1 //===-- ObjectFileMachO.cpp -------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/ADT/StringRef.h" 11 12 #include "lldb/Core/ArchSpec.h" 13 #include "lldb/Core/DataBuffer.h" 14 #include "lldb/Core/Debugger.h" 15 #include "lldb/Core/Error.h" 16 #include "lldb/Core/FileSpecList.h" 17 #include "lldb/Core/Log.h" 18 #include "lldb/Core/Module.h" 19 #include "lldb/Core/ModuleSpec.h" 20 #include "lldb/Core/PluginManager.h" 21 #include "lldb/Core/RangeMap.h" 22 #include "lldb/Core/Section.h" 23 #include "lldb/Core/StreamFile.h" 24 #include "lldb/Core/StreamString.h" 25 #include "lldb/Core/Timer.h" 26 #include "lldb/Core/UUID.h" 27 #include "lldb/Host/Host.h" 28 #include "lldb/Host/FileSpec.h" 29 #include "lldb/Symbol/DWARFCallFrameInfo.h" 30 #include "lldb/Symbol/ObjectFile.h" 31 #include "lldb/Target/MemoryRegionInfo.h" 32 #include "lldb/Target/Platform.h" 33 #include "lldb/Target/Process.h" 34 #include "lldb/Target/SectionLoadList.h" 35 #include "lldb/Target/Target.h" 36 #include "lldb/Target/Thread.h" 37 #include "lldb/Target/ThreadList.h" 38 #include "Plugins/Process/Utility/RegisterContextDarwin_arm.h" 39 #include "Plugins/Process/Utility/RegisterContextDarwin_arm64.h" 40 #include "Plugins/Process/Utility/RegisterContextDarwin_i386.h" 41 #include "Plugins/Process/Utility/RegisterContextDarwin_x86_64.h" 42 43 #include "lldb/Utility/SafeMachO.h" 44 45 #include "ObjectFileMachO.h" 46 47 #if defined (__APPLE__) && (defined (__arm__) || defined (__arm64__) || defined (__aarch64__)) 48 // GetLLDBSharedCacheUUID() needs to call dlsym() 49 #include <dlfcn.h> 50 #endif 51 52 #ifndef __APPLE__ 53 #include "Utility/UuidCompatibility.h" 54 #endif 55 56 #define THUMB_ADDRESS_BIT_MASK 0xfffffffffffffffeull 57 using namespace lldb; 58 using namespace lldb_private; 59 using namespace llvm::MachO; 60 61 class RegisterContextDarwin_x86_64_Mach : public RegisterContextDarwin_x86_64 62 { 63 public: 64 RegisterContextDarwin_x86_64_Mach (lldb_private::Thread &thread, const DataExtractor &data) : 65 RegisterContextDarwin_x86_64 (thread, 0) 66 { 67 SetRegisterDataFrom_LC_THREAD (data); 68 } 69 70 virtual void 71 InvalidateAllRegisters () 72 { 73 // Do nothing... registers are always valid... 74 } 75 76 void 77 SetRegisterDataFrom_LC_THREAD (const DataExtractor &data) 78 { 79 lldb::offset_t offset = 0; 80 SetError (GPRRegSet, Read, -1); 81 SetError (FPURegSet, Read, -1); 82 SetError (EXCRegSet, Read, -1); 83 bool done = false; 84 85 while (!done) 86 { 87 int flavor = data.GetU32 (&offset); 88 if (flavor == 0) 89 done = true; 90 else 91 { 92 uint32_t i; 93 uint32_t count = data.GetU32 (&offset); 94 switch (flavor) 95 { 96 case GPRRegSet: 97 for (i=0; i<count; ++i) 98 (&gpr.rax)[i] = data.GetU64(&offset); 99 SetError (GPRRegSet, Read, 0); 100 done = true; 101 102 break; 103 case FPURegSet: 104 // TODO: fill in FPU regs.... 105 //SetError (FPURegSet, Read, -1); 106 done = true; 107 108 break; 109 case EXCRegSet: 110 exc.trapno = data.GetU32(&offset); 111 exc.err = data.GetU32(&offset); 112 exc.faultvaddr = data.GetU64(&offset); 113 SetError (EXCRegSet, Read, 0); 114 done = true; 115 break; 116 case 7: 117 case 8: 118 case 9: 119 // fancy flavors that encapsulate of the above 120 // flavors... 121 break; 122 123 default: 124 done = true; 125 break; 126 } 127 } 128 } 129 } 130 131 132 static size_t 133 WriteRegister (RegisterContext *reg_ctx, const char *name, const char *alt_name, size_t reg_byte_size, Stream &data) 134 { 135 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name); 136 if (reg_info == NULL) 137 reg_info = reg_ctx->GetRegisterInfoByName(alt_name); 138 if (reg_info) 139 { 140 lldb_private::RegisterValue reg_value; 141 if (reg_ctx->ReadRegister(reg_info, reg_value)) 142 { 143 if (reg_info->byte_size >= reg_byte_size) 144 data.Write(reg_value.GetBytes(), reg_byte_size); 145 else 146 { 147 data.Write(reg_value.GetBytes(), reg_info->byte_size); 148 for (size_t i=0, n = reg_byte_size - reg_info->byte_size; i<n; ++ i) 149 data.PutChar(0); 150 } 151 return reg_byte_size; 152 } 153 } 154 // Just write zeros if all else fails 155 for (size_t i=0; i<reg_byte_size; ++ i) 156 data.PutChar(0); 157 return reg_byte_size; 158 } 159 160 static bool 161 Create_LC_THREAD (Thread *thread, Stream &data) 162 { 163 RegisterContextSP reg_ctx_sp (thread->GetRegisterContext()); 164 if (reg_ctx_sp) 165 { 166 RegisterContext *reg_ctx = reg_ctx_sp.get(); 167 168 data.PutHex32 (GPRRegSet); // Flavor 169 data.PutHex32 (GPRWordCount); 170 WriteRegister (reg_ctx, "rax", NULL, 8, data); 171 WriteRegister (reg_ctx, "rbx", NULL, 8, data); 172 WriteRegister (reg_ctx, "rcx", NULL, 8, data); 173 WriteRegister (reg_ctx, "rdx", NULL, 8, data); 174 WriteRegister (reg_ctx, "rdi", NULL, 8, data); 175 WriteRegister (reg_ctx, "rsi", NULL, 8, data); 176 WriteRegister (reg_ctx, "rbp", NULL, 8, data); 177 WriteRegister (reg_ctx, "rsp", NULL, 8, data); 178 WriteRegister (reg_ctx, "r8", NULL, 8, data); 179 WriteRegister (reg_ctx, "r9", NULL, 8, data); 180 WriteRegister (reg_ctx, "r10", NULL, 8, data); 181 WriteRegister (reg_ctx, "r11", NULL, 8, data); 182 WriteRegister (reg_ctx, "r12", NULL, 8, data); 183 WriteRegister (reg_ctx, "r13", NULL, 8, data); 184 WriteRegister (reg_ctx, "r14", NULL, 8, data); 185 WriteRegister (reg_ctx, "r15", NULL, 8, data); 186 WriteRegister (reg_ctx, "rip", NULL, 8, data); 187 WriteRegister (reg_ctx, "rflags", NULL, 8, data); 188 WriteRegister (reg_ctx, "cs", NULL, 8, data); 189 WriteRegister (reg_ctx, "fs", NULL, 8, data); 190 WriteRegister (reg_ctx, "gs", NULL, 8, data); 191 192 // // Write out the FPU registers 193 // const size_t fpu_byte_size = sizeof(FPU); 194 // size_t bytes_written = 0; 195 // data.PutHex32 (FPURegSet); 196 // data.PutHex32 (fpu_byte_size/sizeof(uint64_t)); 197 // bytes_written += data.PutHex32(0); // uint32_t pad[0] 198 // bytes_written += data.PutHex32(0); // uint32_t pad[1] 199 // bytes_written += WriteRegister (reg_ctx, "fcw", "fctrl", 2, data); // uint16_t fcw; // "fctrl" 200 // bytes_written += WriteRegister (reg_ctx, "fsw" , "fstat", 2, data); // uint16_t fsw; // "fstat" 201 // bytes_written += WriteRegister (reg_ctx, "ftw" , "ftag", 1, data); // uint8_t ftw; // "ftag" 202 // bytes_written += data.PutHex8 (0); // uint8_t pad1; 203 // bytes_written += WriteRegister (reg_ctx, "fop" , NULL, 2, data); // uint16_t fop; // "fop" 204 // bytes_written += WriteRegister (reg_ctx, "fioff", "ip", 4, data); // uint32_t ip; // "fioff" 205 // bytes_written += WriteRegister (reg_ctx, "fiseg", NULL, 2, data); // uint16_t cs; // "fiseg" 206 // bytes_written += data.PutHex16 (0); // uint16_t pad2; 207 // bytes_written += WriteRegister (reg_ctx, "dp", "fooff" , 4, data); // uint32_t dp; // "fooff" 208 // bytes_written += WriteRegister (reg_ctx, "foseg", NULL, 2, data); // uint16_t ds; // "foseg" 209 // bytes_written += data.PutHex16 (0); // uint16_t pad3; 210 // bytes_written += WriteRegister (reg_ctx, "mxcsr", NULL, 4, data); // uint32_t mxcsr; 211 // bytes_written += WriteRegister (reg_ctx, "mxcsrmask", NULL, 4, data);// uint32_t mxcsrmask; 212 // bytes_written += WriteRegister (reg_ctx, "stmm0", NULL, sizeof(MMSReg), data); 213 // bytes_written += WriteRegister (reg_ctx, "stmm1", NULL, sizeof(MMSReg), data); 214 // bytes_written += WriteRegister (reg_ctx, "stmm2", NULL, sizeof(MMSReg), data); 215 // bytes_written += WriteRegister (reg_ctx, "stmm3", NULL, sizeof(MMSReg), data); 216 // bytes_written += WriteRegister (reg_ctx, "stmm4", NULL, sizeof(MMSReg), data); 217 // bytes_written += WriteRegister (reg_ctx, "stmm5", NULL, sizeof(MMSReg), data); 218 // bytes_written += WriteRegister (reg_ctx, "stmm6", NULL, sizeof(MMSReg), data); 219 // bytes_written += WriteRegister (reg_ctx, "stmm7", NULL, sizeof(MMSReg), data); 220 // bytes_written += WriteRegister (reg_ctx, "xmm0" , NULL, sizeof(XMMReg), data); 221 // bytes_written += WriteRegister (reg_ctx, "xmm1" , NULL, sizeof(XMMReg), data); 222 // bytes_written += WriteRegister (reg_ctx, "xmm2" , NULL, sizeof(XMMReg), data); 223 // bytes_written += WriteRegister (reg_ctx, "xmm3" , NULL, sizeof(XMMReg), data); 224 // bytes_written += WriteRegister (reg_ctx, "xmm4" , NULL, sizeof(XMMReg), data); 225 // bytes_written += WriteRegister (reg_ctx, "xmm5" , NULL, sizeof(XMMReg), data); 226 // bytes_written += WriteRegister (reg_ctx, "xmm6" , NULL, sizeof(XMMReg), data); 227 // bytes_written += WriteRegister (reg_ctx, "xmm7" , NULL, sizeof(XMMReg), data); 228 // bytes_written += WriteRegister (reg_ctx, "xmm8" , NULL, sizeof(XMMReg), data); 229 // bytes_written += WriteRegister (reg_ctx, "xmm9" , NULL, sizeof(XMMReg), data); 230 // bytes_written += WriteRegister (reg_ctx, "xmm10", NULL, sizeof(XMMReg), data); 231 // bytes_written += WriteRegister (reg_ctx, "xmm11", NULL, sizeof(XMMReg), data); 232 // bytes_written += WriteRegister (reg_ctx, "xmm12", NULL, sizeof(XMMReg), data); 233 // bytes_written += WriteRegister (reg_ctx, "xmm13", NULL, sizeof(XMMReg), data); 234 // bytes_written += WriteRegister (reg_ctx, "xmm14", NULL, sizeof(XMMReg), data); 235 // bytes_written += WriteRegister (reg_ctx, "xmm15", NULL, sizeof(XMMReg), data); 236 // 237 // // Fill rest with zeros 238 // for (size_t i=0, n = fpu_byte_size - bytes_written; i<n; ++ i) 239 // data.PutChar(0); 240 241 // Write out the EXC registers 242 data.PutHex32 (EXCRegSet); 243 data.PutHex32 (EXCWordCount); 244 WriteRegister (reg_ctx, "trapno", NULL, 4, data); 245 WriteRegister (reg_ctx, "err", NULL, 4, data); 246 WriteRegister (reg_ctx, "faultvaddr", NULL, 8, data); 247 return true; 248 } 249 return false; 250 } 251 252 protected: 253 virtual int 254 DoReadGPR (lldb::tid_t tid, int flavor, GPR &gpr) 255 { 256 return 0; 257 } 258 259 virtual int 260 DoReadFPU (lldb::tid_t tid, int flavor, FPU &fpu) 261 { 262 return 0; 263 } 264 265 virtual int 266 DoReadEXC (lldb::tid_t tid, int flavor, EXC &exc) 267 { 268 return 0; 269 } 270 271 virtual int 272 DoWriteGPR (lldb::tid_t tid, int flavor, const GPR &gpr) 273 { 274 return 0; 275 } 276 277 virtual int 278 DoWriteFPU (lldb::tid_t tid, int flavor, const FPU &fpu) 279 { 280 return 0; 281 } 282 283 virtual int 284 DoWriteEXC (lldb::tid_t tid, int flavor, const EXC &exc) 285 { 286 return 0; 287 } 288 }; 289 290 291 class RegisterContextDarwin_i386_Mach : public RegisterContextDarwin_i386 292 { 293 public: 294 RegisterContextDarwin_i386_Mach (lldb_private::Thread &thread, const DataExtractor &data) : 295 RegisterContextDarwin_i386 (thread, 0) 296 { 297 SetRegisterDataFrom_LC_THREAD (data); 298 } 299 300 virtual void 301 InvalidateAllRegisters () 302 { 303 // Do nothing... registers are always valid... 304 } 305 306 void 307 SetRegisterDataFrom_LC_THREAD (const DataExtractor &data) 308 { 309 lldb::offset_t offset = 0; 310 SetError (GPRRegSet, Read, -1); 311 SetError (FPURegSet, Read, -1); 312 SetError (EXCRegSet, Read, -1); 313 bool done = false; 314 315 while (!done) 316 { 317 int flavor = data.GetU32 (&offset); 318 if (flavor == 0) 319 done = true; 320 else 321 { 322 uint32_t i; 323 uint32_t count = data.GetU32 (&offset); 324 switch (flavor) 325 { 326 case GPRRegSet: 327 for (i=0; i<count; ++i) 328 (&gpr.eax)[i] = data.GetU32(&offset); 329 SetError (GPRRegSet, Read, 0); 330 done = true; 331 332 break; 333 case FPURegSet: 334 // TODO: fill in FPU regs.... 335 //SetError (FPURegSet, Read, -1); 336 done = true; 337 338 break; 339 case EXCRegSet: 340 exc.trapno = data.GetU32(&offset); 341 exc.err = data.GetU32(&offset); 342 exc.faultvaddr = data.GetU32(&offset); 343 SetError (EXCRegSet, Read, 0); 344 done = true; 345 break; 346 case 7: 347 case 8: 348 case 9: 349 // fancy flavors that encapsulate of the above 350 // flavors... 351 break; 352 353 default: 354 done = true; 355 break; 356 } 357 } 358 } 359 } 360 361 static size_t 362 WriteRegister (RegisterContext *reg_ctx, const char *name, const char *alt_name, size_t reg_byte_size, Stream &data) 363 { 364 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name); 365 if (reg_info == NULL) 366 reg_info = reg_ctx->GetRegisterInfoByName(alt_name); 367 if (reg_info) 368 { 369 lldb_private::RegisterValue reg_value; 370 if (reg_ctx->ReadRegister(reg_info, reg_value)) 371 { 372 if (reg_info->byte_size >= reg_byte_size) 373 data.Write(reg_value.GetBytes(), reg_byte_size); 374 else 375 { 376 data.Write(reg_value.GetBytes(), reg_info->byte_size); 377 for (size_t i=0, n = reg_byte_size - reg_info->byte_size; i<n; ++ i) 378 data.PutChar(0); 379 } 380 return reg_byte_size; 381 } 382 } 383 // Just write zeros if all else fails 384 for (size_t i=0; i<reg_byte_size; ++ i) 385 data.PutChar(0); 386 return reg_byte_size; 387 } 388 389 static bool 390 Create_LC_THREAD (Thread *thread, Stream &data) 391 { 392 RegisterContextSP reg_ctx_sp (thread->GetRegisterContext()); 393 if (reg_ctx_sp) 394 { 395 RegisterContext *reg_ctx = reg_ctx_sp.get(); 396 397 data.PutHex32 (GPRRegSet); // Flavor 398 data.PutHex32 (GPRWordCount); 399 WriteRegister (reg_ctx, "eax", NULL, 4, data); 400 WriteRegister (reg_ctx, "ebx", NULL, 4, data); 401 WriteRegister (reg_ctx, "ecx", NULL, 4, data); 402 WriteRegister (reg_ctx, "edx", NULL, 4, data); 403 WriteRegister (reg_ctx, "edi", NULL, 4, data); 404 WriteRegister (reg_ctx, "esi", NULL, 4, data); 405 WriteRegister (reg_ctx, "ebp", NULL, 4, data); 406 WriteRegister (reg_ctx, "esp", NULL, 4, data); 407 WriteRegister (reg_ctx, "ss", NULL, 4, data); 408 WriteRegister (reg_ctx, "eflags", NULL, 4, data); 409 WriteRegister (reg_ctx, "eip", NULL, 4, data); 410 WriteRegister (reg_ctx, "cs", NULL, 4, data); 411 WriteRegister (reg_ctx, "ds", NULL, 4, data); 412 WriteRegister (reg_ctx, "es", NULL, 4, data); 413 WriteRegister (reg_ctx, "fs", NULL, 4, data); 414 WriteRegister (reg_ctx, "gs", NULL, 4, data); 415 416 // Write out the EXC registers 417 data.PutHex32 (EXCRegSet); 418 data.PutHex32 (EXCWordCount); 419 WriteRegister (reg_ctx, "trapno", NULL, 4, data); 420 WriteRegister (reg_ctx, "err", NULL, 4, data); 421 WriteRegister (reg_ctx, "faultvaddr", NULL, 4, data); 422 return true; 423 } 424 return false; 425 } 426 427 protected: 428 virtual int 429 DoReadGPR (lldb::tid_t tid, int flavor, GPR &gpr) 430 { 431 return 0; 432 } 433 434 virtual int 435 DoReadFPU (lldb::tid_t tid, int flavor, FPU &fpu) 436 { 437 return 0; 438 } 439 440 virtual int 441 DoReadEXC (lldb::tid_t tid, int flavor, EXC &exc) 442 { 443 return 0; 444 } 445 446 virtual int 447 DoWriteGPR (lldb::tid_t tid, int flavor, const GPR &gpr) 448 { 449 return 0; 450 } 451 452 virtual int 453 DoWriteFPU (lldb::tid_t tid, int flavor, const FPU &fpu) 454 { 455 return 0; 456 } 457 458 virtual int 459 DoWriteEXC (lldb::tid_t tid, int flavor, const EXC &exc) 460 { 461 return 0; 462 } 463 }; 464 465 class RegisterContextDarwin_arm_Mach : public RegisterContextDarwin_arm 466 { 467 public: 468 RegisterContextDarwin_arm_Mach (lldb_private::Thread &thread, const DataExtractor &data) : 469 RegisterContextDarwin_arm (thread, 0) 470 { 471 SetRegisterDataFrom_LC_THREAD (data); 472 } 473 474 virtual void 475 InvalidateAllRegisters () 476 { 477 // Do nothing... registers are always valid... 478 } 479 480 void 481 SetRegisterDataFrom_LC_THREAD (const DataExtractor &data) 482 { 483 lldb::offset_t offset = 0; 484 SetError (GPRRegSet, Read, -1); 485 SetError (FPURegSet, Read, -1); 486 SetError (EXCRegSet, Read, -1); 487 bool done = false; 488 489 while (!done) 490 { 491 int flavor = data.GetU32 (&offset); 492 uint32_t count = data.GetU32 (&offset); 493 lldb::offset_t next_thread_state = offset + (count * 4); 494 switch (flavor) 495 { 496 case GPRRegSet: 497 for (uint32_t i=0; i<count; ++i) 498 { 499 gpr.r[i] = data.GetU32(&offset); 500 } 501 502 // Note that gpr.cpsr is also copied by the above loop; this loop technically extends 503 // one element past the end of the gpr.r[] array. 504 505 SetError (GPRRegSet, Read, 0); 506 offset = next_thread_state; 507 break; 508 509 case FPURegSet: 510 { 511 uint8_t *fpu_reg_buf = (uint8_t*) &fpu.floats.s[0]; 512 const int fpu_reg_buf_size = sizeof (fpu.floats); 513 if (data.ExtractBytes (offset, fpu_reg_buf_size, eByteOrderLittle, fpu_reg_buf) == fpu_reg_buf_size) 514 { 515 offset += fpu_reg_buf_size; 516 fpu.fpscr = data.GetU32(&offset); 517 SetError (FPURegSet, Read, 0); 518 } 519 else 520 { 521 done = true; 522 } 523 } 524 offset = next_thread_state; 525 break; 526 527 case EXCRegSet: 528 if (count == 3) 529 { 530 exc.exception = data.GetU32(&offset); 531 exc.fsr = data.GetU32(&offset); 532 exc.far = data.GetU32(&offset); 533 SetError (EXCRegSet, Read, 0); 534 } 535 done = true; 536 offset = next_thread_state; 537 break; 538 539 // Unknown register set flavor, stop trying to parse. 540 default: 541 done = true; 542 } 543 } 544 } 545 546 static size_t 547 WriteRegister (RegisterContext *reg_ctx, const char *name, const char *alt_name, size_t reg_byte_size, Stream &data) 548 { 549 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name); 550 if (reg_info == NULL) 551 reg_info = reg_ctx->GetRegisterInfoByName(alt_name); 552 if (reg_info) 553 { 554 lldb_private::RegisterValue reg_value; 555 if (reg_ctx->ReadRegister(reg_info, reg_value)) 556 { 557 if (reg_info->byte_size >= reg_byte_size) 558 data.Write(reg_value.GetBytes(), reg_byte_size); 559 else 560 { 561 data.Write(reg_value.GetBytes(), reg_info->byte_size); 562 for (size_t i=0, n = reg_byte_size - reg_info->byte_size; i<n; ++ i) 563 data.PutChar(0); 564 } 565 return reg_byte_size; 566 } 567 } 568 // Just write zeros if all else fails 569 for (size_t i=0; i<reg_byte_size; ++ i) 570 data.PutChar(0); 571 return reg_byte_size; 572 } 573 574 static bool 575 Create_LC_THREAD (Thread *thread, Stream &data) 576 { 577 RegisterContextSP reg_ctx_sp (thread->GetRegisterContext()); 578 if (reg_ctx_sp) 579 { 580 RegisterContext *reg_ctx = reg_ctx_sp.get(); 581 582 data.PutHex32 (GPRRegSet); // Flavor 583 data.PutHex32 (GPRWordCount); 584 WriteRegister (reg_ctx, "r0", NULL, 4, data); 585 WriteRegister (reg_ctx, "r1", NULL, 4, data); 586 WriteRegister (reg_ctx, "r2", NULL, 4, data); 587 WriteRegister (reg_ctx, "r3", NULL, 4, data); 588 WriteRegister (reg_ctx, "r4", NULL, 4, data); 589 WriteRegister (reg_ctx, "r5", NULL, 4, data); 590 WriteRegister (reg_ctx, "r6", NULL, 4, data); 591 WriteRegister (reg_ctx, "r7", NULL, 4, data); 592 WriteRegister (reg_ctx, "r8", NULL, 4, data); 593 WriteRegister (reg_ctx, "r9", NULL, 4, data); 594 WriteRegister (reg_ctx, "r10", NULL, 4, data); 595 WriteRegister (reg_ctx, "r11", NULL, 4, data); 596 WriteRegister (reg_ctx, "r12", NULL, 4, data); 597 WriteRegister (reg_ctx, "sp", NULL, 4, data); 598 WriteRegister (reg_ctx, "lr", NULL, 4, data); 599 WriteRegister (reg_ctx, "pc", NULL, 4, data); 600 WriteRegister (reg_ctx, "cpsr", NULL, 4, data); 601 602 // Write out the EXC registers 603 // data.PutHex32 (EXCRegSet); 604 // data.PutHex32 (EXCWordCount); 605 // WriteRegister (reg_ctx, "exception", NULL, 4, data); 606 // WriteRegister (reg_ctx, "fsr", NULL, 4, data); 607 // WriteRegister (reg_ctx, "far", NULL, 4, data); 608 return true; 609 } 610 return false; 611 } 612 613 protected: 614 virtual int 615 DoReadGPR (lldb::tid_t tid, int flavor, GPR &gpr) 616 { 617 return -1; 618 } 619 620 virtual int 621 DoReadFPU (lldb::tid_t tid, int flavor, FPU &fpu) 622 { 623 return -1; 624 } 625 626 virtual int 627 DoReadEXC (lldb::tid_t tid, int flavor, EXC &exc) 628 { 629 return -1; 630 } 631 632 virtual int 633 DoReadDBG (lldb::tid_t tid, int flavor, DBG &dbg) 634 { 635 return -1; 636 } 637 638 virtual int 639 DoWriteGPR (lldb::tid_t tid, int flavor, const GPR &gpr) 640 { 641 return 0; 642 } 643 644 virtual int 645 DoWriteFPU (lldb::tid_t tid, int flavor, const FPU &fpu) 646 { 647 return 0; 648 } 649 650 virtual int 651 DoWriteEXC (lldb::tid_t tid, int flavor, const EXC &exc) 652 { 653 return 0; 654 } 655 656 virtual int 657 DoWriteDBG (lldb::tid_t tid, int flavor, const DBG &dbg) 658 { 659 return -1; 660 } 661 }; 662 663 class RegisterContextDarwin_arm64_Mach : public RegisterContextDarwin_arm64 664 { 665 public: 666 RegisterContextDarwin_arm64_Mach (lldb_private::Thread &thread, const DataExtractor &data) : 667 RegisterContextDarwin_arm64 (thread, 0) 668 { 669 SetRegisterDataFrom_LC_THREAD (data); 670 } 671 672 virtual void 673 InvalidateAllRegisters () 674 { 675 // Do nothing... registers are always valid... 676 } 677 678 void 679 SetRegisterDataFrom_LC_THREAD (const DataExtractor &data) 680 { 681 lldb::offset_t offset = 0; 682 SetError (GPRRegSet, Read, -1); 683 SetError (FPURegSet, Read, -1); 684 SetError (EXCRegSet, Read, -1); 685 bool done = false; 686 while (!done) 687 { 688 int flavor = data.GetU32 (&offset); 689 uint32_t count = data.GetU32 (&offset); 690 lldb::offset_t next_thread_state = offset + (count * 4); 691 switch (flavor) 692 { 693 case GPRRegSet: 694 // x0-x29 + fp + lr + sp + pc (== 33 64-bit registers) plus cpsr (1 32-bit register) 695 if (count >= (33 * 2) + 1) 696 { 697 for (uint32_t i=0; i<33; ++i) 698 gpr.x[i] = data.GetU64(&offset); 699 gpr.cpsr = data.GetU32(&offset); 700 SetError (GPRRegSet, Read, 0); 701 } 702 offset = next_thread_state; 703 break; 704 case FPURegSet: 705 { 706 uint8_t *fpu_reg_buf = (uint8_t*) &fpu.v[0]; 707 const int fpu_reg_buf_size = sizeof (fpu); 708 if (fpu_reg_buf_size == count 709 && data.ExtractBytes (offset, fpu_reg_buf_size, eByteOrderLittle, fpu_reg_buf) == fpu_reg_buf_size) 710 { 711 SetError (FPURegSet, Read, 0); 712 } 713 else 714 { 715 done = true; 716 } 717 } 718 offset = next_thread_state; 719 break; 720 case EXCRegSet: 721 if (count == 4) 722 { 723 exc.far = data.GetU64(&offset); 724 exc.esr = data.GetU32(&offset); 725 exc.exception = data.GetU32(&offset); 726 SetError (EXCRegSet, Read, 0); 727 } 728 offset = next_thread_state; 729 break; 730 default: 731 done = true; 732 break; 733 } 734 } 735 } 736 737 static size_t 738 WriteRegister (RegisterContext *reg_ctx, const char *name, const char *alt_name, size_t reg_byte_size, Stream &data) 739 { 740 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name); 741 if (reg_info == NULL) 742 reg_info = reg_ctx->GetRegisterInfoByName(alt_name); 743 if (reg_info) 744 { 745 lldb_private::RegisterValue reg_value; 746 if (reg_ctx->ReadRegister(reg_info, reg_value)) 747 { 748 if (reg_info->byte_size >= reg_byte_size) 749 data.Write(reg_value.GetBytes(), reg_byte_size); 750 else 751 { 752 data.Write(reg_value.GetBytes(), reg_info->byte_size); 753 for (size_t i=0, n = reg_byte_size - reg_info->byte_size; i<n; ++ i) 754 data.PutChar(0); 755 } 756 return reg_byte_size; 757 } 758 } 759 // Just write zeros if all else fails 760 for (size_t i=0; i<reg_byte_size; ++ i) 761 data.PutChar(0); 762 return reg_byte_size; 763 } 764 765 static bool 766 Create_LC_THREAD (Thread *thread, Stream &data) 767 { 768 RegisterContextSP reg_ctx_sp (thread->GetRegisterContext()); 769 if (reg_ctx_sp) 770 { 771 RegisterContext *reg_ctx = reg_ctx_sp.get(); 772 773 data.PutHex32 (GPRRegSet); // Flavor 774 data.PutHex32 (GPRWordCount); 775 WriteRegister (reg_ctx, "x0", NULL, 8, data); 776 WriteRegister (reg_ctx, "x1", NULL, 8, data); 777 WriteRegister (reg_ctx, "x2", NULL, 8, data); 778 WriteRegister (reg_ctx, "x3", NULL, 8, data); 779 WriteRegister (reg_ctx, "x4", NULL, 8, data); 780 WriteRegister (reg_ctx, "x5", NULL, 8, data); 781 WriteRegister (reg_ctx, "x6", NULL, 8, data); 782 WriteRegister (reg_ctx, "x7", NULL, 8, data); 783 WriteRegister (reg_ctx, "x8", NULL, 8, data); 784 WriteRegister (reg_ctx, "x9", NULL, 8, data); 785 WriteRegister (reg_ctx, "x10", NULL, 8, data); 786 WriteRegister (reg_ctx, "x11", NULL, 8, data); 787 WriteRegister (reg_ctx, "x12", NULL, 8, data); 788 WriteRegister (reg_ctx, "x13", NULL, 8, data); 789 WriteRegister (reg_ctx, "x14", NULL, 8, data); 790 WriteRegister (reg_ctx, "x15", NULL, 8, data); 791 WriteRegister (reg_ctx, "x16", NULL, 8, data); 792 WriteRegister (reg_ctx, "x17", NULL, 8, data); 793 WriteRegister (reg_ctx, "x18", NULL, 8, data); 794 WriteRegister (reg_ctx, "x19", NULL, 8, data); 795 WriteRegister (reg_ctx, "x20", NULL, 8, data); 796 WriteRegister (reg_ctx, "x21", NULL, 8, data); 797 WriteRegister (reg_ctx, "x22", NULL, 8, data); 798 WriteRegister (reg_ctx, "x23", NULL, 8, data); 799 WriteRegister (reg_ctx, "x24", NULL, 8, data); 800 WriteRegister (reg_ctx, "x25", NULL, 8, data); 801 WriteRegister (reg_ctx, "x26", NULL, 8, data); 802 WriteRegister (reg_ctx, "x27", NULL, 8, data); 803 WriteRegister (reg_ctx, "x28", NULL, 8, data); 804 WriteRegister (reg_ctx, "fp", NULL, 8, data); 805 WriteRegister (reg_ctx, "lr", NULL, 8, data); 806 WriteRegister (reg_ctx, "sp", NULL, 8, data); 807 WriteRegister (reg_ctx, "pc", NULL, 8, data); 808 WriteRegister (reg_ctx, "cpsr", NULL, 4, data); 809 810 // Write out the EXC registers 811 // data.PutHex32 (EXCRegSet); 812 // data.PutHex32 (EXCWordCount); 813 // WriteRegister (reg_ctx, "far", NULL, 8, data); 814 // WriteRegister (reg_ctx, "esr", NULL, 4, data); 815 // WriteRegister (reg_ctx, "exception", NULL, 4, data); 816 return true; 817 } 818 return false; 819 } 820 821 protected: 822 virtual int 823 DoReadGPR (lldb::tid_t tid, int flavor, GPR &gpr) 824 { 825 return -1; 826 } 827 828 virtual int 829 DoReadFPU (lldb::tid_t tid, int flavor, FPU &fpu) 830 { 831 return -1; 832 } 833 834 virtual int 835 DoReadEXC (lldb::tid_t tid, int flavor, EXC &exc) 836 { 837 return -1; 838 } 839 840 virtual int 841 DoReadDBG (lldb::tid_t tid, int flavor, DBG &dbg) 842 { 843 return -1; 844 } 845 846 virtual int 847 DoWriteGPR (lldb::tid_t