1 //===-- ObjectFileMachO.cpp -------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/ADT/StringRef.h"
10 
11 #include "Plugins/Process/Utility/RegisterContextDarwin_arm.h"
12 #include "Plugins/Process/Utility/RegisterContextDarwin_arm64.h"
13 #include "Plugins/Process/Utility/RegisterContextDarwin_i386.h"
14 #include "Plugins/Process/Utility/RegisterContextDarwin_x86_64.h"
15 #include "lldb/Core/Debugger.h"
16 #include "lldb/Core/FileSpecList.h"
17 #include "lldb/Core/Module.h"
18 #include "lldb/Core/ModuleSpec.h"
19 #include "lldb/Core/PluginManager.h"
20 #include "lldb/Core/Section.h"
21 #include "lldb/Core/StreamFile.h"
22 #include "lldb/Host/Host.h"
23 #include "lldb/Symbol/DWARFCallFrameInfo.h"
24 #include "lldb/Symbol/ObjectFile.h"
25 #include "lldb/Target/DynamicLoader.h"
26 #include "lldb/Target/MemoryRegionInfo.h"
27 #include "lldb/Target/Platform.h"
28 #include "lldb/Target/Process.h"
29 #include "lldb/Target/SectionLoadList.h"
30 #include "lldb/Target/Target.h"
31 #include "lldb/Target/Thread.h"
32 #include "lldb/Target/ThreadList.h"
33 #include "lldb/Utility/ArchSpec.h"
34 #include "lldb/Utility/DataBuffer.h"
35 #include "lldb/Utility/FileSpec.h"
36 #include "lldb/Utility/Log.h"
37 #include "lldb/Utility/RangeMap.h"
38 #include "lldb/Utility/RegisterValue.h"
39 #include "lldb/Utility/Status.h"
40 #include "lldb/Utility/StreamString.h"
41 #include "lldb/Utility/Timer.h"
42 #include "lldb/Utility/UUID.h"
43 
44 #include "lldb/Host/SafeMachO.h"
45 
46 #include "llvm/Support/MemoryBuffer.h"
47 
48 #include "ObjectFileMachO.h"
49 
50 #if defined(__APPLE__) &&                                                      \
51     (defined(__arm__) || defined(__arm64__) || defined(__aarch64__))
52 // GetLLDBSharedCacheUUID() needs to call dlsym()
53 #include <dlfcn.h>
54 #endif
55 
56 #ifndef __APPLE__
57 #include "Utility/UuidCompatibility.h"
58 #else
59 #include <uuid/uuid.h>
60 #endif
61 
62 #include <memory>
63 
64 #define THUMB_ADDRESS_BIT_MASK 0xfffffffffffffffeull
65 using namespace lldb;
66 using namespace lldb_private;
67 using namespace llvm::MachO;
68 
69 // Some structure definitions needed for parsing the dyld shared cache files
70 // found on iOS devices.
71 
72 struct lldb_copy_dyld_cache_header_v1 {
73   char magic[16];         // e.g. "dyld_v0    i386", "dyld_v1   armv7", etc.
74   uint32_t mappingOffset; // file offset to first dyld_cache_mapping_info
75   uint32_t mappingCount;  // number of dyld_cache_mapping_info entries
76   uint32_t imagesOffset;
77   uint32_t imagesCount;
78   uint64_t dyldBaseAddress;
79   uint64_t codeSignatureOffset;
80   uint64_t codeSignatureSize;
81   uint64_t slideInfoOffset;
82   uint64_t slideInfoSize;
83   uint64_t localSymbolsOffset;
84   uint64_t localSymbolsSize;
85   uint8_t uuid[16]; // v1 and above, also recorded in dyld_all_image_infos v13
86                     // and later
87 };
88 
89 struct lldb_copy_dyld_cache_mapping_info {
90   uint64_t address;
91   uint64_t size;
92   uint64_t fileOffset;
93   uint32_t maxProt;
94   uint32_t initProt;
95 };
96 
97 struct lldb_copy_dyld_cache_local_symbols_info {
98   uint32_t nlistOffset;
99   uint32_t nlistCount;
100   uint32_t stringsOffset;
101   uint32_t stringsSize;
102   uint32_t entriesOffset;
103   uint32_t entriesCount;
104 };
105 struct lldb_copy_dyld_cache_local_symbols_entry {
106   uint32_t dylibOffset;
107   uint32_t nlistStartIndex;
108   uint32_t nlistCount;
109 };
110 
111 static void PrintRegisterValue(RegisterContext *reg_ctx, const char *name,
112                                const char *alt_name, size_t reg_byte_size,
113                                Stream &data) {
114   const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
115   if (reg_info == nullptr)
116     reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
117   if (reg_info) {
118     lldb_private::RegisterValue reg_value;
119     if (reg_ctx->ReadRegister(reg_info, reg_value)) {
120       if (reg_info->byte_size >= reg_byte_size)
121         data.Write(reg_value.GetBytes(), reg_byte_size);
122       else {
123         data.Write(reg_value.GetBytes(), reg_info->byte_size);
124         for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n; ++i)
125           data.PutChar(0);
126       }
127       return;
128     }
129   }
130   // Just write zeros if all else fails
131   for (size_t i = 0; i < reg_byte_size; ++i)
132     data.PutChar(0);
133 }
134 
135 class RegisterContextDarwin_x86_64_Mach : public RegisterContextDarwin_x86_64 {
136 public:
137   RegisterContextDarwin_x86_64_Mach(lldb_private::Thread &thread,
138                                     const DataExtractor &data)
139       : RegisterContextDarwin_x86_64(thread, 0) {
140     SetRegisterDataFrom_LC_THREAD(data);
141   }
142 
143   void InvalidateAllRegisters() override {
144     // Do nothing... registers are always valid...
145   }
146 
147   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
148     lldb::offset_t offset = 0;
149     SetError(GPRRegSet, Read, -1);
150     SetError(FPURegSet, Read, -1);
151     SetError(EXCRegSet, Read, -1);
152     bool done = false;
153 
154     while (!done) {
155       int flavor = data.GetU32(&offset);
156       if (flavor == 0)
157         done = true;
158       else {
159         uint32_t i;
160         uint32_t count = data.GetU32(&offset);
161         switch (flavor) {
162         case GPRRegSet:
163           for (i = 0; i < count; ++i)
164             (&gpr.rax)[i] = data.GetU64(&offset);
165           SetError(GPRRegSet, Read, 0);
166           done = true;
167 
168           break;
169         case FPURegSet:
170           // TODO: fill in FPU regs....
171           // SetError (FPURegSet, Read, -1);
172           done = true;
173 
174           break;
175         case EXCRegSet:
176           exc.trapno = data.GetU32(&offset);
177           exc.err = data.GetU32(&offset);
178           exc.faultvaddr = data.GetU64(&offset);
179           SetError(EXCRegSet, Read, 0);
180           done = true;
181           break;
182         case 7:
183         case 8:
184         case 9:
185           // fancy flavors that encapsulate of the above flavors...
186           break;
187 
188         default:
189           done = true;
190           break;
191         }
192       }
193     }
194   }
195 
196   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
197     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
198     if (reg_ctx_sp) {
199       RegisterContext *reg_ctx = reg_ctx_sp.get();
200 
201       data.PutHex32(GPRRegSet); // Flavor
202       data.PutHex32(GPRWordCount);
203       PrintRegisterValue(reg_ctx, "rax", nullptr, 8, data);
204       PrintRegisterValue(reg_ctx, "rbx", nullptr, 8, data);
205       PrintRegisterValue(reg_ctx, "rcx", nullptr, 8, data);
206       PrintRegisterValue(reg_ctx, "rdx", nullptr, 8, data);
207       PrintRegisterValue(reg_ctx, "rdi", nullptr, 8, data);
208       PrintRegisterValue(reg_ctx, "rsi", nullptr, 8, data);
209       PrintRegisterValue(reg_ctx, "rbp", nullptr, 8, data);
210       PrintRegisterValue(reg_ctx, "rsp", nullptr, 8, data);
211       PrintRegisterValue(reg_ctx, "r8", nullptr, 8, data);
212       PrintRegisterValue(reg_ctx, "r9", nullptr, 8, data);
213       PrintRegisterValue(reg_ctx, "r10", nullptr, 8, data);
214       PrintRegisterValue(reg_ctx, "r11", nullptr, 8, data);
215       PrintRegisterValue(reg_ctx, "r12", nullptr, 8, data);
216       PrintRegisterValue(reg_ctx, "r13", nullptr, 8, data);
217       PrintRegisterValue(reg_ctx, "r14", nullptr, 8, data);
218       PrintRegisterValue(reg_ctx, "r15", nullptr, 8, data);
219       PrintRegisterValue(reg_ctx, "rip", nullptr, 8, data);
220       PrintRegisterValue(reg_ctx, "rflags", nullptr, 8, data);
221       PrintRegisterValue(reg_ctx, "cs", nullptr, 8, data);
222       PrintRegisterValue(reg_ctx, "fs", nullptr, 8, data);
223       PrintRegisterValue(reg_ctx, "gs", nullptr, 8, data);
224 
225       //            // Write out the FPU registers
226       //            const size_t fpu_byte_size = sizeof(FPU);
227       //            size_t bytes_written = 0;
228       //            data.PutHex32 (FPURegSet);
229       //            data.PutHex32 (fpu_byte_size/sizeof(uint64_t));
230       //            bytes_written += data.PutHex32(0); // uint32_t pad[0]
231       //            bytes_written += data.PutHex32(0); // uint32_t pad[1]
232       //            bytes_written += WriteRegister (reg_ctx, "fcw", "fctrl", 2,
233       //            data);   // uint16_t    fcw;    // "fctrl"
234       //            bytes_written += WriteRegister (reg_ctx, "fsw" , "fstat", 2,
235       //            data);  // uint16_t    fsw;    // "fstat"
236       //            bytes_written += WriteRegister (reg_ctx, "ftw" , "ftag", 1,
237       //            data);   // uint8_t     ftw;    // "ftag"
238       //            bytes_written += data.PutHex8  (0); // uint8_t pad1;
239       //            bytes_written += WriteRegister (reg_ctx, "fop" , NULL, 2,
240       //            data);     // uint16_t    fop;    // "fop"
241       //            bytes_written += WriteRegister (reg_ctx, "fioff", "ip", 4,
242       //            data);    // uint32_t    ip;     // "fioff"
243       //            bytes_written += WriteRegister (reg_ctx, "fiseg", NULL, 2,
244       //            data);    // uint16_t    cs;     // "fiseg"
245       //            bytes_written += data.PutHex16 (0); // uint16_t    pad2;
246       //            bytes_written += WriteRegister (reg_ctx, "dp", "fooff" , 4,
247       //            data);   // uint32_t    dp;     // "fooff"
248       //            bytes_written += WriteRegister (reg_ctx, "foseg", NULL, 2,
249       //            data);    // uint16_t    ds;     // "foseg"
250       //            bytes_written += data.PutHex16 (0); // uint16_t    pad3;
251       //            bytes_written += WriteRegister (reg_ctx, "mxcsr", NULL, 4,
252       //            data);    // uint32_t    mxcsr;
253       //            bytes_written += WriteRegister (reg_ctx, "mxcsrmask", NULL,
254       //            4, data);// uint32_t    mxcsrmask;
255       //            bytes_written += WriteRegister (reg_ctx, "stmm0", NULL,
256       //            sizeof(MMSReg), data);
257       //            bytes_written += WriteRegister (reg_ctx, "stmm1", NULL,
258       //            sizeof(MMSReg), data);
259       //            bytes_written += WriteRegister (reg_ctx, "stmm2", NULL,
260       //            sizeof(MMSReg), data);
261       //            bytes_written += WriteRegister (reg_ctx, "stmm3", NULL,
262       //            sizeof(MMSReg), data);
263       //            bytes_written += WriteRegister (reg_ctx, "stmm4", NULL,
264       //            sizeof(MMSReg), data);
265       //            bytes_written += WriteRegister (reg_ctx, "stmm5", NULL,
266       //            sizeof(MMSReg), data);
267       //            bytes_written += WriteRegister (reg_ctx, "stmm6", NULL,
268       //            sizeof(MMSReg), data);
269       //            bytes_written += WriteRegister (reg_ctx, "stmm7", NULL,
270       //            sizeof(MMSReg), data);
271       //            bytes_written += WriteRegister (reg_ctx, "xmm0" , NULL,
272       //            sizeof(XMMReg), data);
273       //            bytes_written += WriteRegister (reg_ctx, "xmm1" , NULL,
274       //            sizeof(XMMReg), data);
275       //            bytes_written += WriteRegister (reg_ctx, "xmm2" , NULL,
276       //            sizeof(XMMReg), data);
277       //            bytes_written += WriteRegister (reg_ctx, "xmm3" , NULL,
278       //            sizeof(XMMReg), data);
279       //            bytes_written += WriteRegister (reg_ctx, "xmm4" , NULL,
280       //            sizeof(XMMReg), data);
281       //            bytes_written += WriteRegister (reg_ctx, "xmm5" , NULL,
282       //            sizeof(XMMReg), data);
283       //            bytes_written += WriteRegister (reg_ctx, "xmm6" , NULL,
284       //            sizeof(XMMReg), data);
285       //            bytes_written += WriteRegister (reg_ctx, "xmm7" , NULL,
286       //            sizeof(XMMReg), data);
287       //            bytes_written += WriteRegister (reg_ctx, "xmm8" , NULL,
288       //            sizeof(XMMReg), data);
289       //            bytes_written += WriteRegister (reg_ctx, "xmm9" , NULL,
290       //            sizeof(XMMReg), data);
291       //            bytes_written += WriteRegister (reg_ctx, "xmm10", NULL,
292       //            sizeof(XMMReg), data);
293       //            bytes_written += WriteRegister (reg_ctx, "xmm11", NULL,
294       //            sizeof(XMMReg), data);
295       //            bytes_written += WriteRegister (reg_ctx, "xmm12", NULL,
296       //            sizeof(XMMReg), data);
297       //            bytes_written += WriteRegister (reg_ctx, "xmm13", NULL,
298       //            sizeof(XMMReg), data);
299       //            bytes_written += WriteRegister (reg_ctx, "xmm14", NULL,
300       //            sizeof(XMMReg), data);
301       //            bytes_written += WriteRegister (reg_ctx, "xmm15", NULL,
302       //            sizeof(XMMReg), data);
303       //
304       //            // Fill rest with zeros
305       //            for (size_t i=0, n = fpu_byte_size - bytes_written; i<n; ++
306       //            i)
307       //                data.PutChar(0);
308 
309       // Write out the EXC registers
310       data.PutHex32(EXCRegSet);
311       data.PutHex32(EXCWordCount);
312       PrintRegisterValue(reg_ctx, "trapno", nullptr, 4, data);
313       PrintRegisterValue(reg_ctx, "err", nullptr, 4, data);
314       PrintRegisterValue(reg_ctx, "faultvaddr", nullptr, 8, data);
315       return true;
316     }
317     return false;
318   }
319 
320 protected:
321   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
322 
323   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
324 
325   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
326 
327   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
328     return 0;
329   }
330 
331   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
332     return 0;
333   }
334 
335   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
336     return 0;
337   }
338 };
339 
340 class RegisterContextDarwin_i386_Mach : public RegisterContextDarwin_i386 {
341 public:
342   RegisterContextDarwin_i386_Mach(lldb_private::Thread &thread,
343                                   const DataExtractor &data)
344       : RegisterContextDarwin_i386(thread, 0) {
345     SetRegisterDataFrom_LC_THREAD(data);
346   }
347 
348   void InvalidateAllRegisters() override {
349     // Do nothing... registers are always valid...
350   }
351 
352   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
353     lldb::offset_t offset = 0;
354     SetError(GPRRegSet, Read, -1);
355     SetError(FPURegSet, Read, -1);
356     SetError(EXCRegSet, Read, -1);
357     bool done = false;
358 
359     while (!done) {
360       int flavor = data.GetU32(&offset);
361       if (flavor == 0)
362         done = true;
363       else {
364         uint32_t i;
365         uint32_t count = data.GetU32(&offset);
366         switch (flavor) {
367         case GPRRegSet:
368           for (i = 0; i < count; ++i)
369             (&gpr.eax)[i] = data.GetU32(&offset);
370           SetError(GPRRegSet, Read, 0);
371           done = true;
372 
373           break;
374         case FPURegSet:
375           // TODO: fill in FPU regs....
376           // SetError (FPURegSet, Read, -1);
377           done = true;
378 
379           break;
380         case EXCRegSet:
381           exc.trapno = data.GetU32(&offset);
382           exc.err = data.GetU32(&offset);
383           exc.faultvaddr = data.GetU32(&offset);
384           SetError(EXCRegSet, Read, 0);
385           done = true;
386           break;
387         case 7:
388         case 8:
389         case 9:
390           // fancy flavors that encapsulate of the above flavors...
391           break;
392 
393         default:
394           done = true;
395           break;
396         }
397       }
398     }
399   }
400 
401   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
402     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
403     if (reg_ctx_sp) {
404       RegisterContext *reg_ctx = reg_ctx_sp.get();
405 
406       data.PutHex32(GPRRegSet); // Flavor
407       data.PutHex32(GPRWordCount);
408       PrintRegisterValue(reg_ctx, "eax", nullptr, 4, data);
409       PrintRegisterValue(reg_ctx, "ebx", nullptr, 4, data);
410       PrintRegisterValue(reg_ctx, "ecx", nullptr, 4, data);
411       PrintRegisterValue(reg_ctx, "edx", nullptr, 4, data);
412       PrintRegisterValue(reg_ctx, "edi", nullptr, 4, data);
413       PrintRegisterValue(reg_ctx, "esi", nullptr, 4, data);
414       PrintRegisterValue(reg_ctx, "ebp", nullptr, 4, data);
415       PrintRegisterValue(reg_ctx, "esp", nullptr, 4, data);
416       PrintRegisterValue(reg_ctx, "ss", nullptr, 4, data);
417       PrintRegisterValue(reg_ctx, "eflags", nullptr, 4, data);
418       PrintRegisterValue(reg_ctx, "eip", nullptr, 4, data);
419       PrintRegisterValue(reg_ctx, "cs", nullptr, 4, data);
420       PrintRegisterValue(reg_ctx, "ds", nullptr, 4, data);
421       PrintRegisterValue(reg_ctx, "es", nullptr, 4, data);
422       PrintRegisterValue(reg_ctx, "fs", nullptr, 4, data);
423       PrintRegisterValue(reg_ctx, "gs", nullptr, 4, data);
424 
425       // Write out the EXC registers
426       data.PutHex32(EXCRegSet);
427       data.PutHex32(EXCWordCount);
428       PrintRegisterValue(reg_ctx, "trapno", nullptr, 4, data);
429       PrintRegisterValue(reg_ctx, "err", nullptr, 4, data);
430       PrintRegisterValue(reg_ctx, "faultvaddr", nullptr, 4, data);
431       return true;
432     }
433     return false;
434   }
435 
436 protected:
437   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
438 
439   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
440 
441   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
442 
443   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
444     return 0;
445   }
446 
447   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
448     return 0;
449   }
450 
451   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
452     return 0;
453   }
454 };
455 
456 class RegisterContextDarwin_arm_Mach : public RegisterContextDarwin_arm {
457 public:
458   RegisterContextDarwin_arm_Mach(lldb_private::Thread &thread,
459                                  const DataExtractor &data)
460       : RegisterContextDarwin_arm(thread, 0) {
461     SetRegisterDataFrom_LC_THREAD(data);
462   }
463 
464   void InvalidateAllRegisters() override {
465     // Do nothing... registers are always valid...
466   }
467 
468   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
469     lldb::offset_t offset = 0;
470     SetError(GPRRegSet, Read, -1);
471     SetError(FPURegSet, Read, -1);
472     SetError(EXCRegSet, Read, -1);
473     bool done = false;
474 
475     while (!done) {
476       int flavor = data.GetU32(&offset);
477       uint32_t count = data.GetU32(&offset);
478       lldb::offset_t next_thread_state = offset + (count * 4);
479       switch (flavor) {
480       case GPRAltRegSet:
481       case GPRRegSet:
482         for (uint32_t i = 0; i < count; ++i) {
483           gpr.r[i] = data.GetU32(&offset);
484         }
485 
486         // Note that gpr.cpsr is also copied by the above loop; this loop
487         // technically extends one element past the end of the gpr.r[] array.
488 
489         SetError(GPRRegSet, Read, 0);
490         offset = next_thread_state;
491         break;
492 
493       case FPURegSet: {
494         uint8_t *fpu_reg_buf = (uint8_t *)&fpu.floats.s[0];
495         const int fpu_reg_buf_size = sizeof(fpu.floats);
496         if (data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
497                               fpu_reg_buf) == fpu_reg_buf_size) {
498           offset += fpu_reg_buf_size;
499           fpu.fpscr = data.GetU32(&offset);
500           SetError(FPURegSet, Read, 0);
501         } else {
502           done = true;
503         }
504       }
505         offset = next_thread_state;
506         break;
507 
508       case EXCRegSet:
509         if (count == 3) {
510           exc.exception = data.GetU32(&offset);
511           exc.fsr = data.GetU32(&offset);
512           exc.far = data.GetU32(&offset);
513           SetError(EXCRegSet, Read, 0);
514         }
515         done = true;
516         offset = next_thread_state;
517         break;
518 
519       // Unknown register set flavor, stop trying to parse.
520       default:
521         done = true;
522       }
523     }
524   }
525 
526   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
527     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
528     if (reg_ctx_sp) {
529       RegisterContext *reg_ctx = reg_ctx_sp.get();
530 
531       data.PutHex32(GPRRegSet); // Flavor
532       data.PutHex32(GPRWordCount);
533       PrintRegisterValue(reg_ctx, "r0", nullptr, 4, data);
534       PrintRegisterValue(reg_ctx, "r1", nullptr, 4, data);
535       PrintRegisterValue(reg_ctx, "r2", nullptr, 4, data);
536       PrintRegisterValue(reg_ctx, "r3", nullptr, 4, data);
537       PrintRegisterValue(reg_ctx, "r4", nullptr, 4, data);
538       PrintRegisterValue(reg_ctx, "r5", nullptr, 4, data);
539       PrintRegisterValue(reg_ctx, "r6", nullptr, 4, data);
540       PrintRegisterValue(reg_ctx, "r7", nullptr, 4, data);
541       PrintRegisterValue(reg_ctx, "r8", nullptr, 4, data);
542       PrintRegisterValue(reg_ctx, "r9", nullptr, 4, data);
543       PrintRegisterValue(reg_ctx, "r10", nullptr, 4, data);
544       PrintRegisterValue(reg_ctx, "r11", nullptr, 4, data);
545       PrintRegisterValue(reg_ctx, "r12", nullptr, 4, data);
546       PrintRegisterValue(reg_ctx, "sp", nullptr, 4, data);
547       PrintRegisterValue(reg_ctx, "lr", nullptr, 4, data);
548       PrintRegisterValue(reg_ctx, "pc", nullptr, 4, data);
549       PrintRegisterValue(reg_ctx, "cpsr", nullptr, 4, data);
550 
551       // Write out the EXC registers
552       //            data.PutHex32 (EXCRegSet);
553       //            data.PutHex32 (EXCWordCount);
554       //            WriteRegister (reg_ctx, "exception", NULL, 4, data);
555       //            WriteRegister (reg_ctx, "fsr", NULL, 4, data);
556       //            WriteRegister (reg_ctx, "far", NULL, 4, data);
557       return true;
558     }
559     return false;
560   }
561 
562 protected:
563   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
564 
565   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
566 
567   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
568 
569   int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
570 
571   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
572     return 0;
573   }
574 
575   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
576     return 0;
577   }
578 
579   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
580     return 0;
581   }
582 
583   int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
584     return -1;
585   }
586 };
587 
588 class RegisterContextDarwin_arm64_Mach : public RegisterContextDarwin_arm64 {
589 public:
590   RegisterContextDarwin_arm64_Mach(lldb_private::Thread &thread,
591                                    const DataExtractor &data)
592       : RegisterContextDarwin_arm64(thread, 0) {
593     SetRegisterDataFrom_LC_THREAD(data);
594   }
595 
596   void InvalidateAllRegisters() override {
597     // Do nothing... registers are always valid...
598   }
599 
600   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
601     lldb::offset_t offset = 0;
602     SetError(GPRRegSet, Read, -1);
603     SetError(FPURegSet, Read, -1);
604     SetError(EXCRegSet, Read, -1);
605     bool done = false;
606     while (!done) {
607       int flavor = data.GetU32(&offset);
608       uint32_t count = data.GetU32(&offset);
609       lldb::offset_t next_thread_state = offset + (count * 4);
610       switch (flavor) {
611       case GPRRegSet:
612         // x0-x29 + fp + lr + sp + pc (== 33 64-bit registers) plus cpsr (1
613         // 32-bit register)
614         if (count >= (33 * 2) + 1) {
615           for (uint32_t i = 0; i < 29; ++i)
616             gpr.x[i] = data.GetU64(&offset);
617           gpr.fp = data.GetU64(&offset);
618           gpr.lr = data.GetU64(&offset);
619           gpr.sp = data.GetU64(&offset);
620           gpr.pc = data.GetU64(&offset);
621           gpr.cpsr = data.GetU32(&offset);
622           SetError(GPRRegSet, Read, 0);
623         }
624         offset = next_thread_state;
625         break;
626       case FPURegSet: {
627         uint8_t *fpu_reg_buf = (uint8_t *)&fpu.v[0];
628         const int fpu_reg_buf_size = sizeof(fpu);
629         if (fpu_reg_buf_size == count * sizeof(uint32_t) &&
630             data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
631                               fpu_reg_buf) == fpu_reg_buf_size) {
632           SetError(FPURegSet, Read, 0);
633         } else {
634           done = true;
635         }
636       }
637         offset = next_thread_state;
638         break;
639       case EXCRegSet:
640         if (count == 4) {
641           exc.far = data.GetU64(&offset);
642           exc.esr = data.GetU32(&offset);
643           exc.exception = data.GetU32(&offset);
644           SetError(EXCRegSet, Read, 0);
645         }
646         offset = next_thread_state;
647         break;
648       default:
649         done = true;
650         break;
651       }
652     }
653   }
654 
655   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
656     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
657     if (reg_ctx_sp) {
658       RegisterContext *reg_ctx = reg_ctx_sp.get();
659 
660       data.PutHex32(GPRRegSet); // Flavor
661       data.PutHex32(GPRWordCount);
662       PrintRegisterValue(reg_ctx, "x0", nullptr, 8, data);
663       PrintRegisterValue(reg_ctx, "x1", nullptr, 8, data);
664       PrintRegisterValue(reg_ctx, "x2", nullptr, 8, data);
665       PrintRegisterValue(reg_ctx, "x3", nullptr, 8, data);
666       PrintRegisterValue(reg_ctx, "x4", nullptr, 8, data);
667       PrintRegisterValue(reg_ctx, "x5", nullptr, 8, data);
668       PrintRegisterValue(reg_ctx, "x6", nullptr, 8, data);
669       PrintRegisterValue(reg_ctx, "x7", nullptr, 8, data);
670       PrintRegisterValue(reg_ctx, "x8", nullptr, 8, data);
671       PrintRegisterValue(reg_ctx, "x9", nullptr, 8, data);
672       PrintRegisterValue(reg_ctx, "x10", nullptr, 8, data);
673       PrintRegisterValue(reg_ctx, "x11", nullptr, 8, data);
674       PrintRegisterValue(reg_ctx, "x12", nullptr, 8, data);
675       PrintRegisterValue(reg_ctx, "x13", nullptr, 8, data);
676       PrintRegisterValue(reg_ctx, "x14", nullptr, 8, data);
677       PrintRegisterValue(reg_ctx, "x15", nullptr, 8, data);
678       PrintRegisterValue(reg_ctx, "x16", nullptr, 8, data);
679       PrintRegisterValue(reg_ctx, "x17", nullptr, 8, data);
680       PrintRegisterValue(reg_ctx, "x18", nullptr, 8, data);
681       PrintRegisterValue(reg_ctx, "x19", nullptr, 8, data);
682       PrintRegisterValue(reg_ctx, "x20", nullptr, 8, data);
683       PrintRegisterValue(reg_ctx, "x21", nullptr, 8, data);
684       PrintRegisterValue(reg_ctx, "x22", nullptr, 8, data);
685       PrintRegisterValue(reg_ctx, "x23", nullptr, 8, data);
686       PrintRegisterValue(reg_ctx, "x24", nullptr, 8, data);
687       PrintRegisterValue(reg_ctx, "x25", nullptr, 8, data);
688       PrintRegisterValue(reg_ctx, "x26", nullptr, 8, data);
689       PrintRegisterValue(reg_ctx, "x27", nullptr, 8, data);
690       PrintRegisterValue(reg_ctx, "x28", nullptr, 8, data);
691       PrintRegisterValue(reg_ctx, "fp", nullptr, 8, data);
692       PrintRegisterValue(reg_ctx, "lr", nullptr, 8, data);
693       PrintRegisterValue(reg_ctx, "sp", nullptr, 8, data);
694       PrintRegisterValue(reg_ctx, "pc", nullptr, 8, data);
695       PrintRegisterValue(reg_ctx, "cpsr", nullptr, 4, data);
696 
697       // Write out the EXC registers
698       //            data.PutHex32 (EXCRegSet);
699       //            data.PutHex32 (EXCWordCount);
700       //            WriteRegister (reg_ctx, "far", NULL, 8, data);
701       //            WriteRegister (reg_ctx, "esr", NULL, 4, data);
702       //            WriteRegister (reg_ctx, "exception", NULL, 4, data);
703       return true;
704     }
705     return false;
706   }
707 
708 protected:
709   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
710 
711   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
712 
713   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
714 
715   int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
716 
717   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
718     return 0;
719   }
720 
721   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
722     return 0;
723   }
724 
725   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
726     return 0;
727   }
728 
729   int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
730     return -1;
731   }
732 };
733 
734 static uint32_t MachHeaderSizeFromMagic(uint32_t magic) {
735   switch (magic) {
736   case MH_MAGIC:
737   case MH_CIGAM:
738     return sizeof(struct mach_header);
739 
740   case MH_MAGIC_64:
741   case MH_CIGAM_64:
742     return sizeof(struct mach_header_64);
743     break;
744 
745   default:
746     break;
747   }
748   return 0;
749 }
750 
751 #define MACHO_NLIST_ARM_SYMBOL_IS_THUMB 0x0008
752 
753 char ObjectFileMachO::ID;
754 
755 void ObjectFileMachO::Initialize() {
756   PluginManager::RegisterPlugin(
757       GetPluginNameStatic(), GetPluginDescriptionStatic(), CreateInstance,
758       CreateMemoryInstance, GetModuleSpecifications, SaveCore);
759 }
760 
761 void ObjectFileMachO::Terminate() {
762   PluginManager::UnregisterPlugin(CreateInstance);
763 }
764 
765 lldb_private::ConstString ObjectFileMachO::GetPluginNameStatic() {
766   static ConstString g_name("mach-o");
767   return g_name;
768 }
769 
770 const char *ObjectFileMachO::GetPluginDescriptionStatic() {
771   return "Mach-o object file reader (32 and 64 bit)";
772 }
773 
774 ObjectFile *ObjectFileMachO::CreateInstance(const lldb::ModuleSP &module_sp,
775                                             DataBufferSP &data_sp,
776                                             lldb::offset_t data_offset,
777                                             const FileSpec *file,
778                                             lldb::offset_t file_offset,
779                                             lldb::offset_t length) {
780   if (!data_sp) {
781     data_sp = MapFileData(*file, length, file_offset);
782     if (!data_sp)
783       return nullptr;
784     data_offset = 0;
785   }
786 
787   if (!ObjectFileMachO::MagicBytesMatch(data_sp, data_offset, length))
788     return nullptr;
789 
790   // Update the data to contain the entire file if it doesn't already
791   if (data_sp->GetByteSize() < length) {
792     data_sp = MapFileData(*file, length, file_offset);
793     if (!data_sp)
794       return nullptr;
795     data_offset = 0;
796   }
797   auto objfile_up = std::make_unique<ObjectFileMachO>(
798       module_sp, data_sp, data_offset, file, file_offset, length);
799   if (!objfile_up || !objfile_up->ParseHeader())
800     return nullptr;
801 
802   return objfile_up.release();
803 }
804 
805 ObjectFile *ObjectFileMachO::CreateMemoryInstance(
806     const lldb::ModuleSP &module_sp, DataBufferSP &data_sp,
807     const ProcessSP &process_sp, lldb::addr_t header_addr) {
808   if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
809     std::unique_ptr<ObjectFile> objfile_up(
810         new ObjectFileMachO(module_sp, data_sp, process_sp, header_addr));
811     if (objfile_up.get() && objfile_up->ParseHeader())
812       return objfile_up.release();
813   }
814   return nullptr;
815 }
816 
817 size_t ObjectFileMachO::GetModuleSpecifications(
818     const lldb_private::FileSpec &file, lldb::DataBufferSP &data_sp,
819     lldb::offset_t data_offset, lldb::offset_t file_offset,
820     lldb::offset_t length, lldb_private::ModuleSpecList &specs) {
821   const size_t initial_count = specs.GetSize();
822 
823   if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
824     DataExtractor data;
825     data.SetData(data_sp);
826     llvm::MachO::mach_header header;
827     if (ParseHeader(data, &data_offset, header)) {
828       size_t header_and_load_cmds =
829           header.sizeofcmds + MachHeaderSizeFromMagic(header.magic);
830       if (header_and_load_cmds >= data_sp->GetByteSize()) {
831         data_sp = MapFileData(file, header_and_load_cmds, file_offset);
832         data.SetData(data_sp);
833         data_offset = MachHeaderSizeFromMagic(header.magic);
834       }
835       if (data_sp) {
836         ModuleSpec base_spec;
837         base_spec.GetFileSpec() = file;
838         base_spec.SetObjectOffset(file_offset);
839         base_spec.SetObjectSize(length);
840         GetAllArchSpecs(header, data, data_offset, base_spec, specs);
841       }
842     }
843   }
844   return specs.GetSize() - initial_count;
845 }
846 
847 ConstString ObjectFileMachO::GetSegmentNameTEXT() {
848   static ConstString g_segment_name_TEXT("__TEXT");
849   return g_segment_name_TEXT;
850 }
851 
852 ConstString ObjectFileMachO::GetSegmentNameDATA() {
853   static ConstString g_segment_name_DATA("__DATA");
854   return g_segment_name_DATA;
855 }
856 
857 ConstString ObjectFileMachO::GetSegmentNameDATA_DIRTY() {
858   static ConstString g_segment_name("__DATA_DIRTY");
859   return g_segment_name;
860 }
861 
862 ConstString ObjectFileMachO::GetSegmentNameDATA_CONST() {
863   static ConstString g_segment_name("__DATA_CONST");
864   return g_segment_name;
865 }
866 
867 ConstString ObjectFileMachO::GetSegmentNameOBJC() {
868   static ConstString g_segment_name_OBJC("__OBJC");
869   return g_segment_name_OBJC;
870 }
871 
872 ConstString ObjectFileMachO::GetSegmentNameLINKEDIT() {
873   static ConstString g_section_name_LINKEDIT("__LINKEDIT");
874   return g_section_name_LINKEDIT;
875 }
876 
877 ConstString ObjectFileMachO::GetSegmentNameDWARF() {
878   static ConstString g_section_name("__DWARF");
879   return g_section_name;
880 }
881 
882 ConstString ObjectFileMachO::GetSectionNameEHFrame() {
883   static ConstString g_section_name_eh_frame("__eh_frame");
884   return g_section_name_eh_frame;
885 }
886 
887 bool ObjectFileMachO::MagicBytesMatch(DataBufferSP &data_sp,
888                                       lldb::addr_t data_offset,
889                                       lldb::addr_t data_length) {
890   DataExtractor data;
891   data.SetData(data_sp, data_offset, data_length);
892   lldb::offset_t offset = 0;
893   uint32_t magic = data.GetU32(&offset);
894   return MachHeaderSizeFromMagic(magic) != 0;
895 }
896 
897 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
898                                  DataBufferSP &data_sp,
899                                  lldb::offset_t data_offset,
900                                  const FileSpec *file,
901                                  lldb::offset_t file_offset,
902                                  lldb::offset_t length)
903     : ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset),
904       m_mach_segments(), m_mach_sections(), m_entry_point_address(),
905       m_thread_context_offsets(), m_thread_context_offsets_valid(false),
906       m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) {
907   ::memset(&m_header, 0, sizeof(m_header));
908   ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
909 }
910 
911 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
912                                  lldb::DataBufferSP &header_data_sp,
913                                  const lldb::ProcessSP &process_sp,
914                                  lldb::addr_t header_addr)
915     : ObjectFile(module_sp, process_sp, header_addr, header_data_sp),
916       m_mach_segments(), m_mach_sections(), m_entry_point_address(),
917       m_thread_context_offsets(), m_thread_context_offsets_valid(false),
918       m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) {
919   ::memset(&m_header, 0, sizeof(m_header));
920   ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
921 }
922 
923 bool ObjectFileMachO::ParseHeader(DataExtractor &data,
924                                   lldb::offset_t *data_offset_ptr,
925                                   llvm::MachO::mach_header &header) {
926   data.SetByteOrder(endian::InlHostByteOrder());
927   // Leave magic in the original byte order
928   header.magic = data.GetU32(data_offset_ptr);
929   bool can_parse = false;
930   bool is_64_bit = false;
931   switch (header.magic) {
932   case MH_MAGIC:
933     data.SetByteOrder(endian::InlHostByteOrder());
934     data.SetAddressByteSize(4);
935     can_parse = true;
936     break;
937 
938   case MH_MAGIC_64:
939     data.SetByteOrder(endian::InlHostByteOrder());
940     data.SetAddressByteSize(8);
941     can_parse = true;
942     is_64_bit = true;
943     break;
944 
945   case MH_CIGAM:
946     data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
947                           ? eByteOrderLittle
948                           : eByteOrderBig);
949     data.SetAddressByteSize(4);
950     can_parse = true;
951     break;
952 
953   case MH_CIGAM_64:
954     data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
955                           ? eByteOrderLittle
956                           : eByteOrderBig);
957     data.SetAddressByteSize(8);
958     is_64_bit = true;
959     can_parse = true;
960     break;
961 
962   default:
963     break;
964   }
965 
966   if (can_parse) {
967     data.GetU32(data_offset_ptr, &header.cputype, 6);
968     if (is_64_bit)
969       *data_offset_ptr += 4;
970     return true;
971   } else {
972     memset(&header, 0, sizeof(header));
973   }
974   return false;
975 }
976 
977 bool ObjectFileMachO::ParseHeader() {
978   ModuleSP module_sp(GetModule());
979   if (!module_sp)
980     return false;
981 
982   std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
983   bool can_parse = false;
984   lldb::offset_t offset = 0;
985   m_data.SetByteOrder(endian::InlHostByteOrder());
986   // Leave magic in the original byte order
987   m_header.magic = m_data.GetU32(&offset);
988   switch (m_header.magic) {
989   case MH_MAGIC:
990     m_data.SetByteOrder(endian::InlHostByteOrder());
991     m_data.SetAddressByteSize(4);
992     can_parse = true;
993     break;
994 
995   case MH_MAGIC_64:
996     m_data.SetByteOrder(endian::InlHostByteOrder());
997     m_data.SetAddressByteSize(8);
998     can_parse = true;
999     break;
1000 
1001   case MH_CIGAM:
1002     m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1003                             ? eByteOrderLittle
1004                             : eByteOrderBig);
1005     m_data.SetAddressByteSize(4);
1006     can_parse = true;
1007     break;
1008 
1009   case MH_CIGAM_64:
1010     m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1011                             ? eByteOrderLittle
1012                             : eByteOrderBig);
1013     m_data.SetAddressByteSize(8);
1014     can_parse = true;
1015     break;
1016 
1017   default:
1018     break;
1019   }
1020 
1021   if (can_parse) {
1022     m_data.GetU32(&offset, &m_header.cputype, 6);
1023 
1024     ModuleSpecList all_specs;
1025     ModuleSpec base_spec;
1026     GetAllArchSpecs(m_header, m_data, MachHeaderSizeFromMagic(m_header.magic),
1027                     base_spec, all_specs);
1028 
1029     for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
1030       ArchSpec mach_arch =
1031           all_specs.GetModuleSpecRefAtIndex(i).GetArchitecture();
1032 
1033       // Check if the module has a required architecture
1034       const ArchSpec &module_arch = module_sp->GetArchitecture();
1035       if (module_arch.IsValid() && !module_arch.IsCompatibleMatch(mach_arch))
1036         continue;
1037 
1038       if (SetModulesArchitecture(mach_arch)) {
1039         const size_t header_and_lc_size =
1040             m_header.sizeofcmds + MachHeaderSizeFromMagic(m_header.magic);
1041         if (m_data.GetByteSize() < header_and_lc_size) {
1042           DataBufferSP data_sp;
1043           ProcessSP process_sp(m_process_wp.lock());
1044           if (process_sp) {
1045             data_sp = ReadMemory(process_sp, m_memory_addr, header_and_lc_size);
1046           } else {
1047             // Read in all only the load command data from the file on disk
1048             data_sp = MapFileData(m_file, header_and_lc_size, m_file_offset);
1049             if (data_sp->GetByteSize() != header_and_lc_size)
1050               continue;
1051           }
1052           if (data_sp)
1053             m_data.SetData(data_sp);
1054         }
1055       }
1056       return true;
1057     }
1058     // None found.
