1 //===-- ObjectFileMachO.cpp -------------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 // C Includes
11 // C++ Includes
12 // Other libraries and framework includes
13 #include "llvm/ADT/StringRef.h"
14 
15 // Project includes
16 #include "Plugins/Process/Utility/RegisterContextDarwin_arm.h"
17 #include "Plugins/Process/Utility/RegisterContextDarwin_arm64.h"
18 #include "Plugins/Process/Utility/RegisterContextDarwin_i386.h"
19 #include "Plugins/Process/Utility/RegisterContextDarwin_x86_64.h"
20 #include "lldb/Core/Debugger.h"
21 #include "lldb/Core/FileSpecList.h"
22 #include "lldb/Core/Module.h"
23 #include "lldb/Core/ModuleSpec.h"
24 #include "lldb/Core/PluginManager.h"
25 #include "lldb/Core/RangeMap.h"
26 #include "lldb/Core/RegisterValue.h"
27 #include "lldb/Core/Section.h"
28 #include "lldb/Core/StreamFile.h"
29 #include "lldb/Host/Host.h"
30 #include "lldb/Symbol/DWARFCallFrameInfo.h"
31 #include "lldb/Symbol/ObjectFile.h"
32 #include "lldb/Target/DynamicLoader.h"
33 #include "lldb/Target/MemoryRegionInfo.h"
34 #include "lldb/Target/Platform.h"
35 #include "lldb/Target/Process.h"
36 #include "lldb/Target/SectionLoadList.h"
37 #include "lldb/Target/Target.h"
38 #include "lldb/Target/Thread.h"
39 #include "lldb/Target/ThreadList.h"
40 #include "lldb/Utility/ArchSpec.h"
41 #include "lldb/Utility/DataBufferLLVM.h"
42 #include "lldb/Utility/FileSpec.h"
43 #include "lldb/Utility/Log.h"
44 #include "lldb/Utility/Status.h"
45 #include "lldb/Utility/StreamString.h"
46 #include "lldb/Utility/Timer.h"
47 #include "lldb/Utility/UUID.h"
48 
49 #include "lldb/Utility/SafeMachO.h"
50 
51 #include "llvm/Support/MemoryBuffer.h"
52 
53 #include "ObjectFileMachO.h"
54 
55 #if defined(__APPLE__) &&                                                      \
56     (defined(__arm__) || defined(__arm64__) || defined(__aarch64__))
57 // GetLLDBSharedCacheUUID() needs to call dlsym()
58 #include <dlfcn.h>
59 #endif
60 
61 #ifndef __APPLE__
62 #include "Utility/UuidCompatibility.h"
63 #else
64 #include <uuid/uuid.h>
65 #endif
66 
67 #define THUMB_ADDRESS_BIT_MASK 0xfffffffffffffffeull
68 using namespace lldb;
69 using namespace lldb_private;
70 using namespace llvm::MachO;
71 
72 // Some structure definitions needed for parsing the dyld shared cache files
73 // found on iOS devices.
74 
75 struct lldb_copy_dyld_cache_header_v1 {
76   char magic[16];         // e.g. "dyld_v0    i386", "dyld_v1   armv7", etc.
77   uint32_t mappingOffset; // file offset to first dyld_cache_mapping_info
78   uint32_t mappingCount;  // number of dyld_cache_mapping_info entries
79   uint32_t imagesOffset;
80   uint32_t imagesCount;
81   uint64_t dyldBaseAddress;
82   uint64_t codeSignatureOffset;
83   uint64_t codeSignatureSize;
84   uint64_t slideInfoOffset;
85   uint64_t slideInfoSize;
86   uint64_t localSymbolsOffset;
87   uint64_t localSymbolsSize;
88   uint8_t uuid[16]; // v1 and above, also recorded in dyld_all_image_infos v13
89                     // and later
90 };
91 
92 struct lldb_copy_dyld_cache_mapping_info {
93   uint64_t address;
94   uint64_t size;
95   uint64_t fileOffset;
96   uint32_t maxProt;
97   uint32_t initProt;
98 };
99 
100 struct lldb_copy_dyld_cache_local_symbols_info {
101   uint32_t nlistOffset;
102   uint32_t nlistCount;
103   uint32_t stringsOffset;
104   uint32_t stringsSize;
105   uint32_t entriesOffset;
106   uint32_t entriesCount;
107 };
108 struct lldb_copy_dyld_cache_local_symbols_entry {
109   uint32_t dylibOffset;
110   uint32_t nlistStartIndex;
111   uint32_t nlistCount;
112 };
113 
114 class RegisterContextDarwin_x86_64_Mach : public RegisterContextDarwin_x86_64 {
115 public:
116   RegisterContextDarwin_x86_64_Mach(lldb_private::Thread &thread,
117                                     const DataExtractor &data)
118       : RegisterContextDarwin_x86_64(thread, 0) {
119     SetRegisterDataFrom_LC_THREAD(data);
120   }
121 
122   void InvalidateAllRegisters() override {
123     // Do nothing... registers are always valid...
124   }
125 
126   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
127     lldb::offset_t offset = 0;
128     SetError(GPRRegSet, Read, -1);
129     SetError(FPURegSet, Read, -1);
130     SetError(EXCRegSet, Read, -1);
131     bool done = false;
132 
133     while (!done) {
134       int flavor = data.GetU32(&offset);
135       if (flavor == 0)
136         done = true;
137       else {
138         uint32_t i;
139         uint32_t count = data.GetU32(&offset);
140         switch (flavor) {
141         case GPRRegSet:
142           for (i = 0; i < count; ++i)
143             (&gpr.rax)[i] = data.GetU64(&offset);
144           SetError(GPRRegSet, Read, 0);
145           done = true;
146 
147           break;
148         case FPURegSet:
149           // TODO: fill in FPU regs....
150           // SetError (FPURegSet, Read, -1);
151           done = true;
152 
153           break;
154         case EXCRegSet:
155           exc.trapno = data.GetU32(&offset);
156           exc.err = data.GetU32(&offset);
157           exc.faultvaddr = data.GetU64(&offset);
158           SetError(EXCRegSet, Read, 0);
159           done = true;
160           break;
161         case 7:
162         case 8:
163         case 9:
164           // fancy flavors that encapsulate of the above
165           // flavors...
166           break;
167 
168         default:
169           done = true;
170           break;
171         }
172       }
173     }
174   }
175 
176   static size_t WriteRegister(RegisterContext *reg_ctx, const char *name,
177                               const char *alt_name, size_t reg_byte_size,
178                               Stream &data) {
179     const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
180     if (reg_info == NULL)
181       reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
182     if (reg_info) {
183       lldb_private::RegisterValue reg_value;
184       if (reg_ctx->ReadRegister(reg_info, reg_value)) {
185         if (reg_info->byte_size >= reg_byte_size)
186           data.Write(reg_value.GetBytes(), reg_byte_size);
187         else {
188           data.Write(reg_value.GetBytes(), reg_info->byte_size);
189           for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n;
190                ++i)
191             data.PutChar(0);
192         }
193         return reg_byte_size;
194       }
195     }
196     // Just write zeros if all else fails
197     for (size_t i = 0; i < reg_byte_size; ++i)
198       data.PutChar(0);
199     return reg_byte_size;
200   }
201 
202   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
203     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
204     if (reg_ctx_sp) {
205       RegisterContext *reg_ctx = reg_ctx_sp.get();
206 
207       data.PutHex32(GPRRegSet); // Flavor
208       data.PutHex32(GPRWordCount);
209       WriteRegister(reg_ctx, "rax", NULL, 8, data);
210       WriteRegister(reg_ctx, "rbx", NULL, 8, data);
211       WriteRegister(reg_ctx, "rcx", NULL, 8, data);
212       WriteRegister(reg_ctx, "rdx", NULL, 8, data);
213       WriteRegister(reg_ctx, "rdi", NULL, 8, data);
214       WriteRegister(reg_ctx, "rsi", NULL, 8, data);
215       WriteRegister(reg_ctx, "rbp", NULL, 8, data);
216       WriteRegister(reg_ctx, "rsp", NULL, 8, data);
217       WriteRegister(reg_ctx, "r8", NULL, 8, data);
218       WriteRegister(reg_ctx, "r9", NULL, 8, data);
219       WriteRegister(reg_ctx, "r10", NULL, 8, data);
220       WriteRegister(reg_ctx, "r11", NULL, 8, data);
221       WriteRegister(reg_ctx, "r12", NULL, 8, data);
222       WriteRegister(reg_ctx, "r13", NULL, 8, data);
223       WriteRegister(reg_ctx, "r14", NULL, 8, data);
224       WriteRegister(reg_ctx, "r15", NULL, 8, data);
225       WriteRegister(reg_ctx, "rip", NULL, 8, data);
226       WriteRegister(reg_ctx, "rflags", NULL, 8, data);
227       WriteRegister(reg_ctx, "cs", NULL, 8, data);
228       WriteRegister(reg_ctx, "fs", NULL, 8, data);
229       WriteRegister(reg_ctx, "gs", NULL, 8, data);
230 
231       //            // Write out the FPU registers
232       //            const size_t fpu_byte_size = sizeof(FPU);
233       //            size_t bytes_written = 0;
234       //            data.PutHex32 (FPURegSet);
235       //            data.PutHex32 (fpu_byte_size/sizeof(uint64_t));
236       //            bytes_written += data.PutHex32(0); // uint32_t pad[0]
237       //            bytes_written += data.PutHex32(0); // uint32_t pad[1]
238       //            bytes_written += WriteRegister (reg_ctx, "fcw", "fctrl", 2,
239       //            data);   // uint16_t    fcw;    // "fctrl"
240       //            bytes_written += WriteRegister (reg_ctx, "fsw" , "fstat", 2,
241       //            data);  // uint16_t    fsw;    // "fstat"
242       //            bytes_written += WriteRegister (reg_ctx, "ftw" , "ftag", 1,
243       //            data);   // uint8_t     ftw;    // "ftag"
244       //            bytes_written += data.PutHex8  (0); // uint8_t pad1;
245       //            bytes_written += WriteRegister (reg_ctx, "fop" , NULL, 2,
246       //            data);     // uint16_t    fop;    // "fop"
247       //            bytes_written += WriteRegister (reg_ctx, "fioff", "ip", 4,
248       //            data);    // uint32_t    ip;     // "fioff"
249       //            bytes_written += WriteRegister (reg_ctx, "fiseg", NULL, 2,
250       //            data);    // uint16_t    cs;     // "fiseg"
251       //            bytes_written += data.PutHex16 (0); // uint16_t    pad2;
252       //            bytes_written += WriteRegister (reg_ctx, "dp", "fooff" , 4,
253       //            data);   // uint32_t    dp;     // "fooff"
254       //            bytes_written += WriteRegister (reg_ctx, "foseg", NULL, 2,
255       //            data);    // uint16_t    ds;     // "foseg"
256       //            bytes_written += data.PutHex16 (0); // uint16_t    pad3;
257       //            bytes_written += WriteRegister (reg_ctx, "mxcsr", NULL, 4,
258       //            data);    // uint32_t    mxcsr;
259       //            bytes_written += WriteRegister (reg_ctx, "mxcsrmask", NULL,
260       //            4, data);// uint32_t    mxcsrmask;
261       //            bytes_written += WriteRegister (reg_ctx, "stmm0", NULL,
262       //            sizeof(MMSReg), data);
263       //            bytes_written += WriteRegister (reg_ctx, "stmm1", NULL,
264       //            sizeof(MMSReg), data);
265       //            bytes_written += WriteRegister (reg_ctx, "stmm2", NULL,
266       //            sizeof(MMSReg), data);
267       //            bytes_written += WriteRegister (reg_ctx, "stmm3", NULL,
268       //            sizeof(MMSReg), data);
269       //            bytes_written += WriteRegister (reg_ctx, "stmm4", NULL,
270       //            sizeof(MMSReg), data);
271       //            bytes_written += WriteRegister (reg_ctx, "stmm5", NULL,
272       //            sizeof(MMSReg), data);
273       //            bytes_written += WriteRegister (reg_ctx, "stmm6", NULL,
274       //            sizeof(MMSReg), data);
275       //            bytes_written += WriteRegister (reg_ctx, "stmm7", NULL,
276       //            sizeof(MMSReg), data);
277       //            bytes_written += WriteRegister (reg_ctx, "xmm0" , NULL,
278       //            sizeof(XMMReg), data);
279       //            bytes_written += WriteRegister (reg_ctx, "xmm1" , NULL,
280       //            sizeof(XMMReg), data);
281       //            bytes_written += WriteRegister (reg_ctx, "xmm2" , NULL,
282       //            sizeof(XMMReg), data);
283       //            bytes_written += WriteRegister (reg_ctx, "xmm3" , NULL,
284       //            sizeof(XMMReg), data);
285       //            bytes_written += WriteRegister (reg_ctx, "xmm4" , NULL,
286       //            sizeof(XMMReg), data);
287       //            bytes_written += WriteRegister (reg_ctx, "xmm5" , NULL,
288       //            sizeof(XMMReg), data);
289       //            bytes_written += WriteRegister (reg_ctx, "xmm6" , NULL,
290       //            sizeof(XMMReg), data);
291       //            bytes_written += WriteRegister (reg_ctx, "xmm7" , NULL,
292       //            sizeof(XMMReg), data);
293       //            bytes_written += WriteRegister (reg_ctx, "xmm8" , NULL,
294       //            sizeof(XMMReg), data);
295       //            bytes_written += WriteRegister (reg_ctx, "xmm9" , NULL,
296       //            sizeof(XMMReg), data);
297       //            bytes_written += WriteRegister (reg_ctx, "xmm10", NULL,
298       //            sizeof(XMMReg), data);
299       //            bytes_written += WriteRegister (reg_ctx, "xmm11", NULL,
300       //            sizeof(XMMReg), data);
301       //            bytes_written += WriteRegister (reg_ctx, "xmm12", NULL,
302       //            sizeof(XMMReg), data);
303       //            bytes_written += WriteRegister (reg_ctx, "xmm13", NULL,
304       //            sizeof(XMMReg), data);
305       //            bytes_written += WriteRegister (reg_ctx, "xmm14", NULL,
306       //            sizeof(XMMReg), data);
307       //            bytes_written += WriteRegister (reg_ctx, "xmm15", NULL,
308       //            sizeof(XMMReg), data);
309       //
310       //            // Fill rest with zeros
311       //            for (size_t i=0, n = fpu_byte_size - bytes_written; i<n; ++
312       //            i)
313       //                data.PutChar(0);
314 
315       // Write out the EXC registers
316       data.PutHex32(EXCRegSet);
317       data.PutHex32(EXCWordCount);
318       WriteRegister(reg_ctx, "trapno", NULL, 4, data);
319       WriteRegister(reg_ctx, "err", NULL, 4, data);
320       WriteRegister(reg_ctx, "faultvaddr", NULL, 8, data);
321       return true;
322     }
323     return false;
324   }
325 
326 protected:
327   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
328 
329   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
330 
331   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
332 
333   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
334     return 0;
335   }
336 
337   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
338     return 0;
339   }
340 
341   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
342     return 0;
343   }
344 };
345 
346 class RegisterContextDarwin_i386_Mach : public RegisterContextDarwin_i386 {
347 public:
348   RegisterContextDarwin_i386_Mach(lldb_private::Thread &thread,
349                                   const DataExtractor &data)
350       : RegisterContextDarwin_i386(thread, 0) {
351     SetRegisterDataFrom_LC_THREAD(data);
352   }
353 
354   void InvalidateAllRegisters() override {
355     // Do nothing... registers are always valid...
356   }
357 
358   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
359     lldb::offset_t offset = 0;
360     SetError(GPRRegSet, Read, -1);
361     SetError(FPURegSet, Read, -1);
362     SetError(EXCRegSet, Read, -1);
363     bool done = false;
364 
365     while (!done) {
366       int flavor = data.GetU32(&offset);
367       if (flavor == 0)
368         done = true;
369       else {
370         uint32_t i;
371         uint32_t count = data.GetU32(&offset);
372         switch (flavor) {
373         case GPRRegSet:
374           for (i = 0; i < count; ++i)
375             (&gpr.eax)[i] = data.GetU32(&offset);
376           SetError(GPRRegSet, Read, 0);
377           done = true;
378 
379           break;
380         case FPURegSet:
381           // TODO: fill in FPU regs....
382           // SetError (FPURegSet, Read, -1);
383           done = true;
384 
385           break;
386         case EXCRegSet:
387           exc.trapno = data.GetU32(&offset);
388           exc.err = data.GetU32(&offset);
389           exc.faultvaddr = data.GetU32(&offset);
390           SetError(EXCRegSet, Read, 0);
391           done = true;
392           break;
393         case 7:
394         case 8:
395         case 9:
396           // fancy flavors that encapsulate of the above
397           // flavors...
398           break;
399 
400         default:
401           done = true;
402           break;
403         }
404       }
405     }
406   }
407 
408   static size_t WriteRegister(RegisterContext *reg_ctx, const char *name,
409                               const char *alt_name, size_t reg_byte_size,
410                               Stream &data) {
411     const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
412     if (reg_info == NULL)
413       reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
414     if (reg_info) {
415       lldb_private::RegisterValue reg_value;
416       if (reg_ctx->ReadRegister(reg_info, reg_value)) {
417         if (reg_info->byte_size >= reg_byte_size)
418           data.Write(reg_value.GetBytes(), reg_byte_size);
419         else {
420           data.Write(reg_value.GetBytes(), reg_info->byte_size);
421           for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n;
422                ++i)
423             data.PutChar(0);
424         }
425         return reg_byte_size;
426       }
427     }
428     // Just write zeros if all else fails
429     for (size_t i = 0; i < reg_byte_size; ++i)
430       data.PutChar(0);
431     return reg_byte_size;
432   }
433 
434   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
435     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
436     if (reg_ctx_sp) {
437       RegisterContext *reg_ctx = reg_ctx_sp.get();
438 
439       data.PutHex32(GPRRegSet); // Flavor
440       data.PutHex32(GPRWordCount);
441       WriteRegister(reg_ctx, "eax", NULL, 4, data);
442       WriteRegister(reg_ctx, "ebx", NULL, 4, data);
443       WriteRegister(reg_ctx, "ecx", NULL, 4, data);
444       WriteRegister(reg_ctx, "edx", NULL, 4, data);
445       WriteRegister(reg_ctx, "edi", NULL, 4, data);
446       WriteRegister(reg_ctx, "esi", NULL, 4, data);
447       WriteRegister(reg_ctx, "ebp", NULL, 4, data);
448       WriteRegister(reg_ctx, "esp", NULL, 4, data);
449       WriteRegister(reg_ctx, "ss", NULL, 4, data);
450       WriteRegister(reg_ctx, "eflags", NULL, 4, data);
451       WriteRegister(reg_ctx, "eip", NULL, 4, data);
452       WriteRegister(reg_ctx, "cs", NULL, 4, data);
453       WriteRegister(reg_ctx, "ds", NULL, 4, data);
454       WriteRegister(reg_ctx, "es", NULL, 4, data);
455       WriteRegister(reg_ctx, "fs", NULL, 4, data);
456       WriteRegister(reg_ctx, "gs", NULL, 4, data);
457 
458       // Write out the EXC registers
459       data.PutHex32(EXCRegSet);
460       data.PutHex32(EXCWordCount);
461       WriteRegister(reg_ctx, "trapno", NULL, 4, data);
462       WriteRegister(reg_ctx, "err", NULL, 4, data);
463       WriteRegister(reg_ctx, "faultvaddr", NULL, 4, data);
464       return true;
465     }
466     return false;
467   }
468 
469 protected:
470   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
471 
472   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
473 
474   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
475 
476   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
477     return 0;
478   }
479 
480   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
481     return 0;
482   }
483 
484   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
485     return 0;
486   }
487 };
488 
489 class RegisterContextDarwin_arm_Mach : public RegisterContextDarwin_arm {
490 public:
491   RegisterContextDarwin_arm_Mach(lldb_private::Thread &thread,
492                                  const DataExtractor &data)
493       : RegisterContextDarwin_arm(thread, 0) {
494     SetRegisterDataFrom_LC_THREAD(data);
495   }
496 
497   void InvalidateAllRegisters() override {
498     // Do nothing... registers are always valid...
499   }
500 
501   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
502     lldb::offset_t offset = 0;
503     SetError(GPRRegSet, Read, -1);
504     SetError(FPURegSet, Read, -1);
505     SetError(EXCRegSet, Read, -1);
506     bool done = false;
507 
508     while (!done) {
509       int flavor = data.GetU32(&offset);
510       uint32_t count = data.GetU32(&offset);
511       lldb::offset_t next_thread_state = offset + (count * 4);
512       switch (flavor) {
513       case GPRAltRegSet:
514       case GPRRegSet:
515         for (uint32_t i = 0; i < count; ++i) {
516           gpr.r[i] = data.GetU32(&offset);
517         }
518 
519         // Note that gpr.cpsr is also copied by the above loop; this loop
520         // technically extends
521         // one element past the end of the gpr.r[] array.
522 
523         SetError(GPRRegSet, Read, 0);
524         offset = next_thread_state;
525         break;
526 
527       case FPURegSet: {
528         uint8_t *fpu_reg_buf = (uint8_t *)&fpu.floats.s[0];
529         const int fpu_reg_buf_size = sizeof(fpu.floats);
530         if (data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
531                               fpu_reg_buf) == fpu_reg_buf_size) {
532           offset += fpu_reg_buf_size;
533           fpu.fpscr = data.GetU32(&offset);
534           SetError(FPURegSet, Read, 0);
535         } else {
536           done = true;
537         }
538       }
539         offset = next_thread_state;
540         break;
541 
542       case EXCRegSet:
543         if (count == 3) {
544           exc.exception = data.GetU32(&offset);
545           exc.fsr = data.GetU32(&offset);
546           exc.far = data.GetU32(&offset);
547           SetError(EXCRegSet, Read, 0);
548         }
549         done = true;
550         offset = next_thread_state;
551         break;
552 
553       // Unknown register set flavor, stop trying to parse.
554       default:
555         done = true;
556       }
557     }
558   }
559 
560   static size_t WriteRegister(RegisterContext *reg_ctx, const char *name,
561                               const char *alt_name, size_t reg_byte_size,
562                               Stream &data) {
563     const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
564     if (reg_info == NULL)
565       reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
566     if (reg_info) {
567       lldb_private::RegisterValue reg_value;
568       if (reg_ctx->ReadRegister(reg_info, reg_value)) {
569         if (reg_info->byte_size >= reg_byte_size)
570           data.Write(reg_value.GetBytes(), reg_byte_size);
571         else {
572           data.Write(reg_value.GetBytes(), reg_info->byte_size);
573           for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n;
574                ++i)
575             data.PutChar(0);
576         }
577         return reg_byte_size;
578       }
579     }
580     // Just write zeros if all else fails
581     for (size_t i = 0; i < reg_byte_size; ++i)
582       data.PutChar(0);
583     return reg_byte_size;
584   }
585 
586   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
587     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
588     if (reg_ctx_sp) {
589       RegisterContext *reg_ctx = reg_ctx_sp.get();
590 
591       data.PutHex32(GPRRegSet); // Flavor
592       data.PutHex32(GPRWordCount);
593       WriteRegister(reg_ctx, "r0", NULL, 4, data);
594       WriteRegister(reg_ctx, "r1", NULL, 4, data);
595       WriteRegister(reg_ctx, "r2", NULL, 4, data);
596       WriteRegister(reg_ctx, "r3", NULL, 4, data);
597       WriteRegister(reg_ctx, "r4", NULL, 4, data);
598       WriteRegister(reg_ctx, "r5", NULL, 4, data);
599       WriteRegister(reg_ctx, "r6", NULL, 4, data);
600       WriteRegister(reg_ctx, "r7", NULL, 4, data);
601       WriteRegister(reg_ctx, "r8", NULL, 4, data);
602       WriteRegister(reg_ctx, "r9", NULL, 4, data);
603       WriteRegister(reg_ctx, "r10", NULL, 4, data);
604       WriteRegister(reg_ctx, "r11", NULL, 4, data);
605       WriteRegister(reg_ctx, "r12", NULL, 4, data);
606       WriteRegister(reg_ctx, "sp", NULL, 4, data);
607       WriteRegister(reg_ctx, "lr", NULL, 4, data);
608       WriteRegister(reg_ctx, "pc", NULL, 4, data);
609       WriteRegister(reg_ctx, "cpsr", NULL, 4, data);
610 
611       // Write out the EXC registers
612       //            data.PutHex32 (EXCRegSet);
613       //            data.PutHex32 (EXCWordCount);
614       //            WriteRegister (reg_ctx, "exception", NULL, 4, data);
615       //            WriteRegister (reg_ctx, "fsr", NULL, 4, data);
616       //            WriteRegister (reg_ctx, "far", NULL, 4, data);
617       return true;
618     }
619     return false;
620   }
621 
622 protected:
623   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
624 
625   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
626 
627   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
628 
629   int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
630 
631   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
632     return 0;
633   }
634 
635   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
636     return 0;
637   }
638 
639   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
640     return 0;
641   }
642 
643   int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
644     return -1;
645   }
646 };
647 
648 class RegisterContextDarwin_arm64_Mach : public RegisterContextDarwin_arm64 {
649 public:
650   RegisterContextDarwin_arm64_Mach(lldb_private::Thread &thread,
651                                    const DataExtractor &data)
652       : RegisterContextDarwin_arm64(thread, 0) {
653     SetRegisterDataFrom_LC_THREAD(data);
654   }
655 
656   void InvalidateAllRegisters() override {
657     // Do nothing... registers are always valid...
