1 //===-- ObjectFileMachO.cpp -------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/ADT/StringRef.h"
10 
11 #include "Plugins/Process/Utility/RegisterContextDarwin_arm.h"
12 #include "Plugins/Process/Utility/RegisterContextDarwin_arm64.h"
13 #include "Plugins/Process/Utility/RegisterContextDarwin_i386.h"
14 #include "Plugins/Process/Utility/RegisterContextDarwin_x86_64.h"
15 #include "lldb/Core/Debugger.h"
16 #include "lldb/Core/FileSpecList.h"
17 #include "lldb/Core/Module.h"
18 #include "lldb/Core/ModuleSpec.h"
19 #include "lldb/Core/PluginManager.h"
20 #include "lldb/Core/Section.h"
21 #include "lldb/Core/StreamFile.h"
22 #include "lldb/Host/Host.h"
23 #include "lldb/Symbol/DWARFCallFrameInfo.h"
24 #include "lldb/Symbol/ObjectFile.h"
25 #include "lldb/Target/DynamicLoader.h"
26 #include "lldb/Target/MemoryRegionInfo.h"
27 #include "lldb/Target/Platform.h"
28 #include "lldb/Target/Process.h"
29 #include "lldb/Target/SectionLoadList.h"
30 #include "lldb/Target/Target.h"
31 #include "lldb/Target/Thread.h"
32 #include "lldb/Target/ThreadList.h"
33 #include "lldb/Utility/ArchSpec.h"
34 #include "lldb/Utility/DataBuffer.h"
35 #include "lldb/Utility/FileSpec.h"
36 #include "lldb/Utility/Log.h"
37 #include "lldb/Utility/RangeMap.h"
38 #include "lldb/Utility/RegisterValue.h"
39 #include "lldb/Utility/Status.h"
40 #include "lldb/Utility/StreamString.h"
41 #include "lldb/Utility/Timer.h"
42 #include "lldb/Utility/UUID.h"
43 
44 #include "lldb/Host/SafeMachO.h"
45 
46 #include "llvm/Support/MemoryBuffer.h"
47 
48 #include "ObjectFileMachO.h"
49 
50 #if defined(__APPLE__) &&                                                      \
51     (defined(__arm__) || defined(__arm64__) || defined(__aarch64__))
52 // GetLLDBSharedCacheUUID() needs to call dlsym()
53 #include <dlfcn.h>
54 #endif
55 
56 #ifndef __APPLE__
57 #include "Utility/UuidCompatibility.h"
58 #else
59 #include <uuid/uuid.h>
60 #endif
61 
62 #include <memory>
63 
64 #define THUMB_ADDRESS_BIT_MASK 0xfffffffffffffffeull
65 using namespace lldb;
66 using namespace lldb_private;
67 using namespace llvm::MachO;
68 
69 // Some structure definitions needed for parsing the dyld shared cache files
70 // found on iOS devices.
71 
72 struct lldb_copy_dyld_cache_header_v1 {
73   char magic[16];         // e.g. "dyld_v0    i386", "dyld_v1   armv7", etc.
74   uint32_t mappingOffset; // file offset to first dyld_cache_mapping_info
75   uint32_t mappingCount;  // number of dyld_cache_mapping_info entries
76   uint32_t imagesOffset;
77   uint32_t imagesCount;
78   uint64_t dyldBaseAddress;
79   uint64_t codeSignatureOffset;
80   uint64_t codeSignatureSize;
81   uint64_t slideInfoOffset;
82   uint64_t slideInfoSize;
83   uint64_t localSymbolsOffset;
84   uint64_t localSymbolsSize;
85   uint8_t uuid[16]; // v1 and above, also recorded in dyld_all_image_infos v13
86                     // and later
87 };
88 
89 struct lldb_copy_dyld_cache_mapping_info {
90   uint64_t address;
91   uint64_t size;
92   uint64_t fileOffset;
93   uint32_t maxProt;
94   uint32_t initProt;
95 };
96 
97 struct lldb_copy_dyld_cache_local_symbols_info {
98   uint32_t nlistOffset;
99   uint32_t nlistCount;
100   uint32_t stringsOffset;
101   uint32_t stringsSize;
102   uint32_t entriesOffset;
103   uint32_t entriesCount;
104 };
105 struct lldb_copy_dyld_cache_local_symbols_entry {
106   uint32_t dylibOffset;
107   uint32_t nlistStartIndex;
108   uint32_t nlistCount;
109 };
110 
111 static void PrintRegisterValue(RegisterContext *reg_ctx, const char *name,
112                                const char *alt_name, size_t reg_byte_size,
113                                Stream &data) {
114   const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
115   if (reg_info == nullptr)
116     reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
117   if (reg_info) {
118     lldb_private::RegisterValue reg_value;
119     if (reg_ctx->ReadRegister(reg_info, reg_value)) {
120       if (reg_info->byte_size >= reg_byte_size)
121         data.Write(reg_value.GetBytes(), reg_byte_size);
122       else {
123         data.Write(reg_value.GetBytes(), reg_info->byte_size);
124         for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n; ++i)
125           data.PutChar(0);
126       }
127       return;
128     }
129   }
130   // Just write zeros if all else fails
131   for (size_t i = 0; i < reg_byte_size; ++i)
132     data.PutChar(0);
133 }
134 
135 class RegisterContextDarwin_x86_64_Mach : public RegisterContextDarwin_x86_64 {
136 public:
137   RegisterContextDarwin_x86_64_Mach(lldb_private::Thread &thread,
138                                     const DataExtractor &data)
139       : RegisterContextDarwin_x86_64(thread, 0) {
140     SetRegisterDataFrom_LC_THREAD(data);
141   }
142 
143   void InvalidateAllRegisters() override {
144     // Do nothing... registers are always valid...
145   }
146 
147   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
148     lldb::offset_t offset = 0;
149     SetError(GPRRegSet, Read, -1);
150     SetError(FPURegSet, Read, -1);
151     SetError(EXCRegSet, Read, -1);
152     bool done = false;
153 
154     while (!done) {
155       int flavor = data.GetU32(&offset);
156       if (flavor == 0)
157         done = true;
158       else {
159         uint32_t i;
160         uint32_t count = data.GetU32(&offset);
161         switch (flavor) {
162         case GPRRegSet:
163           for (i = 0; i < count; ++i)
164             (&gpr.rax)[i] = data.GetU64(&offset);
165           SetError(GPRRegSet, Read, 0);
166           done = true;
167 
168           break;
169         case FPURegSet:
170           // TODO: fill in FPU regs....
171           // SetError (FPURegSet, Read, -1);
172           done = true;
173 
174           break;
175         case EXCRegSet:
176           exc.trapno = data.GetU32(&offset);
177           exc.err = data.GetU32(&offset);
178           exc.faultvaddr = data.GetU64(&offset);
179           SetError(EXCRegSet, Read, 0);
180           done = true;
181           break;
182         case 7:
183         case 8:
184         case 9:
185           // fancy flavors that encapsulate of the above flavors...
186           break;
187 
188         default:
189           done = true;
190           break;
191         }
192       }
193     }
194   }
195 
196   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
197     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
198     if (reg_ctx_sp) {
199       RegisterContext *reg_ctx = reg_ctx_sp.get();
200 
201       data.PutHex32(GPRRegSet); // Flavor
202       data.PutHex32(GPRWordCount);
203       PrintRegisterValue(reg_ctx, "rax", nullptr, 8, data);
204       PrintRegisterValue(reg_ctx, "rbx", nullptr, 8, data);
205       PrintRegisterValue(reg_ctx, "rcx", nullptr, 8, data);
206       PrintRegisterValue(reg_ctx, "rdx", nullptr, 8, data);
207       PrintRegisterValue(reg_ctx, "rdi", nullptr, 8, data);
208       PrintRegisterValue(reg_ctx, "rsi", nullptr, 8, data);
209       PrintRegisterValue(reg_ctx, "rbp", nullptr, 8, data);
210       PrintRegisterValue(reg_ctx, "rsp", nullptr, 8, data);
211       PrintRegisterValue(reg_ctx, "r8", nullptr, 8, data);
212       PrintRegisterValue(reg_ctx, "r9", nullptr, 8, data);
213       PrintRegisterValue(reg_ctx, "r10", nullptr, 8, data);
214       PrintRegisterValue(reg_ctx, "r11", nullptr, 8, data);
215       PrintRegisterValue(reg_ctx, "r12", nullptr, 8, data);
216       PrintRegisterValue(reg_ctx, "r13", nullptr, 8, data);
217       PrintRegisterValue(reg_ctx, "r14", nullptr, 8, data);
218       PrintRegisterValue(reg_ctx, "r15", nullptr, 8, data);
219       PrintRegisterValue(reg_ctx, "rip", nullptr, 8, data);
220       PrintRegisterValue(reg_ctx, "rflags", nullptr, 8, data);
221       PrintRegisterValue(reg_ctx, "cs", nullptr, 8, data);
222       PrintRegisterValue(reg_ctx, "fs", nullptr, 8, data);
223       PrintRegisterValue(reg_ctx, "gs", nullptr, 8, data);
224 
225       //            // Write out the FPU registers
226       //            const size_t fpu_byte_size = sizeof(FPU);
227       //            size_t bytes_written = 0;
228       //            data.PutHex32 (FPURegSet);
229       //            data.PutHex32 (fpu_byte_size/sizeof(uint64_t));
230       //            bytes_written += data.PutHex32(0); // uint32_t pad[0]
231       //            bytes_written += data.PutHex32(0); // uint32_t pad[1]
232       //            bytes_written += WriteRegister (reg_ctx, "fcw", "fctrl", 2,
233       //            data);   // uint16_t    fcw;    // "fctrl"
234       //            bytes_written += WriteRegister (reg_ctx, "fsw" , "fstat", 2,
235       //            data);  // uint16_t    fsw;    // "fstat"
236       //            bytes_written += WriteRegister (reg_ctx, "ftw" , "ftag", 1,
237       //            data);   // uint8_t     ftw;    // "ftag"
238       //            bytes_written += data.PutHex8  (0); // uint8_t pad1;
239       //            bytes_written += WriteRegister (reg_ctx, "fop" , NULL, 2,
240       //            data);     // uint16_t    fop;    // "fop"
241       //            bytes_written += WriteRegister (reg_ctx, "fioff", "ip", 4,
242       //            data);    // uint32_t    ip;     // "fioff"
243       //            bytes_written += WriteRegister (reg_ctx, "fiseg", NULL, 2,
244       //            data);    // uint16_t    cs;     // "fiseg"
245       //            bytes_written += data.PutHex16 (0); // uint16_t    pad2;
246       //            bytes_written += WriteRegister (reg_ctx, "dp", "fooff" , 4,
247       //            data);   // uint32_t    dp;     // "fooff"
248       //            bytes_written += WriteRegister (reg_ctx, "foseg", NULL, 2,
249       //            data);    // uint16_t    ds;     // "foseg"
250       //            bytes_written += data.PutHex16 (0); // uint16_t    pad3;
251       //            bytes_written += WriteRegister (reg_ctx, "mxcsr", NULL, 4,
252       //            data);    // uint32_t    mxcsr;
253       //            bytes_written += WriteRegister (reg_ctx, "mxcsrmask", NULL,
254       //            4, data);// uint32_t    mxcsrmask;
255       //            bytes_written += WriteRegister (reg_ctx, "stmm0", NULL,
256       //            sizeof(MMSReg), data);
257       //            bytes_written += WriteRegister (reg_ctx, "stmm1", NULL,
258       //            sizeof(MMSReg), data);
259       //            bytes_written += WriteRegister (reg_ctx, "stmm2", NULL,
260       //            sizeof(MMSReg), data);
261       //            bytes_written += WriteRegister (reg_ctx, "stmm3", NULL,
262       //            sizeof(MMSReg), data);
263       //            bytes_written += WriteRegister (reg_ctx, "stmm4", NULL,
264       //            sizeof(MMSReg), data);
265       //            bytes_written += WriteRegister (reg_ctx, "stmm5", NULL,
266       //            sizeof(MMSReg), data);
267       //            bytes_written += WriteRegister (reg_ctx, "stmm6", NULL,
268       //            sizeof(MMSReg), data);
269       //            bytes_written += WriteRegister (reg_ctx, "stmm7", NULL,
270       //            sizeof(MMSReg), data);
271       //            bytes_written += WriteRegister (reg_ctx, "xmm0" , NULL,
272       //            sizeof(XMMReg), data);
273       //            bytes_written += WriteRegister (reg_ctx, "xmm1" , NULL,
274       //            sizeof(XMMReg), data);
275       //            bytes_written += WriteRegister (reg_ctx, "xmm2" , NULL,
276       //            sizeof(XMMReg), data);
277       //            bytes_written += WriteRegister (reg_ctx, "xmm3" , NULL,
278       //            sizeof(XMMReg), data);
279       //            bytes_written += WriteRegister (reg_ctx, "xmm4" , NULL,
280       //            sizeof(XMMReg), data);
281       //            bytes_written += WriteRegister (reg_ctx, "xmm5" , NULL,
282       //            sizeof(XMMReg), data);
283       //            bytes_written += WriteRegister (reg_ctx, "xmm6" , NULL,
284       //            sizeof(XMMReg), data);
285       //            bytes_written += WriteRegister (reg_ctx, "xmm7" , NULL,
286       //            sizeof(XMMReg), data);
287       //            bytes_written += WriteRegister (reg_ctx, "xmm8" , NULL,
288       //            sizeof(XMMReg), data);
289       //            bytes_written += WriteRegister (reg_ctx, "xmm9" , NULL,
290       //            sizeof(XMMReg), data);
291       //            bytes_written += WriteRegister (reg_ctx, "xmm10", NULL,
292       //            sizeof(XMMReg), data);
293       //            bytes_written += WriteRegister (reg_ctx, "xmm11", NULL,
294       //            sizeof(XMMReg), data);
295       //            bytes_written += WriteRegister (reg_ctx, "xmm12", NULL,
296       //            sizeof(XMMReg), data);
297       //            bytes_written += WriteRegister (reg_ctx, "xmm13", NULL,
298       //            sizeof(XMMReg), data);
299       //            bytes_written += WriteRegister (reg_ctx, "xmm14", NULL,
300       //            sizeof(XMMReg), data);
301       //            bytes_written += WriteRegister (reg_ctx, "xmm15", NULL,
302       //            sizeof(XMMReg), data);
303       //
304       //            // Fill rest with zeros
305       //            for (size_t i=0, n = fpu_byte_size - bytes_written; i<n; ++
306       //            i)
307       //                data.PutChar(0);
308 
309       // Write out the EXC registers
310       data.PutHex32(EXCRegSet);
311       data.PutHex32(EXCWordCount);
312       PrintRegisterValue(reg_ctx, "trapno", nullptr, 4, data);
313       PrintRegisterValue(reg_ctx, "err", nullptr, 4, data);
314       PrintRegisterValue(reg_ctx, "faultvaddr", nullptr, 8, data);
315       return true;
316     }
317     return false;
318   }
319 
320 protected:
321   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
322 
323   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
324 
325   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
326 
327   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
328     return 0;
329   }
330 
331   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
332     return 0;
333   }
334 
335   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
336     return 0;
337   }
338 };
339 
340 class RegisterContextDarwin_i386_Mach : public RegisterContextDarwin_i386 {
341 public:
342   RegisterContextDarwin_i386_Mach(lldb_private::Thread &thread,
343                                   const DataExtractor &data)
344       : RegisterContextDarwin_i386(thread, 0) {
345     SetRegisterDataFrom_LC_THREAD(data);
346   }
347 
348   void InvalidateAllRegisters() override {
349     // Do nothing... registers are always valid...
350   }
351 
352   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
353     lldb::offset_t offset = 0;
354     SetError(GPRRegSet, Read, -1);
355     SetError(FPURegSet, Read, -1);
356     SetError(EXCRegSet, Read, -1);
357     bool done = false;
358 
359     while (!done) {
360       int flavor = data.GetU32(&offset);
361       if (flavor == 0)
362         done = true;
363       else {
364         uint32_t i;
365         uint32_t count = data.GetU32(&offset);
366         switch (flavor) {
367         case GPRRegSet:
368           for (i = 0; i < count; ++i)
369             (&gpr.eax)[i] = data.GetU32(&offset);
370           SetError(GPRRegSet, Read, 0);
371           done = true;
372 
373           break;
374         case FPURegSet:
375           // TODO: fill in FPU regs....
376           // SetError (FPURegSet, Read, -1);
377           done = true;
378 
379           break;
380         case EXCRegSet:
381           exc.trapno = data.GetU32(&offset);
382           exc.err = data.GetU32(&offset);
383           exc.faultvaddr = data.GetU32(&offset);
384           SetError(EXCRegSet, Read, 0);
385           done = true;
386           break;
387         case 7:
388         case 8:
389         case 9:
390           // fancy flavors that encapsulate of the above flavors...
391           break;
392 
393         default:
394           done = true;
395           break;
396         }
397       }
398     }
399   }
400 
401   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
402     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
403     if (reg_ctx_sp) {
404       RegisterContext *reg_ctx = reg_ctx_sp.get();
405 
406       data.PutHex32(GPRRegSet); // Flavor
407       data.PutHex32(GPRWordCount);
408       PrintRegisterValue(reg_ctx, "eax", nullptr, 4, data);
409       PrintRegisterValue(reg_ctx, "ebx", nullptr, 4, data);
410       PrintRegisterValue(reg_ctx, "ecx", nullptr, 4, data);
411       PrintRegisterValue(reg_ctx, "edx", nullptr, 4, data);
412       PrintRegisterValue(reg_ctx, "edi", nullptr, 4, data);
413       PrintRegisterValue(reg_ctx, "esi", nullptr, 4, data);
414       PrintRegisterValue(reg_ctx, "ebp", nullptr, 4, data);
415       PrintRegisterValue(reg_ctx, "esp", nullptr, 4, data);
416       PrintRegisterValue(reg_ctx, "ss", nullptr, 4, data);
417       PrintRegisterValue(reg_ctx, "eflags", nullptr, 4, data);
418       PrintRegisterValue(reg_ctx, "eip", nullptr, 4, data);
419       PrintRegisterValue(reg_ctx, "cs", nullptr, 4, data);
420       PrintRegisterValue(reg_ctx, "ds", nullptr, 4, data);
421       PrintRegisterValue(reg_ctx, "es", nullptr, 4, data);
422       PrintRegisterValue(reg_ctx, "fs", nullptr, 4, data);
423       PrintRegisterValue(reg_ctx, "gs", nullptr, 4, data);
424 
425       // Write out the EXC registers
426       data.PutHex32(EXCRegSet);
427       data.PutHex32(EXCWordCount);
428       PrintRegisterValue(reg_ctx, "trapno", nullptr, 4, data);
429       PrintRegisterValue(reg_ctx, "err", nullptr, 4, data);
430       PrintRegisterValue(reg_ctx, "faultvaddr", nullptr, 4, data);
431       return true;
432     }
433     return false;
434   }
435 
436 protected:
437   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
438 
439   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
440 
441   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
442 
443   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
444     return 0;
445   }
446 
447   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
448     return 0;
449   }
450 
451   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
452     return 0;
453   }
454 };
455 
456 class RegisterContextDarwin_arm_Mach : public RegisterContextDarwin_arm {
457 public:
458   RegisterContextDarwin_arm_Mach(lldb_private::Thread &thread,
459                                  const DataExtractor &data)
460       : RegisterContextDarwin_arm(thread, 0) {
461     SetRegisterDataFrom_LC_THREAD(data);
462   }
463 
464   void InvalidateAllRegisters() override {
465     // Do nothing... registers are always valid...
466   }
467 
468   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
469     lldb::offset_t offset = 0;
470     SetError(GPRRegSet, Read, -1);
471     SetError(FPURegSet, Read, -1);
472     SetError(EXCRegSet, Read, -1);
473     bool done = false;
474 
475     while (!done) {
476       int flavor = data.GetU32(&offset);
477       uint32_t count = data.GetU32(&offset);
478       lldb::offset_t next_thread_state = offset + (count * 4);
479       switch (flavor) {
480       case GPRAltRegSet:
481       case GPRRegSet:
482         // On ARM, the CPSR register is also included in the count but it is
483         // not included in gpr.r so loop until (count-1).
484         for (uint32_t i = 0; i < (count - 1); ++i) {
485           gpr.r[i] = data.GetU32(&offset);
486         }
487         // Save cpsr explicitly.
488         gpr.cpsr = data.GetU32(&offset);
489 
490         SetError(GPRRegSet, Read, 0);
491         offset = next_thread_state;
492         break;
493 
494       case FPURegSet: {
495         uint8_t *fpu_reg_buf = (uint8_t *)&fpu.floats.s[0];
496         const int fpu_reg_buf_size = sizeof(fpu.floats);
497         if (data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
498                               fpu_reg_buf) == fpu_reg_buf_size) {
499           offset += fpu_reg_buf_size;
500           fpu.fpscr = data.GetU32(&offset);
501           SetError(FPURegSet, Read, 0);
502         } else {
503           done = true;
504         }
505       }
506         offset = next_thread_state;
507         break;
508 
509       case EXCRegSet:
510         if (count == 3) {
511           exc.exception = data.GetU32(&offset);
512           exc.fsr = data.GetU32(&offset);
513           exc.far = data.GetU32(&offset);
514           SetError(EXCRegSet, Read, 0);
515         }
516         done = true;
517         offset = next_thread_state;
518         break;
519 
520       // Unknown register set flavor, stop trying to parse.
521       default:
522         done = true;
523       }
524     }
525   }
526 
527   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
528     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
529     if (reg_ctx_sp) {
530       RegisterContext *reg_ctx = reg_ctx_sp.get();
531 
532       data.PutHex32(GPRRegSet); // Flavor
533       data.PutHex32(GPRWordCount);
534       PrintRegisterValue(reg_ctx, "r0", nullptr, 4, data);
535       PrintRegisterValue(reg_ctx, "r1", nullptr, 4, data);
536       PrintRegisterValue(reg_ctx, "r2", nullptr, 4, data);
537       PrintRegisterValue(reg_ctx, "r3", nullptr, 4, data);
538       PrintRegisterValue(reg_ctx, "r4", nullptr, 4, data);
539       PrintRegisterValue(reg_ctx, "r5", nullptr, 4, data);
540       PrintRegisterValue(reg_ctx, "r6", nullptr, 4, data);
541       PrintRegisterValue(reg_ctx, "r7", nullptr, 4, data);
542       PrintRegisterValue(reg_ctx, "r8", nullptr, 4, data);
543       PrintRegisterValue(reg_ctx, "r9", nullptr, 4, data);
544       PrintRegisterValue(reg_ctx, "r10", nullptr, 4, data);
545       PrintRegisterValue(reg_ctx, "r11", nullptr, 4, data);
546       PrintRegisterValue(reg_ctx, "r12", nullptr, 4, data);
547       PrintRegisterValue(reg_ctx, "sp", nullptr, 4, data);
548       PrintRegisterValue(reg_ctx, "lr", nullptr, 4, data);
549       PrintRegisterValue(reg_ctx, "pc", nullptr, 4, data);
550       PrintRegisterValue(reg_ctx, "cpsr", nullptr, 4, data);
551 
552       // Write out the EXC registers
553       //            data.PutHex32 (EXCRegSet);
554       //            data.PutHex32 (EXCWordCount);
555       //            WriteRegister (reg_ctx, "exception", NULL, 4, data);
556       //            WriteRegister (reg_ctx, "fsr", NULL, 4, data);
557       //            WriteRegister (reg_ctx, "far", NULL, 4, data);
558       return true;
559     }
560     return false;
561   }
562 
563 protected:
564   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
565 
566   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
567 
568   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
569 
570   int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
571 
572   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
573     return 0;
574   }
575 
576   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
577     return 0;
578   }
579 
580   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
581     return 0;
582   }
583 
584   int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
585     return -1;
586   }
587 };
588 
589 class RegisterContextDarwin_arm64_Mach : public RegisterContextDarwin_arm64 {
590 public:
591   RegisterContextDarwin_arm64_Mach(lldb_private::Thread &thread,
592                                    const DataExtractor &data)
593       : RegisterContextDarwin_arm64(thread, 0) {
594     SetRegisterDataFrom_LC_THREAD(data);
595   }
596 
597   void InvalidateAllRegisters() override {
598     // Do nothing... registers are always valid...
599   }
600 
601   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
602     lldb::offset_t offset = 0;
603     SetError(GPRRegSet, Read, -1);
604     SetError(FPURegSet, Read, -1);
605     SetError(EXCRegSet, Read, -1);
606     bool done = false;
607     while (!done) {
608       int flavor = data.GetU32(&offset);
609       uint32_t count = data.GetU32(&offset);
610       lldb::offset_t next_thread_state = offset + (count * 4);
611       switch (flavor) {
612       case GPRRegSet:
613         // x0-x29 + fp + lr + sp + pc (== 33 64-bit registers) plus cpsr (1
614         // 32-bit register)
615         if (count >= (33 * 2) + 1) {
616           for (uint32_t i = 0; i < 29; ++i)
617             gpr.x[i] = data.GetU64(&offset);
618           gpr.fp = data.GetU64(&offset);
619           gpr.lr = data.GetU64(&offset);
620           gpr.sp = data.GetU64(&offset);
621           gpr.pc = data.GetU64(&offset);
622           gpr.cpsr = data.GetU32(&offset);
623           SetError(GPRRegSet, Read, 0);
624         }
625         offset = next_thread_state;
626         break;
627       case FPURegSet: {
628         uint8_t *fpu_reg_buf = (uint8_t *)&fpu.v[0];
629         const int fpu_reg_buf_size = sizeof(fpu);
630         if (fpu_reg_buf_size == count * sizeof(uint32_t) &&
631             data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
632                               fpu_reg_buf) == fpu_reg_buf_size) {
633           SetError(FPURegSet, Read, 0);
634         } else {
635           done = true;
636         }
637       }
638         offset = next_thread_state;
639         break;
640       case EXCRegSet:
641         if (count == 4) {
642           exc.far = data.GetU64(&offset);
643           exc.esr = data.GetU32(&offset);
644           exc.exception = data.GetU32(&offset);
645           SetError(EXCRegSet, Read, 0);
646         }
647         offset = next_thread_state;
648         break;
649       default:
650         done = true;
651         break;
652       }
653     }
654   }
655 
656   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
657     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
658     if (reg_ctx_sp) {
659       RegisterContext *reg_ctx = reg_ctx_sp.get();
660 
661       data.PutHex32(GPRRegSet); // Flavor
662       data.PutHex32(GPRWordCount);
663       PrintRegisterValue(reg_ctx, "x0", nullptr, 8, data);
664       PrintRegisterValue(reg_ctx, "x1", nullptr, 8, data);
665       PrintRegisterValue(reg_ctx, "x2", nullptr, 8, data);
666       PrintRegisterValue(reg_ctx, "x3", nullptr, 8, data);
667       PrintRegisterValue(reg_ctx, "x4", nullptr, 8, data);
668       PrintRegisterValue(reg_ctx, "x5", nullptr, 8, data);
669       PrintRegisterValue(reg_ctx, "x6", nullptr, 8, data);
670       PrintRegisterValue(reg_ctx, "x7", nullptr, 8, data);
671       PrintRegisterValue(reg_ctx, "x8", nullptr, 8, data);
672       PrintRegisterValue(reg_ctx, "x9", nullptr, 8, data);
673       PrintRegisterValue(reg_ctx, "x10", nullptr, 8, data);
674       PrintRegisterValue(reg_ctx, "x11", nullptr, 8, data);
675       PrintRegisterValue(reg_ctx, "x12", nullptr, 8, data);
676       PrintRegisterValue(reg_ctx, "x13", nullptr, 8, data);
677       PrintRegisterValue(reg_ctx, "x14", nullptr, 8, data);
678       PrintRegisterValue(reg_ctx, "x15", nullptr, 8, data);
679       PrintRegisterValue(reg_ctx, "x16", nullptr, 8, data);
680       PrintRegisterValue(reg_ctx, "x17", nullptr, 8, data);
681       PrintRegisterValue(reg_ctx, "x18", nullptr, 8, data);
682       PrintRegisterValue(reg_ctx, "x19", nullptr, 8, data);
683       PrintRegisterValue(reg_ctx, "x20", nullptr, 8, data);
684       PrintRegisterValue(reg_ctx, "x21", nullptr, 8, data);
685       PrintRegisterValue(reg_ctx, "x22", nullptr, 8, data);
686       PrintRegisterValue(reg_ctx, "x23", nullptr, 8, data);
687       PrintRegisterValue(reg_ctx, "x24", nullptr, 8, data);
688       PrintRegisterValue(reg_ctx, "x25", nullptr, 8, data);
689       PrintRegisterValue(reg_ctx, "x26", nullptr, 8, data);
690       PrintRegisterValue(reg_ctx, "x27", nullptr, 8, data);
691       PrintRegisterValue(reg_ctx, "x28", nullptr, 8, data);
692       PrintRegisterValue(reg_ctx, "fp", nullptr, 8, data);
693       PrintRegisterValue(reg_ctx, "lr", nullptr, 8, data);
694       PrintRegisterValue(reg_ctx, "sp", nullptr, 8, data);
695       PrintRegisterValue(reg_ctx, "pc", nullptr, 8, data);
696       PrintRegisterValue(reg_ctx, "cpsr", nullptr, 4, data);
697 
698       // Write out the EXC registers
699       //            data.PutHex32 (EXCRegSet);
700       //            data.PutHex32 (EXCWordCount);
701       //            WriteRegister (reg_ctx, "far", NULL, 8, data);
702       //            WriteRegister (reg_ctx, "esr", NULL, 4, data);
703       //            WriteRegister (reg_ctx, "exception", NULL, 4, data);
704       return true;
705     }
706     return false;
707   }
708 
709 protected:
710   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
711 
712   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
713 
714   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
715 
716   int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
717 
718   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
719     return 0;
720   }
721 
722   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
723     return 0;
724   }
725 
726   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
727     return 0;
728   }
729 
730   int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
731     return -1;
732   }
733 };
734 
735 static uint32_t MachHeaderSizeFromMagic(uint32_t magic) {
736   switch (magic) {
737   case MH_MAGIC:
738   case MH_CIGAM:
739     return sizeof(struct mach_header);
740 
741   case MH_MAGIC_64:
742   case MH_CIGAM_64:
743     return sizeof(struct mach_header_64);
744     break;
745 
746   default:
747     break;
748   }
749   return 0;
750 }
751 
752 #define MACHO_NLIST_ARM_SYMBOL_IS_THUMB 0x0008
753 
754 char ObjectFileMachO::ID;
755 
756 void ObjectFileMachO::Initialize() {
757   PluginManager::RegisterPlugin(
758       GetPluginNameStatic(), GetPluginDescriptionStatic(), CreateInstance,
759       CreateMemoryInstance, GetModuleSpecifications, SaveCore);
760 }
761 
762 void ObjectFileMachO::Terminate() {
763   PluginManager::UnregisterPlugin(CreateInstance);
764 }
765 
766 lldb_private::ConstString ObjectFileMachO::GetPluginNameStatic() {
767   static ConstString g_name("mach-o");
768   return g_name;
769 }
770 
771 const char *ObjectFileMachO::GetPluginDescriptionStatic() {
772   return "Mach-o object file reader (32 and 64 bit)";
773 }
774 
775 ObjectFile *ObjectFileMachO::CreateInstance(const lldb::ModuleSP &module_sp,
776                                             DataBufferSP &data_sp,
777                                             lldb::offset_t data_offset,
778                                             const FileSpec *file,
779                                             lldb::offset_t file_offset,
780                                             lldb::offset_t length) {
781   if (!data_sp) {
782     data_sp = MapFileData(*file, length, file_offset);
783     if (!data_sp)
784       return nullptr;
785     data_offset = 0;
786   }
787 
788   if (!ObjectFileMachO::MagicBytesMatch(data_sp, data_offset, length))
789     return nullptr;
790 
791   // Update the data to contain the entire file if it doesn't already
792   if (data_sp->GetByteSize() < length) {
793     data_sp = MapFileData(*file, length, file_offset);
794     if (!data_sp)
795       return nullptr;
796     data_offset = 0;
797   }
798   auto objfile_up = std::make_unique<ObjectFileMachO>(
799       module_sp, data_sp, data_offset, file, file_offset, length);
800   if (!objfile_up || !objfile_up->ParseHeader())
801     return nullptr;
802 
803   return objfile_up.release();
804 }
805 
806 ObjectFile *ObjectFileMachO::CreateMemoryInstance(
807     const lldb::ModuleSP &module_sp, DataBufferSP &data_sp,
808     const ProcessSP &process_sp, lldb::addr_t header_addr) {
809   if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
810     std::unique_ptr<ObjectFile> objfile_up(
811         new ObjectFileMachO(module_sp, data_sp, process_sp, header_addr));
812     if (objfile_up.get() && objfile_up->ParseHeader())
813       return objfile_up.release();
814   }
815   return nullptr;
816 }
817 
818 size_t ObjectFileMachO::GetModuleSpecifications(
819     const lldb_private::FileSpec &file, lldb::DataBufferSP &data_sp,
820     lldb::offset_t data_offset, lldb::offset_t file_offset,
821     lldb::offset_t length, lldb_private::ModuleSpecList &specs) {
822   const size_t initial_count = specs.GetSize();
823 
824   if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
825     DataExtractor data;
826     data.SetData(data_sp);
827     llvm::MachO::mach_header header;
828     if (ParseHeader(data, &data_offset, header)) {
829       size_t header_and_load_cmds =
830           header.sizeofcmds + MachHeaderSizeFromMagic(header.magic);
831       if (header_and_load_cmds >= data_sp->GetByteSize()) {
832         data_sp = MapFileData(file, header_and_load_cmds, file_offset);
833         data.SetData(data_sp);
834         data_offset = MachHeaderSizeFromMagic(header.magic);
835       }
836       if (data_sp) {
837         ModuleSpec base_spec;
838         base_spec.GetFileSpec() = file;
839         base_spec.SetObjectOffset(file_offset);
840         base_spec.SetObjectSize(length);
841         GetAllArchSpecs(header, data, data_offset, base_spec, specs);
842       }
843     }
844   }
845   return specs.GetSize() - initial_count;
846 }
847 
848 ConstString ObjectFileMachO::GetSegmentNameTEXT() {
849   static ConstString g_segment_name_TEXT("__TEXT");
850   return g_segment_name_TEXT;
851 }
852 
853 ConstString ObjectFileMachO::GetSegmentNameDATA() {
854   static ConstString g_segment_name_DATA("__DATA");
855   return g_segment_name_DATA;
856 }
857 
858 ConstString ObjectFileMachO::GetSegmentNameDATA_DIRTY() {
859   static ConstString g_segment_name("__DATA_DIRTY");
860   return g_segment_name;
861 }
862 
863 ConstString ObjectFileMachO::GetSegmentNameDATA_CONST() {
864   static ConstString g_segment_name("__DATA_CONST");
865   return g_segment_name;
866 }
867 
868 ConstString ObjectFileMachO::GetSegmentNameOBJC() {
869   static ConstString g_segment_name_OBJC("__OBJC");
870   return g_segment_name_OBJC;
871 }
872 
873 ConstString ObjectFileMachO::GetSegmentNameLINKEDIT() {
874   static ConstString g_section_name_LINKEDIT("__LINKEDIT");
875   return g_section_name_LINKEDIT;
876 }
877 
878 ConstString ObjectFileMachO::GetSegmentNameDWARF() {
879   static ConstString g_section_name("__DWARF");
880   return g_section_name;
881 }
882 
883 ConstString ObjectFileMachO::GetSectionNameEHFrame() {
884   static ConstString g_section_name_eh_frame("__eh_frame");
885   return g_section_name_eh_frame;
886 }
887 
888 bool ObjectFileMachO::MagicBytesMatch(DataBufferSP &data_sp,
889                                       lldb::addr_t data_offset,
890                                       lldb::addr_t data_length) {
891   DataExtractor data;
892   data.SetData(data_sp, data_offset, data_length);
893   lldb::offset_t offset = 0;
894   uint32_t magic = data.GetU32(&offset);
895   return MachHeaderSizeFromMagic(magic) != 0;
896 }
897 
898 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
899                                  DataBufferSP &data_sp,
900                                  lldb::offset_t data_offset,
901                                  const FileSpec *file,
902                                  lldb::offset_t file_offset,
903                                  lldb::offset_t length)
904     : ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset),
905       m_mach_segments(), m_mach_sections(), m_entry_point_address(),
906       m_thread_context_offsets(), m_thread_context_offsets_valid(false),
907       m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) {
908   ::memset(&m_header, 0, sizeof(m_header));
909   ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
910 }
911 
912 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
913                                  lldb::DataBufferSP &header_data_sp,
914                                  const lldb::ProcessSP &process_sp,
915                                  lldb::addr_t header_addr)
916     : ObjectFile(module_sp, process_sp, header_addr, header_data_sp),
917       m_mach_segments(), m_mach_sections(), m_entry_point_address(),
918       m_thread_context_offsets(), m_thread_context_offsets_valid(false),
919       m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) {
920   ::memset(&m_header, 0, sizeof(m_header));
921   ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
922 }
923 
924 bool ObjectFileMachO::ParseHeader(DataExtractor &data,
925                                   lldb::offset_t *data_offset_ptr,
926                                   llvm::MachO::mach_header &header) {
927   data.SetByteOrder(endian::InlHostByteOrder());
928   // Leave magic in the original byte order
929   header.magic = data.GetU32(data_offset_ptr);
930   bool can_parse = false;
931   bool is_64_bit = false;
932   switch (header.magic) {
933   case MH_MAGIC:
934     data.SetByteOrder(endian::InlHostByteOrder());
935     data.SetAddressByteSize(4);
936     can_parse = true;
937     break;
938 
939   case MH_MAGIC_64:
940     data.SetByteOrder(endian::InlHostByteOrder());
941     data.SetAddressByteSize(8);
942     can_parse = true;
943     is_64_bit = true;
944     break;
945 
946   case MH_CIGAM:
947     data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
948                           ? eByteOrderLittle
949                           : eByteOrderBig);
950     data.SetAddressByteSize(4);
951     can_parse = true;
952     break;
953 
954   case MH_CIGAM_64:
955     data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
956                           ? eByteOrderLittle
957                           : eByteOrderBig);
958     data.SetAddressByteSize(8);
959     is_64_bit = true;
960     can_parse = true;
961     break;
962 
963   default:
964     break;
965   }
966 
967   if (can_parse) {
968     data.GetU32(data_offset_ptr, &header.cputype, 6);
969     if (is_64_bit)
970       *data_offset_ptr += 4;
971     return true;
972   } else {
973     memset(&header, 0, sizeof(header));
974   }
975   return false;
976 }
977 
978 bool ObjectFileMachO::ParseHeader() {
979   ModuleSP module_sp(GetModule());
980   if (!module_sp)
981     return false;
982 
983   std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
984   bool can_parse = false;
985   lldb::offset_t offset = 0;
986   m_data.SetByteOrder(endian::InlHostByteOrder());
987   // Leave magic in the original byte order
988   m_header.magic = m_data.GetU32(&offset);
989   switch (m_header.magic) {
990   case MH_MAGIC:
991     m_data.SetByteOrder(endian::InlHostByteOrder());
992     m_data.SetAddressByteSize(4);
993     can_parse = true;
994     break;
995 
996   case MH_MAGIC_64:
997     m_data.SetByteOrder(endian::InlHostByteOrder());
998     m_data.SetAddressByteSize(8);
999     can_parse = true;
1000     break;
1001 
1002   case MH_CIGAM:
1003     m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1004                             ? eByteOrderLittle
1005                             : eByteOrderBig);
1006     m_data.SetAddressByteSize(4);
1007     can_parse = true;
1008     break;
1009 
1010   case MH_CIGAM_64:
1011     m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1012                             ? eByteOrderLittle
1013                             : eByteOrderBig);
1014     m_data.SetAddressByteSize(8);
1015     can_parse = true;
1016     break;
1017 
1018   default:
1019     break;
1020   }
1021 
1022   if (can_parse) {
1023     m_data.GetU32(&offset, &m_header.cputype, 6);
1024 
1025     ModuleSpecList all_specs;
1026     ModuleSpec base_spec;
1027     GetAllArchSpecs(m_header, m_data, MachHeaderSizeFromMagic(m_header.magic),
1028                     base_spec, all_specs);
1029 
1030     for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
1031       ArchSpec mach_arch =
1032           all_specs.GetModuleSpecRefAtIndex(i).GetArchitecture();
1033 
1034       // Check if the module has a required architecture
1035       const ArchSpec &module_arch = module_sp->GetArchitecture();
1036       if (module_arch.IsValid() && !module_arch.IsCompatibleMatch(mach_arch))
1037         continue;
1038 
1039       if (SetModulesArchitecture(mach_arch)) {
1040         const size_t header_and_lc_size =
1041             m_header.sizeofcmds + MachHeaderSizeFromMagic(m_header.magic);
1042         if (m_data.GetByteSize() < header_and_lc_size) {
1043           DataBufferSP data_sp;
1044           ProcessSP process_sp(m_process_wp.lock());
1045           if (process_sp) {
1046             data_sp = ReadMemory(process_sp, m_memory_addr, header_and_lc_size);
1047           } else {
1048             // Read in all only the load command data from the file on disk
1049             data_sp = MapFileData(m_file, header_and_lc_size, m_file_offset);
1050             if (data_sp->GetByteSize() != header_and_lc_size)
1051               continue;
1052           }
1053           if (data_sp)
1054             m_data.SetData(data_sp);
1055         }
1056       }
1057       return true;
1058     }
1059     // None found.
