1 //===-- ObjectFileMachO.cpp -------------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 // C Includes
11 // C++ Includes
12 // Other libraries and framework includes
13 #include "llvm/ADT/StringRef.h"
14 
15 // Project includes
16 #include "Plugins/Process/Utility/RegisterContextDarwin_arm.h"
17 #include "Plugins/Process/Utility/RegisterContextDarwin_arm64.h"
18 #include "Plugins/Process/Utility/RegisterContextDarwin_i386.h"
19 #include "Plugins/Process/Utility/RegisterContextDarwin_x86_64.h"
20 #include "lldb/Core/Debugger.h"
21 #include "lldb/Core/FileSpecList.h"
22 #include "lldb/Core/Module.h"
23 #include "lldb/Core/ModuleSpec.h"
24 #include "lldb/Core/PluginManager.h"
25 #include "lldb/Core/RangeMap.h"
26 #include "lldb/Core/RegisterValue.h"
27 #include "lldb/Core/Section.h"
28 #include "lldb/Core/StreamFile.h"
29 #include "lldb/Host/Host.h"
30 #include "lldb/Symbol/DWARFCallFrameInfo.h"
31 #include "lldb/Symbol/ObjectFile.h"
32 #include "lldb/Target/DynamicLoader.h"
33 #include "lldb/Target/MemoryRegionInfo.h"
34 #include "lldb/Target/Platform.h"
35 #include "lldb/Target/Process.h"
36 #include "lldb/Target/SectionLoadList.h"
37 #include "lldb/Target/Target.h"
38 #include "lldb/Target/Thread.h"
39 #include "lldb/Target/ThreadList.h"
40 #include "lldb/Utility/ArchSpec.h"
41 #include "lldb/Utility/DataBuffer.h"
42 #include "lldb/Utility/FileSpec.h"
43 #include "lldb/Utility/Log.h"
44 #include "lldb/Utility/Status.h"
45 #include "lldb/Utility/StreamString.h"
46 #include "lldb/Utility/Timer.h"
47 #include "lldb/Utility/UUID.h"
48 
49 #include "lldb/Utility/SafeMachO.h"
50 
51 #include "llvm/Support/MemoryBuffer.h"
52 
53 #include "ObjectFileMachO.h"
54 
55 #if defined(__APPLE__) &&                                                      \
56     (defined(__arm__) || defined(__arm64__) || defined(__aarch64__))
57 // GetLLDBSharedCacheUUID() needs to call dlsym()
58 #include <dlfcn.h>
59 #endif
60 
61 #ifndef __APPLE__
62 #include "Utility/UuidCompatibility.h"
63 #else
64 #include <uuid/uuid.h>
65 #endif
66 
67 #define THUMB_ADDRESS_BIT_MASK 0xfffffffffffffffeull
68 using namespace lldb;
69 using namespace lldb_private;
70 using namespace llvm::MachO;
71 
72 // Some structure definitions needed for parsing the dyld shared cache files
73 // found on iOS devices.
74 
75 struct lldb_copy_dyld_cache_header_v1 {
76   char magic[16];         // e.g. "dyld_v0    i386", "dyld_v1   armv7", etc.
77   uint32_t mappingOffset; // file offset to first dyld_cache_mapping_info
78   uint32_t mappingCount;  // number of dyld_cache_mapping_info entries
79   uint32_t imagesOffset;
80   uint32_t imagesCount;
81   uint64_t dyldBaseAddress;
82   uint64_t codeSignatureOffset;
83   uint64_t codeSignatureSize;
84   uint64_t slideInfoOffset;
85   uint64_t slideInfoSize;
86   uint64_t localSymbolsOffset;
87   uint64_t localSymbolsSize;
88   uint8_t uuid[16]; // v1 and above, also recorded in dyld_all_image_infos v13
89                     // and later
90 };
91 
92 struct lldb_copy_dyld_cache_mapping_info {
93   uint64_t address;
94   uint64_t size;
95   uint64_t fileOffset;
96   uint32_t maxProt;
97   uint32_t initProt;
98 };
99 
100 struct lldb_copy_dyld_cache_local_symbols_info {
101   uint32_t nlistOffset;
102   uint32_t nlistCount;
103   uint32_t stringsOffset;
104   uint32_t stringsSize;
105   uint32_t entriesOffset;
106   uint32_t entriesCount;
107 };
108 struct lldb_copy_dyld_cache_local_symbols_entry {
109   uint32_t dylibOffset;
110   uint32_t nlistStartIndex;
111   uint32_t nlistCount;
112 };
113 
114 class RegisterContextDarwin_x86_64_Mach : public RegisterContextDarwin_x86_64 {
115 public:
116   RegisterContextDarwin_x86_64_Mach(lldb_private::Thread &thread,
117                                     const DataExtractor &data)
118       : RegisterContextDarwin_x86_64(thread, 0) {
119     SetRegisterDataFrom_LC_THREAD(data);
120   }
121 
122   void InvalidateAllRegisters() override {
123     // Do nothing... registers are always valid...
124   }
125 
126   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
127     lldb::offset_t offset = 0;
128     SetError(GPRRegSet, Read, -1);
129     SetError(FPURegSet, Read, -1);
130     SetError(EXCRegSet, Read, -1);
131     bool done = false;
132 
133     while (!done) {
134       int flavor = data.GetU32(&offset);
135       if (flavor == 0)
136         done = true;
137       else {
138         uint32_t i;
139         uint32_t count = data.GetU32(&offset);
140         switch (flavor) {
141         case GPRRegSet:
142           for (i = 0; i < count; ++i)
143             (&gpr.rax)[i] = data.GetU64(&offset);
144           SetError(GPRRegSet, Read, 0);
145           done = true;
146 
147           break;
148         case FPURegSet:
149           // TODO: fill in FPU regs....
150           // SetError (FPURegSet, Read, -1);
151           done = true;
152 
153           break;
154         case EXCRegSet:
155           exc.trapno = data.GetU32(&offset);
156           exc.err = data.GetU32(&offset);
157           exc.faultvaddr = data.GetU64(&offset);
158           SetError(EXCRegSet, Read, 0);
159           done = true;
160           break;
161         case 7:
162         case 8:
163         case 9:
164           // fancy flavors that encapsulate of the above
165           // flavors...
166           break;
167 
168         default:
169           done = true;
170           break;
171         }
172       }
173     }
174   }
175 
176   static size_t WriteRegister(RegisterContext *reg_ctx, const char *name,
177                               const char *alt_name, size_t reg_byte_size,
178                               Stream &data) {
179     const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
180     if (reg_info == NULL)
181       reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
182     if (reg_info) {
183       lldb_private::RegisterValue reg_value;
184       if (reg_ctx->ReadRegister(reg_info, reg_value)) {
185         if (reg_info->byte_size >= reg_byte_size)
186           data.Write(reg_value.GetBytes(), reg_byte_size);
187         else {
188           data.Write(reg_value.GetBytes(), reg_info->byte_size);
189           for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n;
190                ++i)
191             data.PutChar(0);
192         }
193         return reg_byte_size;
194       }
195     }
196     // Just write zeros if all else fails
197     for (size_t i = 0; i < reg_byte_size; ++i)
198       data.PutChar(0);
199     return reg_byte_size;
200   }
201 
202   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
203     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
204     if (reg_ctx_sp) {
205       RegisterContext *reg_ctx = reg_ctx_sp.get();
206 
207       data.PutHex32(GPRRegSet); // Flavor
208       data.PutHex32(GPRWordCount);
209       WriteRegister(reg_ctx, "rax", NULL, 8, data);
210       WriteRegister(reg_ctx, "rbx", NULL, 8, data);
211       WriteRegister(reg_ctx, "rcx", NULL, 8, data);
212       WriteRegister(reg_ctx, "rdx", NULL, 8, data);
213       WriteRegister(reg_ctx, "rdi", NULL, 8, data);
214       WriteRegister(reg_ctx, "rsi", NULL, 8, data);
215       WriteRegister(reg_ctx, "rbp", NULL, 8, data);
216       WriteRegister(reg_ctx, "rsp", NULL, 8, data);
217       WriteRegister(reg_ctx, "r8", NULL, 8, data);
218       WriteRegister(reg_ctx, "r9", NULL, 8, data);
219       WriteRegister(reg_ctx, "r10", NULL, 8, data);
220       WriteRegister(reg_ctx, "r11", NULL, 8, data);
221       WriteRegister(reg_ctx, "r12", NULL, 8, data);
222       WriteRegister(reg_ctx, "r13", NULL, 8, data);
223       WriteRegister(reg_ctx, "r14", NULL, 8, data);
224       WriteRegister(reg_ctx, "r15", NULL, 8, data);
225       WriteRegister(reg_ctx, "rip", NULL, 8, data);
226       WriteRegister(reg_ctx, "rflags", NULL, 8, data);
227       WriteRegister(reg_ctx, "cs", NULL, 8, data);
228       WriteRegister(reg_ctx, "fs", NULL, 8, data);
229       WriteRegister(reg_ctx, "gs", NULL, 8, data);
230 
231       //            // Write out the FPU registers
232       //            const size_t fpu_byte_size = sizeof(FPU);
233       //            size_t bytes_written = 0;
234       //            data.PutHex32 (FPURegSet);
235       //            data.PutHex32 (fpu_byte_size/sizeof(uint64_t));
236       //            bytes_written += data.PutHex32(0); // uint32_t pad[0]
237       //            bytes_written += data.PutHex32(0); // uint32_t pad[1]
238       //            bytes_written += WriteRegister (reg_ctx, "fcw", "fctrl", 2,
239       //            data);   // uint16_t    fcw;    // "fctrl"
240       //            bytes_written += WriteRegister (reg_ctx, "fsw" , "fstat", 2,
241       //            data);  // uint16_t    fsw;    // "fstat"
242       //            bytes_written += WriteRegister (reg_ctx, "ftw" , "ftag", 1,
243       //            data);   // uint8_t     ftw;    // "ftag"
244       //            bytes_written += data.PutHex8  (0); // uint8_t pad1;
245       //            bytes_written += WriteRegister (reg_ctx, "fop" , NULL, 2,
246       //            data);     // uint16_t    fop;    // "fop"
247       //            bytes_written += WriteRegister (reg_ctx, "fioff", "ip", 4,
248       //            data);    // uint32_t    ip;     // "fioff"
249       //            bytes_written += WriteRegister (reg_ctx, "fiseg", NULL, 2,
250       //            data);    // uint16_t    cs;     // "fiseg"
251       //            bytes_written += data.PutHex16 (0); // uint16_t    pad2;
252       //            bytes_written += WriteRegister (reg_ctx, "dp", "fooff" , 4,
253       //            data);   // uint32_t    dp;     // "fooff"
254       //            bytes_written += WriteRegister (reg_ctx, "foseg", NULL, 2,
255       //            data);    // uint16_t    ds;     // "foseg"
256       //            bytes_written += data.PutHex16 (0); // uint16_t    pad3;
257       //            bytes_written += WriteRegister (reg_ctx, "mxcsr", NULL, 4,
258       //            data);    // uint32_t    mxcsr;
259       //            bytes_written += WriteRegister (reg_ctx, "mxcsrmask", NULL,
260       //            4, data);// uint32_t    mxcsrmask;
261       //            bytes_written += WriteRegister (reg_ctx, "stmm0", NULL,
262       //            sizeof(MMSReg), data);
263       //            bytes_written += WriteRegister (reg_ctx, "stmm1", NULL,
264       //            sizeof(MMSReg), data);
265       //            bytes_written += WriteRegister (reg_ctx, "stmm2", NULL,
266       //            sizeof(MMSReg), data);
267       //            bytes_written += WriteRegister (reg_ctx, "stmm3", NULL,
268       //            sizeof(MMSReg), data);
269       //            bytes_written += WriteRegister (reg_ctx, "stmm4", NULL,
270       //            sizeof(MMSReg), data);
271       //            bytes_written += WriteRegister (reg_ctx, "stmm5", NULL,
272       //            sizeof(MMSReg), data);
273       //            bytes_written += WriteRegister (reg_ctx, "stmm6", NULL,
274       //            sizeof(MMSReg), data);
275       //            bytes_written += WriteRegister (reg_ctx, "stmm7", NULL,
276       //            sizeof(MMSReg), data);
277       //            bytes_written += WriteRegister (reg_ctx, "xmm0" , NULL,
278       //            sizeof(XMMReg), data);
279       //            bytes_written += WriteRegister (reg_ctx, "xmm1" , NULL,
280       //            sizeof(XMMReg), data);
281       //            bytes_written += WriteRegister (reg_ctx, "xmm2" , NULL,
282       //            sizeof(XMMReg), data);
283       //            bytes_written += WriteRegister (reg_ctx, "xmm3" , NULL,
284       //            sizeof(XMMReg), data);
285       //            bytes_written += WriteRegister (reg_ctx, "xmm4" , NULL,
286       //            sizeof(XMMReg), data);
287       //            bytes_written += WriteRegister (reg_ctx, "xmm5" , NULL,
288       //            sizeof(XMMReg), data);
289       //            bytes_written += WriteRegister (reg_ctx, "xmm6" , NULL,
290       //            sizeof(XMMReg), data);
291       //            bytes_written += WriteRegister (reg_ctx, "xmm7" , NULL,
292       //            sizeof(XMMReg), data);
293       //            bytes_written += WriteRegister (reg_ctx, "xmm8" , NULL,
294       //            sizeof(XMMReg), data);
295       //            bytes_written += WriteRegister (reg_ctx, "xmm9" , NULL,
296       //            sizeof(XMMReg), data);
297       //            bytes_written += WriteRegister (reg_ctx, "xmm10", NULL,
298       //            sizeof(XMMReg), data);
299       //            bytes_written += WriteRegister (reg_ctx, "xmm11", NULL,
300       //            sizeof(XMMReg), data);
301       //            bytes_written += WriteRegister (reg_ctx, "xmm12", NULL,
302       //            sizeof(XMMReg), data);
303       //            bytes_written += WriteRegister (reg_ctx, "xmm13", NULL,
304       //            sizeof(XMMReg), data);
305       //            bytes_written += WriteRegister (reg_ctx, "xmm14", NULL,
306       //            sizeof(XMMReg), data);
307       //            bytes_written += WriteRegister (reg_ctx, "xmm15", NULL,
308       //            sizeof(XMMReg), data);
309       //
310       //            // Fill rest with zeros
311       //            for (size_t i=0, n = fpu_byte_size - bytes_written; i<n; ++
312       //            i)
313       //                data.PutChar(0);
314 
315       // Write out the EXC registers
316       data.PutHex32(EXCRegSet);
317       data.PutHex32(EXCWordCount);
318       WriteRegister(reg_ctx, "trapno", NULL, 4, data);
319       WriteRegister(reg_ctx, "err", NULL, 4, data);
320       WriteRegister(reg_ctx, "faultvaddr", NULL, 8, data);
321       return true;
322     }
323     return false;
324   }
325 
326 protected:
327   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
328 
329   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
330 
331   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
332 
333   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
334     return 0;
335   }
336 
337   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
338     return 0;
339   }
340 
341   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
342     return 0;
343   }
344 };
345 
346 class RegisterContextDarwin_i386_Mach : public RegisterContextDarwin_i386 {
347 public:
348   RegisterContextDarwin_i386_Mach(lldb_private::Thread &thread,
349                                   const DataExtractor &data)
350       : RegisterContextDarwin_i386(thread, 0) {
351     SetRegisterDataFrom_LC_THREAD(data);
352   }
353 
354   void InvalidateAllRegisters() override {
355     // Do nothing... registers are always valid...
356   }
357 
358   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
359     lldb::offset_t offset = 0;
360     SetError(GPRRegSet, Read, -1);
361     SetError(FPURegSet, Read, -1);
362     SetError(EXCRegSet, Read, -1);
363     bool done = false;
364 
365     while (!done) {
366       int flavor = data.GetU32(&offset);
367       if (flavor == 0)
368         done = true;
369       else {
370         uint32_t i;
371         uint32_t count = data.GetU32(&offset);
372         switch (flavor) {
373         case GPRRegSet:
374           for (i = 0; i < count; ++i)
375             (&gpr.eax)[i] = data.GetU32(&offset);
376           SetError(GPRRegSet, Read, 0);
377           done = true;
378 
379           break;
380         case FPURegSet:
381           // TODO: fill in FPU regs....
382           // SetError (FPURegSet, Read, -1);
383           done = true;
384 
385           break;
386         case EXCRegSet:
387           exc.trapno = data.GetU32(&offset);
388           exc.err = data.GetU32(&offset);
389           exc.faultvaddr = data.GetU32(&offset);
390           SetError(EXCRegSet, Read, 0);
391           done = true;
392           break;
393         case 7:
394         case 8:
395         case 9:
396           // fancy flavors that encapsulate of the above
397           // flavors...
398           break;
399 
400         default:
401           done = true;
402           break;
403         }
404       }
405     }
406   }
407 
408   static size_t WriteRegister(RegisterContext *reg_ctx, const char *name,
409                               const char *alt_name, size_t reg_byte_size,
410                               Stream &data) {
411     const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
412     if (reg_info == NULL)
413       reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
414     if (reg_info) {
415       lldb_private::RegisterValue reg_value;
416       if (reg_ctx->ReadRegister(reg_info, reg_value)) {
417         if (reg_info->byte_size >= reg_byte_size)
418           data.Write(reg_value.GetBytes(), reg_byte_size);
419         else {
420           data.Write(reg_value.GetBytes(), reg_info->byte_size);
421           for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n;
422                ++i)
423             data.PutChar(0);
424         }
425         return reg_byte_size;
426       }
427     }
428     // Just write zeros if all else fails
429     for (size_t i = 0; i < reg_byte_size; ++i)
430       data.PutChar(0);
431     return reg_byte_size;
432   }
433 
434   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
435     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
436     if (reg_ctx_sp) {
437       RegisterContext *reg_ctx = reg_ctx_sp.get();
438 
439       data.PutHex32(GPRRegSet); // Flavor
440       data.PutHex32(GPRWordCount);
441       WriteRegister(reg_ctx, "eax", NULL, 4, data);
442       WriteRegister(reg_ctx, "ebx", NULL, 4, data);
443       WriteRegister(reg_ctx, "ecx", NULL, 4, data);
444       WriteRegister(reg_ctx, "edx", NULL, 4, data);
445       WriteRegister(reg_ctx, "edi", NULL, 4, data);
446       WriteRegister(reg_ctx, "esi", NULL, 4, data);
447       WriteRegister(reg_ctx, "ebp", NULL, 4, data);
448       WriteRegister(reg_ctx, "esp", NULL, 4, data);
449       WriteRegister(reg_ctx, "ss", NULL, 4, data);
450       WriteRegister(reg_ctx, "eflags", NULL, 4, data);
451       WriteRegister(reg_ctx, "eip", NULL, 4, data);
452       WriteRegister(reg_ctx, "cs", NULL, 4, data);
453       WriteRegister(reg_ctx, "ds", NULL, 4, data);
454       WriteRegister(reg_ctx, "es", NULL, 4, data);
455       WriteRegister(reg_ctx, "fs", NULL, 4, data);
456       WriteRegister(reg_ctx, "gs", NULL, 4, data);
457 
458       // Write out the EXC registers
459       data.PutHex32(EXCRegSet);
460       data.PutHex32(EXCWordCount);
461       WriteRegister(reg_ctx, "trapno", NULL, 4, data);
462       WriteRegister(reg_ctx, "err", NULL, 4, data);
463       WriteRegister(reg_ctx, "faultvaddr", NULL, 4, data);
464       return true;
465     }
466     return false;
467   }
468 
469 protected:
470   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
471 
472   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
473 
474   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
475 
476   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
477     return 0;
478   }
479 
480   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
481     return 0;
482   }
483 
484   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
485     return 0;
486   }
487 };
488 
489 class RegisterContextDarwin_arm_Mach : public RegisterContextDarwin_arm {
490 public:
491   RegisterContextDarwin_arm_Mach(lldb_private::Thread &thread,
492                                  const DataExtractor &data)
493       : RegisterContextDarwin_arm(thread, 0) {
494     SetRegisterDataFrom_LC_THREAD(data);
495   }
496 
497   void InvalidateAllRegisters() override {
498     // Do nothing... registers are always valid...
499   }
500 
501   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
502     lldb::offset_t offset = 0;
503     SetError(GPRRegSet, Read, -1);
504     SetError(FPURegSet, Read, -1);
505     SetError(EXCRegSet, Read, -1);
506     bool done = false;
507 
508     while (!done) {
509       int flavor = data.GetU32(&offset);
510       uint32_t count = data.GetU32(&offset);
511       lldb::offset_t next_thread_state = offset + (count * 4);
512       switch (flavor) {
513       case GPRAltRegSet:
514       case GPRRegSet:
515         for (uint32_t i = 0; i < count; ++i) {
516           gpr.r[i] = data.GetU32(&offset);
517         }
518 
519         // Note that gpr.cpsr is also copied by the above loop; this loop
520         // technically extends
521         // one element past the end of the gpr.r[] array.
522 
523         SetError(GPRRegSet, Read, 0);
524         offset = next_thread_state;
525         break;
526 
527       case FPURegSet: {
528         uint8_t *fpu_reg_buf = (uint8_t *)&fpu.floats.s[0];
529         const int fpu_reg_buf_size = sizeof(fpu.floats);
530         if (data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
531                               fpu_reg_buf) == fpu_reg_buf_size) {
532           offset += fpu_reg_buf_size;
533           fpu.fpscr = data.GetU32(&offset);
534           SetError(FPURegSet, Read, 0);
535         } else {
536           done = true;
537         }
538       }
539         offset = next_thread_state;
540         break;
541 
542       case EXCRegSet:
543         if (count == 3) {
544           exc.exception = data.GetU32(&offset);
545           exc.fsr = data.GetU32(&offset);
546           exc.far = data.GetU32(&offset);
547           SetError(EXCRegSet, Read, 0);
548         }
549         done = true;
550         offset = next_thread_state;
551         break;
552 
553       // Unknown register set flavor, stop trying to parse.
554       default:
555         done = true;
556       }
557     }
558   }
559 
560   static size_t WriteRegister(RegisterContext *reg_ctx, const char *name,
561                               const char *alt_name, size_t reg_byte_size,
562                               Stream &data) {
563     const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
564     if (reg_info == NULL)
565       reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
566     if (reg_info) {
567       lldb_private::RegisterValue reg_value;
568       if (reg_ctx->ReadRegister(reg_info, reg_value)) {
569         if (reg_info->byte_size >= reg_byte_size)
570           data.Write(reg_value.GetBytes(), reg_byte_size);
571         else {
572           data.Write(reg_value.GetBytes(), reg_info->byte_size);
573           for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n;
574                ++i)
575             data.PutChar(0);
576         }
577         return reg_byte_size;
578       }
579     }
580     // Just write zeros if all else fails
581     for (size_t i = 0; i < reg_byte_size; ++i)
582       data.PutChar(0);
583     return reg_byte_size;
584   }
585 
586   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
587     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
588     if (reg_ctx_sp) {
589       RegisterContext *reg_ctx = reg_ctx_sp.get();
590 
591       data.PutHex32(GPRRegSet); // Flavor
592       data.PutHex32(GPRWordCount);
593       WriteRegister(reg_ctx, "r0", NULL, 4, data);
594       WriteRegister(reg_ctx, "r1", NULL, 4, data);
595       WriteRegister(reg_ctx, "r2", NULL, 4, data);
596       WriteRegister(reg_ctx, "r3", NULL, 4, data);
597       WriteRegister(reg_ctx, "r4", NULL, 4, data);
598       WriteRegister(reg_ctx, "r5", NULL, 4, data);
599       WriteRegister(reg_ctx, "r6", NULL, 4, data);
600       WriteRegister(reg_ctx, "r7", NULL, 4, data);
601       WriteRegister(reg_ctx, "r8", NULL, 4, data);
602       WriteRegister(reg_ctx, "r9", NULL, 4, data);
603       WriteRegister(reg_ctx, "r10", NULL, 4, data);
604       WriteRegister(reg_ctx, "r11", NULL, 4, data);
605       WriteRegister(reg_ctx, "r12", NULL, 4, data);
606       WriteRegister(reg_ctx, "sp", NULL, 4, data);
607       WriteRegister(reg_ctx, "lr", NULL, 4, data);
608       WriteRegister(reg_ctx, "pc", NULL, 4, data);
609       WriteRegister(reg_ctx, "cpsr", NULL, 4, data);
610 
611       // Write out the EXC registers
612       //            data.PutHex32 (EXCRegSet);
613       //            data.PutHex32 (EXCWordCount);
614       //            WriteRegister (reg_ctx, "exception", NULL, 4, data);
615       //            WriteRegister (reg_ctx, "fsr", NULL, 4, data);
616       //            WriteRegister (reg_ctx, "far", NULL, 4, data);
617       return true;
618     }
619     return false;
620   }
621 
622 protected:
623   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
624 
625   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
626 
627   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
628 
629   int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
630 
631   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
632     return 0;
633   }
634 
635   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
636     return 0;
637   }
638 
639   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
640     return 0;
641   }
642 
643   int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
644     return -1;
645   }
646 };
647 
648 class RegisterContextDarwin_arm64_Mach : public RegisterContextDarwin_arm64 {
649 public:
650   RegisterContextDarwin_arm64_Mach(lldb_private::Thread &thread,
651                                    const DataExtractor &data)
652       : RegisterContextDarwin_arm64(thread, 0) {
653     SetRegisterDataFrom_LC_THREAD(data);
654   }
655 
656   void InvalidateAllRegisters() override {
657     // Do nothing... registers are always valid...
