1 //===-- ObjectFileMachO.cpp -------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/ADT/StringRef.h" 11 12 #include "lldb/lldb-private-log.h" 13 #include "lldb/Core/ArchSpec.h" 14 #include "lldb/Core/DataBuffer.h" 15 #include "lldb/Core/Debugger.h" 16 #include "lldb/Core/Error.h" 17 #include "lldb/Core/FileSpecList.h" 18 #include "lldb/Core/Log.h" 19 #include "lldb/Core/Module.h" 20 #include "lldb/Core/ModuleSpec.h" 21 #include "lldb/Core/PluginManager.h" 22 #include "lldb/Core/RangeMap.h" 23 #include "lldb/Core/Section.h" 24 #include "lldb/Core/StreamFile.h" 25 #include "lldb/Core/StreamString.h" 26 #include "lldb/Core/Timer.h" 27 #include "lldb/Core/UUID.h" 28 #include "lldb/Host/Host.h" 29 #include "lldb/Host/FileSpec.h" 30 #include "lldb/Symbol/ClangNamespaceDecl.h" 31 #include "lldb/Symbol/DWARFCallFrameInfo.h" 32 #include "lldb/Symbol/ObjectFile.h" 33 #include "lldb/Target/Platform.h" 34 #include "lldb/Target/Process.h" 35 #include "lldb/Target/SectionLoadList.h" 36 #include "lldb/Target/Target.h" 37 #include "lldb/Target/Thread.h" 38 #include "lldb/Target/ThreadList.h" 39 #include "Plugins/Process/Utility/RegisterContextDarwin_arm.h" 40 #include "Plugins/Process/Utility/RegisterContextDarwin_arm64.h" 41 #include "Plugins/Process/Utility/RegisterContextDarwin_i386.h" 42 #include "Plugins/Process/Utility/RegisterContextDarwin_x86_64.h" 43 44 #include "lldb/Utility/SafeMachO.h" 45 46 #include "ObjectFileMachO.h" 47 48 #if defined (__APPLE__) && (defined (__arm__) || defined (__arm64__) || defined (__aarch64__)) 49 // GetLLDBSharedCacheUUID() needs to call dlsym() 50 #include <dlfcn.h> 51 #endif 52 53 #ifndef __APPLE__ 54 #include "Utility/UuidCompatibility.h" 55 #endif 56 57 using namespace lldb; 58 using namespace lldb_private; 59 using namespace llvm::MachO; 60 61 class RegisterContextDarwin_x86_64_Mach : public RegisterContextDarwin_x86_64 62 { 63 public: 64 RegisterContextDarwin_x86_64_Mach (lldb_private::Thread &thread, const DataExtractor &data) : 65 RegisterContextDarwin_x86_64 (thread, 0) 66 { 67 SetRegisterDataFrom_LC_THREAD (data); 68 } 69 70 virtual void 71 InvalidateAllRegisters () 72 { 73 // Do nothing... registers are always valid... 74 } 75 76 void 77 SetRegisterDataFrom_LC_THREAD (const DataExtractor &data) 78 { 79 lldb::offset_t offset = 0; 80 SetError (GPRRegSet, Read, -1); 81 SetError (FPURegSet, Read, -1); 82 SetError (EXCRegSet, Read, -1); 83 bool done = false; 84 85 while (!done) 86 { 87 int flavor = data.GetU32 (&offset); 88 if (flavor == 0) 89 done = true; 90 else 91 { 92 uint32_t i; 93 uint32_t count = data.GetU32 (&offset); 94 switch (flavor) 95 { 96 case GPRRegSet: 97 for (i=0; i<count; ++i) 98 (&gpr.rax)[i] = data.GetU64(&offset); 99 SetError (GPRRegSet, Read, 0); 100 done = true; 101 102 break; 103 case FPURegSet: 104 // TODO: fill in FPU regs.... 105 //SetError (FPURegSet, Read, -1); 106 done = true; 107 108 break; 109 case EXCRegSet: 110 exc.trapno = data.GetU32(&offset); 111 exc.err = data.GetU32(&offset); 112 exc.faultvaddr = data.GetU64(&offset); 113 SetError (EXCRegSet, Read, 0); 114 done = true; 115 break; 116 case 7: 117 case 8: 118 case 9: 119 // fancy flavors that encapsulate of the above 120 // flavors... 121 break; 122 123 default: 124 done = true; 125 break; 126 } 127 } 128 } 129 } 130 131 132 static size_t 133 WriteRegister (RegisterContext *reg_ctx, const char *name, const char *alt_name, size_t reg_byte_size, Stream &data) 134 { 135 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name); 136 if (reg_info == NULL) 137 reg_info = reg_ctx->GetRegisterInfoByName(alt_name); 138 if (reg_info) 139 { 140 lldb_private::RegisterValue reg_value; 141 if (reg_ctx->ReadRegister(reg_info, reg_value)) 142 { 143 if (reg_info->byte_size >= reg_byte_size) 144 data.Write(reg_value.GetBytes(), reg_byte_size); 145 else 146 { 147 data.Write(reg_value.GetBytes(), reg_info->byte_size); 148 for (size_t i=0, n = reg_byte_size - reg_info->byte_size; i<n; ++ i) 149 data.PutChar(0); 150 } 151 return reg_byte_size; 152 } 153 } 154 // Just write zeros if all else fails 155 for (size_t i=0; i<reg_byte_size; ++ i) 156 data.PutChar(0); 157 return reg_byte_size; 158 } 159 160 static bool 161 Create_LC_THREAD (Thread *thread, Stream &data) 162 { 163 RegisterContextSP reg_ctx_sp (thread->GetRegisterContext()); 164 if (reg_ctx_sp) 165 { 166 RegisterContext *reg_ctx = reg_ctx_sp.get(); 167 168 data.PutHex32 (GPRRegSet); // Flavor 169 data.PutHex32 (GPRWordCount); 170 WriteRegister (reg_ctx, "rax", NULL, 8, data); 171 WriteRegister (reg_ctx, "rbx", NULL, 8, data); 172 WriteRegister (reg_ctx, "rcx", NULL, 8, data); 173 WriteRegister (reg_ctx, "rdx", NULL, 8, data); 174 WriteRegister (reg_ctx, "rdi", NULL, 8, data); 175 WriteRegister (reg_ctx, "rsi", NULL, 8, data); 176 WriteRegister (reg_ctx, "rbp", NULL, 8, data); 177 WriteRegister (reg_ctx, "rsp", NULL, 8, data); 178 WriteRegister (reg_ctx, "r8", NULL, 8, data); 179 WriteRegister (reg_ctx, "r9", NULL, 8, data); 180 WriteRegister (reg_ctx, "r10", NULL, 8, data); 181 WriteRegister (reg_ctx, "r11", NULL, 8, data); 182 WriteRegister (reg_ctx, "r12", NULL, 8, data); 183 WriteRegister (reg_ctx, "r13", NULL, 8, data); 184 WriteRegister (reg_ctx, "r14", NULL, 8, data); 185 WriteRegister (reg_ctx, "r15", NULL, 8, data); 186 WriteRegister (reg_ctx, "rip", NULL, 8, data); 187 WriteRegister (reg_ctx, "rflags", NULL, 8, data); 188 WriteRegister (reg_ctx, "cs", NULL, 8, data); 189 WriteRegister (reg_ctx, "fs", NULL, 8, data); 190 WriteRegister (reg_ctx, "gs", NULL, 8, data); 191 192 // // Write out the FPU registers 193 // const size_t fpu_byte_size = sizeof(FPU); 194 // size_t bytes_written = 0; 195 // data.PutHex32 (FPURegSet); 196 // data.PutHex32 (fpu_byte_size/sizeof(uint64_t)); 197 // bytes_written += data.PutHex32(0); // uint32_t pad[0] 198 // bytes_written += data.PutHex32(0); // uint32_t pad[1] 199 // bytes_written += WriteRegister (reg_ctx, "fcw", "fctrl", 2, data); // uint16_t fcw; // "fctrl" 200 // bytes_written += WriteRegister (reg_ctx, "fsw" , "fstat", 2, data); // uint16_t fsw; // "fstat" 201 // bytes_written += WriteRegister (reg_ctx, "ftw" , "ftag", 1, data); // uint8_t ftw; // "ftag" 202 // bytes_written += data.PutHex8 (0); // uint8_t pad1; 203 // bytes_written += WriteRegister (reg_ctx, "fop" , NULL, 2, data); // uint16_t fop; // "fop" 204 // bytes_written += WriteRegister (reg_ctx, "fioff", "ip", 4, data); // uint32_t ip; // "fioff" 205 // bytes_written += WriteRegister (reg_ctx, "fiseg", NULL, 2, data); // uint16_t cs; // "fiseg" 206 // bytes_written += data.PutHex16 (0); // uint16_t pad2; 207 // bytes_written += WriteRegister (reg_ctx, "dp", "fooff" , 4, data); // uint32_t dp; // "fooff" 208 // bytes_written += WriteRegister (reg_ctx, "foseg", NULL, 2, data); // uint16_t ds; // "foseg" 209 // bytes_written += data.PutHex16 (0); // uint16_t pad3; 210 // bytes_written += WriteRegister (reg_ctx, "mxcsr", NULL, 4, data); // uint32_t mxcsr; 211 // bytes_written += WriteRegister (reg_ctx, "mxcsrmask", NULL, 4, data);// uint32_t mxcsrmask; 212 // bytes_written += WriteRegister (reg_ctx, "stmm0", NULL, sizeof(MMSReg), data); 213 // bytes_written += WriteRegister (reg_ctx, "stmm1", NULL, sizeof(MMSReg), data); 214 // bytes_written += WriteRegister (reg_ctx, "stmm2", NULL, sizeof(MMSReg), data); 215 // bytes_written += WriteRegister (reg_ctx, "stmm3", NULL, sizeof(MMSReg), data); 216 // bytes_written += WriteRegister (reg_ctx, "stmm4", NULL, sizeof(MMSReg), data); 217 // bytes_written += WriteRegister (reg_ctx, "stmm5", NULL, sizeof(MMSReg), data); 218 // bytes_written += WriteRegister (reg_ctx, "stmm6", NULL, sizeof(MMSReg), data); 219 // bytes_written += WriteRegister (reg_ctx, "stmm7", NULL, sizeof(MMSReg), data); 220 // bytes_written += WriteRegister (reg_ctx, "xmm0" , NULL, sizeof(XMMReg), data); 221 // bytes_written += WriteRegister (reg_ctx, "xmm1" , NULL, sizeof(XMMReg), data); 222 // bytes_written += WriteRegister (reg_ctx, "xmm2" , NULL, sizeof(XMMReg), data); 223 // bytes_written += WriteRegister (reg_ctx, "xmm3" , NULL, sizeof(XMMReg), data); 224 // bytes_written += WriteRegister (reg_ctx, "xmm4" , NULL, sizeof(XMMReg), data); 225 // bytes_written += WriteRegister (reg_ctx, "xmm5" , NULL, sizeof(XMMReg), data); 226 // bytes_written += WriteRegister (reg_ctx, "xmm6" , NULL, sizeof(XMMReg), data); 227 // bytes_written += WriteRegister (reg_ctx, "xmm7" , NULL, sizeof(XMMReg), data); 228 // bytes_written += WriteRegister (reg_ctx, "xmm8" , NULL, sizeof(XMMReg), data); 229 // bytes_written += WriteRegister (reg_ctx, "xmm9" , NULL, sizeof(XMMReg), data); 230 // bytes_written += WriteRegister (reg_ctx, "xmm10", NULL, sizeof(XMMReg), data); 231 // bytes_written += WriteRegister (reg_ctx, "xmm11", NULL, sizeof(XMMReg), data); 232 // bytes_written += WriteRegister (reg_ctx, "xmm12", NULL, sizeof(XMMReg), data); 233 // bytes_written += WriteRegister (reg_ctx, "xmm13", NULL, sizeof(XMMReg), data); 234 // bytes_written += WriteRegister (reg_ctx, "xmm14", NULL, sizeof(XMMReg), data); 235 // bytes_written += WriteRegister (reg_ctx, "xmm15", NULL, sizeof(XMMReg), data); 236 // 237 // // Fill rest with zeros 238 // for (size_t i=0, n = fpu_byte_size - bytes_written; i<n; ++ i) 239 // data.PutChar(0); 240 241 // Write out the EXC registers 242 data.PutHex32 (EXCRegSet); 243 data.PutHex32 (EXCWordCount); 244 WriteRegister (reg_ctx, "trapno", NULL, 4, data); 245 WriteRegister (reg_ctx, "err", NULL, 4, data); 246 WriteRegister (reg_ctx, "faultvaddr", NULL, 8, data); 247 return true; 248 } 249 return false; 250 } 251 252 protected: 253 virtual int 254 DoReadGPR (lldb::tid_t tid, int flavor, GPR &gpr) 255 { 256 return 0; 257 } 258 259 virtual int 260 DoReadFPU (lldb::tid_t tid, int flavor, FPU &fpu) 261 { 262 return 0; 263 } 264 265 virtual int 266 DoReadEXC (lldb::tid_t tid, int flavor, EXC &exc) 267 { 268 return 0; 269 } 270 271 virtual int 272 DoWriteGPR (lldb::tid_t tid, int flavor, const GPR &gpr) 273 { 274 return 0; 275 } 276 277 virtual int 278 DoWriteFPU (lldb::tid_t tid, int flavor, const FPU &fpu) 279 { 280 return 0; 281 } 282 283 virtual int 284 DoWriteEXC (lldb::tid_t tid, int flavor, const EXC &exc) 285 { 286 return 0; 287 } 288 }; 289 290 291 class RegisterContextDarwin_i386_Mach : public RegisterContextDarwin_i386 292 { 293 public: 294 RegisterContextDarwin_i386_Mach (lldb_private::Thread &thread, const DataExtractor &data) : 295 RegisterContextDarwin_i386 (thread, 0) 296 { 297 SetRegisterDataFrom_LC_THREAD (data); 298 } 299 300 virtual void 301 InvalidateAllRegisters () 302 { 303 // Do nothing... registers are always valid... 304 } 305 306 void 307 SetRegisterDataFrom_LC_THREAD (const DataExtractor &data) 308 { 309 lldb::offset_t offset = 0; 310 SetError (GPRRegSet, Read, -1); 311 SetError (FPURegSet, Read, -1); 312 SetError (EXCRegSet, Read, -1); 313 bool done = false; 314 315 while (!done) 316 { 317 int flavor = data.GetU32 (&offset); 318 if (flavor == 0) 319 done = true; 320 else 321 { 322 uint32_t i; 323 uint32_t count = data.GetU32 (&offset); 324 switch (flavor) 325 { 326 case GPRRegSet: 327 for (i=0; i<count; ++i) 328 (&gpr.eax)[i] = data.GetU32(&offset); 329 SetError (GPRRegSet, Read, 0); 330 done = true; 331 332 break; 333 case FPURegSet: 334 // TODO: fill in FPU regs.... 335 //SetError (FPURegSet, Read, -1); 336 done = true; 337 338 break; 339 case EXCRegSet: 340 exc.trapno = data.GetU32(&offset); 341 exc.err = data.GetU32(&offset); 342 exc.faultvaddr = data.GetU32(&offset); 343 SetError (EXCRegSet, Read, 0); 344 done = true; 345 break; 346 case 7: 347 case 8: 348 case 9: 349 // fancy flavors that encapsulate of the above 350 // flavors... 351 break; 352 353 default: 354 done = true; 355 break; 356 } 357 } 358 } 359 } 360 361 static size_t 362 WriteRegister (RegisterContext *reg_ctx, const char *name, const char *alt_name, size_t reg_byte_size, Stream &data) 363 { 364 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name); 365 if (reg_info == NULL) 366 reg_info = reg_ctx->GetRegisterInfoByName(alt_name); 367 if (reg_info) 368 { 369 lldb_private::RegisterValue reg_value; 370 if (reg_ctx->ReadRegister(reg_info, reg_value)) 371 { 372 if (reg_info->byte_size >= reg_byte_size) 373 data.Write(reg_value.GetBytes(), reg_byte_size); 374 else 375 { 376 data.Write(reg_value.GetBytes(), reg_info->byte_size); 377 for (size_t i=0, n = reg_byte_size - reg_info->byte_size; i<n; ++ i) 378 data.PutChar(0); 379 } 380 return reg_byte_size; 381 } 382 } 383 // Just write zeros if all else fails 384 for (size_t i=0; i<reg_byte_size; ++ i) 385 data.PutChar(0); 386 return reg_byte_size; 387 } 388 389 static bool 390 Create_LC_THREAD (Thread *thread, Stream &data) 391 { 392 RegisterContextSP reg_ctx_sp (thread->GetRegisterContext()); 393 if (reg_ctx_sp) 394 { 395 RegisterContext *reg_ctx = reg_ctx_sp.get(); 396 397 data.PutHex32 (GPRRegSet); // Flavor 398 data.PutHex32 (GPRWordCount); 399 WriteRegister (reg_ctx, "eax", NULL, 4, data); 400 WriteRegister (reg_ctx, "ebx", NULL, 4, data); 401 WriteRegister (reg_ctx, "ecx", NULL, 4, data); 402 WriteRegister (reg_ctx, "edx", NULL, 4, data); 403 WriteRegister (reg_ctx, "edi", NULL, 4, data); 404 WriteRegister (reg_ctx, "esi", NULL, 4, data); 405 WriteRegister (reg_ctx, "ebp", NULL, 4, data); 406 WriteRegister (reg_ctx, "esp", NULL, 4, data); 407 WriteRegister (reg_ctx, "ss", NULL, 4, data); 408 WriteRegister (reg_ctx, "eflags", NULL, 4, data); 409 WriteRegister (reg_ctx, "eip", NULL, 4, data); 410 WriteRegister (reg_ctx, "cs", NULL, 4, data); 411 WriteRegister (reg_ctx, "ds", NULL, 4, data); 412 WriteRegister (reg_ctx, "es", NULL, 4, data); 413 WriteRegister (reg_ctx, "fs", NULL, 4, data); 414 WriteRegister (reg_ctx, "gs", NULL, 4, data); 415 416 // Write out the EXC registers 417 data.PutHex32 (EXCRegSet); 418 data.PutHex32 (EXCWordCount); 419 WriteRegister (reg_ctx, "trapno", NULL, 4, data); 420 WriteRegister (reg_ctx, "err", NULL, 4, data); 421 WriteRegister (reg_ctx, "faultvaddr", NULL, 4, data); 422 return true; 423 } 424 return false; 425 } 426 427 protected: 428 virtual int 429 DoReadGPR (lldb::tid_t tid, int flavor, GPR &gpr) 430 { 431 return 0; 432 } 433 434 virtual int 435 DoReadFPU (lldb::tid_t tid, int flavor, FPU &fpu) 436 { 437 return 0; 438 } 439 440 virtual int 441 DoReadEXC (lldb::tid_t tid, int flavor, EXC &exc) 442 { 443 return 0; 444 } 445 446 virtual int 447 DoWriteGPR (lldb::tid_t tid, int flavor, const GPR &gpr) 448 { 449 return 0; 450 } 451 452 virtual int 453 DoWriteFPU (lldb::tid_t tid, int flavor, const FPU &fpu) 454 { 455 return 0; 456 } 457 458 virtual int 459 DoWriteEXC (lldb::tid_t tid, int flavor, const EXC &exc) 460 { 461 return 0; 462 } 463 }; 464 465 class RegisterContextDarwin_arm_Mach : public RegisterContextDarwin_arm 466 { 467 public: 468 RegisterContextDarwin_arm_Mach (lldb_private::Thread &thread, const DataExtractor &data) : 469 RegisterContextDarwin_arm (thread, 0) 470 { 471 SetRegisterDataFrom_LC_THREAD (data); 472 } 473 474 virtual void 475 InvalidateAllRegisters () 476 { 477 // Do nothing... registers are always valid... 478 } 479 480 void 481 SetRegisterDataFrom_LC_THREAD (const DataExtractor &data) 482 { 483 lldb::offset_t offset = 0; 484 SetError (GPRRegSet, Read, -1); 485 SetError (FPURegSet, Read, -1); 486 SetError (EXCRegSet, Read, -1); 487 bool done = false; 488 489 while (!done) 490 { 491 int flavor = data.GetU32 (&offset); 492 uint32_t count = data.GetU32 (&offset); 493 lldb::offset_t next_thread_state = offset + (count * 4); 494 switch (flavor) 495 { 496 case GPRRegSet: 497 for (uint32_t i=0; i<count; ++i) 498 { 499 gpr.r[i] = data.GetU32(&offset); 500 } 501 502 // Note that gpr.cpsr is also copied by the above loop; this loop technically extends 503 // one element past the end of the gpr.r[] array. 504 505 SetError (GPRRegSet, Read, 0); 506 offset = next_thread_state; 507 break; 508 509 case FPURegSet: 510 { 511 uint8_t *fpu_reg_buf = (uint8_t*) &fpu.floats.s[0]; 512 const int fpu_reg_buf_size = sizeof (fpu.floats); 513 if (data.ExtractBytes (offset, fpu_reg_buf_size, eByteOrderLittle, fpu_reg_buf) == fpu_reg_buf_size) 514 { 515 offset += fpu_reg_buf_size; 516 fpu.fpscr = data.GetU32(&offset); 517 SetError (FPURegSet, Read, 0); 518 } 519 else 520 { 521 done = true; 522 } 523 } 524 offset = next_thread_state; 525 break; 526 527 case EXCRegSet: 528 if (count == 3) 529 { 530 exc.exception = data.GetU32(&offset); 531 exc.fsr = data.GetU32(&offset); 532 exc.far = data.GetU32(&offset); 533 SetError (EXCRegSet, Read, 0); 534 } 535 done = true; 536 offset = next_thread_state; 537 break; 538 539 // Unknown register set flavor, stop trying to parse. 540 default: 541 done = true; 542 } 543 } 544 } 545 546 static size_t 547 WriteRegister (RegisterContext *reg_ctx, const char *name, const char *alt_name, size_t reg_byte_size, Stream &data) 548 { 549 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name); 550 if (reg_info == NULL) 551 reg_info = reg_ctx->GetRegisterInfoByName(alt_name); 552 if (reg_info) 553 { 554 lldb_private::RegisterValue reg_value; 555 if (reg_ctx->ReadRegister(reg_info, reg_value)) 556 { 557 if (reg_info->byte_size >= reg_byte_size) 558 data.Write(reg_value.GetBytes(), reg_byte_size); 559 else 560 { 561 data.Write(reg_value.GetBytes(), reg_info->byte_size); 562 for (size_t i=0, n = reg_byte_size - reg_info->byte_size; i<n; ++ i) 563 data.PutChar(0); 564 } 565 return reg_byte_size; 566 } 567 } 568 // Just write zeros if all else fails 569 for (size_t i=0; i<reg_byte_size; ++ i) 570 data.PutChar(0); 571 return reg_byte_size; 572 } 573 574 static bool 575 Create_LC_THREAD (Thread *thread, Stream &data) 576 { 577 RegisterContextSP reg_ctx_sp (thread->GetRegisterContext()); 578 if (reg_ctx_sp) 579 { 580 RegisterContext *reg_ctx = reg_ctx_sp.get(); 581 582 data.PutHex32 (GPRRegSet); // Flavor 583 data.PutHex32 (GPRWordCount); 584 WriteRegister (reg_ctx, "r0", NULL, 4, data); 585 WriteRegister (reg_ctx, "r1", NULL, 4, data); 586 WriteRegister (reg_ctx, "r2", NULL, 4, data); 587 WriteRegister (reg_ctx, "r3", NULL, 4, data); 588 WriteRegister (reg_ctx, "r4", NULL, 4, data); 589 WriteRegister (reg_ctx, "r5", NULL, 4, data); 590 WriteRegister (reg_ctx, "r6", NULL, 4, data); 591 WriteRegister (reg_ctx, "r7", NULL, 4, data); 592 WriteRegister (reg_ctx, "r8", NULL, 4, data); 593 WriteRegister (reg_ctx, "r9", NULL, 4, data); 594 WriteRegister (reg_ctx, "r10", NULL, 4, data); 595 WriteRegister (reg_ctx, "r11", NULL, 4, data); 596 WriteRegister (reg_ctx, "r12", NULL, 4, data); 597 WriteRegister (reg_ctx, "sp", NULL, 4, data); 598 WriteRegister (reg_ctx, "lr", NULL, 4, data); 599 WriteRegister (reg_ctx, "pc", NULL, 4, data); 600 WriteRegister (reg_ctx, "cpsr", NULL, 4, data); 601 602 // Write out the EXC registers 603 // data.PutHex32 (EXCRegSet); 604 // data.PutHex32 (EXCWordCount); 605 // WriteRegister (reg_ctx, "exception", NULL, 4, data); 606 // WriteRegister (reg_ctx, "fsr", NULL, 4, data); 607 // WriteRegister (reg_ctx, "far", NULL, 4, data); 608 return true; 609 } 610 return false; 611 } 612 613 protected: 614 virtual int 615 DoReadGPR (lldb::tid_t tid, int flavor, GPR &gpr) 616 { 617 return -1; 618 } 619 620 virtual int 621 DoReadFPU (lldb::tid_t tid, int flavor, FPU &fpu) 622 { 623 return -1; 624 } 625 626 virtual int 627 DoReadEXC (lldb::tid_t tid, int flavor, EXC &exc) 628 { 629 return -1; 630 } 631 632 virtual int 633 DoReadDBG (lldb::tid_t tid, int flavor, DBG &dbg) 634 { 635 return -1; 636 } 637 638 virtual int 639 DoWriteGPR (lldb::tid_t tid, int flavor, const GPR &gpr) 640 { 641 return 0; 642 } 643 644 virtual int 645 DoWriteFPU (lldb::tid_t tid, int flavor, const FPU &fpu) 646 { 647 return 0; 648 } 649 650 virtual int 651 DoWriteEXC (lldb::tid_t tid, int flavor, const EXC &exc) 652 { 653 return 0; 654 } 655 656 virtual int 657 DoWriteDBG (lldb::tid_t tid, int flavor, const DBG &dbg) 658 { 659 return -1; 660 } 661 }; 662 663 class RegisterContextDarwin_arm64_Mach : public RegisterContextDarwin_arm64 664 { 665 public: 666 RegisterContextDarwin_arm64_Mach (lldb_private::Thread &thread, const DataExtractor &data) : 667 RegisterContextDarwin_arm64 (thread, 0) 668 { 669 SetRegisterDataFrom_LC_THREAD (data); 670 } 671 672 virtual void 673 InvalidateAllRegisters () 674 { 675 // Do nothing... registers are always valid... 676 } 677 678 void 679 SetRegisterDataFrom_LC_THREAD (const DataExtractor &data) 680 { 681 lldb::offset_t offset = 0; 682 SetError (GPRRegSet, Read, -1); 683 SetError (FPURegSet, Read, -1); 684 SetError (EXCRegSet, Read, -1); 685 bool done = false; 686 while (!done) 687 { 688 int flavor = data.GetU32 (&offset); 689 uint32_t count = data.GetU32 (&offset); 690 lldb::offset_t next_thread_state = offset + (count * 4); 691 switch (flavor) 692 { 693 case GPRRegSet: 694 // x0-x29 + fp + lr + sp + pc (== 33 64-bit registers) plus cpsr (1 32-bit register) 695 if (count >= (33 * 2) + 1) 696 { 697 for (uint32_t i=0; i<33; ++i) 698 gpr.x[i] = data.GetU64(&offset); 699 gpr.cpsr = data.GetU32(&offset); 700 SetError (GPRRegSet, Read, 0); 701 } 702 offset = next_thread_state; 703 break; 704 case FPURegSet: 705 { 706 uint8_t *fpu_reg_buf = (uint8_t*) &fpu.v[0]; 707 const int fpu_reg_buf_size = sizeof (fpu); 708 if (fpu_reg_buf_size == count 709 && data.ExtractBytes (offset, fpu_reg_buf_size, eByteOrderLittle, fpu_reg_buf) == fpu_reg_buf_size) 710 { 711 SetError (FPURegSet, Read, 0); 712 } 713 else 714 { 715 done = true; 716 } 717 } 718 offset = next_thread_state; 719 break; 720 case EXCRegSet: 721 if (count == 4) 722 { 723 exc.far = data.GetU64(&offset); 724 exc.esr = data.GetU32(&offset); 725 exc.exception = data.GetU32(&offset); 726 SetError (EXCRegSet, Read, 0); 727 } 728 offset = next_thread_state; 729 break; 730 default: 731 done = true; 732 break; 733 } 734 } 735 } 736 737 static size_t 738 WriteRegister (RegisterContext *reg_ctx, const char *name, const char *alt_name, size_t reg_byte_size, Stream &data) 739 { 740 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name); 741 if (reg_info == NULL) 742 reg_info = reg_ctx->GetRegisterInfoByName(alt_name); 743 if (reg_info) 744 { 745 lldb_private::RegisterValue reg_value; 746 if (reg_ctx->ReadRegister(reg_info, reg_value)) 747 { 748 if (reg_info->byte_size >= reg_byte_size) 749 data.Write(reg_value.GetBytes(), reg_byte_size); 750 else 751 { 752 data.Write(reg_value.GetBytes(), reg_info->byte_size); 753 for (size_t i=0, n = reg_byte_size - reg_info->byte_size; i<n; ++ i) 754 data.PutChar(0); 755 } 756 return reg_byte_size; 757 } 758 } 759 // Just write zeros if all else fails 760 for (size_t i=0; i<reg_byte_size; ++ i) 761 data.PutChar(0); 762 return reg_byte_size; 763 } 764 765 static bool 766 Create_LC_THREAD (Thread *thread, Stream &data) 767 { 768 RegisterContextSP reg_ctx_sp (thread->GetRegisterContext()); 769 if (reg_ctx_sp) 770 { 771 RegisterContext *reg_ctx = reg_ctx_sp.get(); 772 773 data.PutHex32 (GPRRegSet); // Flavor 774 data.PutHex32 (GPRWordCount); 775 WriteRegister (reg_ctx, "x0", NULL, 8, data); 776 WriteRegister (reg_ctx, "x1", NULL, 8, data); 777 WriteRegister (reg_ctx, "x2", NULL, 8, data); 778 WriteRegister (reg_ctx, "x3", NULL, 8, data); 779 WriteRegister (reg_ctx, "x4", NULL, 8, data); 780 WriteRegister (reg_ctx, "x5", NULL, 8, data); 781 WriteRegister (reg_ctx, "x6", NULL, 8, data); 782 WriteRegister (reg_ctx, "x7", NULL, 8, data); 783 WriteRegister (reg_ctx, "x8", NULL, 8, data); 784 WriteRegister (reg_ctx, "x9", NULL, 8, data); 785 WriteRegister (reg_ctx, "x10", NULL, 8, data); 786 WriteRegister (reg_ctx, "x11", NULL, 8, data); 787 WriteRegister (reg_ctx, "x12", NULL, 8, data); 788 WriteRegister (reg_ctx, "x13", NULL, 8, data); 789 WriteRegister (reg_ctx, "x14", NULL, 8, data); 790 WriteRegister (reg_ctx, "x15", NULL, 8, data); 791 WriteRegister (reg_ctx, "x16", NULL, 8, data); 792 WriteRegister (reg_ctx, "x17", NULL, 8, data); 793 WriteRegister (reg_ctx, "x18", NULL, 8, data); 794 WriteRegister (reg_ctx, "x19", NULL, 8, data); 795 WriteRegister (reg_ctx, "x20", NULL, 8, data); 796 WriteRegister (reg_ctx, "x21", NULL, 8, data); 797 WriteRegister (reg_ctx, "x22", NULL, 8, data); 798 WriteRegister (reg_ctx, "x23", NULL, 8, data); 799 WriteRegister (reg_ctx, "x24", NULL, 8, data); 800 WriteRegister (reg_ctx, "x25", NULL, 8, data); 801 WriteRegister (reg_ctx, "x26", NULL, 8, data); 802 WriteRegister (reg_ctx, "x27", NULL, 8, data); 803 WriteRegister (reg_ctx, "x28", NULL, 8, data); 804 WriteRegister (reg_ctx, "fp", NULL, 8, data); 805 WriteRegister (reg_ctx, "lr", NULL, 8, data); 806 WriteRegister (reg_ctx, "sp", NULL, 8, data); 807 WriteRegister (reg_ctx, "pc", NULL, 8, data); 808 WriteRegister (reg_ctx, "cpsr", NULL, 4, data); 809 810 // Write out the EXC registers 811 // data.PutHex32 (EXCRegSet); 812 // data.PutHex32 (EXCWordCount); 813 // WriteRegister (reg_ctx, "far", NULL, 8, data); 814 // WriteRegister (reg_ctx, "esr", NULL, 4, data); 815 // WriteRegister (reg_ctx, "exception", NULL, 4, data); 816 return true; 817 } 818 return false; 819 } 820 821 protected: 822 virtual int 823 DoReadGPR (lldb::tid_t tid, int flavor, GPR &gpr) 824 { 825 return -1; 826 } 827 828 virtual int 829 DoReadFPU (lldb::tid_t tid, int flavor, FPU &fpu) 830 { 831 return -1; 832 } 833 834 virtual int 835 DoReadEXC (lldb::tid_t tid, int flavor, EXC &exc) 836 { 837 return -1; 838 } 839 840 virtual int 841 DoReadDBG (lldb::tid_t tid, int flavor, DBG &dbg) 842 { 843 return -1; 844 } 845 846 virtual int 847 DoWriteGPR (lldb::tid_t tid, int flavor, const GPR &gpr) 848 { 849 return 0; 850 } 851 852 virtual int 853 DoWriteFPU (lldb::tid_t tid, int flavor, const FPU &fpu) 854 { 855 return 0; 856 } 857 858 virtual int 859 DoWriteEXC (lldb::tid_t tid, int flavor, const EXC &exc) 860 { 861 return 0; 862 } 863 864 virtual int 865 DoWriteDBG (lldb::tid_t tid, int flavor, const DBG &dbg) 866 { 867 return -1; 868 } 869 }; 870 871 static uint32_t 872 MachHeaderSizeFromMagic(uint32_t magic) 873 { 874 switch (magic) 875 { 876 case MH_MAGIC: 877 case MH_CIGAM: 878 return sizeof(struct mach_header); 879 880 case MH_MAGIC_64: 881 case MH_CIGAM_64: 882 return sizeof(struct mach_header_64); 883 break; 884 885 default: 886 break; 887 } 888 return 0; 889 } 890 891 #define MACHO_NLIST_ARM_SYMBOL_IS_THUMB 0x0008 892 893 void 894 ObjectFileMachO::Initialize() 895 { 896 PluginManager::RegisterPlugin (GetPluginNameStatic(), 897 GetPluginDescriptionStatic(), 898 CreateInstance, 899 CreateMemoryInstance, 900 GetModuleSpecifications, 901 SaveCore); 902 } 903 904 void 905 ObjectFileMachO::Terminate() 906 { 907 PluginManager::UnregisterPlugin (CreateInstance); 908 } 909 910 911 lldb_private::ConstString 912 ObjectFileMachO::GetPluginNameStatic() 913 { 914 static ConstString g_name("mach-o"); 915 return g_name; 916 } 917 918 const char * 919 ObjectFileMachO::GetPluginDescriptionStatic() 920 { 921 return "Mach-o object file reader (32 and 64 bit)"; 922 } 923 924 ObjectFile * 925 ObjectFileMachO::CreateInstance (const lldb::ModuleSP &module_sp, 926 DataBufferSP& data_sp, 927 lldb::offset_t data_offset, 928 const FileSpec* file, 929 lldb::offset_t file_offset, 930 lldb::offset_t length) 931 { 932 if (!data_sp) 933 { 934 data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length); 935 data_offset = 0; 936 } 937 938 if (ObjectFileMachO::MagicBytesMatch(data_sp, data_offset, length)) 939 { 940 // Update the data to contain the entire file if it doesn't already 941 if (data_sp->GetByteSize() < length) 942 { 943 data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length); 944 data_offset = 0; 945 } 946 std::unique_ptr<ObjectFile> objfile_ap(new ObjectFileMachO (module_sp, data_sp, data_offset, file, file_offset, length)); 947 if (objfile_ap.get() && objfile_ap->ParseHeader()) 948 return objfile_ap.release(); 949 } 950 return NULL; 951 } 952 953 ObjectFile * 954 ObjectFileMachO::CreateMemoryInstance (const lldb::ModuleSP &module_sp, 955 DataBufferSP& data_sp, 956 const ProcessSP &process_sp, 957 lldb::addr_t header_addr) 958 { 959 if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) 960 { 961 std::unique_ptr<ObjectFile> objfile_ap(new ObjectFileMachO (module_sp, data_sp, process_sp, header_addr)); 962 if (objfile_ap.get() && objfile_ap->ParseHeader()) 963 return objfile_ap.release(); 964 } 965 return NULL; 966 } 967 968 size_t 969 ObjectFileMachO::GetModuleSpecifications (const lldb_private::FileSpec& file, 970 lldb::DataBufferSP& data_sp, 971 lldb::offset_t data_offset, 972 lldb::offset_t file_offset, 973 lldb::offset_t length, 974 lldb_private::ModuleSpecList &specs) 975 { 976 const size_t initial_count = specs.GetSize(); 977 978 if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) 979 { 980 DataExtractor data; 981 data.SetData(data_sp); 982 llvm::MachO::mach_header header; 983 if (ParseHeader (data, &data_offset, header)) 984 { 985 size_t header_and_load_cmds = header.sizeofcmds + MachHeaderSizeFromMagic(header.magic); 986 if (header_and_load_cmds >= data_sp->GetByteSize()) 987 { 988 data_sp = file.ReadFileContents(file_offset, header_and_load_cmds); 989 data.SetData(data_sp); 990 data_offset = MachHeaderSizeFromMagic(header.magic); 991 } 992 if (data_sp) 993 { 994 ModuleSpec spec; 995 spec.GetFileSpec() = file; 996 spec.SetObjectOffset(file_offset); 997 998 if (GetArchitecture (header, data, data_offset, spec.GetArchitecture())) 999 { 1000 if (spec.GetArchitecture().IsValid()) 1001 { 1002 GetUUID (header, data, data_offset, spec.GetUUID()); 1003 specs.Append(spec); 1004 } 1005 } 1006 } 1007 } 1008 } 1009 return specs.GetSize() - initial_count; 1010 } 1011 1012 1013 1014 const ConstString & 1015 ObjectFileMachO::GetSegmentNameTEXT() 1016 { 1017 static ConstString g_segment_name_TEXT ("__TEXT"); 1018 return g_segment_name_TEXT; 1019 } 1020 1021 const ConstString & 1022 ObjectFileMachO::GetSegmentNameDATA() 1023 { 1024 static ConstString g_segment_name_DATA ("__DATA"); 1025 return g_segment_name_DATA; 1026 } 1027 1028 const ConstString & 1029 ObjectFileMachO::GetSegmentNameOBJC() 1030 { 1031 static ConstString g_segment_name_OBJC ("__OBJC"); 1032 return g_segment_name_OBJC; 1033 } 1034 1035 const ConstString & 1036 ObjectFileMachO::GetSegmentNameLINKEDIT() 1037 { 1038 static ConstString g_section_name_LINKEDIT ("__LINKEDIT"); 1039 return g_section_name_LINKEDIT; 1040 } 1041 1042 const ConstString & 1043 ObjectFileMachO::GetSectionNameEHFrame() 1044 { 1045 static ConstString g_section_name_eh_frame ("__eh_frame"); 1046 return g_section_name_eh_frame; 1047 } 1048 1049 bool 1050 ObjectFileMachO::MagicBytesMatch (DataBufferSP& data_sp, 1051 lldb::addr_t data_offset, 1052 lldb::addr_t data_length) 1053 { 1054 DataExtractor data; 1055 data.SetData (data_sp, data_offset, data_length); 1056 lldb::offset_t offset = 0; 1057 uint32_t magic = data.GetU32(&offset); 1058 return MachHeaderSizeFromMagic(magic) != 0; 1059 } 1060 1061 1062 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp, 1063 DataBufferSP& data_sp, 1064 lldb::offset_t data_offset, 1065 const FileSpec* file, 1066 lldb::offset_t file_offset, 1067 lldb::offset_t length) : 1068 ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset), 1069 m_mach_segments(), 1070 m_mach_sections(), 1071 m_entry_point_address(), 1072 m_thread_context_offsets(), 1073 m_thread_context_offsets_valid(false) 1074 { 1075 ::memset (&m_header, 0, sizeof(m_header)); 1076 ::memset (&m_dysymtab, 0, sizeof(m_dysymtab)); 1077 } 1078 1079 ObjectFileMachO::ObjectFileMachO (const lldb::ModuleSP &module_sp, 1080 lldb::DataBufferSP& header_data_sp, 1081 const lldb::ProcessSP &process_sp, 1082 lldb::addr_t header_addr) : 1083 ObjectFile(module_sp, process_sp, header_addr, header_data_sp), 1084 m_mach_segments(), 1085 m_mach_sections(), 1086 m_entry_point_address(), 1087 m_thread_context_offsets(), 1088 m_thread_context_offsets_valid(false) 1089 { 1090 ::memset (&m_header, 0, sizeof(m_header)); 1091 ::memset (&m_dysymtab, 0, sizeof(m_dysymtab)); 1092 } 1093 1094 ObjectFileMachO::~ObjectFileMachO() 1095 { 1096 } 1097 1098 bool 1099 ObjectFileMachO::ParseHeader (DataExtractor &data, 1100 lldb::offset_t *data_offset_ptr, 1101 llvm::MachO::mach_header &header) 1102 { 1103 data.SetByteOrder (lldb::endian::InlHostByteOrder()); 1104 // Leave magic in the original byte order 1105 header.magic = data.GetU32(data_offset_ptr); 1106 bool can_parse = false; 1107 bool is_64_bit = false; 1108 switch (header.magic) 1109 { 1110 case MH_MAGIC: 1111 data.SetByteOrder (lldb::endian::InlHostByteOrder()); 1112 data.SetAddressByteSize(4); 1113 can_parse = true; 1114 break; 1115 1116 case MH_MAGIC_64: 1117 data.SetByteOrder (lldb::endian::InlHostByteOrder()); 1118 data.SetAddressByteSize(8); 1119 can_parse = true; 1120 is_64_bit = true; 1121 break; 1122 1123 case MH_CIGAM: 1124 data.SetByteOrder(lldb::endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); 1125 data.SetAddressByteSize(4); 1126 can_parse = true; 1127 break; 1128 1129 case MH_CIGAM_64: 1130 data.SetByteOrder(lldb::endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); 1131 data.SetAddressByteSize(8); 1132 is_64_bit = true; 1133 can_parse = true; 1134 break; 1135 1136 default: 1137 break; 1138 } 1139 1140 if (can_parse) 1141 { 1142 data.GetU32(data_offset_ptr, &header.cputype, 6); 1143 if (is_64_bit) 1144 *data_offset_ptr += 4; 1145 return true; 1146 } 1147 else 1148 { 1149 memset(&header, 0, sizeof(header)); 1150 } 1151 return false; 1152 } 1153 1154 bool 1155 ObjectFileMachO::ParseHeader () 1156 { 1157 ModuleSP module_sp(GetModule()); 1158 if (module_sp) 1159 { 1160 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 1161 bool can_parse = false; 1162 lldb::offset_t offset = 0; 1163 m_data.SetByteOrder (lldb::endian::InlHostByteOrder()); 1164 // Leave magic in the original byte order 1165 m_header.magic = m_data.GetU32(&offset); 1166 switch (m_header.magic) 1167 { 1168 case MH_MAGIC: 1169 m_data.SetByteOrder (lldb::endian::InlHostByteOrder()); 1170 m_data.SetAddressByteSize(4); 1171 can_parse = true; 1172 break; 1173 1174 case MH_MAGIC_64: 1175 m_data.SetByteOrder (lldb::endian::InlHostByteOrder()); 1176 m_data.SetAddressByteSize(8); 1177 can_parse = true; 1178 break; 1179 1180 case MH_CIGAM: 1181 m_data.SetByteOrder(lldb::endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); 1182 m_data.SetAddressByteSize(4); 1183 can_parse = true; 1184 break; 1185 1186 case MH_CIGAM_64: 1187 m_data.SetByteOrder(lldb::endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); 1188 m_data.SetAddressByteSize(8); 1189 can_parse = true; 1190 break; 1191 1192 default: 1193 break; 1194 } 1195 1196 if (can_parse) 1197 { 1198 m_data.GetU32(&offset, &m_header.cputype, 6); 1199 1200 1201 ArchSpec mach_arch; 1202 1203 if (GetArchitecture (mach_arch)) 1204 { 1205 // Check if the module has a required architecture 1206 const ArchSpec &module_arch = module_sp->GetArchitecture(); 1207 if (module_arch.IsValid() && !module_arch.IsCompatibleMatch(mach_arch)) 1208 return false; 1209 1210 if (SetModulesArchitecture (mach_arch)) 1211 { 1212 const size_t header_and_lc_size = m_header.sizeofcmds + MachHeaderSizeFromMagic(m_header.magic); 1213 if (m_data.GetByteSize() < header_and_lc_size) 1214 { 1215 DataBufferSP data_sp; 1216 ProcessSP process_sp (m_process_wp.lock()); 1217 if (process_sp) 1218 { 1219 data_sp = ReadMemory (process_sp, m_memory_addr, header_and_lc_size); 1220 } 1221 else 1222 { 1223 // Read in all only the load command data from the file on disk 1224 data_sp = m_file.ReadFileContents(m_file_offset, header_and_lc_size); 1225 if (data_sp->GetByteSize() != header_and_lc_size) 1226 return false; 1227 } 1228 if (data_sp) 1229 m_data.SetData (data_sp); 1230 } 1231 } 1232 return true; 1233 } 1234 } 1235 else 1236 { 1237 memset(&m_header, 0, sizeof(struct mach_header)); 1238 } 1239 } 1240 return false; 1241 } 1242 1243 1244 ByteOrder 1245 ObjectFileMachO::GetByteOrder () const 1246 { 1247 return m_data.GetByteOrder (); 1248 } 1249 1250 bool 1251 ObjectFileMachO::IsExecutable() const 1252 { 1253 return m_header.filetype == MH_EXECUTE; 1254 } 1255 1256 uint32_t 1257 ObjectFileMachO::GetAddressByteSize () const 1258 { 1259 return m_data.GetAddressByteSize (); 1260 } 1261 1262 AddressClass 1263 ObjectFileMachO::GetAddressClass (lldb::addr_t file_addr) 1264 { 1265 Symtab *symtab = GetSymtab(); 1266 if (symtab) 1267 { 1268 Symbol *symbol = symtab->FindSymbolContainingFileAddress(file_addr); 1269 if (symbol) 1270 { 1271 if (symbol->ValueIsAddress()) 1272 { 1273 SectionSP section_sp (symbol->GetAddress().GetSection()); 1274 if (section_sp) 1275 { 1276 const lldb::SectionType section_type = section_sp->GetType(); 1277 switch (section_type) 1278 { 1279 case eSectionTypeInvalid: 1280 return eAddressClassUnknown; 1281 1282 case eSectionTypeCode: 1283 if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) 1284 { 1285 // For ARM we have a bit in the n_desc field of the symbol 1286 // that tells us ARM/Thumb which is bit 0x0008. 1287 if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB) 1288 return eAddressClassCodeAlternateISA; 1289 } 1290 return eAddressClassCode; 1291 1292 case eSectionTypeContainer: 1293 return eAddressClassUnknown; 1294 1295 case eSectionTypeData: 1296 case eSectionTypeDataCString: 1297 case eSectionTypeDataCStringPointers: 1298 case eSectionTypeDataSymbolAddress: 1299 case eSectionTypeData4: 1300 case eSectionTypeData8: 1301 case eSectionTypeData16: 1302 case eSectionTypeDataPointers: 1303 case eSectionTypeZeroFill: 1304 case eSectionTypeDataObjCMessageRefs: 1305 case eSectionTypeDataObjCCFStrings: 1306 return eAddressClassData; 1307 1308 case eSectionTypeDebug: 1309 case eSectionTypeDWARFDebugAbbrev: 1310 case eSectionTypeDWARFDebugAranges: 1311 case eSectionTypeDWARFDebugFrame: 1312 case eSectionTypeDWARFDebugInfo: 1313 case eSectionTypeDWARFDebugLine: 1314 case eSectionTypeDWARFDebugLoc: 1315 case eSectionTypeDWARFDebugMacInfo: 1316 case eSectionTypeDWARFDebugPubNames: 1317 case eSectionTypeDWARFDebugPubTypes: 1318 case eSectionTypeDWARFDebugRanges: 1319 case eSectionTypeDWARFDebugStr: 1320 case eSectionTypeDWARFAppleNames: 1321 case eSectionTypeDWARFAppleTypes: 1322 case eSectionTypeDWARFAppleNamespaces: 1323 case eSectionTypeDWARFAppleObjC: 1324 return eAddressClassDebug; 1325 1326 case eSectionTypeEHFrame: 1327 case eSectionTypeCompactUnwind: 1328 return eAddressClassRuntime; 1329 1330 case eSectionTypeELFSymbolTable: 1331 case eSectionTypeELFDynamicSymbols: 1332 case eSectionTypeELFRelocationEntries: 1333 case eSectionTypeELFDynamicLinkInfo: 1334 case eSectionTypeOther: 1335 return eAddressClassUnknown; 1336 } 1337 } 1338 } 1339 1340 const SymbolType symbol_type = symbol->GetType(); 1341 switch (symbol_type) 1342 { 1343 case eSymbolTypeAny: return eAddressClassUnknown; 1344 case eSymbolTypeAbsolute: return eAddressClassUnknown; 1345 1346 case eSymbolTypeCode: 1347 case eSymbolTypeTrampoline: 1348 case eSymbolTypeResolver: 1349 if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) 1350 { 1351 // For ARM we have a bit in the n_desc field of the symbol 1352 // that tells us ARM/Thumb which is bit 0x0008. 1353 if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB) 1354 return eAddressClassCodeAlternateISA; 1355 } 1356 return eAddressClassCode; 1357 1358 case eSymbolTypeData: return eAddressClassData; 1359 case eSymbolTypeRuntime: return eAddressClassRuntime; 1360 case eSymbolTypeException: return eAddressClassRuntime; 1361 case eSymbolTypeSourceFile: return eAddressClassDebug; 1362 case eSymbolTypeHeaderFile: return eAddressClassDebug; 1363 case eSymbolTypeObjectFile: return eAddressClassDebug; 1364 case eSymbolTypeCommonBlock: return eAddressClassDebug; 1365 case eSymbolTypeBlock: return eAddressClassDebug; 1366 case eSymbolTypeLocal: return eAddressClassData; 1367 case eSymbolTypeParam: return eAddressClassData; 1368 case eSymbolTypeVariable: return eAddressClassData; 1369 case eSymbolTypeVariableType: return eAddressClassDebug; 1370 case eSymbolTypeLineEntry: return eAddressClassDebug; 1371 case eSymbolTypeLineHeader: return eAddressClassDebug; 1372 case eSymbolTypeScopeBegin: return eAddressClassDebug; 1373 case eSymbolTypeScopeEnd: return eAddressClassDebug; 1374 case eSymbolTypeAdditional: return eAddressClassUnknown; 1375 case eSymbolTypeCompiler: return eAddressClassDebug; 1376 case eSymbolTypeInstrumentation:return eAddressClassDebug; 1377 case eSymbolTypeUndefined: return eAddressClassUnknown; 1378 case eSymbolTypeObjCClass: return eAddressClassRuntime; 1379 case eSymbolTypeObjCMetaClass: return eAddressClassRuntime; 1380 case eSymbolTypeObjCIVar: return eAddressClassRuntime; 1381 case eSymbolTypeReExported: return eAddressClassRuntime; 1382 } 1383 } 1384 } 1385 return eAddressClassUnknown; 1386 } 1387 1388 Symtab * 1389 ObjectFileMachO::GetSymtab() 1390 { 1391 ModuleSP module_sp(GetModule()); 1392 if (module_sp) 1393 { 1394 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 1395 if (m_symtab_ap.get() == NULL) 1396 { 1397 m_symtab_ap.reset(new Symtab(this)); 1398 Mutex::Locker symtab_locker (m_symtab_ap->GetMutex()); 1399 ParseSymtab (); 1400 m_symtab_ap->Finalize (); 1401 } 1402 } 1403 return m_symtab_ap.get(); 1404 } 1405 1406 bool 1407 ObjectFileMachO::IsStripped () 1408 { 1409 if (m_dysymtab.cmd == 0) 1410 { 1411 ModuleSP module_sp(GetModule()); 1412 if (module_sp) 1413 { 1414 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 1415 for (uint32_t i=0; i<m_header.ncmds; ++i) 1416 { 1417 const lldb::offset_t load_cmd_offset = offset; 1418 1419 load_command lc; 1420 if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL) 1421 break; 1422 if (lc.cmd == LC_DYSYMTAB) 1423 { 1424 m_dysymtab.cmd = lc.cmd; 1425 m_dysymtab.cmdsize = lc.cmdsize; 1426 if (m_data.GetU32 (&offset, &m_dysymtab.ilocalsym, (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2) == NULL) 1427 { 1428 // Clear m_dysymtab if we were unable to read all items from the load command 1429 ::memset (&m_dysymtab, 0, sizeof(m_dysymtab)); 1430 } 1431 } 1432 offset = load_cmd_offset + lc.cmdsize; 1433 } 1434 } 1435 } 1436 if (m_dysymtab.cmd) 1437 return m_dysymtab.nlocalsym <= 1; 1438 return false; 1439 } 1440 1441 void 1442 ObjectFileMachO::CreateSections (SectionList &unified_section_list) 1443 { 1444 if (!m_sections_ap.get()) 1445 { 1446 m_sections_ap.reset(new SectionList()); 1447 1448 const bool is_dsym = (m_header.filetype == MH_DSYM); 1449 lldb::user_id_t segID = 0; 1450 lldb::user_id_t sectID = 0; 1451 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 1452 uint32_t i; 1453 const bool is_core = GetType() == eTypeCoreFile; 1454 //bool dump_sections = false; 1455 ModuleSP module_sp (GetModule()); 1456 // First look up any LC_ENCRYPTION_INFO load commands 1457 typedef RangeArray<uint32_t, uint32_t, 8> EncryptedFileRanges; 1458 EncryptedFileRanges encrypted_file_ranges; 1459 encryption_info_command encryption_cmd; 1460 for (i=0; i<m_header.ncmds; ++i) 1461 { 1462 const lldb::offset_t load_cmd_offset = offset; 1463 if (m_data.GetU32(&offset, &encryption_cmd, 2) == NULL) 1464 break; 1465 1466 if (encryption_cmd.cmd == LC_ENCRYPTION_INFO) 1467 { 1468 if (m_data.GetU32(&offset, &encryption_cmd.cryptoff, 3)) 1469 { 1470 if (encryption_cmd.cryptid != 0) 1471 { 1472 EncryptedFileRanges::Entry entry; 1473 entry.SetRangeBase(encryption_cmd.cryptoff); 1474 entry.SetByteSize(encryption_cmd.cryptsize); 1475 encrypted_file_ranges.Append(entry); 1476 } 1477 } 1478 } 1479 offset = load_cmd_offset + encryption_cmd.cmdsize; 1480 } 1481 1482 bool section_file_addresses_changed = false; 1483 1484 offset = MachHeaderSizeFromMagic(m_header.magic); 1485 1486 struct segment_command_64 load_cmd; 1487 for (i=0; i<m_header.ncmds; ++i) 1488 { 1489 const lldb::offset_t load_cmd_offset = offset; 1490 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) 1491 break; 1492 1493 if (load_cmd.cmd == LC_SEGMENT || load_cmd.cmd == LC_SEGMENT_64) 1494 { 1495 if (m_data.GetU8(&offset, (uint8_t*)load_cmd.segname, 16)) 1496 { 1497 bool add_section = true; 1498 bool add_to_unified = true; 1499 ConstString const_segname (load_cmd.segname, std::min<size_t>(strlen(load_cmd.segname), sizeof(load_cmd.segname))); 1500 1501 SectionSP unified_section_sp(unified_section_list.FindSectionByName(const_segname)); 1502 if (is_dsym && unified_section_sp) 1503 { 1504 if (const_segname == GetSegmentNameLINKEDIT()) 1505 { 1506 // We need to keep the __LINKEDIT segment private to this object file only 1507 add_to_unified = false; 1508 } 1509 else 1510 { 1511 // This is the dSYM file and this section has already been created by 1512 // the object file, no need to create it. 1513 add_section = false; 1514 } 1515 } 1516 load_cmd.vmaddr = m_data.GetAddress(&offset); 1517 load_cmd.vmsize = m_data.GetAddress(&offset); 1518 load_cmd.fileoff = m_data.GetAddress(&offset); 1519 load_cmd.filesize = m_data.GetAddress(&offset); 1520 if (m_length != 0 && load_cmd.filesize != 0) 1521 { 1522 if (load_cmd.fileoff > m_length) 1523 { 1524 // We have a load command that says it extends past the end of the file. This is likely 1525 // a corrupt file. We don't have any way to return an error condition here (this method 1526 // was likely invoked from something like ObjectFile::GetSectionList()) -- all we can do 1527 // is null out the SectionList vector and if a process has been set up, dump a message 1528 // to stdout. The most common case here is core file debugging with a truncated file. 1529 const char *lc_segment_name = load_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT"; 1530 module_sp->ReportWarning("load command %u %s has a fileoff (0x%" PRIx64 ") that extends beyond the end of the file (0x%" PRIx64 "), ignoring this section", 1531 i, 1532 lc_segment_name, 1533 load_cmd.fileoff, 1534 m_length); 1535 1536 load_cmd.fileoff = 0; 1537 load_cmd.filesize = 0; 1538 } 1539 1540 if (load_cmd.fileoff + load_cmd.filesize > m_length) 1541 { 1542 // We have a load command that says it extends past the end of the file. This is likely 1543 // a corrupt file. We don't have any way to return an error condition here (this method 1544 // was likely invoked from something like ObjectFile::GetSectionList()) -- all we can do 1545 // is null out the SectionList vector and if a process has been set up, dump a message 1546 // to stdout. The most common case here is core file debugging with a truncated file. 1547 const char *lc_segment_name = load_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT"; 1548 GetModule()->ReportWarning("load command %u %s has a fileoff + filesize (0x%" PRIx64 ") that extends beyond the end of the file (0x%" PRIx64 "), the segment will be truncated to match", 1549 i, 1550 lc_segment_name, 1551 load_cmd.fileoff + load_cmd.filesize, 1552 m_length); 1553 1554 // Tuncase the length 1555 load_cmd.filesize = m_length - load_cmd.fileoff; 1556 } 1557 } 1558 if (m_data.GetU32(&offset, &load_cmd.maxprot, 4)) 1559 { 1560 1561 const bool segment_is_encrypted = (load_cmd.flags & SG_PROTECTED_VERSION_1) != 0; 1562 1563 // Keep a list of mach segments around in case we need to 1564 // get at data that isn't stored in the abstracted Sections. 1565 m_mach_segments.push_back (load_cmd); 1566 1567 // Use a segment ID of the segment index shifted left by 8 so they 1568 // never conflict with any of the sections. 1569 SectionSP segment_sp; 1570 if (add_section && (const_segname || is_core)) 1571 { 1572 segment_sp.reset(new Section (module_sp, // Module to which this section belongs 1573 this, // Object file to which this sections belongs 1574 ++segID << 8, // Section ID is the 1 based segment index shifted right by 8 bits as not to collide with any of the 256 section IDs that are possible 1575 const_segname, // Name of this section 1576 eSectionTypeContainer, // This section is a container of other sections. 1577 load_cmd.vmaddr, // File VM address == addresses as they are found in the object file 1578 load_cmd.vmsize, // VM size in bytes of this section 1579 load_cmd.fileoff, // Offset to the data for this section in the file 1580 load_cmd.filesize, // Size in bytes of this section as found in the file 1581 0, // Segments have no alignment information 1582 load_cmd.flags)); // Flags for this section 1583 1584 segment_sp->SetIsEncrypted (segment_is_encrypted); 1585 m_sections_ap->AddSection(segment_sp); 1586 if (add_to_unified) 1587 unified_section_list.AddSection(segment_sp); 1588 } 1589 else if (unified_section_sp) 1590 { 1591 if (is_dsym && unified_section_sp->GetFileAddress() != load_cmd.vmaddr) 1592 { 1593 // Check to see if the module was read from memory? 1594 if (module_sp->GetObjectFile()->GetHeaderAddress().IsValid()) 1595 { 1596 // We have a module that is in memory and needs to have its 1597 // file address adjusted. We need to do this because when we 1598 // load a file from memory, its addresses will be slid already, 1599 // yet the addresses in the new symbol file will still be unslid. 1600 // Since everything is stored as section offset, this shouldn't 1601 // cause any problems. 1602 1603 // Make sure we've parsed the symbol table from the 1604 // ObjectFile before we go around changing its Sections. 1605 module_sp->GetObjectFile()->GetSymtab(); 1606 // eh_frame would present the same problems but we parse that on 1607 // a per-function basis as-needed so it's more difficult to 1608 // remove its use of the Sections. Realistically, the environments 1609 // where this code path will be taken will not have eh_frame sections. 1610 1611 unified_section_sp->SetFileAddress(load_cmd.vmaddr); 1612 1613 // Notify the module that the section addresses have been changed once 1614 // we're done so any file-address caches can be updated. 