symbol table before CalculateSymbolSizes():\n");
4812     //        symtab->Dump(&s, NULL, eSortOrderNone);
4813     // Set symbol byte sizes correctly since mach-o nlist entries don't have
4814     // sizes
4815     symtab->CalculateSymbolSizes();
4816 
4817     //        s.Printf ("Symbol table after CalculateSymbolSizes():\n");
4818     //        symtab->Dump(&s, NULL, eSortOrderNone);
4819 
4820     return symtab->GetNumSymbols();
4821   }
4822   return 0;
4823 }
4824 
4825 void ObjectFileMachO::Dump(Stream *s) {
4826   ModuleSP module_sp(GetModule());
4827   if (module_sp) {
4828     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
4829     s->Printf("%p: ", static_cast<void *>(this));
4830     s->Indent();
4831     if (m_header.magic == MH_MAGIC_64 || m_header.magic == MH_CIGAM_64)
4832       s->PutCString("ObjectFileMachO64");
4833     else
4834       s->PutCString("ObjectFileMachO32");
4835 
4836     ArchSpec header_arch = GetArchitecture();
4837 
4838     *s << ", file = '" << m_file
4839        << "', triple = " << header_arch.GetTriple().getTriple() << "\n";
4840 
4841     SectionList *sections = GetSectionList();
4842     if (sections)
4843       sections->Dump(s, NULL, true, UINT32_MAX);
4844 
4845     if (m_symtab_up)
4846       m_symtab_up->Dump(s, NULL, eSortOrderNone);
4847   }
4848 }
4849 
4850 UUID ObjectFileMachO::GetUUID(const llvm::MachO::mach_header &header,
4851                               const lldb_private::DataExtractor &data,
4852                               lldb::offset_t lc_offset) {
4853   uint32_t i;
4854   struct uuid_command load_cmd;
4855 
4856   lldb::offset_t offset = lc_offset;
4857   for (i = 0; i < header.ncmds; ++i) {
4858     const lldb::offset_t cmd_offset = offset;
4859     if (data.GetU32(&offset, &load_cmd, 2) == NULL)
4860       break;
4861 
4862     if (load_cmd.cmd == LC_UUID) {
4863       const uint8_t *uuid_bytes = data.PeekData(offset, 16);
4864 
4865       if (uuid_bytes) {
4866         // OpenCL on Mac OS X uses the same UUID for each of its object files.
4867         // We pretend these object files have no UUID to prevent crashing.
4868 
4869         const uint8_t opencl_uuid[] = {0x8c, 0x8e, 0xb3, 0x9b, 0x3b, 0xa8,
4870                                        0x4b, 0x16, 0xb6, 0xa4, 0x27, 0x63,
4871                                        0xbb, 0x14, 0xf0, 0x0d};
4872 
4873         if (!memcmp(uuid_bytes, opencl_uuid, 16))
4874           return UUID();
4875 
4876         return UUID::fromOptionalData(uuid_bytes, 16);
4877       }
4878       return UUID();
4879     }
4880     offset = cmd_offset + load_cmd.cmdsize;
4881   }
4882   return UUID();
4883 }
4884 
4885 static llvm::StringRef GetOSName(uint32_t cmd) {
4886   switch (cmd) {
4887   case llvm::MachO::LC_VERSION_MIN_IPHONEOS:
4888     return llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4889   case llvm::MachO::LC_VERSION_MIN_MACOSX:
4890     return llvm::Triple::getOSTypeName(llvm::Triple::MacOSX);
4891   case llvm::MachO::LC_VERSION_MIN_TVOS:
4892     return llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4893   case llvm::MachO::LC_VERSION_MIN_WATCHOS:
4894     return llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4895   default:
4896     llvm_unreachable("unexpected LC_VERSION load command");
4897   }
4898 }
4899 
4900 namespace {
4901   struct OSEnv {
4902     llvm::StringRef os_type;
4903     llvm::StringRef environment;
4904     OSEnv(uint32_t cmd) {
4905       switch (cmd) {
4906       case PLATFORM_MACOS:
4907         os_type = llvm::Triple::getOSTypeName(llvm::Triple::MacOSX);
4908         return;
4909       case PLATFORM_IOS:
4910         os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4911         return;
4912       case PLATFORM_TVOS:
4913         os_type = llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4914         return;
4915       case PLATFORM_WATCHOS:
4916         os_type = llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4917         return;
4918 // NEED_BRIDGEOS_TRIPLE      case PLATFORM_BRIDGEOS:
4919 // NEED_BRIDGEOS_TRIPLE        os_type = llvm::Triple::getOSTypeName(llvm::Triple::BridgeOS);
4920 // NEED_BRIDGEOS_TRIPLE        return;
4921 #if defined (PLATFORM_IOSSIMULATOR) && defined (PLATFORM_TVOSSIMULATOR) && defined (PLATFORM_WATCHOSSIMULATOR)
4922       case PLATFORM_IOSSIMULATOR:
4923         os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4924         environment =
4925             llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4926         return;
4927       case PLATFORM_TVOSSIMULATOR:
4928         os_type = llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4929         environment =
4930             llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4931         return;
4932       case PLATFORM_WATCHOSSIMULATOR:
4933         os_type = llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4934         environment =
4935             llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4936         return;
4937 #endif
4938       default: {
4939         Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS |
4940                                                         LIBLLDB_LOG_PROCESS));
4941         if (log)
4942           log->Printf("unsupported platform in LC_BUILD_VERSION");
4943       }
4944       }
4945     }
4946   };
4947 
4948   struct MinOS {
4949     uint32_t major_version, minor_version, patch_version;
4950     MinOS(uint32_t version)
4951         : major_version(version >> 16),
4952           minor_version((version >> 8) & 0xffu),
4953           patch_version(version & 0xffu) {}
4954   };
4955 } // namespace
4956 
4957 ArchSpec
4958 ObjectFileMachO::GetArchitecture(const llvm::MachO::mach_header &header,
4959                                  const lldb_private::DataExtractor &data,
4960                                  lldb::offset_t lc_offset) {
4961   ArchSpec arch;
4962   arch.SetArchitecture(eArchTypeMachO, header.cputype, header.cpusubtype);
4963 
4964   if (arch.IsValid()) {
4965     llvm::Triple &triple = arch.GetTriple();
4966 
4967     // Set OS to an unspecified unknown or a "*" so it can match any OS
4968     triple.setOS(llvm::Triple::UnknownOS);
4969     triple.setOSName(llvm::StringRef());
4970 
4971     if (header.filetype == MH_PRELOAD) {
4972       if (header.cputype == CPU_TYPE_ARM) {
4973         // If this is a 32-bit arm binary, and it's a standalone binary, force
4974         // the Vendor to Apple so we don't accidentally pick up the generic
4975         // armv7 ABI at runtime.  Apple's armv7 ABI always uses r7 for the
4976         // frame pointer register; most other armv7 ABIs use a combination of
4977         // r7 and r11.
4978         triple.setVendor(llvm::Triple::Apple);
4979       } else {
4980         // Set vendor to an unspecified unknown or a "*" so it can match any
4981         // vendor This is required for correct behavior of EFI debugging on
4982         // x86_64
4983         triple.setVendor(llvm::Triple::UnknownVendor);
4984         triple.setVendorName(llvm::StringRef());
4985       }
4986       return arch;
4987     } else {
4988       struct load_command load_cmd;
4989       llvm::SmallString<16> os_name;
4990       llvm::raw_svector_ostream os(os_name);
4991 
4992       // See if there is an LC_VERSION_MIN_* load command that can give
4993       // us the OS type.
4994       lldb::offset_t offset = lc_offset;
4995       for (uint32_t i = 0; i < header.ncmds; ++i) {
4996         const lldb::offset_t cmd_offset = offset;
4997         if (data.GetU32(&offset, &load_cmd, 2) == NULL)
4998           break;
4999 
5000         struct version_min_command version_min;
5001         switch (load_cmd.cmd) {
5002         case llvm::MachO::LC_VERSION_MIN_IPHONEOS:
5003         case llvm::MachO::LC_VERSION_MIN_MACOSX:
5004         case llvm::MachO::LC_VERSION_MIN_TVOS:
5005         case llvm::MachO::LC_VERSION_MIN_WATCHOS: {
5006           if (load_cmd.cmdsize != sizeof(version_min))
5007             break;
5008           if (data.ExtractBytes(cmd_offset, sizeof(version_min),
5009                                 data.GetByteOrder(), &version_min) == 0)
5010             break;
5011           MinOS min_os(version_min.version);
5012           os << GetOSName(load_cmd.cmd) << min_os.major_version << '.'
