1 //===-- ObjectFileMachO.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/ADT/StringRef.h"
10 
11 #include "Plugins/Process/Utility/RegisterContextDarwin_arm.h"
12 #include "Plugins/Process/Utility/RegisterContextDarwin_arm64.h"
13 #include "Plugins/Process/Utility/RegisterContextDarwin_i386.h"
14 #include "Plugins/Process/Utility/RegisterContextDarwin_x86_64.h"
15 #include "lldb/Core/Debugger.h"
16 #include "lldb/Core/FileSpecList.h"
17 #include "lldb/Core/Module.h"
18 #include "lldb/Core/ModuleSpec.h"
19 #include "lldb/Core/PluginManager.h"
20 #include "lldb/Core/Progress.h"
21 #include "lldb/Core/Section.h"
22 #include "lldb/Core/StreamFile.h"
23 #include "lldb/Host/Host.h"
24 #include "lldb/Host/SafeMachO.h"
25 #include "lldb/Symbol/DWARFCallFrameInfo.h"
26 #include "lldb/Symbol/LocateSymbolFile.h"
27 #include "lldb/Symbol/ObjectFile.h"
28 #include "lldb/Target/DynamicLoader.h"
29 #include "lldb/Target/MemoryRegionInfo.h"
30 #include "lldb/Target/Platform.h"
31 #include "lldb/Target/Process.h"
32 #include "lldb/Target/SectionLoadList.h"
33 #include "lldb/Target/Target.h"
34 #include "lldb/Target/Thread.h"
35 #include "lldb/Target/ThreadList.h"
36 #include "lldb/Utility/ArchSpec.h"
37 #include "lldb/Utility/DataBuffer.h"
38 #include "lldb/Utility/FileSpec.h"
39 #include "lldb/Utility/Log.h"
40 #include "lldb/Utility/RangeMap.h"
41 #include "lldb/Utility/RegisterValue.h"
42 #include "lldb/Utility/Status.h"
43 #include "lldb/Utility/StreamString.h"
44 #include "lldb/Utility/Timer.h"
45 #include "lldb/Utility/UUID.h"
46 
47 #include "llvm/ADT/DenseSet.h"
48 #include "llvm/Support/FormatVariadic.h"
49 #include "llvm/Support/MemoryBuffer.h"
50 
51 #include "ObjectFileMachO.h"
52 
53 #if defined(__APPLE__)
54 #include <TargetConditionals.h>
55 // GetLLDBSharedCacheUUID() needs to call dlsym()
56 #include <dlfcn.h>
57 #endif
58 
59 #ifndef __APPLE__
60 #include "Utility/UuidCompatibility.h"
61 #else
62 #include <uuid/uuid.h>
63 #endif
64 
65 #include <bitset>
66 #include <memory>
67 
68 #if LLVM_SUPPORT_XCODE_SIGNPOSTS
69 // Unfortunately the signpost header pulls in the system MachO header, too.
70 #undef CPU_TYPE_ARM
71 #undef CPU_TYPE_ARM64
72 #undef CPU_TYPE_ARM64_32
73 #undef CPU_TYPE_I386
74 #undef CPU_TYPE_X86_64
75 #undef MH_BINDATLOAD
76 #undef MH_BUNDLE
77 #undef MH_CIGAM
78 #undef MH_CIGAM_64
79 #undef MH_CORE
80 #undef MH_DSYM
81 #undef MH_DYLDLINK
82 #undef MH_DYLIB
83 #undef MH_DYLIB_STUB
84 #undef MH_DYLINKER
85 #undef MH_DYLINKER
86 #undef MH_EXECUTE
87 #undef MH_FVMLIB
88 #undef MH_INCRLINK
89 #undef MH_KEXT_BUNDLE
90 #undef MH_MAGIC
91 #undef MH_MAGIC_64
92 #undef MH_NOUNDEFS
93 #undef MH_OBJECT
94 #undef MH_OBJECT
95 #undef MH_PRELOAD
96 
97 #undef LC_BUILD_VERSION
98 #undef LC_VERSION_MIN_MACOSX
99 #undef LC_VERSION_MIN_IPHONEOS
100 #undef LC_VERSION_MIN_TVOS
101 #undef LC_VERSION_MIN_WATCHOS
102 
103 #undef PLATFORM_MACOS
104 #undef PLATFORM_MACCATALYST
105 #undef PLATFORM_IOS
106 #undef PLATFORM_IOSSIMULATOR
107 #undef PLATFORM_TVOS
108 #undef PLATFORM_TVOSSIMULATOR
109 #undef PLATFORM_WATCHOS
110 #undef PLATFORM_WATCHOSSIMULATOR
111 #endif
112 
113 #define THUMB_ADDRESS_BIT_MASK 0xfffffffffffffffeull
114 using namespace lldb;
115 using namespace lldb_private;
116 using namespace llvm::MachO;
117 
118 LLDB_PLUGIN_DEFINE(ObjectFileMachO)
119 
120 // Some structure definitions needed for parsing the dyld shared cache files
121 // found on iOS devices.
122 
123 struct lldb_copy_dyld_cache_header_v1 {
124   char magic[16];         // e.g. "dyld_v0    i386", "dyld_v1   armv7", etc.
125   uint32_t mappingOffset; // file offset to first dyld_cache_mapping_info
126   uint32_t mappingCount;  // number of dyld_cache_mapping_info entries
127   uint32_t imagesOffset;
128   uint32_t imagesCount;
129   uint64_t dyldBaseAddress;
130   uint64_t codeSignatureOffset;
131   uint64_t codeSignatureSize;
132   uint64_t slideInfoOffset;
133   uint64_t slideInfoSize;
134   uint64_t localSymbolsOffset;
135   uint64_t localSymbolsSize;
136   uint8_t uuid[16]; // v1 and above, also recorded in dyld_all_image_infos v13
137                     // and later
138 };
139 
140 struct lldb_copy_dyld_cache_mapping_info {
141   uint64_t address;
142   uint64_t size;
143   uint64_t fileOffset;
144   uint32_t maxProt;
145   uint32_t initProt;
146 };
147 
148 struct lldb_copy_dyld_cache_local_symbols_info {
149   uint32_t nlistOffset;
150   uint32_t nlistCount;
151   uint32_t stringsOffset;
152   uint32_t stringsSize;
153   uint32_t entriesOffset;
154   uint32_t entriesCount;
155 };
156 struct lldb_copy_dyld_cache_local_symbols_entry {
157   uint32_t dylibOffset;
158   uint32_t nlistStartIndex;
159   uint32_t nlistCount;
160 };
161 
162 static void PrintRegisterValue(RegisterContext *reg_ctx, const char *name,
163                                const char *alt_name, size_t reg_byte_size,
164                                Stream &data) {
165   const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
166   if (reg_info == nullptr)
167     reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
168   if (reg_info) {
169     lldb_private::RegisterValue reg_value;
170     if (reg_ctx->ReadRegister(reg_info, reg_value)) {
171       if (reg_info->byte_size >= reg_byte_size)
172         data.Write(reg_value.GetBytes(), reg_byte_size);
173       else {
174         data.Write(reg_value.GetBytes(), reg_info->byte_size);
175         for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n; ++i)
176           data.PutChar(0);
177       }
178       return;
179     }
180   }
181   // Just write zeros if all else fails
182   for (size_t i = 0; i < reg_byte_size; ++i)
183     data.PutChar(0);
184 }
185 
186 class RegisterContextDarwin_x86_64_Mach : public RegisterContextDarwin_x86_64 {
187 public:
188   RegisterContextDarwin_x86_64_Mach(lldb_private::Thread &thread,
189                                     const DataExtractor &data)
190       : RegisterContextDarwin_x86_64(thread, 0) {
191     SetRegisterDataFrom_LC_THREAD(data);
192   }
193 
194   void InvalidateAllRegisters() override {
195     // Do nothing... registers are always valid...
196   }
197 
198   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
199     lldb::offset_t offset = 0;
200     SetError(GPRRegSet, Read, -1);
201     SetError(FPURegSet, Read, -1);
202     SetError(EXCRegSet, Read, -1);
203     bool done = false;
204 
205     while (!done) {
206       int flavor = data.GetU32(&offset);
207       if (flavor == 0)
208         done = true;
209       else {
210         uint32_t i;
211         uint32_t count = data.GetU32(&offset);
212         switch (flavor) {
213         case GPRRegSet:
214           for (i = 0; i < count; ++i)
215             (&gpr.rax)[i] = data.GetU64(&offset);
216           SetError(GPRRegSet, Read, 0);
217           done = true;
218 
219           break;
220         case FPURegSet:
221           // TODO: fill in FPU regs....
222           // SetError (FPURegSet, Read, -1);
223           done = true;
224 
225           break;
226         case EXCRegSet:
227           exc.trapno = data.GetU32(&offset);
228           exc.err = data.GetU32(&offset);
229           exc.faultvaddr = data.GetU64(&offset);
230           SetError(EXCRegSet, Read, 0);
231           done = true;
232           break;
233         case 7:
234         case 8:
235         case 9:
236           // fancy flavors that encapsulate of the above flavors...
237           break;
238 
239         default:
240           done = true;
241           break;
242         }
243       }
244     }
245   }
246 
247   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
248     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
249     if (reg_ctx_sp) {
250       RegisterContext *reg_ctx = reg_ctx_sp.get();
251 
252       data.PutHex32(GPRRegSet); // Flavor
253       data.PutHex32(GPRWordCount);
254       PrintRegisterValue(reg_ctx, "rax", nullptr, 8, data);
255       PrintRegisterValue(reg_ctx, "rbx", nullptr, 8, data);
256       PrintRegisterValue(reg_ctx, "rcx", nullptr, 8, data);
257       PrintRegisterValue(reg_ctx, "rdx", nullptr, 8, data);
258       PrintRegisterValue(reg_ctx, "rdi", nullptr, 8, data);
259       PrintRegisterValue(reg_ctx, "rsi", nullptr, 8, data);
260       PrintRegisterValue(reg_ctx, "rbp", nullptr, 8, data);
261       PrintRegisterValue(reg_ctx, "rsp", nullptr, 8, data);
262       PrintRegisterValue(reg_ctx, "r8", nullptr, 8, data);
263       PrintRegisterValue(reg_ctx, "r9", nullptr, 8, data);
264       PrintRegisterValue(reg_ctx, "r10", nullptr, 8, data);
265       PrintRegisterValue(reg_ctx, "r11", nullptr, 8, data);
266       PrintRegisterValue(reg_ctx, "r12", nullptr, 8, data);
267       PrintRegisterValue(reg_ctx, "r13", nullptr, 8, data);
268       PrintRegisterValue(reg_ctx, "r14", nullptr, 8, data);
269       PrintRegisterValue(reg_ctx, "r15", nullptr, 8, data);
270       PrintRegisterValue(reg_ctx, "rip", nullptr, 8, data);
271       PrintRegisterValue(reg_ctx, "rflags", nullptr, 8, data);
272       PrintRegisterValue(reg_ctx, "cs", nullptr, 8, data);
273       PrintRegisterValue(reg_ctx, "fs", nullptr, 8, data);
274       PrintRegisterValue(reg_ctx, "gs", nullptr, 8, data);
275 
276       //            // Write out the FPU registers
277       //            const size_t fpu_byte_size = sizeof(FPU);
278       //            size_t bytes_written = 0;
279       //            data.PutHex32 (FPURegSet);
280       //            data.PutHex32 (fpu_byte_size/sizeof(uint64_t));
281       //            bytes_written += data.PutHex32(0); // uint32_t pad[0]
282       //            bytes_written += data.PutHex32(0); // uint32_t pad[1]
283       //            bytes_written += WriteRegister (reg_ctx, "fcw", "fctrl", 2,
284       //            data);   // uint16_t    fcw;    // "fctrl"
285       //            bytes_written += WriteRegister (reg_ctx, "fsw" , "fstat", 2,
286       //            data);  // uint16_t    fsw;    // "fstat"
287       //            bytes_written += WriteRegister (reg_ctx, "ftw" , "ftag", 1,
288       //            data);   // uint8_t     ftw;    // "ftag"
289       //            bytes_written += data.PutHex8  (0); // uint8_t pad1;
290       //            bytes_written += WriteRegister (reg_ctx, "fop" , NULL, 2,
291       //            data);     // uint16_t    fop;    // "fop"
292       //            bytes_written += WriteRegister (reg_ctx, "fioff", "ip", 4,
293       //            data);    // uint32_t    ip;     // "fioff"
294       //            bytes_written += WriteRegister (reg_ctx, "fiseg", NULL, 2,
295       //            data);    // uint16_t    cs;     // "fiseg"
296       //            bytes_written += data.PutHex16 (0); // uint16_t    pad2;
297       //            bytes_written += WriteRegister (reg_ctx, "dp", "fooff" , 4,
298       //            data);   // uint32_t    dp;     // "fooff"
299       //            bytes_written += WriteRegister (reg_ctx, "foseg", NULL, 2,
300       //            data);    // uint16_t    ds;     // "foseg"
301       //            bytes_written += data.PutHex16 (0); // uint16_t    pad3;
302       //            bytes_written += WriteRegister (reg_ctx, "mxcsr", NULL, 4,
303       //            data);    // uint32_t    mxcsr;
304       //            bytes_written += WriteRegister (reg_ctx, "mxcsrmask", NULL,
305       //            4, data);// uint32_t    mxcsrmask;
306       //            bytes_written += WriteRegister (reg_ctx, "stmm0", NULL,
307       //            sizeof(MMSReg), data);
308       //            bytes_written += WriteRegister (reg_ctx, "stmm1", NULL,
309       //            sizeof(MMSReg), data);
310       //            bytes_written += WriteRegister (reg_ctx, "stmm2", NULL,
311       //            sizeof(MMSReg), data);
312       //            bytes_written += WriteRegister (reg_ctx, "stmm3", NULL,
313       //            sizeof(MMSReg), data);
314       //            bytes_written += WriteRegister (reg_ctx, "stmm4", NULL,
315       //            sizeof(MMSReg), data);
316       //            bytes_written += WriteRegister (reg_ctx, "stmm5", NULL,
317       //            sizeof(MMSReg), data);
318       //            bytes_written += WriteRegister (reg_ctx, "stmm6", NULL,
319       //            sizeof(MMSReg), data);
320       //            bytes_written += WriteRegister (reg_ctx, "stmm7", NULL,
321       //            sizeof(MMSReg), data);
322       //            bytes_written += WriteRegister (reg_ctx, "xmm0" , NULL,
323       //            sizeof(XMMReg), data);
324       //            bytes_written += WriteRegister (reg_ctx, "xmm1" , NULL,
325       //            sizeof(XMMReg), data);
326       //            bytes_written += WriteRegister (reg_ctx, "xmm2" , NULL,
327       //            sizeof(XMMReg), data);
328       //            bytes_written += WriteRegister (reg_ctx, "xmm3" , NULL,
329       //            sizeof(XMMReg), data);
330       //            bytes_written += WriteRegister (reg_ctx, "xmm4" , NULL,
331       //            sizeof(XMMReg), data);
332       //            bytes_written += WriteRegister (reg_ctx, "xmm5" , NULL,
333       //            sizeof(XMMReg), data);
334       //            bytes_written += WriteRegister (reg_ctx, "xmm6" , NULL,
335       //            sizeof(XMMReg), data);
336       //            bytes_written += WriteRegister (reg_ctx, "xmm7" , NULL,
337       //            sizeof(XMMReg), data);
338       //            bytes_written += WriteRegister (reg_ctx, "xmm8" , NULL,
339       //            sizeof(XMMReg), data);
340       //            bytes_written += WriteRegister (reg_ctx, "xmm9" , NULL,
341       //            sizeof(XMMReg), data);
342       //            bytes_written += WriteRegister (reg_ctx, "xmm10", NULL,
343       //            sizeof(XMMReg), data);
344       //            bytes_written += WriteRegister (reg_ctx, "xmm11", NULL,
345       //            sizeof(XMMReg), data);
346       //            bytes_written += WriteRegister (reg_ctx, "xmm12", NULL,
347       //            sizeof(XMMReg), data);
348       //            bytes_written += WriteRegister (reg_ctx, "xmm13", NULL,
349       //            sizeof(XMMReg), data);
350       //            bytes_written += WriteRegister (reg_ctx, "xmm14", NULL,
351       //            sizeof(XMMReg), data);
352       //            bytes_written += WriteRegister (reg_ctx, "xmm15", NULL,
353       //            sizeof(XMMReg), data);
354       //
355       //            // Fill rest with zeros
356       //            for (size_t i=0, n = fpu_byte_size - bytes_written; i<n; ++
357       //            i)
358       //                data.PutChar(0);
359 
360       // Write out the EXC registers
361       data.PutHex32(EXCRegSet);
362       data.PutHex32(EXCWordCount);
363       PrintRegisterValue(reg_ctx, "trapno", nullptr, 4, data);
364       PrintRegisterValue(reg_ctx, "err", nullptr, 4, data);
365       PrintRegisterValue(reg_ctx, "faultvaddr", nullptr, 8, data);
366       return true;
367     }
368     return false;
369   }
370 
371 protected:
372   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
373 
374   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
375 
376   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
377 
378   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
379     return 0;
380   }
381 
382   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
383     return 0;
384   }
385 
386   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
387     return 0;
388   }
389 };
390 
391 class RegisterContextDarwin_i386_Mach : public RegisterContextDarwin_i386 {
392 public:
393   RegisterContextDarwin_i386_Mach(lldb_private::Thread &thread,
394                                   const DataExtractor &data)
395       : RegisterContextDarwin_i386(thread, 0) {
396     SetRegisterDataFrom_LC_THREAD(data);
397   }
398 
399   void InvalidateAllRegisters() override {
400     // Do nothing... registers are always valid...
401   }
402 
403   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
404     lldb::offset_t offset = 0;
405     SetError(GPRRegSet, Read, -1);
406     SetError(FPURegSet, Read, -1);
407     SetError(EXCRegSet, Read, -1);
408     bool done = false;
409 
410     while (!done) {
411       int flavor = data.GetU32(&offset);
412       if (flavor == 0)
413         done = true;
414       else {
415         uint32_t i;
416         uint32_t count = data.GetU32(&offset);
417         switch (flavor) {
418         case GPRRegSet:
419           for (i = 0; i < count; ++i)
420             (&gpr.eax)[i] = data.GetU32(&offset);
421           SetError(GPRRegSet, Read, 0);
422           done = true;
423 
424           break;
425         case FPURegSet:
426           // TODO: fill in FPU regs....
427           // SetError (FPURegSet, Read, -1);
428           done = true;
429 
430           break;
431         case EXCRegSet:
432           exc.trapno = data.GetU32(&offset);
433           exc.err = data.GetU32(&offset);
434           exc.faultvaddr = data.GetU32(&offset);
435           SetError(EXCRegSet, Read, 0);
436           done = true;
437           break;
438         case 7:
439         case 8:
440         case 9:
441           // fancy flavors that encapsulate of the above flavors...
442           break;
443 
444         default:
445           done = true;
446           break;
447         }
448       }
449     }
450   }
451 
452   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
453     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
454     if (reg_ctx_sp) {
455       RegisterContext *reg_ctx = reg_ctx_sp.get();
456 
457       data.PutHex32(GPRRegSet); // Flavor
458       data.PutHex32(GPRWordCount);
459       PrintRegisterValue(reg_ctx, "eax", nullptr, 4, data);
460       PrintRegisterValue(reg_ctx, "ebx", nullptr, 4, data);
461       PrintRegisterValue(reg_ctx, "ecx", nullptr, 4, data);
462       PrintRegisterValue(reg_ctx, "edx", nullptr, 4, data);
463       PrintRegisterValue(reg_ctx, "edi", nullptr, 4, data);
464       PrintRegisterValue(reg_ctx, "esi", nullptr, 4, data);
465       PrintRegisterValue(reg_ctx, "ebp", nullptr, 4, data);
466       PrintRegisterValue(reg_ctx, "esp", nullptr, 4, data);
467       PrintRegisterValue(reg_ctx, "ss", nullptr, 4, data);
468       PrintRegisterValue(reg_ctx, "eflags", nullptr, 4, data);
469       PrintRegisterValue(reg_ctx, "eip", nullptr, 4, data);
470       PrintRegisterValue(reg_ctx, "cs", nullptr, 4, data);
471       PrintRegisterValue(reg_ctx, "ds", nullptr, 4, data);
472       PrintRegisterValue(reg_ctx, "es", nullptr, 4, data);
473       PrintRegisterValue(reg_ctx, "fs", nullptr, 4, data);
474       PrintRegisterValue(reg_ctx, "gs", nullptr, 4, data);
475 
476       // Write out the EXC registers
477       data.PutHex32(EXCRegSet);
478       data.PutHex32(EXCWordCount);
479       PrintRegisterValue(reg_ctx, "trapno", nullptr, 4, data);
480       PrintRegisterValue(reg_ctx, "err", nullptr, 4, data);
481       PrintRegisterValue(reg_ctx, "faultvaddr", nullptr, 4, data);
482       return true;
483     }
484     return false;
485   }
486 
487 protected:
488   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
489 
490   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
491 
492   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
493 
494   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
495     return 0;
496   }
497 
498   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
499     return 0;
500   }
501 
502   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
503     return 0;
504   }
505 };
506 
507 class RegisterContextDarwin_arm_Mach : public RegisterContextDarwin_arm {
508 public:
509   RegisterContextDarwin_arm_Mach(lldb_private::Thread &thread,
510                                  const DataExtractor &data)
511       : RegisterContextDarwin_arm(thread, 0) {
512     SetRegisterDataFrom_LC_THREAD(data);
513   }
514 
515   void InvalidateAllRegisters() override {
516     // Do nothing... registers are always valid...
517   }
518 
519   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
520     lldb::offset_t offset = 0;
521     SetError(GPRRegSet, Read, -1);
522     SetError(FPURegSet, Read, -1);
523     SetError(EXCRegSet, Read, -1);
524     bool done = false;
525 
526     while (!done) {
527       int flavor = data.GetU32(&offset);
528       uint32_t count = data.GetU32(&offset);
529       lldb::offset_t next_thread_state = offset + (count * 4);
530       switch (flavor) {
531       case GPRAltRegSet:
532       case GPRRegSet:
533         // On ARM, the CPSR register is also included in the count but it is
534         // not included in gpr.r so loop until (count-1).
535         for (uint32_t i = 0; i < (count - 1); ++i) {
536           gpr.r[i] = data.GetU32(&offset);
537         }
538         // Save cpsr explicitly.
539         gpr.cpsr = data.GetU32(&offset);
540 
541         SetError(GPRRegSet, Read, 0);
542         offset = next_thread_state;
543         break;
544 
545       case FPURegSet: {
546         uint8_t *fpu_reg_buf = (uint8_t *)&fpu.floats.s[0];
547         const int fpu_reg_buf_size = sizeof(fpu.floats);
548         if (data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
549                               fpu_reg_buf) == fpu_reg_buf_size) {
550           offset += fpu_reg_buf_size;
551           fpu.fpscr = data.GetU32(&offset);
552           SetError(FPURegSet, Read, 0);
553         } else {
554           done = true;
555         }
556       }
557         offset = next_thread_state;
558         break;
559 
560       case EXCRegSet:
561         if (count == 3) {
562           exc.exception = data.GetU32(&offset);
563           exc.fsr = data.GetU32(&offset);
564           exc.far = data.GetU32(&offset);
565           SetError(EXCRegSet, Read, 0);
566         }
567         done = true;
568         offset = next_thread_state;
569         break;
570 
571       // Unknown register set flavor, stop trying to parse.
572       default:
573         done = true;
574       }
575     }
576   }
577 
578   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
579     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
580     if (reg_ctx_sp) {
581       RegisterContext *reg_ctx = reg_ctx_sp.get();
582 
583       data.PutHex32(GPRRegSet); // Flavor
584       data.PutHex32(GPRWordCount);
585       PrintRegisterValue(reg_ctx, "r0", nullptr, 4, data);
586       PrintRegisterValue(reg_ctx, "r1", nullptr, 4, data);
587       PrintRegisterValue(reg_ctx, "r2", nullptr, 4, data);
588       PrintRegisterValue(reg_ctx, "r3", nullptr, 4, data);
589       PrintRegisterValue(reg_ctx, "r4", nullptr, 4, data);
590       PrintRegisterValue(reg_ctx, "r5", nullptr, 4, data);
591       PrintRegisterValue(reg_ctx, "r6", nullptr, 4, data);
592       PrintRegisterValue(reg_ctx, "r7", nullptr, 4, data);
593       PrintRegisterValue(reg_ctx, "r8", nullptr, 4, data);
594       PrintRegisterValue(reg_ctx, "r9", nullptr, 4, data);
595       PrintRegisterValue(reg_ctx, "r10", nullptr, 4, data);
596       PrintRegisterValue(reg_ctx, "r11", nullptr, 4, data);
597       PrintRegisterValue(reg_ctx, "r12", nullptr, 4, data);
598       PrintRegisterValue(reg_ctx, "sp", nullptr, 4, data);
599       PrintRegisterValue(reg_ctx, "lr", nullptr, 4, data);
600       PrintRegisterValue(reg_ctx, "pc", nullptr, 4, data);
601       PrintRegisterValue(reg_ctx, "cpsr", nullptr, 4, data);
602 
603       // Write out the EXC registers
604       //            data.PutHex32 (EXCRegSet);
605       //            data.PutHex32 (EXCWordCount);
606       //            WriteRegister (reg_ctx, "exception", NULL, 4, data);
607       //            WriteRegister (reg_ctx, "fsr", NULL, 4, data);
608       //            WriteRegister (reg_ctx, "far", NULL, 4, data);
609       return true;
610     }
611     return false;
612   }
613 
614 protected:
615   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
616 
617   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
618 
619   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
620 
621   int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
622 
623   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
624     return 0;
625   }
626 
627   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
628     return 0;
629   }
630 
631   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
632     return 0;
633   }
634 
635   int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
636     return -1;
637   }
638 };
639 
640 class RegisterContextDarwin_arm64_Mach : public RegisterContextDarwin_arm64 {
641 public:
642   RegisterContextDarwin_arm64_Mach(lldb_private::Thread &thread,
643                                    const DataExtractor &data)
644       : RegisterContextDarwin_arm64(thread, 0) {
645     SetRegisterDataFrom_LC_THREAD(data);
646   }
647 
648   void InvalidateAllRegisters() override {
649     // Do nothing... registers are always valid...
650   }
651 
652   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
653     lldb::offset_t offset = 0;
654     SetError(GPRRegSet, Read, -1);
655     SetError(FPURegSet, Read, -1);
656     SetError(EXCRegSet, Read, -1);
657     bool done = false;
658     while (!done) {
659       int flavor = data.GetU32(&offset);
660       uint32_t count = data.GetU32(&offset);
661       lldb::offset_t next_thread_state = offset + (count * 4);
662       switch (flavor) {
663       case GPRRegSet:
664         // x0-x29 + fp + lr + sp + pc (== 33 64-bit registers) plus cpsr (1
665         // 32-bit register)
666         if (count >= (33 * 2) + 1) {
667           for (uint32_t i = 0; i < 29; ++i)
668             gpr.x[i] = data.GetU64(&offset);
669           gpr.fp = data.GetU64(&offset);
670           gpr.lr = data.GetU64(&offset);
671           gpr.sp = data.GetU64(&offset);
672           gpr.pc = data.GetU64(&offset);
673           gpr.cpsr = data.GetU32(&offset);
674           SetError(GPRRegSet, Read, 0);
675         }
676         offset = next_thread_state;
677         break;
678       case FPURegSet: {
679         uint8_t *fpu_reg_buf = (uint8_t *)&fpu.v[0];
680         const int fpu_reg_buf_size = sizeof(fpu);
681         if (fpu_reg_buf_size == count * sizeof(uint32_t) &&
682             data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
683                               fpu_reg_buf) == fpu_reg_buf_size) {
684           SetError(FPURegSet, Read, 0);
685         } else {
686           done = true;
687         }
688       }
689         offset = next_thread_state;
690         break;
691       case EXCRegSet:
692         if (count == 4) {
693           exc.far = data.GetU64(&offset);
694           exc.esr = data.GetU32(&offset);
695           exc.exception = data.GetU32(&offset);
696           SetError(EXCRegSet, Read, 0);
697         }
698         offset = next_thread_state;
699         break;
700       default:
701         done = true;
702         break;
703       }
704     }
705   }
706 
707   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
708     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
709     if (reg_ctx_sp) {
710       RegisterContext *reg_ctx = reg_ctx_sp.get();
711 
712       data.PutHex32(GPRRegSet); // Flavor
713       data.PutHex32(GPRWordCount);
714       PrintRegisterValue(reg_ctx, "x0", nullptr, 8, data);
715       PrintRegisterValue(reg_ctx, "x1", nullptr, 8, data);
716       PrintRegisterValue(reg_ctx, "x2", nullptr, 8, data);
717       PrintRegisterValue(reg_ctx, "x3", nullptr, 8, data);
718       PrintRegisterValue(reg_ctx, "x4", nullptr, 8, data);
719       PrintRegisterValue(reg_ctx, "x5", nullptr, 8, data);
720       PrintRegisterValue(reg_ctx, "x6", nullptr, 8, data);
721       PrintRegisterValue(reg_ctx, "x7", nullptr, 8, data);
722       PrintRegisterValue(reg_ctx, "x8", nullptr, 8, data);
723       PrintRegisterValue(reg_ctx, "x9", nullptr, 8, data);
724       PrintRegisterValue(reg_ctx, "x10", nullptr, 8, data);
725       PrintRegisterValue(reg_ctx, "x11", nullptr, 8, data);
726       PrintRegisterValue(reg_ctx, "x12", nullptr, 8, data);
727       PrintRegisterValue(reg_ctx, "x13", nullptr, 8, data);
728       PrintRegisterValue(reg_ctx, "x14", nullptr, 8, data);
729       PrintRegisterValue(reg_ctx, "x15", nullptr, 8, data);
730       PrintRegisterValue(reg_ctx, "x16", nullptr, 8, data);
731       PrintRegisterValue(reg_ctx, "x17", nullptr, 8, data);
732       PrintRegisterValue(reg_ctx, "x18", nullptr, 8, data);
733       PrintRegisterValue(reg_ctx, "x19", nullptr, 8, data);
734       PrintRegisterValue(reg_ctx, "x20", nullptr, 8, data);
735       PrintRegisterValue(reg_ctx, "x21", nullptr, 8, data);
736       PrintRegisterValue(reg_ctx, "x22", nullptr, 8, data);
737       PrintRegisterValue(reg_ctx, "x23", nullptr, 8, data);
738       PrintRegisterValue(reg_ctx, "x24", nullptr, 8, data);
739       PrintRegisterValue(reg_ctx, "x25", nullptr, 8, data);
740       PrintRegisterValue(reg_ctx, "x26", nullptr, 8, data);
741       PrintRegisterValue(reg_ctx, "x27", nullptr, 8, data);
742       PrintRegisterValue(reg_ctx, "x28", nullptr, 8, data);
743       PrintRegisterValue(reg_ctx, "fp", nullptr, 8, data);
744       PrintRegisterValue(reg_ctx, "lr", nullptr, 8, data);
745       PrintRegisterValue(reg_ctx, "sp", nullptr, 8, data);
746       PrintRegisterValue(reg_ctx, "pc", nullptr, 8, data);
747       PrintRegisterValue(reg_ctx, "cpsr", nullptr, 4, data);
748 
749       // Write out the EXC registers
750       //            data.PutHex32 (EXCRegSet);
751       //            data.PutHex32 (EXCWordCount);
752       //            WriteRegister (reg_ctx, "far", NULL, 8, data);
753       //            WriteRegister (reg_ctx, "esr", NULL, 4, data);
754       //            WriteRegister (reg_ctx, "exception", NULL, 4, data);
755       return true;
756     }
757     return false;
758   }
759 
760 protected:
761   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
762 
763   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
764 
765   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
766 
767   int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
768 
769   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
770     return 0;
771   }
772 
773   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
774     return 0;
775   }
776 
777   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
778     return 0;
779   }
780 
781   int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
782     return -1;
783   }
784 };
785 
786 static uint32_t MachHeaderSizeFromMagic(uint32_t magic) {
787   switch (magic) {
788   case MH_MAGIC:
789   case MH_CIGAM:
790     return sizeof(struct llvm::MachO::mach_header);
791 
792   case MH_MAGIC_64:
793   case MH_CIGAM_64:
794     return sizeof(struct llvm::MachO::mach_header_64);
795     break;
796 
797   default:
798     break;
799   }
800   return 0;
801 }
802 
803 #define MACHO_NLIST_ARM_SYMBOL_IS_THUMB 0x0008
804 
805 char ObjectFileMachO::ID;
806 
807 void ObjectFileMachO::Initialize() {
808   PluginManager::RegisterPlugin(
809       GetPluginNameStatic(), GetPluginDescriptionStatic(), CreateInstance,
810       CreateMemoryInstance, GetModuleSpecifications, SaveCore);
811 }
812 
813 void ObjectFileMachO::Terminate() {
814   PluginManager::UnregisterPlugin(CreateInstance);
815 }
816 
817 lldb_private::ConstString ObjectFileMachO::GetPluginNameStatic() {
818   static ConstString g_name("mach-o");
819   return g_name;
820 }
821 
822 const char *ObjectFileMachO::GetPluginDescriptionStatic() {
823   return "Mach-o object file reader (32 and 64 bit)";
824 }
825 
826 ObjectFile *ObjectFileMachO::CreateInstance(const lldb::ModuleSP &module_sp,
827                                             DataBufferSP &data_sp,
828                                             lldb::offset_t data_offset,
829                                             const FileSpec *file,
830                                             lldb::offset_t file_offset,
831                                             lldb::offset_t length) {
832   if (!data_sp) {
833     data_sp = MapFileData(*file, length, file_offset);
834     if (!data_sp)
835       return nullptr;
836     data_offset = 0;
837   }
838 
839   if (!ObjectFileMachO::MagicBytesMatch(data_sp, data_offset, length))
840     return nullptr;
841 
842   // Update the data to contain the entire file if it doesn't already
843   if (data_sp->GetByteSize() < length) {
844     data_sp = MapFileData(*file, length, file_offset);
845     if (!data_sp)
846       return nullptr;
847     data_offset = 0;
848   }
849   auto objfile_up = std::make_unique<ObjectFileMachO>(
850       module_sp, data_sp, data_offset, file, file_offset, length);
851   if (!objfile_up || !objfile_up->ParseHeader())
852     return nullptr;
853 
854   return objfile_up.release();
855 }
856 
857 ObjectFile *ObjectFileMachO::CreateMemoryInstance(
858     const lldb::ModuleSP &module_sp, DataBufferSP &data_sp,
859     const ProcessSP &process_sp, lldb::addr_t header_addr) {
860   if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
861     std::unique_ptr<ObjectFile> objfile_up(
862         new ObjectFileMachO(module_sp, data_sp, process_sp, header_addr));
863     if (objfile_up.get() && objfile_up->ParseHeader())
864       return objfile_up.release();
865   }
866   return nullptr;
867 }
868 
869 size_t ObjectFileMachO::GetModuleSpecifications(
870     const lldb_private::FileSpec &file, lldb::DataBufferSP &data_sp,
871     lldb::offset_t data_offset, lldb::offset_t file_offset,
872     lldb::offset_t length, lldb_private::ModuleSpecList &specs) {
873   const size_t initial_count = specs.GetSize();
874 
875   if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
876     DataExtractor data;
877     data.SetData(data_sp);
878     llvm::MachO::mach_header header;
879     if (ParseHeader(data, &data_offset, header)) {
880       size_t header_and_load_cmds =
881           header.sizeofcmds + MachHeaderSizeFromMagic(header.magic);
882       if (header_and_load_cmds >= data_sp->GetByteSize()) {
883         data_sp = MapFileData(file, header_and_load_cmds, file_offset);
884         data.SetData(data_sp);
885         data_offset = MachHeaderSizeFromMagic(header.magic);
886       }
887       if (data_sp) {
888         ModuleSpec base_spec;
889         base_spec.GetFileSpec() = file;
890         base_spec.SetObjectOffset(file_offset);
891         base_spec.SetObjectSize(length);
892         GetAllArchSpecs(header, data, data_offset, base_spec, specs);
893       }
894     }
895   }
896   return specs.GetSize() - initial_count;
897 }
898 
899 ConstString ObjectFileMachO::GetSegmentNameTEXT() {
900   static ConstString g_segment_name_TEXT("__TEXT");
901   return g_segment_name_TEXT;
902 }
903 
904 ConstString ObjectFileMachO::GetSegmentNameDATA() {
905   static ConstString g_segment_name_DATA("__DATA");
906   return g_segment_name_DATA;
907 }
908 
909 ConstString ObjectFileMachO::GetSegmentNameDATA_DIRTY() {
910   static ConstString g_segment_name("__DATA_DIRTY");
911   return g_segment_name;
912 }
913 
914 ConstString ObjectFileMachO::GetSegmentNameDATA_CONST() {
915   static ConstString g_segment_name("__DATA_CONST");
916   return g_segment_name;
917 }
918 
919 ConstString ObjectFileMachO::GetSegmentNameOBJC() {
920   static ConstString g_segment_name_OBJC("__OBJC");
921   return g_segment_name_OBJC;
922 }
923 
924 ConstString ObjectFileMachO::GetSegmentNameLINKEDIT() {
925   static ConstString g_section_name_LINKEDIT("__LINKEDIT");
926   return g_section_name_LINKEDIT;
927 }
928 
929 ConstString ObjectFileMachO::GetSegmentNameDWARF() {
930   static ConstString g_section_name("__DWARF");
931   return g_section_name;
932 }
933 
934 ConstString ObjectFileMachO::GetSectionNameEHFrame() {
935   static ConstString g_section_name_eh_frame("__eh_frame");
936   return g_section_name_eh_frame;
937 }
938 
939 bool ObjectFileMachO::MagicBytesMatch(DataBufferSP &data_sp,
940                                       lldb::addr_t data_offset,
941                                       lldb::addr_t data_length) {
942   DataExtractor data;
943   data.SetData(data_sp, data_offset, data_length);
944   lldb::offset_t offset = 0;
945   uint32_t magic = data.GetU32(&offset);
946   return MachHeaderSizeFromMagic(magic) != 0;
947 }
948 
949 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
950                                  DataBufferSP &data_sp,
951                                  lldb::offset_t data_offset,
952                                  const FileSpec *file,
953                                  lldb::offset_t file_offset,
954                                  lldb::offset_t length)
955     : ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset),
956       m_mach_segments(), m_mach_sections(), m_entry_point_address(),
957       m_thread_context_offsets(), m_thread_context_offsets_valid(false),
958       m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) {
959   ::memset(&m_header, 0, sizeof(m_header));
960   ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
961 }
962 
963 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
964                                  lldb::DataBufferSP &header_data_sp,
965                                  const lldb::ProcessSP &process_sp,
966                                  lldb::addr_t header_addr)
967     : ObjectFile(module_sp, process_sp, header_addr, header_data_sp),
968       m_mach_segments(), m_mach_sections(), m_entry_point_address(),
969       m_thread_context_offsets(), m_thread_context_offsets_valid(false),
970       m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) {
971   ::memset(&m_header, 0, sizeof(m_header));
972   ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
973 }
974 
975 bool ObjectFileMachO::ParseHeader(DataExtractor &data,
976                                   lldb::offset_t *data_offset_ptr,
977                                   llvm::MachO::mach_header &header) {
978   data.SetByteOrder(endian::InlHostByteOrder());
979   // Leave magic in the original byte order
980   header.magic = data.GetU32(data_offset_ptr);
981   bool can_parse = false;
982   bool is_64_bit = false;
983   switch (header.magic) {
984   case MH_MAGIC:
985     data.SetByteOrder(endian::InlHostByteOrder());
986     data.SetAddressByteSize(4);
987     can_parse = true;
988     break;
989 
990   case MH_MAGIC_64:
991     data.SetByteOrder(endian::InlHostByteOrder());
992     data.SetAddressByteSize(8);
993     can_parse = true;
994     is_64_bit = true;
995     break;
996 
997   case MH_CIGAM:
998     data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
999                           ? eByteOrderLittle
1000                           : eByteOrderBig);
1001     data.SetAddressByteSize(4);
1002     can_parse = true;
1003     break;
1004 
1005   case MH_CIGAM_64:
1006     data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1007                           ? eByteOrderLittle
1008                           : eByteOrderBig);
1009     data.SetAddressByteSize(8);
1010     is_64_bit = true;
1011     can_parse = true;
1012     break;
1013 
1014   default:
1015     break;
1016   }
1017 
1018   if (can_parse) {
1019     data.GetU32(data_offset_ptr, &header.cputype, 6);
1020     if (is_64_bit)
1021       *data_offset_ptr += 4;
1022     return true;
1023   } else {
1024     memset(&header, 0, sizeof(header));
1025   }
1026   return false;
1027 }
1028 
1029 bool ObjectFileMachO::ParseHeader() {
1030   ModuleSP module_sp(GetModule());
1031   if (!module_sp)
1032     return false;
1033 
1034   std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
1035   bool can_parse = false;
1036   lldb::offset_t offset = 0;
1037   m_data.SetByteOrder(endian::InlHostByteOrder());
1038   // Leave magic in the original byte order
1039   m_header.magic = m_data.GetU32(&offset);
1040   switch (m_header.magic) {
1041   case MH_MAGIC:
1042     m_data.SetByteOrder(endian::InlHostByteOrder());
1043     m_data.SetAddressByteSize(4);
1044     can_parse = true;
1045     break;
1046 
1047   case MH_MAGIC_64:
1048     m_data.SetByteOrder(endian::InlHostByteOrder());
1049     m_data.SetAddressByteSize(8);
1050     can_parse = true;
1051     break;
1052 
1053   case MH_CIGAM:
1054     m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1055                             ? eByteOrderLittle
1056                             : eByteOrderBig);
1057     m_data.SetAddressByteSize(4);
1058     can_parse = true;
1059     break;
1060 
1061   case MH_CIGAM_64:
1062     m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1063                             ? eByteOrderLittle
1064                             : eByteOrderBig);
1065     m_data.SetAddressByteSize(8);
1066     can_parse = true;
1067     break;
1068 
1069   default:
1070     break;
1071   }
1072 
1073   if (can_parse) {
1074     m_data.GetU32(&offset, &m_header.cputype, 6);
1075 
1076     ModuleSpecList all_specs;
1077     ModuleSpec base_spec;
1078     GetAllArchSpecs(m_header, m_data, MachHeaderSizeFromMagic(m_header.magic),
1079                     base_spec, all_specs);
1080 
1081     for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
1082       ArchSpec mach_arch =
1083           all_specs.GetModuleSpecRefAtIndex(i).GetArchitecture();
1084 
1085       // Check if the module has a required architecture
1086       const ArchSpec &module_arch = module_sp->GetArchitecture();
1087       if (module_arch.IsValid() && !module_arch.IsCompatibleMatch(mach_arch))
1088         continue;
1089 
1090       if (SetModulesArchitecture(mach_arch)) {
1091         const size_t header_and_lc_size =
1092             m_header.sizeofcmds + MachHeaderSizeFromMagic(m_header.magic);
1093         if (m_data.GetByteSize() < header_and_lc_size) {
1094           DataBufferSP data_sp;
1095           ProcessSP process_sp(m_process_wp.lock());
1096           if (process_sp) {
1097             data_sp = ReadMemory(process_sp, m_memory_addr, header_and_lc_size);
1098           } else {
1099             // Read in all only the load command data from the file on disk
1100             data_sp = MapFileData(m_file, header_and_lc_size, m_file_offset);
1101             if (data_sp->GetByteSize() != header_and_lc_size)
1102               continue;
1103           }
1104           if (data_sp)
1105             m_data.SetData(data_sp);
1106         }
1107       }
1108       return true;
1109     }
1110     // None found.