1615 section_file_addresses_changed = true; 1616 } 1617 } 1618 m_sections_ap->AddSection(unified_section_sp); 1619 } 1620 1621 struct section_64 sect64; 1622 ::memset (§64, 0, sizeof(sect64)); 1623 // Push a section into our mach sections for the section at 1624 // index zero (NO_SECT) if we don't have any mach sections yet... 1625 if (m_mach_sections.empty()) 1626 m_mach_sections.push_back(sect64); 1627 uint32_t segment_sect_idx; 1628 const lldb::user_id_t first_segment_sectID = sectID + 1; 1629 1630 1631 const uint32_t num_u32s = load_cmd.cmd == LC_SEGMENT ? 7 : 8; 1632 for (segment_sect_idx=0; segment_sect_idx<load_cmd.nsects; ++segment_sect_idx) 1633 { 1634 if (m_data.GetU8(&offset, (uint8_t*)sect64.sectname, sizeof(sect64.sectname)) == NULL) 1635 break; 1636 if (m_data.GetU8(&offset, (uint8_t*)sect64.segname, sizeof(sect64.segname)) == NULL) 1637 break; 1638 sect64.addr = m_data.GetAddress(&offset); 1639 sect64.size = m_data.GetAddress(&offset); 1640 1641 if (m_data.GetU32(&offset, §64.offset, num_u32s) == NULL) 1642 break; 1643 1644 // Keep a list of mach sections around in case we need to 1645 // get at data that isn't stored in the abstracted Sections. 1646 m_mach_sections.push_back (sect64); 1647 1648 if (add_section) 1649 { 1650 ConstString section_name (sect64.sectname, std::min<size_t>(strlen(sect64.sectname), sizeof(sect64.sectname))); 1651 if (!const_segname) 1652 { 1653 // We have a segment with no name so we need to conjure up 1654 // segments that correspond to the section's segname if there 1655 // isn't already such a section. If there is such a section, 1656 // we resize the section so that it spans all sections. 1657 // We also mark these sections as fake so address matches don't 1658 // hit if they land in the gaps between the child sections. 1659 const_segname.SetTrimmedCStringWithLength(sect64.segname, sizeof(sect64.segname)); 1660 segment_sp = unified_section_list.FindSectionByName (const_segname); 1661 if (segment_sp.get()) 1662 { 1663 Section *segment = segment_sp.get(); 1664 // Grow the section size as needed. 1665 const lldb::addr_t sect64_min_addr = sect64.addr; 1666 const lldb::addr_t sect64_max_addr = sect64_min_addr + sect64.size; 1667 const lldb::addr_t curr_seg_byte_size = segment->GetByteSize(); 1668 const lldb::addr_t curr_seg_min_addr = segment->GetFileAddress(); 1669 const lldb::addr_t curr_seg_max_addr = curr_seg_min_addr + curr_seg_byte_size; 1670 if (sect64_min_addr >= curr_seg_min_addr) 1671 { 1672 const lldb::addr_t new_seg_byte_size = sect64_max_addr - curr_seg_min_addr; 1673 // Only grow the section size if needed 1674 if (new_seg_byte_size > curr_seg_byte_size) 1675 segment->SetByteSize (new_seg_byte_size); 1676 } 1677 else 1678 { 1679 // We need to change the base address of the segment and 1680 // adjust the child section offsets for all existing children. 1681 const lldb::addr_t slide_amount = sect64_min_addr - curr_seg_min_addr; 1682 segment->Slide(slide_amount, false); 1683 segment->GetChildren().Slide(-slide_amount, false); 1684 segment->SetByteSize (curr_seg_max_addr - sect64_min_addr); 1685 } 1686 1687 // Grow the section size as needed. 1688 if (sect64.offset) 1689 { 1690 const lldb::addr_t segment_min_file_offset = segment->GetFileOffset(); 1691 const lldb::addr_t segment_max_file_offset = segment_min_file_offset + segment->GetFileSize(); 1692 1693 const lldb::addr_t section_min_file_offset = sect64.offset; 1694 const lldb::addr_t section_max_file_offset = section_min_file_offset + sect64.size; 1695 const lldb::addr_t new_file_offset = std::min (section_min_file_offset, segment_min_file_offset); 1696 const lldb::addr_t new_file_size = std::max (section_max_file_offset, segment_max_file_offset) - new_file_offset; 1697 segment->SetFileOffset (new_file_offset); 1698 segment->SetFileSize (new_file_size); 1699 } 1700 } 1701 else 1702 { 1703 // Create a fake section for the section's named segment 1704 segment_sp.reset(new Section (segment_sp, // Parent section 1705 module_sp, // Module to which this section belongs 1706 this, // Object file to which this section belongs 1707 ++segID << 8, // Section ID is the 1 based segment index shifted right by 8 bits as not to collide with any of the 256 section IDs that are possible 1708 const_segname, // Name of this section 1709 eSectionTypeContainer, // This section is a container of other sections. 1710 sect64.addr, // File VM address == addresses as they are found in the object file 1711 sect64.size, // VM size in bytes of this section 1712 sect64.offset, // Offset to the data for this section in the file 1713 sect64.offset ? sect64.size : 0, // Size in bytes of this section as found in the file 1714 sect64.align, 1715 load_cmd.flags)); // Flags for this section 1716 segment_sp->SetIsFake(true); 1717 1718 m_sections_ap->AddSection(segment_sp); 1719 if (add_to_unified) 1720 unified_section_list.AddSection(segment_sp); 1721 segment_sp->SetIsEncrypted (segment_is_encrypted); 1722 } 1723 } 1724 assert (segment_sp.get()); 1725 1726 lldb::SectionType sect_type = eSectionTypeOther; 1727 1728 if (sect64.flags & (S_ATTR_PURE_INSTRUCTIONS | S_ATTR_SOME_INSTRUCTIONS)) 1729 sect_type = eSectionTypeCode; 1730 else 1731 { 1732 uint32_t mach_sect_type = sect64.flags & SECTION_TYPE; 1733 static ConstString g_sect_name_objc_data ("__objc_data"); 1734 static ConstString g_sect_name_objc_msgrefs ("__objc_msgrefs"); 1735 static ConstString g_sect_name_objc_selrefs ("__objc_selrefs"); 1736 static ConstString g_sect_name_objc_classrefs ("__objc_classrefs"); 1737 static ConstString g_sect_name_objc_superrefs ("__objc_superrefs"); 1738 static ConstString g_sect_name_objc_const ("__objc_const"); 1739 static ConstString g_sect_name_objc_classlist ("__objc_classlist"); 1740 static ConstString g_sect_name_cfstring ("__cfstring"); 1741 1742 static ConstString g_sect_name_dwarf_debug_abbrev ("__debug_abbrev"); 1743 static ConstString g_sect_name_dwarf_debug_aranges ("__debug_aranges"); 1744 static ConstString g_sect_name_dwarf_debug_frame ("__debug_frame"); 1745 static ConstString g_sect_name_dwarf_debug_info ("__debug_info"); 1746 static ConstString g_sect_name_dwarf_debug_line ("__debug_line"); 1747 static ConstString g_sect_name_dwarf_debug_loc ("__debug_loc"); 1748 static ConstString g_sect_name_dwarf_debug_macinfo ("__debug_macinfo"); 1749 static ConstString g_sect_name_dwarf_debug_pubnames ("__debug_pubnames"); 1750 static ConstString g_sect_name_dwarf_debug_pubtypes ("__debug_pubtypes"); 1751 static ConstString g_sect_name_dwarf_debug_ranges ("__debug_ranges"); 1752 static ConstString g_sect_name_dwarf_debug_str ("__debug_str"); 1753 static ConstString g_sect_name_dwarf_apple_names ("__apple_names"); 1754 static ConstString g_sect_name_dwarf_apple_types ("__apple_types"); 1755 static ConstString g_sect_name_dwarf_apple_namespaces ("__apple_namespac"); 1756 static ConstString g_sect_name_dwarf_apple_objc ("__apple_objc"); 1757 static ConstString g_sect_name_eh_frame ("__eh_frame"); 1758 static ConstString g_sect_name_compact_unwind ("__unwind_info"); 1759 static ConstString g_sect_name_text ("__text"); 1760 static ConstString g_sect_name_data ("__data"); 1761 1762 1763 if (section_name == g_sect_name_dwarf_debug_abbrev) 1764 sect_type = eSectionTypeDWARFDebugAbbrev; 1765 else if (section_name == g_sect_name_dwarf_debug_aranges) 1766 sect_type = eSectionTypeDWARFDebugAranges; 1767 else if (section_name == g_sect_name_dwarf_debug_frame) 1768 sect_type = eSectionTypeDWARFDebugFrame; 1769 else if (section_name == g_sect_name_dwarf_debug_info) 1770 sect_type = eSectionTypeDWARFDebugInfo; 1771 else if (section_name == g_sect_name_dwarf_debug_line) 1772 sect_type = eSectionTypeDWARFDebugLine; 1773 else if (section_name == g_sect_name_dwarf_debug_loc) 1774 sect_type = eSectionTypeDWARFDebugLoc; 1775 else if (section_name == g_sect_name_dwarf_debug_macinfo) 1776 sect_type = eSectionTypeDWARFDebugMacInfo; 1777 else if (section_name == g_sect_name_dwarf_debug_pubnames) 1778 sect_type = eSectionTypeDWARFDebugPubNames; 1779 else if (section_name == g_sect_name_dwarf_debug_pubtypes) 1780 sect_type = eSectionTypeDWARFDebugPubTypes; 1781 else if (section_name == g_sect_name_dwarf_debug_ranges) 1782 sect_type = eSectionTypeDWARFDebugRanges; 1783 else if (section_name == g_sect_name_dwarf_debug_str) 1784 sect_type = eSectionTypeDWARFDebugStr; 1785 else if (section_name == g_sect_name_dwarf_apple_names) 1786 sect_type = eSectionTypeDWARFAppleNames; 1787 else if (section_name == g_sect_name_dwarf_apple_types) 1788 sect_type = eSectionTypeDWARFAppleTypes; 1789 else if (section_name == g_sect_name_dwarf_apple_namespaces) 1790 sect_type = eSectionTypeDWARFAppleNamespaces; 1791 else if (section_name == g_sect_name_dwarf_apple_objc) 1792 sect_type = eSectionTypeDWARFAppleObjC; 1793 else if (section_name == g_sect_name_objc_selrefs) 1794 sect_type = eSectionTypeDataCStringPointers; 1795 else if (section_name == g_sect_name_objc_msgrefs) 1796 sect_type = eSectionTypeDataObjCMessageRefs; 1797 else if (section_name == g_sect_name_eh_frame) 1798 sect_type = eSectionTypeEHFrame; 1799 else if (section_name == g_sect_name_compact_unwind) 1800 sect_type = eSectionTypeCompactUnwind; 1801 else if (section_name == g_sect_name_cfstring) 1802 sect_type = eSectionTypeDataObjCCFStrings; 1803 else if (section_name == g_sect_name_objc_data || 1804 section_name == g_sect_name_objc_classrefs || 1805 section_name == g_sect_name_objc_superrefs || 1806 section_name == g_sect_name_objc_const || 1807 section_name == g_sect_name_objc_classlist) 1808 { 1809 sect_type = eSectionTypeDataPointers; 1810 } 1811 1812 if (sect_type == eSectionTypeOther) 1813 { 1814 switch (mach_sect_type) 1815 { 1816 // TODO: categorize sections by other flags for regular sections 1817 case S_REGULAR: 1818 if (section_name == g_sect_name_text) 1819 sect_type = eSectionTypeCode; 1820 else if (section_name == g_sect_name_data) 1821 sect_type = eSectionTypeData; 1822 else 1823 sect_type = eSectionTypeOther; 1824 break; 1825 case S_ZEROFILL: sect_type = eSectionTypeZeroFill; break; 1826 case S_CSTRING_LITERALS: sect_type = eSectionTypeDataCString; break; // section with only literal C strings 1827 case S_4BYTE_LITERALS: sect_type = eSectionTypeData4; break; // section with only 4 byte literals 1828 case S_8BYTE_LITERALS: sect_type = eSectionTypeData8; break; // section with only 8 byte literals 1829 case S_LITERAL_POINTERS: sect_type = eSectionTypeDataPointers; break; // section with only pointers to literals 1830 case S_NON_LAZY_SYMBOL_POINTERS: sect_type = eSectionTypeDataPointers; break; // section with only non-lazy symbol pointers 1831 case S_LAZY_SYMBOL_POINTERS: sect_type = eSectionTypeDataPointers; break; // section with only lazy symbol pointers 1832 case S_SYMBOL_STUBS: sect_type = eSectionTypeCode; break; // section with only symbol stubs, byte size of stub in the reserved2 field 1833 case S_MOD_INIT_FUNC_POINTERS: sect_type = eSectionTypeDataPointers; break; // section with only function pointers for initialization 1834 case S_MOD_TERM_FUNC_POINTERS: sect_type = eSectionTypeDataPointers; break; // section with only function pointers for termination 1835 case S_COALESCED: sect_type = eSectionTypeOther; break; 1836 case S_GB_ZEROFILL: sect_type = eSectionTypeZeroFill; break; 1837 case S_INTERPOSING: sect_type = eSectionTypeCode; break; // section with only pairs of function pointers for interposing 1838 case S_16BYTE_LITERALS: sect_type = eSectionTypeData16; break; // section with only 16 byte literals 1839 case S_DTRACE_DOF: sect_type = eSectionTypeDebug; break; 1840 case S_LAZY_DYLIB_SYMBOL_POINTERS: sect_type = eSectionTypeDataPointers; break; 1841 default: break; 1842 } 1843 } 1844 } 1845 1846 SectionSP section_sp(new Section (segment_sp, 1847 module_sp, 1848 this, 1849 ++sectID, 1850 section_name, 1851 sect_type, 1852 sect64.addr - segment_sp->GetFileAddress(), 1853 sect64.size, 1854 sect64.offset, 1855 sect64.offset == 0 ? 0 : sect64.size, 1856 sect64.align, 1857 sect64.flags)); 1858 // Set the section to be encrypted to match the segment 1859 1860 bool section_is_encrypted = false; 1861 if (!segment_is_encrypted && load_cmd.filesize != 0) 1862 section_is_encrypted = encrypted_file_ranges.FindEntryThatContains(sect64.offset) != NULL; 1863 1864 section_sp->SetIsEncrypted (segment_is_encrypted || section_is_encrypted); 1865 segment_sp->GetChildren().AddSection(section_sp); 1866 1867 if (segment_sp->IsFake()) 1868 { 1869 segment_sp.reset(); 1870 const_segname.Clear(); 1871 } 1872 } 1873 } 1874 if (segment_sp && is_dsym) 1875 { 1876 if (first_segment_sectID <= sectID) 1877 { 1878 lldb::user_id_t sect_uid; 1879 for (sect_uid = first_segment_sectID; sect_uid <= sectID; ++sect_uid) 1880 { 1881 SectionSP curr_section_sp(segment_sp->GetChildren().FindSectionByID (sect_uid)); 1882 SectionSP next_section_sp; 1883 if (sect_uid + 1 <= sectID) 1884 next_section_sp = segment_sp->GetChildren().FindSectionByID (sect_uid+1); 1885 1886 if (curr_section_sp.get()) 1887 { 1888 if (curr_section_sp->GetByteSize() == 0) 1889 { 1890 if (next_section_sp.get() != NULL) 1891 curr_section_sp->SetByteSize ( next_section_sp->GetFileAddress() - curr_section_sp->GetFileAddress() ); 1892 else 1893 curr_section_sp->SetByteSize ( load_cmd.vmsize ); 1894 } 1895 } 1896 } 1897 } 1898 } 1899 } 1900 } 1901 } 1902 else if (load_cmd.cmd == LC_DYSYMTAB) 1903 { 1904 m_dysymtab.cmd = load_cmd.cmd; 1905 m_dysymtab.cmdsize = load_cmd.cmdsize; 1906 m_data.GetU32 (&offset, &m_dysymtab.ilocalsym, (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2); 1907 } 1908 1909 offset = load_cmd_offset + load_cmd.cmdsize; 1910 } 1911 1912 1913 if (section_file_addresses_changed && module_sp.get()) 1914 { 1915 module_sp->SectionFileAddressesChanged(); 1916 } 1917 } 1918 } 1919 1920 class MachSymtabSectionInfo 1921 { 1922 public: 1923 1924 MachSymtabSectionInfo (SectionList *section_list) : 1925 m_section_list (section_list), 1926 m_section_infos() 1927 { 1928 // Get the number of sections down to a depth of 1 to include 1929 // all segments and their sections, but no other sections that 1930 // may be added for debug map or 1931 m_section_infos.resize(section_list->GetNumSections(1)); 1932 } 1933 1934 1935 SectionSP 1936 GetSection (uint8_t n_sect, addr_t file_addr) 1937 { 1938 if (n_sect == 0) 1939 return SectionSP(); 1940 if (n_sect < m_section_infos.size()) 1941 { 1942 if (!m_section_infos[n_sect].section_sp) 1943 { 1944 SectionSP section_sp (m_section_list->FindSectionByID (n_sect)); 1945 m_section_infos[n_sect].section_sp = section_sp; 1946 if (section_sp) 1947 { 1948 m_section_infos[n_sect].vm_range.SetBaseAddress (section_sp->GetFileAddress()); 1949 m_section_infos[n_sect].vm_range.SetByteSize (section_sp->GetByteSize()); 1950 } 1951 else 1952 { 1953 Host::SystemLog (Host::eSystemLogError, "error: unable to find section for section %u\n", n_sect); 1954 } 1955 } 1956 if (m_section_infos[n_sect].vm_range.Contains(file_addr)) 1957 { 1958 // Symbol is in section. 1959 return m_section_infos[n_sect].section_sp; 1960 } 1961 else if (m_section_infos[n_sect].vm_range.GetByteSize () == 0 && 1962 m_section_infos[n_sect].vm_range.GetBaseAddress() == file_addr) 1963 { 1964 // Symbol is in section with zero size, but has the same start 1965 // address as the section. This can happen with linker symbols 1966 // (symbols that start with the letter 'l' or 'L'. 1967 return m_section_infos[n_sect].section_sp; 1968 } 1969 } 1970 return m_section_list->FindSectionContainingFileAddress(file_addr); 1971 } 1972 1973 protected: 1974 struct SectionInfo 1975 { 1976 SectionInfo () : 1977 vm_range(), 1978 section_sp () 1979 { 1980 } 1981 1982 VMRange vm_range; 1983 SectionSP section_sp; 1984 }; 1985 SectionList *m_section_list; 1986 std::vector<SectionInfo> m_section_infos; 1987 }; 1988 1989 struct TrieEntry 1990 { 1991 TrieEntry () : 1992 name(), 1993 address(LLDB_INVALID_ADDRESS), 1994 flags (0), 1995 other(0), 1996 import_name() 1997 { 1998 } 1999 2000 void 2001 Clear () 2002 { 2003 name.Clear(); 2004 address = LLDB_INVALID_ADDRESS; 2005 flags = 0; 2006 other = 0; 2007 import_name.Clear(); 2008 } 2009 2010 void 2011 Dump () const 2012 { 2013 printf ("0x%16.16llx 0x%16.16llx 0x%16.16llx \"%s\"", 2014 static_cast<unsigned long long>(address), 2015 static_cast<unsigned long long>(flags), 2016 static_cast<unsigned long long>(other), name.GetCString()); 2017 if (import_name) 2018 printf (" -> \"%s\"\n", import_name.GetCString()); 2019 else 2020 printf ("\n"); 2021 } 2022 ConstString name; 2023 uint64_t address; 2024 uint64_t flags; 2025 uint64_t other; 2026 ConstString import_name; 2027 }; 2028 2029 struct TrieEntryWithOffset 2030 { 2031 lldb::offset_t nodeOffset; 2032 TrieEntry entry; 2033 2034 TrieEntryWithOffset (lldb::offset_t offset) : 2035 nodeOffset (offset), 2036 entry() 2037 { 2038 } 2039 2040 void 2041 Dump (uint32_t idx) const 2042 { 2043 printf ("[%3u] 0x%16.16llx: ", idx, 2044 static_cast<unsigned long long>(nodeOffset)); 2045 entry.Dump(); 2046 } 2047 2048 bool 2049 operator<(const TrieEntryWithOffset& other) const 2050 { 2051 return ( nodeOffset < other.nodeOffset ); 2052 } 2053 }; 2054 2055 static void 2056 ParseTrieEntries (DataExtractor &data, 2057 lldb::offset_t offset, 2058 std::vector<llvm::StringRef> &nameSlices, 2059 std::set<lldb::addr_t> &resolver_addresses, 2060 std::vector<TrieEntryWithOffset>& output) 2061 { 2062 if (!data.ValidOffset(offset)) 2063 return; 2064 2065 const uint64_t terminalSize = data.GetULEB128(&offset); 2066 lldb::offset_t children_offset = offset + terminalSize; 2067 if ( terminalSize != 0 ) { 2068 TrieEntryWithOffset e (offset); 2069 e.entry.flags = data.GetULEB128(&offset); 2070 const char *import_name = NULL; 2071 if ( e.entry.flags & EXPORT_SYMBOL_FLAGS_REEXPORT ) { 2072 e.entry.address = 0; 2073 e.entry.other = data.GetULEB128(&offset); // dylib ordinal 2074 import_name = data.GetCStr(&offset); 2075 } 2076 else { 2077 e.entry.address = data.GetULEB128(&offset); 2078 if ( e.entry.flags & EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER ) 2079 { 2080 //resolver_addresses.insert(e.entry.address); 2081 e.entry.other = data.GetULEB128(&offset); 2082 resolver_addresses.insert(e.entry.other); 2083 } 2084 else 2085 e.entry.other = 0; 2086 } 2087 // Only add symbols that are reexport symbols with a valid import name 2088 if (EXPORT_SYMBOL_FLAGS_REEXPORT & e.entry.flags && import_name && import_name[0]) 2089 { 2090 std::string name; 2091 if (!nameSlices.empty()) 2092 { 2093 for (auto name_slice: nameSlices) 2094 name.append(name_slice.data(), name_slice.size()); 2095 } 2096 if (name.size() > 1) 2097 { 2098 // Skip the leading '_' 2099 e.entry.name.SetCStringWithLength(name.c_str() + 1,name.size() - 1); 2100 } 2101 if (import_name) 2102 { 2103 // Skip the leading '_' 2104 e.entry.import_name.SetCString(import_name+1); 2105 } 2106 output.push_back(e); 2107 } 2108 } 2109 2110 const uint8_t childrenCount = data.GetU8(&children_offset); 2111 for (uint8_t i=0; i < childrenCount; ++i) { 2112 nameSlices.push_back(data.GetCStr(&children_offset)); 2113 lldb::offset_t childNodeOffset = data.GetULEB128(&children_offset); 2114 if (childNodeOffset) 2115 { 2116 ParseTrieEntries(data, 2117 childNodeOffset, 2118 nameSlices, 2119 resolver_addresses, 2120 output); 2121 } 2122 nameSlices.pop_back(); 2123 } 2124 } 2125 2126 size_t 2127 ObjectFileMachO::ParseSymtab () 2128 { 2129 Timer scoped_timer(__PRETTY_FUNCTION__, 2130 "ObjectFileMachO::ParseSymtab () module = %s", 2131 m_file.GetFilename().AsCString("")); 2132 ModuleSP module_sp (GetModule()); 2133 if (!module_sp) 2134 return 0; 2135 2136 struct symtab_command symtab_load_command = { 0, 0, 0, 0, 0, 0 }; 2137 struct linkedit_data_command function_starts_load_command = { 0, 0, 0, 0 }; 2138 struct dyld_info_command dyld_info = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; 2139 typedef AddressDataArray<lldb::addr_t, bool, 100> FunctionStarts; 2140 FunctionStarts function_starts; 2141 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 2142 uint32_t i; 2143 FileSpecList dylib_files; 2144 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_SYMBOLS)); 2145 2146 for (i=0; i<m_header.ncmds; ++i) 2147 { 2148 const lldb::offset_t cmd_offset = offset; 2149 // Read in the load command and load command size 2150 struct load_command lc; 2151 if (m_data.GetU32(&offset, &lc, 2) == NULL) 2152 break; 2153 // Watch for the symbol table load command 2154 switch (lc.cmd) 2155 { 2156 case LC_SYMTAB: 2157 symtab_load_command.cmd = lc.cmd; 2158 symtab_load_command.cmdsize = lc.cmdsize; 2159 // Read in the rest of the symtab load command 2160 if (m_data.GetU32(&offset, &symtab_load_command.symoff, 4) == 0) // fill in symoff, nsyms, stroff, strsize fields 2161 return 0; 2162 if (symtab_load_command.symoff == 0) 2163 { 2164 if (log) 2165 module_sp->LogMessage(log, "LC_SYMTAB.symoff == 0"); 2166 return 0; 2167 } 2168 2169 if (symtab_load_command.stroff == 0) 2170 { 2171 if (log) 2172 module_sp->LogMessage(log, "LC_SYMTAB.stroff == 0"); 2173 return 0; 2174 } 2175 2176 if (symtab_load_command.nsyms == 0) 2177 { 2178 if (log) 2179 module_sp->LogMessage(log, "LC_SYMTAB.nsyms == 0"); 2180 return 0; 2181 } 2182 2183 if (symtab_load_command.strsize == 0) 2184 { 2185 if (log) 2186 module_sp->LogMessage(log, "LC_SYMTAB.strsize == 0"); 2187 return 0; 2188 } 2189 break; 2190 2191 case LC_DYLD_INFO: 2192 case LC_DYLD_INFO_ONLY: 2193 if (m_data.GetU32(&offset, &dyld_info.rebase_off, 10)) 2194 { 2195 dyld_info.cmd = lc.cmd; 2196 dyld_info.cmdsize = lc.cmdsize; 2197 } 2198 else 2199 { 2200 memset (&dyld_info, 0, sizeof(dyld_info)); 2201 } 2202 break; 2203 2204 case LC_LOAD_DYLIB: 2205 case LC_LOAD_WEAK_DYLIB: 2206 case LC_REEXPORT_DYLIB: 2207 case LC_LOADFVMLIB: 2208 case LC_LOAD_UPWARD_DYLIB: 2209 { 2210 uint32_t name_offset = cmd_offset + m_data.GetU32(&offset); 2211 const char *path = m_data.PeekCStr(name_offset); 2212 if (path) 2213 { 2214 FileSpec file_spec(path, false); 2215 // Strip the path if there is @rpath, @executable, etc so we just use the basename 2216 if (path[0] == '@') 2217 file_spec.GetDirectory().Clear(); 2218 2219 if (lc.cmd == LC_REEXPORT_DYLIB) 2220 { 2221 m_reexported_dylibs.AppendIfUnique(file_spec); 2222 } 2223 2224 dylib_files.Append(file_spec); 2225 } 2226 } 2227 break; 2228 2229 case LC_FUNCTION_STARTS: 2230 function_starts_load_command.cmd = lc.cmd; 2231 function_starts_load_command.cmdsize = lc.cmdsize; 2232 if (m_data.GetU32(&offset, &function_starts_load_command.dataoff, 2) == NULL) // fill in symoff, nsyms, stroff, strsize fields 2233 memset (&function_starts_load_command, 0, sizeof(function_starts_load_command)); 2234 break; 2235 2236 default: 2237 break; 2238 } 2239 offset = cmd_offset + lc.cmdsize; 2240 } 2241 2242 if (symtab_load_command.cmd) 2243 { 2244 Symtab *symtab = m_symtab_ap.get(); 2245 SectionList *section_list = GetSectionList(); 2246 if (section_list == NULL) 2247 return 0; 2248 2249 const uint32_t addr_byte_size = m_data.GetAddressByteSize(); 2250 const ByteOrder byte_order = m_data.GetByteOrder(); 2251 bool bit_width_32 = addr_byte_size == 4; 2252 const size_t nlist_byte_size = bit_width_32 ? sizeof(struct nlist) : sizeof(struct nlist_64); 2253 2254 DataExtractor nlist_data (NULL, 0, byte_order, addr_byte_size); 2255 DataExtractor strtab_data (NULL, 0, byte_order, addr_byte_size); 2256 DataExtractor function_starts_data (NULL, 0, byte_order, addr_byte_size); 2257 DataExtractor indirect_symbol_index_data (NULL, 0, byte_order, addr_byte_size); 2258 DataExtractor dyld_trie_data (NULL, 0, byte_order, addr_byte_size); 2259 2260 const addr_t nlist_data_byte_size = symtab_load_command.nsyms * nlist_byte_size; 2261 const addr_t strtab_data_byte_size = symtab_load_command.strsize; 2262 addr_t strtab_addr = LLDB_INVALID_ADDRESS; 2263 2264 ProcessSP process_sp (m_process_wp.lock()); 2265 Process *process = process_sp.get(); 2266 2267 uint32_t memory_module_load_level = eMemoryModuleLoadLevelComplete; 2268 2269 if (process && m_header.filetype != llvm::MachO::MH_OBJECT) 2270 { 2271 Target &target = process->GetTarget(); 2272 2273 memory_module_load_level = target.GetMemoryModuleLoadLevel(); 2274 2275 SectionSP linkedit_section_sp(section_list->FindSectionByName(GetSegmentNameLINKEDIT())); 2276 // Reading mach file from memory in a process or core file... 2277 2278 if (linkedit_section_sp) 2279 { 2280 const addr_t linkedit_load_addr = linkedit_section_sp->GetLoadBaseAddress(&target); 2281 const addr_t linkedit_file_offset = linkedit_section_sp->GetFileOffset(); 2282 const addr_t symoff_addr = linkedit_load_addr + symtab_load_command.symoff - linkedit_file_offset; 2283 strtab_addr = linkedit_load_addr + symtab_load_command.stroff - linkedit_file_offset; 2284 2285 bool data_was_read = false; 2286 2287 #if defined (__APPLE__) && (defined (__arm__) || defined (__arm64__) || defined (__aarch64__)) 2288 if (m_header.flags & 0x80000000u && process->GetAddressByteSize() == sizeof (void*)) 2289 { 2290 // This mach-o memory file is in the dyld shared cache. If this 2291 // program is not remote and this is iOS, then this process will 2292 // share the same shared cache as the process we are debugging and 2293 // we can read the entire __LINKEDIT from the address space in this 2294 // process. This is a needed optimization that is used for local iOS 2295 // debugging only since all shared libraries in the shared cache do 2296 // not have corresponding files that exist in the file system of the 2297 // device. They have been combined into a single file. This means we 2298 // always have to load these files from memory. All of the symbol and 2299 // string tables from all of the __LINKEDIT sections from the shared 2300 // libraries in the shared cache have been merged into a single large 2301 // symbol and string table. Reading all of this symbol and string table 2302 // data across can slow down debug launch times, so we optimize this by 2303 // reading the memory for the __LINKEDIT section from this process. 