1 //===-- ObjectFileMachO.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/ADT/StringRef.h"
10 
11 #include "Plugins/Process/Utility/RegisterContextDarwin_arm.h"
12 #include "Plugins/Process/Utility/RegisterContextDarwin_arm64.h"
13 #include "Plugins/Process/Utility/RegisterContextDarwin_i386.h"
14 #include "Plugins/Process/Utility/RegisterContextDarwin_x86_64.h"
15 #include "lldb/Core/Debugger.h"
16 #include "lldb/Core/FileSpecList.h"
17 #include "lldb/Core/Module.h"
18 #include "lldb/Core/ModuleSpec.h"
19 #include "lldb/Core/PluginManager.h"
20 #include "lldb/Core/Progress.h"
21 #include "lldb/Core/Section.h"
22 #include "lldb/Core/StreamFile.h"
23 #include "lldb/Host/Host.h"
24 #include "lldb/Symbol/DWARFCallFrameInfo.h"
25 #include "lldb/Symbol/ObjectFile.h"
26 #include "lldb/Target/DynamicLoader.h"
27 #include "lldb/Target/MemoryRegionInfo.h"
28 #include "lldb/Target/Platform.h"
29 #include "lldb/Target/Process.h"
30 #include "lldb/Target/SectionLoadList.h"
31 #include "lldb/Target/Target.h"
32 #include "lldb/Target/Thread.h"
33 #include "lldb/Target/ThreadList.h"
34 #include "lldb/Utility/ArchSpec.h"
35 #include "lldb/Utility/DataBuffer.h"
36 #include "lldb/Utility/FileSpec.h"
37 #include "lldb/Utility/Log.h"
38 #include "lldb/Utility/RangeMap.h"
39 #include "lldb/Utility/RegisterValue.h"
40 #include "lldb/Utility/Status.h"
41 #include "lldb/Utility/StreamString.h"
42 #include "lldb/Utility/Timer.h"
43 #include "lldb/Utility/UUID.h"
44 
45 #include "lldb/Host/SafeMachO.h"
46 
47 #include "llvm/ADT/DenseSet.h"
48 #include "llvm/Support/FormatVariadic.h"
49 #include "llvm/Support/MemoryBuffer.h"
50 
51 #include "ObjectFileMachO.h"
52 
53 #if defined(__APPLE__)
54 #include <TargetConditionals.h>
55 // GetLLDBSharedCacheUUID() needs to call dlsym()
56 #include <dlfcn.h>
57 #endif
58 
59 #ifndef __APPLE__
60 #include "Utility/UuidCompatibility.h"
61 #else
62 #include <uuid/uuid.h>
63 #endif
64 
65 #include <memory>
66 
67 #define THUMB_ADDRESS_BIT_MASK 0xfffffffffffffffeull
68 using namespace lldb;
69 using namespace lldb_private;
70 using namespace llvm::MachO;
71 
72 LLDB_PLUGIN_DEFINE(ObjectFileMachO)
73 
74 // Some structure definitions needed for parsing the dyld shared cache files
75 // found on iOS devices.
76 
77 struct lldb_copy_dyld_cache_header_v1 {
78   char magic[16];         // e.g. "dyld_v0    i386", "dyld_v1   armv7", etc.
79   uint32_t mappingOffset; // file offset to first dyld_cache_mapping_info
80   uint32_t mappingCount;  // number of dyld_cache_mapping_info entries
81   uint32_t imagesOffset;
82   uint32_t imagesCount;
83   uint64_t dyldBaseAddress;
84   uint64_t codeSignatureOffset;
85   uint64_t codeSignatureSize;
86   uint64_t slideInfoOffset;
87   uint64_t slideInfoSize;
88   uint64_t localSymbolsOffset;
89   uint64_t localSymbolsSize;
90   uint8_t uuid[16]; // v1 and above, also recorded in dyld_all_image_infos v13
91                     // and later
92 };
93 
94 struct lldb_copy_dyld_cache_mapping_info {
95   uint64_t address;
96   uint64_t size;
97   uint64_t fileOffset;
98   uint32_t maxProt;
99   uint32_t initProt;
100 };
101 
102 struct lldb_copy_dyld_cache_local_symbols_info {
103   uint32_t nlistOffset;
104   uint32_t nlistCount;
105   uint32_t stringsOffset;
106   uint32_t stringsSize;
107   uint32_t entriesOffset;
108   uint32_t entriesCount;
109 };
110 struct lldb_copy_dyld_cache_local_symbols_entry {
111   uint32_t dylibOffset;
112   uint32_t nlistStartIndex;
113   uint32_t nlistCount;
114 };
115 
116 static void PrintRegisterValue(RegisterContext *reg_ctx, const char *name,
117                                const char *alt_name, size_t reg_byte_size,
118                                Stream &data) {
119   const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
120   if (reg_info == nullptr)
121     reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
122   if (reg_info) {
123     lldb_private::RegisterValue reg_value;
124     if (reg_ctx->ReadRegister(reg_info, reg_value)) {
125       if (reg_info->byte_size >= reg_byte_size)
126         data.Write(reg_value.GetBytes(), reg_byte_size);
127       else {
128         data.Write(reg_value.GetBytes(), reg_info->byte_size);
129         for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n; ++i)
130           data.PutChar(0);
131       }
132       return;
133     }
134   }
135   // Just write zeros if all else fails
136   for (size_t i = 0; i < reg_byte_size; ++i)
137     data.PutChar(0);
138 }
139 
140 class RegisterContextDarwin_x86_64_Mach : public RegisterContextDarwin_x86_64 {
141 public:
142   RegisterContextDarwin_x86_64_Mach(lldb_private::Thread &thread,
143                                     const DataExtractor &data)
144       : RegisterContextDarwin_x86_64(thread, 0) {
145     SetRegisterDataFrom_LC_THREAD(data);
146   }
147 
148   void InvalidateAllRegisters() override {
149     // Do nothing... registers are always valid...
150   }
151 
152   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
153     lldb::offset_t offset = 0;
154     SetError(GPRRegSet, Read, -1);
155     SetError(FPURegSet, Read, -1);
156     SetError(EXCRegSet, Read, -1);
157     bool done = false;
158 
159     while (!done) {
160       int flavor = data.GetU32(&offset);
161       if (flavor == 0)
162         done = true;
163       else {
164         uint32_t i;
165         uint32_t count = data.GetU32(&offset);
166         switch (flavor) {
167         case GPRRegSet:
168           for (i = 0; i < count; ++i)
169             (&gpr.rax)[i] = data.GetU64(&offset);
170           SetError(GPRRegSet, Read, 0);
171           done = true;
172 
173           break;
174         case FPURegSet:
175           // TODO: fill in FPU regs....
176           // SetError (FPURegSet, Read, -1);
177           done = true;
178 
179           break;
180         case EXCRegSet:
181           exc.trapno = data.GetU32(&offset);
182           exc.err = data.GetU32(&offset);
183           exc.faultvaddr = data.GetU64(&offset);
184           SetError(EXCRegSet, Read, 0);
185           done = true;
186           break;
187         case 7:
188         case 8:
189         case 9:
190           // fancy flavors that encapsulate of the above flavors...
191           break;
192 
193         default:
194           done = true;
195           break;
196         }
197       }
198     }
199   }
200 
201   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
202     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
203     if (reg_ctx_sp) {
204       RegisterContext *reg_ctx = reg_ctx_sp.get();
205 
206       data.PutHex32(GPRRegSet); // Flavor
207       data.PutHex32(GPRWordCount);
208       PrintRegisterValue(reg_ctx, "rax", nullptr, 8, data);
209       PrintRegisterValue(reg_ctx, "rbx", nullptr, 8, data);
210       PrintRegisterValue(reg_ctx, "rcx", nullptr, 8, data);
211       PrintRegisterValue(reg_ctx, "rdx", nullptr, 8, data);
212       PrintRegisterValue(reg_ctx, "rdi", nullptr, 8, data);
213       PrintRegisterValue(reg_ctx, "rsi", nullptr, 8, data);
214       PrintRegisterValue(reg_ctx, "rbp", nullptr, 8, data);
215       PrintRegisterValue(reg_ctx, "rsp", nullptr, 8, data);
216       PrintRegisterValue(reg_ctx, "r8", nullptr, 8, data);
217       PrintRegisterValue(reg_ctx, "r9", nullptr, 8, data);
218       PrintRegisterValue(reg_ctx, "r10", nullptr, 8, data);
219       PrintRegisterValue(reg_ctx, "r11", nullptr, 8, data);
220       PrintRegisterValue(reg_ctx, "r12", nullptr, 8, data);
221       PrintRegisterValue(reg_ctx, "r13", nullptr, 8, data);
222       PrintRegisterValue(reg_ctx, "r14", nullptr, 8, data);
223       PrintRegisterValue(reg_ctx, "r15", nullptr, 8, data);
224       PrintRegisterValue(reg_ctx, "rip", nullptr, 8, data);
225       PrintRegisterValue(reg_ctx, "rflags", nullptr, 8, data);
226       PrintRegisterValue(reg_ctx, "cs", nullptr, 8, data);
227       PrintRegisterValue(reg_ctx, "fs", nullptr, 8, data);
228       PrintRegisterValue(reg_ctx, "gs", nullptr, 8, data);
229 
230       //            // Write out the FPU registers
231       //            const size_t fpu_byte_size = sizeof(FPU);
232       //            size_t bytes_written = 0;
233       //            data.PutHex32 (FPURegSet);
234       //            data.PutHex32 (fpu_byte_size/sizeof(uint64_t));
235       //            bytes_written += data.PutHex32(0); // uint32_t pad[0]
236       //            bytes_written += data.PutHex32(0); // uint32_t pad[1]
237       //            bytes_written += WriteRegister (reg_ctx, "fcw", "fctrl", 2,
238       //            data);   // uint16_t    fcw;    // "fctrl"
239       //            bytes_written += WriteRegister (reg_ctx, "fsw" , "fstat", 2,
240       //            data);  // uint16_t    fsw;    // "fstat"
241       //            bytes_written += WriteRegister (reg_ctx, "ftw" , "ftag", 1,
242       //            data);   // uint8_t     ftw;    // "ftag"
243       //            bytes_written += data.PutHex8  (0); // uint8_t pad1;
244       //            bytes_written += WriteRegister (reg_ctx, "fop" , NULL, 2,
245       //            data);     // uint16_t    fop;    // "fop"
246       //            bytes_written += WriteRegister (reg_ctx, "fioff", "ip", 4,
247       //            data);    // uint32_t    ip;     // "fioff"
248       //            bytes_written += WriteRegister (reg_ctx, "fiseg", NULL, 2,
249       //            data);    // uint16_t    cs;     // "fiseg"
250       //            bytes_written += data.PutHex16 (0); // uint16_t    pad2;
251       //            bytes_written += WriteRegister (reg_ctx, "dp", "fooff" , 4,
252       //            data);   // uint32_t    dp;     // "fooff"
253       //            bytes_written += WriteRegister (reg_ctx, "foseg", NULL, 2,
254       //            data);    // uint16_t    ds;     // "foseg"
255       //            bytes_written += data.PutHex16 (0); // uint16_t    pad3;
256       //            bytes_written += WriteRegister (reg_ctx, "mxcsr", NULL, 4,
257       //            data);    // uint32_t    mxcsr;
258       //            bytes_written += WriteRegister (reg_ctx, "mxcsrmask", NULL,
259       //            4, data);// uint32_t    mxcsrmask;
260       //            bytes_written += WriteRegister (reg_ctx, "stmm0", NULL,
261       //            sizeof(MMSReg), data);
262       //            bytes_written += WriteRegister (reg_ctx, "stmm1", NULL,
263       //            sizeof(MMSReg), data);
264       //            bytes_written += WriteRegister (reg_ctx, "stmm2", NULL,
265       //            sizeof(MMSReg), data);
266       //            bytes_written += WriteRegister (reg_ctx, "stmm3", NULL,
267       //            sizeof(MMSReg), data);
268       //            bytes_written += WriteRegister (reg_ctx, "stmm4", NULL,
269       //            sizeof(MMSReg), data);
270       //            bytes_written += WriteRegister (reg_ctx, "stmm5", NULL,
271       //            sizeof(MMSReg), data);
272       //            bytes_written += WriteRegister (reg_ctx, "stmm6", NULL,
273       //            sizeof(MMSReg), data);
274       //            bytes_written += WriteRegister (reg_ctx, "stmm7", NULL,
275       //            sizeof(MMSReg), data);
276       //            bytes_written += WriteRegister (reg_ctx, "xmm0" , NULL,
277       //            sizeof(XMMReg), data);
278       //            bytes_written += WriteRegister (reg_ctx, "xmm1" , NULL,
279       //            sizeof(XMMReg), data);
280       //            bytes_written += WriteRegister (reg_ctx, "xmm2" , NULL,
281       //            sizeof(XMMReg), data);
282       //            bytes_written += WriteRegister (reg_ctx, "xmm3" , NULL,
283       //            sizeof(XMMReg), data);
284       //            bytes_written += WriteRegister (reg_ctx, "xmm4" , NULL,
285       //            sizeof(XMMReg), data);
286       //            bytes_written += WriteRegister (reg_ctx, "xmm5" , NULL,
287       //            sizeof(XMMReg), data);
288       //            bytes_written += WriteRegister (reg_ctx, "xmm6" , NULL,
289       //            sizeof(XMMReg), data);
290       //            bytes_written += WriteRegister (reg_ctx, "xmm7" , NULL,
291       //            sizeof(XMMReg), data);
292       //            bytes_written += WriteRegister (reg_ctx, "xmm8" , NULL,
293       //            sizeof(XMMReg), data);
294       //            bytes_written += WriteRegister (reg_ctx, "xmm9" , NULL,
295       //            sizeof(XMMReg), data);
296       //            bytes_written += WriteRegister (reg_ctx, "xmm10", NULL,
297       //            sizeof(XMMReg), data);
298       //            bytes_written += WriteRegister (reg_ctx, "xmm11", NULL,
299       //            sizeof(XMMReg), data);
300       //            bytes_written += WriteRegister (reg_ctx, "xmm12", NULL,
301       //            sizeof(XMMReg), data);
302       //            bytes_written += WriteRegister (reg_ctx, "xmm13", NULL,
303       //            sizeof(XMMReg), data);
304       //            bytes_written += WriteRegister (reg_ctx, "xmm14", NULL,
305       //            sizeof(XMMReg), data);
306       //            bytes_written += WriteRegister (reg_ctx, "xmm15", NULL,
307       //            sizeof(XMMReg), data);
308       //
309       //            // Fill rest with zeros
310       //            for (size_t i=0, n = fpu_byte_size - bytes_written; i<n; ++
311       //            i)
312       //                data.PutChar(0);
313 
314       // Write out the EXC registers
315       data.PutHex32(EXCRegSet);
316       data.PutHex32(EXCWordCount);
317       PrintRegisterValue(reg_ctx, "trapno", nullptr, 4, data);
318       PrintRegisterValue(reg_ctx, "err", nullptr, 4, data);
319       PrintRegisterValue(reg_ctx, "faultvaddr", nullptr, 8, data);
320       return true;
321     }
322     return false;
323   }
324 
325 protected:
326   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
327 
328   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
329 
330   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
331 
332   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
333     return 0;
334   }
335 
336   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
337     return 0;
338   }
339 
340   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
341     return 0;
342   }
343 };
344 
345 class RegisterContextDarwin_i386_Mach : public RegisterContextDarwin_i386 {
346 public:
347   RegisterContextDarwin_i386_Mach(lldb_private::Thread &thread,
348                                   const DataExtractor &data)
349       : RegisterContextDarwin_i386(thread, 0) {
350     SetRegisterDataFrom_LC_THREAD(data);
351   }
352 
353   void InvalidateAllRegisters() override {
354     // Do nothing... registers are always valid...
355   }
356 
357   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
358     lldb::offset_t offset = 0;
359     SetError(GPRRegSet, Read, -1);
360     SetError(FPURegSet, Read, -1);
361     SetError(EXCRegSet, Read, -1);
362     bool done = false;
363 
364     while (!done) {
365       int flavor = data.GetU32(&offset);
366       if (flavor == 0)
367         done = true;
368       else {
369         uint32_t i;
370         uint32_t count = data.GetU32(&offset);
371         switch (flavor) {
372         case GPRRegSet:
373           for (i = 0; i < count; ++i)
374             (&gpr.eax)[i] = data.GetU32(&offset);
375           SetError(GPRRegSet, Read, 0);
376           done = true;
377 
378           break;
379         case FPURegSet:
380           // TODO: fill in FPU regs....
381           // SetError (FPURegSet, Read, -1);
382           done = true;
383 
384           break;
385         case EXCRegSet:
386           exc.trapno = data.GetU32(&offset);
387           exc.err = data.GetU32(&offset);
388           exc.faultvaddr = data.GetU32(&offset);
389           SetError(EXCRegSet, Read, 0);
390           done = true;
391           break;
392         case 7:
393         case 8:
394         case 9:
395           // fancy flavors that encapsulate of the above flavors...
396           break;
397 
398         default:
399           done = true;
400           break;
401         }
402       }
403     }
404   }
405 
406   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
407     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
408     if (reg_ctx_sp) {
409       RegisterContext *reg_ctx = reg_ctx_sp.get();
410 
411       data.PutHex32(GPRRegSet); // Flavor
412       data.PutHex32(GPRWordCount);
413       PrintRegisterValue(reg_ctx, "eax", nullptr, 4, data);
414       PrintRegisterValue(reg_ctx, "ebx", nullptr, 4, data);
415       PrintRegisterValue(reg_ctx, "ecx", nullptr, 4, data);
416       PrintRegisterValue(reg_ctx, "edx", nullptr, 4, data);
417       PrintRegisterValue(reg_ctx, "edi", nullptr, 4, data);
418       PrintRegisterValue(reg_ctx, "esi", nullptr, 4, data);
419       PrintRegisterValue(reg_ctx, "ebp", nullptr, 4, data);
420       PrintRegisterValue(reg_ctx, "esp", nullptr, 4, data);
421       PrintRegisterValue(reg_ctx, "ss", nullptr, 4, data);
422       PrintRegisterValue(reg_ctx, "eflags", nullptr, 4, data);
423       PrintRegisterValue(reg_ctx, "eip", nullptr, 4, data);
424       PrintRegisterValue(reg_ctx, "cs", nullptr, 4, data);
425       PrintRegisterValue(reg_ctx, "ds", nullptr, 4, data);
426       PrintRegisterValue(reg_ctx, "es", nullptr, 4, data);
427       PrintRegisterValue(reg_ctx, "fs", nullptr, 4, data);
428       PrintRegisterValue(reg_ctx, "gs", nullptr, 4, data);
429 
430       // Write out the EXC registers
431       data.PutHex32(EXCRegSet);
432       data.PutHex32(EXCWordCount);
433       PrintRegisterValue(reg_ctx, "trapno", nullptr, 4, data);
434       PrintRegisterValue(reg_ctx, "err", nullptr, 4, data);
435       PrintRegisterValue(reg_ctx, "faultvaddr", nullptr, 4, data);
436       return true;
437     }
438     return false;
439   }
440 
441 protected:
442   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
443 
444   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
445 
446   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
447 
448   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
449     return 0;
450   }
451 
452   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
453     return 0;
454   }
455 
456   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
457     return 0;
458   }
459 };
460 
461 class RegisterContextDarwin_arm_Mach : public RegisterContextDarwin_arm {
462 public:
463   RegisterContextDarwin_arm_Mach(lldb_private::Thread &thread,
464                                  const DataExtractor &data)
465       : RegisterContextDarwin_arm(thread, 0) {
466     SetRegisterDataFrom_LC_THREAD(data);
467   }
468 
469   void InvalidateAllRegisters() override {
470     // Do nothing... registers are always valid...
471   }
472 
473   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
474     lldb::offset_t offset = 0;
475     SetError(GPRRegSet, Read, -1);
476     SetError(FPURegSet, Read, -1);
477     SetError(EXCRegSet, Read, -1);
478     bool done = false;
479 
480     while (!done) {
481       int flavor = data.GetU32(&offset);
482       uint32_t count = data.GetU32(&offset);
483       lldb::offset_t next_thread_state = offset + (count * 4);
484       switch (flavor) {
485       case GPRAltRegSet:
486       case GPRRegSet:
487         // On ARM, the CPSR register is also included in the count but it is
488         // not included in gpr.r so loop until (count-1).
489         for (uint32_t i = 0; i < (count - 1); ++i) {
490           gpr.r[i] = data.GetU32(&offset);
491         }
492         // Save cpsr explicitly.
493         gpr.cpsr = data.GetU32(&offset);
494 
495         SetError(GPRRegSet, Read, 0);
496         offset = next_thread_state;
497         break;
498 
499       case FPURegSet: {
500         uint8_t *fpu_reg_buf = (uint8_t *)&fpu.floats.s[0];
501         const int fpu_reg_buf_size = sizeof(fpu.floats);
502         if (data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
503                               fpu_reg_buf) == fpu_reg_buf_size) {
504           offset += fpu_reg_buf_size;
505           fpu.fpscr = data.GetU32(&offset);
506           SetError(FPURegSet, Read, 0);
507         } else {
508           done = true;
509         }
510       }
511         offset = next_thread_state;
512         break;
513 
514       case EXCRegSet:
515         if (count == 3) {
516           exc.exception = data.GetU32(&offset);
517           exc.fsr = data.GetU32(&offset);
518           exc.far = data.GetU32(&offset);
519           SetError(EXCRegSet, Read, 0);
520         }
521         done = true;
522         offset = next_thread_state;
523         break;
524 
525       // Unknown register set flavor, stop trying to parse.
526       default:
527         done = true;
528       }
529     }
530   }
531 
532   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
533     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
534     if (reg_ctx_sp) {
535       RegisterContext *reg_ctx = reg_ctx_sp.get();
536 
537       data.PutHex32(GPRRegSet); // Flavor
538       data.PutHex32(GPRWordCount);
539       PrintRegisterValue(reg_ctx, "r0", nullptr, 4, data);
540       PrintRegisterValue(reg_ctx, "r1", nullptr, 4, data);
541       PrintRegisterValue(reg_ctx, "r2", nullptr, 4, data);
542       PrintRegisterValue(reg_ctx, "r3", nullptr, 4, data);
543       PrintRegisterValue(reg_ctx, "r4", nullptr, 4, data);
544       PrintRegisterValue(reg_ctx, "r5", nullptr, 4, data);
545       PrintRegisterValue(reg_ctx, "r6", nullptr, 4, data);
546       PrintRegisterValue(reg_ctx, "r7", nullptr, 4, data);
547       PrintRegisterValue(reg_ctx, "r8", nullptr, 4, data);
548       PrintRegisterValue(reg_ctx, "r9", nullptr, 4, data);
549       PrintRegisterValue(reg_ctx, "r10", nullptr, 4, data);
550       PrintRegisterValue(reg_ctx, "r11", nullptr, 4, data);
551       PrintRegisterValue(reg_ctx, "r12", nullptr, 4, data);
552       PrintRegisterValue(reg_ctx, "sp", nullptr, 4, data);
553       PrintRegisterValue(reg_ctx, "lr", nullptr, 4, data);
554       PrintRegisterValue(reg_ctx, "pc", nullptr, 4, data);
555       PrintRegisterValue(reg_ctx, "cpsr", nullptr, 4, data);
556 
557       // Write out the EXC registers
558       //            data.PutHex32 (EXCRegSet);
559       //            data.PutHex32 (EXCWordCount);
560       //            WriteRegister (reg_ctx, "exception", NULL, 4, data);
561       //            WriteRegister (reg_ctx, "fsr", NULL, 4, data);
562       //            WriteRegister (reg_ctx, "far", NULL, 4, data);
563       return true;
564     }
565     return false;
566   }
567 
568 protected:
569   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
570 
571   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
572 
573   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
574 
575   int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
576 
577   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
578     return 0;
579   }
580 
581   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
582     return 0;
583   }
584 
585   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
586     return 0;
587   }
588 
589   int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
590     return -1;
591   }
592 };
593 
594 class RegisterContextDarwin_arm64_Mach : public RegisterContextDarwin_arm64 {
595 public:
596   RegisterContextDarwin_arm64_Mach(lldb_private::Thread &thread,
597                                    const DataExtractor &data)
598       : RegisterContextDarwin_arm64(thread, 0) {
599     SetRegisterDataFrom_LC_THREAD(data);
600   }
601 
602   void InvalidateAllRegisters() override {
603     // Do nothing... registers are always valid...
604   }
605 
606   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
607     lldb::offset_t offset = 0;
608     SetError(GPRRegSet, Read, -1);
609     SetError(FPURegSet, Read, -1);
610     SetError(EXCRegSet, Read, -1);
611     bool done = false;
612     while (!done) {
613       int flavor = data.GetU32(&offset);
614       uint32_t count = data.GetU32(&offset);
615       lldb::offset_t next_thread_state = offset + (count * 4);
616       switch (flavor) {
617       case GPRRegSet:
618         // x0-x29 + fp + lr + sp + pc (== 33 64-bit registers) plus cpsr (1
619         // 32-bit register)
620         if (count >= (33 * 2) + 1) {
621           for (uint32_t i = 0; i < 29; ++i)
622             gpr.x[i] = data.GetU64(&offset);
623           gpr.fp = data.GetU64(&offset);
624           gpr.lr = data.GetU64(&offset);
625           gpr.sp = data.GetU64(&offset);
626           gpr.pc = data.GetU64(&offset);
627           gpr.cpsr = data.GetU32(&offset);
628           SetError(GPRRegSet, Read, 0);
629         }
630         offset = next_thread_state;
631         break;
632       case FPURegSet: {
633         uint8_t *fpu_reg_buf = (uint8_t *)&fpu.v[0];
634         const int fpu_reg_buf_size = sizeof(fpu);
635         if (fpu_reg_buf_size == count * sizeof(uint32_t) &&
636             data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
637                               fpu_reg_buf) == fpu_reg_buf_size) {
638           SetError(FPURegSet, Read, 0);
639         } else {
640           done = true;
641         }
642       }
643         offset = next_thread_state;
644         break;
645       case EXCRegSet:
646         if (count == 4) {
647           exc.far = data.GetU64(&offset);
648           exc.esr = data.GetU32(&offset);
649           exc.exception = data.GetU32(&offset);
650           SetError(EXCRegSet, Read, 0);
651         }
652         offset = next_thread_state;
653         break;
654       default:
655         done = true;
656         break;
657       }
658     }
659   }
660 
661   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
662     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
663     if (reg_ctx_sp) {
664       RegisterContext *reg_ctx = reg_ctx_sp.get();
665 
666       data.PutHex32(GPRRegSet); // Flavor
667       data.PutHex32(GPRWordCount);
668       PrintRegisterValue(reg_ctx, "x0", nullptr, 8, data);
669       PrintRegisterValue(reg_ctx, "x1", nullptr, 8, data);
670       PrintRegisterValue(reg_ctx, "x2", nullptr, 8, data);
671       PrintRegisterValue(reg_ctx, "x3", nullptr, 8, data);
672       PrintRegisterValue(reg_ctx, "x4", nullptr, 8, data);
673       PrintRegisterValue(reg_ctx, "x5", nullptr, 8, data);
674       PrintRegisterValue(reg_ctx, "x6", nullptr, 8, data);
675       PrintRegisterValue(reg_ctx, "x7", nullptr, 8, data);
676       PrintRegisterValue(reg_ctx, "x8", nullptr, 8, data);
677       PrintRegisterValue(reg_ctx, "x9", nullptr, 8, data);
678       PrintRegisterValue(reg_ctx, "x10", nullptr, 8, data);
679       PrintRegisterValue(reg_ctx, "x11", nullptr, 8, data);
680       PrintRegisterValue(reg_ctx, "x12", nullptr, 8, data);
681       PrintRegisterValue(reg_ctx, "x13", nullptr, 8, data);
682       PrintRegisterValue(reg_ctx, "x14", nullptr, 8, data);
683       PrintRegisterValue(reg_ctx, "x15", nullptr, 8, data);
684       PrintRegisterValue(reg_ctx, "x16", nullptr, 8, data);
685       PrintRegisterValue(reg_ctx, "x17", nullptr, 8, data);
686       PrintRegisterValue(reg_ctx, "x18", nullptr, 8, data);
687       PrintRegisterValue(reg_ctx, "x19", nullptr, 8, data);
688       PrintRegisterValue(reg_ctx, "x20", nullptr, 8, data);
689       PrintRegisterValue(reg_ctx, "x21", nullptr, 8, data);
690       PrintRegisterValue(reg_ctx, "x22", nullptr, 8, data);
691       PrintRegisterValue(reg_ctx, "x23", nullptr, 8, data);
692       PrintRegisterValue(reg_ctx, "x24", nullptr, 8, data);
693       PrintRegisterValue(reg_ctx, "x25", nullptr, 8, data);
694       PrintRegisterValue(reg_ctx, "x26", nullptr, 8, data);
695       PrintRegisterValue(reg_ctx, "x27", nullptr, 8, data);
696       PrintRegisterValue(reg_ctx, "x28", nullptr, 8, data);
697       PrintRegisterValue(reg_ctx, "fp", nullptr, 8, data);
698       PrintRegisterValue(reg_ctx, "lr", nullptr, 8, data);
699       PrintRegisterValue(reg_ctx, "sp", nullptr, 8, data);
700       PrintRegisterValue(reg_ctx, "pc", nullptr, 8, data);
701       PrintRegisterValue(reg_ctx, "cpsr", nullptr, 4, data);
702 
703       // Write out the EXC registers
704       //            data.PutHex32 (EXCRegSet);
705       //            data.PutHex32 (EXCWordCount);
706       //            WriteRegister (reg_ctx, "far", NULL, 8, data);
707       //            WriteRegister (reg_ctx, "esr", NULL, 4, data);
708       //            WriteRegister (reg_ctx, "exception", NULL, 4, data);
709       return true;
710     }
711     return false;
712   }
713 
714 protected:
715   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
716 
717   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
718 
719   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
720 
721   int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
722 
723   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
724     return 0;
725   }
726 
727   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
728     return 0;
729   }
730 
731   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
732     return 0;
733   }
734 
735   int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
736     return -1;
737   }
738 };
739 
740 static uint32_t MachHeaderSizeFromMagic(uint32_t magic) {
741   switch (magic) {
742   case MH_MAGIC:
743   case MH_CIGAM:
744     return sizeof(struct mach_header);
745 
746   case MH_MAGIC_64:
747   case MH_CIGAM_64:
748     return sizeof(struct mach_header_64);
749     break;
750 
751   default:
752     break;
753   }
754   return 0;
755 }
756 
757 #define MACHO_NLIST_ARM_SYMBOL_IS_THUMB 0x0008
758 
759 char ObjectFileMachO::ID;
760 
761 void ObjectFileMachO::Initialize() {
762   PluginManager::RegisterPlugin(
763       GetPluginNameStatic(), GetPluginDescriptionStatic(), CreateInstance,
764       CreateMemoryInstance, GetModuleSpecifications, SaveCore);
765 }
766 
767 void ObjectFileMachO::Terminate() {
768   PluginManager::UnregisterPlugin(CreateInstance);
769 }
770 
771 lldb_private::ConstString ObjectFileMachO::GetPluginNameStatic() {
772   static ConstString g_name("mach-o");
773   return g_name;
774 }
775 
776 const char *ObjectFileMachO::GetPluginDescriptionStatic() {
777   return "Mach-o object file reader (32 and 64 bit)";
778 }
779 
780 ObjectFile *ObjectFileMachO::CreateInstance(const lldb::ModuleSP &module_sp,
781                                             DataBufferSP &data_sp,
782                                             lldb::offset_t data_offset,
783                                             const FileSpec *file,
784                                             lldb::offset_t file_offset,
785                                             lldb::offset_t length) {
786   if (!data_sp) {
787     data_sp = MapFileData(*file, length, file_offset);
788     if (!data_sp)
789       return nullptr;
790     data_offset = 0;
791   }
792 
793   if (!ObjectFileMachO::MagicBytesMatch(data_sp, data_offset, length))
794     return nullptr;
795 
796   // Update the data to contain the entire file if it doesn't already
797   if (data_sp->GetByteSize() < length) {
798     data_sp = MapFileData(*file, length, file_offset);
799     if (!data_sp)
800       return nullptr;
801     data_offset = 0;
802   }
803   auto objfile_up = std::make_unique<ObjectFileMachO>(
804       module_sp, data_sp, data_offset, file, file_offset, length);
805   if (!objfile_up || !objfile_up->ParseHeader())
806     return nullptr;
807 
808   return objfile_up.release();
809 }
810 
811 ObjectFile *ObjectFileMachO::CreateMemoryInstance(
812     const lldb::ModuleSP &module_sp, DataBufferSP &data_sp,
813     const ProcessSP &process_sp, lldb::addr_t header_addr) {
814   if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
815     std::unique_ptr<ObjectFile> objfile_up(
816         new ObjectFileMachO(module_sp, data_sp, process_sp, header_addr));
817     if (objfile_up.get() && objfile_up->ParseHeader())
818       return objfile_up.release();
819   }
820   return nullptr;
821 }
822 
823 size_t ObjectFileMachO::GetModuleSpecifications(
824     const lldb_private::FileSpec &file, lldb::DataBufferSP &data_sp,
825     lldb::offset_t data_offset, lldb::offset_t file_offset,
826     lldb::offset_t length, lldb_private::ModuleSpecList &specs) {
827   const size_t initial_count = specs.GetSize();
828 
829   if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
830     DataExtractor data;
831     data.SetData(data_sp);
832     llvm::MachO::mach_header header;
833     if (ParseHeader(data, &data_offset, header)) {
834       size_t header_and_load_cmds =
835           header.sizeofcmds + MachHeaderSizeFromMagic(header.magic);
836       if (header_and_load_cmds >= data_sp->GetByteSize()) {
837         data_sp = MapFileData(file, header_and_load_cmds, file_offset);
838         data.SetData(data_sp);
839         data_offset = MachHeaderSizeFromMagic(header.magic);
840       }
841       if (data_sp) {
842         ModuleSpec base_spec;
843         base_spec.GetFileSpec() = file;
844         base_spec.SetObjectOffset(file_offset);
845         base_spec.SetObjectSize(length);
846         GetAllArchSpecs(header, data, data_offset, base_spec, specs);
847       }
848     }
849   }
850   return specs.GetSize() - initial_count;
851 }
852 
853 ConstString ObjectFileMachO::GetSegmentNameTEXT() {
854   static ConstString g_segment_name_TEXT("__TEXT");
855   return g_segment_name_TEXT;
856 }
857 
858 ConstString ObjectFileMachO::GetSegmentNameDATA() {
859   static ConstString g_segment_name_DATA("__DATA");
860   return g_segment_name_DATA;
861 }
862 
863 ConstString ObjectFileMachO::GetSegmentNameDATA_DIRTY() {
864   static ConstString g_segment_name("__DATA_DIRTY");
865   return g_segment_name;
866 }
867 
868 ConstString ObjectFileMachO::GetSegmentNameDATA_CONST() {
869   static ConstString g_segment_name("__DATA_CONST");
870   return g_segment_name;
871 }
872 
873 ConstString ObjectFileMachO::GetSegmentNameOBJC() {
874   static ConstString g_segment_name_OBJC("__OBJC");
875   return g_segment_name_OBJC;
876 }
877 
878 ConstString ObjectFileMachO::GetSegmentNameLINKEDIT() {
879   static ConstString g_section_name_LINKEDIT("__LINKEDIT");
880   return g_section_name_LINKEDIT;
881 }
882 
883 ConstString ObjectFileMachO::GetSegmentNameDWARF() {
884   static ConstString g_section_name("__DWARF");
885   return g_section_name;
886 }
887 
888 ConstString ObjectFileMachO::GetSectionNameEHFrame() {
889   static ConstString g_section_name_eh_frame("__eh_frame");
890   return g_section_name_eh_frame;
891 }
892 
893 bool ObjectFileMachO::MagicBytesMatch(DataBufferSP &data_sp,
894                                       lldb::addr_t data_offset,
895                                       lldb::addr_t data_length) {
896   DataExtractor data;
897   data.SetData(data_sp, data_offset, data_length);
898   lldb::offset_t offset = 0;
899   uint32_t magic = data.GetU32(&offset);
900   return MachHeaderSizeFromMagic(magic) != 0;
901 }
902 
903 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
904                                  DataBufferSP &data_sp,
905                                  lldb::offset_t data_offset,
906                                  const FileSpec *file,
907                                  lldb::offset_t file_offset,
908                                  lldb::offset_t length)
909     : ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset),
910       m_mach_segments(), m_mach_sections(), m_entry_point_address(),
911       m_thread_context_offsets(), m_thread_context_offsets_valid(false),
912       m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) {
913   ::memset(&m_header, 0, sizeof(m_header));
914   ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
915 }
916 
917 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
918                                  lldb::DataBufferSP &header_data_sp,
919                                  const lldb::ProcessSP &process_sp,
920                                  lldb::addr_t header_addr)
921     : ObjectFile(module_sp, process_sp, header_addr, header_data_sp),
922       m_mach_segments(), m_mach_sections(), m_entry_point_address(),
923       m_thread_context_offsets(), m_thread_context_offsets_valid(false),
924       m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) {
925   ::memset(&m_header, 0, sizeof(m_header));
926   ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
927 }
928 
929 bool ObjectFileMachO::ParseHeader(DataExtractor &data,
930                                   lldb::offset_t *data_offset_ptr,
931                                   llvm::MachO::mach_header &header) {
932   data.SetByteOrder(endian::InlHostByteOrder());
933   // Leave magic in the original byte order
934   header.magic = data.GetU32(data_offset_ptr);
935   bool can_parse = false;
936   bool is_64_bit = false;
937   switch (header.magic) {
938   case MH_MAGIC:
939     data.SetByteOrder(endian::InlHostByteOrder());
940     data.SetAddressByteSize(4);
941     can_parse = true;
942     break;
943 
944   case MH_MAGIC_64:
945     data.SetByteOrder(endian::InlHostByteOrder());
946     data.SetAddressByteSize(8);
947     can_parse = true;
948     is_64_bit = true;
949     break;
950 
951   case MH_CIGAM:
952     data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
953                           ? eByteOrderLittle
954                           : eByteOrderBig);
955     data.SetAddressByteSize(4);
956     can_parse = true;
957     break;
958 
959   case MH_CIGAM_64:
960     data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
961                           ? eByteOrderLittle
962                           : eByteOrderBig);
963     data.SetAddressByteSize(8);
964     is_64_bit = true;
965     can_parse = true;
966     break;
967 
968   default:
969     break;
970   }
971 
972   if (can_parse) {
973     data.GetU32(data_offset_ptr, &header.cputype, 6);
974     if (is_64_bit)
975       *data_offset_ptr += 4;
976     return true;
977   } else {
978     memset(&header, 0, sizeof(header));
979   }
980   return false;
981 }
982 
983 bool ObjectFileMachO::ParseHeader() {
984   ModuleSP module_sp(GetModule());
985   if (!module_sp)
986     return false;
987 
988   std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
989   bool can_parse = false;
990   lldb::offset_t offset = 0;
991   m_data.SetByteOrder(endian::InlHostByteOrder());
992   // Leave magic in the original byte order
993   m_header.magic = m_data.GetU32(&offset);
994   switch (m_header.magic) {
995   case MH_MAGIC:
996     m_data.SetByteOrder(endian::InlHostByteOrder());
997     m_data.SetAddressByteSize(4);
998     can_parse = true;
999     break;
1000 
1001   case MH_MAGIC_64:
1002     m_data.SetByteOrder(endian::InlHostByteOrder());
1003     m_data.SetAddressByteSize(8);
1004     can_parse = true;
1005     break;
1006 
1007   case MH_CIGAM:
1008     m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1009                             ? eByteOrderLittle
1010                             : eByteOrderBig);
1011     m_data.SetAddressByteSize(4);
1012     can_parse = true;
1013     break;
1014 
1015   case MH_CIGAM_64:
1016     m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1017                             ? eByteOrderLittle
1018                             : eByteOrderBig);
1019     m_data.SetAddressByteSize(8);
1020     can_parse = true;
1021     break;
1022 
1023   default:
1024     break;
1025   }
1026 
1027   if (can_parse) {
1028     m_data.GetU32(&offset, &m_header.cputype, 6);
1029 
1030     ModuleSpecList all_specs;
1031     ModuleSpec base_spec;
1032     GetAllArchSpecs(m_header, m_data, MachHeaderSizeFromMagic(m_header.magic),
1033                     base_spec, all_specs);
1034 
1035     for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
1036       ArchSpec mach_arch =
1037           all_specs.GetModuleSpecRefAtIndex(i).GetArchitecture();
1038 
1039       // Check if the module has a required architecture
1040       const ArchSpec &module_arch = module_sp->GetArchitecture();
1041       if (module_arch.IsValid() && !module_arch.IsCompatibleMatch(mach_arch))
1042         continue;
1043 
1044       if (SetModulesArchitecture(mach_arch)) {
1045         const size_t header_and_lc_size =
1046             m_header.sizeofcmds + MachHeaderSizeFromMagic(m_header.magic);
1047         if (m_data.GetByteSize() < header_and_lc_size) {
1048           DataBufferSP data_sp;
1049           ProcessSP process_sp(m_process_wp.lock());
1050           if (process_sp) {
1051             data_sp = ReadMemory(process_sp, m_memory_addr, header_and_lc_size);
1052           } else {
1053             // Read in all only the load command data from the file on disk
1054             data_sp = MapFileData(m_file, header_and_lc_size, m_file_offset);
1055             if (data_sp->GetByteSize() != header_and_lc_size)
1056               continue;
1057           }
1058           if (data_sp)
1059             m_data.SetData(data_sp);
1060         }
1061       }
1062       return true;
1063     }
1064     // None found.