1111     return false;
1112   } else {
1113     memset(&m_header, 0, sizeof(struct llvm::MachO::mach_header));
1114   }
1115   return false;
1116 }
1117 
1118 ByteOrder ObjectFileMachO::GetByteOrder() const {
1119   return m_data.GetByteOrder();
1120 }
1121 
1122 bool ObjectFileMachO::IsExecutable() const {
1123   return m_header.filetype == MH_EXECUTE;
1124 }
1125 
1126 bool ObjectFileMachO::IsDynamicLoader() const {
1127   return m_header.filetype == MH_DYLINKER;
1128 }
1129 
1130 bool ObjectFileMachO::IsSharedCacheBinary() const {
1131   return m_header.flags & MH_DYLIB_IN_CACHE;
1132 }
1133 
1134 uint32_t ObjectFileMachO::GetAddressByteSize() const {
1135   return m_data.GetAddressByteSize();
1136 }
1137 
1138 AddressClass ObjectFileMachO::GetAddressClass(lldb::addr_t file_addr) {
1139   Symtab *symtab = GetSymtab();
1140   if (!symtab)
1141     return AddressClass::eUnknown;
1142 
1143   Symbol *symbol = symtab->FindSymbolContainingFileAddress(file_addr);
1144   if (symbol) {
1145     if (symbol->ValueIsAddress()) {
1146       SectionSP section_sp(symbol->GetAddressRef().GetSection());
1147       if (section_sp) {
1148         const lldb::SectionType section_type = section_sp->GetType();
1149         switch (section_type) {
1150         case eSectionTypeInvalid:
1151           return AddressClass::eUnknown;
1152 
1153         case eSectionTypeCode:
1154           if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
1155             // For ARM we have a bit in the n_desc field of the symbol that
1156             // tells us ARM/Thumb which is bit 0x0008.
1157             if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB)
1158               return AddressClass::eCodeAlternateISA;
1159           }
1160           return AddressClass::eCode;
1161 
1162         case eSectionTypeContainer:
1163           return AddressClass::eUnknown;
1164 
1165         case eSectionTypeData:
1166         case eSectionTypeDataCString:
1167         case eSectionTypeDataCStringPointers:
1168         case eSectionTypeDataSymbolAddress:
1169         case eSectionTypeData4:
1170         case eSectionTypeData8:
1171         case eSectionTypeData16:
1172         case eSectionTypeDataPointers:
1173         case eSectionTypeZeroFill:
1174         case eSectionTypeDataObjCMessageRefs:
1175         case eSectionTypeDataObjCCFStrings:
1176         case eSectionTypeGoSymtab:
1177           return AddressClass::eData;
1178 
1179         case eSectionTypeDebug:
1180         case eSectionTypeDWARFDebugAbbrev:
1181         case eSectionTypeDWARFDebugAbbrevDwo:
1182         case eSectionTypeDWARFDebugAddr:
1183         case eSectionTypeDWARFDebugAranges:
1184         case eSectionTypeDWARFDebugCuIndex:
1185         case eSectionTypeDWARFDebugFrame:
1186         case eSectionTypeDWARFDebugInfo:
1187         case eSectionTypeDWARFDebugInfoDwo:
1188         case eSectionTypeDWARFDebugLine:
1189         case eSectionTypeDWARFDebugLineStr:
1190         case eSectionTypeDWARFDebugLoc:
1191         case eSectionTypeDWARFDebugLocDwo:
1192         case eSectionTypeDWARFDebugLocLists:
1193         case eSectionTypeDWARFDebugLocListsDwo:
1194         case eSectionTypeDWARFDebugMacInfo:
1195         case eSectionTypeDWARFDebugMacro:
1196         case eSectionTypeDWARFDebugNames:
1197         case eSectionTypeDWARFDebugPubNames:
1198         case eSectionTypeDWARFDebugPubTypes:
1199         case eSectionTypeDWARFDebugRanges:
1200         case eSectionTypeDWARFDebugRngLists:
1201         case eSectionTypeDWARFDebugRngListsDwo:
1202         case eSectionTypeDWARFDebugStr:
1203         case eSectionTypeDWARFDebugStrDwo:
1204         case eSectionTypeDWARFDebugStrOffsets:
1205         case eSectionTypeDWARFDebugStrOffsetsDwo:
1206         case eSectionTypeDWARFDebugTuIndex:
1207         case eSectionTypeDWARFDebugTypes:
1208         case eSectionTypeDWARFDebugTypesDwo:
1209         case eSectionTypeDWARFAppleNames:
1210         case eSectionTypeDWARFAppleTypes:
1211         case eSectionTypeDWARFAppleNamespaces:
1212         case eSectionTypeDWARFAppleObjC:
1213         case eSectionTypeDWARFGNUDebugAltLink:
1214           return AddressClass::eDebug;
1215 
1216         case eSectionTypeEHFrame:
1217         case eSectionTypeARMexidx:
1218         case eSectionTypeARMextab:
1219         case eSectionTypeCompactUnwind:
1220           return AddressClass::eRuntime;
1221 
1222         case eSectionTypeAbsoluteAddress:
1223         case eSectionTypeELFSymbolTable:
1224         case eSectionTypeELFDynamicSymbols:
1225         case eSectionTypeELFRelocationEntries:
1226         case eSectionTypeELFDynamicLinkInfo:
1227         case eSectionTypeOther:
1228           return AddressClass::eUnknown;
1229         }
1230       }
1231     }
1232 
1233     const SymbolType symbol_type = symbol->GetType();
1234     switch (symbol_type) {
1235     case eSymbolTypeAny:
1236       return AddressClass::eUnknown;
1237     case eSymbolTypeAbsolute:
1238       return AddressClass::eUnknown;
1239 
1240     case eSymbolTypeCode:
1241     case eSymbolTypeTrampoline:
1242     case eSymbolTypeResolver:
1243       if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
1244         // For ARM we have a bit in the n_desc field of the symbol that tells
1245         // us ARM/Thumb which is bit 0x0008.
1246         if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB)
1247           return AddressClass::eCodeAlternateISA;
1248       }
1249       return AddressClass::eCode;
1250 
1251     case eSymbolTypeData:
1252       return AddressClass::eData;
1253     case eSymbolTypeRuntime:
1254       return AddressClass::eRuntime;
1255     case eSymbolTypeException:
1256       return AddressClass::eRuntime;
1257     case eSymbolTypeSourceFile:
1258       return AddressClass::eDebug;
1259     case eSymbolTypeHeaderFile:
1260       return AddressClass::eDebug;
1261     case eSymbolTypeObjectFile:
1262       return AddressClass::eDebug;
1263     case eSymbolTypeCommonBlock:
1264       return AddressClass::eDebug;
1265     case eSymbolTypeBlock:
1266       return AddressClass::eDebug;
1267     case eSymbolTypeLocal:
1268       return AddressClass::eData;
1269     case eSymbolTypeParam:
1270       return AddressClass::eData;
1271     case eSymbolTypeVariable:
1272       return AddressClass::eData;
1273     case eSymbolTypeVariableType:
1274       return AddressClass::eDebug;
1275     case eSymbolTypeLineEntry:
1276       return AddressClass::eDebug;
1277     case eSymbolTypeLineHeader:
1278       return AddressClass::eDebug;
1279     case eSymbolTypeScopeBegin:
1280       return AddressClass::eDebug;
1281     case eSymbolTypeScopeEnd:
1282       return AddressClass::eDebug;
1283     case eSymbolTypeAdditional:
1284       return AddressClass::eUnknown;
1285     case eSymbolTypeCompiler:
1286       return AddressClass::eDebug;
1287     case eSymbolTypeInstrumentation:
1288       return AddressClass::eDebug;
1289     case eSymbolTypeUndefined:
1290       return AddressClass::eUnknown;
1291     case eSymbolTypeObjCClass:
1292       return AddressClass::eRuntime;
1293     case eSymbolTypeObjCMetaClass:
1294       return AddressClass::eRuntime;
1295     case eSymbolTypeObjCIVar:
1296       return AddressClass::eRuntime;
1297     case eSymbolTypeReExported:
1298       return AddressClass::eRuntime;
1299     }
1300   }
1301   return AddressClass::eUnknown;
1302 }
1303 
1304 Symtab *ObjectFileMachO::GetSymtab() {
1305   ModuleSP module_sp(GetModule());
1306   if (module_sp) {
1307     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
1308     if (m_symtab_up == nullptr) {
1309       m_symtab_up = std::make_unique<Symtab>(this);
1310       std::lock_guard<std::recursive_mutex> symtab_guard(
1311           m_symtab_up->GetMutex());
1312       ParseSymtab();
1313       m_symtab_up->Finalize();
1314     }
1315   }
1316   return m_symtab_up.get();
1317 }
1318 
1319 bool ObjectFileMachO::IsStripped() {
1320   if (m_dysymtab.cmd == 0) {
1321     ModuleSP module_sp(GetModule());
1322     if (module_sp) {
1323       lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1324       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1325         const lldb::offset_t load_cmd_offset = offset;
1326 
1327         llvm::MachO::load_command lc;
1328         if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
1329           break;
1330         if (lc.cmd == LC_DYSYMTAB) {
1331           m_dysymtab.cmd = lc.cmd;
1332           m_dysymtab.cmdsize = lc.cmdsize;
1333           if (m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
1334                             (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2) ==
1335               nullptr) {
1336             // Clear m_dysymtab if we were unable to read all items from the
1337             // load command
1338             ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
1339           }
1340         }
1341         offset = load_cmd_offset + lc.cmdsize;
1342       }
1343     }
1344   }
1345   if (m_dysymtab.cmd)
1346     return m_dysymtab.nlocalsym <= 1;
1347   return false;
1348 }
1349 
1350 ObjectFileMachO::EncryptedFileRanges ObjectFileMachO::GetEncryptedFileRanges() {
1351   EncryptedFileRanges result;
1352   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1353 
1354   llvm::MachO::encryption_info_command encryption_cmd;
1355   for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1356     const lldb::offset_t load_cmd_offset = offset;
1357     if (m_data.GetU32(&offset, &encryption_cmd, 2) == nullptr)
1358       break;
1359 
1360     // LC_ENCRYPTION_INFO and LC_ENCRYPTION_INFO_64 have the same sizes for the
1361     // 3 fields we care about, so treat them the same.
1362     if (encryption_cmd.cmd == LC_ENCRYPTION_INFO ||
1363         encryption_cmd.cmd == LC_ENCRYPTION_INFO_64) {
1364       if (m_data.GetU32(&offset, &encryption_cmd.cryptoff, 3)) {
1365         if (encryption_cmd.cryptid != 0) {
1366           EncryptedFileRanges::Entry entry;
1367           entry.SetRangeBase(encryption_cmd.cryptoff);
1368           entry.SetByteSize(encryption_cmd.cryptsize);
1369           result.Append(entry);
1370         }
1371       }
1372     }
1373     offset = load_cmd_offset + encryption_cmd.cmdsize;
1374   }
1375 
1376   return result;
1377 }
1378 
1379 void ObjectFileMachO::SanitizeSegmentCommand(
1380     llvm::MachO::segment_command_64 &seg_cmd, uint32_t cmd_idx) {
1381   if (m_length == 0 || seg_cmd.filesize == 0)
1382     return;
1383 
1384   if (IsSharedCacheBinary() && !IsInMemory()) {
1385     // In shared cache images, the load commands are relative to the
1386     // shared cache file, and not the specific image we are
1387     // examining. Let's fix this up so that it looks like a normal
1388     // image.
1389     if (strncmp(seg_cmd.segname, "__TEXT", sizeof(seg_cmd.segname)) == 0)
1390       m_text_address = seg_cmd.vmaddr;
1391     if (strncmp(seg_cmd.segname, "__LINKEDIT", sizeof(seg_cmd.segname)) == 0)
1392       m_linkedit_original_offset = seg_cmd.fileoff;
1393 
1394     seg_cmd.fileoff = seg_cmd.vmaddr - m_text_address;
1395   }
1396 
1397   if (seg_cmd.fileoff > m_length) {
1398     // We have a load command that says it extends past the end of the file.
1399     // This is likely a corrupt file.  We don't have any way to return an error
1400     // condition here (this method was likely invoked from something like
1401     // ObjectFile::GetSectionList()), so we just null out the section contents,
1402     // and dump a message to stdout.  The most common case here is core file
1403     // debugging with a truncated file.
1404     const char *lc_segment_name =
1405         seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT";
1406     GetModule()->ReportWarning(
1407         "load command %u %s has a fileoff (0x%" PRIx64
1408         ") that extends beyond the end of the file (0x%" PRIx64
1409         "), ignoring this section",
1410         cmd_idx, lc_segment_name, seg_cmd.fileoff, m_length);
1411 
1412     seg_cmd.fileoff = 0;
1413     seg_cmd.filesize = 0;
1414   }
1415 
1416   if (seg_cmd.fileoff + seg_cmd.filesize > m_length) {
1417     // We have a load command that says it extends past the end of the file.
1418     // This is likely a corrupt file.  We don't have any way to return an error
1419     // condition here (this method was likely invoked from something like
1420     // ObjectFile::GetSectionList()), so we just null out the section contents,
1421     // and dump a message to stdout.  The most common case here is core file
1422     // debugging with a truncated file.
1423     const char *lc_segment_name =
1424         seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT";
1425     GetModule()->ReportWarning(
1426         "load command %u %s has a fileoff + filesize (0x%" PRIx64
1427         ") that extends beyond the end of the file (0x%" PRIx64
1428         "), the segment will be truncated to match",
1429         cmd_idx, lc_segment_name, seg_cmd.fileoff + seg_cmd.filesize, m_length);
1430 
1431     // Truncate the length
1432     seg_cmd.filesize = m_length - seg_cmd.fileoff;
1433   }
1434 }
1435 
1436 static uint32_t
1437 GetSegmentPermissions(const llvm::MachO::segment_command_64 &seg_cmd) {
1438   uint32_t result = 0;
1439   if (seg_cmd.initprot & VM_PROT_READ)
1440     result |= ePermissionsReadable;
1441   if (seg_cmd.initprot & VM_PROT_WRITE)
1442     result |= ePermissionsWritable;
1443   if (seg_cmd.initprot & VM_PROT_EXECUTE)
1444     result |= ePermissionsExecutable;
1445   return result;
1446 }
1447 
1448 static lldb::SectionType GetSectionType(uint32_t flags,
1449                                         ConstString section_name) {
1450 
1451   if (flags & (S_ATTR_PURE_INSTRUCTIONS | S_ATTR_SOME_INSTRUCTIONS))
1452     return eSectionTypeCode;
1453 
1454   uint32_t mach_sect_type = flags & SECTION_TYPE;
1455   static ConstString g_sect_name_objc_data("__objc_data");
1456   static ConstString g_sect_name_objc_msgrefs("__objc_msgrefs");
1457   static ConstString g_sect_name_objc_selrefs("__objc_selrefs");
1458   static ConstString g_sect_name_objc_classrefs("__objc_classrefs");
1459   static ConstString g_sect_name_objc_superrefs("__objc_superrefs");
1460   static ConstString g_sect_name_objc_const("__objc_const");
1461   static ConstString g_sect_name_objc_classlist("__objc_classlist");
1462   static ConstString g_sect_name_cfstring("__cfstring");
1463 
1464   static ConstString g_sect_name_dwarf_debug_abbrev("__debug_abbrev");
1465   static ConstString g_sect_name_dwarf_debug_aranges("__debug_aranges");
1466   static ConstString g_sect_name_dwarf_debug_frame("__debug_frame");
1467   static ConstString g_sect_name_dwarf_debug_info("__debug_info");
1468   static ConstString g_sect_name_dwarf_debug_line("__debug_line");
1469   static ConstString g_sect_name_dwarf_debug_loc("__debug_loc");
1470   static ConstString g_sect_name_dwarf_debug_loclists("__debug_loclists");
1471   static ConstString g_sect_name_dwarf_debug_macinfo("__debug_macinfo");
1472   static ConstString g_sect_name_dwarf_debug_names("__debug_names");
1473   static ConstString g_sect_name_dwarf_debug_pubnames("__debug_pubnames");
1474   static ConstString g_sect_name_dwarf_debug_pubtypes("__debug_pubtypes");
1475   static ConstString g_sect_name_dwarf_debug_ranges("__debug_ranges");
1476   static ConstString g_sect_name_dwarf_debug_str("__debug_str");
1477   static ConstString g_sect_name_dwarf_debug_types("__debug_types");
1478   static ConstString g_sect_name_dwarf_apple_names("__apple_names");
1479   static ConstString g_sect_name_dwarf_apple_types("__apple_types");
1480   static ConstString g_sect_name_dwarf_apple_namespaces("__apple_namespac");
1481   static ConstString g_sect_name_dwarf_apple_objc("__apple_objc");
1482   static ConstString g_sect_name_eh_frame("__eh_frame");
1483   static ConstString g_sect_name_compact_unwind("__unwind_info");
1484   static ConstString g_sect_name_text("__text");
1485   static ConstString g_sect_name_data("__data");
1486   static ConstString g_sect_name_go_symtab("__gosymtab");
1487 
1488   if (section_name == g_sect_name_dwarf_debug_abbrev)
1489     return eSectionTypeDWARFDebugAbbrev;
1490   if (section_name == g_sect_name_dwarf_debug_aranges)
1491     return eSectionTypeDWARFDebugAranges;
1492   if (section_name == g_sect_name_dwarf_debug_frame)
1493     return eSectionTypeDWARFDebugFrame;
1494   if (section_name == g_sect_name_dwarf_debug_info)
1495     return eSectionTypeDWARFDebugInfo;
1496   if (section_name == g_sect_name_dwarf_debug_line)
1497     return eSectionTypeDWARFDebugLine;
1498   if (section_name == g_sect_name_dwarf_debug_loc)
1499     return eSectionTypeDWARFDebugLoc;
1500   if (section_name == g_sect_name_dwarf_debug_loclists)
1501     return eSectionTypeDWARFDebugLocLists;
1502   if (section_name == g_sect_name_dwarf_debug_macinfo)
1503     return eSectionTypeDWARFDebugMacInfo;
1504   if (section_name == g_sect_name_dwarf_debug_names)
1505     return eSectionTypeDWARFDebugNames;
1506   if (section_name == g_sect_name_dwarf_debug_pubnames)
1507     return eSectionTypeDWARFDebugPubNames;
1508   if (section_name == g_sect_name_dwarf_debug_pubtypes)
1509     return eSectionTypeDWARFDebugPubTypes;
1510   if (section_name == g_sect_name_dwarf_debug_ranges)
1511     return eSectionTypeDWARFDebugRanges;
1512   if (section_name == g_sect_name_dwarf_debug_str)
1513     return eSectionTypeDWARFDebugStr;
1514   if (section_name == g_sect_name_dwarf_debug_types)
1515     return eSectionTypeDWARFDebugTypes;
1516   if (section_name == g_sect_name_dwarf_apple_names)
1517     return eSectionTypeDWARFAppleNames;
1518   if (section_name == g_sect_name_dwarf_apple_types)
1519     return eSectionTypeDWARFAppleTypes;
1520   if (section_name == g_sect_name_dwarf_apple_namespaces)
1521     return eSectionTypeDWARFAppleNamespaces;
1522   if (section_name == g_sect_name_dwarf_apple_objc)
1523     return eSectionTypeDWARFAppleObjC;
1524   if (section_name == g_sect_name_objc_selrefs)
1525     return eSectionTypeDataCStringPointers;
1526   if (section_name == g_sect_name_objc_msgrefs)
1527     return eSectionTypeDataObjCMessageRefs;
1528   if (section_name == g_sect_name_eh_frame)
1529     return eSectionTypeEHFrame;
1530   if (section_name == g_sect_name_compact_unwind)
1531     return eSectionTypeCompactUnwind;
1532   if (section_name == g_sect_name_cfstring)
1533     return eSectionTypeDataObjCCFStrings;
1534   if (section_name == g_sect_name_go_symtab)
1535     return eSectionTypeGoSymtab;
1536   if (section_name == g_sect_name_objc_data ||
1537       section_name == g_sect_name_objc_classrefs ||
1538       section_name == g_sect_name_objc_superrefs ||
1539       section_name == g_sect_name_objc_const ||
1540       section_name == g_sect_name_objc_classlist) {
1541     return eSectionTypeDataPointers;
1542   }
1543 
1544   switch (mach_sect_type) {
1545   // TODO: categorize sections by other flags for regular sections
1546   case S_REGULAR:
1547     if (section_name == g_sect_name_text)
1548       return eSectionTypeCode;
1549     if (section_name == g_sect_name_data)
1550       return eSectionTypeData;
1551     return eSectionTypeOther;
1552   case S_ZEROFILL:
1553     return eSectionTypeZeroFill;
1554   case S_CSTRING_LITERALS: // section with only literal C strings
1555     return eSectionTypeDataCString;
1556   case S_4BYTE_LITERALS: // section with only 4 byte literals
1557     return eSectionTypeData4;
1558   case S_8BYTE_LITERALS: // section with only 8 byte literals
1559     return eSectionTypeData8;
1560   case S_LITERAL_POINTERS: // section with only pointers to literals
1561     return eSectionTypeDataPointers;
1562   case S_NON_LAZY_SYMBOL_POINTERS: // section with only non-lazy symbol pointers
1563     return eSectionTypeDataPointers;
1564   case S_LAZY_SYMBOL_POINTERS: // section with only lazy symbol pointers
1565     return eSectionTypeDataPointers;
1566   case S_SYMBOL_STUBS: // section with only symbol stubs, byte size of stub in
1567                        // the reserved2 field
1568     return eSectionTypeCode;
1569   case S_MOD_INIT_FUNC_POINTERS: // section with only function pointers for
1570                                  // initialization
1571     return eSectionTypeDataPointers;
1572   case S_MOD_TERM_FUNC_POINTERS: // section with only function pointers for
1573                                  // termination
1574     return eSectionTypeDataPointers;
1575   case S_COALESCED:
1576     return eSectionTypeOther;
1577   case S_GB_ZEROFILL:
1578     return eSectionTypeZeroFill;
1579   case S_INTERPOSING: // section with only pairs of function pointers for
1580                       // interposing
1581     return eSectionTypeCode;
1582   case S_16BYTE_LITERALS: // section with only 16 byte literals
1583     return eSectionTypeData16;
1584   case S_DTRACE_DOF:
1585     return eSectionTypeDebug;
1586   case S_LAZY_DYLIB_SYMBOL_POINTERS:
1587     return eSectionTypeDataPointers;
1588   default:
1589     return eSectionTypeOther;
1590   }
1591 }
1592 
1593 struct ObjectFileMachO::SegmentParsingContext {
1594   const EncryptedFileRanges EncryptedRanges;
1595   lldb_private::SectionList &UnifiedList;
1596   uint32_t NextSegmentIdx = 0;
1597   uint32_t NextSectionIdx = 0;
1598   bool FileAddressesChanged = false;
1599 
1600   SegmentParsingContext(EncryptedFileRanges EncryptedRanges,
1601                         lldb_private::SectionList &UnifiedList)
1602       : EncryptedRanges(std::move(EncryptedRanges)), UnifiedList(UnifiedList) {}
1603 };
1604 
1605 void ObjectFileMachO::ProcessSegmentCommand(
1606     const llvm::MachO::load_command &load_cmd_, lldb::offset_t offset,
1607     uint32_t cmd_idx, SegmentParsingContext &context) {
1608   llvm::MachO::segment_command_64 load_cmd;
1609   memcpy(&load_cmd, &load_cmd_, sizeof(load_cmd_));
1610 
1611   if (!m_data.GetU8(&offset, (uint8_t *)load_cmd.segname, 16))
1612     return;
1613 
1614   ModuleSP module_sp = GetModule();
1615   const bool is_core = GetType() == eTypeCoreFile;
1616   const bool is_dsym = (m_header.filetype == MH_DSYM);
1617   bool add_section = true;
1618   bool add_to_unified = true;
1619   ConstString const_segname(
1620       load_cmd.segname, strnlen(load_cmd.segname, sizeof(load_cmd.segname)));
1621 
1622   SectionSP unified_section_sp(
1623       context.UnifiedList.FindSectionByName(const_segname));
1624   if (is_dsym && unified_section_sp) {
1625     if (const_segname == GetSegmentNameLINKEDIT()) {
1626       // We need to keep the __LINKEDIT segment private to this object file
1627       // only
1628       add_to_unified = false;
1629     } else {
1630       // This is the dSYM file and this section has already been created by the
1631       // object file, no need to create it.
1632       add_section = false;
1633     }
1634   }
1635   load_cmd.vmaddr = m_data.GetAddress(&offset);
1636   load_cmd.vmsize = m_data.GetAddress(&offset);
1637   load_cmd.fileoff = m_data.GetAddress(&offset);
1638   load_cmd.filesize = m_data.GetAddress(&offset);
1639   if (!m_data.GetU32(&offset, &load_cmd.maxprot, 4))
1640     return;
1641 
1642   SanitizeSegmentCommand(load_cmd, cmd_idx);
1643 
1644   const uint32_t segment_permissions = GetSegmentPermissions(load_cmd);
1645   const bool segment_is_encrypted =
1646       (load_cmd.flags & SG_PROTECTED_VERSION_1) != 0;
1647 
1648   // Keep a list of mach segments around in case we need to get at data that
1649   // isn't stored in the abstracted Sections.
1650   m_mach_segments.push_back(load_cmd);
1651 
1652   // Use a segment ID of the segment index shifted left by 8 so they never
1653   // conflict with any of the sections.
1654   SectionSP segment_sp;
1655   if (add_section && (const_segname || is_core)) {
1656     segment_sp = std::make_shared<Section>(
1657         module_sp, // Module to which this section belongs
1658         this,      // Object file to which this sections belongs
1659         ++context.NextSegmentIdx
1660             << 8, // Section ID is the 1 based segment index
1661         // shifted right by 8 bits as not to collide with any of the 256
1662         // section IDs that are possible
1663         const_segname,         // Name of this section
1664         eSectionTypeContainer, // This section is a container of other
1665         // sections.
1666         load_cmd.vmaddr, // File VM address == addresses as they are
1667         // found in the object file
1668         load_cmd.vmsize,  // VM size in bytes of this section
1669         load_cmd.fileoff, // Offset to the data for this section in
1670         // the file
1671         load_cmd.filesize, // Size in bytes of this section as found
1672         // in the file
1673         0,               // Segments have no alignment information
1674         load_cmd.flags); // Flags for this section
1675 
1676     segment_sp->SetIsEncrypted(segment_is_encrypted);
1677     m_sections_up->AddSection(segment_sp);
1678     segment_sp->SetPermissions(segment_permissions);
1679     if (add_to_unified)
1680       context.UnifiedList.AddSection(segment_sp);
1681   } else if (unified_section_sp) {
1682     // If this is a dSYM and the file addresses in the dSYM differ from the
1683     // file addresses in the ObjectFile, we must use the file base address for
1684     // the Section from the dSYM for the DWARF to resolve correctly.
1685     // This only happens with binaries in the shared cache in practice;
1686     // normally a mismatch like this would give a binary & dSYM that do not
1687     // match UUIDs. When a binary is included in the shared cache, its
1688     // segments are rearranged to optimize the shared cache, so its file
1689     // addresses will differ from what the ObjectFile had originally,
1690     // and what the dSYM has.
1691     if (is_dsym && unified_section_sp->GetFileAddress() != load_cmd.vmaddr) {
1692       Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS));
1693       if (log) {
1694         log->Printf(
1695             "Installing dSYM's %s segment file address over ObjectFile's "
1696             "so symbol table/debug info resolves correctly for %s",
1697             const_segname.AsCString(),
1698             module_sp->GetFileSpec().GetFilename().AsCString());
1699       }
1700 
1701       // Make sure we've parsed the symbol table from the ObjectFile before
1702       // we go around changing its Sections.
1703       module_sp->GetObjectFile()->GetSymtab();
1704       // eh_frame would present the same problems but we parse that on a per-
1705       // function basis as-needed so it's more difficult to remove its use of
1706       // the Sections.  Realistically, the environments where this code path
1707       // will be taken will not have eh_frame sections.
1708 
1709       unified_section_sp->SetFileAddress(load_cmd.vmaddr);
1710 
1711       // Notify the module that the section addresses have been changed once
1712       // we're done so any file-address caches can be updated.
1713       context.FileAddressesChanged = true;
1714     }
1715     m_sections_up->AddSection(unified_section_sp);
1716   }
1717 
1718   llvm::MachO::section_64 sect64;
1719   ::memset(&sect64, 0, sizeof(sect64));
1720   // Push a section into our mach sections for the section at index zero
1721   // (NO_SECT) if we don't have any mach sections yet...
1722   if (m_mach_sections.empty())
1723     m_mach_sections.push_back(sect64);
1724   uint32_t segment_sect_idx;
1725   const lldb::user_id_t first_segment_sectID = context.NextSectionIdx + 1;
1726 
1727   const uint32_t num_u32s = load_cmd.cmd == LC_SEGMENT ? 7 : 8;
1728   for (segment_sect_idx = 0; segment_sect_idx < load_cmd.nsects;
1729        ++segment_sect_idx) {
1730     if (m_data.GetU8(&offset, (uint8_t *)sect64.sectname,
1731                      sizeof(sect64.sectname)) == nullptr)
1732       break;
1733     if (m_data.GetU8(&offset, (uint8_t *)sect64.segname,
1734                      sizeof(sect64.segname)) == nullptr)
1735       break;
1736     sect64.addr = m_data.GetAddress(&offset);
1737     sect64.size = m_data.GetAddress(&offset);
1738 
1739     if (m_data.GetU32(&offset, &sect64.offset, num_u32s) == nullptr)
1740       break;
1741 
1742     if (IsSharedCacheBinary() && !IsInMemory()) {
1743       sect64.offset = sect64.addr - m_text_address;
1744     }
1745 
1746     // Keep a list of mach sections around in case we need to get at data that
1747     // isn't stored in the abstracted Sections.
1748     m_mach_sections.push_back(sect64);
1749 
1750     if (add_section) {
1751       ConstString section_name(
1752           sect64.sectname, strnlen(sect64.sectname, sizeof(sect64.sectname)));
1753       if (!const_segname) {
1754         // We have a segment with no name so we need to conjure up segments
1755         // that correspond to the section's segname if there isn't already such
1756         // a section. If there is such a section, we resize the section so that
1757         // it spans all sections.  We also mark these sections as fake so
1758         // address matches don't hit if they land in the gaps between the child
1759         // sections.
1760         const_segname.SetTrimmedCStringWithLength(sect64.segname,
1761                                                   sizeof(sect64.segname));
1762         segment_sp = context.UnifiedList.FindSectionByName(const_segname);
1763         if (segment_sp.get()) {
1764           Section *segment = segment_sp.get();
1765           // Grow the section size as needed.
1766           const lldb::addr_t sect64_min_addr = sect64.addr;
1767           const lldb::addr_t sect64_max_addr = sect64_min_addr + sect64.size;
1768           const lldb::addr_t curr_seg_byte_size = segment->GetByteSize();
1769           const lldb::addr_t curr_seg_min_addr = segment->GetFileAddress();
1770           const lldb::addr_t curr_seg_max_addr =
1771               curr_seg_min_addr + curr_seg_byte_size;
1772           if (sect64_min_addr >= curr_seg_min_addr) {
1773             const lldb::addr_t new_seg_byte_size =
1774                 sect64_max_addr - curr_seg_min_addr;
1775             // Only grow the section size if needed
1776             if (new_seg_byte_size > curr_seg_byte_size)
1777               segment->SetByteSize(new_seg_byte_size);
1778           } else {
1779             // We need to change the base address of the segment and adjust the
1780             // child section offsets for all existing children.
