1 //===-- ObjectFileMachO.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/ADT/StringRef.h"
10 
11 #include "Plugins/Process/Utility/RegisterContextDarwin_arm.h"
12 #include "Plugins/Process/Utility/RegisterContextDarwin_arm64.h"
13 #include "Plugins/Process/Utility/RegisterContextDarwin_i386.h"
14 #include "Plugins/Process/Utility/RegisterContextDarwin_x86_64.h"
15 #include "lldb/Core/Debugger.h"
16 #include "lldb/Core/FileSpecList.h"
17 #include "lldb/Core/Module.h"
18 #include "lldb/Core/ModuleSpec.h"
19 #include "lldb/Core/PluginManager.h"
20 #include "lldb/Core/Section.h"
21 #include "lldb/Core/StreamFile.h"
22 #include "lldb/Host/Host.h"
23 #include "lldb/Symbol/DWARFCallFrameInfo.h"
24 #include "lldb/Symbol/ObjectFile.h"
25 #include "lldb/Target/DynamicLoader.h"
26 #include "lldb/Target/MemoryRegionInfo.h"
27 #include "lldb/Target/Platform.h"
28 #include "lldb/Target/Process.h"
29 #include "lldb/Target/SectionLoadList.h"
30 #include "lldb/Target/Target.h"
31 #include "lldb/Target/Thread.h"
32 #include "lldb/Target/ThreadList.h"
33 #include "lldb/Utility/ArchSpec.h"
34 #include "lldb/Utility/DataBuffer.h"
35 #include "lldb/Utility/FileSpec.h"
36 #include "lldb/Utility/Log.h"
37 #include "lldb/Utility/RangeMap.h"
38 #include "lldb/Utility/RegisterValue.h"
39 #include "lldb/Utility/Status.h"
40 #include "lldb/Utility/StreamString.h"
41 #include "lldb/Utility/Timer.h"
42 #include "lldb/Utility/UUID.h"
43 
44 #include "lldb/Host/SafeMachO.h"
45 
46 #include "llvm/Support/MemoryBuffer.h"
47 
48 #include "ObjectFileMachO.h"
49 
50 #if defined(__APPLE__) &&                                                      \
51     (defined(__arm__) || defined(__arm64__) || defined(__aarch64__))
52 // GetLLDBSharedCacheUUID() needs to call dlsym()
53 #include <dlfcn.h>
54 #endif
55 
56 #ifndef __APPLE__
57 #include "Utility/UuidCompatibility.h"
58 #else
59 #include <uuid/uuid.h>
60 #endif
61 
62 #include <memory>
63 
64 #define THUMB_ADDRESS_BIT_MASK 0xfffffffffffffffeull
65 using namespace lldb;
66 using namespace lldb_private;
67 using namespace llvm::MachO;
68 
69 LLDB_PLUGIN_DEFINE(ObjectFileMachO)
70 
71 // Some structure definitions needed for parsing the dyld shared cache files
72 // found on iOS devices.
73 
74 struct lldb_copy_dyld_cache_header_v1 {
75   char magic[16];         // e.g. "dyld_v0    i386", "dyld_v1   armv7", etc.
76   uint32_t mappingOffset; // file offset to first dyld_cache_mapping_info
77   uint32_t mappingCount;  // number of dyld_cache_mapping_info entries
78   uint32_t imagesOffset;
79   uint32_t imagesCount;
80   uint64_t dyldBaseAddress;
81   uint64_t codeSignatureOffset;
82   uint64_t codeSignatureSize;
83   uint64_t slideInfoOffset;
84   uint64_t slideInfoSize;
85   uint64_t localSymbolsOffset;
86   uint64_t localSymbolsSize;
87   uint8_t uuid[16]; // v1 and above, also recorded in dyld_all_image_infos v13
88                     // and later
89 };
90 
91 struct lldb_copy_dyld_cache_mapping_info {
92   uint64_t address;
93   uint64_t size;
94   uint64_t fileOffset;
95   uint32_t maxProt;
96   uint32_t initProt;
97 };
98 
99 struct lldb_copy_dyld_cache_local_symbols_info {
100   uint32_t nlistOffset;
101   uint32_t nlistCount;
102   uint32_t stringsOffset;
103   uint32_t stringsSize;
104   uint32_t entriesOffset;
105   uint32_t entriesCount;
106 };
107 struct lldb_copy_dyld_cache_local_symbols_entry {
108   uint32_t dylibOffset;
109   uint32_t nlistStartIndex;
110   uint32_t nlistCount;
111 };
112 
113 static void PrintRegisterValue(RegisterContext *reg_ctx, const char *name,
114                                const char *alt_name, size_t reg_byte_size,
115                                Stream &data) {
116   const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
117   if (reg_info == nullptr)
118     reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
119   if (reg_info) {
120     lldb_private::RegisterValue reg_value;
121     if (reg_ctx->ReadRegister(reg_info, reg_value)) {
122       if (reg_info->byte_size >= reg_byte_size)
123         data.Write(reg_value.GetBytes(), reg_byte_size);
124       else {
125         data.Write(reg_value.GetBytes(), reg_info->byte_size);
126         for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n; ++i)
127           data.PutChar(0);
128       }
129       return;
130     }
131   }
132   // Just write zeros if all else fails
133   for (size_t i = 0; i < reg_byte_size; ++i)
134     data.PutChar(0);
135 }
136 
137 class RegisterContextDarwin_x86_64_Mach : public RegisterContextDarwin_x86_64 {
138 public:
139   RegisterContextDarwin_x86_64_Mach(lldb_private::Thread &thread,
140                                     const DataExtractor &data)
141       : RegisterContextDarwin_x86_64(thread, 0) {
142     SetRegisterDataFrom_LC_THREAD(data);
143   }
144 
145   void InvalidateAllRegisters() override {
146     // Do nothing... registers are always valid...
147   }
148 
149   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
150     lldb::offset_t offset = 0;
151     SetError(GPRRegSet, Read, -1);
152     SetError(FPURegSet, Read, -1);
153     SetError(EXCRegSet, Read, -1);
154     bool done = false;
155 
156     while (!done) {
157       int flavor = data.GetU32(&offset);
158       if (flavor == 0)
159         done = true;
160       else {
161         uint32_t i;
162         uint32_t count = data.GetU32(&offset);
163         switch (flavor) {
164         case GPRRegSet:
165           for (i = 0; i < count; ++i)
166             (&gpr.rax)[i] = data.GetU64(&offset);
167           SetError(GPRRegSet, Read, 0);
168           done = true;
169 
170           break;
171         case FPURegSet:
172           // TODO: fill in FPU regs....
173           // SetError (FPURegSet, Read, -1);
174           done = true;
175 
176           break;
177         case EXCRegSet:
178           exc.trapno = data.GetU32(&offset);
179           exc.err = data.GetU32(&offset);
180           exc.faultvaddr = data.GetU64(&offset);
181           SetError(EXCRegSet, Read, 0);
182           done = true;
183           break;
184         case 7:
185         case 8:
186         case 9:
187           // fancy flavors that encapsulate of the above flavors...
188           break;
189 
190         default:
191           done = true;
192           break;
193         }
194       }
195     }
196   }
197 
198   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
199     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
200     if (reg_ctx_sp) {
201       RegisterContext *reg_ctx = reg_ctx_sp.get();
202 
203       data.PutHex32(GPRRegSet); // Flavor
204       data.PutHex32(GPRWordCount);
205       PrintRegisterValue(reg_ctx, "rax", nullptr, 8, data);
206       PrintRegisterValue(reg_ctx, "rbx", nullptr, 8, data);
207       PrintRegisterValue(reg_ctx, "rcx", nullptr, 8, data);
208       PrintRegisterValue(reg_ctx, "rdx", nullptr, 8, data);
209       PrintRegisterValue(reg_ctx, "rdi", nullptr, 8, data);
210       PrintRegisterValue(reg_ctx, "rsi", nullptr, 8, data);
211       PrintRegisterValue(reg_ctx, "rbp", nullptr, 8, data);
212       PrintRegisterValue(reg_ctx, "rsp", nullptr, 8, data);
213       PrintRegisterValue(reg_ctx, "r8", nullptr, 8, data);
214       PrintRegisterValue(reg_ctx, "r9", nullptr, 8, data);
215       PrintRegisterValue(reg_ctx, "r10", nullptr, 8, data);
216       PrintRegisterValue(reg_ctx, "r11", nullptr, 8, data);
217       PrintRegisterValue(reg_ctx, "r12", nullptr, 8, data);
218       PrintRegisterValue(reg_ctx, "r13", nullptr, 8, data);
219       PrintRegisterValue(reg_ctx, "r14", nullptr, 8, data);
220       PrintRegisterValue(reg_ctx, "r15", nullptr, 8, data);
221       PrintRegisterValue(reg_ctx, "rip", nullptr, 8, data);
222       PrintRegisterValue(reg_ctx, "rflags", nullptr, 8, data);
223       PrintRegisterValue(reg_ctx, "cs", nullptr, 8, data);
224       PrintRegisterValue(reg_ctx, "fs", nullptr, 8, data);
225       PrintRegisterValue(reg_ctx, "gs", nullptr, 8, data);
226 
227       //            // Write out the FPU registers
228       //            const size_t fpu_byte_size = sizeof(FPU);
229       //            size_t bytes_written = 0;
230       //            data.PutHex32 (FPURegSet);
231       //            data.PutHex32 (fpu_byte_size/sizeof(uint64_t));
232       //            bytes_written += data.PutHex32(0); // uint32_t pad[0]
233       //            bytes_written += data.PutHex32(0); // uint32_t pad[1]
234       //            bytes_written += WriteRegister (reg_ctx, "fcw", "fctrl", 2,
235       //            data);   // uint16_t    fcw;    // "fctrl"
236       //            bytes_written += WriteRegister (reg_ctx, "fsw" , "fstat", 2,
237       //            data);  // uint16_t    fsw;    // "fstat"
238       //            bytes_written += WriteRegister (reg_ctx, "ftw" , "ftag", 1,
239       //            data);   // uint8_t     ftw;    // "ftag"
240       //            bytes_written += data.PutHex8  (0); // uint8_t pad1;
241       //            bytes_written += WriteRegister (reg_ctx, "fop" , NULL, 2,
242       //            data);     // uint16_t    fop;    // "fop"
243       //            bytes_written += WriteRegister (reg_ctx, "fioff", "ip", 4,
244       //            data);    // uint32_t    ip;     // "fioff"
245       //            bytes_written += WriteRegister (reg_ctx, "fiseg", NULL, 2,
246       //            data);    // uint16_t    cs;     // "fiseg"
247       //            bytes_written += data.PutHex16 (0); // uint16_t    pad2;
248       //            bytes_written += WriteRegister (reg_ctx, "dp", "fooff" , 4,
249       //            data);   // uint32_t    dp;     // "fooff"
250       //            bytes_written += WriteRegister (reg_ctx, "foseg", NULL, 2,
251       //            data);    // uint16_t    ds;     // "foseg"
252       //            bytes_written += data.PutHex16 (0); // uint16_t    pad3;
253       //            bytes_written += WriteRegister (reg_ctx, "mxcsr", NULL, 4,
254       //            data);    // uint32_t    mxcsr;
255       //            bytes_written += WriteRegister (reg_ctx, "mxcsrmask", NULL,
256       //            4, data);// uint32_t    mxcsrmask;
257       //            bytes_written += WriteRegister (reg_ctx, "stmm0", NULL,
258       //            sizeof(MMSReg), data);
259       //            bytes_written += WriteRegister (reg_ctx, "stmm1", NULL,
260       //            sizeof(MMSReg), data);
261       //            bytes_written += WriteRegister (reg_ctx, "stmm2", NULL,
262       //            sizeof(MMSReg), data);
263       //            bytes_written += WriteRegister (reg_ctx, "stmm3", NULL,
264       //            sizeof(MMSReg), data);
265       //            bytes_written += WriteRegister (reg_ctx, "stmm4", NULL,
266       //            sizeof(MMSReg), data);
267       //            bytes_written += WriteRegister (reg_ctx, "stmm5", NULL,
268       //            sizeof(MMSReg), data);
269       //            bytes_written += WriteRegister (reg_ctx, "stmm6", NULL,
270       //            sizeof(MMSReg), data);
271       //            bytes_written += WriteRegister (reg_ctx, "stmm7", NULL,
272       //            sizeof(MMSReg), data);
273       //            bytes_written += WriteRegister (reg_ctx, "xmm0" , NULL,
274       //            sizeof(XMMReg), data);
275       //            bytes_written += WriteRegister (reg_ctx, "xmm1" , NULL,
276       //            sizeof(XMMReg), data);
277       //            bytes_written += WriteRegister (reg_ctx, "xmm2" , NULL,
278       //            sizeof(XMMReg), data);
279       //            bytes_written += WriteRegister (reg_ctx, "xmm3" , NULL,
280       //            sizeof(XMMReg), data);
281       //            bytes_written += WriteRegister (reg_ctx, "xmm4" , NULL,
282       //            sizeof(XMMReg), data);
283       //            bytes_written += WriteRegister (reg_ctx, "xmm5" , NULL,
284       //            sizeof(XMMReg), data);
285       //            bytes_written += WriteRegister (reg_ctx, "xmm6" , NULL,
286       //            sizeof(XMMReg), data);
287       //            bytes_written += WriteRegister (reg_ctx, "xmm7" , NULL,
288       //            sizeof(XMMReg), data);
289       //            bytes_written += WriteRegister (reg_ctx, "xmm8" , NULL,
290       //            sizeof(XMMReg), data);
291       //            bytes_written += WriteRegister (reg_ctx, "xmm9" , NULL,
292       //            sizeof(XMMReg), data);
293       //            bytes_written += WriteRegister (reg_ctx, "xmm10", NULL,
294       //            sizeof(XMMReg), data);
295       //            bytes_written += WriteRegister (reg_ctx, "xmm11", NULL,
296       //            sizeof(XMMReg), data);
297       //            bytes_written += WriteRegister (reg_ctx, "xmm12", NULL,
298       //            sizeof(XMMReg), data);
299       //            bytes_written += WriteRegister (reg_ctx, "xmm13", NULL,
300       //            sizeof(XMMReg), data);
301       //            bytes_written += WriteRegister (reg_ctx, "xmm14", NULL,
302       //            sizeof(XMMReg), data);
303       //            bytes_written += WriteRegister (reg_ctx, "xmm15", NULL,
304       //            sizeof(XMMReg), data);
305       //
306       //            // Fill rest with zeros
307       //            for (size_t i=0, n = fpu_byte_size - bytes_written; i<n; ++
308       //            i)
309       //                data.PutChar(0);
310 
311       // Write out the EXC registers
312       data.PutHex32(EXCRegSet);
313       data.PutHex32(EXCWordCount);
314       PrintRegisterValue(reg_ctx, "trapno", nullptr, 4, data);
315       PrintRegisterValue(reg_ctx, "err", nullptr, 4, data);
316       PrintRegisterValue(reg_ctx, "faultvaddr", nullptr, 8, data);
317       return true;
318     }
319     return false;
320   }
321 
322 protected:
323   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
324 
325   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
326 
327   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
328 
329   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
330     return 0;
331   }
332 
333   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
334     return 0;
335   }
336 
337   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
338     return 0;
339   }
340 };
341 
342 class RegisterContextDarwin_i386_Mach : public RegisterContextDarwin_i386 {
343 public:
344   RegisterContextDarwin_i386_Mach(lldb_private::Thread &thread,
345                                   const DataExtractor &data)
346       : RegisterContextDarwin_i386(thread, 0) {
347     SetRegisterDataFrom_LC_THREAD(data);
348   }
349 
350   void InvalidateAllRegisters() override {
351     // Do nothing... registers are always valid...
352   }
353 
354   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
355     lldb::offset_t offset = 0;
356     SetError(GPRRegSet, Read, -1);
357     SetError(FPURegSet, Read, -1);
358     SetError(EXCRegSet, Read, -1);
359     bool done = false;
360 
361     while (!done) {
362       int flavor = data.GetU32(&offset);
363       if (flavor == 0)
364         done = true;
365       else {
366         uint32_t i;
367         uint32_t count = data.GetU32(&offset);
368         switch (flavor) {
369         case GPRRegSet:
370           for (i = 0; i < count; ++i)
371             (&gpr.eax)[i] = data.GetU32(&offset);
372           SetError(GPRRegSet, Read, 0);
373           done = true;
374 
375           break;
376         case FPURegSet:
377           // TODO: fill in FPU regs....
378           // SetError (FPURegSet, Read, -1);
379           done = true;
380 
381           break;
382         case EXCRegSet:
383           exc.trapno = data.GetU32(&offset);
384           exc.err = data.GetU32(&offset);
385           exc.faultvaddr = data.GetU32(&offset);
386           SetError(EXCRegSet, Read, 0);
387           done = true;
388           break;
389         case 7:
390         case 8:
391         case 9:
392           // fancy flavors that encapsulate of the above flavors...
393           break;
394 
395         default:
396           done = true;
397           break;
398         }
399       }
400     }
401   }
402 
403   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
404     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
405     if (reg_ctx_sp) {
406       RegisterContext *reg_ctx = reg_ctx_sp.get();
407 
408       data.PutHex32(GPRRegSet); // Flavor
409       data.PutHex32(GPRWordCount);
410       PrintRegisterValue(reg_ctx, "eax", nullptr, 4, data);
411       PrintRegisterValue(reg_ctx, "ebx", nullptr, 4, data);
412       PrintRegisterValue(reg_ctx, "ecx", nullptr, 4, data);
413       PrintRegisterValue(reg_ctx, "edx", nullptr, 4, data);
414       PrintRegisterValue(reg_ctx, "edi", nullptr, 4, data);
415       PrintRegisterValue(reg_ctx, "esi", nullptr, 4, data);
416       PrintRegisterValue(reg_ctx, "ebp", nullptr, 4, data);
417       PrintRegisterValue(reg_ctx, "esp", nullptr, 4, data);
418       PrintRegisterValue(reg_ctx, "ss", nullptr, 4, data);
419       PrintRegisterValue(reg_ctx, "eflags", nullptr, 4, data);
420       PrintRegisterValue(reg_ctx, "eip", nullptr, 4, data);
421       PrintRegisterValue(reg_ctx, "cs", nullptr, 4, data);
422       PrintRegisterValue(reg_ctx, "ds", nullptr, 4, data);
423       PrintRegisterValue(reg_ctx, "es", nullptr, 4, data);
424       PrintRegisterValue(reg_ctx, "fs", nullptr, 4, data);
425       PrintRegisterValue(reg_ctx, "gs", nullptr, 4, data);
426 
427       // Write out the EXC registers
428       data.PutHex32(EXCRegSet);
429       data.PutHex32(EXCWordCount);
430       PrintRegisterValue(reg_ctx, "trapno", nullptr, 4, data);
431       PrintRegisterValue(reg_ctx, "err", nullptr, 4, data);
432       PrintRegisterValue(reg_ctx, "faultvaddr", nullptr, 4, data);
433       return true;
434     }
435     return false;
436   }
437 
438 protected:
439   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
440 
441   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
442 
443   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
444 
445   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
446     return 0;
447   }
448 
449   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
450     return 0;
451   }
452 
453   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
454     return 0;
455   }
456 };
457 
458 class RegisterContextDarwin_arm_Mach : public RegisterContextDarwin_arm {
459 public:
460   RegisterContextDarwin_arm_Mach(lldb_private::Thread &thread,
461                                  const DataExtractor &data)
462       : RegisterContextDarwin_arm(thread, 0) {
463     SetRegisterDataFrom_LC_THREAD(data);
464   }
465 
466   void InvalidateAllRegisters() override {
467     // Do nothing... registers are always valid...
468   }
469 
470   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
471     lldb::offset_t offset = 0;
472     SetError(GPRRegSet, Read, -1);
473     SetError(FPURegSet, Read, -1);
474     SetError(EXCRegSet, Read, -1);
475     bool done = false;
476 
477     while (!done) {
478       int flavor = data.GetU32(&offset);
479       uint32_t count = data.GetU32(&offset);
480       lldb::offset_t next_thread_state = offset + (count * 4);
481       switch (flavor) {
482       case GPRAltRegSet:
483       case GPRRegSet:
484         // On ARM, the CPSR register is also included in the count but it is
485         // not included in gpr.r so loop until (count-1).
486         for (uint32_t i = 0; i < (count - 1); ++i) {
487           gpr.r[i] = data.GetU32(&offset);
488         }
489         // Save cpsr explicitly.
490         gpr.cpsr = data.GetU32(&offset);
491 
492         SetError(GPRRegSet, Read, 0);
493         offset = next_thread_state;
494         break;
495 
496       case FPURegSet: {
497         uint8_t *fpu_reg_buf = (uint8_t *)&fpu.floats.s[0];
498         const int fpu_reg_buf_size = sizeof(fpu.floats);
499         if (data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
500                               fpu_reg_buf) == fpu_reg_buf_size) {
501           offset += fpu_reg_buf_size;
502           fpu.fpscr = data.GetU32(&offset);
503           SetError(FPURegSet, Read, 0);
504         } else {
505           done = true;
506         }
507       }
508         offset = next_thread_state;
509         break;
510 
511       case EXCRegSet:
512         if (count == 3) {
513           exc.exception = data.GetU32(&offset);
514           exc.fsr = data.GetU32(&offset);
515           exc.far = data.GetU32(&offset);
516           SetError(EXCRegSet, Read, 0);
517         }
518         done = true;
519         offset = next_thread_state;
520         break;
521 
522       // Unknown register set flavor, stop trying to parse.
523       default:
524         done = true;
525       }
526     }
527   }
528 
529   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
530     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
531     if (reg_ctx_sp) {
532       RegisterContext *reg_ctx = reg_ctx_sp.get();
533 
534       data.PutHex32(GPRRegSet); // Flavor
535       data.PutHex32(GPRWordCount);
536       PrintRegisterValue(reg_ctx, "r0", nullptr, 4, data);
537       PrintRegisterValue(reg_ctx, "r1", nullptr, 4, data);
538       PrintRegisterValue(reg_ctx, "r2", nullptr, 4, data);
539       PrintRegisterValue(reg_ctx, "r3", nullptr, 4, data);
540       PrintRegisterValue(reg_ctx, "r4", nullptr, 4, data);
541       PrintRegisterValue(reg_ctx, "r5", nullptr, 4, data);
542       PrintRegisterValue(reg_ctx, "r6", nullptr, 4, data);
543       PrintRegisterValue(reg_ctx, "r7", nullptr, 4, data);
544       PrintRegisterValue(reg_ctx, "r8", nullptr, 4, data);
545       PrintRegisterValue(reg_ctx, "r9", nullptr, 4, data);
546       PrintRegisterValue(reg_ctx, "r10", nullptr, 4, data);
547       PrintRegisterValue(reg_ctx, "r11", nullptr, 4, data);
548       PrintRegisterValue(reg_ctx, "r12", nullptr, 4, data);
549       PrintRegisterValue(reg_ctx, "sp", nullptr, 4, data);
550       PrintRegisterValue(reg_ctx, "lr", nullptr, 4, data);
551       PrintRegisterValue(reg_ctx, "pc", nullptr, 4, data);
552       PrintRegisterValue(reg_ctx, "cpsr", nullptr, 4, data);
553 
554       // Write out the EXC registers
555       //            data.PutHex32 (EXCRegSet);
556       //            data.PutHex32 (EXCWordCount);
557       //            WriteRegister (reg_ctx, "exception", NULL, 4, data);
558       //            WriteRegister (reg_ctx, "fsr", NULL, 4, data);
559       //            WriteRegister (reg_ctx, "far", NULL, 4, data);
560       return true;
561     }
562     return false;
563   }
564 
565 protected:
566   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
567 
568   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
569 
570   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
571 
572   int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
573 
574   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
575     return 0;
576   }
577 
578   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
579     return 0;
580   }
581 
582   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
583     return 0;
584   }
585 
586   int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
587     return -1;
588   }
589 };
590 
591 class RegisterContextDarwin_arm64_Mach : public RegisterContextDarwin_arm64 {
592 public:
593   RegisterContextDarwin_arm64_Mach(lldb_private::Thread &thread,
594                                    const DataExtractor &data)
595       : RegisterContextDarwin_arm64(thread, 0) {
596     SetRegisterDataFrom_LC_THREAD(data);
597   }
598 
599   void InvalidateAllRegisters() override {
600     // Do nothing... registers are always valid...
601   }
602 
603   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
604     lldb::offset_t offset = 0;
605     SetError(GPRRegSet, Read, -1);
606     SetError(FPURegSet, Read, -1);
607     SetError(EXCRegSet, Read, -1);
608     bool done = false;
609     while (!done) {
610       int flavor = data.GetU32(&offset);
611       uint32_t count = data.GetU32(&offset);
612       lldb::offset_t next_thread_state = offset + (count * 4);
613       switch (flavor) {
614       case GPRRegSet:
615         // x0-x29 + fp + lr + sp + pc (== 33 64-bit registers) plus cpsr (1
616         // 32-bit register)
617         if (count >= (33 * 2) + 1) {
618           for (uint32_t i = 0; i < 29; ++i)
619             gpr.x[i] = data.GetU64(&offset);
620           gpr.fp = data.GetU64(&offset);
621           gpr.lr = data.GetU64(&offset);
622           gpr.sp = data.GetU64(&offset);
623           gpr.pc = data.GetU64(&offset);
624           gpr.cpsr = data.GetU32(&offset);
625           SetError(GPRRegSet, Read, 0);
626         }
627         offset = next_thread_state;
628         break;
629       case FPURegSet: {
630         uint8_t *fpu_reg_buf = (uint8_t *)&fpu.v[0];
631         const int fpu_reg_buf_size = sizeof(fpu);
632         if (fpu_reg_buf_size == count * sizeof(uint32_t) &&
633             data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
634                               fpu_reg_buf) == fpu_reg_buf_size) {
635           SetError(FPURegSet, Read, 0);
636         } else {
637           done = true;
638         }
639       }
640         offset = next_thread_state;
641         break;
642       case EXCRegSet:
643         if (count == 4) {
644           exc.far = data.GetU64(&offset);
645           exc.esr = data.GetU32(&offset);
646           exc.exception = data.GetU32(&offset);
647           SetError(EXCRegSet, Read, 0);
648         }
649         offset = next_thread_state;
650         break;
651       default:
652         done = true;
653         break;
654       }
655     }
656   }
657 
658   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
659     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
660     if (reg_ctx_sp) {
661       RegisterContext *reg_ctx = reg_ctx_sp.get();
662 
663       data.PutHex32(GPRRegSet); // Flavor
664       data.PutHex32(GPRWordCount);
665       PrintRegisterValue(reg_ctx, "x0", nullptr, 8, data);
666       PrintRegisterValue(reg_ctx, "x1", nullptr, 8, data);
667       PrintRegisterValue(reg_ctx, "x2", nullptr, 8, data);
668       PrintRegisterValue(reg_ctx, "x3", nullptr, 8, data);
669       PrintRegisterValue(reg_ctx, "x4", nullptr, 8, data);
670       PrintRegisterValue(reg_ctx, "x5", nullptr, 8, data);
671       PrintRegisterValue(reg_ctx, "x6", nullptr, 8, data);
672       PrintRegisterValue(reg_ctx, "x7", nullptr, 8, data);
673       PrintRegisterValue(reg_ctx, "x8", nullptr, 8, data);
674       PrintRegisterValue(reg_ctx, "x9", nullptr, 8, data);
675       PrintRegisterValue(reg_ctx, "x10", nullptr, 8, data);
676       PrintRegisterValue(reg_ctx, "x11", nullptr, 8, data);
677       PrintRegisterValue(reg_ctx, "x12", nullptr, 8, data);
678       PrintRegisterValue(reg_ctx, "x13", nullptr, 8, data);
679       PrintRegisterValue(reg_ctx, "x14", nullptr, 8, data);
680       PrintRegisterValue(reg_ctx, "x15", nullptr, 8, data);
681       PrintRegisterValue(reg_ctx, "x16", nullptr, 8, data);
682       PrintRegisterValue(reg_ctx, "x17", nullptr, 8, data);
683       PrintRegisterValue(reg_ctx, "x18", nullptr, 8, data);
684       PrintRegisterValue(reg_ctx, "x19", nullptr, 8, data);
685       PrintRegisterValue(reg_ctx, "x20", nullptr, 8, data);
686       PrintRegisterValue(reg_ctx, "x21", nullptr, 8, data);
687       PrintRegisterValue(reg_ctx, "x22", nullptr, 8, data);
688       PrintRegisterValue(reg_ctx, "x23", nullptr, 8, data);
689       PrintRegisterValue(reg_ctx, "x24", nullptr, 8, data);
690       PrintRegisterValue(reg_ctx, "x25", nullptr, 8, data);
691       PrintRegisterValue(reg_ctx, "x26", nullptr, 8, data);
692       PrintRegisterValue(reg_ctx, "x27", nullptr, 8, data);
693       PrintRegisterValue(reg_ctx, "x28", nullptr, 8, data);
694       PrintRegisterValue(reg_ctx, "fp", nullptr, 8, data);
695       PrintRegisterValue(reg_ctx, "lr", nullptr, 8, data);
696       PrintRegisterValue(reg_ctx, "sp", nullptr, 8, data);
697       PrintRegisterValue(reg_ctx, "pc", nullptr, 8, data);
698       PrintRegisterValue(reg_ctx, "cpsr", nullptr, 4, data);
699 
700       // Write out the EXC registers
701       //            data.PutHex32 (EXCRegSet);
702       //            data.PutHex32 (EXCWordCount);
703       //            WriteRegister (reg_ctx, "far", NULL, 8, data);
704       //            WriteRegister (reg_ctx, "esr", NULL, 4, data);
705       //            WriteRegister (reg_ctx, "exception", NULL, 4, data);
706       return true;
707     }
708     return false;
709   }
710 
711 protected:
712   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
713 
714   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
715 
716   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
717 
718   int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
719 
720   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
721     return 0;
722   }
723 
724   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
725     return 0;
726   }
727 
728   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
729     return 0;
730   }
731 
732   int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
733     return -1;
734   }
735 };
736 
737 static uint32_t MachHeaderSizeFromMagic(uint32_t magic) {
738   switch (magic) {
739   case MH_MAGIC:
740   case MH_CIGAM:
741     return sizeof(struct mach_header);
742 
743   case MH_MAGIC_64:
744   case MH_CIGAM_64:
745     return sizeof(struct mach_header_64);
746     break;
747 
748   default:
749     break;
750   }
751   return 0;
752 }
753 
754 #define MACHO_NLIST_ARM_SYMBOL_IS_THUMB 0x0008
755 
756 char ObjectFileMachO::ID;
757 
758 void ObjectFileMachO::Initialize() {
759   PluginManager::RegisterPlugin(
760       GetPluginNameStatic(), GetPluginDescriptionStatic(), CreateInstance,
761       CreateMemoryInstance, GetModuleSpecifications, SaveCore);
762 }
763 
764 void ObjectFileMachO::Terminate() {
765   PluginManager::UnregisterPlugin(CreateInstance);
766 }
767 
768 lldb_private::ConstString ObjectFileMachO::GetPluginNameStatic() {
769   static ConstString g_name("mach-o");
770   return g_name;
771 }
772 
773 const char *ObjectFileMachO::GetPluginDescriptionStatic() {
774   return "Mach-o object file reader (32 and 64 bit)";
775 }
776 
777 ObjectFile *ObjectFileMachO::CreateInstance(const lldb::ModuleSP &module_sp,
778                                             DataBufferSP &data_sp,
779                                             lldb::offset_t data_offset,
780                                             const FileSpec *file,
781                                             lldb::offset_t file_offset,
782                                             lldb::offset_t length) {
783   if (!data_sp) {
784     data_sp = MapFileData(*file, length, file_offset);
785     if (!data_sp)
786       return nullptr;
787     data_offset = 0;
788   }
789 
790   if (!ObjectFileMachO::MagicBytesMatch(data_sp, data_offset, length))
791     return nullptr;
792 
793   // Update the data to contain the entire file if it doesn't already
794   if (data_sp->GetByteSize() < length) {
795     data_sp = MapFileData(*file, length, file_offset);
796     if (!data_sp)
797       return nullptr;
798     data_offset = 0;
799   }
800   auto objfile_up = std::make_unique<ObjectFileMachO>(
801       module_sp, data_sp, data_offset, file, file_offset, length);
802   if (!objfile_up || !objfile_up->ParseHeader())
803     return nullptr;
804 
805   return objfile_up.release();
806 }
807 
808 ObjectFile *ObjectFileMachO::CreateMemoryInstance(
809     const lldb::ModuleSP &module_sp, DataBufferSP &data_sp,
810     const ProcessSP &process_sp, lldb::addr_t header_addr) {
811   if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
812     std::unique_ptr<ObjectFile> objfile_up(
813         new ObjectFileMachO(module_sp, data_sp, process_sp, header_addr));
814     if (objfile_up.get() && objfile_up->ParseHeader())
815       return objfile_up.release();
816   }
817   return nullptr;
818 }
819 
820 size_t ObjectFileMachO::GetModuleSpecifications(
821     const lldb_private::FileSpec &file, lldb::DataBufferSP &data_sp,
822     lldb::offset_t data_offset, lldb::offset_t file_offset,
823     lldb::offset_t length, lldb_private::ModuleSpecList &specs) {
824   const size_t initial_count = specs.GetSize();
825 
826   if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
827     DataExtractor data;
828     data.SetData(data_sp);
829     llvm::MachO::mach_header header;
830     if (ParseHeader(data, &data_offset, header)) {
831       size_t header_and_load_cmds =
832           header.sizeofcmds + MachHeaderSizeFromMagic(header.magic);
833       if (header_and_load_cmds >= data_sp->GetByteSize()) {
834         data_sp = MapFileData(file, header_and_load_cmds, file_offset);
835         data.SetData(data_sp);
836         data_offset = MachHeaderSizeFromMagic(header.magic);
837       }
838       if (data_sp) {
839         ModuleSpec base_spec;
840         base_spec.GetFileSpec() = file;
841         base_spec.SetObjectOffset(file_offset);
842         base_spec.SetObjectSize(length);
843         GetAllArchSpecs(header, data, data_offset, base_spec, specs);
844       }
845     }
846   }
847   return specs.GetSize() - initial_count;
848 }
849 
850 ConstString ObjectFileMachO::GetSegmentNameTEXT() {
851   static ConstString g_segment_name_TEXT("__TEXT");
852   return g_segment_name_TEXT;
853 }
854 
855 ConstString ObjectFileMachO::GetSegmentNameDATA() {
856   static ConstString g_segment_name_DATA("__DATA");
857   return g_segment_name_DATA;
858 }
859 
860 ConstString ObjectFileMachO::GetSegmentNameDATA_DIRTY() {
861   static ConstString g_segment_name("__DATA_DIRTY");
862   return g_segment_name;
863 }
864 
865 ConstString ObjectFileMachO::GetSegmentNameDATA_CONST() {
866   static ConstString g_segment_name("__DATA_CONST");
867   return g_segment_name;
868 }
869 
870 ConstString ObjectFileMachO::GetSegmentNameOBJC() {
871   static ConstString g_segment_name_OBJC("__OBJC");
872   return g_segment_name_OBJC;
873 }
874 
875 ConstString ObjectFileMachO::GetSegmentNameLINKEDIT() {
876   static ConstString g_section_name_LINKEDIT("__LINKEDIT");
877   return g_section_name_LINKEDIT;
878 }
879 
880 ConstString ObjectFileMachO::GetSegmentNameDWARF() {
881   static ConstString g_section_name("__DWARF");
882   return g_section_name;
883 }
884 
885 ConstString ObjectFileMachO::GetSectionNameEHFrame() {
886   static ConstString g_section_name_eh_frame("__eh_frame");
887   return g_section_name_eh_frame;
888 }
889 
890 bool ObjectFileMachO::MagicBytesMatch(DataBufferSP &data_sp,
891                                       lldb::addr_t data_offset,
892                                       lldb::addr_t data_length) {
893   DataExtractor data;
894   data.SetData(data_sp, data_offset, data_length);
895   lldb::offset_t offset = 0;
896   uint32_t magic = data.GetU32(&offset);
897   return MachHeaderSizeFromMagic(magic) != 0;
898 }
899 
900 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
901                                  DataBufferSP &data_sp,
902                                  lldb::offset_t data_offset,
903                                  const FileSpec *file,
904                                  lldb::offset_t file_offset,
905                                  lldb::offset_t length)
906     : ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset),
907       m_mach_segments(), m_mach_sections(), m_entry_point_address(),
908       m_thread_context_offsets(), m_thread_context_offsets_valid(false),
909       m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) {
910   ::memset(&m_header, 0, sizeof(m_header));
911   ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
912 }
913 
914 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
915                                  lldb::DataBufferSP &header_data_sp,
916                                  const lldb::ProcessSP &process_sp,
917                                  lldb::addr_t header_addr)
918     : ObjectFile(module_sp, process_sp, header_addr, header_data_sp),
919       m_mach_segments(), m_mach_sections(), m_entry_point_address(),
920       m_thread_context_offsets(), m_thread_context_offsets_valid(false),
921       m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) {
922   ::memset(&m_header, 0, sizeof(m_header));
923   ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
924 }
925 
926 bool ObjectFileMachO::ParseHeader(DataExtractor &data,
927                                   lldb::offset_t *data_offset_ptr,
928                                   llvm::MachO::mach_header &header) {
929   data.SetByteOrder(endian::InlHostByteOrder());
930   // Leave magic in the original byte order
931   header.magic = data.GetU32(data_offset_ptr);
932   bool can_parse = false;
933   bool is_64_bit = false;
934   switch (header.magic) {
935   case MH_MAGIC:
936     data.SetByteOrder(endian::InlHostByteOrder());
937     data.SetAddressByteSize(4);
938     can_parse = true;
939     break;
940 
941   case MH_MAGIC_64:
942     data.SetByteOrder(endian::InlHostByteOrder());
943     data.SetAddressByteSize(8);
944     can_parse = true;
945     is_64_bit = true;
946     break;
947 
948   case MH_CIGAM:
949     data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
950                           ? eByteOrderLittle
951                           : eByteOrderBig);
952     data.SetAddressByteSize(4);
953     can_parse = true;
954     break;
955 
956   case MH_CIGAM_64:
957     data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
958                           ? eByteOrderLittle
959                           : eByteOrderBig);
960     data.SetAddressByteSize(8);
961     is_64_bit = true;
962     can_parse = true;
963     break;
964 
965   default:
966     break;
967   }
968 
969   if (can_parse) {
970     data.GetU32(data_offset_ptr, &header.cputype, 6);
971     if (is_64_bit)
972       *data_offset_ptr += 4;
973     return true;
974   } else {
975     memset(&header, 0, sizeof(header));
976   }
977   return false;
978 }
979 
980 bool ObjectFileMachO::ParseHeader() {
981   ModuleSP module_sp(GetModule());
982   if (!module_sp)
983     return false;
984 
985   std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
986   bool can_parse = false;
987   lldb::offset_t offset = 0;
988   m_data.SetByteOrder(endian::InlHostByteOrder());
989   // Leave magic in the original byte order
990   m_header.magic = m_data.GetU32(&offset);
991   switch (m_header.magic) {
992   case MH_MAGIC:
993     m_data.SetByteOrder(endian::InlHostByteOrder());
994     m_data.SetAddressByteSize(4);
995     can_parse = true;
996     break;
997 
998   case MH_MAGIC_64:
999     m_data.SetByteOrder(endian::InlHostByteOrder());
1000     m_data.SetAddressByteSize(8);
1001     can_parse = true;
1002     break;
1003 
1004   case MH_CIGAM:
1005     m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1006                             ? eByteOrderLittle
1007                             : eByteOrderBig);
1008     m_data.SetAddressByteSize(4);
1009     can_parse = true;
1010     break;
1011 
1012   case MH_CIGAM_64:
1013     m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1014                             ? eByteOrderLittle
1015                             : eByteOrderBig);
1016     m_data.SetAddressByteSize(8);
1017     can_parse = true;
1018     break;
1019 
1020   default:
1021     break;
1022   }
1023 
1024   if (can_parse) {
1025     m_data.GetU32(&offset, &m_header.cputype, 6);
1026 
1027     ModuleSpecList all_specs;
1028     ModuleSpec base_spec;
1029     GetAllArchSpecs(m_header, m_data, MachHeaderSizeFromMagic(m_header.magic),
1030                     base_spec, all_specs);
1031 
1032     for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
1033       ArchSpec mach_arch =
1034           all_specs.GetModuleSpecRefAtIndex(i).GetArchitecture();
1035 
1036       // Check if the module has a required architecture
1037       const ArchSpec &module_arch = module_sp->GetArchitecture();
1038       if (module_arch.IsValid() && !module_arch.IsCompatibleMatch(mach_arch))
1039         continue;
1040 
1041       if (SetModulesArchitecture(mach_arch)) {
1042         const size_t header_and_lc_size =
1043             m_header.sizeofcmds + MachHeaderSizeFromMagic(m_header.magic);
1044         if (m_data.GetByteSize() < header_and_lc_size) {
1045           DataBufferSP data_sp;
1046           ProcessSP process_sp(m_process_wp.lock());
1047           if (process_sp) {
1048             data_sp = ReadMemory(process_sp, m_memory_addr, header_and_lc_size);
1049           } else {
1050             // Read in all only the load command data from the file on disk
1051             data_sp = MapFileData(m_file, header_and_lc_size, m_file_offset);
1052             if (data_sp->GetByteSize() != header_and_lc_size)
1053               continue;
1054           }
1055           if (data_sp)
1056             m_data.SetData(data_sp);
1057         }
1058       }
1059       return true;
1060     }
1061     // None found.