658   }
659 
660   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
661     lldb::offset_t offset = 0;
662     SetError(GPRRegSet, Read, -1);
663     SetError(FPURegSet, Read, -1);
664     SetError(EXCRegSet, Read, -1);
665     bool done = false;
666     while (!done) {
667       int flavor = data.GetU32(&offset);
668       uint32_t count = data.GetU32(&offset);
669       lldb::offset_t next_thread_state = offset + (count * 4);
670       switch (flavor) {
671       case GPRRegSet:
672         // x0-x29 + fp + lr + sp + pc (== 33 64-bit registers) plus cpsr (1
673         // 32-bit register)
674         if (count >= (33 * 2) + 1) {
675           for (uint32_t i = 0; i < 29; ++i)
676             gpr.x[i] = data.GetU64(&offset);
677           gpr.fp = data.GetU64(&offset);
678           gpr.lr = data.GetU64(&offset);
679           gpr.sp = data.GetU64(&offset);
680           gpr.pc = data.GetU64(&offset);
681           gpr.cpsr = data.GetU32(&offset);
682           SetError(GPRRegSet, Read, 0);
683         }
684         offset = next_thread_state;
685         break;
686       case FPURegSet: {
687         uint8_t *fpu_reg_buf = (uint8_t *)&fpu.v[0];
688         const int fpu_reg_buf_size = sizeof(fpu);
689         if (fpu_reg_buf_size == count * sizeof(uint32_t) &&
690             data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
691                               fpu_reg_buf) == fpu_reg_buf_size) {
692           SetError(FPURegSet, Read, 0);
693         } else {
694           done = true;
695         }
696       }
697         offset = next_thread_state;
698         break;
699       case EXCRegSet:
700         if (count == 4) {
701           exc.far = data.GetU64(&offset);
702           exc.esr = data.GetU32(&offset);
703           exc.exception = data.GetU32(&offset);
704           SetError(EXCRegSet, Read, 0);
705         }
706         offset = next_thread_state;
707         break;
708       default:
709         done = true;
710         break;
711       }
712     }
713   }
714 
715   static size_t WriteRegister(RegisterContext *reg_ctx, const char *name,
716                               const char *alt_name, size_t reg_byte_size,
717                               Stream &data) {
718     const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
719     if (reg_info == NULL)
720       reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
721     if (reg_info) {
722       lldb_private::RegisterValue reg_value;
723       if (reg_ctx->ReadRegister(reg_info, reg_value)) {
724         if (reg_info->byte_size >= reg_byte_size)
725           data.Write(reg_value.GetBytes(), reg_byte_size);
726         else {
727           data.Write(reg_value.GetBytes(), reg_info->byte_size);
728           for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n;
729                ++i)
730             data.PutChar(0);
731         }
732         return reg_byte_size;
733       }
734     }
735     // Just write zeros if all else fails
736     for (size_t i = 0; i < reg_byte_size; ++i)
737       data.PutChar(0);
738     return reg_byte_size;
739   }
740 
741   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
742     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
743     if (reg_ctx_sp) {
744       RegisterContext *reg_ctx = reg_ctx_sp.get();
745 
746       data.PutHex32(GPRRegSet); // Flavor
747       data.PutHex32(GPRWordCount);
748       WriteRegister(reg_ctx, "x0", NULL, 8, data);
749       WriteRegister(reg_ctx, "x1", NULL, 8, data);
750       WriteRegister(reg_ctx, "x2", NULL, 8, data);
751       WriteRegister(reg_ctx, "x3", NULL, 8, data);
752       WriteRegister(reg_ctx, "x4", NULL, 8, data);
753       WriteRegister(reg_ctx, "x5", NULL, 8, data);
754       WriteRegister(reg_ctx, "x6", NULL, 8, data);
755       WriteRegister(reg_ctx, "x7", NULL, 8, data);
756       WriteRegister(reg_ctx, "x8", NULL, 8, data);
757       WriteRegister(reg_ctx, "x9", NULL, 8, data);
758       WriteRegister(reg_ctx, "x10", NULL, 8, data);
759       WriteRegister(reg_ctx, "x11", NULL, 8, data);
760       WriteRegister(reg_ctx, "x12", NULL, 8, data);
761       WriteRegister(reg_ctx, "x13", NULL, 8, data);
762       WriteRegister(reg_ctx, "x14", NULL, 8, data);
763       WriteRegister(reg_ctx, "x15", NULL, 8, data);
764       WriteRegister(reg_ctx, "x16", NULL, 8, data);
765       WriteRegister(reg_ctx, "x17", NULL, 8, data);
766       WriteRegister(reg_ctx, "x18", NULL, 8, data);
767       WriteRegister(reg_ctx, "x19", NULL, 8, data);
768       WriteRegister(reg_ctx, "x20", NULL, 8, data);
769       WriteRegister(reg_ctx, "x21", NULL, 8, data);
770       WriteRegister(reg_ctx, "x22", NULL, 8, data);
771       WriteRegister(reg_ctx, "x23", NULL, 8, data);
772       WriteRegister(reg_ctx, "x24", NULL, 8, data);
773       WriteRegister(reg_ctx, "x25", NULL, 8, data);
774       WriteRegister(reg_ctx, "x26", NULL, 8, data);
775       WriteRegister(reg_ctx, "x27", NULL, 8, data);
776       WriteRegister(reg_ctx, "x28", NULL, 8, data);
777       WriteRegister(reg_ctx, "fp", NULL, 8, data);
778       WriteRegister(reg_ctx, "lr", NULL, 8, data);
779       WriteRegister(reg_ctx, "sp", NULL, 8, data);
780       WriteRegister(reg_ctx, "pc", NULL, 8, data);
781       WriteRegister(reg_ctx, "cpsr", NULL, 4, data);
782 
783       // Write out the EXC registers
784       //            data.PutHex32 (EXCRegSet);
785       //            data.PutHex32 (EXCWordCount);
786       //            WriteRegister (reg_ctx, "far", NULL, 8, data);
787       //            WriteRegister (reg_ctx, "esr", NULL, 4, data);
788       //            WriteRegister (reg_ctx, "exception", NULL, 4, data);
789       return true;
790     }
791     return false;
792   }
793 
794 protected:
795   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
796 
797   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
798 
799   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
800 
801   int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
802 
803   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
804     return 0;
805   }
806 
807   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
808     return 0;
809   }
810 
811   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
812     return 0;
813   }
814 
815   int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
816     return -1;
817   }
818 };
819 
820 static uint32_t MachHeaderSizeFromMagic(uint32_t magic) {
821   switch (magic) {
822   case MH_MAGIC:
823   case MH_CIGAM:
824     return sizeof(struct mach_header);
825 
826   case MH_MAGIC_64:
827   case MH_CIGAM_64:
828     return sizeof(struct mach_header_64);
829     break;
830 
831   default:
832     break;
833   }
834   return 0;
835 }
836 
837 #define MACHO_NLIST_ARM_SYMBOL_IS_THUMB 0x0008
838 
839 void ObjectFileMachO::Initialize() {
840   PluginManager::RegisterPlugin(
841       GetPluginNameStatic(), GetPluginDescriptionStatic(), CreateInstance,
842       CreateMemoryInstance, GetModuleSpecifications, SaveCore);
843 }
844 
845 void ObjectFileMachO::Terminate() {
846   PluginManager::UnregisterPlugin(CreateInstance);
847 }
848 
849 lldb_private::ConstString ObjectFileMachO::GetPluginNameStatic() {
850   static ConstString g_name("mach-o");
851   return g_name;
852 }
853 
854 const char *ObjectFileMachO::GetPluginDescriptionStatic() {
855   return "Mach-o object file reader (32 and 64 bit)";
856 }
857 
858 ObjectFile *ObjectFileMachO::CreateInstance(const lldb::ModuleSP &module_sp,
859                                             DataBufferSP &data_sp,
860                                             lldb::offset_t data_offset,
861                                             const FileSpec *file,
862                                             lldb::offset_t file_offset,
863                                             lldb::offset_t length) {
864   if (!data_sp) {
865     data_sp = MapFileData(*file, length, file_offset);
866     if (!data_sp)
867       return nullptr;
868     data_offset = 0;
869   }
870 
871   if (!ObjectFileMachO::MagicBytesMatch(data_sp, data_offset, length))
872     return nullptr;
873 
874   // Update the data to contain the entire file if it doesn't already
875   if (data_sp->GetByteSize() < length) {
876     data_sp = MapFileData(*file, length, file_offset);
877     if (!data_sp)
878       return nullptr;
879     data_offset = 0;
880   }
881   auto objfile_ap = llvm::make_unique<ObjectFileMachO>(
882       module_sp, data_sp, data_offset, file, file_offset, length);
883   if (!objfile_ap || !objfile_ap->ParseHeader())
884     return nullptr;
885 
886   return objfile_ap.release();
887 }
888 
889 ObjectFile *ObjectFileMachO::CreateMemoryInstance(
890     const lldb::ModuleSP &module_sp, DataBufferSP &data_sp,
891     const ProcessSP &process_sp, lldb::addr_t header_addr) {
892   if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
893     std::unique_ptr<ObjectFile> objfile_ap(
894         new ObjectFileMachO(module_sp, data_sp, process_sp, header_addr));
895     if (objfile_ap.get() && objfile_ap->ParseHeader())
896       return objfile_ap.release();
897   }
898   return NULL;
899 }
900 
901 size_t ObjectFileMachO::GetModuleSpecifications(
902     const lldb_private::FileSpec &file, lldb::DataBufferSP &data_sp,
903     lldb::offset_t data_offset, lldb::offset_t file_offset,
904     lldb::offset_t length, lldb_private::ModuleSpecList &specs) {
905   const size_t initial_count = specs.GetSize();
906 
907   if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
908     DataExtractor data;
909     data.SetData(data_sp);
910     llvm::MachO::mach_header header;
911     if (ParseHeader(data, &data_offset, header)) {
912       size_t header_and_load_cmds =
913           header.sizeofcmds + MachHeaderSizeFromMagic(header.magic);
914       if (header_and_load_cmds >= data_sp->GetByteSize()) {
915         data_sp = MapFileData(file, header_and_load_cmds, file_offset);
916         data.SetData(data_sp);
917         data_offset = MachHeaderSizeFromMagic(header.magic);
918       }
919       if (data_sp) {
920         ModuleSpec spec;
921         spec.GetFileSpec() = file;
922         spec.SetObjectOffset(file_offset);
923         spec.SetObjectSize(length);
924 
925         if (GetArchitecture(header, data, data_offset,
926                             spec.GetArchitecture())) {
927           if (spec.GetArchitecture().IsValid()) {
928             GetUUID(header, data, data_offset, spec.GetUUID());
929             specs.Append(spec);
930           }
931         }
932       }
933     }
934   }
935   return specs.GetSize() - initial_count;
936 }
937 
938 const ConstString &ObjectFileMachO::GetSegmentNameTEXT() {
939   static ConstString g_segment_name_TEXT("__TEXT");
940   return g_segment_name_TEXT;
941 }
942 
943 const ConstString &ObjectFileMachO::GetSegmentNameDATA() {
944   static ConstString g_segment_name_DATA("__DATA");
945   return g_segment_name_DATA;
946 }
947 
948 const ConstString &ObjectFileMachO::GetSegmentNameDATA_DIRTY() {
949   static ConstString g_segment_name("__DATA_DIRTY");
950   return g_segment_name;
951 }
952 
953 const ConstString &ObjectFileMachO::GetSegmentNameDATA_CONST() {
954   static ConstString g_segment_name("__DATA_CONST");
955   return g_segment_name;
956 }
957 
958 const ConstString &ObjectFileMachO::GetSegmentNameOBJC() {
959   static ConstString g_segment_name_OBJC("__OBJC");
960   return g_segment_name_OBJC;
961 }
962 
963 const ConstString &ObjectFileMachO::GetSegmentNameLINKEDIT() {
964   static ConstString g_section_name_LINKEDIT("__LINKEDIT");
965   return g_section_name_LINKEDIT;
966 }
967 
968 const ConstString &ObjectFileMachO::GetSectionNameEHFrame() {
969   static ConstString g_section_name_eh_frame("__eh_frame");
970   return g_section_name_eh_frame;
971 }
972 
973 bool ObjectFileMachO::MagicBytesMatch(DataBufferSP &data_sp,
974                                       lldb::addr_t data_offset,
975                                       lldb::addr_t data_length) {
976   DataExtractor data;
977   data.SetData(data_sp, data_offset, data_length);
978   lldb::offset_t offset = 0;
979   uint32_t magic = data.GetU32(&offset);
980   return MachHeaderSizeFromMagic(magic) != 0;
981 }
982 
983 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
984                                  DataBufferSP &data_sp,
985                                  lldb::offset_t data_offset,
986                                  const FileSpec *file,
987                                  lldb::offset_t file_offset,
988                                  lldb::offset_t length)
989     : ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset),
990       m_mach_segments(), m_mach_sections(), m_entry_point_address(),
991       m_thread_context_offsets(), m_thread_context_offsets_valid(false),
992       m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) {
993   ::memset(&m_header, 0, sizeof(m_header));
994   ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
995 }
996 
997 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
998                                  lldb::DataBufferSP &header_data_sp,
999                                  const lldb::ProcessSP &process_sp,
1000                                  lldb::addr_t header_addr)
1001     : ObjectFile(module_sp, process_sp, header_addr, header_data_sp),
1002       m_mach_segments(), m_mach_sections(), m_entry_point_address(),
1003       m_thread_context_offsets(), m_thread_context_offsets_valid(false),
1004       m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) {
1005   ::memset(&m_header, 0, sizeof(m_header));
1006   ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
1007 }
1008 
1009 bool ObjectFileMachO::ParseHeader(DataExtractor &data,
1010                                   lldb::offset_t *data_offset_ptr,
1011                                   llvm::MachO::mach_header &header) {
1012   data.SetByteOrder(endian::InlHostByteOrder());
1013   // Leave magic in the original byte order
1014   header.magic = data.GetU32(data_offset_ptr);
1015   bool can_parse = false;
1016   bool is_64_bit = false;
1017   switch (header.magic) {
1018   case MH_MAGIC:
1019     data.SetByteOrder(endian::InlHostByteOrder());
1020     data.SetAddressByteSize(4);
1021     can_parse = true;
1022     break;
1023 
1024   case MH_MAGIC_64:
1025     data.SetByteOrder(endian::InlHostByteOrder());
1026     data.SetAddressByteSize(8);
1027     can_parse = true;
1028     is_64_bit = true;
1029     break;
1030 
1031   case MH_CIGAM:
1032     data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1033                           ? eByteOrderLittle
1034                           : eByteOrderBig);
1035     data.SetAddressByteSize(4);
1036     can_parse = true;
1037     break;
1038 
1039   case MH_CIGAM_64:
1040     data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1041                           ? eByteOrderLittle
1042                           : eByteOrderBig);
1043     data.SetAddressByteSize(8);
1044     is_64_bit = true;
1045     can_parse = true;
1046     break;
1047 
1048   default:
1049     break;
1050   }
1051 
1052   if (can_parse) {
1053     data.GetU32(data_offset_ptr, &header.cputype, 6);
1054     if (is_64_bit)
1055       *data_offset_ptr += 4;
1056     return true;
1057   } else {
1058     memset(&header, 0, sizeof(header));
1059   }
1060   return false;
1061 }
1062 
1063 bool ObjectFileMachO::ParseHeader() {
1064   ModuleSP module_sp(GetModule());
1065   if (module_sp) {
1066     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
1067     bool can_parse = false;
1068     lldb::offset_t offset = 0;
1069     m_data.SetByteOrder(endian::InlHostByteOrder());
1070     // Leave magic in the original byte order
1071     m_header.magic = m_data.GetU32(&offset);
1072     switch (m_header.magic) {
1073     case MH_MAGIC:
1074       m_data.SetByteOrder(endian::InlHostByteOrder());
1075       m_data.SetAddressByteSize(4);
1076       can_parse = true;
1077       break;
1078 
1079     case MH_MAGIC_64:
1080       m_data.SetByteOrder(endian::InlHostByteOrder());
1081       m_data.SetAddressByteSize(8);
1082       can_parse = true;
1083       break;
1084 
1085     case MH_CIGAM:
1086       m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1087                               ? eByteOrderLittle
1088                               : eByteOrderBig);
1089       m_data.SetAddressByteSize(4);
1090       can_parse = true;
1091       break;
1092 
1093     case MH_CIGAM_64:
1094       m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1095                               ? eByteOrderLittle
1096                               : eByteOrderBig);
1097       m_data.SetAddressByteSize(8);
1098       can_parse = true;
1099       break;
1100 
1101     default:
1102       break;
1103     }
1104 
1105     if (can_parse) {
1106       m_data.GetU32(&offset, &m_header.cputype, 6);
1107 
1108       ArchSpec mach_arch;
1109 
1110       if (GetArchitecture(mach_arch)) {
1111         // Check if the module has a required architecture
1112         const ArchSpec &module_arch = module_sp->GetArchitecture();
1113         if (module_arch.IsValid() && !module_arch.IsCompatibleMatch(mach_arch))
1114           return false;
1115 
1116         if (SetModulesArchitecture(mach_arch)) {
1117           const size_t header_and_lc_size =
1118               m_header.sizeofcmds + MachHeaderSizeFromMagic(m_header.magic);
1119           if (m_data.GetByteSize() < header_and_lc_size) {
1120             DataBufferSP data_sp;
1121             ProcessSP process_sp(m_process_wp.lock());
1122             if (process_sp) {
1123               data_sp =
1124                   ReadMemory(process_sp, m_memory_addr, header_and_lc_size);
1125             } else {
1126               // Read in all only the load command data from the file on disk
1127               data_sp = MapFileData(m_file, header_and_lc_size, m_file_offset);
1128               if (data_sp->GetByteSize() != header_and_lc_size)
1129                 return false;
1130             }
1131             if (data_sp)
1132               m_data.SetData(data_sp);
1133           }
1134         }
1135         return true;
1136       }
1137     } else {
1138       memset(&m_header, 0, sizeof(struct mach_header));
1139     }
1140   }
1141   return false;
1142 }
1143 
1144 ByteOrder ObjectFileMachO::GetByteOrder() const {
1145   return m_data.GetByteOrder();
1146 }
1147 
1148 bool ObjectFileMachO::IsExecutable() const {
1149   return m_header.filetype == MH_EXECUTE;
1150 }
1151 
1152 uint32_t ObjectFileMachO::GetAddressByteSize() const {
1153   return m_data.GetAddressByteSize();
1154 }
1155 
1156 AddressClass ObjectFileMachO::GetAddressClass(lldb::addr_t file_addr) {
1157   Symtab *symtab = GetSymtab();
1158   if (symtab) {
1159     Symbol *symbol = symtab->FindSymbolContainingFileAddress(file_addr);
1160     if (symbol) {
1161       if (symbol->ValueIsAddress()) {
1162         SectionSP section_sp(symbol->GetAddressRef().GetSection());
1163         if (section_sp) {
1164           const lldb::SectionType section_type = section_sp->GetType();
1165           switch (section_type) {
1166           case eSectionTypeInvalid:
1167             return eAddressClassUnknown;
1168 
1169           case eSectionTypeCode:
1170             if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
1171               // For ARM we have a bit in the n_desc field of the symbol
1172               // that tells us ARM/Thumb which is bit 0x0008.
1173               if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB)
1174                 return eAddressClassCodeAlternateISA;
1175             }
1176             return eAddressClassCode;
1177 
1178           case eSectionTypeContainer:
1179             return eAddressClassUnknown;
1180 
1181           case eSectionTypeData:
1182           case eSectionTypeDataCString:
1183           case eSectionTypeDataCStringPointers:
1184           case eSectionTypeDataSymbolAddress:
1185           case eSectionTypeData4:
1186           case eSectionTypeData8:
1187           case eSectionTypeData16:
1188           case eSectionTypeDataPointers:
1189           case eSectionTypeZeroFill:
1190           case eSectionTypeDataObjCMessageRefs:
1191           case eSectionTypeDataObjCCFStrings:
1192           case eSectionTypeGoSymtab:
1193             return eAddressClassData;
1194 
1195           case eSectionTypeDebug:
1196           case eSectionTypeDWARFDebugAbbrev:
1197           case eSectionTypeDWARFDebugAddr:
1198           case eSectionTypeDWARFDebugAranges:
1199           case eSectionTypeDWARFDebugCuIndex:
1200           case eSectionTypeDWARFDebugFrame:
1201           case eSectionTypeDWARFDebugInfo:
1202           case eSectionTypeDWARFDebugLine:
1203           case eSectionTypeDWARFDebugLoc:
1204           case eSectionTypeDWARFDebugMacInfo:
1205           case eSectionTypeDWARFDebugMacro:
1206           case eSectionTypeDWARFDebugPubNames:
1207           case eSectionTypeDWARFDebugPubTypes:
1208           case eSectionTypeDWARFDebugRanges:
1209           case eSectionTypeDWARFDebugStr:
1210           case eSectionTypeDWARFDebugStrOffsets:
1211           case eSectionTypeDWARFAppleNames:
1212           case eSectionTypeDWARFAppleTypes:
1213           case eSectionTypeDWARFAppleNamespaces:
1214           case eSectionTypeDWARFAppleObjC:
1215             return eAddressClassDebug;
1216 
1217           case eSectionTypeEHFrame:
1218           case eSectionTypeARMexidx:
1219           case eSectionTypeARMextab:
1220           case eSectionTypeCompactUnwind:
1221             return eAddressClassRuntime;
1222 
1223           case eSectionTypeAbsoluteAddress:
1224           case eSectionTypeELFSymbolTable:
1225           case eSectionTypeELFDynamicSymbols:
1226           case eSectionTypeELFRelocationEntries:
1227           case eSectionTypeELFDynamicLinkInfo:
1228           case eSectionTypeOther:
1229             return eAddressClassUnknown;
1230           }
1231         }
1232       }
1233 
1234       const SymbolType symbol_type = symbol->GetType();
1235       switch (symbol_type) {
1236       case eSymbolTypeAny:
1237         return eAddressClassUnknown;
1238       case eSymbolTypeAbsolute:
1239         return eAddressClassUnknown;
1240 
1241       case eSymbolTypeCode:
1242       case eSymbolTypeTrampoline:
1243       case eSymbolTypeResolver:
1244         if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
1245           // For ARM we have a bit in the n_desc field of the symbol
1246           // that tells us ARM/Thumb which is bit 0x0008.
1247           if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB)
1248             return eAddressClassCodeAlternateISA;
1249         }
1250         return eAddressClassCode;
1251 
1252       case eSymbolTypeData:
1253         return eAddressClassData;
1254       case eSymbolTypeRuntime:
1255         return eAddressClassRuntime;
1256       case eSymbolTypeException:
1257         return eAddressClassRuntime;
1258       case eSymbolTypeSourceFile:
1259         return eAddressClassDebug;
1260       case eSymbolTypeHeaderFile:
1261         return eAddressClassDebug;
1262       case eSymbolTypeObjectFile:
1263         return eAddressClassDebug;
1264       case eSymbolTypeCommonBlock:
1265         return eAddressClassDebug;
1266       case eSymbolTypeBlock:
1267         return eAddressClassDebug;
1268       case eSymbolTypeLocal:
1269         return eAddressClassData;
1270       case eSymbolTypeParam:
1271         return eAddressClassData;
1272       case eSymbolTypeVariable:
1273         return eAddressClassData;
1274       case eSymbolTypeVariableType:
1275         return eAddressClassDebug;
1276       case eSymbolTypeLineEntry:
1277         return eAddressClassDebug;
1278       case eSymbolTypeLineHeader:
1279         return eAddressClassDebug;
1280       case eSymbolTypeScopeBegin:
1281         return eAddressClassDebug;
1282       case eSymbolTypeScopeEnd:
1283         return eAddressClassDebug;
1284       case eSymbolTypeAdditional:
1285         return eAddressClassUnknown;
1286       case eSymbolTypeCompiler:
1287         return eAddressClassDebug;
1288       case eSymbolTypeInstrumentation:
1289         return eAddressClassDebug;
1290       case eSymbolTypeUndefined:
1291         return eAddressClassUnknown;
1292       case eSymbolTypeObjCClass:
1293         return eAddressClassRuntime;
1294       case eSymbolTypeObjCMetaClass:
1295         return eAddressClassRuntime;
1296       case eSymbolTypeObjCIVar:
1297         return eAddressClassRuntime;
1298       case eSymbolTypeReExported:
1299         return eAddressClassRuntime;
1300       }
1301     }
1302   }
1303   return eAddressClassUnknown;
1304 }
1305 
1306 Symtab *ObjectFileMachO::GetSymtab() {
1307   ModuleSP module_sp(GetModule());
1308   if (module_sp) {
1309     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
1310     if (m_symtab_ap.get() == NULL) {
1311       m_symtab_ap.reset(new Symtab(this));
1312       std::lock_guard<std::recursive_mutex> symtab_guard(
1313           m_symtab_ap->GetMutex());
1314       ParseSymtab();
1315       m_symtab_ap->Finalize();
1316     }
1317   }
1318   return m_symtab_ap.get();
1319 }
1320 
1321 bool ObjectFileMachO::IsStripped() {
1322   if (m_dysymtab.cmd == 0) {
1323     ModuleSP module_sp(GetModule());
1324     if (module_sp) {
1325       lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1326       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1327         const lldb::offset_t load_cmd_offset = offset;
1328 
1329         load_command lc;
1330         if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL)
1331           break;
1332         if (lc.cmd == LC_DYSYMTAB) {
1333           m_dysymtab.cmd = lc.cmd;
1334           m_dysymtab.cmdsize = lc.cmdsize;
1335           if (m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
1336                             (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2) ==
1337               NULL) {
1338             // Clear m_dysymtab if we were unable to read all items from the
1339             // load command
1340             ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
1341           }
1342         }
1343         offset = load_cmd_offset + lc.cmdsize;
1344       }
1345     }
1346   }
1347   if (m_dysymtab.cmd)
1348     return m_dysymtab.nlocalsym <= 1;
1349   return false;
1350 }
1351 
1352 ObjectFileMachO::EncryptedFileRanges ObjectFileMachO::GetEncryptedFileRanges() {
1353   EncryptedFileRanges result;
1354   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1355 
1356   encryption_info_command encryption_cmd;
1357   for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1358     const lldb::offset_t load_cmd_offset = offset;
1359     if (m_data.GetU32(&offset, &encryption_cmd, 2) == NULL)
1360       break;
1361 
1362     // LC_ENCRYPTION_INFO and LC_ENCRYPTION_INFO_64 have the same sizes for
1363     // the 3 fields we care about, so treat them the same.
1364     if (encryption_cmd.cmd == LC_ENCRYPTION_INFO ||
1365         encryption_cmd.cmd == LC_ENCRYPTION_INFO_64) {
1366       if (m_data.GetU32(&offset, &encryption_cmd.cryptoff, 3)) {
1367         if (encryption_cmd.cryptid != 0) {
1368           EncryptedFileRanges::Entry entry;
1369           entry.SetRangeBase(encryption_cmd.cryptoff);
1370           entry.SetByteSize(encryption_cmd.cryptsize);
1371           result.Append(entry);
1372         }
1373       }
1374     }
1375     offset = load_cmd_offset + encryption_cmd.cmdsize;
1376   }
1377 
1378   return result;
1379 }
1380 
1381 void ObjectFileMachO::SanitizeSegmentCommand(segment_command_64 &seg_cmd,
1382                                              uint32_t cmd_idx) {
1383   if (m_length == 0 || seg_cmd.filesize == 0)
1384     return;
1385 
1386   if (seg_cmd.fileoff > m_length) {
1387     // We have a load command that says it extends past the end of the file.
1388     // This is likely a corrupt file.  We don't have any way to return an error
1389     // condition here (this method was likely invoked from something like
1390     // ObjectFile::GetSectionList()), so we just null out the section contents,
1391     // and dump a message to stdout.  The most common case here is core file
1392     // debugging with a truncated file.
1393     const char *lc_segment_name =
1394         seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT";
1395     GetModule()->ReportWarning(
1396         "load command %u %s has a fileoff (0x%" PRIx64
1397         ") that extends beyond the end of the file (0x%" PRIx64
1398         "), ignoring this section",
1399         cmd_idx, lc_segment_name, seg_cmd.fileoff, m_length);
1400 
1401     seg_cmd.fileoff = 0;
1402     seg_cmd.filesize = 0;
1403   }
1404 
1405   if (seg_cmd.fileoff + seg_cmd.filesize > m_length) {
1406     // We have a load command that says it extends past the end of the file.
1407     // This is likely a corrupt file.  We don't have any way to return an error
1408     // condition here (this method was likely invoked from something like
1409     // ObjectFile::GetSectionList()), so we just null out the section contents,
1410     // and dump a message to stdout.  The most common case here is core file
1411     // debugging with a truncated file.
1412     const char *lc_segment_name =
1413         seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT";
1414     GetModule()->ReportWarning(
1415         "load command %u %s has a fileoff + filesize (0x%" PRIx64
1416         ") that extends beyond the end of the file (0x%" PRIx64
1417         "), the segment will be truncated to match",
1418         cmd_idx, lc_segment_name, seg_cmd.fileoff + seg_cmd.filesize, m_length);
1419 
1420     // Truncate the length
1421     seg_cmd.filesize = m_length - seg_cmd.fileoff;
1422   }
1423 }
1424 
1425 static uint32_t GetSegmentPermissions(const segment_command_64 &seg_cmd) {
1426   uint32_t result = 0;
1427   if (seg_cmd.initprot & VM_PROT_READ)
1428     result |= ePermissionsReadable;
1429   if (seg_cmd.initprot & VM_PROT_WRITE)
1430     result |= ePermissionsWritable;
1431   if (seg_cmd.initprot & VM_PROT_EXECUTE)
1432     result |= ePermissionsExecutable;
1433   return result;
1434 }
1435 
1436 static lldb::SectionType GetSectionType(uint32_t flags,
1437                                         ConstString section_name) {
1438 
1439   if (flags & (S_ATTR_PURE_INSTRUCTIONS | S_ATTR_SOME_INSTRUCTIONS))
1440     return eSectionTypeCode;
1441 
1442   uint32_t mach_sect_type = flags & SECTION_TYPE;
1443   static ConstString g_sect_name_objc_data("__objc_data");
1444   static ConstString g_sect_name_objc_msgrefs("__objc_msgrefs");
1445   static ConstString g_sect_name_objc_selrefs("__objc_selrefs");
1446   static ConstString g_sect_name_objc_classrefs("__objc_classrefs");
1447   static ConstString g_sect_name_objc_superrefs("__objc_superrefs");
1448   static ConstString g_sect_name_objc_const("__objc_const");
1449   static ConstString g_sect_name_objc_classlist("__objc_classlist");
1450   static ConstString g_sect_name_cfstring("__cfstring");
1451 
1452   static ConstString g_sect_name_dwarf_debug_abbrev("__debug_abbrev");
1453   static ConstString g_sect_name_dwarf_debug_aranges("__debug_aranges");
1454   static ConstString g_sect_name_dwarf_debug_frame("__debug_frame");
1455   static ConstString g_sect_name_dwarf_debug_info("__debug_info");
1456   static ConstString g_sect_name_dwarf_debug_line("__debug_line");
1457   static ConstString g_sect_name_dwarf_debug_loc("__debug_loc");
1458   static ConstString g_sect_name_dwarf_debug_macinfo("__debug_macinfo");
1459   static ConstString g_sect_name_dwarf_debug_pubnames("__debug_pubnames");
1460   static ConstString g_sect_name_dwarf_debug_pubtypes("__debug_pubtypes");
1461   static ConstString g_sect_name_dwarf_debug_ranges("__debug_ranges");
1462   static ConstString g_sect_name_dwarf_debug_str("__debug_str");
1463   static ConstString g_sect_name_dwarf_apple_names("__apple_names");
1464   static ConstString g_sect_name_dwarf_apple_types("__apple_types");
1465   static ConstString g_sect_name_dwarf_apple_namespaces("__apple_namespac");
1466   static ConstString g_sect_name_dwarf_apple_objc("__apple_objc");
1467   static ConstString g_sect_name_eh_frame("__eh_frame");
1468   static ConstString g_sect_name_compact_unwind("__unwind_info");
1469   static ConstString g_sect_name_text("__text");
1470   static ConstString g_sect_name_data("__data");
1471   static ConstString g_sect_name_go_symtab("__gosymtab");
1472 
1473   if (section_name == g_sect_name_dwarf_debug_abbrev)
1474     return eSectionTypeDWARFDebugAbbrev;
1475   if (section_name == g_sect_name_dwarf_debug_aranges)
1476     return eSectionTypeDWARFDebugAranges;
1477   if (section_name == g_sect_name_dwarf_debug_frame)
1478     return eSectionTypeDWARFDebugFrame;
1479   if (section_name == g_sect_name_dwarf_debug_info)
1480     return eSectionTypeDWARFDebugInfo;
1481   if (section_name == g_sect_name_dwarf_debug_line)
1482     return eSectionTypeDWARFDebugLine;
1483   if (section_name == g_sect_name_dwarf_debug_loc)
1484     return eSectionTypeDWARFDebugLoc;
1485   if (section_name == g_sect_name_dwarf_debug_macinfo)
1486     return eSectionTypeDWARFDebugMacInfo;
1487   if (section_name == g_sect_name_dwarf_debug_pubnames)
1488     return eSectionTypeDWARFDebugPubNames;
1489   if (section_name == g_sect_name_dwarf_debug_pubtypes)
1490     return eSectionTypeDWARFDebugPubTypes;
1491   if (section_name == g_sect_name_dwarf_debug_ranges)
1492     return eSectionTypeDWARFDebugRanges;
1493   if (section_name == g_sect_name_dwarf_debug_str)
1494     return eSectionTypeDWARFDebugStr;
1495   if (section_name == g_sect_name_dwarf_apple_names)
1496     return eSectionTypeDWARFAppleNames;
1497   if (section_name == g_sect_name_dwarf_apple_types)
1498     return eSectionTypeDWARFAppleTypes;
1499   if (section_name == g_sect_name_dwarf_apple_namespaces)
1500     return eSectionTypeDWARFAppleNamespaces;
1501   if (section_name == g_sect_name_dwarf_apple_objc)
1502     return eSectionTypeDWARFAppleObjC;
1503   if (section_name == g_sect_name_objc_selrefs)
1504     return eSectionTypeDataCStringPointers;
1505   if (section_name == g_sect_name_objc_msgrefs)
1506     return eSectionTypeDataObjCMessageRefs;
1507   if (section_name == g_sect_name_eh_frame)
1508     return eSectionTypeEHFrame;
1509   if (section_name == g_sect_name_compact_unwind)
1510     return eSectionTypeCompactUnwind;
1511   if (section_name == g_sect_name_cfstring)
1512     return eSectionTypeDataObjCCFStrings;
1513   if (section_name == g_sect_name_go_symtab)
1514     return eSectionTypeGoSymtab;
1515   if (section_name == g_sect_name_objc_data ||
1516       section_name == g_sect_name_objc_classrefs ||
1517       section_name == g_sect_name_objc_superrefs ||
1518       section_name == g_sect_name_objc_const ||
1519       section_name == g_sect_name_objc_classlist) {
1520     return eSectionTypeDataPointers;
1521   }
1522 
1523   switch (mach_sect_type) {
1524   // TODO: categorize sections by other flags for regular sections
1525   case S_REGULAR:
1526     if (section_name == g_sect_name_text)
1527       return eSectionTypeCode;
1528     if (section_name == g_sect_name_data)
1529       return eSectionTypeData;
1530     return eSectionTypeOther;
1531   case S_ZEROFILL:
1532     return eSectionTypeZeroFill;
1533   case S_CSTRING_LITERALS: // section with only literal C strings
1534     return eSectionTypeDataCString;
1535   case S_4BYTE_LITERALS: // section with only 4 byte literals
1536     return eSectionTypeData4;
1537   case S_8BYTE_LITERALS: // section with only 8 byte literals
1538     return eSectionTypeData8;
1539   case S_LITERAL_POINTERS: // section with only pointers to literals
1540     return eSectionTypeDataPointers;
1541   case S_NON_LAZY_SYMBOL_POINTERS: // section with only non-lazy symbol pointers
1542     return eSectionTypeDataPointers;
1543   case S_LAZY_SYMBOL_POINTERS: // section with only lazy symbol pointers
1544     return eSectionTypeDataPointers;
1545   case S_SYMBOL_STUBS: // section with only symbol stubs, byte size of stub in
1546                        // the reserved2 field
1547     return eSectionTypeCode;
1548   case S_MOD_INIT_FUNC_POINTERS: // section with only function pointers for
1549                                  // initialization
1550     return eSectionTypeDataPointers;
1551   case S_MOD_TERM_FUNC_POINTERS: // section with only function pointers for
1552                                  // termination
1553     return eSectionTypeDataPointers;
1554   case S_COALESCED:
1555     return eSectionTypeOther;
1556   case S_GB_ZEROFILL:
1557     return eSectionTypeZeroFill;
1558   case S_INTERPOSING: // section with only pairs of function pointers for
1559                       // interposing
1560     return eSectionTypeCode;
1561   case S_16BYTE_LITERALS: // section with only 16 byte literals
1562     return eSectionTypeData16;
1563   case S_DTRACE_DOF:
1564     return eSectionTypeDebug;
1565   case S_LAZY_DYLIB_SYMBOL_POINTERS:
1566     return eSectionTypeDataPointers;
1567   default:
1568     return eSectionTypeOther;
1569   }
1570 }
1571 
1572 struct ObjectFileMachO::SegmentParsingContext {
1573   const EncryptedFileRanges EncryptedRanges;
1574   lldb_private::SectionList &UnifiedList;
1575   uint32_t NextSegmentIdx = 0;
1576   uint32_t NextSectionIdx = 0;
1577   bool FileAddressesChanged = false;
1578 
1579   SegmentParsingContext(EncryptedFileRanges EncryptedRanges,
1580                         lldb_private::SectionList &UnifiedList)
1581       : EncryptedRanges(std::move(EncryptedRanges)), UnifiedList(UnifiedList) {}
1582 };
1583 
1584 void ObjectFileMachO::ProcessSegmentCommand(const load_command &load_cmd_,
1585                                             lldb::offset_t offset,
1586                                             uint32_t cmd_idx,
1587                                             SegmentParsingContext &context) {
1588   segment_command_64 load_cmd;
1589   memcpy(&load_cmd, &load_cmd_, sizeof(load_cmd_));
1590 
1591   if (!m_data.GetU8(&offset, (uint8_t *)load_cmd.segname, 16))
1592     return;
1593 
1594   ModuleSP module_sp = GetModule();
1595   const bool is_core = GetType() == eTypeCoreFile;
1596   const bool is_dsym = (m_header.filetype == MH_DSYM);
1597   bool add_section = true;
1598   bool add_to_unified = true;
1599   ConstString const_segname(
1600       load_cmd.segname,
1601       std::min<size_t>(strlen(load_cmd.segname), sizeof(load_cmd.segname)));
1602 
1603   SectionSP unified_section_sp(
1604       context.UnifiedList.FindSectionByName(const_segname));
1605   if (is_dsym && unified_section_sp) {
1606     if (const_segname == GetSegmentNameLINKEDIT()) {
1607       // We need to keep the __LINKEDIT segment private to this object
1608       // file only
1609       add_to_unified = false;
1610     } else {
1611       // This is the dSYM file and this section has already been created
1612       // by the object file, no need to create it.
