1 //===-- ObjectFileELF.cpp ------------------------------------- -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "ObjectFileELF.h" 11 12 #include <cassert> 13 #include <algorithm> 14 #include <unordered_map> 15 16 #include "lldb/Core/ArchSpec.h" 17 #include "lldb/Core/DataBuffer.h" 18 #include "lldb/Core/Error.h" 19 #include "lldb/Core/FileSpecList.h" 20 #include "lldb/Core/Log.h" 21 #include "lldb/Core/Module.h" 22 #include "lldb/Core/ModuleSpec.h" 23 #include "lldb/Core/PluginManager.h" 24 #include "lldb/Core/Section.h" 25 #include "lldb/Core/Stream.h" 26 #include "lldb/Core/Timer.h" 27 #include "lldb/Symbol/DWARFCallFrameInfo.h" 28 #include "lldb/Symbol/SymbolContext.h" 29 #include "lldb/Target/SectionLoadList.h" 30 #include "lldb/Target/Target.h" 31 32 #include "llvm/ADT/PointerUnion.h" 33 #include "llvm/ADT/StringRef.h" 34 #include "llvm/Support/ARMBuildAttributes.h" 35 #include "llvm/Support/MathExtras.h" 36 #include "llvm/Support/MipsABIFlags.h" 37 38 #define CASE_AND_STREAM(s, def, width) \ 39 case def: s->Printf("%-*s", width, #def); break; 40 41 using namespace lldb; 42 using namespace lldb_private; 43 using namespace elf; 44 using namespace llvm::ELF; 45 46 namespace { 47 48 // ELF note owner definitions 49 const char *const LLDB_NT_OWNER_FREEBSD = "FreeBSD"; 50 const char *const LLDB_NT_OWNER_GNU = "GNU"; 51 const char *const LLDB_NT_OWNER_NETBSD = "NetBSD"; 52 const char *const LLDB_NT_OWNER_CSR = "csr"; 53 const char *const LLDB_NT_OWNER_ANDROID = "Android"; 54 const char *const LLDB_NT_OWNER_CORE = "CORE"; 55 const char *const LLDB_NT_OWNER_LINUX = "LINUX"; 56 57 // ELF note type definitions 58 const elf_word LLDB_NT_FREEBSD_ABI_TAG = 0x01; 59 const elf_word LLDB_NT_FREEBSD_ABI_SIZE = 4; 60 61 const elf_word LLDB_NT_GNU_ABI_TAG = 0x01; 62 const elf_word LLDB_NT_GNU_ABI_SIZE = 16; 63 64 const elf_word LLDB_NT_GNU_BUILD_ID_TAG = 0x03; 65 66 const elf_word LLDB_NT_NETBSD_ABI_TAG = 0x01; 67 const elf_word LLDB_NT_NETBSD_ABI_SIZE = 4; 68 69 // GNU ABI note OS constants 70 const elf_word LLDB_NT_GNU_ABI_OS_LINUX = 0x00; 71 const elf_word LLDB_NT_GNU_ABI_OS_HURD = 0x01; 72 const elf_word LLDB_NT_GNU_ABI_OS_SOLARIS = 0x02; 73 74 // LLDB_NT_OWNER_CORE and LLDB_NT_OWNER_LINUX note contants 75 #define NT_PRSTATUS 1 76 #define NT_PRFPREG 2 77 #define NT_PRPSINFO 3 78 #define NT_TASKSTRUCT 4 79 #define NT_AUXV 6 80 #define NT_SIGINFO 0x53494749 81 #define NT_FILE 0x46494c45 82 #define NT_PRXFPREG 0x46e62b7f 83 #define NT_PPC_VMX 0x100 84 #define NT_PPC_SPE 0x101 85 #define NT_PPC_VSX 0x102 86 #define NT_386_TLS 0x200 87 #define NT_386_IOPERM 0x201 88 #define NT_X86_XSTATE 0x202 89 #define NT_S390_HIGH_GPRS 0x300 90 #define NT_S390_TIMER 0x301 91 #define NT_S390_TODCMP 0x302 92 #define NT_S390_TODPREG 0x303 93 #define NT_S390_CTRS 0x304 94 #define NT_S390_PREFIX 0x305 95 #define NT_S390_LAST_BREAK 0x306 96 #define NT_S390_SYSTEM_CALL 0x307 97 #define NT_S390_TDB 0x308 98 #define NT_S390_VXRS_LOW 0x309 99 #define NT_S390_VXRS_HIGH 0x30a 100 #define NT_ARM_VFP 0x400 101 #define NT_ARM_TLS 0x401 102 #define NT_ARM_HW_BREAK 0x402 103 #define NT_ARM_HW_WATCH 0x403 104 #define NT_ARM_SYSTEM_CALL 0x404 105 #define NT_METAG_CBUF 0x500 106 #define NT_METAG_RPIPE 0x501 107 #define NT_METAG_TLS 0x502 108 109 //===----------------------------------------------------------------------===// 110 /// @class ELFRelocation 111 /// @brief Generic wrapper for ELFRel and ELFRela. 112 /// 113 /// This helper class allows us to parse both ELFRel and ELFRela relocation 114 /// entries in a generic manner. 115 class ELFRelocation 116 { 117 public: 118 119 /// Constructs an ELFRelocation entry with a personality as given by @p 120 /// type. 121 /// 122 /// @param type Either DT_REL or DT_RELA. Any other value is invalid. 123 ELFRelocation(unsigned type); 124 125 ~ELFRelocation(); 126 127 bool 128 Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset); 129 130 static unsigned 131 RelocType32(const ELFRelocation &rel); 132 133 static unsigned 134 RelocType64(const ELFRelocation &rel); 135 136 static unsigned 137 RelocSymbol32(const ELFRelocation &rel); 138 139 static unsigned 140 RelocSymbol64(const ELFRelocation &rel); 141 142 static unsigned 143 RelocOffset32(const ELFRelocation &rel); 144 145 static unsigned 146 RelocOffset64(const ELFRelocation &rel); 147 148 static unsigned 149 RelocAddend32(const ELFRelocation &rel); 150 151 static unsigned 152 RelocAddend64(const ELFRelocation &rel); 153 154 private: 155 typedef