1062     return false;
1063   } else {
1064     memset(&m_header, 0, sizeof(struct mach_header));
1065   }
1066   return false;
1067 }
1068 
1069 ByteOrder ObjectFileMachO::GetByteOrder() const {
1070   return m_data.GetByteOrder();
1071 }
1072 
1073 bool ObjectFileMachO::IsExecutable() const {
1074   return m_header.filetype == MH_EXECUTE;
1075 }
1076 
1077 bool ObjectFileMachO::IsDynamicLoader() const {
1078   return m_header.filetype == MH_DYLINKER;
1079 }
1080 
1081 uint32_t ObjectFileMachO::GetAddressByteSize() const {
1082   return m_data.GetAddressByteSize();
1083 }
1084 
1085 AddressClass ObjectFileMachO::GetAddressClass(lldb::addr_t file_addr) {
1086   Symtab *symtab = GetSymtab();
1087   if (!symtab)
1088     return AddressClass::eUnknown;
1089 
1090   Symbol *symbol = symtab->FindSymbolContainingFileAddress(file_addr);
1091   if (symbol) {
1092     if (symbol->ValueIsAddress()) {
1093       SectionSP section_sp(symbol->GetAddressRef().GetSection());
1094       if (section_sp) {
1095         const lldb::SectionType section_type = section_sp->GetType();
1096         switch (section_type) {
1097         case eSectionTypeInvalid:
1098           return AddressClass::eUnknown;
1099 
1100         case eSectionTypeCode:
1101           if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
1102             // For ARM we have a bit in the n_desc field of the symbol that
1103             // tells us ARM/Thumb which is bit 0x0008.
1104             if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB)
1105               return AddressClass::eCodeAlternateISA;
1106           }
1107           return AddressClass::eCode;
1108 
1109         case eSectionTypeContainer:
1110           return AddressClass::eUnknown;
1111 
1112         case eSectionTypeData:
1113         case eSectionTypeDataCString:
1114         case eSectionTypeDataCStringPointers:
1115         case eSectionTypeDataSymbolAddress:
1116         case eSectionTypeData4:
1117         case eSectionTypeData8:
1118         case eSectionTypeData16:
1119         case eSectionTypeDataPointers:
1120         case eSectionTypeZeroFill:
1121         case eSectionTypeDataObjCMessageRefs:
1122         case eSectionTypeDataObjCCFStrings:
1123         case eSectionTypeGoSymtab:
1124           return AddressClass::eData;
1125 
1126         case eSectionTypeDebug:
1127         case eSectionTypeDWARFDebugAbbrev:
1128         case eSectionTypeDWARFDebugAbbrevDwo:
1129         case eSectionTypeDWARFDebugAddr:
1130         case eSectionTypeDWARFDebugAranges:
1131         case eSectionTypeDWARFDebugCuIndex:
1132         case eSectionTypeDWARFDebugFrame:
1133         case eSectionTypeDWARFDebugInfo:
1134         case eSectionTypeDWARFDebugInfoDwo:
1135         case eSectionTypeDWARFDebugLine:
1136         case eSectionTypeDWARFDebugLineStr:
1137         case eSectionTypeDWARFDebugLoc:
1138         case eSectionTypeDWARFDebugLocDwo:
1139         case eSectionTypeDWARFDebugLocLists:
1140         case eSectionTypeDWARFDebugLocListsDwo:
1141         case eSectionTypeDWARFDebugMacInfo:
1142         case eSectionTypeDWARFDebugMacro:
1143         case eSectionTypeDWARFDebugNames:
1144         case eSectionTypeDWARFDebugPubNames:
1145         case eSectionTypeDWARFDebugPubTypes:
1146         case eSectionTypeDWARFDebugRanges:
1147         case eSectionTypeDWARFDebugRngLists:
1148         case eSectionTypeDWARFDebugRngListsDwo:
1149         case eSectionTypeDWARFDebugStr:
1150         case eSectionTypeDWARFDebugStrDwo:
1151         case eSectionTypeDWARFDebugStrOffsets:
1152         case eSectionTypeDWARFDebugStrOffsetsDwo:
1153         case eSectionTypeDWARFDebugTuIndex:
1154         case eSectionTypeDWARFDebugTypes:
1155         case eSectionTypeDWARFDebugTypesDwo:
1156         case eSectionTypeDWARFAppleNames:
1157         case eSectionTypeDWARFAppleTypes:
1158         case eSectionTypeDWARFAppleNamespaces:
1159         case eSectionTypeDWARFAppleObjC:
1160         case eSectionTypeDWARFGNUDebugAltLink:
1161           return AddressClass::eDebug;
1162 
1163         case eSectionTypeEHFrame:
1164         case eSectionTypeARMexidx:
1165         case eSectionTypeARMextab:
1166         case eSectionTypeCompactUnwind:
1167           return AddressClass::eRuntime;
1168 
1169         case eSectionTypeAbsoluteAddress:
1170         case eSectionTypeELFSymbolTable:
1171         case eSectionTypeELFDynamicSymbols:
1172         case eSectionTypeELFRelocationEntries:
1173         case eSectionTypeELFDynamicLinkInfo:
1174         case eSectionTypeOther:
1175           return AddressClass::eUnknown;
1176         }
1177       }
1178     }
1179 
1180     const SymbolType symbol_type = symbol->GetType();
1181     switch (symbol_type) {
1182     case eSymbolTypeAny:
1183       return AddressClass::eUnknown;
1184     case eSymbolTypeAbsolute:
1185       return AddressClass::eUnknown;
1186 
1187     case eSymbolTypeCode:
1188     case eSymbolTypeTrampoline:
1189     case eSymbolTypeResolver:
1190       if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
1191         // For ARM we have a bit in the n_desc field of the symbol that tells
1192         // us ARM/Thumb which is bit 0x0008.
1193         if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB)
1194           return AddressClass::eCodeAlternateISA;
1195       }
1196       return AddressClass::eCode;
1197 
1198     case eSymbolTypeData:
1199       return AddressClass::eData;
1200     case eSymbolTypeRuntime:
1201       return AddressClass::eRuntime;
1202     case eSymbolTypeException:
1203       return AddressClass::eRuntime;
1204     case eSymbolTypeSourceFile:
1205       return AddressClass::eDebug;
1206     case eSymbolTypeHeaderFile:
1207       return AddressClass::eDebug;
1208     case eSymbolTypeObjectFile:
1209       return AddressClass::eDebug;
1210     case eSymbolTypeCommonBlock:
1211       return AddressClass::eDebug;
1212     case eSymbolTypeBlock:
1213       return AddressClass::eDebug;
1214     case eSymbolTypeLocal:
1215       return AddressClass::eData;
1216     case eSymbolTypeParam:
1217       return AddressClass::eData;
1218     case eSymbolTypeVariable:
1219       return AddressClass::eData;
1220     case eSymbolTypeVariableType:
1221       return AddressClass::eDebug;
1222     case eSymbolTypeLineEntry:
1223       return AddressClass::eDebug;
1224     case eSymbolTypeLineHeader:
1225       return AddressClass::eDebug;
1226     case eSymbolTypeScopeBegin:
1227       return AddressClass::eDebug;
1228     case eSymbolTypeScopeEnd:
1229       return AddressClass::eDebug;
1230     case eSymbolTypeAdditional:
1231       return AddressClass::eUnknown;
1232     case eSymbolTypeCompiler:
1233       return AddressClass::eDebug;
1234     case eSymbolTypeInstrumentation:
1235       return AddressClass::eDebug;
1236     case eSymbolTypeUndefined:
1237       return AddressClass::eUnknown;
1238     case eSymbolTypeObjCClass:
1239       return AddressClass::eRuntime;
1240     case eSymbolTypeObjCMetaClass:
1241       return AddressClass::eRuntime;
1242     case eSymbolTypeObjCIVar:
1243       return AddressClass::eRuntime;
1244     case eSymbolTypeReExported:
1245       return AddressClass::eRuntime;
1246     }
1247   }
1248   return AddressClass::eUnknown;
1249 }
1250 
1251 Symtab *ObjectFileMachO::GetSymtab() {
1252   ModuleSP module_sp(GetModule());
1253   if (module_sp) {
1254     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
1255     if (m_symtab_up == nullptr) {
1256       m_symtab_up.reset(new Symtab(this));
1257       std::lock_guard<std::recursive_mutex> symtab_guard(
1258           m_symtab_up->GetMutex());
1259       ParseSymtab();
1260       m_symtab_up->Finalize();
1261     }
1262   }
1263   return m_symtab_up.get();
1264 }
1265 
1266 bool ObjectFileMachO::IsStripped() {
1267   if (m_dysymtab.cmd == 0) {
1268     ModuleSP module_sp(GetModule());
1269     if (module_sp) {
1270       lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1271       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1272         const lldb::offset_t load_cmd_offset = offset;
1273 
1274         load_command lc;
1275         if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
1276           break;
1277         if (lc.cmd == LC_DYSYMTAB) {
1278           m_dysymtab.cmd = lc.cmd;
1279           m_dysymtab.cmdsize = lc.cmdsize;
1280           if (m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
1281                             (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2) ==
1282               nullptr) {
1283             // Clear m_dysymtab if we were unable to read all items from the
1284             // load command
1285             ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
1286           }
1287         }
1288         offset = load_cmd_offset + lc.cmdsize;
1289       }
1290     }
1291   }
1292   if (m_dysymtab.cmd)
1293     return m_dysymtab.nlocalsym <= 1;
1294   return false;
1295 }
1296 
1297 ObjectFileMachO::EncryptedFileRanges ObjectFileMachO::GetEncryptedFileRanges() {
1298   EncryptedFileRanges result;
1299   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1300 
1301   encryption_info_command encryption_cmd;
1302   for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1303     const lldb::offset_t load_cmd_offset = offset;
1304     if (m_data.GetU32(&offset, &encryption_cmd, 2) == nullptr)
1305       break;
1306 
1307     // LC_ENCRYPTION_INFO and LC_ENCRYPTION_INFO_64 have the same sizes for the
1308     // 3 fields we care about, so treat them the same.
1309     if (encryption_cmd.cmd == LC_ENCRYPTION_INFO ||
1310         encryption_cmd.cmd == LC_ENCRYPTION_INFO_64) {
1311       if (m_data.GetU32(&offset, &encryption_cmd.cryptoff, 3)) {
1312         if (encryption_cmd.cryptid != 0) {
1313           EncryptedFileRanges::Entry entry;
1314           entry.SetRangeBase(encryption_cmd.cryptoff);
1315           entry.SetByteSize(encryption_cmd.cryptsize);
1316           result.Append(entry);
1317         }
1318       }
1319     }
1320     offset = load_cmd_offset + encryption_cmd.cmdsize;
1321   }
1322 
1323   return result;
1324 }
1325 
1326 void ObjectFileMachO::SanitizeSegmentCommand(segment_command_64 &seg_cmd,
1327                                              uint32_t cmd_idx) {
1328   if (m_length == 0 || seg_cmd.filesize == 0)
1329     return;
1330 
1331   if (seg_cmd.fileoff > m_length) {
1332     // We have a load command that says it extends past the end of the file.
1333     // This is likely a corrupt file.  We don't have any way to return an error
1334     // condition here (this method was likely invoked from something like
1335     // ObjectFile::GetSectionList()), so we just null out the section contents,
1336     // and dump a message to stdout.  The most common case here is core file
1337     // debugging with a truncated file.
1338     const char *lc_segment_name =
1339         seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT";
1340     GetModule()->ReportWarning(
1341         "load command %u %s has a fileoff (0x%" PRIx64
1342         ") that extends beyond the end of the file (0x%" PRIx64
1343         "), ignoring this section",
1344         cmd_idx, lc_segment_name, seg_cmd.fileoff, m_length);
1345 
1346     seg_cmd.fileoff = 0;
1347     seg_cmd.filesize = 0;
1348   }
1349 
1350   if (seg_cmd.fileoff + seg_cmd.filesize > m_length) {
1351     // We have a load command that says it extends past the end of the file.
1352     // This is likely a corrupt file.  We don't have any way to return an error
1353     // condition here (this method was likely invoked from something like
1354     // ObjectFile::GetSectionList()), so we just null out the section contents,
1355     // and dump a message to stdout.  The most common case here is core file
1356     // debugging with a truncated file.
1357     const char *lc_segment_name =
1358         seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT";
1359     GetModule()->ReportWarning(
1360         "load command %u %s has a fileoff + filesize (0x%" PRIx64
1361         ") that extends beyond the end of the file (0x%" PRIx64
1362         "), the segment will be truncated to match",
1363         cmd_idx, lc_segment_name, seg_cmd.fileoff + seg_cmd.filesize, m_length);
1364 
1365     // Truncate the length
1366     seg_cmd.filesize = m_length - seg_cmd.fileoff;
1367   }
1368 }
1369 
1370 static uint32_t GetSegmentPermissions(const segment_command_64 &seg_cmd) {
1371   uint32_t result = 0;
1372   if (seg_cmd.initprot & VM_PROT_READ)
1373     result |= ePermissionsReadable;
1374   if (seg_cmd.initprot & VM_PROT_WRITE)
1375     result |= ePermissionsWritable;
1376   if (seg_cmd.initprot & VM_PROT_EXECUTE)
1377     result |= ePermissionsExecutable;
1378   return result;
1379 }
1380 
1381 static lldb::SectionType GetSectionType(uint32_t flags,
1382                                         ConstString section_name) {
1383 
1384   if (flags & (S_ATTR_PURE_INSTRUCTIONS | S_ATTR_SOME_INSTRUCTIONS))
1385     return eSectionTypeCode;
1386 
1387   uint32_t mach_sect_type = flags & SECTION_TYPE;
1388   static ConstString g_sect_name_objc_data("__objc_data");
1389   static ConstString g_sect_name_objc_msgrefs("__objc_msgrefs");
1390   static ConstString g_sect_name_objc_selrefs("__objc_selrefs");
1391   static ConstString g_sect_name_objc_classrefs("__objc_classrefs");
1392   static ConstString g_sect_name_objc_superrefs("__objc_superrefs");
1393   static ConstString g_sect_name_objc_const("__objc_const");
1394   static ConstString g_sect_name_objc_classlist("__objc_classlist");
1395   static ConstString g_sect_name_cfstring("__cfstring");
1396 
1397   static ConstString g_sect_name_dwarf_debug_abbrev("__debug_abbrev");
1398   static ConstString g_sect_name_dwarf_debug_aranges("__debug_aranges");
1399   static ConstString g_sect_name_dwarf_debug_frame("__debug_frame");
1400   static ConstString g_sect_name_dwarf_debug_info("__debug_info");
1401   static ConstString g_sect_name_dwarf_debug_line("__debug_line");
1402   static ConstString g_sect_name_dwarf_debug_loc("__debug_loc");
1403   static ConstString g_sect_name_dwarf_debug_loclists("__debug_loclists");
1404   static ConstString g_sect_name_dwarf_debug_macinfo("__debug_macinfo");
1405   static ConstString g_sect_name_dwarf_debug_names("__debug_names");
1406   static ConstString g_sect_name_dwarf_debug_pubnames("__debug_pubnames");
1407   static ConstString g_sect_name_dwarf_debug_pubtypes("__debug_pubtypes");
1408   static ConstString g_sect_name_dwarf_debug_ranges("__debug_ranges");
1409   static ConstString g_sect_name_dwarf_debug_str("__debug_str");
1410   static ConstString g_sect_name_dwarf_debug_types("__debug_types");
1411   static ConstString g_sect_name_dwarf_apple_names("__apple_names");
1412   static ConstString g_sect_name_dwarf_apple_types("__apple_types");
1413   static ConstString g_sect_name_dwarf_apple_namespaces("__apple_namespac");
1414   static ConstString g_sect_name_dwarf_apple_objc("__apple_objc");
1415   static ConstString g_sect_name_eh_frame("__eh_frame");
1416   static ConstString g_sect_name_compact_unwind("__unwind_info");
1417   static ConstString g_sect_name_text("__text");
1418   static ConstString g_sect_name_data("__data");
1419   static ConstString g_sect_name_go_symtab("__gosymtab");
1420 
1421   if (section_name == g_sect_name_dwarf_debug_abbrev)
1422     return eSectionTypeDWARFDebugAbbrev;
1423   if (section_name == g_sect_name_dwarf_debug_aranges)
1424     return eSectionTypeDWARFDebugAranges;
1425   if (section_name == g_sect_name_dwarf_debug_frame)
1426     return eSectionTypeDWARFDebugFrame;
1427   if (section_name == g_sect_name_dwarf_debug_info)
1428     return eSectionTypeDWARFDebugInfo;
1429   if (section_name == g_sect_name_dwarf_debug_line)
1430     return eSectionTypeDWARFDebugLine;
1431   if (section_name == g_sect_name_dwarf_debug_loc)
1432     return eSectionTypeDWARFDebugLoc;
1433   if (section_name == g_sect_name_dwarf_debug_loclists)
1434     return eSectionTypeDWARFDebugLocLists;
1435   if (section_name == g_sect_name_dwarf_debug_macinfo)
1436     return eSectionTypeDWARFDebugMacInfo;
1437   if (section_name == g_sect_name_dwarf_debug_names)
1438     return eSectionTypeDWARFDebugNames;
1439   if (section_name == g_sect_name_dwarf_debug_pubnames)
1440     return eSectionTypeDWARFDebugPubNames;
1441   if (section_name == g_sect_name_dwarf_debug_pubtypes)
1442     return eSectionTypeDWARFDebugPubTypes;
1443   if (section_name == g_sect_name_dwarf_debug_ranges)
1444     return eSectionTypeDWARFDebugRanges;
1445   if (section_name == g_sect_name_dwarf_debug_str)
1446     return eSectionTypeDWARFDebugStr;
1447   if (section_name == g_sect_name_dwarf_debug_types)
1448     return eSectionTypeDWARFDebugTypes;
1449   if (section_name == g_sect_name_dwarf_apple_names)
1450     return eSectionTypeDWARFAppleNames;
1451   if (section_name == g_sect_name_dwarf_apple_types)
1452     return eSectionTypeDWARFAppleTypes;
1453   if (section_name == g_sect_name_dwarf_apple_namespaces)
1454     return eSectionTypeDWARFAppleNamespaces;
1455   if (section_name == g_sect_name_dwarf_apple_objc)
1456     return eSectionTypeDWARFAppleObjC;
1457   if (section_name == g_sect_name_objc_selrefs)
1458     return eSectionTypeDataCStringPointers;
1459   if (section_name == g_sect_name_objc_msgrefs)
1460     return eSectionTypeDataObjCMessageRefs;
1461   if (section_name == g_sect_name_eh_frame)
1462     return eSectionTypeEHFrame;
1463   if (section_name == g_sect_name_compact_unwind)
1464     return eSectionTypeCompactUnwind;
1465   if (section_name == g_sect_name_cfstring)
1466     return eSectionTypeDataObjCCFStrings;
1467   if (section_name == g_sect_name_go_symtab)
1468     return eSectionTypeGoSymtab;
1469   if (section_name == g_sect_name_objc_data ||
1470       section_name == g_sect_name_objc_classrefs ||
1471       section_name == g_sect_name_objc_superrefs ||
1472       section_name == g_sect_name_objc_const ||
1473       section_name == g_sect_name_objc_classlist) {
1474     return eSectionTypeDataPointers;
1475   }
1476 
1477   switch (mach_sect_type) {
1478   // TODO: categorize sections by other flags for regular sections
1479   case S_REGULAR:
1480     if (section_name == g_sect_name_text)
1481       return eSectionTypeCode;
1482     if (section_name == g_sect_name_data)
1483       return eSectionTypeData;
1484     return eSectionTypeOther;
1485   case S_ZEROFILL:
1486     return eSectionTypeZeroFill;
1487   case S_CSTRING_LITERALS: // section with only literal C strings
1488     return eSectionTypeDataCString;
1489   case S_4BYTE_LITERALS: // section with only 4 byte literals
1490     return eSectionTypeData4;
1491   case S_8BYTE_LITERALS: // section with only 8 byte literals
1492     return eSectionTypeData8;
1493   case S_LITERAL_POINTERS: // section with only pointers to literals
1494     return eSectionTypeDataPointers;
1495   case S_NON_LAZY_SYMBOL_POINTERS: // section with only non-lazy symbol pointers
1496     return eSectionTypeDataPointers;
1497   case S_LAZY_SYMBOL_POINTERS: // section with only lazy symbol pointers
1498     return eSectionTypeDataPointers;
1499   case S_SYMBOL_STUBS: // section with only symbol stubs, byte size of stub in
1500                        // the reserved2 field
1501     return eSectionTypeCode;
1502   case S_MOD_INIT_FUNC_POINTERS: // section with only function pointers for
1503                                  // initialization
1504     return eSectionTypeDataPointers;
1505   case S_MOD_TERM_FUNC_POINTERS: // section with only function pointers for
1506                                  // termination
1507     return eSectionTypeDataPointers;
1508   case S_COALESCED:
1509     return eSectionTypeOther;
1510   case S_GB_ZEROFILL:
1511     return eSectionTypeZeroFill;
1512   case S_INTERPOSING: // section with only pairs of function pointers for
1513                       // interposing
1514     return eSectionTypeCode;
1515   case S_16BYTE_LITERALS: // section with only 16 byte literals
1516     return eSectionTypeData16;
1517   case S_DTRACE_DOF:
1518     return eSectionTypeDebug;
1519   case S_LAZY_DYLIB_SYMBOL_POINTERS:
1520     return eSectionTypeDataPointers;
1521   default:
1522     return eSectionTypeOther;
1523   }
1524 }
1525 
1526 struct ObjectFileMachO::SegmentParsingContext {
1527   const EncryptedFileRanges EncryptedRanges;
1528   lldb_private::SectionList &UnifiedList;
1529   uint32_t NextSegmentIdx = 0;
1530   uint32_t NextSectionIdx = 0;
1531   bool FileAddressesChanged = false;
1532 
1533   SegmentParsingContext(EncryptedFileRanges EncryptedRanges,
1534                         lldb_private::SectionList &UnifiedList)
1535       : EncryptedRanges(std::move(EncryptedRanges)), UnifiedList(UnifiedList) {}
1536 };
1537 
1538 void ObjectFileMachO::ProcessSegmentCommand(const load_command &load_cmd_,
1539                                             lldb::offset_t offset,
1540                                             uint32_t cmd_idx,
1541                                             SegmentParsingContext &context) {
1542   segment_command_64 load_cmd;
1543   memcpy(&load_cmd, &load_cmd_, sizeof(load_cmd_));
1544 
1545   if (!m_data.GetU8(&offset, (uint8_t *)load_cmd.segname, 16))
1546     return;
1547 
1548   ModuleSP module_sp = GetModule();
1549   const bool is_core = GetType() == eTypeCoreFile;
1550   const bool is_dsym = (m_header.filetype == MH_DSYM);
1551   bool add_section = true;
1552   bool add_to_unified = true;
1553   ConstString const_segname(
1554       load_cmd.segname, strnlen(load_cmd.segname, sizeof(load_cmd.segname)));
1555 
1556   SectionSP unified_section_sp(
1557       context.UnifiedList.FindSectionByName(const_segname));
1558   if (is_dsym && unified_section_sp) {
1559     if (const_segname == GetSegmentNameLINKEDIT()) {
1560       // We need to keep the __LINKEDIT segment private to this object file
1561       // only
1562       add_to_unified = false;
1563     } else {
1564       // This is the dSYM file and this section has already been created by the
1565       // object file, no need to create it.
1566       add_section = false;
1567     }
1568   }
1569   load_cmd.vmaddr = m_data.GetAddress(&offset);
1570   load_cmd.vmsize = m_data.GetAddress(&offset);
1571   load_cmd.fileoff = m_data.GetAddress(&offset);
1572   load_cmd.filesize = m_data.GetAddress(&offset);
1573   if (!m_data.GetU32(&offset, &load_cmd.maxprot, 4))
1574     return;
1575 
1576   SanitizeSegmentCommand(load_cmd, cmd_idx);
1577 
1578   const uint32_t segment_permissions = GetSegmentPermissions(load_cmd);
1579   const bool segment_is_encrypted =
1580       (load_cmd.flags & SG_PROTECTED_VERSION_1) != 0;
1581 
1582   // Keep a list of mach segments around in case we need to get at data that
1583   // isn't stored in the abstracted Sections.
1584   m_mach_segments.push_back(load_cmd);
1585 
1586   // Use a segment ID of the segment index shifted left by 8 so they never
1587   // conflict with any of the sections.
1588   SectionSP segment_sp;
1589   if (add_section && (const_segname || is_core)) {
1590     segment_sp = std::make_shared<Section>(
1591         module_sp, // Module to which this section belongs
1592         this,      // Object file to which this sections belongs
1593         ++context.NextSegmentIdx
1594             << 8, // Section ID is the 1 based segment index
1595         // shifted right by 8 bits as not to collide with any of the 256
1596         // section IDs that are possible
1597         const_segname,         // Name of this section
1598         eSectionTypeContainer, // This section is a container of other
1599         // sections.
1600         load_cmd.vmaddr, // File VM address == addresses as they are
1601         // found in the object file
1602         load_cmd.vmsize,  // VM size in bytes of this section
1603         load_cmd.fileoff, // Offset to the data for this section in
1604         // the file
1605         load_cmd.filesize, // Size in bytes of this section as found
1606         // in the file
1607         0,               // Segments have no alignment information
1608         load_cmd.flags); // Flags for this section
1609 
1610     segment_sp->SetIsEncrypted(segment_is_encrypted);
1611     m_sections_up->AddSection(segment_sp);
1612     segment_sp->SetPermissions(segment_permissions);
1613     if (add_to_unified)
1614       context.UnifiedList.AddSection(segment_sp);
1615   } else if (unified_section_sp) {
1616     if (is_dsym && unified_section_sp->GetFileAddress() != load_cmd.vmaddr) {
1617       // Check to see if the module was read from memory?
