1 //===-- ObjectFileMachO.cpp -------------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 // C Includes
11 // C++ Includes
12 // Other libraries and framework includes
13 #include "llvm/ADT/StringRef.h"
14 
15 // Project includes
16 #include "Plugins/Process/Utility/RegisterContextDarwin_arm.h"
17 #include "Plugins/Process/Utility/RegisterContextDarwin_arm64.h"
18 #include "Plugins/Process/Utility/RegisterContextDarwin_i386.h"
19 #include "Plugins/Process/Utility/RegisterContextDarwin_x86_64.h"
20 #include "lldb/Core/Debugger.h"
21 #include "lldb/Core/FileSpecList.h"
22 #include "lldb/Core/Module.h"
23 #include "lldb/Core/ModuleSpec.h"
24 #include "lldb/Core/PluginManager.h"
25 #include "lldb/Core/RangeMap.h"
26 #include "lldb/Core/Section.h"
27 #include "lldb/Core/StreamFile.h"
28 #include "lldb/Host/Host.h"
29 #include "lldb/Symbol/DWARFCallFrameInfo.h"
30 #include "lldb/Symbol/ObjectFile.h"
31 #include "lldb/Target/DynamicLoader.h"
32 #include "lldb/Target/MemoryRegionInfo.h"
33 #include "lldb/Target/Platform.h"
34 #include "lldb/Target/Process.h"
35 #include "lldb/Target/SectionLoadList.h"
36 #include "lldb/Target/Target.h"
37 #include "lldb/Target/Thread.h"
38 #include "lldb/Target/ThreadList.h"
39 #include "lldb/Utility/ArchSpec.h"
40 #include "lldb/Utility/DataBuffer.h"
41 #include "lldb/Utility/FileSpec.h"
42 #include "lldb/Utility/Log.h"
43 #include "lldb/Utility/RegisterValue.h"
44 #include "lldb/Utility/Status.h"
45 #include "lldb/Utility/StreamString.h"
46 #include "lldb/Utility/Timer.h"
47 #include "lldb/Utility/UUID.h"
48 
49 #include "lldb/Utility/SafeMachO.h"
50 
51 #include "llvm/Support/MemoryBuffer.h"
52 
53 #include "ObjectFileMachO.h"
54 
55 #if defined(__APPLE__) &&                                                      \
56     (defined(__arm__) || defined(__arm64__) || defined(__aarch64__))
57 // GetLLDBSharedCacheUUID() needs to call dlsym()
58 #include <dlfcn.h>
59 #endif
60 
61 #ifndef __APPLE__
62 #include "Utility/UuidCompatibility.h"
63 #else
64 #include <uuid/uuid.h>
65 #endif
66 
67 #define THUMB_ADDRESS_BIT_MASK 0xfffffffffffffffeull
68 using namespace lldb;
69 using namespace lldb_private;
70 using namespace llvm::MachO;
71 
72 // Some structure definitions needed for parsing the dyld shared cache files
73 // found on iOS devices.
74 
75 struct lldb_copy_dyld_cache_header_v1 {
76   char magic[16];         // e.g. "dyld_v0    i386", "dyld_v1   armv7", etc.
77   uint32_t mappingOffset; // file offset to first dyld_cache_mapping_info
78   uint32_t mappingCount;  // number of dyld_cache_mapping_info entries
79   uint32_t imagesOffset;
80   uint32_t imagesCount;
81   uint64_t dyldBaseAddress;
82   uint64_t codeSignatureOffset;
83   uint64_t codeSignatureSize;
84   uint64_t slideInfoOffset;
85   uint64_t slideInfoSize;
86   uint64_t localSymbolsOffset;
87   uint64_t localSymbolsSize;
88   uint8_t uuid[16]; // v1 and above, also recorded in dyld_all_image_infos v13
89                     // and later
90 };
91 
92 struct lldb_copy_dyld_cache_mapping_info {
93   uint64_t address;
94   uint64_t size;
95   uint64_t fileOffset;
96   uint32_t maxProt;
97   uint32_t initProt;
98 };
99 
100 struct lldb_copy_dyld_cache_local_symbols_info {
101   uint32_t nlistOffset;
102   uint32_t nlistCount;
103   uint32_t stringsOffset;
104   uint32_t stringsSize;
105   uint32_t entriesOffset;
106   uint32_t entriesCount;
107 };
108 struct lldb_copy_dyld_cache_local_symbols_entry {
109   uint32_t dylibOffset;
110   uint32_t nlistStartIndex;
111   uint32_t nlistCount;
112 };
113 
114 class RegisterContextDarwin_x86_64_Mach : public RegisterContextDarwin_x86_64 {
115 public:
116   RegisterContextDarwin_x86_64_Mach(lldb_private::Thread &thread,
117                                     const DataExtractor &data)
118       : RegisterContextDarwin_x86_64(thread, 0) {
119     SetRegisterDataFrom_LC_THREAD(data);
120   }
121 
122   void InvalidateAllRegisters() override {
123     // Do nothing... registers are always valid...
124   }
125 
126   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
127     lldb::offset_t offset = 0;
128     SetError(GPRRegSet, Read, -1);
129     SetError(FPURegSet, Read, -1);
130     SetError(EXCRegSet, Read, -1);
131     bool done = false;
132 
133     while (!done) {
134       int flavor = data.GetU32(&offset);
135       if (flavor == 0)
136         done = true;
137       else {
138         uint32_t i;
139         uint32_t count = data.GetU32(&offset);
140         switch (flavor) {
141         case GPRRegSet:
142           for (i = 0; i < count; ++i)
143             (&gpr.rax)[i] = data.GetU64(&offset);
144           SetError(GPRRegSet, Read, 0);
145           done = true;
146 
147           break;
148         case FPURegSet:
149           // TODO: fill in FPU regs....
150           // SetError (FPURegSet, Read, -1);
151           done = true;
152 
153           break;
154         case EXCRegSet:
155           exc.trapno = data.GetU32(&offset);
156           exc.err = data.GetU32(&offset);
157           exc.faultvaddr = data.GetU64(&offset);
158           SetError(EXCRegSet, Read, 0);
159           done = true;
160           break;
161         case 7:
162         case 8:
163         case 9:
164           // fancy flavors that encapsulate of the above flavors...
165           break;
166 
167         default:
168           done = true;
169           break;
170         }
171       }
172     }
173   }
174 
175   static size_t WriteRegister(RegisterContext *reg_ctx, const char *name,
176                               const char *alt_name, size_t reg_byte_size,
177                               Stream &data) {
178     const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
179     if (reg_info == NULL)
180       reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
181     if (reg_info) {
182       lldb_private::RegisterValue reg_value;
183       if (reg_ctx->ReadRegister(reg_info, reg_value)) {
184         if (reg_info->byte_size >= reg_byte_size)
185           data.Write(reg_value.GetBytes(), reg_byte_size);
186         else {
187           data.Write(reg_value.GetBytes(), reg_info->byte_size);
188           for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n;
189                ++i)
190             data.PutChar(0);
191         }
192         return reg_byte_size;
193       }
194     }
195     // Just write zeros if all else fails
196     for (size_t i = 0; i < reg_byte_size; ++i)
197       data.PutChar(0);
198     return reg_byte_size;
199   }
200 
201   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
202     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
203     if (reg_ctx_sp) {
204       RegisterContext *reg_ctx = reg_ctx_sp.get();
205 
206       data.PutHex32(GPRRegSet); // Flavor
207       data.PutHex32(GPRWordCount);
208       WriteRegister(reg_ctx, "rax", NULL, 8, data);
209       WriteRegister(reg_ctx, "rbx", NULL, 8, data);
210       WriteRegister(reg_ctx, "rcx", NULL, 8, data);
211       WriteRegister(reg_ctx, "rdx", NULL, 8, data);
212       WriteRegister(reg_ctx, "rdi", NULL, 8, data);
213       WriteRegister(reg_ctx, "rsi", NULL, 8, data);
214       WriteRegister(reg_ctx, "rbp", NULL, 8, data);
215       WriteRegister(reg_ctx, "rsp", NULL, 8, data);
216       WriteRegister(reg_ctx, "r8", NULL, 8, data);
217       WriteRegister(reg_ctx, "r9", NULL, 8, data);
218       WriteRegister(reg_ctx, "r10", NULL, 8, data);
219       WriteRegister(reg_ctx, "r11", NULL, 8, data);
220       WriteRegister(reg_ctx, "r12", NULL, 8, data);
221       WriteRegister(reg_ctx, "r13", NULL, 8, data);
222       WriteRegister(reg_ctx, "r14", NULL, 8, data);
223       WriteRegister(reg_ctx, "r15", NULL, 8, data);
224       WriteRegister(reg_ctx, "rip", NULL, 8, data);
225       WriteRegister(reg_ctx, "rflags", NULL, 8, data);
226       WriteRegister(reg_ctx, "cs", NULL, 8, data);
227       WriteRegister(reg_ctx, "fs", NULL, 8, data);
228       WriteRegister(reg_ctx, "gs", NULL, 8, data);
229 
230       //            // Write out the FPU registers
231       //            const size_t fpu_byte_size = sizeof(FPU);
232       //            size_t bytes_written = 0;
233       //            data.PutHex32 (FPURegSet);
234       //            data.PutHex32 (fpu_byte_size/sizeof(uint64_t));
235       //            bytes_written += data.PutHex32(0); // uint32_t pad[0]
236       //            bytes_written += data.PutHex32(0); // uint32_t pad[1]
237       //            bytes_written += WriteRegister (reg_ctx, "fcw", "fctrl", 2,
238       //            data);   // uint16_t    fcw;    // "fctrl"
239       //            bytes_written += WriteRegister (reg_ctx, "fsw" , "fstat", 2,
240       //            data);  // uint16_t    fsw;    // "fstat"
241       //            bytes_written += WriteRegister (reg_ctx, "ftw" , "ftag", 1,
242       //            data);   // uint8_t     ftw;    // "ftag"
243       //            bytes_written += data.PutHex8  (0); // uint8_t pad1;
244       //            bytes_written += WriteRegister (reg_ctx, "fop" , NULL, 2,
245       //            data);     // uint16_t    fop;    // "fop"
246       //            bytes_written += WriteRegister (reg_ctx, "fioff", "ip", 4,
247       //            data);    // uint32_t    ip;     // "fioff"
248       //            bytes_written += WriteRegister (reg_ctx, "fiseg", NULL, 2,
249       //            data);    // uint16_t    cs;     // "fiseg"
250       //            bytes_written += data.PutHex16 (0); // uint16_t    pad2;
251       //            bytes_written += WriteRegister (reg_ctx, "dp", "fooff" , 4,
252       //            data);   // uint32_t    dp;     // "fooff"
253       //            bytes_written += WriteRegister (reg_ctx, "foseg", NULL, 2,
254       //            data);    // uint16_t    ds;     // "foseg"
255       //            bytes_written += data.PutHex16 (0); // uint16_t    pad3;
256       //            bytes_written += WriteRegister (reg_ctx, "mxcsr", NULL, 4,
257       //            data);    // uint32_t    mxcsr;
258       //            bytes_written += WriteRegister (reg_ctx, "mxcsrmask", NULL,
259       //            4, data);// uint32_t    mxcsrmask;
260       //            bytes_written += WriteRegister (reg_ctx, "stmm0", NULL,
261       //            sizeof(MMSReg), data);
262       //            bytes_written += WriteRegister (reg_ctx, "stmm1", NULL,
263       //            sizeof(MMSReg), data);
264       //            bytes_written += WriteRegister (reg_ctx, "stmm2", NULL,
265       //            sizeof(MMSReg), data);
266       //            bytes_written += WriteRegister (reg_ctx, "stmm3", NULL,
267       //            sizeof(MMSReg), data);
268       //            bytes_written += WriteRegister (reg_ctx, "stmm4", NULL,
269       //            sizeof(MMSReg), data);
270       //            bytes_written += WriteRegister (reg_ctx, "stmm5", NULL,
271       //            sizeof(MMSReg), data);
272       //            bytes_written += WriteRegister (reg_ctx, "stmm6", NULL,
273       //            sizeof(MMSReg), data);
274       //            bytes_written += WriteRegister (reg_ctx, "stmm7", NULL,
275       //            sizeof(MMSReg), data);
276       //            bytes_written += WriteRegister (reg_ctx, "xmm0" , NULL,
277       //            sizeof(XMMReg), data);
278       //            bytes_written += WriteRegister (reg_ctx, "xmm1" , NULL,
279       //            sizeof(XMMReg), data);
280       //            bytes_written += WriteRegister (reg_ctx, "xmm2" , NULL,
281       //            sizeof(XMMReg), data);
282       //            bytes_written += WriteRegister (reg_ctx, "xmm3" , NULL,
283       //            sizeof(XMMReg), data);
284       //            bytes_written += WriteRegister (reg_ctx, "xmm4" , NULL,
285       //            sizeof(XMMReg), data);
286       //            bytes_written += WriteRegister (reg_ctx, "xmm5" , NULL,
287       //            sizeof(XMMReg), data);
288       //            bytes_written += WriteRegister (reg_ctx, "xmm6" , NULL,
289       //            sizeof(XMMReg), data);
290       //            bytes_written += WriteRegister (reg_ctx, "xmm7" , NULL,
291       //            sizeof(XMMReg), data);
292       //            bytes_written += WriteRegister (reg_ctx, "xmm8" , NULL,
293       //            sizeof(XMMReg), data);
294       //            bytes_written += WriteRegister (reg_ctx, "xmm9" , NULL,
295       //            sizeof(XMMReg), data);
296       //            bytes_written += WriteRegister (reg_ctx, "xmm10", NULL,
297       //            sizeof(XMMReg), data);
298       //            bytes_written += WriteRegister (reg_ctx, "xmm11", NULL,
299       //            sizeof(XMMReg), data);
300       //            bytes_written += WriteRegister (reg_ctx, "xmm12", NULL,
301       //            sizeof(XMMReg), data);
302       //            bytes_written += WriteRegister (reg_ctx, "xmm13", NULL,
303       //            sizeof(XMMReg), data);
304       //            bytes_written += WriteRegister (reg_ctx, "xmm14", NULL,
305       //            sizeof(XMMReg), data);
306       //            bytes_written += WriteRegister (reg_ctx, "xmm15", NULL,
307       //            sizeof(XMMReg), data);
308       //
309       //            // Fill rest with zeros
310       //            for (size_t i=0, n = fpu_byte_size - bytes_written; i<n; ++
311       //            i)
312       //                data.PutChar(0);
313 
314       // Write out the EXC registers
315       data.PutHex32(EXCRegSet);
316       data.PutHex32(EXCWordCount);
317       WriteRegister(reg_ctx, "trapno", NULL, 4, data);
318       WriteRegister(reg_ctx, "err", NULL, 4, data);
319       WriteRegister(reg_ctx, "faultvaddr", NULL, 8, data);
320       return true;
321     }
322     return false;
323   }
324 
325 protected:
326   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
327 
328   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
329 
330   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
331 
332   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
333     return 0;
334   }
335 
336   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
337     return 0;
338   }
339 
340   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
341     return 0;
342   }
343 };
344 
345 class RegisterContextDarwin_i386_Mach : public RegisterContextDarwin_i386 {
346 public:
347   RegisterContextDarwin_i386_Mach(lldb_private::Thread &thread,
348                                   const DataExtractor &data)
349       : RegisterContextDarwin_i386(thread, 0) {
350     SetRegisterDataFrom_LC_THREAD(data);
351   }
352 
353   void InvalidateAllRegisters() override {
354     // Do nothing... registers are always valid...
355   }
356 
357   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
358     lldb::offset_t offset = 0;
359     SetError(GPRRegSet, Read, -1);
360     SetError(FPURegSet, Read, -1);
361     SetError(EXCRegSet, Read, -1);
362     bool done = false;
363 
364     while (!done) {
365       int flavor = data.GetU32(&offset);
366       if (flavor == 0)
367         done = true;
368       else {
369         uint32_t i;
370         uint32_t count = data.GetU32(&offset);
371         switch (flavor) {
372         case GPRRegSet:
373           for (i = 0; i < count; ++i)
374             (&gpr.eax)[i] = data.GetU32(&offset);
375           SetError(GPRRegSet, Read, 0);
376           done = true;
377 
378           break;
379         case FPURegSet:
380           // TODO: fill in FPU regs....
381           // SetError (FPURegSet, Read, -1);
382           done = true;
383 
384           break;
385         case EXCRegSet:
386           exc.trapno = data.GetU32(&offset);
387           exc.err = data.GetU32(&offset);
388           exc.faultvaddr = data.GetU32(&offset);
389           SetError(EXCRegSet, Read, 0);
390           done = true;
391           break;
392         case 7:
393         case 8:
394         case 9:
395           // fancy flavors that encapsulate of the above flavors...
396           break;
397 
398         default:
399           done = true;
400           break;
401         }
402       }
403     }
404   }
405 
406   static size_t WriteRegister(RegisterContext *reg_ctx, const char *name,
407                               const char *alt_name, size_t reg_byte_size,
408                               Stream &data) {
409     const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
410     if (reg_info == NULL)
411       reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
412     if (reg_info) {
413       lldb_private::RegisterValue reg_value;
414       if (reg_ctx->ReadRegister(reg_info, reg_value)) {
415         if (reg_info->byte_size >= reg_byte_size)
416           data.Write(reg_value.GetBytes(), reg_byte_size);
417         else {
418           data.Write(reg_value.GetBytes(), reg_info->byte_size);
419           for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n;
420                ++i)
421             data.PutChar(0);
422         }
423         return reg_byte_size;
424       }
425     }
426     // Just write zeros if all else fails
427     for (size_t i = 0; i < reg_byte_size; ++i)
428       data.PutChar(0);
429     return reg_byte_size;
430   }
431 
432   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
433     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
434     if (reg_ctx_sp) {
435       RegisterContext *reg_ctx = reg_ctx_sp.get();
436 
437       data.PutHex32(GPRRegSet); // Flavor
438       data.PutHex32(GPRWordCount);
439       WriteRegister(reg_ctx, "eax", NULL, 4, data);
440       WriteRegister(reg_ctx, "ebx", NULL, 4, data);
441       WriteRegister(reg_ctx, "ecx", NULL, 4, data);
442       WriteRegister(reg_ctx, "edx", NULL, 4, data);
443       WriteRegister(reg_ctx, "edi", NULL, 4, data);
444       WriteRegister(reg_ctx, "esi", NULL, 4, data);
445       WriteRegister(reg_ctx, "ebp", NULL, 4, data);
446       WriteRegister(reg_ctx, "esp", NULL, 4, data);
447       WriteRegister(reg_ctx, "ss", NULL, 4, data);
448       WriteRegister(reg_ctx, "eflags", NULL, 4, data);
449       WriteRegister(reg_ctx, "eip", NULL, 4, data);
450       WriteRegister(reg_ctx, "cs", NULL, 4, data);
451       WriteRegister(reg_ctx, "ds", NULL, 4, data);
452       WriteRegister(reg_ctx, "es", NULL, 4, data);
453       WriteRegister(reg_ctx, "fs", NULL, 4, data);
454       WriteRegister(reg_ctx, "gs", NULL, 4, data);
455 
456       // Write out the EXC registers
457       data.PutHex32(EXCRegSet);
458       data.PutHex32(EXCWordCount);
459       WriteRegister(reg_ctx, "trapno", NULL, 4, data);
460       WriteRegister(reg_ctx, "err", NULL, 4, data);
461       WriteRegister(reg_ctx, "faultvaddr", NULL, 4, data);
462       return true;
463     }
464     return false;
465   }
466 
467 protected:
468   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
469 
470   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
471 
472   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
473 
474   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
475     return 0;
476   }
477 
478   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
479     return 0;
480   }
481 
482   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
483     return 0;
484   }
485 };
486 
487 class RegisterContextDarwin_arm_Mach : public RegisterContextDarwin_arm {
488 public:
489   RegisterContextDarwin_arm_Mach(lldb_private::Thread &thread,
490                                  const DataExtractor &data)
491       : RegisterContextDarwin_arm(thread, 0) {
492     SetRegisterDataFrom_LC_THREAD(data);
493   }
494 
495   void InvalidateAllRegisters() override {
496     // Do nothing... registers are always valid...
497   }
498 
499   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
500     lldb::offset_t offset = 0;
501     SetError(GPRRegSet, Read, -1);
502     SetError(FPURegSet, Read, -1);
503     SetError(EXCRegSet, Read, -1);
504     bool done = false;
505 
506     while (!done) {
507       int flavor = data.GetU32(&offset);
508       uint32_t count = data.GetU32(&offset);
509       lldb::offset_t next_thread_state = offset + (count * 4);
510       switch (flavor) {
511       case GPRAltRegSet:
512       case GPRRegSet:
513         for (uint32_t i = 0; i < count; ++i) {
514           gpr.r[i] = data.GetU32(&offset);
515         }
516 
517         // Note that gpr.cpsr is also copied by the above loop; this loop
518         // technically extends one element past the end of the gpr.r[] array.
519 
520         SetError(GPRRegSet, Read, 0);
521         offset = next_thread_state;
522         break;
523 
524       case FPURegSet: {
525         uint8_t *fpu_reg_buf = (uint8_t *)&fpu.floats.s[0];
526         const int fpu_reg_buf_size = sizeof(fpu.floats);
527         if (data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
528                               fpu_reg_buf) == fpu_reg_buf_size) {
529           offset += fpu_reg_buf_size;
530           fpu.fpscr = data.GetU32(&offset);
531           SetError(FPURegSet, Read, 0);
532         } else {
533           done = true;
534         }
535       }
536         offset = next_thread_state;
537         break;
538 
539       case EXCRegSet:
540         if (count == 3) {
541           exc.exception = data.GetU32(&offset);
542           exc.fsr = data.GetU32(&offset);
543           exc.far = data.GetU32(&offset);
544           SetError(EXCRegSet, Read, 0);
545         }
546         done = true;
547         offset = next_thread_state;
548         break;
549 
550       // Unknown register set flavor, stop trying to parse.
551       default:
552         done = true;
553       }
554     }
555   }
556 
557   static size_t WriteRegister(RegisterContext *reg_ctx, const char *name,
558                               const char *alt_name, size_t reg_byte_size,
559                               Stream &data) {
560     const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
561     if (reg_info == NULL)
562       reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
563     if (reg_info) {
564       lldb_private::RegisterValue reg_value;
565       if (reg_ctx->ReadRegister(reg_info, reg_value)) {
566         if (reg_info->byte_size >= reg_byte_size)
567           data.Write(reg_value.GetBytes(), reg_byte_size);
568         else {
569           data.Write(reg_value.GetBytes(), reg_info->byte_size);
570           for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n;
571                ++i)
572             data.PutChar(0);
573         }
574         return reg_byte_size;
575       }
576     }
577     // Just write zeros if all else fails
578     for (size_t i = 0; i < reg_byte_size; ++i)
579       data.PutChar(0);
580     return reg_byte_size;
581   }
582 
583   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
584     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
585     if (reg_ctx_sp) {
586       RegisterContext *reg_ctx = reg_ctx_sp.get();
587 
588       data.PutHex32(GPRRegSet); // Flavor
589       data.PutHex32(GPRWordCount);
590       WriteRegister(reg_ctx, "r0", NULL, 4, data);
591       WriteRegister(reg_ctx, "r1", NULL, 4, data);
592       WriteRegister(reg_ctx, "r2", NULL, 4, data);
593       WriteRegister(reg_ctx, "r3", NULL, 4, data);
594       WriteRegister(reg_ctx, "r4", NULL, 4, data);
595       WriteRegister(reg_ctx, "r5", NULL, 4, data);
596       WriteRegister(reg_ctx, "r6", NULL, 4, data);
597       WriteRegister(reg_ctx, "r7", NULL, 4, data);
598       WriteRegister(reg_ctx, "r8", NULL, 4, data);
599       WriteRegister(reg_ctx, "r9", NULL, 4, data);
600       WriteRegister(reg_ctx, "r10", NULL, 4, data);
601       WriteRegister(reg_ctx, "r11", NULL, 4, data);
602       WriteRegister(reg_ctx, "r12", NULL, 4, data);
603       WriteRegister(reg_ctx, "sp", NULL, 4, data);
604       WriteRegister(reg_ctx, "lr", NULL, 4, data);
605       WriteRegister(reg_ctx, "pc", NULL, 4, data);
606       WriteRegister(reg_ctx, "cpsr", NULL, 4, data);
607 
608       // Write out the EXC registers
609       //            data.PutHex32 (EXCRegSet);
610       //            data.PutHex32 (EXCWordCount);
611       //            WriteRegister (reg_ctx, "exception", NULL, 4, data);
612       //            WriteRegister (reg_ctx, "fsr", NULL, 4, data);
613       //            WriteRegister (reg_ctx, "far", NULL, 4, data);
614       return true;
615     }
616     return false;
617   }
618 
619 protected:
620   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
621 
622   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
623 
624   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
625 
626   int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
627 
628   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
629     return 0;
630   }
631 
632   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
633     return 0;
634   }
635 
636   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
637     return 0;
638   }
639 
640   int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
641     return -1;
642   }
643 };
644 
645 class RegisterContextDarwin_arm64_Mach : public RegisterContextDarwin_arm64 {
646 public:
647   RegisterContextDarwin_arm64_Mach(lldb_private::Thread &thread,
648                                    const DataExtractor &data)
649       : RegisterContextDarwin_arm64(thread, 0) {
650     SetRegisterDataFrom_LC_THREAD(data);
651   }
652 
653   void InvalidateAllRegisters() override {
654     // Do nothing... registers are always valid...