1065     return false;
1066   } else {
1067     memset(&m_header, 0, sizeof(struct mach_header));
1068   }
1069   return false;
1070 }
1071 
1072 ByteOrder ObjectFileMachO::GetByteOrder() const {
1073   return m_data.GetByteOrder();
1074 }
1075 
1076 bool ObjectFileMachO::IsExecutable() const {
1077   return m_header.filetype == MH_EXECUTE;
1078 }
1079 
1080 bool ObjectFileMachO::IsDynamicLoader() const {
1081   return m_header.filetype == MH_DYLINKER;
1082 }
1083 
1084 uint32_t ObjectFileMachO::GetAddressByteSize() const {
1085   return m_data.GetAddressByteSize();
1086 }
1087 
1088 AddressClass ObjectFileMachO::GetAddressClass(lldb::addr_t file_addr) {
1089   Symtab *symtab = GetSymtab();
1090   if (!symtab)
1091     return AddressClass::eUnknown;
1092 
1093   Symbol *symbol = symtab->FindSymbolContainingFileAddress(file_addr);
1094   if (symbol) {
1095     if (symbol->ValueIsAddress()) {
1096       SectionSP section_sp(symbol->GetAddressRef().GetSection());
1097       if (section_sp) {
1098         const lldb::SectionType section_type = section_sp->GetType();
1099         switch (section_type) {
1100         case eSectionTypeInvalid:
1101           return AddressClass::eUnknown;
1102 
1103         case eSectionTypeCode:
1104           if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
1105             // For ARM we have a bit in the n_desc field of the symbol that
1106             // tells us ARM/Thumb which is bit 0x0008.
1107             if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB)
1108               return AddressClass::eCodeAlternateISA;
1109           }
1110           return AddressClass::eCode;
1111 
1112         case eSectionTypeContainer:
1113           return AddressClass::eUnknown;
1114 
1115         case eSectionTypeData:
1116         case eSectionTypeDataCString:
1117         case eSectionTypeDataCStringPointers:
1118         case eSectionTypeDataSymbolAddress:
1119         case eSectionTypeData4:
1120         case eSectionTypeData8:
1121         case eSectionTypeData16:
1122         case eSectionTypeDataPointers:
1123         case eSectionTypeZeroFill:
1124         case eSectionTypeDataObjCMessageRefs:
1125         case eSectionTypeDataObjCCFStrings:
1126         case eSectionTypeGoSymtab:
1127           return AddressClass::eData;
1128 
1129         case eSectionTypeDebug:
1130         case eSectionTypeDWARFDebugAbbrev:
1131         case eSectionTypeDWARFDebugAbbrevDwo:
1132         case eSectionTypeDWARFDebugAddr:
1133         case eSectionTypeDWARFDebugAranges:
1134         case eSectionTypeDWARFDebugCuIndex:
1135         case eSectionTypeDWARFDebugFrame:
1136         case eSectionTypeDWARFDebugInfo:
1137         case eSectionTypeDWARFDebugInfoDwo:
1138         case eSectionTypeDWARFDebugLine:
1139         case eSectionTypeDWARFDebugLineStr:
1140         case eSectionTypeDWARFDebugLoc:
1141         case eSectionTypeDWARFDebugLocDwo:
1142         case eSectionTypeDWARFDebugLocLists:
1143         case eSectionTypeDWARFDebugLocListsDwo:
1144         case eSectionTypeDWARFDebugMacInfo:
1145         case eSectionTypeDWARFDebugMacro:
1146         case eSectionTypeDWARFDebugNames:
1147         case eSectionTypeDWARFDebugPubNames:
1148         case eSectionTypeDWARFDebugPubTypes:
1149         case eSectionTypeDWARFDebugRanges:
1150         case eSectionTypeDWARFDebugRngLists:
1151         case eSectionTypeDWARFDebugRngListsDwo:
1152         case eSectionTypeDWARFDebugStr:
1153         case eSectionTypeDWARFDebugStrDwo:
1154         case eSectionTypeDWARFDebugStrOffsets:
1155         case eSectionTypeDWARFDebugStrOffsetsDwo:
1156         case eSectionTypeDWARFDebugTuIndex:
1157         case eSectionTypeDWARFDebugTypes:
1158         case eSectionTypeDWARFDebugTypesDwo:
1159         case eSectionTypeDWARFAppleNames:
1160         case eSectionTypeDWARFAppleTypes:
1161         case eSectionTypeDWARFAppleNamespaces:
1162         case eSectionTypeDWARFAppleObjC:
1163         case eSectionTypeDWARFGNUDebugAltLink:
1164           return AddressClass::eDebug;
1165 
1166         case eSectionTypeEHFrame:
1167         case eSectionTypeARMexidx:
1168         case eSectionTypeARMextab:
1169         case eSectionTypeCompactUnwind:
1170           return AddressClass::eRuntime;
1171 
1172         case eSectionTypeAbsoluteAddress:
1173         case eSectionTypeELFSymbolTable:
1174         case eSectionTypeELFDynamicSymbols:
1175         case eSectionTypeELFRelocationEntries:
1176         case eSectionTypeELFDynamicLinkInfo:
1177         case eSectionTypeOther:
1178           return AddressClass::eUnknown;
1179         }
1180       }
1181     }
1182 
1183     const SymbolType symbol_type = symbol->GetType();
1184     switch (symbol_type) {
1185     case eSymbolTypeAny:
1186       return AddressClass::eUnknown;
1187     case eSymbolTypeAbsolute:
1188       return AddressClass::eUnknown;
1189 
1190     case eSymbolTypeCode:
1191     case eSymbolTypeTrampoline:
1192     case eSymbolTypeResolver:
1193       if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
1194         // For ARM we have a bit in the n_desc field of the symbol that tells
1195         // us ARM/Thumb which is bit 0x0008.
1196         if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB)
1197           return AddressClass::eCodeAlternateISA;
1198       }
1199       return AddressClass::eCode;
1200 
1201     case eSymbolTypeData:
1202       return AddressClass::eData;
1203     case eSymbolTypeRuntime:
1204       return AddressClass::eRuntime;
1205     case eSymbolTypeException:
1206       return AddressClass::eRuntime;
1207     case eSymbolTypeSourceFile:
1208       return AddressClass::eDebug;
1209     case eSymbolTypeHeaderFile:
1210       return AddressClass::eDebug;
1211     case eSymbolTypeObjectFile:
1212       return AddressClass::eDebug;
1213     case eSymbolTypeCommonBlock:
1214       return AddressClass::eDebug;
1215     case eSymbolTypeBlock:
1216       return AddressClass::eDebug;
1217     case eSymbolTypeLocal:
1218       return AddressClass::eData;
1219     case eSymbolTypeParam:
1220       return AddressClass::eData;
1221     case eSymbolTypeVariable:
1222       return AddressClass::eData;
1223     case eSymbolTypeVariableType:
1224       return AddressClass::eDebug;
1225     case eSymbolTypeLineEntry:
1226       return AddressClass::eDebug;
1227     case eSymbolTypeLineHeader:
1228       return AddressClass::eDebug;
1229     case eSymbolTypeScopeBegin:
1230       return AddressClass::eDebug;
1231     case eSymbolTypeScopeEnd:
1232       return AddressClass::eDebug;
1233     case eSymbolTypeAdditional:
1234       return AddressClass::eUnknown;
1235     case eSymbolTypeCompiler:
1236       return AddressClass::eDebug;
1237     case eSymbolTypeInstrumentation:
1238       return AddressClass::eDebug;
1239     case eSymbolTypeUndefined:
1240       return AddressClass::eUnknown;
1241     case eSymbolTypeObjCClass:
1242       return AddressClass::eRuntime;
1243     case eSymbolTypeObjCMetaClass:
1244       return AddressClass::eRuntime;
1245     case eSymbolTypeObjCIVar:
1246       return AddressClass::eRuntime;
1247     case eSymbolTypeReExported:
1248       return AddressClass::eRuntime;
1249     }
1250   }
1251   return AddressClass::eUnknown;
1252 }
1253 
1254 Symtab *ObjectFileMachO::GetSymtab() {
1255   ModuleSP module_sp(GetModule());
1256   if (module_sp) {
1257     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
1258     if (m_symtab_up == nullptr) {
1259       m_symtab_up = std::make_unique<Symtab>(this);
1260       std::lock_guard<std::recursive_mutex> symtab_guard(
1261           m_symtab_up->GetMutex());
1262       ParseSymtab();
1263       m_symtab_up->Finalize();
1264     }
1265   }
1266   return m_symtab_up.get();
1267 }
1268 
1269 bool ObjectFileMachO::IsStripped() {
1270   if (m_dysymtab.cmd == 0) {
1271     ModuleSP module_sp(GetModule());
1272     if (module_sp) {
1273       lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1274       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1275         const lldb::offset_t load_cmd_offset = offset;
1276 
1277         load_command lc;
1278         if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
1279           break;
1280         if (lc.cmd == LC_DYSYMTAB) {
1281           m_dysymtab.cmd = lc.cmd;
1282           m_dysymtab.cmdsize = lc.cmdsize;
1283           if (m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
1284                             (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2) ==
1285               nullptr) {
1286             // Clear m_dysymtab if we were unable to read all items from the
1287             // load command
1288             ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
1289           }
1290         }
1291         offset = load_cmd_offset + lc.cmdsize;
1292       }
1293     }
1294   }
1295   if (m_dysymtab.cmd)
1296     return m_dysymtab.nlocalsym <= 1;
1297   return false;
1298 }
1299 
1300 ObjectFileMachO::EncryptedFileRanges ObjectFileMachO::GetEncryptedFileRanges() {
1301   EncryptedFileRanges result;
1302   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1303 
1304   encryption_info_command encryption_cmd;
1305   for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1306     const lldb::offset_t load_cmd_offset = offset;
1307     if (m_data.GetU32(&offset, &encryption_cmd, 2) == nullptr)
1308       break;
1309 
1310     // LC_ENCRYPTION_INFO and LC_ENCRYPTION_INFO_64 have the same sizes for the
1311     // 3 fields we care about, so treat them the same.
1312     if (encryption_cmd.cmd == LC_ENCRYPTION_INFO ||
1313         encryption_cmd.cmd == LC_ENCRYPTION_INFO_64) {
1314       if (m_data.GetU32(&offset, &encryption_cmd.cryptoff, 3)) {
1315         if (encryption_cmd.cryptid != 0) {
1316           EncryptedFileRanges::Entry entry;
1317           entry.SetRangeBase(encryption_cmd.cryptoff);
1318           entry.SetByteSize(encryption_cmd.cryptsize);
1319           result.Append(entry);
1320         }
1321       }
1322     }
1323     offset = load_cmd_offset + encryption_cmd.cmdsize;
1324   }
1325 
1326   return result;
1327 }
1328 
1329 void ObjectFileMachO::SanitizeSegmentCommand(segment_command_64 &seg_cmd,
1330                                              uint32_t cmd_idx) {
1331   if (m_length == 0 || seg_cmd.filesize == 0)
1332     return;
1333 
1334   if ((m_header.flags & MH_DYLIB_IN_CACHE) && !IsInMemory()) {
1335     // In shared cache images, the load commands are relative to the
1336     // shared cache file, and not the specific image we are
1337     // examining. Let's fix this up so that it looks like a normal
1338     // image.
1339     if (strncmp(seg_cmd.segname, "__TEXT", sizeof(seg_cmd.segname)) == 0)
1340       m_text_address = seg_cmd.vmaddr;
1341     if (strncmp(seg_cmd.segname, "__LINKEDIT", sizeof(seg_cmd.segname)) == 0)
1342       m_linkedit_original_offset = seg_cmd.fileoff;
1343 
1344     seg_cmd.fileoff = seg_cmd.vmaddr - m_text_address;
1345   }
1346 
1347   if (seg_cmd.fileoff > m_length) {
1348     // We have a load command that says it extends past the end of the file.
1349     // This is likely a corrupt file.  We don't have any way to return an error
1350     // condition here (this method was likely invoked from something like
1351     // ObjectFile::GetSectionList()), so we just null out the section contents,
1352     // and dump a message to stdout.  The most common case here is core file
1353     // debugging with a truncated file.
1354     const char *lc_segment_name =
1355         seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT";
1356     GetModule()->ReportWarning(
1357         "load command %u %s has a fileoff (0x%" PRIx64
1358         ") that extends beyond the end of the file (0x%" PRIx64
1359         "), ignoring this section",
1360         cmd_idx, lc_segment_name, seg_cmd.fileoff, m_length);
1361 
1362     seg_cmd.fileoff = 0;
1363     seg_cmd.filesize = 0;
1364   }
1365 
1366   if (seg_cmd.fileoff + seg_cmd.filesize > m_length) {
1367     // We have a load command that says it extends past the end of the file.
1368     // This is likely a corrupt file.  We don't have any way to return an error
1369     // condition here (this method was likely invoked from something like
1370     // ObjectFile::GetSectionList()), so we just null out the section contents,
1371     // and dump a message to stdout.  The most common case here is core file
1372     // debugging with a truncated file.
1373     const char *lc_segment_name =
1374         seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT";
1375     GetModule()->ReportWarning(
1376         "load command %u %s has a fileoff + filesize (0x%" PRIx64
1377         ") that extends beyond the end of the file (0x%" PRIx64
1378         "), the segment will be truncated to match",
1379         cmd_idx, lc_segment_name, seg_cmd.fileoff + seg_cmd.filesize, m_length);
1380 
1381     // Truncate the length
1382     seg_cmd.filesize = m_length - seg_cmd.fileoff;
1383   }
1384 }
1385 
1386 static uint32_t GetSegmentPermissions(const segment_command_64 &seg_cmd) {
1387   uint32_t result = 0;
1388   if (seg_cmd.initprot & VM_PROT_READ)
1389     result |= ePermissionsReadable;
1390   if (seg_cmd.initprot & VM_PROT_WRITE)
1391     result |= ePermissionsWritable;
1392   if (seg_cmd.initprot & VM_PROT_EXECUTE)
1393     result |= ePermissionsExecutable;
1394   return result;
1395 }
1396 
1397 static lldb::SectionType GetSectionType(uint32_t flags,
1398                                         ConstString section_name) {
1399 
1400   if (flags & (S_ATTR_PURE_INSTRUCTIONS | S_ATTR_SOME_INSTRUCTIONS))
1401     return eSectionTypeCode;
1402 
1403   uint32_t mach_sect_type = flags & SECTION_TYPE;
1404   static ConstString g_sect_name_objc_data("__objc_data");
1405   static ConstString g_sect_name_objc_msgrefs("__objc_msgrefs");
1406   static ConstString g_sect_name_objc_selrefs("__objc_selrefs");
1407   static ConstString g_sect_name_objc_classrefs("__objc_classrefs");
1408   static ConstString g_sect_name_objc_superrefs("__objc_superrefs");
1409   static ConstString g_sect_name_objc_const("__objc_const");
1410   static ConstString g_sect_name_objc_classlist("__objc_classlist");
1411   static ConstString g_sect_name_cfstring("__cfstring");
1412 
1413   static ConstString g_sect_name_dwarf_debug_abbrev("__debug_abbrev");
1414   static ConstString g_sect_name_dwarf_debug_aranges("__debug_aranges");
1415   static ConstString g_sect_name_dwarf_debug_frame("__debug_frame");
1416   static ConstString g_sect_name_dwarf_debug_info("__debug_info");
1417   static ConstString g_sect_name_dwarf_debug_line("__debug_line");
1418   static ConstString g_sect_name_dwarf_debug_loc("__debug_loc");
1419   static ConstString g_sect_name_dwarf_debug_loclists("__debug_loclists");
1420   static ConstString g_sect_name_dwarf_debug_macinfo("__debug_macinfo");
1421   static ConstString g_sect_name_dwarf_debug_names("__debug_names");
1422   static ConstString g_sect_name_dwarf_debug_pubnames("__debug_pubnames");
1423   static ConstString g_sect_name_dwarf_debug_pubtypes("__debug_pubtypes");
1424   static ConstString g_sect_name_dwarf_debug_ranges("__debug_ranges");
1425   static ConstString g_sect_name_dwarf_debug_str("__debug_str");
1426   static ConstString g_sect_name_dwarf_debug_types("__debug_types");
1427   static ConstString g_sect_name_dwarf_apple_names("__apple_names");
1428   static ConstString g_sect_name_dwarf_apple_types("__apple_types");
1429   static ConstString g_sect_name_dwarf_apple_namespaces("__apple_namespac");
1430   static ConstString g_sect_name_dwarf_apple_objc("__apple_objc");
1431   static ConstString g_sect_name_eh_frame("__eh_frame");
1432   static ConstString g_sect_name_compact_unwind("__unwind_info");
1433   static ConstString g_sect_name_text("__text");
1434   static ConstString g_sect_name_data("__data");
1435   static ConstString g_sect_name_go_symtab("__gosymtab");
1436 
1437   if (section_name == g_sect_name_dwarf_debug_abbrev)
1438     return eSectionTypeDWARFDebugAbbrev;
1439   if (section_name == g_sect_name_dwarf_debug_aranges)
1440     return eSectionTypeDWARFDebugAranges;
1441   if (section_name == g_sect_name_dwarf_debug_frame)
1442     return eSectionTypeDWARFDebugFrame;
1443   if (section_name == g_sect_name_dwarf_debug_info)
1444     return eSectionTypeDWARFDebugInfo;
1445   if (section_name == g_sect_name_dwarf_debug_line)
1446     return eSectionTypeDWARFDebugLine;
1447   if (section_name == g_sect_name_dwarf_debug_loc)
1448     return eSectionTypeDWARFDebugLoc;
1449   if (section_name == g_sect_name_dwarf_debug_loclists)
1450     return eSectionTypeDWARFDebugLocLists;
1451   if (section_name == g_sect_name_dwarf_debug_macinfo)
1452     return eSectionTypeDWARFDebugMacInfo;
1453   if (section_name == g_sect_name_dwarf_debug_names)
1454     return eSectionTypeDWARFDebugNames;
1455   if (section_name == g_sect_name_dwarf_debug_pubnames)
1456     return eSectionTypeDWARFDebugPubNames;
1457   if (section_name == g_sect_name_dwarf_debug_pubtypes)
1458     return eSectionTypeDWARFDebugPubTypes;
1459   if (section_name == g_sect_name_dwarf_debug_ranges)
1460     return eSectionTypeDWARFDebugRanges;
1461   if (section_name == g_sect_name_dwarf_debug_str)
1462     return eSectionTypeDWARFDebugStr;
1463   if (section_name == g_sect_name_dwarf_debug_types)
1464     return eSectionTypeDWARFDebugTypes;
1465   if (section_name == g_sect_name_dwarf_apple_names)
1466     return eSectionTypeDWARFAppleNames;
1467   if (section_name == g_sect_name_dwarf_apple_types)
1468     return eSectionTypeDWARFAppleTypes;
1469   if (section_name == g_sect_name_dwarf_apple_namespaces)
1470     return eSectionTypeDWARFAppleNamespaces;
1471   if (section_name == g_sect_name_dwarf_apple_objc)
1472     return eSectionTypeDWARFAppleObjC;
1473   if (section_name == g_sect_name_objc_selrefs)
1474     return eSectionTypeDataCStringPointers;
1475   if (section_name == g_sect_name_objc_msgrefs)
1476     return eSectionTypeDataObjCMessageRefs;
1477   if (section_name == g_sect_name_eh_frame)
1478     return eSectionTypeEHFrame;
1479   if (section_name == g_sect_name_compact_unwind)
1480     return eSectionTypeCompactUnwind;
1481   if (section_name == g_sect_name_cfstring)
1482     return eSectionTypeDataObjCCFStrings;
1483   if (section_name == g_sect_name_go_symtab)
1484     return eSectionTypeGoSymtab;
1485   if (section_name == g_sect_name_objc_data ||
1486       section_name == g_sect_name_objc_classrefs ||
1487       section_name == g_sect_name_objc_superrefs ||
1488       section_name == g_sect_name_objc_const ||
1489       section_name == g_sect_name_objc_classlist) {
1490     return eSectionTypeDataPointers;
1491   }
1492 
1493   switch (mach_sect_type) {
1494   // TODO: categorize sections by other flags for regular sections
1495   case S_REGULAR:
1496     if (section_name == g_sect_name_text)
1497       return eSectionTypeCode;
1498     if (section_name == g_sect_name_data)
1499       return eSectionTypeData;
1500     return eSectionTypeOther;
1501   case S_ZEROFILL:
1502     return eSectionTypeZeroFill;
1503   case S_CSTRING_LITERALS: // section with only literal C strings
1504     return eSectionTypeDataCString;
1505   case S_4BYTE_LITERALS: // section with only 4 byte literals
1506     return eSectionTypeData4;
1507   case S_8BYTE_LITERALS: // section with only 8 byte literals
1508     return eSectionTypeData8;
1509   case S_LITERAL_POINTERS: // section with only pointers to literals
1510     return eSectionTypeDataPointers;
1511   case S_NON_LAZY_SYMBOL_POINTERS: // section with only non-lazy symbol pointers
1512     return eSectionTypeDataPointers;
1513   case S_LAZY_SYMBOL_POINTERS: // section with only lazy symbol pointers
1514     return eSectionTypeDataPointers;
1515   case S_SYMBOL_STUBS: // section with only symbol stubs, byte size of stub in
1516                        // the reserved2 field
1517     return eSectionTypeCode;
1518   case S_MOD_INIT_FUNC_POINTERS: // section with only function pointers for
1519                                  // initialization
1520     return eSectionTypeDataPointers;
1521   case S_MOD_TERM_FUNC_POINTERS: // section with only function pointers for
1522                                  // termination
1523     return eSectionTypeDataPointers;
1524   case S_COALESCED:
1525     return eSectionTypeOther;
1526   case S_GB_ZEROFILL:
1527     return eSectionTypeZeroFill;
1528   case S_INTERPOSING: // section with only pairs of function pointers for
1529                       // interposing
1530     return eSectionTypeCode;
1531   case S_16BYTE_LITERALS: // section with only 16 byte literals
1532     return eSectionTypeData16;
1533   case S_DTRACE_DOF:
1534     return eSectionTypeDebug;
1535   case S_LAZY_DYLIB_SYMBOL_POINTERS:
1536     return eSectionTypeDataPointers;
1537   default:
1538     return eSectionTypeOther;
1539   }
1540 }
1541 
1542 struct ObjectFileMachO::SegmentParsingContext {
1543   const EncryptedFileRanges EncryptedRanges;
1544   lldb_private::SectionList &UnifiedList;
1545   uint32_t NextSegmentIdx = 0;
1546   uint32_t NextSectionIdx = 0;
1547   bool FileAddressesChanged = false;
1548 
1549   SegmentParsingContext(EncryptedFileRanges EncryptedRanges,
1550                         lldb_private::SectionList &UnifiedList)
1551       : EncryptedRanges(std::move(EncryptedRanges)), UnifiedList(UnifiedList) {}
1552 };
1553 
1554 void ObjectFileMachO::ProcessSegmentCommand(const load_command &load_cmd_,
1555                                             lldb::offset_t offset,
1556                                             uint32_t cmd_idx,
1557                                             SegmentParsingContext &context) {
1558   segment_command_64 load_cmd;
1559   memcpy(&load_cmd, &load_cmd_, sizeof(load_cmd_));
1560 
1561   if (!m_data.GetU8(&offset, (uint8_t *)load_cmd.segname, 16))
1562     return;
1563 
1564   ModuleSP module_sp = GetModule();
1565   const bool is_core = GetType() == eTypeCoreFile;
1566   const bool is_dsym = (m_header.filetype == MH_DSYM);
1567   bool add_section = true;
1568   bool add_to_unified = true;
1569   ConstString const_segname(
1570       load_cmd.segname, strnlen(load_cmd.segname, sizeof(load_cmd.segname)));
1571 
1572   SectionSP unified_section_sp(
1573       context.UnifiedList.FindSectionByName(const_segname));
1574   if (is_dsym && unified_section_sp) {
1575     if (const_segname == GetSegmentNameLINKEDIT()) {
1576       // We need to keep the __LINKEDIT segment private to this object file
1577       // only
1578       add_to_unified = false;
1579     } else {
1580       // This is the dSYM file and this section has already been created by the
1581       // object file, no need to create it.
1582       add_section = false;
1583     }
1584   }
1585   load_cmd.vmaddr = m_data.GetAddress(&offset);
1586   load_cmd.vmsize = m_data.GetAddress(&offset);
1587   load_cmd.fileoff = m_data.GetAddress(&offset);
1588   load_cmd.filesize = m_data.GetAddress(&offset);
1589   if (!m_data.GetU32(&offset, &load_cmd.maxprot, 4))
1590     return;
1591 
1592   SanitizeSegmentCommand(load_cmd, cmd_idx);
1593 
1594   const uint32_t segment_permissions = GetSegmentPermissions(load_cmd);
1595   const bool segment_is_encrypted =
1596       (load_cmd.flags & SG_PROTECTED_VERSION_1) != 0;
1597 
1598   // Keep a list of mach segments around in case we need to get at data that
1599   // isn't stored in the abstracted Sections.
1600   m_mach_segments.push_back(load_cmd);
1601 
1602   // Use a segment ID of the segment index shifted left by 8 so they never
1603   // conflict with any of the sections.
1604   SectionSP segment_sp;
1605   if (add_section && (const_segname || is_core)) {
1606     segment_sp = std::make_shared<Section>(
1607         module_sp, // Module to which this section belongs
1608         this,      // Object file to which this sections belongs
1609         ++context.NextSegmentIdx
1610             << 8, // Section ID is the 1 based segment index
1611         // shifted right by 8 bits as not to collide with any of the 256
1612         // section IDs that are possible
1613         const_segname,         // Name of this section
1614         eSectionTypeContainer, // This section is a container of other
1615         // sections.
1616         load_cmd.vmaddr, // File VM address == addresses as they are
1617         // found in the object file
1618         load_cmd.vmsize,  // VM size in bytes of this section
1619         load_cmd.fileoff, // Offset to the data for this section in
1620         // the file
1621         load_cmd.filesize, // Size in bytes of this section as found
1622         // in the file
1623         0,               // Segments have no alignment information
1624         load_cmd.flags); // Flags for this section
1625 
1626     segment_sp->SetIsEncrypted(segment_is_encrypted);
1627     m_sections_up->AddSection(segment_sp);
1628     segment_sp->SetPermissions(segment_permissions);
1629     if (add_to_unified)
1630       context.UnifiedList.AddSection(segment_sp);
1631   } else if (unified_section_sp) {
1632     if (is_dsym && unified_section_sp->GetFileAddress() != load_cmd.vmaddr) {
1633       // Check to see if the module was read from memory?