llvm::PointerUnion<ELFRel*, ELFRela*> RelocUnion; 156 157 RelocUnion reloc; 158 }; 159 160 ELFRelocation::ELFRelocation(unsigned type) 161 { 162 if (type == DT_REL || type == SHT_REL) 163 reloc = new ELFRel(); 164 else if (type == DT_RELA || type == SHT_RELA) 165 reloc = new ELFRela(); 166 else { 167 assert(false && "unexpected relocation type"); 168 reloc = static_cast<ELFRel*>(NULL); 169 } 170 } 171 172 ELFRelocation::~ELFRelocation() 173 { 174 if (reloc.is<ELFRel*>()) 175 delete reloc.get<ELFRel*>(); 176 else 177 delete reloc.get<ELFRela*>(); 178 } 179 180 bool 181 ELFRelocation::Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset) 182 { 183 if (reloc.is<ELFRel*>()) 184 return reloc.get<ELFRel*>()->Parse(data, offset); 185 else 186 return reloc.get<ELFRela*>()->Parse(data, offset); 187 } 188 189 unsigned 190 ELFRelocation::RelocType32(const ELFRelocation &rel) 191 { 192 if (rel.reloc.is<ELFRel*>()) 193 return ELFRel::RelocType32(*rel.reloc.get<ELFRel*>()); 194 else 195 return ELFRela::RelocType32(*rel.reloc.get<ELFRela*>()); 196 } 197 198 unsigned 199 ELFRelocation::RelocType64(const ELFRelocation &rel) 200 { 201 if (rel.reloc.is<ELFRel*>()) 202 return ELFRel::RelocType64(*rel.reloc.get<ELFRel*>()); 203 else 204 return ELFRela::RelocType64(*rel.reloc.get<ELFRela*>()); 205 } 206 207 unsigned 208 ELFRelocation::RelocSymbol32(const ELFRelocation &rel) 209 { 210 if (rel.reloc.is<ELFRel*>()) 211 return ELFRel::RelocSymbol32(*rel.reloc.get<ELFRel*>()); 212 else 213 return ELFRela::RelocSymbol32(*rel.reloc.get<ELFRela*>()); 214 } 215 216 unsigned 217 ELFRelocation::RelocSymbol64(const ELFRelocation &rel) 218 { 219 if (rel.reloc.is<ELFRel*>()) 220 return ELFRel::RelocSymbol64(*rel.reloc.get<ELFRel*>()); 221 else 222 return ELFRela::RelocSymbol64(*rel.reloc.get<ELFRela*>()); 223 } 224 225 unsigned 226 ELFRelocation::RelocOffset32(const ELFRelocation &rel) 227 { 228 if (rel.reloc.is<ELFRel*>()) 229 return rel.reloc.get<ELFRel*>()->r_offset; 230 else 231 return rel.reloc.get<ELFRela*>()->r_offset; 232 } 233 234 unsigned 235 ELFRelocation::RelocOffset64(const ELFRelocation &rel) 236 { 237 if (rel.reloc.is<ELFRel*>()) 238 return rel.reloc.get<ELFRel*>()->r_offset; 239 else 240 return rel.reloc.get<ELFRela*>()->r_offset; 241 } 242 243 unsigned 244 ELFRelocation::RelocAddend32(const ELFRelocation &rel) 245 { 246 if (rel.reloc.is<ELFRel*>()) 247 return 0; 248 else 249 return rel.reloc.get<ELFRela*>()->r_addend; 250 } 251 252 unsigned 253 ELFRelocation::RelocAddend64(const ELFRelocation &rel) 254 { 255 if (rel.reloc.is<ELFRel*>()) 256 return 0; 257 else 258 return rel.reloc.get<ELFRela*>()->r_addend; 259 } 260 261 } // end anonymous namespace 262 263 bool 264 ELFNote::Parse(const DataExtractor &data, lldb::offset_t *offset) 265 { 266 // Read all fields. 267 if (data.GetU32(offset, &n_namesz, 3) == NULL) 268 return false; 269 270 // The name field is required to be nul-terminated, and n_namesz 271 // includes the terminating nul in observed implementations (contrary 272 // to the ELF-64 spec). A special case is needed for cores generated 273 // by some older Linux versions, which write a note named "CORE" 274 // without a nul terminator and n_namesz = 4. 275 if (n_namesz == 4) 276 { 277 char buf[4]; 278 if (data.ExtractBytes (*offset, 4, data.GetByteOrder(), buf) != 4) 279 return false; 280 if (strncmp (buf, "CORE", 4) == 0) 281 { 282 n_name = "CORE"; 283 *offset += 4; 284 return true; 285 } 286 } 287 288 const char *cstr = data.GetCStr(offset, llvm::alignTo (n_namesz, 4)); 289 if (cstr == NULL) 290 { 291 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_SYMBOLS)); 292 if (log) 293 log->Printf("Failed to parse note name lacking nul terminator"); 294 295 return false; 296 } 297 n_name = cstr; 298 return true; 299 } 300 301 static uint32_t 302 kalimbaVariantFromElfFlags(const elf::elf_word e_flags) 303 { 304 const uint32_t dsp_rev = e_flags & 0xFF; 305 uint32_t kal_arch_variant = LLDB_INVALID_CPUTYPE; 306 switch(dsp_rev) 307 { 308 // TODO(mg11) Support more variants 309 case 10: 310 kal_arch_variant = llvm::Triple::KalimbaSubArch_v3; 311 break; 312 case 14: 313 kal_arch_variant = llvm::Triple::KalimbaSubArch_v4; 314 break; 315 case 17: 316 case 20: 317 kal_arch_variant = llvm::Triple::KalimbaSubArch_v5; 318 break; 319 default: 320 break; 321 } 322 return kal_arch_variant; 323 } 324 325 static uint32_t 326 mipsVariantFromElfFlags(const elf::elf_word e_flags, uint32_t endian) 327 { 328 const uint32_t mips_arch = e_flags & llvm::ELF::EF_MIPS_ARCH; 329 uint32_t arch_variant = ArchSpec::eMIPSSubType_unknown; 330 331 switch (mips_arch) 332 { 333 case llvm::ELF::EF_MIPS_ARCH_1: 334 case llvm::ELF::EF_MIPS_ARCH_2: 335 case llvm::ELF::EF_MIPS_ARCH_32: 336 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el : ArchSpec::eMIPSSubType_mips32; 337 case llvm::ELF::EF_MIPS_ARCH_32R2: 338 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r2el : ArchSpec::eMIPSSubType_mips32r2; 339 case llvm::ELF::EF_MIPS_ARCH_32R6: 340 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r6el : ArchSpec::eMIPSSubType_mips32r6; 341 case llvm::ELF::EF_MIPS_ARCH_3: 342 case llvm::ELF::EF_MIPS_ARCH_4: 343 case llvm::ELF::EF_MIPS_ARCH_5: 344 case llvm::ELF::EF_MIPS_ARCH_64: 345 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el : ArchSpec::eMIPSSubType_mips64; 346 case llvm::ELF::EF_MIPS_ARCH_64R2: 347 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r2el : ArchSpec::eMIPSSubType_mips64r2; 348 case llvm::ELF::EF_MIPS_ARCH_64R6: 349 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r6el : ArchSpec::eMIPSSubType_mips64r6; 350 default: 351 break; 352 } 353 354 return arch_variant; 355 } 356 357 static uint32_t 358 subTypeFromElfHeader(const elf::ELFHeader& header) 359 { 360 if (header.e_machine == llvm::ELF::EM_MIPS) 361 return mipsVariantFromElfFlags (header.e_flags, 362 header.e_ident[EI_DATA]); 363 364 return 365 llvm::ELF::EM_CSR_KALIMBA == header.e_machine ? 366 kalimbaVariantFromElfFlags(header.e_flags) : 367 LLDB_INVALID_CPUTYPE; 368 } 369 370 //! The kalimba toolchain identifies a code section as being 371 //! one with the SHT_PROGBITS set in the section sh_type and the top 372 //! bit in the 32-bit address field set. 373 static lldb::SectionType 374 kalimbaSectionType( 375 const elf::ELFHeader& header, 376 const elf::ELFSectionHeader& sect_hdr) 377 { 378 if (llvm::ELF::EM_CSR_KALIMBA != header.e_machine) 379 { 380 return eSectionTypeOther; 381 } 382 383 if (llvm::ELF::SHT_NOBITS == sect_hdr.sh_type) 384 { 385 return eSectionTypeZeroFill; 386 } 387 388 if (llvm::ELF::SHT_PROGBITS == sect_hdr.sh_type) 389 { 390 const lldb::addr_t KAL_CODE_BIT = 1 << 31; 391 return KAL_CODE_BIT & sect_hdr.sh_addr ? 392 eSectionTypeCode : eSectionTypeData; 393 } 394 395 return eSectionTypeOther; 396 } 397 398 // Arbitrary constant used as UUID prefix for core files. 399 const uint32_t 400 ObjectFileELF::g_core_uuid_magic(0xE210C); 401 402 //------------------------------------------------------------------ 403 // Static methods. 404 //------------------------------------------------------------------ 405 void 406 ObjectFileELF::Initialize() 407 { 408 PluginManager::RegisterPlugin(GetPluginNameStatic(), 409 GetPluginDescriptionStatic(), 410 CreateInstance, 411 CreateMemoryInstance, 412 GetModuleSpecifications); 413 } 414 415 void 416 ObjectFileELF::Terminate() 417 { 418 PluginManager::UnregisterPlugin(CreateInstance); 419 } 420 421 lldb_private::ConstString 422 ObjectFileELF::GetPluginNameStatic() 423 { 424 static ConstString g_name("elf"); 425 return g_name; 426 } 427 428 const char * 429 ObjectFileELF::GetPluginDescriptionStatic() 430 { 431 return "ELF object file reader."; 432 } 433 434 ObjectFile * 435 ObjectFileELF::CreateInstance (const lldb::ModuleSP &module_sp, 436 DataBufferSP &data_sp, 437 lldb::offset_t data_offset, 438 const lldb_private::FileSpec* file, 439 lldb::offset_t file_offset, 440 lldb::offset_t length) 441 { 442 if (!data_sp) 443 { 444 data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length); 445 data_offset = 0; 446 } 447 448 if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset)) 449 { 450 const uint8_t *magic = data_sp->GetBytes() + data_offset; 451 if (ELFHeader::MagicBytesMatch(magic)) 452 { 453 // Update the data to contain the entire file if it doesn't already 454 if (data_sp->GetByteSize() < length) { 455 data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length); 456 data_offset = 0; 457 magic = data_sp->GetBytes(); 458 } 459 unsigned address_size = ELFHeader::AddressSizeInBytes(magic); 460 if (address_size == 4 || address_size == 8) 461 { 462 std::unique_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, data_offset, file, file_offset, length)); 463 ArchSpec spec; 464 if (objfile_ap->GetArchitecture(spec) && 465 objfile_ap->SetModulesArchitecture(spec)) 466 return objfile_ap.release(); 467 } 468 } 469 } 470 return NULL; 471 } 472 473 474 ObjectFile* 475 ObjectFileELF::CreateMemoryInstance (const lldb::ModuleSP &module_sp, 476 DataBufferSP& data_sp, 477 const lldb::ProcessSP &process_sp, 478 lldb::addr_t header_addr) 479 { 480 if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT)) 481 { 482 const uint8_t *magic = data_sp->GetBytes(); 483 if (ELFHeader::MagicBytesMatch(magic)) 484 { 485 unsigned address_size = ELFHeader::AddressSizeInBytes(magic); 486 if (address_size == 4 || address_size == 8) 487 { 488 std::auto_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, process_sp, header_addr)); 489 ArchSpec spec; 490 if (objfile_ap->GetArchitecture(spec) && 491 objfile_ap->SetModulesArchitecture(spec)) 492 return objfile_ap.release(); 493 } 494 } 495 } 496 return NULL; 497 } 498 499 bool 500 ObjectFileELF::MagicBytesMatch (DataBufferSP& data_sp, 501 lldb::addr_t data_offset, 502 lldb::addr_t data_length) 503 { 504 if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset)) 505 { 506 const uint8_t *magic = data_sp->GetBytes() + data_offset; 507 return ELFHeader::MagicBytesMatch(magic); 508 } 509 return false; 510 } 511 512 /* 513 * crc function from http://svnweb.freebsd.org/base/head/sys/libkern/crc32.c 514 * 515 * COPYRIGHT (C) 1986 Gary S. Brown. You may use this program, or 516 * code or tables extracted from it, as desired without restriction. 517 */ 518 static uint32_t 519 calc_crc32(uint32_t crc, const void *buf, size_t size) 520 { 521 static const uint32_t g_crc32_tab[] = 522 { 523 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, 524 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988, 525 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2, 526 0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 527 0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9, 528 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172, 529 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c, 530 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 531 0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 532 0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924, 533 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106, 534 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433, 535 0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 536 0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 537 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950, 538 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65, 539 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7, 540 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0, 541 0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 542 0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f, 543 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81, 544 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a, 545 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84, 546 0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 547 0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb, 548 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc, 549 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e, 550 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 551 0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 552 0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236, 553 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28, 554 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d, 555 0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f, 556 0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 557 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242, 558 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777, 559 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69, 560 0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 561 0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 562 0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9, 563 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693, 564 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94, 565 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d 566 }; 567 const uint8_t *p = (const uint8_t *)buf; 568 569 crc = crc ^ ~0U; 570 while (size--) 571 crc = g_crc32_tab[(crc ^ *p++) & 0xFF] ^ (crc >> 8); 572 return crc ^ ~0U; 573 } 574 575 static uint32_t 576 calc_gnu_debuglink_crc32(const void *buf, size_t size) 577 { 578 return calc_crc32(0U, buf, size); 579 } 580 581 uint32_t 582 ObjectFileELF::CalculateELFNotesSegmentsCRC32 (const ProgramHeaderColl& program_headers, 583 DataExtractor& object_data) 584 { 585 typedef ProgramHeaderCollConstIter Iter; 586 587 uint32_t core_notes_crc = 0; 588 589 for (Iter I = program_headers.begin(); I != program_headers.end(); ++I) 590 { 591 if (I->p_type == llvm::ELF::PT_NOTE) 592 { 593 const elf_off ph_offset = I->p_offset; 594 const size_t ph_size = I->p_filesz; 595 596 DataExtractor segment_data; 597 if (segment_data.SetData(object_data, ph_offset, ph_size) != ph_size) 598 { 599 // The ELF program header contained incorrect data, 600 // probably corefile is incomplete or corrupted. 