658   }
659 
660   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
661     lldb::offset_t offset = 0;
662     SetError(GPRRegSet, Read, -1);
663     SetError(FPURegSet, Read, -1);
664     SetError(EXCRegSet, Read, -1);
665     bool done = false;
666     while (!done) {
667       int flavor = data.GetU32(&offset);
668       uint32_t count = data.GetU32(&offset);
669       lldb::offset_t next_thread_state = offset + (count * 4);
670       switch (flavor) {
671       case GPRRegSet:
672         // x0-x29 + fp + lr + sp + pc (== 33 64-bit registers) plus cpsr (1
673         // 32-bit register)
674         if (count >= (33 * 2) + 1) {
675           for (uint32_t i = 0; i < 29; ++i)
676             gpr.x[i] = data.GetU64(&offset);
677           gpr.fp = data.GetU64(&offset);
678           gpr.lr = data.GetU64(&offset);
679           gpr.sp = data.GetU64(&offset);
680           gpr.pc = data.GetU64(&offset);
681           gpr.cpsr = data.GetU32(&offset);
682           SetError(GPRRegSet, Read, 0);
683         }
684         offset = next_thread_state;
685         break;
686       case FPURegSet: {
687         uint8_t *fpu_reg_buf = (uint8_t *)&fpu.v[0];
688         const int fpu_reg_buf_size = sizeof(fpu);
689         if (fpu_reg_buf_size == count * sizeof(uint32_t) &&
690             data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
691                               fpu_reg_buf) == fpu_reg_buf_size) {
692           SetError(FPURegSet, Read, 0);
693         } else {
694           done = true;
695         }
696       }
697         offset = next_thread_state;
698         break;
699       case EXCRegSet:
700         if (count == 4) {
701           exc.far = data.GetU64(&offset);
702           exc.esr = data.GetU32(&offset);
703           exc.exception = data.GetU32(&offset);
704           SetError(EXCRegSet, Read, 0);
705         }
706         offset = next_thread_state;
707         break;
708       default:
709         done = true;
710         break;
711       }
712     }
713   }
714 
715   static size_t WriteRegister(RegisterContext *reg_ctx, const char *name,
716                               const char *alt_name, size_t reg_byte_size,
717                               Stream &data) {
718     const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
719     if (reg_info == NULL)
720       reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
721     if (reg_info) {
722       lldb_private::RegisterValue reg_value;
723       if (reg_ctx->ReadRegister(reg_info, reg_value)) {
724         if (reg_info->byte_size >= reg_byte_size)
725           data.Write(reg_value.GetBytes(), reg_byte_size);
726         else {
727           data.Write(reg_value.GetBytes(), reg_info->byte_size);
728           for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n;
729                ++i)
730             data.PutChar(0);
731         }
732         return reg_byte_size;
733       }
734     }
735     // Just write zeros if all else fails
736     for (size_t i = 0; i < reg_byte_size; ++i)
737       data.PutChar(0);
738     return reg_byte_size;
739   }
740 
741   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
742     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
743     if (reg_ctx_sp) {
744       RegisterContext *reg_ctx = reg_ctx_sp.get();
745 
746       data.PutHex32(GPRRegSet); // Flavor
747       data.PutHex32(GPRWordCount);
748       WriteRegister(reg_ctx, "x0", NULL, 8, data);
749       WriteRegister(reg_ctx, "x1", NULL, 8, data);
750       WriteRegister(reg_ctx, "x2", NULL, 8, data);
751       WriteRegister(reg_ctx, "x3", NULL, 8, data);
752       WriteRegister(reg_ctx, "x4", NULL, 8, data);
753       WriteRegister(reg_ctx, "x5", NULL, 8, data);
754       WriteRegister(reg_ctx, "x6", NULL, 8, data);
755       WriteRegister(reg_ctx, "x7", NULL, 8, data);
756       WriteRegister(reg_ctx, "x8", NULL, 8, data);
757       WriteRegister(reg_ctx, "x9", NULL, 8, data);
758       WriteRegister(reg_ctx, "x10", NULL, 8, data);
759       WriteRegister(reg_ctx, "x11", NULL, 8, data);
760       WriteRegister(reg_ctx, "x12", NULL, 8, data);
761       WriteRegister(reg_ctx, "x13", NULL, 8, data);
762       WriteRegister(reg_ctx, "x14", NULL, 8, data);
763       WriteRegister(reg_ctx, "x15", NULL, 8, data);
764       WriteRegister(reg_ctx, "x16", NULL, 8, data);
765       WriteRegister(reg_ctx, "x17", NULL, 8, data);
766       WriteRegister(reg_ctx, "x18", NULL, 8, data);
767       WriteRegister(reg_ctx, "x19", NULL, 8, data);
768       WriteRegister(reg_ctx, "x20", NULL, 8, data);
769       WriteRegister(reg_ctx, "x21", NULL, 8, data);
770       WriteRegister(reg_ctx, "x22", NULL, 8, data);
771       WriteRegister(reg_ctx, "x23", NULL, 8, data);
772       WriteRegister(reg_ctx, "x24", NULL, 8, data);
773       WriteRegister(reg_ctx, "x25", NULL, 8, data);
774       WriteRegister(reg_ctx, "x26", NULL, 8, data);
775       WriteRegister(reg_ctx, "x27", NULL, 8, data);
776       WriteRegister(reg_ctx, "x28", NULL, 8, data);
777       WriteRegister(reg_ctx, "fp", NULL, 8, data);
778       WriteRegister(reg_ctx, "lr", NULL, 8, data);
779       WriteRegister(reg_ctx, "sp", NULL, 8, data);
780       WriteRegister(reg_ctx, "pc", NULL, 8, data);
781       WriteRegister(reg_ctx, "cpsr", NULL, 4, data);
782 
783       // Write out the EXC registers
784       //            data.PutHex32 (EXCRegSet);
785       //            data.PutHex32 (EXCWordCount);
786       //            WriteRegister (reg_ctx, "far", NULL, 8, data);
787       //            WriteRegister (reg_ctx, "esr", NULL, 4, data);
788       //            WriteRegister (reg_ctx, "exception", NULL, 4, data);
789       return true;
790     }
791     return false;
792   }
793 
794 protected:
795   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
796 
797   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
798 
799   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
800 
801   int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
802 
803   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
804     return 0;
805   }
806 
807   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
808     return 0;
809   }
810 
811   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
812     return 0;
813   }
814 
815   int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
816     return -1;
817   }
818 };
819 
820 static uint32_t MachHeaderSizeFromMagic(uint32_t magic) {
821   switch (magic) {
822   case MH_MAGIC:
823   case MH_CIGAM:
824     return sizeof(struct mach_header);
825 
826   case MH_MAGIC_64:
827   case MH_CIGAM_64:
828     return sizeof(struct mach_header_64);
829     break;
830 
831   default:
832     break;
833   }
834   return 0;
835 }
836 
837 #define MACHO_NLIST_ARM_SYMBOL_IS_THUMB 0x0008
838 
839 void ObjectFileMachO::Initialize() {
840   PluginManager::RegisterPlugin(
841       GetPluginNameStatic(), GetPluginDescriptionStatic(), CreateInstance,
842       CreateMemoryInstance, GetModuleSpecifications, SaveCore);
843 }
844 
845 void ObjectFileMachO::Terminate() {
846   PluginManager::UnregisterPlugin(CreateInstance);
847 }
848 
849 lldb_private::ConstString ObjectFileMachO::GetPluginNameStatic() {
850   static ConstString g_name("mach-o");
851   return g_name;
852 }
853 
854 const char *ObjectFileMachO::GetPluginDescriptionStatic() {
855   return "Mach-o object file reader (32 and 64 bit)";
856 }
857 
858 ObjectFile *ObjectFileMachO::CreateInstance(const lldb::ModuleSP &module_sp,
859                                             DataBufferSP &data_sp,
860                                             lldb::offset_t data_offset,
861                                             const FileSpec *file,
862                                             lldb::offset_t file_offset,
863                                             lldb::offset_t length) {
864   if (!data_sp) {
865     data_sp =
866         DataBufferLLVM::CreateSliceFromPath(file->GetPath(), length, file_offset);
867     if (!data_sp)
868       return nullptr;
869     data_offset = 0;
870   }
871 
872   if (!ObjectFileMachO::MagicBytesMatch(data_sp, data_offset, length))
873     return nullptr;
874 
875   // Update the data to contain the entire file if it doesn't already
876   if (data_sp->GetByteSize() < length) {
877     data_sp =
878         DataBufferLLVM::CreateSliceFromPath(file->GetPath(), length, file_offset);
879     if (!data_sp)
880       return nullptr;
881     data_offset = 0;
882   }
883   auto objfile_ap = llvm::make_unique<ObjectFileMachO>(
884       module_sp, data_sp, data_offset, file, file_offset, length);
885   if (!objfile_ap || !objfile_ap->ParseHeader())
886     return nullptr;
887 
888   return objfile_ap.release();
889 }
890 
891 ObjectFile *ObjectFileMachO::CreateMemoryInstance(
892     const lldb::ModuleSP &module_sp, DataBufferSP &data_sp,
893     const ProcessSP &process_sp, lldb::addr_t header_addr) {
894   if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
895     std::unique_ptr<ObjectFile> objfile_ap(
896         new ObjectFileMachO(module_sp, data_sp, process_sp, header_addr));
897     if (objfile_ap.get() && objfile_ap->ParseHeader())
898       return objfile_ap.release();
899   }
900   return NULL;
901 }
902 
903 size_t ObjectFileMachO::GetModuleSpecifications(
904     const lldb_private::FileSpec &file, lldb::DataBufferSP &data_sp,
905     lldb::offset_t data_offset, lldb::offset_t file_offset,
906     lldb::offset_t length, lldb_private::ModuleSpecList &specs) {
907   const size_t initial_count = specs.GetSize();
908 
909   if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
910     DataExtractor data;
911     data.SetData(data_sp);
912     llvm::MachO::mach_header header;
913     if (ParseHeader(data, &data_offset, header)) {
914       size_t header_and_load_cmds =
915           header.sizeofcmds + MachHeaderSizeFromMagic(header.magic);
916       if (header_and_load_cmds >= data_sp->GetByteSize()) {
917         data_sp = DataBufferLLVM::CreateSliceFromPath(
918             file.GetPath(), header_and_load_cmds, file_offset);
919         data.SetData(data_sp);
920         data_offset = MachHeaderSizeFromMagic(header.magic);
921       }
922       if (data_sp) {
923         ModuleSpec spec;
924         spec.GetFileSpec() = file;
925         spec.SetObjectOffset(file_offset);
926         spec.SetObjectSize(length);
927 
928         if (GetArchitecture(header, data, data_offset,
929                             spec.GetArchitecture())) {
930           if (spec.GetArchitecture().IsValid()) {
931             GetUUID(header, data, data_offset, spec.GetUUID());
932             specs.Append(spec);
933           }
934         }
935       }
936     }
937   }
938   return specs.GetSize() - initial_count;
939 }
940 
941 const ConstString &ObjectFileMachO::GetSegmentNameTEXT() {
942   static ConstString g_segment_name_TEXT("__TEXT");
943   return g_segment_name_TEXT;
944 }
945 
946 const ConstString &ObjectFileMachO::GetSegmentNameDATA() {
947   static ConstString g_segment_name_DATA("__DATA");
948   return g_segment_name_DATA;
949 }
950 
951 const ConstString &ObjectFileMachO::GetSegmentNameDATA_DIRTY() {
952   static ConstString g_segment_name("__DATA_DIRTY");
953   return g_segment_name;
954 }
955 
956 const ConstString &ObjectFileMachO::GetSegmentNameDATA_CONST() {
957   static ConstString g_segment_name("__DATA_CONST");
958   return g_segment_name;
959 }
960 
961 const ConstString &ObjectFileMachO::GetSegmentNameOBJC() {
962   static ConstString g_segment_name_OBJC("__OBJC");
963   return g_segment_name_OBJC;
964 }
965 
966 const ConstString &ObjectFileMachO::GetSegmentNameLINKEDIT() {
967   static ConstString g_section_name_LINKEDIT("__LINKEDIT");
968   return g_section_name_LINKEDIT;
969 }
970 
971 const ConstString &ObjectFileMachO::GetSectionNameEHFrame() {
972   static ConstString g_section_name_eh_frame("__eh_frame");
973   return g_section_name_eh_frame;
974 }
975 
976 bool ObjectFileMachO::MagicBytesMatch(DataBufferSP &data_sp,
977                                       lldb::addr_t data_offset,
978                                       lldb::addr_t data_length) {
979   DataExtractor data;
980   data.SetData(data_sp, data_offset, data_length);
981   lldb::offset_t offset = 0;
982   uint32_t magic = data.GetU32(&offset);
983   return MachHeaderSizeFromMagic(magic) != 0;
984 }
985 
986 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
987                                  DataBufferSP &data_sp,
988                                  lldb::offset_t data_offset,
989                                  const FileSpec *file,
990                                  lldb::offset_t file_offset,
991                                  lldb::offset_t length)
992     : ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset),
993       m_mach_segments(), m_mach_sections(), m_entry_point_address(),
994       m_thread_context_offsets(), m_thread_context_offsets_valid(false),
995       m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) {
996   ::memset(&m_header, 0, sizeof(m_header));
997   ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
998 }
999 
1000 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
1001                                  lldb::DataBufferSP &header_data_sp,
1002                                  const lldb::ProcessSP &process_sp,
1003                                  lldb::addr_t header_addr)
1004     : ObjectFile(module_sp, process_sp, header_addr, header_data_sp),
1005       m_mach_segments(), m_mach_sections(), m_entry_point_address(),
1006       m_thread_context_offsets(), m_thread_context_offsets_valid(false),
1007       m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) {
1008   ::memset(&m_header, 0, sizeof(m_header));
1009   ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
1010 }
1011 
1012 bool ObjectFileMachO::ParseHeader(DataExtractor &data,
1013                                   lldb::offset_t *data_offset_ptr,
1014                                   llvm::MachO::mach_header &header) {
1015   data.SetByteOrder(endian::InlHostByteOrder());
1016   // Leave magic in the original byte order
1017   header.magic = data.GetU32(data_offset_ptr);
1018   bool can_parse = false;
1019   bool is_64_bit = false;
1020   switch (header.magic) {
1021   case MH_MAGIC:
1022     data.SetByteOrder(endian::InlHostByteOrder());
1023     data.SetAddressByteSize(4);
1024     can_parse = true;
1025     break;
1026 
1027   case MH_MAGIC_64:
1028     data.SetByteOrder(endian::InlHostByteOrder());
1029     data.SetAddressByteSize(8);
1030     can_parse = true;
1031     is_64_bit = true;
1032     break;
1033 
1034   case MH_CIGAM:
1035     data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1036                           ? eByteOrderLittle
1037                           : eByteOrderBig);
1038     data.SetAddressByteSize(4);
1039     can_parse = true;
1040     break;
1041 
1042   case MH_CIGAM_64:
1043     data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1044                           ? eByteOrderLittle
1045                           : eByteOrderBig);
1046     data.SetAddressByteSize(8);
1047     is_64_bit = true;
1048     can_parse = true;
1049     break;
1050 
1051   default:
1052     break;
1053   }
1054 
1055   if (can_parse) {
1056     data.GetU32(data_offset_ptr, &header.cputype, 6);
1057     if (is_64_bit)
1058       *data_offset_ptr += 4;
1059     return true;
1060   } else {
1061     memset(&header, 0, sizeof(header));
1062   }
1063   return false;
1064 }
1065 
1066 bool ObjectFileMachO::ParseHeader() {
1067   ModuleSP module_sp(GetModule());
1068   if (module_sp) {
1069     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
1070     bool can_parse = false;
1071     lldb::offset_t offset = 0;
1072     m_data.SetByteOrder(endian::InlHostByteOrder());
1073     // Leave magic in the original byte order
1074     m_header.magic = m_data.GetU32(&offset);
1075     switch (m_header.magic) {
1076     case MH_MAGIC:
1077       m_data.SetByteOrder(endian::InlHostByteOrder());
1078       m_data.SetAddressByteSize(4);
1079       can_parse = true;
1080       break;
1081 
1082     case MH_MAGIC_64:
1083       m_data.SetByteOrder(endian::InlHostByteOrder());
1084       m_data.SetAddressByteSize(8);
1085       can_parse = true;
1086       break;
1087 
1088     case MH_CIGAM:
1089       m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1090                               ? eByteOrderLittle
1091                               : eByteOrderBig);
1092       m_data.SetAddressByteSize(4);
1093       can_parse = true;
1094       break;
1095 
1096     case MH_CIGAM_64:
1097       m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1098                               ? eByteOrderLittle
1099                               : eByteOrderBig);
1100       m_data.SetAddressByteSize(8);
1101       can_parse = true;
1102       break;
1103 
1104     default:
1105       break;
1106     }
1107 
1108     if (can_parse) {
1109       m_data.GetU32(&offset, &m_header.cputype, 6);
1110 
1111       ArchSpec mach_arch;
1112 
1113       if (GetArchitecture(mach_arch)) {
1114         // Check if the module has a required architecture
1115         const ArchSpec &module_arch = module_sp->GetArchitecture();
1116         if (module_arch.IsValid() && !module_arch.IsCompatibleMatch(mach_arch))
1117           return false;
1118 
1119         if (SetModulesArchitecture(mach_arch)) {
1120           const size_t header_and_lc_size =
1121               m_header.sizeofcmds + MachHeaderSizeFromMagic(m_header.magic);
1122           if (m_data.GetByteSize() < header_and_lc_size) {
1123             DataBufferSP data_sp;
1124             ProcessSP process_sp(m_process_wp.lock());
1125             if (process_sp) {
1126               data_sp =
1127                   ReadMemory(process_sp, m_memory_addr, header_and_lc_size);
1128             } else {
1129               // Read in all only the load command data from the file on disk
1130               data_sp = DataBufferLLVM::CreateSliceFromPath(
1131                   m_file.GetPath(), header_and_lc_size, m_file_offset);
1132               if (data_sp->GetByteSize() != header_and_lc_size)
1133                 return false;
1134             }
1135             if (data_sp)
1136               m_data.SetData(data_sp);
1137           }
1138         }
1139         return true;
1140       }
1141     } else {
1142       memset(&m_header, 0, sizeof(struct mach_header));
1143     }
1144   }
1145   return false;
1146 }
1147 
1148 ByteOrder ObjectFileMachO::GetByteOrder() const {
1149   return m_data.GetByteOrder();
1150 }
1151 
1152 bool ObjectFileMachO::IsExecutable() const {
1153   return m_header.filetype == MH_EXECUTE;
1154 }
1155 
1156 uint32_t ObjectFileMachO::GetAddressByteSize() const {
1157   return m_data.GetAddressByteSize();
1158 }
1159 
1160 AddressClass ObjectFileMachO::GetAddressClass(lldb::addr_t file_addr) {
1161   Symtab *symtab = GetSymtab();
1162   if (symtab) {
1163     Symbol *symbol = symtab->FindSymbolContainingFileAddress(file_addr);
1164     if (symbol) {
1165       if (symbol->ValueIsAddress()) {
1166         SectionSP section_sp(symbol->GetAddressRef().GetSection());
1167         if (section_sp) {
1168           const lldb::SectionType section_type = section_sp->GetType();
1169           switch (section_type) {
1170           case eSectionTypeInvalid:
1171             return eAddressClassUnknown;
1172 
1173           case eSectionTypeCode:
1174             if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
1175               // For ARM we have a bit in the n_desc field of the symbol
1176               // that tells us ARM/Thumb which is bit 0x0008.
1177               if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB)
1178                 return eAddressClassCodeAlternateISA;
1179             }
1180             return eAddressClassCode;
1181 
1182           case eSectionTypeContainer:
1183             return eAddressClassUnknown;
1184 
1185           case eSectionTypeData:
1186           case eSectionTypeDataCString:
1187           case eSectionTypeDataCStringPointers:
1188           case eSectionTypeDataSymbolAddress:
1189           case eSectionTypeData4:
1190           case eSectionTypeData8:
1191           case eSectionTypeData16:
1192           case eSectionTypeDataPointers:
1193           case eSectionTypeZeroFill:
1194           case eSectionTypeDataObjCMessageRefs:
1195           case eSectionTypeDataObjCCFStrings:
1196           case eSectionTypeGoSymtab:
1197             return eAddressClassData;
1198 
1199           case eSectionTypeDebug:
1200           case eSectionTypeDWARFDebugAbbrev:
1201           case eSectionTypeDWARFDebugAddr:
1202           case eSectionTypeDWARFDebugAranges:
1203           case eSectionTypeDWARFDebugCuIndex:
1204           case eSectionTypeDWARFDebugFrame:
1205           case eSectionTypeDWARFDebugInfo:
1206           case eSectionTypeDWARFDebugLine:
1207           case eSectionTypeDWARFDebugLoc:
1208           case eSectionTypeDWARFDebugMacInfo:
1209           case eSectionTypeDWARFDebugMacro:
1210           case eSectionTypeDWARFDebugPubNames:
1211           case eSectionTypeDWARFDebugPubTypes:
1212           case eSectionTypeDWARFDebugRanges:
1213           case eSectionTypeDWARFDebugStr:
1214           case eSectionTypeDWARFDebugStrOffsets:
1215           case eSectionTypeDWARFAppleNames:
1216           case eSectionTypeDWARFAppleTypes:
1217           case eSectionTypeDWARFAppleNamespaces:
1218           case eSectionTypeDWARFAppleObjC:
1219             return eAddressClassDebug;
1220 
1221           case eSectionTypeEHFrame:
1222           case eSectionTypeARMexidx:
1223           case eSectionTypeARMextab:
1224           case eSectionTypeCompactUnwind:
1225             return eAddressClassRuntime;
1226 
1227           case eSectionTypeAbsoluteAddress:
1228           case eSectionTypeELFSymbolTable:
1229           case eSectionTypeELFDynamicSymbols:
1230           case eSectionTypeELFRelocationEntries:
1231           case eSectionTypeELFDynamicLinkInfo:
1232           case eSectionTypeOther:
1233             return eAddressClassUnknown;
1234           }
1235         }
1236       }
1237 
1238       const SymbolType symbol_type = symbol->GetType();
1239       switch (symbol_type) {
1240       case eSymbolTypeAny:
1241         return eAddressClassUnknown;
1242       case eSymbolTypeAbsolute:
1243         return eAddressClassUnknown;
1244 
1245       case eSymbolTypeCode:
1246       case eSymbolTypeTrampoline:
1247       case eSymbolTypeResolver:
1248         if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
1249           // For ARM we have a bit in the n_desc field of the symbol
1250           // that tells us ARM/Thumb which is bit 0x0008.
1251           if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB)
1252             return eAddressClassCodeAlternateISA;
1253         }
1254         return eAddressClassCode;
1255 
1256       case eSymbolTypeData:
1257         return eAddressClassData;
1258       case eSymbolTypeRuntime:
1259         return eAddressClassRuntime;
1260       case eSymbolTypeException:
1261         return eAddressClassRuntime;
1262       case eSymbolTypeSourceFile:
1263         return eAddressClassDebug;
1264       case eSymbolTypeHeaderFile:
1265         return eAddressClassDebug;
1266       case eSymbolTypeObjectFile:
1267         return eAddressClassDebug;
1268       case eSymbolTypeCommonBlock:
1269         return eAddressClassDebug;
1270       case eSymbolTypeBlock:
1271         return eAddressClassDebug;
1272       case eSymbolTypeLocal:
1273         return eAddressClassData;
1274       case eSymbolTypeParam:
1275         return eAddressClassData;
1276       case eSymbolTypeVariable:
1277         return eAddressClassData;
1278       case eSymbolTypeVariableType:
1279         return eAddressClassDebug;
1280       case eSymbolTypeLineEntry:
1281         return eAddressClassDebug;
1282       case eSymbolTypeLineHeader:
1283         return eAddressClassDebug;
1284       case eSymbolTypeScopeBegin:
1285         return eAddressClassDebug;
1286       case eSymbolTypeScopeEnd:
1287         return eAddressClassDebug;
1288       case eSymbolTypeAdditional:
1289         return eAddressClassUnknown;
1290       case eSymbolTypeCompiler:
1291         return eAddressClassDebug;
1292       case eSymbolTypeInstrumentation:
1293         return eAddressClassDebug;
1294       case eSymbolTypeUndefined:
1295         return eAddressClassUnknown;
1296       case eSymbolTypeObjCClass:
1297         return eAddressClassRuntime;
1298       case eSymbolTypeObjCMetaClass:
1299         return eAddressClassRuntime;
1300       case eSymbolTypeObjCIVar:
1301         return eAddressClassRuntime;
1302       case eSymbolTypeReExported:
1303         return eAddressClassRuntime;
1304       }
1305     }
1306   }
1307   return eAddressClassUnknown;
1308 }
1309 
1310 Symtab *ObjectFileMachO::GetSymtab() {
1311   ModuleSP module_sp(GetModule());
1312   if (module_sp) {
1313     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
1314     if (m_symtab_ap.get() == NULL) {
1315       m_symtab_ap.reset(new Symtab(this));
1316       std::lock_guard<std::recursive_mutex> symtab_guard(
1317           m_symtab_ap->GetMutex());
1318       ParseSymtab();
1319       m_symtab_ap->Finalize();
1320     }
1321   }
1322   return m_symtab_ap.get();
1323 }
1324 
1325 bool ObjectFileMachO::IsStripped() {
1326   if (m_dysymtab.cmd == 0) {
1327     ModuleSP module_sp(GetModule());
1328     if (module_sp) {
1329       lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1330       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1331         const lldb::offset_t load_cmd_offset = offset;
1332 
1333         load_command lc;
1334         if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL)
1335           break;
1336         if (lc.cmd == LC_DYSYMTAB) {
1337           m_dysymtab.cmd = lc.cmd;
1338           m_dysymtab.cmdsize = lc.cmdsize;
1339           if (m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
1340                             (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2) ==
1341               NULL) {
1342             // Clear m_dysymtab if we were unable to read all items from the
1343             // load command
1344             ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
1345           }
1346         }
1347         offset = load_cmd_offset + lc.cmdsize;
1348       }
1349     }
1350   }
1351   if (m_dysymtab.cmd)
1352     return m_dysymtab.nlocalsym <= 1;
1353   return false;
1354 }
1355 
1356 void ObjectFileMachO::CreateSections(SectionList &unified_section_list) {
1357   if (!m_sections_ap.get()) {
1358     m_sections_ap.reset(new SectionList());
1359 
1360     const bool is_dsym = (m_header.filetype == MH_DSYM);
1361     lldb::user_id_t segID = 0;
1362     lldb::user_id_t sectID = 0;
1363     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1364     uint32_t i;
1365     const bool is_core = GetType() == eTypeCoreFile;
1366     // bool dump_sections = false;
1367     ModuleSP module_sp(GetModule());
1368     // First look up any LC_ENCRYPTION_INFO load commands
1369     typedef RangeArray<uint32_t, uint32_t, 8> EncryptedFileRanges;
1370     EncryptedFileRanges encrypted_file_ranges;
1371     encryption_info_command encryption_cmd;
1372     for (i = 0; i < m_header.ncmds; ++i) {
1373       const lldb::offset_t load_cmd_offset = offset;
1374       if (m_data.GetU32(&offset, &encryption_cmd, 2) == NULL)
1375         break;
1376 
1377       // LC_ENCRYPTION_INFO and LC_ENCRYPTION_INFO_64 have the same sizes for
1378       // the 3 fields we care about, so treat them the same.
1379       if (encryption_cmd.cmd == LC_ENCRYPTION_INFO ||
1380           encryption_cmd.cmd == LC_ENCRYPTION_INFO_64) {
1381         if (m_data.GetU32(&offset, &encryption_cmd.cryptoff, 3)) {
1382           if (encryption_cmd.cryptid != 0) {
1383             EncryptedFileRanges::Entry entry;
1384             entry.SetRangeBase(encryption_cmd.cryptoff);
1385             entry.SetByteSize(encryption_cmd.cryptsize);
1386             encrypted_file_ranges.Append(entry);
1387           }
1388         }
1389       }
1390       offset = load_cmd_offset + encryption_cmd.cmdsize;
1391     }
1392 
1393     bool section_file_addresses_changed = false;
1394 
1395     offset = MachHeaderSizeFromMagic(m_header.magic);
1396 
1397     struct segment_command_64 load_cmd;
1398     for (i = 0; i < m_header.ncmds; ++i) {
1399       const lldb::offset_t load_cmd_offset = offset;
1400       if (m_data.GetU32(&offset, &load_cmd, 2) == NULL)
1401         break;
1402 
1403       if (load_cmd.cmd == LC_SEGMENT || load_cmd.cmd == LC_SEGMENT_64) {
1404         if (m_data.GetU8(&offset, (uint8_t *)load_cmd.segname, 16)) {
1405           bool add_section = true;
1406           bool add_to_unified = true;
1407           ConstString const_segname(load_cmd.segname,
1408                                     std::min<size_t>(strlen(load_cmd.segname),
1409                                                      sizeof(load_cmd.segname)));
1410 
1411           SectionSP unified_section_sp(
1412               unified_section_list.FindSectionByName(const_segname));
1413           if (is_dsym && unified_section_sp) {
1414             if (const_segname == GetSegmentNameLINKEDIT()) {
1415               // We need to keep the __LINKEDIT segment private to this object
1416               // file only
1417               add_to_unified = false;
1418             } else {
1419               // This is the dSYM file and this section has already been created
1420               // by
1421               // the object file, no need to create it.
1422               add_section = false;
1423             }
1424           }
1425           load_cmd.vmaddr = m_data.GetAddress(&offset);
1426           load_cmd.vmsize = m_data.GetAddress(&offset);
1427           load_cmd.fileoff = m_data.GetAddress(&offset);
1428           load_cmd.filesize = m_data.GetAddress(&offset);
1429           if (m_length != 0 && load_cmd.filesize != 0) {
1430             if (load_cmd.fileoff > m_length) {
1431               // We have a load command that says it extends past the end of the
1432               // file.  This is likely
1433               // a corrupt file.  We don't have any way to return an error
1434               // condition here (this method
1435               // was likely invoked from something like
1436               // ObjectFile::GetSectionList()) -- all we can do
1437               // is null out the SectionList vector and if a process has been
1438               // set up, dump a message
1439               // to stdout.  The most common case here is core file debugging
1440               // with a truncated file.
1441               const char *lc_segment_name = load_cmd.cmd == LC_SEGMENT_64
1442                                                 ? "LC_SEGMENT_64"
1443                                                 : "LC_SEGMENT";
1444               module_sp->ReportWarning(
1445                   "load command %u %s has a fileoff (0x%" PRIx64
1446                   ") that extends beyond the end of the file (0x%" PRIx64
1447                   "), ignoring this section",
1448                   i, lc_segment_name, load_cmd.fileoff, m_length);
1449 
1450               load_cmd.fileoff = 0;
1451               load_cmd.filesize = 0;
1452             }
1453 
1454             if (load_cmd.fileoff + load_cmd.filesize > m_length) {
1455               // We have a load command that says it extends past the end of the
1456               // file.  This is likely
1457               // a corrupt file.  We don't have any way to return an error
1458               // condition here (this method
1459               // was likely invoked from something like
1460               // ObjectFile::GetSectionList()) -- all we can do
1461               // is null out the SectionList vector and if a process has been
1462               // set up, dump a message
1463               // to stdout.  The most common case here is core file debugging
1464               // with a truncated file.
1465               const char *lc_segment_name = load_cmd.cmd == LC_SEGMENT_64
1466                                                 ? "LC_SEGMENT_64"
1467                                                 : "LC_SEGMENT";
1468               GetModule()->ReportWarning(
1469                   "load command %u %s has a fileoff + filesize (0x%" PRIx64
1470                   ") that extends beyond the end of the file (0x%" PRIx64
1471                   "), the segment will be truncated to match",
1472                   i, lc_segment_name, load_cmd.fileoff + load_cmd.filesize,
1473                   m_length);
1474 
1475               // Tuncase the length
1476               load_cmd.filesize = m_length - load_cmd.fileoff;
1477             }
1478           }
1479           if (m_data.GetU32(&offset, &load_cmd.maxprot, 4)) {
1480             uint32_t segment_permissions = 0;
1481             if (load_cmd.initprot & VM_PROT_READ)
1482               segment_permissions |= ePermissionsReadable;
1483             if (load_cmd.initprot & VM_PROT_WRITE)
1484               segment_permissions |= ePermissionsWritable;
1485             if (load_cmd.initprot & VM_PROT_EXECUTE)
1486               segment_permissions |= ePermissionsExecutable;
1487 
1488             const bool segment_is_encrypted =
1489                 (load_cmd.flags & SG_PROTECTED_VERSION_1) != 0;
1490 
1491             // Keep a list of mach segments around in case we need to
1492             // get at data that isn't stored in the abstracted Sections.
1493             m_mach_segments.push_back(load_cmd);
1494 
1495             // Use a segment ID of the segment index shifted left by 8 so they
1496             // never conflict with any of the sections.
1497             SectionSP segment_sp;
1498             if (add_section && (const_segname || is_core)) {
1499               segment_sp.reset(new Section(
1500                   module_sp,     // Module to which this section belongs
1501                   this,          // Object file to which this sections belongs
1502                   ++segID << 8,  // Section ID is the 1 based segment index
1503                                  // shifted right by 8 bits as not to collide
1504                                  // with any of the 256 section IDs that are
1505                                  // possible
1506                   const_segname, // Name of this section
1507                   eSectionTypeContainer, // This section is a container of other
1508                                          // sections.
1509                   load_cmd.vmaddr,   // File VM address == addresses as they are
1510                                      // found in the object file
1511                   load_cmd.vmsize,   // VM size in bytes of this section
1512                   load_cmd.fileoff,  // Offset to the data for this section in
1513                                      // the file
1514                   load_cmd.filesize, // Size in bytes of this section as found
1515                                      // in the file
1516                   0,                 // Segments have no alignment information
1517                   load_cmd.flags));  // Flags for this section
1518 
1519               segment_sp->SetIsEncrypted(segment_is_encrypted);
1520               m_sections_ap->AddSection(segment_sp);
1521               segment_sp->SetPermissions(segment_permissions);
1522               if (add_to_unified)
1523                 unified_section_list.AddSection(segment_sp);
1524             } else if (unified_section_sp) {
1525               if (is_dsym &&
1526                   unified_section_sp->GetFileAddress() != load_cmd.vmaddr) {
1527                 // Check to see if the module was read from memory?
1528                 if (module_sp->GetObjectFile()->GetHeaderAddress().IsValid()) {
1529                   // We have a module that is in memory and needs to have its
1530                   // file address adjusted. We need to do this because when we
1531                   // load a file from memory, its addresses will be slid
1532                   // already,
1533                   // yet the addresses in the new symbol file will still be
1534                   // unslid.
1535                   // Since everything is stored as section offset, this
1536                   // shouldn't
1537                   // cause any problems.
1538 
1539                   // Make sure we've parsed the symbol table from the
1540                   // ObjectFile before we go around changing its Sections.
1541                   module_sp->GetObjectFile()->GetSymtab();
1542                   // eh_frame would present the same problems but we parse that
1543                   // on
1544                   // a per-function basis as-needed so it's more difficult to
1545                   // remove its use of the Sections.  Realistically, the
1546                   // environments
1547                   // where this code path will be taken will not have eh_frame
1548                   // sections.
1549 
1550                   unified_section_sp->SetFileAddress(load_cmd.vmaddr);
1551 
1552                   // Notify the module that the section addresses have been
1553                   // changed once
1554                   // we're done so any file-address caches can be updated.
1555                   section_file_addresses_changed = true;
1556                 }
1557               }
1558               m_sections_ap->AddSection(unified_section_sp);
1559             }
1560 
1561             struct section_64 sect64;
1562             ::memset(&sect64, 0, sizeof(sect64));
1563             // Push a section into our mach sections for the section at
1564             // index zero (NO_SECT) if we don't have any mach sections yet...
1565             if (m_mach_sections.empty())
1566               m_mach_sections.push_back(sect64);
1567             uint32_t segment_sect_idx;
1568             const lldb::user_id_t first_segment_sectID = sectID + 1;
1569 
1570             const uint32_t num_u32s = load_cmd.cmd == LC_SEGMENT ? 7 : 8;
1571             for (segment_sect_idx = 0; segment_sect_idx < load_cmd.nsects;
1572                  ++segment_sect_idx) {
1573               if (m_data.GetU8(&offset, (uint8_t *)sect64.sectname,
1574                                sizeof(sect64.sectname)) == NULL)
1575                 break;
1576               if (m_data.GetU8(&offset, (uint8_t *)sect64.segname,
1577                                sizeof(sect64.segname)) == NULL)
1578                 break;
1579               sect64.addr = m_data.GetAddress(&offset);
1580               sect64.size = m_data.GetAddress(&offset);
1581 
1582               if (m_data.GetU32(&offset, &sect64.offset, num_u32s) == NULL)
1583                 break;
1584 
1585               // Keep a list of mach sections around in case we need to
1586               // get at data that isn't stored in the abstracted Sections.
1587               m_mach_sections.push_back(sect64);
1588 
1589               if (add_section) {
1590                 ConstString section_name(
1591                     sect64.sectname, std::min<size_t>(strlen(sect64.sectname),
1592                                                       sizeof(sect64.sectname)));
1593                 if (!const_segname) {
1594                   // We have a segment with no name so we need to conjure up
1595                   // segments that correspond to the section's segname if there
1596                   // isn't already such a section. If there is such a section,
1597                   // we resize the section so that it spans all sections.
1598                   // We also mark these sections as fake so address matches
1599                   // don't
1600                   // hit if they land in the gaps between the child sections.
1601                   const_segname.SetTrimmedCStringWithLength(
1602                       sect64.segname, sizeof(sect64.segname));
1603                   segment_sp =
1604                       unified_section_list.FindSectionByName(const_segname);
1605                   if (segment_sp.get()) {
1606                     Section *segment = segment_sp.get();
1607                     // Grow the section size as needed.
1608                     const lldb::addr_t sect64_min_addr = sect64.addr;
1609                     const lldb::addr_t sect64_max_addr =
1610                         sect64_min_addr + sect64.size;
1611                     const lldb::addr_t curr_seg_byte_size =
1612                         segment->GetByteSize();
1613                     const lldb::addr_t curr_seg_min_addr =
1614                         segment->GetFileAddress();
1615                     const lldb::addr_t curr_seg_max_addr =
1616                         curr_seg_min_addr + curr_seg_byte_size;
1617                     if (sect64_min_addr >= curr_seg_min_addr) {
1618                       const lldb::addr_t new_seg_byte_size =
1619                           sect64_max_addr - curr_seg_min_addr;
1620                       // Only grow the section size if needed
1621                       if (new_seg_byte_size > curr_seg_byte_size)
1622                         segment->SetByteSize(new_seg_byte_size);
1623                     } else {
1624                       // We need to change the base address of the segment and
1625                       // adjust the child section offsets for all existing
1626                       // children.
1627                       const lldb::addr_t slide_amount =
1628                           sect64_min_addr - curr_seg_min_addr;
1629                       segment->Slide(slide_amount, false);
1630                       segment->GetChildren().Slide(-slide_amount, false);
1631                       segment->SetByteSize(curr_seg_max_addr - sect64_min_addr);
1632                     }
1633 
1634                     // Grow the section size as needed.