5013              << min_os.minor_version << '.' << min_os.patch_version;
5014           triple.setOSName(os.str());
5015           return arch;
5016         }
5017         default:
5018           break;
5019         }
5020 
5021         offset = cmd_offset + load_cmd.cmdsize;
5022       }
5023 
5024       // See if there is an LC_BUILD_VERSION load command that can give
5025       // us the OS type.
5026 
5027       offset = lc_offset;
5028       for (uint32_t i = 0; i < header.ncmds; ++i) {
5029         const lldb::offset_t cmd_offset = offset;
5030         if (data.GetU32(&offset, &load_cmd, 2) == NULL)
5031           break;
5032         do {
5033           if (load_cmd.cmd == llvm::MachO::LC_BUILD_VERSION) {
5034             struct build_version_command build_version;
5035             if (load_cmd.cmdsize < sizeof(build_version)) {
5036               // Malformed load command.
5037               break;
5038             }
5039             if (data.ExtractBytes(cmd_offset, sizeof(build_version),
5040                                   data.GetByteOrder(), &build_version) == 0)
5041               break;
5042             MinOS min_os(build_version.minos);
5043             OSEnv os_env(build_version.platform);
5044             if (os_env.os_type.empty())
5045               break;
5046             os << os_env.os_type << min_os.major_version << '.'
5047                << min_os.minor_version << '.' << min_os.patch_version;
5048             triple.setOSName(os.str());
5049             if (!os_env.environment.empty())
5050               triple.setEnvironmentName(os_env.environment);
5051             return arch;
5052           }
5053         } while (0);
5054         offset = cmd_offset + load_cmd.cmdsize;
5055       }
5056 
5057       if (header.filetype != MH_KEXT_BUNDLE) {
5058         // We didn't find a LC_VERSION_MIN load command and this isn't a KEXT
5059         // so lets not say our Vendor is Apple, leave it as an unspecified
5060         // unknown
5061         triple.setVendor(llvm::Triple::UnknownVendor);
5062         triple.setVendorName(llvm::StringRef());
5063       }
5064     }
5065   }
5066   return arch;
5067 }
5068 
5069 UUID ObjectFileMachO::GetUUID() {
5070   ModuleSP module_sp(GetModule());
5071   if (module_sp) {
5072     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5073     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5074     return GetUUID(m_header, m_data, offset);
5075   }
5076   return UUID();
5077 }
5078 
5079 uint32_t ObjectFileMachO::GetDependentModules(FileSpecList &files) {
5080   uint32_t count = 0;
5081   ModuleSP module_sp(GetModule());
5082   if (module_sp) {
5083     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5084     struct load_command load_cmd;
5085     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5086     std::vector<std::string> rpath_paths;
5087     std::vector<std::string> rpath_relative_paths;
5088     std::vector<std::string> at_exec_relative_paths;
5089     uint32_t i;
5090     for (i = 0; i < m_header.ncmds; ++i) {
5091       const uint32_t cmd_offset = offset;
5092       if (m_data.GetU32(&offset, &load_cmd, 2) == NULL)
5093         break;
5094 
5095       switch (load_cmd.cmd) {
5096       case LC_RPATH:
5097       case LC_LOAD_DYLIB:
5098       case LC_LOAD_WEAK_DYLIB:
5099       case LC_REEXPORT_DYLIB:
5100       case LC_LOAD_DYLINKER:
5101       case LC_LOADFVMLIB:
5102       case LC_LOAD_UPWARD_DYLIB: {
5103         uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
5104         const char *path = m_data.PeekCStr(name_offset);
5105         if (path) {
5106           if (load_cmd.cmd == LC_RPATH)
5107             rpath_paths.push_back(path);
5108           else {
5109             if (path[0] == '@') {
5110               if (strncmp(path, "@rpath", strlen("@rpath")) == 0)
5111                 rpath_relative_paths.push_back(path + strlen("@rpath"));
5112               else if (strncmp(path, "@executable_path",
5113                        strlen("@executable_path")) == 0)
5114                 at_exec_relative_paths.push_back(path
5115                                                  + strlen("@executable_path"));
5116             } else {
5117               FileSpec file_spec(path);
5118               if (files.AppendIfUnique(file_spec))
5119                 count++;
5120             }
5121           }
5122         }
5123       } break;
5124 
5125       default:
5126         break;
5127       }
5128       offset = cmd_offset + load_cmd.cmdsize;
5129     }
5130 
5131     FileSpec this_file_spec(m_file);
5132     FileSystem::Instance().Resolve(this_file_spec);
5133 
5134     if (!rpath_paths.empty()) {
5135       // Fixup all LC_RPATH values to be absolute paths
5136       std::string loader_path("@loader_path");
5137       std::string executable_path("@executable_path");
5138       for (auto &rpath : rpath_paths) {
5139         if (rpath.find(loader_path) == 0) {
5140           rpath.erase(0, loader_path.size());
5141           rpath.insert(0, this_file_spec.GetDirectory().GetCString());
5142         } else if (rpath.find(executable_path) == 0) {
5143           rpath.erase(0, executable_path.size());
5144           rpath.insert(0, this_file_spec.GetDirectory().GetCString());
5145         }
5146       }
5147 
5148       for (const auto &rpath_relative_path : rpath_relative_paths) {
5149         for (const auto &rpath : rpath_paths) {
5150           std::string path = rpath;
5151           path += rpath_relative_path;
5152           // It is OK to resolve this path because we must find a file on disk
5153           // for us to accept it anyway if it is rpath relative.
5154           FileSpec file_spec(path);
5155           FileSystem::Instance().Resolve(file_spec);
5156           if (FileSystem::Instance().Exists(file_spec) &&
5157               files.AppendIfUnique(file_spec)) {
5158             count++;
5159             break;
5160           }
5161         }
5162       }
5163     }
5164 
5165     // We may have @executable_paths but no RPATHS.  Figure those out here.
5166     // Only do this if this object file is the executable.  We have no way to
5167     // get back to the actual executable otherwise, so we won't get the right
5168     // path.
5169     if (!at_exec_relative_paths.empty() && CalculateType() == eTypeExecutable) {
5170       FileSpec exec_dir = this_file_spec.CopyByRemovingLastPathComponent();
5171       for (const auto &at_exec_relative_path : at_exec_relative_paths) {
5172         FileSpec file_spec =
5173             exec_dir.CopyByAppendingPathComponent(at_exec_relative_path);
5174         if (FileSystem::Instance().Exists(file_spec) &&
5175             files.AppendIfUnique(file_spec))
5176           count++;
5177       }
5178     }
5179   }
5180   return count;
5181 }
5182 
5183 lldb_private::Address ObjectFileMachO::GetEntryPointAddress() {
5184   // If the object file is not an executable it can't hold the entry point.
5185   // m_entry_point_address is initialized to an invalid address, so we can just
5186   // return that. If m_entry_point_address is valid it means we've found it
5187   // already, so return the cached value.
5188 
5189   if (!IsExecutable() || m_entry_point_address.IsValid())
5190     return m_entry_point_address;
5191 
5192   // Otherwise, look for the UnixThread or Thread command.  The data for the
5193   // Thread command is given in /usr/include/mach-o.h, but it is basically:
5194   //
5195   //  uint32_t flavor  - this is the flavor argument you would pass to
5196   //  thread_get_state
5197   //  uint32_t count   - this is the count of longs in the thread state data
5198   //  struct XXX_thread_state state - this is the structure from
5199   //  <machine/thread_status.h> corresponding to the flavor.
5200   //  <repeat this trio>
5201   //
5202   // So we just keep reading the various register flavors till we find the GPR
5203   // one, then read the PC out of there.
5204   // FIXME: We will need to have a "RegisterContext data provider" class at some
5205   // point that can get all the registers
5206   // out of data in this form & attach them to a given thread.  That should
5207   // underlie the MacOS X User process plugin, and we'll also need it for the
5208   // MacOS X Core File process plugin.  When we have that we can also use it
5209   // here.