1613       add_section = false;
1614     }
1615   }
1616   load_cmd.vmaddr = m_data.GetAddress(&offset);
1617   load_cmd.vmsize = m_data.GetAddress(&offset);
1618   load_cmd.fileoff = m_data.GetAddress(&offset);
1619   load_cmd.filesize = m_data.GetAddress(&offset);
1620   if (!m_data.GetU32(&offset, &load_cmd.maxprot, 4))
1621     return;
1622 
1623   SanitizeSegmentCommand(load_cmd, cmd_idx);
1624 
1625   const uint32_t segment_permissions = GetSegmentPermissions(load_cmd);
1626   const bool segment_is_encrypted =
1627       (load_cmd.flags & SG_PROTECTED_VERSION_1) != 0;
1628 
1629   // Keep a list of mach segments around in case we need to
1630   // get at data that isn't stored in the abstracted Sections.
1631   m_mach_segments.push_back(load_cmd);
1632 
1633   // Use a segment ID of the segment index shifted left by 8 so they
1634   // never conflict with any of the sections.
1635   SectionSP segment_sp;
1636   if (add_section && (const_segname || is_core)) {
1637     segment_sp.reset(new Section(
1638         module_sp, // Module to which this section belongs
1639         this,      // Object file to which this sections belongs
1640         ++context.NextSegmentIdx
1641             << 8, // Section ID is the 1 based segment index
1642         // shifted right by 8 bits as not to collide
1643         // with any of the 256 section IDs that are
1644         // possible
1645         const_segname,         // Name of this section
1646         eSectionTypeContainer, // This section is a container of other
1647         // sections.
1648         load_cmd.vmaddr, // File VM address == addresses as they are
1649         // found in the object file
1650         load_cmd.vmsize,  // VM size in bytes of this section
1651         load_cmd.fileoff, // Offset to the data for this section in
1652         // the file
1653         load_cmd.filesize, // Size in bytes of this section as found
1654         // in the file
1655         0,                // Segments have no alignment information
1656         load_cmd.flags)); // Flags for this section
1657 
1658     segment_sp->SetIsEncrypted(segment_is_encrypted);
1659     m_sections_ap->AddSection(segment_sp);
1660     segment_sp->SetPermissions(segment_permissions);
1661     if (add_to_unified)
1662       context.UnifiedList.AddSection(segment_sp);
1663   } else if (unified_section_sp) {
1664     if (is_dsym && unified_section_sp->GetFileAddress() != load_cmd.vmaddr) {
1665       // Check to see if the module was read from memory?
1666       if (module_sp->GetObjectFile()->GetHeaderAddress().IsValid()) {
1667         // We have a module that is in memory and needs to have its
1668         // file address adjusted. We need to do this because when we
1669         // load a file from memory, its addresses will be slid already,
1670         // yet the addresses in the new symbol file will still be
1671         // unslid.  Since everything is stored as section offset, this
1672         // shouldn't cause any problems.
1673 
1674         // Make sure we've parsed the symbol table from the
1675         // ObjectFile before we go around changing its Sections.
1676         module_sp->GetObjectFile()->GetSymtab();
1677         // eh_frame would present the same problems but we parse that
1678         // on a per-function basis as-needed so it's more difficult to
1679         // remove its use of the Sections.  Realistically, the
1680         // environments where this code path will be taken will not
1681         // have eh_frame sections.
1682 
1683         unified_section_sp->SetFileAddress(load_cmd.vmaddr);
1684 
1685         // Notify the module that the section addresses have been
1686         // changed once we're done so any file-address caches can be
1687         // updated.
1688         context.FileAddressesChanged = true;
1689       }
1690     }
1691     m_sections_ap->AddSection(unified_section_sp);
1692   }
1693 
1694   struct section_64 sect64;
1695   ::memset(&sect64, 0, sizeof(sect64));
1696   // Push a section into our mach sections for the section at
1697   // index zero (NO_SECT) if we don't have any mach sections yet...
1698   if (m_mach_sections.empty())
1699     m_mach_sections.push_back(sect64);
1700   uint32_t segment_sect_idx;
1701   const lldb::user_id_t first_segment_sectID = context.NextSectionIdx + 1;
1702 
1703   const uint32_t num_u32s = load_cmd.cmd == LC_SEGMENT ? 7 : 8;
1704   for (segment_sect_idx = 0; segment_sect_idx < load_cmd.nsects;
1705        ++segment_sect_idx) {
1706     if (m_data.GetU8(&offset, (uint8_t *)sect64.sectname,
1707                      sizeof(sect64.sectname)) == NULL)
1708       break;
1709     if (m_data.GetU8(&offset, (uint8_t *)sect64.segname,
1710                      sizeof(sect64.segname)) == NULL)
1711       break;
1712     sect64.addr = m_data.GetAddress(&offset);
1713     sect64.size = m_data.GetAddress(&offset);
1714 
1715     if (m_data.GetU32(&offset, &sect64.offset, num_u32s) == NULL)
1716       break;
1717 
1718     // Keep a list of mach sections around in case we need to
1719     // get at data that isn't stored in the abstracted Sections.
1720     m_mach_sections.push_back(sect64);
1721 
1722     if (add_section) {
1723       ConstString section_name(
1724           sect64.sectname,
1725           std::min<size_t>(strlen(sect64.sectname), sizeof(sect64.sectname)));
1726       if (!const_segname) {
1727         // We have a segment with no name so we need to conjure up
1728         // segments that correspond to the section's segname if there
1729         // isn't already such a section. If there is such a section, we
1730         // resize the section so that it spans all sections.  We also
1731         // mark these sections as fake so address matches don't hit if
1732         // they land in the gaps between the child sections.
1733         const_segname.SetTrimmedCStringWithLength(sect64.segname,
1734                                                   sizeof(sect64.segname));
1735         segment_sp = context.UnifiedList.FindSectionByName(const_segname);
1736         if (segment_sp.get()) {
1737           Section *segment = segment_sp.get();
1738           // Grow the section size as needed.
1739           const lldb::addr_t sect64_min_addr = sect64.addr;
1740           const lldb::addr_t sect64_max_addr = sect64_min_addr + sect64.size;
1741           const lldb::addr_t curr_seg_byte_size = segment->GetByteSize();
1742           const lldb::addr_t curr_seg_min_addr = segment->GetFileAddress();
1743           const lldb::addr_t curr_seg_max_addr =
1744               curr_seg_min_addr + curr_seg_byte_size;
1745           if (sect64_min_addr >= curr_seg_min_addr) {
1746             const lldb::addr_t new_seg_byte_size =
1747                 sect64_max_addr - curr_seg_min_addr;
1748             // Only grow the section size if needed
1749             if (new_seg_byte_size > curr_seg_byte_size)
1750               segment->SetByteSize(new_seg_byte_size);
1751           } else {
1752             // We need to change the base address of the segment and
1753             // adjust the child section offsets for all existing
1754             // children.
1755             const lldb::addr_t slide_amount =
1756                 sect64_min_addr - curr_seg_min_addr;
1757             segment->Slide(slide_amount, false);
1758             segment->GetChildren().Slide(-slide_amount, false);
1759             segment->SetByteSize(curr_seg_max_addr - sect64_min_addr);
1760           }
1761 
1762           // Grow the section size as needed.
1763           if (sect64.offset) {
1764             const lldb::addr_t segment_min_file_offset =
1765                 segment->GetFileOffset();
1766             const lldb::addr_t segment_max_file_offset =
1767                 segment_min_file_offset + segment->GetFileSize();
1768 
1769             const lldb::addr_t section_min_file_offset = sect64.offset;
1770             const lldb::addr_t section_max_file_offset =
1771                 section_min_file_offset + sect64.size;
1772             const lldb::addr_t new_file_offset =
1773                 std::min(section_min_file_offset, segment_min_file_offset);
1774             const lldb::addr_t new_file_size =
1775                 std::max(section_max_file_offset, segment_max_file_offset) -
1776                 new_file_offset;
1777             segment->SetFileOffset(new_file_offset);
1778             segment->SetFileSize(new_file_size);
1779           }
1780         } else {
1781           // Create a fake section for the section's named segment
1782           segment_sp.reset(new Section(
1783               segment_sp, // Parent section
1784               module_sp,  // Module to which this section belongs
1785               this,       // Object file to which this section belongs
1786               ++context.NextSegmentIdx
1787                   << 8, // Section ID is the 1 based segment index
1788               // shifted right by 8 bits as not to
1789               // collide with any of the 256 section IDs
1790               // that are possible
1791               const_segname,         // Name of this section
1792               eSectionTypeContainer, // This section is a container of
1793               // other sections.
1794               sect64.addr, // File VM address == addresses as they are
1795               // found in the object file
1796               sect64.size,   // VM size in bytes of this section
1797               sect64.offset, // Offset to the data for this section in
1798               // the file
1799               sect64.offset ? sect64.size : 0, // Size in bytes of
1800               // this section as
1801               // found in the file
1802               sect64.align,
1803               load_cmd.flags)); // Flags for this section
1804           segment_sp->SetIsFake(true);
1805           segment_sp->SetPermissions(segment_permissions);
1806           m_sections_ap->AddSection(segment_sp);
1807           if (add_to_unified)
1808             context.UnifiedList.AddSection(segment_sp);
1809           segment_sp->SetIsEncrypted(segment_is_encrypted);
1810         }
1811       }
1812       assert(segment_sp.get());
1813 
1814       lldb::SectionType sect_type = GetSectionType(sect64.flags, section_name);
1815 
1816       SectionSP section_sp(new Section(
1817           segment_sp, module_sp, this, ++context.NextSectionIdx, section_name,
1818           sect_type, sect64.addr - segment_sp->GetFileAddress(), sect64.size,
1819           sect64.offset, sect64.offset == 0 ? 0 : sect64.size, sect64.align,
1820           sect64.flags));
1821       // Set the section to be encrypted to match the segment
1822 
1823       bool section_is_encrypted = false;
1824       if (!segment_is_encrypted && load_cmd.filesize != 0)
1825         section_is_encrypted = context.EncryptedRanges.FindEntryThatContains(
1826                                    sect64.offset) != NULL;
1827 
1828       section_sp->SetIsEncrypted(segment_is_encrypted || section_is_encrypted);
1829       section_sp->SetPermissions(segment_permissions);
1830       segment_sp->GetChildren().AddSection(section_sp);
1831 
1832       if (segment_sp->IsFake()) {
1833         segment_sp.reset();
1834         const_segname.Clear();
1835       }
1836     }
1837   }
1838   if (segment_sp && is_dsym) {
1839     if (first_segment_sectID <= context.NextSectionIdx) {
1840       lldb::user_id_t sect_uid;
1841       for (sect_uid = first_segment_sectID; sect_uid <= context.NextSectionIdx;
1842            ++sect_uid) {
1843         SectionSP curr_section_sp(
1844             segment_sp->GetChildren().FindSectionByID(sect_uid));
1845         SectionSP next_section_sp;
1846         if (sect_uid + 1 <= context.NextSectionIdx)
1847           next_section_sp =
1848               segment_sp->GetChildren().FindSectionByID(sect_uid + 1);
1849 
1850         if (curr_section_sp.get()) {
1851           if (curr_section_sp->GetByteSize() == 0) {
1852             if (next_section_sp.get() != NULL)
1853               curr_section_sp->SetByteSize(next_section_sp->GetFileAddress() -
1854                                            curr_section_sp->GetFileAddress());
1855             else
1856               curr_section_sp->SetByteSize(load_cmd.vmsize);
1857           }
1858         }
1859       }
1860     }
1861   }
1862 }
1863 
1864 void ObjectFileMachO::ProcessDysymtabCommand(const load_command &load_cmd,
1865                                              lldb::offset_t offset) {
1866   m_dysymtab.cmd = load_cmd.cmd;
1867   m_dysymtab.cmdsize = load_cmd.cmdsize;
1868   m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
1869                 (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2);
1870 }
1871 
1872 void ObjectFileMachO::CreateSections(SectionList &unified_section_list) {
1873   if (m_sections_ap)
1874     return;
1875 
1876   m_sections_ap.reset(new SectionList());
1877 
1878   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1879   // bool dump_sections = false;
1880   ModuleSP module_sp(GetModule());
1881 
1882   offset = MachHeaderSizeFromMagic(m_header.magic);
1883 
1884   SegmentParsingContext context(GetEncryptedFileRanges(), unified_section_list);
1885   struct load_command load_cmd;
1886   for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1887     const lldb::offset_t load_cmd_offset = offset;
1888     if (m_data.GetU32(&offset, &load_cmd, 2) == NULL)
1889       break;
1890 
1891     if (load_cmd.cmd == LC_SEGMENT || load_cmd.cmd == LC_SEGMENT_64)
1892       ProcessSegmentCommand(load_cmd, offset, i, context);
1893     else if (load_cmd.cmd == LC_DYSYMTAB)
1894       ProcessDysymtabCommand(load_cmd, offset);
1895 
1896     offset = load_cmd_offset + load_cmd.cmdsize;
1897   }
1898 
1899   if (context.FileAddressesChanged && module_sp)
1900     module_sp->SectionFileAddressesChanged();
1901 }
1902 
1903 class MachSymtabSectionInfo {
1904 public:
1905   MachSymtabSectionInfo(SectionList *section_list)
1906       : m_section_list(section_list), m_section_infos() {
1907     // Get the number of sections down to a depth of 1 to include
1908     // all segments and their sections, but no other sections that
1909     // may be added for debug map or
1910     m_section_infos.resize(section_list->GetNumSections(1));
1911   }
1912 
1913   SectionSP GetSection(uint8_t n_sect, addr_t file_addr) {
1914     if (n_sect == 0)
1915       return SectionSP();
1916     if (n_sect < m_section_infos.size()) {
1917       if (!m_section_infos[n_sect].section_sp) {
1918         SectionSP section_sp(m_section_list->FindSectionByID(n_sect));
1919         m_section_infos[n_sect].section_sp = section_sp;
1920         if (section_sp) {
1921           m_section_infos[n_sect].vm_range.SetBaseAddress(
1922               section_sp->GetFileAddress());
1923           m_section_infos[n_sect].vm_range.SetByteSize(
1924               section_sp->GetByteSize());
1925         } else {
1926           Host::SystemLog(Host::eSystemLogError,
1927                           "error: unable to find section for section %u\n",
1928                           n_sect);
1929         }
1930       }
1931       if (m_section_infos[n_sect].vm_range.Contains(file_addr)) {
1932         // Symbol is in section.
1933         return m_section_infos[n_sect].section_sp;
1934       } else if (m_section_infos[n_sect].vm_range.GetByteSize() == 0 &&
1935                  m_section_infos[n_sect].vm_range.GetBaseAddress() ==
1936                      file_addr) {
1937         // Symbol is in section with zero size, but has the same start
1938         // address as the section. This can happen with linker symbols
1939         // (symbols that start with the letter 'l' or 'L'.
1940         return m_section_infos[n_sect].section_sp;
1941       }
1942     }
1943     return m_section_list->FindSectionContainingFileAddress(file_addr);
1944   }
1945 
1946 protected:
1947   struct SectionInfo {
1948     SectionInfo() : vm_range(), section_sp() {}
1949 
1950     VMRange vm_range;
1951     SectionSP section_sp;
1952   };
1953   SectionList *m_section_list;
1954   std::vector<SectionInfo> m_section_infos;
1955 };
1956 
1957 struct TrieEntry {
1958   TrieEntry()
1959       : name(), address(LLDB_INVALID_ADDRESS), flags(0), other(0),
1960         import_name() {}
1961 
1962   void Clear() {
1963     name.Clear();
1964     address = LLDB_INVALID_ADDRESS;
1965     flags = 0;
1966     other = 0;
1967     import_name.Clear();
1968   }
1969 
1970   void Dump() const {
1971     printf("0x%16.16llx 0x%16.16llx 0x%16.16llx \"%s\"",
1972            static_cast<unsigned long long>(address),
1973            static_cast<unsigned long long>(flags),
1974            static_cast<unsigned long long>(other), name.GetCString());
1975     if (import_name)
1976       printf(" -> \"%s\"\n", import_name.GetCString());
1977     else
1978       printf("\n");
1979   }
1980   ConstString name;
1981   uint64_t address;
1982   uint64_t flags;
1983   uint64_t other;
1984   ConstString import_name;
1985 };
1986 
1987 struct TrieEntryWithOffset {
1988   lldb::offset_t nodeOffset;
1989   TrieEntry entry;
1990 
1991   TrieEntryWithOffset(lldb::offset_t offset) : nodeOffset(offset), entry() {}
1992 
1993   void Dump(uint32_t idx) const {
1994     printf("[%3u] 0x%16.16llx: ", idx,
1995            static_cast<unsigned long long>(nodeOffset));
1996     entry.Dump();
1997   }
1998 
1999   bool operator<(const TrieEntryWithOffset &other) const {
2000     return (nodeOffset < other.nodeOffset);
2001   }
2002 };
2003 
2004 static bool ParseTrieEntries(DataExtractor &data, lldb::offset_t offset,
2005                              const bool is_arm,
2006                              std::vector<llvm::StringRef> &nameSlices,
2007                              std::set<lldb::addr_t> &resolver_addresses,
2008                              std::vector<TrieEntryWithOffset> &output) {
2009   if (!data.ValidOffset(offset))
2010     return true;
2011 
2012   const uint64_t terminalSize = data.GetULEB128(&offset);
2013   lldb::offset_t children_offset = offset + terminalSize;
2014   if (terminalSize != 0) {
2015     TrieEntryWithOffset e(offset);
2016     e.entry.flags = data.GetULEB128(&offset);
2017     const char *import_name = NULL;
2018     if (e.entry.flags & EXPORT_SYMBOL_FLAGS_REEXPORT) {
2019       e.entry.address = 0;
2020       e.entry.other = data.GetULEB128(&offset); // dylib ordinal
2021       import_name = data.GetCStr(&offset);
2022     } else {
2023       e.entry.address = data.GetULEB128(&offset);
2024       if (e.entry.flags & EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER) {
2025         e.entry.other = data.GetULEB128(&offset);
2026         uint64_t resolver_addr = e.entry.other;
2027         if (is_arm)
2028           resolver_addr &= THUMB_ADDRESS_BIT_MASK;
2029         resolver_addresses.insert(resolver_addr);
2030       } else
2031         e.entry.other = 0;
2032     }
2033     // Only add symbols that are reexport symbols with a valid import name
2034     if (EXPORT_SYMBOL_FLAGS_REEXPORT & e.entry.flags && import_name &&
2035         import_name[0]) {
2036       std::string name;
2037       if (!nameSlices.empty()) {
2038         for (auto name_slice : nameSlices)
2039           name.append(name_slice.data(), name_slice.size());
2040       }
2041       if (name.size() > 1) {
2042         // Skip the leading '_'
2043         e.entry.name.SetCStringWithLength(name.c_str() + 1, name.size() - 1);
2044       }
2045       if (import_name) {
2046         // Skip the leading '_'
2047         e.entry.import_name.SetCString(import_name + 1);
2048       }
2049       output.push_back(e);
2050     }
2051   }
2052 
2053   const uint8_t childrenCount = data.GetU8(&children_offset);
2054   for (uint8_t i = 0; i < childrenCount; ++i) {
2055     const char *cstr = data.GetCStr(&children_offset);
2056     if (cstr)
2057       nameSlices.push_back(llvm::StringRef(cstr));
2058     else
2059       return false; // Corrupt data
2060     lldb::offset_t childNodeOffset = data.GetULEB128(&children_offset);
2061     if (childNodeOffset) {
2062       if (!ParseTrieEntries(data, childNodeOffset, is_arm, nameSlices,
2063                             resolver_addresses, output)) {
2064         return false;
2065       }
2066     }
2067     nameSlices.pop_back();
2068   }
2069   return true;
2070 }
2071 
2072 // Read the UUID out of a dyld_shared_cache file on-disk.
2073 UUID ObjectFileMachO::GetSharedCacheUUID(FileSpec dyld_shared_cache,
2074                                          const ByteOrder byte_order,
2075                                          const uint32_t addr_byte_size) {
2076   UUID dsc_uuid;
2077   DataBufferSP DscData = MapFileData(
2078       dyld_shared_cache, sizeof(struct lldb_copy_dyld_cache_header_v1), 0);
2079   if (!DscData)
2080     return dsc_uuid;
2081   DataExtractor dsc_header_data(DscData, byte_order, addr_byte_size);
2082 
2083   char version_str[7];
2084   lldb::offset_t offset = 0;
2085   memcpy(version_str, dsc_header_data.GetData(&offset, 6), 6);
2086   version_str[6] = '\0';
2087   if (strcmp(version_str, "dyld_v") == 0) {
2088     offset = offsetof(struct lldb_copy_dyld_cache_header_v1, uuid);
2089     uint8_t uuid_bytes[sizeof(uuid_t)];
2090     memcpy(uuid_bytes, dsc_header_data.GetData(&offset, sizeof(uuid_t)),
2091            sizeof(uuid_t));
2092     dsc_uuid.SetBytes(uuid_bytes);
2093   }
2094   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS));
2095   if (log && dsc_uuid.IsValid()) {
2096     log->Printf("Shared cache %s has UUID %s", dyld_shared_cache.GetPath().c_str(),
2097                 dsc_uuid.GetAsString().c_str());
2098   }
2099   return dsc_uuid;
2100 }
2101 
2102 size_t ObjectFileMachO::ParseSymtab() {
2103   static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
2104   Timer scoped_timer(func_cat, "ObjectFileMachO::ParseSymtab () module = %s",
2105                      m_file.GetFilename().AsCString(""));
2106   ModuleSP module_sp(GetModule());
2107   if (!module_sp)
2108     return 0;
2109 
2110   struct symtab_command symtab_load_command = {0, 0, 0, 0, 0, 0};
2111   struct linkedit_data_command function_starts_load_command = {0, 0, 0, 0};
2112   struct dyld_info_command dyld_info = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
2113   typedef AddressDataArray<lldb::addr_t, bool, 100> FunctionStarts;
2114   FunctionStarts function_starts;
2115   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
2116   uint32_t i;
2117   FileSpecList dylib_files;
2118   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS));
2119   static const llvm::StringRef g_objc_v2_prefix_class("_OBJC_CLASS_$_");
2120   static const llvm::StringRef g_objc_v2_prefix_metaclass("_OBJC_METACLASS_$_");
2121   static const llvm::StringRef g_objc_v2_prefix_ivar("_OBJC_IVAR_$_");
2122 
2123   for (i = 0; i < m_header.ncmds; ++i) {
2124     const lldb::offset_t cmd_offset = offset;
2125     // Read in the load command and load command size
2126     struct load_command lc;
2127     if (m_data.GetU32(&offset, &lc, 2) == NULL)
2128       break;
2129     // Watch for the symbol table load command
2130     switch (lc.cmd) {
2131     case LC_SYMTAB:
2132       symtab_load_command.cmd = lc.cmd;
2133       symtab_load_command.cmdsize = lc.cmdsize;
2134       // Read in the rest of the symtab load command
2135       if (m_data.GetU32(&offset, &symtab_load_command.symoff, 4) ==
2136           0) // fill in symoff, nsyms, stroff, strsize fields
2137         return 0;
2138       if (symtab_load_command.symoff == 0) {
2139         if (log)
2140           module_sp->LogMessage(log, "LC_SYMTAB.symoff == 0");
2141         return 0;
2142       }
2143 
2144       if (symtab_load_command.stroff == 0) {
2145         if (log)
2146           module_sp->LogMessage(log, "LC_SYMTAB.stroff == 0");
2147         return 0;
2148       }
2149 
2150       if (symtab_load_command.nsyms == 0) {
2151         if (log)
2152           module_sp->LogMessage(log, "LC_SYMTAB.nsyms == 0");
2153         return 0;
2154       }
2155 
2156       if (symtab_load_command.strsize == 0) {
2157         if (log)
2158           module_sp->LogMessage(log, "LC_SYMTAB.strsize == 0");
2159         return 0;
2160       }
2161       break;
2162 
2163     case LC_DYLD_INFO:
2164     case LC_DYLD_INFO_ONLY:
2165       if (m_data.GetU32(&offset, &dyld_info.rebase_off, 10)) {
2166         dyld_info.cmd = lc.cmd;
2167         dyld_info.cmdsize = lc.cmdsize;
2168       } else {
2169         memset(&dyld_info, 0, sizeof(dyld_info));
2170       }
2171       break;
2172 
2173     case LC_LOAD_DYLIB:
2174     case LC_LOAD_WEAK_DYLIB:
2175     case LC_REEXPORT_DYLIB:
2176     case LC_LOADFVMLIB:
2177     case LC_LOAD_UPWARD_DYLIB: {
2178       uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
2179       const char *path = m_data.PeekCStr(name_offset);
2180       if (path) {
2181         FileSpec file_spec(path, false);
2182         // Strip the path if there is @rpath, @executable, etc so we just use
2183         // the basename
2184         if (path[0] == '@')
2185           file_spec.GetDirectory().Clear();
2186 
2187         if (lc.cmd == LC_REEXPORT_DYLIB) {
2188           m_reexported_dylibs.AppendIfUnique(file_spec);
2189         }
2190 
2191         dylib_files.Append(file_spec);
2192       }
2193     } break;
2194 
2195     case LC_FUNCTION_STARTS:
2196       function_starts_load_command.cmd = lc.cmd;
2197       function_starts_load_command.cmdsize = lc.cmdsize;
2198       if (m_data.GetU32(&offset, &function_starts_load_command.dataoff, 2) ==
2199           NULL) // fill in symoff, nsyms, stroff, strsize fields
2200         memset(&function_starts_load_command, 0,
2201                sizeof(function_starts_load_command));
2202       break;
2203 
2204     default:
2205       break;
2206     }
2207     offset = cmd_offset + lc.cmdsize;
2208   }
2209 
2210   if (symtab_load_command.cmd) {
2211     Symtab *symtab = m_symtab_ap.get();
2212     SectionList *section_list = GetSectionList();
2213     if (section_list == NULL)
2214       return 0;
2215 
2216     const uint32_t addr_byte_size = m_data.GetAddressByteSize();
2217     const ByteOrder byte_order = m_data.GetByteOrder();
2218     bool bit_width_32 = addr_byte_size == 4;
2219     const size_t nlist_byte_size =
2220         bit_width_32 ? sizeof(struct nlist) : sizeof(struct nlist_64);
2221 
2222     DataExtractor nlist_data(NULL, 0, byte_order, addr_byte_size);
2223     DataExtractor strtab_data(NULL, 0, byte_order, addr_byte_size);
2224     DataExtractor function_starts_data(NULL, 0, byte_order, addr_byte_size);
2225     DataExtractor indirect_symbol_index_data(NULL, 0, byte_order,
2226                                              addr_byte_size);
2227     DataExtractor dyld_trie_data(NULL, 0, byte_order, addr_byte_size);
2228 
2229     const addr_t nlist_data_byte_size =
2230         symtab_load_command.nsyms * nlist_byte_size;
2231     const addr_t strtab_data_byte_size = symtab_load_command.strsize;
2232     addr_t strtab_addr = LLDB_INVALID_ADDRESS;
2233 
2234     ProcessSP process_sp(m_process_wp.lock());
2235     Process *process = process_sp.get();
2236 
2237     uint32_t memory_module_load_level = eMemoryModuleLoadLevelComplete;
2238 
2239     if (process && m_header.filetype != llvm::MachO::MH_OBJECT) {
2240       Target &target = process->GetTarget();
2241 
2242       memory_module_load_level = target.GetMemoryModuleLoadLevel();
2243 
2244       SectionSP linkedit_section_sp(
2245           section_list->FindSectionByName(GetSegmentNameLINKEDIT()));
2246       // Reading mach file from memory in a process or core file...
2247 
2248       if (linkedit_section_sp) {
2249         addr_t linkedit_load_addr =
2250             linkedit_section_sp->GetLoadBaseAddress(&target);
2251         if (linkedit_load_addr == LLDB_INVALID_ADDRESS) {
2252           // We might be trying to access the symbol table before the
2253           // __LINKEDIT's load
2254           // address has been set in the target. We can't fail to read the
2255           // symbol table,
2256           // so calculate the right address manually
2257           linkedit_load_addr = CalculateSectionLoadAddressForMemoryImage(
2258               m_memory_addr, GetMachHeaderSection(), linkedit_section_sp.get());
2259         }
2260 
2261         const addr_t linkedit_file_offset =
2262             linkedit_section_sp->GetFileOffset();
2263         const addr_t symoff_addr = linkedit_load_addr +
2264                                    symtab_load_command.symoff -
2265                                    linkedit_file_offset;
2266         strtab_addr = linkedit_load_addr + symtab_load_command.stroff -
2267                       linkedit_file_offset;
2268 
2269         bool data_was_read = false;
2270 
2271 #if defined(__APPLE__) &&                                                      \
2272     (defined(__arm__) || defined(__arm64__) || defined(__aarch64__))
2273         if (m_header.flags & 0x80000000u &&
2274             process->GetAddressByteSize() == sizeof(void *)) {
2275           // This mach-o memory file is in the dyld shared cache. If this
2276           // program is not remote and this is iOS, then this process will
2277           // share the same shared cache as the process we are debugging and
2278           // we can read the entire __LINKEDIT from the address space in this
2279           // process. This is a needed optimization that is used for local iOS
2280           // debugging only since all shared libraries in the shared cache do
2281           // not have corresponding files that exist in the file system of the
2282           // device. They have been combined into a single file. This means we
2283           // always have to load these files from memory. All of the symbol and
2284           // string tables from all of the __LINKEDIT sections from the shared
2285           // libraries in the shared cache have been merged into a single large
2286           // symbol and string table. Reading all of this symbol and string
2287           // table
2288           // data across can slow down debug launch times, so we optimize this
2289           // by
2290           // reading the memory for the __LINKEDIT section from this process.
2291 
2292           UUID lldb_shared_cache(GetLLDBSharedCacheUUID());
2293           UUID process_shared_cache(GetProcessSharedCacheUUID(process));
2294           bool use_lldb_cache = true;
2295           if (lldb_shared_cache.IsValid() && process_shared_cache.IsValid() &&
2296               lldb_shared_cache != process_shared_cache) {
2297             use_lldb_cache = false;
2298             ModuleSP module_sp(GetModule());
2299             if (module_sp)
2300               module_sp->ReportWarning("shared cache in process does not match "
2301                                        "lldb's own shared cache, startup will "
2302                                        "be slow.");
2303           }
2304 
2305           PlatformSP platform_sp(target.GetPlatform());
2306           if (platform_sp && platform_sp->IsHost() && use_lldb_cache) {
2307             data_was_read = true;
2308             nlist_data.SetData((void *)symoff_addr, nlist_data_byte_size,
2309                                eByteOrderLittle);
2310             strtab_data.SetData((void *)strtab_addr, strtab_data_byte_size,
2311                                 eByteOrderLittle);
2312             if (function_starts_load_command.cmd) {
2313               const addr_t func_start_addr =
2314                   linkedit_load_addr + function_starts_load_command.dataoff -
2315                   linkedit_file_offset;
2316               function_starts_data.SetData(
2317                   (void *)func_start_addr,
2318                   function_starts_load_command.datasize, eByteOrderLittle);
2319             }
2320           }
2321         }
2322 #endif
2323 
2324         if (!data_was_read) {
2325           // Always load dyld - the dynamic linker - from memory if we didn't
2326           // find a binary anywhere else.
2327           // lldb will not register dylib/framework/bundle loads/unloads if we
2328           // don't have the dyld symbols,
2329           // we force dyld to load from memory despite the user's
2330           // target.memory-module-load-level setting.