1060     return false;
1061   } else {
1062     memset(&m_header, 0, sizeof(struct mach_header));
1063   }
1064   return false;
1065 }
1066 
1067 ByteOrder ObjectFileMachO::GetByteOrder() const {
1068   return m_data.GetByteOrder();
1069 }
1070 
1071 bool ObjectFileMachO::IsExecutable() const {
1072   return m_header.filetype == MH_EXECUTE;
1073 }
1074 
1075 bool ObjectFileMachO::IsDynamicLoader() const {
1076   return m_header.filetype == MH_DYLINKER;
1077 }
1078 
1079 uint32_t ObjectFileMachO::GetAddressByteSize() const {
1080   return m_data.GetAddressByteSize();
1081 }
1082 
1083 AddressClass ObjectFileMachO::GetAddressClass(lldb::addr_t file_addr) {
1084   Symtab *symtab = GetSymtab();
1085   if (!symtab)
1086     return AddressClass::eUnknown;
1087 
1088   Symbol *symbol = symtab->FindSymbolContainingFileAddress(file_addr);
1089   if (symbol) {
1090     if (symbol->ValueIsAddress()) {
1091       SectionSP section_sp(symbol->GetAddressRef().GetSection());
1092       if (section_sp) {
1093         const lldb::SectionType section_type = section_sp->GetType();
1094         switch (section_type) {
1095         case eSectionTypeInvalid:
1096           return AddressClass::eUnknown;
1097 
1098         case eSectionTypeCode:
1099           if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
1100             // For ARM we have a bit in the n_desc field of the symbol that
1101             // tells us ARM/Thumb which is bit 0x0008.
1102             if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB)
1103               return AddressClass::eCodeAlternateISA;
1104           }
1105           return AddressClass::eCode;
1106 
1107         case eSectionTypeContainer:
1108           return AddressClass::eUnknown;
1109 
1110         case eSectionTypeData:
1111         case eSectionTypeDataCString:
1112         case eSectionTypeDataCStringPointers:
1113         case eSectionTypeDataSymbolAddress:
1114         case eSectionTypeData4:
1115         case eSectionTypeData8:
1116         case eSectionTypeData16:
1117         case eSectionTypeDataPointers:
1118         case eSectionTypeZeroFill:
1119         case eSectionTypeDataObjCMessageRefs:
1120         case eSectionTypeDataObjCCFStrings:
1121         case eSectionTypeGoSymtab:
1122           return AddressClass::eData;
1123 
1124         case eSectionTypeDebug:
1125         case eSectionTypeDWARFDebugAbbrev:
1126         case eSectionTypeDWARFDebugAbbrevDwo:
1127         case eSectionTypeDWARFDebugAddr:
1128         case eSectionTypeDWARFDebugAranges:
1129         case eSectionTypeDWARFDebugCuIndex:
1130         case eSectionTypeDWARFDebugFrame:
1131         case eSectionTypeDWARFDebugInfo:
1132         case eSectionTypeDWARFDebugInfoDwo:
1133         case eSectionTypeDWARFDebugLine:
1134         case eSectionTypeDWARFDebugLineStr:
1135         case eSectionTypeDWARFDebugLoc:
1136         case eSectionTypeDWARFDebugLocLists:
1137         case eSectionTypeDWARFDebugMacInfo:
1138         case eSectionTypeDWARFDebugMacro:
1139         case eSectionTypeDWARFDebugNames:
1140         case eSectionTypeDWARFDebugPubNames:
1141         case eSectionTypeDWARFDebugPubTypes:
1142         case eSectionTypeDWARFDebugRanges:
1143         case eSectionTypeDWARFDebugRngLists:
1144         case eSectionTypeDWARFDebugRngListsDwo:
1145         case eSectionTypeDWARFDebugStr:
1146         case eSectionTypeDWARFDebugStrDwo:
1147         case eSectionTypeDWARFDebugStrOffsets:
1148         case eSectionTypeDWARFDebugStrOffsetsDwo:
1149         case eSectionTypeDWARFDebugTypes:
1150         case eSectionTypeDWARFDebugTypesDwo:
1151         case eSectionTypeDWARFAppleNames:
1152         case eSectionTypeDWARFAppleTypes:
1153         case eSectionTypeDWARFAppleNamespaces:
1154         case eSectionTypeDWARFAppleObjC:
1155         case eSectionTypeDWARFGNUDebugAltLink:
1156           return AddressClass::eDebug;
1157 
1158         case eSectionTypeEHFrame:
1159         case eSectionTypeARMexidx:
1160         case eSectionTypeARMextab:
1161         case eSectionTypeCompactUnwind:
1162           return AddressClass::eRuntime;
1163 
1164         case eSectionTypeAbsoluteAddress:
1165         case eSectionTypeELFSymbolTable:
1166         case eSectionTypeELFDynamicSymbols:
1167         case eSectionTypeELFRelocationEntries:
1168         case eSectionTypeELFDynamicLinkInfo:
1169         case eSectionTypeOther:
1170           return AddressClass::eUnknown;
1171         }
1172       }
1173     }
1174 
1175     const SymbolType symbol_type = symbol->GetType();
1176     switch (symbol_type) {
1177     case eSymbolTypeAny:
1178       return AddressClass::eUnknown;
1179     case eSymbolTypeAbsolute:
1180       return AddressClass::eUnknown;
1181 
1182     case eSymbolTypeCode:
1183     case eSymbolTypeTrampoline:
1184     case eSymbolTypeResolver:
1185       if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
1186         // For ARM we have a bit in the n_desc field of the symbol that tells
1187         // us ARM/Thumb which is bit 0x0008.
1188         if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB)
1189           return AddressClass::eCodeAlternateISA;
1190       }
1191       return AddressClass::eCode;
1192 
1193     case eSymbolTypeData:
1194       return AddressClass::eData;
1195     case eSymbolTypeRuntime:
1196       return AddressClass::eRuntime;
1197     case eSymbolTypeException:
1198       return AddressClass::eRuntime;
1199     case eSymbolTypeSourceFile:
1200       return AddressClass::eDebug;
1201     case eSymbolTypeHeaderFile:
1202       return AddressClass::eDebug;
1203     case eSymbolTypeObjectFile:
1204       return AddressClass::eDebug;
1205     case eSymbolTypeCommonBlock:
1206       return AddressClass::eDebug;
1207     case eSymbolTypeBlock:
1208       return AddressClass::eDebug;
1209     case eSymbolTypeLocal:
1210       return AddressClass::eData;
1211     case eSymbolTypeParam:
1212       return AddressClass::eData;
1213     case eSymbolTypeVariable:
1214       return AddressClass::eData;
1215     case eSymbolTypeVariableType:
1216       return AddressClass::eDebug;
1217     case eSymbolTypeLineEntry:
1218       return AddressClass::eDebug;
1219     case eSymbolTypeLineHeader:
1220       return AddressClass::eDebug;
1221     case eSymbolTypeScopeBegin:
1222       return AddressClass::eDebug;
1223     case eSymbolTypeScopeEnd:
1224       return AddressClass::eDebug;
1225     case eSymbolTypeAdditional:
1226       return AddressClass::eUnknown;
1227     case eSymbolTypeCompiler:
1228       return AddressClass::eDebug;
1229     case eSymbolTypeInstrumentation:
1230       return AddressClass::eDebug;
1231     case eSymbolTypeUndefined:
1232       return AddressClass::eUnknown;
1233     case eSymbolTypeObjCClass:
1234       return AddressClass::eRuntime;
1235     case eSymbolTypeObjCMetaClass:
1236       return AddressClass::eRuntime;
1237     case eSymbolTypeObjCIVar:
1238       return AddressClass::eRuntime;
1239     case eSymbolTypeReExported:
1240       return AddressClass::eRuntime;
1241     }
1242   }
1243   return AddressClass::eUnknown;
1244 }
1245 
1246 Symtab *ObjectFileMachO::GetSymtab() {
1247   ModuleSP module_sp(GetModule());
1248   if (module_sp) {
1249     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
1250     if (m_symtab_up == nullptr) {
1251       m_symtab_up.reset(new Symtab(this));
1252       std::lock_guard<std::recursive_mutex> symtab_guard(
1253           m_symtab_up->GetMutex());
1254       ParseSymtab();
1255       m_symtab_up->Finalize();
1256     }
1257   }
1258   return m_symtab_up.get();
1259 }
1260 
1261 bool ObjectFileMachO::IsStripped() {
1262   if (m_dysymtab.cmd == 0) {
1263     ModuleSP module_sp(GetModule());
1264     if (module_sp) {
1265       lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1266       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1267         const lldb::offset_t load_cmd_offset = offset;
1268 
1269         load_command lc;
1270         if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
1271           break;
1272         if (lc.cmd == LC_DYSYMTAB) {
1273           m_dysymtab.cmd = lc.cmd;
1274           m_dysymtab.cmdsize = lc.cmdsize;
1275           if (m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
1276                             (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2) ==
1277               nullptr) {
1278             // Clear m_dysymtab if we were unable to read all items from the
1279             // load command
1280             ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
1281           }
1282         }
1283         offset = load_cmd_offset + lc.cmdsize;
1284       }
1285     }
1286   }
1287   if (m_dysymtab.cmd)
1288     return m_dysymtab.nlocalsym <= 1;
1289   return false;
1290 }
1291 
1292 ObjectFileMachO::EncryptedFileRanges ObjectFileMachO::GetEncryptedFileRanges() {
1293   EncryptedFileRanges result;
1294   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1295 
1296   encryption_info_command encryption_cmd;
1297   for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1298     const lldb::offset_t load_cmd_offset = offset;
1299     if (m_data.GetU32(&offset, &encryption_cmd, 2) == nullptr)
1300       break;
1301 
1302     // LC_ENCRYPTION_INFO and LC_ENCRYPTION_INFO_64 have the same sizes for the
1303     // 3 fields we care about, so treat them the same.
1304     if (encryption_cmd.cmd == LC_ENCRYPTION_INFO ||
1305         encryption_cmd.cmd == LC_ENCRYPTION_INFO_64) {
1306       if (m_data.GetU32(&offset, &encryption_cmd.cryptoff, 3)) {
1307         if (encryption_cmd.cryptid != 0) {
1308           EncryptedFileRanges::Entry entry;
1309           entry.SetRangeBase(encryption_cmd.cryptoff);
1310           entry.SetByteSize(encryption_cmd.cryptsize);
1311           result.Append(entry);
1312         }
1313       }
1314     }
1315     offset = load_cmd_offset + encryption_cmd.cmdsize;
1316   }
1317 
1318   return result;
1319 }
1320 
1321 void ObjectFileMachO::SanitizeSegmentCommand(segment_command_64 &seg_cmd,
1322                                              uint32_t cmd_idx) {
1323   if (m_length == 0 || seg_cmd.filesize == 0)
1324     return;
1325 
1326   if (seg_cmd.fileoff > m_length) {
1327     // We have a load command that says it extends past the end of the file.
1328     // This is likely a corrupt file.  We don't have any way to return an error
1329     // condition here (this method was likely invoked from something like
1330     // ObjectFile::GetSectionList()), so we just null out the section contents,
1331     // and dump a message to stdout.  The most common case here is core file
1332     // debugging with a truncated file.
1333     const char *lc_segment_name =
1334         seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT";
1335     GetModule()->ReportWarning(
1336         "load command %u %s has a fileoff (0x%" PRIx64
1337         ") that extends beyond the end of the file (0x%" PRIx64
1338         "), ignoring this section",
1339         cmd_idx, lc_segment_name, seg_cmd.fileoff, m_length);
1340 
1341     seg_cmd.fileoff = 0;
1342     seg_cmd.filesize = 0;
1343   }
1344 
1345   if (seg_cmd.fileoff + seg_cmd.filesize > m_length) {
1346     // We have a load command that says it extends past the end of the file.
1347     // This is likely a corrupt file.  We don't have any way to return an error
1348     // condition here (this method was likely invoked from something like
1349     // ObjectFile::GetSectionList()), so we just null out the section contents,
1350     // and dump a message to stdout.  The most common case here is core file
1351     // debugging with a truncated file.
1352     const char *lc_segment_name =
1353         seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT";
1354     GetModule()->ReportWarning(
1355         "load command %u %s has a fileoff + filesize (0x%" PRIx64
1356         ") that extends beyond the end of the file (0x%" PRIx64
1357         "), the segment will be truncated to match",
1358         cmd_idx, lc_segment_name, seg_cmd.fileoff + seg_cmd.filesize, m_length);
1359 
1360     // Truncate the length
1361     seg_cmd.filesize = m_length - seg_cmd.fileoff;
1362   }
1363 }
1364 
1365 static uint32_t GetSegmentPermissions(const segment_command_64 &seg_cmd) {
1366   uint32_t result = 0;
1367   if (seg_cmd.initprot & VM_PROT_READ)
1368     result |= ePermissionsReadable;
1369   if (seg_cmd.initprot & VM_PROT_WRITE)
1370     result |= ePermissionsWritable;
1371   if (seg_cmd.initprot & VM_PROT_EXECUTE)
1372     result |= ePermissionsExecutable;
1373   return result;
1374 }
1375 
1376 static lldb::SectionType GetSectionType(uint32_t flags,
1377                                         ConstString section_name) {
1378 
1379   if (flags & (S_ATTR_PURE_INSTRUCTIONS | S_ATTR_SOME_INSTRUCTIONS))
1380     return eSectionTypeCode;
1381 
1382   uint32_t mach_sect_type = flags & SECTION_TYPE;
1383   static ConstString g_sect_name_objc_data("__objc_data");
1384   static ConstString g_sect_name_objc_msgrefs("__objc_msgrefs");
1385   static ConstString g_sect_name_objc_selrefs("__objc_selrefs");
1386   static ConstString g_sect_name_objc_classrefs("__objc_classrefs");
1387   static ConstString g_sect_name_objc_superrefs("__objc_superrefs");
1388   static ConstString g_sect_name_objc_const("__objc_const");
1389   static ConstString g_sect_name_objc_classlist("__objc_classlist");
1390   static ConstString g_sect_name_cfstring("__cfstring");
1391 
1392   static ConstString g_sect_name_dwarf_debug_abbrev("__debug_abbrev");
1393   static ConstString g_sect_name_dwarf_debug_aranges("__debug_aranges");
1394   static ConstString g_sect_name_dwarf_debug_frame("__debug_frame");
1395   static ConstString g_sect_name_dwarf_debug_info("__debug_info");
1396   static ConstString g_sect_name_dwarf_debug_line("__debug_line");
1397   static ConstString g_sect_name_dwarf_debug_loc("__debug_loc");
1398   static ConstString g_sect_name_dwarf_debug_loclists("__debug_loclists");
1399   static ConstString g_sect_name_dwarf_debug_macinfo("__debug_macinfo");
1400   static ConstString g_sect_name_dwarf_debug_names("__debug_names");
1401   static ConstString g_sect_name_dwarf_debug_pubnames("__debug_pubnames");
1402   static ConstString g_sect_name_dwarf_debug_pubtypes("__debug_pubtypes");
1403   static ConstString g_sect_name_dwarf_debug_ranges("__debug_ranges");
1404   static ConstString g_sect_name_dwarf_debug_str("__debug_str");
1405   static ConstString g_sect_name_dwarf_debug_types("__debug_types");
1406   static ConstString g_sect_name_dwarf_apple_names("__apple_names");
1407   static ConstString g_sect_name_dwarf_apple_types("__apple_types");
1408   static ConstString g_sect_name_dwarf_apple_namespaces("__apple_namespac");
1409   static ConstString g_sect_name_dwarf_apple_objc("__apple_objc");
1410   static ConstString g_sect_name_eh_frame("__eh_frame");
1411   static ConstString g_sect_name_compact_unwind("__unwind_info");
1412   static ConstString g_sect_name_text("__text");
1413   static ConstString g_sect_name_data("__data");
1414   static ConstString g_sect_name_go_symtab("__gosymtab");
1415 
1416   if (section_name == g_sect_name_dwarf_debug_abbrev)
1417     return eSectionTypeDWARFDebugAbbrev;
1418   if (section_name == g_sect_name_dwarf_debug_aranges)
1419     return eSectionTypeDWARFDebugAranges;
1420   if (section_name == g_sect_name_dwarf_debug_frame)
1421     return eSectionTypeDWARFDebugFrame;
1422   if (section_name == g_sect_name_dwarf_debug_info)
1423     return eSectionTypeDWARFDebugInfo;
1424   if (section_name == g_sect_name_dwarf_debug_line)
1425     return eSectionTypeDWARFDebugLine;
1426   if (section_name == g_sect_name_dwarf_debug_loc)
1427     return eSectionTypeDWARFDebugLoc;
1428   if (section_name == g_sect_name_dwarf_debug_loclists)
1429     return eSectionTypeDWARFDebugLocLists;
1430   if (section_name == g_sect_name_dwarf_debug_macinfo)
1431     return eSectionTypeDWARFDebugMacInfo;
1432   if (section_name == g_sect_name_dwarf_debug_names)
1433     return eSectionTypeDWARFDebugNames;
1434   if (section_name == g_sect_name_dwarf_debug_pubnames)
1435     return eSectionTypeDWARFDebugPubNames;
1436   if (section_name == g_sect_name_dwarf_debug_pubtypes)
1437     return eSectionTypeDWARFDebugPubTypes;
1438   if (section_name == g_sect_name_dwarf_debug_ranges)
1439     return eSectionTypeDWARFDebugRanges;
1440   if (section_name == g_sect_name_dwarf_debug_str)
1441     return eSectionTypeDWARFDebugStr;
1442   if (section_name == g_sect_name_dwarf_debug_types)
1443     return eSectionTypeDWARFDebugTypes;
1444   if (section_name == g_sect_name_dwarf_apple_names)
1445     return eSectionTypeDWARFAppleNames;
1446   if (section_name == g_sect_name_dwarf_apple_types)
1447     return eSectionTypeDWARFAppleTypes;
1448   if (section_name == g_sect_name_dwarf_apple_namespaces)
1449     return eSectionTypeDWARFAppleNamespaces;
1450   if (section_name == g_sect_name_dwarf_apple_objc)
1451     return eSectionTypeDWARFAppleObjC;
1452   if (section_name == g_sect_name_objc_selrefs)
1453     return eSectionTypeDataCStringPointers;
1454   if (section_name == g_sect_name_objc_msgrefs)
1455     return eSectionTypeDataObjCMessageRefs;
1456   if (section_name == g_sect_name_eh_frame)
1457     return eSectionTypeEHFrame;
1458   if (section_name == g_sect_name_compact_unwind)
1459     return eSectionTypeCompactUnwind;
1460   if (section_name == g_sect_name_cfstring)
1461     return eSectionTypeDataObjCCFStrings;
1462   if (section_name == g_sect_name_go_symtab)
1463     return eSectionTypeGoSymtab;
1464   if (section_name == g_sect_name_objc_data ||
1465       section_name == g_sect_name_objc_classrefs ||
1466       section_name == g_sect_name_objc_superrefs ||
1467       section_name == g_sect_name_objc_const ||
1468       section_name == g_sect_name_objc_classlist) {
1469     return eSectionTypeDataPointers;
1470   }
1471 
1472   switch (mach_sect_type) {
1473   // TODO: categorize sections by other flags for regular sections
1474   case S_REGULAR:
1475     if (section_name == g_sect_name_text)
1476       return eSectionTypeCode;
1477     if (section_name == g_sect_name_data)
1478       return eSectionTypeData;
1479     return eSectionTypeOther;
1480   case S_ZEROFILL:
1481     return eSectionTypeZeroFill;
1482   case S_CSTRING_LITERALS: // section with only literal C strings
1483     return eSectionTypeDataCString;
1484   case S_4BYTE_LITERALS: // section with only 4 byte literals
1485     return eSectionTypeData4;
1486   case S_8BYTE_LITERALS: // section with only 8 byte literals
1487     return eSectionTypeData8;
1488   case S_LITERAL_POINTERS: // section with only pointers to literals
1489     return eSectionTypeDataPointers;
1490   case S_NON_LAZY_SYMBOL_POINTERS: // section with only non-lazy symbol pointers
1491     return eSectionTypeDataPointers;
1492   case S_LAZY_SYMBOL_POINTERS: // section with only lazy symbol pointers
1493     return eSectionTypeDataPointers;
1494   case S_SYMBOL_STUBS: // section with only symbol stubs, byte size of stub in
1495                        // the reserved2 field
1496     return eSectionTypeCode;
1497   case S_MOD_INIT_FUNC_POINTERS: // section with only function pointers for
1498                                  // initialization
1499     return eSectionTypeDataPointers;
1500   case S_MOD_TERM_FUNC_POINTERS: // section with only function pointers for
1501                                  // termination
1502     return eSectionTypeDataPointers;
1503   case S_COALESCED:
1504     return eSectionTypeOther;
1505   case S_GB_ZEROFILL:
1506     return eSectionTypeZeroFill;
1507   case S_INTERPOSING: // section with only pairs of function pointers for
1508                       // interposing
1509     return eSectionTypeCode;
1510   case S_16BYTE_LITERALS: // section with only 16 byte literals
1511     return eSectionTypeData16;
1512   case S_DTRACE_DOF:
1513     return eSectionTypeDebug;
1514   case S_LAZY_DYLIB_SYMBOL_POINTERS:
1515     return eSectionTypeDataPointers;
1516   default:
1517     return eSectionTypeOther;
1518   }
1519 }
1520 
1521 struct ObjectFileMachO::SegmentParsingContext {
1522   const EncryptedFileRanges EncryptedRanges;
1523   lldb_private::SectionList &UnifiedList;
1524   uint32_t NextSegmentIdx = 0;
1525   uint32_t NextSectionIdx = 0;
1526   bool FileAddressesChanged = false;
1527 
1528   SegmentParsingContext(EncryptedFileRanges EncryptedRanges,
1529                         lldb_private::SectionList &UnifiedList)
1530       : EncryptedRanges(std::move(EncryptedRanges)), UnifiedList(UnifiedList) {}
1531 };
1532 
1533 void ObjectFileMachO::ProcessSegmentCommand(const load_command &load_cmd_,
1534                                             lldb::offset_t offset,
1535                                             uint32_t cmd_idx,
1536                                             SegmentParsingContext &context) {
1537   segment_command_64 load_cmd;
1538   memcpy(&load_cmd, &load_cmd_, sizeof(load_cmd_));
1539 
1540   if (!m_data.GetU8(&offset, (uint8_t *)load_cmd.segname, 16))
1541     return;
1542 
1543   ModuleSP module_sp = GetModule();
1544   const bool is_core = GetType() == eTypeCoreFile;
1545   const bool is_dsym = (m_header.filetype == MH_DSYM);
1546   bool add_section = true;
1547   bool add_to_unified = true;
1548   ConstString const_segname(
1549       load_cmd.segname, strnlen(load_cmd.segname, sizeof(load_cmd.segname)));
1550 
1551   SectionSP unified_section_sp(
1552       context.UnifiedList.FindSectionByName(const_segname));
1553   if (is_dsym && unified_section_sp) {
1554     if (const_segname == GetSegmentNameLINKEDIT()) {
1555       // We need to keep the __LINKEDIT segment private to this object file
1556       // only
1557       add_to_unified = false;
1558     } else {
1559       // This is the dSYM file and this section has already been created by the
1560       // object file, no need to create it.
1561       add_section = false;
1562     }
1563   }
1564   load_cmd.vmaddr = m_data.GetAddress(&offset);
1565   load_cmd.vmsize = m_data.GetAddress(&offset);
1566   load_cmd.fileoff = m_data.GetAddress(&offset);
1567   load_cmd.filesize = m_data.GetAddress(&offset);
1568   if (!m_data.GetU32(&offset, &load_cmd.maxprot, 4))
1569     return;
1570 
1571   SanitizeSegmentCommand(load_cmd, cmd_idx);
1572 
1573   const uint32_t segment_permissions = GetSegmentPermissions(load_cmd);
1574   const bool segment_is_encrypted =
1575       (load_cmd.flags & SG_PROTECTED_VERSION_1) != 0;
1576 
1577   // Keep a list of mach segments around in case we need to get at data that
1578   // isn't stored in the abstracted Sections.
1579   m_mach_segments.push_back(load_cmd);
1580 
1581   // Use a segment ID of the segment index shifted left by 8 so they never
1582   // conflict with any of the sections.
1583   SectionSP segment_sp;
1584   if (add_section && (const_segname || is_core)) {
1585     segment_sp = std::make_shared<Section>(
1586         module_sp, // Module to which this section belongs
1587         this,      // Object file to which this sections belongs
1588         ++context.NextSegmentIdx
1589             << 8, // Section ID is the 1 based segment index
1590         // shifted right by 8 bits as not to collide with any of the 256
1591         // section IDs that are possible
1592         const_segname,         // Name of this section
1593         eSectionTypeContainer, // This section is a container of other
1594         // sections.
