1 //===-- ObjectFileELF.cpp ------------------------------------- -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "ObjectFileELF.h" 11 12 #include <cassert> 13 #include <algorithm> 14 #include <unordered_map> 15 16 #include "lldb/Core/ArchSpec.h" 17 #include "lldb/Core/DataBuffer.h" 18 #include "lldb/Core/Error.h" 19 #include "lldb/Core/FileSpecList.h" 20 #include "lldb/Core/Log.h" 21 #include "lldb/Core/Module.h" 22 #include "lldb/Core/ModuleSpec.h" 23 #include "lldb/Core/PluginManager.h" 24 #include "lldb/Core/Section.h" 25 #include "lldb/Core/Stream.h" 26 #include "lldb/Core/Timer.h" 27 #include "lldb/Symbol/DWARFCallFrameInfo.h" 28 #include "lldb/Symbol/SymbolContext.h" 29 #include "lldb/Target/SectionLoadList.h" 30 #include "lldb/Target/Target.h" 31 32 #include "llvm/ADT/PointerUnion.h" 33 #include "llvm/ADT/StringRef.h" 34 #include "llvm/Support/ARMBuildAttributes.h" 35 #include "llvm/Support/MathExtras.h" 36 #include "llvm/Support/MipsABIFlags.h" 37 38 #define CASE_AND_STREAM(s, def, width) \ 39 case def: s->Printf("%-*s", width, #def); break; 40 41 using namespace lldb; 42 using namespace lldb_private; 43 using namespace elf; 44 using namespace llvm::ELF; 45 46 namespace { 47 48 // ELF note owner definitions 49 const char *const LLDB_NT_OWNER_FREEBSD = "FreeBSD"; 50 const char *const LLDB_NT_OWNER_GNU = "GNU"; 51 const char *const LLDB_NT_OWNER_NETBSD = "NetBSD"; 52 const char *const LLDB_NT_OWNER_CSR = "csr"; 53 const char *const LLDB_NT_OWNER_ANDROID = "Android"; 54 const char *const LLDB_NT_OWNER_CORE = "CORE"; 55 const char *const LLDB_NT_OWNER_LINUX = "LINUX"; 56 57 // ELF note type definitions 58 const elf_word LLDB_NT_FREEBSD_ABI_TAG = 0x01; 59 const elf_word LLDB_NT_FREEBSD_ABI_SIZE = 4; 60 61 const elf_word LLDB_NT_GNU_ABI_TAG = 0x01; 62 const elf_word LLDB_NT_GNU_ABI_SIZE = 16; 63 64 const elf_word LLDB_NT_GNU_BUILD_ID_TAG = 0x03; 65 66 const elf_word LLDB_NT_NETBSD_ABI_TAG = 0x01; 67 const elf_word LLDB_NT_NETBSD_ABI_SIZE = 4; 68 69 // GNU ABI note OS constants 70 const elf_word LLDB_NT_GNU_ABI_OS_LINUX = 0x00; 71 const elf_word LLDB_NT_GNU_ABI_OS_HURD = 0x01; 72 const elf_word LLDB_NT_GNU_ABI_OS_SOLARIS = 0x02; 73 74 // LLDB_NT_OWNER_CORE and LLDB_NT_OWNER_LINUX note contants 75 #define NT_PRSTATUS 1 76 #define NT_PRFPREG 2 77 #define NT_PRPSINFO 3 78 #define NT_TASKSTRUCT 4 79 #define NT_AUXV 6 80 #define NT_SIGINFO 0x53494749 81 #define NT_FILE 0x46494c45 82 #define NT_PRXFPREG 0x46e62b7f 83 #define NT_PPC_VMX 0x100 84 #define NT_PPC_SPE 0x101 85 #define NT_PPC_VSX 0x102 86 #define NT_386_TLS 0x200 87 #define NT_386_IOPERM 0x201 88 #define NT_X86_XSTATE 0x202 89 #define NT_S390_HIGH_GPRS 0x300 90 #define NT_S390_TIMER 0x301 91 #define NT_S390_TODCMP 0x302 92 #define NT_S390_TODPREG 0x303 93 #define NT_S390_CTRS 0x304 94 #define NT_S390_PREFIX 0x305 95 #define NT_S390_LAST_BREAK 0x306 96 #define NT_S390_SYSTEM_CALL 0x307 97 #define NT_S390_TDB 0x308 98 #define NT_S390_VXRS_LOW 0x309 99 #define NT_S390_VXRS_HIGH 0x30a 100 #define NT_ARM_VFP 0x400 101 #define NT_ARM_TLS 0x401 102 #define NT_ARM_HW_BREAK 0x402 103 #define NT_ARM_HW_WATCH 0x403 104 #define NT_ARM_SYSTEM_CALL 0x404 105 #define NT_METAG_CBUF 0x500 106 #define NT_METAG_RPIPE 0x501 107 #define NT_METAG_TLS 0x502 108 109 //===----------------------------------------------------------------------===// 110 /// @class ELFRelocation 111 /// @brief Generic wrapper for ELFRel and ELFRela. 112 /// 113 /// This helper class allows us to parse both ELFRel and ELFRela relocation 114 /// entries in a generic manner. 115 class ELFRelocation 116 { 117 public: 118 119 /// Constructs an ELFRelocation entry with a personality as given by @p 120 /// type. 121 /// 122 /// @param type Either DT_REL or DT_RELA. Any other value is invalid. 123 ELFRelocation(unsigned type); 124 125 ~ELFRelocation(); 126 127 bool 128 Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset); 129 130 static unsigned 131 RelocType32(const ELFRelocation &rel); 132 133 static unsigned 134 RelocType64(const ELFRelocation &rel); 135 136 static unsigned 137 RelocSymbol32(const ELFRelocation &rel); 138 139 static unsigned 140 RelocSymbol64(const ELFRelocation &rel); 141 142 static unsigned 143 RelocOffset32(const ELFRelocation &rel); 144 145 static unsigned 146 RelocOffset64(const ELFRelocation &rel); 147 148 static unsigned 149 RelocAddend32(const ELFRelocation &rel); 150 151 static unsigned 152 RelocAddend64(const ELFRelocation &rel); 153 154 private: 155 typedef llvm::PointerUnion<ELFRel*, ELFRela*> RelocUnion; 156 157 RelocUnion reloc; 158 }; 159 160 ELFRelocation::ELFRelocation(unsigned type) 161 { 162 if (type == DT_REL || type == SHT_REL) 163 reloc = new ELFRel(); 164 else if (type == DT_RELA || type == SHT_RELA) 165 reloc = new ELFRela(); 166 else { 167 assert(false && "unexpected relocation type"); 168 reloc = static_cast<ELFRel*>(NULL); 169 } 170 } 171 172 ELFRelocation::~ELFRelocation() 173 { 174 if (reloc.is<ELFRel*>()) 175 delete reloc.get<ELFRel*>(); 176 else 177 delete reloc.get<ELFRela*>(); 178 } 179 180 bool 181 ELFRelocation::Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset) 182 { 183 if (reloc.is<ELFRel*>()) 184 return reloc.get<ELFRel*>()->Parse(data, offset); 185 else 186 return reloc.get<ELFRela*>()->Parse(data, offset); 187 } 188 189 unsigned 190 ELFRelocation::RelocType32(const ELFRelocation &rel) 191 { 192 if (rel.reloc.is<ELFRel*>()) 193 return ELFRel::RelocType32(*rel.reloc.get<ELFRel*>()); 194 else 195 return ELFRela::RelocType32(*rel.reloc.get<ELFRela*>()); 196 } 197 198 unsigned 199 ELFRelocation::RelocType64(const ELFRelocation &rel) 200 { 201 if (rel.reloc.is<ELFRel*>()) 202 return ELFRel::RelocType64(*rel.reloc.get<ELFRel*>()); 203 else 204 return ELFRela::RelocType64(*rel.reloc.get<ELFRela*>()); 205 } 206 207 unsigned 208 ELFRelocation::RelocSymbol32(const ELFRelocation &rel) 209 { 210 if (rel.reloc.is<ELFRel*>()) 211 return ELFRel::RelocSymbol32(*rel.reloc.get<ELFRel*>()); 212 else 213 return ELFRela::RelocSymbol32(*rel.reloc.get<ELFRela*>()); 214 } 215 216 unsigned 217 ELFRelocation::RelocSymbol64(const ELFRelocation &rel) 218 { 219 if (rel.reloc.is<ELFRel*>()) 220 return ELFRel::RelocSymbol64(*rel.reloc.get<ELFRel*>()); 221 else 222 return ELFRela::RelocSymbol64(*rel.reloc.get<ELFRela*>()); 223 } 224 225 unsigned 226 ELFRelocation::RelocOffset32(const ELFRelocation &rel) 227 { 228 if (rel.reloc.is<ELFRel*>()) 229 return rel.reloc.get<ELFRel*>()->r_offset; 230 else 231 return rel.reloc.get<ELFRela*>()->r_offset; 232 } 233 234 unsigned 235 ELFRelocation::RelocOffset64(const ELFRelocation &rel) 236 { 237 if (rel.reloc.is<ELFRel*>()) 238 return rel.reloc.get<ELFRel*>()->r_offset; 239 else 240 return rel.reloc.get<ELFRela*>()->r_offset; 241 } 242 243 unsigned 244 ELFRelocation::RelocAddend32(const ELFRelocation &rel) 245 { 246 if (rel.reloc.is<ELFRel*>()) 247 return 0; 248 else 249 return rel.reloc.get<ELFRela*>()->r_addend; 250 } 251 252 unsigned 253 ELFRelocation::RelocAddend64(const ELFRelocation &rel) 254 { 255 if (rel.reloc.is<ELFRel*>()) 256 return 0; 257 else 258 return rel.reloc.get<ELFRela*>()->r_addend; 259 } 260 261 } // end anonymous namespace 262 263 bool 264 ELFNote::Parse(const DataExtractor &data, lldb::offset_t *offset) 265 { 266 // Read all fields. 267 if (data.GetU32(offset, &n_namesz, 3) == NULL) 268 return false; 269 270 // The name field is required to be nul-terminated, and n_namesz 271 // includes the terminating nul in observed implementations (contrary 272 // to the ELF-64 spec). A special case is needed for cores generated 273 // by some older Linux versions, which write a note named "CORE" 274 // without a nul terminator and n_namesz = 4. 275 if (n_namesz == 4) 276 { 277 char buf[4]; 278 if (data.ExtractBytes (*offset, 4, data.GetByteOrder(), buf) != 4) 279 return false; 280 if (strncmp (buf, "CORE", 4) == 0) 281 { 282 n_name = "CORE"; 283 *offset += 4; 284 return true; 285 } 286 } 287 288 const char *cstr = data.GetCStr(offset, llvm::alignTo (n_namesz, 4)); 289 if (cstr == NULL) 290 { 291 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_SYMBOLS)); 292 if (log) 293 log->Printf("Failed to parse note name lacking nul terminator"); 294 295 return false; 296 } 297 n_name = cstr; 298 return true; 299 } 300 301 static uint32_t 302 kalimbaVariantFromElfFlags(const elf::elf_word e_flags) 303 { 304 const uint32_t dsp_rev = e_flags & 0xFF; 305 uint32_t kal_arch_variant = LLDB_INVALID_CPUTYPE; 306 switch(dsp_rev) 307 { 308 // TODO(mg11) Support more variants 309 case 10: 310 kal_arch_variant = llvm::Triple::KalimbaSubArch_v3; 311 break; 312 case 14: 313 kal_arch_variant = llvm::Triple::KalimbaSubArch_v4; 314 break; 315 case 17: 316 case 20: 317 kal_arch_variant = llvm::Triple::KalimbaSubArch_v5; 318 break; 319 default: 320 break; 321 } 322 return kal_arch_variant; 323 } 324 325 static uint32_t 326 mipsVariantFromElfFlags(const elf::elf_word e_flags, uint32_t endian) 327 { 328 const uint32_t mips_arch = e_flags & llvm::ELF::EF_MIPS_ARCH; 329 uint32_t arch_variant = ArchSpec::eMIPSSubType_unknown; 330 331 switch (mips_arch) 332 { 333 case llvm::ELF::EF_MIPS_ARCH_1: 334 case llvm::ELF::EF_MIPS_ARCH_2: 335 case llvm::ELF::EF_MIPS_ARCH_32: 336 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el : ArchSpec::eMIPSSubType_mips32; 337 case llvm::ELF::EF_MIPS_ARCH_32R2: 338 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r2el : ArchSpec::eMIPSSubType_mips32r2; 339 case llvm::ELF::EF_MIPS_ARCH_32R6: 340 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r6el : ArchSpec::eMIPSSubType_mips32r6; 341 case llvm::ELF::EF_MIPS_ARCH_3: 342 case llvm::ELF::EF_MIPS_ARCH_4: 343 case llvm::ELF::EF_MIPS_ARCH_5: 344 case llvm::ELF::EF_MIPS_ARCH_64: 345 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el : ArchSpec::eMIPSSubType_mips64; 346 case llvm::ELF::EF_MIPS_ARCH_64R2: 347 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r2el : ArchSpec::eMIPSSubType_mips64r2; 348 case llvm::ELF::EF_MIPS_ARCH_64R6: 349 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r6el : ArchSpec::eMIPSSubType_mips64r6; 350 default: 351 break; 352 } 353 354 return arch_variant; 355 } 356 357 static uint32_t 358 subTypeFromElfHeader(const elf::ELFHeader& header) 359 { 360 if (header.e_machine == llvm::ELF::EM_MIPS) 361 return mipsVariantFromElfFlags (header.e_flags, 362 header.e_ident[EI_DATA]); 363 364 return 365 llvm::ELF::EM_CSR_KALIMBA == header.e_machine ? 366 kalimbaVariantFromElfFlags(header.e_flags) : 367 LLDB_INVALID_CPUTYPE; 368 } 369 370 //! The kalimba toolchain identifies a code section as being 371 //! one with the SHT_PROGBITS set in the section sh_type and the top 372 //! bit in the 32-bit address field set. 373 static lldb::SectionType 374 kalimbaSectionType( 375 const elf::ELFHeader& header, 376 const elf::ELFSectionHeader& sect_hdr) 377 { 378 if (llvm::ELF::EM_CSR_KALIMBA != header.e_machine) 379 { 380 return eSectionTypeOther; 381 } 382 383 if (llvm::ELF::SHT_NOBITS == sect_hdr.sh_type) 384 { 385 return eSectionTypeZeroFill; 386 } 387 388 if (llvm::ELF::SHT_PROGBITS == sect_hdr.sh_type) 389 { 390 const lldb::addr_t KAL_CODE_BIT = 1 << 31; 391 return KAL_CODE_BIT & sect_hdr.sh_addr ? 392 eSectionTypeCode : eSectionTypeData; 393 } 394 395 return eSectionTypeOther; 396 } 397 398 // Arbitrary constant used as UUID prefix for core files. 399 const uint32_t 400 ObjectFileELF::g_core_uuid_magic(0xE210C); 401 402 //------------------------------------------------------------------ 403 // Static methods. 404 //------------------------------------------------------------------ 405 void 406 ObjectFileELF::Initialize() 407 { 408 PluginManager::RegisterPlugin(GetPluginNameStatic(), 409 GetPluginDescriptionStatic(), 410 CreateInstance, 411 CreateMemoryInstance, 412 GetModuleSpecifications); 413 } 414 415 void 416 ObjectFileELF::Terminate() 417 { 418 PluginManager::UnregisterPlugin(CreateInstance); 419 } 420 421 lldb_private::ConstString 422 ObjectFileELF::GetPluginNameStatic() 423 { 424 static ConstString g_name("elf"); 425 return g_name; 426 } 427 428 const char * 429 ObjectFileELF::GetPluginDescriptionStatic() 430 { 431 return "ELF object file reader."; 432 } 433 434 ObjectFile * 435 ObjectFileELF::CreateInstance (const lldb::ModuleSP &module_sp, 436 DataBufferSP &data_sp, 437 lldb::offset_t data_offset, 438 const lldb_private::FileSpec* file, 439 lldb::offset_t file_offset, 440 lldb::offset_t length) 441 { 442 if (!data_sp) 443 { 444 data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length); 445 data_offset = 0; 446 } 447 448 if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset)) 449 { 450 const uint8_t *magic = data_sp->GetBytes() + data_offset; 451 if (ELFHeader::MagicBytesMatch(magic)) 452 { 453 // Update the data to contain the entire file if it doesn't already 454 if (data_sp->GetByteSize() < length) { 455 data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length); 456 data_offset = 0; 457 magic = data_sp->GetBytes(); 458 } 459 unsigned address_size = ELFHeader::AddressSizeInBytes(magic); 460 if (address_size == 4 || address_size == 8) 461 { 462 std::unique_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, data_offset, file, file_offset, length)); 463 ArchSpec spec; 464 if (objfile_ap->GetArchitecture(spec) && 465 objfile_ap->SetModulesArchitecture(spec)) 466 return objfile_ap.release(); 467 } 468 } 469 } 470 return NULL; 471 } 472 473 474 ObjectFile* 475 ObjectFileELF::CreateMemoryInstance (const lldb::ModuleSP &module_sp, 476 DataBufferSP& data_sp, 477 const lldb::ProcessSP &process_sp, 478 lldb::addr_t header_addr) 479 { 480 if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT)) 481 { 482 const uint8_t *magic = data_sp->GetBytes(); 483 if (ELFHeader::MagicBytesMatch(magic)) 484 { 485 unsigned address_size = ELFHeader::AddressSizeInBytes(magic); 486 if (address_size == 4 || address_size == 8) 487 { 488 std::auto_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, process_sp, header_addr)); 489 ArchSpec spec; 490 if (objfile_ap->GetArchitecture(spec) && 491 objfile_ap->SetModulesArchitecture(spec)) 492 return objfile_ap.release(); 493 } 494 } 495 } 496 return NULL; 497 } 498 499 bool 500 ObjectFileELF::MagicBytesMatch (DataBufferSP& data_sp, 501 lldb::addr_t data_offset, 502 lldb::addr_t data_length) 503 { 504 if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset)) 505 { 506 const uint8_t *magic = data_sp->GetBytes() + data_offset; 507 return ELFHeader::MagicBytesMatch(magic); 508 } 509 return false; 510 } 511 512 /* 513 * crc function from http://svnweb.freebsd.org/base/head/sys/libkern/crc32.c 514 * 515 * COPYRIGHT (C) 1986 Gary S. Brown. You may use this program, or 516 * code or tables extracted from it, as desired without restriction. 