2331           if (memory_module_load_level == eMemoryModuleLoadLevelComplete ||
2332               m_header.filetype == llvm::MachO::MH_DYLINKER) {
2333             DataBufferSP nlist_data_sp(
2334                 ReadMemory(process_sp, symoff_addr, nlist_data_byte_size));
2335             if (nlist_data_sp)
2336               nlist_data.SetData(nlist_data_sp, 0,
2337                                  nlist_data_sp->GetByteSize());
2338             // Load strings individually from memory when loading from memory
2339             // since shared cache
2340             // string tables contain strings for all symbols from all shared
2341             // cached libraries
2342             // DataBufferSP strtab_data_sp (ReadMemory (process_sp, strtab_addr,
2343             // strtab_data_byte_size));
2344             // if (strtab_data_sp)
2345             //    strtab_data.SetData (strtab_data_sp, 0,
2346             //    strtab_data_sp->GetByteSize());
2347             if (m_dysymtab.nindirectsyms != 0) {
2348               const addr_t indirect_syms_addr = linkedit_load_addr +
2349                                                 m_dysymtab.indirectsymoff -
2350                                                 linkedit_file_offset;
2351               DataBufferSP indirect_syms_data_sp(
2352                   ReadMemory(process_sp, indirect_syms_addr,
2353                              m_dysymtab.nindirectsyms * 4));
2354               if (indirect_syms_data_sp)
2355                 indirect_symbol_index_data.SetData(
2356                     indirect_syms_data_sp, 0,
2357                     indirect_syms_data_sp->GetByteSize());
2358             }
2359           } else if (memory_module_load_level >=
2360                      eMemoryModuleLoadLevelPartial) {
2361             if (function_starts_load_command.cmd) {
2362               const addr_t func_start_addr =
2363                   linkedit_load_addr + function_starts_load_command.dataoff -
2364                   linkedit_file_offset;
2365               DataBufferSP func_start_data_sp(
2366                   ReadMemory(process_sp, func_start_addr,
2367                              function_starts_load_command.datasize));
2368               if (func_start_data_sp)
2369                 function_starts_data.SetData(func_start_data_sp, 0,
2370                                              func_start_data_sp->GetByteSize());
2371             }
2372           }
2373         }
2374       }
2375     } else {
2376       nlist_data.SetData(m_data, symtab_load_command.symoff,
2377                          nlist_data_byte_size);
2378       strtab_data.SetData(m_data, symtab_load_command.stroff,
2379                           strtab_data_byte_size);
2380 
2381       if (dyld_info.export_size > 0) {
2382         dyld_trie_data.SetData(m_data, dyld_info.export_off,
2383                                dyld_info.export_size);
2384       }
2385 
2386       if (m_dysymtab.nindirectsyms != 0) {
2387         indirect_symbol_index_data.SetData(m_data, m_dysymtab.indirectsymoff,
2388                                            m_dysymtab.nindirectsyms * 4);
2389       }
2390       if (function_starts_load_command.cmd) {
2391         function_starts_data.SetData(m_data,
2392                                      function_starts_load_command.dataoff,
2393                                      function_starts_load_command.datasize);
2394       }
2395     }
2396 
2397     if (nlist_data.GetByteSize() == 0 &&
2398         memory_module_load_level == eMemoryModuleLoadLevelComplete) {
2399       if (log)
2400         module_sp->LogMessage(log, "failed to read nlist data");
2401       return 0;
2402     }
2403 
2404     const bool have_strtab_data = strtab_data.GetByteSize() > 0;
2405     if (!have_strtab_data) {
2406       if (process) {
2407         if (strtab_addr == LLDB_INVALID_ADDRESS) {
2408           if (log)
2409             module_sp->LogMessage(log, "failed to locate the strtab in memory");
2410           return 0;
2411         }
2412       } else {
2413         if (log)
2414           module_sp->LogMessage(log, "failed to read strtab data");
2415         return 0;
2416       }
2417     }
2418 
2419     const ConstString &g_segment_name_TEXT = GetSegmentNameTEXT();
2420     const ConstString &g_segment_name_DATA = GetSegmentNameDATA();
2421     const ConstString &g_segment_name_DATA_DIRTY = GetSegmentNameDATA_DIRTY();
2422     const ConstString &g_segment_name_DATA_CONST = GetSegmentNameDATA_CONST();
2423     const ConstString &g_segment_name_OBJC = GetSegmentNameOBJC();
2424     const ConstString &g_section_name_eh_frame = GetSectionNameEHFrame();
2425     SectionSP text_section_sp(
2426         section_list->FindSectionByName(g_segment_name_TEXT));
2427     SectionSP data_section_sp(
2428         section_list->FindSectionByName(g_segment_name_DATA));
2429     SectionSP data_dirty_section_sp(
2430         section_list->FindSectionByName(g_segment_name_DATA_DIRTY));
2431     SectionSP data_const_section_sp(
2432         section_list->FindSectionByName(g_segment_name_DATA_CONST));
2433     SectionSP objc_section_sp(
2434         section_list->FindSectionByName(g_segment_name_OBJC));
2435     SectionSP eh_frame_section_sp;
2436     if (text_section_sp.get())
2437       eh_frame_section_sp = text_section_sp->GetChildren().FindSectionByName(
2438           g_section_name_eh_frame);
2439     else
2440       eh_frame_section_sp =
2441           section_list->FindSectionByName(g_section_name_eh_frame);
2442 
2443     const bool is_arm = (m_header.cputype == llvm::MachO::CPU_TYPE_ARM);
2444 
2445     // lldb works best if it knows the start address of all functions in a
2446     // module.
2447     // Linker symbols or debug info are normally the best source of information
2448     // for start addr / size but
2449     // they may be stripped in a released binary.
2450     // Two additional sources of information exist in Mach-O binaries:
2451     //    LC_FUNCTION_STARTS - a list of ULEB128 encoded offsets of each
2452     //    function's start address in the
2453     //                         binary, relative to the text section.
2454     //    eh_frame           - the eh_frame FDEs have the start addr & size of
2455     //    each function
2456     //  LC_FUNCTION_STARTS is the fastest source to read in, and is present on
2457     //  all modern binaries.
2458     //  Binaries built to run on older releases may need to use eh_frame
2459     //  information.
2460 
2461     if (text_section_sp && function_starts_data.GetByteSize()) {
2462       FunctionStarts::Entry function_start_entry;
2463       function_start_entry.data = false;
2464       lldb::offset_t function_start_offset = 0;
2465       function_start_entry.addr = text_section_sp->GetFileAddress();
2466       uint64_t delta;
2467       while ((delta = function_starts_data.GetULEB128(&function_start_offset)) >
2468              0) {
2469         // Now append the current entry
2470         function_start_entry.addr += delta;
2471         function_starts.Append(function_start_entry);
2472       }
2473     } else {
2474       // If m_type is eTypeDebugInfo, then this is a dSYM - it will have the
2475       // load command claiming an eh_frame
2476       // but it doesn't actually have the eh_frame content.  And if we have a
2477       // dSYM, we don't need to do any
2478       // of this fill-in-the-missing-symbols works anyway - the debug info
2479       // should give us all the functions in
2480       // the module.
2481       if (text_section_sp.get() && eh_frame_section_sp.get() &&
2482           m_type != eTypeDebugInfo) {
2483         DWARFCallFrameInfo eh_frame(*this, eh_frame_section_sp,
2484                                     DWARFCallFrameInfo::EH);
2485         DWARFCallFrameInfo::FunctionAddressAndSizeVector functions;
2486         eh_frame.GetFunctionAddressAndSizeVector(functions);
2487         addr_t text_base_addr = text_section_sp->GetFileAddress();
2488         size_t count = functions.GetSize();
2489         for (size_t i = 0; i < count; ++i) {
2490           const DWARFCallFrameInfo::FunctionAddressAndSizeVector::Entry *func =
2491               functions.GetEntryAtIndex(i);
2492           if (func) {
2493             FunctionStarts::Entry function_start_entry;
2494             function_start_entry.addr = func->base - text_base_addr;
2495             function_starts.Append(function_start_entry);
2496           }
2497         }
2498       }
2499     }
2500 
2501     const size_t function_starts_count = function_starts.GetSize();
2502 
2503     // For user process binaries (executables, dylibs, frameworks, bundles), if
2504     // we don't have
2505     // LC_FUNCTION_STARTS/eh_frame section in this binary, we're going to assume
2506     // the binary
2507     // has been stripped.  Don't allow assembly language instruction emulation
2508     // because we don't
2509     // know proper function start boundaries.
2510     //
2511     // For all other types of binaries (kernels, stand-alone bare board
2512     // binaries, kexts), they
2513     // may not have LC_FUNCTION_STARTS / eh_frame sections - we should not make
2514     // any assumptions
2515     // about them based on that.
2516     if (function_starts_count == 0 && CalculateStrata() == eStrataUser) {
2517       m_allow_assembly_emulation_unwind_plans = false;
2518       Log *unwind_or_symbol_log(lldb_private::GetLogIfAnyCategoriesSet(
2519           LIBLLDB_LOG_SYMBOLS | LIBLLDB_LOG_UNWIND));
2520 
2521       if (unwind_or_symbol_log)
2522         module_sp->LogMessage(
2523             unwind_or_symbol_log,
2524             "no LC_FUNCTION_STARTS, will not allow assembly profiled unwinds");
2525     }
2526 
2527     const user_id_t TEXT_eh_frame_sectID =
2528         eh_frame_section_sp.get() ? eh_frame_section_sp->GetID()
2529                                   : static_cast<user_id_t>(NO_SECT);
2530 
2531     lldb::offset_t nlist_data_offset = 0;
2532 
2533     uint32_t N_SO_index = UINT32_MAX;
2534 
2535     MachSymtabSectionInfo section_info(section_list);
2536     std::vector<uint32_t> N_FUN_indexes;
2537     std::vector<uint32_t> N_NSYM_indexes;
2538     std::vector<uint32_t> N_INCL_indexes;
2539     std::vector<uint32_t> N_BRAC_indexes;
2540     std::vector<uint32_t> N_COMM_indexes;
2541     typedef std::multimap<uint64_t, uint32_t> ValueToSymbolIndexMap;
2542     typedef std::map<uint32_t, uint32_t> NListIndexToSymbolIndexMap;
2543     typedef std::map<const char *, uint32_t> ConstNameToSymbolIndexMap;
2544     ValueToSymbolIndexMap N_FUN_addr_to_sym_idx;
2545     ValueToSymbolIndexMap N_STSYM_addr_to_sym_idx;
2546     ConstNameToSymbolIndexMap N_GSYM_name_to_sym_idx;
2547     // Any symbols that get merged into another will get an entry
2548     // in this map so we know
2549     NListIndexToSymbolIndexMap m_nlist_idx_to_sym_idx;
2550     uint32_t nlist_idx = 0;
2551     Symbol *symbol_ptr = NULL;
2552 
2553     uint32_t sym_idx = 0;
2554     Symbol *sym = NULL;
2555     size_t num_syms = 0;
2556     std::string memory_symbol_name;
2557     uint32_t unmapped_local_symbols_found = 0;
2558 
2559     std::vector<TrieEntryWithOffset> trie_entries;
2560     std::set<lldb::addr_t> resolver_addresses;
2561 
2562     if (dyld_trie_data.GetByteSize() > 0) {
2563       std::vector<llvm::StringRef> nameSlices;
2564       ParseTrieEntries(dyld_trie_data, 0, is_arm, nameSlices,
2565                        resolver_addresses, trie_entries);
2566 
2567       ConstString text_segment_name("__TEXT");
2568       SectionSP text_segment_sp =
2569           GetSectionList()->FindSectionByName(text_segment_name);
2570       if (text_segment_sp) {
2571         const lldb::addr_t text_segment_file_addr =
2572             text_segment_sp->GetFileAddress();
2573         if (text_segment_file_addr != LLDB_INVALID_ADDRESS) {
2574           for (auto &e : trie_entries)
2575             e.entry.address += text_segment_file_addr;
2576         }
2577       }
2578     }
2579 
2580     typedef std::set<ConstString> IndirectSymbols;
2581     IndirectSymbols indirect_symbol_names;
2582 
2583 #if defined(__APPLE__) &&                                                      \
2584     (defined(__arm__) || defined(__arm64__) || defined(__aarch64__))
2585 
2586     // Some recent builds of the dyld_shared_cache (hereafter: DSC) have been
2587     // optimized by moving LOCAL
2588     // symbols out of the memory mapped portion of the DSC. The symbol
2589     // information has all been retained,
2590     // but it isn't available in the normal nlist data. However, there *are*
2591     // duplicate entries of *some*
2592     // LOCAL symbols in the normal nlist data. To handle this situation
2593     // correctly, we must first attempt
2594     // to parse any DSC unmapped symbol information. If we find any, we set a
2595     // flag that tells the normal
2596     // nlist parser to ignore all LOCAL symbols.
2597 
2598     if (m_header.flags & 0x80000000u) {
2599       // Before we can start mapping the DSC, we need to make certain the target
2600       // process is actually
2601       // using the cache we can find.
2602 
2603       // Next we need to determine the correct path for the dyld shared cache.
2604 
2605       ArchSpec header_arch;
2606       GetArchitecture(header_arch);
2607       char dsc_path[PATH_MAX];
2608       char dsc_path_development[PATH_MAX];
2609 
2610       snprintf(
2611           dsc_path, sizeof(dsc_path), "%s%s%s",
2612           "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR
2613                                                        */
2614           "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */
2615           header_arch.GetArchitectureName());
2616 
2617       snprintf(
2618           dsc_path_development, sizeof(dsc_path), "%s%s%s%s",
2619           "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR
2620                                                        */
2621           "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */
2622           header_arch.GetArchitectureName(), ".development");
2623 
2624       FileSpec dsc_nondevelopment_filespec(dsc_path, false);
2625       FileSpec dsc_development_filespec(dsc_path_development, false);
2626       FileSpec dsc_filespec;
2627 
2628       UUID dsc_uuid;
2629       UUID process_shared_cache_uuid;
2630 
2631       if (process) {
2632         process_shared_cache_uuid = GetProcessSharedCacheUUID(process);
2633       }
2634 
2635       // First see if we can find an exact match for the inferior process shared
2636       // cache UUID in
2637       // the development or non-development shared caches on disk.
2638       if (process_shared_cache_uuid.IsValid()) {
2639         if (dsc_development_filespec.Exists()) {
2640           UUID dsc_development_uuid = GetSharedCacheUUID(
2641               dsc_development_filespec, byte_order, addr_byte_size);
2642           if (dsc_development_uuid.IsValid() &&
2643               dsc_development_uuid == process_shared_cache_uuid) {
2644             dsc_filespec = dsc_development_filespec;
2645             dsc_uuid = dsc_development_uuid;
2646           }
2647         }
2648         if (!dsc_uuid.IsValid() && dsc_nondevelopment_filespec.Exists()) {
2649           UUID dsc_nondevelopment_uuid = GetSharedCacheUUID(
2650               dsc_nondevelopment_filespec, byte_order, addr_byte_size);
2651           if (dsc_nondevelopment_uuid.IsValid() &&
2652               dsc_nondevelopment_uuid == process_shared_cache_uuid) {
2653             dsc_filespec = dsc_nondevelopment_filespec;
2654             dsc_uuid = dsc_nondevelopment_uuid;
2655           }
2656         }
2657       }
2658 
2659       // Failing a UUID match, prefer the development dyld_shared cache if both
2660       // are present.
2661       if (!dsc_filespec.Exists()) {
2662         if (dsc_development_filespec.Exists()) {
2663           dsc_filespec = dsc_development_filespec;
2664         } else {
2665           dsc_filespec = dsc_nondevelopment_filespec;
2666         }
2667       }
2668 
2669       /* The dyld_cache_header has a pointer to the
2670          dyld_cache_local_symbols_info structure (localSymbolsOffset).
2671          The dyld_cache_local_symbols_info structure gives us three things:
2672            1. The start and count of the nlist records in the dyld_shared_cache
2673          file
2674            2. The start and size of the strings for these nlist records
2675            3. The start and count of dyld_cache_local_symbols_entry entries
2676 
2677          There is one dyld_cache_local_symbols_entry per dylib/framework in the
2678          dyld shared cache.
2679          The "dylibOffset" field is the Mach-O header of this dylib/framework in
2680          the dyld shared cache.
2681          The dyld_cache_local_symbols_entry also lists the start of this
2682          dylib/framework's nlist records
2683          and the count of how many nlist records there are for this
2684          dylib/framework.
2685       */
2686 
2687       // Process the dyld shared cache header to find the unmapped symbols
2688 
2689       DataBufferSP dsc_data_sp = MapFileData(
2690           dsc_filespec, sizeof(struct lldb_copy_dyld_cache_header_v1), 0);
2691       if (!dsc_uuid.IsValid()) {
2692         dsc_uuid = GetSharedCacheUUID(dsc_filespec, byte_order, addr_byte_size);
2693       }
2694       if (dsc_data_sp) {
2695         DataExtractor dsc_header_data(dsc_data_sp, byte_order, addr_byte_size);
2696 
2697         bool uuid_match = true;
2698         if (dsc_uuid.IsValid() && process) {
2699           if (process_shared_cache_uuid.IsValid() &&
2700               dsc_uuid != process_shared_cache_uuid) {
2701             // The on-disk dyld_shared_cache file is not the same as the one in
2702             // this
2703             // process' memory, don't use it.
2704             uuid_match = false;
2705             ModuleSP module_sp(GetModule());
2706             if (module_sp)
2707               module_sp->ReportWarning("process shared cache does not match "
2708                                        "on-disk dyld_shared_cache file, some "
2709                                        "symbol names will be missing.");
2710           }
2711         }
2712 
2713         offset = offsetof(struct lldb_copy_dyld_cache_header_v1, mappingOffset);
2714 
2715         uint32_t mappingOffset = dsc_header_data.GetU32(&offset);
2716 
2717         // If the mappingOffset points to a location inside the header, we've
2718         // opened an old dyld shared cache, and should not proceed further.
2719         if (uuid_match &&
2720             mappingOffset >= sizeof(struct lldb_copy_dyld_cache_header_v1)) {
2721 
2722           DataBufferSP dsc_mapping_info_data_sp = MapFileData(
2723               dsc_filespec, sizeof(struct lldb_copy_dyld_cache_mapping_info),
2724               mappingOffset);
2725 
2726           DataExtractor dsc_mapping_info_data(dsc_mapping_info_data_sp,
2727                                               byte_order, addr_byte_size);
2728           offset = 0;
2729 
2730           // The File addresses (from the in-memory Mach-O load commands) for
2731           // the shared libraries
2732           // in the shared library cache need to be adjusted by an offset to
2733           // match up with the
2734           // dylibOffset identifying field in the
2735           // dyld_cache_local_symbol_entry's.  This offset is
2736           // recorded in mapping_offset_value.
2737           const uint64_t mapping_offset_value =
2738               dsc_mapping_info_data.GetU64(&offset);
2739 
2740           offset = offsetof(struct lldb_copy_dyld_cache_header_v1,
2741                             localSymbolsOffset);
2742           uint64_t localSymbolsOffset = dsc_header_data.GetU64(&offset);
2743           uint64_t localSymbolsSize = dsc_header_data.GetU64(&offset);
2744 
2745           if (localSymbolsOffset && localSymbolsSize) {
2746             // Map the local symbols
2747             DataBufferSP dsc_local_symbols_data_sp =
2748                 MapFileData(dsc_filespec, localSymbolsSize, localSymbolsOffset);
2749 
2750             if (dsc_local_symbols_data_sp) {
2751               DataExtractor dsc_local_symbols_data(dsc_local_symbols_data_sp,
2752                                                    byte_order, addr_byte_size);
2753 
2754               offset = 0;
2755 
2756               typedef std::map<ConstString, uint16_t> UndefinedNameToDescMap;
2757               typedef std::map<uint32_t, ConstString> SymbolIndexToName;
2758               UndefinedNameToDescMap undefined_name_to_desc;
2759               SymbolIndexToName reexport_shlib_needs_fixup;
2760 
2761               // Read the local_symbols_infos struct in one shot
2762               struct lldb_copy_dyld_cache_local_symbols_info local_symbols_info;
2763               dsc_local_symbols_data.GetU32(&offset,
2764                                             &local_symbols_info.nlistOffset, 6);
2765 
2766               SectionSP text_section_sp(
2767                   section_list->FindSectionByName(GetSegmentNameTEXT()));
2768 
2769               uint32_t header_file_offset =
2770                   (text_section_sp->GetFileAddress() - mapping_offset_value);
2771 
2772               offset = local_symbols_info.entriesOffset;
2773               for (uint32_t entry_index = 0;
2774                    entry_index < local_symbols_info.entriesCount;
2775                    entry_index++) {
2776                 struct lldb_copy_dyld_cache_local_symbols_entry
2777                     local_symbols_entry;
2778                 local_symbols_entry.dylibOffset =
2779                     dsc_local_symbols_data.GetU32(&offset);
2780                 local_symbols_entry.nlistStartIndex =
2781                     dsc_local_symbols_data.GetU32(&offset);
2782                 local_symbols_entry.nlistCount =
2783                     dsc_local_symbols_data.GetU32(&offset);
2784 
2785                 if (header_file_offset == local_symbols_entry.dylibOffset) {
2786                   unmapped_local_symbols_found = local_symbols_entry.nlistCount;
2787 
2788                   // The normal nlist code cannot correctly size the Symbols
2789                   // array, we need to allocate it here.
2790                   sym = symtab->Resize(
2791                       symtab_load_command.nsyms + m_dysymtab.nindirectsyms +
2792                       unmapped_local_symbols_found - m_dysymtab.nlocalsym);
2793                   num_syms = symtab->GetNumSymbols();
2794 
2795                   nlist_data_offset =
2796                       local_symbols_info.nlistOffset +
2797                       (nlist_byte_size * local_symbols_entry.nlistStartIndex);
2798                   uint32_t string_table_offset =
2799                       local_symbols_info.stringsOffset;
2800 
2801                   for (uint32_t nlist_index = 0;
2802                        nlist_index < local_symbols_entry.nlistCount;
2803                        nlist_index++) {
2804                     /////////////////////////////
2805                     {
2806                       struct nlist_64 nlist;
2807                       if (!dsc_local_symbols_data.ValidOffsetForDataOfSize(
2808                               nlist_data_offset, nlist_byte_size))
2809                         break;
2810 
2811                       nlist.n_strx = dsc_local_symbols_data.GetU32_unchecked(
2812                           &nlist_data_offset);
2813                       nlist.n_type = dsc_local_symbols_data.GetU8_unchecked(
2814                           &nlist_data_offset);
2815                       nlist.n_sect = dsc_local_symbols_data.GetU8_unchecked(
2816                           &nlist_data_offset);
2817                       nlist.n_desc = dsc_local_symbols_data.GetU16_unchecked(
2818                           &nlist_data_offset);
2819                       nlist.n_value =
2820                           dsc_local_symbols_data.GetAddress_unchecked(
2821                               &nlist_data_offset);
2822 
2823                       SymbolType type = eSymbolTypeInvalid;
2824                       const char *symbol_name = dsc_local_symbols_data.PeekCStr(
2825                           string_table_offset + nlist.n_strx);
2826 
2827                       if (symbol_name == NULL) {
2828                         // No symbol should be NULL, even the symbols with no
2829                         // string values should have an offset zero which points
2830                         // to an empty C-string
2831                         Host::SystemLog(
2832                             Host::eSystemLogError,
2833                             "error: DSC unmapped local symbol[%u] has invalid "
2834                             "string table offset 0x%x in %s, ignoring symbol\n",
2835                             entry_index, nlist.n_strx,
2836                             module_sp->GetFileSpec().GetPath().c_str());
2837                         continue;
2838                       }
2839                       if (symbol_name[0] == '\0')
2840                         symbol_name = NULL;
2841 
2842                       const char *symbol_name_non_abi_mangled = NULL;
2843 
2844                       SectionSP symbol_section;
2845                       uint32_t symbol_byte_size = 0;
2846                       bool add_nlist = true;
2847                       bool is_debug = ((nlist.n_type & N_STAB) != 0);
2848                       bool demangled_is_synthesized = false;
2849                       bool is_gsym = false;
2850                       bool set_value = true;
2851 
2852                       assert(sym_idx < num_syms);
2853 
2854                       sym[sym_idx].SetDebug(is_debug);
2855 
2856                       if (is_debug) {
2857                         switch (nlist.n_type) {
2858                         case N_GSYM:
2859                           // global symbol: name,,NO_SECT,type,0
2860                           // Sometimes the N_GSYM value contains the address.
2861 
2862                           // FIXME: In the .o files, we have a GSYM and a debug
2863                           // symbol for all the ObjC data.  They
2864                           // have the same address, but we want to ensure that
2865                           // we always find only the real symbol,
2866                           // 'cause we don't currently correctly attribute the
2867                           // GSYM one to the ObjCClass/Ivar/MetaClass
2868                           // symbol type.  This is a temporary hack to make sure
2869                           // the ObjectiveC symbols get treated
2870                           // correctly.  To do this right, we should coalesce
2871                           // all the GSYM & global symbols that have the
2872                           // same address.
2873 
2874                           is_gsym = true;
2875                           sym[sym_idx].SetExternal(true);
2876 
2877                           if (symbol_name && symbol_name[0] == '_' &&
2878                               symbol_name[1] == 'O') {
2879                             llvm::StringRef symbol_name_ref(symbol_name);
2880                             if (symbol_name_ref.startswith(
2881                                     g_objc_v2_prefix_class)) {
2882                               symbol_name_non_abi_mangled = symbol_name + 1;
2883                               symbol_name =
2884                                   symbol_name + g_objc_v2_prefix_class.size();
2885                               type = eSymbolTypeObjCClass;
2886                               demangled_is_synthesized = true;
2887 
2888                             } else if (symbol_name_ref.startswith(
2889                                            g_objc_v2_prefix_metaclass)) {
2890                               symbol_name_non_abi_mangled = symbol_name + 1;
2891                               symbol_name = symbol_name +
2892                                             g_objc_v2_prefix_metaclass.size();
2893                               type = eSymbolTypeObjCMetaClass;
2894                               demangled_is_synthesized = true;
2895                             } else if (symbol_name_ref.startswith(
2896                                            g_objc_v2_prefix_ivar)) {
2897                               symbol_name_non_abi_mangled = symbol_name + 1;
2898                               symbol_name =
2899                                   symbol_name + g_objc_v2_prefix_ivar.size();
2900                               type = eSymbolTypeObjCIVar;
2901                               demangled_is_synthesized = true;
2902                             }
2903                           } else {
2904                             if (nlist.n_value != 0)
2905                               symbol_section = section_info.GetSection(
2906                                   nlist.n_sect, nlist.n_value);
2907                             type = eSymbolTypeData;
2908                           }
2909                           break;
2910 
2911                         case N_FNAME:
2912                           // procedure name (f77 kludge): name,,NO_SECT,0,0
2913                           type = eSymbolTypeCompiler;
2914                           break;
2915 
2916                         case N_FUN:
2917                           // procedure: name,,n_sect,linenumber,address
2918                           if (symbol_name) {
2919                             type = eSymbolTypeCode;
2920                             symbol_section = section_info.GetSection(
2921                                 nlist.n_sect, nlist.n_value);
2922 
2923                             N_FUN_addr_to_sym_idx.insert(
2924                                 std::make_pair(nlist.n_value, sym_idx));
2925                             // We use the current number of symbols in the
2926                             // symbol table in lieu of
2927                             // using nlist_idx in case we ever start trimming
2928                             // entries out
2929                             N_FUN_indexes.push_back(sym_idx);
2930                           } else {
2931                             type = eSymbolTypeCompiler;
2932 
2933                             if (!N_FUN_indexes.empty()) {
2934                               // Copy the size of the function into the original
2935                               // STAB entry so we don't have
2936                               // to hunt for it later
2937                               symtab->SymbolAtIndex(N_FUN_indexes.back())
2938                                   ->SetByteSize(nlist.n_value);
2939                               N_FUN_indexes.pop_back();
2940                               // We don't really need the end function STAB as
2941                               // it contains the size which
2942                               // we already placed with the original symbol, so
2943                               // don't add it if we want a
2944                               // minimal symbol table
2945                               add_nlist = false;
2946                             }
2947                           }
2948                           break;
2949 
2950                         case N_STSYM:
2951                           // static symbol: name,,n_sect,type,address
2952                           N_STSYM_addr_to_sym_idx.insert(
2953                               std::make_pair(nlist.n_value, sym_idx));
2954                           symbol_section = section_info.GetSection(
2955                               nlist.n_sect, nlist.n_value);
2956                           if (symbol_name && symbol_name[0]) {
2957                             type = ObjectFile::GetSymbolTypeFromName(
2958                                 symbol_name + 1, eSymbolTypeData);
2959                           }
2960                           break;
2961 
2962                         case N_LCSYM:
2963                           // .lcomm symbol: name,,n_sect,type,address
2964                           symbol_section = section_info.GetSection(
2965                               nlist.n_sect, nlist.n_value);
2966                           type = eSymbolTypeCommonBlock;
2967                           break;
2968 
2969                         case N_BNSYM:
2970                           // We use the current number of symbols in the symbol
2971                           // table in lieu of
2972                           // using nlist_idx in case we ever start trimming
2973                           // entries out
2974                           // Skip these if we want minimal symbol tables
2975                           add_nlist = false;
2976                           break;
2977 
2978                         case N_ENSYM:
2979                           // Set the size of the N_BNSYM to the terminating
2980                           // index of this N_ENSYM
2981                           // so that we can always skip the entire symbol if we
2982                           // need to navigate
2983                           // more quickly at the source level when parsing STABS
2984                           // Skip these if we want minimal symbol tables
2985                           add_nlist = false;
2986                           break;
2987 
2988                         case N_OPT:
2989                           // emitted with gcc2_compiled and in gcc source
2990                           type = eSymbolTypeCompiler;
2991                           break;
2992 
2993                         case N_RSYM:
2994                           // register sym: name,,NO_SECT,type,register
2995                           type = eSymbolTypeVariable;
2996                           break;
2997 
2998                         case N_SLINE:
2999                           // src line: 0,,n_sect,linenumber,address
3000                           symbol_section = section_info.GetSection(
3001                               nlist.n_sect, nlist.n_value);
3002                           type = eSymbolTypeLineEntry;
3003                           break;
3004 
3005                         case N_SSYM:
3006                           // structure elt: name,,NO_SECT,type,struct_offset
3007                           type = eSymbolTypeVariableType;
3008                           break;
3009 
3010                         case N_SO:
3011                           // source file name
3012                           type = eSymbolTypeSourceFile;
3013                           if (symbol_name == NULL) {
3014                             add_nlist = false;
3015                             if (N_SO_index != UINT32_MAX) {
3016                               // Set the size of the N_SO to the terminating
3017                               // index of this N_SO
3018                               // so that we can always skip the entire N_SO if
3019                               // we need to navigate
3020                               // more quickly at the source level when parsing
3021                               // STABS
3022                               symbol_ptr = symtab->SymbolAtIndex(N_SO_index);
3023                               symbol_ptr->SetByteSize(sym_idx);
3024                               symbol_ptr->SetSizeIsSibling(true);
3025                             }
3026                             N_NSYM_indexes.clear();
3027                             N_INCL_indexes.clear();
3028                             N_BRAC_indexes.clear();
3029                             N_COMM_indexes.clear();
3030                             N_FUN_indexes.clear();
3031                             N_SO_index = UINT32_MAX;
3032                           } else {
3033                             // We use the current number of symbols in the
3034                             // symbol table in lieu of
3035                             // using nlist_idx in case we ever start trimming
3036                             // entries out
3037                             const bool N_SO_has_full_path =
3038                                 symbol_name[0] == '/';
3039                             if (N_SO_has_full_path) {
3040                               if ((N_SO_index == sym_idx - 1) &&
3041                                   ((sym_idx - 1) < num_syms)) {
3042                                 // We have two consecutive N_SO entries where
3043                                 // the first contains a directory
3044                                 // and the second contains a full path.