1635                     if (sect64.offset) {
1636                       const lldb::addr_t segment_min_file_offset =
1637                           segment->GetFileOffset();
1638                       const lldb::addr_t segment_max_file_offset =
1639                           segment_min_file_offset + segment->GetFileSize();
1640 
1641                       const lldb::addr_t section_min_file_offset =
1642                           sect64.offset;
1643                       const lldb::addr_t section_max_file_offset =
1644                           section_min_file_offset + sect64.size;
1645                       const lldb::addr_t new_file_offset = std::min(
1646                           section_min_file_offset, segment_min_file_offset);
1647                       const lldb::addr_t new_file_size =
1648                           std::max(section_max_file_offset,
1649                                    segment_max_file_offset) -
1650                           new_file_offset;
1651                       segment->SetFileOffset(new_file_offset);
1652                       segment->SetFileSize(new_file_size);
1653                     }
1654                   } else {
1655                     // Create a fake section for the section's named segment
1656                     segment_sp.reset(new Section(
1657                         segment_sp, // Parent section
1658                         module_sp,  // Module to which this section belongs
1659                         this,       // Object file to which this section belongs
1660                         ++segID << 8, // Section ID is the 1 based segment index
1661                                       // shifted right by 8 bits as not to
1662                                       // collide with any of the 256 section IDs
1663                                       // that are possible
1664                         const_segname,         // Name of this section
1665                         eSectionTypeContainer, // This section is a container of
1666                                                // other sections.
1667                         sect64.addr, // File VM address == addresses as they are
1668                                      // found in the object file
1669                         sect64.size, // VM size in bytes of this section
1670                         sect64.offset, // Offset to the data for this section in
1671                                        // the file
1672                         sect64.offset ? sect64.size : 0, // Size in bytes of
1673                                                          // this section as
1674                                                          // found in the file
1675                         sect64.align,
1676                         load_cmd.flags)); // Flags for this section
1677                     segment_sp->SetIsFake(true);
1678                     segment_sp->SetPermissions(segment_permissions);
1679                     m_sections_ap->AddSection(segment_sp);
1680                     if (add_to_unified)
1681                       unified_section_list.AddSection(segment_sp);
1682                     segment_sp->SetIsEncrypted(segment_is_encrypted);
1683                   }
1684                 }
1685                 assert(segment_sp.get());
1686 
1687                 lldb::SectionType sect_type = eSectionTypeOther;
1688 
1689                 if (sect64.flags &
1690                     (S_ATTR_PURE_INSTRUCTIONS | S_ATTR_SOME_INSTRUCTIONS))
1691                   sect_type = eSectionTypeCode;
1692                 else {
1693                   uint32_t mach_sect_type = sect64.flags & SECTION_TYPE;
1694                   static ConstString g_sect_name_objc_data("__objc_data");
1695                   static ConstString g_sect_name_objc_msgrefs("__objc_msgrefs");
1696                   static ConstString g_sect_name_objc_selrefs("__objc_selrefs");
1697                   static ConstString g_sect_name_objc_classrefs(
1698                       "__objc_classrefs");
1699                   static ConstString g_sect_name_objc_superrefs(
1700                       "__objc_superrefs");
1701                   static ConstString g_sect_name_objc_const("__objc_const");
1702                   static ConstString g_sect_name_objc_classlist(
1703                       "__objc_classlist");
1704                   static ConstString g_sect_name_cfstring("__cfstring");
1705 
1706                   static ConstString g_sect_name_dwarf_debug_abbrev(
1707                       "__debug_abbrev");
1708                   static ConstString g_sect_name_dwarf_debug_aranges(
1709                       "__debug_aranges");
1710                   static ConstString g_sect_name_dwarf_debug_frame(
1711                       "__debug_frame");
1712                   static ConstString g_sect_name_dwarf_debug_info(
1713                       "__debug_info");
1714                   static ConstString g_sect_name_dwarf_debug_line(
1715                       "__debug_line");
1716                   static ConstString g_sect_name_dwarf_debug_loc("__debug_loc");
1717                   static ConstString g_sect_name_dwarf_debug_macinfo(
1718                       "__debug_macinfo");
1719                   static ConstString g_sect_name_dwarf_debug_pubnames(
1720                       "__debug_pubnames");
1721                   static ConstString g_sect_name_dwarf_debug_pubtypes(
1722                       "__debug_pubtypes");
1723                   static ConstString g_sect_name_dwarf_debug_ranges(
1724                       "__debug_ranges");
1725                   static ConstString g_sect_name_dwarf_debug_str("__debug_str");
1726                   static ConstString g_sect_name_dwarf_apple_names(
1727                       "__apple_names");
1728                   static ConstString g_sect_name_dwarf_apple_types(
1729                       "__apple_types");
1730                   static ConstString g_sect_name_dwarf_apple_namespaces(
1731                       "__apple_namespac");
1732                   static ConstString g_sect_name_dwarf_apple_objc(
1733                       "__apple_objc");
1734                   static ConstString g_sect_name_eh_frame("__eh_frame");
1735                   static ConstString g_sect_name_compact_unwind(
1736                       "__unwind_info");
1737                   static ConstString g_sect_name_text("__text");
1738                   static ConstString g_sect_name_data("__data");
1739                   static ConstString g_sect_name_go_symtab("__gosymtab");
1740 
1741                   if (section_name == g_sect_name_dwarf_debug_abbrev)
1742                     sect_type = eSectionTypeDWARFDebugAbbrev;
1743                   else if (section_name == g_sect_name_dwarf_debug_aranges)
1744                     sect_type = eSectionTypeDWARFDebugAranges;
1745                   else if (section_name == g_sect_name_dwarf_debug_frame)
1746                     sect_type = eSectionTypeDWARFDebugFrame;
1747                   else if (section_name == g_sect_name_dwarf_debug_info)
1748                     sect_type = eSectionTypeDWARFDebugInfo;
1749                   else if (section_name == g_sect_name_dwarf_debug_line)
1750                     sect_type = eSectionTypeDWARFDebugLine;
1751                   else if (section_name == g_sect_name_dwarf_debug_loc)
1752                     sect_type = eSectionTypeDWARFDebugLoc;
1753                   else if (section_name == g_sect_name_dwarf_debug_macinfo)
1754                     sect_type = eSectionTypeDWARFDebugMacInfo;
1755                   else if (section_name == g_sect_name_dwarf_debug_pubnames)
1756                     sect_type = eSectionTypeDWARFDebugPubNames;
1757                   else if (section_name == g_sect_name_dwarf_debug_pubtypes)
1758                     sect_type = eSectionTypeDWARFDebugPubTypes;
1759                   else if (section_name == g_sect_name_dwarf_debug_ranges)
1760                     sect_type = eSectionTypeDWARFDebugRanges;
1761                   else if (section_name == g_sect_name_dwarf_debug_str)
1762                     sect_type = eSectionTypeDWARFDebugStr;
1763                   else if (section_name == g_sect_name_dwarf_apple_names)
1764                     sect_type = eSectionTypeDWARFAppleNames;
1765                   else if (section_name == g_sect_name_dwarf_apple_types)
1766                     sect_type = eSectionTypeDWARFAppleTypes;
1767                   else if (section_name == g_sect_name_dwarf_apple_namespaces)
1768                     sect_type = eSectionTypeDWARFAppleNamespaces;
1769                   else if (section_name == g_sect_name_dwarf_apple_objc)
1770                     sect_type = eSectionTypeDWARFAppleObjC;
1771                   else if (section_name == g_sect_name_objc_selrefs)
1772                     sect_type = eSectionTypeDataCStringPointers;
1773                   else if (section_name == g_sect_name_objc_msgrefs)
1774                     sect_type = eSectionTypeDataObjCMessageRefs;
1775                   else if (section_name == g_sect_name_eh_frame)
1776                     sect_type = eSectionTypeEHFrame;
1777                   else if (section_name == g_sect_name_compact_unwind)
1778                     sect_type = eSectionTypeCompactUnwind;
1779                   else if (section_name == g_sect_name_cfstring)
1780                     sect_type = eSectionTypeDataObjCCFStrings;
1781                   else if (section_name == g_sect_name_go_symtab)
1782                     sect_type = eSectionTypeGoSymtab;
1783                   else if (section_name == g_sect_name_objc_data ||
1784                            section_name == g_sect_name_objc_classrefs ||
1785                            section_name == g_sect_name_objc_superrefs ||
1786                            section_name == g_sect_name_objc_const ||
1787                            section_name == g_sect_name_objc_classlist) {
1788                     sect_type = eSectionTypeDataPointers;
1789                   }
1790 
1791                   if (sect_type == eSectionTypeOther) {
1792                     switch (mach_sect_type) {
1793                     // TODO: categorize sections by other flags for regular
1794                     // sections
1795                     case S_REGULAR:
1796                       if (section_name == g_sect_name_text)
1797                         sect_type = eSectionTypeCode;
1798                       else if (section_name == g_sect_name_data)
1799                         sect_type = eSectionTypeData;
1800                       else
1801                         sect_type = eSectionTypeOther;
1802                       break;
1803                     case S_ZEROFILL:
1804                       sect_type = eSectionTypeZeroFill;
1805                       break;
1806                     case S_CSTRING_LITERALS:
1807                       sect_type = eSectionTypeDataCString;
1808                       break; // section with only literal C strings
1809                     case S_4BYTE_LITERALS:
1810                       sect_type = eSectionTypeData4;
1811                       break; // section with only 4 byte literals
1812                     case S_8BYTE_LITERALS:
1813                       sect_type = eSectionTypeData8;
1814                       break; // section with only 8 byte literals
1815                     case S_LITERAL_POINTERS:
1816                       sect_type = eSectionTypeDataPointers;
1817                       break; // section with only pointers to literals
1818                     case S_NON_LAZY_SYMBOL_POINTERS:
1819                       sect_type = eSectionTypeDataPointers;
1820                       break; // section with only non-lazy symbol pointers
1821                     case S_LAZY_SYMBOL_POINTERS:
1822                       sect_type = eSectionTypeDataPointers;
1823                       break; // section with only lazy symbol pointers
1824                     case S_SYMBOL_STUBS:
1825                       sect_type = eSectionTypeCode;
1826                       break; // section with only symbol stubs, byte size of
1827                              // stub in the reserved2 field
1828                     case S_MOD_INIT_FUNC_POINTERS:
1829                       sect_type = eSectionTypeDataPointers;
1830                       break; // section with only function pointers for
1831                              // initialization
1832                     case S_MOD_TERM_FUNC_POINTERS:
1833                       sect_type = eSectionTypeDataPointers;
1834                       break; // section with only function pointers for
1835                              // termination
1836                     case S_COALESCED:
1837                       sect_type = eSectionTypeOther;
1838                       break;
1839                     case S_GB_ZEROFILL:
1840                       sect_type = eSectionTypeZeroFill;
1841                       break;
1842                     case S_INTERPOSING:
1843                       sect_type = eSectionTypeCode;
1844                       break; // section with only pairs of function pointers for
1845                              // interposing
1846                     case S_16BYTE_LITERALS:
1847                       sect_type = eSectionTypeData16;
1848                       break; // section with only 16 byte literals
1849                     case S_DTRACE_DOF:
1850                       sect_type = eSectionTypeDebug;
1851                       break;
1852                     case S_LAZY_DYLIB_SYMBOL_POINTERS:
1853                       sect_type = eSectionTypeDataPointers;
1854                       break;
1855                     default:
1856                       break;
1857                     }
1858                   }
1859                 }
1860 
1861                 SectionSP section_sp(new Section(
1862                     segment_sp, module_sp, this, ++sectID, section_name,
1863                     sect_type, sect64.addr - segment_sp->GetFileAddress(),
1864                     sect64.size, sect64.offset,
1865                     sect64.offset == 0 ? 0 : sect64.size, sect64.align,
1866                     sect64.flags));
1867                 // Set the section to be encrypted to match the segment
1868 
1869                 bool section_is_encrypted = false;
1870                 if (!segment_is_encrypted && load_cmd.filesize != 0)
1871                   section_is_encrypted =
1872                       encrypted_file_ranges.FindEntryThatContains(
1873                           sect64.offset) != NULL;
1874 
1875                 section_sp->SetIsEncrypted(segment_is_encrypted ||
1876                                            section_is_encrypted);
1877                 section_sp->SetPermissions(segment_permissions);
1878                 segment_sp->GetChildren().AddSection(section_sp);
1879 
1880                 if (segment_sp->IsFake()) {
1881                   segment_sp.reset();
1882                   const_segname.Clear();
1883                 }
1884               }
1885             }
1886             if (segment_sp && is_dsym) {
1887               if (first_segment_sectID <= sectID) {
1888                 lldb::user_id_t sect_uid;
1889                 for (sect_uid = first_segment_sectID; sect_uid <= sectID;
1890                      ++sect_uid) {
1891                   SectionSP curr_section_sp(
1892                       segment_sp->GetChildren().FindSectionByID(sect_uid));
1893                   SectionSP next_section_sp;
1894                   if (sect_uid + 1 <= sectID)
1895                     next_section_sp =
1896                         segment_sp->GetChildren().FindSectionByID(sect_uid + 1);
1897 
1898                   if (curr_section_sp.get()) {
1899                     if (curr_section_sp->GetByteSize() == 0) {
1900                       if (next_section_sp.get() != NULL)
1901                         curr_section_sp->SetByteSize(
1902                             next_section_sp->GetFileAddress() -
1903                             curr_section_sp->GetFileAddress());
1904                       else
1905                         curr_section_sp->SetByteSize(load_cmd.vmsize);
1906                     }
1907                   }
1908                 }
1909               }
1910             }
1911           }
1912         }
1913       } else if (load_cmd.cmd == LC_DYSYMTAB) {
1914         m_dysymtab.cmd = load_cmd.cmd;
1915         m_dysymtab.cmdsize = load_cmd.cmdsize;
1916         m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
1917                       (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2);
1918       }
1919 
1920       offset = load_cmd_offset + load_cmd.cmdsize;
1921     }
1922 
1923     if (section_file_addresses_changed && module_sp.get()) {
1924       module_sp->SectionFileAddressesChanged();
1925     }
1926   }
1927 }
1928 
1929 class MachSymtabSectionInfo {
1930 public:
1931   MachSymtabSectionInfo(SectionList *section_list)
1932       : m_section_list(section_list), m_section_infos() {
1933     // Get the number of sections down to a depth of 1 to include
1934     // all segments and their sections, but no other sections that
1935     // may be added for debug map or
1936     m_section_infos.resize(section_list->GetNumSections(1));
1937   }
1938 
1939   SectionSP GetSection(uint8_t n_sect, addr_t file_addr) {
1940     if (n_sect == 0)
1941       return SectionSP();
1942     if (n_sect < m_section_infos.size()) {
1943       if (!m_section_infos[n_sect].section_sp) {
1944         SectionSP section_sp(m_section_list->FindSectionByID(n_sect));
1945         m_section_infos[n_sect].section_sp = section_sp;
1946         if (section_sp) {
1947           m_section_infos[n_sect].vm_range.SetBaseAddress(
1948               section_sp->GetFileAddress());
1949           m_section_infos[n_sect].vm_range.SetByteSize(
1950               section_sp->GetByteSize());
1951         } else {
1952           Host::SystemLog(Host::eSystemLogError,
1953                           "error: unable to find section for section %u\n",
1954                           n_sect);
1955         }
1956       }
1957       if (m_section_infos[n_sect].vm_range.Contains(file_addr)) {
1958         // Symbol is in section.
1959         return m_section_infos[n_sect].section_sp;
1960       } else if (m_section_infos[n_sect].vm_range.GetByteSize() == 0 &&
1961                  m_section_infos[n_sect].vm_range.GetBaseAddress() ==
1962                      file_addr) {
1963         // Symbol is in section with zero size, but has the same start
1964         // address as the section. This can happen with linker symbols
1965         // (symbols that start with the letter 'l' or 'L'.
1966         return m_section_infos[n_sect].section_sp;
1967       }
1968     }
1969     return m_section_list->FindSectionContainingFileAddress(file_addr);
1970   }
1971 
1972 protected:
1973   struct SectionInfo {
1974     SectionInfo() : vm_range(), section_sp() {}
1975 
1976     VMRange vm_range;
1977     SectionSP section_sp;
1978   };
1979   SectionList *m_section_list;
1980   std::vector<SectionInfo> m_section_infos;
1981 };
1982 
1983 struct TrieEntry {
1984   TrieEntry()
1985       : name(), address(LLDB_INVALID_ADDRESS), flags(0), other(0),
1986         import_name() {}
1987 
1988   void Clear() {
1989     name.Clear();
1990     address = LLDB_INVALID_ADDRESS;
1991     flags = 0;
1992     other = 0;
1993     import_name.Clear();
1994   }
1995 
1996   void Dump() const {
1997     printf("0x%16.16llx 0x%16.16llx 0x%16.16llx \"%s\"",
1998            static_cast<unsigned long long>(address),
1999            static_cast<unsigned long long>(flags),
2000            static_cast<unsigned long long>(other), name.GetCString());
2001     if (import_name)
2002       printf(" -> \"%s\"\n", import_name.GetCString());
2003     else
2004       printf("\n");
2005   }
2006   ConstString name;
2007   uint64_t address;
2008   uint64_t flags;
2009   uint64_t other;
2010   ConstString import_name;
2011 };
2012 
2013 struct TrieEntryWithOffset {
2014   lldb::offset_t nodeOffset;
2015   TrieEntry entry;
2016 
2017   TrieEntryWithOffset(lldb::offset_t offset) : nodeOffset(offset), entry() {}
2018 
2019   void Dump(uint32_t idx) const {
2020     printf("[%3u] 0x%16.16llx: ", idx,
2021            static_cast<unsigned long long>(nodeOffset));
2022     entry.Dump();
2023   }
2024 
2025   bool operator<(const TrieEntryWithOffset &other) const {
2026     return (nodeOffset < other.nodeOffset);
2027   }
2028 };
2029 
2030 static bool ParseTrieEntries(DataExtractor &data, lldb::offset_t offset,
2031                              const bool is_arm,
2032                              std::vector<llvm::StringRef> &nameSlices,
2033                              std::set<lldb::addr_t> &resolver_addresses,
2034                              std::vector<TrieEntryWithOffset> &output) {
2035   if (!data.ValidOffset(offset))
2036     return true;
2037 
2038   const uint64_t terminalSize = data.GetULEB128(&offset);
2039   lldb::offset_t children_offset = offset + terminalSize;
2040   if (terminalSize != 0) {
2041     TrieEntryWithOffset e(offset);
2042     e.entry.flags = data.GetULEB128(&offset);
2043     const char *import_name = NULL;
2044     if (e.entry.flags & EXPORT_SYMBOL_FLAGS_REEXPORT) {
2045       e.entry.address = 0;
2046       e.entry.other = data.GetULEB128(&offset); // dylib ordinal
2047       import_name = data.GetCStr(&offset);
2048     } else {
2049       e.entry.address = data.GetULEB128(&offset);
2050       if (e.entry.flags & EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER) {
2051         e.entry.other = data.GetULEB128(&offset);
2052         uint64_t resolver_addr = e.entry.other;
2053         if (is_arm)
2054           resolver_addr &= THUMB_ADDRESS_BIT_MASK;
2055         resolver_addresses.insert(resolver_addr);
2056       } else
2057         e.entry.other = 0;
2058     }
2059     // Only add symbols that are reexport symbols with a valid import name
2060     if (EXPORT_SYMBOL_FLAGS_REEXPORT & e.entry.flags && import_name &&
2061         import_name[0]) {
2062       std::string name;
2063       if (!nameSlices.empty()) {
2064         for (auto name_slice : nameSlices)
2065           name.append(name_slice.data(), name_slice.size());
2066       }
2067       if (name.size() > 1) {
2068         // Skip the leading '_'
2069         e.entry.name.SetCStringWithLength(name.c_str() + 1, name.size() - 1);
2070       }
2071       if (import_name) {
2072         // Skip the leading '_'
2073         e.entry.import_name.SetCString(import_name + 1);
2074       }
2075       output.push_back(e);
2076     }
2077   }
2078 
2079   const uint8_t childrenCount = data.GetU8(&children_offset);
2080   for (uint8_t i = 0; i < childrenCount; ++i) {
2081     const char *cstr = data.GetCStr(&children_offset);
2082     if (cstr)
2083       nameSlices.push_back(llvm::StringRef(cstr));
2084     else
2085       return false; // Corrupt data
2086     lldb::offset_t childNodeOffset = data.GetULEB128(&children_offset);
2087     if (childNodeOffset) {
2088       if (!ParseTrieEntries(data, childNodeOffset, is_arm, nameSlices,
2089                             resolver_addresses, output)) {
2090         return false;
2091       }
2092     }
2093     nameSlices.pop_back();
2094   }
2095   return true;
2096 }
2097 
2098 // Read the UUID out of a dyld_shared_cache file on-disk.
2099 UUID ObjectFileMachO::GetSharedCacheUUID(FileSpec dyld_shared_cache,
2100                                          const ByteOrder byte_order,
2101                                          const uint32_t addr_byte_size) {
2102   UUID dsc_uuid;
2103   DataBufferSP DscData = DataBufferLLVM::CreateSliceFromPath(
2104       dyld_shared_cache.GetPath(),
2105       sizeof(struct lldb_copy_dyld_cache_header_v1), 0);
2106   if (!DscData)
2107     return dsc_uuid;
2108   DataExtractor dsc_header_data(DscData, byte_order, addr_byte_size);
2109 
2110   char version_str[7];
2111   lldb::offset_t offset = 0;
2112   memcpy(version_str, dsc_header_data.GetData(&offset, 6), 6);
2113   version_str[6] = '\0';
2114   if (strcmp(version_str, "dyld_v") == 0) {
2115     offset = offsetof(struct lldb_copy_dyld_cache_header_v1, uuid);
2116     uint8_t uuid_bytes[sizeof(uuid_t)];
2117     memcpy(uuid_bytes, dsc_header_data.GetData(&offset, sizeof(uuid_t)),
2118            sizeof(uuid_t));
2119     dsc_uuid.SetBytes(uuid_bytes);
2120   }
2121   return dsc_uuid;
2122 }
2123 
2124 size_t ObjectFileMachO::ParseSymtab() {
2125   static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
2126   Timer scoped_timer(func_cat, "ObjectFileMachO::ParseSymtab () module = %s",
2127                      m_file.GetFilename().AsCString(""));
2128   ModuleSP module_sp(GetModule());
2129   if (!module_sp)
2130     return 0;
2131 
2132   struct symtab_command symtab_load_command = {0, 0, 0, 0, 0, 0};
2133   struct linkedit_data_command function_starts_load_command = {0, 0, 0, 0};
2134   struct dyld_info_command dyld_info = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
2135   typedef AddressDataArray<lldb::addr_t, bool, 100> FunctionStarts;
2136   FunctionStarts function_starts;
2137   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
2138   uint32_t i;
2139   FileSpecList dylib_files;
2140   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS));
2141   static const llvm::StringRef g_objc_v2_prefix_class("_OBJC_CLASS_$_");
2142   static const llvm::StringRef g_objc_v2_prefix_metaclass("_OBJC_METACLASS_$_");
2143   static const llvm::StringRef g_objc_v2_prefix_ivar("_OBJC_IVAR_$_");
2144 
2145   for (i = 0; i < m_header.ncmds; ++i) {
2146     const lldb::offset_t cmd_offset = offset;
2147     // Read in the load command and load command size
2148     struct load_command lc;
2149     if (m_data.GetU32(&offset, &lc, 2) == NULL)
2150       break;
2151     // Watch for the symbol table load command
2152     switch (lc.cmd) {
2153     case LC_SYMTAB:
2154       symtab_load_command.cmd = lc.cmd;
2155       symtab_load_command.cmdsize = lc.cmdsize;
2156       // Read in the rest of the symtab load command
2157       if (m_data.GetU32(&offset, &symtab_load_command.symoff, 4) ==
2158           0) // fill in symoff, nsyms, stroff, strsize fields
2159         return 0;
2160       if (symtab_load_command.symoff == 0) {
2161         if (log)
2162           module_sp->LogMessage(log, "LC_SYMTAB.symoff == 0");
2163         return 0;
2164       }
2165 
2166       if (symtab_load_command.stroff == 0) {
2167         if (log)
2168           module_sp->LogMessage(log, "LC_SYMTAB.stroff == 0");
2169         return 0;
2170       }
2171 
2172       if (symtab_load_command.nsyms == 0) {
2173         if (log)
2174           module_sp->LogMessage(log, "LC_SYMTAB.nsyms == 0");
2175         return 0;
2176       }
2177 
2178       if (symtab_load_command.strsize == 0) {
2179         if (log)
2180           module_sp->LogMessage(log, "LC_SYMTAB.strsize == 0");
2181         return 0;
2182       }
2183       break;
2184 
2185     case LC_DYLD_INFO:
2186     case LC_DYLD_INFO_ONLY:
2187       if (m_data.GetU32(&offset, &dyld_info.rebase_off, 10)) {
2188         dyld_info.cmd = lc.cmd;
2189         dyld_info.cmdsize = lc.cmdsize;
2190       } else {
2191         memset(&dyld_info, 0, sizeof(dyld_info));
2192       }
2193       break;
2194 
2195     case LC_LOAD_DYLIB:
2196     case LC_LOAD_WEAK_DYLIB:
2197     case LC_REEXPORT_DYLIB:
2198     case LC_LOADFVMLIB:
2199     case LC_LOAD_UPWARD_DYLIB: {
2200       uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
2201       const char *path = m_data.PeekCStr(name_offset);
2202       if (path) {
2203         FileSpec file_spec(path, false);
2204         // Strip the path if there is @rpath, @executable, etc so we just use
2205         // the basename
2206         if (path[0] == '@')
2207           file_spec.GetDirectory().Clear();
2208 
2209         if (lc.cmd == LC_REEXPORT_DYLIB) {
2210           m_reexported_dylibs.AppendIfUnique(file_spec);
2211         }
2212 
2213         dylib_files.Append(file_spec);
2214       }
2215     } break;
2216 
2217     case LC_FUNCTION_STARTS:
2218       function_starts_load_command.cmd = lc.cmd;
2219       function_starts_load_command.cmdsize = lc.cmdsize;
2220       if (m_data.GetU32(&offset, &function_starts_load_command.dataoff, 2) ==
2221           NULL) // fill in symoff, nsyms, stroff, strsize fields
2222         memset(&function_starts_load_command, 0,
2223                sizeof(function_starts_load_command));
2224       break;
2225 
2226     default:
2227       break;
2228     }
2229     offset = cmd_offset + lc.cmdsize;
2230   }
2231 
2232   if (symtab_load_command.cmd) {
2233     Symtab *symtab = m_symtab_ap.get();
2234     SectionList *section_list = GetSectionList();
2235     if (section_list == NULL)
2236       return 0;
2237 
2238     const uint32_t addr_byte_size = m_data.GetAddressByteSize();
2239     const ByteOrder byte_order = m_data.GetByteOrder();
2240     bool bit_width_32 = addr_byte_size == 4;
2241     const size_t nlist_byte_size =
2242         bit_width_32 ? sizeof(struct nlist) : sizeof(struct nlist_64);
2243 
2244     DataExtractor nlist_data(NULL, 0, byte_order, addr_byte_size);
2245     DataExtractor strtab_data(NULL, 0, byte_order, addr_byte_size);
2246     DataExtractor function_starts_data(NULL, 0, byte_order, addr_byte_size);
2247     DataExtractor indirect_symbol_index_data(NULL, 0, byte_order,
2248                                              addr_byte_size);
2249     DataExtractor dyld_trie_data(NULL, 0, byte_order, addr_byte_size);
2250 
2251     const addr_t nlist_data_byte_size =
2252         symtab_load_command.nsyms * nlist_byte_size;
2253     const addr_t strtab_data_byte_size = symtab_load_command.strsize;
2254     addr_t strtab_addr = LLDB_INVALID_ADDRESS;
2255 
2256     ProcessSP process_sp(m_process_wp.lock());
2257     Process *process = process_sp.get();
2258 
2259     uint32_t memory_module_load_level = eMemoryModuleLoadLevelComplete;
2260 
2261     if (process && m_header.filetype != llvm::MachO::MH_OBJECT) {
2262       Target &target = process->GetTarget();
2263 
2264       memory_module_load_level = target.GetMemoryModuleLoadLevel();
2265 
2266       SectionSP linkedit_section_sp(
2267           section_list->FindSectionByName(GetSegmentNameLINKEDIT()));
2268       // Reading mach file from memory in a process or core file...
2269 
2270       if (linkedit_section_sp) {
2271         addr_t linkedit_load_addr =
2272             linkedit_section_sp->GetLoadBaseAddress(&target);
2273         if (linkedit_load_addr == LLDB_INVALID_ADDRESS) {
2274           // We might be trying to access the symbol table before the
2275           // __LINKEDIT's load
2276           // address has been set in the target. We can't fail to read the
2277           // symbol table,
2278           // so calculate the right address manually
2279           linkedit_load_addr = CalculateSectionLoadAddressForMemoryImage(
2280               m_memory_addr, GetMachHeaderSection(), linkedit_section_sp.get());
2281         }
2282 
2283         const addr_t linkedit_file_offset =
2284             linkedit_section_sp->GetFileOffset();
2285         const addr_t symoff_addr = linkedit_load_addr +
2286                                    symtab_load_command.symoff -
2287                                    linkedit_file_offset;
2288         strtab_addr = linkedit_load_addr + symtab_load_command.stroff -
2289                       linkedit_file_offset;
2290 
2291         bool data_was_read = false;
2292 
2293 #if defined(__APPLE__) &&                                                      \
2294     (defined(__arm__) || defined(__arm64__) || defined(__aarch64__))
2295         if (m_header.flags & 0x80000000u &&
2296             process->GetAddressByteSize() == sizeof(void *)) {
2297           // This mach-o memory file is in the dyld shared cache. If this
2298           // program is not remote and this is iOS, then this process will
2299           // share the same shared cache as the process we are debugging and
2300           // we can read the entire __LINKEDIT from the address space in this
2301           // process. This is a needed optimization that is used for local iOS
2302           // debugging only since all shared libraries in the shared cache do
2303           // not have corresponding files that exist in the file system of the
2304           // device. They have been combined into a single file. This means we
2305           // always have to load these files from memory. All of the symbol and
2306           // string tables from all of the __LINKEDIT sections from the shared
2307           // libraries in the shared cache have been merged into a single large
2308           // symbol and string table. Reading all of this symbol and string
2309           // table
2310           // data across can slow down debug launch times, so we optimize this
2311           // by
2312           // reading the memory for the __LINKEDIT section from this process.
2313 
2314           UUID lldb_shared_cache(GetLLDBSharedCacheUUID());
2315           UUID process_shared_cache(GetProcessSharedCacheUUID(process));
2316           bool use_lldb_cache = true;
2317           if (lldb_shared_cache.IsValid() && process_shared_cache.IsValid() &&
2318               lldb_shared_cache != process_shared_cache) {
2319             use_lldb_cache = false;
2320             ModuleSP module_sp(GetModule());
2321             if (module_sp)
2322               module_sp->ReportWarning("shared cache in process does not match "
2323                                        "lldb's own shared cache, startup will "
2324                                        "be slow.");
2325           }
2326 
2327           PlatformSP platform_sp(target.GetPlatform());
2328           if (platform_sp && platform_sp->IsHost() && use_lldb_cache) {
2329             data_was_read = true;
2330             nlist_data.SetData((void *)symoff_addr, nlist_data_byte_size,
2331                                eByteOrderLittle);
2332             strtab_data.SetData((void *)strtab_addr, strtab_data_byte_size,
2333                                 eByteOrderLittle);
2334             if (function_starts_load_command.cmd) {
2335               const addr_t func_start_addr =
2336                   linkedit_load_addr + function_starts_load_command.dataoff -
2337                   linkedit_file_offset;
2338               function_starts_data.SetData(
2339                   (void *)func_start_addr,
2340                   function_starts_load_command.datasize, eByteOrderLittle);
2341             }
2342           }
2343         }
2344 #endif
2345 
2346         if (!data_was_read) {
2347           // Always load dyld - the dynamic linker - from memory if we didn't
2348           // find a binary anywhere else.
2349           // lldb will not register dylib/framework/bundle loads/unloads if we
2350           // don't have the dyld symbols,
2351           // we force dyld to load from memory despite the user's
2352           // target.memory-module-load-level setting.