1059     return false;
1060   } else {
1061     memset(&m_header, 0, sizeof(struct mach_header));
1062   }
1063   return false;
1064 }
1065 
1066 ByteOrder ObjectFileMachO::GetByteOrder() const {
1067   return m_data.GetByteOrder();
1068 }
1069 
1070 bool ObjectFileMachO::IsExecutable() const {
1071   return m_header.filetype == MH_EXECUTE;
1072 }
1073 
1074 bool ObjectFileMachO::IsDynamicLoader() const {
1075   return m_header.filetype == MH_DYLINKER;
1076 }
1077 
1078 uint32_t ObjectFileMachO::GetAddressByteSize() const {
1079   return m_data.GetAddressByteSize();
1080 }
1081 
1082 AddressClass ObjectFileMachO::GetAddressClass(lldb::addr_t file_addr) {
1083   Symtab *symtab = GetSymtab();
1084   if (!symtab)
1085     return AddressClass::eUnknown;
1086 
1087   Symbol *symbol = symtab->FindSymbolContainingFileAddress(file_addr);
1088   if (symbol) {
1089     if (symbol->ValueIsAddress()) {
1090       SectionSP section_sp(symbol->GetAddressRef().GetSection());
1091       if (section_sp) {
1092         const lldb::SectionType section_type = section_sp->GetType();
1093         switch (section_type) {
1094         case eSectionTypeInvalid:
1095           return AddressClass::eUnknown;
1096 
1097         case eSectionTypeCode:
1098           if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
1099             // For ARM we have a bit in the n_desc field of the symbol that
1100             // tells us ARM/Thumb which is bit 0x0008.
1101             if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB)
1102               return AddressClass::eCodeAlternateISA;
1103           }
1104           return AddressClass::eCode;
1105 
1106         case eSectionTypeContainer:
1107           return AddressClass::eUnknown;
1108 
1109         case eSectionTypeData:
1110         case eSectionTypeDataCString:
1111         case eSectionTypeDataCStringPointers:
1112         case eSectionTypeDataSymbolAddress:
1113         case eSectionTypeData4:
1114         case eSectionTypeData8:
1115         case eSectionTypeData16:
1116         case eSectionTypeDataPointers:
1117         case eSectionTypeZeroFill:
1118         case eSectionTypeDataObjCMessageRefs:
1119         case eSectionTypeDataObjCCFStrings:
1120         case eSectionTypeGoSymtab:
1121           return AddressClass::eData;
1122 
1123         case eSectionTypeDebug:
1124         case eSectionTypeDWARFDebugAbbrev:
1125         case eSectionTypeDWARFDebugAbbrevDwo:
1126         case eSectionTypeDWARFDebugAddr:
1127         case eSectionTypeDWARFDebugAranges:
1128         case eSectionTypeDWARFDebugCuIndex:
1129         case eSectionTypeDWARFDebugFrame:
1130         case eSectionTypeDWARFDebugInfo:
1131         case eSectionTypeDWARFDebugInfoDwo:
1132         case eSectionTypeDWARFDebugLine:
1133         case eSectionTypeDWARFDebugLineStr:
1134         case eSectionTypeDWARFDebugLoc:
1135         case eSectionTypeDWARFDebugLocLists:
1136         case eSectionTypeDWARFDebugMacInfo:
1137         case eSectionTypeDWARFDebugMacro:
1138         case eSectionTypeDWARFDebugNames:
1139         case eSectionTypeDWARFDebugPubNames:
1140         case eSectionTypeDWARFDebugPubTypes:
1141         case eSectionTypeDWARFDebugRanges:
1142         case eSectionTypeDWARFDebugRngLists:
1143         case eSectionTypeDWARFDebugStr:
1144         case eSectionTypeDWARFDebugStrDwo:
1145         case eSectionTypeDWARFDebugStrOffsets:
1146         case eSectionTypeDWARFDebugStrOffsetsDwo:
1147         case eSectionTypeDWARFDebugTypes:
1148         case eSectionTypeDWARFDebugTypesDwo:
1149         case eSectionTypeDWARFAppleNames:
1150         case eSectionTypeDWARFAppleTypes:
1151         case eSectionTypeDWARFAppleNamespaces:
1152         case eSectionTypeDWARFAppleObjC:
1153         case eSectionTypeDWARFGNUDebugAltLink:
1154           return AddressClass::eDebug;
1155 
1156         case eSectionTypeEHFrame:
1157         case eSectionTypeARMexidx:
1158         case eSectionTypeARMextab:
1159         case eSectionTypeCompactUnwind:
1160           return AddressClass::eRuntime;
1161 
1162         case eSectionTypeAbsoluteAddress:
1163         case eSectionTypeELFSymbolTable:
1164         case eSectionTypeELFDynamicSymbols:
1165         case eSectionTypeELFRelocationEntries:
1166         case eSectionTypeELFDynamicLinkInfo:
1167         case eSectionTypeOther:
1168           return AddressClass::eUnknown;
1169         }
1170       }
1171     }
1172 
1173     const SymbolType symbol_type = symbol->GetType();
1174     switch (symbol_type) {
1175     case eSymbolTypeAny:
1176       return AddressClass::eUnknown;
1177     case eSymbolTypeAbsolute:
1178       return AddressClass::eUnknown;
1179 
1180     case eSymbolTypeCode:
1181     case eSymbolTypeTrampoline:
1182     case eSymbolTypeResolver:
1183       if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
1184         // For ARM we have a bit in the n_desc field of the symbol that tells
1185         // us ARM/Thumb which is bit 0x0008.
1186         if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB)
1187           return AddressClass::eCodeAlternateISA;
1188       }
1189       return AddressClass::eCode;
1190 
1191     case eSymbolTypeData:
1192       return AddressClass::eData;
1193     case eSymbolTypeRuntime:
1194       return AddressClass::eRuntime;
1195     case eSymbolTypeException:
1196       return AddressClass::eRuntime;
1197     case eSymbolTypeSourceFile:
1198       return AddressClass::eDebug;
1199     case eSymbolTypeHeaderFile:
1200       return AddressClass::eDebug;
1201     case eSymbolTypeObjectFile:
1202       return AddressClass::eDebug;
1203     case eSymbolTypeCommonBlock:
1204       return AddressClass::eDebug;
1205     case eSymbolTypeBlock:
1206       return AddressClass::eDebug;
1207     case eSymbolTypeLocal:
1208       return AddressClass::eData;
1209     case eSymbolTypeParam:
1210       return AddressClass::eData;
1211     case eSymbolTypeVariable:
1212       return AddressClass::eData;
1213     case eSymbolTypeVariableType:
1214       return AddressClass::eDebug;
1215     case eSymbolTypeLineEntry:
1216       return AddressClass::eDebug;
1217     case eSymbolTypeLineHeader:
1218       return AddressClass::eDebug;
1219     case eSymbolTypeScopeBegin:
1220       return AddressClass::eDebug;
1221     case eSymbolTypeScopeEnd:
1222       return AddressClass::eDebug;
1223     case eSymbolTypeAdditional:
1224       return AddressClass::eUnknown;
1225     case eSymbolTypeCompiler:
1226       return AddressClass::eDebug;
1227     case eSymbolTypeInstrumentation:
1228       return AddressClass::eDebug;
1229     case eSymbolTypeUndefined:
1230       return AddressClass::eUnknown;
1231     case eSymbolTypeObjCClass:
1232       return AddressClass::eRuntime;
1233     case eSymbolTypeObjCMetaClass:
1234       return AddressClass::eRuntime;
1235     case eSymbolTypeObjCIVar:
1236       return AddressClass::eRuntime;
1237     case eSymbolTypeReExported:
1238       return AddressClass::eRuntime;
1239     }
1240   }
1241   return AddressClass::eUnknown;
1242 }
1243 
1244 Symtab *ObjectFileMachO::GetSymtab() {
1245   ModuleSP module_sp(GetModule());
1246   if (module_sp) {
1247     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
1248     if (m_symtab_up == nullptr) {
1249       m_symtab_up.reset(new Symtab(this));
1250       std::lock_guard<std::recursive_mutex> symtab_guard(
1251           m_symtab_up->GetMutex());
1252       ParseSymtab();
1253       m_symtab_up->Finalize();
1254     }
1255   }
1256   return m_symtab_up.get();
1257 }
1258 
1259 bool ObjectFileMachO::IsStripped() {
1260   if (m_dysymtab.cmd == 0) {
1261     ModuleSP module_sp(GetModule());
1262     if (module_sp) {
1263       lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1264       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1265         const lldb::offset_t load_cmd_offset = offset;
1266 
1267         load_command lc;
1268         if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
1269           break;
1270         if (lc.cmd == LC_DYSYMTAB) {
1271           m_dysymtab.cmd = lc.cmd;
1272           m_dysymtab.cmdsize = lc.cmdsize;
1273           if (m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
1274                             (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2) ==
1275               nullptr) {
1276             // Clear m_dysymtab if we were unable to read all items from the
1277             // load command
1278             ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
1279           }
1280         }
1281         offset = load_cmd_offset + lc.cmdsize;
1282       }
1283     }
1284   }
1285   if (m_dysymtab.cmd)
1286     return m_dysymtab.nlocalsym <= 1;
1287   return false;
1288 }
1289 
1290 ObjectFileMachO::EncryptedFileRanges ObjectFileMachO::GetEncryptedFileRanges() {
1291   EncryptedFileRanges result;
1292   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1293 
1294   encryption_info_command encryption_cmd;
1295   for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1296     const lldb::offset_t load_cmd_offset = offset;
1297     if (m_data.GetU32(&offset, &encryption_cmd, 2) == nullptr)
1298       break;
1299 
1300     // LC_ENCRYPTION_INFO and LC_ENCRYPTION_INFO_64 have the same sizes for the
1301     // 3 fields we care about, so treat them the same.
1302     if (encryption_cmd.cmd == LC_ENCRYPTION_INFO ||
1303         encryption_cmd.cmd == LC_ENCRYPTION_INFO_64) {
1304       if (m_data.GetU32(&offset, &encryption_cmd.cryptoff, 3)) {
1305         if (encryption_cmd.cryptid != 0) {
1306           EncryptedFileRanges::Entry entry;
1307           entry.SetRangeBase(encryption_cmd.cryptoff);
1308           entry.SetByteSize(encryption_cmd.cryptsize);
1309           result.Append(entry);
1310         }
1311       }
1312     }
1313     offset = load_cmd_offset + encryption_cmd.cmdsize;
1314   }
1315 
1316   return result;
1317 }
1318 
1319 void ObjectFileMachO::SanitizeSegmentCommand(segment_command_64 &seg_cmd,
1320                                              uint32_t cmd_idx) {
1321   if (m_length == 0 || seg_cmd.filesize == 0)
1322     return;
1323 
1324   if (seg_cmd.fileoff > m_length) {
1325     // We have a load command that says it extends past the end of the file.
1326     // This is likely a corrupt file.  We don't have any way to return an error
1327     // condition here (this method was likely invoked from something like
1328     // ObjectFile::GetSectionList()), so we just null out the section contents,
1329     // and dump a message to stdout.  The most common case here is core file
1330     // debugging with a truncated file.
1331     const char *lc_segment_name =
1332         seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT";
1333     GetModule()->ReportWarning(
1334         "load command %u %s has a fileoff (0x%" PRIx64
1335         ") that extends beyond the end of the file (0x%" PRIx64
1336         "), ignoring this section",
1337         cmd_idx, lc_segment_name, seg_cmd.fileoff, m_length);
1338 
1339     seg_cmd.fileoff = 0;
1340     seg_cmd.filesize = 0;
1341   }
1342 
1343   if (seg_cmd.fileoff + seg_cmd.filesize > m_length) {
1344     // We have a load command that says it extends past the end of the file.
1345     // This is likely a corrupt file.  We don't have any way to return an error
1346     // condition here (this method was likely invoked from something like
1347     // ObjectFile::GetSectionList()), so we just null out the section contents,
1348     // and dump a message to stdout.  The most common case here is core file
1349     // debugging with a truncated file.
1350     const char *lc_segment_name =
1351         seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT";
1352     GetModule()->ReportWarning(
1353         "load command %u %s has a fileoff + filesize (0x%" PRIx64
1354         ") that extends beyond the end of the file (0x%" PRIx64
1355         "), the segment will be truncated to match",
1356         cmd_idx, lc_segment_name, seg_cmd.fileoff + seg_cmd.filesize, m_length);
1357 
1358     // Truncate the length
1359     seg_cmd.filesize = m_length - seg_cmd.fileoff;
1360   }
1361 }
1362 
1363 static uint32_t GetSegmentPermissions(const segment_command_64 &seg_cmd) {
1364   uint32_t result = 0;
1365   if (seg_cmd.initprot & VM_PROT_READ)
1366     result |= ePermissionsReadable;
1367   if (seg_cmd.initprot & VM_PROT_WRITE)
1368     result |= ePermissionsWritable;
1369   if (seg_cmd.initprot & VM_PROT_EXECUTE)
1370     result |= ePermissionsExecutable;
1371   return result;
1372 }
1373 
1374 static lldb::SectionType GetSectionType(uint32_t flags,
1375                                         ConstString section_name) {
1376 
1377   if (flags & (S_ATTR_PURE_INSTRUCTIONS | S_ATTR_SOME_INSTRUCTIONS))
1378     return eSectionTypeCode;
1379 
1380   uint32_t mach_sect_type = flags & SECTION_TYPE;
1381   static ConstString g_sect_name_objc_data("__objc_data");
1382   static ConstString g_sect_name_objc_msgrefs("__objc_msgrefs");
1383   static ConstString g_sect_name_objc_selrefs("__objc_selrefs");
1384   static ConstString g_sect_name_objc_classrefs("__objc_classrefs");
1385   static ConstString g_sect_name_objc_superrefs("__objc_superrefs");
1386   static ConstString g_sect_name_objc_const("__objc_const");
1387   static ConstString g_sect_name_objc_classlist("__objc_classlist");
1388   static ConstString g_sect_name_cfstring("__cfstring");
1389 
1390   static ConstString g_sect_name_dwarf_debug_abbrev("__debug_abbrev");
1391   static ConstString g_sect_name_dwarf_debug_aranges("__debug_aranges");
1392   static ConstString g_sect_name_dwarf_debug_frame("__debug_frame");
1393   static ConstString g_sect_name_dwarf_debug_info("__debug_info");
1394   static ConstString g_sect_name_dwarf_debug_line("__debug_line");
1395   static ConstString g_sect_name_dwarf_debug_loc("__debug_loc");
1396   static ConstString g_sect_name_dwarf_debug_loclists("__debug_loclists");
1397   static ConstString g_sect_name_dwarf_debug_macinfo("__debug_macinfo");
1398   static ConstString g_sect_name_dwarf_debug_names("__debug_names");
1399   static ConstString g_sect_name_dwarf_debug_pubnames("__debug_pubnames");
1400   static ConstString g_sect_name_dwarf_debug_pubtypes("__debug_pubtypes");
1401   static ConstString g_sect_name_dwarf_debug_ranges("__debug_ranges");
1402   static ConstString g_sect_name_dwarf_debug_str("__debug_str");
1403   static ConstString g_sect_name_dwarf_debug_types("__debug_types");
1404   static ConstString g_sect_name_dwarf_apple_names("__apple_names");
1405   static ConstString g_sect_name_dwarf_apple_types("__apple_types");
1406   static ConstString g_sect_name_dwarf_apple_namespaces("__apple_namespac");
1407   static ConstString g_sect_name_dwarf_apple_objc("__apple_objc");
1408   static ConstString g_sect_name_eh_frame("__eh_frame");
1409   static ConstString g_sect_name_compact_unwind("__unwind_info");
1410   static ConstString g_sect_name_text("__text");
1411   static ConstString g_sect_name_data("__data");
1412   static ConstString g_sect_name_go_symtab("__gosymtab");
1413 
1414   if (section_name == g_sect_name_dwarf_debug_abbrev)
1415     return eSectionTypeDWARFDebugAbbrev;
1416   if (section_name == g_sect_name_dwarf_debug_aranges)
1417     return eSectionTypeDWARFDebugAranges;
1418   if (section_name == g_sect_name_dwarf_debug_frame)
1419     return eSectionTypeDWARFDebugFrame;
1420   if (section_name == g_sect_name_dwarf_debug_info)
1421     return eSectionTypeDWARFDebugInfo;
1422   if (section_name == g_sect_name_dwarf_debug_line)
1423     return eSectionTypeDWARFDebugLine;
1424   if (section_name == g_sect_name_dwarf_debug_loc)
1425     return eSectionTypeDWARFDebugLoc;
1426   if (section_name == g_sect_name_dwarf_debug_loclists)
1427     return eSectionTypeDWARFDebugLocLists;
1428   if (section_name == g_sect_name_dwarf_debug_macinfo)
1429     return eSectionTypeDWARFDebugMacInfo;
1430   if (section_name == g_sect_name_dwarf_debug_names)
1431     return eSectionTypeDWARFDebugNames;
1432   if (section_name == g_sect_name_dwarf_debug_pubnames)
1433     return eSectionTypeDWARFDebugPubNames;
1434   if (section_name == g_sect_name_dwarf_debug_pubtypes)
1435     return eSectionTypeDWARFDebugPubTypes;
1436   if (section_name == g_sect_name_dwarf_debug_ranges)
1437     return eSectionTypeDWARFDebugRanges;
1438   if (section_name == g_sect_name_dwarf_debug_str)
1439     return eSectionTypeDWARFDebugStr;
1440   if (section_name == g_sect_name_dwarf_debug_types)
1441     return eSectionTypeDWARFDebugTypes;
1442   if (section_name == g_sect_name_dwarf_apple_names)
1443     return eSectionTypeDWARFAppleNames;
1444   if (section_name == g_sect_name_dwarf_apple_types)
1445     return eSectionTypeDWARFAppleTypes;
1446   if (section_name == g_sect_name_dwarf_apple_namespaces)
1447     return eSectionTypeDWARFAppleNamespaces;
1448   if (section_name == g_sect_name_dwarf_apple_objc)
1449     return eSectionTypeDWARFAppleObjC;
1450   if (section_name == g_sect_name_objc_selrefs)
1451     return eSectionTypeDataCStringPointers;
1452   if (section_name == g_sect_name_objc_msgrefs)
1453     return eSectionTypeDataObjCMessageRefs;
1454   if (section_name == g_sect_name_eh_frame)
1455     return eSectionTypeEHFrame;
1456   if (section_name == g_sect_name_compact_unwind)
1457     return eSectionTypeCompactUnwind;
1458   if (section_name == g_sect_name_cfstring)
1459     return eSectionTypeDataObjCCFStrings;
1460   if (section_name == g_sect_name_go_symtab)
1461     return eSectionTypeGoSymtab;
1462   if (section_name == g_sect_name_objc_data ||
1463       section_name == g_sect_name_objc_classrefs ||
1464       section_name == g_sect_name_objc_superrefs ||
1465       section_name == g_sect_name_objc_const ||
1466       section_name == g_sect_name_objc_classlist) {
1467     return eSectionTypeDataPointers;
1468   }
1469 
1470   switch (mach_sect_type) {
1471   // TODO: categorize sections by other flags for regular sections
1472   case S_REGULAR:
1473     if (section_name == g_sect_name_text)
1474       return eSectionTypeCode;
1475     if (section_name == g_sect_name_data)
1476       return eSectionTypeData;
1477     return eSectionTypeOther;
1478   case S_ZEROFILL:
1479     return eSectionTypeZeroFill;
1480   case S_CSTRING_LITERALS: // section with only literal C strings
1481     return eSectionTypeDataCString;
1482   case S_4BYTE_LITERALS: // section with only 4 byte literals
1483     return eSectionTypeData4;
1484   case S_8BYTE_LITERALS: // section with only 8 byte literals
1485     return eSectionTypeData8;
1486   case S_LITERAL_POINTERS: // section with only pointers to literals
1487     return eSectionTypeDataPointers;
1488   case S_NON_LAZY_SYMBOL_POINTERS: // section with only non-lazy symbol pointers
1489     return eSectionTypeDataPointers;
1490   case S_LAZY_SYMBOL_POINTERS: // section with only lazy symbol pointers
1491     return eSectionTypeDataPointers;
1492   case S_SYMBOL_STUBS: // section with only symbol stubs, byte size of stub in
1493                        // the reserved2 field
1494     return eSectionTypeCode;
1495   case S_MOD_INIT_FUNC_POINTERS: // section with only function pointers for
1496                                  // initialization
1497     return eSectionTypeDataPointers;
1498   case S_MOD_TERM_FUNC_POINTERS: // section with only function pointers for
1499                                  // termination
1500     return eSectionTypeDataPointers;
1501   case S_COALESCED:
1502     return eSectionTypeOther;
1503   case S_GB_ZEROFILL:
1504     return eSectionTypeZeroFill;
1505   case S_INTERPOSING: // section with only pairs of function pointers for
1506                       // interposing
1507     return eSectionTypeCode;
1508   case S_16BYTE_LITERALS: // section with only 16 byte literals
1509     return eSectionTypeData16;
1510   case S_DTRACE_DOF:
1511     return eSectionTypeDebug;
1512   case S_LAZY_DYLIB_SYMBOL_POINTERS:
1513     return eSectionTypeDataPointers;
1514   default:
1515     return eSectionTypeOther;
1516   }
1517 }
1518 
1519 struct ObjectFileMachO::SegmentParsingContext {
1520   const EncryptedFileRanges EncryptedRanges;
1521   lldb_private::SectionList &UnifiedList;
1522   uint32_t NextSegmentIdx = 0;
1523   uint32_t NextSectionIdx = 0;
1524   bool FileAddressesChanged = false;
1525 
1526   SegmentParsingContext(EncryptedFileRanges EncryptedRanges,
1527                         lldb_private::SectionList &UnifiedList)
1528       : EncryptedRanges(std::move(EncryptedRanges)), UnifiedList(UnifiedList) {}
1529 };
1530 
1531 void ObjectFileMachO::ProcessSegmentCommand(const load_command &load_cmd_,
1532                                             lldb::offset_t offset,
1533                                             uint32_t cmd_idx,
1534                                             SegmentParsingContext &context) {
1535   segment_command_64 load_cmd;
1536   memcpy(&load_cmd, &load_cmd_, sizeof(load_cmd_));
1537 
1538   if (!m_data.GetU8(&offset, (uint8_t *)load_cmd.segname, 16))
1539     return;
1540 
1541   ModuleSP module_sp = GetModule();
1542   const bool is_core = GetType() == eTypeCoreFile;
1543   const bool is_dsym = (m_header.filetype == MH_DSYM);
1544   bool add_section = true;
1545   bool add_to_unified = true;
1546   ConstString const_segname(
1547       load_cmd.segname, strnlen(load_cmd.segname, sizeof(load_cmd.segname)));
1548 
1549   SectionSP unified_section_sp(
1550       context.UnifiedList.FindSectionByName(const_segname));
1551   if (is_dsym && unified_section_sp) {
1552     if (const_segname == GetSegmentNameLINKEDIT()) {
1553       // We need to keep the __LINKEDIT segment private to this object file
1554       // only
1555       add_to_unified = false;
1556     } else {
1557       // This is the dSYM file and this section has already been created by the
1558       // object file, no need to create it.
1559       add_section = false;
1560     }
1561   }
1562   load_cmd.vmaddr = m_data.GetAddress(&offset);
1563   load_cmd.vmsize = m_data.GetAddress(&offset);
1564   load_cmd.fileoff = m_data.GetAddress(&offset);
1565   load_cmd.filesize = m_data.GetAddress(&offset);
1566   if (!m_data.GetU32(&offset, &load_cmd.maxprot, 4))
1567     return;
1568 
1569   SanitizeSegmentCommand(load_cmd, cmd_idx);
1570 
1571   const uint32_t segment_permissions = GetSegmentPermissions(load_cmd);
1572   const bool segment_is_encrypted =
1573       (load_cmd.flags & SG_PROTECTED_VERSION_1) != 0;
1574 
1575   // Keep a list of mach segments around in case we need to get at data that
1576   // isn't stored in the abstracted Sections.
1577   m_mach_segments.push_back(load_cmd);
1578 
1579   // Use a segment ID of the segment index shifted left by 8 so they never
1580   // conflict with any of the sections.
1581   SectionSP segment_sp;
1582   if (add_section && (const_segname || is_core)) {
1583     segment_sp = std::make_shared<Section>(
1584         module_sp, // Module to which this section belongs
1585         this,      // Object file to which this sections belongs
1586         ++context.NextSegmentIdx
1587             << 8, // Section ID is the 1 based segment index
1588         // shifted right by 8 bits as not to collide with any of the 256
1589         // section IDs that are possible
1590         const_segname,         // Name of this section
1591         eSectionTypeContainer, // This section is a container of other
1592         // sections.