1781             const lldb::addr_t slide_amount =
1782                 sect64_min_addr - curr_seg_min_addr;
1783             segment->Slide(slide_amount, false);
1784             segment->GetChildren().Slide(-slide_amount, false);
1785             segment->SetByteSize(curr_seg_max_addr - sect64_min_addr);
1786           }
1787 
1788           // Grow the section size as needed.
1789           if (sect64.offset) {
1790             const lldb::addr_t segment_min_file_offset =
1791                 segment->GetFileOffset();
1792             const lldb::addr_t segment_max_file_offset =
1793                 segment_min_file_offset + segment->GetFileSize();
1794 
1795             const lldb::addr_t section_min_file_offset = sect64.offset;
1796             const lldb::addr_t section_max_file_offset =
1797                 section_min_file_offset + sect64.size;
1798             const lldb::addr_t new_file_offset =
1799                 std::min(section_min_file_offset, segment_min_file_offset);
1800             const lldb::addr_t new_file_size =
1801                 std::max(section_max_file_offset, segment_max_file_offset) -
1802                 new_file_offset;
1803             segment->SetFileOffset(new_file_offset);
1804             segment->SetFileSize(new_file_size);
1805           }
1806         } else {
1807           // Create a fake section for the section's named segment
1808           segment_sp = std::make_shared<Section>(
1809               segment_sp, // Parent section
1810               module_sp,  // Module to which this section belongs
1811               this,       // Object file to which this section belongs
1812               ++context.NextSegmentIdx
1813                   << 8, // Section ID is the 1 based segment index
1814               // shifted right by 8 bits as not to
1815               // collide with any of the 256 section IDs
1816               // that are possible
1817               const_segname,         // Name of this section
1818               eSectionTypeContainer, // This section is a container of
1819               // other sections.
1820               sect64.addr, // File VM address == addresses as they are
1821               // found in the object file
1822               sect64.size,   // VM size in bytes of this section
1823               sect64.offset, // Offset to the data for this section in
1824               // the file
1825               sect64.offset ? sect64.size : 0, // Size in bytes of
1826               // this section as
1827               // found in the file
1828               sect64.align,
1829               load_cmd.flags); // Flags for this section
1830           segment_sp->SetIsFake(true);
1831           segment_sp->SetPermissions(segment_permissions);
1832           m_sections_up->AddSection(segment_sp);
1833           if (add_to_unified)
1834             context.UnifiedList.AddSection(segment_sp);
1835           segment_sp->SetIsEncrypted(segment_is_encrypted);
1836         }
1837       }
1838       assert(segment_sp.get());
1839 
1840       lldb::SectionType sect_type = GetSectionType(sect64.flags, section_name);
1841 
1842       SectionSP section_sp(new Section(
1843           segment_sp, module_sp, this, ++context.NextSectionIdx, section_name,
1844           sect_type, sect64.addr - segment_sp->GetFileAddress(), sect64.size,
1845           sect64.offset, sect64.offset == 0 ? 0 : sect64.size, sect64.align,
1846           sect64.flags));
1847       // Set the section to be encrypted to match the segment
1848 
1849       bool section_is_encrypted = false;
1850       if (!segment_is_encrypted && load_cmd.filesize != 0)
1851         section_is_encrypted = context.EncryptedRanges.FindEntryThatContains(
1852                                    sect64.offset) != nullptr;
1853 
1854       section_sp->SetIsEncrypted(segment_is_encrypted || section_is_encrypted);
1855       section_sp->SetPermissions(segment_permissions);
1856       segment_sp->GetChildren().AddSection(section_sp);
1857 
1858       if (segment_sp->IsFake()) {
1859         segment_sp.reset();
1860         const_segname.Clear();
1861       }
1862     }
1863   }
1864   if (segment_sp && is_dsym) {
1865     if (first_segment_sectID <= context.NextSectionIdx) {
1866       lldb::user_id_t sect_uid;
1867       for (sect_uid = first_segment_sectID; sect_uid <= context.NextSectionIdx;
1868            ++sect_uid) {
1869         SectionSP curr_section_sp(
1870             segment_sp->GetChildren().FindSectionByID(sect_uid));
1871         SectionSP next_section_sp;
1872         if (sect_uid + 1 <= context.NextSectionIdx)
1873           next_section_sp =
1874               segment_sp->GetChildren().FindSectionByID(sect_uid + 1);
1875 
1876         if (curr_section_sp.get()) {
1877           if (curr_section_sp->GetByteSize() == 0) {
1878             if (next_section_sp.get() != nullptr)
1879               curr_section_sp->SetByteSize(next_section_sp->GetFileAddress() -
1880                                            curr_section_sp->GetFileAddress());
1881             else
1882               curr_section_sp->SetByteSize(load_cmd.vmsize);
1883           }
1884         }
1885       }
1886     }
1887   }
1888 }
1889 
1890 void ObjectFileMachO::ProcessDysymtabCommand(
1891     const llvm::MachO::load_command &load_cmd, lldb::offset_t offset) {
1892   m_dysymtab.cmd = load_cmd.cmd;
1893   m_dysymtab.cmdsize = load_cmd.cmdsize;
1894   m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
1895                 (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2);
1896 }
1897 
1898 void ObjectFileMachO::CreateSections(SectionList &unified_section_list) {
1899   if (m_sections_up)
1900     return;
1901 
1902   m_sections_up = std::make_unique<SectionList>();
1903 
1904   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1905   // bool dump_sections = false;
1906   ModuleSP module_sp(GetModule());
1907 
1908   offset = MachHeaderSizeFromMagic(m_header.magic);
1909 
1910   SegmentParsingContext context(GetEncryptedFileRanges(), unified_section_list);
1911   llvm::MachO::load_command load_cmd;
1912   for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1913     const lldb::offset_t load_cmd_offset = offset;
1914     if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
1915       break;
1916 
1917     if (load_cmd.cmd == LC_SEGMENT || load_cmd.cmd == LC_SEGMENT_64)
1918       ProcessSegmentCommand(load_cmd, offset, i, context);
1919     else if (load_cmd.cmd == LC_DYSYMTAB)
1920       ProcessDysymtabCommand(load_cmd, offset);
1921 
1922     offset = load_cmd_offset + load_cmd.cmdsize;
1923   }
1924 
1925   if (context.FileAddressesChanged && module_sp)
1926     module_sp->SectionFileAddressesChanged();
1927 }
1928 
1929 class MachSymtabSectionInfo {
1930 public:
1931   MachSymtabSectionInfo(SectionList *section_list)
1932       : m_section_list(section_list), m_section_infos() {
1933     // Get the number of sections down to a depth of 1 to include all segments
1934     // and their sections, but no other sections that may be added for debug
1935     // map or
1936     m_section_infos.resize(section_list->GetNumSections(1));
1937   }
1938 
1939   SectionSP GetSection(uint8_t n_sect, addr_t file_addr) {
1940     if (n_sect == 0)
1941       return SectionSP();
1942     if (n_sect < m_section_infos.size()) {
1943       if (!m_section_infos[n_sect].section_sp) {
1944         SectionSP section_sp(m_section_list->FindSectionByID(n_sect));
1945         m_section_infos[n_sect].section_sp = section_sp;
1946         if (section_sp) {
1947           m_section_infos[n_sect].vm_range.SetBaseAddress(
1948               section_sp->GetFileAddress());
1949           m_section_infos[n_sect].vm_range.SetByteSize(
1950               section_sp->GetByteSize());
1951         } else {
1952           std::string filename = "<unknown>";
1953           SectionSP first_section_sp(m_section_list->GetSectionAtIndex(0));
1954           if (first_section_sp)
1955             filename = first_section_sp->GetObjectFile()->GetFileSpec().GetPath();
1956 
1957           Host::SystemLog(Host::eSystemLogError,
1958                           "error: unable to find section %d for a symbol in "
1959                           "%s, corrupt file?\n",
1960                           n_sect, filename.c_str());
1961         }
1962       }
1963       if (m_section_infos[n_sect].vm_range.Contains(file_addr)) {
1964         // Symbol is in section.
1965         return m_section_infos[n_sect].section_sp;
1966       } else if (m_section_infos[n_sect].vm_range.GetByteSize() == 0 &&
1967                  m_section_infos[n_sect].vm_range.GetBaseAddress() ==
1968                      file_addr) {
1969         // Symbol is in section with zero size, but has the same start address
1970         // as the section. This can happen with linker symbols (symbols that
1971         // start with the letter 'l' or 'L'.
1972         return m_section_infos[n_sect].section_sp;
1973       }
1974     }
1975     return m_section_list->FindSectionContainingFileAddress(file_addr);
1976   }
1977 
1978 protected:
1979   struct SectionInfo {
1980     SectionInfo() : vm_range(), section_sp() {}
1981 
1982     VMRange vm_range;
1983     SectionSP section_sp;
1984   };
1985   SectionList *m_section_list;
1986   std::vector<SectionInfo> m_section_infos;
1987 };
1988 
1989 #define TRIE_SYMBOL_IS_THUMB (1ULL << 63)
1990 struct TrieEntry {
1991   void Dump() const {
1992     printf("0x%16.16llx 0x%16.16llx 0x%16.16llx \"%s\"",
1993            static_cast<unsigned long long>(address),
1994            static_cast<unsigned long long>(flags),
1995            static_cast<unsigned long long>(other), name.GetCString());
1996     if (import_name)
1997       printf(" -> \"%s\"\n", import_name.GetCString());
1998     else
1999       printf("\n");
2000   }
2001   ConstString name;
2002   uint64_t address = LLDB_INVALID_ADDRESS;
2003   uint64_t flags =
2004       0; // EXPORT_SYMBOL_FLAGS_REEXPORT, EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER,
2005          // TRIE_SYMBOL_IS_THUMB
2006   uint64_t other = 0;
2007   ConstString import_name;
2008 };
2009 
2010 struct TrieEntryWithOffset {
2011   lldb::offset_t nodeOffset;
2012   TrieEntry entry;
2013 
2014   TrieEntryWithOffset(lldb::offset_t offset) : nodeOffset(offset), entry() {}
2015 
2016   void Dump(uint32_t idx) const {
2017     printf("[%3u] 0x%16.16llx: ", idx,
2018            static_cast<unsigned long long>(nodeOffset));
2019     entry.Dump();
2020   }
2021 
2022   bool operator<(const TrieEntryWithOffset &other) const {
2023     return (nodeOffset < other.nodeOffset);
2024   }
2025 };
2026 
2027 static bool ParseTrieEntries(DataExtractor &data, lldb::offset_t offset,
2028                              const bool is_arm, addr_t text_seg_base_addr,
2029                              std::vector<llvm::StringRef> &nameSlices,
2030                              std::set<lldb::addr_t> &resolver_addresses,
2031                              std::vector<TrieEntryWithOffset> &reexports,
2032                              std::vector<TrieEntryWithOffset> &ext_symbols) {
2033   if (!data.ValidOffset(offset))
2034     return true;
2035 
2036   // Terminal node -- end of a branch, possibly add this to
2037   // the symbol table or resolver table.
2038   const uint64_t terminalSize = data.GetULEB128(&offset);
2039   lldb::offset_t children_offset = offset + terminalSize;
2040   if (terminalSize != 0) {
2041     TrieEntryWithOffset e(offset);
2042     e.entry.flags = data.GetULEB128(&offset);
2043     const char *import_name = nullptr;
2044     if (e.entry.flags & EXPORT_SYMBOL_FLAGS_REEXPORT) {
2045       e.entry.address = 0;
2046       e.entry.other = data.GetULEB128(&offset); // dylib ordinal
2047       import_name = data.GetCStr(&offset);
2048     } else {
2049       e.entry.address = data.GetULEB128(&offset);
2050       if (text_seg_base_addr != LLDB_INVALID_ADDRESS)
2051         e.entry.address += text_seg_base_addr;
2052       if (e.entry.flags & EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER) {
2053         e.entry.other = data.GetULEB128(&offset);
2054         uint64_t resolver_addr = e.entry.other;
2055         if (text_seg_base_addr != LLDB_INVALID_ADDRESS)
2056           resolver_addr += text_seg_base_addr;
2057         if (is_arm)
2058           resolver_addr &= THUMB_ADDRESS_BIT_MASK;
2059         resolver_addresses.insert(resolver_addr);
2060       } else
2061         e.entry.other = 0;
2062     }
2063     bool add_this_entry = false;
2064     if (Flags(e.entry.flags).Test(EXPORT_SYMBOL_FLAGS_REEXPORT) &&
2065         import_name && import_name[0]) {
2066       // add symbols that are reexport symbols with a valid import name.
2067       add_this_entry = true;
2068     } else if (e.entry.flags == 0 &&
2069                (import_name == nullptr || import_name[0] == '\0')) {
2070       // add externally visible symbols, in case the nlist record has
2071       // been stripped/omitted.
2072       add_this_entry = true;
2073     }
2074     if (add_this_entry) {
2075       std::string name;
2076       if (!nameSlices.empty()) {
2077         for (auto name_slice : nameSlices)
2078           name.append(name_slice.data(), name_slice.size());
2079       }
2080       if (name.size() > 1) {
2081         // Skip the leading '_'
2082         e.entry.name.SetCStringWithLength(name.c_str() + 1, name.size() - 1);
2083       }
2084       if (import_name) {
2085         // Skip the leading '_'
2086         e.entry.import_name.SetCString(import_name + 1);
2087       }
2088       if (Flags(e.entry.flags).Test(EXPORT_SYMBOL_FLAGS_REEXPORT)) {
2089         reexports.push_back(e);
2090       } else {
2091         if (is_arm && (e.entry.address & 1)) {
2092           e.entry.flags |= TRIE_SYMBOL_IS_THUMB;
2093           e.entry.address &= THUMB_ADDRESS_BIT_MASK;
2094         }
2095         ext_symbols.push_back(e);
2096       }
2097     }
2098   }
2099 
2100   const uint8_t childrenCount = data.GetU8(&children_offset);
2101   for (uint8_t i = 0; i < childrenCount; ++i) {
2102     const char *cstr = data.GetCStr(&children_offset);
2103     if (cstr)
2104       nameSlices.push_back(llvm::StringRef(cstr));
2105     else
2106       return false; // Corrupt data
2107     lldb::offset_t childNodeOffset = data.GetULEB128(&children_offset);
2108     if (childNodeOffset) {
2109       if (!ParseTrieEntries(data, childNodeOffset, is_arm, text_seg_base_addr,
2110                             nameSlices, resolver_addresses, reexports,
2111                             ext_symbols)) {
2112         return false;
2113       }
2114     }
2115     nameSlices.pop_back();
2116   }
2117   return true;
2118 }
2119 
2120 static SymbolType GetSymbolType(const char *&symbol_name,
2121                                 bool &demangled_is_synthesized,
2122                                 const SectionSP &text_section_sp,
2123                                 const SectionSP &data_section_sp,
2124                                 const SectionSP &data_dirty_section_sp,
2125                                 const SectionSP &data_const_section_sp,
2126                                 const SectionSP &symbol_section) {
2127   SymbolType type = eSymbolTypeInvalid;
2128 
2129   const char *symbol_sect_name = symbol_section->GetName().AsCString();
2130   if (symbol_section->IsDescendant(text_section_sp.get())) {
2131     if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS |
2132                                 S_ATTR_SELF_MODIFYING_CODE |
2133                                 S_ATTR_SOME_INSTRUCTIONS))
2134       type = eSymbolTypeData;
2135     else
2136       type = eSymbolTypeCode;
2137   } else if (symbol_section->IsDescendant(data_section_sp.get()) ||
2138              symbol_section->IsDescendant(data_dirty_section_sp.get()) ||
2139              symbol_section->IsDescendant(data_const_section_sp.get())) {
2140     if (symbol_sect_name &&
2141         ::strstr(symbol_sect_name, "__objc") == symbol_sect_name) {
2142       type = eSymbolTypeRuntime;
2143 
2144       if (symbol_name) {
2145         llvm::StringRef symbol_name_ref(symbol_name);
2146         if (symbol_name_ref.startswith("OBJC_")) {
2147           static const llvm::StringRef g_objc_v2_prefix_class("OBJC_CLASS_$_");
2148           static const llvm::StringRef g_objc_v2_prefix_metaclass(
2149               "OBJC_METACLASS_$_");
2150           static const llvm::StringRef g_objc_v2_prefix_ivar("OBJC_IVAR_$_");
2151           if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) {
2152             symbol_name = symbol_name + g_objc_v2_prefix_class.size();
2153             type = eSymbolTypeObjCClass;
2154             demangled_is_synthesized = true;
2155           } else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) {
2156             symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size();
2157             type = eSymbolTypeObjCMetaClass;
2158             demangled_is_synthesized = true;
2159           } else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) {
2160             symbol_name = symbol_name + g_objc_v2_prefix_ivar.size();
2161             type = eSymbolTypeObjCIVar;
2162             demangled_is_synthesized = true;
2163           }
2164         }
2165       }
2166     } else if (symbol_sect_name &&
2167                ::strstr(symbol_sect_name, "__gcc_except_tab") ==
2168                    symbol_sect_name) {
2169       type = eSymbolTypeException;
2170     } else {
2171       type = eSymbolTypeData;
2172     }
2173   } else if (symbol_sect_name &&
2174              ::strstr(symbol_sect_name, "__IMPORT") == symbol_sect_name) {
2175     type = eSymbolTypeTrampoline;
2176   }
2177   return type;
2178 }
2179 
2180 // Read the UUID out of a dyld_shared_cache file on-disk.
2181 UUID ObjectFileMachO::GetSharedCacheUUID(FileSpec dyld_shared_cache,
2182                                          const ByteOrder byte_order,
2183                                          const uint32_t addr_byte_size) {
2184   UUID dsc_uuid;
2185   DataBufferSP DscData = MapFileData(
2186       dyld_shared_cache, sizeof(struct lldb_copy_dyld_cache_header_v1), 0);
2187   if (!DscData)
2188     return dsc_uuid;
2189   DataExtractor dsc_header_data(DscData, byte_order, addr_byte_size);
2190 
2191   char version_str[7];
2192   lldb::offset_t offset = 0;
2193   memcpy(version_str, dsc_header_data.GetData(&offset, 6), 6);
2194   version_str[6] = '\0';
2195   if (strcmp(version_str, "dyld_v") == 0) {
2196     offset = offsetof(struct lldb_copy_dyld_cache_header_v1, uuid);
2197     dsc_uuid = UUID::fromOptionalData(
2198         dsc_header_data.GetData(&offset, sizeof(uuid_t)), sizeof(uuid_t));
2199   }
2200   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS));
2201   if (log && dsc_uuid.IsValid()) {
2202     LLDB_LOGF(log, "Shared cache %s has UUID %s",
2203               dyld_shared_cache.GetPath().c_str(),
2204               dsc_uuid.GetAsString().c_str());
2205   }
2206   return dsc_uuid;
2207 }
2208 
2209 static llvm::Optional<struct nlist_64>
2210 ParseNList(DataExtractor &nlist_data, lldb::offset_t &nlist_data_offset,
2211            size_t nlist_byte_size) {
2212   struct nlist_64 nlist;
2213   if (!nlist_data.ValidOffsetForDataOfSize(nlist_data_offset, nlist_byte_size))
2214     return {};
2215   nlist.n_strx = nlist_data.GetU32_unchecked(&nlist_data_offset);
2216   nlist.n_type = nlist_data.GetU8_unchecked(&nlist_data_offset);
2217   nlist.n_sect = nlist_data.GetU8_unchecked(&nlist_data_offset);
2218   nlist.n_desc = nlist_data.GetU16_unchecked(&nlist_data_offset);
2219   nlist.n_value = nlist_data.GetAddress_unchecked(&nlist_data_offset);
2220   return nlist;
2221 }
2222 
2223 enum { DebugSymbols = true, NonDebugSymbols = false };
2224 
2225 size_t ObjectFileMachO::ParseSymtab() {
2226   LLDB_SCOPED_TIMERF("ObjectFileMachO::ParseSymtab () module = %s",
2227                      m_file.GetFilename().AsCString(""));
2228   ModuleSP module_sp(GetModule());
2229   if (!module_sp)
2230     return 0;
2231 
2232   Progress progress(llvm::formatv("Parsing symbol table for {0}",
2233                                   m_file.GetFilename().AsCString("<Unknown>")));
2234 
2235   llvm::MachO::symtab_command symtab_load_command = {0, 0, 0, 0, 0, 0};
2236   llvm::MachO::linkedit_data_command function_starts_load_command = {0, 0, 0, 0};
2237   llvm::MachO::linkedit_data_command exports_trie_load_command = {0, 0, 0, 0};
2238   llvm::MachO::dyld_info_command dyld_info = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
2239   // The data element of type bool indicates that this entry is thumb
2240   // code.
2241   typedef AddressDataArray<lldb::addr_t, bool, 100> FunctionStarts;
2242 
2243   // Record the address of every function/data that we add to the symtab.
2244   // We add symbols to the table in the order of most information (nlist
2245   // records) to least (function starts), and avoid duplicating symbols
2246   // via this set.
2247   llvm::DenseSet<addr_t> symbols_added;
2248 
2249   // We are using a llvm::DenseSet for "symbols_added" so we must be sure we
2250   // do not add the tombstone or empty keys to the set.
2251   auto add_symbol_addr = [&symbols_added](lldb::addr_t file_addr) {
2252     // Don't add the tombstone or empty keys.
2253     if (file_addr == UINT64_MAX || file_addr == UINT64_MAX - 1)
2254       return;
2255     symbols_added.insert(file_addr);
2256   };
2257   FunctionStarts function_starts;
2258   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
2259   uint32_t i;
2260   FileSpecList dylib_files;
2261   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS));
2262   llvm::StringRef g_objc_v2_prefix_class("_OBJC_CLASS_$_");
2263   llvm::StringRef g_objc_v2_prefix_metaclass("_OBJC_METACLASS_$_");
2264   llvm::StringRef g_objc_v2_prefix_ivar("_OBJC_IVAR_$_");
2265 
2266   for (i = 0; i < m_header.ncmds; ++i) {
2267     const lldb::offset_t cmd_offset = offset;
2268     // Read in the load command and load command size
2269     llvm::MachO::load_command lc;
2270     if (m_data.GetU32(&offset, &lc, 2) == nullptr)
2271       break;
2272     // Watch for the symbol table load command
2273     switch (lc.cmd) {
2274     case LC_SYMTAB:
2275       symtab_load_command.cmd = lc.cmd;
2276       symtab_load_command.cmdsize = lc.cmdsize;
2277       // Read in the rest of the symtab load command
2278       if (m_data.GetU32(&offset, &symtab_load_command.symoff, 4) ==
2279           nullptr) // fill in symoff, nsyms, stroff, strsize fields
2280         return 0;
2281       break;
2282 
2283     case LC_DYLD_INFO:
2284     case LC_DYLD_INFO_ONLY:
2285       if (m_data.GetU32(&offset, &dyld_info.rebase_off, 10)) {
2286         dyld_info.cmd = lc.cmd;
2287         dyld_info.cmdsize = lc.cmdsize;
2288       } else {
2289         memset(&dyld_info, 0, sizeof(dyld_info));
2290       }
2291       break;
2292 
2293     case LC_LOAD_DYLIB:
2294     case LC_LOAD_WEAK_DYLIB:
2295     case LC_REEXPORT_DYLIB:
2296     case LC_LOADFVMLIB:
2297     case LC_LOAD_UPWARD_DYLIB: {
2298       uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
2299       const char *path = m_data.PeekCStr(name_offset);
2300       if (path) {
2301         FileSpec file_spec(path);
2302         // Strip the path if there is @rpath, @executable, etc so we just use
2303         // the basename
2304         if (path[0] == '@')
2305           file_spec.GetDirectory().Clear();
2306 
2307         if (lc.cmd == LC_REEXPORT_DYLIB) {
2308           m_reexported_dylibs.AppendIfUnique(file_spec);
2309         }
2310 
2311         dylib_files.Append(file_spec);
2312       }
2313     } break;
2314 
2315     case LC_DYLD_EXPORTS_TRIE:
2316       exports_trie_load_command.cmd = lc.cmd;
2317       exports_trie_load_command.cmdsize = lc.cmdsize;
2318       if (m_data.GetU32(&offset, &exports_trie_load_command.dataoff, 2) ==
2319           nullptr) // fill in offset and size fields
2320         memset(&exports_trie_load_command, 0,
2321                sizeof(exports_trie_load_command));
2322       break;
2323     case LC_FUNCTION_STARTS:
2324       function_starts_load_command.cmd = lc.cmd;
2325       function_starts_load_command.cmdsize = lc.cmdsize;
2326       if (m_data.GetU32(&offset, &function_starts_load_command.dataoff, 2) ==
2327           nullptr) // fill in data offset and size fields
2328         memset(&function_starts_load_command, 0,
2329                sizeof(function_starts_load_command));
2330       break;
2331 
2332     default:
2333       break;
2334     }
2335     offset = cmd_offset + lc.cmdsize;
2336   }
2337 
2338   if (!symtab_load_command.cmd)
2339     return 0;
2340 
2341   Symtab *symtab = m_symtab_up.get();
2342   SectionList *section_list = GetSectionList();
2343   if (section_list == nullptr)
2344     return 0;
2345 
2346   const uint32_t addr_byte_size = m_data.GetAddressByteSize();
2347   const ByteOrder byte_order = m_data.GetByteOrder();
2348   bool bit_width_32 = addr_byte_size == 4;
2349   const size_t nlist_byte_size =
2350       bit_width_32 ? sizeof(struct nlist) : sizeof(struct nlist_64);
2351 
2352   DataExtractor nlist_data(nullptr, 0, byte_order, addr_byte_size);
2353   DataExtractor strtab_data(nullptr, 0, byte_order, addr_byte_size);
2354   DataExtractor function_starts_data(nullptr, 0, byte_order, addr_byte_size);
2355   DataExtractor indirect_symbol_index_data(nullptr, 0, byte_order,
2356                                            addr_byte_size);
2357   DataExtractor dyld_trie_data(nullptr, 0, byte_order, addr_byte_size);
2358 
2359   const addr_t nlist_data_byte_size =
2360       symtab_load_command.nsyms * nlist_byte_size;
2361   const addr_t strtab_data_byte_size = symtab_load_command.strsize;
2362   addr_t strtab_addr = LLDB_INVALID_ADDRESS;
2363 
2364   ProcessSP process_sp(m_process_wp.lock());
2365   Process *process = process_sp.get();
2366 
2367   uint32_t memory_module_load_level = eMemoryModuleLoadLevelComplete;
2368   bool is_shared_cache_image = IsSharedCacheBinary();
2369   bool is_local_shared_cache_image = is_shared_cache_image && !IsInMemory();
2370   SectionSP linkedit_section_sp(
2371       section_list->FindSectionByName(GetSegmentNameLINKEDIT()));
2372 
2373   if (process && m_header.filetype != llvm::MachO::MH_OBJECT &&
2374       !is_local_shared_cache_image) {
2375     Target &target = process->GetTarget();
2376 
2377     memory_module_load_level = target.GetMemoryModuleLoadLevel();
2378 
2379     // Reading mach file from memory in a process or core file...
2380 
2381     if (linkedit_section_sp) {
2382       addr_t linkedit_load_addr =
2383           linkedit_section_sp->GetLoadBaseAddress(&target);
2384       if (linkedit_load_addr == LLDB_INVALID_ADDRESS) {
2385         // We might be trying to access the symbol table before the
2386         // __LINKEDIT's load address has been set in the target. We can't
2387         // fail to read the symbol table, so calculate the right address
2388         // manually
2389         linkedit_load_addr = CalculateSectionLoadAddressForMemoryImage(
2390             m_memory_addr, GetMachHeaderSection(), linkedit_section_sp.get());
2391       }
2392 
2393       const addr_t linkedit_file_offset = linkedit_section_sp->GetFileOffset();
2394       const addr_t symoff_addr = linkedit_load_addr +
2395                                  symtab_load_command.symoff -
2396                                  linkedit_file_offset;
2397       strtab_addr = linkedit_load_addr + symtab_load_command.stroff -
2398                     linkedit_file_offset;
2399 
2400         // Always load dyld - the dynamic linker - from memory if we didn't
2401         // find a binary anywhere else. lldb will not register
2402         // dylib/framework/bundle loads/unloads if we don't have the dyld
2403         // symbols, we force dyld to load from memory despite the user's
2404         // target.memory-module-load-level setting.
2405         if (memory_module_load_level == eMemoryModuleLoadLevelComplete ||
2406             m_header.filetype == llvm::MachO::MH_DYLINKER) {
2407           DataBufferSP nlist_data_sp(
2408               ReadMemory(process_sp, symoff_addr, nlist_data_byte_size));
2409           if (nlist_data_sp)
2410             nlist_data.SetData(nlist_data_sp, 0, nlist_data_sp->GetByteSize());
2411           if (m_dysymtab.nindirectsyms != 0) {
2412             const addr_t indirect_syms_addr = linkedit_load_addr +
2413                                               m_dysymtab.indirectsymoff -
2414                                               linkedit_file_offset;
2415             DataBufferSP indirect_syms_data_sp(ReadMemory(
2416                 process_sp, indirect_syms_addr, m_dysymtab.nindirectsyms * 4));
2417             if (indirect_syms_data_sp)
2418               indirect_symbol_index_data.SetData(
2419                   indirect_syms_data_sp, 0,
2420                   indirect_syms_data_sp->GetByteSize());
2421             // If this binary is outside the shared cache,
2422             // cache the string table.
2423             // Binaries in the shared cache all share a giant string table,
2424             // and we can't share the string tables across multiple
2425             // ObjectFileMachO's, so we'd end up re-reading this mega-strtab
2426             // for every binary in the shared cache - it would be a big perf
2427             // problem. For binaries outside the shared cache, it's faster to
2428             // read the entire strtab at once instead of piece-by-piece as we
2429             // process the nlist records.
2430             if (!is_shared_cache_image) {
2431               DataBufferSP strtab_data_sp(
2432                   ReadMemory(process_sp, strtab_addr, strtab_data_byte_size));
2433               if (strtab_data_sp) {
2434                 strtab_data.SetData(strtab_data_sp, 0,
2435                                     strtab_data_sp->GetByteSize());
2436               }
2437             }
2438           }
2439         if (memory_module_load_level >= eMemoryModuleLoadLevelPartial) {
2440           if (function_starts_load_command.cmd) {
2441             const addr_t func_start_addr =
2442                 linkedit_load_addr + function_starts_load_command.dataoff -
2443                 linkedit_file_offset;
2444             DataBufferSP func_start_data_sp(
2445                 ReadMemory(process_sp, func_start_addr,
2446                            function_starts_load_command.datasize));
2447             if (func_start_data_sp)
2448               function_starts_data.SetData(func_start_data_sp, 0,
2449                                            func_start_data_sp->GetByteSize());
2450           }
2451         }
2452       }
2453     }
2454   } else {
2455     if (is_local_shared_cache_image) {
2456       // The load commands in shared cache images are relative to the
2457       // beginning of the shared cache, not the library image. The
2458       // data we get handed when creating the ObjectFileMachO starts
2459       // at the beginning of a specific library and spans to the end
2460       // of the cache to be able to reach the shared LINKEDIT
2461       // segments. We need to convert the load command offsets to be
2462       // relative to the beginning of our specific image.
2463       lldb::addr_t linkedit_offset = linkedit_section_sp->GetFileOffset();
2464       lldb::offset_t linkedit_slide =
2465           linkedit_offset - m_linkedit_original_offset;
2466       symtab_load_command.symoff += linkedit_slide;
2467       symtab_load_command.stroff += linkedit_slide;
2468       dyld_info.export_off += linkedit_slide;
2469       m_dysymtab.indirectsymoff += linkedit_slide;
2470       function_starts_load_command.dataoff += linkedit_slide;
2471       exports_trie_load_command.dataoff += linkedit_slide;
2472     }
2473 
2474     nlist_data.SetData(m_data, symtab_load_command.symoff,
2475                        nlist_data_byte_size);
2476     strtab_data.SetData(m_data, symtab_load_command.stroff,
2477                         strtab_data_byte_size);
2478 
2479     // We shouldn't have exports data from both the LC_DYLD_INFO command
2480     // AND the LC_DYLD_EXPORTS_TRIE command in the same binary:
2481     lldbassert(!((dyld_info.export_size > 0)
2482                  && (exports_trie_load_command.datasize > 0)));
2483     if (dyld_info.export_size > 0) {
2484       dyld_trie_data.SetData(m_data, dyld_info.export_off,
2485                              dyld_info.export_size);
2486     } else if (exports_trie_load_command.datasize > 0) {
2487       dyld_trie_data.SetData(m_data, exports_trie_load_command.dataoff,
2488                              exports_trie_load_command.datasize);
2489     }
2490 
2491     if (m_dysymtab.nindirectsyms != 0) {
2492       indirect_symbol_index_data.SetData(m_data, m_dysymtab.indirectsymoff,
2493                                          m_dysymtab.nindirectsyms * 4);
2494     }
2495     if (function_starts_load_command.cmd) {
2496       function_starts_data.SetData(m_data, function_starts_load_command.dataoff,
2497                                    function_starts_load_command.datasize);
2498     }
2499   }
2500 
2501   const bool have_strtab_data = strtab_data.GetByteSize() > 0;
2502 
2503   ConstString g_segment_name_TEXT = GetSegmentNameTEXT();
2504   ConstString g_segment_name_DATA = GetSegmentNameDATA();
2505   ConstString g_segment_name_DATA_DIRTY = GetSegmentNameDATA_DIRTY();
2506   ConstString g_segment_name_DATA_CONST = GetSegmentNameDATA_CONST();
2507   ConstString g_segment_name_OBJC = GetSegmentNameOBJC();
2508   ConstString g_section_name_eh_frame = GetSectionNameEHFrame();
2509   SectionSP text_section_sp(
2510       section_list->FindSectionByName(g_segment_name_TEXT));
2511   SectionSP data_section_sp(
2512       section_list->FindSectionByName(g_segment_name_DATA));
2513   SectionSP data_dirty_section_sp(
2514       section_list->FindSectionByName(g_segment_name_DATA_DIRTY));
2515   SectionSP data_const_section_sp(
2516       section_list->FindSectionByName(g_segment_name_DATA_CONST));
2517   SectionSP objc_section_sp(
2518       section_list->FindSectionByName(g_segment_name_OBJC));
2519   SectionSP eh_frame_section_sp;
2520   if (text_section_sp.get())
2521     eh_frame_section_sp = text_section_sp->GetChildren().FindSectionByName(
2522         g_section_name_eh_frame);
2523   else
2524     eh_frame_section_sp =
2525         section_list->FindSectionByName(g_section_name_eh_frame);
2526 
2527   const bool is_arm = (m_header.cputype == llvm::MachO::CPU_TYPE_ARM);
2528   const bool always_thumb = GetArchitecture().IsAlwaysThumbInstructions();
2529 
2530   // lldb works best if it knows the start address of all functions in a
2531   // module. Linker symbols or debug info are normally the best source of
2532   // information for start addr / size but they may be stripped in a released
2533   // binary. Two additional sources of information exist in Mach-O binaries:
2534   //    LC_FUNCTION_STARTS - a list of ULEB128 encoded offsets of each
2535   //    function's start address in the
2536   //                         binary, relative to the text section.
2537   //    eh_frame           - the eh_frame FDEs have the start addr & size of
2538   //    each function
2539   //  LC_FUNCTION_STARTS is the fastest source to read in, and is present on
2540   //  all modern binaries.
2541   //  Binaries built to run on older releases may need to use eh_frame
2542   //  information.
2543 
2544   if (text_section_sp && function_starts_data.GetByteSize()) {
2545     FunctionStarts::Entry function_start_entry;
2546     function_start_entry.data = false;
2547     lldb::offset_t function_start_offset = 0;
2548     function_start_entry.addr = text_section_sp->GetFileAddress();
2549     uint64_t delta;
2550     while ((delta = function_starts_data.GetULEB128(&function_start_offset)) >
2551            0) {
2552       // Now append the current entry
2553       function_start_entry.addr += delta;
2554       if (is_arm) {
2555         if (function_start_entry.addr & 1) {
2556           function_start_entry.addr &= THUMB_ADDRESS_BIT_MASK;
2557           function_start_entry.data = true;
2558         } else if (always_thumb) {
2559           function_start_entry.data = true;
2560         }
2561       }
2562       function_starts.Append(function_start_entry);
2563     }
2564   } else {
2565     // If m_type is eTypeDebugInfo, then this is a dSYM - it will have the
2566     // load command claiming an eh_frame but it doesn't actually have the
2567     // eh_frame content.  And if we have a dSYM, we don't need to do any of
2568     // this fill-in-the-missing-symbols works anyway - the debug info should
2569     // give us all the functions in the module.
2570     if (text_section_sp.get() && eh_frame_section_sp.get() &&
2571         m_type != eTypeDebugInfo) {
2572       DWARFCallFrameInfo eh_frame(*this, eh_frame_section_sp,
2573                                   DWARFCallFrameInfo::EH);
2574       DWARFCallFrameInfo::FunctionAddressAndSizeVector functions;
2575       eh_frame.GetFunctionAddressAndSizeVector(functions);
2576       addr_t text_base_addr = text_section_sp->GetFileAddress();
2577       size_t count = functions.GetSize();
2578       for (size_t i = 0; i < count; ++i) {
2579         const DWARFCallFrameInfo::FunctionAddressAndSizeVector::Entry *func =
2580             functions.GetEntryAtIndex(i);
2581         if (func) {
2582           FunctionStarts::Entry function_start_entry;
2583           function_start_entry.addr = func->base - text_base_addr;
2584           if (is_arm) {
2585             if (function_start_entry.addr & 1) {
2586               function_start_entry.addr &= THUMB_ADDRESS_BIT_MASK;
2587               function_start_entry.data = true;
2588             } else if (always_thumb) {
2589               function_start_entry.data = true;
2590             }
2591           }
2592           function_starts.Append(function_start_entry);
2593         }
2594       }
2595     }
2596   }
2597 
2598   const size_t function_starts_count = function_starts.GetSize();
2599 
2600   // For user process binaries (executables, dylibs, frameworks, bundles), if
2601   // we don't have LC_FUNCTION_STARTS/eh_frame section in this binary, we're
2602   // going to assume the binary has been stripped.  Don't allow assembly
2603   // language instruction emulation because we don't know proper function
2604   // start boundaries.