517 */ 518 static uint32_t 519 calc_crc32(uint32_t crc, const void *buf, size_t size) 520 { 521 static const uint32_t g_crc32_tab[] = 522 { 523 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, 524 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988, 525 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2, 526 0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 527 0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9, 528 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172, 529 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c, 530 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 531 0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 532 0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924, 533 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106, 534 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433, 535 0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 536 0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 537 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950, 538 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65, 539 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7, 540 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0, 541 0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 542 0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f, 543 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81, 544 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a, 545 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84, 546 0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 547 0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb, 548 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc, 549 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e, 550 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 551 0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 552 0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236, 553 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28, 554 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d, 555 0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f, 556 0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 557 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242, 558 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777, 559 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69, 560 0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 561 0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 562 0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9, 563 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693, 564 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94, 565 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d 566 }; 567 const uint8_t *p = (const uint8_t *)buf; 568 569 crc = crc ^ ~0U; 570 while (size--) 571 crc = g_crc32_tab[(crc ^ *p++) & 0xFF] ^ (crc >> 8); 572 return crc ^ ~0U; 573 } 574 575 static uint32_t 576 calc_gnu_debuglink_crc32(const void *buf, size_t size) 577 { 578 return calc_crc32(0U, buf, size); 579 } 580 581 uint32_t 582 ObjectFileELF::CalculateELFNotesSegmentsCRC32 (const ProgramHeaderColl& program_headers, 583 DataExtractor& object_data) 584 { 585 typedef ProgramHeaderCollConstIter Iter; 586 587 uint32_t core_notes_crc = 0; 588 589 for (Iter I = program_headers.begin(); I != program_headers.end(); ++I) 590 { 591 if (I->p_type == llvm::ELF::PT_NOTE) 592 { 593 const elf_off ph_offset = I->p_offset; 594 const size_t ph_size = I->p_filesz; 595 596 DataExtractor segment_data; 597 if (segment_data.SetData(object_data, ph_offset, ph_size) != ph_size) 598 { 599 // The ELF program header contained incorrect data, 600 // probably corefile is incomplete or corrupted. 601 break; 602 } 603 604 core_notes_crc = calc_crc32(core_notes_crc, 605 segment_data.GetDataStart(), 606 segment_data.GetByteSize()); 607 } 608 } 609 610 return core_notes_crc; 611 } 612 613 static const char* 614 OSABIAsCString (unsigned char osabi_byte) 615 { 616 #define _MAKE_OSABI_CASE(x) case x: return #x 617 switch (osabi_byte) 618 { 619 _MAKE_OSABI_CASE(ELFOSABI_NONE); 620 _MAKE_OSABI_CASE(ELFOSABI_HPUX); 621 _MAKE_OSABI_CASE(ELFOSABI_NETBSD); 622 _MAKE_OSABI_CASE(ELFOSABI_GNU); 623 _MAKE_OSABI_CASE(ELFOSABI_HURD); 624 _MAKE_OSABI_CASE(ELFOSABI_SOLARIS); 625 _MAKE_OSABI_CASE(ELFOSABI_AIX); 626 _MAKE_OSABI_CASE(ELFOSABI_IRIX); 627 _MAKE_OSABI_CASE(ELFOSABI_FREEBSD); 628 _MAKE_OSABI_CASE(ELFOSABI_TRU64); 629 _MAKE_OSABI_CASE(ELFOSABI_MODESTO); 630 _MAKE_OSABI_CASE(ELFOSABI_OPENBSD); 631 _MAKE_OSABI_CASE(ELFOSABI_OPENVMS); 632 _MAKE_OSABI_CASE(ELFOSABI_NSK); 633 _MAKE_OSABI_CASE(ELFOSABI_AROS); 634 _MAKE_OSABI_CASE(ELFOSABI_FENIXOS); 635 _MAKE_OSABI_CASE(ELFOSABI_C6000_ELFABI); 636 _MAKE_OSABI_CASE(ELFOSABI_C6000_LINUX); 637 _MAKE_OSABI_CASE(ELFOSABI_ARM); 638 _MAKE_OSABI_CASE(ELFOSABI_STANDALONE); 639 default: 640 return "<unknown-osabi>"; 641 } 642 #undef _MAKE_OSABI_CASE 643 } 644 645 // 646 // WARNING : This function is being deprecated 647 // It's functionality has moved to ArchSpec::SetArchitecture 648 // This function is only being kept to validate the move. 649 // 650 // TODO : Remove this function 651 static bool 652 GetOsFromOSABI (unsigned char osabi_byte, llvm::Triple::OSType &ostype) 653 { 654 switch (osabi_byte) 655 { 656 case ELFOSABI_AIX: ostype = llvm::Triple::OSType::AIX; break; 657 case ELFOSABI_FREEBSD: ostype = llvm::Triple::OSType::FreeBSD; break; 658 case ELFOSABI_GNU: ostype = llvm::Triple::OSType::Linux; break; 659 case ELFOSABI_NETBSD: ostype = llvm::Triple::OSType::NetBSD; break; 660 case ELFOSABI_OPENBSD: ostype = llvm::Triple::OSType::OpenBSD; break; 661 case ELFOSABI_SOLARIS: ostype = llvm::Triple::OSType::Solaris; break; 662 default: 663 ostype = llvm::Triple::OSType::UnknownOS; 664 } 665 return ostype != llvm::Triple::OSType::UnknownOS; 666 } 667 668 size_t 669 ObjectFileELF::GetModuleSpecifications (const lldb_private::FileSpec& file, 670 lldb::DataBufferSP& data_sp, 671 lldb::offset_t data_offset, 672 lldb::offset_t file_offset, 673 lldb::offset_t length, 674 lldb_private::ModuleSpecList &specs) 675 { 676 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES)); 677 678 const size_t initial_count = specs.GetSize(); 679 680 if (ObjectFileELF::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) 681 { 682 DataExtractor data; 683 data.SetData(data_sp); 684 elf::ELFHeader header; 685 if (header.Parse(data, &data_offset)) 686 { 687 if (data_sp) 688 { 689 ModuleSpec spec (file); 690 691 const uint32_t sub_type = subTypeFromElfHeader(header); 692 spec.GetArchitecture().SetArchitecture(eArchTypeELF, 693 header.e_machine, 694 sub_type, 695 header.e_ident[EI_OSABI]); 696 697 if (spec.GetArchitecture().IsValid()) 698 { 699 llvm::Triple::OSType ostype; 700 llvm::Triple::VendorType vendor; 701 llvm::Triple::OSType spec_ostype = spec.GetArchitecture ().GetTriple ().getOS (); 702 703 if (log) 704 log->Printf ("ObjectFileELF::%s file '%s' module OSABI: %s", __FUNCTION__, file.GetPath ().c_str (), OSABIAsCString (header.e_ident[EI_OSABI])); 705 706 // SetArchitecture should have set the vendor to unknown 707 vendor = spec.GetArchitecture ().GetTriple ().getVendor (); 708 assert(vendor == llvm::Triple::UnknownVendor); 709 710 // 711 // Validate it is ok to remove GetOsFromOSABI 712 GetOsFromOSABI (header.e_ident[EI_OSABI], ostype); 713 assert(spec_ostype == ostype); 714 if (spec_ostype != llvm::Triple::OSType::UnknownOS) 715 { 716 if (log) 717 log->Printf ("ObjectFileELF::%s file '%s' set ELF module OS type from ELF header OSABI.", __FUNCTION__, file.GetPath ().c_str ()); 718 } 719 720 // Try to get the UUID from the section list. Usually that's at the end, so 721 // map the file in if we don't have it already. 722 size_t section_header_end = header.e_shoff + header.e_shnum * header.e_shentsize; 723 if (section_header_end > data_sp->GetByteSize()) 724 { 725 data_sp = file.MemoryMapFileContentsIfLocal (file_offset, section_header_end); 726 data.SetData(data_sp); 727 } 728 729 uint32_t gnu_debuglink_crc = 0; 730 std::string gnu_debuglink_file; 731 SectionHeaderColl section_headers; 732 lldb_private::UUID &uuid = spec.GetUUID(); 733 734 using namespace std::placeholders; 735 const SetDataFunction set_data = std::bind(&ObjectFileELF::SetData, std::cref(data), _1, _2, _3); 736 GetSectionHeaderInfo(section_headers, set_data, header, uuid, gnu_debuglink_file, gnu_debuglink_crc, spec.GetArchitecture ()); 737 738 739 llvm::Triple &spec_triple = spec.GetArchitecture ().GetTriple (); 740 741 if (log) 742 log->Printf ("ObjectFileELF::%s file '%s' module set to triple: %s (architecture %s)", __FUNCTION__, file.GetPath ().c_str (), spec_triple.getTriple ().c_str (), spec.GetArchitecture ().GetArchitectureName ()); 743 744 if (!uuid.IsValid()) 745 { 746 uint32_t core_notes_crc = 0; 747 748 if (!gnu_debuglink_crc) 749 { 750 lldb_private::Timer scoped_timer (__PRETTY_FUNCTION__, 751 "Calculating module crc32 %s with size %" PRIu64 " KiB", 752 file.GetLastPathComponent().AsCString(), 753 (file.GetByteSize()-file_offset)/1024); 754 755 // For core files - which usually don't happen to have a gnu_debuglink, 756 // and are pretty bulky - calculating whole contents crc32 would be too much of luxury. 757 // Thus we will need to fallback to something simpler. 758 if (header.e_type == llvm::ELF::ET_CORE) 759 { 760 size_t program_headers_end = header.e_phoff + header.e_phnum * header.e_phentsize; 761 if (program_headers_end > data_sp->GetByteSize()) 762 { 763 data_sp = file.MemoryMapFileContentsIfLocal(file_offset, program_headers_end); 764 data.SetData(data_sp); 765 } 766 ProgramHeaderColl program_headers; 767 GetProgramHeaderInfo(program_headers, set_data, header); 768 769 size_t segment_data_end = 0; 770 for (ProgramHeaderCollConstIter I = program_headers.begin(); 771 I != program_headers.end(); ++I) 772 { 773 segment_data_end = std::max<unsigned long long> (I->p_offset + I->p_filesz, segment_data_end); 774 } 775 776 if (segment_data_end > data_sp->GetByteSize()) 777 { 778 data_sp = file.MemoryMapFileContentsIfLocal(file_offset, segment_data_end); 779 data.SetData(data_sp); 780 } 781 782 core_notes_crc = CalculateELFNotesSegmentsCRC32 (program_headers, data); 783 } 784 else 785 { 786 // Need to map entire file into memory to calculate the crc. 787 data_sp = file.MemoryMapFileContentsIfLocal (file_offset, SIZE_MAX); 788 data.SetData(data_sp); 789 gnu_debuglink_crc = calc_gnu_debuglink_crc32 (data.GetDataStart(), data.GetByteSize()); 790 } 791 } 792 if (gnu_debuglink_crc) 793 { 794 // Use 4 bytes of crc from the .gnu_debuglink section. 795 uint32_t uuidt[4] = { gnu_debuglink_crc, 0, 0, 0 }; 796 uuid.SetBytes (uuidt, sizeof(uuidt)); 797 } 798 else if (core_notes_crc) 799 { 800 // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it look different form 801 // .gnu_debuglink crc followed by 4 bytes of note segments crc. 802 uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 }; 803 uuid.SetBytes (uuidt, sizeof(uuidt)); 804 } 805 } 806 807 specs.Append(spec); 808 } 809 } 810 } 811 } 812 813 return specs.GetSize() - initial_count; 814 } 815 816 //------------------------------------------------------------------ 817 // PluginInterface protocol 818 //------------------------------------------------------------------ 819 lldb_private::ConstString 820 ObjectFileELF::GetPluginName() 821 { 822 return GetPluginNameStatic(); 823 } 824 825 uint32_t 826 ObjectFileELF::GetPluginVersion() 827 { 828 return m_plugin_version; 829 } 830 //------------------------------------------------------------------ 831 // ObjectFile protocol 832 //------------------------------------------------------------------ 833 834 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp, 835 DataBufferSP& data_sp, 836 lldb::offset_t data_offset, 837 const FileSpec* file, 838 lldb::offset_t file_offset, 839 lldb::offset_t length) : 840 ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset), 841 m_header(), 842 m_uuid(), 843 m_gnu_debuglink_file(), 844 m_gnu_debuglink_crc(0), 845 m_program_headers(), 846 m_section_headers(), 847 m_dynamic_symbols(), 848 m_filespec_ap(), 849 m_entry_point_address(), 850 m_arch_spec() 851 { 852 if (file) 853 m_file = *file; 854 ::memset(&m_header, 0, sizeof(m_header)); 855 } 856 857 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp, 858 DataBufferSP& header_data_sp, 859 const lldb::ProcessSP &process_sp, 860 addr_t header_addr) : 861 ObjectFile(module_sp, process_sp, header_addr, header_data_sp), 862 m_header(), 863 m_uuid(), 864 m_gnu_debuglink_file(), 865 m_gnu_debuglink_crc(0), 866 m_program_headers(), 867 m_section_headers(), 868 m_dynamic_symbols(), 869 m_filespec_ap(), 870 m_entry_point_address(), 871 m_arch_spec() 872 { 873 ::memset(&m_header, 0, sizeof(m_header)); 874 } 875 876 ObjectFileELF::~ObjectFileELF() 877 { 878 } 879 880 bool 881 ObjectFileELF::IsExecutable() const 882 { 883 return ((m_header.e_type & ET_EXEC) != 0) || (m_header.e_entry != 0); 884 } 885 886 bool 887 ObjectFileELF::SetLoadAddress (Target &target, 888 lldb::addr_t value, 889 bool value_is_offset) 890 { 891 ModuleSP module_sp = GetModule(); 892 if (module_sp) 893 { 894 size_t num_loaded_sections = 0; 895 SectionList *section_list = GetSectionList (); 896 if (section_list) 897 { 898 if (!value_is_offset) 899 { 900 bool found_offset = false; 901 for (size_t i = 0, count = GetProgramHeaderCount(); i < count; ++i) 902 { 903 const elf::ELFProgramHeader* header = GetProgramHeaderByIndex(i); 904 if (header == nullptr) 905 continue; 906 907 if (header->p_type != PT_LOAD || header->p_offset != 0) 908 continue; 909 910 value = value - header->p_vaddr; 911 found_offset = true; 912 break; 913 } 914 if (!found_offset) 915 return false; 916 } 917 918 const size_t num_sections = section_list->GetSize(); 919 size_t sect_idx = 0; 920 921 for (sect_idx = 0; sect_idx < num_sections; ++sect_idx) 922 { 923 // Iterate through the object file sections to find all 924 // of the sections that have SHF_ALLOC in their flag bits. 925 SectionSP section_sp (section_list->GetSectionAtIndex (sect_idx)); 926 if (section_sp && section_sp->Test(SHF_ALLOC)) 927 { 928 lldb::addr_t load_addr = section_sp->GetFileAddress(); 929 // We don't want to update the load address of a section with type 930 // eSectionTypeAbsoluteAddress as they already have the absolute load address 931 // already specified 932 if (section_sp->GetType() != eSectionTypeAbsoluteAddress) 933 load_addr += value; 934 935 // On 32-bit systems the load address have to fit into 4 bytes. The rest of 936 // the bytes are the overflow from the addition. 937 if (GetAddressByteSize() == 4) 938 load_addr &= 0xFFFFFFFF; 939 940 if (target.GetSectionLoadList().SetSectionLoadAddress (section_sp, load_addr)) 941 ++num_loaded_sections; 942 } 943 } 944 return num_loaded_sections > 0; 945 } 946 } 947 return false; 948 } 949 950 ByteOrder 951 ObjectFileELF::GetByteOrder() const 952 { 953 if (m_header.e_ident[EI_DATA] == ELFDATA2MSB) 954 return eByteOrderBig; 955 if (m_header.e_ident[EI_DATA] == ELFDATA2LSB) 956 return eByteOrderLittle; 957 return eByteOrderInvalid; 958 } 959 960 uint32_t 961 ObjectFileELF::GetAddressByteSize() const 962 { 963 return m_data.GetAddressByteSize(); 964 } 965 966 AddressClass 967 ObjectFileELF::GetAddressClass (addr_t file_addr) 968 { 969 Symtab* symtab = GetSymtab(); 970 if (!symtab) 971 return eAddressClassUnknown; 972 973 // The address class is determined based on the symtab. Ask it from the object file what 974 // contains the symtab information. 