5210   //
5211   // For now we hard-code the offsets and flavors we need:
5212   //
5213   //
5214 
5215   ModuleSP module_sp(GetModule());
5216   if (module_sp) {
5217     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5218     struct load_command load_cmd;
5219     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5220     uint32_t i;
5221     lldb::addr_t start_address = LLDB_INVALID_ADDRESS;
5222     bool done = false;
5223 
5224     for (i = 0; i < m_header.ncmds; ++i) {
5225       const lldb::offset_t cmd_offset = offset;
5226       if (m_data.GetU32(&offset, &load_cmd, 2) == NULL)
5227         break;
5228 
5229       switch (load_cmd.cmd) {
5230       case LC_UNIXTHREAD:
5231       case LC_THREAD: {
5232         while (offset < cmd_offset + load_cmd.cmdsize) {
5233           uint32_t flavor = m_data.GetU32(&offset);
5234           uint32_t count = m_data.GetU32(&offset);
5235           if (count == 0) {
5236             // We've gotten off somehow, log and exit;
5237             return m_entry_point_address;
5238           }
5239 
5240           switch (m_header.cputype) {
5241           case llvm::MachO::CPU_TYPE_ARM:
5242             if (flavor == 1 ||
5243                 flavor == 9) // ARM_THREAD_STATE/ARM_THREAD_STATE32 from
5244                              // mach/arm/thread_status.h
5245             {
5246               offset += 60; // This is the offset of pc in the GPR thread state
5247                             // data structure.
5248               start_address = m_data.GetU32(&offset);
5249               done = true;
5250             }
5251             break;
5252           case llvm::MachO::CPU_TYPE_ARM64:
5253             if (flavor == 6) // ARM_THREAD_STATE64 from mach/arm/thread_status.h
5254             {
5255               offset += 256; // This is the offset of pc in the GPR thread state
5256                              // data structure.
5257               start_address = m_data.GetU64(&offset);
5258               done = true;
5259             }
5260             break;
5261           case llvm::MachO::CPU_TYPE_I386:
5262             if (flavor ==
5263                 1) // x86_THREAD_STATE32 from mach/i386/thread_status.h
5264             {
5265               offset += 40; // This is the offset of eip in the GPR thread state
5266                             // data structure.
5267               start_address = m_data.GetU32(&offset);
5268               done = true;
5269             }
5270             break;
5271           case llvm::MachO::CPU_TYPE_X86_64:
5272             if (flavor ==
5273                 4) // x86_THREAD_STATE64 from mach/i386/thread_status.h
5274             {
5275               offset += 16 * 8; // This is the offset of rip in the GPR thread
5276                                 // state data structure.
5277               start_address = m_data.GetU64(&offset);
5278               done = true;
5279             }
5280             break;
5281           default:
5282             return m_entry_point_address;
5283           }
5284           // Haven't found the GPR flavor yet, skip over the data for this
5285           // flavor:
5286           if (done)
5287             break;
5288           offset += count * 4;
5289         }
5290       } break;
5291       case LC_MAIN: {
5292         ConstString text_segment_name("__TEXT");
5293         uint64_t entryoffset = m_data.GetU64(&offset);
5294         SectionSP text_segment_sp =
5295             GetSectionList()->FindSectionByName(text_segment_name);
5296         if (text_segment_sp) {
5297           done = true;
5298           start_address = text_segment_sp->GetFileAddress() + entryoffset;
5299         }
5300       } break;
5301 
5302       default:
5303         break;
5304       }
5305       if (done)
5306         break;
5307 
5308       // Go to the next load command:
5309       offset = cmd_offset + load_cmd.cmdsize;
5310     }
5311 
5312     if (start_address != LLDB_INVALID_ADDRESS) {
5313       // We got the start address from the load commands, so now resolve that
5314       // address in the sections of this ObjectFile:
5315       if (!m_entry_point_address.ResolveAddressUsingFileSections(
5316               start_address, GetSectionList())) {
5317         m_entry_point_address.Clear();
5318       }
5319     } else {
5320       // We couldn't read the UnixThread load command - maybe it wasn't there.
5321       // As a fallback look for the "start" symbol in the main executable.
5322 
5323       ModuleSP module_sp(GetModule());
5324 
5325       if (module_sp) {
5326         SymbolContextList contexts;
5327         SymbolContext context;
5328         if (module_sp->FindSymbolsWithNameAndType(ConstString("start"),
5329                                                   eSymbolTypeCode, contexts)) {
5330           if (contexts.GetContextAtIndex(0, context))
5331             m_entry_point_address = context.symbol->GetAddress();
5332         }
5333       }
5334     }
5335   }
5336 
5337   return m_entry_point_address;
5338 }
5339 
5340 lldb_private::Address ObjectFileMachO::GetBaseAddress() {
5341   lldb_private::Address header_addr;
5342   SectionList *section_list = GetSectionList();
5343   if (section_list) {
5344     SectionSP text_segment_sp(
5345         section_list->FindSectionByName(GetSegmentNameTEXT()));
5346     if (text_segment_sp) {
5347       header_addr.SetSection(text_segment_sp);
5348       header_addr.SetOffset(0);
5349     }
5350   }
5351   return header_addr;
5352 }
5353 
5354 uint32_t ObjectFileMachO::GetNumThreadContexts() {
5355   ModuleSP module_sp(GetModule());
5356   if (module_sp) {
5357     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5358     if (!m_thread_context_offsets_valid) {
5359       m_thread_context_offsets_valid = true;
5360       lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5361       FileRangeArray::Entry file_range;
5362       thread_command thread_cmd;
5363       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5364         const uint32_t cmd_offset = offset;
5365         if (m_data.GetU32(&offset, &thread_cmd, 2) == NULL)
5366           break;
5367 
5368         if (thread_cmd.cmd == LC_THREAD) {
5369           file_range.SetRangeBase(offset);
5370           file_range.SetByteSize(thread_cmd.cmdsize - 8);
5371           m_thread_context_offsets.Append(file_range);
5372         }
5373         offset = cmd_offset + thread_cmd.cmdsize;
5374       }
5375     }
5376   }
5377   return m_thread_context_offsets.GetSize();
5378 }
5379 
5380 std::string ObjectFileMachO::GetIdentifierString() {
5381   std::string result;
5382   ModuleSP module_sp(GetModule());
5383   if (module_sp) {
5384     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5385 
5386     // First, look over the load commands for an LC_NOTE load command with
5387     // data_owner string "kern ver str" & use that if found.
5388     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5389     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5390       const uint32_t cmd_offset = offset;
5391       load_command lc;
5392       if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL)
5393           break;
5394       if (lc.cmd == LC_NOTE)
5395       {
5396           char data_owner[17];
5397           m_data.CopyData (offset, 16, data_owner);
5398           data_owner[16] = '\0';
5399           offset += 16;
5400           uint64_t fileoff = m_data.GetU64_unchecked (&offset);
5401           uint64_t size = m_data.GetU64_unchecked (&offset);
5402 
5403           // "kern ver str" has a uint32_t version and then a nul terminated
5404           // c-string.
5405           if (strcmp ("kern ver str", data_owner) == 0)
5406           {
5407               offset = fileoff;
5408               uint32_t version;
5409               if (m_data.GetU32 (&offset, &version, 1) != nullptr)
5410               {
5411                   if (version == 1)
5412                   {
5413                       uint32_t strsize = size - sizeof (uint32_t);
5414                       char *buf = (char*) malloc (strsize);
5415                       if (buf)
5416                       {
5417                           m_data.CopyData (offset, strsize, buf);
5418                           buf[strsize - 1] = '\0';
5419                           result = buf;
5420                           if (buf)
5421                               free (buf);
5422                           return result;
5423                       }
5424                   }
5425               }
5426           }
5427       }
5428       offset = cmd_offset + lc.cmdsize;
5429     }
5430 
5431     // Second, make a pass over the load commands looking for an obsolete
5432     // LC_IDENT load command.