3045                                 sym[sym_idx - 1].GetMangled().SetValue(
3046                                     ConstString(symbol_name), false);
3047                                 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3048                                 add_nlist = false;
3049                               } else {
3050                                 // This is the first entry in a N_SO that
3051                                 // contains a directory or
3052                                 // a full path to the source file
3053                                 N_SO_index = sym_idx;
3054                               }
3055                             } else if ((N_SO_index == sym_idx - 1) &&
3056                                        ((sym_idx - 1) < num_syms)) {
3057                               // This is usually the second N_SO entry that
3058                               // contains just the filename,
3059                               // so here we combine it with the first one if we
3060                               // are minimizing the symbol table
3061                               const char *so_path =
3062                                   sym[sym_idx - 1]
3063                                       .GetMangled()
3064                                       .GetDemangledName(
3065                                           lldb::eLanguageTypeUnknown)
3066                                       .AsCString();
3067                               if (so_path && so_path[0]) {
3068                                 std::string full_so_path(so_path);
3069                                 const size_t double_slash_pos =
3070                                     full_so_path.find("//");
3071                                 if (double_slash_pos != std::string::npos) {
3072                                   // The linker has been generating bad N_SO
3073                                   // entries with doubled up paths
3074                                   // in the format "%s%s" where the first string
3075                                   // in the DW_AT_comp_dir,
3076                                   // and the second is the directory for the
3077                                   // source file so you end up with
3078                                   // a path that looks like "/tmp/src//tmp/src/"
3079                                   FileSpec so_dir(so_path, false);
3080                                   if (!so_dir.Exists()) {
3081                                     so_dir.SetFile(
3082                                         &full_so_path[double_slash_pos + 1],
3083                                         false);
3084                                     if (so_dir.Exists()) {
3085                                       // Trim off the incorrect path
3086                                       full_so_path.erase(0,
3087                                                          double_slash_pos + 1);
3088                                     }
3089                                   }
3090                                 }
3091                                 if (*full_so_path.rbegin() != '/')
3092                                   full_so_path += '/';
3093                                 full_so_path += symbol_name;
3094                                 sym[sym_idx - 1].GetMangled().SetValue(
3095                                     ConstString(full_so_path.c_str()), false);
3096                                 add_nlist = false;
3097                                 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3098                               }
3099                             } else {
3100                               // This could be a relative path to a N_SO
3101                               N_SO_index = sym_idx;
3102                             }
3103                           }
3104                           break;
3105 
3106                         case N_OSO:
3107                           // object file name: name,,0,0,st_mtime
3108                           type = eSymbolTypeObjectFile;
3109                           break;
3110 
3111                         case N_LSYM:
3112                           // local sym: name,,NO_SECT,type,offset
3113                           type = eSymbolTypeLocal;
3114                           break;
3115 
3116                         //----------------------------------------------------------------------
3117                         // INCL scopes
3118                         //----------------------------------------------------------------------
3119                         case N_BINCL:
3120                           // include file beginning: name,,NO_SECT,0,sum
3121                           // We use the current number of symbols in the symbol
3122                           // table in lieu of
3123                           // using nlist_idx in case we ever start trimming
3124                           // entries out
3125                           N_INCL_indexes.push_back(sym_idx);
3126                           type = eSymbolTypeScopeBegin;
3127                           break;
3128 
3129                         case N_EINCL:
3130                           // include file end: name,,NO_SECT,0,0
3131                           // Set the size of the N_BINCL to the terminating
3132                           // index of this N_EINCL
3133                           // so that we can always skip the entire symbol if we
3134                           // need to navigate
3135                           // more quickly at the source level when parsing STABS
3136                           if (!N_INCL_indexes.empty()) {
3137                             symbol_ptr =
3138                                 symtab->SymbolAtIndex(N_INCL_indexes.back());
3139                             symbol_ptr->SetByteSize(sym_idx + 1);
3140                             symbol_ptr->SetSizeIsSibling(true);
3141                             N_INCL_indexes.pop_back();
3142                           }
3143                           type = eSymbolTypeScopeEnd;
3144                           break;
3145 
3146                         case N_SOL:
3147                           // #included file name: name,,n_sect,0,address
3148                           type = eSymbolTypeHeaderFile;
3149 
3150                           // We currently don't use the header files on darwin
3151                           add_nlist = false;
3152                           break;
3153 
3154                         case N_PARAMS:
3155                           // compiler parameters: name,,NO_SECT,0,0
3156                           type = eSymbolTypeCompiler;
3157                           break;
3158 
3159                         case N_VERSION:
3160                           // compiler version: name,,NO_SECT,0,0
3161                           type = eSymbolTypeCompiler;
3162                           break;
3163 
3164                         case N_OLEVEL:
3165                           // compiler -O level: name,,NO_SECT,0,0
3166                           type = eSymbolTypeCompiler;
3167                           break;
3168 
3169                         case N_PSYM:
3170                           // parameter: name,,NO_SECT,type,offset
3171                           type = eSymbolTypeVariable;
3172                           break;
3173 
3174                         case N_ENTRY:
3175                           // alternate entry: name,,n_sect,linenumber,address
3176                           symbol_section = section_info.GetSection(
3177                               nlist.n_sect, nlist.n_value);
3178                           type = eSymbolTypeLineEntry;
3179                           break;
3180 
3181                         //----------------------------------------------------------------------
3182                         // Left and Right Braces
3183                         //----------------------------------------------------------------------
3184                         case N_LBRAC:
3185                           // left bracket: 0,,NO_SECT,nesting level,address
3186                           // We use the current number of symbols in the symbol
3187                           // table in lieu of
3188                           // using nlist_idx in case we ever start trimming
3189                           // entries out
3190                           symbol_section = section_info.GetSection(
3191                               nlist.n_sect, nlist.n_value);
3192                           N_BRAC_indexes.push_back(sym_idx);
3193                           type = eSymbolTypeScopeBegin;
3194                           break;
3195 
3196                         case N_RBRAC:
3197                           // right bracket: 0,,NO_SECT,nesting level,address
3198                           // Set the size of the N_LBRAC to the terminating
3199                           // index of this N_RBRAC
3200                           // so that we can always skip the entire symbol if we
3201                           // need to navigate
3202                           // more quickly at the source level when parsing STABS
3203                           symbol_section = section_info.GetSection(
3204                               nlist.n_sect, nlist.n_value);
3205                           if (!N_BRAC_indexes.empty()) {
3206                             symbol_ptr =
3207                                 symtab->SymbolAtIndex(N_BRAC_indexes.back());
3208                             symbol_ptr->SetByteSize(sym_idx + 1);
3209                             symbol_ptr->SetSizeIsSibling(true);
3210                             N_BRAC_indexes.pop_back();
3211                           }
3212                           type = eSymbolTypeScopeEnd;
3213                           break;
3214 
3215                         case N_EXCL:
3216                           // deleted include file: name,,NO_SECT,0,sum
3217                           type = eSymbolTypeHeaderFile;
3218                           break;
3219 
3220                         //----------------------------------------------------------------------
3221                         // COMM scopes
3222                         //----------------------------------------------------------------------
3223                         case N_BCOMM:
3224                           // begin common: name,,NO_SECT,0,0
3225                           // We use the current number of symbols in the symbol
3226                           // table in lieu of
3227                           // using nlist_idx in case we ever start trimming
3228                           // entries out
3229                           type = eSymbolTypeScopeBegin;
3230                           N_COMM_indexes.push_back(sym_idx);
3231                           break;
3232 
3233                         case N_ECOML:
3234                           // end common (local name): 0,,n_sect,0,address
3235                           symbol_section = section_info.GetSection(
3236                               nlist.n_sect, nlist.n_value);
3237                         // Fall through
3238 
3239                         case N_ECOMM:
3240                           // end common: name,,n_sect,0,0
3241                           // Set the size of the N_BCOMM to the terminating
3242                           // index of this N_ECOMM/N_ECOML
3243                           // so that we can always skip the entire symbol if we
3244                           // need to navigate
3245                           // more quickly at the source level when parsing STABS
3246                           if (!N_COMM_indexes.empty()) {
3247                             symbol_ptr =
3248                                 symtab->SymbolAtIndex(N_COMM_indexes.back());
3249                             symbol_ptr->SetByteSize(sym_idx + 1);
3250                             symbol_ptr->SetSizeIsSibling(true);
3251                             N_COMM_indexes.pop_back();
3252                           }
3253                           type = eSymbolTypeScopeEnd;
3254                           break;
3255 
3256                         case N_LENG:
3257                           // second stab entry with length information
3258                           type = eSymbolTypeAdditional;
3259                           break;
3260 
3261                         default:
3262                           break;
3263                         }
3264                       } else {
3265                         // uint8_t n_pext    = N_PEXT & nlist.n_type;
3266                         uint8_t n_type = N_TYPE & nlist.n_type;
3267                         sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
3268 
3269                         switch (n_type) {
3270                         case N_INDR: {
3271                           const char *reexport_name_cstr =
3272                               strtab_data.PeekCStr(nlist.n_value);
3273                           if (reexport_name_cstr && reexport_name_cstr[0]) {
3274                             type = eSymbolTypeReExported;
3275                             ConstString reexport_name(
3276                                 reexport_name_cstr +
3277                                 ((reexport_name_cstr[0] == '_') ? 1 : 0));
3278                             sym[sym_idx].SetReExportedSymbolName(reexport_name);
3279                             set_value = false;
3280                             reexport_shlib_needs_fixup[sym_idx] = reexport_name;
3281                             indirect_symbol_names.insert(
3282                                 ConstString(symbol_name +
3283                                             ((symbol_name[0] == '_') ? 1 : 0)));
3284                           } else
3285                             type = eSymbolTypeUndefined;
3286                         } break;
3287 
3288                         case N_UNDF:
3289                           if (symbol_name && symbol_name[0]) {
3290                             ConstString undefined_name(
3291                                 symbol_name +
3292                                 ((symbol_name[0] == '_') ? 1 : 0));
3293                             undefined_name_to_desc[undefined_name] =
3294                                 nlist.n_desc;
3295                           }
3296                         // Fall through
3297                         case N_PBUD:
3298                           type = eSymbolTypeUndefined;
3299                           break;
3300 
3301                         case N_ABS:
3302                           type = eSymbolTypeAbsolute;
3303                           break;
3304 
3305                         case N_SECT: {
3306                           symbol_section = section_info.GetSection(
3307                               nlist.n_sect, nlist.n_value);
3308 
3309                           if (symbol_section == NULL) {
3310                             // TODO: warn about this?
3311                             add_nlist = false;
3312                             break;
3313                           }
3314 
3315                           if (TEXT_eh_frame_sectID == nlist.n_sect) {
3316                             type = eSymbolTypeException;
3317                           } else {
3318                             uint32_t section_type =
3319                                 symbol_section->Get() & SECTION_TYPE;
3320 
3321                             switch (section_type) {
3322                             case S_CSTRING_LITERALS:
3323                               type = eSymbolTypeData;
3324                               break; // section with only literal C strings
3325                             case S_4BYTE_LITERALS:
3326                               type = eSymbolTypeData;
3327                               break; // section with only 4 byte literals
3328                             case S_8BYTE_LITERALS:
3329                               type = eSymbolTypeData;
3330                               break; // section with only 8 byte literals
3331                             case S_LITERAL_POINTERS:
3332                               type = eSymbolTypeTrampoline;
3333                               break; // section with only pointers to literals
3334                             case S_NON_LAZY_SYMBOL_POINTERS:
3335                               type = eSymbolTypeTrampoline;
3336                               break; // section with only non-lazy symbol
3337                                      // pointers
3338                             case S_LAZY_SYMBOL_POINTERS:
3339                               type = eSymbolTypeTrampoline;
3340                               break; // section with only lazy symbol pointers
3341                             case S_SYMBOL_STUBS:
3342                               type = eSymbolTypeTrampoline;
3343                               break; // section with only symbol stubs, byte
3344                                      // size of stub in the reserved2 field
3345                             case S_MOD_INIT_FUNC_POINTERS:
3346                               type = eSymbolTypeCode;
3347                               break; // section with only function pointers for
3348                                      // initialization
3349                             case S_MOD_TERM_FUNC_POINTERS:
3350                               type = eSymbolTypeCode;
3351                               break; // section with only function pointers for
3352                                      // termination
3353                             case S_INTERPOSING:
3354                               type = eSymbolTypeTrampoline;
3355                               break; // section with only pairs of function
3356                                      // pointers for interposing
3357                             case S_16BYTE_LITERALS:
3358                               type = eSymbolTypeData;
3359                               break; // section with only 16 byte literals
3360                             case S_DTRACE_DOF:
3361                               type = eSymbolTypeInstrumentation;
3362                               break;
3363                             case S_LAZY_DYLIB_SYMBOL_POINTERS:
3364                               type = eSymbolTypeTrampoline;
3365                               break;
3366                             default:
3367                               switch (symbol_section->GetType()) {
3368                               case lldb::eSectionTypeCode:
3369                                 type = eSymbolTypeCode;
3370                                 break;
3371                               case eSectionTypeData:
3372                               case eSectionTypeDataCString: // Inlined C string
3373                                                             // data
3374                               case eSectionTypeDataCStringPointers: // Pointers
3375                                                                     // to C
3376                                                                     // string
3377                                                                     // data
3378                               case eSectionTypeDataSymbolAddress: // Address of
3379                                                                   // a symbol in
3380                                                                   // the symbol
3381                                                                   // table
3382                               case eSectionTypeData4:
3383                               case eSectionTypeData8:
3384                               case eSectionTypeData16:
3385                                 type = eSymbolTypeData;
3386                                 break;
3387                               default:
3388                                 break;
3389                               }
3390                               break;
3391                             }
3392 
3393                             if (type == eSymbolTypeInvalid) {
3394                               const char *symbol_sect_name =
3395                                   symbol_section->GetName().AsCString();
3396                               if (symbol_section->IsDescendant(
3397                                       text_section_sp.get())) {
3398                                 if (symbol_section->IsClear(
3399                                         S_ATTR_PURE_INSTRUCTIONS |
3400                                         S_ATTR_SELF_MODIFYING_CODE |
3401                                         S_ATTR_SOME_INSTRUCTIONS))
3402                                   type = eSymbolTypeData;
3403                                 else
3404                                   type = eSymbolTypeCode;
3405                               } else if (symbol_section->IsDescendant(
3406                                              data_section_sp.get()) ||
3407                                          symbol_section->IsDescendant(
3408                                              data_dirty_section_sp.get()) ||
3409                                          symbol_section->IsDescendant(
3410                                              data_const_section_sp.get())) {
3411                                 if (symbol_sect_name &&
3412                                     ::strstr(symbol_sect_name, "__objc") ==
3413                                         symbol_sect_name) {
3414                                   type = eSymbolTypeRuntime;
3415 
3416                                   if (symbol_name) {
3417                                     llvm::StringRef symbol_name_ref(
3418                                         symbol_name);
3419                                     if (symbol_name_ref.startswith("_OBJC_")) {
3420                                       static const llvm::StringRef
3421                                           g_objc_v2_prefix_class(
3422                                               "_OBJC_CLASS_$_");
3423                                       static const llvm::StringRef
3424                                           g_objc_v2_prefix_metaclass(
3425                                               "_OBJC_METACLASS_$_");
3426                                       static const llvm::StringRef
3427                                           g_objc_v2_prefix_ivar(
3428                                               "_OBJC_IVAR_$_");
3429                                       if (symbol_name_ref.startswith(
3430                                               g_objc_v2_prefix_class)) {
3431                                         symbol_name_non_abi_mangled =
3432                                             symbol_name + 1;
3433                                         symbol_name =
3434                                             symbol_name +
3435                                             g_objc_v2_prefix_class.size();
3436                                         type = eSymbolTypeObjCClass;
3437                                         demangled_is_synthesized = true;
3438                                       } else if (
3439                                           symbol_name_ref.startswith(
3440                                               g_objc_v2_prefix_metaclass)) {
3441                                         symbol_name_non_abi_mangled =
3442                                             symbol_name + 1;
3443                                         symbol_name =
3444                                             symbol_name +
3445                                             g_objc_v2_prefix_metaclass.size();
3446                                         type = eSymbolTypeObjCMetaClass;
3447                                         demangled_is_synthesized = true;
3448                                       } else if (symbol_name_ref.startswith(
3449                                                      g_objc_v2_prefix_ivar)) {
3450                                         symbol_name_non_abi_mangled =
3451                                             symbol_name + 1;
3452                                         symbol_name =
3453                                             symbol_name +
3454                                             g_objc_v2_prefix_ivar.size();
3455                                         type = eSymbolTypeObjCIVar;
3456                                         demangled_is_synthesized = true;
3457                                       }
3458                                     }
3459                                   }
3460                                 } else if (symbol_sect_name &&
3461                                            ::strstr(symbol_sect_name,
3462                                                     "__gcc_except_tab") ==
3463                                                symbol_sect_name) {
3464                                   type = eSymbolTypeException;
3465                                 } else {
3466                                   type = eSymbolTypeData;
3467                                 }
3468                               } else if (symbol_sect_name &&
3469                                          ::strstr(symbol_sect_name,
3470                                                   "__IMPORT") ==
3471                                              symbol_sect_name) {
3472                                 type = eSymbolTypeTrampoline;
3473                               } else if (symbol_section->IsDescendant(
3474                                              objc_section_sp.get())) {
3475                                 type = eSymbolTypeRuntime;
3476                                 if (symbol_name && symbol_name[0] == '.') {
3477                                   llvm::StringRef symbol_name_ref(symbol_name);
3478                                   static const llvm::StringRef
3479                                       g_objc_v1_prefix_class(
3480                                           ".objc_class_name_");
3481                                   if (symbol_name_ref.startswith(
3482                                           g_objc_v1_prefix_class)) {
3483                                     symbol_name_non_abi_mangled = symbol_name;
3484                                     symbol_name = symbol_name +
3485                                                   g_objc_v1_prefix_class.size();
3486                                     type = eSymbolTypeObjCClass;
3487                                     demangled_is_synthesized = true;
3488                                   }
3489                                 }
3490                               }
3491                             }
3492                           }
3493                         } break;
3494                         }
3495                       }
3496 
3497                       if (add_nlist) {
3498                         uint64_t symbol_value = nlist.n_value;
3499                         if (symbol_name_non_abi_mangled) {
3500                           sym[sym_idx].GetMangled().SetMangledName(
3501                               ConstString(symbol_name_non_abi_mangled));
3502                           sym[sym_idx].GetMangled().SetDemangledName(
3503                               ConstString(symbol_name));
3504                         } else {
3505                           bool symbol_name_is_mangled = false;
3506 
3507                           if (symbol_name && symbol_name[0] == '_') {
3508                             symbol_name_is_mangled = symbol_name[1] == '_';
3509                             symbol_name++; // Skip the leading underscore
3510                           }
3511 
3512                           if (symbol_name) {
3513                             ConstString const_symbol_name(symbol_name);
3514                             sym[sym_idx].GetMangled().SetValue(
3515                                 const_symbol_name, symbol_name_is_mangled);
3516                             if (is_gsym && is_debug) {
3517                               const char *gsym_name =
3518                                   sym[sym_idx]
3519                                       .GetMangled()
3520                                       .GetName(lldb::eLanguageTypeUnknown,
3521                                                Mangled::ePreferMangled)
3522                                       .GetCString();
3523                               if (gsym_name)
3524                                 N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
3525                             }
3526                           }
3527                         }
3528                         if (symbol_section) {
3529                           const addr_t section_file_addr =
3530                               symbol_section->GetFileAddress();
3531                           if (symbol_byte_size == 0 &&
3532                               function_starts_count > 0) {
3533                             addr_t symbol_lookup_file_addr = nlist.n_value;
3534                             // Do an exact address match for non-ARM addresses,
3535                             // else get the closest since
3536                             // the symbol might be a thumb symbol which has an
3537                             // address with bit zero set
3538                             FunctionStarts::Entry *func_start_entry =
3539                                 function_starts.FindEntry(
3540                                     symbol_lookup_file_addr, !is_arm);
3541                             if (is_arm && func_start_entry) {
3542                               // Verify that the function start address is the
3543                               // symbol address (ARM)
3544                               // or the symbol address + 1 (thumb)
3545                               if (func_start_entry->addr !=
3546                                       symbol_lookup_file_addr &&
3547                                   func_start_entry->addr !=
3548                                       (symbol_lookup_file_addr + 1)) {
3549                                 // Not the right entry, NULL it out...
3550                                 func_start_entry = NULL;
3551                               }
3552                             }
3553                             if (func_start_entry) {
3554                               func_start_entry->data = true;
3555 
3556                               addr_t symbol_file_addr = func_start_entry->addr;
3557                               uint32_t symbol_flags = 0;
3558                               if (is_arm) {
3559                                 if (symbol_file_addr & 1)
3560                                   symbol_flags =
3561                                       MACHO_NLIST_ARM_SYMBOL_IS_THUMB;
3562                                 symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
3563                               }
3564 
3565                               const FunctionStarts::Entry
3566                                   *next_func_start_entry =
3567                                       function_starts.FindNextEntry(
3568                                           func_start_entry);
3569                               const addr_t section_end_file_addr =
3570                                   section_file_addr +
3571                                   symbol_section->GetByteSize();
3572                               if (next_func_start_entry) {
3573                                 addr_t next_symbol_file_addr =
3574                                     next_func_start_entry->addr;
3575                                 // Be sure the clear the Thumb address bit when
3576                                 // we calculate the size
3577                                 // from the current and next address
3578                                 if (is_arm)
3579                                   next_symbol_file_addr &=
3580                                       THUMB_ADDRESS_BIT_MASK;
3581                                 symbol_byte_size = std::min<lldb::addr_t>(
3582                                     next_symbol_file_addr - symbol_file_addr,
3583                                     section_end_file_addr - symbol_file_addr);
3584                               } else {
3585                                 symbol_byte_size =
3586                                     section_end_file_addr - symbol_file_addr;
3587                               }
3588                             }
3589                           }
3590                           symbol_value -= section_file_addr;
3591                         }
3592 
3593                         if (is_debug == false) {
3594                           if (type == eSymbolTypeCode) {
3595                             // See if we can find a N_FUN entry for any code
3596                             // symbols.
3597                             // If we do find a match, and the name matches, then
3598                             // we
3599                             // can merge the two into just the function symbol
3600                             // to avoid
3601                             // duplicate entries in the symbol table
3602                             std::pair<ValueToSymbolIndexMap::const_iterator,
3603                                       ValueToSymbolIndexMap::const_iterator>
3604                                 range;
3605                             range = N_FUN_addr_to_sym_idx.equal_range(
3606                                 nlist.n_value);
3607                             if (range.first != range.second) {
3608                               bool found_it = false;
3609                               for (ValueToSymbolIndexMap::const_iterator pos =
3610                                        range.first;
3611                                    pos != range.second; ++pos) {
3612                                 if (sym[sym_idx].GetMangled().GetName(
3613                                         lldb::eLanguageTypeUnknown,
3614                                         Mangled::ePreferMangled) ==
3615                                     sym[pos->second].GetMangled().GetName(
3616                                         lldb::eLanguageTypeUnknown,
3617                                         Mangled::ePreferMangled)) {
3618                                   m_nlist_idx_to_sym_idx[nlist_idx] =
3619                                       pos->second;
3620                                   // We just need the flags from the linker
3621                                   // symbol, so put these flags
3622                                   // into the N_FUN flags to avoid duplicate
3623                                   // symbols in the symbol table
3624                                   sym[pos->second].SetExternal(
3625                                       sym[sym_idx].IsExternal());
3626                                   sym[pos->second].SetFlags(nlist.n_type << 16 |
3627                                                             nlist.n_desc);
3628                                   if (resolver_addresses.find(nlist.n_value) !=
3629                                       resolver_addresses.end())
3630                                     sym[pos->second].SetType(
3631                                         eSymbolTypeResolver);
3632                                   sym[sym_idx].Clear();
3633                                   found_it = true;
3634                                   break;
3635                                 }
3636                               }
3637                               if (found_it)
3638                                 continue;
3639                             } else {
3640                               if (resolver_addresses.find(nlist.n_value) !=
3641                                   resolver_addresses.end())
3642                                 type = eSymbolTypeResolver;
3643                             }
3644                           } else if (type == eSymbolTypeData ||
3645                                      type == eSymbolTypeObjCClass ||
3646                                      type == eSymbolTypeObjCMetaClass ||
3647                                      type == eSymbolTypeObjCIVar) {
3648                             // See if we can find a N_STSYM entry for any data
3649                             // symbols.
3650                             // If we do find a match, and the name matches, then
3651                             // we
3652                             // can merge the two into just the Static symbol to
3653                             // avoid
3654                             // duplicate entries in the symbol table
3655                             std::pair<ValueToSymbolIndexMap::const_iterator,
3656                                       ValueToSymbolIndexMap::const_iterator>
3657                                 range;
3658                             range = N_STSYM_addr_to_sym_idx.equal_range(
3659                                 nlist.n_value);
3660                             if (range.first != range.second) {
3661                               bool found_it = false;
3662                               for (ValueToSymbolIndexMap::const_iterator pos =
3663                                        range.first;
3664                                    pos != range.second; ++pos) {
3665                                 if (sym[sym_idx].GetMangled().GetName(
3666                                         lldb::eLanguageTypeUnknown,
3667                                         Mangled::ePreferMangled) ==
3668                                     sym[pos->second].GetMangled().GetName(
3669                                         lldb::eLanguageTypeUnknown,
3670                                         Mangled::ePreferMangled)) {
3671                                   m_nlist_idx_to_sym_idx[nlist_idx] =
3672                                       pos->second;
3673                                   // We just need the flags from the linker
3674                                   // symbol, so put these flags
3675                                   // into the N_STSYM flags to avoid duplicate
3676                                   // symbols in the symbol table
3677                                   sym[pos->second].SetExternal(
3678                                       sym[sym_idx].IsExternal());
3679                                   sym[pos->second].SetFlags(nlist.n_type << 16 |
3680                                                             nlist.n_desc);
3681                                   sym[sym_idx].Clear();
3682                                   found_it = true;
3683                                   break;
3684                                 }
3685                               }
3686                               if (found_it)
3687                                 continue;
3688                             } else {
3689                               const char *gsym_name =
3690                                   sym[sym_idx]
3691                                       .GetMangled()
3692                                       .GetName(lldb::eLanguageTypeUnknown,
3693                                                Mangled::ePreferMangled)
3694                                       .GetCString();
3695                               if (gsym_name) {
3696                                 // Combine N_GSYM stab entries with the non stab
3697                                 // symbol
3698                                 ConstNameToSymbolIndexMap::const_iterator pos =
3699                                     N_GSYM_name_to_sym_idx.find(gsym_name);
3700                                 if (pos != N_GSYM_name_to_sym_idx.end()) {
3701                                   const uint32_t GSYM_sym_idx = pos->second;
3702                                   m_nlist_idx_to_sym_idx[nlist_idx] =
3703                                       GSYM_sym_idx;
3704                                   // Copy the address, because often the N_GSYM
3705                                   // address has an invalid address of zero
3706                                   // when the global is a common symbol
3707                                   sym[GSYM_sym_idx].GetAddressRef().SetSection(
3708                                       symbol_section);
3709                                   sym[GSYM_sym_idx].GetAddressRef().SetOffset(
3710                                       symbol_value);
3711                                   // We just need the flags from the linker
3712                                   // symbol, so put these flags
3713                                   // into the N_GSYM flags to avoid duplicate
3714                                   // symbols in the symbol table
3715                                   sym[GSYM_sym_idx].SetFlags(
3716                                       nlist.n_type << 16 | nlist.n_desc);
3717                                   sym[sym_idx].Clear();
3718                                   continue;
3719                                 }
3720                               }
3721                             }
3722                           }
3723                         }
3724 
3725                         sym[sym_idx].SetID(nlist_idx);
3726                         sym[sym_idx].SetType(type);
3727                         if (set_value) {
3728                           sym[sym_idx].GetAddressRef().SetSection(
3729                               symbol_section);
3730                           sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
3731                         }
3732                         sym[sym_idx].SetFlags(nlist.n_type << 16 |
3733                                               nlist.n_desc);
3734 
3735                         if (symbol_byte_size > 0)
3736                           sym[sym_idx].SetByteSize(symbol_byte_size);
3737 
3738                         if (demangled_is_synthesized)
3739                           sym[sym_idx].SetDemangledNameIsSynthesized(true);
3740                         ++sym_idx;
3741                       } else {
3742                         sym[sym_idx].Clear();
3743                       }
3744                     }
3745                     /////////////////////////////
3746                   }
3747                   break; // No more entries to consider
3748                 }
3749               }
3750 
3751               for (const auto &pos : reexport_shlib_needs_fixup) {
3752                 const auto undef_pos = undefined_name_to_desc.find(pos.second);
3753                 if (undef_pos != undefined_name_to_desc.end()) {
3754                   const uint8_t dylib_ordinal =
3755                       llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
3756                   if (dylib_ordinal > 0 &&
3757                       dylib_ordinal < dylib_files.GetSize())
3758                     sym[pos.first].SetReExportedSymbolSharedLibrary(
3759                         dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
3760                 }
3761               }
3762             }
3763           }
3764         }
3765       }
3766     }
3767 
3768     // Must reset this in case it was mutated above!
3769     nlist_data_offset = 0;
3770 #endif
3771 
3772     if (nlist_data.GetByteSize() > 0) {
3773 
3774       // If the sym array was not created while parsing the DSC unmapped
3775       // symbols, create it now.
3776       if (sym == NULL) {
3777         sym = symtab->Resize(symtab_load_command.nsyms +
3778                              m_dysymtab.nindirectsyms);
3779         num_syms = symtab->GetNumSymbols();
3780       }
3781 
3782       if (unmapped_local_symbols_found) {
3783         assert(m_dysymtab.ilocalsym == 0);
3784         nlist_data_offset += (m_dysymtab.nlocalsym * nlist_byte_size);
3785         nlist_idx = m_dysymtab.nlocalsym;
3786       } else {
3787         nlist_idx = 0;
3788       }
3789 
3790       typedef std::map<ConstString, uint16_t> UndefinedNameToDescMap;
3791       typedef std::map<uint32_t, ConstString> SymbolIndexToName;
3792       UndefinedNameToDescMap undefined_name_to_desc;
3793       SymbolIndexToName reexport_shlib_needs_fixup;
3794       for (; nlist_idx < symtab_load_command.nsyms; ++nlist_idx) {
3795         struct nlist_64 nlist;
3796         if (!nlist_data.ValidOffsetForDataOfSize(nlist_data_offset,
3797                                                  nlist_byte_size))
3798           break;
3799 
3800         nlist.n_strx = nlist_data.GetU32_unchecked(&nlist_data_offset);
3801         nlist.n_type = nlist_data.GetU8_unchecked(&nlist_data_offset);
3802         nlist.n_sect = nlist_data.GetU8_unchecked(&nlist_data_offset);
3803         nlist.n_desc = nlist_data.GetU16_unchecked(&nlist_data_offset);
3804         nlist.n_value = nlist_data.GetAddress_unchecked(&nlist_data_offset);
3805 
3806         SymbolType type = eSymbolTypeInvalid;
3807         const char *symbol_name = NULL;
3808 
3809         if (have_strtab_data) {
3810           symbol_name = strtab_data.PeekCStr(nlist.n_strx);
3811 
3812           if (symbol_name == NULL) {
3813             // No symbol should be NULL, even the symbols with no
3814             // string values should have an offset zero which points
3815             // to an empty C-string
3816             Host::SystemLog(Host::eSystemLogError,
3817                             "error: symbol[%u] has invalid string table offset "
3818                             "0x%x in %s, ignoring symbol\n",
3819                             nlist_idx, nlist.n_strx,
3820                             module_sp->GetFileSpec().GetPath().c_str());
3821             continue;
3822           }
3823           if (symbol_name[0] == '\0')
3824             symbol_name = NULL;
3825         } else {
3826           const addr_t str_addr = strtab_addr + nlist.n_strx;
3827           Status str_error;
3828           if (process->ReadCStringFromMemory(str_addr, memory_symbol_name,
3829                                              str_error))
3830             symbol_name = memory_symbol_name.c_str();
3831         }
3832         const char *symbol_name_non_abi_mangled = NULL;
3833 
3834         SectionSP symbol_section;
3835         lldb::addr_t symbol_byte_size = 0;
3836         bool add_nlist = true;
3837         bool is_gsym = false;
3838         bool is_debug = ((nlist.n_type & N_STAB) != 0);
3839         bool demangled_is_synthesized = false;
3840         bool set_value = true;
3841         assert(sym_idx < num_syms);
3842 
3843         sym[sym_idx].SetDebug(is_debug);
3844 
3845         if (is_debug) {
3846           switch (nlist.n_type) {
3847           case N_GSYM:
3848             // global symbol: name,,NO_SECT,type,0
3849             // Sometimes the N_GSYM value contains the address.
3850 
3851             // FIXME: In the .o files, we have a GSYM and a debug symbol for all
3852             // the ObjC data.  They
3853             // have the same address, but we want to ensure that we always find
3854             // only the real symbol,
3855             // 'cause we don't currently correctly attribute the GSYM one to the
3856             // ObjCClass/Ivar/MetaClass
3857             // symbol type.  This is a temporary hack to make sure the
3858             // ObjectiveC symbols get treated
3859             // correctly.  To do this right, we should coalesce all the GSYM &
3860             // global symbols that have the
3861             // same address.