2304 2305 UUID lldb_shared_cache(GetLLDBSharedCacheUUID()); 2306 UUID process_shared_cache(GetProcessSharedCacheUUID(process)); 2307 bool use_lldb_cache = true; 2308 if (lldb_shared_cache.IsValid() && process_shared_cache.IsValid() && lldb_shared_cache != process_shared_cache) 2309 { 2310 use_lldb_cache = false; 2311 ModuleSP module_sp (GetModule()); 2312 if (module_sp) 2313 module_sp->ReportWarning ("shared cache in process does not match lldb's own shared cache, startup will be slow."); 2314 2315 } 2316 2317 PlatformSP platform_sp (target.GetPlatform()); 2318 if (platform_sp && platform_sp->IsHost() && use_lldb_cache) 2319 { 2320 data_was_read = true; 2321 nlist_data.SetData((void *)symoff_addr, nlist_data_byte_size, eByteOrderLittle); 2322 strtab_data.SetData((void *)strtab_addr, strtab_data_byte_size, eByteOrderLittle); 2323 if (function_starts_load_command.cmd) 2324 { 2325 const addr_t func_start_addr = linkedit_load_addr + function_starts_load_command.dataoff - linkedit_file_offset; 2326 function_starts_data.SetData ((void *)func_start_addr, function_starts_load_command.datasize, eByteOrderLittle); 2327 } 2328 } 2329 } 2330 #endif 2331 2332 if (!data_was_read) 2333 { 2334 if (memory_module_load_level == eMemoryModuleLoadLevelComplete) 2335 { 2336 DataBufferSP nlist_data_sp (ReadMemory (process_sp, symoff_addr, nlist_data_byte_size)); 2337 if (nlist_data_sp) 2338 nlist_data.SetData (nlist_data_sp, 0, nlist_data_sp->GetByteSize()); 2339 // Load strings individually from memory when loading from memory since shared cache 2340 // string tables contain strings for all symbols from all shared cached libraries 2341 //DataBufferSP strtab_data_sp (ReadMemory (process_sp, strtab_addr, strtab_data_byte_size)); 2342 //if (strtab_data_sp) 2343 // strtab_data.SetData (strtab_data_sp, 0, strtab_data_sp->GetByteSize()); 2344 if (m_dysymtab.nindirectsyms != 0) 2345 { 2346 const addr_t indirect_syms_addr = linkedit_load_addr + m_dysymtab.indirectsymoff - linkedit_file_offset; 2347 DataBufferSP indirect_syms_data_sp (ReadMemory (process_sp, indirect_syms_addr, m_dysymtab.nindirectsyms * 4)); 2348 if (indirect_syms_data_sp) 2349 indirect_symbol_index_data.SetData (indirect_syms_data_sp, 0, indirect_syms_data_sp->GetByteSize()); 2350 } 2351 } 2352 2353 if (memory_module_load_level >= eMemoryModuleLoadLevelPartial) 2354 { 2355 if (function_starts_load_command.cmd) 2356 { 2357 const addr_t func_start_addr = linkedit_load_addr + function_starts_load_command.dataoff - linkedit_file_offset; 2358 DataBufferSP func_start_data_sp (ReadMemory (process_sp, func_start_addr, function_starts_load_command.datasize)); 2359 if (func_start_data_sp) 2360 function_starts_data.SetData (func_start_data_sp, 0, func_start_data_sp->GetByteSize()); 2361 } 2362 } 2363 } 2364 } 2365 } 2366 else 2367 { 2368 nlist_data.SetData (m_data, 2369 symtab_load_command.symoff, 2370 nlist_data_byte_size); 2371 strtab_data.SetData (m_data, 2372 symtab_load_command.stroff, 2373 strtab_data_byte_size); 2374 2375 if (dyld_info.export_size > 0) 2376 { 2377 dyld_trie_data.SetData (m_data, 2378 dyld_info.export_off, 2379 dyld_info.export_size); 2380 } 2381 2382 if (m_dysymtab.nindirectsyms != 0) 2383 { 2384 indirect_symbol_index_data.SetData (m_data, 2385 m_dysymtab.indirectsymoff, 2386 m_dysymtab.nindirectsyms * 4); 2387 } 2388 if (function_starts_load_command.cmd) 2389 { 2390 function_starts_data.SetData (m_data, 2391 function_starts_load_command.dataoff, 2392 function_starts_load_command.datasize); 2393 } 2394 } 2395 2396 if (nlist_data.GetByteSize() == 0 && memory_module_load_level == eMemoryModuleLoadLevelComplete) 2397 { 2398 if (log) 2399 module_sp->LogMessage(log, "failed to read nlist data"); 2400 return 0; 2401 } 2402 2403 2404 const bool have_strtab_data = strtab_data.GetByteSize() > 0; 2405 if (!have_strtab_data) 2406 { 2407 if (process) 2408 { 2409 if (strtab_addr == LLDB_INVALID_ADDRESS) 2410 { 2411 if (log) 2412 module_sp->LogMessage(log, "failed to locate the strtab in memory"); 2413 return 0; 2414 } 2415 } 2416 else 2417 { 2418 if (log) 2419 module_sp->LogMessage(log, "failed to read strtab data"); 2420 return 0; 2421 } 2422 } 2423 2424 const ConstString &g_segment_name_TEXT = GetSegmentNameTEXT(); 2425 const ConstString &g_segment_name_DATA = GetSegmentNameDATA(); 2426 const ConstString &g_segment_name_OBJC = GetSegmentNameOBJC(); 2427 const ConstString &g_section_name_eh_frame = GetSectionNameEHFrame(); 2428 SectionSP text_section_sp(section_list->FindSectionByName(g_segment_name_TEXT)); 2429 SectionSP data_section_sp(section_list->FindSectionByName(g_segment_name_DATA)); 2430 SectionSP objc_section_sp(section_list->FindSectionByName(g_segment_name_OBJC)); 2431 SectionSP eh_frame_section_sp; 2432 if (text_section_sp.get()) 2433 eh_frame_section_sp = text_section_sp->GetChildren().FindSectionByName (g_section_name_eh_frame); 2434 else 2435 eh_frame_section_sp = section_list->FindSectionByName (g_section_name_eh_frame); 2436 2437 const bool is_arm = (m_header.cputype == llvm::MachO::CPU_TYPE_ARM); 2438 2439 // lldb works best if it knows the start address of all functions in a module. 2440 // Linker symbols or debug info are normally the best source of information for start addr / size but 2441 // they may be stripped in a released binary. 2442 // Two additional sources of information exist in Mach-O binaries: 2443 // LC_FUNCTION_STARTS - a list of ULEB128 encoded offsets of each function's start address in the 2444 // binary, relative to the text section. 2445 // eh_frame - the eh_frame FDEs have the start addr & size of each function 2446 // LC_FUNCTION_STARTS is the fastest source to read in, and is present on all modern binaries. 2447 // Binaries built to run on older releases may need to use eh_frame information. 2448 2449 if (text_section_sp && function_starts_data.GetByteSize()) 2450 { 2451 FunctionStarts::Entry function_start_entry; 2452 function_start_entry.data = false; 2453 lldb::offset_t function_start_offset = 0; 2454 function_start_entry.addr = text_section_sp->GetFileAddress(); 2455 uint64_t delta; 2456 while ((delta = function_starts_data.GetULEB128(&function_start_offset)) > 0) 2457 { 2458 // Now append the current entry 2459 function_start_entry.addr += delta; 2460 function_starts.Append(function_start_entry); 2461 } 2462 } 2463 else 2464 { 2465 // If m_type is eTypeDebugInfo, then this is a dSYM - it will have the load command claiming an eh_frame 2466 // but it doesn't actually have the eh_frame content. And if we have a dSYM, we don't need to do any 2467 // of this fill-in-the-missing-symbols works anyway - the debug info should give us all the functions in 2468 // the module. 2469 if (text_section_sp.get() && eh_frame_section_sp.get() && m_type != eTypeDebugInfo) 2470 { 2471 DWARFCallFrameInfo eh_frame(*this, eh_frame_section_sp, eRegisterKindGCC, true); 2472 DWARFCallFrameInfo::FunctionAddressAndSizeVector functions; 2473 eh_frame.GetFunctionAddressAndSizeVector (functions); 2474 addr_t text_base_addr = text_section_sp->GetFileAddress(); 2475 size_t count = functions.GetSize(); 2476 for (size_t i = 0; i < count; ++i) 2477 { 2478 const DWARFCallFrameInfo::FunctionAddressAndSizeVector::Entry *func = functions.GetEntryAtIndex (i); 2479 if (func) 2480 { 2481 FunctionStarts::Entry function_start_entry; 2482 function_start_entry.addr = func->base - text_base_addr; 2483 function_starts.Append(function_start_entry); 2484 } 2485 } 2486 } 2487 } 2488 2489 const size_t function_starts_count = function_starts.GetSize(); 2490 2491 const user_id_t TEXT_eh_frame_sectID = 2492 eh_frame_section_sp.get() ? eh_frame_section_sp->GetID() 2493 : static_cast<user_id_t>(NO_SECT); 2494 2495 lldb::offset_t nlist_data_offset = 0; 2496 2497 uint32_t N_SO_index = UINT32_MAX; 2498 2499 MachSymtabSectionInfo section_info (section_list); 2500 std::vector<uint32_t> N_FUN_indexes; 2501 std::vector<uint32_t> N_NSYM_indexes; 2502 std::vector<uint32_t> N_INCL_indexes; 2503 std::vector<uint32_t> N_BRAC_indexes; 2504 std::vector<uint32_t> N_COMM_indexes; 2505 typedef std::multimap <uint64_t, uint32_t> ValueToSymbolIndexMap; 2506 typedef std::map <uint32_t, uint32_t> NListIndexToSymbolIndexMap; 2507 typedef std::map <const char *, uint32_t> ConstNameToSymbolIndexMap; 2508 ValueToSymbolIndexMap N_FUN_addr_to_sym_idx; 2509 ValueToSymbolIndexMap N_STSYM_addr_to_sym_idx; 2510 ConstNameToSymbolIndexMap N_GSYM_name_to_sym_idx; 2511 // Any symbols that get merged into another will get an entry 2512 // in this map so we know 2513 NListIndexToSymbolIndexMap m_nlist_idx_to_sym_idx; 2514 uint32_t nlist_idx = 0; 2515 Symbol *symbol_ptr = NULL; 2516 2517 uint32_t sym_idx = 0; 2518 Symbol *sym = NULL; 2519 size_t num_syms = 0; 2520 std::string memory_symbol_name; 2521 uint32_t unmapped_local_symbols_found = 0; 2522 2523 std::vector<TrieEntryWithOffset> trie_entries; 2524 std::set<lldb::addr_t> resolver_addresses; 2525 2526 if (dyld_trie_data.GetByteSize() > 0) 2527 { 2528 std::vector<llvm::StringRef> nameSlices; 2529 ParseTrieEntries (dyld_trie_data, 2530 0, 2531 nameSlices, 2532 resolver_addresses, 2533 trie_entries); 2534 2535 ConstString text_segment_name ("__TEXT"); 2536 SectionSP text_segment_sp = GetSectionList()->FindSectionByName(text_segment_name); 2537 if (text_segment_sp) 2538 { 2539 const lldb::addr_t text_segment_file_addr = text_segment_sp->GetFileAddress(); 2540 if (text_segment_file_addr != LLDB_INVALID_ADDRESS) 2541 { 2542 for (auto &e : trie_entries) 2543 e.entry.address += text_segment_file_addr; 2544 } 2545 } 2546 } 2547 2548 typedef std::set<ConstString> IndirectSymbols; 2549 IndirectSymbols indirect_symbol_names; 2550 2551 #if defined (__APPLE__) && (defined (__arm__) || defined (__arm64__) || defined (__aarch64__)) 2552 2553 // Some recent builds of the dyld_shared_cache (hereafter: DSC) have been optimized by moving LOCAL 2554 // symbols out of the memory mapped portion of the DSC. The symbol information has all been retained, 2555 // but it isn't available in the normal nlist data. However, there *are* duplicate entries of *some* 2556 // LOCAL symbols in the normal nlist data. To handle this situation correctly, we must first attempt 2557 // to parse any DSC unmapped symbol information. If we find any, we set a flag that tells the normal 2558 // nlist parser to ignore all LOCAL symbols. 2559 2560 if (m_header.flags & 0x80000000u) 2561 { 2562 // Before we can start mapping the DSC, we need to make certain the target process is actually 2563 // using the cache we can find. 2564 2565 // Next we need to determine the correct path for the dyld shared cache. 2566 2567 ArchSpec header_arch; 2568 GetArchitecture(header_arch); 2569 char dsc_path[PATH_MAX]; 2570 2571 snprintf(dsc_path, sizeof(dsc_path), "%s%s%s", 2572 "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR */ 2573 "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */ 2574 header_arch.GetArchitectureName()); 2575 2576 FileSpec dsc_filespec(dsc_path, false); 2577 2578 // We need definitions of two structures in the on-disk DSC, copy them here manually 2579 struct lldb_copy_dyld_cache_header_v0 2580 { 2581 char magic[16]; // e.g. "dyld_v0 i386", "dyld_v1 armv7", etc. 2582 uint32_t mappingOffset; // file offset to first dyld_cache_mapping_info 2583 uint32_t mappingCount; // number of dyld_cache_mapping_info entries 2584 uint32_t imagesOffset; 2585 uint32_t imagesCount; 2586 uint64_t dyldBaseAddress; 2587 uint64_t codeSignatureOffset; 2588 uint64_t codeSignatureSize; 2589 uint64_t slideInfoOffset; 2590 uint64_t slideInfoSize; 2591 uint64_t localSymbolsOffset; // file offset of where local symbols are stored 2592 uint64_t localSymbolsSize; // size of local symbols information 2593 }; 2594 struct lldb_copy_dyld_cache_header_v1 2595 { 2596 char magic[16]; // e.g. "dyld_v0 i386", "dyld_v1 armv7", etc. 2597 uint32_t mappingOffset; // file offset to first dyld_cache_mapping_info 2598 uint32_t mappingCount; // number of dyld_cache_mapping_info entries 2599 uint32_t imagesOffset; 2600 uint32_t imagesCount; 2601 uint64_t dyldBaseAddress; 2602 uint64_t codeSignatureOffset; 2603 uint64_t codeSignatureSize; 2604 uint64_t slideInfoOffset; 2605 uint64_t slideInfoSize; 2606 uint64_t localSymbolsOffset; 2607 uint64_t localSymbolsSize; 2608 uint8_t uuid[16]; // v1 and above, also recorded in dyld_all_image_infos v13 and later 2609 }; 2610 2611 struct lldb_copy_dyld_cache_mapping_info 2612 { 2613 uint64_t address; 2614 uint64_t size; 2615 uint64_t fileOffset; 2616 uint32_t maxProt; 2617 uint32_t initProt; 2618 }; 2619 2620 struct lldb_copy_dyld_cache_local_symbols_info 2621 { 2622 uint32_t nlistOffset; 2623 uint32_t nlistCount; 2624 uint32_t stringsOffset; 2625 uint32_t stringsSize; 2626 uint32_t entriesOffset; 2627 uint32_t entriesCount; 2628 }; 2629 struct lldb_copy_dyld_cache_local_symbols_entry 2630 { 2631 uint32_t dylibOffset; 2632 uint32_t nlistStartIndex; 2633 uint32_t nlistCount; 2634 }; 2635 2636 /* The dyld_cache_header has a pointer to the dyld_cache_local_symbols_info structure (localSymbolsOffset). 2637 The dyld_cache_local_symbols_info structure gives us three things: 2638 1. The start and count of the nlist records in the dyld_shared_cache file 2639 2. The start and size of the strings for these nlist records 2640 3. The start and count of dyld_cache_local_symbols_entry entries 2641 2642 There is one dyld_cache_local_symbols_entry per dylib/framework in the dyld shared cache. 2643 The "dylibOffset" field is the Mach-O header of this dylib/framework in the dyld shared cache. 2644 The dyld_cache_local_symbols_entry also lists the start of this dylib/framework's nlist records 2645 and the count of how many nlist records there are for this dylib/framework. 2646 */ 2647 2648 // Process the dsc header to find the unmapped symbols 2649 // 2650 // Save some VM space, do not map the entire cache in one shot. 2651 2652 DataBufferSP dsc_data_sp; 2653 dsc_data_sp = dsc_filespec.MemoryMapFileContentsIfLocal(0, sizeof(struct lldb_copy_dyld_cache_header_v1)); 2654 2655 if (dsc_data_sp) 2656 { 2657 DataExtractor dsc_header_data(dsc_data_sp, byte_order, addr_byte_size); 2658 2659 char version_str[17]; 2660 int version = -1; 2661 lldb::offset_t offset = 0; 2662 memcpy (version_str, dsc_header_data.GetData (&offset, 16), 16); 2663 version_str[16] = '\0'; 2664 if (strncmp (version_str, "dyld_v", 6) == 0 && isdigit (version_str[6])) 2665 { 2666 int v; 2667 if (::sscanf (version_str + 6, "%d", &v) == 1) 2668 { 2669 version = v; 2670 } 2671 } 2672 2673 UUID dsc_uuid; 2674 if (version >= 1) 2675 { 2676 offset = offsetof (struct lldb_copy_dyld_cache_header_v1, uuid); 2677 uint8_t uuid_bytes[sizeof (uuid_t)]; 2678 memcpy (uuid_bytes, dsc_header_data.GetData (&offset, sizeof (uuid_t)), sizeof (uuid_t)); 2679 dsc_uuid.SetBytes (uuid_bytes); 2680 } 2681 2682 bool uuid_match = true; 2683 if (dsc_uuid.IsValid() && process) 2684 { 2685 UUID shared_cache_uuid(GetProcessSharedCacheUUID(process)); 2686 2687 if (shared_cache_uuid.IsValid() && dsc_uuid != shared_cache_uuid) 2688 { 2689 // The on-disk dyld_shared_cache file is not the same as the one in this 2690 // process' memory, don't use it. 2691 uuid_match = false; 2692 ModuleSP module_sp (GetModule()); 2693 if (module_sp) 2694 module_sp->ReportWarning ("process shared cache does not match on-disk dyld_shared_cache file, some symbol names will be missing."); 2695 } 2696 } 2697 2698 offset = offsetof (struct lldb_copy_dyld_cache_header_v1, mappingOffset); 2699 2700 uint32_t mappingOffset = dsc_header_data.GetU32(&offset); 2701 2702 // If the mappingOffset points to a location inside the header, we've 2703 // opened an old dyld shared cache, and should not proceed further. 2704 if (uuid_match && mappingOffset >= sizeof(struct lldb_copy_dyld_cache_header_v0)) 2705 { 2706 2707 DataBufferSP dsc_mapping_info_data_sp = dsc_filespec.MemoryMapFileContentsIfLocal(mappingOffset, sizeof (struct lldb_copy_dyld_cache_mapping_info)); 2708 DataExtractor dsc_mapping_info_data(dsc_mapping_info_data_sp, byte_order, addr_byte_size); 2709 offset = 0; 2710 2711 // The File addresses (from the in-memory Mach-O load commands) for the shared libraries 2712 // in the shared library cache need to be adjusted by an offset to match up with the 2713 // dylibOffset identifying field in the dyld_cache_local_symbol_entry's. This offset is 2714 // recorded in mapping_offset_value. 2715 const uint64_t mapping_offset_value = dsc_mapping_info_data.GetU64(&offset); 2716 2717 offset = offsetof (struct lldb_copy_dyld_cache_header_v1, localSymbolsOffset); 2718 uint64_t localSymbolsOffset = dsc_header_data.GetU64(&offset); 2719 uint64_t localSymbolsSize = dsc_header_data.GetU64(&offset); 2720 2721 if (localSymbolsOffset && localSymbolsSize) 2722 { 2723 // Map the local symbols 2724 if (DataBufferSP dsc_local_symbols_data_sp = dsc_filespec.MemoryMapFileContentsIfLocal(localSymbolsOffset, localSymbolsSize)) 2725 { 2726 DataExtractor dsc_local_symbols_data(dsc_local_symbols_data_sp, byte_order, addr_byte_size); 2727 2728 offset = 0; 2729 2730 typedef std::map<ConstString, uint16_t> UndefinedNameToDescMap; 2731 typedef std::map<uint32_t, ConstString> SymbolIndexToName; 2732 UndefinedNameToDescMap undefined_name_to_desc; 2733 SymbolIndexToName reexport_shlib_needs_fixup; 2734 2735 2736 // Read the local_symbols_infos struct in one shot 2737 struct lldb_copy_dyld_cache_local_symbols_info local_symbols_info; 2738 dsc_local_symbols_data.GetU32(&offset, &local_symbols_info.nlistOffset, 6); 2739 2740 SectionSP text_section_sp(section_list->FindSectionByName(GetSegmentNameTEXT())); 2741 2742 uint32_t header_file_offset = (text_section_sp->GetFileAddress() - mapping_offset_value); 2743 2744 offset = local_symbols_info.entriesOffset; 2745 for (uint32_t entry_index = 0; entry_index < local_symbols_info.entriesCount; entry_index++) 2746 { 2747 struct lldb_copy_dyld_cache_local_symbols_entry local_symbols_entry; 2748 local_symbols_entry.dylibOffset = dsc_local_symbols_data.GetU32(&offset); 2749 local_symbols_entry.nlistStartIndex = dsc_local_symbols_data.GetU32(&offset); 2750 local_symbols_entry.nlistCount = dsc_local_symbols_data.GetU32(&offset); 2751 2752 if (header_file_offset == local_symbols_entry.dylibOffset) 2753 { 2754 unmapped_local_symbols_found = local_symbols_entry.nlistCount; 2755 2756 // The normal nlist code cannot correctly size the Symbols array, we need to allocate it here. 2757 sym = symtab->Resize (symtab_load_command.nsyms + m_dysymtab.nindirectsyms + unmapped_local_symbols_found - m_dysymtab.nlocalsym); 2758 num_syms = symtab->GetNumSymbols(); 2759 2760 nlist_data_offset = local_symbols_info.nlistOffset + (nlist_byte_size * local_symbols_entry.nlistStartIndex); 2761 uint32_t string_table_offset = local_symbols_info.stringsOffset; 2762 2763 for (uint32_t nlist_index = 0; nlist_index < local_symbols_entry.nlistCount; nlist_index++) 2764 { 2765 ///////////////////////////// 2766 { 2767 struct nlist_64 nlist; 2768 if (!dsc_local_symbols_data.ValidOffsetForDataOfSize(nlist_data_offset, nlist_byte_size)) 2769 break; 2770 2771 nlist.n_strx = dsc_local_symbols_data.GetU32_unchecked(&nlist_data_offset); 2772 nlist.n_type = dsc_local_symbols_data.GetU8_unchecked (&nlist_data_offset); 2773 nlist.n_sect = dsc_local_symbols_data.GetU8_unchecked (&nlist_data_offset); 2774 nlist.n_desc = dsc_local_symbols_data.GetU16_unchecked (&nlist_data_offset); 2775 nlist.n_value = dsc_local_symbols_data.GetAddress_unchecked (&nlist_data_offset); 2776 2777 SymbolType type = eSymbolTypeInvalid; 2778 const char *symbol_name = dsc_local_symbols_data.PeekCStr(string_table_offset + nlist.n_strx); 2779 2780 if (symbol_name == NULL) 2781 { 2782 // No symbol should be NULL, even the symbols with no 2783 // string values should have an offset zero which points 2784 // to an empty C-string 2785 Host::SystemLog (Host::eSystemLogError, 2786 "error: DSC unmapped local symbol[%u] has invalid string table offset 0x%x in %s, ignoring symbol\n", 2787 entry_index, 2788 nlist.n_strx, 2789 module_sp->GetFileSpec().GetPath().c_str()); 2790 continue; 2791 } 2792 if (symbol_name[0] == '\0') 2793 symbol_name = NULL; 2794 2795 const char *symbol_name_non_abi_mangled = NULL; 2796 2797 SectionSP symbol_section; 2798 uint32_t symbol_byte_size = 0; 2799 bool add_nlist = true; 2800 bool is_debug = ((nlist.n_type & N_STAB) != 0); 2801 bool demangled_is_synthesized = false; 2802 bool is_gsym = false; 2803 bool set_value = true; 2804 2805 assert (sym_idx < num_syms); 2806 2807 sym[sym_idx].SetDebug (is_debug); 2808 2809 if (is_debug) 2810 { 2811 switch (nlist.n_type) 2812 { 2813 case N_GSYM: 2814 // global symbol: name,,NO_SECT,type,0 2815 // Sometimes the N_GSYM value contains the address. 2816 2817 // FIXME: In the .o files, we have a GSYM and a debug symbol for all the ObjC data. They 2818 // have the same address, but we want to ensure that we always find only the real symbol, 2819 // 'cause we don't currently correctly attribute the GSYM one to the ObjCClass/Ivar/MetaClass 2820 // symbol type. This is a temporary hack to make sure the ObjectiveC symbols get treated 2821 // correctly. To do this right, we should coalesce all the GSYM & global symbols that have the 2822 // same address. 