1595         load_cmd.vmaddr, // File VM address == addresses as they are
1596         // found in the object file
1597         load_cmd.vmsize,  // VM size in bytes of this section
1598         load_cmd.fileoff, // Offset to the data for this section in
1599         // the file
1600         load_cmd.filesize, // Size in bytes of this section as found
1601         // in the file
1602         0,               // Segments have no alignment information
1603         load_cmd.flags); // Flags for this section
1604 
1605     segment_sp->SetIsEncrypted(segment_is_encrypted);
1606     m_sections_up->AddSection(segment_sp);
1607     segment_sp->SetPermissions(segment_permissions);
1608     if (add_to_unified)
1609       context.UnifiedList.AddSection(segment_sp);
1610   } else if (unified_section_sp) {
1611     if (is_dsym && unified_section_sp->GetFileAddress() != load_cmd.vmaddr) {
1612       // Check to see if the module was read from memory?
1613       if (module_sp->GetObjectFile()->GetBaseAddress().IsValid()) {
1614         // We have a module that is in memory and needs to have its file
1615         // address adjusted. We need to do this because when we load a file
1616         // from memory, its addresses will be slid already, yet the addresses
1617         // in the new symbol file will still be unslid.  Since everything is
1618         // stored as section offset, this shouldn't cause any problems.
1619 
1620         // Make sure we've parsed the symbol table from the ObjectFile before
1621         // we go around changing its Sections.
1622         module_sp->GetObjectFile()->GetSymtab();
1623         // eh_frame would present the same problems but we parse that on a per-
1624         // function basis as-needed so it's more difficult to remove its use of
1625         // the Sections.  Realistically, the environments where this code path
1626         // will be taken will not have eh_frame sections.
1627 
1628         unified_section_sp->SetFileAddress(load_cmd.vmaddr);
1629 
1630         // Notify the module that the section addresses have been changed once
1631         // we're done so any file-address caches can be updated.
1632         context.FileAddressesChanged = true;
1633       }
1634     }
1635     m_sections_up->AddSection(unified_section_sp);
1636   }
1637 
1638   struct section_64 sect64;
1639   ::memset(&sect64, 0, sizeof(sect64));
1640   // Push a section into our mach sections for the section at index zero
1641   // (NO_SECT) if we don't have any mach sections yet...
1642   if (m_mach_sections.empty())
1643     m_mach_sections.push_back(sect64);
1644   uint32_t segment_sect_idx;
1645   const lldb::user_id_t first_segment_sectID = context.NextSectionIdx + 1;
1646 
1647   const uint32_t num_u32s = load_cmd.cmd == LC_SEGMENT ? 7 : 8;
1648   for (segment_sect_idx = 0; segment_sect_idx < load_cmd.nsects;
1649        ++segment_sect_idx) {
1650     if (m_data.GetU8(&offset, (uint8_t *)sect64.sectname,
1651                      sizeof(sect64.sectname)) == nullptr)
1652       break;
1653     if (m_data.GetU8(&offset, (uint8_t *)sect64.segname,
1654                      sizeof(sect64.segname)) == nullptr)
1655       break;
1656     sect64.addr = m_data.GetAddress(&offset);
1657     sect64.size = m_data.GetAddress(&offset);
1658 
1659     if (m_data.GetU32(&offset, &sect64.offset, num_u32s) == nullptr)
1660       break;
1661 
1662     // Keep a list of mach sections around in case we need to get at data that
1663     // isn't stored in the abstracted Sections.
1664     m_mach_sections.push_back(sect64);
1665 
1666     if (add_section) {
1667       ConstString section_name(
1668           sect64.sectname, strnlen(sect64.sectname, sizeof(sect64.sectname)));
1669       if (!const_segname) {
1670         // We have a segment with no name so we need to conjure up segments
1671         // that correspond to the section's segname if there isn't already such
1672         // a section. If there is such a section, we resize the section so that
1673         // it spans all sections.  We also mark these sections as fake so
1674         // address matches don't hit if they land in the gaps between the child
1675         // sections.
1676         const_segname.SetTrimmedCStringWithLength(sect64.segname,
1677                                                   sizeof(sect64.segname));
1678         segment_sp = context.UnifiedList.FindSectionByName(const_segname);
1679         if (segment_sp.get()) {
1680           Section *segment = segment_sp.get();
1681           // Grow the section size as needed.
1682           const lldb::addr_t sect64_min_addr = sect64.addr;
1683           const lldb::addr_t sect64_max_addr = sect64_min_addr + sect64.size;
1684           const lldb::addr_t curr_seg_byte_size = segment->GetByteSize();
1685           const lldb::addr_t curr_seg_min_addr = segment->GetFileAddress();
1686           const lldb::addr_t curr_seg_max_addr =
1687               curr_seg_min_addr + curr_seg_byte_size;
1688           if (sect64_min_addr >= curr_seg_min_addr) {
1689             const lldb::addr_t new_seg_byte_size =
1690                 sect64_max_addr - curr_seg_min_addr;
1691             // Only grow the section size if needed
1692             if (new_seg_byte_size > curr_seg_byte_size)
1693               segment->SetByteSize(new_seg_byte_size);
1694           } else {
1695             // We need to change the base address of the segment and adjust the
1696             // child section offsets for all existing children.
1697             const lldb::addr_t slide_amount =
1698                 sect64_min_addr - curr_seg_min_addr;
1699             segment->Slide(slide_amount, false);
1700             segment->GetChildren().Slide(-slide_amount, false);
1701             segment->SetByteSize(curr_seg_max_addr - sect64_min_addr);
1702           }
1703 
1704           // Grow the section size as needed.
1705           if (sect64.offset) {
1706             const lldb::addr_t segment_min_file_offset =
1707                 segment->GetFileOffset();
1708             const lldb::addr_t segment_max_file_offset =
1709                 segment_min_file_offset + segment->GetFileSize();
1710 
1711             const lldb::addr_t section_min_file_offset = sect64.offset;
1712             const lldb::addr_t section_max_file_offset =
1713                 section_min_file_offset + sect64.size;
1714             const lldb::addr_t new_file_offset =
1715                 std::min(section_min_file_offset, segment_min_file_offset);
1716             const lldb::addr_t new_file_size =
1717                 std::max(section_max_file_offset, segment_max_file_offset) -
1718                 new_file_offset;
1719             segment->SetFileOffset(new_file_offset);
1720             segment->SetFileSize(new_file_size);
1721           }
1722         } else {
1723           // Create a fake section for the section's named segment
1724           segment_sp = std::make_shared<Section>(
1725               segment_sp, // Parent section
1726               module_sp,  // Module to which this section belongs
1727               this,       // Object file to which this section belongs
1728               ++context.NextSegmentIdx
1729                   << 8, // Section ID is the 1 based segment index
1730               // shifted right by 8 bits as not to
1731               // collide with any of the 256 section IDs
1732               // that are possible
1733               const_segname,         // Name of this section
1734               eSectionTypeContainer, // This section is a container of
1735               // other sections.
1736               sect64.addr, // File VM address == addresses as they are
1737               // found in the object file
1738               sect64.size,   // VM size in bytes of this section
1739               sect64.offset, // Offset to the data for this section in
1740               // the file
1741               sect64.offset ? sect64.size : 0, // Size in bytes of
1742               // this section as
1743               // found in the file
1744               sect64.align,
1745               load_cmd.flags); // Flags for this section
1746           segment_sp->SetIsFake(true);
1747           segment_sp->SetPermissions(segment_permissions);
1748           m_sections_up->AddSection(segment_sp);
1749           if (add_to_unified)
1750             context.UnifiedList.AddSection(segment_sp);
1751           segment_sp->SetIsEncrypted(segment_is_encrypted);
1752         }
1753       }
1754       assert(segment_sp.get());
1755 
1756       lldb::SectionType sect_type = GetSectionType(sect64.flags, section_name);
1757 
1758       SectionSP section_sp(new Section(
1759           segment_sp, module_sp, this, ++context.NextSectionIdx, section_name,
1760           sect_type, sect64.addr - segment_sp->GetFileAddress(), sect64.size,
1761           sect64.offset, sect64.offset == 0 ? 0 : sect64.size, sect64.align,
1762           sect64.flags));
1763       // Set the section to be encrypted to match the segment
1764 
1765       bool section_is_encrypted = false;
1766       if (!segment_is_encrypted && load_cmd.filesize != 0)
1767         section_is_encrypted = context.EncryptedRanges.FindEntryThatContains(
1768                                    sect64.offset) != nullptr;
1769 
1770       section_sp->SetIsEncrypted(segment_is_encrypted || section_is_encrypted);
1771       section_sp->SetPermissions(segment_permissions);
1772       segment_sp->GetChildren().AddSection(section_sp);
1773 
1774       if (segment_sp->IsFake()) {
1775         segment_sp.reset();
1776         const_segname.Clear();
1777       }
1778     }
1779   }
1780   if (segment_sp && is_dsym) {
1781     if (first_segment_sectID <= context.NextSectionIdx) {
1782       lldb::user_id_t sect_uid;
1783       for (sect_uid = first_segment_sectID; sect_uid <= context.NextSectionIdx;
1784            ++sect_uid) {
1785         SectionSP curr_section_sp(
1786             segment_sp->GetChildren().FindSectionByID(sect_uid));
1787         SectionSP next_section_sp;
1788         if (sect_uid + 1 <= context.NextSectionIdx)
1789           next_section_sp =
1790               segment_sp->GetChildren().FindSectionByID(sect_uid + 1);
1791 
1792         if (curr_section_sp.get()) {
1793           if (curr_section_sp->GetByteSize() == 0) {
1794             if (next_section_sp.get() != nullptr)
1795               curr_section_sp->SetByteSize(next_section_sp->GetFileAddress() -
1796                                            curr_section_sp->GetFileAddress());
1797             else
1798               curr_section_sp->SetByteSize(load_cmd.vmsize);
1799           }
1800         }
1801       }
1802     }
1803   }
1804 }
1805 
1806 void ObjectFileMachO::ProcessDysymtabCommand(const load_command &load_cmd,
1807                                              lldb::offset_t offset) {
1808   m_dysymtab.cmd = load_cmd.cmd;
1809   m_dysymtab.cmdsize = load_cmd.cmdsize;
1810   m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
1811                 (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2);
1812 }
1813 
1814 void ObjectFileMachO::CreateSections(SectionList &unified_section_list) {
1815   if (m_sections_up)
1816     return;
1817 
1818   m_sections_up.reset(new SectionList());
1819 
1820   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1821   // bool dump_sections = false;
1822   ModuleSP module_sp(GetModule());
1823 
1824   offset = MachHeaderSizeFromMagic(m_header.magic);
1825 
1826   SegmentParsingContext context(GetEncryptedFileRanges(), unified_section_list);
1827   struct load_command load_cmd;
1828   for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1829     const lldb::offset_t load_cmd_offset = offset;
1830     if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
1831       break;
1832 
1833     if (load_cmd.cmd == LC_SEGMENT || load_cmd.cmd == LC_SEGMENT_64)
1834       ProcessSegmentCommand(load_cmd, offset, i, context);
1835     else if (load_cmd.cmd == LC_DYSYMTAB)
1836       ProcessDysymtabCommand(load_cmd, offset);
1837 
1838     offset = load_cmd_offset + load_cmd.cmdsize;
1839   }
1840 
1841   if (context.FileAddressesChanged && module_sp)
1842     module_sp->SectionFileAddressesChanged();
1843 }
1844 
1845 class MachSymtabSectionInfo {
1846 public:
1847   MachSymtabSectionInfo(SectionList *section_list)
1848       : m_section_list(section_list), m_section_infos() {
1849     // Get the number of sections down to a depth of 1 to include all segments
1850     // and their sections, but no other sections that may be added for debug
1851     // map or
1852     m_section_infos.resize(section_list->GetNumSections(1));
1853   }
1854 
1855   SectionSP GetSection(uint8_t n_sect, addr_t file_addr) {
1856     if (n_sect == 0)
1857       return SectionSP();
1858     if (n_sect < m_section_infos.size()) {
1859       if (!m_section_infos[n_sect].section_sp) {
1860         SectionSP section_sp(m_section_list->FindSectionByID(n_sect));
1861         m_section_infos[n_sect].section_sp = section_sp;
1862         if (section_sp) {
1863           m_section_infos[n_sect].vm_range.SetBaseAddress(
1864               section_sp->GetFileAddress());
1865           m_section_infos[n_sect].vm_range.SetByteSize(
1866               section_sp->GetByteSize());
1867         } else {
1868           Host::SystemLog(Host::eSystemLogError,
1869                           "error: unable to find section for section %u\n",
1870                           n_sect);
1871         }
1872       }
1873       if (m_section_infos[n_sect].vm_range.Contains(file_addr)) {
1874         // Symbol is in section.
1875         return m_section_infos[n_sect].section_sp;
1876       } else if (m_section_infos[n_sect].vm_range.GetByteSize() == 0 &&
1877                  m_section_infos[n_sect].vm_range.GetBaseAddress() ==
1878                      file_addr) {
1879         // Symbol is in section with zero size, but has the same start address
1880         // as the section. This can happen with linker symbols (symbols that
1881         // start with the letter 'l' or 'L'.
1882         return m_section_infos[n_sect].section_sp;
1883       }
1884     }
1885     return m_section_list->FindSectionContainingFileAddress(file_addr);
1886   }
1887 
1888 protected:
1889   struct SectionInfo {
1890     SectionInfo() : vm_range(), section_sp() {}
1891 
1892     VMRange vm_range;
1893     SectionSP section_sp;
1894   };
1895   SectionList *m_section_list;
1896   std::vector<SectionInfo> m_section_infos;
1897 };
1898 
1899 struct TrieEntry {
1900   void Dump() const {
1901     printf("0x%16.16llx 0x%16.16llx 0x%16.16llx \"%s\"",
1902            static_cast<unsigned long long>(address),
1903            static_cast<unsigned long long>(flags),
1904            static_cast<unsigned long long>(other), name.GetCString());
1905     if (import_name)
1906       printf(" -> \"%s\"\n", import_name.GetCString());
1907     else
1908       printf("\n");
1909   }
1910   ConstString name;
1911   uint64_t address = LLDB_INVALID_ADDRESS;
1912   uint64_t flags = 0;
1913   uint64_t other = 0;
1914   ConstString import_name;
1915 };
1916 
1917 struct TrieEntryWithOffset {
1918   lldb::offset_t nodeOffset;
1919   TrieEntry entry;
1920 
1921   TrieEntryWithOffset(lldb::offset_t offset) : nodeOffset(offset), entry() {}
1922 
1923   void Dump(uint32_t idx) const {
1924     printf("[%3u] 0x%16.16llx: ", idx,
1925            static_cast<unsigned long long>(nodeOffset));
1926     entry.Dump();
1927   }
1928 
1929   bool operator<(const TrieEntryWithOffset &other) const {
1930     return (nodeOffset < other.nodeOffset);
1931   }
1932 };
1933 
1934 static bool ParseTrieEntries(DataExtractor &data, lldb::offset_t offset,
1935                              const bool is_arm,
1936                              std::vector<llvm::StringRef> &nameSlices,
1937                              std::set<lldb::addr_t> &resolver_addresses,
1938                              std::vector<TrieEntryWithOffset> &output) {
1939   if (!data.ValidOffset(offset))
1940     return true;
1941 
1942   const uint64_t terminalSize = data.GetULEB128(&offset);
1943   lldb::offset_t children_offset = offset + terminalSize;
1944   if (terminalSize != 0) {
1945     TrieEntryWithOffset e(offset);
1946     e.entry.flags = data.GetULEB128(&offset);
1947     const char *import_name = nullptr;
1948     if (e.entry.flags & EXPORT_SYMBOL_FLAGS_REEXPORT) {
1949       e.entry.address = 0;
1950       e.entry.other = data.GetULEB128(&offset); // dylib ordinal
1951       import_name = data.GetCStr(&offset);
1952     } else {
1953       e.entry.address = data.GetULEB128(&offset);
1954       if (e.entry.flags & EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER) {
1955         e.entry.other = data.GetULEB128(&offset);
1956         uint64_t resolver_addr = e.entry.other;
1957         if (is_arm)
1958           resolver_addr &= THUMB_ADDRESS_BIT_MASK;
1959         resolver_addresses.insert(resolver_addr);
1960       } else
1961         e.entry.other = 0;
1962     }
1963     // Only add symbols that are reexport symbols with a valid import name
1964     if (EXPORT_SYMBOL_FLAGS_REEXPORT & e.entry.flags && import_name &&
1965         import_name[0]) {
1966       std::string name;
1967       if (!nameSlices.empty()) {
1968         for (auto name_slice : nameSlices)
1969           name.append(name_slice.data(), name_slice.size());
1970       }
1971       if (name.size() > 1) {
1972         // Skip the leading '_'
1973         e.entry.name.SetCStringWithLength(name.c_str() + 1, name.size() - 1);
1974       }
1975       if (import_name) {
1976         // Skip the leading '_'
1977         e.entry.import_name.SetCString(import_name + 1);
1978       }
1979       output.push_back(e);
1980     }
1981   }
1982 
1983   const uint8_t childrenCount = data.GetU8(&children_offset);
1984   for (uint8_t i = 0; i < childrenCount; ++i) {
1985     const char *cstr = data.GetCStr(&children_offset);
1986     if (cstr)
1987       nameSlices.push_back(llvm::StringRef(cstr));
1988     else
1989       return false; // Corrupt data
1990     lldb::offset_t childNodeOffset = data.GetULEB128(&children_offset);
1991     if (childNodeOffset) {
1992       if (!ParseTrieEntries(data, childNodeOffset, is_arm, nameSlices,
1993                             resolver_addresses, output)) {
1994         return false;
1995       }
1996     }
1997     nameSlices.pop_back();
1998   }
1999   return true;
2000 }
2001 
2002 // Read the UUID out of a dyld_shared_cache file on-disk.
2003 UUID ObjectFileMachO::GetSharedCacheUUID(FileSpec dyld_shared_cache,
2004                                          const ByteOrder byte_order,
2005                                          const uint32_t addr_byte_size) {
2006   UUID dsc_uuid;
2007   DataBufferSP DscData = MapFileData(
2008       dyld_shared_cache, sizeof(struct lldb_copy_dyld_cache_header_v1), 0);
2009   if (!DscData)
2010     return dsc_uuid;
2011   DataExtractor dsc_header_data(DscData, byte_order, addr_byte_size);
2012 
2013   char version_str[7];
2014   lldb::offset_t offset = 0;
2015   memcpy(version_str, dsc_header_data.GetData(&offset, 6), 6);
2016   version_str[6] = '\0';
2017   if (strcmp(version_str, "dyld_v") == 0) {
2018     offset = offsetof(struct lldb_copy_dyld_cache_header_v1, uuid);
2019     dsc_uuid = UUID::fromOptionalData(
2020         dsc_header_data.GetData(&offset, sizeof(uuid_t)), sizeof(uuid_t));
2021   }
2022   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS));
2023   if (log && dsc_uuid.IsValid()) {
2024     LLDB_LOGF(log, "Shared cache %s has UUID %s",
2025               dyld_shared_cache.GetPath().c_str(),
2026               dsc_uuid.GetAsString().c_str());
2027   }
2028   return dsc_uuid;
2029 }
2030 
2031 static llvm::Optional<struct nlist_64>
2032 ParseNList(DataExtractor &nlist_data, lldb::offset_t &nlist_data_offset,
2033            size_t nlist_byte_size) {
2034   struct nlist_64 nlist;
2035   if (!nlist_data.ValidOffsetForDataOfSize(nlist_data_offset, nlist_byte_size))
2036     return {};
2037   nlist.n_strx = nlist_data.GetU32_unchecked(&nlist_data_offset);
2038   nlist.n_type = nlist_data.GetU8_unchecked(&nlist_data_offset);
2039   nlist.n_sect = nlist_data.GetU8_unchecked(&nlist_data_offset);
2040   nlist.n_desc = nlist_data.GetU16_unchecked(&nlist_data_offset);
2041   nlist.n_value = nlist_data.GetAddress_unchecked(&nlist_data_offset);
2042   return nlist;
2043 }
2044 
2045 enum { DebugSymbols = true, NonDebugSymbols = false };
2046 
2047 size_t ObjectFileMachO::ParseSymtab() {
2048   static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
2049   Timer scoped_timer(func_cat, "ObjectFileMachO::ParseSymtab () module = %s",
2050                      m_file.GetFilename().AsCString(""));
2051   ModuleSP module_sp(GetModule());
2052   if (!module_sp)
2053     return 0;
2054 
2055   struct symtab_command symtab_load_command = {0, 0, 0, 0, 0, 0};
2056   struct linkedit_data_command function_starts_load_command = {0, 0, 0, 0};
2057   struct dyld_info_command dyld_info = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
2058   typedef AddressDataArray<lldb::addr_t, bool, 100> FunctionStarts;
2059   FunctionStarts function_starts;
2060   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
2061   uint32_t i;
2062   FileSpecList dylib_files;
2063   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS));
2064   llvm::StringRef g_objc_v2_prefix_class("_OBJC_CLASS_$_");
2065   llvm::StringRef g_objc_v2_prefix_metaclass("_OBJC_METACLASS_$_");
2066   llvm::StringRef g_objc_v2_prefix_ivar("_OBJC_IVAR_$_");
2067 
2068   for (i = 0; i < m_header.ncmds; ++i) {
2069     const lldb::offset_t cmd_offset = offset;
2070     // Read in the load command and load command size
2071     struct load_command lc;
2072     if (m_data.GetU32(&offset, &lc, 2) == nullptr)
2073       break;
2074     // Watch for the symbol table load command
2075     switch (lc.cmd) {
2076     case LC_SYMTAB:
2077       symtab_load_command.cmd = lc.cmd;
2078       symtab_load_command.cmdsize = lc.cmdsize;
2079       // Read in the rest of the symtab load command
2080       if (m_data.GetU32(&offset, &symtab_load_command.symoff, 4) ==
2081           nullptr) // fill in symoff, nsyms, stroff, strsize fields
2082         return 0;
2083       if (symtab_load_command.symoff == 0) {
2084         if (log)
2085           module_sp->LogMessage(log, "LC_SYMTAB.symoff == 0");
2086         return 0;
2087       }
2088 
2089       if (symtab_load_command.stroff == 0) {
2090         if (log)
2091           module_sp->LogMessage(log, "LC_SYMTAB.stroff == 0");
2092         return 0;
2093       }
2094 
2095       if (symtab_load_command.nsyms == 0) {
2096         if (log)
2097           module_sp->LogMessage(log, "LC_SYMTAB.nsyms == 0");
2098         return 0;
2099       }
2100 
2101       if (symtab_load_command.strsize == 0) {
2102         if (log)
2103           module_sp->LogMessage(log, "LC_SYMTAB.strsize == 0");
2104         return 0;
2105       }
2106       break;
2107 
2108     case LC_DYLD_INFO:
2109     case LC_DYLD_INFO_ONLY:
2110       if (m_data.GetU32(&offset, &dyld_info.rebase_off, 10)) {
2111         dyld_info.cmd = lc.cmd;
2112         dyld_info.cmdsize = lc.cmdsize;
2113       } else {
2114         memset(&dyld_info, 0, sizeof(dyld_info));
2115       }
2116       break;
2117 
2118     case LC_LOAD_DYLIB:
2119     case LC_LOAD_WEAK_DYLIB:
2120     case LC_REEXPORT_DYLIB:
2121     case LC_LOADFVMLIB:
2122     case LC_LOAD_UPWARD_DYLIB: {
2123       uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
2124       const char *path = m_data.PeekCStr(name_offset);
2125       if (path) {
2126         FileSpec file_spec(path);
2127         // Strip the path if there is @rpath, @executable, etc so we just use
2128         // the basename
2129         if (path[0] == '@')
2130           file_spec.GetDirectory().Clear();
2131 
2132         if (lc.cmd == LC_REEXPORT_DYLIB) {
2133           m_reexported_dylibs.AppendIfUnique(file_spec);
2134         }
2135 
2136         dylib_files.Append(file_spec);
2137       }
2138     } break;
2139 
2140     case LC_FUNCTION_STARTS:
2141       function_starts_load_command.cmd = lc.cmd;
2142       function_starts_load_command.cmdsize = lc.cmdsize;
2143       if (m_data.GetU32(&offset, &function_starts_load_command.dataoff, 2) ==
2144           nullptr) // fill in symoff, nsyms, stroff, strsize fields
2145         memset(&function_starts_load_command, 0,
2146                sizeof(function_starts_load_command));
2147       break;
2148 
2149     default:
2150       break;
2151     }
2152     offset = cmd_offset + lc.cmdsize;
2153   }
2154 
2155   if (!symtab_load_command.cmd)
2156     return 0;
2157 
2158   Symtab *symtab = m_symtab_up.get();
2159   SectionList *section_list = GetSectionList();
2160   if (section_list == nullptr)
2161     return 0;
2162 
2163   const uint32_t addr_byte_size = m_data.GetAddressByteSize();
2164   const ByteOrder byte_order = m_data.GetByteOrder();
2165   bool bit_width_32 = addr_byte_size == 4;
2166   const size_t nlist_byte_size =
2167       bit_width_32 ? sizeof(struct nlist) : sizeof(struct nlist_64);
2168 
2169   DataExtractor nlist_data(nullptr, 0, byte_order, addr_byte_size);
2170   DataExtractor strtab_data(nullptr, 0, byte_order, addr_byte_size);
2171   DataExtractor function_starts_data(nullptr, 0, byte_order, addr_byte_size);
2172   DataExtractor indirect_symbol_index_data(nullptr, 0, byte_order,
2173                                            addr_byte_size);
2174   DataExtractor dyld_trie_data(nullptr, 0, byte_order, addr_byte_size);
2175 
2176   const addr_t nlist_data_byte_size =
2177       symtab_load_command.nsyms * nlist_byte_size;
2178   const addr_t strtab_data_byte_size = symtab_load_command.strsize;
2179   addr_t strtab_addr = LLDB_INVALID_ADDRESS;
2180 
2181   ProcessSP process_sp(m_process_wp.lock());
2182   Process *process = process_sp.get();
2183 
2184   uint32_t memory_module_load_level = eMemoryModuleLoadLevelComplete;
2185 
2186   if (process && m_header.filetype != llvm::MachO::MH_OBJECT) {
2187     Target &target = process->GetTarget();
2188 
2189     memory_module_load_level = target.GetMemoryModuleLoadLevel();
2190 
2191     SectionSP linkedit_section_sp(
2192         section_list->FindSectionByName(GetSegmentNameLINKEDIT()));
2193     // Reading mach file from memory in a process or core file...
2194 
2195     if (linkedit_section_sp) {
2196       addr_t linkedit_load_addr =
2197           linkedit_section_sp->GetLoadBaseAddress(&target);
2198       if (linkedit_load_addr == LLDB_INVALID_ADDRESS) {
2199         // We might be trying to access the symbol table before the
2200         // __LINKEDIT's load address has been set in the target. We can't
2201         // fail to read the symbol table, so calculate the right address
2202         // manually
2203         linkedit_load_addr = CalculateSectionLoadAddressForMemoryImage(
2204             m_memory_addr, GetMachHeaderSection(), linkedit_section_sp.get());
2205       }
2206 
2207       const addr_t linkedit_file_offset = linkedit_section_sp->GetFileOffset();
2208       const addr_t symoff_addr = linkedit_load_addr +
2209                                  symtab_load_command.symoff -
2210                                  linkedit_file_offset;
2211       strtab_addr = linkedit_load_addr + symtab_load_command.stroff -
2212                     linkedit_file_offset;
2213 
2214       bool data_was_read = false;
2215 
2216 #if defined(__APPLE__) &&                                                      \
2217     (defined(__arm__) || defined(__arm64__) || defined(__aarch64__))
2218       if (m_header.flags & 0x80000000u &&
2219           process->GetAddressByteSize() == sizeof(void *)) {
2220         // This mach-o memory file is in the dyld shared cache. If this
2221         // program is not remote and this is iOS, then this process will
2222         // share the same shared cache as the process we are debugging and we
2223         // can read the entire __LINKEDIT from the address space in this
2224         // process. This is a needed optimization that is used for local iOS
2225         // debugging only since all shared libraries in the shared cache do
2226         // not have corresponding files that exist in the file system of the
2227         // device. They have been combined into a single file. This means we
2228         // always have to load these files from memory. All of the symbol and
2229         // string tables from all of the __LINKEDIT sections from the shared
2230         // libraries in the shared cache have been merged into a single large
2231         // symbol and string table. Reading all of this symbol and string
2232         // table data across can slow down debug launch times, so we optimize
2233         // this by reading the memory for the __LINKEDIT section from this
2234         // process.
2235 
2236         UUID lldb_shared_cache;
2237         addr_t lldb_shared_cache_addr;
2238         GetLLDBSharedCacheUUID(lldb_shared_cache_addr, lldb_shared_cache);
2239         UUID process_shared_cache;
2240         addr_t process_shared_cache_addr;
2241         GetProcessSharedCacheUUID(process, process_shared_cache_addr,
2242                                   process_shared_cache);
2243         bool use_lldb_cache = true;
2244         if (lldb_shared_cache.IsValid() && process_shared_cache.IsValid() &&
2245             (lldb_shared_cache != process_shared_cache ||
2246              process_shared_cache_addr != lldb_shared_cache_addr)) {
2247           use_lldb_cache = false;
2248         }
2249 
2250         PlatformSP platform_sp(target.GetPlatform());
2251         if (platform_sp && platform_sp->IsHost() && use_lldb_cache) {
2252           data_was_read = true;
2253           nlist_data.SetData((void *)symoff_addr, nlist_data_byte_size,
2254                              eByteOrderLittle);
2255           strtab_data.SetData((void *)strtab_addr, strtab_data_byte_size,
2256                               eByteOrderLittle);
2257           if (function_starts_load_command.cmd) {
2258             const addr_t func_start_addr =
2259                 linkedit_load_addr + function_starts_load_command.dataoff -
2260                 linkedit_file_offset;
2261             function_starts_data.SetData((void *)func_start_addr,
2262                                          function_starts_load_command.datasize,
2263                                          eByteOrderLittle);
2264           }
2265         }
2266       }
2267 #endif
2268 
2269       if (!data_was_read) {
2270         // Always load dyld - the dynamic linker - from memory if we didn't
2271         // find a binary anywhere else. lldb will not register
2272         // dylib/framework/bundle loads/unloads if we don't have the dyld
2273         // symbols, we force dyld to load from memory despite the user's
2274         // target.memory-module-load-level setting.
2275         if (memory_module_load_level == eMemoryModuleLoadLevelComplete ||
2276             m_header.filetype == llvm::MachO::MH_DYLINKER) {
2277           DataBufferSP nlist_data_sp(
2278               ReadMemory(process_sp, symoff_addr, nlist_data_byte_size));
2279           if (nlist_data_sp)
2280             nlist_data.SetData(nlist_data_sp, 0, nlist_data_sp->GetByteSize());
2281           if (m_dysymtab.nindirectsyms != 0) {
2282             const addr_t indirect_syms_addr = linkedit_load_addr +
2283                                               m_dysymtab.indirectsymoff -
2284                                               linkedit_file_offset;
2285             DataBufferSP indirect_syms_data_sp(ReadMemory(
2286                 process_sp, indirect_syms_addr, m_dysymtab.nindirectsyms * 4));
2287             if (indirect_syms_data_sp)
2288               indirect_symbol_index_data.SetData(
2289                   indirect_syms_data_sp, 0,
2290                   indirect_syms_data_sp->GetByteSize());
2291             // If this binary is outside the shared cache,
2292             // cache the string table.
2293             // Binaries in the shared cache all share a giant string table,
2294             // and we can't share the string tables across multiple
2295             // ObjectFileMachO's, so we'd end up re-reading this mega-strtab
2296             // for every binary in the shared cache - it would be a big perf
2297             // problem. For binaries outside the shared cache, it's faster to
2298             // read the entire strtab at once instead of piece-by-piece as we
2299             // process the nlist records.