3862             is_gsym = true;
3863             sym[sym_idx].SetExternal(true);
3864 
3865             if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O') {
3866               llvm::StringRef symbol_name_ref(symbol_name);
3867               if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) {
3868                 symbol_name_non_abi_mangled = symbol_name + 1;
3869                 symbol_name = symbol_name + g_objc_v2_prefix_class.size();
3870                 type = eSymbolTypeObjCClass;
3871                 demangled_is_synthesized = true;
3872 
3873               } else if (symbol_name_ref.startswith(
3874                              g_objc_v2_prefix_metaclass)) {
3875                 symbol_name_non_abi_mangled = symbol_name + 1;
3876                 symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size();
3877                 type = eSymbolTypeObjCMetaClass;
3878                 demangled_is_synthesized = true;
3879               } else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) {
3880                 symbol_name_non_abi_mangled = symbol_name + 1;
3881                 symbol_name = symbol_name + g_objc_v2_prefix_ivar.size();
3882                 type = eSymbolTypeObjCIVar;
3883                 demangled_is_synthesized = true;
3884               }
3885             } else {
3886               if (nlist.n_value != 0)
3887                 symbol_section =
3888                     section_info.GetSection(nlist.n_sect, nlist.n_value);
3889               type = eSymbolTypeData;
3890             }
3891             break;
3892 
3893           case N_FNAME:
3894             // procedure name (f77 kludge): name,,NO_SECT,0,0
3895             type = eSymbolTypeCompiler;
3896             break;
3897 
3898           case N_FUN:
3899             // procedure: name,,n_sect,linenumber,address
3900             if (symbol_name) {
3901               type = eSymbolTypeCode;
3902               symbol_section =
3903                   section_info.GetSection(nlist.n_sect, nlist.n_value);
3904 
3905               N_FUN_addr_to_sym_idx.insert(
3906                   std::make_pair(nlist.n_value, sym_idx));
3907               // We use the current number of symbols in the symbol table in
3908               // lieu of
3909               // using nlist_idx in case we ever start trimming entries out
3910               N_FUN_indexes.push_back(sym_idx);
3911             } else {
3912               type = eSymbolTypeCompiler;
3913 
3914               if (!N_FUN_indexes.empty()) {
3915                 // Copy the size of the function into the original STAB entry so
3916                 // we don't have
3917                 // to hunt for it later
3918                 symtab->SymbolAtIndex(N_FUN_indexes.back())
3919                     ->SetByteSize(nlist.n_value);
3920                 N_FUN_indexes.pop_back();
3921                 // We don't really need the end function STAB as it contains the
3922                 // size which
3923                 // we already placed with the original symbol, so don't add it
3924                 // if we want a
3925                 // minimal symbol table
3926                 add_nlist = false;
3927               }
3928             }
3929             break;
3930 
3931           case N_STSYM:
3932             // static symbol: name,,n_sect,type,address
3933             N_STSYM_addr_to_sym_idx.insert(
3934                 std::make_pair(nlist.n_value, sym_idx));
3935             symbol_section =
3936                 section_info.GetSection(nlist.n_sect, nlist.n_value);
3937             if (symbol_name && symbol_name[0]) {
3938               type = ObjectFile::GetSymbolTypeFromName(symbol_name + 1,
3939                                                        eSymbolTypeData);
3940             }
3941             break;
3942 
3943           case N_LCSYM:
3944             // .lcomm symbol: name,,n_sect,type,address
3945             symbol_section =
3946                 section_info.GetSection(nlist.n_sect, nlist.n_value);
3947             type = eSymbolTypeCommonBlock;
3948             break;
3949 
3950           case N_BNSYM:
3951             // We use the current number of symbols in the symbol table in lieu
3952             // of
3953             // using nlist_idx in case we ever start trimming entries out
3954             // Skip these if we want minimal symbol tables
3955             add_nlist = false;
3956             break;
3957 
3958           case N_ENSYM:
3959             // Set the size of the N_BNSYM to the terminating index of this
3960             // N_ENSYM
3961             // so that we can always skip the entire symbol if we need to
3962             // navigate
3963             // more quickly at the source level when parsing STABS
3964             // Skip these if we want minimal symbol tables
3965             add_nlist = false;
3966             break;
3967 
3968           case N_OPT:
3969             // emitted with gcc2_compiled and in gcc source
3970             type = eSymbolTypeCompiler;
3971             break;
3972 
3973           case N_RSYM:
3974             // register sym: name,,NO_SECT,type,register
3975             type = eSymbolTypeVariable;
3976             break;
3977 
3978           case N_SLINE:
3979             // src line: 0,,n_sect,linenumber,address
3980             symbol_section =
3981                 section_info.GetSection(nlist.n_sect, nlist.n_value);
3982             type = eSymbolTypeLineEntry;
3983             break;
3984 
3985           case N_SSYM:
3986             // structure elt: name,,NO_SECT,type,struct_offset
3987             type = eSymbolTypeVariableType;
3988             break;
3989 
3990           case N_SO:
3991             // source file name
3992             type = eSymbolTypeSourceFile;
3993             if (symbol_name == NULL) {
3994               add_nlist = false;
3995               if (N_SO_index != UINT32_MAX) {
3996                 // Set the size of the N_SO to the terminating index of this
3997                 // N_SO
3998                 // so that we can always skip the entire N_SO if we need to
3999                 // navigate
4000                 // more quickly at the source level when parsing STABS
4001                 symbol_ptr = symtab->SymbolAtIndex(N_SO_index);
4002                 symbol_ptr->SetByteSize(sym_idx);
4003                 symbol_ptr->SetSizeIsSibling(true);
4004               }
4005               N_NSYM_indexes.clear();
4006               N_INCL_indexes.clear();
4007               N_BRAC_indexes.clear();
4008               N_COMM_indexes.clear();
4009               N_FUN_indexes.clear();
4010               N_SO_index = UINT32_MAX;
4011             } else {
4012               // We use the current number of symbols in the symbol table in
4013               // lieu of
4014               // using nlist_idx in case we ever start trimming entries out
4015               const bool N_SO_has_full_path = symbol_name[0] == '/';
4016               if (N_SO_has_full_path) {
4017                 if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) {
4018                   // We have two consecutive N_SO entries where the first
4019                   // contains a directory
4020                   // and the second contains a full path.
4021                   sym[sym_idx - 1].GetMangled().SetValue(
4022                       ConstString(symbol_name), false);
4023                   m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
4024                   add_nlist = false;
4025                 } else {
4026                   // This is the first entry in a N_SO that contains a directory
4027                   // or
4028                   // a full path to the source file
4029                   N_SO_index = sym_idx;
4030                 }
4031               } else if ((N_SO_index == sym_idx - 1) &&
4032                          ((sym_idx - 1) < num_syms)) {
4033                 // This is usually the second N_SO entry that contains just the
4034                 // filename,
4035                 // so here we combine it with the first one if we are minimizing
4036                 // the symbol table
4037                 const char *so_path =
4038                     sym[sym_idx - 1]
4039                         .GetMangled()
4040                         .GetDemangledName(lldb::eLanguageTypeUnknown)
4041                         .AsCString();
4042                 if (so_path && so_path[0]) {
4043                   std::string full_so_path(so_path);
4044                   const size_t double_slash_pos = full_so_path.find("//");
4045                   if (double_slash_pos != std::string::npos) {
4046                     // The linker has been generating bad N_SO entries with
4047                     // doubled up paths
4048                     // in the format "%s%s" where the first string in the
4049                     // DW_AT_comp_dir,
4050                     // and the second is the directory for the source file so
4051                     // you end up with
4052                     // a path that looks like "/tmp/src//tmp/src/"
4053                     FileSpec so_dir(so_path, false);
4054                     if (!so_dir.Exists()) {
4055                       so_dir.SetFile(&full_so_path[double_slash_pos + 1],
4056                                      false);
4057                       if (so_dir.Exists()) {
4058                         // Trim off the incorrect path
4059                         full_so_path.erase(0, double_slash_pos + 1);
4060                       }
4061                     }
4062                   }
4063                   if (*full_so_path.rbegin() != '/')
4064                     full_so_path += '/';
4065                   full_so_path += symbol_name;
4066                   sym[sym_idx - 1].GetMangled().SetValue(
4067                       ConstString(full_so_path.c_str()), false);
4068                   add_nlist = false;
4069                   m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
4070                 }
4071               } else {
4072                 // This could be a relative path to a N_SO
4073                 N_SO_index = sym_idx;
4074               }
4075             }
4076             break;
4077 
4078           case N_OSO:
4079             // object file name: name,,0,0,st_mtime
4080             type = eSymbolTypeObjectFile;
4081             break;
4082 
4083           case N_LSYM:
4084             // local sym: name,,NO_SECT,type,offset
4085             type = eSymbolTypeLocal;
4086             break;
4087 
4088           //----------------------------------------------------------------------
4089           // INCL scopes
4090           //----------------------------------------------------------------------
4091           case N_BINCL:
4092             // include file beginning: name,,NO_SECT,0,sum
4093             // We use the current number of symbols in the symbol table in lieu
4094             // of
4095             // using nlist_idx in case we ever start trimming entries out
4096             N_INCL_indexes.push_back(sym_idx);
4097             type = eSymbolTypeScopeBegin;
4098             break;
4099 
4100           case N_EINCL:
4101             // include file end: name,,NO_SECT,0,0
4102             // Set the size of the N_BINCL to the terminating index of this
4103             // N_EINCL
4104             // so that we can always skip the entire symbol if we need to
4105             // navigate
4106             // more quickly at the source level when parsing STABS
4107             if (!N_INCL_indexes.empty()) {
4108               symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back());
4109               symbol_ptr->SetByteSize(sym_idx + 1);
4110               symbol_ptr->SetSizeIsSibling(true);
4111               N_INCL_indexes.pop_back();
4112             }
4113             type = eSymbolTypeScopeEnd;
4114             break;
4115 
4116           case N_SOL:
4117             // #included file name: name,,n_sect,0,address
4118             type = eSymbolTypeHeaderFile;
4119 
4120             // We currently don't use the header files on darwin
4121             add_nlist = false;
4122             break;
4123 
4124           case N_PARAMS:
4125             // compiler parameters: name,,NO_SECT,0,0
4126             type = eSymbolTypeCompiler;
4127             break;
4128 
4129           case N_VERSION:
4130             // compiler version: name,,NO_SECT,0,0
4131             type = eSymbolTypeCompiler;
4132             break;
4133 
4134           case N_OLEVEL:
4135             // compiler -O level: name,,NO_SECT,0,0
4136             type = eSymbolTypeCompiler;
4137             break;
4138 
4139           case N_PSYM:
4140             // parameter: name,,NO_SECT,type,offset
4141             type = eSymbolTypeVariable;
4142             break;
4143 
4144           case N_ENTRY:
4145             // alternate entry: name,,n_sect,linenumber,address
4146             symbol_section =
4147                 section_info.GetSection(nlist.n_sect, nlist.n_value);
4148             type = eSymbolTypeLineEntry;
4149             break;
4150 
4151           //----------------------------------------------------------------------
4152           // Left and Right Braces
4153           //----------------------------------------------------------------------
4154           case N_LBRAC:
4155             // left bracket: 0,,NO_SECT,nesting level,address
4156             // We use the current number of symbols in the symbol table in lieu
4157             // of
4158             // using nlist_idx in case we ever start trimming entries out
4159             symbol_section =
4160                 section_info.GetSection(nlist.n_sect, nlist.n_value);
4161             N_BRAC_indexes.push_back(sym_idx);
4162             type = eSymbolTypeScopeBegin;
4163             break;
4164 
4165           case N_RBRAC:
4166             // right bracket: 0,,NO_SECT,nesting level,address
4167             // Set the size of the N_LBRAC to the terminating index of this
4168             // N_RBRAC
4169             // so that we can always skip the entire symbol if we need to
4170             // navigate
4171             // more quickly at the source level when parsing STABS
4172             symbol_section =
4173                 section_info.GetSection(nlist.n_sect, nlist.n_value);
4174             if (!N_BRAC_indexes.empty()) {
4175               symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back());
4176               symbol_ptr->SetByteSize(sym_idx + 1);
4177               symbol_ptr->SetSizeIsSibling(true);
4178               N_BRAC_indexes.pop_back();
4179             }
4180             type = eSymbolTypeScopeEnd;
4181             break;
4182 
4183           case N_EXCL:
4184             // deleted include file: name,,NO_SECT,0,sum
4185             type = eSymbolTypeHeaderFile;
4186             break;
4187 
4188           //----------------------------------------------------------------------
4189           // COMM scopes
4190           //----------------------------------------------------------------------
4191           case N_BCOMM:
4192             // begin common: name,,NO_SECT,0,0
4193             // We use the current number of symbols in the symbol table in lieu
4194             // of
4195             // using nlist_idx in case we ever start trimming entries out
4196             type = eSymbolTypeScopeBegin;
4197             N_COMM_indexes.push_back(sym_idx);
4198             break;
4199 
4200           case N_ECOML:
4201             // end common (local name): 0,,n_sect,0,address
4202             symbol_section =
4203                 section_info.GetSection(nlist.n_sect, nlist.n_value);
4204             LLVM_FALLTHROUGH;
4205 
4206           case N_ECOMM:
4207             // end common: name,,n_sect,0,0
4208             // Set the size of the N_BCOMM to the terminating index of this
4209             // N_ECOMM/N_ECOML
4210             // so that we can always skip the entire symbol if we need to
4211             // navigate
4212             // more quickly at the source level when parsing STABS
4213             if (!N_COMM_indexes.empty()) {
4214               symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back());
4215               symbol_ptr->SetByteSize(sym_idx + 1);
4216               symbol_ptr->SetSizeIsSibling(true);
4217               N_COMM_indexes.pop_back();
4218             }
4219             type = eSymbolTypeScopeEnd;
4220             break;
4221 
4222           case N_LENG:
4223             // second stab entry with length information
4224             type = eSymbolTypeAdditional;
4225             break;
4226 
4227           default:
4228             break;
4229           }
4230         } else {
4231           // uint8_t n_pext    = N_PEXT & nlist.n_type;
4232           uint8_t n_type = N_TYPE & nlist.n_type;
4233           sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
4234 
4235           switch (n_type) {
4236           case N_INDR: {
4237             const char *reexport_name_cstr =
4238                 strtab_data.PeekCStr(nlist.n_value);
4239             if (reexport_name_cstr && reexport_name_cstr[0]) {
4240               type = eSymbolTypeReExported;
4241               ConstString reexport_name(
4242                   reexport_name_cstr +
4243                   ((reexport_name_cstr[0] == '_') ? 1 : 0));
4244               sym[sym_idx].SetReExportedSymbolName(reexport_name);
4245               set_value = false;
4246               reexport_shlib_needs_fixup[sym_idx] = reexport_name;
4247               indirect_symbol_names.insert(
4248                   ConstString(symbol_name + ((symbol_name[0] == '_') ? 1 : 0)));
4249             } else
4250               type = eSymbolTypeUndefined;
4251           } break;
4252 
4253           case N_UNDF:
4254             if (symbol_name && symbol_name[0]) {
4255               ConstString undefined_name(symbol_name +
4256                                          ((symbol_name[0] == '_') ? 1 : 0));
4257               undefined_name_to_desc[undefined_name] = nlist.n_desc;
4258             }
4259             LLVM_FALLTHROUGH;
4260 
4261           case N_PBUD:
4262             type = eSymbolTypeUndefined;
4263             break;
4264 
4265           case N_ABS:
4266             type = eSymbolTypeAbsolute;
4267             break;
4268 
4269           case N_SECT: {
4270             symbol_section =
4271                 section_info.GetSection(nlist.n_sect, nlist.n_value);
4272 
4273             if (!symbol_section) {
4274               // TODO: warn about this?
4275               add_nlist = false;
4276               break;
4277             }
4278 
4279             if (TEXT_eh_frame_sectID == nlist.n_sect) {
4280               type = eSymbolTypeException;
4281             } else {
4282               uint32_t section_type = symbol_section->Get() & SECTION_TYPE;
4283 
4284               switch (section_type) {
4285               case S_CSTRING_LITERALS:
4286                 type = eSymbolTypeData;
4287                 break; // section with only literal C strings
4288               case S_4BYTE_LITERALS:
4289                 type = eSymbolTypeData;
4290                 break; // section with only 4 byte literals
4291               case S_8BYTE_LITERALS:
4292                 type = eSymbolTypeData;
4293                 break; // section with only 8 byte literals
4294               case S_LITERAL_POINTERS:
4295                 type = eSymbolTypeTrampoline;
4296                 break; // section with only pointers to literals
4297               case S_NON_LAZY_SYMBOL_POINTERS:
4298                 type = eSymbolTypeTrampoline;
4299                 break; // section with only non-lazy symbol pointers
4300               case S_LAZY_SYMBOL_POINTERS:
4301                 type = eSymbolTypeTrampoline;
4302                 break; // section with only lazy symbol pointers
4303               case S_SYMBOL_STUBS:
4304                 type = eSymbolTypeTrampoline;
4305                 break; // section with only symbol stubs, byte size of stub in
4306                        // the reserved2 field
4307               case S_MOD_INIT_FUNC_POINTERS:
4308                 type = eSymbolTypeCode;
4309                 break; // section with only function pointers for initialization
4310               case S_MOD_TERM_FUNC_POINTERS:
4311                 type = eSymbolTypeCode;
4312                 break; // section with only function pointers for termination
4313               case S_INTERPOSING:
4314                 type = eSymbolTypeTrampoline;
4315                 break; // section with only pairs of function pointers for
4316                        // interposing
4317               case S_16BYTE_LITERALS:
4318                 type = eSymbolTypeData;
4319                 break; // section with only 16 byte literals
4320               case S_DTRACE_DOF:
4321                 type = eSymbolTypeInstrumentation;
4322                 break;
4323               case S_LAZY_DYLIB_SYMBOL_POINTERS:
4324                 type = eSymbolTypeTrampoline;
4325                 break;
4326               default:
4327                 switch (symbol_section->GetType()) {
4328                 case lldb::eSectionTypeCode:
4329                   type = eSymbolTypeCode;
4330                   break;
4331                 case eSectionTypeData:
4332                 case eSectionTypeDataCString:         // Inlined C string data
4333                 case eSectionTypeDataCStringPointers: // Pointers to C string
4334                                                       // data
4335                 case eSectionTypeDataSymbolAddress:   // Address of a symbol in
4336                                                       // the symbol table
4337                 case eSectionTypeData4:
4338                 case eSectionTypeData8:
4339                 case eSectionTypeData16:
4340                   type = eSymbolTypeData;
4341                   break;
4342                 default:
4343                   break;
4344                 }
4345                 break;
4346               }
4347 
4348               if (type == eSymbolTypeInvalid) {
4349                 const char *symbol_sect_name =
4350                     symbol_section->GetName().AsCString();
4351                 if (symbol_section->IsDescendant(text_section_sp.get())) {
4352                   if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS |
4353                                               S_ATTR_SELF_MODIFYING_CODE |
4354                                               S_ATTR_SOME_INSTRUCTIONS))
4355                     type = eSymbolTypeData;
4356                   else
4357                     type = eSymbolTypeCode;
4358                 } else if (symbol_section->IsDescendant(
4359                                data_section_sp.get()) ||
4360                            symbol_section->IsDescendant(
4361                                data_dirty_section_sp.get()) ||
4362                            symbol_section->IsDescendant(
4363                                data_const_section_sp.get())) {
4364                   if (symbol_sect_name &&
4365                       ::strstr(symbol_sect_name, "__objc") ==
4366                           symbol_sect_name) {
4367                     type = eSymbolTypeRuntime;
4368 
4369                     if (symbol_name) {
4370                       llvm::StringRef symbol_name_ref(symbol_name);
4371                       if (symbol_name_ref.startswith("_OBJC_")) {
4372                         static const llvm::StringRef g_objc_v2_prefix_class(
4373                             "_OBJC_CLASS_$_");
4374                         static const llvm::StringRef g_objc_v2_prefix_metaclass(
4375                             "_OBJC_METACLASS_$_");
4376                         static const llvm::StringRef g_objc_v2_prefix_ivar(
4377                             "_OBJC_IVAR_$_");
4378                         if (symbol_name_ref.startswith(
4379                                 g_objc_v2_prefix_class)) {
4380                           symbol_name_non_abi_mangled = symbol_name + 1;
4381                           symbol_name =
4382                               symbol_name + g_objc_v2_prefix_class.size();
4383                           type = eSymbolTypeObjCClass;
4384                           demangled_is_synthesized = true;
4385                         } else if (symbol_name_ref.startswith(
4386                                        g_objc_v2_prefix_metaclass)) {
4387                           symbol_name_non_abi_mangled = symbol_name + 1;
4388                           symbol_name =
4389                               symbol_name + g_objc_v2_prefix_metaclass.size();
4390                           type = eSymbolTypeObjCMetaClass;
4391                           demangled_is_synthesized = true;
4392                         } else if (symbol_name_ref.startswith(
4393                                        g_objc_v2_prefix_ivar)) {
4394                           symbol_name_non_abi_mangled = symbol_name + 1;
4395                           symbol_name =
4396                               symbol_name + g_objc_v2_prefix_ivar.size();
4397                           type = eSymbolTypeObjCIVar;
4398                           demangled_is_synthesized = true;
4399                         }
4400                       }
4401                     }
4402                   } else if (symbol_sect_name &&
4403                              ::strstr(symbol_sect_name, "__gcc_except_tab") ==
4404                                  symbol_sect_name) {
4405                     type = eSymbolTypeException;
4406                   } else {
4407                     type = eSymbolTypeData;
4408                   }
4409                 } else if (symbol_sect_name &&
4410                            ::strstr(symbol_sect_name, "__IMPORT") ==
4411                                symbol_sect_name) {
4412                   type = eSymbolTypeTrampoline;
4413                 } else if (symbol_section->IsDescendant(
4414                                objc_section_sp.get())) {
4415                   type = eSymbolTypeRuntime;
4416                   if (symbol_name && symbol_name[0] == '.') {
4417                     llvm::StringRef symbol_name_ref(symbol_name);
4418                     static const llvm::StringRef g_objc_v1_prefix_class(
4419                         ".objc_class_name_");
4420                     if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) {
4421                       symbol_name_non_abi_mangled = symbol_name;
4422                       symbol_name = symbol_name + g_objc_v1_prefix_class.size();
4423                       type = eSymbolTypeObjCClass;
4424                       demangled_is_synthesized = true;
4425                     }
4426                   }
4427                 }
4428               }
4429             }
4430           } break;
4431           }
4432         }
4433 
4434         if (add_nlist) {
4435           uint64_t symbol_value = nlist.n_value;
4436 
4437           if (symbol_name_non_abi_mangled) {
4438             sym[sym_idx].GetMangled().SetMangledName(
4439                 ConstString(symbol_name_non_abi_mangled));
4440             sym[sym_idx].GetMangled().SetDemangledName(
4441                 ConstString(symbol_name));
4442           } else {
4443             bool symbol_name_is_mangled = false;
4444 
4445             if (symbol_name && symbol_name[0] == '_') {
4446               symbol_name_is_mangled = symbol_name[1] == '_';
4447               symbol_name++; // Skip the leading underscore
4448             }
4449 
4450             if (symbol_name) {
4451               ConstString const_symbol_name(symbol_name);
4452               sym[sym_idx].GetMangled().SetValue(const_symbol_name,
4453                                                  symbol_name_is_mangled);
4454             }
4455           }
4456 
4457           if (is_gsym) {
4458             const char *gsym_name = sym[sym_idx]
4459                                         .GetMangled()
4460                                         .GetName(lldb::eLanguageTypeUnknown,
4461                                                  Mangled::ePreferMangled)
4462                                         .GetCString();
4463             if (gsym_name)
4464               N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
4465           }
4466 
4467           if (symbol_section) {
4468             const addr_t section_file_addr = symbol_section->GetFileAddress();
4469             if (symbol_byte_size == 0 && function_starts_count > 0) {
4470               addr_t symbol_lookup_file_addr = nlist.n_value;
4471               // Do an exact address match for non-ARM addresses, else get the
4472               // closest since
4473               // the symbol might be a thumb symbol which has an address with
4474               // bit zero set
4475               FunctionStarts::Entry *func_start_entry =
4476                   function_starts.FindEntry(symbol_lookup_file_addr, !is_arm);
4477               if (is_arm && func_start_entry) {
4478                 // Verify that the function start address is the symbol address
4479                 // (ARM)
4480                 // or the symbol address + 1 (thumb)
4481                 if (func_start_entry->addr != symbol_lookup_file_addr &&
4482                     func_start_entry->addr != (symbol_lookup_file_addr + 1)) {
4483                   // Not the right entry, NULL it out...
4484                   func_start_entry = NULL;
4485                 }
4486               }
4487               if (func_start_entry) {
4488                 func_start_entry->data = true;
4489 
4490                 addr_t symbol_file_addr = func_start_entry->addr;
4491                 if (is_arm)
4492                   symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4493 
4494                 const FunctionStarts::Entry *next_func_start_entry =
4495                     function_starts.FindNextEntry(func_start_entry);
4496                 const addr_t section_end_file_addr =
4497                     section_file_addr + symbol_section->GetByteSize();
4498                 if (next_func_start_entry) {
4499                   addr_t next_symbol_file_addr = next_func_start_entry->addr;
4500                   // Be sure the clear the Thumb address bit when we calculate
4501                   // the size
4502                   // from the current and next address
4503                   if (is_arm)
4504                     next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4505                   symbol_byte_size = std::min<lldb::addr_t>(
4506                       next_symbol_file_addr - symbol_file_addr,
4507                       section_end_file_addr - symbol_file_addr);
4508                 } else {
4509                   symbol_byte_size = section_end_file_addr - symbol_file_addr;
4510                 }
4511               }
4512             }
4513             symbol_value -= section_file_addr;
4514           }
4515 
4516           if (is_debug == false) {
4517             if (type == eSymbolTypeCode) {
4518               // See if we can find a N_FUN entry for any code symbols.
4519               // If we do find a match, and the name matches, then we
4520               // can merge the two into just the function symbol to avoid
4521               // duplicate entries in the symbol table
4522               std::pair<ValueToSymbolIndexMap::const_iterator,
4523                         ValueToSymbolIndexMap::const_iterator>
4524                   range;
4525               range = N_FUN_addr_to_sym_idx.equal_range(nlist.n_value);
4526               if (range.first != range.second) {
4527                 bool found_it = false;
4528                 for (ValueToSymbolIndexMap::const_iterator pos = range.first;
4529                      pos != range.second; ++pos) {
4530                   if (sym[sym_idx].GetMangled().GetName(
4531                           lldb::eLanguageTypeUnknown,
4532                           Mangled::ePreferMangled) ==
4533                       sym[pos->second].GetMangled().GetName(
4534                           lldb::eLanguageTypeUnknown,
4535                           Mangled::ePreferMangled)) {
4536                     m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
4537                     // We just need the flags from the linker symbol, so put
4538                     // these flags
4539                     // into the N_FUN flags to avoid duplicate symbols in the
4540                     // symbol table
4541                     sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
4542                     sym[pos->second].SetFlags(nlist.n_type << 16 |
4543                                               nlist.n_desc);
4544                     if (resolver_addresses.find(nlist.n_value) !=
4545                         resolver_addresses.end())
4546                       sym[pos->second].SetType(eSymbolTypeResolver);
4547                     sym[sym_idx].Clear();
4548                     found_it = true;
4549                     break;
4550                   }
4551                 }
4552                 if (found_it)
4553                   continue;
4554               } else {
4555                 if (resolver_addresses.find(nlist.n_value) !=
4556                     resolver_addresses.end())
4557                   type = eSymbolTypeResolver;
4558               }
4559             } else if (type == eSymbolTypeData ||
4560                        type == eSymbolTypeObjCClass ||
4561                        type == eSymbolTypeObjCMetaClass ||
4562                        type == eSymbolTypeObjCIVar) {
4563               // See if we can find a N_STSYM entry for any data symbols.
4564               // If we do find a match, and the name matches, then we
4565               // can merge the two into just the Static symbol to avoid
4566               // duplicate entries in the symbol table
4567               std::pair<ValueToSymbolIndexMap::const_iterator,
4568                         ValueToSymbolIndexMap::const_iterator>
4569                   range;
4570               range = N_STSYM_addr_to_sym_idx.equal_range(nlist.n_value);
4571               if (range.first != range.second) {
4572                 bool found_it = false;
4573                 for (ValueToSymbolIndexMap::const_iterator pos = range.first;
4574                      pos != range.second; ++pos) {
4575                   if (sym[sym_idx].GetMangled().GetName(
4576                           lldb::eLanguageTypeUnknown,
4577                           Mangled::ePreferMangled) ==
4578                       sym[pos->second].GetMangled().GetName(
4579                           lldb::eLanguageTypeUnknown,
4580                           Mangled::ePreferMangled)) {
4581                     m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
4582                     // We just need the flags from the linker symbol, so put
4583                     // these flags
4584                     // into the N_STSYM flags to avoid duplicate symbols in the
4585                     // symbol table
4586                     sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
4587                     sym[pos->second].SetFlags(nlist.n_type << 16 |
4588                                               nlist.n_desc);
4589                     sym[sym_idx].Clear();
4590                     found_it = true;
4591                     break;
4592                   }
4593                 }
4594                 if (found_it)
4595                   continue;
4596               } else {
4597                 // Combine N_GSYM stab entries with the non stab symbol
4598                 const char *gsym_name = sym[sym_idx]
4599                                             .GetMangled()
4600                                             .GetName(lldb::eLanguageTypeUnknown,
4601                                                      Mangled::ePreferMangled)
4602                                             .GetCString();
4603                 if (gsym_name) {
4604                   ConstNameToSymbolIndexMap::const_iterator pos =
4605                       N_GSYM_name_to_sym_idx.find(gsym_name);
4606                   if (pos != N_GSYM_name_to_sym_idx.end()) {
4607                     const uint32_t GSYM_sym_idx = pos->second;
4608                     m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx;
4609                     // Copy the address, because often the N_GSYM address has an
4610                     // invalid address of zero
4611                     // when the global is a common symbol
4612                     sym[GSYM_sym_idx].GetAddressRef().SetSection(
4613                         symbol_section);
4614                     sym[GSYM_sym_idx].GetAddressRef().SetOffset(symbol_value);
4615                     // We just need the flags from the linker symbol, so put
4616                     // these flags
4617                     // into the N_GSYM flags to avoid duplicate symbols in the
4618                     // symbol table
4619                     sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 |
4620                                                nlist.n_desc);
4621                     sym[sym_idx].Clear();
4622                     continue;
4623                   }
4624                 }
4625               }
4626             }
4627           }
4628 
4629           sym[sym_idx].SetID(nlist_idx);
4630           sym[sym_idx].SetType(type);
4631           if (set_value) {
4632             sym[sym_idx].GetAddressRef().SetSection(symbol_section);
4633             sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
4634           }
4635           sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4636 
4637           if (symbol_byte_size > 0)
4638             sym[sym_idx].SetByteSize(symbol_byte_size);
4639 
4640           if (demangled_is_synthesized)
4641             sym[sym_idx].SetDemangledNameIsSynthesized(true);
4642 
4643           ++sym_idx;
4644         } else {
4645           sym[sym_idx].Clear();
4646         }
4647       }
4648 
4649       for (const auto &pos : reexport_shlib_needs_fixup) {
4650         const auto undef_pos = undefined_name_to_desc.find(pos.second);
4651         if (undef_pos != undefined_name_to_desc.end()) {
4652           const uint8_t dylib_ordinal =
4653               llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
4654           if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize())
4655             sym[pos.first].SetReExportedSymbolSharedLibrary(
4656                 dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
4657         }
4658       }
4659     }
4660 
4661     uint32_t synthetic_sym_id = symtab_load_command.nsyms;
4662 
4663     if (function_starts_count > 0) {
4664       uint32_t num_synthetic_function_symbols = 0;
4665       for (i = 0; i < function_starts_count; ++i) {
4666         if (function_starts.GetEntryRef(i).data == false)
4667           ++num_synthetic_function_symbols;
4668       }
4669 
4670       if (num_synthetic_function_symbols > 0) {
4671         if (num_syms < sym_idx + num_synthetic_function_symbols) {
4672           num_syms = sym_idx + num_synthetic_function_symbols;
4673           sym = symtab->Resize(num_syms);
4674         }
4675         for (i = 0; i < function_starts_count; ++i) {
4676           const FunctionStarts::Entry *func_start_entry =
4677               function_starts.GetEntryAtIndex(i);
4678           if (func_start_entry->data == false) {
4679             addr_t symbol_file_addr = func_start_entry->addr;
4680             uint32_t symbol_flags = 0;
4681             if (is_arm) {
4682               if (symbol_file_addr & 1)
4683                 symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB;
4684               symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4685             }
4686             Address symbol_addr;
4687             if (module_sp->ResolveFileAddress(symbol_file_addr, symbol_addr)) {
4688               SectionSP symbol_section(symbol_addr.GetSection());
4689               uint32_t symbol_byte_size = 0;
4690               if (symbol_section) {
4691                 const addr_t section_file_addr =
4692                     symbol_section->GetFileAddress();
4693                 const FunctionStarts::Entry *next_func_start_entry =
4694                     function_starts.FindNextEntry(func_start_entry);
4695                 const addr_t section_end_file_addr =
4696                     section_file_addr + symbol_section->GetByteSize();
4697                 if (next_func_start_entry) {
4698                   addr_t next_symbol_file_addr = next_func_start_entry->addr;
4699                   if (is_arm)
4700                     next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4701                   symbol_byte_size = std::min<lldb::addr_t>(
4702                       next_symbol_file_addr - symbol_file_addr,
4703                       section_end_file_addr - symbol_file_addr);
4704                 } else {
4705                   symbol_byte_size = section_end_file_addr - symbol_file_addr;
4706                 }
4707                 sym[sym_idx].SetID(synthetic_sym_id++);
4708                 sym[sym_idx].GetMangled().SetDemangledName(
4709                     GetNextSyntheticSymbolName());
4710                 sym[sym_idx].SetType(eSymbolTypeCode);
4711                 sym[sym_idx].SetIsSynthetic(true);
4712                 sym[sym_idx].GetAddressRef() = symbol_addr;
4713                 if (symbol_flags)
4714                   sym[sym_idx].SetFlags(symbol_flags);
4715                 if (symbol_byte_size)
4716                   sym[sym_idx].SetByteSize(symbol_byte_size);
4717                 ++sym_idx;
4718               }
4719             }
4720           }
4721         }
4722       }
4723     }
4724 
4725     // Trim our symbols down to just what we ended up with after
4726     // removing any symbols.