tid, int flavor, const GPR &gpr) 848 { 849 return 0; 850 } 851 852 virtual int 853 DoWriteFPU (lldb::tid_t tid, int flavor, const FPU &fpu) 854 { 855 return 0; 856 } 857 858 virtual int 859 DoWriteEXC (lldb::tid_t tid, int flavor, const EXC &exc) 860 { 861 return 0; 862 } 863 864 virtual int 865 DoWriteDBG (lldb::tid_t tid, int flavor, const DBG &dbg) 866 { 867 return -1; 868 } 869 }; 870 871 static uint32_t 872 MachHeaderSizeFromMagic(uint32_t magic) 873 { 874 switch (magic) 875 { 876 case MH_MAGIC: 877 case MH_CIGAM: 878 return sizeof(struct mach_header); 879 880 case MH_MAGIC_64: 881 case MH_CIGAM_64: 882 return sizeof(struct mach_header_64); 883 break; 884 885 default: 886 break; 887 } 888 return 0; 889 } 890 891 #define MACHO_NLIST_ARM_SYMBOL_IS_THUMB 0x0008 892 893 void 894 ObjectFileMachO::Initialize() 895 { 896 PluginManager::RegisterPlugin (GetPluginNameStatic(), 897 GetPluginDescriptionStatic(), 898 CreateInstance, 899 CreateMemoryInstance, 900 GetModuleSpecifications, 901 SaveCore); 902 } 903 904 void 905 ObjectFileMachO::Terminate() 906 { 907 PluginManager::UnregisterPlugin (CreateInstance); 908 } 909 910 911 lldb_private::ConstString 912 ObjectFileMachO::GetPluginNameStatic() 913 { 914 static ConstString g_name("mach-o"); 915 return g_name; 916 } 917 918 const char * 919 ObjectFileMachO::GetPluginDescriptionStatic() 920 { 921 return "Mach-o object file reader (32 and 64 bit)"; 922 } 923 924 ObjectFile * 925 ObjectFileMachO::CreateInstance (const lldb::ModuleSP &module_sp, 926 DataBufferSP& data_sp, 927 lldb::offset_t data_offset, 928 const FileSpec* file, 929 lldb::offset_t file_offset, 930 lldb::offset_t length) 931 { 932 if (!data_sp) 933 { 934 data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length); 935 data_offset = 0; 936 } 937 938 if (ObjectFileMachO::MagicBytesMatch(data_sp, data_offset, length)) 939 { 940 // Update the data to contain the entire file if it doesn't already 941 if (data_sp->GetByteSize() < length) 942 { 943 data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length); 944 data_offset = 0; 945 } 946 std::unique_ptr<ObjectFile> objfile_ap(new ObjectFileMachO (module_sp, data_sp, data_offset, file, file_offset, length)); 947 if (objfile_ap.get() && objfile_ap->ParseHeader()) 948 return objfile_ap.release(); 949 } 950 return NULL; 951 } 952 953 ObjectFile * 954 ObjectFileMachO::CreateMemoryInstance (const lldb::ModuleSP &module_sp, 955 DataBufferSP& data_sp, 956 const ProcessSP &process_sp, 957 lldb::addr_t header_addr) 958 { 959 if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) 960 { 961 std::unique_ptr<ObjectFile> objfile_ap(new ObjectFileMachO (module_sp, data_sp, process_sp, header_addr)); 962 if (objfile_ap.get() && objfile_ap->ParseHeader()) 963 return objfile_ap.release(); 964 } 965 return NULL; 966 } 967 968 size_t 969 ObjectFileMachO::GetModuleSpecifications (const lldb_private::FileSpec& file, 970 lldb::DataBufferSP& data_sp, 971 lldb::offset_t data_offset, 972 lldb::offset_t file_offset, 973 lldb::offset_t length, 974 lldb_private::ModuleSpecList &specs) 975 { 976 const size_t initial_count = specs.GetSize(); 977 978 if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) 979 { 980 DataExtractor data; 981 data.SetData(data_sp); 982 llvm::MachO::mach_header header; 983 if (ParseHeader (data, &data_offset, header)) 984 { 985 size_t header_and_load_cmds = header.sizeofcmds + MachHeaderSizeFromMagic(header.magic); 986 if (header_and_load_cmds >= data_sp->GetByteSize()) 987 { 988 data_sp = file.ReadFileContents(file_offset, header_and_load_cmds); 989 data.SetData(data_sp); 990 data_offset = MachHeaderSizeFromMagic(header.magic); 991 } 992 if (data_sp) 993 { 994 ModuleSpec spec; 995 spec.GetFileSpec() = file; 996 spec.SetObjectOffset(file_offset); 997 spec.SetObjectSize(length); 998 999 if (GetArchitecture (header, data, data_offset, spec.GetArchitecture())) 1000 { 1001 if (spec.GetArchitecture().IsValid()) 1002 { 1003 GetUUID (header, data, data_offset, spec.GetUUID()); 1004 specs.Append(spec); 1005 } 1006 } 1007 } 1008 } 1009 } 1010 return specs.GetSize() - initial_count; 1011 } 1012 1013 1014 1015 const ConstString & 1016 ObjectFileMachO::GetSegmentNameTEXT() 1017 { 1018 static ConstString g_segment_name_TEXT ("__TEXT"); 1019 return g_segment_name_TEXT; 1020 } 1021 1022 const ConstString & 1023 ObjectFileMachO::GetSegmentNameDATA() 1024 { 1025 static ConstString g_segment_name_DATA ("__DATA"); 1026 return g_segment_name_DATA; 1027 } 1028 1029 const ConstString & 1030 ObjectFileMachO::GetSegmentNameDATA_DIRTY() 1031 { 1032 static ConstString g_segment_name ("__DATA_DIRTY"); 1033 return g_segment_name; 1034 } 1035 1036 const ConstString & 1037 ObjectFileMachO::GetSegmentNameDATA_CONST() 1038 { 1039 static ConstString g_segment_name ("__DATA_CONST"); 1040 return g_segment_name; 1041 } 1042 1043 const ConstString & 1044 ObjectFileMachO::GetSegmentNameOBJC() 1045 { 1046 static ConstString g_segment_name_OBJC ("__OBJC"); 1047 return g_segment_name_OBJC; 1048 } 1049 1050 const ConstString & 1051 ObjectFileMachO::GetSegmentNameLINKEDIT() 1052 { 1053 static ConstString g_section_name_LINKEDIT ("__LINKEDIT"); 1054 return g_section_name_LINKEDIT; 1055 } 1056 1057 const ConstString & 1058 ObjectFileMachO::GetSectionNameEHFrame() 1059 { 1060 static ConstString g_section_name_eh_frame ("__eh_frame"); 1061 return g_section_name_eh_frame; 1062 } 1063 1064 bool 1065 ObjectFileMachO::MagicBytesMatch (DataBufferSP& data_sp, 1066 lldb::addr_t data_offset, 1067 lldb::addr_t data_length) 1068 { 1069 DataExtractor data; 1070 data.SetData (data_sp, data_offset, data_length); 1071 lldb::offset_t offset = 0; 1072 uint32_t magic = data.GetU32(&offset); 1073 return MachHeaderSizeFromMagic(magic) != 0; 1074 } 1075 1076 1077 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp, 1078 DataBufferSP& data_sp, 1079 lldb::offset_t data_offset, 1080 const FileSpec* file, 1081 lldb::offset_t file_offset, 1082 lldb::offset_t length) : 1083 ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset), 1084 m_mach_segments(), 1085 m_mach_sections(), 1086 m_entry_point_address(), 1087 m_thread_context_offsets(), 1088 m_thread_context_offsets_valid(false) 1089 { 1090 ::memset (&m_header, 0, sizeof(m_header)); 1091 ::memset (&m_dysymtab, 0, sizeof(m_dysymtab)); 1092 } 1093 1094 ObjectFileMachO::ObjectFileMachO (const lldb::ModuleSP &module_sp, 1095 lldb::DataBufferSP& header_data_sp, 1096 const lldb::ProcessSP &process_sp, 1097 lldb::addr_t header_addr) : 1098 ObjectFile(module_sp, process_sp, header_addr, header_data_sp), 1099 m_mach_segments(), 1100 m_mach_sections(), 1101 m_entry_point_address(), 1102 m_thread_context_offsets(), 1103 m_thread_context_offsets_valid(false) 1104 { 1105 ::memset (&m_header, 0, sizeof(m_header)); 1106 ::memset (&m_dysymtab, 0, sizeof(m_dysymtab)); 1107 } 1108 1109 ObjectFileMachO::~ObjectFileMachO() 1110 { 1111 } 1112 1113 bool 1114 ObjectFileMachO::ParseHeader (DataExtractor &data, 1115 lldb::offset_t *data_offset_ptr, 1116 llvm::MachO::mach_header &header) 1117 { 1118 data.SetByteOrder (lldb::endian::InlHostByteOrder()); 1119 // Leave magic in the original byte order 1120 header.magic = data.GetU32(data_offset_ptr); 1121 bool can_parse = false; 1122 bool is_64_bit = false; 1123 switch (header.magic) 1124 { 1125 case MH_MAGIC: 1126 data.SetByteOrder (lldb::endian::InlHostByteOrder()); 1127 data.SetAddressByteSize(4); 1128 can_parse = true; 1129 break; 1130 1131 case MH_MAGIC_64: 1132 data.SetByteOrder (lldb::endian::InlHostByteOrder()); 1133 data.SetAddressByteSize(8); 1134 can_parse = true; 1135 is_64_bit = true; 1136 break; 1137 1138 case MH_CIGAM: 1139 data.SetByteOrder(lldb::endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); 1140 data.SetAddressByteSize(4); 1141 can_parse = true; 1142 break; 1143 1144 case MH_CIGAM_64: 1145 data.SetByteOrder(lldb::endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); 1146 data.SetAddressByteSize(8); 1147 is_64_bit = true; 1148 can_parse = true; 1149 break; 1150 1151 default: 1152 break; 1153 } 1154 1155 if (can_parse) 1156 { 1157 data.GetU32(data_offset_ptr, &header.cputype, 6); 1158 if (is_64_bit) 1159 *data_offset_ptr += 4; 1160 return true; 1161 } 1162 else 1163 { 1164 memset(&header, 0, sizeof(header)); 1165 } 1166 return false; 1167 } 1168 1169 bool 1170 ObjectFileMachO::ParseHeader () 1171 { 1172 ModuleSP module_sp(GetModule()); 1173 if (module_sp) 1174 { 1175 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 1176 bool can_parse = false; 1177 lldb::offset_t offset = 0; 1178 m_data.SetByteOrder (lldb::endian::InlHostByteOrder()); 1179 // Leave magic in the original byte order 1180 m_header.magic = m_data.GetU32(&offset); 1181 switch (m_header.magic) 1182 { 1183 case MH_MAGIC: 1184 m_data.SetByteOrder (lldb::endian::InlHostByteOrder()); 1185 m_data.SetAddressByteSize(4); 1186 can_parse = true; 1187 break; 1188 1189 case MH_MAGIC_64: 1190 m_data.SetByteOrder (lldb::endian::InlHostByteOrder()); 1191 m_data.SetAddressByteSize(8); 1192 can_parse = true; 1193 break; 1194 1195 case MH_CIGAM: 1196 m_data.SetByteOrder(lldb::endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); 1197 m_data.SetAddressByteSize(4); 1198 can_parse = true; 1199 break; 1200 1201 case MH_CIGAM_64: 1202 m_data.SetByteOrder(lldb::endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); 1203 m_data.SetAddressByteSize(8); 1204 can_parse = true; 1205 break; 1206 1207 default: 1208 break; 1209 } 1210 1211 if (can_parse) 1212 { 1213 m_data.GetU32(&offset, &m_header.cputype, 6); 1214 1215 1216 ArchSpec mach_arch; 1217 1218 if (GetArchitecture (mach_arch)) 1219 { 1220 // Check if the module has a required architecture 1221 const ArchSpec &module_arch = module_sp->GetArchitecture(); 1222 if (module_arch.IsValid() && !module_arch.IsCompatibleMatch(mach_arch)) 1223 return false; 1224 1225 if (SetModulesArchitecture (mach_arch)) 1226 { 1227 const size_t header_and_lc_size = m_header.sizeofcmds + MachHeaderSizeFromMagic(m_header.magic); 1228 if (m_data.GetByteSize() < header_and_lc_size) 1229 { 1230 DataBufferSP data_sp; 1231 ProcessSP process_sp (m_process_wp.lock()); 1232 if (process_sp) 1233 { 1234 data_sp = ReadMemory (process_sp, m_memory_addr, header_and_lc_size); 1235 } 1236 else 1237 { 1238 // Read in all only the load command data from the file on disk 1239 data_sp = m_file.ReadFileContents(m_file_offset, header_and_lc_size); 1240 if (data_sp->GetByteSize() != header_and_lc_size) 1241 return false; 1242 } 1243 if (data_sp) 1244 m_data.SetData (data_sp); 1245 } 1246 } 1247 return true; 1248 } 1249 } 1250 else 1251 { 1252 memset(&m_header, 0, sizeof(struct mach_header)); 1253 } 1254 } 1255 return false; 1256 } 1257 1258 1259 ByteOrder 1260 ObjectFileMachO::GetByteOrder () const 1261 { 1262 return m_data.GetByteOrder (); 1263 } 1264 1265 bool 1266 ObjectFileMachO::IsExecutable() const 1267 { 1268 return m_header.filetype == MH_EXECUTE; 1269 } 1270 1271 uint32_t 1272 ObjectFileMachO::GetAddressByteSize () const 1273 { 1274 return m_data.GetAddressByteSize (); 1275 } 1276 1277 AddressClass 1278 ObjectFileMachO::GetAddressClass (lldb::addr_t file_addr) 1279 { 1280 Symtab *symtab = GetSymtab(); 1281 if (symtab) 1282 { 1283 Symbol *symbol = symtab->FindSymbolContainingFileAddress(file_addr); 1284 if (symbol) 1285 { 1286 if (symbol->ValueIsAddress()) 1287 { 1288 SectionSP section_sp (symbol->GetAddressRef().GetSection()); 1289 if (section_sp) 1290 { 1291 const lldb::SectionType section_type = section_sp->GetType(); 1292 switch (section_type) 1293 { 1294 case eSectionTypeInvalid: 1295 return eAddressClassUnknown; 1296 1297 case eSectionTypeCode: 1298 if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) 1299 { 1300 // For ARM we have a bit in the n_desc field of the symbol 1301 // that tells us ARM/Thumb which is bit 0x0008. 1302 if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB) 1303 return eAddressClassCodeAlternateISA; 1304 } 1305 return eAddressClassCode; 1306 1307 case eSectionTypeContainer: 1308 return eAddressClassUnknown; 1309 1310 case eSectionTypeData: 1311 case eSectionTypeDataCString: 1312 case eSectionTypeDataCStringPointers: 1313 case eSectionTypeDataSymbolAddress: 1314 case eSectionTypeData4: 1315 case eSectionTypeData8: 1316 case eSectionTypeData16: 1317 case eSectionTypeDataPointers: 1318 case eSectionTypeZeroFill: 1319 case eSectionTypeDataObjCMessageRefs: 1320 case eSectionTypeDataObjCCFStrings: 1321 return eAddressClassData; 1322 1323 case eSectionTypeDebug: 1324 case eSectionTypeDWARFDebugAbbrev: 1325 case eSectionTypeDWARFDebugAddr: 1326 case eSectionTypeDWARFDebugAranges: 1327 case eSectionTypeDWARFDebugFrame: 1328 case eSectionTypeDWARFDebugInfo: 1329 case eSectionTypeDWARFDebugLine: 1330 case eSectionTypeDWARFDebugLoc: 1331 case eSectionTypeDWARFDebugMacInfo: 1332 case eSectionTypeDWARFDebugPubNames: 1333 case eSectionTypeDWARFDebugPubTypes: 1334 case eSectionTypeDWARFDebugRanges: 1335 case eSectionTypeDWARFDebugStr: 1336 case eSectionTypeDWARFDebugStrOffsets: 1337 case eSectionTypeDWARFAppleNames: 1338 case eSectionTypeDWARFAppleTypes: 1339 case eSectionTypeDWARFAppleNamespaces: 1340 case eSectionTypeDWARFAppleObjC: 1341 return eAddressClassDebug; 1342 1343 case eSectionTypeEHFrame: 1344 case eSectionTypeCompactUnwind: 1345 return eAddressClassRuntime; 1346 1347 case eSectionTypeELFSymbolTable: 1348 case eSectionTypeELFDynamicSymbols: 1349 case eSectionTypeELFRelocationEntries: 1350 case eSectionTypeELFDynamicLinkInfo: 1351 case eSectionTypeOther: 1352 return eAddressClassUnknown; 1353 } 1354 } 1355 } 1356 1357 const SymbolType symbol_type = symbol->GetType(); 1358 switch (symbol_type) 1359 { 1360 case eSymbolTypeAny: return eAddressClassUnknown; 1361 case eSymbolTypeAbsolute: return eAddressClassUnknown; 1362 1363 case eSymbolTypeCode: 1364 case eSymbolTypeTrampoline: 1365 case eSymbolTypeResolver: 1366 if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) 1367 { 1368 // For ARM we have a bit in the n_desc field of the symbol 1369 // that tells us ARM/Thumb which is bit 0x0008. 1370 if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB) 1371 return eAddressClassCodeAlternateISA; 1372 } 1373 return eAddressClassCode; 1374 1375 case eSymbolTypeData: return eAddressClassData; 1376 case eSymbolTypeRuntime: return eAddressClassRuntime; 1377 case eSymbolTypeException: return eAddressClassRuntime; 1378 case eSymbolTypeSourceFile: return eAddressClassDebug; 1379 case eSymbolTypeHeaderFile: return eAddressClassDebug; 1380 case eSymbolTypeObjectFile: return eAddressClassDebug; 1381 case eSymbolTypeCommonBlock: return eAddressClassDebug; 1382 case eSymbolTypeBlock: return eAddressClassDebug; 1383 case eSymbolTypeLocal: return eAddressClassData; 1384 case eSymbolTypeParam: return eAddressClassData; 1385 case eSymbolTypeVariable: return eAddressClassData; 1386 case eSymbolTypeVariableType: return eAddressClassDebug; 1387 case eSymbolTypeLineEntry: return eAddressClassDebug; 1388 case eSymbolTypeLineHeader: return eAddressClassDebug; 1389 case eSymbolTypeScopeBegin: return eAddressClassDebug; 1390 case eSymbolTypeScopeEnd: return eAddressClassDebug; 1391 case eSymbolTypeAdditional: return eAddressClassUnknown; 1392 case eSymbolTypeCompiler: return eAddressClassDebug; 1393 case eSymbolTypeInstrumentation:return eAddressClassDebug; 1394 case eSymbolTypeUndefined: return eAddressClassUnknown; 1395 case eSymbolTypeObjCClass: return eAddressClassRuntime; 1396 case eSymbolTypeObjCMetaClass: return eAddressClassRuntime; 1397 case eSymbolTypeObjCIVar: return eAddressClassRuntime; 1398 case eSymbolTypeReExported: return eAddressClassRuntime; 1399 } 1400 } 1401 } 1402 return eAddressClassUnknown; 1403 } 1404 1405 Symtab * 1406 ObjectFileMachO::GetSymtab() 1407 { 1408 ModuleSP module_sp(GetModule()); 1409 if (module_sp) 1410 { 1411 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 1412 if (m_symtab_ap.get() == NULL) 1413 { 1414 m_symtab_ap.reset(new Symtab(this)); 1415 Mutex::Locker symtab_locker (m_symtab_ap->GetMutex()); 1416 ParseSymtab (); 1417 m_symtab_ap->Finalize (); 1418 } 1419 } 1420 return m_symtab_ap.get(); 1421 } 1422 1423 bool 1424 ObjectFileMachO::IsStripped () 1425 { 1426 if (m_dysymtab.cmd == 0) 1427 { 1428 ModuleSP module_sp(GetModule()); 1429 if (module_sp) 1430 { 1431 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 1432 for (uint32_t i=0; i<m_header.ncmds; ++i) 1433 { 1434 const lldb::offset_t load_cmd_offset = offset; 1435 1436 load_command lc; 1437 if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL) 1438 break; 1439 if (lc.cmd == LC_DYSYMTAB) 1440 { 1441 m_dysymtab.cmd = lc.cmd; 1442 m_dysymtab.cmdsize = lc.cmdsize; 1443 if (m_data.GetU32 (&offset, &m_dysymtab.ilocalsym, (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2) == NULL) 1444 { 1445 // Clear m_dysymtab if we were unable to read all items from the load command 1446 ::memset (&m_dysymtab, 0, sizeof(m_dysymtab)); 1447 } 1448 } 1449 offset = load_cmd_offset + lc.cmdsize; 1450 } 1451 } 1452 } 1453 if (m_dysymtab.cmd) 1454 return m_dysymtab.nlocalsym <= 1; 1455 return false; 1456 } 1457 1458 void 1459 ObjectFileMachO::CreateSections (SectionList &unified_section_list) 1460 { 1461 if (!m_sections_ap.get()) 1462 { 1463 m_sections_ap.reset(new SectionList()); 1464 1465 const bool is_dsym = (m_header.filetype == MH_DSYM); 1466 lldb::user_id_t segID = 0; 1467 lldb::user_id_t sectID = 0; 1468 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 1469 uint32_t i; 1470 const bool is_core = GetType() == eTypeCoreFile; 1471 //bool dump_sections = false; 1472 ModuleSP module_sp (GetModule()); 1473 // First look up any LC_ENCRYPTION_INFO load commands 1474 typedef RangeArray<uint32_t, uint32_t, 8> EncryptedFileRanges; 1475 EncryptedFileRanges encrypted_file_ranges; 1476 encryption_info_command encryption_cmd; 1477 for (i=0; i<m_header.ncmds; ++i) 1478 { 1479 const lldb::offset_t load_cmd_offset = offset; 1480 if (m_data.GetU32(&offset, &encryption_cmd, 2) == NULL) 1481 break; 1482 1483 // LC_ENCRYPTION_INFO and LC_ENCRYPTION_INFO_64 have the same sizes for 1484 // the 3 fields we care about, so treat them the same. 1485 if (encryption_cmd.cmd == LC_ENCRYPTION_INFO || encryption_cmd.cmd == LC_ENCRYPTION_INFO_64) 1486 { 1487 if (m_data.GetU32(&offset, &encryption_cmd.cryptoff, 3)) 1488 { 1489 if (encryption_cmd.cryptid != 0) 1490 { 1491 EncryptedFileRanges::Entry entry; 1492 entry.SetRangeBase(encryption_cmd.cryptoff); 1493 entry.SetByteSize(encryption_cmd.cryptsize); 1494 encrypted_file_ranges.Append(entry); 1495 } 1496 } 1497 } 1498 offset = load_cmd_offset + encryption_cmd.cmdsize; 1499 } 1500 1501 bool section_file_addresses_changed = false; 1502 1503 offset = MachHeaderSizeFromMagic(m_header.magic); 1504 1505 struct segment_command_64 load_cmd; 1506 for (i=0; i<m_header.ncmds; ++i) 1507 { 1508 const lldb::offset_t load_cmd_offset = offset; 1509 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) 1510 break; 1511 1512 if (load_cmd.cmd == LC_SEGMENT || load_cmd.cmd == LC_SEGMENT_64) 1513 { 1514 if (m_data.GetU8(&offset, (uint8_t*)load_cmd.segname, 16)) 1515 { 1516 bool add_section = true; 1517 bool add_to_unified = true; 1518 ConstString const_segname (load_cmd.segname, std::min<size_t>(strlen(load_cmd.segname), sizeof(load_cmd.segname))); 1519 1520 SectionSP unified_section_sp(unified_section_list.FindSectionByName(const_segname)); 1521 if (is_dsym && unified_section_sp) 1522 { 1523 if (const_segname == GetSegmentNameLINKEDIT()) 1524 { 1525 // We need to keep the __LINKEDIT segment private to this object file only 1526 add_to_unified = false; 1527 } 1528 else 1529 { 1530 // This is the dSYM file and this section has already been created by 1531 // the object file, no need to create it. 1532 add_section = false; 1533 } 1534 } 1535 load_cmd.vmaddr = m_data.GetAddress(&offset); 1536 load_cmd.vmsize = m_data.GetAddress(&offset); 1537 load_cmd.fileoff = m_data.GetAddress(&offset); 1538 load_cmd.filesize = m_data.GetAddress(&offset); 1539 if (m_length != 0 && load_cmd.filesize != 0) 1540 { 1541 if (load_cmd.fileoff > m_length) 1542 { 1543 // We have a load command that says it extends past the end of the file. This is likely 1544 // a corrupt file. We don't have any way to return an error condition here (this method 1545 // was likely invoked from something like ObjectFile::GetSectionList()) -- all we can do 1546 // is null out the SectionList vector and if a process has been set up, dump a message 1547 // to stdout. The most common case here is core file debugging with a truncated file. 1548 const char *lc_segment_name = load_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT"; 1549 module_sp->ReportWarning("load command %u %s has a fileoff (0x%" PRIx64 ") that extends beyond the end of the file (0x%" PRIx64 "), ignoring this section", 1550 i, 1551 lc_segment_name, 1552 load_cmd.fileoff, 1553 m_length); 1554 1555 load_cmd.fileoff = 0; 1556 load_cmd.filesize = 0; 1557 } 1558 1559 if (load_cmd.fileoff + load_cmd.filesize > m_length) 1560 { 1561 // We have a load command that says it extends past the end of the file. This is likely 1562 // a corrupt file. We don't have any way to return an error condition here (this method 1563 // was likely invoked from something like ObjectFile::GetSectionList()) -- all we can do 1564 // is null out the SectionList vector and if a process has been set up, dump a message 1565 // to stdout. The most common case here is core file debugging with a truncated file. 1566 const char *lc_segment_name = load_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT"; 1567 GetModule()->ReportWarning("load command %u %s has a fileoff + filesize (0x%" PRIx64 ") that extends beyond the end of the file (0x%" PRIx64 "), the segment will be truncated to match", 1568 i, 1569 lc_segment_name, 1570 load_cmd.fileoff + load_cmd.filesize, 1571 m_length); 1572 1573 // Tuncase the length 1574 load_cmd.filesize = m_length - load_cmd.fileoff; 1575 } 1576 } 1577 if (m_data.GetU32(&offset, &load_cmd.maxprot, 4)) 1578 { 1579 1580 const bool segment_is_encrypted = (load_cmd.flags & SG_PROTECTED_VERSION_1) != 0; 1581 1582 // Keep a list of mach segments around in case we need to 1583 // get at data that isn't stored in the abstracted Sections. 1584 m_mach_segments.push_back (load_cmd); 1585 1586 // Use a segment ID of the segment index shifted left by 8 so they 1587 // never conflict with any of the sections. 1588 SectionSP segment_sp; 1589 if (add_section && (const_segname || is_core)) 1590 { 1591 segment_sp.reset(new Section (module_sp, // Module to which this section belongs 1592 this, // Object file to which this sections belongs 1593 ++segID << 8, // Section ID is the 1 based segment index shifted right by 8 bits as not to collide with any of the 256 section IDs that are possible 1594 const_segname, // Name of this section 1595 eSectionTypeContainer, // This section is a container of other sections. 1596 load_cmd.vmaddr, // File VM address == addresses as they are found in the object file 1597 load_cmd.vmsize, // VM size in bytes of this section 1598 load_cmd.fileoff, // Offset to the data for this section in the file 1599 load_cmd.filesize, // Size in bytes of this section as found in the file 1600 0, // Segments have no alignment information 1601 load_cmd.flags)); // Flags for this section 1602 1603 segment_sp->SetIsEncrypted (segment_is_encrypted); 1604 m_sections_ap->AddSection(segment_sp); 1605 if (add_to_unified) 1606 unified_section_list.AddSection(segment_sp); 1607 } 1608 else if (unified_section_sp) 1609 { 1610 if (is_dsym && unified_section_sp->GetFileAddress() != load_cmd.vmaddr) 1611 { 1612 // Check to see if the module was read from memory? 1613 if (module_sp->GetObjectFile()->GetHeaderAddress().IsValid()) 1614 { 1615 // We have a module that is in memory and needs to have its 1616 // file address adjusted. We need to do this because when we 1617 // load a file from memory, its addresses will be slid already, 1618 // yet the addresses in the new symbol file will still be unslid. 1619 // Since everything is stored as section offset, this shouldn't 1620 // cause any problems. 1621 1622 // Make sure we've parsed the symbol table from the 1623 // ObjectFile before we go around changing its Sections. 1624 module_sp->GetObjectFile()->GetSymtab(); 1625 // eh_frame would present the same problems but we parse that on 1626 // a per-function basis as-needed so it's more difficult to 1627 // remove its use of the Sections. Realistically, the environments 1628 // where this code path will be taken will not have eh_frame sections. 1629 1630 unified_section_sp->SetFileAddress(load_cmd.vmaddr); 1631 1632 // Notify the module that the section addresses have been changed once 1633 // we're done so any file-address caches can be updated. 1634 section_file_addresses_changed = true; 1635 } 1636 } 1637 m_sections_ap->AddSection(unified_section_sp); 1638 } 1639 1640 struct section_64 sect64; 1641 ::memset (§64, 0, sizeof(sect64)); 1642 // Push a section into our mach sections for the section at 1643 // index zero (NO_SECT) if we don't have any mach sections yet... 1644 if (m_mach_sections.empty()) 1645 m_mach_sections.push_back(sect64); 1646 uint32_t segment_sect_idx; 1647 const lldb::user_id_t first_segment_sectID = sectID + 1; 1648 1649 1650 const uint32_t num_u32s = load_cmd.cmd == LC_SEGMENT ? 