1593         load_cmd.vmaddr, // File VM address == addresses as they are
1594         // found in the object file
1595         load_cmd.vmsize,  // VM size in bytes of this section
1596         load_cmd.fileoff, // Offset to the data for this section in
1597         // the file
1598         load_cmd.filesize, // Size in bytes of this section as found
1599         // in the file
1600         0,               // Segments have no alignment information
1601         load_cmd.flags); // Flags for this section
1602 
1603     segment_sp->SetIsEncrypted(segment_is_encrypted);
1604     m_sections_up->AddSection(segment_sp);
1605     segment_sp->SetPermissions(segment_permissions);
1606     if (add_to_unified)
1607       context.UnifiedList.AddSection(segment_sp);
1608   } else if (unified_section_sp) {
1609     if (is_dsym && unified_section_sp->GetFileAddress() != load_cmd.vmaddr) {
1610       // Check to see if the module was read from memory?
1611       if (module_sp->GetObjectFile()->GetBaseAddress().IsValid()) {
1612         // We have a module that is in memory and needs to have its file
1613         // address adjusted. We need to do this because when we load a file
1614         // from memory, its addresses will be slid already, yet the addresses
1615         // in the new symbol file will still be unslid.  Since everything is
1616         // stored as section offset, this shouldn't cause any problems.
1617 
1618         // Make sure we've parsed the symbol table from the ObjectFile before
1619         // we go around changing its Sections.
1620         module_sp->GetObjectFile()->GetSymtab();
1621         // eh_frame would present the same problems but we parse that on a per-
1622         // function basis as-needed so it's more difficult to remove its use of
1623         // the Sections.  Realistically, the environments where this code path
1624         // will be taken will not have eh_frame sections.
1625 
1626         unified_section_sp->SetFileAddress(load_cmd.vmaddr);
1627 
1628         // Notify the module that the section addresses have been changed once
1629         // we're done so any file-address caches can be updated.
1630         context.FileAddressesChanged = true;
1631       }
1632     }
1633     m_sections_up->AddSection(unified_section_sp);
1634   }
1635 
1636   struct section_64 sect64;
1637   ::memset(&sect64, 0, sizeof(sect64));
1638   // Push a section into our mach sections for the section at index zero
1639   // (NO_SECT) if we don't have any mach sections yet...
1640   if (m_mach_sections.empty())
1641     m_mach_sections.push_back(sect64);
1642   uint32_t segment_sect_idx;
1643   const lldb::user_id_t first_segment_sectID = context.NextSectionIdx + 1;
1644 
1645   const uint32_t num_u32s = load_cmd.cmd == LC_SEGMENT ? 7 : 8;
1646   for (segment_sect_idx = 0; segment_sect_idx < load_cmd.nsects;
1647        ++segment_sect_idx) {
1648     if (m_data.GetU8(&offset, (uint8_t *)sect64.sectname,
1649                      sizeof(sect64.sectname)) == nullptr)
1650       break;
1651     if (m_data.GetU8(&offset, (uint8_t *)sect64.segname,
1652                      sizeof(sect64.segname)) == nullptr)
1653       break;
1654     sect64.addr = m_data.GetAddress(&offset);
1655     sect64.size = m_data.GetAddress(&offset);
1656 
1657     if (m_data.GetU32(&offset, &sect64.offset, num_u32s) == nullptr)
1658       break;
1659 
1660     // Keep a list of mach sections around in case we need to get at data that
1661     // isn't stored in the abstracted Sections.
1662     m_mach_sections.push_back(sect64);
1663 
1664     if (add_section) {
1665       ConstString section_name(
1666           sect64.sectname, strnlen(sect64.sectname, sizeof(sect64.sectname)));
1667       if (!const_segname) {
1668         // We have a segment with no name so we need to conjure up segments
1669         // that correspond to the section's segname if there isn't already such
1670         // a section. If there is such a section, we resize the section so that
1671         // it spans all sections.  We also mark these sections as fake so
1672         // address matches don't hit if they land in the gaps between the child
1673         // sections.
1674         const_segname.SetTrimmedCStringWithLength(sect64.segname,
1675                                                   sizeof(sect64.segname));
1676         segment_sp = context.UnifiedList.FindSectionByName(const_segname);
1677         if (segment_sp.get()) {
1678           Section *segment = segment_sp.get();
1679           // Grow the section size as needed.
1680           const lldb::addr_t sect64_min_addr = sect64.addr;
1681           const lldb::addr_t sect64_max_addr = sect64_min_addr + sect64.size;
1682           const lldb::addr_t curr_seg_byte_size = segment->GetByteSize();
1683           const lldb::addr_t curr_seg_min_addr = segment->GetFileAddress();
1684           const lldb::addr_t curr_seg_max_addr =
1685               curr_seg_min_addr + curr_seg_byte_size;
1686           if (sect64_min_addr >= curr_seg_min_addr) {
1687             const lldb::addr_t new_seg_byte_size =
1688                 sect64_max_addr - curr_seg_min_addr;
1689             // Only grow the section size if needed
1690             if (new_seg_byte_size > curr_seg_byte_size)
1691               segment->SetByteSize(new_seg_byte_size);
1692           } else {
1693             // We need to change the base address of the segment and adjust the
1694             // child section offsets for all existing children.
1695             const lldb::addr_t slide_amount =
1696                 sect64_min_addr - curr_seg_min_addr;
1697             segment->Slide(slide_amount, false);
1698             segment->GetChildren().Slide(-slide_amount, false);
1699             segment->SetByteSize(curr_seg_max_addr - sect64_min_addr);
1700           }
1701 
1702           // Grow the section size as needed.
1703           if (sect64.offset) {
1704             const lldb::addr_t segment_min_file_offset =
1705                 segment->GetFileOffset();
1706             const lldb::addr_t segment_max_file_offset =
1707                 segment_min_file_offset + segment->GetFileSize();
1708 
1709             const lldb::addr_t section_min_file_offset = sect64.offset;
1710             const lldb::addr_t section_max_file_offset =
1711                 section_min_file_offset + sect64.size;
1712             const lldb::addr_t new_file_offset =
1713                 std::min(section_min_file_offset, segment_min_file_offset);
1714             const lldb::addr_t new_file_size =
1715                 std::max(section_max_file_offset, segment_max_file_offset) -
1716                 new_file_offset;
1717             segment->SetFileOffset(new_file_offset);
1718             segment->SetFileSize(new_file_size);
1719           }
1720         } else {
1721           // Create a fake section for the section's named segment
1722           segment_sp = std::make_shared<Section>(
1723               segment_sp, // Parent section
1724               module_sp,  // Module to which this section belongs
1725               this,       // Object file to which this section belongs
1726               ++context.NextSegmentIdx
1727                   << 8, // Section ID is the 1 based segment index
1728               // shifted right by 8 bits as not to
1729               // collide with any of the 256 section IDs
1730               // that are possible
1731               const_segname,         // Name of this section
1732               eSectionTypeContainer, // This section is a container of
1733               // other sections.
1734               sect64.addr, // File VM address == addresses as they are
1735               // found in the object file
1736               sect64.size,   // VM size in bytes of this section
1737               sect64.offset, // Offset to the data for this section in
1738               // the file
1739               sect64.offset ? sect64.size : 0, // Size in bytes of
1740               // this section as
1741               // found in the file
1742               sect64.align,
1743               load_cmd.flags); // Flags for this section
1744           segment_sp->SetIsFake(true);
1745           segment_sp->SetPermissions(segment_permissions);
1746           m_sections_up->AddSection(segment_sp);
1747           if (add_to_unified)
1748             context.UnifiedList.AddSection(segment_sp);
1749           segment_sp->SetIsEncrypted(segment_is_encrypted);
1750         }
1751       }
1752       assert(segment_sp.get());
1753 
1754       lldb::SectionType sect_type = GetSectionType(sect64.flags, section_name);
1755 
1756       SectionSP section_sp(new Section(
1757           segment_sp, module_sp, this, ++context.NextSectionIdx, section_name,
1758           sect_type, sect64.addr - segment_sp->GetFileAddress(), sect64.size,
1759           sect64.offset, sect64.offset == 0 ? 0 : sect64.size, sect64.align,
1760           sect64.flags));
1761       // Set the section to be encrypted to match the segment
1762 
1763       bool section_is_encrypted = false;
1764       if (!segment_is_encrypted && load_cmd.filesize != 0)
1765         section_is_encrypted = context.EncryptedRanges.FindEntryThatContains(
1766                                    sect64.offset) != nullptr;
1767 
1768       section_sp->SetIsEncrypted(segment_is_encrypted || section_is_encrypted);
1769       section_sp->SetPermissions(segment_permissions);
1770       segment_sp->GetChildren().AddSection(section_sp);
1771 
1772       if (segment_sp->IsFake()) {
1773         segment_sp.reset();
1774         const_segname.Clear();
1775       }
1776     }
1777   }
1778   if (segment_sp && is_dsym) {
1779     if (first_segment_sectID <= context.NextSectionIdx) {
1780       lldb::user_id_t sect_uid;
1781       for (sect_uid = first_segment_sectID; sect_uid <= context.NextSectionIdx;
1782            ++sect_uid) {
1783         SectionSP curr_section_sp(
1784             segment_sp->GetChildren().FindSectionByID(sect_uid));
1785         SectionSP next_section_sp;
1786         if (sect_uid + 1 <= context.NextSectionIdx)
1787           next_section_sp =
1788               segment_sp->GetChildren().FindSectionByID(sect_uid + 1);
1789 
1790         if (curr_section_sp.get()) {
1791           if (curr_section_sp->GetByteSize() == 0) {
1792             if (next_section_sp.get() != nullptr)
1793               curr_section_sp->SetByteSize(next_section_sp->GetFileAddress() -
1794                                            curr_section_sp->GetFileAddress());
1795             else
1796               curr_section_sp->SetByteSize(load_cmd.vmsize);
1797           }
1798         }
1799       }
1800     }
1801   }
1802 }
1803 
1804 void ObjectFileMachO::ProcessDysymtabCommand(const load_command &load_cmd,
1805                                              lldb::offset_t offset) {
1806   m_dysymtab.cmd = load_cmd.cmd;
1807   m_dysymtab.cmdsize = load_cmd.cmdsize;
1808   m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
1809                 (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2);
1810 }
1811 
1812 void ObjectFileMachO::CreateSections(SectionList &unified_section_list) {
1813   if (m_sections_up)
1814     return;
1815 
1816   m_sections_up.reset(new SectionList());
1817 
1818   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1819   // bool dump_sections = false;
1820   ModuleSP module_sp(GetModule());
1821 
1822   offset = MachHeaderSizeFromMagic(m_header.magic);
1823 
1824   SegmentParsingContext context(GetEncryptedFileRanges(), unified_section_list);
1825   struct load_command load_cmd;
1826   for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1827     const lldb::offset_t load_cmd_offset = offset;
1828     if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
1829       break;
1830 
1831     if (load_cmd.cmd == LC_SEGMENT || load_cmd.cmd == LC_SEGMENT_64)
1832       ProcessSegmentCommand(load_cmd, offset, i, context);
1833     else if (load_cmd.cmd == LC_DYSYMTAB)
1834       ProcessDysymtabCommand(load_cmd, offset);
1835 
1836     offset = load_cmd_offset + load_cmd.cmdsize;
1837   }
1838 
1839   if (context.FileAddressesChanged && module_sp)
1840     module_sp->SectionFileAddressesChanged();
1841 }
1842 
1843 class MachSymtabSectionInfo {
1844 public:
1845   MachSymtabSectionInfo(SectionList *section_list)
1846       : m_section_list(section_list), m_section_infos() {
1847     // Get the number of sections down to a depth of 1 to include all segments
1848     // and their sections, but no other sections that may be added for debug
1849     // map or
1850     m_section_infos.resize(section_list->GetNumSections(1));
1851   }
1852 
1853   SectionSP GetSection(uint8_t n_sect, addr_t file_addr) {
1854     if (n_sect == 0)
1855       return SectionSP();
1856     if (n_sect < m_section_infos.size()) {
1857       if (!m_section_infos[n_sect].section_sp) {
1858         SectionSP section_sp(m_section_list->FindSectionByID(n_sect));
1859         m_section_infos[n_sect].section_sp = section_sp;
1860         if (section_sp) {
1861           m_section_infos[n_sect].vm_range.SetBaseAddress(
1862               section_sp->GetFileAddress());
1863           m_section_infos[n_sect].vm_range.SetByteSize(
1864               section_sp->GetByteSize());
1865         } else {
1866           Host::SystemLog(Host::eSystemLogError,
1867                           "error: unable to find section for section %u\n",
1868                           n_sect);
1869         }
1870       }
1871       if (m_section_infos[n_sect].vm_range.Contains(file_addr)) {
1872         // Symbol is in section.
1873         return m_section_infos[n_sect].section_sp;
1874       } else if (m_section_infos[n_sect].vm_range.GetByteSize() == 0 &&
1875                  m_section_infos[n_sect].vm_range.GetBaseAddress() ==
1876                      file_addr) {
1877         // Symbol is in section with zero size, but has the same start address
1878         // as the section. This can happen with linker symbols (symbols that
1879         // start with the letter 'l' or 'L'.
1880         return m_section_infos[n_sect].section_sp;
1881       }
1882     }
1883     return m_section_list->FindSectionContainingFileAddress(file_addr);
1884   }
1885 
1886 protected:
1887   struct SectionInfo {
1888     SectionInfo() : vm_range(), section_sp() {}
1889 
1890     VMRange vm_range;
1891     SectionSP section_sp;
1892   };
1893   SectionList *m_section_list;
1894   std::vector<SectionInfo> m_section_infos;
1895 };
1896 
1897 struct TrieEntry {
1898   void Dump() const {
1899     printf("0x%16.16llx 0x%16.16llx 0x%16.16llx \"%s\"",
1900            static_cast<unsigned long long>(address),
1901            static_cast<unsigned long long>(flags),
1902            static_cast<unsigned long long>(other), name.GetCString());
1903     if (import_name)
1904       printf(" -> \"%s\"\n", import_name.GetCString());
1905     else
1906       printf("\n");
1907   }
1908   ConstString name;
1909   uint64_t address = LLDB_INVALID_ADDRESS;
1910   uint64_t flags = 0;
1911   uint64_t other = 0;
1912   ConstString import_name;
1913 };
1914 
1915 struct TrieEntryWithOffset {
1916   lldb::offset_t nodeOffset;
1917   TrieEntry entry;
1918 
1919   TrieEntryWithOffset(lldb::offset_t offset) : nodeOffset(offset), entry() {}
1920 
1921   void Dump(uint32_t idx) const {
1922     printf("[%3u] 0x%16.16llx: ", idx,
1923            static_cast<unsigned long long>(nodeOffset));
1924     entry.Dump();
1925   }
1926 
1927   bool operator<(const TrieEntryWithOffset &other) const {
1928     return (nodeOffset < other.nodeOffset);
1929   }
1930 };
1931 
1932 static bool ParseTrieEntries(DataExtractor &data, lldb::offset_t offset,
1933                              const bool is_arm,
1934                              std::vector<llvm::StringRef> &nameSlices,
1935                              std::set<lldb::addr_t> &resolver_addresses,
1936                              std::vector<TrieEntryWithOffset> &output) {
1937   if (!data.ValidOffset(offset))
1938     return true;
1939 
1940   const uint64_t terminalSize = data.GetULEB128(&offset);
1941   lldb::offset_t children_offset = offset + terminalSize;
1942   if (terminalSize != 0) {
1943     TrieEntryWithOffset e(offset);
1944     e.entry.flags = data.GetULEB128(&offset);
1945     const char *import_name = nullptr;
1946     if (e.entry.flags & EXPORT_SYMBOL_FLAGS_REEXPORT) {
1947       e.entry.address = 0;
1948       e.entry.other = data.GetULEB128(&offset); // dylib ordinal
1949       import_name = data.GetCStr(&offset);
1950     } else {
1951       e.entry.address = data.GetULEB128(&offset);
1952       if (e.entry.flags & EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER) {
1953         e.entry.other = data.GetULEB128(&offset);
1954         uint64_t resolver_addr = e.entry.other;
1955         if (is_arm)
1956           resolver_addr &= THUMB_ADDRESS_BIT_MASK;
1957         resolver_addresses.insert(resolver_addr);
1958       } else
1959         e.entry.other = 0;
1960     }
1961     // Only add symbols that are reexport symbols with a valid import name
1962     if (EXPORT_SYMBOL_FLAGS_REEXPORT & e.entry.flags && import_name &&
1963         import_name[0]) {
1964       std::string name;
1965       if (!nameSlices.empty()) {
1966         for (auto name_slice : nameSlices)
1967           name.append(name_slice.data(), name_slice.size());
1968       }
1969       if (name.size() > 1) {
1970         // Skip the leading '_'
1971         e.entry.name.SetCStringWithLength(name.c_str() + 1, name.size() - 1);
1972       }
1973       if (import_name) {
1974         // Skip the leading '_'
1975         e.entry.import_name.SetCString(import_name + 1);
1976       }
1977       output.push_back(e);
1978     }
1979   }
1980 
1981   const uint8_t childrenCount = data.GetU8(&children_offset);
1982   for (uint8_t i = 0; i < childrenCount; ++i) {
1983     const char *cstr = data.GetCStr(&children_offset);
1984     if (cstr)
1985       nameSlices.push_back(llvm::StringRef(cstr));
1986     else
1987       return false; // Corrupt data
1988     lldb::offset_t childNodeOffset = data.GetULEB128(&children_offset);
1989     if (childNodeOffset) {
1990       if (!ParseTrieEntries(data, childNodeOffset, is_arm, nameSlices,
1991                             resolver_addresses, output)) {
1992         return false;
1993       }
1994     }
1995     nameSlices.pop_back();
1996   }
1997   return true;
1998 }
1999 
2000 // Read the UUID out of a dyld_shared_cache file on-disk.
2001 UUID ObjectFileMachO::GetSharedCacheUUID(FileSpec dyld_shared_cache,
2002                                          const ByteOrder byte_order,
2003                                          const uint32_t addr_byte_size) {
2004   UUID dsc_uuid;
2005   DataBufferSP DscData = MapFileData(
2006       dyld_shared_cache, sizeof(struct lldb_copy_dyld_cache_header_v1), 0);
2007   if (!DscData)
2008     return dsc_uuid;
2009   DataExtractor dsc_header_data(DscData, byte_order, addr_byte_size);
2010 
2011   char version_str[7];
2012   lldb::offset_t offset = 0;
2013   memcpy(version_str, dsc_header_data.GetData(&offset, 6), 6);
2014   version_str[6] = '\0';
2015   if (strcmp(version_str, "dyld_v") == 0) {
2016     offset = offsetof(struct lldb_copy_dyld_cache_header_v1, uuid);
2017     dsc_uuid = UUID::fromOptionalData(
2018         dsc_header_data.GetData(&offset, sizeof(uuid_t)), sizeof(uuid_t));
2019   }
2020   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS));
2021   if (log && dsc_uuid.IsValid()) {
2022     LLDB_LOGF(log, "Shared cache %s has UUID %s",
2023               dyld_shared_cache.GetPath().c_str(),
2024               dsc_uuid.GetAsString().c_str());
2025   }
2026   return dsc_uuid;
2027 }
2028 
2029 static llvm::Optional<struct nlist_64>
2030 ParseNList(DataExtractor &nlist_data, lldb::offset_t &nlist_data_offset,
2031            size_t nlist_byte_size) {
2032   struct nlist_64 nlist;
2033   if (!nlist_data.ValidOffsetForDataOfSize(nlist_data_offset, nlist_byte_size))
2034     return {};
2035   nlist.n_strx = nlist_data.GetU32_unchecked(&nlist_data_offset);
2036   nlist.n_type = nlist_data.GetU8_unchecked(&nlist_data_offset);
2037   nlist.n_sect = nlist_data.GetU8_unchecked(&nlist_data_offset);
2038   nlist.n_desc = nlist_data.GetU16_unchecked(&nlist_data_offset);
2039   nlist.n_value = nlist_data.GetAddress_unchecked(&nlist_data_offset);
2040   return nlist;
2041 }
2042 
2043 enum { DebugSymbols = true, NonDebugSymbols = false };
2044 
2045 size_t ObjectFileMachO::ParseSymtab() {
2046   static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
2047   Timer scoped_timer(func_cat, "ObjectFileMachO::ParseSymtab () module = %s",
2048                      m_file.GetFilename().AsCString(""));
2049   ModuleSP module_sp(GetModule());
2050   if (!module_sp)
2051     return 0;
2052 
2053   struct symtab_command symtab_load_command = {0, 0, 0, 0, 0, 0};
2054   struct linkedit_data_command function_starts_load_command = {0, 0, 0, 0};
2055   struct dyld_info_command dyld_info = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
2056   typedef AddressDataArray<lldb::addr_t, bool, 100> FunctionStarts;
2057   FunctionStarts function_starts;
2058   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
2059   uint32_t i;
2060   FileSpecList dylib_files;
2061   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS));
2062   llvm::StringRef g_objc_v2_prefix_class("_OBJC_CLASS_$_");
2063   llvm::StringRef g_objc_v2_prefix_metaclass("_OBJC_METACLASS_$_");
2064   llvm::StringRef g_objc_v2_prefix_ivar("_OBJC_IVAR_$_");
2065 
2066   for (i = 0; i < m_header.ncmds; ++i) {
2067     const lldb::offset_t cmd_offset = offset;
2068     // Read in the load command and load command size
2069     struct load_command lc;
2070     if (m_data.GetU32(&offset, &lc, 2) == nullptr)
2071       break;
2072     // Watch for the symbol table load command
2073     switch (lc.cmd) {
2074     case LC_SYMTAB:
2075       symtab_load_command.cmd = lc.cmd;
2076       symtab_load_command.cmdsize = lc.cmdsize;
2077       // Read in the rest of the symtab load command
2078       if (m_data.GetU32(&offset, &symtab_load_command.symoff, 4) ==
2079           nullptr) // fill in symoff, nsyms, stroff, strsize fields
2080         return 0;
2081       if (symtab_load_command.symoff == 0) {
2082         if (log)
2083           module_sp->LogMessage(log, "LC_SYMTAB.symoff == 0");
2084         return 0;
2085       }
2086 
2087       if (symtab_load_command.stroff == 0) {
2088         if (log)
2089           module_sp->LogMessage(log, "LC_SYMTAB.stroff == 0");
2090         return 0;
2091       }
2092 
2093       if (symtab_load_command.nsyms == 0) {
2094         if (log)
2095           module_sp->LogMessage(log, "LC_SYMTAB.nsyms == 0");
2096         return 0;
2097       }
2098 
2099       if (symtab_load_command.strsize == 0) {
2100         if (log)
2101           module_sp->LogMessage(log, "LC_SYMTAB.strsize == 0");
2102         return 0;
2103       }
2104       break;
2105 
2106     case LC_DYLD_INFO:
2107     case LC_DYLD_INFO_ONLY:
2108       if (m_data.GetU32(&offset, &dyld_info.rebase_off, 10)) {
2109         dyld_info.cmd = lc.cmd;
2110         dyld_info.cmdsize = lc.cmdsize;
2111       } else {
2112         memset(&dyld_info, 0, sizeof(dyld_info));
2113       }
2114       break;
2115 
2116     case LC_LOAD_DYLIB:
2117     case LC_LOAD_WEAK_DYLIB:
2118     case LC_REEXPORT_DYLIB:
2119     case LC_LOADFVMLIB:
2120     case LC_LOAD_UPWARD_DYLIB: {
2121       uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
2122       const char *path = m_data.PeekCStr(name_offset);
2123       if (path) {
2124         FileSpec file_spec(path);
2125         // Strip the path if there is @rpath, @executable, etc so we just use
2126         // the basename
2127         if (path[0] == '@')
2128           file_spec.GetDirectory().Clear();
2129 
2130         if (lc.cmd == LC_REEXPORT_DYLIB) {
2131           m_reexported_dylibs.AppendIfUnique(file_spec);
2132         }
2133 
2134         dylib_files.Append(file_spec);
2135       }
2136     } break;
2137 
2138     case LC_FUNCTION_STARTS:
2139       function_starts_load_command.cmd = lc.cmd;
2140       function_starts_load_command.cmdsize = lc.cmdsize;
2141       if (m_data.GetU32(&offset, &function_starts_load_command.dataoff, 2) ==
2142           nullptr) // fill in symoff, nsyms, stroff, strsize fields
2143         memset(&function_starts_load_command, 0,
2144                sizeof(function_starts_load_command));
2145       break;
2146 
2147     default:
2148       break;
2149     }
2150     offset = cmd_offset + lc.cmdsize;
2151   }
2152 
2153   if (!symtab_load_command.cmd)
2154     return 0;
2155 
2156   Symtab *symtab = m_symtab_up.get();
2157   SectionList *section_list = GetSectionList();
2158   if (section_list == nullptr)
2159     return 0;
2160 
2161   const uint32_t addr_byte_size = m_data.GetAddressByteSize();
2162   const ByteOrder byte_order = m_data.GetByteOrder();
2163   bool bit_width_32 = addr_byte_size == 4;
2164   const size_t nlist_byte_size =
2165       bit_width_32 ? sizeof(struct nlist) : sizeof(struct nlist_64);
2166 
2167   DataExtractor nlist_data(nullptr, 0, byte_order, addr_byte_size);
2168   DataExtractor strtab_data(nullptr, 0, byte_order, addr_byte_size);
2169   DataExtractor function_starts_data(nullptr, 0, byte_order, addr_byte_size);
2170   DataExtractor indirect_symbol_index_data(nullptr, 0, byte_order,
2171                                            addr_byte_size);
2172   DataExtractor dyld_trie_data(nullptr, 0, byte_order, addr_byte_size);
2173 
2174   const addr_t nlist_data_byte_size =
2175       symtab_load_command.nsyms * nlist_byte_size;
2176   const addr_t strtab_data_byte_size = symtab_load_command.strsize;
2177   addr_t strtab_addr = LLDB_INVALID_ADDRESS;
2178 
2179   ProcessSP process_sp(m_process_wp.lock());
2180   Process *process = process_sp.get();
2181 
2182   uint32_t memory_module_load_level = eMemoryModuleLoadLevelComplete;
2183 
2184   if (process && m_header.filetype != llvm::MachO::MH_OBJECT) {
2185     Target &target = process->GetTarget();
2186 
2187     memory_module_load_level = target.GetMemoryModuleLoadLevel();
2188 
2189     SectionSP linkedit_section_sp(
2190         section_list->FindSectionByName(GetSegmentNameLINKEDIT()));
2191     // Reading mach file from memory in a process or core file...
2192 
2193     if (linkedit_section_sp) {
2194       addr_t linkedit_load_addr =
2195           linkedit_section_sp->GetLoadBaseAddress(&target);
2196       if (linkedit_load_addr == LLDB_INVALID_ADDRESS) {
2197         // We might be trying to access the symbol table before the
2198         // __LINKEDIT's load address has been set in the target. We can't
2199         // fail to read the symbol table, so calculate the right address
2200         // manually
2201         linkedit_load_addr = CalculateSectionLoadAddressForMemoryImage(
2202             m_memory_addr, GetMachHeaderSection(), linkedit_section_sp.get());
2203       }
2204 
2205       const addr_t linkedit_file_offset = linkedit_section_sp->GetFileOffset();
2206       const addr_t symoff_addr = linkedit_load_addr +
2207                                  symtab_load_command.symoff -
2208                                  linkedit_file_offset;
2209       strtab_addr = linkedit_load_addr + symtab_load_command.stroff -
2210                     linkedit_file_offset;
2211 
2212       bool data_was_read = false;
2213 
2214 #if defined(__APPLE__) &&                                                      \
2215     (defined(__arm__) || defined(__arm64__) || defined(__aarch64__))
2216       if (m_header.flags & 0x80000000u &&
2217           process->GetAddressByteSize() == sizeof(void *)) {
2218         // This mach-o memory file is in the dyld shared cache. If this
2219         // program is not remote and this is iOS, then this process will
2220         // share the same shared cache as the process we are debugging and we
2221         // can read the entire __LINKEDIT from the address space in this
2222         // process. This is a needed optimization that is used for local iOS
2223         // debugging only since all shared libraries in the shared cache do
2224         // not have corresponding files that exist in the file system of the
2225         // device. They have been combined into a single file. This means we
2226         // always have to load these files from memory. All of the symbol and
2227         // string tables from all of the __LINKEDIT sections from the shared
2228         // libraries in the shared cache have been merged into a single large
2229         // symbol and string table. Reading all of this symbol and string
2230         // table data across can slow down debug launch times, so we optimize
2231         // this by reading the memory for the __LINKEDIT section from this
2232         // process.
2233 
2234         UUID lldb_shared_cache;
2235         addr_t lldb_shared_cache_addr;
2236         GetLLDBSharedCacheUUID(lldb_shared_cache_addr, lldb_shared_cache);
2237         UUID process_shared_cache;
2238         addr_t process_shared_cache_addr;
2239         GetProcessSharedCacheUUID(process, process_shared_cache_addr,
2240                                   process_shared_cache);
2241         bool use_lldb_cache = true;
2242         if (lldb_shared_cache.IsValid() && process_shared_cache.IsValid() &&
2243             (lldb_shared_cache != process_shared_cache ||
2244              process_shared_cache_addr != lldb_shared_cache_addr)) {
2245           use_lldb_cache = false;
2246         }
2247 
2248         PlatformSP platform_sp(target.GetPlatform());
2249         if (platform_sp && platform_sp->IsHost() && use_lldb_cache) {
2250           data_was_read = true;
2251           nlist_data.SetData((void *)symoff_addr, nlist_data_byte_size,
2252                              eByteOrderLittle);
2253           strtab_data.SetData((void *)strtab_addr, strtab_data_byte_size,
2254                               eByteOrderLittle);
2255           if (function_starts_load_command.cmd) {
2256             const addr_t func_start_addr =
2257                 linkedit_load_addr + function_starts_load_command.dataoff -
2258                 linkedit_file_offset;
2259             function_starts_data.SetData((void *)func_start_addr,
2260                                          function_starts_load_command.datasize,
2261                                          eByteOrderLittle);
2262           }
2263         }
2264       }
2265 #endif
2266 
2267       if (!data_was_read) {
2268         // Always load dyld - the dynamic linker - from memory if we didn't
2269         // find a binary anywhere else. lldb will not register
2270         // dylib/framework/bundle loads/unloads if we don't have the dyld
2271         // symbols, we force dyld to load from memory despite the user's
2272         // target.memory-module-load-level setting.
2273         if (memory_module_load_level == eMemoryModuleLoadLevelComplete ||
2274             m_header.filetype == llvm::MachO::MH_DYLINKER) {
2275           DataBufferSP nlist_data_sp(
2276               ReadMemory(process_sp, symoff_addr, nlist_data_byte_size));
2277           if (nlist_data_sp)
2278             nlist_data.SetData(nlist_data_sp, 0, nlist_data_sp->GetByteSize());
2279           if (m_dysymtab.nindirectsyms != 0) {
2280             const addr_t indirect_syms_addr = linkedit_load_addr +
2281                                               m_dysymtab.indirectsymoff -
2282                                               linkedit_file_offset;
2283             DataBufferSP indirect_syms_data_sp(ReadMemory(
2284                 process_sp, indirect_syms_addr, m_dysymtab.nindirectsyms * 4));
2285             if (indirect_syms_data_sp)
2286               indirect_symbol_index_data.SetData(
2287                   indirect_syms_data_sp, 0,
2288                   indirect_syms_data_sp->GetByteSize());
2289             // If this binary is outside the shared cache,
2290             // cache the string table.
2291             // Binaries in the shared cache all share a giant string table,
2292             // and we can't share the string tables across multiple
2293             // ObjectFileMachO's, so we'd end up re-reading this mega-strtab
2294             // for every binary in the shared cache - it would be a big perf
2295             // problem. For binaries outside the shared cache, it's faster to
2296             // read the entire strtab at once instead of piece-by-piece as we
2297             // process the nlist records.
