1 //===-- ObjectFileELF.cpp ------------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "ObjectFileELF.h"
11 
12 #include <algorithm>
13 #include <cassert>
14 #include <unordered_map>
15 
16 #include "lldb/Core/FileSpecList.h"
17 #include "lldb/Core/Module.h"
18 #include "lldb/Core/ModuleSpec.h"
19 #include "lldb/Core/PluginManager.h"
20 #include "lldb/Core/Section.h"
21 #include "lldb/Host/FileSystem.h"
22 #include "lldb/Symbol/DWARFCallFrameInfo.h"
23 #include "lldb/Symbol/SymbolContext.h"
24 #include "lldb/Target/SectionLoadList.h"
25 #include "lldb/Target/Target.h"
26 #include "lldb/Utility/ArchSpec.h"
27 #include "lldb/Utility/DataBufferHeap.h"
28 #include "lldb/Utility/Log.h"
29 #include "lldb/Utility/Status.h"
30 #include "lldb/Utility/Stream.h"
31 #include "lldb/Utility/Timer.h"
32 
33 #include "llvm/ADT/PointerUnion.h"
34 #include "llvm/ADT/StringRef.h"
35 #include "llvm/Object/Decompressor.h"
36 #include "llvm/Support/ARMBuildAttributes.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/MemoryBuffer.h"
39 #include "llvm/Support/MipsABIFlags.h"
40 
41 #define CASE_AND_STREAM(s, def, width)                                         \
42   case def:                                                                    \
43     s->Printf("%-*s", width, #def);                                            \
44     break;
45 
46 using namespace lldb;
47 using namespace lldb_private;
48 using namespace elf;
49 using namespace llvm::ELF;
50 
51 namespace {
52 
53 // ELF note owner definitions
54 const char *const LLDB_NT_OWNER_FREEBSD = "FreeBSD";
55 const char *const LLDB_NT_OWNER_GNU = "GNU";
56 const char *const LLDB_NT_OWNER_NETBSD = "NetBSD";
57 const char *const LLDB_NT_OWNER_OPENBSD = "OpenBSD";
58 const char *const LLDB_NT_OWNER_CSR = "csr";
59 const char *const LLDB_NT_OWNER_ANDROID = "Android";
60 const char *const LLDB_NT_OWNER_CORE = "CORE";
61 const char *const LLDB_NT_OWNER_LINUX = "LINUX";
62 
63 // ELF note type definitions
64 const elf_word LLDB_NT_FREEBSD_ABI_TAG = 0x01;
65 const elf_word LLDB_NT_FREEBSD_ABI_SIZE = 4;
66 
67 const elf_word LLDB_NT_GNU_ABI_TAG = 0x01;
68 const elf_word LLDB_NT_GNU_ABI_SIZE = 16;
69 
70 const elf_word LLDB_NT_GNU_BUILD_ID_TAG = 0x03;
71 
72 const elf_word LLDB_NT_NETBSD_ABI_TAG = 0x01;
73 const elf_word LLDB_NT_NETBSD_ABI_SIZE = 4;
74 
75 // GNU ABI note OS constants
76 const elf_word LLDB_NT_GNU_ABI_OS_LINUX = 0x00;
77 const elf_word LLDB_NT_GNU_ABI_OS_HURD = 0x01;
78 const elf_word LLDB_NT_GNU_ABI_OS_SOLARIS = 0x02;
79 
80 // LLDB_NT_OWNER_CORE and LLDB_NT_OWNER_LINUX note contants
81 #define NT_PRSTATUS 1
82 #define NT_PRFPREG 2
83 #define NT_PRPSINFO 3
84 #define NT_TASKSTRUCT 4
85 #define NT_AUXV 6
86 #define NT_SIGINFO 0x53494749
87 #define NT_FILE 0x46494c45
88 #define NT_PRXFPREG 0x46e62b7f
89 #define NT_PPC_VMX 0x100
90 #define NT_PPC_SPE 0x101
91 #define NT_PPC_VSX 0x102
92 #define NT_386_TLS 0x200
93 #define NT_386_IOPERM 0x201
94 #define NT_X86_XSTATE 0x202
95 #define NT_S390_HIGH_GPRS 0x300
96 #define NT_S390_TIMER 0x301
97 #define NT_S390_TODCMP 0x302
98 #define NT_S390_TODPREG 0x303
99 #define NT_S390_CTRS 0x304
100 #define NT_S390_PREFIX 0x305
101 #define NT_S390_LAST_BREAK 0x306
102 #define NT_S390_SYSTEM_CALL 0x307
103 #define NT_S390_TDB 0x308
104 #define NT_S390_VXRS_LOW 0x309
105 #define NT_S390_VXRS_HIGH 0x30a
106 #define NT_ARM_VFP 0x400
107 #define NT_ARM_TLS 0x401
108 #define NT_ARM_HW_BREAK 0x402
109 #define NT_ARM_HW_WATCH 0x403
110 #define NT_ARM_SYSTEM_CALL 0x404
111 #define NT_METAG_CBUF 0x500
112 #define NT_METAG_RPIPE 0x501
113 #define NT_METAG_TLS 0x502
114 
115 //===----------------------------------------------------------------------===//
116 /// @class ELFRelocation
117 /// Generic wrapper for ELFRel and ELFRela.
118 ///
119 /// This helper class allows us to parse both ELFRel and ELFRela relocation
120 /// entries in a generic manner.
121 class ELFRelocation {
122 public:
123   /// Constructs an ELFRelocation entry with a personality as given by @p
124   /// type.
125   ///
126   /// @param type Either DT_REL or DT_RELA.  Any other value is invalid.
127   ELFRelocation(unsigned type);
128 
129   ~ELFRelocation();
130 
131   bool Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset);
132 
133   static unsigned RelocType32(const ELFRelocation &rel);
134 
135   static unsigned RelocType64(const ELFRelocation &rel);
136 
137   static unsigned RelocSymbol32(const ELFRelocation &rel);
138 
139   static unsigned RelocSymbol64(const ELFRelocation &rel);
140 
141   static unsigned RelocOffset32(const ELFRelocation &rel);
142 
143   static unsigned RelocOffset64(const ELFRelocation &rel);
144 
145   static unsigned RelocAddend32(const ELFRelocation &rel);
146 
147   static unsigned RelocAddend64(const ELFRelocation &rel);
148 
149 private:
150   typedef llvm::PointerUnion<ELFRel *, ELFRela *> RelocUnion;
151 
152   RelocUnion reloc;
153 };
154 
155 ELFRelocation::ELFRelocation(unsigned type) {
156   if (type == DT_REL || type == SHT_REL)
157     reloc = new ELFRel();
158   else if (type == DT_RELA || type == SHT_RELA)
159     reloc = new ELFRela();
160   else {
161     assert(false && "unexpected relocation type");
162     reloc = static_cast<ELFRel *>(NULL);
163   }
164 }
165 
166 ELFRelocation::~ELFRelocation() {
167   if (reloc.is<ELFRel *>())
168     delete reloc.get<ELFRel *>();
169   else
170     delete reloc.get<ELFRela *>();
171 }
172 
173 bool ELFRelocation::Parse(const lldb_private::DataExtractor &data,
174                           lldb::offset_t *offset) {
175   if (reloc.is<ELFRel *>())
176     return reloc.get<ELFRel *>()->Parse(data, offset);
177   else
178     return reloc.get<ELFRela *>()->Parse(data, offset);
179 }
180 
181 unsigned ELFRelocation::RelocType32(const ELFRelocation &rel) {
182   if (rel.reloc.is<ELFRel *>())
183     return ELFRel::RelocType32(*rel.reloc.get<ELFRel *>());
184   else
185     return ELFRela::RelocType32(*rel.reloc.get<ELFRela *>());
186 }
187 
188 unsigned ELFRelocation::RelocType64(const ELFRelocation &rel) {
189   if (rel.reloc.is<ELFRel *>())
190     return ELFRel::RelocType64(*rel.reloc.get<ELFRel *>());
191   else
192     return ELFRela::RelocType64(*rel.reloc.get<ELFRela *>());
193 }
194 
195 unsigned ELFRelocation::RelocSymbol32(const ELFRelocation &rel) {
196   if (rel.reloc.is<ELFRel *>())
197     return ELFRel::RelocSymbol32(*rel.reloc.get<ELFRel *>());
198   else
199     return ELFRela::RelocSymbol32(*rel.reloc.get<ELFRela *>());
200 }
201 
202 unsigned ELFRelocation::RelocSymbol64(const ELFRelocation &rel) {
203   if (rel.reloc.is<ELFRel *>())
204     return ELFRel::RelocSymbol64(*rel.reloc.get<ELFRel *>());
205   else
206     return ELFRela::RelocSymbol64(*rel.reloc.get<ELFRela *>());
207 }
208 
209 unsigned ELFRelocation::RelocOffset32(const ELFRelocation &rel) {
210   if (rel.reloc.is<ELFRel *>())
211     return rel.reloc.get<ELFRel *>()->r_offset;
212   else
213     return rel.reloc.get<ELFRela *>()->r_offset;
214 }
215 
216 unsigned ELFRelocation::RelocOffset64(const ELFRelocation &rel) {
217   if (rel.reloc.is<ELFRel *>())
218     return rel.reloc.get<ELFRel *>()->r_offset;
219   else
220     return rel.reloc.get<ELFRela *>()->r_offset;
221 }
222 
223 unsigned ELFRelocation::RelocAddend32(const ELFRelocation &rel) {
224   if (rel.reloc.is<ELFRel *>())
225     return 0;
226   else
227     return rel.reloc.get<ELFRela *>()->r_addend;
228 }
229 
230 unsigned ELFRelocation::RelocAddend64(const ELFRelocation &rel) {
231   if (rel.reloc.is<ELFRel *>())
232     return 0;
233   else
234     return rel.reloc.get<ELFRela *>()->r_addend;
235 }
236 
237 } // end anonymous namespace
238 
239 bool ELFNote::Parse(const DataExtractor &data, lldb::offset_t *offset) {
240   // Read all fields.
241   if (data.GetU32(offset, &n_namesz, 3) == NULL)
242     return false;
243 
244   // The name field is required to be nul-terminated, and n_namesz includes the
245   // terminating nul in observed implementations (contrary to the ELF-64 spec).
246   // A special case is needed for cores generated by some older Linux versions,
247   // which write a note named "CORE" without a nul terminator and n_namesz = 4.
248   if (n_namesz == 4) {
249     char buf[4];
250     if (data.ExtractBytes(*offset, 4, data.GetByteOrder(), buf) != 4)
251       return false;
252     if (strncmp(buf, "CORE", 4) == 0) {
253       n_name = "CORE";
254       *offset += 4;
255       return true;
256     }
257   }
258 
259   const char *cstr = data.GetCStr(offset, llvm::alignTo(n_namesz, 4));
260   if (cstr == NULL) {
261     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS));
262     if (log)
263       log->Printf("Failed to parse note name lacking nul terminator");
264 
265     return false;
266   }
267   n_name = cstr;
268   return true;
269 }
270 
271 static uint32_t kalimbaVariantFromElfFlags(const elf::elf_word e_flags) {
272   const uint32_t dsp_rev = e_flags & 0xFF;
273   uint32_t kal_arch_variant = LLDB_INVALID_CPUTYPE;
274   switch (dsp_rev) {
275   // TODO(mg11) Support more variants
276   case 10:
277     kal_arch_variant = llvm::Triple::KalimbaSubArch_v3;
278     break;
279   case 14:
280     kal_arch_variant = llvm::Triple::KalimbaSubArch_v4;
281     break;
282   case 17:
283   case 20:
284     kal_arch_variant = llvm::Triple::KalimbaSubArch_v5;
285     break;
286   default:
287     break;
288   }
289   return kal_arch_variant;
290 }
291 
292 static uint32_t mipsVariantFromElfFlags (const elf::ELFHeader &header) {
293   const uint32_t mips_arch = header.e_flags & llvm::ELF::EF_MIPS_ARCH;
294   uint32_t endian = header.e_ident[EI_DATA];
295   uint32_t arch_variant = ArchSpec::eMIPSSubType_unknown;
296   uint32_t fileclass = header.e_ident[EI_CLASS];
297 
298   // If there aren't any elf flags available (e.g core elf file) then return
299   // default
300   // 32 or 64 bit arch (without any architecture revision) based on object file's class.
301   if (header.e_type == ET_CORE) {
302     switch (fileclass) {
303     case llvm::ELF::ELFCLASS32:
304       return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el
305                                      : ArchSpec::eMIPSSubType_mips32;
306     case llvm::ELF::ELFCLASS64:
307       return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el
308                                      : ArchSpec::eMIPSSubType_mips64;
309     default:
310       return arch_variant;
311     }
312   }
313 
314   switch (mips_arch) {
315   case llvm::ELF::EF_MIPS_ARCH_1:
316   case llvm::ELF::EF_MIPS_ARCH_2:
317   case llvm::ELF::EF_MIPS_ARCH_32:
318     return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el
319                                    : ArchSpec::eMIPSSubType_mips32;
320   case llvm::ELF::EF_MIPS_ARCH_32R2:
321     return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r2el
322                                    : ArchSpec::eMIPSSubType_mips32r2;
323   case llvm::ELF::EF_MIPS_ARCH_32R6:
324     return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r6el
325                                    : ArchSpec::eMIPSSubType_mips32r6;
326   case llvm::ELF::EF_MIPS_ARCH_3:
327   case llvm::ELF::EF_MIPS_ARCH_4:
328   case llvm::ELF::EF_MIPS_ARCH_5:
329   case llvm::ELF::EF_MIPS_ARCH_64:
330     return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el
331                                    : ArchSpec::eMIPSSubType_mips64;
332   case llvm::ELF::EF_MIPS_ARCH_64R2:
333     return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r2el
334                                    : ArchSpec::eMIPSSubType_mips64r2;
335   case llvm::ELF::EF_MIPS_ARCH_64R6:
336     return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r6el
337                                    : ArchSpec::eMIPSSubType_mips64r6;
338   default:
339     break;
340   }
341 
342   return arch_variant;
343 }
344 
345 static uint32_t subTypeFromElfHeader(const elf::ELFHeader &header) {
346   if (header.e_machine == llvm::ELF::EM_MIPS)
347     return mipsVariantFromElfFlags(header);
348 
349   return llvm::ELF::EM_CSR_KALIMBA == header.e_machine
350              ? kalimbaVariantFromElfFlags(header.e_flags)
351              : LLDB_INVALID_CPUTYPE;
352 }
353 
354 //! The kalimba toolchain identifies a code section as being
355 //! one with the SHT_PROGBITS set in the section sh_type and the top
356 //! bit in the 32-bit address field set.
357 static lldb::SectionType
358 kalimbaSectionType(const elf::ELFHeader &header,
359                    const elf::ELFSectionHeader &sect_hdr) {
360   if (llvm::ELF::EM_CSR_KALIMBA != header.e_machine) {
361     return eSectionTypeOther;
362   }
363 
364   if (llvm::ELF::SHT_NOBITS == sect_hdr.sh_type) {
365     return eSectionTypeZeroFill;
366   }
367 
368   if (llvm::ELF::SHT_PROGBITS == sect_hdr.sh_type) {
369     const lldb::addr_t KAL_CODE_BIT = 1 << 31;
370     return KAL_CODE_BIT & sect_hdr.sh_addr ? eSectionTypeCode
371                                            : eSectionTypeData;
372   }
373 
374   return eSectionTypeOther;
375 }
376 
377 // Arbitrary constant used as UUID prefix for core files.
378 const uint32_t ObjectFileELF::g_core_uuid_magic(0xE210C);
379 
380 //------------------------------------------------------------------
381 // Static methods.
382 //------------------------------------------------------------------
383 void ObjectFileELF::Initialize() {
384   PluginManager::RegisterPlugin(GetPluginNameStatic(),
385                                 GetPluginDescriptionStatic(), CreateInstance,
386                                 CreateMemoryInstance, GetModuleSpecifications);
387 }
388 
389 void ObjectFileELF::Terminate() {
390   PluginManager::UnregisterPlugin(CreateInstance);
391 }
392 
393 lldb_private::ConstString ObjectFileELF::GetPluginNameStatic() {
394   static ConstString g_name("elf");
395   return g_name;
396 }
397 
398 const char *ObjectFileELF::GetPluginDescriptionStatic() {
399   return "ELF object file reader.";
400 }
401 
402 ObjectFile *ObjectFileELF::CreateInstance(const lldb::ModuleSP &module_sp,
403                                           DataBufferSP &data_sp,
404                                           lldb::offset_t data_offset,
405                                           const lldb_private::FileSpec *file,
406                                           lldb::offset_t file_offset,
407                                           lldb::offset_t length) {
408   if (!data_sp) {
409     data_sp = MapFileData(*file, length, file_offset);
410     if (!data_sp)
411       return nullptr;
412     data_offset = 0;
413   }
414 
415   assert(data_sp);
416 
417   if (data_sp->GetByteSize() <= (llvm::ELF::EI_NIDENT + data_offset))
418     return nullptr;
419 
420   const uint8_t *magic = data_sp->GetBytes() + data_offset;
421   if (!ELFHeader::MagicBytesMatch(magic))
422     return nullptr;
423 
424   // Update the data to contain the entire file if it doesn't already
425   if (data_sp->GetByteSize() < length) {
426     data_sp = MapFileData(*file, length, file_offset);
427     if (!data_sp)
428       return nullptr;
429     data_offset = 0;
430     magic = data_sp->GetBytes();
431   }
432 
433   unsigned address_size = ELFHeader::AddressSizeInBytes(magic);
434   if (address_size == 4 || address_size == 8) {
435     std::unique_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(
436         module_sp, data_sp, data_offset, file, file_offset, length));
437     ArchSpec spec;
438     if (objfile_ap->GetArchitecture(spec) &&
439         objfile_ap->SetModulesArchitecture(spec))
440       return objfile_ap.release();
441   }
442 
443   return NULL;
444 }
445 
446 ObjectFile *ObjectFileELF::CreateMemoryInstance(
447     const lldb::ModuleSP &module_sp, DataBufferSP &data_sp,
448     const lldb::ProcessSP &process_sp, lldb::addr_t header_addr) {
449   if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT)) {
450     const uint8_t *magic = data_sp->GetBytes();
451     if (ELFHeader::MagicBytesMatch(magic)) {
452       unsigned address_size = ELFHeader::AddressSizeInBytes(magic);
453       if (address_size == 4 || address_size == 8) {
454         std::unique_ptr<ObjectFileELF> objfile_ap(
455             new ObjectFileELF(module_sp, data_sp, process_sp, header_addr));
456         ArchSpec spec;
457         if (objfile_ap->GetArchitecture(spec) &&
458             objfile_ap->SetModulesArchitecture(spec))
459           return objfile_ap.release();
460       }
461     }
462   }
463   return NULL;
464 }
465 
466 bool ObjectFileELF::MagicBytesMatch(DataBufferSP &data_sp,
467                                     lldb::addr_t data_offset,
468                                     lldb::addr_t data_length) {
469   if (data_sp &&
470       data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset)) {
471     const uint8_t *magic = data_sp->GetBytes() + data_offset;
472     return ELFHeader::MagicBytesMatch(magic);
473   }
474   return false;
475 }
476 
477 /*
478  * crc function from http://svnweb.freebsd.org/base/head/sys/libkern/crc32.c
479  *
480  *   COPYRIGHT (C) 1986 Gary S. Brown. You may use this program, or
481  *   code or tables extracted from it, as desired without restriction.