601 break; 602 } 603 604 core_notes_crc = calc_crc32(core_notes_crc, 605 segment_data.GetDataStart(), 606 segment_data.GetByteSize()); 607 } 608 } 609 610 return core_notes_crc; 611 } 612 613 static const char* 614 OSABIAsCString (unsigned char osabi_byte) 615 { 616 #define _MAKE_OSABI_CASE(x) case x: return #x 617 switch (osabi_byte) 618 { 619 _MAKE_OSABI_CASE(ELFOSABI_NONE); 620 _MAKE_OSABI_CASE(ELFOSABI_HPUX); 621 _MAKE_OSABI_CASE(ELFOSABI_NETBSD); 622 _MAKE_OSABI_CASE(ELFOSABI_GNU); 623 _MAKE_OSABI_CASE(ELFOSABI_HURD); 624 _MAKE_OSABI_CASE(ELFOSABI_SOLARIS); 625 _MAKE_OSABI_CASE(ELFOSABI_AIX); 626 _MAKE_OSABI_CASE(ELFOSABI_IRIX); 627 _MAKE_OSABI_CASE(ELFOSABI_FREEBSD); 628 _MAKE_OSABI_CASE(ELFOSABI_TRU64); 629 _MAKE_OSABI_CASE(ELFOSABI_MODESTO); 630 _MAKE_OSABI_CASE(ELFOSABI_OPENBSD); 631 _MAKE_OSABI_CASE(ELFOSABI_OPENVMS); 632 _MAKE_OSABI_CASE(ELFOSABI_NSK); 633 _MAKE_OSABI_CASE(ELFOSABI_AROS); 634 _MAKE_OSABI_CASE(ELFOSABI_FENIXOS); 635 _MAKE_OSABI_CASE(ELFOSABI_C6000_ELFABI); 636 _MAKE_OSABI_CASE(ELFOSABI_C6000_LINUX); 637 _MAKE_OSABI_CASE(ELFOSABI_ARM); 638 _MAKE_OSABI_CASE(ELFOSABI_STANDALONE); 639 default: 640 return "<unknown-osabi>"; 641 } 642 #undef _MAKE_OSABI_CASE 643 } 644 645 // 646 // WARNING : This function is being deprecated 647 // It's functionality has moved to ArchSpec::SetArchitecture 648 // This function is only being kept to validate the move. 649 // 650 // TODO : Remove this function 651 static bool 652 GetOsFromOSABI (unsigned char osabi_byte, llvm::Triple::OSType &ostype) 653 { 654 switch (osabi_byte) 655 { 656 case ELFOSABI_AIX: ostype = llvm::Triple::OSType::AIX; break; 657 case ELFOSABI_FREEBSD: ostype = llvm::Triple::OSType::FreeBSD; break; 658 case ELFOSABI_GNU: ostype = llvm::Triple::OSType::Linux; break; 659 case ELFOSABI_NETBSD: ostype = llvm::Triple::OSType::NetBSD; break; 660 case ELFOSABI_OPENBSD: ostype = llvm::Triple::OSType::OpenBSD; break; 661 case ELFOSABI_SOLARIS: ostype = llvm::Triple::OSType::Solaris; break; 662 default: 663 ostype = llvm::Triple::OSType::UnknownOS; 664 } 665 return ostype != llvm::Triple::OSType::UnknownOS; 666 } 667 668 size_t 669 ObjectFileELF::GetModuleSpecifications (const lldb_private::FileSpec& file, 670 lldb::DataBufferSP& data_sp, 671 lldb::offset_t data_offset, 672 lldb::offset_t file_offset, 673 lldb::offset_t length, 674 lldb_private::ModuleSpecList &specs) 675 { 676 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES)); 677 678 const size_t initial_count = specs.GetSize(); 679 680 if (ObjectFileELF::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) 681 { 682 DataExtractor data; 683 data.SetData(data_sp); 684 elf::ELFHeader header; 685 if (header.Parse(data, &data_offset)) 686 { 687 if (data_sp) 688 { 689 ModuleSpec spec (file); 690 691 const uint32_t sub_type = subTypeFromElfHeader(header); 692 spec.GetArchitecture().SetArchitecture(eArchTypeELF, 693 header.e_machine, 694 sub_type, 695 header.e_ident[EI_OSABI]); 696 697 if (spec.GetArchitecture().IsValid()) 698 { 699 llvm::Triple::OSType ostype; 700 llvm::Triple::VendorType vendor; 701 llvm::Triple::OSType spec_ostype = spec.GetArchitecture ().GetTriple ().getOS (); 702 703 if (log) 704 log->Printf ("ObjectFileELF::%s file '%s' module OSABI: %s", __FUNCTION__, file.GetPath ().c_str (), OSABIAsCString (header.e_ident[EI_OSABI])); 705 706 // SetArchitecture should have set the vendor to unknown 707 vendor = spec.GetArchitecture ().GetTriple ().getVendor (); 708 assert(vendor == llvm::Triple::UnknownVendor); 709 710 // 711 // Validate it is ok to remove GetOsFromOSABI 712 GetOsFromOSABI (header.e_ident[EI_OSABI], ostype); 713 assert(spec_ostype == ostype); 714 if (spec_ostype != llvm::Triple::OSType::UnknownOS) 715 { 716 if (log) 717 log->Printf ("ObjectFileELF::%s file '%s' set ELF module OS type from ELF header OSABI.", __FUNCTION__, file.GetPath ().c_str ()); 718 } 719 720 // Try to get the UUID from the section list. Usually that's at the end, so 721 // map the file in if we don't have it already. 