2823 2824 if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O' 2825 && (strncmp (symbol_name, "_OBJC_IVAR_$_", strlen ("_OBJC_IVAR_$_")) == 0 2826 || strncmp (symbol_name, "_OBJC_CLASS_$_", strlen ("_OBJC_CLASS_$_")) == 0 2827 || strncmp (symbol_name, "_OBJC_METACLASS_$_", strlen ("_OBJC_METACLASS_$_")) == 0)) 2828 add_nlist = false; 2829 else 2830 { 2831 is_gsym = true; 2832 sym[sym_idx].SetExternal(true); 2833 if (nlist.n_value != 0) 2834 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2835 type = eSymbolTypeData; 2836 } 2837 break; 2838 2839 case N_FNAME: 2840 // procedure name (f77 kludge): name,,NO_SECT,0,0 2841 type = eSymbolTypeCompiler; 2842 break; 2843 2844 case N_FUN: 2845 // procedure: name,,n_sect,linenumber,address 2846 if (symbol_name) 2847 { 2848 type = eSymbolTypeCode; 2849 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2850 2851 N_FUN_addr_to_sym_idx.insert(std::make_pair(nlist.n_value, sym_idx)); 2852 // We use the current number of symbols in the symbol table in lieu of 2853 // using nlist_idx in case we ever start trimming entries out 2854 N_FUN_indexes.push_back(sym_idx); 2855 } 2856 else 2857 { 2858 type = eSymbolTypeCompiler; 2859 2860 if ( !N_FUN_indexes.empty() ) 2861 { 2862 // Copy the size of the function into the original STAB entry so we don't have 2863 // to hunt for it later 2864 symtab->SymbolAtIndex(N_FUN_indexes.back())->SetByteSize(nlist.n_value); 2865 N_FUN_indexes.pop_back(); 2866 // We don't really need the end function STAB as it contains the size which 2867 // we already placed with the original symbol, so don't add it if we want a 2868 // minimal symbol table 2869 add_nlist = false; 2870 } 2871 } 2872 break; 2873 2874 case N_STSYM: 2875 // static symbol: name,,n_sect,type,address 2876 N_STSYM_addr_to_sym_idx.insert(std::make_pair(nlist.n_value, sym_idx)); 2877 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2878 type = eSymbolTypeData; 2879 break; 2880 2881 case N_LCSYM: 2882 // .lcomm symbol: name,,n_sect,type,address 2883 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2884 type = eSymbolTypeCommonBlock; 2885 break; 2886 2887 case N_BNSYM: 2888 // We use the current number of symbols in the symbol table in lieu of 2889 // using nlist_idx in case we ever start trimming entries out 2890 // Skip these if we want minimal symbol tables 2891 add_nlist = false; 2892 break; 2893 2894 case N_ENSYM: 2895 // Set the size of the N_BNSYM to the terminating index of this N_ENSYM 2896 // so that we can always skip the entire symbol if we need to navigate 2897 // more quickly at the source level when parsing STABS 2898 // Skip these if we want minimal symbol tables 2899 add_nlist = false; 2900 break; 2901 2902 2903 case N_OPT: 2904 // emitted with gcc2_compiled and in gcc source 2905 type = eSymbolTypeCompiler; 2906 break; 2907 2908 case N_RSYM: 2909 // register sym: name,,NO_SECT,type,register 2910 type = eSymbolTypeVariable; 2911 break; 2912 2913 case N_SLINE: 2914 // src line: 0,,n_sect,linenumber,address 2915 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2916 type = eSymbolTypeLineEntry; 2917 break; 2918 2919 case N_SSYM: 2920 // structure elt: name,,NO_SECT,type,struct_offset 2921 type = eSymbolTypeVariableType; 2922 break; 2923 2924 case N_SO: 2925 // source file name 2926 type = eSymbolTypeSourceFile; 2927 if (symbol_name == NULL) 2928 { 2929 add_nlist = false; 2930 if (N_SO_index != UINT32_MAX) 2931 { 2932 // Set the size of the N_SO to the terminating index of this N_SO 2933 // so that we can always skip the entire N_SO if we need to navigate 2934 // more quickly at the source level when parsing STABS 2935 symbol_ptr = symtab->SymbolAtIndex(N_SO_index); 2936 symbol_ptr->SetByteSize(sym_idx); 2937 symbol_ptr->SetSizeIsSibling(true); 2938 } 2939 N_NSYM_indexes.clear(); 2940 N_INCL_indexes.clear(); 2941 N_BRAC_indexes.clear(); 2942 N_COMM_indexes.clear(); 2943 N_FUN_indexes.clear(); 2944 N_SO_index = UINT32_MAX; 2945 } 2946 else 2947 { 2948 // We use the current number of symbols in the symbol table in lieu of 2949 // using nlist_idx in case we ever start trimming entries out 2950 const bool N_SO_has_full_path = symbol_name[0] == '/'; 2951 if (N_SO_has_full_path) 2952 { 2953 if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) 2954 { 2955 // We have two consecutive N_SO entries where the first contains a directory 2956 // and the second contains a full path. 2957 sym[sym_idx - 1].GetMangled().SetValue(ConstString(symbol_name), false); 2958 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 2959 add_nlist = false; 2960 } 2961 else 2962 { 2963 // This is the first entry in a N_SO that contains a directory or 2964 // a full path to the source file 2965 N_SO_index = sym_idx; 2966 } 2967 } 2968 else if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) 2969 { 2970 // This is usually the second N_SO entry that contains just the filename, 2971 // so here we combine it with the first one if we are minimizing the symbol table 2972 const char *so_path = sym[sym_idx - 1].GetMangled().GetDemangledName().AsCString(); 2973 if (so_path && so_path[0]) 2974 { 2975 std::string full_so_path (so_path); 2976 const size_t double_slash_pos = full_so_path.find("//"); 2977 if (double_slash_pos != std::string::npos) 2978 { 2979 // The linker has been generating bad N_SO entries with doubled up paths 2980 // in the format "%s%s" where the first string in the DW_AT_comp_dir, 2981 // and the second is the directory for the source file so you end up with 2982 // a path that looks like "/tmp/src//tmp/src/" 2983 FileSpec so_dir(so_path, false); 2984 if (!so_dir.Exists()) 2985 { 2986 so_dir.SetFile(&full_so_path[double_slash_pos + 1], false); 2987 if (so_dir.Exists()) 2988 { 2989 // Trim off the incorrect path 2990 full_so_path.erase(0, double_slash_pos + 1); 2991 } 2992 } 2993 } 2994 if (*full_so_path.rbegin() != '/') 2995 full_so_path += '/'; 2996 full_so_path += symbol_name; 2997 sym[sym_idx - 1].GetMangled().SetValue(ConstString(full_so_path.c_str()), false); 2998 add_nlist = false; 2999 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 3000 } 3001 } 3002 else 3003 { 3004 // This could be a relative path to a N_SO 3005 N_SO_index = sym_idx; 3006 } 3007 } 3008 break; 3009 3010 case N_OSO: 3011 // object file name: name,,0,0,st_mtime 3012 type = eSymbolTypeObjectFile; 3013 break; 3014 3015 case N_LSYM: 3016 // local sym: name,,NO_SECT,type,offset 3017 type = eSymbolTypeLocal; 3018 break; 3019 3020 //---------------------------------------------------------------------- 3021 // INCL scopes 3022 //---------------------------------------------------------------------- 3023 case N_BINCL: 3024 // include file beginning: name,,NO_SECT,0,sum 3025 // We use the current number of symbols in the symbol table in lieu of 3026 // using nlist_idx in case we ever start trimming entries out 3027 N_INCL_indexes.push_back(sym_idx); 3028 type = eSymbolTypeScopeBegin; 3029 break; 3030 3031 case N_EINCL: 3032 // include file end: name,,NO_SECT,0,0 3033 // Set the size of the N_BINCL to the terminating index of this N_EINCL 3034 // so that we can always skip the entire symbol if we need to navigate 3035 // more quickly at the source level when parsing STABS 3036 if ( !N_INCL_indexes.empty() ) 3037 { 3038 symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back()); 3039 symbol_ptr->SetByteSize(sym_idx + 1); 3040 symbol_ptr->SetSizeIsSibling(true); 3041 N_INCL_indexes.pop_back(); 3042 } 3043 type = eSymbolTypeScopeEnd; 3044 break; 3045 3046 case N_SOL: 3047 // #included file name: name,,n_sect,0,address 3048 type = eSymbolTypeHeaderFile; 3049 3050 // We currently don't use the header files on darwin 3051 add_nlist = false; 3052 break; 3053 3054 case N_PARAMS: 3055 // compiler parameters: name,,NO_SECT,0,0 3056 type = eSymbolTypeCompiler; 3057 break; 3058 3059 case N_VERSION: 3060 // compiler version: name,,NO_SECT,0,0 3061 type = eSymbolTypeCompiler; 3062 break; 3063 3064 case N_OLEVEL: 3065 // compiler -O level: name,,NO_SECT,0,0 3066 type = eSymbolTypeCompiler; 3067 break; 3068 3069 case N_PSYM: 3070 // parameter: name,,NO_SECT,type,offset 3071 type = eSymbolTypeVariable; 3072 break; 3073 3074 case N_ENTRY: 3075 // alternate entry: name,,n_sect,linenumber,address 3076 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3077 type = eSymbolTypeLineEntry; 3078 break; 3079 3080 //---------------------------------------------------------------------- 3081 // Left and Right Braces 3082 //---------------------------------------------------------------------- 3083 case N_LBRAC: 3084 // left bracket: 0,,NO_SECT,nesting level,address 3085 // We use the current number of symbols in the symbol table in lieu of 3086 // using nlist_idx in case we ever start trimming entries out 3087 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3088 N_BRAC_indexes.push_back(sym_idx); 3089 type = eSymbolTypeScopeBegin; 3090 break; 3091 3092 case N_RBRAC: 3093 // right bracket: 0,,NO_SECT,nesting level,address 3094 // Set the size of the N_LBRAC to the terminating index of this N_RBRAC 3095 // so that we can always skip the entire symbol if we need to navigate 3096 // more quickly at the source level when parsing STABS 3097 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3098 if ( !N_BRAC_indexes.empty() ) 3099 { 3100 symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back()); 3101 symbol_ptr->SetByteSize(sym_idx + 1); 3102 symbol_ptr->SetSizeIsSibling(true); 3103 N_BRAC_indexes.pop_back(); 3104 } 3105 type = eSymbolTypeScopeEnd; 3106 break; 3107 3108 case N_EXCL: 3109 // deleted include file: name,,NO_SECT,0,sum 3110 type = eSymbolTypeHeaderFile; 3111 break; 3112 3113 //---------------------------------------------------------------------- 3114 // COMM scopes 3115 //---------------------------------------------------------------------- 3116 case N_BCOMM: 3117 // begin common: name,,NO_SECT,0,0 3118 // We use the current number of symbols in the symbol table in lieu of 3119 // using nlist_idx in case we ever start trimming entries out 3120 type = eSymbolTypeScopeBegin; 3121 N_COMM_indexes.push_back(sym_idx); 3122 break; 3123 3124 case N_ECOML: 3125 // end common (local name): 0,,n_sect,0,address 3126 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3127 // Fall through 3128 3129 case N_ECOMM: 3130 // end common: name,,n_sect,0,0 3131 // Set the size of the N_BCOMM to the terminating index of this N_ECOMM/N_ECOML 3132 // so that we can always skip the entire symbol if we need to navigate 3133 // more quickly at the source level when parsing STABS 3134 if ( !N_COMM_indexes.empty() ) 3135 { 3136 symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back()); 3137 symbol_ptr->SetByteSize(sym_idx + 1); 3138 symbol_ptr->SetSizeIsSibling(true); 3139 N_COMM_indexes.pop_back(); 3140 } 3141 type = eSymbolTypeScopeEnd; 3142 break; 3143 3144 case N_LENG: 3145 // second stab entry with length information 3146 type = eSymbolTypeAdditional; 3147 break; 3148 3149 default: break; 3150 } 3151 } 3152 else 3153 { 3154 //uint8_t n_pext = N_PEXT & nlist.n_type; 3155 uint8_t n_type = N_TYPE & nlist.n_type; 3156 sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0); 3157 3158 switch (n_type) 3159 { 3160 case N_INDR: 3161 { 3162 const char *reexport_name_cstr = strtab_data.PeekCStr(nlist.n_value); 3163 if (reexport_name_cstr && reexport_name_cstr[0]) 3164 { 3165 type = eSymbolTypeReExported; 3166 ConstString reexport_name(reexport_name_cstr + ((reexport_name_cstr[0] == '_') ? 1 : 0)); 3167 sym[sym_idx].SetReExportedSymbolName(reexport_name); 3168 set_value = false; 3169 reexport_shlib_needs_fixup[sym_idx] = reexport_name; 3170 indirect_symbol_names.insert(ConstString(symbol_name + ((symbol_name[0] == '_') ? 1 : 0))); 3171 } 3172 else 3173 type = eSymbolTypeUndefined; 3174 } 3175 break; 3176 3177 case N_UNDF: 3178 { 3179 ConstString undefined_name(symbol_name + ((symbol_name[0] == '_') ? 1 : 0)); 3180 undefined_name_to_desc[undefined_name] = nlist.n_desc; 3181 } 3182 // Fall through 3183 case N_PBUD: 3184 type = eSymbolTypeUndefined; 3185 break; 3186 3187 case N_ABS: 3188 type = eSymbolTypeAbsolute; 3189 break; 3190 3191 case N_SECT: 3192 { 3193 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3194 3195 if (symbol_section == NULL) 3196 { 3197 // TODO: warn about this? 3198 add_nlist = false; 3199 break; 3200 } 3201 3202 if (TEXT_eh_frame_sectID == nlist.n_sect) 3203 { 3204 type = eSymbolTypeException; 3205 } 3206 else 3207 { 3208 uint32_t section_type = symbol_section->Get() & SECTION_TYPE; 3209 3210 switch (section_type) 3211 { 3212 case S_CSTRING_LITERALS: type = eSymbolTypeData; break; // section with only literal C strings 3213 case S_4BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 4 byte literals 3214 case S_8BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 8 byte literals 3215 case S_LITERAL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only pointers to literals 3216 case S_NON_LAZY_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only non-lazy symbol pointers 3217 case S_LAZY_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only lazy symbol pointers 3218 case S_SYMBOL_STUBS: type = eSymbolTypeTrampoline; break; // section with only symbol stubs, byte size of stub in the reserved2 field 3219 case S_MOD_INIT_FUNC_POINTERS: type = eSymbolTypeCode; break; // section with only function pointers for initialization 3220 case S_MOD_TERM_FUNC_POINTERS: type = eSymbolTypeCode; break; // section with only function pointers for termination 3221 case S_INTERPOSING: type = eSymbolTypeTrampoline; break; // section with only pairs of function pointers for interposing 3222 case S_16BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 16 byte literals 3223 case S_DTRACE_DOF: type = eSymbolTypeInstrumentation; break; 3224 case S_LAZY_DYLIB_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; 3225 default: 3226 switch (symbol_section->GetType()) 3227 { 3228 case lldb::eSectionTypeCode: 3229 type = eSymbolTypeCode; 3230 break; 3231 case eSectionTypeData: 3232 case eSectionTypeDataCString: // Inlined C string data 3233 case eSectionTypeDataCStringPointers: // Pointers to C string data 3234 case eSectionTypeDataSymbolAddress: // Address of a symbol in the symbol table 3235 case eSectionTypeData4: 3236 case eSectionTypeData8: 3237 case eSectionTypeData16: 3238 type = eSymbolTypeData; 3239 break; 3240 default: 3241 break; 3242 } 3243 break; 3244 } 3245 3246 if (type == eSymbolTypeInvalid) 3247 { 3248 const char *symbol_sect_name = symbol_section->GetName().AsCString(); 3249 if (symbol_section->IsDescendant (text_section_sp.get())) 3250 { 3251 if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS | 3252 S_ATTR_SELF_MODIFYING_CODE | 3253 S_ATTR_SOME_INSTRUCTIONS)) 3254 type = eSymbolTypeData; 3255 else 3256 type = eSymbolTypeCode; 3257 } 3258 else if (symbol_section->IsDescendant(data_section_sp.get())) 3259 { 3260 if (symbol_sect_name && ::strstr (symbol_sect_name, "__objc") == symbol_sect_name) 3261 { 3262 type = eSymbolTypeRuntime; 3263 3264 if (symbol_name && 3265 symbol_name[0] == '_' && 3266 symbol_name[1] == 'O' && 3267 symbol_name[2] == 'B') 3268 { 3269 llvm::StringRef symbol_name_ref(symbol_name); 3270 static const llvm::StringRef g_objc_v2_prefix_class ("_OBJC_CLASS_$_"); 3271 static const llvm::StringRef g_objc_v2_prefix_metaclass ("_OBJC_METACLASS_$_"); 3272 static const llvm::StringRef g_objc_v2_prefix_ivar ("_OBJC_IVAR_$_"); 3273 if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) 3274 { 3275 symbol_name_non_abi_mangled = symbol_name + 1; 3276 symbol_name = symbol_name + g_objc_v2_prefix_class.size(); 3277 type = eSymbolTypeObjCClass; 3278 demangled_is_synthesized = true; 3279 } 3280 else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) 3281 { 3282 symbol_name_non_abi_mangled = symbol_name + 1; 3283 symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size(); 3284 type = eSymbolTypeObjCMetaClass; 3285 demangled_is_synthesized = true; 3286 } 3287 else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) 3288 { 3289 symbol_name_non_abi_mangled = symbol_name + 1; 3290 symbol_name = symbol_name + g_objc_v2_prefix_ivar.size(); 3291 type = eSymbolTypeObjCIVar; 3292 demangled_is_synthesized = true; 3293 } 3294 } 3295 } 3296 else if (symbol_sect_name && ::strstr (symbol_sect_name, "__gcc_except_tab") == symbol_sect_name) 3297 { 3298 type = eSymbolTypeException; 3299 } 3300 else 3301 { 3302 type = eSymbolTypeData; 3303 } 3304 } 3305 else if (symbol_sect_name && ::strstr (symbol_sect_name, "__IMPORT") == symbol_sect_name) 3306 { 3307 type = eSymbolTypeTrampoline; 3308 } 3309 else if (symbol_section->IsDescendant(objc_section_sp.get())) 3310 { 3311 type = eSymbolTypeRuntime; 3312 if (symbol_name && symbol_name[0] == '.') 3313 { 3314 llvm::StringRef symbol_name_ref(symbol_name); 3315 static const llvm::StringRef g_objc_v1_prefix_class (".objc_class_name_"); 3316 if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) 3317 { 3318 symbol_name_non_abi_mangled = symbol_name; 3319 symbol_name = symbol_name + g_objc_v1_prefix_class.size(); 3320 type = eSymbolTypeObjCClass; 3321 demangled_is_synthesized = true; 3322 } 3323 } 3324 } 3325 } 3326 } 3327 } 3328 break; 3329 } 3330 } 3331 3332 if (add_nlist) 3333 { 3334 uint64_t symbol_value = nlist.n_value; 3335 if (symbol_name_non_abi_mangled) 3336 { 3337 sym[sym_idx].GetMangled().SetMangledName (ConstString(symbol_name_non_abi_mangled)); 3338 sym[sym_idx].GetMangled().SetDemangledName (ConstString(symbol_name)); 3339 } 3340 else 3341 { 3342 bool symbol_name_is_mangled = false; 3343 3344 if (symbol_name && symbol_name[0] == '_') 3345 { 3346 symbol_name_is_mangled = symbol_name[1] == '_'; 3347 symbol_name++; // Skip the leading underscore 3348 } 3349 3350 if (symbol_name) 3351 { 3352 ConstString const_symbol_name(symbol_name); 3353 sym[sym_idx].GetMangled().SetValue(const_symbol_name, symbol_name_is_mangled); 3354 if (is_gsym && is_debug) 3355 N_GSYM_name_to_sym_idx[sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled).GetCString()] = sym_idx; 3356 } 3357 } 3358 if (symbol_section) 3359 { 3360 const addr_t section_file_addr = symbol_section->GetFileAddress(); 3361 if (symbol_byte_size == 0 && function_starts_count > 0) 3362 { 3363 addr_t symbol_lookup_file_addr = nlist.n_value; 3364 // Do an exact address match for non-ARM addresses, else get the closest since 3365 // the symbol might be a thumb symbol which has an address with bit zero set 3366 FunctionStarts::Entry *func_start_entry = function_starts.FindEntry (symbol_lookup_file_addr, !is_arm); 3367 if (is_arm && func_start_entry) 3368 { 3369 // Verify that the function start address is the symbol address (ARM) 3370 // or the symbol address + 1 (thumb) 3371 if (func_start_entry->addr != symbol_lookup_file_addr && 3372 func_start_entry->addr != (symbol_lookup_file_addr + 1)) 3373 { 3374 // Not the right entry, NULL it out... 3375 func_start_entry = NULL; 3376 } 3377 } 3378 if (func_start_entry) 3379 { 3380 func_start_entry->data = true; 3381 3382 addr_t symbol_file_addr = func_start_entry->addr; 3383 uint32_t symbol_flags = 0; 3384 if (is_arm) 3385 { 3386 if (symbol_file_addr & 1) 3387 symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB; 3388 symbol_file_addr &= 0xfffffffffffffffeull; 3389 } 3390 3391 const FunctionStarts::Entry *next_func_start_entry = function_starts.FindNextEntry (func_start_entry); 3392 const addr_t section_end_file_addr = section_file_addr + symbol_section->GetByteSize(); 3393 if (next_func_start_entry) 3394 { 3395 addr_t next_symbol_file_addr = next_func_start_entry->addr; 3396 // Be sure the clear the Thumb address bit when we calculate the size 3397 // from the current and next address 3398 if (is_arm) 3399 next_symbol_file_addr &= 0xfffffffffffffffeull; 3400 symbol_byte_size = std::min<lldb::addr_t>(next_symbol_file_addr - symbol_file_addr, section_end_file_addr - symbol_file_addr); 3401 } 3402 else 3403 { 3404 symbol_byte_size = section_end_file_addr - symbol_file_addr; 3405 } 3406 } 3407 } 3408 symbol_value -= section_file_addr; 3409 } 3410 3411 if (is_debug == false) 3412 { 3413 if (type == eSymbolTypeCode) 3414 { 3415 // See if we can find a N_FUN entry for any code symbols. 3416 // If we do find a match, and the name matches, then we 3417 // can merge the two into just the function symbol to avoid 3418 // duplicate entries in the symbol table 3419 std::pair<ValueToSymbolIndexMap::const_iterator, ValueToSymbolIndexMap::const_iterator> range; 3420 range = N_FUN_addr_to_sym_idx.equal_range(nlist.n_value); 3421 if (range.first != range.second) 3422 { 3423 bool found_it = false; 3424 for (ValueToSymbolIndexMap::const_iterator pos = range.first; pos != range.second; ++pos) 3425 { 3426 if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) == sym[pos->second].GetMangled().GetName(Mangled::ePreferMangled)) 3427 { 3428 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 3429 // We just need the flags from the linker symbol, so put these flags 3430 // into the N_FUN flags to avoid duplicate symbols in the symbol table 3431 sym[pos->second].SetExternal(sym[sym_idx].IsExternal()); 3432 sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc); 3433 if (resolver_addresses.find(nlist.n_value) != resolver_addresses.end()) 3434 sym[pos->second].SetType (eSymbolTypeResolver); 3435 sym[sym_idx].Clear(); 3436 found_it = true; 3437 break; 3438 } 3439 } 3440 if (found_it) 3441 continue; 3442 } 3443 else 3444 { 3445 if (resolver_addresses.find(nlist.n_value) != resolver_addresses.end()) 3446 type = eSymbolTypeResolver; 3447 } 3448 } 3449 else if (type == eSymbolTypeData) 3450 { 3451 // See if we can find a N_STSYM entry for any data symbols. 3452 // If we do find a match, and the name matches, then we 3453 // can merge the two into just the Static symbol to avoid 3454 // duplicate entries in the symbol table 3455 std::pair<ValueToSymbolIndexMap::const_iterator, ValueToSymbolIndexMap::const_iterator> range; 3456 range = N_STSYM_addr_to_sym_idx.equal_range(nlist.n_value); 3457 if (range.first != range.second) 3458 { 3459 bool found_it = false; 3460 for (ValueToSymbolIndexMap::const_iterator pos = range.first; pos != range.second; ++pos) 3461 { 3462 if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) == sym[pos->second].GetMangled().GetName(Mangled::ePreferMangled)) 3463 { 3464 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 3465 // We just need the flags from the linker symbol, so put these flags 3466 // into the N_STSYM flags to avoid duplicate symbols in the symbol table 3467 sym[pos->second].SetExternal(sym[sym_idx].IsExternal()); 3468 sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc); 3469 sym[sym_idx].Clear(); 3470 found_it = true; 3471 break; 3472 } 3473 } 3474 if (found_it) 3475 continue; 3476 } 3477 else 3478 { 3479 // Combine N_GSYM stab entries with the non stab symbol 3480 ConstNameToSymbolIndexMap::const_iterator pos = N_GSYM_name_to_sym_idx.find(sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled).GetCString()); 3481 if (pos != N_GSYM_name_to_sym_idx.end()) 3482 { 3483 const uint32_t GSYM_sym_idx = pos->second; 3484 m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx; 3485 // Copy the address, because often the N_GSYM address has an invalid address of zero 3486 // when the global is a common symbol 3487 sym[GSYM_sym_idx].GetAddress().SetSection (symbol_section); 3488 sym[GSYM_sym_idx].GetAddress().SetOffset (symbol_value); 3489 // We just need the flags from the linker symbol, so put these flags 3490 // into the N_STSYM flags to avoid duplicate symbols in the symbol table 3491 sym[GSYM_sym_idx].SetFlags (nlist.n_type << 16 | nlist.n_desc); 3492 sym[sym_idx].Clear(); 3493 continue; 3494 } 3495 } 3496 } 3497 } 3498 3499 sym[sym_idx].SetID (nlist_idx); 3500 sym[sym_idx].SetType (type); 3501 if (set_value) 3502 { 3503 sym[sym_idx].GetAddress().SetSection (symbol_section); 3504 sym[sym_idx].GetAddress().SetOffset (symbol_value); 3505 } 3506 sym[sym_idx].SetFlags (nlist.n_type << 16 | nlist.n_desc); 3507 3508 if (symbol_byte_size > 0) 3509 sym[sym_idx].SetByteSize(symbol_byte_size); 3510 3511 if (demangled_is_synthesized) 3512 sym[sym_idx].SetDemangledNameIsSynthesized(true); 3513 ++sym_idx; 3514 } 3515 else 3516 { 3517 sym[sym_idx].Clear(); 3518 } 3519 3520 } 3521 ///////////////////////////// 3522 } 3523 break; // No more entries to consider 3524 } 3525 } 3526 3527 for (const auto &pos :reexport_shlib_needs_fixup) 3528 { 3529 const auto undef_pos = undefined_name_to_desc.find(pos.second); 3530 if (undef_pos != undefined_name_to_desc.end()) 3531 { 3532 const uint8_t dylib_ordinal = llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second); 3533 if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize()) 3534 sym[pos.first].SetReExportedSymbolSharedLibrary(dylib_files.GetFileSpecAtIndex(dylib_ordinal-1)); 3535 } 3536 } 3537 } 3538 } 3539 } 3540 } 3541 } 3542 3543 // Must reset this in case it was mutated above! 3544 nlist_data_offset = 0; 3545 #endif 3546 3547 if (nlist_data.GetByteSize() > 0) 3548 { 3549 3550 // If the sym array was not created while parsing the DSC unmapped 3551 // symbols, create it now. 3552 if (sym == NULL) 3553 { 3554 sym = symtab->Resize (symtab_load_command.nsyms + m_dysymtab.nindirectsyms); 3555 num_syms = symtab->GetNumSymbols(); 3556 } 3557 3558 if (unmapped_local_symbols_found) 3559 { 3560 assert(m_dysymtab.ilocalsym == 0); 3561 nlist_data_offset += (m_dysymtab.nlocalsym * nlist_byte_size); 3562 nlist_idx = m_dysymtab.nlocalsym; 3563 } 3564 else 3565 { 3566 nlist_idx = 0; 3567 } 3568 3569 typedef std::map<ConstString, uint16_t> UndefinedNameToDescMap; 3570 typedef std::map<uint32_t, ConstString> SymbolIndexToName; 3571 UndefinedNameToDescMap undefined_name_to_desc; 3572 SymbolIndexToName reexport_shlib_needs_fixup; 3573 for (; nlist_idx < symtab_load_command.nsyms; ++nlist_idx) 3574 { 3575 struct nlist_64 nlist; 3576 if (!nlist_data.ValidOffsetForDataOfSize(nlist_data_offset, nlist_byte_size)) 3577 break; 3578 3579 nlist.n_strx = nlist_data.GetU32_unchecked(&nlist_data_offset); 3580 nlist.n_type = nlist_data.GetU8_unchecked (&nlist_data_offset); 3581 nlist.n_sect = nlist_data.GetU8_unchecked (&nlist_data_offset); 3582 nlist.n_desc = nlist_data.GetU16_unchecked (&nlist_data_offset); 3583 nlist.n_value = nlist_data.GetAddress_unchecked (&nlist_data_offset); 3584 3585 SymbolType type = eSymbolTypeInvalid; 3586 const char *symbol_name = NULL; 3587 3588 if (have_strtab_data) 3589 { 3590 symbol_name = strtab_data.PeekCStr(nlist.n_strx); 3591 3592 if (symbol_name == NULL) 3593 { 3594 // No symbol should be NULL, even the symbols with no 3595 // string values should have an offset zero which points 3596 // to an empty C-string 3597 Host::SystemLog (Host::eSystemLogError, 3598 "error: symbol[%u] has invalid string table offset 0x%x in %s, ignoring symbol\n", 3599 nlist_idx, 3600 nlist.n_strx, 3601 module_sp->GetFileSpec().GetPath().c_str()); 3602 continue; 3603 } 3604 if (symbol_name[0] == '\0') 3605 symbol_name = NULL; 3606 } 3607 else 3608 { 3609 const addr_t str_addr = strtab_addr + nlist.n_strx; 3610 Error str_error; 3611 if (process->ReadCStringFromMemory(str_addr, memory_symbol_name, str_error)) 3612 symbol_name = memory_symbol_name.c_str(); 3613 } 3614 const char *symbol_name_non_abi_mangled = NULL; 3615 3616 SectionSP symbol_section; 3617 lldb::addr_t symbol_byte_size = 0; 3618 bool add_nlist = true; 3619 bool is_gsym = false; 3620 bool is_debug = ((nlist.n_type & N_STAB) != 0); 3621 bool demangled_is_synthesized = false; 3622 bool set_value = true; 3623 assert (sym_idx < num_syms); 3624 3625 sym[sym_idx].SetDebug (is_debug); 3626 3627 if (is_debug) 3628 { 3629 switch (nlist.n_type) 3630 { 3631 case N_GSYM: 3632 // global symbol: name,,NO_SECT,type,0 3633 // Sometimes the N_GSYM value contains the address. 