2298             if ((m_header.flags & 0x80000000u) == 0) {
2299               DataBufferSP strtab_data_sp(
2300                   ReadMemory(process_sp, strtab_addr, strtab_data_byte_size));
2301               if (strtab_data_sp) {
2302                 strtab_data.SetData(strtab_data_sp, 0,
2303                                     strtab_data_sp->GetByteSize());
2304               }
2305             }
2306           }
2307         }
2308         if (memory_module_load_level >= eMemoryModuleLoadLevelPartial) {
2309           if (function_starts_load_command.cmd) {
2310             const addr_t func_start_addr =
2311                 linkedit_load_addr + function_starts_load_command.dataoff -
2312                 linkedit_file_offset;
2313             DataBufferSP func_start_data_sp(
2314                 ReadMemory(process_sp, func_start_addr,
2315                            function_starts_load_command.datasize));
2316             if (func_start_data_sp)
2317               function_starts_data.SetData(func_start_data_sp, 0,
2318                                            func_start_data_sp->GetByteSize());
2319           }
2320         }
2321       }
2322     }
2323   } else {
2324     nlist_data.SetData(m_data, symtab_load_command.symoff,
2325                        nlist_data_byte_size);
2326     strtab_data.SetData(m_data, symtab_load_command.stroff,
2327                         strtab_data_byte_size);
2328 
2329     if (dyld_info.export_size > 0) {
2330       dyld_trie_data.SetData(m_data, dyld_info.export_off,
2331                              dyld_info.export_size);
2332     }
2333 
2334     if (m_dysymtab.nindirectsyms != 0) {
2335       indirect_symbol_index_data.SetData(m_data, m_dysymtab.indirectsymoff,
2336                                          m_dysymtab.nindirectsyms * 4);
2337     }
2338     if (function_starts_load_command.cmd) {
2339       function_starts_data.SetData(m_data, function_starts_load_command.dataoff,
2340                                    function_starts_load_command.datasize);
2341     }
2342   }
2343 
2344   if (nlist_data.GetByteSize() == 0 &&
2345       memory_module_load_level == eMemoryModuleLoadLevelComplete) {
2346     if (log)
2347       module_sp->LogMessage(log, "failed to read nlist data");
2348     return 0;
2349   }
2350 
2351   const bool have_strtab_data = strtab_data.GetByteSize() > 0;
2352   if (!have_strtab_data) {
2353     if (process) {
2354       if (strtab_addr == LLDB_INVALID_ADDRESS) {
2355         if (log)
2356           module_sp->LogMessage(log, "failed to locate the strtab in memory");
2357         return 0;
2358       }
2359     } else {
2360       if (log)
2361         module_sp->LogMessage(log, "failed to read strtab data");
2362       return 0;
2363     }
2364   }
2365 
2366   ConstString g_segment_name_TEXT = GetSegmentNameTEXT();
2367   ConstString g_segment_name_DATA = GetSegmentNameDATA();
2368   ConstString g_segment_name_DATA_DIRTY = GetSegmentNameDATA_DIRTY();
2369   ConstString g_segment_name_DATA_CONST = GetSegmentNameDATA_CONST();
2370   ConstString g_segment_name_OBJC = GetSegmentNameOBJC();
2371   ConstString g_section_name_eh_frame = GetSectionNameEHFrame();
2372   SectionSP text_section_sp(
2373       section_list->FindSectionByName(g_segment_name_TEXT));
2374   SectionSP data_section_sp(
2375       section_list->FindSectionByName(g_segment_name_DATA));
2376   SectionSP data_dirty_section_sp(
2377       section_list->FindSectionByName(g_segment_name_DATA_DIRTY));
2378   SectionSP data_const_section_sp(
2379       section_list->FindSectionByName(g_segment_name_DATA_CONST));
2380   SectionSP objc_section_sp(
2381       section_list->FindSectionByName(g_segment_name_OBJC));
2382   SectionSP eh_frame_section_sp;
2383   if (text_section_sp.get())
2384     eh_frame_section_sp = text_section_sp->GetChildren().FindSectionByName(
2385         g_section_name_eh_frame);
2386   else
2387     eh_frame_section_sp =
2388         section_list->FindSectionByName(g_section_name_eh_frame);
2389 
2390   const bool is_arm = (m_header.cputype == llvm::MachO::CPU_TYPE_ARM);
2391 
2392   // lldb works best if it knows the start address of all functions in a
2393   // module. Linker symbols or debug info are normally the best source of
2394   // information for start addr / size but they may be stripped in a released
2395   // binary. Two additional sources of information exist in Mach-O binaries:
2396   //    LC_FUNCTION_STARTS - a list of ULEB128 encoded offsets of each
2397   //    function's start address in the
2398   //                         binary, relative to the text section.
2399   //    eh_frame           - the eh_frame FDEs have the start addr & size of
2400   //    each function
2401   //  LC_FUNCTION_STARTS is the fastest source to read in, and is present on
2402   //  all modern binaries.
2403   //  Binaries built to run on older releases may need to use eh_frame
2404   //  information.
2405 
2406   if (text_section_sp && function_starts_data.GetByteSize()) {
2407     FunctionStarts::Entry function_start_entry;
2408     function_start_entry.data = false;
2409     lldb::offset_t function_start_offset = 0;
2410     function_start_entry.addr = text_section_sp->GetFileAddress();
2411     uint64_t delta;
2412     while ((delta = function_starts_data.GetULEB128(&function_start_offset)) >
2413            0) {
2414       // Now append the current entry
2415       function_start_entry.addr += delta;
2416       function_starts.Append(function_start_entry);
2417     }
2418   } else {
2419     // If m_type is eTypeDebugInfo, then this is a dSYM - it will have the
2420     // load command claiming an eh_frame but it doesn't actually have the
2421     // eh_frame content.  And if we have a dSYM, we don't need to do any of
2422     // this fill-in-the-missing-symbols works anyway - the debug info should
2423     // give us all the functions in the module.
2424     if (text_section_sp.get() && eh_frame_section_sp.get() &&
2425         m_type != eTypeDebugInfo) {
2426       DWARFCallFrameInfo eh_frame(*this, eh_frame_section_sp,
2427                                   DWARFCallFrameInfo::EH);
2428       DWARFCallFrameInfo::FunctionAddressAndSizeVector functions;
2429       eh_frame.GetFunctionAddressAndSizeVector(functions);
2430       addr_t text_base_addr = text_section_sp->GetFileAddress();
2431       size_t count = functions.GetSize();
2432       for (size_t i = 0; i < count; ++i) {
2433         const DWARFCallFrameInfo::FunctionAddressAndSizeVector::Entry *func =
2434             functions.GetEntryAtIndex(i);
2435         if (func) {
2436           FunctionStarts::Entry function_start_entry;
2437           function_start_entry.addr = func->base - text_base_addr;
2438           function_starts.Append(function_start_entry);
2439         }
2440       }
2441     }
2442   }
2443 
2444   const size_t function_starts_count = function_starts.GetSize();
2445 
2446   // For user process binaries (executables, dylibs, frameworks, bundles), if
2447   // we don't have LC_FUNCTION_STARTS/eh_frame section in this binary, we're
2448   // going to assume the binary has been stripped.  Don't allow assembly
2449   // language instruction emulation because we don't know proper function
2450   // start boundaries.
2451   //
2452   // For all other types of binaries (kernels, stand-alone bare board
2453   // binaries, kexts), they may not have LC_FUNCTION_STARTS / eh_frame
2454   // sections - we should not make any assumptions about them based on that.
2455   if (function_starts_count == 0 && CalculateStrata() == eStrataUser) {
2456     m_allow_assembly_emulation_unwind_plans = false;
2457     Log *unwind_or_symbol_log(lldb_private::GetLogIfAnyCategoriesSet(
2458         LIBLLDB_LOG_SYMBOLS | LIBLLDB_LOG_UNWIND));
2459 
2460     if (unwind_or_symbol_log)
2461       module_sp->LogMessage(
2462           unwind_or_symbol_log,
2463           "no LC_FUNCTION_STARTS, will not allow assembly profiled unwinds");
2464   }
2465 
2466   const user_id_t TEXT_eh_frame_sectID = eh_frame_section_sp.get()
2467                                              ? eh_frame_section_sp->GetID()
2468                                              : static_cast<user_id_t>(NO_SECT);
2469 
2470   lldb::offset_t nlist_data_offset = 0;
2471 
2472   uint32_t N_SO_index = UINT32_MAX;
2473 
2474   MachSymtabSectionInfo section_info(section_list);
2475   std::vector<uint32_t> N_FUN_indexes;
2476   std::vector<uint32_t> N_NSYM_indexes;
2477   std::vector<uint32_t> N_INCL_indexes;
2478   std::vector<uint32_t> N_BRAC_indexes;
2479   std::vector<uint32_t> N_COMM_indexes;
2480   typedef std::multimap<uint64_t, uint32_t> ValueToSymbolIndexMap;
2481   typedef llvm::DenseMap<uint32_t, uint32_t> NListIndexToSymbolIndexMap;
2482   typedef llvm::DenseMap<const char *, uint32_t> ConstNameToSymbolIndexMap;
2483   ValueToSymbolIndexMap N_FUN_addr_to_sym_idx;
2484   ValueToSymbolIndexMap N_STSYM_addr_to_sym_idx;
2485   ConstNameToSymbolIndexMap N_GSYM_name_to_sym_idx;
2486   // Any symbols that get merged into another will get an entry in this map
2487   // so we know
2488   NListIndexToSymbolIndexMap m_nlist_idx_to_sym_idx;
2489   uint32_t nlist_idx = 0;
2490   Symbol *symbol_ptr = nullptr;
2491 
2492   uint32_t sym_idx = 0;
2493   Symbol *sym = nullptr;
2494   size_t num_syms = 0;
2495   std::string memory_symbol_name;
2496   uint32_t unmapped_local_symbols_found = 0;
2497 
2498   std::vector<TrieEntryWithOffset> trie_entries;
2499   std::set<lldb::addr_t> resolver_addresses;
2500 
2501   if (dyld_trie_data.GetByteSize() > 0) {
2502     std::vector<llvm::StringRef> nameSlices;
2503     ParseTrieEntries(dyld_trie_data, 0, is_arm, nameSlices, resolver_addresses,
2504                      trie_entries);
2505 
2506     ConstString text_segment_name("__TEXT");
2507     SectionSP text_segment_sp =
2508         GetSectionList()->FindSectionByName(text_segment_name);
2509     if (text_segment_sp) {
2510       const lldb::addr_t text_segment_file_addr =
2511           text_segment_sp->GetFileAddress();
2512       if (text_segment_file_addr != LLDB_INVALID_ADDRESS) {
2513         for (auto &e : trie_entries)
2514           e.entry.address += text_segment_file_addr;
2515       }
2516     }
2517   }
2518 
2519   typedef std::set<ConstString> IndirectSymbols;
2520   IndirectSymbols indirect_symbol_names;
2521 
2522 #if defined(__APPLE__) &&                                                      \
2523     (defined(__arm__) || defined(__arm64__) || defined(__aarch64__))
2524 
2525   // Some recent builds of the dyld_shared_cache (hereafter: DSC) have been
2526   // optimized by moving LOCAL symbols out of the memory mapped portion of
2527   // the DSC. The symbol information has all been retained, but it isn't
2528   // available in the normal nlist data. However, there *are* duplicate
2529   // entries of *some*
2530   // LOCAL symbols in the normal nlist data. To handle this situation
2531   // correctly, we must first attempt
2532   // to parse any DSC unmapped symbol information. If we find any, we set a
2533   // flag that tells the normal nlist parser to ignore all LOCAL symbols.
2534 
2535   if (m_header.flags & 0x80000000u) {
2536     // Before we can start mapping the DSC, we need to make certain the
2537     // target process is actually using the cache we can find.
2538 
2539     // Next we need to determine the correct path for the dyld shared cache.
2540 
2541     ArchSpec header_arch;
2542     GetArchitecture(header_arch);
2543     char dsc_path[PATH_MAX];
2544     char dsc_path_development[PATH_MAX];
2545 
2546     snprintf(
2547         dsc_path, sizeof(dsc_path), "%s%s%s",
2548         "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR
2549                                                    */
2550         "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */
2551         header_arch.GetArchitectureName());
2552 
2553     snprintf(
2554         dsc_path_development, sizeof(dsc_path), "%s%s%s%s",
2555         "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR
2556                                                    */
2557         "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */
2558         header_arch.GetArchitectureName(), ".development");
2559 
2560     FileSpec dsc_nondevelopment_filespec(dsc_path);
2561     FileSpec dsc_development_filespec(dsc_path_development);
2562     FileSpec dsc_filespec;
2563 
2564     UUID dsc_uuid;
2565     UUID process_shared_cache_uuid;
2566     addr_t process_shared_cache_base_addr;
2567 
2568     if (process) {
2569       GetProcessSharedCacheUUID(process, process_shared_cache_base_addr,
2570                                 process_shared_cache_uuid);
2571     }
2572 
2573     // First see if we can find an exact match for the inferior process
2574     // shared cache UUID in the development or non-development shared caches
2575     // on disk.
2576     if (process_shared_cache_uuid.IsValid()) {
2577       if (FileSystem::Instance().Exists(dsc_development_filespec)) {
2578         UUID dsc_development_uuid = GetSharedCacheUUID(
2579             dsc_development_filespec, byte_order, addr_byte_size);
2580         if (dsc_development_uuid.IsValid() &&
2581             dsc_development_uuid == process_shared_cache_uuid) {
2582           dsc_filespec = dsc_development_filespec;
2583           dsc_uuid = dsc_development_uuid;
2584         }
2585       }
2586       if (!dsc_uuid.IsValid() &&
2587           FileSystem::Instance().Exists(dsc_nondevelopment_filespec)) {
2588         UUID dsc_nondevelopment_uuid = GetSharedCacheUUID(
2589             dsc_nondevelopment_filespec, byte_order, addr_byte_size);
2590         if (dsc_nondevelopment_uuid.IsValid() &&
2591             dsc_nondevelopment_uuid == process_shared_cache_uuid) {
2592           dsc_filespec = dsc_nondevelopment_filespec;
2593           dsc_uuid = dsc_nondevelopment_uuid;
2594         }
2595       }
2596     }
2597 
2598     // Failing a UUID match, prefer the development dyld_shared cache if both
2599     // are present.
2600     if (!FileSystem::Instance().Exists(dsc_filespec)) {
2601       if (FileSystem::Instance().Exists(dsc_development_filespec)) {
2602         dsc_filespec = dsc_development_filespec;
2603       } else {
2604         dsc_filespec = dsc_nondevelopment_filespec;
2605       }
2606     }
2607 
2608     /* The dyld_cache_header has a pointer to the
2609        dyld_cache_local_symbols_info structure (localSymbolsOffset).
2610        The dyld_cache_local_symbols_info structure gives us three things:
2611          1. The start and count of the nlist records in the dyld_shared_cache
2612        file
2613          2. The start and size of the strings for these nlist records
2614          3. The start and count of dyld_cache_local_symbols_entry entries
2615 
2616        There is one dyld_cache_local_symbols_entry per dylib/framework in the
2617        dyld shared cache.
2618        The "dylibOffset" field is the Mach-O header of this dylib/framework in
2619        the dyld shared cache.
2620        The dyld_cache_local_symbols_entry also lists the start of this
2621        dylib/framework's nlist records
2622        and the count of how many nlist records there are for this
2623        dylib/framework.
2624     */
2625 
2626     // Process the dyld shared cache header to find the unmapped symbols
2627 
2628     DataBufferSP dsc_data_sp = MapFileData(
2629         dsc_filespec, sizeof(struct lldb_copy_dyld_cache_header_v1), 0);
2630     if (!dsc_uuid.IsValid()) {
2631       dsc_uuid = GetSharedCacheUUID(dsc_filespec, byte_order, addr_byte_size);
2632     }
2633     if (dsc_data_sp) {
2634       DataExtractor dsc_header_data(dsc_data_sp, byte_order, addr_byte_size);
2635 
2636       bool uuid_match = true;
2637       if (dsc_uuid.IsValid() && process) {
2638         if (process_shared_cache_uuid.IsValid() &&
2639             dsc_uuid != process_shared_cache_uuid) {
2640           // The on-disk dyld_shared_cache file is not the same as the one in
2641           // this process' memory, don't use it.
2642           uuid_match = false;
2643           ModuleSP module_sp(GetModule());
2644           if (module_sp)
2645             module_sp->ReportWarning("process shared cache does not match "
2646                                      "on-disk dyld_shared_cache file, some "
2647                                      "symbol names will be missing.");
2648         }
2649       }
2650 
2651       offset = offsetof(struct lldb_copy_dyld_cache_header_v1, mappingOffset);
2652 
2653       uint32_t mappingOffset = dsc_header_data.GetU32(&offset);
2654 
2655       // If the mappingOffset points to a location inside the header, we've
2656       // opened an old dyld shared cache, and should not proceed further.
2657       if (uuid_match &&
2658           mappingOffset >= sizeof(struct lldb_copy_dyld_cache_header_v1)) {
2659 
2660         DataBufferSP dsc_mapping_info_data_sp = MapFileData(
2661             dsc_filespec, sizeof(struct lldb_copy_dyld_cache_mapping_info),
2662             mappingOffset);
2663 
2664         DataExtractor dsc_mapping_info_data(dsc_mapping_info_data_sp,
2665                                             byte_order, addr_byte_size);
2666         offset = 0;
2667 
2668         // The File addresses (from the in-memory Mach-O load commands) for
2669         // the shared libraries in the shared library cache need to be
2670         // adjusted by an offset to match up with the dylibOffset identifying
2671         // field in the dyld_cache_local_symbol_entry's.  This offset is
2672         // recorded in mapping_offset_value.
2673         const uint64_t mapping_offset_value =
2674             dsc_mapping_info_data.GetU64(&offset);
2675 
2676         offset =
2677             offsetof(struct lldb_copy_dyld_cache_header_v1, localSymbolsOffset);
2678         uint64_t localSymbolsOffset = dsc_header_data.GetU64(&offset);
2679         uint64_t localSymbolsSize = dsc_header_data.GetU64(&offset);
2680 
2681         if (localSymbolsOffset && localSymbolsSize) {
2682           // Map the local symbols
2683           DataBufferSP dsc_local_symbols_data_sp =
2684               MapFileData(dsc_filespec, localSymbolsSize, localSymbolsOffset);
2685 
2686           if (dsc_local_symbols_data_sp) {
2687             DataExtractor dsc_local_symbols_data(dsc_local_symbols_data_sp,
2688                                                  byte_order, addr_byte_size);
2689 
2690             offset = 0;
2691 
2692             typedef llvm::DenseMap<ConstString, uint16_t> UndefinedNameToDescMap;
2693             typedef llvm::DenseMap<uint32_t, ConstString> SymbolIndexToName;
2694             UndefinedNameToDescMap undefined_name_to_desc;
2695             SymbolIndexToName reexport_shlib_needs_fixup;
2696 
2697             // Read the local_symbols_infos struct in one shot
2698             struct lldb_copy_dyld_cache_local_symbols_info local_symbols_info;
2699             dsc_local_symbols_data.GetU32(&offset,
2700                                           &local_symbols_info.nlistOffset, 6);
2701 
2702             SectionSP text_section_sp(
2703                 section_list->FindSectionByName(GetSegmentNameTEXT()));
2704 
2705             uint32_t header_file_offset =
2706                 (text_section_sp->GetFileAddress() - mapping_offset_value);
2707 
2708             offset = local_symbols_info.entriesOffset;
2709             for (uint32_t entry_index = 0;
2710                  entry_index < local_symbols_info.entriesCount; entry_index++) {
2711               struct lldb_copy_dyld_cache_local_symbols_entry
2712                   local_symbols_entry;
2713               local_symbols_entry.dylibOffset =
2714                   dsc_local_symbols_data.GetU32(&offset);
2715               local_symbols_entry.nlistStartIndex =
2716                   dsc_local_symbols_data.GetU32(&offset);
2717               local_symbols_entry.nlistCount =
2718                   dsc_local_symbols_data.GetU32(&offset);
2719 
2720               if (header_file_offset == local_symbols_entry.dylibOffset) {
2721                 unmapped_local_symbols_found = local_symbols_entry.nlistCount;
2722 
2723                 // The normal nlist code cannot correctly size the Symbols
2724                 // array, we need to allocate it here.
2725                 sym = symtab->Resize(
2726                     symtab_load_command.nsyms + m_dysymtab.nindirectsyms +
2727                     unmapped_local_symbols_found - m_dysymtab.nlocalsym);
2728                 num_syms = symtab->GetNumSymbols();
2729 
2730                 nlist_data_offset =
2731                     local_symbols_info.nlistOffset +
2732                     (nlist_byte_size * local_symbols_entry.nlistStartIndex);
2733                 uint32_t string_table_offset = local_symbols_info.stringsOffset;
2734 
2735                 for (uint32_t nlist_index = 0;
2736                      nlist_index < local_symbols_entry.nlistCount;
2737                      nlist_index++) {
2738                   /////////////////////////////
2739                   {
2740                     struct nlist_64 nlist;
2741                     if (!ParseNList(dsc_local_symbols_data, nlist_data_offset, nlist_byte_size, nlist)
2742                       break;
2743 
2744                     SymbolType type = eSymbolTypeInvalid;
2745                     const char *symbol_name = dsc_local_symbols_data.PeekCStr(
2746                         string_table_offset + nlist.n_strx);
2747 
2748                     if (symbol_name == NULL) {
2749                       // No symbol should be NULL, even the symbols with no
2750                       // string values should have an offset zero which
2751                       // points to an empty C-string
2752                       Host::SystemLog(
2753                           Host::eSystemLogError,
2754                           "error: DSC unmapped local symbol[%u] has invalid "
2755                           "string table offset 0x%x in %s, ignoring symbol\n",
2756                           entry_index, nlist.n_strx,
2757                           module_sp->GetFileSpec().GetPath().c_str());
2758                       continue;
2759                     }
2760                     if (symbol_name[0] == '\0')
2761                       symbol_name = NULL;
2762 
2763                     const char *symbol_name_non_abi_mangled = NULL;
2764 
2765                     SectionSP symbol_section;
2766                     uint32_t symbol_byte_size = 0;
2767                     bool add_nlist = true;
2768                     bool is_debug = ((nlist.n_type & N_STAB) != 0);
2769                     bool demangled_is_synthesized = false;
2770                     bool is_gsym = false;
2771                     bool set_value = true;
2772 
2773                     assert(sym_idx < num_syms);
2774 
2775                     sym[sym_idx].SetDebug(is_debug);
2776 
2777                     if (is_debug) {
2778                       switch (nlist.n_type) {
2779                       case N_GSYM:
2780                         // global symbol: name,,NO_SECT,type,0
2781                         // Sometimes the N_GSYM value contains the address.
2782 
2783                         // FIXME: In the .o files, we have a GSYM and a debug
2784                         // symbol for all the ObjC data.  They
2785                         // have the same address, but we want to ensure that
2786                         // we always find only the real symbol, 'cause we
2787                         // don't currently correctly attribute the
2788                         // GSYM one to the ObjCClass/Ivar/MetaClass
2789                         // symbol type.  This is a temporary hack to make
2790                         // sure the ObjectiveC symbols get treated correctly.
2791                         // To do this right, we should coalesce all the GSYM
2792                         // & global symbols that have the same address.
2793 
2794                         is_gsym = true;
2795                         sym[sym_idx].SetExternal(true);
2796 
2797                         if (symbol_name && symbol_name[0] == '_' &&
2798                             symbol_name[1] == 'O') {
2799                           llvm::StringRef symbol_name_ref(symbol_name);
2800                           if (symbol_name_ref.startswith(
2801                                   g_objc_v2_prefix_class)) {
2802                             symbol_name_non_abi_mangled = symbol_name + 1;
2803                             symbol_name =
2804                                 symbol_name + g_objc_v2_prefix_class.size();
2805                             type = eSymbolTypeObjCClass;
2806                             demangled_is_synthesized = true;
2807 
2808                           } else if (symbol_name_ref.startswith(
2809                                          g_objc_v2_prefix_metaclass)) {
2810                             symbol_name_non_abi_mangled = symbol_name + 1;
2811                             symbol_name =
2812                                 symbol_name + g_objc_v2_prefix_metaclass.size();
2813                             type = eSymbolTypeObjCMetaClass;
2814                             demangled_is_synthesized = true;
2815                           } else if (symbol_name_ref.startswith(
2816                                          g_objc_v2_prefix_ivar)) {
2817                             symbol_name_non_abi_mangled = symbol_name + 1;
2818                             symbol_name =
2819                                 symbol_name + g_objc_v2_prefix_ivar.size();
2820                             type = eSymbolTypeObjCIVar;
2821                             demangled_is_synthesized = true;
2822                           }
2823                         } else {
2824                           if (nlist.n_value != 0)
2825                             symbol_section = section_info.GetSection(
2826                                 nlist.n_sect, nlist.n_value);
2827                           type = eSymbolTypeData;
2828                         }
2829                         break;
2830 
2831                       case N_FNAME:
2832                         // procedure name (f77 kludge): name,,NO_SECT,0,0
2833                         type = eSymbolTypeCompiler;
2834                         break;
2835 
2836                       case N_FUN:
2837                         // procedure: name,,n_sect,linenumber,address
2838                         if (symbol_name) {
2839                           type = eSymbolTypeCode;
2840                           symbol_section = section_info.GetSection(
2841                               nlist.n_sect, nlist.n_value);
2842 
2843                           N_FUN_addr_to_sym_idx.insert(
2844                               std::make_pair(nlist.n_value, sym_idx));
2845                           // We use the current number of symbols in the
2846                           // symbol table in lieu of using nlist_idx in case
2847                           // we ever start trimming entries out
2848                           N_FUN_indexes.push_back(sym_idx);
2849                         } else {
2850                           type = eSymbolTypeCompiler;
2851 
2852                           if (!N_FUN_indexes.empty()) {
2853                             // Copy the size of the function into the
2854                             // original
2855                             // STAB entry so we don't have
2856                             // to hunt for it later
2857                             symtab->SymbolAtIndex(N_FUN_indexes.back())
2858                                 ->SetByteSize(nlist.n_value);
2859                             N_FUN_indexes.pop_back();
2860                             // We don't really need the end function STAB as
2861                             // it contains the size which we already placed
2862                             // with the original symbol, so don't add it if
2863                             // we want a minimal symbol table
2864                             add_nlist = false;
2865                           }
2866                         }
2867                         break;
2868 
2869                       case N_STSYM:
2870                         // static symbol: name,,n_sect,type,address
2871                         N_STSYM_addr_to_sym_idx.insert(
2872                             std::make_pair(nlist.n_value, sym_idx));
2873                         symbol_section = section_info.GetSection(nlist.n_sect,
2874                                                                  nlist.n_value);
2875                         if (symbol_name && symbol_name[0]) {
2876                           type = ObjectFile::GetSymbolTypeFromName(
2877                               symbol_name + 1, eSymbolTypeData);
2878                         }
2879                         break;
2880 
2881                       case N_LCSYM:
2882                         // .lcomm symbol: name,,n_sect,type,address
2883                         symbol_section = section_info.GetSection(nlist.n_sect,
2884                                                                  nlist.n_value);
2885                         type = eSymbolTypeCommonBlock;
2886                         break;
2887 
2888                       case N_BNSYM:
2889                         // We use the current number of symbols in the symbol
2890                         // table in lieu of using nlist_idx in case we ever
2891                         // start trimming entries out Skip these if we want
2892                         // minimal symbol tables
2893                         add_nlist = false;
2894                         break;
2895 
2896                       case N_ENSYM:
2897                         // Set the size of the N_BNSYM to the terminating
2898                         // index of this N_ENSYM so that we can always skip
2899                         // the entire symbol if we need to navigate more
2900                         // quickly at the source level when parsing STABS
2901                         // Skip these if we want minimal symbol tables
2902                         add_nlist = false;
2903                         break;
2904 
2905                       case N_OPT:
2906                         // emitted with gcc2_compiled and in gcc source
2907                         type = eSymbolTypeCompiler;
2908                         break;
2909 
2910                       case N_RSYM:
2911                         // register sym: name,,NO_SECT,type,register
2912                         type = eSymbolTypeVariable;
2913                         break;
2914 
2915                       case N_SLINE:
2916                         // src line: 0,,n_sect,linenumber,address
2917                         symbol_section = section_info.GetSection(nlist.n_sect,
2918                                                                  nlist.n_value);
2919                         type = eSymbolTypeLineEntry;
2920                         break;
2921 
2922                       case N_SSYM:
2923                         // structure elt: name,,NO_SECT,type,struct_offset
2924                         type = eSymbolTypeVariableType;
2925                         break;
2926 
2927                       case N_SO:
2928                         // source file name
2929                         type = eSymbolTypeSourceFile;
2930                         if (symbol_name == NULL) {
2931                           add_nlist = false;
2932                           if (N_SO_index != UINT32_MAX) {
2933                             // Set the size of the N_SO to the terminating
2934                             // index of this N_SO so that we can always skip
2935                             // the entire N_SO if we need to navigate more
2936                             // quickly at the source level when parsing STABS
2937                             symbol_ptr = symtab->SymbolAtIndex(N_SO_index);
2938                             symbol_ptr->SetByteSize(sym_idx);
2939                             symbol_ptr->SetSizeIsSibling(true);
2940                           }
2941                           N_NSYM_indexes.clear();
2942                           N_INCL_indexes.clear();
2943                           N_BRAC_indexes.clear();
2944                           N_COMM_indexes.clear();
2945                           N_FUN_indexes.clear();
2946                           N_SO_index = UINT32_MAX;
2947                         } else {
2948                           // We use the current number of symbols in the
2949                           // symbol table in lieu of using nlist_idx in case
2950                           // we ever start trimming entries out
2951                           const bool N_SO_has_full_path = symbol_name[0] == '/';
2952                           if (N_SO_has_full_path) {
2953                             if ((N_SO_index == sym_idx - 1) &&
2954                                 ((sym_idx - 1) < num_syms)) {
2955                               // We have two consecutive N_SO entries where
2956                               // the first contains a directory and the
2957                               // second contains a full path.