655   }
656 
657   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
658     lldb::offset_t offset = 0;
659     SetError(GPRRegSet, Read, -1);
660     SetError(FPURegSet, Read, -1);
661     SetError(EXCRegSet, Read, -1);
662     bool done = false;
663     while (!done) {
664       int flavor = data.GetU32(&offset);
665       uint32_t count = data.GetU32(&offset);
666       lldb::offset_t next_thread_state = offset + (count * 4);
667       switch (flavor) {
668       case GPRRegSet:
669         // x0-x29 + fp + lr + sp + pc (== 33 64-bit registers) plus cpsr (1
670         // 32-bit register)
671         if (count >= (33 * 2) + 1) {
672           for (uint32_t i = 0; i < 29; ++i)
673             gpr.x[i] = data.GetU64(&offset);
674           gpr.fp = data.GetU64(&offset);
675           gpr.lr = data.GetU64(&offset);
676           gpr.sp = data.GetU64(&offset);
677           gpr.pc = data.GetU64(&offset);
678           gpr.cpsr = data.GetU32(&offset);
679           SetError(GPRRegSet, Read, 0);
680         }
681         offset = next_thread_state;
682         break;
683       case FPURegSet: {
684         uint8_t *fpu_reg_buf = (uint8_t *)&fpu.v[0];
685         const int fpu_reg_buf_size = sizeof(fpu);
686         if (fpu_reg_buf_size == count * sizeof(uint32_t) &&
687             data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
688                               fpu_reg_buf) == fpu_reg_buf_size) {
689           SetError(FPURegSet, Read, 0);
690         } else {
691           done = true;
692         }
693       }
694         offset = next_thread_state;
695         break;
696       case EXCRegSet:
697         if (count == 4) {
698           exc.far = data.GetU64(&offset);
699           exc.esr = data.GetU32(&offset);
700           exc.exception = data.GetU32(&offset);
701           SetError(EXCRegSet, Read, 0);
702         }
703         offset = next_thread_state;
704         break;
705       default:
706         done = true;
707         break;
708       }
709     }
710   }
711 
712   static size_t WriteRegister(RegisterContext *reg_ctx, const char *name,
713                               const char *alt_name, size_t reg_byte_size,
714                               Stream &data) {
715     const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
716     if (reg_info == NULL)
717       reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
718     if (reg_info) {
719       lldb_private::RegisterValue reg_value;
720       if (reg_ctx->ReadRegister(reg_info, reg_value)) {
721         if (reg_info->byte_size >= reg_byte_size)
722           data.Write(reg_value.GetBytes(), reg_byte_size);
723         else {
724           data.Write(reg_value.GetBytes(), reg_info->byte_size);
725           for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n;
726                ++i)
727             data.PutChar(0);
728         }
729         return reg_byte_size;
730       }
731     }
732     // Just write zeros if all else fails
733     for (size_t i = 0; i < reg_byte_size; ++i)
734       data.PutChar(0);
735     return reg_byte_size;
736   }
737 
738   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
739     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
740     if (reg_ctx_sp) {
741       RegisterContext *reg_ctx = reg_ctx_sp.get();
742 
743       data.PutHex32(GPRRegSet); // Flavor
744       data.PutHex32(GPRWordCount);
745       WriteRegister(reg_ctx, "x0", NULL, 8, data);
746       WriteRegister(reg_ctx, "x1", NULL, 8, data);
747       WriteRegister(reg_ctx, "x2", NULL, 8, data);
748       WriteRegister(reg_ctx, "x3", NULL, 8, data);
749       WriteRegister(reg_ctx, "x4", NULL, 8, data);
750       WriteRegister(reg_ctx, "x5", NULL, 8, data);
751       WriteRegister(reg_ctx, "x6", NULL, 8, data);
752       WriteRegister(reg_ctx, "x7", NULL, 8, data);
753       WriteRegister(reg_ctx, "x8", NULL, 8, data);
754       WriteRegister(reg_ctx, "x9", NULL, 8, data);
755       WriteRegister(reg_ctx, "x10", NULL, 8, data);
756       WriteRegister(reg_ctx, "x11", NULL, 8, data);
757       WriteRegister(reg_ctx, "x12", NULL, 8, data);
758       WriteRegister(reg_ctx, "x13", NULL, 8, data);
759       WriteRegister(reg_ctx, "x14", NULL, 8, data);
760       WriteRegister(reg_ctx, "x15", NULL, 8, data);
761       WriteRegister(reg_ctx, "x16", NULL, 8, data);
762       WriteRegister(reg_ctx, "x17", NULL, 8, data);
763       WriteRegister(reg_ctx, "x18", NULL, 8, data);
764       WriteRegister(reg_ctx, "x19", NULL, 8, data);
765       WriteRegister(reg_ctx, "x20", NULL, 8, data);
766       WriteRegister(reg_ctx, "x21", NULL, 8, data);
767       WriteRegister(reg_ctx, "x22", NULL, 8, data);
768       WriteRegister(reg_ctx, "x23", NULL, 8, data);
769       WriteRegister(reg_ctx, "x24", NULL, 8, data);
770       WriteRegister(reg_ctx, "x25", NULL, 8, data);
771       WriteRegister(reg_ctx, "x26", NULL, 8, data);
772       WriteRegister(reg_ctx, "x27", NULL, 8, data);
773       WriteRegister(reg_ctx, "x28", NULL, 8, data);
774       WriteRegister(reg_ctx, "fp", NULL, 8, data);
775       WriteRegister(reg_ctx, "lr", NULL, 8, data);
776       WriteRegister(reg_ctx, "sp", NULL, 8, data);
777       WriteRegister(reg_ctx, "pc", NULL, 8, data);
778       WriteRegister(reg_ctx, "cpsr", NULL, 4, data);
779 
780       // Write out the EXC registers
781       //            data.PutHex32 (EXCRegSet);
782       //            data.PutHex32 (EXCWordCount);
783       //            WriteRegister (reg_ctx, "far", NULL, 8, data);
784       //            WriteRegister (reg_ctx, "esr", NULL, 4, data);
785       //            WriteRegister (reg_ctx, "exception", NULL, 4, data);
786       return true;
787     }
788     return false;
789   }
790 
791 protected:
792   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
793 
794   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
795 
796   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
797 
798   int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
799 
800   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
801     return 0;
802   }
803 
804   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
805     return 0;
806   }
807 
808   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
809     return 0;
810   }
811 
812   int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
813     return -1;
814   }
815 };
816 
817 static uint32_t MachHeaderSizeFromMagic(uint32_t magic) {
818   switch (magic) {
819   case MH_MAGIC:
820   case MH_CIGAM:
821     return sizeof(struct mach_header);
822 
823   case MH_MAGIC_64:
824   case MH_CIGAM_64:
825     return sizeof(struct mach_header_64);
826     break;
827 
828   default:
829     break;
830   }
831   return 0;
832 }
833 
834 #define MACHO_NLIST_ARM_SYMBOL_IS_THUMB 0x0008
835 
836 void ObjectFileMachO::Initialize() {
837   PluginManager::RegisterPlugin(
838       GetPluginNameStatic(), GetPluginDescriptionStatic(), CreateInstance,
839       CreateMemoryInstance, GetModuleSpecifications, SaveCore);
840 }
841 
842 void ObjectFileMachO::Terminate() {
843   PluginManager::UnregisterPlugin(CreateInstance);
844 }
845 
846 lldb_private::ConstString ObjectFileMachO::GetPluginNameStatic() {
847   static ConstString g_name("mach-o");
848   return g_name;
849 }
850 
851 const char *ObjectFileMachO::GetPluginDescriptionStatic() {
852   return "Mach-o object file reader (32 and 64 bit)";
853 }
854 
855 ObjectFile *ObjectFileMachO::CreateInstance(const lldb::ModuleSP &module_sp,
856                                             DataBufferSP &data_sp,
857                                             lldb::offset_t data_offset,
858                                             const FileSpec *file,
859                                             lldb::offset_t file_offset,
860                                             lldb::offset_t length) {
861   if (!data_sp) {
862     data_sp = MapFileData(*file, length, file_offset);
863     if (!data_sp)
864       return nullptr;
865     data_offset = 0;
866   }
867 
868   if (!ObjectFileMachO::MagicBytesMatch(data_sp, data_offset, length))
869     return nullptr;
870 
871   // Update the data to contain the entire file if it doesn't already
872   if (data_sp->GetByteSize() < length) {
873     data_sp = MapFileData(*file, length, file_offset);
874     if (!data_sp)
875       return nullptr;
876     data_offset = 0;
877   }
878   auto objfile_ap = llvm::make_unique<ObjectFileMachO>(
879       module_sp, data_sp, data_offset, file, file_offset, length);
880   if (!objfile_ap || !objfile_ap->ParseHeader())
881     return nullptr;
882 
883   return objfile_ap.release();
884 }
885 
886 ObjectFile *ObjectFileMachO::CreateMemoryInstance(
887     const lldb::ModuleSP &module_sp, DataBufferSP &data_sp,
888     const ProcessSP &process_sp, lldb::addr_t header_addr) {
889   if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
890     std::unique_ptr<ObjectFile> objfile_ap(
891         new ObjectFileMachO(module_sp, data_sp, process_sp, header_addr));
892     if (objfile_ap.get() && objfile_ap->ParseHeader())
893       return objfile_ap.release();
894   }
895   return NULL;
896 }
897 
898 size_t ObjectFileMachO::GetModuleSpecifications(
899     const lldb_private::FileSpec &file, lldb::DataBufferSP &data_sp,
900     lldb::offset_t data_offset, lldb::offset_t file_offset,
901     lldb::offset_t length, lldb_private::ModuleSpecList &specs) {
902   const size_t initial_count = specs.GetSize();
903 
904   if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
905     DataExtractor data;
906     data.SetData(data_sp);
907     llvm::MachO::mach_header header;
908     if (ParseHeader(data, &data_offset, header)) {
909       size_t header_and_load_cmds =
910           header.sizeofcmds + MachHeaderSizeFromMagic(header.magic);
911       if (header_and_load_cmds >= data_sp->GetByteSize()) {
912         data_sp = MapFileData(file, header_and_load_cmds, file_offset);
913         data.SetData(data_sp);
914         data_offset = MachHeaderSizeFromMagic(header.magic);
915       }
916       if (data_sp) {
917         ModuleSpec spec;
918         spec.GetFileSpec() = file;
919         spec.SetObjectOffset(file_offset);
920         spec.SetObjectSize(length);
921 
922         if (GetArchitecture(header, data, data_offset,
923                             spec.GetArchitecture())) {
924           if (spec.GetArchitecture().IsValid()) {
925             GetUUID(header, data, data_offset, spec.GetUUID());
926             specs.Append(spec);
927           }
928         }
929       }
930     }
931   }
932   return specs.GetSize() - initial_count;
933 }
934 
935 const ConstString &ObjectFileMachO::GetSegmentNameTEXT() {
936   static ConstString g_segment_name_TEXT("__TEXT");
937   return g_segment_name_TEXT;
938 }
939 
940 const ConstString &ObjectFileMachO::GetSegmentNameDATA() {
941   static ConstString g_segment_name_DATA("__DATA");
942   return g_segment_name_DATA;
943 }
944 
945 const ConstString &ObjectFileMachO::GetSegmentNameDATA_DIRTY() {
946   static ConstString g_segment_name("__DATA_DIRTY");
947   return g_segment_name;
948 }
949 
950 const ConstString &ObjectFileMachO::GetSegmentNameDATA_CONST() {
951   static ConstString g_segment_name("__DATA_CONST");
952   return g_segment_name;
953 }
954 
955 const ConstString &ObjectFileMachO::GetSegmentNameOBJC() {
956   static ConstString g_segment_name_OBJC("__OBJC");
957   return g_segment_name_OBJC;
958 }
959 
960 const ConstString &ObjectFileMachO::GetSegmentNameLINKEDIT() {
961   static ConstString g_section_name_LINKEDIT("__LINKEDIT");
962   return g_section_name_LINKEDIT;
963 }
964 
965 const ConstString &ObjectFileMachO::GetSectionNameEHFrame() {
966   static ConstString g_section_name_eh_frame("__eh_frame");
967   return g_section_name_eh_frame;
968 }
969 
970 bool ObjectFileMachO::MagicBytesMatch(DataBufferSP &data_sp,
971                                       lldb::addr_t data_offset,
972                                       lldb::addr_t data_length) {
973   DataExtractor data;
974   data.SetData(data_sp, data_offset, data_length);
975   lldb::offset_t offset = 0;
976   uint32_t magic = data.GetU32(&offset);
977   return MachHeaderSizeFromMagic(magic) != 0;
978 }
979 
980 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
981                                  DataBufferSP &data_sp,
982                                  lldb::offset_t data_offset,
983                                  const FileSpec *file,
984                                  lldb::offset_t file_offset,
985                                  lldb::offset_t length)
986     : ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset),
987       m_mach_segments(), m_mach_sections(), m_entry_point_address(),
988       m_thread_context_offsets(), m_thread_context_offsets_valid(false),
989       m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) {
990   ::memset(&m_header, 0, sizeof(m_header));
991   ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
992 }
993 
994 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
995                                  lldb::DataBufferSP &header_data_sp,
996                                  const lldb::ProcessSP &process_sp,
997                                  lldb::addr_t header_addr)
998     : ObjectFile(module_sp, process_sp, header_addr, header_data_sp),
999       m_mach_segments(), m_mach_sections(), m_entry_point_address(),
1000       m_thread_context_offsets(), m_thread_context_offsets_valid(false),
1001       m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) {
1002   ::memset(&m_header, 0, sizeof(m_header));
1003   ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
1004 }
1005 
1006 bool ObjectFileMachO::ParseHeader(DataExtractor &data,
1007                                   lldb::offset_t *data_offset_ptr,
1008                                   llvm::MachO::mach_header &header) {
1009   data.SetByteOrder(endian::InlHostByteOrder());
1010   // Leave magic in the original byte order
1011   header.magic = data.GetU32(data_offset_ptr);
1012   bool can_parse = false;
1013   bool is_64_bit = false;
1014   switch (header.magic) {
1015   case MH_MAGIC:
1016     data.SetByteOrder(endian::InlHostByteOrder());
1017     data.SetAddressByteSize(4);
1018     can_parse = true;
1019     break;
1020 
1021   case MH_MAGIC_64:
1022     data.SetByteOrder(endian::InlHostByteOrder());
1023     data.SetAddressByteSize(8);
1024     can_parse = true;
1025     is_64_bit = true;
1026     break;
1027 
1028   case MH_CIGAM:
1029     data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1030                           ? eByteOrderLittle
1031                           : eByteOrderBig);
1032     data.SetAddressByteSize(4);
1033     can_parse = true;
1034     break;
1035 
1036   case MH_CIGAM_64:
1037     data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1038                           ? eByteOrderLittle
1039                           : eByteOrderBig);
1040     data.SetAddressByteSize(8);
1041     is_64_bit = true;
1042     can_parse = true;
1043     break;
1044 
1045   default:
1046     break;
1047   }
1048 
1049   if (can_parse) {
1050     data.GetU32(data_offset_ptr, &header.cputype, 6);
1051     if (is_64_bit)
1052       *data_offset_ptr += 4;
1053     return true;
1054   } else {
1055     memset(&header, 0, sizeof(header));
1056   }
1057   return false;
1058 }
1059 
1060 bool ObjectFileMachO::ParseHeader() {
1061   ModuleSP module_sp(GetModule());
1062   if (module_sp) {
1063     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
1064     bool can_parse = false;
1065     lldb::offset_t offset = 0;
1066     m_data.SetByteOrder(endian::InlHostByteOrder());
1067     // Leave magic in the original byte order
1068     m_header.magic = m_data.GetU32(&offset);
1069     switch (m_header.magic) {
1070     case MH_MAGIC:
1071       m_data.SetByteOrder(endian::InlHostByteOrder());
1072       m_data.SetAddressByteSize(4);
1073       can_parse = true;
1074       break;
1075 
1076     case MH_MAGIC_64:
1077       m_data.SetByteOrder(endian::InlHostByteOrder());
1078       m_data.SetAddressByteSize(8);
1079       can_parse = true;
1080       break;
1081 
1082     case MH_CIGAM:
1083       m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1084                               ? eByteOrderLittle
1085                               : eByteOrderBig);
1086       m_data.SetAddressByteSize(4);
1087       can_parse = true;
1088       break;
1089 
1090     case MH_CIGAM_64:
1091       m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1092                               ? eByteOrderLittle
1093                               : eByteOrderBig);
1094       m_data.SetAddressByteSize(8);
1095       can_parse = true;
1096       break;
1097 
1098     default:
1099       break;
1100     }
1101 
1102     if (can_parse) {
1103       m_data.GetU32(&offset, &m_header.cputype, 6);
1104 
1105       ArchSpec mach_arch;
1106 
1107       if (GetArchitecture(mach_arch)) {
1108         // Check if the module has a required architecture
1109         const ArchSpec &module_arch = module_sp->GetArchitecture();
1110         if (module_arch.IsValid() && !module_arch.IsCompatibleMatch(mach_arch))
1111           return false;
1112 
1113         if (SetModulesArchitecture(mach_arch)) {
1114           const size_t header_and_lc_size =
1115               m_header.sizeofcmds + MachHeaderSizeFromMagic(m_header.magic);
1116           if (m_data.GetByteSize() < header_and_lc_size) {
1117             DataBufferSP data_sp;
1118             ProcessSP process_sp(m_process_wp.lock());
1119             if (process_sp) {
1120               data_sp =
1121                   ReadMemory(process_sp, m_memory_addr, header_and_lc_size);
1122             } else {
1123               // Read in all only the load command data from the file on disk
1124               data_sp = MapFileData(m_file, header_and_lc_size, m_file_offset);
1125               if (data_sp->GetByteSize() != header_and_lc_size)
1126                 return false;
1127             }
1128             if (data_sp)
1129               m_data.SetData(data_sp);
1130           }
1131         }
1132         return true;
1133       }
1134     } else {
1135       memset(&m_header, 0, sizeof(struct mach_header));
1136     }
1137   }
1138   return false;
1139 }
1140 
1141 ByteOrder ObjectFileMachO::GetByteOrder() const {
1142   return m_data.GetByteOrder();
1143 }
1144 
1145 bool ObjectFileMachO::IsExecutable() const {
1146   return m_header.filetype == MH_EXECUTE;
1147 }
1148 
1149 uint32_t ObjectFileMachO::GetAddressByteSize() const {
1150   return m_data.GetAddressByteSize();
1151 }
1152 
1153 AddressClass ObjectFileMachO::GetAddressClass(lldb::addr_t file_addr) {
1154   Symtab *symtab = GetSymtab();
1155   if (symtab) {
1156     Symbol *symbol = symtab->FindSymbolContainingFileAddress(file_addr);
1157     if (symbol) {
1158       if (symbol->ValueIsAddress()) {
1159         SectionSP section_sp(symbol->GetAddressRef().GetSection());
1160         if (section_sp) {
1161           const lldb::SectionType section_type = section_sp->GetType();
1162           switch (section_type) {
1163           case eSectionTypeInvalid:
1164             return AddressClass::eUnknown;
1165 
1166           case eSectionTypeCode:
1167             if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
1168               // For ARM we have a bit in the n_desc field of the symbol that
1169               // tells us ARM/Thumb which is bit 0x0008.
1170               if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB)
1171                 return AddressClass::eCodeAlternateISA;
1172             }
1173             return AddressClass::eCode;
1174 
1175           case eSectionTypeContainer:
1176             return AddressClass::eUnknown;
1177 
1178           case eSectionTypeData:
1179           case eSectionTypeDataCString:
1180           case eSectionTypeDataCStringPointers:
1181           case eSectionTypeDataSymbolAddress:
1182           case eSectionTypeData4:
1183           case eSectionTypeData8:
1184           case eSectionTypeData16:
1185           case eSectionTypeDataPointers:
1186           case eSectionTypeZeroFill:
1187           case eSectionTypeDataObjCMessageRefs:
1188           case eSectionTypeDataObjCCFStrings:
1189           case eSectionTypeGoSymtab:
1190             return AddressClass::eData;
1191 
1192           case eSectionTypeDebug:
1193           case eSectionTypeDWARFDebugAbbrev:
1194           case eSectionTypeDWARFDebugAddr:
1195           case eSectionTypeDWARFDebugAranges:
1196           case eSectionTypeDWARFDebugCuIndex:
1197           case eSectionTypeDWARFDebugFrame:
1198           case eSectionTypeDWARFDebugInfo:
1199           case eSectionTypeDWARFDebugLine:
1200           case eSectionTypeDWARFDebugLoc:
1201           case eSectionTypeDWARFDebugMacInfo:
1202           case eSectionTypeDWARFDebugMacro:
1203           case eSectionTypeDWARFDebugNames:
1204           case eSectionTypeDWARFDebugPubNames:
1205           case eSectionTypeDWARFDebugPubTypes:
1206           case eSectionTypeDWARFDebugRanges:
1207           case eSectionTypeDWARFDebugStr:
1208           case eSectionTypeDWARFDebugStrOffsets:
1209           case eSectionTypeDWARFDebugTypes:
1210           case eSectionTypeDWARFAppleNames:
1211           case eSectionTypeDWARFAppleTypes:
1212           case eSectionTypeDWARFAppleNamespaces:
1213           case eSectionTypeDWARFAppleObjC:
1214           case eSectionTypeDWARFGNUDebugAltLink:
1215             return AddressClass::eDebug;
1216 
1217           case eSectionTypeEHFrame:
1218           case eSectionTypeARMexidx:
1219           case eSectionTypeARMextab:
1220           case eSectionTypeCompactUnwind:
1221             return AddressClass::eRuntime;
1222 
1223           case eSectionTypeAbsoluteAddress:
1224           case eSectionTypeELFSymbolTable:
1225           case eSectionTypeELFDynamicSymbols:
1226           case eSectionTypeELFRelocationEntries:
1227           case eSectionTypeELFDynamicLinkInfo:
1228           case eSectionTypeOther:
1229             return AddressClass::eUnknown;
1230           }
1231         }
1232       }
1233 
1234       const SymbolType symbol_type = symbol->GetType();
1235       switch (symbol_type) {
1236       case eSymbolTypeAny:
1237         return AddressClass::eUnknown;
1238       case eSymbolTypeAbsolute:
1239         return AddressClass::eUnknown;
1240 
1241       case eSymbolTypeCode:
1242       case eSymbolTypeTrampoline:
1243       case eSymbolTypeResolver:
1244         if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
1245           // For ARM we have a bit in the n_desc field of the symbol that tells
1246           // us ARM/Thumb which is bit 0x0008.
1247           if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB)
1248             return AddressClass::eCodeAlternateISA;
1249         }
1250         return AddressClass::eCode;
1251 
1252       case eSymbolTypeData:
1253         return AddressClass::eData;
1254       case eSymbolTypeRuntime:
1255         return AddressClass::eRuntime;
1256       case eSymbolTypeException:
1257         return AddressClass::eRuntime;
1258       case eSymbolTypeSourceFile:
1259         return AddressClass::eDebug;
1260       case eSymbolTypeHeaderFile:
1261         return AddressClass::eDebug;
1262       case eSymbolTypeObjectFile:
1263         return AddressClass::eDebug;
1264       case eSymbolTypeCommonBlock:
1265         return AddressClass::eDebug;
1266       case eSymbolTypeBlock:
1267         return AddressClass::eDebug;
1268       case eSymbolTypeLocal:
1269         return AddressClass::eData;
1270       case eSymbolTypeParam:
1271         return AddressClass::eData;
1272       case eSymbolTypeVariable:
1273         return AddressClass::eData;
1274       case eSymbolTypeVariableType:
1275         return AddressClass::eDebug;
1276       case eSymbolTypeLineEntry:
1277         return AddressClass::eDebug;
1278       case eSymbolTypeLineHeader:
1279         return AddressClass::eDebug;
1280       case eSymbolTypeScopeBegin:
1281         return AddressClass::eDebug;
1282       case eSymbolTypeScopeEnd:
1283         return AddressClass::eDebug;
1284       case eSymbolTypeAdditional:
1285         return AddressClass::eUnknown;
1286       case eSymbolTypeCompiler:
1287         return AddressClass::eDebug;
1288       case eSymbolTypeInstrumentation:
1289         return AddressClass::eDebug;
1290       case eSymbolTypeUndefined:
1291         return AddressClass::eUnknown;
1292       case eSymbolTypeObjCClass:
1293         return AddressClass::eRuntime;
1294       case eSymbolTypeObjCMetaClass:
1295         return AddressClass::eRuntime;
1296       case eSymbolTypeObjCIVar:
1297         return AddressClass::eRuntime;
1298       case eSymbolTypeReExported:
1299         return AddressClass::eRuntime;
1300       }
1301     }
1302   }
1303   return AddressClass::eUnknown;
1304 }
1305 
1306 Symtab *ObjectFileMachO::GetSymtab() {
1307   ModuleSP module_sp(GetModule());
1308   if (module_sp) {
1309     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
1310     if (m_symtab_ap.get() == NULL) {
1311       m_symtab_ap.reset(new Symtab(this));
1312       std::lock_guard<std::recursive_mutex> symtab_guard(
1313           m_symtab_ap->GetMutex());
1314       ParseSymtab();
1315       m_symtab_ap->Finalize();
1316     }
1317   }
1318   return m_symtab_ap.get();
1319 }
1320 
1321 bool ObjectFileMachO::IsStripped() {
1322   if (m_dysymtab.cmd == 0) {
1323     ModuleSP module_sp(GetModule());
1324     if (module_sp) {
1325       lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1326       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1327         const lldb::offset_t load_cmd_offset = offset;
1328 
1329         load_command lc;
1330         if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL)
1331           break;
1332         if (lc.cmd == LC_DYSYMTAB) {
1333           m_dysymtab.cmd = lc.cmd;
1334           m_dysymtab.cmdsize = lc.cmdsize;
1335           if (m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
1336                             (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2) ==
1337               NULL) {
1338             // Clear m_dysymtab if we were unable to read all items from the
1339             // load command
1340             ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
1341           }
1342         }
1343         offset = load_cmd_offset + lc.cmdsize;
1344       }
1345     }
1346   }
1347   if (m_dysymtab.cmd)
1348     return m_dysymtab.nlocalsym <= 1;
1349   return false;
1350 }
1351 
1352 ObjectFileMachO::EncryptedFileRanges ObjectFileMachO::GetEncryptedFileRanges() {
1353   EncryptedFileRanges result;
1354   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1355 
1356   encryption_info_command encryption_cmd;
1357   for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1358     const lldb::offset_t load_cmd_offset = offset;
1359     if (m_data.GetU32(&offset, &encryption_cmd, 2) == NULL)
1360       break;
1361 
1362     // LC_ENCRYPTION_INFO and LC_ENCRYPTION_INFO_64 have the same sizes for the
1363     // 3 fields we care about, so treat them the same.
1364     if (encryption_cmd.cmd == LC_ENCRYPTION_INFO ||
1365         encryption_cmd.cmd == LC_ENCRYPTION_INFO_64) {
1366       if (m_data.GetU32(&offset, &encryption_cmd.cryptoff, 3)) {
1367         if (encryption_cmd.cryptid != 0) {
1368           EncryptedFileRanges::Entry entry;
1369           entry.SetRangeBase(encryption_cmd.cryptoff);
1370           entry.SetByteSize(encryption_cmd.cryptsize);
1371           result.Append(entry);
1372         }
1373       }
1374     }
1375     offset = load_cmd_offset + encryption_cmd.cmdsize;
1376   }
1377 
1378   return result;
1379 }
1380 
1381 void ObjectFileMachO::SanitizeSegmentCommand(segment_command_64 &seg_cmd,
1382                                              uint32_t cmd_idx) {
1383   if (m_length == 0 || seg_cmd.filesize == 0)
1384     return;
1385 
1386   if (seg_cmd.fileoff > m_length) {
1387     // We have a load command that says it extends past the end of the file.
1388     // This is likely a corrupt file.  We don't have any way to return an error
1389     // condition here (this method was likely invoked from something like
1390     // ObjectFile::GetSectionList()), so we just null out the section contents,
1391     // and dump a message to stdout.  The most common case here is core file
1392     // debugging with a truncated file.
1393     const char *lc_segment_name =
1394         seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT";
1395     GetModule()->ReportWarning(
1396         "load command %u %s has a fileoff (0x%" PRIx64
1397         ") that extends beyond the end of the file (0x%" PRIx64
1398         "), ignoring this section",
1399         cmd_idx, lc_segment_name, seg_cmd.fileoff, m_length);
1400 
1401     seg_cmd.fileoff = 0;
1402     seg_cmd.filesize = 0;
1403   }
1404 
1405   if (seg_cmd.fileoff + seg_cmd.filesize > m_length) {
1406     // We have a load command that says it extends past the end of the file.
1407     // This is likely a corrupt file.  We don't have any way to return an error
1408     // condition here (this method was likely invoked from something like
1409     // ObjectFile::GetSectionList()), so we just null out the section contents,
1410     // and dump a message to stdout.  The most common case here is core file
1411     // debugging with a truncated file.
1412     const char *lc_segment_name =
1413         seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT";
1414     GetModule()->ReportWarning(
1415         "load command %u %s has a fileoff + filesize (0x%" PRIx64
1416         ") that extends beyond the end of the file (0x%" PRIx64
1417         "), the segment will be truncated to match",
1418         cmd_idx, lc_segment_name, seg_cmd.fileoff + seg_cmd.filesize, m_length);
1419 
1420     // Truncate the length
1421     seg_cmd.filesize = m_length - seg_cmd.fileoff;
1422   }
1423 }
1424 
1425 static uint32_t GetSegmentPermissions(const segment_command_64 &seg_cmd) {
1426   uint32_t result = 0;
1427   if (seg_cmd.initprot & VM_PROT_READ)
1428     result |= ePermissionsReadable;
1429   if (seg_cmd.initprot & VM_PROT_WRITE)
1430     result |= ePermissionsWritable;
1431   if (seg_cmd.initprot & VM_PROT_EXECUTE)
1432     result |= ePermissionsExecutable;
1433   return result;
1434 }
1435 
1436 static lldb::SectionType GetSectionType(uint32_t flags,
1437                                         ConstString section_name) {
1438 
1439   if (flags & (S_ATTR_PURE_INSTRUCTIONS | S_ATTR_SOME_INSTRUCTIONS))
1440     return eSectionTypeCode;
1441 
1442   uint32_t mach_sect_type = flags & SECTION_TYPE;
1443   static ConstString g_sect_name_objc_data("__objc_data");
1444   static ConstString g_sect_name_objc_msgrefs("__objc_msgrefs");
1445   static ConstString g_sect_name_objc_selrefs("__objc_selrefs");
1446   static ConstString g_sect_name_objc_classrefs("__objc_classrefs");
1447   static ConstString g_sect_name_objc_superrefs("__objc_superrefs");
1448   static ConstString g_sect_name_objc_const("__objc_const");
1449   static ConstString g_sect_name_objc_classlist("__objc_classlist");
1450   static ConstString g_sect_name_cfstring("__cfstring");
1451 
1452   static ConstString g_sect_name_dwarf_debug_abbrev("__debug_abbrev");
1453   static ConstString g_sect_name_dwarf_debug_aranges("__debug_aranges");
1454   static ConstString g_sect_name_dwarf_debug_frame("__debug_frame");
1455   static ConstString g_sect_name_dwarf_debug_info("__debug_info");
1456   static ConstString g_sect_name_dwarf_debug_line("__debug_line");
1457   static ConstString g_sect_name_dwarf_debug_loc("__debug_loc");
1458   static ConstString g_sect_name_dwarf_debug_macinfo("__debug_macinfo");
1459   static ConstString g_sect_name_dwarf_debug_names("__debug_names");
1460   static ConstString g_sect_name_dwarf_debug_pubnames("__debug_pubnames");
1461   static ConstString g_sect_name_dwarf_debug_pubtypes("__debug_pubtypes");
1462   static ConstString g_sect_name_dwarf_debug_ranges("__debug_ranges");
1463   static ConstString g_sect_name_dwarf_debug_str("__debug_str");
1464   static ConstString g_sect_name_dwarf_debug_types("__debug_types");
1465   static ConstString g_sect_name_dwarf_apple_names("__apple_names");
1466   static ConstString g_sect_name_dwarf_apple_types("__apple_types");
1467   static ConstString g_sect_name_dwarf_apple_namespaces("__apple_namespac");
1468   static ConstString g_sect_name_dwarf_apple_objc("__apple_objc");
1469   static ConstString g_sect_name_eh_frame("__eh_frame");
1470   static ConstString g_sect_name_compact_unwind("__unwind_info");
1471   static ConstString g_sect_name_text("__text");
1472   static ConstString g_sect_name_data("__data");
1473   static ConstString g_sect_name_go_symtab("__gosymtab");
1474 
1475   if (section_name == g_sect_name_dwarf_debug_abbrev)
1476     return eSectionTypeDWARFDebugAbbrev;
1477   if (section_name == g_sect_name_dwarf_debug_aranges)
1478     return eSectionTypeDWARFDebugAranges;
1479   if (section_name == g_sect_name_dwarf_debug_frame)
1480     return eSectionTypeDWARFDebugFrame;
1481   if (section_name == g_sect_name_dwarf_debug_info)
1482     return eSectionTypeDWARFDebugInfo;
1483   if (section_name == g_sect_name_dwarf_debug_line)
1484     return eSectionTypeDWARFDebugLine;
1485   if (section_name == g_sect_name_dwarf_debug_loc)
1486     return eSectionTypeDWARFDebugLoc;
1487   if (section_name == g_sect_name_dwarf_debug_macinfo)
1488     return eSectionTypeDWARFDebugMacInfo;
1489   if (section_name == g_sect_name_dwarf_debug_names)
1490     return eSectionTypeDWARFDebugNames;
1491   if (section_name == g_sect_name_dwarf_debug_pubnames)
1492     return eSectionTypeDWARFDebugPubNames;
1493   if (section_name == g_sect_name_dwarf_debug_pubtypes)
1494     return eSectionTypeDWARFDebugPubTypes;
1495   if (section_name == g_sect_name_dwarf_debug_ranges)
1496     return eSectionTypeDWARFDebugRanges;
1497   if (section_name == g_sect_name_dwarf_debug_str)
1498     return eSectionTypeDWARFDebugStr;
1499   if (section_name == g_sect_name_dwarf_debug_types)
1500     return eSectionTypeDWARFDebugTypes;
1501   if (section_name == g_sect_name_dwarf_apple_names)
1502     return eSectionTypeDWARFAppleNames;
1503   if (section_name == g_sect_name_dwarf_apple_types)
1504     return eSectionTypeDWARFAppleTypes;
1505   if (section_name == g_sect_name_dwarf_apple_namespaces)
1506     return eSectionTypeDWARFAppleNamespaces;
1507   if (section_name == g_sect_name_dwarf_apple_objc)
1508     return eSectionTypeDWARFAppleObjC;
1509   if (section_name == g_sect_name_objc_selrefs)
1510     return eSectionTypeDataCStringPointers;
1511   if (section_name == g_sect_name_objc_msgrefs)
1512     return eSectionTypeDataObjCMessageRefs;
1513   if (section_name == g_sect_name_eh_frame)
1514     return eSectionTypeEHFrame;
1515   if (section_name == g_sect_name_compact_unwind)
1516     return eSectionTypeCompactUnwind;
1517   if (section_name == g_sect_name_cfstring)
1518     return eSectionTypeDataObjCCFStrings;
1519   if (section_name == g_sect_name_go_symtab)
1520     return eSectionTypeGoSymtab;
1521   if (section_name == g_sect_name_objc_data ||
1522       section_name == g_sect_name_objc_classrefs ||
1523       section_name == g_sect_name_objc_superrefs ||
1524       section_name == g_sect_name_objc_const ||
1525       section_name == g_sect_name_objc_classlist) {
1526     return eSectionTypeDataPointers;
1527   }
1528 
1529   switch (mach_sect_type) {
1530   // TODO: categorize sections by other flags for regular sections
1531   case S_REGULAR:
1532     if (section_name == g_sect_name_text)
1533       return eSectionTypeCode;
1534     if (section_name == g_sect_name_data)
1535       return eSectionTypeData;
1536     return eSectionTypeOther;
1537   case S_ZEROFILL:
1538     return eSectionTypeZeroFill;
1539   case S_CSTRING_LITERALS: // section with only literal C strings
1540     return eSectionTypeDataCString;
1541   case S_4BYTE_LITERALS: // section with only 4 byte literals
1542     return eSectionTypeData4;
1543   case S_8BYTE_LITERALS: // section with only 8 byte literals
1544     return eSectionTypeData8;
1545   case S_LITERAL_POINTERS: // section with only pointers to literals
1546     return eSectionTypeDataPointers;
1547   case S_NON_LAZY_SYMBOL_POINTERS: // section with only non-lazy symbol pointers
1548     return eSectionTypeDataPointers;
1549   case S_LAZY_SYMBOL_POINTERS: // section with only lazy symbol pointers
1550     return eSectionTypeDataPointers;
1551   case S_SYMBOL_STUBS: // section with only symbol stubs, byte size of stub in
1552                        // the reserved2 field
1553     return eSectionTypeCode;
1554   case S_MOD_INIT_FUNC_POINTERS: // section with only function pointers for
1555                                  // initialization
1556     return eSectionTypeDataPointers;
1557   case S_MOD_TERM_FUNC_POINTERS: // section with only function pointers for
1558                                  // termination
1559     return eSectionTypeDataPointers;
1560   case S_COALESCED:
1561     return eSectionTypeOther;
1562   case S_GB_ZEROFILL:
1563     return eSectionTypeZeroFill;
1564   case S_INTERPOSING: // section with only pairs of function pointers for
1565                       // interposing
1566     return eSectionTypeCode;
1567   case S_16BYTE_LITERALS: // section with only 16 byte literals
1568     return eSectionTypeData16;
1569   case S_DTRACE_DOF:
1570     return eSectionTypeDebug;
1571   case S_LAZY_DYLIB_SYMBOL_POINTERS:
1572     return eSectionTypeDataPointers;
1573   default:
1574     return eSectionTypeOther;
1575   }
1576 }
1577 
1578 struct ObjectFileMachO::SegmentParsingContext {
1579   const EncryptedFileRanges EncryptedRanges;
1580   lldb_private::SectionList &UnifiedList;
1581   uint32_t NextSegmentIdx = 0;
1582   uint32_t NextSectionIdx = 0;
1583   bool FileAddressesChanged = false;
1584 
1585   SegmentParsingContext(EncryptedFileRanges EncryptedRanges,
1586                         lldb_private::SectionList &UnifiedList)
1587       : EncryptedRanges(std::move(EncryptedRanges)), UnifiedList(UnifiedList) {}
1588 };
1589 
1590 void ObjectFileMachO::ProcessSegmentCommand(const load_command &load_cmd_,
1591                                             lldb::offset_t offset,
1592                                             uint32_t cmd_idx,
1593                                             SegmentParsingContext &context) {
1594   segment_command_64 load_cmd;
1595   memcpy(&load_cmd, &load_cmd_, sizeof(load_cmd_));
1596 
1597   if (!m_data.GetU8(&offset, (uint8_t *)load_cmd.segname, 16))
1598     return;
1599 
1600   ModuleSP module_sp = GetModule();
1601   const bool is_core = GetType() == eTypeCoreFile;
1602   const bool is_dsym = (m_header.filetype == MH_DSYM);
1603   bool add_section = true;
1604   bool add_to_unified = true;
1605   ConstString const_segname(
1606       load_cmd.segname,
1607       std::min<size_t>(strlen(load_cmd.segname), sizeof(load_cmd.segname)));
1608 
1609   SectionSP unified_section_sp(
1610       context.UnifiedList.FindSectionByName(const_segname));
1611   if (is_dsym && unified_section_sp) {
1612     if (const_segname == GetSegmentNameLINKEDIT()) {
1613       // We need to keep the __LINKEDIT segment private to this object file
1614       // only
1615       add_to_unified = false;
1616     } else {
1617       // This is the dSYM file and this section has already been created by the
1618       // object file, no need to create it.