482  */
483 static uint32_t calc_crc32(uint32_t crc, const void *buf, size_t size) {
484   static const uint32_t g_crc32_tab[] = {
485       0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f,
486       0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988,
487       0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2,
488       0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7,
489       0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
490       0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172,
491       0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c,
492       0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59,
493       0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423,
494       0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
495       0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106,
496       0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,
497       0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d,
498       0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e,
499       0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
500       0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,
501       0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7,
502       0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0,
503       0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa,
504       0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
505       0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81,
506       0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a,
507       0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84,
508       0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,
509       0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
510       0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc,
511       0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e,
512       0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,
513       0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55,
514       0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
515       0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28,
516       0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d,
517       0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f,
518       0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38,
519       0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
520       0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,
521       0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69,
522       0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2,
523       0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc,
524       0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
525       0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693,
526       0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94,
527       0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d};
528   const uint8_t *p = (const uint8_t *)buf;
529 
530   crc = crc ^ ~0U;
531   while (size--)
532     crc = g_crc32_tab[(crc ^ *p++) & 0xFF] ^ (crc >> 8);
533   return crc ^ ~0U;
534 }
535 
536 static uint32_t calc_gnu_debuglink_crc32(const void *buf, size_t size) {
537   return calc_crc32(0U, buf, size);
538 }
539 
540 uint32_t ObjectFileELF::CalculateELFNotesSegmentsCRC32(
541     const ProgramHeaderColl &program_headers, DataExtractor &object_data) {
542 
543   uint32_t core_notes_crc = 0;
544 
545   for (const ELFProgramHeader &H : program_headers) {
546     if (H.p_type == llvm::ELF::PT_NOTE) {
547       const elf_off ph_offset = H.p_offset;
548       const size_t ph_size = H.p_filesz;
549 
550       DataExtractor segment_data;
551       if (segment_data.SetData(object_data, ph_offset, ph_size) != ph_size) {
552         // The ELF program header contained incorrect data, probably corefile
553         // is incomplete or corrupted.
554         break;
555       }
556 
557       core_notes_crc = calc_crc32(core_notes_crc, segment_data.GetDataStart(),
558                                   segment_data.GetByteSize());
559     }
560   }
561 
562   return core_notes_crc;
563 }
564 
565 static const char *OSABIAsCString(unsigned char osabi_byte) {
566 #define _MAKE_OSABI_CASE(x)                                                    \
567   case x:                                                                      \
568     return #x
569   switch (osabi_byte) {
570     _MAKE_OSABI_CASE(ELFOSABI_NONE);
571     _MAKE_OSABI_CASE(ELFOSABI_HPUX);
572     _MAKE_OSABI_CASE(ELFOSABI_NETBSD);
573     _MAKE_OSABI_CASE(ELFOSABI_GNU);
574     _MAKE_OSABI_CASE(ELFOSABI_HURD);
575     _MAKE_OSABI_CASE(ELFOSABI_SOLARIS);
576     _MAKE_OSABI_CASE(ELFOSABI_AIX);
577     _MAKE_OSABI_CASE(ELFOSABI_IRIX);
578     _MAKE_OSABI_CASE(ELFOSABI_FREEBSD);
579     _MAKE_OSABI_CASE(ELFOSABI_TRU64);
580     _MAKE_OSABI_CASE(ELFOSABI_MODESTO);
581     _MAKE_OSABI_CASE(ELFOSABI_OPENBSD);
582     _MAKE_OSABI_CASE(ELFOSABI_OPENVMS);
583     _MAKE_OSABI_CASE(ELFOSABI_NSK);
584     _MAKE_OSABI_CASE(ELFOSABI_AROS);
585     _MAKE_OSABI_CASE(ELFOSABI_FENIXOS);
586     _MAKE_OSABI_CASE(ELFOSABI_C6000_ELFABI);
587     _MAKE_OSABI_CASE(ELFOSABI_C6000_LINUX);
588     _MAKE_OSABI_CASE(ELFOSABI_ARM);
589     _MAKE_OSABI_CASE(ELFOSABI_STANDALONE);
590   default:
591     return "<unknown-osabi>";
592   }
593 #undef _MAKE_OSABI_CASE
594 }
595 
596 //
597 // WARNING : This function is being deprecated
598 // It's functionality has moved to ArchSpec::SetArchitecture This function is
599 // only being kept to validate the move.
600 //
601 // TODO : Remove this function
602 static bool GetOsFromOSABI(unsigned char osabi_byte,
603                            llvm::Triple::OSType &ostype) {
604   switch (osabi_byte) {
605   case ELFOSABI_AIX:
606     ostype = llvm::Triple::OSType::AIX;
607     break;
608   case ELFOSABI_FREEBSD:
609     ostype = llvm::Triple::OSType::FreeBSD;
610     break;
611   case ELFOSABI_GNU:
612     ostype = llvm::Triple::OSType::Linux;
613     break;
614   case ELFOSABI_NETBSD:
615     ostype = llvm::Triple::OSType::NetBSD;
616     break;
617   case ELFOSABI_OPENBSD:
618     ostype = llvm::Triple::OSType::OpenBSD;
619     break;
620   case ELFOSABI_SOLARIS:
621     ostype = llvm::Triple::OSType::Solaris;
622     break;
623   default:
624     ostype = llvm::Triple::OSType::UnknownOS;
625   }
626   return ostype != llvm::Triple::OSType::UnknownOS;
627 }
628 
629 size_t ObjectFileELF::GetModuleSpecifications(
630     const lldb_private::FileSpec &file, lldb::DataBufferSP &data_sp,
631     lldb::offset_t data_offset, lldb::offset_t file_offset,
632     lldb::offset_t length, lldb_private::ModuleSpecList &specs) {
633   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES));
634 
635   const size_t initial_count = specs.GetSize();
636 
637   if (ObjectFileELF::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
638     DataExtractor data;
639     data.SetData(data_sp);
640     elf::ELFHeader header;
641     lldb::offset_t header_offset = data_offset;
642     if (header.Parse(data, &header_offset)) {
643       if (data_sp) {
644         ModuleSpec spec(file);
645 
646         const uint32_t sub_type = subTypeFromElfHeader(header);
647         spec.GetArchitecture().SetArchitecture(
648             eArchTypeELF, header.e_machine, sub_type, header.e_ident[EI_OSABI]);
649 
650         if (spec.GetArchitecture().IsValid()) {
651           llvm::Triple::OSType ostype;
652           llvm::Triple::VendorType vendor;
653           llvm::Triple::OSType spec_ostype =
654               spec.GetArchitecture().GetTriple().getOS();
655 
656           if (log)
657             log->Printf("ObjectFileELF::%s file '%s' module OSABI: %s",
658                         __FUNCTION__, file.GetPath().c_str(),
659                         OSABIAsCString(header.e_ident[EI_OSABI]));
660 
661           // SetArchitecture should have set the vendor to unknown
662           vendor = spec.GetArchitecture().GetTriple().getVendor();
663           assert(vendor == llvm::Triple::UnknownVendor);
664           UNUSED_IF_ASSERT_DISABLED(vendor);
665 
666           //
667           // Validate it is ok to remove GetOsFromOSABI
668           GetOsFromOSABI(header.e_ident[EI_OSABI], ostype);
669           assert(spec_ostype == ostype);
670           if (spec_ostype != llvm::Triple::OSType::UnknownOS) {
671             if (log)
672               log->Printf("ObjectFileELF::%s file '%s' set ELF module OS type "
673                           "from ELF header OSABI.",
674                           __FUNCTION__, file.GetPath().c_str());
675           }
676 
677           data_sp = MapFileData(file, -1, file_offset);
678           if (data_sp)
679             data.SetData(data_sp);
680           // In case there is header extension in the section #0, the header we
681           // parsed above could have sentinel values for e_phnum, e_shnum, and
682           // e_shstrndx.  In this case we need to reparse the header with a
683           // bigger data source to get the actual values.
684           if (header.HasHeaderExtension()) {
685             lldb::offset_t header_offset = data_offset;
686             header.Parse(data, &header_offset);
687           }
688 
689           uint32_t gnu_debuglink_crc = 0;
690           std::string gnu_debuglink_file;
691           SectionHeaderColl section_headers;
692           lldb_private::UUID &uuid = spec.GetUUID();
693 
694           GetSectionHeaderInfo(section_headers, data, header, uuid,
695                                gnu_debuglink_file, gnu_debuglink_crc,
696                                spec.GetArchitecture());
697 
698           llvm::Triple &spec_triple = spec.GetArchitecture().GetTriple();
699 
700           if (log)
701             log->Printf("ObjectFileELF::%s file '%s' module set to triple: %s "
702                         "(architecture %s)",
703                         __FUNCTION__, file.GetPath().c_str(),
704                         spec_triple.getTriple().c_str(),
705                         spec.GetArchitecture().GetArchitectureName());
706 
707           if (!uuid.IsValid()) {
708             uint32_t core_notes_crc = 0;
709 
710             if (!gnu_debuglink_crc) {
711               static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
712               lldb_private::Timer scoped_timer(
713                   func_cat,
714                   "Calculating module crc32 %s with size %" PRIu64 " KiB",
715                   file.GetLastPathComponent().AsCString(),
716                   (FileSystem::Instance().GetByteSize(file) - file_offset) /
717                       1024);
718 
719               // For core files - which usually don't happen to have a
720               // gnu_debuglink, and are pretty bulky - calculating whole
721               // contents crc32 would be too much of luxury.  Thus we will need
722               // to fallback to something simpler.
723               if (header.e_type == llvm::ELF::ET_CORE) {
724                 ProgramHeaderColl program_headers;
725                 GetProgramHeaderInfo(program_headers, data, header);
726 
727                 core_notes_crc =
728                     CalculateELFNotesSegmentsCRC32(program_headers, data);
729               } else {
730                 gnu_debuglink_crc = calc_gnu_debuglink_crc32(
731                     data.GetDataStart(), data.GetByteSize());
732               }
733             }
734             using u32le = llvm::support::ulittle32_t;
735             if (gnu_debuglink_crc) {
736               // Use 4 bytes of crc from the .gnu_debuglink section.
737               u32le data(gnu_debuglink_crc);
738               uuid = UUID::fromData(&data, sizeof(data));
739             } else if (core_notes_crc) {
740               // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make
741               // it look different form .gnu_debuglink crc followed by 4 bytes
742               // of note segments crc.
743               u32le data[] = {u32le(g_core_uuid_magic), u32le(core_notes_crc)};
744               uuid = UUID::fromData(data, sizeof(data));
745             }
746           }
747 
748           specs.Append(spec);
749         }
750       }
751     }
752   }
753 
754   return specs.GetSize() - initial_count;
755 }
756 
757 //------------------------------------------------------------------
758 // PluginInterface protocol
759 //------------------------------------------------------------------
760 lldb_private::ConstString ObjectFileELF::GetPluginName() {
761   return GetPluginNameStatic();
762 }
763 
764 uint32_t ObjectFileELF::GetPluginVersion() { return m_plugin_version; }
765 //------------------------------------------------------------------
766 // ObjectFile protocol
767 //------------------------------------------------------------------
768 
769 ObjectFileELF::ObjectFileELF(const lldb::ModuleSP &module_sp,
770                              DataBufferSP &data_sp, lldb::offset_t data_offset,
771                              const FileSpec *file, lldb::offset_t file_offset,
772                              lldb::offset_t length)
773     : ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset),
774       m_header(), m_uuid(), m_gnu_debuglink_file(), m_gnu_debuglink_crc(0),
775       m_program_headers(), m_section_headers(), m_dynamic_symbols(),
776       m_filespec_ap(), m_entry_point_address(), m_arch_spec() {
777   if (file)
778     m_file = *file;
779   ::memset(&m_header, 0, sizeof(m_header));
780 }
781 
782 ObjectFileELF::ObjectFileELF(const lldb::ModuleSP &module_sp,
783                              DataBufferSP &header_data_sp,
784                              const lldb::ProcessSP &process_sp,
785                              addr_t header_addr)
786     : ObjectFile(module_sp, process_sp, header_addr, header_data_sp),
787       m_header(), m_uuid(), m_gnu_debuglink_file(), m_gnu_debuglink_crc(0),
788       m_program_headers(), m_section_headers(), m_dynamic_symbols(),
789       m_filespec_ap(), m_entry_point_address(), m_arch_spec() {
790   ::memset(&m_header, 0, sizeof(m_header));
791 }
792 
793 ObjectFileELF::~ObjectFileELF() {}
794 
795 bool ObjectFileELF::IsExecutable() const {
796   return ((m_header.e_type & ET_EXEC) != 0) || (m_header.e_entry != 0);
797 }
798 
799 bool ObjectFileELF::SetLoadAddress(Target &target, lldb::addr_t value,
800                                    bool value_is_offset) {
801   ModuleSP module_sp = GetModule();
802   if (module_sp) {
803     size_t num_loaded_sections = 0;
804     SectionList *section_list = GetSectionList();
805     if (section_list) {
806       if (!value_is_offset) {
807         bool found_offset = false;
808         for (const ELFProgramHeader &H : ProgramHeaders()) {
809           if (H.p_type != PT_LOAD || H.p_offset != 0)
810             continue;
811 
812           value = value - H.p_vaddr;
813           found_offset = true;
814           break;
815         }
816         if (!found_offset)
817           return false;
818       }
819 
820       const size_t num_sections = section_list->GetSize();
821       size_t sect_idx = 0;
822 
823       for (sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
824         // Iterate through the object file sections to find all of the sections
825         // that have SHF_ALLOC in their flag bits.
826         SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
827         if (section_sp && section_sp->Test(SHF_ALLOC)) {
828           lldb::addr_t load_addr = section_sp->GetFileAddress();
829           // We don't want to update the load address of a section with type
830           // eSectionTypeAbsoluteAddress as they already have the absolute load
831           // address already specified
832           if (section_sp->GetType() != eSectionTypeAbsoluteAddress)
833             load_addr += value;
834 
835           // On 32-bit systems the load address have to fit into 4 bytes. The
836           // rest of the bytes are the overflow from the addition.
837           if (GetAddressByteSize() == 4)
838             load_addr &= 0xFFFFFFFF;
839 
840           if (target.GetSectionLoadList().SetSectionLoadAddress(section_sp,
841                                                                 load_addr))
842             ++num_loaded_sections;
843         }
844       }
845       return num_loaded_sections > 0;
846     }
847   }
848   return false;
849 }
850 
851 ByteOrder ObjectFileELF::GetByteOrder() const {
852   if (m_header.e_ident[EI_DATA] == ELFDATA2MSB)
853     return eByteOrderBig;
854   if (m_header.e_ident[EI_DATA] == ELFDATA2LSB)
855     return eByteOrderLittle;
856   return eByteOrderInvalid;
857 }
858 
859 uint32_t ObjectFileELF::GetAddressByteSize() const {
860   return m_data.GetAddressByteSize();
861 }
862 
863 AddressClass ObjectFileELF::GetAddressClass(addr_t file_addr) {
864   Symtab *symtab = GetSymtab();
865   if (!symtab)
866     return AddressClass::eUnknown;
867 
868   // The address class is determined based on the symtab. Ask it from the
869   // object file what contains the symtab information.
870   ObjectFile *symtab_objfile = symtab->GetObjectFile();
871   if (symtab_objfile != nullptr && symtab_objfile != this)
872     return symtab_objfile->GetAddressClass(file_addr);
873 
874   auto res = ObjectFile::GetAddressClass(file_addr);
875   if (res != AddressClass::eCode)
876     return res;
877 
878   auto ub = m_address_class_map.upper_bound(file_addr);
879   if (ub == m_address_class_map.begin()) {
880     // No entry in the address class map before the address. Return default
881     // address class for an address in a code section.
882     return AddressClass::eCode;
883   }
884 
885   // Move iterator to the address class entry preceding address
886   --ub;
887 
888   return ub->second;
889 }
890 
891 size_t ObjectFileELF::SectionIndex(const SectionHeaderCollIter &I) {
892   return std::distance(m_section_headers.begin(), I);
893 }
894 
895 size_t ObjectFileELF::SectionIndex(const SectionHeaderCollConstIter &I) const {
896   return std::distance(m_section_headers.begin(), I);
897 }
898 
899 bool ObjectFileELF::ParseHeader() {
900   lldb::offset_t offset = 0;
901   return m_header.Parse(m_data, &offset);
902 }
903 
904 bool ObjectFileELF::GetUUID(lldb_private::UUID *uuid) {
905   // Need to parse the section list to get the UUIDs, so make sure that's been
906   // done.
907   if (!ParseSectionHeaders() && GetType() != ObjectFile::eTypeCoreFile)
908     return false;
909 
910   using u32le = llvm::support::ulittle32_t;
911   if (m_uuid.IsValid()) {
912     // We have the full build id uuid.