2958                               sym[sym_idx - 1].GetMangled().SetValue(
2959                                   ConstString(symbol_name), false);
2960                               m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
2961                               add_nlist = false;
2962                             } else {
2963                               // This is the first entry in a N_SO that
2964                               // contains a directory or
2965                               // a full path to the source file
2966                               N_SO_index = sym_idx;
2967                             }
2968                           } else if ((N_SO_index == sym_idx - 1) &&
2969                                      ((sym_idx - 1) < num_syms)) {
2970                             // This is usually the second N_SO entry that
2971                             // contains just the filename, so here we combine
2972                             // it with the first one if we are minimizing the
2973                             // symbol table
2974                             const char *so_path =
2975                                 sym[sym_idx - 1]
2976                                     .GetMangled()
2977                                     .GetDemangledName(
2978                                         lldb::eLanguageTypeUnknown)
2979                                     .AsCString();
2980                             if (so_path && so_path[0]) {
2981                               std::string full_so_path(so_path);
2982                               const size_t double_slash_pos =
2983                                   full_so_path.find("//");
2984                               if (double_slash_pos != std::string::npos) {
2985                                 // The linker has been generating bad N_SO
2986                                 // entries with doubled up paths
2987                                 // in the format "%s%s" where the first
2988                                 // string in the DW_AT_comp_dir, and the
2989                                 // second is the directory for the source
2990                                 // file so you end up with a path that looks
2991                                 // like "/tmp/src//tmp/src/"
2992                                 FileSpec so_dir(so_path);
2993                                 if (!FileSystem::Instance().Exists(so_dir)) {
2994                                   so_dir.SetFile(
2995                                       &full_so_path[double_slash_pos + 1],
2996                                       FileSpec::Style::native);
2997                                   if (FileSystem::Instance().Exists(so_dir)) {
2998                                     // Trim off the incorrect path
2999                                     full_so_path.erase(0, double_slash_pos + 1);
3000                                   }
3001                                 }
3002                               }
3003                               if (*full_so_path.rbegin() != '/')
3004                                 full_so_path += '/';
3005                               full_so_path += symbol_name;
3006                               sym[sym_idx - 1].GetMangled().SetValue(
3007                                   ConstString(full_so_path.c_str()), false);
3008                               add_nlist = false;
3009                               m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3010                             }
3011                           } else {
3012                             // This could be a relative path to a N_SO
3013                             N_SO_index = sym_idx;
3014                           }
3015                         }
3016                         break;
3017 
3018                       case N_OSO:
3019                         // object file name: name,,0,0,st_mtime
3020                         type = eSymbolTypeObjectFile;
3021                         break;
3022 
3023                       case N_LSYM:
3024                         // local sym: name,,NO_SECT,type,offset
3025                         type = eSymbolTypeLocal;
3026                         break;
3027 
3028                       // INCL scopes
3029                       case N_BINCL:
3030                         // include file beginning: name,,NO_SECT,0,sum We use
3031                         // the current number of symbols in the symbol table
3032                         // in lieu of using nlist_idx in case we ever start
3033                         // trimming entries out
3034                         N_INCL_indexes.push_back(sym_idx);
3035                         type = eSymbolTypeScopeBegin;
3036                         break;
3037 
3038                       case N_EINCL:
3039                         // include file end: name,,NO_SECT,0,0
3040                         // Set the size of the N_BINCL to the terminating
3041                         // index of this N_EINCL so that we can always skip
3042                         // the entire symbol if we need to navigate more
3043                         // quickly at the source level when parsing STABS
3044                         if (!N_INCL_indexes.empty()) {
3045                           symbol_ptr =
3046                               symtab->SymbolAtIndex(N_INCL_indexes.back());
3047                           symbol_ptr->SetByteSize(sym_idx + 1);
3048                           symbol_ptr->SetSizeIsSibling(true);
3049                           N_INCL_indexes.pop_back();
3050                         }
3051                         type = eSymbolTypeScopeEnd;
3052                         break;
3053 
3054                       case N_SOL:
3055                         // #included file name: name,,n_sect,0,address
3056                         type = eSymbolTypeHeaderFile;
3057 
3058                         // We currently don't use the header files on darwin
3059                         add_nlist = false;
3060                         break;
3061 
3062                       case N_PARAMS:
3063                         // compiler parameters: name,,NO_SECT,0,0
3064                         type = eSymbolTypeCompiler;
3065                         break;
3066 
3067                       case N_VERSION:
3068                         // compiler version: name,,NO_SECT,0,0
3069                         type = eSymbolTypeCompiler;
3070                         break;
3071 
3072                       case N_OLEVEL:
3073                         // compiler -O level: name,,NO_SECT,0,0
3074                         type = eSymbolTypeCompiler;
3075                         break;
3076 
3077                       case N_PSYM:
3078                         // parameter: name,,NO_SECT,type,offset
3079                         type = eSymbolTypeVariable;
3080                         break;
3081 
3082                       case N_ENTRY:
3083                         // alternate entry: name,,n_sect,linenumber,address
3084                         symbol_section = section_info.GetSection(nlist.n_sect,
3085                                                                  nlist.n_value);
3086                         type = eSymbolTypeLineEntry;
3087                         break;
3088 
3089                       // Left and Right Braces
3090                       case N_LBRAC:
3091                         // left bracket: 0,,NO_SECT,nesting level,address We
3092                         // use the current number of symbols in the symbol
3093                         // table in lieu of using nlist_idx in case we ever
3094                         // start trimming entries out
3095                         symbol_section = section_info.GetSection(nlist.n_sect,
3096                                                                  nlist.n_value);
3097                         N_BRAC_indexes.push_back(sym_idx);
3098                         type = eSymbolTypeScopeBegin;
3099                         break;
3100 
3101                       case N_RBRAC:
3102                         // right bracket: 0,,NO_SECT,nesting level,address
3103                         // Set the size of the N_LBRAC to the terminating
3104                         // index of this N_RBRAC so that we can always skip
3105                         // the entire symbol if we need to navigate more
3106                         // quickly at the source level when parsing STABS
3107                         symbol_section = section_info.GetSection(nlist.n_sect,
3108                                                                  nlist.n_value);
3109                         if (!N_BRAC_indexes.empty()) {
3110                           symbol_ptr =
3111                               symtab->SymbolAtIndex(N_BRAC_indexes.back());
3112                           symbol_ptr->SetByteSize(sym_idx + 1);
3113                           symbol_ptr->SetSizeIsSibling(true);
3114                           N_BRAC_indexes.pop_back();
3115                         }
3116                         type = eSymbolTypeScopeEnd;
3117                         break;
3118 
3119                       case N_EXCL:
3120                         // deleted include file: name,,NO_SECT,0,sum
3121                         type = eSymbolTypeHeaderFile;
3122                         break;
3123 
3124                       // COMM scopes
3125                       case N_BCOMM:
3126                         // begin common: name,,NO_SECT,0,0
3127                         // We use the current number of symbols in the symbol
3128                         // table in lieu of using nlist_idx in case we ever
3129                         // start trimming entries out
3130                         type = eSymbolTypeScopeBegin;
3131                         N_COMM_indexes.push_back(sym_idx);
3132                         break;
3133 
3134                       case N_ECOML:
3135                         // end common (local name): 0,,n_sect,0,address
3136                         symbol_section = section_info.GetSection(nlist.n_sect,
3137                                                                  nlist.n_value);
3138                         // Fall through
3139 
3140                       case N_ECOMM:
3141                         // end common: name,,n_sect,0,0
3142                         // Set the size of the N_BCOMM to the terminating
3143                         // index of this N_ECOMM/N_ECOML so that we can
3144                         // always skip the entire symbol if we need to
3145                         // navigate more quickly at the source level when
3146                         // parsing STABS
3147                         if (!N_COMM_indexes.empty()) {
3148                           symbol_ptr =
3149                               symtab->SymbolAtIndex(N_COMM_indexes.back());
3150                           symbol_ptr->SetByteSize(sym_idx + 1);
3151                           symbol_ptr->SetSizeIsSibling(true);
3152                           N_COMM_indexes.pop_back();
3153                         }
3154                         type = eSymbolTypeScopeEnd;
3155                         break;
3156 
3157                       case N_LENG:
3158                         // second stab entry with length information
3159                         type = eSymbolTypeAdditional;
3160                         break;
3161 
3162                       default:
3163                         break;
3164                       }
3165                     } else {
3166                       // uint8_t n_pext    = N_PEXT & nlist.n_type;
3167                       uint8_t n_type = N_TYPE & nlist.n_type;
3168                       sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
3169 
3170                       switch (n_type) {
3171                       case N_INDR: {
3172                         const char *reexport_name_cstr =
3173                             strtab_data.PeekCStr(nlist.n_value);
3174                         if (reexport_name_cstr && reexport_name_cstr[0]) {
3175                           type = eSymbolTypeReExported;
3176                           ConstString reexport_name(
3177                               reexport_name_cstr +
3178                               ((reexport_name_cstr[0] == '_') ? 1 : 0));
3179                           sym[sym_idx].SetReExportedSymbolName(reexport_name);
3180                           set_value = false;
3181                           reexport_shlib_needs_fixup[sym_idx] = reexport_name;
3182                           indirect_symbol_names.insert(ConstString(
3183                               symbol_name + ((symbol_name[0] == '_') ? 1 : 0)));
3184                         } else
3185                           type = eSymbolTypeUndefined;
3186                       } break;
3187 
3188                       case N_UNDF:
3189                         if (symbol_name && symbol_name[0]) {
3190                           ConstString undefined_name(
3191                               symbol_name + ((symbol_name[0] == '_') ? 1 : 0));
3192                           undefined_name_to_desc[undefined_name] = nlist.n_desc;
3193                         }
3194                       // Fall through
3195                       case N_PBUD:
3196                         type = eSymbolTypeUndefined;
3197                         break;
3198 
3199                       case N_ABS:
3200                         type = eSymbolTypeAbsolute;
3201                         break;
3202 
3203                       case N_SECT: {
3204                         symbol_section = section_info.GetSection(nlist.n_sect,
3205                                                                  nlist.n_value);
3206 
3207                         if (symbol_section == NULL) {
3208                           // TODO: warn about this?
3209                           add_nlist = false;
3210                           break;
3211                         }
3212 
3213                         if (TEXT_eh_frame_sectID == nlist.n_sect) {
3214                           type = eSymbolTypeException;
3215                         } else {
3216                           uint32_t section_type =
3217                               symbol_section->Get() & SECTION_TYPE;
3218 
3219                           switch (section_type) {
3220                           case S_CSTRING_LITERALS:
3221                             type = eSymbolTypeData;
3222                             break; // section with only literal C strings
3223                           case S_4BYTE_LITERALS:
3224                             type = eSymbolTypeData;
3225                             break; // section with only 4 byte literals
3226                           case S_8BYTE_LITERALS:
3227                             type = eSymbolTypeData;
3228                             break; // section with only 8 byte literals
3229                           case S_LITERAL_POINTERS:
3230                             type = eSymbolTypeTrampoline;
3231                             break; // section with only pointers to literals
3232                           case S_NON_LAZY_SYMBOL_POINTERS:
3233                             type = eSymbolTypeTrampoline;
3234                             break; // section with only non-lazy symbol
3235                                    // pointers
3236                           case S_LAZY_SYMBOL_POINTERS:
3237                             type = eSymbolTypeTrampoline;
3238                             break; // section with only lazy symbol pointers
3239                           case S_SYMBOL_STUBS:
3240                             type = eSymbolTypeTrampoline;
3241                             break; // section with only symbol stubs, byte
3242                                    // size of stub in the reserved2 field
3243                           case S_MOD_INIT_FUNC_POINTERS:
3244                             type = eSymbolTypeCode;
3245                             break; // section with only function pointers for
3246                                    // initialization
3247                           case S_MOD_TERM_FUNC_POINTERS:
3248                             type = eSymbolTypeCode;
3249                             break; // section with only function pointers for
3250                                    // termination
3251                           case S_INTERPOSING:
3252                             type = eSymbolTypeTrampoline;
3253                             break; // section with only pairs of function
3254                                    // pointers for interposing
3255                           case S_16BYTE_LITERALS:
3256                             type = eSymbolTypeData;
3257                             break; // section with only 16 byte literals
3258                           case S_DTRACE_DOF:
3259                             type = eSymbolTypeInstrumentation;
3260                             break;
3261                           case S_LAZY_DYLIB_SYMBOL_POINTERS:
3262                             type = eSymbolTypeTrampoline;
3263                             break;
3264                           default:
3265                             switch (symbol_section->GetType()) {
3266                             case lldb::eSectionTypeCode:
3267                               type = eSymbolTypeCode;
3268                               break;
3269                             case eSectionTypeData:
3270                             case eSectionTypeDataCString: // Inlined C string
3271                                                           // data
3272                             case eSectionTypeDataCStringPointers: // Pointers
3273                                                                   // to C
3274                                                                   // string
3275                                                                   // data
3276                             case eSectionTypeDataSymbolAddress:   // Address of
3277                                                                   // a symbol in
3278                                                                   // the symbol
3279                                                                   // table
3280                             case eSectionTypeData4:
3281                             case eSectionTypeData8:
3282                             case eSectionTypeData16:
3283                               type = eSymbolTypeData;
3284                               break;
3285                             default:
3286                               break;
3287                             }
3288                             break;
3289                           }
3290 
3291                           if (type == eSymbolTypeInvalid) {
3292                             const char *symbol_sect_name =
3293                                 symbol_section->GetName().AsCString();
3294                             if (symbol_section->IsDescendant(
3295                                     text_section_sp.get())) {
3296                               if (symbol_section->IsClear(
3297                                       S_ATTR_PURE_INSTRUCTIONS |
3298                                       S_ATTR_SELF_MODIFYING_CODE |
3299                                       S_ATTR_SOME_INSTRUCTIONS))
3300                                 type = eSymbolTypeData;
3301                               else
3302                                 type = eSymbolTypeCode;
3303                             } else if (symbol_section->IsDescendant(
3304                                            data_section_sp.get()) ||
3305                                        symbol_section->IsDescendant(
3306                                            data_dirty_section_sp.get()) ||
3307                                        symbol_section->IsDescendant(
3308                                            data_const_section_sp.get())) {
3309                               if (symbol_sect_name &&
3310                                   ::strstr(symbol_sect_name, "__objc") ==
3311                                       symbol_sect_name) {
3312                                 type = eSymbolTypeRuntime;
3313 
3314                                 if (symbol_name) {
3315                                   llvm::StringRef symbol_name_ref(symbol_name);
3316                                   if (symbol_name_ref.startswith("_OBJC_")) {
3317                                     llvm::StringRef
3318                                         g_objc_v2_prefix_class(
3319                                             "_OBJC_CLASS_$_");
3320                                     llvm::StringRef
3321                                         g_objc_v2_prefix_metaclass(
3322                                             "_OBJC_METACLASS_$_");
3323                                     llvm::StringRef
3324                                         g_objc_v2_prefix_ivar("_OBJC_IVAR_$_");
3325                                     if (symbol_name_ref.startswith(
3326                                             g_objc_v2_prefix_class)) {
3327                                       symbol_name_non_abi_mangled =
3328                                           symbol_name + 1;
3329                                       symbol_name =
3330                                           symbol_name +
3331                                           g_objc_v2_prefix_class.size();
3332                                       type = eSymbolTypeObjCClass;
3333                                       demangled_is_synthesized = true;
3334                                     } else if (
3335                                         symbol_name_ref.startswith(
3336                                             g_objc_v2_prefix_metaclass)) {
3337                                       symbol_name_non_abi_mangled =
3338                                           symbol_name + 1;
3339                                       symbol_name =
3340                                           symbol_name +
3341                                           g_objc_v2_prefix_metaclass.size();
3342                                       type = eSymbolTypeObjCMetaClass;
3343                                       demangled_is_synthesized = true;
3344                                     } else if (symbol_name_ref.startswith(
3345                                                    g_objc_v2_prefix_ivar)) {
3346                                       symbol_name_non_abi_mangled =
3347                                           symbol_name + 1;
3348                                       symbol_name =
3349                                           symbol_name +
3350                                           g_objc_v2_prefix_ivar.size();
3351                                       type = eSymbolTypeObjCIVar;
3352                                       demangled_is_synthesized = true;
3353                                     }
3354                                   }
3355                                 }
3356                               } else if (symbol_sect_name &&
3357                                          ::strstr(symbol_sect_name,
3358                                                   "__gcc_except_tab") ==
3359                                              symbol_sect_name) {
3360                                 type = eSymbolTypeException;
3361                               } else {
3362                                 type = eSymbolTypeData;
3363                               }
3364                             } else if (symbol_sect_name &&
3365                                        ::strstr(symbol_sect_name, "__IMPORT") ==
3366                                            symbol_sect_name) {
3367                               type = eSymbolTypeTrampoline;
3368                             } else if (symbol_section->IsDescendant(
3369                                            objc_section_sp.get())) {
3370                               type = eSymbolTypeRuntime;
3371                               if (symbol_name && symbol_name[0] == '.') {
3372                                 llvm::StringRef symbol_name_ref(symbol_name);
3373                                 llvm::StringRef
3374                                     g_objc_v1_prefix_class(".objc_class_name_");
3375                                 if (symbol_name_ref.startswith(
3376                                         g_objc_v1_prefix_class)) {
3377                                   symbol_name_non_abi_mangled = symbol_name;
3378                                   symbol_name = symbol_name +
3379                                                 g_objc_v1_prefix_class.size();
3380                                   type = eSymbolTypeObjCClass;
3381                                   demangled_is_synthesized = true;
3382                                 }
3383                               }
3384                             }
3385                           }
3386                         }
3387                       } break;
3388                       }
3389                     }
3390 
3391                     if (add_nlist) {
3392                       uint64_t symbol_value = nlist.n_value;
3393                       if (symbol_name_non_abi_mangled) {
3394                         sym[sym_idx].GetMangled().SetMangledName(
3395                             ConstString(symbol_name_non_abi_mangled));
3396                         sym[sym_idx].GetMangled().SetDemangledName(
3397                             ConstString(symbol_name));
3398                       } else {
3399                         bool symbol_name_is_mangled = false;
3400 
3401                         if (symbol_name && symbol_name[0] == '_') {
3402                           symbol_name_is_mangled = symbol_name[1] == '_';
3403                           symbol_name++; // Skip the leading underscore
3404                         }
3405 
3406                         if (symbol_name) {
3407                           ConstString const_symbol_name(symbol_name);
3408                           sym[sym_idx].GetMangled().SetValue(
3409                               const_symbol_name, symbol_name_is_mangled);
3410                           if (is_gsym && is_debug) {
3411                             const char *gsym_name =
3412                                 sym[sym_idx]
3413                                     .GetMangled()
3414                                     .GetName(lldb::eLanguageTypeUnknown,
3415                                              Mangled::ePreferMangled)
3416                                     .GetCString();
3417                             if (gsym_name)
3418                               N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
3419                           }
3420                         }
3421                       }
3422                       if (symbol_section) {
3423                         const addr_t section_file_addr =
3424                             symbol_section->GetFileAddress();
3425                         if (symbol_byte_size == 0 &&
3426                             function_starts_count > 0) {
3427                           addr_t symbol_lookup_file_addr = nlist.n_value;
3428                           // Do an exact address match for non-ARM addresses,
3429                           // else get the closest since the symbol might be a
3430                           // thumb symbol which has an address with bit zero
3431                           // set
3432                           FunctionStarts::Entry *func_start_entry =
3433                               function_starts.FindEntry(symbol_lookup_file_addr,
3434                                                         !is_arm);
3435                           if (is_arm && func_start_entry) {
3436                             // Verify that the function start address is the
3437                             // symbol address (ARM) or the symbol address + 1
3438                             // (thumb)
3439                             if (func_start_entry->addr !=
3440                                     symbol_lookup_file_addr &&
3441                                 func_start_entry->addr !=
3442                                     (symbol_lookup_file_addr + 1)) {
3443                               // Not the right entry, NULL it out...
3444                               func_start_entry = NULL;
3445                             }
3446                           }
3447                           if (func_start_entry) {
3448                             func_start_entry->data = true;
3449 
3450                             addr_t symbol_file_addr = func_start_entry->addr;
3451                             uint32_t symbol_flags = 0;
3452                             if (is_arm) {
3453                               if (symbol_file_addr & 1)
3454                                 symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB;
3455                               symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
3456                             }
3457 
3458                             const FunctionStarts::Entry *next_func_start_entry =
3459                                 function_starts.FindNextEntry(func_start_entry);
3460                             const addr_t section_end_file_addr =
3461                                 section_file_addr +
3462                                 symbol_section->GetByteSize();
3463                             if (next_func_start_entry) {
3464                               addr_t next_symbol_file_addr =
3465                                   next_func_start_entry->addr;
3466                               // Be sure the clear the Thumb address bit when
3467                               // we calculate the size from the current and
3468                               // next address
3469                               if (is_arm)
3470                                 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
3471                               symbol_byte_size = std::min<lldb::addr_t>(
3472                                   next_symbol_file_addr - symbol_file_addr,
3473                                   section_end_file_addr - symbol_file_addr);
3474                             } else {
3475                               symbol_byte_size =
3476                                   section_end_file_addr - symbol_file_addr;
3477                             }
3478                           }
3479                         }
3480                         symbol_value -= section_file_addr;
3481                       }
3482 
3483                       if (is_debug == false) {
3484                         if (type == eSymbolTypeCode) {
3485                           // See if we can find a N_FUN entry for any code
3486                           // symbols. If we do find a match, and the name
3487                           // matches, then we can merge the two into just the
3488                           // function symbol to avoid duplicate entries in
3489                           // the symbol table
3490                           auto range =
3491                               N_FUN_addr_to_sym_idx.equal_range(nlist.n_value);
3492                           if (range.first != range.second) {
3493                             bool found_it = false;
3494                             for (const auto pos = range.first;
3495                                  pos != range.second; ++pos) {
3496                               if (sym[sym_idx].GetMangled().GetName(
3497                                       lldb::eLanguageTypeUnknown,
3498                                       Mangled::ePreferMangled) ==
3499                                   sym[pos->second].GetMangled().GetName(
3500                                       lldb::eLanguageTypeUnknown,
3501                                       Mangled::ePreferMangled)) {
3502                                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
3503                                 // We just need the flags from the linker
3504                                 // symbol, so put these flags
3505                                 // into the N_FUN flags to avoid duplicate
3506                                 // symbols in the symbol table
3507                                 sym[pos->second].SetExternal(
3508                                     sym[sym_idx].IsExternal());
3509                                 sym[pos->second].SetFlags(nlist.n_type << 16 |
3510                                                           nlist.n_desc);
3511                                 if (resolver_addresses.find(nlist.n_value) !=
3512                                     resolver_addresses.end())
3513                                   sym[pos->second].SetType(eSymbolTypeResolver);
3514                                 sym[sym_idx].Clear();
3515                                 found_it = true;
3516                                 break;
3517                               }
3518                             }
3519                             if (found_it)
3520                               continue;
3521                           } else {
3522                             if (resolver_addresses.find(nlist.n_value) !=
3523                                 resolver_addresses.end())
3524                               type = eSymbolTypeResolver;
3525                           }
3526                         } else if (type == eSymbolTypeData ||
3527                                    type == eSymbolTypeObjCClass ||
3528                                    type == eSymbolTypeObjCMetaClass ||
3529                                    type == eSymbolTypeObjCIVar) {
3530                           // See if we can find a N_STSYM entry for any data
3531                           // symbols. If we do find a match, and the name
3532                           // matches, then we can merge the two into just the
3533                           // Static symbol to avoid duplicate entries in the
3534                           // symbol table
3535                           auto range = N_STSYM_addr_to_sym_idx.equal_range(
3536                               nlist.n_value);
3537                           if (range.first != range.second) {
3538                             bool found_it = false;
3539                             for (const auto pos = range.first;
3540                                  pos != range.second; ++pos) {
3541                               if (sym[sym_idx].GetMangled().GetName(
3542                                       lldb::eLanguageTypeUnknown,
3543                                       Mangled::ePreferMangled) ==
3544                                   sym[pos->second].GetMangled().GetName(
3545                                       lldb::eLanguageTypeUnknown,
3546                                       Mangled::ePreferMangled)) {
3547                                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
3548                                 // We just need the flags from the linker
3549                                 // symbol, so put these flags
3550                                 // into the N_STSYM flags to avoid duplicate
3551                                 // symbols in the symbol table
3552                                 sym[pos->second].SetExternal(
3553                                     sym[sym_idx].IsExternal());
3554                                 sym[pos->second].SetFlags(nlist.n_type << 16 |
3555                                                           nlist.n_desc);
3556                                 sym[sym_idx].Clear();
3557                                 found_it = true;
3558                                 break;
3559                               }
3560                             }
3561                             if (found_it)
3562                               continue;
3563                           } else {
3564                             const char *gsym_name =
3565                                 sym[sym_idx]
3566                                     .GetMangled()
3567                                     .GetName(lldb::eLanguageTypeUnknown,
3568                                              Mangled::ePreferMangled)
3569                                     .GetCString();
3570                             if (gsym_name) {
3571                               // Combine N_GSYM stab entries with the non
3572                               // stab symbol
3573                               ConstNameToSymbolIndexMap::const_iterator pos =
3574                                   N_GSYM_name_to_sym_idx.find(gsym_name);
3575                               if (pos != N_GSYM_name_to_sym_idx.end()) {
3576                                 const uint32_t GSYM_sym_idx = pos->second;
3577                                 m_nlist_idx_to_sym_idx[nlist_idx] =
3578                                     GSYM_sym_idx;
3579                                 // Copy the address, because often the N_GSYM
3580                                 // address has an invalid address of zero
3581                                 // when the global is a common symbol
3582                                 sym[GSYM_sym_idx].GetAddressRef().SetSection(
3583                                     symbol_section);
3584                                 sym[GSYM_sym_idx].GetAddressRef().SetOffset(
3585                                     symbol_value);
3586                                 // We just need the flags from the linker
3587                                 // symbol, so put these flags
3588                                 // into the N_GSYM flags to avoid duplicate
3589                                 // symbols in the symbol table
3590                                 sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 |
3591                                                            nlist.n_desc);
3592                                 sym[sym_idx].Clear();
3593                                 continue;
3594                               }
3595                             }
3596                           }
3597                         }
3598                       }
3599 
3600                       sym[sym_idx].SetID(nlist_idx);
3601                       sym[sym_idx].SetType(type);
3602                       if (set_value) {
3603                         sym[sym_idx].GetAddressRef().SetSection(symbol_section);
3604                         sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
3605                       }
3606                       sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
3607 
3608                       if (symbol_byte_size > 0)
3609                         sym[sym_idx].SetByteSize(symbol_byte_size);
3610 
3611                       if (demangled_is_synthesized)
3612                         sym[sym_idx].SetDemangledNameIsSynthesized(true);
3613                       ++sym_idx;
3614                     } else {
3615                       sym[sym_idx].Clear();
3616                     }
3617                   }
3618                   /////////////////////////////
3619                 }
3620                 break; // No more entries to consider
3621               }
3622             }
3623 
3624             for (const auto &pos : reexport_shlib_needs_fixup) {
3625               const auto undef_pos = undefined_name_to_desc.find(pos.second);
3626               if (undef_pos != undefined_name_to_desc.end()) {
3627                 const uint8_t dylib_ordinal =
3628                     llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
3629                 if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize())
3630                   sym[pos.first].SetReExportedSymbolSharedLibrary(
3631                       dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
3632               }
3633             }
3634           }
3635         }
3636       }
3637     }
3638   }
3639 
3640   // Must reset this in case it was mutated above!
3641   nlist_data_offset = 0;
3642 #endif
3643 
3644   if (nlist_data.GetByteSize() > 0) {
3645 
3646     // If the sym array was not created while parsing the DSC unmapped
3647     // symbols, create it now.
3648     if (sym == nullptr) {
3649       sym =
3650           symtab->Resize(symtab_load_command.nsyms + m_dysymtab.nindirectsyms);
3651       num_syms = symtab->GetNumSymbols();
3652     }
3653 
3654     if (unmapped_local_symbols_found) {
3655       assert(m_dysymtab.ilocalsym == 0);
3656       nlist_data_offset += (m_dysymtab.nlocalsym * nlist_byte_size);
3657       nlist_idx = m_dysymtab.nlocalsym;
3658     } else {
3659       nlist_idx = 0;
3660     }
3661 
3662     typedef llvm::DenseMap<ConstString, uint16_t> UndefinedNameToDescMap;
3663     typedef llvm::DenseMap<uint32_t, ConstString> SymbolIndexToName;
3664     UndefinedNameToDescMap undefined_name_to_desc;
3665     SymbolIndexToName reexport_shlib_needs_fixup;
3666 
3667     // Symtab parsing is a huge mess. Everything is entangled and the code
3668     // requires access to a ridiculous amount of variables. LLDB depends
3669     // heavily on the proper merging of symbols and to get that right we need
3670     // to make sure we have parsed all the debug symbols first. Therefore we
3671     // invoke the lambda twice, once to parse only the debug symbols and then
3672     // once more to parse the remaining symbols.
3673     auto ParseSymbolLambda = [&](struct nlist_64 &nlist, uint32_t nlist_idx,
3674                                  bool debug_only) {
3675       const bool is_debug = ((nlist.n_type & N_STAB) != 0);
3676       if (is_debug != debug_only)
3677         return true;
3678 
3679       const char *symbol_name_non_abi_mangled = nullptr;
3680       const char *symbol_name = nullptr;
3681 
3682       if (have_strtab_data) {
3683         symbol_name = strtab_data.PeekCStr(nlist.n_strx);
3684 
3685         if (symbol_name == nullptr) {
3686           // No symbol should be NULL, even the symbols with no string values
3687           // should have an offset zero which points to an empty C-string
3688           Host::SystemLog(Host::eSystemLogError,
3689                           "error: symbol[%u] has invalid string table offset "
3690                           "0x%x in %s, ignoring symbol\n",
3691                           nlist_idx, nlist.n_strx,
3692                           module_sp->GetFileSpec().GetPath().c_str());
3693           return true;
3694         }
3695         if (symbol_name[0] == '\0')
3696           symbol_name = nullptr;
3697       } else {
3698         const addr_t str_addr = strtab_addr + nlist.n_strx;
3699         Status str_error;
3700         if (process->ReadCStringFromMemory(str_addr, memory_symbol_name,
3701                                            str_error))
3702           symbol_name = memory_symbol_name.c_str();
3703       }
3704 
3705       SymbolType type = eSymbolTypeInvalid;
3706       SectionSP symbol_section;
3707       lldb::addr_t symbol_byte_size = 0;
3708       bool add_nlist = true;
3709       bool is_gsym = false;
3710       bool demangled_is_synthesized = false;
3711       bool set_value = true;
3712 
3713       assert(sym_idx < num_syms);
3714       sym[sym_idx].SetDebug(is_debug);
3715 
3716       if (is_debug) {
3717         switch (nlist.n_type) {
3718         case N_GSYM:
3719           // global symbol: name,,NO_SECT,type,0
3720           // Sometimes the N_GSYM value contains the address.
3721 
3722           // FIXME: In the .o files, we have a GSYM and a debug symbol for all
3723           // the ObjC data.  They
3724           // have the same address, but we want to ensure that we always find
3725           // only the real symbol, 'cause we don't currently correctly
3726           // attribute the GSYM one to the ObjCClass/Ivar/MetaClass symbol
3727           // type.  This is a temporary hack to make sure the ObjectiveC
3728           // symbols get treated correctly.  To do this right, we should
3729           // coalesce all the GSYM & global symbols that have the same
3730           // address.
3731           is_gsym = true;
3732           sym[sym_idx].SetExternal(true);
3733 
3734           if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O') {
3735             llvm::StringRef symbol_name_ref(symbol_name);
3736             if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) {
3737               symbol_name_non_abi_mangled = symbol_name + 1;
3738               symbol_name = symbol_name + g_objc_v2_prefix_class.size();
3739               type = eSymbolTypeObjCClass;
3740               demangled_is_synthesized = true;
3741 
3742             } else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) {
3743               symbol_name_non_abi_mangled = symbol_name + 1;
3744               symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size();
3745               type = eSymbolTypeObjCMetaClass;
3746               demangled_is_synthesized = true;
3747             } else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) {
3748               symbol_name_non_abi_mangled = symbol_name + 1;
3749               symbol_name = symbol_name + g_objc_v2_prefix_ivar.size();
3750               type = eSymbolTypeObjCIVar;
3751               demangled_is_synthesized = true;
3752             }
3753           } else {
3754             if (nlist.n_value != 0)
3755               symbol_section =
3756                   section_info.GetSection(nlist.n_sect, nlist.n_value);
3757             type = eSymbolTypeData;
3758           }
3759           break;
3760 
3761         case N_FNAME:
3762           // procedure name (f77 kludge): name,,NO_SECT,0,0
3763           type = eSymbolTypeCompiler;
3764           break;
3765 
3766         case N_FUN:
3767           // procedure: name,,n_sect,linenumber,address
3768           if (symbol_name) {
3769             type = eSymbolTypeCode;
3770             symbol_section =
3771                 section_info.GetSection(nlist.n_sect, nlist.n_value);
3772 
3773             N_FUN_addr_to_sym_idx.insert(
3774                 std::make_pair(nlist.n_value, sym_idx));
3775             // We use the current number of symbols in the symbol table in
3776             // lieu of using nlist_idx in case we ever start trimming entries
3777             // out
3778             N_FUN_indexes.push_back(sym_idx);
3779           } else {
3780             type = eSymbolTypeCompiler;
3781 
3782             if (!N_FUN_indexes.empty()) {
3783               // Copy the size of the function into the original STAB entry
3784               // so we don't have to hunt for it later
3785               symtab->SymbolAtIndex(N_FUN_indexes.back())
3786                   ->SetByteSize(nlist.n_value);
3787               N_FUN_indexes.pop_back();
3788               // We don't really need the end function STAB as it contains
3789               // the size which we already placed with the original symbol,
3790               // so don't add it if we want a minimal symbol table
3791               add_nlist = false;
3792             }
3793           }
3794           break;
3795 
3796         case N_STSYM:
3797           // static symbol: name,,n_sect,type,address
3798           N_STSYM_addr_to_sym_idx.insert(
3799               std::make_pair(nlist.n_value, sym_idx));
3800           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3801           if (symbol_name && symbol_name[0]) {
3802             type = ObjectFile::GetSymbolTypeFromName(symbol_name + 1,
3803                                                      eSymbolTypeData);
3804           }
3805           break;
3806 
3807         case N_LCSYM:
3808           // .lcomm symbol: name,,n_sect,type,address
3809           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3810           type = eSymbolTypeCommonBlock;
3811           break;
3812 
3813         case N_BNSYM:
3814           // We use the current number of symbols in the symbol table in lieu
3815           // of using nlist_idx in case we ever start trimming entries out
3816           // Skip these if we want minimal symbol tables
3817           add_nlist = false;
3818           break;
3819 
3820         case N_ENSYM:
3821           // Set the size of the N_BNSYM to the terminating index of this
3822           // N_ENSYM so that we can always skip the entire symbol if we need
3823           // to navigate more quickly at the source level when parsing STABS
3824           // Skip these if we want minimal symbol tables
3825           add_nlist = false;
3826           break;
3827 
3828         case N_OPT:
3829           // emitted with gcc2_compiled and in gcc source
3830           type = eSymbolTypeCompiler;
3831           break;
3832 
3833         case N_RSYM:
3834           // register sym: name,,NO_SECT,type,register
3835           type = eSymbolTypeVariable;
3836           break;
3837 
3838         case N_SLINE:
3839           // src line: 0,,n_sect,linenumber,address
3840           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3841           type = eSymbolTypeLineEntry;
3842           break;
3843 
3844         case N_SSYM:
3845           // structure elt: name,,NO_SECT,type,struct_offset
3846           type = eSymbolTypeVariableType;
3847           break;
3848 
3849         case N_SO:
3850           // source file name
3851           type = eSymbolTypeSourceFile;
3852           if (symbol_name == nullptr) {
3853             add_nlist = false;
3854             if (N_SO_index != UINT32_MAX) {
3855               // Set the size of the N_SO to the terminating index of this
3856               // N_SO so that we can always skip the entire N_SO if we need
3857               // to navigate more quickly at the source level when parsing
3858               // STABS
3859               symbol_ptr = symtab->SymbolAtIndex(N_SO_index);
3860               symbol_ptr->SetByteSize(sym_idx);
3861               symbol_ptr->SetSizeIsSibling(true);
3862             }
3863             N_NSYM_indexes.clear();
3864             N_INCL_indexes.clear();
3865             N_BRAC_indexes.clear();
3866             N_COMM_indexes.clear();
3867             N_FUN_indexes.clear();
3868             N_SO_index = UINT32_MAX;
3869           } else {
3870             // We use the current number of symbols in the symbol table in
3871             // lieu of using nlist_idx in case we ever start trimming entries
3872             // out
3873             const bool N_SO_has_full_path = symbol_name[0] == '/';
3874             if (N_SO_has_full_path) {
3875               if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) {
3876                 // We have two consecutive N_SO entries where the first
3877                 // contains a directory and the second contains a full path.