975 ObjectFile* symtab_objfile = symtab->GetObjectFile(); 976 if (symtab_objfile != nullptr && symtab_objfile != this) 977 return symtab_objfile->GetAddressClass(file_addr); 978 979 auto res = ObjectFile::GetAddressClass (file_addr); 980 if (res != eAddressClassCode) 981 return res; 982 983 auto ub = m_address_class_map.upper_bound(file_addr); 984 if (ub == m_address_class_map.begin()) 985 { 986 // No entry in the address class map before the address. Return 987 // default address class for an address in a code section. 988 return eAddressClassCode; 989 } 990 991 // Move iterator to the address class entry preceding address 992 --ub; 993 994 return ub->second; 995 } 996 997 size_t 998 ObjectFileELF::SectionIndex(const SectionHeaderCollIter &I) 999 { 1000 return std::distance(m_section_headers.begin(), I) + 1u; 1001 } 1002 1003 size_t 1004 ObjectFileELF::SectionIndex(const SectionHeaderCollConstIter &I) const 1005 { 1006 return std::distance(m_section_headers.begin(), I) + 1u; 1007 } 1008 1009 bool 1010 ObjectFileELF::ParseHeader() 1011 { 1012 lldb::offset_t offset = 0; 1013 if (!m_header.Parse(m_data, &offset)) 1014 return false; 1015 1016 if (!IsInMemory()) 1017 return true; 1018 1019 // For in memory object files m_data might not contain the full object file. Try to load it 1020 // until the end of the "Section header table" what is at the end of the ELF file. 1021 addr_t file_size = m_header.e_shoff + m_header.e_shnum * m_header.e_shentsize; 1022 if (m_data.GetByteSize() < file_size) 1023 { 1024 ProcessSP process_sp (m_process_wp.lock()); 1025 if (!process_sp) 1026 return false; 1027 1028 DataBufferSP data_sp = ReadMemory(process_sp, m_memory_addr, file_size); 1029 if (!data_sp) 1030 return false; 1031 m_data.SetData(data_sp, 0, file_size); 1032 } 1033 1034 return true; 1035 } 1036 1037 bool 1038 ObjectFileELF::GetUUID(lldb_private::UUID* uuid) 1039 { 1040 // Need to parse the section list to get the UUIDs, so make sure that's been done. 1041 if (!ParseSectionHeaders() && GetType() != ObjectFile::eTypeCoreFile) 1042 return false; 1043 1044 if (m_uuid.IsValid()) 1045 { 1046 // We have the full build id uuid. 1047 *uuid = m_uuid; 1048 return true; 1049 } 1050 else if (GetType() == ObjectFile::eTypeCoreFile) 1051 { 1052 uint32_t core_notes_crc = 0; 1053 1054 if (!ParseProgramHeaders()) 1055 return false; 1056 1057 core_notes_crc = CalculateELFNotesSegmentsCRC32(m_program_headers, m_data); 1058 1059 if (core_notes_crc) 1060 { 1061 // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it 1062 // look different form .gnu_debuglink crc - followed by 4 bytes of note 1063 // segments crc. 1064 uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 }; 1065 m_uuid.SetBytes (uuidt, sizeof(uuidt)); 1066 } 1067 } 1068 else 1069 { 1070 if (!m_gnu_debuglink_crc) 1071 m_gnu_debuglink_crc = calc_gnu_debuglink_crc32 (m_data.GetDataStart(), m_data.GetByteSize()); 1072 if (m_gnu_debuglink_crc) 1073 { 1074 // Use 4 bytes of crc from the .gnu_debuglink section. 1075 uint32_t uuidt[4] = { m_gnu_debuglink_crc, 0, 0, 0 }; 1076 m_uuid.SetBytes (uuidt, sizeof(uuidt)); 1077 } 1078 } 1079 1080 if (m_uuid.IsValid()) 1081 { 1082 *uuid = m_uuid; 1083 return true; 1084 } 1085 1086 return false; 1087 } 1088 1089 lldb_private::FileSpecList 1090 ObjectFileELF::GetDebugSymbolFilePaths() 1091 { 1092 FileSpecList file_spec_list; 1093 1094 if (!m_gnu_debuglink_file.empty()) 1095 { 1096 FileSpec file_spec (m_gnu_debuglink_file.c_str(), false); 1097 file_spec_list.Append (file_spec); 1098 } 1099 return file_spec_list; 1100 } 1101 1102 uint32_t 1103 ObjectFileELF::GetDependentModules(FileSpecList &files) 1104 { 1105 size_t num_modules = ParseDependentModules(); 1106 uint32_t num_specs = 0; 1107 1108 for (unsigned i = 0; i < num_modules; ++i) 1109 { 1110 if (files.AppendIfUnique(m_filespec_ap->GetFileSpecAtIndex(i))) 1111 num_specs++; 1112 } 1113 1114 return num_specs; 1115 } 1116 1117 Address 1118 ObjectFileELF::GetImageInfoAddress(Target *target) 1119 { 1120 if (!ParseDynamicSymbols()) 1121 return Address(); 1122 1123 SectionList *section_list = GetSectionList(); 1124 if (!section_list) 1125 return Address(); 1126 1127 // Find the SHT_DYNAMIC (.dynamic) section. 1128 SectionSP dynsym_section_sp (section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true)); 1129 if (!dynsym_section_sp) 1130 return Address(); 1131 assert (dynsym_section_sp->GetObjectFile() == this); 1132 1133 user_id_t dynsym_id = dynsym_section_sp->GetID(); 1134 const ELFSectionHeaderInfo *dynsym_hdr = GetSectionHeaderByIndex(dynsym_id); 1135 if (!dynsym_hdr) 1136 return Address(); 1137 1138 for (size_t i = 0; i < m_dynamic_symbols.size(); ++i) 1139 { 1140 ELFDynamic &symbol = m_dynamic_symbols[i]; 1141 1142 if (symbol.d_tag == DT_DEBUG) 1143 { 1144 // Compute the offset as the number of previous entries plus the 1145 // size of d_tag. 1146 addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize(); 1147 return Address(dynsym_section_sp, offset); 1148 } 1149 // MIPS executables uses DT_MIPS_RLD_MAP_REL to support PIE. DT_MIPS_RLD_MAP exists in non-PIE. 1150 else if ((symbol.d_tag == DT_MIPS_RLD_MAP || symbol.d_tag == DT_MIPS_RLD_MAP_REL) && target) 1151 { 1152 addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize(); 1153 addr_t dyn_base = dynsym_section_sp->GetLoadBaseAddress(target); 1154 if (dyn_base == LLDB_INVALID_ADDRESS) 1155 return Address(); 1156 1157 Error error; 1158 if (symbol.d_tag == DT_MIPS_RLD_MAP) 1159 { 1160 // DT_MIPS_RLD_MAP tag stores an absolute address of the debug pointer. 1161 Address addr; 1162 if (target->ReadPointerFromMemory(dyn_base + offset, false, error, addr)) 1163 return addr; 1164 } 1165 if (symbol.d_tag == DT_MIPS_RLD_MAP_REL) 1166 { 1167 // DT_MIPS_RLD_MAP_REL tag stores the offset to the debug pointer, relative to the address of the tag. 1168 uint64_t rel_offset; 1169 rel_offset = target->ReadUnsignedIntegerFromMemory(dyn_base + offset, false, GetAddressByteSize(), UINT64_MAX, error); 1170 if (error.Success() && rel_offset != UINT64_MAX) 1171 { 1172 Address addr; 1173 addr_t debug_ptr_address = dyn_base + (offset - GetAddressByteSize()) + rel_offset; 1174 addr.SetOffset (debug_ptr_address); 1175 return addr; 1176 } 1177 } 1178 } 1179 } 1180 1181 return Address(); 1182 } 1183 1184 lldb_private::Address 1185 ObjectFileELF::GetEntryPointAddress () 1186 { 1187 if (m_entry_point_address.IsValid()) 1188 return m_entry_point_address; 1189 1190 if (!ParseHeader() || !IsExecutable()) 1191 return m_entry_point_address; 1192 1193 SectionList *section_list = GetSectionList(); 1194 addr_t offset = m_header.e_entry; 1195 1196 if (!section_list) 1197 m_entry_point_address.SetOffset(offset); 1198 else 1199 m_entry_point_address.ResolveAddressUsingFileSections(offset, section_list); 1200 return m_entry_point_address; 1201 } 1202 1203 //---------------------------------------------------------------------- 1204 // ParseDependentModules 1205 //---------------------------------------------------------------------- 1206 size_t 1207 ObjectFileELF::ParseDependentModules() 1208 { 1209 if (m_filespec_ap.get()) 1210 return m_filespec_ap->GetSize(); 1211 1212 m_filespec_ap.reset(new FileSpecList()); 1213 1214 if (!ParseSectionHeaders()) 1215 return 0; 1216 1217 SectionList *section_list = GetSectionList(); 1218 if (!section_list) 1219 return 0; 1220 1221 // Find the SHT_DYNAMIC section. 1222 Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get(); 1223 if (!dynsym) 1224 return 0; 1225 assert (dynsym->GetObjectFile() == this); 1226 1227 const ELFSectionHeaderInfo *header = GetSectionHeaderByIndex (dynsym->GetID()); 1228 if (!header) 1229 return 0; 1230 // sh_link: section header index of string table used by entries in the section. 1231 Section *dynstr = section_list->FindSectionByID (header->sh_link + 1).get(); 1232 if (!dynstr) 1233 return 0; 1234 1235 DataExtractor dynsym_data; 1236 DataExtractor dynstr_data; 1237 if (ReadSectionData(dynsym, dynsym_data) && 1238 ReadSectionData(dynstr, dynstr_data)) 1239 { 1240 ELFDynamic symbol; 1241 const lldb::offset_t section_size = dynsym_data.GetByteSize(); 1242 lldb::offset_t offset = 0; 1243 1244 // The only type of entries we are concerned with are tagged DT_NEEDED, 1245 // yielding the name of a required library. 1246 while (offset < section_size) 1247 { 1248 if (!symbol.Parse(dynsym_data, &offset)) 1249 break; 1250 1251 if (symbol.d_tag != DT_NEEDED) 1252 continue; 1253 1254 uint32_t str_index = static_cast<uint32_t>(symbol.d_val); 1255 const char *lib_name = dynstr_data.PeekCStr(str_index); 1256 m_filespec_ap->Append(FileSpec(lib_name, true)); 1257 } 1258 } 1259 1260 return m_filespec_ap->GetSize(); 1261 } 1262 1263 //---------------------------------------------------------------------- 1264 // GetProgramHeaderInfo 1265 //---------------------------------------------------------------------- 1266 size_t 1267 ObjectFileELF::GetProgramHeaderInfo(ProgramHeaderColl &program_headers, 1268 const SetDataFunction &set_data, 1269 const ELFHeader &header) 1270 { 1271 // We have already parsed the program headers 1272 if (!program_headers.empty()) 1273 return program_headers.size(); 1274 1275 // If there are no program headers to read we are done. 1276 if (header.e_phnum == 0) 1277 return 0; 1278 1279 program_headers.resize(header.e_phnum); 1280 if (program_headers.size() != header.e_phnum) 1281 return 0; 1282 1283 const size_t ph_size = header.e_phnum * header.e_phentsize; 1284 const elf_off ph_offset = header.e_phoff; 1285 DataExtractor data; 1286 if (set_data(data, ph_offset, ph_size) != ph_size) 1287 return 0; 1288 1289 uint32_t idx; 1290 lldb::offset_t offset; 1291 for (idx = 0, offset = 0; idx < header.e_phnum; ++idx) 1292 { 1293 if (program_headers[idx].Parse(data, &offset) == false) 1294 break; 1295 } 1296 1297 if (idx < program_headers.size()) 1298 program_headers.resize(idx); 1299 1300 return program_headers.size(); 1301 1302 } 1303 1304 //---------------------------------------------------------------------- 1305 // ParseProgramHeaders 1306 //---------------------------------------------------------------------- 1307 size_t 1308 ObjectFileELF::ParseProgramHeaders() 1309 { 1310 using namespace std::placeholders; 1311 return GetProgramHeaderInfo(m_program_headers, 1312 std::bind(&ObjectFileELF::SetDataWithReadMemoryFallback, this, _1, _2, _3), 1313 m_header); 1314 } 1315 1316 lldb_private::Error 1317 ObjectFileELF::RefineModuleDetailsFromNote (lldb_private::DataExtractor &data, lldb_private::ArchSpec &arch_spec, lldb_private::UUID &uuid) 1318 { 1319 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES)); 1320 Error error; 1321 1322 lldb::offset_t offset = 0; 1323 1324 while (true) 1325 { 1326 // Parse the note header. If this fails, bail out. 1327 const lldb::offset_t note_offset = offset; 1328 ELFNote note = ELFNote(); 1329 if (!note.Parse(data, &offset)) 1330 { 1331 // We're done. 1332 return error; 1333 } 1334 1335 if (log) 1336 log->Printf ("ObjectFileELF::%s parsing note name='%s', type=%" PRIu32, __FUNCTION__, note.n_name.c_str (), note.n_type); 1337 1338 // Process FreeBSD ELF notes. 1339 if ((note.n_name == LLDB_NT_OWNER_FREEBSD) && 1340 (note.n_type == LLDB_NT_FREEBSD_ABI_TAG) && 1341 (note.n_descsz == LLDB_NT_FREEBSD_ABI_SIZE)) 1342 { 1343 // Pull out the min version info. 1344 uint32_t version_info; 1345 if (data.GetU32 (&offset, &version_info, 1) == nullptr) 1346 { 1347 error.SetErrorString ("failed to read FreeBSD ABI note payload"); 1348 return error; 1349 } 1350 1351 // Convert the version info into a major/minor number. 1352 const uint32_t version_major = version_info / 100000; 1353 const uint32_t version_minor = (version_info / 1000) % 100; 1354 1355 char os_name[32]; 1356 snprintf (os_name, sizeof (os_name), "freebsd%" PRIu32 ".%" PRIu32, version_major, version_minor); 1357 1358 // Set the elf OS version to FreeBSD. Also clear the vendor. 1359 arch_spec.GetTriple ().setOSName (os_name); 1360 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1361 1362 if (log) 1363 log->Printf ("ObjectFileELF::%s detected FreeBSD %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_major, version_minor, static_cast<uint32_t> (version_info % 1000)); 1364 } 1365 // Process GNU ELF notes. 1366 else if (note.n_name == LLDB_NT_OWNER_GNU) 1367 { 1368 switch (note.n_type) 1369 { 1370 case LLDB_NT_GNU_ABI_TAG: 1371 if (note.n_descsz == LLDB_NT_GNU_ABI_SIZE) 1372 { 1373 // Pull out the min OS version supporting the ABI. 1374 uint32_t version_info[4]; 1375 if (data.GetU32 (&offset, &version_info[0], note.n_descsz / 4) == nullptr) 1376 { 1377 error.SetErrorString ("failed to read GNU ABI note payload"); 1378 return error; 1379 } 1380 1381 // Set the OS per the OS field. 1382 switch (version_info[0]) 1383 { 1384 case LLDB_NT_GNU_ABI_OS_LINUX: 1385 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Linux); 1386 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1387 if (log) 1388 log->Printf ("ObjectFileELF::%s detected Linux, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]); 1389 // FIXME we have the minimal version number, we could be propagating that. version_info[1] = OS Major, version_info[2] = OS Minor, version_info[3] = Revision. 1390 break; 1391 case LLDB_NT_GNU_ABI_OS_HURD: 1392 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::UnknownOS); 1393 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1394 if (log) 1395 log->Printf ("ObjectFileELF::%s detected Hurd (unsupported), min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]); 1396 break; 1397 case LLDB_NT_GNU_ABI_OS_SOLARIS: 1398 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Solaris); 1399 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1400 if (log) 1401 log->Printf ("ObjectFileELF::%s detected Solaris, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]); 1402 break; 1403 default: 1404 if (log) 1405 log->Printf ("ObjectFileELF::%s unrecognized OS in note, id %" PRIu32 ", min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[0], version_info[1], version_info[2], version_info[3]); 1406 break; 1407 } 1408 } 1409 break; 1410 1411 case LLDB_NT_GNU_BUILD_ID_TAG: 1412 // Only bother processing this if we don't already have the uuid set. 1413 if (!uuid.IsValid()) 1414 { 1415 // 16 bytes is UUID|MD5, 20 bytes is SHA1. Other linkers may produce a build-id of a different 1416 // length. Accept it as long as it's at least 4 bytes as it will be better than our own crc32. 1417 if (note.n_descsz >= 4 && note.n_descsz <= 20) 1418 { 1419 uint8_t uuidbuf[20]; 1420 if (data.GetU8 (&offset, &uuidbuf, note.n_descsz) == nullptr) 1421 { 1422 error.SetErrorString ("failed to read GNU_BUILD_ID note payload"); 1423 return error; 1424 } 1425 1426 // Save the build id as the UUID for the module. 1427 uuid.SetBytes (uuidbuf, note.n_descsz); 1428 } 1429 } 1430 break; 1431 } 1432 } 1433 // Process NetBSD ELF notes. 1434 else if ((note.n_name == LLDB_NT_OWNER_NETBSD) && 1435 (note.n_type == LLDB_NT_NETBSD_ABI_TAG) && 1436 (note.n_descsz == LLDB_NT_NETBSD_ABI_SIZE)) 1437 { 1438 // Pull out the min version info. 1439 uint32_t version_info; 1440 if (data.GetU32 (&offset, &version_info, 1) == nullptr) 1441 { 1442 error.SetErrorString ("failed to read NetBSD ABI note payload"); 1443 return error; 1444 } 1445 1446 // Set the elf OS version to NetBSD. Also clear the vendor. 