913     *uuid = m_uuid;
914     return true;
915   } else if (GetType() == ObjectFile::eTypeCoreFile) {
916     uint32_t core_notes_crc = 0;
917 
918     if (!ParseProgramHeaders())
919       return false;
920 
921     core_notes_crc = CalculateELFNotesSegmentsCRC32(m_program_headers, m_data);
922 
923     if (core_notes_crc) {
924       // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it look
925       // different form .gnu_debuglink crc - followed by 4 bytes of note
926       // segments crc.
927       u32le data[] = {u32le(g_core_uuid_magic), u32le(core_notes_crc)};
928       m_uuid = UUID::fromData(data, sizeof(data));
929     }
930   } else {
931     if (!m_gnu_debuglink_crc)
932       m_gnu_debuglink_crc =
933           calc_gnu_debuglink_crc32(m_data.GetDataStart(), m_data.GetByteSize());
934     if (m_gnu_debuglink_crc) {
935       // Use 4 bytes of crc from the .gnu_debuglink section.
936       u32le data(m_gnu_debuglink_crc);
937       m_uuid = UUID::fromData(&data, sizeof(data));
938     }
939   }
940 
941   if (m_uuid.IsValid()) {
942     *uuid = m_uuid;
943     return true;
944   }
945 
946   return false;
947 }
948 
949 lldb_private::FileSpecList ObjectFileELF::GetDebugSymbolFilePaths() {
950   FileSpecList file_spec_list;
951 
952   if (!m_gnu_debuglink_file.empty()) {
953     FileSpec file_spec(m_gnu_debuglink_file);
954     file_spec_list.Append(file_spec);
955   }
956   return file_spec_list;
957 }
958 
959 uint32_t ObjectFileELF::GetDependentModules(FileSpecList &files) {
960   size_t num_modules = ParseDependentModules();
961   uint32_t num_specs = 0;
962 
963   for (unsigned i = 0; i < num_modules; ++i) {
964     if (files.AppendIfUnique(m_filespec_ap->GetFileSpecAtIndex(i)))
965       num_specs++;
966   }
967 
968   return num_specs;
969 }
970 
971 Address ObjectFileELF::GetImageInfoAddress(Target *target) {
972   if (!ParseDynamicSymbols())
973     return Address();
974 
975   SectionList *section_list = GetSectionList();
976   if (!section_list)
977     return Address();
978 
979   // Find the SHT_DYNAMIC (.dynamic) section.
980   SectionSP dynsym_section_sp(
981       section_list->FindSectionByType(eSectionTypeELFDynamicLinkInfo, true));
982   if (!dynsym_section_sp)
983     return Address();
984   assert(dynsym_section_sp->GetObjectFile() == this);
985 
986   user_id_t dynsym_id = dynsym_section_sp->GetID();
987   const ELFSectionHeaderInfo *dynsym_hdr = GetSectionHeaderByIndex(dynsym_id);
988   if (!dynsym_hdr)
989     return Address();
990 
991   for (size_t i = 0; i < m_dynamic_symbols.size(); ++i) {
992     ELFDynamic &symbol = m_dynamic_symbols[i];
993 
994     if (symbol.d_tag == DT_DEBUG) {
995       // Compute the offset as the number of previous entries plus the size of
996       // d_tag.
997       addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize();
998       return Address(dynsym_section_sp, offset);
999     }
1000     // MIPS executables uses DT_MIPS_RLD_MAP_REL to support PIE. DT_MIPS_RLD_MAP
1001     // exists in non-PIE.
1002     else if ((symbol.d_tag == DT_MIPS_RLD_MAP ||
1003               symbol.d_tag == DT_MIPS_RLD_MAP_REL) &&
1004              target) {
1005       addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize();
1006       addr_t dyn_base = dynsym_section_sp->GetLoadBaseAddress(target);
1007       if (dyn_base == LLDB_INVALID_ADDRESS)
1008         return Address();
1009 
1010       Status error;
1011       if (symbol.d_tag == DT_MIPS_RLD_MAP) {
1012         // DT_MIPS_RLD_MAP tag stores an absolute address of the debug pointer.
1013         Address addr;
1014         if (target->ReadPointerFromMemory(dyn_base + offset, false, error,
1015                                           addr))
1016           return addr;
1017       }
1018       if (symbol.d_tag == DT_MIPS_RLD_MAP_REL) {
1019         // DT_MIPS_RLD_MAP_REL tag stores the offset to the debug pointer,
1020         // relative to the address of the tag.
1021         uint64_t rel_offset;
1022         rel_offset = target->ReadUnsignedIntegerFromMemory(
1023             dyn_base + offset, false, GetAddressByteSize(), UINT64_MAX, error);
1024         if (error.Success() && rel_offset != UINT64_MAX) {
1025           Address addr;
1026           addr_t debug_ptr_address =
1027               dyn_base + (offset - GetAddressByteSize()) + rel_offset;
1028           addr.SetOffset(debug_ptr_address);
1029           return addr;
1030         }
1031       }
1032     }
1033   }
1034 
1035   return Address();
1036 }
1037 
1038 lldb_private::Address ObjectFileELF::GetEntryPointAddress() {
1039   if (m_entry_point_address.IsValid())
1040     return m_entry_point_address;
1041 
1042   if (!ParseHeader() || !IsExecutable())
1043     return m_entry_point_address;
1044 
1045   SectionList *section_list = GetSectionList();
1046   addr_t offset = m_header.e_entry;
1047 
1048   if (!section_list)
1049     m_entry_point_address.SetOffset(offset);
1050   else
1051     m_entry_point_address.ResolveAddressUsingFileSections(offset, section_list);
1052   return m_entry_point_address;
1053 }
1054 
1055 //----------------------------------------------------------------------
1056 // ParseDependentModules
1057 //----------------------------------------------------------------------
1058 size_t ObjectFileELF::ParseDependentModules() {
1059   if (m_filespec_ap.get())
1060     return m_filespec_ap->GetSize();
1061 
1062   m_filespec_ap.reset(new FileSpecList());
1063 
1064   if (!ParseSectionHeaders())
1065     return 0;
1066 
1067   SectionList *section_list = GetSectionList();
1068   if (!section_list)
1069     return 0;
1070 
1071   // Find the SHT_DYNAMIC section.
1072   Section *dynsym =
1073       section_list->FindSectionByType(eSectionTypeELFDynamicLinkInfo, true)
1074           .get();
1075   if (!dynsym)
1076     return 0;
1077   assert(dynsym->GetObjectFile() == this);
1078 
1079   const ELFSectionHeaderInfo *header = GetSectionHeaderByIndex(dynsym->GetID());
1080   if (!header)
1081     return 0;
1082   // sh_link: section header index of string table used by entries in the
1083   // section.
1084   Section *dynstr = section_list->FindSectionByID(header->sh_link).get();
1085   if (!dynstr)
1086     return 0;
1087 
1088   DataExtractor dynsym_data;
1089   DataExtractor dynstr_data;
1090   if (ReadSectionData(dynsym, dynsym_data) &&
1091       ReadSectionData(dynstr, dynstr_data)) {
1092     ELFDynamic symbol;
1093     const lldb::offset_t section_size = dynsym_data.GetByteSize();
1094     lldb::offset_t offset = 0;
1095 
1096     // The only type of entries we are concerned with are tagged DT_NEEDED,
1097     // yielding the name of a required library.
1098     while (offset < section_size) {
1099       if (!symbol.Parse(dynsym_data, &offset))
1100         break;
1101 
1102       if (symbol.d_tag != DT_NEEDED)
1103         continue;
1104 
1105       uint32_t str_index = static_cast<uint32_t>(symbol.d_val);
1106       const char *lib_name = dynstr_data.PeekCStr(str_index);
1107       FileSpec file_spec(lib_name);
1108       FileSystem::Instance().Resolve(file_spec);
1109       m_filespec_ap->Append(file_spec);
1110     }
1111   }
1112 
1113   return m_filespec_ap->GetSize();
1114 }
1115 
1116 //----------------------------------------------------------------------
1117 // GetProgramHeaderInfo
1118 //----------------------------------------------------------------------
1119 size_t ObjectFileELF::GetProgramHeaderInfo(ProgramHeaderColl &program_headers,
1120                                            DataExtractor &object_data,
1121                                            const ELFHeader &header) {
1122   // We have already parsed the program headers
1123   if (!program_headers.empty())
1124     return program_headers.size();
1125 
1126   // If there are no program headers to read we are done.
1127   if (header.e_phnum == 0)
1128     return 0;
1129 
1130   program_headers.resize(header.e_phnum);
1131   if (program_headers.size() != header.e_phnum)
1132     return 0;
1133 
1134   const size_t ph_size = header.e_phnum * header.e_phentsize;
1135   const elf_off ph_offset = header.e_phoff;
1136   DataExtractor data;
1137   if (data.SetData(object_data, ph_offset, ph_size) != ph_size)
1138     return 0;
1139 
1140   uint32_t idx;
1141   lldb::offset_t offset;
1142   for (idx = 0, offset = 0; idx < header.e_phnum; ++idx) {
1143     if (!program_headers[idx].Parse(data, &offset))
1144       break;
1145   }
1146 
1147   if (idx < program_headers.size())
1148     program_headers.resize(idx);
1149 
1150   return program_headers.size();
1151 }
1152 
1153 //----------------------------------------------------------------------
1154 // ParseProgramHeaders
1155 //----------------------------------------------------------------------
1156 bool ObjectFileELF::ParseProgramHeaders() {
1157   return GetProgramHeaderInfo(m_program_headers, m_data, m_header) != 0;
1158 }
1159 
1160 lldb_private::Status
1161 ObjectFileELF::RefineModuleDetailsFromNote(lldb_private::DataExtractor &data,
1162                                            lldb_private::ArchSpec &arch_spec,
1163                                            lldb_private::UUID &uuid) {
1164   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES));
1165   Status error;
1166 
1167   lldb::offset_t offset = 0;
1168 
1169   while (true) {
1170     // Parse the note header.  If this fails, bail out.
1171     const lldb::offset_t note_offset = offset;
1172     ELFNote note = ELFNote();
1173     if (!note.Parse(data, &offset)) {
1174       // We're done.
1175       return error;
1176     }
1177 
1178     if (log)
1179       log->Printf("ObjectFileELF::%s parsing note name='%s', type=%" PRIu32,
1180                   __FUNCTION__, note.n_name.c_str(), note.n_type);
1181 
1182     // Process FreeBSD ELF notes.
1183     if ((note.n_name == LLDB_NT_OWNER_FREEBSD) &&
1184         (note.n_type == LLDB_NT_FREEBSD_ABI_TAG) &&
1185         (note.n_descsz == LLDB_NT_FREEBSD_ABI_SIZE)) {
1186       // Pull out the min version info.
1187       uint32_t version_info;
1188       if (data.GetU32(&offset, &version_info, 1) == nullptr) {
1189         error.SetErrorString("failed to read FreeBSD ABI note payload");
1190         return error;
1191       }
1192 
1193       // Convert the version info into a major/minor number.
1194       const uint32_t version_major = version_info / 100000;
1195       const uint32_t version_minor = (version_info / 1000) % 100;
1196 
1197       char os_name[32];
1198       snprintf(os_name, sizeof(os_name), "freebsd%" PRIu32 ".%" PRIu32,
1199                version_major, version_minor);
1200 
1201       // Set the elf OS version to FreeBSD.  Also clear the vendor.
1202       arch_spec.GetTriple().setOSName(os_name);
1203       arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor);
1204 
1205       if (log)
1206         log->Printf("ObjectFileELF::%s detected FreeBSD %" PRIu32 ".%" PRIu32
1207                     ".%" PRIu32,
1208                     __FUNCTION__, version_major, version_minor,
1209                     static_cast<uint32_t>(version_info % 1000));
1210     }
1211     // Process GNU ELF notes.
1212     else if (note.n_name == LLDB_NT_OWNER_GNU) {
1213       switch (note.n_type) {
1214       case LLDB_NT_GNU_ABI_TAG:
1215         if (note.n_descsz == LLDB_NT_GNU_ABI_SIZE) {
1216           // Pull out the min OS version supporting the ABI.
1217           uint32_t version_info[4];
1218           if (data.GetU32(&offset, &version_info[0], note.n_descsz / 4) ==
1219               nullptr) {
1220             error.SetErrorString("failed to read GNU ABI note payload");
1221             return error;
1222           }
1223 
1224           // Set the OS per the OS field.
1225           switch (version_info[0]) {
1226           case LLDB_NT_GNU_ABI_OS_LINUX:
1227             arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1228             arch_spec.GetTriple().setVendor(
1229                 llvm::Triple::VendorType::UnknownVendor);
1230             if (log)
1231               log->Printf(
1232                   "ObjectFileELF::%s detected Linux, min version %" PRIu32
1233                   ".%" PRIu32 ".%" PRIu32,
1234                   __FUNCTION__, version_info[1], version_info[2],
1235                   version_info[3]);
1236             // FIXME we have the minimal version number, we could be propagating
1237             // that.  version_info[1] = OS Major, version_info[2] = OS Minor,
1238             // version_info[3] = Revision.
1239             break;
1240           case LLDB_NT_GNU_ABI_OS_HURD:
1241             arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS);
1242             arch_spec.GetTriple().setVendor(
1243                 llvm::Triple::VendorType::UnknownVendor);
1244             if (log)
1245               log->Printf("ObjectFileELF::%s detected Hurd (unsupported), min "
1246                           "version %" PRIu32 ".%" PRIu32 ".%" PRIu32,
1247                           __FUNCTION__, version_info[1], version_info[2],
1248                           version_info[3]);
1249             break;
1250           case LLDB_NT_GNU_ABI_OS_SOLARIS:
1251             arch_spec.GetTriple().setOS(llvm::Triple::OSType::Solaris);
1252             arch_spec.GetTriple().setVendor(
1253                 llvm::Triple::VendorType::UnknownVendor);
1254             if (log)
1255               log->Printf(
1256                   "ObjectFileELF::%s detected Solaris, min version %" PRIu32
1257                   ".%" PRIu32 ".%" PRIu32,
1258                   __FUNCTION__, version_info[1], version_info[2],
1259                   version_info[3]);
1260             break;
1261           default:
1262             if (log)
1263               log->Printf(
1264                   "ObjectFileELF::%s unrecognized OS in note, id %" PRIu32
1265                   ", min version %" PRIu32 ".%" PRIu32 ".%" PRIu32,
1266                   __FUNCTION__, version_info[0], version_info[1],
1267                   version_info[2], version_info[3]);
1268             break;
1269           }
1270         }
1271         break;
1272 
1273       case LLDB_NT_GNU_BUILD_ID_TAG:
1274         // Only bother processing this if we don't already have the uuid set.
1275         if (!uuid.IsValid()) {
1276           // 16 bytes is UUID|MD5, 20 bytes is SHA1. Other linkers may produce a
1277           // build-id of a different length. Accept it as long as it's at least
1278           // 4 bytes as it will be better than our own crc32.
1279           if (note.n_descsz >= 4) {
1280             if (const uint8_t *buf = data.PeekData(offset, note.n_descsz)) {
1281               // Save the build id as the UUID for the module.
1282               uuid = UUID::fromData(buf, note.n_descsz);
1283             } else {
1284               error.SetErrorString("failed to read GNU_BUILD_ID note payload");
1285               return error;
1286             }
1287           }
1288         }
1289         break;
1290       }
1291       if (arch_spec.IsMIPS() &&
1292           arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS)
1293         // The note.n_name == LLDB_NT_OWNER_GNU is valid for Linux platform
1294         arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1295     }
1296     // Process NetBSD ELF notes.
1297     else if ((note.n_name == LLDB_NT_OWNER_NETBSD) &&
1298              (note.n_type == LLDB_NT_NETBSD_ABI_TAG) &&
1299              (note.n_descsz == LLDB_NT_NETBSD_ABI_SIZE)) {
1300       // Pull out the min version info.
1301       uint32_t version_info;
1302       if (data.GetU32(&offset, &version_info, 1) == nullptr) {
1303         error.SetErrorString("failed to read NetBSD ABI note payload");
1304         return error;
1305       }
1306 
1307       // Set the elf OS version to NetBSD.  Also clear the vendor.
1308       arch_spec.GetTriple().setOS(llvm::Triple::OSType::NetBSD);
1309       arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor);
1310 
1311       if (log)
1312         log->Printf(
1313             "ObjectFileELF::%s detected NetBSD, min version constant %" PRIu32,
1314             __FUNCTION__, version_info);
1315     }
1316     // Process OpenBSD ELF notes.
1317     else if (note.n_name == LLDB_NT_OWNER_OPENBSD) {
1318       // Set the elf OS version to OpenBSD.  Also clear the vendor.
1319       arch_spec.GetTriple().setOS(llvm::Triple::OSType::OpenBSD);
1320       arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor);
1321     }
1322     // Process CSR kalimba notes
1323     else if ((note.n_type == LLDB_NT_GNU_ABI_TAG) &&
1324              (note.n_name == LLDB_NT_OWNER_CSR)) {
1325       arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS);
1326       arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::CSR);
1327 
1328       // TODO At some point the description string could be processed.
1329       // It could provide a steer towards the kalimba variant which this ELF
1330       // targets.