4727     if (sym_idx < num_syms) {
4728       num_syms = sym_idx;
4729       sym = symtab->Resize(num_syms);
4730     }
4731 
4732     // Now synthesize indirect symbols
4733     if (m_dysymtab.nindirectsyms != 0) {
4734       if (indirect_symbol_index_data.GetByteSize()) {
4735         NListIndexToSymbolIndexMap::const_iterator end_index_pos =
4736             m_nlist_idx_to_sym_idx.end();
4737 
4738         for (uint32_t sect_idx = 1; sect_idx < m_mach_sections.size();
4739              ++sect_idx) {
4740           if ((m_mach_sections[sect_idx].flags & SECTION_TYPE) ==
4741               S_SYMBOL_STUBS) {
4742             uint32_t symbol_stub_byte_size =
4743                 m_mach_sections[sect_idx].reserved2;
4744             if (symbol_stub_byte_size == 0)
4745               continue;
4746 
4747             const uint32_t num_symbol_stubs =
4748                 m_mach_sections[sect_idx].size / symbol_stub_byte_size;
4749 
4750             if (num_symbol_stubs == 0)
4751               continue;
4752 
4753             const uint32_t symbol_stub_index_offset =
4754                 m_mach_sections[sect_idx].reserved1;
4755             for (uint32_t stub_idx = 0; stub_idx < num_symbol_stubs;
4756                  ++stub_idx) {
4757               const uint32_t symbol_stub_index =
4758                   symbol_stub_index_offset + stub_idx;
4759               const lldb::addr_t symbol_stub_addr =
4760                   m_mach_sections[sect_idx].addr +
4761                   (stub_idx * symbol_stub_byte_size);
4762               lldb::offset_t symbol_stub_offset = symbol_stub_index * 4;
4763               if (indirect_symbol_index_data.ValidOffsetForDataOfSize(
4764                       symbol_stub_offset, 4)) {
4765                 const uint32_t stub_sym_id =
4766                     indirect_symbol_index_data.GetU32(&symbol_stub_offset);
4767                 if (stub_sym_id & (INDIRECT_SYMBOL_ABS | INDIRECT_SYMBOL_LOCAL))
4768                   continue;
4769 
4770                 NListIndexToSymbolIndexMap::const_iterator index_pos =
4771                     m_nlist_idx_to_sym_idx.find(stub_sym_id);
4772                 Symbol *stub_symbol = NULL;
4773                 if (index_pos != end_index_pos) {
4774                   // We have a remapping from the original nlist index to
4775                   // a current symbol index, so just look this up by index
4776                   stub_symbol = symtab->SymbolAtIndex(index_pos->second);
4777                 } else {
4778                   // We need to lookup a symbol using the original nlist
4779                   // symbol index since this index is coming from the
4780                   // S_SYMBOL_STUBS
4781                   stub_symbol = symtab->FindSymbolByID(stub_sym_id);
4782                 }
4783 
4784                 if (stub_symbol) {
4785                   Address so_addr(symbol_stub_addr, section_list);
4786 
4787                   if (stub_symbol->GetType() == eSymbolTypeUndefined) {
4788                     // Change the external symbol into a trampoline that makes
4789                     // sense
4790                     // These symbols were N_UNDF N_EXT, and are useless to us,
4791                     // so we
4792                     // can re-use them so we don't have to make up a synthetic
4793                     // symbol
4794                     // for no good reason.
4795                     if (resolver_addresses.find(symbol_stub_addr) ==
4796                         resolver_addresses.end())
4797                       stub_symbol->SetType(eSymbolTypeTrampoline);
4798                     else
4799                       stub_symbol->SetType(eSymbolTypeResolver);
4800                     stub_symbol->SetExternal(false);
4801                     stub_symbol->GetAddressRef() = so_addr;
4802                     stub_symbol->SetByteSize(symbol_stub_byte_size);
4803                   } else {
4804                     // Make a synthetic symbol to describe the trampoline stub
4805                     Mangled stub_symbol_mangled_name(stub_symbol->GetMangled());
4806                     if (sym_idx >= num_syms) {
4807                       sym = symtab->Resize(++num_syms);
4808                       stub_symbol = NULL; // this pointer no longer valid
4809                     }
4810                     sym[sym_idx].SetID(synthetic_sym_id++);
4811                     sym[sym_idx].GetMangled() = stub_symbol_mangled_name;
4812                     if (resolver_addresses.find(symbol_stub_addr) ==
4813                         resolver_addresses.end())
4814                       sym[sym_idx].SetType(eSymbolTypeTrampoline);
4815                     else
4816                       sym[sym_idx].SetType(eSymbolTypeResolver);
4817                     sym[sym_idx].SetIsSynthetic(true);
4818                     sym[sym_idx].GetAddressRef() = so_addr;
4819                     sym[sym_idx].SetByteSize(symbol_stub_byte_size);
4820                     ++sym_idx;
4821                   }
4822                 } else {
4823                   if (log)
4824                     log->Warning("symbol stub referencing symbol table symbol "
4825                                  "%u that isn't in our minimal symbol table, "
4826                                  "fix this!!!",
4827                                  stub_sym_id);
4828                 }
4829               }
4830             }
4831           }
4832         }
4833       }
4834     }
4835 
4836     if (!trie_entries.empty()) {
4837       for (const auto &e : trie_entries) {
4838         if (e.entry.import_name) {
4839           // Only add indirect symbols from the Trie entries if we
4840           // didn't have a N_INDR nlist entry for this already
4841           if (indirect_symbol_names.find(e.entry.name) ==
4842               indirect_symbol_names.end()) {
4843             // Make a synthetic symbol to describe re-exported symbol.
4844             if (sym_idx >= num_syms)
4845               sym = symtab->Resize(++num_syms);
4846             sym[sym_idx].SetID(synthetic_sym_id++);
4847             sym[sym_idx].GetMangled() = Mangled(e.entry.name);
4848             sym[sym_idx].SetType(eSymbolTypeReExported);
4849             sym[sym_idx].SetIsSynthetic(true);
4850             sym[sym_idx].SetReExportedSymbolName(e.entry.import_name);
4851             if (e.entry.other > 0 && e.entry.other <= dylib_files.GetSize()) {
4852               sym[sym_idx].SetReExportedSymbolSharedLibrary(
4853                   dylib_files.GetFileSpecAtIndex(e.entry.other - 1));
4854             }
4855             ++sym_idx;
4856           }
4857         }
4858       }
4859     }
4860 
4861     //        StreamFile s(stdout, false);
4862     //        s.Printf ("Symbol table before CalculateSymbolSizes():\n");
4863     //        symtab->Dump(&s, NULL, eSortOrderNone);
4864     // Set symbol byte sizes correctly since mach-o nlist entries don't have
4865     // sizes
4866     symtab->CalculateSymbolSizes();
4867 
4868     //        s.Printf ("Symbol table after CalculateSymbolSizes():\n");
4869     //        symtab->Dump(&s, NULL, eSortOrderNone);
4870 
4871     return symtab->GetNumSymbols();
4872   }
4873   return 0;
4874 }
4875 
4876 void ObjectFileMachO::Dump(Stream *s) {
4877   ModuleSP module_sp(GetModule());
4878   if (module_sp) {
4879     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
4880     s->Printf("%p: ", static_cast<void *>(this));
4881     s->Indent();
4882     if (m_header.magic == MH_MAGIC_64 || m_header.magic == MH_CIGAM_64)
4883       s->PutCString("ObjectFileMachO64");
4884     else
4885       s->PutCString("ObjectFileMachO32");
4886 
4887     ArchSpec header_arch;
4888     GetArchitecture(header_arch);
4889 
4890     *s << ", file = '" << m_file
4891        << "', arch = " << header_arch.GetArchitectureName() << "\n";
4892 
4893     SectionList *sections = GetSectionList();
4894     if (sections)
4895       sections->Dump(s, NULL, true, UINT32_MAX);
4896 
4897     if (m_symtab_ap.get())
4898       m_symtab_ap->Dump(s, NULL, eSortOrderNone);
4899   }
4900 }
4901 
4902 bool ObjectFileMachO::GetUUID(const llvm::MachO::mach_header &header,
4903                               const lldb_private::DataExtractor &data,
4904                               lldb::offset_t lc_offset,
4905                               lldb_private::UUID &uuid) {
4906   uint32_t i;
4907   struct uuid_command load_cmd;
4908 
4909   lldb::offset_t offset = lc_offset;
4910   for (i = 0; i < header.ncmds; ++i) {
4911     const lldb::offset_t cmd_offset = offset;
4912     if (data.GetU32(&offset, &load_cmd, 2) == NULL)
4913       break;
4914 
4915     if (load_cmd.cmd == LC_UUID) {
4916       const uint8_t *uuid_bytes = data.PeekData(offset, 16);
4917 
4918       if (uuid_bytes) {
4919         // OpenCL on Mac OS X uses the same UUID for each of its object files.
4920         // We pretend these object files have no UUID to prevent crashing.
4921 
4922         const uint8_t opencl_uuid[] = {0x8c, 0x8e, 0xb3, 0x9b, 0x3b, 0xa8,
4923                                        0x4b, 0x16, 0xb6, 0xa4, 0x27, 0x63,
4924                                        0xbb, 0x14, 0xf0, 0x0d};
4925 
4926         if (!memcmp(uuid_bytes, opencl_uuid, 16))
4927           return false;
4928 
4929         uuid.SetBytes(uuid_bytes);
4930         return true;
4931       }
4932       return false;
4933     }
4934     offset = cmd_offset + load_cmd.cmdsize;
4935   }
4936   return false;
4937 }
4938 
4939 bool ObjectFileMachO::GetArchitecture(const llvm::MachO::mach_header &header,
4940                                       const lldb_private::DataExtractor &data,
4941                                       lldb::offset_t lc_offset,
4942                                       ArchSpec &arch) {
4943   arch.SetArchitecture(eArchTypeMachO, header.cputype, header.cpusubtype);
4944 
4945   if (arch.IsValid()) {
4946     llvm::Triple &triple = arch.GetTriple();
4947 
4948     // Set OS to an unspecified unknown or a "*" so it can match any OS
4949     triple.setOS(llvm::Triple::UnknownOS);
4950     triple.setOSName(llvm::StringRef());
4951 
4952     if (header.filetype == MH_PRELOAD) {
4953       if (header.cputype == CPU_TYPE_ARM) {
4954         // If this is a 32-bit arm binary, and it's a standalone binary,
4955         // force the Vendor to Apple so we don't accidentally pick up
4956         // the generic armv7 ABI at runtime.  Apple's armv7 ABI always uses
4957         // r7 for the frame pointer register; most other armv7 ABIs use a
4958         // combination of r7 and r11.
4959         triple.setVendor(llvm::Triple::Apple);
4960       } else {
4961         // Set vendor to an unspecified unknown or a "*" so it can match any
4962         // vendor
4963         // This is required for correct behavior of EFI debugging on x86_64
4964         triple.setVendor(llvm::Triple::UnknownVendor);
4965         triple.setVendorName(llvm::StringRef());
4966       }
4967       return true;
4968     } else {
4969       struct load_command load_cmd;
4970 
4971       lldb::offset_t offset = lc_offset;
4972       for (uint32_t i = 0; i < header.ncmds; ++i) {
4973         const lldb::offset_t cmd_offset = offset;
4974         if (data.GetU32(&offset, &load_cmd, 2) == NULL)
4975           break;
4976 
4977         switch (load_cmd.cmd) {
4978         case llvm::MachO::LC_VERSION_MIN_IPHONEOS:
4979           triple.setOS(llvm::Triple::IOS);
4980           return true;
4981 
4982         case llvm::MachO::LC_VERSION_MIN_MACOSX:
4983           triple.setOS(llvm::Triple::MacOSX);
4984           return true;
4985 
4986         case llvm::MachO::LC_VERSION_MIN_TVOS:
4987           triple.setOS(llvm::Triple::TvOS);
4988           return true;
4989 
4990         case llvm::MachO::LC_VERSION_MIN_WATCHOS:
4991           triple.setOS(llvm::Triple::WatchOS);
4992           return true;
4993 
4994         default:
4995           break;
4996         }
4997 
4998         offset = cmd_offset + load_cmd.cmdsize;
4999       }
5000 
5001       if (header.filetype != MH_KEXT_BUNDLE) {
5002         // We didn't find a LC_VERSION_MIN load command and this isn't a KEXT
5003         // so lets not say our Vendor is Apple, leave it as an unspecified
5004         // unknown
5005         triple.setVendor(llvm::Triple::UnknownVendor);
5006         triple.setVendorName(llvm::StringRef());
5007       }
5008     }
5009   }
5010   return arch.IsValid();
5011 }
5012 
5013 bool ObjectFileMachO::GetUUID(lldb_private::UUID *uuid) {
5014   ModuleSP module_sp(GetModule());
5015   if (module_sp) {
5016     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5017     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5018     return GetUUID(m_header, m_data, offset, *uuid);
5019   }
5020   return false;
5021 }
5022 
5023 uint32_t ObjectFileMachO::GetDependentModules(FileSpecList &files) {
5024   uint32_t count = 0;
5025   ModuleSP module_sp(GetModule());
5026   if (module_sp) {
5027     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5028     struct load_command load_cmd;
5029     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5030     std::vector<std::string> rpath_paths;
5031     std::vector<std::string> rpath_relative_paths;
5032     std::vector<std::string> at_exec_relative_paths;
5033     const bool resolve_path = false; // Don't resolve the dependent file paths
5034                                      // since they may not reside on this system
5035     uint32_t i;
5036     for (i = 0; i < m_header.ncmds; ++i) {
5037       const uint32_t cmd_offset = offset;
5038       if (m_data.GetU32(&offset, &load_cmd, 2) == NULL)
5039         break;
5040 
5041       switch (load_cmd.cmd) {
5042       case LC_RPATH:
5043       case LC_LOAD_DYLIB:
5044       case LC_LOAD_WEAK_DYLIB:
5045       case LC_REEXPORT_DYLIB:
5046       case LC_LOAD_DYLINKER:
5047       case LC_LOADFVMLIB:
5048       case LC_LOAD_UPWARD_DYLIB: {
5049         uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
5050         const char *path = m_data.PeekCStr(name_offset);
5051         if (path) {
5052           if (load_cmd.cmd == LC_RPATH)
5053             rpath_paths.push_back(path);
5054           else {
5055             if (path[0] == '@') {
5056               if (strncmp(path, "@rpath", strlen("@rpath")) == 0)
5057                 rpath_relative_paths.push_back(path + strlen("@rpath"));
5058               else if (strncmp(path, "@executable_path",
5059                        strlen("@executable_path")) == 0)
5060                 at_exec_relative_paths.push_back(path
5061                                                  + strlen("@executable_path"));
5062             } else {
5063               FileSpec file_spec(path, resolve_path);
5064               if (files.AppendIfUnique(file_spec))
5065                 count++;
5066             }
5067           }
5068         }
5069       } break;
5070 
5071       default:
5072         break;
5073       }
5074       offset = cmd_offset + load_cmd.cmdsize;
5075     }
5076 
5077     FileSpec this_file_spec(m_file);
5078     this_file_spec.ResolvePath();
5079 
5080     if (!rpath_paths.empty()) {
5081       // Fixup all LC_RPATH values to be absolute paths
5082       std::string loader_path("@loader_path");
5083       std::string executable_path("@executable_path");
5084       for (auto &rpath : rpath_paths) {
5085         if (rpath.find(loader_path) == 0) {
5086           rpath.erase(0, loader_path.size());
5087           rpath.insert(0, this_file_spec.GetDirectory().GetCString());
5088         } else if (rpath.find(executable_path) == 0) {
5089           rpath.erase(0, executable_path.size());
5090           rpath.insert(0, this_file_spec.GetDirectory().GetCString());
5091         }
5092       }
5093 
5094       for (const auto &rpath_relative_path : rpath_relative_paths) {
5095         for (const auto &rpath : rpath_paths) {
5096           std::string path = rpath;
5097           path += rpath_relative_path;
5098           // It is OK to resolve this path because we must find a file on
5099           // disk for us to accept it anyway if it is rpath relative.
5100           FileSpec file_spec(path, true);
5101           // Remove any redundant parts of the path (like "../foo") since
5102           // LC_RPATH values often contain "..".
5103           file_spec = file_spec.GetNormalizedPath();
5104           if (file_spec.Exists() && files.AppendIfUnique(file_spec)) {
5105             count++;
5106             break;
5107           }
5108         }
5109       }
5110     }
5111 
5112     // We may have @executable_paths but no RPATHS.  Figure those out here.
5113     // Only do this if this object file is the executable.  We have no way to
5114     // get back to the actual executable otherwise, so we won't get the right
5115     // path.
5116     if (!at_exec_relative_paths.empty() && CalculateType() == eTypeExecutable) {
5117       FileSpec exec_dir = this_file_spec.CopyByRemovingLastPathComponent();
5118       for (const auto &at_exec_relative_path : at_exec_relative_paths) {
5119         FileSpec file_spec =
5120             exec_dir.CopyByAppendingPathComponent(at_exec_relative_path);
5121         file_spec = file_spec.GetNormalizedPath();
5122         if (file_spec.Exists() && files.AppendIfUnique(file_spec))
5123           count++;
5124       }
5125     }
5126   }
5127   return count;
5128 }
5129 
5130 lldb_private::Address ObjectFileMachO::GetEntryPointAddress() {
5131   // If the object file is not an executable it can't hold the entry point.
5132   // m_entry_point_address
5133   // is initialized to an invalid address, so we can just return that.
5134   // If m_entry_point_address is valid it means we've found it already, so
5135   // return the cached value.
5136 
5137   if (!IsExecutable() || m_entry_point_address.IsValid())
5138     return m_entry_point_address;
5139 
5140   // Otherwise, look for the UnixThread or Thread command.  The data for the
5141   // Thread command is given in
5142   // /usr/include/mach-o.h, but it is basically:
5143   //
5144   //  uint32_t flavor  - this is the flavor argument you would pass to
5145   //  thread_get_state
5146   //  uint32_t count   - this is the count of longs in the thread state data
5147   //  struct XXX_thread_state state - this is the structure from
5148   //  <machine/thread_status.h> corresponding to the flavor.
5149   //  <repeat this trio>
5150   //
5151   // So we just keep reading the various register flavors till we find the GPR
5152   // one, then read the PC out of there.
5153   // FIXME: We will need to have a "RegisterContext data provider" class at some
5154   // point that can get all the registers
5155   // out of data in this form & attach them to a given thread.  That should
5156   // underlie the MacOS X User process plugin,
5157   // and we'll also need it for the MacOS X Core File process plugin.  When we
5158   // have that we can also use it here.
5159   //
5160   // For now we hard-code the offsets and flavors we need:
5161   //
5162   //
5163 
5164   ModuleSP module_sp(GetModule());
5165   if (module_sp) {
5166     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5167     struct load_command load_cmd;
5168     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5169     uint32_t i;
5170     lldb::addr_t start_address = LLDB_INVALID_ADDRESS;
5171     bool done = false;
5172 
5173     for (i = 0; i < m_header.ncmds; ++i) {
5174       const lldb::offset_t cmd_offset = offset;
5175       if (m_data.GetU32(&offset, &load_cmd, 2) == NULL)
5176         break;
5177 
5178       switch (load_cmd.cmd) {
5179       case LC_UNIXTHREAD:
5180       case LC_THREAD: {
5181         while (offset < cmd_offset + load_cmd.cmdsize) {
5182           uint32_t flavor = m_data.GetU32(&offset);
5183           uint32_t count = m_data.GetU32(&offset);
5184           if (count == 0) {
5185             // We've gotten off somehow, log and exit;
5186             return m_entry_point_address;
5187           }
5188 
5189           switch (m_header.cputype) {
5190           case llvm::MachO::CPU_TYPE_ARM:
5191             if (flavor == 1 ||
5192                 flavor == 9) // ARM_THREAD_STATE/ARM_THREAD_STATE32 from
5193                              // mach/arm/thread_status.h
5194             {
5195               offset += 60; // This is the offset of pc in the GPR thread state
5196                             // data structure.
5197               start_address = m_data.GetU32(&offset);
5198               done = true;
5199             }
5200             break;
5201           case llvm::MachO::CPU_TYPE_ARM64:
5202             if (flavor == 6) // ARM_THREAD_STATE64 from mach/arm/thread_status.h
5203             {
5204               offset += 256; // This is the offset of pc in the GPR thread state
5205                              // data structure.
5206               start_address = m_data.GetU64(&offset);
5207               done = true;
5208             }
5209             break;
5210           case llvm::MachO::CPU_TYPE_I386:
5211             if (flavor ==
5212                 1) // x86_THREAD_STATE32 from mach/i386/thread_status.h
5213             {
5214               offset += 40; // This is the offset of eip in the GPR thread state
5215                             // data structure.
5216               start_address = m_data.GetU32(&offset);
5217               done = true;
5218             }
5219             break;
5220           case llvm::MachO::CPU_TYPE_X86_64:
5221             if (flavor ==
5222                 4) // x86_THREAD_STATE64 from mach/i386/thread_status.h
5223             {
5224               offset += 16 * 8; // This is the offset of rip in the GPR thread
5225                                 // state data structure.
5226               start_address = m_data.GetU64(&offset);
5227               done = true;
5228             }
5229             break;
5230           default:
5231             return m_entry_point_address;
5232           }
5233           // Haven't found the GPR flavor yet, skip over the data for this
5234           // flavor:
5235           if (done)
5236             break;
5237           offset += count * 4;
5238         }
5239       } break;
5240       case LC_MAIN: {
5241         ConstString text_segment_name("__TEXT");
5242         uint64_t entryoffset = m_data.GetU64(&offset);
5243         SectionSP text_segment_sp =
5244             GetSectionList()->FindSectionByName(text_segment_name);
5245         if (text_segment_sp) {
5246           done = true;
5247           start_address = text_segment_sp->GetFileAddress() + entryoffset;
5248         }
5249       } break;
5250 
5251       default:
5252         break;
5253       }
5254       if (done)
5255         break;
5256 
5257       // Go to the next load command:
5258       offset = cmd_offset + load_cmd.cmdsize;
5259     }
5260 
5261     if (start_address != LLDB_INVALID_ADDRESS) {
5262       // We got the start address from the load commands, so now resolve that
5263       // address in the sections
5264       // of this ObjectFile:
5265       if (!m_entry_point_address.ResolveAddressUsingFileSections(
5266               start_address, GetSectionList())) {
5267         m_entry_point_address.Clear();
5268       }
5269     } else {
5270       // We couldn't read the UnixThread load command - maybe it wasn't there.
5271       // As a fallback look for the
5272       // "start" symbol in the main executable.
5273 
5274       ModuleSP module_sp(GetModule());
5275 
5276       if (module_sp) {
5277         SymbolContextList contexts;
5278         SymbolContext context;
5279         if (module_sp->FindSymbolsWithNameAndType(ConstString("start"),
5280                                                   eSymbolTypeCode, contexts)) {
5281           if (contexts.GetContextAtIndex(0, context))
5282             m_entry_point_address = context.symbol->GetAddress();
5283         }
5284       }
5285     }
5286   }
5287 
5288   return m_entry_point_address;
5289 }
5290 
5291 lldb_private::Address ObjectFileMachO::GetHeaderAddress() {
5292   lldb_private::Address header_addr;
5293   SectionList *section_list = GetSectionList();
5294   if (section_list) {
5295     SectionSP text_segment_sp(
5296         section_list->FindSectionByName(GetSegmentNameTEXT()));
5297     if (text_segment_sp) {
5298       header_addr.SetSection(text_segment_sp);
5299       header_addr.SetOffset(0);
5300     }
5301   }
5302   return header_addr;
5303 }
5304 
5305 uint32_t ObjectFileMachO::GetNumThreadContexts() {
5306   ModuleSP module_sp(GetModule());
5307   if (module_sp) {
5308     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5309     if (!m_thread_context_offsets_valid) {
5310       m_thread_context_offsets_valid = true;
5311       lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5312       FileRangeArray::Entry file_range;
5313       thread_command thread_cmd;
5314       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5315         const uint32_t cmd_offset = offset;
5316         if (m_data.GetU32(&offset, &thread_cmd, 2) == NULL)
5317           break;
5318 
5319         if (thread_cmd.cmd == LC_THREAD) {
5320           file_range.SetRangeBase(offset);
5321           file_range.SetByteSize(thread_cmd.cmdsize - 8);
5322           m_thread_context_offsets.Append(file_range);
5323         }
5324         offset = cmd_offset + thread_cmd.cmdsize;
5325       }
5326     }
5327   }
5328   return m_thread_context_offsets.GetSize();
5329 }
5330 
5331 std::string ObjectFileMachO::GetIdentifierString() {
5332   std::string result;
5333   ModuleSP module_sp(GetModule());
5334   if (module_sp) {
5335     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5336 
5337     // First, look over the load commands for an LC_NOTE load command
5338     // with data_owner string "kern ver str" & use that if found.
5339     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5340     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5341       const uint32_t cmd_offset = offset;
5342       load_command lc;
5343       if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL)
5344           break;
5345       if (lc.cmd == LC_NOTE)
5346       {
5347           char data_owner[17];
5348           m_data.CopyData (offset, 16, data_owner);
5349           data_owner[16] = '\0';
5350           offset += 16;
5351           uint64_t fileoff = m_data.GetU64_unchecked (&offset);
5352           uint64_t size = m_data.GetU64_unchecked (&offset);
5353 
5354           // "kern ver str" has a uint32_t version and then a
5355           // nul terminated c-string.
5356           if (strcmp ("kern ver str", data_owner) == 0)
5357           {
5358               offset = fileoff;
5359               uint32_t version;
5360               if (m_data.GetU32 (&offset, &version, 1) != nullptr)
5361               {
5362                   if (version == 1)
5363                   {
5364                       uint32_t strsize = size - sizeof (uint32_t);
5365                       char *buf = (char*) malloc (strsize);
5366                       if (buf)
5367                       {
5368                           m_data.CopyData (offset, strsize, buf);
5369                           buf[strsize - 1] = '\0';
5370                           result = buf;
5371                           if (buf)
5372                               free (buf);
5373                           return result;
5374                       }
5375                   }
5376               }
5377           }
5378       }
5379       offset = cmd_offset + lc.cmdsize;
5380     }
5381 
5382     // Second, make a pass over the load commands looking for an
5383     // obsolete LC_IDENT load command.
5384     offset = MachHeaderSizeFromMagic(m_header.magic);
5385     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5386       const uint32_t cmd_offset = offset;
5387       struct ident_command ident_command;
5388       if (m_data.GetU32(&offset, &ident_command, 2) == NULL)
5389         break;
5390       if (ident_command.cmd == LC_IDENT && ident_command.cmdsize != 0) {
5391         char *buf = (char *) malloc (ident_command.cmdsize);
5392         if (buf != nullptr
5393             && m_data.CopyData (offset, ident_command.cmdsize, buf) == ident_command.cmdsize) {
5394           buf[ident_command.cmdsize - 1] = '\0';
5395           result = buf;
5396         }
5397         if (buf)
5398           free (buf);
5399       }
5400       offset = cmd_offset + ident_command.cmdsize;
5401     }
5402 
5403   }
5404   return result;
5405 }
5406 
5407 bool ObjectFileMachO::GetCorefileMainBinaryInfo (addr_t &address, UUID &uuid) {
5408   address = LLDB_INVALID_ADDRESS;
5409   uuid.Clear();
5410   ModuleSP module_sp(GetModule());
5411   if (module_sp) {
5412     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5413     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5414     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5415       const uint32_t cmd_offset = offset;
5416       load_command lc;
5417       if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL)
5418           break;
5419       if (lc.cmd == LC_NOTE)
5420       {
5421           char data_owner[17];
5422           memset (data_owner, 0, sizeof (data_owner));
5423           m_data.CopyData (offset, 16, data_owner);
5424           offset += 16;
5425           uint64_t fileoff = m_data.GetU64_unchecked (&offset);
5426           uint64_t size = m_data.GetU64_unchecked (&offset);
5427 
5428           // "main bin spec" (main binary specification) data payload is formatted:
5429           //    uint32_t version       [currently 1]
5430           //    uint32_t type          [0 == unspecified, 1 == kernel, 2 == user process]
5431           //    uint64_t address       [ UINT64_MAX if address not specified ]
5432           //    uuid_t   uuid          [ all zero's if uuid not specified ]
5433           //    uint32_t log2_pagesize [ process page size in log base 2, e.g. 4k pages are 12.  0 for unspecified ]
5434 
5435           if (strcmp ("main bin spec", data_owner) == 0 && size >= 32)
5436           {
5437               offset = fileoff;
5438               uint32_t version;
5439               if (m_data.GetU32 (&offset, &version, 1) != nullptr && version == 1)
5440               {
5441                   uint32_t type = 0;
5442                   uuid_t raw_uuid;
5443                   memset (raw_uuid, 0, sizeof (uuid_t));
5444 
5445                   if (m_data.GetU32 (&offset, &type, 1)
5446                       && m_data.GetU64 (&offset, &address, 1)
5447                       && m_data.CopyData (offset, sizeof (uuid_t), raw_uuid) != 0
5448                       && uuid.SetBytes (raw_uuid, sizeof (uuid_t)))
5449                   {
5450                       return true;
5451                   }
5452               }
5453           }
5454       }
5455       offset = cmd_offset + lc.cmdsize;
5456     }
5457   }
5458   return false;
5459 }
5460 
5461 lldb::RegisterContextSP
5462 ObjectFileMachO::GetThreadContextAtIndex(uint32_t idx,
5463                                          lldb_private::Thread &thread) {
5464   lldb::RegisterContextSP reg_ctx_sp;
5465 
5466   ModuleSP module_sp(GetModule());
5467   if (module_sp) {
5468     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5469     if (!m_thread_context_offsets_valid)
5470       GetNumThreadContexts();
5471 
5472     const FileRangeArray::Entry *thread_context_file_range =
5473         m_thread_context_offsets.GetEntryAtIndex(idx);
5474     if (thread_context_file_range) {
5475 
5476       DataExtractor data(m_data, thread_context_file_range->GetRangeBase(),
5477                          thread_context_file_range->GetByteSize());
5478 
5479       switch (m_header.cputype) {
5480       case llvm::MachO::CPU_TYPE_ARM64:
5481         reg_ctx_sp.reset(new RegisterContextDarwin_arm64_Mach(thread, data));
5482         break;
5483 
5484       case llvm::MachO::CPU_TYPE_ARM:
5485         reg_ctx_sp.reset(new RegisterContextDarwin_arm_Mach(thread, data));
5486         break;
5487 
5488       case llvm::MachO::CPU_TYPE_I386:
5489         reg_ctx_sp.reset(new RegisterContextDarwin_i386_Mach(thread, data));
5490         break;
5491 
5492       case llvm::MachO::CPU_TYPE_X86_64:
5493         reg_ctx_sp.reset(new RegisterContextDarwin_x86_64_Mach(thread, data));
5494         break;
5495       }
5496     }
5497   }
5498   return reg_ctx_sp;
5499 }
5500 
5501 ObjectFile::Type ObjectFileMachO::CalculateType() {
5502   switch (m_header.filetype) {
5503   case MH_OBJECT: // 0x1u
5504     if (GetAddressByteSize() == 4) {
5505       // 32 bit kexts are just object files, but they do have a valid
5506       // UUID load command.