2605   //
2606   // For all other types of binaries (kernels, stand-alone bare board
2607   // binaries, kexts), they may not have LC_FUNCTION_STARTS / eh_frame
2608   // sections - we should not make any assumptions about them based on that.
2609   if (function_starts_count == 0 && CalculateStrata() == eStrataUser) {
2610     m_allow_assembly_emulation_unwind_plans = false;
2611     Log *unwind_or_symbol_log(lldb_private::GetLogIfAnyCategoriesSet(
2612         LIBLLDB_LOG_SYMBOLS | LIBLLDB_LOG_UNWIND));
2613 
2614     if (unwind_or_symbol_log)
2615       module_sp->LogMessage(
2616           unwind_or_symbol_log,
2617           "no LC_FUNCTION_STARTS, will not allow assembly profiled unwinds");
2618   }
2619 
2620   const user_id_t TEXT_eh_frame_sectID = eh_frame_section_sp.get()
2621                                              ? eh_frame_section_sp->GetID()
2622                                              : static_cast<user_id_t>(NO_SECT);
2623 
2624   lldb::offset_t nlist_data_offset = 0;
2625 
2626   uint32_t N_SO_index = UINT32_MAX;
2627 
2628   MachSymtabSectionInfo section_info(section_list);
2629   std::vector<uint32_t> N_FUN_indexes;
2630   std::vector<uint32_t> N_NSYM_indexes;
2631   std::vector<uint32_t> N_INCL_indexes;
2632   std::vector<uint32_t> N_BRAC_indexes;
2633   std::vector<uint32_t> N_COMM_indexes;
2634   typedef std::multimap<uint64_t, uint32_t> ValueToSymbolIndexMap;
2635   typedef llvm::DenseMap<uint32_t, uint32_t> NListIndexToSymbolIndexMap;
2636   typedef llvm::DenseMap<const char *, uint32_t> ConstNameToSymbolIndexMap;
2637   ValueToSymbolIndexMap N_FUN_addr_to_sym_idx;
2638   ValueToSymbolIndexMap N_STSYM_addr_to_sym_idx;
2639   ConstNameToSymbolIndexMap N_GSYM_name_to_sym_idx;
2640   // Any symbols that get merged into another will get an entry in this map
2641   // so we know
2642   NListIndexToSymbolIndexMap m_nlist_idx_to_sym_idx;
2643   uint32_t nlist_idx = 0;
2644   Symbol *symbol_ptr = nullptr;
2645 
2646   uint32_t sym_idx = 0;
2647   Symbol *sym = nullptr;
2648   size_t num_syms = 0;
2649   std::string memory_symbol_name;
2650   uint32_t unmapped_local_symbols_found = 0;
2651 
2652   std::vector<TrieEntryWithOffset> reexport_trie_entries;
2653   std::vector<TrieEntryWithOffset> external_sym_trie_entries;
2654   std::set<lldb::addr_t> resolver_addresses;
2655 
2656   if (dyld_trie_data.GetByteSize() > 0) {
2657     ConstString text_segment_name("__TEXT");
2658     SectionSP text_segment_sp =
2659         GetSectionList()->FindSectionByName(text_segment_name);
2660     lldb::addr_t text_segment_file_addr = LLDB_INVALID_ADDRESS;
2661     if (text_segment_sp)
2662       text_segment_file_addr = text_segment_sp->GetFileAddress();
2663     std::vector<llvm::StringRef> nameSlices;
2664     ParseTrieEntries(dyld_trie_data, 0, is_arm, text_segment_file_addr,
2665                      nameSlices, resolver_addresses, reexport_trie_entries,
2666                      external_sym_trie_entries);
2667   }
2668 
2669   typedef std::set<ConstString> IndirectSymbols;
2670   IndirectSymbols indirect_symbol_names;
2671 
2672 #if TARGET_OS_IPHONE
2673 
2674   // Some recent builds of the dyld_shared_cache (hereafter: DSC) have been
2675   // optimized by moving LOCAL symbols out of the memory mapped portion of
2676   // the DSC. The symbol information has all been retained, but it isn't
2677   // available in the normal nlist data. However, there *are* duplicate
2678   // entries of *some*
2679   // LOCAL symbols in the normal nlist data. To handle this situation
2680   // correctly, we must first attempt
2681   // to parse any DSC unmapped symbol information. If we find any, we set a
2682   // flag that tells the normal nlist parser to ignore all LOCAL symbols.
2683 
2684   if (IsSharedCacheBinary()) {
2685     // Before we can start mapping the DSC, we need to make certain the
2686     // target process is actually using the cache we can find.
2687 
2688     // Next we need to determine the correct path for the dyld shared cache.
2689 
2690     ArchSpec header_arch = GetArchitecture();
2691     char dsc_path[PATH_MAX];
2692     char dsc_path_development[PATH_MAX];
2693 
2694     snprintf(
2695         dsc_path, sizeof(dsc_path), "%s%s%s",
2696         "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR
2697                                                    */
2698         "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */
2699         header_arch.GetArchitectureName());
2700 
2701     snprintf(
2702         dsc_path_development, sizeof(dsc_path), "%s%s%s%s",
2703         "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR
2704                                                    */
2705         "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */
2706         header_arch.GetArchitectureName(), ".development");
2707 
2708     FileSpec dsc_nondevelopment_filespec(dsc_path);
2709     FileSpec dsc_development_filespec(dsc_path_development);
2710     FileSpec dsc_filespec;
2711 
2712     UUID dsc_uuid;
2713     UUID process_shared_cache_uuid;
2714     addr_t process_shared_cache_base_addr;
2715 
2716     if (process) {
2717       GetProcessSharedCacheUUID(process, process_shared_cache_base_addr,
2718                                 process_shared_cache_uuid);
2719     }
2720 
2721     // First see if we can find an exact match for the inferior process
2722     // shared cache UUID in the development or non-development shared caches
2723     // on disk.
2724     if (process_shared_cache_uuid.IsValid()) {
2725       if (FileSystem::Instance().Exists(dsc_development_filespec)) {
2726         UUID dsc_development_uuid = GetSharedCacheUUID(
2727             dsc_development_filespec, byte_order, addr_byte_size);
2728         if (dsc_development_uuid.IsValid() &&
2729             dsc_development_uuid == process_shared_cache_uuid) {
2730           dsc_filespec = dsc_development_filespec;
2731           dsc_uuid = dsc_development_uuid;
2732         }
2733       }
2734       if (!dsc_uuid.IsValid() &&
2735           FileSystem::Instance().Exists(dsc_nondevelopment_filespec)) {
2736         UUID dsc_nondevelopment_uuid = GetSharedCacheUUID(
2737             dsc_nondevelopment_filespec, byte_order, addr_byte_size);
2738         if (dsc_nondevelopment_uuid.IsValid() &&
2739             dsc_nondevelopment_uuid == process_shared_cache_uuid) {
2740           dsc_filespec = dsc_nondevelopment_filespec;
2741           dsc_uuid = dsc_nondevelopment_uuid;
2742         }
2743       }
2744     }
2745 
2746     // Failing a UUID match, prefer the development dyld_shared cache if both
2747     // are present.
2748     if (!FileSystem::Instance().Exists(dsc_filespec)) {
2749       if (FileSystem::Instance().Exists(dsc_development_filespec)) {
2750         dsc_filespec = dsc_development_filespec;
2751       } else {
2752         dsc_filespec = dsc_nondevelopment_filespec;
2753       }
2754     }
2755 
2756     /* The dyld_cache_header has a pointer to the
2757        dyld_cache_local_symbols_info structure (localSymbolsOffset).
2758        The dyld_cache_local_symbols_info structure gives us three things:
2759          1. The start and count of the nlist records in the dyld_shared_cache
2760        file
2761          2. The start and size of the strings for these nlist records
2762          3. The start and count of dyld_cache_local_symbols_entry entries
2763 
2764        There is one dyld_cache_local_symbols_entry per dylib/framework in the
2765        dyld shared cache.
2766        The "dylibOffset" field is the Mach-O header of this dylib/framework in
2767        the dyld shared cache.
2768        The dyld_cache_local_symbols_entry also lists the start of this
2769        dylib/framework's nlist records
2770        and the count of how many nlist records there are for this
2771        dylib/framework.
2772     */
2773 
2774     // Process the dyld shared cache header to find the unmapped symbols
2775 
2776     DataBufferSP dsc_data_sp = MapFileData(
2777         dsc_filespec, sizeof(struct lldb_copy_dyld_cache_header_v1), 0);
2778     if (!dsc_uuid.IsValid()) {
2779       dsc_uuid = GetSharedCacheUUID(dsc_filespec, byte_order, addr_byte_size);
2780     }
2781     if (dsc_data_sp) {
2782       DataExtractor dsc_header_data(dsc_data_sp, byte_order, addr_byte_size);
2783 
2784       bool uuid_match = true;
2785       if (dsc_uuid.IsValid() && process) {
2786         if (process_shared_cache_uuid.IsValid() &&
2787             dsc_uuid != process_shared_cache_uuid) {
2788           // The on-disk dyld_shared_cache file is not the same as the one in
2789           // this process' memory, don't use it.
2790           uuid_match = false;
2791           ModuleSP module_sp(GetModule());
2792           if (module_sp)
2793             module_sp->ReportWarning("process shared cache does not match "
2794                                      "on-disk dyld_shared_cache file, some "
2795                                      "symbol names will be missing.");
2796         }
2797       }
2798 
2799       offset = offsetof(struct lldb_copy_dyld_cache_header_v1, mappingOffset);
2800 
2801       uint32_t mappingOffset = dsc_header_data.GetU32(&offset);
2802 
2803       // If the mappingOffset points to a location inside the header, we've
2804       // opened an old dyld shared cache, and should not proceed further.
2805       if (uuid_match &&
2806           mappingOffset >= sizeof(struct lldb_copy_dyld_cache_header_v1)) {
2807 
2808         DataBufferSP dsc_mapping_info_data_sp = MapFileData(
2809             dsc_filespec, sizeof(struct lldb_copy_dyld_cache_mapping_info),
2810             mappingOffset);
2811 
2812         DataExtractor dsc_mapping_info_data(dsc_mapping_info_data_sp,
2813                                             byte_order, addr_byte_size);
2814         offset = 0;
2815 
2816         // The File addresses (from the in-memory Mach-O load commands) for
2817         // the shared libraries in the shared library cache need to be
2818         // adjusted by an offset to match up with the dylibOffset identifying
2819         // field in the dyld_cache_local_symbol_entry's.  This offset is
2820         // recorded in mapping_offset_value.
2821         const uint64_t mapping_offset_value =
2822             dsc_mapping_info_data.GetU64(&offset);
2823 
2824         offset =
2825             offsetof(struct lldb_copy_dyld_cache_header_v1, localSymbolsOffset);
2826         uint64_t localSymbolsOffset = dsc_header_data.GetU64(&offset);
2827         uint64_t localSymbolsSize = dsc_header_data.GetU64(&offset);
2828 
2829         if (localSymbolsOffset && localSymbolsSize) {
2830           // Map the local symbols
2831           DataBufferSP dsc_local_symbols_data_sp =
2832               MapFileData(dsc_filespec, localSymbolsSize, localSymbolsOffset);
2833 
2834           if (dsc_local_symbols_data_sp) {
2835             DataExtractor dsc_local_symbols_data(dsc_local_symbols_data_sp,
2836                                                  byte_order, addr_byte_size);
2837 
2838             offset = 0;
2839 
2840             typedef llvm::DenseMap<ConstString, uint16_t> UndefinedNameToDescMap;
2841             typedef llvm::DenseMap<uint32_t, ConstString> SymbolIndexToName;
2842             UndefinedNameToDescMap undefined_name_to_desc;
2843             SymbolIndexToName reexport_shlib_needs_fixup;
2844 
2845             // Read the local_symbols_infos struct in one shot
2846             struct lldb_copy_dyld_cache_local_symbols_info local_symbols_info;
2847             dsc_local_symbols_data.GetU32(&offset,
2848                                           &local_symbols_info.nlistOffset, 6);
2849 
2850             SectionSP text_section_sp(
2851                 section_list->FindSectionByName(GetSegmentNameTEXT()));
2852 
2853             uint32_t header_file_offset =
2854                 (text_section_sp->GetFileAddress() - mapping_offset_value);
2855 
2856             offset = local_symbols_info.entriesOffset;
2857             for (uint32_t entry_index = 0;
2858                  entry_index < local_symbols_info.entriesCount; entry_index++) {
2859               struct lldb_copy_dyld_cache_local_symbols_entry
2860                   local_symbols_entry;
2861               local_symbols_entry.dylibOffset =
2862                   dsc_local_symbols_data.GetU32(&offset);
2863               local_symbols_entry.nlistStartIndex =
2864                   dsc_local_symbols_data.GetU32(&offset);
2865               local_symbols_entry.nlistCount =
2866                   dsc_local_symbols_data.GetU32(&offset);
2867 
2868               if (header_file_offset == local_symbols_entry.dylibOffset) {
2869                 unmapped_local_symbols_found = local_symbols_entry.nlistCount;
2870 
2871                 // The normal nlist code cannot correctly size the Symbols
2872                 // array, we need to allocate it here.
2873                 sym = symtab->Resize(
2874                     symtab_load_command.nsyms + m_dysymtab.nindirectsyms +
2875                     unmapped_local_symbols_found - m_dysymtab.nlocalsym);
2876                 num_syms = symtab->GetNumSymbols();
2877 
2878                 nlist_data_offset =
2879                     local_symbols_info.nlistOffset +
2880                     (nlist_byte_size * local_symbols_entry.nlistStartIndex);
2881                 uint32_t string_table_offset = local_symbols_info.stringsOffset;
2882 
2883                 for (uint32_t nlist_index = 0;
2884                      nlist_index < local_symbols_entry.nlistCount;
2885                      nlist_index++) {
2886                   /////////////////////////////
2887                   {
2888                     llvm::Optional<struct nlist_64> nlist_maybe =
2889                         ParseNList(dsc_local_symbols_data, nlist_data_offset,
2890                                    nlist_byte_size);
2891                     if (!nlist_maybe)
2892                       break;
2893                     struct nlist_64 nlist = *nlist_maybe;
2894 
2895                     SymbolType type = eSymbolTypeInvalid;
2896                     const char *symbol_name = dsc_local_symbols_data.PeekCStr(
2897                         string_table_offset + nlist.n_strx);
2898 
2899                     if (symbol_name == NULL) {
2900                       // No symbol should be NULL, even the symbols with no
2901                       // string values should have an offset zero which
2902                       // points to an empty C-string
2903                       Host::SystemLog(
2904                           Host::eSystemLogError,
2905                           "error: DSC unmapped local symbol[%u] has invalid "
2906                           "string table offset 0x%x in %s, ignoring symbol\n",
2907                           entry_index, nlist.n_strx,
2908                           module_sp->GetFileSpec().GetPath().c_str());
2909                       continue;
2910                     }
2911                     if (symbol_name[0] == '\0')
2912                       symbol_name = NULL;
2913 
2914                     const char *symbol_name_non_abi_mangled = NULL;
2915 
2916                     SectionSP symbol_section;
2917                     uint32_t symbol_byte_size = 0;
2918                     bool add_nlist = true;
2919                     bool is_debug = ((nlist.n_type & N_STAB) != 0);
2920                     bool demangled_is_synthesized = false;
2921                     bool is_gsym = false;
2922                     bool set_value = true;
2923 
2924                     assert(sym_idx < num_syms);
2925 
2926                     sym[sym_idx].SetDebug(is_debug);
2927 
2928                     if (is_debug) {
2929                       switch (nlist.n_type) {
2930                       case N_GSYM:
2931                         // global symbol: name,,NO_SECT,type,0
2932                         // Sometimes the N_GSYM value contains the address.
2933 
2934                         // FIXME: In the .o files, we have a GSYM and a debug
2935                         // symbol for all the ObjC data.  They
2936                         // have the same address, but we want to ensure that
2937                         // we always find only the real symbol, 'cause we
2938                         // don't currently correctly attribute the
2939                         // GSYM one to the ObjCClass/Ivar/MetaClass
2940                         // symbol type.  This is a temporary hack to make
2941                         // sure the ObjectiveC symbols get treated correctly.
2942                         // To do this right, we should coalesce all the GSYM
2943                         // & global symbols that have the same address.
2944 
2945                         is_gsym = true;
2946                         sym[sym_idx].SetExternal(true);
2947 
2948                         if (symbol_name && symbol_name[0] == '_' &&
2949                             symbol_name[1] == 'O') {
2950                           llvm::StringRef symbol_name_ref(symbol_name);
2951                           if (symbol_name_ref.startswith(
2952                                   g_objc_v2_prefix_class)) {
2953                             symbol_name_non_abi_mangled = symbol_name + 1;
2954                             symbol_name =
2955                                 symbol_name + g_objc_v2_prefix_class.size();
2956                             type = eSymbolTypeObjCClass;
2957                             demangled_is_synthesized = true;
2958 
2959                           } else if (symbol_name_ref.startswith(
2960                                          g_objc_v2_prefix_metaclass)) {
2961                             symbol_name_non_abi_mangled = symbol_name + 1;
2962                             symbol_name =
2963                                 symbol_name + g_objc_v2_prefix_metaclass.size();
2964                             type = eSymbolTypeObjCMetaClass;
2965                             demangled_is_synthesized = true;
2966                           } else if (symbol_name_ref.startswith(
2967                                          g_objc_v2_prefix_ivar)) {
2968                             symbol_name_non_abi_mangled = symbol_name + 1;
2969                             symbol_name =
2970                                 symbol_name + g_objc_v2_prefix_ivar.size();
2971                             type = eSymbolTypeObjCIVar;
2972                             demangled_is_synthesized = true;
2973                           }
2974                         } else {
2975                           if (nlist.n_value != 0)
2976                             symbol_section = section_info.GetSection(
2977                                 nlist.n_sect, nlist.n_value);
2978                           type = eSymbolTypeData;
2979                         }
2980                         break;
2981 
2982                       case N_FNAME:
2983                         // procedure name (f77 kludge): name,,NO_SECT,0,0
2984                         type = eSymbolTypeCompiler;
2985                         break;
2986 
2987                       case N_FUN:
2988                         // procedure: name,,n_sect,linenumber,address
2989                         if (symbol_name) {
2990                           type = eSymbolTypeCode;
2991                           symbol_section = section_info.GetSection(
2992                               nlist.n_sect, nlist.n_value);
2993 
2994                           N_FUN_addr_to_sym_idx.insert(
2995                               std::make_pair(nlist.n_value, sym_idx));
2996                           // We use the current number of symbols in the
2997                           // symbol table in lieu of using nlist_idx in case
2998                           // we ever start trimming entries out
2999                           N_FUN_indexes.push_back(sym_idx);
3000                         } else {
3001                           type = eSymbolTypeCompiler;
3002 
3003                           if (!N_FUN_indexes.empty()) {
3004                             // Copy the size of the function into the
3005                             // original
3006                             // STAB entry so we don't have
3007                             // to hunt for it later
3008                             symtab->SymbolAtIndex(N_FUN_indexes.back())
3009                                 ->SetByteSize(nlist.n_value);
3010                             N_FUN_indexes.pop_back();
3011                             // We don't really need the end function STAB as
3012                             // it contains the size which we already placed
3013                             // with the original symbol, so don't add it if
3014                             // we want a minimal symbol table
3015                             add_nlist = false;
3016                           }
3017                         }
3018                         break;
3019 
3020                       case N_STSYM:
3021                         // static symbol: name,,n_sect,type,address
3022                         N_STSYM_addr_to_sym_idx.insert(
3023                             std::make_pair(nlist.n_value, sym_idx));
3024                         symbol_section = section_info.GetSection(nlist.n_sect,
3025                                                                  nlist.n_value);
3026                         if (symbol_name && symbol_name[0]) {
3027                           type = ObjectFile::GetSymbolTypeFromName(
3028                               symbol_name + 1, eSymbolTypeData);
3029                         }
3030                         break;
3031 
3032                       case N_LCSYM:
3033                         // .lcomm symbol: name,,n_sect,type,address
3034                         symbol_section = section_info.GetSection(nlist.n_sect,
3035                                                                  nlist.n_value);
3036                         type = eSymbolTypeCommonBlock;
3037                         break;
3038 
3039                       case N_BNSYM:
3040                         // We use the current number of symbols in the symbol
3041                         // table in lieu of using nlist_idx in case we ever
3042                         // start trimming entries out Skip these if we want
3043                         // minimal symbol tables
3044                         add_nlist = false;
3045                         break;
3046 
3047                       case N_ENSYM:
3048                         // Set the size of the N_BNSYM to the terminating
3049                         // index of this N_ENSYM so that we can always skip
3050                         // the entire symbol if we need to navigate more
3051                         // quickly at the source level when parsing STABS
3052                         // Skip these if we want minimal symbol tables
3053                         add_nlist = false;
3054                         break;
3055 
3056                       case N_OPT:
3057                         // emitted with gcc2_compiled and in gcc source
3058                         type = eSymbolTypeCompiler;
3059                         break;
3060 
3061                       case N_RSYM:
3062                         // register sym: name,,NO_SECT,type,register
3063                         type = eSymbolTypeVariable;
3064                         break;
3065 
3066                       case N_SLINE:
3067                         // src line: 0,,n_sect,linenumber,address
3068                         symbol_section = section_info.GetSection(nlist.n_sect,
3069                                                                  nlist.n_value);
3070                         type = eSymbolTypeLineEntry;
3071                         break;
3072 
3073                       case N_SSYM:
3074                         // structure elt: name,,NO_SECT,type,struct_offset
3075                         type = eSymbolTypeVariableType;
3076                         break;
3077 
3078                       case N_SO:
3079                         // source file name
3080                         type = eSymbolTypeSourceFile;
3081                         if (symbol_name == NULL) {
3082                           add_nlist = false;
3083                           if (N_SO_index != UINT32_MAX) {
3084                             // Set the size of the N_SO to the terminating
3085                             // index of this N_SO so that we can always skip
3086                             // the entire N_SO if we need to navigate more
3087                             // quickly at the source level when parsing STABS
3088                             symbol_ptr = symtab->SymbolAtIndex(N_SO_index);
3089                             symbol_ptr->SetByteSize(sym_idx);
3090                             symbol_ptr->SetSizeIsSibling(true);
3091                           }
3092                           N_NSYM_indexes.clear();
3093                           N_INCL_indexes.clear();
3094                           N_BRAC_indexes.clear();
3095                           N_COMM_indexes.clear();
3096                           N_FUN_indexes.clear();
3097                           N_SO_index = UINT32_MAX;
3098                         } else {
3099                           // We use the current number of symbols in the
3100                           // symbol table in lieu of using nlist_idx in case
3101                           // we ever start trimming entries out
3102                           const bool N_SO_has_full_path = symbol_name[0] == '/';
3103                           if (N_SO_has_full_path) {
3104                             if ((N_SO_index == sym_idx - 1) &&
3105                                 ((sym_idx - 1) < num_syms)) {
3106                               // We have two consecutive N_SO entries where
3107                               // the first contains a directory and the
3108                               // second contains a full path.
3109                               sym[sym_idx - 1].GetMangled().SetValue(
3110                                   ConstString(symbol_name), false);
3111                               m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3112                               add_nlist = false;
3113                             } else {
3114                               // This is the first entry in a N_SO that
3115                               // contains a directory or
3116                               // a full path to the source file
3117                               N_SO_index = sym_idx;
3118                             }
3119                           } else if ((N_SO_index == sym_idx - 1) &&
3120                                      ((sym_idx - 1) < num_syms)) {
3121                             // This is usually the second N_SO entry that
3122                             // contains just the filename, so here we combine
3123                             // it with the first one if we are minimizing the
3124                             // symbol table
3125                             const char *so_path = sym[sym_idx - 1]
3126                                                       .GetMangled()
3127                                                       .GetDemangledName()
3128                                                       .AsCString();
3129                             if (so_path && so_path[0]) {
3130                               std::string full_so_path(so_path);
3131                               const size_t double_slash_pos =
3132                                   full_so_path.find("//");
3133                               if (double_slash_pos != std::string::npos) {
3134                                 // The linker has been generating bad N_SO
3135                                 // entries with doubled up paths
3136                                 // in the format "%s%s" where the first
3137                                 // string in the DW_AT_comp_dir, and the
3138                                 // second is the directory for the source
3139                                 // file so you end up with a path that looks
3140                                 // like "/tmp/src//tmp/src/"
3141                                 FileSpec so_dir(so_path);
3142                                 if (!FileSystem::Instance().Exists(so_dir)) {
3143                                   so_dir.SetFile(
3144                                       &full_so_path[double_slash_pos + 1],
3145                                       FileSpec::Style::native);
3146                                   if (FileSystem::Instance().Exists(so_dir)) {
3147                                     // Trim off the incorrect path
3148                                     full_so_path.erase(0, double_slash_pos + 1);
3149                                   }
3150                                 }
3151                               }
3152                               if (*full_so_path.rbegin() != '/')
3153                                 full_so_path += '/';
3154                               full_so_path += symbol_name;
3155                               sym[sym_idx - 1].GetMangled().SetValue(
3156                                   ConstString(full_so_path.c_str()), false);
3157                               add_nlist = false;
3158                               m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3159                             }
3160                           } else {
3161                             // This could be a relative path to a N_SO
3162                             N_SO_index = sym_idx;
3163                           }
3164                         }
3165                         break;
3166 
3167                       case N_OSO:
3168                         // object file name: name,,0,0,st_mtime
3169                         type = eSymbolTypeObjectFile;
3170                         break;
3171 
3172                       case N_LSYM:
3173                         // local sym: name,,NO_SECT,type,offset
3174                         type = eSymbolTypeLocal;
3175                         break;
3176 
3177                       // INCL scopes
3178                       case N_BINCL:
3179                         // include file beginning: name,,NO_SECT,0,sum We use
3180                         // the current number of symbols in the symbol table
3181                         // in lieu of using nlist_idx in case we ever start
3182                         // trimming entries out
3183                         N_INCL_indexes.push_back(sym_idx);
3184                         type = eSymbolTypeScopeBegin;
3185                         break;
3186 
3187                       case N_EINCL:
3188                         // include file end: name,,NO_SECT,0,0
3189                         // Set the size of the N_BINCL to the terminating
3190                         // index of this N_EINCL so that we can always skip
3191                         // the entire symbol if we need to navigate more
3192                         // quickly at the source level when parsing STABS
3193                         if (!N_INCL_indexes.empty()) {
3194                           symbol_ptr =
3195                               symtab->SymbolAtIndex(N_INCL_indexes.back());
3196                           symbol_ptr->SetByteSize(sym_idx + 1);
3197                           symbol_ptr->SetSizeIsSibling(true);
3198                           N_INCL_indexes.pop_back();
3199                         }
3200                         type = eSymbolTypeScopeEnd;
3201                         break;
3202 
3203                       case N_SOL:
3204                         // #included file name: name,,n_sect,0,address
3205                         type = eSymbolTypeHeaderFile;
3206 
3207                         // We currently don't use the header files on darwin
3208                         add_nlist = false;
3209                         break;
3210 
3211                       case N_PARAMS:
3212                         // compiler parameters: name,,NO_SECT,0,0
3213                         type = eSymbolTypeCompiler;
3214                         break;
3215 
3216                       case N_VERSION:
3217                         // compiler version: name,,NO_SECT,0,0
3218                         type = eSymbolTypeCompiler;
3219                         break;
3220 
3221                       case N_OLEVEL:
3222                         // compiler -O level: name,,NO_SECT,0,0
3223                         type = eSymbolTypeCompiler;
3224                         break;
3225 
3226                       case N_PSYM:
3227                         // parameter: name,,NO_SECT,type,offset
3228                         type = eSymbolTypeVariable;
3229                         break;
3230 
3231                       case N_ENTRY:
3232                         // alternate entry: name,,n_sect,linenumber,address
3233                         symbol_section = section_info.GetSection(nlist.n_sect,
3234                                                                  nlist.n_value);
3235                         type = eSymbolTypeLineEntry;
3236                         break;
3237 
3238                       // Left and Right Braces
3239                       case N_LBRAC:
3240                         // left bracket: 0,,NO_SECT,nesting level,address We
3241                         // use the current number of symbols in the symbol
3242                         // table in lieu of using nlist_idx in case we ever
3243                         // start trimming entries out
3244                         symbol_section = section_info.GetSection(nlist.n_sect,
3245                                                                  nlist.n_value);
3246                         N_BRAC_indexes.push_back(sym_idx);
3247                         type = eSymbolTypeScopeBegin;
3248                         break;
3249 
3250                       case N_RBRAC:
3251                         // right bracket: 0,,NO_SECT,nesting level,address
3252                         // Set the size of the N_LBRAC to the terminating
3253                         // index of this N_RBRAC so that we can always skip
3254                         // the entire symbol if we need to navigate more
3255                         // quickly at the source level when parsing STABS
3256                         symbol_section = section_info.GetSection(nlist.n_sect,
3257                                                                  nlist.n_value);
3258                         if (!N_BRAC_indexes.empty()) {
3259                           symbol_ptr =
3260                               symtab->SymbolAtIndex(N_BRAC_indexes.back());
3261                           symbol_ptr->SetByteSize(sym_idx + 1);
3262                           symbol_ptr->SetSizeIsSibling(true);
3263                           N_BRAC_indexes.pop_back();
3264                         }
3265                         type = eSymbolTypeScopeEnd;
3266                         break;
3267 
3268                       case N_EXCL:
3269                         // deleted include file: name,,NO_SECT,0,sum
3270                         type = eSymbolTypeHeaderFile;
3271                         break;
3272 
3273                       // COMM scopes
3274                       case N_BCOMM:
3275                         // begin common: name,,NO_SECT,0,0
3276                         // We use the current number of symbols in the symbol
3277                         // table in lieu of using nlist_idx in case we ever
3278                         // start trimming entries out
3279                         type = eSymbolTypeScopeBegin;
3280                         N_COMM_indexes.push_back(sym_idx);
3281                         break;
3282 
3283                       case N_ECOML:
3284                         // end common (local name): 0,,n_sect,0,address
3285                         symbol_section = section_info.GetSection(nlist.n_sect,
3286                                                                  nlist.n_value);
3287                         // Fall through
3288 
3289                       case N_ECOMM:
3290                         // end common: name,,n_sect,0,0
3291                         // Set the size of the N_BCOMM to the terminating
3292                         // index of this N_ECOMM/N_ECOML so that we can
3293                         // always skip the entire symbol if we need to
3294                         // navigate more quickly at the source level when
3295                         // parsing STABS
3296                         if (!N_COMM_indexes.empty()) {
3297                           symbol_ptr =
3298                               symtab->SymbolAtIndex(N_COMM_indexes.back());
3299                           symbol_ptr->SetByteSize(sym_idx + 1);
3300                           symbol_ptr->SetSizeIsSibling(true);
3301                           N_COMM_indexes.pop_back();
3302                         }
3303                         type = eSymbolTypeScopeEnd;
3304                         break;
3305 
3306                       case N_LENG:
3307                         // second stab entry with length information
3308                         type = eSymbolTypeAdditional;
3309                         break;
3310 
3311                       default:
3312                         break;
3313                       }
3314                     } else {
3315                       // uint8_t n_pext    = N_PEXT & nlist.n_type;
3316                       uint8_t n_type = N_TYPE & nlist.n_type;
3317                       sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
3318 
3319                       switch (n_type) {
3320                       case N_INDR: {
3321                         const char *reexport_name_cstr =
3322                             strtab_data.PeekCStr(nlist.n_value);
3323                         if (reexport_name_cstr && reexport_name_cstr[0]) {
3324                           type = eSymbolTypeReExported;
3325                           ConstString reexport_name(
3326                               reexport_name_cstr +
3327                               ((reexport_name_cstr[0] == '_') ? 1 : 0));
3328                           sym[sym_idx].SetReExportedSymbolName(reexport_name);
3329                           set_value = false;
3330                           reexport_shlib_needs_fixup[sym_idx] = reexport_name;
3331                           indirect_symbol_names.insert(ConstString(
3332                               symbol_name + ((symbol_name[0] == '_') ? 1 : 0)));
3333                         } else
3334                           type = eSymbolTypeUndefined;
3335                       } break;
3336 
3337                       case N_UNDF:
3338                         if (symbol_name && symbol_name[0]) {
3339                           ConstString undefined_name(
3340                               symbol_name + ((symbol_name[0] == '_') ? 1 : 0));
3341                           undefined_name_to_desc[undefined_name] = nlist.n_desc;
3342                         }
3343                       // Fall through
3344                       case N_PBUD:
3345                         type = eSymbolTypeUndefined;
3346                         break;
3347 
3348                       case N_ABS:
3349                         type = eSymbolTypeAbsolute;
3350                         break;
3351 
3352                       case N_SECT: {
3353                         symbol_section = section_info.GetSection(nlist.n_sect,
3354                                                                  nlist.n_value);
3355 
3356                         if (symbol_section == NULL) {
3357                           // TODO: warn about this?