1331       if (note.n_descsz) {
1332         const char *cstr =
1333             data.GetCStr(&offset, llvm::alignTo(note.n_descsz, 4));
1334         (void)cstr;
1335       }
1336     } else if (note.n_name == LLDB_NT_OWNER_ANDROID) {
1337       arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1338       arch_spec.GetTriple().setEnvironment(
1339           llvm::Triple::EnvironmentType::Android);
1340     } else if (note.n_name == LLDB_NT_OWNER_LINUX) {
1341       // This is sometimes found in core files and usually contains extended
1342       // register info
1343       arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1344     } else if (note.n_name == LLDB_NT_OWNER_CORE) {
1345       // Parse the NT_FILE to look for stuff in paths to shared libraries As
1346       // the contents look like this in a 64 bit ELF core file: count     =
1347       // 0x000000000000000a (10) page_size = 0x0000000000001000 (4096) Index
1348       // start              end                file_ofs           path =====
1349       // ------------------ ------------------ ------------------
1350       // ------------------------------------- [  0] 0x0000000000400000
1351       // 0x0000000000401000 0x0000000000000000 /tmp/a.out [  1]
1352       // 0x0000000000600000 0x0000000000601000 0x0000000000000000 /tmp/a.out [
1353       // 2] 0x0000000000601000 0x0000000000602000 0x0000000000000001 /tmp/a.out
1354       // [  3] 0x00007fa79c9ed000 0x00007fa79cba8000 0x0000000000000000
1355       // /lib/x86_64-linux-gnu/libc-2.19.so [  4] 0x00007fa79cba8000
1356       // 0x00007fa79cda7000 0x00000000000001bb /lib/x86_64-linux-
1357       // gnu/libc-2.19.so [  5] 0x00007fa79cda7000 0x00007fa79cdab000
1358       // 0x00000000000001ba /lib/x86_64-linux-gnu/libc-2.19.so [  6]
1359       // 0x00007fa79cdab000 0x00007fa79cdad000 0x00000000000001be /lib/x86_64
1360       // -linux-gnu/libc-2.19.so [  7] 0x00007fa79cdb2000 0x00007fa79cdd5000
1361       // 0x0000000000000000 /lib/x86_64-linux-gnu/ld-2.19.so [  8]
1362       // 0x00007fa79cfd4000 0x00007fa79cfd5000 0x0000000000000022 /lib/x86_64
1363       // -linux-gnu/ld-2.19.so [  9] 0x00007fa79cfd5000 0x00007fa79cfd6000
1364       // 0x0000000000000023 /lib/x86_64-linux-gnu/ld-2.19.so In the 32 bit ELFs
1365       // the count, page_size, start, end, file_ofs are uint32_t For reference:
1366       // see readelf source code (in binutils).
1367       if (note.n_type == NT_FILE) {
1368         uint64_t count = data.GetAddress(&offset);
1369         const char *cstr;
1370         data.GetAddress(&offset); // Skip page size
1371         offset += count * 3 *
1372                   data.GetAddressByteSize(); // Skip all start/end/file_ofs
1373         for (size_t i = 0; i < count; ++i) {
1374           cstr = data.GetCStr(&offset);
1375           if (cstr == nullptr) {
1376             error.SetErrorStringWithFormat("ObjectFileELF::%s trying to read "
1377                                            "at an offset after the end "
1378                                            "(GetCStr returned nullptr)",
1379                                            __FUNCTION__);
1380             return error;
1381           }
1382           llvm::StringRef path(cstr);
1383           if (path.contains("/lib/x86_64-linux-gnu") || path.contains("/lib/i386-linux-gnu")) {
1384             arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1385             break;
1386           }
1387         }
1388         if (arch_spec.IsMIPS() &&
1389             arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS)
1390           // In case of MIPSR6, the LLDB_NT_OWNER_GNU note is missing for some
1391           // cases (e.g. compile with -nostdlib) Hence set OS to Linux
1392           arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1393       }
1394     }
1395 
1396     // Calculate the offset of the next note just in case "offset" has been
1397     // used to poke at the contents of the note data
1398     offset = note_offset + note.GetByteSize();
1399   }
1400 
1401   return error;
1402 }
1403 
1404 void ObjectFileELF::ParseARMAttributes(DataExtractor &data, uint64_t length,
1405                                        ArchSpec &arch_spec) {
1406   lldb::offset_t Offset = 0;
1407 
1408   uint8_t FormatVersion = data.GetU8(&Offset);
1409   if (FormatVersion != llvm::ARMBuildAttrs::Format_Version)
1410     return;
1411 
1412   Offset = Offset + sizeof(uint32_t); // Section Length
1413   llvm::StringRef VendorName = data.GetCStr(&Offset);
1414 
1415   if (VendorName != "aeabi")
1416     return;
1417 
1418   if (arch_spec.GetTriple().getEnvironment() ==
1419       llvm::Triple::UnknownEnvironment)
1420     arch_spec.GetTriple().setEnvironment(llvm::Triple::EABI);
1421 
1422   while (Offset < length) {
1423     uint8_t Tag = data.GetU8(&Offset);
1424     uint32_t Size = data.GetU32(&Offset);
1425 
1426     if (Tag != llvm::ARMBuildAttrs::File || Size == 0)
1427       continue;
1428 
1429     while (Offset < length) {
1430       uint64_t Tag = data.GetULEB128(&Offset);
1431       switch (Tag) {
1432       default:
1433         if (Tag < 32)
1434           data.GetULEB128(&Offset);
1435         else if (Tag % 2 == 0)
1436           data.GetULEB128(&Offset);
1437         else
1438           data.GetCStr(&Offset);
1439 
1440         break;
1441 
1442       case llvm::ARMBuildAttrs::CPU_raw_name:
1443       case llvm::ARMBuildAttrs::CPU_name:
1444         data.GetCStr(&Offset);
1445 
1446         break;
1447 
1448       case llvm::ARMBuildAttrs::ABI_VFP_args: {
1449         uint64_t VFPArgs = data.GetULEB128(&Offset);
1450 
1451         if (VFPArgs == llvm::ARMBuildAttrs::BaseAAPCS) {
1452           if (arch_spec.GetTriple().getEnvironment() ==
1453                   llvm::Triple::UnknownEnvironment ||
1454               arch_spec.GetTriple().getEnvironment() == llvm::Triple::EABIHF)
1455             arch_spec.GetTriple().setEnvironment(llvm::Triple::EABI);
1456 
1457           arch_spec.SetFlags(ArchSpec::eARM_abi_soft_float);
1458         } else if (VFPArgs == llvm::ARMBuildAttrs::HardFPAAPCS) {
1459           if (arch_spec.GetTriple().getEnvironment() ==
1460                   llvm::Triple::UnknownEnvironment ||
1461               arch_spec.GetTriple().getEnvironment() == llvm::Triple::EABI)
1462             arch_spec.GetTriple().setEnvironment(llvm::Triple::EABIHF);
1463 
1464           arch_spec.SetFlags(ArchSpec::eARM_abi_hard_float);
1465         }
1466 
1467         break;
1468       }
1469       }
1470     }
1471   }
1472 }
1473 
1474 //----------------------------------------------------------------------
1475 // GetSectionHeaderInfo
1476 //----------------------------------------------------------------------
1477 size_t ObjectFileELF::GetSectionHeaderInfo(SectionHeaderColl &section_headers,
1478                                            DataExtractor &object_data,
1479                                            const elf::ELFHeader &header,
1480                                            lldb_private::UUID &uuid,
1481                                            std::string &gnu_debuglink_file,
1482                                            uint32_t &gnu_debuglink_crc,
1483                                            ArchSpec &arch_spec) {
1484   // Don't reparse the section headers if we already did that.
1485   if (!section_headers.empty())
1486     return section_headers.size();
1487 
1488   // Only initialize the arch_spec to okay defaults if they're not already set.
1489   // We'll refine this with note data as we parse the notes.
1490   if (arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS) {
1491     llvm::Triple::OSType ostype;
1492     llvm::Triple::OSType spec_ostype;
1493     const uint32_t sub_type = subTypeFromElfHeader(header);
1494     arch_spec.SetArchitecture(eArchTypeELF, header.e_machine, sub_type,
1495                               header.e_ident[EI_OSABI]);
1496 
1497     // Validate if it is ok to remove GetOsFromOSABI. Note, that now the OS is
1498     // determined based on EI_OSABI flag and the info extracted from ELF notes
1499     // (see RefineModuleDetailsFromNote). However in some cases that still
1500     // might be not enough: for example a shared library might not have any
1501     // notes at all and have EI_OSABI flag set to System V, as result the OS
1502     // will be set to UnknownOS.
1503     GetOsFromOSABI(header.e_ident[EI_OSABI], ostype);
1504     spec_ostype = arch_spec.GetTriple().getOS();
1505     assert(spec_ostype == ostype);
1506     UNUSED_IF_ASSERT_DISABLED(spec_ostype);
1507   }
1508 
1509   if (arch_spec.GetMachine() == llvm::Triple::mips ||
1510       arch_spec.GetMachine() == llvm::Triple::mipsel ||
1511       arch_spec.GetMachine() == llvm::Triple::mips64 ||
1512       arch_spec.GetMachine() == llvm::Triple::mips64el) {
1513     switch (header.e_flags & llvm::ELF::EF_MIPS_ARCH_ASE) {
1514     case llvm::ELF::EF_MIPS_MICROMIPS:
1515       arch_spec.SetFlags(ArchSpec::eMIPSAse_micromips);
1516       break;
1517     case llvm::ELF::EF_MIPS_ARCH_ASE_M16:
1518       arch_spec.SetFlags(ArchSpec::eMIPSAse_mips16);
1519       break;
1520     case llvm::ELF::EF_MIPS_ARCH_ASE_MDMX:
1521       arch_spec.SetFlags(ArchSpec::eMIPSAse_mdmx);
1522       break;
1523     default:
1524       break;
1525     }
1526   }
1527 
1528   if (arch_spec.GetMachine() == llvm::Triple::arm ||
1529       arch_spec.GetMachine() == llvm::Triple::thumb) {
1530     if (header.e_flags & llvm::ELF::EF_ARM_SOFT_FLOAT)
1531       arch_spec.SetFlags(ArchSpec::eARM_abi_soft_float);
1532     else if (header.e_flags & llvm::ELF::EF_ARM_VFP_FLOAT)
1533       arch_spec.SetFlags(ArchSpec::eARM_abi_hard_float);
1534   }
1535 
1536   // If there are no section headers we are done.
1537   if (header.e_shnum == 0)
1538     return 0;
1539 
1540   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES));
1541 
1542   section_headers.resize(header.e_shnum);
1543   if (section_headers.size() != header.e_shnum)
1544     return 0;
1545 
1546   const size_t sh_size = header.e_shnum * header.e_shentsize;
1547   const elf_off sh_offset = header.e_shoff;
1548   DataExtractor sh_data;
1549   if (sh_data.SetData(object_data, sh_offset, sh_size) != sh_size)
1550     return 0;
1551 
1552   uint32_t idx;
1553   lldb::offset_t offset;
1554   for (idx = 0, offset = 0; idx < header.e_shnum; ++idx) {
1555     if (!section_headers[idx].Parse(sh_data, &offset))
1556       break;
1557   }
1558   if (idx < section_headers.size())
1559     section_headers.resize(idx);
1560 
1561   const unsigned strtab_idx = header.e_shstrndx;
1562   if (strtab_idx && strtab_idx < section_headers.size()) {
1563     const ELFSectionHeaderInfo &sheader = section_headers[strtab_idx];
1564     const size_t byte_size = sheader.sh_size;
1565     const Elf64_Off offset = sheader.sh_offset;
1566     lldb_private::DataExtractor shstr_data;
1567 
1568     if (shstr_data.SetData(object_data, offset, byte_size) == byte_size) {
1569       for (SectionHeaderCollIter I = section_headers.begin();
1570            I != section_headers.end(); ++I) {
1571         static ConstString g_sect_name_gnu_debuglink(".gnu_debuglink");
1572         const ELFSectionHeaderInfo &sheader = *I;
1573         const uint64_t section_size =
1574             sheader.sh_type == SHT_NOBITS ? 0 : sheader.sh_size;
1575         ConstString name(shstr_data.PeekCStr(I->sh_name));
1576 
1577         I->section_name = name;
1578 
1579         if (arch_spec.IsMIPS()) {
1580           uint32_t arch_flags = arch_spec.GetFlags();
1581           DataExtractor data;
1582           if (sheader.sh_type == SHT_MIPS_ABIFLAGS) {
1583 
1584             if (section_size && (data.SetData(object_data, sheader.sh_offset,
1585                                               section_size) == section_size)) {
1586               // MIPS ASE Mask is at offset 12 in MIPS.abiflags section
1587               lldb::offset_t offset = 12; // MIPS ABI Flags Version: 0
1588               arch_flags |= data.GetU32(&offset);
1589 
1590               // The floating point ABI is at offset 7
1591               offset = 7;
1592               switch (data.GetU8(&offset)) {
1593               case llvm::Mips::Val_GNU_MIPS_ABI_FP_ANY:
1594                 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_ANY;
1595                 break;
1596               case llvm::Mips::Val_GNU_MIPS_ABI_FP_DOUBLE:
1597                 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_DOUBLE;
1598                 break;
1599               case llvm::Mips::Val_GNU_MIPS_ABI_FP_SINGLE:
1600                 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_SINGLE;
1601                 break;
1602               case llvm::Mips::Val_GNU_MIPS_ABI_FP_SOFT:
1603                 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_SOFT;
1604                 break;
1605               case llvm::Mips::Val_GNU_MIPS_ABI_FP_OLD_64:
1606                 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_OLD_64;
1607                 break;
1608               case llvm::Mips::Val_GNU_MIPS_ABI_FP_XX:
1609                 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_XX;
1610                 break;
1611               case llvm::Mips::Val_GNU_MIPS_ABI_FP_64:
1612                 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_64;
1613                 break;
1614               case llvm::Mips::Val_GNU_MIPS_ABI_FP_64A:
1615                 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_64A;
1616                 break;
1617               }
1618             }
1619           }
1620           // Settings appropriate ArchSpec ABI Flags
1621           switch (header.e_flags & llvm::ELF::EF_MIPS_ABI) {
1622           case llvm::ELF::EF_MIPS_ABI_O32:
1623             arch_flags |= lldb_private::ArchSpec::eMIPSABI_O32;
1624             break;
1625           case EF_MIPS_ABI_O64:
1626             arch_flags |= lldb_private::ArchSpec::eMIPSABI_O64;
1627             break;
1628           case EF_MIPS_ABI_EABI32:
1629             arch_flags |= lldb_private::ArchSpec::eMIPSABI_EABI32;
1630             break;
1631           case EF_MIPS_ABI_EABI64:
1632             arch_flags |= lldb_private::ArchSpec::eMIPSABI_EABI64;
1633             break;
1634           default:
1635             // ABI Mask doesn't cover N32 and N64 ABI.
1636             if (header.e_ident[EI_CLASS] == llvm::ELF::ELFCLASS64)
1637               arch_flags |= lldb_private::ArchSpec::eMIPSABI_N64;
1638             else if (header.e_flags & llvm::ELF::EF_MIPS_ABI2)
1639               arch_flags |= lldb_private::ArchSpec::eMIPSABI_N32;
1640             break;
1641           }
1642           arch_spec.SetFlags(arch_flags);
1643         }
1644 
1645         if (arch_spec.GetMachine() == llvm::Triple::arm ||
1646             arch_spec.GetMachine() == llvm::Triple::thumb) {
1647           DataExtractor data;
1648 
1649           if (sheader.sh_type == SHT_ARM_ATTRIBUTES && section_size != 0 &&
1650               data.SetData(object_data, sheader.sh_offset, section_size) == section_size)
1651             ParseARMAttributes(data, section_size, arch_spec);
1652         }
1653 
1654         if (name == g_sect_name_gnu_debuglink) {
1655           DataExtractor data;
1656           if (section_size && (data.SetData(object_data, sheader.sh_offset,
1657                                             section_size) == section_size)) {
1658             lldb::offset_t gnu_debuglink_offset = 0;
1659             gnu_debuglink_file = data.GetCStr(&gnu_debuglink_offset);
1660             gnu_debuglink_offset = llvm::alignTo(gnu_debuglink_offset, 4);
1661             data.GetU32(&gnu_debuglink_offset, &gnu_debuglink_crc, 1);
1662           }
1663         }
1664 
1665         // Process ELF note section entries.
1666         bool is_note_header = (sheader.sh_type == SHT_NOTE);
1667 
1668         // The section header ".note.android.ident" is stored as a
1669         // PROGBITS type header but it is actually a note header.
1670         static ConstString g_sect_name_android_ident(".note.android.ident");
1671         if (!is_note_header && name == g_sect_name_android_ident)
1672           is_note_header = true;
1673 
1674         if (is_note_header) {
1675           // Allow notes to refine module info.
1676           DataExtractor data;
1677           if (section_size && (data.SetData(object_data, sheader.sh_offset,
1678                                             section_size) == section_size)) {
1679             Status error = RefineModuleDetailsFromNote(data, arch_spec, uuid);
1680             if (error.Fail()) {
1681               if (log)
1682                 log->Printf("ObjectFileELF::%s ELF note processing failed: %s",
1683                             __FUNCTION__, error.AsCString());
1684             }
1685           }
1686         }
1687       }
1688 
1689       // Make any unknown triple components to be unspecified unknowns.