1619       add_section = false;
1620     }
1621   }
1622   load_cmd.vmaddr = m_data.GetAddress(&offset);
1623   load_cmd.vmsize = m_data.GetAddress(&offset);
1624   load_cmd.fileoff = m_data.GetAddress(&offset);
1625   load_cmd.filesize = m_data.GetAddress(&offset);
1626   if (!m_data.GetU32(&offset, &load_cmd.maxprot, 4))
1627     return;
1628 
1629   SanitizeSegmentCommand(load_cmd, cmd_idx);
1630 
1631   const uint32_t segment_permissions = GetSegmentPermissions(load_cmd);
1632   const bool segment_is_encrypted =
1633       (load_cmd.flags & SG_PROTECTED_VERSION_1) != 0;
1634 
1635   // Keep a list of mach segments around in case we need to get at data that
1636   // isn't stored in the abstracted Sections.
1637   m_mach_segments.push_back(load_cmd);
1638 
1639   // Use a segment ID of the segment index shifted left by 8 so they never
1640   // conflict with any of the sections.
1641   SectionSP segment_sp;
1642   if (add_section && (const_segname || is_core)) {
1643     segment_sp.reset(new Section(
1644         module_sp, // Module to which this section belongs
1645         this,      // Object file to which this sections belongs
1646         ++context.NextSegmentIdx
1647             << 8, // Section ID is the 1 based segment index
1648         // shifted right by 8 bits as not to collide with any of the 256
1649         // section IDs that are possible
1650         const_segname,         // Name of this section
1651         eSectionTypeContainer, // This section is a container of other
1652         // sections.
1653         load_cmd.vmaddr, // File VM address == addresses as they are
1654         // found in the object file
1655         load_cmd.vmsize,  // VM size in bytes of this section
1656         load_cmd.fileoff, // Offset to the data for this section in
1657         // the file
1658         load_cmd.filesize, // Size in bytes of this section as found
1659         // in the file
1660         0,                // Segments have no alignment information
1661         load_cmd.flags)); // Flags for this section
1662 
1663     segment_sp->SetIsEncrypted(segment_is_encrypted);
1664     m_sections_ap->AddSection(segment_sp);
1665     segment_sp->SetPermissions(segment_permissions);
1666     if (add_to_unified)
1667       context.UnifiedList.AddSection(segment_sp);
1668   } else if (unified_section_sp) {
1669     if (is_dsym && unified_section_sp->GetFileAddress() != load_cmd.vmaddr) {
1670       // Check to see if the module was read from memory?
1671       if (module_sp->GetObjectFile()->GetHeaderAddress().IsValid()) {
1672         // We have a module that is in memory and needs to have its file
1673         // address adjusted. We need to do this because when we load a file
1674         // from memory, its addresses will be slid already, yet the addresses
1675         // in the new symbol file will still be unslid.  Since everything is
1676         // stored as section offset, this shouldn't cause any problems.
1677 
1678         // Make sure we've parsed the symbol table from the ObjectFile before
1679         // we go around changing its Sections.
1680         module_sp->GetObjectFile()->GetSymtab();
1681         // eh_frame would present the same problems but we parse that on a per-
1682         // function basis as-needed so it's more difficult to remove its use of
1683         // the Sections.  Realistically, the environments where this code path
1684         // will be taken will not have eh_frame sections.
1685 
1686         unified_section_sp->SetFileAddress(load_cmd.vmaddr);
1687 
1688         // Notify the module that the section addresses have been changed once
1689         // we're done so any file-address caches can be updated.
1690         context.FileAddressesChanged = true;
1691       }
1692     }
1693     m_sections_ap->AddSection(unified_section_sp);
1694   }
1695 
1696   struct section_64 sect64;
1697   ::memset(&sect64, 0, sizeof(sect64));
1698   // Push a section into our mach sections for the section at index zero
1699   // (NO_SECT) if we don't have any mach sections yet...
1700   if (m_mach_sections.empty())
1701     m_mach_sections.push_back(sect64);
1702   uint32_t segment_sect_idx;
1703   const lldb::user_id_t first_segment_sectID = context.NextSectionIdx + 1;
1704 
1705   const uint32_t num_u32s = load_cmd.cmd == LC_SEGMENT ? 7 : 8;
1706   for (segment_sect_idx = 0; segment_sect_idx < load_cmd.nsects;
1707        ++segment_sect_idx) {
1708     if (m_data.GetU8(&offset, (uint8_t *)sect64.sectname,
1709                      sizeof(sect64.sectname)) == NULL)
1710       break;
1711     if (m_data.GetU8(&offset, (uint8_t *)sect64.segname,
1712                      sizeof(sect64.segname)) == NULL)
1713       break;
1714     sect64.addr = m_data.GetAddress(&offset);
1715     sect64.size = m_data.GetAddress(&offset);
1716 
1717     if (m_data.GetU32(&offset, &sect64.offset, num_u32s) == NULL)
1718       break;
1719 
1720     // Keep a list of mach sections around in case we need to get at data that
1721     // isn't stored in the abstracted Sections.
1722     m_mach_sections.push_back(sect64);
1723 
1724     if (add_section) {
1725       ConstString section_name(
1726           sect64.sectname,
1727           std::min<size_t>(strlen(sect64.sectname), sizeof(sect64.sectname)));
1728       if (!const_segname) {
1729         // We have a segment with no name so we need to conjure up segments
1730         // that correspond to the section's segname if there isn't already such
1731         // a section. If there is such a section, we resize the section so that
1732         // it spans all sections.  We also mark these sections as fake so
1733         // address matches don't hit if they land in the gaps between the child
1734         // sections.
1735         const_segname.SetTrimmedCStringWithLength(sect64.segname,
1736                                                   sizeof(sect64.segname));
1737         segment_sp = context.UnifiedList.FindSectionByName(const_segname);
1738         if (segment_sp.get()) {
1739           Section *segment = segment_sp.get();
1740           // Grow the section size as needed.
1741           const lldb::addr_t sect64_min_addr = sect64.addr;
1742           const lldb::addr_t sect64_max_addr = sect64_min_addr + sect64.size;
1743           const lldb::addr_t curr_seg_byte_size = segment->GetByteSize();
1744           const lldb::addr_t curr_seg_min_addr = segment->GetFileAddress();
1745           const lldb::addr_t curr_seg_max_addr =
1746               curr_seg_min_addr + curr_seg_byte_size;
1747           if (sect64_min_addr >= curr_seg_min_addr) {
1748             const lldb::addr_t new_seg_byte_size =
1749                 sect64_max_addr - curr_seg_min_addr;
1750             // Only grow the section size if needed
1751             if (new_seg_byte_size > curr_seg_byte_size)
1752               segment->SetByteSize(new_seg_byte_size);
1753           } else {
1754             // We need to change the base address of the segment and adjust the
1755             // child section offsets for all existing children.
1756             const lldb::addr_t slide_amount =
1757                 sect64_min_addr - curr_seg_min_addr;
1758             segment->Slide(slide_amount, false);
1759             segment->GetChildren().Slide(-slide_amount, false);
1760             segment->SetByteSize(curr_seg_max_addr - sect64_min_addr);
1761           }
1762 
1763           // Grow the section size as needed.
1764           if (sect64.offset) {
1765             const lldb::addr_t segment_min_file_offset =
1766                 segment->GetFileOffset();
1767             const lldb::addr_t segment_max_file_offset =
1768                 segment_min_file_offset + segment->GetFileSize();
1769 
1770             const lldb::addr_t section_min_file_offset = sect64.offset;
1771             const lldb::addr_t section_max_file_offset =
1772                 section_min_file_offset + sect64.size;
1773             const lldb::addr_t new_file_offset =
1774                 std::min(section_min_file_offset, segment_min_file_offset);
1775             const lldb::addr_t new_file_size =
1776                 std::max(section_max_file_offset, segment_max_file_offset) -
1777                 new_file_offset;
1778             segment->SetFileOffset(new_file_offset);
1779             segment->SetFileSize(new_file_size);
1780           }
1781         } else {
1782           // Create a fake section for the section's named segment
1783           segment_sp.reset(new Section(
1784               segment_sp, // Parent section
1785               module_sp,  // Module to which this section belongs
1786               this,       // Object file to which this section belongs
1787               ++context.NextSegmentIdx
1788                   << 8, // Section ID is the 1 based segment index
1789               // shifted right by 8 bits as not to
1790               // collide with any of the 256 section IDs
1791               // that are possible
1792               const_segname,         // Name of this section
1793               eSectionTypeContainer, // This section is a container of
1794               // other sections.
1795               sect64.addr, // File VM address == addresses as they are
1796               // found in the object file
1797               sect64.size,   // VM size in bytes of this section
1798               sect64.offset, // Offset to the data for this section in
1799               // the file
1800               sect64.offset ? sect64.size : 0, // Size in bytes of
1801               // this section as
1802               // found in the file
1803               sect64.align,
1804               load_cmd.flags)); // Flags for this section
1805           segment_sp->SetIsFake(true);
1806           segment_sp->SetPermissions(segment_permissions);
1807           m_sections_ap->AddSection(segment_sp);
1808           if (add_to_unified)
1809             context.UnifiedList.AddSection(segment_sp);
1810           segment_sp->SetIsEncrypted(segment_is_encrypted);
1811         }
1812       }
1813       assert(segment_sp.get());
1814 
1815       lldb::SectionType sect_type = GetSectionType(sect64.flags, section_name);
1816 
1817       SectionSP section_sp(new Section(
1818           segment_sp, module_sp, this, ++context.NextSectionIdx, section_name,
1819           sect_type, sect64.addr - segment_sp->GetFileAddress(), sect64.size,
1820           sect64.offset, sect64.offset == 0 ? 0 : sect64.size, sect64.align,
1821           sect64.flags));
1822       // Set the section to be encrypted to match the segment
1823 
1824       bool section_is_encrypted = false;
1825       if (!segment_is_encrypted && load_cmd.filesize != 0)
1826         section_is_encrypted = context.EncryptedRanges.FindEntryThatContains(
1827                                    sect64.offset) != NULL;
1828 
1829       section_sp->SetIsEncrypted(segment_is_encrypted || section_is_encrypted);
1830       section_sp->SetPermissions(segment_permissions);
1831       segment_sp->GetChildren().AddSection(section_sp);
1832 
1833       if (segment_sp->IsFake()) {
1834         segment_sp.reset();
1835         const_segname.Clear();
1836       }
1837     }
1838   }
1839   if (segment_sp && is_dsym) {
1840     if (first_segment_sectID <= context.NextSectionIdx) {
1841       lldb::user_id_t sect_uid;
1842       for (sect_uid = first_segment_sectID; sect_uid <= context.NextSectionIdx;
1843            ++sect_uid) {
1844         SectionSP curr_section_sp(
1845             segment_sp->GetChildren().FindSectionByID(sect_uid));
1846         SectionSP next_section_sp;
1847         if (sect_uid + 1 <= context.NextSectionIdx)
1848           next_section_sp =
1849               segment_sp->GetChildren().FindSectionByID(sect_uid + 1);
1850 
1851         if (curr_section_sp.get()) {
1852           if (curr_section_sp->GetByteSize() == 0) {
1853             if (next_section_sp.get() != NULL)
1854               curr_section_sp->SetByteSize(next_section_sp->GetFileAddress() -
1855                                            curr_section_sp->GetFileAddress());
1856             else
1857               curr_section_sp->SetByteSize(load_cmd.vmsize);
1858           }
1859         }
1860       }
1861     }
1862   }
1863 }
1864 
1865 void ObjectFileMachO::ProcessDysymtabCommand(const load_command &load_cmd,
1866                                              lldb::offset_t offset) {
1867   m_dysymtab.cmd = load_cmd.cmd;
1868   m_dysymtab.cmdsize = load_cmd.cmdsize;
1869   m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
1870                 (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2);
1871 }
1872 
1873 void ObjectFileMachO::CreateSections(SectionList &unified_section_list) {
1874   if (m_sections_ap)
1875     return;
1876 
1877   m_sections_ap.reset(new SectionList());
1878 
1879   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1880   // bool dump_sections = false;
1881   ModuleSP module_sp(GetModule());
1882 
1883   offset = MachHeaderSizeFromMagic(m_header.magic);
1884 
1885   SegmentParsingContext context(GetEncryptedFileRanges(), unified_section_list);
1886   struct load_command load_cmd;
1887   for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1888     const lldb::offset_t load_cmd_offset = offset;
1889     if (m_data.GetU32(&offset, &load_cmd, 2) == NULL)
1890       break;
1891 
1892     if (load_cmd.cmd == LC_SEGMENT || load_cmd.cmd == LC_SEGMENT_64)
1893       ProcessSegmentCommand(load_cmd, offset, i, context);
1894     else if (load_cmd.cmd == LC_DYSYMTAB)
1895       ProcessDysymtabCommand(load_cmd, offset);
1896 
1897     offset = load_cmd_offset + load_cmd.cmdsize;
1898   }
1899 
1900   if (context.FileAddressesChanged && module_sp)
1901     module_sp->SectionFileAddressesChanged();
1902 }
1903 
1904 class MachSymtabSectionInfo {
1905 public:
1906   MachSymtabSectionInfo(SectionList *section_list)
1907       : m_section_list(section_list), m_section_infos() {
1908     // Get the number of sections down to a depth of 1 to include all segments
1909     // and their sections, but no other sections that may be added for debug
1910     // map or
1911     m_section_infos.resize(section_list->GetNumSections(1));
1912   }
1913 
1914   SectionSP GetSection(uint8_t n_sect, addr_t file_addr) {
1915     if (n_sect == 0)
1916       return SectionSP();
1917     if (n_sect < m_section_infos.size()) {
1918       if (!m_section_infos[n_sect].section_sp) {
1919         SectionSP section_sp(m_section_list->FindSectionByID(n_sect));
1920         m_section_infos[n_sect].section_sp = section_sp;
1921         if (section_sp) {
1922           m_section_infos[n_sect].vm_range.SetBaseAddress(
1923               section_sp->GetFileAddress());
1924           m_section_infos[n_sect].vm_range.SetByteSize(
1925               section_sp->GetByteSize());
1926         } else {
1927           Host::SystemLog(Host::eSystemLogError,
1928                           "error: unable to find section for section %u\n",
1929                           n_sect);
1930         }
1931       }
1932       if (m_section_infos[n_sect].vm_range.Contains(file_addr)) {
1933         // Symbol is in section.
1934         return m_section_infos[n_sect].section_sp;
1935       } else if (m_section_infos[n_sect].vm_range.GetByteSize() == 0 &&
1936                  m_section_infos[n_sect].vm_range.GetBaseAddress() ==
1937                      file_addr) {
1938         // Symbol is in section with zero size, but has the same start address
1939         // as the section. This can happen with linker symbols (symbols that
1940         // start with the letter 'l' or 'L'.
1941         return m_section_infos[n_sect].section_sp;
1942       }
1943     }
1944     return m_section_list->FindSectionContainingFileAddress(file_addr);
1945   }
1946 
1947 protected:
1948   struct SectionInfo {
1949     SectionInfo() : vm_range(), section_sp() {}
1950 
1951     VMRange vm_range;
1952     SectionSP section_sp;
1953   };
1954   SectionList *m_section_list;
1955   std::vector<SectionInfo> m_section_infos;
1956 };
1957 
1958 struct TrieEntry {
1959   TrieEntry()
1960       : name(), address(LLDB_INVALID_ADDRESS), flags(0), other(0),
1961         import_name() {}
1962 
1963   void Clear() {
1964     name.Clear();
1965     address = LLDB_INVALID_ADDRESS;
1966     flags = 0;
1967     other = 0;
1968     import_name.Clear();
1969   }
1970 
1971   void Dump() const {
1972     printf("0x%16.16llx 0x%16.16llx 0x%16.16llx \"%s\"",
1973            static_cast<unsigned long long>(address),
1974            static_cast<unsigned long long>(flags),
1975            static_cast<unsigned long long>(other), name.GetCString());
1976     if (import_name)
1977       printf(" -> \"%s\"\n", import_name.GetCString());
1978     else
1979       printf("\n");
1980   }
1981   ConstString name;
1982   uint64_t address;
1983   uint64_t flags;
1984   uint64_t other;
1985   ConstString import_name;
1986 };
1987 
1988 struct TrieEntryWithOffset {
1989   lldb::offset_t nodeOffset;
1990   TrieEntry entry;
1991 
1992   TrieEntryWithOffset(lldb::offset_t offset) : nodeOffset(offset), entry() {}
1993 
1994   void Dump(uint32_t idx) const {
1995     printf("[%3u] 0x%16.16llx: ", idx,
1996            static_cast<unsigned long long>(nodeOffset));
1997     entry.Dump();
1998   }
1999 
2000   bool operator<(const TrieEntryWithOffset &other) const {
2001     return (nodeOffset < other.nodeOffset);
2002   }
2003 };
2004 
2005 static bool ParseTrieEntries(DataExtractor &data, lldb::offset_t offset,
2006                              const bool is_arm,
2007                              std::vector<llvm::StringRef> &nameSlices,
2008                              std::set<lldb::addr_t> &resolver_addresses,
2009                              std::vector<TrieEntryWithOffset> &output) {
2010   if (!data.ValidOffset(offset))
2011     return true;
2012 
2013   const uint64_t terminalSize = data.GetULEB128(&offset);
2014   lldb::offset_t children_offset = offset + terminalSize;
2015   if (terminalSize != 0) {
2016     TrieEntryWithOffset e(offset);
2017     e.entry.flags = data.GetULEB128(&offset);
2018     const char *import_name = NULL;
2019     if (e.entry.flags & EXPORT_SYMBOL_FLAGS_REEXPORT) {
2020       e.entry.address = 0;
2021       e.entry.other = data.GetULEB128(&offset); // dylib ordinal
2022       import_name = data.GetCStr(&offset);
2023     } else {
2024       e.entry.address = data.GetULEB128(&offset);
2025       if (e.entry.flags & EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER) {
2026         e.entry.other = data.GetULEB128(&offset);
2027         uint64_t resolver_addr = e.entry.other;
2028         if (is_arm)
2029           resolver_addr &= THUMB_ADDRESS_BIT_MASK;
2030         resolver_addresses.insert(resolver_addr);
2031       } else
2032         e.entry.other = 0;
2033     }
2034     // Only add symbols that are reexport symbols with a valid import name
2035     if (EXPORT_SYMBOL_FLAGS_REEXPORT & e.entry.flags && import_name &&
2036         import_name[0]) {
2037       std::string name;
2038       if (!nameSlices.empty()) {
2039         for (auto name_slice : nameSlices)
2040           name.append(name_slice.data(), name_slice.size());
2041       }
2042       if (name.size() > 1) {
2043         // Skip the leading '_'
2044         e.entry.name.SetCStringWithLength(name.c_str() + 1, name.size() - 1);
2045       }
2046       if (import_name) {
2047         // Skip the leading '_'
2048         e.entry.import_name.SetCString(import_name + 1);
2049       }
2050       output.push_back(e);
2051     }
2052   }
2053 
2054   const uint8_t childrenCount = data.GetU8(&children_offset);
2055   for (uint8_t i = 0; i < childrenCount; ++i) {
2056     const char *cstr = data.GetCStr(&children_offset);
2057     if (cstr)
2058       nameSlices.push_back(llvm::StringRef(cstr));
2059     else
2060       return false; // Corrupt data
2061     lldb::offset_t childNodeOffset = data.GetULEB128(&children_offset);
2062     if (childNodeOffset) {
2063       if (!ParseTrieEntries(data, childNodeOffset, is_arm, nameSlices,
2064                             resolver_addresses, output)) {
2065         return false;
2066       }
2067     }
2068     nameSlices.pop_back();
2069   }
2070   return true;
2071 }
2072 
2073 // Read the UUID out of a dyld_shared_cache file on-disk.
2074 UUID ObjectFileMachO::GetSharedCacheUUID(FileSpec dyld_shared_cache,
2075                                          const ByteOrder byte_order,
2076                                          const uint32_t addr_byte_size) {
2077   UUID dsc_uuid;
2078   DataBufferSP DscData = MapFileData(
2079       dyld_shared_cache, sizeof(struct lldb_copy_dyld_cache_header_v1), 0);
2080   if (!DscData)
2081     return dsc_uuid;
2082   DataExtractor dsc_header_data(DscData, byte_order, addr_byte_size);
2083 
2084   char version_str[7];
2085   lldb::offset_t offset = 0;
2086   memcpy(version_str, dsc_header_data.GetData(&offset, 6), 6);
2087   version_str[6] = '\0';
2088   if (strcmp(version_str, "dyld_v") == 0) {
2089     offset = offsetof(struct lldb_copy_dyld_cache_header_v1, uuid);
2090     dsc_uuid = UUID::fromOptionalData(
2091         dsc_header_data.GetData(&offset, sizeof(uuid_t)), sizeof(uuid_t));
2092   }
2093   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS));
2094   if (log && dsc_uuid.IsValid()) {
2095     log->Printf("Shared cache %s has UUID %s", dyld_shared_cache.GetPath().c_str(),
2096                 dsc_uuid.GetAsString().c_str());
2097   }
2098   return dsc_uuid;
2099 }
2100 
2101 size_t ObjectFileMachO::ParseSymtab() {
2102   static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
2103   Timer scoped_timer(func_cat, "ObjectFileMachO::ParseSymtab () module = %s",
2104                      m_file.GetFilename().AsCString(""));
2105   ModuleSP module_sp(GetModule());
2106   if (!module_sp)
2107     return 0;
2108 
2109   struct symtab_command symtab_load_command = {0, 0, 0, 0, 0, 0};
2110   struct linkedit_data_command function_starts_load_command = {0, 0, 0, 0};
2111   struct dyld_info_command dyld_info = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
2112   typedef AddressDataArray<lldb::addr_t, bool, 100> FunctionStarts;
2113   FunctionStarts function_starts;
2114   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
2115   uint32_t i;
2116   FileSpecList dylib_files;
2117   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS));
2118   static const llvm::StringRef g_objc_v2_prefix_class("_OBJC_CLASS_$_");
2119   static const llvm::StringRef g_objc_v2_prefix_metaclass("_OBJC_METACLASS_$_");
2120   static const llvm::StringRef g_objc_v2_prefix_ivar("_OBJC_IVAR_$_");
2121 
2122   for (i = 0; i < m_header.ncmds; ++i) {
2123     const lldb::offset_t cmd_offset = offset;
2124     // Read in the load command and load command size
2125     struct load_command lc;
2126     if (m_data.GetU32(&offset, &lc, 2) == NULL)
2127       break;
2128     // Watch for the symbol table load command
2129     switch (lc.cmd) {
2130     case LC_SYMTAB:
2131       symtab_load_command.cmd = lc.cmd;
2132       symtab_load_command.cmdsize = lc.cmdsize;
2133       // Read in the rest of the symtab load command
2134       if (m_data.GetU32(&offset, &symtab_load_command.symoff, 4) ==
2135           0) // fill in symoff, nsyms, stroff, strsize fields
2136         return 0;
2137       if (symtab_load_command.symoff == 0) {
2138         if (log)
2139           module_sp->LogMessage(log, "LC_SYMTAB.symoff == 0");
2140         return 0;
2141       }
2142 
2143       if (symtab_load_command.stroff == 0) {
2144         if (log)
2145           module_sp->LogMessage(log, "LC_SYMTAB.stroff == 0");
2146         return 0;
2147       }
2148 
2149       if (symtab_load_command.nsyms == 0) {
2150         if (log)
2151           module_sp->LogMessage(log, "LC_SYMTAB.nsyms == 0");
2152         return 0;
2153       }
2154 
2155       if (symtab_load_command.strsize == 0) {
2156         if (log)
2157           module_sp->LogMessage(log, "LC_SYMTAB.strsize == 0");
2158         return 0;
2159       }
2160       break;
2161 
2162     case LC_DYLD_INFO:
2163     case LC_DYLD_INFO_ONLY:
2164       if (m_data.GetU32(&offset, &dyld_info.rebase_off, 10)) {
2165         dyld_info.cmd = lc.cmd;
2166         dyld_info.cmdsize = lc.cmdsize;
2167       } else {
2168         memset(&dyld_info, 0, sizeof(dyld_info));
2169       }
2170       break;
2171 
2172     case LC_LOAD_DYLIB:
2173     case LC_LOAD_WEAK_DYLIB:
2174     case LC_REEXPORT_DYLIB:
2175     case LC_LOADFVMLIB:
2176     case LC_LOAD_UPWARD_DYLIB: {
2177       uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
2178       const char *path = m_data.PeekCStr(name_offset);
2179       if (path) {
2180         FileSpec file_spec(path, false);
2181         // Strip the path if there is @rpath, @executable, etc so we just use
2182         // the basename
2183         if (path[0] == '@')
2184           file_spec.GetDirectory().Clear();
2185 
2186         if (lc.cmd == LC_REEXPORT_DYLIB) {
2187           m_reexported_dylibs.AppendIfUnique(file_spec);
2188         }
2189 
2190         dylib_files.Append(file_spec);
2191       }
2192     } break;
2193 
2194     case LC_FUNCTION_STARTS:
2195       function_starts_load_command.cmd = lc.cmd;
2196       function_starts_load_command.cmdsize = lc.cmdsize;
2197       if (m_data.GetU32(&offset, &function_starts_load_command.dataoff, 2) ==
2198           NULL) // fill in symoff, nsyms, stroff, strsize fields
2199         memset(&function_starts_load_command, 0,
2200                sizeof(function_starts_load_command));
2201       break;
2202 
2203     default:
2204       break;
2205     }
2206     offset = cmd_offset + lc.cmdsize;
2207   }
2208 
2209   if (symtab_load_command.cmd) {
2210     Symtab *symtab = m_symtab_ap.get();
2211     SectionList *section_list = GetSectionList();
2212     if (section_list == NULL)
2213       return 0;
2214 
2215     const uint32_t addr_byte_size = m_data.GetAddressByteSize();
2216     const ByteOrder byte_order = m_data.GetByteOrder();
2217     bool bit_width_32 = addr_byte_size == 4;
2218     const size_t nlist_byte_size =
2219         bit_width_32 ? sizeof(struct nlist) : sizeof(struct nlist_64);
2220 
2221     DataExtractor nlist_data(NULL, 0, byte_order, addr_byte_size);
2222     DataExtractor strtab_data(NULL, 0, byte_order, addr_byte_size);
2223     DataExtractor function_starts_data(NULL, 0, byte_order, addr_byte_size);
2224     DataExtractor indirect_symbol_index_data(NULL, 0, byte_order,
2225                                              addr_byte_size);
2226     DataExtractor dyld_trie_data(NULL, 0, byte_order, addr_byte_size);
2227 
2228     const addr_t nlist_data_byte_size =
2229         symtab_load_command.nsyms * nlist_byte_size;
2230     const addr_t strtab_data_byte_size = symtab_load_command.strsize;
2231     addr_t strtab_addr = LLDB_INVALID_ADDRESS;
2232 
2233     ProcessSP process_sp(m_process_wp.lock());
2234     Process *process = process_sp.get();
2235 
2236     uint32_t memory_module_load_level = eMemoryModuleLoadLevelComplete;
2237 
2238     if (process && m_header.filetype != llvm::MachO::MH_OBJECT) {
2239       Target &target = process->GetTarget();
2240 
2241       memory_module_load_level = target.GetMemoryModuleLoadLevel();
2242 
2243       SectionSP linkedit_section_sp(
2244           section_list->FindSectionByName(GetSegmentNameLINKEDIT()));
2245       // Reading mach file from memory in a process or core file...
2246 
2247       if (linkedit_section_sp) {
2248         addr_t linkedit_load_addr =
2249             linkedit_section_sp->GetLoadBaseAddress(&target);
2250         if (linkedit_load_addr == LLDB_INVALID_ADDRESS) {
2251           // We might be trying to access the symbol table before the
2252           // __LINKEDIT's load address has been set in the target. We can't
2253           // fail to read the symbol table, so calculate the right address
2254           // manually
2255           linkedit_load_addr = CalculateSectionLoadAddressForMemoryImage(
2256               m_memory_addr, GetMachHeaderSection(), linkedit_section_sp.get());
2257         }
2258 
2259         const addr_t linkedit_file_offset =
2260             linkedit_section_sp->GetFileOffset();
2261         const addr_t symoff_addr = linkedit_load_addr +
2262                                    symtab_load_command.symoff -
2263                                    linkedit_file_offset;
2264         strtab_addr = linkedit_load_addr + symtab_load_command.stroff -
2265                       linkedit_file_offset;
2266 
2267         bool data_was_read = false;
2268 
2269 #if defined(__APPLE__) &&                                                      \
2270     (defined(__arm__) || defined(__arm64__) || defined(__aarch64__))
2271         if (m_header.flags & 0x80000000u &&
2272             process->GetAddressByteSize() == sizeof(void *)) {
2273           // This mach-o memory file is in the dyld shared cache. If this
2274           // program is not remote and this is iOS, then this process will
2275           // share the same shared cache as the process we are debugging and we
2276           // can read the entire __LINKEDIT from the address space in this
2277           // process. This is a needed optimization that is used for local iOS
2278           // debugging only since all shared libraries in the shared cache do
2279           // not have corresponding files that exist in the file system of the
2280           // device. They have been combined into a single file. This means we
2281           // always have to load these files from memory. All of the symbol and
2282           // string tables from all of the __LINKEDIT sections from the shared
2283           // libraries in the shared cache have been merged into a single large
2284           // symbol and string table. Reading all of this symbol and string
2285           // table data across can slow down debug launch times, so we optimize
2286           // this by reading the memory for the __LINKEDIT section from this
2287           // process.
2288 
2289           UUID lldb_shared_cache;
2290           addr_t lldb_shared_cache_addr;
2291           GetLLDBSharedCacheUUID (lldb_shared_cache_addr, lldb_shared_cache);
2292           UUID process_shared_cache;
2293           addr_t process_shared_cache_addr;
2294           GetProcessSharedCacheUUID(process, process_shared_cache_addr, process_shared_cache);
2295           bool use_lldb_cache = true;
2296           if (lldb_shared_cache.IsValid() && process_shared_cache.IsValid() &&
2297               (lldb_shared_cache != process_shared_cache
2298                || process_shared_cache_addr != lldb_shared_cache_addr)) {
2299             use_lldb_cache = false;
2300           }
2301 
2302           PlatformSP platform_sp(target.GetPlatform());
2303           if (platform_sp && platform_sp->IsHost() && use_lldb_cache) {
2304             data_was_read = true;
2305             nlist_data.SetData((void *)symoff_addr, nlist_data_byte_size,
2306                                eByteOrderLittle);
2307             strtab_data.SetData((void *)strtab_addr, strtab_data_byte_size,
2308                                 eByteOrderLittle);
2309             if (function_starts_load_command.cmd) {
2310               const addr_t func_start_addr =
2311                   linkedit_load_addr + function_starts_load_command.dataoff -
2312                   linkedit_file_offset;
2313               function_starts_data.SetData(
2314                   (void *)func_start_addr,
2315                   function_starts_load_command.datasize, eByteOrderLittle);
2316             }
2317           }
2318         }
2319 #endif
2320 
2321         if (!data_was_read) {
2322           // Always load dyld - the dynamic linker - from memory if we didn't
2323           // find a binary anywhere else. lldb will not register
2324           // dylib/framework/bundle loads/unloads if we don't have the dyld
2325           // symbols, we force dyld to load from memory despite the user's
2326           // target.memory-module-load-level setting.