1634       if (module_sp->GetObjectFile()->IsInMemory()) {
1635         // We have a module that is in memory and needs to have its file
1636         // address adjusted. We need to do this because when we load a file
1637         // from memory, its addresses will be slid already, yet the addresses
1638         // in the new symbol file will still be unslid.  Since everything is
1639         // stored as section offset, this shouldn't cause any problems.
1640 
1641         // Make sure we've parsed the symbol table from the ObjectFile before
1642         // we go around changing its Sections.
1643         module_sp->GetObjectFile()->GetSymtab();
1644         // eh_frame would present the same problems but we parse that on a per-
1645         // function basis as-needed so it's more difficult to remove its use of
1646         // the Sections.  Realistically, the environments where this code path
1647         // will be taken will not have eh_frame sections.
1648 
1649         unified_section_sp->SetFileAddress(load_cmd.vmaddr);
1650 
1651         // Notify the module that the section addresses have been changed once
1652         // we're done so any file-address caches can be updated.
1653         context.FileAddressesChanged = true;
1654       }
1655     }
1656     m_sections_up->AddSection(unified_section_sp);
1657   }
1658 
1659   struct section_64 sect64;
1660   ::memset(&sect64, 0, sizeof(sect64));
1661   // Push a section into our mach sections for the section at index zero
1662   // (NO_SECT) if we don't have any mach sections yet...
1663   if (m_mach_sections.empty())
1664     m_mach_sections.push_back(sect64);
1665   uint32_t segment_sect_idx;
1666   const lldb::user_id_t first_segment_sectID = context.NextSectionIdx + 1;
1667 
1668   const uint32_t num_u32s = load_cmd.cmd == LC_SEGMENT ? 7 : 8;
1669   for (segment_sect_idx = 0; segment_sect_idx < load_cmd.nsects;
1670        ++segment_sect_idx) {
1671     if (m_data.GetU8(&offset, (uint8_t *)sect64.sectname,
1672                      sizeof(sect64.sectname)) == nullptr)
1673       break;
1674     if (m_data.GetU8(&offset, (uint8_t *)sect64.segname,
1675                      sizeof(sect64.segname)) == nullptr)
1676       break;
1677     sect64.addr = m_data.GetAddress(&offset);
1678     sect64.size = m_data.GetAddress(&offset);
1679 
1680     if (m_data.GetU32(&offset, &sect64.offset, num_u32s) == nullptr)
1681       break;
1682 
1683     if ((m_header.flags & MH_DYLIB_IN_CACHE) && !IsInMemory()) {
1684       sect64.offset = sect64.addr - m_text_address;
1685     }
1686 
1687     // Keep a list of mach sections around in case we need to get at data that
1688     // isn't stored in the abstracted Sections.
1689     m_mach_sections.push_back(sect64);
1690 
1691     if (add_section) {
1692       ConstString section_name(
1693           sect64.sectname, strnlen(sect64.sectname, sizeof(sect64.sectname)));
1694       if (!const_segname) {
1695         // We have a segment with no name so we need to conjure up segments
1696         // that correspond to the section's segname if there isn't already such
1697         // a section. If there is such a section, we resize the section so that
1698         // it spans all sections.  We also mark these sections as fake so
1699         // address matches don't hit if they land in the gaps between the child
1700         // sections.
1701         const_segname.SetTrimmedCStringWithLength(sect64.segname,
1702                                                   sizeof(sect64.segname));
1703         segment_sp = context.UnifiedList.FindSectionByName(const_segname);
1704         if (segment_sp.get()) {
1705           Section *segment = segment_sp.get();
1706           // Grow the section size as needed.
1707           const lldb::addr_t sect64_min_addr = sect64.addr;
1708           const lldb::addr_t sect64_max_addr = sect64_min_addr + sect64.size;
1709           const lldb::addr_t curr_seg_byte_size = segment->GetByteSize();
1710           const lldb::addr_t curr_seg_min_addr = segment->GetFileAddress();
1711           const lldb::addr_t curr_seg_max_addr =
1712               curr_seg_min_addr + curr_seg_byte_size;
1713           if (sect64_min_addr >= curr_seg_min_addr) {
1714             const lldb::addr_t new_seg_byte_size =
1715                 sect64_max_addr - curr_seg_min_addr;
1716             // Only grow the section size if needed
1717             if (new_seg_byte_size > curr_seg_byte_size)
1718               segment->SetByteSize(new_seg_byte_size);
1719           } else {
1720             // We need to change the base address of the segment and adjust the
1721             // child section offsets for all existing children.
1722             const lldb::addr_t slide_amount =
1723                 sect64_min_addr - curr_seg_min_addr;
1724             segment->Slide(slide_amount, false);
1725             segment->GetChildren().Slide(-slide_amount, false);
1726             segment->SetByteSize(curr_seg_max_addr - sect64_min_addr);
1727           }
1728 
1729           // Grow the section size as needed.
1730           if (sect64.offset) {
1731             const lldb::addr_t segment_min_file_offset =
1732                 segment->GetFileOffset();
1733             const lldb::addr_t segment_max_file_offset =
1734                 segment_min_file_offset + segment->GetFileSize();
1735 
1736             const lldb::addr_t section_min_file_offset = sect64.offset;
1737             const lldb::addr_t section_max_file_offset =
1738                 section_min_file_offset + sect64.size;
1739             const lldb::addr_t new_file_offset =
1740                 std::min(section_min_file_offset, segment_min_file_offset);
1741             const lldb::addr_t new_file_size =
1742                 std::max(section_max_file_offset, segment_max_file_offset) -
1743                 new_file_offset;
1744             segment->SetFileOffset(new_file_offset);
1745             segment->SetFileSize(new_file_size);
1746           }
1747         } else {
1748           // Create a fake section for the section's named segment
1749           segment_sp = std::make_shared<Section>(
1750               segment_sp, // Parent section
1751               module_sp,  // Module to which this section belongs
1752               this,       // Object file to which this section belongs
1753               ++context.NextSegmentIdx
1754                   << 8, // Section ID is the 1 based segment index
1755               // shifted right by 8 bits as not to
1756               // collide with any of the 256 section IDs
1757               // that are possible
1758               const_segname,         // Name of this section
1759               eSectionTypeContainer, // This section is a container of
1760               // other sections.
1761               sect64.addr, // File VM address == addresses as they are
1762               // found in the object file
1763               sect64.size,   // VM size in bytes of this section
1764               sect64.offset, // Offset to the data for this section in
1765               // the file
1766               sect64.offset ? sect64.size : 0, // Size in bytes of
1767               // this section as
1768               // found in the file
1769               sect64.align,
1770               load_cmd.flags); // Flags for this section
1771           segment_sp->SetIsFake(true);
1772           segment_sp->SetPermissions(segment_permissions);
1773           m_sections_up->AddSection(segment_sp);
1774           if (add_to_unified)
1775             context.UnifiedList.AddSection(segment_sp);
1776           segment_sp->SetIsEncrypted(segment_is_encrypted);
1777         }
1778       }
1779       assert(segment_sp.get());
1780 
1781       lldb::SectionType sect_type = GetSectionType(sect64.flags, section_name);
1782 
1783       SectionSP section_sp(new Section(
1784           segment_sp, module_sp, this, ++context.NextSectionIdx, section_name,
1785           sect_type, sect64.addr - segment_sp->GetFileAddress(), sect64.size,
1786           sect64.offset, sect64.offset == 0 ? 0 : sect64.size, sect64.align,
1787           sect64.flags));
1788       // Set the section to be encrypted to match the segment
1789 
1790       bool section_is_encrypted = false;
1791       if (!segment_is_encrypted && load_cmd.filesize != 0)
1792         section_is_encrypted = context.EncryptedRanges.FindEntryThatContains(
1793                                    sect64.offset) != nullptr;
1794 
1795       section_sp->SetIsEncrypted(segment_is_encrypted || section_is_encrypted);
1796       section_sp->SetPermissions(segment_permissions);
1797       segment_sp->GetChildren().AddSection(section_sp);
1798 
1799       if (segment_sp->IsFake()) {
1800         segment_sp.reset();
1801         const_segname.Clear();
1802       }
1803     }
1804   }
1805   if (segment_sp && is_dsym) {
1806     if (first_segment_sectID <= context.NextSectionIdx) {
1807       lldb::user_id_t sect_uid;
1808       for (sect_uid = first_segment_sectID; sect_uid <= context.NextSectionIdx;
1809            ++sect_uid) {
1810         SectionSP curr_section_sp(
1811             segment_sp->GetChildren().FindSectionByID(sect_uid));
1812         SectionSP next_section_sp;
1813         if (sect_uid + 1 <= context.NextSectionIdx)
1814           next_section_sp =
1815               segment_sp->GetChildren().FindSectionByID(sect_uid + 1);
1816 
1817         if (curr_section_sp.get()) {
1818           if (curr_section_sp->GetByteSize() == 0) {
1819             if (next_section_sp.get() != nullptr)
1820               curr_section_sp->SetByteSize(next_section_sp->GetFileAddress() -
1821                                            curr_section_sp->GetFileAddress());
1822             else
1823               curr_section_sp->SetByteSize(load_cmd.vmsize);
1824           }
1825         }
1826       }
1827     }
1828   }
1829 }
1830 
1831 void ObjectFileMachO::ProcessDysymtabCommand(const load_command &load_cmd,
1832                                              lldb::offset_t offset) {
1833   m_dysymtab.cmd = load_cmd.cmd;
1834   m_dysymtab.cmdsize = load_cmd.cmdsize;
1835   m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
1836                 (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2);
1837 }
1838 
1839 void ObjectFileMachO::CreateSections(SectionList &unified_section_list) {
1840   if (m_sections_up)
1841     return;
1842 
1843   m_sections_up = std::make_unique<SectionList>();
1844 
1845   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1846   // bool dump_sections = false;
1847   ModuleSP module_sp(GetModule());
1848 
1849   offset = MachHeaderSizeFromMagic(m_header.magic);
1850 
1851   SegmentParsingContext context(GetEncryptedFileRanges(), unified_section_list);
1852   struct load_command load_cmd;
1853   for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1854     const lldb::offset_t load_cmd_offset = offset;
1855     if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
1856       break;
1857 
1858     if (load_cmd.cmd == LC_SEGMENT || load_cmd.cmd == LC_SEGMENT_64)
1859       ProcessSegmentCommand(load_cmd, offset, i, context);
1860     else if (load_cmd.cmd == LC_DYSYMTAB)
1861       ProcessDysymtabCommand(load_cmd, offset);
1862 
1863     offset = load_cmd_offset + load_cmd.cmdsize;
1864   }
1865 
1866   if (context.FileAddressesChanged && module_sp)
1867     module_sp->SectionFileAddressesChanged();
1868 }
1869 
1870 class MachSymtabSectionInfo {
1871 public:
1872   MachSymtabSectionInfo(SectionList *section_list)
1873       : m_section_list(section_list), m_section_infos() {
1874     // Get the number of sections down to a depth of 1 to include all segments
1875     // and their sections, but no other sections that may be added for debug
1876     // map or
1877     m_section_infos.resize(section_list->GetNumSections(1));
1878   }
1879 
1880   SectionSP GetSection(uint8_t n_sect, addr_t file_addr) {
1881     if (n_sect == 0)
1882       return SectionSP();
1883     if (n_sect < m_section_infos.size()) {
1884       if (!m_section_infos[n_sect].section_sp) {
1885         SectionSP section_sp(m_section_list->FindSectionByID(n_sect));
1886         m_section_infos[n_sect].section_sp = section_sp;
1887         if (section_sp) {
1888           m_section_infos[n_sect].vm_range.SetBaseAddress(
1889               section_sp->GetFileAddress());
1890           m_section_infos[n_sect].vm_range.SetByteSize(
1891               section_sp->GetByteSize());
1892         } else {
1893           std::string filename = "<unknown>";
1894           SectionSP first_section_sp(m_section_list->GetSectionAtIndex(0));
1895           if (first_section_sp)
1896             filename = first_section_sp->GetObjectFile()->GetFileSpec().GetPath();
1897 
1898           Host::SystemLog(Host::eSystemLogError,
1899                           "error: unable to find section %d for a symbol in "
1900                           "%s, corrupt file?\n",
1901                           n_sect, filename.c_str());
1902         }
1903       }
1904       if (m_section_infos[n_sect].vm_range.Contains(file_addr)) {
1905         // Symbol is in section.
1906         return m_section_infos[n_sect].section_sp;
1907       } else if (m_section_infos[n_sect].vm_range.GetByteSize() == 0 &&
1908                  m_section_infos[n_sect].vm_range.GetBaseAddress() ==
1909                      file_addr) {
1910         // Symbol is in section with zero size, but has the same start address
1911         // as the section. This can happen with linker symbols (symbols that
1912         // start with the letter 'l' or 'L'.
1913         return m_section_infos[n_sect].section_sp;
1914       }
1915     }
1916     return m_section_list->FindSectionContainingFileAddress(file_addr);
1917   }
1918 
1919 protected:
1920   struct SectionInfo {
1921     SectionInfo() : vm_range(), section_sp() {}
1922 
1923     VMRange vm_range;
1924     SectionSP section_sp;
1925   };
1926   SectionList *m_section_list;
1927   std::vector<SectionInfo> m_section_infos;
1928 };
1929 
1930 #define TRIE_SYMBOL_IS_THUMB (1ULL << 63)
1931 struct TrieEntry {
1932   void Dump() const {
1933     printf("0x%16.16llx 0x%16.16llx 0x%16.16llx \"%s\"",
1934            static_cast<unsigned long long>(address),
1935            static_cast<unsigned long long>(flags),
1936            static_cast<unsigned long long>(other), name.GetCString());
1937     if (import_name)
1938       printf(" -> \"%s\"\n", import_name.GetCString());
1939     else
1940       printf("\n");
1941   }
1942   ConstString name;
1943   uint64_t address = LLDB_INVALID_ADDRESS;
1944   uint64_t flags =
1945       0; // EXPORT_SYMBOL_FLAGS_REEXPORT, EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER,
1946          // TRIE_SYMBOL_IS_THUMB
1947   uint64_t other = 0;
1948   ConstString import_name;
1949 };
1950 
1951 struct TrieEntryWithOffset {
1952   lldb::offset_t nodeOffset;
1953   TrieEntry entry;
1954 
1955   TrieEntryWithOffset(lldb::offset_t offset) : nodeOffset(offset), entry() {}
1956 
1957   void Dump(uint32_t idx) const {
1958     printf("[%3u] 0x%16.16llx: ", idx,
1959            static_cast<unsigned long long>(nodeOffset));
1960     entry.Dump();
1961   }
1962 
1963   bool operator<(const TrieEntryWithOffset &other) const {
1964     return (nodeOffset < other.nodeOffset);
1965   }
1966 };
1967 
1968 static bool ParseTrieEntries(DataExtractor &data, lldb::offset_t offset,
1969                              const bool is_arm, addr_t text_seg_base_addr,
1970                              std::vector<llvm::StringRef> &nameSlices,
1971                              std::set<lldb::addr_t> &resolver_addresses,
1972                              std::vector<TrieEntryWithOffset> &reexports,
1973                              std::vector<TrieEntryWithOffset> &ext_symbols) {
1974   if (!data.ValidOffset(offset))
1975     return true;
1976 
1977   // Terminal node -- end of a branch, possibly add this to
1978   // the symbol table or resolver table.
1979   const uint64_t terminalSize = data.GetULEB128(&offset);
1980   lldb::offset_t children_offset = offset + terminalSize;
1981   if (terminalSize != 0) {
1982     TrieEntryWithOffset e(offset);
1983     e.entry.flags = data.GetULEB128(&offset);
1984     const char *import_name = nullptr;
1985     if (e.entry.flags & EXPORT_SYMBOL_FLAGS_REEXPORT) {
1986       e.entry.address = 0;
1987       e.entry.other = data.GetULEB128(&offset); // dylib ordinal
1988       import_name = data.GetCStr(&offset);
1989     } else {
1990       e.entry.address = data.GetULEB128(&offset);
1991       if (text_seg_base_addr != LLDB_INVALID_ADDRESS)
1992         e.entry.address += text_seg_base_addr;
1993       if (e.entry.flags & EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER) {
1994         e.entry.other = data.GetULEB128(&offset);
1995         uint64_t resolver_addr = e.entry.other;
1996         if (text_seg_base_addr != LLDB_INVALID_ADDRESS)
1997           resolver_addr += text_seg_base_addr;
1998         if (is_arm)
1999           resolver_addr &= THUMB_ADDRESS_BIT_MASK;
2000         resolver_addresses.insert(resolver_addr);
2001       } else
2002         e.entry.other = 0;
2003     }
2004     bool add_this_entry = false;
2005     if (Flags(e.entry.flags).Test(EXPORT_SYMBOL_FLAGS_REEXPORT) &&
2006         import_name && import_name[0]) {
2007       // add symbols that are reexport symbols with a valid import name.
2008       add_this_entry = true;
2009     } else if (e.entry.flags == 0 &&
2010                (import_name == nullptr || import_name[0] == '\0')) {
2011       // add externally visible symbols, in case the nlist record has
2012       // been stripped/omitted.
2013       add_this_entry = true;
2014     }
2015     if (add_this_entry) {
2016       std::string name;
2017       if (!nameSlices.empty()) {
2018         for (auto name_slice : nameSlices)
2019           name.append(name_slice.data(), name_slice.size());
2020       }
2021       if (name.size() > 1) {
2022         // Skip the leading '_'
2023         e.entry.name.SetCStringWithLength(name.c_str() + 1, name.size() - 1);
2024       }
2025       if (import_name) {
2026         // Skip the leading '_'
2027         e.entry.import_name.SetCString(import_name + 1);
2028       }
2029       if (Flags(e.entry.flags).Test(EXPORT_SYMBOL_FLAGS_REEXPORT)) {
2030         reexports.push_back(e);
2031       } else {
2032         if (is_arm && (e.entry.address & 1)) {
2033           e.entry.flags |= TRIE_SYMBOL_IS_THUMB;
2034           e.entry.address &= THUMB_ADDRESS_BIT_MASK;
2035         }
2036         ext_symbols.push_back(e);
2037       }
2038     }
2039   }
2040 
2041   const uint8_t childrenCount = data.GetU8(&children_offset);
2042   for (uint8_t i = 0; i < childrenCount; ++i) {
2043     const char *cstr = data.GetCStr(&children_offset);
2044     if (cstr)
2045       nameSlices.push_back(llvm::StringRef(cstr));
2046     else
2047       return false; // Corrupt data
2048     lldb::offset_t childNodeOffset = data.GetULEB128(&children_offset);
2049     if (childNodeOffset) {
2050       if (!ParseTrieEntries(data, childNodeOffset, is_arm, text_seg_base_addr,
2051                             nameSlices, resolver_addresses, reexports,
2052                             ext_symbols)) {
2053         return false;
2054       }
2055     }
2056     nameSlices.pop_back();
2057   }
2058   return true;
2059 }
2060 
2061 static SymbolType GetSymbolType(const char *&symbol_name,
2062                                 bool &demangled_is_synthesized,
2063                                 const SectionSP &text_section_sp,
2064                                 const SectionSP &data_section_sp,
2065                                 const SectionSP &data_dirty_section_sp,
2066                                 const SectionSP &data_const_section_sp,
2067                                 const SectionSP &symbol_section) {
2068   SymbolType type = eSymbolTypeInvalid;
2069 
2070   const char *symbol_sect_name = symbol_section->GetName().AsCString();
2071   if (symbol_section->IsDescendant(text_section_sp.get())) {
2072     if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS |
2073                                 S_ATTR_SELF_MODIFYING_CODE |
2074                                 S_ATTR_SOME_INSTRUCTIONS))
2075       type = eSymbolTypeData;
2076     else
2077       type = eSymbolTypeCode;
2078   } else if (symbol_section->IsDescendant(data_section_sp.get()) ||
2079              symbol_section->IsDescendant(data_dirty_section_sp.get()) ||
2080              symbol_section->IsDescendant(data_const_section_sp.get())) {
2081     if (symbol_sect_name &&
2082         ::strstr(symbol_sect_name, "__objc") == symbol_sect_name) {
2083       type = eSymbolTypeRuntime;
2084 
2085       if (symbol_name) {
2086         llvm::StringRef symbol_name_ref(symbol_name);
2087         if (symbol_name_ref.startswith("OBJC_")) {
2088           static const llvm::StringRef g_objc_v2_prefix_class("OBJC_CLASS_$_");
2089           static const llvm::StringRef g_objc_v2_prefix_metaclass(
2090               "OBJC_METACLASS_$_");
2091           static const llvm::StringRef g_objc_v2_prefix_ivar("OBJC_IVAR_$_");
2092           if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) {
2093             symbol_name = symbol_name + g_objc_v2_prefix_class.size();
2094             type = eSymbolTypeObjCClass;
2095             demangled_is_synthesized = true;
2096           } else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) {
2097             symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size();
2098             type = eSymbolTypeObjCMetaClass;
2099             demangled_is_synthesized = true;
2100           } else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) {
2101             symbol_name = symbol_name + g_objc_v2_prefix_ivar.size();
2102             type = eSymbolTypeObjCIVar;
2103             demangled_is_synthesized = true;
2104           }
2105         }
2106       }
2107     } else if (symbol_sect_name &&
2108                ::strstr(symbol_sect_name, "__gcc_except_tab") ==
2109                    symbol_sect_name) {
2110       type = eSymbolTypeException;
2111     } else {
2112       type = eSymbolTypeData;
2113     }
2114   } else if (symbol_sect_name &&
2115              ::strstr(symbol_sect_name, "__IMPORT") == symbol_sect_name) {
2116     type = eSymbolTypeTrampoline;
2117   }
2118   return type;
2119 }
2120 
2121 // Read the UUID out of a dyld_shared_cache file on-disk.
2122 UUID ObjectFileMachO::GetSharedCacheUUID(FileSpec dyld_shared_cache,
2123                                          const ByteOrder byte_order,
2124                                          const uint32_t addr_byte_size) {
2125   UUID dsc_uuid;
2126   DataBufferSP DscData = MapFileData(
2127       dyld_shared_cache, sizeof(struct lldb_copy_dyld_cache_header_v1), 0);
2128   if (!DscData)
2129     return dsc_uuid;
2130   DataExtractor dsc_header_data(DscData, byte_order, addr_byte_size);
2131 
2132   char version_str[7];
2133   lldb::offset_t offset = 0;
2134   memcpy(version_str, dsc_header_data.GetData(&offset, 6), 6);
2135   version_str[6] = '\0';
2136   if (strcmp(version_str, "dyld_v") == 0) {
2137     offset = offsetof(struct lldb_copy_dyld_cache_header_v1, uuid);
2138     dsc_uuid = UUID::fromOptionalData(
2139         dsc_header_data.GetData(&offset, sizeof(uuid_t)), sizeof(uuid_t));
2140   }
2141   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS));
2142   if (log && dsc_uuid.IsValid()) {
2143     LLDB_LOGF(log, "Shared cache %s has UUID %s",
2144               dyld_shared_cache.GetPath().c_str(),
2145               dsc_uuid.GetAsString().c_str());
2146   }
2147   return dsc_uuid;
2148 }
2149 
2150 static llvm::Optional<struct nlist_64>
2151 ParseNList(DataExtractor &nlist_data, lldb::offset_t &nlist_data_offset,
2152            size_t nlist_byte_size) {
2153   struct nlist_64 nlist;
2154   if (!nlist_data.ValidOffsetForDataOfSize(nlist_data_offset, nlist_byte_size))
2155     return {};
2156   nlist.n_strx = nlist_data.GetU32_unchecked(&nlist_data_offset);
2157   nlist.n_type = nlist_data.GetU8_unchecked(&nlist_data_offset);
2158   nlist.n_sect = nlist_data.GetU8_unchecked(&nlist_data_offset);
2159   nlist.n_desc = nlist_data.GetU16_unchecked(&nlist_data_offset);
2160   nlist.n_value = nlist_data.GetAddress_unchecked(&nlist_data_offset);
2161   return nlist;
2162 }
2163 
2164 enum { DebugSymbols = true, NonDebugSymbols = false };
2165 
2166 size_t ObjectFileMachO::ParseSymtab() {
2167   LLDB_SCOPED_TIMERF("ObjectFileMachO::ParseSymtab () module = %s",
2168                      m_file.GetFilename().AsCString(""));
2169   ModuleSP module_sp(GetModule());
2170   if (!module_sp)
2171     return 0;
2172 
2173   Progress progress(llvm::formatv("Parsing symbol table for {0}",
2174                                   m_file.GetFilename().AsCString("<Unknown>")));
2175 
2176   struct symtab_command symtab_load_command = {0, 0, 0, 0, 0, 0};
2177   struct linkedit_data_command function_starts_load_command = {0, 0, 0, 0};
2178   struct dyld_info_command dyld_info = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
2179   // The data element of type bool indicates that this entry is thumb
2180   // code.
2181   typedef AddressDataArray<lldb::addr_t, bool, 100> FunctionStarts;
2182 
2183   // Record the address of every function/data that we add to the symtab.
2184   // We add symbols to the table in the order of most information (nlist
2185   // records) to least (function starts), and avoid duplicating symbols
2186   // via this set.
2187   llvm::DenseSet<addr_t> symbols_added;
2188 
2189   // We are using a llvm::DenseSet for "symbols_added" so we must be sure we
2190   // do not add the tombstone or empty keys to the set.
2191   auto add_symbol_addr = [&symbols_added](lldb::addr_t file_addr) {
2192     // Don't add the tombstone or empty keys.
2193     if (file_addr == UINT64_MAX || file_addr == UINT64_MAX - 1)
2194       return;
2195     symbols_added.insert(file_addr);
2196   };
2197   FunctionStarts function_starts;
2198   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
2199   uint32_t i;
2200   FileSpecList dylib_files;
2201   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS));
2202   llvm::StringRef g_objc_v2_prefix_class("_OBJC_CLASS_$_");
2203   llvm::StringRef g_objc_v2_prefix_metaclass("_OBJC_METACLASS_$_");
2204   llvm::StringRef g_objc_v2_prefix_ivar("_OBJC_IVAR_$_");
2205 
2206   for (i = 0; i < m_header.ncmds; ++i) {
2207     const lldb::offset_t cmd_offset = offset;
2208     // Read in the load command and load command size
2209     struct load_command lc;
2210     if (m_data.GetU32(&offset, &lc, 2) == nullptr)
2211       break;
2212     // Watch for the symbol table load command
2213     switch (lc.cmd) {
2214     case LC_SYMTAB:
2215       symtab_load_command.cmd = lc.cmd;
2216       symtab_load_command.cmdsize = lc.cmdsize;
2217       // Read in the rest of the symtab load command
2218       if (m_data.GetU32(&offset, &symtab_load_command.symoff, 4) ==
2219           nullptr) // fill in symoff, nsyms, stroff, strsize fields
2220         return 0;
2221       break;
2222 
2223     case LC_DYLD_INFO:
2224     case LC_DYLD_INFO_ONLY:
2225       if (m_data.GetU32(&offset, &dyld_info.rebase_off, 10)) {
2226         dyld_info.cmd = lc.cmd;
2227         dyld_info.cmdsize = lc.cmdsize;
2228       } else {
2229         memset(&dyld_info, 0, sizeof(dyld_info));
2230       }
2231       break;
2232 
2233     case LC_LOAD_DYLIB:
2234     case LC_LOAD_WEAK_DYLIB:
2235     case LC_REEXPORT_DYLIB:
2236     case LC_LOADFVMLIB:
2237     case LC_LOAD_UPWARD_DYLIB: {
2238       uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
2239       const char *path = m_data.PeekCStr(name_offset);
2240       if (path) {
2241         FileSpec file_spec(path);
2242         // Strip the path if there is @rpath, @executable, etc so we just use
2243         // the basename
2244         if (path[0] == '@')
2245           file_spec.GetDirectory().Clear();
2246 
2247         if (lc.cmd == LC_REEXPORT_DYLIB) {
2248           m_reexported_dylibs.AppendIfUnique(file_spec);
2249         }
2250 
2251         dylib_files.Append(file_spec);
2252       }
2253     } break;
2254 
2255     case LC_FUNCTION_STARTS:
2256       function_starts_load_command.cmd = lc.cmd;
2257       function_starts_load_command.cmdsize = lc.cmdsize;
2258       if (m_data.GetU32(&offset, &function_starts_load_command.dataoff, 2) ==
2259           nullptr) // fill in symoff, nsyms, stroff, strsize fields
2260         memset(&function_starts_load_command, 0,
2261                sizeof(function_starts_load_command));
2262       break;
2263 
2264     default:
2265       break;
2266     }
2267     offset = cmd_offset + lc.cmdsize;
2268   }
2269 
2270   if (!symtab_load_command.cmd)
2271     return 0;
2272 
2273   Symtab *symtab = m_symtab_up.get();
2274   SectionList *section_list = GetSectionList();
2275   if (section_list == nullptr)
2276     return 0;
2277 
2278   const uint32_t addr_byte_size = m_data.GetAddressByteSize();
2279   const ByteOrder byte_order = m_data.GetByteOrder();
2280   bool bit_width_32 = addr_byte_size == 4;
2281   const size_t nlist_byte_size =
2282       bit_width_32 ? sizeof(struct nlist) : sizeof(struct nlist_64);
2283 
2284   DataExtractor nlist_data(nullptr, 0, byte_order, addr_byte_size);
2285   DataExtractor strtab_data(nullptr, 0, byte_order, addr_byte_size);
2286   DataExtractor function_starts_data(nullptr, 0, byte_order, addr_byte_size);
2287   DataExtractor indirect_symbol_index_data(nullptr, 0, byte_order,
2288                                            addr_byte_size);
2289   DataExtractor dyld_trie_data(nullptr, 0, byte_order, addr_byte_size);
2290 
2291   const addr_t nlist_data_byte_size =
2292       symtab_load_command.nsyms * nlist_byte_size;
2293   const addr_t strtab_data_byte_size = symtab_load_command.strsize;
2294   addr_t strtab_addr = LLDB_INVALID_ADDRESS;
2295 
2296   ProcessSP process_sp(m_process_wp.lock());
2297   Process *process = process_sp.get();
2298 
2299   uint32_t memory_module_load_level = eMemoryModuleLoadLevelComplete;
2300   bool is_shared_cache_image = m_header.flags & MH_DYLIB_IN_CACHE;
2301   bool is_local_shared_cache_image = is_shared_cache_image && !IsInMemory();
2302   SectionSP linkedit_section_sp(
2303       section_list->FindSectionByName(GetSegmentNameLINKEDIT()));
2304 
2305   if (process && m_header.filetype != llvm::MachO::MH_OBJECT &&
2306       !is_local_shared_cache_image) {
2307     Target &target = process->GetTarget();
2308 
2309     memory_module_load_level = target.GetMemoryModuleLoadLevel();
2310 
2311     // Reading mach file from memory in a process or core file...
2312 
2313     if (linkedit_section_sp) {
2314       addr_t linkedit_load_addr =
2315           linkedit_section_sp->GetLoadBaseAddress(&target);
2316       if (linkedit_load_addr == LLDB_INVALID_ADDRESS) {
2317         // We might be trying to access the symbol table before the
2318         // __LINKEDIT's load address has been set in the target. We can't
2319         // fail to read the symbol table, so calculate the right address
2320         // manually
2321         linkedit_load_addr = CalculateSectionLoadAddressForMemoryImage(
2322             m_memory_addr, GetMachHeaderSection(), linkedit_section_sp.get());
2323       }
2324 
2325       const addr_t linkedit_file_offset = linkedit_section_sp->GetFileOffset();
2326       const addr_t symoff_addr = linkedit_load_addr +
2327                                  symtab_load_command.symoff -
2328                                  linkedit_file_offset;
2329       strtab_addr = linkedit_load_addr + symtab_load_command.stroff -
2330                     linkedit_file_offset;
2331 
2332         // Always load dyld - the dynamic linker - from memory if we didn't
2333         // find a binary anywhere else. lldb will not register
2334         // dylib/framework/bundle loads/unloads if we don't have the dyld
2335         // symbols, we force dyld to load from memory despite the user's
2336         // target.memory-module-load-level setting.
2337         if (memory_module_load_level == eMemoryModuleLoadLevelComplete ||
2338             m_header.filetype == llvm::MachO::MH_DYLINKER) {
2339           DataBufferSP nlist_data_sp(
2340               ReadMemory(process_sp, symoff_addr, nlist_data_byte_size));
2341           if (nlist_data_sp)
2342             nlist_data.SetData(nlist_data_sp, 0, nlist_data_sp->GetByteSize());
2343           if (m_dysymtab.nindirectsyms != 0) {
2344             const addr_t indirect_syms_addr = linkedit_load_addr +
2345                                               m_dysymtab.indirectsymoff -
2346                                               linkedit_file_offset;
2347             DataBufferSP indirect_syms_data_sp(ReadMemory(
2348                 process_sp, indirect_syms_addr, m_dysymtab.nindirectsyms * 4));
2349             if (indirect_syms_data_sp)
2350               indirect_symbol_index_data.SetData(
2351                   indirect_syms_data_sp, 0,
2352                   indirect_syms_data_sp->GetByteSize());
2353             // If this binary is outside the shared cache,
2354             // cache the string table.
2355             // Binaries in the shared cache all share a giant string table,
2356             // and we can't share the string tables across multiple
2357             // ObjectFileMachO's, so we'd end up re-reading this mega-strtab
2358             // for every binary in the shared cache - it would be a big perf
2359             // problem. For binaries outside the shared cache, it's faster to
2360             // read the entire strtab at once instead of piece-by-piece as we
2361             // process the nlist records.
2362             if (!is_shared_cache_image) {
2363               DataBufferSP strtab_data_sp(
2364                   ReadMemory(process_sp, strtab_addr, strtab_data_byte_size));
2365               if (strtab_data_sp) {
2366                 strtab_data.SetData(strtab_data_sp, 0,
2367                                     strtab_data_sp->GetByteSize());
2368               }
2369             }
2370           }
2371         if (memory_module_load_level >= eMemoryModuleLoadLevelPartial) {
2372           if (function_starts_load_command.cmd) {
2373             const addr_t func_start_addr =
2374                 linkedit_load_addr + function_starts_load_command.dataoff -
2375                 linkedit_file_offset;
2376             DataBufferSP func_start_data_sp(
2377                 ReadMemory(process_sp, func_start_addr,
2378                            function_starts_load_command.datasize));
2379             if (func_start_data_sp)
2380               function_starts_data.SetData(func_start_data_sp, 0,
2381                                            func_start_data_sp->GetByteSize());
2382           }
2383         }
2384       }
2385     }
2386   } else {
2387     if (is_local_shared_cache_image) {
2388       // The load commands in shared cache images are relative to the
2389       // beginning of the shared cache, not the library image. The
2390       // data we get handed when creating the ObjectFileMachO starts
2391       // at the beginning of a specific library and spans to the end
2392       // of the cache to be able to reach the shared LINKEDIT
2393       // segments. We need to convert the load command offsets to be
2394       // relative to the beginning of our specific image.