1690       if (arch_spec.GetTriple().getVendor() == llvm::Triple::UnknownVendor)
1691         arch_spec.GetTriple().setVendorName(llvm::StringRef());
1692       if (arch_spec.GetTriple().getOS() == llvm::Triple::UnknownOS)
1693         arch_spec.GetTriple().setOSName(llvm::StringRef());
1694 
1695       return section_headers.size();
1696     }
1697   }
1698 
1699   section_headers.clear();
1700   return 0;
1701 }
1702 
1703 llvm::StringRef
1704 ObjectFileELF::StripLinkerSymbolAnnotations(llvm::StringRef symbol_name) const {
1705   size_t pos = symbol_name.find('@');
1706   return symbol_name.substr(0, pos);
1707 }
1708 
1709 //----------------------------------------------------------------------
1710 // ParseSectionHeaders
1711 //----------------------------------------------------------------------
1712 size_t ObjectFileELF::ParseSectionHeaders() {
1713   return GetSectionHeaderInfo(m_section_headers, m_data, m_header, m_uuid,
1714                               m_gnu_debuglink_file, m_gnu_debuglink_crc,
1715                               m_arch_spec);
1716 }
1717 
1718 const ObjectFileELF::ELFSectionHeaderInfo *
1719 ObjectFileELF::GetSectionHeaderByIndex(lldb::user_id_t id) {
1720   if (!ParseSectionHeaders())
1721     return NULL;
1722 
1723   if (id < m_section_headers.size())
1724     return &m_section_headers[id];
1725 
1726   return NULL;
1727 }
1728 
1729 lldb::user_id_t ObjectFileELF::GetSectionIndexByName(const char *name) {
1730   if (!name || !name[0] || !ParseSectionHeaders())
1731     return 0;
1732   for (size_t i = 1; i < m_section_headers.size(); ++i)
1733     if (m_section_headers[i].section_name == ConstString(name))
1734       return i;
1735   return 0;
1736 }
1737 
1738 static SectionType GetSectionTypeFromName(llvm::StringRef Name) {
1739   return llvm::StringSwitch<SectionType>(Name)
1740       .Case(".ARM.exidx", eSectionTypeARMexidx)
1741       .Case(".ARM.extab", eSectionTypeARMextab)
1742       .Cases(".bss", ".tbss", eSectionTypeZeroFill)
1743       .Cases(".data", ".tdata", eSectionTypeData)
1744       .Case(".debug_abbrev", eSectionTypeDWARFDebugAbbrev)
1745       .Case(".debug_abbrev.dwo", eSectionTypeDWARFDebugAbbrevDwo)
1746       .Case(".debug_addr", eSectionTypeDWARFDebugAddr)
1747       .Case(".debug_aranges", eSectionTypeDWARFDebugAranges)
1748       .Case(".debug_cu_index", eSectionTypeDWARFDebugCuIndex)
1749       .Case(".debug_frame", eSectionTypeDWARFDebugFrame)
1750       .Case(".debug_info", eSectionTypeDWARFDebugInfo)
1751       .Case(".debug_info.dwo", eSectionTypeDWARFDebugInfoDwo)
1752       .Cases(".debug_line", ".debug_line.dwo", eSectionTypeDWARFDebugLine)
1753       .Cases(".debug_line_str", ".debug_line_str.dwo",
1754              eSectionTypeDWARFDebugLineStr)
1755       .Cases(".debug_loc", ".debug_loc.dwo", eSectionTypeDWARFDebugLoc)
1756       .Cases(".debug_loclists", ".debug_loclists.dwo",
1757              eSectionTypeDWARFDebugLocLists)
1758       .Case(".debug_macinfo", eSectionTypeDWARFDebugMacInfo)
1759       .Cases(".debug_macro", ".debug_macro.dwo", eSectionTypeDWARFDebugMacro)
1760       .Case(".debug_names", eSectionTypeDWARFDebugNames)
1761       .Case(".debug_pubnames", eSectionTypeDWARFDebugPubNames)
1762       .Case(".debug_pubtypes", eSectionTypeDWARFDebugPubTypes)
1763       .Case(".debug_ranges", eSectionTypeDWARFDebugRanges)
1764       .Case(".debug_rnglists", eSectionTypeDWARFDebugRngLists)
1765       .Case(".debug_str", eSectionTypeDWARFDebugStr)
1766       .Case(".debug_str.dwo", eSectionTypeDWARFDebugStrDwo)
1767       .Case(".debug_str_offsets", eSectionTypeDWARFDebugStrOffsets)
1768       .Case(".debug_str_offsets.dwo", eSectionTypeDWARFDebugStrOffsetsDwo)
1769       .Case(".debug_types", eSectionTypeDWARFDebugTypes)
1770       .Case(".eh_frame", eSectionTypeEHFrame)
1771       .Case(".gnu_debugaltlink", eSectionTypeDWARFGNUDebugAltLink)
1772       .Case(".gosymtab", eSectionTypeGoSymtab)
1773       .Case(".text", eSectionTypeCode)
1774       .Default(eSectionTypeOther);
1775 }
1776 
1777 SectionType ObjectFileELF::GetSectionType(const ELFSectionHeaderInfo &H) const {
1778   switch (H.sh_type) {
1779   case SHT_PROGBITS:
1780     if (H.sh_flags & SHF_EXECINSTR)
1781       return eSectionTypeCode;
1782     break;
1783   case SHT_SYMTAB:
1784     return eSectionTypeELFSymbolTable;
1785   case SHT_DYNSYM:
1786     return eSectionTypeELFDynamicSymbols;
1787   case SHT_RELA:
1788   case SHT_REL:
1789     return eSectionTypeELFRelocationEntries;
1790   case SHT_DYNAMIC:
1791     return eSectionTypeELFDynamicLinkInfo;
1792   }
1793   SectionType Type = GetSectionTypeFromName(H.section_name.GetStringRef());
1794   if (Type == eSectionTypeOther) {
1795     // the kalimba toolchain assumes that ELF section names are free-form.
1796     // It does support linkscripts which (can) give rise to various
1797     // arbitrarily named sections being "Code" or "Data".
1798     Type = kalimbaSectionType(m_header, H);
1799   }
1800   return Type;
1801 }
1802 
1803 static uint32_t GetTargetByteSize(SectionType Type, const ArchSpec &arch) {
1804   switch (Type) {
1805   case eSectionTypeData:
1806   case eSectionTypeZeroFill:
1807     return arch.GetDataByteSize();
1808   case eSectionTypeCode:
1809     return arch.GetCodeByteSize();
1810   default:
1811     return 1;
1812   }
1813 }
1814 
1815 static Permissions GetPermissions(const ELFSectionHeader &H) {
1816   Permissions Perm = Permissions(0);
1817   if (H.sh_flags & SHF_ALLOC)
1818     Perm |= ePermissionsReadable;
1819   if (H.sh_flags & SHF_WRITE)
1820     Perm |= ePermissionsWritable;
1821   if (H.sh_flags & SHF_EXECINSTR)
1822     Perm |= ePermissionsExecutable;
1823   return Perm;
1824 }
1825 
1826 namespace {
1827 // (Unlinked) ELF object files usually have 0 for every section address, meaning
1828 // we need to compute synthetic addresses in order for "file addresses" from
1829 // different sections to not overlap. This class handles that logic.
1830 class VMAddressProvider {
1831   bool m_synthesizing;
1832   addr_t m_next;
1833 
1834 public:
1835   VMAddressProvider(ObjectFile::Type Type)
1836       : m_synthesizing(Type == ObjectFile::Type::eTypeObjectFile), m_next(0) {}
1837 
1838   std::pair<addr_t, addr_t> GetAddressAndSize(const ELFSectionHeader &H) {
1839     addr_t address = H.sh_addr;
1840     addr_t size = H.sh_flags & SHF_ALLOC ? H.sh_size : 0;
1841     if (m_synthesizing && (H.sh_flags & SHF_ALLOC)) {
1842       m_next = llvm::alignTo(m_next, std::max<addr_t>(H.sh_addralign, 1));
1843       address = m_next;
1844       m_next += size;
1845     }
1846     return {address, size};
1847   }
1848 };
1849 }
1850 
1851 void ObjectFileELF::CreateSections(SectionList &unified_section_list) {
1852   if (!m_sections_ap.get() && ParseSectionHeaders()) {
1853     m_sections_ap.reset(new SectionList());
1854 
1855     VMAddressProvider address_provider(CalculateType());
1856     for (SectionHeaderCollIter I = std::next(m_section_headers.begin());
1857          I != m_section_headers.end(); ++I) {
1858       const ELFSectionHeaderInfo &header = *I;
1859 
1860       ConstString &name = I->section_name;
1861       const uint64_t file_size =
1862           header.sh_type == SHT_NOBITS ? 0 : header.sh_size;
1863 
1864       addr_t vm_addr, vm_size;
1865       std::tie(vm_addr, vm_size) = address_provider.GetAddressAndSize(header);
1866 
1867       SectionType sect_type = GetSectionType(header);
1868 
1869       const uint32_t target_bytes_size =
1870           GetTargetByteSize(sect_type, m_arch_spec);
1871 
1872       elf::elf_xword log2align =
1873           (header.sh_addralign == 0) ? 0 : llvm::Log2_64(header.sh_addralign);
1874 
1875       SectionSP section_sp(new Section(
1876           GetModule(), // Module to which this section belongs.
1877           this, // ObjectFile to which this section belongs and should read
1878                 // section data from.
1879           SectionIndex(I),     // Section ID.
1880           name,                // Section name.
1881           sect_type,           // Section type.
1882           vm_addr,             // VM address.
1883           vm_size,             // VM size in bytes of this section.
1884           header.sh_offset,    // Offset of this section in the file.
1885           file_size,           // Size of the section as found in the file.
1886           log2align,           // Alignment of the section
1887           header.sh_flags,     // Flags for this section.
1888           target_bytes_size)); // Number of host bytes per target byte
1889 
1890       section_sp->SetPermissions(GetPermissions(header));
1891       section_sp->SetIsThreadSpecific(header.sh_flags & SHF_TLS);
1892       m_sections_ap->AddSection(section_sp);
1893     }
1894   }
1895 
1896   // For eTypeDebugInfo files, the Symbol Vendor will take care of updating the
1897   // unified section list.
1898   if (GetType() != eTypeDebugInfo)
1899     unified_section_list = *m_sections_ap;
1900 }
1901 
1902 // Find the arm/aarch64 mapping symbol character in the given symbol name.
1903 // Mapping symbols have the form of "$<char>[.<any>]*". Additionally we
1904 // recognize cases when the mapping symbol prefixed by an arbitrary string
1905 // because if a symbol prefix added to each symbol in the object file with
1906 // objcopy then the mapping symbols are also prefixed.
1907 static char FindArmAarch64MappingSymbol(const char *symbol_name) {
1908   if (!symbol_name)
1909     return '\0';
1910 
1911   const char *dollar_pos = ::strchr(symbol_name, '$');
1912   if (!dollar_pos || dollar_pos[1] == '\0')
1913     return '\0';
1914 
1915   if (dollar_pos[2] == '\0' || dollar_pos[2] == '.')
1916     return dollar_pos[1];
1917   return '\0';
1918 }
1919 
1920 #define STO_MIPS_ISA (3 << 6)
1921 #define STO_MICROMIPS (2 << 6)
1922 #define IS_MICROMIPS(ST_OTHER) (((ST_OTHER)&STO_MIPS_ISA) == STO_MICROMIPS)
1923 
1924 // private
1925 unsigned ObjectFileELF::ParseSymbols(Symtab *symtab, user_id_t start_id,
1926                                      SectionList *section_list,
1927                                      const size_t num_symbols,
1928                                      const DataExtractor &symtab_data,
1929                                      const DataExtractor &strtab_data) {
1930   ELFSymbol symbol;
1931   lldb::offset_t offset = 0;
1932 
1933   static ConstString text_section_name(".text");
1934   static ConstString init_section_name(".init");
1935   static ConstString fini_section_name(".fini");
1936   static ConstString ctors_section_name(".ctors");
1937   static ConstString dtors_section_name(".dtors");
1938 
1939   static ConstString data_section_name(".data");
1940   static ConstString rodata_section_name(".rodata");
1941   static ConstString rodata1_section_name(".rodata1");
1942   static ConstString data2_section_name(".data1");
1943   static ConstString bss_section_name(".bss");
1944   static ConstString opd_section_name(".opd"); // For ppc64
1945 
1946   // On Android the oatdata and the oatexec symbols in the oat and odex files
1947   // covers the full .text section what causes issues with displaying unusable
1948   // symbol name to the user and very slow unwinding speed because the
1949   // instruction emulation based unwind plans try to emulate all instructions
1950   // in these symbols. Don't add these symbols to the symbol list as they have
1951   // no use for the debugger and they are causing a lot of trouble. Filtering
1952   // can't be restricted to Android because this special object file don't
1953   // contain the note section specifying the environment to Android but the
1954   // custom extension and file name makes it highly unlikely that this will
1955   // collide with anything else.
1956   ConstString file_extension = m_file.GetFileNameExtension();
1957   bool skip_oatdata_oatexec = file_extension == ConstString(".oat") ||
1958                               file_extension == ConstString(".odex");
1959 
1960   ArchSpec arch;
1961   GetArchitecture(arch);
1962   ModuleSP module_sp(GetModule());
1963   SectionList *module_section_list =
1964       module_sp ? module_sp->GetSectionList() : nullptr;
1965 
1966   // Local cache to avoid doing a FindSectionByName for each symbol. The "const
1967   // char*" key must came from a ConstString object so they can be compared by
1968   // pointer
1969   std::unordered_map<const char *, lldb::SectionSP> section_name_to_section;
1970 
1971   unsigned i;
1972   for (i = 0; i < num_symbols; ++i) {
1973     if (!symbol.Parse(symtab_data, &offset))
1974       break;
1975 
1976     const char *symbol_name = strtab_data.PeekCStr(symbol.st_name);
1977     if (!symbol_name)
1978       symbol_name = "";
1979 
1980     // No need to add non-section symbols that have no names
1981     if (symbol.getType() != STT_SECTION &&
1982         (symbol_name == nullptr || symbol_name[0] == '\0'))
1983       continue;
1984 
1985     // Skipping oatdata and oatexec sections if it is requested. See details
1986     // above the definition of skip_oatdata_oatexec for the reasons.
1987     if (skip_oatdata_oatexec && (::strcmp(symbol_name, "oatdata") == 0 ||
1988                                  ::strcmp(symbol_name, "oatexec") == 0))
1989       continue;
1990 
1991     SectionSP symbol_section_sp;
1992     SymbolType symbol_type = eSymbolTypeInvalid;
1993     Elf64_Half shndx = symbol.st_shndx;
1994 
1995     switch (shndx) {
1996     case SHN_ABS:
1997       symbol_type = eSymbolTypeAbsolute;
1998       break;
1999     case SHN_UNDEF:
2000       symbol_type = eSymbolTypeUndefined;
2001       break;
2002     default:
2003       symbol_section_sp = section_list->FindSectionByID(shndx);
2004       break;
2005     }
2006 
2007     // If a symbol is undefined do not process it further even if it has a STT
2008     // type
2009     if (symbol_type != eSymbolTypeUndefined) {
2010       switch (symbol.getType()) {
2011       default:
2012       case STT_NOTYPE:
2013         // The symbol's type is not specified.
2014         break;
2015 
2016       case STT_OBJECT:
2017         // The symbol is associated with a data object, such as a variable, an
2018         // array, etc.
2019         symbol_type = eSymbolTypeData;
2020         break;
2021 
2022       case STT_FUNC:
2023         // The symbol is associated with a function or other executable code.
2024         symbol_type = eSymbolTypeCode;
2025         break;
2026 
2027       case STT_SECTION:
2028         // The symbol is associated with a section. Symbol table entries of
2029         // this type exist primarily for relocation and normally have STB_LOCAL
2030         // binding.
2031         break;
2032 
2033       case STT_FILE:
2034         // Conventionally, the symbol's name gives the name of the source file
2035         // associated with the object file. A file symbol has STB_LOCAL
2036         // binding, its section index is SHN_ABS, and it precedes the other
2037         // STB_LOCAL symbols for the file, if it is present.
2038         symbol_type = eSymbolTypeSourceFile;
2039         break;
2040 
2041       case STT_GNU_IFUNC:
2042         // The symbol is associated with an indirect function. The actual
2043         // function will be resolved if it is referenced.
2044         symbol_type = eSymbolTypeResolver;
2045         break;
2046       }
2047     }
2048 
2049     if (symbol_type == eSymbolTypeInvalid && symbol.getType() != STT_SECTION) {
2050       if (symbol_section_sp) {
2051         const ConstString &sect_name = symbol_section_sp->GetName();
2052         if (sect_name == text_section_name || sect_name == init_section_name ||
2053             sect_name == fini_section_name || sect_name == ctors_section_name ||
2054             sect_name == dtors_section_name) {
2055           symbol_type = eSymbolTypeCode;
2056         } else if (sect_name == data_section_name ||
2057                    sect_name == data2_section_name ||
2058                    sect_name == rodata_section_name ||
2059                    sect_name == rodata1_section_name ||
2060                    sect_name == bss_section_name) {
2061           symbol_type = eSymbolTypeData;
2062         }
2063       }
2064     }
2065 
2066     int64_t symbol_value_offset = 0;
2067     uint32_t additional_flags = 0;
2068 
2069     if (arch.IsValid()) {
2070       if (arch.GetMachine() == llvm::Triple::arm) {
2071         if (symbol.getBinding() == STB_LOCAL) {
2072           char mapping_symbol = FindArmAarch64MappingSymbol(symbol_name);
2073           if (symbol_type == eSymbolTypeCode) {
2074             switch (mapping_symbol) {
2075             case 'a':
2076               // $a[.<any>]* - marks an ARM instruction sequence
2077               m_address_class_map[symbol.st_value] = AddressClass::eCode;
2078               break;
2079             case 'b':
2080             case 't':
2081               // $b[.<any>]* - marks a THUMB BL instruction sequence
2082               // $t[.<any>]* - marks a THUMB instruction sequence
2083               m_address_class_map[symbol.st_value] =
2084                   AddressClass::eCodeAlternateISA;
2085               break;
2086             case 'd':
2087               // $d[.<any>]* - marks a data item sequence (e.g. lit pool)
2088               m_address_class_map[symbol.st_value] = AddressClass::eData;
2089               break;
2090             }
2091           }
2092           if (mapping_symbol)
2093             continue;
2094         }
2095       } else if (arch.GetMachine() == llvm::Triple::aarch64) {
2096         if (symbol.getBinding() == STB_LOCAL) {
2097           char mapping_symbol = FindArmAarch64MappingSymbol(symbol_name);
2098           if (symbol_type == eSymbolTypeCode) {
2099             switch (mapping_symbol) {
2100             case 'x':
2101               // $x[.<any>]* - marks an A64 instruction sequence
2102               m_address_class_map[symbol.st_value] = AddressClass::eCode;
2103               break;
2104             case 'd':
2105               // $d[.<any>]* - marks a data item sequence (e.g. lit pool)
2106               m_address_class_map[symbol.st_value] = AddressClass::eData;
2107               break;
2108             }
2109           }
2110           if (mapping_symbol)
2111             continue;
2112         }
2113       }
2114 
2115       if (arch.GetMachine() == llvm::Triple::arm) {
2116         if (symbol_type == eSymbolTypeCode) {
2117           if (symbol.st_value & 1) {
2118             // Subtracting 1 from the address effectively unsets the low order
2119             // bit, which results in the address actually pointing to the
2120             // beginning of the symbol. This delta will be used below in
2121             // conjunction with symbol.st_value to produce the final
2122             // symbol_value that we store in the symtab.