3634 3635 // FIXME: In the .o files, we have a GSYM and a debug symbol for all the ObjC data. They 3636 // have the same address, but we want to ensure that we always find only the real symbol, 3637 // 'cause we don't currently correctly attribute the GSYM one to the ObjCClass/Ivar/MetaClass 3638 // symbol type. This is a temporary hack to make sure the ObjectiveC symbols get treated 3639 // correctly. To do this right, we should coalesce all the GSYM & global symbols that have the 3640 // same address. 3641 3642 if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O' 3643 && (strncmp (symbol_name, "_OBJC_IVAR_$_", strlen ("_OBJC_IVAR_$_")) == 0 3644 || strncmp (symbol_name, "_OBJC_CLASS_$_", strlen ("_OBJC_CLASS_$_")) == 0 3645 || strncmp (symbol_name, "_OBJC_METACLASS_$_", strlen ("_OBJC_METACLASS_$_")) == 0)) 3646 add_nlist = false; 3647 else 3648 { 3649 is_gsym = true; 3650 sym[sym_idx].SetExternal(true); 3651 if (nlist.n_value != 0) 3652 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3653 type = eSymbolTypeData; 3654 } 3655 break; 3656 3657 case N_FNAME: 3658 // procedure name (f77 kludge): name,,NO_SECT,0,0 3659 type = eSymbolTypeCompiler; 3660 break; 3661 3662 case N_FUN: 3663 // procedure: name,,n_sect,linenumber,address 3664 if (symbol_name) 3665 { 3666 type = eSymbolTypeCode; 3667 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3668 3669 N_FUN_addr_to_sym_idx.insert(std::make_pair(nlist.n_value, sym_idx)); 3670 // We use the current number of symbols in the symbol table in lieu of 3671 // using nlist_idx in case we ever start trimming entries out 3672 N_FUN_indexes.push_back(sym_idx); 3673 } 3674 else 3675 { 3676 type = eSymbolTypeCompiler; 3677 3678 if ( !N_FUN_indexes.empty() ) 3679 { 3680 // Copy the size of the function into the original STAB entry so we don't have 3681 // to hunt for it later 3682 symtab->SymbolAtIndex(N_FUN_indexes.back())->SetByteSize(nlist.n_value); 3683 N_FUN_indexes.pop_back(); 3684 // We don't really need the end function STAB as it contains the size which 3685 // we already placed with the original symbol, so don't add it if we want a 3686 // minimal symbol table 3687 add_nlist = false; 3688 } 3689 } 3690 break; 3691 3692 case N_STSYM: 3693 // static symbol: name,,n_sect,type,address 3694 N_STSYM_addr_to_sym_idx.insert(std::make_pair(nlist.n_value, sym_idx)); 3695 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3696 type = eSymbolTypeData; 3697 break; 3698 3699 case N_LCSYM: 3700 // .lcomm symbol: name,,n_sect,type,address 3701 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3702 type = eSymbolTypeCommonBlock; 3703 break; 3704 3705 case N_BNSYM: 3706 // We use the current number of symbols in the symbol table in lieu of 3707 // using nlist_idx in case we ever start trimming entries out 3708 // Skip these if we want minimal symbol tables 3709 add_nlist = false; 3710 break; 3711 3712 case N_ENSYM: 3713 // Set the size of the N_BNSYM to the terminating index of this N_ENSYM 3714 // so that we can always skip the entire symbol if we need to navigate 3715 // more quickly at the source level when parsing STABS 3716 // Skip these if we want minimal symbol tables 3717 add_nlist = false; 3718 break; 3719 3720 3721 case N_OPT: 3722 // emitted with gcc2_compiled and in gcc source 3723 type = eSymbolTypeCompiler; 3724 break; 3725 3726 case N_RSYM: 3727 // register sym: name,,NO_SECT,type,register 3728 type = eSymbolTypeVariable; 3729 break; 3730 3731 case N_SLINE: 3732 // src line: 0,,n_sect,linenumber,address 3733 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3734 type = eSymbolTypeLineEntry; 3735 break; 3736 3737 case N_SSYM: 3738 // structure elt: name,,NO_SECT,type,struct_offset 3739 type = eSymbolTypeVariableType; 3740 break; 3741 3742 case N_SO: 3743 // source file name 3744 type = eSymbolTypeSourceFile; 3745 if (symbol_name == NULL) 3746 { 3747 add_nlist = false; 3748 if (N_SO_index != UINT32_MAX) 3749 { 3750 // Set the size of the N_SO to the terminating index of this N_SO 3751 // so that we can always skip the entire N_SO if we need to navigate 3752 // more quickly at the source level when parsing STABS 3753 symbol_ptr = symtab->SymbolAtIndex(N_SO_index); 3754 symbol_ptr->SetByteSize(sym_idx); 3755 symbol_ptr->SetSizeIsSibling(true); 3756 } 3757 N_NSYM_indexes.clear(); 3758 N_INCL_indexes.clear(); 3759 N_BRAC_indexes.clear(); 3760 N_COMM_indexes.clear(); 3761 N_FUN_indexes.clear(); 3762 N_SO_index = UINT32_MAX; 3763 } 3764 else 3765 { 3766 // We use the current number of symbols in the symbol table in lieu of 3767 // using nlist_idx in case we ever start trimming entries out 3768 const bool N_SO_has_full_path = symbol_name[0] == '/'; 3769 if (N_SO_has_full_path) 3770 { 3771 if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) 3772 { 3773 // We have two consecutive N_SO entries where the first contains a directory 3774 // and the second contains a full path. 3775 sym[sym_idx - 1].GetMangled().SetValue(ConstString(symbol_name), false); 3776 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 3777 add_nlist = false; 3778 } 3779 else 3780 { 3781 // This is the first entry in a N_SO that contains a directory or 3782 // a full path to the source file 3783 N_SO_index = sym_idx; 3784 } 3785 } 3786 else if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) 3787 { 3788 // This is usually the second N_SO entry that contains just the filename, 3789 // so here we combine it with the first one if we are minimizing the symbol table 3790 const char *so_path = sym[sym_idx - 1].GetMangled().GetDemangledName().AsCString(); 3791 if (so_path && so_path[0]) 3792 { 3793 std::string full_so_path (so_path); 3794 const size_t double_slash_pos = full_so_path.find("//"); 3795 if (double_slash_pos != std::string::npos) 3796 { 3797 // The linker has been generating bad N_SO entries with doubled up paths 3798 // in the format "%s%s" where the first string in the DW_AT_comp_dir, 3799 // and the second is the directory for the source file so you end up with 3800 // a path that looks like "/tmp/src//tmp/src/" 3801 FileSpec so_dir(so_path, false); 3802 if (!so_dir.Exists()) 3803 { 3804 so_dir.SetFile(&full_so_path[double_slash_pos + 1], false); 3805 if (so_dir.Exists()) 3806 { 3807 // Trim off the incorrect path 3808 full_so_path.erase(0, double_slash_pos + 1); 3809 } 3810 } 3811 } 3812 if (*full_so_path.rbegin() != '/') 3813 full_so_path += '/'; 3814 full_so_path += symbol_name; 3815 sym[sym_idx - 1].GetMangled().SetValue(ConstString(full_so_path.c_str()), false); 3816 add_nlist = false; 3817 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 3818 } 3819 } 3820 else 3821 { 3822 // This could be a relative path to a N_SO 3823 N_SO_index = sym_idx; 3824 } 3825 } 3826 3827 break; 3828 3829 case N_OSO: 3830 // object file name: name,,0,0,st_mtime 3831 type = eSymbolTypeObjectFile; 3832 break; 3833 3834 case N_LSYM: 3835 // local sym: name,,NO_SECT,type,offset 3836 type = eSymbolTypeLocal; 3837 break; 3838 3839 //---------------------------------------------------------------------- 3840 // INCL scopes 3841 //---------------------------------------------------------------------- 3842 case N_BINCL: 3843 // include file beginning: name,,NO_SECT,0,sum 3844 // We use the current number of symbols in the symbol table in lieu of 3845 // using nlist_idx in case we ever start trimming entries out 3846 N_INCL_indexes.push_back(sym_idx); 3847 type = eSymbolTypeScopeBegin; 3848 break; 3849 3850 case N_EINCL: 3851 // include file end: name,,NO_SECT,0,0 3852 // Set the size of the N_BINCL to the terminating index of this N_EINCL 3853 // so that we can always skip the entire symbol if we need to navigate 3854 // more quickly at the source level when parsing STABS 3855 if ( !N_INCL_indexes.empty() ) 3856 { 3857 symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back()); 3858 symbol_ptr->SetByteSize(sym_idx + 1); 3859 symbol_ptr->SetSizeIsSibling(true); 3860 N_INCL_indexes.pop_back(); 3861 } 3862 type = eSymbolTypeScopeEnd; 3863 break; 3864 3865 case N_SOL: 3866 // #included file name: name,,n_sect,0,address 3867 type = eSymbolTypeHeaderFile; 3868 3869 // We currently don't use the header files on darwin 3870 add_nlist = false; 3871 break; 3872 3873 case N_PARAMS: 3874 // compiler parameters: name,,NO_SECT,0,0 3875 type = eSymbolTypeCompiler; 3876 break; 3877 3878 case N_VERSION: 3879 // compiler version: name,,NO_SECT,0,0 3880 type = eSymbolTypeCompiler; 3881 break; 3882 3883 case N_OLEVEL: 3884 // compiler -O level: name,,NO_SECT,0,0 3885 type = eSymbolTypeCompiler; 3886 break; 3887 3888 case N_PSYM: 3889 // parameter: name,,NO_SECT,type,offset 3890 type = eSymbolTypeVariable; 3891 break; 3892 3893 case N_ENTRY: 3894 // alternate entry: name,,n_sect,linenumber,address 3895 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3896 type = eSymbolTypeLineEntry; 3897 break; 3898 3899 //---------------------------------------------------------------------- 3900 // Left and Right Braces 3901 //---------------------------------------------------------------------- 3902 case N_LBRAC: 3903 // left bracket: 0,,NO_SECT,nesting level,address 3904 // We use the current number of symbols in the symbol table in lieu of 3905 // using nlist_idx in case we ever start trimming entries out 3906 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3907 N_BRAC_indexes.push_back(sym_idx); 3908 type = eSymbolTypeScopeBegin; 3909 break; 3910 3911 case N_RBRAC: 3912 // right bracket: 0,,NO_SECT,nesting level,address 3913 // Set the size of the N_LBRAC to the terminating index of this N_RBRAC 3914 // so that we can always skip the entire symbol if we need to navigate 3915 // more quickly at the source level when parsing STABS 3916 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3917 if ( !N_BRAC_indexes.empty() ) 3918 { 3919 symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back()); 3920 symbol_ptr->SetByteSize(sym_idx + 1); 3921 symbol_ptr->SetSizeIsSibling(true); 3922 N_BRAC_indexes.pop_back(); 3923 } 3924 type = eSymbolTypeScopeEnd; 3925 break; 3926 3927 case N_EXCL: 3928 // deleted include file: name,,NO_SECT,0,sum 3929 type = eSymbolTypeHeaderFile; 3930 break; 3931 3932 //---------------------------------------------------------------------- 3933 // COMM scopes 3934 //---------------------------------------------------------------------- 3935 case N_BCOMM: 3936 // begin common: name,,NO_SECT,0,0 3937 // We use the current number of symbols in the symbol table in lieu of 3938 // using nlist_idx in case we ever start trimming entries out 3939 type = eSymbolTypeScopeBegin; 3940 N_COMM_indexes.push_back(sym_idx); 3941 break; 3942 3943 case N_ECOML: 3944 // end common (local name): 0,,n_sect,0,address 3945 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3946 // Fall through 3947 3948 case N_ECOMM: 3949 // end common: name,,n_sect,0,0 3950 // Set the size of the N_BCOMM to the terminating index of this N_ECOMM/N_ECOML 3951 // so that we can always skip the entire symbol if we need to navigate 3952 // more quickly at the source level when parsing STABS 3953 if ( !N_COMM_indexes.empty() ) 3954 { 3955 symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back()); 3956 symbol_ptr->SetByteSize(sym_idx + 1); 3957 symbol_ptr->SetSizeIsSibling(true); 3958 N_COMM_indexes.pop_back(); 3959 } 3960 type = eSymbolTypeScopeEnd; 3961 break; 3962 3963 case N_LENG: 3964 // second stab entry with length information 3965 type = eSymbolTypeAdditional; 3966 break; 3967 3968 default: break; 3969 } 3970 } 3971 else 3972 { 3973 //uint8_t n_pext = N_PEXT & nlist.n_type; 3974 uint8_t n_type = N_TYPE & nlist.n_type; 3975 sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0); 3976 3977 switch (n_type) 3978 { 3979 case N_INDR: 3980 { 3981 const char *reexport_name_cstr = strtab_data.PeekCStr(nlist.n_value); 3982 if (reexport_name_cstr && reexport_name_cstr[0]) 3983 { 3984 type = eSymbolTypeReExported; 3985 ConstString reexport_name(reexport_name_cstr + ((reexport_name_cstr[0] == '_') ? 1 : 0)); 3986 sym[sym_idx].SetReExportedSymbolName(reexport_name); 3987 set_value = false; 3988 reexport_shlib_needs_fixup[sym_idx] = reexport_name; 3989 indirect_symbol_names.insert(ConstString(symbol_name + ((symbol_name[0] == '_') ? 1 : 0))); 3990 } 3991 else 3992 type = eSymbolTypeUndefined; 3993 } 3994 break; 3995 3996 case N_UNDF: 3997 { 3998 ConstString undefined_name(symbol_name + ((symbol_name[0] == '_') ? 1 : 0)); 3999 undefined_name_to_desc[undefined_name] = nlist.n_desc; 4000 } 4001 // Fall through 4002 case N_PBUD: 4003 type = eSymbolTypeUndefined; 4004 break; 4005 4006 case N_ABS: 4007 type = eSymbolTypeAbsolute; 4008 break; 4009 4010 case N_SECT: 4011 { 4012 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 4013 4014 if (!symbol_section) 4015 { 4016 // TODO: warn about this? 4017 add_nlist = false; 4018 break; 4019 } 4020 4021 if (TEXT_eh_frame_sectID == nlist.n_sect) 4022 { 4023 type = eSymbolTypeException; 4024 } 4025 else 4026 { 4027 uint32_t section_type = symbol_section->Get() & SECTION_TYPE; 4028 4029 switch (section_type) 4030 { 4031 case S_CSTRING_LITERALS: type = eSymbolTypeData; break; // section with only literal C strings 4032 case S_4BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 4 byte literals 4033 case S_8BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 8 byte literals 4034 case S_LITERAL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only pointers to literals 4035 case S_NON_LAZY_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only non-lazy symbol pointers 4036 case S_LAZY_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only lazy symbol pointers 4037 case S_SYMBOL_STUBS: type = eSymbolTypeTrampoline; break; // section with only symbol stubs, byte size of stub in the reserved2 field 4038 case S_MOD_INIT_FUNC_POINTERS: type = eSymbolTypeCode; break; // section with only function pointers for initialization 4039 case S_MOD_TERM_FUNC_POINTERS: type = eSymbolTypeCode; break; // section with only function pointers for termination 4040 case S_INTERPOSING: type = eSymbolTypeTrampoline; break; // section with only pairs of function pointers for interposing 4041 case S_16BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 16 byte literals 4042 case S_DTRACE_DOF: type = eSymbolTypeInstrumentation; break; 4043 case S_LAZY_DYLIB_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; 4044 default: 4045 switch (symbol_section->GetType()) 4046 { 4047 case lldb::eSectionTypeCode: 4048 type = eSymbolTypeCode; 4049 break; 4050 case eSectionTypeData: 4051 case eSectionTypeDataCString: // Inlined C string data 4052 case eSectionTypeDataCStringPointers: // Pointers to C string data 4053 case eSectionTypeDataSymbolAddress: // Address of a symbol in the symbol table 4054 case eSectionTypeData4: 4055 case eSectionTypeData8: 4056 case eSectionTypeData16: 4057 type = eSymbolTypeData; 4058 break; 4059 default: 4060 break; 4061 } 4062 break; 4063 } 4064 4065 if (type == eSymbolTypeInvalid) 4066 { 4067 const char *symbol_sect_name = symbol_section->GetName().AsCString(); 4068 if (symbol_section->IsDescendant (text_section_sp.get())) 4069 { 4070 if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS | 4071 S_ATTR_SELF_MODIFYING_CODE | 4072 S_ATTR_SOME_INSTRUCTIONS)) 4073 type = eSymbolTypeData; 4074 else 4075 type = eSymbolTypeCode; 4076 } 4077 else 4078 if (symbol_section->IsDescendant(data_section_sp.get())) 4079 { 4080 if (symbol_sect_name && ::strstr (symbol_sect_name, "__objc") == symbol_sect_name) 4081 { 4082 type = eSymbolTypeRuntime; 4083 4084 if (symbol_name && 4085 symbol_name[0] == '_' && 4086 symbol_name[1] == 'O' && 4087 symbol_name[2] == 'B') 4088 { 4089 llvm::StringRef symbol_name_ref(symbol_name); 4090 static const llvm::StringRef g_objc_v2_prefix_class ("_OBJC_CLASS_$_"); 4091 static const llvm::StringRef g_objc_v2_prefix_metaclass ("_OBJC_METACLASS_$_"); 4092 static const llvm::StringRef g_objc_v2_prefix_ivar ("_OBJC_IVAR_$_"); 4093 if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) 4094 { 4095 symbol_name_non_abi_mangled = symbol_name + 1; 4096 symbol_name = symbol_name + g_objc_v2_prefix_class.size(); 4097 type = eSymbolTypeObjCClass; 4098 demangled_is_synthesized = true; 4099 } 4100 else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) 4101 { 4102 symbol_name_non_abi_mangled = symbol_name + 1; 4103 symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size(); 4104 type = eSymbolTypeObjCMetaClass; 4105 demangled_is_synthesized = true; 4106 } 4107 else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) 4108 { 4109 symbol_name_non_abi_mangled = symbol_name + 1; 4110 symbol_name = symbol_name + g_objc_v2_prefix_ivar.size(); 4111 type = eSymbolTypeObjCIVar; 4112 demangled_is_synthesized = true; 4113 } 4114 } 4115 } 4116 else 4117 if (symbol_sect_name && ::strstr (symbol_sect_name, "__gcc_except_tab") == symbol_sect_name) 4118 { 4119 type = eSymbolTypeException; 4120 } 4121 else 4122 { 4123 type = eSymbolTypeData; 4124 } 4125 } 4126 else 4127 if (symbol_sect_name && ::strstr (symbol_sect_name, "__IMPORT") == symbol_sect_name) 4128 { 4129 type = eSymbolTypeTrampoline; 4130 } 4131 else 4132 if (symbol_section->IsDescendant(objc_section_sp.get())) 4133 { 4134 type = eSymbolTypeRuntime; 4135 if (symbol_name && symbol_name[0] == '.') 4136 { 4137 llvm::StringRef symbol_name_ref(symbol_name); 4138 static const llvm::StringRef g_objc_v1_prefix_class (".objc_class_name_"); 4139 if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) 4140 { 4141 symbol_name_non_abi_mangled = symbol_name; 4142 symbol_name = symbol_name + g_objc_v1_prefix_class.size(); 4143 type = eSymbolTypeObjCClass; 4144 demangled_is_synthesized = true; 4145 } 4146 } 4147 } 4148 } 4149 } 4150 } 4151 break; 4152 } 4153 } 4154 4155 if (add_nlist) 4156 { 4157 uint64_t symbol_value = nlist.n_value; 4158 4159 if (symbol_name_non_abi_mangled) 4160 { 4161 sym[sym_idx].GetMangled().SetMangledName (ConstString(symbol_name_non_abi_mangled)); 4162 sym[sym_idx].GetMangled().SetDemangledName (ConstString(symbol_name)); 4163 } 4164 else 4165 { 4166 bool symbol_name_is_mangled = false; 4167 4168 if (symbol_name && symbol_name[0] == '_') 4169 { 4170 symbol_name_is_mangled = symbol_name[1] == '_'; 4171 symbol_name++; // Skip the leading underscore 4172 } 4173 4174 if (symbol_name) 4175 { 4176 ConstString const_symbol_name(symbol_name); 4177 sym[sym_idx].GetMangled().SetValue(const_symbol_name, symbol_name_is_mangled); 4178 if (is_gsym && is_debug) 4179 { 4180 N_GSYM_name_to_sym_idx[sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled).GetCString()] = sym_idx; 4181 } 4182 } 4183 } 4184 if (symbol_section) 4185 { 4186 const addr_t section_file_addr = symbol_section->GetFileAddress(); 4187 if (symbol_byte_size == 0 && function_starts_count > 0) 4188 { 4189 addr_t symbol_lookup_file_addr = nlist.n_value; 4190 // Do an exact address match for non-ARM addresses, else get the closest since 4191 // the symbol might be a thumb symbol which has an address with bit zero set 4192 FunctionStarts::Entry *func_start_entry = function_starts.FindEntry (symbol_lookup_file_addr, !is_arm); 4193 if (is_arm && func_start_entry) 4194 { 4195 // Verify that the function start address is the symbol address (ARM) 4196 // or the symbol address + 1 (thumb) 4197 if (func_start_entry->addr != symbol_lookup_file_addr && 4198 func_start_entry->addr != (symbol_lookup_file_addr + 1)) 4199 { 4200 // Not the right entry, NULL it out... 4201 func_start_entry = NULL; 4202 } 4203 } 4204 if (func_start_entry) 4205 { 4206 func_start_entry->data = true; 4207 4208 addr_t symbol_file_addr = func_start_entry->addr; 4209 if (is_arm) 4210 symbol_file_addr &= 0xfffffffffffffffeull; 4211 4212 const FunctionStarts::Entry *next_func_start_entry = function_starts.FindNextEntry (func_start_entry); 4213 const addr_t section_end_file_addr = section_file_addr + symbol_section->GetByteSize(); 4214 if (next_func_start_entry) 4215 { 4216 addr_t next_symbol_file_addr = next_func_start_entry->addr; 4217 // Be sure the clear the Thumb address bit when we calculate the size 4218 // from the current and next address 4219 if (is_arm) 4220 next_symbol_file_addr &= 0xfffffffffffffffeull; 4221 symbol_byte_size = std::min<lldb::addr_t>(next_symbol_file_addr - symbol_file_addr, section_end_file_addr - symbol_file_addr); 4222 } 4223 else 4224 { 4225 symbol_byte_size = section_end_file_addr - symbol_file_addr; 4226 } 4227 } 4228 } 4229 symbol_value -= section_file_addr; 4230 } 4231 4232 if (is_debug == false) 4233 { 4234 if (type == eSymbolTypeCode) 4235 { 4236 // See if we can find a N_FUN entry for any code symbols. 4237 // If we do find a match, and the name matches, then we 4238 // can merge the two into just the function symbol to avoid 4239 // duplicate entries in the symbol table 4240 std::pair<ValueToSymbolIndexMap::const_iterator, ValueToSymbolIndexMap::const_iterator> range; 4241 range = N_FUN_addr_to_sym_idx.equal_range(nlist.n_value); 4242 if (range.first != range.second) 4243 { 4244 bool found_it = false; 4245 for (ValueToSymbolIndexMap::const_iterator pos = range.first; pos != range.second; ++pos) 4246 { 4247 if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) == sym[pos->second].GetMangled().GetName(Mangled::ePreferMangled)) 4248 { 4249 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 4250 // We just need the flags from the linker symbol, so put these flags 4251 // into the N_FUN flags to avoid duplicate symbols in the symbol table 4252 sym[pos->second].SetExternal(sym[sym_idx].IsExternal()); 4253 sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc); 4254 if (resolver_addresses.find(nlist.n_value) != resolver_addresses.end()) 4255 sym[pos->second].SetType (eSymbolTypeResolver); 4256 sym[sym_idx].Clear(); 4257 found_it = true; 4258 break; 4259 } 4260 } 4261 if (found_it) 4262 continue; 4263 } 4264 else 4265 { 4266 if (resolver_addresses.find(nlist.n_value) != resolver_addresses.end()) 4267 type = eSymbolTypeResolver; 4268 } 4269 } 4270 else if (type == eSymbolTypeData) 4271 { 4272 // See if we can find a N_STSYM entry for any data symbols. 