5433     offset = MachHeaderSizeFromMagic(m_header.magic);
5434     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5435       const uint32_t cmd_offset = offset;
5436       struct ident_command ident_command;
5437       if (m_data.GetU32(&offset, &ident_command, 2) == NULL)
5438         break;
5439       if (ident_command.cmd == LC_IDENT && ident_command.cmdsize != 0) {
5440         char *buf = (char *) malloc (ident_command.cmdsize);
5441         if (buf != nullptr
5442             && m_data.CopyData (offset, ident_command.cmdsize, buf) == ident_command.cmdsize) {
5443           buf[ident_command.cmdsize - 1] = '\0';
5444           result = buf;
5445         }
5446         if (buf)
5447           free (buf);
5448       }
5449       offset = cmd_offset + ident_command.cmdsize;
5450     }
5451 
5452   }
5453   return result;
5454 }
5455 
5456 bool ObjectFileMachO::GetCorefileMainBinaryInfo (addr_t &address, UUID &uuid) {
5457   address = LLDB_INVALID_ADDRESS;
5458   uuid.Clear();
5459   ModuleSP module_sp(GetModule());
5460   if (module_sp) {
5461     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5462     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5463     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5464       const uint32_t cmd_offset = offset;
5465       load_command lc;
5466       if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL)
5467           break;
5468       if (lc.cmd == LC_NOTE)
5469       {
5470           char data_owner[17];
5471           memset (data_owner, 0, sizeof (data_owner));
5472           m_data.CopyData (offset, 16, data_owner);
5473           offset += 16;
5474           uint64_t fileoff = m_data.GetU64_unchecked (&offset);
5475           uint64_t size = m_data.GetU64_unchecked (&offset);
5476 
5477           // "main bin spec" (main binary specification) data payload is
5478           // formatted:
5479           //    uint32_t version       [currently 1]
5480           //    uint32_t type          [0 == unspecified, 1 == kernel, 2 == user process]
5481           //    uint64_t address       [ UINT64_MAX if address not specified ]
5482           //    uuid_t   uuid          [ all zero's if uuid not specified ]
5483           //    uint32_t log2_pagesize [ process page size in log base 2, e.g. 4k pages are 12.  0 for unspecified ]
5484 
5485           if (strcmp ("main bin spec", data_owner) == 0 && size >= 32)
5486           {
5487               offset = fileoff;
5488               uint32_t version;
5489               if (m_data.GetU32 (&offset, &version, 1) != nullptr && version == 1)
5490               {
5491                   uint32_t type = 0;
5492                   uuid_t raw_uuid;
5493                   memset (raw_uuid, 0, sizeof (uuid_t));
5494 
5495                   if (m_data.GetU32(&offset, &type, 1) &&
5496                       m_data.GetU64(&offset, &address, 1) &&
5497                       m_data.CopyData(offset, sizeof(uuid_t), raw_uuid) != 0) {
5498                     uuid = UUID::fromOptionalData(raw_uuid, sizeof(uuid_t));
5499                     return true;
5500                   }
5501               }
5502           }
5503       }
5504       offset = cmd_offset + lc.cmdsize;
5505     }
5506   }
5507   return false;
5508 }
5509 
5510 lldb::RegisterContextSP
5511 ObjectFileMachO::GetThreadContextAtIndex(uint32_t idx,
5512                                          lldb_private::Thread &thread) {
5513   lldb::RegisterContextSP reg_ctx_sp;
5514 
5515   ModuleSP module_sp(GetModule());
5516   if (module_sp) {
5517     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5518     if (!m_thread_context_offsets_valid)
5519       GetNumThreadContexts();
5520 
5521     const FileRangeArray::Entry *thread_context_file_range =
5522         m_thread_context_offsets.GetEntryAtIndex(idx);
5523     if (thread_context_file_range) {
5524 
5525       DataExtractor data(m_data, thread_context_file_range->GetRangeBase(),
5526                          thread_context_file_range->GetByteSize());
5527 
5528       switch (m_header.cputype) {
5529       case llvm::MachO::CPU_TYPE_ARM64:
5530         reg_ctx_sp =
5531             std::make_shared<RegisterContextDarwin_arm64_Mach>(thread, data);
5532         break;
5533 
5534       case llvm::MachO::CPU_TYPE_ARM:
5535         reg_ctx_sp =
5536             std::make_shared<RegisterContextDarwin_arm_Mach>(thread, data);
5537         break;
5538 
5539       case llvm::MachO::CPU_TYPE_I386:
5540         reg_ctx_sp =
5541             std::make_shared<RegisterContextDarwin_i386_Mach>(thread, data);
5542         break;
5543 
5544       case llvm::MachO::CPU_TYPE_X86_64:
5545         reg_ctx_sp =
5546             std::make_shared<RegisterContextDarwin_x86_64_Mach>(thread, data);
5547         break;
5548       }
5549     }
5550   }
5551   return reg_ctx_sp;
5552 }
5553 
5554 ObjectFile::Type ObjectFileMachO::CalculateType() {
5555   switch (m_header.filetype) {
5556   case MH_OBJECT: // 0x1u
5557     if (GetAddressByteSize() == 4) {
5558       // 32 bit kexts are just object files, but they do have a valid
5559       // UUID load command.
5560       if (GetUUID()) {
5561         // this checking for the UUID load command is not enough we could
5562         // eventually look for the symbol named "OSKextGetCurrentIdentifier" as
5563         // this is required of kexts
5564         if (m_strata == eStrataInvalid)
5565           m_strata = eStrataKernel;
5566         return eTypeSharedLibrary;
5567       }
5568     }
5569     return eTypeObjectFile;
5570 
5571   case MH_EXECUTE:
5572     return eTypeExecutable; // 0x2u
5573   case MH_FVMLIB:
5574     return eTypeSharedLibrary; // 0x3u
5575   case MH_CORE:
5576     return eTypeCoreFile; // 0x4u
5577   case MH_PRELOAD:
5578     return eTypeSharedLibrary; // 0x5u
5579   case MH_DYLIB:
5580     return eTypeSharedLibrary; // 0x6u
5581   case MH_DYLINKER:
5582     return eTypeDynamicLinker; // 0x7u
5583   case MH_BUNDLE:
5584     return eTypeSharedLibrary; // 0x8u
5585   case MH_DYLIB_STUB:
5586     return eTypeStubLibrary; // 0x9u
5587   case MH_DSYM:
5588     return eTypeDebugInfo; // 0xAu
5589   case MH_KEXT_BUNDLE:
5590     return eTypeSharedLibrary; // 0xBu
5591   default:
5592     break;
5593   }
5594   return eTypeUnknown;
5595 }
5596 
5597 ObjectFile::Strata ObjectFileMachO::CalculateStrata() {
5598   switch (m_header.filetype) {
5599   case MH_OBJECT: // 0x1u
5600   {
5601     // 32 bit kexts are just object files, but they do have a valid
5602     // UUID load command.
5603     if (GetUUID()) {
5604       // this checking for the UUID load command is not enough we could
5605       // eventually look for the symbol named "OSKextGetCurrentIdentifier" as
5606       // this is required of kexts
5607       if (m_type == eTypeInvalid)
5608         m_type = eTypeSharedLibrary;
5609 
5610       return eStrataKernel;
5611     }
5612   }
5613     return eStrataUnknown;
5614 
5615   case MH_EXECUTE: // 0x2u
5616     // Check for the MH_DYLDLINK bit in the flags
5617     if (m_header.flags & MH_DYLDLINK) {
5618       return eStrataUser;
5619     } else {
5620       SectionList *section_list = GetSectionList();
5621       if (section_list) {
5622         static ConstString g_kld_section_name("__KLD");
5623         if (section_list->FindSectionByName(g_kld_section_name))
5624           return eStrataKernel;
5625       }
5626     }
5627     return eStrataRawImage;
5628 
5629   case MH_FVMLIB:
5630     return eStrataUser; // 0x3u
5631   case MH_CORE:
5632     return eStrataUnknown; // 0x4u
5633   case MH_PRELOAD:
5634     return eStrataRawImage; // 0x5u
5635   case MH_DYLIB:
5636     return eStrataUser; // 0x6u
5637   case MH_DYLINKER:
5638     return eStrataUser; // 0x7u
5639   case MH_BUNDLE:
5640     return eStrataUser; // 0x8u
5641   case MH_DYLIB_STUB:
5642     return eStrataUser; // 0x9u
5643   case MH_DSYM:
5644     return eStrataUnknown; // 0xAu
5645   case MH_KEXT_BUNDLE:
5646     return eStrataKernel; // 0xBu
5647   default:
5648     break;
5649   }
5650   return eStrataUnknown;
5651 }
5652 
5653 llvm::VersionTuple ObjectFileMachO::GetVersion() {
5654   ModuleSP module_sp(GetModule());
5655   if (module_sp) {
5656     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5657     struct dylib_command load_cmd;
5658     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5659     uint32_t version_cmd = 0;
5660     uint64_t version = 0;
5661     uint32_t i;
5662     for (i = 0; i < m_header.ncmds; ++i) {
5663       const lldb::offset_t cmd_offset = offset;
5664       if (m_data.GetU32(&offset, &load_cmd, 2) == NULL)
5665         break;
5666 
5667       if (load_cmd.cmd == LC_ID_DYLIB) {
5668         if (version_cmd == 0) {
5669           version_cmd = load_cmd.cmd;
5670           if (m_data.GetU32(&offset, &load_cmd.dylib, 4) == NULL)
5671             break;
5672           version = load_cmd.dylib.current_version;
5673         }
5674         break; // Break for now unless there is another more complete version
5675                // number load command in the future.