7 : 8; 1651 for (segment_sect_idx=0; segment_sect_idx<load_cmd.nsects; ++segment_sect_idx) 1652 { 1653 if (m_data.GetU8(&offset, (uint8_t*)sect64.sectname, sizeof(sect64.sectname)) == NULL) 1654 break; 1655 if (m_data.GetU8(&offset, (uint8_t*)sect64.segname, sizeof(sect64.segname)) == NULL) 1656 break; 1657 sect64.addr = m_data.GetAddress(&offset); 1658 sect64.size = m_data.GetAddress(&offset); 1659 1660 if (m_data.GetU32(&offset, §64.offset, num_u32s) == NULL) 1661 break; 1662 1663 // Keep a list of mach sections around in case we need to 1664 // get at data that isn't stored in the abstracted Sections. 1665 m_mach_sections.push_back (sect64); 1666 1667 if (add_section) 1668 { 1669 ConstString section_name (sect64.sectname, std::min<size_t>(strlen(sect64.sectname), sizeof(sect64.sectname))); 1670 if (!const_segname) 1671 { 1672 // We have a segment with no name so we need to conjure up 1673 // segments that correspond to the section's segname if there 1674 // isn't already such a section. If there is such a section, 1675 // we resize the section so that it spans all sections. 1676 // We also mark these sections as fake so address matches don't 1677 // hit if they land in the gaps between the child sections. 1678 const_segname.SetTrimmedCStringWithLength(sect64.segname, sizeof(sect64.segname)); 1679 segment_sp = unified_section_list.FindSectionByName (const_segname); 1680 if (segment_sp.get()) 1681 { 1682 Section *segment = segment_sp.get(); 1683 // Grow the section size as needed. 1684 const lldb::addr_t sect64_min_addr = sect64.addr; 1685 const lldb::addr_t sect64_max_addr = sect64_min_addr + sect64.size; 1686 const lldb::addr_t curr_seg_byte_size = segment->GetByteSize(); 1687 const lldb::addr_t curr_seg_min_addr = segment->GetFileAddress(); 1688 const lldb::addr_t curr_seg_max_addr = curr_seg_min_addr + curr_seg_byte_size; 1689 if (sect64_min_addr >= curr_seg_min_addr) 1690 { 1691 const lldb::addr_t new_seg_byte_size = sect64_max_addr - curr_seg_min_addr; 1692 // Only grow the section size if needed 1693 if (new_seg_byte_size > curr_seg_byte_size) 1694 segment->SetByteSize (new_seg_byte_size); 1695 } 1696 else 1697 { 1698 // We need to change the base address of the segment and 1699 // adjust the child section offsets for all existing children. 1700 const lldb::addr_t slide_amount = sect64_min_addr - curr_seg_min_addr; 1701 segment->Slide(slide_amount, false); 1702 segment->GetChildren().Slide(-slide_amount, false); 1703 segment->SetByteSize (curr_seg_max_addr - sect64_min_addr); 1704 } 1705 1706 // Grow the section size as needed. 1707 if (sect64.offset) 1708 { 1709 const lldb::addr_t segment_min_file_offset = segment->GetFileOffset(); 1710 const lldb::addr_t segment_max_file_offset = segment_min_file_offset + segment->GetFileSize(); 1711 1712 const lldb::addr_t section_min_file_offset = sect64.offset; 1713 const lldb::addr_t section_max_file_offset = section_min_file_offset + sect64.size; 1714 const lldb::addr_t new_file_offset = std::min (section_min_file_offset, segment_min_file_offset); 1715 const lldb::addr_t new_file_size = std::max (section_max_file_offset, segment_max_file_offset) - new_file_offset; 1716 segment->SetFileOffset (new_file_offset); 1717 segment->SetFileSize (new_file_size); 1718 } 1719 } 1720 else 1721 { 1722 // Create a fake section for the section's named segment 1723 segment_sp.reset(new Section (segment_sp, // Parent section 1724 module_sp, // Module to which this section belongs 1725 this, // Object file to which this section belongs 1726 ++segID << 8, // Section ID is the 1 based segment index shifted right by 8 bits as not to collide with any of the 256 section IDs that are possible 1727 const_segname, // Name of this section 1728 eSectionTypeContainer, // This section is a container of other sections. 1729 sect64.addr, // File VM address == addresses as they are found in the object file 1730 sect64.size, // VM size in bytes of this section 1731 sect64.offset, // Offset to the data for this section in the file 1732 sect64.offset ? sect64.size : 0, // Size in bytes of this section as found in the file 1733 sect64.align, 1734 load_cmd.flags)); // Flags for this section 1735 segment_sp->SetIsFake(true); 1736 1737 m_sections_ap->AddSection(segment_sp); 1738 if (add_to_unified) 1739 unified_section_list.AddSection(segment_sp); 1740 segment_sp->SetIsEncrypted (segment_is_encrypted); 1741 } 1742 } 1743 assert (segment_sp.get()); 1744 1745 lldb::SectionType sect_type = eSectionTypeOther; 1746 1747 if (sect64.flags & (S_ATTR_PURE_INSTRUCTIONS | S_ATTR_SOME_INSTRUCTIONS)) 1748 sect_type = eSectionTypeCode; 1749 else 1750 { 1751 uint32_t mach_sect_type = sect64.flags & SECTION_TYPE; 1752 static ConstString g_sect_name_objc_data ("__objc_data"); 1753 static ConstString g_sect_name_objc_msgrefs ("__objc_msgrefs"); 1754 static ConstString g_sect_name_objc_selrefs ("__objc_selrefs"); 1755 static ConstString g_sect_name_objc_classrefs ("__objc_classrefs"); 1756 static ConstString g_sect_name_objc_superrefs ("__objc_superrefs"); 1757 static ConstString g_sect_name_objc_const ("__objc_const"); 1758 static ConstString g_sect_name_objc_classlist ("__objc_classlist"); 1759 static ConstString g_sect_name_cfstring ("__cfstring"); 1760 1761 static ConstString g_sect_name_dwarf_debug_abbrev ("__debug_abbrev"); 1762 static ConstString g_sect_name_dwarf_debug_aranges ("__debug_aranges"); 1763 static ConstString g_sect_name_dwarf_debug_frame ("__debug_frame"); 1764 static ConstString g_sect_name_dwarf_debug_info ("__debug_info"); 1765 static ConstString g_sect_name_dwarf_debug_line ("__debug_line"); 1766 static ConstString g_sect_name_dwarf_debug_loc ("__debug_loc"); 1767 static ConstString g_sect_name_dwarf_debug_macinfo ("__debug_macinfo"); 1768 static ConstString g_sect_name_dwarf_debug_pubnames ("__debug_pubnames"); 1769 static ConstString g_sect_name_dwarf_debug_pubtypes ("__debug_pubtypes"); 1770 static ConstString g_sect_name_dwarf_debug_ranges ("__debug_ranges"); 1771 static ConstString g_sect_name_dwarf_debug_str ("__debug_str"); 1772 static ConstString g_sect_name_dwarf_apple_names ("__apple_names"); 1773 static ConstString g_sect_name_dwarf_apple_types ("__apple_types"); 1774 static ConstString g_sect_name_dwarf_apple_namespaces ("__apple_namespac"); 1775 static ConstString g_sect_name_dwarf_apple_objc ("__apple_objc"); 1776 static ConstString g_sect_name_eh_frame ("__eh_frame"); 1777 static ConstString g_sect_name_compact_unwind ("__unwind_info"); 1778 static ConstString g_sect_name_text ("__text"); 1779 static ConstString g_sect_name_data ("__data"); 1780 1781 1782 if (section_name == g_sect_name_dwarf_debug_abbrev) 1783 sect_type = eSectionTypeDWARFDebugAbbrev; 1784 else if (section_name == g_sect_name_dwarf_debug_aranges) 1785 sect_type = eSectionTypeDWARFDebugAranges; 1786 else if (section_name == g_sect_name_dwarf_debug_frame) 1787 sect_type = eSectionTypeDWARFDebugFrame; 1788 else if (section_name == g_sect_name_dwarf_debug_info) 1789 sect_type = eSectionTypeDWARFDebugInfo; 1790 else if (section_name == g_sect_name_dwarf_debug_line) 1791 sect_type = eSectionTypeDWARFDebugLine; 1792 else if (section_name == g_sect_name_dwarf_debug_loc) 1793 sect_type = eSectionTypeDWARFDebugLoc; 1794 else if (section_name == g_sect_name_dwarf_debug_macinfo) 1795 sect_type = eSectionTypeDWARFDebugMacInfo; 1796 else if (section_name == g_sect_name_dwarf_debug_pubnames) 1797 sect_type = eSectionTypeDWARFDebugPubNames; 1798 else if (section_name == g_sect_name_dwarf_debug_pubtypes) 1799 sect_type = eSectionTypeDWARFDebugPubTypes; 1800 else if (section_name == g_sect_name_dwarf_debug_ranges) 1801 sect_type = eSectionTypeDWARFDebugRanges; 1802 else if (section_name == g_sect_name_dwarf_debug_str) 1803 sect_type = eSectionTypeDWARFDebugStr; 1804 else if (section_name == g_sect_name_dwarf_apple_names) 1805 sect_type = eSectionTypeDWARFAppleNames; 1806 else if (section_name == g_sect_name_dwarf_apple_types) 1807 sect_type = eSectionTypeDWARFAppleTypes; 1808 else if (section_name == g_sect_name_dwarf_apple_namespaces) 1809 sect_type = eSectionTypeDWARFAppleNamespaces; 1810 else if (section_name == g_sect_name_dwarf_apple_objc) 1811 sect_type = eSectionTypeDWARFAppleObjC; 1812 else if (section_name == g_sect_name_objc_selrefs) 1813 sect_type = eSectionTypeDataCStringPointers; 1814 else if (section_name == g_sect_name_objc_msgrefs) 1815 sect_type = eSectionTypeDataObjCMessageRefs; 1816 else if (section_name == g_sect_name_eh_frame) 1817 sect_type = eSectionTypeEHFrame; 1818 else if (section_name == g_sect_name_compact_unwind) 1819 sect_type = eSectionTypeCompactUnwind; 1820 else if (section_name == g_sect_name_cfstring) 1821 sect_type = eSectionTypeDataObjCCFStrings; 1822 else if (section_name == g_sect_name_objc_data || 1823 section_name == g_sect_name_objc_classrefs || 1824 section_name == g_sect_name_objc_superrefs || 1825 section_name == g_sect_name_objc_const || 1826 section_name == g_sect_name_objc_classlist) 1827 { 1828 sect_type = eSectionTypeDataPointers; 1829 } 1830 1831 if (sect_type == eSectionTypeOther) 1832 { 1833 switch (mach_sect_type) 1834 { 1835 // TODO: categorize sections by other flags for regular sections 1836 case S_REGULAR: 1837 if (section_name == g_sect_name_text) 1838 sect_type = eSectionTypeCode; 1839 else if (section_name == g_sect_name_data) 1840 sect_type = eSectionTypeData; 1841 else 1842 sect_type = eSectionTypeOther; 1843 break; 1844 case S_ZEROFILL: sect_type = eSectionTypeZeroFill; break; 1845 case S_CSTRING_LITERALS: sect_type = eSectionTypeDataCString; break; // section with only literal C strings 1846 case S_4BYTE_LITERALS: sect_type = eSectionTypeData4; break; // section with only 4 byte literals 1847 case S_8BYTE_LITERALS: sect_type = eSectionTypeData8; break; // section with only 8 byte literals 1848 case S_LITERAL_POINTERS: sect_type = eSectionTypeDataPointers; break; // section with only pointers to literals 1849 case S_NON_LAZY_SYMBOL_POINTERS: sect_type = eSectionTypeDataPointers; break; // section with only non-lazy symbol pointers 1850 case S_LAZY_SYMBOL_POINTERS: sect_type = eSectionTypeDataPointers; break; // section with only lazy symbol pointers 1851 case S_SYMBOL_STUBS: sect_type = eSectionTypeCode; break; // section with only symbol stubs, byte size of stub in the reserved2 field 1852 case S_MOD_INIT_FUNC_POINTERS: sect_type = eSectionTypeDataPointers; break; // section with only function pointers for initialization 1853 case S_MOD_TERM_FUNC_POINTERS: sect_type = eSectionTypeDataPointers; break; // section with only function pointers for termination 1854 case S_COALESCED: sect_type = eSectionTypeOther; break; 1855 case S_GB_ZEROFILL: sect_type = eSectionTypeZeroFill; break; 1856 case S_INTERPOSING: sect_type = eSectionTypeCode; break; // section with only pairs of function pointers for interposing 1857 case S_16BYTE_LITERALS: sect_type = eSectionTypeData16; break; // section with only 16 byte literals 1858 case S_DTRACE_DOF: sect_type = eSectionTypeDebug; break; 1859 case S_LAZY_DYLIB_SYMBOL_POINTERS: sect_type = eSectionTypeDataPointers; break; 1860 default: break; 1861 } 1862 } 1863 } 1864 1865 SectionSP section_sp(new Section (segment_sp, 1866 module_sp, 1867 this, 1868 ++sectID, 1869 section_name, 1870 sect_type, 1871 sect64.addr - segment_sp->GetFileAddress(), 1872 sect64.size, 1873 sect64.offset, 1874 sect64.offset == 0 ? 0 : sect64.size, 1875 sect64.align, 1876 sect64.flags)); 1877 // Set the section to be encrypted to match the segment 1878 1879 bool section_is_encrypted = false; 1880 if (!segment_is_encrypted && load_cmd.filesize != 0) 1881 section_is_encrypted = encrypted_file_ranges.FindEntryThatContains(sect64.offset) != NULL; 1882 1883 section_sp->SetIsEncrypted (segment_is_encrypted || section_is_encrypted); 1884 segment_sp->GetChildren().AddSection(section_sp); 1885 1886 if (segment_sp->IsFake()) 1887 { 1888 segment_sp.reset(); 1889 const_segname.Clear(); 1890 } 1891 } 1892 } 1893 if (segment_sp && is_dsym) 1894 { 1895 if (first_segment_sectID <= sectID) 1896 { 1897 lldb::user_id_t sect_uid; 1898 for (sect_uid = first_segment_sectID; sect_uid <= sectID; ++sect_uid) 1899 { 1900 SectionSP curr_section_sp(segment_sp->GetChildren().FindSectionByID (sect_uid)); 1901 SectionSP next_section_sp; 1902 if (sect_uid + 1 <= sectID) 1903 next_section_sp = segment_sp->GetChildren().FindSectionByID (sect_uid+1); 1904 1905 if (curr_section_sp.get()) 1906 { 1907 if (curr_section_sp->GetByteSize() == 0) 1908 { 1909 if (next_section_sp.get() != NULL) 1910 curr_section_sp->SetByteSize ( next_section_sp->GetFileAddress() - curr_section_sp->GetFileAddress() ); 1911 else 1912 curr_section_sp->SetByteSize ( load_cmd.vmsize ); 1913 } 1914 } 1915 } 1916 } 1917 } 1918 } 1919 } 1920 } 1921 else if (load_cmd.cmd == LC_DYSYMTAB) 1922 { 1923 m_dysymtab.cmd = load_cmd.cmd; 1924 m_dysymtab.cmdsize = load_cmd.cmdsize; 1925 m_data.GetU32 (&offset, &m_dysymtab.ilocalsym, (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2); 1926 } 1927 1928 offset = load_cmd_offset + load_cmd.cmdsize; 1929 } 1930 1931 1932 if (section_file_addresses_changed && module_sp.get()) 1933 { 1934 module_sp->SectionFileAddressesChanged(); 1935 } 1936 } 1937 } 1938 1939 class MachSymtabSectionInfo 1940 { 1941 public: 1942 1943 MachSymtabSectionInfo (SectionList *section_list) : 1944 m_section_list (section_list), 1945 m_section_infos() 1946 { 1947 // Get the number of sections down to a depth of 1 to include 1948 // all segments and their sections, but no other sections that 1949 // may be added for debug map or 1950 m_section_infos.resize(section_list->GetNumSections(1)); 1951 } 1952 1953 1954 SectionSP 1955 GetSection (uint8_t n_sect, addr_t file_addr) 1956 { 1957 if (n_sect == 0) 1958 return SectionSP(); 1959 if (n_sect < m_section_infos.size()) 1960 { 1961 if (!m_section_infos[n_sect].section_sp) 1962 { 1963 SectionSP section_sp (m_section_list->FindSectionByID (n_sect)); 1964 m_section_infos[n_sect].section_sp = section_sp; 1965 if (section_sp) 1966 { 1967 m_section_infos[n_sect].vm_range.SetBaseAddress (section_sp->GetFileAddress()); 1968 m_section_infos[n_sect].vm_range.SetByteSize (section_sp->GetByteSize()); 1969 } 1970 else 1971 { 1972 Host::SystemLog (Host::eSystemLogError, "error: unable to find section for section %u\n", n_sect); 1973 } 1974 } 1975 if (m_section_infos[n_sect].vm_range.Contains(file_addr)) 1976 { 1977 // Symbol is in section. 1978 return m_section_infos[n_sect].section_sp; 1979 } 1980 else if (m_section_infos[n_sect].vm_range.GetByteSize () == 0 && 1981 m_section_infos[n_sect].vm_range.GetBaseAddress() == file_addr) 1982 { 1983 // Symbol is in section with zero size, but has the same start 1984 // address as the section. This can happen with linker symbols 1985 // (symbols that start with the letter 'l' or 'L'. 1986 return m_section_infos[n_sect].section_sp; 1987 } 1988 } 1989 return m_section_list->FindSectionContainingFileAddress(file_addr); 1990 } 1991 1992 protected: 1993 struct SectionInfo 1994 { 1995 SectionInfo () : 1996 vm_range(), 1997 section_sp () 1998 { 1999 } 2000 2001 VMRange vm_range; 2002 SectionSP section_sp; 2003 }; 2004 SectionList *m_section_list; 2005 std::vector<SectionInfo> m_section_infos; 2006 }; 2007 2008 struct TrieEntry 2009 { 2010 TrieEntry () : 2011 name(), 2012 address(LLDB_INVALID_ADDRESS), 2013 flags (0), 2014 other(0), 2015 import_name() 2016 { 2017 } 2018 2019 void 2020 Clear () 2021 { 2022 name.Clear(); 2023 address = LLDB_INVALID_ADDRESS; 2024 flags = 0; 2025 other = 0; 2026 import_name.Clear(); 2027 } 2028 2029 void 2030 Dump () const 2031 { 2032 printf ("0x%16.16llx 0x%16.16llx 0x%16.16llx \"%s\"", 2033 static_cast<unsigned long long>(address), 2034 static_cast<unsigned long long>(flags), 2035 static_cast<unsigned long long>(other), name.GetCString()); 2036 if (import_name) 2037 printf (" -> \"%s\"\n", import_name.GetCString()); 2038 else 2039 printf ("\n"); 2040 } 2041 ConstString name; 2042 uint64_t address; 2043 uint64_t flags; 2044 uint64_t other; 2045 ConstString import_name; 2046 }; 2047 2048 struct TrieEntryWithOffset 2049 { 2050 lldb::offset_t nodeOffset; 2051 TrieEntry entry; 2052 2053 TrieEntryWithOffset (lldb::offset_t offset) : 2054 nodeOffset (offset), 2055 entry() 2056 { 2057 } 2058 2059 void 2060 Dump (uint32_t idx) const 2061 { 2062 printf ("[%3u] 0x%16.16llx: ", idx, 2063 static_cast<unsigned long long>(nodeOffset)); 2064 entry.Dump(); 2065 } 2066 2067 bool 2068 operator<(const TrieEntryWithOffset& other) const 2069 { 2070 return ( nodeOffset < other.nodeOffset ); 2071 } 2072 }; 2073 2074 static void 2075 ParseTrieEntries (DataExtractor &data, 2076 lldb::offset_t offset, 2077 const bool is_arm, 2078 std::vector<llvm::StringRef> &nameSlices, 2079 std::set<lldb::addr_t> &resolver_addresses, 2080 std::vector<TrieEntryWithOffset>& output) 2081 { 2082 if (!data.ValidOffset(offset)) 2083 return; 2084 2085 const uint64_t terminalSize = data.GetULEB128(&offset); 2086 lldb::offset_t children_offset = offset + terminalSize; 2087 if ( terminalSize != 0 ) { 2088 TrieEntryWithOffset e (offset); 2089 e.entry.flags = data.GetULEB128(&offset); 2090 const char *import_name = NULL; 2091 if ( e.entry.flags & EXPORT_SYMBOL_FLAGS_REEXPORT ) { 2092 e.entry.address = 0; 2093 e.entry.other = data.GetULEB128(&offset); // dylib ordinal 2094 import_name = data.GetCStr(&offset); 2095 } 2096 else { 2097 e.entry.address = data.GetULEB128(&offset); 2098 if ( e.entry.flags & EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER ) 2099 { 2100 e.entry.other = data.GetULEB128(&offset); 2101 uint64_t resolver_addr = e.entry.other; 2102 if (is_arm) 2103 resolver_addr &= THUMB_ADDRESS_BIT_MASK; 2104 resolver_addresses.insert(resolver_addr); 2105 } 2106 else 2107 e.entry.other = 0; 2108 } 2109 // Only add symbols that are reexport symbols with a valid import name 2110 if (EXPORT_SYMBOL_FLAGS_REEXPORT & e.entry.flags && import_name && import_name[0]) 2111 { 2112 std::string name; 2113 if (!nameSlices.empty()) 2114 { 2115 for (auto name_slice: nameSlices) 2116 name.append(name_slice.data(), name_slice.size()); 2117 } 2118 if (name.size() > 1) 2119 { 2120 // Skip the leading '_' 2121 e.entry.name.SetCStringWithLength(name.c_str() + 1,name.size() - 1); 2122 } 2123 if (import_name) 2124 { 2125 // Skip the leading '_' 2126 e.entry.import_name.SetCString(import_name+1); 2127 } 2128 output.push_back(e); 2129 } 2130 } 2131 2132 const uint8_t childrenCount = data.GetU8(&children_offset); 2133 for (uint8_t i=0; i < childrenCount; ++i) { 2134 nameSlices.push_back(data.GetCStr(&children_offset)); 2135 lldb::offset_t childNodeOffset = data.GetULEB128(&children_offset); 2136 if (childNodeOffset) 2137 { 2138 ParseTrieEntries(data, 2139 childNodeOffset, 2140 is_arm, 2141 nameSlices, 2142 resolver_addresses, 2143 output); 2144 } 2145 nameSlices.pop_back(); 2146 } 2147 } 2148 2149 size_t 2150 ObjectFileMachO::ParseSymtab () 2151 { 2152 Timer scoped_timer(__PRETTY_FUNCTION__, 2153 "ObjectFileMachO::ParseSymtab () module = %s", 2154 m_file.GetFilename().AsCString("")); 2155 ModuleSP module_sp (GetModule()); 2156 if (!module_sp) 2157 return 0; 2158 2159 struct symtab_command symtab_load_command = { 0, 0, 0, 0, 0, 0 }; 2160 struct linkedit_data_command function_starts_load_command = { 0, 0, 0, 0 }; 2161 struct dyld_info_command dyld_info = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; 2162 typedef AddressDataArray<lldb::addr_t, bool, 100> FunctionStarts; 2163 FunctionStarts function_starts; 2164 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 2165 uint32_t i; 2166 FileSpecList dylib_files; 2167 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_SYMBOLS)); 2168 static const llvm::StringRef g_objc_v2_prefix_class ("_OBJC_CLASS_$_"); 2169 static const llvm::StringRef g_objc_v2_prefix_metaclass ("_OBJC_METACLASS_$_"); 2170 static const llvm::StringRef g_objc_v2_prefix_ivar ("_OBJC_IVAR_$_"); 2171 2172 for (i=0; i<m_header.ncmds; ++i) 2173 { 2174 const lldb::offset_t cmd_offset = offset; 2175 // Read in the load command and load command size 2176 struct load_command lc; 2177 if (m_data.GetU32(&offset, &lc, 2) == NULL) 2178 break; 2179 // Watch for the symbol table load command 2180 switch (lc.cmd) 2181 { 2182 case LC_SYMTAB: 2183 symtab_load_command.cmd = lc.cmd; 2184 symtab_load_command.cmdsize = lc.cmdsize; 2185 // Read in the rest of the symtab load command 2186 if (m_data.GetU32(&offset, &symtab_load_command.symoff, 4) == 0) // fill in symoff, nsyms, stroff, strsize fields 2187 return 0; 2188 if (symtab_load_command.symoff == 0) 2189 { 2190 if (log) 2191 module_sp->LogMessage(log, "LC_SYMTAB.symoff == 0"); 2192 return 0; 2193 } 2194 2195 if (symtab_load_command.stroff == 0) 2196 { 2197 if (log) 2198 module_sp->LogMessage(log, "LC_SYMTAB.stroff == 0"); 2199 return 0; 2200 } 2201 2202 if (symtab_load_command.nsyms == 0) 2203 { 2204 if (log) 2205 module_sp->LogMessage(log, "LC_SYMTAB.nsyms == 0"); 2206 return 0; 2207 } 2208 2209 if (symtab_load_command.strsize == 0) 2210 { 2211 if (log) 2212 module_sp->LogMessage(log, "LC_SYMTAB.strsize == 0"); 2213 return 0; 2214 } 2215 break; 2216 2217 case LC_DYLD_INFO: 2218 case LC_DYLD_INFO_ONLY: 2219 if (m_data.GetU32(&offset, &dyld_info.rebase_off, 10)) 2220 { 2221 dyld_info.cmd = lc.cmd; 2222 dyld_info.cmdsize = lc.cmdsize; 2223 } 2224 else 2225 { 2226 memset (&dyld_info, 0, sizeof(dyld_info)); 2227 } 2228 break; 2229 2230 case LC_LOAD_DYLIB: 2231 case LC_LOAD_WEAK_DYLIB: 2232 case LC_REEXPORT_DYLIB: 2233 case LC_LOADFVMLIB: 2234 case LC_LOAD_UPWARD_DYLIB: 2235 { 2236 uint32_t name_offset = cmd_offset + m_data.GetU32(&offset); 2237 const char *path = m_data.PeekCStr(name_offset); 2238 if (path) 2239 { 2240 FileSpec file_spec(path, false); 2241 // Strip the path if there is @rpath, @executable, etc so we just use the basename 2242 if (path[0] == '@') 2243 file_spec.GetDirectory().Clear(); 2244 2245 if (lc.cmd == LC_REEXPORT_DYLIB) 2246 { 2247 m_reexported_dylibs.AppendIfUnique(file_spec); 2248 } 2249 2250 dylib_files.Append(file_spec); 2251 } 2252 } 2253 break; 2254 2255 case LC_FUNCTION_STARTS: 2256 function_starts_load_command.cmd = lc.cmd; 2257 function_starts_load_command.cmdsize = lc.cmdsize; 2258 if (m_data.GetU32(&offset, &function_starts_load_command.dataoff, 2) == NULL) // fill in symoff, nsyms, stroff, strsize fields 2259 memset (&function_starts_load_command, 0, sizeof(function_starts_load_command)); 2260 break; 2261 2262 default: 2263 break; 2264 } 2265 offset = cmd_offset + lc.cmdsize; 2266 } 2267 2268 if (symtab_load_command.cmd) 2269 { 2270 Symtab *symtab = m_symtab_ap.get(); 2271 SectionList *section_list = GetSectionList(); 2272 if (section_list == NULL) 2273 return 0; 2274 2275 const uint32_t addr_byte_size = m_data.GetAddressByteSize(); 2276 const ByteOrder byte_order = m_data.GetByteOrder(); 2277 bool bit_width_32 = addr_byte_size == 4; 2278 const size_t nlist_byte_size = bit_width_32 ? sizeof(struct nlist) : sizeof(struct nlist_64); 2279 2280 DataExtractor nlist_data (NULL, 0, byte_order, addr_byte_size); 2281 DataExtractor strtab_data (NULL, 0, byte_order, addr_byte_size); 2282 DataExtractor function_starts_data (NULL, 0, byte_order, addr_byte_size); 2283 DataExtractor indirect_symbol_index_data (NULL, 0, byte_order, addr_byte_size); 2284 DataExtractor dyld_trie_data (NULL, 0, byte_order, addr_byte_size); 2285 2286 const addr_t nlist_data_byte_size = symtab_load_command.nsyms * nlist_byte_size; 2287 const addr_t strtab_data_byte_size = symtab_load_command.strsize; 2288 addr_t strtab_addr = LLDB_INVALID_ADDRESS; 2289 2290 ProcessSP process_sp (m_process_wp.lock()); 2291 Process *process = process_sp.get(); 2292 2293 uint32_t memory_module_load_level = eMemoryModuleLoadLevelComplete; 2294 2295 if (process && m_header.filetype != llvm::MachO::MH_OBJECT) 2296 { 2297 Target &target = process->GetTarget(); 2298 2299 memory_module_load_level = target.GetMemoryModuleLoadLevel(); 2300 2301 SectionSP linkedit_section_sp(section_list->FindSectionByName(GetSegmentNameLINKEDIT())); 2302 // Reading mach file from memory in a process or core file... 2303 2304 if (linkedit_section_sp) 2305 { 2306 addr_t linkedit_load_addr = linkedit_section_sp->GetLoadBaseAddress(&target); 2307 if (linkedit_load_addr == LLDB_INVALID_ADDRESS) 2308 { 2309 // We might be trying to access the symbol table before the __LINKEDIT's load 2310 // address has been set in the target. We can't fail to read the symbol table, 2311 // so calculate the right address manually 2312 linkedit_load_addr = CalculateSectionLoadAddressForMemoryImage(m_memory_addr, GetMachHeaderSection(), linkedit_section_sp.get()); 2313 } 2314 2315 const addr_t linkedit_file_offset = linkedit_section_sp->GetFileOffset(); 2316 const addr_t symoff_addr = linkedit_load_addr + symtab_load_command.symoff - linkedit_file_offset; 2317 strtab_addr = linkedit_load_addr + symtab_load_command.stroff - linkedit_file_offset; 2318 2319 bool data_was_read = false; 2320 2321 #if defined (__APPLE__) && (defined (__arm__) || defined (__arm64__) || defined (__aarch64__)) 2322 if (m_header.flags & 0x80000000u && process->GetAddressByteSize() == sizeof (void*)) 2323 { 2324 // This mach-o memory file is in the dyld shared cache. If this 2325 // program is not remote and this is iOS, then this process will 2326 // share the same shared cache as the process we are debugging and 2327 // we can read the entire __LINKEDIT from the address space in this 2328 // process. This is a needed optimization that is used for local iOS 2329 // debugging only since all shared libraries in the shared cache do 2330 // not have corresponding files that exist in the file system of the 2331 // device. They have been combined into a single file. This means we 2332 // always have to load these files from memory. All of the symbol and 2333 // string tables from all of the __LINKEDIT sections from the shared 2334 // libraries in the shared cache have been merged into a single large 2335 // symbol and string table. Reading all of this symbol and string table 2336 // data across can slow down debug launch times, so we optimize this by 2337 // reading the memory for the __LINKEDIT section from this process. 