3358                           add_nlist = false;
3359                           break;
3360                         }
3361 
3362                         if (TEXT_eh_frame_sectID == nlist.n_sect) {
3363                           type = eSymbolTypeException;
3364                         } else {
3365                           uint32_t section_type =
3366                               symbol_section->Get() & SECTION_TYPE;
3367 
3368                           switch (section_type) {
3369                           case S_CSTRING_LITERALS:
3370                             type = eSymbolTypeData;
3371                             break; // section with only literal C strings
3372                           case S_4BYTE_LITERALS:
3373                             type = eSymbolTypeData;
3374                             break; // section with only 4 byte literals
3375                           case S_8BYTE_LITERALS:
3376                             type = eSymbolTypeData;
3377                             break; // section with only 8 byte literals
3378                           case S_LITERAL_POINTERS:
3379                             type = eSymbolTypeTrampoline;
3380                             break; // section with only pointers to literals
3381                           case S_NON_LAZY_SYMBOL_POINTERS:
3382                             type = eSymbolTypeTrampoline;
3383                             break; // section with only non-lazy symbol
3384                                    // pointers
3385                           case S_LAZY_SYMBOL_POINTERS:
3386                             type = eSymbolTypeTrampoline;
3387                             break; // section with only lazy symbol pointers
3388                           case S_SYMBOL_STUBS:
3389                             type = eSymbolTypeTrampoline;
3390                             break; // section with only symbol stubs, byte
3391                                    // size of stub in the reserved2 field
3392                           case S_MOD_INIT_FUNC_POINTERS:
3393                             type = eSymbolTypeCode;
3394                             break; // section with only function pointers for
3395                                    // initialization
3396                           case S_MOD_TERM_FUNC_POINTERS:
3397                             type = eSymbolTypeCode;
3398                             break; // section with only function pointers for
3399                                    // termination
3400                           case S_INTERPOSING:
3401                             type = eSymbolTypeTrampoline;
3402                             break; // section with only pairs of function
3403                                    // pointers for interposing
3404                           case S_16BYTE_LITERALS:
3405                             type = eSymbolTypeData;
3406                             break; // section with only 16 byte literals
3407                           case S_DTRACE_DOF:
3408                             type = eSymbolTypeInstrumentation;
3409                             break;
3410                           case S_LAZY_DYLIB_SYMBOL_POINTERS:
3411                             type = eSymbolTypeTrampoline;
3412                             break;
3413                           default:
3414                             switch (symbol_section->GetType()) {
3415                             case lldb::eSectionTypeCode:
3416                               type = eSymbolTypeCode;
3417                               break;
3418                             case eSectionTypeData:
3419                             case eSectionTypeDataCString: // Inlined C string
3420                                                           // data
3421                             case eSectionTypeDataCStringPointers: // Pointers
3422                                                                   // to C
3423                                                                   // string
3424                                                                   // data
3425                             case eSectionTypeDataSymbolAddress:   // Address of
3426                                                                   // a symbol in
3427                                                                   // the symbol
3428                                                                   // table
3429                             case eSectionTypeData4:
3430                             case eSectionTypeData8:
3431                             case eSectionTypeData16:
3432                               type = eSymbolTypeData;
3433                               break;
3434                             default:
3435                               break;
3436                             }
3437                             break;
3438                           }
3439 
3440                           if (type == eSymbolTypeInvalid) {
3441                             const char *symbol_sect_name =
3442                                 symbol_section->GetName().AsCString();
3443                             if (symbol_section->IsDescendant(
3444                                     text_section_sp.get())) {
3445                               if (symbol_section->IsClear(
3446                                       S_ATTR_PURE_INSTRUCTIONS |
3447                                       S_ATTR_SELF_MODIFYING_CODE |
3448                                       S_ATTR_SOME_INSTRUCTIONS))
3449                                 type = eSymbolTypeData;
3450                               else
3451                                 type = eSymbolTypeCode;
3452                             } else if (symbol_section->IsDescendant(
3453                                            data_section_sp.get()) ||
3454                                        symbol_section->IsDescendant(
3455                                            data_dirty_section_sp.get()) ||
3456                                        symbol_section->IsDescendant(
3457                                            data_const_section_sp.get())) {
3458                               if (symbol_sect_name &&
3459                                   ::strstr(symbol_sect_name, "__objc") ==
3460                                       symbol_sect_name) {
3461                                 type = eSymbolTypeRuntime;
3462 
3463                                 if (symbol_name) {
3464                                   llvm::StringRef symbol_name_ref(symbol_name);
3465                                   if (symbol_name_ref.startswith("_OBJC_")) {
3466                                     llvm::StringRef
3467                                         g_objc_v2_prefix_class(
3468                                             "_OBJC_CLASS_$_");
3469                                     llvm::StringRef
3470                                         g_objc_v2_prefix_metaclass(
3471                                             "_OBJC_METACLASS_$_");
3472                                     llvm::StringRef
3473                                         g_objc_v2_prefix_ivar("_OBJC_IVAR_$_");
3474                                     if (symbol_name_ref.startswith(
3475                                             g_objc_v2_prefix_class)) {
3476                                       symbol_name_non_abi_mangled =
3477                                           symbol_name + 1;
3478                                       symbol_name =
3479                                           symbol_name +
3480                                           g_objc_v2_prefix_class.size();
3481                                       type = eSymbolTypeObjCClass;
3482                                       demangled_is_synthesized = true;
3483                                     } else if (
3484                                         symbol_name_ref.startswith(
3485                                             g_objc_v2_prefix_metaclass)) {
3486                                       symbol_name_non_abi_mangled =
3487                                           symbol_name + 1;
3488                                       symbol_name =
3489                                           symbol_name +
3490                                           g_objc_v2_prefix_metaclass.size();
3491                                       type = eSymbolTypeObjCMetaClass;
3492                                       demangled_is_synthesized = true;
3493                                     } else if (symbol_name_ref.startswith(
3494                                                    g_objc_v2_prefix_ivar)) {
3495                                       symbol_name_non_abi_mangled =
3496                                           symbol_name + 1;
3497                                       symbol_name =
3498                                           symbol_name +
3499                                           g_objc_v2_prefix_ivar.size();
3500                                       type = eSymbolTypeObjCIVar;
3501                                       demangled_is_synthesized = true;
3502                                     }
3503                                   }
3504                                 }
3505                               } else if (symbol_sect_name &&
3506                                          ::strstr(symbol_sect_name,
3507                                                   "__gcc_except_tab") ==
3508                                              symbol_sect_name) {
3509                                 type = eSymbolTypeException;
3510                               } else {
3511                                 type = eSymbolTypeData;
3512                               }
3513                             } else if (symbol_sect_name &&
3514                                        ::strstr(symbol_sect_name, "__IMPORT") ==
3515                                            symbol_sect_name) {
3516                               type = eSymbolTypeTrampoline;
3517                             } else if (symbol_section->IsDescendant(
3518                                            objc_section_sp.get())) {
3519                               type = eSymbolTypeRuntime;
3520                               if (symbol_name && symbol_name[0] == '.') {
3521                                 llvm::StringRef symbol_name_ref(symbol_name);
3522                                 llvm::StringRef
3523                                     g_objc_v1_prefix_class(".objc_class_name_");
3524                                 if (symbol_name_ref.startswith(
3525                                         g_objc_v1_prefix_class)) {
3526                                   symbol_name_non_abi_mangled = symbol_name;
3527                                   symbol_name = symbol_name +
3528                                                 g_objc_v1_prefix_class.size();
3529                                   type = eSymbolTypeObjCClass;
3530                                   demangled_is_synthesized = true;
3531                                 }
3532                               }
3533                             }
3534                           }
3535                         }
3536                       } break;
3537                       }
3538                     }
3539 
3540                     if (add_nlist) {
3541                       uint64_t symbol_value = nlist.n_value;
3542                       if (symbol_name_non_abi_mangled) {
3543                         sym[sym_idx].GetMangled().SetMangledName(
3544                             ConstString(symbol_name_non_abi_mangled));
3545                         sym[sym_idx].GetMangled().SetDemangledName(
3546                             ConstString(symbol_name));
3547                       } else {
3548                         bool symbol_name_is_mangled = false;
3549 
3550                         if (symbol_name && symbol_name[0] == '_') {
3551                           symbol_name_is_mangled = symbol_name[1] == '_';
3552                           symbol_name++; // Skip the leading underscore
3553                         }
3554 
3555                         if (symbol_name) {
3556                           ConstString const_symbol_name(symbol_name);
3557                           sym[sym_idx].GetMangled().SetValue(
3558                               const_symbol_name, symbol_name_is_mangled);
3559                           if (is_gsym && is_debug) {
3560                             const char *gsym_name =
3561                                 sym[sym_idx]
3562                                     .GetMangled()
3563                                     .GetName(Mangled::ePreferMangled)
3564                                     .GetCString();
3565                             if (gsym_name)
3566                               N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
3567                           }
3568                         }
3569                       }
3570                       if (symbol_section) {
3571                         const addr_t section_file_addr =
3572                             symbol_section->GetFileAddress();
3573                         if (symbol_byte_size == 0 &&
3574                             function_starts_count > 0) {
3575                           addr_t symbol_lookup_file_addr = nlist.n_value;
3576                           // Do an exact address match for non-ARM addresses,
3577                           // else get the closest since the symbol might be a
3578                           // thumb symbol which has an address with bit zero
3579                           // set
3580                           FunctionStarts::Entry *func_start_entry =
3581                               function_starts.FindEntry(symbol_lookup_file_addr,
3582                                                         !is_arm);
3583                           if (is_arm && func_start_entry) {
3584                             // Verify that the function start address is the
3585                             // symbol address (ARM) or the symbol address + 1
3586                             // (thumb)
3587                             if (func_start_entry->addr !=
3588                                     symbol_lookup_file_addr &&
3589                                 func_start_entry->addr !=
3590                                     (symbol_lookup_file_addr + 1)) {
3591                               // Not the right entry, NULL it out...
3592                               func_start_entry = NULL;
3593                             }
3594                           }
3595                           if (func_start_entry) {
3596                             func_start_entry->data = true;
3597 
3598                             addr_t symbol_file_addr = func_start_entry->addr;
3599                             uint32_t symbol_flags = 0;
3600                             if (is_arm) {
3601                               if (symbol_file_addr & 1)
3602                                 symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB;
3603                               symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
3604                             }
3605 
3606                             const FunctionStarts::Entry *next_func_start_entry =
3607                                 function_starts.FindNextEntry(func_start_entry);
3608                             const addr_t section_end_file_addr =
3609                                 section_file_addr +
3610                                 symbol_section->GetByteSize();
3611                             if (next_func_start_entry) {
3612                               addr_t next_symbol_file_addr =
3613                                   next_func_start_entry->addr;
3614                               // Be sure the clear the Thumb address bit when
3615                               // we calculate the size from the current and
3616                               // next address
3617                               if (is_arm)
3618                                 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
3619                               symbol_byte_size = std::min<lldb::addr_t>(
3620                                   next_symbol_file_addr - symbol_file_addr,
3621                                   section_end_file_addr - symbol_file_addr);
3622                             } else {
3623                               symbol_byte_size =
3624                                   section_end_file_addr - symbol_file_addr;
3625                             }
3626                           }
3627                         }
3628                         symbol_value -= section_file_addr;
3629                       }
3630 
3631                       if (is_debug == false) {
3632                         if (type == eSymbolTypeCode) {
3633                           // See if we can find a N_FUN entry for any code
3634                           // symbols. If we do find a match, and the name
3635                           // matches, then we can merge the two into just the
3636                           // function symbol to avoid duplicate entries in
3637                           // the symbol table
3638                           auto range =
3639                               N_FUN_addr_to_sym_idx.equal_range(nlist.n_value);
3640                           if (range.first != range.second) {
3641                             bool found_it = false;
3642                             for (auto pos = range.first; pos != range.second;
3643                                  ++pos) {
3644                               if (sym[sym_idx].GetMangled().GetName(
3645                                       Mangled::ePreferMangled) ==
3646                                   sym[pos->second].GetMangled().GetName(
3647                                       Mangled::ePreferMangled)) {
3648                                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
3649                                 // We just need the flags from the linker
3650                                 // symbol, so put these flags
3651                                 // into the N_FUN flags to avoid duplicate
3652                                 // symbols in the symbol table
3653                                 sym[pos->second].SetExternal(
3654                                     sym[sym_idx].IsExternal());
3655                                 sym[pos->second].SetFlags(nlist.n_type << 16 |
3656                                                           nlist.n_desc);
3657                                 if (resolver_addresses.find(nlist.n_value) !=
3658                                     resolver_addresses.end())
3659                                   sym[pos->second].SetType(eSymbolTypeResolver);
3660                                 sym[sym_idx].Clear();
3661                                 found_it = true;
3662                                 break;
3663                               }
3664                             }
3665                             if (found_it)
3666                               continue;
3667                           } else {
3668                             if (resolver_addresses.find(nlist.n_value) !=
3669                                 resolver_addresses.end())
3670                               type = eSymbolTypeResolver;
3671                           }
3672                         } else if (type == eSymbolTypeData ||
3673                                    type == eSymbolTypeObjCClass ||
3674                                    type == eSymbolTypeObjCMetaClass ||
3675                                    type == eSymbolTypeObjCIVar) {
3676                           // See if we can find a N_STSYM entry for any data
3677                           // symbols. If we do find a match, and the name
3678                           // matches, then we can merge the two into just the
3679                           // Static symbol to avoid duplicate entries in the
3680                           // symbol table
3681                           auto range = N_STSYM_addr_to_sym_idx.equal_range(
3682                               nlist.n_value);
3683                           if (range.first != range.second) {
3684                             bool found_it = false;
3685                             for (auto pos = range.first; pos != range.second;
3686                                  ++pos) {
3687                               if (sym[sym_idx].GetMangled().GetName(
3688                                       Mangled::ePreferMangled) ==
3689                                   sym[pos->second].GetMangled().GetName(
3690                                       Mangled::ePreferMangled)) {
3691                                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
3692                                 // We just need the flags from the linker
3693                                 // symbol, so put these flags
3694                                 // into the N_STSYM flags to avoid duplicate
3695                                 // symbols in the symbol table
3696                                 sym[pos->second].SetExternal(
3697                                     sym[sym_idx].IsExternal());
3698                                 sym[pos->second].SetFlags(nlist.n_type << 16 |
3699                                                           nlist.n_desc);
3700                                 sym[sym_idx].Clear();
3701                                 found_it = true;
3702                                 break;
3703                               }
3704                             }
3705                             if (found_it)
3706                               continue;
3707                           } else {
3708                             const char *gsym_name =
3709                                 sym[sym_idx]
3710                                     .GetMangled()
3711                                     .GetName(Mangled::ePreferMangled)
3712                                     .GetCString();
3713                             if (gsym_name) {
3714                               // Combine N_GSYM stab entries with the non
3715                               // stab symbol
3716                               ConstNameToSymbolIndexMap::const_iterator pos =
3717                                   N_GSYM_name_to_sym_idx.find(gsym_name);
3718                               if (pos != N_GSYM_name_to_sym_idx.end()) {
3719                                 const uint32_t GSYM_sym_idx = pos->second;
3720                                 m_nlist_idx_to_sym_idx[nlist_idx] =
3721                                     GSYM_sym_idx;
3722                                 // Copy the address, because often the N_GSYM
3723                                 // address has an invalid address of zero
3724                                 // when the global is a common symbol
3725                                 sym[GSYM_sym_idx].GetAddressRef().SetSection(
3726                                     symbol_section);
3727                                 sym[GSYM_sym_idx].GetAddressRef().SetOffset(
3728                                     symbol_value);
3729                                 add_symbol_addr(sym[GSYM_sym_idx]
3730                                                     .GetAddress()
3731                                                     .GetFileAddress());
3732                                 // We just need the flags from the linker
3733                                 // symbol, so put these flags
3734                                 // into the N_GSYM flags to avoid duplicate
3735                                 // symbols in the symbol table
3736                                 sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 |
3737                                                            nlist.n_desc);
3738                                 sym[sym_idx].Clear();
3739                                 continue;
3740                               }
3741                             }
3742                           }
3743                         }
3744                       }
3745 
3746                       sym[sym_idx].SetID(nlist_idx);
3747                       sym[sym_idx].SetType(type);
3748                       if (set_value) {
3749                         sym[sym_idx].GetAddressRef().SetSection(symbol_section);
3750                         sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
3751                         add_symbol_addr(
3752                             sym[sym_idx].GetAddress().GetFileAddress());
3753                       }
3754                       sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
3755 
3756                       if (symbol_byte_size > 0)
3757                         sym[sym_idx].SetByteSize(symbol_byte_size);
3758 
3759                       if (demangled_is_synthesized)
3760                         sym[sym_idx].SetDemangledNameIsSynthesized(true);
3761                       ++sym_idx;
3762                     } else {
3763                       sym[sym_idx].Clear();
3764                     }
3765                   }
3766                   /////////////////////////////
3767                 }
3768                 break; // No more entries to consider
3769               }
3770             }
3771 
3772             for (const auto &pos : reexport_shlib_needs_fixup) {
3773               const auto undef_pos = undefined_name_to_desc.find(pos.second);
3774               if (undef_pos != undefined_name_to_desc.end()) {
3775                 const uint8_t dylib_ordinal =
3776                     llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
3777                 if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize())
3778                   sym[pos.first].SetReExportedSymbolSharedLibrary(
3779                       dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
3780               }
3781             }
3782           }
3783         }
3784       }
3785     }
3786   }
3787 
3788   // Must reset this in case it was mutated above!
3789   nlist_data_offset = 0;
3790 #endif
3791 
3792   if (nlist_data.GetByteSize() > 0) {
3793 
3794     // If the sym array was not created while parsing the DSC unmapped
3795     // symbols, create it now.
3796     if (sym == nullptr) {
3797       sym =
3798           symtab->Resize(symtab_load_command.nsyms + m_dysymtab.nindirectsyms);
3799       num_syms = symtab->GetNumSymbols();
3800     }
3801 
3802     if (unmapped_local_symbols_found) {
3803       assert(m_dysymtab.ilocalsym == 0);
3804       nlist_data_offset += (m_dysymtab.nlocalsym * nlist_byte_size);
3805       nlist_idx = m_dysymtab.nlocalsym;
3806     } else {
3807       nlist_idx = 0;
3808     }
3809 
3810     typedef llvm::DenseMap<ConstString, uint16_t> UndefinedNameToDescMap;
3811     typedef llvm::DenseMap<uint32_t, ConstString> SymbolIndexToName;
3812     UndefinedNameToDescMap undefined_name_to_desc;
3813     SymbolIndexToName reexport_shlib_needs_fixup;
3814 
3815     // Symtab parsing is a huge mess. Everything is entangled and the code
3816     // requires access to a ridiculous amount of variables. LLDB depends
3817     // heavily on the proper merging of symbols and to get that right we need
3818     // to make sure we have parsed all the debug symbols first. Therefore we
3819     // invoke the lambda twice, once to parse only the debug symbols and then
3820     // once more to parse the remaining symbols.
3821     auto ParseSymbolLambda = [&](struct nlist_64 &nlist, uint32_t nlist_idx,
3822                                  bool debug_only) {
3823       const bool is_debug = ((nlist.n_type & N_STAB) != 0);
3824       if (is_debug != debug_only)
3825         return true;
3826 
3827       const char *symbol_name_non_abi_mangled = nullptr;
3828       const char *symbol_name = nullptr;
3829 
3830       if (have_strtab_data) {
3831         symbol_name = strtab_data.PeekCStr(nlist.n_strx);
3832 
3833         if (symbol_name == nullptr) {
3834           // No symbol should be NULL, even the symbols with no string values
3835           // should have an offset zero which points to an empty C-string
3836           Host::SystemLog(Host::eSystemLogError,
3837                           "error: symbol[%u] has invalid string table offset "
3838                           "0x%x in %s, ignoring symbol\n",
3839                           nlist_idx, nlist.n_strx,
3840                           module_sp->GetFileSpec().GetPath().c_str());
3841           return true;
3842         }
3843         if (symbol_name[0] == '\0')
3844           symbol_name = nullptr;
3845       } else {
3846         const addr_t str_addr = strtab_addr + nlist.n_strx;
3847         Status str_error;
3848         if (process->ReadCStringFromMemory(str_addr, memory_symbol_name,
3849                                            str_error))
3850           symbol_name = memory_symbol_name.c_str();
3851       }
3852 
3853       SymbolType type = eSymbolTypeInvalid;
3854       SectionSP symbol_section;
3855       lldb::addr_t symbol_byte_size = 0;
3856       bool add_nlist = true;
3857       bool is_gsym = false;
3858       bool demangled_is_synthesized = false;
3859       bool set_value = true;
3860 
3861       assert(sym_idx < num_syms);
3862       sym[sym_idx].SetDebug(is_debug);
3863 
3864       if (is_debug) {
3865         switch (nlist.n_type) {
3866         case N_GSYM:
3867           // global symbol: name,,NO_SECT,type,0
3868           // Sometimes the N_GSYM value contains the address.
3869 
3870           // FIXME: In the .o files, we have a GSYM and a debug symbol for all
3871           // the ObjC data.  They
3872           // have the same address, but we want to ensure that we always find
3873           // only the real symbol, 'cause we don't currently correctly
3874           // attribute the GSYM one to the ObjCClass/Ivar/MetaClass symbol
3875           // type.  This is a temporary hack to make sure the ObjectiveC
3876           // symbols get treated correctly.  To do this right, we should
3877           // coalesce all the GSYM & global symbols that have the same
3878           // address.
3879           is_gsym = true;
3880           sym[sym_idx].SetExternal(true);
3881 
3882           if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O') {
3883             llvm::StringRef symbol_name_ref(symbol_name);
3884             if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) {
3885               symbol_name_non_abi_mangled = symbol_name + 1;
3886               symbol_name = symbol_name + g_objc_v2_prefix_class.size();
3887               type = eSymbolTypeObjCClass;
3888               demangled_is_synthesized = true;
3889 
3890             } else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) {
3891               symbol_name_non_abi_mangled = symbol_name + 1;
3892               symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size();
3893               type = eSymbolTypeObjCMetaClass;
3894               demangled_is_synthesized = true;
3895             } else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) {
3896               symbol_name_non_abi_mangled = symbol_name + 1;
3897               symbol_name = symbol_name + g_objc_v2_prefix_ivar.size();
3898               type = eSymbolTypeObjCIVar;
3899               demangled_is_synthesized = true;
3900             }
3901           } else {
3902             if (nlist.n_value != 0)
3903               symbol_section =
3904                   section_info.GetSection(nlist.n_sect, nlist.n_value);
3905             type = eSymbolTypeData;
3906           }
3907           break;
3908 
3909         case N_FNAME:
3910           // procedure name (f77 kludge): name,,NO_SECT,0,0
3911           type = eSymbolTypeCompiler;
3912           break;
3913 
3914         case N_FUN:
3915           // procedure: name,,n_sect,linenumber,address
3916           if (symbol_name) {
3917             type = eSymbolTypeCode;
3918             symbol_section =
3919                 section_info.GetSection(nlist.n_sect, nlist.n_value);
3920 
3921             N_FUN_addr_to_sym_idx.insert(
3922                 std::make_pair(nlist.n_value, sym_idx));
3923             // We use the current number of symbols in the symbol table in
3924             // lieu of using nlist_idx in case we ever start trimming entries
3925             // out
3926             N_FUN_indexes.push_back(sym_idx);
3927           } else {
3928             type = eSymbolTypeCompiler;
3929 
3930             if (!N_FUN_indexes.empty()) {
3931               // Copy the size of the function into the original STAB entry
3932               // so we don't have to hunt for it later
3933               symtab->SymbolAtIndex(N_FUN_indexes.back())
3934                   ->SetByteSize(nlist.n_value);
3935               N_FUN_indexes.pop_back();
3936               // We don't really need the end function STAB as it contains
3937               // the size which we already placed with the original symbol,
3938               // so don't add it if we want a minimal symbol table
3939               add_nlist = false;
3940             }
3941           }
3942           break;
3943 
3944         case N_STSYM:
3945           // static symbol: name,,n_sect,type,address
3946           N_STSYM_addr_to_sym_idx.insert(
3947               std::make_pair(nlist.n_value, sym_idx));
3948           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3949           if (symbol_name && symbol_name[0]) {
3950             type = ObjectFile::GetSymbolTypeFromName(symbol_name + 1,
3951                                                      eSymbolTypeData);
3952           }
3953           break;
3954 
3955         case N_LCSYM:
3956           // .lcomm symbol: name,,n_sect,type,address
3957           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3958           type = eSymbolTypeCommonBlock;
3959           break;
3960 
3961         case N_BNSYM:
3962           // We use the current number of symbols in the symbol table in lieu
3963           // of using nlist_idx in case we ever start trimming entries out
3964           // Skip these if we want minimal symbol tables
3965           add_nlist = false;
3966           break;
3967 
3968         case N_ENSYM:
3969           // Set the size of the N_BNSYM to the terminating index of this
3970           // N_ENSYM so that we can always skip the entire symbol if we need
3971           // to navigate more quickly at the source level when parsing STABS
3972           // Skip these if we want minimal symbol tables
3973           add_nlist = false;
3974           break;
3975 
3976         case N_OPT:
3977           // emitted with gcc2_compiled and in gcc source
3978           type = eSymbolTypeCompiler;
3979           break;
3980 
3981         case N_RSYM:
3982           // register sym: name,,NO_SECT,type,register
3983           type = eSymbolTypeVariable;
3984           break;
3985 
3986         case N_SLINE:
3987           // src line: 0,,n_sect,linenumber,address
3988           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3989           type = eSymbolTypeLineEntry;
3990           break;
3991 
3992         case N_SSYM:
3993           // structure elt: name,,NO_SECT,type,struct_offset
3994           type = eSymbolTypeVariableType;
3995           break;
3996 
3997         case N_SO:
3998           // source file name
3999           type = eSymbolTypeSourceFile;
4000           if (symbol_name == nullptr) {
4001             add_nlist = false;
4002             if (N_SO_index != UINT32_MAX) {
4003               // Set the size of the N_SO to the terminating index of this
4004               // N_SO so that we can always skip the entire N_SO if we need
4005               // to navigate more quickly at the source level when parsing
4006               // STABS
4007               symbol_ptr = symtab->SymbolAtIndex(N_SO_index);
4008               symbol_ptr->SetByteSize(sym_idx);
4009               symbol_ptr->SetSizeIsSibling(true);
4010             }
4011             N_NSYM_indexes.clear();
4012             N_INCL_indexes.clear();
4013             N_BRAC_indexes.clear();
4014             N_COMM_indexes.clear();
4015             N_FUN_indexes.clear();
4016             N_SO_index = UINT32_MAX;
4017           } else {
4018             // We use the current number of symbols in the symbol table in
4019             // lieu of using nlist_idx in case we ever start trimming entries
4020             // out
4021             const bool N_SO_has_full_path = symbol_name[0] == '/';
4022             if (N_SO_has_full_path) {
4023               if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) {
4024                 // We have two consecutive N_SO entries where the first
4025                 // contains a directory and the second contains a full path.
4026                 sym[sym_idx - 1].GetMangled().SetValue(ConstString(symbol_name),
4027                                                        false);
4028                 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
4029                 add_nlist = false;
4030               } else {
4031                 // This is the first entry in a N_SO that contains a
4032                 // directory or a full path to the source file
4033                 N_SO_index = sym_idx;
4034               }
4035             } else if ((N_SO_index == sym_idx - 1) &&
4036                        ((sym_idx - 1) < num_syms)) {
4037               // This is usually the second N_SO entry that contains just the
4038               // filename, so here we combine it with the first one if we are
4039               // minimizing the symbol table
4040               const char *so_path =
4041                   sym[sym_idx - 1].GetMangled().GetDemangledName().AsCString();
4042               if (so_path && so_path[0]) {
4043                 std::string full_so_path(so_path);
4044                 const size_t double_slash_pos = full_so_path.find("//");
4045                 if (double_slash_pos != std::string::npos) {
4046                   // The linker has been generating bad N_SO entries with
4047                   // doubled up paths in the format "%s%s" where the first
4048                   // string in the DW_AT_comp_dir, and the second is the
4049                   // directory for the source file so you end up with a path
4050                   // that looks like "/tmp/src//tmp/src/"
4051                   FileSpec so_dir(so_path);
4052                   if (!FileSystem::Instance().Exists(so_dir)) {
4053                     so_dir.SetFile(&full_so_path[double_slash_pos + 1],
4054                                    FileSpec::Style::native);
4055                     if (FileSystem::Instance().Exists(so_dir)) {
4056                       // Trim off the incorrect path
4057                       full_so_path.erase(0, double_slash_pos + 1);
4058                     }
4059                   }
4060                 }
4061                 if (*full_so_path.rbegin() != '/')
4062                   full_so_path += '/';
4063                 full_so_path += symbol_name;
4064                 sym[sym_idx - 1].GetMangled().SetValue(
4065                     ConstString(full_so_path.c_str()), false);
4066                 add_nlist = false;
4067                 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
4068               }
4069             } else {
4070               // This could be a relative path to a N_SO
4071               N_SO_index = sym_idx;
4072             }
4073           }
4074           break;
4075 
4076         case N_OSO:
4077           // object file name: name,,0,0,st_mtime
4078           type = eSymbolTypeObjectFile;
4079           break;
4080 
4081         case N_LSYM:
4082           // local sym: name,,NO_SECT,type,offset
4083           type = eSymbolTypeLocal;
4084           break;
4085 
4086         // INCL scopes
4087         case N_BINCL:
4088           // include file beginning: name,,NO_SECT,0,sum We use the current
4089           // number of symbols in the symbol table in lieu of using nlist_idx
4090           // in case we ever start trimming entries out
4091           N_INCL_indexes.push_back(sym_idx);
4092           type = eSymbolTypeScopeBegin;
4093           break;
4094 
4095         case N_EINCL:
4096           // include file end: name,,NO_SECT,0,0
4097           // Set the size of the N_BINCL to the terminating index of this
4098           // N_EINCL so that we can always skip the entire symbol if we need
4099           // to navigate more quickly at the source level when parsing STABS
4100           if (!N_INCL_indexes.empty()) {
4101             symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back());
4102             symbol_ptr->SetByteSize(sym_idx + 1);
4103             symbol_ptr->SetSizeIsSibling(true);
4104             N_INCL_indexes.pop_back();
4105           }
4106           type = eSymbolTypeScopeEnd;
4107           break;
4108 
4109         case N_SOL:
4110           // #included file name: name,,n_sect,0,address
4111           type = eSymbolTypeHeaderFile;
4112 
4113           // We currently don't use the header files on darwin
4114           add_nlist = false;
4115           break;
4116 
4117         case N_PARAMS:
4118           // compiler parameters: name,,NO_SECT,0,0
4119           type = eSymbolTypeCompiler;
4120           break;
4121 
4122         case N_VERSION:
4123           // compiler version: name,,NO_SECT,0,0
4124           type = eSymbolTypeCompiler;
4125           break;
4126 
4127         case N_OLEVEL:
4128           // compiler -O level: name,,NO_SECT,0,0
4129           type = eSymbolTypeCompiler;
4130           break;
4131 
4132         case N_PSYM:
4133           // parameter: name,,NO_SECT,type,offset
4134           type = eSymbolTypeVariable;
4135           break;
4136 
4137         case N_ENTRY:
4138           // alternate entry: name,,n_sect,linenumber,address
4139           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4140           type = eSymbolTypeLineEntry;
4141           break;
4142 
4143         // Left and Right Braces
4144         case N_LBRAC:
4145           // left bracket: 0,,NO_SECT,nesting level,address We use the
4146           // current number of symbols in the symbol table in lieu of using
4147           // nlist_idx in case we ever start trimming entries out
4148           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4149           N_BRAC_indexes.push_back(sym_idx);
4150           type = eSymbolTypeScopeBegin;
4151           break;
4152 
4153         case N_RBRAC:
4154           // right bracket: 0,,NO_SECT,nesting level,address Set the size of
4155           // the N_LBRAC to the terminating index of this N_RBRAC so that we
4156           // can always skip the entire symbol if we need to navigate more
4157           // quickly at the source level when parsing STABS
4158           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4159           if (!N_BRAC_indexes.empty()) {
4160             symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back());
4161             symbol_ptr->SetByteSize(sym_idx + 1);
4162             symbol_ptr->SetSizeIsSibling(true);
4163             N_BRAC_indexes.pop_back();
4164           }
4165           type = eSymbolTypeScopeEnd;
4166           break;
4167 
4168         case N_EXCL:
4169           // deleted include file: name,,NO_SECT,0,sum
4170           type = eSymbolTypeHeaderFile;
4171           break;
4172 
4173         // COMM scopes
4174         case N_BCOMM:
4175           // begin common: name,,NO_SECT,0,0
4176           // We use the current number of symbols in the symbol table in lieu
4177           // of using nlist_idx in case we ever start trimming entries out
4178           type = eSymbolTypeScopeBegin;
4179           N_COMM_indexes.push_back(sym_idx);
4180           break;
4181 
4182         case N_ECOML:
4183           // end common (local name): 0,,n_sect,0,address
4184           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4185           LLVM_FALLTHROUGH;
4186 
4187         case N_ECOMM:
4188           // end common: name,,n_sect,0,0
4189           // Set the size of the N_BCOMM to the terminating index of this
4190           // N_ECOMM/N_ECOML so that we can always skip the entire symbol if
4191           // we need to navigate more quickly at the source level when
4192           // parsing STABS
4193           if (!N_COMM_indexes.empty()) {
4194             symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back());
4195             symbol_ptr->SetByteSize(sym_idx + 1);
4196             symbol_ptr->SetSizeIsSibling(true);
4197             N_COMM_indexes.pop_back();
4198           }
4199           type = eSymbolTypeScopeEnd;
4200           break;
4201 
4202         case N_LENG:
4203           // second stab entry with length information
4204           type = eSymbolTypeAdditional;
4205           break;
4206 
4207         default:
4208           break;
4209         }
4210       } else {
4211         uint8_t n_type = N_TYPE & nlist.n_type;
4212         sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
4213 
4214         switch (n_type) {
4215         case N_INDR: {
4216           const char *reexport_name_cstr = strtab_data.PeekCStr(nlist.n_value);
4217           if (reexport_name_cstr && reexport_name_cstr[0]) {
4218             type = eSymbolTypeReExported;
4219             ConstString reexport_name(reexport_name_cstr +
4220                                       ((reexport_name_cstr[0] == '_') ? 1 : 0));
4221             sym[sym_idx].SetReExportedSymbolName(reexport_name);
4222             set_value = false;
4223             reexport_shlib_needs_fixup[sym_idx] = reexport_name;
4224             indirect_symbol_names.insert(
4225                 ConstString(symbol_name + ((symbol_name[0] == '_') ? 1 : 0)));
4226           } else
4227             type = eSymbolTypeUndefined;
4228         } break;
4229 
4230         case N_UNDF:
4231           if (symbol_name && symbol_name[0]) {
4232             ConstString undefined_name(symbol_name +
4233                                        ((symbol_name[0] == '_') ? 1 : 0));
4234             undefined_name_to_desc[undefined_name] = nlist.n_desc;
4235           }
4236           LLVM_FALLTHROUGH;
4237 
4238         case N_PBUD:
4239           type = eSymbolTypeUndefined;
4240           break;
4241 
4242         case N_ABS:
4243           type = eSymbolTypeAbsolute;
4244           break;
4245 
4246         case N_SECT: {
4247           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4248 
4249           if (!symbol_section) {
4250             // TODO: warn about this?
4251             add_nlist = false;
4252             break;
4253           }
4254 
4255           if (TEXT_eh_frame_sectID == nlist.n_sect) {
4256             type = eSymbolTypeException;
4257           } else {
4258             uint32_t section_type = symbol_section->Get() & SECTION_TYPE;
4259 
4260             switch (section_type) {
4261             case S_CSTRING_LITERALS:
4262               type = eSymbolTypeData;
4263               break; // section with only literal C strings
4264             case S_4BYTE_LITERALS:
4265               type = eSymbolTypeData;
4266               break; // section with only 4 byte literals
4267             case S_8BYTE_LITERALS:
4268               type = eSymbolTypeData;
4269               break; // section with only 8 byte literals
4270             case S_LITERAL_POINTERS:
4271               type = eSymbolTypeTrampoline;
4272               break; // section with only pointers to literals
4273             case S_NON_LAZY_SYMBOL_POINTERS:
4274               type = eSymbolTypeTrampoline;
4275               break; // section with only non-lazy symbol pointers
4276             case S_LAZY_SYMBOL_POINTERS:
4277               type = eSymbolTypeTrampoline;
4278               break; // section with only lazy symbol pointers
4279             case S_SYMBOL_STUBS:
4280               type = eSymbolTypeTrampoline;
4281               break; // section with only symbol stubs, byte size of stub in
4282                      // the reserved2 field
4283             case S_MOD_INIT_FUNC_POINTERS:
4284               type = eSymbolTypeCode;
4285               break; // section with only function pointers for initialization
4286             case S_MOD_TERM_FUNC_POINTERS:
4287               type = eSymbolTypeCode;
4288               break; // section with only function pointers for termination
4289             case S_INTERPOSING:
4290               type = eSymbolTypeTrampoline;
4291               break; // section with only pairs of function pointers for
4292                      // interposing
4293             case S_16BYTE_LITERALS:
4294               type = eSymbolTypeData;
4295               break; // section with only 16 byte literals
4296             case S_DTRACE_DOF:
4297               type = eSymbolTypeInstrumentation;
4298               break;
4299             case S_LAZY_DYLIB_SYMBOL_POINTERS:
4300               type = eSymbolTypeTrampoline;
4301               break;
4302             default:
4303               switch (symbol_section->GetType()) {
4304               case lldb::eSectionTypeCode:
4305                 type = eSymbolTypeCode;
4306                 break;
4307               case eSectionTypeData:
4308               case eSectionTypeDataCString:         // Inlined C string data
4309               case eSectionTypeDataCStringPointers: // Pointers to C string
4310                                                     // data
4311               case eSectionTypeDataSymbolAddress:   // Address of a symbol in
4312                                                     // the symbol table
4313               case eSectionTypeData4:
4314               case eSectionTypeData8:
4315               case eSectionTypeData16:
4316                 type = eSymbolTypeData;
4317                 break;
4318               default:
4319                 break;
4320               }
4321               break;
4322             }
4323 
4324             if (type == eSymbolTypeInvalid) {
4325               const char *symbol_sect_name =
4326                   symbol_section->GetName().AsCString();
4327               if (symbol_section->IsDescendant(text_section_sp.get())) {
4328                 if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS |
4329                                             S_ATTR_SELF_MODIFYING_CODE |
4330                                             S_ATTR_SOME_INSTRUCTIONS))
4331                   type = eSymbolTypeData;
4332                 else
4333                   type = eSymbolTypeCode;
4334               } else if (symbol_section->IsDescendant(data_section_sp.get()) ||
4335                          symbol_section->IsDescendant(
4336                              data_dirty_section_sp.get()) ||
4337                          symbol_section->IsDescendant(
4338                              data_const_section_sp.get())) {
4339                 if (symbol_sect_name &&
4340                     ::strstr(symbol_sect_name, "__objc") == symbol_sect_name) {
4341                   type = eSymbolTypeRuntime;
4342 
4343                   if (symbol_name) {
4344                     llvm::StringRef symbol_name_ref(symbol_name);
4345                     if (symbol_name_ref.startswith("_OBJC_")) {
4346                       llvm::StringRef g_objc_v2_prefix_class(
4347                           "_OBJC_CLASS_$_");
4348                       llvm::StringRef g_objc_v2_prefix_metaclass(
4349                           "_OBJC_METACLASS_$_");
4350                       llvm::StringRef g_objc_v2_prefix_ivar(
4351                           "_OBJC_IVAR_$_");
4352                       if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) {
4353                         symbol_name_non_abi_mangled = symbol_name + 1;
4354                         symbol_name =
4355                             symbol_name + g_objc_v2_prefix_class.size();
4356                         type = eSymbolTypeObjCClass;
4357                         demangled_is_synthesized = true;
4358                       } else if (symbol_name_ref.startswith(
4359                                      g_objc_v2_prefix_metaclass)) {
4360                         symbol_name_non_abi_mangled = symbol_name + 1;
4361                         symbol_name =
4362                             symbol_name + g_objc_v2_prefix_metaclass.size();
4363                         type = eSymbolTypeObjCMetaClass;
4364                         demangled_is_synthesized = true;
4365                       } else if (symbol_name_ref.startswith(
4366                                      g_objc_v2_prefix_ivar)) {
4367                         symbol_name_non_abi_mangled = symbol_name + 1;
4368                         symbol_name =
4369                             symbol_name + g_objc_v2_prefix_ivar.size();
4370                         type = eSymbolTypeObjCIVar;
4371                         demangled_is_synthesized = true;
4372                       }
4373                     }
4374                   }
4375                 } else if (symbol_sect_name &&
4376                            ::strstr(symbol_sect_name, "__gcc_except_tab") ==
4377                                symbol_sect_name) {
4378                   type = eSymbolTypeException;
4379                 } else {
4380                   type = eSymbolTypeData;
4381                 }
4382               } else if (symbol_sect_name &&
4383                          ::strstr(symbol_sect_name, "__IMPORT") ==
4384                              symbol_sect_name) {
4385                 type = eSymbolTypeTrampoline;
4386               } else if (symbol_section->IsDescendant(objc_section_sp.get())) {
4387                 type = eSymbolTypeRuntime;
4388                 if (symbol_name && symbol_name[0] == '.') {
4389                   llvm::StringRef symbol_name_ref(symbol_name);
4390                   llvm::StringRef g_objc_v1_prefix_class(
4391                       ".objc_class_name_");
4392                   if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) {
4393                     symbol_name_non_abi_mangled = symbol_name;
4394                     symbol_name = symbol_name + g_objc_v1_prefix_class.size();
4395                     type = eSymbolTypeObjCClass;
4396                     demangled_is_synthesized = true;
4397                   }
4398                 }
4399               }
4400             }
4401           }
4402         } break;
4403         }
4404       }
4405 
4406       if (!add_nlist) {
4407         sym[sym_idx].Clear();
4408         return true;
4409       }
4410 
4411       uint64_t symbol_value = nlist.n_value;
4412 
4413       if (symbol_name_non_abi_mangled) {
4414         sym[sym_idx].GetMangled().SetMangledName(
4415             ConstString(symbol_name_non_abi_mangled));
4416         sym[sym_idx].GetMangled().SetDemangledName(ConstString(symbol_name));
4417       } else {
4418         bool symbol_name_is_mangled = false;
4419 
4420         if (symbol_name && symbol_name[0] == '_') {
4421           symbol_name_is_mangled = symbol_name[1] == '_';
4422           symbol_name++; // Skip the leading underscore
4423         }
4424 
4425         if (symbol_name) {
4426           ConstString const_symbol_name(symbol_name);
4427           sym[sym_idx].GetMangled().SetValue(const_symbol_name,
4428                                              symbol_name_is_mangled);
4429         }
4430       }
4431 
4432       if (is_gsym) {
4433         const char *gsym_name = sym[sym_idx]
4434                                     .GetMangled()
4435                                     .GetName(Mangled::ePreferMangled)
4436                                     .GetCString();
4437         if (gsym_name)
4438           N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
4439       }
4440 
4441       if (symbol_section) {
4442         const addr_t section_file_addr = symbol_section->GetFileAddress();
4443         if (symbol_byte_size == 0 && function_starts_count > 0) {
4444           addr_t symbol_lookup_file_addr = nlist.n_value;
4445           // Do an exact address match for non-ARM addresses, else get the
4446           // closest since the symbol might be a thumb symbol which has an
4447           // address with bit zero set.