2395       lldb::addr_t linkedit_offset = linkedit_section_sp->GetFileOffset();
2396       lldb::offset_t linkedit_slide =
2397           linkedit_offset - m_linkedit_original_offset;
2398       symtab_load_command.symoff += linkedit_slide;
2399       symtab_load_command.stroff += linkedit_slide;
2400       dyld_info.export_off += linkedit_slide;
2401       m_dysymtab.indirectsymoff += linkedit_slide;
2402       function_starts_load_command.dataoff += linkedit_slide;
2403     }
2404 
2405     nlist_data.SetData(m_data, symtab_load_command.symoff,
2406                        nlist_data_byte_size);
2407     strtab_data.SetData(m_data, symtab_load_command.stroff,
2408                         strtab_data_byte_size);
2409 
2410     if (dyld_info.export_size > 0) {
2411       dyld_trie_data.SetData(m_data, dyld_info.export_off,
2412                              dyld_info.export_size);
2413     }
2414 
2415     if (m_dysymtab.nindirectsyms != 0) {
2416       indirect_symbol_index_data.SetData(m_data, m_dysymtab.indirectsymoff,
2417                                          m_dysymtab.nindirectsyms * 4);
2418     }
2419     if (function_starts_load_command.cmd) {
2420       function_starts_data.SetData(m_data, function_starts_load_command.dataoff,
2421                                    function_starts_load_command.datasize);
2422     }
2423   }
2424 
2425   const bool have_strtab_data = strtab_data.GetByteSize() > 0;
2426 
2427   ConstString g_segment_name_TEXT = GetSegmentNameTEXT();
2428   ConstString g_segment_name_DATA = GetSegmentNameDATA();
2429   ConstString g_segment_name_DATA_DIRTY = GetSegmentNameDATA_DIRTY();
2430   ConstString g_segment_name_DATA_CONST = GetSegmentNameDATA_CONST();
2431   ConstString g_segment_name_OBJC = GetSegmentNameOBJC();
2432   ConstString g_section_name_eh_frame = GetSectionNameEHFrame();
2433   SectionSP text_section_sp(
2434       section_list->FindSectionByName(g_segment_name_TEXT));
2435   SectionSP data_section_sp(
2436       section_list->FindSectionByName(g_segment_name_DATA));
2437   SectionSP data_dirty_section_sp(
2438       section_list->FindSectionByName(g_segment_name_DATA_DIRTY));
2439   SectionSP data_const_section_sp(
2440       section_list->FindSectionByName(g_segment_name_DATA_CONST));
2441   SectionSP objc_section_sp(
2442       section_list->FindSectionByName(g_segment_name_OBJC));
2443   SectionSP eh_frame_section_sp;
2444   if (text_section_sp.get())
2445     eh_frame_section_sp = text_section_sp->GetChildren().FindSectionByName(
2446         g_section_name_eh_frame);
2447   else
2448     eh_frame_section_sp =
2449         section_list->FindSectionByName(g_section_name_eh_frame);
2450 
2451   const bool is_arm = (m_header.cputype == llvm::MachO::CPU_TYPE_ARM);
2452   const bool always_thumb = GetArchitecture().IsAlwaysThumbInstructions();
2453 
2454   // lldb works best if it knows the start address of all functions in a
2455   // module. Linker symbols or debug info are normally the best source of
2456   // information for start addr / size but they may be stripped in a released
2457   // binary. Two additional sources of information exist in Mach-O binaries:
2458   //    LC_FUNCTION_STARTS - a list of ULEB128 encoded offsets of each
2459   //    function's start address in the
2460   //                         binary, relative to the text section.
2461   //    eh_frame           - the eh_frame FDEs have the start addr & size of
2462   //    each function
2463   //  LC_FUNCTION_STARTS is the fastest source to read in, and is present on
2464   //  all modern binaries.
2465   //  Binaries built to run on older releases may need to use eh_frame
2466   //  information.
2467 
2468   if (text_section_sp && function_starts_data.GetByteSize()) {
2469     FunctionStarts::Entry function_start_entry;
2470     function_start_entry.data = false;
2471     lldb::offset_t function_start_offset = 0;
2472     function_start_entry.addr = text_section_sp->GetFileAddress();
2473     uint64_t delta;
2474     while ((delta = function_starts_data.GetULEB128(&function_start_offset)) >
2475            0) {
2476       // Now append the current entry
2477       function_start_entry.addr += delta;
2478       if (is_arm) {
2479         if (function_start_entry.addr & 1) {
2480           function_start_entry.addr &= THUMB_ADDRESS_BIT_MASK;
2481           function_start_entry.data = true;
2482         } else if (always_thumb) {
2483           function_start_entry.data = true;
2484         }
2485       }
2486       function_starts.Append(function_start_entry);
2487     }
2488   } else {
2489     // If m_type is eTypeDebugInfo, then this is a dSYM - it will have the
2490     // load command claiming an eh_frame but it doesn't actually have the
2491     // eh_frame content.  And if we have a dSYM, we don't need to do any of
2492     // this fill-in-the-missing-symbols works anyway - the debug info should
2493     // give us all the functions in the module.
2494     if (text_section_sp.get() && eh_frame_section_sp.get() &&
2495         m_type != eTypeDebugInfo) {
2496       DWARFCallFrameInfo eh_frame(*this, eh_frame_section_sp,
2497                                   DWARFCallFrameInfo::EH);
2498       DWARFCallFrameInfo::FunctionAddressAndSizeVector functions;
2499       eh_frame.GetFunctionAddressAndSizeVector(functions);
2500       addr_t text_base_addr = text_section_sp->GetFileAddress();
2501       size_t count = functions.GetSize();
2502       for (size_t i = 0; i < count; ++i) {
2503         const DWARFCallFrameInfo::FunctionAddressAndSizeVector::Entry *func =
2504             functions.GetEntryAtIndex(i);
2505         if (func) {
2506           FunctionStarts::Entry function_start_entry;
2507           function_start_entry.addr = func->base - text_base_addr;
2508           if (is_arm) {
2509             if (function_start_entry.addr & 1) {
2510               function_start_entry.addr &= THUMB_ADDRESS_BIT_MASK;
2511               function_start_entry.data = true;
2512             } else if (always_thumb) {
2513               function_start_entry.data = true;
2514             }
2515           }
2516           function_starts.Append(function_start_entry);
2517         }
2518       }
2519     }
2520   }
2521 
2522   const size_t function_starts_count = function_starts.GetSize();
2523 
2524   // For user process binaries (executables, dylibs, frameworks, bundles), if
2525   // we don't have LC_FUNCTION_STARTS/eh_frame section in this binary, we're
2526   // going to assume the binary has been stripped.  Don't allow assembly
2527   // language instruction emulation because we don't know proper function
2528   // start boundaries.
2529   //
2530   // For all other types of binaries (kernels, stand-alone bare board
2531   // binaries, kexts), they may not have LC_FUNCTION_STARTS / eh_frame
2532   // sections - we should not make any assumptions about them based on that.
2533   if (function_starts_count == 0 && CalculateStrata() == eStrataUser) {
2534     m_allow_assembly_emulation_unwind_plans = false;
2535     Log *unwind_or_symbol_log(lldb_private::GetLogIfAnyCategoriesSet(
2536         LIBLLDB_LOG_SYMBOLS | LIBLLDB_LOG_UNWIND));
2537 
2538     if (unwind_or_symbol_log)
2539       module_sp->LogMessage(
2540           unwind_or_symbol_log,
2541           "no LC_FUNCTION_STARTS, will not allow assembly profiled unwinds");
2542   }
2543 
2544   const user_id_t TEXT_eh_frame_sectID = eh_frame_section_sp.get()
2545                                              ? eh_frame_section_sp->GetID()
2546                                              : static_cast<user_id_t>(NO_SECT);
2547 
2548   lldb::offset_t nlist_data_offset = 0;
2549 
2550   uint32_t N_SO_index = UINT32_MAX;
2551 
2552   MachSymtabSectionInfo section_info(section_list);
2553   std::vector<uint32_t> N_FUN_indexes;
2554   std::vector<uint32_t> N_NSYM_indexes;
2555   std::vector<uint32_t> N_INCL_indexes;
2556   std::vector<uint32_t> N_BRAC_indexes;
2557   std::vector<uint32_t> N_COMM_indexes;
2558   typedef std::multimap<uint64_t, uint32_t> ValueToSymbolIndexMap;
2559   typedef llvm::DenseMap<uint32_t, uint32_t> NListIndexToSymbolIndexMap;
2560   typedef llvm::DenseMap<const char *, uint32_t> ConstNameToSymbolIndexMap;
2561   ValueToSymbolIndexMap N_FUN_addr_to_sym_idx;
2562   ValueToSymbolIndexMap N_STSYM_addr_to_sym_idx;
2563   ConstNameToSymbolIndexMap N_GSYM_name_to_sym_idx;
2564   // Any symbols that get merged into another will get an entry in this map
2565   // so we know
2566   NListIndexToSymbolIndexMap m_nlist_idx_to_sym_idx;
2567   uint32_t nlist_idx = 0;
2568   Symbol *symbol_ptr = nullptr;
2569 
2570   uint32_t sym_idx = 0;
2571   Symbol *sym = nullptr;
2572   size_t num_syms = 0;
2573   std::string memory_symbol_name;
2574   uint32_t unmapped_local_symbols_found = 0;
2575 
2576   std::vector<TrieEntryWithOffset> reexport_trie_entries;
2577   std::vector<TrieEntryWithOffset> external_sym_trie_entries;
2578   std::set<lldb::addr_t> resolver_addresses;
2579 
2580   if (dyld_trie_data.GetByteSize() > 0) {
2581     ConstString text_segment_name("__TEXT");
2582     SectionSP text_segment_sp =
2583         GetSectionList()->FindSectionByName(text_segment_name);
2584     lldb::addr_t text_segment_file_addr = LLDB_INVALID_ADDRESS;
2585     if (text_segment_sp)
2586       text_segment_file_addr = text_segment_sp->GetFileAddress();
2587     std::vector<llvm::StringRef> nameSlices;
2588     ParseTrieEntries(dyld_trie_data, 0, is_arm, text_segment_file_addr,
2589                      nameSlices, resolver_addresses, reexport_trie_entries,
2590                      external_sym_trie_entries);
2591   }
2592 
2593   typedef std::set<ConstString> IndirectSymbols;
2594   IndirectSymbols indirect_symbol_names;
2595 
2596 #if TARGET_OS_IPHONE
2597 
2598   // Some recent builds of the dyld_shared_cache (hereafter: DSC) have been
2599   // optimized by moving LOCAL symbols out of the memory mapped portion of
2600   // the DSC. The symbol information has all been retained, but it isn't
2601   // available in the normal nlist data. However, there *are* duplicate
2602   // entries of *some*
2603   // LOCAL symbols in the normal nlist data. To handle this situation
2604   // correctly, we must first attempt
2605   // to parse any DSC unmapped symbol information. If we find any, we set a
2606   // flag that tells the normal nlist parser to ignore all LOCAL symbols.
2607 
2608   if (m_header.flags & MH_DYLIB_IN_CACHE) {
2609     // Before we can start mapping the DSC, we need to make certain the
2610     // target process is actually using the cache we can find.
2611 
2612     // Next we need to determine the correct path for the dyld shared cache.
2613 
2614     ArchSpec header_arch = GetArchitecture();
2615     char dsc_path[PATH_MAX];
2616     char dsc_path_development[PATH_MAX];
2617 
2618     snprintf(
2619         dsc_path, sizeof(dsc_path), "%s%s%s",
2620         "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR
2621                                                    */
2622         "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */
2623         header_arch.GetArchitectureName());
2624 
2625     snprintf(
2626         dsc_path_development, sizeof(dsc_path), "%s%s%s%s",
2627         "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR
2628                                                    */
2629         "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */
2630         header_arch.GetArchitectureName(), ".development");
2631 
2632     FileSpec dsc_nondevelopment_filespec(dsc_path);
2633     FileSpec dsc_development_filespec(dsc_path_development);
2634     FileSpec dsc_filespec;
2635 
2636     UUID dsc_uuid;
2637     UUID process_shared_cache_uuid;
2638     addr_t process_shared_cache_base_addr;
2639 
2640     if (process) {
2641       GetProcessSharedCacheUUID(process, process_shared_cache_base_addr,
2642                                 process_shared_cache_uuid);
2643     }
2644 
2645     // First see if we can find an exact match for the inferior process
2646     // shared cache UUID in the development or non-development shared caches
2647     // on disk.
2648     if (process_shared_cache_uuid.IsValid()) {
2649       if (FileSystem::Instance().Exists(dsc_development_filespec)) {
2650         UUID dsc_development_uuid = GetSharedCacheUUID(
2651             dsc_development_filespec, byte_order, addr_byte_size);
2652         if (dsc_development_uuid.IsValid() &&
2653             dsc_development_uuid == process_shared_cache_uuid) {
2654           dsc_filespec = dsc_development_filespec;
2655           dsc_uuid = dsc_development_uuid;
2656         }
2657       }
2658       if (!dsc_uuid.IsValid() &&
2659           FileSystem::Instance().Exists(dsc_nondevelopment_filespec)) {
2660         UUID dsc_nondevelopment_uuid = GetSharedCacheUUID(
2661             dsc_nondevelopment_filespec, byte_order, addr_byte_size);
2662         if (dsc_nondevelopment_uuid.IsValid() &&
2663             dsc_nondevelopment_uuid == process_shared_cache_uuid) {
2664           dsc_filespec = dsc_nondevelopment_filespec;
2665           dsc_uuid = dsc_nondevelopment_uuid;
2666         }
2667       }
2668     }
2669 
2670     // Failing a UUID match, prefer the development dyld_shared cache if both
2671     // are present.
2672     if (!FileSystem::Instance().Exists(dsc_filespec)) {
2673       if (FileSystem::Instance().Exists(dsc_development_filespec)) {
2674         dsc_filespec = dsc_development_filespec;
2675       } else {
2676         dsc_filespec = dsc_nondevelopment_filespec;
2677       }
2678     }
2679 
2680     /* The dyld_cache_header has a pointer to the
2681        dyld_cache_local_symbols_info structure (localSymbolsOffset).
2682        The dyld_cache_local_symbols_info structure gives us three things:
2683          1. The start and count of the nlist records in the dyld_shared_cache
2684        file
2685          2. The start and size of the strings for these nlist records
2686          3. The start and count of dyld_cache_local_symbols_entry entries
2687 
2688        There is one dyld_cache_local_symbols_entry per dylib/framework in the
2689        dyld shared cache.
2690        The "dylibOffset" field is the Mach-O header of this dylib/framework in
2691        the dyld shared cache.
2692        The dyld_cache_local_symbols_entry also lists the start of this
2693        dylib/framework's nlist records
2694        and the count of how many nlist records there are for this
2695        dylib/framework.
2696     */
2697 
2698     // Process the dyld shared cache header to find the unmapped symbols
2699 
2700     DataBufferSP dsc_data_sp = MapFileData(
2701         dsc_filespec, sizeof(struct lldb_copy_dyld_cache_header_v1), 0);
2702     if (!dsc_uuid.IsValid()) {
2703       dsc_uuid = GetSharedCacheUUID(dsc_filespec, byte_order, addr_byte_size);
2704     }
2705     if (dsc_data_sp) {
2706       DataExtractor dsc_header_data(dsc_data_sp, byte_order, addr_byte_size);
2707 
2708       bool uuid_match = true;
2709       if (dsc_uuid.IsValid() && process) {
2710         if (process_shared_cache_uuid.IsValid() &&
2711             dsc_uuid != process_shared_cache_uuid) {
2712           // The on-disk dyld_shared_cache file is not the same as the one in
2713           // this process' memory, don't use it.
2714           uuid_match = false;
2715           ModuleSP module_sp(GetModule());
2716           if (module_sp)
2717             module_sp->ReportWarning("process shared cache does not match "
2718                                      "on-disk dyld_shared_cache file, some "
2719                                      "symbol names will be missing.");
2720         }
2721       }
2722 
2723       offset = offsetof(struct lldb_copy_dyld_cache_header_v1, mappingOffset);
2724 
2725       uint32_t mappingOffset = dsc_header_data.GetU32(&offset);
2726 
2727       // If the mappingOffset points to a location inside the header, we've
2728       // opened an old dyld shared cache, and should not proceed further.
2729       if (uuid_match &&
2730           mappingOffset >= sizeof(struct lldb_copy_dyld_cache_header_v1)) {
2731 
2732         DataBufferSP dsc_mapping_info_data_sp = MapFileData(
2733             dsc_filespec, sizeof(struct lldb_copy_dyld_cache_mapping_info),
2734             mappingOffset);
2735 
2736         DataExtractor dsc_mapping_info_data(dsc_mapping_info_data_sp,
2737                                             byte_order, addr_byte_size);
2738         offset = 0;
2739 
2740         // The File addresses (from the in-memory Mach-O load commands) for
2741         // the shared libraries in the shared library cache need to be
2742         // adjusted by an offset to match up with the dylibOffset identifying
2743         // field in the dyld_cache_local_symbol_entry's.  This offset is
2744         // recorded in mapping_offset_value.
2745         const uint64_t mapping_offset_value =
2746             dsc_mapping_info_data.GetU64(&offset);
2747 
2748         offset =
2749             offsetof(struct lldb_copy_dyld_cache_header_v1, localSymbolsOffset);
2750         uint64_t localSymbolsOffset = dsc_header_data.GetU64(&offset);
2751         uint64_t localSymbolsSize = dsc_header_data.GetU64(&offset);
2752 
2753         if (localSymbolsOffset && localSymbolsSize) {
2754           // Map the local symbols
2755           DataBufferSP dsc_local_symbols_data_sp =
2756               MapFileData(dsc_filespec, localSymbolsSize, localSymbolsOffset);
2757 
2758           if (dsc_local_symbols_data_sp) {
2759             DataExtractor dsc_local_symbols_data(dsc_local_symbols_data_sp,
2760                                                  byte_order, addr_byte_size);
2761 
2762             offset = 0;
2763 
2764             typedef llvm::DenseMap<ConstString, uint16_t> UndefinedNameToDescMap;
2765             typedef llvm::DenseMap<uint32_t, ConstString> SymbolIndexToName;
2766             UndefinedNameToDescMap undefined_name_to_desc;
2767             SymbolIndexToName reexport_shlib_needs_fixup;
2768 
2769             // Read the local_symbols_infos struct in one shot
2770             struct lldb_copy_dyld_cache_local_symbols_info local_symbols_info;
2771             dsc_local_symbols_data.GetU32(&offset,
2772                                           &local_symbols_info.nlistOffset, 6);
2773 
2774             SectionSP text_section_sp(
2775                 section_list->FindSectionByName(GetSegmentNameTEXT()));
2776 
2777             uint32_t header_file_offset =
2778                 (text_section_sp->GetFileAddress() - mapping_offset_value);
2779 
2780             offset = local_symbols_info.entriesOffset;
2781             for (uint32_t entry_index = 0;
2782                  entry_index < local_symbols_info.entriesCount; entry_index++) {
2783               struct lldb_copy_dyld_cache_local_symbols_entry
2784                   local_symbols_entry;
2785               local_symbols_entry.dylibOffset =
2786                   dsc_local_symbols_data.GetU32(&offset);
2787               local_symbols_entry.nlistStartIndex =
2788                   dsc_local_symbols_data.GetU32(&offset);
2789               local_symbols_entry.nlistCount =
2790                   dsc_local_symbols_data.GetU32(&offset);
2791 
2792               if (header_file_offset == local_symbols_entry.dylibOffset) {
2793                 unmapped_local_symbols_found = local_symbols_entry.nlistCount;
2794 
2795                 // The normal nlist code cannot correctly size the Symbols
2796                 // array, we need to allocate it here.
2797                 sym = symtab->Resize(
2798                     symtab_load_command.nsyms + m_dysymtab.nindirectsyms +
2799                     unmapped_local_symbols_found - m_dysymtab.nlocalsym);
2800                 num_syms = symtab->GetNumSymbols();
2801 
2802                 nlist_data_offset =
2803                     local_symbols_info.nlistOffset +
2804                     (nlist_byte_size * local_symbols_entry.nlistStartIndex);
2805                 uint32_t string_table_offset = local_symbols_info.stringsOffset;
2806 
2807                 for (uint32_t nlist_index = 0;
2808                      nlist_index < local_symbols_entry.nlistCount;
2809                      nlist_index++) {
2810                   /////////////////////////////
2811                   {
2812                     llvm::Optional<struct nlist_64> nlist_maybe =
2813                         ParseNList(dsc_local_symbols_data, nlist_data_offset,
2814                                    nlist_byte_size);
2815                     if (!nlist_maybe)
2816                       break;
2817                     struct nlist_64 nlist = *nlist_maybe;
2818 
2819                     SymbolType type = eSymbolTypeInvalid;
2820                     const char *symbol_name = dsc_local_symbols_data.PeekCStr(
2821                         string_table_offset + nlist.n_strx);
2822 
2823                     if (symbol_name == NULL) {
2824                       // No symbol should be NULL, even the symbols with no
2825                       // string values should have an offset zero which
2826                       // points to an empty C-string
2827                       Host::SystemLog(
2828                           Host::eSystemLogError,
2829                           "error: DSC unmapped local symbol[%u] has invalid "
2830                           "string table offset 0x%x in %s, ignoring symbol\n",
2831                           entry_index, nlist.n_strx,
2832                           module_sp->GetFileSpec().GetPath().c_str());
2833                       continue;
2834                     }
2835                     if (symbol_name[0] == '\0')
2836                       symbol_name = NULL;
2837 
2838                     const char *symbol_name_non_abi_mangled = NULL;
2839 
2840                     SectionSP symbol_section;
2841                     uint32_t symbol_byte_size = 0;
2842                     bool add_nlist = true;
2843                     bool is_debug = ((nlist.n_type & N_STAB) != 0);
2844                     bool demangled_is_synthesized = false;
2845                     bool is_gsym = false;
2846                     bool set_value = true;
2847 
2848                     assert(sym_idx < num_syms);
2849 
2850                     sym[sym_idx].SetDebug(is_debug);
2851 
2852                     if (is_debug) {
2853                       switch (nlist.n_type) {
2854                       case N_GSYM:
2855                         // global symbol: name,,NO_SECT,type,0
2856                         // Sometimes the N_GSYM value contains the address.
2857 
2858                         // FIXME: In the .o files, we have a GSYM and a debug
2859                         // symbol for all the ObjC data.  They
2860                         // have the same address, but we want to ensure that
2861                         // we always find only the real symbol, 'cause we
2862                         // don't currently correctly attribute the
2863                         // GSYM one to the ObjCClass/Ivar/MetaClass
2864                         // symbol type.  This is a temporary hack to make
2865                         // sure the ObjectiveC symbols get treated correctly.
2866                         // To do this right, we should coalesce all the GSYM
2867                         // & global symbols that have the same address.
2868 
2869                         is_gsym = true;
2870                         sym[sym_idx].SetExternal(true);
2871 
2872                         if (symbol_name && symbol_name[0] == '_' &&
2873                             symbol_name[1] == 'O') {
2874                           llvm::StringRef symbol_name_ref(symbol_name);
2875                           if (symbol_name_ref.startswith(
2876                                   g_objc_v2_prefix_class)) {
2877                             symbol_name_non_abi_mangled = symbol_name + 1;
2878                             symbol_name =
2879                                 symbol_name + g_objc_v2_prefix_class.size();
2880                             type = eSymbolTypeObjCClass;
2881                             demangled_is_synthesized = true;
2882 
2883                           } else if (symbol_name_ref.startswith(
2884                                          g_objc_v2_prefix_metaclass)) {
2885                             symbol_name_non_abi_mangled = symbol_name + 1;
2886                             symbol_name =
2887                                 symbol_name + g_objc_v2_prefix_metaclass.size();
2888                             type = eSymbolTypeObjCMetaClass;
2889                             demangled_is_synthesized = true;
2890                           } else if (symbol_name_ref.startswith(
2891                                          g_objc_v2_prefix_ivar)) {
2892                             symbol_name_non_abi_mangled = symbol_name + 1;
2893                             symbol_name =
2894                                 symbol_name + g_objc_v2_prefix_ivar.size();
2895                             type = eSymbolTypeObjCIVar;
2896                             demangled_is_synthesized = true;
2897                           }
2898                         } else {
2899                           if (nlist.n_value != 0)
2900                             symbol_section = section_info.GetSection(
2901                                 nlist.n_sect, nlist.n_value);
2902                           type = eSymbolTypeData;
2903                         }
2904                         break;
2905 
2906                       case N_FNAME:
2907                         // procedure name (f77 kludge): name,,NO_SECT,0,0
2908                         type = eSymbolTypeCompiler;
2909                         break;
2910 
2911                       case N_FUN:
2912                         // procedure: name,,n_sect,linenumber,address
2913                         if (symbol_name) {
2914                           type = eSymbolTypeCode;
2915                           symbol_section = section_info.GetSection(
2916                               nlist.n_sect, nlist.n_value);
2917 
2918                           N_FUN_addr_to_sym_idx.insert(
2919                               std::make_pair(nlist.n_value, sym_idx));
2920                           // We use the current number of symbols in the
2921                           // symbol table in lieu of using nlist_idx in case
2922                           // we ever start trimming entries out
2923                           N_FUN_indexes.push_back(sym_idx);
2924                         } else {
2925                           type = eSymbolTypeCompiler;
2926 
2927                           if (!N_FUN_indexes.empty()) {
2928                             // Copy the size of the function into the
2929                             // original
2930                             // STAB entry so we don't have
2931                             // to hunt for it later
2932                             symtab->SymbolAtIndex(N_FUN_indexes.back())
2933                                 ->SetByteSize(nlist.n_value);
2934                             N_FUN_indexes.pop_back();
2935                             // We don't really need the end function STAB as
2936                             // it contains the size which we already placed
2937                             // with the original symbol, so don't add it if
2938                             // we want a minimal symbol table
2939                             add_nlist = false;
2940                           }
2941                         }
2942                         break;
2943 
2944                       case N_STSYM:
2945                         // static symbol: name,,n_sect,type,address
2946                         N_STSYM_addr_to_sym_idx.insert(
2947                             std::make_pair(nlist.n_value, sym_idx));
2948                         symbol_section = section_info.GetSection(nlist.n_sect,
2949                                                                  nlist.n_value);
2950                         if (symbol_name && symbol_name[0]) {
2951                           type = ObjectFile::GetSymbolTypeFromName(
2952                               symbol_name + 1, eSymbolTypeData);
2953                         }
2954                         break;
2955 
2956                       case N_LCSYM:
2957                         // .lcomm symbol: name,,n_sect,type,address
2958                         symbol_section = section_info.GetSection(nlist.n_sect,
2959                                                                  nlist.n_value);
2960                         type = eSymbolTypeCommonBlock;
2961                         break;
2962 
2963                       case N_BNSYM:
2964                         // We use the current number of symbols in the symbol
2965                         // table in lieu of using nlist_idx in case we ever
2966                         // start trimming entries out Skip these if we want
2967                         // minimal symbol tables
2968                         add_nlist = false;
2969                         break;
2970 
2971                       case N_ENSYM:
2972                         // Set the size of the N_BNSYM to the terminating
2973                         // index of this N_ENSYM so that we can always skip
2974                         // the entire symbol if we need to navigate more
2975                         // quickly at the source level when parsing STABS
2976                         // Skip these if we want minimal symbol tables
2977                         add_nlist = false;
2978                         break;
2979 
2980                       case N_OPT:
2981                         // emitted with gcc2_compiled and in gcc source
2982                         type = eSymbolTypeCompiler;
2983                         break;
2984 
2985                       case N_RSYM:
2986                         // register sym: name,,NO_SECT,type,register
2987                         type = eSymbolTypeVariable;
2988                         break;
2989 
2990                       case N_SLINE:
2991                         // src line: 0,,n_sect,linenumber,address
2992                         symbol_section = section_info.GetSection(nlist.n_sect,
2993                                                                  nlist.n_value);
2994                         type = eSymbolTypeLineEntry;
2995                         break;
2996 
2997                       case N_SSYM:
2998                         // structure elt: name,,NO_SECT,type,struct_offset
2999                         type = eSymbolTypeVariableType;
3000                         break;
3001 
3002                       case N_SO:
3003                         // source file name
3004                         type = eSymbolTypeSourceFile;
3005                         if (symbol_name == NULL) {
3006                           add_nlist = false;
3007                           if (N_SO_index != UINT32_MAX) {
3008                             // Set the size of the N_SO to the terminating
3009                             // index of this N_SO so that we can always skip
3010                             // the entire N_SO if we need to navigate more
3011                             // quickly at the source level when parsing STABS
3012                             symbol_ptr = symtab->SymbolAtIndex(N_SO_index);
3013                             symbol_ptr->SetByteSize(sym_idx);
3014                             symbol_ptr->SetSizeIsSibling(true);
3015                           }
3016                           N_NSYM_indexes.clear();
3017                           N_INCL_indexes.clear();
3018                           N_BRAC_indexes.clear();
3019                           N_COMM_indexes.clear();
3020                           N_FUN_indexes.clear();
3021                           N_SO_index = UINT32_MAX;
3022                         } else {
3023                           // We use the current number of symbols in the
3024                           // symbol table in lieu of using nlist_idx in case
3025                           // we ever start trimming entries out
3026                           const bool N_SO_has_full_path = symbol_name[0] == '/';
3027                           if (N_SO_has_full_path) {
3028                             if ((N_SO_index == sym_idx - 1) &&
3029                                 ((sym_idx - 1) < num_syms)) {
3030                               // We have two consecutive N_SO entries where
3031                               // the first contains a directory and the
3032                               // second contains a full path.