2338 2339 UUID lldb_shared_cache(GetLLDBSharedCacheUUID()); 2340 UUID process_shared_cache(GetProcessSharedCacheUUID(process)); 2341 bool use_lldb_cache = true; 2342 if (lldb_shared_cache.IsValid() && process_shared_cache.IsValid() && lldb_shared_cache != process_shared_cache) 2343 { 2344 use_lldb_cache = false; 2345 ModuleSP module_sp (GetModule()); 2346 if (module_sp) 2347 module_sp->ReportWarning ("shared cache in process does not match lldb's own shared cache, startup will be slow."); 2348 2349 } 2350 2351 PlatformSP platform_sp (target.GetPlatform()); 2352 if (platform_sp && platform_sp->IsHost() && use_lldb_cache) 2353 { 2354 data_was_read = true; 2355 nlist_data.SetData((void *)symoff_addr, nlist_data_byte_size, eByteOrderLittle); 2356 strtab_data.SetData((void *)strtab_addr, strtab_data_byte_size, eByteOrderLittle); 2357 if (function_starts_load_command.cmd) 2358 { 2359 const addr_t func_start_addr = linkedit_load_addr + function_starts_load_command.dataoff - linkedit_file_offset; 2360 function_starts_data.SetData ((void *)func_start_addr, function_starts_load_command.datasize, eByteOrderLittle); 2361 } 2362 } 2363 } 2364 #endif 2365 2366 if (!data_was_read) 2367 { 2368 if (memory_module_load_level == eMemoryModuleLoadLevelComplete) 2369 { 2370 DataBufferSP nlist_data_sp (ReadMemory (process_sp, symoff_addr, nlist_data_byte_size)); 2371 if (nlist_data_sp) 2372 nlist_data.SetData (nlist_data_sp, 0, nlist_data_sp->GetByteSize()); 2373 // Load strings individually from memory when loading from memory since shared cache 2374 // string tables contain strings for all symbols from all shared cached libraries 2375 //DataBufferSP strtab_data_sp (ReadMemory (process_sp, strtab_addr, strtab_data_byte_size)); 2376 //if (strtab_data_sp) 2377 // strtab_data.SetData (strtab_data_sp, 0, strtab_data_sp->GetByteSize()); 2378 if (m_dysymtab.nindirectsyms != 0) 2379 { 2380 const addr_t indirect_syms_addr = linkedit_load_addr + m_dysymtab.indirectsymoff - linkedit_file_offset; 2381 DataBufferSP indirect_syms_data_sp (ReadMemory (process_sp, indirect_syms_addr, m_dysymtab.nindirectsyms * 4)); 2382 if (indirect_syms_data_sp) 2383 indirect_symbol_index_data.SetData (indirect_syms_data_sp, 0, indirect_syms_data_sp->GetByteSize()); 2384 } 2385 } 2386 2387 if (memory_module_load_level >= eMemoryModuleLoadLevelPartial) 2388 { 2389 if (function_starts_load_command.cmd) 2390 { 2391 const addr_t func_start_addr = linkedit_load_addr + function_starts_load_command.dataoff - linkedit_file_offset; 2392 DataBufferSP func_start_data_sp (ReadMemory (process_sp, func_start_addr, function_starts_load_command.datasize)); 2393 if (func_start_data_sp) 2394 function_starts_data.SetData (func_start_data_sp, 0, func_start_data_sp->GetByteSize()); 2395 } 2396 } 2397 } 2398 } 2399 } 2400 else 2401 { 2402 nlist_data.SetData (m_data, 2403 symtab_load_command.symoff, 2404 nlist_data_byte_size); 2405 strtab_data.SetData (m_data, 2406 symtab_load_command.stroff, 2407 strtab_data_byte_size); 2408 2409 if (dyld_info.export_size > 0) 2410 { 2411 dyld_trie_data.SetData (m_data, 2412 dyld_info.export_off, 2413 dyld_info.export_size); 2414 } 2415 2416 if (m_dysymtab.nindirectsyms != 0) 2417 { 2418 indirect_symbol_index_data.SetData (m_data, 2419 m_dysymtab.indirectsymoff, 2420 m_dysymtab.nindirectsyms * 4); 2421 } 2422 if (function_starts_load_command.cmd) 2423 { 2424 function_starts_data.SetData (m_data, 2425 function_starts_load_command.dataoff, 2426 function_starts_load_command.datasize); 2427 } 2428 } 2429 2430 if (nlist_data.GetByteSize() == 0 && memory_module_load_level == eMemoryModuleLoadLevelComplete) 2431 { 2432 if (log) 2433 module_sp->LogMessage(log, "failed to read nlist data"); 2434 return 0; 2435 } 2436 2437 2438 const bool have_strtab_data = strtab_data.GetByteSize() > 0; 2439 if (!have_strtab_data) 2440 { 2441 if (process) 2442 { 2443 if (strtab_addr == LLDB_INVALID_ADDRESS) 2444 { 2445 if (log) 2446 module_sp->LogMessage(log, "failed to locate the strtab in memory"); 2447 return 0; 2448 } 2449 } 2450 else 2451 { 2452 if (log) 2453 module_sp->LogMessage(log, "failed to read strtab data"); 2454 return 0; 2455 } 2456 } 2457 2458 const ConstString &g_segment_name_TEXT = GetSegmentNameTEXT(); 2459 const ConstString &g_segment_name_DATA = GetSegmentNameDATA(); 2460 const ConstString &g_segment_name_DATA_DIRTY = GetSegmentNameDATA_DIRTY(); 2461 const ConstString &g_segment_name_DATA_CONST = GetSegmentNameDATA_CONST(); 2462 const ConstString &g_segment_name_OBJC = GetSegmentNameOBJC(); 2463 const ConstString &g_section_name_eh_frame = GetSectionNameEHFrame(); 2464 SectionSP text_section_sp(section_list->FindSectionByName(g_segment_name_TEXT)); 2465 SectionSP data_section_sp(section_list->FindSectionByName(g_segment_name_DATA)); 2466 SectionSP data_dirty_section_sp(section_list->FindSectionByName(g_segment_name_DATA_DIRTY)); 2467 SectionSP data_const_section_sp(section_list->FindSectionByName(g_segment_name_DATA_CONST)); 2468 SectionSP objc_section_sp(section_list->FindSectionByName(g_segment_name_OBJC)); 2469 SectionSP eh_frame_section_sp; 2470 if (text_section_sp.get()) 2471 eh_frame_section_sp = text_section_sp->GetChildren().FindSectionByName (g_section_name_eh_frame); 2472 else 2473 eh_frame_section_sp = section_list->FindSectionByName (g_section_name_eh_frame); 2474 2475 const bool is_arm = (m_header.cputype == llvm::MachO::CPU_TYPE_ARM); 2476 2477 // lldb works best if it knows the start address of all functions in a module. 2478 // Linker symbols or debug info are normally the best source of information for start addr / size but 2479 // they may be stripped in a released binary. 2480 // Two additional sources of information exist in Mach-O binaries: 2481 // LC_FUNCTION_STARTS - a list of ULEB128 encoded offsets of each function's start address in the 2482 // binary, relative to the text section. 2483 // eh_frame - the eh_frame FDEs have the start addr & size of each function 2484 // LC_FUNCTION_STARTS is the fastest source to read in, and is present on all modern binaries. 2485 // Binaries built to run on older releases may need to use eh_frame information. 2486 2487 if (text_section_sp && function_starts_data.GetByteSize()) 2488 { 2489 FunctionStarts::Entry function_start_entry; 2490 function_start_entry.data = false; 2491 lldb::offset_t function_start_offset = 0; 2492 function_start_entry.addr = text_section_sp->GetFileAddress(); 2493 uint64_t delta; 2494 while ((delta = function_starts_data.GetULEB128(&function_start_offset)) > 0) 2495 { 2496 // Now append the current entry 2497 function_start_entry.addr += delta; 2498 function_starts.Append(function_start_entry); 2499 } 2500 } 2501 else 2502 { 2503 // If m_type is eTypeDebugInfo, then this is a dSYM - it will have the load command claiming an eh_frame 2504 // but it doesn't actually have the eh_frame content. And if we have a dSYM, we don't need to do any 2505 // of this fill-in-the-missing-symbols works anyway - the debug info should give us all the functions in 2506 // the module. 2507 if (text_section_sp.get() && eh_frame_section_sp.get() && m_type != eTypeDebugInfo) 2508 { 2509 DWARFCallFrameInfo eh_frame(*this, eh_frame_section_sp, eRegisterKindEHFrame, true); 2510 DWARFCallFrameInfo::FunctionAddressAndSizeVector functions; 2511 eh_frame.GetFunctionAddressAndSizeVector (functions); 2512 addr_t text_base_addr = text_section_sp->GetFileAddress(); 2513 size_t count = functions.GetSize(); 2514 for (size_t i = 0; i < count; ++i) 2515 { 2516 const DWARFCallFrameInfo::FunctionAddressAndSizeVector::Entry *func = functions.GetEntryAtIndex (i); 2517 if (func) 2518 { 2519 FunctionStarts::Entry function_start_entry; 2520 function_start_entry.addr = func->base - text_base_addr; 2521 function_starts.Append(function_start_entry); 2522 } 2523 } 2524 } 2525 } 2526 2527 const size_t function_starts_count = function_starts.GetSize(); 2528 2529 const user_id_t TEXT_eh_frame_sectID = 2530 eh_frame_section_sp.get() ? eh_frame_section_sp->GetID() 2531 : static_cast<user_id_t>(NO_SECT); 2532 2533 lldb::offset_t nlist_data_offset = 0; 2534 2535 uint32_t N_SO_index = UINT32_MAX; 2536 2537 MachSymtabSectionInfo section_info (section_list); 2538 std::vector<uint32_t> N_FUN_indexes; 2539 std::vector<uint32_t> N_NSYM_indexes; 2540 std::vector<uint32_t> N_INCL_indexes; 2541 std::vector<uint32_t> N_BRAC_indexes; 2542 std::vector<uint32_t> N_COMM_indexes; 2543 typedef std::multimap <uint64_t, uint32_t> ValueToSymbolIndexMap; 2544 typedef std::map <uint32_t, uint32_t> NListIndexToSymbolIndexMap; 2545 typedef std::map <const char *, uint32_t> ConstNameToSymbolIndexMap; 2546 ValueToSymbolIndexMap N_FUN_addr_to_sym_idx; 2547 ValueToSymbolIndexMap N_STSYM_addr_to_sym_idx; 2548 ConstNameToSymbolIndexMap N_GSYM_name_to_sym_idx; 2549 // Any symbols that get merged into another will get an entry 2550 // in this map so we know 2551 NListIndexToSymbolIndexMap m_nlist_idx_to_sym_idx; 2552 uint32_t nlist_idx = 0; 2553 Symbol *symbol_ptr = NULL; 2554 2555 uint32_t sym_idx = 0; 2556 Symbol *sym = NULL; 2557 size_t num_syms = 0; 2558 std::string memory_symbol_name; 2559 uint32_t unmapped_local_symbols_found = 0; 2560 2561 std::vector<TrieEntryWithOffset> trie_entries; 2562 std::set<lldb::addr_t> resolver_addresses; 2563 2564 if (dyld_trie_data.GetByteSize() > 0) 2565 { 2566 std::vector<llvm::StringRef> nameSlices; 2567 ParseTrieEntries (dyld_trie_data, 2568 0, 2569 is_arm, 2570 nameSlices, 2571 resolver_addresses, 2572 trie_entries); 2573 2574 ConstString text_segment_name ("__TEXT"); 2575 SectionSP text_segment_sp = GetSectionList()->FindSectionByName(text_segment_name); 2576 if (text_segment_sp) 2577 { 2578 const lldb::addr_t text_segment_file_addr = text_segment_sp->GetFileAddress(); 2579 if (text_segment_file_addr != LLDB_INVALID_ADDRESS) 2580 { 2581 for (auto &e : trie_entries) 2582 e.entry.address += text_segment_file_addr; 2583 } 2584 } 2585 } 2586 2587 typedef std::set<ConstString> IndirectSymbols; 2588 IndirectSymbols indirect_symbol_names; 2589 2590 #if defined (__APPLE__) && (defined (__arm__) || defined (__arm64__) || defined (__aarch64__)) 2591 2592 // Some recent builds of the dyld_shared_cache (hereafter: DSC) have been optimized by moving LOCAL 2593 // symbols out of the memory mapped portion of the DSC. The symbol information has all been retained, 2594 // but it isn't available in the normal nlist data. However, there *are* duplicate entries of *some* 2595 // LOCAL symbols in the normal nlist data. To handle this situation correctly, we must first attempt 2596 // to parse any DSC unmapped symbol information. If we find any, we set a flag that tells the normal 2597 // nlist parser to ignore all LOCAL symbols. 2598 2599 if (m_header.flags & 0x80000000u) 2600 { 2601 // Before we can start mapping the DSC, we need to make certain the target process is actually 2602 // using the cache we can find. 2603 2604 // Next we need to determine the correct path for the dyld shared cache. 2605 2606 ArchSpec header_arch; 2607 GetArchitecture(header_arch); 2608 char dsc_path[PATH_MAX]; 2609 2610 snprintf(dsc_path, sizeof(dsc_path), "%s%s%s", 2611 "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR */ 2612 "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */ 2613 header_arch.GetArchitectureName()); 2614 2615 FileSpec dsc_filespec(dsc_path, false); 2616 2617 // We need definitions of two structures in the on-disk DSC, copy them here manually 2618 struct lldb_copy_dyld_cache_header_v0 2619 { 2620 char magic[16]; // e.g. "dyld_v0 i386", "dyld_v1 armv7", etc. 2621 uint32_t mappingOffset; // file offset to first dyld_cache_mapping_info 2622 uint32_t mappingCount; // number of dyld_cache_mapping_info entries 2623 uint32_t imagesOffset; 2624 uint32_t imagesCount; 2625 uint64_t dyldBaseAddress; 2626 uint64_t codeSignatureOffset; 2627 uint64_t codeSignatureSize; 2628 uint64_t slideInfoOffset; 2629 uint64_t slideInfoSize; 2630 uint64_t localSymbolsOffset; // file offset of where local symbols are stored 2631 uint64_t localSymbolsSize; // size of local symbols information 2632 }; 2633 struct lldb_copy_dyld_cache_header_v1 2634 { 2635 char magic[16]; // e.g. "dyld_v0 i386", "dyld_v1 armv7", etc. 2636 uint32_t mappingOffset; // file offset to first dyld_cache_mapping_info 2637 uint32_t mappingCount; // number of dyld_cache_mapping_info entries 2638 uint32_t imagesOffset; 2639 uint32_t imagesCount; 2640 uint64_t dyldBaseAddress; 2641 uint64_t codeSignatureOffset; 2642 uint64_t codeSignatureSize; 2643 uint64_t slideInfoOffset; 2644 uint64_t slideInfoSize; 2645 uint64_t localSymbolsOffset; 2646 uint64_t localSymbolsSize; 2647 uint8_t uuid[16]; // v1 and above, also recorded in dyld_all_image_infos v13 and later 2648 }; 2649 2650 struct lldb_copy_dyld_cache_mapping_info 2651 { 2652 uint64_t address; 2653 uint64_t size; 2654 uint64_t fileOffset; 2655 uint32_t maxProt; 2656 uint32_t initProt; 2657 }; 2658 2659 struct lldb_copy_dyld_cache_local_symbols_info 2660 { 2661 uint32_t nlistOffset; 2662 uint32_t nlistCount; 2663 uint32_t stringsOffset; 2664 uint32_t stringsSize; 2665 uint32_t entriesOffset; 2666 uint32_t entriesCount; 2667 }; 2668 struct lldb_copy_dyld_cache_local_symbols_entry 2669 { 2670 uint32_t dylibOffset; 2671 uint32_t nlistStartIndex; 2672 uint32_t nlistCount; 2673 }; 2674 2675 /* The dyld_cache_header has a pointer to the dyld_cache_local_symbols_info structure (localSymbolsOffset). 2676 The dyld_cache_local_symbols_info structure gives us three things: 2677 1. The start and count of the nlist records in the dyld_shared_cache file 2678 2. The start and size of the strings for these nlist records 2679 3. The start and count of dyld_cache_local_symbols_entry entries 2680 2681 There is one dyld_cache_local_symbols_entry per dylib/framework in the dyld shared cache. 2682 The "dylibOffset" field is the Mach-O header of this dylib/framework in the dyld shared cache. 2683 The dyld_cache_local_symbols_entry also lists the start of this dylib/framework's nlist records 2684 and the count of how many nlist records there are for this dylib/framework. 2685 */ 2686 2687 // Process the dsc header to find the unmapped symbols 2688 // 2689 // Save some VM space, do not map the entire cache in one shot. 2690 2691 DataBufferSP dsc_data_sp; 2692 dsc_data_sp = dsc_filespec.MemoryMapFileContentsIfLocal(0, sizeof(struct lldb_copy_dyld_cache_header_v1)); 2693 2694 if (dsc_data_sp) 2695 { 2696 DataExtractor dsc_header_data(dsc_data_sp, byte_order, addr_byte_size); 2697 2698 char version_str[17]; 2699 int version = -1; 2700 lldb::offset_t offset = 0; 2701 memcpy (version_str, dsc_header_data.GetData (&offset, 16), 16); 2702 version_str[16] = '\0'; 2703 if (strncmp (version_str, "dyld_v", 6) == 0 && isdigit (version_str[6])) 2704 { 2705 int v; 2706 if (::sscanf (version_str + 6, "%d", &v) == 1) 2707 { 2708 version = v; 2709 } 2710 } 2711 2712 UUID dsc_uuid; 2713 if (version >= 1) 2714 { 2715 offset = offsetof (struct lldb_copy_dyld_cache_header_v1, uuid); 2716 uint8_t uuid_bytes[sizeof (uuid_t)]; 2717 memcpy (uuid_bytes, dsc_header_data.GetData (&offset, sizeof (uuid_t)), sizeof (uuid_t)); 2718 dsc_uuid.SetBytes (uuid_bytes); 2719 } 2720 2721 bool uuid_match = true; 2722 if (dsc_uuid.IsValid() && process) 2723 { 2724 UUID shared_cache_uuid(GetProcessSharedCacheUUID(process)); 2725 2726 if (shared_cache_uuid.IsValid() && dsc_uuid != shared_cache_uuid) 2727 { 2728 // The on-disk dyld_shared_cache file is not the same as the one in this 2729 // process' memory, don't use it. 2730 uuid_match = false; 2731 ModuleSP module_sp (GetModule()); 2732 if (module_sp) 2733 module_sp->ReportWarning ("process shared cache does not match on-disk dyld_shared_cache file, some symbol names will be missing."); 2734 } 2735 } 2736 2737 offset = offsetof (struct lldb_copy_dyld_cache_header_v1, mappingOffset); 2738 2739 uint32_t mappingOffset = dsc_header_data.GetU32(&offset); 2740 2741 // If the mappingOffset points to a location inside the header, we've 2742 // opened an old dyld shared cache, and should not proceed further. 2743 if (uuid_match && mappingOffset >= sizeof(struct lldb_copy_dyld_cache_header_v0)) 2744 { 2745 2746 DataBufferSP dsc_mapping_info_data_sp = dsc_filespec.MemoryMapFileContentsIfLocal(mappingOffset, sizeof (struct lldb_copy_dyld_cache_mapping_info)); 2747 DataExtractor dsc_mapping_info_data(dsc_mapping_info_data_sp, byte_order, addr_byte_size); 2748 offset = 0; 2749 2750 // The File addresses (from the in-memory Mach-O load commands) for the shared libraries 2751 // in the shared library cache need to be adjusted by an offset to match up with the 2752 // dylibOffset identifying field in the dyld_cache_local_symbol_entry's. This offset is 2753 // recorded in mapping_offset_value. 2754 const uint64_t mapping_offset_value = dsc_mapping_info_data.GetU64(&offset); 2755 2756 offset = offsetof (struct lldb_copy_dyld_cache_header_v1, localSymbolsOffset); 2757 uint64_t localSymbolsOffset = dsc_header_data.GetU64(&offset); 2758 uint64_t localSymbolsSize = dsc_header_data.GetU64(&offset); 2759 2760 if (localSymbolsOffset && localSymbolsSize) 2761 { 2762 // Map the local symbols 2763 if (DataBufferSP dsc_local_symbols_data_sp = dsc_filespec.MemoryMapFileContentsIfLocal(localSymbolsOffset, localSymbolsSize)) 2764 { 2765 DataExtractor dsc_local_symbols_data(dsc_local_symbols_data_sp, byte_order, addr_byte_size); 2766 2767 offset = 0; 2768 2769 typedef std::map<ConstString, uint16_t> UndefinedNameToDescMap; 2770 typedef std::map<uint32_t, ConstString> SymbolIndexToName; 2771 UndefinedNameToDescMap undefined_name_to_desc; 2772 SymbolIndexToName reexport_shlib_needs_fixup; 2773 2774 2775 // Read the local_symbols_infos struct in one shot 2776 struct lldb_copy_dyld_cache_local_symbols_info local_symbols_info; 2777 dsc_local_symbols_data.GetU32(&offset, &local_symbols_info.nlistOffset, 6); 2778 2779 SectionSP text_section_sp(section_list->FindSectionByName(GetSegmentNameTEXT())); 2780 2781 uint32_t header_file_offset = (text_section_sp->GetFileAddress() - mapping_offset_value); 2782 2783 offset = local_symbols_info.entriesOffset; 2784 for (uint32_t entry_index = 0; entry_index < local_symbols_info.entriesCount; entry_index++) 2785 { 2786 struct lldb_copy_dyld_cache_local_symbols_entry local_symbols_entry; 2787 local_symbols_entry.dylibOffset = dsc_local_symbols_data.GetU32(&offset); 2788 local_symbols_entry.nlistStartIndex = dsc_local_symbols_data.GetU32(&offset); 2789 local_symbols_entry.nlistCount = dsc_local_symbols_data.GetU32(&offset); 2790 2791 if (header_file_offset == local_symbols_entry.dylibOffset) 2792 { 2793 unmapped_local_symbols_found = local_symbols_entry.nlistCount; 2794 2795 // The normal nlist code cannot correctly size the Symbols array, we need to allocate it here. 2796 sym = symtab->Resize (symtab_load_command.nsyms + m_dysymtab.nindirectsyms + unmapped_local_symbols_found - m_dysymtab.nlocalsym); 2797 num_syms = symtab->GetNumSymbols(); 2798 2799 nlist_data_offset = local_symbols_info.nlistOffset + (nlist_byte_size * local_symbols_entry.nlistStartIndex); 2800 uint32_t string_table_offset = local_symbols_info.stringsOffset; 2801 2802 for (uint32_t nlist_index = 0; nlist_index < local_symbols_entry.nlistCount; nlist_index++) 2803 { 2804 ///////////////////////////// 2805 { 2806 struct nlist_64 nlist; 2807 if (!dsc_local_symbols_data.ValidOffsetForDataOfSize(nlist_data_offset, nlist_byte_size)) 2808 break; 2809 2810 nlist.n_strx = dsc_local_symbols_data.GetU32_unchecked(&nlist_data_offset); 2811 nlist.n_type = dsc_local_symbols_data.GetU8_unchecked (&nlist_data_offset); 2812 nlist.n_sect = dsc_local_symbols_data.GetU8_unchecked (&nlist_data_offset); 2813 nlist.n_desc = dsc_local_symbols_data.GetU16_unchecked (&nlist_data_offset); 2814 nlist.n_value = dsc_local_symbols_data.GetAddress_unchecked (&nlist_data_offset); 2815 2816 SymbolType type = eSymbolTypeInvalid; 2817 const char *symbol_name = dsc_local_symbols_data.PeekCStr(string_table_offset + nlist.n_strx); 2818 2819 if (symbol_name == NULL) 2820 { 2821 // No symbol should be NULL, even the symbols with no 2822 // string values should have an offset zero which points 2823 // to an empty C-string 2824 Host::SystemLog (Host::eSystemLogError, 2825 "error: DSC unmapped local symbol[%u] has invalid string table offset 0x%x in %s, ignoring symbol\n", 2826 entry_index, 2827 nlist.n_strx, 2828 module_sp->GetFileSpec().GetPath().c_str()); 2829 continue; 2830 } 2831 if (symbol_name[0] == '\0') 2832 symbol_name = NULL; 2833 2834 const char *symbol_name_non_abi_mangled = NULL; 2835 2836 SectionSP symbol_section; 2837 uint32_t symbol_byte_size = 0; 2838 bool add_nlist = true; 2839 bool is_debug = ((nlist.n_type & N_STAB) != 0); 2840 bool demangled_is_synthesized = false; 2841 bool is_gsym = false; 2842 bool set_value = true; 2843 2844 assert (sym_idx < num_syms); 2845 2846 sym[sym_idx].SetDebug (is_debug); 2847 2848 if (is_debug) 2849 { 2850 switch (nlist.n_type) 2851 { 2852 case N_GSYM: 2853 // global symbol: name,,NO_SECT,type,0 2854 // Sometimes the N_GSYM value contains the address. 2855 2856 // FIXME: In the .o files, we have a GSYM and a debug symbol for all the ObjC data. They 2857 // have the same address, but we want to ensure that we always find only the real symbol, 2858 // 'cause we don't currently correctly attribute the GSYM one to the ObjCClass/Ivar/MetaClass 2859 // symbol type. This is a temporary hack to make sure the ObjectiveC symbols get treated 2860 // correctly. To do this right, we should coalesce all the GSYM & global symbols that have the 2861 // same address. 