2300             if ((m_header.flags & 0x80000000u) == 0) {
2301               DataBufferSP strtab_data_sp(
2302                   ReadMemory(process_sp, strtab_addr, strtab_data_byte_size));
2303               if (strtab_data_sp) {
2304                 strtab_data.SetData(strtab_data_sp, 0,
2305                                     strtab_data_sp->GetByteSize());
2306               }
2307             }
2308           }
2309         }
2310         if (memory_module_load_level >= eMemoryModuleLoadLevelPartial) {
2311           if (function_starts_load_command.cmd) {
2312             const addr_t func_start_addr =
2313                 linkedit_load_addr + function_starts_load_command.dataoff -
2314                 linkedit_file_offset;
2315             DataBufferSP func_start_data_sp(
2316                 ReadMemory(process_sp, func_start_addr,
2317                            function_starts_load_command.datasize));
2318             if (func_start_data_sp)
2319               function_starts_data.SetData(func_start_data_sp, 0,
2320                                            func_start_data_sp->GetByteSize());
2321           }
2322         }
2323       }
2324     }
2325   } else {
2326     nlist_data.SetData(m_data, symtab_load_command.symoff,
2327                        nlist_data_byte_size);
2328     strtab_data.SetData(m_data, symtab_load_command.stroff,
2329                         strtab_data_byte_size);
2330 
2331     if (dyld_info.export_size > 0) {
2332       dyld_trie_data.SetData(m_data, dyld_info.export_off,
2333                              dyld_info.export_size);
2334     }
2335 
2336     if (m_dysymtab.nindirectsyms != 0) {
2337       indirect_symbol_index_data.SetData(m_data, m_dysymtab.indirectsymoff,
2338                                          m_dysymtab.nindirectsyms * 4);
2339     }
2340     if (function_starts_load_command.cmd) {
2341       function_starts_data.SetData(m_data, function_starts_load_command.dataoff,
2342                                    function_starts_load_command.datasize);
2343     }
2344   }
2345 
2346   if (nlist_data.GetByteSize() == 0 &&
2347       memory_module_load_level == eMemoryModuleLoadLevelComplete) {
2348     if (log)
2349       module_sp->LogMessage(log, "failed to read nlist data");
2350     return 0;
2351   }
2352 
2353   const bool have_strtab_data = strtab_data.GetByteSize() > 0;
2354   if (!have_strtab_data) {
2355     if (process) {
2356       if (strtab_addr == LLDB_INVALID_ADDRESS) {
2357         if (log)
2358           module_sp->LogMessage(log, "failed to locate the strtab in memory");
2359         return 0;
2360       }
2361     } else {
2362       if (log)
2363         module_sp->LogMessage(log, "failed to read strtab data");
2364       return 0;
2365     }
2366   }
2367 
2368   ConstString g_segment_name_TEXT = GetSegmentNameTEXT();
2369   ConstString g_segment_name_DATA = GetSegmentNameDATA();
2370   ConstString g_segment_name_DATA_DIRTY = GetSegmentNameDATA_DIRTY();
2371   ConstString g_segment_name_DATA_CONST = GetSegmentNameDATA_CONST();
2372   ConstString g_segment_name_OBJC = GetSegmentNameOBJC();
2373   ConstString g_section_name_eh_frame = GetSectionNameEHFrame();
2374   SectionSP text_section_sp(
2375       section_list->FindSectionByName(g_segment_name_TEXT));
2376   SectionSP data_section_sp(
2377       section_list->FindSectionByName(g_segment_name_DATA));
2378   SectionSP data_dirty_section_sp(
2379       section_list->FindSectionByName(g_segment_name_DATA_DIRTY));
2380   SectionSP data_const_section_sp(
2381       section_list->FindSectionByName(g_segment_name_DATA_CONST));
2382   SectionSP objc_section_sp(
2383       section_list->FindSectionByName(g_segment_name_OBJC));
2384   SectionSP eh_frame_section_sp;
2385   if (text_section_sp.get())
2386     eh_frame_section_sp = text_section_sp->GetChildren().FindSectionByName(
2387         g_section_name_eh_frame);
2388   else
2389     eh_frame_section_sp =
2390         section_list->FindSectionByName(g_section_name_eh_frame);
2391 
2392   const bool is_arm = (m_header.cputype == llvm::MachO::CPU_TYPE_ARM);
2393 
2394   // lldb works best if it knows the start address of all functions in a
2395   // module. Linker symbols or debug info are normally the best source of
2396   // information for start addr / size but they may be stripped in a released
2397   // binary. Two additional sources of information exist in Mach-O binaries:
2398   //    LC_FUNCTION_STARTS - a list of ULEB128 encoded offsets of each
2399   //    function's start address in the
2400   //                         binary, relative to the text section.
2401   //    eh_frame           - the eh_frame FDEs have the start addr & size of
2402   //    each function
2403   //  LC_FUNCTION_STARTS is the fastest source to read in, and is present on
2404   //  all modern binaries.
2405   //  Binaries built to run on older releases may need to use eh_frame
2406   //  information.
2407 
2408   if (text_section_sp && function_starts_data.GetByteSize()) {
2409     FunctionStarts::Entry function_start_entry;
2410     function_start_entry.data = false;
2411     lldb::offset_t function_start_offset = 0;
2412     function_start_entry.addr = text_section_sp->GetFileAddress();
2413     uint64_t delta;
2414     while ((delta = function_starts_data.GetULEB128(&function_start_offset)) >
2415            0) {
2416       // Now append the current entry
2417       function_start_entry.addr += delta;
2418       function_starts.Append(function_start_entry);
2419     }
2420   } else {
2421     // If m_type is eTypeDebugInfo, then this is a dSYM - it will have the
2422     // load command claiming an eh_frame but it doesn't actually have the
2423     // eh_frame content.  And if we have a dSYM, we don't need to do any of
2424     // this fill-in-the-missing-symbols works anyway - the debug info should
2425     // give us all the functions in the module.
2426     if (text_section_sp.get() && eh_frame_section_sp.get() &&
2427         m_type != eTypeDebugInfo) {
2428       DWARFCallFrameInfo eh_frame(*this, eh_frame_section_sp,
2429                                   DWARFCallFrameInfo::EH);
2430       DWARFCallFrameInfo::FunctionAddressAndSizeVector functions;
2431       eh_frame.GetFunctionAddressAndSizeVector(functions);
2432       addr_t text_base_addr = text_section_sp->GetFileAddress();
2433       size_t count = functions.GetSize();
2434       for (size_t i = 0; i < count; ++i) {
2435         const DWARFCallFrameInfo::FunctionAddressAndSizeVector::Entry *func =
2436             functions.GetEntryAtIndex(i);
2437         if (func) {
2438           FunctionStarts::Entry function_start_entry;
2439           function_start_entry.addr = func->base - text_base_addr;
2440           function_starts.Append(function_start_entry);
2441         }
2442       }
2443     }
2444   }
2445 
2446   const size_t function_starts_count = function_starts.GetSize();
2447 
2448   // For user process binaries (executables, dylibs, frameworks, bundles), if
2449   // we don't have LC_FUNCTION_STARTS/eh_frame section in this binary, we're
2450   // going to assume the binary has been stripped.  Don't allow assembly
2451   // language instruction emulation because we don't know proper function
2452   // start boundaries.
2453   //
2454   // For all other types of binaries (kernels, stand-alone bare board
2455   // binaries, kexts), they may not have LC_FUNCTION_STARTS / eh_frame
2456   // sections - we should not make any assumptions about them based on that.
2457   if (function_starts_count == 0 && CalculateStrata() == eStrataUser) {
2458     m_allow_assembly_emulation_unwind_plans = false;
2459     Log *unwind_or_symbol_log(lldb_private::GetLogIfAnyCategoriesSet(
2460         LIBLLDB_LOG_SYMBOLS | LIBLLDB_LOG_UNWIND));
2461 
2462     if (unwind_or_symbol_log)
2463       module_sp->LogMessage(
2464           unwind_or_symbol_log,
2465           "no LC_FUNCTION_STARTS, will not allow assembly profiled unwinds");
2466   }
2467 
2468   const user_id_t TEXT_eh_frame_sectID = eh_frame_section_sp.get()
2469                                              ? eh_frame_section_sp->GetID()
2470                                              : static_cast<user_id_t>(NO_SECT);
2471 
2472   lldb::offset_t nlist_data_offset = 0;
2473 
2474   uint32_t N_SO_index = UINT32_MAX;
2475 
2476   MachSymtabSectionInfo section_info(section_list);
2477   std::vector<uint32_t> N_FUN_indexes;
2478   std::vector<uint32_t> N_NSYM_indexes;
2479   std::vector<uint32_t> N_INCL_indexes;
2480   std::vector<uint32_t> N_BRAC_indexes;
2481   std::vector<uint32_t> N_COMM_indexes;
2482   typedef std::multimap<uint64_t, uint32_t> ValueToSymbolIndexMap;
2483   typedef llvm::DenseMap<uint32_t, uint32_t> NListIndexToSymbolIndexMap;
2484   typedef llvm::DenseMap<const char *, uint32_t> ConstNameToSymbolIndexMap;
2485   ValueToSymbolIndexMap N_FUN_addr_to_sym_idx;
2486   ValueToSymbolIndexMap N_STSYM_addr_to_sym_idx;
2487   ConstNameToSymbolIndexMap N_GSYM_name_to_sym_idx;
2488   // Any symbols that get merged into another will get an entry in this map
2489   // so we know
2490   NListIndexToSymbolIndexMap m_nlist_idx_to_sym_idx;
2491   uint32_t nlist_idx = 0;
2492   Symbol *symbol_ptr = nullptr;
2493 
2494   uint32_t sym_idx = 0;
2495   Symbol *sym = nullptr;
2496   size_t num_syms = 0;
2497   std::string memory_symbol_name;
2498   uint32_t unmapped_local_symbols_found = 0;
2499 
2500   std::vector<TrieEntryWithOffset> trie_entries;
2501   std::set<lldb::addr_t> resolver_addresses;
2502 
2503   if (dyld_trie_data.GetByteSize() > 0) {
2504     std::vector<llvm::StringRef> nameSlices;
2505     ParseTrieEntries(dyld_trie_data, 0, is_arm, nameSlices, resolver_addresses,
2506                      trie_entries);
2507 
2508     ConstString text_segment_name("__TEXT");
2509     SectionSP text_segment_sp =
2510         GetSectionList()->FindSectionByName(text_segment_name);
2511     if (text_segment_sp) {
2512       const lldb::addr_t text_segment_file_addr =
2513           text_segment_sp->GetFileAddress();
2514       if (text_segment_file_addr != LLDB_INVALID_ADDRESS) {
2515         for (auto &e : trie_entries)
2516           e.entry.address += text_segment_file_addr;
2517       }
2518     }
2519   }
2520 
2521   typedef std::set<ConstString> IndirectSymbols;
2522   IndirectSymbols indirect_symbol_names;
2523 
2524 #if defined(__APPLE__) &&                                                      \
2525     (defined(__arm__) || defined(__arm64__) || defined(__aarch64__))
2526 
2527   // Some recent builds of the dyld_shared_cache (hereafter: DSC) have been
2528   // optimized by moving LOCAL symbols out of the memory mapped portion of
2529   // the DSC. The symbol information has all been retained, but it isn't
2530   // available in the normal nlist data. However, there *are* duplicate
2531   // entries of *some*
2532   // LOCAL symbols in the normal nlist data. To handle this situation
2533   // correctly, we must first attempt
2534   // to parse any DSC unmapped symbol information. If we find any, we set a
2535   // flag that tells the normal nlist parser to ignore all LOCAL symbols.
2536 
2537   if (m_header.flags & 0x80000000u) {
2538     // Before we can start mapping the DSC, we need to make certain the
2539     // target process is actually using the cache we can find.
2540 
2541     // Next we need to determine the correct path for the dyld shared cache.
2542 
2543     ArchSpec header_arch = GetArchitecture();
2544     char dsc_path[PATH_MAX];
2545     char dsc_path_development[PATH_MAX];
2546 
2547     snprintf(
2548         dsc_path, sizeof(dsc_path), "%s%s%s",
2549         "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR
2550                                                    */
2551         "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */
2552         header_arch.GetArchitectureName());
2553 
2554     snprintf(
2555         dsc_path_development, sizeof(dsc_path), "%s%s%s%s",
2556         "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR
2557                                                    */
2558         "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */
2559         header_arch.GetArchitectureName(), ".development");
2560 
2561     FileSpec dsc_nondevelopment_filespec(dsc_path);
2562     FileSpec dsc_development_filespec(dsc_path_development);
2563     FileSpec dsc_filespec;
2564 
2565     UUID dsc_uuid;
2566     UUID process_shared_cache_uuid;
2567     addr_t process_shared_cache_base_addr;
2568 
2569     if (process) {
2570       GetProcessSharedCacheUUID(process, process_shared_cache_base_addr,
2571                                 process_shared_cache_uuid);
2572     }
2573 
2574     // First see if we can find an exact match for the inferior process
2575     // shared cache UUID in the development or non-development shared caches
2576     // on disk.
2577     if (process_shared_cache_uuid.IsValid()) {
2578       if (FileSystem::Instance().Exists(dsc_development_filespec)) {
2579         UUID dsc_development_uuid = GetSharedCacheUUID(
2580             dsc_development_filespec, byte_order, addr_byte_size);
2581         if (dsc_development_uuid.IsValid() &&
2582             dsc_development_uuid == process_shared_cache_uuid) {
2583           dsc_filespec = dsc_development_filespec;
2584           dsc_uuid = dsc_development_uuid;
2585         }
2586       }
2587       if (!dsc_uuid.IsValid() &&
2588           FileSystem::Instance().Exists(dsc_nondevelopment_filespec)) {
2589         UUID dsc_nondevelopment_uuid = GetSharedCacheUUID(
2590             dsc_nondevelopment_filespec, byte_order, addr_byte_size);
2591         if (dsc_nondevelopment_uuid.IsValid() &&
2592             dsc_nondevelopment_uuid == process_shared_cache_uuid) {
2593           dsc_filespec = dsc_nondevelopment_filespec;
2594           dsc_uuid = dsc_nondevelopment_uuid;
2595         }
2596       }
2597     }
2598 
2599     // Failing a UUID match, prefer the development dyld_shared cache if both
2600     // are present.
2601     if (!FileSystem::Instance().Exists(dsc_filespec)) {
2602       if (FileSystem::Instance().Exists(dsc_development_filespec)) {
2603         dsc_filespec = dsc_development_filespec;
2604       } else {
2605         dsc_filespec = dsc_nondevelopment_filespec;
2606       }
2607     }
2608 
2609     /* The dyld_cache_header has a pointer to the
2610        dyld_cache_local_symbols_info structure (localSymbolsOffset).
2611        The dyld_cache_local_symbols_info structure gives us three things:
2612          1. The start and count of the nlist records in the dyld_shared_cache
2613        file
2614          2. The start and size of the strings for these nlist records
2615          3. The start and count of dyld_cache_local_symbols_entry entries
2616 
2617        There is one dyld_cache_local_symbols_entry per dylib/framework in the
2618        dyld shared cache.
2619        The "dylibOffset" field is the Mach-O header of this dylib/framework in
2620        the dyld shared cache.
2621        The dyld_cache_local_symbols_entry also lists the start of this
2622        dylib/framework's nlist records
2623        and the count of how many nlist records there are for this
2624        dylib/framework.
2625     */
2626 
2627     // Process the dyld shared cache header to find the unmapped symbols
2628 
2629     DataBufferSP dsc_data_sp = MapFileData(
2630         dsc_filespec, sizeof(struct lldb_copy_dyld_cache_header_v1), 0);
2631     if (!dsc_uuid.IsValid()) {
2632       dsc_uuid = GetSharedCacheUUID(dsc_filespec, byte_order, addr_byte_size);
2633     }
2634     if (dsc_data_sp) {
2635       DataExtractor dsc_header_data(dsc_data_sp, byte_order, addr_byte_size);
2636 
2637       bool uuid_match = true;
2638       if (dsc_uuid.IsValid() && process) {
2639         if (process_shared_cache_uuid.IsValid() &&
2640             dsc_uuid != process_shared_cache_uuid) {
2641           // The on-disk dyld_shared_cache file is not the same as the one in
2642           // this process' memory, don't use it.
2643           uuid_match = false;
2644           ModuleSP module_sp(GetModule());
2645           if (module_sp)
2646             module_sp->ReportWarning("process shared cache does not match "
2647                                      "on-disk dyld_shared_cache file, some "
2648                                      "symbol names will be missing.");
2649         }
2650       }
2651 
2652       offset = offsetof(struct lldb_copy_dyld_cache_header_v1, mappingOffset);
2653 
2654       uint32_t mappingOffset = dsc_header_data.GetU32(&offset);
2655 
2656       // If the mappingOffset points to a location inside the header, we've
2657       // opened an old dyld shared cache, and should not proceed further.
2658       if (uuid_match &&
2659           mappingOffset >= sizeof(struct lldb_copy_dyld_cache_header_v1)) {
2660 
2661         DataBufferSP dsc_mapping_info_data_sp = MapFileData(
2662             dsc_filespec, sizeof(struct lldb_copy_dyld_cache_mapping_info),
2663             mappingOffset);
2664 
2665         DataExtractor dsc_mapping_info_data(dsc_mapping_info_data_sp,
2666                                             byte_order, addr_byte_size);
2667         offset = 0;
2668 
2669         // The File addresses (from the in-memory Mach-O load commands) for
2670         // the shared libraries in the shared library cache need to be
2671         // adjusted by an offset to match up with the dylibOffset identifying
2672         // field in the dyld_cache_local_symbol_entry's.  This offset is
2673         // recorded in mapping_offset_value.
2674         const uint64_t mapping_offset_value =
2675             dsc_mapping_info_data.GetU64(&offset);
2676 
2677         offset =
2678             offsetof(struct lldb_copy_dyld_cache_header_v1, localSymbolsOffset);
2679         uint64_t localSymbolsOffset = dsc_header_data.GetU64(&offset);
2680         uint64_t localSymbolsSize = dsc_header_data.GetU64(&offset);
2681 
2682         if (localSymbolsOffset && localSymbolsSize) {
2683           // Map the local symbols
2684           DataBufferSP dsc_local_symbols_data_sp =
2685               MapFileData(dsc_filespec, localSymbolsSize, localSymbolsOffset);
2686 
2687           if (dsc_local_symbols_data_sp) {
2688             DataExtractor dsc_local_symbols_data(dsc_local_symbols_data_sp,
2689                                                  byte_order, addr_byte_size);
2690 
2691             offset = 0;
2692 
2693             typedef llvm::DenseMap<ConstString, uint16_t> UndefinedNameToDescMap;
2694             typedef llvm::DenseMap<uint32_t, ConstString> SymbolIndexToName;
2695             UndefinedNameToDescMap undefined_name_to_desc;
2696             SymbolIndexToName reexport_shlib_needs_fixup;
2697 
2698             // Read the local_symbols_infos struct in one shot
2699             struct lldb_copy_dyld_cache_local_symbols_info local_symbols_info;
2700             dsc_local_symbols_data.GetU32(&offset,
2701                                           &local_symbols_info.nlistOffset, 6);
2702 
2703             SectionSP text_section_sp(
2704                 section_list->FindSectionByName(GetSegmentNameTEXT()));
2705 
2706             uint32_t header_file_offset =
2707                 (text_section_sp->GetFileAddress() - mapping_offset_value);
2708 
2709             offset = local_symbols_info.entriesOffset;
2710             for (uint32_t entry_index = 0;
2711                  entry_index < local_symbols_info.entriesCount; entry_index++) {
2712               struct lldb_copy_dyld_cache_local_symbols_entry
2713                   local_symbols_entry;
2714               local_symbols_entry.dylibOffset =
2715                   dsc_local_symbols_data.GetU32(&offset);
2716               local_symbols_entry.nlistStartIndex =
2717                   dsc_local_symbols_data.GetU32(&offset);
2718               local_symbols_entry.nlistCount =
2719                   dsc_local_symbols_data.GetU32(&offset);
2720 
2721               if (header_file_offset == local_symbols_entry.dylibOffset) {
2722                 unmapped_local_symbols_found = local_symbols_entry.nlistCount;
2723 
2724                 // The normal nlist code cannot correctly size the Symbols
2725                 // array, we need to allocate it here.
2726                 sym = symtab->Resize(
2727                     symtab_load_command.nsyms + m_dysymtab.nindirectsyms +
2728                     unmapped_local_symbols_found - m_dysymtab.nlocalsym);
2729                 num_syms = symtab->GetNumSymbols();
2730 
2731                 nlist_data_offset =
2732                     local_symbols_info.nlistOffset +
2733                     (nlist_byte_size * local_symbols_entry.nlistStartIndex);
2734                 uint32_t string_table_offset = local_symbols_info.stringsOffset;
2735 
2736                 for (uint32_t nlist_index = 0;
2737                      nlist_index < local_symbols_entry.nlistCount;
2738                      nlist_index++) {
2739                   /////////////////////////////
2740                   {
2741                     llvm::Optional<struct nlist_64> nlist_maybe =
2742                         ParseNList(dsc_local_symbols_data, nlist_data_offset,
2743                                    nlist_byte_size);
2744                     if (!nlist_maybe)
2745                       break;
2746                     struct nlist_64 nlist = *nlist_maybe;
2747 
2748                     SymbolType type = eSymbolTypeInvalid;
2749                     const char *symbol_name = dsc_local_symbols_data.PeekCStr(
2750                         string_table_offset + nlist.n_strx);
2751 
2752                     if (symbol_name == NULL) {
2753                       // No symbol should be NULL, even the symbols with no
2754                       // string values should have an offset zero which
2755                       // points to an empty C-string
2756                       Host::SystemLog(
2757                           Host::eSystemLogError,
2758                           "error: DSC unmapped local symbol[%u] has invalid "
2759                           "string table offset 0x%x in %s, ignoring symbol\n",
2760                           entry_index, nlist.n_strx,
2761                           module_sp->GetFileSpec().GetPath().c_str());
2762                       continue;
2763                     }
2764                     if (symbol_name[0] == '\0')
2765                       symbol_name = NULL;
2766 
2767                     const char *symbol_name_non_abi_mangled = NULL;
2768 
2769                     SectionSP symbol_section;
2770                     uint32_t symbol_byte_size = 0;
2771                     bool add_nlist = true;
2772                     bool is_debug = ((nlist.n_type & N_STAB) != 0);
2773                     bool demangled_is_synthesized = false;
2774                     bool is_gsym = false;
2775                     bool set_value = true;
2776 
2777                     assert(sym_idx < num_syms);
2778 
2779                     sym[sym_idx].SetDebug(is_debug);
2780 
2781                     if (is_debug) {
2782                       switch (nlist.n_type) {
2783                       case N_GSYM:
2784                         // global symbol: name,,NO_SECT,type,0
2785                         // Sometimes the N_GSYM value contains the address.
2786 
2787                         // FIXME: In the .o files, we have a GSYM and a debug
2788                         // symbol for all the ObjC data.  They
2789                         // have the same address, but we want to ensure that
2790                         // we always find only the real symbol, 'cause we
2791                         // don't currently correctly attribute the
2792                         // GSYM one to the ObjCClass/Ivar/MetaClass
2793                         // symbol type.  This is a temporary hack to make
2794                         // sure the ObjectiveC symbols get treated correctly.
2795                         // To do this right, we should coalesce all the GSYM
2796                         // & global symbols that have the same address.
2797 
2798                         is_gsym = true;
2799                         sym[sym_idx].SetExternal(true);
2800 
2801                         if (symbol_name && symbol_name[0] == '_' &&
2802                             symbol_name[1] == 'O') {
2803                           llvm::StringRef symbol_name_ref(symbol_name);
2804                           if (symbol_name_ref.startswith(
2805                                   g_objc_v2_prefix_class)) {
2806                             symbol_name_non_abi_mangled = symbol_name + 1;
2807                             symbol_name =
2808                                 symbol_name + g_objc_v2_prefix_class.size();
2809                             type = eSymbolTypeObjCClass;
2810                             demangled_is_synthesized = true;
2811 
2812                           } else if (symbol_name_ref.startswith(
2813                                          g_objc_v2_prefix_metaclass)) {
2814                             symbol_name_non_abi_mangled = symbol_name + 1;
2815                             symbol_name =
2816                                 symbol_name + g_objc_v2_prefix_metaclass.size();
2817                             type = eSymbolTypeObjCMetaClass;
2818                             demangled_is_synthesized = true;
2819                           } else if (symbol_name_ref.startswith(
2820                                          g_objc_v2_prefix_ivar)) {
2821                             symbol_name_non_abi_mangled = symbol_name + 1;
2822                             symbol_name =
2823                                 symbol_name + g_objc_v2_prefix_ivar.size();
2824                             type = eSymbolTypeObjCIVar;
2825                             demangled_is_synthesized = true;
2826                           }
2827                         } else {
2828                           if (nlist.n_value != 0)
2829                             symbol_section = section_info.GetSection(
2830                                 nlist.n_sect, nlist.n_value);
2831                           type = eSymbolTypeData;
2832                         }
2833                         break;
2834 
2835                       case N_FNAME:
2836                         // procedure name (f77 kludge): name,,NO_SECT,0,0
2837                         type = eSymbolTypeCompiler;
2838                         break;
2839 
2840                       case N_FUN:
2841                         // procedure: name,,n_sect,linenumber,address
2842                         if (symbol_name) {
2843                           type = eSymbolTypeCode;
2844                           symbol_section = section_info.GetSection(
2845                               nlist.n_sect, nlist.n_value);
2846 
2847                           N_FUN_addr_to_sym_idx.insert(
2848                               std::make_pair(nlist.n_value, sym_idx));
2849                           // We use the current number of symbols in the
2850                           // symbol table in lieu of using nlist_idx in case
2851                           // we ever start trimming entries out
2852                           N_FUN_indexes.push_back(sym_idx);
2853                         } else {
2854                           type = eSymbolTypeCompiler;
2855 
2856                           if (!N_FUN_indexes.empty()) {
2857                             // Copy the size of the function into the
2858                             // original
2859                             // STAB entry so we don't have
2860                             // to hunt for it later
2861                             symtab->SymbolAtIndex(N_FUN_indexes.back())
2862                                 ->SetByteSize(nlist.n_value);
2863                             N_FUN_indexes.pop_back();
2864                             // We don't really need the end function STAB as
2865                             // it contains the size which we already placed
2866                             // with the original symbol, so don't add it if
2867                             // we want a minimal symbol table
2868                             add_nlist = false;
2869                           }
2870                         }
2871                         break;
2872 
2873                       case N_STSYM:
2874                         // static symbol: name,,n_sect,type,address
2875                         N_STSYM_addr_to_sym_idx.insert(
2876                             std::make_pair(nlist.n_value, sym_idx));
2877                         symbol_section = section_info.GetSection(nlist.n_sect,
2878                                                                  nlist.n_value);
2879                         if (symbol_name && symbol_name[0]) {
2880                           type = ObjectFile::GetSymbolTypeFromName(
2881                               symbol_name + 1, eSymbolTypeData);
2882                         }
2883                         break;
2884 
2885                       case N_LCSYM:
2886                         // .lcomm symbol: name,,n_sect,type,address
2887                         symbol_section = section_info.GetSection(nlist.n_sect,
2888                                                                  nlist.n_value);
2889                         type = eSymbolTypeCommonBlock;
2890                         break;
2891 
2892                       case N_BNSYM:
2893                         // We use the current number of symbols in the symbol
2894                         // table in lieu of using nlist_idx in case we ever
2895                         // start trimming entries out Skip these if we want
2896                         // minimal symbol tables
2897                         add_nlist = false;
2898                         break;
2899 
2900                       case N_ENSYM:
2901                         // Set the size of the N_BNSYM to the terminating
2902                         // index of this N_ENSYM so that we can always skip
2903                         // the entire symbol if we need to navigate more
2904                         // quickly at the source level when parsing STABS
2905                         // Skip these if we want minimal symbol tables
2906                         add_nlist = false;
2907                         break;
2908 
2909                       case N_OPT:
2910                         // emitted with gcc2_compiled and in gcc source
2911                         type = eSymbolTypeCompiler;
2912                         break;
2913 
2914                       case N_RSYM:
2915                         // register sym: name,,NO_SECT,type,register
2916                         type = eSymbolTypeVariable;
2917                         break;
2918 
2919                       case N_SLINE:
2920                         // src line: 0,,n_sect,linenumber,address
2921                         symbol_section = section_info.GetSection(nlist.n_sect,
2922                                                                  nlist.n_value);
2923                         type = eSymbolTypeLineEntry;
2924                         break;
2925 
2926                       case N_SSYM:
2927                         // structure elt: name,,NO_SECT,type,struct_offset
2928                         type = eSymbolTypeVariableType;
2929                         break;
2930 
2931                       case N_SO:
2932                         // source file name
2933                         type = eSymbolTypeSourceFile;
2934                         if (symbol_name == NULL) {
2935                           add_nlist = false;
2936                           if (N_SO_index != UINT32_MAX) {
2937                             // Set the size of the N_SO to the terminating
2938                             // index of this N_SO so that we can always skip
2939                             // the entire N_SO if we need to navigate more
2940                             // quickly at the source level when parsing STABS
2941                             symbol_ptr = symtab->SymbolAtIndex(N_SO_index);
2942                             symbol_ptr->SetByteSize(sym_idx);
2943                             symbol_ptr->SetSizeIsSibling(true);
2944                           }
2945                           N_NSYM_indexes.clear();
2946                           N_INCL_indexes.clear();
2947                           N_BRAC_indexes.clear();
2948                           N_COMM_indexes.clear();
2949                           N_FUN_indexes.clear();
2950                           N_SO_index = UINT32_MAX;
2951                         } else {
2952                           // We use the current number of symbols in the
2953                           // symbol table in lieu of using nlist_idx in case
2954                           // we ever start trimming entries out
2955                           const bool N_SO_has_full_path = symbol_name[0] == '/';
2956                           if (N_SO_has_full_path) {
2957                             if ((N_SO_index == sym_idx - 1) &&
2958                                 ((sym_idx - 1) < num_syms)) {
2959                               // We have two consecutive N_SO entries where
2960                               // the first contains a directory and the
2961                               // second contains a full path.