1447 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::NetBSD); 1448 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1449 1450 if (log) 1451 log->Printf ("ObjectFileELF::%s detected NetBSD, min version constant %" PRIu32, __FUNCTION__, version_info); 1452 } 1453 // Process CSR kalimba notes 1454 else if ((note.n_type == LLDB_NT_GNU_ABI_TAG) && 1455 (note.n_name == LLDB_NT_OWNER_CSR)) 1456 { 1457 arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS); 1458 arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::CSR); 1459 1460 // TODO At some point the description string could be processed. 1461 // It could provide a steer towards the kalimba variant which 1462 // this ELF targets. 1463 if(note.n_descsz) 1464 { 1465 const char *cstr = data.GetCStr(&offset, llvm::alignTo (note.n_descsz, 4)); 1466 (void)cstr; 1467 } 1468 } 1469 else if (note.n_name == LLDB_NT_OWNER_ANDROID) 1470 { 1471 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1472 arch_spec.GetTriple().setEnvironment(llvm::Triple::EnvironmentType::Android); 1473 } 1474 else if (note.n_name == LLDB_NT_OWNER_LINUX) 1475 { 1476 // This is sometimes found in core files and usually contains extended register info 1477 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1478 } 1479 else if (note.n_name == LLDB_NT_OWNER_CORE) 1480 { 1481 // Parse the NT_FILE to look for stuff in paths to shared libraries 1482 // As the contents look like: 1483 // count = 0x000000000000000a (10) 1484 // page_size = 0x0000000000001000 (4096) 1485 // Index start end file_ofs path 1486 // ===== ------------------ ------------------ ------------------ ------------------------------------- 1487 // [ 0] 0x0000000000400000 0x0000000000401000 0x0000000000000000 /tmp/a.out 1488 // [ 1] 0x0000000000600000 0x0000000000601000 0x0000000000000000 /tmp/a.out 1489 // [ 2] 0x0000000000601000 0x0000000000602000 0x0000000000000001 /tmp/a.out 1490 // [ 3] 0x00007fa79c9ed000 0x00007fa79cba8000 0x0000000000000000 /lib/x86_64-linux-gnu/libc-2.19.so 1491 // [ 4] 0x00007fa79cba8000 0x00007fa79cda7000 0x00000000000001bb /lib/x86_64-linux-gnu/libc-2.19.so 1492 // [ 5] 0x00007fa79cda7000 0x00007fa79cdab000 0x00000000000001ba /lib/x86_64-linux-gnu/libc-2.19.so 1493 // [ 6] 0x00007fa79cdab000 0x00007fa79cdad000 0x00000000000001be /lib/x86_64-linux-gnu/libc-2.19.so 1494 // [ 7] 0x00007fa79cdb2000 0x00007fa79cdd5000 0x0000000000000000 /lib/x86_64-linux-gnu/ld-2.19.so 1495 // [ 8] 0x00007fa79cfd4000 0x00007fa79cfd5000 0x0000000000000022 /lib/x86_64-linux-gnu/ld-2.19.so 1496 // [ 9] 0x00007fa79cfd5000 0x00007fa79cfd6000 0x0000000000000023 /lib/x86_64-linux-gnu/ld-2.19.so 1497 if (note.n_type == NT_FILE) 1498 { 1499 uint64_t count = data.GetU64(&offset); 1500 offset += 8 + 3*8*count; // Skip page size and all start/end/file_ofs 1501 for (size_t i=0; i<count; ++i) 1502 { 1503 llvm::StringRef path(data.GetCStr(&offset)); 1504 if (path.startswith("/lib/x86_64-linux-gnu")) 1505 { 1506 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1507 break; 1508 } 1509 } 1510 } 1511 } 1512 1513 // Calculate the offset of the next note just in case "offset" has been used 1514 // to poke at the contents of the note data 1515 offset = note_offset + note.GetByteSize(); 1516 } 1517 1518 return error; 1519 } 1520 1521 void 1522 ObjectFileELF::ParseARMAttributes(DataExtractor &data, uint64_t length, ArchSpec &arch_spec) 1523 { 1524 lldb::offset_t Offset = 0; 1525 1526 uint8_t FormatVersion = data.GetU8(&Offset); 1527 if (FormatVersion != llvm::ARMBuildAttrs::Format_Version) 1528 return; 1529 1530 Offset = Offset + sizeof(uint32_t); // Section Length 1531 llvm::StringRef VendorName = data.GetCStr(&Offset); 1532 1533 if (VendorName != "aeabi") 1534 return; 1535 1536 if (arch_spec.GetTriple().getEnvironment() == llvm::Triple::UnknownEnvironment) 1537 arch_spec.GetTriple().setEnvironment(llvm::Triple::EABI); 1538 1539 while (Offset < length) 1540 { 1541 uint8_t Tag = data.GetU8(&Offset); 1542 uint32_t Size = data.GetU32(&Offset); 1543 1544 if (Tag != llvm::ARMBuildAttrs::File || Size == 0) 1545 continue; 1546 1547 while (Offset < length) 1548 { 1549 uint64_t Tag = data.GetULEB128(&Offset); 1550 switch (Tag) 1551 { 1552 default: 1553 if (Tag < 32) 1554 data.GetULEB128(&Offset); 1555 else if (Tag % 2 == 0) 1556 data.GetULEB128(&Offset); 1557 else 1558 data.GetCStr(&Offset); 1559 1560 break; 1561 1562 case llvm::ARMBuildAttrs::CPU_raw_name: 1563 case llvm::ARMBuildAttrs::CPU_name: 1564 data.GetCStr(&Offset); 1565 1566 break; 1567 1568 case llvm::ARMBuildAttrs::ABI_VFP_args: 1569 { 1570 uint64_t VFPArgs = data.GetULEB128(&Offset); 1571 1572 if (VFPArgs == llvm::ARMBuildAttrs::BaseAAPCS) 1573 { 1574 if (arch_spec.GetTriple().getEnvironment() == llvm::Triple::UnknownEnvironment || 1575 arch_spec.GetTriple().getEnvironment() == llvm::Triple::EABIHF) 1576 arch_spec.GetTriple().setEnvironment(llvm::Triple::EABI); 1577 1578 arch_spec.SetFlags(ArchSpec::eARM_abi_soft_float); 1579 } 1580 else if (VFPArgs == llvm::ARMBuildAttrs::HardFPAAPCS) 1581 { 1582 if (arch_spec.GetTriple().getEnvironment() == llvm::Triple::UnknownEnvironment || 1583 arch_spec.GetTriple().getEnvironment() == llvm::Triple::EABI) 1584 arch_spec.GetTriple().setEnvironment(llvm::Triple::EABIHF); 1585 1586 arch_spec.SetFlags(ArchSpec::eARM_abi_hard_float); 1587 } 1588 1589 break; 1590 } 1591 } 1592 } 1593 } 1594 } 1595 1596 //---------------------------------------------------------------------- 1597 // GetSectionHeaderInfo 1598 //---------------------------------------------------------------------- 1599 size_t 1600 ObjectFileELF::GetSectionHeaderInfo(SectionHeaderColl §ion_headers, 1601 const SetDataFunction &set_data, 1602 const elf::ELFHeader &header, 1603 lldb_private::UUID &uuid, 1604 std::string &gnu_debuglink_file, 1605 uint32_t &gnu_debuglink_crc, 1606 ArchSpec &arch_spec) 1607 { 1608 // Don't reparse the section headers if we already did that. 1609 if (!section_headers.empty()) 1610 return section_headers.size(); 1611 1612 // Only initialize the arch_spec to okay defaults if they're not already set. 1613 // We'll refine this with note data as we parse the notes. 1614 if (arch_spec.GetTriple ().getOS () == llvm::Triple::OSType::UnknownOS) 1615 { 1616 llvm::Triple::OSType ostype; 1617 llvm::Triple::OSType spec_ostype; 1618 const uint32_t sub_type = subTypeFromElfHeader(header); 1619 arch_spec.SetArchitecture (eArchTypeELF, header.e_machine, sub_type, header.e_ident[EI_OSABI]); 1620 // 1621 // Validate if it is ok to remove GetOsFromOSABI 1622 GetOsFromOSABI (header.e_ident[EI_OSABI], ostype); 1623 spec_ostype = arch_spec.GetTriple ().getOS (); 1624 assert(spec_ostype == ostype); 1625 } 1626 1627 if (arch_spec.GetMachine() == llvm::Triple::mips || arch_spec.GetMachine() == llvm::Triple::mipsel 1628 || arch_spec.GetMachine() == llvm::Triple::mips64 || arch_spec.GetMachine() == llvm::Triple::mips64el) 1629 { 1630 switch (header.e_flags & llvm::ELF::EF_MIPS_ARCH_ASE) 1631 { 1632 case llvm::ELF::EF_MIPS_MICROMIPS: 1633 arch_spec.SetFlags (ArchSpec::eMIPSAse_micromips); 1634 break; 1635 case llvm::ELF::EF_MIPS_ARCH_ASE_M16: 1636 arch_spec.SetFlags (ArchSpec::eMIPSAse_mips16); 1637 break; 1638 case llvm::ELF::EF_MIPS_ARCH_ASE_MDMX: 1639 arch_spec.SetFlags (ArchSpec::eMIPSAse_mdmx); 1640 break; 1641 default: 1642 break; 1643 } 1644 } 1645 1646 if (arch_spec.GetMachine() == llvm::Triple::arm || 1647 arch_spec.GetMachine() == llvm::Triple::thumb) 1648 { 1649 if (header.e_flags & llvm::ELF::EF_ARM_SOFT_FLOAT) 1650 arch_spec.SetFlags (ArchSpec::eARM_abi_soft_float); 1651 else if (header.e_flags & llvm::ELF::EF_ARM_VFP_FLOAT) 1652 arch_spec.SetFlags (ArchSpec::eARM_abi_hard_float); 1653 } 1654 1655 // If there are no section headers we are done. 1656 if (header.e_shnum == 0) 1657 return 0; 1658 1659 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES)); 1660 1661 section_headers.resize(header.e_shnum); 1662 if (section_headers.size() != header.e_shnum) 1663 return 0; 1664 1665 const size_t sh_size = header.e_shnum * header.e_shentsize; 1666 const elf_off sh_offset = header.e_shoff; 1667 DataExtractor sh_data; 1668 if (set_data (sh_data, sh_offset, sh_size) != sh_size) 1669 return 0; 1670 1671 uint32_t idx; 1672 lldb::offset_t offset; 1673 for (idx = 0, offset = 0; idx < header.e_shnum; ++idx) 1674 { 1675 if (section_headers[idx].Parse(sh_data, &offset) == false) 1676 break; 1677 } 1678 if (idx < section_headers.size()) 1679 section_headers.resize(idx); 1680 1681 const unsigned strtab_idx = header.e_shstrndx; 1682 if (strtab_idx && strtab_idx < section_headers.size()) 1683 { 1684 const ELFSectionHeaderInfo &sheader = section_headers[strtab_idx]; 1685 const size_t byte_size = sheader.sh_size; 1686 const Elf64_Off offset = sheader.sh_offset; 1687 lldb_private::DataExtractor shstr_data; 1688 1689 if (set_data (shstr_data, offset, byte_size) == byte_size) 1690 { 1691 for (SectionHeaderCollIter I = section_headers.begin(); 1692 I != section_headers.end(); ++I) 1693 { 1694 static ConstString g_sect_name_gnu_debuglink (".gnu_debuglink"); 1695 const ELFSectionHeaderInfo &sheader = *I; 1696 const uint64_t section_size = sheader.sh_type == SHT_NOBITS ? 0 : sheader.sh_size; 1697 ConstString name(shstr_data.PeekCStr(I->sh_name)); 1698 1699 I->section_name = name; 1700 1701 if (arch_spec.IsMIPS()) 1702 { 1703 uint32_t arch_flags = arch_spec.GetFlags (); 1704 DataExtractor data; 1705 if (sheader.sh_type == SHT_MIPS_ABIFLAGS) 1706 { 1707 1708 if (section_size && (set_data (data, sheader.sh_offset, section_size) == section_size)) 1709 { 1710 // MIPS ASE Mask is at offset 12 in MIPS.abiflags section 1711 lldb::offset_t offset = 12; // MIPS ABI Flags Version: 0 1712 arch_flags |= data.GetU32 (&offset); 1713 1714 // The floating point ABI is at offset 7 1715 offset = 7; 1716 switch (data.GetU8 (&offset)) 1717 { 1718 case llvm::Mips::Val_GNU_MIPS_ABI_FP_ANY : 1719 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_ANY; 1720 break; 1721 case llvm::Mips::Val_GNU_MIPS_ABI_FP_DOUBLE : 1722 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_DOUBLE; 1723 break; 1724 case llvm::Mips::Val_GNU_MIPS_ABI_FP_SINGLE : 1725 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_SINGLE; 1726 break; 1727 case llvm::Mips::Val_GNU_MIPS_ABI_FP_SOFT : 1728 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_SOFT; 1729 break; 1730 case llvm::Mips::Val_GNU_MIPS_ABI_FP_OLD_64 : 1731 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_OLD_64; 1732 break; 1733 case llvm::Mips::Val_GNU_MIPS_ABI_FP_XX : 1734 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_XX; 1735 break; 1736 case llvm::Mips::Val_GNU_MIPS_ABI_FP_64 : 1737 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_64; 1738 break; 1739 case llvm::Mips::Val_GNU_MIPS_ABI_FP_64A : 1740 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_64A; 1741 break; 1742 } 1743 } 1744 } 1745 // Settings appropriate ArchSpec ABI Flags 1746 switch(header.e_flags & llvm::ELF::EF_MIPS_ABI) 1747 { 1748 case llvm::ELF::EF_MIPS_ABI_O32: 1749 arch_flags |= lldb_private::ArchSpec::eMIPSABI_O32; 1750 break; 1751 case EF_MIPS_ABI_O64: 1752 arch_flags |= lldb_private::ArchSpec::eMIPSABI_O64; 1753 break; 1754 case EF_MIPS_ABI_EABI32: 1755 arch_flags |= lldb_private::ArchSpec::eMIPSABI_EABI32; 1756 break; 1757 case EF_MIPS_ABI_EABI64: 1758 arch_flags |= lldb_private::ArchSpec::eMIPSABI_EABI64; 1759 break; 1760 default: 1761 // ABI Mask doesn't cover N32 and N64 ABI. 1762 if (header.e_ident[EI_CLASS] == llvm::ELF::ELFCLASS64) 1763 arch_flags |= lldb_private::ArchSpec::eMIPSABI_N64; 1764 else if (header.e_flags && llvm::ELF::EF_MIPS_ABI2) 1765 arch_flags |= lldb_private::ArchSpec::eMIPSABI_N32; 1766 break; 1767 } 1768 arch_spec.SetFlags (arch_flags); 1769 } 1770 1771 if (arch_spec.GetMachine() == llvm::Triple::arm || arch_spec.GetMachine() == llvm::Triple::thumb) 1772 { 1773 DataExtractor data; 1774 1775 if (sheader.sh_type == SHT_ARM_ATTRIBUTES && section_size != 0 && 1776 set_data(data, sheader.sh_offset, section_size) == section_size) 1777 ParseARMAttributes(data, section_size, arch_spec); 1778 } 1779 1780 if (name == g_sect_name_gnu_debuglink) 1781 { 1782 DataExtractor data; 1783 if (section_size && (set_data (data, sheader.sh_offset, section_size) == section_size)) 1784 { 1785 lldb::offset_t gnu_debuglink_offset = 0; 1786 gnu_debuglink_file = data.GetCStr (&gnu_debuglink_offset); 1787 gnu_debuglink_offset = llvm::alignTo (gnu_debuglink_offset, 4); 1788 data.GetU32 (&gnu_debuglink_offset, &gnu_debuglink_crc, 1); 1789 } 1790 } 1791 1792 // Process ELF note section entries. 1793 bool is_note_header = (sheader.sh_type == SHT_NOTE); 1794 1795 // The section header ".note.android.ident" is stored as a 1796 // PROGBITS type header but it is actually a note header. 1797 static ConstString g_sect_name_android_ident (".note.android.ident"); 1798 if (!is_note_header && name == g_sect_name_android_ident) 1799 is_note_header = true; 1800 1801 if (is_note_header) 1802 { 1803 // Allow notes to refine module info. 1804 DataExtractor data; 1805 if (section_size && (set_data (data, sheader.sh_offset, section_size) == section_size)) 1806 { 1807 Error error = RefineModuleDetailsFromNote (data, arch_spec, uuid); 1808 if (error.Fail ()) 1809 { 1810 if (log) 1811 log->Printf ("ObjectFileELF::%s ELF note processing failed: %s", __FUNCTION__, error.AsCString ()); 1812 } 1813 } 1814 } 1815 } 1816 1817 // Make any unknown triple components to be unspecified unknowns. 