2862 2863 is_gsym = true; 2864 sym[sym_idx].SetExternal(true); 2865 2866 if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O') 2867 { 2868 llvm::StringRef symbol_name_ref(symbol_name); 2869 if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) 2870 { 2871 symbol_name_non_abi_mangled = symbol_name + 1; 2872 symbol_name = symbol_name + g_objc_v2_prefix_class.size(); 2873 type = eSymbolTypeObjCClass; 2874 demangled_is_synthesized = true; 2875 2876 } 2877 else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) 2878 { 2879 symbol_name_non_abi_mangled = symbol_name + 1; 2880 symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size(); 2881 type = eSymbolTypeObjCMetaClass; 2882 demangled_is_synthesized = true; 2883 } 2884 else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) 2885 { 2886 symbol_name_non_abi_mangled = symbol_name + 1; 2887 symbol_name = symbol_name + g_objc_v2_prefix_ivar.size(); 2888 type = eSymbolTypeObjCIVar; 2889 demangled_is_synthesized = true; 2890 } 2891 } 2892 else 2893 { 2894 if (nlist.n_value != 0) 2895 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2896 type = eSymbolTypeData; 2897 } 2898 break; 2899 2900 case N_FNAME: 2901 // procedure name (f77 kludge): name,,NO_SECT,0,0 2902 type = eSymbolTypeCompiler; 2903 break; 2904 2905 case N_FUN: 2906 // procedure: name,,n_sect,linenumber,address 2907 if (symbol_name) 2908 { 2909 type = eSymbolTypeCode; 2910 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2911 2912 N_FUN_addr_to_sym_idx.insert(std::make_pair(nlist.n_value, sym_idx)); 2913 // We use the current number of symbols in the symbol table in lieu of 2914 // using nlist_idx in case we ever start trimming entries out 2915 N_FUN_indexes.push_back(sym_idx); 2916 } 2917 else 2918 { 2919 type = eSymbolTypeCompiler; 2920 2921 if ( !N_FUN_indexes.empty() ) 2922 { 2923 // Copy the size of the function into the original STAB entry so we don't have 2924 // to hunt for it later 2925 symtab->SymbolAtIndex(N_FUN_indexes.back())->SetByteSize(nlist.n_value); 2926 N_FUN_indexes.pop_back(); 2927 // We don't really need the end function STAB as it contains the size which 2928 // we already placed with the original symbol, so don't add it if we want a 2929 // minimal symbol table 2930 add_nlist = false; 2931 } 2932 } 2933 break; 2934 2935 case N_STSYM: 2936 // static symbol: name,,n_sect,type,address 2937 N_STSYM_addr_to_sym_idx.insert(std::make_pair(nlist.n_value, sym_idx)); 2938 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2939 type = eSymbolTypeData; 2940 break; 2941 2942 case N_LCSYM: 2943 // .lcomm symbol: name,,n_sect,type,address 2944 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2945 type = eSymbolTypeCommonBlock; 2946 break; 2947 2948 case N_BNSYM: 2949 // We use the current number of symbols in the symbol table in lieu of 2950 // using nlist_idx in case we ever start trimming entries out 2951 // Skip these if we want minimal symbol tables 2952 add_nlist = false; 2953 break; 2954 2955 case N_ENSYM: 2956 // Set the size of the N_BNSYM to the terminating index of this N_ENSYM 2957 // so that we can always skip the entire symbol if we need to navigate 2958 // more quickly at the source level when parsing STABS 2959 // Skip these if we want minimal symbol tables 2960 add_nlist = false; 2961 break; 2962 2963 2964 case N_OPT: 2965 // emitted with gcc2_compiled and in gcc source 2966 type = eSymbolTypeCompiler; 2967 break; 2968 2969 case N_RSYM: 2970 // register sym: name,,NO_SECT,type,register 2971 type = eSymbolTypeVariable; 2972 break; 2973 2974 case N_SLINE: 2975 // src line: 0,,n_sect,linenumber,address 2976 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2977 type = eSymbolTypeLineEntry; 2978 break; 2979 2980 case N_SSYM: 2981 // structure elt: name,,NO_SECT,type,struct_offset 2982 type = eSymbolTypeVariableType; 2983 break; 2984 2985 case N_SO: 2986 // source file name 2987 type = eSymbolTypeSourceFile; 2988 if (symbol_name == NULL) 2989 { 2990 add_nlist = false; 2991 if (N_SO_index != UINT32_MAX) 2992 { 2993 // Set the size of the N_SO to the terminating index of this N_SO 2994 // so that we can always skip the entire N_SO if we need to navigate 2995 // more quickly at the source level when parsing STABS 2996 symbol_ptr = symtab->SymbolAtIndex(N_SO_index); 2997 symbol_ptr->SetByteSize(sym_idx); 2998 symbol_ptr->SetSizeIsSibling(true); 2999 } 3000 N_NSYM_indexes.clear(); 3001 N_INCL_indexes.clear(); 3002 N_BRAC_indexes.clear(); 3003 N_COMM_indexes.clear(); 3004 N_FUN_indexes.clear(); 3005 N_SO_index = UINT32_MAX; 3006 } 3007 else 3008 { 3009 // We use the current number of symbols in the symbol table in lieu of 3010 // using nlist_idx in case we ever start trimming entries out 3011 const bool N_SO_has_full_path = symbol_name[0] == '/'; 3012 if (N_SO_has_full_path) 3013 { 3014 if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) 3015 { 3016 // We have two consecutive N_SO entries where the first contains a directory 3017 // and the second contains a full path. 3018 sym[sym_idx - 1].GetMangled().SetValue(ConstString(symbol_name), false); 3019 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 3020 add_nlist = false; 3021 } 3022 else 3023 { 3024 // This is the first entry in a N_SO that contains a directory or 3025 // a full path to the source file 3026 N_SO_index = sym_idx; 3027 } 3028 } 3029 else if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) 3030 { 3031 // This is usually the second N_SO entry that contains just the filename, 3032 // so here we combine it with the first one if we are minimizing the symbol table 3033 const char *so_path = sym[sym_idx - 1].GetMangled().GetDemangledName().AsCString(); 3034 if (so_path && so_path[0]) 3035 { 3036 std::string full_so_path (so_path); 3037 const size_t double_slash_pos = full_so_path.find("//"); 3038 if (double_slash_pos != std::string::npos) 3039 { 3040 // The linker has been generating bad N_SO entries with doubled up paths 3041 // in the format "%s%s" where the first string in the DW_AT_comp_dir, 3042 // and the second is the directory for the source file so you end up with 3043 // a path that looks like "/tmp/src//tmp/src/" 3044 FileSpec so_dir(so_path, false); 3045 if (!so_dir.Exists()) 3046 { 3047 so_dir.SetFile(&full_so_path[double_slash_pos + 1], false); 3048 if (so_dir.Exists()) 3049 { 3050 // Trim off the incorrect path 3051 full_so_path.erase(0, double_slash_pos + 1); 3052 } 3053 } 3054 } 3055 if (*full_so_path.rbegin() != '/') 3056 full_so_path += '/'; 3057 full_so_path += symbol_name; 3058 sym[sym_idx - 1].GetMangled().SetValue(ConstString(full_so_path.c_str()), false); 3059 add_nlist = false; 3060 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 3061 } 3062 } 3063 else 3064 { 3065 // This could be a relative path to a N_SO 3066 N_SO_index = sym_idx; 3067 } 3068 } 3069 break; 3070 3071 case N_OSO: 3072 // object file name: name,,0,0,st_mtime 3073 type = eSymbolTypeObjectFile; 3074 break; 3075 3076 case N_LSYM: 3077 // local sym: name,,NO_SECT,type,offset 3078 type = eSymbolTypeLocal; 3079 break; 3080 3081 //---------------------------------------------------------------------- 3082 // INCL scopes 3083 //---------------------------------------------------------------------- 3084 case N_BINCL: 3085 // include file beginning: name,,NO_SECT,0,sum 3086 // We use the current number of symbols in the symbol table in lieu of 3087 // using nlist_idx in case we ever start trimming entries out 3088 N_INCL_indexes.push_back(sym_idx); 3089 type = eSymbolTypeScopeBegin; 3090 break; 3091 3092 case N_EINCL: 3093 // include file end: name,,NO_SECT,0,0 3094 // Set the size of the N_BINCL to the terminating index of this N_EINCL 3095 // so that we can always skip the entire symbol if we need to navigate 3096 // more quickly at the source level when parsing STABS 3097 if ( !N_INCL_indexes.empty() ) 3098 { 3099 symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back()); 3100 symbol_ptr->SetByteSize(sym_idx + 1); 3101 symbol_ptr->SetSizeIsSibling(true); 3102 N_INCL_indexes.pop_back(); 3103 } 3104 type = eSymbolTypeScopeEnd; 3105 break; 3106 3107 case N_SOL: 3108 // #included file name: name,,n_sect,0,address 3109 type = eSymbolTypeHeaderFile; 3110 3111 // We currently don't use the header files on darwin 3112 add_nlist = false; 3113 break; 3114 3115 case N_PARAMS: 3116 // compiler parameters: name,,NO_SECT,0,0 3117 type = eSymbolTypeCompiler; 3118 break; 3119 3120 case N_VERSION: 3121 // compiler version: name,,NO_SECT,0,0 3122 type = eSymbolTypeCompiler; 3123 break; 3124 3125 case N_OLEVEL: 3126 // compiler -O level: name,,NO_SECT,0,0 3127 type = eSymbolTypeCompiler; 3128 break; 3129 3130 case N_PSYM: 3131 // parameter: name,,NO_SECT,type,offset 3132 type = eSymbolTypeVariable; 3133 break; 3134 3135 case N_ENTRY: 3136 // alternate entry: name,,n_sect,linenumber,address 3137 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3138 type = eSymbolTypeLineEntry; 3139 break; 3140 3141 //---------------------------------------------------------------------- 3142 // Left and Right Braces 3143 //---------------------------------------------------------------------- 3144 case N_LBRAC: 3145 // left bracket: 0,,NO_SECT,nesting level,address 3146 // We use the current number of symbols in the symbol table in lieu of 3147 // using nlist_idx in case we ever start trimming entries out 3148 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3149 N_BRAC_indexes.push_back(sym_idx); 3150 type = eSymbolTypeScopeBegin; 3151 break; 3152 3153 case N_RBRAC: 3154 // right bracket: 0,,NO_SECT,nesting level,address 3155 // Set the size of the N_LBRAC to the terminating index of this N_RBRAC 3156 // so that we can always skip the entire symbol if we need to navigate 3157 // more quickly at the source level when parsing STABS 3158 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3159 if ( !N_BRAC_indexes.empty() ) 3160 { 3161 symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back()); 3162 symbol_ptr->SetByteSize(sym_idx + 1); 3163 symbol_ptr->SetSizeIsSibling(true); 3164 N_BRAC_indexes.pop_back(); 3165 } 3166 type = eSymbolTypeScopeEnd; 3167 break; 3168 3169 case N_EXCL: 3170 // deleted include file: name,,NO_SECT,0,sum 3171 type = eSymbolTypeHeaderFile; 3172 break; 3173 3174 //---------------------------------------------------------------------- 3175 // COMM scopes 3176 //---------------------------------------------------------------------- 3177 case N_BCOMM: 3178 // begin common: name,,NO_SECT,0,0 3179 // We use the current number of symbols in the symbol table in lieu of 3180 // using nlist_idx in case we ever start trimming entries out 3181 type = eSymbolTypeScopeBegin; 3182 N_COMM_indexes.push_back(sym_idx); 3183 break; 3184 3185 case N_ECOML: 3186 // end common (local name): 0,,n_sect,0,address 3187 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3188 // Fall through 3189 3190 case N_ECOMM: 3191 // end common: name,,n_sect,0,0 3192 // Set the size of the N_BCOMM to the terminating index of this N_ECOMM/N_ECOML 3193 // so that we can always skip the entire symbol if we need to navigate 3194 // more quickly at the source level when parsing STABS 3195 if ( !N_COMM_indexes.empty() ) 3196 { 3197 symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back()); 3198 symbol_ptr->SetByteSize(sym_idx + 1); 3199 symbol_ptr->SetSizeIsSibling(true); 3200 N_COMM_indexes.pop_back(); 3201 } 3202 type = eSymbolTypeScopeEnd; 3203 break; 3204 3205 case N_LENG: 3206 // second stab entry with length information 3207 type = eSymbolTypeAdditional; 3208 break; 3209 3210 default: break; 3211 } 3212 } 3213 else 3214 { 3215 //uint8_t n_pext = N_PEXT & nlist.n_type; 3216 uint8_t n_type = N_TYPE & nlist.n_type; 3217 sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0); 3218 3219 switch (n_type) 3220 { 3221 case N_INDR: 3222 { 3223 const char *reexport_name_cstr = strtab_data.PeekCStr(nlist.n_value); 3224 if (reexport_name_cstr && reexport_name_cstr[0]) 3225 { 3226 type = eSymbolTypeReExported; 3227 ConstString reexport_name(reexport_name_cstr + ((reexport_name_cstr[0] == '_') ? 1 : 0)); 3228 sym[sym_idx].SetReExportedSymbolName(reexport_name); 3229 set_value = false; 3230 reexport_shlib_needs_fixup[sym_idx] = reexport_name; 3231 indirect_symbol_names.insert(ConstString(symbol_name + ((symbol_name[0] == '_') ? 1 : 0))); 3232 } 3233 else 3234 type = eSymbolTypeUndefined; 3235 } 3236 break; 3237 3238 case N_UNDF: 3239 if (symbol_name && symbol_name[0]) 3240 { 3241 ConstString undefined_name(symbol_name + ((symbol_name[0] == '_') ? 1 : 0)); 3242 undefined_name_to_desc[undefined_name] = nlist.n_desc; 3243 } 3244 // Fall through 3245 case N_PBUD: 3246 type = eSymbolTypeUndefined; 3247 break; 3248 3249 case N_ABS: 3250 type = eSymbolTypeAbsolute; 3251 break; 3252 3253 case N_SECT: 3254 { 3255 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3256 3257 if (symbol_section == NULL) 3258 { 3259 // TODO: warn about this? 3260 add_nlist = false; 3261 break; 3262 } 3263 3264 if (TEXT_eh_frame_sectID == nlist.n_sect) 3265 { 3266 type = eSymbolTypeException; 3267 } 3268 else 3269 { 3270 uint32_t section_type = symbol_section->Get() & SECTION_TYPE; 3271 3272 switch (section_type) 3273 { 3274 case S_CSTRING_LITERALS: type = eSymbolTypeData; break; // section with only literal C strings 3275 case S_4BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 4 byte literals 3276 case S_8BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 8 byte literals 3277 case S_LITERAL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only pointers to literals 3278 case S_NON_LAZY_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only non-lazy symbol pointers 3279 case S_LAZY_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only lazy symbol pointers 3280 case S_SYMBOL_STUBS: type = eSymbolTypeTrampoline; break; // section with only symbol stubs, byte size of stub in the reserved2 field 3281 case S_MOD_INIT_FUNC_POINTERS: type = eSymbolTypeCode; break; // section with only function pointers for initialization 3282 case S_MOD_TERM_FUNC_POINTERS: type = eSymbolTypeCode; break; // section with only function pointers for termination 3283 case S_INTERPOSING: type = eSymbolTypeTrampoline; break; // section with only pairs of function pointers for interposing 3284 case S_16BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 16 byte literals 3285 case S_DTRACE_DOF: type = eSymbolTypeInstrumentation; break; 3286 case S_LAZY_DYLIB_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; 3287 default: 3288 switch (symbol_section->GetType()) 3289 { 3290 case lldb::eSectionTypeCode: 3291 type = eSymbolTypeCode; 3292 break; 3293 case eSectionTypeData: 3294 case eSectionTypeDataCString: // Inlined C string data 3295 case eSectionTypeDataCStringPointers: // Pointers to C string data 3296 case eSectionTypeDataSymbolAddress: // Address of a symbol in the symbol table 3297 case eSectionTypeData4: 3298 case eSectionTypeData8: 3299 case eSectionTypeData16: 3300 type = eSymbolTypeData; 3301 break; 3302 default: 3303 break; 3304 } 3305 break; 3306 } 3307 3308 if (type == eSymbolTypeInvalid) 3309 { 3310 const char *symbol_sect_name = symbol_section->GetName().AsCString(); 3311 if (symbol_section->IsDescendant (text_section_sp.get())) 3312 { 3313 if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS | 3314 S_ATTR_SELF_MODIFYING_CODE | 3315 S_ATTR_SOME_INSTRUCTIONS)) 3316 type = eSymbolTypeData; 3317 else 3318 type = eSymbolTypeCode; 3319 } 3320 else if (symbol_section->IsDescendant(data_section_sp.get()) || 3321 symbol_section->IsDescendant(data_dirty_section_sp.get()) || 3322 symbol_section->IsDescendant(data_const_section_sp.get())) 3323 { 3324 if (symbol_sect_name && ::strstr (symbol_sect_name, "__objc") == symbol_sect_name) 3325 { 3326 type = eSymbolTypeRuntime; 3327 3328 if (symbol_name && 3329 symbol_name[0] == '_' && 3330 symbol_name[1] == 'O' && 3331 symbol_name[2] == 'B') 3332 { 3333 llvm::StringRef symbol_name_ref(symbol_name); 3334 if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) 3335 { 3336 symbol_name_non_abi_mangled = symbol_name + 1; 3337 symbol_name = symbol_name + g_objc_v2_prefix_class.size(); 3338 type = eSymbolTypeObjCClass; 3339 demangled_is_synthesized = true; 3340 } 3341 else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) 3342 { 3343 symbol_name_non_abi_mangled = symbol_name + 1; 3344 symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size(); 3345 type = eSymbolTypeObjCMetaClass; 3346 demangled_is_synthesized = true; 3347 } 3348 else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) 3349 { 3350 symbol_name_non_abi_mangled = symbol_name + 1; 3351 symbol_name = symbol_name + g_objc_v2_prefix_ivar.size(); 3352 type = eSymbolTypeObjCIVar; 3353 demangled_is_synthesized = true; 3354 } 3355 } 3356 } 3357 else if (symbol_sect_name && ::strstr (symbol_sect_name, "__gcc_except_tab") == symbol_sect_name) 3358 { 3359 type = eSymbolTypeException; 3360 } 3361 else 3362 { 3363 type = eSymbolTypeData; 3364 } 3365 } 3366 else if (symbol_sect_name && ::strstr (symbol_sect_name, "__IMPORT") == symbol_sect_name) 3367 { 3368 type = eSymbolTypeTrampoline; 3369 } 3370 else if (symbol_section->IsDescendant(objc_section_sp.get())) 3371 { 3372 type = eSymbolTypeRuntime; 3373 if (symbol_name && symbol_name[0] == '.') 3374 { 3375 llvm::StringRef symbol_name_ref(symbol_name); 3376 static const llvm::StringRef g_objc_v1_prefix_class (".objc_class_name_"); 3377 if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) 3378 { 3379 symbol_name_non_abi_mangled = symbol_name; 3380 symbol_name = symbol_name + g_objc_v1_prefix_class.size(); 3381 type = eSymbolTypeObjCClass; 3382 demangled_is_synthesized = true; 3383 } 3384 } 3385 } 3386 } 3387 } 3388 } 3389 break; 3390 } 3391 } 3392 3393 if (add_nlist) 3394 { 3395 uint64_t symbol_value = nlist.n_value; 3396 if (symbol_name_non_abi_mangled) 3397 { 3398 sym[sym_idx].GetMangled().SetMangledName (ConstString(symbol_name_non_abi_mangled)); 3399 sym[sym_idx].GetMangled().SetDemangledName (ConstString(symbol_name)); 3400 } 3401 else 3402 { 3403 bool symbol_name_is_mangled = false; 3404 3405 if (symbol_name && symbol_name[0] == '_') 3406 { 3407 symbol_name_is_mangled = symbol_name[1] == '_'; 3408 symbol_name++; // Skip the leading underscore 3409 } 3410 3411 if (symbol_name) 3412 { 3413 ConstString const_symbol_name(symbol_name); 3414 sym[sym_idx].GetMangled().SetValue(const_symbol_name, symbol_name_is_mangled); 3415 if (is_gsym && is_debug) 3416 { 3417 const char *gsym_name = sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled).GetCString(); 3418 if (gsym_name) 3419 N_GSYM_name_to_sym_idx[gsym_name] = sym_idx; 3420 } 3421 } 3422 } 3423 if (symbol_section) 3424 { 3425 const addr_t section_file_addr = symbol_section->GetFileAddress(); 3426 if (symbol_byte_size == 0 && function_starts_count > 0) 3427 { 3428 addr_t symbol_lookup_file_addr = nlist.n_value; 3429 // Do an exact address match for non-ARM addresses, else get the closest since 3430 // the symbol might be a thumb symbol which has an address with bit zero set 3431 FunctionStarts::Entry *func_start_entry = function_starts.FindEntry (symbol_lookup_file_addr, !is_arm); 3432 if (is_arm && func_start_entry) 3433 { 3434 // Verify that the function start address is the symbol address (ARM) 3435 // or the symbol address + 1 (thumb) 3436 if (func_start_entry->addr != symbol_lookup_file_addr && 3437 func_start_entry->addr != (symbol_lookup_file_addr + 1)) 3438 { 3439 // Not the right entry, NULL it out... 3440 func_start_entry = NULL; 3441 } 3442 } 3443 if (func_start_entry) 3444 { 3445 func_start_entry->data = true; 3446 3447 addr_t symbol_file_addr = func_start_entry->addr; 3448 uint32_t symbol_flags = 0; 3449 if (is_arm) 3450 { 3451 if (symbol_file_addr & 1) 3452 symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB; 3453 symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; 3454 } 3455 3456 const FunctionStarts::Entry *next_func_start_entry = function_starts.FindNextEntry (func_start_entry); 3457 const addr_t section_end_file_addr = section_file_addr + symbol_section->GetByteSize(); 3458 if (next_func_start_entry) 3459 { 3460 addr_t next_symbol_file_addr = next_func_start_entry->addr; 3461 // Be sure the clear the Thumb address bit when we calculate the size 3462 // from the current and next address 3463 if (is_arm) 3464 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; 3465 symbol_byte_size = std::min<lldb::addr_t>(next_symbol_file_addr - symbol_file_addr, section_end_file_addr - symbol_file_addr); 3466 } 3467 else 3468 { 3469 symbol_byte_size = section_end_file_addr - symbol_file_addr; 3470 } 3471 } 3472 } 3473 symbol_value -= section_file_addr; 3474 } 3475 3476 if (is_debug == false) 3477 { 3478 if (type == eSymbolTypeCode) 3479 { 3480 // See if we can find a N_FUN entry for any code symbols. 3481 // If we do find a match, and the name matches, then we 3482 // can merge the two into just the function symbol to avoid 3483 // duplicate entries in the symbol table 3484 std::pair<ValueToSymbolIndexMap::const_iterator, ValueToSymbolIndexMap::const_iterator> range; 3485 range = N_FUN_addr_to_sym_idx.equal_range(nlist.n_value); 3486 if (range.first != range.second) 3487 { 3488 bool found_it = false; 3489 for (ValueToSymbolIndexMap::const_iterator pos = range.first; pos != range.second; ++pos) 3490 { 3491 if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) == sym[pos->second].GetMangled().GetName(Mangled::ePreferMangled)) 3492 { 3493 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 3494 // We just need the flags from the linker symbol, so put these flags 3495 // into the N_FUN flags to avoid duplicate symbols in the symbol table 3496 sym[pos->second].SetExternal(sym[sym_idx].IsExternal()); 3497 sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc); 3498 if (resolver_addresses.find(nlist.n_value) != resolver_addresses.end()) 3499 sym[pos->second].SetType (eSymbolTypeResolver); 3500 sym[sym_idx].Clear(); 3501 found_it = true; 3502 break; 3503 } 3504 } 3505 if (found_it) 3506 continue; 3507 } 3508 else 3509 { 3510 if (resolver_addresses.find(nlist.n_value) != resolver_addresses.end()) 3511 type = eSymbolTypeResolver; 3512 } 3513 } 3514 else if (type == eSymbolTypeData || 3515 type == eSymbolTypeObjCClass || 3516 type == eSymbolTypeObjCMetaClass || 3517 type == eSymbolTypeObjCIVar ) 3518 { 3519 // See if we can find a N_STSYM entry for any data symbols. 3520 // If we do find a match, and the name matches, then we 3521 // can merge the two into just the Static symbol to avoid 3522 // duplicate entries in the symbol table 3523 std::pair<ValueToSymbolIndexMap::const_iterator, ValueToSymbolIndexMap::const_iterator> range; 3524 range = N_STSYM_addr_to_sym_idx.equal_range(nlist.n_value); 3525 if (range.first != range.second) 3526 { 3527 bool found_it = false; 3528 for (ValueToSymbolIndexMap::const_iterator pos = range.first; pos != range.second; ++pos) 3529 { 3530 if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) == sym[pos->second].GetMangled().GetName(Mangled::ePreferMangled)) 3531 { 3532 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 3533 // We just need the flags from the linker symbol, so put these flags 3534 // into the N_STSYM flags to avoid duplicate symbols in the symbol table 3535 sym[pos->second].SetExternal(sym[sym_idx].IsExternal()); 3536 sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc); 3537 sym[sym_idx].Clear(); 3538 found_it = true; 3539 break; 3540 } 3541 } 3542 if (found_it) 3543 continue; 3544 } 3545 else 3546 { 3547 const char *gsym_name = sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled).GetCString(); 3548 if (gsym_name) 3549 { 3550 // Combine N_GSYM stab entries with the non stab symbol 3551 ConstNameToSymbolIndexMap::const_iterator pos = N_GSYM_name_to_sym_idx.find(gsym_name); 3552 if (pos != N_GSYM_name_to_sym_idx.end()) 3553 { 3554 const uint32_t GSYM_sym_idx = pos->second; 3555 m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx; 3556 // Copy the address, because often the N_GSYM address has an invalid address of zero 3557 // when the global is a common symbol 3558 sym[GSYM_sym_idx].GetAddressRef().SetSection (symbol_section); 3559 sym[GSYM_sym_idx].GetAddressRef().SetOffset (symbol_value); 3560 // We just need the flags from the linker symbol, so put these flags 3561 // into the N_GSYM flags to avoid duplicate symbols in the symbol table 3562 sym[GSYM_sym_idx].SetFlags (nlist.n_type << 16 | nlist.n_desc); 3563 sym[sym_idx].Clear(); 3564 continue; 3565 } 3566 } 3567 } 3568 } 3569 } 3570 3571 sym[sym_idx].SetID (nlist_idx); 3572 sym[sym_idx].SetType (type); 3573 if (set_value) 3574 { 3575 sym[sym_idx].GetAddressRef().SetSection (symbol_section); 3576 sym[sym_idx].GetAddressRef().SetOffset (symbol_value); 3577 } 3578 sym[sym_idx].SetFlags (nlist.n_type << 16 | nlist.n_desc); 3579 3580 if (symbol_byte_size > 0) 3581 sym[sym_idx].SetByteSize(symbol_byte_size); 3582 3583 if (demangled_is_synthesized) 3584 sym[sym_idx].SetDemangledNameIsSynthesized(true); 3585 ++sym_idx; 3586 } 3587 else 3588 { 3589 sym[sym_idx].Clear(); 3590 } 3591 3592 } 3593 ///////////////////////////// 3594 } 3595 break; // No more entries to consider 3596 } 3597 } 3598 3599 for (const auto &pos :reexport_shlib_needs_fixup) 3600 { 3601 const auto undef_pos = undefined_name_to_desc.find(pos.second); 3602 if (undef_pos != undefined_name_to_desc.end()) 3603 { 3604 const uint8_t dylib_ordinal = llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second); 3605 if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize()) 3606 sym[pos.first].SetReExportedSymbolSharedLibrary(dylib_files.GetFileSpecAtIndex(dylib_ordinal-1)); 3607 } 3608 } 3609 } 3610 } 3611 } 3612 } 3613 } 3614 3615 // Must reset this in case it was mutated above! 3616 nlist_data_offset = 0; 3617 #endif 3618 3619 if (nlist_data.GetByteSize() > 0) 3620 { 3621 3622 // If the sym array was not created while parsing the DSC unmapped 3623 // symbols, create it now. 3624 if (sym == NULL) 3625 { 3626 sym = symtab->Resize (symtab_load_command.nsyms + m_dysymtab.nindirectsyms); 3627 num_syms = symtab->GetNumSymbols(); 3628 } 3629 3630 if (unmapped_local_symbols_found) 3631 { 3632 assert(m_dysymtab.ilocalsym == 0); 3633 nlist_data_offset += (m_dysymtab.nlocalsym * nlist_byte_size); 3634 nlist_idx = m_dysymtab.nlocalsym; 3635 } 3636 else 3637 { 3638 nlist_idx = 0; 3639 } 3640 3641 typedef std::map<ConstString, uint16_t> UndefinedNameToDescMap; 3642 typedef std::map<uint32_t, ConstString> SymbolIndexToName; 3643 UndefinedNameToDescMap undefined_name_to_desc; 3644 SymbolIndexToName reexport_shlib_needs_fixup; 3645 for (; nlist_idx < symtab_load_command.nsyms; ++nlist_idx) 3646 { 3647 struct nlist_64 nlist; 3648 if (!nlist_data.ValidOffsetForDataOfSize(nlist_data_offset, nlist_byte_size)) 3649 break; 3650 3651 nlist.n_strx = nlist_data.GetU32_unchecked(&nlist_data_offset); 3652 nlist.n_type = nlist_data.GetU8_unchecked (&nlist_data_offset); 3653 nlist.n_sect = nlist_data.GetU8_unchecked (&nlist_data_offset); 3654 nlist.n_desc = nlist_data.GetU16_unchecked (&nlist_data_offset); 3655 nlist.n_value = nlist_data.GetAddress_unchecked (&nlist_data_offset); 3656 3657 SymbolType type = eSymbolTypeInvalid; 3658 const char *symbol_name = NULL; 3659 3660 if (have_strtab_data) 3661 { 3662 symbol_name = strtab_data.PeekCStr(nlist.n_strx); 3663 3664 if (symbol_name == NULL) 3665 { 3666 // No symbol should be NULL, even the symbols with no 3667 // string values should have an offset zero which points 3668 // to an empty C-string 3669 Host::SystemLog (Host::eSystemLogError, 3670 "error: symbol[%u] has invalid string table offset 0x%x in %s, ignoring symbol\n", 3671 nlist_idx, 3672 nlist.n_strx, 3673 module_sp->GetFileSpec().GetPath().c_str()); 3674 continue; 3675 } 3676 if (symbol_name[0] == '\0') 3677 symbol_name = NULL; 3678 } 3679 else 3680 { 3681 const addr_t str_addr = strtab_addr + nlist.n_strx; 3682 Error str_error; 3683 if (process->ReadCStringFromMemory(str_addr, memory_symbol_name, str_error)) 3684 symbol_name = memory_symbol_name.c_str(); 3685 } 3686 const char *symbol_name_non_abi_mangled = NULL; 3687 3688 SectionSP symbol_section; 3689 lldb::addr_t symbol_byte_size = 0; 3690 bool add_nlist = true; 3691 bool is_gsym = false; 3692 bool is_debug = ((nlist.n_type & N_STAB) != 0); 3693 bool demangled_is_synthesized = false; 3694 bool set_value = true; 3695 assert (sym_idx < num_syms); 3696 3697 sym[sym_idx].SetDebug (is_debug); 3698 3699 if (is_debug) 3700 { 3701 switch (nlist.n_type) 3702 { 3703 case N_GSYM: 3704 // global symbol: name,,NO_SECT,type,0 3705 // Sometimes the N_GSYM value contains the address. 