2327           if (memory_module_load_level == eMemoryModuleLoadLevelComplete ||
2328               m_header.filetype == llvm::MachO::MH_DYLINKER) {
2329             DataBufferSP nlist_data_sp(
2330                 ReadMemory(process_sp, symoff_addr, nlist_data_byte_size));
2331             if (nlist_data_sp)
2332               nlist_data.SetData(nlist_data_sp, 0,
2333                                  nlist_data_sp->GetByteSize());
2334             // Load strings individually from memory when loading from memory
2335             // since shared cache string tables contain strings for all symbols
2336             // from all shared cached libraries DataBufferSP strtab_data_sp
2337             // (ReadMemory (process_sp, strtab_addr,
2338             // strtab_data_byte_size));
2339             // if (strtab_data_sp)
2340             //    strtab_data.SetData (strtab_data_sp, 0,
2341             //    strtab_data_sp->GetByteSize());
2342             if (m_dysymtab.nindirectsyms != 0) {
2343               const addr_t indirect_syms_addr = linkedit_load_addr +
2344                                                 m_dysymtab.indirectsymoff -
2345                                                 linkedit_file_offset;
2346               DataBufferSP indirect_syms_data_sp(
2347                   ReadMemory(process_sp, indirect_syms_addr,
2348                              m_dysymtab.nindirectsyms * 4));
2349               if (indirect_syms_data_sp)
2350                 indirect_symbol_index_data.SetData(
2351                     indirect_syms_data_sp, 0,
2352                     indirect_syms_data_sp->GetByteSize());
2353             }
2354           }
2355           if (memory_module_load_level >=
2356                      eMemoryModuleLoadLevelPartial) {
2357             if (function_starts_load_command.cmd) {
2358               const addr_t func_start_addr =
2359                   linkedit_load_addr + function_starts_load_command.dataoff -
2360                   linkedit_file_offset;
2361               DataBufferSP func_start_data_sp(
2362                   ReadMemory(process_sp, func_start_addr,
2363                              function_starts_load_command.datasize));
2364               if (func_start_data_sp)
2365                 function_starts_data.SetData(func_start_data_sp, 0,
2366                                              func_start_data_sp->GetByteSize());
2367             }
2368           }
2369         }
2370       }
2371     } else {
2372       nlist_data.SetData(m_data, symtab_load_command.symoff,
2373                          nlist_data_byte_size);
2374       strtab_data.SetData(m_data, symtab_load_command.stroff,
2375                           strtab_data_byte_size);
2376 
2377       if (dyld_info.export_size > 0) {
2378         dyld_trie_data.SetData(m_data, dyld_info.export_off,
2379                                dyld_info.export_size);
2380       }
2381 
2382       if (m_dysymtab.nindirectsyms != 0) {
2383         indirect_symbol_index_data.SetData(m_data, m_dysymtab.indirectsymoff,
2384                                            m_dysymtab.nindirectsyms * 4);
2385       }
2386       if (function_starts_load_command.cmd) {
2387         function_starts_data.SetData(m_data,
2388                                      function_starts_load_command.dataoff,
2389                                      function_starts_load_command.datasize);
2390       }
2391     }
2392 
2393     if (nlist_data.GetByteSize() == 0 &&
2394         memory_module_load_level == eMemoryModuleLoadLevelComplete) {
2395       if (log)
2396         module_sp->LogMessage(log, "failed to read nlist data");
2397       return 0;
2398     }
2399 
2400     const bool have_strtab_data = strtab_data.GetByteSize() > 0;
2401     if (!have_strtab_data) {
2402       if (process) {
2403         if (strtab_addr == LLDB_INVALID_ADDRESS) {
2404           if (log)
2405             module_sp->LogMessage(log, "failed to locate the strtab in memory");
2406           return 0;
2407         }
2408       } else {
2409         if (log)
2410           module_sp->LogMessage(log, "failed to read strtab data");
2411         return 0;
2412       }
2413     }
2414 
2415     const ConstString &g_segment_name_TEXT = GetSegmentNameTEXT();
2416     const ConstString &g_segment_name_DATA = GetSegmentNameDATA();
2417     const ConstString &g_segment_name_DATA_DIRTY = GetSegmentNameDATA_DIRTY();
2418     const ConstString &g_segment_name_DATA_CONST = GetSegmentNameDATA_CONST();
2419     const ConstString &g_segment_name_OBJC = GetSegmentNameOBJC();
2420     const ConstString &g_section_name_eh_frame = GetSectionNameEHFrame();
2421     SectionSP text_section_sp(
2422         section_list->FindSectionByName(g_segment_name_TEXT));
2423     SectionSP data_section_sp(
2424         section_list->FindSectionByName(g_segment_name_DATA));
2425     SectionSP data_dirty_section_sp(
2426         section_list->FindSectionByName(g_segment_name_DATA_DIRTY));
2427     SectionSP data_const_section_sp(
2428         section_list->FindSectionByName(g_segment_name_DATA_CONST));
2429     SectionSP objc_section_sp(
2430         section_list->FindSectionByName(g_segment_name_OBJC));
2431     SectionSP eh_frame_section_sp;
2432     if (text_section_sp.get())
2433       eh_frame_section_sp = text_section_sp->GetChildren().FindSectionByName(
2434           g_section_name_eh_frame);
2435     else
2436       eh_frame_section_sp =
2437           section_list->FindSectionByName(g_section_name_eh_frame);
2438 
2439     const bool is_arm = (m_header.cputype == llvm::MachO::CPU_TYPE_ARM);
2440 
2441     // lldb works best if it knows the start address of all functions in a
2442     // module. Linker symbols or debug info are normally the best source of
2443     // information for start addr / size but they may be stripped in a released
2444     // binary. Two additional sources of information exist in Mach-O binaries:
2445     //    LC_FUNCTION_STARTS - a list of ULEB128 encoded offsets of each
2446     //    function's start address in the
2447     //                         binary, relative to the text section.
2448     //    eh_frame           - the eh_frame FDEs have the start addr & size of
2449     //    each function
2450     //  LC_FUNCTION_STARTS is the fastest source to read in, and is present on
2451     //  all modern binaries.
2452     //  Binaries built to run on older releases may need to use eh_frame
2453     //  information.
2454 
2455     if (text_section_sp && function_starts_data.GetByteSize()) {
2456       FunctionStarts::Entry function_start_entry;
2457       function_start_entry.data = false;
2458       lldb::offset_t function_start_offset = 0;
2459       function_start_entry.addr = text_section_sp->GetFileAddress();
2460       uint64_t delta;
2461       while ((delta = function_starts_data.GetULEB128(&function_start_offset)) >
2462              0) {
2463         // Now append the current entry
2464         function_start_entry.addr += delta;
2465         function_starts.Append(function_start_entry);
2466       }
2467     } else {
2468       // If m_type is eTypeDebugInfo, then this is a dSYM - it will have the
2469       // load command claiming an eh_frame but it doesn't actually have the
2470       // eh_frame content.  And if we have a dSYM, we don't need to do any of
2471       // this fill-in-the-missing-symbols works anyway - the debug info should
2472       // give us all the functions in the module.
2473       if (text_section_sp.get() && eh_frame_section_sp.get() &&
2474           m_type != eTypeDebugInfo) {
2475         DWARFCallFrameInfo eh_frame(*this, eh_frame_section_sp,
2476                                     DWARFCallFrameInfo::EH);
2477         DWARFCallFrameInfo::FunctionAddressAndSizeVector functions;
2478         eh_frame.GetFunctionAddressAndSizeVector(functions);
2479         addr_t text_base_addr = text_section_sp->GetFileAddress();
2480         size_t count = functions.GetSize();
2481         for (size_t i = 0; i < count; ++i) {
2482           const DWARFCallFrameInfo::FunctionAddressAndSizeVector::Entry *func =
2483               functions.GetEntryAtIndex(i);
2484           if (func) {
2485             FunctionStarts::Entry function_start_entry;
2486             function_start_entry.addr = func->base - text_base_addr;
2487             function_starts.Append(function_start_entry);
2488           }
2489         }
2490       }
2491     }
2492 
2493     const size_t function_starts_count = function_starts.GetSize();
2494 
2495     // For user process binaries (executables, dylibs, frameworks, bundles), if
2496     // we don't have LC_FUNCTION_STARTS/eh_frame section in this binary, we're
2497     // going to assume the binary has been stripped.  Don't allow assembly
2498     // language instruction emulation because we don't know proper function
2499     // start boundaries.
2500     //
2501     // For all other types of binaries (kernels, stand-alone bare board
2502     // binaries, kexts), they may not have LC_FUNCTION_STARTS / eh_frame
2503     // sections - we should not make any assumptions about them based on that.
2504     if (function_starts_count == 0 && CalculateStrata() == eStrataUser) {
2505       m_allow_assembly_emulation_unwind_plans = false;
2506       Log *unwind_or_symbol_log(lldb_private::GetLogIfAnyCategoriesSet(
2507           LIBLLDB_LOG_SYMBOLS | LIBLLDB_LOG_UNWIND));
2508 
2509       if (unwind_or_symbol_log)
2510         module_sp->LogMessage(
2511             unwind_or_symbol_log,
2512             "no LC_FUNCTION_STARTS, will not allow assembly profiled unwinds");
2513     }
2514 
2515     const user_id_t TEXT_eh_frame_sectID =
2516         eh_frame_section_sp.get() ? eh_frame_section_sp->GetID()
2517                                   : static_cast<user_id_t>(NO_SECT);
2518 
2519     lldb::offset_t nlist_data_offset = 0;
2520 
2521     uint32_t N_SO_index = UINT32_MAX;
2522 
2523     MachSymtabSectionInfo section_info(section_list);
2524     std::vector<uint32_t> N_FUN_indexes;
2525     std::vector<uint32_t> N_NSYM_indexes;
2526     std::vector<uint32_t> N_INCL_indexes;
2527     std::vector<uint32_t> N_BRAC_indexes;
2528     std::vector<uint32_t> N_COMM_indexes;
2529     typedef std::multimap<uint64_t, uint32_t> ValueToSymbolIndexMap;
2530     typedef std::map<uint32_t, uint32_t> NListIndexToSymbolIndexMap;
2531     typedef std::map<const char *, uint32_t> ConstNameToSymbolIndexMap;
2532     ValueToSymbolIndexMap N_FUN_addr_to_sym_idx;
2533     ValueToSymbolIndexMap N_STSYM_addr_to_sym_idx;
2534     ConstNameToSymbolIndexMap N_GSYM_name_to_sym_idx;
2535     // Any symbols that get merged into another will get an entry in this map
2536     // so we know
2537     NListIndexToSymbolIndexMap m_nlist_idx_to_sym_idx;
2538     uint32_t nlist_idx = 0;
2539     Symbol *symbol_ptr = NULL;
2540 
2541     uint32_t sym_idx = 0;
2542     Symbol *sym = NULL;
2543     size_t num_syms = 0;
2544     std::string memory_symbol_name;
2545     uint32_t unmapped_local_symbols_found = 0;
2546 
2547     std::vector<TrieEntryWithOffset> trie_entries;
2548     std::set<lldb::addr_t> resolver_addresses;
2549 
2550     if (dyld_trie_data.GetByteSize() > 0) {
2551       std::vector<llvm::StringRef> nameSlices;
2552       ParseTrieEntries(dyld_trie_data, 0, is_arm, nameSlices,
2553                        resolver_addresses, trie_entries);
2554 
2555       ConstString text_segment_name("__TEXT");
2556       SectionSP text_segment_sp =
2557           GetSectionList()->FindSectionByName(text_segment_name);
2558       if (text_segment_sp) {
2559         const lldb::addr_t text_segment_file_addr =
2560             text_segment_sp->GetFileAddress();
2561         if (text_segment_file_addr != LLDB_INVALID_ADDRESS) {
2562           for (auto &e : trie_entries)
2563             e.entry.address += text_segment_file_addr;
2564         }
2565       }
2566     }
2567 
2568     typedef std::set<ConstString> IndirectSymbols;
2569     IndirectSymbols indirect_symbol_names;
2570 
2571 #if defined(__APPLE__) &&                                                      \
2572     (defined(__arm__) || defined(__arm64__) || defined(__aarch64__))
2573 
2574     // Some recent builds of the dyld_shared_cache (hereafter: DSC) have been
2575     // optimized by moving LOCAL symbols out of the memory mapped portion of
2576     // the DSC. The symbol information has all been retained, but it isn't
2577     // available in the normal nlist data. However, there *are* duplicate
2578     // entries of *some*
2579     // LOCAL symbols in the normal nlist data. To handle this situation
2580     // correctly, we must first attempt
2581     // to parse any DSC unmapped symbol information. If we find any, we set a
2582     // flag that tells the normal nlist parser to ignore all LOCAL symbols.
2583 
2584     if (m_header.flags & 0x80000000u) {
2585       // Before we can start mapping the DSC, we need to make certain the
2586       // target process is actually using the cache we can find.
2587 
2588       // Next we need to determine the correct path for the dyld shared cache.
2589 
2590       ArchSpec header_arch;
2591       GetArchitecture(header_arch);
2592       char dsc_path[PATH_MAX];
2593       char dsc_path_development[PATH_MAX];
2594 
2595       snprintf(
2596           dsc_path, sizeof(dsc_path), "%s%s%s",
2597           "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR
2598                                                        */
2599           "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */
2600           header_arch.GetArchitectureName());
2601 
2602       snprintf(
2603           dsc_path_development, sizeof(dsc_path), "%s%s%s%s",
2604           "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR
2605                                                        */
2606           "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */
2607           header_arch.GetArchitectureName(), ".development");
2608 
2609       FileSpec dsc_nondevelopment_filespec(dsc_path, false);
2610       FileSpec dsc_development_filespec(dsc_path_development, false);
2611       FileSpec dsc_filespec;
2612 
2613       UUID dsc_uuid;
2614       UUID process_shared_cache_uuid;
2615       addr_t process_shared_cache_base_addr;
2616 
2617       if (process) {
2618         GetProcessSharedCacheUUID(process, process_shared_cache_base_addr, process_shared_cache_uuid);
2619       }
2620 
2621       // First see if we can find an exact match for the inferior process
2622       // shared cache UUID in the development or non-development shared caches
2623       // on disk.
2624       if (process_shared_cache_uuid.IsValid()) {
2625         if (dsc_development_filespec.Exists()) {
2626           UUID dsc_development_uuid = GetSharedCacheUUID(
2627               dsc_development_filespec, byte_order, addr_byte_size);
2628           if (dsc_development_uuid.IsValid() &&
2629               dsc_development_uuid == process_shared_cache_uuid) {
2630             dsc_filespec = dsc_development_filespec;
2631             dsc_uuid = dsc_development_uuid;
2632           }
2633         }
2634         if (!dsc_uuid.IsValid() && dsc_nondevelopment_filespec.Exists()) {
2635           UUID dsc_nondevelopment_uuid = GetSharedCacheUUID(
2636               dsc_nondevelopment_filespec, byte_order, addr_byte_size);
2637           if (dsc_nondevelopment_uuid.IsValid() &&
2638               dsc_nondevelopment_uuid == process_shared_cache_uuid) {
2639             dsc_filespec = dsc_nondevelopment_filespec;
2640             dsc_uuid = dsc_nondevelopment_uuid;
2641           }
2642         }
2643       }
2644 
2645       // Failing a UUID match, prefer the development dyld_shared cache if both
2646       // are present.
2647       if (!dsc_filespec.Exists()) {
2648         if (dsc_development_filespec.Exists()) {
2649           dsc_filespec = dsc_development_filespec;
2650         } else {
2651           dsc_filespec = dsc_nondevelopment_filespec;
2652         }
2653       }
2654 
2655       /* The dyld_cache_header has a pointer to the
2656          dyld_cache_local_symbols_info structure (localSymbolsOffset).
2657          The dyld_cache_local_symbols_info structure gives us three things:
2658            1. The start and count of the nlist records in the dyld_shared_cache
2659          file
2660            2. The start and size of the strings for these nlist records
2661            3. The start and count of dyld_cache_local_symbols_entry entries
2662 
2663          There is one dyld_cache_local_symbols_entry per dylib/framework in the
2664          dyld shared cache.
2665          The "dylibOffset" field is the Mach-O header of this dylib/framework in
2666          the dyld shared cache.
2667          The dyld_cache_local_symbols_entry also lists the start of this
2668          dylib/framework's nlist records
2669          and the count of how many nlist records there are for this
2670          dylib/framework.
2671       */
2672 
2673       // Process the dyld shared cache header to find the unmapped symbols
2674 
2675       DataBufferSP dsc_data_sp = MapFileData(
2676           dsc_filespec, sizeof(struct lldb_copy_dyld_cache_header_v1), 0);
2677       if (!dsc_uuid.IsValid()) {
2678         dsc_uuid = GetSharedCacheUUID(dsc_filespec, byte_order, addr_byte_size);
2679       }
2680       if (dsc_data_sp) {
2681         DataExtractor dsc_header_data(dsc_data_sp, byte_order, addr_byte_size);
2682 
2683         bool uuid_match = true;
2684         if (dsc_uuid.IsValid() && process) {
2685           if (process_shared_cache_uuid.IsValid() &&
2686               dsc_uuid != process_shared_cache_uuid) {
2687             // The on-disk dyld_shared_cache file is not the same as the one in
2688             // this process' memory, don't use it.
2689             uuid_match = false;
2690             ModuleSP module_sp(GetModule());
2691             if (module_sp)
2692               module_sp->ReportWarning("process shared cache does not match "
2693                                        "on-disk dyld_shared_cache file, some "
2694                                        "symbol names will be missing.");
2695           }
2696         }
2697 
2698         offset = offsetof(struct lldb_copy_dyld_cache_header_v1, mappingOffset);
2699 
2700         uint32_t mappingOffset = dsc_header_data.GetU32(&offset);
2701 
2702         // If the mappingOffset points to a location inside the header, we've
2703         // opened an old dyld shared cache, and should not proceed further.
2704         if (uuid_match &&
2705             mappingOffset >= sizeof(struct lldb_copy_dyld_cache_header_v1)) {
2706 
2707           DataBufferSP dsc_mapping_info_data_sp = MapFileData(
2708               dsc_filespec, sizeof(struct lldb_copy_dyld_cache_mapping_info),
2709               mappingOffset);
2710 
2711           DataExtractor dsc_mapping_info_data(dsc_mapping_info_data_sp,
2712                                               byte_order, addr_byte_size);
2713           offset = 0;
2714 
2715           // The File addresses (from the in-memory Mach-O load commands) for
2716           // the shared libraries in the shared library cache need to be
2717           // adjusted by an offset to match up with the dylibOffset identifying
2718           // field in the dyld_cache_local_symbol_entry's.  This offset is
2719           // recorded in mapping_offset_value.
2720           const uint64_t mapping_offset_value =
2721               dsc_mapping_info_data.GetU64(&offset);
2722 
2723           offset = offsetof(struct lldb_copy_dyld_cache_header_v1,
2724                             localSymbolsOffset);
2725           uint64_t localSymbolsOffset = dsc_header_data.GetU64(&offset);
2726           uint64_t localSymbolsSize = dsc_header_data.GetU64(&offset);
2727 
2728           if (localSymbolsOffset && localSymbolsSize) {
2729             // Map the local symbols
2730             DataBufferSP dsc_local_symbols_data_sp =
2731                 MapFileData(dsc_filespec, localSymbolsSize, localSymbolsOffset);
2732 
2733             if (dsc_local_symbols_data_sp) {
2734               DataExtractor dsc_local_symbols_data(dsc_local_symbols_data_sp,
2735                                                    byte_order, addr_byte_size);
2736 
2737               offset = 0;
2738 
2739               typedef std::map<ConstString, uint16_t> UndefinedNameToDescMap;
2740               typedef std::map<uint32_t, ConstString> SymbolIndexToName;
2741               UndefinedNameToDescMap undefined_name_to_desc;
2742               SymbolIndexToName reexport_shlib_needs_fixup;
2743 
2744               // Read the local_symbols_infos struct in one shot
2745               struct lldb_copy_dyld_cache_local_symbols_info local_symbols_info;
2746               dsc_local_symbols_data.GetU32(&offset,
2747                                             &local_symbols_info.nlistOffset, 6);
2748 
2749               SectionSP text_section_sp(
2750                   section_list->FindSectionByName(GetSegmentNameTEXT()));
2751 
2752               uint32_t header_file_offset =
2753                   (text_section_sp->GetFileAddress() - mapping_offset_value);
2754 
2755               offset = local_symbols_info.entriesOffset;
2756               for (uint32_t entry_index = 0;
2757                    entry_index < local_symbols_info.entriesCount;
2758                    entry_index++) {
2759                 struct lldb_copy_dyld_cache_local_symbols_entry
2760                     local_symbols_entry;
2761                 local_symbols_entry.dylibOffset =
2762                     dsc_local_symbols_data.GetU32(&offset);
2763                 local_symbols_entry.nlistStartIndex =
2764                     dsc_local_symbols_data.GetU32(&offset);
2765                 local_symbols_entry.nlistCount =
2766                     dsc_local_symbols_data.GetU32(&offset);
2767 
2768                 if (header_file_offset == local_symbols_entry.dylibOffset) {
2769                   unmapped_local_symbols_found = local_symbols_entry.nlistCount;
2770 
2771                   // The normal nlist code cannot correctly size the Symbols
2772                   // array, we need to allocate it here.
2773                   sym = symtab->Resize(
2774                       symtab_load_command.nsyms + m_dysymtab.nindirectsyms +
2775                       unmapped_local_symbols_found - m_dysymtab.nlocalsym);
2776                   num_syms = symtab->GetNumSymbols();
2777 
2778                   nlist_data_offset =
2779                       local_symbols_info.nlistOffset +
2780                       (nlist_byte_size * local_symbols_entry.nlistStartIndex);
2781                   uint32_t string_table_offset =
2782                       local_symbols_info.stringsOffset;
2783 
2784                   for (uint32_t nlist_index = 0;
2785                        nlist_index < local_symbols_entry.nlistCount;
2786                        nlist_index++) {
2787                     /////////////////////////////
2788                     {
2789                       struct nlist_64 nlist;
2790                       if (!dsc_local_symbols_data.ValidOffsetForDataOfSize(
2791                               nlist_data_offset, nlist_byte_size))
2792                         break;
2793 
2794                       nlist.n_strx = dsc_local_symbols_data.GetU32_unchecked(
2795                           &nlist_data_offset);
2796                       nlist.n_type = dsc_local_symbols_data.GetU8_unchecked(
2797                           &nlist_data_offset);
2798                       nlist.n_sect = dsc_local_symbols_data.GetU8_unchecked(
2799                           &nlist_data_offset);
2800                       nlist.n_desc = dsc_local_symbols_data.GetU16_unchecked(
2801                           &nlist_data_offset);
2802                       nlist.n_value =
2803                           dsc_local_symbols_data.GetAddress_unchecked(
2804                               &nlist_data_offset);
2805 
2806                       SymbolType type = eSymbolTypeInvalid;
2807                       const char *symbol_name = dsc_local_symbols_data.PeekCStr(
2808                           string_table_offset + nlist.n_strx);
2809 
2810                       if (symbol_name == NULL) {
2811                         // No symbol should be NULL, even the symbols with no
2812                         // string values should have an offset zero which
2813                         // points to an empty C-string
2814                         Host::SystemLog(
2815                             Host::eSystemLogError,
2816                             "error: DSC unmapped local symbol[%u] has invalid "
2817                             "string table offset 0x%x in %s, ignoring symbol\n",
2818                             entry_index, nlist.n_strx,
2819                             module_sp->GetFileSpec().GetPath().c_str());
2820                         continue;
2821                       }
2822                       if (symbol_name[0] == '\0')
2823                         symbol_name = NULL;
2824 
2825                       const char *symbol_name_non_abi_mangled = NULL;
2826 
2827                       SectionSP symbol_section;
2828                       uint32_t symbol_byte_size = 0;
2829                       bool add_nlist = true;
2830                       bool is_debug = ((nlist.n_type & N_STAB) != 0);
2831                       bool demangled_is_synthesized = false;
2832                       bool is_gsym = false;
2833                       bool set_value = true;
2834 
2835                       assert(sym_idx < num_syms);
2836 
2837                       sym[sym_idx].SetDebug(is_debug);
2838 
2839                       if (is_debug) {
2840                         switch (nlist.n_type) {
2841                         case N_GSYM:
2842                           // global symbol: name,,NO_SECT,type,0
2843                           // Sometimes the N_GSYM value contains the address.
2844 
2845                           // FIXME: In the .o files, we have a GSYM and a debug
2846                           // symbol for all the ObjC data.  They
2847                           // have the same address, but we want to ensure that
2848                           // we always find only the real symbol, 'cause we
2849                           // don't currently correctly attribute the
2850                           // GSYM one to the ObjCClass/Ivar/MetaClass
2851                           // symbol type.  This is a temporary hack to make
2852                           // sure the ObjectiveC symbols get treated correctly.
2853                           // To do this right, we should coalesce all the GSYM
2854                           // & global symbols that have the same address.
2855 
2856                           is_gsym = true;
2857                           sym[sym_idx].SetExternal(true);
2858 
2859                           if (symbol_name && symbol_name[0] == '_' &&
2860                               symbol_name[1] == 'O') {
2861                             llvm::StringRef symbol_name_ref(symbol_name);
2862                             if (symbol_name_ref.startswith(
2863                                     g_objc_v2_prefix_class)) {
2864                               symbol_name_non_abi_mangled = symbol_name + 1;
2865                               symbol_name =
2866                                   symbol_name + g_objc_v2_prefix_class.size();
2867                               type = eSymbolTypeObjCClass;
2868                               demangled_is_synthesized = true;
2869 
2870                             } else if (symbol_name_ref.startswith(
2871                                            g_objc_v2_prefix_metaclass)) {
2872                               symbol_name_non_abi_mangled = symbol_name + 1;
2873                               symbol_name = symbol_name +
2874                                             g_objc_v2_prefix_metaclass.size();
2875                               type = eSymbolTypeObjCMetaClass;
2876                               demangled_is_synthesized = true;
2877                             } else if (symbol_name_ref.startswith(
2878                                            g_objc_v2_prefix_ivar)) {
2879                               symbol_name_non_abi_mangled = symbol_name + 1;
2880                               symbol_name =
2881                                   symbol_name + g_objc_v2_prefix_ivar.size();
2882                               type = eSymbolTypeObjCIVar;
2883                               demangled_is_synthesized = true;
2884                             }
2885                           } else {
2886                             if (nlist.n_value != 0)
2887                               symbol_section = section_info.GetSection(
2888                                   nlist.n_sect, nlist.n_value);
2889                             type = eSymbolTypeData;
2890                           }
2891                           break;
2892 
2893                         case N_FNAME:
2894                           // procedure name (f77 kludge): name,,NO_SECT,0,0
2895                           type = eSymbolTypeCompiler;
2896                           break;
2897 
2898                         case N_FUN:
2899                           // procedure: name,,n_sect,linenumber,address
2900                           if (symbol_name) {
2901                             type = eSymbolTypeCode;
2902                             symbol_section = section_info.GetSection(
2903                                 nlist.n_sect, nlist.n_value);
2904 
2905                             N_FUN_addr_to_sym_idx.insert(
2906                                 std::make_pair(nlist.n_value, sym_idx));
2907                             // We use the current number of symbols in the
2908                             // symbol table in lieu of using nlist_idx in case
2909                             // we ever start trimming entries out
2910                             N_FUN_indexes.push_back(sym_idx);
2911                           } else {
2912                             type = eSymbolTypeCompiler;
2913 
2914                             if (!N_FUN_indexes.empty()) {
2915                               // Copy the size of the function into the
2916                               // original
2917                               // STAB entry so we don't have
2918                               // to hunt for it later
2919                               symtab->SymbolAtIndex(N_FUN_indexes.back())
2920                                   ->SetByteSize(nlist.n_value);
2921                               N_FUN_indexes.pop_back();
2922                               // We don't really need the end function STAB as
2923                               // it contains the size which we already placed
2924                               // with the original symbol, so don't add it if
2925                               // we want a minimal symbol table
2926                               add_nlist = false;
2927                             }
2928                           }
2929                           break;
2930 
2931                         case N_STSYM:
2932                           // static symbol: name,,n_sect,type,address
2933                           N_STSYM_addr_to_sym_idx.insert(
2934                               std::make_pair(nlist.n_value, sym_idx));
2935                           symbol_section = section_info.GetSection(
2936                               nlist.n_sect, nlist.n_value);
2937                           if (symbol_name && symbol_name[0]) {
2938                             type = ObjectFile::GetSymbolTypeFromName(
2939                                 symbol_name + 1, eSymbolTypeData);
2940                           }
2941                           break;
2942 
2943                         case N_LCSYM:
2944                           // .lcomm symbol: name,,n_sect,type,address
2945                           symbol_section = section_info.GetSection(
2946                               nlist.n_sect, nlist.n_value);
2947                           type = eSymbolTypeCommonBlock;
2948                           break;
2949 
2950                         case N_BNSYM:
2951                           // We use the current number of symbols in the symbol
2952                           // table in lieu of using nlist_idx in case we ever
2953                           // start trimming entries out Skip these if we want
2954                           // minimal symbol tables
2955                           add_nlist = false;
2956                           break;
2957 
2958                         case N_ENSYM:
2959                           // Set the size of the N_BNSYM to the terminating
2960                           // index of this N_ENSYM so that we can always skip
2961                           // the entire symbol if we need to navigate more
2962                           // quickly at the source level when parsing STABS
2963                           // Skip these if we want minimal symbol tables
2964                           add_nlist = false;
2965                           break;
2966 
2967                         case N_OPT:
2968                           // emitted with gcc2_compiled and in gcc source
2969                           type = eSymbolTypeCompiler;
2970                           break;
2971 
2972                         case N_RSYM:
2973                           // register sym: name,,NO_SECT,type,register
2974                           type = eSymbolTypeVariable;
2975                           break;
2976 
2977                         case N_SLINE:
2978                           // src line: 0,,n_sect,linenumber,address
2979                           symbol_section = section_info.GetSection(
2980                               nlist.n_sect, nlist.n_value);
2981                           type = eSymbolTypeLineEntry;
2982                           break;
2983 
2984                         case N_SSYM:
2985                           // structure elt: name,,NO_SECT,type,struct_offset
2986                           type = eSymbolTypeVariableType;
2987                           break;
2988 
2989                         case N_SO:
2990                           // source file name
2991                           type = eSymbolTypeSourceFile;
2992                           if (symbol_name == NULL) {
2993                             add_nlist = false;
2994                             if (N_SO_index != UINT32_MAX) {
2995                               // Set the size of the N_SO to the terminating
2996                               // index of this N_SO so that we can always skip
2997                               // the entire N_SO if we need to navigate more
2998                               // quickly at the source level when parsing STABS
2999                               symbol_ptr = symtab->SymbolAtIndex(N_SO_index);
3000                               symbol_ptr->SetByteSize(sym_idx);
3001                               symbol_ptr->SetSizeIsSibling(true);
3002                             }
3003                             N_NSYM_indexes.clear();
3004                             N_INCL_indexes.clear();
3005                             N_BRAC_indexes.clear();
3006                             N_COMM_indexes.clear();
3007                             N_FUN_indexes.clear();
3008                             N_SO_index = UINT32_MAX;
3009                           } else {
3010                             // We use the current number of symbols in the
3011                             // symbol table in lieu of using nlist_idx in case
3012                             // we ever start trimming entries out
3013                             const bool N_SO_has_full_path =
3014                                 symbol_name[0] == '/';
3015                             if (N_SO_has_full_path) {
3016                               if ((N_SO_index == sym_idx - 1) &&
3017                                   ((sym_idx - 1) < num_syms)) {
3018                                 // We have two consecutive N_SO entries where
3019                                 // the first contains a directory and the
3020                                 // second contains a full path.