1818 if (arch_spec.GetTriple().getVendor() == llvm::Triple::UnknownVendor) 1819 arch_spec.GetTriple().setVendorName (llvm::StringRef()); 1820 if (arch_spec.GetTriple().getOS() == llvm::Triple::UnknownOS) 1821 arch_spec.GetTriple().setOSName (llvm::StringRef()); 1822 1823 return section_headers.size(); 1824 } 1825 } 1826 1827 section_headers.clear(); 1828 return 0; 1829 } 1830 1831 size_t 1832 ObjectFileELF::GetProgramHeaderCount() 1833 { 1834 return ParseProgramHeaders(); 1835 } 1836 1837 const elf::ELFProgramHeader * 1838 ObjectFileELF::GetProgramHeaderByIndex(lldb::user_id_t id) 1839 { 1840 if (!id || !ParseProgramHeaders()) 1841 return NULL; 1842 1843 if (--id < m_program_headers.size()) 1844 return &m_program_headers[id]; 1845 1846 return NULL; 1847 } 1848 1849 DataExtractor 1850 ObjectFileELF::GetSegmentDataByIndex(lldb::user_id_t id) 1851 { 1852 const elf::ELFProgramHeader *segment_header = GetProgramHeaderByIndex(id); 1853 if (segment_header == NULL) 1854 return DataExtractor(); 1855 return DataExtractor(m_data, segment_header->p_offset, segment_header->p_filesz); 1856 } 1857 1858 std::string 1859 ObjectFileELF::StripLinkerSymbolAnnotations(llvm::StringRef symbol_name) const 1860 { 1861 size_t pos = symbol_name.find('@'); 1862 return symbol_name.substr(0, pos).str(); 1863 } 1864 1865 //---------------------------------------------------------------------- 1866 // ParseSectionHeaders 1867 //---------------------------------------------------------------------- 1868 size_t 1869 ObjectFileELF::ParseSectionHeaders() 1870 { 1871 using namespace std::placeholders; 1872 1873 return GetSectionHeaderInfo(m_section_headers, 1874 std::bind(&ObjectFileELF::SetDataWithReadMemoryFallback, this, _1, _2, _3), 1875 m_header, 1876 m_uuid, 1877 m_gnu_debuglink_file, 1878 m_gnu_debuglink_crc, 1879 m_arch_spec); 1880 } 1881 1882 lldb::offset_t 1883 ObjectFileELF::SetData(const lldb_private::DataExtractor &src, lldb_private::DataExtractor &dst, lldb::offset_t offset, lldb::offset_t length) 1884 { 1885 return dst.SetData(src, offset, length); 1886 } 1887 1888 lldb::offset_t 1889 ObjectFileELF::SetDataWithReadMemoryFallback(lldb_private::DataExtractor &dst, lldb::offset_t offset, lldb::offset_t length) 1890 { 1891 if (offset + length <= m_data.GetByteSize()) 1892 return dst.SetData(m_data, offset, length); 1893 1894 const auto process_sp = m_process_wp.lock(); 1895 if (process_sp != nullptr) 1896 { 1897 addr_t file_size = offset + length; 1898 1899 DataBufferSP data_sp = ReadMemory(process_sp, m_memory_addr, file_size); 1900 if (!data_sp) 1901 return false; 1902 m_data.SetData(data_sp, 0, file_size); 1903 } 1904 1905 return dst.SetData(m_data, offset, length); 1906 } 1907 1908 const ObjectFileELF::ELFSectionHeaderInfo * 1909 ObjectFileELF::GetSectionHeaderByIndex(lldb::user_id_t id) 1910 { 1911 if (!id || !ParseSectionHeaders()) 1912 return NULL; 1913 1914 if (--id < m_section_headers.size()) 1915 return &m_section_headers[id]; 1916 1917 return NULL; 1918 } 1919 1920 lldb::user_id_t 1921 ObjectFileELF::GetSectionIndexByName(const char* name) 1922 { 1923 if (!name || !name[0] || !ParseSectionHeaders()) 1924 return 0; 1925 for (size_t i = 1; i < m_section_headers.size(); ++i) 1926 if (m_section_headers[i].section_name == ConstString(name)) 1927 return i; 1928 return 0; 1929 } 1930 1931 void 1932 ObjectFileELF::CreateSections(SectionList &unified_section_list) 1933 { 1934 if (!m_sections_ap.get() && ParseSectionHeaders()) 1935 { 1936 m_sections_ap.reset(new SectionList()); 1937 1938 for (SectionHeaderCollIter I = m_section_headers.begin(); 1939 I != m_section_headers.end(); ++I) 1940 { 1941 const ELFSectionHeaderInfo &header = *I; 1942 1943 ConstString& name = I->section_name; 1944 const uint64_t file_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size; 1945 const uint64_t vm_size = header.sh_flags & SHF_ALLOC ? header.sh_size : 0; 1946 1947 static ConstString g_sect_name_text (".text"); 1948 static ConstString g_sect_name_data (".data"); 1949 static ConstString g_sect_name_bss (".bss"); 1950 static ConstString g_sect_name_tdata (".tdata"); 1951 static ConstString g_sect_name_tbss (".tbss"); 1952 static ConstString g_sect_name_dwarf_debug_abbrev (".debug_abbrev"); 1953 static ConstString g_sect_name_dwarf_debug_addr (".debug_addr"); 1954 static ConstString g_sect_name_dwarf_debug_aranges (".debug_aranges"); 1955 static ConstString g_sect_name_dwarf_debug_frame (".debug_frame"); 1956 static ConstString g_sect_name_dwarf_debug_info (".debug_info"); 1957 static ConstString g_sect_name_dwarf_debug_line (".debug_line"); 1958 static ConstString g_sect_name_dwarf_debug_loc (".debug_loc"); 1959 static ConstString g_sect_name_dwarf_debug_macinfo (".debug_macinfo"); 1960 static ConstString g_sect_name_dwarf_debug_macro (".debug_macro"); 1961 static ConstString g_sect_name_dwarf_debug_pubnames (".debug_pubnames"); 1962 static ConstString g_sect_name_dwarf_debug_pubtypes (".debug_pubtypes"); 1963 static ConstString g_sect_name_dwarf_debug_ranges (".debug_ranges"); 1964 static ConstString g_sect_name_dwarf_debug_str (".debug_str"); 1965 static ConstString g_sect_name_dwarf_debug_str_offsets (".debug_str_offsets"); 1966 static ConstString g_sect_name_dwarf_debug_abbrev_dwo (".debug_abbrev.dwo"); 1967 static ConstString g_sect_name_dwarf_debug_info_dwo (".debug_info.dwo"); 1968 static ConstString g_sect_name_dwarf_debug_line_dwo (".debug_line.dwo"); 1969 static ConstString g_sect_name_dwarf_debug_macro_dwo (".debug_macro.dwo"); 1970 static ConstString g_sect_name_dwarf_debug_loc_dwo (".debug_loc.dwo"); 1971 static ConstString g_sect_name_dwarf_debug_str_dwo (".debug_str.dwo"); 1972 static ConstString g_sect_name_dwarf_debug_str_offsets_dwo (".debug_str_offsets.dwo"); 1973 static ConstString g_sect_name_eh_frame (".eh_frame"); 1974 static ConstString g_sect_name_arm_exidx (".ARM.exidx"); 1975 static ConstString g_sect_name_arm_extab (".ARM.extab"); 1976 static ConstString g_sect_name_go_symtab (".gosymtab"); 1977 1978 SectionType sect_type = eSectionTypeOther; 1979 1980 bool is_thread_specific = false; 1981 1982 if (name == g_sect_name_text) sect_type = eSectionTypeCode; 1983 else if (name == g_sect_name_data) sect_type = eSectionTypeData; 1984 else if (name == g_sect_name_bss) sect_type = eSectionTypeZeroFill; 1985 else if (name == g_sect_name_tdata) 1986 { 1987 sect_type = eSectionTypeData; 1988 is_thread_specific = true; 1989 } 1990 else if (name == g_sect_name_tbss) 1991 { 1992 sect_type = eSectionTypeZeroFill; 1993 is_thread_specific = true; 1994 } 1995 // .debug_abbrev – Abbreviations used in the .debug_info section 1996 // .debug_aranges – Lookup table for mapping addresses to compilation units 1997 // .debug_frame – Call frame information 1998 // .debug_info – The core DWARF information section 1999 // .debug_line – Line number information 2000 // .debug_loc – Location lists used in DW_AT_location attributes 2001 // .debug_macinfo – Macro information 2002 // .debug_pubnames – Lookup table for mapping object and function names to compilation units 2003 // .debug_pubtypes – Lookup table for mapping type names to compilation units 2004 // .debug_ranges – Address ranges used in DW_AT_ranges attributes 2005 // .debug_str – String table used in .debug_info 2006 // MISSING? .gnu_debugdata - "mini debuginfo / MiniDebugInfo" section, http://sourceware.org/gdb/onlinedocs/gdb/MiniDebugInfo.html 2007 // MISSING? .debug-index - http://src.chromium.org/viewvc/chrome/trunk/src/build/gdb-add-index?pathrev=144644 2008 // MISSING? .debug_types - Type descriptions from DWARF 4? See http://gcc.gnu.org/wiki/DwarfSeparateTypeInfo 2009 else if (name == g_sect_name_dwarf_debug_abbrev) sect_type = eSectionTypeDWARFDebugAbbrev; 2010 else if (name == g_sect_name_dwarf_debug_addr) sect_type = eSectionTypeDWARFDebugAddr; 2011 else if (name == g_sect_name_dwarf_debug_aranges) sect_type = eSectionTypeDWARFDebugAranges; 2012 else if (name == g_sect_name_dwarf_debug_frame) sect_type = eSectionTypeDWARFDebugFrame; 2013 else if (name == g_sect_name_dwarf_debug_info) sect_type = eSectionTypeDWARFDebugInfo; 2014 else if (name == g_sect_name_dwarf_debug_line) sect_type = eSectionTypeDWARFDebugLine; 2015 else if (name == g_sect_name_dwarf_debug_loc) sect_type = eSectionTypeDWARFDebugLoc; 2016 else if (name == g_sect_name_dwarf_debug_macinfo) sect_type = eSectionTypeDWARFDebugMacInfo; 2017 else if (name == g_sect_name_dwarf_debug_macro) sect_type = eSectionTypeDWARFDebugMacro; 2018 else if (name == g_sect_name_dwarf_debug_pubnames) sect_type = eSectionTypeDWARFDebugPubNames; 2019 else if (name == g_sect_name_dwarf_debug_pubtypes) sect_type = eSectionTypeDWARFDebugPubTypes; 2020 else if (name == g_sect_name_dwarf_debug_ranges) sect_type = eSectionTypeDWARFDebugRanges; 2021 else if (name == g_sect_name_dwarf_debug_str) sect_type = eSectionTypeDWARFDebugStr; 2022 else if (name == g_sect_name_dwarf_debug_str_offsets) sect_type = eSectionTypeDWARFDebugStrOffsets; 2023 else if (name == g_sect_name_dwarf_debug_abbrev_dwo) sect_type = eSectionTypeDWARFDebugAbbrev; 2024 else if (name == g_sect_name_dwarf_debug_info_dwo) sect_type = eSectionTypeDWARFDebugInfo; 2025 else if (name == g_sect_name_dwarf_debug_line_dwo) sect_type = eSectionTypeDWARFDebugLine; 2026 else if (name == g_sect_name_dwarf_debug_macro_dwo) sect_type = eSectionTypeDWARFDebugMacro; 2027 else if (name == g_sect_name_dwarf_debug_loc_dwo) sect_type = eSectionTypeDWARFDebugLoc; 2028 else if (name == g_sect_name_dwarf_debug_str_dwo) sect_type = eSectionTypeDWARFDebugStr; 2029 else if (name == g_sect_name_dwarf_debug_str_offsets_dwo) sect_type = eSectionTypeDWARFDebugStrOffsets; 2030 else if (name == g_sect_name_eh_frame) sect_type = eSectionTypeEHFrame; 2031 else if (name == g_sect_name_arm_exidx) sect_type = eSectionTypeARMexidx; 2032 else if (name == g_sect_name_arm_extab) sect_type = eSectionTypeARMextab; 2033 else if (name == g_sect_name_go_symtab) sect_type = eSectionTypeGoSymtab; 2034 2035 const uint32_t permissions = ((header.sh_flags & SHF_ALLOC) ? ePermissionsReadable : 0) | 2036 ((header.sh_flags & SHF_WRITE) ? ePermissionsWritable : 0) | 2037 ((header.sh_flags & SHF_EXECINSTR) ? ePermissionsExecutable : 0); 2038 switch (header.sh_type) 2039 { 2040 case SHT_SYMTAB: 2041 assert (sect_type == eSectionTypeOther); 2042 sect_type = eSectionTypeELFSymbolTable; 2043 break; 2044 case SHT_DYNSYM: 2045 assert (sect_type == eSectionTypeOther); 2046 sect_type = eSectionTypeELFDynamicSymbols; 2047 break; 2048 case SHT_RELA: 2049 case SHT_REL: 2050 assert (sect_type == eSectionTypeOther); 2051 sect_type = eSectionTypeELFRelocationEntries; 2052 break; 2053 case SHT_DYNAMIC: 2054 assert (sect_type == eSectionTypeOther); 2055 sect_type = eSectionTypeELFDynamicLinkInfo; 2056 break; 2057 } 2058 2059 if (eSectionTypeOther == sect_type) 2060 { 2061 // the kalimba toolchain assumes that ELF section names are free-form. It does 2062 // support linkscripts which (can) give rise to various arbitrarily named 2063 // sections being "Code" or "Data". 2064 sect_type = kalimbaSectionType(m_header, header); 2065 } 2066 2067 const uint32_t target_bytes_size = 2068 (eSectionTypeData == sect_type || eSectionTypeZeroFill == sect_type) ? 2069 m_arch_spec.GetDataByteSize() : 2070 eSectionTypeCode == sect_type ? 2071 m_arch_spec.GetCodeByteSize() : 1; 2072 2073 elf::elf_xword log2align = (header.sh_addralign==0) 2074 ? 0 2075 : llvm::Log2_64(header.sh_addralign); 2076 SectionSP section_sp (new Section(GetModule(), // Module to which this section belongs. 2077 this, // ObjectFile to which this section belongs and should read section data from. 2078 SectionIndex(I), // Section ID. 2079 name, // Section name. 2080 sect_type, // Section type. 2081 header.sh_addr, // VM address. 2082 vm_size, // VM size in bytes of this section. 2083 header.sh_offset, // Offset of this section in the file. 2084 file_size, // Size of the section as found in the file. 2085 log2align, // Alignment of the section 2086 header.sh_flags, // Flags for this section. 2087 target_bytes_size));// Number of host bytes per target byte 2088 2089 section_sp->SetPermissions(permissions); 2090 if (is_thread_specific) 2091 section_sp->SetIsThreadSpecific (is_thread_specific); 2092 m_sections_ap->AddSection(section_sp); 2093 } 2094 } 2095 2096 if (m_sections_ap.get()) 2097 { 2098 if (GetType() == eTypeDebugInfo) 2099 { 2100 static const SectionType g_sections[] = 2101 { 2102 eSectionTypeDWARFDebugAbbrev, 2103 eSectionTypeDWARFDebugAddr, 2104 eSectionTypeDWARFDebugAranges, 2105 eSectionTypeDWARFDebugFrame, 2106 eSectionTypeDWARFDebugInfo, 2107 eSectionTypeDWARFDebugLine, 2108 eSectionTypeDWARFDebugLoc, 2109 eSectionTypeDWARFDebugMacInfo, 2110 eSectionTypeDWARFDebugPubNames, 2111 eSectionTypeDWARFDebugPubTypes, 2112 eSectionTypeDWARFDebugRanges, 2113 eSectionTypeDWARFDebugStr, 2114 eSectionTypeDWARFDebugStrOffsets, 2115 eSectionTypeELFSymbolTable, 2116 }; 2117 SectionList *elf_section_list = m_sections_ap.get(); 2118 for (size_t idx = 0; idx < sizeof(g_sections) / sizeof(g_sections[0]); ++idx) 2119 { 2120 SectionType section_type = g_sections[idx]; 2121 SectionSP section_sp (elf_section_list->FindSectionByType (section_type, true)); 2122 if (section_sp) 2123 { 2124 SectionSP module_section_sp (unified_section_list.FindSectionByType (section_type, true)); 2125 if (module_section_sp) 2126 unified_section_list.ReplaceSection (module_section_sp->GetID(), section_sp); 2127 else 2128 unified_section_list.AddSection (section_sp); 2129 } 2130 } 2131 } 2132 else 2133 { 2134 unified_section_list = *m_sections_ap; 2135 } 2136 } 2137 } 2138 2139 // Find the arm/aarch64 mapping symbol character in the given symbol name. Mapping symbols have the 2140 // form of "$<char>[.<any>]*". Additionally we recognize cases when the mapping symbol prefixed by 2141 // an arbitrary string because if a symbol prefix added to each symbol in the object file with 2142 // objcopy then the mapping symbols are also prefixed. 2143 static char 2144 FindArmAarch64MappingSymbol(const char* symbol_name) 2145 { 2146 if (!symbol_name) 2147 return '\0'; 2148 2149 const char* dollar_pos = ::strchr(symbol_name, '$'); 2150 if (!dollar_pos || dollar_pos[1] == '\0') 2151 return '\0'; 2152 2153 if (dollar_pos[2] == '\0' || dollar_pos[2] == '.') 2154 return dollar_pos[1]; 2155 return '\0'; 2156 } 2157 2158 #define STO_MIPS_ISA (3 << 6) 2159 #define STO_MICROMIPS (2 << 6) 2160 #define IS_MICROMIPS(ST_OTHER) (((ST_OTHER) & STO_MIPS_ISA) == STO_MICROMIPS) 2161 2162 // private 2163 unsigned 2164 ObjectFileELF::ParseSymbols (Symtab *symtab, 2165 user_id_t start_id, 2166 SectionList *section_list, 2167 const size_t num_symbols, 2168 const DataExtractor &symtab_data, 2169 const DataExtractor &strtab_data) 2170 { 2171 ELFSymbol symbol; 2172 lldb::offset_t offset = 0; 2173 2174 static ConstString text_section_name(".text"); 2175 static ConstString init_section_name(".init"); 2176 static ConstString fini_section_name(".fini"); 2177 static ConstString ctors_section_name(".ctors"); 2178 static ConstString dtors_section_name(".dtors"); 2179 2180 static ConstString data_section_name(".data"); 2181 static ConstString rodata_section_name(".rodata"); 2182 static ConstString rodata1_section_name(".rodata1"); 2183 static ConstString data2_section_name(".data1"); 2184 static ConstString bss_section_name(".bss"); 2185 static ConstString opd_section_name(".opd"); // For ppc64 2186 2187 // On Android the oatdata and the oatexec symbols in system@[email protected] covers the full 2188 // .text section what causes issues with displaying unusable symbol name to the user and very 2189 // slow unwinding speed because the instruction emulation based unwind plans try to emulate all 2190 // instructions in these symbols. Don't add these symbols to the symbol list as they have no 2191 // use for the debugger and they are causing a lot of trouble. 2192 // Filtering can't be restricted to Android because this special object file don't contain the 2193 // note section specifying the environment to Android but the custom extension and file name 2194 // makes it highly unlikely that this will collide with anything else. 2195 bool skip_oatdata_oatexec = m_file.GetFilename() == ConstString("system@[email protected]"); 2196 2197 ArchSpec arch; 2198 GetArchitecture(arch); 2199 ModuleSP module_sp(GetModule()); 2200 SectionList* module_section_list = module_sp ? module_sp->GetSectionList() : nullptr; 2201 2202 // Local cache to avoid doing a FindSectionByName for each symbol. The "const char*" key must 2203 // came from a ConstString object so they can be compared by pointer 2204 std::unordered_map<const char*, lldb::SectionSP> section_name_to_section; 2205 2206 unsigned i; 2207 for (i = 0; i < num_symbols; ++i) 2208 { 2209 if (symbol.Parse(symtab_data, &offset) == false) 2210 break; 2211 2212 const char *symbol_name = strtab_data.PeekCStr(symbol.st_name); 2213 2214 // No need to add non-section symbols that have no names 2215 if (symbol.getType() != STT_SECTION && 2216 (symbol_name == NULL || symbol_name[0] == '\0')) 2217 continue; 2218 2219 // Skipping oatdata and oatexec sections if it is requested. See details above the 2220 // definition of skip_oatdata_oatexec for the reasons. 