4448           FunctionStarts::Entry *func_start_entry =
4449               function_starts.FindEntry(symbol_lookup_file_addr, !is_arm);
4450           if (is_arm && func_start_entry) {
4451             // Verify that the function start address is the symbol address
4452             // (ARM) or the symbol address + 1 (thumb).
4453             if (func_start_entry->addr != symbol_lookup_file_addr &&
4454                 func_start_entry->addr != (symbol_lookup_file_addr + 1)) {
4455               // Not the right entry, NULL it out...
4456               func_start_entry = nullptr;
4457             }
4458           }
4459           if (func_start_entry) {
4460             func_start_entry->data = true;
4461 
4462             addr_t symbol_file_addr = func_start_entry->addr;
4463             if (is_arm)
4464               symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4465 
4466             const FunctionStarts::Entry *next_func_start_entry =
4467                 function_starts.FindNextEntry(func_start_entry);
4468             const addr_t section_end_file_addr =
4469                 section_file_addr + symbol_section->GetByteSize();
4470             if (next_func_start_entry) {
4471               addr_t next_symbol_file_addr = next_func_start_entry->addr;
4472               // Be sure the clear the Thumb address bit when we calculate the
4473               // size from the current and next address
4474               if (is_arm)
4475                 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4476               symbol_byte_size = std::min<lldb::addr_t>(
4477                   next_symbol_file_addr - symbol_file_addr,
4478                   section_end_file_addr - symbol_file_addr);
4479             } else {
4480               symbol_byte_size = section_end_file_addr - symbol_file_addr;
4481             }
4482           }
4483         }
4484         symbol_value -= section_file_addr;
4485       }
4486 
4487       if (!is_debug) {
4488         if (type == eSymbolTypeCode) {
4489           // See if we can find a N_FUN entry for any code symbols. If we do
4490           // find a match, and the name matches, then we can merge the two into
4491           // just the function symbol to avoid duplicate entries in the symbol
4492           // table.
4493           std::pair<ValueToSymbolIndexMap::const_iterator,
4494                     ValueToSymbolIndexMap::const_iterator>
4495               range;
4496           range = N_FUN_addr_to_sym_idx.equal_range(nlist.n_value);
4497           if (range.first != range.second) {
4498             for (ValueToSymbolIndexMap::const_iterator pos = range.first;
4499                  pos != range.second; ++pos) {
4500               if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) ==
4501                   sym[pos->second].GetMangled().GetName(
4502                       Mangled::ePreferMangled)) {
4503                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
4504                 // We just need the flags from the linker symbol, so put these
4505                 // flags into the N_FUN flags to avoid duplicate symbols in the
4506                 // symbol table.
4507                 sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
4508                 sym[pos->second].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4509                 if (resolver_addresses.find(nlist.n_value) !=
4510                     resolver_addresses.end())
4511                   sym[pos->second].SetType(eSymbolTypeResolver);
4512                 sym[sym_idx].Clear();
4513                 return true;
4514               }
4515             }
4516           } else {
4517             if (resolver_addresses.find(nlist.n_value) !=
4518                 resolver_addresses.end())
4519               type = eSymbolTypeResolver;
4520           }
4521         } else if (type == eSymbolTypeData || type == eSymbolTypeObjCClass ||
4522                    type == eSymbolTypeObjCMetaClass ||
4523                    type == eSymbolTypeObjCIVar) {
4524           // See if we can find a N_STSYM entry for any data symbols. If we do
4525           // find a match, and the name matches, then we can merge the two into
4526           // just the Static symbol to avoid duplicate entries in the symbol
4527           // table.
4528           std::pair<ValueToSymbolIndexMap::const_iterator,
4529                     ValueToSymbolIndexMap::const_iterator>
4530               range;
4531           range = N_STSYM_addr_to_sym_idx.equal_range(nlist.n_value);
4532           if (range.first != range.second) {
4533             for (ValueToSymbolIndexMap::const_iterator pos = range.first;
4534                  pos != range.second; ++pos) {
4535               if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) ==
4536                   sym[pos->second].GetMangled().GetName(
4537                       Mangled::ePreferMangled)) {
4538                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
4539                 // We just need the flags from the linker symbol, so put these
4540                 // flags into the N_STSYM flags to avoid duplicate symbols in
4541                 // the symbol table.
4542                 sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
4543                 sym[pos->second].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4544                 sym[sym_idx].Clear();
4545                 return true;
4546               }
4547             }
4548           } else {
4549             // Combine N_GSYM stab entries with the non stab symbol.
4550             const char *gsym_name = sym[sym_idx]
4551                                         .GetMangled()
4552                                         .GetName(Mangled::ePreferMangled)
4553                                         .GetCString();
4554             if (gsym_name) {
4555               ConstNameToSymbolIndexMap::const_iterator pos =
4556                   N_GSYM_name_to_sym_idx.find(gsym_name);
4557               if (pos != N_GSYM_name_to_sym_idx.end()) {
4558                 const uint32_t GSYM_sym_idx = pos->second;
4559                 m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx;
4560                 // Copy the address, because often the N_GSYM address has an
4561                 // invalid address of zero when the global is a common symbol.
4562                 sym[GSYM_sym_idx].GetAddressRef().SetSection(symbol_section);
4563                 sym[GSYM_sym_idx].GetAddressRef().SetOffset(symbol_value);
4564                 add_symbol_addr(
4565                     sym[GSYM_sym_idx].GetAddress().GetFileAddress());
4566                 // We just need the flags from the linker symbol, so put these
4567                 // flags into the N_GSYM flags to avoid duplicate symbols in
4568                 // the symbol table.
4569                 sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4570                 sym[sym_idx].Clear();
4571                 return true;
4572               }
4573             }
4574           }
4575         }
4576       }
4577 
4578       sym[sym_idx].SetID(nlist_idx);
4579       sym[sym_idx].SetType(type);
4580       if (set_value) {
4581         sym[sym_idx].GetAddressRef().SetSection(symbol_section);
4582         sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
4583         if (symbol_section)
4584           add_symbol_addr(sym[sym_idx].GetAddress().GetFileAddress());
4585       }
4586       sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4587       if (nlist.n_desc & N_WEAK_REF)
4588         sym[sym_idx].SetIsWeak(true);
4589 
4590       if (symbol_byte_size > 0)
4591         sym[sym_idx].SetByteSize(symbol_byte_size);
4592 
4593       if (demangled_is_synthesized)
4594         sym[sym_idx].SetDemangledNameIsSynthesized(true);
4595 
4596       ++sym_idx;
4597       return true;
4598     };
4599 
4600     // First parse all the nlists but don't process them yet. See the next
4601     // comment for an explanation why.
4602     std::vector<struct nlist_64> nlists;
4603     nlists.reserve(symtab_load_command.nsyms);
4604     for (; nlist_idx < symtab_load_command.nsyms; ++nlist_idx) {
4605       if (auto nlist =
4606               ParseNList(nlist_data, nlist_data_offset, nlist_byte_size))
4607         nlists.push_back(*nlist);
4608       else
4609         break;
4610     }
4611 
4612     // Now parse all the debug symbols. This is needed to merge non-debug
4613     // symbols in the next step. Non-debug symbols are always coalesced into
4614     // the debug symbol. Doing this in one step would mean that some symbols
4615     // won't be merged.
4616     nlist_idx = 0;
4617     for (auto &nlist : nlists) {
4618       if (!ParseSymbolLambda(nlist, nlist_idx++, DebugSymbols))
4619         break;
4620     }
4621 
4622     // Finally parse all the non debug symbols.
4623     nlist_idx = 0;
4624     for (auto &nlist : nlists) {
4625       if (!ParseSymbolLambda(nlist, nlist_idx++, NonDebugSymbols))
4626         break;
4627     }
4628 
4629     for (const auto &pos : reexport_shlib_needs_fixup) {
4630       const auto undef_pos = undefined_name_to_desc.find(pos.second);
4631       if (undef_pos != undefined_name_to_desc.end()) {
4632         const uint8_t dylib_ordinal =
4633             llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
4634         if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize())
4635           sym[pos.first].SetReExportedSymbolSharedLibrary(
4636               dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
4637       }
4638     }
4639   }
4640 
4641   // Count how many trie symbols we'll add to the symbol table
4642   int trie_symbol_table_augment_count = 0;
4643   for (auto &e : external_sym_trie_entries) {
4644     if (symbols_added.find(e.entry.address) == symbols_added.end())
4645       trie_symbol_table_augment_count++;
4646   }
4647 
4648   if (num_syms < sym_idx + trie_symbol_table_augment_count) {
4649     num_syms = sym_idx + trie_symbol_table_augment_count;
4650     sym = symtab->Resize(num_syms);
4651   }
4652   uint32_t synthetic_sym_id = symtab_load_command.nsyms;
4653 
4654   // Add symbols from the trie to the symbol table.
4655   for (auto &e : external_sym_trie_entries) {
4656     if (symbols_added.find(e.entry.address) != symbols_added.end())
4657       continue;
4658 
4659     // Find the section that this trie address is in, use that to annotate
4660     // symbol type as we add the trie address and name to the symbol table.
4661     Address symbol_addr;
4662     if (module_sp->ResolveFileAddress(e.entry.address, symbol_addr)) {
4663       SectionSP symbol_section(symbol_addr.GetSection());
4664       const char *symbol_name = e.entry.name.GetCString();
4665       bool demangled_is_synthesized = false;
4666       SymbolType type =
4667           GetSymbolType(symbol_name, demangled_is_synthesized, text_section_sp,
4668                         data_section_sp, data_dirty_section_sp,
4669                         data_const_section_sp, symbol_section);
4670 
4671       sym[sym_idx].SetType(type);
4672       if (symbol_section) {
4673         sym[sym_idx].SetID(synthetic_sym_id++);
4674         sym[sym_idx].GetMangled().SetMangledName(ConstString(symbol_name));
4675         if (demangled_is_synthesized)
4676           sym[sym_idx].SetDemangledNameIsSynthesized(true);
4677         sym[sym_idx].SetIsSynthetic(true);
4678         sym[sym_idx].SetExternal(true);
4679         sym[sym_idx].GetAddressRef() = symbol_addr;
4680         add_symbol_addr(symbol_addr.GetFileAddress());
4681         if (e.entry.flags & TRIE_SYMBOL_IS_THUMB)
4682           sym[sym_idx].SetFlags(MACHO_NLIST_ARM_SYMBOL_IS_THUMB);
4683         ++sym_idx;
4684       }
4685     }
4686   }
4687 
4688   if (function_starts_count > 0) {
4689     uint32_t num_synthetic_function_symbols = 0;
4690     for (i = 0; i < function_starts_count; ++i) {
4691       if (symbols_added.find(function_starts.GetEntryRef(i).addr) ==
4692           symbols_added.end())
4693         ++num_synthetic_function_symbols;
4694     }
4695 
4696     if (num_synthetic_function_symbols > 0) {
4697       if (num_syms < sym_idx + num_synthetic_function_symbols) {
4698         num_syms = sym_idx + num_synthetic_function_symbols;
4699         sym = symtab->Resize(num_syms);
4700       }
4701       for (i = 0; i < function_starts_count; ++i) {
4702         const FunctionStarts::Entry *func_start_entry =
4703             function_starts.GetEntryAtIndex(i);
4704         if (symbols_added.find(func_start_entry->addr) == symbols_added.end()) {
4705           addr_t symbol_file_addr = func_start_entry->addr;
4706           uint32_t symbol_flags = 0;
4707           if (func_start_entry->data)
4708             symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB;
4709           Address symbol_addr;
4710           if (module_sp->ResolveFileAddress(symbol_file_addr, symbol_addr)) {
4711             SectionSP symbol_section(symbol_addr.GetSection());
4712             uint32_t symbol_byte_size = 0;
4713             if (symbol_section) {
4714               const addr_t section_file_addr = symbol_section->GetFileAddress();
4715               const FunctionStarts::Entry *next_func_start_entry =
4716                   function_starts.FindNextEntry(func_start_entry);
4717               const addr_t section_end_file_addr =
4718                   section_file_addr + symbol_section->GetByteSize();
4719               if (next_func_start_entry) {
4720                 addr_t next_symbol_file_addr = next_func_start_entry->addr;
4721                 if (is_arm)
4722                   next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4723                 symbol_byte_size = std::min<lldb::addr_t>(
4724                     next_symbol_file_addr - symbol_file_addr,
4725                     section_end_file_addr - symbol_file_addr);
4726               } else {
4727                 symbol_byte_size = section_end_file_addr - symbol_file_addr;
4728               }
4729               sym[sym_idx].SetID(synthetic_sym_id++);
4730               // Don't set the name for any synthetic symbols, the Symbol
4731               // object will generate one if needed when the name is accessed
4732               // via accessors.
4733               sym[sym_idx].GetMangled().SetDemangledName(ConstString());
4734               sym[sym_idx].SetType(eSymbolTypeCode);
4735               sym[sym_idx].SetIsSynthetic(true);
4736               sym[sym_idx].GetAddressRef() = symbol_addr;
4737               add_symbol_addr(symbol_addr.GetFileAddress());
4738               if (symbol_flags)
4739                 sym[sym_idx].SetFlags(symbol_flags);
4740               if (symbol_byte_size)
4741                 sym[sym_idx].SetByteSize(symbol_byte_size);
4742               ++sym_idx;
4743             }
4744           }
4745         }
4746       }
4747     }
4748   }
4749 
4750   // Trim our symbols down to just what we ended up with after removing any
4751   // symbols.
4752   if (sym_idx < num_syms) {
4753     num_syms = sym_idx;
4754     sym = symtab->Resize(num_syms);
4755   }
4756 
4757   // Now synthesize indirect symbols
4758   if (m_dysymtab.nindirectsyms != 0) {
4759     if (indirect_symbol_index_data.GetByteSize()) {
4760       NListIndexToSymbolIndexMap::const_iterator end_index_pos =
4761           m_nlist_idx_to_sym_idx.end();
4762 
4763       for (uint32_t sect_idx = 1; sect_idx < m_mach_sections.size();
4764            ++sect_idx) {
4765         if ((m_mach_sections[sect_idx].flags & SECTION_TYPE) ==
4766             S_SYMBOL_STUBS) {
4767           uint32_t symbol_stub_byte_size = m_mach_sections[sect_idx].reserved2;
4768           if (symbol_stub_byte_size == 0)
4769             continue;
4770 
4771           const uint32_t num_symbol_stubs =
4772               m_mach_sections[sect_idx].size / symbol_stub_byte_size;
4773 
4774           if (num_symbol_stubs == 0)
4775             continue;
4776 
4777           const uint32_t symbol_stub_index_offset =
4778               m_mach_sections[sect_idx].reserved1;
4779           for (uint32_t stub_idx = 0; stub_idx < num_symbol_stubs; ++stub_idx) {
4780             const uint32_t symbol_stub_index =
4781                 symbol_stub_index_offset + stub_idx;
4782             const lldb::addr_t symbol_stub_addr =
4783                 m_mach_sections[sect_idx].addr +
4784                 (stub_idx * symbol_stub_byte_size);
4785             lldb::offset_t symbol_stub_offset = symbol_stub_index * 4;
4786             if (indirect_symbol_index_data.ValidOffsetForDataOfSize(
4787                     symbol_stub_offset, 4)) {
4788               const uint32_t stub_sym_id =
4789                   indirect_symbol_index_data.GetU32(&symbol_stub_offset);
4790               if (stub_sym_id & (INDIRECT_SYMBOL_ABS | INDIRECT_SYMBOL_LOCAL))
4791                 continue;
4792 
4793               NListIndexToSymbolIndexMap::const_iterator index_pos =
4794                   m_nlist_idx_to_sym_idx.find(stub_sym_id);
4795               Symbol *stub_symbol = nullptr;
4796               if (index_pos != end_index_pos) {
4797                 // We have a remapping from the original nlist index to a
4798                 // current symbol index, so just look this up by index
4799                 stub_symbol = symtab->SymbolAtIndex(index_pos->second);
4800               } else {
4801                 // We need to lookup a symbol using the original nlist symbol
4802                 // index since this index is coming from the S_SYMBOL_STUBS
4803                 stub_symbol = symtab->FindSymbolByID(stub_sym_id);
4804               }
4805 
4806               if (stub_symbol) {
4807                 Address so_addr(symbol_stub_addr, section_list);
4808 
4809                 if (stub_symbol->GetType() == eSymbolTypeUndefined) {
4810                   // Change the external symbol into a trampoline that makes
4811                   // sense These symbols were N_UNDF N_EXT, and are useless
4812                   // to us, so we can re-use them so we don't have to make up
4813                   // a synthetic symbol for no good reason.
4814                   if (resolver_addresses.find(symbol_stub_addr) ==
4815                       resolver_addresses.end())
4816                     stub_symbol->SetType(eSymbolTypeTrampoline);
4817                   else
4818                     stub_symbol->SetType(eSymbolTypeResolver);
4819                   stub_symbol->SetExternal(false);
4820                   stub_symbol->GetAddressRef() = so_addr;
4821                   stub_symbol->SetByteSize(symbol_stub_byte_size);
4822                 } else {
4823                   // Make a synthetic symbol to describe the trampoline stub
4824                   Mangled stub_symbol_mangled_name(stub_symbol->GetMangled());
4825                   if (sym_idx >= num_syms) {
4826                     sym = symtab->Resize(++num_syms);
4827                     stub_symbol = nullptr; // this pointer no longer valid
4828                   }
4829                   sym[sym_idx].SetID(synthetic_sym_id++);
4830                   sym[sym_idx].GetMangled() = stub_symbol_mangled_name;
4831                   if (resolver_addresses.find(symbol_stub_addr) ==
4832                       resolver_addresses.end())
4833                     sym[sym_idx].SetType(eSymbolTypeTrampoline);
4834                   else
4835                     sym[sym_idx].SetType(eSymbolTypeResolver);
4836                   sym[sym_idx].SetIsSynthetic(true);
4837                   sym[sym_idx].GetAddressRef() = so_addr;
4838                   add_symbol_addr(so_addr.GetFileAddress());
4839                   sym[sym_idx].SetByteSize(symbol_stub_byte_size);
4840                   ++sym_idx;
4841                 }
4842               } else {
4843                 if (log)
4844                   log->Warning("symbol stub referencing symbol table symbol "
4845                                "%u that isn't in our minimal symbol table, "
4846                                "fix this!!!",
4847                                stub_sym_id);
4848               }
4849             }
4850           }
4851         }
4852       }
4853     }
4854   }
4855 
4856   if (!reexport_trie_entries.empty()) {
4857     for (const auto &e : reexport_trie_entries) {
4858       if (e.entry.import_name) {
4859         // Only add indirect symbols from the Trie entries if we didn't have
4860         // a N_INDR nlist entry for this already
4861         if (indirect_symbol_names.find(e.entry.name) ==
4862             indirect_symbol_names.end()) {
4863           // Make a synthetic symbol to describe re-exported symbol.
4864           if (sym_idx >= num_syms)
4865             sym = symtab->Resize(++num_syms);
4866           sym[sym_idx].SetID(synthetic_sym_id++);
4867           sym[sym_idx].GetMangled() = Mangled(e.entry.name);
4868           sym[sym_idx].SetType(eSymbolTypeReExported);
4869           sym[sym_idx].SetIsSynthetic(true);
4870           sym[sym_idx].SetReExportedSymbolName(e.entry.import_name);
4871           if (e.entry.other > 0 && e.entry.other <= dylib_files.GetSize()) {
4872             sym[sym_idx].SetReExportedSymbolSharedLibrary(
4873                 dylib_files.GetFileSpecAtIndex(e.entry.other - 1));
4874           }
4875           ++sym_idx;
4876         }
4877       }
4878     }
4879   }
4880 
4881   //        StreamFile s(stdout, false);
4882   //        s.Printf ("Symbol table before CalculateSymbolSizes():\n");
4883   //        symtab->Dump(&s, NULL, eSortOrderNone);
4884   // Set symbol byte sizes correctly since mach-o nlist entries don't have
4885   // sizes
4886   symtab->CalculateSymbolSizes();
4887 
4888   //        s.Printf ("Symbol table after CalculateSymbolSizes():\n");
4889   //        symtab->Dump(&s, NULL, eSortOrderNone);
4890 
4891   return symtab->GetNumSymbols();
4892 }
4893 
4894 void ObjectFileMachO::Dump(Stream *s) {
4895   ModuleSP module_sp(GetModule());
4896   if (module_sp) {
4897     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
4898     s->Printf("%p: ", static_cast<void *>(this));
4899     s->Indent();
4900     if (m_header.magic == MH_MAGIC_64 || m_header.magic == MH_CIGAM_64)
4901       s->PutCString("ObjectFileMachO64");
4902     else
4903       s->PutCString("ObjectFileMachO32");
4904 
4905     *s << ", file = '" << m_file;
4906     ModuleSpecList all_specs;
4907     ModuleSpec base_spec;
4908     GetAllArchSpecs(m_header, m_data, MachHeaderSizeFromMagic(m_header.magic),
4909                     base_spec, all_specs);
4910     for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
4911       *s << "', triple";
4912       if (e)
4913         s->Printf("[%d]", i);
4914       *s << " = ";
4915       *s << all_specs.GetModuleSpecRefAtIndex(i)
4916                 .GetArchitecture()
4917                 .GetTriple()
4918                 .getTriple();
4919     }
4920     *s << "\n";
4921     SectionList *sections = GetSectionList();
4922     if (sections)
4923       sections->Dump(s->AsRawOstream(), s->GetIndentLevel(), nullptr, true,
4924                      UINT32_MAX);
4925 
4926     if (m_symtab_up)
4927       m_symtab_up->Dump(s, nullptr, eSortOrderNone);
4928   }
4929 }
4930 
4931 UUID ObjectFileMachO::GetUUID(const llvm::MachO::mach_header &header,
4932                               const lldb_private::DataExtractor &data,
4933                               lldb::offset_t lc_offset) {
4934   uint32_t i;
4935   llvm::MachO::uuid_command load_cmd;
4936 
4937   lldb::offset_t offset = lc_offset;
4938   for (i = 0; i < header.ncmds; ++i) {
4939     const lldb::offset_t cmd_offset = offset;
4940     if (data.GetU32(&offset, &load_cmd, 2) == nullptr)
4941       break;
4942 
4943     if (load_cmd.cmd == LC_UUID) {
4944       const uint8_t *uuid_bytes = data.PeekData(offset, 16);
4945 
4946       if (uuid_bytes) {
4947         // OpenCL on Mac OS X uses the same UUID for each of its object files.
4948         // We pretend these object files have no UUID to prevent crashing.
4949 
4950         const uint8_t opencl_uuid[] = {0x8c, 0x8e, 0xb3, 0x9b, 0x3b, 0xa8,
4951                                        0x4b, 0x16, 0xb6, 0xa4, 0x27, 0x63,
4952                                        0xbb, 0x14, 0xf0, 0x0d};
4953 
4954         if (!memcmp(uuid_bytes, opencl_uuid, 16))
4955           return UUID();
4956 
4957         return UUID::fromOptionalData(uuid_bytes, 16);
4958       }
4959       return UUID();
4960     }
4961     offset = cmd_offset + load_cmd.cmdsize;
4962   }
4963   return UUID();
4964 }
4965 
4966 static llvm::StringRef GetOSName(uint32_t cmd) {
4967   switch (cmd) {
4968   case llvm::MachO::LC_VERSION_MIN_IPHONEOS:
4969     return llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4970   case llvm::MachO::LC_VERSION_MIN_MACOSX:
4971     return llvm::Triple::getOSTypeName(llvm::Triple::MacOSX);
4972   case llvm::MachO::LC_VERSION_MIN_TVOS:
4973     return llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4974   case llvm::MachO::LC_VERSION_MIN_WATCHOS:
4975     return llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4976   default:
4977     llvm_unreachable("unexpected LC_VERSION load command");
4978   }
4979 }
4980 
4981 namespace {
4982 struct OSEnv {
4983   llvm::StringRef os_type;
4984   llvm::StringRef environment;
4985   OSEnv(uint32_t cmd) {
4986     switch (cmd) {
4987     case llvm::MachO::PLATFORM_MACOS:
4988       os_type = llvm::Triple::getOSTypeName(llvm::Triple::MacOSX);
4989       return;
4990     case llvm::MachO::PLATFORM_IOS:
4991       os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4992       return;
4993     case llvm::MachO::PLATFORM_TVOS:
4994       os_type = llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4995       return;
4996     case llvm::MachO::PLATFORM_WATCHOS:
4997       os_type = llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4998       return;
4999       // NEED_BRIDGEOS_TRIPLE      case llvm::MachO::PLATFORM_BRIDGEOS:
5000       // NEED_BRIDGEOS_TRIPLE        os_type =
5001       // llvm::Triple::getOSTypeName(llvm::Triple::BridgeOS);
5002       // NEED_BRIDGEOS_TRIPLE        return;
5003     case llvm::MachO::PLATFORM_MACCATALYST:
5004       os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
5005       environment = llvm::Triple::getEnvironmentTypeName(llvm::Triple::MacABI);
5006       return;
5007     case llvm::MachO::PLATFORM_IOSSIMULATOR:
5008       os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
5009       environment =
5010           llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
5011       return;
5012     case llvm::MachO::PLATFORM_TVOSSIMULATOR:
5013       os_type = llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
5014       environment =
5015           llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
5016       return;
5017     case llvm::MachO::PLATFORM_WATCHOSSIMULATOR:
5018       os_type = llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
5019       environment =
5020           llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
5021       return;
5022     default: {
5023       Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS |
5024                                                       LIBLLDB_LOG_PROCESS));
5025       LLDB_LOGF(log, "unsupported platform in LC_BUILD_VERSION");
5026     }
5027     }
5028   }
5029 };
5030 
5031 struct MinOS {
5032   uint32_t major_version, minor_version, patch_version;
5033   MinOS(uint32_t version)
5034       : major_version(version >> 16), minor_version((version >> 8) & 0xffu),
5035         patch_version(version & 0xffu) {}
5036 };
5037 } // namespace
5038 
5039 void ObjectFileMachO::GetAllArchSpecs(const llvm::MachO::mach_header &header,
5040                                       const lldb_private::DataExtractor &data,
5041                                       lldb::offset_t lc_offset,
5042                                       ModuleSpec &base_spec,
5043                                       lldb_private::ModuleSpecList &all_specs) {
5044   auto &base_arch = base_spec.GetArchitecture();
5045   base_arch.SetArchitecture(eArchTypeMachO, header.cputype, header.cpusubtype);
5046   if (!base_arch.IsValid())
5047     return;
5048 
5049   bool found_any = false;
5050   auto add_triple = [&](const llvm::Triple &triple) {
5051     auto spec = base_spec;
5052     spec.GetArchitecture().GetTriple() = triple;
5053     if (spec.GetArchitecture().IsValid()) {
5054       spec.GetUUID() = ObjectFileMachO::GetUUID(header, data, lc_offset);
5055       all_specs.Append(spec);
5056       found_any = true;
5057     }
5058   };
5059 
5060   // Set OS to an unspecified unknown or a "*" so it can match any OS
5061   llvm::Triple base_triple = base_arch.GetTriple();
5062   base_triple.setOS(llvm::Triple::UnknownOS);
5063   base_triple.setOSName(llvm::StringRef());
5064 
5065   if (header.filetype == MH_PRELOAD) {
5066     if (header.cputype == CPU_TYPE_ARM) {
5067       // If this is a 32-bit arm binary, and it's a standalone binary, force
5068       // the Vendor to Apple so we don't accidentally pick up the generic
5069       // armv7 ABI at runtime.  Apple's armv7 ABI always uses r7 for the
5070       // frame pointer register; most other armv7 ABIs use a combination of
5071       // r7 and r11.
5072       base_triple.setVendor(llvm::Triple::Apple);
5073     } else {
5074       // Set vendor to an unspecified unknown or a "*" so it can match any
5075       // vendor This is required for correct behavior of EFI debugging on
5076       // x86_64
5077       base_triple.setVendor(llvm::Triple::UnknownVendor);
5078       base_triple.setVendorName(llvm::StringRef());
5079     }
5080     return add_triple(base_triple);
5081   }
5082 
5083   llvm::MachO::load_command load_cmd;
5084 
5085   // See if there is an LC_VERSION_MIN_* load command that can give
5086   // us the OS type.
5087   lldb::offset_t offset = lc_offset;
5088   for (uint32_t i = 0; i < header.ncmds; ++i) {
5089     const lldb::offset_t cmd_offset = offset;
5090     if (data.GetU32(&offset, &load_cmd, 2) == NULL)
5091       break;
5092 
5093     llvm::MachO::version_min_command version_min;
5094     switch (load_cmd.cmd) {
5095     case llvm::MachO::LC_VERSION_MIN_MACOSX:
5096     case llvm::MachO::LC_VERSION_MIN_IPHONEOS:
5097     case llvm::MachO::LC_VERSION_MIN_TVOS:
5098     case llvm::MachO::LC_VERSION_MIN_WATCHOS: {
5099       if (load_cmd.cmdsize != sizeof(version_min))
5100         break;
5101       if (data.ExtractBytes(cmd_offset, sizeof(version_min),
5102                             data.GetByteOrder(), &version_min) == 0)
5103         break;
5104       MinOS min_os(version_min.version);
5105       llvm::SmallString<32> os_name;
5106       llvm::raw_svector_ostream os(os_name);
5107       os << GetOSName(load_cmd.cmd) << min_os.major_version << '.'
5108          << min_os.minor_version << '.' << min_os.patch_version;
5109 
5110       auto triple = base_triple;
5111       triple.setOSName(os.str());
5112 
5113       // Disambiguate legacy simulator platforms.
5114       if (load_cmd.cmd != llvm::MachO::LC_VERSION_MIN_MACOSX &&
5115           (base_triple.getArch() == llvm::Triple::x86_64 ||
5116            base_triple.getArch() == llvm::Triple::x86)) {
5117         // The combination of legacy LC_VERSION_MIN load command and
5118         // x86 architecture always indicates a simulator environment.
5119         // The combination of LC_VERSION_MIN and arm architecture only
5120         // appears for native binaries. Back-deploying simulator
5121         // binaries on Apple Silicon Macs use the modern unambigous
5122         // LC_BUILD_VERSION load commands; no special handling required.
5123         triple.setEnvironment(llvm::Triple::Simulator);
5124       }
5125       add_triple(triple);
5126       break;
5127     }
5128     default:
5129       break;
5130     }
5131 
5132     offset = cmd_offset + load_cmd.cmdsize;
5133   }
5134 
5135   // See if there are LC_BUILD_VERSION load commands that can give
5136   // us the OS type.
5137   offset = lc_offset;
5138   for (uint32_t i = 0; i < header.ncmds; ++i) {
5139     const lldb::offset_t cmd_offset = offset;
5140     if (data.GetU32(&offset, &load_cmd, 2) == NULL)
5141       break;
5142 
5143     do {
5144       if (load_cmd.cmd == llvm::MachO::LC_BUILD_VERSION) {
5145         llvm::MachO::build_version_command build_version;
5146         if (load_cmd.cmdsize < sizeof(build_version)) {
5147           // Malformed load command.
5148           break;
5149         }
5150         if (data.ExtractBytes(cmd_offset, sizeof(build_version),
5151                               data.GetByteOrder(), &build_version) == 0)
5152           break;
5153         MinOS min_os(build_version.minos);
5154         OSEnv os_env(build_version.platform);
5155         llvm::SmallString<16> os_name;
5156         llvm::raw_svector_ostream os(os_name);
5157         os << os_env.os_type << min_os.major_version << '.'
5158            << min_os.minor_version << '.' << min_os.patch_version;
5159         auto triple = base_triple;
5160         triple.setOSName(os.str());
5161         os_name.clear();
5162         if (!os_env.environment.empty())
5163           triple.setEnvironmentName(os_env.environment);
5164         add_triple(triple);
5165       }
5166     } while (0);
5167     offset = cmd_offset + load_cmd.cmdsize;
5168   }
5169 
5170   if (!found_any) {
5171     if (header.filetype == MH_KEXT_BUNDLE) {
5172       base_triple.setVendor(llvm::Triple::Apple);
5173       add_triple(base_triple);
5174     } else {
5175       // We didn't find a LC_VERSION_MIN load command and this isn't a KEXT
5176       // so lets not say our Vendor is Apple, leave it as an unspecified
5177       // unknown.
5178       base_triple.setVendor(llvm::Triple::UnknownVendor);
5179       base_triple.setVendorName(llvm::StringRef());
5180       add_triple(base_triple);
5181     }
5182   }
5183 }
5184 
5185 ArchSpec ObjectFileMachO::GetArchitecture(
5186     ModuleSP module_sp, const llvm::MachO::mach_header &header,
5187     const lldb_private::DataExtractor &data, lldb::offset_t lc_offset) {
5188   ModuleSpecList all_specs;
5189   ModuleSpec base_spec;
5190   GetAllArchSpecs(header, data, MachHeaderSizeFromMagic(header.magic),
5191                   base_spec, all_specs);
5192 
5193   // If the object file offers multiple alternative load commands,
5194   // pick the one that matches the module.
5195   if (module_sp) {
5196     const ArchSpec &module_arch = module_sp->GetArchitecture();
5197     for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
5198       ArchSpec mach_arch =
5199           all_specs.GetModuleSpecRefAtIndex(i).GetArchitecture();
5200       if (module_arch.IsCompatibleMatch(mach_arch))
5201         return mach_arch;
5202     }
5203   }
5204 
5205   // Return the first arch we found.
5206   if (all_specs.GetSize() == 0)
5207     return {};
5208   return all_specs.GetModuleSpecRefAtIndex(0).GetArchitecture();
5209 }
5210 
5211 UUID ObjectFileMachO::GetUUID() {
5212   ModuleSP module_sp(GetModule());
5213   if (module_sp) {
5214     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5215     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5216     return GetUUID(m_header, m_data, offset);
5217   }
5218   return UUID();
5219 }
5220 
5221 uint32_t ObjectFileMachO::GetDependentModules(FileSpecList &files) {
5222   uint32_t count = 0;
5223   ModuleSP module_sp(GetModule());
5224   if (module_sp) {
5225     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5226     llvm::MachO::load_command load_cmd;
5227     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5228     std::vector<std::string> rpath_paths;
5229     std::vector<std::string> rpath_relative_paths;
5230     std::vector<std::string> at_exec_relative_paths;
5231     uint32_t i;
5232     for (i = 0; i < m_header.ncmds; ++i) {
5233       const uint32_t cmd_offset = offset;
5234       if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5235         break;
5236 
5237       switch (load_cmd.cmd) {
5238       case LC_RPATH:
5239       case LC_LOAD_DYLIB:
5240       case LC_LOAD_WEAK_DYLIB:
5241       case LC_REEXPORT_DYLIB:
5242       case LC_LOAD_DYLINKER:
5243       case LC_LOADFVMLIB:
5244       case LC_LOAD_UPWARD_DYLIB: {
5245         uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
5246         const char *path = m_data.PeekCStr(name_offset);
5247         if (path) {
5248           if (load_cmd.cmd == LC_RPATH)
5249             rpath_paths.push_back(path);
5250           else {
5251             if (path[0] == '@') {
5252               if (strncmp(path, "@rpath", strlen("@rpath")) == 0)
5253                 rpath_relative_paths.push_back(path + strlen("@rpath"));
5254               else if (strncmp(path, "@executable_path",
5255                                strlen("@executable_path")) == 0)
5256                 at_exec_relative_paths.push_back(path +
5257                                                  strlen("@executable_path"));
5258             } else {
5259               FileSpec file_spec(path);
5260               if (files.AppendIfUnique(file_spec))
5261                 count++;
5262             }
5263           }
5264         }
5265       } break;
5266 
5267       default:
5268         break;
5269       }
5270       offset = cmd_offset + load_cmd.cmdsize;
5271     }
5272 
5273     FileSpec this_file_spec(m_file);
5274     FileSystem::Instance().Resolve(this_file_spec);
5275 
5276     if (!rpath_paths.empty()) {
5277       // Fixup all LC_RPATH values to be absolute paths
5278       std::string loader_path("@loader_path");
5279       std::string executable_path("@executable_path");
5280       for (auto &rpath : rpath_paths) {
5281         if (llvm::StringRef(rpath).startswith(loader_path)) {
5282           rpath.erase(0, loader_path.size());
5283           rpath.insert(0, this_file_spec.GetDirectory().GetCString());
5284         } else if (llvm::StringRef(rpath).startswith(executable_path)) {
5285           rpath.erase(0, executable_path.size());
5286           rpath.insert(0, this_file_spec.GetDirectory().GetCString());
5287         }
5288       }
5289 
5290       for (const auto &rpath_relative_path : rpath_relative_paths) {
5291         for (const auto &rpath : rpath_paths) {
5292           std::string path = rpath;
5293           path += rpath_relative_path;
5294           // It is OK to resolve this path because we must find a file on disk
5295           // for us to accept it anyway if it is rpath relative.