2962                               sym[sym_idx - 1].GetMangled().SetValue(
2963                                   ConstString(symbol_name), false);
2964                               m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
2965                               add_nlist = false;
2966                             } else {
2967                               // This is the first entry in a N_SO that
2968                               // contains a directory or
2969                               // a full path to the source file
2970                               N_SO_index = sym_idx;
2971                             }
2972                           } else if ((N_SO_index == sym_idx - 1) &&
2973                                      ((sym_idx - 1) < num_syms)) {
2974                             // This is usually the second N_SO entry that
2975                             // contains just the filename, so here we combine
2976                             // it with the first one if we are minimizing the
2977                             // symbol table
2978                             const char *so_path =
2979                                 sym[sym_idx - 1]
2980                                     .GetMangled()
2981                                     .GetDemangledName(
2982                                         lldb::eLanguageTypeUnknown)
2983                                     .AsCString();
2984                             if (so_path && so_path[0]) {
2985                               std::string full_so_path(so_path);
2986                               const size_t double_slash_pos =
2987                                   full_so_path.find("//");
2988                               if (double_slash_pos != std::string::npos) {
2989                                 // The linker has been generating bad N_SO
2990                                 // entries with doubled up paths
2991                                 // in the format "%s%s" where the first
2992                                 // string in the DW_AT_comp_dir, and the
2993                                 // second is the directory for the source
2994                                 // file so you end up with a path that looks
2995                                 // like "/tmp/src//tmp/src/"
2996                                 FileSpec so_dir(so_path);
2997                                 if (!FileSystem::Instance().Exists(so_dir)) {
2998                                   so_dir.SetFile(
2999                                       &full_so_path[double_slash_pos + 1],
3000                                       FileSpec::Style::native);
3001                                   if (FileSystem::Instance().Exists(so_dir)) {
3002                                     // Trim off the incorrect path
3003                                     full_so_path.erase(0, double_slash_pos + 1);
3004                                   }
3005                                 }
3006                               }
3007                               if (*full_so_path.rbegin() != '/')
3008                                 full_so_path += '/';
3009                               full_so_path += symbol_name;
3010                               sym[sym_idx - 1].GetMangled().SetValue(
3011                                   ConstString(full_so_path.c_str()), false);
3012                               add_nlist = false;
3013                               m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3014                             }
3015                           } else {
3016                             // This could be a relative path to a N_SO
3017                             N_SO_index = sym_idx;
3018                           }
3019                         }
3020                         break;
3021 
3022                       case N_OSO:
3023                         // object file name: name,,0,0,st_mtime
3024                         type = eSymbolTypeObjectFile;
3025                         break;
3026 
3027                       case N_LSYM:
3028                         // local sym: name,,NO_SECT,type,offset
3029                         type = eSymbolTypeLocal;
3030                         break;
3031 
3032                       // INCL scopes
3033                       case N_BINCL:
3034                         // include file beginning: name,,NO_SECT,0,sum We use
3035                         // the current number of symbols in the symbol table
3036                         // in lieu of using nlist_idx in case we ever start
3037                         // trimming entries out
3038                         N_INCL_indexes.push_back(sym_idx);
3039                         type = eSymbolTypeScopeBegin;
3040                         break;
3041 
3042                       case N_EINCL:
3043                         // include file end: name,,NO_SECT,0,0
3044                         // Set the size of the N_BINCL to the terminating
3045                         // index of this N_EINCL so that we can always skip
3046                         // the entire symbol if we need to navigate more
3047                         // quickly at the source level when parsing STABS
3048                         if (!N_INCL_indexes.empty()) {
3049                           symbol_ptr =
3050                               symtab->SymbolAtIndex(N_INCL_indexes.back());
3051                           symbol_ptr->SetByteSize(sym_idx + 1);
3052                           symbol_ptr->SetSizeIsSibling(true);
3053                           N_INCL_indexes.pop_back();
3054                         }
3055                         type = eSymbolTypeScopeEnd;
3056                         break;
3057 
3058                       case N_SOL:
3059                         // #included file name: name,,n_sect,0,address
3060                         type = eSymbolTypeHeaderFile;
3061 
3062                         // We currently don't use the header files on darwin
3063                         add_nlist = false;
3064                         break;
3065 
3066                       case N_PARAMS:
3067                         // compiler parameters: name,,NO_SECT,0,0
3068                         type = eSymbolTypeCompiler;
3069                         break;
3070 
3071                       case N_VERSION:
3072                         // compiler version: name,,NO_SECT,0,0
3073                         type = eSymbolTypeCompiler;
3074                         break;
3075 
3076                       case N_OLEVEL:
3077                         // compiler -O level: name,,NO_SECT,0,0
3078                         type = eSymbolTypeCompiler;
3079                         break;
3080 
3081                       case N_PSYM:
3082                         // parameter: name,,NO_SECT,type,offset
3083                         type = eSymbolTypeVariable;
3084                         break;
3085 
3086                       case N_ENTRY:
3087                         // alternate entry: name,,n_sect,linenumber,address
3088                         symbol_section = section_info.GetSection(nlist.n_sect,
3089                                                                  nlist.n_value);
3090                         type = eSymbolTypeLineEntry;
3091                         break;
3092 
3093                       // Left and Right Braces
3094                       case N_LBRAC:
3095                         // left bracket: 0,,NO_SECT,nesting level,address We
3096                         // use the current number of symbols in the symbol
3097                         // table in lieu of using nlist_idx in case we ever
3098                         // start trimming entries out
3099                         symbol_section = section_info.GetSection(nlist.n_sect,
3100                                                                  nlist.n_value);
3101                         N_BRAC_indexes.push_back(sym_idx);
3102                         type = eSymbolTypeScopeBegin;
3103                         break;
3104 
3105                       case N_RBRAC:
3106                         // right bracket: 0,,NO_SECT,nesting level,address
3107                         // Set the size of the N_LBRAC to the terminating
3108                         // index of this N_RBRAC so that we can always skip
3109                         // the entire symbol if we need to navigate more
3110                         // quickly at the source level when parsing STABS
3111                         symbol_section = section_info.GetSection(nlist.n_sect,
3112                                                                  nlist.n_value);
3113                         if (!N_BRAC_indexes.empty()) {
3114                           symbol_ptr =
3115                               symtab->SymbolAtIndex(N_BRAC_indexes.back());
3116                           symbol_ptr->SetByteSize(sym_idx + 1);
3117                           symbol_ptr->SetSizeIsSibling(true);
3118                           N_BRAC_indexes.pop_back();
3119                         }
3120                         type = eSymbolTypeScopeEnd;
3121                         break;
3122 
3123                       case N_EXCL:
3124                         // deleted include file: name,,NO_SECT,0,sum
3125                         type = eSymbolTypeHeaderFile;
3126                         break;
3127 
3128                       // COMM scopes
3129                       case N_BCOMM:
3130                         // begin common: name,,NO_SECT,0,0
3131                         // We use the current number of symbols in the symbol
3132                         // table in lieu of using nlist_idx in case we ever
3133                         // start trimming entries out
3134                         type = eSymbolTypeScopeBegin;
3135                         N_COMM_indexes.push_back(sym_idx);
3136                         break;
3137 
3138                       case N_ECOML:
3139                         // end common (local name): 0,,n_sect,0,address
3140                         symbol_section = section_info.GetSection(nlist.n_sect,
3141                                                                  nlist.n_value);
3142                         // Fall through
3143 
3144                       case N_ECOMM:
3145                         // end common: name,,n_sect,0,0
3146                         // Set the size of the N_BCOMM to the terminating
3147                         // index of this N_ECOMM/N_ECOML so that we can
3148                         // always skip the entire symbol if we need to
3149                         // navigate more quickly at the source level when
3150                         // parsing STABS
3151                         if (!N_COMM_indexes.empty()) {
3152                           symbol_ptr =
3153                               symtab->SymbolAtIndex(N_COMM_indexes.back());
3154                           symbol_ptr->SetByteSize(sym_idx + 1);
3155                           symbol_ptr->SetSizeIsSibling(true);
3156                           N_COMM_indexes.pop_back();
3157                         }
3158                         type = eSymbolTypeScopeEnd;
3159                         break;
3160 
3161                       case N_LENG:
3162                         // second stab entry with length information
3163                         type = eSymbolTypeAdditional;
3164                         break;
3165 
3166                       default:
3167                         break;
3168                       }
3169                     } else {
3170                       // uint8_t n_pext    = N_PEXT & nlist.n_type;
3171                       uint8_t n_type = N_TYPE & nlist.n_type;
3172                       sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
3173 
3174                       switch (n_type) {
3175                       case N_INDR: {
3176                         const char *reexport_name_cstr =
3177                             strtab_data.PeekCStr(nlist.n_value);
3178                         if (reexport_name_cstr && reexport_name_cstr[0]) {
3179                           type = eSymbolTypeReExported;
3180                           ConstString reexport_name(
3181                               reexport_name_cstr +
3182                               ((reexport_name_cstr[0] == '_') ? 1 : 0));
3183                           sym[sym_idx].SetReExportedSymbolName(reexport_name);
3184                           set_value = false;
3185                           reexport_shlib_needs_fixup[sym_idx] = reexport_name;
3186                           indirect_symbol_names.insert(ConstString(
3187                               symbol_name + ((symbol_name[0] == '_') ? 1 : 0)));
3188                         } else
3189                           type = eSymbolTypeUndefined;
3190                       } break;
3191 
3192                       case N_UNDF:
3193                         if (symbol_name && symbol_name[0]) {
3194                           ConstString undefined_name(
3195                               symbol_name + ((symbol_name[0] == '_') ? 1 : 0));
3196                           undefined_name_to_desc[undefined_name] = nlist.n_desc;
3197                         }
3198                       // Fall through
3199                       case N_PBUD:
3200                         type = eSymbolTypeUndefined;
3201                         break;
3202 
3203                       case N_ABS:
3204                         type = eSymbolTypeAbsolute;
3205                         break;
3206 
3207                       case N_SECT: {
3208                         symbol_section = section_info.GetSection(nlist.n_sect,
3209                                                                  nlist.n_value);
3210 
3211                         if (symbol_section == NULL) {
3212                           // TODO: warn about this?
3213                           add_nlist = false;
3214                           break;
3215                         }
3216 
3217                         if (TEXT_eh_frame_sectID == nlist.n_sect) {
3218                           type = eSymbolTypeException;
3219                         } else {
3220                           uint32_t section_type =
3221                               symbol_section->Get() & SECTION_TYPE;
3222 
3223                           switch (section_type) {
3224                           case S_CSTRING_LITERALS:
3225                             type = eSymbolTypeData;
3226                             break; // section with only literal C strings
3227                           case S_4BYTE_LITERALS:
3228                             type = eSymbolTypeData;
3229                             break; // section with only 4 byte literals
3230                           case S_8BYTE_LITERALS:
3231                             type = eSymbolTypeData;
3232                             break; // section with only 8 byte literals
3233                           case S_LITERAL_POINTERS:
3234                             type = eSymbolTypeTrampoline;
3235                             break; // section with only pointers to literals
3236                           case S_NON_LAZY_SYMBOL_POINTERS:
3237                             type = eSymbolTypeTrampoline;
3238                             break; // section with only non-lazy symbol
3239                                    // pointers
3240                           case S_LAZY_SYMBOL_POINTERS:
3241                             type = eSymbolTypeTrampoline;
3242                             break; // section with only lazy symbol pointers
3243                           case S_SYMBOL_STUBS:
3244                             type = eSymbolTypeTrampoline;
3245                             break; // section with only symbol stubs, byte
3246                                    // size of stub in the reserved2 field
3247                           case S_MOD_INIT_FUNC_POINTERS:
3248                             type = eSymbolTypeCode;
3249                             break; // section with only function pointers for
3250                                    // initialization
3251                           case S_MOD_TERM_FUNC_POINTERS:
3252                             type = eSymbolTypeCode;
3253                             break; // section with only function pointers for
3254                                    // termination
3255                           case S_INTERPOSING:
3256                             type = eSymbolTypeTrampoline;
3257                             break; // section with only pairs of function
3258                                    // pointers for interposing
3259                           case S_16BYTE_LITERALS:
3260                             type = eSymbolTypeData;
3261                             break; // section with only 16 byte literals
3262                           case S_DTRACE_DOF:
3263                             type = eSymbolTypeInstrumentation;
3264                             break;
3265                           case S_LAZY_DYLIB_SYMBOL_POINTERS:
3266                             type = eSymbolTypeTrampoline;
3267                             break;
3268                           default:
3269                             switch (symbol_section->GetType()) {
3270                             case lldb::eSectionTypeCode:
3271                               type = eSymbolTypeCode;
3272                               break;
3273                             case eSectionTypeData:
3274                             case eSectionTypeDataCString: // Inlined C string
3275                                                           // data
3276                             case eSectionTypeDataCStringPointers: // Pointers
3277                                                                   // to C
3278                                                                   // string
3279                                                                   // data
3280                             case eSectionTypeDataSymbolAddress:   // Address of
3281                                                                   // a symbol in
3282                                                                   // the symbol
3283                                                                   // table
3284                             case eSectionTypeData4:
3285                             case eSectionTypeData8:
3286                             case eSectionTypeData16:
3287                               type = eSymbolTypeData;
3288                               break;
3289                             default:
3290                               break;
3291                             }
3292                             break;
3293                           }
3294 
3295                           if (type == eSymbolTypeInvalid) {
3296                             const char *symbol_sect_name =
3297                                 symbol_section->GetName().AsCString();
3298                             if (symbol_section->IsDescendant(
3299                                     text_section_sp.get())) {
3300                               if (symbol_section->IsClear(
3301                                       S_ATTR_PURE_INSTRUCTIONS |
3302                                       S_ATTR_SELF_MODIFYING_CODE |
3303                                       S_ATTR_SOME_INSTRUCTIONS))
3304                                 type = eSymbolTypeData;
3305                               else
3306                                 type = eSymbolTypeCode;
3307                             } else if (symbol_section->IsDescendant(
3308                                            data_section_sp.get()) ||
3309                                        symbol_section->IsDescendant(
3310                                            data_dirty_section_sp.get()) ||
3311                                        symbol_section->IsDescendant(
3312                                            data_const_section_sp.get())) {
3313                               if (symbol_sect_name &&
3314                                   ::strstr(symbol_sect_name, "__objc") ==
3315                                       symbol_sect_name) {
3316                                 type = eSymbolTypeRuntime;
3317 
3318                                 if (symbol_name) {
3319                                   llvm::StringRef symbol_name_ref(symbol_name);
3320                                   if (symbol_name_ref.startswith("_OBJC_")) {
3321                                     llvm::StringRef
3322                                         g_objc_v2_prefix_class(
3323                                             "_OBJC_CLASS_$_");
3324                                     llvm::StringRef
3325                                         g_objc_v2_prefix_metaclass(
3326                                             "_OBJC_METACLASS_$_");
3327                                     llvm::StringRef
3328                                         g_objc_v2_prefix_ivar("_OBJC_IVAR_$_");
3329                                     if (symbol_name_ref.startswith(
3330                                             g_objc_v2_prefix_class)) {
3331                                       symbol_name_non_abi_mangled =
3332                                           symbol_name + 1;
3333                                       symbol_name =
3334                                           symbol_name +
3335                                           g_objc_v2_prefix_class.size();
3336                                       type = eSymbolTypeObjCClass;
3337                                       demangled_is_synthesized = true;
3338                                     } else if (
3339                                         symbol_name_ref.startswith(
3340                                             g_objc_v2_prefix_metaclass)) {
3341                                       symbol_name_non_abi_mangled =
3342                                           symbol_name + 1;
3343                                       symbol_name =
3344                                           symbol_name +
3345                                           g_objc_v2_prefix_metaclass.size();
3346                                       type = eSymbolTypeObjCMetaClass;
3347                                       demangled_is_synthesized = true;
3348                                     } else if (symbol_name_ref.startswith(
3349                                                    g_objc_v2_prefix_ivar)) {
3350                                       symbol_name_non_abi_mangled =
3351                                           symbol_name + 1;
3352                                       symbol_name =
3353                                           symbol_name +
3354                                           g_objc_v2_prefix_ivar.size();
3355                                       type = eSymbolTypeObjCIVar;
3356                                       demangled_is_synthesized = true;
3357                                     }
3358                                   }
3359                                 }
3360                               } else if (symbol_sect_name &&
3361                                          ::strstr(symbol_sect_name,
3362                                                   "__gcc_except_tab") ==
3363                                              symbol_sect_name) {
3364                                 type = eSymbolTypeException;
3365                               } else {
3366                                 type = eSymbolTypeData;
3367                               }
3368                             } else if (symbol_sect_name &&
3369                                        ::strstr(symbol_sect_name, "__IMPORT") ==
3370                                            symbol_sect_name) {
3371                               type = eSymbolTypeTrampoline;
3372                             } else if (symbol_section->IsDescendant(
3373                                            objc_section_sp.get())) {
3374                               type = eSymbolTypeRuntime;
3375                               if (symbol_name && symbol_name[0] == '.') {
3376                                 llvm::StringRef symbol_name_ref(symbol_name);
3377                                 llvm::StringRef
3378                                     g_objc_v1_prefix_class(".objc_class_name_");
3379                                 if (symbol_name_ref.startswith(
3380                                         g_objc_v1_prefix_class)) {
3381                                   symbol_name_non_abi_mangled = symbol_name;
3382                                   symbol_name = symbol_name +
3383                                                 g_objc_v1_prefix_class.size();
3384                                   type = eSymbolTypeObjCClass;
3385                                   demangled_is_synthesized = true;
3386                                 }
3387                               }
3388                             }
3389                           }
3390                         }
3391                       } break;
3392                       }
3393                     }
3394 
3395                     if (add_nlist) {
3396                       uint64_t symbol_value = nlist.n_value;
3397                       if (symbol_name_non_abi_mangled) {
3398                         sym[sym_idx].GetMangled().SetMangledName(
3399                             ConstString(symbol_name_non_abi_mangled));
3400                         sym[sym_idx].GetMangled().SetDemangledName(
3401                             ConstString(symbol_name));
3402                       } else {
3403                         bool symbol_name_is_mangled = false;
3404 
3405                         if (symbol_name && symbol_name[0] == '_') {
3406                           symbol_name_is_mangled = symbol_name[1] == '_';
3407                           symbol_name++; // Skip the leading underscore
3408                         }
3409 
3410                         if (symbol_name) {
3411                           ConstString const_symbol_name(symbol_name);
3412                           sym[sym_idx].GetMangled().SetValue(
3413                               const_symbol_name, symbol_name_is_mangled);
3414                           if (is_gsym && is_debug) {
3415                             const char *gsym_name =
3416                                 sym[sym_idx]
3417                                     .GetMangled()
3418                                     .GetName(lldb::eLanguageTypeUnknown,
3419                                              Mangled::ePreferMangled)
3420                                     .GetCString();
3421                             if (gsym_name)
3422                               N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
3423                           }
3424                         }
3425                       }
3426                       if (symbol_section) {
3427                         const addr_t section_file_addr =
3428                             symbol_section->GetFileAddress();
3429                         if (symbol_byte_size == 0 &&
3430                             function_starts_count > 0) {
3431                           addr_t symbol_lookup_file_addr = nlist.n_value;
3432                           // Do an exact address match for non-ARM addresses,
3433                           // else get the closest since the symbol might be a
3434                           // thumb symbol which has an address with bit zero
3435                           // set
3436                           FunctionStarts::Entry *func_start_entry =
3437                               function_starts.FindEntry(symbol_lookup_file_addr,
3438                                                         !is_arm);
3439                           if (is_arm && func_start_entry) {
3440                             // Verify that the function start address is the
3441                             // symbol address (ARM) or the symbol address + 1
3442                             // (thumb)
3443                             if (func_start_entry->addr !=
3444                                     symbol_lookup_file_addr &&
3445                                 func_start_entry->addr !=
3446                                     (symbol_lookup_file_addr + 1)) {
3447                               // Not the right entry, NULL it out...
3448                               func_start_entry = NULL;
3449                             }
3450                           }
3451                           if (func_start_entry) {
3452                             func_start_entry->data = true;
3453 
3454                             addr_t symbol_file_addr = func_start_entry->addr;
3455                             uint32_t symbol_flags = 0;
3456                             if (is_arm) {
3457                               if (symbol_file_addr & 1)
3458                                 symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB;
3459                               symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
3460                             }
3461 
3462                             const FunctionStarts::Entry *next_func_start_entry =
3463                                 function_starts.FindNextEntry(func_start_entry);
3464                             const addr_t section_end_file_addr =
3465                                 section_file_addr +
3466                                 symbol_section->GetByteSize();
3467                             if (next_func_start_entry) {
3468                               addr_t next_symbol_file_addr =
3469                                   next_func_start_entry->addr;
3470                               // Be sure the clear the Thumb address bit when
3471                               // we calculate the size from the current and
3472                               // next address
3473                               if (is_arm)
3474                                 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
3475                               symbol_byte_size = std::min<lldb::addr_t>(
3476                                   next_symbol_file_addr - symbol_file_addr,
3477                                   section_end_file_addr - symbol_file_addr);
3478                             } else {
3479                               symbol_byte_size =
3480                                   section_end_file_addr - symbol_file_addr;
3481                             }
3482                           }
3483                         }
3484                         symbol_value -= section_file_addr;
3485                       }
3486 
3487                       if (is_debug == false) {
3488                         if (type == eSymbolTypeCode) {
3489                           // See if we can find a N_FUN entry for any code
3490                           // symbols. If we do find a match, and the name
3491                           // matches, then we can merge the two into just the
3492                           // function symbol to avoid duplicate entries in
3493                           // the symbol table
3494                           auto range =
3495                               N_FUN_addr_to_sym_idx.equal_range(nlist.n_value);
3496                           if (range.first != range.second) {
3497                             bool found_it = false;
3498                             for (const auto pos = range.first;
3499                                  pos != range.second; ++pos) {
3500                               if (sym[sym_idx].GetMangled().GetName(
3501                                       lldb::eLanguageTypeUnknown,
3502                                       Mangled::ePreferMangled) ==
3503                                   sym[pos->second].GetMangled().GetName(
3504                                       lldb::eLanguageTypeUnknown,
3505                                       Mangled::ePreferMangled)) {
3506                                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
3507                                 // We just need the flags from the linker
3508                                 // symbol, so put these flags
3509                                 // into the N_FUN flags to avoid duplicate
3510                                 // symbols in the symbol table
3511                                 sym[pos->second].SetExternal(
3512                                     sym[sym_idx].IsExternal());
3513                                 sym[pos->second].SetFlags(nlist.n_type << 16 |
3514                                                           nlist.n_desc);
3515                                 if (resolver_addresses.find(nlist.n_value) !=
3516                                     resolver_addresses.end())
3517                                   sym[pos->second].SetType(eSymbolTypeResolver);
3518                                 sym[sym_idx].Clear();
3519                                 found_it = true;
3520                                 break;
3521                               }
3522                             }
3523                             if (found_it)
3524                               continue;
3525                           } else {
3526                             if (resolver_addresses.find(nlist.n_value) !=
3527                                 resolver_addresses.end())
3528                               type = eSymbolTypeResolver;
3529                           }
3530                         } else if (type == eSymbolTypeData ||
3531                                    type == eSymbolTypeObjCClass ||
3532                                    type == eSymbolTypeObjCMetaClass ||
3533                                    type == eSymbolTypeObjCIVar) {
3534                           // See if we can find a N_STSYM entry for any data
3535                           // symbols. If we do find a match, and the name
3536                           // matches, then we can merge the two into just the
3537                           // Static symbol to avoid duplicate entries in the
3538                           // symbol table
3539                           auto range = N_STSYM_addr_to_sym_idx.equal_range(
3540                               nlist.n_value);
3541                           if (range.first != range.second) {
3542                             bool found_it = false;
3543                             for (const auto pos = range.first;
3544                                  pos != range.second; ++pos) {
3545                               if (sym[sym_idx].GetMangled().GetName(
3546                                       lldb::eLanguageTypeUnknown,
3547                                       Mangled::ePreferMangled) ==
3548                                   sym[pos->second].GetMangled().GetName(
3549                                       lldb::eLanguageTypeUnknown,
3550                                       Mangled::ePreferMangled)) {
3551                                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
3552                                 // We just need the flags from the linker
3553                                 // symbol, so put these flags
3554                                 // into the N_STSYM flags to avoid duplicate
3555                                 // symbols in the symbol table
3556                                 sym[pos->second].SetExternal(
3557                                     sym[sym_idx].IsExternal());
3558                                 sym[pos->second].SetFlags(nlist.n_type << 16 |
3559                                                           nlist.n_desc);
3560                                 sym[sym_idx].Clear();
3561                                 found_it = true;
3562                                 break;
3563                               }
3564                             }
3565                             if (found_it)
3566                               continue;
3567                           } else {
3568                             const char *gsym_name =
3569                                 sym[sym_idx]
3570                                     .GetMangled()
3571                                     .GetName(lldb::eLanguageTypeUnknown,
3572                                              Mangled::ePreferMangled)
3573                                     .GetCString();
3574                             if (gsym_name) {
3575                               // Combine N_GSYM stab entries with the non
3576                               // stab symbol
3577                               ConstNameToSymbolIndexMap::const_iterator pos =
3578                                   N_GSYM_name_to_sym_idx.find(gsym_name);
3579                               if (pos != N_GSYM_name_to_sym_idx.end()) {
3580                                 const uint32_t GSYM_sym_idx = pos->second;
3581                                 m_nlist_idx_to_sym_idx[nlist_idx] =
3582                                     GSYM_sym_idx;
3583                                 // Copy the address, because often the N_GSYM
3584                                 // address has an invalid address of zero
3585                                 // when the global is a common symbol
3586                                 sym[GSYM_sym_idx].GetAddressRef().SetSection(
3587                                     symbol_section);
3588                                 sym[GSYM_sym_idx].GetAddressRef().SetOffset(
3589                                     symbol_value);
3590                                 // We just need the flags from the linker
3591                                 // symbol, so put these flags
3592                                 // into the N_GSYM flags to avoid duplicate
3593                                 // symbols in the symbol table
3594                                 sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 |
3595                                                            nlist.n_desc);
3596                                 sym[sym_idx].Clear();
3597                                 continue;
3598                               }
3599                             }
3600                           }
3601                         }
3602                       }
3603 
3604                       sym[sym_idx].SetID(nlist_idx);
3605                       sym[sym_idx].SetType(type);
3606                       if (set_value) {
3607                         sym[sym_idx].GetAddressRef().SetSection(symbol_section);
3608                         sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
3609                       }
3610                       sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
3611 
3612                       if (symbol_byte_size > 0)
3613                         sym[sym_idx].SetByteSize(symbol_byte_size);
3614 
3615                       if (demangled_is_synthesized)
3616                         sym[sym_idx].SetDemangledNameIsSynthesized(true);
3617                       ++sym_idx;
3618                     } else {
3619                       sym[sym_idx].Clear();
3620                     }
3621                   }
3622                   /////////////////////////////
3623                 }
3624                 break; // No more entries to consider
3625               }
3626             }
3627 
3628             for (const auto &pos : reexport_shlib_needs_fixup) {
3629               const auto undef_pos = undefined_name_to_desc.find(pos.second);
3630               if (undef_pos != undefined_name_to_desc.end()) {
3631                 const uint8_t dylib_ordinal =
3632                     llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
3633                 if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize())
3634                   sym[pos.first].SetReExportedSymbolSharedLibrary(
3635                       dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
3636               }
3637             }
3638           }
3639         }
3640       }
3641     }
3642   }
3643 
3644   // Must reset this in case it was mutated above!
3645   nlist_data_offset = 0;
3646 #endif
3647 
3648   if (nlist_data.GetByteSize() > 0) {
3649 
3650     // If the sym array was not created while parsing the DSC unmapped
3651     // symbols, create it now.
3652     if (sym == nullptr) {
3653       sym =
3654           symtab->Resize(symtab_load_command.nsyms + m_dysymtab.nindirectsyms);
3655       num_syms = symtab->GetNumSymbols();
3656     }
3657 
3658     if (unmapped_local_symbols_found) {
3659       assert(m_dysymtab.ilocalsym == 0);
3660       nlist_data_offset += (m_dysymtab.nlocalsym * nlist_byte_size);
3661       nlist_idx = m_dysymtab.nlocalsym;
3662     } else {
3663       nlist_idx = 0;
3664     }
3665 
3666     typedef llvm::DenseMap<ConstString, uint16_t> UndefinedNameToDescMap;
3667     typedef llvm::DenseMap<uint32_t, ConstString> SymbolIndexToName;
3668     UndefinedNameToDescMap undefined_name_to_desc;
3669     SymbolIndexToName reexport_shlib_needs_fixup;
3670 
3671     // Symtab parsing is a huge mess. Everything is entangled and the code
3672     // requires access to a ridiculous amount of variables. LLDB depends
3673     // heavily on the proper merging of symbols and to get that right we need
3674     // to make sure we have parsed all the debug symbols first. Therefore we
3675     // invoke the lambda twice, once to parse only the debug symbols and then
3676     // once more to parse the remaining symbols.
3677     auto ParseSymbolLambda = [&](struct nlist_64 &nlist, uint32_t nlist_idx,
3678                                  bool debug_only) {
3679       const bool is_debug = ((nlist.n_type & N_STAB) != 0);
3680       if (is_debug != debug_only)
3681         return true;
3682 
3683       const char *symbol_name_non_abi_mangled = nullptr;
3684       const char *symbol_name = nullptr;
3685 
3686       if (have_strtab_data) {
3687         symbol_name = strtab_data.PeekCStr(nlist.n_strx);
3688 
3689         if (symbol_name == nullptr) {
3690           // No symbol should be NULL, even the symbols with no string values
3691           // should have an offset zero which points to an empty C-string
3692           Host::SystemLog(Host::eSystemLogError,
3693                           "error: symbol[%u] has invalid string table offset "
3694                           "0x%x in %s, ignoring symbol\n",
3695                           nlist_idx, nlist.n_strx,
3696                           module_sp->GetFileSpec().GetPath().c_str());
3697           return true;
3698         }
3699         if (symbol_name[0] == '\0')
3700           symbol_name = nullptr;
3701       } else {
3702         const addr_t str_addr = strtab_addr + nlist.n_strx;
3703         Status str_error;
3704         if (process->ReadCStringFromMemory(str_addr, memory_symbol_name,
3705                                            str_error))
3706           symbol_name = memory_symbol_name.c_str();
3707       }
3708 
3709       SymbolType type = eSymbolTypeInvalid;
3710       SectionSP symbol_section;
3711       lldb::addr_t symbol_byte_size = 0;
3712       bool add_nlist = true;
3713       bool is_gsym = false;
3714       bool demangled_is_synthesized = false;
3715       bool set_value = true;
3716 
3717       assert(sym_idx < num_syms);
3718       sym[sym_idx].SetDebug(is_debug);
3719 
3720       if (is_debug) {
3721         switch (nlist.n_type) {
3722         case N_GSYM:
3723           // global symbol: name,,NO_SECT,type,0
3724           // Sometimes the N_GSYM value contains the address.
3725 
3726           // FIXME: In the .o files, we have a GSYM and a debug symbol for all
3727           // the ObjC data.  They
3728           // have the same address, but we want to ensure that we always find
3729           // only the real symbol, 'cause we don't currently correctly
3730           // attribute the GSYM one to the ObjCClass/Ivar/MetaClass symbol
3731           // type.  This is a temporary hack to make sure the ObjectiveC
3732           // symbols get treated correctly.  To do this right, we should
3733           // coalesce all the GSYM & global symbols that have the same
3734           // address.
3735           is_gsym = true;
3736           sym[sym_idx].SetExternal(true);
3737 
3738           if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O') {
3739             llvm::StringRef symbol_name_ref(symbol_name);
3740             if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) {
3741               symbol_name_non_abi_mangled = symbol_name + 1;
3742               symbol_name = symbol_name + g_objc_v2_prefix_class.size();
3743               type = eSymbolTypeObjCClass;
3744               demangled_is_synthesized = true;
3745 
3746             } else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) {
3747               symbol_name_non_abi_mangled = symbol_name + 1;
3748               symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size();
3749               type = eSymbolTypeObjCMetaClass;
3750               demangled_is_synthesized = true;
3751             } else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) {
3752               symbol_name_non_abi_mangled = symbol_name + 1;
3753               symbol_name = symbol_name + g_objc_v2_prefix_ivar.size();
3754               type = eSymbolTypeObjCIVar;
3755               demangled_is_synthesized = true;
3756             }
3757           } else {
3758             if (nlist.n_value != 0)
3759               symbol_section =
3760                   section_info.GetSection(nlist.n_sect, nlist.n_value);
3761             type = eSymbolTypeData;
3762           }
3763           break;
3764 
3765         case N_FNAME:
3766           // procedure name (f77 kludge): name,,NO_SECT,0,0
3767           type = eSymbolTypeCompiler;
3768           break;
3769 
3770         case N_FUN:
3771           // procedure: name,,n_sect,linenumber,address
3772           if (symbol_name) {
3773             type = eSymbolTypeCode;
3774             symbol_section =
3775                 section_info.GetSection(nlist.n_sect, nlist.n_value);
3776 
3777             N_FUN_addr_to_sym_idx.insert(
3778                 std::make_pair(nlist.n_value, sym_idx));
3779             // We use the current number of symbols in the symbol table in
3780             // lieu of using nlist_idx in case we ever start trimming entries
3781             // out
3782             N_FUN_indexes.push_back(sym_idx);
3783           } else {
3784             type = eSymbolTypeCompiler;
3785 
3786             if (!N_FUN_indexes.empty()) {
3787               // Copy the size of the function into the original STAB entry
3788               // so we don't have to hunt for it later
3789               symtab->SymbolAtIndex(N_FUN_indexes.back())
3790                   ->SetByteSize(nlist.n_value);
3791               N_FUN_indexes.pop_back();
3792               // We don't really need the end function STAB as it contains
3793               // the size which we already placed with the original symbol,
3794               // so don't add it if we want a minimal symbol table
3795               add_nlist = false;
3796             }
3797           }
3798           break;
3799 
3800         case N_STSYM:
3801           // static symbol: name,,n_sect,type,address
3802           N_STSYM_addr_to_sym_idx.insert(
3803               std::make_pair(nlist.n_value, sym_idx));
3804           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3805           if (symbol_name && symbol_name[0]) {
3806             type = ObjectFile::GetSymbolTypeFromName(symbol_name + 1,
3807                                                      eSymbolTypeData);
3808           }
3809           break;
3810 
3811         case N_LCSYM:
3812           // .lcomm symbol: name,,n_sect,type,address
3813           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3814           type = eSymbolTypeCommonBlock;
3815           break;
3816 
3817         case N_BNSYM:
3818           // We use the current number of symbols in the symbol table in lieu
3819           // of using nlist_idx in case we ever start trimming entries out
3820           // Skip these if we want minimal symbol tables
3821           add_nlist = false;
3822           break;
3823 
3824         case N_ENSYM:
3825           // Set the size of the N_BNSYM to the terminating index of this
3826           // N_ENSYM so that we can always skip the entire symbol if we need
3827           // to navigate more quickly at the source level when parsing STABS
3828           // Skip these if we want minimal symbol tables
3829           add_nlist = false;
3830           break;
3831 
3832         case N_OPT:
3833           // emitted with gcc2_compiled and in gcc source
3834           type = eSymbolTypeCompiler;
3835           break;
3836 
3837         case N_RSYM:
3838           // register sym: name,,NO_SECT,type,register
3839           type = eSymbolTypeVariable;
3840           break;
3841 
3842         case N_SLINE:
3843           // src line: 0,,n_sect,linenumber,address
3844           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3845           type = eSymbolTypeLineEntry;
3846           break;
3847 
3848         case N_SSYM:
3849           // structure elt: name,,NO_SECT,type,struct_offset
3850           type = eSymbolTypeVariableType;
3851           break;
3852 
3853         case N_SO:
3854           // source file name
3855           type = eSymbolTypeSourceFile;
3856           if (symbol_name == nullptr) {
3857             add_nlist = false;
3858             if (N_SO_index != UINT32_MAX) {
3859               // Set the size of the N_SO to the terminating index of this
3860               // N_SO so that we can always skip the entire N_SO if we need
3861               // to navigate more quickly at the source level when parsing
3862               // STABS
3863               symbol_ptr = symtab->SymbolAtIndex(N_SO_index);
3864               symbol_ptr->SetByteSize(sym_idx);
3865               symbol_ptr->SetSizeIsSibling(true);
3866             }
3867             N_NSYM_indexes.clear();
3868             N_INCL_indexes.clear();
3869             N_BRAC_indexes.clear();
3870             N_COMM_indexes.clear();
3871             N_FUN_indexes.clear();
3872             N_SO_index = UINT32_MAX;
3873           } else {
3874             // We use the current number of symbols in the symbol table in
3875             // lieu of using nlist_idx in case we ever start trimming entries
3876             // out
3877             const bool N_SO_has_full_path = symbol_name[0] == '/';
3878             if (N_SO_has_full_path) {
3879               if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) {
3880                 // We have two consecutive N_SO entries where the first
3881                 // contains a directory and the second contains a full path.