3033                               sym[sym_idx - 1].GetMangled().SetValue(
3034                                   ConstString(symbol_name), false);
3035                               m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3036                               add_nlist = false;
3037                             } else {
3038                               // This is the first entry in a N_SO that
3039                               // contains a directory or
3040                               // a full path to the source file
3041                               N_SO_index = sym_idx;
3042                             }
3043                           } else if ((N_SO_index == sym_idx - 1) &&
3044                                      ((sym_idx - 1) < num_syms)) {
3045                             // This is usually the second N_SO entry that
3046                             // contains just the filename, so here we combine
3047                             // it with the first one if we are minimizing the
3048                             // symbol table
3049                             const char *so_path = sym[sym_idx - 1]
3050                                                       .GetMangled()
3051                                                       .GetDemangledName()
3052                                                       .AsCString();
3053                             if (so_path && so_path[0]) {
3054                               std::string full_so_path(so_path);
3055                               const size_t double_slash_pos =
3056                                   full_so_path.find("//");
3057                               if (double_slash_pos != std::string::npos) {
3058                                 // The linker has been generating bad N_SO
3059                                 // entries with doubled up paths
3060                                 // in the format "%s%s" where the first
3061                                 // string in the DW_AT_comp_dir, and the
3062                                 // second is the directory for the source
3063                                 // file so you end up with a path that looks
3064                                 // like "/tmp/src//tmp/src/"
3065                                 FileSpec so_dir(so_path);
3066                                 if (!FileSystem::Instance().Exists(so_dir)) {
3067                                   so_dir.SetFile(
3068                                       &full_so_path[double_slash_pos + 1],
3069                                       FileSpec::Style::native);
3070                                   if (FileSystem::Instance().Exists(so_dir)) {
3071                                     // Trim off the incorrect path
3072                                     full_so_path.erase(0, double_slash_pos + 1);
3073                                   }
3074                                 }
3075                               }
3076                               if (*full_so_path.rbegin() != '/')
3077                                 full_so_path += '/';
3078                               full_so_path += symbol_name;
3079                               sym[sym_idx - 1].GetMangled().SetValue(
3080                                   ConstString(full_so_path.c_str()), false);
3081                               add_nlist = false;
3082                               m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3083                             }
3084                           } else {
3085                             // This could be a relative path to a N_SO
3086                             N_SO_index = sym_idx;
3087                           }
3088                         }
3089                         break;
3090 
3091                       case N_OSO:
3092                         // object file name: name,,0,0,st_mtime
3093                         type = eSymbolTypeObjectFile;
3094                         break;
3095 
3096                       case N_LSYM:
3097                         // local sym: name,,NO_SECT,type,offset
3098                         type = eSymbolTypeLocal;
3099                         break;
3100 
3101                       // INCL scopes
3102                       case N_BINCL:
3103                         // include file beginning: name,,NO_SECT,0,sum We use
3104                         // the current number of symbols in the symbol table
3105                         // in lieu of using nlist_idx in case we ever start
3106                         // trimming entries out
3107                         N_INCL_indexes.push_back(sym_idx);
3108                         type = eSymbolTypeScopeBegin;
3109                         break;
3110 
3111                       case N_EINCL:
3112                         // include file end: name,,NO_SECT,0,0
3113                         // Set the size of the N_BINCL to the terminating
3114                         // index of this N_EINCL so that we can always skip
3115                         // the entire symbol if we need to navigate more
3116                         // quickly at the source level when parsing STABS
3117                         if (!N_INCL_indexes.empty()) {
3118                           symbol_ptr =
3119                               symtab->SymbolAtIndex(N_INCL_indexes.back());
3120                           symbol_ptr->SetByteSize(sym_idx + 1);
3121                           symbol_ptr->SetSizeIsSibling(true);
3122                           N_INCL_indexes.pop_back();
3123                         }
3124                         type = eSymbolTypeScopeEnd;
3125                         break;
3126 
3127                       case N_SOL:
3128                         // #included file name: name,,n_sect,0,address
3129                         type = eSymbolTypeHeaderFile;
3130 
3131                         // We currently don't use the header files on darwin
3132                         add_nlist = false;
3133                         break;
3134 
3135                       case N_PARAMS:
3136                         // compiler parameters: name,,NO_SECT,0,0
3137                         type = eSymbolTypeCompiler;
3138                         break;
3139 
3140                       case N_VERSION:
3141                         // compiler version: name,,NO_SECT,0,0
3142                         type = eSymbolTypeCompiler;
3143                         break;
3144 
3145                       case N_OLEVEL:
3146                         // compiler -O level: name,,NO_SECT,0,0
3147                         type = eSymbolTypeCompiler;
3148                         break;
3149 
3150                       case N_PSYM:
3151                         // parameter: name,,NO_SECT,type,offset
3152                         type = eSymbolTypeVariable;
3153                         break;
3154 
3155                       case N_ENTRY:
3156                         // alternate entry: name,,n_sect,linenumber,address
3157                         symbol_section = section_info.GetSection(nlist.n_sect,
3158                                                                  nlist.n_value);
3159                         type = eSymbolTypeLineEntry;
3160                         break;
3161 
3162                       // Left and Right Braces
3163                       case N_LBRAC:
3164                         // left bracket: 0,,NO_SECT,nesting level,address We
3165                         // use the current number of symbols in the symbol
3166                         // table in lieu of using nlist_idx in case we ever
3167                         // start trimming entries out
3168                         symbol_section = section_info.GetSection(nlist.n_sect,
3169                                                                  nlist.n_value);
3170                         N_BRAC_indexes.push_back(sym_idx);
3171                         type = eSymbolTypeScopeBegin;
3172                         break;
3173 
3174                       case N_RBRAC:
3175                         // right bracket: 0,,NO_SECT,nesting level,address
3176                         // Set the size of the N_LBRAC to the terminating
3177                         // index of this N_RBRAC so that we can always skip
3178                         // the entire symbol if we need to navigate more
3179                         // quickly at the source level when parsing STABS
3180                         symbol_section = section_info.GetSection(nlist.n_sect,
3181                                                                  nlist.n_value);
3182                         if (!N_BRAC_indexes.empty()) {
3183                           symbol_ptr =
3184                               symtab->SymbolAtIndex(N_BRAC_indexes.back());
3185                           symbol_ptr->SetByteSize(sym_idx + 1);
3186                           symbol_ptr->SetSizeIsSibling(true);
3187                           N_BRAC_indexes.pop_back();
3188                         }
3189                         type = eSymbolTypeScopeEnd;
3190                         break;
3191 
3192                       case N_EXCL:
3193                         // deleted include file: name,,NO_SECT,0,sum
3194                         type = eSymbolTypeHeaderFile;
3195                         break;
3196 
3197                       // COMM scopes
3198                       case N_BCOMM:
3199                         // begin common: name,,NO_SECT,0,0
3200                         // We use the current number of symbols in the symbol
3201                         // table in lieu of using nlist_idx in case we ever
3202                         // start trimming entries out
3203                         type = eSymbolTypeScopeBegin;
3204                         N_COMM_indexes.push_back(sym_idx);
3205                         break;
3206 
3207                       case N_ECOML:
3208                         // end common (local name): 0,,n_sect,0,address
3209                         symbol_section = section_info.GetSection(nlist.n_sect,
3210                                                                  nlist.n_value);
3211                         // Fall through
3212 
3213                       case N_ECOMM:
3214                         // end common: name,,n_sect,0,0
3215                         // Set the size of the N_BCOMM to the terminating
3216                         // index of this N_ECOMM/N_ECOML so that we can
3217                         // always skip the entire symbol if we need to
3218                         // navigate more quickly at the source level when
3219                         // parsing STABS
3220                         if (!N_COMM_indexes.empty()) {
3221                           symbol_ptr =
3222                               symtab->SymbolAtIndex(N_COMM_indexes.back());
3223                           symbol_ptr->SetByteSize(sym_idx + 1);
3224                           symbol_ptr->SetSizeIsSibling(true);
3225                           N_COMM_indexes.pop_back();
3226                         }
3227                         type = eSymbolTypeScopeEnd;
3228                         break;
3229 
3230                       case N_LENG:
3231                         // second stab entry with length information
3232                         type = eSymbolTypeAdditional;
3233                         break;
3234 
3235                       default:
3236                         break;
3237                       }
3238                     } else {
3239                       // uint8_t n_pext    = N_PEXT & nlist.n_type;
3240                       uint8_t n_type = N_TYPE & nlist.n_type;
3241                       sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
3242 
3243                       switch (n_type) {
3244                       case N_INDR: {
3245                         const char *reexport_name_cstr =
3246                             strtab_data.PeekCStr(nlist.n_value);
3247                         if (reexport_name_cstr && reexport_name_cstr[0]) {
3248                           type = eSymbolTypeReExported;
3249                           ConstString reexport_name(
3250                               reexport_name_cstr +
3251                               ((reexport_name_cstr[0] == '_') ? 1 : 0));
3252                           sym[sym_idx].SetReExportedSymbolName(reexport_name);
3253                           set_value = false;
3254                           reexport_shlib_needs_fixup[sym_idx] = reexport_name;
3255                           indirect_symbol_names.insert(ConstString(
3256                               symbol_name + ((symbol_name[0] == '_') ? 1 : 0)));
3257                         } else
3258                           type = eSymbolTypeUndefined;
3259                       } break;
3260 
3261                       case N_UNDF:
3262                         if (symbol_name && symbol_name[0]) {
3263                           ConstString undefined_name(
3264                               symbol_name + ((symbol_name[0] == '_') ? 1 : 0));
3265                           undefined_name_to_desc[undefined_name] = nlist.n_desc;
3266                         }
3267                       // Fall through
3268                       case N_PBUD:
3269                         type = eSymbolTypeUndefined;
3270                         break;
3271 
3272                       case N_ABS:
3273                         type = eSymbolTypeAbsolute;
3274                         break;
3275 
3276                       case N_SECT: {
3277                         symbol_section = section_info.GetSection(nlist.n_sect,
3278                                                                  nlist.n_value);
3279 
3280                         if (symbol_section == NULL) {
3281                           // TODO: warn about this?
3282                           add_nlist = false;
3283                           break;
3284                         }
3285 
3286                         if (TEXT_eh_frame_sectID == nlist.n_sect) {
3287                           type = eSymbolTypeException;
3288                         } else {
3289                           uint32_t section_type =
3290                               symbol_section->Get() & SECTION_TYPE;
3291 
3292                           switch (section_type) {
3293                           case S_CSTRING_LITERALS:
3294                             type = eSymbolTypeData;
3295                             break; // section with only literal C strings
3296                           case S_4BYTE_LITERALS:
3297                             type = eSymbolTypeData;
3298                             break; // section with only 4 byte literals
3299                           case S_8BYTE_LITERALS:
3300                             type = eSymbolTypeData;
3301                             break; // section with only 8 byte literals
3302                           case S_LITERAL_POINTERS:
3303                             type = eSymbolTypeTrampoline;
3304                             break; // section with only pointers to literals
3305                           case S_NON_LAZY_SYMBOL_POINTERS:
3306                             type = eSymbolTypeTrampoline;
3307                             break; // section with only non-lazy symbol
3308                                    // pointers
3309                           case S_LAZY_SYMBOL_POINTERS:
3310                             type = eSymbolTypeTrampoline;
3311                             break; // section with only lazy symbol pointers
3312                           case S_SYMBOL_STUBS:
3313                             type = eSymbolTypeTrampoline;
3314                             break; // section with only symbol stubs, byte
3315                                    // size of stub in the reserved2 field
3316                           case S_MOD_INIT_FUNC_POINTERS:
3317                             type = eSymbolTypeCode;
3318                             break; // section with only function pointers for
3319                                    // initialization
3320                           case S_MOD_TERM_FUNC_POINTERS:
3321                             type = eSymbolTypeCode;
3322                             break; // section with only function pointers for
3323                                    // termination
3324                           case S_INTERPOSING:
3325                             type = eSymbolTypeTrampoline;
3326                             break; // section with only pairs of function
3327                                    // pointers for interposing
3328                           case S_16BYTE_LITERALS:
3329                             type = eSymbolTypeData;
3330                             break; // section with only 16 byte literals
3331                           case S_DTRACE_DOF:
3332                             type = eSymbolTypeInstrumentation;
3333                             break;
3334                           case S_LAZY_DYLIB_SYMBOL_POINTERS:
3335                             type = eSymbolTypeTrampoline;
3336                             break;
3337                           default:
3338                             switch (symbol_section->GetType()) {
3339                             case lldb::eSectionTypeCode:
3340                               type = eSymbolTypeCode;
3341                               break;
3342                             case eSectionTypeData:
3343                             case eSectionTypeDataCString: // Inlined C string
3344                                                           // data
3345                             case eSectionTypeDataCStringPointers: // Pointers
3346                                                                   // to C
3347                                                                   // string
3348                                                                   // data
3349                             case eSectionTypeDataSymbolAddress:   // Address of
3350                                                                   // a symbol in
3351                                                                   // the symbol
3352                                                                   // table
3353                             case eSectionTypeData4:
3354                             case eSectionTypeData8:
3355                             case eSectionTypeData16:
3356                               type = eSymbolTypeData;
3357                               break;
3358                             default:
3359                               break;
3360                             }
3361                             break;
3362                           }
3363 
3364                           if (type == eSymbolTypeInvalid) {
3365                             const char *symbol_sect_name =
3366                                 symbol_section->GetName().AsCString();
3367                             if (symbol_section->IsDescendant(
3368                                     text_section_sp.get())) {
3369                               if (symbol_section->IsClear(
3370                                       S_ATTR_PURE_INSTRUCTIONS |
3371                                       S_ATTR_SELF_MODIFYING_CODE |
3372                                       S_ATTR_SOME_INSTRUCTIONS))
3373                                 type = eSymbolTypeData;
3374                               else
3375                                 type = eSymbolTypeCode;
3376                             } else if (symbol_section->IsDescendant(
3377                                            data_section_sp.get()) ||
3378                                        symbol_section->IsDescendant(
3379                                            data_dirty_section_sp.get()) ||
3380                                        symbol_section->IsDescendant(
3381                                            data_const_section_sp.get())) {
3382                               if (symbol_sect_name &&
3383                                   ::strstr(symbol_sect_name, "__objc") ==
3384                                       symbol_sect_name) {
3385                                 type = eSymbolTypeRuntime;
3386 
3387                                 if (symbol_name) {
3388                                   llvm::StringRef symbol_name_ref(symbol_name);
3389                                   if (symbol_name_ref.startswith("_OBJC_")) {
3390                                     llvm::StringRef
3391                                         g_objc_v2_prefix_class(
3392                                             "_OBJC_CLASS_$_");
3393                                     llvm::StringRef
3394                                         g_objc_v2_prefix_metaclass(
3395                                             "_OBJC_METACLASS_$_");
3396                                     llvm::StringRef
3397                                         g_objc_v2_prefix_ivar("_OBJC_IVAR_$_");
3398                                     if (symbol_name_ref.startswith(
3399                                             g_objc_v2_prefix_class)) {
3400                                       symbol_name_non_abi_mangled =
3401                                           symbol_name + 1;
3402                                       symbol_name =
3403                                           symbol_name +
3404                                           g_objc_v2_prefix_class.size();
3405                                       type = eSymbolTypeObjCClass;
3406                                       demangled_is_synthesized = true;
3407                                     } else if (
3408                                         symbol_name_ref.startswith(
3409                                             g_objc_v2_prefix_metaclass)) {
3410                                       symbol_name_non_abi_mangled =
3411                                           symbol_name + 1;
3412                                       symbol_name =
3413                                           symbol_name +
3414                                           g_objc_v2_prefix_metaclass.size();
3415                                       type = eSymbolTypeObjCMetaClass;
3416                                       demangled_is_synthesized = true;
3417                                     } else if (symbol_name_ref.startswith(
3418                                                    g_objc_v2_prefix_ivar)) {
3419                                       symbol_name_non_abi_mangled =
3420                                           symbol_name + 1;
3421                                       symbol_name =
3422                                           symbol_name +
3423                                           g_objc_v2_prefix_ivar.size();
3424                                       type = eSymbolTypeObjCIVar;
3425                                       demangled_is_synthesized = true;
3426                                     }
3427                                   }
3428                                 }
3429                               } else if (symbol_sect_name &&
3430                                          ::strstr(symbol_sect_name,
3431                                                   "__gcc_except_tab") ==
3432                                              symbol_sect_name) {
3433                                 type = eSymbolTypeException;
3434                               } else {
3435                                 type = eSymbolTypeData;
3436                               }
3437                             } else if (symbol_sect_name &&
3438                                        ::strstr(symbol_sect_name, "__IMPORT") ==
3439                                            symbol_sect_name) {
3440                               type = eSymbolTypeTrampoline;
3441                             } else if (symbol_section->IsDescendant(
3442                                            objc_section_sp.get())) {
3443                               type = eSymbolTypeRuntime;
3444                               if (symbol_name && symbol_name[0] == '.') {
3445                                 llvm::StringRef symbol_name_ref(symbol_name);
3446                                 llvm::StringRef
3447                                     g_objc_v1_prefix_class(".objc_class_name_");
3448                                 if (symbol_name_ref.startswith(
3449                                         g_objc_v1_prefix_class)) {
3450                                   symbol_name_non_abi_mangled = symbol_name;
3451                                   symbol_name = symbol_name +
3452                                                 g_objc_v1_prefix_class.size();
3453                                   type = eSymbolTypeObjCClass;
3454                                   demangled_is_synthesized = true;
3455                                 }
3456                               }
3457                             }
3458                           }
3459                         }
3460                       } break;
3461                       }
3462                     }
3463 
3464                     if (add_nlist) {
3465                       uint64_t symbol_value = nlist.n_value;
3466                       if (symbol_name_non_abi_mangled) {
3467                         sym[sym_idx].GetMangled().SetMangledName(
3468                             ConstString(symbol_name_non_abi_mangled));
3469                         sym[sym_idx].GetMangled().SetDemangledName(
3470                             ConstString(symbol_name));
3471                       } else {
3472                         bool symbol_name_is_mangled = false;
3473 
3474                         if (symbol_name && symbol_name[0] == '_') {
3475                           symbol_name_is_mangled = symbol_name[1] == '_';
3476                           symbol_name++; // Skip the leading underscore
3477                         }
3478 
3479                         if (symbol_name) {
3480                           ConstString const_symbol_name(symbol_name);
3481                           sym[sym_idx].GetMangled().SetValue(
3482                               const_symbol_name, symbol_name_is_mangled);
3483                           if (is_gsym && is_debug) {
3484                             const char *gsym_name =
3485                                 sym[sym_idx]
3486                                     .GetMangled()
3487                                     .GetName(Mangled::ePreferMangled)
3488                                     .GetCString();
3489                             if (gsym_name)
3490                               N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
3491                           }
3492                         }
3493                       }
3494                       if (symbol_section) {
3495                         const addr_t section_file_addr =
3496                             symbol_section->GetFileAddress();
3497                         if (symbol_byte_size == 0 &&
3498                             function_starts_count > 0) {
3499                           addr_t symbol_lookup_file_addr = nlist.n_value;
3500                           // Do an exact address match for non-ARM addresses,
3501                           // else get the closest since the symbol might be a
3502                           // thumb symbol which has an address with bit zero
3503                           // set
3504                           FunctionStarts::Entry *func_start_entry =
3505                               function_starts.FindEntry(symbol_lookup_file_addr,
3506                                                         !is_arm);
3507                           if (is_arm && func_start_entry) {
3508                             // Verify that the function start address is the
3509                             // symbol address (ARM) or the symbol address + 1
3510                             // (thumb)
3511                             if (func_start_entry->addr !=
3512                                     symbol_lookup_file_addr &&
3513                                 func_start_entry->addr !=
3514                                     (symbol_lookup_file_addr + 1)) {
3515                               // Not the right entry, NULL it out...
3516                               func_start_entry = NULL;
3517                             }
3518                           }
3519                           if (func_start_entry) {
3520                             func_start_entry->data = true;
3521 
3522                             addr_t symbol_file_addr = func_start_entry->addr;
3523                             uint32_t symbol_flags = 0;
3524                             if (is_arm) {
3525                               if (symbol_file_addr & 1)
3526                                 symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB;
3527                               symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
3528                             }
3529 
3530                             const FunctionStarts::Entry *next_func_start_entry =
3531                                 function_starts.FindNextEntry(func_start_entry);
3532                             const addr_t section_end_file_addr =
3533                                 section_file_addr +
3534                                 symbol_section->GetByteSize();
3535                             if (next_func_start_entry) {
3536                               addr_t next_symbol_file_addr =
3537                                   next_func_start_entry->addr;
3538                               // Be sure the clear the Thumb address bit when
3539                               // we calculate the size from the current and
3540                               // next address
3541                               if (is_arm)
3542                                 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
3543                               symbol_byte_size = std::min<lldb::addr_t>(
3544                                   next_symbol_file_addr - symbol_file_addr,
3545                                   section_end_file_addr - symbol_file_addr);
3546                             } else {
3547                               symbol_byte_size =
3548                                   section_end_file_addr - symbol_file_addr;
3549                             }
3550                           }
3551                         }
3552                         symbol_value -= section_file_addr;
3553                       }
3554 
3555                       if (is_debug == false) {
3556                         if (type == eSymbolTypeCode) {
3557                           // See if we can find a N_FUN entry for any code
3558                           // symbols. If we do find a match, and the name
3559                           // matches, then we can merge the two into just the
3560                           // function symbol to avoid duplicate entries in
3561                           // the symbol table
3562                           auto range =
3563                               N_FUN_addr_to_sym_idx.equal_range(nlist.n_value);
3564                           if (range.first != range.second) {
3565                             bool found_it = false;
3566                             for (auto pos = range.first; pos != range.second;
3567                                  ++pos) {
3568                               if (sym[sym_idx].GetMangled().GetName(
3569                                       Mangled::ePreferMangled) ==
3570                                   sym[pos->second].GetMangled().GetName(
3571                                       Mangled::ePreferMangled)) {
3572                                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
3573                                 // We just need the flags from the linker
3574                                 // symbol, so put these flags
3575                                 // into the N_FUN flags to avoid duplicate
3576                                 // symbols in the symbol table
3577                                 sym[pos->second].SetExternal(
3578                                     sym[sym_idx].IsExternal());
3579                                 sym[pos->second].SetFlags(nlist.n_type << 16 |
3580                                                           nlist.n_desc);
3581                                 if (resolver_addresses.find(nlist.n_value) !=
3582                                     resolver_addresses.end())
3583                                   sym[pos->second].SetType(eSymbolTypeResolver);
3584                                 sym[sym_idx].Clear();
3585                                 found_it = true;
3586                                 break;
3587                               }
3588                             }
3589                             if (found_it)
3590                               continue;
3591                           } else {
3592                             if (resolver_addresses.find(nlist.n_value) !=
3593                                 resolver_addresses.end())
3594                               type = eSymbolTypeResolver;
3595                           }
3596                         } else if (type == eSymbolTypeData ||
3597                                    type == eSymbolTypeObjCClass ||
3598                                    type == eSymbolTypeObjCMetaClass ||
3599                                    type == eSymbolTypeObjCIVar) {
3600                           // See if we can find a N_STSYM entry for any data
3601                           // symbols. If we do find a match, and the name
3602                           // matches, then we can merge the two into just the
3603                           // Static symbol to avoid duplicate entries in the
3604                           // symbol table
3605                           auto range = N_STSYM_addr_to_sym_idx.equal_range(
3606                               nlist.n_value);
3607                           if (range.first != range.second) {
3608                             bool found_it = false;
3609                             for (auto pos = range.first; pos != range.second;
3610                                  ++pos) {
3611                               if (sym[sym_idx].GetMangled().GetName(
3612                                       Mangled::ePreferMangled) ==
3613                                   sym[pos->second].GetMangled().GetName(
3614                                       Mangled::ePreferMangled)) {
3615                                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
3616                                 // We just need the flags from the linker
3617                                 // symbol, so put these flags
3618                                 // into the N_STSYM flags to avoid duplicate
3619                                 // symbols in the symbol table
3620                                 sym[pos->second].SetExternal(
3621                                     sym[sym_idx].IsExternal());
3622                                 sym[pos->second].SetFlags(nlist.n_type << 16 |
3623                                                           nlist.n_desc);
3624                                 sym[sym_idx].Clear();
3625                                 found_it = true;
3626                                 break;
3627                               }
3628                             }
3629                             if (found_it)
3630                               continue;
3631                           } else {
3632                             const char *gsym_name =
3633                                 sym[sym_idx]
3634                                     .GetMangled()
3635                                     .GetName(Mangled::ePreferMangled)
3636                                     .GetCString();
3637                             if (gsym_name) {
3638                               // Combine N_GSYM stab entries with the non
3639                               // stab symbol
3640                               ConstNameToSymbolIndexMap::const_iterator pos =
3641                                   N_GSYM_name_to_sym_idx.find(gsym_name);
3642                               if (pos != N_GSYM_name_to_sym_idx.end()) {
3643                                 const uint32_t GSYM_sym_idx = pos->second;
3644                                 m_nlist_idx_to_sym_idx[nlist_idx] =
3645                                     GSYM_sym_idx;
3646                                 // Copy the address, because often the N_GSYM
3647                                 // address has an invalid address of zero
3648                                 // when the global is a common symbol
3649                                 sym[GSYM_sym_idx].GetAddressRef().SetSection(
3650                                     symbol_section);
3651                                 sym[GSYM_sym_idx].GetAddressRef().SetOffset(
3652                                     symbol_value);
3653                                 add_symbol_addr(sym[GSYM_sym_idx]
3654                                                     .GetAddress()
3655                                                     .GetFileAddress());
3656                                 // We just need the flags from the linker
3657                                 // symbol, so put these flags
3658                                 // into the N_GSYM flags to avoid duplicate
3659                                 // symbols in the symbol table
3660                                 sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 |
3661                                                            nlist.n_desc);
3662                                 sym[sym_idx].Clear();
3663                                 continue;
3664                               }
3665                             }
3666                           }
3667                         }
3668                       }
3669 
3670                       sym[sym_idx].SetID(nlist_idx);
3671                       sym[sym_idx].SetType(type);
3672                       if (set_value) {
3673                         sym[sym_idx].GetAddressRef().SetSection(symbol_section);
3674                         sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
3675                         add_symbol_addr(
3676                             sym[sym_idx].GetAddress().GetFileAddress());
3677                       }
3678                       sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
3679 
3680                       if (symbol_byte_size > 0)
3681                         sym[sym_idx].SetByteSize(symbol_byte_size);
3682 
3683                       if (demangled_is_synthesized)
3684                         sym[sym_idx].SetDemangledNameIsSynthesized(true);
3685                       ++sym_idx;
3686                     } else {
3687                       sym[sym_idx].Clear();
3688                     }
3689                   }
3690                   /////////////////////////////
3691                 }
3692                 break; // No more entries to consider
3693               }
3694             }
3695 
3696             for (const auto &pos : reexport_shlib_needs_fixup) {
3697               const auto undef_pos = undefined_name_to_desc.find(pos.second);
3698               if (undef_pos != undefined_name_to_desc.end()) {
3699                 const uint8_t dylib_ordinal =
3700                     llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
3701                 if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize())
3702                   sym[pos.first].SetReExportedSymbolSharedLibrary(
3703                       dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
3704               }
3705             }
3706           }
3707         }
3708       }
3709     }
3710   }
3711 
3712   // Must reset this in case it was mutated above!
3713   nlist_data_offset = 0;
3714 #endif
3715 
3716   if (nlist_data.GetByteSize() > 0) {
3717 
3718     // If the sym array was not created while parsing the DSC unmapped
3719     // symbols, create it now.
3720     if (sym == nullptr) {
3721       sym =
3722           symtab->Resize(symtab_load_command.nsyms + m_dysymtab.nindirectsyms);
3723       num_syms = symtab->GetNumSymbols();
3724     }
3725 
3726     if (unmapped_local_symbols_found) {
3727       assert(m_dysymtab.ilocalsym == 0);
3728       nlist_data_offset += (m_dysymtab.nlocalsym * nlist_byte_size);
3729       nlist_idx = m_dysymtab.nlocalsym;
3730     } else {
3731       nlist_idx = 0;
3732     }
3733 
3734     typedef llvm::DenseMap<ConstString, uint16_t> UndefinedNameToDescMap;
3735     typedef llvm::DenseMap<uint32_t, ConstString> SymbolIndexToName;
3736     UndefinedNameToDescMap undefined_name_to_desc;
3737     SymbolIndexToName reexport_shlib_needs_fixup;
3738 
3739     // Symtab parsing is a huge mess. Everything is entangled and the code
3740     // requires access to a ridiculous amount of variables. LLDB depends
3741     // heavily on the proper merging of symbols and to get that right we need
3742     // to make sure we have parsed all the debug symbols first. Therefore we
3743     // invoke the lambda twice, once to parse only the debug symbols and then
3744     // once more to parse the remaining symbols.
3745     auto ParseSymbolLambda = [&](struct nlist_64 &nlist, uint32_t nlist_idx,
3746                                  bool debug_only) {
3747       const bool is_debug = ((nlist.n_type & N_STAB) != 0);
3748       if (is_debug != debug_only)
3749         return true;
3750 
3751       const char *symbol_name_non_abi_mangled = nullptr;
3752       const char *symbol_name = nullptr;
3753 
3754       if (have_strtab_data) {
3755         symbol_name = strtab_data.PeekCStr(nlist.n_strx);
3756 
3757         if (symbol_name == nullptr) {
3758           // No symbol should be NULL, even the symbols with no string values
3759           // should have an offset zero which points to an empty C-string
3760           Host::SystemLog(Host::eSystemLogError,
3761                           "error: symbol[%u] has invalid string table offset "
3762                           "0x%x in %s, ignoring symbol\n",
3763                           nlist_idx, nlist.n_strx,
3764                           module_sp->GetFileSpec().GetPath().c_str());
3765           return true;
3766         }
3767         if (symbol_name[0] == '\0')
3768           symbol_name = nullptr;
3769       } else {
3770         const addr_t str_addr = strtab_addr + nlist.n_strx;
3771         Status str_error;
3772         if (process->ReadCStringFromMemory(str_addr, memory_symbol_name,
3773                                            str_error))
3774           symbol_name = memory_symbol_name.c_str();
3775       }
3776 
3777       SymbolType type = eSymbolTypeInvalid;
3778       SectionSP symbol_section;
3779       lldb::addr_t symbol_byte_size = 0;
3780       bool add_nlist = true;
3781       bool is_gsym = false;
3782       bool demangled_is_synthesized = false;
3783       bool set_value = true;
3784 
3785       assert(sym_idx < num_syms);
3786       sym[sym_idx].SetDebug(is_debug);
3787 
3788       if (is_debug) {
3789         switch (nlist.n_type) {
3790         case N_GSYM:
3791           // global symbol: name,,NO_SECT,type,0
3792           // Sometimes the N_GSYM value contains the address.
3793 
3794           // FIXME: In the .o files, we have a GSYM and a debug symbol for all
3795           // the ObjC data.  They
3796           // have the same address, but we want to ensure that we always find
3797           // only the real symbol, 'cause we don't currently correctly
3798           // attribute the GSYM one to the ObjCClass/Ivar/MetaClass symbol
3799           // type.  This is a temporary hack to make sure the ObjectiveC
3800           // symbols get treated correctly.  To do this right, we should
3801           // coalesce all the GSYM & global symbols that have the same
3802           // address.
3803           is_gsym = true;
3804           sym[sym_idx].SetExternal(true);
3805 
3806           if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O') {
3807             llvm::StringRef symbol_name_ref(symbol_name);
3808             if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) {
3809               symbol_name_non_abi_mangled = symbol_name + 1;
3810               symbol_name = symbol_name + g_objc_v2_prefix_class.size();
3811               type = eSymbolTypeObjCClass;
3812               demangled_is_synthesized = true;
3813 
3814             } else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) {
3815               symbol_name_non_abi_mangled = symbol_name + 1;
3816               symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size();
3817               type = eSymbolTypeObjCMetaClass;
3818               demangled_is_synthesized = true;
3819             } else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) {
3820               symbol_name_non_abi_mangled = symbol_name + 1;
3821               symbol_name = symbol_name + g_objc_v2_prefix_ivar.size();
3822               type = eSymbolTypeObjCIVar;
3823               demangled_is_synthesized = true;
3824             }
3825           } else {
3826             if (nlist.n_value != 0)
3827               symbol_section =
3828                   section_info.GetSection(nlist.n_sect, nlist.n_value);
3829             type = eSymbolTypeData;
3830           }
3831           break;
3832 
3833         case N_FNAME:
3834           // procedure name (f77 kludge): name,,NO_SECT,0,0
3835           type = eSymbolTypeCompiler;
3836           break;
3837 
3838         case N_FUN:
3839           // procedure: name,,n_sect,linenumber,address
3840           if (symbol_name) {
3841             type = eSymbolTypeCode;
3842             symbol_section =
3843                 section_info.GetSection(nlist.n_sect, nlist.n_value);
3844 
3845             N_FUN_addr_to_sym_idx.insert(
3846                 std::make_pair(nlist.n_value, sym_idx));
3847             // We use the current number of symbols in the symbol table in
3848             // lieu of using nlist_idx in case we ever start trimming entries
3849             // out
3850             N_FUN_indexes.push_back(sym_idx);
3851           } else {
3852             type = eSymbolTypeCompiler;
3853 
3854             if (!N_FUN_indexes.empty()) {
3855               // Copy the size of the function into the original STAB entry
3856               // so we don't have to hunt for it later
3857               symtab->SymbolAtIndex(N_FUN_indexes.back())
3858                   ->SetByteSize(nlist.n_value);
3859               N_FUN_indexes.pop_back();
3860               // We don't really need the end function STAB as it contains
3861               // the size which we already placed with the original symbol,
3862               // so don't add it if we want a minimal symbol table
3863               add_nlist = false;
3864             }
3865           }
3866           break;
3867 
3868         case N_STSYM:
3869           // static symbol: name,,n_sect,type,address
3870           N_STSYM_addr_to_sym_idx.insert(
3871               std::make_pair(nlist.n_value, sym_idx));
3872           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3873           if (symbol_name && symbol_name[0]) {
3874             type = ObjectFile::GetSymbolTypeFromName(symbol_name + 1,
3875                                                      eSymbolTypeData);
3876           }
3877           break;
3878 
3879         case N_LCSYM:
3880           // .lcomm symbol: name,,n_sect,type,address
3881           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3882           type = eSymbolTypeCommonBlock;
3883           break;
3884 
3885         case N_BNSYM:
3886           // We use the current number of symbols in the symbol table in lieu
3887           // of using nlist_idx in case we ever start trimming entries out
3888           // Skip these if we want minimal symbol tables
3889           add_nlist = false;
3890           break;
3891 
3892         case N_ENSYM:
3893           // Set the size of the N_BNSYM to the terminating index of this
3894           // N_ENSYM so that we can always skip the entire symbol if we need
3895           // to navigate more quickly at the source level when parsing STABS
3896           // Skip these if we want minimal symbol tables
3897           add_nlist = false;
3898           break;
3899 
3900         case N_OPT:
3901           // emitted with gcc2_compiled and in gcc source
3902           type = eSymbolTypeCompiler;
3903           break;
3904 
3905         case N_RSYM:
3906           // register sym: name,,NO_SECT,type,register
3907           type = eSymbolTypeVariable;
3908           break;
3909 
3910         case N_SLINE:
3911           // src line: 0,,n_sect,linenumber,address
3912           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3913           type = eSymbolTypeLineEntry;
3914           break;
3915 
3916         case N_SSYM:
3917           // structure elt: name,,NO_SECT,type,struct_offset
3918           type = eSymbolTypeVariableType;
3919           break;
3920 
3921         case N_SO:
3922           // source file name
3923           type = eSymbolTypeSourceFile;
3924           if (symbol_name == nullptr) {
3925             add_nlist = false;
3926             if (N_SO_index != UINT32_MAX) {
3927               // Set the size of the N_SO to the terminating index of this
3928               // N_SO so that we can always skip the entire N_SO if we need
3929               // to navigate more quickly at the source level when parsing
3930               // STABS
3931               symbol_ptr = symtab->SymbolAtIndex(N_SO_index);
3932               symbol_ptr->SetByteSize(sym_idx);
3933               symbol_ptr->SetSizeIsSibling(true);
3934             }
3935             N_NSYM_indexes.clear();
3936             N_INCL_indexes.clear();
3937             N_BRAC_indexes.clear();
3938             N_COMM_indexes.clear();
3939             N_FUN_indexes.clear();
3940             N_SO_index = UINT32_MAX;
3941           } else {
3942             // We use the current number of symbols in the symbol table in
3943             // lieu of using nlist_idx in case we ever start trimming entries
3944             // out
3945             const bool N_SO_has_full_path = symbol_name[0] == '/';
3946             if (N_SO_has_full_path) {
3947               if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) {
3948                 // We have two consecutive N_SO entries where the first
3949                 // contains a directory and the second contains a full path.