3021                                 sym[sym_idx - 1].GetMangled().SetValue(
3022                                     ConstString(symbol_name), false);
3023                                 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3024                                 add_nlist = false;
3025                               } else {
3026                                 // This is the first entry in a N_SO that
3027                                 // contains a directory or
3028                                 // a full path to the source file
3029                                 N_SO_index = sym_idx;
3030                               }
3031                             } else if ((N_SO_index == sym_idx - 1) &&
3032                                        ((sym_idx - 1) < num_syms)) {
3033                               // This is usually the second N_SO entry that
3034                               // contains just the filename, so here we combine
3035                               // it with the first one if we are minimizing the
3036                               // symbol table
3037                               const char *so_path =
3038                                   sym[sym_idx - 1]
3039                                       .GetMangled()
3040                                       .GetDemangledName(
3041                                           lldb::eLanguageTypeUnknown)
3042                                       .AsCString();
3043                               if (so_path && so_path[0]) {
3044                                 std::string full_so_path(so_path);
3045                                 const size_t double_slash_pos =
3046                                     full_so_path.find("//");
3047                                 if (double_slash_pos != std::string::npos) {
3048                                   // The linker has been generating bad N_SO
3049                                   // entries with doubled up paths
3050                                   // in the format "%s%s" where the first
3051                                   // string in the DW_AT_comp_dir, and the
3052                                   // second is the directory for the source
3053                                   // file so you end up with a path that looks
3054                                   // like "/tmp/src//tmp/src/"
3055                                   FileSpec so_dir(so_path, false);
3056                                   if (!so_dir.Exists()) {
3057                                     so_dir.SetFile(
3058                                         &full_so_path[double_slash_pos + 1],
3059                                         false);
3060                                     if (so_dir.Exists()) {
3061                                       // Trim off the incorrect path
3062                                       full_so_path.erase(0,
3063                                                          double_slash_pos + 1);
3064                                     }
3065                                   }
3066                                 }
3067                                 if (*full_so_path.rbegin() != '/')
3068                                   full_so_path += '/';
3069                                 full_so_path += symbol_name;
3070                                 sym[sym_idx - 1].GetMangled().SetValue(
3071                                     ConstString(full_so_path.c_str()), false);
3072                                 add_nlist = false;
3073                                 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3074                               }
3075                             } else {
3076                               // This could be a relative path to a N_SO
3077                               N_SO_index = sym_idx;
3078                             }
3079                           }
3080                           break;
3081 
3082                         case N_OSO:
3083                           // object file name: name,,0,0,st_mtime
3084                           type = eSymbolTypeObjectFile;
3085                           break;
3086 
3087                         case N_LSYM:
3088                           // local sym: name,,NO_SECT,type,offset
3089                           type = eSymbolTypeLocal;
3090                           break;
3091 
3092                         //----------------------------------------------------------------------
3093                         // INCL scopes
3094                         //----------------------------------------------------------------------
3095                         case N_BINCL:
3096                           // include file beginning: name,,NO_SECT,0,sum We use
3097                           // the current number of symbols in the symbol table
3098                           // in lieu of using nlist_idx in case we ever start
3099                           // trimming entries out
3100                           N_INCL_indexes.push_back(sym_idx);
3101                           type = eSymbolTypeScopeBegin;
3102                           break;
3103 
3104                         case N_EINCL:
3105                           // include file end: name,,NO_SECT,0,0
3106                           // Set the size of the N_BINCL to the terminating
3107                           // index of this N_EINCL so that we can always skip
3108                           // the entire symbol if we need to navigate more
3109                           // quickly at the source level when parsing STABS
3110                           if (!N_INCL_indexes.empty()) {
3111                             symbol_ptr =
3112                                 symtab->SymbolAtIndex(N_INCL_indexes.back());
3113                             symbol_ptr->SetByteSize(sym_idx + 1);
3114                             symbol_ptr->SetSizeIsSibling(true);
3115                             N_INCL_indexes.pop_back();
3116                           }
3117                           type = eSymbolTypeScopeEnd;
3118                           break;
3119 
3120                         case N_SOL:
3121                           // #included file name: name,,n_sect,0,address
3122                           type = eSymbolTypeHeaderFile;
3123 
3124                           // We currently don't use the header files on darwin
3125                           add_nlist = false;
3126                           break;
3127 
3128                         case N_PARAMS:
3129                           // compiler parameters: name,,NO_SECT,0,0
3130                           type = eSymbolTypeCompiler;
3131                           break;
3132 
3133                         case N_VERSION:
3134                           // compiler version: name,,NO_SECT,0,0
3135                           type = eSymbolTypeCompiler;
3136                           break;
3137 
3138                         case N_OLEVEL:
3139                           // compiler -O level: name,,NO_SECT,0,0
3140                           type = eSymbolTypeCompiler;
3141                           break;
3142 
3143                         case N_PSYM:
3144                           // parameter: name,,NO_SECT,type,offset
3145                           type = eSymbolTypeVariable;
3146                           break;
3147 
3148                         case N_ENTRY:
3149                           // alternate entry: name,,n_sect,linenumber,address
3150                           symbol_section = section_info.GetSection(
3151                               nlist.n_sect, nlist.n_value);
3152                           type = eSymbolTypeLineEntry;
3153                           break;
3154 
3155                         //----------------------------------------------------------------------
3156                         // Left and Right Braces
3157                         //----------------------------------------------------------------------
3158                         case N_LBRAC:
3159                           // left bracket: 0,,NO_SECT,nesting level,address We
3160                           // use the current number of symbols in the symbol
3161                           // table in lieu of using nlist_idx in case we ever
3162                           // start trimming entries out
3163                           symbol_section = section_info.GetSection(
3164                               nlist.n_sect, nlist.n_value);
3165                           N_BRAC_indexes.push_back(sym_idx);
3166                           type = eSymbolTypeScopeBegin;
3167                           break;
3168 
3169                         case N_RBRAC:
3170                           // right bracket: 0,,NO_SECT,nesting level,address
3171                           // Set the size of the N_LBRAC to the terminating
3172                           // index of this N_RBRAC so that we can always skip
3173                           // the entire symbol if we need to navigate more
3174                           // quickly at the source level when parsing STABS
3175                           symbol_section = section_info.GetSection(
3176                               nlist.n_sect, nlist.n_value);
3177                           if (!N_BRAC_indexes.empty()) {
3178                             symbol_ptr =
3179                                 symtab->SymbolAtIndex(N_BRAC_indexes.back());
3180                             symbol_ptr->SetByteSize(sym_idx + 1);
3181                             symbol_ptr->SetSizeIsSibling(true);
3182                             N_BRAC_indexes.pop_back();
3183                           }
3184                           type = eSymbolTypeScopeEnd;
3185                           break;
3186 
3187                         case N_EXCL:
3188                           // deleted include file: name,,NO_SECT,0,sum
3189                           type = eSymbolTypeHeaderFile;
3190                           break;
3191 
3192                         //----------------------------------------------------------------------
3193                         // COMM scopes
3194                         //----------------------------------------------------------------------
3195                         case N_BCOMM:
3196                           // begin common: name,,NO_SECT,0,0
3197                           // We use the current number of symbols in the symbol
3198                           // table in lieu of using nlist_idx in case we ever
3199                           // start trimming entries out
3200                           type = eSymbolTypeScopeBegin;
3201                           N_COMM_indexes.push_back(sym_idx);
3202                           break;
3203 
3204                         case N_ECOML:
3205                           // end common (local name): 0,,n_sect,0,address
3206                           symbol_section = section_info.GetSection(
3207                               nlist.n_sect, nlist.n_value);
3208                         // Fall through
3209 
3210                         case N_ECOMM:
3211                           // end common: name,,n_sect,0,0
3212                           // Set the size of the N_BCOMM to the terminating
3213                           // index of this N_ECOMM/N_ECOML so that we can
3214                           // always skip the entire symbol if we need to
3215                           // navigate more quickly at the source level when
3216                           // parsing STABS
3217                           if (!N_COMM_indexes.empty()) {
3218                             symbol_ptr =
3219                                 symtab->SymbolAtIndex(N_COMM_indexes.back());
3220                             symbol_ptr->SetByteSize(sym_idx + 1);
3221                             symbol_ptr->SetSizeIsSibling(true);
3222                             N_COMM_indexes.pop_back();
3223                           }
3224                           type = eSymbolTypeScopeEnd;
3225                           break;
3226 
3227                         case N_LENG:
3228                           // second stab entry with length information
3229                           type = eSymbolTypeAdditional;
3230                           break;
3231 
3232                         default:
3233                           break;
3234                         }
3235                       } else {
3236                         // uint8_t n_pext    = N_PEXT & nlist.n_type;
3237                         uint8_t n_type = N_TYPE & nlist.n_type;
3238                         sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
3239 
3240                         switch (n_type) {
3241                         case N_INDR: {
3242                           const char *reexport_name_cstr =
3243                               strtab_data.PeekCStr(nlist.n_value);
3244                           if (reexport_name_cstr && reexport_name_cstr[0]) {
3245                             type = eSymbolTypeReExported;
3246                             ConstString reexport_name(
3247                                 reexport_name_cstr +
3248                                 ((reexport_name_cstr[0] == '_') ? 1 : 0));
3249                             sym[sym_idx].SetReExportedSymbolName(reexport_name);
3250                             set_value = false;
3251                             reexport_shlib_needs_fixup[sym_idx] = reexport_name;
3252                             indirect_symbol_names.insert(
3253                                 ConstString(symbol_name +
3254                                             ((symbol_name[0] == '_') ? 1 : 0)));
3255                           } else
3256                             type = eSymbolTypeUndefined;
3257                         } break;
3258 
3259                         case N_UNDF:
3260                           if (symbol_name && symbol_name[0]) {
3261                             ConstString undefined_name(
3262                                 symbol_name +
3263                                 ((symbol_name[0] == '_') ? 1 : 0));
3264                             undefined_name_to_desc[undefined_name] =
3265                                 nlist.n_desc;
3266                           }
3267                         // Fall through
3268                         case N_PBUD:
3269                           type = eSymbolTypeUndefined;
3270                           break;
3271 
3272                         case N_ABS:
3273                           type = eSymbolTypeAbsolute;
3274                           break;
3275 
3276                         case N_SECT: {
3277                           symbol_section = section_info.GetSection(
3278                               nlist.n_sect, nlist.n_value);
3279 
3280                           if (symbol_section == NULL) {
3281                             // TODO: warn about this?
3282                             add_nlist = false;
3283                             break;
3284                           }
3285 
3286                           if (TEXT_eh_frame_sectID == nlist.n_sect) {
3287                             type = eSymbolTypeException;
3288                           } else {
3289                             uint32_t section_type =
3290                                 symbol_section->Get() & SECTION_TYPE;
3291 
3292                             switch (section_type) {
3293                             case S_CSTRING_LITERALS:
3294                               type = eSymbolTypeData;
3295                               break; // section with only literal C strings
3296                             case S_4BYTE_LITERALS:
3297                               type = eSymbolTypeData;
3298                               break; // section with only 4 byte literals
3299                             case S_8BYTE_LITERALS:
3300                               type = eSymbolTypeData;
3301                               break; // section with only 8 byte literals
3302                             case S_LITERAL_POINTERS:
3303                               type = eSymbolTypeTrampoline;
3304                               break; // section with only pointers to literals
3305                             case S_NON_LAZY_SYMBOL_POINTERS:
3306                               type = eSymbolTypeTrampoline;
3307                               break; // section with only non-lazy symbol
3308                                      // pointers
3309                             case S_LAZY_SYMBOL_POINTERS:
3310                               type = eSymbolTypeTrampoline;
3311                               break; // section with only lazy symbol pointers
3312                             case S_SYMBOL_STUBS:
3313                               type = eSymbolTypeTrampoline;
3314                               break; // section with only symbol stubs, byte
3315                                      // size of stub in the reserved2 field
3316                             case S_MOD_INIT_FUNC_POINTERS:
3317                               type = eSymbolTypeCode;
3318                               break; // section with only function pointers for
3319                                      // initialization
3320                             case S_MOD_TERM_FUNC_POINTERS:
3321                               type = eSymbolTypeCode;
3322                               break; // section with only function pointers for
3323                                      // termination
3324                             case S_INTERPOSING:
3325                               type = eSymbolTypeTrampoline;
3326                               break; // section with only pairs of function
3327                                      // pointers for interposing
3328                             case S_16BYTE_LITERALS:
3329                               type = eSymbolTypeData;
3330                               break; // section with only 16 byte literals
3331                             case S_DTRACE_DOF:
3332                               type = eSymbolTypeInstrumentation;
3333                               break;
3334                             case S_LAZY_DYLIB_SYMBOL_POINTERS:
3335                               type = eSymbolTypeTrampoline;
3336                               break;
3337                             default:
3338                               switch (symbol_section->GetType()) {
3339                               case lldb::eSectionTypeCode:
3340                                 type = eSymbolTypeCode;
3341                                 break;
3342                               case eSectionTypeData:
3343                               case eSectionTypeDataCString: // Inlined C string
3344                                                             // data
3345                               case eSectionTypeDataCStringPointers: // Pointers
3346                                                                     // to C
3347                                                                     // string
3348                                                                     // data
3349                               case eSectionTypeDataSymbolAddress: // Address of
3350                                                                   // a symbol in
3351                                                                   // the symbol
3352                                                                   // table
3353                               case eSectionTypeData4:
3354                               case eSectionTypeData8:
3355                               case eSectionTypeData16:
3356                                 type = eSymbolTypeData;
3357                                 break;
3358                               default:
3359                                 break;
3360                               }
3361                               break;
3362                             }
3363 
3364                             if (type == eSymbolTypeInvalid) {
3365                               const char *symbol_sect_name =
3366                                   symbol_section->GetName().AsCString();
3367                               if (symbol_section->IsDescendant(
3368                                       text_section_sp.get())) {
3369                                 if (symbol_section->IsClear(
3370                                         S_ATTR_PURE_INSTRUCTIONS |
3371                                         S_ATTR_SELF_MODIFYING_CODE |
3372                                         S_ATTR_SOME_INSTRUCTIONS))
3373                                   type = eSymbolTypeData;
3374                                 else
3375                                   type = eSymbolTypeCode;
3376                               } else if (symbol_section->IsDescendant(
3377                                              data_section_sp.get()) ||
3378                                          symbol_section->IsDescendant(
3379                                              data_dirty_section_sp.get()) ||
3380                                          symbol_section->IsDescendant(
3381                                              data_const_section_sp.get())) {
3382                                 if (symbol_sect_name &&
3383                                     ::strstr(symbol_sect_name, "__objc") ==
3384                                         symbol_sect_name) {
3385                                   type = eSymbolTypeRuntime;
3386 
3387                                   if (symbol_name) {
3388                                     llvm::StringRef symbol_name_ref(
3389                                         symbol_name);
3390                                     if (symbol_name_ref.startswith("_OBJC_")) {
3391                                       static const llvm::StringRef
3392                                           g_objc_v2_prefix_class(
3393                                               "_OBJC_CLASS_$_");
3394                                       static const llvm::StringRef
3395                                           g_objc_v2_prefix_metaclass(
3396                                               "_OBJC_METACLASS_$_");
3397                                       static const llvm::StringRef
3398                                           g_objc_v2_prefix_ivar(
3399                                               "_OBJC_IVAR_$_");
3400                                       if (symbol_name_ref.startswith(
3401                                               g_objc_v2_prefix_class)) {
3402                                         symbol_name_non_abi_mangled =
3403                                             symbol_name + 1;
3404                                         symbol_name =
3405                                             symbol_name +
3406                                             g_objc_v2_prefix_class.size();
3407                                         type = eSymbolTypeObjCClass;
3408                                         demangled_is_synthesized = true;
3409                                       } else if (
3410                                           symbol_name_ref.startswith(
3411                                               g_objc_v2_prefix_metaclass)) {
3412                                         symbol_name_non_abi_mangled =
3413                                             symbol_name + 1;
3414                                         symbol_name =
3415                                             symbol_name +
3416                                             g_objc_v2_prefix_metaclass.size();
3417                                         type = eSymbolTypeObjCMetaClass;
3418                                         demangled_is_synthesized = true;
3419                                       } else if (symbol_name_ref.startswith(
3420                                                      g_objc_v2_prefix_ivar)) {
3421                                         symbol_name_non_abi_mangled =
3422                                             symbol_name + 1;
3423                                         symbol_name =
3424                                             symbol_name +
3425                                             g_objc_v2_prefix_ivar.size();
3426                                         type = eSymbolTypeObjCIVar;
3427                                         demangled_is_synthesized = true;
3428                                       }
3429                                     }
3430                                   }
3431                                 } else if (symbol_sect_name &&
3432                                            ::strstr(symbol_sect_name,
3433                                                     "__gcc_except_tab") ==
3434                                                symbol_sect_name) {
3435                                   type = eSymbolTypeException;
3436                                 } else {
3437                                   type = eSymbolTypeData;
3438                                 }
3439                               } else if (symbol_sect_name &&
3440                                          ::strstr(symbol_sect_name,
3441                                                   "__IMPORT") ==
3442                                              symbol_sect_name) {
3443                                 type = eSymbolTypeTrampoline;
3444                               } else if (symbol_section->IsDescendant(
3445                                              objc_section_sp.get())) {
3446                                 type = eSymbolTypeRuntime;
3447                                 if (symbol_name && symbol_name[0] == '.') {
3448                                   llvm::StringRef symbol_name_ref(symbol_name);
3449                                   static const llvm::StringRef
3450                                       g_objc_v1_prefix_class(
3451                                           ".objc_class_name_");
3452                                   if (symbol_name_ref.startswith(
3453                                           g_objc_v1_prefix_class)) {
3454                                     symbol_name_non_abi_mangled = symbol_name;
3455                                     symbol_name = symbol_name +
3456                                                   g_objc_v1_prefix_class.size();
3457                                     type = eSymbolTypeObjCClass;
3458                                     demangled_is_synthesized = true;
3459                                   }
3460                                 }
3461                               }
3462                             }
3463                           }
3464                         } break;
3465                         }
3466                       }
3467 
3468                       if (add_nlist) {
3469                         uint64_t symbol_value = nlist.n_value;
3470                         if (symbol_name_non_abi_mangled) {
3471                           sym[sym_idx].GetMangled().SetMangledName(
3472                               ConstString(symbol_name_non_abi_mangled));
3473                           sym[sym_idx].GetMangled().SetDemangledName(
3474                               ConstString(symbol_name));
3475                         } else {
3476                           bool symbol_name_is_mangled = false;
3477 
3478                           if (symbol_name && symbol_name[0] == '_') {
3479                             symbol_name_is_mangled = symbol_name[1] == '_';
3480                             symbol_name++; // Skip the leading underscore
3481                           }
3482 
3483                           if (symbol_name) {
3484                             ConstString const_symbol_name(symbol_name);
3485                             sym[sym_idx].GetMangled().SetValue(
3486                                 const_symbol_name, symbol_name_is_mangled);
3487                             if (is_gsym && is_debug) {
3488                               const char *gsym_name =
3489                                   sym[sym_idx]
3490                                       .GetMangled()
3491                                       .GetName(lldb::eLanguageTypeUnknown,
3492                                                Mangled::ePreferMangled)
3493                                       .GetCString();
3494                               if (gsym_name)
3495                                 N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
3496                             }
3497                           }
3498                         }
3499                         if (symbol_section) {
3500                           const addr_t section_file_addr =
3501                               symbol_section->GetFileAddress();
3502                           if (symbol_byte_size == 0 &&
3503                               function_starts_count > 0) {
3504                             addr_t symbol_lookup_file_addr = nlist.n_value;
3505                             // Do an exact address match for non-ARM addresses,
3506                             // else get the closest since the symbol might be a
3507                             // thumb symbol which has an address with bit zero
3508                             // set
3509                             FunctionStarts::Entry *func_start_entry =
3510                                 function_starts.FindEntry(
3511                                     symbol_lookup_file_addr, !is_arm);
3512                             if (is_arm && func_start_entry) {
3513                               // Verify that the function start address is the
3514                               // symbol address (ARM) or the symbol address + 1
3515                               // (thumb)
3516                               if (func_start_entry->addr !=
3517                                       symbol_lookup_file_addr &&
3518                                   func_start_entry->addr !=
3519                                       (symbol_lookup_file_addr + 1)) {
3520                                 // Not the right entry, NULL it out...
3521                                 func_start_entry = NULL;
3522                               }
3523                             }
3524                             if (func_start_entry) {
3525                               func_start_entry->data = true;
3526 
3527                               addr_t symbol_file_addr = func_start_entry->addr;
3528                               uint32_t symbol_flags = 0;
3529                               if (is_arm) {
3530                                 if (symbol_file_addr & 1)
3531                                   symbol_flags =
3532                                       MACHO_NLIST_ARM_SYMBOL_IS_THUMB;
3533                                 symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
3534                               }
3535 
3536                               const FunctionStarts::Entry
3537                                   *next_func_start_entry =
3538                                       function_starts.FindNextEntry(
3539                                           func_start_entry);
3540                               const addr_t section_end_file_addr =
3541                                   section_file_addr +
3542                                   symbol_section->GetByteSize();
3543                               if (next_func_start_entry) {
3544                                 addr_t next_symbol_file_addr =
3545                                     next_func_start_entry->addr;
3546                                 // Be sure the clear the Thumb address bit when
3547                                 // we calculate the size from the current and
3548                                 // next address
3549                                 if (is_arm)
3550                                   next_symbol_file_addr &=
3551                                       THUMB_ADDRESS_BIT_MASK;
3552                                 symbol_byte_size = std::min<lldb::addr_t>(
3553                                     next_symbol_file_addr - symbol_file_addr,
3554                                     section_end_file_addr - symbol_file_addr);
3555                               } else {
3556                                 symbol_byte_size =
3557                                     section_end_file_addr - symbol_file_addr;
3558                               }
3559                             }
3560                           }
3561                           symbol_value -= section_file_addr;
3562                         }
3563 
3564                         if (is_debug == false) {
3565                           if (type == eSymbolTypeCode) {
3566                             // See if we can find a N_FUN entry for any code
3567                             // symbols. If we do find a match, and the name
3568                             // matches, then we can merge the two into just the
3569                             // function symbol to avoid duplicate entries in
3570                             // the symbol table
3571                             std::pair<ValueToSymbolIndexMap::const_iterator,
3572                                       ValueToSymbolIndexMap::const_iterator>
3573                                 range;
3574                             range = N_FUN_addr_to_sym_idx.equal_range(
3575                                 nlist.n_value);
3576                             if (range.first != range.second) {
3577                               bool found_it = false;
3578                               for (ValueToSymbolIndexMap::const_iterator pos =
3579                                        range.first;
3580                                    pos != range.second; ++pos) {
3581                                 if (sym[sym_idx].GetMangled().GetName(
3582                                         lldb::eLanguageTypeUnknown,
3583                                         Mangled::ePreferMangled) ==
3584                                     sym[pos->second].GetMangled().GetName(
3585                                         lldb::eLanguageTypeUnknown,
3586                                         Mangled::ePreferMangled)) {
3587                                   m_nlist_idx_to_sym_idx[nlist_idx] =
3588                                       pos->second;
3589                                   // We just need the flags from the linker
3590                                   // symbol, so put these flags
3591                                   // into the N_FUN flags to avoid duplicate
3592                                   // symbols in the symbol table
3593                                   sym[pos->second].SetExternal(
3594                                       sym[sym_idx].IsExternal());
3595                                   sym[pos->second].SetFlags(nlist.n_type << 16 |
3596                                                             nlist.n_desc);
3597                                   if (resolver_addresses.find(nlist.n_value) !=
3598                                       resolver_addresses.end())
3599                                     sym[pos->second].SetType(
3600                                         eSymbolTypeResolver);
3601                                   sym[sym_idx].Clear();
3602                                   found_it = true;
3603                                   break;
3604                                 }
3605                               }
3606                               if (found_it)
3607                                 continue;
3608                             } else {
3609                               if (resolver_addresses.find(nlist.n_value) !=
3610                                   resolver_addresses.end())
3611                                 type = eSymbolTypeResolver;
3612                             }
3613                           } else if (type == eSymbolTypeData ||
3614                                      type == eSymbolTypeObjCClass ||
3615                                      type == eSymbolTypeObjCMetaClass ||
3616                                      type == eSymbolTypeObjCIVar) {
3617                             // See if we can find a N_STSYM entry for any data
3618                             // symbols. If we do find a match, and the name
3619                             // matches, then we can merge the two into just the
3620                             // Static symbol to avoid duplicate entries in the
3621                             // symbol table
3622                             std::pair<ValueToSymbolIndexMap::const_iterator,
3623                                       ValueToSymbolIndexMap::const_iterator>
3624                                 range;
3625                             range = N_STSYM_addr_to_sym_idx.equal_range(
3626                                 nlist.n_value);
3627                             if (range.first != range.second) {
3628                               bool found_it = false;
3629                               for (ValueToSymbolIndexMap::const_iterator pos =
3630                                        range.first;
3631                                    pos != range.second; ++pos) {
3632                                 if (sym[sym_idx].GetMangled().GetName(
3633                                         lldb::eLanguageTypeUnknown,
3634                                         Mangled::ePreferMangled) ==
3635                                     sym[pos->second].GetMangled().GetName(
3636                                         lldb::eLanguageTypeUnknown,
3637                                         Mangled::ePreferMangled)) {
3638                                   m_nlist_idx_to_sym_idx[nlist_idx] =
3639                                       pos->second;
3640                                   // We just need the flags from the linker
3641                                   // symbol, so put these flags
3642                                   // into the N_STSYM flags to avoid duplicate
3643                                   // symbols in the symbol table
3644                                   sym[pos->second].SetExternal(
3645                                       sym[sym_idx].IsExternal());
3646                                   sym[pos->second].SetFlags(nlist.n_type << 16 |
3647                                                             nlist.n_desc);
3648                                   sym[sym_idx].Clear();
3649                                   found_it = true;
3650                                   break;
3651                                 }
3652                               }
3653                               if (found_it)
3654                                 continue;
3655                             } else {
3656                               const char *gsym_name =
3657                                   sym[sym_idx]
3658                                       .GetMangled()
3659                                       .GetName(lldb::eLanguageTypeUnknown,
3660                                                Mangled::ePreferMangled)
3661                                       .GetCString();
3662                               if (gsym_name) {
3663                                 // Combine N_GSYM stab entries with the non
3664                                 // stab symbol
3665                                 ConstNameToSymbolIndexMap::const_iterator pos =
3666                                     N_GSYM_name_to_sym_idx.find(gsym_name);
3667                                 if (pos != N_GSYM_name_to_sym_idx.end()) {
3668                                   const uint32_t GSYM_sym_idx = pos->second;
3669                                   m_nlist_idx_to_sym_idx[nlist_idx] =
3670                                       GSYM_sym_idx;
3671                                   // Copy the address, because often the N_GSYM
3672                                   // address has an invalid address of zero
3673                                   // when the global is a common symbol
3674                                   sym[GSYM_sym_idx].GetAddressRef().SetSection(
3675                                       symbol_section);
3676                                   sym[GSYM_sym_idx].GetAddressRef().SetOffset(
3677                                       symbol_value);
3678                                   // We just need the flags from the linker
3679                                   // symbol, so put these flags
3680                                   // into the N_GSYM flags to avoid duplicate
3681                                   // symbols in the symbol table
3682                                   sym[GSYM_sym_idx].SetFlags(
3683                                       nlist.n_type << 16 | nlist.n_desc);
3684                                   sym[sym_idx].Clear();
3685                                   continue;
3686                                 }
3687                               }
3688                             }
3689                           }
3690                         }
3691 
3692                         sym[sym_idx].SetID(nlist_idx);
3693                         sym[sym_idx].SetType(type);
3694                         if (set_value) {
3695                           sym[sym_idx].GetAddressRef().SetSection(
3696                               symbol_section);
3697                           sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
3698                         }
3699                         sym[sym_idx].SetFlags(nlist.n_type << 16 |
3700                                               nlist.n_desc);
3701 
3702                         if (symbol_byte_size > 0)
3703                           sym[sym_idx].SetByteSize(symbol_byte_size);
3704 
3705                         if (demangled_is_synthesized)
3706                           sym[sym_idx].SetDemangledNameIsSynthesized(true);
3707                         ++sym_idx;
3708                       } else {
3709                         sym[sym_idx].Clear();
3710                       }
3711                     }
3712                     /////////////////////////////
3713                   }
3714                   break; // No more entries to consider
3715                 }
3716               }
3717 
3718               for (const auto &pos : reexport_shlib_needs_fixup) {
3719                 const auto undef_pos = undefined_name_to_desc.find(pos.second);
3720                 if (undef_pos != undefined_name_to_desc.end()) {
3721                   const uint8_t dylib_ordinal =
3722                       llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
3723                   if (dylib_ordinal > 0 &&
3724                       dylib_ordinal < dylib_files.GetSize())
3725                     sym[pos.first].SetReExportedSymbolSharedLibrary(
3726                         dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
3727                 }
3728               }
3729             }
3730           }
3731         }
3732       }
3733     }
3734 
3735     // Must reset this in case it was mutated above!
3736     nlist_data_offset = 0;
3737 #endif
3738 
3739     if (nlist_data.GetByteSize() > 0) {
3740 
3741       // If the sym array was not created while parsing the DSC unmapped
3742       // symbols, create it now.
3743       if (sym == NULL) {
3744         sym = symtab->Resize(symtab_load_command.nsyms +
3745                              m_dysymtab.nindirectsyms);
3746         num_syms = symtab->GetNumSymbols();
3747       }
3748 
3749       if (unmapped_local_symbols_found) {
3750         assert(m_dysymtab.ilocalsym == 0);
3751         nlist_data_offset += (m_dysymtab.nlocalsym * nlist_byte_size);
3752         nlist_idx = m_dysymtab.nlocalsym;
3753       } else {
3754         nlist_idx = 0;
3755       }
3756 
3757       typedef std::map<ConstString, uint16_t> UndefinedNameToDescMap;
3758       typedef std::map<uint32_t, ConstString> SymbolIndexToName;
3759       UndefinedNameToDescMap undefined_name_to_desc;
3760       SymbolIndexToName reexport_shlib_needs_fixup;
3761       for (; nlist_idx < symtab_load_command.nsyms; ++nlist_idx) {
3762         struct nlist_64 nlist;
3763         if (!nlist_data.ValidOffsetForDataOfSize(nlist_data_offset,
3764                                                  nlist_byte_size))
3765           break;
3766 
3767         nlist.n_strx = nlist_data.GetU32_unchecked(&nlist_data_offset);
3768         nlist.n_type = nlist_data.GetU8_unchecked(&nlist_data_offset);
3769         nlist.n_sect = nlist_data.GetU8_unchecked(&nlist_data_offset);
3770         nlist.n_desc = nlist_data.GetU16_unchecked(&nlist_data_offset);
3771         nlist.n_value = nlist_data.GetAddress_unchecked(&nlist_data_offset);
3772 
3773         SymbolType type = eSymbolTypeInvalid;
3774         const char *symbol_name = NULL;
3775 
3776         if (have_strtab_data) {
3777           symbol_name = strtab_data.PeekCStr(nlist.n_strx);
3778 
3779           if (symbol_name == NULL) {
3780             // No symbol should be NULL, even the symbols with no string values
3781             // should have an offset zero which points to an empty C-string
3782             Host::SystemLog(Host::eSystemLogError,
3783                             "error: symbol[%u] has invalid string table offset "
3784                             "0x%x in %s, ignoring symbol\n",
3785                             nlist_idx, nlist.n_strx,
3786                             module_sp->GetFileSpec().GetPath().c_str());
3787             continue;
3788           }
3789           if (symbol_name[0] == '\0')
3790             symbol_name = NULL;
3791         } else {
3792           const addr_t str_addr = strtab_addr + nlist.n_strx;
3793           Status str_error;
3794           if (process->ReadCStringFromMemory(str_addr, memory_symbol_name,
3795                                              str_error))
3796             symbol_name = memory_symbol_name.c_str();
3797         }
3798         const char *symbol_name_non_abi_mangled = NULL;
3799 
3800         SectionSP symbol_section;
3801         lldb::addr_t symbol_byte_size = 0;
3802         bool add_nlist = true;
3803         bool is_gsym = false;
3804         bool is_debug = ((nlist.n_type & N_STAB) != 0);
3805         bool demangled_is_synthesized = false;
3806         bool set_value = true;
3807         assert(sym_idx < num_syms);
3808 
3809         sym[sym_idx].SetDebug(is_debug);
3810 
3811         if (is_debug) {
3812           switch (nlist.n_type) {
3813           case N_GSYM:
3814             // global symbol: name,,NO_SECT,type,0
3815             // Sometimes the N_GSYM value contains the address.
3816 
3817             // FIXME: In the .o files, we have a GSYM and a debug symbol for all
3818             // the ObjC data.  They
3819             // have the same address, but we want to ensure that we always find
3820             // only the real symbol, 'cause we don't currently correctly
3821             // attribute the GSYM one to the ObjCClass/Ivar/MetaClass symbol
3822             // type.  This is a temporary hack to make sure the ObjectiveC
3823             // symbols get treated correctly.  To do this right, we should
3824             // coalesce all the GSYM & global symbols that have the same
3825             // address.