3882                 sym[sym_idx - 1].GetMangled().SetValue(ConstString(symbol_name),
3883                                                        false);
3884                 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3885                 add_nlist = false;
3886               } else {
3887                 // This is the first entry in a N_SO that contains a
3888                 // directory or a full path to the source file
3889                 N_SO_index = sym_idx;
3890               }
3891             } else if ((N_SO_index == sym_idx - 1) &&
3892                        ((sym_idx - 1) < num_syms)) {
3893               // This is usually the second N_SO entry that contains just the
3894               // filename, so here we combine it with the first one if we are
3895               // minimizing the symbol table
3896               const char *so_path =
3897                   sym[sym_idx - 1]
3898                       .GetMangled()
3899                       .GetDemangledName(lldb::eLanguageTypeUnknown)
3900                       .AsCString();
3901               if (so_path && so_path[0]) {
3902                 std::string full_so_path(so_path);
3903                 const size_t double_slash_pos = full_so_path.find("//");
3904                 if (double_slash_pos != std::string::npos) {
3905                   // The linker has been generating bad N_SO entries with
3906                   // doubled up paths in the format "%s%s" where the first
3907                   // string in the DW_AT_comp_dir, and the second is the
3908                   // directory for the source file so you end up with a path
3909                   // that looks like "/tmp/src//tmp/src/"
3910                   FileSpec so_dir(so_path);
3911                   if (!FileSystem::Instance().Exists(so_dir)) {
3912                     so_dir.SetFile(&full_so_path[double_slash_pos + 1],
3913                                    FileSpec::Style::native);
3914                     if (FileSystem::Instance().Exists(so_dir)) {
3915                       // Trim off the incorrect path
3916                       full_so_path.erase(0, double_slash_pos + 1);
3917                     }
3918                   }
3919                 }
3920                 if (*full_so_path.rbegin() != '/')
3921                   full_so_path += '/';
3922                 full_so_path += symbol_name;
3923                 sym[sym_idx - 1].GetMangled().SetValue(
3924                     ConstString(full_so_path.c_str()), false);
3925                 add_nlist = false;
3926                 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3927               }
3928             } else {
3929               // This could be a relative path to a N_SO
3930               N_SO_index = sym_idx;
3931             }
3932           }
3933           break;
3934 
3935         case N_OSO:
3936           // object file name: name,,0,0,st_mtime
3937           type = eSymbolTypeObjectFile;
3938           break;
3939 
3940         case N_LSYM:
3941           // local sym: name,,NO_SECT,type,offset
3942           type = eSymbolTypeLocal;
3943           break;
3944 
3945         // INCL scopes
3946         case N_BINCL:
3947           // include file beginning: name,,NO_SECT,0,sum We use the current
3948           // number of symbols in the symbol table in lieu of using nlist_idx
3949           // in case we ever start trimming entries out
3950           N_INCL_indexes.push_back(sym_idx);
3951           type = eSymbolTypeScopeBegin;
3952           break;
3953 
3954         case N_EINCL:
3955           // include file end: name,,NO_SECT,0,0
3956           // Set the size of the N_BINCL to the terminating index of this
3957           // N_EINCL so that we can always skip the entire symbol if we need
3958           // to navigate more quickly at the source level when parsing STABS
3959           if (!N_INCL_indexes.empty()) {
3960             symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back());
3961             symbol_ptr->SetByteSize(sym_idx + 1);
3962             symbol_ptr->SetSizeIsSibling(true);
3963             N_INCL_indexes.pop_back();
3964           }
3965           type = eSymbolTypeScopeEnd;
3966           break;
3967 
3968         case N_SOL:
3969           // #included file name: name,,n_sect,0,address
3970           type = eSymbolTypeHeaderFile;
3971 
3972           // We currently don't use the header files on darwin
3973           add_nlist = false;
3974           break;
3975 
3976         case N_PARAMS:
3977           // compiler parameters: name,,NO_SECT,0,0
3978           type = eSymbolTypeCompiler;
3979           break;
3980 
3981         case N_VERSION:
3982           // compiler version: name,,NO_SECT,0,0
3983           type = eSymbolTypeCompiler;
3984           break;
3985 
3986         case N_OLEVEL:
3987           // compiler -O level: name,,NO_SECT,0,0
3988           type = eSymbolTypeCompiler;
3989           break;
3990 
3991         case N_PSYM:
3992           // parameter: name,,NO_SECT,type,offset
3993           type = eSymbolTypeVariable;
3994           break;
3995 
3996         case N_ENTRY:
3997           // alternate entry: name,,n_sect,linenumber,address
3998           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3999           type = eSymbolTypeLineEntry;
4000           break;
4001 
4002         // Left and Right Braces
4003         case N_LBRAC:
4004           // left bracket: 0,,NO_SECT,nesting level,address We use the
4005           // current number of symbols in the symbol table in lieu of using
4006           // nlist_idx in case we ever start trimming entries out
4007           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4008           N_BRAC_indexes.push_back(sym_idx);
4009           type = eSymbolTypeScopeBegin;
4010           break;
4011 
4012         case N_RBRAC:
4013           // right bracket: 0,,NO_SECT,nesting level,address Set the size of
4014           // the N_LBRAC to the terminating index of this N_RBRAC so that we
4015           // can always skip the entire symbol if we need to navigate more
4016           // quickly at the source level when parsing STABS
4017           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4018           if (!N_BRAC_indexes.empty()) {
4019             symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back());
4020             symbol_ptr->SetByteSize(sym_idx + 1);
4021             symbol_ptr->SetSizeIsSibling(true);
4022             N_BRAC_indexes.pop_back();
4023           }
4024           type = eSymbolTypeScopeEnd;
4025           break;
4026 
4027         case N_EXCL:
4028           // deleted include file: name,,NO_SECT,0,sum
4029           type = eSymbolTypeHeaderFile;
4030           break;
4031 
4032         // COMM scopes
4033         case N_BCOMM:
4034           // begin common: name,,NO_SECT,0,0
4035           // We use the current number of symbols in the symbol table in lieu
4036           // of using nlist_idx in case we ever start trimming entries out
4037           type = eSymbolTypeScopeBegin;
4038           N_COMM_indexes.push_back(sym_idx);
4039           break;
4040 
4041         case N_ECOML:
4042           // end common (local name): 0,,n_sect,0,address
4043           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4044           LLVM_FALLTHROUGH;
4045 
4046         case N_ECOMM:
4047           // end common: name,,n_sect,0,0
4048           // Set the size of the N_BCOMM to the terminating index of this
4049           // N_ECOMM/N_ECOML so that we can always skip the entire symbol if
4050           // we need to navigate more quickly at the source level when
4051           // parsing STABS
4052           if (!N_COMM_indexes.empty()) {
4053             symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back());
4054             symbol_ptr->SetByteSize(sym_idx + 1);
4055             symbol_ptr->SetSizeIsSibling(true);
4056             N_COMM_indexes.pop_back();
4057           }
4058           type = eSymbolTypeScopeEnd;
4059           break;
4060 
4061         case N_LENG:
4062           // second stab entry with length information
4063           type = eSymbolTypeAdditional;
4064           break;
4065 
4066         default:
4067           break;
4068         }
4069       } else {
4070         uint8_t n_type = N_TYPE & nlist.n_type;
4071         sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
4072 
4073         switch (n_type) {
4074         case N_INDR: {
4075           const char *reexport_name_cstr = strtab_data.PeekCStr(nlist.n_value);
4076           if (reexport_name_cstr && reexport_name_cstr[0]) {
4077             type = eSymbolTypeReExported;
4078             ConstString reexport_name(reexport_name_cstr +
4079                                       ((reexport_name_cstr[0] == '_') ? 1 : 0));
4080             sym[sym_idx].SetReExportedSymbolName(reexport_name);
4081             set_value = false;
4082             reexport_shlib_needs_fixup[sym_idx] = reexport_name;
4083             indirect_symbol_names.insert(
4084                 ConstString(symbol_name + ((symbol_name[0] == '_') ? 1 : 0)));
4085           } else
4086             type = eSymbolTypeUndefined;
4087         } break;
4088 
4089         case N_UNDF:
4090           if (symbol_name && symbol_name[0]) {
4091             ConstString undefined_name(symbol_name +
4092                                        ((symbol_name[0] == '_') ? 1 : 0));
4093             undefined_name_to_desc[undefined_name] = nlist.n_desc;
4094           }
4095           LLVM_FALLTHROUGH;
4096 
4097         case N_PBUD:
4098           type = eSymbolTypeUndefined;
4099           break;
4100 
4101         case N_ABS:
4102           type = eSymbolTypeAbsolute;
4103           break;
4104 
4105         case N_SECT: {
4106           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4107 
4108           if (!symbol_section) {
4109             // TODO: warn about this?
4110             add_nlist = false;
4111             break;
4112           }
4113 
4114           if (TEXT_eh_frame_sectID == nlist.n_sect) {
4115             type = eSymbolTypeException;
4116           } else {
4117             uint32_t section_type = symbol_section->Get() & SECTION_TYPE;
4118 
4119             switch (section_type) {
4120             case S_CSTRING_LITERALS:
4121               type = eSymbolTypeData;
4122               break; // section with only literal C strings
4123             case S_4BYTE_LITERALS:
4124               type = eSymbolTypeData;
4125               break; // section with only 4 byte literals
4126             case S_8BYTE_LITERALS:
4127               type = eSymbolTypeData;
4128               break; // section with only 8 byte literals
4129             case S_LITERAL_POINTERS:
4130               type = eSymbolTypeTrampoline;
4131               break; // section with only pointers to literals
4132             case S_NON_LAZY_SYMBOL_POINTERS:
4133               type = eSymbolTypeTrampoline;
4134               break; // section with only non-lazy symbol pointers
4135             case S_LAZY_SYMBOL_POINTERS:
4136               type = eSymbolTypeTrampoline;
4137               break; // section with only lazy symbol pointers
4138             case S_SYMBOL_STUBS:
4139               type = eSymbolTypeTrampoline;
4140               break; // section with only symbol stubs, byte size of stub in
4141                      // the reserved2 field
4142             case S_MOD_INIT_FUNC_POINTERS:
4143               type = eSymbolTypeCode;
4144               break; // section with only function pointers for initialization
4145             case S_MOD_TERM_FUNC_POINTERS:
4146               type = eSymbolTypeCode;
4147               break; // section with only function pointers for termination
4148             case S_INTERPOSING:
4149               type = eSymbolTypeTrampoline;
4150               break; // section with only pairs of function pointers for
4151                      // interposing
4152             case S_16BYTE_LITERALS:
4153               type = eSymbolTypeData;
4154               break; // section with only 16 byte literals
4155             case S_DTRACE_DOF:
4156               type = eSymbolTypeInstrumentation;
4157               break;
4158             case S_LAZY_DYLIB_SYMBOL_POINTERS:
4159               type = eSymbolTypeTrampoline;
4160               break;
4161             default:
4162               switch (symbol_section->GetType()) {
4163               case lldb::eSectionTypeCode:
4164                 type = eSymbolTypeCode;
4165                 break;
4166               case eSectionTypeData:
4167               case eSectionTypeDataCString:         // Inlined C string data
4168               case eSectionTypeDataCStringPointers: // Pointers to C string
4169                                                     // data
4170               case eSectionTypeDataSymbolAddress:   // Address of a symbol in
4171                                                     // the symbol table
4172               case eSectionTypeData4:
4173               case eSectionTypeData8:
4174               case eSectionTypeData16:
4175                 type = eSymbolTypeData;
4176                 break;
4177               default:
4178                 break;
4179               }
4180               break;
4181             }
4182 
4183             if (type == eSymbolTypeInvalid) {
4184               const char *symbol_sect_name =
4185                   symbol_section->GetName().AsCString();
4186               if (symbol_section->IsDescendant(text_section_sp.get())) {
4187                 if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS |
4188                                             S_ATTR_SELF_MODIFYING_CODE |
4189                                             S_ATTR_SOME_INSTRUCTIONS))
4190                   type = eSymbolTypeData;
4191                 else
4192                   type = eSymbolTypeCode;
4193               } else if (symbol_section->IsDescendant(data_section_sp.get()) ||
4194                          symbol_section->IsDescendant(
4195                              data_dirty_section_sp.get()) ||
4196                          symbol_section->IsDescendant(
4197                              data_const_section_sp.get())) {
4198                 if (symbol_sect_name &&
4199                     ::strstr(symbol_sect_name, "__objc") == symbol_sect_name) {
4200                   type = eSymbolTypeRuntime;
4201 
4202                   if (symbol_name) {
4203                     llvm::StringRef symbol_name_ref(symbol_name);
4204                     if (symbol_name_ref.startswith("_OBJC_")) {
4205                       llvm::StringRef g_objc_v2_prefix_class(
4206                           "_OBJC_CLASS_$_");
4207                       llvm::StringRef g_objc_v2_prefix_metaclass(
4208                           "_OBJC_METACLASS_$_");
4209                       llvm::StringRef g_objc_v2_prefix_ivar(
4210                           "_OBJC_IVAR_$_");
4211                       if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) {
4212                         symbol_name_non_abi_mangled = symbol_name + 1;
4213                         symbol_name =
4214                             symbol_name + g_objc_v2_prefix_class.size();
4215                         type = eSymbolTypeObjCClass;
4216                         demangled_is_synthesized = true;
4217                       } else if (symbol_name_ref.startswith(
4218                                      g_objc_v2_prefix_metaclass)) {
4219                         symbol_name_non_abi_mangled = symbol_name + 1;
4220                         symbol_name =
4221                             symbol_name + g_objc_v2_prefix_metaclass.size();
4222                         type = eSymbolTypeObjCMetaClass;
4223                         demangled_is_synthesized = true;
4224                       } else if (symbol_name_ref.startswith(
4225                                      g_objc_v2_prefix_ivar)) {
4226                         symbol_name_non_abi_mangled = symbol_name + 1;
4227                         symbol_name =
4228                             symbol_name + g_objc_v2_prefix_ivar.size();
4229                         type = eSymbolTypeObjCIVar;
4230                         demangled_is_synthesized = true;
4231                       }
4232                     }
4233                   }
4234                 } else if (symbol_sect_name &&
4235                            ::strstr(symbol_sect_name, "__gcc_except_tab") ==
4236                                symbol_sect_name) {
4237                   type = eSymbolTypeException;
4238                 } else {
4239                   type = eSymbolTypeData;
4240                 }
4241               } else if (symbol_sect_name &&
4242                          ::strstr(symbol_sect_name, "__IMPORT") ==
4243                              symbol_sect_name) {
4244                 type = eSymbolTypeTrampoline;
4245               } else if (symbol_section->IsDescendant(objc_section_sp.get())) {
4246                 type = eSymbolTypeRuntime;
4247                 if (symbol_name && symbol_name[0] == '.') {
4248                   llvm::StringRef symbol_name_ref(symbol_name);
4249                   llvm::StringRef g_objc_v1_prefix_class(
4250                       ".objc_class_name_");
4251                   if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) {
4252                     symbol_name_non_abi_mangled = symbol_name;
4253                     symbol_name = symbol_name + g_objc_v1_prefix_class.size();
4254                     type = eSymbolTypeObjCClass;
4255                     demangled_is_synthesized = true;
4256                   }
4257                 }
4258               }
4259             }
4260           }
4261         } break;
4262         }
4263       }
4264 
4265       if (!add_nlist) {
4266         sym[sym_idx].Clear();
4267         return true;
4268       }
4269 
4270       uint64_t symbol_value = nlist.n_value;
4271 
4272       if (symbol_name_non_abi_mangled) {
4273         sym[sym_idx].GetMangled().SetMangledName(
4274             ConstString(symbol_name_non_abi_mangled));
4275         sym[sym_idx].GetMangled().SetDemangledName(ConstString(symbol_name));
4276       } else {
4277         bool symbol_name_is_mangled = false;
4278 
4279         if (symbol_name && symbol_name[0] == '_') {
4280           symbol_name_is_mangled = symbol_name[1] == '_';
4281           symbol_name++; // Skip the leading underscore
4282         }
4283 
4284         if (symbol_name) {
4285           ConstString const_symbol_name(symbol_name);
4286           sym[sym_idx].GetMangled().SetValue(const_symbol_name,
4287                                              symbol_name_is_mangled);
4288         }
4289       }
4290 
4291       if (is_gsym) {
4292         const char *gsym_name =
4293             sym[sym_idx]
4294                 .GetMangled()
4295                 .GetName(lldb::eLanguageTypeUnknown, Mangled::ePreferMangled)
4296                 .GetCString();
4297         if (gsym_name)
4298           N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
4299       }
4300 
4301       if (symbol_section) {
4302         const addr_t section_file_addr = symbol_section->GetFileAddress();
4303         if (symbol_byte_size == 0 && function_starts_count > 0) {
4304           addr_t symbol_lookup_file_addr = nlist.n_value;
4305           // Do an exact address match for non-ARM addresses, else get the
4306           // closest since the symbol might be a thumb symbol which has an
4307           // address with bit zero set.
4308           FunctionStarts::Entry *func_start_entry =
4309               function_starts.FindEntry(symbol_lookup_file_addr, !is_arm);
4310           if (is_arm && func_start_entry) {
4311             // Verify that the function start address is the symbol address
4312             // (ARM) or the symbol address + 1 (thumb).
4313             if (func_start_entry->addr != symbol_lookup_file_addr &&
4314                 func_start_entry->addr != (symbol_lookup_file_addr + 1)) {
4315               // Not the right entry, NULL it out...
4316               func_start_entry = nullptr;
4317             }
4318           }
4319           if (func_start_entry) {
4320             func_start_entry->data = true;
4321 
4322             addr_t symbol_file_addr = func_start_entry->addr;
4323             if (is_arm)
4324               symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4325 
4326             const FunctionStarts::Entry *next_func_start_entry =
4327                 function_starts.FindNextEntry(func_start_entry);
4328             const addr_t section_end_file_addr =
4329                 section_file_addr + symbol_section->GetByteSize();
4330             if (next_func_start_entry) {
4331               addr_t next_symbol_file_addr = next_func_start_entry->addr;
4332               // Be sure the clear the Thumb address bit when we calculate the
4333               // size from the current and next address
4334               if (is_arm)
4335                 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4336               symbol_byte_size = std::min<lldb::addr_t>(
4337                   next_symbol_file_addr - symbol_file_addr,
4338                   section_end_file_addr - symbol_file_addr);
4339             } else {
4340               symbol_byte_size = section_end_file_addr - symbol_file_addr;
4341             }
4342           }
4343         }
4344         symbol_value -= section_file_addr;
4345       }
4346 
4347       if (!is_debug) {
4348         if (type == eSymbolTypeCode) {
4349           // See if we can find a N_FUN entry for any code symbols. If we do
4350           // find a match, and the name matches, then we can merge the two into
4351           // just the function symbol to avoid duplicate entries in the symbol
4352           // table.
4353           std::pair<ValueToSymbolIndexMap::const_iterator,
4354                     ValueToSymbolIndexMap::const_iterator>
4355               range;
4356           range = N_FUN_addr_to_sym_idx.equal_range(nlist.n_value);
4357           if (range.first != range.second) {
4358             for (ValueToSymbolIndexMap::const_iterator pos = range.first;
4359                  pos != range.second; ++pos) {
4360               if (sym[sym_idx].GetMangled().GetName(lldb::eLanguageTypeUnknown,
4361                                                     Mangled::ePreferMangled) ==
4362                   sym[pos->second].GetMangled().GetName(
4363                       lldb::eLanguageTypeUnknown, Mangled::ePreferMangled)) {
4364                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
4365                 // We just need the flags from the linker symbol, so put these
4366                 // flags into the N_FUN flags to avoid duplicate symbols in the
4367                 // symbol table.
4368                 sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
4369                 sym[pos->second].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4370                 if (resolver_addresses.find(nlist.n_value) !=
4371                     resolver_addresses.end())
4372                   sym[pos->second].SetType(eSymbolTypeResolver);
4373                 sym[sym_idx].Clear();
4374                 return true;
4375               }
4376             }
4377           } else {
4378             if (resolver_addresses.find(nlist.n_value) !=
4379                 resolver_addresses.end())
4380               type = eSymbolTypeResolver;
4381           }
4382         } else if (type == eSymbolTypeData || type == eSymbolTypeObjCClass ||
4383                    type == eSymbolTypeObjCMetaClass ||
4384                    type == eSymbolTypeObjCIVar) {
4385           // See if we can find a N_STSYM entry for any data symbols. If we do
4386           // find a match, and the name matches, then we can merge the two into
4387           // just the Static symbol to avoid duplicate entries in the symbol
4388           // table.
4389           std::pair<ValueToSymbolIndexMap::const_iterator,
4390                     ValueToSymbolIndexMap::const_iterator>
4391               range;
4392           range = N_STSYM_addr_to_sym_idx.equal_range(nlist.n_value);
4393           if (range.first != range.second) {
4394             for (ValueToSymbolIndexMap::const_iterator pos = range.first;
4395                  pos != range.second; ++pos) {
4396               if (sym[sym_idx].GetMangled().GetName(lldb::eLanguageTypeUnknown,
4397                                                     Mangled::ePreferMangled) ==
4398                   sym[pos->second].GetMangled().GetName(
4399                       lldb::eLanguageTypeUnknown, Mangled::ePreferMangled)) {
4400                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
4401                 // We just need the flags from the linker symbol, so put these
4402                 // flags into the N_STSYM flags to avoid duplicate symbols in
4403                 // the symbol table.
4404                 sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
4405                 sym[pos->second].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4406                 sym[sym_idx].Clear();
4407                 return true;
4408               }
4409             }
4410           } else {
4411             // Combine N_GSYM stab entries with the non stab symbol.
4412             const char *gsym_name = sym[sym_idx]
4413                                         .GetMangled()
4414                                         .GetName(lldb::eLanguageTypeUnknown,
4415                                                  Mangled::ePreferMangled)
4416                                         .GetCString();
4417             if (gsym_name) {
4418               ConstNameToSymbolIndexMap::const_iterator pos =
4419                   N_GSYM_name_to_sym_idx.find(gsym_name);
4420               if (pos != N_GSYM_name_to_sym_idx.end()) {
4421                 const uint32_t GSYM_sym_idx = pos->second;
4422                 m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx;
4423                 // Copy the address, because often the N_GSYM address has an
4424                 // invalid address of zero when the global is a common symbol.
4425                 sym[GSYM_sym_idx].GetAddressRef().SetSection(symbol_section);
4426                 sym[GSYM_sym_idx].GetAddressRef().SetOffset(symbol_value);
4427                 // We just need the flags from the linker symbol, so put these
4428                 // flags into the N_GSYM flags to avoid duplicate symbols in
4429                 // the symbol table.
4430                 sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4431                 sym[sym_idx].Clear();
4432                 return true;
4433               }
4434             }
4435           }
4436         }
4437       }
4438 
4439       sym[sym_idx].SetID(nlist_idx);
4440       sym[sym_idx].SetType(type);
4441       if (set_value) {
4442         sym[sym_idx].GetAddressRef().SetSection(symbol_section);
4443         sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
4444       }
4445       sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4446       if (nlist.n_desc & N_WEAK_REF)
4447         sym[sym_idx].SetIsWeak(true);
4448 
4449       if (symbol_byte_size > 0)
4450         sym[sym_idx].SetByteSize(symbol_byte_size);
4451 
4452       if (demangled_is_synthesized)
4453         sym[sym_idx].SetDemangledNameIsSynthesized(true);
4454 
4455       ++sym_idx;
4456       return true;
4457     };
4458 
4459     // First parse all the nlists but don't process them yet. See the next
4460     // comment for an explanation why.
4461     std::vector<struct nlist_64> nlists;
4462     nlists.reserve(symtab_load_command.nsyms);
4463     for (; nlist_idx < symtab_load_command.nsyms; ++nlist_idx) {
4464       if (auto nlist =
4465               ParseNList(nlist_data, nlist_data_offset, nlist_byte_size))
4466         nlists.push_back(*nlist);
4467       else
4468         break;
4469     }
4470 
4471     // Now parse all the debug symbols. This is needed to merge non-debug
4472     // symbols in the next step. Non-debug symbols are always coalesced into
4473     // the debug symbol. Doing this in one step would mean that some symbols
4474     // won't be merged.
4475     nlist_idx = 0;
4476     for (auto &nlist : nlists) {
4477       if (!ParseSymbolLambda(nlist, nlist_idx++, DebugSymbols))
4478         break;
4479     }
4480 
4481     // Finally parse all the non debug symbols.
4482     nlist_idx = 0;
4483     for (auto &nlist : nlists) {
4484       if (!ParseSymbolLambda(nlist, nlist_idx++, NonDebugSymbols))
4485         break;
4486     }
4487 
4488     for (const auto &pos : reexport_shlib_needs_fixup) {
4489       const auto undef_pos = undefined_name_to_desc.find(pos.second);
4490       if (undef_pos != undefined_name_to_desc.end()) {
4491         const uint8_t dylib_ordinal =
4492             llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
4493         if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize())
4494           sym[pos.first].SetReExportedSymbolSharedLibrary(
4495               dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
4496       }
4497     }
4498   }
4499 
4500   uint32_t synthetic_sym_id = symtab_load_command.nsyms;
4501 
4502   if (function_starts_count > 0) {
4503     uint32_t num_synthetic_function_symbols = 0;
4504     for (i = 0; i < function_starts_count; ++i) {
4505       if (!function_starts.GetEntryRef(i).data)
4506         ++num_synthetic_function_symbols;
4507     }
4508 
4509     if (num_synthetic_function_symbols > 0) {
4510       if (num_syms < sym_idx + num_synthetic_function_symbols) {
4511         num_syms = sym_idx + num_synthetic_function_symbols;
4512         sym = symtab->Resize(num_syms);
4513       }
4514       for (i = 0; i < function_starts_count; ++i) {
4515         const FunctionStarts::Entry *func_start_entry =
4516             function_starts.GetEntryAtIndex(i);
4517         if (!func_start_entry->data) {
4518           addr_t symbol_file_addr = func_start_entry->addr;
4519           uint32_t symbol_flags = 0;
4520           if (is_arm) {
4521             if (symbol_file_addr & 1)
4522               symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB;
4523             symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4524           }
4525           Address symbol_addr;
4526           if (module_sp->ResolveFileAddress(symbol_file_addr, symbol_addr)) {
4527             SectionSP symbol_section(symbol_addr.GetSection());
4528             uint32_t symbol_byte_size = 0;
4529             if (symbol_section) {
4530               const addr_t section_file_addr = symbol_section->GetFileAddress();
4531               const FunctionStarts::Entry *next_func_start_entry =
4532                   function_starts.FindNextEntry(func_start_entry);
4533               const addr_t section_end_file_addr =
4534                   section_file_addr + symbol_section->GetByteSize();
4535               if (next_func_start_entry) {
4536                 addr_t next_symbol_file_addr = next_func_start_entry->addr;
4537                 if (is_arm)
4538                   next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4539                 symbol_byte_size = std::min<lldb::addr_t>(
4540                     next_symbol_file_addr - symbol_file_addr,
4541                     section_end_file_addr - symbol_file_addr);
4542               } else {
4543                 symbol_byte_size = section_end_file_addr - symbol_file_addr;
4544               }
4545               sym[sym_idx].SetID(synthetic_sym_id++);
4546               sym[sym_idx].GetMangled().SetDemangledName(
4547                   GetNextSyntheticSymbolName());
4548               sym[sym_idx].SetType(eSymbolTypeCode);
4549               sym[sym_idx].SetIsSynthetic(true);
4550               sym[sym_idx].GetAddressRef() = symbol_addr;
4551               if (symbol_flags)
4552                 sym[sym_idx].SetFlags(symbol_flags);
4553               if (symbol_byte_size)
4554                 sym[sym_idx].SetByteSize(symbol_byte_size);
4555               ++sym_idx;
4556             }
4557           }
4558         }
4559       }
4560     }
4561   }
4562 
4563   // Trim our symbols down to just what we ended up with after removing any
4564   // symbols.
4565   if (sym_idx < num_syms) {
4566     num_syms = sym_idx;
4567     sym = symtab->Resize(num_syms);
4568   }
4569 
4570   // Now synthesize indirect symbols
4571   if (m_dysymtab.nindirectsyms != 0) {
4572     if (indirect_symbol_index_data.GetByteSize()) {
4573       NListIndexToSymbolIndexMap::const_iterator end_index_pos =
4574           m_nlist_idx_to_sym_idx.end();
4575 
4576       for (uint32_t sect_idx = 1; sect_idx < m_mach_sections.size();
4577            ++sect_idx) {
4578         if ((m_mach_sections[sect_idx].flags & SECTION_TYPE) ==
4579             S_SYMBOL_STUBS) {
4580           uint32_t symbol_stub_byte_size = m_mach_sections[sect_idx].reserved2;
4581           if (symbol_stub_byte_size == 0)
4582             continue;
4583 
4584           const uint32_t num_symbol_stubs =
4585               m_mach_sections[sect_idx].size / symbol_stub_byte_size;
4586 
4587           if (num_symbol_stubs == 0)
4588             continue;
4589 
4590           const uint32_t symbol_stub_index_offset =
4591               m_mach_sections[sect_idx].reserved1;
4592           for (uint32_t stub_idx = 0; stub_idx < num_symbol_stubs; ++stub_idx) {
4593             const uint32_t symbol_stub_index =
4594                 symbol_stub_index_offset + stub_idx;
4595             const lldb::addr_t symbol_stub_addr =
4596                 m_mach_sections[sect_idx].addr +
4597                 (stub_idx * symbol_stub_byte_size);
4598             lldb::offset_t symbol_stub_offset = symbol_stub_index * 4;
4599             if (indirect_symbol_index_data.ValidOffsetForDataOfSize(
4600                     symbol_stub_offset, 4)) {
4601               const uint32_t stub_sym_id =
4602                   indirect_symbol_index_data.GetU32(&symbol_stub_offset);
4603               if (stub_sym_id & (INDIRECT_SYMBOL_ABS | INDIRECT_SYMBOL_LOCAL))
4604                 continue;
4605 
4606               NListIndexToSymbolIndexMap::const_iterator index_pos =
4607                   m_nlist_idx_to_sym_idx.find(stub_sym_id);
4608               Symbol *stub_symbol = nullptr;
4609               if (index_pos != end_index_pos) {
4610                 // We have a remapping from the original nlist index to a
4611                 // current symbol index, so just look this up by index
4612                 stub_symbol = symtab->SymbolAtIndex(index_pos->second);
4613               } else {
4614                 // We need to lookup a symbol using the original nlist symbol
4615                 // index since this index is coming from the S_SYMBOL_STUBS
4616                 stub_symbol = symtab->FindSymbolByID(stub_sym_id);
4617               }
4618 
4619               if (stub_symbol) {
4620                 Address so_addr(symbol_stub_addr, section_list);
4621 
4622                 if (stub_symbol->GetType() == eSymbolTypeUndefined) {
4623                   // Change the external symbol into a trampoline that makes
4624                   // sense These symbols were N_UNDF N_EXT, and are useless
4625                   // to us, so we can re-use them so we don't have to make up
4626                   // a synthetic symbol for no good reason.
4627                   if (resolver_addresses.find(symbol_stub_addr) ==
4628                       resolver_addresses.end())
4629                     stub_symbol->SetType(eSymbolTypeTrampoline);
4630                   else
4631                     stub_symbol->SetType(eSymbolTypeResolver);
4632                   stub_symbol->SetExternal(false);
4633                   stub_symbol->GetAddressRef() = so_addr;
4634                   stub_symbol->SetByteSize(symbol_stub_byte_size);
4635                 } else {
4636                   // Make a synthetic symbol to describe the trampoline stub
4637                   Mangled stub_symbol_mangled_name(stub_symbol->GetMangled());
4638                   if (sym_idx >= num_syms) {
4639                     sym = symtab->Resize(++num_syms);
4640                     stub_symbol = nullptr; // this pointer no longer valid
4641                   }
4642                   sym[sym_idx].SetID(synthetic_sym_id++);
4643                   sym[sym_idx].GetMangled() = stub_symbol_mangled_name;
4644                   if (resolver_addresses.find(symbol_stub_addr) ==
4645                       resolver_addresses.end())
4646                     sym[sym_idx].SetType(eSymbolTypeTrampoline);
4647                   else
4648                     sym[sym_idx].SetType(eSymbolTypeResolver);
4649                   sym[sym_idx].SetIsSynthetic(true);
4650                   sym[sym_idx].GetAddressRef() = so_addr;
4651                   sym[sym_idx].SetByteSize(symbol_stub_byte_size);
4652                   ++sym_idx;
4653                 }
4654               } else {
4655                 if (log)
4656                   log->Warning("symbol stub referencing symbol table symbol "
4657                                "%u that isn't in our minimal symbol table, "
4658                                "fix this!!!",
4659                                stub_sym_id);
4660               }
4661             }
4662           }
4663         }
4664       }
4665     }
4666   }
4667 
4668   if (!trie_entries.empty()) {
4669     for (const auto &e : trie_entries) {
4670       if (e.entry.import_name) {
4671         // Only add indirect symbols from the Trie entries if we didn't have
4672         // a N_INDR nlist entry for this already
4673         if (indirect_symbol_names.find(e.entry.name) ==
4674             indirect_symbol_names.end()) {
4675           // Make a synthetic symbol to describe re-exported symbol.