2123             symbol_value_offset = -1;
2124             m_address_class_map[symbol.st_value ^ 1] =
2125                 AddressClass::eCodeAlternateISA;
2126           } else {
2127             // This address is ARM
2128             m_address_class_map[symbol.st_value] = AddressClass::eCode;
2129           }
2130         }
2131       }
2132 
2133       /*
2134        * MIPS:
2135        * The bit #0 of an address is used for ISA mode (1 for microMIPS, 0 for
2136        * MIPS).
2137        * This allows processor to switch between microMIPS and MIPS without any
2138        * need
2139        * for special mode-control register. However, apart from .debug_line,
2140        * none of
2141        * the ELF/DWARF sections set the ISA bit (for symbol or section). Use
2142        * st_other
2143        * flag to check whether the symbol is microMIPS and then set the address
2144        * class
2145        * accordingly.
2146       */
2147       const llvm::Triple::ArchType llvm_arch = arch.GetMachine();
2148       if (llvm_arch == llvm::Triple::mips ||
2149           llvm_arch == llvm::Triple::mipsel ||
2150           llvm_arch == llvm::Triple::mips64 ||
2151           llvm_arch == llvm::Triple::mips64el) {
2152         if (IS_MICROMIPS(symbol.st_other))
2153           m_address_class_map[symbol.st_value] = AddressClass::eCodeAlternateISA;
2154         else if ((symbol.st_value & 1) && (symbol_type == eSymbolTypeCode)) {
2155           symbol.st_value = symbol.st_value & (~1ull);
2156           m_address_class_map[symbol.st_value] = AddressClass::eCodeAlternateISA;
2157         } else {
2158           if (symbol_type == eSymbolTypeCode)
2159             m_address_class_map[symbol.st_value] = AddressClass::eCode;
2160           else if (symbol_type == eSymbolTypeData)
2161             m_address_class_map[symbol.st_value] = AddressClass::eData;
2162           else
2163             m_address_class_map[symbol.st_value] = AddressClass::eUnknown;
2164         }
2165       }
2166     }
2167 
2168     // symbol_value_offset may contain 0 for ARM symbols or -1 for THUMB
2169     // symbols. See above for more details.
2170     uint64_t symbol_value = symbol.st_value + symbol_value_offset;
2171 
2172     if (symbol_section_sp == nullptr && shndx == SHN_ABS &&
2173         symbol.st_size != 0) {
2174       // We don't have a section for a symbol with non-zero size. Create a new
2175       // section for it so the address range covered by the symbol is also
2176       // covered by the module (represented through the section list). It is
2177       // needed so module lookup for the addresses covered by this symbol will
2178       // be successfull. This case happens for absolute symbols.
2179       ConstString fake_section_name(std::string(".absolute.") + symbol_name);
2180       symbol_section_sp =
2181           std::make_shared<Section>(module_sp, this, SHN_ABS, fake_section_name,
2182                                     eSectionTypeAbsoluteAddress, symbol_value,
2183                                     symbol.st_size, 0, 0, 0, SHF_ALLOC);
2184 
2185       module_section_list->AddSection(symbol_section_sp);
2186       section_list->AddSection(symbol_section_sp);
2187     }
2188 
2189     if (symbol_section_sp &&
2190         CalculateType() != ObjectFile::Type::eTypeObjectFile)
2191       symbol_value -= symbol_section_sp->GetFileAddress();
2192 
2193     if (symbol_section_sp && module_section_list &&
2194         module_section_list != section_list) {
2195       const ConstString &sect_name = symbol_section_sp->GetName();
2196       auto section_it = section_name_to_section.find(sect_name.GetCString());
2197       if (section_it == section_name_to_section.end())
2198         section_it =
2199             section_name_to_section
2200                 .emplace(sect_name.GetCString(),
2201                          module_section_list->FindSectionByName(sect_name))
2202                 .first;
2203       if (section_it->second)
2204         symbol_section_sp = section_it->second;
2205     }
2206 
2207     bool is_global = symbol.getBinding() == STB_GLOBAL;
2208     uint32_t flags = symbol.st_other << 8 | symbol.st_info | additional_flags;
2209     bool is_mangled = (symbol_name[0] == '_' && symbol_name[1] == 'Z');
2210 
2211     llvm::StringRef symbol_ref(symbol_name);
2212 
2213     // Symbol names may contain @VERSION suffixes. Find those and strip them
2214     // temporarily.
2215     size_t version_pos = symbol_ref.find('@');
2216     bool has_suffix = version_pos != llvm::StringRef::npos;
2217     llvm::StringRef symbol_bare = symbol_ref.substr(0, version_pos);
2218     Mangled mangled(ConstString(symbol_bare), is_mangled);
2219 
2220     // Now append the suffix back to mangled and unmangled names. Only do it if
2221     // the demangling was successful (string is not empty).
2222     if (has_suffix) {
2223       llvm::StringRef suffix = symbol_ref.substr(version_pos);
2224 
2225       llvm::StringRef mangled_name = mangled.GetMangledName().GetStringRef();
2226       if (!mangled_name.empty())
2227         mangled.SetMangledName(ConstString((mangled_name + suffix).str()));
2228 
2229       ConstString demangled =
2230           mangled.GetDemangledName(lldb::eLanguageTypeUnknown);
2231       llvm::StringRef demangled_name = demangled.GetStringRef();
2232       if (!demangled_name.empty())
2233         mangled.SetDemangledName(ConstString((demangled_name + suffix).str()));
2234     }
2235 
2236     // In ELF all symbol should have a valid size but it is not true for some
2237     // function symbols coming from hand written assembly. As none of the
2238     // function symbol should have 0 size we try to calculate the size for
2239     // these symbols in the symtab with saying that their original size is not
2240     // valid.
2241     bool symbol_size_valid =
2242         symbol.st_size != 0 || symbol.getType() != STT_FUNC;
2243 
2244     Symbol dc_symbol(
2245         i + start_id, // ID is the original symbol table index.
2246         mangled,
2247         symbol_type,                    // Type of this symbol
2248         is_global,                      // Is this globally visible?
2249         false,                          // Is this symbol debug info?
2250         false,                          // Is this symbol a trampoline?
2251         false,                          // Is this symbol artificial?
2252         AddressRange(symbol_section_sp, // Section in which this symbol is
2253                                         // defined or null.
2254                      symbol_value,      // Offset in section or symbol value.
2255                      symbol.st_size),   // Size in bytes of this symbol.
2256         symbol_size_valid,              // Symbol size is valid
2257         has_suffix,                     // Contains linker annotations?
2258         flags);                         // Symbol flags.
2259     symtab->AddSymbol(dc_symbol);
2260   }
2261   return i;
2262 }
2263 
2264 unsigned ObjectFileELF::ParseSymbolTable(Symtab *symbol_table,
2265                                          user_id_t start_id,
2266                                          lldb_private::Section *symtab) {
2267   if (symtab->GetObjectFile() != this) {
2268     // If the symbol table section is owned by a different object file, have it
2269     // do the parsing.
2270     ObjectFileELF *obj_file_elf =
2271         static_cast<ObjectFileELF *>(symtab->GetObjectFile());
2272     return obj_file_elf->ParseSymbolTable(symbol_table, start_id, symtab);
2273   }
2274 
2275   // Get section list for this object file.
2276   SectionList *section_list = m_sections_ap.get();
2277   if (!section_list)
2278     return 0;
2279 
2280   user_id_t symtab_id = symtab->GetID();
2281   const ELFSectionHeaderInfo *symtab_hdr = GetSectionHeaderByIndex(symtab_id);
2282   assert(symtab_hdr->sh_type == SHT_SYMTAB ||
2283          symtab_hdr->sh_type == SHT_DYNSYM);
2284 
2285   // sh_link: section header index of associated string table.
2286   user_id_t strtab_id = symtab_hdr->sh_link;
2287   Section *strtab = section_list->FindSectionByID(strtab_id).get();
2288 
2289   if (symtab && strtab) {
2290     assert(symtab->GetObjectFile() == this);
2291     assert(strtab->GetObjectFile() == this);
2292 
2293     DataExtractor symtab_data;
2294     DataExtractor strtab_data;
2295     if (ReadSectionData(symtab, symtab_data) &&
2296         ReadSectionData(strtab, strtab_data)) {
2297       size_t num_symbols = symtab_data.GetByteSize() / symtab_hdr->sh_entsize;
2298 
2299       return ParseSymbols(symbol_table, start_id, section_list, num_symbols,
2300                           symtab_data, strtab_data);
2301     }
2302   }
2303 
2304   return 0;
2305 }
2306 
2307 size_t ObjectFileELF::ParseDynamicSymbols() {
2308   if (m_dynamic_symbols.size())
2309     return m_dynamic_symbols.size();
2310 
2311   SectionList *section_list = GetSectionList();
2312   if (!section_list)
2313     return 0;
2314 
2315   // Find the SHT_DYNAMIC section.
2316   Section *dynsym =
2317       section_list->FindSectionByType(eSectionTypeELFDynamicLinkInfo, true)
2318           .get();
2319   if (!dynsym)
2320     return 0;
2321   assert(dynsym->GetObjectFile() == this);
2322 
2323   ELFDynamic symbol;
2324   DataExtractor dynsym_data;
2325   if (ReadSectionData(dynsym, dynsym_data)) {
2326     const lldb::offset_t section_size = dynsym_data.GetByteSize();
2327     lldb::offset_t cursor = 0;
2328 
2329     while (cursor < section_size) {
2330       if (!symbol.Parse(dynsym_data, &cursor))
2331         break;
2332 
2333       m_dynamic_symbols.push_back(symbol);
2334     }
2335   }
2336 
2337   return m_dynamic_symbols.size();
2338 }
2339 
2340 const ELFDynamic *ObjectFileELF::FindDynamicSymbol(unsigned tag) {
2341   if (!ParseDynamicSymbols())
2342     return NULL;
2343 
2344   DynamicSymbolCollIter I = m_dynamic_symbols.begin();
2345   DynamicSymbolCollIter E = m_dynamic_symbols.end();
2346   for (; I != E; ++I) {
2347     ELFDynamic *symbol = &*I;
2348 
2349     if (symbol->d_tag == tag)
2350       return symbol;
2351   }
2352 
2353   return NULL;
2354 }
2355 
2356 unsigned ObjectFileELF::PLTRelocationType() {
2357   // DT_PLTREL
2358   //  This member specifies the type of relocation entry to which the
2359   //  procedure linkage table refers. The d_val member holds DT_REL or
2360   //  DT_RELA, as appropriate. All relocations in a procedure linkage table
2361   //  must use the same relocation.
2362   const ELFDynamic *symbol = FindDynamicSymbol(DT_PLTREL);
2363 
2364   if (symbol)
2365     return symbol->d_val;
2366 
2367   return 0;
2368 }
2369 
2370 // Returns the size of the normal plt entries and the offset of the first
2371 // normal plt entry. The 0th entry in the plt table is usually a resolution
2372 // entry which have different size in some architectures then the rest of the
2373 // plt entries.
2374 static std::pair<uint64_t, uint64_t>
2375 GetPltEntrySizeAndOffset(const ELFSectionHeader *rel_hdr,
2376                          const ELFSectionHeader *plt_hdr) {
2377   const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2378 
2379   // Clang 3.3 sets entsize to 4 for 32-bit binaries, but the plt entries are
2380   // 16 bytes. So round the entsize up by the alignment if addralign is set.
2381   elf_xword plt_entsize =
2382       plt_hdr->sh_addralign
2383           ? llvm::alignTo(plt_hdr->sh_entsize, plt_hdr->sh_addralign)
2384           : plt_hdr->sh_entsize;
2385 
2386   // Some linkers e.g ld for arm, fill plt_hdr->sh_entsize field incorrectly.
2387   // PLT entries relocation code in general requires multiple instruction and
2388   // should be greater than 4 bytes in most cases. Try to guess correct size
2389   // just in case.
2390   if (plt_entsize <= 4) {
2391     // The linker haven't set the plt_hdr->sh_entsize field. Try to guess the
2392     // size of the plt entries based on the number of entries and the size of
2393     // the plt section with the assumption that the size of the 0th entry is at
2394     // least as big as the size of the normal entries and it isn't much bigger
2395     // then that.
2396     if (plt_hdr->sh_addralign)
2397       plt_entsize = plt_hdr->sh_size / plt_hdr->sh_addralign /
2398                     (num_relocations + 1) * plt_hdr->sh_addralign;
2399     else
2400       plt_entsize = plt_hdr->sh_size / (num_relocations + 1);
2401   }
2402 
2403   elf_xword plt_offset = plt_hdr->sh_size - num_relocations * plt_entsize;
2404 
2405   return std::make_pair(plt_entsize, plt_offset);
2406 }
2407 
2408 static unsigned ParsePLTRelocations(
2409     Symtab *symbol_table, user_id_t start_id, unsigned rel_type,
2410     const ELFHeader *hdr, const ELFSectionHeader *rel_hdr,
2411     const ELFSectionHeader *plt_hdr, const ELFSectionHeader *sym_hdr,
2412     const lldb::SectionSP &plt_section_sp, DataExtractor &rel_data,
2413     DataExtractor &symtab_data, DataExtractor &strtab_data) {
2414   ELFRelocation rel(rel_type);
2415   ELFSymbol symbol;
2416   lldb::offset_t offset = 0;
2417 
2418   uint64_t plt_offset, plt_entsize;
2419   std::tie(plt_entsize, plt_offset) =
2420       GetPltEntrySizeAndOffset(rel_hdr, plt_hdr);
2421   const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2422 
2423   typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel);
2424   reloc_info_fn reloc_type;
2425   reloc_info_fn reloc_symbol;
2426 
2427   if (hdr->Is32Bit()) {
2428     reloc_type = ELFRelocation::RelocType32;
2429     reloc_symbol = ELFRelocation::RelocSymbol32;
2430   } else {
2431     reloc_type = ELFRelocation::RelocType64;
2432     reloc_symbol = ELFRelocation::RelocSymbol64;
2433   }
2434 
2435   unsigned slot_type = hdr->GetRelocationJumpSlotType();
2436   unsigned i;
2437   for (i = 0; i < num_relocations; ++i) {
2438     if (!rel.Parse(rel_data, &offset))
2439       break;
2440 
2441     if (reloc_type(rel) != slot_type)
2442       continue;
2443 
2444     lldb::offset_t symbol_offset = reloc_symbol(rel) * sym_hdr->sh_entsize;
2445     if (!symbol.Parse(symtab_data, &symbol_offset))
2446       break;
2447 
2448     const char *symbol_name = strtab_data.PeekCStr(symbol.st_name);
2449     bool is_mangled =
2450         symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false;
2451     uint64_t plt_index = plt_offset + i * plt_entsize;
2452 
2453     Symbol jump_symbol(
2454         i + start_id,          // Symbol table index
2455         symbol_name,           // symbol name.
2456         is_mangled,            // is the symbol name mangled?
2457         eSymbolTypeTrampoline, // Type of this symbol
2458         false,                 // Is this globally visible?
2459         false,                 // Is this symbol debug info?
2460         true,                  // Is this symbol a trampoline?
2461         true,                  // Is this symbol artificial?
2462         plt_section_sp, // Section in which this symbol is defined or null.
2463         plt_index,      // Offset in section or symbol value.
2464         plt_entsize,    // Size in bytes of this symbol.
2465         true,           // Size is valid
2466         false,          // Contains linker annotations?
2467         0);             // Symbol flags.
2468 
2469     symbol_table->AddSymbol(jump_symbol);
2470   }
2471 
2472   return i;
2473 }
2474 
2475 unsigned
2476 ObjectFileELF::ParseTrampolineSymbols(Symtab *symbol_table, user_id_t start_id,
2477                                       const ELFSectionHeaderInfo *rel_hdr,
2478                                       user_id_t rel_id) {
2479   assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL);
2480 
2481   // The link field points to the associated symbol table.
2482   user_id_t symtab_id = rel_hdr->sh_link;
2483 
2484   // If the link field doesn't point to the appropriate symbol name table then
2485   // try to find it by name as some compiler don't fill in the link fields.
2486   if (!symtab_id)
2487     symtab_id = GetSectionIndexByName(".dynsym");
2488 
2489   // Get PLT section.  We cannot use rel_hdr->sh_info, since current linkers
2490   // point that to the .got.plt or .got section instead of .plt.
2491   user_id_t plt_id = GetSectionIndexByName(".plt");
2492 
2493   if (!symtab_id || !plt_id)
2494     return 0;
2495 
2496   const ELFSectionHeaderInfo *plt_hdr = GetSectionHeaderByIndex(plt_id);
2497   if (!plt_hdr)
2498     return 0;
2499 
2500   const ELFSectionHeaderInfo *sym_hdr = GetSectionHeaderByIndex(symtab_id);
2501   if (!sym_hdr)
2502     return 0;
2503 
2504   SectionList *section_list = m_sections_ap.get();
2505   if (!section_list)
2506     return 0;
2507 
2508   Section *rel_section = section_list->FindSectionByID(rel_id).get();
2509   if (!rel_section)
2510     return 0;
2511 
2512   SectionSP plt_section_sp(section_list->FindSectionByID(plt_id));
2513   if (!plt_section_sp)
2514     return 0;
2515 
2516   Section *symtab = section_list->FindSectionByID(symtab_id).get();
2517   if (!symtab)
2518     return 0;
2519 
2520   // sh_link points to associated string table.