722 size_t section_header_end = header.e_shoff + header.e_shnum * header.e_shentsize; 723 if (section_header_end > data_sp->GetByteSize()) 724 { 725 data_sp = file.MemoryMapFileContentsIfLocal (file_offset, section_header_end); 726 data.SetData(data_sp); 727 } 728 729 uint32_t gnu_debuglink_crc = 0; 730 std::string gnu_debuglink_file; 731 SectionHeaderColl section_headers; 732 lldb_private::UUID &uuid = spec.GetUUID(); 733 734 using namespace std::placeholders; 735 const SetDataFunction set_data = std::bind(&ObjectFileELF::SetData, std::cref(data), _1, _2, _3); 736 GetSectionHeaderInfo(section_headers, set_data, header, uuid, gnu_debuglink_file, gnu_debuglink_crc, spec.GetArchitecture ()); 737 738 739 llvm::Triple &spec_triple = spec.GetArchitecture ().GetTriple (); 740 741 if (log) 742 log->Printf ("ObjectFileELF::%s file '%s' module set to triple: %s (architecture %s)", __FUNCTION__, file.GetPath ().c_str (), spec_triple.getTriple ().c_str (), spec.GetArchitecture ().GetArchitectureName ()); 743 744 if (!uuid.IsValid()) 745 { 746 uint32_t core_notes_crc = 0; 747 748 if (!gnu_debuglink_crc) 749 { 750 lldb_private::Timer scoped_timer (__PRETTY_FUNCTION__, 751 "Calculating module crc32 %s with size %" PRIu64 " KiB", 752 file.GetLastPathComponent().AsCString(), 753 (file.GetByteSize()-file_offset)/1024); 754 755 // For core files - which usually don't happen to have a gnu_debuglink, 756 // and are pretty bulky - calculating whole contents crc32 would be too much of luxury. 757 // Thus we will need to fallback to something simpler. 758 if (header.e_type == llvm::ELF::ET_CORE) 759 { 760 size_t program_headers_end = header.e_phoff + header.e_phnum * header.e_phentsize; 761 if (program_headers_end > data_sp->GetByteSize()) 762 { 763 data_sp = file.MemoryMapFileContentsIfLocal(file_offset, program_headers_end); 764 data.SetData(data_sp); 765 } 766 ProgramHeaderColl program_headers; 767 GetProgramHeaderInfo(program_headers, set_data, header); 768 769 size_t segment_data_end = 0; 770 for (ProgramHeaderCollConstIter I = program_headers.begin(); 771 I != program_headers.end(); ++I) 772 { 773 segment_data_end = std::max<unsigned long long> (I->p_offset + I->p_filesz, segment_data_end); 774 } 775 776 if (segment_data_end > data_sp->GetByteSize()) 777 { 778 data_sp = file.MemoryMapFileContentsIfLocal(file_offset, segment_data_end); 779 data.SetData(data_sp); 780 } 781 782 core_notes_crc = CalculateELFNotesSegmentsCRC32 (program_headers, data); 783 } 784 else 785 { 786 // Need to map entire file into memory to calculate the crc. 787 data_sp = file.MemoryMapFileContentsIfLocal (file_offset, SIZE_MAX); 788 data.SetData(data_sp); 789 gnu_debuglink_crc = calc_gnu_debuglink_crc32 (data.GetDataStart(), data.GetByteSize()); 790 } 791 } 792 if (gnu_debuglink_crc) 793 { 794 // Use 4 bytes of crc from the .gnu_debuglink section. 795 uint32_t uuidt[4] = { gnu_debuglink_crc, 0, 0, 0 }; 796 uuid.SetBytes (uuidt, sizeof(uuidt)); 797 } 798 else if (core_notes_crc) 799 { 800 // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it look different form 801 // .gnu_debuglink crc followed by 4 bytes of note segments crc. 802 uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 }; 803 uuid.SetBytes (uuidt, sizeof(uuidt)); 804 } 805 } 806 807 specs.Append(spec); 808 } 809 } 810 } 811 } 812 813 return specs.GetSize() - initial_count; 814 } 815 816 //------------------------------------------------------------------ 817 // PluginInterface protocol 818 //------------------------------------------------------------------ 819 lldb_private::ConstString 820 ObjectFileELF::GetPluginName() 821 { 822 return GetPluginNameStatic(); 823 } 824 825 uint32_t 826 ObjectFileELF::GetPluginVersion() 827 { 828 return m_plugin_version; 829 } 830 //------------------------------------------------------------------ 831 // ObjectFile protocol 832 //------------------------------------------------------------------ 833 834 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp, 835 DataBufferSP& data_sp, 836 lldb::offset_t data_offset, 837 const FileSpec* file, 838 lldb::offset_t file_offset, 839 lldb::offset_t length) : 840 ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset), 841 m_header(), 842 m_uuid(), 843 m_gnu_debuglink_file(), 844 m_gnu_debuglink_crc(0), 845 m_program_headers(), 846 m_section_headers(), 847 m_dynamic_symbols(), 848 m_filespec_ap(), 849 m_entry_point_address(), 850 m_arch_spec() 851 { 852 if (file) 853 m_file = *file; 854 ::memset(&m_header, 