4676           if (sym_idx >= num_syms)
4677             sym = symtab->Resize(++num_syms);
4678           sym[sym_idx].SetID(synthetic_sym_id++);
4679           sym[sym_idx].GetMangled() = Mangled(e.entry.name);
4680           sym[sym_idx].SetType(eSymbolTypeReExported);
4681           sym[sym_idx].SetIsSynthetic(true);
4682           sym[sym_idx].SetReExportedSymbolName(e.entry.import_name);
4683           if (e.entry.other > 0 && e.entry.other <= dylib_files.GetSize()) {
4684             sym[sym_idx].SetReExportedSymbolSharedLibrary(
4685                 dylib_files.GetFileSpecAtIndex(e.entry.other - 1));
4686           }
4687           ++sym_idx;
4688         }
4689       }
4690     }
4691   }
4692 
4693   //        StreamFile s(stdout, false);
4694   //        s.Printf ("Symbol table before CalculateSymbolSizes():\n");
4695   //        symtab->Dump(&s, NULL, eSortOrderNone);
4696   // Set symbol byte sizes correctly since mach-o nlist entries don't have
4697   // sizes
4698   symtab->CalculateSymbolSizes();
4699 
4700   //        s.Printf ("Symbol table after CalculateSymbolSizes():\n");
4701   //        symtab->Dump(&s, NULL, eSortOrderNone);
4702 
4703   return symtab->GetNumSymbols();
4704 }
4705 
4706 void ObjectFileMachO::Dump(Stream *s) {
4707   ModuleSP module_sp(GetModule());
4708   if (module_sp) {
4709     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
4710     s->Printf("%p: ", static_cast<void *>(this));
4711     s->Indent();
4712     if (m_header.magic == MH_MAGIC_64 || m_header.magic == MH_CIGAM_64)
4713       s->PutCString("ObjectFileMachO64");
4714     else
4715       s->PutCString("ObjectFileMachO32");
4716 
4717     *s << ", file = '" << m_file;
4718     ModuleSpecList all_specs;
4719     ModuleSpec base_spec;
4720     GetAllArchSpecs(m_header, m_data, MachHeaderSizeFromMagic(m_header.magic),
4721                     base_spec, all_specs);
4722     for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
4723       *s << "', triple";
4724       if (e)
4725         s->Printf("[%d]", i);
4726       *s << " = ";
4727       *s << all_specs.GetModuleSpecRefAtIndex(i)
4728                 .GetArchitecture()
4729                 .GetTriple()
4730                 .getTriple();
4731     }
4732     *s << "\n";
4733     SectionList *sections = GetSectionList();
4734     if (sections)
4735       sections->Dump(s, nullptr, true, UINT32_MAX);
4736 
4737     if (m_symtab_up)
4738       m_symtab_up->Dump(s, nullptr, eSortOrderNone);
4739   }
4740 }
4741 
4742 UUID ObjectFileMachO::GetUUID(const llvm::MachO::mach_header &header,
4743                               const lldb_private::DataExtractor &data,
4744                               lldb::offset_t lc_offset) {
4745   uint32_t i;
4746   struct uuid_command load_cmd;
4747 
4748   lldb::offset_t offset = lc_offset;
4749   for (i = 0; i < header.ncmds; ++i) {
4750     const lldb::offset_t cmd_offset = offset;
4751     if (data.GetU32(&offset, &load_cmd, 2) == nullptr)
4752       break;
4753 
4754     if (load_cmd.cmd == LC_UUID) {
4755       const uint8_t *uuid_bytes = data.PeekData(offset, 16);
4756 
4757       if (uuid_bytes) {
4758         // OpenCL on Mac OS X uses the same UUID for each of its object files.
4759         // We pretend these object files have no UUID to prevent crashing.
4760 
4761         const uint8_t opencl_uuid[] = {0x8c, 0x8e, 0xb3, 0x9b, 0x3b, 0xa8,
4762                                        0x4b, 0x16, 0xb6, 0xa4, 0x27, 0x63,
4763                                        0xbb, 0x14, 0xf0, 0x0d};
4764 
4765         if (!memcmp(uuid_bytes, opencl_uuid, 16))
4766           return UUID();
4767 
4768         return UUID::fromOptionalData(uuid_bytes, 16);
4769       }
4770       return UUID();
4771     }
4772     offset = cmd_offset + load_cmd.cmdsize;
4773   }
4774   return UUID();
4775 }
4776 
4777 static llvm::StringRef GetOSName(uint32_t cmd) {
4778   switch (cmd) {
4779   case llvm::MachO::LC_VERSION_MIN_IPHONEOS:
4780     return llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4781   case llvm::MachO::LC_VERSION_MIN_MACOSX:
4782     return llvm::Triple::getOSTypeName(llvm::Triple::MacOSX);
4783   case llvm::MachO::LC_VERSION_MIN_TVOS:
4784     return llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4785   case llvm::MachO::LC_VERSION_MIN_WATCHOS:
4786     return llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4787   default:
4788     llvm_unreachable("unexpected LC_VERSION load command");
4789   }
4790 }
4791 
4792 namespace {
4793 struct OSEnv {
4794   llvm::StringRef os_type;
4795   llvm::StringRef environment;
4796   OSEnv(uint32_t cmd) {
4797     switch (cmd) {
4798     case llvm::MachO::PLATFORM_MACOS:
4799       os_type = llvm::Triple::getOSTypeName(llvm::Triple::MacOSX);
4800       return;
4801     case llvm::MachO::PLATFORM_IOS:
4802       os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4803       return;
4804     case llvm::MachO::PLATFORM_TVOS:
4805       os_type = llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4806       return;
4807     case llvm::MachO::PLATFORM_WATCHOS:
4808       os_type = llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4809       return;
4810       // NEED_BRIDGEOS_TRIPLE      case llvm::MachO::PLATFORM_BRIDGEOS:
4811       // NEED_BRIDGEOS_TRIPLE        os_type =
4812       // llvm::Triple::getOSTypeName(llvm::Triple::BridgeOS);
4813       // NEED_BRIDGEOS_TRIPLE        return;
4814     case llvm::MachO::PLATFORM_MACCATALYST:
4815       os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4816       environment = llvm::Triple::getEnvironmentTypeName(llvm::Triple::MacABI);
4817       return;
4818     case llvm::MachO::PLATFORM_IOSSIMULATOR:
4819       os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4820       environment =
4821           llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4822       return;
4823     case llvm::MachO::PLATFORM_TVOSSIMULATOR:
4824       os_type = llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4825       environment =
4826           llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4827       return;
4828     case llvm::MachO::PLATFORM_WATCHOSSIMULATOR:
4829       os_type = llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4830       environment =
4831           llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4832       return;
4833     default: {
4834       Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS |
4835                                                       LIBLLDB_LOG_PROCESS));
4836       LLDB_LOGF(log, "unsupported platform in LC_BUILD_VERSION");
4837     }
4838     }
4839   }
4840 };
4841 
4842 struct MinOS {
4843   uint32_t major_version, minor_version, patch_version;
4844   MinOS(uint32_t version)
4845       : major_version(version >> 16), minor_version((version >> 8) & 0xffu),
4846         patch_version(version & 0xffu) {}
4847 };
4848 } // namespace
4849 
4850 void ObjectFileMachO::GetAllArchSpecs(const llvm::MachO::mach_header &header,
4851                                       const lldb_private::DataExtractor &data,
4852                                       lldb::offset_t lc_offset,
4853                                       ModuleSpec &base_spec,
4854                                       lldb_private::ModuleSpecList &all_specs) {
4855   auto &base_arch = base_spec.GetArchitecture();
4856   base_arch.SetArchitecture(eArchTypeMachO, header.cputype, header.cpusubtype);
4857   if (!base_arch.IsValid())
4858     return;
4859 
4860   bool found_any = false;
4861   auto add_triple = [&](const llvm::Triple &triple) {
4862     auto spec = base_spec;
4863     spec.GetArchitecture().GetTriple() = triple;
4864     if (spec.GetArchitecture().IsValid()) {
4865       spec.GetUUID() = ObjectFileMachO::GetUUID(header, data, lc_offset);
4866       all_specs.Append(spec);
4867       found_any = true;
4868     }
4869   };
4870 
4871   // Set OS to an unspecified unknown or a "*" so it can match any OS
4872   llvm::Triple base_triple = base_arch.GetTriple();
4873   base_triple.setOS(llvm::Triple::UnknownOS);
4874   base_triple.setOSName(llvm::StringRef());
4875 
4876   if (header.filetype == MH_PRELOAD) {
4877     if (header.cputype == CPU_TYPE_ARM) {
4878       // If this is a 32-bit arm binary, and it's a standalone binary, force
4879       // the Vendor to Apple so we don't accidentally pick up the generic
4880       // armv7 ABI at runtime.  Apple's armv7 ABI always uses r7 for the
4881       // frame pointer register; most other armv7 ABIs use a combination of
4882       // r7 and r11.
4883       base_triple.setVendor(llvm::Triple::Apple);
4884     } else {
4885       // Set vendor to an unspecified unknown or a "*" so it can match any
4886       // vendor This is required for correct behavior of EFI debugging on
4887       // x86_64
4888       base_triple.setVendor(llvm::Triple::UnknownVendor);
4889       base_triple.setVendorName(llvm::StringRef());
4890     }
4891     return add_triple(base_triple);
4892   }
4893 
4894   struct load_command load_cmd;
4895 
4896   // See if there is an LC_VERSION_MIN_* load command that can give
4897   // us the OS type.
4898   lldb::offset_t offset = lc_offset;
4899   for (uint32_t i = 0; i < header.ncmds; ++i) {
4900     const lldb::offset_t cmd_offset = offset;
4901     if (data.GetU32(&offset, &load_cmd, 2) == NULL)
4902       break;
4903 
4904     struct version_min_command version_min;
4905     switch (load_cmd.cmd) {
4906     case llvm::MachO::LC_VERSION_MIN_IPHONEOS:
4907     case llvm::MachO::LC_VERSION_MIN_MACOSX:
4908     case llvm::MachO::LC_VERSION_MIN_TVOS:
4909     case llvm::MachO::LC_VERSION_MIN_WATCHOS: {
4910       if (load_cmd.cmdsize != sizeof(version_min))
4911         break;
4912       if (data.ExtractBytes(cmd_offset, sizeof(version_min),
4913                             data.GetByteOrder(), &version_min) == 0)
4914         break;
4915       MinOS min_os(version_min.version);
4916       llvm::SmallString<32> os_name;
4917       llvm::raw_svector_ostream os(os_name);
4918       os << GetOSName(load_cmd.cmd) << min_os.major_version << '.'
4919          << min_os.minor_version << '.' << min_os.patch_version;
4920 
4921       auto triple = base_triple;
4922       triple.setOSName(os.str());
4923       os_name.clear();
4924       add_triple(triple);
4925       break;
4926     }
4927     default:
4928       break;
4929     }
4930 
4931     offset = cmd_offset + load_cmd.cmdsize;
4932   }
4933 
4934   // See if there are LC_BUILD_VERSION load commands that can give
4935   // us the OS type.
4936   offset = lc_offset;
4937   for (uint32_t i = 0; i < header.ncmds; ++i) {
4938     const lldb::offset_t cmd_offset = offset;
4939     if (data.GetU32(&offset, &load_cmd, 2) == NULL)
4940       break;
4941 
4942     do {
4943       if (load_cmd.cmd == llvm::MachO::LC_BUILD_VERSION) {
4944         struct build_version_command build_version;
4945         if (load_cmd.cmdsize < sizeof(build_version)) {
4946           // Malformed load command.
4947           break;
4948         }
4949         if (data.ExtractBytes(cmd_offset, sizeof(build_version),
4950                               data.GetByteOrder(), &build_version) == 0)
4951           break;
4952         MinOS min_os(build_version.minos);
4953         OSEnv os_env(build_version.platform);
4954         llvm::SmallString<16> os_name;
4955         llvm::raw_svector_ostream os(os_name);
4956         os << os_env.os_type << min_os.major_version << '.'
4957            << min_os.minor_version << '.' << min_os.patch_version;
4958         auto triple = base_triple;
4959         triple.setOSName(os.str());
4960         os_name.clear();
4961         if (!os_env.environment.empty())
4962           triple.setEnvironmentName(os_env.environment);
4963         add_triple(triple);
4964       }
4965     } while (0);
4966     offset = cmd_offset + load_cmd.cmdsize;
4967   }
4968 
4969   if (!found_any) {
4970     if (header.filetype == MH_KEXT_BUNDLE) {
4971       base_triple.setVendor(llvm::Triple::Apple);
4972       add_triple(base_triple);
4973     } else {
4974       // We didn't find a LC_VERSION_MIN load command and this isn't a KEXT
4975       // so lets not say our Vendor is Apple, leave it as an unspecified
4976       // unknown.
4977       base_triple.setVendor(llvm::Triple::UnknownVendor);
4978       base_triple.setVendorName(llvm::StringRef());
4979       add_triple(base_triple);
4980     }
4981   }
4982 }
4983 
4984 ArchSpec ObjectFileMachO::GetArchitecture(
4985     ModuleSP module_sp, const llvm::MachO::mach_header &header,
4986     const lldb_private::DataExtractor &data, lldb::offset_t lc_offset) {
4987   ModuleSpecList all_specs;
4988   ModuleSpec base_spec;
4989   GetAllArchSpecs(header, data, MachHeaderSizeFromMagic(header.magic),
4990                   base_spec, all_specs);
4991 
4992   // If the object file offers multiple alternative load commands,
4993   // pick the one that matches the module.
4994   if (module_sp) {
4995     const ArchSpec &module_arch = module_sp->GetArchitecture();
4996     for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
4997       ArchSpec mach_arch =
4998           all_specs.GetModuleSpecRefAtIndex(i).GetArchitecture();
4999       if (module_arch.IsCompatibleMatch(mach_arch))
5000         return mach_arch;
5001     }
5002   }
5003 
5004   // Return the first arch we found.
5005   if (all_specs.GetSize() == 0)
5006     return {};
5007   return all_specs.GetModuleSpecRefAtIndex(0).GetArchitecture();
5008 }
5009 
5010 UUID ObjectFileMachO::GetUUID() {
5011   ModuleSP module_sp(GetModule());
5012   if (module_sp) {
5013     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5014     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5015     return GetUUID(m_header, m_data, offset);
5016   }
5017   return UUID();
5018 }
5019 
5020 uint32_t ObjectFileMachO::GetDependentModules(FileSpecList &files) {
5021   uint32_t count = 0;
5022   ModuleSP module_sp(GetModule());
5023   if (module_sp) {
5024     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5025     struct load_command load_cmd;
5026     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5027     std::vector<std::string> rpath_paths;
5028     std::vector<std::string> rpath_relative_paths;
5029     std::vector<std::string> at_exec_relative_paths;
5030     uint32_t i;
5031     for (i = 0; i < m_header.ncmds; ++i) {
5032       const uint32_t cmd_offset = offset;
5033       if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5034         break;
5035 
5036       switch (load_cmd.cmd) {
5037       case LC_RPATH:
5038       case LC_LOAD_DYLIB:
5039       case LC_LOAD_WEAK_DYLIB:
5040       case LC_REEXPORT_DYLIB:
5041       case LC_LOAD_DYLINKER:
5042       case LC_LOADFVMLIB:
5043       case LC_LOAD_UPWARD_DYLIB: {
5044         uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
5045         const char *path = m_data.PeekCStr(name_offset);
5046         if (path) {
5047           if (load_cmd.cmd == LC_RPATH)
5048             rpath_paths.push_back(path);
5049           else {
5050             if (path[0] == '@') {
5051               if (strncmp(path, "@rpath", strlen("@rpath")) == 0)
5052                 rpath_relative_paths.push_back(path + strlen("@rpath"));
5053               else if (strncmp(path, "@executable_path",
5054                                strlen("@executable_path")) == 0)
5055                 at_exec_relative_paths.push_back(path +
5056                                                  strlen("@executable_path"));
5057             } else {
5058               FileSpec file_spec(path);
5059               if (files.AppendIfUnique(file_spec))
5060                 count++;
5061             }
5062           }
5063         }
5064       } break;
5065 
5066       default:
5067         break;
5068       }
5069       offset = cmd_offset + load_cmd.cmdsize;
5070     }
5071 
5072     FileSpec this_file_spec(m_file);
5073     FileSystem::Instance().Resolve(this_file_spec);
5074 
5075     if (!rpath_paths.empty()) {
5076       // Fixup all LC_RPATH values to be absolute paths
5077       std::string loader_path("@loader_path");
5078       std::string executable_path("@executable_path");
5079       for (auto &rpath : rpath_paths) {
5080         if (rpath.find(loader_path) == 0) {
5081           rpath.erase(0, loader_path.size());
5082           rpath.insert(0, this_file_spec.GetDirectory().GetCString());
5083         } else if (rpath.find(executable_path) == 0) {
5084           rpath.erase(0, executable_path.size());
5085           rpath.insert(0, this_file_spec.GetDirectory().GetCString());
5086         }
5087       }
5088 
5089       for (const auto &rpath_relative_path : rpath_relative_paths) {
5090         for (const auto &rpath : rpath_paths) {
5091           std::string path = rpath;
5092           path += rpath_relative_path;
5093           // It is OK to resolve this path because we must find a file on disk
5094           // for us to accept it anyway if it is rpath relative.
5095           FileSpec file_spec(path);
5096           FileSystem::Instance().Resolve(file_spec);
5097           if (FileSystem::Instance().Exists(file_spec) &&
5098               files.AppendIfUnique(file_spec)) {
5099             count++;
5100             break;
5101           }
5102         }
5103       }
5104     }
5105 
5106     // We may have @executable_paths but no RPATHS.  Figure those out here.
5107     // Only do this if this object file is the executable.  We have no way to
5108     // get back to the actual executable otherwise, so we won't get the right
5109     // path.
5110     if (!at_exec_relative_paths.empty() && CalculateType() == eTypeExecutable) {
5111       FileSpec exec_dir = this_file_spec.CopyByRemovingLastPathComponent();
5112       for (const auto &at_exec_relative_path : at_exec_relative_paths) {
5113         FileSpec file_spec =
5114             exec_dir.CopyByAppendingPathComponent(at_exec_relative_path);
5115         if (FileSystem::Instance().Exists(file_spec) &&
5116             files.AppendIfUnique(file_spec))
5117           count++;
5118       }
5119     }
5120   }
5121   return count;
5122 }
5123 
5124 lldb_private::Address ObjectFileMachO::GetEntryPointAddress() {
5125   // If the object file is not an executable it can't hold the entry point.
5126   // m_entry_point_address is initialized to an invalid address, so we can just
5127   // return that. If m_entry_point_address is valid it means we've found it
5128   // already, so return the cached value.
5129 
5130   if ((!IsExecutable() && !IsDynamicLoader()) ||
5131       m_entry_point_address.IsValid()) {
5132     return m_entry_point_address;
5133   }
5134 
5135   // Otherwise, look for the UnixThread or Thread command.  The data for the
5136   // Thread command is given in /usr/include/mach-o.h, but it is basically:
5137   //
5138   //  uint32_t flavor  - this is the flavor argument you would pass to
5139   //  thread_get_state
5140   //  uint32_t count   - this is the count of longs in the thread state data
5141   //  struct XXX_thread_state state - this is the structure from
5142   //  <machine/thread_status.h> corresponding to the flavor.
5143   //  <repeat this trio>
5144   //
5145   // So we just keep reading the various register flavors till we find the GPR
5146   // one, then read the PC out of there.
5147   // FIXME: We will need to have a "RegisterContext data provider" class at some
5148   // point that can get all the registers
5149   // out of data in this form & attach them to a given thread.  That should
5150   // underlie the MacOS X User process plugin, and we'll also need it for the
5151   // MacOS X Core File process plugin.  When we have that we can also use it
5152   // here.
5153   //
5154   // For now we hard-code the offsets and flavors we need:
5155   //
5156   //
5157 
5158   ModuleSP module_sp(GetModule());
5159   if (module_sp) {
5160     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5161     struct load_command load_cmd;
5162     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5163     uint32_t i;
5164     lldb::addr_t start_address = LLDB_INVALID_ADDRESS;
5165     bool done = false;
5166 
5167     for (i = 0; i < m_header.ncmds; ++i) {
5168       const lldb::offset_t cmd_offset = offset;
5169       if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5170         break;
5171 
5172       switch (load_cmd.cmd) {
5173       case LC_UNIXTHREAD:
5174       case LC_THREAD: {
5175         while (offset < cmd_offset + load_cmd.cmdsize) {
5176           uint32_t flavor = m_data.GetU32(&offset);
5177           uint32_t count = m_data.GetU32(&offset);
5178           if (count == 0) {
5179             // We've gotten off somehow, log and exit;
5180             return m_entry_point_address;
5181           }
5182 
5183           switch (m_header.cputype) {
5184           case llvm::MachO::CPU_TYPE_ARM:
5185             if (flavor == 1 ||
5186                 flavor == 9) // ARM_THREAD_STATE/ARM_THREAD_STATE32
5187                              // from mach/arm/thread_status.h
5188             {
5189               offset += 60; // This is the offset of pc in the GPR thread state
5190                             // data structure.
5191               start_address = m_data.GetU32(&offset);
5192               done = true;
5193             }
5194             break;
5195           case llvm::MachO::CPU_TYPE_ARM64:
5196           case llvm::MachO::CPU_TYPE_ARM64_32:
5197             if (flavor == 6) // ARM_THREAD_STATE64 from mach/arm/thread_status.h
5198             {
5199               offset += 256; // This is the offset of pc in the GPR thread state
5200                              // data structure.
5201               start_address = m_data.GetU64(&offset);
5202               done = true;
5203             }
5204             break;
5205           case llvm::MachO::CPU_TYPE_I386:
5206             if (flavor ==
5207                 1) // x86_THREAD_STATE32 from mach/i386/thread_status.h
5208             {
5209               offset += 40; // This is the offset of eip in the GPR thread state
5210                             // data structure.
5211               start_address = m_data.GetU32(&offset);
5212               done = true;
5213             }
5214             break;
5215           case llvm::MachO::CPU_TYPE_X86_64:
5216             if (flavor ==
5217                 4) // x86_THREAD_STATE64 from mach/i386/thread_status.h
5218             {
5219               offset += 16 * 8; // This is the offset of rip in the GPR thread
5220                                 // state data structure.
5221               start_address = m_data.GetU64(&offset);
5222               done = true;
5223             }
5224             break;
5225           default:
5226             return m_entry_point_address;
5227           }
5228           // Haven't found the GPR flavor yet, skip over the data for this
5229           // flavor:
5230           if (done)
5231             break;
5232           offset += count * 4;
5233         }
5234       } break;
5235       case LC_MAIN: {
5236         ConstString text_segment_name("__TEXT");
5237         uint64_t entryoffset = m_data.GetU64(&offset);
5238         SectionSP text_segment_sp =
5239             GetSectionList()->FindSectionByName(text_segment_name);
5240         if (text_segment_sp) {
5241           done = true;
5242           start_address = text_segment_sp->GetFileAddress() + entryoffset;
5243         }
5244       } break;
5245 
5246       default:
5247         break;
5248       }
5249       if (done)
5250         break;
5251 
5252       // Go to the next load command:
5253       offset = cmd_offset + load_cmd.cmdsize;
5254     }
5255 
5256     if (start_address == LLDB_INVALID_ADDRESS && IsDynamicLoader()) {
5257       if (GetSymtab()) {
5258         Symbol *dyld_start_sym = GetSymtab()->FindFirstSymbolWithNameAndType(
5259             ConstString("_dyld_start"), SymbolType::eSymbolTypeCode,
5260             Symtab::eDebugAny, Symtab::eVisibilityAny);
5261         if (dyld_start_sym && dyld_start_sym->GetAddress().IsValid()) {
5262           start_address = dyld_start_sym->GetAddress().GetFileAddress();
5263         }
5264       }
5265     }
5266 
5267     if (start_address != LLDB_INVALID_ADDRESS) {
5268       // We got the start address from the load commands, so now resolve that
5269       // address in the sections of this ObjectFile:
5270       if (!m_entry_point_address.ResolveAddressUsingFileSections(
5271               start_address, GetSectionList())) {
5272         m_entry_point_address.Clear();
5273       }
5274     } else {
5275       // We couldn't read the UnixThread load command - maybe it wasn't there.
5276       // As a fallback look for the "start" symbol in the main executable.
5277 
5278       ModuleSP module_sp(GetModule());
5279 
5280       if (module_sp) {
5281         SymbolContextList contexts;
5282         SymbolContext context;
5283         module_sp->FindSymbolsWithNameAndType(ConstString("start"),
5284                                               eSymbolTypeCode, contexts);
5285         if (contexts.GetSize()) {
5286           if (contexts.GetContextAtIndex(0, context))
5287             m_entry_point_address = context.symbol->GetAddress();
5288         }
5289       }
5290     }
5291   }
5292 
5293   return m_entry_point_address;
5294 }
5295 
5296 lldb_private::Address ObjectFileMachO::GetBaseAddress() {
5297   lldb_private::Address header_addr;
5298   SectionList *section_list = GetSectionList();
5299   if (section_list) {
5300     SectionSP text_segment_sp(
5301         section_list->FindSectionByName(GetSegmentNameTEXT()));
5302     if (text_segment_sp) {
5303       header_addr.SetSection(text_segment_sp);
5304       header_addr.SetOffset(0);
5305     }
5306   }
5307   return header_addr;
5308 }
5309 
5310 uint32_t ObjectFileMachO::GetNumThreadContexts() {
5311   ModuleSP module_sp(GetModule());
5312   if (module_sp) {
5313     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5314     if (!m_thread_context_offsets_valid) {
5315       m_thread_context_offsets_valid = true;
5316       lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5317       FileRangeArray::Entry file_range;
5318       thread_command thread_cmd;
5319       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5320         const uint32_t cmd_offset = offset;
5321         if (m_data.GetU32(&offset, &thread_cmd, 2) == nullptr)
5322           break;
5323 
5324         if (thread_cmd.cmd == LC_THREAD) {
5325           file_range.SetRangeBase(offset);
5326           file_range.SetByteSize(thread_cmd.cmdsize - 8);
5327           m_thread_context_offsets.Append(file_range);
5328         }
5329         offset = cmd_offset + thread_cmd.cmdsize;
5330       }
5331     }
5332   }
5333   return m_thread_context_offsets.GetSize();
5334 }
5335 
5336 std::string ObjectFileMachO::GetIdentifierString() {
5337   std::string result;
5338   ModuleSP module_sp(GetModule());
5339   if (module_sp) {
5340     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5341 
5342     // First, look over the load commands for an LC_NOTE load command with
5343     // data_owner string "kern ver str" & use that if found.
5344     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5345     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5346       const uint32_t cmd_offset = offset;
5347       load_command lc;
5348       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5349         break;
5350       if (lc.cmd == LC_NOTE) {
5351         char data_owner[17];
5352         m_data.CopyData(offset, 16, data_owner);
5353         data_owner[16] = '\0';
5354         offset += 16;
5355         uint64_t fileoff = m_data.GetU64_unchecked(&offset);
5356         uint64_t size = m_data.GetU64_unchecked(&offset);
5357 
5358         // "kern ver str" has a uint32_t version and then a nul terminated
5359         // c-string.
5360         if (strcmp("kern ver str", data_owner) == 0) {
5361           offset = fileoff;
5362           uint32_t version;
5363           if (m_data.GetU32(&offset, &version, 1) != nullptr) {
5364             if (version == 1) {
5365               uint32_t strsize = size - sizeof(uint32_t);
5366               char *buf = (char *)malloc(strsize);
5367               if (buf) {
5368                 m_data.CopyData(offset, strsize, buf);
5369                 buf[strsize - 1] = '\0';
5370                 result = buf;
5371                 if (buf)
5372                   free(buf);
5373                 return result;
5374               }
5375             }
5376           }
5377         }
5378       }
5379       offset = cmd_offset + lc.cmdsize;
5380     }
5381 
5382     // Second, make a pass over the load commands looking for an obsolete
5383     // LC_IDENT load command.
5384     offset = MachHeaderSizeFromMagic(m_header.magic);
5385     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5386       const uint32_t cmd_offset = offset;
5387       struct ident_command ident_command;
5388       if (m_data.GetU32(&offset, &ident_command, 2) == nullptr)
5389         break;
5390       if (ident_command.cmd == LC_IDENT && ident_command.cmdsize != 0) {
5391         char *buf = (char *)malloc(ident_command.cmdsize);
5392         if (buf != nullptr && m_data.CopyData(offset, ident_command.cmdsize,
5393                                               buf) == ident_command.cmdsize) {
5394           buf[ident_command.cmdsize - 1] = '\0';
5395           result = buf;
5396         }
5397         if (buf)
5398           free(buf);
5399       }
5400       offset = cmd_offset + ident_command.cmdsize;
5401     }
5402   }
5403   return result;
5404 }
5405 
5406 bool ObjectFileMachO::GetCorefileMainBinaryInfo(addr_t &address, UUID &uuid) {
5407   address = LLDB_INVALID_ADDRESS;
5408   uuid.Clear();
5409   ModuleSP module_sp(GetModule());
5410   if (module_sp) {
5411     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5412     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5413     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5414       const uint32_t cmd_offset = offset;
5415       load_command lc;
5416       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5417         break;
5418       if (lc.cmd == LC_NOTE) {
5419         char data_owner[17];
5420         memset(data_owner, 0, sizeof(data_owner));
5421         m_data.CopyData(offset, 16, data_owner);
5422         offset += 16;
5423         uint64_t fileoff = m_data.GetU64_unchecked(&offset);
5424         uint64_t size = m_data.GetU64_unchecked(&offset);
5425 
5426         // "main bin spec" (main binary specification) data payload is
5427         // formatted:
5428         //    uint32_t version       [currently 1]
5429         //    uint32_t type          [0 == unspecified, 1 == kernel, 2 == user
5430         //    process] uint64_t address       [ UINT64_MAX if address not
5431         //    specified ] uuid_t   uuid          [ all zero's if uuid not
5432         //    specified ] uint32_t log2_pagesize [ process page size in log base
5433         //    2, e.g. 4k pages are 12.  0 for unspecified ]
5434 
5435         if (strcmp("main bin spec", data_owner) == 0 && size >= 32) {
5436           offset = fileoff;
5437           uint32_t version;
5438           if (m_data.GetU32(&offset, &version, 1) != nullptr && version == 1) {
5439             uint32_t type = 0;
5440             uuid_t raw_uuid;
5441             memset(raw_uuid, 0, sizeof(uuid_t));
5442 
5443             if (m_data.GetU32(&offset, &type, 1) &&
5444                 m_data.GetU64(&offset, &address, 1) &&
5445                 m_data.CopyData(offset, sizeof(uuid_t), raw_uuid) != 0) {
5446               uuid = UUID::fromOptionalData(raw_uuid, sizeof(uuid_t));
5447               return true;
5448             }
5449           }
5450         }
5451       }
5452       offset = cmd_offset + lc.cmdsize;
5453     }
5454   }
5455   return false;
5456 }
5457 
5458 lldb::RegisterContextSP
5459 ObjectFileMachO::GetThreadContextAtIndex(uint32_t idx,
5460                                          lldb_private::Thread &thread) {
5461   lldb::RegisterContextSP reg_ctx_sp;
5462 
5463   ModuleSP module_sp(GetModule());
5464   if (module_sp) {
5465     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5466     if (!m_thread_context_offsets_valid)
5467       GetNumThreadContexts();
5468 
5469     const FileRangeArray::Entry *thread_context_file_range =
5470         m_thread_context_offsets.GetEntryAtIndex(idx);
5471     if (thread_context_file_range) {
5472 
5473       DataExtractor data(m_data, thread_context_file_range->GetRangeBase(),
5474                          thread_context_file_range->GetByteSize());
5475 
5476       switch (m_header.cputype) {
5477       case llvm::MachO::CPU_TYPE_ARM64:
5478       case llvm::MachO::CPU_TYPE_ARM64_32:
5479         reg_ctx_sp =
5480             std::make_shared<RegisterContextDarwin_arm64_Mach>(thread, data);
5481         break;
5482 
5483       case llvm::MachO::CPU_TYPE_ARM:
5484         reg_ctx_sp =
5485             std::make_shared<RegisterContextDarwin_arm_Mach>(thread, data);
5486         break;
5487 
5488       case llvm::MachO::CPU_TYPE_I386:
5489         reg_ctx_sp =
5490             std::make_shared<RegisterContextDarwin_i386_Mach>(thread, data);
5491         break;
5492 
5493       case llvm::MachO::CPU_TYPE_X86_64:
5494         reg_ctx_sp =
5495             std::make_shared<RegisterContextDarwin_x86_64_Mach>(thread, data);
5496         break;
5497       }
5498     }
5499   }
5500   return reg_ctx_sp;
5501 }
5502 
5503 ObjectFile::Type ObjectFileMachO::CalculateType() {
5504   switch (m_header.filetype) {
5505   case MH_OBJECT: // 0x1u
5506     if (GetAddressByteSize() == 4) {
5507       // 32 bit kexts are just object files, but they do have a valid
5508       // UUID load command.
5509       if (GetUUID()) {
5510         // this checking for the UUID load command is not enough we could
5511         // eventually look for the symbol named "OSKextGetCurrentIdentifier" as
5512         // this is required of kexts
5513         if (m_strata == eStrataInvalid)
5514           m_strata = eStrataKernel;
5515         return eTypeSharedLibrary;
5516       }
5517     }
5518     return eTypeObjectFile;
5519 
5520   case MH_EXECUTE:
5521     return eTypeExecutable; // 0x2u
5522   case MH_FVMLIB:
5523     return eTypeSharedLibrary; // 0x3u
5524   case MH_CORE:
5525     return eTypeCoreFile; // 0x4u
5526   case MH_PRELOAD:
5527     return eTypeSharedLibrary; // 0x5u
5528   case MH_DYLIB:
5529     return eTypeSharedLibrary; // 0x6u
5530   case MH_DYLINKER:
5531     return eTypeDynamicLinker; // 0x7u
5532   case MH_BUNDLE:
5533     return eTypeSharedLibrary; // 0x8u
5534   case MH_DYLIB_STUB:
5535     return eTypeStubLibrary; // 0x9u
5536   case MH_DSYM:
5537     return eTypeDebugInfo; // 0xAu
5538   case MH_KEXT_BUNDLE:
5539     return eTypeSharedLibrary; // 0xBu
5540   default:
5541     break;
5542   }
5543   return eTypeUnknown;
5544 }
5545 
5546 ObjectFile::Strata ObjectFileMachO::CalculateStrata() {
5547   switch (m_header.filetype) {
5548   case MH_OBJECT: // 0x1u
5549   {
5550     // 32 bit kexts are just object files, but they do have a valid
5551     // UUID load command.