3706 3707 // FIXME: In the .o files, we have a GSYM and a debug symbol for all the ObjC data. They 3708 // have the same address, but we want to ensure that we always find only the real symbol, 3709 // 'cause we don't currently correctly attribute the GSYM one to the ObjCClass/Ivar/MetaClass 3710 // symbol type. This is a temporary hack to make sure the ObjectiveC symbols get treated 3711 // correctly. To do this right, we should coalesce all the GSYM & global symbols that have the 3712 // same address. 3713 is_gsym = true; 3714 sym[sym_idx].SetExternal(true); 3715 3716 if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O') 3717 { 3718 llvm::StringRef symbol_name_ref(symbol_name); 3719 if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) 3720 { 3721 symbol_name_non_abi_mangled = symbol_name + 1; 3722 symbol_name = symbol_name + g_objc_v2_prefix_class.size(); 3723 type = eSymbolTypeObjCClass; 3724 demangled_is_synthesized = true; 3725 3726 } 3727 else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) 3728 { 3729 symbol_name_non_abi_mangled = symbol_name + 1; 3730 symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size(); 3731 type = eSymbolTypeObjCMetaClass; 3732 demangled_is_synthesized = true; 3733 } 3734 else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) 3735 { 3736 symbol_name_non_abi_mangled = symbol_name + 1; 3737 symbol_name = symbol_name + g_objc_v2_prefix_ivar.size(); 3738 type = eSymbolTypeObjCIVar; 3739 demangled_is_synthesized = true; 3740 } 3741 } 3742 else 3743 { 3744 if (nlist.n_value != 0) 3745 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3746 type = eSymbolTypeData; 3747 } 3748 break; 3749 3750 case N_FNAME: 3751 // procedure name (f77 kludge): name,,NO_SECT,0,0 3752 type = eSymbolTypeCompiler; 3753 break; 3754 3755 case N_FUN: 3756 // procedure: name,,n_sect,linenumber,address 3757 if (symbol_name) 3758 { 3759 type = eSymbolTypeCode; 3760 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3761 3762 N_FUN_addr_to_sym_idx.insert(std::make_pair(nlist.n_value, sym_idx)); 3763 // We use the current number of symbols in the symbol table in lieu of 3764 // using nlist_idx in case we ever start trimming entries out 3765 N_FUN_indexes.push_back(sym_idx); 3766 } 3767 else 3768 { 3769 type = eSymbolTypeCompiler; 3770 3771 if ( !N_FUN_indexes.empty() ) 3772 { 3773 // Copy the size of the function into the original STAB entry so we don't have 3774 // to hunt for it later 3775 symtab->SymbolAtIndex(N_FUN_indexes.back())->SetByteSize(nlist.n_value); 3776 N_FUN_indexes.pop_back(); 3777 // We don't really need the end function STAB as it contains the size which 3778 // we already placed with the original symbol, so don't add it if we want a 3779 // minimal symbol table 3780 add_nlist = false; 3781 } 3782 } 3783 break; 3784 3785 case N_STSYM: 3786 // static symbol: name,,n_sect,type,address 3787 N_STSYM_addr_to_sym_idx.insert(std::make_pair(nlist.n_value, sym_idx)); 3788 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3789 type = eSymbolTypeData; 3790 break; 3791 3792 case N_LCSYM: 3793 // .lcomm symbol: name,,n_sect,type,address 3794 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3795 type = eSymbolTypeCommonBlock; 3796 break; 3797 3798 case N_BNSYM: 3799 // We use the current number of symbols in the symbol table in lieu of 3800 // using nlist_idx in case we ever start trimming entries out 3801 // Skip these if we want minimal symbol tables 3802 add_nlist = false; 3803 break; 3804 3805 case N_ENSYM: 3806 // Set the size of the N_BNSYM to the terminating index of this N_ENSYM 3807 // so that we can always skip the entire symbol if we need to navigate 3808 // more quickly at the source level when parsing STABS 3809 // Skip these if we want minimal symbol tables 3810 add_nlist = false; 3811 break; 3812 3813 3814 case N_OPT: 3815 // emitted with gcc2_compiled and in gcc source 3816 type = eSymbolTypeCompiler; 3817 break; 3818 3819 case N_RSYM: 3820 // register sym: name,,NO_SECT,type,register 3821 type = eSymbolTypeVariable; 3822 break; 3823 3824 case N_SLINE: 3825 // src line: 0,,n_sect,linenumber,address 3826 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3827 type = eSymbolTypeLineEntry; 3828 break; 3829 3830 case N_SSYM: 3831 // structure elt: name,,NO_SECT,type,struct_offset 3832 type = eSymbolTypeVariableType; 3833 break; 3834 3835 case N_SO: 3836 // source file name 3837 type = eSymbolTypeSourceFile; 3838 if (symbol_name == NULL) 3839 { 3840 add_nlist = false; 3841 if (N_SO_index != UINT32_MAX) 3842 { 3843 // Set the size of the N_SO to the terminating index of this N_SO 3844 // so that we can always skip the entire N_SO if we need to navigate 3845 // more quickly at the source level when parsing STABS 3846 symbol_ptr = symtab->SymbolAtIndex(N_SO_index); 3847 symbol_ptr->SetByteSize(sym_idx); 3848 symbol_ptr->SetSizeIsSibling(true); 3849 } 3850 N_NSYM_indexes.clear(); 3851 N_INCL_indexes.clear(); 3852 N_BRAC_indexes.clear(); 3853 N_COMM_indexes.clear(); 3854 N_FUN_indexes.clear(); 3855 N_SO_index = UINT32_MAX; 3856 } 3857 else 3858 { 3859 // We use the current number of symbols in the symbol table in lieu of 3860 // using nlist_idx in case we ever start trimming entries out 3861 const bool N_SO_has_full_path = symbol_name[0] == '/'; 3862 if (N_SO_has_full_path) 3863 { 3864 if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) 3865 { 3866 // We have two consecutive N_SO entries where the first contains a directory 3867 // and the second contains a full path. 3868 sym[sym_idx - 1].GetMangled().SetValue(ConstString(symbol_name), false); 3869 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 3870 add_nlist = false; 3871 } 3872 else 3873 { 3874 // This is the first entry in a N_SO that contains a directory or 3875 // a full path to the source file 3876 N_SO_index = sym_idx; 3877 } 3878 } 3879 else if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) 3880 { 3881 // This is usually the second N_SO entry that contains just the filename, 3882 // so here we combine it with the first one if we are minimizing the symbol table 3883 const char *so_path = sym[sym_idx - 1].GetMangled().GetDemangledName(lldb::eLanguageTypeUnknown).AsCString(); 3884 if (so_path && so_path[0]) 3885 { 3886 std::string full_so_path (so_path); 3887 const size_t double_slash_pos = full_so_path.find("//"); 3888 if (double_slash_pos != std::string::npos) 3889 { 3890 // The linker has been generating bad N_SO entries with doubled up paths 3891 // in the format "%s%s" where the first string in the DW_AT_comp_dir, 3892 // and the second is the directory for the source file so you end up with 3893 // a path that looks like "/tmp/src//tmp/src/" 3894 FileSpec so_dir(so_path, false); 3895 if (!so_dir.Exists()) 3896 { 3897 so_dir.SetFile(&full_so_path[double_slash_pos + 1], false); 3898 if (so_dir.Exists()) 3899 { 3900 // Trim off the incorrect path 3901 full_so_path.erase(0, double_slash_pos + 1); 3902 } 3903 } 3904 } 3905 if (*full_so_path.rbegin() != '/') 3906 full_so_path += '/'; 3907 full_so_path += symbol_name; 3908 sym[sym_idx - 1].GetMangled().SetValue(ConstString(full_so_path.c_str()), false); 3909 add_nlist = false; 3910 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 3911 } 3912 } 3913 else 3914 { 3915 // This could be a relative path to a N_SO 3916 N_SO_index = sym_idx; 3917 } 3918 } 3919 3920 break; 3921 3922 case N_OSO: 3923 // object file name: name,,0,0,st_mtime 3924 type = eSymbolTypeObjectFile; 3925 break; 3926 3927 case N_LSYM: 3928 // local sym: name,,NO_SECT,type,offset 3929 type = eSymbolTypeLocal; 3930 break; 3931 3932 //---------------------------------------------------------------------- 3933 // INCL scopes 3934 //---------------------------------------------------------------------- 3935 case N_BINCL: 3936 // include file beginning: name,,NO_SECT,0,sum 3937 // We use the current number of symbols in the symbol table in lieu of 3938 // using nlist_idx in case we ever start trimming entries out 3939 N_INCL_indexes.push_back(sym_idx); 3940 type = eSymbolTypeScopeBegin; 3941 break; 3942 3943 case N_EINCL: 3944 // include file end: name,,NO_SECT,0,0 3945 // Set the size of the N_BINCL to the terminating index of this N_EINCL 3946 // so that we can always skip the entire symbol if we need to navigate 3947 // more quickly at the source level when parsing STABS 3948 if ( !N_INCL_indexes.empty() ) 3949 { 3950 symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back()); 3951 symbol_ptr->SetByteSize(sym_idx + 1); 3952 symbol_ptr->SetSizeIsSibling(true); 3953 N_INCL_indexes.pop_back(); 3954 } 3955 type = eSymbolTypeScopeEnd; 3956 break; 3957 3958 case N_SOL: 3959 // #included file name: name,,n_sect,0,address 3960 type = eSymbolTypeHeaderFile; 3961 3962 // We currently don't use the header files on darwin 3963 add_nlist = false; 3964 break; 3965 3966 case N_PARAMS: 3967 // compiler parameters: name,,NO_SECT,0,0 3968 type = eSymbolTypeCompiler; 3969 break; 3970 3971 case N_VERSION: 3972 // compiler version: name,,NO_SECT,0,0 3973 type = eSymbolTypeCompiler; 3974 break; 3975 3976 case N_OLEVEL: 3977 // compiler -O level: name,,NO_SECT,0,0 3978 type = eSymbolTypeCompiler; 3979 break; 3980 3981 case N_PSYM: 3982 // parameter: name,,NO_SECT,type,offset 3983 type = eSymbolTypeVariable; 3984 break; 3985 3986 case N_ENTRY: 3987 // alternate entry: name,,n_sect,linenumber,address 3988 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3989 type = eSymbolTypeLineEntry; 3990 break; 3991 3992 //---------------------------------------------------------------------- 3993 // Left and Right Braces 3994 //---------------------------------------------------------------------- 3995 case N_LBRAC: 3996 // left bracket: 0,,NO_SECT,nesting level,address 3997 // We use the current number of symbols in the symbol table in lieu of 3998 // using nlist_idx in case we ever start trimming entries out 3999 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 4000 N_BRAC_indexes.push_back(sym_idx); 4001 type = eSymbolTypeScopeBegin; 4002 break; 4003 4004 case N_RBRAC: 4005 // right bracket: 0,,NO_SECT,nesting level,address 4006 // Set the size of the N_LBRAC to the terminating index of this N_RBRAC 4007 // so that we can always skip the entire symbol if we need to navigate 4008 // more quickly at the source level when parsing STABS 4009 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 4010 if ( !N_BRAC_indexes.empty() ) 4011 { 4012 symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back()); 4013 symbol_ptr->SetByteSize(sym_idx + 1); 4014 symbol_ptr->SetSizeIsSibling(true); 4015 N_BRAC_indexes.pop_back(); 4016 } 4017 type = eSymbolTypeScopeEnd; 4018 break; 4019 4020 case N_EXCL: 4021 // deleted include file: name,,NO_SECT,0,sum 4022 type = eSymbolTypeHeaderFile; 4023 break; 4024 4025 //---------------------------------------------------------------------- 4026 // COMM scopes 4027 //---------------------------------------------------------------------- 4028 case N_BCOMM: 4029 // begin common: name,,NO_SECT,0,0 4030 // We use the current number of symbols in the symbol table in lieu of 4031 // using nlist_idx in case we ever start trimming entries out 4032 type = eSymbolTypeScopeBegin; 4033 N_COMM_indexes.push_back(sym_idx); 4034 break; 4035 4036 case N_ECOML: 4037 // end common (local name): 0,,n_sect,0,address 4038 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 4039 // Fall through 4040 4041 case N_ECOMM: 4042 // end common: name,,n_sect,0,0 4043 // Set the size of the N_BCOMM to the terminating index of this N_ECOMM/N_ECOML 4044 // so that we can always skip the entire symbol if we need to navigate 4045 // more quickly at the source level when parsing STABS 4046 if ( !N_COMM_indexes.empty() ) 4047 { 4048 symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back()); 4049 symbol_ptr->SetByteSize(sym_idx + 1); 4050 symbol_ptr->SetSizeIsSibling(true); 4051 N_COMM_indexes.pop_back(); 4052 } 4053 type = eSymbolTypeScopeEnd; 4054 break; 4055 4056 case N_LENG: 4057 // second stab entry with length information 4058 type = eSymbolTypeAdditional; 4059 break; 4060 4061 default: break; 4062 } 4063 } 4064 else 4065 { 4066 //uint8_t n_pext = N_PEXT & nlist.n_type; 4067 uint8_t n_type = N_TYPE & nlist.n_type; 4068 sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0); 4069 4070 switch (n_type) 4071 { 4072 case N_INDR: 4073 { 4074 const char *reexport_name_cstr = strtab_data.PeekCStr(nlist.n_value); 4075 if (reexport_name_cstr && reexport_name_cstr[0]) 4076 { 4077 type = eSymbolTypeReExported; 4078 ConstString reexport_name(reexport_name_cstr + ((reexport_name_cstr[0] == '_') ? 1 : 0)); 4079 sym[sym_idx].SetReExportedSymbolName(reexport_name); 4080 set_value = false; 4081 reexport_shlib_needs_fixup[sym_idx] = reexport_name; 4082 indirect_symbol_names.insert(ConstString(symbol_name + ((symbol_name[0] == '_') ? 1 : 0))); 4083 } 4084 else 4085 type = eSymbolTypeUndefined; 4086 } 4087 break; 4088 4089 case N_UNDF: 4090 if (symbol_name && symbol_name[0]) 4091 { 4092 ConstString undefined_name(symbol_name + ((symbol_name[0] == '_') ? 1 : 0)); 4093 undefined_name_to_desc[undefined_name] = nlist.n_desc; 4094 } 4095 // Fall through 4096 case N_PBUD: 4097 type = eSymbolTypeUndefined; 4098 break; 4099 4100 case N_ABS: 4101 type = eSymbolTypeAbsolute; 4102 break; 4103 4104 case N_SECT: 4105 { 4106 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 4107 4108 if (!symbol_section) 4109 { 4110 // TODO: warn about this? 4111 add_nlist = false; 4112 break; 4113 } 4114 4115 if (TEXT_eh_frame_sectID == nlist.n_sect) 4116 { 4117 type = eSymbolTypeException; 4118 } 4119 else 4120 { 4121 uint32_t section_type = symbol_section->Get() & SECTION_TYPE; 4122 4123 switch (section_type) 4124 { 4125 case S_CSTRING_LITERALS: type = eSymbolTypeData; break; // section with only literal C strings 4126 case S_4BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 4 byte literals 4127 case S_8BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 8 byte literals 4128 case S_LITERAL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only pointers to literals 4129 case S_NON_LAZY_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only non-lazy symbol pointers 4130 case S_LAZY_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only lazy symbol pointers 4131 case S_SYMBOL_STUBS: type = eSymbolTypeTrampoline; break; // section with only symbol stubs, byte size of stub in the reserved2 field 4132 case S_MOD_INIT_FUNC_POINTERS: type = eSymbolTypeCode; break; // section with only function pointers for initialization 4133 case S_MOD_TERM_FUNC_POINTERS: type = eSymbolTypeCode; break; // section with only function pointers for termination 4134 case S_INTERPOSING: type = eSymbolTypeTrampoline; break; // section with only pairs of function pointers for interposing 4135 case S_16BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 16 byte literals 4136 case S_DTRACE_DOF: type = eSymbolTypeInstrumentation; break; 4137 case S_LAZY_DYLIB_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; 4138 default: 4139 switch (symbol_section->GetType()) 4140 { 4141 case lldb::eSectionTypeCode: 4142 type = eSymbolTypeCode; 4143 break; 4144 case eSectionTypeData: 4145 case eSectionTypeDataCString: // Inlined C string data 4146 case eSectionTypeDataCStringPointers: // Pointers to C string data 4147 case eSectionTypeDataSymbolAddress: // Address of a symbol in the symbol table 4148 case eSectionTypeData4: 4149 case eSectionTypeData8: 4150 case eSectionTypeData16: 4151 type = eSymbolTypeData; 4152 break; 4153 default: 4154 break; 4155 } 4156 break; 4157 } 4158 4159 if (type == eSymbolTypeInvalid) 4160 { 4161 const char *symbol_sect_name = symbol_section->GetName().AsCString(); 4162 if (symbol_section->IsDescendant (text_section_sp.get())) 4163 { 4164 if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS | 4165 S_ATTR_SELF_MODIFYING_CODE | 4166 S_ATTR_SOME_INSTRUCTIONS)) 4167 type = eSymbolTypeData; 4168 else 4169 type = eSymbolTypeCode; 4170 } 4171 else 4172 if (symbol_section->IsDescendant(data_section_sp.get()) || 4173 symbol_section->IsDescendant(data_dirty_section_sp.get()) || 4174 symbol_section->IsDescendant(data_const_section_sp.get())) 4175 { 4176 if (symbol_sect_name && ::strstr (symbol_sect_name, "__objc") == symbol_sect_name) 4177 { 4178 type = eSymbolTypeRuntime; 4179 4180 if (symbol_name && 4181 symbol_name[0] == '_' && 4182 symbol_name[1] == 'O' && 4183 symbol_name[2] == 'B') 4184 { 4185 llvm::StringRef symbol_name_ref(symbol_name); 4186 if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) 4187 { 4188 symbol_name_non_abi_mangled = symbol_name + 1; 4189 symbol_name = symbol_name + g_objc_v2_prefix_class.size(); 4190 type = eSymbolTypeObjCClass; 4191 demangled_is_synthesized = true; 4192 } 4193 else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) 4194 { 4195 symbol_name_non_abi_mangled = symbol_name + 1; 4196 symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size(); 4197 type = eSymbolTypeObjCMetaClass; 4198 demangled_is_synthesized = true; 4199 } 4200 else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) 4201 { 4202 symbol_name_non_abi_mangled = symbol_name + 1; 4203 symbol_name = symbol_name + g_objc_v2_prefix_ivar.size(); 4204 type = eSymbolTypeObjCIVar; 4205 demangled_is_synthesized = true; 4206 } 4207 } 4208 } 4209 else 4210 if (symbol_sect_name && ::strstr (symbol_sect_name, "__gcc_except_tab") == symbol_sect_name) 4211 { 4212 type = eSymbolTypeException; 4213 } 4214 else 4215 { 4216 type = eSymbolTypeData; 4217 } 4218 } 4219 else 4220 if (symbol_sect_name && ::strstr (symbol_sect_name, "__IMPORT") == symbol_sect_name) 4221 { 4222 type = eSymbolTypeTrampoline; 4223 } 4224 else 4225 if (symbol_section->IsDescendant(objc_section_sp.get())) 4226 { 4227 type = eSymbolTypeRuntime; 4228 if (symbol_name && symbol_name[0] == '.') 4229 { 4230 llvm::StringRef symbol_name_ref(symbol_name); 4231 static const llvm::StringRef g_objc_v1_prefix_class (".objc_class_name_"); 4232 if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) 4233 { 4234 symbol_name_non_abi_mangled = symbol_name; 4235 symbol_name = symbol_name + g_objc_v1_prefix_class.size(); 4236 type = eSymbolTypeObjCClass; 4237 demangled_is_synthesized = true; 4238 } 4239 } 4240 } 4241 } 4242 } 4243 } 4244 break; 4245 } 4246 } 4247 4248 if (add_nlist) 4249 { 4250 uint64_t symbol_value = nlist.n_value; 4251 4252 if (symbol_name_non_abi_mangled) 4253 { 4254 sym[sym_idx].GetMangled().SetMangledName (ConstString(symbol_name_non_abi_mangled)); 4255 sym[sym_idx].GetMangled().SetDemangledName (ConstString(symbol_name)); 4256 } 4257 else 4258 { 4259 bool symbol_name_is_mangled = false; 4260 4261 if (symbol_name && symbol_name[0] == '_') 4262 { 4263 symbol_name_is_mangled = symbol_name[1] == '_'; 4264 symbol_name++; // Skip the leading underscore 4265 } 4266 4267 if (symbol_name) 4268 { 4269 ConstString const_symbol_name(symbol_name); 4270 sym[sym_idx].GetMangled().SetValue(const_symbol_name, symbol_name_is_mangled); 4271 } 4272 } 4273 4274 if (is_gsym) 4275 { 4276 const char *gsym_name = sym[sym_idx].GetMangled().GetName(lldb::eLanguageTypeUnknown, Mangled::ePreferMangled).GetCString(); 4277 if (gsym_name) 4278 N_GSYM_name_to_sym_idx[gsym_name] = sym_idx; 4279 } 4280 4281 if (symbol_section) 4282 { 4283 const addr_t section_file_addr = symbol_section->GetFileAddress(); 4284 if (symbol_byte_size == 0 && function_starts_count > 0) 4285 { 4286 addr_t symbol_lookup_file_addr = nlist.n_value; 4287 // Do an exact address match for non-ARM addresses, else get the closest since 4288 // the symbol might be a thumb symbol which has an address with bit zero set 4289 FunctionStarts::Entry *func_start_entry = function_starts.FindEntry (symbol_lookup_file_addr, !is_arm); 4290 if (is_arm && func_start_entry) 4291 { 4292 // Verify that the function start address is the symbol address (ARM) 4293 // or the symbol address + 1 (thumb) 4294 if (func_start_entry->addr != symbol_lookup_file_addr && 4295 func_start_entry->addr != (symbol_lookup_file_addr + 1)) 4296 { 4297 // Not the right entry, NULL it out... 4298 func_start_entry = NULL; 4299 } 4300 } 4301 if (func_start_entry) 4302 { 4303 func_start_entry->data = true; 4304 4305 addr_t symbol_file_addr = func_start_entry->addr; 4306 if (is_arm) 4307 symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; 4308 4309 const FunctionStarts::Entry *next_func_start_entry = function_starts.FindNextEntry (func_start_entry); 4310 const addr_t section_end_file_addr = section_file_addr + symbol_section->GetByteSize(); 4311 if (next_func_start_entry) 4312 { 4313 addr_t next_symbol_file_addr = next_func_start_entry->addr; 4314 // Be sure the clear the Thumb address bit when we calculate the size 4315 // from the current and next address 4316 if (is_arm) 4317 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; 4318 symbol_byte_size = std::min<lldb::addr_t>(next_symbol_file_addr - symbol_file_addr, section_end_file_addr - symbol_file_addr); 4319 } 4320 else 4321 { 4322 symbol_byte_size = section_end_file_addr - symbol_file_addr; 4323 } 4324 } 4325 } 4326 symbol_value -= section_file_addr; 4327 } 4328 4329 if (is_debug == false) 4330 { 4331 if (type == eSymbolTypeCode) 4332 { 4333 // See if we can find a N_FUN entry for any code symbols. 4334 // If we do find a match, and the name matches, then we 4335 // can merge the two into just the function symbol to avoid 4336 // duplicate entries in the symbol table 4337 std::pair<ValueToSymbolIndexMap::const_iterator, ValueToSymbolIndexMap::const_iterator> range; 4338 range = N_FUN_addr_to_sym_idx.equal_range(nlist.n_value); 4339 if (range.first != range.second) 4340 { 4341 bool found_it = false; 4342 for (ValueToSymbolIndexMap::const_iterator pos = range.first; pos != range.second; ++pos) 4343 { 4344 if (sym[sym_idx].GetMangled().GetName(lldb::eLanguageTypeUnknown, Mangled::ePreferMangled) == sym[pos->second].GetMangled().GetName(lldb::eLanguageTypeUnknown, Mangled::ePreferMangled)) 4345 { 4346 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 4347 // We just need the flags from the linker symbol, so put these flags 4348 // into the N_FUN flags to avoid duplicate symbols in the symbol table 4349 sym[pos->second].SetExternal(sym[sym_idx].IsExternal()); 4350 sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc); 4351 if (resolver_addresses.find(nlist.n_value) != resolver_addresses.end()) 4352 sym[pos->second].SetType (eSymbolTypeResolver); 4353 sym[sym_idx].Clear(); 4354 found_it = true; 4355 break; 4356 } 4357 } 4358 if (found_it) 4359 continue; 4360 } 4361 else 4362 { 4363 if (resolver_addresses.find(nlist.n_value) != resolver_addresses.end()) 4364 type = eSymbolTypeResolver; 4365 } 4366 } 4367 else if (type == eSymbolTypeData || 4368 type == eSymbolTypeObjCClass || 4369 type == eSymbolTypeObjCMetaClass || 4370 type == eSymbolTypeObjCIVar ) 4371 { 4372 // See if we can find a N_STSYM entry for any data symbols. 