2521   Section *strtab = section_list->FindSectionByID(sym_hdr->sh_link).get();
2522   if (!strtab)
2523     return 0;
2524 
2525   DataExtractor rel_data;
2526   if (!ReadSectionData(rel_section, rel_data))
2527     return 0;
2528 
2529   DataExtractor symtab_data;
2530   if (!ReadSectionData(symtab, symtab_data))
2531     return 0;
2532 
2533   DataExtractor strtab_data;
2534   if (!ReadSectionData(strtab, strtab_data))
2535     return 0;
2536 
2537   unsigned rel_type = PLTRelocationType();
2538   if (!rel_type)
2539     return 0;
2540 
2541   return ParsePLTRelocations(symbol_table, start_id, rel_type, &m_header,
2542                              rel_hdr, plt_hdr, sym_hdr, plt_section_sp,
2543                              rel_data, symtab_data, strtab_data);
2544 }
2545 
2546 unsigned ObjectFileELF::ApplyRelocations(
2547     Symtab *symtab, const ELFHeader *hdr, const ELFSectionHeader *rel_hdr,
2548     const ELFSectionHeader *symtab_hdr, const ELFSectionHeader *debug_hdr,
2549     DataExtractor &rel_data, DataExtractor &symtab_data,
2550     DataExtractor &debug_data, Section *rel_section) {
2551   ELFRelocation rel(rel_hdr->sh_type);
2552   lldb::addr_t offset = 0;
2553   const unsigned num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2554   typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel);
2555   reloc_info_fn reloc_type;
2556   reloc_info_fn reloc_symbol;
2557 
2558   if (hdr->Is32Bit()) {
2559     reloc_type = ELFRelocation::RelocType32;
2560     reloc_symbol = ELFRelocation::RelocSymbol32;
2561   } else {
2562     reloc_type = ELFRelocation::RelocType64;
2563     reloc_symbol = ELFRelocation::RelocSymbol64;
2564   }
2565 
2566   for (unsigned i = 0; i < num_relocations; ++i) {
2567     if (!rel.Parse(rel_data, &offset))
2568       break;
2569 
2570     Symbol *symbol = NULL;
2571 
2572     if (hdr->Is32Bit()) {
2573       switch (reloc_type(rel)) {
2574       case R_386_32:
2575       case R_386_PC32:
2576       default:
2577         // FIXME: This asserts with this input:
2578         //
2579         // foo.cpp
2580         // int main(int argc, char **argv) { return 0; }
2581         //
2582         // clang++.exe --target=i686-unknown-linux-gnu -g -c foo.cpp -o foo.o
2583         //
2584         // and running this on the foo.o module.
2585         assert(false && "unexpected relocation type");
2586       }
2587     } else {
2588       switch (reloc_type(rel)) {
2589       case R_AARCH64_ABS64:
2590       case R_X86_64_64: {
2591         symbol = symtab->FindSymbolByID(reloc_symbol(rel));
2592         if (symbol) {
2593           addr_t value = symbol->GetAddressRef().GetFileAddress();
2594           DataBufferSP &data_buffer_sp = debug_data.GetSharedDataBuffer();
2595           uint64_t *dst = reinterpret_cast<uint64_t *>(
2596               data_buffer_sp->GetBytes() + rel_section->GetFileOffset() +
2597               ELFRelocation::RelocOffset64(rel));
2598           uint64_t val_offset = value + ELFRelocation::RelocAddend64(rel);
2599           memcpy(dst, &val_offset, sizeof(uint64_t));
2600         }
2601         break;
2602       }
2603       case R_X86_64_32:
2604       case R_X86_64_32S:
2605       case R_AARCH64_ABS32: {
2606         symbol = symtab->FindSymbolByID(reloc_symbol(rel));
2607         if (symbol) {
2608           addr_t value = symbol->GetAddressRef().GetFileAddress();
2609           value += ELFRelocation::RelocAddend32(rel);
2610           if ((reloc_type(rel) == R_X86_64_32 && (value > UINT32_MAX)) ||
2611               (reloc_type(rel) == R_X86_64_32S &&
2612                ((int64_t)value > INT32_MAX && (int64_t)value < INT32_MIN)) ||
2613               (reloc_type(rel) == R_AARCH64_ABS32 &&
2614                ((int64_t)value > INT32_MAX && (int64_t)value < INT32_MIN))) {
2615             Log *log =
2616                 lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES);
2617             log->Printf("Failed to apply debug info relocations");
2618             break;
2619           }
2620           uint32_t truncated_addr = (value & 0xFFFFFFFF);
2621           DataBufferSP &data_buffer_sp = debug_data.GetSharedDataBuffer();
2622           uint32_t *dst = reinterpret_cast<uint32_t *>(
2623               data_buffer_sp->GetBytes() + rel_section->GetFileOffset() +
2624               ELFRelocation::RelocOffset32(rel));
2625           memcpy(dst, &truncated_addr, sizeof(uint32_t));
2626         }
2627         break;
2628       }
2629       case R_X86_64_PC32:
2630       default:
2631         assert(false && "unexpected relocation type");
2632       }
2633     }
2634   }
2635 
2636   return 0;
2637 }
2638 
2639 unsigned ObjectFileELF::RelocateDebugSections(const ELFSectionHeader *rel_hdr,
2640                                               user_id_t rel_id,
2641                                               lldb_private::Symtab *thetab) {
2642   assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL);
2643 
2644   // Parse in the section list if needed.
2645   SectionList *section_list = GetSectionList();
2646   if (!section_list)
2647     return 0;
2648 
2649   user_id_t symtab_id = rel_hdr->sh_link;
2650   user_id_t debug_id = rel_hdr->sh_info;
2651 
2652   const ELFSectionHeader *symtab_hdr = GetSectionHeaderByIndex(symtab_id);
2653   if (!symtab_hdr)
2654     return 0;
2655 
2656   const ELFSectionHeader *debug_hdr = GetSectionHeaderByIndex(debug_id);
2657   if (!debug_hdr)
2658     return 0;
2659 
2660   Section *rel = section_list->FindSectionByID(rel_id).get();
2661   if (!rel)
2662     return 0;
2663 
2664   Section *symtab = section_list->FindSectionByID(symtab_id).get();
2665   if (!symtab)
2666     return 0;
2667 
2668   Section *debug = section_list->FindSectionByID(debug_id).get();
2669   if (!debug)
2670     return 0;
2671 
2672   DataExtractor rel_data;
2673   DataExtractor symtab_data;
2674   DataExtractor debug_data;
2675 
2676   if (GetData(rel->GetFileOffset(), rel->GetFileSize(), rel_data) &&
2677       GetData(symtab->GetFileOffset(), symtab->GetFileSize(), symtab_data) &&
2678       GetData(debug->GetFileOffset(), debug->GetFileSize(), debug_data)) {
2679     ApplyRelocations(thetab, &m_header, rel_hdr, symtab_hdr, debug_hdr,
2680                      rel_data, symtab_data, debug_data, debug);
2681   }
2682 
2683   return 0;
2684 }
2685 
2686 Symtab *ObjectFileELF::GetSymtab() {
2687   ModuleSP module_sp(GetModule());
2688   if (!module_sp)
2689     return NULL;
2690 
2691   // We always want to use the main object file so we (hopefully) only have one
2692   // cached copy of our symtab, dynamic sections, etc.
2693   ObjectFile *module_obj_file = module_sp->GetObjectFile();
2694   if (module_obj_file && module_obj_file != this)
2695     return module_obj_file->GetSymtab();
2696 
2697   if (m_symtab_ap.get() == NULL) {
2698     SectionList *section_list = module_sp->GetSectionList();
2699     if (!section_list)
2700       return NULL;
2701 
2702     uint64_t symbol_id = 0;
2703     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
2704 
2705     // Sharable objects and dynamic executables usually have 2 distinct symbol
2706     // tables, one named ".symtab", and the other ".dynsym". The dynsym is a
2707     // smaller version of the symtab that only contains global symbols. The
2708     // information found in the dynsym is therefore also found in the symtab,
2709     // while the reverse is not necessarily true.
2710     Section *symtab =
2711         section_list->FindSectionByType(eSectionTypeELFSymbolTable, true).get();
2712     if (!symtab) {
2713       // The symtab section is non-allocable and can be stripped, so if it
2714       // doesn't exist then use the dynsym section which should always be
2715       // there.
2716       symtab =
2717           section_list->FindSectionByType(eSectionTypeELFDynamicSymbols, true)
2718               .get();
2719     }
2720     if (symtab) {
2721       m_symtab_ap.reset(new Symtab(symtab->GetObjectFile()));
2722       symbol_id += ParseSymbolTable(m_symtab_ap.get(), symbol_id, symtab);
2723     }
2724 
2725     // DT_JMPREL
2726     //      If present, this entry's d_ptr member holds the address of
2727     //      relocation
2728     //      entries associated solely with the procedure linkage table.
2729     //      Separating
2730     //      these relocation entries lets the dynamic linker ignore them during
2731     //      process initialization, if lazy binding is enabled. If this entry is
2732     //      present, the related entries of types DT_PLTRELSZ and DT_PLTREL must
2733     //      also be present.
2734     const ELFDynamic *symbol = FindDynamicSymbol(DT_JMPREL);
2735     if (symbol) {
2736       // Synthesize trampoline symbols to help navigate the PLT.
2737       addr_t addr = symbol->d_ptr;
2738       Section *reloc_section =
2739           section_list->FindSectionContainingFileAddress(addr).get();
2740       if (reloc_section) {
2741         user_id_t reloc_id = reloc_section->GetID();
2742         const ELFSectionHeaderInfo *reloc_header =
2743             GetSectionHeaderByIndex(reloc_id);
2744         assert(reloc_header);
2745 
2746         if (m_symtab_ap == nullptr)
2747           m_symtab_ap.reset(new Symtab(reloc_section->GetObjectFile()));
2748 
2749         ParseTrampolineSymbols(m_symtab_ap.get(), symbol_id, reloc_header,
2750                                reloc_id);
2751       }
2752     }
2753 
2754     DWARFCallFrameInfo *eh_frame = GetUnwindTable().GetEHFrameInfo();
2755     if (eh_frame) {
2756       if (m_symtab_ap == nullptr)
2757         m_symtab_ap.reset(new Symtab(this));
2758       ParseUnwindSymbols(m_symtab_ap.get(), eh_frame);
2759     }
2760 
2761     // If we still don't have any symtab then create an empty instance to avoid
2762     // do the section lookup next time.
2763     if (m_symtab_ap == nullptr)
2764       m_symtab_ap.reset(new Symtab(this));
2765 
2766     m_symtab_ap->CalculateSymbolSizes();
2767   }
2768 
2769   return m_symtab_ap.get();
2770 }
2771 
2772 void ObjectFileELF::RelocateSection(lldb_private::Section *section)
2773 {
2774   static const char *debug_prefix = ".debug";
2775 
2776   // Set relocated bit so we stop getting called, regardless of whether we
2777   // actually relocate.
2778   section->SetIsRelocated(true);
2779 
2780   // We only relocate in ELF relocatable files
2781   if (CalculateType() != eTypeObjectFile)
2782     return;
2783 
2784   const char *section_name = section->GetName().GetCString();
2785   // Can't relocate that which can't be named
2786   if (section_name == nullptr)
2787     return;
2788 
2789   // We don't relocate non-debug sections at the moment
2790   if (strncmp(section_name, debug_prefix, strlen(debug_prefix)))
2791     return;
2792 
2793   // Relocation section names to look for
2794   std::string needle = std::string(".rel") + section_name;
2795   std::string needlea = std::string(".rela") + section_name;
2796 
2797   for (SectionHeaderCollIter I = m_section_headers.begin();
2798        I != m_section_headers.end(); ++I) {
2799     if (I->sh_type == SHT_RELA || I->sh_type == SHT_REL) {
2800       const char *hay_name = I->section_name.GetCString();
2801       if (hay_name == nullptr)
2802         continue;
2803       if (needle == hay_name || needlea == hay_name) {
2804         const ELFSectionHeader &reloc_header = *I;
2805         user_id_t reloc_id = SectionIndex(I);
2806         RelocateDebugSections(&reloc_header, reloc_id, GetSymtab());
2807         break;
2808       }
2809     }
2810   }
2811 }
2812 
2813 void ObjectFileELF::ParseUnwindSymbols(Symtab *symbol_table,
2814                                        DWARFCallFrameInfo *eh_frame) {
2815   SectionList *section_list = GetSectionList();
2816   if (!section_list)
2817     return;
2818 
2819   // First we save the new symbols into a separate list and add them to the
2820   // symbol table after we colleced all symbols we want to add. This is
2821   // neccessary because adding a new symbol invalidates the internal index of
2822   // the symtab what causing the next lookup to be slow because it have to
2823   // recalculate the index first.
2824   std::vector<Symbol> new_symbols;
2825 
2826   eh_frame->ForEachFDEEntries([this, symbol_table, section_list, &new_symbols](
2827       lldb::addr_t file_addr, uint32_t size, dw_offset_t) {
2828     Symbol *symbol = symbol_table->FindSymbolAtFileAddress(file_addr);
2829     if (symbol) {
2830       if (!symbol->GetByteSizeIsValid()) {
2831         symbol->SetByteSize(size);
2832         symbol->SetSizeIsSynthesized(true);
2833       }
2834     } else {
2835       SectionSP section_sp =
2836           section_list->FindSectionContainingFileAddress(file_addr);
2837       if (section_sp) {
2838         addr_t offset = file_addr - section_sp->GetFileAddress();
2839         const char *symbol_name = GetNextSyntheticSymbolName().GetCString();
2840         uint64_t symbol_id = symbol_table->GetNumSymbols();
2841         Symbol eh_symbol(
2842             symbol_id,       // Symbol table index.
2843             symbol_name,     // Symbol name.
2844             false,           // Is the symbol name mangled?
2845             eSymbolTypeCode, // Type of this symbol.
2846             true,            // Is this globally visible?
2847             false,           // Is this symbol debug info?
2848             false,           // Is this symbol a trampoline?
2849             true,            // Is this symbol artificial?
2850             section_sp,      // Section in which this symbol is defined or null.
2851             offset,          // Offset in section or symbol value.
2852             0,     // Size:          Don't specify the size as an FDE can
2853             false, // Size is valid: cover multiple symbols.
2854             false, // Contains linker annotations?
2855             0);    // Symbol flags.
2856         new_symbols.push_back(eh_symbol);
2857       }
2858     }
2859     return true;
2860   });
2861 
2862   for (const Symbol &s : new_symbols)
2863     symbol_table->AddSymbol(s);
2864 }
2865 
2866 bool ObjectFileELF::IsStripped() {
2867   // TODO: determine this for ELF
2868   return false;
2869 }
2870 
2871 //===----------------------------------------------------------------------===//
2872 // Dump
2873 //
2874 // Dump the specifics of the runtime file container (such as any headers
2875 // segments, sections, etc).