5296           FileSpec file_spec(path);
5297           FileSystem::Instance().Resolve(file_spec);
5298           if (FileSystem::Instance().Exists(file_spec) &&
5299               files.AppendIfUnique(file_spec)) {
5300             count++;
5301             break;
5302           }
5303         }
5304       }
5305     }
5306 
5307     // We may have @executable_paths but no RPATHS.  Figure those out here.
5308     // Only do this if this object file is the executable.  We have no way to
5309     // get back to the actual executable otherwise, so we won't get the right
5310     // path.
5311     if (!at_exec_relative_paths.empty() && CalculateType() == eTypeExecutable) {
5312       FileSpec exec_dir = this_file_spec.CopyByRemovingLastPathComponent();
5313       for (const auto &at_exec_relative_path : at_exec_relative_paths) {
5314         FileSpec file_spec =
5315             exec_dir.CopyByAppendingPathComponent(at_exec_relative_path);
5316         if (FileSystem::Instance().Exists(file_spec) &&
5317             files.AppendIfUnique(file_spec))
5318           count++;
5319       }
5320     }
5321   }
5322   return count;
5323 }
5324 
5325 lldb_private::Address ObjectFileMachO::GetEntryPointAddress() {
5326   // If the object file is not an executable it can't hold the entry point.
5327   // m_entry_point_address is initialized to an invalid address, so we can just
5328   // return that. If m_entry_point_address is valid it means we've found it
5329   // already, so return the cached value.
5330 
5331   if ((!IsExecutable() && !IsDynamicLoader()) ||
5332       m_entry_point_address.IsValid()) {
5333     return m_entry_point_address;
5334   }
5335 
5336   // Otherwise, look for the UnixThread or Thread command.  The data for the
5337   // Thread command is given in /usr/include/mach-o.h, but it is basically:
5338   //
5339   //  uint32_t flavor  - this is the flavor argument you would pass to
5340   //  thread_get_state
5341   //  uint32_t count   - this is the count of longs in the thread state data
5342   //  struct XXX_thread_state state - this is the structure from
5343   //  <machine/thread_status.h> corresponding to the flavor.
5344   //  <repeat this trio>
5345   //
5346   // So we just keep reading the various register flavors till we find the GPR
5347   // one, then read the PC out of there.
5348   // FIXME: We will need to have a "RegisterContext data provider" class at some
5349   // point that can get all the registers
5350   // out of data in this form & attach them to a given thread.  That should
5351   // underlie the MacOS X User process plugin, and we'll also need it for the
5352   // MacOS X Core File process plugin.  When we have that we can also use it
5353   // here.
5354   //
5355   // For now we hard-code the offsets and flavors we need:
5356   //
5357   //
5358 
5359   ModuleSP module_sp(GetModule());
5360   if (module_sp) {
5361     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5362     llvm::MachO::load_command load_cmd;
5363     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5364     uint32_t i;
5365     lldb::addr_t start_address = LLDB_INVALID_ADDRESS;
5366     bool done = false;
5367 
5368     for (i = 0; i < m_header.ncmds; ++i) {
5369       const lldb::offset_t cmd_offset = offset;
5370       if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5371         break;
5372 
5373       switch (load_cmd.cmd) {
5374       case LC_UNIXTHREAD:
5375       case LC_THREAD: {
5376         while (offset < cmd_offset + load_cmd.cmdsize) {
5377           uint32_t flavor = m_data.GetU32(&offset);
5378           uint32_t count = m_data.GetU32(&offset);
5379           if (count == 0) {
5380             // We've gotten off somehow, log and exit;
5381             return m_entry_point_address;
5382           }
5383 
5384           switch (m_header.cputype) {
5385           case llvm::MachO::CPU_TYPE_ARM:
5386             if (flavor == 1 ||
5387                 flavor == 9) // ARM_THREAD_STATE/ARM_THREAD_STATE32
5388                              // from mach/arm/thread_status.h
5389             {
5390               offset += 60; // This is the offset of pc in the GPR thread state
5391                             // data structure.
5392               start_address = m_data.GetU32(&offset);
5393               done = true;
5394             }
5395             break;
5396           case llvm::MachO::CPU_TYPE_ARM64:
5397           case llvm::MachO::CPU_TYPE_ARM64_32:
5398             if (flavor == 6) // ARM_THREAD_STATE64 from mach/arm/thread_status.h
5399             {
5400               offset += 256; // This is the offset of pc in the GPR thread state
5401                              // data structure.
5402               start_address = m_data.GetU64(&offset);
5403               done = true;
5404             }
5405             break;
5406           case llvm::MachO::CPU_TYPE_I386:
5407             if (flavor ==
5408                 1) // x86_THREAD_STATE32 from mach/i386/thread_status.h
5409             {
5410               offset += 40; // This is the offset of eip in the GPR thread state
5411                             // data structure.
5412               start_address = m_data.GetU32(&offset);
5413               done = true;
5414             }
5415             break;
5416           case llvm::MachO::CPU_TYPE_X86_64:
5417             if (flavor ==
5418                 4) // x86_THREAD_STATE64 from mach/i386/thread_status.h
5419             {
5420               offset += 16 * 8; // This is the offset of rip in the GPR thread
5421                                 // state data structure.
5422               start_address = m_data.GetU64(&offset);
5423               done = true;
5424             }
5425             break;
5426           default:
5427             return m_entry_point_address;
5428           }
5429           // Haven't found the GPR flavor yet, skip over the data for this
5430           // flavor:
5431           if (done)
5432             break;
5433           offset += count * 4;
5434         }
5435       } break;
5436       case LC_MAIN: {
5437         ConstString text_segment_name("__TEXT");
5438         uint64_t entryoffset = m_data.GetU64(&offset);
5439         SectionSP text_segment_sp =
5440             GetSectionList()->FindSectionByName(text_segment_name);
5441         if (text_segment_sp) {
5442           done = true;
5443           start_address = text_segment_sp->GetFileAddress() + entryoffset;
5444         }
5445       } break;
5446 
5447       default:
5448         break;
5449       }
5450       if (done)
5451         break;
5452 
5453       // Go to the next load command:
5454       offset = cmd_offset + load_cmd.cmdsize;
5455     }
5456 
5457     if (start_address == LLDB_INVALID_ADDRESS && IsDynamicLoader()) {
5458       if (GetSymtab()) {
5459         Symbol *dyld_start_sym = GetSymtab()->FindFirstSymbolWithNameAndType(
5460             ConstString("_dyld_start"), SymbolType::eSymbolTypeCode,
5461             Symtab::eDebugAny, Symtab::eVisibilityAny);
5462         if (dyld_start_sym && dyld_start_sym->GetAddress().IsValid()) {
5463           start_address = dyld_start_sym->GetAddress().GetFileAddress();
5464         }
5465       }
5466     }
5467 
5468     if (start_address != LLDB_INVALID_ADDRESS) {
5469       // We got the start address from the load commands, so now resolve that
5470       // address in the sections of this ObjectFile:
5471       if (!m_entry_point_address.ResolveAddressUsingFileSections(
5472               start_address, GetSectionList())) {
5473         m_entry_point_address.Clear();
5474       }
5475     } else {
5476       // We couldn't read the UnixThread load command - maybe it wasn't there.
5477       // As a fallback look for the "start" symbol in the main executable.
5478 
5479       ModuleSP module_sp(GetModule());
5480 
5481       if (module_sp) {
5482         SymbolContextList contexts;
5483         SymbolContext context;
5484         module_sp->FindSymbolsWithNameAndType(ConstString("start"),
5485                                               eSymbolTypeCode, contexts);
5486         if (contexts.GetSize()) {
5487           if (contexts.GetContextAtIndex(0, context))
5488             m_entry_point_address = context.symbol->GetAddress();
5489         }
5490       }
5491     }
5492   }
5493 
5494   return m_entry_point_address;
5495 }
5496 
5497 lldb_private::Address ObjectFileMachO::GetBaseAddress() {
5498   lldb_private::Address header_addr;
5499   SectionList *section_list = GetSectionList();
5500   if (section_list) {
5501     SectionSP text_segment_sp(
5502         section_list->FindSectionByName(GetSegmentNameTEXT()));
5503     if (text_segment_sp) {
5504       header_addr.SetSection(text_segment_sp);
5505       header_addr.SetOffset(0);
5506     }
5507   }
5508   return header_addr;
5509 }
5510 
5511 uint32_t ObjectFileMachO::GetNumThreadContexts() {
5512   ModuleSP module_sp(GetModule());
5513   if (module_sp) {
5514     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5515     if (!m_thread_context_offsets_valid) {
5516       m_thread_context_offsets_valid = true;
5517       lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5518       FileRangeArray::Entry file_range;
5519       llvm::MachO::thread_command thread_cmd;
5520       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5521         const uint32_t cmd_offset = offset;
5522         if (m_data.GetU32(&offset, &thread_cmd, 2) == nullptr)
5523           break;
5524 
5525         if (thread_cmd.cmd == LC_THREAD) {
5526           file_range.SetRangeBase(offset);
5527           file_range.SetByteSize(thread_cmd.cmdsize - 8);
5528           m_thread_context_offsets.Append(file_range);
5529         }
5530         offset = cmd_offset + thread_cmd.cmdsize;
5531       }
5532     }
5533   }
5534   return m_thread_context_offsets.GetSize();
5535 }
5536 
5537 std::string ObjectFileMachO::GetIdentifierString() {
5538   std::string result;
5539   ModuleSP module_sp(GetModule());
5540   if (module_sp) {
5541     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5542 
5543     // First, look over the load commands for an LC_NOTE load command with
5544     // data_owner string "kern ver str" & use that if found.
5545     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5546     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5547       const uint32_t cmd_offset = offset;
5548       llvm::MachO::load_command lc;
5549       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5550         break;
5551       if (lc.cmd == LC_NOTE) {
5552         char data_owner[17];
5553         m_data.CopyData(offset, 16, data_owner);
5554         data_owner[16] = '\0';
5555         offset += 16;
5556         uint64_t fileoff = m_data.GetU64_unchecked(&offset);
5557         uint64_t size = m_data.GetU64_unchecked(&offset);
5558 
5559         // "kern ver str" has a uint32_t version and then a nul terminated
5560         // c-string.
5561         if (strcmp("kern ver str", data_owner) == 0) {
5562           offset = fileoff;
5563           uint32_t version;
5564           if (m_data.GetU32(&offset, &version, 1) != nullptr) {
5565             if (version == 1) {
5566               uint32_t strsize = size - sizeof(uint32_t);
5567               char *buf = (char *)malloc(strsize);
5568               if (buf) {
5569                 m_data.CopyData(offset, strsize, buf);
5570                 buf[strsize - 1] = '\0';
5571                 result = buf;
5572                 if (buf)
5573                   free(buf);
5574                 return result;
5575               }
5576             }
5577           }
5578         }
5579       }
5580       offset = cmd_offset + lc.cmdsize;
5581     }
5582 
5583     // Second, make a pass over the load commands looking for an obsolete
5584     // LC_IDENT load command.
5585     offset = MachHeaderSizeFromMagic(m_header.magic);
5586     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5587       const uint32_t cmd_offset = offset;
5588       llvm::MachO::ident_command ident_command;
5589       if (m_data.GetU32(&offset, &ident_command, 2) == nullptr)
5590         break;
5591       if (ident_command.cmd == LC_IDENT && ident_command.cmdsize != 0) {
5592         char *buf = (char *)malloc(ident_command.cmdsize);
5593         if (buf != nullptr && m_data.CopyData(offset, ident_command.cmdsize,
5594                                               buf) == ident_command.cmdsize) {
5595           buf[ident_command.cmdsize - 1] = '\0';
5596           result = buf;
5597         }
5598         if (buf)
5599           free(buf);
5600       }
5601       offset = cmd_offset + ident_command.cmdsize;
5602     }
5603   }
5604   return result;
5605 }
5606 
5607 addr_t ObjectFileMachO::GetAddressMask() {
5608   addr_t mask = 0;
5609   ModuleSP module_sp(GetModule());
5610   if (module_sp) {
5611     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5612     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5613     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5614       const uint32_t cmd_offset = offset;
5615       llvm::MachO::load_command lc;
5616       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5617         break;
5618       if (lc.cmd == LC_NOTE) {
5619         char data_owner[17];
5620         m_data.CopyData(offset, 16, data_owner);
5621         data_owner[16] = '\0';
5622         offset += 16;
5623         uint64_t fileoff = m_data.GetU64_unchecked(&offset);
5624 
5625         // "addrable bits" has a uint32_t version and a uint32_t
5626         // number of bits used in addressing.
5627         if (strcmp("addrable bits", data_owner) == 0) {
5628           offset = fileoff;
5629           uint32_t version;
5630           if (m_data.GetU32(&offset, &version, 1) != nullptr) {
5631             if (version == 3) {
5632               uint32_t num_addr_bits = m_data.GetU32_unchecked(&offset);
5633               if (num_addr_bits != 0) {
5634                 mask = ~((1ULL << num_addr_bits) - 1);
5635               }
5636               break;
5637             }
5638           }
5639         }
5640       }
5641       offset = cmd_offset + lc.cmdsize;
5642     }
5643   }
5644   return mask;
5645 }
5646 
5647 bool ObjectFileMachO::GetCorefileMainBinaryInfo(addr_t &address, UUID &uuid,
5648                                                 ObjectFile::BinaryType &type) {
5649   address = LLDB_INVALID_ADDRESS;
5650   uuid.Clear();
5651   ModuleSP module_sp(GetModule());
5652   if (module_sp) {
5653     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5654     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5655     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5656       const uint32_t cmd_offset = offset;
5657       llvm::MachO::load_command lc;
5658       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5659         break;
5660       if (lc.cmd == LC_NOTE) {
5661         char data_owner[17];
5662         memset(data_owner, 0, sizeof(data_owner));
5663         m_data.CopyData(offset, 16, data_owner);
5664         offset += 16;
5665         uint64_t fileoff = m_data.GetU64_unchecked(&offset);
5666         uint64_t size = m_data.GetU64_unchecked(&offset);
5667 
5668         // "main bin spec" (main binary specification) data payload is
5669         // formatted:
5670         //    uint32_t version       [currently 1]
5671         //    uint32_t type          [0 == unspecified, 1 == kernel,
5672         //                            2 == user process, 3 == firmware ]
5673         //    uint64_t address       [ UINT64_MAX if address not specified ]
5674         //    uuid_t   uuid          [ all zero's if uuid not specified ]
5675         //    uint32_t log2_pagesize [ process page size in log base
5676         //                             2, e.g. 4k pages are 12.
5677         //                             0 for unspecified ]
5678         //    uint32_t unused        [ for alignment ]
5679 
5680         if (strcmp("main bin spec", data_owner) == 0 && size >= 32) {
5681           offset = fileoff;
5682           uint32_t version;
5683           if (m_data.GetU32(&offset, &version, 1) != nullptr && version == 1) {
5684             uint32_t binspec_type = 0;
5685             uuid_t raw_uuid;
5686             memset(raw_uuid, 0, sizeof(uuid_t));
5687 
5688             if (m_data.GetU32(&offset, &binspec_type, 1) &&
5689                 m_data.GetU64(&offset, &address, 1) &&
5690                 m_data.CopyData(offset, sizeof(uuid_t), raw_uuid) != 0) {
5691               uuid = UUID::fromOptionalData(raw_uuid, sizeof(uuid_t));
5692               // convert the "main bin spec" type into our
5693               // ObjectFile::BinaryType enum
5694               switch (binspec_type) {
5695               case 0:
5696                 type = eBinaryTypeUnknown;
5697                 break;
5698               case 1:
5699                 type = eBinaryTypeKernel;
5700                 break;
5701               case 2:
5702                 type = eBinaryTypeUser;
5703                 break;
5704               case 3:
5705                 type = eBinaryTypeStandalone;
5706                 break;
5707               }
5708               return true;
5709             }
5710           }
5711         }
5712       }
5713       offset = cmd_offset + lc.cmdsize;
5714     }
5715   }
5716   return false;
5717 }
5718 
5719 lldb::RegisterContextSP
5720 ObjectFileMachO::GetThreadContextAtIndex(uint32_t idx,
5721                                          lldb_private::Thread &thread) {
5722   lldb::RegisterContextSP reg_ctx_sp;
5723 
5724   ModuleSP module_sp(GetModule());
5725   if (module_sp) {
5726     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5727     if (!m_thread_context_offsets_valid)
5728       GetNumThreadContexts();
5729 
5730     const FileRangeArray::Entry *thread_context_file_range =
5731         m_thread_context_offsets.GetEntryAtIndex(idx);
5732     if (thread_context_file_range) {
5733 
5734       DataExtractor data(m_data, thread_context_file_range->GetRangeBase(),
5735                          thread_context_file_range->GetByteSize());
5736 
5737       switch (m_header.cputype) {
5738       case llvm::MachO::CPU_TYPE_ARM64:
5739       case llvm::MachO::CPU_TYPE_ARM64_32:
5740         reg_ctx_sp =
5741             std::make_shared<RegisterContextDarwin_arm64_Mach>(thread, data);
5742         break;
5743 
5744       case llvm::MachO::CPU_TYPE_ARM:
5745         reg_ctx_sp =
5746             std::make_shared<RegisterContextDarwin_arm_Mach>(thread, data);
5747         break;
5748 
5749       case llvm::MachO::CPU_TYPE_I386:
5750         reg_ctx_sp =
5751             std::make_shared<RegisterContextDarwin_i386_Mach>(thread, data);
5752         break;
5753 
5754       case llvm::MachO::CPU_TYPE_X86_64:
5755         reg_ctx_sp =
5756             std::make_shared<RegisterContextDarwin_x86_64_Mach>(thread, data);
5757         break;
5758       }
5759     }
5760   }
5761   return reg_ctx_sp;
5762 }
5763 
5764 ObjectFile::Type ObjectFileMachO::CalculateType() {
5765   switch (m_header.filetype) {
5766   case MH_OBJECT: // 0x1u
5767     if (GetAddressByteSize() == 4) {
5768       // 32 bit kexts are just object files, but they do have a valid
5769       // UUID load command.
5770       if (GetUUID()) {
5771         // this checking for the UUID load command is not enough we could
5772         // eventually look for the symbol named "OSKextGetCurrentIdentifier" as
5773         // this is required of kexts
5774         if (m_strata == eStrataInvalid)
5775           m_strata = eStrataKernel;
5776         return eTypeSharedLibrary;
5777       }
5778     }
5779     return eTypeObjectFile;
5780 
5781   case MH_EXECUTE:
5782     return eTypeExecutable; // 0x2u
5783   case MH_FVMLIB:
5784     return eTypeSharedLibrary; // 0x3u
5785   case MH_CORE:
5786     return eTypeCoreFile; // 0x4u
5787   case MH_PRELOAD:
5788     return eTypeSharedLibrary; // 0x5u
5789   case MH_DYLIB:
5790     return eTypeSharedLibrary; // 0x6u
5791   case MH_DYLINKER:
5792     return eTypeDynamicLinker; // 0x7u
5793   case MH_BUNDLE:
5794     return eTypeSharedLibrary; // 0x8u
5795   case MH_DYLIB_STUB:
5796     return eTypeStubLibrary; // 0x9u
5797   case MH_DSYM:
5798     return eTypeDebugInfo; // 0xAu
5799   case MH_KEXT_BUNDLE:
5800     return eTypeSharedLibrary; // 0xBu
5801   default:
5802     break;
5803   }
5804   return eTypeUnknown;
5805 }
5806 
5807 ObjectFile::Strata ObjectFileMachO::CalculateStrata() {
5808   switch (m_header.filetype) {
5809   case MH_OBJECT: // 0x1u
5810   {
5811     // 32 bit kexts are just object files, but they do have a valid
5812     // UUID load command.
5813     if (GetUUID()) {
5814       // this checking for the UUID load command is not enough we could
5815       // eventually look for the symbol named "OSKextGetCurrentIdentifier" as
5816       // this is required of kexts
5817       if (m_type == eTypeInvalid)
5818         m_type = eTypeSharedLibrary;
5819 
5820       return eStrataKernel;
5821     }
5822   }
5823     return eStrataUnknown;
5824 
5825   case MH_EXECUTE: // 0x2u
5826     // Check for the MH_DYLDLINK bit in the flags
5827     if (m_header.flags & MH_DYLDLINK) {
5828       return eStrataUser;
5829     } else {
5830       SectionList *section_list = GetSectionList();
5831       if (section_list) {
5832         static ConstString g_kld_section_name("__KLD");
5833         if (section_list->FindSectionByName(g_kld_section_name))
5834           return eStrataKernel;
5835       }
5836     }
5837     return eStrataRawImage;
5838 
5839   case MH_FVMLIB:
5840     return eStrataUser; // 0x3u
5841   case MH_CORE:
5842     return eStrataUnknown; // 0x4u
5843   case MH_PRELOAD:
5844     return eStrataRawImage; // 0x5u
5845   case MH_DYLIB:
5846     return eStrataUser; // 0x6u
5847   case MH_DYLINKER:
5848     return eStrataUser; // 0x7u
5849   case MH_BUNDLE:
5850     return eStrataUser; // 0x8u
5851   case MH_DYLIB_STUB:
5852     return eStrataUser; // 0x9u
5853   case MH_DSYM:
5854     return eStrataUnknown; // 0xAu
5855   case MH_KEXT_BUNDLE:
5856     return eStrataKernel; // 0xBu
5857   default:
5858     break;
5859   }
5860   return eStrataUnknown;
5861 }
5862 
5863 llvm::VersionTuple ObjectFileMachO::GetVersion() {
5864   ModuleSP module_sp(GetModule());
5865   if (module_sp) {
5866     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5867     llvm::MachO::dylib_command load_cmd;
5868     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5869     uint32_t version_cmd = 0;
5870     uint64_t version = 0;
5871     uint32_t i;
5872     for (i = 0; i < m_header.ncmds; ++i) {
5873       const lldb::offset_t cmd_offset = offset;
5874       if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5875         break;
5876 
5877       if (load_cmd.cmd == LC_ID_DYLIB) {
5878         if (version_cmd == 0) {
5879           version_cmd = load_cmd.cmd;
5880           if (m_data.GetU32(&offset, &load_cmd.dylib, 4) == nullptr)
5881             break;
5882           version = load_cmd.dylib.current_version;
5883         }
5884         break; // Break for now unless there is another more complete version
5885                // number load command in the future.
5886       }
5887       offset = cmd_offset + load_cmd.cmdsize;
5888     }
5889 
5890     if (version_cmd == LC_ID_DYLIB) {
5891       unsigned major = (version & 0xFFFF0000ull) >> 16;
5892       unsigned minor = (version & 0x0000FF00ull) >> 8;
5893       unsigned subminor = (version & 0x000000FFull);
5894       return llvm::VersionTuple(major, minor, subminor);
5895     }
5896   }
5897   return llvm::VersionTuple();
5898 }
5899 
5900 ArchSpec ObjectFileMachO::GetArchitecture() {
5901   ModuleSP module_sp(GetModule());
5902   ArchSpec arch;
5903   if (module_sp) {
5904     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5905 
5906     return GetArchitecture(module_sp, m_header, m_data,
5907                            MachHeaderSizeFromMagic(m_header.magic));
5908   }
5909   return arch;
5910 }
5911 
5912 void ObjectFileMachO::GetProcessSharedCacheUUID(Process *process,
5913                                                 addr_t &base_addr, UUID &uuid) {
5914   uuid.Clear();
5915   base_addr = LLDB_INVALID_ADDRESS;
5916   if (process && process->GetDynamicLoader()) {
5917     DynamicLoader *dl = process->GetDynamicLoader();
5918     LazyBool using_shared_cache;
5919     LazyBool private_shared_cache;
5920     dl->GetSharedCacheInformation(base_addr, uuid, using_shared_cache,
5921                                   private_shared_cache);
5922   }
5923   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS |
5924                                                   LIBLLDB_LOG_PROCESS));
5925   LLDB_LOGF(
5926       log,
5927       "inferior process shared cache has a UUID of %s, base address 0x%" PRIx64,
5928       uuid.GetAsString().c_str(), base_addr);
5929 }
5930 
5931 // From dyld SPI header dyld_process_info.h
5932 typedef void *dyld_process_info;
5933 struct lldb_copy__dyld_process_cache_info {
5934   uuid_t cacheUUID;          // UUID of cache used by process
5935   uint64_t cacheBaseAddress; // load address of dyld shared cache
5936   bool noCache;              // process is running without a dyld cache
5937   bool privateCache; // process is using a private copy of its dyld cache
5938 };
5939 
5940 // #including mach/mach.h pulls in machine.h & CPU_TYPE_ARM etc conflicts with
5941 // llvm enum definitions llvm::MachO::CPU_TYPE_ARM turning them into compile
5942 // errors. So we need to use the actual underlying types of task_t and
5943 // kern_return_t below.
5944 extern "C" unsigned int /*task_t*/ mach_task_self();
5945 
5946 void ObjectFileMachO::GetLLDBSharedCacheUUID(addr_t &base_addr, UUID &uuid) {
5947   uuid.Clear();
5948   base_addr = LLDB_INVALID_ADDRESS;
5949 
5950 #if defined(__APPLE__)
5951   uint8_t *(*dyld_get_all_image_infos)(void);
5952   dyld_get_all_image_infos =
5953       (uint8_t * (*)()) dlsym(RTLD_DEFAULT, "_dyld_get_all_image_infos");
5954   if (dyld_get_all_image_infos) {
5955     uint8_t *dyld_all_image_infos_address = dyld_get_all_image_infos();
5956     if (dyld_all_image_infos_address) {
5957       uint32_t *version = (uint32_t *)
5958           dyld_all_image_infos_address; // version <mach-o/dyld_images.h>
5959       if (*version >= 13) {
5960         uuid_t *sharedCacheUUID_address = 0;
5961         int wordsize = sizeof(uint8_t *);
5962         if (wordsize == 8) {
5963           sharedCacheUUID_address =
5964               (uuid_t *)((uint8_t *)dyld_all_image_infos_address +
5965                          160); // sharedCacheUUID <mach-o/dyld_images.h>
5966           if (*version >= 15)
5967             base_addr =
5968                 *(uint64_t
5969                       *)((uint8_t *)dyld_all_image_infos_address +
5970                          176); // sharedCacheBaseAddress <mach-o/dyld_images.h>
5971         } else {
5972           sharedCacheUUID_address =
5973               (uuid_t *)((uint8_t *)dyld_all_image_infos_address +
5974                          84); // sharedCacheUUID <mach-o/dyld_images.h>
5975           if (*version >= 15) {
5976             base_addr = 0;
5977             base_addr =
5978                 *(uint32_t
5979                       *)((uint8_t *)dyld_all_image_infos_address +
5980                          100); // sharedCacheBaseAddress <mach-o/dyld_images.h>
5981           }
5982         }
5983         uuid = UUID::fromOptionalData(sharedCacheUUID_address, sizeof(uuid_t));
5984       }
5985     }
5986   } else {
5987     // Exists in macOS 10.12 and later, iOS 10.0 and later - dyld SPI
5988     dyld_process_info (*dyld_process_info_create)(
5989         unsigned int /* task_t */ task, uint64_t timestamp,
5990         unsigned int /*kern_return_t*/ *kernelError);
5991     void (*dyld_process_info_get_cache)(void *info, void *cacheInfo);
5992     void (*dyld_process_info_release)(dyld_process_info info);
5993 
5994     dyld_process_info_create = (void *(*)(unsigned int /* task_t */, uint64_t,
5995                                           unsigned int /*kern_return_t*/ *))
5996         dlsym(RTLD_DEFAULT, "_dyld_process_info_create");
5997     dyld_process_info_get_cache = (void (*)(void *, void *))dlsym(
5998         RTLD_DEFAULT, "_dyld_process_info_get_cache");
5999     dyld_process_info_release =
6000         (void (*)(void *))dlsym(RTLD_DEFAULT, "_dyld_process_info_release");
6001 
6002     if (dyld_process_info_create && dyld_process_info_get_cache) {
6003       unsigned int /*kern_return_t */ kern_ret;
6004       dyld_process_info process_info =
6005           dyld_process_info_create(::mach_task_self(), 0, &kern_ret);
6006       if (process_info) {
6007         struct lldb_copy__dyld_process_cache_info sc_info;
6008         memset(&sc_info, 0, sizeof(struct lldb_copy__dyld_process_cache_info));
6009         dyld_process_info_get_cache(process_info, &sc_info);
6010         if (sc_info.cacheBaseAddress != 0) {
6011           base_addr = sc_info.cacheBaseAddress;
6012           uuid = UUID::fromOptionalData(sc_info.cacheUUID, sizeof(uuid_t));
6013         }
6014         dyld_process_info_release(process_info);
6015       }
6016     }
6017   }
6018   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS |
6019                                                   LIBLLDB_LOG_PROCESS));
6020   if (log && uuid.IsValid())
6021     LLDB_LOGF(log,
6022               "lldb's in-memory shared cache has a UUID of %s base address of "
6023               "0x%" PRIx64,
6024               uuid.GetAsString().c_str(), base_addr);
6025 #endif
6026 }
6027 
6028 llvm::VersionTuple ObjectFileMachO::GetMinimumOSVersion() {
6029   if (!m_min_os_version) {
6030     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
6031     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
6032       const lldb::offset_t load_cmd_offset = offset;
6033 
6034       llvm::MachO::version_min_command lc;
6035       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
6036         break;
6037       if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX ||
6038           lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS ||
6039           lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS ||
6040           lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) {
6041         if (m_data.GetU32(&offset, &lc.version,
6042                           (sizeof(lc) / sizeof(uint32_t)) - 2)) {
6043           const uint32_t xxxx = lc.version >> 16;
6044           const uint32_t yy = (lc.version >> 8) & 0xffu;
6045           const uint32_t zz = lc.version & 0xffu;
6046           if (xxxx) {
6047             m_min_os_version = llvm::VersionTuple(xxxx, yy, zz);
6048             break;
6049           }
6050         }
6051       } else if (lc.cmd == llvm::MachO::LC_BUILD_VERSION) {
6052         // struct build_version_command {
6053         //     uint32_t    cmd;            /* LC_BUILD_VERSION */
6054         //     uint32_t    cmdsize;        /* sizeof(struct
6055         //     build_version_command) plus */
6056         //                                 /* ntools * sizeof(struct
6057         //                                 build_tool_version) */
6058         //     uint32_t    platform;       /* platform */
6059         //     uint32_t    minos;          /* X.Y.Z is encoded in nibbles
6060         //     xxxx.yy.zz */ uint32_t    sdk;            /* X.Y.Z is encoded in
6061         //     nibbles xxxx.yy.zz */ uint32_t    ntools;         /* number of
6062         //     tool entries following this */
6063         // };
6064 
6065         offset += 4; // skip platform
6066         uint32_t minos = m_data.GetU32(&offset);
6067 
6068         const uint32_t xxxx = minos >> 16;
6069         const uint32_t yy = (minos >> 8) & 0xffu;
6070         const uint32_t zz = minos & 0xffu;
6071         if (xxxx) {
6072           m_min_os_version = llvm::VersionTuple(xxxx, yy, zz);
6073           break;
6074         }
6075       }
6076 
6077       offset = load_cmd_offset + lc.cmdsize;
6078     }
6079 
6080     if (!m_min_os_version) {
6081       // Set version to an empty value so we don't keep trying to
6082       m_min_os_version = llvm::VersionTuple();
6083     }
6084   }
6085 
6086   return *m_min_os_version;
6087 }
6088 
6089 llvm::VersionTuple ObjectFileMachO::GetSDKVersion() {
6090   if (!m_sdk_versions.hasValue()) {
6091     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
6092     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
6093       const lldb::offset_t load_cmd_offset = offset;
6094 
6095       llvm::MachO::version_min_command lc;
6096       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
6097         break;
6098       if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX ||
6099           lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS ||
6100           lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS ||
6101           lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) {
6102         if (m_data.GetU32(&offset, &lc.version,
6103                           (sizeof(lc) / sizeof(uint32_t)) - 2)) {
6104           const uint32_t xxxx = lc.sdk >> 16;
6105           const uint32_t yy = (lc.sdk >> 8) & 0xffu;
6106           const uint32_t zz = lc.sdk & 0xffu;
6107           if (xxxx) {
6108             m_sdk_versions = llvm::VersionTuple(xxxx, yy, zz);
6109             break;
6110           } else {
6111             GetModule()->ReportWarning("minimum OS version load command with "
6112                                        "invalid (0) version found.");
6113           }
6114         }
6115       }
6116       offset = load_cmd_offset + lc.cmdsize;
6117     }
6118 
6119     if (!m_sdk_versions.hasValue()) {
6120       offset = MachHeaderSizeFromMagic(m_header.magic);
6121       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
6122         const lldb::offset_t load_cmd_offset = offset;
6123 
6124         llvm::MachO::version_min_command lc;
6125         if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
6126           break;
6127         if (lc.cmd == llvm::MachO::LC_BUILD_VERSION) {
6128           // struct build_version_command {
6129           //     uint32_t    cmd;            /* LC_BUILD_VERSION */
6130           //     uint32_t    cmdsize;        /* sizeof(struct
6131           //     build_version_command) plus */
6132           //                                 /* ntools * sizeof(struct
6133           //                                 build_tool_version) */
6134           //     uint32_t    platform;       /* platform */
6135           //     uint32_t    minos;          /* X.Y.Z is encoded in nibbles
6136           //     xxxx.yy.zz */ uint32_t    sdk;            /* X.Y.Z is encoded
6137           //     in nibbles xxxx.yy.zz */ uint32_t    ntools;         /* number
6138           //     of tool entries following this */
6139           // };
6140 
6141           offset += 4; // skip platform
6142           uint32_t minos = m_data.GetU32(&offset);
6143 
6144           const uint32_t xxxx = minos >> 16;
6145           const uint32_t yy = (minos >> 8) & 0xffu;
6146           const uint32_t zz = minos & 0xffu;
6147           if (xxxx) {
6148             m_sdk_versions = llvm::VersionTuple(xxxx, yy, zz);
6149             break;
6150           }
6151         }
6152         offset = load_cmd_offset + lc.cmdsize;
6153       }
6154     }
6155 
6156     if (!m_sdk_versions.hasValue())
6157       m_sdk_versions = llvm::VersionTuple();
6158   }
6159 
6160   return m_sdk_versions.getValue();
6161 }
6162 
6163 bool ObjectFileMachO::GetIsDynamicLinkEditor() {
6164   return m_header.filetype == llvm::MachO::MH_DYLINKER;
6165 }
6166 
6167 bool ObjectFileMachO::AllowAssemblyEmulationUnwindPlans() {
6168   return m_allow_assembly_emulation_unwind_plans;
6169 }
6170 
6171 // PluginInterface protocol
6172 lldb_private::ConstString ObjectFileMachO::GetPluginName() {
6173   return GetPluginNameStatic();
6174 }
6175 
6176 uint32_t ObjectFileMachO::GetPluginVersion() { return 1; }
6177 
6178 Section *ObjectFileMachO::GetMachHeaderSection() {
6179   // Find the first address of the mach header which is the first non-zero file
6180   // sized section whose file offset is zero. This is the base file address of
6181   // the mach-o file which can be subtracted from the vmaddr of the other
6182   // segments found in memory and added to the load address
6183   ModuleSP module_sp = GetModule();
6184   if (!module_sp)
6185     return nullptr;
6186   SectionList *section_list = GetSectionList();
6187   if (!section_list)
6188     return nullptr;
6189   const size_t num_sections = section_list->GetSize();
6190   for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
6191     Section *section = section_list->GetSectionAtIndex(sect_idx).get();
6192     if (section->GetFileOffset() == 0 && SectionIsLoadable(section))
6193       return section;
6194   }
6195   return nullptr;
6196 }
6197 
6198 bool ObjectFileMachO::SectionIsLoadable(const Section *section) {
6199   if (!section)
6200     return false;
6201   const bool is_dsym = (m_header.filetype == MH_DSYM);
6202   if (section->GetFileSize() == 0 && !is_dsym)
6203     return false;
6204   if (section->IsThreadSpecific())
6205     return false;
6206   if (GetModule().get() != section->GetModule().get())
6207     return false;
6208   // Be careful with __LINKEDIT and __DWARF segments
6209   if (section->GetName() == GetSegmentNameLINKEDIT() ||
6210       section->GetName() == GetSegmentNameDWARF()) {
6211     // Only map __LINKEDIT and __DWARF if we have an in memory image and
6212     // this isn't a kernel binary like a kext or mach_kernel.