2353           if (memory_module_load_level == eMemoryModuleLoadLevelComplete ||
2354               m_header.filetype == llvm::MachO::MH_DYLINKER) {
2355             DataBufferSP nlist_data_sp(
2356                 ReadMemory(process_sp, symoff_addr, nlist_data_byte_size));
2357             if (nlist_data_sp)
2358               nlist_data.SetData(nlist_data_sp, 0,
2359                                  nlist_data_sp->GetByteSize());
2360             // Load strings individually from memory when loading from memory
2361             // since shared cache
2362             // string tables contain strings for all symbols from all shared
2363             // cached libraries
2364             // DataBufferSP strtab_data_sp (ReadMemory (process_sp, strtab_addr,
2365             // strtab_data_byte_size));
2366             // if (strtab_data_sp)
2367             //    strtab_data.SetData (strtab_data_sp, 0,
2368             //    strtab_data_sp->GetByteSize());
2369             if (m_dysymtab.nindirectsyms != 0) {
2370               const addr_t indirect_syms_addr = linkedit_load_addr +
2371                                                 m_dysymtab.indirectsymoff -
2372                                                 linkedit_file_offset;
2373               DataBufferSP indirect_syms_data_sp(
2374                   ReadMemory(process_sp, indirect_syms_addr,
2375                              m_dysymtab.nindirectsyms * 4));
2376               if (indirect_syms_data_sp)
2377                 indirect_symbol_index_data.SetData(
2378                     indirect_syms_data_sp, 0,
2379                     indirect_syms_data_sp->GetByteSize());
2380             }
2381           } else if (memory_module_load_level >=
2382                      eMemoryModuleLoadLevelPartial) {
2383             if (function_starts_load_command.cmd) {
2384               const addr_t func_start_addr =
2385                   linkedit_load_addr + function_starts_load_command.dataoff -
2386                   linkedit_file_offset;
2387               DataBufferSP func_start_data_sp(
2388                   ReadMemory(process_sp, func_start_addr,
2389                              function_starts_load_command.datasize));
2390               if (func_start_data_sp)
2391                 function_starts_data.SetData(func_start_data_sp, 0,
2392                                              func_start_data_sp->GetByteSize());
2393             }
2394           }
2395         }
2396       }
2397     } else {
2398       nlist_data.SetData(m_data, symtab_load_command.symoff,
2399                          nlist_data_byte_size);
2400       strtab_data.SetData(m_data, symtab_load_command.stroff,
2401                           strtab_data_byte_size);
2402 
2403       if (dyld_info.export_size > 0) {
2404         dyld_trie_data.SetData(m_data, dyld_info.export_off,
2405                                dyld_info.export_size);
2406       }
2407 
2408       if (m_dysymtab.nindirectsyms != 0) {
2409         indirect_symbol_index_data.SetData(m_data, m_dysymtab.indirectsymoff,
2410                                            m_dysymtab.nindirectsyms * 4);
2411       }
2412       if (function_starts_load_command.cmd) {
2413         function_starts_data.SetData(m_data,
2414                                      function_starts_load_command.dataoff,
2415                                      function_starts_load_command.datasize);
2416       }
2417     }
2418 
2419     if (nlist_data.GetByteSize() == 0 &&
2420         memory_module_load_level == eMemoryModuleLoadLevelComplete) {
2421       if (log)
2422         module_sp->LogMessage(log, "failed to read nlist data");
2423       return 0;
2424     }
2425 
2426     const bool have_strtab_data = strtab_data.GetByteSize() > 0;
2427     if (!have_strtab_data) {
2428       if (process) {
2429         if (strtab_addr == LLDB_INVALID_ADDRESS) {
2430           if (log)
2431             module_sp->LogMessage(log, "failed to locate the strtab in memory");
2432           return 0;
2433         }
2434       } else {
2435         if (log)
2436           module_sp->LogMessage(log, "failed to read strtab data");
2437         return 0;
2438       }
2439     }
2440 
2441     const ConstString &g_segment_name_TEXT = GetSegmentNameTEXT();
2442     const ConstString &g_segment_name_DATA = GetSegmentNameDATA();
2443     const ConstString &g_segment_name_DATA_DIRTY = GetSegmentNameDATA_DIRTY();
2444     const ConstString &g_segment_name_DATA_CONST = GetSegmentNameDATA_CONST();
2445     const ConstString &g_segment_name_OBJC = GetSegmentNameOBJC();
2446     const ConstString &g_section_name_eh_frame = GetSectionNameEHFrame();
2447     SectionSP text_section_sp(
2448         section_list->FindSectionByName(g_segment_name_TEXT));
2449     SectionSP data_section_sp(
2450         section_list->FindSectionByName(g_segment_name_DATA));
2451     SectionSP data_dirty_section_sp(
2452         section_list->FindSectionByName(g_segment_name_DATA_DIRTY));
2453     SectionSP data_const_section_sp(
2454         section_list->FindSectionByName(g_segment_name_DATA_CONST));
2455     SectionSP objc_section_sp(
2456         section_list->FindSectionByName(g_segment_name_OBJC));
2457     SectionSP eh_frame_section_sp;
2458     if (text_section_sp.get())
2459       eh_frame_section_sp = text_section_sp->GetChildren().FindSectionByName(
2460           g_section_name_eh_frame);
2461     else
2462       eh_frame_section_sp =
2463           section_list->FindSectionByName(g_section_name_eh_frame);
2464 
2465     const bool is_arm = (m_header.cputype == llvm::MachO::CPU_TYPE_ARM);
2466 
2467     // lldb works best if it knows the start address of all functions in a
2468     // module.
2469     // Linker symbols or debug info are normally the best source of information
2470     // for start addr / size but
2471     // they may be stripped in a released binary.
2472     // Two additional sources of information exist in Mach-O binaries:
2473     //    LC_FUNCTION_STARTS - a list of ULEB128 encoded offsets of each
2474     //    function's start address in the
2475     //                         binary, relative to the text section.
2476     //    eh_frame           - the eh_frame FDEs have the start addr & size of
2477     //    each function
2478     //  LC_FUNCTION_STARTS is the fastest source to read in, and is present on
2479     //  all modern binaries.
2480     //  Binaries built to run on older releases may need to use eh_frame
2481     //  information.
2482 
2483     if (text_section_sp && function_starts_data.GetByteSize()) {
2484       FunctionStarts::Entry function_start_entry;
2485       function_start_entry.data = false;
2486       lldb::offset_t function_start_offset = 0;
2487       function_start_entry.addr = text_section_sp->GetFileAddress();
2488       uint64_t delta;
2489       while ((delta = function_starts_data.GetULEB128(&function_start_offset)) >
2490              0) {
2491         // Now append the current entry
2492         function_start_entry.addr += delta;
2493         function_starts.Append(function_start_entry);
2494       }
2495     } else {
2496       // If m_type is eTypeDebugInfo, then this is a dSYM - it will have the
2497       // load command claiming an eh_frame
2498       // but it doesn't actually have the eh_frame content.  And if we have a
2499       // dSYM, we don't need to do any
2500       // of this fill-in-the-missing-symbols works anyway - the debug info
2501       // should give us all the functions in
2502       // the module.
2503       if (text_section_sp.get() && eh_frame_section_sp.get() &&
2504           m_type != eTypeDebugInfo) {
2505         DWARFCallFrameInfo eh_frame(*this, eh_frame_section_sp,
2506                                     DWARFCallFrameInfo::EH);
2507         DWARFCallFrameInfo::FunctionAddressAndSizeVector functions;
2508         eh_frame.GetFunctionAddressAndSizeVector(functions);
2509         addr_t text_base_addr = text_section_sp->GetFileAddress();
2510         size_t count = functions.GetSize();
2511         for (size_t i = 0; i < count; ++i) {
2512           const DWARFCallFrameInfo::FunctionAddressAndSizeVector::Entry *func =
2513               functions.GetEntryAtIndex(i);
2514           if (func) {
2515             FunctionStarts::Entry function_start_entry;
2516             function_start_entry.addr = func->base - text_base_addr;
2517             function_starts.Append(function_start_entry);
2518           }
2519         }
2520       }
2521     }
2522 
2523     const size_t function_starts_count = function_starts.GetSize();
2524 
2525     // For user process binaries (executables, dylibs, frameworks, bundles), if
2526     // we don't have
2527     // LC_FUNCTION_STARTS/eh_frame section in this binary, we're going to assume
2528     // the binary
2529     // has been stripped.  Don't allow assembly language instruction emulation
2530     // because we don't
2531     // know proper function start boundaries.
2532     //
2533     // For all other types of binaries (kernels, stand-alone bare board
2534     // binaries, kexts), they
2535     // may not have LC_FUNCTION_STARTS / eh_frame sections - we should not make
2536     // any assumptions
2537     // about them based on that.
2538     if (function_starts_count == 0 && CalculateStrata() == eStrataUser) {
2539       m_allow_assembly_emulation_unwind_plans = false;
2540       Log *unwind_or_symbol_log(lldb_private::GetLogIfAnyCategoriesSet(
2541           LIBLLDB_LOG_SYMBOLS | LIBLLDB_LOG_UNWIND));
2542 
2543       if (unwind_or_symbol_log)
2544         module_sp->LogMessage(
2545             unwind_or_symbol_log,
2546             "no LC_FUNCTION_STARTS, will not allow assembly profiled unwinds");
2547     }
2548 
2549     const user_id_t TEXT_eh_frame_sectID =
2550         eh_frame_section_sp.get() ? eh_frame_section_sp->GetID()
2551                                   : static_cast<user_id_t>(NO_SECT);
2552 
2553     lldb::offset_t nlist_data_offset = 0;
2554 
2555     uint32_t N_SO_index = UINT32_MAX;
2556 
2557     MachSymtabSectionInfo section_info(section_list);
2558     std::vector<uint32_t> N_FUN_indexes;
2559     std::vector<uint32_t> N_NSYM_indexes;
2560     std::vector<uint32_t> N_INCL_indexes;
2561     std::vector<uint32_t> N_BRAC_indexes;
2562     std::vector<uint32_t> N_COMM_indexes;
2563     typedef std::multimap<uint64_t, uint32_t> ValueToSymbolIndexMap;
2564     typedef std::map<uint32_t, uint32_t> NListIndexToSymbolIndexMap;
2565     typedef std::map<const char *, uint32_t> ConstNameToSymbolIndexMap;
2566     ValueToSymbolIndexMap N_FUN_addr_to_sym_idx;
2567     ValueToSymbolIndexMap N_STSYM_addr_to_sym_idx;
2568     ConstNameToSymbolIndexMap N_GSYM_name_to_sym_idx;
2569     // Any symbols that get merged into another will get an entry
2570     // in this map so we know
2571     NListIndexToSymbolIndexMap m_nlist_idx_to_sym_idx;
2572     uint32_t nlist_idx = 0;
2573     Symbol *symbol_ptr = NULL;
2574 
2575     uint32_t sym_idx = 0;
2576     Symbol *sym = NULL;
2577     size_t num_syms = 0;
2578     std::string memory_symbol_name;
2579     uint32_t unmapped_local_symbols_found = 0;
2580 
2581     std::vector<TrieEntryWithOffset> trie_entries;
2582     std::set<lldb::addr_t> resolver_addresses;
2583 
2584     if (dyld_trie_data.GetByteSize() > 0) {
2585       std::vector<llvm::StringRef> nameSlices;
2586       ParseTrieEntries(dyld_trie_data, 0, is_arm, nameSlices,
2587                        resolver_addresses, trie_entries);
2588 
2589       ConstString text_segment_name("__TEXT");
2590       SectionSP text_segment_sp =
2591           GetSectionList()->FindSectionByName(text_segment_name);
2592       if (text_segment_sp) {
2593         const lldb::addr_t text_segment_file_addr =
2594             text_segment_sp->GetFileAddress();
2595         if (text_segment_file_addr != LLDB_INVALID_ADDRESS) {
2596           for (auto &e : trie_entries)
2597             e.entry.address += text_segment_file_addr;
2598         }
2599       }
2600     }
2601 
2602     typedef std::set<ConstString> IndirectSymbols;
2603     IndirectSymbols indirect_symbol_names;
2604 
2605 #if defined(__APPLE__) &&                                                      \
2606     (defined(__arm__) || defined(__arm64__) || defined(__aarch64__))
2607 
2608     // Some recent builds of the dyld_shared_cache (hereafter: DSC) have been
2609     // optimized by moving LOCAL
2610     // symbols out of the memory mapped portion of the DSC. The symbol
2611     // information has all been retained,
2612     // but it isn't available in the normal nlist data. However, there *are*
2613     // duplicate entries of *some*
2614     // LOCAL symbols in the normal nlist data. To handle this situation
2615     // correctly, we must first attempt
2616     // to parse any DSC unmapped symbol information. If we find any, we set a
2617     // flag that tells the normal
2618     // nlist parser to ignore all LOCAL symbols.
2619 
2620     if (m_header.flags & 0x80000000u) {
2621       // Before we can start mapping the DSC, we need to make certain the target
2622       // process is actually
2623       // using the cache we can find.
2624 
2625       // Next we need to determine the correct path for the dyld shared cache.
2626 
2627       ArchSpec header_arch;
2628       GetArchitecture(header_arch);
2629       char dsc_path[PATH_MAX];
2630       char dsc_path_development[PATH_MAX];
2631 
2632       snprintf(
2633           dsc_path, sizeof(dsc_path), "%s%s%s",
2634           "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR
2635                                                        */
2636           "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */
2637           header_arch.GetArchitectureName());
2638 
2639       snprintf(
2640           dsc_path_development, sizeof(dsc_path), "%s%s%s%s",
2641           "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR
2642                                                        */
2643           "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */
2644           header_arch.GetArchitectureName(), ".development");
2645 
2646       FileSpec dsc_nondevelopment_filespec(dsc_path, false);
2647       FileSpec dsc_development_filespec(dsc_path_development, false);
2648       FileSpec dsc_filespec;
2649 
2650       UUID dsc_uuid;
2651       UUID process_shared_cache_uuid;
2652 
2653       if (process) {
2654         process_shared_cache_uuid = GetProcessSharedCacheUUID(process);
2655       }
2656 
2657       // First see if we can find an exact match for the inferior process shared
2658       // cache UUID in
2659       // the development or non-development shared caches on disk.
2660       if (process_shared_cache_uuid.IsValid()) {
2661         if (dsc_development_filespec.Exists()) {
2662           UUID dsc_development_uuid = GetSharedCacheUUID(
2663               dsc_development_filespec, byte_order, addr_byte_size);
2664           if (dsc_development_uuid.IsValid() &&
2665               dsc_development_uuid == process_shared_cache_uuid) {
2666             dsc_filespec = dsc_development_filespec;
2667             dsc_uuid = dsc_development_uuid;
2668           }
2669         }
2670         if (!dsc_uuid.IsValid() && dsc_nondevelopment_filespec.Exists()) {
2671           UUID dsc_nondevelopment_uuid = GetSharedCacheUUID(
2672               dsc_nondevelopment_filespec, byte_order, addr_byte_size);
2673           if (dsc_nondevelopment_uuid.IsValid() &&
2674               dsc_nondevelopment_uuid == process_shared_cache_uuid) {
2675             dsc_filespec = dsc_nondevelopment_filespec;
2676             dsc_uuid = dsc_nondevelopment_uuid;
2677           }
2678         }
2679       }
2680 
2681       // Failing a UUID match, prefer the development dyld_shared cache if both
2682       // are present.
2683       if (!dsc_filespec.Exists()) {
2684         if (dsc_development_filespec.Exists()) {
2685           dsc_filespec = dsc_development_filespec;
2686         } else {
2687           dsc_filespec = dsc_nondevelopment_filespec;
2688         }
2689       }
2690 
2691       /* The dyld_cache_header has a pointer to the
2692          dyld_cache_local_symbols_info structure (localSymbolsOffset).
2693          The dyld_cache_local_symbols_info structure gives us three things:
2694            1. The start and count of the nlist records in the dyld_shared_cache
2695          file
2696            2. The start and size of the strings for these nlist records
2697            3. The start and count of dyld_cache_local_symbols_entry entries
2698 
2699          There is one dyld_cache_local_symbols_entry per dylib/framework in the
2700          dyld shared cache.
2701          The "dylibOffset" field is the Mach-O header of this dylib/framework in
2702          the dyld shared cache.
2703          The dyld_cache_local_symbols_entry also lists the start of this
2704          dylib/framework's nlist records
2705          and the count of how many nlist records there are for this
2706          dylib/framework.
2707       */
2708 
2709       // Process the dyld shared cache header to find the unmapped symbols
2710 
2711       DataBufferSP dsc_data_sp = DataBufferLLVM::CreateSliceFromPath(
2712           dsc_filespec.GetPath(), sizeof(struct lldb_copy_dyld_cache_header_v1),
2713           0);
2714       if (!dsc_uuid.IsValid()) {
2715         dsc_uuid = GetSharedCacheUUID(dsc_filespec, byte_order, addr_byte_size);
2716       }
2717       if (dsc_data_sp) {
2718         DataExtractor dsc_header_data(dsc_data_sp, byte_order, addr_byte_size);
2719 
2720         bool uuid_match = true;
2721         if (dsc_uuid.IsValid() && process) {
2722           if (process_shared_cache_uuid.IsValid() &&
2723               dsc_uuid != process_shared_cache_uuid) {
2724             // The on-disk dyld_shared_cache file is not the same as the one in
2725             // this
2726             // process' memory, don't use it.
2727             uuid_match = false;
2728             ModuleSP module_sp(GetModule());
2729             if (module_sp)
2730               module_sp->ReportWarning("process shared cache does not match "
2731                                        "on-disk dyld_shared_cache file, some "
2732                                        "symbol names will be missing.");
2733           }
2734         }
2735 
2736         offset = offsetof(struct lldb_copy_dyld_cache_header_v1, mappingOffset);
2737 
2738         uint32_t mappingOffset = dsc_header_data.GetU32(&offset);
2739 
2740         // If the mappingOffset points to a location inside the header, we've
2741         // opened an old dyld shared cache, and should not proceed further.
2742         if (uuid_match &&
2743             mappingOffset >= sizeof(struct lldb_copy_dyld_cache_header_v1)) {
2744 
2745           DataBufferSP dsc_mapping_info_data_sp =
2746               DataBufferLLVM::CreateSliceFromPath(
2747                   dsc_filespec.GetPath(),
2748                   sizeof(struct lldb_copy_dyld_cache_mapping_info),
2749                   mappingOffset);
2750 
2751           DataExtractor dsc_mapping_info_data(dsc_mapping_info_data_sp,
2752                                               byte_order, addr_byte_size);
2753           offset = 0;
2754 
2755           // The File addresses (from the in-memory Mach-O load commands) for
2756           // the shared libraries
2757           // in the shared library cache need to be adjusted by an offset to
2758           // match up with the
2759           // dylibOffset identifying field in the
2760           // dyld_cache_local_symbol_entry's.  This offset is
2761           // recorded in mapping_offset_value.
2762           const uint64_t mapping_offset_value =
2763               dsc_mapping_info_data.GetU64(&offset);
2764 
2765           offset = offsetof(struct lldb_copy_dyld_cache_header_v1,
2766                             localSymbolsOffset);
2767           uint64_t localSymbolsOffset = dsc_header_data.GetU64(&offset);
2768           uint64_t localSymbolsSize = dsc_header_data.GetU64(&offset);
2769 
2770           if (localSymbolsOffset && localSymbolsSize) {
2771             // Map the local symbols
2772             DataBufferSP dsc_local_symbols_data_sp =
2773                 DataBufferLLVM::CreateSliceFromPath(dsc_filespec.GetPath(),
2774                                                localSymbolsSize,
2775                                                localSymbolsOffset);
2776 
2777             if (dsc_local_symbols_data_sp) {
2778               DataExtractor dsc_local_symbols_data(dsc_local_symbols_data_sp,
2779                                                    byte_order, addr_byte_size);
2780 
2781               offset = 0;
2782 
2783               typedef std::map<ConstString, uint16_t> UndefinedNameToDescMap;
2784               typedef std::map<uint32_t, ConstString> SymbolIndexToName;
2785               UndefinedNameToDescMap undefined_name_to_desc;
2786               SymbolIndexToName reexport_shlib_needs_fixup;
2787 
2788               // Read the local_symbols_infos struct in one shot
2789               struct lldb_copy_dyld_cache_local_symbols_info local_symbols_info;
2790               dsc_local_symbols_data.GetU32(&offset,
2791                                             &local_symbols_info.nlistOffset, 6);
2792 
2793               SectionSP text_section_sp(
2794                   section_list->FindSectionByName(GetSegmentNameTEXT()));
2795 
2796               uint32_t header_file_offset =
2797                   (text_section_sp->GetFileAddress() - mapping_offset_value);
2798 
2799               offset = local_symbols_info.entriesOffset;
2800               for (uint32_t entry_index = 0;
2801                    entry_index < local_symbols_info.entriesCount;
2802                    entry_index++) {
2803                 struct lldb_copy_dyld_cache_local_symbols_entry
2804                     local_symbols_entry;
2805                 local_symbols_entry.dylibOffset =
2806                     dsc_local_symbols_data.GetU32(&offset);
2807                 local_symbols_entry.nlistStartIndex =
2808                     dsc_local_symbols_data.GetU32(&offset);
2809                 local_symbols_entry.nlistCount =
2810                     dsc_local_symbols_data.GetU32(&offset);
2811 
2812                 if (header_file_offset == local_symbols_entry.dylibOffset) {
2813                   unmapped_local_symbols_found = local_symbols_entry.nlistCount;
2814 
2815                   // The normal nlist code cannot correctly size the Symbols
2816                   // array, we need to allocate it here.
2817                   sym = symtab->Resize(
2818                       symtab_load_command.nsyms + m_dysymtab.nindirectsyms +
2819                       unmapped_local_symbols_found - m_dysymtab.nlocalsym);
2820                   num_syms = symtab->GetNumSymbols();
2821 
2822                   nlist_data_offset =
2823                       local_symbols_info.nlistOffset +
2824                       (nlist_byte_size * local_symbols_entry.nlistStartIndex);
2825                   uint32_t string_table_offset =
2826                       local_symbols_info.stringsOffset;
2827 
2828                   for (uint32_t nlist_index = 0;
2829                        nlist_index < local_symbols_entry.nlistCount;
2830                        nlist_index++) {
2831                     /////////////////////////////
2832                     {
2833                       struct nlist_64 nlist;
2834                       if (!dsc_local_symbols_data.ValidOffsetForDataOfSize(
2835                               nlist_data_offset, nlist_byte_size))
2836                         break;
2837 
2838                       nlist.n_strx = dsc_local_symbols_data.GetU32_unchecked(
2839                           &nlist_data_offset);
2840                       nlist.n_type = dsc_local_symbols_data.GetU8_unchecked(
2841                           &nlist_data_offset);
2842                       nlist.n_sect = dsc_local_symbols_data.GetU8_unchecked(
2843                           &nlist_data_offset);
2844                       nlist.n_desc = dsc_local_symbols_data.GetU16_unchecked(
2845                           &nlist_data_offset);
2846                       nlist.n_value =
2847                           dsc_local_symbols_data.GetAddress_unchecked(
2848                               &nlist_data_offset);
2849 
2850                       SymbolType type = eSymbolTypeInvalid;
2851                       const char *symbol_name = dsc_local_symbols_data.PeekCStr(
2852                           string_table_offset + nlist.n_strx);
2853 
2854                       if (symbol_name == NULL) {
2855                         // No symbol should be NULL, even the symbols with no
2856                         // string values should have an offset zero which points
2857                         // to an empty C-string
2858                         Host::SystemLog(
2859                             Host::eSystemLogError,
2860                             "error: DSC unmapped local symbol[%u] has invalid "
2861                             "string table offset 0x%x in %s, ignoring symbol\n",
2862                             entry_index, nlist.n_strx,
2863                             module_sp->GetFileSpec().GetPath().c_str());
2864                         continue;
2865                       }
2866                       if (symbol_name[0] == '\0')
2867                         symbol_name = NULL;
2868 
2869                       const char *symbol_name_non_abi_mangled = NULL;
2870 
2871                       SectionSP symbol_section;
2872                       uint32_t symbol_byte_size = 0;
2873                       bool add_nlist = true;
2874                       bool is_debug = ((nlist.n_type & N_STAB) != 0);
2875                       bool demangled_is_synthesized = false;
2876                       bool is_gsym = false;
2877                       bool set_value = true;
2878 
2879                       assert(sym_idx < num_syms);
2880 
2881                       sym[sym_idx].SetDebug(is_debug);
2882 
2883                       if (is_debug) {
2884                         switch (nlist.n_type) {
2885                         case N_GSYM:
2886                           // global symbol: name,,NO_SECT,type,0
2887                           // Sometimes the N_GSYM value contains the address.
2888 
2889                           // FIXME: In the .o files, we have a GSYM and a debug
2890                           // symbol for all the ObjC data.  They
2891                           // have the same address, but we want to ensure that
2892                           // we always find only the real symbol,
2893                           // 'cause we don't currently correctly attribute the
2894                           // GSYM one to the ObjCClass/Ivar/MetaClass
2895                           // symbol type.  This is a temporary hack to make sure
2896                           // the ObjectiveC symbols get treated
2897                           // correctly.  To do this right, we should coalesce
2898                           // all the GSYM & global symbols that have the
2899                           // same address.
2900 
2901                           is_gsym = true;
2902                           sym[sym_idx].SetExternal(true);
2903 
2904                           if (symbol_name && symbol_name[0] == '_' &&
2905                               symbol_name[1] == 'O') {
2906                             llvm::StringRef symbol_name_ref(symbol_name);
2907                             if (symbol_name_ref.startswith(
2908                                     g_objc_v2_prefix_class)) {
2909                               symbol_name_non_abi_mangled = symbol_name + 1;
2910                               symbol_name =
2911                                   symbol_name + g_objc_v2_prefix_class.size();
2912                               type = eSymbolTypeObjCClass;
2913                               demangled_is_synthesized = true;
2914 
2915                             } else if (symbol_name_ref.startswith(
2916                                            g_objc_v2_prefix_metaclass)) {
2917                               symbol_name_non_abi_mangled = symbol_name + 1;
2918                               symbol_name = symbol_name +
2919                                             g_objc_v2_prefix_metaclass.size();
2920                               type = eSymbolTypeObjCMetaClass;
2921                               demangled_is_synthesized = true;
2922                             } else if (symbol_name_ref.startswith(
2923                                            g_objc_v2_prefix_ivar)) {
2924                               symbol_name_non_abi_mangled = symbol_name + 1;
2925                               symbol_name =
2926                                   symbol_name + g_objc_v2_prefix_ivar.size();
2927                               type = eSymbolTypeObjCIVar;
2928                               demangled_is_synthesized = true;
2929                             }
2930                           } else {
2931                             if (nlist.n_value != 0)
2932                               symbol_section = section_info.GetSection(
2933                                   nlist.n_sect, nlist.n_value);
2934                             type = eSymbolTypeData;
2935                           }
2936                           break;
2937 
2938                         case N_FNAME:
2939                           // procedure name (f77 kludge): name,,NO_SECT,0,0
2940                           type = eSymbolTypeCompiler;
2941                           break;
2942 
2943                         case N_FUN:
2944                           // procedure: name,,n_sect,linenumber,address
2945                           if (symbol_name) {
2946                             type = eSymbolTypeCode;
2947                             symbol_section = section_info.GetSection(
2948                                 nlist.n_sect, nlist.n_value);
2949 
2950                             N_FUN_addr_to_sym_idx.insert(
2951                                 std::make_pair(nlist.n_value, sym_idx));
2952                             // We use the current number of symbols in the
2953                             // symbol table in lieu of
2954                             // using nlist_idx in case we ever start trimming
2955                             // entries out
2956                             N_FUN_indexes.push_back(sym_idx);
2957                           } else {
2958                             type = eSymbolTypeCompiler;
2959 
2960                             if (!N_FUN_indexes.empty()) {
2961                               // Copy the size of the function into the original
2962                               // STAB entry so we don't have
2963                               // to hunt for it later
2964                               symtab->SymbolAtIndex(N_FUN_indexes.back())
2965                                   ->SetByteSize(nlist.n_value);
2966                               N_FUN_indexes.pop_back();
2967                               // We don't really need the end function STAB as
2968                               // it contains the size which
2969                               // we already placed with the original symbol, so
2970                               // don't add it if we want a
2971                               // minimal symbol table
2972                               add_nlist = false;
2973                             }
2974                           }
2975                           break;
2976 
2977                         case N_STSYM:
2978                           // static symbol: name,,n_sect,type,address
2979                           N_STSYM_addr_to_sym_idx.insert(
2980                               std::make_pair(nlist.n_value, sym_idx));
2981                           symbol_section = section_info.GetSection(
2982                               nlist.n_sect, nlist.n_value);
2983                           if (symbol_name && symbol_name[0]) {
2984                             type = ObjectFile::GetSymbolTypeFromName(
2985                                 symbol_name + 1, eSymbolTypeData);
2986                           }
2987                           break;
2988 
2989                         case N_LCSYM:
2990                           // .lcomm symbol: name,,n_sect,type,address
2991                           symbol_section = section_info.GetSection(
2992                               nlist.n_sect, nlist.n_value);
2993                           type = eSymbolTypeCommonBlock;
2994                           break;
2995 
2996                         case N_BNSYM:
2997                           // We use the current number of symbols in the symbol
2998                           // table in lieu of
2999                           // using nlist_idx in case we ever start trimming
3000                           // entries out
3001                           // Skip these if we want minimal symbol tables
3002                           add_nlist = false;
3003                           break;
3004 
3005                         case N_ENSYM:
3006                           // Set the size of the N_BNSYM to the terminating
3007                           // index of this N_ENSYM
3008                           // so that we can always skip the entire symbol if we
3009                           // need to navigate
3010                           // more quickly at the source level when parsing STABS
3011                           // Skip these if we want minimal symbol tables
3012                           add_nlist = false;
3013                           break;
3014 
3015                         case N_OPT:
3016                           // emitted with gcc2_compiled and in gcc source
3017                           type = eSymbolTypeCompiler;
3018                           break;
3019 
3020                         case N_RSYM:
3021                           // register sym: name,,NO_SECT,type,register
3022                           type = eSymbolTypeVariable;
3023                           break;
3024 
3025                         case N_SLINE:
3026                           // src line: 0,,n_sect,linenumber,address
3027                           symbol_section = section_info.GetSection(
3028                               nlist.n_sect, nlist.n_value);
3029                           type = eSymbolTypeLineEntry;
3030                           break;
3031 
3032                         case N_SSYM:
3033                           // structure elt: name,,NO_SECT,type,struct_offset
3034                           type = eSymbolTypeVariableType;
3035                           break;
3036 
3037                         case N_SO:
3038                           // source file name
3039                           type = eSymbolTypeSourceFile;
3040                           if (symbol_name == NULL) {
3041                             add_nlist = false;
3042                             if (N_SO_index != UINT32_MAX) {
3043                               // Set the size of the N_SO to the terminating
3044                               // index of this N_SO
3045                               // so that we can always skip the entire N_SO if
3046                               // we need to navigate
3047                               // more quickly at the source level when parsing
3048                               // STABS
3049                               symbol_ptr = symtab->SymbolAtIndex(N_SO_index);
3050                               symbol_ptr->SetByteSize(sym_idx);
3051                               symbol_ptr->SetSizeIsSibling(true);
3052                             }
3053                             N_NSYM_indexes.clear();
3054                             N_INCL_indexes.clear();
3055                             N_BRAC_indexes.clear();
3056                             N_COMM_indexes.clear();
3057                             N_FUN_indexes.clear();
3058                             N_SO_index = UINT32_MAX;
3059                           } else {
3060                             // We use the current number of symbols in the
3061                             // symbol table in lieu of
3062                             // using nlist_idx in case we ever start trimming
3063                             // entries out
3064                             const bool N_SO_has_full_path =
3065                                 symbol_name[0] == '/';
3066                             if (N_SO_has_full_path) {
3067                               if ((N_SO_index == sym_idx - 1) &&
3068                                   ((sym_idx - 1) < num_syms)) {
3069                                 // We have two consecutive N_SO entries where
3070                                 // the first contains a directory
3071                                 // and the second contains a full path.