3950                 sym[sym_idx - 1].GetMangled().SetValue(ConstString(symbol_name),
3951                                                        false);
3952                 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3953                 add_nlist = false;
3954               } else {
3955                 // This is the first entry in a N_SO that contains a
3956                 // directory or a full path to the source file
3957                 N_SO_index = sym_idx;
3958               }
3959             } else if ((N_SO_index == sym_idx - 1) &&
3960                        ((sym_idx - 1) < num_syms)) {
3961               // This is usually the second N_SO entry that contains just the
3962               // filename, so here we combine it with the first one if we are
3963               // minimizing the symbol table
3964               const char *so_path =
3965                   sym[sym_idx - 1].GetMangled().GetDemangledName().AsCString();
3966               if (so_path && so_path[0]) {
3967                 std::string full_so_path(so_path);
3968                 const size_t double_slash_pos = full_so_path.find("//");
3969                 if (double_slash_pos != std::string::npos) {
3970                   // The linker has been generating bad N_SO entries with
3971                   // doubled up paths in the format "%s%s" where the first
3972                   // string in the DW_AT_comp_dir, and the second is the
3973                   // directory for the source file so you end up with a path
3974                   // that looks like "/tmp/src//tmp/src/"
3975                   FileSpec so_dir(so_path);
3976                   if (!FileSystem::Instance().Exists(so_dir)) {
3977                     so_dir.SetFile(&full_so_path[double_slash_pos + 1],
3978                                    FileSpec::Style::native);
3979                     if (FileSystem::Instance().Exists(so_dir)) {
3980                       // Trim off the incorrect path
3981                       full_so_path.erase(0, double_slash_pos + 1);
3982                     }
3983                   }
3984                 }
3985                 if (*full_so_path.rbegin() != '/')
3986                   full_so_path += '/';
3987                 full_so_path += symbol_name;
3988                 sym[sym_idx - 1].GetMangled().SetValue(
3989                     ConstString(full_so_path.c_str()), false);
3990                 add_nlist = false;
3991                 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3992               }
3993             } else {
3994               // This could be a relative path to a N_SO
3995               N_SO_index = sym_idx;
3996             }
3997           }
3998           break;
3999 
4000         case N_OSO:
4001           // object file name: name,,0,0,st_mtime
4002           type = eSymbolTypeObjectFile;
4003           break;
4004 
4005         case N_LSYM:
4006           // local sym: name,,NO_SECT,type,offset
4007           type = eSymbolTypeLocal;
4008           break;
4009 
4010         // INCL scopes
4011         case N_BINCL:
4012           // include file beginning: name,,NO_SECT,0,sum We use the current
4013           // number of symbols in the symbol table in lieu of using nlist_idx
4014           // in case we ever start trimming entries out
4015           N_INCL_indexes.push_back(sym_idx);
4016           type = eSymbolTypeScopeBegin;
4017           break;
4018 
4019         case N_EINCL:
4020           // include file end: name,,NO_SECT,0,0
4021           // Set the size of the N_BINCL to the terminating index of this
4022           // N_EINCL so that we can always skip the entire symbol if we need
4023           // to navigate more quickly at the source level when parsing STABS
4024           if (!N_INCL_indexes.empty()) {
4025             symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back());
4026             symbol_ptr->SetByteSize(sym_idx + 1);
4027             symbol_ptr->SetSizeIsSibling(true);
4028             N_INCL_indexes.pop_back();
4029           }
4030           type = eSymbolTypeScopeEnd;
4031           break;
4032 
4033         case N_SOL:
4034           // #included file name: name,,n_sect,0,address
4035           type = eSymbolTypeHeaderFile;
4036 
4037           // We currently don't use the header files on darwin
4038           add_nlist = false;
4039           break;
4040 
4041         case N_PARAMS:
4042           // compiler parameters: name,,NO_SECT,0,0
4043           type = eSymbolTypeCompiler;
4044           break;
4045 
4046         case N_VERSION:
4047           // compiler version: name,,NO_SECT,0,0
4048           type = eSymbolTypeCompiler;
4049           break;
4050 
4051         case N_OLEVEL:
4052           // compiler -O level: name,,NO_SECT,0,0
4053           type = eSymbolTypeCompiler;
4054           break;
4055 
4056         case N_PSYM:
4057           // parameter: name,,NO_SECT,type,offset
4058           type = eSymbolTypeVariable;
4059           break;
4060 
4061         case N_ENTRY:
4062           // alternate entry: name,,n_sect,linenumber,address
4063           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4064           type = eSymbolTypeLineEntry;
4065           break;
4066 
4067         // Left and Right Braces
4068         case N_LBRAC:
4069           // left bracket: 0,,NO_SECT,nesting level,address We use the
4070           // current number of symbols in the symbol table in lieu of using
4071           // nlist_idx in case we ever start trimming entries out
4072           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4073           N_BRAC_indexes.push_back(sym_idx);
4074           type = eSymbolTypeScopeBegin;
4075           break;
4076 
4077         case N_RBRAC:
4078           // right bracket: 0,,NO_SECT,nesting level,address Set the size of
4079           // the N_LBRAC to the terminating index of this N_RBRAC so that we
4080           // can always skip the entire symbol if we need to navigate more
4081           // quickly at the source level when parsing STABS
4082           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4083           if (!N_BRAC_indexes.empty()) {
4084             symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back());
4085             symbol_ptr->SetByteSize(sym_idx + 1);
4086             symbol_ptr->SetSizeIsSibling(true);
4087             N_BRAC_indexes.pop_back();
4088           }
4089           type = eSymbolTypeScopeEnd;
4090           break;
4091 
4092         case N_EXCL:
4093           // deleted include file: name,,NO_SECT,0,sum
4094           type = eSymbolTypeHeaderFile;
4095           break;
4096 
4097         // COMM scopes
4098         case N_BCOMM:
4099           // begin common: name,,NO_SECT,0,0
4100           // We use the current number of symbols in the symbol table in lieu
4101           // of using nlist_idx in case we ever start trimming entries out
4102           type = eSymbolTypeScopeBegin;
4103           N_COMM_indexes.push_back(sym_idx);
4104           break;
4105 
4106         case N_ECOML:
4107           // end common (local name): 0,,n_sect,0,address
4108           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4109           LLVM_FALLTHROUGH;
4110 
4111         case N_ECOMM:
4112           // end common: name,,n_sect,0,0
4113           // Set the size of the N_BCOMM to the terminating index of this
4114           // N_ECOMM/N_ECOML so that we can always skip the entire symbol if
4115           // we need to navigate more quickly at the source level when
4116           // parsing STABS
4117           if (!N_COMM_indexes.empty()) {
4118             symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back());
4119             symbol_ptr->SetByteSize(sym_idx + 1);
4120             symbol_ptr->SetSizeIsSibling(true);
4121             N_COMM_indexes.pop_back();
4122           }
4123           type = eSymbolTypeScopeEnd;
4124           break;
4125 
4126         case N_LENG:
4127           // second stab entry with length information
4128           type = eSymbolTypeAdditional;
4129           break;
4130 
4131         default:
4132           break;
4133         }
4134       } else {
4135         uint8_t n_type = N_TYPE & nlist.n_type;
4136         sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
4137 
4138         switch (n_type) {
4139         case N_INDR: {
4140           const char *reexport_name_cstr = strtab_data.PeekCStr(nlist.n_value);
4141           if (reexport_name_cstr && reexport_name_cstr[0]) {
4142             type = eSymbolTypeReExported;
4143             ConstString reexport_name(reexport_name_cstr +
4144                                       ((reexport_name_cstr[0] == '_') ? 1 : 0));
4145             sym[sym_idx].SetReExportedSymbolName(reexport_name);
4146             set_value = false;
4147             reexport_shlib_needs_fixup[sym_idx] = reexport_name;
4148             indirect_symbol_names.insert(
4149                 ConstString(symbol_name + ((symbol_name[0] == '_') ? 1 : 0)));
4150           } else
4151             type = eSymbolTypeUndefined;
4152         } break;
4153 
4154         case N_UNDF:
4155           if (symbol_name && symbol_name[0]) {
4156             ConstString undefined_name(symbol_name +
4157                                        ((symbol_name[0] == '_') ? 1 : 0));
4158             undefined_name_to_desc[undefined_name] = nlist.n_desc;
4159           }
4160           LLVM_FALLTHROUGH;
4161 
4162         case N_PBUD:
4163           type = eSymbolTypeUndefined;
4164           break;
4165 
4166         case N_ABS:
4167           type = eSymbolTypeAbsolute;
4168           break;
4169 
4170         case N_SECT: {
4171           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4172 
4173           if (!symbol_section) {
4174             // TODO: warn about this?
4175             add_nlist = false;
4176             break;
4177           }
4178 
4179           if (TEXT_eh_frame_sectID == nlist.n_sect) {
4180             type = eSymbolTypeException;
4181           } else {
4182             uint32_t section_type = symbol_section->Get() & SECTION_TYPE;
4183 
4184             switch (section_type) {
4185             case S_CSTRING_LITERALS:
4186               type = eSymbolTypeData;
4187               break; // section with only literal C strings
4188             case S_4BYTE_LITERALS:
4189               type = eSymbolTypeData;
4190               break; // section with only 4 byte literals
4191             case S_8BYTE_LITERALS:
4192               type = eSymbolTypeData;
4193               break; // section with only 8 byte literals
4194             case S_LITERAL_POINTERS:
4195               type = eSymbolTypeTrampoline;
4196               break; // section with only pointers to literals
4197             case S_NON_LAZY_SYMBOL_POINTERS:
4198               type = eSymbolTypeTrampoline;
4199               break; // section with only non-lazy symbol pointers
4200             case S_LAZY_SYMBOL_POINTERS:
4201               type = eSymbolTypeTrampoline;
4202               break; // section with only lazy symbol pointers
4203             case S_SYMBOL_STUBS:
4204               type = eSymbolTypeTrampoline;
4205               break; // section with only symbol stubs, byte size of stub in
4206                      // the reserved2 field
4207             case S_MOD_INIT_FUNC_POINTERS:
4208               type = eSymbolTypeCode;
4209               break; // section with only function pointers for initialization
4210             case S_MOD_TERM_FUNC_POINTERS:
4211               type = eSymbolTypeCode;
4212               break; // section with only function pointers for termination
4213             case S_INTERPOSING:
4214               type = eSymbolTypeTrampoline;
4215               break; // section with only pairs of function pointers for
4216                      // interposing
4217             case S_16BYTE_LITERALS:
4218               type = eSymbolTypeData;
4219               break; // section with only 16 byte literals
4220             case S_DTRACE_DOF:
4221               type = eSymbolTypeInstrumentation;
4222               break;
4223             case S_LAZY_DYLIB_SYMBOL_POINTERS:
4224               type = eSymbolTypeTrampoline;
4225               break;
4226             default:
4227               switch (symbol_section->GetType()) {
4228               case lldb::eSectionTypeCode:
4229                 type = eSymbolTypeCode;
4230                 break;
4231               case eSectionTypeData:
4232               case eSectionTypeDataCString:         // Inlined C string data
4233               case eSectionTypeDataCStringPointers: // Pointers to C string
4234                                                     // data
4235               case eSectionTypeDataSymbolAddress:   // Address of a symbol in
4236                                                     // the symbol table
4237               case eSectionTypeData4:
4238               case eSectionTypeData8:
4239               case eSectionTypeData16:
4240                 type = eSymbolTypeData;
4241                 break;
4242               default:
4243                 break;
4244               }
4245               break;
4246             }
4247 
4248             if (type == eSymbolTypeInvalid) {
4249               const char *symbol_sect_name =
4250                   symbol_section->GetName().AsCString();
4251               if (symbol_section->IsDescendant(text_section_sp.get())) {
4252                 if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS |
4253                                             S_ATTR_SELF_MODIFYING_CODE |
4254                                             S_ATTR_SOME_INSTRUCTIONS))
4255                   type = eSymbolTypeData;
4256                 else
4257                   type = eSymbolTypeCode;
4258               } else if (symbol_section->IsDescendant(data_section_sp.get()) ||
4259                          symbol_section->IsDescendant(
4260                              data_dirty_section_sp.get()) ||
4261                          symbol_section->IsDescendant(
4262                              data_const_section_sp.get())) {
4263                 if (symbol_sect_name &&
4264                     ::strstr(symbol_sect_name, "__objc") == symbol_sect_name) {
4265                   type = eSymbolTypeRuntime;
4266 
4267                   if (symbol_name) {
4268                     llvm::StringRef symbol_name_ref(symbol_name);
4269                     if (symbol_name_ref.startswith("_OBJC_")) {
4270                       llvm::StringRef g_objc_v2_prefix_class(
4271                           "_OBJC_CLASS_$_");
4272                       llvm::StringRef g_objc_v2_prefix_metaclass(
4273                           "_OBJC_METACLASS_$_");
4274                       llvm::StringRef g_objc_v2_prefix_ivar(
4275                           "_OBJC_IVAR_$_");
4276                       if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) {
4277                         symbol_name_non_abi_mangled = symbol_name + 1;
4278                         symbol_name =
4279                             symbol_name + g_objc_v2_prefix_class.size();
4280                         type = eSymbolTypeObjCClass;
4281                         demangled_is_synthesized = true;
4282                       } else if (symbol_name_ref.startswith(
4283                                      g_objc_v2_prefix_metaclass)) {
4284                         symbol_name_non_abi_mangled = symbol_name + 1;
4285                         symbol_name =
4286                             symbol_name + g_objc_v2_prefix_metaclass.size();
4287                         type = eSymbolTypeObjCMetaClass;
4288                         demangled_is_synthesized = true;
4289                       } else if (symbol_name_ref.startswith(
4290                                      g_objc_v2_prefix_ivar)) {
4291                         symbol_name_non_abi_mangled = symbol_name + 1;
4292                         symbol_name =
4293                             symbol_name + g_objc_v2_prefix_ivar.size();
4294                         type = eSymbolTypeObjCIVar;
4295                         demangled_is_synthesized = true;
4296                       }
4297                     }
4298                   }
4299                 } else if (symbol_sect_name &&
4300                            ::strstr(symbol_sect_name, "__gcc_except_tab") ==
4301                                symbol_sect_name) {
4302                   type = eSymbolTypeException;
4303                 } else {
4304                   type = eSymbolTypeData;
4305                 }
4306               } else if (symbol_sect_name &&
4307                          ::strstr(symbol_sect_name, "__IMPORT") ==
4308                              symbol_sect_name) {
4309                 type = eSymbolTypeTrampoline;
4310               } else if (symbol_section->IsDescendant(objc_section_sp.get())) {
4311                 type = eSymbolTypeRuntime;
4312                 if (symbol_name && symbol_name[0] == '.') {
4313                   llvm::StringRef symbol_name_ref(symbol_name);
4314                   llvm::StringRef g_objc_v1_prefix_class(
4315                       ".objc_class_name_");
4316                   if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) {
4317                     symbol_name_non_abi_mangled = symbol_name;
4318                     symbol_name = symbol_name + g_objc_v1_prefix_class.size();
4319                     type = eSymbolTypeObjCClass;
4320                     demangled_is_synthesized = true;
4321                   }
4322                 }
4323               }
4324             }
4325           }
4326         } break;
4327         }
4328       }
4329 
4330       if (!add_nlist) {
4331         sym[sym_idx].Clear();
4332         return true;
4333       }
4334 
4335       uint64_t symbol_value = nlist.n_value;
4336 
4337       if (symbol_name_non_abi_mangled) {
4338         sym[sym_idx].GetMangled().SetMangledName(
4339             ConstString(symbol_name_non_abi_mangled));
4340         sym[sym_idx].GetMangled().SetDemangledName(ConstString(symbol_name));
4341       } else {
4342         bool symbol_name_is_mangled = false;
4343 
4344         if (symbol_name && symbol_name[0] == '_') {
4345           symbol_name_is_mangled = symbol_name[1] == '_';
4346           symbol_name++; // Skip the leading underscore
4347         }
4348 
4349         if (symbol_name) {
4350           ConstString const_symbol_name(symbol_name);
4351           sym[sym_idx].GetMangled().SetValue(const_symbol_name,
4352                                              symbol_name_is_mangled);
4353         }
4354       }
4355 
4356       if (is_gsym) {
4357         const char *gsym_name = sym[sym_idx]
4358                                     .GetMangled()
4359                                     .GetName(Mangled::ePreferMangled)
4360                                     .GetCString();
4361         if (gsym_name)
4362           N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
4363       }
4364 
4365       if (symbol_section) {
4366         const addr_t section_file_addr = symbol_section->GetFileAddress();
4367         if (symbol_byte_size == 0 && function_starts_count > 0) {
4368           addr_t symbol_lookup_file_addr = nlist.n_value;
4369           // Do an exact address match for non-ARM addresses, else get the
4370           // closest since the symbol might be a thumb symbol which has an
4371           // address with bit zero set.
4372           FunctionStarts::Entry *func_start_entry =
4373               function_starts.FindEntry(symbol_lookup_file_addr, !is_arm);
4374           if (is_arm && func_start_entry) {
4375             // Verify that the function start address is the symbol address
4376             // (ARM) or the symbol address + 1 (thumb).
4377             if (func_start_entry->addr != symbol_lookup_file_addr &&
4378                 func_start_entry->addr != (symbol_lookup_file_addr + 1)) {
4379               // Not the right entry, NULL it out...
4380               func_start_entry = nullptr;
4381             }
4382           }
4383           if (func_start_entry) {
4384             func_start_entry->data = true;
4385 
4386             addr_t symbol_file_addr = func_start_entry->addr;
4387             if (is_arm)
4388               symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4389 
4390             const FunctionStarts::Entry *next_func_start_entry =
4391                 function_starts.FindNextEntry(func_start_entry);
4392             const addr_t section_end_file_addr =
4393                 section_file_addr + symbol_section->GetByteSize();
4394             if (next_func_start_entry) {
4395               addr_t next_symbol_file_addr = next_func_start_entry->addr;
4396               // Be sure the clear the Thumb address bit when we calculate the
4397               // size from the current and next address
4398               if (is_arm)
4399                 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4400               symbol_byte_size = std::min<lldb::addr_t>(
4401                   next_symbol_file_addr - symbol_file_addr,
4402                   section_end_file_addr - symbol_file_addr);
4403             } else {
4404               symbol_byte_size = section_end_file_addr - symbol_file_addr;
4405             }
4406           }
4407         }
4408         symbol_value -= section_file_addr;
4409       }
4410 
4411       if (!is_debug) {
4412         if (type == eSymbolTypeCode) {
4413           // See if we can find a N_FUN entry for any code symbols. If we do
4414           // find a match, and the name matches, then we can merge the two into
4415           // just the function symbol to avoid duplicate entries in the symbol
4416           // table.
4417           std::pair<ValueToSymbolIndexMap::const_iterator,
4418                     ValueToSymbolIndexMap::const_iterator>
4419               range;
4420           range = N_FUN_addr_to_sym_idx.equal_range(nlist.n_value);
4421           if (range.first != range.second) {
4422             for (ValueToSymbolIndexMap::const_iterator pos = range.first;
4423                  pos != range.second; ++pos) {
4424               if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) ==
4425                   sym[pos->second].GetMangled().GetName(
4426                       Mangled::ePreferMangled)) {
4427                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
4428                 // We just need the flags from the linker symbol, so put these
4429                 // flags into the N_FUN flags to avoid duplicate symbols in the
4430                 // symbol table.
4431                 sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
4432                 sym[pos->second].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4433                 if (resolver_addresses.find(nlist.n_value) !=
4434                     resolver_addresses.end())
4435                   sym[pos->second].SetType(eSymbolTypeResolver);
4436                 sym[sym_idx].Clear();
4437                 return true;
4438               }
4439             }
4440           } else {
4441             if (resolver_addresses.find(nlist.n_value) !=
4442                 resolver_addresses.end())
4443               type = eSymbolTypeResolver;
4444           }
4445         } else if (type == eSymbolTypeData || type == eSymbolTypeObjCClass ||
4446                    type == eSymbolTypeObjCMetaClass ||
4447                    type == eSymbolTypeObjCIVar) {
4448           // See if we can find a N_STSYM entry for any data symbols. If we do
4449           // find a match, and the name matches, then we can merge the two into
4450           // just the Static symbol to avoid duplicate entries in the symbol
4451           // table.
4452           std::pair<ValueToSymbolIndexMap::const_iterator,
4453                     ValueToSymbolIndexMap::const_iterator>
4454               range;
4455           range = N_STSYM_addr_to_sym_idx.equal_range(nlist.n_value);
4456           if (range.first != range.second) {
4457             for (ValueToSymbolIndexMap::const_iterator pos = range.first;
4458                  pos != range.second; ++pos) {
4459               if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) ==
4460                   sym[pos->second].GetMangled().GetName(
4461                       Mangled::ePreferMangled)) {
4462                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
4463                 // We just need the flags from the linker symbol, so put these
4464                 // flags into the N_STSYM flags to avoid duplicate symbols in
4465                 // the symbol table.
4466                 sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
4467                 sym[pos->second].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4468                 sym[sym_idx].Clear();
4469                 return true;
4470               }
4471             }
4472           } else {
4473             // Combine N_GSYM stab entries with the non stab symbol.
4474             const char *gsym_name = sym[sym_idx]
4475                                         .GetMangled()
4476                                         .GetName(Mangled::ePreferMangled)
4477                                         .GetCString();
4478             if (gsym_name) {
4479               ConstNameToSymbolIndexMap::const_iterator pos =
4480                   N_GSYM_name_to_sym_idx.find(gsym_name);
4481               if (pos != N_GSYM_name_to_sym_idx.end()) {
4482                 const uint32_t GSYM_sym_idx = pos->second;
4483                 m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx;
4484                 // Copy the address, because often the N_GSYM address has an
4485                 // invalid address of zero when the global is a common symbol.
4486                 sym[GSYM_sym_idx].GetAddressRef().SetSection(symbol_section);
4487                 sym[GSYM_sym_idx].GetAddressRef().SetOffset(symbol_value);
4488                 add_symbol_addr(
4489                     sym[GSYM_sym_idx].GetAddress().GetFileAddress());
4490                 // We just need the flags from the linker symbol, so put these
4491                 // flags into the N_GSYM flags to avoid duplicate symbols in
4492                 // the symbol table.
4493                 sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4494                 sym[sym_idx].Clear();
4495                 return true;
4496               }
4497             }
4498           }
4499         }
4500       }
4501 
4502       sym[sym_idx].SetID(nlist_idx);
4503       sym[sym_idx].SetType(type);
4504       if (set_value) {
4505         sym[sym_idx].GetAddressRef().SetSection(symbol_section);
4506         sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
4507         if (symbol_section)
4508           add_symbol_addr(sym[sym_idx].GetAddress().GetFileAddress());
4509       }
4510       sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4511       if (nlist.n_desc & N_WEAK_REF)
4512         sym[sym_idx].SetIsWeak(true);
4513 
4514       if (symbol_byte_size > 0)
4515         sym[sym_idx].SetByteSize(symbol_byte_size);
4516 
4517       if (demangled_is_synthesized)
4518         sym[sym_idx].SetDemangledNameIsSynthesized(true);
4519 
4520       ++sym_idx;
4521       return true;
4522     };
4523 
4524     // First parse all the nlists but don't process them yet. See the next
4525     // comment for an explanation why.
4526     std::vector<struct nlist_64> nlists;
4527     nlists.reserve(symtab_load_command.nsyms);
4528     for (; nlist_idx < symtab_load_command.nsyms; ++nlist_idx) {
4529       if (auto nlist =
4530               ParseNList(nlist_data, nlist_data_offset, nlist_byte_size))
4531         nlists.push_back(*nlist);
4532       else
4533         break;
4534     }
4535 
4536     // Now parse all the debug symbols. This is needed to merge non-debug
4537     // symbols in the next step. Non-debug symbols are always coalesced into
4538     // the debug symbol. Doing this in one step would mean that some symbols
4539     // won't be merged.
4540     nlist_idx = 0;
4541     for (auto &nlist : nlists) {
4542       if (!ParseSymbolLambda(nlist, nlist_idx++, DebugSymbols))
4543         break;
4544     }
4545 
4546     // Finally parse all the non debug symbols.
4547     nlist_idx = 0;
4548     for (auto &nlist : nlists) {
4549       if (!ParseSymbolLambda(nlist, nlist_idx++, NonDebugSymbols))
4550         break;
4551     }
4552 
4553     for (const auto &pos : reexport_shlib_needs_fixup) {
4554       const auto undef_pos = undefined_name_to_desc.find(pos.second);
4555       if (undef_pos != undefined_name_to_desc.end()) {
4556         const uint8_t dylib_ordinal =
4557             llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
4558         if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize())
4559           sym[pos.first].SetReExportedSymbolSharedLibrary(
4560               dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
4561       }
4562     }
4563   }
4564 
4565   // Count how many trie symbols we'll add to the symbol table
4566   int trie_symbol_table_augment_count = 0;
4567   for (auto &e : external_sym_trie_entries) {
4568     if (symbols_added.find(e.entry.address) == symbols_added.end())
4569       trie_symbol_table_augment_count++;
4570   }
4571 
4572   if (num_syms < sym_idx + trie_symbol_table_augment_count) {
4573     num_syms = sym_idx + trie_symbol_table_augment_count;
4574     sym = symtab->Resize(num_syms);
4575   }
4576   uint32_t synthetic_sym_id = symtab_load_command.nsyms;
4577 
4578   // Add symbols from the trie to the symbol table.
4579   for (auto &e : external_sym_trie_entries) {
4580     if (symbols_added.find(e.entry.address) != symbols_added.end())
4581       continue;
4582 
4583     // Find the section that this trie address is in, use that to annotate
4584     // symbol type as we add the trie address and name to the symbol table.
4585     Address symbol_addr;
4586     if (module_sp->ResolveFileAddress(e.entry.address, symbol_addr)) {
4587       SectionSP symbol_section(symbol_addr.GetSection());
4588       const char *symbol_name = e.entry.name.GetCString();
4589       bool demangled_is_synthesized = false;
4590       SymbolType type =
4591           GetSymbolType(symbol_name, demangled_is_synthesized, text_section_sp,
4592                         data_section_sp, data_dirty_section_sp,
4593                         data_const_section_sp, symbol_section);
4594 
4595       sym[sym_idx].SetType(type);
4596       if (symbol_section) {
4597         sym[sym_idx].SetID(synthetic_sym_id++);
4598         sym[sym_idx].GetMangled().SetMangledName(ConstString(symbol_name));
4599         if (demangled_is_synthesized)
4600           sym[sym_idx].SetDemangledNameIsSynthesized(true);
4601         sym[sym_idx].SetIsSynthetic(true);
4602         sym[sym_idx].SetExternal(true);
4603         sym[sym_idx].GetAddressRef() = symbol_addr;
4604         add_symbol_addr(symbol_addr.GetFileAddress());
4605         if (e.entry.flags & TRIE_SYMBOL_IS_THUMB)
4606           sym[sym_idx].SetFlags(MACHO_NLIST_ARM_SYMBOL_IS_THUMB);
4607         ++sym_idx;
4608       }
4609     }
4610   }
4611 
4612   if (function_starts_count > 0) {
4613     uint32_t num_synthetic_function_symbols = 0;
4614     for (i = 0; i < function_starts_count; ++i) {
4615       if (symbols_added.find(function_starts.GetEntryRef(i).addr) ==
4616           symbols_added.end())
4617         ++num_synthetic_function_symbols;
4618     }
4619 
4620     if (num_synthetic_function_symbols > 0) {
4621       if (num_syms < sym_idx + num_synthetic_function_symbols) {
4622         num_syms = sym_idx + num_synthetic_function_symbols;
4623         sym = symtab->Resize(num_syms);
4624       }
4625       for (i = 0; i < function_starts_count; ++i) {
4626         const FunctionStarts::Entry *func_start_entry =
4627             function_starts.GetEntryAtIndex(i);
4628         if (symbols_added.find(func_start_entry->addr) == symbols_added.end()) {
4629           addr_t symbol_file_addr = func_start_entry->addr;
4630           uint32_t symbol_flags = 0;
4631           if (func_start_entry->data)
4632             symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB;
4633           Address symbol_addr;
4634           if (module_sp->ResolveFileAddress(symbol_file_addr, symbol_addr)) {
4635             SectionSP symbol_section(symbol_addr.GetSection());
4636             uint32_t symbol_byte_size = 0;
4637             if (symbol_section) {
4638               const addr_t section_file_addr = symbol_section->GetFileAddress();
4639               const FunctionStarts::Entry *next_func_start_entry =
4640                   function_starts.FindNextEntry(func_start_entry);
4641               const addr_t section_end_file_addr =
4642                   section_file_addr + symbol_section->GetByteSize();
4643               if (next_func_start_entry) {
4644                 addr_t next_symbol_file_addr = next_func_start_entry->addr;
4645                 if (is_arm)
4646                   next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4647                 symbol_byte_size = std::min<lldb::addr_t>(
4648                     next_symbol_file_addr - symbol_file_addr,
4649                     section_end_file_addr - symbol_file_addr);
4650               } else {
4651                 symbol_byte_size = section_end_file_addr - symbol_file_addr;
4652               }
4653               sym[sym_idx].SetID(synthetic_sym_id++);
4654               sym[sym_idx].GetMangled().SetDemangledName(
4655                   GetNextSyntheticSymbolName());
4656               sym[sym_idx].SetType(eSymbolTypeCode);
4657               sym[sym_idx].SetIsSynthetic(true);
4658               sym[sym_idx].GetAddressRef() = symbol_addr;
4659               add_symbol_addr(symbol_addr.GetFileAddress());
4660               if (symbol_flags)
4661                 sym[sym_idx].SetFlags(symbol_flags);
4662               if (symbol_byte_size)
4663                 sym[sym_idx].SetByteSize(symbol_byte_size);
4664               ++sym_idx;
4665             }
4666           }
4667         }
4668       }
4669     }
4670   }
4671 
4672   // Trim our symbols down to just what we ended up with after removing any
4673   // symbols.
4674   if (sym_idx < num_syms) {
4675     num_syms = sym_idx;
4676     sym = symtab->Resize(num_syms);
4677   }
4678 
4679   // Now synthesize indirect symbols
4680   if (m_dysymtab.nindirectsyms != 0) {
4681     if (indirect_symbol_index_data.GetByteSize()) {
4682       NListIndexToSymbolIndexMap::const_iterator end_index_pos =
4683           m_nlist_idx_to_sym_idx.end();
4684 
4685       for (uint32_t sect_idx = 1; sect_idx < m_mach_sections.size();
4686            ++sect_idx) {
4687         if ((m_mach_sections[sect_idx].flags & SECTION_TYPE) ==
4688             S_SYMBOL_STUBS) {
4689           uint32_t symbol_stub_byte_size = m_mach_sections[sect_idx].reserved2;
4690           if (symbol_stub_byte_size == 0)
4691             continue;
4692 
4693           const uint32_t num_symbol_stubs =
4694               m_mach_sections[sect_idx].size / symbol_stub_byte_size;
4695 
4696           if (num_symbol_stubs == 0)
4697             continue;
4698 
4699           const uint32_t symbol_stub_index_offset =
4700               m_mach_sections[sect_idx].reserved1;
4701           for (uint32_t stub_idx = 0; stub_idx < num_symbol_stubs; ++stub_idx) {
4702             const uint32_t symbol_stub_index =
4703                 symbol_stub_index_offset + stub_idx;
4704             const lldb::addr_t symbol_stub_addr =
4705                 m_mach_sections[sect_idx].addr +
4706                 (stub_idx * symbol_stub_byte_size);
4707             lldb::offset_t symbol_stub_offset = symbol_stub_index * 4;
4708             if (indirect_symbol_index_data.ValidOffsetForDataOfSize(
4709                     symbol_stub_offset, 4)) {
4710               const uint32_t stub_sym_id =
4711                   indirect_symbol_index_data.GetU32(&symbol_stub_offset);
4712               if (stub_sym_id & (INDIRECT_SYMBOL_ABS | INDIRECT_SYMBOL_LOCAL))
4713                 continue;
4714 
4715               NListIndexToSymbolIndexMap::const_iterator index_pos =
4716                   m_nlist_idx_to_sym_idx.find(stub_sym_id);
4717               Symbol *stub_symbol = nullptr;
4718               if (index_pos != end_index_pos) {
4719                 // We have a remapping from the original nlist index to a
4720                 // current symbol index, so just look this up by index
4721                 stub_symbol = symtab->SymbolAtIndex(index_pos->second);
4722               } else {
4723                 // We need to lookup a symbol using the original nlist symbol
4724                 // index since this index is coming from the S_SYMBOL_STUBS
4725                 stub_symbol = symtab->FindSymbolByID(stub_sym_id);
4726               }
4727 
4728               if (stub_symbol) {
4729                 Address so_addr(symbol_stub_addr, section_list);
4730 
4731                 if (stub_symbol->GetType() == eSymbolTypeUndefined) {
4732                   // Change the external symbol into a trampoline that makes
4733                   // sense These symbols were N_UNDF N_EXT, and are useless
4734                   // to us, so we can re-use them so we don't have to make up
4735                   // a synthetic symbol for no good reason.
4736                   if (resolver_addresses.find(symbol_stub_addr) ==
4737                       resolver_addresses.end())
4738                     stub_symbol->SetType(eSymbolTypeTrampoline);
4739                   else
4740                     stub_symbol->SetType(eSymbolTypeResolver);
4741                   stub_symbol->SetExternal(false);
4742                   stub_symbol->GetAddressRef() = so_addr;
4743                   stub_symbol->SetByteSize(symbol_stub_byte_size);
4744                 } else {
4745                   // Make a synthetic symbol to describe the trampoline stub
4746                   Mangled stub_symbol_mangled_name(stub_symbol->GetMangled());
4747                   if (sym_idx >= num_syms) {
4748                     sym = symtab->Resize(++num_syms);
4749                     stub_symbol = nullptr; // this pointer no longer valid
4750                   }
4751                   sym[sym_idx].SetID(synthetic_sym_id++);
4752                   sym[sym_idx].GetMangled() = stub_symbol_mangled_name;
4753                   if (resolver_addresses.find(symbol_stub_addr) ==
4754                       resolver_addresses.end())
4755                     sym[sym_idx].SetType(eSymbolTypeTrampoline);
4756                   else
4757                     sym[sym_idx].SetType(eSymbolTypeResolver);
4758                   sym[sym_idx].SetIsSynthetic(true);
4759                   sym[sym_idx].GetAddressRef() = so_addr;
4760                   add_symbol_addr(so_addr.GetFileAddress());
4761                   sym[sym_idx].SetByteSize(symbol_stub_byte_size);
4762                   ++sym_idx;
4763                 }
4764               } else {
4765                 if (log)
4766                   log->Warning("symbol stub referencing symbol table symbol "
4767                                "%u that isn't in our minimal symbol table, "
4768                                "fix this!!!",
4769                                stub_sym_id);
4770               }
4771             }
4772           }
4773         }
4774       }
4775     }
4776   }
4777 
4778   if (!reexport_trie_entries.empty()) {
4779     for (const auto &e : reexport_trie_entries) {
4780       if (e.entry.import_name) {
4781         // Only add indirect symbols from the Trie entries if we didn't have
4782         // a N_INDR nlist entry for this already
4783         if (indirect_symbol_names.find(e.entry.name) ==
4784             indirect_symbol_names.end()) {
4785           // Make a synthetic symbol to describe re-exported symbol.