5676       }
5677       offset = cmd_offset + load_cmd.cmdsize;
5678     }
5679 
5680     if (version_cmd == LC_ID_DYLIB) {
5681       unsigned major = (version & 0xFFFF0000ull) >> 16;
5682       unsigned minor = (version & 0x0000FF00ull) >> 8;
5683       unsigned subminor = (version & 0x000000FFull);
5684       return llvm::VersionTuple(major, minor, subminor);
5685     }
5686   }
5687   return llvm::VersionTuple();
5688 }
5689 
5690 ArchSpec ObjectFileMachO::GetArchitecture() {
5691   ModuleSP module_sp(GetModule());
5692   ArchSpec arch;
5693   if (module_sp) {
5694     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5695 
5696     return GetArchitecture(m_header, m_data,
5697                            MachHeaderSizeFromMagic(m_header.magic));
5698   }
5699   return arch;
5700 }
5701 
5702 void ObjectFileMachO::GetProcessSharedCacheUUID(Process *process, addr_t &base_addr, UUID &uuid) {
5703   uuid.Clear();
5704   base_addr = LLDB_INVALID_ADDRESS;
5705   if (process && process->GetDynamicLoader()) {
5706     DynamicLoader *dl = process->GetDynamicLoader();
5707     LazyBool using_shared_cache;
5708     LazyBool private_shared_cache;
5709     dl->GetSharedCacheInformation(base_addr, uuid, using_shared_cache,
5710                                   private_shared_cache);
5711   }
5712   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS | LIBLLDB_LOG_PROCESS));
5713   if (log)
5714     log->Printf("inferior process shared cache has a UUID of %s, base address 0x%" PRIx64 , uuid.GetAsString().c_str(), base_addr);
5715 }
5716 
5717 // From dyld SPI header dyld_process_info.h
5718 typedef void *dyld_process_info;
5719 struct lldb_copy__dyld_process_cache_info {
5720   uuid_t cacheUUID;          // UUID of cache used by process
5721   uint64_t cacheBaseAddress; // load address of dyld shared cache
5722   bool noCache;              // process is running without a dyld cache
5723   bool privateCache; // process is using a private copy of its dyld cache
5724 };
5725 
5726 // #including mach/mach.h pulls in machine.h & CPU_TYPE_ARM etc conflicts with llvm
5727 // enum definitions llvm::MachO::CPU_TYPE_ARM turning them into compile errors.
5728 // So we need to use the actual underlying types of task_t and kern_return_t
5729 // below.
5730 extern "C" unsigned int /*task_t*/ mach_task_self();
5731 
5732 void ObjectFileMachO::GetLLDBSharedCacheUUID(addr_t &base_addr, UUID &uuid) {
5733   uuid.Clear();
5734   base_addr = LLDB_INVALID_ADDRESS;
5735 
5736 #if defined(__APPLE__) &&                                                      \
5737     (defined(__arm__) || defined(__arm64__) || defined(__aarch64__))
5738   uint8_t *(*dyld_get_all_image_infos)(void);
5739   dyld_get_all_image_infos =
5740       (uint8_t * (*)())dlsym(RTLD_DEFAULT, "_dyld_get_all_image_infos");
5741   if (dyld_get_all_image_infos) {
5742     uint8_t *dyld_all_image_infos_address = dyld_get_all_image_infos();
5743     if (dyld_all_image_infos_address) {
5744       uint32_t *version = (uint32_t *)
5745           dyld_all_image_infos_address; // version <mach-o/dyld_images.h>
5746       if (*version >= 13) {
5747         uuid_t *sharedCacheUUID_address = 0;
5748         int wordsize = sizeof(uint8_t *);
5749         if (wordsize == 8) {
5750           sharedCacheUUID_address =
5751               (uuid_t *)((uint8_t *)dyld_all_image_infos_address +
5752                          160); // sharedCacheUUID <mach-o/dyld_images.h>
5753           if (*version >= 15)
5754             base_addr = *(uint64_t *) ((uint8_t *) dyld_all_image_infos_address
5755                           + 176); // sharedCacheBaseAddress <mach-o/dyld_images.h>
5756         } else {
5757           sharedCacheUUID_address =
5758               (uuid_t *)((uint8_t *)dyld_all_image_infos_address +
5759                          84); // sharedCacheUUID <mach-o/dyld_images.h>
5760           if (*version >= 15) {
5761             base_addr = 0;
5762             base_addr = *(uint32_t *) ((uint8_t *) dyld_all_image_infos_address
5763                           + 100); // sharedCacheBaseAddress <mach-o/dyld_images.h>
5764           }
5765         }
5766         uuid = UUID::fromOptionalData(sharedCacheUUID_address, sizeof(uuid_t));
5767       }
5768     }
5769   } else {
5770     // Exists in macOS 10.12 and later, iOS 10.0 and later - dyld SPI
5771     dyld_process_info (*dyld_process_info_create)(unsigned int /* task_t */ task, uint64_t timestamp, unsigned int /*kern_return_t*/ *kernelError);
5772     void (*dyld_process_info_get_cache)(void *info, void *cacheInfo);
5773     void (*dyld_process_info_release)(dyld_process_info info);
5774 
5775     dyld_process_info_create = (void *(*)(unsigned int /* task_t */, uint64_t, unsigned int /*kern_return_t*/ *))
5776                dlsym (RTLD_DEFAULT, "_dyld_process_info_create");
5777     dyld_process_info_get_cache = (void (*)(void *, void *))
5778                dlsym (RTLD_DEFAULT, "_dyld_process_info_get_cache");
5779     dyld_process_info_release = (void (*)(void *))
5780                dlsym (RTLD_DEFAULT, "_dyld_process_info_release");
5781 
5782     if (dyld_process_info_create && dyld_process_info_get_cache) {
5783       unsigned int /*kern_return_t */ kern_ret;
5784 		  dyld_process_info process_info = dyld_process_info_create(::mach_task_self(), 0, &kern_ret);
5785       if (process_info) {
5786         struct lldb_copy__dyld_process_cache_info sc_info;
5787         memset (&sc_info, 0, sizeof (struct lldb_copy__dyld_process_cache_info));
5788         dyld_process_info_get_cache (process_info, &sc_info);
5789         if (sc_info.cacheBaseAddress != 0) {
5790           base_addr = sc_info.cacheBaseAddress;
5791           uuid = UUID::fromOptionalData(sc_info.cacheUUID, sizeof(uuid_t));
5792         }
5793         dyld_process_info_release (process_info);
5794       }
5795     }
5796   }
5797   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS | LIBLLDB_LOG_PROCESS));
5798   if (log && uuid.IsValid())
5799     log->Printf("lldb's in-memory shared cache has a UUID of %s base address of 0x%" PRIx64, uuid.GetAsString().c_str(), base_addr);
5800 #endif
5801 }
5802 
5803 llvm::VersionTuple ObjectFileMachO::GetMinimumOSVersion() {
5804   if (!m_min_os_version) {
5805     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5806     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5807       const lldb::offset_t load_cmd_offset = offset;
5808 
5809       version_min_command lc;
5810       if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL)
5811         break;
5812       if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX ||
5813           lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS ||
5814           lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS ||
5815           lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) {
5816         if (m_data.GetU32(&offset, &lc.version,
5817                           (sizeof(lc) / sizeof(uint32_t)) - 2)) {
5818           const uint32_t xxxx = lc.version >> 16;
5819           const uint32_t yy = (lc.version >> 8) & 0xffu;
5820           const uint32_t zz = lc.version & 0xffu;
5821           if (xxxx) {
5822             m_min_os_version = llvm::VersionTuple(xxxx, yy, zz);
5823             break;
5824           }
5825         }
5826       } else if (lc.cmd == llvm::MachO::LC_BUILD_VERSION) {
5827         // struct build_version_command {
5828         //     uint32_t    cmd;            /* LC_BUILD_VERSION */
5829         //     uint32_t    cmdsize;        /* sizeof(struct build_version_command) plus */
5830         //                                 /* ntools * sizeof(struct build_tool_version) */