5507       UUID uuid;
5508       if (GetUUID(&uuid)) {
5509         // this checking for the UUID load command is not enough
5510         // we could eventually look for the symbol named
5511         // "OSKextGetCurrentIdentifier" as this is required of kexts
5512         if (m_strata == eStrataInvalid)
5513           m_strata = eStrataKernel;
5514         return eTypeSharedLibrary;
5515       }
5516     }
5517     return eTypeObjectFile;
5518 
5519   case MH_EXECUTE:
5520     return eTypeExecutable; // 0x2u
5521   case MH_FVMLIB:
5522     return eTypeSharedLibrary; // 0x3u
5523   case MH_CORE:
5524     return eTypeCoreFile; // 0x4u
5525   case MH_PRELOAD:
5526     return eTypeSharedLibrary; // 0x5u
5527   case MH_DYLIB:
5528     return eTypeSharedLibrary; // 0x6u
5529   case MH_DYLINKER:
5530     return eTypeDynamicLinker; // 0x7u
5531   case MH_BUNDLE:
5532     return eTypeSharedLibrary; // 0x8u
5533   case MH_DYLIB_STUB:
5534     return eTypeStubLibrary; // 0x9u
5535   case MH_DSYM:
5536     return eTypeDebugInfo; // 0xAu
5537   case MH_KEXT_BUNDLE:
5538     return eTypeSharedLibrary; // 0xBu
5539   default:
5540     break;
5541   }
5542   return eTypeUnknown;
5543 }
5544 
5545 ObjectFile::Strata ObjectFileMachO::CalculateStrata() {
5546   switch (m_header.filetype) {
5547   case MH_OBJECT: // 0x1u
5548   {
5549     // 32 bit kexts are just object files, but they do have a valid
5550     // UUID load command.
5551     UUID uuid;
5552     if (GetUUID(&uuid)) {
5553       // this checking for the UUID load command is not enough
5554       // we could eventually look for the symbol named
5555       // "OSKextGetCurrentIdentifier" as this is required of kexts
5556       if (m_type == eTypeInvalid)
5557         m_type = eTypeSharedLibrary;
5558 
5559       return eStrataKernel;
5560     }
5561   }
5562     return eStrataUnknown;
5563 
5564   case MH_EXECUTE: // 0x2u
5565     // Check for the MH_DYLDLINK bit in the flags
5566     if (m_header.flags & MH_DYLDLINK) {
5567       return eStrataUser;
5568     } else {
5569       SectionList *section_list = GetSectionList();
5570       if (section_list) {
5571         static ConstString g_kld_section_name("__KLD");
5572         if (section_list->FindSectionByName(g_kld_section_name))
5573           return eStrataKernel;
5574       }
5575     }
5576     return eStrataRawImage;
5577 
5578   case MH_FVMLIB:
5579     return eStrataUser; // 0x3u
5580   case MH_CORE:
5581     return eStrataUnknown; // 0x4u
5582   case MH_PRELOAD:
5583     return eStrataRawImage; // 0x5u
5584   case MH_DYLIB:
5585     return eStrataUser; // 0x6u
5586   case MH_DYLINKER:
5587     return eStrataUser; // 0x7u
5588   case MH_BUNDLE:
5589     return eStrataUser; // 0x8u
5590   case MH_DYLIB_STUB:
5591     return eStrataUser; // 0x9u
5592   case MH_DSYM:
5593     return eStrataUnknown; // 0xAu
5594   case MH_KEXT_BUNDLE:
5595     return eStrataKernel; // 0xBu
5596   default:
5597     break;
5598   }
5599   return eStrataUnknown;
5600 }
5601 
5602 uint32_t ObjectFileMachO::GetVersion(uint32_t *versions,
5603                                      uint32_t num_versions) {
5604   ModuleSP module_sp(GetModule());
5605   if (module_sp) {
5606     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5607     struct dylib_command load_cmd;
5608     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5609     uint32_t version_cmd = 0;
5610     uint64_t version = 0;
5611     uint32_t i;
5612     for (i = 0; i < m_header.ncmds; ++i) {
5613       const lldb::offset_t cmd_offset = offset;
5614       if (m_data.GetU32(&offset, &load_cmd, 2) == NULL)
5615         break;
5616 
5617       if (load_cmd.cmd == LC_ID_DYLIB) {
5618         if (version_cmd == 0) {
5619           version_cmd = load_cmd.cmd;
5620           if (m_data.GetU32(&offset, &load_cmd.dylib, 4) == NULL)
5621             break;
5622           version = load_cmd.dylib.current_version;
5623         }
5624         break; // Break for now unless there is another more complete version
5625                // number load command in the future.
5626       }
5627       offset = cmd_offset + load_cmd.cmdsize;
5628     }
5629 
5630     if (version_cmd == LC_ID_DYLIB) {
5631       if (versions != NULL && num_versions > 0) {
5632         if (num_versions > 0)
5633           versions[0] = (version & 0xFFFF0000ull) >> 16;
5634         if (num_versions > 1)
5635           versions[1] = (version & 0x0000FF00ull) >> 8;
5636         if (num_versions > 2)
5637           versions[2] = (version & 0x000000FFull);
5638         // Fill in an remaining version numbers with invalid values
5639         for (i = 3; i < num_versions; ++i)
5640           versions[i] = UINT32_MAX;
5641       }
5642       // The LC_ID_DYLIB load command has a version with 3 version numbers
5643       // in it, so always return 3
5644       return 3;
5645     }
5646   }
5647   return false;
5648 }
5649 
5650 bool ObjectFileMachO::GetArchitecture(ArchSpec &arch) {
5651   ModuleSP module_sp(GetModule());
5652   if (module_sp) {
5653     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5654     return GetArchitecture(m_header, m_data,
5655                            MachHeaderSizeFromMagic(m_header.magic), arch);
5656   }
5657   return false;
5658 }
5659 
5660 UUID ObjectFileMachO::GetProcessSharedCacheUUID(Process *process) {
5661   UUID uuid;
5662   if (process && process->GetDynamicLoader()) {
5663     DynamicLoader *dl = process->GetDynamicLoader();
5664     addr_t load_address;
5665     LazyBool using_shared_cache;
5666     LazyBool private_shared_cache;
5667     dl->GetSharedCacheInformation(load_address, uuid, using_shared_cache,
5668                                   private_shared_cache);
5669   }
5670   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS | LIBLLDB_LOG_PROCESS));
5671   if (log)
5672     log->Printf("inferior process shared cache has a UUID of %s", uuid.GetAsString().c_str());
5673   return uuid;
5674 }
5675 
5676 UUID ObjectFileMachO::GetLLDBSharedCacheUUID() {
5677   UUID uuid;
5678 #if defined(__APPLE__) &&                                                      \
5679     (defined(__arm__) || defined(__arm64__) || defined(__aarch64__))
5680   uint8_t *(*dyld_get_all_image_infos)(void);
5681   dyld_get_all_image_infos =
5682       (uint8_t * (*)())dlsym(RTLD_DEFAULT, "_dyld_get_all_image_infos");
5683   if (dyld_get_all_image_infos) {
5684     uint8_t *dyld_all_image_infos_address = dyld_get_all_image_infos();
5685     if (dyld_all_image_infos_address) {
5686       uint32_t *version = (uint32_t *)
5687           dyld_all_image_infos_address; // version <mach-o/dyld_images.h>
5688       if (*version >= 13) {
5689         uuid_t *sharedCacheUUID_address = 0;
5690         int wordsize = sizeof(uint8_t *);
5691         if (wordsize == 8) {
5692           sharedCacheUUID_address =
5693               (uuid_t *)((uint8_t *)dyld_all_image_infos_address +
5694                          160); // sharedCacheUUID <mach-o/dyld_images.h>
5695         } else {
5696           sharedCacheUUID_address =
5697               (uuid_t *)((uint8_t *)dyld_all_image_infos_address +
5698                          84); // sharedCacheUUID <mach-o/dyld_images.h>
5699         }
5700         uuid.SetBytes(sharedCacheUUID_address);
5701       }
5702     }
5703   } else {
5704     // Exists in macOS 10.12 and later, iOS 10.0 and later - dyld SPI
5705     bool *(*dyld_get_shared_cache_uuid)(uuid_t);
5706     dyld_get_shared_cache_uuid = (bool *(*)(uuid_t))
5707         dlsym(RTLD_DEFAULT, "_dyld_get_shared_cache_uuid");
5708     if (dyld_get_shared_cache_uuid) {
5709       uuid_t tmp_uuid;
5710       if (dyld_get_shared_cache_uuid(tmp_uuid))
5711         uuid.SetBytes(tmp_uuid);
5712     }
5713   }
5714   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS | LIBLLDB_LOG_PROCESS));
5715   if (log && uuid.IsValid())
5716     log->Printf("lldb's in-memory shared cache has a UUID of %s", uuid.GetAsString().c_str());
5717 #endif
5718   return uuid;
5719 }
5720 
5721 uint32_t ObjectFileMachO::GetMinimumOSVersion(uint32_t *versions,
5722                                               uint32_t num_versions) {
5723   if (m_min_os_versions.empty()) {
5724     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5725     bool success = false;
5726     for (uint32_t i = 0; success == false && i < m_header.ncmds; ++i) {
5727       const lldb::offset_t load_cmd_offset = offset;
5728 
5729       version_min_command lc;
5730       if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL)
5731         break;
5732       if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX ||
5733           lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS ||
5734           lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS ||
5735           lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) {
5736         if (m_data.GetU32(&offset, &lc.version,
5737                           (sizeof(lc) / sizeof(uint32_t)) - 2)) {
5738           const uint32_t xxxx = lc.version >> 16;
5739           const uint32_t yy = (lc.version >> 8) & 0xffu;
5740           const uint32_t zz = lc.version & 0xffu;
5741           if (xxxx) {
5742             m_min_os_versions.push_back(xxxx);
5743             m_min_os_versions.push_back(yy);
5744             m_min_os_versions.push_back(zz);
5745           }
5746           success = true;
5747         }
5748       }
5749       offset = load_cmd_offset + lc.cmdsize;
5750     }
5751 
5752     if (success == false) {
5753       // Push an invalid value so we don't keep trying to
5754       m_min_os_versions.push_back(UINT32_MAX);
5755     }
5756   }
5757 
5758   if (m_min_os_versions.size() > 1 || m_min_os_versions[0] != UINT32_MAX) {
5759     if (versions != NULL && num_versions > 0) {
5760       for (size_t i = 0; i < num_versions; ++i) {
5761         if (i < m_min_os_versions.size())
5762           versions[i] = m_min_os_versions[i];
5763         else
5764           versions[i] = 0;
5765       }
5766     }
5767     return m_min_os_versions.size();
5768   }
5769   // Call the superclasses version that will empty out the data
5770   return ObjectFile::GetMinimumOSVersion(versions, num_versions);
5771 }
5772 
5773 uint32_t ObjectFileMachO::GetSDKVersion(uint32_t *versions,
5774                                         uint32_t num_versions) {
5775   if (m_sdk_versions.empty()) {
5776     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5777     bool success = false;
5778     for (uint32_t i = 0; success == false && i < m_header.ncmds; ++i) {
5779       const lldb::offset_t load_cmd_offset = offset;
5780 
5781       version_min_command lc;
5782       if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL)
5783         break;
5784       if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX ||
5785           lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS ||
5786           lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS ||
5787           lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) {
5788         if (m_data.GetU32(&offset, &lc.version,
5789                           (sizeof(lc) / sizeof(uint32_t)) - 2)) {
5790           const uint32_t xxxx = lc.sdk >> 16;
5791           const uint32_t yy = (lc.sdk >> 8) & 0xffu;
5792           const uint32_t zz = lc.sdk & 0xffu;
5793           if (xxxx) {
5794             m_sdk_versions.push_back(xxxx);
5795             m_sdk_versions.push_back(yy);
5796             m_sdk_versions.push_back(zz);
5797           }
5798           success = true;
5799         }
5800       }
5801       offset = load_cmd_offset + lc.cmdsize;
5802     }
5803 
5804     if (success == false) {
5805       // Push an invalid value so we don't keep trying to
5806       m_sdk_versions.push_back(UINT32_MAX);
5807     }
5808   }
5809 
5810   if (m_sdk_versions.size() > 1 || m_sdk_versions[0] != UINT32_MAX) {
5811     if (versions != NULL && num_versions > 0) {
5812       for (size_t i = 0; i < num_versions; ++i) {
5813         if (i < m_sdk_versions.size())
5814           versions[i] = m_sdk_versions[i];
5815         else
5816           versions[i] = 0;
5817       }
5818     }
5819     return m_sdk_versions.size();
5820   }
5821   // Call the superclasses version that will empty out the data
5822   return ObjectFile::GetSDKVersion(versions, num_versions);
5823 }
5824 
5825 bool ObjectFileMachO::GetIsDynamicLinkEditor() {
5826   return m_header.filetype == llvm::MachO::MH_DYLINKER;
5827 }
5828 
5829 bool ObjectFileMachO::AllowAssemblyEmulationUnwindPlans() {
5830   return m_allow_assembly_emulation_unwind_plans;
5831 }
5832 
5833 //------------------------------------------------------------------
5834 // PluginInterface protocol
5835 //------------------------------------------------------------------
5836 lldb_private::ConstString ObjectFileMachO::GetPluginName() {
5837   return GetPluginNameStatic();
5838 }
5839 
5840 uint32_t ObjectFileMachO::GetPluginVersion() { return 1; }
5841 
5842 Section *ObjectFileMachO::GetMachHeaderSection() {
5843   // Find the first address of the mach header which is the first non-zero
5844   // file sized section whose file offset is zero. This is the base file address
5845   // of the mach-o file which can be subtracted from the vmaddr of the other
5846   // segments found in memory and added to the load address
5847   ModuleSP module_sp = GetModule();
5848   if (module_sp) {
5849     SectionList *section_list = GetSectionList();
5850     if (section_list) {
5851       lldb::addr_t mach_base_file_addr = LLDB_INVALID_ADDRESS;
5852       const size_t num_sections = section_list->GetSize();
5853 
5854       for (size_t sect_idx = 0; sect_idx < num_sections &&
5855                                 mach_base_file_addr == LLDB_INVALID_ADDRESS;
5856            ++sect_idx) {
5857         Section *section = section_list->GetSectionAtIndex(sect_idx).get();
5858         if (section && section->GetFileSize() > 0 &&
5859             section->GetFileOffset() == 0 &&
5860             section->IsThreadSpecific() == false &&
5861             module_sp.get() == section->GetModule().get()) {
5862           return section;
5863         }
5864       }
5865     }
5866   }
5867   return nullptr;
5868 }
5869 
5870 lldb::addr_t ObjectFileMachO::CalculateSectionLoadAddressForMemoryImage(
5871     lldb::addr_t mach_header_load_address, const Section *mach_header_section,
5872     const Section *section) {
5873   ModuleSP module_sp = GetModule();
5874   if (module_sp && mach_header_section && section &&
5875       mach_header_load_address != LLDB_INVALID_ADDRESS) {
5876     lldb::addr_t mach_header_file_addr = mach_header_section->GetFileAddress();
5877     if (mach_header_file_addr != LLDB_INVALID_ADDRESS) {
5878       if (section && section->GetFileSize() > 0 &&
5879           section->IsThreadSpecific() == false &&
5880           module_sp.get() == section->GetModule().get()) {
5881         // Ignore __LINKEDIT and __DWARF segments
5882         if (section->GetName() == GetSegmentNameLINKEDIT()) {
5883           // Only map __LINKEDIT if we have an in memory image and this isn't
5884           // a kernel binary like a kext or mach_kernel.
5885           const bool is_memory_image = (bool)m_process_wp.lock();
5886           const Strata strata = GetStrata();
5887           if (is_memory_image == false || strata == eStrataKernel)
5888             return LLDB_INVALID_ADDRESS;
5889         }
5890         return section->GetFileAddress() - mach_header_file_addr +
5891                mach_header_load_address;
5892       }
5893     }
5894   }
5895   return LLDB_INVALID_ADDRESS;
5896 }
5897 
5898 bool ObjectFileMachO::SetLoadAddress(Target &target, lldb::addr_t value,
5899                                      bool value_is_offset) {
5900   ModuleSP module_sp = GetModule();
5901   if (module_sp) {
5902     size_t num_loaded_sections = 0;
5903     SectionList *section_list = GetSectionList();
5904     if (section_list) {
5905       const size_t num_sections = section_list->GetSize();
5906 
5907       if (value_is_offset) {
5908         // "value" is an offset to apply to each top level segment
5909         for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
5910           // Iterate through the object file sections to find all
5911           // of the sections that size on disk (to avoid __PAGEZERO)
5912           // and load them
5913           SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
5914           if (section_sp && section_sp->GetFileSize() > 0 &&
5915               section_sp->IsThreadSpecific() == false &&
5916               module_sp.get() == section_sp->GetModule().get()) {
5917             // Ignore __LINKEDIT and __DWARF segments
5918             if (section_sp->GetName() == GetSegmentNameLINKEDIT()) {
5919               // Only map __LINKEDIT if we have an in memory image and this
5920               // isn't
5921               // a kernel binary like a kext or mach_kernel.
5922               const bool is_memory_image = (bool)m_process_wp.lock();
5923               const Strata strata = GetStrata();
5924               if (is_memory_image == false || strata == eStrataKernel)
5925                 continue;
5926             }
5927             if (target.GetSectionLoadList().SetSectionLoadAddress(
5928                     section_sp, section_sp->GetFileAddress() + value))
5929               ++num_loaded_sections;
5930           }
5931         }
5932       } else {
5933         // "value" is the new base address of the mach_header, adjust each
5934         // section accordingly
5935 
5936         Section *mach_header_section = GetMachHeaderSection();
5937         if (mach_header_section) {
5938           for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
5939             SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
5940 
5941             lldb::addr_t section_load_addr =
5942                 CalculateSectionLoadAddressForMemoryImage(
5943                     value, mach_header_section, section_sp.get());
5944             if (section_load_addr != LLDB_INVALID_ADDRESS) {
5945               if (target.GetSectionLoadList().SetSectionLoadAddress(
5946                       section_sp, section_load_addr))
5947                 ++num_loaded_sections;
5948             }
5949           }
5950         }
5951       }
5952     }
5953     return num_loaded_sections > 0;
5954   }
5955   return false;
5956 }
5957 
5958 bool ObjectFileMachO::SaveCore(const lldb::ProcessSP &process_sp,
5959                                const FileSpec &outfile, Status &error) {
5960   if (process_sp) {
5961     Target &target = process_sp->GetTarget();
5962     const ArchSpec target_arch = target.GetArchitecture();
5963     const llvm::Triple &target_triple = target_arch.GetTriple();
5964     if (target_triple.getVendor() == llvm::Triple::Apple &&
5965         (target_triple.getOS() == llvm::Triple::MacOSX ||
5966          target_triple.getOS() == llvm::Triple::IOS ||
5967          target_triple.getOS() == llvm::Triple::WatchOS ||
5968          target_triple.getOS() == llvm::Triple::TvOS)) {
5969       bool make_core = false;
5970       switch (target_arch.GetMachine()) {
5971       case llvm::Triple::aarch64:
5972       case llvm::Triple::arm:
5973       case llvm::Triple::thumb:
5974       case llvm::Triple::x86:
5975       case llvm::Triple::x86_64:
5976         make_core = true;
5977         break;
5978       default:
5979         error.SetErrorStringWithFormat("unsupported core architecture: %s",
5980                                        target_triple.str().c_str());
5981         break;
5982       }
5983 
5984       if (make_core) {
5985         std::vector<segment_command_64> segment_load_commands;
5986         //                uint32_t range_info_idx = 0;
5987         MemoryRegionInfo range_info;
5988         Status range_error = process_sp->GetMemoryRegionInfo(0, range_info);
5989         const uint32_t addr_byte_size = target_arch.GetAddressByteSize();
5990         const ByteOrder byte_order = target_arch.GetByteOrder();
5991         if (range_error.Success()) {
5992           while (range_info.GetRange().GetRangeBase() != LLDB_INVALID_ADDRESS) {
5993             const addr_t addr = range_info.GetRange().GetRangeBase();
5994             const addr_t size = range_info.GetRange().GetByteSize();
5995 
5996             if (size == 0)
5997               break;
5998 
5999             // Calculate correct protections
6000             uint32_t prot = 0;
6001             if (range_info.GetReadable() == MemoryRegionInfo::eYes)
6002               prot |= VM_PROT_READ;
6003             if (range_info.GetWritable() == MemoryRegionInfo::eYes)
6004               prot |= VM_PROT_WRITE;
6005             if (range_info.GetExecutable() == MemoryRegionInfo::eYes)
6006               prot |= VM_PROT_EXECUTE;
6007 
6008             //                        printf ("[%3u] [0x%16.16" PRIx64 " -
6009             //                        0x%16.16" PRIx64 ") %c%c%c\n",
6010             //                                range_info_idx,
6011             //                                addr,
6012             //                                size,
6013             //                                (prot & VM_PROT_READ   ) ? 'r' :
6014             //                                '-',
6015             //                                (prot & VM_PROT_WRITE  ) ? 'w' :
6016             //                                '-',
6017             //                                (prot & VM_PROT_EXECUTE) ? 'x' :
6018             //                                '-');
6019 
6020             if (prot != 0) {
6021               uint32_t cmd_type = LC_SEGMENT_64;
6022               uint32_t segment_size = sizeof(segment_command_64);
6023               if (addr_byte_size == 4) {
6024                 cmd_type = LC_SEGMENT;
6025                 segment_size = sizeof(segment_command);
6026               }
6027               segment_command_64 segment = {
6028                   cmd_type,     // uint32_t cmd;
6029                   segment_size, // uint32_t cmdsize;
6030                   {0},          // char segname[16];
6031                   addr, // uint64_t vmaddr;    // uint32_t for 32-bit Mach-O
6032                   size, // uint64_t vmsize;    // uint32_t for 32-bit Mach-O
6033                   0,    // uint64_t fileoff;   // uint32_t for 32-bit Mach-O
6034                   size, // uint64_t filesize;  // uint32_t for 32-bit Mach-O
6035                   prot, // uint32_t maxprot;
6036                   prot, // uint32_t initprot;
6037                   0,    // uint32_t nsects;
6038                   0};   // uint32_t flags;
6039               segment_load_commands.push_back(segment);
6040             } else {
6041               // No protections and a size of 1 used to be returned from old
6042               // debugservers when we asked about a region that was past the
6043               // last memory region and it indicates the end...
6044               if (size == 1)
6045                 break;
6046             }
6047 
6048             range_error = process_sp->GetMemoryRegionInfo(
6049                 range_info.GetRange().GetRangeEnd(), range_info);
6050             if (range_error.Fail())
6051               break;
6052           }
6053 
6054           StreamString buffer(Stream::eBinary, addr_byte_size, byte_order);
6055 
6056           mach_header_64 mach_header;
6057           if (addr_byte_size == 8) {
6058             mach_header.magic = MH_MAGIC_64;
6059           } else {
6060             mach_header.magic = MH_MAGIC;
6061           }
6062           mach_header.cputype = target_arch.GetMachOCPUType();
6063           mach_header.cpusubtype = target_arch.GetMachOCPUSubType();
6064           mach_header.filetype = MH_CORE;
6065           mach_header.ncmds = segment_load_commands.size();
6066           mach_header.flags = 0;
6067           mach_header.reserved = 0;
6068           ThreadList &thread_list = process_sp->GetThreadList();
6069           const uint32_t num_threads = thread_list.GetSize();
6070 
6071           // Make an array of LC_THREAD data items. Each one contains
6072           // the contents of the LC_THREAD load command. The data doesn't
6073           // contain the load command + load command size, we will
6074           // add the load command and load command size as we emit the data.
6075           std::vector<StreamString> LC_THREAD_datas(num_threads);
6076           for (auto &LC_THREAD_data : LC_THREAD_datas) {
6077             LC_THREAD_data.GetFlags().Set(Stream::eBinary);
6078             LC_THREAD_data.SetAddressByteSize(addr_byte_size);
6079             LC_THREAD_data.SetByteOrder(byte_order);
6080           }
6081           for (uint32_t thread_idx = 0; thread_idx < num_threads;
6082                ++thread_idx) {
6083             ThreadSP thread_sp(thread_list.GetThreadAtIndex(thread_idx));
6084             if (thread_sp) {
6085               switch (mach_header.cputype) {
6086               case llvm::MachO::CPU_TYPE_ARM64:
6087                 RegisterContextDarwin_arm64_Mach::Create_LC_THREAD(
6088                     thread_sp.get(), LC_THREAD_datas[thread_idx]);
6089                 break;
6090 
6091               case llvm::MachO::CPU_TYPE_ARM:
6092                 RegisterContextDarwin_arm_Mach::Create_LC_THREAD(
6093                     thread_sp.get(), LC_THREAD_datas[thread_idx]);
6094                 break;
6095 
6096               case llvm::MachO::CPU_TYPE_I386:
6097                 RegisterContextDarwin_i386_Mach::Create_LC_THREAD(
6098                     thread_sp.get(), LC_THREAD_datas[thread_idx]);
6099                 break;
6100 
6101               case llvm::MachO::CPU_TYPE_X86_64:
6102                 RegisterContextDarwin_x86_64_Mach::Create_LC_THREAD(
6103                     thread_sp.get(), LC_THREAD_datas[thread_idx]);
6104                 break;
6105               }
6106             }
6107           }
6108 
6109           // The size of the load command is the size of the segments...
6110           if (addr_byte_size == 8) {
6111             mach_header.sizeofcmds = segment_load_commands.size() *
6112                                      sizeof(struct segment_command_64);
6113           } else {
6114             mach_header.sizeofcmds =
6115                 segment_load_commands.size() * sizeof(struct segment_command);
6116           }
6117 
6118           // and the size of all LC_THREAD load command
6119           for (const auto &LC_THREAD_data : LC_THREAD_datas) {
6120             ++mach_header.ncmds;
6121             mach_header.sizeofcmds += 8 + LC_THREAD_data.GetSize();
6122           }
6123 
6124           printf("mach_header: 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x "
6125                  "0x%8.8x 0x%8.8x\n",
6126                  mach_header.magic, mach_header.cputype, mach_header.cpusubtype,
6127                  mach_header.filetype, mach_header.ncmds,
6128                  mach_header.sizeofcmds, mach_header.flags,
6129                  mach_header.reserved);
6130 
6131           // Write the mach header
6132           buffer.PutHex32(mach_header.magic);
6133           buffer.PutHex32(mach_header.cputype);
6134           buffer.PutHex32(mach_header.cpusubtype);
6135           buffer.PutHex32(mach_header.filetype);
6136           buffer.PutHex32(mach_header.ncmds);
6137           buffer.PutHex32(mach_header.sizeofcmds);
6138           buffer.PutHex32(mach_header.flags);
6139           if (addr_byte_size == 8) {
6140             buffer.PutHex32(mach_header.reserved);
6141           }
6142 
6143           // Skip the mach header and all load commands and align to the next
6144           // 0x1000 byte boundary
6145           addr_t file_offset = buffer.GetSize() + mach_header.sizeofcmds;
6146           if (file_offset & 0x00000fff) {
6147             file_offset += 0x00001000ull;
6148             file_offset &= (~0x00001000ull + 1);
6149           }
6150 
6151           for (auto &segment : segment_load_commands) {
6152             segment.fileoff = file_offset;
6153             file_offset += segment.filesize;
6154           }
6155 
6156           // Write out all of the LC_THREAD load commands
6157           for (const auto &LC_THREAD_data : LC_THREAD_datas) {
6158             const size_t LC_THREAD_data_size = LC_THREAD_data.GetSize();
6159             buffer.PutHex32(LC_THREAD);
6160             buffer.PutHex32(8 + LC_THREAD_data_size); // cmd + cmdsize + data
6161             buffer.Write(LC_THREAD_data.GetString().data(),
6162                          LC_THREAD_data_size);
6163           }
6164 
6165           // Write out all of the segment load commands
6166           for (const auto &segment : segment_load_commands) {
6167             printf("0x%8.8x 0x%8.8x [0x%16.16" PRIx64 " - 0x%16.16" PRIx64
6168                    ") [0x%16.16" PRIx64 " 0x%16.16" PRIx64
6169                    ") 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x]\n",
6170                    segment.cmd, segment.cmdsize, segment.vmaddr,
6171                    segment.vmaddr + segment.vmsize, segment.fileoff,
6172                    segment.filesize, segment.maxprot, segment.initprot,
6173                    segment.nsects, segment.flags);
6174 
6175             buffer.PutHex32(segment.cmd);
6176             buffer.PutHex32(segment.cmdsize);
6177             buffer.PutRawBytes(segment.segname, sizeof(segment.segname));
6178             if (addr_byte_size == 8) {
6179               buffer.PutHex64(segment.vmaddr);
6180               buffer.PutHex64(segment.vmsize);
6181               buffer.PutHex64(segment.fileoff);
6182               buffer.PutHex64(segment.filesize);
6183             } else {
6184               buffer.PutHex32(static_cast<uint32_t>(segment.vmaddr));
6185               buffer.PutHex32(static_cast<uint32_t>(segment.vmsize));
6186               buffer.PutHex32(static_cast<uint32_t>(segment.fileoff));
6187               buffer.PutHex32(static_cast<uint32_t>(segment.filesize));
6188             }
6189             buffer.PutHex32(segment.maxprot);
6190             buffer.PutHex32(segment.initprot);
6191             buffer.PutHex32(segment.nsects);
6192             buffer.PutHex32(segment.flags);
6193           }
6194 
6195           File core_file;
6196           std::string core_file_path(outfile.GetPath());
6197           error = core_file.Open(core_file_path.c_str(),
6198                                  File::eOpenOptionWrite |
6199                                      File::eOpenOptionTruncate |
6200                                      File::eOpenOptionCanCreate);
6201           if (error.Success()) {
6202             // Read 1 page at a time
6203             uint8_t bytes[0x1000];
6204             // Write the mach header and load commands out to the core file
6205             size_t bytes_written = buffer.GetString().size();
6206             error = core_file.Write(buffer.GetString().data(), bytes_written);
6207             if (error.Success()) {
6208               // Now write the file data for all memory segments in the process
6209               for (const auto &segment : segment_load_commands) {
6210                 if (core_file.SeekFromStart(segment.fileoff) == -1) {
6211                   error.SetErrorStringWithFormat(
6212                       "unable to seek to offset 0x%" PRIx64 " in '%s'",
6213                       segment.fileoff, core_file_path.c_str());
6214                   break;
6215                 }
6216 
6217                 printf("Saving %" PRId64
6218                        " bytes of data for memory region at 0x%" PRIx64 "\n",
6219                        segment.vmsize, segment.vmaddr);
6220                 addr_t bytes_left = segment.vmsize;
6221                 addr_t addr = segment.vmaddr;
6222                 Status memory_read_error;
6223                 while (bytes_left > 0 && error.Success()) {
6224                   const size_t bytes_to_read =
6225                       bytes_left > sizeof(bytes) ? sizeof(bytes) : bytes_left;
6226                   const size_t bytes_read = process_sp->ReadMemory(
6227                       addr, bytes, bytes_to_read, memory_read_error);
6228                   if (bytes_read == bytes_to_read) {
6229                     size_t bytes_written = bytes_read;
6230                     error = core_file.Write(bytes, bytes_written);
6231                     bytes_left -= bytes_read;
6232                     addr += bytes_read;
6233                   } else {
6234                     // Some pages within regions are not readable, those
6235                     // should be zero filled
6236                     memset(bytes, 0, bytes_to_read);
6237                     size_t bytes_written = bytes_to_read;
6238                     error = core_file.Write(bytes, bytes_written);
6239                     bytes_left -= bytes_to_read;
6240                     addr += bytes_to_read;
6241                   }
6242                 }
6243               }
6244             }
6245           }
6246         } else {
6247           error.SetErrorString(
6248               "process doesn't support getting memory region info");
6249         }
6250       }
6251       return true; // This is the right plug to handle saving core files for
6252                    // this process
6253     }
6254   }
6255   return false;
6256 }
6257