6213     const bool is_memory_image = (bool)m_process_wp.lock();
6214     const Strata strata = GetStrata();
6215     if (is_memory_image == false || strata == eStrataKernel)
6216       return false;
6217   }
6218   return true;
6219 }
6220 
6221 lldb::addr_t ObjectFileMachO::CalculateSectionLoadAddressForMemoryImage(
6222     lldb::addr_t header_load_address, const Section *header_section,
6223     const Section *section) {
6224   ModuleSP module_sp = GetModule();
6225   if (module_sp && header_section && section &&
6226       header_load_address != LLDB_INVALID_ADDRESS) {
6227     lldb::addr_t file_addr = header_section->GetFileAddress();
6228     if (file_addr != LLDB_INVALID_ADDRESS && SectionIsLoadable(section))
6229       return section->GetFileAddress() - file_addr + header_load_address;
6230   }
6231   return LLDB_INVALID_ADDRESS;
6232 }
6233 
6234 bool ObjectFileMachO::SetLoadAddress(Target &target, lldb::addr_t value,
6235                                      bool value_is_offset) {
6236   ModuleSP module_sp = GetModule();
6237   if (!module_sp)
6238     return false;
6239 
6240   SectionList *section_list = GetSectionList();
6241   if (!section_list)
6242     return false;
6243 
6244   size_t num_loaded_sections = 0;
6245   const size_t num_sections = section_list->GetSize();
6246 
6247   if (value_is_offset) {
6248     // "value" is an offset to apply to each top level segment
6249     for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
6250       // Iterate through the object file sections to find all of the
6251       // sections that size on disk (to avoid __PAGEZERO) and load them
6252       SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
6253       if (SectionIsLoadable(section_sp.get()))
6254         if (target.GetSectionLoadList().SetSectionLoadAddress(
6255                 section_sp, section_sp->GetFileAddress() + value))
6256           ++num_loaded_sections;
6257     }
6258   } else {
6259     // "value" is the new base address of the mach_header, adjust each
6260     // section accordingly
6261 
6262     Section *mach_header_section = GetMachHeaderSection();
6263     if (mach_header_section) {
6264       for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
6265         SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
6266 
6267         lldb::addr_t section_load_addr =
6268             CalculateSectionLoadAddressForMemoryImage(
6269                 value, mach_header_section, section_sp.get());
6270         if (section_load_addr != LLDB_INVALID_ADDRESS) {
6271           if (target.GetSectionLoadList().SetSectionLoadAddress(
6272                   section_sp, section_load_addr))
6273             ++num_loaded_sections;
6274         }
6275       }
6276     }
6277   }
6278   return num_loaded_sections > 0;
6279 }
6280 
6281 struct all_image_infos_header {
6282   uint32_t version;         // currently 1
6283   uint32_t imgcount;        // number of binary images
6284   uint64_t entries_fileoff; // file offset in the corefile of where the array of
6285                             // struct entry's begin.
6286   uint32_t entries_size;    // size of 'struct entry'.
6287   uint32_t unused;
6288 };
6289 
6290 struct image_entry {
6291   uint64_t filepath_offset;  // offset in corefile to c-string of the file path,
6292                              // UINT64_MAX if unavailable.
6293   uuid_t uuid;               // uint8_t[16].  should be set to all zeroes if
6294                              // uuid is unknown.
6295   uint64_t load_address;     // UINT64_MAX if unknown.
6296   uint64_t seg_addrs_offset; // offset to the array of struct segment_vmaddr's.
6297   uint32_t segment_count;    // The number of segments for this binary.
6298   uint32_t unused;
6299 
6300   image_entry() {
6301     filepath_offset = UINT64_MAX;
6302     memset(&uuid, 0, sizeof(uuid_t));
6303     segment_count = 0;
6304     load_address = UINT64_MAX;
6305     seg_addrs_offset = UINT64_MAX;
6306     unused = 0;
6307   }
6308   image_entry(const image_entry &rhs) {
6309     filepath_offset = rhs.filepath_offset;
6310     memcpy(&uuid, &rhs.uuid, sizeof(uuid_t));
6311     segment_count = rhs.segment_count;
6312     seg_addrs_offset = rhs.seg_addrs_offset;
6313     load_address = rhs.load_address;
6314     unused = rhs.unused;
6315   }
6316 };
6317 
6318 struct segment_vmaddr {
6319   char segname[16];
6320   uint64_t vmaddr;
6321   uint64_t unused;
6322 
6323   segment_vmaddr() {
6324     memset(&segname, 0, 16);
6325     vmaddr = UINT64_MAX;
6326     unused = 0;
6327   }
6328   segment_vmaddr(const segment_vmaddr &rhs) {
6329     memcpy(&segname, &rhs.segname, 16);
6330     vmaddr = rhs.vmaddr;
6331     unused = rhs.unused;
6332   }
6333 };
6334 
6335 // Write the payload for the "all image infos" LC_NOTE into
6336 // the supplied all_image_infos_payload, assuming that this
6337 // will be written into the corefile starting at
6338 // initial_file_offset.
6339 //
6340 // The placement of this payload is a little tricky.  We're
6341 // laying this out as
6342 //
6343 // 1. header (struct all_image_info_header)
6344 // 2. Array of fixed-size (struct image_entry)'s, one
6345 //    per binary image present in the process.
6346 // 3. Arrays of (struct segment_vmaddr)'s, a varying number
6347 //    for each binary image.
6348 // 4. Variable length c-strings of binary image filepaths,
6349 //    one per binary.
6350 //
6351 // To compute where everything will be laid out in the
6352 // payload, we need to iterate over the images and calculate
6353 // how many segment_vmaddr structures each image will need,
6354 // and how long each image's filepath c-string is. There
6355 // are some multiple passes over the image list while calculating
6356 // everything.
6357 
6358 static offset_t CreateAllImageInfosPayload(
6359     const lldb::ProcessSP &process_sp, offset_t initial_file_offset,
6360     StreamString &all_image_infos_payload, SaveCoreStyle core_style) {
6361   Target &target = process_sp->GetTarget();
6362   ModuleList modules = target.GetImages();
6363 
6364   // stack-only corefiles have no reason to include binaries that
6365   // are not executing; we're trying to make the smallest corefile
6366   // we can, so leave the rest out.
6367   if (core_style == SaveCoreStyle::eSaveCoreStackOnly)
6368     modules.Clear();
6369 
6370   std::set<std::string> executing_uuids;
6371   ThreadList &thread_list(process_sp->GetThreadList());
6372   for (uint32_t i = 0; i < thread_list.GetSize(); i++) {
6373     ThreadSP thread_sp = thread_list.GetThreadAtIndex(i);
6374     uint32_t stack_frame_count = thread_sp->GetStackFrameCount();
6375     for (uint32_t j = 0; j < stack_frame_count; j++) {
6376       StackFrameSP stack_frame_sp = thread_sp->GetStackFrameAtIndex(j);
6377       Address pc = stack_frame_sp->GetFrameCodeAddress();
6378       ModuleSP module_sp = pc.GetModule();
6379       if (module_sp) {
6380         UUID uuid = module_sp->GetUUID();
6381         if (uuid.IsValid()) {
6382           executing_uuids.insert(uuid.GetAsString());
6383           modules.AppendIfNeeded(module_sp);
6384         }
6385       }
6386     }
6387   }
6388   size_t modules_count = modules.GetSize();
6389 
6390   struct all_image_infos_header infos;
6391   infos.version = 1;
6392   infos.imgcount = modules_count;
6393   infos.entries_size = sizeof(image_entry);
6394   infos.entries_fileoff = initial_file_offset + sizeof(all_image_infos_header);
6395   infos.unused = 0;
6396 
6397   all_image_infos_payload.PutHex32(infos.version);
6398   all_image_infos_payload.PutHex32(infos.imgcount);
6399   all_image_infos_payload.PutHex64(infos.entries_fileoff);
6400   all_image_infos_payload.PutHex32(infos.entries_size);
6401   all_image_infos_payload.PutHex32(infos.unused);
6402 
6403   // First create the structures for all of the segment name+vmaddr vectors
6404   // for each module, so we will know the size of them as we add the
6405   // module entries.
6406   std::vector<std::vector<segment_vmaddr>> modules_segment_vmaddrs;
6407   for (size_t i = 0; i < modules_count; i++) {
6408     ModuleSP module = modules.GetModuleAtIndex(i);
6409 
6410     SectionList *sections = module->GetSectionList();
6411     size_t sections_count = sections->GetSize();
6412     std::vector<segment_vmaddr> segment_vmaddrs;
6413     for (size_t j = 0; j < sections_count; j++) {
6414       SectionSP section = sections->GetSectionAtIndex(j);
6415       if (!section->GetParent().get()) {
6416         addr_t vmaddr = section->GetLoadBaseAddress(&target);
6417         if (vmaddr == LLDB_INVALID_ADDRESS)
6418           continue;
6419         ConstString name = section->GetName();
6420         segment_vmaddr seg_vmaddr;
6421         strncpy(seg_vmaddr.segname, name.AsCString(),
6422                 sizeof(seg_vmaddr.segname));
6423         seg_vmaddr.vmaddr = vmaddr;
6424         seg_vmaddr.unused = 0;
6425         segment_vmaddrs.push_back(seg_vmaddr);
6426       }
6427     }
6428     modules_segment_vmaddrs.push_back(segment_vmaddrs);
6429   }
6430 
6431   offset_t size_of_vmaddr_structs = 0;
6432   for (size_t i = 0; i < modules_segment_vmaddrs.size(); i++) {
6433     size_of_vmaddr_structs +=
6434         modules_segment_vmaddrs[i].size() * sizeof(segment_vmaddr);
6435   }
6436 
6437   offset_t size_of_filepath_cstrings = 0;
6438   for (size_t i = 0; i < modules_count; i++) {
6439     ModuleSP module_sp = modules.GetModuleAtIndex(i);
6440     size_of_filepath_cstrings += module_sp->GetFileSpec().GetPath().size() + 1;
6441   }
6442 
6443   // Calculate the file offsets of our "all image infos" payload in the
6444   // corefile. initial_file_offset the original value passed in to this method.
6445 
6446   offset_t start_of_entries =
6447       initial_file_offset + sizeof(all_image_infos_header);
6448   offset_t start_of_seg_vmaddrs =
6449       start_of_entries + sizeof(image_entry) * modules_count;
6450   offset_t start_of_filenames = start_of_seg_vmaddrs + size_of_vmaddr_structs;
6451 
6452   offset_t final_file_offset = start_of_filenames + size_of_filepath_cstrings;
6453 
6454   // Now write the one-per-module 'struct image_entry' into the
6455   // StringStream; keep track of where the struct segment_vmaddr
6456   // entries for each module will end up in the corefile.
6457 
6458   offset_t current_string_offset = start_of_filenames;
6459   offset_t current_segaddrs_offset = start_of_seg_vmaddrs;
6460   std::vector<struct image_entry> image_entries;
6461   for (size_t i = 0; i < modules_count; i++) {
6462     ModuleSP module_sp = modules.GetModuleAtIndex(i);
6463 
6464     struct image_entry ent;
6465     memcpy(&ent.uuid, module_sp->GetUUID().GetBytes().data(), sizeof(ent.uuid));
6466     if (modules_segment_vmaddrs[i].size() > 0) {
6467       ent.segment_count = modules_segment_vmaddrs[i].size();
6468       ent.seg_addrs_offset = current_segaddrs_offset;
6469     }
6470     ent.filepath_offset = current_string_offset;
6471     ObjectFile *objfile = module_sp->GetObjectFile();
6472     if (objfile) {
6473       Address base_addr(objfile->GetBaseAddress());
6474       if (base_addr.IsValid()) {
6475         ent.load_address = base_addr.GetLoadAddress(&target);
6476       }
6477     }
6478 
6479     all_image_infos_payload.PutHex64(ent.filepath_offset);
6480     all_image_infos_payload.PutRawBytes(ent.uuid, sizeof(ent.uuid));
6481     all_image_infos_payload.PutHex64(ent.load_address);
6482     all_image_infos_payload.PutHex64(ent.seg_addrs_offset);
6483     all_image_infos_payload.PutHex32(ent.segment_count);
6484 
6485     if (executing_uuids.find(module_sp->GetUUID().GetAsString()) !=
6486         executing_uuids.end())
6487       all_image_infos_payload.PutHex32(1);
6488     else
6489       all_image_infos_payload.PutHex32(0);
6490 
6491     current_segaddrs_offset += ent.segment_count * sizeof(segment_vmaddr);
6492     current_string_offset += module_sp->GetFileSpec().GetPath().size() + 1;
6493   }
6494 
6495   // Now write the struct segment_vmaddr entries into the StringStream.
6496 
6497   for (size_t i = 0; i < modules_segment_vmaddrs.size(); i++) {
6498     if (modules_segment_vmaddrs[i].size() == 0)
6499       continue;
6500     for (struct segment_vmaddr segvm : modules_segment_vmaddrs[i]) {
6501       all_image_infos_payload.PutRawBytes(segvm.segname, sizeof(segvm.segname));
6502       all_image_infos_payload.PutHex64(segvm.vmaddr);
6503       all_image_infos_payload.PutHex64(segvm.unused);
6504     }
6505   }
6506 
6507   for (size_t i = 0; i < modules_count; i++) {
6508     ModuleSP module_sp = modules.GetModuleAtIndex(i);
6509     std::string filepath = module_sp->GetFileSpec().GetPath();
6510     all_image_infos_payload.PutRawBytes(filepath.data(), filepath.size() + 1);
6511   }
6512 
6513   return final_file_offset;
6514 }
6515 
6516 // Temp struct used to combine contiguous memory regions with
6517 // identical permissions.
6518 struct page_object {
6519   addr_t addr;
6520   addr_t size;
6521   uint32_t prot;
6522 };
6523 
6524 bool ObjectFileMachO::SaveCore(const lldb::ProcessSP &process_sp,
6525                                const FileSpec &outfile,
6526                                lldb::SaveCoreStyle &core_style, Status &error) {
6527   if (!process_sp)
6528     return false;
6529 
6530   // Default on macOS is to create a dirty-memory-only corefile.
6531   if (core_style == SaveCoreStyle::eSaveCoreUnspecified) {
6532     core_style = SaveCoreStyle::eSaveCoreDirtyOnly;
6533   }
6534 
6535   Target &target = process_sp->GetTarget();
6536   const ArchSpec target_arch = target.GetArchitecture();
6537   const llvm::Triple &target_triple = target_arch.GetTriple();
6538   if (target_triple.getVendor() == llvm::Triple::Apple &&
6539       (target_triple.getOS() == llvm::Triple::MacOSX ||
6540        target_triple.getOS() == llvm::Triple::IOS ||
6541        target_triple.getOS() == llvm::Triple::WatchOS ||
6542        target_triple.getOS() == llvm::Triple::TvOS)) {
6543     // NEED_BRIDGEOS_TRIPLE target_triple.getOS() == llvm::Triple::BridgeOS))
6544     // {
6545     bool make_core = false;
6546     switch (target_arch.GetMachine()) {
6547     case llvm::Triple::aarch64:
6548     case llvm::Triple::aarch64_32:
6549     case llvm::Triple::arm:
6550     case llvm::Triple::thumb:
6551     case llvm::Triple::x86:
6552     case llvm::Triple::x86_64:
6553       make_core = true;
6554       break;
6555     default:
6556       error.SetErrorStringWithFormat("unsupported core architecture: %s",
6557                                      target_triple.str().c_str());
6558       break;
6559     }
6560 
6561     if (make_core) {
6562       std::vector<llvm::MachO::segment_command_64> segment_load_commands;
6563       //                uint32_t range_info_idx = 0;
6564       MemoryRegionInfo range_info;
6565       Status range_error = process_sp->GetMemoryRegionInfo(0, range_info);
6566       const uint32_t addr_byte_size = target_arch.GetAddressByteSize();
6567       const ByteOrder byte_order = target_arch.GetByteOrder();
6568       std::vector<page_object> pages_to_copy;
6569 
6570       if (range_error.Success()) {
6571         while (range_info.GetRange().GetRangeBase() != LLDB_INVALID_ADDRESS) {
6572           // Calculate correct protections
6573           uint32_t prot = 0;
6574           if (range_info.GetReadable() == MemoryRegionInfo::eYes)
6575             prot |= VM_PROT_READ;
6576           if (range_info.GetWritable() == MemoryRegionInfo::eYes)
6577             prot |= VM_PROT_WRITE;
6578           if (range_info.GetExecutable() == MemoryRegionInfo::eYes)
6579             prot |= VM_PROT_EXECUTE;
6580 
6581           const addr_t addr = range_info.GetRange().GetRangeBase();
6582           const addr_t size = range_info.GetRange().GetByteSize();
6583 
6584           if (size == 0)
6585             break;
6586 
6587           bool include_this_region = true;
6588           bool dirty_pages_only = false;
6589           if (core_style == SaveCoreStyle::eSaveCoreStackOnly) {
6590             dirty_pages_only = true;
6591             if (range_info.IsStackMemory() != MemoryRegionInfo::eYes) {
6592               include_this_region = false;
6593             }
6594           }
6595           if (core_style == SaveCoreStyle::eSaveCoreDirtyOnly) {
6596             dirty_pages_only = true;
6597           }
6598 
6599           if (prot != 0 && include_this_region) {
6600             addr_t pagesize = range_info.GetPageSize();
6601             const llvm::Optional<std::vector<addr_t>> &dirty_page_list =
6602                 range_info.GetDirtyPageList();
6603             if (dirty_pages_only && dirty_page_list.hasValue()) {
6604               for (addr_t dirtypage : dirty_page_list.getValue()) {
6605                 page_object obj;
6606                 obj.addr = dirtypage;
6607                 obj.size = pagesize;
6608                 obj.prot = prot;
6609                 pages_to_copy.push_back(obj);
6610               }
6611             } else {
6612               page_object obj;
6613               obj.addr = addr;
6614               obj.size = size;
6615               obj.prot = prot;
6616               pages_to_copy.push_back(obj);
6617             }
6618           }
6619 
6620           range_error = process_sp->GetMemoryRegionInfo(
6621               range_info.GetRange().GetRangeEnd(), range_info);
6622           if (range_error.Fail())
6623             break;
6624         }
6625 
6626         // Combine contiguous entries that have the same
6627         // protections so we don't have an excess of
6628         // load commands.
6629         std::vector<page_object> combined_page_objects;
6630         page_object last_obj;
6631         last_obj.addr = LLDB_INVALID_ADDRESS;
6632         last_obj.size = 0;
6633         for (page_object obj : pages_to_copy) {
6634           if (last_obj.addr == LLDB_INVALID_ADDRESS) {
6635             last_obj = obj;
6636             continue;
6637           }
6638           if (last_obj.addr + last_obj.size == obj.addr &&
6639               last_obj.prot == obj.prot) {
6640             last_obj.size += obj.size;
6641             continue;
6642           }
6643           combined_page_objects.push_back(last_obj);
6644           last_obj = obj;
6645         }
6646         // Add the last entry we were looking to combine
6647         // on to the array.
6648         if (last_obj.addr != LLDB_INVALID_ADDRESS && last_obj.size != 0)
6649           combined_page_objects.push_back(last_obj);
6650 
6651         for (page_object obj : combined_page_objects) {
6652           uint32_t cmd_type = LC_SEGMENT_64;
6653           uint32_t segment_size = sizeof(llvm::MachO::segment_command_64);
6654           if (addr_byte_size == 4) {
6655             cmd_type = LC_SEGMENT;
6656             segment_size = sizeof(llvm::MachO::segment_command);
6657           }
6658           llvm::MachO::segment_command_64 segment = {
6659               cmd_type,     // uint32_t cmd;
6660               segment_size, // uint32_t cmdsize;
6661               {0},          // char segname[16];
6662               obj.addr,     // uint64_t vmaddr;    // uint32_t for 32-bit
6663                             // Mach-O
6664               obj.size,     // uint64_t vmsize;    // uint32_t for 32-bit
6665                             // Mach-O
6666               0,            // uint64_t fileoff;   // uint32_t for 32-bit Mach-O
6667               obj.size,     // uint64_t filesize;  // uint32_t for 32-bit
6668                             // Mach-O
6669               obj.prot,     // uint32_t maxprot;
6670               obj.prot,     // uint32_t initprot;
6671               0,            // uint32_t nsects;
6672               0};           // uint32_t flags;
6673           segment_load_commands.push_back(segment);
6674         }
6675 
6676         StreamString buffer(Stream::eBinary, addr_byte_size, byte_order);
6677 
6678         llvm::MachO::mach_header_64 mach_header;
6679         if (addr_byte_size == 8) {
6680           mach_header.magic = MH_MAGIC_64;
6681         } else {
6682           mach_header.magic = MH_MAGIC;
6683         }
6684         mach_header.cputype = target_arch.GetMachOCPUType();
6685         mach_header.cpusubtype = target_arch.GetMachOCPUSubType();
6686         mach_header.filetype = MH_CORE;
6687         mach_header.ncmds = segment_load_commands.size();
6688         mach_header.flags = 0;
6689         mach_header.reserved = 0;
6690         ThreadList &thread_list = process_sp->GetThreadList();
6691         const uint32_t num_threads = thread_list.GetSize();
6692 
6693         // Make an array of LC_THREAD data items. Each one contains the
6694         // contents of the LC_THREAD load command. The data doesn't contain
6695         // the load command + load command size, we will add the load command
6696         // and load command size as we emit the data.
6697         std::vector<StreamString> LC_THREAD_datas(num_threads);
6698         for (auto &LC_THREAD_data : LC_THREAD_datas) {
6699           LC_THREAD_data.GetFlags().Set(Stream::eBinary);
6700           LC_THREAD_data.SetAddressByteSize(addr_byte_size);
6701           LC_THREAD_data.SetByteOrder(byte_order);
6702         }
6703         for (uint32_t thread_idx = 0; thread_idx < num_threads; ++thread_idx) {
6704           ThreadSP thread_sp(thread_list.GetThreadAtIndex(thread_idx));
6705           if (thread_sp) {
6706             switch (mach_header.cputype) {
6707             case llvm::MachO::CPU_TYPE_ARM64:
6708             case llvm::MachO::CPU_TYPE_ARM64_32:
6709               RegisterContextDarwin_arm64_Mach::Create_LC_THREAD(
6710                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6711               break;
6712 
6713             case llvm::MachO::CPU_TYPE_ARM:
6714               RegisterContextDarwin_arm_Mach::Create_LC_THREAD(
6715                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6716               break;
6717 
6718             case llvm::MachO::CPU_TYPE_I386:
6719               RegisterContextDarwin_i386_Mach::Create_LC_THREAD(
6720                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6721               break;
6722 
6723             case llvm::MachO::CPU_TYPE_X86_64:
6724               RegisterContextDarwin_x86_64_Mach::Create_LC_THREAD(
6725                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6726               break;
6727             }
6728           }
6729         }
6730 
6731         // The size of the load command is the size of the segments...
6732         if (addr_byte_size == 8) {
6733           mach_header.sizeofcmds = segment_load_commands.size() *
6734                                    sizeof(llvm::MachO::segment_command_64);
6735         } else {
6736           mach_header.sizeofcmds = segment_load_commands.size() *
6737                                    sizeof(llvm::MachO::segment_command);
6738         }
6739 
6740         // and the size of all LC_THREAD load command
6741         for (const auto &LC_THREAD_data : LC_THREAD_datas) {
6742           ++mach_header.ncmds;
6743           mach_header.sizeofcmds += 8 + LC_THREAD_data.GetSize();
6744         }
6745 
6746         // Bits will be set to indicate which bits are NOT used in
6747         // addressing in this process or 0 for unknown.
6748         uint64_t address_mask = process_sp->GetCodeAddressMask();
6749         if (address_mask != 0) {
6750           // LC_NOTE "addrable bits"
6751           mach_header.ncmds++;
6752           mach_header.sizeofcmds += sizeof(llvm::MachO::note_command);
6753         }
6754 
6755         // LC_NOTE "all image infos"
6756         mach_header.ncmds++;
6757         mach_header.sizeofcmds += sizeof(llvm::MachO::note_command);
6758 
6759         // Write the mach header
6760         buffer.PutHex32(mach_header.magic);
6761         buffer.PutHex32(mach_header.cputype);
6762         buffer.PutHex32(mach_header.cpusubtype);
6763         buffer.PutHex32(mach_header.filetype);
6764         buffer.PutHex32(mach_header.ncmds);
6765         buffer.PutHex32(mach_header.sizeofcmds);
6766         buffer.PutHex32(mach_header.flags);
6767         if (addr_byte_size == 8) {
6768           buffer.PutHex32(mach_header.reserved);
6769         }
6770 
6771         // Skip the mach header and all load commands and align to the next
6772         // 0x1000 byte boundary
6773         addr_t file_offset = buffer.GetSize() + mach_header.sizeofcmds;
6774 
6775         file_offset = llvm::alignTo(file_offset, 16);
6776         std::vector<std::unique_ptr<LCNoteEntry>> lc_notes;
6777 
6778         // Add "addrable bits" LC_NOTE when an address mask is available
6779         if (address_mask != 0) {
6780           std::unique_ptr<LCNoteEntry> addrable_bits_lcnote_up(
6781               new LCNoteEntry(addr_byte_size, byte_order));
6782           addrable_bits_lcnote_up->name = "addrable bits";
6783           addrable_bits_lcnote_up->payload_file_offset = file_offset;
6784           int bits = std::bitset<64>(~address_mask).count();
6785           addrable_bits_lcnote_up->payload.PutHex32(3); // version
6786           addrable_bits_lcnote_up->payload.PutHex32(
6787               bits); // # of bits used for addressing
6788           addrable_bits_lcnote_up->payload.PutHex64(0); // unused
6789 
6790           file_offset += addrable_bits_lcnote_up->payload.GetSize();
6791 
6792           lc_notes.push_back(std::move(addrable_bits_lcnote_up));
6793         }
6794 
6795         // Add "all image infos" LC_NOTE
6796         std::unique_ptr<LCNoteEntry> all_image_infos_lcnote_up(
6797             new LCNoteEntry(addr_byte_size, byte_order));
6798         all_image_infos_lcnote_up->name = "all image infos";
6799         all_image_infos_lcnote_up->payload_file_offset = file_offset;
6800         file_offset = CreateAllImageInfosPayload(
6801             process_sp, file_offset, all_image_infos_lcnote_up->payload,
6802             core_style);
6803         lc_notes.push_back(std::move(all_image_infos_lcnote_up));
6804 
6805         // Add LC_NOTE load commands
6806         for (auto &lcnote : lc_notes) {
6807           // Add the LC_NOTE load command to the file.
6808           buffer.PutHex32(LC_NOTE);
6809           buffer.PutHex32(sizeof(llvm::MachO::note_command));
6810           char namebuf[16];
6811           memset(namebuf, 0, sizeof(namebuf));
6812           // this is the uncommon case where strncpy is exactly
6813           // the right one, doesn't need to be nul terminated.
6814           strncpy(namebuf, lcnote->name.c_str(), sizeof(namebuf));
6815           buffer.PutRawBytes(namebuf, sizeof(namebuf));
6816           buffer.PutHex64(lcnote->payload_file_offset);
6817           buffer.PutHex64(lcnote->payload.GetSize());
6818         }
6819 
6820         // Align to 4096-byte page boundary for the LC_SEGMENTs.
6821         file_offset = llvm::alignTo(file_offset, 4096);
6822 
6823         for (auto &segment : segment_load_commands) {
6824           segment.fileoff = file_offset;
6825           file_offset += segment.filesize;
6826         }
6827 
6828         // Write out all of the LC_THREAD load commands
6829         for (const auto &LC_THREAD_data : LC_THREAD_datas) {
6830           const size_t LC_THREAD_data_size = LC_THREAD_data.GetSize();
6831           buffer.PutHex32(LC_THREAD);
6832           buffer.PutHex32(8 + LC_THREAD_data_size); // cmd + cmdsize + data
6833           buffer.Write(LC_THREAD_data.GetString().data(), LC_THREAD_data_size);
6834         }
6835 
6836         // Write out all of the segment load commands
6837         for (const auto &segment : segment_load_commands) {
6838           buffer.PutHex32(segment.cmd);
6839           buffer.PutHex32(segment.cmdsize);
6840           buffer.PutRawBytes(segment.segname, sizeof(segment.segname));
6841           if (addr_byte_size == 8) {
6842             buffer.PutHex64(segment.vmaddr);
6843             buffer.PutHex64(segment.vmsize);
6844             buffer.PutHex64(segment.fileoff);
6845             buffer.PutHex64(segment.filesize);
6846           } else {
6847             buffer.PutHex32(static_cast<uint32_t>(segment.vmaddr));
6848             buffer.PutHex32(static_cast<uint32_t>(segment.vmsize));
6849             buffer.PutHex32(static_cast<uint32_t>(segment.fileoff));
6850             buffer.PutHex32(static_cast<uint32_t>(segment.filesize));
6851           }
6852           buffer.PutHex32(segment.maxprot);
6853           buffer.PutHex32(segment.initprot);
6854           buffer.PutHex32(segment.nsects);
6855           buffer.PutHex32(segment.flags);
6856         }
6857 
6858         std::string core_file_path(outfile.GetPath());
6859         auto core_file = FileSystem::Instance().Open(
6860             outfile, File::eOpenOptionWriteOnly | File::eOpenOptionTruncate |
6861                          File::eOpenOptionCanCreate);
6862         if (!core_file) {
6863           error = core_file.takeError();
6864         } else {
6865           // Read 1 page at a time
6866           uint8_t bytes[0x1000];
6867           // Write the mach header and load commands out to the core file
6868           size_t bytes_written = buffer.GetString().size();
6869           error =
6870               core_file.get()->Write(buffer.GetString().data(), bytes_written);
6871           if (error.Success()) {
6872 
6873             for (auto &lcnote : lc_notes) {
6874               if (core_file.get()->SeekFromStart(lcnote->payload_file_offset) ==
6875                   -1) {
6876                 error.SetErrorStringWithFormat("Unable to seek to corefile pos "
6877                                                "to write '%s' LC_NOTE payload",
6878                                                lcnote->name.c_str());
6879                 return false;
6880               }
6881               bytes_written = lcnote->payload.GetSize();
6882               error = core_file.get()->Write(lcnote->payload.GetData(),
6883                                              bytes_written);
6884               if (!error.Success())
6885                 return false;
6886             }
6887 
6888             // Now write the file data for all memory segments in the process
6889             for (const auto &segment : segment_load_commands) {
6890               if (core_file.get()->SeekFromStart(segment.fileoff) == -1) {
6891                 error.SetErrorStringWithFormat(
6892                     "unable to seek to offset 0x%" PRIx64 " in '%s'",
6893                     segment.fileoff, core_file_path.c_str());
6894                 break;
6895               }
6896 
6897               target.GetDebugger().GetAsyncOutputStream()->Printf(
6898                   "Saving %" PRId64
6899                   " bytes of data for memory region at 0x%" PRIx64 "\n",
6900                   segment.vmsize, segment.vmaddr);
6901               addr_t bytes_left = segment.vmsize;
6902               addr_t addr = segment.vmaddr;
6903               Status memory_read_error;
6904               while (bytes_left > 0 && error.Success()) {
6905                 const size_t bytes_to_read =
6906                     bytes_left > sizeof(bytes) ? sizeof(bytes) : bytes_left;
6907 
6908                 // In a savecore setting, we don't really care about caching,
6909                 // as the data is dumped and very likely never read again,
6910                 // so we call ReadMemoryFromInferior to bypass it.
6911                 const size_t bytes_read = process_sp->ReadMemoryFromInferior(
6912                     addr, bytes, bytes_to_read, memory_read_error);
6913 
6914                 if (bytes_read == bytes_to_read) {
6915                   size_t bytes_written = bytes_read;
6916                   error = core_file.get()->Write(bytes, bytes_written);
6917                   bytes_left -= bytes_read;
6918                   addr += bytes_read;
6919                 } else {
6920                   // Some pages within regions are not readable, those should
6921                   // be zero filled
6922                   memset(bytes, 0, bytes_to_read);
6923                   size_t bytes_written = bytes_to_read;
6924                   error = core_file.get()->Write(bytes, bytes_written);
6925                   bytes_left -= bytes_to_read;
6926                   addr += bytes_to_read;
6927                 }
6928               }
6929             }
6930           }
6931         }
6932       } else {
6933         error.SetErrorString(
6934             "process doesn't support getting memory region info");
6935       }
6936     }
6937     return true; // This is the right plug to handle saving core files for
6938                  // this process
6939   }
6940   return false;
6941 }
6942 
6943 ObjectFileMachO::MachOCorefileAllImageInfos
6944 ObjectFileMachO::GetCorefileAllImageInfos() {
6945   MachOCorefileAllImageInfos image_infos;
6946 
6947   // Look for an "all image infos" LC_NOTE.
6948   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
6949   for (uint32_t i = 0; i < m_header.ncmds; ++i) {
6950     const uint32_t cmd_offset = offset;
6951     llvm::MachO::load_command lc;
6952     if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
6953       break;
6954     if (lc.cmd == LC_NOTE) {
6955       char data_owner[17];
6956       m_data.CopyData(offset, 16, data_owner);
6957       data_owner[16] = '\0';
6958       offset += 16;
6959       uint64_t fileoff = m_data.GetU64_unchecked(&offset);
6960       offset += 4; /* size unused */
6961 
6962       if (strcmp("all image infos", data_owner) == 0) {
6963         offset = fileoff;
6964         // Read the struct all_image_infos_header.
6965         uint32_t version = m_data.GetU32(&offset);
6966         if (version != 1) {
6967           return image_infos;
6968         }
6969         uint32_t imgcount = m_data.GetU32(&offset);
6970         uint64_t entries_fileoff = m_data.GetU64(&offset);
6971         offset += 4; // uint32_t entries_size;
6972         offset += 4; // uint32_t unused;
6973 
6974         offset = entries_fileoff;
6975         for (uint32_t i = 0; i < imgcount; i++) {
6976           // Read the struct image_entry.
6977           offset_t filepath_offset = m_data.GetU64(&offset);
6978           uuid_t uuid;
6979           memcpy(&uuid, m_data.GetData(&offset, sizeof(uuid_t)),
6980                  sizeof(uuid_t));
6981           uint64_t load_address = m_data.GetU64(&offset);
6982           offset_t seg_addrs_offset = m_data.GetU64(&offset);
6983           uint32_t segment_count = m_data.GetU32(&offset);
6984           uint32_t currently_executing = m_data.GetU32(&offset);
6985 
6986           MachOCorefileImageEntry image_entry;
6987           image_entry.filename = (const char *)m_data.GetCStr(&filepath_offset);
6988           image_entry.uuid = UUID::fromData(uuid, sizeof(uuid_t));
6989           image_entry.load_address = load_address;
6990           image_entry.currently_executing = currently_executing;
6991 
6992           offset_t seg_vmaddrs_offset = seg_addrs_offset;
6993           for (uint32_t j = 0; j < segment_count; j++) {
6994             char segname[17];
6995             m_data.CopyData(seg_vmaddrs_offset, 16, segname);
6996             segname[16] = '\0';
6997             seg_vmaddrs_offset += 16;
6998             uint64_t vmaddr = m_data.GetU64(&seg_vmaddrs_offset);
6999             seg_vmaddrs_offset += 8; /* unused */
7000 
7001             std::tuple<ConstString, addr_t> new_seg{ConstString(segname),
7002                                                     vmaddr};
7003             image_entry.segment_load_addresses.push_back(new_seg);
7004           }
7005           image_infos.all_image_infos.push_back(image_entry);
7006         }
7007       }
7008     }
7009     offset = cmd_offset + lc.cmdsize;
7010   }
7011 
7012   return image_infos;
7013 }
7014 
7015 bool ObjectFileMachO::LoadCoreFileImages(lldb_private::Process &process) {
7016   MachOCorefileAllImageInfos image_infos = GetCorefileAllImageInfos();
7017   bool added_images = false;
7018   if (image_infos.IsValid()) {
7019     for (const MachOCorefileImageEntry &image : image_infos.all_image_infos) {
7020       ModuleSpec module_spec;
7021       module_spec.GetUUID() = image.uuid;
7022       module_spec.GetFileSpec() = FileSpec(image.filename.c_str());
7023       if (image.currently_executing) {
7024         Symbols::DownloadObjectAndSymbolFile(module_spec, true);
7025         if (FileSystem::Instance().Exists(module_spec.GetFileSpec())) {
7026           process.GetTarget().GetOrCreateModule(module_spec, false);
7027         }
7028       }
7029       Status error;
7030       ModuleSP module_sp =
7031           process.GetTarget().GetOrCreateModule(module_spec, false, &error);
7032       if (!module_sp.get() || !module_sp->GetObjectFile()) {
7033         if (image.load_address != LLDB_INVALID_ADDRESS) {
7034           module_sp = process.ReadModuleFromMemory(module_spec.GetFileSpec(),
7035                                                    image.load_address);
7036         }
7037       }
7038       if (module_sp.get() && module_sp->GetObjectFile()) {
7039         added_images = true;
7040         if (module_sp->GetObjectFile()->GetType() ==
7041             ObjectFile::eTypeExecutable) {
7042           process.GetTarget().SetExecutableModule(module_sp, eLoadDependentsNo);
7043         }
7044         for (auto name_vmaddr_tuple : image.segment_load_addresses) {
7045           SectionList *sectlist = module_sp->GetObjectFile()->GetSectionList();
7046           if (sectlist) {
7047             SectionSP sect_sp =
7048                 sectlist->FindSectionByName(std::get<0>(name_vmaddr_tuple));
7049             if (sect_sp) {
7050               process.GetTarget().SetSectionLoadAddress(
7051                   sect_sp, std::get<1>(name_vmaddr_tuple));
7052             }
7053           }
7054         }
7055       }
7056     }
7057   }
7058   return added_images;
7059 }
7060