5831         //     uint32_t    platform;       /* platform */
5832         //     uint32_t    minos;          /* X.Y.Z is encoded in nibbles xxxx.yy.zz */
5833         //     uint32_t    sdk;            /* X.Y.Z is encoded in nibbles xxxx.yy.zz */
5834         //     uint32_t    ntools;         /* number of tool entries following this */
5835         // };
5836 
5837         offset += 4;  // skip platform
5838         uint32_t minos = m_data.GetU32(&offset);
5839 
5840         const uint32_t xxxx = minos >> 16;
5841         const uint32_t yy = (minos >> 8) & 0xffu;
5842         const uint32_t zz = minos & 0xffu;
5843         if (xxxx) {
5844             m_min_os_version = llvm::VersionTuple(xxxx, yy, zz);
5845             break;
5846         }
5847       }
5848 
5849       offset = load_cmd_offset + lc.cmdsize;
5850     }
5851 
5852     if (!m_min_os_version) {
5853       // Set version to an empty value so we don't keep trying to
5854       m_min_os_version = llvm::VersionTuple();
5855     }
5856   }
5857 
5858   return *m_min_os_version;
5859 }
5860 
5861 uint32_t ObjectFileMachO::GetSDKVersion(uint32_t *versions,
5862                                         uint32_t num_versions) {
5863   if (m_sdk_versions.empty()) {
5864     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5865     bool success = false;
5866     for (uint32_t i = 0; !success && i < m_header.ncmds; ++i) {
5867       const lldb::offset_t load_cmd_offset = offset;
5868 
5869       version_min_command lc;
5870       if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL)
5871         break;
5872       if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX ||
5873           lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS ||
5874           lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS ||
5875           lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) {
5876         if (m_data.GetU32(&offset, &lc.version,
5877                           (sizeof(lc) / sizeof(uint32_t)) - 2)) {
5878           const uint32_t xxxx = lc.sdk >> 16;
5879           const uint32_t yy = (lc.sdk >> 8) & 0xffu;
5880           const uint32_t zz = lc.sdk & 0xffu;
5881           if (xxxx) {
5882             m_sdk_versions.push_back(xxxx);
5883             m_sdk_versions.push_back(yy);
5884             m_sdk_versions.push_back(zz);
5885             success = true;
5886           } else {
5887             GetModule()->ReportWarning(
5888                 "minimum OS version load command with invalid (0) version found.");
5889           }
5890         }
5891       }
5892       offset = load_cmd_offset + lc.cmdsize;
5893     }
5894 
5895     if (!success) {
5896       offset = MachHeaderSizeFromMagic(m_header.magic);
5897       for (uint32_t i = 0; !success && i < m_header.ncmds; ++i) {
5898         const lldb::offset_t load_cmd_offset = offset;
5899 
5900         version_min_command lc;
5901         if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL)
5902           break;
5903         if (lc.cmd == llvm::MachO::LC_BUILD_VERSION) {
5904           // struct build_version_command {
5905           //     uint32_t    cmd;            /* LC_BUILD_VERSION */
5906           //     uint32_t    cmdsize;        /* sizeof(struct
5907           //     build_version_command) plus */
5908           //                                 /* ntools * sizeof(struct
5909           //                                 build_tool_version) */
5910           //     uint32_t    platform;       /* platform */
5911           //     uint32_t    minos;          /* X.Y.Z is encoded in nibbles
5912           //     xxxx.yy.zz */ uint32_t    sdk;            /* X.Y.Z is encoded
5913           //     in nibbles xxxx.yy.zz */ uint32_t    ntools;         /* number
5914           //     of tool entries following this */
5915           // };
5916 
5917           offset += 4; // skip platform
5918           uint32_t minos = m_data.GetU32(&offset);
5919 
5920           const uint32_t xxxx = minos >> 16;
5921           const uint32_t yy = (minos >> 8) & 0xffu;
5922           const uint32_t zz = minos & 0xffu;
5923           if (xxxx) {
5924             m_sdk_versions.push_back(xxxx);
5925             m_sdk_versions.push_back(yy);
5926             m_sdk_versions.push_back(zz);
5927             success = true;
5928           }
5929         }
5930         offset = load_cmd_offset + lc.cmdsize;
5931       }
5932     }
5933 
5934     if (!success) {
5935       // Push an invalid value so we don't try to find
5936       // the version # again on the next call to this
5937       // method.
5938       m_sdk_versions.push_back(UINT32_MAX);
5939     }
5940   }
5941 
5942   // Legitimate version numbers will have 3 entries pushed
5943   // on to m_sdk_versions.  If we only have one value, it's
5944   // the sentinel value indicating that this object file
5945   // does not have a valid minimum os version #.
5946   if (m_sdk_versions.size() > 1) {
5947     if (versions != NULL && num_versions > 0) {
5948       for (size_t i = 0; i < num_versions; ++i) {
5949         if (i < m_sdk_versions.size())
5950           versions[i] = m_sdk_versions[i];
5951         else
5952           versions[i] = 0;
5953       }
5954     }
5955     return m_sdk_versions.size();
5956   }
5957   // Call the superclasses version that will empty out the data
5958   return ObjectFile::GetSDKVersion(versions, num_versions);
5959 }
5960 
5961 bool ObjectFileMachO::GetIsDynamicLinkEditor() {
5962   return m_header.filetype == llvm::MachO::MH_DYLINKER;
5963 }
5964 
5965 bool ObjectFileMachO::AllowAssemblyEmulationUnwindPlans() {
5966   return m_allow_assembly_emulation_unwind_plans;
5967 }
5968 
5969 //------------------------------------------------------------------
5970 // PluginInterface protocol
5971 //------------------------------------------------------------------
5972 lldb_private::ConstString ObjectFileMachO::GetPluginName() {
5973   return GetPluginNameStatic();
5974 }
5975 
5976 uint32_t ObjectFileMachO::GetPluginVersion() { return 1; }
5977 
5978 Section *ObjectFileMachO::GetMachHeaderSection() {
5979   // Find the first address of the mach header which is the first non-zero file
5980   // sized section whose file offset is zero. This is the base file address of
5981   // the mach-o file which can be subtracted from the vmaddr of the other
5982   // segments found in memory and added to the load address
5983   ModuleSP module_sp = GetModule();
5984   if (!module_sp)
5985     return nullptr;
5986   SectionList *section_list = GetSectionList();
5987   if (!section_list)
5988     return nullptr;
5989   const size_t num_sections = section_list->GetSize();
5990   for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
5991     Section *section = section_list->GetSectionAtIndex(sect_idx).get();
5992     if (section->GetFileOffset() == 0 && SectionIsLoadable(section))
5993       return section;
5994   }
5995   return nullptr;
5996 }
5997 
5998 bool ObjectFileMachO::SectionIsLoadable(const Section *section) {
5999   if (!section)
6000     return false;
6001   const bool is_dsym = (m_header.filetype == MH_DSYM);
6002   if (section->GetFileSize() == 0 && !is_dsym)
6003     return false;
6004   if (section->IsThreadSpecific())
6005     return false;
6006   if (GetModule().get() != section->GetModule().get())
6007     return false;
6008   // Be careful with __LINKEDIT and __DWARF segments
6009   if (section->GetName() == GetSegmentNameLINKEDIT() ||
6010       section->GetName() == GetSegmentNameDWARF()) {
6011     // Only map __LINKEDIT and __DWARF if we have an in memory image and
6012     // this isn't a kernel binary like a kext or mach_kernel.