5552     if (GetUUID()) {
5553       // this checking for the UUID load command is not enough we could
5554       // eventually look for the symbol named "OSKextGetCurrentIdentifier" as
5555       // this is required of kexts
5556       if (m_type == eTypeInvalid)
5557         m_type = eTypeSharedLibrary;
5558 
5559       return eStrataKernel;
5560     }
5561   }
5562     return eStrataUnknown;
5563 
5564   case MH_EXECUTE: // 0x2u
5565     // Check for the MH_DYLDLINK bit in the flags
5566     if (m_header.flags & MH_DYLDLINK) {
5567       return eStrataUser;
5568     } else {
5569       SectionList *section_list = GetSectionList();
5570       if (section_list) {
5571         static ConstString g_kld_section_name("__KLD");
5572         if (section_list->FindSectionByName(g_kld_section_name))
5573           return eStrataKernel;
5574       }
5575     }
5576     return eStrataRawImage;
5577 
5578   case MH_FVMLIB:
5579     return eStrataUser; // 0x3u
5580   case MH_CORE:
5581     return eStrataUnknown; // 0x4u
5582   case MH_PRELOAD:
5583     return eStrataRawImage; // 0x5u
5584   case MH_DYLIB:
5585     return eStrataUser; // 0x6u
5586   case MH_DYLINKER:
5587     return eStrataUser; // 0x7u
5588   case MH_BUNDLE:
5589     return eStrataUser; // 0x8u
5590   case MH_DYLIB_STUB:
5591     return eStrataUser; // 0x9u
5592   case MH_DSYM:
5593     return eStrataUnknown; // 0xAu
5594   case MH_KEXT_BUNDLE:
5595     return eStrataKernel; // 0xBu
5596   default:
5597     break;
5598   }
5599   return eStrataUnknown;
5600 }
5601 
5602 llvm::VersionTuple ObjectFileMachO::GetVersion() {
5603   ModuleSP module_sp(GetModule());
5604   if (module_sp) {
5605     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5606     struct dylib_command load_cmd;
5607     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5608     uint32_t version_cmd = 0;
5609     uint64_t version = 0;
5610     uint32_t i;
5611     for (i = 0; i < m_header.ncmds; ++i) {
5612       const lldb::offset_t cmd_offset = offset;
5613       if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5614         break;
5615 
5616       if (load_cmd.cmd == LC_ID_DYLIB) {
5617         if (version_cmd == 0) {
5618           version_cmd = load_cmd.cmd;
5619           if (m_data.GetU32(&offset, &load_cmd.dylib, 4) == nullptr)
5620             break;
5621           version = load_cmd.dylib.current_version;
5622         }
5623         break; // Break for now unless there is another more complete version
5624                // number load command in the future.
5625       }
5626       offset = cmd_offset + load_cmd.cmdsize;
5627     }
5628 
5629     if (version_cmd == LC_ID_DYLIB) {
5630       unsigned major = (version & 0xFFFF0000ull) >> 16;
5631       unsigned minor = (version & 0x0000FF00ull) >> 8;
5632       unsigned subminor = (version & 0x000000FFull);
5633       return llvm::VersionTuple(major, minor, subminor);
5634     }
5635   }
5636   return llvm::VersionTuple();
5637 }
5638 
5639 ArchSpec ObjectFileMachO::GetArchitecture() {
5640   ModuleSP module_sp(GetModule());
5641   ArchSpec arch;
5642   if (module_sp) {
5643     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5644 
5645     return GetArchitecture(module_sp, m_header, m_data,
5646                            MachHeaderSizeFromMagic(m_header.magic));
5647   }
5648   return arch;
5649 }
5650 
5651 void ObjectFileMachO::GetProcessSharedCacheUUID(Process *process,
5652                                                 addr_t &base_addr, UUID &uuid) {
5653   uuid.Clear();
5654   base_addr = LLDB_INVALID_ADDRESS;
5655   if (process && process->GetDynamicLoader()) {
5656     DynamicLoader *dl = process->GetDynamicLoader();
5657     LazyBool using_shared_cache;
5658     LazyBool private_shared_cache;
5659     dl->GetSharedCacheInformation(base_addr, uuid, using_shared_cache,
5660                                   private_shared_cache);
5661   }
5662   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS |
5663                                                   LIBLLDB_LOG_PROCESS));
5664   LLDB_LOGF(
5665       log,
5666       "inferior process shared cache has a UUID of %s, base address 0x%" PRIx64,
5667       uuid.GetAsString().c_str(), base_addr);
5668 }
5669 
5670 // From dyld SPI header dyld_process_info.h
5671 typedef void *dyld_process_info;
5672 struct lldb_copy__dyld_process_cache_info {
5673   uuid_t cacheUUID;          // UUID of cache used by process
5674   uint64_t cacheBaseAddress; // load address of dyld shared cache
5675   bool noCache;              // process is running without a dyld cache
5676   bool privateCache; // process is using a private copy of its dyld cache
5677 };
5678 
5679 // #including mach/mach.h pulls in machine.h & CPU_TYPE_ARM etc conflicts with
5680 // llvm enum definitions llvm::MachO::CPU_TYPE_ARM turning them into compile
5681 // errors. So we need to use the actual underlying types of task_t and
5682 // kern_return_t below.
5683 extern "C" unsigned int /*task_t*/ mach_task_self();
5684 
5685 void ObjectFileMachO::GetLLDBSharedCacheUUID(addr_t &base_addr, UUID &uuid) {
5686   uuid.Clear();
5687   base_addr = LLDB_INVALID_ADDRESS;
5688 
5689 #if defined(__APPLE__) &&                                                      \
5690     (defined(__arm__) || defined(__arm64__) || defined(__aarch64__))
5691   uint8_t *(*dyld_get_all_image_infos)(void);
5692   dyld_get_all_image_infos =
5693       (uint8_t * (*)()) dlsym(RTLD_DEFAULT, "_dyld_get_all_image_infos");
5694   if (dyld_get_all_image_infos) {
5695     uint8_t *dyld_all_image_infos_address = dyld_get_all_image_infos();
5696     if (dyld_all_image_infos_address) {
5697       uint32_t *version = (uint32_t *)
5698           dyld_all_image_infos_address; // version <mach-o/dyld_images.h>
5699       if (*version >= 13) {
5700         uuid_t *sharedCacheUUID_address = 0;
5701         int wordsize = sizeof(uint8_t *);
5702         if (wordsize == 8) {
5703           sharedCacheUUID_address =
5704               (uuid_t *)((uint8_t *)dyld_all_image_infos_address +
5705                          160); // sharedCacheUUID <mach-o/dyld_images.h>
5706           if (*version >= 15)
5707             base_addr =
5708                 *(uint64_t
5709                       *)((uint8_t *)dyld_all_image_infos_address +
5710                          176); // sharedCacheBaseAddress <mach-o/dyld_images.h>
5711         } else {
5712           sharedCacheUUID_address =
5713               (uuid_t *)((uint8_t *)dyld_all_image_infos_address +
5714                          84); // sharedCacheUUID <mach-o/dyld_images.h>
5715           if (*version >= 15) {
5716             base_addr = 0;
5717             base_addr =
5718                 *(uint32_t
5719                       *)((uint8_t *)dyld_all_image_infos_address +
5720                          100); // sharedCacheBaseAddress <mach-o/dyld_images.h>
5721           }
5722         }
5723         uuid = UUID::fromOptionalData(sharedCacheUUID_address, sizeof(uuid_t));
5724       }
5725     }
5726   } else {
5727     // Exists in macOS 10.12 and later, iOS 10.0 and later - dyld SPI
5728     dyld_process_info (*dyld_process_info_create)(
5729         unsigned int /* task_t */ task, uint64_t timestamp,
5730         unsigned int /*kern_return_t*/ *kernelError);
5731     void (*dyld_process_info_get_cache)(void *info, void *cacheInfo);
5732     void (*dyld_process_info_release)(dyld_process_info info);
5733 
5734     dyld_process_info_create = (void *(*)(unsigned int /* task_t */, uint64_t,
5735                                           unsigned int /*kern_return_t*/ *))
5736         dlsym(RTLD_DEFAULT, "_dyld_process_info_create");
5737     dyld_process_info_get_cache = (void (*)(void *, void *))dlsym(
5738         RTLD_DEFAULT, "_dyld_process_info_get_cache");
5739     dyld_process_info_release =
5740         (void (*)(void *))dlsym(RTLD_DEFAULT, "_dyld_process_info_release");
5741 
5742     if (dyld_process_info_create && dyld_process_info_get_cache) {
5743       unsigned int /*kern_return_t */ kern_ret;
5744       dyld_process_info process_info =
5745           dyld_process_info_create(::mach_task_self(), 0, &kern_ret);
5746       if (process_info) {
5747         struct lldb_copy__dyld_process_cache_info sc_info;
5748         memset(&sc_info, 0, sizeof(struct lldb_copy__dyld_process_cache_info));
5749         dyld_process_info_get_cache(process_info, &sc_info);
5750         if (sc_info.cacheBaseAddress != 0) {
5751           base_addr = sc_info.cacheBaseAddress;
5752           uuid = UUID::fromOptionalData(sc_info.cacheUUID, sizeof(uuid_t));
5753         }
5754         dyld_process_info_release(process_info);
5755       }
5756     }
5757   }
5758   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS |
5759                                                   LIBLLDB_LOG_PROCESS));
5760   if (log && uuid.IsValid())
5761     LLDB_LOGF(log,
5762               "lldb's in-memory shared cache has a UUID of %s base address of "
5763               "0x%" PRIx64,
5764               uuid.GetAsString().c_str(), base_addr);
5765 #endif
5766 }
5767 
5768 llvm::VersionTuple ObjectFileMachO::GetMinimumOSVersion() {
5769   if (!m_min_os_version) {
5770     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5771     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5772       const lldb::offset_t load_cmd_offset = offset;
5773 
5774       version_min_command lc;
5775       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5776         break;
5777       if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX ||
5778           lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS ||
5779           lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS ||
5780           lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) {
5781         if (m_data.GetU32(&offset, &lc.version,
5782                           (sizeof(lc) / sizeof(uint32_t)) - 2)) {
5783           const uint32_t xxxx = lc.version >> 16;
5784           const uint32_t yy = (lc.version >> 8) & 0xffu;
5785           const uint32_t zz = lc.version & 0xffu;
5786           if (xxxx) {
5787             m_min_os_version = llvm::VersionTuple(xxxx, yy, zz);
5788             break;
5789           }
5790         }
5791       } else if (lc.cmd == llvm::MachO::LC_BUILD_VERSION) {
5792         // struct build_version_command {
5793         //     uint32_t    cmd;            /* LC_BUILD_VERSION */
5794         //     uint32_t    cmdsize;        /* sizeof(struct
5795         //     build_version_command) plus */
5796         //                                 /* ntools * sizeof(struct
5797         //                                 build_tool_version) */
5798         //     uint32_t    platform;       /* platform */
5799         //     uint32_t    minos;          /* X.Y.Z is encoded in nibbles
5800         //     xxxx.yy.zz */ uint32_t    sdk;            /* X.Y.Z is encoded in
5801         //     nibbles xxxx.yy.zz */ uint32_t    ntools;         /* number of
5802         //     tool entries following this */
5803         // };
5804 
5805         offset += 4; // skip platform
5806         uint32_t minos = m_data.GetU32(&offset);
5807 
5808         const uint32_t xxxx = minos >> 16;
5809         const uint32_t yy = (minos >> 8) & 0xffu;
5810         const uint32_t zz = minos & 0xffu;
5811         if (xxxx) {
5812           m_min_os_version = llvm::VersionTuple(xxxx, yy, zz);
5813           break;
5814         }
5815       }
5816 
5817       offset = load_cmd_offset + lc.cmdsize;
5818     }
5819 
5820     if (!m_min_os_version) {
5821       // Set version to an empty value so we don't keep trying to
5822       m_min_os_version = llvm::VersionTuple();
5823     }
5824   }
5825 
5826   return *m_min_os_version;
5827 }
5828 
5829 llvm::VersionTuple ObjectFileMachO::GetSDKVersion() {
5830   if (!m_sdk_versions.hasValue()) {
5831     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5832     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5833       const lldb::offset_t load_cmd_offset = offset;
5834 
5835       version_min_command lc;
5836       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5837         break;
5838       if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX ||
5839           lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS ||
5840           lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS ||
5841           lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) {
5842         if (m_data.GetU32(&offset, &lc.version,
5843                           (sizeof(lc) / sizeof(uint32_t)) - 2)) {
5844           const uint32_t xxxx = lc.sdk >> 16;
5845           const uint32_t yy = (lc.sdk >> 8) & 0xffu;
5846           const uint32_t zz = lc.sdk & 0xffu;
5847           if (xxxx) {
5848             m_sdk_versions = llvm::VersionTuple(xxxx, yy, zz);
5849             break;
5850           } else {
5851             GetModule()->ReportWarning("minimum OS version load command with "
5852                                        "invalid (0) version found.");
5853           }
5854         }
5855       }
5856       offset = load_cmd_offset + lc.cmdsize;
5857     }
5858 
5859     if (!m_sdk_versions.hasValue()) {
5860       offset = MachHeaderSizeFromMagic(m_header.magic);
5861       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5862         const lldb::offset_t load_cmd_offset = offset;
5863 
5864         version_min_command lc;
5865         if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5866           break;
5867         if (lc.cmd == llvm::MachO::LC_BUILD_VERSION) {
5868           // struct build_version_command {
5869           //     uint32_t    cmd;            /* LC_BUILD_VERSION */
5870           //     uint32_t    cmdsize;        /* sizeof(struct
5871           //     build_version_command) plus */
5872           //                                 /* ntools * sizeof(struct
5873           //                                 build_tool_version) */
5874           //     uint32_t    platform;       /* platform */
5875           //     uint32_t    minos;          /* X.Y.Z is encoded in nibbles
5876           //     xxxx.yy.zz */ uint32_t    sdk;            /* X.Y.Z is encoded
5877           //     in nibbles xxxx.yy.zz */ uint32_t    ntools;         /* number
5878           //     of tool entries following this */
5879           // };
5880 
5881           offset += 4; // skip platform
5882           uint32_t minos = m_data.GetU32(&offset);
5883 
5884           const uint32_t xxxx = minos >> 16;
5885           const uint32_t yy = (minos >> 8) & 0xffu;
5886           const uint32_t zz = minos & 0xffu;
5887           if (xxxx) {
5888             m_sdk_versions = llvm::VersionTuple(xxxx, yy, zz);
5889             break;
5890           }
5891         }
5892         offset = load_cmd_offset + lc.cmdsize;
5893       }
5894     }
5895 
5896     if (!m_sdk_versions.hasValue())
5897       m_sdk_versions = llvm::VersionTuple();
5898   }
5899 
5900   return m_sdk_versions.getValue();
5901 }
5902 
5903 bool ObjectFileMachO::GetIsDynamicLinkEditor() {
5904   return m_header.filetype == llvm::MachO::MH_DYLINKER;
5905 }
5906 
5907 bool ObjectFileMachO::AllowAssemblyEmulationUnwindPlans() {
5908   return m_allow_assembly_emulation_unwind_plans;
5909 }
5910 
5911 // PluginInterface protocol
5912 lldb_private::ConstString ObjectFileMachO::GetPluginName() {
5913   return GetPluginNameStatic();
5914 }
5915 
5916 uint32_t ObjectFileMachO::GetPluginVersion() { return 1; }
5917 
5918 Section *ObjectFileMachO::GetMachHeaderSection() {
5919   // Find the first address of the mach header which is the first non-zero file
5920   // sized section whose file offset is zero. This is the base file address of
5921   // the mach-o file which can be subtracted from the vmaddr of the other
5922   // segments found in memory and added to the load address
5923   ModuleSP module_sp = GetModule();
5924   if (!module_sp)
5925     return nullptr;
5926   SectionList *section_list = GetSectionList();
5927   if (!section_list)
5928     return nullptr;
5929   const size_t num_sections = section_list->GetSize();
5930   for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
5931     Section *section = section_list->GetSectionAtIndex(sect_idx).get();
5932     if (section->GetFileOffset() == 0 && SectionIsLoadable(section))
5933       return section;
5934   }
5935   return nullptr;
5936 }
5937 
5938 bool ObjectFileMachO::SectionIsLoadable(const Section *section) {
5939   if (!section)
5940     return false;
5941   const bool is_dsym = (m_header.filetype == MH_DSYM);
5942   if (section->GetFileSize() == 0 && !is_dsym)
5943     return false;
5944   if (section->IsThreadSpecific())
5945     return false;
5946   if (GetModule().get() != section->GetModule().get())
5947     return false;
5948   // Be careful with __LINKEDIT and __DWARF segments
5949   if (section->GetName() == GetSegmentNameLINKEDIT() ||
5950       section->GetName() == GetSegmentNameDWARF()) {
5951     // Only map __LINKEDIT and __DWARF if we have an in memory image and
5952     // this isn't a kernel binary like a kext or mach_kernel.
5953     const bool is_memory_image = (bool)m_process_wp.lock();
5954     const Strata strata = GetStrata();
5955     if (is_memory_image == false || strata == eStrataKernel)
5956       return false;
5957   }
5958   return true;
5959 }
5960 
5961 lldb::addr_t ObjectFileMachO::CalculateSectionLoadAddressForMemoryImage(
5962     lldb::addr_t header_load_address, const Section *header_section,
5963     const Section *section) {
5964   ModuleSP module_sp = GetModule();
5965   if (module_sp && header_section && section &&
5966       header_load_address != LLDB_INVALID_ADDRESS) {
5967     lldb::addr_t file_addr = header_section->GetFileAddress();
5968     if (file_addr != LLDB_INVALID_ADDRESS && SectionIsLoadable(section))
5969       return section->GetFileAddress() - file_addr + header_load_address;
5970   }
5971   return LLDB_INVALID_ADDRESS;
5972 }
5973 
5974 bool ObjectFileMachO::SetLoadAddress(Target &target, lldb::addr_t value,
5975                                      bool value_is_offset) {
5976   ModuleSP module_sp = GetModule();
5977   if (!module_sp)
5978     return false;
5979 
5980   SectionList *section_list = GetSectionList();
5981   if (!section_list)
5982     return false;
5983 
5984   size_t num_loaded_sections = 0;
5985   const size_t num_sections = section_list->GetSize();
5986 
5987   if (value_is_offset) {
5988     // "value" is an offset to apply to each top level segment
5989     for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
5990       // Iterate through the object file sections to find all of the
5991       // sections that size on disk (to avoid __PAGEZERO) and load them
5992       SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
5993       if (SectionIsLoadable(section_sp.get()))
5994         if (target.GetSectionLoadList().SetSectionLoadAddress(
5995                 section_sp, section_sp->GetFileAddress() + value))
5996           ++num_loaded_sections;
5997     }
5998   } else {
5999     // "value" is the new base address of the mach_header, adjust each
6000     // section accordingly
6001 
6002     Section *mach_header_section = GetMachHeaderSection();
6003     if (mach_header_section) {
6004       for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
6005         SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
6006 
6007         lldb::addr_t section_load_addr =
6008             CalculateSectionLoadAddressForMemoryImage(
6009                 value, mach_header_section, section_sp.get());
6010         if (section_load_addr != LLDB_INVALID_ADDRESS) {
6011           if (target.GetSectionLoadList().SetSectionLoadAddress(
6012                   section_sp, section_load_addr))
6013             ++num_loaded_sections;
6014         }
6015       }
6016     }
6017   }
6018   return num_loaded_sections > 0;
6019 }
6020 
6021 bool ObjectFileMachO::SaveCore(const lldb::ProcessSP &process_sp,
6022                                const FileSpec &outfile, Status &error) {
6023   if (!process_sp)
6024     return false;
6025 
6026   Target &target = process_sp->GetTarget();
6027   const ArchSpec target_arch = target.GetArchitecture();
6028   const llvm::Triple &target_triple = target_arch.GetTriple();
6029   if (target_triple.getVendor() == llvm::Triple::Apple &&
6030       (target_triple.getOS() == llvm::Triple::MacOSX ||
6031        target_triple.getOS() == llvm::Triple::IOS ||
6032        target_triple.getOS() == llvm::Triple::WatchOS ||
6033        target_triple.getOS() == llvm::Triple::TvOS)) {
6034     // NEED_BRIDGEOS_TRIPLE target_triple.getOS() == llvm::Triple::BridgeOS))
6035     // {
6036     bool make_core = false;
6037     switch (target_arch.GetMachine()) {
6038     case llvm::Triple::aarch64:
6039     case llvm::Triple::aarch64_32:
6040     case llvm::Triple::arm:
6041     case llvm::Triple::thumb:
6042     case llvm::Triple::x86:
6043     case llvm::Triple::x86_64:
6044       make_core = true;
6045       break;
6046     default:
6047       error.SetErrorStringWithFormat("unsupported core architecture: %s",
6048                                      target_triple.str().c_str());
6049       break;
6050     }
6051 
6052     if (make_core) {
6053       std::vector<segment_command_64> segment_load_commands;
6054       //                uint32_t range_info_idx = 0;
6055       MemoryRegionInfo range_info;
6056       Status range_error = process_sp->GetMemoryRegionInfo(0, range_info);
6057       const uint32_t addr_byte_size = target_arch.GetAddressByteSize();
6058       const ByteOrder byte_order = target_arch.GetByteOrder();
6059       if (range_error.Success()) {
6060         while (range_info.GetRange().GetRangeBase() != LLDB_INVALID_ADDRESS) {
6061           const addr_t addr = range_info.GetRange().GetRangeBase();
6062           const addr_t size = range_info.GetRange().GetByteSize();
6063 
6064           if (size == 0)
6065             break;
6066 
6067           // Calculate correct protections
6068           uint32_t prot = 0;
6069           if (range_info.GetReadable() == MemoryRegionInfo::eYes)
6070             prot |= VM_PROT_READ;
6071           if (range_info.GetWritable() == MemoryRegionInfo::eYes)
6072             prot |= VM_PROT_WRITE;
6073           if (range_info.GetExecutable() == MemoryRegionInfo::eYes)
6074             prot |= VM_PROT_EXECUTE;
6075 
6076           if (prot != 0) {
6077             uint32_t cmd_type = LC_SEGMENT_64;
6078             uint32_t segment_size = sizeof(segment_command_64);
6079             if (addr_byte_size == 4) {
6080               cmd_type = LC_SEGMENT;
6081               segment_size = sizeof(segment_command);
6082             }
6083             segment_command_64 segment = {
6084                 cmd_type,     // uint32_t cmd;
6085                 segment_size, // uint32_t cmdsize;
6086                 {0},          // char segname[16];
6087                 addr, // uint64_t vmaddr;    // uint32_t for 32-bit Mach-O
6088                 size, // uint64_t vmsize;    // uint32_t for 32-bit Mach-O
6089                 0,    // uint64_t fileoff;   // uint32_t for 32-bit Mach-O
6090                 size, // uint64_t filesize;  // uint32_t for 32-bit Mach-O
6091                 prot, // uint32_t maxprot;
6092                 prot, // uint32_t initprot;
6093                 0,    // uint32_t nsects;
6094                 0};   // uint32_t flags;
6095             segment_load_commands.push_back(segment);
6096           } else {
6097             // No protections and a size of 1 used to be returned from old
6098             // debugservers when we asked about a region that was past the
6099             // last memory region and it indicates the end...
6100             if (size == 1)
6101               break;
6102           }
6103 
6104           range_error = process_sp->GetMemoryRegionInfo(
6105               range_info.GetRange().GetRangeEnd(), range_info);
6106           if (range_error.Fail())
6107             break;
6108         }
6109 
6110         StreamString buffer(Stream::eBinary, addr_byte_size, byte_order);
6111 
6112         mach_header_64 mach_header;
6113         if (addr_byte_size == 8) {
6114           mach_header.magic = MH_MAGIC_64;
6115         } else {
6116           mach_header.magic = MH_MAGIC;
6117         }
6118         mach_header.cputype = target_arch.GetMachOCPUType();
6119         mach_header.cpusubtype = target_arch.GetMachOCPUSubType();
6120         mach_header.filetype = MH_CORE;
6121         mach_header.ncmds = segment_load_commands.size();
6122         mach_header.flags = 0;
6123         mach_header.reserved = 0;
6124         ThreadList &thread_list = process_sp->GetThreadList();
6125         const uint32_t num_threads = thread_list.GetSize();
6126 
6127         // Make an array of LC_THREAD data items. Each one contains the
6128         // contents of the LC_THREAD load command. The data doesn't contain
6129         // the load command + load command size, we will add the load command
6130         // and load command size as we emit the data.
6131         std::vector<StreamString> LC_THREAD_datas(num_threads);
6132         for (auto &LC_THREAD_data : LC_THREAD_datas) {
6133           LC_THREAD_data.GetFlags().Set(Stream::eBinary);
6134           LC_THREAD_data.SetAddressByteSize(addr_byte_size);
6135           LC_THREAD_data.SetByteOrder(byte_order);
6136         }
6137         for (uint32_t thread_idx = 0; thread_idx < num_threads; ++thread_idx) {
6138           ThreadSP thread_sp(thread_list.GetThreadAtIndex(thread_idx));
6139           if (thread_sp) {
6140             switch (mach_header.cputype) {
6141             case llvm::MachO::CPU_TYPE_ARM64:
6142             case llvm::MachO::CPU_TYPE_ARM64_32:
6143               RegisterContextDarwin_arm64_Mach::Create_LC_THREAD(
6144                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6145               break;
6146 
6147             case llvm::MachO::CPU_TYPE_ARM:
6148               RegisterContextDarwin_arm_Mach::Create_LC_THREAD(
6149                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6150               break;
6151 
6152             case llvm::MachO::CPU_TYPE_I386:
6153               RegisterContextDarwin_i386_Mach::Create_LC_THREAD(
6154                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6155               break;
6156 
6157             case llvm::MachO::CPU_TYPE_X86_64:
6158               RegisterContextDarwin_x86_64_Mach::Create_LC_THREAD(
6159                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6160               break;
6161             }
6162           }
6163         }
6164 
6165         // The size of the load command is the size of the segments...
6166         if (addr_byte_size == 8) {
6167           mach_header.sizeofcmds =
6168               segment_load_commands.size() * sizeof(struct segment_command_64);
6169         } else {
6170           mach_header.sizeofcmds =
6171               segment_load_commands.size() * sizeof(struct segment_command);
6172         }
6173 
6174         // and the size of all LC_THREAD load command
6175         for (const auto &LC_THREAD_data : LC_THREAD_datas) {
6176           ++mach_header.ncmds;
6177           mach_header.sizeofcmds += 8 + LC_THREAD_data.GetSize();
6178         }
6179 
6180         // Write the mach header
6181         buffer.PutHex32(mach_header.magic);
6182         buffer.PutHex32(mach_header.cputype);
6183         buffer.PutHex32(mach_header.cpusubtype);
6184         buffer.PutHex32(mach_header.filetype);
6185         buffer.PutHex32(mach_header.ncmds);
6186         buffer.PutHex32(mach_header.sizeofcmds);
6187         buffer.PutHex32(mach_header.flags);
6188         if (addr_byte_size == 8) {
6189           buffer.PutHex32(mach_header.reserved);
6190         }
6191 
6192         // Skip the mach header and all load commands and align to the next
6193         // 0x1000 byte boundary
6194         addr_t file_offset = buffer.GetSize() + mach_header.sizeofcmds;
6195         if (file_offset & 0x00000fff) {
6196           file_offset += 0x00001000ull;
6197           file_offset &= (~0x00001000ull + 1);
6198         }
6199 
6200         for (auto &segment : segment_load_commands) {
6201           segment.fileoff = file_offset;
6202           file_offset += segment.filesize;
6203         }
6204 
6205         // Write out all of the LC_THREAD load commands
6206         for (const auto &LC_THREAD_data : LC_THREAD_datas) {
6207           const size_t LC_THREAD_data_size = LC_THREAD_data.GetSize();
6208           buffer.PutHex32(LC_THREAD);
6209           buffer.PutHex32(8 + LC_THREAD_data_size); // cmd + cmdsize + data
6210           buffer.Write(LC_THREAD_data.GetString().data(), LC_THREAD_data_size);
6211         }
6212 
6213         // Write out all of the segment load commands
6214         for (const auto &segment : segment_load_commands) {
6215           printf("0x%8.8x 0x%8.8x [0x%16.16" PRIx64 " - 0x%16.16" PRIx64
6216                  ") [0x%16.16" PRIx64 " 0x%16.16" PRIx64
6217                  ") 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x]\n",
6218                  segment.cmd, segment.cmdsize, segment.vmaddr,
6219                  segment.vmaddr + segment.vmsize, segment.fileoff,
6220                  segment.filesize, segment.maxprot, segment.initprot,
6221                  segment.nsects, segment.flags);
6222 
6223           buffer.PutHex32(segment.cmd);
6224           buffer.PutHex32(segment.cmdsize);
6225           buffer.PutRawBytes(segment.segname, sizeof(segment.segname));
6226           if (addr_byte_size == 8) {
6227             buffer.PutHex64(segment.vmaddr);
6228             buffer.PutHex64(segment.vmsize);
6229             buffer.PutHex64(segment.fileoff);
6230             buffer.PutHex64(segment.filesize);
6231           } else {
6232             buffer.PutHex32(static_cast<uint32_t>(segment.vmaddr));
6233             buffer.PutHex32(static_cast<uint32_t>(segment.vmsize));
6234             buffer.PutHex32(static_cast<uint32_t>(segment.fileoff));
6235             buffer.PutHex32(static_cast<uint32_t>(segment.filesize));
6236           }
6237           buffer.PutHex32(segment.maxprot);
6238           buffer.PutHex32(segment.initprot);
6239           buffer.PutHex32(segment.nsects);
6240           buffer.PutHex32(segment.flags);
6241         }
6242 
6243         std::string core_file_path(outfile.GetPath());
6244         auto core_file = FileSystem::Instance().Open(
6245             outfile, File::eOpenOptionWrite | File::eOpenOptionTruncate |
6246                          File::eOpenOptionCanCreate);
6247         if (!core_file) {
6248           error = core_file.takeError();
6249         } else {
6250           // Read 1 page at a time
6251           uint8_t bytes[0x1000];
6252           // Write the mach header and load commands out to the core file
6253           size_t bytes_written = buffer.GetString().size();
6254           error =
6255               core_file.get()->Write(buffer.GetString().data(), bytes_written);
6256           if (error.Success()) {
6257             // Now write the file data for all memory segments in the process
6258             for (const auto &segment : segment_load_commands) {
6259               if (core_file.get()->SeekFromStart(segment.fileoff) == -1) {
6260                 error.SetErrorStringWithFormat(
6261                     "unable to seek to offset 0x%" PRIx64 " in '%s'",
6262                     segment.fileoff, core_file_path.c_str());
6263                 break;
6264               }
6265 
6266               printf("Saving %" PRId64
6267                      " bytes of data for memory region at 0x%" PRIx64 "\n",
6268                      segment.vmsize, segment.vmaddr);
6269               addr_t bytes_left = segment.vmsize;
6270               addr_t addr = segment.vmaddr;
6271               Status memory_read_error;
6272               while (bytes_left > 0 && error.Success()) {
6273                 const size_t bytes_to_read =
6274                     bytes_left > sizeof(bytes) ? sizeof(bytes) : bytes_left;
6275 
6276                 // In a savecore setting, we don't really care about caching,
6277                 // as the data is dumped and very likely never read again,
6278                 // so we call ReadMemoryFromInferior to bypass it.
6279                 const size_t bytes_read = process_sp->ReadMemoryFromInferior(
6280                     addr, bytes, bytes_to_read, memory_read_error);
6281 
6282                 if (bytes_read == bytes_to_read) {
6283                   size_t bytes_written = bytes_read;
6284                   error = core_file.get()->Write(bytes, bytes_written);
6285                   bytes_left -= bytes_read;
6286                   addr += bytes_read;
6287                 } else {
6288                   // Some pages within regions are not readable, those should
6289                   // be zero filled
6290                   memset(bytes, 0, bytes_to_read);
6291                   size_t bytes_written = bytes_to_read;
6292                   error = core_file.get()->Write(bytes, bytes_written);
6293                   bytes_left -= bytes_to_read;
6294                   addr += bytes_to_read;
6295                 }
6296               }
6297             }
6298           }
6299         }
6300       } else {
6301         error.SetErrorString(
6302             "process doesn't support getting memory region info");
6303       }
6304     }
6305     return true; // This is the right plug to handle saving core files for
6306                  // this process
6307   }
6308   return false;
6309 }
6310