1618       if (module_sp->GetObjectFile()->GetBaseAddress().IsValid()) {
1619         // We have a module that is in memory and needs to have its file
1620         // address adjusted. We need to do this because when we load a file
1621         // from memory, its addresses will be slid already, yet the addresses
1622         // in the new symbol file will still be unslid.  Since everything is
1623         // stored as section offset, this shouldn't cause any problems.
1624 
1625         // Make sure we've parsed the symbol table from the ObjectFile before
1626         // we go around changing its Sections.
1627         module_sp->GetObjectFile()->GetSymtab();
1628         // eh_frame would present the same problems but we parse that on a per-
1629         // function basis as-needed so it's more difficult to remove its use of
1630         // the Sections.  Realistically, the environments where this code path
1631         // will be taken will not have eh_frame sections.
1632 
1633         unified_section_sp->SetFileAddress(load_cmd.vmaddr);
1634 
1635         // Notify the module that the section addresses have been changed once
1636         // we're done so any file-address caches can be updated.
1637         context.FileAddressesChanged = true;
1638       }
1639     }
1640     m_sections_up->AddSection(unified_section_sp);
1641   }
1642 
1643   struct section_64 sect64;
1644   ::memset(&sect64, 0, sizeof(sect64));
1645   // Push a section into our mach sections for the section at index zero
1646   // (NO_SECT) if we don't have any mach sections yet...
1647   if (m_mach_sections.empty())
1648     m_mach_sections.push_back(sect64);
1649   uint32_t segment_sect_idx;
1650   const lldb::user_id_t first_segment_sectID = context.NextSectionIdx + 1;
1651 
1652   const uint32_t num_u32s = load_cmd.cmd == LC_SEGMENT ? 7 : 8;
1653   for (segment_sect_idx = 0; segment_sect_idx < load_cmd.nsects;
1654        ++segment_sect_idx) {
1655     if (m_data.GetU8(&offset, (uint8_t *)sect64.sectname,
1656                      sizeof(sect64.sectname)) == nullptr)
1657       break;
1658     if (m_data.GetU8(&offset, (uint8_t *)sect64.segname,
1659                      sizeof(sect64.segname)) == nullptr)
1660       break;
1661     sect64.addr = m_data.GetAddress(&offset);
1662     sect64.size = m_data.GetAddress(&offset);
1663 
1664     if (m_data.GetU32(&offset, &sect64.offset, num_u32s) == nullptr)
1665       break;
1666 
1667     // Keep a list of mach sections around in case we need to get at data that
1668     // isn't stored in the abstracted Sections.
1669     m_mach_sections.push_back(sect64);
1670 
1671     if (add_section) {
1672       ConstString section_name(
1673           sect64.sectname, strnlen(sect64.sectname, sizeof(sect64.sectname)));
1674       if (!const_segname) {
1675         // We have a segment with no name so we need to conjure up segments
1676         // that correspond to the section's segname if there isn't already such
1677         // a section. If there is such a section, we resize the section so that
1678         // it spans all sections.  We also mark these sections as fake so
1679         // address matches don't hit if they land in the gaps between the child
1680         // sections.
1681         const_segname.SetTrimmedCStringWithLength(sect64.segname,
1682                                                   sizeof(sect64.segname));
1683         segment_sp = context.UnifiedList.FindSectionByName(const_segname);
1684         if (segment_sp.get()) {
1685           Section *segment = segment_sp.get();
1686           // Grow the section size as needed.
1687           const lldb::addr_t sect64_min_addr = sect64.addr;
1688           const lldb::addr_t sect64_max_addr = sect64_min_addr + sect64.size;
1689           const lldb::addr_t curr_seg_byte_size = segment->GetByteSize();
1690           const lldb::addr_t curr_seg_min_addr = segment->GetFileAddress();
1691           const lldb::addr_t curr_seg_max_addr =
1692               curr_seg_min_addr + curr_seg_byte_size;
1693           if (sect64_min_addr >= curr_seg_min_addr) {
1694             const lldb::addr_t new_seg_byte_size =
1695                 sect64_max_addr - curr_seg_min_addr;
1696             // Only grow the section size if needed
1697             if (new_seg_byte_size > curr_seg_byte_size)
1698               segment->SetByteSize(new_seg_byte_size);
1699           } else {
1700             // We need to change the base address of the segment and adjust the
1701             // child section offsets for all existing children.
1702             const lldb::addr_t slide_amount =
1703                 sect64_min_addr - curr_seg_min_addr;
1704             segment->Slide(slide_amount, false);
1705             segment->GetChildren().Slide(-slide_amount, false);
1706             segment->SetByteSize(curr_seg_max_addr - sect64_min_addr);
1707           }
1708 
1709           // Grow the section size as needed.
1710           if (sect64.offset) {
1711             const lldb::addr_t segment_min_file_offset =
1712                 segment->GetFileOffset();
1713             const lldb::addr_t segment_max_file_offset =
1714                 segment_min_file_offset + segment->GetFileSize();
1715 
1716             const lldb::addr_t section_min_file_offset = sect64.offset;
1717             const lldb::addr_t section_max_file_offset =
1718                 section_min_file_offset + sect64.size;
1719             const lldb::addr_t new_file_offset =
1720                 std::min(section_min_file_offset, segment_min_file_offset);
1721             const lldb::addr_t new_file_size =
1722                 std::max(section_max_file_offset, segment_max_file_offset) -
1723                 new_file_offset;
1724             segment->SetFileOffset(new_file_offset);
1725             segment->SetFileSize(new_file_size);
1726           }
1727         } else {
1728           // Create a fake section for the section's named segment
1729           segment_sp = std::make_shared<Section>(
1730               segment_sp, // Parent section
1731               module_sp,  // Module to which this section belongs
1732               this,       // Object file to which this section belongs
1733               ++context.NextSegmentIdx
1734                   << 8, // Section ID is the 1 based segment index
1735               // shifted right by 8 bits as not to
1736               // collide with any of the 256 section IDs
1737               // that are possible
1738               const_segname,         // Name of this section
1739               eSectionTypeContainer, // This section is a container of
1740               // other sections.
1741               sect64.addr, // File VM address == addresses as they are
1742               // found in the object file
1743               sect64.size,   // VM size in bytes of this section
1744               sect64.offset, // Offset to the data for this section in
1745               // the file
1746               sect64.offset ? sect64.size : 0, // Size in bytes of
1747               // this section as
1748               // found in the file
1749               sect64.align,
1750               load_cmd.flags); // Flags for this section
1751           segment_sp->SetIsFake(true);
1752           segment_sp->SetPermissions(segment_permissions);
1753           m_sections_up->AddSection(segment_sp);
1754           if (add_to_unified)
1755             context.UnifiedList.AddSection(segment_sp);
1756           segment_sp->SetIsEncrypted(segment_is_encrypted);
1757         }
1758       }
1759       assert(segment_sp.get());
1760 
1761       lldb::SectionType sect_type = GetSectionType(sect64.flags, section_name);
1762 
1763       SectionSP section_sp(new Section(
1764           segment_sp, module_sp, this, ++context.NextSectionIdx, section_name,
1765           sect_type, sect64.addr - segment_sp->GetFileAddress(), sect64.size,
1766           sect64.offset, sect64.offset == 0 ? 0 : sect64.size, sect64.align,
1767           sect64.flags));
1768       // Set the section to be encrypted to match the segment
1769 
1770       bool section_is_encrypted = false;
1771       if (!segment_is_encrypted && load_cmd.filesize != 0)
1772         section_is_encrypted = context.EncryptedRanges.FindEntryThatContains(
1773                                    sect64.offset) != nullptr;
1774 
1775       section_sp->SetIsEncrypted(segment_is_encrypted || section_is_encrypted);
1776       section_sp->SetPermissions(segment_permissions);
1777       segment_sp->GetChildren().AddSection(section_sp);
1778 
1779       if (segment_sp->IsFake()) {
1780         segment_sp.reset();
1781         const_segname.Clear();
1782       }
1783     }
1784   }
1785   if (segment_sp && is_dsym) {
1786     if (first_segment_sectID <= context.NextSectionIdx) {
1787       lldb::user_id_t sect_uid;
1788       for (sect_uid = first_segment_sectID; sect_uid <= context.NextSectionIdx;
1789            ++sect_uid) {
1790         SectionSP curr_section_sp(
1791             segment_sp->GetChildren().FindSectionByID(sect_uid));
1792         SectionSP next_section_sp;
1793         if (sect_uid + 1 <= context.NextSectionIdx)
1794           next_section_sp =
1795               segment_sp->GetChildren().FindSectionByID(sect_uid + 1);
1796 
1797         if (curr_section_sp.get()) {
1798           if (curr_section_sp->GetByteSize() == 0) {
1799             if (next_section_sp.get() != nullptr)
1800               curr_section_sp->SetByteSize(next_section_sp->GetFileAddress() -
1801                                            curr_section_sp->GetFileAddress());
1802             else
1803               curr_section_sp->SetByteSize(load_cmd.vmsize);
1804           }
1805         }
1806       }
1807     }
1808   }
1809 }
1810 
1811 void ObjectFileMachO::ProcessDysymtabCommand(const load_command &load_cmd,
1812                                              lldb::offset_t offset) {
1813   m_dysymtab.cmd = load_cmd.cmd;
1814   m_dysymtab.cmdsize = load_cmd.cmdsize;
1815   m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
1816                 (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2);
1817 }
1818 
1819 void ObjectFileMachO::CreateSections(SectionList &unified_section_list) {
1820   if (m_sections_up)
1821     return;
1822 
1823   m_sections_up.reset(new SectionList());
1824 
1825   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1826   // bool dump_sections = false;
1827   ModuleSP module_sp(GetModule());
1828 
1829   offset = MachHeaderSizeFromMagic(m_header.magic);
1830 
1831   SegmentParsingContext context(GetEncryptedFileRanges(), unified_section_list);
1832   struct load_command load_cmd;
1833   for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1834     const lldb::offset_t load_cmd_offset = offset;
1835     if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
1836       break;
1837 
1838     if (load_cmd.cmd == LC_SEGMENT || load_cmd.cmd == LC_SEGMENT_64)
1839       ProcessSegmentCommand(load_cmd, offset, i, context);
1840     else if (load_cmd.cmd == LC_DYSYMTAB)
1841       ProcessDysymtabCommand(load_cmd, offset);
1842 
1843     offset = load_cmd_offset + load_cmd.cmdsize;
1844   }
1845 
1846   if (context.FileAddressesChanged && module_sp)
1847     module_sp->SectionFileAddressesChanged();
1848 }
1849 
1850 class MachSymtabSectionInfo {
1851 public:
1852   MachSymtabSectionInfo(SectionList *section_list)
1853       : m_section_list(section_list), m_section_infos() {
1854     // Get the number of sections down to a depth of 1 to include all segments
1855     // and their sections, but no other sections that may be added for debug
1856     // map or
1857     m_section_infos.resize(section_list->GetNumSections(1));
1858   }
1859 
1860   SectionSP GetSection(uint8_t n_sect, addr_t file_addr) {
1861     if (n_sect == 0)
1862       return SectionSP();
1863     if (n_sect < m_section_infos.size()) {
1864       if (!m_section_infos[n_sect].section_sp) {
1865         SectionSP section_sp(m_section_list->FindSectionByID(n_sect));
1866         m_section_infos[n_sect].section_sp = section_sp;
1867         if (section_sp) {
1868           m_section_infos[n_sect].vm_range.SetBaseAddress(
1869               section_sp->GetFileAddress());
1870           m_section_infos[n_sect].vm_range.SetByteSize(
1871               section_sp->GetByteSize());
1872         } else {
1873           const char *filename = "<unknown>";
1874           SectionSP first_section_sp(m_section_list->GetSectionAtIndex(0));
1875           if (first_section_sp)
1876             filename = first_section_sp->GetObjectFile()->GetFileSpec().GetPath().c_str();
1877 
1878           Host::SystemLog(Host::eSystemLogError,
1879                           "error: unable to find section %d for a symbol in %s, corrupt file?\n",
1880                           n_sect,
1881                           filename);
1882         }
1883       }
1884       if (m_section_infos[n_sect].vm_range.Contains(file_addr)) {
1885         // Symbol is in section.
1886         return m_section_infos[n_sect].section_sp;
1887       } else if (m_section_infos[n_sect].vm_range.GetByteSize() == 0 &&
1888                  m_section_infos[n_sect].vm_range.GetBaseAddress() ==
1889                      file_addr) {
1890         // Symbol is in section with zero size, but has the same start address
1891         // as the section. This can happen with linker symbols (symbols that
1892         // start with the letter 'l' or 'L'.
1893         return m_section_infos[n_sect].section_sp;
1894       }
1895     }
1896     return m_section_list->FindSectionContainingFileAddress(file_addr);
1897   }
1898 
1899 protected:
1900   struct SectionInfo {
1901     SectionInfo() : vm_range(), section_sp() {}
1902 
1903     VMRange vm_range;
1904     SectionSP section_sp;
1905   };
1906   SectionList *m_section_list;
1907   std::vector<SectionInfo> m_section_infos;
1908 };
1909 
1910 #define TRIE_SYMBOL_IS_THUMB (1ULL << 63)
1911 struct TrieEntry {
1912   void Dump() const {
1913     printf("0x%16.16llx 0x%16.16llx 0x%16.16llx \"%s\"",
1914            static_cast<unsigned long long>(address),
1915            static_cast<unsigned long long>(flags),
1916            static_cast<unsigned long long>(other), name.GetCString());
1917     if (import_name)
1918       printf(" -> \"%s\"\n", import_name.GetCString());
1919     else
1920       printf("\n");
1921   }
1922   ConstString name;
1923   uint64_t address = LLDB_INVALID_ADDRESS;
1924   uint64_t flags =
1925       0; // EXPORT_SYMBOL_FLAGS_REEXPORT, EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER,
1926          // TRIE_SYMBOL_IS_THUMB
1927   uint64_t other = 0;
1928   ConstString import_name;
1929 };
1930 
1931 struct TrieEntryWithOffset {
1932   lldb::offset_t nodeOffset;
1933   TrieEntry entry;
1934 
1935   TrieEntryWithOffset(lldb::offset_t offset) : nodeOffset(offset), entry() {}
1936 
1937   void Dump(uint32_t idx) const {
1938     printf("[%3u] 0x%16.16llx: ", idx,
1939            static_cast<unsigned long long>(nodeOffset));
1940     entry.Dump();
1941   }
1942 
1943   bool operator<(const TrieEntryWithOffset &other) const {
1944     return (nodeOffset < other.nodeOffset);
1945   }
1946 };
1947 
1948 static bool ParseTrieEntries(DataExtractor &data, lldb::offset_t offset,
1949                              const bool is_arm, addr_t text_seg_base_addr,
1950                              std::vector<llvm::StringRef> &nameSlices,
1951                              std::set<lldb::addr_t> &resolver_addresses,
1952                              std::vector<TrieEntryWithOffset> &reexports,
1953                              std::vector<TrieEntryWithOffset> &ext_symbols) {
1954   if (!data.ValidOffset(offset))
1955     return true;
1956 
1957   // Terminal node -- end of a branch, possibly add this to
1958   // the symbol table or resolver table.
1959   const uint64_t terminalSize = data.GetULEB128(&offset);
1960   lldb::offset_t children_offset = offset + terminalSize;
1961   if (terminalSize != 0) {
1962     TrieEntryWithOffset e(offset);
1963     e.entry.flags = data.GetULEB128(&offset);
1964     const char *import_name = nullptr;
1965     if (e.entry.flags & EXPORT_SYMBOL_FLAGS_REEXPORT) {
1966       e.entry.address = 0;
1967       e.entry.other = data.GetULEB128(&offset); // dylib ordinal
1968       import_name = data.GetCStr(&offset);
1969     } else {
1970       e.entry.address = data.GetULEB128(&offset);
1971       if (text_seg_base_addr != LLDB_INVALID_ADDRESS)
1972         e.entry.address += text_seg_base_addr;
1973       if (e.entry.flags & EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER) {
1974         e.entry.other = data.GetULEB128(&offset);
1975         uint64_t resolver_addr = e.entry.other;
1976         if (is_arm)
1977           resolver_addr &= THUMB_ADDRESS_BIT_MASK;
1978         resolver_addresses.insert(resolver_addr);
1979       } else
1980         e.entry.other = 0;
1981     }
1982     bool add_this_entry = false;
1983     if (Flags(e.entry.flags).Test(EXPORT_SYMBOL_FLAGS_REEXPORT) &&
1984         import_name && import_name[0]) {
1985       // add symbols that are reexport symbols with a valid import name.
1986       add_this_entry = true;
1987     } else if (e.entry.flags == 0 &&
1988                (import_name == nullptr || import_name[0] == '\0')) {
1989       // add externally visible symbols, in case the nlist record has
1990       // been stripped/omitted.
1991       add_this_entry = true;
1992     }
1993     if (add_this_entry) {
1994       std::string name;
1995       if (!nameSlices.empty()) {
1996         for (auto name_slice : nameSlices)
1997           name.append(name_slice.data(), name_slice.size());
1998       }
1999       if (name.size() > 1) {
2000         // Skip the leading '_'
2001         e.entry.name.SetCStringWithLength(name.c_str() + 1, name.size() - 1);
2002       }
2003       if (import_name) {
2004         // Skip the leading '_'
2005         e.entry.import_name.SetCString(import_name + 1);
2006       }
2007       if (Flags(e.entry.flags).Test(EXPORT_SYMBOL_FLAGS_REEXPORT)) {
2008         reexports.push_back(e);
2009       } else {
2010         if (is_arm && (e.entry.address & 1)) {
2011           e.entry.flags |= TRIE_SYMBOL_IS_THUMB;
2012           e.entry.address &= THUMB_ADDRESS_BIT_MASK;
2013         }
2014         ext_symbols.push_back(e);
2015       }
2016     }
2017   }
2018 
2019   const uint8_t childrenCount = data.GetU8(&children_offset);
2020   for (uint8_t i = 0; i < childrenCount; ++i) {
2021     const char *cstr = data.GetCStr(&children_offset);
2022     if (cstr)
2023       nameSlices.push_back(llvm::StringRef(cstr));
2024     else
2025       return false; // Corrupt data
2026     lldb::offset_t childNodeOffset = data.GetULEB128(&children_offset);
2027     if (childNodeOffset) {
2028       if (!ParseTrieEntries(data, childNodeOffset, is_arm, text_seg_base_addr,
2029                             nameSlices, resolver_addresses, reexports,
2030                             ext_symbols)) {
2031         return false;
2032       }
2033     }
2034     nameSlices.pop_back();
2035   }
2036   return true;
2037 }
2038 
2039 // Read the UUID out of a dyld_shared_cache file on-disk.
2040 UUID ObjectFileMachO::GetSharedCacheUUID(FileSpec dyld_shared_cache,
2041                                          const ByteOrder byte_order,
2042                                          const uint32_t addr_byte_size) {
2043   UUID dsc_uuid;
2044   DataBufferSP DscData = MapFileData(
2045       dyld_shared_cache, sizeof(struct lldb_copy_dyld_cache_header_v1), 0);
2046   if (!DscData)
2047     return dsc_uuid;
2048   DataExtractor dsc_header_data(DscData, byte_order, addr_byte_size);
2049 
2050   char version_str[7];
2051   lldb::offset_t offset = 0;
2052   memcpy(version_str, dsc_header_data.GetData(&offset, 6), 6);
2053   version_str[6] = '\0';
2054   if (strcmp(version_str, "dyld_v") == 0) {
2055     offset = offsetof(struct lldb_copy_dyld_cache_header_v1, uuid);
2056     dsc_uuid = UUID::fromOptionalData(
2057         dsc_header_data.GetData(&offset, sizeof(uuid_t)), sizeof(uuid_t));
2058   }
2059   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS));
2060   if (log && dsc_uuid.IsValid()) {
2061     LLDB_LOGF(log, "Shared cache %s has UUID %s",
2062               dyld_shared_cache.GetPath().c_str(),
2063               dsc_uuid.GetAsString().c_str());
2064   }
2065   return dsc_uuid;
2066 }
2067 
2068 static llvm::Optional<struct nlist_64>
2069 ParseNList(DataExtractor &nlist_data, lldb::offset_t &nlist_data_offset,
2070            size_t nlist_byte_size) {
2071   struct nlist_64 nlist;
2072   if (!nlist_data.ValidOffsetForDataOfSize(nlist_data_offset, nlist_byte_size))
2073     return {};
2074   nlist.n_strx = nlist_data.GetU32_unchecked(&nlist_data_offset);
2075   nlist.n_type = nlist_data.GetU8_unchecked(&nlist_data_offset);
2076   nlist.n_sect = nlist_data.GetU8_unchecked(&nlist_data_offset);
2077   nlist.n_desc = nlist_data.GetU16_unchecked(&nlist_data_offset);
2078   nlist.n_value = nlist_data.GetAddress_unchecked(&nlist_data_offset);
2079   return nlist;
2080 }
2081 
2082 enum { DebugSymbols = true, NonDebugSymbols = false };
2083 
2084 size_t ObjectFileMachO::ParseSymtab() {
2085   static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
2086   Timer scoped_timer(func_cat, "ObjectFileMachO::ParseSymtab () module = %s",
2087                      m_file.GetFilename().AsCString(""));
2088   ModuleSP module_sp(GetModule());
2089   if (!module_sp)
2090     return 0;
2091 
2092   struct symtab_command symtab_load_command = {0, 0, 0, 0, 0, 0};
2093   struct linkedit_data_command function_starts_load_command = {0, 0, 0, 0};
2094   struct dyld_info_command dyld_info = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
2095   // The data element of type bool indicates that this entry is thumb
2096   // code.
2097   typedef AddressDataArray<lldb::addr_t, bool, 100> FunctionStarts;
2098 
2099   // Record the address of every function/data that we add to the symtab.
2100   // We add symbols to the table in the order of most information (nlist
2101   // records) to least (function starts), and avoid duplicating symbols
2102   // via this set.
2103   std::set<addr_t> symbols_added;
2104   FunctionStarts function_starts;
2105   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
2106   uint32_t i;
2107   FileSpecList dylib_files;
2108   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS));
2109   llvm::StringRef g_objc_v2_prefix_class("_OBJC_CLASS_$_");
2110   llvm::StringRef g_objc_v2_prefix_metaclass("_OBJC_METACLASS_$_");
2111   llvm::StringRef g_objc_v2_prefix_ivar("_OBJC_IVAR_$_");
2112 
2113   for (i = 0; i < m_header.ncmds; ++i) {
2114     const lldb::offset_t cmd_offset = offset;
2115     // Read in the load command and load command size
2116     struct load_command lc;
2117     if (m_data.GetU32(&offset, &lc, 2) == nullptr)
2118       break;
2119     // Watch for the symbol table load command
2120     switch (lc.cmd) {
2121     case LC_SYMTAB:
2122       symtab_load_command.cmd = lc.cmd;
2123       symtab_load_command.cmdsize = lc.cmdsize;
2124       // Read in the rest of the symtab load command
2125       if (m_data.GetU32(&offset, &symtab_load_command.symoff, 4) ==
2126           nullptr) // fill in symoff, nsyms, stroff, strsize fields
2127         return 0;
2128       break;
2129 
2130     case LC_DYLD_INFO:
2131     case LC_DYLD_INFO_ONLY:
2132       if (m_data.GetU32(&offset, &dyld_info.rebase_off, 10)) {
2133         dyld_info.cmd = lc.cmd;
2134         dyld_info.cmdsize = lc.cmdsize;
2135       } else {
2136         memset(&dyld_info, 0, sizeof(dyld_info));
2137       }
2138       break;
2139 
2140     case LC_LOAD_DYLIB:
2141     case LC_LOAD_WEAK_DYLIB:
2142     case LC_REEXPORT_DYLIB:
2143     case LC_LOADFVMLIB:
2144     case LC_LOAD_UPWARD_DYLIB: {
2145       uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
2146       const char *path = m_data.PeekCStr(name_offset);
2147       if (path) {
2148         FileSpec file_spec(path);
2149         // Strip the path if there is @rpath, @executable, etc so we just use
2150         // the basename
2151         if (path[0] == '@')
2152           file_spec.GetDirectory().Clear();
2153 
2154         if (lc.cmd == LC_REEXPORT_DYLIB) {
2155           m_reexported_dylibs.AppendIfUnique(file_spec);
2156         }
2157 
2158         dylib_files.Append(file_spec);
2159       }
2160     } break;
2161 
2162     case LC_FUNCTION_STARTS:
2163       function_starts_load_command.cmd = lc.cmd;
2164       function_starts_load_command.cmdsize = lc.cmdsize;
2165       if (m_data.GetU32(&offset, &function_starts_load_command.dataoff, 2) ==
2166           nullptr) // fill in symoff, nsyms, stroff, strsize fields
2167         memset(&function_starts_load_command, 0,
2168                sizeof(function_starts_load_command));
2169       break;
2170 
2171     default:
2172       break;
2173     }
2174     offset = cmd_offset + lc.cmdsize;
2175   }
2176 
2177   if (!symtab_load_command.cmd)
2178     return 0;
2179 
2180   Symtab *symtab = m_symtab_up.get();
2181   SectionList *section_list = GetSectionList();
2182   if (section_list == nullptr)
2183     return 0;
2184 
2185   const uint32_t addr_byte_size = m_data.GetAddressByteSize();
2186   const ByteOrder byte_order = m_data.GetByteOrder();
2187   bool bit_width_32 = addr_byte_size == 4;
2188   const size_t nlist_byte_size =
2189       bit_width_32 ? sizeof(struct nlist) : sizeof(struct nlist_64);
2190 
2191   DataExtractor nlist_data(nullptr, 0, byte_order, addr_byte_size);
2192   DataExtractor strtab_data(nullptr, 0, byte_order, addr_byte_size);
2193   DataExtractor function_starts_data(nullptr, 0, byte_order, addr_byte_size);
2194   DataExtractor indirect_symbol_index_data(nullptr, 0, byte_order,
2195                                            addr_byte_size);
2196   DataExtractor dyld_trie_data(nullptr, 0, byte_order, addr_byte_size);
2197 
2198   const addr_t nlist_data_byte_size =
2199       symtab_load_command.nsyms * nlist_byte_size;
2200   const addr_t strtab_data_byte_size = symtab_load_command.strsize;
2201   addr_t strtab_addr = LLDB_INVALID_ADDRESS;
2202 
2203   ProcessSP process_sp(m_process_wp.lock());
2204   Process *process = process_sp.get();
2205 
2206   uint32_t memory_module_load_level = eMemoryModuleLoadLevelComplete;
2207 
2208   if (process && m_header.filetype != llvm::MachO::MH_OBJECT) {
2209     Target &target = process->GetTarget();
2210 
2211     memory_module_load_level = target.GetMemoryModuleLoadLevel();
2212 
2213     SectionSP linkedit_section_sp(
2214         section_list->FindSectionByName(GetSegmentNameLINKEDIT()));
2215     // Reading mach file from memory in a process or core file...
2216 
2217     if (linkedit_section_sp) {
2218       addr_t linkedit_load_addr =
2219           linkedit_section_sp->GetLoadBaseAddress(&target);
2220       if (linkedit_load_addr == LLDB_INVALID_ADDRESS) {
2221         // We might be trying to access the symbol table before the
2222         // __LINKEDIT's load address has been set in the target. We can't
2223         // fail to read the symbol table, so calculate the right address
2224         // manually
2225         linkedit_load_addr = CalculateSectionLoadAddressForMemoryImage(
2226             m_memory_addr, GetMachHeaderSection(), linkedit_section_sp.get());
2227       }
2228 
2229       const addr_t linkedit_file_offset = linkedit_section_sp->GetFileOffset();
2230       const addr_t symoff_addr = linkedit_load_addr +
2231                                  symtab_load_command.symoff -
2232                                  linkedit_file_offset;
2233       strtab_addr = linkedit_load_addr + symtab_load_command.stroff -
2234                     linkedit_file_offset;
2235 
2236       bool data_was_read = false;
2237 
2238 #if defined(__APPLE__) &&                                                      \
2239     (defined(__arm__) || defined(__arm64__) || defined(__aarch64__))
2240       if (m_header.flags & 0x80000000u &&
2241           process->GetAddressByteSize() == sizeof(void *)) {
2242         // This mach-o memory file is in the dyld shared cache. If this
2243         // program is not remote and this is iOS, then this process will
2244         // share the same shared cache as the process we are debugging and we
2245         // can read the entire __LINKEDIT from the address space in this
2246         // process. This is a needed optimization that is used for local iOS
2247         // debugging only since all shared libraries in the shared cache do
2248         // not have corresponding files that exist in the file system of the
2249         // device. They have been combined into a single file. This means we
2250         // always have to load these files from memory. All of the symbol and
2251         // string tables from all of the __LINKEDIT sections from the shared
2252         // libraries in the shared cache have been merged into a single large
2253         // symbol and string table. Reading all of this symbol and string
2254         // table data across can slow down debug launch times, so we optimize
2255         // this by reading the memory for the __LINKEDIT section from this
2256         // process.
2257 
2258         UUID lldb_shared_cache;
2259         addr_t lldb_shared_cache_addr;
2260         GetLLDBSharedCacheUUID(lldb_shared_cache_addr, lldb_shared_cache);
2261         UUID process_shared_cache;
2262         addr_t process_shared_cache_addr;
2263         GetProcessSharedCacheUUID(process, process_shared_cache_addr,
2264                                   process_shared_cache);
2265         bool use_lldb_cache = true;
2266         if (lldb_shared_cache.IsValid() && process_shared_cache.IsValid() &&
2267             (lldb_shared_cache != process_shared_cache ||
2268              process_shared_cache_addr != lldb_shared_cache_addr)) {
2269           use_lldb_cache = false;
2270         }
2271 
2272         PlatformSP platform_sp(target.GetPlatform());
2273         if (platform_sp && platform_sp->IsHost() && use_lldb_cache) {
2274           data_was_read = true;
2275           nlist_data.SetData((void *)symoff_addr, nlist_data_byte_size,
2276                              eByteOrderLittle);
2277           strtab_data.SetData((void *)strtab_addr, strtab_data_byte_size,
2278                               eByteOrderLittle);
2279           if (function_starts_load_command.cmd) {
2280             const addr_t func_start_addr =
2281                 linkedit_load_addr + function_starts_load_command.dataoff -
2282                 linkedit_file_offset;
2283             function_starts_data.SetData((void *)func_start_addr,
2284                                          function_starts_load_command.datasize,
2285                                          eByteOrderLittle);
2286           }
2287         }
2288       }
2289 #endif
2290 
2291       if (!data_was_read) {
2292         // Always load dyld - the dynamic linker - from memory if we didn't
2293         // find a binary anywhere else. lldb will not register
2294         // dylib/framework/bundle loads/unloads if we don't have the dyld
2295         // symbols, we force dyld to load from memory despite the user's
2296         // target.memory-module-load-level setting.
2297         if (memory_module_load_level == eMemoryModuleLoadLevelComplete ||
2298             m_header.filetype == llvm::MachO::MH_DYLINKER) {
2299           DataBufferSP nlist_data_sp(
2300               ReadMemory(process_sp, symoff_addr, nlist_data_byte_size));
2301           if (nlist_data_sp)
2302             nlist_data.SetData(nlist_data_sp, 0, nlist_data_sp->GetByteSize());
2303           if (m_dysymtab.nindirectsyms != 0) {
2304             const addr_t indirect_syms_addr = linkedit_load_addr +
2305                                               m_dysymtab.indirectsymoff -
2306                                               linkedit_file_offset;
2307             DataBufferSP indirect_syms_data_sp(ReadMemory(
2308                 process_sp, indirect_syms_addr, m_dysymtab.nindirectsyms * 4));
2309             if (indirect_syms_data_sp)
2310               indirect_symbol_index_data.SetData(
2311                   indirect_syms_data_sp, 0,
2312                   indirect_syms_data_sp->GetByteSize());
2313             // If this binary is outside the shared cache,
2314             // cache the string table.
2315             // Binaries in the shared cache all share a giant string table,
2316             // and we can't share the string tables across multiple
2317             // ObjectFileMachO's, so we'd end up re-reading this mega-strtab
2318             // for every binary in the shared cache - it would be a big perf
2319             // problem. For binaries outside the shared cache, it's faster to
2320             // read the entire strtab at once instead of piece-by-piece as we
2321             // process the nlist records.