3072                                 sym[sym_idx - 1].GetMangled().SetValue(
3073                                     ConstString(symbol_name), false);
3074                                 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3075                                 add_nlist = false;
3076                               } else {
3077                                 // This is the first entry in a N_SO that
3078                                 // contains a directory or
3079                                 // a full path to the source file
3080                                 N_SO_index = sym_idx;
3081                               }
3082                             } else if ((N_SO_index == sym_idx - 1) &&
3083                                        ((sym_idx - 1) < num_syms)) {
3084                               // This is usually the second N_SO entry that
3085                               // contains just the filename,
3086                               // so here we combine it with the first one if we
3087                               // are minimizing the symbol table
3088                               const char *so_path =
3089                                   sym[sym_idx - 1]
3090                                       .GetMangled()
3091                                       .GetDemangledName(
3092                                           lldb::eLanguageTypeUnknown)
3093                                       .AsCString();
3094                               if (so_path && so_path[0]) {
3095                                 std::string full_so_path(so_path);
3096                                 const size_t double_slash_pos =
3097                                     full_so_path.find("//");
3098                                 if (double_slash_pos != std::string::npos) {
3099                                   // The linker has been generating bad N_SO
3100                                   // entries with doubled up paths
3101                                   // in the format "%s%s" where the first string
3102                                   // in the DW_AT_comp_dir,
3103                                   // and the second is the directory for the
3104                                   // source file so you end up with
3105                                   // a path that looks like "/tmp/src//tmp/src/"
3106                                   FileSpec so_dir(so_path, false);
3107                                   if (!so_dir.Exists()) {
3108                                     so_dir.SetFile(
3109                                         &full_so_path[double_slash_pos + 1],
3110                                         false);
3111                                     if (so_dir.Exists()) {
3112                                       // Trim off the incorrect path
3113                                       full_so_path.erase(0,
3114                                                          double_slash_pos + 1);
3115                                     }
3116                                   }
3117                                 }
3118                                 if (*full_so_path.rbegin() != '/')
3119                                   full_so_path += '/';
3120                                 full_so_path += symbol_name;
3121                                 sym[sym_idx - 1].GetMangled().SetValue(
3122                                     ConstString(full_so_path.c_str()), false);
3123                                 add_nlist = false;
3124                                 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3125                               }
3126                             } else {
3127                               // This could be a relative path to a N_SO
3128                               N_SO_index = sym_idx;
3129                             }
3130                           }
3131                           break;
3132 
3133                         case N_OSO:
3134                           // object file name: name,,0,0,st_mtime
3135                           type = eSymbolTypeObjectFile;
3136                           break;
3137 
3138                         case N_LSYM:
3139                           // local sym: name,,NO_SECT,type,offset
3140                           type = eSymbolTypeLocal;
3141                           break;
3142 
3143                         //----------------------------------------------------------------------
3144                         // INCL scopes
3145                         //----------------------------------------------------------------------
3146                         case N_BINCL:
3147                           // include file beginning: name,,NO_SECT,0,sum
3148                           // We use the current number of symbols in the symbol
3149                           // table in lieu of
3150                           // using nlist_idx in case we ever start trimming
3151                           // entries out
3152                           N_INCL_indexes.push_back(sym_idx);
3153                           type = eSymbolTypeScopeBegin;
3154                           break;
3155 
3156                         case N_EINCL:
3157                           // include file end: name,,NO_SECT,0,0
3158                           // Set the size of the N_BINCL to the terminating
3159                           // index of this N_EINCL
3160                           // so that we can always skip the entire symbol if we
3161                           // need to navigate
3162                           // more quickly at the source level when parsing STABS
3163                           if (!N_INCL_indexes.empty()) {
3164                             symbol_ptr =
3165                                 symtab->SymbolAtIndex(N_INCL_indexes.back());
3166                             symbol_ptr->SetByteSize(sym_idx + 1);
3167                             symbol_ptr->SetSizeIsSibling(true);
3168                             N_INCL_indexes.pop_back();
3169                           }
3170                           type = eSymbolTypeScopeEnd;
3171                           break;
3172 
3173                         case N_SOL:
3174                           // #included file name: name,,n_sect,0,address
3175                           type = eSymbolTypeHeaderFile;
3176 
3177                           // We currently don't use the header files on darwin
3178                           add_nlist = false;
3179                           break;
3180 
3181                         case N_PARAMS:
3182                           // compiler parameters: name,,NO_SECT,0,0
3183                           type = eSymbolTypeCompiler;
3184                           break;
3185 
3186                         case N_VERSION:
3187                           // compiler version: name,,NO_SECT,0,0
3188                           type = eSymbolTypeCompiler;
3189                           break;
3190 
3191                         case N_OLEVEL:
3192                           // compiler -O level: name,,NO_SECT,0,0
3193                           type = eSymbolTypeCompiler;
3194                           break;
3195 
3196                         case N_PSYM:
3197                           // parameter: name,,NO_SECT,type,offset
3198                           type = eSymbolTypeVariable;
3199                           break;
3200 
3201                         case N_ENTRY:
3202                           // alternate entry: name,,n_sect,linenumber,address
3203                           symbol_section = section_info.GetSection(
3204                               nlist.n_sect, nlist.n_value);
3205                           type = eSymbolTypeLineEntry;
3206                           break;
3207 
3208                         //----------------------------------------------------------------------
3209                         // Left and Right Braces
3210                         //----------------------------------------------------------------------
3211                         case N_LBRAC:
3212                           // left bracket: 0,,NO_SECT,nesting level,address
3213                           // We use the current number of symbols in the symbol
3214                           // table in lieu of
3215                           // using nlist_idx in case we ever start trimming
3216                           // entries out
3217                           symbol_section = section_info.GetSection(
3218                               nlist.n_sect, nlist.n_value);
3219                           N_BRAC_indexes.push_back(sym_idx);
3220                           type = eSymbolTypeScopeBegin;
3221                           break;
3222 
3223                         case N_RBRAC:
3224                           // right bracket: 0,,NO_SECT,nesting level,address
3225                           // Set the size of the N_LBRAC to the terminating
3226                           // index of this N_RBRAC
3227                           // so that we can always skip the entire symbol if we
3228                           // need to navigate
3229                           // more quickly at the source level when parsing STABS
3230                           symbol_section = section_info.GetSection(
3231                               nlist.n_sect, nlist.n_value);
3232                           if (!N_BRAC_indexes.empty()) {
3233                             symbol_ptr =
3234                                 symtab->SymbolAtIndex(N_BRAC_indexes.back());
3235                             symbol_ptr->SetByteSize(sym_idx + 1);
3236                             symbol_ptr->SetSizeIsSibling(true);
3237                             N_BRAC_indexes.pop_back();
3238                           }
3239                           type = eSymbolTypeScopeEnd;
3240                           break;
3241 
3242                         case N_EXCL:
3243                           // deleted include file: name,,NO_SECT,0,sum
3244                           type = eSymbolTypeHeaderFile;
3245                           break;
3246 
3247                         //----------------------------------------------------------------------
3248                         // COMM scopes
3249                         //----------------------------------------------------------------------
3250                         case N_BCOMM:
3251                           // begin common: name,,NO_SECT,0,0
3252                           // We use the current number of symbols in the symbol
3253                           // table in lieu of
3254                           // using nlist_idx in case we ever start trimming
3255                           // entries out
3256                           type = eSymbolTypeScopeBegin;
3257                           N_COMM_indexes.push_back(sym_idx);
3258                           break;
3259 
3260                         case N_ECOML:
3261                           // end common (local name): 0,,n_sect,0,address
3262                           symbol_section = section_info.GetSection(
3263                               nlist.n_sect, nlist.n_value);
3264                         // Fall through
3265 
3266                         case N_ECOMM:
3267                           // end common: name,,n_sect,0,0
3268                           // Set the size of the N_BCOMM to the terminating
3269                           // index of this N_ECOMM/N_ECOML
3270                           // so that we can always skip the entire symbol if we
3271                           // need to navigate
3272                           // more quickly at the source level when parsing STABS
3273                           if (!N_COMM_indexes.empty()) {
3274                             symbol_ptr =
3275                                 symtab->SymbolAtIndex(N_COMM_indexes.back());
3276                             symbol_ptr->SetByteSize(sym_idx + 1);
3277                             symbol_ptr->SetSizeIsSibling(true);
3278                             N_COMM_indexes.pop_back();
3279                           }
3280                           type = eSymbolTypeScopeEnd;
3281                           break;
3282 
3283                         case N_LENG:
3284                           // second stab entry with length information
3285                           type = eSymbolTypeAdditional;
3286                           break;
3287 
3288                         default:
3289                           break;
3290                         }
3291                       } else {
3292                         // uint8_t n_pext    = N_PEXT & nlist.n_type;
3293                         uint8_t n_type = N_TYPE & nlist.n_type;
3294                         sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
3295 
3296                         switch (n_type) {
3297                         case N_INDR: {
3298                           const char *reexport_name_cstr =
3299                               strtab_data.PeekCStr(nlist.n_value);
3300                           if (reexport_name_cstr && reexport_name_cstr[0]) {
3301                             type = eSymbolTypeReExported;
3302                             ConstString reexport_name(
3303                                 reexport_name_cstr +
3304                                 ((reexport_name_cstr[0] == '_') ? 1 : 0));
3305                             sym[sym_idx].SetReExportedSymbolName(reexport_name);
3306                             set_value = false;
3307                             reexport_shlib_needs_fixup[sym_idx] = reexport_name;
3308                             indirect_symbol_names.insert(
3309                                 ConstString(symbol_name +
3310                                             ((symbol_name[0] == '_') ? 1 : 0)));
3311                           } else
3312                             type = eSymbolTypeUndefined;
3313                         } break;
3314 
3315                         case N_UNDF:
3316                           if (symbol_name && symbol_name[0]) {
3317                             ConstString undefined_name(
3318                                 symbol_name +
3319                                 ((symbol_name[0] == '_') ? 1 : 0));
3320                             undefined_name_to_desc[undefined_name] =
3321                                 nlist.n_desc;
3322                           }
3323                         // Fall through
3324                         case N_PBUD:
3325                           type = eSymbolTypeUndefined;
3326                           break;
3327 
3328                         case N_ABS:
3329                           type = eSymbolTypeAbsolute;
3330                           break;
3331 
3332                         case N_SECT: {
3333                           symbol_section = section_info.GetSection(
3334                               nlist.n_sect, nlist.n_value);
3335 
3336                           if (symbol_section == NULL) {
3337                             // TODO: warn about this?
3338                             add_nlist = false;
3339                             break;
3340                           }
3341 
3342                           if (TEXT_eh_frame_sectID == nlist.n_sect) {
3343                             type = eSymbolTypeException;
3344                           } else {
3345                             uint32_t section_type =
3346                                 symbol_section->Get() & SECTION_TYPE;
3347 
3348                             switch (section_type) {
3349                             case S_CSTRING_LITERALS:
3350                               type = eSymbolTypeData;
3351                               break; // section with only literal C strings
3352                             case S_4BYTE_LITERALS:
3353                               type = eSymbolTypeData;
3354                               break; // section with only 4 byte literals
3355                             case S_8BYTE_LITERALS:
3356                               type = eSymbolTypeData;
3357                               break; // section with only 8 byte literals
3358                             case S_LITERAL_POINTERS:
3359                               type = eSymbolTypeTrampoline;
3360                               break; // section with only pointers to literals
3361                             case S_NON_LAZY_SYMBOL_POINTERS:
3362                               type = eSymbolTypeTrampoline;
3363                               break; // section with only non-lazy symbol
3364                                      // pointers
3365                             case S_LAZY_SYMBOL_POINTERS:
3366                               type = eSymbolTypeTrampoline;
3367                               break; // section with only lazy symbol pointers
3368                             case S_SYMBOL_STUBS:
3369                               type = eSymbolTypeTrampoline;
3370                               break; // section with only symbol stubs, byte
3371                                      // size of stub in the reserved2 field
3372                             case S_MOD_INIT_FUNC_POINTERS:
3373                               type = eSymbolTypeCode;
3374                               break; // section with only function pointers for
3375                                      // initialization
3376                             case S_MOD_TERM_FUNC_POINTERS:
3377                               type = eSymbolTypeCode;
3378                               break; // section with only function pointers for
3379                                      // termination
3380                             case S_INTERPOSING:
3381                               type = eSymbolTypeTrampoline;
3382                               break; // section with only pairs of function
3383                                      // pointers for interposing
3384                             case S_16BYTE_LITERALS:
3385                               type = eSymbolTypeData;
3386                               break; // section with only 16 byte literals
3387                             case S_DTRACE_DOF:
3388                               type = eSymbolTypeInstrumentation;
3389                               break;
3390                             case S_LAZY_DYLIB_SYMBOL_POINTERS:
3391                               type = eSymbolTypeTrampoline;
3392                               break;
3393                             default:
3394                               switch (symbol_section->GetType()) {
3395                               case lldb::eSectionTypeCode:
3396                                 type = eSymbolTypeCode;
3397                                 break;
3398                               case eSectionTypeData:
3399                               case eSectionTypeDataCString: // Inlined C string
3400                                                             // data
3401                               case eSectionTypeDataCStringPointers: // Pointers
3402                                                                     // to C
3403                                                                     // string
3404                                                                     // data
3405                               case eSectionTypeDataSymbolAddress: // Address of
3406                                                                   // a symbol in
3407                                                                   // the symbol
3408                                                                   // table
3409                               case eSectionTypeData4:
3410                               case eSectionTypeData8:
3411                               case eSectionTypeData16:
3412                                 type = eSymbolTypeData;
3413                                 break;
3414                               default:
3415                                 break;
3416                               }
3417                               break;
3418                             }
3419 
3420                             if (type == eSymbolTypeInvalid) {
3421                               const char *symbol_sect_name =
3422                                   symbol_section->GetName().AsCString();
3423                               if (symbol_section->IsDescendant(
3424                                       text_section_sp.get())) {
3425                                 if (symbol_section->IsClear(
3426                                         S_ATTR_PURE_INSTRUCTIONS |
3427                                         S_ATTR_SELF_MODIFYING_CODE |
3428                                         S_ATTR_SOME_INSTRUCTIONS))
3429                                   type = eSymbolTypeData;
3430                                 else
3431                                   type = eSymbolTypeCode;
3432                               } else if (symbol_section->IsDescendant(
3433                                              data_section_sp.get()) ||
3434                                          symbol_section->IsDescendant(
3435                                              data_dirty_section_sp.get()) ||
3436                                          symbol_section->IsDescendant(
3437                                              data_const_section_sp.get())) {
3438                                 if (symbol_sect_name &&
3439                                     ::strstr(symbol_sect_name, "__objc") ==
3440                                         symbol_sect_name) {
3441                                   type = eSymbolTypeRuntime;
3442 
3443                                   if (symbol_name) {
3444                                     llvm::StringRef symbol_name_ref(
3445                                         symbol_name);
3446                                     if (symbol_name_ref.startswith("_OBJC_")) {
3447                                       static const llvm::StringRef
3448                                           g_objc_v2_prefix_class(
3449                                               "_OBJC_CLASS_$_");
3450                                       static const llvm::StringRef
3451                                           g_objc_v2_prefix_metaclass(
3452                                               "_OBJC_METACLASS_$_");
3453                                       static const llvm::StringRef
3454                                           g_objc_v2_prefix_ivar(
3455                                               "_OBJC_IVAR_$_");
3456                                       if (symbol_name_ref.startswith(
3457                                               g_objc_v2_prefix_class)) {
3458                                         symbol_name_non_abi_mangled =
3459                                             symbol_name + 1;
3460                                         symbol_name =
3461                                             symbol_name +
3462                                             g_objc_v2_prefix_class.size();
3463                                         type = eSymbolTypeObjCClass;
3464                                         demangled_is_synthesized = true;
3465                                       } else if (
3466                                           symbol_name_ref.startswith(
3467                                               g_objc_v2_prefix_metaclass)) {
3468                                         symbol_name_non_abi_mangled =
3469                                             symbol_name + 1;
3470                                         symbol_name =
3471                                             symbol_name +
3472                                             g_objc_v2_prefix_metaclass.size();
3473                                         type = eSymbolTypeObjCMetaClass;
3474                                         demangled_is_synthesized = true;
3475                                       } else if (symbol_name_ref.startswith(
3476                                                      g_objc_v2_prefix_ivar)) {
3477                                         symbol_name_non_abi_mangled =
3478                                             symbol_name + 1;
3479                                         symbol_name =
3480                                             symbol_name +
3481                                             g_objc_v2_prefix_ivar.size();
3482                                         type = eSymbolTypeObjCIVar;
3483                                         demangled_is_synthesized = true;
3484                                       }
3485                                     }
3486                                   }
3487                                 } else if (symbol_sect_name &&
3488                                            ::strstr(symbol_sect_name,
3489                                                     "__gcc_except_tab") ==
3490                                                symbol_sect_name) {
3491                                   type = eSymbolTypeException;
3492                                 } else {
3493                                   type = eSymbolTypeData;
3494                                 }
3495                               } else if (symbol_sect_name &&
3496                                          ::strstr(symbol_sect_name,
3497                                                   "__IMPORT") ==
3498                                              symbol_sect_name) {
3499                                 type = eSymbolTypeTrampoline;
3500                               } else if (symbol_section->IsDescendant(
3501                                              objc_section_sp.get())) {
3502                                 type = eSymbolTypeRuntime;
3503                                 if (symbol_name && symbol_name[0] == '.') {
3504                                   llvm::StringRef symbol_name_ref(symbol_name);
3505                                   static const llvm::StringRef
3506                                       g_objc_v1_prefix_class(
3507                                           ".objc_class_name_");
3508                                   if (symbol_name_ref.startswith(
3509                                           g_objc_v1_prefix_class)) {
3510                                     symbol_name_non_abi_mangled = symbol_name;
3511                                     symbol_name = symbol_name +
3512                                                   g_objc_v1_prefix_class.size();
3513                                     type = eSymbolTypeObjCClass;
3514                                     demangled_is_synthesized = true;
3515                                   }
3516                                 }
3517                               }
3518                             }
3519                           }
3520                         } break;
3521                         }
3522                       }
3523 
3524                       if (add_nlist) {
3525                         uint64_t symbol_value = nlist.n_value;
3526                         if (symbol_name_non_abi_mangled) {
3527                           sym[sym_idx].GetMangled().SetMangledName(
3528                               ConstString(symbol_name_non_abi_mangled));
3529                           sym[sym_idx].GetMangled().SetDemangledName(
3530                               ConstString(symbol_name));
3531                         } else {
3532                           bool symbol_name_is_mangled = false;
3533 
3534                           if (symbol_name && symbol_name[0] == '_') {
3535                             symbol_name_is_mangled = symbol_name[1] == '_';
3536                             symbol_name++; // Skip the leading underscore
3537                           }
3538 
3539                           if (symbol_name) {
3540                             ConstString const_symbol_name(symbol_name);
3541                             sym[sym_idx].GetMangled().SetValue(
3542                                 const_symbol_name, symbol_name_is_mangled);
3543                             if (is_gsym && is_debug) {
3544                               const char *gsym_name =
3545                                   sym[sym_idx]
3546                                       .GetMangled()
3547                                       .GetName(lldb::eLanguageTypeUnknown,
3548                                                Mangled::ePreferMangled)
3549                                       .GetCString();
3550                               if (gsym_name)
3551                                 N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
3552                             }
3553                           }
3554                         }
3555                         if (symbol_section) {
3556                           const addr_t section_file_addr =
3557                               symbol_section->GetFileAddress();
3558                           if (symbol_byte_size == 0 &&
3559                               function_starts_count > 0) {
3560                             addr_t symbol_lookup_file_addr = nlist.n_value;
3561                             // Do an exact address match for non-ARM addresses,
3562                             // else get the closest since
3563                             // the symbol might be a thumb symbol which has an
3564                             // address with bit zero set
3565                             FunctionStarts::Entry *func_start_entry =
3566                                 function_starts.FindEntry(
3567                                     symbol_lookup_file_addr, !is_arm);
3568                             if (is_arm && func_start_entry) {
3569                               // Verify that the function start address is the
3570                               // symbol address (ARM)
3571                               // or the symbol address + 1 (thumb)
3572                               if (func_start_entry->addr !=
3573                                       symbol_lookup_file_addr &&
3574                                   func_start_entry->addr !=
3575                                       (symbol_lookup_file_addr + 1)) {
3576                                 // Not the right entry, NULL it out...
3577                                 func_start_entry = NULL;
3578                               }
3579                             }
3580                             if (func_start_entry) {
3581                               func_start_entry->data = true;
3582 
3583                               addr_t symbol_file_addr = func_start_entry->addr;
3584                               uint32_t symbol_flags = 0;
3585                               if (is_arm) {
3586                                 if (symbol_file_addr & 1)
3587                                   symbol_flags =
3588                                       MACHO_NLIST_ARM_SYMBOL_IS_THUMB;
3589                                 symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
3590                               }
3591 
3592                               const FunctionStarts::Entry
3593                                   *next_func_start_entry =
3594                                       function_starts.FindNextEntry(
3595                                           func_start_entry);
3596                               const addr_t section_end_file_addr =
3597                                   section_file_addr +
3598                                   symbol_section->GetByteSize();
3599                               if (next_func_start_entry) {
3600                                 addr_t next_symbol_file_addr =
3601                                     next_func_start_entry->addr;
3602                                 // Be sure the clear the Thumb address bit when
3603                                 // we calculate the size
3604                                 // from the current and next address
3605                                 if (is_arm)
3606                                   next_symbol_file_addr &=
3607                                       THUMB_ADDRESS_BIT_MASK;
3608                                 symbol_byte_size = std::min<lldb::addr_t>(
3609                                     next_symbol_file_addr - symbol_file_addr,
3610                                     section_end_file_addr - symbol_file_addr);
3611                               } else {
3612                                 symbol_byte_size =
3613                                     section_end_file_addr - symbol_file_addr;
3614                               }
3615                             }
3616                           }
3617                           symbol_value -= section_file_addr;
3618                         }
3619 
3620                         if (is_debug == false) {
3621                           if (type == eSymbolTypeCode) {
3622                             // See if we can find a N_FUN entry for any code
3623                             // symbols.
3624                             // If we do find a match, and the name matches, then
3625                             // we
3626                             // can merge the two into just the function symbol
3627                             // to avoid
3628                             // duplicate entries in the symbol table
3629                             std::pair<ValueToSymbolIndexMap::const_iterator,
3630                                       ValueToSymbolIndexMap::const_iterator>
3631                                 range;
3632                             range = N_FUN_addr_to_sym_idx.equal_range(
3633                                 nlist.n_value);
3634                             if (range.first != range.second) {
3635                               bool found_it = false;
3636                               for (ValueToSymbolIndexMap::const_iterator pos =
3637                                        range.first;
3638                                    pos != range.second; ++pos) {
3639                                 if (sym[sym_idx].GetMangled().GetName(
3640                                         lldb::eLanguageTypeUnknown,
3641                                         Mangled::ePreferMangled) ==
3642                                     sym[pos->second].GetMangled().GetName(
3643                                         lldb::eLanguageTypeUnknown,
3644                                         Mangled::ePreferMangled)) {
3645                                   m_nlist_idx_to_sym_idx[nlist_idx] =
3646                                       pos->second;
3647                                   // We just need the flags from the linker
3648                                   // symbol, so put these flags
3649                                   // into the N_FUN flags to avoid duplicate
3650                                   // symbols in the symbol table
3651                                   sym[pos->second].SetExternal(
3652                                       sym[sym_idx].IsExternal());
3653                                   sym[pos->second].SetFlags(nlist.n_type << 16 |
3654                                                             nlist.n_desc);
3655                                   if (resolver_addresses.find(nlist.n_value) !=
3656                                       resolver_addresses.end())
3657                                     sym[pos->second].SetType(
3658                                         eSymbolTypeResolver);
3659                                   sym[sym_idx].Clear();
3660                                   found_it = true;
3661                                   break;
3662                                 }
3663                               }
3664                               if (found_it)
3665                                 continue;
3666                             } else {
3667                               if (resolver_addresses.find(nlist.n_value) !=
3668                                   resolver_addresses.end())
3669                                 type = eSymbolTypeResolver;
3670                             }
3671                           } else if (type == eSymbolTypeData ||
3672                                      type == eSymbolTypeObjCClass ||
3673                                      type == eSymbolTypeObjCMetaClass ||
3674                                      type == eSymbolTypeObjCIVar) {
3675                             // See if we can find a N_STSYM entry for any data
3676                             // symbols.
3677                             // If we do find a match, and the name matches, then
3678                             // we
3679                             // can merge the two into just the Static symbol to
3680                             // avoid
3681                             // duplicate entries in the symbol table
3682                             std::pair<ValueToSymbolIndexMap::const_iterator,
3683                                       ValueToSymbolIndexMap::const_iterator>
3684                                 range;
3685                             range = N_STSYM_addr_to_sym_idx.equal_range(
3686                                 nlist.n_value);
3687                             if (range.first != range.second) {
3688                               bool found_it = false;
3689                               for (ValueToSymbolIndexMap::const_iterator pos =
3690                                        range.first;
3691                                    pos != range.second; ++pos) {
3692                                 if (sym[sym_idx].GetMangled().GetName(
3693                                         lldb::eLanguageTypeUnknown,
3694                                         Mangled::ePreferMangled) ==
3695                                     sym[pos->second].GetMangled().GetName(
3696                                         lldb::eLanguageTypeUnknown,
3697                                         Mangled::ePreferMangled)) {
3698                                   m_nlist_idx_to_sym_idx[nlist_idx] =
3699                                       pos->second;
3700                                   // We just need the flags from the linker
3701                                   // symbol, so put these flags
3702                                   // into the N_STSYM flags to avoid duplicate
3703                                   // symbols in the symbol table
3704                                   sym[pos->second].SetExternal(
3705                                       sym[sym_idx].IsExternal());
3706                                   sym[pos->second].SetFlags(nlist.n_type << 16 |
3707                                                             nlist.n_desc);
3708                                   sym[sym_idx].Clear();
3709                                   found_it = true;
3710                                   break;
3711                                 }
3712                               }
3713                               if (found_it)
3714                                 continue;
3715                             } else {
3716                               const char *gsym_name =
3717                                   sym[sym_idx]
3718                                       .GetMangled()
3719                                       .GetName(lldb::eLanguageTypeUnknown,
3720                                                Mangled::ePreferMangled)
3721                                       .GetCString();
3722                               if (gsym_name) {
3723                                 // Combine N_GSYM stab entries with the non stab
3724                                 // symbol
3725                                 ConstNameToSymbolIndexMap::const_iterator pos =
3726                                     N_GSYM_name_to_sym_idx.find(gsym_name);
3727                                 if (pos != N_GSYM_name_to_sym_idx.end()) {
3728                                   const uint32_t GSYM_sym_idx = pos->second;
3729                                   m_nlist_idx_to_sym_idx[nlist_idx] =
3730                                       GSYM_sym_idx;
3731                                   // Copy the address, because often the N_GSYM
3732                                   // address has an invalid address of zero
3733                                   // when the global is a common symbol
3734                                   sym[GSYM_sym_idx].GetAddressRef().SetSection(
3735                                       symbol_section);
3736                                   sym[GSYM_sym_idx].GetAddressRef().SetOffset(
3737                                       symbol_value);
3738                                   // We just need the flags from the linker
3739                                   // symbol, so put these flags
3740                                   // into the N_GSYM flags to avoid duplicate
3741                                   // symbols in the symbol table
3742                                   sym[GSYM_sym_idx].SetFlags(
3743                                       nlist.n_type << 16 | nlist.n_desc);
3744                                   sym[sym_idx].Clear();
3745                                   continue;
3746                                 }
3747                               }
3748                             }
3749                           }
3750                         }
3751 
3752                         sym[sym_idx].SetID(nlist_idx);
3753                         sym[sym_idx].SetType(type);
3754                         if (set_value) {
3755                           sym[sym_idx].GetAddressRef().SetSection(
3756                               symbol_section);
3757                           sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
3758                         }
3759                         sym[sym_idx].SetFlags(nlist.n_type << 16 |
3760                                               nlist.n_desc);
3761 
3762                         if (symbol_byte_size > 0)
3763                           sym[sym_idx].SetByteSize(symbol_byte_size);
3764 
3765                         if (demangled_is_synthesized)
3766                           sym[sym_idx].SetDemangledNameIsSynthesized(true);
3767                         ++sym_idx;
3768                       } else {
3769                         sym[sym_idx].Clear();
3770                       }
3771                     }
3772                     /////////////////////////////
3773                   }
3774                   break; // No more entries to consider
3775                 }
3776               }
3777 
3778               for (const auto &pos : reexport_shlib_needs_fixup) {
3779                 const auto undef_pos = undefined_name_to_desc.find(pos.second);
3780                 if (undef_pos != undefined_name_to_desc.end()) {
3781                   const uint8_t dylib_ordinal =
3782                       llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
3783                   if (dylib_ordinal > 0 &&
3784                       dylib_ordinal < dylib_files.GetSize())
3785                     sym[pos.first].SetReExportedSymbolSharedLibrary(
3786                         dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
3787                 }
3788               }
3789             }
3790           }
3791         }
3792       }
3793     }
3794 
3795     // Must reset this in case it was mutated above!
3796     nlist_data_offset = 0;
3797 #endif
3798 
3799     if (nlist_data.GetByteSize() > 0) {
3800 
3801       // If the sym array was not created while parsing the DSC unmapped
3802       // symbols, create it now.
3803       if (sym == NULL) {
3804         sym = symtab->Resize(symtab_load_command.nsyms +
3805                              m_dysymtab.nindirectsyms);
3806         num_syms = symtab->GetNumSymbols();
3807       }
3808 
3809       if (unmapped_local_symbols_found) {
3810         assert(m_dysymtab.ilocalsym == 0);
3811         nlist_data_offset += (m_dysymtab.nlocalsym * nlist_byte_size);
3812         nlist_idx = m_dysymtab.nlocalsym;
3813       } else {
3814         nlist_idx = 0;
3815       }
3816 
3817       typedef std::map<ConstString, uint16_t> UndefinedNameToDescMap;
3818       typedef std::map<uint32_t, ConstString> SymbolIndexToName;
3819       UndefinedNameToDescMap undefined_name_to_desc;
3820       SymbolIndexToName reexport_shlib_needs_fixup;
3821       for (; nlist_idx < symtab_load_command.nsyms; ++nlist_idx) {
3822         struct nlist_64 nlist;
3823         if (!nlist_data.ValidOffsetForDataOfSize(nlist_data_offset,
3824                                                  nlist_byte_size))
3825           break;
3826 
3827         nlist.n_strx = nlist_data.GetU32_unchecked(&nlist_data_offset);
3828         nlist.n_type = nlist_data.GetU8_unchecked(&nlist_data_offset);
3829         nlist.n_sect = nlist_data.GetU8_unchecked(&nlist_data_offset);
3830         nlist.n_desc = nlist_data.GetU16_unchecked(&nlist_data_offset);
3831         nlist.n_value = nlist_data.GetAddress_unchecked(&nlist_data_offset);
3832 
3833         SymbolType type = eSymbolTypeInvalid;
3834         const char *symbol_name = NULL;
3835 
3836         if (have_strtab_data) {
3837           symbol_name = strtab_data.PeekCStr(nlist.n_strx);
3838 
3839           if (symbol_name == NULL) {
3840             // No symbol should be NULL, even the symbols with no
3841             // string values should have an offset zero which points
3842             // to an empty C-string
3843             Host::SystemLog(Host::eSystemLogError,
3844                             "error: symbol[%u] has invalid string table offset "
3845                             "0x%x in %s, ignoring symbol\n",
3846                             nlist_idx, nlist.n_strx,
3847                             module_sp->GetFileSpec().GetPath().c_str());
3848             continue;
3849           }
3850           if (symbol_name[0] == '\0')
3851             symbol_name = NULL;
3852         } else {
3853           const addr_t str_addr = strtab_addr + nlist.n_strx;
3854           Status str_error;
3855           if (process->ReadCStringFromMemory(str_addr, memory_symbol_name,
3856                                              str_error))
3857             symbol_name = memory_symbol_name.c_str();
3858         }
3859         const char *symbol_name_non_abi_mangled = NULL;
3860 
3861         SectionSP symbol_section;
3862         lldb::addr_t symbol_byte_size = 0;
3863         bool add_nlist = true;
3864         bool is_gsym = false;
3865         bool is_debug = ((nlist.n_type & N_STAB) != 0);
3866         bool demangled_is_synthesized = false;
3867         bool set_value = true;
3868         assert(sym_idx < num_syms);
3869 
3870         sym[sym_idx].SetDebug(is_debug);
3871 
3872         if (is_debug) {
3873           switch (nlist.n_type) {
3874           case N_GSYM:
3875             // global symbol: name,,NO_SECT,type,0
3876             // Sometimes the N_GSYM value contains the address.