3878                 sym[sym_idx - 1].GetMangled().SetValue(ConstString(symbol_name),
3879                                                        false);
3880                 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3881                 add_nlist = false;
3882               } else {
3883                 // This is the first entry in a N_SO that contains a
3884                 // directory or a full path to the source file
3885                 N_SO_index = sym_idx;
3886               }
3887             } else if ((N_SO_index == sym_idx - 1) &&
3888                        ((sym_idx - 1) < num_syms)) {
3889               // This is usually the second N_SO entry that contains just the
3890               // filename, so here we combine it with the first one if we are
3891               // minimizing the symbol table
3892               const char *so_path =
3893                   sym[sym_idx - 1]
3894                       .GetMangled()
3895                       .GetDemangledName(lldb::eLanguageTypeUnknown)
3896                       .AsCString();
3897               if (so_path && so_path[0]) {
3898                 std::string full_so_path(so_path);
3899                 const size_t double_slash_pos = full_so_path.find("//");
3900                 if (double_slash_pos != std::string::npos) {
3901                   // The linker has been generating bad N_SO entries with
3902                   // doubled up paths in the format "%s%s" where the first
3903                   // string in the DW_AT_comp_dir, and the second is the
3904                   // directory for the source file so you end up with a path
3905                   // that looks like "/tmp/src//tmp/src/"
3906                   FileSpec so_dir(so_path);
3907                   if (!FileSystem::Instance().Exists(so_dir)) {
3908                     so_dir.SetFile(&full_so_path[double_slash_pos + 1],
3909                                    FileSpec::Style::native);
3910                     if (FileSystem::Instance().Exists(so_dir)) {
3911                       // Trim off the incorrect path
3912                       full_so_path.erase(0, double_slash_pos + 1);
3913                     }
3914                   }
3915                 }
3916                 if (*full_so_path.rbegin() != '/')
3917                   full_so_path += '/';
3918                 full_so_path += symbol_name;
3919                 sym[sym_idx - 1].GetMangled().SetValue(
3920                     ConstString(full_so_path.c_str()), false);
3921                 add_nlist = false;
3922                 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3923               }
3924             } else {
3925               // This could be a relative path to a N_SO
3926               N_SO_index = sym_idx;
3927             }
3928           }
3929           break;
3930 
3931         case N_OSO:
3932           // object file name: name,,0,0,st_mtime
3933           type = eSymbolTypeObjectFile;
3934           break;
3935 
3936         case N_LSYM:
3937           // local sym: name,,NO_SECT,type,offset
3938           type = eSymbolTypeLocal;
3939           break;
3940 
3941         // INCL scopes
3942         case N_BINCL:
3943           // include file beginning: name,,NO_SECT,0,sum We use the current
3944           // number of symbols in the symbol table in lieu of using nlist_idx
3945           // in case we ever start trimming entries out
3946           N_INCL_indexes.push_back(sym_idx);
3947           type = eSymbolTypeScopeBegin;
3948           break;
3949 
3950         case N_EINCL:
3951           // include file end: name,,NO_SECT,0,0
3952           // Set the size of the N_BINCL to the terminating index of this
3953           // N_EINCL so that we can always skip the entire symbol if we need
3954           // to navigate more quickly at the source level when parsing STABS
3955           if (!N_INCL_indexes.empty()) {
3956             symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back());
3957             symbol_ptr->SetByteSize(sym_idx + 1);
3958             symbol_ptr->SetSizeIsSibling(true);
3959             N_INCL_indexes.pop_back();
3960           }
3961           type = eSymbolTypeScopeEnd;
3962           break;
3963 
3964         case N_SOL:
3965           // #included file name: name,,n_sect,0,address
3966           type = eSymbolTypeHeaderFile;
3967 
3968           // We currently don't use the header files on darwin
3969           add_nlist = false;
3970           break;
3971 
3972         case N_PARAMS:
3973           // compiler parameters: name,,NO_SECT,0,0
3974           type = eSymbolTypeCompiler;
3975           break;
3976 
3977         case N_VERSION:
3978           // compiler version: name,,NO_SECT,0,0
3979           type = eSymbolTypeCompiler;
3980           break;
3981 
3982         case N_OLEVEL:
3983           // compiler -O level: name,,NO_SECT,0,0
3984           type = eSymbolTypeCompiler;
3985           break;
3986 
3987         case N_PSYM:
3988           // parameter: name,,NO_SECT,type,offset
3989           type = eSymbolTypeVariable;
3990           break;
3991 
3992         case N_ENTRY:
3993           // alternate entry: name,,n_sect,linenumber,address
3994           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3995           type = eSymbolTypeLineEntry;
3996           break;
3997 
3998         // Left and Right Braces
3999         case N_LBRAC:
4000           // left bracket: 0,,NO_SECT,nesting level,address We use the
4001           // current number of symbols in the symbol table in lieu of using
4002           // nlist_idx in case we ever start trimming entries out
4003           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4004           N_BRAC_indexes.push_back(sym_idx);
4005           type = eSymbolTypeScopeBegin;
4006           break;
4007 
4008         case N_RBRAC:
4009           // right bracket: 0,,NO_SECT,nesting level,address Set the size of
4010           // the N_LBRAC to the terminating index of this N_RBRAC so that we
4011           // can always skip the entire symbol if we need to navigate more
4012           // quickly at the source level when parsing STABS
4013           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4014           if (!N_BRAC_indexes.empty()) {
4015             symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back());
4016             symbol_ptr->SetByteSize(sym_idx + 1);
4017             symbol_ptr->SetSizeIsSibling(true);
4018             N_BRAC_indexes.pop_back();
4019           }
4020           type = eSymbolTypeScopeEnd;
4021           break;
4022 
4023         case N_EXCL:
4024           // deleted include file: name,,NO_SECT,0,sum
4025           type = eSymbolTypeHeaderFile;
4026           break;
4027 
4028         // COMM scopes
4029         case N_BCOMM:
4030           // begin common: name,,NO_SECT,0,0
4031           // We use the current number of symbols in the symbol table in lieu
4032           // of using nlist_idx in case we ever start trimming entries out
4033           type = eSymbolTypeScopeBegin;
4034           N_COMM_indexes.push_back(sym_idx);
4035           break;
4036 
4037         case N_ECOML:
4038           // end common (local name): 0,,n_sect,0,address
4039           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4040           LLVM_FALLTHROUGH;
4041 
4042         case N_ECOMM:
4043           // end common: name,,n_sect,0,0
4044           // Set the size of the N_BCOMM to the terminating index of this
4045           // N_ECOMM/N_ECOML so that we can always skip the entire symbol if
4046           // we need to navigate more quickly at the source level when
4047           // parsing STABS
4048           if (!N_COMM_indexes.empty()) {
4049             symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back());
4050             symbol_ptr->SetByteSize(sym_idx + 1);
4051             symbol_ptr->SetSizeIsSibling(true);
4052             N_COMM_indexes.pop_back();
4053           }
4054           type = eSymbolTypeScopeEnd;
4055           break;
4056 
4057         case N_LENG:
4058           // second stab entry with length information
4059           type = eSymbolTypeAdditional;
4060           break;
4061 
4062         default:
4063           break;
4064         }
4065       } else {
4066         uint8_t n_type = N_TYPE & nlist.n_type;
4067         sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
4068 
4069         switch (n_type) {
4070         case N_INDR: {
4071           const char *reexport_name_cstr = strtab_data.PeekCStr(nlist.n_value);
4072           if (reexport_name_cstr && reexport_name_cstr[0]) {
4073             type = eSymbolTypeReExported;
4074             ConstString reexport_name(reexport_name_cstr +
4075                                       ((reexport_name_cstr[0] == '_') ? 1 : 0));
4076             sym[sym_idx].SetReExportedSymbolName(reexport_name);
4077             set_value = false;
4078             reexport_shlib_needs_fixup[sym_idx] = reexport_name;
4079             indirect_symbol_names.insert(
4080                 ConstString(symbol_name + ((symbol_name[0] == '_') ? 1 : 0)));
4081           } else
4082             type = eSymbolTypeUndefined;
4083         } break;
4084 
4085         case N_UNDF:
4086           if (symbol_name && symbol_name[0]) {
4087             ConstString undefined_name(symbol_name +
4088                                        ((symbol_name[0] == '_') ? 1 : 0));
4089             undefined_name_to_desc[undefined_name] = nlist.n_desc;
4090           }
4091           LLVM_FALLTHROUGH;
4092 
4093         case N_PBUD:
4094           type = eSymbolTypeUndefined;
4095           break;
4096 
4097         case N_ABS:
4098           type = eSymbolTypeAbsolute;
4099           break;
4100 
4101         case N_SECT: {
4102           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4103 
4104           if (!symbol_section) {
4105             // TODO: warn about this?
4106             add_nlist = false;
4107             break;
4108           }
4109 
4110           if (TEXT_eh_frame_sectID == nlist.n_sect) {
4111             type = eSymbolTypeException;
4112           } else {
4113             uint32_t section_type = symbol_section->Get() & SECTION_TYPE;
4114 
4115             switch (section_type) {
4116             case S_CSTRING_LITERALS:
4117               type = eSymbolTypeData;
4118               break; // section with only literal C strings
4119             case S_4BYTE_LITERALS:
4120               type = eSymbolTypeData;
4121               break; // section with only 4 byte literals
4122             case S_8BYTE_LITERALS:
4123               type = eSymbolTypeData;
4124               break; // section with only 8 byte literals
4125             case S_LITERAL_POINTERS:
4126               type = eSymbolTypeTrampoline;
4127               break; // section with only pointers to literals
4128             case S_NON_LAZY_SYMBOL_POINTERS:
4129               type = eSymbolTypeTrampoline;
4130               break; // section with only non-lazy symbol pointers
4131             case S_LAZY_SYMBOL_POINTERS:
4132               type = eSymbolTypeTrampoline;
4133               break; // section with only lazy symbol pointers
4134             case S_SYMBOL_STUBS:
4135               type = eSymbolTypeTrampoline;
4136               break; // section with only symbol stubs, byte size of stub in
4137                      // the reserved2 field
4138             case S_MOD_INIT_FUNC_POINTERS:
4139               type = eSymbolTypeCode;
4140               break; // section with only function pointers for initialization
4141             case S_MOD_TERM_FUNC_POINTERS:
4142               type = eSymbolTypeCode;
4143               break; // section with only function pointers for termination
4144             case S_INTERPOSING:
4145               type = eSymbolTypeTrampoline;
4146               break; // section with only pairs of function pointers for
4147                      // interposing
4148             case S_16BYTE_LITERALS:
4149               type = eSymbolTypeData;
4150               break; // section with only 16 byte literals
4151             case S_DTRACE_DOF:
4152               type = eSymbolTypeInstrumentation;
4153               break;
4154             case S_LAZY_DYLIB_SYMBOL_POINTERS:
4155               type = eSymbolTypeTrampoline;
4156               break;
4157             default:
4158               switch (symbol_section->GetType()) {
4159               case lldb::eSectionTypeCode:
4160                 type = eSymbolTypeCode;
4161                 break;
4162               case eSectionTypeData:
4163               case eSectionTypeDataCString:         // Inlined C string data
4164               case eSectionTypeDataCStringPointers: // Pointers to C string
4165                                                     // data
4166               case eSectionTypeDataSymbolAddress:   // Address of a symbol in
4167                                                     // the symbol table
4168               case eSectionTypeData4:
4169               case eSectionTypeData8:
4170               case eSectionTypeData16:
4171                 type = eSymbolTypeData;
4172                 break;
4173               default:
4174                 break;
4175               }
4176               break;
4177             }
4178 
4179             if (type == eSymbolTypeInvalid) {
4180               const char *symbol_sect_name =
4181                   symbol_section->GetName().AsCString();
4182               if (symbol_section->IsDescendant(text_section_sp.get())) {
4183                 if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS |
4184                                             S_ATTR_SELF_MODIFYING_CODE |
4185                                             S_ATTR_SOME_INSTRUCTIONS))
4186                   type = eSymbolTypeData;
4187                 else
4188                   type = eSymbolTypeCode;
4189               } else if (symbol_section->IsDescendant(data_section_sp.get()) ||
4190                          symbol_section->IsDescendant(
4191                              data_dirty_section_sp.get()) ||
4192                          symbol_section->IsDescendant(
4193                              data_const_section_sp.get())) {
4194                 if (symbol_sect_name &&
4195                     ::strstr(symbol_sect_name, "__objc") == symbol_sect_name) {
4196                   type = eSymbolTypeRuntime;
4197 
4198                   if (symbol_name) {
4199                     llvm::StringRef symbol_name_ref(symbol_name);
4200                     if (symbol_name_ref.startswith("_OBJC_")) {
4201                       llvm::StringRef g_objc_v2_prefix_class(
4202                           "_OBJC_CLASS_$_");
4203                       llvm::StringRef g_objc_v2_prefix_metaclass(
4204                           "_OBJC_METACLASS_$_");
4205                       llvm::StringRef g_objc_v2_prefix_ivar(
4206                           "_OBJC_IVAR_$_");
4207                       if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) {
4208                         symbol_name_non_abi_mangled = symbol_name + 1;
4209                         symbol_name =
4210                             symbol_name + g_objc_v2_prefix_class.size();
4211                         type = eSymbolTypeObjCClass;
4212                         demangled_is_synthesized = true;
4213                       } else if (symbol_name_ref.startswith(
4214                                      g_objc_v2_prefix_metaclass)) {
4215                         symbol_name_non_abi_mangled = symbol_name + 1;
4216                         symbol_name =
4217                             symbol_name + g_objc_v2_prefix_metaclass.size();
4218                         type = eSymbolTypeObjCMetaClass;
4219                         demangled_is_synthesized = true;
4220                       } else if (symbol_name_ref.startswith(
4221                                      g_objc_v2_prefix_ivar)) {
4222                         symbol_name_non_abi_mangled = symbol_name + 1;
4223                         symbol_name =
4224                             symbol_name + g_objc_v2_prefix_ivar.size();
4225                         type = eSymbolTypeObjCIVar;
4226                         demangled_is_synthesized = true;
4227                       }
4228                     }
4229                   }
4230                 } else if (symbol_sect_name &&
4231                            ::strstr(symbol_sect_name, "__gcc_except_tab") ==
4232                                symbol_sect_name) {
4233                   type = eSymbolTypeException;
4234                 } else {
4235                   type = eSymbolTypeData;
4236                 }
4237               } else if (symbol_sect_name &&
4238                          ::strstr(symbol_sect_name, "__IMPORT") ==
4239                              symbol_sect_name) {
4240                 type = eSymbolTypeTrampoline;
4241               } else if (symbol_section->IsDescendant(objc_section_sp.get())) {
4242                 type = eSymbolTypeRuntime;
4243                 if (symbol_name && symbol_name[0] == '.') {
4244                   llvm::StringRef symbol_name_ref(symbol_name);
4245                   llvm::StringRef g_objc_v1_prefix_class(
4246                       ".objc_class_name_");
4247                   if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) {
4248                     symbol_name_non_abi_mangled = symbol_name;
4249                     symbol_name = symbol_name + g_objc_v1_prefix_class.size();
4250                     type = eSymbolTypeObjCClass;
4251                     demangled_is_synthesized = true;
4252                   }
4253                 }
4254               }
4255             }
4256           }
4257         } break;
4258         }
4259       }
4260 
4261       if (!add_nlist) {
4262         sym[sym_idx].Clear();
4263         return true;
4264       }
4265 
4266       uint64_t symbol_value = nlist.n_value;
4267 
4268       if (symbol_name_non_abi_mangled) {
4269         sym[sym_idx].GetMangled().SetMangledName(
4270             ConstString(symbol_name_non_abi_mangled));
4271         sym[sym_idx].GetMangled().SetDemangledName(ConstString(symbol_name));
4272       } else {
4273         bool symbol_name_is_mangled = false;
4274 
4275         if (symbol_name && symbol_name[0] == '_') {
4276           symbol_name_is_mangled = symbol_name[1] == '_';
4277           symbol_name++; // Skip the leading underscore
4278         }
4279 
4280         if (symbol_name) {
4281           ConstString const_symbol_name(symbol_name);
4282           sym[sym_idx].GetMangled().SetValue(const_symbol_name,
4283                                              symbol_name_is_mangled);
4284         }
4285       }
4286 
4287       if (is_gsym) {
4288         const char *gsym_name =
4289             sym[sym_idx]
4290                 .GetMangled()
4291                 .GetName(lldb::eLanguageTypeUnknown, Mangled::ePreferMangled)
4292                 .GetCString();
4293         if (gsym_name)
4294           N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
4295       }
4296 
4297       if (symbol_section) {
4298         const addr_t section_file_addr = symbol_section->GetFileAddress();
4299         if (symbol_byte_size == 0 && function_starts_count > 0) {
4300           addr_t symbol_lookup_file_addr = nlist.n_value;
4301           // Do an exact address match for non-ARM addresses, else get the
4302           // closest since the symbol might be a thumb symbol which has an
4303           // address with bit zero set.
4304           FunctionStarts::Entry *func_start_entry =
4305               function_starts.FindEntry(symbol_lookup_file_addr, !is_arm);
4306           if (is_arm && func_start_entry) {
4307             // Verify that the function start address is the symbol address
4308             // (ARM) or the symbol address + 1 (thumb).
4309             if (func_start_entry->addr != symbol_lookup_file_addr &&
4310                 func_start_entry->addr != (symbol_lookup_file_addr + 1)) {
4311               // Not the right entry, NULL it out...
4312               func_start_entry = nullptr;
4313             }
4314           }
4315           if (func_start_entry) {
4316             func_start_entry->data = true;
4317 
4318             addr_t symbol_file_addr = func_start_entry->addr;
4319             if (is_arm)
4320               symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4321 
4322             const FunctionStarts::Entry *next_func_start_entry =
4323                 function_starts.FindNextEntry(func_start_entry);
4324             const addr_t section_end_file_addr =
4325                 section_file_addr + symbol_section->GetByteSize();
4326             if (next_func_start_entry) {
4327               addr_t next_symbol_file_addr = next_func_start_entry->addr;
4328               // Be sure the clear the Thumb address bit when we calculate the
4329               // size from the current and next address
4330               if (is_arm)
4331                 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4332               symbol_byte_size = std::min<lldb::addr_t>(
4333                   next_symbol_file_addr - symbol_file_addr,
4334                   section_end_file_addr - symbol_file_addr);
4335             } else {
4336               symbol_byte_size = section_end_file_addr - symbol_file_addr;
4337             }
4338           }
4339         }
4340         symbol_value -= section_file_addr;
4341       }
4342 
4343       if (!is_debug) {
4344         if (type == eSymbolTypeCode) {
4345           // See if we can find a N_FUN entry for any code symbols. If we do
4346           // find a match, and the name matches, then we can merge the two into
4347           // just the function symbol to avoid duplicate entries in the symbol
4348           // table.
4349           std::pair<ValueToSymbolIndexMap::const_iterator,
4350                     ValueToSymbolIndexMap::const_iterator>
4351               range;
4352           range = N_FUN_addr_to_sym_idx.equal_range(nlist.n_value);
4353           if (range.first != range.second) {
4354             for (ValueToSymbolIndexMap::const_iterator pos = range.first;
4355                  pos != range.second; ++pos) {
4356               if (sym[sym_idx].GetMangled().GetName(lldb::eLanguageTypeUnknown,
4357                                                     Mangled::ePreferMangled) ==
4358                   sym[pos->second].GetMangled().GetName(
4359                       lldb::eLanguageTypeUnknown, Mangled::ePreferMangled)) {
4360                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
4361                 // We just need the flags from the linker symbol, so put these
4362                 // flags into the N_FUN flags to avoid duplicate symbols in the
4363                 // symbol table.
4364                 sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
4365                 sym[pos->second].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4366                 if (resolver_addresses.find(nlist.n_value) !=
4367                     resolver_addresses.end())
4368                   sym[pos->second].SetType(eSymbolTypeResolver);
4369                 sym[sym_idx].Clear();
4370                 return true;
4371               }
4372             }
4373           } else {
4374             if (resolver_addresses.find(nlist.n_value) !=
4375                 resolver_addresses.end())
4376               type = eSymbolTypeResolver;
4377           }
4378         } else if (type == eSymbolTypeData || type == eSymbolTypeObjCClass ||
4379                    type == eSymbolTypeObjCMetaClass ||
4380                    type == eSymbolTypeObjCIVar) {
4381           // See if we can find a N_STSYM entry for any data symbols. If we do
4382           // find a match, and the name matches, then we can merge the two into
4383           // just the Static symbol to avoid duplicate entries in the symbol
4384           // table.
4385           std::pair<ValueToSymbolIndexMap::const_iterator,
4386                     ValueToSymbolIndexMap::const_iterator>
4387               range;
4388           range = N_STSYM_addr_to_sym_idx.equal_range(nlist.n_value);
4389           if (range.first != range.second) {
4390             for (ValueToSymbolIndexMap::const_iterator pos = range.first;
4391                  pos != range.second; ++pos) {
4392               if (sym[sym_idx].GetMangled().GetName(lldb::eLanguageTypeUnknown,
4393                                                     Mangled::ePreferMangled) ==
4394                   sym[pos->second].GetMangled().GetName(
4395                       lldb::eLanguageTypeUnknown, Mangled::ePreferMangled)) {
4396                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
4397                 // We just need the flags from the linker symbol, so put these
4398                 // flags into the N_STSYM flags to avoid duplicate symbols in
4399                 // the symbol table.
4400                 sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
4401                 sym[pos->second].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4402                 sym[sym_idx].Clear();
4403                 return true;
4404               }
4405             }
4406           } else {
4407             // Combine N_GSYM stab entries with the non stab symbol.
4408             const char *gsym_name = sym[sym_idx]
4409                                         .GetMangled()
4410                                         .GetName(lldb::eLanguageTypeUnknown,
4411                                                  Mangled::ePreferMangled)
4412                                         .GetCString();
4413             if (gsym_name) {
4414               ConstNameToSymbolIndexMap::const_iterator pos =
4415                   N_GSYM_name_to_sym_idx.find(gsym_name);
4416               if (pos != N_GSYM_name_to_sym_idx.end()) {
4417                 const uint32_t GSYM_sym_idx = pos->second;
4418                 m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx;
4419                 // Copy the address, because often the N_GSYM address has an
4420                 // invalid address of zero when the global is a common symbol.
4421                 sym[GSYM_sym_idx].GetAddressRef().SetSection(symbol_section);
4422                 sym[GSYM_sym_idx].GetAddressRef().SetOffset(symbol_value);
4423                 // We just need the flags from the linker symbol, so put these
4424                 // flags into the N_GSYM flags to avoid duplicate symbols in
4425                 // the symbol table.
4426                 sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4427                 sym[sym_idx].Clear();
4428                 return true;
4429               }
4430             }
4431           }
4432         }
4433       }
4434 
4435       sym[sym_idx].SetID(nlist_idx);
4436       sym[sym_idx].SetType(type);
4437       if (set_value) {
4438         sym[sym_idx].GetAddressRef().SetSection(symbol_section);
4439         sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
4440       }
4441       sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4442       if (nlist.n_desc & N_WEAK_REF)
4443         sym[sym_idx].SetIsWeak(true);
4444 
4445       if (symbol_byte_size > 0)
4446         sym[sym_idx].SetByteSize(symbol_byte_size);
4447 
4448       if (demangled_is_synthesized)
4449         sym[sym_idx].SetDemangledNameIsSynthesized(true);
4450 
4451       ++sym_idx;
4452       return true;
4453     };
4454 
4455     // First parse all the nlists but don't process them yet. See the next
4456     // comment for an explanation why.
4457     std::vector<struct nlist_64> nlists;
4458     nlists.reserve(symtab_load_command.nsyms);
4459     for (; nlist_idx < symtab_load_command.nsyms; ++nlist_idx) {
4460       if (auto nlist =
4461               ParseNList(nlist_data, nlist_data_offset, nlist_byte_size))
4462         nlists.push_back(*nlist);
4463       else
4464         break;
4465     }
4466 
4467     // Now parse all the debug symbols. This is needed to merge non-debug
4468     // symbols in the next step. Non-debug symbols are always coalesced into
4469     // the debug symbol. Doing this in one step would mean that some symbols
4470     // won't be merged.
4471     nlist_idx = 0;
4472     for (auto &nlist : nlists) {
4473       if (!ParseSymbolLambda(nlist, nlist_idx++, DebugSymbols))
4474         break;
4475     }
4476 
4477     // Finally parse all the non debug symbols.
4478     nlist_idx = 0;
4479     for (auto &nlist : nlists) {
4480       if (!ParseSymbolLambda(nlist, nlist_idx++, NonDebugSymbols))
4481         break;
4482     }
4483 
4484     for (const auto &pos : reexport_shlib_needs_fixup) {
4485       const auto undef_pos = undefined_name_to_desc.find(pos.second);
4486       if (undef_pos != undefined_name_to_desc.end()) {
4487         const uint8_t dylib_ordinal =
4488             llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
4489         if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize())
4490           sym[pos.first].SetReExportedSymbolSharedLibrary(
4491               dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
4492       }
4493     }
4494   }
4495 
4496   uint32_t synthetic_sym_id = symtab_load_command.nsyms;
4497 
4498   if (function_starts_count > 0) {
4499     uint32_t num_synthetic_function_symbols = 0;
4500     for (i = 0; i < function_starts_count; ++i) {
4501       if (!function_starts.GetEntryRef(i).data)
4502         ++num_synthetic_function_symbols;
4503     }
4504 
4505     if (num_synthetic_function_symbols > 0) {
4506       if (num_syms < sym_idx + num_synthetic_function_symbols) {
4507         num_syms = sym_idx + num_synthetic_function_symbols;
4508         sym = symtab->Resize(num_syms);
4509       }
4510       for (i = 0; i < function_starts_count; ++i) {
4511         const FunctionStarts::Entry *func_start_entry =
4512             function_starts.GetEntryAtIndex(i);
4513         if (!func_start_entry->data) {
4514           addr_t symbol_file_addr = func_start_entry->addr;
4515           uint32_t symbol_flags = 0;
4516           if (is_arm) {
4517             if (symbol_file_addr & 1)
4518               symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB;
4519             symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4520           }
4521           Address symbol_addr;
4522           if (module_sp->ResolveFileAddress(symbol_file_addr, symbol_addr)) {
4523             SectionSP symbol_section(symbol_addr.GetSection());
4524             uint32_t symbol_byte_size = 0;
4525             if (symbol_section) {
4526               const addr_t section_file_addr = symbol_section->GetFileAddress();
4527               const FunctionStarts::Entry *next_func_start_entry =
4528                   function_starts.FindNextEntry(func_start_entry);
4529               const addr_t section_end_file_addr =
4530                   section_file_addr + symbol_section->GetByteSize();
4531               if (next_func_start_entry) {
4532                 addr_t next_symbol_file_addr = next_func_start_entry->addr;
4533                 if (is_arm)
4534                   next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4535                 symbol_byte_size = std::min<lldb::addr_t>(
4536                     next_symbol_file_addr - symbol_file_addr,
4537                     section_end_file_addr - symbol_file_addr);
4538               } else {
4539                 symbol_byte_size = section_end_file_addr - symbol_file_addr;
4540               }
4541               sym[sym_idx].SetID(synthetic_sym_id++);
4542               sym[sym_idx].GetMangled().SetDemangledName(
4543                   GetNextSyntheticSymbolName());
4544               sym[sym_idx].SetType(eSymbolTypeCode);
4545               sym[sym_idx].SetIsSynthetic(true);
4546               sym[sym_idx].GetAddressRef() = symbol_addr;
4547               if (symbol_flags)
4548                 sym[sym_idx].SetFlags(symbol_flags);
4549               if (symbol_byte_size)
4550                 sym[sym_idx].SetByteSize(symbol_byte_size);
4551               ++sym_idx;
4552             }
4553           }
4554         }
4555       }
4556     }
4557   }
4558 
4559   // Trim our symbols down to just what we ended up with after removing any
4560   // symbols.
4561   if (sym_idx < num_syms) {
4562     num_syms = sym_idx;
4563     sym = symtab->Resize(num_syms);
4564   }
4565 
4566   // Now synthesize indirect symbols
4567   if (m_dysymtab.nindirectsyms != 0) {
4568     if (indirect_symbol_index_data.GetByteSize()) {
4569       NListIndexToSymbolIndexMap::const_iterator end_index_pos =
4570           m_nlist_idx_to_sym_idx.end();
4571 
4572       for (uint32_t sect_idx = 1; sect_idx < m_mach_sections.size();
4573            ++sect_idx) {
4574         if ((m_mach_sections[sect_idx].flags & SECTION_TYPE) ==
4575             S_SYMBOL_STUBS) {
4576           uint32_t symbol_stub_byte_size = m_mach_sections[sect_idx].reserved2;
4577           if (symbol_stub_byte_size == 0)
4578             continue;
4579 
4580           const uint32_t num_symbol_stubs =
4581               m_mach_sections[sect_idx].size / symbol_stub_byte_size;
4582 
4583           if (num_symbol_stubs == 0)
4584             continue;
4585 
4586           const uint32_t symbol_stub_index_offset =
4587               m_mach_sections[sect_idx].reserved1;
4588           for (uint32_t stub_idx = 0; stub_idx < num_symbol_stubs; ++stub_idx) {
4589             const uint32_t symbol_stub_index =
4590                 symbol_stub_index_offset + stub_idx;
4591             const lldb::addr_t symbol_stub_addr =
4592                 m_mach_sections[sect_idx].addr +
4593                 (stub_idx * symbol_stub_byte_size);
4594             lldb::offset_t symbol_stub_offset = symbol_stub_index * 4;
4595             if (indirect_symbol_index_data.ValidOffsetForDataOfSize(
4596                     symbol_stub_offset, 4)) {
4597               const uint32_t stub_sym_id =
4598                   indirect_symbol_index_data.GetU32(&symbol_stub_offset);
4599               if (stub_sym_id & (INDIRECT_SYMBOL_ABS | INDIRECT_SYMBOL_LOCAL))
4600                 continue;
4601 
4602               NListIndexToSymbolIndexMap::const_iterator index_pos =
4603                   m_nlist_idx_to_sym_idx.find(stub_sym_id);
4604               Symbol *stub_symbol = nullptr;
4605               if (index_pos != end_index_pos) {
4606                 // We have a remapping from the original nlist index to a
4607                 // current symbol index, so just look this up by index
4608                 stub_symbol = symtab->SymbolAtIndex(index_pos->second);
4609               } else {
4610                 // We need to lookup a symbol using the original nlist symbol
4611                 // index since this index is coming from the S_SYMBOL_STUBS
4612                 stub_symbol = symtab->FindSymbolByID(stub_sym_id);
4613               }
4614 
4615               if (stub_symbol) {
4616                 Address so_addr(symbol_stub_addr, section_list);
4617 
4618                 if (stub_symbol->GetType() == eSymbolTypeUndefined) {
4619                   // Change the external symbol into a trampoline that makes
4620                   // sense These symbols were N_UNDF N_EXT, and are useless
4621                   // to us, so we can re-use them so we don't have to make up
4622                   // a synthetic symbol for no good reason.
4623                   if (resolver_addresses.find(symbol_stub_addr) ==
4624                       resolver_addresses.end())
4625                     stub_symbol->SetType(eSymbolTypeTrampoline);
4626                   else
4627                     stub_symbol->SetType(eSymbolTypeResolver);
4628                   stub_symbol->SetExternal(false);
4629                   stub_symbol->GetAddressRef() = so_addr;
4630                   stub_symbol->SetByteSize(symbol_stub_byte_size);
4631                 } else {
4632                   // Make a synthetic symbol to describe the trampoline stub
4633                   Mangled stub_symbol_mangled_name(stub_symbol->GetMangled());
4634                   if (sym_idx >= num_syms) {
4635                     sym = symtab->Resize(++num_syms);
4636                     stub_symbol = nullptr; // this pointer no longer valid
4637                   }
4638                   sym[sym_idx].SetID(synthetic_sym_id++);
4639                   sym[sym_idx].GetMangled() = stub_symbol_mangled_name;
4640                   if (resolver_addresses.find(symbol_stub_addr) ==
4641                       resolver_addresses.end())
4642                     sym[sym_idx].SetType(eSymbolTypeTrampoline);
4643                   else
4644                     sym[sym_idx].SetType(eSymbolTypeResolver);
4645                   sym[sym_idx].SetIsSynthetic(true);
4646                   sym[sym_idx].GetAddressRef() = so_addr;
4647                   sym[sym_idx].SetByteSize(symbol_stub_byte_size);
4648                   ++sym_idx;
4649                 }
4650               } else {
4651                 if (log)
4652                   log->Warning("symbol stub referencing symbol table symbol "
4653                                "%u that isn't in our minimal symbol table, "
4654                                "fix this!!!",
4655                                stub_sym_id);
4656               }
4657             }
4658           }
4659         }
4660       }
4661     }
4662   }
4663 
4664   if (!trie_entries.empty()) {
4665     for (const auto &e : trie_entries) {
4666       if (e.entry.import_name) {
4667         // Only add indirect symbols from the Trie entries if we didn't have
4668         // a N_INDR nlist entry for this already
4669         if (indirect_symbol_names.find(e.entry.name) ==
4670             indirect_symbol_names.end()) {
4671           // Make a synthetic symbol to describe re-exported symbol.