0, sizeof(m_header)); 855 } 856 857 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp, 858 DataBufferSP& header_data_sp, 859 const lldb::ProcessSP &process_sp, 860 addr_t header_addr) : 861 ObjectFile(module_sp, process_sp, header_addr, header_data_sp), 862 m_header(), 863 m_uuid(), 864 m_gnu_debuglink_file(), 865 m_gnu_debuglink_crc(0), 866 m_program_headers(), 867 m_section_headers(), 868 m_dynamic_symbols(), 869 m_filespec_ap(), 870 m_entry_point_address(), 871 m_arch_spec() 872 { 873 ::memset(&m_header, 0, sizeof(m_header)); 874 } 875 876 ObjectFileELF::~ObjectFileELF() 877 { 878 } 879 880 bool 881 ObjectFileELF::IsExecutable() const 882 { 883 return ((m_header.e_type & ET_EXEC) != 0) || (m_header.e_entry != 0); 884 } 885 886 bool 887 ObjectFileELF::SetLoadAddress (Target &target, 888 lldb::addr_t value, 889 bool value_is_offset) 890 { 891 ModuleSP module_sp = GetModule(); 892 if (module_sp) 893 { 894 size_t num_loaded_sections = 0; 895 SectionList *section_list = GetSectionList (); 896 if (section_list) 897 { 898 if (!value_is_offset) 899 { 900 bool found_offset = false; 901 for (size_t i = 0, count = GetProgramHeaderCount(); i < count; ++i) 902 { 903 const elf::ELFProgramHeader* header = GetProgramHeaderByIndex(i); 904 if (header == nullptr) 905 continue; 906 907 if (header->p_type != PT_LOAD || header->p_offset != 0) 908 continue; 909 910 value = value - header->p_vaddr; 911 found_offset = true; 912 break; 913 } 914 if (!found_offset) 915 return false; 916 } 917 918 const size_t num_sections = section_list->GetSize(); 919 size_t sect_idx = 0; 920 921 for (sect_idx = 0; sect_idx < num_sections; ++sect_idx) 922 { 923 // Iterate through the object file sections to find all 924 // of the sections that have SHF_ALLOC in their flag bits. 925 SectionSP section_sp (section_list->GetSectionAtIndex (sect_idx)); 926 if (section_sp && section_sp->Test(SHF_ALLOC)) 927 { 928 lldb::addr_t load_addr = section_sp->GetFileAddress(); 929 // We don't want to update the load address of a section with type 930 // eSectionTypeAbsoluteAddress as they already have the absolute load address 931 // already specified 932 if (section_sp->GetType() != eSectionTypeAbsoluteAddress) 933 load_addr += value; 934 935 // On 32-bit systems the load address have to fit into 4 bytes. The rest of 936 // the bytes are the overflow from the addition. 937 if (GetAddressByteSize() == 4) 938 load_addr &= 0xFFFFFFFF; 939 940 if (target.GetSectionLoadList().SetSectionLoadAddress (section_sp, load_addr)) 941 ++num_loaded_sections; 942 } 943 } 944 return num_loaded_sections > 0; 945 } 946 } 947 return false; 948 } 949 950 ByteOrder 951 ObjectFileELF::GetByteOrder() const 952 { 953 if (m_header.e_ident[EI_DATA] == ELFDATA2MSB) 954 return eByteOrderBig; 955 if (m_header.e_ident[EI_DATA] == ELFDATA2LSB) 956 return eByteOrderLittle; 957 return eByteOrderInvalid; 958 } 959 960 uint32_t 961 ObjectFileELF::GetAddressByteSize() const 962 { 963 return m_data.GetAddressByteSize(); 964 } 965 966 AddressClass 967 ObjectFileELF::GetAddressClass (addr_t file_addr) 968 { 969 Symtab* symtab = GetSymtab(); 970 if (!symtab) 971 return eAddressClassUnknown; 972 973 // The address class is determined based on the symtab. Ask it from the object file what 974 // contains the symtab information. 975 ObjectFile* symtab_objfile = symtab->GetObjectFile(); 976 if (symtab_objfile != nullptr && symtab_objfile != this) 977 return symtab_objfile->GetAddressClass(file_addr); 978 979 auto res = ObjectFile::GetAddressClass (file_addr); 980 if (res != eAddressClassCode) 981 return res; 982 983 auto ub = m_address_class_map.upper_bound(file_addr); 984 if (ub == m_address_class_map.begin()) 985 { 986 // No entry in the address class map before the address. Return 987 // default address class for an address in a code section. 