2221 if (skip_oatdata_oatexec && (::strcmp(symbol_name, "oatdata") == 0 || ::strcmp(symbol_name, "oatexec") == 0)) 2222 continue; 2223 2224 SectionSP symbol_section_sp; 2225 SymbolType symbol_type = eSymbolTypeInvalid; 2226 Elf64_Half section_idx = symbol.st_shndx; 2227 2228 switch (section_idx) 2229 { 2230 case SHN_ABS: 2231 symbol_type = eSymbolTypeAbsolute; 2232 break; 2233 case SHN_UNDEF: 2234 symbol_type = eSymbolTypeUndefined; 2235 break; 2236 default: 2237 symbol_section_sp = section_list->GetSectionAtIndex(section_idx); 2238 break; 2239 } 2240 2241 // If a symbol is undefined do not process it further even if it has a STT type 2242 if (symbol_type != eSymbolTypeUndefined) 2243 { 2244 switch (symbol.getType()) 2245 { 2246 default: 2247 case STT_NOTYPE: 2248 // The symbol's type is not specified. 2249 break; 2250 2251 case STT_OBJECT: 2252 // The symbol is associated with a data object, such as a variable, 2253 // an array, etc. 2254 symbol_type = eSymbolTypeData; 2255 break; 2256 2257 case STT_FUNC: 2258 // The symbol is associated with a function or other executable code. 2259 symbol_type = eSymbolTypeCode; 2260 break; 2261 2262 case STT_SECTION: 2263 // The symbol is associated with a section. Symbol table entries of 2264 // this type exist primarily for relocation and normally have 2265 // STB_LOCAL binding. 2266 break; 2267 2268 case STT_FILE: 2269 // Conventionally, the symbol's name gives the name of the source 2270 // file associated with the object file. A file symbol has STB_LOCAL 2271 // binding, its section index is SHN_ABS, and it precedes the other 2272 // STB_LOCAL symbols for the file, if it is present. 2273 symbol_type = eSymbolTypeSourceFile; 2274 break; 2275 2276 case STT_GNU_IFUNC: 2277 // The symbol is associated with an indirect function. The actual 2278 // function will be resolved if it is referenced. 2279 symbol_type = eSymbolTypeResolver; 2280 break; 2281 } 2282 } 2283 2284 if (symbol_type == eSymbolTypeInvalid && symbol.getType() != STT_SECTION) 2285 { 2286 if (symbol_section_sp) 2287 { 2288 const ConstString §_name = symbol_section_sp->GetName(); 2289 if (sect_name == text_section_name || 2290 sect_name == init_section_name || 2291 sect_name == fini_section_name || 2292 sect_name == ctors_section_name || 2293 sect_name == dtors_section_name) 2294 { 2295 symbol_type = eSymbolTypeCode; 2296 } 2297 else if (sect_name == data_section_name || 2298 sect_name == data2_section_name || 2299 sect_name == rodata_section_name || 2300 sect_name == rodata1_section_name || 2301 sect_name == bss_section_name) 2302 { 2303 symbol_type = eSymbolTypeData; 2304 } 2305 } 2306 } 2307 2308 int64_t symbol_value_offset = 0; 2309 uint32_t additional_flags = 0; 2310 2311 if (arch.IsValid()) 2312 { 2313 if (arch.GetMachine() == llvm::Triple::arm) 2314 { 2315 if (symbol.getBinding() == STB_LOCAL) 2316 { 2317 char mapping_symbol = FindArmAarch64MappingSymbol(symbol_name); 2318 if (symbol_type == eSymbolTypeCode) 2319 { 2320 switch (mapping_symbol) 2321 { 2322 case 'a': 2323 // $a[.<any>]* - marks an ARM instruction sequence 2324 m_address_class_map[symbol.st_value] = eAddressClassCode; 2325 break; 2326 case 'b': 2327 case 't': 2328 // $b[.<any>]* - marks a THUMB BL instruction sequence 2329 // $t[.<any>]* - marks a THUMB instruction sequence 2330 m_address_class_map[symbol.st_value] = eAddressClassCodeAlternateISA; 2331 break; 2332 case 'd': 2333 // $d[.<any>]* - marks a data item sequence (e.g. lit pool) 2334 m_address_class_map[symbol.st_value] = eAddressClassData; 2335 break; 2336 } 2337 } 2338 if (mapping_symbol) 2339 continue; 2340 } 2341 } 2342 else if (arch.GetMachine() == llvm::Triple::aarch64) 2343 { 2344 if (symbol.getBinding() == STB_LOCAL) 2345 { 2346 char mapping_symbol = FindArmAarch64MappingSymbol(symbol_name); 2347 if (symbol_type == eSymbolTypeCode) 2348 { 2349 switch (mapping_symbol) 2350 { 2351 case 'x': 2352 // $x[.<any>]* - marks an A64 instruction sequence 2353 m_address_class_map[symbol.st_value] = eAddressClassCode; 2354 break; 2355 case 'd': 2356 // $d[.<any>]* - marks a data item sequence (e.g. lit pool) 2357 m_address_class_map[symbol.st_value] = eAddressClassData; 2358 break; 2359 } 2360 } 2361 if (mapping_symbol) 2362 continue; 2363 } 2364 } 2365 2366 if (arch.GetMachine() == llvm::Triple::arm) 2367 { 2368 if (symbol_type == eSymbolTypeCode) 2369 { 2370 if (symbol.st_value & 1) 2371 { 2372 // Subtracting 1 from the address effectively unsets 2373 // the low order bit, which results in the address 2374 // actually pointing to the beginning of the symbol. 2375 // This delta will be used below in conjunction with 2376 // symbol.st_value to produce the final symbol_value 2377 // that we store in the symtab. 2378 symbol_value_offset = -1; 2379 m_address_class_map[symbol.st_value^1] = eAddressClassCodeAlternateISA; 2380 } 2381 else 2382 { 2383 // This address is ARM 2384 m_address_class_map[symbol.st_value] = eAddressClassCode; 2385 } 2386 } 2387 } 2388 2389 /* 2390 * MIPS: 2391 * The bit #0 of an address is used for ISA mode (1 for microMIPS, 0 for MIPS). 2392 * This allows processer to switch between microMIPS and MIPS without any need 2393 * for special mode-control register. However, apart from .debug_line, none of 2394 * the ELF/DWARF sections set the ISA bit (for symbol or section). Use st_other 2395 * flag to check whether the symbol is microMIPS and then set the address class 2396 * accordingly. 2397 */ 2398 const llvm::Triple::ArchType llvm_arch = arch.GetMachine(); 2399 if (llvm_arch == llvm::Triple::mips || llvm_arch == llvm::Triple::mipsel 2400 || llvm_arch == llvm::Triple::mips64 || llvm_arch == llvm::Triple::mips64el) 2401 { 2402 if (IS_MICROMIPS(symbol.st_other)) 2403 m_address_class_map[symbol.st_value] = eAddressClassCodeAlternateISA; 2404 else if ((symbol.st_value & 1) && (symbol_type == eSymbolTypeCode)) 2405 { 2406 symbol.st_value = symbol.st_value & (~1ull); 2407 m_address_class_map[symbol.st_value] = eAddressClassCodeAlternateISA; 2408 } 2409 else 2410 { 2411 if (symbol_type == eSymbolTypeCode) 2412 m_address_class_map[symbol.st_value] = eAddressClassCode; 2413 else if (symbol_type == eSymbolTypeData) 2414 m_address_class_map[symbol.st_value] = eAddressClassData; 2415 else 2416 m_address_class_map[symbol.st_value] = eAddressClassUnknown; 2417 } 2418 } 2419 } 2420 2421 // symbol_value_offset may contain 0 for ARM symbols or -1 for THUMB symbols. See above for 2422 // more details. 2423 uint64_t symbol_value = symbol.st_value + symbol_value_offset; 2424 2425 if (symbol_section_sp == nullptr && section_idx == SHN_ABS && symbol.st_size != 0) 2426 { 2427 // We don't have a section for a symbol with non-zero size. Create a new section for it 2428 // so the address range covered by the symbol is also covered by the module (represented 2429 // through the section list). It is needed so module lookup for the addresses covered 2430 // by this symbol will be successfull. This case happens for absolute symbols. 2431 ConstString fake_section_name(std::string(".absolute.") + symbol_name); 2432 symbol_section_sp = std::make_shared<Section>(module_sp, 2433 this, 2434 SHN_ABS, 2435 fake_section_name, 2436 eSectionTypeAbsoluteAddress, 2437 symbol_value, 2438 symbol.st_size, 2439 0, 0, 0, 2440 SHF_ALLOC); 2441 2442 module_section_list->AddSection(symbol_section_sp); 2443 section_list->AddSection(symbol_section_sp); 2444 } 2445 2446 if (symbol_section_sp && CalculateType() != ObjectFile::Type::eTypeObjectFile) 2447 symbol_value -= symbol_section_sp->GetFileAddress(); 2448 2449 if (symbol_section_sp && module_section_list && module_section_list != section_list) 2450 { 2451 const ConstString §_name = symbol_section_sp->GetName(); 2452 auto section_it = section_name_to_section.find(sect_name.GetCString()); 2453 if (section_it == section_name_to_section.end()) 2454 section_it = section_name_to_section.emplace( 2455 sect_name.GetCString(), 2456 module_section_list->FindSectionByName (sect_name)).first; 2457 if (section_it->second && section_it->second->GetFileSize()) 2458 symbol_section_sp = section_it->second; 2459 } 2460 2461 bool is_global = symbol.getBinding() == STB_GLOBAL; 2462 uint32_t flags = symbol.st_other << 8 | symbol.st_info | additional_flags; 2463 bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false; 2464 2465 llvm::StringRef symbol_ref(symbol_name); 2466 2467 // Symbol names may contain @VERSION suffixes. Find those and strip them temporarily. 2468 size_t version_pos = symbol_ref.find('@'); 2469 bool has_suffix = version_pos != llvm::StringRef::npos; 2470 llvm::StringRef symbol_bare = symbol_ref.substr(0, version_pos); 2471 Mangled mangled(ConstString(symbol_bare), is_mangled); 2472 2473 // Now append the suffix back to mangled and unmangled names. Only do it if the 2474 // demangling was successful (string is not empty). 2475 if (has_suffix) 2476 { 2477 llvm::StringRef suffix = symbol_ref.substr(version_pos); 2478 2479 llvm::StringRef mangled_name = mangled.GetMangledName().GetStringRef(); 2480 if (! mangled_name.empty()) 2481 mangled.SetMangledName( ConstString((mangled_name + suffix).str()) ); 2482 2483 ConstString demangled = mangled.GetDemangledName(lldb::eLanguageTypeUnknown); 2484 llvm::StringRef demangled_name = demangled.GetStringRef(); 2485 if (!demangled_name.empty()) 2486 mangled.SetDemangledName( ConstString((demangled_name + suffix).str()) ); 2487 } 2488 2489 // In ELF all symbol should have a valid size but it is not true for some function symbols 2490 // coming from hand written assembly. As none of the function symbol should have 0 size we 2491 // try to calculate the size for these symbols in the symtab with saying that their original 2492 // size is not valid. 2493 bool symbol_size_valid = symbol.st_size != 0 || symbol.getType() != STT_FUNC; 2494 2495 Symbol dc_symbol( 2496 i + start_id, // ID is the original symbol table index. 2497 mangled, 2498 symbol_type, // Type of this symbol 2499 is_global, // Is this globally visible? 2500 false, // Is this symbol debug info? 2501 false, // Is this symbol a trampoline? 2502 false, // Is this symbol artificial? 2503 AddressRange( 2504 symbol_section_sp, // Section in which this symbol is defined or null. 2505 symbol_value, // Offset in section or symbol value. 2506 symbol.st_size), // Size in bytes of this symbol. 2507 symbol_size_valid, // Symbol size is valid 2508 has_suffix, // Contains linker annotations? 2509 flags); // Symbol flags. 2510 symtab->AddSymbol(dc_symbol); 2511 } 2512 return i; 2513 } 2514 2515 unsigned 2516 ObjectFileELF::ParseSymbolTable(Symtab *symbol_table, 2517 user_id_t start_id, 2518 lldb_private::Section *symtab) 2519 { 2520 if (symtab->GetObjectFile() != this) 2521 { 2522 // If the symbol table section is owned by a different object file, have it do the 2523 // parsing. 2524 ObjectFileELF *obj_file_elf = static_cast<ObjectFileELF *>(symtab->GetObjectFile()); 2525 return obj_file_elf->ParseSymbolTable (symbol_table, start_id, symtab); 2526 } 2527 2528 // Get section list for this object file. 2529 SectionList *section_list = m_sections_ap.get(); 2530 if (!section_list) 2531 return 0; 2532 2533 user_id_t symtab_id = symtab->GetID(); 2534 const ELFSectionHeaderInfo *symtab_hdr = GetSectionHeaderByIndex(symtab_id); 2535 assert(symtab_hdr->sh_type == SHT_SYMTAB || 2536 symtab_hdr->sh_type == SHT_DYNSYM); 2537 2538 // sh_link: section header index of associated string table. 2539 // Section ID's are ones based. 2540 user_id_t strtab_id = symtab_hdr->sh_link + 1; 2541 Section *strtab = section_list->FindSectionByID(strtab_id).get(); 2542 2543 if (symtab && strtab) 2544 { 2545 assert (symtab->GetObjectFile() == this); 2546 assert (strtab->GetObjectFile() == this); 2547 2548 DataExtractor symtab_data; 2549 DataExtractor strtab_data; 2550 if (ReadSectionData(symtab, symtab_data) && 2551 ReadSectionData(strtab, strtab_data)) 2552 { 2553 size_t num_symbols = symtab_data.GetByteSize() / symtab_hdr->sh_entsize; 2554 2555 return ParseSymbols(symbol_table, start_id, section_list, 2556 num_symbols, symtab_data, strtab_data); 2557 } 2558 } 2559 2560 return 0; 2561 } 2562 2563 size_t 2564 ObjectFileELF::ParseDynamicSymbols() 2565 { 2566 if (m_dynamic_symbols.size()) 2567 return m_dynamic_symbols.size(); 2568 2569 SectionList *section_list = GetSectionList(); 2570 if (!section_list) 2571 return 0; 2572 2573 // Find the SHT_DYNAMIC section. 2574 Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get(); 2575 if (!dynsym) 2576 return 0; 2577 assert (dynsym->GetObjectFile() == this); 2578 2579 ELFDynamic symbol; 2580 DataExtractor dynsym_data; 2581 if (ReadSectionData(dynsym, dynsym_data)) 2582 { 2583 const lldb::offset_t section_size = dynsym_data.GetByteSize(); 2584 lldb::offset_t cursor = 0; 2585 2586 while (cursor < section_size) 2587 { 2588 if (!symbol.Parse(dynsym_data, &cursor)) 2589 break; 2590 2591 m_dynamic_symbols.push_back(symbol); 2592 } 2593 } 2594 2595 return m_dynamic_symbols.size(); 2596 } 2597 2598 const ELFDynamic * 2599 ObjectFileELF::FindDynamicSymbol(unsigned tag) 2600 { 2601 if (!ParseDynamicSymbols()) 2602 return NULL; 2603 2604 DynamicSymbolCollIter I = m_dynamic_symbols.begin(); 2605 DynamicSymbolCollIter E = m_dynamic_symbols.end(); 2606 for ( ; I != E; ++I) 2607 { 2608 ELFDynamic *symbol = &*I; 2609 2610 if (symbol->d_tag == tag) 2611 return symbol; 2612 } 2613 2614 return NULL; 2615 } 2616 2617 unsigned 2618 ObjectFileELF::PLTRelocationType() 2619 { 2620 // DT_PLTREL 2621 // This member specifies the type of relocation entry to which the 2622 // procedure linkage table refers. The d_val member holds DT_REL or 2623 // DT_RELA, as appropriate. All relocations in a procedure linkage table 2624 // must use the same relocation. 2625 const ELFDynamic *symbol = FindDynamicSymbol(DT_PLTREL); 2626 2627 if (symbol) 2628 return symbol->d_val; 2629 2630 return 0; 2631 } 2632 2633 // Returns the size of the normal plt entries and the offset of the first normal plt entry. The 2634 // 0th entry in the plt table is usually a resolution entry which have different size in some 2635 // architectures then the rest of the plt entries. 2636 static std::pair<uint64_t, uint64_t> 2637 GetPltEntrySizeAndOffset(const ELFSectionHeader* rel_hdr, const ELFSectionHeader* plt_hdr) 2638 { 2639 const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2640 2641 // Clang 3.3 sets entsize to 4 for 32-bit binaries, but the plt entries are 16 bytes. 2642 // So round the entsize up by the alignment if addralign is set. 2643 elf_xword plt_entsize = plt_hdr->sh_addralign ? 2644 llvm::alignTo (plt_hdr->sh_entsize, plt_hdr->sh_addralign) : plt_hdr->sh_entsize; 2645 2646 // Some linkers e.g ld for arm, fill plt_hdr->sh_entsize field incorrectly. 