6013     const bool is_memory_image = (bool)m_process_wp.lock();
6014     const Strata strata = GetStrata();
6015     if (is_memory_image == false || strata == eStrataKernel)
6016       return false;
6017   }
6018   return true;
6019 }
6020 
6021 lldb::addr_t ObjectFileMachO::CalculateSectionLoadAddressForMemoryImage(
6022     lldb::addr_t header_load_address, const Section *header_section,
6023     const Section *section) {
6024   ModuleSP module_sp = GetModule();
6025   if (module_sp && header_section && section &&
6026       header_load_address != LLDB_INVALID_ADDRESS) {
6027     lldb::addr_t file_addr = header_section->GetFileAddress();
6028     if (file_addr != LLDB_INVALID_ADDRESS && SectionIsLoadable(section))
6029       return section->GetFileAddress() - file_addr + header_load_address;
6030   }
6031   return LLDB_INVALID_ADDRESS;
6032 }
6033 
6034 bool ObjectFileMachO::SetLoadAddress(Target &target, lldb::addr_t value,
6035                                      bool value_is_offset) {
6036   ModuleSP module_sp = GetModule();
6037   if (module_sp) {
6038     size_t num_loaded_sections = 0;
6039     SectionList *section_list = GetSectionList();
6040     if (section_list) {
6041       const size_t num_sections = section_list->GetSize();
6042 
6043       if (value_is_offset) {
6044         // "value" is an offset to apply to each top level segment
6045         for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
6046           // Iterate through the object file sections to find all of the
6047           // sections that size on disk (to avoid __PAGEZERO) and load them
6048           SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
6049           if (SectionIsLoadable(section_sp.get()))
6050             if (target.GetSectionLoadList().SetSectionLoadAddress(
6051                     section_sp, section_sp->GetFileAddress() + value))
6052               ++num_loaded_sections;
6053         }
6054       } else {
6055         // "value" is the new base address of the mach_header, adjust each
6056         // section accordingly
6057 
6058         Section *mach_header_section = GetMachHeaderSection();
6059         if (mach_header_section) {
6060           for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
6061             SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
6062 
6063             lldb::addr_t section_load_addr =
6064                 CalculateSectionLoadAddressForMemoryImage(
6065                     value, mach_header_section, section_sp.get());
6066             if (section_load_addr != LLDB_INVALID_ADDRESS) {
6067               if (target.GetSectionLoadList().SetSectionLoadAddress(
6068                       section_sp, section_load_addr))
6069                 ++num_loaded_sections;
6070             }
6071           }
6072         }
6073       }
6074     }
6075     return num_loaded_sections > 0;
6076   }
6077   return false;
6078 }
6079 
6080 bool ObjectFileMachO::SaveCore(const lldb::ProcessSP &process_sp,
6081                                const FileSpec &outfile, Status &error) {
6082   if (process_sp) {
6083     Target &target = process_sp->GetTarget();
6084     const ArchSpec target_arch = target.GetArchitecture();
6085     const llvm::Triple &target_triple = target_arch.GetTriple();
6086     if (target_triple.getVendor() == llvm::Triple::Apple &&
6087         (target_triple.getOS() == llvm::Triple::MacOSX ||
6088          target_triple.getOS() == llvm::Triple::IOS ||
6089          target_triple.getOS() == llvm::Triple::WatchOS ||
6090          target_triple.getOS() == llvm::Triple::TvOS)) {
6091          // NEED_BRIDGEOS_TRIPLE target_triple.getOS() == llvm::Triple::BridgeOS)) {
6092       bool make_core = false;
6093       switch (target_arch.GetMachine()) {
6094       case llvm::Triple::aarch64:
6095       case llvm::Triple::arm:
6096       case llvm::Triple::thumb:
6097       case llvm::Triple::x86:
6098       case llvm::Triple::x86_64:
6099         make_core = true;
6100         break;
6101       default:
6102         error.SetErrorStringWithFormat("unsupported core architecture: %s",
6103                                        target_triple.str().c_str());
6104         break;
6105       }
6106 
6107       if (make_core) {
6108         std::vector<segment_command_64> segment_load_commands;
6109         //                uint32_t range_info_idx = 0;
6110         MemoryRegionInfo range_info;
6111         Status range_error = process_sp->GetMemoryRegionInfo(0, range_info);
6112         const uint32_t addr_byte_size = target_arch.GetAddressByteSize();
6113         const ByteOrder byte_order = target_arch.GetByteOrder();
6114         if (range_error.Success()) {
6115           while (range_info.GetRange().GetRangeBase() != LLDB_INVALID_ADDRESS) {
6116             const addr_t addr = range_info.GetRange().GetRangeBase();
6117             const addr_t size = range_info.GetRange().GetByteSize();
6118 
6119             if (size == 0)
6120               break;
6121 
6122             // Calculate correct protections
6123             uint32_t prot = 0;
6124             if (range_info.GetReadable() == MemoryRegionInfo::eYes)
6125               prot |= VM_PROT_READ;
6126             if (range_info.GetWritable() == MemoryRegionInfo::eYes)
6127               prot |= VM_PROT_WRITE;
6128             if (range_info.GetExecutable() == MemoryRegionInfo::eYes)
6129               prot |= VM_PROT_EXECUTE;
6130 
6131             //                        printf ("[%3u] [0x%16.16" PRIx64 " -
6132             //                        0x%16.16" PRIx64 ") %c%c%c\n",
6133             //                                range_info_idx,
6134             //                                addr,
6135             //                                size,
6136             //                                (prot & VM_PROT_READ   ) ? 'r' :
6137             //                                '-',
6138             //                                (prot & VM_PROT_WRITE  ) ? 'w' :
6139             //                                '-',
6140             //                                (prot & VM_PROT_EXECUTE) ? 'x' :
6141             //                                '-');
6142 
6143             if (prot != 0) {
6144               uint32_t cmd_type = LC_SEGMENT_64;
6145               uint32_t segment_size = sizeof(segment_command_64);
6146               if (addr_byte_size == 4) {
6147                 cmd_type = LC_SEGMENT;
6148                 segment_size = sizeof(segment_command);
6149               }
6150               segment_command_64 segment = {
6151                   cmd_type,     // uint32_t cmd;
6152                   segment_size, // uint32_t cmdsize;
6153                   {0},          // char segname[16];
6154                   addr, // uint64_t vmaddr;    // uint32_t for 32-bit Mach-O
6155                   size, // uint64_t vmsize;    // uint32_t for 32-bit Mach-O
6156                   0,    // uint64_t fileoff;   // uint32_t for 32-bit Mach-O
6157                   size, // uint64_t filesize;  // uint32_t for 32-bit Mach-O
6158                   prot, // uint32_t maxprot;
6159                   prot, // uint32_t initprot;
6160                   0,    // uint32_t nsects;
6161                   0};   // uint32_t flags;
6162               segment_load_commands.push_back(segment);
6163             } else {
6164               // No protections and a size of 1 used to be returned from old
6165               // debugservers when we asked about a region that was past the
6166               // last memory region and it indicates the end...
6167               if (size == 1)
6168                 break;
6169             }
6170 
6171             range_error = process_sp->GetMemoryRegionInfo(
6172                 range_info.GetRange().GetRangeEnd(), range_info);
6173             if (range_error.Fail())
6174               break;
6175           }
6176 
6177           StreamString buffer(Stream::eBinary, addr_byte_size, byte_order);
6178 
6179           mach_header_64 mach_header;
6180           if (addr_byte_size == 8) {
6181             mach_header.magic = MH_MAGIC_64;
6182           } else {
6183             mach_header.magic = MH_MAGIC;
6184           }
6185           mach_header.cputype = target_arch.GetMachOCPUType();
6186           mach_header.cpusubtype = target_arch.GetMachOCPUSubType();
6187           mach_header.filetype = MH_CORE;
6188           mach_header.ncmds = segment_load_commands.size();
6189           mach_header.flags = 0;
6190           mach_header.reserved = 0;
6191           ThreadList &thread_list = process_sp->GetThreadList();
6192           const uint32_t num_threads = thread_list.GetSize();
6193 
6194           // Make an array of LC_THREAD data items. Each one contains the
6195           // contents of the LC_THREAD load command. The data doesn't contain
6196           // the load command + load command size, we will add the load command
6197           // and load command size as we emit the data.