3826             is_gsym = true;
3827             sym[sym_idx].SetExternal(true);
3828 
3829             if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O') {
3830               llvm::StringRef symbol_name_ref(symbol_name);
3831               if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) {
3832                 symbol_name_non_abi_mangled = symbol_name + 1;
3833                 symbol_name = symbol_name + g_objc_v2_prefix_class.size();
3834                 type = eSymbolTypeObjCClass;
3835                 demangled_is_synthesized = true;
3836 
3837               } else if (symbol_name_ref.startswith(
3838                              g_objc_v2_prefix_metaclass)) {
3839                 symbol_name_non_abi_mangled = symbol_name + 1;
3840                 symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size();
3841                 type = eSymbolTypeObjCMetaClass;
3842                 demangled_is_synthesized = true;
3843               } else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) {
3844                 symbol_name_non_abi_mangled = symbol_name + 1;
3845                 symbol_name = symbol_name + g_objc_v2_prefix_ivar.size();
3846                 type = eSymbolTypeObjCIVar;
3847                 demangled_is_synthesized = true;
3848               }
3849             } else {
3850               if (nlist.n_value != 0)
3851                 symbol_section =
3852                     section_info.GetSection(nlist.n_sect, nlist.n_value);
3853               type = eSymbolTypeData;
3854             }
3855             break;
3856 
3857           case N_FNAME:
3858             // procedure name (f77 kludge): name,,NO_SECT,0,0
3859             type = eSymbolTypeCompiler;
3860             break;
3861 
3862           case N_FUN:
3863             // procedure: name,,n_sect,linenumber,address
3864             if (symbol_name) {
3865               type = eSymbolTypeCode;
3866               symbol_section =
3867                   section_info.GetSection(nlist.n_sect, nlist.n_value);
3868 
3869               N_FUN_addr_to_sym_idx.insert(
3870                   std::make_pair(nlist.n_value, sym_idx));
3871               // We use the current number of symbols in the symbol table in
3872               // lieu of using nlist_idx in case we ever start trimming entries
3873               // out
3874               N_FUN_indexes.push_back(sym_idx);
3875             } else {
3876               type = eSymbolTypeCompiler;
3877 
3878               if (!N_FUN_indexes.empty()) {
3879                 // Copy the size of the function into the original STAB entry
3880                 // so we don't have to hunt for it later
3881                 symtab->SymbolAtIndex(N_FUN_indexes.back())
3882                     ->SetByteSize(nlist.n_value);
3883                 N_FUN_indexes.pop_back();
3884                 // We don't really need the end function STAB as it contains
3885                 // the size which we already placed with the original symbol,
3886                 // so don't add it if we want a minimal symbol table
3887                 add_nlist = false;
3888               }
3889             }
3890             break;
3891 
3892           case N_STSYM:
3893             // static symbol: name,,n_sect,type,address
3894             N_STSYM_addr_to_sym_idx.insert(
3895                 std::make_pair(nlist.n_value, sym_idx));
3896             symbol_section =
3897                 section_info.GetSection(nlist.n_sect, nlist.n_value);
3898             if (symbol_name && symbol_name[0]) {
3899               type = ObjectFile::GetSymbolTypeFromName(symbol_name + 1,
3900                                                        eSymbolTypeData);
3901             }
3902             break;
3903 
3904           case N_LCSYM:
3905             // .lcomm symbol: name,,n_sect,type,address
3906             symbol_section =
3907                 section_info.GetSection(nlist.n_sect, nlist.n_value);
3908             type = eSymbolTypeCommonBlock;
3909             break;
3910 
3911           case N_BNSYM:
3912             // We use the current number of symbols in the symbol table in lieu
3913             // of using nlist_idx in case we ever start trimming entries out
3914             // Skip these if we want minimal symbol tables
3915             add_nlist = false;
3916             break;
3917 
3918           case N_ENSYM:
3919             // Set the size of the N_BNSYM to the terminating index of this
3920             // N_ENSYM so that we can always skip the entire symbol if we need
3921             // to navigate more quickly at the source level when parsing STABS
3922             // Skip these if we want minimal symbol tables
3923             add_nlist = false;
3924             break;
3925 
3926           case N_OPT:
3927             // emitted with gcc2_compiled and in gcc source
3928             type = eSymbolTypeCompiler;
3929             break;
3930 
3931           case N_RSYM:
3932             // register sym: name,,NO_SECT,type,register
3933             type = eSymbolTypeVariable;
3934             break;
3935 
3936           case N_SLINE:
3937             // src line: 0,,n_sect,linenumber,address
3938             symbol_section =
3939                 section_info.GetSection(nlist.n_sect, nlist.n_value);
3940             type = eSymbolTypeLineEntry;
3941             break;
3942 
3943           case N_SSYM:
3944             // structure elt: name,,NO_SECT,type,struct_offset
3945             type = eSymbolTypeVariableType;
3946             break;
3947 
3948           case N_SO:
3949             // source file name
3950             type = eSymbolTypeSourceFile;
3951             if (symbol_name == NULL) {
3952               add_nlist = false;
3953               if (N_SO_index != UINT32_MAX) {
3954                 // Set the size of the N_SO to the terminating index of this
3955                 // N_SO so that we can always skip the entire N_SO if we need
3956                 // to navigate more quickly at the source level when parsing
3957                 // STABS
3958                 symbol_ptr = symtab->SymbolAtIndex(N_SO_index);
3959                 symbol_ptr->SetByteSize(sym_idx);
3960                 symbol_ptr->SetSizeIsSibling(true);
3961               }
3962               N_NSYM_indexes.clear();
3963               N_INCL_indexes.clear();
3964               N_BRAC_indexes.clear();
3965               N_COMM_indexes.clear();
3966               N_FUN_indexes.clear();
3967               N_SO_index = UINT32_MAX;
3968             } else {
3969               // We use the current number of symbols in the symbol table in
3970               // lieu of using nlist_idx in case we ever start trimming entries
3971               // out
3972               const bool N_SO_has_full_path = symbol_name[0] == '/';
3973               if (N_SO_has_full_path) {
3974                 if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) {
3975                   // We have two consecutive N_SO entries where the first
3976                   // contains a directory and the second contains a full path.
3977                   sym[sym_idx - 1].GetMangled().SetValue(
3978                       ConstString(symbol_name), false);
3979                   m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3980                   add_nlist = false;
3981                 } else {
3982                   // This is the first entry in a N_SO that contains a
3983                   // directory or a full path to the source file
3984                   N_SO_index = sym_idx;
3985                 }
3986               } else if ((N_SO_index == sym_idx - 1) &&
3987                          ((sym_idx - 1) < num_syms)) {
3988                 // This is usually the second N_SO entry that contains just the
3989                 // filename, so here we combine it with the first one if we are
3990                 // minimizing the symbol table
3991                 const char *so_path =
3992                     sym[sym_idx - 1]
3993                         .GetMangled()
3994                         .GetDemangledName(lldb::eLanguageTypeUnknown)
3995                         .AsCString();
3996                 if (so_path && so_path[0]) {
3997                   std::string full_so_path(so_path);
3998                   const size_t double_slash_pos = full_so_path.find("//");
3999                   if (double_slash_pos != std::string::npos) {
4000                     // The linker has been generating bad N_SO entries with
4001                     // doubled up paths in the format "%s%s" where the first
4002                     // string in the DW_AT_comp_dir, and the second is the
4003                     // directory for the source file so you end up with a path
4004                     // that looks like "/tmp/src//tmp/src/"
4005                     FileSpec so_dir(so_path, false);
4006                     if (!so_dir.Exists()) {
4007                       so_dir.SetFile(&full_so_path[double_slash_pos + 1], false,
4008                                      FileSpec::Style::native);
4009                       if (so_dir.Exists()) {
4010                         // Trim off the incorrect path
4011                         full_so_path.erase(0, double_slash_pos + 1);
4012                       }
4013                     }
4014                   }
4015                   if (*full_so_path.rbegin() != '/')
4016                     full_so_path += '/';
4017                   full_so_path += symbol_name;
4018                   sym[sym_idx - 1].GetMangled().SetValue(
4019                       ConstString(full_so_path.c_str()), false);
4020                   add_nlist = false;
4021                   m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
4022                 }
4023               } else {
4024                 // This could be a relative path to a N_SO
4025                 N_SO_index = sym_idx;
4026               }
4027             }
4028             break;
4029 
4030           case N_OSO:
4031             // object file name: name,,0,0,st_mtime
4032             type = eSymbolTypeObjectFile;
4033             break;
4034 
4035           case N_LSYM:
4036             // local sym: name,,NO_SECT,type,offset
4037             type = eSymbolTypeLocal;
4038             break;
4039 
4040           //----------------------------------------------------------------------
4041           // INCL scopes
4042           //----------------------------------------------------------------------
4043           case N_BINCL:
4044             // include file beginning: name,,NO_SECT,0,sum We use the current
4045             // number of symbols in the symbol table in lieu of using nlist_idx
4046             // in case we ever start trimming entries out
4047             N_INCL_indexes.push_back(sym_idx);
4048             type = eSymbolTypeScopeBegin;
4049             break;
4050 
4051           case N_EINCL:
4052             // include file end: name,,NO_SECT,0,0
4053             // Set the size of the N_BINCL to the terminating index of this
4054             // N_EINCL so that we can always skip the entire symbol if we need
4055             // to navigate more quickly at the source level when parsing STABS
4056             if (!N_INCL_indexes.empty()) {
4057               symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back());
4058               symbol_ptr->SetByteSize(sym_idx + 1);
4059               symbol_ptr->SetSizeIsSibling(true);
4060               N_INCL_indexes.pop_back();
4061             }
4062             type = eSymbolTypeScopeEnd;
4063             break;
4064 
4065           case N_SOL:
4066             // #included file name: name,,n_sect,0,address
4067             type = eSymbolTypeHeaderFile;
4068 
4069             // We currently don't use the header files on darwin
4070             add_nlist = false;
4071             break;
4072 
4073           case N_PARAMS:
4074             // compiler parameters: name,,NO_SECT,0,0
4075             type = eSymbolTypeCompiler;
4076             break;
4077 
4078           case N_VERSION:
4079             // compiler version: name,,NO_SECT,0,0
4080             type = eSymbolTypeCompiler;
4081             break;
4082 
4083           case N_OLEVEL:
4084             // compiler -O level: name,,NO_SECT,0,0
4085             type = eSymbolTypeCompiler;
4086             break;
4087 
4088           case N_PSYM:
4089             // parameter: name,,NO_SECT,type,offset
4090             type = eSymbolTypeVariable;
4091             break;
4092 
4093           case N_ENTRY:
4094             // alternate entry: name,,n_sect,linenumber,address
4095             symbol_section =
4096                 section_info.GetSection(nlist.n_sect, nlist.n_value);
4097             type = eSymbolTypeLineEntry;
4098             break;
4099 
4100           //----------------------------------------------------------------------
4101           // Left and Right Braces
4102           //----------------------------------------------------------------------
4103           case N_LBRAC:
4104             // left bracket: 0,,NO_SECT,nesting level,address We use the
4105             // current number of symbols in the symbol table in lieu of using
4106             // nlist_idx in case we ever start trimming entries out
4107             symbol_section =
4108                 section_info.GetSection(nlist.n_sect, nlist.n_value);
4109             N_BRAC_indexes.push_back(sym_idx);
4110             type = eSymbolTypeScopeBegin;
4111             break;
4112 
4113           case N_RBRAC:
4114             // right bracket: 0,,NO_SECT,nesting level,address Set the size of
4115             // the N_LBRAC to the terminating index of this N_RBRAC so that we
4116             // can always skip the entire symbol if we need to navigate more
4117             // quickly at the source level when parsing STABS
4118             symbol_section =
4119                 section_info.GetSection(nlist.n_sect, nlist.n_value);
4120             if (!N_BRAC_indexes.empty()) {
4121               symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back());
4122               symbol_ptr->SetByteSize(sym_idx + 1);
4123               symbol_ptr->SetSizeIsSibling(true);
4124               N_BRAC_indexes.pop_back();
4125             }
4126             type = eSymbolTypeScopeEnd;
4127             break;
4128 
4129           case N_EXCL:
4130             // deleted include file: name,,NO_SECT,0,sum
4131             type = eSymbolTypeHeaderFile;
4132             break;
4133 
4134           //----------------------------------------------------------------------
4135           // COMM scopes
4136           //----------------------------------------------------------------------
4137           case N_BCOMM:
4138             // begin common: name,,NO_SECT,0,0
4139             // We use the current number of symbols in the symbol table in lieu
4140             // of using nlist_idx in case we ever start trimming entries out
4141             type = eSymbolTypeScopeBegin;
4142             N_COMM_indexes.push_back(sym_idx);
4143             break;
4144 
4145           case N_ECOML:
4146             // end common (local name): 0,,n_sect,0,address
4147             symbol_section =
4148                 section_info.GetSection(nlist.n_sect, nlist.n_value);
4149             LLVM_FALLTHROUGH;
4150 
4151           case N_ECOMM:
4152             // end common: name,,n_sect,0,0
4153             // Set the size of the N_BCOMM to the terminating index of this
4154             // N_ECOMM/N_ECOML so that we can always skip the entire symbol if
4155             // we need to navigate more quickly at the source level when
4156             // parsing STABS
4157             if (!N_COMM_indexes.empty()) {
4158               symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back());
4159               symbol_ptr->SetByteSize(sym_idx + 1);
4160               symbol_ptr->SetSizeIsSibling(true);
4161               N_COMM_indexes.pop_back();
4162             }
4163             type = eSymbolTypeScopeEnd;
4164             break;
4165 
4166           case N_LENG:
4167             // second stab entry with length information
4168             type = eSymbolTypeAdditional;
4169             break;
4170 
4171           default:
4172             break;
4173           }
4174         } else {
4175           // uint8_t n_pext    = N_PEXT & nlist.n_type;
4176           uint8_t n_type = N_TYPE & nlist.n_type;
4177           sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
4178 
4179           switch (n_type) {
4180           case N_INDR: {
4181             const char *reexport_name_cstr =
4182                 strtab_data.PeekCStr(nlist.n_value);
4183             if (reexport_name_cstr && reexport_name_cstr[0]) {
4184               type = eSymbolTypeReExported;
4185               ConstString reexport_name(
4186                   reexport_name_cstr +
4187                   ((reexport_name_cstr[0] == '_') ? 1 : 0));
4188               sym[sym_idx].SetReExportedSymbolName(reexport_name);
4189               set_value = false;
4190               reexport_shlib_needs_fixup[sym_idx] = reexport_name;
4191               indirect_symbol_names.insert(
4192                   ConstString(symbol_name + ((symbol_name[0] == '_') ? 1 : 0)));
4193             } else
4194               type = eSymbolTypeUndefined;
4195           } break;
4196 
4197           case N_UNDF:
4198             if (symbol_name && symbol_name[0]) {
4199               ConstString undefined_name(symbol_name +
4200                                          ((symbol_name[0] == '_') ? 1 : 0));
4201               undefined_name_to_desc[undefined_name] = nlist.n_desc;
4202             }
4203             LLVM_FALLTHROUGH;
4204 
4205           case N_PBUD:
4206             type = eSymbolTypeUndefined;
4207             break;
4208 
4209           case N_ABS:
4210             type = eSymbolTypeAbsolute;
4211             break;
4212 
4213           case N_SECT: {
4214             symbol_section =
4215                 section_info.GetSection(nlist.n_sect, nlist.n_value);
4216 
4217             if (!symbol_section) {
4218               // TODO: warn about this?
4219               add_nlist = false;
4220               break;
4221             }
4222 
4223             if (TEXT_eh_frame_sectID == nlist.n_sect) {
4224               type = eSymbolTypeException;
4225             } else {
4226               uint32_t section_type = symbol_section->Get() & SECTION_TYPE;
4227 
4228               switch (section_type) {
4229               case S_CSTRING_LITERALS:
4230                 type = eSymbolTypeData;
4231                 break; // section with only literal C strings
4232               case S_4BYTE_LITERALS:
4233                 type = eSymbolTypeData;
4234                 break; // section with only 4 byte literals
4235               case S_8BYTE_LITERALS:
4236                 type = eSymbolTypeData;
4237                 break; // section with only 8 byte literals
4238               case S_LITERAL_POINTERS:
4239                 type = eSymbolTypeTrampoline;
4240                 break; // section with only pointers to literals
4241               case S_NON_LAZY_SYMBOL_POINTERS:
4242                 type = eSymbolTypeTrampoline;
4243                 break; // section with only non-lazy symbol pointers
4244               case S_LAZY_SYMBOL_POINTERS:
4245                 type = eSymbolTypeTrampoline;
4246                 break; // section with only lazy symbol pointers
4247               case S_SYMBOL_STUBS:
4248                 type = eSymbolTypeTrampoline;
4249                 break; // section with only symbol stubs, byte size of stub in
4250                        // the reserved2 field
4251               case S_MOD_INIT_FUNC_POINTERS:
4252                 type = eSymbolTypeCode;
4253                 break; // section with only function pointers for initialization
4254               case S_MOD_TERM_FUNC_POINTERS:
4255                 type = eSymbolTypeCode;
4256                 break; // section with only function pointers for termination
4257               case S_INTERPOSING:
4258                 type = eSymbolTypeTrampoline;
4259                 break; // section with only pairs of function pointers for
4260                        // interposing
4261               case S_16BYTE_LITERALS:
4262                 type = eSymbolTypeData;
4263                 break; // section with only 16 byte literals
4264               case S_DTRACE_DOF:
4265                 type = eSymbolTypeInstrumentation;
4266                 break;
4267               case S_LAZY_DYLIB_SYMBOL_POINTERS:
4268                 type = eSymbolTypeTrampoline;
4269                 break;
4270               default:
4271                 switch (symbol_section->GetType()) {
4272                 case lldb::eSectionTypeCode:
4273                   type = eSymbolTypeCode;
4274                   break;
4275                 case eSectionTypeData:
4276                 case eSectionTypeDataCString:         // Inlined C string data
4277                 case eSectionTypeDataCStringPointers: // Pointers to C string
4278                                                       // data
4279                 case eSectionTypeDataSymbolAddress:   // Address of a symbol in
4280                                                       // the symbol table
4281                 case eSectionTypeData4:
4282                 case eSectionTypeData8:
4283                 case eSectionTypeData16:
4284                   type = eSymbolTypeData;
4285                   break;
4286                 default:
4287                   break;
4288                 }
4289                 break;
4290               }
4291 
4292               if (type == eSymbolTypeInvalid) {
4293                 const char *symbol_sect_name =
4294                     symbol_section->GetName().AsCString();
4295                 if (symbol_section->IsDescendant(text_section_sp.get())) {
4296                   if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS |
4297                                               S_ATTR_SELF_MODIFYING_CODE |
4298                                               S_ATTR_SOME_INSTRUCTIONS))
4299                     type = eSymbolTypeData;
4300                   else
4301                     type = eSymbolTypeCode;
4302                 } else if (symbol_section->IsDescendant(
4303                                data_section_sp.get()) ||
4304                            symbol_section->IsDescendant(
4305                                data_dirty_section_sp.get()) ||
4306                            symbol_section->IsDescendant(
4307                                data_const_section_sp.get())) {
4308                   if (symbol_sect_name &&
4309                       ::strstr(symbol_sect_name, "__objc") ==
4310                           symbol_sect_name) {
4311                     type = eSymbolTypeRuntime;
4312 
4313                     if (symbol_name) {
4314                       llvm::StringRef symbol_name_ref(symbol_name);
4315                       if (symbol_name_ref.startswith("_OBJC_")) {
4316                         static const llvm::StringRef g_objc_v2_prefix_class(
4317                             "_OBJC_CLASS_$_");
4318                         static const llvm::StringRef g_objc_v2_prefix_metaclass(
4319                             "_OBJC_METACLASS_$_");
4320                         static const llvm::StringRef g_objc_v2_prefix_ivar(
4321                             "_OBJC_IVAR_$_");
4322                         if (symbol_name_ref.startswith(
4323                                 g_objc_v2_prefix_class)) {
4324                           symbol_name_non_abi_mangled = symbol_name + 1;
4325                           symbol_name =
4326                               symbol_name + g_objc_v2_prefix_class.size();
4327                           type = eSymbolTypeObjCClass;
4328                           demangled_is_synthesized = true;
4329                         } else if (symbol_name_ref.startswith(
4330                                        g_objc_v2_prefix_metaclass)) {
4331                           symbol_name_non_abi_mangled = symbol_name + 1;
4332                           symbol_name =
4333                               symbol_name + g_objc_v2_prefix_metaclass.size();
4334                           type = eSymbolTypeObjCMetaClass;
4335                           demangled_is_synthesized = true;
4336                         } else if (symbol_name_ref.startswith(
4337                                        g_objc_v2_prefix_ivar)) {
4338                           symbol_name_non_abi_mangled = symbol_name + 1;
4339                           symbol_name =
4340                               symbol_name + g_objc_v2_prefix_ivar.size();
4341                           type = eSymbolTypeObjCIVar;
4342                           demangled_is_synthesized = true;
4343                         }
4344                       }
4345                     }
4346                   } else if (symbol_sect_name &&
4347                              ::strstr(symbol_sect_name, "__gcc_except_tab") ==
4348                                  symbol_sect_name) {
4349                     type = eSymbolTypeException;
4350                   } else {
4351                     type = eSymbolTypeData;
4352                   }
4353                 } else if (symbol_sect_name &&
4354                            ::strstr(symbol_sect_name, "__IMPORT") ==
4355                                symbol_sect_name) {
4356                   type = eSymbolTypeTrampoline;
4357                 } else if (symbol_section->IsDescendant(
4358                                objc_section_sp.get())) {
4359                   type = eSymbolTypeRuntime;
4360                   if (symbol_name && symbol_name[0] == '.') {
4361                     llvm::StringRef symbol_name_ref(symbol_name);
4362                     static const llvm::StringRef g_objc_v1_prefix_class(
4363                         ".objc_class_name_");
4364                     if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) {
4365                       symbol_name_non_abi_mangled = symbol_name;
4366                       symbol_name = symbol_name + g_objc_v1_prefix_class.size();
4367                       type = eSymbolTypeObjCClass;
4368                       demangled_is_synthesized = true;
4369                     }
4370                   }
4371                 }
4372               }
4373             }
4374           } break;
4375           }
4376         }
4377 
4378         if (add_nlist) {
4379           uint64_t symbol_value = nlist.n_value;
4380 
4381           if (symbol_name_non_abi_mangled) {
4382             sym[sym_idx].GetMangled().SetMangledName(
4383                 ConstString(symbol_name_non_abi_mangled));
4384             sym[sym_idx].GetMangled().SetDemangledName(
4385                 ConstString(symbol_name));
4386           } else {
4387             bool symbol_name_is_mangled = false;
4388 
4389             if (symbol_name && symbol_name[0] == '_') {
4390               symbol_name_is_mangled = symbol_name[1] == '_';
4391               symbol_name++; // Skip the leading underscore
4392             }
4393 
4394             if (symbol_name) {
4395               ConstString const_symbol_name(symbol_name);
4396               sym[sym_idx].GetMangled().SetValue(const_symbol_name,
4397                                                  symbol_name_is_mangled);
4398             }
4399           }
4400 
4401           if (is_gsym) {
4402             const char *gsym_name = sym[sym_idx]
4403                                         .GetMangled()
4404                                         .GetName(lldb::eLanguageTypeUnknown,
4405                                                  Mangled::ePreferMangled)
4406                                         .GetCString();
4407             if (gsym_name)
4408               N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
4409           }
4410 
4411           if (symbol_section) {
4412             const addr_t section_file_addr = symbol_section->GetFileAddress();
4413             if (symbol_byte_size == 0 && function_starts_count > 0) {
4414               addr_t symbol_lookup_file_addr = nlist.n_value;
4415               // Do an exact address match for non-ARM addresses, else get the
4416               // closest since the symbol might be a thumb symbol which has an
4417               // address with bit zero set
4418               FunctionStarts::Entry *func_start_entry =
4419                   function_starts.FindEntry(symbol_lookup_file_addr, !is_arm);
4420               if (is_arm && func_start_entry) {
4421                 // Verify that the function start address is the symbol address
4422                 // (ARM) or the symbol address + 1 (thumb)
4423                 if (func_start_entry->addr != symbol_lookup_file_addr &&
4424                     func_start_entry->addr != (symbol_lookup_file_addr + 1)) {
4425                   // Not the right entry, NULL it out...
4426                   func_start_entry = NULL;
4427                 }
4428               }
4429               if (func_start_entry) {
4430                 func_start_entry->data = true;
4431 
4432                 addr_t symbol_file_addr = func_start_entry->addr;
4433                 if (is_arm)
4434                   symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4435 
4436                 const FunctionStarts::Entry *next_func_start_entry =
4437                     function_starts.FindNextEntry(func_start_entry);
4438                 const addr_t section_end_file_addr =
4439                     section_file_addr + symbol_section->GetByteSize();
4440                 if (next_func_start_entry) {
4441                   addr_t next_symbol_file_addr = next_func_start_entry->addr;
4442                   // Be sure the clear the Thumb address bit when we calculate
4443                   // the size from the current and next address
4444                   if (is_arm)
4445                     next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4446                   symbol_byte_size = std::min<lldb::addr_t>(
4447                       next_symbol_file_addr - symbol_file_addr,
4448                       section_end_file_addr - symbol_file_addr);
4449                 } else {
4450                   symbol_byte_size = section_end_file_addr - symbol_file_addr;
4451                 }
4452               }
4453             }
4454             symbol_value -= section_file_addr;
4455           }
4456 
4457           if (is_debug == false) {
4458             if (type == eSymbolTypeCode) {
4459               // See if we can find a N_FUN entry for any code symbols. If we
4460               // do find a match, and the name matches, then we can merge the
4461               // two into just the function symbol to avoid duplicate entries
4462               // in the symbol table
4463               std::pair<ValueToSymbolIndexMap::const_iterator,
4464                         ValueToSymbolIndexMap::const_iterator>
4465                   range;
4466               range = N_FUN_addr_to_sym_idx.equal_range(nlist.n_value);
4467               if (range.first != range.second) {
4468                 bool found_it = false;
4469                 for (ValueToSymbolIndexMap::const_iterator pos = range.first;
4470                      pos != range.second; ++pos) {
4471                   if (sym[sym_idx].GetMangled().GetName(
4472                           lldb::eLanguageTypeUnknown,
4473                           Mangled::ePreferMangled) ==
4474                       sym[pos->second].GetMangled().GetName(
4475                           lldb::eLanguageTypeUnknown,
4476                           Mangled::ePreferMangled)) {
4477                     m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
4478                     // We just need the flags from the linker symbol, so put
4479                     // these flags into the N_FUN flags to avoid duplicate
4480                     // symbols in the symbol table
4481                     sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
4482                     sym[pos->second].SetFlags(nlist.n_type << 16 |
4483                                               nlist.n_desc);
4484                     if (resolver_addresses.find(nlist.n_value) !=
4485                         resolver_addresses.end())
4486                       sym[pos->second].SetType(eSymbolTypeResolver);
4487                     sym[sym_idx].Clear();
4488                     found_it = true;
4489                     break;
4490                   }
4491                 }
4492                 if (found_it)
4493                   continue;
4494               } else {
4495                 if (resolver_addresses.find(nlist.n_value) !=
4496                     resolver_addresses.end())
4497                   type = eSymbolTypeResolver;
4498               }
4499             } else if (type == eSymbolTypeData ||
4500                        type == eSymbolTypeObjCClass ||
4501                        type == eSymbolTypeObjCMetaClass ||
4502                        type == eSymbolTypeObjCIVar) {
4503               // See if we can find a N_STSYM entry for any data symbols. If we
4504               // do find a match, and the name matches, then we can merge the
4505               // two into just the Static symbol to avoid duplicate entries in
4506               // the symbol table
4507               std::pair<ValueToSymbolIndexMap::const_iterator,
4508                         ValueToSymbolIndexMap::const_iterator>
4509                   range;
4510               range = N_STSYM_addr_to_sym_idx.equal_range(nlist.n_value);
4511               if (range.first != range.second) {
4512                 bool found_it = false;
4513                 for (ValueToSymbolIndexMap::const_iterator pos = range.first;
4514                      pos != range.second; ++pos) {
4515                   if (sym[sym_idx].GetMangled().GetName(
4516                           lldb::eLanguageTypeUnknown,
4517                           Mangled::ePreferMangled) ==
4518                       sym[pos->second].GetMangled().GetName(
4519                           lldb::eLanguageTypeUnknown,
4520                           Mangled::ePreferMangled)) {
4521                     m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
4522                     // We just need the flags from the linker symbol, so put
4523                     // these flags into the N_STSYM flags to avoid duplicate
4524                     // symbols in the symbol table
4525                     sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
4526                     sym[pos->second].SetFlags(nlist.n_type << 16 |
4527                                               nlist.n_desc);
4528                     sym[sym_idx].Clear();
4529                     found_it = true;
4530                     break;
4531                   }
4532                 }
4533                 if (found_it)
4534                   continue;
4535               } else {
4536                 // Combine N_GSYM stab entries with the non stab symbol
4537                 const char *gsym_name = sym[sym_idx]
4538                                             .GetMangled()
4539                                             .GetName(lldb::eLanguageTypeUnknown,
4540                                                      Mangled::ePreferMangled)
4541                                             .GetCString();
4542                 if (gsym_name) {
4543                   ConstNameToSymbolIndexMap::const_iterator pos =
4544                       N_GSYM_name_to_sym_idx.find(gsym_name);
4545                   if (pos != N_GSYM_name_to_sym_idx.end()) {
4546                     const uint32_t GSYM_sym_idx = pos->second;
4547                     m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx;
4548                     // Copy the address, because often the N_GSYM address has
4549                     // an invalid address of zero when the global is a common
4550                     // symbol
4551                     sym[GSYM_sym_idx].GetAddressRef().SetSection(
4552                         symbol_section);
4553                     sym[GSYM_sym_idx].GetAddressRef().SetOffset(symbol_value);
4554                     // We just need the flags from the linker symbol, so put
4555                     // these flags into the N_GSYM flags to avoid duplicate
4556                     // symbols in the symbol table
4557                     sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 |
4558                                                nlist.n_desc);
4559                     sym[sym_idx].Clear();
4560                     continue;
4561                   }
4562                 }
4563               }
4564             }
4565           }
4566 
4567           sym[sym_idx].SetID(nlist_idx);
4568           sym[sym_idx].SetType(type);
4569           if (set_value) {
4570             sym[sym_idx].GetAddressRef().SetSection(symbol_section);
4571             sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
4572           }
4573           sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4574 
4575           if (symbol_byte_size > 0)
4576             sym[sym_idx].SetByteSize(symbol_byte_size);
4577 
4578           if (demangled_is_synthesized)
4579             sym[sym_idx].SetDemangledNameIsSynthesized(true);
4580 
4581           ++sym_idx;
4582         } else {
4583           sym[sym_idx].Clear();
4584         }
4585       }
4586 
4587       for (const auto &pos : reexport_shlib_needs_fixup) {
4588         const auto undef_pos = undefined_name_to_desc.find(pos.second);
4589         if (undef_pos != undefined_name_to_desc.end()) {
4590           const uint8_t dylib_ordinal =
4591               llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
4592           if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize())
4593             sym[pos.first].SetReExportedSymbolSharedLibrary(
4594                 dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
4595         }
4596       }
4597     }
4598 
4599     uint32_t synthetic_sym_id = symtab_load_command.nsyms;
4600 
4601     if (function_starts_count > 0) {
4602       uint32_t num_synthetic_function_symbols = 0;
4603       for (i = 0; i < function_starts_count; ++i) {
4604         if (function_starts.GetEntryRef(i).data == false)
4605           ++num_synthetic_function_symbols;
4606       }
4607 
4608       if (num_synthetic_function_symbols > 0) {
4609         if (num_syms < sym_idx + num_synthetic_function_symbols) {
4610           num_syms = sym_idx + num_synthetic_function_symbols;
4611           sym = symtab->Resize(num_syms);
4612         }
4613         for (i = 0; i < function_starts_count; ++i) {
4614           const FunctionStarts::Entry *func_start_entry =
4615               function_starts.GetEntryAtIndex(i);
4616           if (func_start_entry->data == false) {
4617             addr_t symbol_file_addr = func_start_entry->addr;
4618             uint32_t symbol_flags = 0;
4619             if (is_arm) {
4620               if (symbol_file_addr & 1)
4621                 symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB;
4622               symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4623             }
4624             Address symbol_addr;
4625             if (module_sp->ResolveFileAddress(symbol_file_addr, symbol_addr)) {
4626               SectionSP symbol_section(symbol_addr.GetSection());
4627               uint32_t symbol_byte_size = 0;
4628               if (symbol_section) {
4629                 const addr_t section_file_addr =
4630                     symbol_section->GetFileAddress();
4631                 const FunctionStarts::Entry *next_func_start_entry =
4632                     function_starts.FindNextEntry(func_start_entry);
4633                 const addr_t section_end_file_addr =
4634                     section_file_addr + symbol_section->GetByteSize();
4635                 if (next_func_start_entry) {
4636                   addr_t next_symbol_file_addr = next_func_start_entry->addr;
4637                   if (is_arm)
4638                     next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4639                   symbol_byte_size = std::min<lldb::addr_t>(
4640                       next_symbol_file_addr - symbol_file_addr,
4641                       section_end_file_addr - symbol_file_addr);
4642                 } else {
4643                   symbol_byte_size = section_end_file_addr - symbol_file_addr;
4644                 }
4645                 sym[sym_idx].SetID(synthetic_sym_id++);
4646                 sym[sym_idx].GetMangled().SetDemangledName(
4647                     GetNextSyntheticSymbolName());
4648                 sym[sym_idx].SetType(eSymbolTypeCode);
4649                 sym[sym_idx].SetIsSynthetic(true);
4650                 sym[sym_idx].GetAddressRef() = symbol_addr;
4651                 if (symbol_flags)
4652                   sym[sym_idx].SetFlags(symbol_flags);
4653                 if (symbol_byte_size)
4654                   sym[sym_idx].SetByteSize(symbol_byte_size);
4655                 ++sym_idx;
4656               }
4657             }
4658           }
4659         }
4660       }
4661     }
4662 
4663     // Trim our symbols down to just what we ended up with after removing any
4664     // symbols.