3877 
3878             // FIXME: In the .o files, we have a GSYM and a debug symbol for all
3879             // the ObjC data.  They
3880             // have the same address, but we want to ensure that we always find
3881             // only the real symbol,
3882             // 'cause we don't currently correctly attribute the GSYM one to the
3883             // ObjCClass/Ivar/MetaClass
3884             // symbol type.  This is a temporary hack to make sure the
3885             // ObjectiveC symbols get treated
3886             // correctly.  To do this right, we should coalesce all the GSYM &
3887             // global symbols that have the
3888             // same address.
3889             is_gsym = true;
3890             sym[sym_idx].SetExternal(true);
3891 
3892             if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O') {
3893               llvm::StringRef symbol_name_ref(symbol_name);
3894               if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) {
3895                 symbol_name_non_abi_mangled = symbol_name + 1;
3896                 symbol_name = symbol_name + g_objc_v2_prefix_class.size();
3897                 type = eSymbolTypeObjCClass;
3898                 demangled_is_synthesized = true;
3899 
3900               } else if (symbol_name_ref.startswith(
3901                              g_objc_v2_prefix_metaclass)) {
3902                 symbol_name_non_abi_mangled = symbol_name + 1;
3903                 symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size();
3904                 type = eSymbolTypeObjCMetaClass;
3905                 demangled_is_synthesized = true;
3906               } else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) {
3907                 symbol_name_non_abi_mangled = symbol_name + 1;
3908                 symbol_name = symbol_name + g_objc_v2_prefix_ivar.size();
3909                 type = eSymbolTypeObjCIVar;
3910                 demangled_is_synthesized = true;
3911               }
3912             } else {
3913               if (nlist.n_value != 0)
3914                 symbol_section =
3915                     section_info.GetSection(nlist.n_sect, nlist.n_value);
3916               type = eSymbolTypeData;
3917             }
3918             break;
3919 
3920           case N_FNAME:
3921             // procedure name (f77 kludge): name,,NO_SECT,0,0
3922             type = eSymbolTypeCompiler;
3923             break;
3924 
3925           case N_FUN:
3926             // procedure: name,,n_sect,linenumber,address
3927             if (symbol_name) {
3928               type = eSymbolTypeCode;
3929               symbol_section =
3930                   section_info.GetSection(nlist.n_sect, nlist.n_value);
3931 
3932               N_FUN_addr_to_sym_idx.insert(
3933                   std::make_pair(nlist.n_value, sym_idx));
3934               // We use the current number of symbols in the symbol table in
3935               // lieu of
3936               // using nlist_idx in case we ever start trimming entries out
3937               N_FUN_indexes.push_back(sym_idx);
3938             } else {
3939               type = eSymbolTypeCompiler;
3940 
3941               if (!N_FUN_indexes.empty()) {
3942                 // Copy the size of the function into the original STAB entry so
3943                 // we don't have
3944                 // to hunt for it later
3945                 symtab->SymbolAtIndex(N_FUN_indexes.back())
3946                     ->SetByteSize(nlist.n_value);
3947                 N_FUN_indexes.pop_back();
3948                 // We don't really need the end function STAB as it contains the
3949                 // size which
3950                 // we already placed with the original symbol, so don't add it
3951                 // if we want a
3952                 // minimal symbol table
3953                 add_nlist = false;
3954               }
3955             }
3956             break;
3957 
3958           case N_STSYM:
3959             // static symbol: name,,n_sect,type,address
3960             N_STSYM_addr_to_sym_idx.insert(
3961                 std::make_pair(nlist.n_value, sym_idx));
3962             symbol_section =
3963                 section_info.GetSection(nlist.n_sect, nlist.n_value);
3964             if (symbol_name && symbol_name[0]) {
3965               type = ObjectFile::GetSymbolTypeFromName(symbol_name + 1,
3966                                                        eSymbolTypeData);
3967             }
3968             break;
3969 
3970           case N_LCSYM:
3971             // .lcomm symbol: name,,n_sect,type,address
3972             symbol_section =
3973                 section_info.GetSection(nlist.n_sect, nlist.n_value);
3974             type = eSymbolTypeCommonBlock;
3975             break;
3976 
3977           case N_BNSYM:
3978             // We use the current number of symbols in the symbol table in lieu
3979             // of
3980             // using nlist_idx in case we ever start trimming entries out
3981             // Skip these if we want minimal symbol tables
3982             add_nlist = false;
3983             break;
3984 
3985           case N_ENSYM:
3986             // Set the size of the N_BNSYM to the terminating index of this
3987             // N_ENSYM
3988             // so that we can always skip the entire symbol if we need to
3989             // navigate
3990             // more quickly at the source level when parsing STABS
3991             // Skip these if we want minimal symbol tables
3992             add_nlist = false;
3993             break;
3994 
3995           case N_OPT:
3996             // emitted with gcc2_compiled and in gcc source
3997             type = eSymbolTypeCompiler;
3998             break;
3999 
4000           case N_RSYM:
4001             // register sym: name,,NO_SECT,type,register
4002             type = eSymbolTypeVariable;
4003             break;
4004 
4005           case N_SLINE:
4006             // src line: 0,,n_sect,linenumber,address
4007             symbol_section =
4008                 section_info.GetSection(nlist.n_sect, nlist.n_value);
4009             type = eSymbolTypeLineEntry;
4010             break;
4011 
4012           case N_SSYM:
4013             // structure elt: name,,NO_SECT,type,struct_offset
4014             type = eSymbolTypeVariableType;
4015             break;
4016 
4017           case N_SO:
4018             // source file name
4019             type = eSymbolTypeSourceFile;
4020             if (symbol_name == NULL) {
4021               add_nlist = false;
4022               if (N_SO_index != UINT32_MAX) {
4023                 // Set the size of the N_SO to the terminating index of this
4024                 // N_SO
4025                 // so that we can always skip the entire N_SO if we need to
4026                 // navigate
4027                 // more quickly at the source level when parsing STABS
4028                 symbol_ptr = symtab->SymbolAtIndex(N_SO_index);
4029                 symbol_ptr->SetByteSize(sym_idx);
4030                 symbol_ptr->SetSizeIsSibling(true);
4031               }
4032               N_NSYM_indexes.clear();
4033               N_INCL_indexes.clear();
4034               N_BRAC_indexes.clear();
4035               N_COMM_indexes.clear();
4036               N_FUN_indexes.clear();
4037               N_SO_index = UINT32_MAX;
4038             } else {
4039               // We use the current number of symbols in the symbol table in
4040               // lieu of
4041               // using nlist_idx in case we ever start trimming entries out
4042               const bool N_SO_has_full_path = symbol_name[0] == '/';
4043               if (N_SO_has_full_path) {
4044                 if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) {
4045                   // We have two consecutive N_SO entries where the first
4046                   // contains a directory
4047                   // and the second contains a full path.
4048                   sym[sym_idx - 1].GetMangled().SetValue(
4049                       ConstString(symbol_name), false);
4050                   m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
4051                   add_nlist = false;
4052                 } else {
4053                   // This is the first entry in a N_SO that contains a directory
4054                   // or
4055                   // a full path to the source file
4056                   N_SO_index = sym_idx;
4057                 }
4058               } else if ((N_SO_index == sym_idx - 1) &&
4059                          ((sym_idx - 1) < num_syms)) {
4060                 // This is usually the second N_SO entry that contains just the
4061                 // filename,
4062                 // so here we combine it with the first one if we are minimizing
4063                 // the symbol table
4064                 const char *so_path =
4065                     sym[sym_idx - 1]
4066                         .GetMangled()
4067                         .GetDemangledName(lldb::eLanguageTypeUnknown)
4068                         .AsCString();
4069                 if (so_path && so_path[0]) {
4070                   std::string full_so_path(so_path);
4071                   const size_t double_slash_pos = full_so_path.find("//");
4072                   if (double_slash_pos != std::string::npos) {
4073                     // The linker has been generating bad N_SO entries with
4074                     // doubled up paths
4075                     // in the format "%s%s" where the first string in the
4076                     // DW_AT_comp_dir,
4077                     // and the second is the directory for the source file so
4078                     // you end up with
4079                     // a path that looks like "/tmp/src//tmp/src/"
4080                     FileSpec so_dir(so_path, false);
4081                     if (!so_dir.Exists()) {
4082                       so_dir.SetFile(&full_so_path[double_slash_pos + 1],
4083                                      false);
4084                       if (so_dir.Exists()) {
4085                         // Trim off the incorrect path
4086                         full_so_path.erase(0, double_slash_pos + 1);
4087                       }
4088                     }
4089                   }
4090                   if (*full_so_path.rbegin() != '/')
4091                     full_so_path += '/';
4092                   full_so_path += symbol_name;
4093                   sym[sym_idx - 1].GetMangled().SetValue(
4094                       ConstString(full_so_path.c_str()), false);
4095                   add_nlist = false;
4096                   m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
4097                 }
4098               } else {
4099                 // This could be a relative path to a N_SO
4100                 N_SO_index = sym_idx;
4101               }
4102             }
4103             break;
4104 
4105           case N_OSO:
4106             // object file name: name,,0,0,st_mtime
4107             type = eSymbolTypeObjectFile;
4108             break;
4109 
4110           case N_LSYM:
4111             // local sym: name,,NO_SECT,type,offset
4112             type = eSymbolTypeLocal;
4113             break;
4114 
4115           //----------------------------------------------------------------------
4116           // INCL scopes
4117           //----------------------------------------------------------------------
4118           case N_BINCL:
4119             // include file beginning: name,,NO_SECT,0,sum
4120             // We use the current number of symbols in the symbol table in lieu
4121             // of
4122             // using nlist_idx in case we ever start trimming entries out
4123             N_INCL_indexes.push_back(sym_idx);
4124             type = eSymbolTypeScopeBegin;
4125             break;
4126 
4127           case N_EINCL:
4128             // include file end: name,,NO_SECT,0,0
4129             // Set the size of the N_BINCL to the terminating index of this
4130             // N_EINCL
4131             // so that we can always skip the entire symbol if we need to
4132             // navigate
4133             // more quickly at the source level when parsing STABS
4134             if (!N_INCL_indexes.empty()) {
4135               symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back());
4136               symbol_ptr->SetByteSize(sym_idx + 1);
4137               symbol_ptr->SetSizeIsSibling(true);
4138               N_INCL_indexes.pop_back();
4139             }
4140             type = eSymbolTypeScopeEnd;
4141             break;
4142 
4143           case N_SOL:
4144             // #included file name: name,,n_sect,0,address
4145             type = eSymbolTypeHeaderFile;
4146 
4147             // We currently don't use the header files on darwin
4148             add_nlist = false;
4149             break;
4150 
4151           case N_PARAMS:
4152             // compiler parameters: name,,NO_SECT,0,0
4153             type = eSymbolTypeCompiler;
4154             break;
4155 
4156           case N_VERSION:
4157             // compiler version: name,,NO_SECT,0,0
4158             type = eSymbolTypeCompiler;
4159             break;
4160 
4161           case N_OLEVEL:
4162             // compiler -O level: name,,NO_SECT,0,0
4163             type = eSymbolTypeCompiler;
4164             break;
4165 
4166           case N_PSYM:
4167             // parameter: name,,NO_SECT,type,offset
4168             type = eSymbolTypeVariable;
4169             break;
4170 
4171           case N_ENTRY:
4172             // alternate entry: name,,n_sect,linenumber,address
4173             symbol_section =
4174                 section_info.GetSection(nlist.n_sect, nlist.n_value);
4175             type = eSymbolTypeLineEntry;
4176             break;
4177 
4178           //----------------------------------------------------------------------
4179           // Left and Right Braces
4180           //----------------------------------------------------------------------
4181           case N_LBRAC:
4182             // left bracket: 0,,NO_SECT,nesting level,address
4183             // We use the current number of symbols in the symbol table in lieu
4184             // of
4185             // using nlist_idx in case we ever start trimming entries out
4186             symbol_section =
4187                 section_info.GetSection(nlist.n_sect, nlist.n_value);
4188             N_BRAC_indexes.push_back(sym_idx);
4189             type = eSymbolTypeScopeBegin;
4190             break;
4191 
4192           case N_RBRAC:
4193             // right bracket: 0,,NO_SECT,nesting level,address
4194             // Set the size of the N_LBRAC to the terminating index of this
4195             // N_RBRAC
4196             // so that we can always skip the entire symbol if we need to
4197             // navigate
4198             // more quickly at the source level when parsing STABS
4199             symbol_section =
4200                 section_info.GetSection(nlist.n_sect, nlist.n_value);
4201             if (!N_BRAC_indexes.empty()) {
4202               symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back());
4203               symbol_ptr->SetByteSize(sym_idx + 1);
4204               symbol_ptr->SetSizeIsSibling(true);
4205               N_BRAC_indexes.pop_back();
4206             }
4207             type = eSymbolTypeScopeEnd;
4208             break;
4209 
4210           case N_EXCL:
4211             // deleted include file: name,,NO_SECT,0,sum
4212             type = eSymbolTypeHeaderFile;
4213             break;
4214 
4215           //----------------------------------------------------------------------
4216           // COMM scopes
4217           //----------------------------------------------------------------------
4218           case N_BCOMM:
4219             // begin common: name,,NO_SECT,0,0
4220             // We use the current number of symbols in the symbol table in lieu
4221             // of
4222             // using nlist_idx in case we ever start trimming entries out
4223             type = eSymbolTypeScopeBegin;
4224             N_COMM_indexes.push_back(sym_idx);
4225             break;
4226 
4227           case N_ECOML:
4228             // end common (local name): 0,,n_sect,0,address
4229             symbol_section =
4230                 section_info.GetSection(nlist.n_sect, nlist.n_value);
4231             LLVM_FALLTHROUGH;
4232 
4233           case N_ECOMM:
4234             // end common: name,,n_sect,0,0
4235             // Set the size of the N_BCOMM to the terminating index of this
4236             // N_ECOMM/N_ECOML
4237             // so that we can always skip the entire symbol if we need to
4238             // navigate
4239             // more quickly at the source level when parsing STABS
4240             if (!N_COMM_indexes.empty()) {
4241               symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back());
4242               symbol_ptr->SetByteSize(sym_idx + 1);
4243               symbol_ptr->SetSizeIsSibling(true);
4244               N_COMM_indexes.pop_back();
4245             }
4246             type = eSymbolTypeScopeEnd;
4247             break;
4248 
4249           case N_LENG:
4250             // second stab entry with length information
4251             type = eSymbolTypeAdditional;
4252             break;
4253 
4254           default:
4255             break;
4256           }
4257         } else {
4258           // uint8_t n_pext    = N_PEXT & nlist.n_type;
4259           uint8_t n_type = N_TYPE & nlist.n_type;
4260           sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
4261 
4262           switch (n_type) {
4263           case N_INDR: {
4264             const char *reexport_name_cstr =
4265                 strtab_data.PeekCStr(nlist.n_value);
4266             if (reexport_name_cstr && reexport_name_cstr[0]) {
4267               type = eSymbolTypeReExported;
4268               ConstString reexport_name(
4269                   reexport_name_cstr +
4270                   ((reexport_name_cstr[0] == '_') ? 1 : 0));
4271               sym[sym_idx].SetReExportedSymbolName(reexport_name);
4272               set_value = false;
4273               reexport_shlib_needs_fixup[sym_idx] = reexport_name;
4274               indirect_symbol_names.insert(
4275                   ConstString(symbol_name + ((symbol_name[0] == '_') ? 1 : 0)));
4276             } else
4277               type = eSymbolTypeUndefined;
4278           } break;
4279 
4280           case N_UNDF:
4281             if (symbol_name && symbol_name[0]) {
4282               ConstString undefined_name(symbol_name +
4283                                          ((symbol_name[0] == '_') ? 1 : 0));
4284               undefined_name_to_desc[undefined_name] = nlist.n_desc;
4285             }
4286             LLVM_FALLTHROUGH;
4287 
4288           case N_PBUD:
4289             type = eSymbolTypeUndefined;
4290             break;
4291 
4292           case N_ABS:
4293             type = eSymbolTypeAbsolute;
4294             break;
4295 
4296           case N_SECT: {
4297             symbol_section =
4298                 section_info.GetSection(nlist.n_sect, nlist.n_value);
4299 
4300             if (!symbol_section) {
4301               // TODO: warn about this?
4302               add_nlist = false;
4303               break;
4304             }
4305 
4306             if (TEXT_eh_frame_sectID == nlist.n_sect) {
4307               type = eSymbolTypeException;
4308             } else {
4309               uint32_t section_type = symbol_section->Get() & SECTION_TYPE;
4310 
4311               switch (section_type) {
4312               case S_CSTRING_LITERALS:
4313                 type = eSymbolTypeData;
4314                 break; // section with only literal C strings
4315               case S_4BYTE_LITERALS:
4316                 type = eSymbolTypeData;
4317                 break; // section with only 4 byte literals
4318               case S_8BYTE_LITERALS:
4319                 type = eSymbolTypeData;
4320                 break; // section with only 8 byte literals
4321               case S_LITERAL_POINTERS:
4322                 type = eSymbolTypeTrampoline;
4323                 break; // section with only pointers to literals
4324               case S_NON_LAZY_SYMBOL_POINTERS:
4325                 type = eSymbolTypeTrampoline;
4326                 break; // section with only non-lazy symbol pointers
4327               case S_LAZY_SYMBOL_POINTERS:
4328                 type = eSymbolTypeTrampoline;
4329                 break; // section with only lazy symbol pointers
4330               case S_SYMBOL_STUBS:
4331                 type = eSymbolTypeTrampoline;
4332                 break; // section with only symbol stubs, byte size of stub in
4333                        // the reserved2 field
4334               case S_MOD_INIT_FUNC_POINTERS:
4335                 type = eSymbolTypeCode;
4336                 break; // section with only function pointers for initialization
4337               case S_MOD_TERM_FUNC_POINTERS:
4338                 type = eSymbolTypeCode;
4339                 break; // section with only function pointers for termination
4340               case S_INTERPOSING:
4341                 type = eSymbolTypeTrampoline;
4342                 break; // section with only pairs of function pointers for
4343                        // interposing
4344               case S_16BYTE_LITERALS:
4345                 type = eSymbolTypeData;
4346                 break; // section with only 16 byte literals
4347               case S_DTRACE_DOF:
4348                 type = eSymbolTypeInstrumentation;
4349                 break;
4350               case S_LAZY_DYLIB_SYMBOL_POINTERS:
4351                 type = eSymbolTypeTrampoline;
4352                 break;
4353               default:
4354                 switch (symbol_section->GetType()) {
4355                 case lldb::eSectionTypeCode:
4356                   type = eSymbolTypeCode;
4357                   break;
4358                 case eSectionTypeData:
4359                 case eSectionTypeDataCString:         // Inlined C string data
4360                 case eSectionTypeDataCStringPointers: // Pointers to C string
4361                                                       // data
4362                 case eSectionTypeDataSymbolAddress:   // Address of a symbol in
4363                                                       // the symbol table
4364                 case eSectionTypeData4:
4365                 case eSectionTypeData8:
4366                 case eSectionTypeData16:
4367                   type = eSymbolTypeData;
4368                   break;
4369                 default:
4370                   break;
4371                 }
4372                 break;
4373               }
4374 
4375               if (type == eSymbolTypeInvalid) {
4376                 const char *symbol_sect_name =
4377                     symbol_section->GetName().AsCString();
4378                 if (symbol_section->IsDescendant(text_section_sp.get())) {
4379                   if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS |
4380                                               S_ATTR_SELF_MODIFYING_CODE |
4381                                               S_ATTR_SOME_INSTRUCTIONS))
4382                     type = eSymbolTypeData;
4383                   else
4384                     type = eSymbolTypeCode;
4385                 } else if (symbol_section->IsDescendant(
4386                                data_section_sp.get()) ||
4387                            symbol_section->IsDescendant(
4388                                data_dirty_section_sp.get()) ||
4389                            symbol_section->IsDescendant(
4390                                data_const_section_sp.get())) {
4391                   if (symbol_sect_name &&
4392                       ::strstr(symbol_sect_name, "__objc") ==
4393                           symbol_sect_name) {
4394                     type = eSymbolTypeRuntime;
4395 
4396                     if (symbol_name) {
4397                       llvm::StringRef symbol_name_ref(symbol_name);
4398                       if (symbol_name_ref.startswith("_OBJC_")) {
4399                         static const llvm::StringRef g_objc_v2_prefix_class(
4400                             "_OBJC_CLASS_$_");
4401                         static const llvm::StringRef g_objc_v2_prefix_metaclass(
4402                             "_OBJC_METACLASS_$_");
4403                         static const llvm::StringRef g_objc_v2_prefix_ivar(
4404                             "_OBJC_IVAR_$_");
4405                         if (symbol_name_ref.startswith(
4406                                 g_objc_v2_prefix_class)) {
4407                           symbol_name_non_abi_mangled = symbol_name + 1;
4408                           symbol_name =
4409                               symbol_name + g_objc_v2_prefix_class.size();
4410                           type = eSymbolTypeObjCClass;
4411                           demangled_is_synthesized = true;
4412                         } else if (symbol_name_ref.startswith(
4413                                        g_objc_v2_prefix_metaclass)) {
4414                           symbol_name_non_abi_mangled = symbol_name + 1;
4415                           symbol_name =
4416                               symbol_name + g_objc_v2_prefix_metaclass.size();
4417                           type = eSymbolTypeObjCMetaClass;
4418                           demangled_is_synthesized = true;
4419                         } else if (symbol_name_ref.startswith(
4420                                        g_objc_v2_prefix_ivar)) {
4421                           symbol_name_non_abi_mangled = symbol_name + 1;
4422                           symbol_name =
4423                               symbol_name + g_objc_v2_prefix_ivar.size();
4424                           type = eSymbolTypeObjCIVar;
4425                           demangled_is_synthesized = true;
4426                         }
4427                       }
4428                     }
4429                   } else if (symbol_sect_name &&
4430                              ::strstr(symbol_sect_name, "__gcc_except_tab") ==
4431                                  symbol_sect_name) {
4432                     type = eSymbolTypeException;
4433                   } else {
4434                     type = eSymbolTypeData;
4435                   }
4436                 } else if (symbol_sect_name &&
4437                            ::strstr(symbol_sect_name, "__IMPORT") ==
4438                                symbol_sect_name) {
4439                   type = eSymbolTypeTrampoline;
4440                 } else if (symbol_section->IsDescendant(
4441                                objc_section_sp.get())) {
4442                   type = eSymbolTypeRuntime;
4443                   if (symbol_name && symbol_name[0] == '.') {
4444                     llvm::StringRef symbol_name_ref(symbol_name);
4445                     static const llvm::StringRef g_objc_v1_prefix_class(
4446                         ".objc_class_name_");
4447                     if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) {
4448                       symbol_name_non_abi_mangled = symbol_name;
4449                       symbol_name = symbol_name + g_objc_v1_prefix_class.size();
4450                       type = eSymbolTypeObjCClass;
4451                       demangled_is_synthesized = true;
4452                     }
4453                   }
4454                 }
4455               }
4456             }
4457           } break;
4458           }
4459         }
4460 
4461         if (add_nlist) {
4462           uint64_t symbol_value = nlist.n_value;
4463 
4464           if (symbol_name_non_abi_mangled) {
4465             sym[sym_idx].GetMangled().SetMangledName(
4466                 ConstString(symbol_name_non_abi_mangled));
4467             sym[sym_idx].GetMangled().SetDemangledName(
4468                 ConstString(symbol_name));
4469           } else {
4470             bool symbol_name_is_mangled = false;
4471 
4472             if (symbol_name && symbol_name[0] == '_') {
4473               symbol_name_is_mangled = symbol_name[1] == '_';
4474               symbol_name++; // Skip the leading underscore
4475             }
4476 
4477             if (symbol_name) {
4478               ConstString const_symbol_name(symbol_name);
4479               sym[sym_idx].GetMangled().SetValue(const_symbol_name,
4480                                                  symbol_name_is_mangled);
4481             }
4482           }
4483 
4484           if (is_gsym) {
4485             const char *gsym_name = sym[sym_idx]
4486                                         .GetMangled()
4487                                         .GetName(lldb::eLanguageTypeUnknown,
4488                                                  Mangled::ePreferMangled)
4489                                         .GetCString();
4490             if (gsym_name)
4491               N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
4492           }
4493 
4494           if (symbol_section) {
4495             const addr_t section_file_addr = symbol_section->GetFileAddress();
4496             if (symbol_byte_size == 0 && function_starts_count > 0) {
4497               addr_t symbol_lookup_file_addr = nlist.n_value;
4498               // Do an exact address match for non-ARM addresses, else get the
4499               // closest since
4500               // the symbol might be a thumb symbol which has an address with
4501               // bit zero set
4502               FunctionStarts::Entry *func_start_entry =
4503                   function_starts.FindEntry(symbol_lookup_file_addr, !is_arm);
4504               if (is_arm && func_start_entry) {
4505                 // Verify that the function start address is the symbol address
4506                 // (ARM)
4507                 // or the symbol address + 1 (thumb)
4508                 if (func_start_entry->addr != symbol_lookup_file_addr &&
4509                     func_start_entry->addr != (symbol_lookup_file_addr + 1)) {
4510                   // Not the right entry, NULL it out...
4511                   func_start_entry = NULL;
4512                 }
4513               }
4514               if (func_start_entry) {
4515                 func_start_entry->data = true;
4516 
4517                 addr_t symbol_file_addr = func_start_entry->addr;
4518                 if (is_arm)
4519                   symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4520 
4521                 const FunctionStarts::Entry *next_func_start_entry =
4522                     function_starts.FindNextEntry(func_start_entry);
4523                 const addr_t section_end_file_addr =
4524                     section_file_addr + symbol_section->GetByteSize();
4525                 if (next_func_start_entry) {
4526                   addr_t next_symbol_file_addr = next_func_start_entry->addr;
4527                   // Be sure the clear the Thumb address bit when we calculate
4528                   // the size
4529                   // from the current and next address
4530                   if (is_arm)
4531                     next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4532                   symbol_byte_size = std::min<lldb::addr_t>(
4533                       next_symbol_file_addr - symbol_file_addr,
4534                       section_end_file_addr - symbol_file_addr);
4535                 } else {
4536                   symbol_byte_size = section_end_file_addr - symbol_file_addr;
4537                 }
4538               }
4539             }
4540             symbol_value -= section_file_addr;
4541           }
4542 
4543           if (is_debug == false) {
4544             if (type == eSymbolTypeCode) {
4545               // See if we can find a N_FUN entry for any code symbols.
4546               // If we do find a match, and the name matches, then we
4547               // can merge the two into just the function symbol to avoid
4548               // duplicate entries in the symbol table
4549               std::pair<ValueToSymbolIndexMap::const_iterator,
4550                         ValueToSymbolIndexMap::const_iterator>
4551                   range;
4552               range = N_FUN_addr_to_sym_idx.equal_range(nlist.n_value);
4553               if (range.first != range.second) {
4554                 bool found_it = false;
4555                 for (ValueToSymbolIndexMap::const_iterator pos = range.first;
4556                      pos != range.second; ++pos) {
4557                   if (sym[sym_idx].GetMangled().GetName(
4558                           lldb::eLanguageTypeUnknown,
4559                           Mangled::ePreferMangled) ==
4560                       sym[pos->second].GetMangled().GetName(
4561                           lldb::eLanguageTypeUnknown,
4562                           Mangled::ePreferMangled)) {
4563                     m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
4564                     // We just need the flags from the linker symbol, so put
4565                     // these flags
4566                     // into the N_FUN flags to avoid duplicate symbols in the
4567                     // symbol table
4568                     sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
4569                     sym[pos->second].SetFlags(nlist.n_type << 16 |
4570                                               nlist.n_desc);
4571                     if (resolver_addresses.find(nlist.n_value) !=
4572                         resolver_addresses.end())
4573                       sym[pos->second].SetType(eSymbolTypeResolver);
4574                     sym[sym_idx].Clear();
4575                     found_it = true;
4576                     break;
4577                   }
4578                 }
4579                 if (found_it)
4580                   continue;
4581               } else {
4582                 if (resolver_addresses.find(nlist.n_value) !=
4583                     resolver_addresses.end())
4584                   type = eSymbolTypeResolver;
4585               }
4586             } else if (type == eSymbolTypeData ||
4587                        type == eSymbolTypeObjCClass ||
4588                        type == eSymbolTypeObjCMetaClass ||
4589                        type == eSymbolTypeObjCIVar) {
4590               // See if we can find a N_STSYM entry for any data symbols.
4591               // If we do find a match, and the name matches, then we
4592               // can merge the two into just the Static symbol to avoid
4593               // duplicate entries in the symbol table
4594               std::pair<ValueToSymbolIndexMap::const_iterator,
4595                         ValueToSymbolIndexMap::const_iterator>
4596                   range;
4597               range = N_STSYM_addr_to_sym_idx.equal_range(nlist.n_value);
4598               if (range.first != range.second) {
4599                 bool found_it = false;
4600                 for (ValueToSymbolIndexMap::const_iterator pos = range.first;
4601                      pos != range.second; ++pos) {
4602                   if (sym[sym_idx].GetMangled().GetName(
4603                           lldb::eLanguageTypeUnknown,
4604                           Mangled::ePreferMangled) ==
4605                       sym[pos->second].GetMangled().GetName(
4606                           lldb::eLanguageTypeUnknown,
4607                           Mangled::ePreferMangled)) {
4608                     m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
4609                     // We just need the flags from the linker symbol, so put
4610                     // these flags
4611                     // into the N_STSYM flags to avoid duplicate symbols in the
4612                     // symbol table
4613                     sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
4614                     sym[pos->second].SetFlags(nlist.n_type << 16 |
4615                                               nlist.n_desc);
4616                     sym[sym_idx].Clear();
4617                     found_it = true;
4618                     break;
4619                   }
4620                 }
4621                 if (found_it)
4622                   continue;
4623               } else {
4624                 // Combine N_GSYM stab entries with the non stab symbol
4625                 const char *gsym_name = sym[sym_idx]
4626                                             .GetMangled()
4627                                             .GetName(lldb::eLanguageTypeUnknown,
4628                                                      Mangled::ePreferMangled)
4629                                             .GetCString();
4630                 if (gsym_name) {
4631                   ConstNameToSymbolIndexMap::const_iterator pos =
4632                       N_GSYM_name_to_sym_idx.find(gsym_name);
4633                   if (pos != N_GSYM_name_to_sym_idx.end()) {
4634                     const uint32_t GSYM_sym_idx = pos->second;
4635                     m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx;
4636                     // Copy the address, because often the N_GSYM address has an
4637                     // invalid address of zero
4638                     // when the global is a common symbol
4639                     sym[GSYM_sym_idx].GetAddressRef().SetSection(
4640                         symbol_section);
4641                     sym[GSYM_sym_idx].GetAddressRef().SetOffset(symbol_value);
4642                     // We just need the flags from the linker symbol, so put
4643                     // these flags
4644                     // into the N_GSYM flags to avoid duplicate symbols in the
4645                     // symbol table
4646                     sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 |
4647                                                nlist.n_desc);
4648                     sym[sym_idx].Clear();
4649                     continue;
4650                   }
4651                 }
4652               }
4653             }
4654           }
4655 
4656           sym[sym_idx].SetID(nlist_idx);
4657           sym[sym_idx].SetType(type);
4658           if (set_value) {
4659             sym[sym_idx].GetAddressRef().SetSection(symbol_section);
4660             sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
4661           }
4662           sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4663 
4664           if (symbol_byte_size > 0)
4665             sym[sym_idx].SetByteSize(symbol_byte_size);
4666 
4667           if (demangled_is_synthesized)
4668             sym[sym_idx].SetDemangledNameIsSynthesized(true);
4669 
4670           ++sym_idx;
4671         } else {
4672           sym[sym_idx].Clear();
4673         }
4674       }
4675 
4676       for (const auto &pos : reexport_shlib_needs_fixup) {
4677         const auto undef_pos = undefined_name_to_desc.find(pos.second);
4678         if (undef_pos != undefined_name_to_desc.end()) {
4679           const uint8_t dylib_ordinal =
4680               llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
4681           if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize())
4682             sym[pos.first].SetReExportedSymbolSharedLibrary(
4683                 dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
4684         }
4685       }
4686     }
4687 
4688     uint32_t synthetic_sym_id = symtab_load_command.nsyms;
4689 
4690     if (function_starts_count > 0) {
4691       uint32_t num_synthetic_function_symbols = 0;
4692       for (i = 0; i < function_starts_count; ++i) {
4693         if (function_starts.GetEntryRef(i).data == false)
4694           ++num_synthetic_function_symbols;
4695       }
4696 
4697       if (num_synthetic_function_symbols > 0) {
4698         if (num_syms < sym_idx + num_synthetic_function_symbols) {
4699           num_syms = sym_idx + num_synthetic_function_symbols;
4700           sym = symtab->Resize(num_syms);
4701         }
4702         for (i = 0; i < function_starts_count; ++i) {
4703           const FunctionStarts::Entry *func_start_entry =
4704               function_starts.GetEntryAtIndex(i);
4705           if (func_start_entry->data == false) {
4706             addr_t symbol_file_addr = func_start_entry->addr;
4707             uint32_t symbol_flags = 0;
4708             if (is_arm) {
4709               if (symbol_file_addr & 1)
4710                 symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB;
4711               symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4712             }
4713             Address symbol_addr;
4714             if (module_sp->ResolveFileAddress(symbol_file_addr, symbol_addr)) {
4715               SectionSP symbol_section(symbol_addr.GetSection());
4716               uint32_t symbol_byte_size = 0;
4717               if (symbol_section) {
4718                 const addr_t section_file_addr =
4719                     symbol_section->GetFileAddress();
4720                 const FunctionStarts::Entry *next_func_start_entry =
4721                     function_starts.FindNextEntry(func_start_entry);
4722                 const addr_t section_end_file_addr =
4723                     section_file_addr + symbol_section->GetByteSize();
4724                 if (next_func_start_entry) {
4725                   addr_t next_symbol_file_addr = next_func_start_entry->addr;
4726                   if (is_arm)
4727                     next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4728                   symbol_byte_size = std::min<lldb::addr_t>(
4729                       next_symbol_file_addr - symbol_file_addr,
4730                       section_end_file_addr - symbol_file_addr);
4731                 } else {
4732                   symbol_byte_size = section_end_file_addr - symbol_file_addr;
4733                 }
4734                 sym[sym_idx].SetID(synthetic_sym_id++);
4735                 sym[sym_idx].GetMangled().SetDemangledName(
4736                     GetNextSyntheticSymbolName());
4737                 sym[sym_idx].SetType(eSymbolTypeCode);
4738                 sym[sym_idx].SetIsSynthetic(true);
4739                 sym[sym_idx].GetAddressRef() = symbol_addr;
4740                 if (symbol_flags)
4741                   sym[sym_idx].SetFlags(symbol_flags);
4742                 if (symbol_byte_size)
4743                   sym[sym_idx].SetByteSize(symbol_byte_size);
4744                 ++sym_idx;
4745               }
4746             }
4747           }
4748         }
4749       }
4750     }
4751 
4752     // Trim our symbols down to just what we ended up with after
4753     // removing any symbols.