2322             if ((m_header.flags & 0x80000000u) == 0) {
2323               DataBufferSP strtab_data_sp(
2324                   ReadMemory(process_sp, strtab_addr, strtab_data_byte_size));
2325               if (strtab_data_sp) {
2326                 strtab_data.SetData(strtab_data_sp, 0,
2327                                     strtab_data_sp->GetByteSize());
2328               }
2329             }
2330           }
2331         }
2332         if (memory_module_load_level >= eMemoryModuleLoadLevelPartial) {
2333           if (function_starts_load_command.cmd) {
2334             const addr_t func_start_addr =
2335                 linkedit_load_addr + function_starts_load_command.dataoff -
2336                 linkedit_file_offset;
2337             DataBufferSP func_start_data_sp(
2338                 ReadMemory(process_sp, func_start_addr,
2339                            function_starts_load_command.datasize));
2340             if (func_start_data_sp)
2341               function_starts_data.SetData(func_start_data_sp, 0,
2342                                            func_start_data_sp->GetByteSize());
2343           }
2344         }
2345       }
2346     }
2347   } else {
2348     nlist_data.SetData(m_data, symtab_load_command.symoff,
2349                        nlist_data_byte_size);
2350     strtab_data.SetData(m_data, symtab_load_command.stroff,
2351                         strtab_data_byte_size);
2352 
2353     if (dyld_info.export_size > 0) {
2354       dyld_trie_data.SetData(m_data, dyld_info.export_off,
2355                              dyld_info.export_size);
2356     }
2357 
2358     if (m_dysymtab.nindirectsyms != 0) {
2359       indirect_symbol_index_data.SetData(m_data, m_dysymtab.indirectsymoff,
2360                                          m_dysymtab.nindirectsyms * 4);
2361     }
2362     if (function_starts_load_command.cmd) {
2363       function_starts_data.SetData(m_data, function_starts_load_command.dataoff,
2364                                    function_starts_load_command.datasize);
2365     }
2366   }
2367 
2368   const bool have_strtab_data = strtab_data.GetByteSize() > 0;
2369 
2370   ConstString g_segment_name_TEXT = GetSegmentNameTEXT();
2371   ConstString g_segment_name_DATA = GetSegmentNameDATA();
2372   ConstString g_segment_name_DATA_DIRTY = GetSegmentNameDATA_DIRTY();
2373   ConstString g_segment_name_DATA_CONST = GetSegmentNameDATA_CONST();
2374   ConstString g_segment_name_OBJC = GetSegmentNameOBJC();
2375   ConstString g_section_name_eh_frame = GetSectionNameEHFrame();
2376   SectionSP text_section_sp(
2377       section_list->FindSectionByName(g_segment_name_TEXT));
2378   SectionSP data_section_sp(
2379       section_list->FindSectionByName(g_segment_name_DATA));
2380   SectionSP data_dirty_section_sp(
2381       section_list->FindSectionByName(g_segment_name_DATA_DIRTY));
2382   SectionSP data_const_section_sp(
2383       section_list->FindSectionByName(g_segment_name_DATA_CONST));
2384   SectionSP objc_section_sp(
2385       section_list->FindSectionByName(g_segment_name_OBJC));
2386   SectionSP eh_frame_section_sp;
2387   if (text_section_sp.get())
2388     eh_frame_section_sp = text_section_sp->GetChildren().FindSectionByName(
2389         g_section_name_eh_frame);
2390   else
2391     eh_frame_section_sp =
2392         section_list->FindSectionByName(g_section_name_eh_frame);
2393 
2394   const bool is_arm = (m_header.cputype == llvm::MachO::CPU_TYPE_ARM);
2395   const bool always_thumb = GetArchitecture().IsAlwaysThumbInstructions();
2396 
2397   // lldb works best if it knows the start address of all functions in a
2398   // module. Linker symbols or debug info are normally the best source of
2399   // information for start addr / size but they may be stripped in a released
2400   // binary. Two additional sources of information exist in Mach-O binaries:
2401   //    LC_FUNCTION_STARTS - a list of ULEB128 encoded offsets of each
2402   //    function's start address in the
2403   //                         binary, relative to the text section.
2404   //    eh_frame           - the eh_frame FDEs have the start addr & size of
2405   //    each function
2406   //  LC_FUNCTION_STARTS is the fastest source to read in, and is present on
2407   //  all modern binaries.
2408   //  Binaries built to run on older releases may need to use eh_frame
2409   //  information.
2410 
2411   if (text_section_sp && function_starts_data.GetByteSize()) {
2412     FunctionStarts::Entry function_start_entry;
2413     function_start_entry.data = false;
2414     lldb::offset_t function_start_offset = 0;
2415     function_start_entry.addr = text_section_sp->GetFileAddress();
2416     uint64_t delta;
2417     while ((delta = function_starts_data.GetULEB128(&function_start_offset)) >
2418            0) {
2419       // Now append the current entry
2420       function_start_entry.addr += delta;
2421       if (is_arm) {
2422         if (function_start_entry.addr & 1) {
2423           function_start_entry.addr &= THUMB_ADDRESS_BIT_MASK;
2424           function_start_entry.data = true;
2425         } else if (always_thumb) {
2426           function_start_entry.data = true;
2427         }
2428       }
2429       function_starts.Append(function_start_entry);
2430     }
2431   } else {
2432     // If m_type is eTypeDebugInfo, then this is a dSYM - it will have the
2433     // load command claiming an eh_frame but it doesn't actually have the
2434     // eh_frame content.  And if we have a dSYM, we don't need to do any of
2435     // this fill-in-the-missing-symbols works anyway - the debug info should
2436     // give us all the functions in the module.
2437     if (text_section_sp.get() && eh_frame_section_sp.get() &&
2438         m_type != eTypeDebugInfo) {
2439       DWARFCallFrameInfo eh_frame(*this, eh_frame_section_sp,
2440                                   DWARFCallFrameInfo::EH);
2441       DWARFCallFrameInfo::FunctionAddressAndSizeVector functions;
2442       eh_frame.GetFunctionAddressAndSizeVector(functions);
2443       addr_t text_base_addr = text_section_sp->GetFileAddress();
2444       size_t count = functions.GetSize();
2445       for (size_t i = 0; i < count; ++i) {
2446         const DWARFCallFrameInfo::FunctionAddressAndSizeVector::Entry *func =
2447             functions.GetEntryAtIndex(i);
2448         if (func) {
2449           FunctionStarts::Entry function_start_entry;
2450           function_start_entry.addr = func->base - text_base_addr;
2451           if (is_arm) {
2452             if (function_start_entry.addr & 1) {
2453               function_start_entry.addr &= THUMB_ADDRESS_BIT_MASK;
2454               function_start_entry.data = true;
2455             } else if (always_thumb) {
2456               function_start_entry.data = true;
2457             }
2458           }
2459           function_starts.Append(function_start_entry);
2460         }
2461       }
2462     }
2463   }
2464 
2465   const size_t function_starts_count = function_starts.GetSize();
2466 
2467   // For user process binaries (executables, dylibs, frameworks, bundles), if
2468   // we don't have LC_FUNCTION_STARTS/eh_frame section in this binary, we're
2469   // going to assume the binary has been stripped.  Don't allow assembly
2470   // language instruction emulation because we don't know proper function
2471   // start boundaries.
2472   //
2473   // For all other types of binaries (kernels, stand-alone bare board
2474   // binaries, kexts), they may not have LC_FUNCTION_STARTS / eh_frame
2475   // sections - we should not make any assumptions about them based on that.
2476   if (function_starts_count == 0 && CalculateStrata() == eStrataUser) {
2477     m_allow_assembly_emulation_unwind_plans = false;
2478     Log *unwind_or_symbol_log(lldb_private::GetLogIfAnyCategoriesSet(
2479         LIBLLDB_LOG_SYMBOLS | LIBLLDB_LOG_UNWIND));
2480 
2481     if (unwind_or_symbol_log)
2482       module_sp->LogMessage(
2483           unwind_or_symbol_log,
2484           "no LC_FUNCTION_STARTS, will not allow assembly profiled unwinds");
2485   }
2486 
2487   const user_id_t TEXT_eh_frame_sectID = eh_frame_section_sp.get()
2488                                              ? eh_frame_section_sp->GetID()
2489                                              : static_cast<user_id_t>(NO_SECT);
2490 
2491   lldb::offset_t nlist_data_offset = 0;
2492 
2493   uint32_t N_SO_index = UINT32_MAX;
2494 
2495   MachSymtabSectionInfo section_info(section_list);
2496   std::vector<uint32_t> N_FUN_indexes;
2497   std::vector<uint32_t> N_NSYM_indexes;
2498   std::vector<uint32_t> N_INCL_indexes;
2499   std::vector<uint32_t> N_BRAC_indexes;
2500   std::vector<uint32_t> N_COMM_indexes;
2501   typedef std::multimap<uint64_t, uint32_t> ValueToSymbolIndexMap;
2502   typedef llvm::DenseMap<uint32_t, uint32_t> NListIndexToSymbolIndexMap;
2503   typedef llvm::DenseMap<const char *, uint32_t> ConstNameToSymbolIndexMap;
2504   ValueToSymbolIndexMap N_FUN_addr_to_sym_idx;
2505   ValueToSymbolIndexMap N_STSYM_addr_to_sym_idx;
2506   ConstNameToSymbolIndexMap N_GSYM_name_to_sym_idx;
2507   // Any symbols that get merged into another will get an entry in this map
2508   // so we know
2509   NListIndexToSymbolIndexMap m_nlist_idx_to_sym_idx;
2510   uint32_t nlist_idx = 0;
2511   Symbol *symbol_ptr = nullptr;
2512 
2513   uint32_t sym_idx = 0;
2514   Symbol *sym = nullptr;
2515   size_t num_syms = 0;
2516   std::string memory_symbol_name;
2517   uint32_t unmapped_local_symbols_found = 0;
2518 
2519   std::vector<TrieEntryWithOffset> reexport_trie_entries;
2520   std::vector<TrieEntryWithOffset> external_sym_trie_entries;
2521   std::set<lldb::addr_t> resolver_addresses;
2522 
2523   if (dyld_trie_data.GetByteSize() > 0) {
2524     ConstString text_segment_name("__TEXT");
2525     SectionSP text_segment_sp =
2526         GetSectionList()->FindSectionByName(text_segment_name);
2527     lldb::addr_t text_segment_file_addr = LLDB_INVALID_ADDRESS;
2528     if (text_segment_sp)
2529       text_segment_file_addr = text_segment_sp->GetFileAddress();
2530     std::vector<llvm::StringRef> nameSlices;
2531     ParseTrieEntries(dyld_trie_data, 0, is_arm, text_segment_file_addr,
2532                      nameSlices, resolver_addresses, reexport_trie_entries,
2533                      external_sym_trie_entries);
2534   }
2535 
2536   typedef std::set<ConstString> IndirectSymbols;
2537   IndirectSymbols indirect_symbol_names;
2538 
2539 #if defined(__APPLE__) &&                                                      \
2540     (defined(__arm__) || defined(__arm64__) || defined(__aarch64__))
2541 
2542   // Some recent builds of the dyld_shared_cache (hereafter: DSC) have been
2543   // optimized by moving LOCAL symbols out of the memory mapped portion of
2544   // the DSC. The symbol information has all been retained, but it isn't
2545   // available in the normal nlist data. However, there *are* duplicate
2546   // entries of *some*
2547   // LOCAL symbols in the normal nlist data. To handle this situation
2548   // correctly, we must first attempt
2549   // to parse any DSC unmapped symbol information. If we find any, we set a
2550   // flag that tells the normal nlist parser to ignore all LOCAL symbols.
2551 
2552   if (m_header.flags & 0x80000000u) {
2553     // Before we can start mapping the DSC, we need to make certain the
2554     // target process is actually using the cache we can find.
2555 
2556     // Next we need to determine the correct path for the dyld shared cache.
2557 
2558     ArchSpec header_arch = GetArchitecture();
2559     char dsc_path[PATH_MAX];
2560     char dsc_path_development[PATH_MAX];
2561 
2562     snprintf(
2563         dsc_path, sizeof(dsc_path), "%s%s%s",
2564         "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR
2565                                                    */
2566         "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */
2567         header_arch.GetArchitectureName());
2568 
2569     snprintf(
2570         dsc_path_development, sizeof(dsc_path), "%s%s%s%s",
2571         "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR
2572                                                    */
2573         "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */
2574         header_arch.GetArchitectureName(), ".development");
2575 
2576     FileSpec dsc_nondevelopment_filespec(dsc_path);
2577     FileSpec dsc_development_filespec(dsc_path_development);
2578     FileSpec dsc_filespec;
2579 
2580     UUID dsc_uuid;
2581     UUID process_shared_cache_uuid;
2582     addr_t process_shared_cache_base_addr;
2583 
2584     if (process) {
2585       GetProcessSharedCacheUUID(process, process_shared_cache_base_addr,
2586                                 process_shared_cache_uuid);
2587     }
2588 
2589     // First see if we can find an exact match for the inferior process
2590     // shared cache UUID in the development or non-development shared caches
2591     // on disk.
2592     if (process_shared_cache_uuid.IsValid()) {
2593       if (FileSystem::Instance().Exists(dsc_development_filespec)) {
2594         UUID dsc_development_uuid = GetSharedCacheUUID(
2595             dsc_development_filespec, byte_order, addr_byte_size);
2596         if (dsc_development_uuid.IsValid() &&
2597             dsc_development_uuid == process_shared_cache_uuid) {
2598           dsc_filespec = dsc_development_filespec;
2599           dsc_uuid = dsc_development_uuid;
2600         }
2601       }
2602       if (!dsc_uuid.IsValid() &&
2603           FileSystem::Instance().Exists(dsc_nondevelopment_filespec)) {
2604         UUID dsc_nondevelopment_uuid = GetSharedCacheUUID(
2605             dsc_nondevelopment_filespec, byte_order, addr_byte_size);
2606         if (dsc_nondevelopment_uuid.IsValid() &&
2607             dsc_nondevelopment_uuid == process_shared_cache_uuid) {
2608           dsc_filespec = dsc_nondevelopment_filespec;
2609           dsc_uuid = dsc_nondevelopment_uuid;
2610         }
2611       }
2612     }
2613 
2614     // Failing a UUID match, prefer the development dyld_shared cache if both
2615     // are present.
2616     if (!FileSystem::Instance().Exists(dsc_filespec)) {
2617       if (FileSystem::Instance().Exists(dsc_development_filespec)) {
2618         dsc_filespec = dsc_development_filespec;
2619       } else {
2620         dsc_filespec = dsc_nondevelopment_filespec;
2621       }
2622     }
2623 
2624     /* The dyld_cache_header has a pointer to the
2625        dyld_cache_local_symbols_info structure (localSymbolsOffset).
2626        The dyld_cache_local_symbols_info structure gives us three things:
2627          1. The start and count of the nlist records in the dyld_shared_cache
2628        file
2629          2. The start and size of the strings for these nlist records
2630          3. The start and count of dyld_cache_local_symbols_entry entries
2631 
2632        There is one dyld_cache_local_symbols_entry per dylib/framework in the
2633        dyld shared cache.
2634        The "dylibOffset" field is the Mach-O header of this dylib/framework in
2635        the dyld shared cache.
2636        The dyld_cache_local_symbols_entry also lists the start of this
2637        dylib/framework's nlist records
2638        and the count of how many nlist records there are for this
2639        dylib/framework.
2640     */
2641 
2642     // Process the dyld shared cache header to find the unmapped symbols
2643 
2644     DataBufferSP dsc_data_sp = MapFileData(
2645         dsc_filespec, sizeof(struct lldb_copy_dyld_cache_header_v1), 0);
2646     if (!dsc_uuid.IsValid()) {
2647       dsc_uuid = GetSharedCacheUUID(dsc_filespec, byte_order, addr_byte_size);
2648     }
2649     if (dsc_data_sp) {
2650       DataExtractor dsc_header_data(dsc_data_sp, byte_order, addr_byte_size);
2651 
2652       bool uuid_match = true;
2653       if (dsc_uuid.IsValid() && process) {
2654         if (process_shared_cache_uuid.IsValid() &&
2655             dsc_uuid != process_shared_cache_uuid) {
2656           // The on-disk dyld_shared_cache file is not the same as the one in
2657           // this process' memory, don't use it.
2658           uuid_match = false;
2659           ModuleSP module_sp(GetModule());
2660           if (module_sp)
2661             module_sp->ReportWarning("process shared cache does not match "
2662                                      "on-disk dyld_shared_cache file, some "
2663                                      "symbol names will be missing.");
2664         }
2665       }
2666 
2667       offset = offsetof(struct lldb_copy_dyld_cache_header_v1, mappingOffset);
2668 
2669       uint32_t mappingOffset = dsc_header_data.GetU32(&offset);
2670 
2671       // If the mappingOffset points to a location inside the header, we've
2672       // opened an old dyld shared cache, and should not proceed further.
2673       if (uuid_match &&
2674           mappingOffset >= sizeof(struct lldb_copy_dyld_cache_header_v1)) {
2675 
2676         DataBufferSP dsc_mapping_info_data_sp = MapFileData(
2677             dsc_filespec, sizeof(struct lldb_copy_dyld_cache_mapping_info),
2678             mappingOffset);
2679 
2680         DataExtractor dsc_mapping_info_data(dsc_mapping_info_data_sp,
2681                                             byte_order, addr_byte_size);
2682         offset = 0;
2683 
2684         // The File addresses (from the in-memory Mach-O load commands) for
2685         // the shared libraries in the shared library cache need to be
2686         // adjusted by an offset to match up with the dylibOffset identifying
2687         // field in the dyld_cache_local_symbol_entry's.  This offset is
2688         // recorded in mapping_offset_value.
2689         const uint64_t mapping_offset_value =
2690             dsc_mapping_info_data.GetU64(&offset);
2691 
2692         offset =
2693             offsetof(struct lldb_copy_dyld_cache_header_v1, localSymbolsOffset);
2694         uint64_t localSymbolsOffset = dsc_header_data.GetU64(&offset);
2695         uint64_t localSymbolsSize = dsc_header_data.GetU64(&offset);
2696 
2697         if (localSymbolsOffset && localSymbolsSize) {
2698           // Map the local symbols
2699           DataBufferSP dsc_local_symbols_data_sp =
2700               MapFileData(dsc_filespec, localSymbolsSize, localSymbolsOffset);
2701 
2702           if (dsc_local_symbols_data_sp) {
2703             DataExtractor dsc_local_symbols_data(dsc_local_symbols_data_sp,
2704                                                  byte_order, addr_byte_size);
2705 
2706             offset = 0;
2707 
2708             typedef llvm::DenseMap<ConstString, uint16_t> UndefinedNameToDescMap;
2709             typedef llvm::DenseMap<uint32_t, ConstString> SymbolIndexToName;
2710             UndefinedNameToDescMap undefined_name_to_desc;
2711             SymbolIndexToName reexport_shlib_needs_fixup;
2712 
2713             // Read the local_symbols_infos struct in one shot
2714             struct lldb_copy_dyld_cache_local_symbols_info local_symbols_info;
2715             dsc_local_symbols_data.GetU32(&offset,
2716                                           &local_symbols_info.nlistOffset, 6);
2717 
2718             SectionSP text_section_sp(
2719                 section_list->FindSectionByName(GetSegmentNameTEXT()));
2720 
2721             uint32_t header_file_offset =
2722                 (text_section_sp->GetFileAddress() - mapping_offset_value);
2723 
2724             offset = local_symbols_info.entriesOffset;
2725             for (uint32_t entry_index = 0;
2726                  entry_index < local_symbols_info.entriesCount; entry_index++) {
2727               struct lldb_copy_dyld_cache_local_symbols_entry
2728                   local_symbols_entry;
2729               local_symbols_entry.dylibOffset =
2730                   dsc_local_symbols_data.GetU32(&offset);
2731               local_symbols_entry.nlistStartIndex =
2732                   dsc_local_symbols_data.GetU32(&offset);
2733               local_symbols_entry.nlistCount =
2734                   dsc_local_symbols_data.GetU32(&offset);
2735 
2736               if (header_file_offset == local_symbols_entry.dylibOffset) {
2737                 unmapped_local_symbols_found = local_symbols_entry.nlistCount;
2738 
2739                 // The normal nlist code cannot correctly size the Symbols
2740                 // array, we need to allocate it here.
2741                 sym = symtab->Resize(
2742                     symtab_load_command.nsyms + m_dysymtab.nindirectsyms +
2743                     unmapped_local_symbols_found - m_dysymtab.nlocalsym);
2744                 num_syms = symtab->GetNumSymbols();
2745 
2746                 nlist_data_offset =
2747                     local_symbols_info.nlistOffset +
2748                     (nlist_byte_size * local_symbols_entry.nlistStartIndex);
2749                 uint32_t string_table_offset = local_symbols_info.stringsOffset;
2750 
2751                 for (uint32_t nlist_index = 0;
2752                      nlist_index < local_symbols_entry.nlistCount;
2753                      nlist_index++) {
2754                   /////////////////////////////
2755                   {
2756                     llvm::Optional<struct nlist_64> nlist_maybe =
2757                         ParseNList(dsc_local_symbols_data, nlist_data_offset,
2758                                    nlist_byte_size);
2759                     if (!nlist_maybe)
2760                       break;
2761                     struct nlist_64 nlist = *nlist_maybe;
2762 
2763                     SymbolType type = eSymbolTypeInvalid;
2764                     const char *symbol_name = dsc_local_symbols_data.PeekCStr(
2765                         string_table_offset + nlist.n_strx);
2766 
2767                     if (symbol_name == NULL) {
2768                       // No symbol should be NULL, even the symbols with no
2769                       // string values should have an offset zero which
2770                       // points to an empty C-string
2771                       Host::SystemLog(
2772                           Host::eSystemLogError,
2773                           "error: DSC unmapped local symbol[%u] has invalid "
2774                           "string table offset 0x%x in %s, ignoring symbol\n",
2775                           entry_index, nlist.n_strx,
2776                           module_sp->GetFileSpec().GetPath().c_str());
2777                       continue;
2778                     }
2779                     if (symbol_name[0] == '\0')
2780                       symbol_name = NULL;
2781 
2782                     const char *symbol_name_non_abi_mangled = NULL;
2783 
2784                     SectionSP symbol_section;
2785                     uint32_t symbol_byte_size = 0;
2786                     bool add_nlist = true;
2787                     bool is_debug = ((nlist.n_type & N_STAB) != 0);
2788                     bool demangled_is_synthesized = false;
2789                     bool is_gsym = false;
2790                     bool set_value = true;
2791 
2792                     assert(sym_idx < num_syms);
2793 
2794                     sym[sym_idx].SetDebug(is_debug);
2795 
2796                     if (is_debug) {
2797                       switch (nlist.n_type) {
2798                       case N_GSYM:
2799                         // global symbol: name,,NO_SECT,type,0
2800                         // Sometimes the N_GSYM value contains the address.
2801 
2802                         // FIXME: In the .o files, we have a GSYM and a debug
2803                         // symbol for all the ObjC data.  They
2804                         // have the same address, but we want to ensure that
2805                         // we always find only the real symbol, 'cause we
2806                         // don't currently correctly attribute the
2807                         // GSYM one to the ObjCClass/Ivar/MetaClass
2808                         // symbol type.  This is a temporary hack to make
2809                         // sure the ObjectiveC symbols get treated correctly.
2810                         // To do this right, we should coalesce all the GSYM
2811                         // & global symbols that have the same address.
2812 
2813                         is_gsym = true;
2814                         sym[sym_idx].SetExternal(true);
2815 
2816                         if (symbol_name && symbol_name[0] == '_' &&
2817                             symbol_name[1] == 'O') {
2818                           llvm::StringRef symbol_name_ref(symbol_name);
2819                           if (symbol_name_ref.startswith(
2820                                   g_objc_v2_prefix_class)) {
2821                             symbol_name_non_abi_mangled = symbol_name + 1;
2822                             symbol_name =
2823                                 symbol_name + g_objc_v2_prefix_class.size();
2824                             type = eSymbolTypeObjCClass;
2825                             demangled_is_synthesized = true;
2826 
2827                           } else if (symbol_name_ref.startswith(
2828                                          g_objc_v2_prefix_metaclass)) {
2829                             symbol_name_non_abi_mangled = symbol_name + 1;
2830                             symbol_name =
2831                                 symbol_name + g_objc_v2_prefix_metaclass.size();
2832                             type = eSymbolTypeObjCMetaClass;
2833                             demangled_is_synthesized = true;
2834                           } else if (symbol_name_ref.startswith(
2835                                          g_objc_v2_prefix_ivar)) {
2836                             symbol_name_non_abi_mangled = symbol_name + 1;
2837                             symbol_name =
2838                                 symbol_name + g_objc_v2_prefix_ivar.size();
2839                             type = eSymbolTypeObjCIVar;
2840                             demangled_is_synthesized = true;
2841                           }
2842                         } else {
2843                           if (nlist.n_value != 0)
2844                             symbol_section = section_info.GetSection(
2845                                 nlist.n_sect, nlist.n_value);
2846                           type = eSymbolTypeData;
2847                         }
2848                         break;
2849 
2850                       case N_FNAME:
2851                         // procedure name (f77 kludge): name,,NO_SECT,0,0
2852                         type = eSymbolTypeCompiler;
2853                         break;
2854 
2855                       case N_FUN:
2856                         // procedure: name,,n_sect,linenumber,address
2857                         if (symbol_name) {
2858                           type = eSymbolTypeCode;
2859                           symbol_section = section_info.GetSection(
2860                               nlist.n_sect, nlist.n_value);
2861 
2862                           N_FUN_addr_to_sym_idx.insert(
2863                               std::make_pair(nlist.n_value, sym_idx));
2864                           // We use the current number of symbols in the
2865                           // symbol table in lieu of using nlist_idx in case
2866                           // we ever start trimming entries out
2867                           N_FUN_indexes.push_back(sym_idx);
2868                         } else {
2869                           type = eSymbolTypeCompiler;
2870 
2871                           if (!N_FUN_indexes.empty()) {
2872                             // Copy the size of the function into the
2873                             // original
2874                             // STAB entry so we don't have
2875                             // to hunt for it later
2876                             symtab->SymbolAtIndex(N_FUN_indexes.back())
2877                                 ->SetByteSize(nlist.n_value);
2878                             N_FUN_indexes.pop_back();
2879                             // We don't really need the end function STAB as
2880                             // it contains the size which we already placed
2881                             // with the original symbol, so don't add it if
2882                             // we want a minimal symbol table
2883                             add_nlist = false;
2884                           }
2885                         }
2886                         break;
2887 
2888                       case N_STSYM:
2889                         // static symbol: name,,n_sect,type,address
2890                         N_STSYM_addr_to_sym_idx.insert(
2891                             std::make_pair(nlist.n_value, sym_idx));
2892                         symbol_section = section_info.GetSection(nlist.n_sect,
2893                                                                  nlist.n_value);
2894                         if (symbol_name && symbol_name[0]) {
2895                           type = ObjectFile::GetSymbolTypeFromName(
2896                               symbol_name + 1, eSymbolTypeData);
2897                         }
2898                         break;
2899 
2900                       case N_LCSYM:
2901                         // .lcomm symbol: name,,n_sect,type,address
2902                         symbol_section = section_info.GetSection(nlist.n_sect,
2903                                                                  nlist.n_value);
2904                         type = eSymbolTypeCommonBlock;
2905                         break;
2906 
2907                       case N_BNSYM:
2908                         // We use the current number of symbols in the symbol
2909                         // table in lieu of using nlist_idx in case we ever
2910                         // start trimming entries out Skip these if we want
2911                         // minimal symbol tables
2912                         add_nlist = false;
2913                         break;
2914 
2915                       case N_ENSYM:
2916                         // Set the size of the N_BNSYM to the terminating
2917                         // index of this N_ENSYM so that we can always skip
2918                         // the entire symbol if we need to navigate more
2919                         // quickly at the source level when parsing STABS
2920                         // Skip these if we want minimal symbol tables
2921                         add_nlist = false;
2922                         break;
2923 
2924                       case N_OPT:
2925                         // emitted with gcc2_compiled and in gcc source
2926                         type = eSymbolTypeCompiler;
2927                         break;
2928 
2929                       case N_RSYM:
2930                         // register sym: name,,NO_SECT,type,register
2931                         type = eSymbolTypeVariable;
2932                         break;
2933 
2934                       case N_SLINE:
2935                         // src line: 0,,n_sect,linenumber,address
2936                         symbol_section = section_info.GetSection(nlist.n_sect,
2937                                                                  nlist.n_value);
2938                         type = eSymbolTypeLineEntry;
2939                         break;
2940 
2941                       case N_SSYM:
2942                         // structure elt: name,,NO_SECT,type,struct_offset
2943                         type = eSymbolTypeVariableType;
2944                         break;
2945 
2946                       case N_SO:
2947                         // source file name
2948                         type = eSymbolTypeSourceFile;
2949                         if (symbol_name == NULL) {
2950                           add_nlist = false;
2951                           if (N_SO_index != UINT32_MAX) {
2952                             // Set the size of the N_SO to the terminating
2953                             // index of this N_SO so that we can always skip
2954                             // the entire N_SO if we need to navigate more
2955                             // quickly at the source level when parsing STABS
2956                             symbol_ptr = symtab->SymbolAtIndex(N_SO_index);
2957                             symbol_ptr->SetByteSize(sym_idx);
2958                             symbol_ptr->SetSizeIsSibling(true);
2959                           }
2960                           N_NSYM_indexes.clear();
2961                           N_INCL_indexes.clear();
2962                           N_BRAC_indexes.clear();
2963                           N_COMM_indexes.clear();
2964                           N_FUN_indexes.clear();
2965                           N_SO_index = UINT32_MAX;
2966                         } else {
2967                           // We use the current number of symbols in the
2968                           // symbol table in lieu of using nlist_idx in case
2969                           // we ever start trimming entries out
2970                           const bool N_SO_has_full_path = symbol_name[0] == '/';
2971                           if (N_SO_has_full_path) {
2972                             if ((N_SO_index == sym_idx - 1) &&
2973                                 ((sym_idx - 1) < num_syms)) {
2974                               // We have two consecutive N_SO entries where
2975                               // the first contains a directory and the
2976                               // second contains a full path.