4665     if (sym_idx < num_syms) {
4666       num_syms = sym_idx;
4667       sym = symtab->Resize(num_syms);
4668     }
4669 
4670     // Now synthesize indirect symbols
4671     if (m_dysymtab.nindirectsyms != 0) {
4672       if (indirect_symbol_index_data.GetByteSize()) {
4673         NListIndexToSymbolIndexMap::const_iterator end_index_pos =
4674             m_nlist_idx_to_sym_idx.end();
4675 
4676         for (uint32_t sect_idx = 1; sect_idx < m_mach_sections.size();
4677              ++sect_idx) {
4678           if ((m_mach_sections[sect_idx].flags & SECTION_TYPE) ==
4679               S_SYMBOL_STUBS) {
4680             uint32_t symbol_stub_byte_size =
4681                 m_mach_sections[sect_idx].reserved2;
4682             if (symbol_stub_byte_size == 0)
4683               continue;
4684 
4685             const uint32_t num_symbol_stubs =
4686                 m_mach_sections[sect_idx].size / symbol_stub_byte_size;
4687 
4688             if (num_symbol_stubs == 0)
4689               continue;
4690 
4691             const uint32_t symbol_stub_index_offset =
4692                 m_mach_sections[sect_idx].reserved1;
4693             for (uint32_t stub_idx = 0; stub_idx < num_symbol_stubs;
4694                  ++stub_idx) {
4695               const uint32_t symbol_stub_index =
4696                   symbol_stub_index_offset + stub_idx;
4697               const lldb::addr_t symbol_stub_addr =
4698                   m_mach_sections[sect_idx].addr +
4699                   (stub_idx * symbol_stub_byte_size);
4700               lldb::offset_t symbol_stub_offset = symbol_stub_index * 4;
4701               if (indirect_symbol_index_data.ValidOffsetForDataOfSize(
4702                       symbol_stub_offset, 4)) {
4703                 const uint32_t stub_sym_id =
4704                     indirect_symbol_index_data.GetU32(&symbol_stub_offset);
4705                 if (stub_sym_id & (INDIRECT_SYMBOL_ABS | INDIRECT_SYMBOL_LOCAL))
4706                   continue;
4707 
4708                 NListIndexToSymbolIndexMap::const_iterator index_pos =
4709                     m_nlist_idx_to_sym_idx.find(stub_sym_id);
4710                 Symbol *stub_symbol = NULL;
4711                 if (index_pos != end_index_pos) {
4712                   // We have a remapping from the original nlist index to a
4713                   // current symbol index, so just look this up by index
4714                   stub_symbol = symtab->SymbolAtIndex(index_pos->second);
4715                 } else {
4716                   // We need to lookup a symbol using the original nlist symbol
4717                   // index since this index is coming from the S_SYMBOL_STUBS
4718                   stub_symbol = symtab->FindSymbolByID(stub_sym_id);
4719                 }
4720 
4721                 if (stub_symbol) {
4722                   Address so_addr(symbol_stub_addr, section_list);
4723 
4724                   if (stub_symbol->GetType() == eSymbolTypeUndefined) {
4725                     // Change the external symbol into a trampoline that makes
4726                     // sense These symbols were N_UNDF N_EXT, and are useless
4727                     // to us, so we can re-use them so we don't have to make up
4728                     // a synthetic symbol for no good reason.
4729                     if (resolver_addresses.find(symbol_stub_addr) ==
4730                         resolver_addresses.end())
4731                       stub_symbol->SetType(eSymbolTypeTrampoline);
4732                     else
4733                       stub_symbol->SetType(eSymbolTypeResolver);
4734                     stub_symbol->SetExternal(false);
4735                     stub_symbol->GetAddressRef() = so_addr;
4736                     stub_symbol->SetByteSize(symbol_stub_byte_size);
4737                   } else {
4738                     // Make a synthetic symbol to describe the trampoline stub
4739                     Mangled stub_symbol_mangled_name(stub_symbol->GetMangled());
4740                     if (sym_idx >= num_syms) {
4741                       sym = symtab->Resize(++num_syms);
4742                       stub_symbol = NULL; // this pointer no longer valid
4743                     }
4744                     sym[sym_idx].SetID(synthetic_sym_id++);
4745                     sym[sym_idx].GetMangled() = stub_symbol_mangled_name;
4746                     if (resolver_addresses.find(symbol_stub_addr) ==
4747                         resolver_addresses.end())
4748                       sym[sym_idx].SetType(eSymbolTypeTrampoline);
4749                     else
4750                       sym[sym_idx].SetType(eSymbolTypeResolver);
4751                     sym[sym_idx].SetIsSynthetic(true);
4752                     sym[sym_idx].GetAddressRef() = so_addr;
4753                     sym[sym_idx].SetByteSize(symbol_stub_byte_size);
4754                     ++sym_idx;
4755                   }
4756                 } else {
4757                   if (log)
4758                     log->Warning("symbol stub referencing symbol table symbol "
4759                                  "%u that isn't in our minimal symbol table, "
4760                                  "fix this!!!",
4761                                  stub_sym_id);
4762                 }
4763               }
4764             }
4765           }
4766         }
4767       }
4768     }
4769 
4770     if (!trie_entries.empty()) {
4771       for (const auto &e : trie_entries) {
4772         if (e.entry.import_name) {
4773           // Only add indirect symbols from the Trie entries if we didn't have
4774           // a N_INDR nlist entry for this already
4775           if (indirect_symbol_names.find(e.entry.name) ==
4776               indirect_symbol_names.end()) {
4777             // Make a synthetic symbol to describe re-exported symbol.
4778             if (sym_idx >= num_syms)
4779               sym = symtab->Resize(++num_syms);
4780             sym[sym_idx].SetID(synthetic_sym_id++);
4781             sym[sym_idx].GetMangled() = Mangled(e.entry.name);
4782             sym[sym_idx].SetType(eSymbolTypeReExported);
4783             sym[sym_idx].SetIsSynthetic(true);
4784             sym[sym_idx].SetReExportedSymbolName(e.entry.import_name);
4785             if (e.entry.other > 0 && e.entry.other <= dylib_files.GetSize()) {
4786               sym[sym_idx].SetReExportedSymbolSharedLibrary(
4787                   dylib_files.GetFileSpecAtIndex(e.entry.other - 1));
4788             }
4789             ++sym_idx;
4790           }
4791         }
4792       }
4793     }
4794 
4795     //        StreamFile s(stdout, false);
4796     //        s.Printf ("Symbol table before CalculateSymbolSizes():\n");
4797     //        symtab->Dump(&s, NULL, eSortOrderNone);
4798     // Set symbol byte sizes correctly since mach-o nlist entries don't have
4799     // sizes
4800     symtab->CalculateSymbolSizes();
4801 
4802     //        s.Printf ("Symbol table after CalculateSymbolSizes():\n");
4803     //        symtab->Dump(&s, NULL, eSortOrderNone);
4804 
4805     return symtab->GetNumSymbols();
4806   }
4807   return 0;
4808 }
4809 
4810 void ObjectFileMachO::Dump(Stream *s) {
4811   ModuleSP module_sp(GetModule());
4812   if (module_sp) {
4813     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
4814     s->Printf("%p: ", static_cast<void *>(this));
4815     s->Indent();
4816     if (m_header.magic == MH_MAGIC_64 || m_header.magic == MH_CIGAM_64)
4817       s->PutCString("ObjectFileMachO64");
4818     else
4819       s->PutCString("ObjectFileMachO32");
4820 
4821     ArchSpec header_arch;
4822     GetArchitecture(header_arch);
4823 
4824     *s << ", file = '" << m_file
4825        << "', triple = " << header_arch.GetTriple().getTriple() << "\n";
4826 
4827     SectionList *sections = GetSectionList();
4828     if (sections)
4829       sections->Dump(s, NULL, true, UINT32_MAX);
4830 
4831     if (m_symtab_ap.get())
4832       m_symtab_ap->Dump(s, NULL, eSortOrderNone);
4833   }
4834 }
4835 
4836 bool ObjectFileMachO::GetUUID(const llvm::MachO::mach_header &header,
4837                               const lldb_private::DataExtractor &data,
4838                               lldb::offset_t lc_offset,
4839                               lldb_private::UUID &uuid) {
4840   uint32_t i;
4841   struct uuid_command load_cmd;
4842 
4843   lldb::offset_t offset = lc_offset;
4844   for (i = 0; i < header.ncmds; ++i) {
4845     const lldb::offset_t cmd_offset = offset;
4846     if (data.GetU32(&offset, &load_cmd, 2) == NULL)
4847       break;
4848 
4849     if (load_cmd.cmd == LC_UUID) {
4850       const uint8_t *uuid_bytes = data.PeekData(offset, 16);
4851 
4852       if (uuid_bytes) {
4853         // OpenCL on Mac OS X uses the same UUID for each of its object files.
4854         // We pretend these object files have no UUID to prevent crashing.
4855 
4856         const uint8_t opencl_uuid[] = {0x8c, 0x8e, 0xb3, 0x9b, 0x3b, 0xa8,
4857                                        0x4b, 0x16, 0xb6, 0xa4, 0x27, 0x63,
4858                                        0xbb, 0x14, 0xf0, 0x0d};
4859 
4860         if (!memcmp(uuid_bytes, opencl_uuid, 16))
4861           return false;
4862 
4863         uuid = UUID::fromOptionalData(uuid_bytes, 16);
4864         return true;
4865       }
4866       return false;
4867     }
4868     offset = cmd_offset + load_cmd.cmdsize;
4869   }
4870   return false;
4871 }
4872 
4873 static const char *GetOSName(uint32_t cmd) {
4874   switch (cmd) {
4875   case llvm::MachO::LC_VERSION_MIN_IPHONEOS:
4876     return "ios";
4877   case llvm::MachO::LC_VERSION_MIN_MACOSX:
4878     return "macosx";
4879   case llvm::MachO::LC_VERSION_MIN_TVOS:
4880     return "tvos";
4881   case llvm::MachO::LC_VERSION_MIN_WATCHOS:
4882     return "watchos";
4883   default:
4884     llvm_unreachable("unexpected LC_VERSION load command");
4885   }
4886 }
4887 
4888 bool ObjectFileMachO::GetArchitecture(const llvm::MachO::mach_header &header,
4889                                       const lldb_private::DataExtractor &data,
4890                                       lldb::offset_t lc_offset,
4891                                       ArchSpec &arch) {
4892   arch.SetArchitecture(eArchTypeMachO, header.cputype, header.cpusubtype);
4893 
4894   if (arch.IsValid()) {
4895     llvm::Triple &triple = arch.GetTriple();
4896 
4897     // Set OS to an unspecified unknown or a "*" so it can match any OS
4898     triple.setOS(llvm::Triple::UnknownOS);
4899     triple.setOSName(llvm::StringRef());
4900 
4901     if (header.filetype == MH_PRELOAD) {
4902       if (header.cputype == CPU_TYPE_ARM) {
4903         // If this is a 32-bit arm binary, and it's a standalone binary, force
4904         // the Vendor to Apple so we don't accidentally pick up the generic
4905         // armv7 ABI at runtime.  Apple's armv7 ABI always uses r7 for the
4906         // frame pointer register; most other armv7 ABIs use a combination of
4907         // r7 and r11.
4908         triple.setVendor(llvm::Triple::Apple);
4909       } else {
4910         // Set vendor to an unspecified unknown or a "*" so it can match any
4911         // vendor This is required for correct behavior of EFI debugging on
4912         // x86_64
4913         triple.setVendor(llvm::Triple::UnknownVendor);
4914         triple.setVendorName(llvm::StringRef());
4915       }
4916       return true;
4917     } else {
4918       struct load_command load_cmd;
4919 
4920       lldb::offset_t offset = lc_offset;
4921       for (uint32_t i = 0; i < header.ncmds; ++i) {
4922         const lldb::offset_t cmd_offset = offset;
4923         if (data.GetU32(&offset, &load_cmd, 2) == NULL)
4924           break;
4925 
4926         uint32_t major, minor, patch;
4927         struct version_min_command version_min;
4928 
4929         llvm::SmallString<16> os_name;
4930         llvm::raw_svector_ostream os(os_name);
4931 
4932         switch (load_cmd.cmd) {
4933         case llvm::MachO::LC_VERSION_MIN_IPHONEOS:
4934         case llvm::MachO::LC_VERSION_MIN_MACOSX:
4935         case llvm::MachO::LC_VERSION_MIN_TVOS:
4936         case llvm::MachO::LC_VERSION_MIN_WATCHOS:
4937           if (load_cmd.cmdsize != sizeof(version_min))
4938             break;
4939           data.ExtractBytes(cmd_offset,
4940                             sizeof(version_min), data.GetByteOrder(),
4941                             &version_min);
4942           major = version_min.version >> 16;
4943           minor = (version_min.version >> 8) & 0xffu;
4944           patch = version_min.version & 0xffu;
4945           os << GetOSName(load_cmd.cmd) << major << '.' << minor << '.'
4946              << patch;
4947           triple.setOSName(os.str());
4948           return true;
4949         default:
4950           break;
4951         }
4952 
4953         offset = cmd_offset + load_cmd.cmdsize;
4954       }
4955 
4956       if (header.filetype != MH_KEXT_BUNDLE) {
4957         // We didn't find a LC_VERSION_MIN load command and this isn't a KEXT
4958         // so lets not say our Vendor is Apple, leave it as an unspecified
4959         // unknown
4960         triple.setVendor(llvm::Triple::UnknownVendor);
4961         triple.setVendorName(llvm::StringRef());
4962       }
4963     }
4964   }
4965   return arch.IsValid();
4966 }
4967 
4968 bool ObjectFileMachO::GetUUID(lldb_private::UUID *uuid) {
4969   ModuleSP module_sp(GetModule());
4970   if (module_sp) {
4971     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
4972     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
4973     return GetUUID(m_header, m_data, offset, *uuid);
4974   }
4975   return false;
4976 }
4977 
4978 uint32_t ObjectFileMachO::GetDependentModules(FileSpecList &files) {
4979   uint32_t count = 0;
4980   ModuleSP module_sp(GetModule());
4981   if (module_sp) {
4982     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
4983     struct load_command load_cmd;
4984     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
4985     std::vector<std::string> rpath_paths;
4986     std::vector<std::string> rpath_relative_paths;
4987     std::vector<std::string> at_exec_relative_paths;
4988     const bool resolve_path = false; // Don't resolve the dependent file paths
4989                                      // since they may not reside on this
4990                                      // system
4991     uint32_t i;
4992     for (i = 0; i < m_header.ncmds; ++i) {
4993       const uint32_t cmd_offset = offset;
4994       if (m_data.GetU32(&offset, &load_cmd, 2) == NULL)
4995         break;
4996 
4997       switch (load_cmd.cmd) {
4998       case LC_RPATH:
4999       case LC_LOAD_DYLIB:
5000       case LC_LOAD_WEAK_DYLIB:
5001       case LC_REEXPORT_DYLIB:
5002       case LC_LOAD_DYLINKER:
5003       case LC_LOADFVMLIB:
5004       case LC_LOAD_UPWARD_DYLIB: {
5005         uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
5006         const char *path = m_data.PeekCStr(name_offset);
5007         if (path) {
5008           if (load_cmd.cmd == LC_RPATH)
5009             rpath_paths.push_back(path);
5010           else {
5011             if (path[0] == '@') {
5012               if (strncmp(path, "@rpath", strlen("@rpath")) == 0)
5013                 rpath_relative_paths.push_back(path + strlen("@rpath"));
5014               else if (strncmp(path, "@executable_path",
5015                        strlen("@executable_path")) == 0)
5016                 at_exec_relative_paths.push_back(path
5017                                                  + strlen("@executable_path"));
5018             } else {
5019               FileSpec file_spec(path, resolve_path);
5020               if (files.AppendIfUnique(file_spec))
5021                 count++;
5022             }
5023           }
5024         }
5025       } break;
5026 
5027       default:
5028         break;
5029       }
5030       offset = cmd_offset + load_cmd.cmdsize;
5031     }
5032 
5033     FileSpec this_file_spec(m_file);
5034     this_file_spec.ResolvePath();
5035 
5036     if (!rpath_paths.empty()) {
5037       // Fixup all LC_RPATH values to be absolute paths
5038       std::string loader_path("@loader_path");
5039       std::string executable_path("@executable_path");
5040       for (auto &rpath : rpath_paths) {
5041         if (rpath.find(loader_path) == 0) {
5042           rpath.erase(0, loader_path.size());
5043           rpath.insert(0, this_file_spec.GetDirectory().GetCString());
5044         } else if (rpath.find(executable_path) == 0) {
5045           rpath.erase(0, executable_path.size());
5046           rpath.insert(0, this_file_spec.GetDirectory().GetCString());
5047         }
5048       }
5049 
5050       for (const auto &rpath_relative_path : rpath_relative_paths) {
5051         for (const auto &rpath : rpath_paths) {
5052           std::string path = rpath;
5053           path += rpath_relative_path;
5054           // It is OK to resolve this path because we must find a file on disk
5055           // for us to accept it anyway if it is rpath relative.
5056           FileSpec file_spec(path, true);
5057           if (file_spec.Exists() && files.AppendIfUnique(file_spec)) {
5058             count++;
5059             break;
5060           }
5061         }
5062       }
5063     }
5064 
5065     // We may have @executable_paths but no RPATHS.  Figure those out here.
5066     // Only do this if this object file is the executable.  We have no way to
5067     // get back to the actual executable otherwise, so we won't get the right
5068     // path.
5069     if (!at_exec_relative_paths.empty() && CalculateType() == eTypeExecutable) {
5070       FileSpec exec_dir = this_file_spec.CopyByRemovingLastPathComponent();
5071       for (const auto &at_exec_relative_path : at_exec_relative_paths) {
5072         FileSpec file_spec =
5073             exec_dir.CopyByAppendingPathComponent(at_exec_relative_path);
5074         if (file_spec.Exists() && files.AppendIfUnique(file_spec))
5075           count++;
5076       }
5077     }
5078   }
5079   return count;
5080 }
5081 
5082 lldb_private::Address ObjectFileMachO::GetEntryPointAddress() {
5083   // If the object file is not an executable it can't hold the entry point.
5084   // m_entry_point_address is initialized to an invalid address, so we can just
5085   // return that. If m_entry_point_address is valid it means we've found it
5086   // already, so return the cached value.
5087 
5088   if (!IsExecutable() || m_entry_point_address.IsValid())
5089     return m_entry_point_address;
5090 
5091   // Otherwise, look for the UnixThread or Thread command.  The data for the
5092   // Thread command is given in /usr/include/mach-o.h, but it is basically:
5093   //
5094   //  uint32_t flavor  - this is the flavor argument you would pass to
5095   //  thread_get_state
5096   //  uint32_t count   - this is the count of longs in the thread state data
5097   //  struct XXX_thread_state state - this is the structure from
5098   //  <machine/thread_status.h> corresponding to the flavor.
5099   //  <repeat this trio>
5100   //
5101   // So we just keep reading the various register flavors till we find the GPR
5102   // one, then read the PC out of there.
5103   // FIXME: We will need to have a "RegisterContext data provider" class at some
5104   // point that can get all the registers
5105   // out of data in this form & attach them to a given thread.  That should
5106   // underlie the MacOS X User process plugin, and we'll also need it for the
5107   // MacOS X Core File process plugin.  When we have that we can also use it
5108   // here.
5109   //
5110   // For now we hard-code the offsets and flavors we need:
5111   //
5112   //
5113 
5114   ModuleSP module_sp(GetModule());
5115   if (module_sp) {
5116     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5117     struct load_command load_cmd;
5118     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5119     uint32_t i;
5120     lldb::addr_t start_address = LLDB_INVALID_ADDRESS;
5121     bool done = false;
5122 
5123     for (i = 0; i < m_header.ncmds; ++i) {
5124       const lldb::offset_t cmd_offset = offset;
5125       if (m_data.GetU32(&offset, &load_cmd, 2) == NULL)
5126         break;
5127 
5128       switch (load_cmd.cmd) {
5129       case LC_UNIXTHREAD:
5130       case LC_THREAD: {
5131         while (offset < cmd_offset + load_cmd.cmdsize) {
5132           uint32_t flavor = m_data.GetU32(&offset);
5133           uint32_t count = m_data.GetU32(&offset);
5134           if (count == 0) {
5135             // We've gotten off somehow, log and exit;
5136             return m_entry_point_address;
5137           }
5138 
5139           switch (m_header.cputype) {
5140           case llvm::MachO::CPU_TYPE_ARM:
5141             if (flavor == 1 ||
5142                 flavor == 9) // ARM_THREAD_STATE/ARM_THREAD_STATE32 from
5143                              // mach/arm/thread_status.h
5144             {
5145               offset += 60; // This is the offset of pc in the GPR thread state
5146                             // data structure.
5147               start_address = m_data.GetU32(&offset);
5148               done = true;
5149             }
5150             break;
5151           case llvm::MachO::CPU_TYPE_ARM64:
5152             if (flavor == 6) // ARM_THREAD_STATE64 from mach/arm/thread_status.h
5153             {
5154               offset += 256; // This is the offset of pc in the GPR thread state
5155                              // data structure.
5156               start_address = m_data.GetU64(&offset);
5157               done = true;
5158             }
5159             break;
5160           case llvm::MachO::CPU_TYPE_I386:
5161             if (flavor ==
5162                 1) // x86_THREAD_STATE32 from mach/i386/thread_status.h
5163             {
5164               offset += 40; // This is the offset of eip in the GPR thread state
5165                             // data structure.
5166               start_address = m_data.GetU32(&offset);
5167               done = true;
5168             }
5169             break;
5170           case llvm::MachO::CPU_TYPE_X86_64:
5171             if (flavor ==
5172                 4) // x86_THREAD_STATE64 from mach/i386/thread_status.h
5173             {
5174               offset += 16 * 8; // This is the offset of rip in the GPR thread
5175                                 // state data structure.
5176               start_address = m_data.GetU64(&offset);
5177               done = true;
5178             }
5179             break;
5180           default:
5181             return m_entry_point_address;
5182           }
5183           // Haven't found the GPR flavor yet, skip over the data for this
5184           // flavor:
5185           if (done)
5186             break;
5187           offset += count * 4;
5188         }
5189       } break;
5190       case LC_MAIN: {
5191         ConstString text_segment_name("__TEXT");
5192         uint64_t entryoffset = m_data.GetU64(&offset);
5193         SectionSP text_segment_sp =
5194             GetSectionList()->FindSectionByName(text_segment_name);
5195         if (text_segment_sp) {
5196           done = true;
5197           start_address = text_segment_sp->GetFileAddress() + entryoffset;
5198         }
5199       } break;
5200 
5201       default:
5202         break;
5203       }
5204       if (done)
5205         break;
5206 
5207       // Go to the next load command:
5208       offset = cmd_offset + load_cmd.cmdsize;
5209     }
5210 
5211     if (start_address != LLDB_INVALID_ADDRESS) {
5212       // We got the start address from the load commands, so now resolve that
5213       // address in the sections of this ObjectFile:
5214       if (!m_entry_point_address.ResolveAddressUsingFileSections(
5215               start_address, GetSectionList())) {
5216         m_entry_point_address.Clear();
5217       }
5218     } else {
5219       // We couldn't read the UnixThread load command - maybe it wasn't there.
5220       // As a fallback look for the "start" symbol in the main executable.
5221 
5222       ModuleSP module_sp(GetModule());
5223 
5224       if (module_sp) {
5225         SymbolContextList contexts;
5226         SymbolContext context;
5227         if (module_sp->FindSymbolsWithNameAndType(ConstString("start"),
5228                                                   eSymbolTypeCode, contexts)) {
5229           if (contexts.GetContextAtIndex(0, context))
5230             m_entry_point_address = context.symbol->GetAddress();
5231         }
5232       }
5233     }
5234   }
5235 
5236   return m_entry_point_address;
5237 }
5238 
5239 lldb_private::Address ObjectFileMachO::GetHeaderAddress() {
5240   lldb_private::Address header_addr;
5241   SectionList *section_list = GetSectionList();
5242   if (section_list) {
5243     SectionSP text_segment_sp(
5244         section_list->FindSectionByName(GetSegmentNameTEXT()));
5245     if (text_segment_sp) {
5246       header_addr.SetSection(text_segment_sp);
5247       header_addr.SetOffset(0);
5248     }
5249   }
5250   return header_addr;
5251 }
5252 
5253 uint32_t ObjectFileMachO::GetNumThreadContexts() {
5254   ModuleSP module_sp(GetModule());
5255   if (module_sp) {
5256     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5257     if (!m_thread_context_offsets_valid) {
5258       m_thread_context_offsets_valid = true;
5259       lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5260       FileRangeArray::Entry file_range;
5261       thread_command thread_cmd;
5262       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5263         const uint32_t cmd_offset = offset;
5264         if (m_data.GetU32(&offset, &thread_cmd, 2) == NULL)
5265           break;
5266 
5267         if (thread_cmd.cmd == LC_THREAD) {
5268           file_range.SetRangeBase(offset);
5269           file_range.SetByteSize(thread_cmd.cmdsize - 8);
5270           m_thread_context_offsets.Append(file_range);
5271         }
5272         offset = cmd_offset + thread_cmd.cmdsize;
5273       }
5274     }
5275   }
5276   return m_thread_context_offsets.GetSize();
5277 }
5278 
5279 std::string ObjectFileMachO::GetIdentifierString() {
5280   std::string result;
5281   ModuleSP module_sp(GetModule());
5282   if (module_sp) {
5283     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5284 
5285     // First, look over the load commands for an LC_NOTE load command with
5286     // data_owner string "kern ver str" & use that if found.
5287     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5288     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5289       const uint32_t cmd_offset = offset;
5290       load_command lc;
5291       if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL)
5292           break;
5293       if (lc.cmd == LC_NOTE)
5294       {
5295           char data_owner[17];
5296           m_data.CopyData (offset, 16, data_owner);
5297           data_owner[16] = '\0';
5298           offset += 16;
5299           uint64_t fileoff = m_data.GetU64_unchecked (&offset);
5300           uint64_t size = m_data.GetU64_unchecked (&offset);
5301 
5302           // "kern ver str" has a uint32_t version and then a nul terminated
5303           // c-string.
5304           if (strcmp ("kern ver str", data_owner) == 0)
5305           {
5306               offset = fileoff;
5307               uint32_t version;
5308               if (m_data.GetU32 (&offset, &version, 1) != nullptr)
5309               {
5310                   if (version == 1)
5311                   {
5312                       uint32_t strsize = size - sizeof (uint32_t);
5313                       char *buf = (char*) malloc (strsize);
5314                       if (buf)
5315                       {
5316                           m_data.CopyData (offset, strsize, buf);
5317                           buf[strsize - 1] = '\0';
5318                           result = buf;
5319                           if (buf)
5320                               free (buf);
5321                           return result;
5322                       }
5323                   }
5324               }
5325           }
5326       }
5327       offset = cmd_offset + lc.cmdsize;
5328     }
5329 
5330     // Second, make a pass over the load commands looking for an obsolete
5331     // LC_IDENT load command.
5332     offset = MachHeaderSizeFromMagic(m_header.magic);
5333     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5334       const uint32_t cmd_offset = offset;
5335       struct ident_command ident_command;
5336       if (m_data.GetU32(&offset, &ident_command, 2) == NULL)
5337         break;
5338       if (ident_command.cmd == LC_IDENT && ident_command.cmdsize != 0) {
5339         char *buf = (char *) malloc (ident_command.cmdsize);
5340         if (buf != nullptr
5341             && m_data.CopyData (offset, ident_command.cmdsize, buf) == ident_command.cmdsize) {
5342           buf[ident_command.cmdsize - 1] = '\0';
5343           result = buf;
5344         }
5345         if (buf)
5346           free (buf);
5347       }
5348       offset = cmd_offset + ident_command.cmdsize;
5349     }
5350 
5351   }
5352   return result;
5353 }
5354 
5355 bool ObjectFileMachO::GetCorefileMainBinaryInfo (addr_t &address, UUID &uuid) {
5356   address = LLDB_INVALID_ADDRESS;
5357   uuid.Clear();
5358   ModuleSP module_sp(GetModule());
5359   if (module_sp) {
5360     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5361     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5362     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5363       const uint32_t cmd_offset = offset;
5364       load_command lc;
5365       if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL)
5366           break;
5367       if (lc.cmd == LC_NOTE)
5368       {
5369           char data_owner[17];
5370           memset (data_owner, 0, sizeof (data_owner));
5371           m_data.CopyData (offset, 16, data_owner);
5372           offset += 16;
5373           uint64_t fileoff = m_data.GetU64_unchecked (&offset);
5374           uint64_t size = m_data.GetU64_unchecked (&offset);
5375 
5376           // "main bin spec" (main binary specification) data payload is
5377           // formatted:
5378           //    uint32_t version       [currently 1]
5379           //    uint32_t type          [0 == unspecified, 1 == kernel, 2 == user process]
5380           //    uint64_t address       [ UINT64_MAX if address not specified ]
5381           //    uuid_t   uuid          [ all zero's if uuid not specified ]
5382           //    uint32_t log2_pagesize [ process page size in log base 2, e.g. 4k pages are 12.  0 for unspecified ]
5383 
5384           if (strcmp ("main bin spec", data_owner) == 0 && size >= 32)
5385           {
5386               offset = fileoff;
5387               uint32_t version;
5388               if (m_data.GetU32 (&offset, &version, 1) != nullptr && version == 1)
5389               {
5390                   uint32_t type = 0;
5391                   uuid_t raw_uuid;
5392                   memset (raw_uuid, 0, sizeof (uuid_t));
5393 
5394                   if (m_data.GetU32(&offset, &type, 1) &&
5395                       m_data.GetU64(&offset, &address, 1) &&
5396                       m_data.CopyData(offset, sizeof(uuid_t), raw_uuid) != 0) {
5397                     uuid = UUID::fromOptionalData(raw_uuid, sizeof(uuid_t));
5398                     return true;
5399                   }
5400               }
5401           }
5402       }
5403       offset = cmd_offset + lc.cmdsize;
5404     }
5405   }
5406   return false;
5407 }
5408 
5409 lldb::RegisterContextSP
5410 ObjectFileMachO::GetThreadContextAtIndex(uint32_t idx,
5411                                          lldb_private::Thread &thread) {
5412   lldb::RegisterContextSP reg_ctx_sp;
5413 
5414   ModuleSP module_sp(GetModule());
5415   if (module_sp) {
5416     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5417     if (!m_thread_context_offsets_valid)
5418       GetNumThreadContexts();
5419 
5420     const FileRangeArray::Entry *thread_context_file_range =
5421         m_thread_context_offsets.GetEntryAtIndex(idx);
5422     if (thread_context_file_range) {
5423 
5424       DataExtractor data(m_data, thread_context_file_range->GetRangeBase(),
5425                          thread_context_file_range->GetByteSize());
5426 
5427       switch (m_header.cputype) {
5428       case llvm::MachO::CPU_TYPE_ARM64:
5429         reg_ctx_sp.reset(new RegisterContextDarwin_arm64_Mach(thread, data));
5430         break;
5431 
5432       case llvm::MachO::CPU_TYPE_ARM:
5433         reg_ctx_sp.reset(new RegisterContextDarwin_arm_Mach(thread, data));
5434         break;
5435 
5436       case llvm::MachO::CPU_TYPE_I386:
5437         reg_ctx_sp.reset(new RegisterContextDarwin_i386_Mach(thread, data));
5438         break;
5439 
5440       case llvm::MachO::CPU_TYPE_X86_64:
5441         reg_ctx_sp.reset(new RegisterContextDarwin_x86_64_Mach(thread, data));
5442         break;
5443       }
5444     }
5445   }
5446   return reg_ctx_sp;
5447 }
5448 
5449 ObjectFile::Type ObjectFileMachO::CalculateType() {
5450   switch (m_header.filetype) {
5451   case MH_OBJECT: // 0x1u
5452     if (GetAddressByteSize() == 4) {
5453       // 32 bit kexts are just object files, but they do have a valid
5454       // UUID load command.
5455       UUID uuid;
5456       if (GetUUID(&uuid)) {
5457         // this checking for the UUID load command is not enough we could
5458         // eventually look for the symbol named "OSKextGetCurrentIdentifier" as
5459         // this is required of kexts
5460         if (m_strata == eStrataInvalid)
5461           m_strata = eStrataKernel;
5462         return eTypeSharedLibrary;
5463       }
5464     }
5465     return eTypeObjectFile;
5466 
5467   case MH_EXECUTE:
5468     return eTypeExecutable; // 0x2u
5469   case MH_FVMLIB:
5470     return eTypeSharedLibrary; // 0x3u
5471   case MH_CORE:
5472     return eTypeCoreFile; // 0x4u
5473   case MH_PRELOAD:
5474     return eTypeSharedLibrary; // 0x5u
5475   case MH_DYLIB:
5476     return eTypeSharedLibrary; // 0x6u
5477   case MH_DYLINKER:
5478     return eTypeDynamicLinker; // 0x7u
5479   case MH_BUNDLE:
5480     return eTypeSharedLibrary; // 0x8u
5481   case MH_DYLIB_STUB:
5482     return eTypeStubLibrary; // 0x9u
5483   case MH_DSYM:
5484     return eTypeDebugInfo; // 0xAu
5485   case MH_KEXT_BUNDLE:
5486     return eTypeSharedLibrary; // 0xBu
5487   default:
5488     break;
5489   }
5490   return eTypeUnknown;
5491 }
5492 
5493 ObjectFile::Strata ObjectFileMachO::CalculateStrata() {
5494   switch (m_header.filetype) {
5495   case MH_OBJECT: // 0x1u
5496   {
5497     // 32 bit kexts are just object files, but they do have a valid
5498     // UUID load command.