2647 // PLT entries relocation code in general requires multiple instruction and 2648 // should be greater than 4 bytes in most cases. Try to guess correct size just in case. 2649 if (plt_entsize <= 4) 2650 { 2651 // The linker haven't set the plt_hdr->sh_entsize field. Try to guess the size of the plt 2652 // entries based on the number of entries and the size of the plt section with the 2653 // assumption that the size of the 0th entry is at least as big as the size of the normal 2654 // entries and it isn't much bigger then that. 2655 if (plt_hdr->sh_addralign) 2656 plt_entsize = plt_hdr->sh_size / plt_hdr->sh_addralign / (num_relocations + 1) * plt_hdr->sh_addralign; 2657 else 2658 plt_entsize = plt_hdr->sh_size / (num_relocations + 1); 2659 } 2660 2661 elf_xword plt_offset = plt_hdr->sh_size - num_relocations * plt_entsize; 2662 2663 return std::make_pair(plt_entsize, plt_offset); 2664 } 2665 2666 static unsigned 2667 ParsePLTRelocations(Symtab *symbol_table, 2668 user_id_t start_id, 2669 unsigned rel_type, 2670 const ELFHeader *hdr, 2671 const ELFSectionHeader *rel_hdr, 2672 const ELFSectionHeader *plt_hdr, 2673 const ELFSectionHeader *sym_hdr, 2674 const lldb::SectionSP &plt_section_sp, 2675 DataExtractor &rel_data, 2676 DataExtractor &symtab_data, 2677 DataExtractor &strtab_data) 2678 { 2679 ELFRelocation rel(rel_type); 2680 ELFSymbol symbol; 2681 lldb::offset_t offset = 0; 2682 2683 uint64_t plt_offset, plt_entsize; 2684 std::tie(plt_entsize, plt_offset) = GetPltEntrySizeAndOffset(rel_hdr, plt_hdr); 2685 const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2686 2687 typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel); 2688 reloc_info_fn reloc_type; 2689 reloc_info_fn reloc_symbol; 2690 2691 if (hdr->Is32Bit()) 2692 { 2693 reloc_type = ELFRelocation::RelocType32; 2694 reloc_symbol = ELFRelocation::RelocSymbol32; 2695 } 2696 else 2697 { 2698 reloc_type = ELFRelocation::RelocType64; 2699 reloc_symbol = ELFRelocation::RelocSymbol64; 2700 } 2701 2702 unsigned slot_type = hdr->GetRelocationJumpSlotType(); 2703 unsigned i; 2704 for (i = 0; i < num_relocations; ++i) 2705 { 2706 if (rel.Parse(rel_data, &offset) == false) 2707 break; 2708 2709 if (reloc_type(rel) != slot_type) 2710 continue; 2711 2712 lldb::offset_t symbol_offset = reloc_symbol(rel) * sym_hdr->sh_entsize; 2713 if (!symbol.Parse(symtab_data, &symbol_offset)) 2714 break; 2715 2716 const char *symbol_name = strtab_data.PeekCStr(symbol.st_name); 2717 bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false; 2718 uint64_t plt_index = plt_offset + i * plt_entsize; 2719 2720 Symbol jump_symbol( 2721 i + start_id, // Symbol table index 2722 symbol_name, // symbol name. 2723 is_mangled, // is the symbol name mangled? 2724 eSymbolTypeTrampoline, // Type of this symbol 2725 false, // Is this globally visible? 2726 false, // Is this symbol debug info? 2727 true, // Is this symbol a trampoline? 2728 true, // Is this symbol artificial? 2729 plt_section_sp, // Section in which this symbol is defined or null. 2730 plt_index, // Offset in section or symbol value. 2731 plt_entsize, // Size in bytes of this symbol. 2732 true, // Size is valid 2733 false, // Contains linker annotations? 2734 0); // Symbol flags. 2735 2736 symbol_table->AddSymbol(jump_symbol); 2737 } 2738 2739 return i; 2740 } 2741 2742 unsigned 2743 ObjectFileELF::ParseTrampolineSymbols(Symtab *symbol_table, 2744 user_id_t start_id, 2745 const ELFSectionHeaderInfo *rel_hdr, 2746 user_id_t rel_id) 2747 { 2748 assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL); 2749 2750 // The link field points to the associated symbol table. 2751 user_id_t symtab_id = rel_hdr->sh_link; 2752 2753 // If the link field doesn't point to the appropriate symbol name table then 2754 // try to find it by name as some compiler don't fill in the link fields. 2755 if (!symtab_id) 2756 symtab_id = GetSectionIndexByName(".dynsym"); 2757 2758 // Get PLT section. We cannot use rel_hdr->sh_info, since current linkers 2759 // point that to the .got.plt or .got section instead of .plt. 2760 user_id_t plt_id = GetSectionIndexByName(".plt"); 2761 2762 if (!symtab_id || !plt_id) 2763 return 0; 2764 2765 // Section ID's are ones based; 2766 symtab_id++; 2767 plt_id++; 2768 2769 const ELFSectionHeaderInfo *plt_hdr = GetSectionHeaderByIndex(plt_id); 2770 if (!plt_hdr) 2771 return 0; 2772 2773 const ELFSectionHeaderInfo *sym_hdr = GetSectionHeaderByIndex(symtab_id); 2774 if (!sym_hdr) 2775 return 0; 2776 2777 SectionList *section_list = m_sections_ap.get(); 2778 if (!section_list) 2779 return 0; 2780 2781 Section *rel_section = section_list->FindSectionByID(rel_id).get(); 2782 if (!rel_section) 2783 return 0; 2784 2785 SectionSP plt_section_sp (section_list->FindSectionByID(plt_id)); 2786 if (!plt_section_sp) 2787 return 0; 2788 2789 Section *symtab = section_list->FindSectionByID(symtab_id).get(); 2790 if (!symtab) 2791 return 0; 2792 2793 // sh_link points to associated string table. 2794 Section *strtab = section_list->FindSectionByID(sym_hdr->sh_link + 1).get(); 2795 if (!strtab) 2796 return 0; 2797 2798 DataExtractor rel_data; 2799 if (!ReadSectionData(rel_section, rel_data)) 2800 return 0; 2801 2802 DataExtractor symtab_data; 2803 if (!ReadSectionData(symtab, symtab_data)) 2804 return 0; 2805 2806 DataExtractor strtab_data; 2807 if (!ReadSectionData(strtab, strtab_data)) 2808 return 0; 2809 2810 unsigned rel_type = PLTRelocationType(); 2811 if (!rel_type) 2812 return 0; 2813 2814 return ParsePLTRelocations (symbol_table, 2815 start_id, 2816 rel_type, 2817 &m_header, 2818 rel_hdr, 2819 plt_hdr, 2820 sym_hdr, 2821 plt_section_sp, 2822 rel_data, 2823 symtab_data, 2824 strtab_data); 2825 } 2826 2827 unsigned 2828 ObjectFileELF::RelocateSection(Symtab* symtab, const ELFHeader *hdr, const ELFSectionHeader *rel_hdr, 2829 const ELFSectionHeader *symtab_hdr, const ELFSectionHeader *debug_hdr, 2830 DataExtractor &rel_data, DataExtractor &symtab_data, 2831 DataExtractor &debug_data, Section* rel_section) 2832 { 2833 ELFRelocation rel(rel_hdr->sh_type); 2834 lldb::addr_t offset = 0; 2835 const unsigned num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2836 typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel); 2837 reloc_info_fn reloc_type; 2838 reloc_info_fn reloc_symbol; 2839 2840 if (hdr->Is32Bit()) 2841 { 2842 reloc_type = ELFRelocation::RelocType32; 2843 reloc_symbol = ELFRelocation::RelocSymbol32; 2844 } 2845 else 2846 { 2847 reloc_type = ELFRelocation::RelocType64; 2848 reloc_symbol = ELFRelocation::RelocSymbol64; 2849 } 2850 2851 for (unsigned i = 0; i < num_relocations; ++i) 2852 { 2853 if (rel.Parse(rel_data, &offset) == false) 2854 break; 2855 2856 Symbol* symbol = NULL; 2857 2858 if (hdr->Is32Bit()) 2859 { 2860 switch (reloc_type(rel)) { 2861 case R_386_32: 2862 case R_386_PC32: 2863 default: 2864 assert(false && "unexpected relocation type"); 2865 } 2866 } else { 2867 switch (reloc_type(rel)) { 2868 case R_X86_64_64: 2869 { 2870 symbol = symtab->FindSymbolByID(reloc_symbol(rel)); 2871 if (symbol) 2872 { 2873 addr_t value = symbol->GetAddressRef().GetFileAddress(); 2874 DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer(); 2875 uint64_t* dst = reinterpret_cast<uint64_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset64(rel)); 2876 *dst = value + ELFRelocation::RelocAddend64(rel); 2877 } 2878 break; 2879 } 2880 case R_X86_64_32: 2881 case R_X86_64_32S: 2882 { 2883 symbol = symtab->FindSymbolByID(reloc_symbol(rel)); 2884 if (symbol) 2885 { 2886 addr_t value = symbol->GetAddressRef().GetFileAddress(); 2887 value += ELFRelocation::RelocAddend32(rel); 2888 assert((reloc_type(rel) == R_X86_64_32 && (value <= UINT32_MAX)) || 2889 (reloc_type(rel) == R_X86_64_32S && 2890 ((int64_t)value <= INT32_MAX && (int64_t)value >= INT32_MIN))); 2891 uint32_t truncated_addr = (value & 0xFFFFFFFF); 2892 DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer(); 2893 uint32_t* dst = reinterpret_cast<uint32_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset32(rel)); 2894 *dst = truncated_addr; 2895 } 2896 break; 2897 } 2898 case R_X86_64_PC32: 2899 default: 2900 assert(false && "unexpected relocation type"); 2901 } 2902 } 2903 } 2904 2905 return 0; 2906 } 2907 2908 unsigned 2909 ObjectFileELF::RelocateDebugSections(const ELFSectionHeader *rel_hdr, user_id_t rel_id) 2910 { 2911 assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL); 2912 2913 // Parse in the section list if needed. 2914 SectionList *section_list = GetSectionList(); 2915 if (!section_list) 2916 return 0; 2917 2918 // Section ID's are ones based. 2919 user_id_t symtab_id = rel_hdr->sh_link + 1; 2920 user_id_t debug_id = rel_hdr->sh_info + 1; 2921 2922 const ELFSectionHeader *symtab_hdr = GetSectionHeaderByIndex(symtab_id); 2923 if (!symtab_hdr) 2924 return 0; 2925 2926 const ELFSectionHeader *debug_hdr = GetSectionHeaderByIndex(debug_id); 2927 if (!debug_hdr) 2928 return 0; 2929 2930 Section *rel = section_list->FindSectionByID(rel_id).get(); 2931 if (!rel) 2932 return 0; 2933 2934 Section *symtab = section_list->FindSectionByID(symtab_id).get(); 2935 if (!symtab) 2936 return 0; 2937 2938 Section *debug = section_list->FindSectionByID(debug_id).get(); 2939 if (!debug) 2940 return 0; 2941 2942 DataExtractor rel_data; 2943 DataExtractor symtab_data; 2944 DataExtractor debug_data; 2945 2946 if (ReadSectionData(rel, rel_data) && 2947 ReadSectionData(symtab, symtab_data) && 2948 ReadSectionData(debug, debug_data)) 2949 { 2950 RelocateSection(m_symtab_ap.get(), &m_header, rel_hdr, symtab_hdr, debug_hdr, 2951 rel_data, symtab_data, debug_data, debug); 2952 } 2953 2954 return 0; 2955 } 2956 2957 Symtab * 2958 ObjectFileELF::GetSymtab() 2959 { 2960 ModuleSP module_sp(GetModule()); 2961 if (!module_sp) 2962 return NULL; 2963 2964 // We always want to use the main object file so we (hopefully) only have one cached copy 2965 // of our symtab, dynamic sections, etc. 2966 ObjectFile *module_obj_file = module_sp->GetObjectFile(); 2967 if (module_obj_file && module_obj_file != this) 2968 return module_obj_file->GetSymtab(); 2969 2970 if (m_symtab_ap.get() == NULL) 2971 { 2972 SectionList *section_list = module_sp->GetSectionList(); 2973 if (!section_list) 2974 return NULL; 2975 2976 uint64_t symbol_id = 0; 2977 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 2978 2979 // Sharable objects and dynamic executables usually have 2 distinct symbol 2980 // tables, one named ".symtab", and the other ".dynsym". The dynsym is a smaller 2981 // version of the symtab that only contains global symbols. The information found 2982 // in the dynsym is therefore also found in the symtab, while the reverse is not 2983 // necessarily true. 2984 Section *symtab = section_list->FindSectionByType (eSectionTypeELFSymbolTable, true).get(); 2985 if (!symtab) 2986 { 2987 // The symtab section is non-allocable and can be stripped, so if it doesn't exist 2988 // then use the dynsym section which should always be there. 2989 symtab = section_list->FindSectionByType (eSectionTypeELFDynamicSymbols, true).get(); 2990 } 2991 if (symtab) 2992 { 2993 m_symtab_ap.reset(new Symtab(symtab->GetObjectFile())); 2994 symbol_id += ParseSymbolTable (m_symtab_ap.get(), symbol_id, symtab); 2995 } 2996 2997 // DT_JMPREL 2998 // If present, this entry's d_ptr member holds the address of relocation 2999 // entries associated solely with the procedure linkage table. Separating 3000 // these relocation entries lets the dynamic linker ignore them during 3001 // process initialization, if lazy binding is enabled. If this entry is 3002 // present, the related entries of types DT_PLTRELSZ and DT_PLTREL must 3003 // also be present. 3004 const ELFDynamic *symbol = FindDynamicSymbol(DT_JMPREL); 3005 if (symbol) 3006 { 3007 // Synthesize trampoline symbols to help navigate the PLT. 3008 addr_t addr = symbol->d_ptr; 3009 Section *reloc_section = section_list->FindSectionContainingFileAddress(addr).get(); 3010 if (reloc_section) 3011 { 3012 user_id_t reloc_id = reloc_section->GetID(); 3013 const ELFSectionHeaderInfo *reloc_header = GetSectionHeaderByIndex(reloc_id); 3014 assert(reloc_header); 3015 3016 if (m_symtab_ap == nullptr) 3017 m_symtab_ap.reset(new Symtab(reloc_section->GetObjectFile())); 3018 3019 ParseTrampolineSymbols (m_symtab_ap.get(), symbol_id, reloc_header, reloc_id); 3020 } 3021 } 3022 3023 DWARFCallFrameInfo* eh_frame = GetUnwindTable().GetEHFrameInfo(); 3024 if (eh_frame) 3025 { 3026 if (m_symtab_ap == nullptr) 3027 m_symtab_ap.reset(new Symtab(this)); 3028 ParseUnwindSymbols (m_symtab_ap.get(), eh_frame); 3029 } 3030 3031 // If we still don't have any symtab then create an empty instance to avoid do the section 3032 // lookup next time. 3033 if (m_symtab_ap == nullptr) 3034 m_symtab_ap.reset(new Symtab(this)); 3035 3036 m_symtab_ap->CalculateSymbolSizes(); 3037 } 3038 3039 for (SectionHeaderCollIter I = m_section_headers.begin(); 3040 I != m_section_headers.end(); ++I) 3041 { 3042 if (I->sh_type == SHT_RELA || I->sh_type == SHT_REL) 3043 { 3044 if (CalculateType() == eTypeObjectFile) 3045 { 3046 const char *section_name = I->section_name.AsCString(""); 3047 if (strstr(section_name, ".rela.debug") || 3048 strstr(section_name, ".rel.debug")) 3049 { 3050 const ELFSectionHeader &reloc_header = *I; 3051 user_id_t reloc_id = SectionIndex(I); 3052 RelocateDebugSections(&reloc_header, reloc_id); 3053 } 3054 } 3055 } 3056 } 3057 return m_symtab_ap.get(); 3058 } 3059 3060 void 3061 ObjectFileELF::ParseUnwindSymbols(Symtab *symbol_table, DWARFCallFrameInfo* eh_frame) 3062 { 3063 SectionList* section_list = GetSectionList(); 3064 if (!section_list) 3065 return; 3066 3067 // First we save the new symbols into a separate list and add them to the symbol table after 3068 // we colleced all symbols we want to add. This is neccessary because adding a new symbol 3069 // invalidates the internal index of the symtab what causing the next lookup to be slow because 3070 // it have to recalculate the index first. 3071 std::vector<Symbol> new_symbols; 3072 3073 eh_frame->ForEachFDEEntries( 3074 [this, symbol_table, section_list, &new_symbols](lldb::addr_t file_addr, 3075 uint32_t size, 3076 dw_offset_t) { 3077 Symbol* symbol = symbol_table->FindSymbolAtFileAddress(file_addr); 3078 if (symbol) 3079 { 3080 if (!symbol->GetByteSizeIsValid()) 3081 { 3082 symbol->SetByteSize(size); 3083 symbol->SetSizeIsSynthesized(true); 3084 } 3085 } 3086 else 3087 { 3088 SectionSP section_sp = section_list->FindSectionContainingFileAddress(file_addr); 3089 if (section_sp) 3090 { 3091 addr_t offset = file_addr - section_sp->GetFileAddress(); 3092 const char* symbol_name = GetNextSyntheticSymbolName().GetCString(); 3093 uint64_t symbol_id = symbol_table->GetNumSymbols(); 3094 Symbol eh_symbol( 3095 symbol_id, // Symbol table index. 3096 symbol_name, // Symbol name. 3097 false, // Is the symbol name mangled? 3098 eSymbolTypeCode, // Type of this symbol. 3099 true, // Is this globally visible? 3100 false, // Is this symbol debug info? 3101 false, // Is this symbol a trampoline? 3102 true, // Is this symbol artificial? 3103 section_sp, // Section in which this symbol is defined or null. 3104 offset, // Offset in section or symbol value. 3105 0, // Size: Don't specify the size as an FDE can 3106 false, // Size is valid: cover multiple symbols. 3107 false, // Contains linker annotations? 3108 0); // Symbol flags. 