2977                               sym[sym_idx - 1].GetMangled().SetValue(
2978                                   ConstString(symbol_name), false);
2979                               m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
2980                               add_nlist = false;
2981                             } else {
2982                               // This is the first entry in a N_SO that
2983                               // contains a directory or
2984                               // a full path to the source file
2985                               N_SO_index = sym_idx;
2986                             }
2987                           } else if ((N_SO_index == sym_idx - 1) &&
2988                                      ((sym_idx - 1) < num_syms)) {
2989                             // This is usually the second N_SO entry that
2990                             // contains just the filename, so here we combine
2991                             // it with the first one if we are minimizing the
2992                             // symbol table
2993                             const char *so_path =
2994                                 sym[sym_idx - 1]
2995                                     .GetMangled()
2996                                     .GetDemangledName(
2997                                         lldb::eLanguageTypeUnknown)
2998                                     .AsCString();
2999                             if (so_path && so_path[0]) {
3000                               std::string full_so_path(so_path);
3001                               const size_t double_slash_pos =
3002                                   full_so_path.find("//");
3003                               if (double_slash_pos != std::string::npos) {
3004                                 // The linker has been generating bad N_SO
3005                                 // entries with doubled up paths
3006                                 // in the format "%s%s" where the first
3007                                 // string in the DW_AT_comp_dir, and the
3008                                 // second is the directory for the source
3009                                 // file so you end up with a path that looks
3010                                 // like "/tmp/src//tmp/src/"
3011                                 FileSpec so_dir(so_path);
3012                                 if (!FileSystem::Instance().Exists(so_dir)) {
3013                                   so_dir.SetFile(
3014                                       &full_so_path[double_slash_pos + 1],
3015                                       FileSpec::Style::native);
3016                                   if (FileSystem::Instance().Exists(so_dir)) {
3017                                     // Trim off the incorrect path
3018                                     full_so_path.erase(0, double_slash_pos + 1);
3019                                   }
3020                                 }
3021                               }
3022                               if (*full_so_path.rbegin() != '/')
3023                                 full_so_path += '/';
3024                               full_so_path += symbol_name;
3025                               sym[sym_idx - 1].GetMangled().SetValue(
3026                                   ConstString(full_so_path.c_str()), false);
3027                               add_nlist = false;
3028                               m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3029                             }
3030                           } else {
3031                             // This could be a relative path to a N_SO
3032                             N_SO_index = sym_idx;
3033                           }
3034                         }
3035                         break;
3036 
3037                       case N_OSO:
3038                         // object file name: name,,0,0,st_mtime
3039                         type = eSymbolTypeObjectFile;
3040                         break;
3041 
3042                       case N_LSYM:
3043                         // local sym: name,,NO_SECT,type,offset
3044                         type = eSymbolTypeLocal;
3045                         break;
3046 
3047                       // INCL scopes
3048                       case N_BINCL:
3049                         // include file beginning: name,,NO_SECT,0,sum We use
3050                         // the current number of symbols in the symbol table
3051                         // in lieu of using nlist_idx in case we ever start
3052                         // trimming entries out
3053                         N_INCL_indexes.push_back(sym_idx);
3054                         type = eSymbolTypeScopeBegin;
3055                         break;
3056 
3057                       case N_EINCL:
3058                         // include file end: name,,NO_SECT,0,0
3059                         // Set the size of the N_BINCL to the terminating
3060                         // index of this N_EINCL so that we can always skip
3061                         // the entire symbol if we need to navigate more
3062                         // quickly at the source level when parsing STABS
3063                         if (!N_INCL_indexes.empty()) {
3064                           symbol_ptr =
3065                               symtab->SymbolAtIndex(N_INCL_indexes.back());
3066                           symbol_ptr->SetByteSize(sym_idx + 1);
3067                           symbol_ptr->SetSizeIsSibling(true);
3068                           N_INCL_indexes.pop_back();
3069                         }
3070                         type = eSymbolTypeScopeEnd;
3071                         break;
3072 
3073                       case N_SOL:
3074                         // #included file name: name,,n_sect,0,address
3075                         type = eSymbolTypeHeaderFile;
3076 
3077                         // We currently don't use the header files on darwin
3078                         add_nlist = false;
3079                         break;
3080 
3081                       case N_PARAMS:
3082                         // compiler parameters: name,,NO_SECT,0,0
3083                         type = eSymbolTypeCompiler;
3084                         break;
3085 
3086                       case N_VERSION:
3087                         // compiler version: name,,NO_SECT,0,0
3088                         type = eSymbolTypeCompiler;
3089                         break;
3090 
3091                       case N_OLEVEL:
3092                         // compiler -O level: name,,NO_SECT,0,0
3093                         type = eSymbolTypeCompiler;
3094                         break;
3095 
3096                       case N_PSYM:
3097                         // parameter: name,,NO_SECT,type,offset
3098                         type = eSymbolTypeVariable;
3099                         break;
3100 
3101                       case N_ENTRY:
3102                         // alternate entry: name,,n_sect,linenumber,address
3103                         symbol_section = section_info.GetSection(nlist.n_sect,
3104                                                                  nlist.n_value);
3105                         type = eSymbolTypeLineEntry;
3106                         break;
3107 
3108                       // Left and Right Braces
3109                       case N_LBRAC:
3110                         // left bracket: 0,,NO_SECT,nesting level,address We
3111                         // use the current number of symbols in the symbol
3112                         // table in lieu of using nlist_idx in case we ever
3113                         // start trimming entries out
3114                         symbol_section = section_info.GetSection(nlist.n_sect,
3115                                                                  nlist.n_value);
3116                         N_BRAC_indexes.push_back(sym_idx);
3117                         type = eSymbolTypeScopeBegin;
3118                         break;
3119 
3120                       case N_RBRAC:
3121                         // right bracket: 0,,NO_SECT,nesting level,address
3122                         // Set the size of the N_LBRAC to the terminating
3123                         // index of this N_RBRAC so that we can always skip
3124                         // the entire symbol if we need to navigate more
3125                         // quickly at the source level when parsing STABS
3126                         symbol_section = section_info.GetSection(nlist.n_sect,
3127                                                                  nlist.n_value);
3128                         if (!N_BRAC_indexes.empty()) {
3129                           symbol_ptr =
3130                               symtab->SymbolAtIndex(N_BRAC_indexes.back());
3131                           symbol_ptr->SetByteSize(sym_idx + 1);
3132                           symbol_ptr->SetSizeIsSibling(true);
3133                           N_BRAC_indexes.pop_back();
3134                         }
3135                         type = eSymbolTypeScopeEnd;
3136                         break;
3137 
3138                       case N_EXCL:
3139                         // deleted include file: name,,NO_SECT,0,sum
3140                         type = eSymbolTypeHeaderFile;
3141                         break;
3142 
3143                       // COMM scopes
3144                       case N_BCOMM:
3145                         // begin common: name,,NO_SECT,0,0
3146                         // We use the current number of symbols in the symbol
3147                         // table in lieu of using nlist_idx in case we ever
3148                         // start trimming entries out
3149                         type = eSymbolTypeScopeBegin;
3150                         N_COMM_indexes.push_back(sym_idx);
3151                         break;
3152 
3153                       case N_ECOML:
3154                         // end common (local name): 0,,n_sect,0,address
3155                         symbol_section = section_info.GetSection(nlist.n_sect,
3156                                                                  nlist.n_value);
3157                         // Fall through
3158 
3159                       case N_ECOMM:
3160                         // end common: name,,n_sect,0,0
3161                         // Set the size of the N_BCOMM to the terminating
3162                         // index of this N_ECOMM/N_ECOML so that we can
3163                         // always skip the entire symbol if we need to
3164                         // navigate more quickly at the source level when
3165                         // parsing STABS
3166                         if (!N_COMM_indexes.empty()) {
3167                           symbol_ptr =
3168                               symtab->SymbolAtIndex(N_COMM_indexes.back());
3169                           symbol_ptr->SetByteSize(sym_idx + 1);
3170                           symbol_ptr->SetSizeIsSibling(true);
3171                           N_COMM_indexes.pop_back();
3172                         }
3173                         type = eSymbolTypeScopeEnd;
3174                         break;
3175 
3176                       case N_LENG:
3177                         // second stab entry with length information
3178                         type = eSymbolTypeAdditional;
3179                         break;
3180 
3181                       default:
3182                         break;
3183                       }
3184                     } else {
3185                       // uint8_t n_pext    = N_PEXT & nlist.n_type;
3186                       uint8_t n_type = N_TYPE & nlist.n_type;
3187                       sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
3188 
3189                       switch (n_type) {
3190                       case N_INDR: {
3191                         const char *reexport_name_cstr =
3192                             strtab_data.PeekCStr(nlist.n_value);
3193                         if (reexport_name_cstr && reexport_name_cstr[0]) {
3194                           type = eSymbolTypeReExported;
3195                           ConstString reexport_name(
3196                               reexport_name_cstr +
3197                               ((reexport_name_cstr[0] == '_') ? 1 : 0));
3198                           sym[sym_idx].SetReExportedSymbolName(reexport_name);
3199                           set_value = false;
3200                           reexport_shlib_needs_fixup[sym_idx] = reexport_name;
3201                           indirect_symbol_names.insert(ConstString(
3202                               symbol_name + ((symbol_name[0] == '_') ? 1 : 0)));
3203                         } else
3204                           type = eSymbolTypeUndefined;
3205                       } break;
3206 
3207                       case N_UNDF:
3208                         if (symbol_name && symbol_name[0]) {
3209                           ConstString undefined_name(
3210                               symbol_name + ((symbol_name[0] == '_') ? 1 : 0));
3211                           undefined_name_to_desc[undefined_name] = nlist.n_desc;
3212                         }
3213                       // Fall through
3214                       case N_PBUD:
3215                         type = eSymbolTypeUndefined;
3216                         break;
3217 
3218                       case N_ABS:
3219                         type = eSymbolTypeAbsolute;
3220                         break;
3221 
3222                       case N_SECT: {
3223                         symbol_section = section_info.GetSection(nlist.n_sect,
3224                                                                  nlist.n_value);
3225 
3226                         if (symbol_section == NULL) {
3227                           // TODO: warn about this?
3228                           add_nlist = false;
3229                           break;
3230                         }
3231 
3232                         if (TEXT_eh_frame_sectID == nlist.n_sect) {
3233                           type = eSymbolTypeException;
3234                         } else {
3235                           uint32_t section_type =
3236                               symbol_section->Get() & SECTION_TYPE;
3237 
3238                           switch (section_type) {
3239                           case S_CSTRING_LITERALS:
3240                             type = eSymbolTypeData;
3241                             break; // section with only literal C strings
3242                           case S_4BYTE_LITERALS:
3243                             type = eSymbolTypeData;
3244                             break; // section with only 4 byte literals
3245                           case S_8BYTE_LITERALS:
3246                             type = eSymbolTypeData;
3247                             break; // section with only 8 byte literals
3248                           case S_LITERAL_POINTERS:
3249                             type = eSymbolTypeTrampoline;
3250                             break; // section with only pointers to literals
3251                           case S_NON_LAZY_SYMBOL_POINTERS:
3252                             type = eSymbolTypeTrampoline;
3253                             break; // section with only non-lazy symbol
3254                                    // pointers
3255                           case S_LAZY_SYMBOL_POINTERS:
3256                             type = eSymbolTypeTrampoline;
3257                             break; // section with only lazy symbol pointers
3258                           case S_SYMBOL_STUBS:
3259                             type = eSymbolTypeTrampoline;
3260                             break; // section with only symbol stubs, byte
3261                                    // size of stub in the reserved2 field
3262                           case S_MOD_INIT_FUNC_POINTERS:
3263                             type = eSymbolTypeCode;
3264                             break; // section with only function pointers for
3265                                    // initialization
3266                           case S_MOD_TERM_FUNC_POINTERS:
3267                             type = eSymbolTypeCode;
3268                             break; // section with only function pointers for
3269                                    // termination
3270                           case S_INTERPOSING:
3271                             type = eSymbolTypeTrampoline;
3272                             break; // section with only pairs of function
3273                                    // pointers for interposing
3274                           case S_16BYTE_LITERALS:
3275                             type = eSymbolTypeData;
3276                             break; // section with only 16 byte literals
3277                           case S_DTRACE_DOF:
3278                             type = eSymbolTypeInstrumentation;
3279                             break;
3280                           case S_LAZY_DYLIB_SYMBOL_POINTERS:
3281                             type = eSymbolTypeTrampoline;
3282                             break;
3283                           default:
3284                             switch (symbol_section->GetType()) {
3285                             case lldb::eSectionTypeCode:
3286                               type = eSymbolTypeCode;
3287                               break;
3288                             case eSectionTypeData:
3289                             case eSectionTypeDataCString: // Inlined C string
3290                                                           // data
3291                             case eSectionTypeDataCStringPointers: // Pointers
3292                                                                   // to C
3293                                                                   // string
3294                                                                   // data
3295                             case eSectionTypeDataSymbolAddress:   // Address of
3296                                                                   // a symbol in
3297                                                                   // the symbol
3298                                                                   // table
3299                             case eSectionTypeData4:
3300                             case eSectionTypeData8:
3301                             case eSectionTypeData16:
3302                               type = eSymbolTypeData;
3303                               break;
3304                             default:
3305                               break;
3306                             }
3307                             break;
3308                           }
3309 
3310                           if (type == eSymbolTypeInvalid) {
3311                             const char *symbol_sect_name =
3312                                 symbol_section->GetName().AsCString();
3313                             if (symbol_section->IsDescendant(
3314                                     text_section_sp.get())) {
3315                               if (symbol_section->IsClear(
3316                                       S_ATTR_PURE_INSTRUCTIONS |
3317                                       S_ATTR_SELF_MODIFYING_CODE |
3318                                       S_ATTR_SOME_INSTRUCTIONS))
3319                                 type = eSymbolTypeData;
3320                               else
3321                                 type = eSymbolTypeCode;
3322                             } else if (symbol_section->IsDescendant(
3323                                            data_section_sp.get()) ||
3324                                        symbol_section->IsDescendant(
3325                                            data_dirty_section_sp.get()) ||
3326                                        symbol_section->IsDescendant(
3327                                            data_const_section_sp.get())) {
3328                               if (symbol_sect_name &&
3329                                   ::strstr(symbol_sect_name, "__objc") ==
3330                                       symbol_sect_name) {
3331                                 type = eSymbolTypeRuntime;
3332 
3333                                 if (symbol_name) {
3334                                   llvm::StringRef symbol_name_ref(symbol_name);
3335                                   if (symbol_name_ref.startswith("_OBJC_")) {
3336                                     llvm::StringRef
3337                                         g_objc_v2_prefix_class(
3338                                             "_OBJC_CLASS_$_");
3339                                     llvm::StringRef
3340                                         g_objc_v2_prefix_metaclass(
3341                                             "_OBJC_METACLASS_$_");
3342                                     llvm::StringRef
3343                                         g_objc_v2_prefix_ivar("_OBJC_IVAR_$_");
3344                                     if (symbol_name_ref.startswith(
3345                                             g_objc_v2_prefix_class)) {
3346                                       symbol_name_non_abi_mangled =
3347                                           symbol_name + 1;
3348                                       symbol_name =
3349                                           symbol_name +
3350                                           g_objc_v2_prefix_class.size();
3351                                       type = eSymbolTypeObjCClass;
3352                                       demangled_is_synthesized = true;
3353                                     } else if (
3354                                         symbol_name_ref.startswith(
3355                                             g_objc_v2_prefix_metaclass)) {
3356                                       symbol_name_non_abi_mangled =
3357                                           symbol_name + 1;
3358                                       symbol_name =
3359                                           symbol_name +
3360                                           g_objc_v2_prefix_metaclass.size();
3361                                       type = eSymbolTypeObjCMetaClass;
3362                                       demangled_is_synthesized = true;
3363                                     } else if (symbol_name_ref.startswith(
3364                                                    g_objc_v2_prefix_ivar)) {
3365                                       symbol_name_non_abi_mangled =
3366                                           symbol_name + 1;
3367                                       symbol_name =
3368                                           symbol_name +
3369                                           g_objc_v2_prefix_ivar.size();
3370                                       type = eSymbolTypeObjCIVar;
3371                                       demangled_is_synthesized = true;
3372                                     }
3373                                   }
3374                                 }
3375                               } else if (symbol_sect_name &&
3376                                          ::strstr(symbol_sect_name,
3377                                                   "__gcc_except_tab") ==
3378                                              symbol_sect_name) {
3379                                 type = eSymbolTypeException;
3380                               } else {
3381                                 type = eSymbolTypeData;
3382                               }
3383                             } else if (symbol_sect_name &&
3384                                        ::strstr(symbol_sect_name, "__IMPORT") ==
3385                                            symbol_sect_name) {
3386                               type = eSymbolTypeTrampoline;
3387                             } else if (symbol_section->IsDescendant(
3388                                            objc_section_sp.get())) {
3389                               type = eSymbolTypeRuntime;
3390                               if (symbol_name && symbol_name[0] == '.') {
3391                                 llvm::StringRef symbol_name_ref(symbol_name);
3392                                 llvm::StringRef
3393                                     g_objc_v1_prefix_class(".objc_class_name_");
3394                                 if (symbol_name_ref.startswith(
3395                                         g_objc_v1_prefix_class)) {
3396                                   symbol_name_non_abi_mangled = symbol_name;
3397                                   symbol_name = symbol_name +
3398                                                 g_objc_v1_prefix_class.size();
3399                                   type = eSymbolTypeObjCClass;
3400                                   demangled_is_synthesized = true;
3401                                 }
3402                               }
3403                             }
3404                           }
3405                         }
3406                       } break;
3407                       }
3408                     }
3409 
3410                     if (add_nlist) {
3411                       uint64_t symbol_value = nlist.n_value;
3412                       if (symbol_name_non_abi_mangled) {
3413                         sym[sym_idx].GetMangled().SetMangledName(
3414                             ConstString(symbol_name_non_abi_mangled));
3415                         sym[sym_idx].GetMangled().SetDemangledName(
3416                             ConstString(symbol_name));
3417                       } else {
3418                         bool symbol_name_is_mangled = false;
3419 
3420                         if (symbol_name && symbol_name[0] == '_') {
3421                           symbol_name_is_mangled = symbol_name[1] == '_';
3422                           symbol_name++; // Skip the leading underscore
3423                         }
3424 
3425                         if (symbol_name) {
3426                           ConstString const_symbol_name(symbol_name);
3427                           sym[sym_idx].GetMangled().SetValue(
3428                               const_symbol_name, symbol_name_is_mangled);
3429                           if (is_gsym && is_debug) {
3430                             const char *gsym_name =
3431                                 sym[sym_idx]
3432                                     .GetMangled()
3433                                     .GetName(lldb::eLanguageTypeUnknown,
3434                                              Mangled::ePreferMangled)
3435                                     .GetCString();
3436                             if (gsym_name)
3437                               N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
3438                           }
3439                         }
3440                       }
3441                       if (symbol_section) {
3442                         const addr_t section_file_addr =
3443                             symbol_section->GetFileAddress();
3444                         if (symbol_byte_size == 0 &&
3445                             function_starts_count > 0) {
3446                           addr_t symbol_lookup_file_addr = nlist.n_value;
3447                           // Do an exact address match for non-ARM addresses,
3448                           // else get the closest since the symbol might be a
3449                           // thumb symbol which has an address with bit zero
3450                           // set
3451                           FunctionStarts::Entry *func_start_entry =
3452                               function_starts.FindEntry(symbol_lookup_file_addr,
3453                                                         !is_arm);
3454                           if (is_arm && func_start_entry) {
3455                             // Verify that the function start address is the
3456                             // symbol address (ARM) or the symbol address + 1
3457                             // (thumb)
3458                             if (func_start_entry->addr !=
3459                                     symbol_lookup_file_addr &&
3460                                 func_start_entry->addr !=
3461                                     (symbol_lookup_file_addr + 1)) {
3462                               // Not the right entry, NULL it out...
3463                               func_start_entry = NULL;
3464                             }
3465                           }
3466                           if (func_start_entry) {
3467                             func_start_entry->data = true;
3468 
3469                             addr_t symbol_file_addr = func_start_entry->addr;
3470                             uint32_t symbol_flags = 0;
3471                             if (is_arm) {
3472                               if (symbol_file_addr & 1)
3473                                 symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB;
3474                               symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
3475                             }
3476 
3477                             const FunctionStarts::Entry *next_func_start_entry =
3478                                 function_starts.FindNextEntry(func_start_entry);
3479                             const addr_t section_end_file_addr =
3480                                 section_file_addr +
3481                                 symbol_section->GetByteSize();
3482                             if (next_func_start_entry) {
3483                               addr_t next_symbol_file_addr =
3484                                   next_func_start_entry->addr;
3485                               // Be sure the clear the Thumb address bit when
3486                               // we calculate the size from the current and
3487                               // next address
3488                               if (is_arm)
3489                                 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
3490                               symbol_byte_size = std::min<lldb::addr_t>(
3491                                   next_symbol_file_addr - symbol_file_addr,
3492                                   section_end_file_addr - symbol_file_addr);
3493                             } else {
3494                               symbol_byte_size =
3495                                   section_end_file_addr - symbol_file_addr;
3496                             }
3497                           }
3498                         }
3499                         symbol_value -= section_file_addr;
3500                       }
3501 
3502                       if (is_debug == false) {
3503                         if (type == eSymbolTypeCode) {
3504                           // See if we can find a N_FUN entry for any code
3505                           // symbols. If we do find a match, and the name
3506                           // matches, then we can merge the two into just the
3507                           // function symbol to avoid duplicate entries in
3508                           // the symbol table
3509                           auto range =
3510                               N_FUN_addr_to_sym_idx.equal_range(nlist.n_value);
3511                           if (range.first != range.second) {
3512                             bool found_it = false;
3513                             for (auto pos = range.first; pos != range.second;
3514                                  ++pos) {
3515                               if (sym[sym_idx].GetMangled().GetName(
3516                                       lldb::eLanguageTypeUnknown,
3517                                       Mangled::ePreferMangled) ==
3518                                   sym[pos->second].GetMangled().GetName(
3519                                       lldb::eLanguageTypeUnknown,
3520                                       Mangled::ePreferMangled)) {
3521                                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
3522                                 // We just need the flags from the linker
3523                                 // symbol, so put these flags
3524                                 // into the N_FUN flags to avoid duplicate
3525                                 // symbols in the symbol table
3526                                 sym[pos->second].SetExternal(
3527                                     sym[sym_idx].IsExternal());
3528                                 sym[pos->second].SetFlags(nlist.n_type << 16 |
3529                                                           nlist.n_desc);
3530                                 if (resolver_addresses.find(nlist.n_value) !=
3531                                     resolver_addresses.end())
3532                                   sym[pos->second].SetType(eSymbolTypeResolver);
3533                                 sym[sym_idx].Clear();
3534                                 found_it = true;
3535                                 break;
3536                               }
3537                             }
3538                             if (found_it)
3539                               continue;
3540                           } else {
3541                             if (resolver_addresses.find(nlist.n_value) !=
3542                                 resolver_addresses.end())
3543                               type = eSymbolTypeResolver;
3544                           }
3545                         } else if (type == eSymbolTypeData ||
3546                                    type == eSymbolTypeObjCClass ||
3547                                    type == eSymbolTypeObjCMetaClass ||
3548                                    type == eSymbolTypeObjCIVar) {
3549                           // See if we can find a N_STSYM entry for any data
3550                           // symbols. If we do find a match, and the name
3551                           // matches, then we can merge the two into just the
3552                           // Static symbol to avoid duplicate entries in the
3553                           // symbol table
3554                           auto range = N_STSYM_addr_to_sym_idx.equal_range(
3555                               nlist.n_value);
3556                           if (range.first != range.second) {
3557                             bool found_it = false;
3558                             for (auto pos = range.first; pos != range.second;
3559                                  ++pos) {
3560                               if (sym[sym_idx].GetMangled().GetName(
3561                                       lldb::eLanguageTypeUnknown,
3562                                       Mangled::ePreferMangled) ==
3563                                   sym[pos->second].GetMangled().GetName(
3564                                       lldb::eLanguageTypeUnknown,
3565                                       Mangled::ePreferMangled)) {
3566                                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
3567                                 // We just need the flags from the linker
3568                                 // symbol, so put these flags
3569                                 // into the N_STSYM flags to avoid duplicate
3570                                 // symbols in the symbol table
3571                                 sym[pos->second].SetExternal(
3572                                     sym[sym_idx].IsExternal());
3573                                 sym[pos->second].SetFlags(nlist.n_type << 16 |
3574                                                           nlist.n_desc);
3575                                 sym[sym_idx].Clear();
3576                                 found_it = true;
3577                                 break;
3578                               }
3579                             }
3580                             if (found_it)
3581                               continue;
3582                           } else {
3583                             const char *gsym_name =
3584                                 sym[sym_idx]
3585                                     .GetMangled()
3586                                     .GetName(lldb::eLanguageTypeUnknown,
3587                                              Mangled::ePreferMangled)
3588                                     .GetCString();
3589                             if (gsym_name) {
3590                               // Combine N_GSYM stab entries with the non
3591                               // stab symbol
3592                               ConstNameToSymbolIndexMap::const_iterator pos =
3593                                   N_GSYM_name_to_sym_idx.find(gsym_name);
3594                               if (pos != N_GSYM_name_to_sym_idx.end()) {
3595                                 const uint32_t GSYM_sym_idx = pos->second;
3596                                 m_nlist_idx_to_sym_idx[nlist_idx] =
3597                                     GSYM_sym_idx;
3598                                 // Copy the address, because often the N_GSYM
3599                                 // address has an invalid address of zero
3600                                 // when the global is a common symbol
3601                                 sym[GSYM_sym_idx].GetAddressRef().SetSection(
3602                                     symbol_section);
3603                                 sym[GSYM_sym_idx].GetAddressRef().SetOffset(
3604                                     symbol_value);
3605                                 symbols_added.insert(sym[GSYM_sym_idx]
3606                                                          .GetAddress()
3607                                                          .GetFileAddress());
3608                                 // We just need the flags from the linker
3609                                 // symbol, so put these flags
3610                                 // into the N_GSYM flags to avoid duplicate
3611                                 // symbols in the symbol table
3612                                 sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 |
3613                                                            nlist.n_desc);
3614                                 sym[sym_idx].Clear();
3615                                 continue;
3616                               }
3617                             }
3618                           }
3619                         }
3620                       }
3621 
3622                       sym[sym_idx].SetID(nlist_idx);
3623                       sym[sym_idx].SetType(type);
3624                       if (set_value) {
3625                         sym[sym_idx].GetAddressRef().SetSection(symbol_section);
3626                         sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
3627                         symbols_added.insert(
3628                             sym[sym_idx].GetAddress().GetFileAddress());
3629                       }
3630                       sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
3631 
3632                       if (symbol_byte_size > 0)
3633                         sym[sym_idx].SetByteSize(symbol_byte_size);
3634 
3635                       if (demangled_is_synthesized)
3636                         sym[sym_idx].SetDemangledNameIsSynthesized(true);
3637                       ++sym_idx;
3638                     } else {
3639                       sym[sym_idx].Clear();
3640                     }
3641                   }
3642                   /////////////////////////////
3643                 }
3644                 break; // No more entries to consider
3645               }
3646             }
3647 
3648             for (const auto &pos : reexport_shlib_needs_fixup) {
3649               const auto undef_pos = undefined_name_to_desc.find(pos.second);
3650               if (undef_pos != undefined_name_to_desc.end()) {
3651                 const uint8_t dylib_ordinal =
3652                     llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
3653                 if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize())
3654                   sym[pos.first].SetReExportedSymbolSharedLibrary(
3655                       dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
3656               }
3657             }
3658           }
3659         }
3660       }
3661     }
3662   }
3663 
3664   // Must reset this in case it was mutated above!
3665   nlist_data_offset = 0;
3666 #endif
3667 
3668   if (nlist_data.GetByteSize() > 0) {
3669 
3670     // If the sym array was not created while parsing the DSC unmapped
3671     // symbols, create it now.
3672     if (sym == nullptr) {
3673       sym =
3674           symtab->Resize(symtab_load_command.nsyms + m_dysymtab.nindirectsyms);
3675       num_syms = symtab->GetNumSymbols();
3676     }
3677 
3678     if (unmapped_local_symbols_found) {
3679       assert(m_dysymtab.ilocalsym == 0);
3680       nlist_data_offset += (m_dysymtab.nlocalsym * nlist_byte_size);
3681       nlist_idx = m_dysymtab.nlocalsym;
3682     } else {
3683       nlist_idx = 0;
3684     }
3685 
3686     typedef llvm::DenseMap<ConstString, uint16_t> UndefinedNameToDescMap;
3687     typedef llvm::DenseMap<uint32_t, ConstString> SymbolIndexToName;
3688     UndefinedNameToDescMap undefined_name_to_desc;
3689     SymbolIndexToName reexport_shlib_needs_fixup;
3690 
3691     // Symtab parsing is a huge mess. Everything is entangled and the code
3692     // requires access to a ridiculous amount of variables. LLDB depends
3693     // heavily on the proper merging of symbols and to get that right we need
3694     // to make sure we have parsed all the debug symbols first. Therefore we
3695     // invoke the lambda twice, once to parse only the debug symbols and then
3696     // once more to parse the remaining symbols.
3697     auto ParseSymbolLambda = [&](struct nlist_64 &nlist, uint32_t nlist_idx,
3698                                  bool debug_only) {
3699       const bool is_debug = ((nlist.n_type & N_STAB) != 0);
3700       if (is_debug != debug_only)
3701         return true;
3702 
3703       const char *symbol_name_non_abi_mangled = nullptr;
3704       const char *symbol_name = nullptr;
3705 
3706       if (have_strtab_data) {
3707         symbol_name = strtab_data.PeekCStr(nlist.n_strx);
3708 
3709         if (symbol_name == nullptr) {
3710           // No symbol should be NULL, even the symbols with no string values
3711           // should have an offset zero which points to an empty C-string
3712           Host::SystemLog(Host::eSystemLogError,
3713                           "error: symbol[%u] has invalid string table offset "
3714                           "0x%x in %s, ignoring symbol\n",
3715                           nlist_idx, nlist.n_strx,
3716                           module_sp->GetFileSpec().GetPath().c_str());
3717           return true;
3718         }
3719         if (symbol_name[0] == '\0')
3720           symbol_name = nullptr;
3721       } else {
3722         const addr_t str_addr = strtab_addr + nlist.n_strx;
3723         Status str_error;
3724         if (process->ReadCStringFromMemory(str_addr, memory_symbol_name,
3725                                            str_error))
3726           symbol_name = memory_symbol_name.c_str();
3727       }
3728 
3729       SymbolType type = eSymbolTypeInvalid;
3730       SectionSP symbol_section;
3731       lldb::addr_t symbol_byte_size = 0;
3732       bool add_nlist = true;
3733       bool is_gsym = false;
3734       bool demangled_is_synthesized = false;
3735       bool set_value = true;
3736 
3737       assert(sym_idx < num_syms);
3738       sym[sym_idx].SetDebug(is_debug);
3739 
3740       if (is_debug) {
3741         switch (nlist.n_type) {
3742         case N_GSYM:
3743           // global symbol: name,,NO_SECT,type,0
3744           // Sometimes the N_GSYM value contains the address.
3745 
3746           // FIXME: In the .o files, we have a GSYM and a debug symbol for all
3747           // the ObjC data.  They
3748           // have the same address, but we want to ensure that we always find
3749           // only the real symbol, 'cause we don't currently correctly
3750           // attribute the GSYM one to the ObjCClass/Ivar/MetaClass symbol
3751           // type.  This is a temporary hack to make sure the ObjectiveC
3752           // symbols get treated correctly.  To do this right, we should
3753           // coalesce all the GSYM & global symbols that have the same
3754           // address.
3755           is_gsym = true;
3756           sym[sym_idx].SetExternal(true);
3757 
3758           if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O') {
3759             llvm::StringRef symbol_name_ref(symbol_name);
3760             if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) {
3761               symbol_name_non_abi_mangled = symbol_name + 1;
3762               symbol_name = symbol_name + g_objc_v2_prefix_class.size();
3763               type = eSymbolTypeObjCClass;
3764               demangled_is_synthesized = true;
3765 
3766             } else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) {
3767               symbol_name_non_abi_mangled = symbol_name + 1;
3768               symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size();
3769               type = eSymbolTypeObjCMetaClass;
3770               demangled_is_synthesized = true;
3771             } else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) {
3772               symbol_name_non_abi_mangled = symbol_name + 1;
3773               symbol_name = symbol_name + g_objc_v2_prefix_ivar.size();
3774               type = eSymbolTypeObjCIVar;
3775               demangled_is_synthesized = true;
3776             }
3777           } else {
3778             if (nlist.n_value != 0)
3779               symbol_section =
3780                   section_info.GetSection(nlist.n_sect, nlist.n_value);
3781             type = eSymbolTypeData;
3782           }
3783           break;
3784 
3785         case N_FNAME:
3786           // procedure name (f77 kludge): name,,NO_SECT,0,0
3787           type = eSymbolTypeCompiler;
3788           break;
3789 
3790         case N_FUN:
3791           // procedure: name,,n_sect,linenumber,address
3792           if (symbol_name) {
3793             type = eSymbolTypeCode;
3794             symbol_section =
3795                 section_info.GetSection(nlist.n_sect, nlist.n_value);
3796 
3797             N_FUN_addr_to_sym_idx.insert(
3798                 std::make_pair(nlist.n_value, sym_idx));
3799             // We use the current number of symbols in the symbol table in
3800             // lieu of using nlist_idx in case we ever start trimming entries
3801             // out
3802             N_FUN_indexes.push_back(sym_idx);
3803           } else {
3804             type = eSymbolTypeCompiler;
3805 
3806             if (!N_FUN_indexes.empty()) {
3807               // Copy the size of the function into the original STAB entry
3808               // so we don't have to hunt for it later
3809               symtab->SymbolAtIndex(N_FUN_indexes.back())
3810                   ->SetByteSize(nlist.n_value);
3811               N_FUN_indexes.pop_back();
3812               // We don't really need the end function STAB as it contains
3813               // the size which we already placed with the original symbol,
3814               // so don't add it if we want a minimal symbol table
3815               add_nlist = false;
3816             }
3817           }
3818           break;
3819 
3820         case N_STSYM:
3821           // static symbol: name,,n_sect,type,address
3822           N_STSYM_addr_to_sym_idx.insert(
3823               std::make_pair(nlist.n_value, sym_idx));
3824           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3825           if (symbol_name && symbol_name[0]) {
3826             type = ObjectFile::GetSymbolTypeFromName(symbol_name + 1,
3827                                                      eSymbolTypeData);
3828           }
3829           break;
3830 
3831         case N_LCSYM:
3832           // .lcomm symbol: name,,n_sect,type,address
3833           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3834           type = eSymbolTypeCommonBlock;
3835           break;
3836 
3837         case N_BNSYM:
3838           // We use the current number of symbols in the symbol table in lieu
3839           // of using nlist_idx in case we ever start trimming entries out
3840           // Skip these if we want minimal symbol tables
3841           add_nlist = false;
3842           break;
3843 
3844         case N_ENSYM:
3845           // Set the size of the N_BNSYM to the terminating index of this
3846           // N_ENSYM so that we can always skip the entire symbol if we need
3847           // to navigate more quickly at the source level when parsing STABS
3848           // Skip these if we want minimal symbol tables
3849           add_nlist = false;
3850           break;
3851 
3852         case N_OPT:
3853           // emitted with gcc2_compiled and in gcc source
3854           type = eSymbolTypeCompiler;
3855           break;
3856 
3857         case N_RSYM:
3858           // register sym: name,,NO_SECT,type,register
3859           type = eSymbolTypeVariable;
3860           break;
3861 
3862         case N_SLINE:
3863           // src line: 0,,n_sect,linenumber,address
3864           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3865           type = eSymbolTypeLineEntry;
3866           break;
3867 
3868         case N_SSYM:
3869           // structure elt: name,,NO_SECT,type,struct_offset
3870           type = eSymbolTypeVariableType;
3871           break;
3872 
3873         case N_SO:
3874           // source file name
3875           type = eSymbolTypeSourceFile;
3876           if (symbol_name == nullptr) {
3877             add_nlist = false;
3878             if (N_SO_index != UINT32_MAX) {
3879               // Set the size of the N_SO to the terminating index of this
3880               // N_SO so that we can always skip the entire N_SO if we need
3881               // to navigate more quickly at the source level when parsing
3882               // STABS
3883               symbol_ptr = symtab->SymbolAtIndex(N_SO_index);
3884               symbol_ptr->SetByteSize(sym_idx);
3885               symbol_ptr->SetSizeIsSibling(true);
3886             }
3887             N_NSYM_indexes.clear();
3888             N_INCL_indexes.clear();
3889             N_BRAC_indexes.clear();
3890             N_COMM_indexes.clear();
3891             N_FUN_indexes.clear();
3892             N_SO_index = UINT32_MAX;
3893           } else {
3894             // We use the current number of symbols in the symbol table in
3895             // lieu of using nlist_idx in case we ever start trimming entries
3896             // out
3897             const bool N_SO_has_full_path = symbol_name[0] == '/';
3898             if (N_SO_has_full_path) {
3899               if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) {
3900                 // We have two consecutive N_SO entries where the first
3901                 // contains a directory and the second contains a full path.