5499     UUID uuid;
5500     if (GetUUID(&uuid)) {
5501       // this checking for the UUID load command is not enough we could
5502       // eventually look for the symbol named "OSKextGetCurrentIdentifier" as
5503       // this is required of kexts
5504       if (m_type == eTypeInvalid)
5505         m_type = eTypeSharedLibrary;
5506 
5507       return eStrataKernel;
5508     }
5509   }
5510     return eStrataUnknown;
5511 
5512   case MH_EXECUTE: // 0x2u
5513     // Check for the MH_DYLDLINK bit in the flags
5514     if (m_header.flags & MH_DYLDLINK) {
5515       return eStrataUser;
5516     } else {
5517       SectionList *section_list = GetSectionList();
5518       if (section_list) {
5519         static ConstString g_kld_section_name("__KLD");
5520         if (section_list->FindSectionByName(g_kld_section_name))
5521           return eStrataKernel;
5522       }
5523     }
5524     return eStrataRawImage;
5525 
5526   case MH_FVMLIB:
5527     return eStrataUser; // 0x3u
5528   case MH_CORE:
5529     return eStrataUnknown; // 0x4u
5530   case MH_PRELOAD:
5531     return eStrataRawImage; // 0x5u
5532   case MH_DYLIB:
5533     return eStrataUser; // 0x6u
5534   case MH_DYLINKER:
5535     return eStrataUser; // 0x7u
5536   case MH_BUNDLE:
5537     return eStrataUser; // 0x8u
5538   case MH_DYLIB_STUB:
5539     return eStrataUser; // 0x9u
5540   case MH_DSYM:
5541     return eStrataUnknown; // 0xAu
5542   case MH_KEXT_BUNDLE:
5543     return eStrataKernel; // 0xBu
5544   default:
5545     break;
5546   }
5547   return eStrataUnknown;
5548 }
5549 
5550 llvm::VersionTuple ObjectFileMachO::GetVersion() {
5551   ModuleSP module_sp(GetModule());
5552   if (module_sp) {
5553     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5554     struct dylib_command load_cmd;
5555     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5556     uint32_t version_cmd = 0;
5557     uint64_t version = 0;
5558     uint32_t i;
5559     for (i = 0; i < m_header.ncmds; ++i) {
5560       const lldb::offset_t cmd_offset = offset;
5561       if (m_data.GetU32(&offset, &load_cmd, 2) == NULL)
5562         break;
5563 
5564       if (load_cmd.cmd == LC_ID_DYLIB) {
5565         if (version_cmd == 0) {
5566           version_cmd = load_cmd.cmd;
5567           if (m_data.GetU32(&offset, &load_cmd.dylib, 4) == NULL)
5568             break;
5569           version = load_cmd.dylib.current_version;
5570         }
5571         break; // Break for now unless there is another more complete version
5572                // number load command in the future.
5573       }
5574       offset = cmd_offset + load_cmd.cmdsize;
5575     }
5576 
5577     if (version_cmd == LC_ID_DYLIB) {
5578       unsigned major = (version & 0xFFFF0000ull) >> 16;
5579       unsigned minor = (version & 0x0000FF00ull) >> 8;
5580       unsigned subminor = (version & 0x000000FFull);
5581       return llvm::VersionTuple(major, minor, subminor);
5582     }
5583   }
5584   return llvm::VersionTuple();
5585 }
5586 
5587 bool ObjectFileMachO::GetArchitecture(ArchSpec &arch) {
5588   ModuleSP module_sp(GetModule());
5589   if (module_sp) {
5590     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5591     return GetArchitecture(m_header, m_data,
5592                            MachHeaderSizeFromMagic(m_header.magic), arch);
5593   }
5594   return false;
5595 }
5596 
5597 void ObjectFileMachO::GetProcessSharedCacheUUID(Process *process, addr_t &base_addr, UUID &uuid) {
5598   uuid.Clear();
5599   base_addr = LLDB_INVALID_ADDRESS;
5600   if (process && process->GetDynamicLoader()) {
5601     DynamicLoader *dl = process->GetDynamicLoader();
5602     LazyBool using_shared_cache;
5603     LazyBool private_shared_cache;
5604     dl->GetSharedCacheInformation(base_addr, uuid, using_shared_cache,
5605                                   private_shared_cache);
5606   }
5607   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS | LIBLLDB_LOG_PROCESS));
5608   if (log)
5609     log->Printf("inferior process shared cache has a UUID of %s, base address 0x%" PRIx64 , uuid.GetAsString().c_str(), base_addr);
5610 }
5611 
5612 // From dyld SPI header dyld_process_info.h
5613 typedef void *dyld_process_info;
5614 struct lldb_copy__dyld_process_cache_info {
5615   uuid_t cacheUUID;          // UUID of cache used by process
5616   uint64_t cacheBaseAddress; // load address of dyld shared cache
5617   bool noCache;              // process is running without a dyld cache
5618   bool privateCache; // process is using a private copy of its dyld cache
5619 };
5620 
5621 // #including mach/mach.h pulls in machine.h & CPU_TYPE_ARM etc conflicts with llvm
5622 // enum definitions llvm::MachO::CPU_TYPE_ARM turning them into compile errors.
5623 // So we need to use the actual underlying types of task_t and kern_return_t
5624 // below.
5625 extern "C" unsigned int /*task_t*/ mach_task_self();
5626 
5627 void ObjectFileMachO::GetLLDBSharedCacheUUID(addr_t &base_addr, UUID &uuid) {
5628   uuid.Clear();
5629   base_addr = LLDB_INVALID_ADDRESS;
5630 
5631 #if defined(__APPLE__) &&                                                      \
5632     (defined(__arm__) || defined(__arm64__) || defined(__aarch64__))
5633   uint8_t *(*dyld_get_all_image_infos)(void);
5634   dyld_get_all_image_infos =
5635       (uint8_t * (*)())dlsym(RTLD_DEFAULT, "_dyld_get_all_image_infos");
5636   if (dyld_get_all_image_infos) {
5637     uint8_t *dyld_all_image_infos_address = dyld_get_all_image_infos();
5638     if (dyld_all_image_infos_address) {
5639       uint32_t *version = (uint32_t *)
5640           dyld_all_image_infos_address; // version <mach-o/dyld_images.h>
5641       if (*version >= 13) {
5642         uuid_t *sharedCacheUUID_address = 0;
5643         int wordsize = sizeof(uint8_t *);
5644         if (wordsize == 8) {
5645           sharedCacheUUID_address =
5646               (uuid_t *)((uint8_t *)dyld_all_image_infos_address +
5647                          160); // sharedCacheUUID <mach-o/dyld_images.h>
5648           if (*version >= 15)
5649             base_addr = *(uint64_t *) ((uint8_t *) dyld_all_image_infos_address
5650                           + 176); // sharedCacheBaseAddress <mach-o/dyld_images.h>
5651         } else {
5652           sharedCacheUUID_address =
5653               (uuid_t *)((uint8_t *)dyld_all_image_infos_address +
5654                          84); // sharedCacheUUID <mach-o/dyld_images.h>
5655           if (*version >= 15) {
5656             base_addr = 0;
5657             base_addr = *(uint32_t *) ((uint8_t *) dyld_all_image_infos_address
5658                           + 100); // sharedCacheBaseAddress <mach-o/dyld_images.h>
5659           }
5660         }
5661         uuid = UUID::fromOptionalData(sharedCacheUUID_address, sizeof(uuid_t));
5662       }
5663     }
5664   } else {
5665     // Exists in macOS 10.12 and later, iOS 10.0 and later - dyld SPI
5666     dyld_process_info (*dyld_process_info_create)(unsigned int /* task_t */ task, uint64_t timestamp, unsigned int /*kern_return_t*/ *kernelError);
5667     void (*dyld_process_info_get_cache)(void *info, void *cacheInfo);
5668     void (*dyld_process_info_release)(dyld_process_info info);
5669 
5670     dyld_process_info_create = (void *(*)(unsigned int /* task_t */, uint64_t, unsigned int /*kern_return_t*/ *))
5671                dlsym (RTLD_DEFAULT, "_dyld_process_info_create");
5672     dyld_process_info_get_cache = (void (*)(void *, void *))
5673                dlsym (RTLD_DEFAULT, "_dyld_process_info_get_cache");
5674     dyld_process_info_release = (void (*)(void *))
5675                dlsym (RTLD_DEFAULT, "_dyld_process_info_release");
5676 
5677     if (dyld_process_info_create && dyld_process_info_get_cache) {
5678       unsigned int /*kern_return_t */ kern_ret;
5679 		  dyld_process_info process_info = dyld_process_info_create(::mach_task_self(), 0, &kern_ret);
5680       if (process_info) {
5681         struct lldb_copy__dyld_process_cache_info sc_info;
5682         memset (&sc_info, 0, sizeof (struct lldb_copy__dyld_process_cache_info));
5683         dyld_process_info_get_cache (process_info, &sc_info);
5684         if (sc_info.cacheBaseAddress != 0) {
5685           base_addr = sc_info.cacheBaseAddress;
5686           uuid = UUID::fromOptionalData(sc_info.cacheUUID, sizeof(uuid_t));
5687         }
5688         dyld_process_info_release (process_info);
5689       }
5690     }
5691   }
5692   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS | LIBLLDB_LOG_PROCESS));
5693   if (log && uuid.IsValid())
5694     log->Printf("lldb's in-memory shared cache has a UUID of %s base address of 0x%" PRIx64, uuid.GetAsString().c_str(), base_addr);
5695 #endif
5696 }
5697 
5698 llvm::VersionTuple ObjectFileMachO::GetMinimumOSVersion() {
5699   if (!m_min_os_version) {
5700     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5701     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5702       const lldb::offset_t load_cmd_offset = offset;
5703 
5704       version_min_command lc;
5705       if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL)
5706         break;
5707       if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX ||
5708           lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS ||
5709           lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS ||
5710           lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) {
5711         if (m_data.GetU32(&offset, &lc.version,
5712                           (sizeof(lc) / sizeof(uint32_t)) - 2)) {
5713           const uint32_t xxxx = lc.version >> 16;
5714           const uint32_t yy = (lc.version >> 8) & 0xffu;
5715           const uint32_t zz = lc.version & 0xffu;
5716           if (xxxx) {
5717             m_min_os_version = llvm::VersionTuple(xxxx, yy, zz);
5718             break;
5719           }
5720         }
5721       }
5722       offset = load_cmd_offset + lc.cmdsize;
5723     }
5724 
5725     if (!m_min_os_version) {
5726       // Set version to an empty value so we don't keep trying to
5727       m_min_os_version = llvm::VersionTuple();
5728     }
5729   }
5730 
5731   return *m_min_os_version;
5732 }
5733 
5734 uint32_t ObjectFileMachO::GetSDKVersion(uint32_t *versions,
5735                                         uint32_t num_versions) {
5736   if (m_sdk_versions.empty()) {
5737     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5738     bool success = false;
5739     for (uint32_t i = 0; success == false && i < m_header.ncmds; ++i) {
5740       const lldb::offset_t load_cmd_offset = offset;
5741 
5742       version_min_command lc;
5743       if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL)
5744         break;
5745       if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX ||
5746           lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS ||
5747           lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS ||
5748           lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) {
5749         if (m_data.GetU32(&offset, &lc.version,
5750                           (sizeof(lc) / sizeof(uint32_t)) - 2)) {
5751           const uint32_t xxxx = lc.sdk >> 16;
5752           const uint32_t yy = (lc.sdk >> 8) & 0xffu;
5753           const uint32_t zz = lc.sdk & 0xffu;
5754           if (xxxx) {
5755             m_sdk_versions.push_back(xxxx);
5756             m_sdk_versions.push_back(yy);
5757             m_sdk_versions.push_back(zz);
5758             success = true;
5759           } else {
5760             GetModule()->ReportWarning(
5761                 "minimum OS version load command with invalid (0) version found.");
5762           }
5763         }
5764       }
5765       offset = load_cmd_offset + lc.cmdsize;
5766     }
5767 
5768     if (success == false) {
5769       // Push an invalid value so we don't try to find
5770       // the version # again on the next call to this
5771       // method.
5772       m_sdk_versions.push_back(UINT32_MAX);
5773     }
5774   }
5775 
5776   // Legitimate version numbers will have 3 entries pushed
5777   // on to m_sdk_versions.  If we only have one value, it's
5778   // the sentinel value indicating that this object file
5779   // does not have a valid minimum os version #.
5780   if (m_sdk_versions.size() > 1) {
5781     if (versions != NULL && num_versions > 0) {
5782       for (size_t i = 0; i < num_versions; ++i) {
5783         if (i < m_sdk_versions.size())
5784           versions[i] = m_sdk_versions[i];
5785         else
5786           versions[i] = 0;
5787       }
5788     }
5789     return m_sdk_versions.size();
5790   }
5791   // Call the superclasses version that will empty out the data
5792   return ObjectFile::GetSDKVersion(versions, num_versions);
5793 }
5794 
5795 bool ObjectFileMachO::GetIsDynamicLinkEditor() {
5796   return m_header.filetype == llvm::MachO::MH_DYLINKER;
5797 }
5798 
5799 bool ObjectFileMachO::AllowAssemblyEmulationUnwindPlans() {
5800   return m_allow_assembly_emulation_unwind_plans;
5801 }
5802 
5803 //------------------------------------------------------------------
5804 // PluginInterface protocol
5805 //------------------------------------------------------------------
5806 lldb_private::ConstString ObjectFileMachO::GetPluginName() {
5807   return GetPluginNameStatic();
5808 }
5809 
5810 uint32_t ObjectFileMachO::GetPluginVersion() { return 1; }
5811 
5812 Section *ObjectFileMachO::GetMachHeaderSection() {
5813   // Find the first address of the mach header which is the first non-zero file
5814   // sized section whose file offset is zero. This is the base file address of
5815   // the mach-o file which can be subtracted from the vmaddr of the other
5816   // segments found in memory and added to the load address
5817   ModuleSP module_sp = GetModule();
5818   if (module_sp) {
5819     SectionList *section_list = GetSectionList();
5820     if (section_list) {
5821       lldb::addr_t mach_base_file_addr = LLDB_INVALID_ADDRESS;
5822       const size_t num_sections = section_list->GetSize();
5823 
5824       for (size_t sect_idx = 0; sect_idx < num_sections &&
5825                                 mach_base_file_addr == LLDB_INVALID_ADDRESS;
5826            ++sect_idx) {
5827         Section *section = section_list->GetSectionAtIndex(sect_idx).get();
5828         if (section && section->GetFileSize() > 0 &&
5829             section->GetFileOffset() == 0 &&
5830             section->IsThreadSpecific() == false &&
5831             module_sp.get() == section->GetModule().get()) {
5832           return section;
5833         }
5834       }
5835     }
5836   }
5837   return nullptr;
5838 }
5839 
5840 lldb::addr_t ObjectFileMachO::CalculateSectionLoadAddressForMemoryImage(
5841     lldb::addr_t mach_header_load_address, const Section *mach_header_section,
5842     const Section *section) {
5843   ModuleSP module_sp = GetModule();
5844   if (module_sp && mach_header_section && section &&
5845       mach_header_load_address != LLDB_INVALID_ADDRESS) {
5846     lldb::addr_t mach_header_file_addr = mach_header_section->GetFileAddress();
5847     if (mach_header_file_addr != LLDB_INVALID_ADDRESS) {
5848       if (section && section->GetFileSize() > 0 &&
5849           section->IsThreadSpecific() == false &&
5850           module_sp.get() == section->GetModule().get()) {
5851         // Ignore __LINKEDIT and __DWARF segments
5852         if (section->GetName() == GetSegmentNameLINKEDIT()) {
5853           // Only map __LINKEDIT if we have an in memory image and this isn't a
5854           // kernel binary like a kext or mach_kernel.
5855           const bool is_memory_image = (bool)m_process_wp.lock();
5856           const Strata strata = GetStrata();
5857           if (is_memory_image == false || strata == eStrataKernel)
5858             return LLDB_INVALID_ADDRESS;
5859         }
5860         return section->GetFileAddress() - mach_header_file_addr +
5861                mach_header_load_address;
5862       }
5863     }
5864   }
5865   return LLDB_INVALID_ADDRESS;
5866 }
5867 
5868 bool ObjectFileMachO::SetLoadAddress(Target &target, lldb::addr_t value,
5869                                      bool value_is_offset) {
5870   ModuleSP module_sp = GetModule();
5871   if (module_sp) {
5872     size_t num_loaded_sections = 0;
5873     SectionList *section_list = GetSectionList();
5874     if (section_list) {
5875       const size_t num_sections = section_list->GetSize();
5876 
5877       if (value_is_offset) {
5878         // "value" is an offset to apply to each top level segment
5879         for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
5880           // Iterate through the object file sections to find all of the
5881           // sections that size on disk (to avoid __PAGEZERO) and load them
5882           SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
5883           if (section_sp && section_sp->GetFileSize() > 0 &&
5884               section_sp->IsThreadSpecific() == false &&
5885               module_sp.get() == section_sp->GetModule().get()) {
5886             // Ignore __LINKEDIT and __DWARF segments
5887             if (section_sp->GetName() == GetSegmentNameLINKEDIT()) {
5888               // Only map __LINKEDIT if we have an in memory image and this
5889               // isn't a kernel binary like a kext or mach_kernel.
5890               const bool is_memory_image = (bool)m_process_wp.lock();
5891               const Strata strata = GetStrata();
5892               if (is_memory_image == false || strata == eStrataKernel)
5893                 continue;
5894             }
5895             if (target.GetSectionLoadList().SetSectionLoadAddress(
5896                     section_sp, section_sp->GetFileAddress() + value))
5897               ++num_loaded_sections;
5898           }
5899         }
5900       } else {
5901         // "value" is the new base address of the mach_header, adjust each
5902         // section accordingly
5903 
5904         Section *mach_header_section = GetMachHeaderSection();
5905         if (mach_header_section) {
5906           for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
5907             SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
5908 
5909             lldb::addr_t section_load_addr =
5910                 CalculateSectionLoadAddressForMemoryImage(
5911                     value, mach_header_section, section_sp.get());
5912             if (section_load_addr != LLDB_INVALID_ADDRESS) {
5913               if (target.GetSectionLoadList().SetSectionLoadAddress(
5914                       section_sp, section_load_addr))
5915                 ++num_loaded_sections;
5916             }
5917           }
5918         }
5919       }
5920     }
5921     return num_loaded_sections > 0;
5922   }
5923   return false;
5924 }
5925 
5926 bool ObjectFileMachO::SaveCore(const lldb::ProcessSP &process_sp,
5927                                const FileSpec &outfile, Status &error) {
5928   if (process_sp) {
5929     Target &target = process_sp->GetTarget();
5930     const ArchSpec target_arch = target.GetArchitecture();
5931     const llvm::Triple &target_triple = target_arch.GetTriple();
5932     if (target_triple.getVendor() == llvm::Triple::Apple &&
5933         (target_triple.getOS() == llvm::Triple::MacOSX ||
5934          target_triple.getOS() == llvm::Triple::IOS ||
5935          target_triple.getOS() == llvm::Triple::WatchOS ||
5936          target_triple.getOS() == llvm::Triple::TvOS)) {
5937       bool make_core = false;
5938       switch (target_arch.GetMachine()) {
5939       case llvm::Triple::aarch64:
5940       case llvm::Triple::arm:
5941       case llvm::Triple::thumb:
5942       case llvm::Triple::x86:
5943       case llvm::Triple::x86_64:
5944         make_core = true;
5945         break;
5946       default:
5947         error.SetErrorStringWithFormat("unsupported core architecture: %s",
5948                                        target_triple.str().c_str());
5949         break;
5950       }
5951 
5952       if (make_core) {
5953         std::vector<segment_command_64> segment_load_commands;
5954         //                uint32_t range_info_idx = 0;
5955         MemoryRegionInfo range_info;
5956         Status range_error = process_sp->GetMemoryRegionInfo(0, range_info);
5957         const uint32_t addr_byte_size = target_arch.GetAddressByteSize();
5958         const ByteOrder byte_order = target_arch.GetByteOrder();
5959         if (range_error.Success()) {
5960           while (range_info.GetRange().GetRangeBase() != LLDB_INVALID_ADDRESS) {
5961             const addr_t addr = range_info.GetRange().GetRangeBase();
5962             const addr_t size = range_info.GetRange().GetByteSize();
5963 
5964             if (size == 0)
5965               break;
5966 
5967             // Calculate correct protections
5968             uint32_t prot = 0;
5969             if (range_info.GetReadable() == MemoryRegionInfo::eYes)
5970               prot |= VM_PROT_READ;
5971             if (range_info.GetWritable() == MemoryRegionInfo::eYes)
5972               prot |= VM_PROT_WRITE;
5973             if (range_info.GetExecutable() == MemoryRegionInfo::eYes)
5974               prot |= VM_PROT_EXECUTE;
5975 
5976             //                        printf ("[%3u] [0x%16.16" PRIx64 " -
5977             //                        0x%16.16" PRIx64 ") %c%c%c\n",
5978             //                                range_info_idx,
5979             //                                addr,
5980             //                                size,
5981             //                                (prot & VM_PROT_READ   ) ? 'r' :
5982             //                                '-',
5983             //                                (prot & VM_PROT_WRITE  ) ? 'w' :
5984             //                                '-',
5985             //                                (prot & VM_PROT_EXECUTE) ? 'x' :
5986             //                                '-');
5987 
5988             if (prot != 0) {
5989               uint32_t cmd_type = LC_SEGMENT_64;
5990               uint32_t segment_size = sizeof(segment_command_64);
5991               if (addr_byte_size == 4) {
5992                 cmd_type = LC_SEGMENT;
5993                 segment_size = sizeof(segment_command);
5994               }
5995               segment_command_64 segment = {
5996                   cmd_type,     // uint32_t cmd;
5997                   segment_size, // uint32_t cmdsize;
5998                   {0},          // char segname[16];
5999                   addr, // uint64_t vmaddr;    // uint32_t for 32-bit Mach-O
6000                   size, // uint64_t vmsize;    // uint32_t for 32-bit Mach-O
6001                   0,    // uint64_t fileoff;   // uint32_t for 32-bit Mach-O
6002                   size, // uint64_t filesize;  // uint32_t for 32-bit Mach-O
6003                   prot, // uint32_t maxprot;
6004                   prot, // uint32_t initprot;
6005                   0,    // uint32_t nsects;
6006                   0};   // uint32_t flags;
6007               segment_load_commands.push_back(segment);
6008             } else {
6009               // No protections and a size of 1 used to be returned from old
6010               // debugservers when we asked about a region that was past the
6011               // last memory region and it indicates the end...
6012               if (size == 1)
6013                 break;
6014             }
6015 
6016             range_error = process_sp->GetMemoryRegionInfo(
6017                 range_info.GetRange().GetRangeEnd(), range_info);
6018             if (range_error.Fail())
6019               break;
6020           }
6021 
6022           StreamString buffer(Stream::eBinary, addr_byte_size, byte_order);
6023 
6024           mach_header_64 mach_header;
6025           if (addr_byte_size == 8) {
6026             mach_header.magic = MH_MAGIC_64;
6027           } else {
6028             mach_header.magic = MH_MAGIC;
6029           }
6030           mach_header.cputype = target_arch.GetMachOCPUType();
6031           mach_header.cpusubtype = target_arch.GetMachOCPUSubType();
6032           mach_header.filetype = MH_CORE;
6033           mach_header.ncmds = segment_load_commands.size();
6034           mach_header.flags = 0;
6035           mach_header.reserved = 0;
6036           ThreadList &thread_list = process_sp->GetThreadList();
6037           const uint32_t num_threads = thread_list.GetSize();
6038 
6039           // Make an array of LC_THREAD data items. Each one contains the
6040           // contents of the LC_THREAD load command. The data doesn't contain
6041           // the load command + load command size, we will add the load command
6042           // and load command size as we emit the data.
6043           std::vector<StreamString> LC_THREAD_datas(num_threads);
6044           for (auto &LC_THREAD_data : LC_THREAD_datas) {
6045             LC_THREAD_data.GetFlags().Set(Stream::eBinary);
6046             LC_THREAD_data.SetAddressByteSize(addr_byte_size);
6047             LC_THREAD_data.SetByteOrder(byte_order);
6048           }
6049           for (uint32_t thread_idx = 0; thread_idx < num_threads;
6050                ++thread_idx) {
6051             ThreadSP thread_sp(thread_list.GetThreadAtIndex(thread_idx));
6052             if (thread_sp) {
6053               switch (mach_header.cputype) {
6054               case llvm::MachO::CPU_TYPE_ARM64:
6055                 RegisterContextDarwin_arm64_Mach::Create_LC_THREAD(
6056                     thread_sp.get(), LC_THREAD_datas[thread_idx]);
6057                 break;
6058 
6059               case llvm::MachO::CPU_TYPE_ARM:
6060                 RegisterContextDarwin_arm_Mach::Create_LC_THREAD(
6061                     thread_sp.get(), LC_THREAD_datas[thread_idx]);
6062                 break;
6063 
6064               case llvm::MachO::CPU_TYPE_I386:
6065                 RegisterContextDarwin_i386_Mach::Create_LC_THREAD(
6066                     thread_sp.get(), LC_THREAD_datas[thread_idx]);
6067                 break;
6068 
6069               case llvm::MachO::CPU_TYPE_X86_64:
6070                 RegisterContextDarwin_x86_64_Mach::Create_LC_THREAD(
6071                     thread_sp.get(), LC_THREAD_datas[thread_idx]);
6072                 break;
6073               }
6074             }
6075           }
6076 
6077           // The size of the load command is the size of the segments...
6078           if (addr_byte_size == 8) {
6079             mach_header.sizeofcmds = segment_load_commands.size() *
6080                                      sizeof(struct segment_command_64);
6081           } else {
6082             mach_header.sizeofcmds =
6083                 segment_load_commands.size() * sizeof(struct segment_command);
6084           }
6085 
6086           // and the size of all LC_THREAD load command
6087           for (const auto &LC_THREAD_data : LC_THREAD_datas) {
6088             ++mach_header.ncmds;
6089             mach_header.sizeofcmds += 8 + LC_THREAD_data.GetSize();
6090           }
6091 
6092           printf("mach_header: 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x "
6093                  "0x%8.8x 0x%8.8x\n",
6094                  mach_header.magic, mach_header.cputype, mach_header.cpusubtype,
6095                  mach_header.filetype, mach_header.ncmds,
6096                  mach_header.sizeofcmds, mach_header.flags,
6097                  mach_header.reserved);
6098 
6099           // Write the mach header
6100           buffer.PutHex32(mach_header.magic);
6101           buffer.PutHex32(mach_header.cputype);
6102           buffer.PutHex32(mach_header.cpusubtype);
6103           buffer.PutHex32(mach_header.filetype);
6104           buffer.PutHex32(mach_header.ncmds);
6105           buffer.PutHex32(mach_header.sizeofcmds);
6106           buffer.PutHex32(mach_header.flags);
6107           if (addr_byte_size == 8) {
6108             buffer.PutHex32(mach_header.reserved);
6109           }
6110 
6111           // Skip the mach header and all load commands and align to the next
6112           // 0x1000 byte boundary
6113           addr_t file_offset = buffer.GetSize() + mach_header.sizeofcmds;
6114           if (file_offset & 0x00000fff) {
6115             file_offset += 0x00001000ull;
6116             file_offset &= (~0x00001000ull + 1);
6117           }
6118 
6119           for (auto &segment : segment_load_commands) {
6120             segment.fileoff = file_offset;
6121             file_offset += segment.filesize;
6122           }
6123 
6124           // Write out all of the LC_THREAD load commands
6125           for (const auto &LC_THREAD_data : LC_THREAD_datas) {
6126             const size_t LC_THREAD_data_size = LC_THREAD_data.GetSize();
6127             buffer.PutHex32(LC_THREAD);
6128             buffer.PutHex32(8 + LC_THREAD_data_size); // cmd + cmdsize + data
6129             buffer.Write(LC_THREAD_data.GetString().data(),
6130                          LC_THREAD_data_size);
6131           }
6132 
6133           // Write out all of the segment load commands
6134           for (const auto &segment : segment_load_commands) {
6135             printf("0x%8.8x 0x%8.8x [0x%16.16" PRIx64 " - 0x%16.16" PRIx64
6136                    ") [0x%16.16" PRIx64 " 0x%16.16" PRIx64
6137                    ") 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x]\n",
6138                    segment.cmd, segment.cmdsize, segment.vmaddr,
6139                    segment.vmaddr + segment.vmsize, segment.fileoff,
6140                    segment.filesize, segment.maxprot, segment.initprot,
6141                    segment.nsects, segment.flags);
6142 
6143             buffer.PutHex32(segment.cmd);
6144             buffer.PutHex32(segment.cmdsize);
6145             buffer.PutRawBytes(segment.segname, sizeof(segment.segname));
6146             if (addr_byte_size == 8) {
6147               buffer.PutHex64(segment.vmaddr);
6148               buffer.PutHex64(segment.vmsize);
6149               buffer.PutHex64(segment.fileoff);
6150               buffer.PutHex64(segment.filesize);
6151             } else {
6152               buffer.PutHex32(static_cast<uint32_t>(segment.vmaddr));
6153               buffer.PutHex32(static_cast<uint32_t>(segment.vmsize));
6154               buffer.PutHex32(static_cast<uint32_t>(segment.fileoff));
6155               buffer.PutHex32(static_cast<uint32_t>(segment.filesize));
6156             }
6157             buffer.PutHex32(segment.maxprot);
6158             buffer.PutHex32(segment.initprot);
6159             buffer.PutHex32(segment.nsects);
6160             buffer.PutHex32(segment.flags);
6161           }
6162 
6163           File core_file;
6164           std::string core_file_path(outfile.GetPath());
6165           error = core_file.Open(core_file_path.c_str(),
6166                                  File::eOpenOptionWrite |
6167                                      File::eOpenOptionTruncate |
6168                                      File::eOpenOptionCanCreate);
6169           if (error.Success()) {
6170             // Read 1 page at a time
6171             uint8_t bytes[0x1000];
6172             // Write the mach header and load commands out to the core file
6173             size_t bytes_written = buffer.GetString().size();
6174             error = core_file.Write(buffer.GetString().data(), bytes_written);
6175             if (error.Success()) {
6176               // Now write the file data for all memory segments in the process
6177               for (const auto &segment : segment_load_commands) {
6178                 if (core_file.SeekFromStart(segment.fileoff) == -1) {
6179                   error.SetErrorStringWithFormat(
6180                       "unable to seek to offset 0x%" PRIx64 " in '%s'",
6181                       segment.fileoff, core_file_path.c_str());
6182                   break;
6183                 }
6184 
6185                 printf("Saving %" PRId64
6186                        " bytes of data for memory region at 0x%" PRIx64 "\n",
6187                        segment.vmsize, segment.vmaddr);
6188                 addr_t bytes_left = segment.vmsize;
6189                 addr_t addr = segment.vmaddr;
6190                 Status memory_read_error;
6191                 while (bytes_left > 0 && error.Success()) {
6192                   const size_t bytes_to_read =
6193                       bytes_left > sizeof(bytes) ? sizeof(bytes) : bytes_left;
6194                   const size_t bytes_read = process_sp->ReadMemory(
6195                       addr, bytes, bytes_to_read, memory_read_error);
6196                   if (bytes_read == bytes_to_read) {
6197                     size_t bytes_written = bytes_read;
6198                     error = core_file.Write(bytes, bytes_written);
6199                     bytes_left -= bytes_read;
6200                     addr += bytes_read;
6201                   } else {
6202                     // Some pages within regions are not readable, those should
6203                     // be zero filled
6204                     memset(bytes, 0, bytes_to_read);
6205                     size_t bytes_written = bytes_to_read;
6206                     error = core_file.Write(bytes, bytes_written);
6207                     bytes_left -= bytes_to_read;
6208                     addr += bytes_to_read;
6209                   }
6210                 }
6211               }
6212             }
6213           }
6214         } else {
6215           error.SetErrorString(
6216               "process doesn't support getting memory region info");
6217         }
6218       }
6219       return true; // This is the right plug to handle saving core files for
6220                    // this process
6221     }
6222   }
6223   return false;
6224 }
6225