4754     if (sym_idx < num_syms) {
4755       num_syms = sym_idx;
4756       sym = symtab->Resize(num_syms);
4757     }
4758 
4759     // Now synthesize indirect symbols
4760     if (m_dysymtab.nindirectsyms != 0) {
4761       if (indirect_symbol_index_data.GetByteSize()) {
4762         NListIndexToSymbolIndexMap::const_iterator end_index_pos =
4763             m_nlist_idx_to_sym_idx.end();
4764 
4765         for (uint32_t sect_idx = 1; sect_idx < m_mach_sections.size();
4766              ++sect_idx) {
4767           if ((m_mach_sections[sect_idx].flags & SECTION_TYPE) ==
4768               S_SYMBOL_STUBS) {
4769             uint32_t symbol_stub_byte_size =
4770                 m_mach_sections[sect_idx].reserved2;
4771             if (symbol_stub_byte_size == 0)
4772               continue;
4773 
4774             const uint32_t num_symbol_stubs =
4775                 m_mach_sections[sect_idx].size / symbol_stub_byte_size;
4776 
4777             if (num_symbol_stubs == 0)
4778               continue;
4779 
4780             const uint32_t symbol_stub_index_offset =
4781                 m_mach_sections[sect_idx].reserved1;
4782             for (uint32_t stub_idx = 0; stub_idx < num_symbol_stubs;
4783                  ++stub_idx) {
4784               const uint32_t symbol_stub_index =
4785                   symbol_stub_index_offset + stub_idx;
4786               const lldb::addr_t symbol_stub_addr =
4787                   m_mach_sections[sect_idx].addr +
4788                   (stub_idx * symbol_stub_byte_size);
4789               lldb::offset_t symbol_stub_offset = symbol_stub_index * 4;
4790               if (indirect_symbol_index_data.ValidOffsetForDataOfSize(
4791                       symbol_stub_offset, 4)) {
4792                 const uint32_t stub_sym_id =
4793                     indirect_symbol_index_data.GetU32(&symbol_stub_offset);
4794                 if (stub_sym_id & (INDIRECT_SYMBOL_ABS | INDIRECT_SYMBOL_LOCAL))
4795                   continue;
4796 
4797                 NListIndexToSymbolIndexMap::const_iterator index_pos =
4798                     m_nlist_idx_to_sym_idx.find(stub_sym_id);
4799                 Symbol *stub_symbol = NULL;
4800                 if (index_pos != end_index_pos) {
4801                   // We have a remapping from the original nlist index to
4802                   // a current symbol index, so just look this up by index
4803                   stub_symbol = symtab->SymbolAtIndex(index_pos->second);
4804                 } else {
4805                   // We need to lookup a symbol using the original nlist
4806                   // symbol index since this index is coming from the
4807                   // S_SYMBOL_STUBS
4808                   stub_symbol = symtab->FindSymbolByID(stub_sym_id);
4809                 }
4810 
4811                 if (stub_symbol) {
4812                   Address so_addr(symbol_stub_addr, section_list);
4813 
4814                   if (stub_symbol->GetType() == eSymbolTypeUndefined) {
4815                     // Change the external symbol into a trampoline that makes
4816                     // sense
4817                     // These symbols were N_UNDF N_EXT, and are useless to us,
4818                     // so we
4819                     // can re-use them so we don't have to make up a synthetic
4820                     // symbol
4821                     // for no good reason.
4822                     if (resolver_addresses.find(symbol_stub_addr) ==
4823                         resolver_addresses.end())
4824                       stub_symbol->SetType(eSymbolTypeTrampoline);
4825                     else
4826                       stub_symbol->SetType(eSymbolTypeResolver);
4827                     stub_symbol->SetExternal(false);
4828                     stub_symbol->GetAddressRef() = so_addr;
4829                     stub_symbol->SetByteSize(symbol_stub_byte_size);
4830                   } else {
4831                     // Make a synthetic symbol to describe the trampoline stub
4832                     Mangled stub_symbol_mangled_name(stub_symbol->GetMangled());
4833                     if (sym_idx >= num_syms) {
4834                       sym = symtab->Resize(++num_syms);
4835                       stub_symbol = NULL; // this pointer no longer valid
4836                     }
4837                     sym[sym_idx].SetID(synthetic_sym_id++);
4838                     sym[sym_idx].GetMangled() = stub_symbol_mangled_name;
4839                     if (resolver_addresses.find(symbol_stub_addr) ==
4840                         resolver_addresses.end())
4841                       sym[sym_idx].SetType(eSymbolTypeTrampoline);
4842                     else
4843                       sym[sym_idx].SetType(eSymbolTypeResolver);
4844                     sym[sym_idx].SetIsSynthetic(true);
4845                     sym[sym_idx].GetAddressRef() = so_addr;
4846                     sym[sym_idx].SetByteSize(symbol_stub_byte_size);
4847                     ++sym_idx;
4848                   }
4849                 } else {
4850                   if (log)
4851                     log->Warning("symbol stub referencing symbol table symbol "
4852                                  "%u that isn't in our minimal symbol table, "
4853                                  "fix this!!!",
4854                                  stub_sym_id);
4855                 }
4856               }
4857             }
4858           }
4859         }
4860       }
4861     }
4862 
4863     if (!trie_entries.empty()) {
4864       for (const auto &e : trie_entries) {
4865         if (e.entry.import_name) {
4866           // Only add indirect symbols from the Trie entries if we
4867           // didn't have a N_INDR nlist entry for this already
4868           if (indirect_symbol_names.find(e.entry.name) ==
4869               indirect_symbol_names.end()) {
4870             // Make a synthetic symbol to describe re-exported symbol.
4871             if (sym_idx >= num_syms)
4872               sym = symtab->Resize(++num_syms);
4873             sym[sym_idx].SetID(synthetic_sym_id++);
4874             sym[sym_idx].GetMangled() = Mangled(e.entry.name);
4875             sym[sym_idx].SetType(eSymbolTypeReExported);
4876             sym[sym_idx].SetIsSynthetic(true);
4877             sym[sym_idx].SetReExportedSymbolName(e.entry.import_name);
4878             if (e.entry.other > 0 && e.entry.other <= dylib_files.GetSize()) {
4879               sym[sym_idx].SetReExportedSymbolSharedLibrary(
4880                   dylib_files.GetFileSpecAtIndex(e.entry.other - 1));
4881             }
4882             ++sym_idx;
4883           }
4884         }
4885       }
4886     }
4887 
4888     //        StreamFile s(stdout, false);
4889     //        s.Printf ("Symbol table before CalculateSymbolSizes():\n");
4890     //        symtab->Dump(&s, NULL, eSortOrderNone);
4891     // Set symbol byte sizes correctly since mach-o nlist entries don't have
4892     // sizes
4893     symtab->CalculateSymbolSizes();
4894 
4895     //        s.Printf ("Symbol table after CalculateSymbolSizes():\n");
4896     //        symtab->Dump(&s, NULL, eSortOrderNone);
4897 
4898     return symtab->GetNumSymbols();
4899   }
4900   return 0;
4901 }
4902 
4903 void ObjectFileMachO::Dump(Stream *s) {
4904   ModuleSP module_sp(GetModule());
4905   if (module_sp) {
4906     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
4907     s->Printf("%p: ", static_cast<void *>(this));
4908     s->Indent();
4909     if (m_header.magic == MH_MAGIC_64 || m_header.magic == MH_CIGAM_64)
4910       s->PutCString("ObjectFileMachO64");
4911     else
4912       s->PutCString("ObjectFileMachO32");
4913 
4914     ArchSpec header_arch;
4915     GetArchitecture(header_arch);
4916 
4917     *s << ", file = '" << m_file
4918        << "', arch = " << header_arch.GetArchitectureName() << "\n";
4919 
4920     SectionList *sections = GetSectionList();
4921     if (sections)
4922       sections->Dump(s, NULL, true, UINT32_MAX);
4923 
4924     if (m_symtab_ap.get())
4925       m_symtab_ap->Dump(s, NULL, eSortOrderNone);
4926   }
4927 }
4928 
4929 bool ObjectFileMachO::GetUUID(const llvm::MachO::mach_header &header,
4930                               const lldb_private::DataExtractor &data,
4931                               lldb::offset_t lc_offset,
4932                               lldb_private::UUID &uuid) {
4933   uint32_t i;
4934   struct uuid_command load_cmd;
4935 
4936   lldb::offset_t offset = lc_offset;
4937   for (i = 0; i < header.ncmds; ++i) {
4938     const lldb::offset_t cmd_offset = offset;
4939     if (data.GetU32(&offset, &load_cmd, 2) == NULL)
4940       break;
4941 
4942     if (load_cmd.cmd == LC_UUID) {
4943       const uint8_t *uuid_bytes = data.PeekData(offset, 16);
4944 
4945       if (uuid_bytes) {
4946         // OpenCL on Mac OS X uses the same UUID for each of its object files.
4947         // We pretend these object files have no UUID to prevent crashing.
4948 
4949         const uint8_t opencl_uuid[] = {0x8c, 0x8e, 0xb3, 0x9b, 0x3b, 0xa8,
4950                                        0x4b, 0x16, 0xb6, 0xa4, 0x27, 0x63,
4951                                        0xbb, 0x14, 0xf0, 0x0d};
4952 
4953         if (!memcmp(uuid_bytes, opencl_uuid, 16))
4954           return false;
4955 
4956         uuid.SetBytes(uuid_bytes);
4957         return true;
4958       }
4959       return false;
4960     }
4961     offset = cmd_offset + load_cmd.cmdsize;
4962   }
4963   return false;
4964 }
4965 
4966 bool ObjectFileMachO::GetArchitecture(const llvm::MachO::mach_header &header,
4967                                       const lldb_private::DataExtractor &data,
4968                                       lldb::offset_t lc_offset,
4969                                       ArchSpec &arch) {
4970   arch.SetArchitecture(eArchTypeMachO, header.cputype, header.cpusubtype);
4971 
4972   if (arch.IsValid()) {
4973     llvm::Triple &triple = arch.GetTriple();
4974 
4975     // Set OS to an unspecified unknown or a "*" so it can match any OS
4976     triple.setOS(llvm::Triple::UnknownOS);
4977     triple.setOSName(llvm::StringRef());
4978 
4979     if (header.filetype == MH_PRELOAD) {
4980       if (header.cputype == CPU_TYPE_ARM) {
4981         // If this is a 32-bit arm binary, and it's a standalone binary,
4982         // force the Vendor to Apple so we don't accidentally pick up
4983         // the generic armv7 ABI at runtime.  Apple's armv7 ABI always uses
4984         // r7 for the frame pointer register; most other armv7 ABIs use a
4985         // combination of r7 and r11.
4986         triple.setVendor(llvm::Triple::Apple);
4987       } else {
4988         // Set vendor to an unspecified unknown or a "*" so it can match any
4989         // vendor
4990         // This is required for correct behavior of EFI debugging on x86_64
4991         triple.setVendor(llvm::Triple::UnknownVendor);
4992         triple.setVendorName(llvm::StringRef());
4993       }
4994       return true;
4995     } else {
4996       struct load_command load_cmd;
4997 
4998       lldb::offset_t offset = lc_offset;
4999       for (uint32_t i = 0; i < header.ncmds; ++i) {
5000         const lldb::offset_t cmd_offset = offset;
5001         if (data.GetU32(&offset, &load_cmd, 2) == NULL)
5002           break;
5003 
5004         switch (load_cmd.cmd) {
5005         case llvm::MachO::LC_VERSION_MIN_IPHONEOS:
5006           triple.setOS(llvm::Triple::IOS);
5007           return true;
5008 
5009         case llvm::MachO::LC_VERSION_MIN_MACOSX:
5010           triple.setOS(llvm::Triple::MacOSX);
5011           return true;
5012 
5013         case llvm::MachO::LC_VERSION_MIN_TVOS:
5014           triple.setOS(llvm::Triple::TvOS);
5015           return true;
5016 
5017         case llvm::MachO::LC_VERSION_MIN_WATCHOS:
5018           triple.setOS(llvm::Triple::WatchOS);
5019           return true;
5020 
5021         default:
5022           break;
5023         }
5024 
5025         offset = cmd_offset + load_cmd.cmdsize;
5026       }
5027 
5028       if (header.filetype != MH_KEXT_BUNDLE) {
5029         // We didn't find a LC_VERSION_MIN load command and this isn't a KEXT
5030         // so lets not say our Vendor is Apple, leave it as an unspecified
5031         // unknown
5032         triple.setVendor(llvm::Triple::UnknownVendor);
5033         triple.setVendorName(llvm::StringRef());
5034       }
5035     }
5036   }
5037   return arch.IsValid();
5038 }
5039 
5040 bool ObjectFileMachO::GetUUID(lldb_private::UUID *uuid) {
5041   ModuleSP module_sp(GetModule());
5042   if (module_sp) {
5043     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5044     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5045     return GetUUID(m_header, m_data, offset, *uuid);
5046   }
5047   return false;
5048 }
5049 
5050 uint32_t ObjectFileMachO::GetDependentModules(FileSpecList &files) {
5051   uint32_t count = 0;
5052   ModuleSP module_sp(GetModule());
5053   if (module_sp) {
5054     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5055     struct load_command load_cmd;
5056     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5057     std::vector<std::string> rpath_paths;
5058     std::vector<std::string> rpath_relative_paths;
5059     std::vector<std::string> at_exec_relative_paths;
5060     const bool resolve_path = false; // Don't resolve the dependent file paths
5061                                      // since they may not reside on this system
5062     uint32_t i;
5063     for (i = 0; i < m_header.ncmds; ++i) {
5064       const uint32_t cmd_offset = offset;
5065       if (m_data.GetU32(&offset, &load_cmd, 2) == NULL)
5066         break;
5067 
5068       switch (load_cmd.cmd) {
5069       case LC_RPATH:
5070       case LC_LOAD_DYLIB:
5071       case LC_LOAD_WEAK_DYLIB:
5072       case LC_REEXPORT_DYLIB:
5073       case LC_LOAD_DYLINKER:
5074       case LC_LOADFVMLIB:
5075       case LC_LOAD_UPWARD_DYLIB: {
5076         uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
5077         const char *path = m_data.PeekCStr(name_offset);
5078         if (path) {
5079           if (load_cmd.cmd == LC_RPATH)
5080             rpath_paths.push_back(path);
5081           else {
5082             if (path[0] == '@') {
5083               if (strncmp(path, "@rpath", strlen("@rpath")) == 0)
5084                 rpath_relative_paths.push_back(path + strlen("@rpath"));
5085               else if (strncmp(path, "@executable_path",
5086                        strlen("@executable_path")) == 0)
5087                 at_exec_relative_paths.push_back(path
5088                                                  + strlen("@executable_path"));
5089             } else {
5090               FileSpec file_spec(path, resolve_path);
5091               if (files.AppendIfUnique(file_spec))
5092                 count++;
5093             }
5094           }
5095         }
5096       } break;
5097 
5098       default:
5099         break;
5100       }
5101       offset = cmd_offset + load_cmd.cmdsize;
5102     }
5103 
5104     FileSpec this_file_spec(m_file);
5105     this_file_spec.ResolvePath();
5106 
5107     if (!rpath_paths.empty()) {
5108       // Fixup all LC_RPATH values to be absolute paths
5109       std::string loader_path("@loader_path");
5110       std::string executable_path("@executable_path");
5111       for (auto &rpath : rpath_paths) {
5112         if (rpath.find(loader_path) == 0) {
5113           rpath.erase(0, loader_path.size());
5114           rpath.insert(0, this_file_spec.GetDirectory().GetCString());
5115         } else if (rpath.find(executable_path) == 0) {
5116           rpath.erase(0, executable_path.size());
5117           rpath.insert(0, this_file_spec.GetDirectory().GetCString());
5118         }
5119       }
5120 
5121       for (const auto &rpath_relative_path : rpath_relative_paths) {
5122         for (const auto &rpath : rpath_paths) {
5123           std::string path = rpath;
5124           path += rpath_relative_path;
5125           // It is OK to resolve this path because we must find a file on
5126           // disk for us to accept it anyway if it is rpath relative.
5127           FileSpec file_spec(path, true);
5128           // Remove any redundant parts of the path (like "../foo") since
5129           // LC_RPATH values often contain "..".
5130           file_spec = file_spec.GetNormalizedPath();
5131           if (file_spec.Exists() && files.AppendIfUnique(file_spec)) {
5132             count++;
5133             break;
5134           }
5135         }
5136       }
5137     }
5138 
5139     // We may have @executable_paths but no RPATHS.  Figure those out here.
5140     // Only do this if this object file is the executable.  We have no way to
5141     // get back to the actual executable otherwise, so we won't get the right
5142     // path.
5143     if (!at_exec_relative_paths.empty() && CalculateType() == eTypeExecutable) {
5144       FileSpec exec_dir = this_file_spec.CopyByRemovingLastPathComponent();
5145       for (const auto &at_exec_relative_path : at_exec_relative_paths) {
5146         FileSpec file_spec =
5147             exec_dir.CopyByAppendingPathComponent(at_exec_relative_path);
5148         file_spec = file_spec.GetNormalizedPath();
5149         if (file_spec.Exists() && files.AppendIfUnique(file_spec)) {
5150           count++;
5151           break;
5152         }
5153       }
5154     }
5155   }
5156   return count;
5157 }
5158 
5159 lldb_private::Address ObjectFileMachO::GetEntryPointAddress() {
5160   // If the object file is not an executable it can't hold the entry point.
5161   // m_entry_point_address
5162   // is initialized to an invalid address, so we can just return that.
5163   // If m_entry_point_address is valid it means we've found it already, so
5164   // return the cached value.
5165 
5166   if (!IsExecutable() || m_entry_point_address.IsValid())
5167     return m_entry_point_address;
5168 
5169   // Otherwise, look for the UnixThread or Thread command.  The data for the
5170   // Thread command is given in
5171   // /usr/include/mach-o.h, but it is basically:
5172   //
5173   //  uint32_t flavor  - this is the flavor argument you would pass to
5174   //  thread_get_state
5175   //  uint32_t count   - this is the count of longs in the thread state data
5176   //  struct XXX_thread_state state - this is the structure from
5177   //  <machine/thread_status.h> corresponding to the flavor.
5178   //  <repeat this trio>
5179   //
5180   // So we just keep reading the various register flavors till we find the GPR
5181   // one, then read the PC out of there.
5182   // FIXME: We will need to have a "RegisterContext data provider" class at some
5183   // point that can get all the registers
5184   // out of data in this form & attach them to a given thread.  That should
5185   // underlie the MacOS X User process plugin,
5186   // and we'll also need it for the MacOS X Core File process plugin.  When we
5187   // have that we can also use it here.
5188   //
5189   // For now we hard-code the offsets and flavors we need:
5190   //
5191   //
5192 
5193   ModuleSP module_sp(GetModule());
5194   if (module_sp) {
5195     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5196     struct load_command load_cmd;
5197     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5198     uint32_t i;
5199     lldb::addr_t start_address = LLDB_INVALID_ADDRESS;
5200     bool done = false;
5201 
5202     for (i = 0; i < m_header.ncmds; ++i) {
5203       const lldb::offset_t cmd_offset = offset;
5204       if (m_data.GetU32(&offset, &load_cmd, 2) == NULL)
5205         break;
5206 
5207       switch (load_cmd.cmd) {
5208       case LC_UNIXTHREAD:
5209       case LC_THREAD: {
5210         while (offset < cmd_offset + load_cmd.cmdsize) {
5211           uint32_t flavor = m_data.GetU32(&offset);
5212           uint32_t count = m_data.GetU32(&offset);
5213           if (count == 0) {
5214             // We've gotten off somehow, log and exit;
5215             return m_entry_point_address;
5216           }
5217 
5218           switch (m_header.cputype) {
5219           case llvm::MachO::CPU_TYPE_ARM:
5220             if (flavor == 1 ||
5221                 flavor == 9) // ARM_THREAD_STATE/ARM_THREAD_STATE32 from
5222                              // mach/arm/thread_status.h
5223             {
5224               offset += 60; // This is the offset of pc in the GPR thread state
5225                             // data structure.
5226               start_address = m_data.GetU32(&offset);
5227               done = true;
5228             }
5229             break;
5230           case llvm::MachO::CPU_TYPE_ARM64:
5231             if (flavor == 6) // ARM_THREAD_STATE64 from mach/arm/thread_status.h
5232             {
5233               offset += 256; // This is the offset of pc in the GPR thread state
5234                              // data structure.
5235               start_address = m_data.GetU64(&offset);
5236               done = true;
5237             }
5238             break;
5239           case llvm::MachO::CPU_TYPE_I386:
5240             if (flavor ==
5241                 1) // x86_THREAD_STATE32 from mach/i386/thread_status.h
5242             {
5243               offset += 40; // This is the offset of eip in the GPR thread state
5244                             // data structure.
5245               start_address = m_data.GetU32(&offset);
5246               done = true;
5247             }
5248             break;
5249           case llvm::MachO::CPU_TYPE_X86_64:
5250             if (flavor ==
5251                 4) // x86_THREAD_STATE64 from mach/i386/thread_status.h
5252             {
5253               offset += 16 * 8; // This is the offset of rip in the GPR thread
5254                                 // state data structure.
5255               start_address = m_data.GetU64(&offset);
5256               done = true;
5257             }
5258             break;
5259           default:
5260             return m_entry_point_address;
5261           }
5262           // Haven't found the GPR flavor yet, skip over the data for this
5263           // flavor:
5264           if (done)
5265             break;
5266           offset += count * 4;
5267         }
5268       } break;
5269       case LC_MAIN: {
5270         ConstString text_segment_name("__TEXT");
5271         uint64_t entryoffset = m_data.GetU64(&offset);
5272         SectionSP text_segment_sp =
5273             GetSectionList()->FindSectionByName(text_segment_name);
5274         if (text_segment_sp) {
5275           done = true;
5276           start_address = text_segment_sp->GetFileAddress() + entryoffset;
5277         }
5278       } break;
5279 
5280       default:
5281         break;
5282       }
5283       if (done)
5284         break;
5285 
5286       // Go to the next load command:
5287       offset = cmd_offset + load_cmd.cmdsize;
5288     }
5289 
5290     if (start_address != LLDB_INVALID_ADDRESS) {
5291       // We got the start address from the load commands, so now resolve that
5292       // address in the sections
5293       // of this ObjectFile:
5294       if (!m_entry_point_address.ResolveAddressUsingFileSections(
5295               start_address, GetSectionList())) {
5296         m_entry_point_address.Clear();
5297       }
5298     } else {
5299       // We couldn't read the UnixThread load command - maybe it wasn't there.
5300       // As a fallback look for the
5301       // "start" symbol in the main executable.
5302 
5303       ModuleSP module_sp(GetModule());
5304 
5305       if (module_sp) {
5306         SymbolContextList contexts;
5307         SymbolContext context;
5308         if (module_sp->FindSymbolsWithNameAndType(ConstString("start"),
5309                                                   eSymbolTypeCode, contexts)) {
5310           if (contexts.GetContextAtIndex(0, context))
5311             m_entry_point_address = context.symbol->GetAddress();
5312         }
5313       }
5314     }
5315   }
5316 
5317   return m_entry_point_address;
5318 }
5319 
5320 lldb_private::Address ObjectFileMachO::GetHeaderAddress() {
5321   lldb_private::Address header_addr;
5322   SectionList *section_list = GetSectionList();
5323   if (section_list) {
5324     SectionSP text_segment_sp(
5325         section_list->FindSectionByName(GetSegmentNameTEXT()));
5326     if (text_segment_sp) {
5327       header_addr.SetSection(text_segment_sp);
5328       header_addr.SetOffset(0);
5329     }
5330   }
5331   return header_addr;
5332 }
5333 
5334 uint32_t ObjectFileMachO::GetNumThreadContexts() {
5335   ModuleSP module_sp(GetModule());
5336   if (module_sp) {
5337     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5338     if (!m_thread_context_offsets_valid) {
5339       m_thread_context_offsets_valid = true;
5340       lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5341       FileRangeArray::Entry file_range;
5342       thread_command thread_cmd;
5343       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5344         const uint32_t cmd_offset = offset;
5345         if (m_data.GetU32(&offset, &thread_cmd, 2) == NULL)
5346           break;
5347 
5348         if (thread_cmd.cmd == LC_THREAD) {
5349           file_range.SetRangeBase(offset);
5350           file_range.SetByteSize(thread_cmd.cmdsize - 8);
5351           m_thread_context_offsets.Append(file_range);
5352         }
5353         offset = cmd_offset + thread_cmd.cmdsize;
5354       }
5355     }
5356   }
5357   return m_thread_context_offsets.GetSize();
5358 }
5359 
5360 std::string ObjectFileMachO::GetIdentifierString() {
5361   std::string result;
5362   ModuleSP module_sp(GetModule());
5363   if (module_sp) {
5364     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5365 
5366     // First, look over the load commands for an LC_NOTE load command
5367     // with data_owner string "kern ver str" & use that if found.
5368     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5369     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5370       const uint32_t cmd_offset = offset;
5371       load_command lc;
5372       if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL)
5373           break;
5374       if (lc.cmd == LC_NOTE)
5375       {
5376           char data_owner[17];
5377           m_data.CopyData (offset, 16, data_owner);
5378           data_owner[16] = '\0';
5379           offset += 16;
5380           uint64_t fileoff = m_data.GetU64_unchecked (&offset);
5381           uint64_t size = m_data.GetU64_unchecked (&offset);
5382 
5383           // "kern ver str" has a uint32_t version and then a
5384           // nul terminated c-string.
5385           if (strcmp ("kern ver str", data_owner) == 0)
5386           {
5387               offset = fileoff;
5388               uint32_t version;
5389               if (m_data.GetU32 (&offset, &version, 1) != nullptr)
5390               {
5391                   if (version == 1)
5392                   {
5393                       uint32_t strsize = size - sizeof (uint32_t);
5394                       char *buf = (char*) malloc (strsize);
5395                       if (buf)
5396                       {
5397                           m_data.CopyData (offset, strsize, buf);
5398                           buf[strsize - 1] = '\0';
5399                           result = buf;
5400                           if (buf)
5401                               free (buf);
5402                           return result;
5403                       }
5404                   }
5405               }
5406           }
5407       }
5408       offset = cmd_offset + lc.cmdsize;
5409     }
5410 
5411     // Second, make a pass over the load commands looking for an
5412     // obsolete LC_IDENT load command.
5413     offset = MachHeaderSizeFromMagic(m_header.magic);
5414     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5415       const uint32_t cmd_offset = offset;
5416       struct ident_command ident_command;
5417       if (m_data.GetU32(&offset, &ident_command, 2) == NULL)
5418         break;
5419       if (ident_command.cmd == LC_IDENT && ident_command.cmdsize != 0) {
5420         char *buf = (char *) malloc (ident_command.cmdsize);
5421         if (buf != nullptr
5422             && m_data.CopyData (offset, ident_command.cmdsize, buf) == ident_command.cmdsize) {
5423           buf[ident_command.cmdsize - 1] = '\0';
5424           result = buf;
5425         }
5426         if (buf)
5427           free (buf);
5428       }
5429       offset = cmd_offset + ident_command.cmdsize;
5430     }
5431 
5432   }
5433   return result;
5434 }
5435 
5436 bool ObjectFileMachO::GetCorefileMainBinaryInfo (addr_t &address, UUID &uuid) {
5437   address = LLDB_INVALID_ADDRESS;
5438   uuid.Clear();
5439   ModuleSP module_sp(GetModule());
5440   if (module_sp) {
5441     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5442     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5443     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5444       const uint32_t cmd_offset = offset;
5445       load_command lc;
5446       if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL)
5447           break;
5448       if (lc.cmd == LC_NOTE)
5449       {
5450           char data_owner[17];
5451           memset (data_owner, 0, sizeof (data_owner));
5452           m_data.CopyData (offset, 16, data_owner);
5453           offset += 16;
5454           uint64_t fileoff = m_data.GetU64_unchecked (&offset);
5455           uint64_t size = m_data.GetU64_unchecked (&offset);
5456 
5457           // "main bin spec" (main binary specification) data payload is formatted:
5458           //    uint32_t version       [currently 1]
5459           //    uint32_t type          [0 == unspecified, 1 == kernel, 2 == user process]
5460           //    uint64_t address       [ UINT64_MAX if address not specified ]
5461           //    uuid_t   uuid          [ all zero's if uuid not specified ]
5462           //    uint32_t log2_pagesize [ process page size in log base 2, e.g. 4k pages are 12.  0 for unspecified ]
5463 
5464           if (strcmp ("main bin spec", data_owner) == 0 && size >= 32)
5465           {
5466               offset = fileoff;
5467               uint32_t version;
5468               if (m_data.GetU32 (&offset, &version, 1) != nullptr && version == 1)
5469               {
5470                   uint32_t type = 0;
5471                   uuid_t raw_uuid;
5472                   memset (raw_uuid, 0, sizeof (uuid_t));
5473 
5474                   if (m_data.GetU32 (&offset, &type, 1)
5475                       && m_data.GetU64 (&offset, &address, 1)
5476                       && m_data.CopyData (offset, sizeof (uuid_t), raw_uuid) != 0
5477                       && uuid.SetBytes (raw_uuid, sizeof (uuid_t)))
5478                   {
5479                       return true;
5480                   }
5481               }
5482           }
5483       }
5484       offset = cmd_offset + lc.cmdsize;
5485     }
5486   }
5487   return false;
5488 }
5489 
5490 lldb::RegisterContextSP
5491 ObjectFileMachO::GetThreadContextAtIndex(uint32_t idx,
5492                                          lldb_private::Thread &thread) {
5493   lldb::RegisterContextSP reg_ctx_sp;
5494 
5495   ModuleSP module_sp(GetModule());
5496   if (module_sp) {
5497     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5498     if (!m_thread_context_offsets_valid)
5499       GetNumThreadContexts();
5500 
5501     const FileRangeArray::Entry *thread_context_file_range =
5502         m_thread_context_offsets.GetEntryAtIndex(idx);
5503     if (thread_context_file_range) {
5504 
5505       DataExtractor data(m_data, thread_context_file_range->GetRangeBase(),
5506                          thread_context_file_range->GetByteSize());
5507 
5508       switch (m_header.cputype) {
5509       case llvm::MachO::CPU_TYPE_ARM64:
5510         reg_ctx_sp.reset(new RegisterContextDarwin_arm64_Mach(thread, data));
5511         break;
5512 
5513       case llvm::MachO::CPU_TYPE_ARM:
5514         reg_ctx_sp.reset(new RegisterContextDarwin_arm_Mach(thread, data));
5515         break;
5516 
5517       case llvm::MachO::CPU_TYPE_I386:
5518         reg_ctx_sp.reset(new RegisterContextDarwin_i386_Mach(thread, data));
5519         break;
5520 
5521       case llvm::MachO::CPU_TYPE_X86_64:
5522         reg_ctx_sp.reset(new RegisterContextDarwin_x86_64_Mach(thread, data));
5523         break;
5524       }
5525     }
5526   }
5527   return reg_ctx_sp;
5528 }
5529 
5530 ObjectFile::Type ObjectFileMachO::CalculateType() {
5531   switch (m_header.filetype) {
5532   case MH_OBJECT: // 0x1u
5533     if (GetAddressByteSize() == 4) {
5534       // 32 bit kexts are just object files, but they do have a valid
5535       // UUID load command.