4786           if (sym_idx >= num_syms)
4787             sym = symtab->Resize(++num_syms);
4788           sym[sym_idx].SetID(synthetic_sym_id++);
4789           sym[sym_idx].GetMangled() = Mangled(e.entry.name);
4790           sym[sym_idx].SetType(eSymbolTypeReExported);
4791           sym[sym_idx].SetIsSynthetic(true);
4792           sym[sym_idx].SetReExportedSymbolName(e.entry.import_name);
4793           if (e.entry.other > 0 && e.entry.other <= dylib_files.GetSize()) {
4794             sym[sym_idx].SetReExportedSymbolSharedLibrary(
4795                 dylib_files.GetFileSpecAtIndex(e.entry.other - 1));
4796           }
4797           ++sym_idx;
4798         }
4799       }
4800     }
4801   }
4802 
4803   //        StreamFile s(stdout, false);
4804   //        s.Printf ("Symbol table before CalculateSymbolSizes():\n");
4805   //        symtab->Dump(&s, NULL, eSortOrderNone);
4806   // Set symbol byte sizes correctly since mach-o nlist entries don't have
4807   // sizes
4808   symtab->CalculateSymbolSizes();
4809 
4810   //        s.Printf ("Symbol table after CalculateSymbolSizes():\n");
4811   //        symtab->Dump(&s, NULL, eSortOrderNone);
4812 
4813   return symtab->GetNumSymbols();
4814 }
4815 
4816 void ObjectFileMachO::Dump(Stream *s) {
4817   ModuleSP module_sp(GetModule());
4818   if (module_sp) {
4819     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
4820     s->Printf("%p: ", static_cast<void *>(this));
4821     s->Indent();
4822     if (m_header.magic == MH_MAGIC_64 || m_header.magic == MH_CIGAM_64)
4823       s->PutCString("ObjectFileMachO64");
4824     else
4825       s->PutCString("ObjectFileMachO32");
4826 
4827     *s << ", file = '" << m_file;
4828     ModuleSpecList all_specs;
4829     ModuleSpec base_spec;
4830     GetAllArchSpecs(m_header, m_data, MachHeaderSizeFromMagic(m_header.magic),
4831                     base_spec, all_specs);
4832     for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
4833       *s << "', triple";
4834       if (e)
4835         s->Printf("[%d]", i);
4836       *s << " = ";
4837       *s << all_specs.GetModuleSpecRefAtIndex(i)
4838                 .GetArchitecture()
4839                 .GetTriple()
4840                 .getTriple();
4841     }
4842     *s << "\n";
4843     SectionList *sections = GetSectionList();
4844     if (sections)
4845       sections->Dump(s->AsRawOstream(), s->GetIndentLevel(), nullptr, true,
4846                      UINT32_MAX);
4847 
4848     if (m_symtab_up)
4849       m_symtab_up->Dump(s, nullptr, eSortOrderNone);
4850   }
4851 }
4852 
4853 UUID ObjectFileMachO::GetUUID(const llvm::MachO::mach_header &header,
4854                               const lldb_private::DataExtractor &data,
4855                               lldb::offset_t lc_offset) {
4856   uint32_t i;
4857   struct uuid_command load_cmd;
4858 
4859   lldb::offset_t offset = lc_offset;
4860   for (i = 0; i < header.ncmds; ++i) {
4861     const lldb::offset_t cmd_offset = offset;
4862     if (data.GetU32(&offset, &load_cmd, 2) == nullptr)
4863       break;
4864 
4865     if (load_cmd.cmd == LC_UUID) {
4866       const uint8_t *uuid_bytes = data.PeekData(offset, 16);
4867 
4868       if (uuid_bytes) {
4869         // OpenCL on Mac OS X uses the same UUID for each of its object files.
4870         // We pretend these object files have no UUID to prevent crashing.
4871 
4872         const uint8_t opencl_uuid[] = {0x8c, 0x8e, 0xb3, 0x9b, 0x3b, 0xa8,
4873                                        0x4b, 0x16, 0xb6, 0xa4, 0x27, 0x63,
4874                                        0xbb, 0x14, 0xf0, 0x0d};
4875 
4876         if (!memcmp(uuid_bytes, opencl_uuid, 16))
4877           return UUID();
4878 
4879         return UUID::fromOptionalData(uuid_bytes, 16);
4880       }
4881       return UUID();
4882     }
4883     offset = cmd_offset + load_cmd.cmdsize;
4884   }
4885   return UUID();
4886 }
4887 
4888 static llvm::StringRef GetOSName(uint32_t cmd) {
4889   switch (cmd) {
4890   case llvm::MachO::LC_VERSION_MIN_IPHONEOS:
4891     return llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4892   case llvm::MachO::LC_VERSION_MIN_MACOSX:
4893     return llvm::Triple::getOSTypeName(llvm::Triple::MacOSX);
4894   case llvm::MachO::LC_VERSION_MIN_TVOS:
4895     return llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4896   case llvm::MachO::LC_VERSION_MIN_WATCHOS:
4897     return llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4898   default:
4899     llvm_unreachable("unexpected LC_VERSION load command");
4900   }
4901 }
4902 
4903 namespace {
4904 struct OSEnv {
4905   llvm::StringRef os_type;
4906   llvm::StringRef environment;
4907   OSEnv(uint32_t cmd) {
4908     switch (cmd) {
4909     case llvm::MachO::PLATFORM_MACOS:
4910       os_type = llvm::Triple::getOSTypeName(llvm::Triple::MacOSX);
4911       return;
4912     case llvm::MachO::PLATFORM_IOS:
4913       os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4914       return;
4915     case llvm::MachO::PLATFORM_TVOS:
4916       os_type = llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4917       return;
4918     case llvm::MachO::PLATFORM_WATCHOS:
4919       os_type = llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4920       return;
4921       // NEED_BRIDGEOS_TRIPLE      case llvm::MachO::PLATFORM_BRIDGEOS:
4922       // NEED_BRIDGEOS_TRIPLE        os_type =
4923       // llvm::Triple::getOSTypeName(llvm::Triple::BridgeOS);
4924       // NEED_BRIDGEOS_TRIPLE        return;
4925     case llvm::MachO::PLATFORM_MACCATALYST:
4926       os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4927       environment = llvm::Triple::getEnvironmentTypeName(llvm::Triple::MacABI);
4928       return;
4929     case llvm::MachO::PLATFORM_IOSSIMULATOR:
4930       os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4931       environment =
4932           llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4933       return;
4934     case llvm::MachO::PLATFORM_TVOSSIMULATOR:
4935       os_type = llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4936       environment =
4937           llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4938       return;
4939     case llvm::MachO::PLATFORM_WATCHOSSIMULATOR:
4940       os_type = llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4941       environment =
4942           llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4943       return;
4944     default: {
4945       Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS |
4946                                                       LIBLLDB_LOG_PROCESS));
4947       LLDB_LOGF(log, "unsupported platform in LC_BUILD_VERSION");
4948     }
4949     }
4950   }
4951 };
4952 
4953 struct MinOS {
4954   uint32_t major_version, minor_version, patch_version;
4955   MinOS(uint32_t version)
4956       : major_version(version >> 16), minor_version((version >> 8) & 0xffu),
4957         patch_version(version & 0xffu) {}
4958 };
4959 } // namespace
4960 
4961 void ObjectFileMachO::GetAllArchSpecs(const llvm::MachO::mach_header &header,
4962                                       const lldb_private::DataExtractor &data,
4963                                       lldb::offset_t lc_offset,
4964                                       ModuleSpec &base_spec,
4965                                       lldb_private::ModuleSpecList &all_specs) {
4966   auto &base_arch = base_spec.GetArchitecture();
4967   base_arch.SetArchitecture(eArchTypeMachO, header.cputype, header.cpusubtype);
4968   if (!base_arch.IsValid())
4969     return;
4970 
4971   bool found_any = false;
4972   auto add_triple = [&](const llvm::Triple &triple) {
4973     auto spec = base_spec;
4974     spec.GetArchitecture().GetTriple() = triple;
4975     if (spec.GetArchitecture().IsValid()) {
4976       spec.GetUUID() = ObjectFileMachO::GetUUID(header, data, lc_offset);
4977       all_specs.Append(spec);
4978       found_any = true;
4979     }
4980   };
4981 
4982   // Set OS to an unspecified unknown or a "*" so it can match any OS
4983   llvm::Triple base_triple = base_arch.GetTriple();
4984   base_triple.setOS(llvm::Triple::UnknownOS);
4985   base_triple.setOSName(llvm::StringRef());
4986 
4987   if (header.filetype == MH_PRELOAD) {
4988     if (header.cputype == CPU_TYPE_ARM) {
4989       // If this is a 32-bit arm binary, and it's a standalone binary, force
4990       // the Vendor to Apple so we don't accidentally pick up the generic
4991       // armv7 ABI at runtime.  Apple's armv7 ABI always uses r7 for the
4992       // frame pointer register; most other armv7 ABIs use a combination of
4993       // r7 and r11.
4994       base_triple.setVendor(llvm::Triple::Apple);
4995     } else {
4996       // Set vendor to an unspecified unknown or a "*" so it can match any
4997       // vendor This is required for correct behavior of EFI debugging on
4998       // x86_64
4999       base_triple.setVendor(llvm::Triple::UnknownVendor);
5000       base_triple.setVendorName(llvm::StringRef());
5001     }
5002     return add_triple(base_triple);
5003   }
5004 
5005   struct load_command load_cmd;
5006 
5007   // See if there is an LC_VERSION_MIN_* load command that can give
5008   // us the OS type.
5009   lldb::offset_t offset = lc_offset;
5010   for (uint32_t i = 0; i < header.ncmds; ++i) {
5011     const lldb::offset_t cmd_offset = offset;
5012     if (data.GetU32(&offset, &load_cmd, 2) == NULL)
5013       break;
5014 
5015     struct version_min_command version_min;
5016     switch (load_cmd.cmd) {
5017     case llvm::MachO::LC_VERSION_MIN_MACOSX:
5018     case llvm::MachO::LC_VERSION_MIN_IPHONEOS:
5019     case llvm::MachO::LC_VERSION_MIN_TVOS:
5020     case llvm::MachO::LC_VERSION_MIN_WATCHOS: {
5021       if (load_cmd.cmdsize != sizeof(version_min))
5022         break;
5023       if (data.ExtractBytes(cmd_offset, sizeof(version_min),
5024                             data.GetByteOrder(), &version_min) == 0)
5025         break;
5026       MinOS min_os(version_min.version);
5027       llvm::SmallString<32> os_name;
5028       llvm::raw_svector_ostream os(os_name);
5029       os << GetOSName(load_cmd.cmd) << min_os.major_version << '.'
5030          << min_os.minor_version << '.' << min_os.patch_version;
5031 
5032       auto triple = base_triple;
5033       triple.setOSName(os.str());
5034 
5035       // Disambiguate legacy simulator platforms.
5036       if (load_cmd.cmd != llvm::MachO::LC_VERSION_MIN_MACOSX &&
5037           (base_triple.getArch() == llvm::Triple::x86_64 ||
5038            base_triple.getArch() == llvm::Triple::x86)) {
5039         // The combination of legacy LC_VERSION_MIN load command and
5040         // x86 architecture always indicates a simulator environment.
5041         // The combination of LC_VERSION_MIN and arm architecture only
5042         // appears for native binaries. Back-deploying simulator
5043         // binaries on Apple Silicon Macs use the modern unambigous
5044         // LC_BUILD_VERSION load commands; no special handling required.
5045         triple.setEnvironment(llvm::Triple::Simulator);
5046       }
5047       add_triple(triple);
5048       break;
5049     }
5050     default:
5051       break;
5052     }
5053 
5054     offset = cmd_offset + load_cmd.cmdsize;
5055   }
5056 
5057   // See if there are LC_BUILD_VERSION load commands that can give
5058   // us the OS type.
5059   offset = lc_offset;
5060   for (uint32_t i = 0; i < header.ncmds; ++i) {
5061     const lldb::offset_t cmd_offset = offset;
5062     if (data.GetU32(&offset, &load_cmd, 2) == NULL)
5063       break;
5064 
5065     do {
5066       if (load_cmd.cmd == llvm::MachO::LC_BUILD_VERSION) {
5067         struct build_version_command build_version;
5068         if (load_cmd.cmdsize < sizeof(build_version)) {
5069           // Malformed load command.
5070           break;
5071         }
5072         if (data.ExtractBytes(cmd_offset, sizeof(build_version),
5073                               data.GetByteOrder(), &build_version) == 0)
5074           break;
5075         MinOS min_os(build_version.minos);
5076         OSEnv os_env(build_version.platform);
5077         llvm::SmallString<16> os_name;
5078         llvm::raw_svector_ostream os(os_name);
5079         os << os_env.os_type << min_os.major_version << '.'
5080            << min_os.minor_version << '.' << min_os.patch_version;
5081         auto triple = base_triple;
5082         triple.setOSName(os.str());
5083         os_name.clear();
5084         if (!os_env.environment.empty())
5085           triple.setEnvironmentName(os_env.environment);
5086         add_triple(triple);
5087       }
5088     } while (0);
5089     offset = cmd_offset + load_cmd.cmdsize;
5090   }
5091 
5092   if (!found_any) {
5093     if (header.filetype == MH_KEXT_BUNDLE) {
5094       base_triple.setVendor(llvm::Triple::Apple);
5095       add_triple(base_triple);
5096     } else {
5097       // We didn't find a LC_VERSION_MIN load command and this isn't a KEXT
5098       // so lets not say our Vendor is Apple, leave it as an unspecified
5099       // unknown.
5100       base_triple.setVendor(llvm::Triple::UnknownVendor);
5101       base_triple.setVendorName(llvm::StringRef());
5102       add_triple(base_triple);
5103     }
5104   }
5105 }
5106 
5107 ArchSpec ObjectFileMachO::GetArchitecture(
5108     ModuleSP module_sp, const llvm::MachO::mach_header &header,
5109     const lldb_private::DataExtractor &data, lldb::offset_t lc_offset) {
5110   ModuleSpecList all_specs;
5111   ModuleSpec base_spec;
5112   GetAllArchSpecs(header, data, MachHeaderSizeFromMagic(header.magic),
5113                   base_spec, all_specs);
5114 
5115   // If the object file offers multiple alternative load commands,
5116   // pick the one that matches the module.
5117   if (module_sp) {
5118     const ArchSpec &module_arch = module_sp->GetArchitecture();
5119     for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
5120       ArchSpec mach_arch =
5121           all_specs.GetModuleSpecRefAtIndex(i).GetArchitecture();
5122       if (module_arch.IsCompatibleMatch(mach_arch))
5123         return mach_arch;
5124     }
5125   }
5126 
5127   // Return the first arch we found.
5128   if (all_specs.GetSize() == 0)
5129     return {};
5130   return all_specs.GetModuleSpecRefAtIndex(0).GetArchitecture();
5131 }
5132 
5133 UUID ObjectFileMachO::GetUUID() {
5134   ModuleSP module_sp(GetModule());
5135   if (module_sp) {
5136     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5137     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5138     return GetUUID(m_header, m_data, offset);
5139   }
5140   return UUID();
5141 }
5142 
5143 uint32_t ObjectFileMachO::GetDependentModules(FileSpecList &files) {
5144   uint32_t count = 0;
5145   ModuleSP module_sp(GetModule());
5146   if (module_sp) {
5147     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5148     struct load_command load_cmd;
5149     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5150     std::vector<std::string> rpath_paths;
5151     std::vector<std::string> rpath_relative_paths;
5152     std::vector<std::string> at_exec_relative_paths;
5153     uint32_t i;
5154     for (i = 0; i < m_header.ncmds; ++i) {
5155       const uint32_t cmd_offset = offset;
5156       if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5157         break;
5158 
5159       switch (load_cmd.cmd) {
5160       case LC_RPATH:
5161       case LC_LOAD_DYLIB:
5162       case LC_LOAD_WEAK_DYLIB:
5163       case LC_REEXPORT_DYLIB:
5164       case LC_LOAD_DYLINKER:
5165       case LC_LOADFVMLIB:
5166       case LC_LOAD_UPWARD_DYLIB: {
5167         uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
5168         const char *path = m_data.PeekCStr(name_offset);
5169         if (path) {
5170           if (load_cmd.cmd == LC_RPATH)
5171             rpath_paths.push_back(path);
5172           else {
5173             if (path[0] == '@') {
5174               if (strncmp(path, "@rpath", strlen("@rpath")) == 0)
5175                 rpath_relative_paths.push_back(path + strlen("@rpath"));
5176               else if (strncmp(path, "@executable_path",
5177                                strlen("@executable_path")) == 0)
5178                 at_exec_relative_paths.push_back(path +
5179                                                  strlen("@executable_path"));
5180             } else {
5181               FileSpec file_spec(path);
5182               if (files.AppendIfUnique(file_spec))
5183                 count++;
5184             }
5185           }
5186         }
5187       } break;
5188 
5189       default:
5190         break;
5191       }
5192       offset = cmd_offset + load_cmd.cmdsize;
5193     }
5194 
5195     FileSpec this_file_spec(m_file);
5196     FileSystem::Instance().Resolve(this_file_spec);
5197 
5198     if (!rpath_paths.empty()) {
5199       // Fixup all LC_RPATH values to be absolute paths
5200       std::string loader_path("@loader_path");
5201       std::string executable_path("@executable_path");
5202       for (auto &rpath : rpath_paths) {
5203         if (llvm::StringRef(rpath).startswith(loader_path)) {
5204           rpath.erase(0, loader_path.size());
5205           rpath.insert(0, this_file_spec.GetDirectory().GetCString());
5206         } else if (llvm::StringRef(rpath).startswith(executable_path)) {
5207           rpath.erase(0, executable_path.size());
5208           rpath.insert(0, this_file_spec.GetDirectory().GetCString());
5209         }
5210       }
5211 
5212       for (const auto &rpath_relative_path : rpath_relative_paths) {
5213         for (const auto &rpath : rpath_paths) {
5214           std::string path = rpath;
5215           path += rpath_relative_path;
5216           // It is OK to resolve this path because we must find a file on disk
5217           // for us to accept it anyway if it is rpath relative.
5218           FileSpec file_spec(path);
5219           FileSystem::Instance().Resolve(file_spec);
5220           if (FileSystem::Instance().Exists(file_spec) &&
5221               files.AppendIfUnique(file_spec)) {
5222             count++;
5223             break;
5224           }
5225         }
5226       }
5227     }
5228 
5229     // We may have @executable_paths but no RPATHS.  Figure those out here.
5230     // Only do this if this object file is the executable.  We have no way to
5231     // get back to the actual executable otherwise, so we won't get the right
5232     // path.
5233     if (!at_exec_relative_paths.empty() && CalculateType() == eTypeExecutable) {
5234       FileSpec exec_dir = this_file_spec.CopyByRemovingLastPathComponent();
5235       for (const auto &at_exec_relative_path : at_exec_relative_paths) {
5236         FileSpec file_spec =
5237             exec_dir.CopyByAppendingPathComponent(at_exec_relative_path);
5238         if (FileSystem::Instance().Exists(file_spec) &&
5239             files.AppendIfUnique(file_spec))
5240           count++;
5241       }
5242     }
5243   }
5244   return count;
5245 }
5246 
5247 lldb_private::Address ObjectFileMachO::GetEntryPointAddress() {
5248   // If the object file is not an executable it can't hold the entry point.
5249   // m_entry_point_address is initialized to an invalid address, so we can just
5250   // return that. If m_entry_point_address is valid it means we've found it
5251   // already, so return the cached value.
5252 
5253   if ((!IsExecutable() && !IsDynamicLoader()) ||
5254       m_entry_point_address.IsValid()) {
5255     return m_entry_point_address;
5256   }
5257 
5258   // Otherwise, look for the UnixThread or Thread command.  The data for the
5259   // Thread command is given in /usr/include/mach-o.h, but it is basically:
5260   //
5261   //  uint32_t flavor  - this is the flavor argument you would pass to
5262   //  thread_get_state
5263   //  uint32_t count   - this is the count of longs in the thread state data
5264   //  struct XXX_thread_state state - this is the structure from
5265   //  <machine/thread_status.h> corresponding to the flavor.
5266   //  <repeat this trio>
5267   //
5268   // So we just keep reading the various register flavors till we find the GPR
5269   // one, then read the PC out of there.
5270   // FIXME: We will need to have a "RegisterContext data provider" class at some
5271   // point that can get all the registers
5272   // out of data in this form & attach them to a given thread.  That should
5273   // underlie the MacOS X User process plugin, and we'll also need it for the
5274   // MacOS X Core File process plugin.  When we have that we can also use it
5275   // here.
5276   //
5277   // For now we hard-code the offsets and flavors we need:
5278   //
5279   //
5280 
5281   ModuleSP module_sp(GetModule());
5282   if (module_sp) {
5283     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5284     struct load_command load_cmd;
5285     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5286     uint32_t i;
5287     lldb::addr_t start_address = LLDB_INVALID_ADDRESS;
5288     bool done = false;
5289 
5290     for (i = 0; i < m_header.ncmds; ++i) {
5291       const lldb::offset_t cmd_offset = offset;
5292       if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5293         break;
5294 
5295       switch (load_cmd.cmd) {
5296       case LC_UNIXTHREAD:
5297       case LC_THREAD: {
5298         while (offset < cmd_offset + load_cmd.cmdsize) {
5299           uint32_t flavor = m_data.GetU32(&offset);
5300           uint32_t count = m_data.GetU32(&offset);
5301           if (count == 0) {
5302             // We've gotten off somehow, log and exit;
5303             return m_entry_point_address;
5304           }
5305 
5306           switch (m_header.cputype) {
5307           case llvm::MachO::CPU_TYPE_ARM:
5308             if (flavor == 1 ||
5309                 flavor == 9) // ARM_THREAD_STATE/ARM_THREAD_STATE32
5310                              // from mach/arm/thread_status.h
5311             {
5312               offset += 60; // This is the offset of pc in the GPR thread state
5313                             // data structure.
5314               start_address = m_data.GetU32(&offset);
5315               done = true;
5316             }
5317             break;
5318           case llvm::MachO::CPU_TYPE_ARM64:
5319           case llvm::MachO::CPU_TYPE_ARM64_32:
5320             if (flavor == 6) // ARM_THREAD_STATE64 from mach/arm/thread_status.h
5321             {
5322               offset += 256; // This is the offset of pc in the GPR thread state
5323                              // data structure.
5324               start_address = m_data.GetU64(&offset);
5325               done = true;
5326             }
5327             break;
5328           case llvm::MachO::CPU_TYPE_I386:
5329             if (flavor ==
5330                 1) // x86_THREAD_STATE32 from mach/i386/thread_status.h
5331             {
5332               offset += 40; // This is the offset of eip in the GPR thread state
5333                             // data structure.
5334               start_address = m_data.GetU32(&offset);
5335               done = true;
5336             }
5337             break;
5338           case llvm::MachO::CPU_TYPE_X86_64:
5339             if (flavor ==
5340                 4) // x86_THREAD_STATE64 from mach/i386/thread_status.h
5341             {
5342               offset += 16 * 8; // This is the offset of rip in the GPR thread
5343                                 // state data structure.
5344               start_address = m_data.GetU64(&offset);
5345               done = true;
5346             }
5347             break;
5348           default:
5349             return m_entry_point_address;
5350           }
5351           // Haven't found the GPR flavor yet, skip over the data for this
5352           // flavor:
5353           if (done)
5354             break;
5355           offset += count * 4;
5356         }
5357       } break;
5358       case LC_MAIN: {
5359         ConstString text_segment_name("__TEXT");
5360         uint64_t entryoffset = m_data.GetU64(&offset);
5361         SectionSP text_segment_sp =
5362             GetSectionList()->FindSectionByName(text_segment_name);
5363         if (text_segment_sp) {
5364           done = true;
5365           start_address = text_segment_sp->GetFileAddress() + entryoffset;
5366         }
5367       } break;
5368 
5369       default:
5370         break;
5371       }
5372       if (done)
5373         break;
5374 
5375       // Go to the next load command:
5376       offset = cmd_offset + load_cmd.cmdsize;
5377     }
5378 
5379     if (start_address == LLDB_INVALID_ADDRESS && IsDynamicLoader()) {
5380       if (GetSymtab()) {
5381         Symbol *dyld_start_sym = GetSymtab()->FindFirstSymbolWithNameAndType(
5382             ConstString("_dyld_start"), SymbolType::eSymbolTypeCode,
5383             Symtab::eDebugAny, Symtab::eVisibilityAny);
5384         if (dyld_start_sym && dyld_start_sym->GetAddress().IsValid()) {
5385           start_address = dyld_start_sym->GetAddress().GetFileAddress();
5386         }
5387       }
5388     }
5389 
5390     if (start_address != LLDB_INVALID_ADDRESS) {
5391       // We got the start address from the load commands, so now resolve that
5392       // address in the sections of this ObjectFile:
5393       if (!m_entry_point_address.ResolveAddressUsingFileSections(
5394               start_address, GetSectionList())) {
5395         m_entry_point_address.Clear();
5396       }
5397     } else {
5398       // We couldn't read the UnixThread load command - maybe it wasn't there.
5399       // As a fallback look for the "start" symbol in the main executable.
5400 
5401       ModuleSP module_sp(GetModule());
5402 
5403       if (module_sp) {
5404         SymbolContextList contexts;
5405         SymbolContext context;
5406         module_sp->FindSymbolsWithNameAndType(ConstString("start"),
5407                                               eSymbolTypeCode, contexts);
5408         if (contexts.GetSize()) {
5409           if (contexts.GetContextAtIndex(0, context))
5410             m_entry_point_address = context.symbol->GetAddress();
5411         }
5412       }
5413     }
5414   }
5415 
5416   return m_entry_point_address;
5417 }
5418 
5419 lldb_private::Address ObjectFileMachO::GetBaseAddress() {
5420   lldb_private::Address header_addr;
5421   SectionList *section_list = GetSectionList();
5422   if (section_list) {
5423     SectionSP text_segment_sp(
5424         section_list->FindSectionByName(GetSegmentNameTEXT()));
5425     if (text_segment_sp) {
5426       header_addr.SetSection(text_segment_sp);
5427       header_addr.SetOffset(0);
5428     }
5429   }
5430   return header_addr;
5431 }
5432 
5433 uint32_t ObjectFileMachO::GetNumThreadContexts() {
5434   ModuleSP module_sp(GetModule());
5435   if (module_sp) {
5436     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5437     if (!m_thread_context_offsets_valid) {
5438       m_thread_context_offsets_valid = true;
5439       lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5440       FileRangeArray::Entry file_range;
5441       thread_command thread_cmd;
5442       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5443         const uint32_t cmd_offset = offset;
5444         if (m_data.GetU32(&offset, &thread_cmd, 2) == nullptr)
5445           break;
5446 
5447         if (thread_cmd.cmd == LC_THREAD) {
5448           file_range.SetRangeBase(offset);
5449           file_range.SetByteSize(thread_cmd.cmdsize - 8);
5450           m_thread_context_offsets.Append(file_range);
5451         }
5452         offset = cmd_offset + thread_cmd.cmdsize;
5453       }
5454     }
5455   }
5456   return m_thread_context_offsets.GetSize();
5457 }
5458 
5459 std::string ObjectFileMachO::GetIdentifierString() {
5460   std::string result;
5461   ModuleSP module_sp(GetModule());
5462   if (module_sp) {
5463     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5464 
5465     // First, look over the load commands for an LC_NOTE load command with
5466     // data_owner string "kern ver str" & use that if found.
5467     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5468     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5469       const uint32_t cmd_offset = offset;
5470       load_command lc;
5471       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5472         break;
5473       if (lc.cmd == LC_NOTE) {
5474         char data_owner[17];
5475         m_data.CopyData(offset, 16, data_owner);
5476         data_owner[16] = '\0';
5477         offset += 16;
5478         uint64_t fileoff = m_data.GetU64_unchecked(&offset);
5479         uint64_t size = m_data.GetU64_unchecked(&offset);
5480 
5481         // "kern ver str" has a uint32_t version and then a nul terminated
5482         // c-string.
5483         if (strcmp("kern ver str", data_owner) == 0) {
5484           offset = fileoff;
5485           uint32_t version;
5486           if (m_data.GetU32(&offset, &version, 1) != nullptr) {
5487             if (version == 1) {
5488               uint32_t strsize = size - sizeof(uint32_t);
5489               char *buf = (char *)malloc(strsize);
5490               if (buf) {
5491                 m_data.CopyData(offset, strsize, buf);
5492                 buf[strsize - 1] = '\0';
5493                 result = buf;
5494                 if (buf)
5495                   free(buf);
5496                 return result;
5497               }
5498             }
5499           }
5500         }
5501       }
5502       offset = cmd_offset + lc.cmdsize;
5503     }
5504 
5505     // Second, make a pass over the load commands looking for an obsolete
5506     // LC_IDENT load command.
5507     offset = MachHeaderSizeFromMagic(m_header.magic);
5508     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5509       const uint32_t cmd_offset = offset;
5510       struct ident_command ident_command;
5511       if (m_data.GetU32(&offset, &ident_command, 2) == nullptr)
5512         break;
5513       if (ident_command.cmd == LC_IDENT && ident_command.cmdsize != 0) {
5514         char *buf = (char *)malloc(ident_command.cmdsize);
5515         if (buf != nullptr && m_data.CopyData(offset, ident_command.cmdsize,
5516                                               buf) == ident_command.cmdsize) {
5517           buf[ident_command.cmdsize - 1] = '\0';
5518           result = buf;
5519         }
5520         if (buf)
5521           free(buf);
5522       }
5523       offset = cmd_offset + ident_command.cmdsize;
5524     }
5525   }
5526   return result;
5527 }
5528 
5529 bool ObjectFileMachO::GetCorefileMainBinaryInfo(addr_t &address, UUID &uuid,
5530                                                 ObjectFile::BinaryType &type) {
5531   address = LLDB_INVALID_ADDRESS;
5532   uuid.Clear();
5533   ModuleSP module_sp(GetModule());
5534   if (module_sp) {
5535     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5536     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5537     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5538       const uint32_t cmd_offset = offset;
5539       load_command lc;
5540       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5541         break;
5542       if (lc.cmd == LC_NOTE) {
5543         char data_owner[17];
5544         memset(data_owner, 0, sizeof(data_owner));
5545         m_data.CopyData(offset, 16, data_owner);
5546         offset += 16;
5547         uint64_t fileoff = m_data.GetU64_unchecked(&offset);
5548         uint64_t size = m_data.GetU64_unchecked(&offset);
5549 
5550         // "main bin spec" (main binary specification) data payload is
5551         // formatted:
5552         //    uint32_t version       [currently 1]
5553         //    uint32_t type          [0 == unspecified, 1 == kernel,
5554         //                            2 == user process, 3 == firmware ]
5555         //    uint64_t address       [ UINT64_MAX if address not specified ]
5556         //    uuid_t   uuid          [ all zero's if uuid not specified ]
5557         //    uint32_t log2_pagesize [ process page size in log base
5558         //                             2, e.g. 4k pages are 12.
5559         //                             0 for unspecified ]
5560         //    uint32_t unused        [ for alignment ]
5561 
5562         if (strcmp("main bin spec", data_owner) == 0 && size >= 32) {
5563           offset = fileoff;
5564           uint32_t version;
5565           if (m_data.GetU32(&offset, &version, 1) != nullptr && version == 1) {
5566             uint32_t binspec_type = 0;
5567             uuid_t raw_uuid;
5568             memset(raw_uuid, 0, sizeof(uuid_t));
5569 
5570             if (m_data.GetU32(&offset, &binspec_type, 1) &&
5571                 m_data.GetU64(&offset, &address, 1) &&
5572                 m_data.CopyData(offset, sizeof(uuid_t), raw_uuid) != 0) {
5573               uuid = UUID::fromOptionalData(raw_uuid, sizeof(uuid_t));
5574               // convert the "main bin spec" type into our
5575               // ObjectFile::BinaryType enum
5576               switch (binspec_type) {
5577               case 0:
5578                 type = eBinaryTypeUnknown;
5579                 break;
5580               case 1:
5581                 type = eBinaryTypeKernel;
5582                 break;
5583               case 2:
5584                 type = eBinaryTypeUser;
5585                 break;
5586               case 3:
5587                 type = eBinaryTypeStandalone;
5588                 break;
5589               }
5590               return true;
5591             }
5592           }
5593         }
5594       }
5595       offset = cmd_offset + lc.cmdsize;
5596     }
5597   }
5598   return false;
5599 }
5600 
5601 lldb::RegisterContextSP
5602 ObjectFileMachO::GetThreadContextAtIndex(uint32_t idx,
5603                                          lldb_private::Thread &thread) {
5604   lldb::RegisterContextSP reg_ctx_sp;
5605 
5606   ModuleSP module_sp(GetModule());
5607   if (module_sp) {
5608     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5609     if (!m_thread_context_offsets_valid)
5610       GetNumThreadContexts();
5611 
5612     const FileRangeArray::Entry *thread_context_file_range =
5613         m_thread_context_offsets.GetEntryAtIndex(idx);
5614     if (thread_context_file_range) {
5615 
5616       DataExtractor data(m_data, thread_context_file_range->GetRangeBase(),
5617                          thread_context_file_range->GetByteSize());
5618 
5619       switch (m_header.cputype) {
5620       case llvm::MachO::CPU_TYPE_ARM64:
5621       case llvm::MachO::CPU_TYPE_ARM64_32:
5622         reg_ctx_sp =
5623             std::make_shared<RegisterContextDarwin_arm64_Mach>(thread, data);
5624         break;
5625 
5626       case llvm::MachO::CPU_TYPE_ARM:
5627         reg_ctx_sp =
5628             std::make_shared<RegisterContextDarwin_arm_Mach>(thread, data);
5629         break;
5630 
5631       case llvm::MachO::CPU_TYPE_I386:
5632         reg_ctx_sp =
5633             std::make_shared<RegisterContextDarwin_i386_Mach>(thread, data);
5634         break;
5635 
5636       case llvm::MachO::CPU_TYPE_X86_64:
5637         reg_ctx_sp =
5638             std::make_shared<RegisterContextDarwin_x86_64_Mach>(thread, data);
5639         break;
5640       }
5641     }
5642   }
5643   return reg_ctx_sp;
5644 }
5645 
5646 ObjectFile::Type ObjectFileMachO::CalculateType() {
5647   switch (m_header.filetype) {
5648   case MH_OBJECT: // 0x1u
5649     if (GetAddressByteSize() == 4) {
5650       // 32 bit kexts are just object files, but they do have a valid
5651       // UUID load command.