2876 //----------------------------------------------------------------------
2877 void ObjectFileELF::Dump(Stream *s) {
2878   ModuleSP module_sp(GetModule());
2879   if (!module_sp) {
2880     return;
2881   }
2882 
2883   std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
2884   s->Printf("%p: ", static_cast<void *>(this));
2885   s->Indent();
2886   s->PutCString("ObjectFileELF");
2887 
2888   ArchSpec header_arch;
2889   GetArchitecture(header_arch);
2890 
2891   *s << ", file = '" << m_file
2892      << "', arch = " << header_arch.GetArchitectureName() << "\n";
2893 
2894   DumpELFHeader(s, m_header);
2895   s->EOL();
2896   DumpELFProgramHeaders(s);
2897   s->EOL();
2898   DumpELFSectionHeaders(s);
2899   s->EOL();
2900   SectionList *section_list = GetSectionList();
2901   if (section_list)
2902     section_list->Dump(s, NULL, true, UINT32_MAX);
2903   Symtab *symtab = GetSymtab();
2904   if (symtab)
2905     symtab->Dump(s, NULL, eSortOrderNone);
2906   s->EOL();
2907   DumpDependentModules(s);
2908   s->EOL();
2909 }
2910 
2911 //----------------------------------------------------------------------
2912 // DumpELFHeader
2913 //
2914 // Dump the ELF header to the specified output stream
2915 //----------------------------------------------------------------------
2916 void ObjectFileELF::DumpELFHeader(Stream *s, const ELFHeader &header) {
2917   s->PutCString("ELF Header\n");
2918   s->Printf("e_ident[EI_MAG0   ] = 0x%2.2x\n", header.e_ident[EI_MAG0]);
2919   s->Printf("e_ident[EI_MAG1   ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG1],
2920             header.e_ident[EI_MAG1]);
2921   s->Printf("e_ident[EI_MAG2   ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG2],
2922             header.e_ident[EI_MAG2]);
2923   s->Printf("e_ident[EI_MAG3   ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG3],
2924             header.e_ident[EI_MAG3]);
2925 
2926   s->Printf("e_ident[EI_CLASS  ] = 0x%2.2x\n", header.e_ident[EI_CLASS]);
2927   s->Printf("e_ident[EI_DATA   ] = 0x%2.2x ", header.e_ident[EI_DATA]);
2928   DumpELFHeader_e_ident_EI_DATA(s, header.e_ident[EI_DATA]);
2929   s->Printf("\ne_ident[EI_VERSION] = 0x%2.2x\n", header.e_ident[EI_VERSION]);
2930   s->Printf("e_ident[EI_PAD    ] = 0x%2.2x\n", header.e_ident[EI_PAD]);
2931 
2932   s->Printf("e_type      = 0x%4.4x ", header.e_type);
2933   DumpELFHeader_e_type(s, header.e_type);
2934   s->Printf("\ne_machine   = 0x%4.4x\n", header.e_machine);
2935   s->Printf("e_version   = 0x%8.8x\n", header.e_version);
2936   s->Printf("e_entry     = 0x%8.8" PRIx64 "\n", header.e_entry);
2937   s->Printf("e_phoff     = 0x%8.8" PRIx64 "\n", header.e_phoff);
2938   s->Printf("e_shoff     = 0x%8.8" PRIx64 "\n", header.e_shoff);
2939   s->Printf("e_flags     = 0x%8.8x\n", header.e_flags);
2940   s->Printf("e_ehsize    = 0x%4.4x\n", header.e_ehsize);
2941   s->Printf("e_phentsize = 0x%4.4x\n", header.e_phentsize);
2942   s->Printf("e_phnum     = 0x%8.8x\n", header.e_phnum);
2943   s->Printf("e_shentsize = 0x%4.4x\n", header.e_shentsize);
2944   s->Printf("e_shnum     = 0x%8.8x\n", header.e_shnum);
2945   s->Printf("e_shstrndx  = 0x%8.8x\n", header.e_shstrndx);
2946 }
2947 
2948 //----------------------------------------------------------------------
2949 // DumpELFHeader_e_type
2950 //
2951 // Dump an token value for the ELF header member e_type
2952 //----------------------------------------------------------------------
2953 void ObjectFileELF::DumpELFHeader_e_type(Stream *s, elf_half e_type) {
2954   switch (e_type) {
2955   case ET_NONE:
2956     *s << "ET_NONE";
2957     break;
2958   case ET_REL:
2959     *s << "ET_REL";
2960     break;
2961   case ET_EXEC:
2962     *s << "ET_EXEC";
2963     break;
2964   case ET_DYN:
2965     *s << "ET_DYN";
2966     break;
2967   case ET_CORE:
2968     *s << "ET_CORE";
2969     break;
2970   default:
2971     break;
2972   }
2973 }
2974 
2975 //----------------------------------------------------------------------
2976 // DumpELFHeader_e_ident_EI_DATA
2977 //
2978 // Dump an token value for the ELF header member e_ident[EI_DATA]
2979 //----------------------------------------------------------------------
2980 void ObjectFileELF::DumpELFHeader_e_ident_EI_DATA(Stream *s,
2981                                                   unsigned char ei_data) {
2982   switch (ei_data) {
2983   case ELFDATANONE:
2984     *s << "ELFDATANONE";
2985     break;
2986   case ELFDATA2LSB:
2987     *s << "ELFDATA2LSB - Little Endian";
2988     break;
2989   case ELFDATA2MSB:
2990     *s << "ELFDATA2MSB - Big Endian";
2991     break;
2992   default:
2993     break;
2994   }
2995 }
2996 
2997 //----------------------------------------------------------------------
2998 // DumpELFProgramHeader
2999 //
3000 // Dump a single ELF program header to the specified output stream
3001 //----------------------------------------------------------------------
3002 void ObjectFileELF::DumpELFProgramHeader(Stream *s,
3003                                          const ELFProgramHeader &ph) {
3004   DumpELFProgramHeader_p_type(s, ph.p_type);
3005   s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, ph.p_offset,
3006             ph.p_vaddr, ph.p_paddr);
3007   s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8x (", ph.p_filesz, ph.p_memsz,
3008             ph.p_flags);
3009 
3010   DumpELFProgramHeader_p_flags(s, ph.p_flags);
3011   s->Printf(") %8.8" PRIx64, ph.p_align);
3012 }
3013 
3014 //----------------------------------------------------------------------
3015 // DumpELFProgramHeader_p_type
3016 //
3017 // Dump an token value for the ELF program header member p_type which describes
3018 // the type of the program header
3019 // ----------------------------------------------------------------------
3020 void ObjectFileELF::DumpELFProgramHeader_p_type(Stream *s, elf_word p_type) {
3021   const int kStrWidth = 15;
3022   switch (p_type) {
3023     CASE_AND_STREAM(s, PT_NULL, kStrWidth);
3024     CASE_AND_STREAM(s, PT_LOAD, kStrWidth);
3025     CASE_AND_STREAM(s, PT_DYNAMIC, kStrWidth);
3026     CASE_AND_STREAM(s, PT_INTERP, kStrWidth);
3027     CASE_AND_STREAM(s, PT_NOTE, kStrWidth);
3028     CASE_AND_STREAM(s, PT_SHLIB, kStrWidth);
3029     CASE_AND_STREAM(s, PT_PHDR, kStrWidth);
3030     CASE_AND_STREAM(s, PT_TLS, kStrWidth);
3031     CASE_AND_STREAM(s, PT_GNU_EH_FRAME, kStrWidth);
3032   default:
3033     s->Printf("0x%8.8x%*s", p_type, kStrWidth - 10, "");
3034     break;
3035   }
3036 }
3037 
3038 //----------------------------------------------------------------------
3039 // DumpELFProgramHeader_p_flags
3040 //
3041 // Dump an token value for the ELF program header member p_flags
3042 //----------------------------------------------------------------------
3043 void ObjectFileELF::DumpELFProgramHeader_p_flags(Stream *s, elf_word p_flags) {
3044   *s << ((p_flags & PF_X) ? "PF_X" : "    ")
3045      << (((p_flags & PF_X) && (p_flags & PF_W)) ? '+' : ' ')
3046      << ((p_flags & PF_W) ? "PF_W" : "    ")
3047      << (((p_flags & PF_W) && (p_flags & PF_R)) ? '+' : ' ')
3048      << ((p_flags & PF_R) ? "PF_R" : "    ");
3049 }
3050 
3051 //----------------------------------------------------------------------
3052 // DumpELFProgramHeaders
3053 //
3054 // Dump all of the ELF program header to the specified output stream
3055 //----------------------------------------------------------------------
3056 void ObjectFileELF::DumpELFProgramHeaders(Stream *s) {
3057   if (!ParseProgramHeaders())
3058     return;
3059 
3060   s->PutCString("Program Headers\n");
3061   s->PutCString("IDX  p_type          p_offset p_vaddr  p_paddr  "
3062                 "p_filesz p_memsz  p_flags                   p_align\n");
3063   s->PutCString("==== --------------- -------- -------- -------- "
3064                 "-------- -------- ------------------------- --------\n");
3065 
3066   for (const auto &H : llvm::enumerate(m_program_headers)) {
3067     s->Format("[{0,2}] ", H.index());
3068     ObjectFileELF::DumpELFProgramHeader(s, H.value());
3069     s->EOL();
3070   }
3071 }
3072 
3073 //----------------------------------------------------------------------
3074 // DumpELFSectionHeader
3075 //
3076 // Dump a single ELF section header to the specified output stream
3077 //----------------------------------------------------------------------
3078 void ObjectFileELF::DumpELFSectionHeader(Stream *s,
3079                                          const ELFSectionHeaderInfo &sh) {
3080   s->Printf("%8.8x ", sh.sh_name);
3081   DumpELFSectionHeader_sh_type(s, sh.sh_type);
3082   s->Printf(" %8.8" PRIx64 " (", sh.sh_flags);
3083   DumpELFSectionHeader_sh_flags(s, sh.sh_flags);
3084   s->Printf(") %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addr,
3085             sh.sh_offset, sh.sh_size);
3086   s->Printf(" %8.8x %8.8x", sh.sh_link, sh.sh_info);
3087   s->Printf(" %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addralign, sh.sh_entsize);
3088 }
3089 
3090 //----------------------------------------------------------------------
3091 // DumpELFSectionHeader_sh_type
3092 //
3093 // Dump an token value for the ELF section header member sh_type which
3094 // describes the type of the section
3095 //----------------------------------------------------------------------
3096 void ObjectFileELF::DumpELFSectionHeader_sh_type(Stream *s, elf_word sh_type) {
3097   const int kStrWidth = 12;
3098   switch (sh_type) {
3099     CASE_AND_STREAM(s, SHT_NULL, kStrWidth);
3100     CASE_AND_STREAM(s, SHT_PROGBITS, kStrWidth);
3101     CASE_AND_STREAM(s, SHT_SYMTAB, kStrWidth);
3102     CASE_AND_STREAM(s, SHT_STRTAB, kStrWidth);
3103     CASE_AND_STREAM(s, SHT_RELA, kStrWidth);
3104     CASE_AND_STREAM(s, SHT_HASH, kStrWidth);
3105     CASE_AND_STREAM(s, SHT_DYNAMIC, kStrWidth);
3106     CASE_AND_STREAM(s, SHT_NOTE, kStrWidth);
3107     CASE_AND_STREAM(s, SHT_NOBITS, kStrWidth);
3108     CASE_AND_STREAM(s, SHT_REL, kStrWidth);
3109     CASE_AND_STREAM(s, SHT_SHLIB, kStrWidth);
3110     CASE_AND_STREAM(s, SHT_DYNSYM, kStrWidth);
3111     CASE_AND_STREAM(s, SHT_LOPROC, kStrWidth);
3112     CASE_AND_STREAM(s, SHT_HIPROC, kStrWidth);
3113     CASE_AND_STREAM(s, SHT_LOUSER, kStrWidth);
3114     CASE_AND_STREAM(s, SHT_HIUSER, kStrWidth);
3115   default:
3116     s->Printf("0x%8.8x%*s", sh_type, kStrWidth - 10, "");
3117     break;
3118   }
3119 }
3120 
3121 //----------------------------------------------------------------------
3122 // DumpELFSectionHeader_sh_flags
3123 //
3124 // Dump an token value for the ELF section header member sh_flags
3125 //----------------------------------------------------------------------
3126 void ObjectFileELF::DumpELFSectionHeader_sh_flags(Stream *s,
3127                                                   elf_xword sh_flags) {
3128   *s << ((sh_flags & SHF_WRITE) ? "WRITE" : "     ")
3129      << (((sh_flags & SHF_WRITE) && (sh_flags & SHF_ALLOC)) ? '+' : ' ')
3130      << ((sh_flags & SHF_ALLOC) ? "ALLOC" : "     ")
3131      << (((sh_flags & SHF_ALLOC) && (sh_flags & SHF_EXECINSTR)) ? '+' : ' ')
3132      << ((sh_flags & SHF_EXECINSTR) ? "EXECINSTR" : "         ");
3133 }
3134 
3135 //----------------------------------------------------------------------
3136 // DumpELFSectionHeaders
3137 //
3138 // Dump all of the ELF section header to the specified output stream
3139 //----------------------------------------------------------------------
3140 void ObjectFileELF::DumpELFSectionHeaders(Stream *s) {
3141   if (!ParseSectionHeaders())
3142     return;
3143 
3144   s->PutCString("Section Headers\n");
3145   s->PutCString("IDX  name     type         flags                            "
3146                 "addr     offset   size     link     info     addralgn "
3147                 "entsize  Name\n");
3148   s->PutCString("==== -------- ------------ -------------------------------- "
3149                 "-------- -------- -------- -------- -------- -------- "
3150                 "-------- ====================\n");
3151 
3152   uint32_t idx = 0;
3153   for (SectionHeaderCollConstIter I = m_section_headers.begin();
3154        I != m_section_headers.end(); ++I, ++idx) {
3155     s->Printf("[%2u] ", idx);
3156     ObjectFileELF::DumpELFSectionHeader(s, *I);
3157     const char *section_name = I->section_name.AsCString("");
3158     if (section_name)
3159       *s << ' ' << section_name << "\n";
3160   }
3161 }
3162 
3163 void ObjectFileELF::DumpDependentModules(lldb_private::Stream *s) {
3164   size_t num_modules = ParseDependentModules();
3165 
3166   if (num_modules > 0) {
3167     s->PutCString("Dependent Modules:\n");
3168     for (unsigned i = 0; i < num_modules; ++i) {
3169       const FileSpec &spec = m_filespec_ap->GetFileSpecAtIndex(i);
3170       s->Printf("   %s\n", spec.GetFilename().GetCString());
3171     }
3172   }
3173 }
3174 
3175 bool ObjectFileELF::GetArchitecture(ArchSpec &arch) {
3176   if (!ParseHeader())
3177     return false;
3178 
3179   if (m_section_headers.empty()) {
3180     // Allow elf notes to be parsed which may affect the detected architecture.
3181     ParseSectionHeaders();
3182   }
3183 
3184   if (CalculateType() == eTypeCoreFile &&
3185       m_arch_spec.TripleOSIsUnspecifiedUnknown()) {
3186     // Core files don't have section headers yet they have PT_NOTE program
3187     // headers that might shed more light on the architecture
3188     for (const elf::ELFProgramHeader &H : ProgramHeaders()) {
3189       if (H.p_type != PT_NOTE || H.p_offset == 0 || H.p_filesz == 0)
3190         continue;
3191       DataExtractor data;
3192       if (data.SetData(m_data, H.p_offset, H.p_filesz) == H.p_filesz) {
3193         UUID uuid;
3194         RefineModuleDetailsFromNote(data, m_arch_spec, uuid);
3195       }
3196     }
3197   }
3198   arch = m_arch_spec;
3199   return true;
3200 }
3201 
3202 ObjectFile::Type ObjectFileELF::CalculateType() {
3203   switch (m_header.e_type) {
3204   case llvm::ELF::ET_NONE:
3205     // 0 - No file type
3206     return eTypeUnknown;
3207 
3208   case llvm::ELF::ET_REL:
3209     // 1 - Relocatable file
3210     return eTypeObjectFile;
3211 
3212   case llvm::ELF::ET_EXEC:
3213     // 2 - Executable file
3214     return eTypeExecutable;
3215 
3216   case llvm::ELF::ET_DYN:
3217     // 3 - Shared object file
3218     return eTypeSharedLibrary;
3219 
3220   case ET_CORE:
3221     // 4 - Core file
3222     return eTypeCoreFile;
3223 
3224   default:
3225     break;
3226   }
3227   return eTypeUnknown;
3228 }
3229 
3230 ObjectFile::Strata ObjectFileELF::CalculateStrata() {
3231   switch (m_header.e_type) {
3232   case llvm::ELF::ET_NONE:
3233     // 0 - No file type
3234     return eStrataUnknown;
3235 
3236   case llvm::ELF::ET_REL:
3237     // 1 - Relocatable file
3238     return eStrataUnknown;
3239 
3240   case llvm::ELF::ET_EXEC:
3241     // 2 - Executable file
3242     // TODO: is there any way to detect that an executable is a kernel
3243     // related executable by inspecting the program headers, section headers,
3244     // symbols, or any other flag bits???
3245     return eStrataUser;
3246 
3247   case llvm::ELF::ET_DYN:
3248     // 3 - Shared object file
3249     // TODO: is there any way to detect that an shared library is a kernel
3250     // related executable by inspecting the program headers, section headers,
3251     // symbols, or any other flag bits???
3252     return eStrataUnknown;
3253 
3254   case ET_CORE:
3255     // 4 - Core file
3256     // TODO: is there any way to detect that an core file is a kernel
3257     // related executable by inspecting the program headers, section headers,
3258     // symbols, or any other flag bits???
3259     return eStrataUnknown;
3260 
3261   default:
3262     break;
3263   }
3264   return eStrataUnknown;
3265 }
3266 
3267 size_t ObjectFileELF::ReadSectionData(Section *section,
3268                        lldb::offset_t section_offset, void *dst,
3269                        size_t dst_len) {
3270   // If some other objectfile owns this data, pass this to them.
3271   if (section->GetObjectFile() != this)
3272     return section->GetObjectFile()->ReadSectionData(section, section_offset,
3273                                                      dst, dst_len);
3274 
3275   if (!section->Test(SHF_COMPRESSED))
3276     return ObjectFile::ReadSectionData(section, section_offset, dst, dst_len);
3277 
3278   // For compressed sections we need to read to full data to be able to
3279   // decompress.
3280   DataExtractor data;
3281   ReadSectionData(section, data);
3282   return data.CopyData(section_offset, dst_len, dst);
3283 }
3284 
3285 size_t ObjectFileELF::ReadSectionData(Section *section,
3286                                       DataExtractor &section_data) {
3287   // If some other objectfile owns this data, pass this to them.
3288   if (section->GetObjectFile() != this)
3289     return section->GetObjectFile()->ReadSectionData(section, section_data);
3290 
3291   size_t result = ObjectFile::ReadSectionData(section, section_data);
3292   if (result == 0 || !section->Test(SHF_COMPRESSED))
3293     return result;
3294 
3295   auto Decompressor = llvm::object::Decompressor::create(
3296       section->GetName().GetStringRef(),
3297       {reinterpret_cast<const char *>(section_data.GetDataStart()),
3298        size_t(section_data.GetByteSize())},
3299       GetByteOrder() == eByteOrderLittle, GetAddressByteSize() == 8);
3300   if (!Decompressor) {
3301     GetModule()->ReportWarning(
3302         "Unable to initialize decompressor for section '%s': %s",
3303         section->GetName().GetCString(),
3304         llvm::toString(Decompressor.takeError()).c_str());
3305     section_data.Clear();
3306     return 0;
3307   }
3308 
3309   auto buffer_sp =
3310       std::make_shared<DataBufferHeap>(Decompressor->getDecompressedSize(), 0);
3311   if (auto error = Decompressor->decompress(
3312           {reinterpret_cast<char *>(buffer_sp->GetBytes()),
3313            size_t(buffer_sp->GetByteSize())})) {
3314     GetModule()->ReportWarning(
3315         "Decompression of section '%s' failed: %s",
3316         section->GetName().GetCString(),
3317         llvm::toString(std::move(error)).c_str());
3318     section_data.Clear();
3319     return 0;
3320   }
3321 
3322   section_data.SetData(buffer_sp);
3323   return buffer_sp->GetByteSize();
3324 }
3325 
3326 llvm::ArrayRef<ELFProgramHeader> ObjectFileELF::ProgramHeaders() {
3327   ParseProgramHeaders();
3328   return m_program_headers;
3329 }
3330 
3331 DataExtractor ObjectFileELF::GetSegmentData(const ELFProgramHeader &H) {
3332   return DataExtractor(m_data, H.p_offset, H.p_filesz);
3333 }
3334 
3335 bool ObjectFileELF::AnySegmentHasPhysicalAddress() {
3336   for (const ELFProgramHeader &H : ProgramHeaders()) {
3337     if (H.p_paddr != 0)
3338       return true;
3339   }
3340   return false;
3341 }
3342 
3343 std::vector<ObjectFile::LoadableData>
3344 ObjectFileELF::GetLoadableData(Target &target) {
3345   // Create a list of loadable data from loadable segments, using physical
3346   // addresses if they aren't all null
3347   std::vector<LoadableData> loadables;
3348   bool should_use_paddr = AnySegmentHasPhysicalAddress();
3349   for (const ELFProgramHeader &H : ProgramHeaders()) {
3350     LoadableData loadable;
3351     if (H.p_type != llvm::ELF::PT_LOAD)
3352       continue;
3353     loadable.Dest = should_use_paddr ? H.p_paddr : H.p_vaddr;
3354     if (loadable.Dest == LLDB_INVALID_ADDRESS)
3355       continue;
3356     if (H.p_filesz == 0)
3357       continue;
3358     auto segment_data = GetSegmentData(H);
3359     loadable.Contents = llvm::ArrayRef<uint8_t>(segment_data.GetDataStart(),
3360                                                 segment_data.GetByteSize());
3361     loadables.push_back(loadable);
3362   }
3363   return loadables;
3364 }
3365