4672           if (sym_idx >= num_syms)
4673             sym = symtab->Resize(++num_syms);
4674           sym[sym_idx].SetID(synthetic_sym_id++);
4675           sym[sym_idx].GetMangled() = Mangled(e.entry.name);
4676           sym[sym_idx].SetType(eSymbolTypeReExported);
4677           sym[sym_idx].SetIsSynthetic(true);
4678           sym[sym_idx].SetReExportedSymbolName(e.entry.import_name);
4679           if (e.entry.other > 0 && e.entry.other <= dylib_files.GetSize()) {
4680             sym[sym_idx].SetReExportedSymbolSharedLibrary(
4681                 dylib_files.GetFileSpecAtIndex(e.entry.other - 1));
4682           }
4683           ++sym_idx;
4684         }
4685       }
4686     }
4687   }
4688 
4689   //        StreamFile s(stdout, false);
4690   //        s.Printf ("Symbol table before CalculateSymbolSizes():\n");
4691   //        symtab->Dump(&s, NULL, eSortOrderNone);
4692   // Set symbol byte sizes correctly since mach-o nlist entries don't have
4693   // sizes
4694   symtab->CalculateSymbolSizes();
4695 
4696   //        s.Printf ("Symbol table after CalculateSymbolSizes():\n");
4697   //        symtab->Dump(&s, NULL, eSortOrderNone);
4698 
4699   return symtab->GetNumSymbols();
4700 }
4701 
4702 void ObjectFileMachO::Dump(Stream *s) {
4703   ModuleSP module_sp(GetModule());
4704   if (module_sp) {
4705     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
4706     s->Printf("%p: ", static_cast<void *>(this));
4707     s->Indent();
4708     if (m_header.magic == MH_MAGIC_64 || m_header.magic == MH_CIGAM_64)
4709       s->PutCString("ObjectFileMachO64");
4710     else
4711       s->PutCString("ObjectFileMachO32");
4712 
4713     *s << ", file = '" << m_file;
4714     ModuleSpecList all_specs;
4715     ModuleSpec base_spec;
4716     GetAllArchSpecs(m_header, m_data, MachHeaderSizeFromMagic(m_header.magic),
4717                     base_spec, all_specs);
4718     for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
4719       *s << "', triple";
4720       if (e)
4721         s->Printf("[%d]", i);
4722       *s << " = ";
4723       *s << all_specs.GetModuleSpecRefAtIndex(i)
4724                 .GetArchitecture()
4725                 .GetTriple()
4726                 .getTriple();
4727     }
4728     *s << "\n";
4729     SectionList *sections = GetSectionList();
4730     if (sections)
4731       sections->Dump(s, nullptr, true, UINT32_MAX);
4732 
4733     if (m_symtab_up)
4734       m_symtab_up->Dump(s, nullptr, eSortOrderNone);
4735   }
4736 }
4737 
4738 UUID ObjectFileMachO::GetUUID(const llvm::MachO::mach_header &header,
4739                               const lldb_private::DataExtractor &data,
4740                               lldb::offset_t lc_offset) {
4741   uint32_t i;
4742   struct uuid_command load_cmd;
4743 
4744   lldb::offset_t offset = lc_offset;
4745   for (i = 0; i < header.ncmds; ++i) {
4746     const lldb::offset_t cmd_offset = offset;
4747     if (data.GetU32(&offset, &load_cmd, 2) == nullptr)
4748       break;
4749 
4750     if (load_cmd.cmd == LC_UUID) {
4751       const uint8_t *uuid_bytes = data.PeekData(offset, 16);
4752 
4753       if (uuid_bytes) {
4754         // OpenCL on Mac OS X uses the same UUID for each of its object files.
4755         // We pretend these object files have no UUID to prevent crashing.
4756 
4757         const uint8_t opencl_uuid[] = {0x8c, 0x8e, 0xb3, 0x9b, 0x3b, 0xa8,
4758                                        0x4b, 0x16, 0xb6, 0xa4, 0x27, 0x63,
4759                                        0xbb, 0x14, 0xf0, 0x0d};
4760 
4761         if (!memcmp(uuid_bytes, opencl_uuid, 16))
4762           return UUID();
4763 
4764         return UUID::fromOptionalData(uuid_bytes, 16);
4765       }
4766       return UUID();
4767     }
4768     offset = cmd_offset + load_cmd.cmdsize;
4769   }
4770   return UUID();
4771 }
4772 
4773 static llvm::StringRef GetOSName(uint32_t cmd) {
4774   switch (cmd) {
4775   case llvm::MachO::LC_VERSION_MIN_IPHONEOS:
4776     return llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4777   case llvm::MachO::LC_VERSION_MIN_MACOSX:
4778     return llvm::Triple::getOSTypeName(llvm::Triple::MacOSX);
4779   case llvm::MachO::LC_VERSION_MIN_TVOS:
4780     return llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4781   case llvm::MachO::LC_VERSION_MIN_WATCHOS:
4782     return llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4783   default:
4784     llvm_unreachable("unexpected LC_VERSION load command");
4785   }
4786 }
4787 
4788 namespace {
4789 struct OSEnv {
4790   llvm::StringRef os_type;
4791   llvm::StringRef environment;
4792   OSEnv(uint32_t cmd) {
4793     switch (cmd) {
4794     case llvm::MachO::PLATFORM_MACOS:
4795       os_type = llvm::Triple::getOSTypeName(llvm::Triple::MacOSX);
4796       return;
4797     case llvm::MachO::PLATFORM_IOS:
4798       os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4799       return;
4800     case llvm::MachO::PLATFORM_TVOS:
4801       os_type = llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4802       return;
4803     case llvm::MachO::PLATFORM_WATCHOS:
4804       os_type = llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4805       return;
4806       // NEED_BRIDGEOS_TRIPLE      case llvm::MachO::PLATFORM_BRIDGEOS:
4807       // NEED_BRIDGEOS_TRIPLE        os_type =
4808       // llvm::Triple::getOSTypeName(llvm::Triple::BridgeOS);
4809       // NEED_BRIDGEOS_TRIPLE        return;
4810     case llvm::MachO::PLATFORM_MACCATALYST:
4811       os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4812       environment = llvm::Triple::getEnvironmentTypeName(llvm::Triple::MacABI);
4813       return;
4814     case llvm::MachO::PLATFORM_IOSSIMULATOR:
4815       os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4816       environment =
4817           llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4818       return;
4819     case llvm::MachO::PLATFORM_TVOSSIMULATOR:
4820       os_type = llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4821       environment =
4822           llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4823       return;
4824     case llvm::MachO::PLATFORM_WATCHOSSIMULATOR:
4825       os_type = llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4826       environment =
4827           llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4828       return;
4829     default: {
4830       Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS |
4831                                                       LIBLLDB_LOG_PROCESS));
4832       LLDB_LOGF(log, "unsupported platform in LC_BUILD_VERSION");
4833     }
4834     }
4835   }
4836 };
4837 
4838 struct MinOS {
4839   uint32_t major_version, minor_version, patch_version;
4840   MinOS(uint32_t version)
4841       : major_version(version >> 16), minor_version((version >> 8) & 0xffu),
4842         patch_version(version & 0xffu) {}
4843 };
4844 } // namespace
4845 
4846 void ObjectFileMachO::GetAllArchSpecs(const llvm::MachO::mach_header &header,
4847                                       const lldb_private::DataExtractor &data,
4848                                       lldb::offset_t lc_offset,
4849                                       ModuleSpec &base_spec,
4850                                       lldb_private::ModuleSpecList &all_specs) {
4851   auto &base_arch = base_spec.GetArchitecture();
4852   base_arch.SetArchitecture(eArchTypeMachO, header.cputype, header.cpusubtype);
4853   if (!base_arch.IsValid())
4854     return;
4855 
4856   bool found_any = false;
4857   auto add_triple = [&](const llvm::Triple &triple) {
4858     auto spec = base_spec;
4859     spec.GetArchitecture().GetTriple() = triple;
4860     if (spec.GetArchitecture().IsValid()) {
4861       spec.GetUUID() = ObjectFileMachO::GetUUID(header, data, lc_offset);
4862       all_specs.Append(spec);
4863       found_any = true;
4864     }
4865   };
4866 
4867   // Set OS to an unspecified unknown or a "*" so it can match any OS
4868   llvm::Triple base_triple = base_arch.GetTriple();
4869   base_triple.setOS(llvm::Triple::UnknownOS);
4870   base_triple.setOSName(llvm::StringRef());
4871 
4872   if (header.filetype == MH_PRELOAD) {
4873     if (header.cputype == CPU_TYPE_ARM) {
4874       // If this is a 32-bit arm binary, and it's a standalone binary, force
4875       // the Vendor to Apple so we don't accidentally pick up the generic
4876       // armv7 ABI at runtime.  Apple's armv7 ABI always uses r7 for the
4877       // frame pointer register; most other armv7 ABIs use a combination of
4878       // r7 and r11.
4879       base_triple.setVendor(llvm::Triple::Apple);
4880     } else {
4881       // Set vendor to an unspecified unknown or a "*" so it can match any
4882       // vendor This is required for correct behavior of EFI debugging on
4883       // x86_64
4884       base_triple.setVendor(llvm::Triple::UnknownVendor);
4885       base_triple.setVendorName(llvm::StringRef());
4886     }
4887     return add_triple(base_triple);
4888   }
4889 
4890   struct load_command load_cmd;
4891 
4892   // See if there is an LC_VERSION_MIN_* load command that can give
4893   // us the OS type.
4894   lldb::offset_t offset = lc_offset;
4895   for (uint32_t i = 0; i < header.ncmds; ++i) {
4896     const lldb::offset_t cmd_offset = offset;
4897     if (data.GetU32(&offset, &load_cmd, 2) == NULL)
4898       break;
4899 
4900     struct version_min_command version_min;
4901     switch (load_cmd.cmd) {
4902     case llvm::MachO::LC_VERSION_MIN_IPHONEOS:
4903     case llvm::MachO::LC_VERSION_MIN_MACOSX:
4904     case llvm::MachO::LC_VERSION_MIN_TVOS:
4905     case llvm::MachO::LC_VERSION_MIN_WATCHOS: {
4906       if (load_cmd.cmdsize != sizeof(version_min))
4907         break;
4908       if (data.ExtractBytes(cmd_offset, sizeof(version_min),
4909                             data.GetByteOrder(), &version_min) == 0)
4910         break;
4911       MinOS min_os(version_min.version);
4912       llvm::SmallString<32> os_name;
4913       llvm::raw_svector_ostream os(os_name);
4914       os << GetOSName(load_cmd.cmd) << min_os.major_version << '.'
4915          << min_os.minor_version << '.' << min_os.patch_version;
4916 
4917       auto triple = base_triple;
4918       triple.setOSName(os.str());
4919       os_name.clear();
4920       add_triple(triple);
4921       break;
4922     }
4923     default:
4924       break;
4925     }
4926 
4927     offset = cmd_offset + load_cmd.cmdsize;
4928   }
4929 
4930   // See if there are LC_BUILD_VERSION load commands that can give
4931   // us the OS type.
4932   offset = lc_offset;
4933   for (uint32_t i = 0; i < header.ncmds; ++i) {
4934     const lldb::offset_t cmd_offset = offset;
4935     if (data.GetU32(&offset, &load_cmd, 2) == NULL)
4936       break;
4937 
4938     do {
4939       if (load_cmd.cmd == llvm::MachO::LC_BUILD_VERSION) {
4940         struct build_version_command build_version;
4941         if (load_cmd.cmdsize < sizeof(build_version)) {
4942           // Malformed load command.
4943           break;
4944         }
4945         if (data.ExtractBytes(cmd_offset, sizeof(build_version),
4946                               data.GetByteOrder(), &build_version) == 0)
4947           break;
4948         MinOS min_os(build_version.minos);
4949         OSEnv os_env(build_version.platform);
4950         llvm::SmallString<16> os_name;
4951         llvm::raw_svector_ostream os(os_name);
4952         os << os_env.os_type << min_os.major_version << '.'
4953            << min_os.minor_version << '.' << min_os.patch_version;
4954         auto triple = base_triple;
4955         triple.setOSName(os.str());
4956         os_name.clear();
4957         if (!os_env.environment.empty())
4958           triple.setEnvironmentName(os_env.environment);
4959         add_triple(triple);
4960       }
4961     } while (0);
4962     offset = cmd_offset + load_cmd.cmdsize;
4963   }
4964 
4965   if (!found_any) {
4966     if (header.filetype == MH_KEXT_BUNDLE) {
4967       base_triple.setVendor(llvm::Triple::Apple);
4968       add_triple(base_triple);
4969     } else {
4970       // We didn't find a LC_VERSION_MIN load command and this isn't a KEXT
4971       // so lets not say our Vendor is Apple, leave it as an unspecified
4972       // unknown.
4973       base_triple.setVendor(llvm::Triple::UnknownVendor);
4974       base_triple.setVendorName(llvm::StringRef());
4975       add_triple(base_triple);
4976     }
4977   }
4978 }
4979 
4980 ArchSpec ObjectFileMachO::GetArchitecture(
4981     ModuleSP module_sp, const llvm::MachO::mach_header &header,
4982     const lldb_private::DataExtractor &data, lldb::offset_t lc_offset) {
4983   ModuleSpecList all_specs;
4984   ModuleSpec base_spec;
4985   GetAllArchSpecs(header, data, MachHeaderSizeFromMagic(header.magic),
4986                   base_spec, all_specs);
4987 
4988   // If the object file offers multiple alternative load commands,
4989   // pick the one that matches the module.
4990   if (module_sp) {
4991     const ArchSpec &module_arch = module_sp->GetArchitecture();
4992     for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
4993       ArchSpec mach_arch =
4994           all_specs.GetModuleSpecRefAtIndex(i).GetArchitecture();
4995       if (module_arch.IsCompatibleMatch(mach_arch))
4996         return mach_arch;
4997     }
4998   }
4999 
5000   // Return the first arch we found.
5001   if (all_specs.GetSize() == 0)
5002     return {};
5003   return all_specs.GetModuleSpecRefAtIndex(0).GetArchitecture();
5004 }
5005 
5006 UUID ObjectFileMachO::GetUUID() {
5007   ModuleSP module_sp(GetModule());
5008   if (module_sp) {
5009     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5010     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5011     return GetUUID(m_header, m_data, offset);
5012   }
5013   return UUID();
5014 }
5015 
5016 uint32_t ObjectFileMachO::GetDependentModules(FileSpecList &files) {
5017   uint32_t count = 0;
5018   ModuleSP module_sp(GetModule());
5019   if (module_sp) {
5020     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5021     struct load_command load_cmd;
5022     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5023     std::vector<std::string> rpath_paths;
5024     std::vector<std::string> rpath_relative_paths;
5025     std::vector<std::string> at_exec_relative_paths;
5026     uint32_t i;
5027     for (i = 0; i < m_header.ncmds; ++i) {
5028       const uint32_t cmd_offset = offset;
5029       if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5030         break;
5031 
5032       switch (load_cmd.cmd) {
5033       case LC_RPATH:
5034       case LC_LOAD_DYLIB:
5035       case LC_LOAD_WEAK_DYLIB:
5036       case LC_REEXPORT_DYLIB:
5037       case LC_LOAD_DYLINKER:
5038       case LC_LOADFVMLIB:
5039       case LC_LOAD_UPWARD_DYLIB: {
5040         uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
5041         const char *path = m_data.PeekCStr(name_offset);
5042         if (path) {
5043           if (load_cmd.cmd == LC_RPATH)
5044             rpath_paths.push_back(path);
5045           else {
5046             if (path[0] == '@') {
5047               if (strncmp(path, "@rpath", strlen("@rpath")) == 0)
5048                 rpath_relative_paths.push_back(path + strlen("@rpath"));
5049               else if (strncmp(path, "@executable_path",
5050                                strlen("@executable_path")) == 0)
5051                 at_exec_relative_paths.push_back(path +
5052                                                  strlen("@executable_path"));
5053             } else {
5054               FileSpec file_spec(path);
5055               if (files.AppendIfUnique(file_spec))
5056                 count++;
5057             }
5058           }
5059         }
5060       } break;
5061 
5062       default:
5063         break;
5064       }
5065       offset = cmd_offset + load_cmd.cmdsize;
5066     }
5067 
5068     FileSpec this_file_spec(m_file);
5069     FileSystem::Instance().Resolve(this_file_spec);
5070 
5071     if (!rpath_paths.empty()) {
5072       // Fixup all LC_RPATH values to be absolute paths
5073       std::string loader_path("@loader_path");
5074       std::string executable_path("@executable_path");
5075       for (auto &rpath : rpath_paths) {
5076         if (rpath.find(loader_path) == 0) {
5077           rpath.erase(0, loader_path.size());
5078           rpath.insert(0, this_file_spec.GetDirectory().GetCString());
5079         } else if (rpath.find(executable_path) == 0) {
5080           rpath.erase(0, executable_path.size());
5081           rpath.insert(0, this_file_spec.GetDirectory().GetCString());
5082         }
5083       }
5084 
5085       for (const auto &rpath_relative_path : rpath_relative_paths) {
5086         for (const auto &rpath : rpath_paths) {
5087           std::string path = rpath;
5088           path += rpath_relative_path;
5089           // It is OK to resolve this path because we must find a file on disk
5090           // for us to accept it anyway if it is rpath relative.
5091           FileSpec file_spec(path);
5092           FileSystem::Instance().Resolve(file_spec);
5093           if (FileSystem::Instance().Exists(file_spec) &&
5094               files.AppendIfUnique(file_spec)) {
5095             count++;
5096             break;
5097           }
5098         }
5099       }
5100     }
5101 
5102     // We may have @executable_paths but no RPATHS.  Figure those out here.
5103     // Only do this if this object file is the executable.  We have no way to
5104     // get back to the actual executable otherwise, so we won't get the right
5105     // path.
5106     if (!at_exec_relative_paths.empty() && CalculateType() == eTypeExecutable) {
5107       FileSpec exec_dir = this_file_spec.CopyByRemovingLastPathComponent();
5108       for (const auto &at_exec_relative_path : at_exec_relative_paths) {
5109         FileSpec file_spec =
5110             exec_dir.CopyByAppendingPathComponent(at_exec_relative_path);
5111         if (FileSystem::Instance().Exists(file_spec) &&
5112             files.AppendIfUnique(file_spec))
5113           count++;
5114       }
5115     }
5116   }
5117   return count;
5118 }
5119 
5120 lldb_private::Address ObjectFileMachO::GetEntryPointAddress() {
5121   // If the object file is not an executable it can't hold the entry point.
5122   // m_entry_point_address is initialized to an invalid address, so we can just
5123   // return that. If m_entry_point_address is valid it means we've found it
5124   // already, so return the cached value.
5125 
5126   if ((!IsExecutable() && !IsDynamicLoader()) ||
5127       m_entry_point_address.IsValid()) {
5128     return m_entry_point_address;
5129   }
5130 
5131   // Otherwise, look for the UnixThread or Thread command.  The data for the
5132   // Thread command is given in /usr/include/mach-o.h, but it is basically:
5133   //
5134   //  uint32_t flavor  - this is the flavor argument you would pass to
5135   //  thread_get_state
5136   //  uint32_t count   - this is the count of longs in the thread state data
5137   //  struct XXX_thread_state state - this is the structure from
5138   //  <machine/thread_status.h> corresponding to the flavor.
5139   //  <repeat this trio>
5140   //
5141   // So we just keep reading the various register flavors till we find the GPR
5142   // one, then read the PC out of there.
5143   // FIXME: We will need to have a "RegisterContext data provider" class at some
5144   // point that can get all the registers
5145   // out of data in this form & attach them to a given thread.  That should
5146   // underlie the MacOS X User process plugin, and we'll also need it for the
5147   // MacOS X Core File process plugin.  When we have that we can also use it
5148   // here.
5149   //
5150   // For now we hard-code the offsets and flavors we need:
5151   //
5152   //
5153 
5154   ModuleSP module_sp(GetModule());
5155   if (module_sp) {
5156     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5157     struct load_command load_cmd;
5158     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5159     uint32_t i;
5160     lldb::addr_t start_address = LLDB_INVALID_ADDRESS;
5161     bool done = false;
5162 
5163     for (i = 0; i < m_header.ncmds; ++i) {
5164       const lldb::offset_t cmd_offset = offset;
5165       if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5166         break;
5167 
5168       switch (load_cmd.cmd) {
5169       case LC_UNIXTHREAD:
5170       case LC_THREAD: {
5171         while (offset < cmd_offset + load_cmd.cmdsize) {
5172           uint32_t flavor = m_data.GetU32(&offset);
5173           uint32_t count = m_data.GetU32(&offset);
5174           if (count == 0) {
5175             // We've gotten off somehow, log and exit;
5176             return m_entry_point_address;
5177           }
5178 
5179           switch (m_header.cputype) {
5180           case llvm::MachO::CPU_TYPE_ARM:
5181             if (flavor == 1 ||
5182                 flavor == 9) // ARM_THREAD_STATE/ARM_THREAD_STATE32
5183                              // from mach/arm/thread_status.h
5184             {
5185               offset += 60; // This is the offset of pc in the GPR thread state
5186                             // data structure.
5187               start_address = m_data.GetU32(&offset);
5188               done = true;
5189             }
5190             break;
5191           case llvm::MachO::CPU_TYPE_ARM64:
5192             if (flavor == 6) // ARM_THREAD_STATE64 from mach/arm/thread_status.h
5193             {
5194               offset += 256; // This is the offset of pc in the GPR thread state
5195                              // data structure.
5196               start_address = m_data.GetU64(&offset);
5197               done = true;
5198             }
5199             break;
5200           case llvm::MachO::CPU_TYPE_I386:
5201             if (flavor ==
5202                 1) // x86_THREAD_STATE32 from mach/i386/thread_status.h
5203             {
5204               offset += 40; // This is the offset of eip in the GPR thread state
5205                             // data structure.
5206               start_address = m_data.GetU32(&offset);
5207               done = true;
5208             }
5209             break;
5210           case llvm::MachO::CPU_TYPE_X86_64:
5211             if (flavor ==
5212                 4) // x86_THREAD_STATE64 from mach/i386/thread_status.h
5213             {
5214               offset += 16 * 8; // This is the offset of rip in the GPR thread
5215                                 // state data structure.
5216               start_address = m_data.GetU64(&offset);
5217               done = true;
5218             }
5219             break;
5220           default:
5221             return m_entry_point_address;
5222           }
5223           // Haven't found the GPR flavor yet, skip over the data for this
5224           // flavor:
5225           if (done)
5226             break;
5227           offset += count * 4;
5228         }
5229       } break;
5230       case LC_MAIN: {
5231         ConstString text_segment_name("__TEXT");
5232         uint64_t entryoffset = m_data.GetU64(&offset);
5233         SectionSP text_segment_sp =
5234             GetSectionList()->FindSectionByName(text_segment_name);
5235         if (text_segment_sp) {
5236           done = true;
5237           start_address = text_segment_sp->GetFileAddress() + entryoffset;
5238         }
5239       } break;
5240 
5241       default:
5242         break;
5243       }
5244       if (done)
5245         break;
5246 
5247       // Go to the next load command:
5248       offset = cmd_offset + load_cmd.cmdsize;
5249     }
5250 
5251     if (start_address == LLDB_INVALID_ADDRESS && IsDynamicLoader()) {
5252       if (GetSymtab()) {
5253         Symbol *dyld_start_sym = GetSymtab()->FindFirstSymbolWithNameAndType(
5254             ConstString("_dyld_start"), SymbolType::eSymbolTypeCode,
5255             Symtab::eDebugAny, Symtab::eVisibilityAny);
5256         if (dyld_start_sym && dyld_start_sym->GetAddress().IsValid()) {
5257           start_address = dyld_start_sym->GetAddress().GetFileAddress();
5258         }
5259       }
5260     }
5261 
5262     if (start_address != LLDB_INVALID_ADDRESS) {
5263       // We got the start address from the load commands, so now resolve that
5264       // address in the sections of this ObjectFile:
5265       if (!m_entry_point_address.ResolveAddressUsingFileSections(
5266               start_address, GetSectionList())) {
5267         m_entry_point_address.Clear();
5268       }
5269     } else {
5270       // We couldn't read the UnixThread load command - maybe it wasn't there.
5271       // As a fallback look for the "start" symbol in the main executable.
5272 
5273       ModuleSP module_sp(GetModule());
5274 
5275       if (module_sp) {
5276         SymbolContextList contexts;
5277         SymbolContext context;
5278         if (module_sp->FindSymbolsWithNameAndType(ConstString("start"),
5279                                                   eSymbolTypeCode, contexts)) {
5280           if (contexts.GetContextAtIndex(0, context))
5281             m_entry_point_address = context.symbol->GetAddress();
5282         }
5283       }
5284     }
5285   }
5286 
5287   return m_entry_point_address;
5288 }
5289 
5290 lldb_private::Address ObjectFileMachO::GetBaseAddress() {
5291   lldb_private::Address header_addr;
5292   SectionList *section_list = GetSectionList();
5293   if (section_list) {
5294     SectionSP text_segment_sp(
5295         section_list->FindSectionByName(GetSegmentNameTEXT()));
5296     if (text_segment_sp) {
5297       header_addr.SetSection(text_segment_sp);
5298       header_addr.SetOffset(0);
5299     }
5300   }
5301   return header_addr;
5302 }
5303 
5304 uint32_t ObjectFileMachO::GetNumThreadContexts() {
5305   ModuleSP module_sp(GetModule());
5306   if (module_sp) {
5307     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5308     if (!m_thread_context_offsets_valid) {
5309       m_thread_context_offsets_valid = true;
5310       lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5311       FileRangeArray::Entry file_range;
5312       thread_command thread_cmd;
5313       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5314         const uint32_t cmd_offset = offset;
5315         if (m_data.GetU32(&offset, &thread_cmd, 2) == nullptr)
5316           break;
5317 
5318         if (thread_cmd.cmd == LC_THREAD) {
5319           file_range.SetRangeBase(offset);
5320           file_range.SetByteSize(thread_cmd.cmdsize - 8);
5321           m_thread_context_offsets.Append(file_range);
5322         }
5323         offset = cmd_offset + thread_cmd.cmdsize;
5324       }
5325     }
5326   }
5327   return m_thread_context_offsets.GetSize();
5328 }
5329 
5330 std::string ObjectFileMachO::GetIdentifierString() {
5331   std::string result;
5332   ModuleSP module_sp(GetModule());
5333   if (module_sp) {
5334     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5335 
5336     // First, look over the load commands for an LC_NOTE load command with
5337     // data_owner string "kern ver str" & use that if found.
5338     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5339     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5340       const uint32_t cmd_offset = offset;
5341       load_command lc;
5342       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5343         break;
5344       if (lc.cmd == LC_NOTE) {
5345         char data_owner[17];
5346         m_data.CopyData(offset, 16, data_owner);
5347         data_owner[16] = '\0';
5348         offset += 16;
5349         uint64_t fileoff = m_data.GetU64_unchecked(&offset);
5350         uint64_t size = m_data.GetU64_unchecked(&offset);
5351 
5352         // "kern ver str" has a uint32_t version and then a nul terminated
5353         // c-string.
5354         if (strcmp("kern ver str", data_owner) == 0) {
5355           offset = fileoff;
5356           uint32_t version;
5357           if (m_data.GetU32(&offset, &version, 1) != nullptr) {
5358             if (version == 1) {
5359               uint32_t strsize = size - sizeof(uint32_t);
5360               char *buf = (char *)malloc(strsize);
5361               if (buf) {
5362                 m_data.CopyData(offset, strsize, buf);
5363                 buf[strsize - 1] = '\0';
5364                 result = buf;
5365                 if (buf)
5366                   free(buf);
5367                 return result;
5368               }
5369             }
5370           }
5371         }
5372       }
5373       offset = cmd_offset + lc.cmdsize;
5374     }
5375 
5376     // Second, make a pass over the load commands looking for an obsolete
5377     // LC_IDENT load command.
5378     offset = MachHeaderSizeFromMagic(m_header.magic);
5379     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5380       const uint32_t cmd_offset = offset;
5381       struct ident_command ident_command;
5382       if (m_data.GetU32(&offset, &ident_command, 2) == nullptr)
5383         break;
5384       if (ident_command.cmd == LC_IDENT && ident_command.cmdsize != 0) {
5385         char *buf = (char *)malloc(ident_command.cmdsize);
5386         if (buf != nullptr && m_data.CopyData(offset, ident_command.cmdsize,
5387                                               buf) == ident_command.cmdsize) {
5388           buf[ident_command.cmdsize - 1] = '\0';
5389           result = buf;
5390         }
5391         if (buf)
5392           free(buf);
5393       }
5394       offset = cmd_offset + ident_command.cmdsize;
5395     }
5396   }
5397   return result;
5398 }
5399 
5400 bool ObjectFileMachO::GetCorefileMainBinaryInfo(addr_t &address, UUID &uuid) {
5401   address = LLDB_INVALID_ADDRESS;
5402   uuid.Clear();
5403   ModuleSP module_sp(GetModule());
5404   if (module_sp) {
5405     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5406     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5407     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5408       const uint32_t cmd_offset = offset;
5409       load_command lc;
5410       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5411         break;
5412       if (lc.cmd == LC_NOTE) {
5413         char data_owner[17];
5414         memset(data_owner, 0, sizeof(data_owner));
5415         m_data.CopyData(offset, 16, data_owner);
5416         offset += 16;
5417         uint64_t fileoff = m_data.GetU64_unchecked(&offset);
5418         uint64_t size = m_data.GetU64_unchecked(&offset);
5419 
5420         // "main bin spec" (main binary specification) data payload is
5421         // formatted:
5422         //    uint32_t version       [currently 1]
5423         //    uint32_t type          [0 == unspecified, 1 == kernel, 2 == user
5424         //    process] uint64_t address       [ UINT64_MAX if address not
5425         //    specified ] uuid_t   uuid          [ all zero's if uuid not
5426         //    specified ] uint32_t log2_pagesize [ process page size in log base
5427         //    2, e.g. 4k pages are 12.  0 for unspecified ]
5428 
5429         if (strcmp("main bin spec", data_owner) == 0 && size >= 32) {
5430           offset = fileoff;
5431           uint32_t version;
5432           if (m_data.GetU32(&offset, &version, 1) != nullptr && version == 1) {
5433             uint32_t type = 0;
5434             uuid_t raw_uuid;
5435             memset(raw_uuid, 0, sizeof(uuid_t));
5436 
5437             if (m_data.GetU32(&offset, &type, 1) &&
5438                 m_data.GetU64(&offset, &address, 1) &&
5439                 m_data.CopyData(offset, sizeof(uuid_t), raw_uuid) != 0) {
5440               uuid = UUID::fromOptionalData(raw_uuid, sizeof(uuid_t));
5441               return true;
5442             }
5443           }
5444         }
5445       }
5446       offset = cmd_offset + lc.cmdsize;
5447     }
5448   }
5449   return false;
5450 }
5451 
5452 lldb::RegisterContextSP
5453 ObjectFileMachO::GetThreadContextAtIndex(uint32_t idx,
5454                                          lldb_private::Thread &thread) {
5455   lldb::RegisterContextSP reg_ctx_sp;
5456 
5457   ModuleSP module_sp(GetModule());
5458   if (module_sp) {
5459     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5460     if (!m_thread_context_offsets_valid)
5461       GetNumThreadContexts();
5462 
5463     const FileRangeArray::Entry *thread_context_file_range =
5464         m_thread_context_offsets.GetEntryAtIndex(idx);
5465     if (thread_context_file_range) {
5466 
5467       DataExtractor data(m_data, thread_context_file_range->GetRangeBase(),
5468                          thread_context_file_range->GetByteSize());
5469 
5470       switch (m_header.cputype) {
5471       case llvm::MachO::CPU_TYPE_ARM64:
5472         reg_ctx_sp =
5473             std::make_shared<RegisterContextDarwin_arm64_Mach>(thread, data);
5474         break;
5475 
5476       case llvm::MachO::CPU_TYPE_ARM:
5477         reg_ctx_sp =
5478             std::make_shared<RegisterContextDarwin_arm_Mach>(thread, data);
5479         break;
5480 
5481       case llvm::MachO::CPU_TYPE_I386:
5482         reg_ctx_sp =
5483             std::make_shared<RegisterContextDarwin_i386_Mach>(thread, data);
5484         break;
5485 
5486       case llvm::MachO::CPU_TYPE_X86_64:
5487         reg_ctx_sp =
5488             std::make_shared<RegisterContextDarwin_x86_64_Mach>(thread, data);
5489         break;
5490       }
5491     }
5492   }
5493   return reg_ctx_sp;
5494 }
5495 
5496 ObjectFile::Type ObjectFileMachO::CalculateType() {
5497   switch (m_header.filetype) {
5498   case MH_OBJECT: // 0x1u
5499     if (GetAddressByteSize() == 4) {
5500       // 32 bit kexts are just object files, but they do have a valid
5501       // UUID load command.
5502       if (GetUUID()) {
5503         // this checking for the UUID load command is not enough we could
5504         // eventually look for the symbol named "OSKextGetCurrentIdentifier" as
5505         // this is required of kexts
5506         if (m_strata == eStrataInvalid)
5507           m_strata = eStrataKernel;
5508         return eTypeSharedLibrary;
5509       }
5510     }
5511     return eTypeObjectFile;
5512 
5513   case MH_EXECUTE:
5514     return eTypeExecutable; // 0x2u
5515   case MH_FVMLIB:
5516     return eTypeSharedLibrary; // 0x3u
5517   case MH_CORE:
5518     return eTypeCoreFile; // 0x4u
5519   case MH_PRELOAD:
5520     return eTypeSharedLibrary; // 0x5u
5521   case MH_DYLIB:
5522     return eTypeSharedLibrary; // 0x6u
5523   case MH_DYLINKER:
5524     return eTypeDynamicLinker; // 0x7u
5525   case MH_BUNDLE:
5526     return eTypeSharedLibrary; // 0x8u
5527   case MH_DYLIB_STUB:
5528     return eTypeStubLibrary; // 0x9u
5529   case MH_DSYM:
5530     return eTypeDebugInfo; // 0xAu
5531   case MH_KEXT_BUNDLE:
5532     return eTypeSharedLibrary; // 0xBu
5533   default:
5534     break;
5535   }
5536   return eTypeUnknown;
5537 }
5538 
5539 ObjectFile::Strata ObjectFileMachO::CalculateStrata() {
5540   switch (m_header.filetype) {
5541   case MH_OBJECT: // 0x1u
5542   {
5543     // 32 bit kexts are just object files, but they do have a valid
5544     // UUID load command.