3902                 sym[sym_idx - 1].GetMangled().SetValue(ConstString(symbol_name),
3903                                                        false);
3904                 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3905                 add_nlist = false;
3906               } else {
3907                 // This is the first entry in a N_SO that contains a
3908                 // directory or a full path to the source file
3909                 N_SO_index = sym_idx;
3910               }
3911             } else if ((N_SO_index == sym_idx - 1) &&
3912                        ((sym_idx - 1) < num_syms)) {
3913               // This is usually the second N_SO entry that contains just the
3914               // filename, so here we combine it with the first one if we are
3915               // minimizing the symbol table
3916               const char *so_path =
3917                   sym[sym_idx - 1].GetMangled().GetDemangledName().AsCString();
3918               if (so_path && so_path[0]) {
3919                 std::string full_so_path(so_path);
3920                 const size_t double_slash_pos = full_so_path.find("//");
3921                 if (double_slash_pos != std::string::npos) {
3922                   // The linker has been generating bad N_SO entries with
3923                   // doubled up paths in the format "%s%s" where the first
3924                   // string in the DW_AT_comp_dir, and the second is the
3925                   // directory for the source file so you end up with a path
3926                   // that looks like "/tmp/src//tmp/src/"
3927                   FileSpec so_dir(so_path);
3928                   if (!FileSystem::Instance().Exists(so_dir)) {
3929                     so_dir.SetFile(&full_so_path[double_slash_pos + 1],
3930                                    FileSpec::Style::native);
3931                     if (FileSystem::Instance().Exists(so_dir)) {
3932                       // Trim off the incorrect path
3933                       full_so_path.erase(0, double_slash_pos + 1);
3934                     }
3935                   }
3936                 }
3937                 if (*full_so_path.rbegin() != '/')
3938                   full_so_path += '/';
3939                 full_so_path += symbol_name;
3940                 sym[sym_idx - 1].GetMangled().SetValue(
3941                     ConstString(full_so_path.c_str()), false);
3942                 add_nlist = false;
3943                 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3944               }
3945             } else {
3946               // This could be a relative path to a N_SO
3947               N_SO_index = sym_idx;
3948             }
3949           }
3950           break;
3951 
3952         case N_OSO:
3953           // object file name: name,,0,0,st_mtime
3954           type = eSymbolTypeObjectFile;
3955           break;
3956 
3957         case N_LSYM:
3958           // local sym: name,,NO_SECT,type,offset
3959           type = eSymbolTypeLocal;
3960           break;
3961 
3962         // INCL scopes
3963         case N_BINCL:
3964           // include file beginning: name,,NO_SECT,0,sum We use the current
3965           // number of symbols in the symbol table in lieu of using nlist_idx
3966           // in case we ever start trimming entries out
3967           N_INCL_indexes.push_back(sym_idx);
3968           type = eSymbolTypeScopeBegin;
3969           break;
3970 
3971         case N_EINCL:
3972           // include file end: name,,NO_SECT,0,0
3973           // Set the size of the N_BINCL to the terminating index of this
3974           // N_EINCL so that we can always skip the entire symbol if we need
3975           // to navigate more quickly at the source level when parsing STABS
3976           if (!N_INCL_indexes.empty()) {
3977             symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back());
3978             symbol_ptr->SetByteSize(sym_idx + 1);
3979             symbol_ptr->SetSizeIsSibling(true);
3980             N_INCL_indexes.pop_back();
3981           }
3982           type = eSymbolTypeScopeEnd;
3983           break;
3984 
3985         case N_SOL:
3986           // #included file name: name,,n_sect,0,address
3987           type = eSymbolTypeHeaderFile;
3988 
3989           // We currently don't use the header files on darwin
3990           add_nlist = false;
3991           break;
3992 
3993         case N_PARAMS:
3994           // compiler parameters: name,,NO_SECT,0,0
3995           type = eSymbolTypeCompiler;
3996           break;
3997 
3998         case N_VERSION:
3999           // compiler version: name,,NO_SECT,0,0
4000           type = eSymbolTypeCompiler;
4001           break;
4002 
4003         case N_OLEVEL:
4004           // compiler -O level: name,,NO_SECT,0,0
4005           type = eSymbolTypeCompiler;
4006           break;
4007 
4008         case N_PSYM:
4009           // parameter: name,,NO_SECT,type,offset
4010           type = eSymbolTypeVariable;
4011           break;
4012 
4013         case N_ENTRY:
4014           // alternate entry: name,,n_sect,linenumber,address
4015           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4016           type = eSymbolTypeLineEntry;
4017           break;
4018 
4019         // Left and Right Braces
4020         case N_LBRAC:
4021           // left bracket: 0,,NO_SECT,nesting level,address We use the
4022           // current number of symbols in the symbol table in lieu of using
4023           // nlist_idx in case we ever start trimming entries out
4024           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4025           N_BRAC_indexes.push_back(sym_idx);
4026           type = eSymbolTypeScopeBegin;
4027           break;
4028 
4029         case N_RBRAC:
4030           // right bracket: 0,,NO_SECT,nesting level,address Set the size of
4031           // the N_LBRAC to the terminating index of this N_RBRAC so that we
4032           // can always skip the entire symbol if we need to navigate more
4033           // quickly at the source level when parsing STABS
4034           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4035           if (!N_BRAC_indexes.empty()) {
4036             symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back());
4037             symbol_ptr->SetByteSize(sym_idx + 1);
4038             symbol_ptr->SetSizeIsSibling(true);
4039             N_BRAC_indexes.pop_back();
4040           }
4041           type = eSymbolTypeScopeEnd;
4042           break;
4043 
4044         case N_EXCL:
4045           // deleted include file: name,,NO_SECT,0,sum
4046           type = eSymbolTypeHeaderFile;
4047           break;
4048 
4049         // COMM scopes
4050         case N_BCOMM:
4051           // begin common: name,,NO_SECT,0,0
4052           // We use the current number of symbols in the symbol table in lieu
4053           // of using nlist_idx in case we ever start trimming entries out
4054           type = eSymbolTypeScopeBegin;
4055           N_COMM_indexes.push_back(sym_idx);
4056           break;
4057 
4058         case N_ECOML:
4059           // end common (local name): 0,,n_sect,0,address
4060           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4061           LLVM_FALLTHROUGH;
4062 
4063         case N_ECOMM:
4064           // end common: name,,n_sect,0,0
4065           // Set the size of the N_BCOMM to the terminating index of this
4066           // N_ECOMM/N_ECOML so that we can always skip the entire symbol if
4067           // we need to navigate more quickly at the source level when
4068           // parsing STABS
4069           if (!N_COMM_indexes.empty()) {
4070             symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back());
4071             symbol_ptr->SetByteSize(sym_idx + 1);
4072             symbol_ptr->SetSizeIsSibling(true);
4073             N_COMM_indexes.pop_back();
4074           }
4075           type = eSymbolTypeScopeEnd;
4076           break;
4077 
4078         case N_LENG:
4079           // second stab entry with length information
4080           type = eSymbolTypeAdditional;
4081           break;
4082 
4083         default:
4084           break;
4085         }
4086       } else {
4087         uint8_t n_type = N_TYPE & nlist.n_type;
4088         sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
4089 
4090         switch (n_type) {
4091         case N_INDR: {
4092           const char *reexport_name_cstr = strtab_data.PeekCStr(nlist.n_value);
4093           if (reexport_name_cstr && reexport_name_cstr[0]) {
4094             type = eSymbolTypeReExported;
4095             ConstString reexport_name(reexport_name_cstr +
4096                                       ((reexport_name_cstr[0] == '_') ? 1 : 0));
4097             sym[sym_idx].SetReExportedSymbolName(reexport_name);
4098             set_value = false;
4099             reexport_shlib_needs_fixup[sym_idx] = reexport_name;
4100             indirect_symbol_names.insert(
4101                 ConstString(symbol_name + ((symbol_name[0] == '_') ? 1 : 0)));
4102           } else
4103             type = eSymbolTypeUndefined;
4104         } break;
4105 
4106         case N_UNDF:
4107           if (symbol_name && symbol_name[0]) {
4108             ConstString undefined_name(symbol_name +
4109                                        ((symbol_name[0] == '_') ? 1 : 0));
4110             undefined_name_to_desc[undefined_name] = nlist.n_desc;
4111           }
4112           LLVM_FALLTHROUGH;
4113 
4114         case N_PBUD:
4115           type = eSymbolTypeUndefined;
4116           break;
4117 
4118         case N_ABS:
4119           type = eSymbolTypeAbsolute;
4120           break;
4121 
4122         case N_SECT: {
4123           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4124 
4125           if (!symbol_section) {
4126             // TODO: warn about this?
4127             add_nlist = false;
4128             break;
4129           }
4130 
4131           if (TEXT_eh_frame_sectID == nlist.n_sect) {
4132             type = eSymbolTypeException;
4133           } else {
4134             uint32_t section_type = symbol_section->Get() & SECTION_TYPE;
4135 
4136             switch (section_type) {
4137             case S_CSTRING_LITERALS:
4138               type = eSymbolTypeData;
4139               break; // section with only literal C strings
4140             case S_4BYTE_LITERALS:
4141               type = eSymbolTypeData;
4142               break; // section with only 4 byte literals
4143             case S_8BYTE_LITERALS:
4144               type = eSymbolTypeData;
4145               break; // section with only 8 byte literals
4146             case S_LITERAL_POINTERS:
4147               type = eSymbolTypeTrampoline;
4148               break; // section with only pointers to literals
4149             case S_NON_LAZY_SYMBOL_POINTERS:
4150               type = eSymbolTypeTrampoline;
4151               break; // section with only non-lazy symbol pointers
4152             case S_LAZY_SYMBOL_POINTERS:
4153               type = eSymbolTypeTrampoline;
4154               break; // section with only lazy symbol pointers
4155             case S_SYMBOL_STUBS:
4156               type = eSymbolTypeTrampoline;
4157               break; // section with only symbol stubs, byte size of stub in
4158                      // the reserved2 field
4159             case S_MOD_INIT_FUNC_POINTERS:
4160               type = eSymbolTypeCode;
4161               break; // section with only function pointers for initialization
4162             case S_MOD_TERM_FUNC_POINTERS:
4163               type = eSymbolTypeCode;
4164               break; // section with only function pointers for termination
4165             case S_INTERPOSING:
4166               type = eSymbolTypeTrampoline;
4167               break; // section with only pairs of function pointers for
4168                      // interposing
4169             case S_16BYTE_LITERALS:
4170               type = eSymbolTypeData;
4171               break; // section with only 16 byte literals
4172             case S_DTRACE_DOF:
4173               type = eSymbolTypeInstrumentation;
4174               break;
4175             case S_LAZY_DYLIB_SYMBOL_POINTERS:
4176               type = eSymbolTypeTrampoline;
4177               break;
4178             default:
4179               switch (symbol_section->GetType()) {
4180               case lldb::eSectionTypeCode:
4181                 type = eSymbolTypeCode;
4182                 break;
4183               case eSectionTypeData:
4184               case eSectionTypeDataCString:         // Inlined C string data
4185               case eSectionTypeDataCStringPointers: // Pointers to C string
4186                                                     // data
4187               case eSectionTypeDataSymbolAddress:   // Address of a symbol in
4188                                                     // the symbol table
4189               case eSectionTypeData4:
4190               case eSectionTypeData8:
4191               case eSectionTypeData16:
4192                 type = eSymbolTypeData;
4193                 break;
4194               default:
4195                 break;
4196               }
4197               break;
4198             }
4199 
4200             if (type == eSymbolTypeInvalid) {
4201               const char *symbol_sect_name =
4202                   symbol_section->GetName().AsCString();
4203               if (symbol_section->IsDescendant(text_section_sp.get())) {
4204                 if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS |
4205                                             S_ATTR_SELF_MODIFYING_CODE |
4206                                             S_ATTR_SOME_INSTRUCTIONS))
4207                   type = eSymbolTypeData;
4208                 else
4209                   type = eSymbolTypeCode;
4210               } else if (symbol_section->IsDescendant(data_section_sp.get()) ||
4211                          symbol_section->IsDescendant(
4212                              data_dirty_section_sp.get()) ||
4213                          symbol_section->IsDescendant(
4214                              data_const_section_sp.get())) {
4215                 if (symbol_sect_name &&
4216                     ::strstr(symbol_sect_name, "__objc") == symbol_sect_name) {
4217                   type = eSymbolTypeRuntime;
4218 
4219                   if (symbol_name) {
4220                     llvm::StringRef symbol_name_ref(symbol_name);
4221                     if (symbol_name_ref.startswith("_OBJC_")) {
4222                       llvm::StringRef g_objc_v2_prefix_class(
4223                           "_OBJC_CLASS_$_");
4224                       llvm::StringRef g_objc_v2_prefix_metaclass(
4225                           "_OBJC_METACLASS_$_");
4226                       llvm::StringRef g_objc_v2_prefix_ivar(
4227                           "_OBJC_IVAR_$_");
4228                       if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) {
4229                         symbol_name_non_abi_mangled = symbol_name + 1;
4230                         symbol_name =
4231                             symbol_name + g_objc_v2_prefix_class.size();
4232                         type = eSymbolTypeObjCClass;
4233                         demangled_is_synthesized = true;
4234                       } else if (symbol_name_ref.startswith(
4235                                      g_objc_v2_prefix_metaclass)) {
4236                         symbol_name_non_abi_mangled = symbol_name + 1;
4237                         symbol_name =
4238                             symbol_name + g_objc_v2_prefix_metaclass.size();
4239                         type = eSymbolTypeObjCMetaClass;
4240                         demangled_is_synthesized = true;
4241                       } else if (symbol_name_ref.startswith(
4242                                      g_objc_v2_prefix_ivar)) {
4243                         symbol_name_non_abi_mangled = symbol_name + 1;
4244                         symbol_name =
4245                             symbol_name + g_objc_v2_prefix_ivar.size();
4246                         type = eSymbolTypeObjCIVar;
4247                         demangled_is_synthesized = true;
4248                       }
4249                     }
4250                   }
4251                 } else if (symbol_sect_name &&
4252                            ::strstr(symbol_sect_name, "__gcc_except_tab") ==
4253                                symbol_sect_name) {
4254                   type = eSymbolTypeException;
4255                 } else {
4256                   type = eSymbolTypeData;
4257                 }
4258               } else if (symbol_sect_name &&
4259                          ::strstr(symbol_sect_name, "__IMPORT") ==
4260                              symbol_sect_name) {
4261                 type = eSymbolTypeTrampoline;
4262               } else if (symbol_section->IsDescendant(objc_section_sp.get())) {
4263                 type = eSymbolTypeRuntime;
4264                 if (symbol_name && symbol_name[0] == '.') {
4265                   llvm::StringRef symbol_name_ref(symbol_name);
4266                   llvm::StringRef g_objc_v1_prefix_class(
4267                       ".objc_class_name_");
4268                   if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) {
4269                     symbol_name_non_abi_mangled = symbol_name;
4270                     symbol_name = symbol_name + g_objc_v1_prefix_class.size();
4271                     type = eSymbolTypeObjCClass;
4272                     demangled_is_synthesized = true;
4273                   }
4274                 }
4275               }
4276             }
4277           }
4278         } break;
4279         }
4280       }
4281 
4282       if (!add_nlist) {
4283         sym[sym_idx].Clear();
4284         return true;
4285       }
4286 
4287       uint64_t symbol_value = nlist.n_value;
4288 
4289       if (symbol_name_non_abi_mangled) {
4290         sym[sym_idx].GetMangled().SetMangledName(
4291             ConstString(symbol_name_non_abi_mangled));
4292         sym[sym_idx].GetMangled().SetDemangledName(ConstString(symbol_name));
4293       } else {
4294         bool symbol_name_is_mangled = false;
4295 
4296         if (symbol_name && symbol_name[0] == '_') {
4297           symbol_name_is_mangled = symbol_name[1] == '_';
4298           symbol_name++; // Skip the leading underscore
4299         }
4300 
4301         if (symbol_name) {
4302           ConstString const_symbol_name(symbol_name);
4303           sym[sym_idx].GetMangled().SetValue(const_symbol_name,
4304                                              symbol_name_is_mangled);
4305         }
4306       }
4307 
4308       if (is_gsym) {
4309         const char *gsym_name = sym[sym_idx]
4310                                     .GetMangled()
4311                                     .GetName(Mangled::ePreferMangled)
4312                                     .GetCString();
4313         if (gsym_name)
4314           N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
4315       }
4316 
4317       if (symbol_section) {
4318         const addr_t section_file_addr = symbol_section->GetFileAddress();
4319         if (symbol_byte_size == 0 && function_starts_count > 0) {
4320           addr_t symbol_lookup_file_addr = nlist.n_value;
4321           // Do an exact address match for non-ARM addresses, else get the
4322           // closest since the symbol might be a thumb symbol which has an
4323           // address with bit zero set.
4324           FunctionStarts::Entry *func_start_entry =
4325               function_starts.FindEntry(symbol_lookup_file_addr, !is_arm);
4326           if (is_arm && func_start_entry) {
4327             // Verify that the function start address is the symbol address
4328             // (ARM) or the symbol address + 1 (thumb).
4329             if (func_start_entry->addr != symbol_lookup_file_addr &&
4330                 func_start_entry->addr != (symbol_lookup_file_addr + 1)) {
4331               // Not the right entry, NULL it out...
4332               func_start_entry = nullptr;
4333             }
4334           }
4335           if (func_start_entry) {
4336             func_start_entry->data = true;
4337 
4338             addr_t symbol_file_addr = func_start_entry->addr;
4339             if (is_arm)
4340               symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4341 
4342             const FunctionStarts::Entry *next_func_start_entry =
4343                 function_starts.FindNextEntry(func_start_entry);
4344             const addr_t section_end_file_addr =
4345                 section_file_addr + symbol_section->GetByteSize();
4346             if (next_func_start_entry) {
4347               addr_t next_symbol_file_addr = next_func_start_entry->addr;
4348               // Be sure the clear the Thumb address bit when we calculate the
4349               // size from the current and next address
4350               if (is_arm)
4351                 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4352               symbol_byte_size = std::min<lldb::addr_t>(
4353                   next_symbol_file_addr - symbol_file_addr,
4354                   section_end_file_addr - symbol_file_addr);
4355             } else {
4356               symbol_byte_size = section_end_file_addr - symbol_file_addr;
4357             }
4358           }
4359         }
4360         symbol_value -= section_file_addr;
4361       }
4362 
4363       if (!is_debug) {
4364         if (type == eSymbolTypeCode) {
4365           // See if we can find a N_FUN entry for any code symbols. If we do
4366           // find a match, and the name matches, then we can merge the two into
4367           // just the function symbol to avoid duplicate entries in the symbol
4368           // table.
4369           std::pair<ValueToSymbolIndexMap::const_iterator,
4370                     ValueToSymbolIndexMap::const_iterator>
4371               range;
4372           range = N_FUN_addr_to_sym_idx.equal_range(nlist.n_value);
4373           if (range.first != range.second) {
4374             for (ValueToSymbolIndexMap::const_iterator pos = range.first;
4375                  pos != range.second; ++pos) {
4376               if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) ==
4377                   sym[pos->second].GetMangled().GetName(
4378                       Mangled::ePreferMangled)) {
4379                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
4380                 // We just need the flags from the linker symbol, so put these
4381                 // flags into the N_FUN flags to avoid duplicate symbols in the
4382                 // symbol table.
4383                 sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
4384                 sym[pos->second].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4385                 if (resolver_addresses.find(nlist.n_value) !=
4386                     resolver_addresses.end())
4387                   sym[pos->second].SetType(eSymbolTypeResolver);
4388                 sym[sym_idx].Clear();
4389                 return true;
4390               }
4391             }
4392           } else {
4393             if (resolver_addresses.find(nlist.n_value) !=
4394                 resolver_addresses.end())
4395               type = eSymbolTypeResolver;
4396           }
4397         } else if (type == eSymbolTypeData || type == eSymbolTypeObjCClass ||
4398                    type == eSymbolTypeObjCMetaClass ||
4399                    type == eSymbolTypeObjCIVar) {
4400           // See if we can find a N_STSYM entry for any data symbols. If we do
4401           // find a match, and the name matches, then we can merge the two into
4402           // just the Static symbol to avoid duplicate entries in the symbol
4403           // table.
4404           std::pair<ValueToSymbolIndexMap::const_iterator,
4405                     ValueToSymbolIndexMap::const_iterator>
4406               range;
4407           range = N_STSYM_addr_to_sym_idx.equal_range(nlist.n_value);
4408           if (range.first != range.second) {
4409             for (ValueToSymbolIndexMap::const_iterator pos = range.first;
4410                  pos != range.second; ++pos) {
4411               if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) ==
4412                   sym[pos->second].GetMangled().GetName(
4413                       Mangled::ePreferMangled)) {
4414                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
4415                 // We just need the flags from the linker symbol, so put these
4416                 // flags into the N_STSYM flags to avoid duplicate symbols in
4417                 // the symbol table.
4418                 sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
4419                 sym[pos->second].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4420                 sym[sym_idx].Clear();
4421                 return true;
4422               }
4423             }
4424           } else {
4425             // Combine N_GSYM stab entries with the non stab symbol.
4426             const char *gsym_name = sym[sym_idx]
4427                                         .GetMangled()
4428                                         .GetName(Mangled::ePreferMangled)
4429                                         .GetCString();
4430             if (gsym_name) {
4431               ConstNameToSymbolIndexMap::const_iterator pos =
4432                   N_GSYM_name_to_sym_idx.find(gsym_name);
4433               if (pos != N_GSYM_name_to_sym_idx.end()) {
4434                 const uint32_t GSYM_sym_idx = pos->second;
4435                 m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx;
4436                 // Copy the address, because often the N_GSYM address has an
4437                 // invalid address of zero when the global is a common symbol.
4438                 sym[GSYM_sym_idx].GetAddressRef().SetSection(symbol_section);
4439                 sym[GSYM_sym_idx].GetAddressRef().SetOffset(symbol_value);
4440                 symbols_added.insert(
4441                     sym[GSYM_sym_idx].GetAddress().GetFileAddress());
4442                 // We just need the flags from the linker symbol, so put these
4443                 // flags into the N_GSYM flags to avoid duplicate symbols in
4444                 // the symbol table.
4445                 sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4446                 sym[sym_idx].Clear();
4447                 return true;
4448               }
4449             }
4450           }
4451         }
4452       }
4453 
4454       sym[sym_idx].SetID(nlist_idx);
4455       sym[sym_idx].SetType(type);
4456       if (set_value) {
4457         sym[sym_idx].GetAddressRef().SetSection(symbol_section);
4458         sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
4459         symbols_added.insert(sym[sym_idx].GetAddress().GetFileAddress());
4460       }
4461       sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4462       if (nlist.n_desc & N_WEAK_REF)
4463         sym[sym_idx].SetIsWeak(true);
4464 
4465       if (symbol_byte_size > 0)
4466         sym[sym_idx].SetByteSize(symbol_byte_size);
4467 
4468       if (demangled_is_synthesized)
4469         sym[sym_idx].SetDemangledNameIsSynthesized(true);
4470 
4471       ++sym_idx;
4472       return true;
4473     };
4474 
4475     // First parse all the nlists but don't process them yet. See the next
4476     // comment for an explanation why.
4477     std::vector<struct nlist_64> nlists;
4478     nlists.reserve(symtab_load_command.nsyms);
4479     for (; nlist_idx < symtab_load_command.nsyms; ++nlist_idx) {
4480       if (auto nlist =
4481               ParseNList(nlist_data, nlist_data_offset, nlist_byte_size))
4482         nlists.push_back(*nlist);
4483       else
4484         break;
4485     }
4486 
4487     // Now parse all the debug symbols. This is needed to merge non-debug
4488     // symbols in the next step. Non-debug symbols are always coalesced into
4489     // the debug symbol. Doing this in one step would mean that some symbols
4490     // won't be merged.
4491     nlist_idx = 0;
4492     for (auto &nlist : nlists) {
4493       if (!ParseSymbolLambda(nlist, nlist_idx++, DebugSymbols))
4494         break;
4495     }
4496 
4497     // Finally parse all the non debug symbols.
4498     nlist_idx = 0;
4499     for (auto &nlist : nlists) {
4500       if (!ParseSymbolLambda(nlist, nlist_idx++, NonDebugSymbols))
4501         break;
4502     }
4503 
4504     for (const auto &pos : reexport_shlib_needs_fixup) {
4505       const auto undef_pos = undefined_name_to_desc.find(pos.second);
4506       if (undef_pos != undefined_name_to_desc.end()) {
4507         const uint8_t dylib_ordinal =
4508             llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
4509         if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize())
4510           sym[pos.first].SetReExportedSymbolSharedLibrary(
4511               dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
4512       }
4513     }
4514   }
4515 
4516   // Count how many trie symbols we'll add to the symbol table
4517   int trie_symbol_table_augment_count = 0;
4518   for (auto &e : external_sym_trie_entries) {
4519     if (symbols_added.find(e.entry.address) == symbols_added.end())
4520       trie_symbol_table_augment_count++;
4521   }
4522 
4523   if (num_syms < sym_idx + trie_symbol_table_augment_count) {
4524     num_syms = sym_idx + trie_symbol_table_augment_count;
4525     sym = symtab->Resize(num_syms);
4526   }
4527   uint32_t synthetic_sym_id = symtab_load_command.nsyms;
4528 
4529   // Add symbols from the trie to the symbol table.
4530   for (auto &e : external_sym_trie_entries) {
4531     if (symbols_added.find(e.entry.address) != symbols_added.end())
4532       continue;
4533 
4534     // Find the section that this trie address is in, use that to annotate
4535     // symbol type as we add the trie address and name to the symbol table.
4536     Address symbol_addr;
4537     if (module_sp->ResolveFileAddress(e.entry.address, symbol_addr)) {
4538       SectionSP symbol_section(symbol_addr.GetSection());
4539       if (symbol_section) {
4540         sym[sym_idx].SetID(synthetic_sym_id++);
4541         sym[sym_idx].GetMangled().SetMangledName(e.entry.name);
4542         switch (symbol_section->GetType()) {
4543         case eSectionTypeCode:
4544           sym[sym_idx].SetType(eSymbolTypeCode);
4545           break;
4546         case eSectionTypeOther:
4547         case eSectionTypeData:
4548         case eSectionTypeZeroFill:
4549           sym[sym_idx].SetType(eSymbolTypeData);
4550           break;
4551         default:
4552           break;
4553         }
4554         sym[sym_idx].SetIsSynthetic(false);
4555         sym[sym_idx].SetExternal(true);
4556         sym[sym_idx].GetAddressRef() = symbol_addr;
4557         symbols_added.insert(symbol_addr.GetFileAddress());
4558         if (e.entry.flags & TRIE_SYMBOL_IS_THUMB)
4559           sym[sym_idx].SetFlags(MACHO_NLIST_ARM_SYMBOL_IS_THUMB);
4560         ++sym_idx;
4561       }
4562     }
4563   }
4564 
4565   if (function_starts_count > 0) {
4566     uint32_t num_synthetic_function_symbols = 0;
4567     for (i = 0; i < function_starts_count; ++i) {
4568       if (symbols_added.find(function_starts.GetEntryRef(i).addr) ==
4569           symbols_added.end())
4570         ++num_synthetic_function_symbols;
4571     }
4572 
4573     if (num_synthetic_function_symbols > 0) {
4574       if (num_syms < sym_idx + num_synthetic_function_symbols) {
4575         num_syms = sym_idx + num_synthetic_function_symbols;
4576         sym = symtab->Resize(num_syms);
4577       }
4578       for (i = 0; i < function_starts_count; ++i) {
4579         const FunctionStarts::Entry *func_start_entry =
4580             function_starts.GetEntryAtIndex(i);
4581         if (symbols_added.find(func_start_entry->addr) == symbols_added.end()) {
4582           addr_t symbol_file_addr = func_start_entry->addr;
4583           uint32_t symbol_flags = 0;
4584           if (func_start_entry->data)
4585             symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB;
4586           Address symbol_addr;
4587           if (module_sp->ResolveFileAddress(symbol_file_addr, symbol_addr)) {
4588             SectionSP symbol_section(symbol_addr.GetSection());
4589             uint32_t symbol_byte_size = 0;
4590             if (symbol_section) {
4591               const addr_t section_file_addr = symbol_section->GetFileAddress();
4592               const FunctionStarts::Entry *next_func_start_entry =
4593                   function_starts.FindNextEntry(func_start_entry);
4594               const addr_t section_end_file_addr =
4595                   section_file_addr + symbol_section->GetByteSize();
4596               if (next_func_start_entry) {
4597                 addr_t next_symbol_file_addr = next_func_start_entry->addr;
4598                 if (is_arm)
4599                   next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4600                 symbol_byte_size = std::min<lldb::addr_t>(
4601                     next_symbol_file_addr - symbol_file_addr,
4602                     section_end_file_addr - symbol_file_addr);
4603               } else {
4604                 symbol_byte_size = section_end_file_addr - symbol_file_addr;
4605               }
4606               sym[sym_idx].SetID(synthetic_sym_id++);
4607               sym[sym_idx].GetMangled().SetDemangledName(
4608                   GetNextSyntheticSymbolName());
4609               sym[sym_idx].SetType(eSymbolTypeCode);
4610               sym[sym_idx].SetIsSynthetic(true);
4611               sym[sym_idx].GetAddressRef() = symbol_addr;
4612               symbols_added.insert(symbol_addr.GetFileAddress());
4613               if (symbol_flags)
4614                 sym[sym_idx].SetFlags(symbol_flags);
4615               if (symbol_byte_size)
4616                 sym[sym_idx].SetByteSize(symbol_byte_size);
4617               ++sym_idx;
4618             }
4619           }
4620         }
4621       }
4622     }
4623   }
4624 
4625   // Trim our symbols down to just what we ended up with after removing any
4626   // symbols.
4627   if (sym_idx < num_syms) {
4628     num_syms = sym_idx;
4629     sym = symtab->Resize(num_syms);
4630   }
4631 
4632   // Now synthesize indirect symbols
4633   if (m_dysymtab.nindirectsyms != 0) {
4634     if (indirect_symbol_index_data.GetByteSize()) {
4635       NListIndexToSymbolIndexMap::const_iterator end_index_pos =
4636           m_nlist_idx_to_sym_idx.end();
4637 
4638       for (uint32_t sect_idx = 1; sect_idx < m_mach_sections.size();
4639            ++sect_idx) {
4640         if ((m_mach_sections[sect_idx].flags & SECTION_TYPE) ==
4641             S_SYMBOL_STUBS) {
4642           uint32_t symbol_stub_byte_size = m_mach_sections[sect_idx].reserved2;
4643           if (symbol_stub_byte_size == 0)
4644             continue;
4645 
4646           const uint32_t num_symbol_stubs =
4647               m_mach_sections[sect_idx].size / symbol_stub_byte_size;
4648 
4649           if (num_symbol_stubs == 0)
4650             continue;
4651 
4652           const uint32_t symbol_stub_index_offset =
4653               m_mach_sections[sect_idx].reserved1;
4654           for (uint32_t stub_idx = 0; stub_idx < num_symbol_stubs; ++stub_idx) {
4655             const uint32_t symbol_stub_index =
4656                 symbol_stub_index_offset + stub_idx;
4657             const lldb::addr_t symbol_stub_addr =
4658                 m_mach_sections[sect_idx].addr +
4659                 (stub_idx * symbol_stub_byte_size);
4660             lldb::offset_t symbol_stub_offset = symbol_stub_index * 4;
4661             if (indirect_symbol_index_data.ValidOffsetForDataOfSize(
4662                     symbol_stub_offset, 4)) {
4663               const uint32_t stub_sym_id =
4664                   indirect_symbol_index_data.GetU32(&symbol_stub_offset);
4665               if (stub_sym_id & (INDIRECT_SYMBOL_ABS | INDIRECT_SYMBOL_LOCAL))
4666                 continue;
4667 
4668               NListIndexToSymbolIndexMap::const_iterator index_pos =
4669                   m_nlist_idx_to_sym_idx.find(stub_sym_id);
4670               Symbol *stub_symbol = nullptr;
4671               if (index_pos != end_index_pos) {
4672                 // We have a remapping from the original nlist index to a
4673                 // current symbol index, so just look this up by index
4674                 stub_symbol = symtab->SymbolAtIndex(index_pos->second);
4675               } else {
4676                 // We need to lookup a symbol using the original nlist symbol
4677                 // index since this index is coming from the S_SYMBOL_STUBS
4678                 stub_symbol = symtab->FindSymbolByID(stub_sym_id);
4679               }
4680 
4681               if (stub_symbol) {
4682                 Address so_addr(symbol_stub_addr, section_list);
4683 
4684                 if (stub_symbol->GetType() == eSymbolTypeUndefined) {
4685                   // Change the external symbol into a trampoline that makes
4686                   // sense These symbols were N_UNDF N_EXT, and are useless
4687                   // to us, so we can re-use them so we don't have to make up
4688                   // a synthetic symbol for no good reason.
4689                   if (resolver_addresses.find(symbol_stub_addr) ==
4690                       resolver_addresses.end())
4691                     stub_symbol->SetType(eSymbolTypeTrampoline);
4692                   else
4693                     stub_symbol->SetType(eSymbolTypeResolver);
4694                   stub_symbol->SetExternal(false);
4695                   stub_symbol->GetAddressRef() = so_addr;
4696                   stub_symbol->SetByteSize(symbol_stub_byte_size);
4697                 } else {
4698                   // Make a synthetic symbol to describe the trampoline stub
4699                   Mangled stub_symbol_mangled_name(stub_symbol->GetMangled());
4700                   if (sym_idx >= num_syms) {
4701                     sym = symtab->Resize(++num_syms);
4702                     stub_symbol = nullptr; // this pointer no longer valid
4703                   }
4704                   sym[sym_idx].SetID(synthetic_sym_id++);
4705                   sym[sym_idx].GetMangled() = stub_symbol_mangled_name;
4706                   if (resolver_addresses.find(symbol_stub_addr) ==
4707                       resolver_addresses.end())
4708                     sym[sym_idx].SetType(eSymbolTypeTrampoline);
4709                   else
4710                     sym[sym_idx].SetType(eSymbolTypeResolver);
4711                   sym[sym_idx].SetIsSynthetic(true);
4712                   sym[sym_idx].GetAddressRef() = so_addr;
4713                   symbols_added.insert(so_addr.GetFileAddress());
4714                   sym[sym_idx].SetByteSize(symbol_stub_byte_size);
4715                   ++sym_idx;
4716                 }
4717               } else {
4718                 if (log)
4719                   log->Warning("symbol stub referencing symbol table symbol "
4720                                "%u that isn't in our minimal symbol table, "
4721                                "fix this!!!",
4722                                stub_sym_id);
4723               }
4724             }
4725           }
4726         }
4727       }
4728     }
4729   }
4730 
4731   if (!reexport_trie_entries.empty()) {
4732     for (const auto &e : reexport_trie_entries) {
4733       if (e.entry.import_name) {
4734         // Only add indirect symbols from the Trie entries if we didn't have
4735         // a N_INDR nlist entry for this already
4736         if (indirect_symbol_names.find(e.entry.name) ==
4737             indirect_symbol_names.end()) {
4738           // Make a synthetic symbol to describe re-exported symbol.