4373 // If we do find a match, and the name matches, then we 4374 // can merge the two into just the Static symbol to avoid 4375 // duplicate entries in the symbol table 4376 std::pair<ValueToSymbolIndexMap::const_iterator, ValueToSymbolIndexMap::const_iterator> range; 4377 range = N_STSYM_addr_to_sym_idx.equal_range(nlist.n_value); 4378 if (range.first != range.second) 4379 { 4380 bool found_it = false; 4381 for (ValueToSymbolIndexMap::const_iterator pos = range.first; pos != range.second; ++pos) 4382 { 4383 if (sym[sym_idx].GetMangled().GetName(lldb::eLanguageTypeUnknown, Mangled::ePreferMangled) == sym[pos->second].GetMangled().GetName(lldb::eLanguageTypeUnknown, Mangled::ePreferMangled)) 4384 { 4385 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 4386 // We just need the flags from the linker symbol, so put these flags 4387 // into the N_STSYM flags to avoid duplicate symbols in the symbol table 4388 sym[pos->second].SetExternal(sym[sym_idx].IsExternal()); 4389 sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc); 4390 sym[sym_idx].Clear(); 4391 found_it = true; 4392 break; 4393 } 4394 } 4395 if (found_it) 4396 continue; 4397 } 4398 else 4399 { 4400 // Combine N_GSYM stab entries with the non stab symbol 4401 const char *gsym_name = sym[sym_idx].GetMangled().GetName(lldb::eLanguageTypeUnknown, Mangled::ePreferMangled).GetCString(); 4402 if (gsym_name) 4403 { 4404 ConstNameToSymbolIndexMap::const_iterator pos = N_GSYM_name_to_sym_idx.find(gsym_name); 4405 if (pos != N_GSYM_name_to_sym_idx.end()) 4406 { 4407 const uint32_t GSYM_sym_idx = pos->second; 4408 m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx; 4409 // Copy the address, because often the N_GSYM address has an invalid address of zero 4410 // when the global is a common symbol 4411 sym[GSYM_sym_idx].GetAddressRef().SetSection (symbol_section); 4412 sym[GSYM_sym_idx].GetAddressRef().SetOffset (symbol_value); 4413 // We just need the flags from the linker symbol, so put these flags 4414 // into the N_GSYM flags to avoid duplicate symbols in the symbol table 4415 sym[GSYM_sym_idx].SetFlags (nlist.n_type << 16 | nlist.n_desc); 4416 sym[sym_idx].Clear(); 4417 continue; 4418 } 4419 } 4420 } 4421 } 4422 } 4423 4424 sym[sym_idx].SetID (nlist_idx); 4425 sym[sym_idx].SetType (type); 4426 if (set_value) 4427 { 4428 sym[sym_idx].GetAddressRef().SetSection (symbol_section); 4429 sym[sym_idx].GetAddressRef().SetOffset (symbol_value); 4430 } 4431 sym[sym_idx].SetFlags (nlist.n_type << 16 | nlist.n_desc); 4432 4433 if (symbol_byte_size > 0) 4434 sym[sym_idx].SetByteSize(symbol_byte_size); 4435 4436 if (demangled_is_synthesized) 4437 sym[sym_idx].SetDemangledNameIsSynthesized(true); 4438 4439 ++sym_idx; 4440 } 4441 else 4442 { 4443 sym[sym_idx].Clear(); 4444 } 4445 } 4446 4447 for (const auto &pos :reexport_shlib_needs_fixup) 4448 { 4449 const auto undef_pos = undefined_name_to_desc.find(pos.second); 4450 if (undef_pos != undefined_name_to_desc.end()) 4451 { 4452 const uint8_t dylib_ordinal = llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second); 4453 if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize()) 4454 sym[pos.first].SetReExportedSymbolSharedLibrary(dylib_files.GetFileSpecAtIndex(dylib_ordinal-1)); 4455 } 4456 } 4457 4458 } 4459 4460 uint32_t synthetic_sym_id = symtab_load_command.nsyms; 4461 4462 if (function_starts_count > 0) 4463 { 4464 char synthetic_function_symbol[PATH_MAX]; 4465 uint32_t num_synthetic_function_symbols = 0; 4466 for (i=0; i<function_starts_count; ++i) 4467 { 4468 if (function_starts.GetEntryRef (i).data == false) 4469 ++num_synthetic_function_symbols; 4470 } 4471 4472 if (num_synthetic_function_symbols > 0) 4473 { 4474 if (num_syms < sym_idx + num_synthetic_function_symbols) 4475 { 4476 num_syms = sym_idx + num_synthetic_function_symbols; 4477 sym = symtab->Resize (num_syms); 4478 } 4479 uint32_t synthetic_function_symbol_idx = 0; 4480 for (i=0; i<function_starts_count; ++i) 4481 { 4482 const FunctionStarts::Entry *func_start_entry = function_starts.GetEntryAtIndex (i); 4483 if (func_start_entry->data == false) 4484 { 4485 addr_t symbol_file_addr = func_start_entry->addr; 4486 uint32_t symbol_flags = 0; 4487 if (is_arm) 4488 { 4489 if (symbol_file_addr & 1) 4490 symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB; 4491 symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; 4492 } 4493 Address symbol_addr; 4494 if (module_sp->ResolveFileAddress (symbol_file_addr, symbol_addr)) 4495 { 4496 SectionSP symbol_section (symbol_addr.GetSection()); 4497 uint32_t symbol_byte_size = 0; 4498 if (symbol_section) 4499 { 4500 const addr_t section_file_addr = symbol_section->GetFileAddress(); 4501 const FunctionStarts::Entry *next_func_start_entry = function_starts.FindNextEntry (func_start_entry); 4502 const addr_t section_end_file_addr = section_file_addr + symbol_section->GetByteSize(); 4503 if (next_func_start_entry) 4504 { 4505 addr_t next_symbol_file_addr = next_func_start_entry->addr; 4506 if (is_arm) 4507 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; 4508 symbol_byte_size = std::min<lldb::addr_t>(next_symbol_file_addr - symbol_file_addr, section_end_file_addr - symbol_file_addr); 4509 } 4510 else 4511 { 4512 symbol_byte_size = section_end_file_addr - symbol_file_addr; 4513 } 4514 snprintf (synthetic_function_symbol, 4515 sizeof(synthetic_function_symbol), 4516 "___lldb_unnamed_function%u$$%s", 4517 ++synthetic_function_symbol_idx, 4518 module_sp->GetFileSpec().GetFilename().GetCString()); 4519 sym[sym_idx].SetID (synthetic_sym_id++); 4520 sym[sym_idx].GetMangled().SetDemangledName(ConstString(synthetic_function_symbol)); 4521 sym[sym_idx].SetType (eSymbolTypeCode); 4522 sym[sym_idx].SetIsSynthetic (true); 4523 sym[sym_idx].GetAddressRef() = symbol_addr; 4524 if (symbol_flags) 4525 sym[sym_idx].SetFlags (symbol_flags); 4526 if (symbol_byte_size) 4527 sym[sym_idx].SetByteSize (symbol_byte_size); 4528 ++sym_idx; 4529 } 4530 } 4531 } 4532 } 4533 } 4534 } 4535 4536 // Trim our symbols down to just what we ended up with after 4537 // removing any symbols. 4538 if (sym_idx < num_syms) 4539 { 4540 num_syms = sym_idx; 4541 sym = symtab->Resize (num_syms); 4542 } 4543 4544 // Now synthesize indirect symbols 4545 if (m_dysymtab.nindirectsyms != 0) 4546 { 4547 if (indirect_symbol_index_data.GetByteSize()) 4548 { 4549 NListIndexToSymbolIndexMap::const_iterator end_index_pos = m_nlist_idx_to_sym_idx.end(); 4550 4551 for (uint32_t sect_idx = 1; sect_idx < m_mach_sections.size(); ++sect_idx) 4552 { 4553 if ((m_mach_sections[sect_idx].flags & SECTION_TYPE) == S_SYMBOL_STUBS) 4554 { 4555 uint32_t symbol_stub_byte_size = m_mach_sections[sect_idx].reserved2; 4556 if (symbol_stub_byte_size == 0) 4557 continue; 4558 4559 const uint32_t num_symbol_stubs = m_mach_sections[sect_idx].size / symbol_stub_byte_size; 4560 4561 if (num_symbol_stubs == 0) 4562 continue; 4563 4564 const uint32_t symbol_stub_index_offset = m_mach_sections[sect_idx].reserved1; 4565 for (uint32_t stub_idx = 0; stub_idx < num_symbol_stubs; ++stub_idx) 4566 { 4567 const uint32_t symbol_stub_index = symbol_stub_index_offset + stub_idx; 4568 const lldb::addr_t symbol_stub_addr = m_mach_sections[sect_idx].addr + (stub_idx * symbol_stub_byte_size); 4569 lldb::offset_t symbol_stub_offset = symbol_stub_index * 4; 4570 if (indirect_symbol_index_data.ValidOffsetForDataOfSize(symbol_stub_offset, 4)) 4571 { 4572 const uint32_t stub_sym_id = indirect_symbol_index_data.GetU32 (&symbol_stub_offset); 4573 if (stub_sym_id & (INDIRECT_SYMBOL_ABS | INDIRECT_SYMBOL_LOCAL)) 4574 continue; 4575 4576 NListIndexToSymbolIndexMap::const_iterator index_pos = m_nlist_idx_to_sym_idx.find (stub_sym_id); 4577 Symbol *stub_symbol = NULL; 4578 if (index_pos != end_index_pos) 4579 { 4580 // We have a remapping from the original nlist index to 4581 // a current symbol index, so just look this up by index 4582 stub_symbol = symtab->SymbolAtIndex (index_pos->second); 4583 } 4584 else 4585 { 4586 // We need to lookup a symbol using the original nlist 4587 // symbol index since this index is coming from the 4588 // S_SYMBOL_STUBS 4589 stub_symbol = symtab->FindSymbolByID (stub_sym_id); 4590 } 4591 4592 if (stub_symbol) 4593 { 4594 Address so_addr(symbol_stub_addr, section_list); 4595 4596 if (stub_symbol->GetType() == eSymbolTypeUndefined) 4597 { 4598 // Change the external symbol into a trampoline that makes sense 4599 // These symbols were N_UNDF N_EXT, and are useless to us, so we 4600 // can re-use them so we don't have to make up a synthetic symbol 4601 // for no good reason. 4602 if (resolver_addresses.find(symbol_stub_addr) == resolver_addresses.end()) 4603 stub_symbol->SetType (eSymbolTypeTrampoline); 4604 else 4605 stub_symbol->SetType (eSymbolTypeResolver); 4606 stub_symbol->SetExternal (false); 4607 stub_symbol->GetAddressRef() = so_addr; 4608 stub_symbol->SetByteSize (symbol_stub_byte_size); 4609 } 4610 else 4611 { 4612 // Make a synthetic symbol to describe the trampoline stub 4613 Mangled stub_symbol_mangled_name(stub_symbol->GetMangled()); 4614 if (sym_idx >= num_syms) 4615 { 4616 sym = symtab->Resize (++num_syms); 4617 stub_symbol = NULL; // this pointer no longer valid 4618 } 4619 sym[sym_idx].SetID (synthetic_sym_id++); 4620 sym[sym_idx].GetMangled() = stub_symbol_mangled_name; 4621 if (resolver_addresses.find(symbol_stub_addr) == resolver_addresses.end()) 4622 sym[sym_idx].SetType (eSymbolTypeTrampoline); 4623 else 4624 sym[sym_idx].SetType (eSymbolTypeResolver); 4625 sym[sym_idx].SetIsSynthetic (true); 4626 sym[sym_idx].GetAddressRef() = so_addr; 4627 sym[sym_idx].SetByteSize (symbol_stub_byte_size); 4628 ++sym_idx; 4629 } 4630 } 4631 else 4632 { 4633 if (log) 4634 log->Warning ("symbol stub referencing symbol table symbol %u that isn't in our minimal symbol table, fix this!!!", stub_sym_id); 4635 } 4636 } 4637 } 4638 } 4639 } 4640 } 4641 } 4642 4643 4644 if (!trie_entries.empty()) 4645 { 4646 for (const auto &e : trie_entries) 4647 { 4648 if (e.entry.import_name) 4649 { 4650 // Only add indirect symbols from the Trie entries if we 4651 // didn't have a N_INDR nlist entry for this already 4652 if (indirect_symbol_names.find(e.entry.name) == indirect_symbol_names.end()) 4653 { 4654 // Make a synthetic symbol to describe re-exported symbol. 4655 if (sym_idx >= num_syms) 4656 sym = symtab->Resize (++num_syms); 4657 sym[sym_idx].SetID (synthetic_sym_id++); 4658 sym[sym_idx].GetMangled() = Mangled(e.entry.name); 4659 sym[sym_idx].SetType (eSymbolTypeReExported); 4660 sym[sym_idx].SetIsSynthetic (true); 4661 sym[sym_idx].SetReExportedSymbolName(e.entry.import_name); 4662 if (e.entry.other > 0 && e.entry.other <= dylib_files.GetSize()) 4663 { 4664 sym[sym_idx].SetReExportedSymbolSharedLibrary(dylib_files.GetFileSpecAtIndex(e.entry.other-1)); 4665 } 4666 ++sym_idx; 4667 } 4668 } 4669 } 4670 } 4671 4672 4673 4674 // StreamFile s(stdout, false); 4675 // s.Printf ("Symbol table before CalculateSymbolSizes():\n"); 4676 // symtab->Dump(&s, NULL, eSortOrderNone); 4677 // Set symbol byte sizes correctly since mach-o nlist entries don't have sizes 4678 symtab->CalculateSymbolSizes(); 4679 4680 // s.Printf ("Symbol table after CalculateSymbolSizes():\n"); 4681 // symtab->Dump(&s, NULL, eSortOrderNone); 4682 4683 return symtab->GetNumSymbols(); 4684 } 4685 return 0; 4686 } 4687 4688 4689 void 4690 ObjectFileMachO::Dump (Stream *s) 4691 { 4692 ModuleSP module_sp(GetModule()); 4693 if (module_sp) 4694 { 4695 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 4696 s->Printf("%p: ", static_cast<void*>(this)); 4697 s->Indent(); 4698 if (m_header.magic == MH_MAGIC_64 || m_header.magic == MH_CIGAM_64) 4699 s->PutCString("ObjectFileMachO64"); 4700 else 4701 s->PutCString("ObjectFileMachO32"); 4702 4703 ArchSpec header_arch; 4704 GetArchitecture(header_arch); 4705 4706 *s << ", file = '" << m_file << "', arch = " << header_arch.GetArchitectureName() << "\n"; 4707 4708 SectionList *sections = GetSectionList(); 4709 if (sections) 4710 sections->Dump(s, NULL, true, UINT32_MAX); 4711 4712 if (m_symtab_ap.get()) 4713 m_symtab_ap->Dump(s, NULL, eSortOrderNone); 4714 } 4715 } 4716 4717 bool 4718 ObjectFileMachO::GetUUID (const llvm::MachO::mach_header &header, 4719 const lldb_private::DataExtractor &data, 4720 lldb::offset_t lc_offset, 4721 lldb_private::UUID& uuid) 4722 { 4723 uint32_t i; 4724 struct uuid_command load_cmd; 4725 4726 lldb::offset_t offset = lc_offset; 4727 for (i=0; i<header.ncmds; ++i) 4728 { 4729 const lldb::offset_t cmd_offset = offset; 4730 if (data.GetU32(&offset, &load_cmd, 2) == NULL) 4731 break; 4732 4733 if (load_cmd.cmd == LC_UUID) 4734 { 4735 const uint8_t *uuid_bytes = data.PeekData(offset, 16); 4736 4737 if (uuid_bytes) 4738 { 4739 // OpenCL on Mac OS X uses the same UUID for each of its object files. 4740 // We pretend these object files have no UUID to prevent crashing. 4741 4742 const uint8_t opencl_uuid[] = { 0x8c, 0x8e, 0xb3, 0x9b, 4743 0x3b, 0xa8, 4744 0x4b, 0x16, 4745 0xb6, 0xa4, 4746 0x27, 0x63, 0xbb, 0x14, 0xf0, 0x0d }; 4747 4748 if (!memcmp(uuid_bytes, opencl_uuid, 16)) 4749 return false; 4750 4751 uuid.SetBytes (uuid_bytes); 4752 return true; 4753 } 4754 return false; 4755 } 4756 offset = cmd_offset + load_cmd.cmdsize; 4757 } 4758 return false; 4759 } 4760 4761 4762 bool 4763 ObjectFileMachO::GetArchitecture (const llvm::MachO::mach_header &header, 4764 const lldb_private::DataExtractor &data, 4765 lldb::offset_t lc_offset, 4766 ArchSpec &arch) 4767 { 4768 arch.SetArchitecture (eArchTypeMachO, header.cputype, header.cpusubtype); 4769 4770 if (arch.IsValid()) 4771 { 4772 llvm::Triple &triple = arch.GetTriple(); 4773 if (header.filetype == MH_PRELOAD) 4774 { 4775 // Set OS to "unknown" - this is a standalone binary with no dyld et al 4776 triple.setOS(llvm::Triple::UnknownOS); 4777 return true; 4778 } 4779 else 4780 { 4781 struct load_command load_cmd; 4782 4783 lldb::offset_t offset = lc_offset; 4784 for (uint32_t i=0; i<header.ncmds; ++i) 4785 { 4786 const lldb::offset_t cmd_offset = offset; 4787 if (data.GetU32(&offset, &load_cmd, 2) == NULL) 4788 break; 4789 4790 switch (load_cmd.cmd) 4791 { 4792 case LC_VERSION_MIN_IPHONEOS: 4793 triple.setOS (llvm::Triple::IOS); 4794 return true; 4795 4796 case LC_VERSION_MIN_MACOSX: 4797 triple.setOS (llvm::Triple::MacOSX); 4798 return true; 4799 4800 default: 4801 break; 4802 } 4803 4804 offset = cmd_offset + load_cmd.cmdsize; 4805 } 4806 4807 // Only set the OS to iOS for ARM, we don't want to set it for x86 and x86_64. 4808 // We do this because we now have MacOSX or iOS as the OS value for x86 and 4809 // x86_64 for normal desktop (MacOSX) and simulator (iOS) binaries. And if 4810 // we compare a "x86_64-apple-ios" to a "x86_64-apple-" triple, it will say 4811 // it is compatible (because the OS is unspecified in the second one and will 4812 // match anything in the first 4813 if (header.cputype == CPU_TYPE_ARM || header.cputype == CPU_TYPE_ARM64) 4814 triple.setOS (llvm::Triple::IOS); 4815 } 4816 } 4817 return arch.IsValid(); 4818 } 4819 4820 bool 4821 ObjectFileMachO::GetUUID (lldb_private::UUID* uuid) 4822 { 4823 ModuleSP module_sp(GetModule()); 4824 if (module_sp) 4825 { 4826 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 4827 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 4828 return GetUUID (m_header, m_data, offset, *uuid); 4829 } 4830 return false; 4831 } 4832 4833 4834 uint32_t 4835 ObjectFileMachO::GetDependentModules (FileSpecList& files) 4836 { 4837 uint32_t count = 0; 4838 ModuleSP module_sp(GetModule()); 4839 if (module_sp) 4840 { 4841 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 4842 struct load_command load_cmd; 4843 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 4844 std::vector<std::string> rpath_paths; 4845 std::vector<std::string> rpath_relative_paths; 4846 const bool resolve_path = false; // Don't resolve the dependent file paths since they may not reside on this system 4847 uint32_t i; 4848 for (i=0; i<m_header.ncmds; ++i) 4849 { 4850 const uint32_t cmd_offset = offset; 4851 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) 4852 break; 4853 4854 switch (load_cmd.cmd) 4855 { 4856 case LC_RPATH: 4857 case LC_LOAD_DYLIB: 4858 case LC_LOAD_WEAK_DYLIB: 4859 case LC_REEXPORT_DYLIB: 4860 case LC_LOAD_DYLINKER: 4861 case LC_LOADFVMLIB: 4862 case LC_LOAD_UPWARD_DYLIB: 4863 { 4864 uint32_t name_offset = cmd_offset + m_data.GetU32(&offset); 4865 const char *path = m_data.PeekCStr(name_offset); 4866 if (path) 4867 { 4868 if (load_cmd.cmd == LC_RPATH) 4869 rpath_paths.push_back(path); 4870 else 4871 { 4872 if (path[0] == '@') 4873 { 4874 if (strncmp(path, "@rpath", strlen("@rpath")) == 0) 4875 rpath_relative_paths.push_back(path + strlen("@rpath")); 4876 } 4877 else 4878 { 4879 FileSpec file_spec(path, resolve_path); 4880 if (files.AppendIfUnique(file_spec)) 4881 count++; 4882 } 4883 } 4884 } 4885 } 4886 break; 4887 4888 default: 4889 break; 4890 } 4891 offset = cmd_offset + load_cmd.cmdsize; 4892 } 4893 4894 if (!rpath_paths.empty()) 4895 { 4896 // Fixup all LC_RPATH values to be absolute paths 4897 FileSpec this_file_spec(m_file); 4898 this_file_spec.ResolvePath(); 4899 std::string loader_path("@loader_path"); 4900 std::string executable_path("@executable_path"); 4901 for (auto &rpath : rpath_paths) 4902 { 4903 if (rpath.find(loader_path) == 0) 4904 { 4905 rpath.erase(0, loader_path.size()); 4906 rpath.insert(0, this_file_spec.GetDirectory().GetCString()); 4907 } 4908 else if (rpath.find(executable_path) == 0) 4909 { 4910 rpath.erase(0, executable_path.size()); 4911 rpath.insert(0, this_file_spec.GetDirectory().GetCString()); 4912 } 4913 } 4914 4915 for (const auto &rpath_relative_path : rpath_relative_paths) 4916 { 4917 for (const auto &rpath : rpath_paths) 4918 { 4919 std::string path = rpath; 4920 path += rpath_relative_path; 4921 // It is OK to resolve this path because we must find a file on 4922 // disk for us to accept it anyway if it is rpath relative. 4923 FileSpec file_spec(path, true); 4924 // Remove any redundant parts of the path (like "../foo") since 4925 // LC_RPATH values often contain "..". 4926 file_spec.NormalizePath (); 4927 if (file_spec.Exists() && files.AppendIfUnique(file_spec)) 4928 { 4929 count++; 4930 break; 4931 } 4932 } 4933 } 4934 } 4935 } 4936 return count; 4937 } 4938 4939 lldb_private::Address 4940 ObjectFileMachO::GetEntryPointAddress () 4941 { 4942 // If the object file is not an executable it can't hold the entry point. m_entry_point_address 4943 // is initialized to an invalid address, so we can just return that. 4944 // If m_entry_point_address is valid it means we've found it already, so return the cached value. 4945 4946 if (!IsExecutable() || m_entry_point_address.IsValid()) 4947 return m_entry_point_address; 4948 4949 // Otherwise, look for the UnixThread or Thread command. The data for the Thread command is given in 4950 // /usr/include/mach-o.h, but it is basically: 4951 // 4952 // uint32_t flavor - this is the flavor argument you would pass to thread_get_state 4953 // uint32_t count - this is the count of longs in the thread state data 4954 // struct XXX_thread_state state - this is the structure from <machine/thread_status.h> corresponding to the flavor. 4955 // <repeat this trio> 4956 // 4957 // So we just keep reading the various register flavors till we find the GPR one, then read the PC out of there. 4958 // FIXME: We will need to have a "RegisterContext data provider" class at some point that can get all the registers 4959 // out of data in this form & attach them to a given thread. That should underlie the MacOS X User process plugin, 4960 // and we'll also need it for the MacOS X Core File process plugin. When we have that we can also use it here. 4961 // 4962 // For now we hard-code the offsets and flavors we need: 4963 // 4964 // 4965 4966 ModuleSP module_sp(GetModule()); 4967 if (module_sp) 4968 { 4969 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 4970 struct load_command load_cmd; 4971 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 4972 uint32_t i; 4973 lldb::addr_t start_address = LLDB_INVALID_ADDRESS; 4974 bool done = false; 4975 4976 for (i=0; i<m_header.ncmds; ++i) 4977 { 4978 const lldb::offset_t cmd_offset = offset; 4979 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) 4980 break; 4981 4982 switch (load_cmd.cmd) 4983 { 4984 case LC_UNIXTHREAD: 4985 case LC_THREAD: 4986 { 4987 while (offset < cmd_offset + load_cmd.cmdsize) 4988 { 4989 uint32_t flavor = m_data.GetU32(&offset); 4990 uint32_t count = m_data.GetU32(&offset); 4991 if (count == 0) 4992 { 4993 // We've gotten off somehow, log and exit; 4994 return m_entry_point_address; 4995 } 4996 4997 switch (m_header.cputype) 4998 { 4999 case llvm::MachO::CPU_TYPE_ARM: 5000 if (flavor == 1) // ARM_THREAD_STATE from mach/arm/thread_status.h 5001 { 5002 offset += 60; // This is the offset of pc in the GPR thread state data structure. 5003 start_address = m_data.GetU32(&offset); 5004 done = true; 5005 } 5006 break; 5007 case llvm::MachO::CPU_TYPE_ARM64: 5008 if (flavor == 6) // ARM_THREAD_STATE64 from mach/arm/thread_status.h 5009 { 5010 offset += 256; // This is the offset of pc in the GPR thread state data structure. 5011 start_address = m_data.GetU64(&offset); 5012 done = true; 5013 } 5014 break; 5015 case llvm::MachO::CPU_TYPE_I386: 5016 if (flavor == 1) // x86_THREAD_STATE32 from mach/i386/thread_status.h 5017 { 5018 offset += 40; // This is the offset of eip in the GPR thread state data structure. 5019 start_address = m_data.GetU32(&offset); 5020 done = true; 5021 } 5022 break; 5023 case llvm::MachO::CPU_TYPE_X86_64: 5024 if (flavor == 4) // x86_THREAD_STATE64 from mach/i386/thread_status.h 5025 { 5026 offset += 16 * 8; // This is the offset of rip in the GPR thread state data structure. 5027 start_address = m_data.GetU64(&offset); 5028 done = true; 5029 } 5030 break; 5031 default: 5032 return m_entry_point_address; 5033 } 5034 // Haven't found the GPR flavor yet, skip over the data for this flavor: 5035 if (done) 5036 break; 5037 offset += count * 4; 5038 } 5039 } 5040 break; 5041 case LC_MAIN: 5042 { 5043 ConstString text_segment_name ("__TEXT"); 5044 uint64_t entryoffset = m_data.GetU64(&offset); 5045 SectionSP text_segment_sp = GetSectionList()->FindSectionByName(text_segment_name); 5046 if (text_segment_sp) 5047 { 5048 done = true; 5049 start_address = text_segment_sp->GetFileAddress() + entryoffset; 5050 } 5051 } 5052 5053 default: 5054 break; 5055 } 5056 if (done) 5057 break; 5058 5059 // Go to the next load command: 5060 offset = cmd_offset + load_cmd.cmdsize; 5061 } 5062 5063 if (start_address != LLDB_INVALID_ADDRESS) 5064 { 5065 // We got the start address from the load commands, so now resolve that address in the sections 5066 // of this ObjectFile: 5067 if (!m_entry_point_address.ResolveAddressUsingFileSections (start_address, GetSectionList())) 5068 { 5069 m_entry_point_address.Clear(); 5070 } 5071 } 5072 else 5073 { 5074 // We couldn't read the UnixThread load command - maybe it wasn't there. As a fallback look for the 5075 // "start" symbol in the main executable. 5076 5077 ModuleSP module_sp (GetModule()); 5078 5079 if (module_sp) 5080 { 5081 SymbolContextList contexts; 5082 SymbolContext context; 5083 if (module_sp->FindSymbolsWithNameAndType(ConstString ("start"), eSymbolTypeCode, contexts)) 5084 { 5085 if (contexts.GetContextAtIndex(0, context)) 5086 m_entry_point_address = context.symbol->GetAddress(); 5087 } 5088 } 5089 } 5090 } 5091 5092 return m_entry_point_address; 5093 5094 } 5095 5096 lldb_private::Address 5097 ObjectFileMachO::GetHeaderAddress () 5098 { 5099 lldb_private::Address header_addr; 5100 SectionList *section_list = GetSectionList(); 5101 if (section_list) 5102 { 5103 SectionSP text_segment_sp (section_list->FindSectionByName (GetSegmentNameTEXT())); 5104 if (text_segment_sp) 5105 { 5106 header_addr.SetSection (text_segment_sp); 5107 header_addr.SetOffset (0); 5108 } 5109 } 5110 return header_addr; 5111 } 5112 5113 uint32_t 5114 ObjectFileMachO::GetNumThreadContexts () 5115 { 5116 ModuleSP module_sp(GetModule()); 5117 if (module_sp) 5118 { 5119 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 5120 if (!m_thread_context_offsets_valid) 5121 { 5122 m_thread_context_offsets_valid = true; 5123 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5124 FileRangeArray::Entry file_range; 5125 thread_command thread_cmd; 5126 for (uint32_t i=0; i<m_header.ncmds; ++i) 5127 { 5128 const uint32_t cmd_offset = offset; 5129 if (m_data.GetU32(&offset, &thread_cmd, 2) == NULL) 5130 break; 5131 5132 if (thread_cmd.cmd == LC_THREAD) 5133 { 5134 file_range.SetRangeBase (offset); 5135 file_range.SetByteSize (thread_cmd.cmdsize - 8); 5136 m_thread_context_offsets.Append (file_range); 5137 } 5138 offset = cmd_offset + thread_cmd.cmdsize; 5139 } 5140 } 5141 } 5142 return m_thread_context_offsets.GetSize(); 5143 } 5144 5145 lldb::RegisterContextSP 5146 ObjectFileMachO::GetThreadContextAtIndex (uint32_t idx, lldb_private::Thread &thread) 5147 { 5148 lldb::RegisterContextSP reg_ctx_sp; 5149 5150 ModuleSP module_sp(GetModule()); 5151 if (module_sp) 5152 { 5153 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 5154 if (!m_thread_context_offsets_valid) 5155 GetNumThreadContexts (); 5156 5157 const FileRangeArray::Entry *thread_context_file_range = m_thread_context_offsets.GetEntryAtIndex (idx); 5158 if (thread_context_file_range) 5159 { 5160 5161 DataExtractor data (m_data, 5162 thread_context_file_range->GetRangeBase(), 5163 thread_context_file_range->GetByteSize()); 5164 5165 switch (m_header.cputype) 5166 { 5167 case llvm::MachO::CPU_TYPE_ARM64: 5168 reg_ctx_sp.reset (new RegisterContextDarwin_arm64_Mach (thread, data)); 5169 break; 5170 5171 case llvm::MachO::CPU_TYPE_ARM: 5172 reg_ctx_sp.reset (new RegisterContextDarwin_arm_Mach (thread, data)); 5173 break; 5174 5175 case llvm::MachO::CPU_TYPE_I386: 5176 reg_ctx_sp.reset (new RegisterContextDarwin_i386_Mach (thread, data)); 5177 break; 5178 5179 case llvm::MachO::CPU_TYPE_X86_64: 5180 reg_ctx_sp.reset (new RegisterContextDarwin_x86_64_Mach (thread, data)); 5181 break; 5182 } 5183 } 5184 } 5185 return reg_ctx_sp; 5186 } 5187 5188 5189 ObjectFile::Type 5190 ObjectFileMachO::CalculateType() 5191 { 5192 switch (m_header.filetype) 5193 { 5194 case MH_OBJECT: // 0x1u 5195 if (GetAddressByteSize () == 4) 5196 { 5197 // 32 bit kexts are just object files, but they do have a valid 5198 // UUID load command. 5199 UUID uuid; 5200 if (GetUUID(&uuid)) 5201 { 5202 // this checking for the UUID load command is not enough 5203 // we could eventually look for the symbol named 5204 // "OSKextGetCurrentIdentifier" as this is required of kexts 5205 if (m_strata == eStrataInvalid) 5206 m_strata = eStrataKernel; 5207 return eTypeSharedLibrary; 5208 } 5209 } 5210 return eTypeObjectFile; 5211 5212 case MH_EXECUTE: return eTypeExecutable; // 0x2u 5213 case MH_FVMLIB: return eTypeSharedLibrary; // 0x3u 5214 case MH_CORE: return eTypeCoreFile; // 0x4u 5215 case MH_PRELOAD: return eTypeSharedLibrary; // 0x5u 5216 case MH_DYLIB: return eTypeSharedLibrary; // 0x6u 5217 case MH_DYLINKER: return eTypeDynamicLinker; // 0x7u 5218 case MH_BUNDLE: return eTypeSharedLibrary; // 0x8u 5219 case MH_DYLIB_STUB: return eTypeStubLibrary; // 0x9u 5220 case MH_DSYM: return eTypeDebugInfo; // 0xAu 5221 case MH_KEXT_BUNDLE: return eTypeSharedLibrary; // 0xBu 5222 default: 5223 break; 5224 } 5225 return eTypeUnknown; 5226 } 5227 5228 ObjectFile::Strata 5229 ObjectFileMachO::CalculateStrata() 5230 { 5231 switch (m_header.filetype) 5232 { 5233 case MH_OBJECT: // 0x1u 5234 { 5235 // 32 bit kexts are just object files, but they do have a valid 5236 // UUID load command. 