5536       UUID uuid;
5537       if (GetUUID(&uuid)) {
5538         // this checking for the UUID load command is not enough
5539         // we could eventually look for the symbol named
5540         // "OSKextGetCurrentIdentifier" as this is required of kexts
5541         if (m_strata == eStrataInvalid)
5542           m_strata = eStrataKernel;
5543         return eTypeSharedLibrary;
5544       }
5545     }
5546     return eTypeObjectFile;
5547 
5548   case MH_EXECUTE:
5549     return eTypeExecutable; // 0x2u
5550   case MH_FVMLIB:
5551     return eTypeSharedLibrary; // 0x3u
5552   case MH_CORE:
5553     return eTypeCoreFile; // 0x4u
5554   case MH_PRELOAD:
5555     return eTypeSharedLibrary; // 0x5u
5556   case MH_DYLIB:
5557     return eTypeSharedLibrary; // 0x6u
5558   case MH_DYLINKER:
5559     return eTypeDynamicLinker; // 0x7u
5560   case MH_BUNDLE:
5561     return eTypeSharedLibrary; // 0x8u
5562   case MH_DYLIB_STUB:
5563     return eTypeStubLibrary; // 0x9u
5564   case MH_DSYM:
5565     return eTypeDebugInfo; // 0xAu
5566   case MH_KEXT_BUNDLE:
5567     return eTypeSharedLibrary; // 0xBu
5568   default:
5569     break;
5570   }
5571   return eTypeUnknown;
5572 }
5573 
5574 ObjectFile::Strata ObjectFileMachO::CalculateStrata() {
5575   switch (m_header.filetype) {
5576   case MH_OBJECT: // 0x1u
5577   {
5578     // 32 bit kexts are just object files, but they do have a valid
5579     // UUID load command.
5580     UUID uuid;
5581     if (GetUUID(&uuid)) {
5582       // this checking for the UUID load command is not enough
5583       // we could eventually look for the symbol named
5584       // "OSKextGetCurrentIdentifier" as this is required of kexts
5585       if (m_type == eTypeInvalid)
5586         m_type = eTypeSharedLibrary;
5587 
5588       return eStrataKernel;
5589     }
5590   }
5591     return eStrataUnknown;
5592 
5593   case MH_EXECUTE: // 0x2u
5594     // Check for the MH_DYLDLINK bit in the flags
5595     if (m_header.flags & MH_DYLDLINK) {
5596       return eStrataUser;
5597     } else {
5598       SectionList *section_list = GetSectionList();
5599       if (section_list) {
5600         static ConstString g_kld_section_name("__KLD");
5601         if (section_list->FindSectionByName(g_kld_section_name))
5602           return eStrataKernel;
5603       }
5604     }
5605     return eStrataRawImage;
5606 
5607   case MH_FVMLIB:
5608     return eStrataUser; // 0x3u
5609   case MH_CORE:
5610     return eStrataUnknown; // 0x4u
5611   case MH_PRELOAD:
5612     return eStrataRawImage; // 0x5u
5613   case MH_DYLIB:
5614     return eStrataUser; // 0x6u
5615   case MH_DYLINKER:
5616     return eStrataUser; // 0x7u
5617   case MH_BUNDLE:
5618     return eStrataUser; // 0x8u
5619   case MH_DYLIB_STUB:
5620     return eStrataUser; // 0x9u
5621   case MH_DSYM:
5622     return eStrataUnknown; // 0xAu
5623   case MH_KEXT_BUNDLE:
5624     return eStrataKernel; // 0xBu
5625   default:
5626     break;
5627   }
5628   return eStrataUnknown;
5629 }
5630 
5631 uint32_t ObjectFileMachO::GetVersion(uint32_t *versions,
5632                                      uint32_t num_versions) {
5633   ModuleSP module_sp(GetModule());
5634   if (module_sp) {
5635     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5636     struct dylib_command load_cmd;
5637     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5638     uint32_t version_cmd = 0;
5639     uint64_t version = 0;
5640     uint32_t i;
5641     for (i = 0; i < m_header.ncmds; ++i) {
5642       const lldb::offset_t cmd_offset = offset;
5643       if (m_data.GetU32(&offset, &load_cmd, 2) == NULL)
5644         break;
5645 
5646       if (load_cmd.cmd == LC_ID_DYLIB) {
5647         if (version_cmd == 0) {
5648           version_cmd = load_cmd.cmd;
5649           if (m_data.GetU32(&offset, &load_cmd.dylib, 4) == NULL)
5650             break;
5651           version = load_cmd.dylib.current_version;
5652         }
5653         break; // Break for now unless there is another more complete version
5654                // number load command in the future.
5655       }
5656       offset = cmd_offset + load_cmd.cmdsize;
5657     }
5658 
5659     if (version_cmd == LC_ID_DYLIB) {
5660       if (versions != NULL && num_versions > 0) {
5661         if (num_versions > 0)
5662           versions[0] = (version & 0xFFFF0000ull) >> 16;
5663         if (num_versions > 1)
5664           versions[1] = (version & 0x0000FF00ull) >> 8;
5665         if (num_versions > 2)
5666           versions[2] = (version & 0x000000FFull);
5667         // Fill in an remaining version numbers with invalid values
5668         for (i = 3; i < num_versions; ++i)
5669           versions[i] = UINT32_MAX;
5670       }
5671       // The LC_ID_DYLIB load command has a version with 3 version numbers
5672       // in it, so always return 3
5673       return 3;
5674     }
5675   }
5676   return false;
5677 }
5678 
5679 bool ObjectFileMachO::GetArchitecture(ArchSpec &arch) {
5680   ModuleSP module_sp(GetModule());
5681   if (module_sp) {
5682     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5683     return GetArchitecture(m_header, m_data,
5684                            MachHeaderSizeFromMagic(m_header.magic), arch);
5685   }
5686   return false;
5687 }
5688 
5689 UUID ObjectFileMachO::GetProcessSharedCacheUUID(Process *process) {
5690   UUID uuid;
5691   if (process && process->GetDynamicLoader()) {
5692     DynamicLoader *dl = process->GetDynamicLoader();
5693     addr_t load_address;
5694     LazyBool using_shared_cache;
5695     LazyBool private_shared_cache;
5696     dl->GetSharedCacheInformation(load_address, uuid, using_shared_cache,
5697                                   private_shared_cache);
5698   }
5699   return uuid;
5700 }
5701 
5702 UUID ObjectFileMachO::GetLLDBSharedCacheUUID() {
5703   UUID uuid;
5704 #if defined(__APPLE__) &&                                                      \
5705     (defined(__arm__) || defined(__arm64__) || defined(__aarch64__))
5706   uint8_t *(*dyld_get_all_image_infos)(void);
5707   dyld_get_all_image_infos =
5708       (uint8_t * (*)())dlsym(RTLD_DEFAULT, "_dyld_get_all_image_infos");
5709   if (dyld_get_all_image_infos) {
5710     uint8_t *dyld_all_image_infos_address = dyld_get_all_image_infos();
5711     if (dyld_all_image_infos_address) {
5712       uint32_t *version = (uint32_t *)
5713           dyld_all_image_infos_address; // version <mach-o/dyld_images.h>
5714       if (*version >= 13) {
5715         uuid_t *sharedCacheUUID_address = 0;
5716         int wordsize = sizeof(uint8_t *);
5717         if (wordsize == 8) {
5718           sharedCacheUUID_address =
5719               (uuid_t *)((uint8_t *)dyld_all_image_infos_address +
5720                          160); // sharedCacheUUID <mach-o/dyld_images.h>
5721         } else {
5722           sharedCacheUUID_address =
5723               (uuid_t *)((uint8_t *)dyld_all_image_infos_address +
5724                          84); // sharedCacheUUID <mach-o/dyld_images.h>
5725         }
5726         uuid.SetBytes(sharedCacheUUID_address);
5727       }
5728     }
5729   }
5730 #endif
5731   return uuid;
5732 }
5733 
5734 uint32_t ObjectFileMachO::GetMinimumOSVersion(uint32_t *versions,
5735                                               uint32_t num_versions) {
5736   if (m_min_os_versions.empty()) {
5737     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5738     bool success = false;
5739     for (uint32_t i = 0; success == false && i < m_header.ncmds; ++i) {
5740       const lldb::offset_t load_cmd_offset = offset;
5741 
5742       version_min_command lc;
5743       if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL)
5744         break;
5745       if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX ||
5746           lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS ||
5747           lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS ||
5748           lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) {
5749         if (m_data.GetU32(&offset, &lc.version,
5750                           (sizeof(lc) / sizeof(uint32_t)) - 2)) {
5751           const uint32_t xxxx = lc.version >> 16;
5752           const uint32_t yy = (lc.version >> 8) & 0xffu;
5753           const uint32_t zz = lc.version & 0xffu;
5754           if (xxxx) {
5755             m_min_os_versions.push_back(xxxx);
5756             m_min_os_versions.push_back(yy);
5757             m_min_os_versions.push_back(zz);
5758           }
5759           success = true;
5760         }
5761       }
5762       offset = load_cmd_offset + lc.cmdsize;
5763     }
5764 
5765     if (success == false) {
5766       // Push an invalid value so we don't keep trying to
5767       m_min_os_versions.push_back(UINT32_MAX);
5768     }
5769   }
5770 
5771   if (m_min_os_versions.size() > 1 || m_min_os_versions[0] != UINT32_MAX) {
5772     if (versions != NULL && num_versions > 0) {
5773       for (size_t i = 0; i < num_versions; ++i) {
5774         if (i < m_min_os_versions.size())
5775           versions[i] = m_min_os_versions[i];
5776         else
5777           versions[i] = 0;
5778       }
5779     }
5780     return m_min_os_versions.size();
5781   }
5782   // Call the superclasses version that will empty out the data
5783   return ObjectFile::GetMinimumOSVersion(versions, num_versions);
5784 }
5785 
5786 uint32_t ObjectFileMachO::GetSDKVersion(uint32_t *versions,
5787                                         uint32_t num_versions) {
5788   if (m_sdk_versions.empty()) {
5789     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5790     bool success = false;
5791     for (uint32_t i = 0; success == false && i < m_header.ncmds; ++i) {
5792       const lldb::offset_t load_cmd_offset = offset;
5793 
5794       version_min_command lc;
5795       if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL)
5796         break;
5797       if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX ||
5798           lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS ||
5799           lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS ||
5800           lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) {
5801         if (m_data.GetU32(&offset, &lc.version,
5802                           (sizeof(lc) / sizeof(uint32_t)) - 2)) {
5803           const uint32_t xxxx = lc.sdk >> 16;
5804           const uint32_t yy = (lc.sdk >> 8) & 0xffu;
5805           const uint32_t zz = lc.sdk & 0xffu;
5806           if (xxxx) {
5807             m_sdk_versions.push_back(xxxx);
5808             m_sdk_versions.push_back(yy);
5809             m_sdk_versions.push_back(zz);
5810           }
5811           success = true;
5812         }
5813       }
5814       offset = load_cmd_offset + lc.cmdsize;
5815     }
5816 
5817     if (success == false) {
5818       // Push an invalid value so we don't keep trying to
5819       m_sdk_versions.push_back(UINT32_MAX);
5820     }
5821   }
5822 
5823   if (m_sdk_versions.size() > 1 || m_sdk_versions[0] != UINT32_MAX) {
5824     if (versions != NULL && num_versions > 0) {
5825       for (size_t i = 0; i < num_versions; ++i) {
5826         if (i < m_sdk_versions.size())
5827           versions[i] = m_sdk_versions[i];
5828         else
5829           versions[i] = 0;
5830       }
5831     }
5832     return m_sdk_versions.size();
5833   }
5834   // Call the superclasses version that will empty out the data
5835   return ObjectFile::GetSDKVersion(versions, num_versions);
5836 }
5837 
5838 bool ObjectFileMachO::GetIsDynamicLinkEditor() {
5839   return m_header.filetype == llvm::MachO::MH_DYLINKER;
5840 }
5841 
5842 bool ObjectFileMachO::AllowAssemblyEmulationUnwindPlans() {
5843   return m_allow_assembly_emulation_unwind_plans;
5844 }
5845 
5846 //------------------------------------------------------------------
5847 // PluginInterface protocol
5848 //------------------------------------------------------------------
5849 lldb_private::ConstString ObjectFileMachO::GetPluginName() {
5850   return GetPluginNameStatic();
5851 }
5852 
5853 uint32_t ObjectFileMachO::GetPluginVersion() { return 1; }
5854 
5855 Section *ObjectFileMachO::GetMachHeaderSection() {
5856   // Find the first address of the mach header which is the first non-zero
5857   // file sized section whose file offset is zero. This is the base file address
5858   // of the mach-o file which can be subtracted from the vmaddr of the other
5859   // segments found in memory and added to the load address
5860   ModuleSP module_sp = GetModule();
5861   if (module_sp) {
5862     SectionList *section_list = GetSectionList();
5863     if (section_list) {
5864       lldb::addr_t mach_base_file_addr = LLDB_INVALID_ADDRESS;
5865       const size_t num_sections = section_list->GetSize();
5866 
5867       for (size_t sect_idx = 0; sect_idx < num_sections &&
5868                                 mach_base_file_addr == LLDB_INVALID_ADDRESS;
5869            ++sect_idx) {
5870         Section *section = section_list->GetSectionAtIndex(sect_idx).get();
5871         if (section && section->GetFileSize() > 0 &&
5872             section->GetFileOffset() == 0 &&
5873             section->IsThreadSpecific() == false &&
5874             module_sp.get() == section->GetModule().get()) {
5875           return section;
5876         }
5877       }
5878     }
5879   }
5880   return nullptr;
5881 }
5882 
5883 lldb::addr_t ObjectFileMachO::CalculateSectionLoadAddressForMemoryImage(
5884     lldb::addr_t mach_header_load_address, const Section *mach_header_section,
5885     const Section *section) {
5886   ModuleSP module_sp = GetModule();
5887   if (module_sp && mach_header_section && section &&
5888       mach_header_load_address != LLDB_INVALID_ADDRESS) {
5889     lldb::addr_t mach_header_file_addr = mach_header_section->GetFileAddress();
5890     if (mach_header_file_addr != LLDB_INVALID_ADDRESS) {
5891       if (section && section->GetFileSize() > 0 &&
5892           section->IsThreadSpecific() == false &&
5893           module_sp.get() == section->GetModule().get()) {
5894         // Ignore __LINKEDIT and __DWARF segments
5895         if (section->GetName() == GetSegmentNameLINKEDIT()) {
5896           // Only map __LINKEDIT if we have an in memory image and this isn't
5897           // a kernel binary like a kext or mach_kernel.
5898           const bool is_memory_image = (bool)m_process_wp.lock();
5899           const Strata strata = GetStrata();
5900           if (is_memory_image == false || strata == eStrataKernel)
5901             return LLDB_INVALID_ADDRESS;
5902         }
5903         return section->GetFileAddress() - mach_header_file_addr +
5904                mach_header_load_address;
5905       }
5906     }
5907   }
5908   return LLDB_INVALID_ADDRESS;
5909 }
5910 
5911 bool ObjectFileMachO::SetLoadAddress(Target &target, lldb::addr_t value,
5912                                      bool value_is_offset) {
5913   ModuleSP module_sp = GetModule();
5914   if (module_sp) {
5915     size_t num_loaded_sections = 0;
5916     SectionList *section_list = GetSectionList();
5917     if (section_list) {
5918       const size_t num_sections = section_list->GetSize();
5919 
5920       if (value_is_offset) {
5921         // "value" is an offset to apply to each top level segment
5922         for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
5923           // Iterate through the object file sections to find all
5924           // of the sections that size on disk (to avoid __PAGEZERO)
5925           // and load them
5926           SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
5927           if (section_sp && section_sp->GetFileSize() > 0 &&
5928               section_sp->IsThreadSpecific() == false &&
5929               module_sp.get() == section_sp->GetModule().get()) {
5930             // Ignore __LINKEDIT and __DWARF segments
5931             if (section_sp->GetName() == GetSegmentNameLINKEDIT()) {
5932               // Only map __LINKEDIT if we have an in memory image and this
5933               // isn't
5934               // a kernel binary like a kext or mach_kernel.
5935               const bool is_memory_image = (bool)m_process_wp.lock();
5936               const Strata strata = GetStrata();
5937               if (is_memory_image == false || strata == eStrataKernel)
5938                 continue;
5939             }
5940             if (target.GetSectionLoadList().SetSectionLoadAddress(
5941                     section_sp, section_sp->GetFileAddress() + value))
5942               ++num_loaded_sections;
5943           }
5944         }
5945       } else {
5946         // "value" is the new base address of the mach_header, adjust each
5947         // section accordingly
5948 
5949         Section *mach_header_section = GetMachHeaderSection();
5950         if (mach_header_section) {
5951           for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
5952             SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
5953 
5954             lldb::addr_t section_load_addr =
5955                 CalculateSectionLoadAddressForMemoryImage(
5956                     value, mach_header_section, section_sp.get());
5957             if (section_load_addr != LLDB_INVALID_ADDRESS) {
5958               if (target.GetSectionLoadList().SetSectionLoadAddress(
5959                       section_sp, section_load_addr))
5960                 ++num_loaded_sections;
5961             }
5962           }
5963         }
5964       }
5965     }
5966     return num_loaded_sections > 0;
5967   }
5968   return false;
5969 }
5970 
5971 bool ObjectFileMachO::SaveCore(const lldb::ProcessSP &process_sp,
5972                                const FileSpec &outfile, Status &error) {
5973   if (process_sp) {
5974     Target &target = process_sp->GetTarget();
5975     const ArchSpec target_arch = target.GetArchitecture();
5976     const llvm::Triple &target_triple = target_arch.GetTriple();
5977     if (target_triple.getVendor() == llvm::Triple::Apple &&
5978         (target_triple.getOS() == llvm::Triple::MacOSX ||
5979          target_triple.getOS() == llvm::Triple::IOS ||
5980          target_triple.getOS() == llvm::Triple::WatchOS ||
5981          target_triple.getOS() == llvm::Triple::TvOS)) {
5982       bool make_core = false;
5983       switch (target_arch.GetMachine()) {
5984       case llvm::Triple::aarch64:
5985       case llvm::Triple::arm:
5986       case llvm::Triple::thumb:
5987       case llvm::Triple::x86:
5988       case llvm::Triple::x86_64:
5989         make_core = true;
5990         break;
5991       default:
5992         error.SetErrorStringWithFormat("unsupported core architecture: %s",
5993                                        target_triple.str().c_str());
5994         break;
5995       }
5996 
5997       if (make_core) {
5998         std::vector<segment_command_64> segment_load_commands;
5999         //                uint32_t range_info_idx = 0;
6000         MemoryRegionInfo range_info;
6001         Status range_error = process_sp->GetMemoryRegionInfo(0, range_info);
6002         const uint32_t addr_byte_size = target_arch.GetAddressByteSize();
6003         const ByteOrder byte_order = target_arch.GetByteOrder();
6004         if (range_error.Success()) {
6005           while (range_info.GetRange().GetRangeBase() != LLDB_INVALID_ADDRESS) {
6006             const addr_t addr = range_info.GetRange().GetRangeBase();
6007             const addr_t size = range_info.GetRange().GetByteSize();
6008 
6009             if (size == 0)
6010               break;
6011 
6012             // Calculate correct protections
6013             uint32_t prot = 0;
6014             if (range_info.GetReadable() == MemoryRegionInfo::eYes)
6015               prot |= VM_PROT_READ;
6016             if (range_info.GetWritable() == MemoryRegionInfo::eYes)
6017               prot |= VM_PROT_WRITE;
6018             if (range_info.GetExecutable() == MemoryRegionInfo::eYes)
6019               prot |= VM_PROT_EXECUTE;
6020 
6021             //                        printf ("[%3u] [0x%16.16" PRIx64 " -
6022             //                        0x%16.16" PRIx64 ") %c%c%c\n",
6023             //                                range_info_idx,
6024             //                                addr,
6025             //                                size,
6026             //                                (prot & VM_PROT_READ   ) ? 'r' :
6027             //                                '-',
6028             //                                (prot & VM_PROT_WRITE  ) ? 'w' :
6029             //                                '-',
6030             //                                (prot & VM_PROT_EXECUTE) ? 'x' :
6031             //                                '-');
6032 
6033             if (prot != 0) {
6034               uint32_t cmd_type = LC_SEGMENT_64;
6035               uint32_t segment_size = sizeof(segment_command_64);
6036               if (addr_byte_size == 4) {
6037                 cmd_type = LC_SEGMENT;
6038                 segment_size = sizeof(segment_command);
6039               }
6040               segment_command_64 segment = {
6041                   cmd_type,     // uint32_t cmd;
6042                   segment_size, // uint32_t cmdsize;
6043                   {0},          // char segname[16];
6044                   addr, // uint64_t vmaddr;    // uint32_t for 32-bit Mach-O
6045                   size, // uint64_t vmsize;    // uint32_t for 32-bit Mach-O
6046                   0,    // uint64_t fileoff;   // uint32_t for 32-bit Mach-O
6047                   size, // uint64_t filesize;  // uint32_t for 32-bit Mach-O
6048                   prot, // uint32_t maxprot;
6049                   prot, // uint32_t initprot;
6050                   0,    // uint32_t nsects;
6051                   0};   // uint32_t flags;
6052               segment_load_commands.push_back(segment);
6053             } else {
6054               // No protections and a size of 1 used to be returned from old
6055               // debugservers when we asked about a region that was past the
6056               // last memory region and it indicates the end...
6057               if (size == 1)
6058                 break;
6059             }
6060 
6061             range_error = process_sp->GetMemoryRegionInfo(
6062                 range_info.GetRange().GetRangeEnd(), range_info);
6063             if (range_error.Fail())
6064               break;
6065           }
6066 
6067           StreamString buffer(Stream::eBinary, addr_byte_size, byte_order);
6068 
6069           mach_header_64 mach_header;
6070           if (addr_byte_size == 8) {
6071             mach_header.magic = MH_MAGIC_64;
6072           } else {
6073             mach_header.magic = MH_MAGIC;
6074           }
6075           mach_header.cputype = target_arch.GetMachOCPUType();
6076           mach_header.cpusubtype = target_arch.GetMachOCPUSubType();
6077           mach_header.filetype = MH_CORE;
6078           mach_header.ncmds = segment_load_commands.size();
6079           mach_header.flags = 0;
6080           mach_header.reserved = 0;
6081           ThreadList &thread_list = process_sp->GetThreadList();
6082           const uint32_t num_threads = thread_list.GetSize();
6083 
6084           // Make an array of LC_THREAD data items. Each one contains
6085           // the contents of the LC_THREAD load command. The data doesn't
6086           // contain the load command + load command size, we will
6087           // add the load command and load command size as we emit the data.
6088           std::vector<StreamString> LC_THREAD_datas(num_threads);
6089           for (auto &LC_THREAD_data : LC_THREAD_datas) {
6090             LC_THREAD_data.GetFlags().Set(Stream::eBinary);
6091             LC_THREAD_data.SetAddressByteSize(addr_byte_size);
6092             LC_THREAD_data.SetByteOrder(byte_order);
6093           }
6094           for (uint32_t thread_idx = 0; thread_idx < num_threads;
6095                ++thread_idx) {
6096             ThreadSP thread_sp(thread_list.GetThreadAtIndex(thread_idx));
6097             if (thread_sp) {
6098               switch (mach_header.cputype) {
6099               case llvm::MachO::CPU_TYPE_ARM64:
6100                 RegisterContextDarwin_arm64_Mach::Create_LC_THREAD(
6101                     thread_sp.get(), LC_THREAD_datas[thread_idx]);
6102                 break;
6103 
6104               case llvm::MachO::CPU_TYPE_ARM:
6105                 RegisterContextDarwin_arm_Mach::Create_LC_THREAD(
6106                     thread_sp.get(), LC_THREAD_datas[thread_idx]);
6107                 break;
6108 
6109               case llvm::MachO::CPU_TYPE_I386:
6110                 RegisterContextDarwin_i386_Mach::Create_LC_THREAD(
6111                     thread_sp.get(), LC_THREAD_datas[thread_idx]);
6112                 break;
6113 
6114               case llvm::MachO::CPU_TYPE_X86_64:
6115                 RegisterContextDarwin_x86_64_Mach::Create_LC_THREAD(
6116                     thread_sp.get(), LC_THREAD_datas[thread_idx]);
6117                 break;
6118               }
6119             }
6120           }
6121 
6122           // The size of the load command is the size of the segments...
6123           if (addr_byte_size == 8) {
6124             mach_header.sizeofcmds = segment_load_commands.size() *
6125                                      sizeof(struct segment_command_64);
6126           } else {
6127             mach_header.sizeofcmds =
6128                 segment_load_commands.size() * sizeof(struct segment_command);
6129           }
6130 
6131           // and the size of all LC_THREAD load command
6132           for (const auto &LC_THREAD_data : LC_THREAD_datas) {
6133             ++mach_header.ncmds;
6134             mach_header.sizeofcmds += 8 + LC_THREAD_data.GetSize();
6135           }
6136 
6137           printf("mach_header: 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x "
6138                  "0x%8.8x 0x%8.8x\n",
6139                  mach_header.magic, mach_header.cputype, mach_header.cpusubtype,
6140                  mach_header.filetype, mach_header.ncmds,
6141                  mach_header.sizeofcmds, mach_header.flags,
6142                  mach_header.reserved);
6143 
6144           // Write the mach header
6145           buffer.PutHex32(mach_header.magic);
6146           buffer.PutHex32(mach_header.cputype);
6147           buffer.PutHex32(mach_header.cpusubtype);
6148           buffer.PutHex32(mach_header.filetype);
6149           buffer.PutHex32(mach_header.ncmds);
6150           buffer.PutHex32(mach_header.sizeofcmds);
6151           buffer.PutHex32(mach_header.flags);
6152           if (addr_byte_size == 8) {
6153             buffer.PutHex32(mach_header.reserved);
6154           }
6155 
6156           // Skip the mach header and all load commands and align to the next
6157           // 0x1000 byte boundary
6158           addr_t file_offset = buffer.GetSize() + mach_header.sizeofcmds;
6159           if (file_offset & 0x00000fff) {
6160             file_offset += 0x00001000ull;
6161             file_offset &= (~0x00001000ull + 1);
6162           }
6163 
6164           for (auto &segment : segment_load_commands) {
6165             segment.fileoff = file_offset;
6166             file_offset += segment.filesize;
6167           }
6168 
6169           // Write out all of the LC_THREAD load commands
6170           for (const auto &LC_THREAD_data : LC_THREAD_datas) {
6171             const size_t LC_THREAD_data_size = LC_THREAD_data.GetSize();
6172             buffer.PutHex32(LC_THREAD);
6173             buffer.PutHex32(8 + LC_THREAD_data_size); // cmd + cmdsize + data
6174             buffer.Write(LC_THREAD_data.GetString().data(),
6175                          LC_THREAD_data_size);
6176           }
6177 
6178           // Write out all of the segment load commands
6179           for (const auto &segment : segment_load_commands) {
6180             printf("0x%8.8x 0x%8.8x [0x%16.16" PRIx64 " - 0x%16.16" PRIx64
6181                    ") [0x%16.16" PRIx64 " 0x%16.16" PRIx64
6182                    ") 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x]\n",
6183                    segment.cmd, segment.cmdsize, segment.vmaddr,
6184                    segment.vmaddr + segment.vmsize, segment.fileoff,
6185                    segment.filesize, segment.maxprot, segment.initprot,
6186                    segment.nsects, segment.flags);
6187 
6188             buffer.PutHex32(segment.cmd);
6189             buffer.PutHex32(segment.cmdsize);
6190             buffer.PutRawBytes(segment.segname, sizeof(segment.segname));
6191             if (addr_byte_size == 8) {
6192               buffer.PutHex64(segment.vmaddr);
6193               buffer.PutHex64(segment.vmsize);
6194               buffer.PutHex64(segment.fileoff);
6195               buffer.PutHex64(segment.filesize);
6196             } else {
6197               buffer.PutHex32(static_cast<uint32_t>(segment.vmaddr));
6198               buffer.PutHex32(static_cast<uint32_t>(segment.vmsize));
6199               buffer.PutHex32(static_cast<uint32_t>(segment.fileoff));
6200               buffer.PutHex32(static_cast<uint32_t>(segment.filesize));
6201             }
6202             buffer.PutHex32(segment.maxprot);
6203             buffer.PutHex32(segment.initprot);
6204             buffer.PutHex32(segment.nsects);
6205             buffer.PutHex32(segment.flags);
6206           }
6207 
6208           File core_file;
6209           std::string core_file_path(outfile.GetPath());
6210           error = core_file.Open(core_file_path.c_str(),
6211                                  File::eOpenOptionWrite |
6212                                      File::eOpenOptionTruncate |
6213                                      File::eOpenOptionCanCreate);
6214           if (error.Success()) {
6215             // Read 1 page at a time
6216             uint8_t bytes[0x1000];
6217             // Write the mach header and load commands out to the core file
6218             size_t bytes_written = buffer.GetString().size();
6219             error = core_file.Write(buffer.GetString().data(), bytes_written);
6220             if (error.Success()) {
6221               // Now write the file data for all memory segments in the process
6222               for (const auto &segment : segment_load_commands) {
6223                 if (core_file.SeekFromStart(segment.fileoff) == -1) {
6224                   error.SetErrorStringWithFormat(
6225                       "unable to seek to offset 0x%" PRIx64 " in '%s'",
6226                       segment.fileoff, core_file_path.c_str());
6227                   break;
6228                 }
6229 
6230                 printf("Saving %" PRId64
6231                        " bytes of data for memory region at 0x%" PRIx64 "\n",
6232                        segment.vmsize, segment.vmaddr);
6233                 addr_t bytes_left = segment.vmsize;
6234                 addr_t addr = segment.vmaddr;
6235                 Status memory_read_error;
6236                 while (bytes_left > 0 && error.Success()) {
6237                   const size_t bytes_to_read =
6238                       bytes_left > sizeof(bytes) ? sizeof(bytes) : bytes_left;
6239                   const size_t bytes_read = process_sp->ReadMemory(
6240                       addr, bytes, bytes_to_read, memory_read_error);
6241                   if (bytes_read == bytes_to_read) {
6242                     size_t bytes_written = bytes_read;
6243                     error = core_file.Write(bytes, bytes_written);
6244                     bytes_left -= bytes_read;
6245                     addr += bytes_read;
6246                   } else {
6247                     // Some pages within regions are not readable, those
6248                     // should be zero filled
6249                     memset(bytes, 0, bytes_to_read);
6250                     size_t bytes_written = bytes_to_read;
6251                     error = core_file.Write(bytes, bytes_written);
6252                     bytes_left -= bytes_to_read;
6253                     addr += bytes_to_read;
6254                   }
6255                 }
6256               }
6257             }
6258           }
6259         } else {
6260           error.SetErrorString(
6261               "process doesn't support getting memory region info");
6262         }
6263       }
6264       return true; // This is the right plug to handle saving core files for
6265                    // this process
6266     }
6267   }
6268   return false;
6269 }
6270