4739           if (sym_idx >= num_syms)
4740             sym = symtab->Resize(++num_syms);
4741           sym[sym_idx].SetID(synthetic_sym_id++);
4742           sym[sym_idx].GetMangled() = Mangled(e.entry.name);
4743           sym[sym_idx].SetType(eSymbolTypeReExported);
4744           sym[sym_idx].SetIsSynthetic(true);
4745           sym[sym_idx].SetReExportedSymbolName(e.entry.import_name);
4746           if (e.entry.other > 0 && e.entry.other <= dylib_files.GetSize()) {
4747             sym[sym_idx].SetReExportedSymbolSharedLibrary(
4748                 dylib_files.GetFileSpecAtIndex(e.entry.other - 1));
4749           }
4750           ++sym_idx;
4751         }
4752       }
4753     }
4754   }
4755 
4756   //        StreamFile s(stdout, false);
4757   //        s.Printf ("Symbol table before CalculateSymbolSizes():\n");
4758   //        symtab->Dump(&s, NULL, eSortOrderNone);
4759   // Set symbol byte sizes correctly since mach-o nlist entries don't have
4760   // sizes
4761   symtab->CalculateSymbolSizes();
4762 
4763   //        s.Printf ("Symbol table after CalculateSymbolSizes():\n");
4764   //        symtab->Dump(&s, NULL, eSortOrderNone);
4765 
4766   return symtab->GetNumSymbols();
4767 }
4768 
4769 void ObjectFileMachO::Dump(Stream *s) {
4770   ModuleSP module_sp(GetModule());
4771   if (module_sp) {
4772     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
4773     s->Printf("%p: ", static_cast<void *>(this));
4774     s->Indent();
4775     if (m_header.magic == MH_MAGIC_64 || m_header.magic == MH_CIGAM_64)
4776       s->PutCString("ObjectFileMachO64");
4777     else
4778       s->PutCString("ObjectFileMachO32");
4779 
4780     *s << ", file = '" << m_file;
4781     ModuleSpecList all_specs;
4782     ModuleSpec base_spec;
4783     GetAllArchSpecs(m_header, m_data, MachHeaderSizeFromMagic(m_header.magic),
4784                     base_spec, all_specs);
4785     for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
4786       *s << "', triple";
4787       if (e)
4788         s->Printf("[%d]", i);
4789       *s << " = ";
4790       *s << all_specs.GetModuleSpecRefAtIndex(i)
4791                 .GetArchitecture()
4792                 .GetTriple()
4793                 .getTriple();
4794     }
4795     *s << "\n";
4796     SectionList *sections = GetSectionList();
4797     if (sections)
4798       sections->Dump(s, nullptr, true, UINT32_MAX);
4799 
4800     if (m_symtab_up)
4801       m_symtab_up->Dump(s, nullptr, eSortOrderNone);
4802   }
4803 }
4804 
4805 UUID ObjectFileMachO::GetUUID(const llvm::MachO::mach_header &header,
4806                               const lldb_private::DataExtractor &data,
4807                               lldb::offset_t lc_offset) {
4808   uint32_t i;
4809   struct uuid_command load_cmd;
4810 
4811   lldb::offset_t offset = lc_offset;
4812   for (i = 0; i < header.ncmds; ++i) {
4813     const lldb::offset_t cmd_offset = offset;
4814     if (data.GetU32(&offset, &load_cmd, 2) == nullptr)
4815       break;
4816 
4817     if (load_cmd.cmd == LC_UUID) {
4818       const uint8_t *uuid_bytes = data.PeekData(offset, 16);
4819 
4820       if (uuid_bytes) {
4821         // OpenCL on Mac OS X uses the same UUID for each of its object files.
4822         // We pretend these object files have no UUID to prevent crashing.
4823 
4824         const uint8_t opencl_uuid[] = {0x8c, 0x8e, 0xb3, 0x9b, 0x3b, 0xa8,
4825                                        0x4b, 0x16, 0xb6, 0xa4, 0x27, 0x63,
4826                                        0xbb, 0x14, 0xf0, 0x0d};
4827 
4828         if (!memcmp(uuid_bytes, opencl_uuid, 16))
4829           return UUID();
4830 
4831         return UUID::fromOptionalData(uuid_bytes, 16);
4832       }
4833       return UUID();
4834     }
4835     offset = cmd_offset + load_cmd.cmdsize;
4836   }
4837   return UUID();
4838 }
4839 
4840 static llvm::StringRef GetOSName(uint32_t cmd) {
4841   switch (cmd) {
4842   case llvm::MachO::LC_VERSION_MIN_IPHONEOS:
4843     return llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4844   case llvm::MachO::LC_VERSION_MIN_MACOSX:
4845     return llvm::Triple::getOSTypeName(llvm::Triple::MacOSX);
4846   case llvm::MachO::LC_VERSION_MIN_TVOS:
4847     return llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4848   case llvm::MachO::LC_VERSION_MIN_WATCHOS:
4849     return llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4850   default:
4851     llvm_unreachable("unexpected LC_VERSION load command");
4852   }
4853 }
4854 
4855 namespace {
4856 struct OSEnv {
4857   llvm::StringRef os_type;
4858   llvm::StringRef environment;
4859   OSEnv(uint32_t cmd) {
4860     switch (cmd) {
4861     case llvm::MachO::PLATFORM_MACOS:
4862       os_type = llvm::Triple::getOSTypeName(llvm::Triple::MacOSX);
4863       return;
4864     case llvm::MachO::PLATFORM_IOS:
4865       os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4866       return;
4867     case llvm::MachO::PLATFORM_TVOS:
4868       os_type = llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4869       return;
4870     case llvm::MachO::PLATFORM_WATCHOS:
4871       os_type = llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4872       return;
4873       // NEED_BRIDGEOS_TRIPLE      case llvm::MachO::PLATFORM_BRIDGEOS:
4874       // NEED_BRIDGEOS_TRIPLE        os_type =
4875       // llvm::Triple::getOSTypeName(llvm::Triple::BridgeOS);
4876       // NEED_BRIDGEOS_TRIPLE        return;
4877     case llvm::MachO::PLATFORM_MACCATALYST:
4878       os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4879       environment = llvm::Triple::getEnvironmentTypeName(llvm::Triple::MacABI);
4880       return;
4881     case llvm::MachO::PLATFORM_IOSSIMULATOR:
4882       os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4883       environment =
4884           llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4885       return;
4886     case llvm::MachO::PLATFORM_TVOSSIMULATOR:
4887       os_type = llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4888       environment =
4889           llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4890       return;
4891     case llvm::MachO::PLATFORM_WATCHOSSIMULATOR:
4892       os_type = llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4893       environment =
4894           llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4895       return;
4896     default: {
4897       Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS |
4898                                                       LIBLLDB_LOG_PROCESS));
4899       LLDB_LOGF(log, "unsupported platform in LC_BUILD_VERSION");
4900     }
4901     }
4902   }
4903 };
4904 
4905 struct MinOS {
4906   uint32_t major_version, minor_version, patch_version;
4907   MinOS(uint32_t version)
4908       : major_version(version >> 16), minor_version((version >> 8) & 0xffu),
4909         patch_version(version & 0xffu) {}
4910 };
4911 } // namespace
4912 
4913 void ObjectFileMachO::GetAllArchSpecs(const llvm::MachO::mach_header &header,
4914                                       const lldb_private::DataExtractor &data,
4915                                       lldb::offset_t lc_offset,
4916                                       ModuleSpec &base_spec,
4917                                       lldb_private::ModuleSpecList &all_specs) {
4918   auto &base_arch = base_spec.GetArchitecture();
4919   base_arch.SetArchitecture(eArchTypeMachO, header.cputype, header.cpusubtype);
4920   if (!base_arch.IsValid())
4921     return;
4922 
4923   bool found_any = false;
4924   auto add_triple = [&](const llvm::Triple &triple) {
4925     auto spec = base_spec;
4926     spec.GetArchitecture().GetTriple() = triple;
4927     if (spec.GetArchitecture().IsValid()) {
4928       spec.GetUUID() = ObjectFileMachO::GetUUID(header, data, lc_offset);
4929       all_specs.Append(spec);
4930       found_any = true;
4931     }
4932   };
4933 
4934   // Set OS to an unspecified unknown or a "*" so it can match any OS
4935   llvm::Triple base_triple = base_arch.GetTriple();
4936   base_triple.setOS(llvm::Triple::UnknownOS);
4937   base_triple.setOSName(llvm::StringRef());
4938 
4939   if (header.filetype == MH_PRELOAD) {
4940     if (header.cputype == CPU_TYPE_ARM) {
4941       // If this is a 32-bit arm binary, and it's a standalone binary, force
4942       // the Vendor to Apple so we don't accidentally pick up the generic
4943       // armv7 ABI at runtime.  Apple's armv7 ABI always uses r7 for the
4944       // frame pointer register; most other armv7 ABIs use a combination of
4945       // r7 and r11.
4946       base_triple.setVendor(llvm::Triple::Apple);
4947     } else {
4948       // Set vendor to an unspecified unknown or a "*" so it can match any
4949       // vendor This is required for correct behavior of EFI debugging on
4950       // x86_64
4951       base_triple.setVendor(llvm::Triple::UnknownVendor);
4952       base_triple.setVendorName(llvm::StringRef());
4953     }
4954     return add_triple(base_triple);
4955   }
4956 
4957   struct load_command load_cmd;
4958 
4959   // See if there is an LC_VERSION_MIN_* load command that can give
4960   // us the OS type.
4961   lldb::offset_t offset = lc_offset;
4962   for (uint32_t i = 0; i < header.ncmds; ++i) {
4963     const lldb::offset_t cmd_offset = offset;
4964     if (data.GetU32(&offset, &load_cmd, 2) == NULL)
4965       break;
4966 
4967     struct version_min_command version_min;
4968     switch (load_cmd.cmd) {
4969     case llvm::MachO::LC_VERSION_MIN_IPHONEOS:
4970     case llvm::MachO::LC_VERSION_MIN_MACOSX:
4971     case llvm::MachO::LC_VERSION_MIN_TVOS:
4972     case llvm::MachO::LC_VERSION_MIN_WATCHOS: {
4973       if (load_cmd.cmdsize != sizeof(version_min))
4974         break;
4975       if (data.ExtractBytes(cmd_offset, sizeof(version_min),
4976                             data.GetByteOrder(), &version_min) == 0)
4977         break;
4978       MinOS min_os(version_min.version);
4979       llvm::SmallString<32> os_name;
4980       llvm::raw_svector_ostream os(os_name);
4981       os << GetOSName(load_cmd.cmd) << min_os.major_version << '.'
4982          << min_os.minor_version << '.' << min_os.patch_version;
4983 
4984       auto triple = base_triple;
4985       triple.setOSName(os.str());
4986       os_name.clear();
4987       add_triple(triple);
4988       break;
4989     }
4990     default:
4991       break;
4992     }
4993 
4994     offset = cmd_offset + load_cmd.cmdsize;
4995   }
4996 
4997   // See if there are LC_BUILD_VERSION load commands that can give
4998   // us the OS type.
4999   offset = lc_offset;
5000   for (uint32_t i = 0; i < header.ncmds; ++i) {
5001     const lldb::offset_t cmd_offset = offset;
5002     if (data.GetU32(&offset, &load_cmd, 2) == NULL)
5003       break;
5004 
5005     do {
5006       if (load_cmd.cmd == llvm::MachO::LC_BUILD_VERSION) {
5007         struct build_version_command build_version;
5008         if (load_cmd.cmdsize < sizeof(build_version)) {
5009           // Malformed load command.
5010           break;
5011         }
5012         if (data.ExtractBytes(cmd_offset, sizeof(build_version),
5013                               data.GetByteOrder(), &build_version) == 0)
5014           break;
5015         MinOS min_os(build_version.minos);
5016         OSEnv os_env(build_version.platform);
5017         llvm::SmallString<16> os_name;
5018         llvm::raw_svector_ostream os(os_name);
5019         os << os_env.os_type << min_os.major_version << '.'
5020            << min_os.minor_version << '.' << min_os.patch_version;
5021         auto triple = base_triple;
5022         triple.setOSName(os.str());
5023         os_name.clear();
5024         if (!os_env.environment.empty())
5025           triple.setEnvironmentName(os_env.environment);
5026         add_triple(triple);
5027       }
5028     } while (0);
5029     offset = cmd_offset + load_cmd.cmdsize;
5030   }
5031 
5032   if (!found_any) {
5033     if (header.filetype == MH_KEXT_BUNDLE) {
5034       base_triple.setVendor(llvm::Triple::Apple);
5035       add_triple(base_triple);
5036     } else {
5037       // We didn't find a LC_VERSION_MIN load command and this isn't a KEXT
5038       // so lets not say our Vendor is Apple, leave it as an unspecified
5039       // unknown.
5040       base_triple.setVendor(llvm::Triple::UnknownVendor);
5041       base_triple.setVendorName(llvm::StringRef());
5042       add_triple(base_triple);
5043     }
5044   }
5045 }
5046 
5047 ArchSpec ObjectFileMachO::GetArchitecture(
5048     ModuleSP module_sp, const llvm::MachO::mach_header &header,
5049     const lldb_private::DataExtractor &data, lldb::offset_t lc_offset) {
5050   ModuleSpecList all_specs;
5051   ModuleSpec base_spec;
5052   GetAllArchSpecs(header, data, MachHeaderSizeFromMagic(header.magic),
5053                   base_spec, all_specs);
5054 
5055   // If the object file offers multiple alternative load commands,
5056   // pick the one that matches the module.
5057   if (module_sp) {
5058     const ArchSpec &module_arch = module_sp->GetArchitecture();
5059     for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
5060       ArchSpec mach_arch =
5061           all_specs.GetModuleSpecRefAtIndex(i).GetArchitecture();
5062       if (module_arch.IsCompatibleMatch(mach_arch))
5063         return mach_arch;
5064     }
5065   }
5066 
5067   // Return the first arch we found.
5068   if (all_specs.GetSize() == 0)
5069     return {};
5070   return all_specs.GetModuleSpecRefAtIndex(0).GetArchitecture();
5071 }
5072 
5073 UUID ObjectFileMachO::GetUUID() {
5074   ModuleSP module_sp(GetModule());
5075   if (module_sp) {
5076     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5077     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5078     return GetUUID(m_header, m_data, offset);
5079   }
5080   return UUID();
5081 }
5082 
5083 uint32_t ObjectFileMachO::GetDependentModules(FileSpecList &files) {
5084   uint32_t count = 0;
5085   ModuleSP module_sp(GetModule());
5086   if (module_sp) {
5087     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5088     struct load_command load_cmd;
5089     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5090     std::vector<std::string> rpath_paths;
5091     std::vector<std::string> rpath_relative_paths;
5092     std::vector<std::string> at_exec_relative_paths;
5093     uint32_t i;
5094     for (i = 0; i < m_header.ncmds; ++i) {
5095       const uint32_t cmd_offset = offset;
5096       if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5097         break;
5098 
5099       switch (load_cmd.cmd) {
5100       case LC_RPATH:
5101       case LC_LOAD_DYLIB:
5102       case LC_LOAD_WEAK_DYLIB:
5103       case LC_REEXPORT_DYLIB:
5104       case LC_LOAD_DYLINKER:
5105       case LC_LOADFVMLIB:
5106       case LC_LOAD_UPWARD_DYLIB: {
5107         uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
5108         const char *path = m_data.PeekCStr(name_offset);
5109         if (path) {
5110           if (load_cmd.cmd == LC_RPATH)
5111             rpath_paths.push_back(path);
5112           else {
5113             if (path[0] == '@') {
5114               if (strncmp(path, "@rpath", strlen("@rpath")) == 0)
5115                 rpath_relative_paths.push_back(path + strlen("@rpath"));
5116               else if (strncmp(path, "@executable_path",
5117                                strlen("@executable_path")) == 0)
5118                 at_exec_relative_paths.push_back(path +
5119                                                  strlen("@executable_path"));
5120             } else {
5121               FileSpec file_spec(path);
5122               if (files.AppendIfUnique(file_spec))
5123                 count++;
5124             }
5125           }
5126         }
5127       } break;
5128 
5129       default:
5130         break;
5131       }
5132       offset = cmd_offset + load_cmd.cmdsize;
5133     }
5134 
5135     FileSpec this_file_spec(m_file);
5136     FileSystem::Instance().Resolve(this_file_spec);
5137 
5138     if (!rpath_paths.empty()) {
5139       // Fixup all LC_RPATH values to be absolute paths
5140       std::string loader_path("@loader_path");
5141       std::string executable_path("@executable_path");
5142       for (auto &rpath : rpath_paths) {
5143         if (llvm::StringRef(rpath).startswith(loader_path)) {
5144           rpath.erase(0, loader_path.size());
5145           rpath.insert(0, this_file_spec.GetDirectory().GetCString());
5146         } else if (llvm::StringRef(rpath).startswith(executable_path)) {
5147           rpath.erase(0, executable_path.size());
5148           rpath.insert(0, this_file_spec.GetDirectory().GetCString());
5149         }
5150       }
5151 
5152       for (const auto &rpath_relative_path : rpath_relative_paths) {
5153         for (const auto &rpath : rpath_paths) {
5154           std::string path = rpath;
5155           path += rpath_relative_path;
5156           // It is OK to resolve this path because we must find a file on disk
5157           // for us to accept it anyway if it is rpath relative.
5158           FileSpec file_spec(path);
5159           FileSystem::Instance().Resolve(file_spec);
5160           if (FileSystem::Instance().Exists(file_spec) &&
5161               files.AppendIfUnique(file_spec)) {
5162             count++;
5163             break;
5164           }
5165         }
5166       }
5167     }
5168 
5169     // We may have @executable_paths but no RPATHS.  Figure those out here.
5170     // Only do this if this object file is the executable.  We have no way to
5171     // get back to the actual executable otherwise, so we won't get the right
5172     // path.
5173     if (!at_exec_relative_paths.empty() && CalculateType() == eTypeExecutable) {
5174       FileSpec exec_dir = this_file_spec.CopyByRemovingLastPathComponent();
5175       for (const auto &at_exec_relative_path : at_exec_relative_paths) {
5176         FileSpec file_spec =
5177             exec_dir.CopyByAppendingPathComponent(at_exec_relative_path);
5178         if (FileSystem::Instance().Exists(file_spec) &&
5179             files.AppendIfUnique(file_spec))
5180           count++;
5181       }
5182     }
5183   }
5184   return count;
5185 }
5186 
5187 lldb_private::Address ObjectFileMachO::GetEntryPointAddress() {
5188   // If the object file is not an executable it can't hold the entry point.
5189   // m_entry_point_address is initialized to an invalid address, so we can just
5190   // return that. If m_entry_point_address is valid it means we've found it
5191   // already, so return the cached value.
5192 
5193   if ((!IsExecutable() && !IsDynamicLoader()) ||
5194       m_entry_point_address.IsValid()) {
5195     return m_entry_point_address;
5196   }
5197 
5198   // Otherwise, look for the UnixThread or Thread command.  The data for the
5199   // Thread command is given in /usr/include/mach-o.h, but it is basically:
5200   //
5201   //  uint32_t flavor  - this is the flavor argument you would pass to
5202   //  thread_get_state
5203   //  uint32_t count   - this is the count of longs in the thread state data
5204   //  struct XXX_thread_state state - this is the structure from
5205   //  <machine/thread_status.h> corresponding to the flavor.
5206   //  <repeat this trio>
5207   //
5208   // So we just keep reading the various register flavors till we find the GPR
5209   // one, then read the PC out of there.
5210   // FIXME: We will need to have a "RegisterContext data provider" class at some
5211   // point that can get all the registers
5212   // out of data in this form & attach them to a given thread.  That should
5213   // underlie the MacOS X User process plugin, and we'll also need it for the
5214   // MacOS X Core File process plugin.  When we have that we can also use it
5215   // here.
5216   //
5217   // For now we hard-code the offsets and flavors we need:
5218   //
5219   //
5220 
5221   ModuleSP module_sp(GetModule());
5222   if (module_sp) {
5223     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5224     struct load_command load_cmd;
5225     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5226     uint32_t i;
5227     lldb::addr_t start_address = LLDB_INVALID_ADDRESS;
5228     bool done = false;
5229 
5230     for (i = 0; i < m_header.ncmds; ++i) {
5231       const lldb::offset_t cmd_offset = offset;
5232       if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5233         break;
5234 
5235       switch (load_cmd.cmd) {
5236       case LC_UNIXTHREAD:
5237       case LC_THREAD: {
5238         while (offset < cmd_offset + load_cmd.cmdsize) {
5239           uint32_t flavor = m_data.GetU32(&offset);
5240           uint32_t count = m_data.GetU32(&offset);
5241           if (count == 0) {
5242             // We've gotten off somehow, log and exit;
5243             return m_entry_point_address;
5244           }
5245 
5246           switch (m_header.cputype) {
5247           case llvm::MachO::CPU_TYPE_ARM:
5248             if (flavor == 1 ||
5249                 flavor == 9) // ARM_THREAD_STATE/ARM_THREAD_STATE32
5250                              // from mach/arm/thread_status.h
5251             {
5252               offset += 60; // This is the offset of pc in the GPR thread state
5253                             // data structure.
5254               start_address = m_data.GetU32(&offset);
5255               done = true;
5256             }
5257             break;
5258           case llvm::MachO::CPU_TYPE_ARM64:
5259           case llvm::MachO::CPU_TYPE_ARM64_32:
5260             if (flavor == 6) // ARM_THREAD_STATE64 from mach/arm/thread_status.h
5261             {
5262               offset += 256; // This is the offset of pc in the GPR thread state
5263                              // data structure.
5264               start_address = m_data.GetU64(&offset);
5265               done = true;
5266             }
5267             break;
5268           case llvm::MachO::CPU_TYPE_I386:
5269             if (flavor ==
5270                 1) // x86_THREAD_STATE32 from mach/i386/thread_status.h
5271             {
5272               offset += 40; // This is the offset of eip in the GPR thread state
5273                             // data structure.
5274               start_address = m_data.GetU32(&offset);
5275               done = true;
5276             }
5277             break;
5278           case llvm::MachO::CPU_TYPE_X86_64:
5279             if (flavor ==
5280                 4) // x86_THREAD_STATE64 from mach/i386/thread_status.h
5281             {
5282               offset += 16 * 8; // This is the offset of rip in the GPR thread
5283                                 // state data structure.
5284               start_address = m_data.GetU64(&offset);
5285               done = true;
5286             }
5287             break;
5288           default:
5289             return m_entry_point_address;
5290           }
5291           // Haven't found the GPR flavor yet, skip over the data for this
5292           // flavor:
5293           if (done)
5294             break;
5295           offset += count * 4;
5296         }
5297       } break;
5298       case LC_MAIN: {
5299         ConstString text_segment_name("__TEXT");
5300         uint64_t entryoffset = m_data.GetU64(&offset);
5301         SectionSP text_segment_sp =
5302             GetSectionList()->FindSectionByName(text_segment_name);
5303         if (text_segment_sp) {
5304           done = true;
5305           start_address = text_segment_sp->GetFileAddress() + entryoffset;
5306         }
5307       } break;
5308 
5309       default:
5310         break;
5311       }
5312       if (done)
5313         break;
5314 
5315       // Go to the next load command:
5316       offset = cmd_offset + load_cmd.cmdsize;
5317     }
5318 
5319     if (start_address == LLDB_INVALID_ADDRESS && IsDynamicLoader()) {
5320       if (GetSymtab()) {
5321         Symbol *dyld_start_sym = GetSymtab()->FindFirstSymbolWithNameAndType(
5322             ConstString("_dyld_start"), SymbolType::eSymbolTypeCode,
5323             Symtab::eDebugAny, Symtab::eVisibilityAny);
5324         if (dyld_start_sym && dyld_start_sym->GetAddress().IsValid()) {
5325           start_address = dyld_start_sym->GetAddress().GetFileAddress();
5326         }
5327       }
5328     }
5329 
5330     if (start_address != LLDB_INVALID_ADDRESS) {
5331       // We got the start address from the load commands, so now resolve that
5332       // address in the sections of this ObjectFile:
5333       if (!m_entry_point_address.ResolveAddressUsingFileSections(
5334               start_address, GetSectionList())) {
5335         m_entry_point_address.Clear();
5336       }
5337     } else {
5338       // We couldn't read the UnixThread load command - maybe it wasn't there.
5339       // As a fallback look for the "start" symbol in the main executable.
5340 
5341       ModuleSP module_sp(GetModule());
5342 
5343       if (module_sp) {
5344         SymbolContextList contexts;
5345         SymbolContext context;
5346         module_sp->FindSymbolsWithNameAndType(ConstString("start"),
5347                                               eSymbolTypeCode, contexts);
5348         if (contexts.GetSize()) {
5349           if (contexts.GetContextAtIndex(0, context))
5350             m_entry_point_address = context.symbol->GetAddress();
5351         }
5352       }
5353     }
5354   }
5355 
5356   return m_entry_point_address;
5357 }
5358 
5359 lldb_private::Address ObjectFileMachO::GetBaseAddress() {
5360   lldb_private::Address header_addr;
5361   SectionList *section_list = GetSectionList();
5362   if (section_list) {
5363     SectionSP text_segment_sp(
5364         section_list->FindSectionByName(GetSegmentNameTEXT()));
5365     if (text_segment_sp) {
5366       header_addr.SetSection(text_segment_sp);
5367       header_addr.SetOffset(0);
5368     }
5369   }
5370   return header_addr;
5371 }
5372 
5373 uint32_t ObjectFileMachO::GetNumThreadContexts() {
5374   ModuleSP module_sp(GetModule());
5375   if (module_sp) {
5376     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5377     if (!m_thread_context_offsets_valid) {
5378       m_thread_context_offsets_valid = true;
5379       lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5380       FileRangeArray::Entry file_range;
5381       thread_command thread_cmd;
5382       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5383         const uint32_t cmd_offset = offset;
5384         if (m_data.GetU32(&offset, &thread_cmd, 2) == nullptr)
5385           break;
5386 
5387         if (thread_cmd.cmd == LC_THREAD) {
5388           file_range.SetRangeBase(offset);
5389           file_range.SetByteSize(thread_cmd.cmdsize - 8);
5390           m_thread_context_offsets.Append(file_range);
5391         }
5392         offset = cmd_offset + thread_cmd.cmdsize;
5393       }
5394     }
5395   }
5396   return m_thread_context_offsets.GetSize();
5397 }
5398 
5399 std::string ObjectFileMachO::GetIdentifierString() {
5400   std::string result;
5401   ModuleSP module_sp(GetModule());
5402   if (module_sp) {
5403     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5404 
5405     // First, look over the load commands for an LC_NOTE load command with
5406     // data_owner string "kern ver str" & use that if found.
5407     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5408     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5409       const uint32_t cmd_offset = offset;
5410       load_command lc;
5411       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5412         break;
5413       if (lc.cmd == LC_NOTE) {
5414         char data_owner[17];
5415         m_data.CopyData(offset, 16, data_owner);
5416         data_owner[16] = '\0';
5417         offset += 16;
5418         uint64_t fileoff = m_data.GetU64_unchecked(&offset);
5419         uint64_t size = m_data.GetU64_unchecked(&offset);
5420 
5421         // "kern ver str" has a uint32_t version and then a nul terminated
5422         // c-string.
5423         if (strcmp("kern ver str", data_owner) == 0) {
5424           offset = fileoff;
5425           uint32_t version;
5426           if (m_data.GetU32(&offset, &version, 1) != nullptr) {
5427             if (version == 1) {
5428               uint32_t strsize = size - sizeof(uint32_t);
5429               char *buf = (char *)malloc(strsize);
5430               if (buf) {
5431                 m_data.CopyData(offset, strsize, buf);
5432                 buf[strsize - 1] = '\0';
5433                 result = buf;
5434                 if (buf)
5435                   free(buf);
5436                 return result;
5437               }
5438             }
5439           }
5440         }
5441       }
5442       offset = cmd_offset + lc.cmdsize;
5443     }
5444 
5445     // Second, make a pass over the load commands looking for an obsolete
5446     // LC_IDENT load command.
5447     offset = MachHeaderSizeFromMagic(m_header.magic);
5448     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5449       const uint32_t cmd_offset = offset;
5450       struct ident_command ident_command;
5451       if (m_data.GetU32(&offset, &ident_command, 2) == nullptr)
5452         break;
5453       if (ident_command.cmd == LC_IDENT && ident_command.cmdsize != 0) {
5454         char *buf = (char *)malloc(ident_command.cmdsize);
5455         if (buf != nullptr && m_data.CopyData(offset, ident_command.cmdsize,
5456                                               buf) == ident_command.cmdsize) {
5457           buf[ident_command.cmdsize - 1] = '\0';
5458           result = buf;
5459         }
5460         if (buf)
5461           free(buf);
5462       }
5463       offset = cmd_offset + ident_command.cmdsize;
5464     }
5465   }
5466   return result;
5467 }
5468 
5469 bool ObjectFileMachO::GetCorefileMainBinaryInfo(addr_t &address, UUID &uuid) {
5470   address = LLDB_INVALID_ADDRESS;
5471   uuid.Clear();
5472   ModuleSP module_sp(GetModule());
5473   if (module_sp) {
5474     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5475     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5476     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5477       const uint32_t cmd_offset = offset;
5478       load_command lc;
5479       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5480         break;
5481       if (lc.cmd == LC_NOTE) {
5482         char data_owner[17];
5483         memset(data_owner, 0, sizeof(data_owner));
5484         m_data.CopyData(offset, 16, data_owner);
5485         offset += 16;
5486         uint64_t fileoff = m_data.GetU64_unchecked(&offset);
5487         uint64_t size = m_data.GetU64_unchecked(&offset);
5488 
5489         // "main bin spec" (main binary specification) data payload is
5490         // formatted:
5491         //    uint32_t version       [currently 1]
5492         //    uint32_t type          [0 == unspecified, 1 == kernel, 2 == user
5493         //    process] uint64_t address       [ UINT64_MAX if address not
5494         //    specified ] uuid_t   uuid          [ all zero's if uuid not
5495         //    specified ] uint32_t log2_pagesize [ process page size in log base
5496         //    2, e.g. 4k pages are 12.  0 for unspecified ]
5497 
5498         if (strcmp("main bin spec", data_owner) == 0 && size >= 32) {
5499           offset = fileoff;
5500           uint32_t version;
5501           if (m_data.GetU32(&offset, &version, 1) != nullptr && version == 1) {
5502             uint32_t type = 0;
5503             uuid_t raw_uuid;
5504             memset(raw_uuid, 0, sizeof(uuid_t));
5505 
5506             if (m_data.GetU32(&offset, &type, 1) &&
5507                 m_data.GetU64(&offset, &address, 1) &&
5508                 m_data.CopyData(offset, sizeof(uuid_t), raw_uuid) != 0) {
5509               uuid = UUID::fromOptionalData(raw_uuid, sizeof(uuid_t));
5510               return true;
5511             }
5512           }
5513         }
5514       }
5515       offset = cmd_offset + lc.cmdsize;
5516     }
5517   }
5518   return false;
5519 }
5520 
5521 lldb::RegisterContextSP
5522 ObjectFileMachO::GetThreadContextAtIndex(uint32_t idx,
5523                                          lldb_private::Thread &thread) {
5524   lldb::RegisterContextSP reg_ctx_sp;
5525 
5526   ModuleSP module_sp(GetModule());
5527   if (module_sp) {
5528     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5529     if (!m_thread_context_offsets_valid)
5530       GetNumThreadContexts();
5531 
5532     const FileRangeArray::Entry *thread_context_file_range =
5533         m_thread_context_offsets.GetEntryAtIndex(idx);
5534     if (thread_context_file_range) {
5535 
5536       DataExtractor data(m_data, thread_context_file_range->GetRangeBase(),
5537                          thread_context_file_range->GetByteSize());
5538 
5539       switch (m_header.cputype) {
5540       case llvm::MachO::CPU_TYPE_ARM64:
5541       case llvm::MachO::CPU_TYPE_ARM64_32:
5542         reg_ctx_sp =
5543             std::make_shared<RegisterContextDarwin_arm64_Mach>(thread, data);
5544         break;
5545 
5546       case llvm::MachO::CPU_TYPE_ARM:
5547         reg_ctx_sp =
5548             std::make_shared<RegisterContextDarwin_arm_Mach>(thread, data);
5549         break;
5550 
5551       case llvm::MachO::CPU_TYPE_I386:
5552         reg_ctx_sp =
5553             std::make_shared<RegisterContextDarwin_i386_Mach>(thread, data);
5554         break;
5555 
5556       case llvm::MachO::CPU_TYPE_X86_64:
5557         reg_ctx_sp =
5558             std::make_shared<RegisterContextDarwin_x86_64_Mach>(thread, data);
5559         break;
5560       }
5561     }
5562   }
5563   return reg_ctx_sp;
5564 }
5565 
5566 ObjectFile::Type ObjectFileMachO::CalculateType() {
5567   switch (m_header.filetype) {
5568   case MH_OBJECT: // 0x1u
5569     if (GetAddressByteSize() == 4) {
5570       // 32 bit kexts are just object files, but they do have a valid
5571       // UUID load command.