5237 UUID uuid; 5238 if (GetUUID(&uuid)) 5239 { 5240 // this checking for the UUID load command is not enough 5241 // we could eventually look for the symbol named 5242 // "OSKextGetCurrentIdentifier" as this is required of kexts 5243 if (m_type == eTypeInvalid) 5244 m_type = eTypeSharedLibrary; 5245 5246 return eStrataKernel; 5247 } 5248 } 5249 return eStrataUnknown; 5250 5251 case MH_EXECUTE: // 0x2u 5252 // Check for the MH_DYLDLINK bit in the flags 5253 if (m_header.flags & MH_DYLDLINK) 5254 { 5255 return eStrataUser; 5256 } 5257 else 5258 { 5259 SectionList *section_list = GetSectionList(); 5260 if (section_list) 5261 { 5262 static ConstString g_kld_section_name ("__KLD"); 5263 if (section_list->FindSectionByName(g_kld_section_name)) 5264 return eStrataKernel; 5265 } 5266 } 5267 return eStrataRawImage; 5268 5269 case MH_FVMLIB: return eStrataUser; // 0x3u 5270 case MH_CORE: return eStrataUnknown; // 0x4u 5271 case MH_PRELOAD: return eStrataRawImage; // 0x5u 5272 case MH_DYLIB: return eStrataUser; // 0x6u 5273 case MH_DYLINKER: return eStrataUser; // 0x7u 5274 case MH_BUNDLE: return eStrataUser; // 0x8u 5275 case MH_DYLIB_STUB: return eStrataUser; // 0x9u 5276 case MH_DSYM: return eStrataUnknown; // 0xAu 5277 case MH_KEXT_BUNDLE: return eStrataKernel; // 0xBu 5278 default: 5279 break; 5280 } 5281 return eStrataUnknown; 5282 } 5283 5284 5285 uint32_t 5286 ObjectFileMachO::GetVersion (uint32_t *versions, uint32_t num_versions) 5287 { 5288 ModuleSP module_sp(GetModule()); 5289 if (module_sp) 5290 { 5291 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 5292 struct dylib_command load_cmd; 5293 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5294 uint32_t version_cmd = 0; 5295 uint64_t version = 0; 5296 uint32_t i; 5297 for (i=0; i<m_header.ncmds; ++i) 5298 { 5299 const lldb::offset_t cmd_offset = offset; 5300 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) 5301 break; 5302 5303 if (load_cmd.cmd == LC_ID_DYLIB) 5304 { 5305 if (version_cmd == 0) 5306 { 5307 version_cmd = load_cmd.cmd; 5308 if (m_data.GetU32(&offset, &load_cmd.dylib, 4) == NULL) 5309 break; 5310 version = load_cmd.dylib.current_version; 5311 } 5312 break; // Break for now unless there is another more complete version 5313 // number load command in the future. 5314 } 5315 offset = cmd_offset + load_cmd.cmdsize; 5316 } 5317 5318 if (version_cmd == LC_ID_DYLIB) 5319 { 5320 if (versions != NULL && num_versions > 0) 5321 { 5322 if (num_versions > 0) 5323 versions[0] = (version & 0xFFFF0000ull) >> 16; 5324 if (num_versions > 1) 5325 versions[1] = (version & 0x0000FF00ull) >> 8; 5326 if (num_versions > 2) 5327 versions[2] = (version & 0x000000FFull); 5328 // Fill in an remaining version numbers with invalid values 5329 for (i=3; i<num_versions; ++i) 5330 versions[i] = UINT32_MAX; 5331 } 5332 // The LC_ID_DYLIB load command has a version with 3 version numbers 5333 // in it, so always return 3 5334 return 3; 5335 } 5336 } 5337 return false; 5338 } 5339 5340 bool 5341 ObjectFileMachO::GetArchitecture (ArchSpec &arch) 5342 { 5343 ModuleSP module_sp(GetModule()); 5344 if (module_sp) 5345 { 5346 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 5347 return GetArchitecture (m_header, m_data, MachHeaderSizeFromMagic(m_header.magic), arch); 5348 } 5349 return false; 5350 } 5351 5352 5353 UUID 5354 ObjectFileMachO::GetProcessSharedCacheUUID (Process *process) 5355 { 5356 UUID uuid; 5357 if (process) 5358 { 5359 addr_t all_image_infos = process->GetImageInfoAddress(); 5360 5361 // The address returned by GetImageInfoAddress may be the address of dyld (don't want) 5362 // or it may be the address of the dyld_all_image_infos structure (want). The first four 5363 // bytes will be either the version field (all_image_infos) or a Mach-O file magic constant. 5364 // Version 13 and higher of dyld_all_image_infos is required to get the sharedCacheUUID field. 5365 5366 Error err; 5367 uint32_t version_or_magic = process->ReadUnsignedIntegerFromMemory (all_image_infos, 4, -1, err); 5368 if (version_or_magic != static_cast<uint32_t>(-1) 5369 && version_or_magic != MH_MAGIC 5370 && version_or_magic != MH_CIGAM 5371 && version_or_magic != MH_MAGIC_64 5372 && version_or_magic != MH_CIGAM_64 5373 && version_or_magic >= 13) 5374 { 5375 addr_t sharedCacheUUID_address = LLDB_INVALID_ADDRESS; 5376 int wordsize = process->GetAddressByteSize(); 5377 if (wordsize == 8) 5378 { 5379 sharedCacheUUID_address = all_image_infos + 160; // sharedCacheUUID <mach-o/dyld_images.h> 5380 } 5381 if (wordsize == 4) 5382 { 5383 sharedCacheUUID_address = all_image_infos + 84; // sharedCacheUUID <mach-o/dyld_images.h> 5384 } 5385 if (sharedCacheUUID_address != LLDB_INVALID_ADDRESS) 5386 { 5387 uuid_t shared_cache_uuid; 5388 if (process->ReadMemory (sharedCacheUUID_address, shared_cache_uuid, sizeof (uuid_t), err) == sizeof (uuid_t)) 5389 { 5390 uuid.SetBytes (shared_cache_uuid); 5391 } 5392 } 5393 } 5394 } 5395 return uuid; 5396 } 5397 5398 UUID 5399 ObjectFileMachO::GetLLDBSharedCacheUUID () 5400 { 5401 UUID uuid; 5402 #if defined (__APPLE__) && (defined (__arm__) || defined (__arm64__) || defined (__aarch64__)) 5403 uint8_t *(*dyld_get_all_image_infos)(void); 5404 dyld_get_all_image_infos = (uint8_t*(*)()) dlsym (RTLD_DEFAULT, "_dyld_get_all_image_infos"); 5405 if (dyld_get_all_image_infos) 5406 { 5407 uint8_t *dyld_all_image_infos_address = dyld_get_all_image_infos(); 5408 if (dyld_all_image_infos_address) 5409 { 5410 uint32_t *version = (uint32_t*) dyld_all_image_infos_address; // version <mach-o/dyld_images.h> 5411 if (*version >= 13) 5412 { 5413 uuid_t *sharedCacheUUID_address = 0; 5414 int wordsize = sizeof (uint8_t *); 5415 if (wordsize == 8) 5416 { 5417 sharedCacheUUID_address = (uuid_t*) ((uint8_t*) dyld_all_image_infos_address + 160); // sharedCacheUUID <mach-o/dyld_images.h> 5418 } 5419 else 5420 { 5421 sharedCacheUUID_address = (uuid_t*) ((uint8_t*) dyld_all_image_infos_address + 84); // sharedCacheUUID <mach-o/dyld_images.h> 5422 } 5423 uuid.SetBytes (sharedCacheUUID_address); 5424 } 5425 } 5426 } 5427 #endif 5428 return uuid; 5429 } 5430 5431 uint32_t 5432 ObjectFileMachO::GetMinimumOSVersion (uint32_t *versions, uint32_t num_versions) 5433 { 5434 if (m_min_os_versions.empty()) 5435 { 5436 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5437 bool success = false; 5438 for (uint32_t i=0; success == false && i < m_header.ncmds; ++i) 5439 { 5440 const lldb::offset_t load_cmd_offset = offset; 5441 5442 version_min_command lc; 5443 if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL) 5444 break; 5445 if (lc.cmd == LC_VERSION_MIN_MACOSX || lc.cmd == LC_VERSION_MIN_IPHONEOS) 5446 { 5447 if (m_data.GetU32 (&offset, &lc.version, (sizeof(lc) / sizeof(uint32_t)) - 2)) 5448 { 5449 const uint32_t xxxx = lc.version >> 16; 5450 const uint32_t yy = (lc.version >> 8) & 0xffu; 5451 const uint32_t zz = lc.version & 0xffu; 5452 if (xxxx) 5453 { 5454 m_min_os_versions.push_back(xxxx); 5455 m_min_os_versions.push_back(yy); 5456 m_min_os_versions.push_back(zz); 5457 } 5458 success = true; 5459 } 5460 } 5461 offset = load_cmd_offset + lc.cmdsize; 5462 } 5463 5464 if (success == false) 5465 { 5466 // Push an invalid value so we don't keep trying to 5467 m_min_os_versions.push_back(UINT32_MAX); 5468 } 5469 } 5470 5471 if (m_min_os_versions.size() > 1 || m_min_os_versions[0] != UINT32_MAX) 5472 { 5473 if (versions != NULL && num_versions > 0) 5474 { 5475 for (size_t i=0; i<num_versions; ++i) 5476 { 5477 if (i < m_min_os_versions.size()) 5478 versions[i] = m_min_os_versions[i]; 5479 else 5480 versions[i] = 0; 5481 } 5482 } 5483 return m_min_os_versions.size(); 5484 } 5485 // Call the superclasses version that will empty out the data 5486 return ObjectFile::GetMinimumOSVersion (versions, num_versions); 5487 } 5488 5489 uint32_t 5490 ObjectFileMachO::GetSDKVersion(uint32_t *versions, uint32_t num_versions) 5491 { 5492 if (m_sdk_versions.empty()) 5493 { 5494 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5495 bool success = false; 5496 for (uint32_t i=0; success == false && i < m_header.ncmds; ++i) 5497 { 5498 const lldb::offset_t load_cmd_offset = offset; 5499 5500 version_min_command lc; 5501 if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL) 5502 break; 5503 if (lc.cmd == LC_VERSION_MIN_MACOSX || lc.cmd == LC_VERSION_MIN_IPHONEOS) 5504 { 5505 if (m_data.GetU32 (&offset, &lc.version, (sizeof(lc) / sizeof(uint32_t)) - 2)) 5506 { 5507 const uint32_t xxxx = lc.sdk >> 16; 5508 const uint32_t yy = (lc.sdk >> 8) & 0xffu; 5509 const uint32_t zz = lc.sdk & 0xffu; 5510 if (xxxx) 5511 { 5512 m_sdk_versions.push_back(xxxx); 5513 m_sdk_versions.push_back(yy); 5514 m_sdk_versions.push_back(zz); 5515 } 5516 success = true; 5517 } 5518 } 5519 offset = load_cmd_offset + lc.cmdsize; 5520 } 5521 5522 if (success == false) 5523 { 5524 // Push an invalid value so we don't keep trying to 5525 m_sdk_versions.push_back(UINT32_MAX); 5526 } 5527 } 5528 5529 if (m_sdk_versions.size() > 1 || m_sdk_versions[0] != UINT32_MAX) 5530 { 5531 if (versions != NULL && num_versions > 0) 5532 { 5533 for (size_t i=0; i<num_versions; ++i) 5534 { 5535 if (i < m_sdk_versions.size()) 5536 versions[i] = m_sdk_versions[i]; 5537 else 5538 versions[i] = 0; 5539 } 5540 } 5541 return m_sdk_versions.size(); 5542 } 5543 // Call the superclasses version that will empty out the data 5544 return ObjectFile::GetSDKVersion (versions, num_versions); 5545 } 5546 5547 5548 bool 5549 ObjectFileMachO::GetIsDynamicLinkEditor() 5550 { 5551 return m_header.filetype == llvm::MachO::MH_DYLINKER; 5552 } 5553 5554 //------------------------------------------------------------------ 5555 // PluginInterface protocol 5556 //------------------------------------------------------------------ 5557 lldb_private::ConstString 5558 ObjectFileMachO::GetPluginName() 5559 { 5560 return GetPluginNameStatic(); 5561 } 5562 5563 uint32_t 5564 ObjectFileMachO::GetPluginVersion() 5565 { 5566 return 1; 5567 } 5568 5569 5570 Section * 5571 ObjectFileMachO::GetMachHeaderSection() 5572 { 5573 // Find the first address of the mach header which is the first non-zero 5574 // file sized section whose file offset is zero. This is the base file address 5575 // of the mach-o file which can be subtracted from the vmaddr of the other 5576 // segments found in memory and added to the load address 5577 ModuleSP module_sp = GetModule(); 5578 if (module_sp) 5579 { 5580 SectionList *section_list = GetSectionList (); 5581 if (section_list) 5582 { 5583 lldb::addr_t mach_base_file_addr = LLDB_INVALID_ADDRESS; 5584 const size_t num_sections = section_list->GetSize(); 5585 5586 for (size_t sect_idx = 0; 5587 sect_idx < num_sections && mach_base_file_addr == LLDB_INVALID_ADDRESS; 5588 ++sect_idx) 5589 { 5590 Section *section = section_list->GetSectionAtIndex (sect_idx).get(); 5591 if (section && 5592 section->GetFileSize() > 0 && 5593 section->GetFileOffset() == 0 && 5594 section->IsThreadSpecific() == false && 5595 module_sp.get() == section->GetModule().get()) 5596 { 5597 return section; 5598 } 5599 } 5600 } 5601 } 5602 return nullptr; 5603 } 5604 5605 lldb::addr_t 5606 ObjectFileMachO::CalculateSectionLoadAddressForMemoryImage(lldb::addr_t mach_header_load_address, const Section *mach_header_section, const Section *section) 5607 { 5608 ModuleSP module_sp = GetModule(); 5609 if (module_sp && mach_header_section && section && mach_header_load_address != LLDB_INVALID_ADDRESS) 5610 { 5611 lldb::addr_t mach_header_file_addr = mach_header_section->GetFileAddress(); 5612 if (mach_header_file_addr != LLDB_INVALID_ADDRESS) 5613 { 5614 if (section && 5615 section->GetFileSize() > 0 && 5616 section->IsThreadSpecific() == false && 5617 module_sp.get() == section->GetModule().get()) 5618 { 5619 // Ignore __LINKEDIT and __DWARF segments 5620 if (section->GetName() == GetSegmentNameLINKEDIT()) 5621 { 5622 // Only map __LINKEDIT if we have an in memory image and this isn't 5623 // a kernel binary like a kext or mach_kernel. 5624 const bool is_memory_image = (bool)m_process_wp.lock(); 5625 const Strata strata = GetStrata(); 5626 if (is_memory_image == false || strata == eStrataKernel) 5627 return LLDB_INVALID_ADDRESS; 5628 } 5629 return section->GetFileAddress() - mach_header_file_addr + mach_header_load_address; 5630 } 5631 } 5632 } 5633 return LLDB_INVALID_ADDRESS; 5634 } 5635 5636 bool 5637 ObjectFileMachO::SetLoadAddress (Target &target, 5638 lldb::addr_t value, 5639 bool value_is_offset) 5640 { 5641 ModuleSP module_sp = GetModule(); 5642 if (module_sp) 5643 { 5644 size_t num_loaded_sections = 0; 5645 SectionList *section_list = GetSectionList (); 5646 if (section_list) 5647 { 5648 const size_t num_sections = section_list->GetSize(); 5649 5650 if (value_is_offset) 5651 { 5652 // "value" is an offset to apply to each top level segment 5653 for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) 5654 { 5655 // Iterate through the object file sections to find all 5656 // of the sections that size on disk (to avoid __PAGEZERO) 5657 // and load them 5658 SectionSP section_sp (section_list->GetSectionAtIndex (sect_idx)); 5659 if (section_sp && 5660 section_sp->GetFileSize() > 0 && 5661 section_sp->IsThreadSpecific() == false && 5662 module_sp.get() == section_sp->GetModule().get()) 5663 { 5664 // Ignore __LINKEDIT and __DWARF segments 5665 if (section_sp->GetName() == GetSegmentNameLINKEDIT()) 5666 { 5667 // Only map __LINKEDIT if we have an in memory image and this isn't 5668 // a kernel binary like a kext or mach_kernel. 5669 const bool is_memory_image = (bool)m_process_wp.lock(); 5670 const Strata strata = GetStrata(); 5671 if (is_memory_image == false || strata == eStrataKernel) 5672 continue; 5673 } 5674 if (target.GetSectionLoadList().SetSectionLoadAddress (section_sp, section_sp->GetFileAddress() + value)) 5675 ++num_loaded_sections; 5676 } 5677 } 5678 } 5679 else 5680 { 5681 // "value" is the new base address of the mach_header, adjust each 5682 // section accordingly 5683 5684 Section *mach_header_section = GetMachHeaderSection(); 5685 if (mach_header_section) 5686 { 5687 for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) 5688 { 5689 SectionSP section_sp (section_list->GetSectionAtIndex (sect_idx)); 5690 5691 lldb::addr_t section_load_addr = CalculateSectionLoadAddressForMemoryImage(value, mach_header_section, section_sp.get()); 5692 if (section_load_addr != LLDB_INVALID_ADDRESS) 5693 { 5694 if (target.GetSectionLoadList().SetSectionLoadAddress (section_sp, section_load_addr)) 5695 ++num_loaded_sections; 5696 } 5697 } 5698 } 5699 } 5700 } 5701 return num_loaded_sections > 0; 5702 } 5703 return false; 5704 } 5705 5706 bool 5707 ObjectFileMachO::SaveCore (const lldb::ProcessSP &process_sp, 5708 const FileSpec &outfile, 5709 Error &error) 5710 { 5711 if (process_sp) 5712 { 5713 Target &target = process_sp->GetTarget(); 5714 const ArchSpec target_arch = target.GetArchitecture(); 5715 const llvm::Triple &target_triple = target_arch.GetTriple(); 5716 if (target_triple.getVendor() == llvm::Triple::Apple && 5717 (target_triple.getOS() == llvm::Triple::MacOSX || 5718 target_triple.getOS() == llvm::Triple::IOS)) 5719 { 5720 bool make_core = false; 5721 switch (target_arch.GetMachine()) 5722 { 5723 case llvm::Triple::aarch64: 5724 case llvm::Triple::arm: 5725 case llvm::Triple::thumb: 5726 case llvm::Triple::x86: 5727 case llvm::Triple::x86_64: 5728 make_core = true; 5729 break; 5730 default: 5731 error.SetErrorStringWithFormat ("unsupported core architecture: %s", target_triple.str().c_str()); 5732 break; 5733 } 5734 5735 if (make_core) 5736 { 5737 std::vector<segment_command_64> segment_load_commands; 5738 // uint32_t range_info_idx = 0; 5739 MemoryRegionInfo range_info; 5740 Error range_error = process_sp->GetMemoryRegionInfo(0, range_info); 5741 const uint32_t addr_byte_size = target_arch.GetAddressByteSize(); 5742 const ByteOrder byte_order = target_arch.GetByteOrder(); 5743 if (range_error.Success()) 5744 { 5745 while (range_info.GetRange().GetRangeBase() != LLDB_INVALID_ADDRESS) 5746 { 5747 const addr_t addr = range_info.GetRange().GetRangeBase(); 5748 const addr_t size = range_info.GetRange().GetByteSize(); 5749 5750 if (size == 0) 5751 break; 5752 5753 // Calculate correct protections 5754 uint32_t prot = 0; 5755 if (range_info.GetReadable() == MemoryRegionInfo::eYes) 5756 prot |= VM_PROT_READ; 5757 if (range_info.GetWritable() == MemoryRegionInfo::eYes) 5758 prot |= VM_PROT_WRITE; 5759 if (range_info.GetExecutable() == MemoryRegionInfo::eYes) 5760 prot |= VM_PROT_EXECUTE; 5761 5762 // printf ("[%3u] [0x%16.16" PRIx64 " - 0x%16.16" PRIx64 ") %c%c%c\n", 5763 // range_info_idx, 5764 // addr, 5765 // size, 5766 // (prot & VM_PROT_READ ) ? 'r' : '-', 5767 // (prot & VM_PROT_WRITE ) ? 'w' : '-', 5768 // (prot & VM_PROT_EXECUTE) ? 'x' : '-'); 5769 5770 if (prot != 0) 5771 { 5772 uint32_t cmd_type = LC_SEGMENT_64; 5773 uint32_t segment_size = sizeof (segment_command_64); 5774 if (addr_byte_size == 4) 5775 { 5776 cmd_type = LC_SEGMENT; 5777 segment_size = sizeof (segment_command); 5778 } 5779 segment_command_64 segment = { 5780 cmd_type, // uint32_t cmd; 5781 segment_size, // uint32_t cmdsize; 5782 {0}, // char segname[16]; 5783 addr, // uint64_t vmaddr; // uint32_t for 32-bit Mach-O 5784 size, // uint64_t vmsize; // uint32_t for 32-bit Mach-O 5785 0, // uint64_t fileoff; // uint32_t for 32-bit Mach-O 5786 size, // uint64_t filesize; // uint32_t for 32-bit Mach-O 5787 prot, // uint32_t maxprot; 5788 prot, // uint32_t initprot; 5789 0, // uint32_t nsects; 5790 0 }; // uint32_t flags; 5791 segment_load_commands.push_back(segment); 5792 } 5793 else 5794 { 5795 // No protections and a size of 1 used to be returned from old 5796 // debugservers when we asked about a region that was past the 5797 // last memory region and it indicates the end... 5798 if (size == 1) 5799 break; 5800 } 5801 5802 range_error = process_sp->GetMemoryRegionInfo(range_info.GetRange().GetRangeEnd(), range_info); 5803 if (range_error.Fail()) 5804 break; 5805 } 5806 5807 StreamString buffer (Stream::eBinary, 5808 addr_byte_size, 5809 byte_order); 5810 5811 mach_header_64 mach_header; 5812 if (addr_byte_size == 8) 5813 { 5814 mach_header.magic = MH_MAGIC_64; 5815 } 5816 else 5817 { 5818 mach_header.magic = MH_MAGIC; 5819 } 5820 mach_header.cputype = target_arch.GetMachOCPUType(); 5821 mach_header.cpusubtype = target_arch.GetMachOCPUSubType(); 5822 mach_header.filetype = MH_CORE; 5823 mach_header.ncmds = segment_load_commands.size(); 5824 mach_header.flags = 0; 5825 mach_header.reserved = 0; 5826 ThreadList &thread_list = process_sp->GetThreadList(); 5827 const uint32_t num_threads = thread_list.GetSize(); 5828 5829 // Make an array of LC_THREAD data items. Each one contains 5830 // the contents of the LC_THREAD load command. The data doesn't 5831 // contain the load command + load command size, we will 5832 // add the load command and load command size as we emit the data. 5833 std::vector<StreamString> LC_THREAD_datas(num_threads); 5834 for (auto &LC_THREAD_data : LC_THREAD_datas) 5835 { 5836 LC_THREAD_data.GetFlags().Set(Stream::eBinary); 5837 LC_THREAD_data.SetAddressByteSize(addr_byte_size); 5838 LC_THREAD_data.SetByteOrder(byte_order); 5839 } 5840 for (uint32_t thread_idx = 0; thread_idx < num_threads; ++thread_idx) 5841 { 5842 ThreadSP thread_sp (thread_list.GetThreadAtIndex(thread_idx)); 5843 if (thread_sp) 5844 { 5845 switch (mach_header.cputype) 5846 { 5847 case llvm::MachO::CPU_TYPE_ARM64: 5848 RegisterContextDarwin_arm64_Mach::Create_LC_THREAD (thread_sp.get(), LC_THREAD_datas[thread_idx]); 5849 break; 5850 5851 case llvm::MachO::CPU_TYPE_ARM: 5852 RegisterContextDarwin_arm_Mach::Create_LC_THREAD (thread_sp.get(), LC_THREAD_datas[thread_idx]); 5853 break; 5854 5855 case llvm::MachO::CPU_TYPE_I386: 5856 RegisterContextDarwin_i386_Mach::Create_LC_THREAD (thread_sp.get(), LC_THREAD_datas[thread_idx]); 5857 break; 5858 5859 case llvm::MachO::CPU_TYPE_X86_64: 5860 RegisterContextDarwin_x86_64_Mach::Create_LC_THREAD (thread_sp.get(), LC_THREAD_datas[thread_idx]); 5861 break; 5862 } 5863 5864 } 5865 } 5866 5867 // The size of the load command is the size of the segments... 5868 if (addr_byte_size == 8) 5869 { 5870 mach_header.sizeofcmds = segment_load_commands.size() * sizeof (struct segment_command_64); 5871 } 5872 else 5873 { 5874 mach_header.sizeofcmds = segment_load_commands.size() * sizeof (struct segment_command); 5875 } 5876 5877 // and the size of all LC_THREAD load command 5878 for (const auto &LC_THREAD_data : LC_THREAD_datas) 5879 { 5880 ++mach_header.ncmds; 5881 mach_header.sizeofcmds += 8 + LC_THREAD_data.GetSize(); 5882 } 5883 5884 printf ("mach_header: 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x\n", 5885 mach_header.magic, 5886 mach_header.cputype, 5887 mach_header.cpusubtype, 5888 mach_header.filetype, 5889 mach_header.ncmds, 5890 mach_header.sizeofcmds, 5891 mach_header.flags, 5892 mach_header.reserved); 5893 5894 // Write the mach header 5895 buffer.PutHex32(mach_header.magic); 5896 buffer.PutHex32(mach_header.cputype); 5897 buffer.PutHex32(mach_header.cpusubtype); 5898 buffer.PutHex32(mach_header.filetype); 5899 buffer.PutHex32(mach_header.ncmds); 5900 buffer.PutHex32(mach_header.sizeofcmds); 5901 buffer.PutHex32(mach_header.flags); 5902 if (addr_byte_size == 8) 5903 { 5904 buffer.PutHex32(mach_header.reserved); 5905 } 5906 5907 // Skip the mach header and all load commands and align to the next 5908 // 0x1000 byte boundary 5909 addr_t file_offset = buffer.GetSize() + mach_header.sizeofcmds; 5910 if (file_offset & 0x00000fff) 5911 { 5912 file_offset += 0x00001000ull; 5913 file_offset &= (~0x00001000ull + 1); 5914 } 5915 5916 for (auto &segment : segment_load_commands) 5917 { 5918 segment.fileoff = file_offset; 5919 file_offset += segment.filesize; 5920 } 5921 5922 // Write out all of the LC_THREAD load commands 5923 for (const auto &LC_THREAD_data : LC_THREAD_datas) 5924 { 5925 const size_t LC_THREAD_data_size = LC_THREAD_data.GetSize(); 5926 buffer.PutHex32(LC_THREAD); 5927 buffer.PutHex32(8 + LC_THREAD_data_size); // cmd + cmdsize + data 5928 buffer.Write(LC_THREAD_data.GetData(), LC_THREAD_data_size); 5929 } 5930 5931 // Write out all of the segment load commands 5932 for (const auto &segment : segment_load_commands) 5933 { 5934 printf ("0x%8.8x 0x%8.8x [0x%16.16" PRIx64 " - 0x%16.16" PRIx64 ") [0x%16.16" PRIx64 " 0x%16.16" PRIx64 ") 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x]\n", 5935 segment.cmd, 5936 segment.cmdsize, 5937 segment.vmaddr, 5938 segment.vmaddr + segment.vmsize, 5939 segment.fileoff, 5940 segment.filesize, 5941 segment.maxprot, 5942 segment.initprot, 5943 segment.nsects, 5944 segment.flags); 5945 5946 buffer.PutHex32(segment.cmd); 5947 buffer.PutHex32(segment.cmdsize); 5948 buffer.PutRawBytes(segment.segname, sizeof(segment.segname)); 5949 if (addr_byte_size == 8) 5950 { 5951 buffer.PutHex64(segment.vmaddr); 5952 buffer.PutHex64(segment.vmsize); 5953 buffer.PutHex64(segment.fileoff); 5954 buffer.PutHex64(segment.filesize); 5955 } 5956 else 5957 { 5958 buffer.PutHex32(static_cast<uint32_t>(segment.vmaddr)); 5959 buffer.PutHex32(static_cast<uint32_t>(segment.vmsize)); 5960 buffer.PutHex32(static_cast<uint32_t>(segment.fileoff)); 5961 buffer.PutHex32(static_cast<uint32_t>(segment.filesize)); 5962 } 5963 buffer.PutHex32(segment.maxprot); 5964 buffer.PutHex32(segment.initprot); 5965 buffer.PutHex32(segment.nsects); 5966 buffer.PutHex32(segment.flags); 5967 } 5968 5969 File core_file; 5970 std::string core_file_path(outfile.GetPath()); 5971 error = core_file.Open(core_file_path.c_str(), 5972 File::eOpenOptionWrite | 5973 File::eOpenOptionTruncate | 5974 File::eOpenOptionCanCreate); 5975 if (error.Success()) 5976 { 5977 // Read 1 page at a time 5978 uint8_t bytes[0x1000]; 5979 // Write the mach header and load commands out to the core file 5980 size_t bytes_written = buffer.GetString().size(); 5981 error = core_file.Write(buffer.GetString().data(), bytes_written); 5982 if (error.Success()) 5983 { 5984 // Now write the file data for all memory segments in the process 5985 for (const auto &segment : segment_load_commands) 5986 { 5987 if (core_file.SeekFromStart(segment.fileoff) == -1) 5988 { 5989 error.SetErrorStringWithFormat("unable to seek to offset 0x%" PRIx64 " in '%s'", segment.fileoff, core_file_path.c_str()); 5990 break; 5991 } 5992 5993 printf ("Saving %" PRId64 " bytes of data for memory region at 0x%" PRIx64 "\n", segment.vmsize, segment.vmaddr); 5994 addr_t bytes_left = segment.vmsize; 5995 addr_t addr = segment.vmaddr; 5996 Error memory_read_error; 5997 while (bytes_left > 0 && error.Success()) 5998 { 5999 const size_t bytes_to_read = bytes_left > sizeof(bytes) ? sizeof(bytes) : bytes_left; 6000 const size_t bytes_read = process_sp->ReadMemory(addr, bytes, bytes_to_read, memory_read_error); 6001 if (bytes_read == bytes_to_read) 6002 { 6003 size_t bytes_written = bytes_read; 6004 error = core_file.Write(bytes, bytes_written); 6005 bytes_left -= bytes_read; 6006 addr += bytes_read; 6007 } 6008 else 6009 { 6010 // Some pages within regions are not readable, those 6011 // should be zero filled 6012 memset (bytes, 0, bytes_to_read); 6013 size_t bytes_written = bytes_to_read; 6014 error = core_file.Write(bytes, bytes_written); 6015 bytes_left -= bytes_to_read; 6016 addr += bytes_to_read; 6017 } 6018 } 6019 } 6020 } 6021 } 6022 } 6023 else 6024 { 6025 error.SetErrorString("process doesn't support getting memory region info"); 6026 } 6027 } 6028 return true; // This is the right plug to handle saving core files for this process 6029 } 6030 } 6031 return false; 6032 } 6033 6034