6198           std::vector<StreamString> LC_THREAD_datas(num_threads);
6199           for (auto &LC_THREAD_data : LC_THREAD_datas) {
6200             LC_THREAD_data.GetFlags().Set(Stream::eBinary);
6201             LC_THREAD_data.SetAddressByteSize(addr_byte_size);
6202             LC_THREAD_data.SetByteOrder(byte_order);
6203           }
6204           for (uint32_t thread_idx = 0; thread_idx < num_threads;
6205                ++thread_idx) {
6206             ThreadSP thread_sp(thread_list.GetThreadAtIndex(thread_idx));
6207             if (thread_sp) {
6208               switch (mach_header.cputype) {
6209               case llvm::MachO::CPU_TYPE_ARM64:
6210                 RegisterContextDarwin_arm64_Mach::Create_LC_THREAD(
6211                     thread_sp.get(), LC_THREAD_datas[thread_idx]);
6212                 break;
6213 
6214               case llvm::MachO::CPU_TYPE_ARM:
6215                 RegisterContextDarwin_arm_Mach::Create_LC_THREAD(
6216                     thread_sp.get(), LC_THREAD_datas[thread_idx]);
6217                 break;
6218 
6219               case llvm::MachO::CPU_TYPE_I386:
6220                 RegisterContextDarwin_i386_Mach::Create_LC_THREAD(
6221                     thread_sp.get(), LC_THREAD_datas[thread_idx]);
6222                 break;
6223 
6224               case llvm::MachO::CPU_TYPE_X86_64:
6225                 RegisterContextDarwin_x86_64_Mach::Create_LC_THREAD(
6226                     thread_sp.get(), LC_THREAD_datas[thread_idx]);
6227                 break;
6228               }
6229             }
6230           }
6231 
6232           // The size of the load command is the size of the segments...
6233           if (addr_byte_size == 8) {
6234             mach_header.sizeofcmds = segment_load_commands.size() *
6235                                      sizeof(struct segment_command_64);
6236           } else {
6237             mach_header.sizeofcmds =
6238                 segment_load_commands.size() * sizeof(struct segment_command);
6239           }
6240 
6241           // and the size of all LC_THREAD load command
6242           for (const auto &LC_THREAD_data : LC_THREAD_datas) {
6243             ++mach_header.ncmds;
6244             mach_header.sizeofcmds += 8 + LC_THREAD_data.GetSize();
6245           }
6246 
6247           printf("mach_header: 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x "
6248                  "0x%8.8x 0x%8.8x\n",
6249                  mach_header.magic, mach_header.cputype, mach_header.cpusubtype,
6250                  mach_header.filetype, mach_header.ncmds,
6251                  mach_header.sizeofcmds, mach_header.flags,
6252                  mach_header.reserved);
6253 
6254           // Write the mach header
6255           buffer.PutHex32(mach_header.magic);
6256           buffer.PutHex32(mach_header.cputype);
6257           buffer.PutHex32(mach_header.cpusubtype);
6258           buffer.PutHex32(mach_header.filetype);
6259           buffer.PutHex32(mach_header.ncmds);
6260           buffer.PutHex32(mach_header.sizeofcmds);
6261           buffer.PutHex32(mach_header.flags);
6262           if (addr_byte_size == 8) {
6263             buffer.PutHex32(mach_header.reserved);
6264           }
6265 
6266           // Skip the mach header and all load commands and align to the next
6267           // 0x1000 byte boundary
6268           addr_t file_offset = buffer.GetSize() + mach_header.sizeofcmds;
6269           if (file_offset & 0x00000fff) {
6270             file_offset += 0x00001000ull;
6271             file_offset &= (~0x00001000ull + 1);
6272           }
6273 
6274           for (auto &segment : segment_load_commands) {
6275             segment.fileoff = file_offset;
6276             file_offset += segment.filesize;
6277           }
6278 
6279           // Write out all of the LC_THREAD load commands
6280           for (const auto &LC_THREAD_data : LC_THREAD_datas) {
6281             const size_t LC_THREAD_data_size = LC_THREAD_data.GetSize();
6282             buffer.PutHex32(LC_THREAD);
6283             buffer.PutHex32(8 + LC_THREAD_data_size); // cmd + cmdsize + data
6284             buffer.Write(LC_THREAD_data.GetString().data(),
6285                          LC_THREAD_data_size);
6286           }
6287 
6288           // Write out all of the segment load commands
6289           for (const auto &segment : segment_load_commands) {
6290             printf("0x%8.8x 0x%8.8x [0x%16.16" PRIx64 " - 0x%16.16" PRIx64
6291                    ") [0x%16.16" PRIx64 " 0x%16.16" PRIx64
6292                    ") 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x]\n",
6293                    segment.cmd, segment.cmdsize, segment.vmaddr,
6294                    segment.vmaddr + segment.vmsize, segment.fileoff,
6295                    segment.filesize, segment.maxprot, segment.initprot,
6296                    segment.nsects, segment.flags);
6297 
6298             buffer.PutHex32(segment.cmd);
6299             buffer.PutHex32(segment.cmdsize);
6300             buffer.PutRawBytes(segment.segname, sizeof(segment.segname));
6301             if (addr_byte_size == 8) {
6302               buffer.PutHex64(segment.vmaddr);
6303               buffer.PutHex64(segment.vmsize);
6304               buffer.PutHex64(segment.fileoff);
6305               buffer.PutHex64(segment.filesize);
6306             } else {
6307               buffer.PutHex32(static_cast<uint32_t>(segment.vmaddr));
6308               buffer.PutHex32(static_cast<uint32_t>(segment.vmsize));
6309               buffer.PutHex32(static_cast<uint32_t>(segment.fileoff));
6310               buffer.PutHex32(static_cast<uint32_t>(segment.filesize));
6311             }
6312             buffer.PutHex32(segment.maxprot);
6313             buffer.PutHex32(segment.initprot);
6314             buffer.PutHex32(segment.nsects);
6315             buffer.PutHex32(segment.flags);
6316           }
6317 
6318           File core_file;
6319           std::string core_file_path(outfile.GetPath());
6320           error = FileSystem::Instance().Open(core_file, outfile,
6321                                               File::eOpenOptionWrite |
6322                                                   File::eOpenOptionTruncate |
6323                                                   File::eOpenOptionCanCreate);
6324           if (error.Success()) {
6325             // Read 1 page at a time
6326             uint8_t bytes[0x1000];
6327             // Write the mach header and load commands out to the core file
6328             size_t bytes_written = buffer.GetString().size();
6329             error = core_file.Write(buffer.GetString().data(), bytes_written);
6330             if (error.Success()) {
6331               // Now write the file data for all memory segments in the process
6332               for (const auto &segment : segment_load_commands) {
6333                 if (core_file.SeekFromStart(segment.fileoff) == -1) {
6334                   error.SetErrorStringWithFormat(
6335                       "unable to seek to offset 0x%" PRIx64 " in '%s'",
6336                       segment.fileoff, core_file_path.c_str());
6337                   break;
6338                 }
6339 
6340                 printf("Saving %" PRId64
6341                        " bytes of data for memory region at 0x%" PRIx64 "\n",
6342                        segment.vmsize, segment.vmaddr);
6343                 addr_t bytes_left = segment.vmsize;
6344                 addr_t addr = segment.vmaddr;
6345                 Status memory_read_error;
6346                 while (bytes_left > 0 && error.Success()) {
6347                   const size_t bytes_to_read =
6348                       bytes_left > sizeof(bytes) ? sizeof(bytes) : bytes_left;
6349                   const size_t bytes_read = process_sp->ReadMemory(
6350                       addr, bytes, bytes_to_read, memory_read_error);
6351                   if (bytes_read == bytes_to_read) {
6352                     size_t bytes_written = bytes_read;
6353                     error = core_file.Write(bytes, bytes_written);
6354                     bytes_left -= bytes_read;
6355                     addr += bytes_read;
6356                   } else {
6357                     // Some pages within regions are not readable, those should
6358                     // be zero filled
6359                     memset(bytes, 0, bytes_to_read);
6360                     size_t bytes_written = bytes_to_read;
6361                     error = core_file.Write(bytes, bytes_written);
6362                     bytes_left -= bytes_to_read;
6363                     addr += bytes_to_read;
6364                   }
6365                 }
6366               }
6367             }
6368           }
6369         } else {
6370           error.SetErrorString(
6371               "process doesn't support getting memory region info");
6372         }
6373       }
6374       return true; // This is the right plug to handle saving core files for
6375                    // this process
6376     }
6377   }
6378   return false;
6379 }
6380