4273 // If we do find a match, and the name matches, then we 4274 // can merge the two into just the Static symbol to avoid 4275 // duplicate entries in the symbol table 4276 std::pair<ValueToSymbolIndexMap::const_iterator, ValueToSymbolIndexMap::const_iterator> range; 4277 range = N_STSYM_addr_to_sym_idx.equal_range(nlist.n_value); 4278 if (range.first != range.second) 4279 { 4280 bool found_it = false; 4281 for (ValueToSymbolIndexMap::const_iterator pos = range.first; pos != range.second; ++pos) 4282 { 4283 if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) == sym[pos->second].GetMangled().GetName(Mangled::ePreferMangled)) 4284 { 4285 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 4286 // We just need the flags from the linker symbol, so put these flags 4287 // into the N_STSYM flags to avoid duplicate symbols in the symbol table 4288 sym[pos->second].SetExternal(sym[sym_idx].IsExternal()); 4289 sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc); 4290 sym[sym_idx].Clear(); 4291 found_it = true; 4292 break; 4293 } 4294 } 4295 if (found_it) 4296 continue; 4297 } 4298 else 4299 { 4300 // Combine N_GSYM stab entries with the non stab symbol 4301 ConstNameToSymbolIndexMap::const_iterator pos = N_GSYM_name_to_sym_idx.find(sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled).GetCString()); 4302 if (pos != N_GSYM_name_to_sym_idx.end()) 4303 { 4304 const uint32_t GSYM_sym_idx = pos->second; 4305 m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx; 4306 // Copy the address, because often the N_GSYM address has an invalid address of zero 4307 // when the global is a common symbol 4308 sym[GSYM_sym_idx].GetAddress().SetSection (symbol_section); 4309 sym[GSYM_sym_idx].GetAddress().SetOffset (symbol_value); 4310 // We just need the flags from the linker symbol, so put these flags 4311 // into the N_STSYM flags to avoid duplicate symbols in the symbol table 4312 sym[GSYM_sym_idx].SetFlags (nlist.n_type << 16 | nlist.n_desc); 4313 sym[sym_idx].Clear(); 4314 continue; 4315 } 4316 } 4317 } 4318 } 4319 4320 sym[sym_idx].SetID (nlist_idx); 4321 sym[sym_idx].SetType (type); 4322 if (set_value) 4323 { 4324 sym[sym_idx].GetAddress().SetSection (symbol_section); 4325 sym[sym_idx].GetAddress().SetOffset (symbol_value); 4326 } 4327 sym[sym_idx].SetFlags (nlist.n_type << 16 | nlist.n_desc); 4328 4329 if (symbol_byte_size > 0) 4330 sym[sym_idx].SetByteSize(symbol_byte_size); 4331 4332 if (demangled_is_synthesized) 4333 sym[sym_idx].SetDemangledNameIsSynthesized(true); 4334 4335 ++sym_idx; 4336 } 4337 else 4338 { 4339 sym[sym_idx].Clear(); 4340 } 4341 } 4342 4343 for (const auto &pos :reexport_shlib_needs_fixup) 4344 { 4345 const auto undef_pos = undefined_name_to_desc.find(pos.second); 4346 if (undef_pos != undefined_name_to_desc.end()) 4347 { 4348 const uint8_t dylib_ordinal = llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second); 4349 if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize()) 4350 sym[pos.first].SetReExportedSymbolSharedLibrary(dylib_files.GetFileSpecAtIndex(dylib_ordinal-1)); 4351 } 4352 } 4353 4354 } 4355 4356 uint32_t synthetic_sym_id = symtab_load_command.nsyms; 4357 4358 if (function_starts_count > 0) 4359 { 4360 char synthetic_function_symbol[PATH_MAX]; 4361 uint32_t num_synthetic_function_symbols = 0; 4362 for (i=0; i<function_starts_count; ++i) 4363 { 4364 if (function_starts.GetEntryRef (i).data == false) 4365 ++num_synthetic_function_symbols; 4366 } 4367 4368 if (num_synthetic_function_symbols > 0) 4369 { 4370 if (num_syms < sym_idx + num_synthetic_function_symbols) 4371 { 4372 num_syms = sym_idx + num_synthetic_function_symbols; 4373 sym = symtab->Resize (num_syms); 4374 } 4375 uint32_t synthetic_function_symbol_idx = 0; 4376 for (i=0; i<function_starts_count; ++i) 4377 { 4378 const FunctionStarts::Entry *func_start_entry = function_starts.GetEntryAtIndex (i); 4379 if (func_start_entry->data == false) 4380 { 4381 addr_t symbol_file_addr = func_start_entry->addr; 4382 uint32_t symbol_flags = 0; 4383 if (is_arm) 4384 { 4385 if (symbol_file_addr & 1) 4386 symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB; 4387 symbol_file_addr &= 0xfffffffffffffffeull; 4388 } 4389 Address symbol_addr; 4390 if (module_sp->ResolveFileAddress (symbol_file_addr, symbol_addr)) 4391 { 4392 SectionSP symbol_section (symbol_addr.GetSection()); 4393 uint32_t symbol_byte_size = 0; 4394 if (symbol_section) 4395 { 4396 const addr_t section_file_addr = symbol_section->GetFileAddress(); 4397 const FunctionStarts::Entry *next_func_start_entry = function_starts.FindNextEntry (func_start_entry); 4398 const addr_t section_end_file_addr = section_file_addr + symbol_section->GetByteSize(); 4399 if (next_func_start_entry) 4400 { 4401 addr_t next_symbol_file_addr = next_func_start_entry->addr; 4402 if (is_arm) 4403 next_symbol_file_addr &= 0xfffffffffffffffeull; 4404 symbol_byte_size = std::min<lldb::addr_t>(next_symbol_file_addr - symbol_file_addr, section_end_file_addr - symbol_file_addr); 4405 } 4406 else 4407 { 4408 symbol_byte_size = section_end_file_addr - symbol_file_addr; 4409 } 4410 snprintf (synthetic_function_symbol, 4411 sizeof(synthetic_function_symbol), 4412 "___lldb_unnamed_function%u$$%s", 4413 ++synthetic_function_symbol_idx, 4414 module_sp->GetFileSpec().GetFilename().GetCString()); 4415 sym[sym_idx].SetID (synthetic_sym_id++); 4416 sym[sym_idx].GetMangled().SetDemangledName(ConstString(synthetic_function_symbol)); 4417 sym[sym_idx].SetType (eSymbolTypeCode); 4418 sym[sym_idx].SetIsSynthetic (true); 4419 sym[sym_idx].GetAddress() = symbol_addr; 4420 if (symbol_flags) 4421 sym[sym_idx].SetFlags (symbol_flags); 4422 if (symbol_byte_size) 4423 sym[sym_idx].SetByteSize (symbol_byte_size); 4424 ++sym_idx; 4425 } 4426 } 4427 } 4428 } 4429 } 4430 } 4431 4432 // Trim our symbols down to just what we ended up with after 4433 // removing any symbols. 4434 if (sym_idx < num_syms) 4435 { 4436 num_syms = sym_idx; 4437 sym = symtab->Resize (num_syms); 4438 } 4439 4440 // Now synthesize indirect symbols 4441 if (m_dysymtab.nindirectsyms != 0) 4442 { 4443 if (indirect_symbol_index_data.GetByteSize()) 4444 { 4445 NListIndexToSymbolIndexMap::const_iterator end_index_pos = m_nlist_idx_to_sym_idx.end(); 4446 4447 for (uint32_t sect_idx = 1; sect_idx < m_mach_sections.size(); ++sect_idx) 4448 { 4449 if ((m_mach_sections[sect_idx].flags & SECTION_TYPE) == S_SYMBOL_STUBS) 4450 { 4451 uint32_t symbol_stub_byte_size = m_mach_sections[sect_idx].reserved2; 4452 if (symbol_stub_byte_size == 0) 4453 continue; 4454 4455 const uint32_t num_symbol_stubs = m_mach_sections[sect_idx].size / symbol_stub_byte_size; 4456 4457 if (num_symbol_stubs == 0) 4458 continue; 4459 4460 const uint32_t symbol_stub_index_offset = m_mach_sections[sect_idx].reserved1; 4461 for (uint32_t stub_idx = 0; stub_idx < num_symbol_stubs; ++stub_idx) 4462 { 4463 const uint32_t symbol_stub_index = symbol_stub_index_offset + stub_idx; 4464 const lldb::addr_t symbol_stub_addr = m_mach_sections[sect_idx].addr + (stub_idx * symbol_stub_byte_size); 4465 lldb::offset_t symbol_stub_offset = symbol_stub_index * 4; 4466 if (indirect_symbol_index_data.ValidOffsetForDataOfSize(symbol_stub_offset, 4)) 4467 { 4468 const uint32_t stub_sym_id = indirect_symbol_index_data.GetU32 (&symbol_stub_offset); 4469 if (stub_sym_id & (INDIRECT_SYMBOL_ABS | INDIRECT_SYMBOL_LOCAL)) 4470 continue; 4471 4472 NListIndexToSymbolIndexMap::const_iterator index_pos = m_nlist_idx_to_sym_idx.find (stub_sym_id); 4473 Symbol *stub_symbol = NULL; 4474 if (index_pos != end_index_pos) 4475 { 4476 // We have a remapping from the original nlist index to 4477 // a current symbol index, so just look this up by index 4478 stub_symbol = symtab->SymbolAtIndex (index_pos->second); 4479 } 4480 else 4481 { 4482 // We need to lookup a symbol using the original nlist 4483 // symbol index since this index is coming from the 4484 // S_SYMBOL_STUBS 4485 stub_symbol = symtab->FindSymbolByID (stub_sym_id); 4486 } 4487 4488 if (stub_symbol) 4489 { 4490 Address so_addr(symbol_stub_addr, section_list); 4491 4492 if (stub_symbol->GetType() == eSymbolTypeUndefined) 4493 { 4494 // Change the external symbol into a trampoline that makes sense 4495 // These symbols were N_UNDF N_EXT, and are useless to us, so we 4496 // can re-use them so we don't have to make up a synthetic symbol 4497 // for no good reason. 4498 if (resolver_addresses.find(symbol_stub_addr) == resolver_addresses.end()) 4499 stub_symbol->SetType (eSymbolTypeTrampoline); 4500 else 4501 stub_symbol->SetType (eSymbolTypeResolver); 4502 stub_symbol->SetExternal (false); 4503 stub_symbol->GetAddress() = so_addr; 4504 stub_symbol->SetByteSize (symbol_stub_byte_size); 4505 } 4506 else 4507 { 4508 // Make a synthetic symbol to describe the trampoline stub 4509 Mangled stub_symbol_mangled_name(stub_symbol->GetMangled()); 4510 if (sym_idx >= num_syms) 4511 { 4512 sym = symtab->Resize (++num_syms); 4513 stub_symbol = NULL; // this pointer no longer valid 4514 } 4515 sym[sym_idx].SetID (synthetic_sym_id++); 4516 sym[sym_idx].GetMangled() = stub_symbol_mangled_name; 4517 if (resolver_addresses.find(symbol_stub_addr) == resolver_addresses.end()) 4518 sym[sym_idx].SetType (eSymbolTypeTrampoline); 4519 else 4520 sym[sym_idx].SetType (eSymbolTypeResolver); 4521 sym[sym_idx].SetIsSynthetic (true); 4522 sym[sym_idx].GetAddress() = so_addr; 4523 sym[sym_idx].SetByteSize (symbol_stub_byte_size); 4524 ++sym_idx; 4525 } 4526 } 4527 else 4528 { 4529 if (log) 4530 log->Warning ("symbol stub referencing symbol table symbol %u that isn't in our minimal symbol table, fix this!!!", stub_sym_id); 4531 } 4532 } 4533 } 4534 } 4535 } 4536 } 4537 } 4538 4539 4540 if (!trie_entries.empty()) 4541 { 4542 for (const auto &e : trie_entries) 4543 { 4544 if (e.entry.import_name) 4545 { 4546 // Only add indirect symbols from the Trie entries if we 4547 // didn't have a N_INDR nlist entry for this already 4548 if (indirect_symbol_names.find(e.entry.name) == indirect_symbol_names.end()) 4549 { 4550 // Make a synthetic symbol to describe re-exported symbol. 4551 if (sym_idx >= num_syms) 4552 sym = symtab->Resize (++num_syms); 4553 sym[sym_idx].SetID (synthetic_sym_id++); 4554 sym[sym_idx].GetMangled() = Mangled(e.entry.name); 4555 sym[sym_idx].SetType (eSymbolTypeReExported); 4556 sym[sym_idx].SetIsSynthetic (true); 4557 sym[sym_idx].SetReExportedSymbolName(e.entry.import_name); 4558 if (e.entry.other > 0 && e.entry.other <= dylib_files.GetSize()) 4559 { 4560 sym[sym_idx].SetReExportedSymbolSharedLibrary(dylib_files.GetFileSpecAtIndex(e.entry.other-1)); 4561 } 4562 ++sym_idx; 4563 } 4564 } 4565 } 4566 } 4567 4568 4569 4570 // StreamFile s(stdout, false); 4571 // s.Printf ("Symbol table before CalculateSymbolSizes():\n"); 4572 // symtab->Dump(&s, NULL, eSortOrderNone); 4573 // Set symbol byte sizes correctly since mach-o nlist entries don't have sizes 4574 symtab->CalculateSymbolSizes(); 4575 4576 // s.Printf ("Symbol table after CalculateSymbolSizes():\n"); 4577 // symtab->Dump(&s, NULL, eSortOrderNone); 4578 4579 return symtab->GetNumSymbols(); 4580 } 4581 return 0; 4582 } 4583 4584 4585 void 4586 ObjectFileMachO::Dump (Stream *s) 4587 { 4588 ModuleSP module_sp(GetModule()); 4589 if (module_sp) 4590 { 4591 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 4592 s->Printf("%p: ", static_cast<void*>(this)); 4593 s->Indent(); 4594 if (m_header.magic == MH_MAGIC_64 || m_header.magic == MH_CIGAM_64) 4595 s->PutCString("ObjectFileMachO64"); 4596 else 4597 s->PutCString("ObjectFileMachO32"); 4598 4599 ArchSpec header_arch; 4600 GetArchitecture(header_arch); 4601 4602 *s << ", file = '" << m_file << "', arch = " << header_arch.GetArchitectureName() << "\n"; 4603 4604 SectionList *sections = GetSectionList(); 4605 if (sections) 4606 sections->Dump(s, NULL, true, UINT32_MAX); 4607 4608 if (m_symtab_ap.get()) 4609 m_symtab_ap->Dump(s, NULL, eSortOrderNone); 4610 } 4611 } 4612 4613 bool 4614 ObjectFileMachO::GetUUID (const llvm::MachO::mach_header &header, 4615 const lldb_private::DataExtractor &data, 4616 lldb::offset_t lc_offset, 4617 lldb_private::UUID& uuid) 4618 { 4619 uint32_t i; 4620 struct uuid_command load_cmd; 4621 4622 lldb::offset_t offset = lc_offset; 4623 for (i=0; i<header.ncmds; ++i) 4624 { 4625 const lldb::offset_t cmd_offset = offset; 4626 if (data.GetU32(&offset, &load_cmd, 2) == NULL) 4627 break; 4628 4629 if (load_cmd.cmd == LC_UUID) 4630 { 4631 const uint8_t *uuid_bytes = data.PeekData(offset, 16); 4632 4633 if (uuid_bytes) 4634 { 4635 // OpenCL on Mac OS X uses the same UUID for each of its object files. 4636 // We pretend these object files have no UUID to prevent crashing. 4637 4638 const uint8_t opencl_uuid[] = { 0x8c, 0x8e, 0xb3, 0x9b, 4639 0x3b, 0xa8, 4640 0x4b, 0x16, 4641 0xb6, 0xa4, 4642 0x27, 0x63, 0xbb, 0x14, 0xf0, 0x0d }; 4643 4644 if (!memcmp(uuid_bytes, opencl_uuid, 16)) 4645 return false; 4646 4647 uuid.SetBytes (uuid_bytes); 4648 return true; 4649 } 4650 return false; 4651 } 4652 offset = cmd_offset + load_cmd.cmdsize; 4653 } 4654 return false; 4655 } 4656 4657 4658 bool 4659 ObjectFileMachO::GetArchitecture (const llvm::MachO::mach_header &header, 4660 const lldb_private::DataExtractor &data, 4661 lldb::offset_t lc_offset, 4662 ArchSpec &arch) 4663 { 4664 arch.SetArchitecture (eArchTypeMachO, header.cputype, header.cpusubtype); 4665 4666 if (arch.IsValid()) 4667 { 4668 llvm::Triple &triple = arch.GetTriple(); 4669 if (header.filetype == MH_PRELOAD) 4670 { 4671 // Set OS to "unknown" - this is a standalone binary with no dyld et al 4672 triple.setOS(llvm::Triple::UnknownOS); 4673 return true; 4674 } 4675 else 4676 { 4677 struct load_command load_cmd; 4678 4679 lldb::offset_t offset = lc_offset; 4680 for (uint32_t i=0; i<header.ncmds; ++i) 4681 { 4682 const lldb::offset_t cmd_offset = offset; 4683 if (data.GetU32(&offset, &load_cmd, 2) == NULL) 4684 break; 4685 4686 switch (load_cmd.cmd) 4687 { 4688 case LC_VERSION_MIN_IPHONEOS: 4689 triple.setOS (llvm::Triple::IOS); 4690 return true; 4691 4692 case LC_VERSION_MIN_MACOSX: 4693 triple.setOS (llvm::Triple::MacOSX); 4694 return true; 4695 4696 default: 4697 break; 4698 } 4699 4700 offset = cmd_offset + load_cmd.cmdsize; 4701 } 4702 4703 // Only set the OS to iOS for ARM, we don't want to set it for x86 and x86_64. 4704 // We do this because we now have MacOSX or iOS as the OS value for x86 and 4705 // x86_64 for normal desktop (MacOSX) and simulator (iOS) binaries. And if 4706 // we compare a "x86_64-apple-ios" to a "x86_64-apple-" triple, it will say 4707 // it is compatible (because the OS is unspecified in the second one and will 4708 // match anything in the first 4709 if (header.cputype == CPU_TYPE_ARM || header.cputype == CPU_TYPE_ARM64) 4710 triple.setOS (llvm::Triple::IOS); 4711 } 4712 } 4713 return arch.IsValid(); 4714 } 4715 4716 bool 4717 ObjectFileMachO::GetUUID (lldb_private::UUID* uuid) 4718 { 4719 ModuleSP module_sp(GetModule()); 4720 if (module_sp) 4721 { 4722 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 4723 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 4724 return GetUUID (m_header, m_data, offset, *uuid); 4725 } 4726 return false; 4727 } 4728 4729 4730 uint32_t 4731 ObjectFileMachO::GetDependentModules (FileSpecList& files) 4732 { 4733 uint32_t count = 0; 4734 ModuleSP module_sp(GetModule()); 4735 if (module_sp) 4736 { 4737 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 4738 struct load_command load_cmd; 4739 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 4740 const bool resolve_path = false; // Don't resolve the dependent file paths since they may not reside on this system 4741 uint32_t i; 4742 for (i=0; i<m_header.ncmds; ++i) 4743 { 4744 const uint32_t cmd_offset = offset; 4745 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) 4746 break; 4747 4748 switch (load_cmd.cmd) 4749 { 4750 case LC_LOAD_DYLIB: 4751 case LC_LOAD_WEAK_DYLIB: 4752 case LC_REEXPORT_DYLIB: 4753 case LC_LOAD_DYLINKER: 4754 case LC_LOADFVMLIB: 4755 case LC_LOAD_UPWARD_DYLIB: 4756 { 4757 uint32_t name_offset = cmd_offset + m_data.GetU32(&offset); 4758 const char *path = m_data.PeekCStr(name_offset); 4759 // Skip any path that starts with '@' since these are usually: 4760 // @executable_path/.../file 4761 // @rpath/.../file 4762 if (path && path[0] != '@') 4763 { 4764 FileSpec file_spec(path, resolve_path); 4765 if (files.AppendIfUnique(file_spec)) 4766 count++; 4767 } 4768 } 4769 break; 4770 4771 default: 4772 break; 4773 } 4774 offset = cmd_offset + load_cmd.cmdsize; 4775 } 4776 } 4777 return count; 4778 } 4779 4780 lldb_private::Address 4781 ObjectFileMachO::GetEntryPointAddress () 4782 { 4783 // If the object file is not an executable it can't hold the entry point. m_entry_point_address 4784 // is initialized to an invalid address, so we can just return that. 4785 // If m_entry_point_address is valid it means we've found it already, so return the cached value. 4786 4787 if (!IsExecutable() || m_entry_point_address.IsValid()) 4788 return m_entry_point_address; 4789 4790 // Otherwise, look for the UnixThread or Thread command. The data for the Thread command is given in 4791 // /usr/include/mach-o.h, but it is basically: 4792 // 4793 // uint32_t flavor - this is the flavor argument you would pass to thread_get_state 4794 // uint32_t count - this is the count of longs in the thread state data 4795 // struct XXX_thread_state state - this is the structure from <machine/thread_status.h> corresponding to the flavor. 4796 // <repeat this trio> 4797 // 4798 // So we just keep reading the various register flavors till we find the GPR one, then read the PC out of there. 4799 // FIXME: We will need to have a "RegisterContext data provider" class at some point that can get all the registers 4800 // out of data in this form & attach them to a given thread. That should underlie the MacOS X User process plugin, 4801 // and we'll also need it for the MacOS X Core File process plugin. When we have that we can also use it here. 4802 // 4803 // For now we hard-code the offsets and flavors we need: 4804 // 4805 // 4806 4807 ModuleSP module_sp(GetModule()); 4808 if (module_sp) 4809 { 4810 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 4811 struct load_command load_cmd; 4812 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 4813 uint32_t i; 4814 lldb::addr_t start_address = LLDB_INVALID_ADDRESS; 4815 bool done = false; 4816 4817 for (i=0; i<m_header.ncmds; ++i) 4818 { 4819 const lldb::offset_t cmd_offset = offset; 4820 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) 4821 break; 4822 4823 switch (load_cmd.cmd) 4824 { 4825 case LC_UNIXTHREAD: 4826 case LC_THREAD: 4827 { 4828 while (offset < cmd_offset + load_cmd.cmdsize) 4829 { 4830 uint32_t flavor = m_data.GetU32(&offset); 4831 uint32_t count = m_data.GetU32(&offset); 4832 if (count == 0) 4833 { 4834 // We've gotten off somehow, log and exit; 4835 return m_entry_point_address; 4836 } 4837 4838 switch (m_header.cputype) 4839 { 4840 case llvm::MachO::CPU_TYPE_ARM: 4841 if (flavor == 1) // ARM_THREAD_STATE from mach/arm/thread_status.h 4842 { 4843 offset += 60; // This is the offset of pc in the GPR thread state data structure. 4844 start_address = m_data.GetU32(&offset); 4845 done = true; 4846 } 4847 break; 4848 case llvm::MachO::CPU_TYPE_ARM64: 4849 if (flavor == 6) // ARM_THREAD_STATE64 from mach/arm/thread_status.h 4850 { 4851 offset += 256; // This is the offset of pc in the GPR thread state data structure. 4852 start_address = m_data.GetU64(&offset); 4853 done = true; 4854 } 4855 break; 4856 case llvm::MachO::CPU_TYPE_I386: 4857 if (flavor == 1) // x86_THREAD_STATE32 from mach/i386/thread_status.h 4858 { 4859 offset += 40; // This is the offset of eip in the GPR thread state data structure. 4860 start_address = m_data.GetU32(&offset); 4861 done = true; 4862 } 4863 break; 4864 case llvm::MachO::CPU_TYPE_X86_64: 4865 if (flavor == 4) // x86_THREAD_STATE64 from mach/i386/thread_status.h 4866 { 4867 offset += 16 * 8; // This is the offset of rip in the GPR thread state data structure. 4868 start_address = m_data.GetU64(&offset); 4869 done = true; 4870 } 4871 break; 4872 default: 4873 return m_entry_point_address; 4874 } 4875 // Haven't found the GPR flavor yet, skip over the data for this flavor: 4876 if (done) 4877 break; 4878 offset += count * 4; 4879 } 4880 } 4881 break; 4882 case LC_MAIN: 4883 { 4884 ConstString text_segment_name ("__TEXT"); 4885 uint64_t entryoffset = m_data.GetU64(&offset); 4886 SectionSP text_segment_sp = GetSectionList()->FindSectionByName(text_segment_name); 4887 if (text_segment_sp) 4888 { 4889 done = true; 4890 start_address = text_segment_sp->GetFileAddress() + entryoffset; 4891 } 4892 } 4893 4894 default: 4895 break; 4896 } 4897 if (done) 4898 break; 4899 4900 // Go to the next load command: 4901 offset = cmd_offset + load_cmd.cmdsize; 4902 } 4903 4904 if (start_address != LLDB_INVALID_ADDRESS) 4905 { 4906 // We got the start address from the load commands, so now resolve that address in the sections 4907 // of this ObjectFile: 4908 if (!m_entry_point_address.ResolveAddressUsingFileSections (start_address, GetSectionList())) 4909 { 4910 m_entry_point_address.Clear(); 4911 } 4912 } 4913 else 4914 { 4915 // We couldn't read the UnixThread load command - maybe it wasn't there. As a fallback look for the 4916 // "start" symbol in the main executable. 4917 4918 ModuleSP module_sp (GetModule()); 4919 4920 if (module_sp) 4921 { 4922 SymbolContextList contexts; 4923 SymbolContext context; 4924 if (module_sp->FindSymbolsWithNameAndType(ConstString ("start"), eSymbolTypeCode, contexts)) 4925 { 4926 if (contexts.GetContextAtIndex(0, context)) 4927 m_entry_point_address = context.symbol->GetAddress(); 4928 } 4929 } 4930 } 4931 } 4932 4933 return m_entry_point_address; 4934 4935 } 4936 4937 lldb_private::Address 4938 ObjectFileMachO::GetHeaderAddress () 4939 { 4940 lldb_private::Address header_addr; 4941 SectionList *section_list = GetSectionList(); 4942 if (section_list) 4943 { 4944 SectionSP text_segment_sp (section_list->FindSectionByName (GetSegmentNameTEXT())); 4945 if (text_segment_sp) 4946 { 4947 header_addr.SetSection (text_segment_sp); 4948 header_addr.SetOffset (0); 4949 } 4950 } 4951 return header_addr; 4952 } 4953 4954 uint32_t 4955 ObjectFileMachO::GetNumThreadContexts () 4956 { 4957 ModuleSP module_sp(GetModule()); 4958 if (module_sp) 4959 { 4960 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 4961 if (!m_thread_context_offsets_valid) 4962 { 4963 m_thread_context_offsets_valid = true; 4964 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 4965 FileRangeArray::Entry file_range; 4966 thread_command thread_cmd; 4967 for (uint32_t i=0; i<m_header.ncmds; ++i) 4968 { 4969 const uint32_t cmd_offset = offset; 4970 if (m_data.GetU32(&offset, &thread_cmd, 2) == NULL) 4971 break; 4972 4973 if (thread_cmd.cmd == LC_THREAD) 4974 { 4975 file_range.SetRangeBase (offset); 4976 file_range.SetByteSize (thread_cmd.cmdsize - 8); 4977 m_thread_context_offsets.Append (file_range); 4978 } 4979 offset = cmd_offset + thread_cmd.cmdsize; 4980 } 4981 } 4982 } 4983 return m_thread_context_offsets.GetSize(); 4984 } 4985 4986 lldb::RegisterContextSP 4987 ObjectFileMachO::GetThreadContextAtIndex (uint32_t idx, lldb_private::Thread &thread) 4988 { 4989 lldb::RegisterContextSP reg_ctx_sp; 4990 4991 ModuleSP module_sp(GetModule()); 4992 if (module_sp) 4993 { 4994 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 4995 if (!m_thread_context_offsets_valid) 4996 GetNumThreadContexts (); 4997 4998 const FileRangeArray::Entry *thread_context_file_range = m_thread_context_offsets.GetEntryAtIndex (idx); 4999 if (thread_context_file_range) 5000 { 5001 5002 DataExtractor data (m_data, 5003 thread_context_file_range->GetRangeBase(), 5004 thread_context_file_range->GetByteSize()); 5005 5006 switch (m_header.cputype) 5007 { 5008 case llvm::MachO::CPU_TYPE_ARM64: 5009 reg_ctx_sp.reset (new RegisterContextDarwin_arm64_Mach (thread, data)); 5010 break; 5011 5012 case llvm::MachO::CPU_TYPE_ARM: 5013 reg_ctx_sp.reset (new RegisterContextDarwin_arm_Mach (thread, data)); 5014 break; 5015 5016 case llvm::MachO::CPU_TYPE_I386: 5017 reg_ctx_sp.reset (new RegisterContextDarwin_i386_Mach (thread, data)); 5018 break; 5019 5020 case llvm::MachO::CPU_TYPE_X86_64: 5021 reg_ctx_sp.reset (new RegisterContextDarwin_x86_64_Mach (thread, data)); 5022 break; 5023 } 5024 } 5025 } 5026 return reg_ctx_sp; 5027 } 5028 5029 5030 ObjectFile::Type 5031 ObjectFileMachO::CalculateType() 5032 { 5033 switch (m_header.filetype) 5034 { 5035 case MH_OBJECT: // 0x1u 5036 if (GetAddressByteSize () == 4) 5037 { 5038 // 32 bit kexts are just object files, but they do have a valid 5039 // UUID load command. 5040 UUID uuid; 5041 if (GetUUID(&uuid)) 5042 { 5043 // this checking for the UUID load command is not enough 5044 // we could eventually look for the symbol named 5045 // "OSKextGetCurrentIdentifier" as this is required of kexts 5046 if (m_strata == eStrataInvalid) 5047 m_strata = eStrataKernel; 5048 return eTypeSharedLibrary; 5049 } 5050 } 5051 return eTypeObjectFile; 5052 5053 case MH_EXECUTE: return eTypeExecutable; // 0x2u 5054 case MH_FVMLIB: return eTypeSharedLibrary; // 0x3u 5055 case MH_CORE: return eTypeCoreFile; // 0x4u 5056 case MH_PRELOAD: return eTypeSharedLibrary; // 0x5u 5057 case MH_DYLIB: return eTypeSharedLibrary; // 0x6u 5058 case MH_DYLINKER: return eTypeDynamicLinker; // 0x7u 5059 case MH_BUNDLE: return eTypeSharedLibrary; // 0x8u 5060 case MH_DYLIB_STUB: return eTypeStubLibrary; // 0x9u 5061 case MH_DSYM: return eTypeDebugInfo; // 0xAu 5062 case MH_KEXT_BUNDLE: return eTypeSharedLibrary; // 0xBu 5063 default: 5064 break; 5065 } 5066 return eTypeUnknown; 5067 } 5068 5069 ObjectFile::Strata 5070 ObjectFileMachO::CalculateStrata() 5071 { 5072 switch (m_header.filetype) 5073 { 5074 case MH_OBJECT: // 0x1u 5075 { 5076 // 32 bit kexts are just object files, but they do have a valid 5077 // UUID load command. 