3109 new_symbols.push_back(eh_symbol); 3110 } 3111 } 3112 return true; 3113 }); 3114 3115 for (const Symbol& s : new_symbols) 3116 symbol_table->AddSymbol(s); 3117 } 3118 3119 bool 3120 ObjectFileELF::IsStripped () 3121 { 3122 // TODO: determine this for ELF 3123 return false; 3124 } 3125 3126 //===----------------------------------------------------------------------===// 3127 // Dump 3128 // 3129 // Dump the specifics of the runtime file container (such as any headers 3130 // segments, sections, etc). 3131 //---------------------------------------------------------------------- 3132 void 3133 ObjectFileELF::Dump(Stream *s) 3134 { 3135 ModuleSP module_sp(GetModule()); 3136 if (!module_sp) 3137 { 3138 return; 3139 } 3140 3141 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 3142 s->Printf("%p: ", static_cast<void *>(this)); 3143 s->Indent(); 3144 s->PutCString("ObjectFileELF"); 3145 3146 ArchSpec header_arch; 3147 GetArchitecture(header_arch); 3148 3149 *s << ", file = '" << m_file << "', arch = " << header_arch.GetArchitectureName() << "\n"; 3150 3151 DumpELFHeader(s, m_header); 3152 s->EOL(); 3153 DumpELFProgramHeaders(s); 3154 s->EOL(); 3155 DumpELFSectionHeaders(s); 3156 s->EOL(); 3157 SectionList *section_list = GetSectionList(); 3158 if (section_list) 3159 section_list->Dump(s, NULL, true, UINT32_MAX); 3160 Symtab *symtab = GetSymtab(); 3161 if (symtab) 3162 symtab->Dump(s, NULL, eSortOrderNone); 3163 s->EOL(); 3164 DumpDependentModules(s); 3165 s->EOL(); 3166 } 3167 3168 //---------------------------------------------------------------------- 3169 // DumpELFHeader 3170 // 3171 // Dump the ELF header to the specified output stream 3172 //---------------------------------------------------------------------- 3173 void 3174 ObjectFileELF::DumpELFHeader(Stream *s, const ELFHeader &header) 3175 { 3176 s->PutCString("ELF Header\n"); 3177 s->Printf("e_ident[EI_MAG0 ] = 0x%2.2x\n", header.e_ident[EI_MAG0]); 3178 s->Printf("e_ident[EI_MAG1 ] = 0x%2.2x '%c'\n", 3179 header.e_ident[EI_MAG1], header.e_ident[EI_MAG1]); 3180 s->Printf("e_ident[EI_MAG2 ] = 0x%2.2x '%c'\n", 3181 header.e_ident[EI_MAG2], header.e_ident[EI_MAG2]); 3182 s->Printf("e_ident[EI_MAG3 ] = 0x%2.2x '%c'\n", 3183 header.e_ident[EI_MAG3], header.e_ident[EI_MAG3]); 3184 3185 s->Printf("e_ident[EI_CLASS ] = 0x%2.2x\n", header.e_ident[EI_CLASS]); 3186 s->Printf("e_ident[EI_DATA ] = 0x%2.2x ", header.e_ident[EI_DATA]); 3187 DumpELFHeader_e_ident_EI_DATA(s, header.e_ident[EI_DATA]); 3188 s->Printf ("\ne_ident[EI_VERSION] = 0x%2.2x\n", header.e_ident[EI_VERSION]); 3189 s->Printf ("e_ident[EI_PAD ] = 0x%2.2x\n", header.e_ident[EI_PAD]); 3190 3191 s->Printf("e_type = 0x%4.4x ", header.e_type); 3192 DumpELFHeader_e_type(s, header.e_type); 3193 s->Printf("\ne_machine = 0x%4.4x\n", header.e_machine); 3194 s->Printf("e_version = 0x%8.8x\n", header.e_version); 3195 s->Printf("e_entry = 0x%8.8" PRIx64 "\n", header.e_entry); 3196 s->Printf("e_phoff = 0x%8.8" PRIx64 "\n", header.e_phoff); 3197 s->Printf("e_shoff = 0x%8.8" PRIx64 "\n", header.e_shoff); 3198 s->Printf("e_flags = 0x%8.8x\n", header.e_flags); 3199 s->Printf("e_ehsize = 0x%4.4x\n", header.e_ehsize); 3200 s->Printf("e_phentsize = 0x%4.4x\n", header.e_phentsize); 3201 s->Printf("e_phnum = 0x%4.4x\n", header.e_phnum); 3202 s->Printf("e_shentsize = 0x%4.4x\n", header.e_shentsize); 3203 s->Printf("e_shnum = 0x%4.4x\n", header.e_shnum); 3204 s->Printf("e_shstrndx = 0x%4.4x\n", header.e_shstrndx); 3205 } 3206 3207 //---------------------------------------------------------------------- 3208 // DumpELFHeader_e_type 3209 // 3210 // Dump an token value for the ELF header member e_type 3211 //---------------------------------------------------------------------- 3212 void 3213 ObjectFileELF::DumpELFHeader_e_type(Stream *s, elf_half e_type) 3214 { 3215 switch (e_type) 3216 { 3217 case ET_NONE: *s << "ET_NONE"; break; 3218 case ET_REL: *s << "ET_REL"; break; 3219 case ET_EXEC: *s << "ET_EXEC"; break; 3220 case ET_DYN: *s << "ET_DYN"; break; 3221 case ET_CORE: *s << "ET_CORE"; break; 3222 default: 3223 break; 3224 } 3225 } 3226 3227 //---------------------------------------------------------------------- 3228 // DumpELFHeader_e_ident_EI_DATA 3229 // 3230 // Dump an token value for the ELF header member e_ident[EI_DATA] 3231 //---------------------------------------------------------------------- 3232 void 3233 ObjectFileELF::DumpELFHeader_e_ident_EI_DATA(Stream *s, unsigned char ei_data) 3234 { 3235 switch (ei_data) 3236 { 3237 case ELFDATANONE: *s << "ELFDATANONE"; break; 3238 case ELFDATA2LSB: *s << "ELFDATA2LSB - Little Endian"; break; 3239 case ELFDATA2MSB: *s << "ELFDATA2MSB - Big Endian"; break; 3240 default: 3241 break; 3242 } 3243 } 3244 3245 3246 //---------------------------------------------------------------------- 3247 // DumpELFProgramHeader 3248 // 3249 // Dump a single ELF program header to the specified output stream 3250 //---------------------------------------------------------------------- 3251 void 3252 ObjectFileELF::DumpELFProgramHeader(Stream *s, const ELFProgramHeader &ph) 3253 { 3254 DumpELFProgramHeader_p_type(s, ph.p_type); 3255 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, ph.p_offset, ph.p_vaddr, ph.p_paddr); 3256 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8x (", ph.p_filesz, ph.p_memsz, ph.p_flags); 3257 3258 DumpELFProgramHeader_p_flags(s, ph.p_flags); 3259 s->Printf(") %8.8" PRIx64, ph.p_align); 3260 } 3261 3262 //---------------------------------------------------------------------- 3263 // DumpELFProgramHeader_p_type 3264 // 3265 // Dump an token value for the ELF program header member p_type which 3266 // describes the type of the program header 3267 // ---------------------------------------------------------------------- 3268 void 3269 ObjectFileELF::DumpELFProgramHeader_p_type(Stream *s, elf_word p_type) 3270 { 3271 const int kStrWidth = 15; 3272 switch (p_type) 3273 { 3274 CASE_AND_STREAM(s, PT_NULL , kStrWidth); 3275 CASE_AND_STREAM(s, PT_LOAD , kStrWidth); 3276 CASE_AND_STREAM(s, PT_DYNAMIC , kStrWidth); 3277 CASE_AND_STREAM(s, PT_INTERP , kStrWidth); 3278 CASE_AND_STREAM(s, PT_NOTE , kStrWidth); 3279 CASE_AND_STREAM(s, PT_SHLIB , kStrWidth); 3280 CASE_AND_STREAM(s, PT_PHDR , kStrWidth); 3281 CASE_AND_STREAM(s, PT_TLS , kStrWidth); 3282 CASE_AND_STREAM(s, PT_GNU_EH_FRAME, kStrWidth); 3283 default: 3284 s->Printf("0x%8.8x%*s", p_type, kStrWidth - 10, ""); 3285 break; 3286 } 3287 } 3288 3289 3290 //---------------------------------------------------------------------- 3291 // DumpELFProgramHeader_p_flags 3292 // 3293 // Dump an token value for the ELF program header member p_flags 3294 //---------------------------------------------------------------------- 3295 void 3296 ObjectFileELF::DumpELFProgramHeader_p_flags(Stream *s, elf_word p_flags) 3297 { 3298 *s << ((p_flags & PF_X) ? "PF_X" : " ") 3299 << (((p_flags & PF_X) && (p_flags & PF_W)) ? '+' : ' ') 3300 << ((p_flags & PF_W) ? "PF_W" : " ") 3301 << (((p_flags & PF_W) && (p_flags & PF_R)) ? '+' : ' ') 3302 << ((p_flags & PF_R) ? "PF_R" : " "); 3303 } 3304 3305 //---------------------------------------------------------------------- 3306 // DumpELFProgramHeaders 3307 // 3308 // Dump all of the ELF program header to the specified output stream 3309 //---------------------------------------------------------------------- 3310 void 3311 ObjectFileELF::DumpELFProgramHeaders(Stream *s) 3312 { 3313 if (!ParseProgramHeaders()) 3314 return; 3315 3316 s->PutCString("Program Headers\n"); 3317 s->PutCString("IDX p_type p_offset p_vaddr p_paddr " 3318 "p_filesz p_memsz p_flags p_align\n"); 3319 s->PutCString("==== --------------- -------- -------- -------- " 3320 "-------- -------- ------------------------- --------\n"); 3321 3322 uint32_t idx = 0; 3323 for (ProgramHeaderCollConstIter I = m_program_headers.begin(); 3324 I != m_program_headers.end(); ++I, ++idx) 3325 { 3326 s->Printf("[%2u] ", idx); 3327 ObjectFileELF::DumpELFProgramHeader(s, *I); 3328 s->EOL(); 3329 } 3330 } 3331 3332 //---------------------------------------------------------------------- 3333 // DumpELFSectionHeader 3334 // 3335 // Dump a single ELF section header to the specified output stream 3336 //---------------------------------------------------------------------- 3337 void 3338 ObjectFileELF::DumpELFSectionHeader(Stream *s, const ELFSectionHeaderInfo &sh) 3339 { 3340 s->Printf("%8.8x ", sh.sh_name); 3341 DumpELFSectionHeader_sh_type(s, sh.sh_type); 3342 s->Printf(" %8.8" PRIx64 " (", sh.sh_flags); 3343 DumpELFSectionHeader_sh_flags(s, sh.sh_flags); 3344 s->Printf(") %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addr, sh.sh_offset, sh.sh_size); 3345 s->Printf(" %8.8x %8.8x", sh.sh_link, sh.sh_info); 3346 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addralign, sh.sh_entsize); 3347 } 3348 3349 //---------------------------------------------------------------------- 3350 // DumpELFSectionHeader_sh_type 3351 // 3352 // Dump an token value for the ELF section header member sh_type which 3353 // describes the type of the section 3354 //---------------------------------------------------------------------- 3355 void 3356 ObjectFileELF::DumpELFSectionHeader_sh_type(Stream *s, elf_word sh_type) 3357 { 3358 const int kStrWidth = 12; 3359 switch (sh_type) 3360 { 3361 CASE_AND_STREAM(s, SHT_NULL , kStrWidth); 3362 CASE_AND_STREAM(s, SHT_PROGBITS , kStrWidth); 3363 CASE_AND_STREAM(s, SHT_SYMTAB , kStrWidth); 3364 CASE_AND_STREAM(s, SHT_STRTAB , kStrWidth); 3365 CASE_AND_STREAM(s, SHT_RELA , kStrWidth); 3366 CASE_AND_STREAM(s, SHT_HASH , kStrWidth); 3367 CASE_AND_STREAM(s, SHT_DYNAMIC , kStrWidth); 3368 CASE_AND_STREAM(s, SHT_NOTE , kStrWidth); 3369 CASE_AND_STREAM(s, SHT_NOBITS , kStrWidth); 3370 CASE_AND_STREAM(s, SHT_REL , kStrWidth); 3371 CASE_AND_STREAM(s, SHT_SHLIB , kStrWidth); 3372 CASE_AND_STREAM(s, SHT_DYNSYM , kStrWidth); 3373 CASE_AND_STREAM(s, SHT_LOPROC , kStrWidth); 3374 CASE_AND_STREAM(s, SHT_HIPROC , kStrWidth); 3375 CASE_AND_STREAM(s, SHT_LOUSER , kStrWidth); 3376 CASE_AND_STREAM(s, SHT_HIUSER , kStrWidth); 3377 default: 3378 s->Printf("0x%8.8x%*s", sh_type, kStrWidth - 10, ""); 3379 break; 3380 } 3381 } 3382 3383 //---------------------------------------------------------------------- 3384 // DumpELFSectionHeader_sh_flags 3385 // 3386 // Dump an token value for the ELF section header member sh_flags 3387 //---------------------------------------------------------------------- 3388 void 3389 ObjectFileELF::DumpELFSectionHeader_sh_flags(Stream *s, elf_xword sh_flags) 3390 { 3391 *s << ((sh_flags & SHF_WRITE) ? "WRITE" : " ") 3392 << (((sh_flags & SHF_WRITE) && (sh_flags & SHF_ALLOC)) ? '+' : ' ') 3393 << ((sh_flags & SHF_ALLOC) ? "ALLOC" : " ") 3394 << (((sh_flags & SHF_ALLOC) && (sh_flags & SHF_EXECINSTR)) ? '+' : ' ') 3395 << ((sh_flags & SHF_EXECINSTR) ? "EXECINSTR" : " "); 3396 } 3397 3398 //---------------------------------------------------------------------- 3399 // DumpELFSectionHeaders 3400 // 3401 // Dump all of the ELF section header to the specified output stream 3402 //---------------------------------------------------------------------- 3403 void 3404 ObjectFileELF::DumpELFSectionHeaders(Stream *s) 3405 { 3406 if (!ParseSectionHeaders()) 3407 return; 3408 3409 s->PutCString("Section Headers\n"); 3410 s->PutCString("IDX name type flags " 3411 "addr offset size link info addralgn " 3412 "entsize Name\n"); 3413 s->PutCString("==== -------- ------------ -------------------------------- " 3414 "-------- -------- -------- -------- -------- -------- " 3415 "-------- ====================\n"); 3416 3417 uint32_t idx = 0; 3418 for (SectionHeaderCollConstIter I = m_section_headers.begin(); 3419 I != m_section_headers.end(); ++I, ++idx) 3420 { 3421 s->Printf("[%2u] ", idx); 3422 ObjectFileELF::DumpELFSectionHeader(s, *I); 3423 const char* section_name = I->section_name.AsCString(""); 3424 if (section_name) 3425 *s << ' ' << section_name << "\n"; 3426 } 3427 } 3428 3429 void 3430 ObjectFileELF::DumpDependentModules(lldb_private::Stream *s) 3431 { 3432 size_t num_modules = ParseDependentModules(); 3433 3434 if (num_modules > 0) 3435 { 3436 s->PutCString("Dependent Modules:\n"); 3437 for (unsigned i = 0; i < num_modules; ++i) 3438 { 3439 const FileSpec &spec = m_filespec_ap->GetFileSpecAtIndex(i); 3440 s->Printf(" %s\n", spec.GetFilename().GetCString()); 3441 } 3442 } 3443 } 3444 3445 bool 3446 ObjectFileELF::GetArchitecture (ArchSpec &arch) 3447 { 3448 if (!ParseHeader()) 3449 return false; 3450 3451 if (m_section_headers.empty()) 3452 { 3453 // Allow elf notes to be parsed which may affect the detected architecture. 3454 ParseSectionHeaders(); 3455 } 3456 3457 if (CalculateType() == eTypeCoreFile && m_arch_spec.TripleOSIsUnspecifiedUnknown()) 3458 { 3459 // Core files don't have section headers yet they have PT_NOTE program headers 3460 // that might shed more light on the architecture 3461 if (ParseProgramHeaders()) 3462 { 3463 for (size_t i = 0, count = GetProgramHeaderCount(); i < count; ++i) 3464 { 3465 const elf::ELFProgramHeader* header = GetProgramHeaderByIndex(i); 3466 if (header && header->p_type == PT_NOTE && header->p_offset != 0 && header->p_filesz > 0) 3467 { 3468 DataExtractor data; 3469 if (data.SetData (m_data, header->p_offset, header->p_filesz) == header->p_filesz) 3470 { 3471 lldb_private::UUID uuid; 3472 RefineModuleDetailsFromNote (data, m_arch_spec, uuid); 3473 } 3474 } 3475 } 3476 } 3477 } 3478 arch = m_arch_spec; 3479 return true; 3480 } 3481 3482 ObjectFile::Type 3483 ObjectFileELF::CalculateType() 3484 { 3485 switch (m_header.e_type) 3486 { 3487 case llvm::ELF::ET_NONE: 3488 // 0 - No file type 3489 return eTypeUnknown; 3490 3491 case llvm::ELF::ET_REL: 3492 // 1 - Relocatable file 3493 return eTypeObjectFile; 3494 3495 case llvm::ELF::ET_EXEC: 3496 // 2 - Executable file 3497 return eTypeExecutable; 3498 3499 case llvm::ELF::ET_DYN: 3500 // 3 - Shared object file 3501 return eTypeSharedLibrary; 3502 3503 case ET_CORE: 3504 // 4 - Core file 3505 return eTypeCoreFile; 3506 3507 default: 3508 break; 3509 } 3510 return eTypeUnknown; 3511 } 3512 3513 ObjectFile::Strata 3514 ObjectFileELF::CalculateStrata() 3515 { 3516 switch (m_header.e_type) 3517 { 3518 case llvm::ELF::ET_NONE: 3519 // 0 - No file type 3520 return eStrataUnknown; 3521 3522 case llvm::ELF::ET_REL: 3523 // 1 - Relocatable file 3524 return eStrataUnknown; 3525 3526 case llvm::ELF::ET_EXEC: 3527 // 2 - Executable file 3528 // TODO: is there any way to detect that an executable is a kernel 3529 // related executable by inspecting the program headers, section 3530 // headers, symbols, or any other flag bits??? 3531 return eStrataUser; 3532 3533 case llvm::ELF::ET_DYN: 3534 // 3 - Shared object file 3535 // TODO: is there any way to detect that an shared library is a kernel 3536 // related executable by inspecting the program headers, section 3537 // headers, symbols, or any other flag bits??? 3538 return eStrataUnknown; 3539 3540 case ET_CORE: 3541 // 4 - Core file 3542 // TODO: is there any way to detect that an core file is a kernel 3543 // related executable by inspecting the program headers, section 3544 // headers, symbols, or any other flag bits??? 3545 return eStrataUnknown; 3546 3547 default: 3548 break; 3549 } 3550 return eStrataUnknown; 3551 } 3552 3553