5545     if (GetUUID()) {
5546       // this checking for the UUID load command is not enough we could
5547       // eventually look for the symbol named "OSKextGetCurrentIdentifier" as
5548       // this is required of kexts
5549       if (m_type == eTypeInvalid)
5550         m_type = eTypeSharedLibrary;
5551 
5552       return eStrataKernel;
5553     }
5554   }
5555     return eStrataUnknown;
5556 
5557   case MH_EXECUTE: // 0x2u
5558     // Check for the MH_DYLDLINK bit in the flags
5559     if (m_header.flags & MH_DYLDLINK) {
5560       return eStrataUser;
5561     } else {
5562       SectionList *section_list = GetSectionList();
5563       if (section_list) {
5564         static ConstString g_kld_section_name("__KLD");
5565         if (section_list->FindSectionByName(g_kld_section_name))
5566           return eStrataKernel;
5567       }
5568     }
5569     return eStrataRawImage;
5570 
5571   case MH_FVMLIB:
5572     return eStrataUser; // 0x3u
5573   case MH_CORE:
5574     return eStrataUnknown; // 0x4u
5575   case MH_PRELOAD:
5576     return eStrataRawImage; // 0x5u
5577   case MH_DYLIB:
5578     return eStrataUser; // 0x6u
5579   case MH_DYLINKER:
5580     return eStrataUser; // 0x7u
5581   case MH_BUNDLE:
5582     return eStrataUser; // 0x8u
5583   case MH_DYLIB_STUB:
5584     return eStrataUser; // 0x9u
5585   case MH_DSYM:
5586     return eStrataUnknown; // 0xAu
5587   case MH_KEXT_BUNDLE:
5588     return eStrataKernel; // 0xBu
5589   default:
5590     break;
5591   }
5592   return eStrataUnknown;
5593 }
5594 
5595 llvm::VersionTuple ObjectFileMachO::GetVersion() {
5596   ModuleSP module_sp(GetModule());
5597   if (module_sp) {
5598     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5599     struct dylib_command load_cmd;
5600     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5601     uint32_t version_cmd = 0;
5602     uint64_t version = 0;
5603     uint32_t i;
5604     for (i = 0; i < m_header.ncmds; ++i) {
5605       const lldb::offset_t cmd_offset = offset;
5606       if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5607         break;
5608 
5609       if (load_cmd.cmd == LC_ID_DYLIB) {
5610         if (version_cmd == 0) {
5611           version_cmd = load_cmd.cmd;
5612           if (m_data.GetU32(&offset, &load_cmd.dylib, 4) == nullptr)
5613             break;
5614           version = load_cmd.dylib.current_version;
5615         }
5616         break; // Break for now unless there is another more complete version
5617                // number load command in the future.
5618       }
5619       offset = cmd_offset + load_cmd.cmdsize;
5620     }
5621 
5622     if (version_cmd == LC_ID_DYLIB) {
5623       unsigned major = (version & 0xFFFF0000ull) >> 16;
5624       unsigned minor = (version & 0x0000FF00ull) >> 8;
5625       unsigned subminor = (version & 0x000000FFull);
5626       return llvm::VersionTuple(major, minor, subminor);
5627     }
5628   }
5629   return llvm::VersionTuple();
5630 }
5631 
5632 ArchSpec ObjectFileMachO::GetArchitecture() {
5633   ModuleSP module_sp(GetModule());
5634   ArchSpec arch;
5635   if (module_sp) {
5636     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5637 
5638     return GetArchitecture(module_sp, m_header, m_data,
5639                            MachHeaderSizeFromMagic(m_header.magic));
5640   }
5641   return arch;
5642 }
5643 
5644 void ObjectFileMachO::GetProcessSharedCacheUUID(Process *process,
5645                                                 addr_t &base_addr, UUID &uuid) {
5646   uuid.Clear();
5647   base_addr = LLDB_INVALID_ADDRESS;
5648   if (process && process->GetDynamicLoader()) {
5649     DynamicLoader *dl = process->GetDynamicLoader();
5650     LazyBool using_shared_cache;
5651     LazyBool private_shared_cache;
5652     dl->GetSharedCacheInformation(base_addr, uuid, using_shared_cache,
5653                                   private_shared_cache);
5654   }
5655   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS |
5656                                                   LIBLLDB_LOG_PROCESS));
5657   LLDB_LOGF(
5658       log,
5659       "inferior process shared cache has a UUID of %s, base address 0x%" PRIx64,
5660       uuid.GetAsString().c_str(), base_addr);
5661 }
5662 
5663 // From dyld SPI header dyld_process_info.h
5664 typedef void *dyld_process_info;
5665 struct lldb_copy__dyld_process_cache_info {
5666   uuid_t cacheUUID;          // UUID of cache used by process
5667   uint64_t cacheBaseAddress; // load address of dyld shared cache
5668   bool noCache;              // process is running without a dyld cache
5669   bool privateCache; // process is using a private copy of its dyld cache
5670 };
5671 
5672 // #including mach/mach.h pulls in machine.h & CPU_TYPE_ARM etc conflicts with
5673 // llvm enum definitions llvm::MachO::CPU_TYPE_ARM turning them into compile
5674 // errors. So we need to use the actual underlying types of task_t and
5675 // kern_return_t below.
5676 extern "C" unsigned int /*task_t*/ mach_task_self();
5677 
5678 void ObjectFileMachO::GetLLDBSharedCacheUUID(addr_t &base_addr, UUID &uuid) {
5679   uuid.Clear();
5680   base_addr = LLDB_INVALID_ADDRESS;
5681 
5682 #if defined(__APPLE__) &&                                                      \
5683     (defined(__arm__) || defined(__arm64__) || defined(__aarch64__))
5684   uint8_t *(*dyld_get_all_image_infos)(void);
5685   dyld_get_all_image_infos =
5686       (uint8_t * (*)()) dlsym(RTLD_DEFAULT, "_dyld_get_all_image_infos");
5687   if (dyld_get_all_image_infos) {
5688     uint8_t *dyld_all_image_infos_address = dyld_get_all_image_infos();
5689     if (dyld_all_image_infos_address) {
5690       uint32_t *version = (uint32_t *)
5691           dyld_all_image_infos_address; // version <mach-o/dyld_images.h>
5692       if (*version >= 13) {
5693         uuid_t *sharedCacheUUID_address = 0;
5694         int wordsize = sizeof(uint8_t *);
5695         if (wordsize == 8) {
5696           sharedCacheUUID_address =
5697               (uuid_t *)((uint8_t *)dyld_all_image_infos_address +
5698                          160); // sharedCacheUUID <mach-o/dyld_images.h>
5699           if (*version >= 15)
5700             base_addr =
5701                 *(uint64_t
5702                       *)((uint8_t *)dyld_all_image_infos_address +
5703                          176); // sharedCacheBaseAddress <mach-o/dyld_images.h>
5704         } else {
5705           sharedCacheUUID_address =
5706               (uuid_t *)((uint8_t *)dyld_all_image_infos_address +
5707                          84); // sharedCacheUUID <mach-o/dyld_images.h>
5708           if (*version >= 15) {
5709             base_addr = 0;
5710             base_addr =
5711                 *(uint32_t
5712                       *)((uint8_t *)dyld_all_image_infos_address +
5713                          100); // sharedCacheBaseAddress <mach-o/dyld_images.h>
5714           }
5715         }
5716         uuid = UUID::fromOptionalData(sharedCacheUUID_address, sizeof(uuid_t));
5717       }
5718     }
5719   } else {
5720     // Exists in macOS 10.12 and later, iOS 10.0 and later - dyld SPI
5721     dyld_process_info (*dyld_process_info_create)(
5722         unsigned int /* task_t */ task, uint64_t timestamp,
5723         unsigned int /*kern_return_t*/ *kernelError);
5724     void (*dyld_process_info_get_cache)(void *info, void *cacheInfo);
5725     void (*dyld_process_info_release)(dyld_process_info info);
5726 
5727     dyld_process_info_create = (void *(*)(unsigned int /* task_t */, uint64_t,
5728                                           unsigned int /*kern_return_t*/ *))
5729         dlsym(RTLD_DEFAULT, "_dyld_process_info_create");
5730     dyld_process_info_get_cache = (void (*)(void *, void *))dlsym(
5731         RTLD_DEFAULT, "_dyld_process_info_get_cache");
5732     dyld_process_info_release =
5733         (void (*)(void *))dlsym(RTLD_DEFAULT, "_dyld_process_info_release");
5734 
5735     if (dyld_process_info_create && dyld_process_info_get_cache) {
5736       unsigned int /*kern_return_t */ kern_ret;
5737       dyld_process_info process_info =
5738           dyld_process_info_create(::mach_task_self(), 0, &kern_ret);
5739       if (process_info) {
5740         struct lldb_copy__dyld_process_cache_info sc_info;
5741         memset(&sc_info, 0, sizeof(struct lldb_copy__dyld_process_cache_info));
5742         dyld_process_info_get_cache(process_info, &sc_info);
5743         if (sc_info.cacheBaseAddress != 0) {
5744           base_addr = sc_info.cacheBaseAddress;
5745           uuid = UUID::fromOptionalData(sc_info.cacheUUID, sizeof(uuid_t));
5746         }
5747         dyld_process_info_release(process_info);
5748       }
5749     }
5750   }
5751   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS |
5752                                                   LIBLLDB_LOG_PROCESS));
5753   if (log && uuid.IsValid())
5754     LLDB_LOGF(log,
5755               "lldb's in-memory shared cache has a UUID of %s base address of "
5756               "0x%" PRIx64,
5757               uuid.GetAsString().c_str(), base_addr);
5758 #endif
5759 }
5760 
5761 llvm::VersionTuple ObjectFileMachO::GetMinimumOSVersion() {
5762   if (!m_min_os_version) {
5763     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5764     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5765       const lldb::offset_t load_cmd_offset = offset;
5766 
5767       version_min_command lc;
5768       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5769         break;
5770       if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX ||
5771           lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS ||
5772           lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS ||
5773           lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) {
5774         if (m_data.GetU32(&offset, &lc.version,
5775                           (sizeof(lc) / sizeof(uint32_t)) - 2)) {
5776           const uint32_t xxxx = lc.version >> 16;
5777           const uint32_t yy = (lc.version >> 8) & 0xffu;
5778           const uint32_t zz = lc.version & 0xffu;
5779           if (xxxx) {
5780             m_min_os_version = llvm::VersionTuple(xxxx, yy, zz);
5781             break;
5782           }
5783         }
5784       } else if (lc.cmd == llvm::MachO::LC_BUILD_VERSION) {
5785         // struct build_version_command {
5786         //     uint32_t    cmd;            /* LC_BUILD_VERSION */
5787         //     uint32_t    cmdsize;        /* sizeof(struct
5788         //     build_version_command) plus */
5789         //                                 /* ntools * sizeof(struct
5790         //                                 build_tool_version) */
5791         //     uint32_t    platform;       /* platform */
5792         //     uint32_t    minos;          /* X.Y.Z is encoded in nibbles
5793         //     xxxx.yy.zz */ uint32_t    sdk;            /* X.Y.Z is encoded in
5794         //     nibbles xxxx.yy.zz */ uint32_t    ntools;         /* number of
5795         //     tool entries following this */
5796         // };
5797 
5798         offset += 4; // skip platform
5799         uint32_t minos = m_data.GetU32(&offset);
5800 
5801         const uint32_t xxxx = minos >> 16;
5802         const uint32_t yy = (minos >> 8) & 0xffu;
5803         const uint32_t zz = minos & 0xffu;
5804         if (xxxx) {
5805           m_min_os_version = llvm::VersionTuple(xxxx, yy, zz);
5806           break;
5807         }
5808       }
5809 
5810       offset = load_cmd_offset + lc.cmdsize;
5811     }
5812 
5813     if (!m_min_os_version) {
5814       // Set version to an empty value so we don't keep trying to
5815       m_min_os_version = llvm::VersionTuple();
5816     }
5817   }
5818 
5819   return *m_min_os_version;
5820 }
5821 
5822 llvm::VersionTuple ObjectFileMachO::GetSDKVersion() {
5823   if (!m_sdk_versions.hasValue()) {
5824     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5825     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5826       const lldb::offset_t load_cmd_offset = offset;
5827 
5828       version_min_command lc;
5829       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5830         break;
5831       if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX ||
5832           lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS ||
5833           lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS ||
5834           lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) {
5835         if (m_data.GetU32(&offset, &lc.version,
5836                           (sizeof(lc) / sizeof(uint32_t)) - 2)) {
5837           const uint32_t xxxx = lc.sdk >> 16;
5838           const uint32_t yy = (lc.sdk >> 8) & 0xffu;
5839           const uint32_t zz = lc.sdk & 0xffu;
5840           if (xxxx) {
5841             m_sdk_versions = llvm::VersionTuple(xxxx, yy, zz);
5842             break;
5843           } else {
5844             GetModule()->ReportWarning("minimum OS version load command with "
5845                                        "invalid (0) version found.");
5846           }
5847         }
5848       }
5849       offset = load_cmd_offset + lc.cmdsize;
5850     }
5851 
5852     if (!m_sdk_versions.hasValue()) {
5853       offset = MachHeaderSizeFromMagic(m_header.magic);
5854       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5855         const lldb::offset_t load_cmd_offset = offset;
5856 
5857         version_min_command lc;
5858         if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5859           break;
5860         if (lc.cmd == llvm::MachO::LC_BUILD_VERSION) {
5861           // struct build_version_command {
5862           //     uint32_t    cmd;            /* LC_BUILD_VERSION */
5863           //     uint32_t    cmdsize;        /* sizeof(struct
5864           //     build_version_command) plus */
5865           //                                 /* ntools * sizeof(struct
5866           //                                 build_tool_version) */
5867           //     uint32_t    platform;       /* platform */
5868           //     uint32_t    minos;          /* X.Y.Z is encoded in nibbles
5869           //     xxxx.yy.zz */ uint32_t    sdk;            /* X.Y.Z is encoded
5870           //     in nibbles xxxx.yy.zz */ uint32_t    ntools;         /* number
5871           //     of tool entries following this */
5872           // };
5873 
5874           offset += 4; // skip platform
5875           uint32_t minos = m_data.GetU32(&offset);
5876 
5877           const uint32_t xxxx = minos >> 16;
5878           const uint32_t yy = (minos >> 8) & 0xffu;
5879           const uint32_t zz = minos & 0xffu;
5880           if (xxxx) {
5881             m_sdk_versions = llvm::VersionTuple(xxxx, yy, zz);
5882             break;
5883           }
5884         }
5885         offset = load_cmd_offset + lc.cmdsize;
5886       }
5887     }
5888 
5889     if (!m_sdk_versions.hasValue())
5890       m_sdk_versions = llvm::VersionTuple();
5891   }
5892 
5893   return m_sdk_versions.getValue();
5894 }
5895 
5896 bool ObjectFileMachO::GetIsDynamicLinkEditor() {
5897   return m_header.filetype == llvm::MachO::MH_DYLINKER;
5898 }
5899 
5900 bool ObjectFileMachO::AllowAssemblyEmulationUnwindPlans() {
5901   return m_allow_assembly_emulation_unwind_plans;
5902 }
5903 
5904 // PluginInterface protocol
5905 lldb_private::ConstString ObjectFileMachO::GetPluginName() {
5906   return GetPluginNameStatic();
5907 }
5908 
5909 uint32_t ObjectFileMachO::GetPluginVersion() { return 1; }
5910 
5911 Section *ObjectFileMachO::GetMachHeaderSection() {
5912   // Find the first address of the mach header which is the first non-zero file
5913   // sized section whose file offset is zero. This is the base file address of
5914   // the mach-o file which can be subtracted from the vmaddr of the other
5915   // segments found in memory and added to the load address
5916   ModuleSP module_sp = GetModule();
5917   if (!module_sp)
5918     return nullptr;
5919   SectionList *section_list = GetSectionList();
5920   if (!section_list)
5921     return nullptr;
5922   const size_t num_sections = section_list->GetSize();
5923   for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
5924     Section *section = section_list->GetSectionAtIndex(sect_idx).get();
5925     if (section->GetFileOffset() == 0 && SectionIsLoadable(section))
5926       return section;
5927   }
5928   return nullptr;
5929 }
5930 
5931 bool ObjectFileMachO::SectionIsLoadable(const Section *section) {
5932   if (!section)
5933     return false;
5934   const bool is_dsym = (m_header.filetype == MH_DSYM);
5935   if (section->GetFileSize() == 0 && !is_dsym)
5936     return false;
5937   if (section->IsThreadSpecific())
5938     return false;
5939   if (GetModule().get() != section->GetModule().get())
5940     return false;
5941   // Be careful with __LINKEDIT and __DWARF segments
5942   if (section->GetName() == GetSegmentNameLINKEDIT() ||
5943       section->GetName() == GetSegmentNameDWARF()) {
5944     // Only map __LINKEDIT and __DWARF if we have an in memory image and
5945     // this isn't a kernel binary like a kext or mach_kernel.
5946     const bool is_memory_image = (bool)m_process_wp.lock();
5947     const Strata strata = GetStrata();
5948     if (is_memory_image == false || strata == eStrataKernel)
5949       return false;
5950   }
5951   return true;
5952 }
5953 
5954 lldb::addr_t ObjectFileMachO::CalculateSectionLoadAddressForMemoryImage(
5955     lldb::addr_t header_load_address, const Section *header_section,
5956     const Section *section) {
5957   ModuleSP module_sp = GetModule();
5958   if (module_sp && header_section && section &&
5959       header_load_address != LLDB_INVALID_ADDRESS) {
5960     lldb::addr_t file_addr = header_section->GetFileAddress();
5961     if (file_addr != LLDB_INVALID_ADDRESS && SectionIsLoadable(section))
5962       return section->GetFileAddress() - file_addr + header_load_address;
5963   }
5964   return LLDB_INVALID_ADDRESS;
5965 }
5966 
5967 bool ObjectFileMachO::SetLoadAddress(Target &target, lldb::addr_t value,
5968                                      bool value_is_offset) {
5969   ModuleSP module_sp = GetModule();
5970   if (!module_sp)
5971     return false;
5972 
5973   SectionList *section_list = GetSectionList();
5974   if (!section_list)
5975     return false;
5976 
5977   size_t num_loaded_sections = 0;
5978   const size_t num_sections = section_list->GetSize();
5979 
5980   if (value_is_offset) {
5981     // "value" is an offset to apply to each top level segment
5982     for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
5983       // Iterate through the object file sections to find all of the
5984       // sections that size on disk (to avoid __PAGEZERO) and load them
5985       SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
5986       if (SectionIsLoadable(section_sp.get()))
5987         if (target.GetSectionLoadList().SetSectionLoadAddress(
5988                 section_sp, section_sp->GetFileAddress() + value))
5989           ++num_loaded_sections;
5990     }
5991   } else {
5992     // "value" is the new base address of the mach_header, adjust each
5993     // section accordingly
5994 
5995     Section *mach_header_section = GetMachHeaderSection();
5996     if (mach_header_section) {
5997       for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
5998         SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
5999 
6000         lldb::addr_t section_load_addr =
6001             CalculateSectionLoadAddressForMemoryImage(
6002                 value, mach_header_section, section_sp.get());
6003         if (section_load_addr != LLDB_INVALID_ADDRESS) {
6004           if (target.GetSectionLoadList().SetSectionLoadAddress(
6005                   section_sp, section_load_addr))
6006             ++num_loaded_sections;
6007         }
6008       }
6009     }
6010   }
6011   return num_loaded_sections > 0;
6012 }
6013 
6014 bool ObjectFileMachO::SaveCore(const lldb::ProcessSP &process_sp,
6015                                const FileSpec &outfile, Status &error) {
6016   if (!process_sp)
6017     return false;
6018 
6019   Target &target = process_sp->GetTarget();
6020   const ArchSpec target_arch = target.GetArchitecture();
6021   const llvm::Triple &target_triple = target_arch.GetTriple();
6022   if (target_triple.getVendor() == llvm::Triple::Apple &&
6023       (target_triple.getOS() == llvm::Triple::MacOSX ||
6024        target_triple.getOS() == llvm::Triple::IOS ||
6025        target_triple.getOS() == llvm::Triple::WatchOS ||
6026        target_triple.getOS() == llvm::Triple::TvOS)) {
6027     // NEED_BRIDGEOS_TRIPLE target_triple.getOS() == llvm::Triple::BridgeOS))
6028     // {
6029     bool make_core = false;
6030     switch (target_arch.GetMachine()) {
6031     case llvm::Triple::aarch64:
6032     case llvm::Triple::arm:
6033     case llvm::Triple::thumb:
6034     case llvm::Triple::x86:
6035     case llvm::Triple::x86_64:
6036       make_core = true;
6037       break;
6038     default:
6039       error.SetErrorStringWithFormat("unsupported core architecture: %s",
6040                                      target_triple.str().c_str());
6041       break;
6042     }
6043 
6044     if (make_core) {
6045       std::vector<segment_command_64> segment_load_commands;
6046       //                uint32_t range_info_idx = 0;
6047       MemoryRegionInfo range_info;
6048       Status range_error = process_sp->GetMemoryRegionInfo(0, range_info);
6049       const uint32_t addr_byte_size = target_arch.GetAddressByteSize();
6050       const ByteOrder byte_order = target_arch.GetByteOrder();
6051       if (range_error.Success()) {
6052         while (range_info.GetRange().GetRangeBase() != LLDB_INVALID_ADDRESS) {
6053           const addr_t addr = range_info.GetRange().GetRangeBase();
6054           const addr_t size = range_info.GetRange().GetByteSize();
6055 
6056           if (size == 0)
6057             break;
6058 
6059           // Calculate correct protections
6060           uint32_t prot = 0;
6061           if (range_info.GetReadable() == MemoryRegionInfo::eYes)
6062             prot |= VM_PROT_READ;
6063           if (range_info.GetWritable() == MemoryRegionInfo::eYes)
6064             prot |= VM_PROT_WRITE;
6065           if (range_info.GetExecutable() == MemoryRegionInfo::eYes)
6066             prot |= VM_PROT_EXECUTE;
6067 
6068           if (prot != 0) {
6069             uint32_t cmd_type = LC_SEGMENT_64;
6070             uint32_t segment_size = sizeof(segment_command_64);
6071             if (addr_byte_size == 4) {
6072               cmd_type = LC_SEGMENT;
6073               segment_size = sizeof(segment_command);
6074             }
6075             segment_command_64 segment = {
6076                 cmd_type,     // uint32_t cmd;
6077                 segment_size, // uint32_t cmdsize;
6078                 {0},          // char segname[16];
6079                 addr, // uint64_t vmaddr;    // uint32_t for 32-bit Mach-O
6080                 size, // uint64_t vmsize;    // uint32_t for 32-bit Mach-O
6081                 0,    // uint64_t fileoff;   // uint32_t for 32-bit Mach-O
6082                 size, // uint64_t filesize;  // uint32_t for 32-bit Mach-O
6083                 prot, // uint32_t maxprot;
6084                 prot, // uint32_t initprot;
6085                 0,    // uint32_t nsects;
6086                 0};   // uint32_t flags;
6087             segment_load_commands.push_back(segment);
6088           } else {
6089             // No protections and a size of 1 used to be returned from old
6090             // debugservers when we asked about a region that was past the
6091             // last memory region and it indicates the end...
6092             if (size == 1)
6093               break;
6094           }
6095 
6096           range_error = process_sp->GetMemoryRegionInfo(
6097               range_info.GetRange().GetRangeEnd(), range_info);
6098           if (range_error.Fail())
6099             break;
6100         }
6101 
6102         StreamString buffer(Stream::eBinary, addr_byte_size, byte_order);
6103 
6104         mach_header_64 mach_header;
6105         if (addr_byte_size == 8) {
6106           mach_header.magic = MH_MAGIC_64;
6107         } else {
6108           mach_header.magic = MH_MAGIC;
6109         }
6110         mach_header.cputype = target_arch.GetMachOCPUType();
6111         mach_header.cpusubtype = target_arch.GetMachOCPUSubType();
6112         mach_header.filetype = MH_CORE;
6113         mach_header.ncmds = segment_load_commands.size();
6114         mach_header.flags = 0;
6115         mach_header.reserved = 0;
6116         ThreadList &thread_list = process_sp->GetThreadList();
6117         const uint32_t num_threads = thread_list.GetSize();
6118 
6119         // Make an array of LC_THREAD data items. Each one contains the
6120         // contents of the LC_THREAD load command. The data doesn't contain
6121         // the load command + load command size, we will add the load command
6122         // and load command size as we emit the data.
6123         std::vector<StreamString> LC_THREAD_datas(num_threads);
6124         for (auto &LC_THREAD_data : LC_THREAD_datas) {
6125           LC_THREAD_data.GetFlags().Set(Stream::eBinary);
6126           LC_THREAD_data.SetAddressByteSize(addr_byte_size);
6127           LC_THREAD_data.SetByteOrder(byte_order);
6128         }
6129         for (uint32_t thread_idx = 0; thread_idx < num_threads; ++thread_idx) {
6130           ThreadSP thread_sp(thread_list.GetThreadAtIndex(thread_idx));
6131           if (thread_sp) {
6132             switch (mach_header.cputype) {
6133             case llvm::MachO::CPU_TYPE_ARM64:
6134               RegisterContextDarwin_arm64_Mach::Create_LC_THREAD(
6135                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6136               break;
6137 
6138             case llvm::MachO::CPU_TYPE_ARM:
6139               RegisterContextDarwin_arm_Mach::Create_LC_THREAD(
6140                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6141               break;
6142 
6143             case llvm::MachO::CPU_TYPE_I386:
6144               RegisterContextDarwin_i386_Mach::Create_LC_THREAD(
6145                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6146               break;
6147 
6148             case llvm::MachO::CPU_TYPE_X86_64:
6149               RegisterContextDarwin_x86_64_Mach::Create_LC_THREAD(
6150                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6151               break;
6152             }
6153           }
6154         }
6155 
6156         // The size of the load command is the size of the segments...
6157         if (addr_byte_size == 8) {
6158           mach_header.sizeofcmds =
6159               segment_load_commands.size() * sizeof(struct segment_command_64);
6160         } else {
6161           mach_header.sizeofcmds =
6162               segment_load_commands.size() * sizeof(struct segment_command);
6163         }
6164 
6165         // and the size of all LC_THREAD load command
6166         for (const auto &LC_THREAD_data : LC_THREAD_datas) {
6167           ++mach_header.ncmds;
6168           mach_header.sizeofcmds += 8 + LC_THREAD_data.GetSize();
6169         }
6170 
6171         // Write the mach header
6172         buffer.PutHex32(mach_header.magic);
6173         buffer.PutHex32(mach_header.cputype);
6174         buffer.PutHex32(mach_header.cpusubtype);
6175         buffer.PutHex32(mach_header.filetype);
6176         buffer.PutHex32(mach_header.ncmds);
6177         buffer.PutHex32(mach_header.sizeofcmds);
6178         buffer.PutHex32(mach_header.flags);
6179         if (addr_byte_size == 8) {
6180           buffer.PutHex32(mach_header.reserved);
6181         }
6182 
6183         // Skip the mach header and all load commands and align to the next
6184         // 0x1000 byte boundary
6185         addr_t file_offset = buffer.GetSize() + mach_header.sizeofcmds;
6186         if (file_offset & 0x00000fff) {
6187           file_offset += 0x00001000ull;
6188           file_offset &= (~0x00001000ull + 1);
6189         }
6190 
6191         for (auto &segment : segment_load_commands) {
6192           segment.fileoff = file_offset;
6193           file_offset += segment.filesize;
6194         }
6195 
6196         // Write out all of the LC_THREAD load commands
6197         for (const auto &LC_THREAD_data : LC_THREAD_datas) {
6198           const size_t LC_THREAD_data_size = LC_THREAD_data.GetSize();
6199           buffer.PutHex32(LC_THREAD);
6200           buffer.PutHex32(8 + LC_THREAD_data_size); // cmd + cmdsize + data
6201           buffer.Write(LC_THREAD_data.GetString().data(), LC_THREAD_data_size);
6202         }
6203 
6204         // Write out all of the segment load commands
6205         for (const auto &segment : segment_load_commands) {
6206           printf("0x%8.8x 0x%8.8x [0x%16.16" PRIx64 " - 0x%16.16" PRIx64
6207                  ") [0x%16.16" PRIx64 " 0x%16.16" PRIx64
6208                  ") 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x]\n",
6209                  segment.cmd, segment.cmdsize, segment.vmaddr,
6210                  segment.vmaddr + segment.vmsize, segment.fileoff,
6211                  segment.filesize, segment.maxprot, segment.initprot,
6212                  segment.nsects, segment.flags);
6213 
6214           buffer.PutHex32(segment.cmd);
6215           buffer.PutHex32(segment.cmdsize);
6216           buffer.PutRawBytes(segment.segname, sizeof(segment.segname));
6217           if (addr_byte_size == 8) {
6218             buffer.PutHex64(segment.vmaddr);
6219             buffer.PutHex64(segment.vmsize);
6220             buffer.PutHex64(segment.fileoff);
6221             buffer.PutHex64(segment.filesize);
6222           } else {
6223             buffer.PutHex32(static_cast<uint32_t>(segment.vmaddr));
6224             buffer.PutHex32(static_cast<uint32_t>(segment.vmsize));
6225             buffer.PutHex32(static_cast<uint32_t>(segment.fileoff));
6226             buffer.PutHex32(static_cast<uint32_t>(segment.filesize));
6227           }
6228           buffer.PutHex32(segment.maxprot);
6229           buffer.PutHex32(segment.initprot);
6230           buffer.PutHex32(segment.nsects);
6231           buffer.PutHex32(segment.flags);
6232         }
6233 
6234         std::string core_file_path(outfile.GetPath());
6235         auto core_file = FileSystem::Instance().Open(
6236             outfile, File::eOpenOptionWrite | File::eOpenOptionTruncate |
6237                          File::eOpenOptionCanCreate);
6238         if (!core_file) {
6239           error = core_file.takeError();
6240         } else {
6241           // Read 1 page at a time
6242           uint8_t bytes[0x1000];
6243           // Write the mach header and load commands out to the core file
6244           size_t bytes_written = buffer.GetString().size();
6245           error =
6246               core_file.get()->Write(buffer.GetString().data(), bytes_written);
6247           if (error.Success()) {
6248             // Now write the file data for all memory segments in the process
6249             for (const auto &segment : segment_load_commands) {
6250               if (core_file.get()->SeekFromStart(segment.fileoff) == -1) {
6251                 error.SetErrorStringWithFormat(
6252                     "unable to seek to offset 0x%" PRIx64 " in '%s'",
6253                     segment.fileoff, core_file_path.c_str());
6254                 break;
6255               }
6256 
6257               printf("Saving %" PRId64
6258                      " bytes of data for memory region at 0x%" PRIx64 "\n",
6259                      segment.vmsize, segment.vmaddr);
6260               addr_t bytes_left = segment.vmsize;
6261               addr_t addr = segment.vmaddr;
6262               Status memory_read_error;
6263               while (bytes_left > 0 && error.Success()) {
6264                 const size_t bytes_to_read =
6265                     bytes_left > sizeof(bytes) ? sizeof(bytes) : bytes_left;
6266 
6267                 // In a savecore setting, we don't really care about caching,
6268                 // as the data is dumped and very likely never read again,
6269                 // so we call ReadMemoryFromInferior to bypass it.
6270                 const size_t bytes_read = process_sp->ReadMemoryFromInferior(
6271                     addr, bytes, bytes_to_read, memory_read_error);
6272 
6273                 if (bytes_read == bytes_to_read) {
6274                   size_t bytes_written = bytes_read;
6275                   error = core_file.get()->Write(bytes, bytes_written);
6276                   bytes_left -= bytes_read;
6277                   addr += bytes_read;
6278                 } else {
6279                   // Some pages within regions are not readable, those should
6280                   // be zero filled
6281                   memset(bytes, 0, bytes_to_read);
6282                   size_t bytes_written = bytes_to_read;
6283                   error = core_file.get()->Write(bytes, bytes_written);
6284                   bytes_left -= bytes_to_read;
6285                   addr += bytes_to_read;
6286                 }
6287               }
6288             }
6289           }
6290         }
6291       } else {
6292         error.SetErrorString(
6293             "process doesn't support getting memory region info");
6294       }
6295     }
6296     return true; // This is the right plug to handle saving core files for
6297                  // this process
6298   }
6299   return false;
6300 }
6301