5652       if (GetUUID()) {
5653         // this checking for the UUID load command is not enough we could
5654         // eventually look for the symbol named "OSKextGetCurrentIdentifier" as
5655         // this is required of kexts
5656         if (m_strata == eStrataInvalid)
5657           m_strata = eStrataKernel;
5658         return eTypeSharedLibrary;
5659       }
5660     }
5661     return eTypeObjectFile;
5662 
5663   case MH_EXECUTE:
5664     return eTypeExecutable; // 0x2u
5665   case MH_FVMLIB:
5666     return eTypeSharedLibrary; // 0x3u
5667   case MH_CORE:
5668     return eTypeCoreFile; // 0x4u
5669   case MH_PRELOAD:
5670     return eTypeSharedLibrary; // 0x5u
5671   case MH_DYLIB:
5672     return eTypeSharedLibrary; // 0x6u
5673   case MH_DYLINKER:
5674     return eTypeDynamicLinker; // 0x7u
5675   case MH_BUNDLE:
5676     return eTypeSharedLibrary; // 0x8u
5677   case MH_DYLIB_STUB:
5678     return eTypeStubLibrary; // 0x9u
5679   case MH_DSYM:
5680     return eTypeDebugInfo; // 0xAu
5681   case MH_KEXT_BUNDLE:
5682     return eTypeSharedLibrary; // 0xBu
5683   default:
5684     break;
5685   }
5686   return eTypeUnknown;
5687 }
5688 
5689 ObjectFile::Strata ObjectFileMachO::CalculateStrata() {
5690   switch (m_header.filetype) {
5691   case MH_OBJECT: // 0x1u
5692   {
5693     // 32 bit kexts are just object files, but they do have a valid
5694     // UUID load command.
5695     if (GetUUID()) {
5696       // this checking for the UUID load command is not enough we could
5697       // eventually look for the symbol named "OSKextGetCurrentIdentifier" as
5698       // this is required of kexts
5699       if (m_type == eTypeInvalid)
5700         m_type = eTypeSharedLibrary;
5701 
5702       return eStrataKernel;
5703     }
5704   }
5705     return eStrataUnknown;
5706 
5707   case MH_EXECUTE: // 0x2u
5708     // Check for the MH_DYLDLINK bit in the flags
5709     if (m_header.flags & MH_DYLDLINK) {
5710       return eStrataUser;
5711     } else {
5712       SectionList *section_list = GetSectionList();
5713       if (section_list) {
5714         static ConstString g_kld_section_name("__KLD");
5715         if (section_list->FindSectionByName(g_kld_section_name))
5716           return eStrataKernel;
5717       }
5718     }
5719     return eStrataRawImage;
5720 
5721   case MH_FVMLIB:
5722     return eStrataUser; // 0x3u
5723   case MH_CORE:
5724     return eStrataUnknown; // 0x4u
5725   case MH_PRELOAD:
5726     return eStrataRawImage; // 0x5u
5727   case MH_DYLIB:
5728     return eStrataUser; // 0x6u
5729   case MH_DYLINKER:
5730     return eStrataUser; // 0x7u
5731   case MH_BUNDLE:
5732     return eStrataUser; // 0x8u
5733   case MH_DYLIB_STUB:
5734     return eStrataUser; // 0x9u
5735   case MH_DSYM:
5736     return eStrataUnknown; // 0xAu
5737   case MH_KEXT_BUNDLE:
5738     return eStrataKernel; // 0xBu
5739   default:
5740     break;
5741   }
5742   return eStrataUnknown;
5743 }
5744 
5745 llvm::VersionTuple ObjectFileMachO::GetVersion() {
5746   ModuleSP module_sp(GetModule());
5747   if (module_sp) {
5748     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5749     struct dylib_command load_cmd;
5750     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5751     uint32_t version_cmd = 0;
5752     uint64_t version = 0;
5753     uint32_t i;
5754     for (i = 0; i < m_header.ncmds; ++i) {
5755       const lldb::offset_t cmd_offset = offset;
5756       if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5757         break;
5758 
5759       if (load_cmd.cmd == LC_ID_DYLIB) {
5760         if (version_cmd == 0) {
5761           version_cmd = load_cmd.cmd;
5762           if (m_data.GetU32(&offset, &load_cmd.dylib, 4) == nullptr)
5763             break;
5764           version = load_cmd.dylib.current_version;
5765         }
5766         break; // Break for now unless there is another more complete version
5767                // number load command in the future.
5768       }
5769       offset = cmd_offset + load_cmd.cmdsize;
5770     }
5771 
5772     if (version_cmd == LC_ID_DYLIB) {
5773       unsigned major = (version & 0xFFFF0000ull) >> 16;
5774       unsigned minor = (version & 0x0000FF00ull) >> 8;
5775       unsigned subminor = (version & 0x000000FFull);
5776       return llvm::VersionTuple(major, minor, subminor);
5777     }
5778   }
5779   return llvm::VersionTuple();
5780 }
5781 
5782 ArchSpec ObjectFileMachO::GetArchitecture() {
5783   ModuleSP module_sp(GetModule());
5784   ArchSpec arch;
5785   if (module_sp) {
5786     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5787 
5788     return GetArchitecture(module_sp, m_header, m_data,
5789                            MachHeaderSizeFromMagic(m_header.magic));
5790   }
5791   return arch;
5792 }
5793 
5794 void ObjectFileMachO::GetProcessSharedCacheUUID(Process *process,
5795                                                 addr_t &base_addr, UUID &uuid) {
5796   uuid.Clear();
5797   base_addr = LLDB_INVALID_ADDRESS;
5798   if (process && process->GetDynamicLoader()) {
5799     DynamicLoader *dl = process->GetDynamicLoader();
5800     LazyBool using_shared_cache;
5801     LazyBool private_shared_cache;
5802     dl->GetSharedCacheInformation(base_addr, uuid, using_shared_cache,
5803                                   private_shared_cache);
5804   }
5805   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS |
5806                                                   LIBLLDB_LOG_PROCESS));
5807   LLDB_LOGF(
5808       log,
5809       "inferior process shared cache has a UUID of %s, base address 0x%" PRIx64,
5810       uuid.GetAsString().c_str(), base_addr);
5811 }
5812 
5813 // From dyld SPI header dyld_process_info.h
5814 typedef void *dyld_process_info;
5815 struct lldb_copy__dyld_process_cache_info {
5816   uuid_t cacheUUID;          // UUID of cache used by process
5817   uint64_t cacheBaseAddress; // load address of dyld shared cache
5818   bool noCache;              // process is running without a dyld cache
5819   bool privateCache; // process is using a private copy of its dyld cache
5820 };
5821 
5822 // #including mach/mach.h pulls in machine.h & CPU_TYPE_ARM etc conflicts with
5823 // llvm enum definitions llvm::MachO::CPU_TYPE_ARM turning them into compile
5824 // errors. So we need to use the actual underlying types of task_t and
5825 // kern_return_t below.
5826 extern "C" unsigned int /*task_t*/ mach_task_self();
5827 
5828 void ObjectFileMachO::GetLLDBSharedCacheUUID(addr_t &base_addr, UUID &uuid) {
5829   uuid.Clear();
5830   base_addr = LLDB_INVALID_ADDRESS;
5831 
5832 #if defined(__APPLE__)
5833   uint8_t *(*dyld_get_all_image_infos)(void);
5834   dyld_get_all_image_infos =
5835       (uint8_t * (*)()) dlsym(RTLD_DEFAULT, "_dyld_get_all_image_infos");
5836   if (dyld_get_all_image_infos) {
5837     uint8_t *dyld_all_image_infos_address = dyld_get_all_image_infos();
5838     if (dyld_all_image_infos_address) {
5839       uint32_t *version = (uint32_t *)
5840           dyld_all_image_infos_address; // version <mach-o/dyld_images.h>
5841       if (*version >= 13) {
5842         uuid_t *sharedCacheUUID_address = 0;
5843         int wordsize = sizeof(uint8_t *);
5844         if (wordsize == 8) {
5845           sharedCacheUUID_address =
5846               (uuid_t *)((uint8_t *)dyld_all_image_infos_address +
5847                          160); // sharedCacheUUID <mach-o/dyld_images.h>
5848           if (*version >= 15)
5849             base_addr =
5850                 *(uint64_t
5851                       *)((uint8_t *)dyld_all_image_infos_address +
5852                          176); // sharedCacheBaseAddress <mach-o/dyld_images.h>
5853         } else {
5854           sharedCacheUUID_address =
5855               (uuid_t *)((uint8_t *)dyld_all_image_infos_address +
5856                          84); // sharedCacheUUID <mach-o/dyld_images.h>
5857           if (*version >= 15) {
5858             base_addr = 0;
5859             base_addr =
5860                 *(uint32_t
5861                       *)((uint8_t *)dyld_all_image_infos_address +
5862                          100); // sharedCacheBaseAddress <mach-o/dyld_images.h>
5863           }
5864         }
5865         uuid = UUID::fromOptionalData(sharedCacheUUID_address, sizeof(uuid_t));
5866       }
5867     }
5868   } else {
5869     // Exists in macOS 10.12 and later, iOS 10.0 and later - dyld SPI
5870     dyld_process_info (*dyld_process_info_create)(
5871         unsigned int /* task_t */ task, uint64_t timestamp,
5872         unsigned int /*kern_return_t*/ *kernelError);
5873     void (*dyld_process_info_get_cache)(void *info, void *cacheInfo);
5874     void (*dyld_process_info_release)(dyld_process_info info);
5875 
5876     dyld_process_info_create = (void *(*)(unsigned int /* task_t */, uint64_t,
5877                                           unsigned int /*kern_return_t*/ *))
5878         dlsym(RTLD_DEFAULT, "_dyld_process_info_create");
5879     dyld_process_info_get_cache = (void (*)(void *, void *))dlsym(
5880         RTLD_DEFAULT, "_dyld_process_info_get_cache");
5881     dyld_process_info_release =
5882         (void (*)(void *))dlsym(RTLD_DEFAULT, "_dyld_process_info_release");
5883 
5884     if (dyld_process_info_create && dyld_process_info_get_cache) {
5885       unsigned int /*kern_return_t */ kern_ret;
5886       dyld_process_info process_info =
5887           dyld_process_info_create(::mach_task_self(), 0, &kern_ret);
5888       if (process_info) {
5889         struct lldb_copy__dyld_process_cache_info sc_info;
5890         memset(&sc_info, 0, sizeof(struct lldb_copy__dyld_process_cache_info));
5891         dyld_process_info_get_cache(process_info, &sc_info);
5892         if (sc_info.cacheBaseAddress != 0) {
5893           base_addr = sc_info.cacheBaseAddress;
5894           uuid = UUID::fromOptionalData(sc_info.cacheUUID, sizeof(uuid_t));
5895         }
5896         dyld_process_info_release(process_info);
5897       }
5898     }
5899   }
5900   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS |
5901                                                   LIBLLDB_LOG_PROCESS));
5902   if (log && uuid.IsValid())
5903     LLDB_LOGF(log,
5904               "lldb's in-memory shared cache has a UUID of %s base address of "
5905               "0x%" PRIx64,
5906               uuid.GetAsString().c_str(), base_addr);
5907 #endif
5908 }
5909 
5910 llvm::VersionTuple ObjectFileMachO::GetMinimumOSVersion() {
5911   if (!m_min_os_version) {
5912     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5913     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5914       const lldb::offset_t load_cmd_offset = offset;
5915 
5916       version_min_command lc;
5917       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5918         break;
5919       if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX ||
5920           lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS ||
5921           lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS ||
5922           lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) {
5923         if (m_data.GetU32(&offset, &lc.version,
5924                           (sizeof(lc) / sizeof(uint32_t)) - 2)) {
5925           const uint32_t xxxx = lc.version >> 16;
5926           const uint32_t yy = (lc.version >> 8) & 0xffu;
5927           const uint32_t zz = lc.version & 0xffu;
5928           if (xxxx) {
5929             m_min_os_version = llvm::VersionTuple(xxxx, yy, zz);
5930             break;
5931           }
5932         }
5933       } else if (lc.cmd == llvm::MachO::LC_BUILD_VERSION) {
5934         // struct build_version_command {
5935         //     uint32_t    cmd;            /* LC_BUILD_VERSION */
5936         //     uint32_t    cmdsize;        /* sizeof(struct
5937         //     build_version_command) plus */
5938         //                                 /* ntools * sizeof(struct
5939         //                                 build_tool_version) */
5940         //     uint32_t    platform;       /* platform */
5941         //     uint32_t    minos;          /* X.Y.Z is encoded in nibbles
5942         //     xxxx.yy.zz */ uint32_t    sdk;            /* X.Y.Z is encoded in
5943         //     nibbles xxxx.yy.zz */ uint32_t    ntools;         /* number of
5944         //     tool entries following this */
5945         // };
5946 
5947         offset += 4; // skip platform
5948         uint32_t minos = m_data.GetU32(&offset);
5949 
5950         const uint32_t xxxx = minos >> 16;
5951         const uint32_t yy = (minos >> 8) & 0xffu;
5952         const uint32_t zz = minos & 0xffu;
5953         if (xxxx) {
5954           m_min_os_version = llvm::VersionTuple(xxxx, yy, zz);
5955           break;
5956         }
5957       }
5958 
5959       offset = load_cmd_offset + lc.cmdsize;
5960     }
5961 
5962     if (!m_min_os_version) {
5963       // Set version to an empty value so we don't keep trying to
5964       m_min_os_version = llvm::VersionTuple();
5965     }
5966   }
5967 
5968   return *m_min_os_version;
5969 }
5970 
5971 llvm::VersionTuple ObjectFileMachO::GetSDKVersion() {
5972   if (!m_sdk_versions.hasValue()) {
5973     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5974     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5975       const lldb::offset_t load_cmd_offset = offset;
5976 
5977       version_min_command lc;
5978       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5979         break;
5980       if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX ||
5981           lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS ||
5982           lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS ||
5983           lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) {
5984         if (m_data.GetU32(&offset, &lc.version,
5985                           (sizeof(lc) / sizeof(uint32_t)) - 2)) {
5986           const uint32_t xxxx = lc.sdk >> 16;
5987           const uint32_t yy = (lc.sdk >> 8) & 0xffu;
5988           const uint32_t zz = lc.sdk & 0xffu;
5989           if (xxxx) {
5990             m_sdk_versions = llvm::VersionTuple(xxxx, yy, zz);
5991             break;
5992           } else {
5993             GetModule()->ReportWarning("minimum OS version load command with "
5994                                        "invalid (0) version found.");
5995           }
5996         }
5997       }
5998       offset = load_cmd_offset + lc.cmdsize;
5999     }
6000 
6001     if (!m_sdk_versions.hasValue()) {
6002       offset = MachHeaderSizeFromMagic(m_header.magic);
6003       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
6004         const lldb::offset_t load_cmd_offset = offset;
6005 
6006         version_min_command lc;
6007         if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
6008           break;
6009         if (lc.cmd == llvm::MachO::LC_BUILD_VERSION) {
6010           // struct build_version_command {
6011           //     uint32_t    cmd;            /* LC_BUILD_VERSION */
6012           //     uint32_t    cmdsize;        /* sizeof(struct
6013           //     build_version_command) plus */
6014           //                                 /* ntools * sizeof(struct
6015           //                                 build_tool_version) */
6016           //     uint32_t    platform;       /* platform */
6017           //     uint32_t    minos;          /* X.Y.Z is encoded in nibbles
6018           //     xxxx.yy.zz */ uint32_t    sdk;            /* X.Y.Z is encoded
6019           //     in nibbles xxxx.yy.zz */ uint32_t    ntools;         /* number
6020           //     of tool entries following this */
6021           // };
6022 
6023           offset += 4; // skip platform
6024           uint32_t minos = m_data.GetU32(&offset);
6025 
6026           const uint32_t xxxx = minos >> 16;
6027           const uint32_t yy = (minos >> 8) & 0xffu;
6028           const uint32_t zz = minos & 0xffu;
6029           if (xxxx) {
6030             m_sdk_versions = llvm::VersionTuple(xxxx, yy, zz);
6031             break;
6032           }
6033         }
6034         offset = load_cmd_offset + lc.cmdsize;
6035       }
6036     }
6037 
6038     if (!m_sdk_versions.hasValue())
6039       m_sdk_versions = llvm::VersionTuple();
6040   }
6041 
6042   return m_sdk_versions.getValue();
6043 }
6044 
6045 bool ObjectFileMachO::GetIsDynamicLinkEditor() {
6046   return m_header.filetype == llvm::MachO::MH_DYLINKER;
6047 }
6048 
6049 bool ObjectFileMachO::AllowAssemblyEmulationUnwindPlans() {
6050   return m_allow_assembly_emulation_unwind_plans;
6051 }
6052 
6053 // PluginInterface protocol
6054 lldb_private::ConstString ObjectFileMachO::GetPluginName() {
6055   return GetPluginNameStatic();
6056 }
6057 
6058 uint32_t ObjectFileMachO::GetPluginVersion() { return 1; }
6059 
6060 Section *ObjectFileMachO::GetMachHeaderSection() {
6061   // Find the first address of the mach header which is the first non-zero file
6062   // sized section whose file offset is zero. This is the base file address of
6063   // the mach-o file which can be subtracted from the vmaddr of the other
6064   // segments found in memory and added to the load address
6065   ModuleSP module_sp = GetModule();
6066   if (!module_sp)
6067     return nullptr;
6068   SectionList *section_list = GetSectionList();
6069   if (!section_list)
6070     return nullptr;
6071   const size_t num_sections = section_list->GetSize();
6072   for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
6073     Section *section = section_list->GetSectionAtIndex(sect_idx).get();
6074     if (section->GetFileOffset() == 0 && SectionIsLoadable(section))
6075       return section;
6076   }
6077   return nullptr;
6078 }
6079 
6080 bool ObjectFileMachO::SectionIsLoadable(const Section *section) {
6081   if (!section)
6082     return false;
6083   const bool is_dsym = (m_header.filetype == MH_DSYM);
6084   if (section->GetFileSize() == 0 && !is_dsym)
6085     return false;
6086   if (section->IsThreadSpecific())
6087     return false;
6088   if (GetModule().get() != section->GetModule().get())
6089     return false;
6090   // Be careful with __LINKEDIT and __DWARF segments
6091   if (section->GetName() == GetSegmentNameLINKEDIT() ||
6092       section->GetName() == GetSegmentNameDWARF()) {
6093     // Only map __LINKEDIT and __DWARF if we have an in memory image and
6094     // this isn't a kernel binary like a kext or mach_kernel.
6095     const bool is_memory_image = (bool)m_process_wp.lock();
6096     const Strata strata = GetStrata();
6097     if (is_memory_image == false || strata == eStrataKernel)
6098       return false;
6099   }
6100   return true;
6101 }
6102 
6103 lldb::addr_t ObjectFileMachO::CalculateSectionLoadAddressForMemoryImage(
6104     lldb::addr_t header_load_address, const Section *header_section,
6105     const Section *section) {
6106   ModuleSP module_sp = GetModule();
6107   if (module_sp && header_section && section &&
6108       header_load_address != LLDB_INVALID_ADDRESS) {
6109     lldb::addr_t file_addr = header_section->GetFileAddress();
6110     if (file_addr != LLDB_INVALID_ADDRESS && SectionIsLoadable(section))
6111       return section->GetFileAddress() - file_addr + header_load_address;
6112   }
6113   return LLDB_INVALID_ADDRESS;
6114 }
6115 
6116 bool ObjectFileMachO::SetLoadAddress(Target &target, lldb::addr_t value,
6117                                      bool value_is_offset) {
6118   ModuleSP module_sp = GetModule();
6119   if (!module_sp)
6120     return false;
6121 
6122   SectionList *section_list = GetSectionList();
6123   if (!section_list)
6124     return false;
6125 
6126   size_t num_loaded_sections = 0;
6127   const size_t num_sections = section_list->GetSize();
6128 
6129   if (value_is_offset) {
6130     // "value" is an offset to apply to each top level segment
6131     for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
6132       // Iterate through the object file sections to find all of the
6133       // sections that size on disk (to avoid __PAGEZERO) and load them
6134       SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
6135       if (SectionIsLoadable(section_sp.get()))
6136         if (target.GetSectionLoadList().SetSectionLoadAddress(
6137                 section_sp, section_sp->GetFileAddress() + value))
6138           ++num_loaded_sections;
6139     }
6140   } else {
6141     // "value" is the new base address of the mach_header, adjust each
6142     // section accordingly
6143 
6144     Section *mach_header_section = GetMachHeaderSection();
6145     if (mach_header_section) {
6146       for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
6147         SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
6148 
6149         lldb::addr_t section_load_addr =
6150             CalculateSectionLoadAddressForMemoryImage(
6151                 value, mach_header_section, section_sp.get());
6152         if (section_load_addr != LLDB_INVALID_ADDRESS) {
6153           if (target.GetSectionLoadList().SetSectionLoadAddress(
6154                   section_sp, section_load_addr))
6155             ++num_loaded_sections;
6156         }
6157       }
6158     }
6159   }
6160   return num_loaded_sections > 0;
6161 }
6162 
6163 bool ObjectFileMachO::SaveCore(const lldb::ProcessSP &process_sp,
6164                                const FileSpec &outfile, Status &error) {
6165   if (!process_sp)
6166     return false;
6167 
6168   Target &target = process_sp->GetTarget();
6169   const ArchSpec target_arch = target.GetArchitecture();
6170   const llvm::Triple &target_triple = target_arch.GetTriple();
6171   if (target_triple.getVendor() == llvm::Triple::Apple &&
6172       (target_triple.getOS() == llvm::Triple::MacOSX ||
6173        target_triple.getOS() == llvm::Triple::IOS ||
6174        target_triple.getOS() == llvm::Triple::WatchOS ||
6175        target_triple.getOS() == llvm::Triple::TvOS)) {
6176     // NEED_BRIDGEOS_TRIPLE target_triple.getOS() == llvm::Triple::BridgeOS))
6177     // {
6178     bool make_core = false;
6179     switch (target_arch.GetMachine()) {
6180     case llvm::Triple::aarch64:
6181     case llvm::Triple::aarch64_32:
6182     case llvm::Triple::arm:
6183     case llvm::Triple::thumb:
6184     case llvm::Triple::x86:
6185     case llvm::Triple::x86_64:
6186       make_core = true;
6187       break;
6188     default:
6189       error.SetErrorStringWithFormat("unsupported core architecture: %s",
6190                                      target_triple.str().c_str());
6191       break;
6192     }
6193 
6194     if (make_core) {
6195       std::vector<segment_command_64> segment_load_commands;
6196       //                uint32_t range_info_idx = 0;
6197       MemoryRegionInfo range_info;
6198       Status range_error = process_sp->GetMemoryRegionInfo(0, range_info);
6199       const uint32_t addr_byte_size = target_arch.GetAddressByteSize();
6200       const ByteOrder byte_order = target_arch.GetByteOrder();
6201       if (range_error.Success()) {
6202         while (range_info.GetRange().GetRangeBase() != LLDB_INVALID_ADDRESS) {
6203           const addr_t addr = range_info.GetRange().GetRangeBase();
6204           const addr_t size = range_info.GetRange().GetByteSize();
6205 
6206           if (size == 0)
6207             break;
6208 
6209           // Calculate correct protections
6210           uint32_t prot = 0;
6211           if (range_info.GetReadable() == MemoryRegionInfo::eYes)
6212             prot |= VM_PROT_READ;
6213           if (range_info.GetWritable() == MemoryRegionInfo::eYes)
6214             prot |= VM_PROT_WRITE;
6215           if (range_info.GetExecutable() == MemoryRegionInfo::eYes)
6216             prot |= VM_PROT_EXECUTE;
6217 
6218           if (prot != 0) {
6219             uint32_t cmd_type = LC_SEGMENT_64;
6220             uint32_t segment_size = sizeof(segment_command_64);
6221             if (addr_byte_size == 4) {
6222               cmd_type = LC_SEGMENT;
6223               segment_size = sizeof(segment_command);
6224             }
6225             segment_command_64 segment = {
6226                 cmd_type,     // uint32_t cmd;
6227                 segment_size, // uint32_t cmdsize;
6228                 {0},          // char segname[16];
6229                 addr, // uint64_t vmaddr;    // uint32_t for 32-bit Mach-O
6230                 size, // uint64_t vmsize;    // uint32_t for 32-bit Mach-O
6231                 0,    // uint64_t fileoff;   // uint32_t for 32-bit Mach-O
6232                 size, // uint64_t filesize;  // uint32_t for 32-bit Mach-O
6233                 prot, // uint32_t maxprot;
6234                 prot, // uint32_t initprot;
6235                 0,    // uint32_t nsects;
6236                 0};   // uint32_t flags;
6237             segment_load_commands.push_back(segment);
6238           } else {
6239             // No protections and a size of 1 used to be returned from old
6240             // debugservers when we asked about a region that was past the
6241             // last memory region and it indicates the end...
6242             if (size == 1)
6243               break;
6244           }
6245 
6246           range_error = process_sp->GetMemoryRegionInfo(
6247               range_info.GetRange().GetRangeEnd(), range_info);
6248           if (range_error.Fail())
6249             break;
6250         }
6251 
6252         StreamString buffer(Stream::eBinary, addr_byte_size, byte_order);
6253 
6254         mach_header_64 mach_header;
6255         if (addr_byte_size == 8) {
6256           mach_header.magic = MH_MAGIC_64;
6257         } else {
6258           mach_header.magic = MH_MAGIC;
6259         }
6260         mach_header.cputype = target_arch.GetMachOCPUType();
6261         mach_header.cpusubtype = target_arch.GetMachOCPUSubType();
6262         mach_header.filetype = MH_CORE;
6263         mach_header.ncmds = segment_load_commands.size();
6264         mach_header.flags = 0;
6265         mach_header.reserved = 0;
6266         ThreadList &thread_list = process_sp->GetThreadList();
6267         const uint32_t num_threads = thread_list.GetSize();
6268 
6269         // Make an array of LC_THREAD data items. Each one contains the
6270         // contents of the LC_THREAD load command. The data doesn't contain
6271         // the load command + load command size, we will add the load command
6272         // and load command size as we emit the data.
6273         std::vector<StreamString> LC_THREAD_datas(num_threads);
6274         for (auto &LC_THREAD_data : LC_THREAD_datas) {
6275           LC_THREAD_data.GetFlags().Set(Stream::eBinary);
6276           LC_THREAD_data.SetAddressByteSize(addr_byte_size);
6277           LC_THREAD_data.SetByteOrder(byte_order);
6278         }
6279         for (uint32_t thread_idx = 0; thread_idx < num_threads; ++thread_idx) {
6280           ThreadSP thread_sp(thread_list.GetThreadAtIndex(thread_idx));
6281           if (thread_sp) {
6282             switch (mach_header.cputype) {
6283             case llvm::MachO::CPU_TYPE_ARM64:
6284             case llvm::MachO::CPU_TYPE_ARM64_32:
6285               RegisterContextDarwin_arm64_Mach::Create_LC_THREAD(
6286                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6287               break;
6288 
6289             case llvm::MachO::CPU_TYPE_ARM:
6290               RegisterContextDarwin_arm_Mach::Create_LC_THREAD(
6291                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6292               break;
6293 
6294             case llvm::MachO::CPU_TYPE_I386:
6295               RegisterContextDarwin_i386_Mach::Create_LC_THREAD(
6296                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6297               break;
6298 
6299             case llvm::MachO::CPU_TYPE_X86_64:
6300               RegisterContextDarwin_x86_64_Mach::Create_LC_THREAD(
6301                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6302               break;
6303             }
6304           }
6305         }
6306 
6307         // The size of the load command is the size of the segments...
6308         if (addr_byte_size == 8) {
6309           mach_header.sizeofcmds =
6310               segment_load_commands.size() * sizeof(struct segment_command_64);
6311         } else {
6312           mach_header.sizeofcmds =
6313               segment_load_commands.size() * sizeof(struct segment_command);
6314         }
6315 
6316         // and the size of all LC_THREAD load command
6317         for (const auto &LC_THREAD_data : LC_THREAD_datas) {
6318           ++mach_header.ncmds;
6319           mach_header.sizeofcmds += 8 + LC_THREAD_data.GetSize();
6320         }
6321 
6322         // Write the mach header
6323         buffer.PutHex32(mach_header.magic);
6324         buffer.PutHex32(mach_header.cputype);
6325         buffer.PutHex32(mach_header.cpusubtype);
6326         buffer.PutHex32(mach_header.filetype);
6327         buffer.PutHex32(mach_header.ncmds);
6328         buffer.PutHex32(mach_header.sizeofcmds);
6329         buffer.PutHex32(mach_header.flags);
6330         if (addr_byte_size == 8) {
6331           buffer.PutHex32(mach_header.reserved);
6332         }
6333 
6334         // Skip the mach header and all load commands and align to the next
6335         // 0x1000 byte boundary
6336         addr_t file_offset = buffer.GetSize() + mach_header.sizeofcmds;
6337         if (file_offset & 0x00000fff) {
6338           file_offset += 0x00001000ull;
6339           file_offset &= (~0x00001000ull + 1);
6340         }
6341 
6342         for (auto &segment : segment_load_commands) {
6343           segment.fileoff = file_offset;
6344           file_offset += segment.filesize;
6345         }
6346 
6347         // Write out all of the LC_THREAD load commands
6348         for (const auto &LC_THREAD_data : LC_THREAD_datas) {
6349           const size_t LC_THREAD_data_size = LC_THREAD_data.GetSize();
6350           buffer.PutHex32(LC_THREAD);
6351           buffer.PutHex32(8 + LC_THREAD_data_size); // cmd + cmdsize + data
6352           buffer.Write(LC_THREAD_data.GetString().data(), LC_THREAD_data_size);
6353         }
6354 
6355         // Write out all of the segment load commands
6356         for (const auto &segment : segment_load_commands) {
6357           printf("0x%8.8x 0x%8.8x [0x%16.16" PRIx64 " - 0x%16.16" PRIx64
6358                  ") [0x%16.16" PRIx64 " 0x%16.16" PRIx64
6359                  ") 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x]\n",
6360                  segment.cmd, segment.cmdsize, segment.vmaddr,
6361                  segment.vmaddr + segment.vmsize, segment.fileoff,
6362                  segment.filesize, segment.maxprot, segment.initprot,
6363                  segment.nsects, segment.flags);
6364 
6365           buffer.PutHex32(segment.cmd);
6366           buffer.PutHex32(segment.cmdsize);
6367           buffer.PutRawBytes(segment.segname, sizeof(segment.segname));
6368           if (addr_byte_size == 8) {
6369             buffer.PutHex64(segment.vmaddr);
6370             buffer.PutHex64(segment.vmsize);
6371             buffer.PutHex64(segment.fileoff);
6372             buffer.PutHex64(segment.filesize);
6373           } else {
6374             buffer.PutHex32(static_cast<uint32_t>(segment.vmaddr));
6375             buffer.PutHex32(static_cast<uint32_t>(segment.vmsize));
6376             buffer.PutHex32(static_cast<uint32_t>(segment.fileoff));
6377             buffer.PutHex32(static_cast<uint32_t>(segment.filesize));
6378           }
6379           buffer.PutHex32(segment.maxprot);
6380           buffer.PutHex32(segment.initprot);
6381           buffer.PutHex32(segment.nsects);
6382           buffer.PutHex32(segment.flags);
6383         }
6384 
6385         std::string core_file_path(outfile.GetPath());
6386         auto core_file = FileSystem::Instance().Open(
6387             outfile, File::eOpenOptionWrite | File::eOpenOptionTruncate |
6388                          File::eOpenOptionCanCreate);
6389         if (!core_file) {
6390           error = core_file.takeError();
6391         } else {
6392           // Read 1 page at a time
6393           uint8_t bytes[0x1000];
6394           // Write the mach header and load commands out to the core file
6395           size_t bytes_written = buffer.GetString().size();
6396           error =
6397               core_file.get()->Write(buffer.GetString().data(), bytes_written);
6398           if (error.Success()) {
6399             // Now write the file data for all memory segments in the process
6400             for (const auto &segment : segment_load_commands) {
6401               if (core_file.get()->SeekFromStart(segment.fileoff) == -1) {
6402                 error.SetErrorStringWithFormat(
6403                     "unable to seek to offset 0x%" PRIx64 " in '%s'",
6404                     segment.fileoff, core_file_path.c_str());
6405                 break;
6406               }
6407 
6408               printf("Saving %" PRId64
6409                      " bytes of data for memory region at 0x%" PRIx64 "\n",
6410                      segment.vmsize, segment.vmaddr);
6411               addr_t bytes_left = segment.vmsize;
6412               addr_t addr = segment.vmaddr;
6413               Status memory_read_error;
6414               while (bytes_left > 0 && error.Success()) {
6415                 const size_t bytes_to_read =
6416                     bytes_left > sizeof(bytes) ? sizeof(bytes) : bytes_left;
6417 
6418                 // In a savecore setting, we don't really care about caching,
6419                 // as the data is dumped and very likely never read again,
6420                 // so we call ReadMemoryFromInferior to bypass it.
6421                 const size_t bytes_read = process_sp->ReadMemoryFromInferior(
6422                     addr, bytes, bytes_to_read, memory_read_error);
6423 
6424                 if (bytes_read == bytes_to_read) {
6425                   size_t bytes_written = bytes_read;
6426                   error = core_file.get()->Write(bytes, bytes_written);
6427                   bytes_left -= bytes_read;
6428                   addr += bytes_read;
6429                 } else {
6430                   // Some pages within regions are not readable, those should
6431                   // be zero filled
6432                   memset(bytes, 0, bytes_to_read);
6433                   size_t bytes_written = bytes_to_read;
6434                   error = core_file.get()->Write(bytes, bytes_written);
6435                   bytes_left -= bytes_to_read;
6436                   addr += bytes_to_read;
6437                 }
6438               }
6439             }
6440           }
6441         }
6442       } else {
6443         error.SetErrorString(
6444             "process doesn't support getting memory region info");
6445       }
6446     }
6447     return true; // This is the right plug to handle saving core files for
6448                  // this process
6449   }
6450   return false;
6451 }
6452