5572       if (GetUUID()) {
5573         // this checking for the UUID load command is not enough we could
5574         // eventually look for the symbol named "OSKextGetCurrentIdentifier" as
5575         // this is required of kexts
5576         if (m_strata == eStrataInvalid)
5577           m_strata = eStrataKernel;
5578         return eTypeSharedLibrary;
5579       }
5580     }
5581     return eTypeObjectFile;
5582 
5583   case MH_EXECUTE:
5584     return eTypeExecutable; // 0x2u
5585   case MH_FVMLIB:
5586     return eTypeSharedLibrary; // 0x3u
5587   case MH_CORE:
5588     return eTypeCoreFile; // 0x4u
5589   case MH_PRELOAD:
5590     return eTypeSharedLibrary; // 0x5u
5591   case MH_DYLIB:
5592     return eTypeSharedLibrary; // 0x6u
5593   case MH_DYLINKER:
5594     return eTypeDynamicLinker; // 0x7u
5595   case MH_BUNDLE:
5596     return eTypeSharedLibrary; // 0x8u
5597   case MH_DYLIB_STUB:
5598     return eTypeStubLibrary; // 0x9u
5599   case MH_DSYM:
5600     return eTypeDebugInfo; // 0xAu
5601   case MH_KEXT_BUNDLE:
5602     return eTypeSharedLibrary; // 0xBu
5603   default:
5604     break;
5605   }
5606   return eTypeUnknown;
5607 }
5608 
5609 ObjectFile::Strata ObjectFileMachO::CalculateStrata() {
5610   switch (m_header.filetype) {
5611   case MH_OBJECT: // 0x1u
5612   {
5613     // 32 bit kexts are just object files, but they do have a valid
5614     // UUID load command.
5615     if (GetUUID()) {
5616       // this checking for the UUID load command is not enough we could
5617       // eventually look for the symbol named "OSKextGetCurrentIdentifier" as
5618       // this is required of kexts
5619       if (m_type == eTypeInvalid)
5620         m_type = eTypeSharedLibrary;
5621 
5622       return eStrataKernel;
5623     }
5624   }
5625     return eStrataUnknown;
5626 
5627   case MH_EXECUTE: // 0x2u
5628     // Check for the MH_DYLDLINK bit in the flags
5629     if (m_header.flags & MH_DYLDLINK) {
5630       return eStrataUser;
5631     } else {
5632       SectionList *section_list = GetSectionList();
5633       if (section_list) {
5634         static ConstString g_kld_section_name("__KLD");
5635         if (section_list->FindSectionByName(g_kld_section_name))
5636           return eStrataKernel;
5637       }
5638     }
5639     return eStrataRawImage;
5640 
5641   case MH_FVMLIB:
5642     return eStrataUser; // 0x3u
5643   case MH_CORE:
5644     return eStrataUnknown; // 0x4u
5645   case MH_PRELOAD:
5646     return eStrataRawImage; // 0x5u
5647   case MH_DYLIB:
5648     return eStrataUser; // 0x6u
5649   case MH_DYLINKER:
5650     return eStrataUser; // 0x7u
5651   case MH_BUNDLE:
5652     return eStrataUser; // 0x8u
5653   case MH_DYLIB_STUB:
5654     return eStrataUser; // 0x9u
5655   case MH_DSYM:
5656     return eStrataUnknown; // 0xAu
5657   case MH_KEXT_BUNDLE:
5658     return eStrataKernel; // 0xBu
5659   default:
5660     break;
5661   }
5662   return eStrataUnknown;
5663 }
5664 
5665 llvm::VersionTuple ObjectFileMachO::GetVersion() {
5666   ModuleSP module_sp(GetModule());
5667   if (module_sp) {
5668     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5669     struct dylib_command load_cmd;
5670     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5671     uint32_t version_cmd = 0;
5672     uint64_t version = 0;
5673     uint32_t i;
5674     for (i = 0; i < m_header.ncmds; ++i) {
5675       const lldb::offset_t cmd_offset = offset;
5676       if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5677         break;
5678 
5679       if (load_cmd.cmd == LC_ID_DYLIB) {
5680         if (version_cmd == 0) {
5681           version_cmd = load_cmd.cmd;
5682           if (m_data.GetU32(&offset, &load_cmd.dylib, 4) == nullptr)
5683             break;
5684           version = load_cmd.dylib.current_version;
5685         }
5686         break; // Break for now unless there is another more complete version
5687                // number load command in the future.
5688       }
5689       offset = cmd_offset + load_cmd.cmdsize;
5690     }
5691 
5692     if (version_cmd == LC_ID_DYLIB) {
5693       unsigned major = (version & 0xFFFF0000ull) >> 16;
5694       unsigned minor = (version & 0x0000FF00ull) >> 8;
5695       unsigned subminor = (version & 0x000000FFull);
5696       return llvm::VersionTuple(major, minor, subminor);
5697     }
5698   }
5699   return llvm::VersionTuple();
5700 }
5701 
5702 ArchSpec ObjectFileMachO::GetArchitecture() {
5703   ModuleSP module_sp(GetModule());
5704   ArchSpec arch;
5705   if (module_sp) {
5706     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5707 
5708     return GetArchitecture(module_sp, m_header, m_data,
5709                            MachHeaderSizeFromMagic(m_header.magic));
5710   }
5711   return arch;
5712 }
5713 
5714 void ObjectFileMachO::GetProcessSharedCacheUUID(Process *process,
5715                                                 addr_t &base_addr, UUID &uuid) {
5716   uuid.Clear();
5717   base_addr = LLDB_INVALID_ADDRESS;
5718   if (process && process->GetDynamicLoader()) {
5719     DynamicLoader *dl = process->GetDynamicLoader();
5720     LazyBool using_shared_cache;
5721     LazyBool private_shared_cache;
5722     dl->GetSharedCacheInformation(base_addr, uuid, using_shared_cache,
5723                                   private_shared_cache);
5724   }
5725   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS |
5726                                                   LIBLLDB_LOG_PROCESS));
5727   LLDB_LOGF(
5728       log,
5729       "inferior process shared cache has a UUID of %s, base address 0x%" PRIx64,
5730       uuid.GetAsString().c_str(), base_addr);
5731 }
5732 
5733 // From dyld SPI header dyld_process_info.h
5734 typedef void *dyld_process_info;
5735 struct lldb_copy__dyld_process_cache_info {
5736   uuid_t cacheUUID;          // UUID of cache used by process
5737   uint64_t cacheBaseAddress; // load address of dyld shared cache
5738   bool noCache;              // process is running without a dyld cache
5739   bool privateCache; // process is using a private copy of its dyld cache
5740 };
5741 
5742 // #including mach/mach.h pulls in machine.h & CPU_TYPE_ARM etc conflicts with
5743 // llvm enum definitions llvm::MachO::CPU_TYPE_ARM turning them into compile
5744 // errors. So we need to use the actual underlying types of task_t and
5745 // kern_return_t below.
5746 extern "C" unsigned int /*task_t*/ mach_task_self();
5747 
5748 void ObjectFileMachO::GetLLDBSharedCacheUUID(addr_t &base_addr, UUID &uuid) {
5749   uuid.Clear();
5750   base_addr = LLDB_INVALID_ADDRESS;
5751 
5752 #if defined(__APPLE__) &&                                                      \
5753     (defined(__arm__) || defined(__arm64__) || defined(__aarch64__))
5754   uint8_t *(*dyld_get_all_image_infos)(void);
5755   dyld_get_all_image_infos =
5756       (uint8_t * (*)()) dlsym(RTLD_DEFAULT, "_dyld_get_all_image_infos");
5757   if (dyld_get_all_image_infos) {
5758     uint8_t *dyld_all_image_infos_address = dyld_get_all_image_infos();
5759     if (dyld_all_image_infos_address) {
5760       uint32_t *version = (uint32_t *)
5761           dyld_all_image_infos_address; // version <mach-o/dyld_images.h>
5762       if (*version >= 13) {
5763         uuid_t *sharedCacheUUID_address = 0;
5764         int wordsize = sizeof(uint8_t *);
5765         if (wordsize == 8) {
5766           sharedCacheUUID_address =
5767               (uuid_t *)((uint8_t *)dyld_all_image_infos_address +
5768                          160); // sharedCacheUUID <mach-o/dyld_images.h>
5769           if (*version >= 15)
5770             base_addr =
5771                 *(uint64_t
5772                       *)((uint8_t *)dyld_all_image_infos_address +
5773                          176); // sharedCacheBaseAddress <mach-o/dyld_images.h>
5774         } else {
5775           sharedCacheUUID_address =
5776               (uuid_t *)((uint8_t *)dyld_all_image_infos_address +
5777                          84); // sharedCacheUUID <mach-o/dyld_images.h>
5778           if (*version >= 15) {
5779             base_addr = 0;
5780             base_addr =
5781                 *(uint32_t
5782                       *)((uint8_t *)dyld_all_image_infos_address +
5783                          100); // sharedCacheBaseAddress <mach-o/dyld_images.h>
5784           }
5785         }
5786         uuid = UUID::fromOptionalData(sharedCacheUUID_address, sizeof(uuid_t));
5787       }
5788     }
5789   } else {
5790     // Exists in macOS 10.12 and later, iOS 10.0 and later - dyld SPI
5791     dyld_process_info (*dyld_process_info_create)(
5792         unsigned int /* task_t */ task, uint64_t timestamp,
5793         unsigned int /*kern_return_t*/ *kernelError);
5794     void (*dyld_process_info_get_cache)(void *info, void *cacheInfo);
5795     void (*dyld_process_info_release)(dyld_process_info info);
5796 
5797     dyld_process_info_create = (void *(*)(unsigned int /* task_t */, uint64_t,
5798                                           unsigned int /*kern_return_t*/ *))
5799         dlsym(RTLD_DEFAULT, "_dyld_process_info_create");
5800     dyld_process_info_get_cache = (void (*)(void *, void *))dlsym(
5801         RTLD_DEFAULT, "_dyld_process_info_get_cache");
5802     dyld_process_info_release =
5803         (void (*)(void *))dlsym(RTLD_DEFAULT, "_dyld_process_info_release");
5804 
5805     if (dyld_process_info_create && dyld_process_info_get_cache) {
5806       unsigned int /*kern_return_t */ kern_ret;
5807       dyld_process_info process_info =
5808           dyld_process_info_create(::mach_task_self(), 0, &kern_ret);
5809       if (process_info) {
5810         struct lldb_copy__dyld_process_cache_info sc_info;
5811         memset(&sc_info, 0, sizeof(struct lldb_copy__dyld_process_cache_info));
5812         dyld_process_info_get_cache(process_info, &sc_info);
5813         if (sc_info.cacheBaseAddress != 0) {
5814           base_addr = sc_info.cacheBaseAddress;
5815           uuid = UUID::fromOptionalData(sc_info.cacheUUID, sizeof(uuid_t));
5816         }
5817         dyld_process_info_release(process_info);
5818       }
5819     }
5820   }
5821   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS |
5822                                                   LIBLLDB_LOG_PROCESS));
5823   if (log && uuid.IsValid())
5824     LLDB_LOGF(log,
5825               "lldb's in-memory shared cache has a UUID of %s base address of "
5826               "0x%" PRIx64,
5827               uuid.GetAsString().c_str(), base_addr);
5828 #endif
5829 }
5830 
5831 llvm::VersionTuple ObjectFileMachO::GetMinimumOSVersion() {
5832   if (!m_min_os_version) {
5833     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5834     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5835       const lldb::offset_t load_cmd_offset = offset;
5836 
5837       version_min_command lc;
5838       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5839         break;
5840       if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX ||
5841           lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS ||
5842           lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS ||
5843           lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) {
5844         if (m_data.GetU32(&offset, &lc.version,
5845                           (sizeof(lc) / sizeof(uint32_t)) - 2)) {
5846           const uint32_t xxxx = lc.version >> 16;
5847           const uint32_t yy = (lc.version >> 8) & 0xffu;
5848           const uint32_t zz = lc.version & 0xffu;
5849           if (xxxx) {
5850             m_min_os_version = llvm::VersionTuple(xxxx, yy, zz);
5851             break;
5852           }
5853         }
5854       } else if (lc.cmd == llvm::MachO::LC_BUILD_VERSION) {
5855         // struct build_version_command {
5856         //     uint32_t    cmd;            /* LC_BUILD_VERSION */
5857         //     uint32_t    cmdsize;        /* sizeof(struct
5858         //     build_version_command) plus */
5859         //                                 /* ntools * sizeof(struct
5860         //                                 build_tool_version) */
5861         //     uint32_t    platform;       /* platform */
5862         //     uint32_t    minos;          /* X.Y.Z is encoded in nibbles
5863         //     xxxx.yy.zz */ uint32_t    sdk;            /* X.Y.Z is encoded in
5864         //     nibbles xxxx.yy.zz */ uint32_t    ntools;         /* number of
5865         //     tool entries following this */
5866         // };
5867 
5868         offset += 4; // skip platform
5869         uint32_t minos = m_data.GetU32(&offset);
5870 
5871         const uint32_t xxxx = minos >> 16;
5872         const uint32_t yy = (minos >> 8) & 0xffu;
5873         const uint32_t zz = minos & 0xffu;
5874         if (xxxx) {
5875           m_min_os_version = llvm::VersionTuple(xxxx, yy, zz);
5876           break;
5877         }
5878       }
5879 
5880       offset = load_cmd_offset + lc.cmdsize;
5881     }
5882 
5883     if (!m_min_os_version) {
5884       // Set version to an empty value so we don't keep trying to
5885       m_min_os_version = llvm::VersionTuple();
5886     }
5887   }
5888 
5889   return *m_min_os_version;
5890 }
5891 
5892 llvm::VersionTuple ObjectFileMachO::GetSDKVersion() {
5893   if (!m_sdk_versions.hasValue()) {
5894     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5895     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5896       const lldb::offset_t load_cmd_offset = offset;
5897 
5898       version_min_command lc;
5899       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5900         break;
5901       if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX ||
5902           lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS ||
5903           lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS ||
5904           lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) {
5905         if (m_data.GetU32(&offset, &lc.version,
5906                           (sizeof(lc) / sizeof(uint32_t)) - 2)) {
5907           const uint32_t xxxx = lc.sdk >> 16;
5908           const uint32_t yy = (lc.sdk >> 8) & 0xffu;
5909           const uint32_t zz = lc.sdk & 0xffu;
5910           if (xxxx) {
5911             m_sdk_versions = llvm::VersionTuple(xxxx, yy, zz);
5912             break;
5913           } else {
5914             GetModule()->ReportWarning("minimum OS version load command with "
5915                                        "invalid (0) version found.");
5916           }
5917         }
5918       }
5919       offset = load_cmd_offset + lc.cmdsize;
5920     }
5921 
5922     if (!m_sdk_versions.hasValue()) {
5923       offset = MachHeaderSizeFromMagic(m_header.magic);
5924       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5925         const lldb::offset_t load_cmd_offset = offset;
5926 
5927         version_min_command lc;
5928         if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5929           break;
5930         if (lc.cmd == llvm::MachO::LC_BUILD_VERSION) {
5931           // struct build_version_command {
5932           //     uint32_t    cmd;            /* LC_BUILD_VERSION */
5933           //     uint32_t    cmdsize;        /* sizeof(struct
5934           //     build_version_command) plus */
5935           //                                 /* ntools * sizeof(struct
5936           //                                 build_tool_version) */
5937           //     uint32_t    platform;       /* platform */
5938           //     uint32_t    minos;          /* X.Y.Z is encoded in nibbles
5939           //     xxxx.yy.zz */ uint32_t    sdk;            /* X.Y.Z is encoded
5940           //     in nibbles xxxx.yy.zz */ uint32_t    ntools;         /* number
5941           //     of tool entries following this */
5942           // };
5943 
5944           offset += 4; // skip platform
5945           uint32_t minos = m_data.GetU32(&offset);
5946 
5947           const uint32_t xxxx = minos >> 16;
5948           const uint32_t yy = (minos >> 8) & 0xffu;
5949           const uint32_t zz = minos & 0xffu;
5950           if (xxxx) {
5951             m_sdk_versions = llvm::VersionTuple(xxxx, yy, zz);
5952             break;
5953           }
5954         }
5955         offset = load_cmd_offset + lc.cmdsize;
5956       }
5957     }
5958 
5959     if (!m_sdk_versions.hasValue())
5960       m_sdk_versions = llvm::VersionTuple();
5961   }
5962 
5963   return m_sdk_versions.getValue();
5964 }
5965 
5966 bool ObjectFileMachO::GetIsDynamicLinkEditor() {
5967   return m_header.filetype == llvm::MachO::MH_DYLINKER;
5968 }
5969 
5970 bool ObjectFileMachO::AllowAssemblyEmulationUnwindPlans() {
5971   return m_allow_assembly_emulation_unwind_plans;
5972 }
5973 
5974 // PluginInterface protocol
5975 lldb_private::ConstString ObjectFileMachO::GetPluginName() {
5976   return GetPluginNameStatic();
5977 }
5978 
5979 uint32_t ObjectFileMachO::GetPluginVersion() { return 1; }
5980 
5981 Section *ObjectFileMachO::GetMachHeaderSection() {
5982   // Find the first address of the mach header which is the first non-zero file
5983   // sized section whose file offset is zero. This is the base file address of
5984   // the mach-o file which can be subtracted from the vmaddr of the other
5985   // segments found in memory and added to the load address
5986   ModuleSP module_sp = GetModule();
5987   if (!module_sp)
5988     return nullptr;
5989   SectionList *section_list = GetSectionList();
5990   if (!section_list)
5991     return nullptr;
5992   const size_t num_sections = section_list->GetSize();
5993   for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
5994     Section *section = section_list->GetSectionAtIndex(sect_idx).get();
5995     if (section->GetFileOffset() == 0 && SectionIsLoadable(section))
5996       return section;
5997   }
5998   return nullptr;
5999 }
6000 
6001 bool ObjectFileMachO::SectionIsLoadable(const Section *section) {
6002   if (!section)
6003     return false;
6004   const bool is_dsym = (m_header.filetype == MH_DSYM);
6005   if (section->GetFileSize() == 0 && !is_dsym)
6006     return false;
6007   if (section->IsThreadSpecific())
6008     return false;
6009   if (GetModule().get() != section->GetModule().get())
6010     return false;
6011   // Be careful with __LINKEDIT and __DWARF segments
6012   if (section->GetName() == GetSegmentNameLINKEDIT() ||
6013       section->GetName() == GetSegmentNameDWARF()) {
6014     // Only map __LINKEDIT and __DWARF if we have an in memory image and
6015     // this isn't a kernel binary like a kext or mach_kernel.
6016     const bool is_memory_image = (bool)m_process_wp.lock();
6017     const Strata strata = GetStrata();
6018     if (is_memory_image == false || strata == eStrataKernel)
6019       return false;
6020   }
6021   return true;
6022 }
6023 
6024 lldb::addr_t ObjectFileMachO::CalculateSectionLoadAddressForMemoryImage(
6025     lldb::addr_t header_load_address, const Section *header_section,
6026     const Section *section) {
6027   ModuleSP module_sp = GetModule();
6028   if (module_sp && header_section && section &&
6029       header_load_address != LLDB_INVALID_ADDRESS) {
6030     lldb::addr_t file_addr = header_section->GetFileAddress();
6031     if (file_addr != LLDB_INVALID_ADDRESS && SectionIsLoadable(section))
6032       return section->GetFileAddress() - file_addr + header_load_address;
6033   }
6034   return LLDB_INVALID_ADDRESS;
6035 }
6036 
6037 bool ObjectFileMachO::SetLoadAddress(Target &target, lldb::addr_t value,
6038                                      bool value_is_offset) {
6039   ModuleSP module_sp = GetModule();
6040   if (!module_sp)
6041     return false;
6042 
6043   SectionList *section_list = GetSectionList();
6044   if (!section_list)
6045     return false;
6046 
6047   size_t num_loaded_sections = 0;
6048   const size_t num_sections = section_list->GetSize();
6049 
6050   if (value_is_offset) {
6051     // "value" is an offset to apply to each top level segment
6052     for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
6053       // Iterate through the object file sections to find all of the
6054       // sections that size on disk (to avoid __PAGEZERO) and load them
6055       SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
6056       if (SectionIsLoadable(section_sp.get()))
6057         if (target.GetSectionLoadList().SetSectionLoadAddress(
6058                 section_sp, section_sp->GetFileAddress() + value))
6059           ++num_loaded_sections;
6060     }
6061   } else {
6062     // "value" is the new base address of the mach_header, adjust each
6063     // section accordingly
6064 
6065     Section *mach_header_section = GetMachHeaderSection();
6066     if (mach_header_section) {
6067       for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
6068         SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
6069 
6070         lldb::addr_t section_load_addr =
6071             CalculateSectionLoadAddressForMemoryImage(
6072                 value, mach_header_section, section_sp.get());
6073         if (section_load_addr != LLDB_INVALID_ADDRESS) {
6074           if (target.GetSectionLoadList().SetSectionLoadAddress(
6075                   section_sp, section_load_addr))
6076             ++num_loaded_sections;
6077         }
6078       }
6079     }
6080   }
6081   return num_loaded_sections > 0;
6082 }
6083 
6084 bool ObjectFileMachO::SaveCore(const lldb::ProcessSP &process_sp,
6085                                const FileSpec &outfile, Status &error) {
6086   if (!process_sp)
6087     return false;
6088 
6089   Target &target = process_sp->GetTarget();
6090   const ArchSpec target_arch = target.GetArchitecture();
6091   const llvm::Triple &target_triple = target_arch.GetTriple();
6092   if (target_triple.getVendor() == llvm::Triple::Apple &&
6093       (target_triple.getOS() == llvm::Triple::MacOSX ||
6094        target_triple.getOS() == llvm::Triple::IOS ||
6095        target_triple.getOS() == llvm::Triple::WatchOS ||
6096        target_triple.getOS() == llvm::Triple::TvOS)) {
6097     // NEED_BRIDGEOS_TRIPLE target_triple.getOS() == llvm::Triple::BridgeOS))
6098     // {
6099     bool make_core = false;
6100     switch (target_arch.GetMachine()) {
6101     case llvm::Triple::aarch64:
6102     case llvm::Triple::aarch64_32:
6103     case llvm::Triple::arm:
6104     case llvm::Triple::thumb:
6105     case llvm::Triple::x86:
6106     case llvm::Triple::x86_64:
6107       make_core = true;
6108       break;
6109     default:
6110       error.SetErrorStringWithFormat("unsupported core architecture: %s",
6111                                      target_triple.str().c_str());
6112       break;
6113     }
6114 
6115     if (make_core) {
6116       std::vector<segment_command_64> segment_load_commands;
6117       //                uint32_t range_info_idx = 0;
6118       MemoryRegionInfo range_info;
6119       Status range_error = process_sp->GetMemoryRegionInfo(0, range_info);
6120       const uint32_t addr_byte_size = target_arch.GetAddressByteSize();
6121       const ByteOrder byte_order = target_arch.GetByteOrder();
6122       if (range_error.Success()) {
6123         while (range_info.GetRange().GetRangeBase() != LLDB_INVALID_ADDRESS) {
6124           const addr_t addr = range_info.GetRange().GetRangeBase();
6125           const addr_t size = range_info.GetRange().GetByteSize();
6126 
6127           if (size == 0)
6128             break;
6129 
6130           // Calculate correct protections
6131           uint32_t prot = 0;
6132           if (range_info.GetReadable() == MemoryRegionInfo::eYes)
6133             prot |= VM_PROT_READ;
6134           if (range_info.GetWritable() == MemoryRegionInfo::eYes)
6135             prot |= VM_PROT_WRITE;
6136           if (range_info.GetExecutable() == MemoryRegionInfo::eYes)
6137             prot |= VM_PROT_EXECUTE;
6138 
6139           if (prot != 0) {
6140             uint32_t cmd_type = LC_SEGMENT_64;
6141             uint32_t segment_size = sizeof(segment_command_64);
6142             if (addr_byte_size == 4) {
6143               cmd_type = LC_SEGMENT;
6144               segment_size = sizeof(segment_command);
6145             }
6146             segment_command_64 segment = {
6147                 cmd_type,     // uint32_t cmd;
6148                 segment_size, // uint32_t cmdsize;
6149                 {0},          // char segname[16];
6150                 addr, // uint64_t vmaddr;    // uint32_t for 32-bit Mach-O
6151                 size, // uint64_t vmsize;    // uint32_t for 32-bit Mach-O
6152                 0,    // uint64_t fileoff;   // uint32_t for 32-bit Mach-O
6153                 size, // uint64_t filesize;  // uint32_t for 32-bit Mach-O
6154                 prot, // uint32_t maxprot;
6155                 prot, // uint32_t initprot;
6156                 0,    // uint32_t nsects;
6157                 0};   // uint32_t flags;
6158             segment_load_commands.push_back(segment);
6159           } else {
6160             // No protections and a size of 1 used to be returned from old
6161             // debugservers when we asked about a region that was past the
6162             // last memory region and it indicates the end...
6163             if (size == 1)
6164               break;
6165           }
6166 
6167           range_error = process_sp->GetMemoryRegionInfo(
6168               range_info.GetRange().GetRangeEnd(), range_info);
6169           if (range_error.Fail())
6170             break;
6171         }
6172 
6173         StreamString buffer(Stream::eBinary, addr_byte_size, byte_order);
6174 
6175         mach_header_64 mach_header;
6176         if (addr_byte_size == 8) {
6177           mach_header.magic = MH_MAGIC_64;
6178         } else {
6179           mach_header.magic = MH_MAGIC;
6180         }
6181         mach_header.cputype = target_arch.GetMachOCPUType();
6182         mach_header.cpusubtype = target_arch.GetMachOCPUSubType();
6183         mach_header.filetype = MH_CORE;
6184         mach_header.ncmds = segment_load_commands.size();
6185         mach_header.flags = 0;
6186         mach_header.reserved = 0;
6187         ThreadList &thread_list = process_sp->GetThreadList();
6188         const uint32_t num_threads = thread_list.GetSize();
6189 
6190         // Make an array of LC_THREAD data items. Each one contains the
6191         // contents of the LC_THREAD load command. The data doesn't contain
6192         // the load command + load command size, we will add the load command
6193         // and load command size as we emit the data.
6194         std::vector<StreamString> LC_THREAD_datas(num_threads);
6195         for (auto &LC_THREAD_data : LC_THREAD_datas) {
6196           LC_THREAD_data.GetFlags().Set(Stream::eBinary);
6197           LC_THREAD_data.SetAddressByteSize(addr_byte_size);
6198           LC_THREAD_data.SetByteOrder(byte_order);
6199         }
6200         for (uint32_t thread_idx = 0; thread_idx < num_threads; ++thread_idx) {
6201           ThreadSP thread_sp(thread_list.GetThreadAtIndex(thread_idx));
6202           if (thread_sp) {
6203             switch (mach_header.cputype) {
6204             case llvm::MachO::CPU_TYPE_ARM64:
6205             case llvm::MachO::CPU_TYPE_ARM64_32:
6206               RegisterContextDarwin_arm64_Mach::Create_LC_THREAD(
6207                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6208               break;
6209 
6210             case llvm::MachO::CPU_TYPE_ARM:
6211               RegisterContextDarwin_arm_Mach::Create_LC_THREAD(
6212                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6213               break;
6214 
6215             case llvm::MachO::CPU_TYPE_I386:
6216               RegisterContextDarwin_i386_Mach::Create_LC_THREAD(
6217                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6218               break;
6219 
6220             case llvm::MachO::CPU_TYPE_X86_64:
6221               RegisterContextDarwin_x86_64_Mach::Create_LC_THREAD(
6222                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6223               break;
6224             }
6225           }
6226         }
6227 
6228         // The size of the load command is the size of the segments...
6229         if (addr_byte_size == 8) {
6230           mach_header.sizeofcmds =
6231               segment_load_commands.size() * sizeof(struct segment_command_64);
6232         } else {
6233           mach_header.sizeofcmds =
6234               segment_load_commands.size() * sizeof(struct segment_command);
6235         }
6236 
6237         // and the size of all LC_THREAD load command
6238         for (const auto &LC_THREAD_data : LC_THREAD_datas) {
6239           ++mach_header.ncmds;
6240           mach_header.sizeofcmds += 8 + LC_THREAD_data.GetSize();
6241         }
6242 
6243         // Write the mach header
6244         buffer.PutHex32(mach_header.magic);
6245         buffer.PutHex32(mach_header.cputype);
6246         buffer.PutHex32(mach_header.cpusubtype);
6247         buffer.PutHex32(mach_header.filetype);
6248         buffer.PutHex32(mach_header.ncmds);
6249         buffer.PutHex32(mach_header.sizeofcmds);
6250         buffer.PutHex32(mach_header.flags);
6251         if (addr_byte_size == 8) {
6252           buffer.PutHex32(mach_header.reserved);
6253         }
6254 
6255         // Skip the mach header and all load commands and align to the next
6256         // 0x1000 byte boundary
6257         addr_t file_offset = buffer.GetSize() + mach_header.sizeofcmds;
6258         if (file_offset & 0x00000fff) {
6259           file_offset += 0x00001000ull;
6260           file_offset &= (~0x00001000ull + 1);
6261         }
6262 
6263         for (auto &segment : segment_load_commands) {
6264           segment.fileoff = file_offset;
6265           file_offset += segment.filesize;
6266         }
6267 
6268         // Write out all of the LC_THREAD load commands
6269         for (const auto &LC_THREAD_data : LC_THREAD_datas) {
6270           const size_t LC_THREAD_data_size = LC_THREAD_data.GetSize();
6271           buffer.PutHex32(LC_THREAD);
6272           buffer.PutHex32(8 + LC_THREAD_data_size); // cmd + cmdsize + data
6273           buffer.Write(LC_THREAD_data.GetString().data(), LC_THREAD_data_size);
6274         }
6275 
6276         // Write out all of the segment load commands
6277         for (const auto &segment : segment_load_commands) {
6278           printf("0x%8.8x 0x%8.8x [0x%16.16" PRIx64 " - 0x%16.16" PRIx64
6279                  ") [0x%16.16" PRIx64 " 0x%16.16" PRIx64
6280                  ") 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x]\n",
6281                  segment.cmd, segment.cmdsize, segment.vmaddr,
6282                  segment.vmaddr + segment.vmsize, segment.fileoff,
6283                  segment.filesize, segment.maxprot, segment.initprot,
6284                  segment.nsects, segment.flags);
6285 
6286           buffer.PutHex32(segment.cmd);
6287           buffer.PutHex32(segment.cmdsize);
6288           buffer.PutRawBytes(segment.segname, sizeof(segment.segname));
6289           if (addr_byte_size == 8) {
6290             buffer.PutHex64(segment.vmaddr);
6291             buffer.PutHex64(segment.vmsize);
6292             buffer.PutHex64(segment.fileoff);
6293             buffer.PutHex64(segment.filesize);
6294           } else {
6295             buffer.PutHex32(static_cast<uint32_t>(segment.vmaddr));
6296             buffer.PutHex32(static_cast<uint32_t>(segment.vmsize));
6297             buffer.PutHex32(static_cast<uint32_t>(segment.fileoff));
6298             buffer.PutHex32(static_cast<uint32_t>(segment.filesize));
6299           }
6300           buffer.PutHex32(segment.maxprot);
6301           buffer.PutHex32(segment.initprot);
6302           buffer.PutHex32(segment.nsects);
6303           buffer.PutHex32(segment.flags);
6304         }
6305 
6306         std::string core_file_path(outfile.GetPath());
6307         auto core_file = FileSystem::Instance().Open(
6308             outfile, File::eOpenOptionWrite | File::eOpenOptionTruncate |
6309                          File::eOpenOptionCanCreate);
6310         if (!core_file) {
6311           error = core_file.takeError();
6312         } else {
6313           // Read 1 page at a time
6314           uint8_t bytes[0x1000];
6315           // Write the mach header and load commands out to the core file
6316           size_t bytes_written = buffer.GetString().size();
6317           error =
6318               core_file.get()->Write(buffer.GetString().data(), bytes_written);
6319           if (error.Success()) {
6320             // Now write the file data for all memory segments in the process
6321             for (const auto &segment : segment_load_commands) {
6322               if (core_file.get()->SeekFromStart(segment.fileoff) == -1) {
6323                 error.SetErrorStringWithFormat(
6324                     "unable to seek to offset 0x%" PRIx64 " in '%s'",
6325                     segment.fileoff, core_file_path.c_str());
6326                 break;
6327               }
6328 
6329               printf("Saving %" PRId64
6330                      " bytes of data for memory region at 0x%" PRIx64 "\n",
6331                      segment.vmsize, segment.vmaddr);
6332               addr_t bytes_left = segment.vmsize;
6333               addr_t addr = segment.vmaddr;
6334               Status memory_read_error;
6335               while (bytes_left > 0 && error.Success()) {
6336                 const size_t bytes_to_read =
6337                     bytes_left > sizeof(bytes) ? sizeof(bytes) : bytes_left;
6338 
6339                 // In a savecore setting, we don't really care about caching,
6340                 // as the data is dumped and very likely never read again,
6341                 // so we call ReadMemoryFromInferior to bypass it.
6342                 const size_t bytes_read = process_sp->ReadMemoryFromInferior(
6343                     addr, bytes, bytes_to_read, memory_read_error);
6344 
6345                 if (bytes_read == bytes_to_read) {
6346                   size_t bytes_written = bytes_read;
6347                   error = core_file.get()->Write(bytes, bytes_written);
6348                   bytes_left -= bytes_read;
6349                   addr += bytes_read;
6350                 } else {
6351                   // Some pages within regions are not readable, those should
6352                   // be zero filled
6353                   memset(bytes, 0, bytes_to_read);
6354                   size_t bytes_written = bytes_to_read;
6355                   error = core_file.get()->Write(bytes, bytes_written);
6356                   bytes_left -= bytes_to_read;
6357                   addr += bytes_to_read;
6358                 }
6359               }
6360             }
6361           }
6362         }
6363       } else {
6364         error.SetErrorString(
6365             "process doesn't support getting memory region info");
6366       }
6367     }
6368     return true; // This is the right plug to handle saving core files for
6369                  // this process
6370   }
6371   return false;
6372 }
6373