5078 UUID uuid; 5079 if (GetUUID(&uuid)) 5080 { 5081 // this checking for the UUID load command is not enough 5082 // we could eventually look for the symbol named 5083 // "OSKextGetCurrentIdentifier" as this is required of kexts 5084 if (m_type == eTypeInvalid) 5085 m_type = eTypeSharedLibrary; 5086 5087 return eStrataKernel; 5088 } 5089 } 5090 return eStrataUnknown; 5091 5092 case MH_EXECUTE: // 0x2u 5093 // Check for the MH_DYLDLINK bit in the flags 5094 if (m_header.flags & MH_DYLDLINK) 5095 { 5096 return eStrataUser; 5097 } 5098 else 5099 { 5100 SectionList *section_list = GetSectionList(); 5101 if (section_list) 5102 { 5103 static ConstString g_kld_section_name ("__KLD"); 5104 if (section_list->FindSectionByName(g_kld_section_name)) 5105 return eStrataKernel; 5106 } 5107 } 5108 return eStrataRawImage; 5109 5110 case MH_FVMLIB: return eStrataUser; // 0x3u 5111 case MH_CORE: return eStrataUnknown; // 0x4u 5112 case MH_PRELOAD: return eStrataRawImage; // 0x5u 5113 case MH_DYLIB: return eStrataUser; // 0x6u 5114 case MH_DYLINKER: return eStrataUser; // 0x7u 5115 case MH_BUNDLE: return eStrataUser; // 0x8u 5116 case MH_DYLIB_STUB: return eStrataUser; // 0x9u 5117 case MH_DSYM: return eStrataUnknown; // 0xAu 5118 case MH_KEXT_BUNDLE: return eStrataKernel; // 0xBu 5119 default: 5120 break; 5121 } 5122 return eStrataUnknown; 5123 } 5124 5125 5126 uint32_t 5127 ObjectFileMachO::GetVersion (uint32_t *versions, uint32_t num_versions) 5128 { 5129 ModuleSP module_sp(GetModule()); 5130 if (module_sp) 5131 { 5132 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 5133 struct dylib_command load_cmd; 5134 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5135 uint32_t version_cmd = 0; 5136 uint64_t version = 0; 5137 uint32_t i; 5138 for (i=0; i<m_header.ncmds; ++i) 5139 { 5140 const lldb::offset_t cmd_offset = offset; 5141 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) 5142 break; 5143 5144 if (load_cmd.cmd == LC_ID_DYLIB) 5145 { 5146 if (version_cmd == 0) 5147 { 5148 version_cmd = load_cmd.cmd; 5149 if (m_data.GetU32(&offset, &load_cmd.dylib, 4) == NULL) 5150 break; 5151 version = load_cmd.dylib.current_version; 5152 } 5153 break; // Break for now unless there is another more complete version 5154 // number load command in the future. 5155 } 5156 offset = cmd_offset + load_cmd.cmdsize; 5157 } 5158 5159 if (version_cmd == LC_ID_DYLIB) 5160 { 5161 if (versions != NULL && num_versions > 0) 5162 { 5163 if (num_versions > 0) 5164 versions[0] = (version & 0xFFFF0000ull) >> 16; 5165 if (num_versions > 1) 5166 versions[1] = (version & 0x0000FF00ull) >> 8; 5167 if (num_versions > 2) 5168 versions[2] = (version & 0x000000FFull); 5169 // Fill in an remaining version numbers with invalid values 5170 for (i=3; i<num_versions; ++i) 5171 versions[i] = UINT32_MAX; 5172 } 5173 // The LC_ID_DYLIB load command has a version with 3 version numbers 5174 // in it, so always return 3 5175 return 3; 5176 } 5177 } 5178 return false; 5179 } 5180 5181 bool 5182 ObjectFileMachO::GetArchitecture (ArchSpec &arch) 5183 { 5184 ModuleSP module_sp(GetModule()); 5185 if (module_sp) 5186 { 5187 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 5188 return GetArchitecture (m_header, m_data, MachHeaderSizeFromMagic(m_header.magic), arch); 5189 } 5190 return false; 5191 } 5192 5193 5194 UUID 5195 ObjectFileMachO::GetProcessSharedCacheUUID (Process *process) 5196 { 5197 UUID uuid; 5198 if (process) 5199 { 5200 addr_t all_image_infos = process->GetImageInfoAddress(); 5201 5202 // The address returned by GetImageInfoAddress may be the address of dyld (don't want) 5203 // or it may be the address of the dyld_all_image_infos structure (want). The first four 5204 // bytes will be either the version field (all_image_infos) or a Mach-O file magic constant. 5205 // Version 13 and higher of dyld_all_image_infos is required to get the sharedCacheUUID field. 5206 5207 Error err; 5208 uint32_t version_or_magic = process->ReadUnsignedIntegerFromMemory (all_image_infos, 4, -1, err); 5209 if (version_or_magic != static_cast<uint32_t>(-1) 5210 && version_or_magic != MH_MAGIC 5211 && version_or_magic != MH_CIGAM 5212 && version_or_magic != MH_MAGIC_64 5213 && version_or_magic != MH_CIGAM_64 5214 && version_or_magic >= 13) 5215 { 5216 addr_t sharedCacheUUID_address = LLDB_INVALID_ADDRESS; 5217 int wordsize = process->GetAddressByteSize(); 5218 if (wordsize == 8) 5219 { 5220 sharedCacheUUID_address = all_image_infos + 160; // sharedCacheUUID <mach-o/dyld_images.h> 5221 } 5222 if (wordsize == 4) 5223 { 5224 sharedCacheUUID_address = all_image_infos + 84; // sharedCacheUUID <mach-o/dyld_images.h> 5225 } 5226 if (sharedCacheUUID_address != LLDB_INVALID_ADDRESS) 5227 { 5228 uuid_t shared_cache_uuid; 5229 if (process->ReadMemory (sharedCacheUUID_address, shared_cache_uuid, sizeof (uuid_t), err) == sizeof (uuid_t)) 5230 { 5231 uuid.SetBytes (shared_cache_uuid); 5232 } 5233 } 5234 } 5235 } 5236 return uuid; 5237 } 5238 5239 UUID 5240 ObjectFileMachO::GetLLDBSharedCacheUUID () 5241 { 5242 UUID uuid; 5243 #if defined (__APPLE__) && (defined (__arm__) || defined (__arm64__) || defined (__aarch64__)) 5244 uint8_t *(*dyld_get_all_image_infos)(void); 5245 dyld_get_all_image_infos = (uint8_t*(*)()) dlsym (RTLD_DEFAULT, "_dyld_get_all_image_infos"); 5246 if (dyld_get_all_image_infos) 5247 { 5248 uint8_t *dyld_all_image_infos_address = dyld_get_all_image_infos(); 5249 if (dyld_all_image_infos_address) 5250 { 5251 uint32_t *version = (uint32_t*) dyld_all_image_infos_address; // version <mach-o/dyld_images.h> 5252 if (*version >= 13) 5253 { 5254 uuid_t *sharedCacheUUID_address = 0; 5255 int wordsize = sizeof (uint8_t *); 5256 if (wordsize == 8) 5257 { 5258 sharedCacheUUID_address = (uuid_t*) ((uint8_t*) dyld_all_image_infos_address + 160); // sharedCacheUUID <mach-o/dyld_images.h> 5259 } 5260 else 5261 { 5262 sharedCacheUUID_address = (uuid_t*) ((uint8_t*) dyld_all_image_infos_address + 84); // sharedCacheUUID <mach-o/dyld_images.h> 5263 } 5264 uuid.SetBytes (sharedCacheUUID_address); 5265 } 5266 } 5267 } 5268 #endif 5269 return uuid; 5270 } 5271 5272 uint32_t 5273 ObjectFileMachO::GetMinimumOSVersion (uint32_t *versions, uint32_t num_versions) 5274 { 5275 if (m_min_os_versions.empty()) 5276 { 5277 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5278 bool success = false; 5279 for (uint32_t i=0; success == false && i < m_header.ncmds; ++i) 5280 { 5281 const lldb::offset_t load_cmd_offset = offset; 5282 5283 version_min_command lc; 5284 if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL) 5285 break; 5286 if (lc.cmd == LC_VERSION_MIN_MACOSX || lc.cmd == LC_VERSION_MIN_IPHONEOS) 5287 { 5288 if (m_data.GetU32 (&offset, &lc.version, (sizeof(lc) / sizeof(uint32_t)) - 2)) 5289 { 5290 const uint32_t xxxx = lc.version >> 16; 5291 const uint32_t yy = (lc.version >> 8) & 0xffu; 5292 const uint32_t zz = lc.version & 0xffu; 5293 if (xxxx) 5294 { 5295 m_min_os_versions.push_back(xxxx); 5296 m_min_os_versions.push_back(yy); 5297 m_min_os_versions.push_back(zz); 5298 } 5299 success = true; 5300 } 5301 } 5302 offset = load_cmd_offset + lc.cmdsize; 5303 } 5304 5305 if (success == false) 5306 { 5307 // Push an invalid value so we don't keep trying to 5308 m_min_os_versions.push_back(UINT32_MAX); 5309 } 5310 } 5311 5312 if (m_min_os_versions.size() > 1 || m_min_os_versions[0] != UINT32_MAX) 5313 { 5314 if (versions != NULL && num_versions > 0) 5315 { 5316 for (size_t i=0; i<num_versions; ++i) 5317 { 5318 if (i < m_min_os_versions.size()) 5319 versions[i] = m_min_os_versions[i]; 5320 else 5321 versions[i] = 0; 5322 } 5323 } 5324 return m_min_os_versions.size(); 5325 } 5326 // Call the superclasses version that will empty out the data 5327 return ObjectFile::GetMinimumOSVersion (versions, num_versions); 5328 } 5329 5330 uint32_t 5331 ObjectFileMachO::GetSDKVersion(uint32_t *versions, uint32_t num_versions) 5332 { 5333 if (m_sdk_versions.empty()) 5334 { 5335 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5336 bool success = false; 5337 for (uint32_t i=0; success == false && i < m_header.ncmds; ++i) 5338 { 5339 const lldb::offset_t load_cmd_offset = offset; 5340 5341 version_min_command lc; 5342 if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL) 5343 break; 5344 if (lc.cmd == LC_VERSION_MIN_MACOSX || lc.cmd == LC_VERSION_MIN_IPHONEOS) 5345 { 5346 if (m_data.GetU32 (&offset, &lc.version, (sizeof(lc) / sizeof(uint32_t)) - 2)) 5347 { 5348 const uint32_t xxxx = lc.sdk >> 16; 5349 const uint32_t yy = (lc.sdk >> 8) & 0xffu; 5350 const uint32_t zz = lc.sdk & 0xffu; 5351 if (xxxx) 5352 { 5353 m_sdk_versions.push_back(xxxx); 5354 m_sdk_versions.push_back(yy); 5355 m_sdk_versions.push_back(zz); 5356 } 5357 success = true; 5358 } 5359 } 5360 offset = load_cmd_offset + lc.cmdsize; 5361 } 5362 5363 if (success == false) 5364 { 5365 // Push an invalid value so we don't keep trying to 5366 m_sdk_versions.push_back(UINT32_MAX); 5367 } 5368 } 5369 5370 if (m_sdk_versions.size() > 1 || m_sdk_versions[0] != UINT32_MAX) 5371 { 5372 if (versions != NULL && num_versions > 0) 5373 { 5374 for (size_t i=0; i<num_versions; ++i) 5375 { 5376 if (i < m_sdk_versions.size()) 5377 versions[i] = m_sdk_versions[i]; 5378 else 5379 versions[i] = 0; 5380 } 5381 } 5382 return m_sdk_versions.size(); 5383 } 5384 // Call the superclasses version that will empty out the data 5385 return ObjectFile::GetSDKVersion (versions, num_versions); 5386 } 5387 5388 5389 bool 5390 ObjectFileMachO::GetIsDynamicLinkEditor() 5391 { 5392 return m_header.filetype == llvm::MachO::MH_DYLINKER; 5393 } 5394 5395 //------------------------------------------------------------------ 5396 // PluginInterface protocol 5397 //------------------------------------------------------------------ 5398 lldb_private::ConstString 5399 ObjectFileMachO::GetPluginName() 5400 { 5401 return GetPluginNameStatic(); 5402 } 5403 5404 uint32_t 5405 ObjectFileMachO::GetPluginVersion() 5406 { 5407 return 1; 5408 } 5409 5410 5411 bool 5412 ObjectFileMachO::SetLoadAddress (Target &target, 5413 lldb::addr_t value, 5414 bool value_is_offset) 5415 { 5416 ModuleSP module_sp = GetModule(); 5417 if (module_sp) 5418 { 5419 size_t num_loaded_sections = 0; 5420 SectionList *section_list = GetSectionList (); 5421 if (section_list) 5422 { 5423 lldb::addr_t mach_base_file_addr = LLDB_INVALID_ADDRESS; 5424 const size_t num_sections = section_list->GetSize(); 5425 5426 const bool is_memory_image = (bool)m_process_wp.lock(); 5427 const Strata strata = GetStrata(); 5428 static ConstString g_linkedit_segname ("__LINKEDIT"); 5429 if (value_is_offset) 5430 { 5431 // "value" is an offset to apply to each top level segment 5432 for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) 5433 { 5434 // Iterate through the object file sections to find all 5435 // of the sections that size on disk (to avoid __PAGEZERO) 5436 // and load them 5437 SectionSP section_sp (section_list->GetSectionAtIndex (sect_idx)); 5438 if (section_sp && 5439 section_sp->GetFileSize() > 0 && 5440 section_sp->IsThreadSpecific() == false && 5441 module_sp.get() == section_sp->GetModule().get()) 5442 { 5443 // Ignore __LINKEDIT and __DWARF segments 5444 if (section_sp->GetName() == g_linkedit_segname) 5445 { 5446 // Only map __LINKEDIT if we have an in memory image and this isn't 5447 // a kernel binary like a kext or mach_kernel. 5448 if (is_memory_image == false || strata == eStrataKernel) 5449 continue; 5450 } 5451 if (target.GetSectionLoadList().SetSectionLoadAddress (section_sp, section_sp->GetFileAddress() + value)) 5452 ++num_loaded_sections; 5453 } 5454 } 5455 } 5456 else 5457 { 5458 // "value" is the new base address of the mach_header, adjust each 5459 // section accordingly 5460 5461 // First find the address of the mach header which is the first non-zero 5462 // file sized section whose file offset is zero as this will be subtracted 5463 // from each other valid section's vmaddr and then get "base_addr" added to 5464 // it when loading the module in the target 5465 for (size_t sect_idx = 0; 5466 sect_idx < num_sections && mach_base_file_addr == LLDB_INVALID_ADDRESS; 5467 ++sect_idx) 5468 { 5469 // Iterate through the object file sections to find all 5470 // of the sections that size on disk (to avoid __PAGEZERO) 5471 // and load them 5472 Section *section = section_list->GetSectionAtIndex (sect_idx).get(); 5473 if (section && 5474 section->GetFileSize() > 0 && 5475 section->GetFileOffset() == 0 && 5476 section->IsThreadSpecific() == false && 5477 module_sp.get() == section->GetModule().get()) 5478 { 5479 // Ignore __LINKEDIT and __DWARF segments 5480 if (section->GetName() == g_linkedit_segname) 5481 { 5482 // Only map __LINKEDIT if we have an in memory image and this isn't 5483 // a kernel binary like a kext or mach_kernel. 5484 if (is_memory_image == false || strata == eStrataKernel) 5485 continue; 5486 } 5487 mach_base_file_addr = section->GetFileAddress(); 5488 } 5489 } 5490 5491 if (mach_base_file_addr != LLDB_INVALID_ADDRESS) 5492 { 5493 for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) 5494 { 5495 // Iterate through the object file sections to find all 5496 // of the sections that size on disk (to avoid __PAGEZERO) 5497 // and load them 5498 SectionSP section_sp (section_list->GetSectionAtIndex (sect_idx)); 5499 if (section_sp && 5500 section_sp->GetFileSize() > 0 && 5501 section_sp->IsThreadSpecific() == false && 5502 module_sp.get() == section_sp->GetModule().get()) 5503 { 5504 // Ignore __LINKEDIT and __DWARF segments 5505 if (section_sp->GetName() == g_linkedit_segname) 5506 { 5507 // Only map __LINKEDIT if we have an in memory image and this isn't 5508 // a kernel binary like a kext or mach_kernel. 5509 if (is_memory_image == false || strata == eStrataKernel) 5510 continue; 5511 } 5512 if (target.GetSectionLoadList().SetSectionLoadAddress (section_sp, section_sp->GetFileAddress() - mach_base_file_addr + value)) 5513 ++num_loaded_sections; 5514 } 5515 } 5516 } 5517 } 5518 } 5519 return num_loaded_sections > 0; 5520 } 5521 return false; 5522 } 5523 5524 bool 5525 ObjectFileMachO::SaveCore (const lldb::ProcessSP &process_sp, 5526 const FileSpec &outfile, 5527 Error &error) 5528 { 5529 if (process_sp) 5530 { 5531 Target &target = process_sp->GetTarget(); 5532 const ArchSpec target_arch = target.GetArchitecture(); 5533 const llvm::Triple &target_triple = target_arch.GetTriple(); 5534 if (target_triple.getVendor() == llvm::Triple::Apple && 5535 (target_triple.getOS() == llvm::Triple::MacOSX || 5536 target_triple.getOS() == llvm::Triple::IOS)) 5537 { 5538 bool make_core = false; 5539 switch (target_arch.GetMachine()) 5540 { 5541 // arm64 core file writing is having some problem with writing down the 5542 // dyld shared images info struct and/or the main executable binary. May 5543 // turn out to be a debugserver problem, not sure yet. 5544 // case llvm::Triple::aarch64: 5545 5546 case llvm::Triple::arm: 5547 case llvm::Triple::x86: 5548 case llvm::Triple::x86_64: 5549 make_core = true; 5550 break; 5551 default: 5552 error.SetErrorStringWithFormat ("unsupported core architecture: %s", target_triple.str().c_str()); 5553 break; 5554 } 5555 5556 if (make_core) 5557 { 5558 std::vector<segment_command_64> segment_load_commands; 5559 // uint32_t range_info_idx = 0; 5560 MemoryRegionInfo range_info; 5561 Error range_error = process_sp->GetMemoryRegionInfo(0, range_info); 5562 const uint32_t addr_byte_size = target_arch.GetAddressByteSize(); 5563 const ByteOrder byte_order = target_arch.GetByteOrder(); 5564 if (range_error.Success()) 5565 { 5566 while (range_info.GetRange().GetRangeBase() != LLDB_INVALID_ADDRESS) 5567 { 5568 const addr_t addr = range_info.GetRange().GetRangeBase(); 5569 const addr_t size = range_info.GetRange().GetByteSize(); 5570 5571 if (size == 0) 5572 break; 5573 5574 // Calculate correct protections 5575 uint32_t prot = 0; 5576 if (range_info.GetReadable() == MemoryRegionInfo::eYes) 5577 prot |= VM_PROT_READ; 5578 if (range_info.GetWritable() == MemoryRegionInfo::eYes) 5579 prot |= VM_PROT_WRITE; 5580 if (range_info.GetExecutable() == MemoryRegionInfo::eYes) 5581 prot |= VM_PROT_EXECUTE; 5582 5583 // printf ("[%3u] [0x%16.16" PRIx64 " - 0x%16.16" PRIx64 ") %c%c%c\n", 5584 // range_info_idx, 5585 // addr, 5586 // size, 5587 // (prot & VM_PROT_READ ) ? 'r' : '-', 5588 // (prot & VM_PROT_WRITE ) ? 'w' : '-', 5589 // (prot & VM_PROT_EXECUTE) ? 'x' : '-'); 5590 5591 if (prot != 0) 5592 { 5593 uint32_t cmd_type = LC_SEGMENT_64; 5594 uint32_t segment_size = sizeof (segment_command_64); 5595 if (addr_byte_size == 4) 5596 { 5597 cmd_type = LC_SEGMENT; 5598 segment_size = sizeof (segment_command); 5599 } 5600 segment_command_64 segment = { 5601 cmd_type, // uint32_t cmd; 5602 segment_size, // uint32_t cmdsize; 5603 {0}, // char segname[16]; 5604 addr, // uint64_t vmaddr; // uint32_t for 32-bit Mach-O 5605 size, // uint64_t vmsize; // uint32_t for 32-bit Mach-O 5606 0, // uint64_t fileoff; // uint32_t for 32-bit Mach-O 5607 size, // uint64_t filesize; // uint32_t for 32-bit Mach-O 5608 prot, // uint32_t maxprot; 5609 prot, // uint32_t initprot; 5610 0, // uint32_t nsects; 5611 0 }; // uint32_t flags; 5612 segment_load_commands.push_back(segment); 5613 } 5614 else 5615 { 5616 // No protections and a size of 1 used to be returned from old 5617 // debugservers when we asked about a region that was past the 5618 // last memory region and it indicates the end... 5619 if (size == 1) 5620 break; 5621 } 5622 5623 range_error = process_sp->GetMemoryRegionInfo(range_info.GetRange().GetRangeEnd(), range_info); 5624 if (range_error.Fail()) 5625 break; 5626 } 5627 5628 StreamString buffer (Stream::eBinary, 5629 addr_byte_size, 5630 byte_order); 5631 5632 mach_header_64 mach_header; 5633 if (addr_byte_size == 8) 5634 { 5635 mach_header.magic = MH_MAGIC_64; 5636 } 5637 else 5638 { 5639 mach_header.magic = MH_MAGIC; 5640 } 5641 mach_header.cputype = target_arch.GetMachOCPUType(); 5642 mach_header.cpusubtype = target_arch.GetMachOCPUSubType(); 5643 mach_header.filetype = MH_CORE; 5644 mach_header.ncmds = segment_load_commands.size(); 5645 mach_header.flags = 0; 5646 mach_header.reserved = 0; 5647 ThreadList &thread_list = process_sp->GetThreadList(); 5648 const uint32_t num_threads = thread_list.GetSize(); 5649 5650 // Make an array of LC_THREAD data items. Each one contains 5651 // the contents of the LC_THREAD load command. The data doesn't 5652 // contain the load command + load command size, we will 5653 // add the load command and load command size as we emit the data. 5654 std::vector<StreamString> LC_THREAD_datas(num_threads); 5655 for (auto &LC_THREAD_data : LC_THREAD_datas) 5656 { 5657 LC_THREAD_data.GetFlags().Set(Stream::eBinary); 5658 LC_THREAD_data.SetAddressByteSize(addr_byte_size); 5659 LC_THREAD_data.SetByteOrder(byte_order); 5660 } 5661 for (uint32_t thread_idx = 0; thread_idx < num_threads; ++thread_idx) 5662 { 5663 ThreadSP thread_sp (thread_list.GetThreadAtIndex(thread_idx)); 5664 if (thread_sp) 5665 { 5666 switch (mach_header.cputype) 5667 { 5668 case llvm::MachO::CPU_TYPE_ARM64: 5669 RegisterContextDarwin_arm64_Mach::Create_LC_THREAD (thread_sp.get(), LC_THREAD_datas[thread_idx]); 5670 break; 5671 5672 case llvm::MachO::CPU_TYPE_ARM: 5673 RegisterContextDarwin_arm_Mach::Create_LC_THREAD (thread_sp.get(), LC_THREAD_datas[thread_idx]); 5674 break; 5675 5676 case llvm::MachO::CPU_TYPE_I386: 5677 RegisterContextDarwin_i386_Mach::Create_LC_THREAD (thread_sp.get(), LC_THREAD_datas[thread_idx]); 5678 break; 5679 5680 case llvm::MachO::CPU_TYPE_X86_64: 5681 RegisterContextDarwin_x86_64_Mach::Create_LC_THREAD (thread_sp.get(), LC_THREAD_datas[thread_idx]); 5682 break; 5683 } 5684 5685 } 5686 } 5687 5688 // The size of the load command is the size of the segments... 5689 if (addr_byte_size == 8) 5690 { 5691 mach_header.sizeofcmds = segment_load_commands.size() * sizeof (struct segment_command_64); 5692 } 5693 else 5694 { 5695 mach_header.sizeofcmds = segment_load_commands.size() * sizeof (struct segment_command); 5696 } 5697 5698 // and the size of all LC_THREAD load command 5699 for (const auto &LC_THREAD_data : LC_THREAD_datas) 5700 { 5701 ++mach_header.ncmds; 5702 mach_header.sizeofcmds += 8 + LC_THREAD_data.GetSize(); 5703 } 5704 5705 printf ("mach_header: 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x\n", 5706 mach_header.magic, 5707 mach_header.cputype, 5708 mach_header.cpusubtype, 5709 mach_header.filetype, 5710 mach_header.ncmds, 5711 mach_header.sizeofcmds, 5712 mach_header.flags, 5713 mach_header.reserved); 5714 5715 // Write the mach header 5716 buffer.PutHex32(mach_header.magic); 5717 buffer.PutHex32(mach_header.cputype); 5718 buffer.PutHex32(mach_header.cpusubtype); 5719 buffer.PutHex32(mach_header.filetype); 5720 buffer.PutHex32(mach_header.ncmds); 5721 buffer.PutHex32(mach_header.sizeofcmds); 5722 buffer.PutHex32(mach_header.flags); 5723 if (addr_byte_size == 8) 5724 { 5725 buffer.PutHex32(mach_header.reserved); 5726 } 5727 5728 // Skip the mach header and all load commands and align to the next 5729 // 0x1000 byte boundary 5730 addr_t file_offset = buffer.GetSize() + mach_header.sizeofcmds; 5731 if (file_offset & 0x00000fff) 5732 { 5733 file_offset += 0x00001000ull; 5734 file_offset &= (~0x00001000ull + 1); 5735 } 5736 5737 for (auto &segment : segment_load_commands) 5738 { 5739 segment.fileoff = file_offset; 5740 file_offset += segment.filesize; 5741 } 5742 5743 // Write out all of the LC_THREAD load commands 5744 for (const auto &LC_THREAD_data : LC_THREAD_datas) 5745 { 5746 const size_t LC_THREAD_data_size = LC_THREAD_data.GetSize(); 5747 buffer.PutHex32(LC_THREAD); 5748 buffer.PutHex32(8 + LC_THREAD_data_size); // cmd + cmdsize + data 5749 buffer.Write(LC_THREAD_data.GetData(), LC_THREAD_data_size); 5750 } 5751 5752 // Write out all of the segment load commands 5753 for (const auto &segment : segment_load_commands) 5754 { 5755 printf ("0x%8.8x 0x%8.8x [0x%16.16" PRIx64 " - 0x%16.16" PRIx64 ") [0x%16.16" PRIx64 " 0x%16.16" PRIx64 ") 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x]\n", 5756 segment.cmd, 5757 segment.cmdsize, 5758 segment.vmaddr, 5759 segment.vmaddr + segment.vmsize, 5760 segment.fileoff, 5761 segment.filesize, 5762 segment.maxprot, 5763 segment.initprot, 5764 segment.nsects, 5765 segment.flags); 5766 5767 buffer.PutHex32(segment.cmd); 5768 buffer.PutHex32(segment.cmdsize); 5769 buffer.PutRawBytes(segment.segname, sizeof(segment.segname)); 5770 if (addr_byte_size == 8) 5771 { 5772 buffer.PutHex64(segment.vmaddr); 5773 buffer.PutHex64(segment.vmsize); 5774 buffer.PutHex64(segment.fileoff); 5775 buffer.PutHex64(segment.filesize); 5776 } 5777 else 5778 { 5779 buffer.PutHex32(static_cast<uint32_t>(segment.vmaddr)); 5780 buffer.PutHex32(static_cast<uint32_t>(segment.vmsize)); 5781 buffer.PutHex32(static_cast<uint32_t>(segment.fileoff)); 5782 buffer.PutHex32(static_cast<uint32_t>(segment.filesize)); 5783 } 5784 buffer.PutHex32(segment.maxprot); 5785 buffer.PutHex32(segment.initprot); 5786 buffer.PutHex32(segment.nsects); 5787 buffer.PutHex32(segment.flags); 5788 } 5789 5790 File core_file; 5791 std::string core_file_path(outfile.GetPath()); 5792 error = core_file.Open(core_file_path.c_str(), 5793 File::eOpenOptionWrite | 5794 File::eOpenOptionTruncate | 5795 File::eOpenOptionCanCreate); 5796 if (error.Success()) 5797 { 5798 // Read 1 page at a time 5799 uint8_t bytes[0x1000]; 5800 // Write the mach header and load commands out to the core file 5801 size_t bytes_written = buffer.GetString().size(); 5802 error = core_file.Write(buffer.GetString().data(), bytes_written); 5803 if (error.Success()) 5804 { 5805 // Now write the file data for all memory segments in the process 5806 for (const auto &segment : segment_load_commands) 5807 { 5808 if (core_file.SeekFromStart(segment.fileoff) == -1) 5809 { 5810 error.SetErrorStringWithFormat("unable to seek to offset 0x%" PRIx64 " in '%s'", segment.fileoff, core_file_path.c_str()); 5811 break; 5812 } 5813 5814 printf ("Saving %" PRId64 " bytes of data for memory region at 0x%" PRIx64 "\n", segment.vmsize, segment.vmaddr); 5815 addr_t bytes_left = segment.vmsize; 5816 addr_t addr = segment.vmaddr; 5817 Error memory_read_error; 5818 while (bytes_left > 0 && error.Success()) 5819 { 5820 const size_t bytes_to_read = bytes_left > sizeof(bytes) ? sizeof(bytes) : bytes_left; 5821 const size_t bytes_read = process_sp->ReadMemory(addr, bytes, bytes_to_read, memory_read_error); 5822 if (bytes_read == bytes_to_read) 5823 { 5824 size_t bytes_written = bytes_read; 5825 error = core_file.Write(bytes, bytes_written); 5826 bytes_left -= bytes_read; 5827 addr += bytes_read; 5828 } 5829 else 5830 { 5831 // Some pages within regions are not readable, those 5832 // should be zero filled 5833 memset (bytes, 0, bytes_to_read); 5834 size_t bytes_written = bytes_to_read; 5835 error = core_file.Write(bytes, bytes_written); 5836 bytes_left -= bytes_to_read; 5837 addr += bytes_to_read; 5838 } 5839 } 5840 } 5841 } 5842 } 5843 } 5844 else 5845 { 5846 error.SetErrorString("process doesn't support getting memory region info"); 5847 } 5848 } 5849 return true; // This is the right plug to handle saving core files for this process 5850 } 5851 } 5852 return false; 5853 } 5854 5855