988 return eAddressClassCode; 989 } 990 991 // Move iterator to the address class entry preceding address 992 --ub; 993 994 return ub->second; 995 } 996 997 size_t 998 ObjectFileELF::SectionIndex(const SectionHeaderCollIter &I) 999 { 1000 return std::distance(m_section_headers.begin(), I) + 1u; 1001 } 1002 1003 size_t 1004 ObjectFileELF::SectionIndex(const SectionHeaderCollConstIter &I) const 1005 { 1006 return std::distance(m_section_headers.begin(), I) + 1u; 1007 } 1008 1009 bool 1010 ObjectFileELF::ParseHeader() 1011 { 1012 lldb::offset_t offset = 0; 1013 if (!m_header.Parse(m_data, &offset)) 1014 return false; 1015 1016 if (!IsInMemory()) 1017 return true; 1018 1019 // For in memory object files m_data might not contain the full object file. Try to load it 1020 // until the end of the "Section header table" what is at the end of the ELF file. 1021 addr_t file_size = m_header.e_shoff + m_header.e_shnum * m_header.e_shentsize; 1022 if (m_data.GetByteSize() < file_size) 1023 { 1024 ProcessSP process_sp (m_process_wp.lock()); 1025 if (!process_sp) 1026 return false; 1027 1028 DataBufferSP data_sp = ReadMemory(process_sp, m_memory_addr, file_size); 1029 if (!data_sp) 1030 return false; 1031 m_data.SetData(data_sp, 0, file_size); 1032 } 1033 1034 return true; 1035 } 1036 1037 bool 1038 ObjectFileELF::GetUUID(lldb_private::UUID* uuid) 1039 { 1040 // Need to parse the section list to get the UUIDs, so make sure that's been done. 1041 if (!ParseSectionHeaders() && GetType() != ObjectFile::eTypeCoreFile) 1042 return false; 1043 1044 if (m_uuid.IsValid()) 1045 { 1046 // We have the full build id uuid. 1047 *uuid = m_uuid; 1048 return true; 1049 } 1050 else if (GetType() == ObjectFile::eTypeCoreFile) 1051 { 1052 uint32_t core_notes_crc = 0; 1053 1054 if (!ParseProgramHeaders()) 1055 return false; 1056 1057 core_notes_crc = CalculateELFNotesSegmentsCRC32(m_program_headers, m_data); 1058 1059 if (core_notes_crc) 1060 { 1061 // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it 1062 // look different form .gnu_debuglink crc - followed by 4 bytes of note 1063 // segments crc. 1064 uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 }; 1065 m_uuid.SetBytes (uuidt, sizeof(uuidt)); 1066 } 1067 } 1068 else 1069 { 1070 if (!m_gnu_debuglink_crc) 1071 m_gnu_debuglink_crc = calc_gnu_debuglink_crc32 (m_data.GetDataStart(), m_data.GetByteSize()); 1072 if (m_gnu_debuglink_crc) 1073 { 1074 // Use 4 bytes of crc from the .gnu_debuglink section. 1075 uint32_t uuidt[4] = { m_gnu_debuglink_crc, 0, 0, 0 }; 1076 m_uuid.SetBytes (uuidt, sizeof(uuidt)); 1077 } 1078 } 1079 1080 if (m_uuid.IsValid()) 1081 { 1082 *uuid = m_uuid; 1083 return true; 1084 } 1085 1086 return false; 1087 } 1088 1089 lldb_private::FileSpecList 1090 ObjectFileELF::GetDebugSymbolFilePaths() 1091 { 1092 FileSpecList file_spec_list; 1093 1094 if (!m_gnu_debuglink_file.empty()) 1095 { 1096 FileSpec file_spec (m_gnu_debuglink_file.c_str(), false); 1097 file_spec_list.Append (file_spec); 1098 } 1099 return file_spec_list; 1100 } 1101 1102 uint32_t 1103 ObjectFileELF::GetDependentModules(FileSpecList &files) 1104 { 1105 size_t num_modules = ParseDependentModules(); 1106 uint32_t num_specs = 0; 1107 1108 for (unsigned i = 0; i < num_modules; ++i) 1109 { 1110 if (files.AppendIfUnique(m_filespec_ap->GetFileSpecAtIndex(i))) 1111 num_specs++; 1112 } 1113 1114 return num_specs; 1115 } 1116 1117 Address 1118 ObjectFileELF::GetImageInfoAddress(Target *target) 1119 { 1120 if (!ParseDynamicSymbols()) 1121 return Address(); 1122 1123 SectionList *section_list = GetSectionList(); 1124 if (!section_list) 1125 return Address(); 1126 1127 // Find the SHT_DYNAMIC (.dynamic) section. 1128 SectionSP dynsym_section_sp (section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true)); 1129 if (!dynsym_section_sp) 1130 return Address(); 1131 assert (dynsym_section_sp->GetObjectFile() == this); 1132 1133 user_id_t dynsym_id = dynsym_section_sp->GetID(); 1134 const ELFSectionHeaderInfo *dynsym_hdr = GetSectionHeaderByIndex(dynsym_id); 1135 if (!dynsym_hdr) 1136 return Address(); 1137 1138 for (size_t i = 0; i < m_dynamic_symbols.size(); ++i) 1139 { 1140 ELFDynamic &symbol = m_dynamic_symbols[i]; 1141 1142 if (symbol.d_tag == DT_DEBUG) 1143 { 1144 // Compute the offset as the number of previous entries plus the 1145 // size of d_tag. 1146 addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize(); 1147 return Address(dynsym_section_sp, offset); 1148 } 1149 // MIPS executables uses DT_MIPS_RLD_MAP_REL to support PIE. DT_MIPS_RLD_MAP exists in non-PIE. 1150 else if ((symbol.d_tag == DT_MIPS_RLD_MAP || symbol.d_tag == DT_MIPS_RLD_MAP_REL) && target) 1151 { 1152 addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize(); 1153 addr_t dyn_base = dynsym_section_sp->GetLoadBaseAddress(target); 1154 if (dyn_base == LLDB_INVALID_ADDRESS) 1155 return Address(); 1156 1157 Error error; 1158 if (symbol.d_tag == DT_MIPS_RLD_MAP) 1159 { 1160 // DT_MIPS_RLD_MAP tag stores an absolute address of the debug pointer. 1161 Address addr; 1162 if (target->ReadPointerFromMemory(dyn_base + offset, false, error, addr)) 1163 return addr; 1164 } 1165 if (symbol.d_tag == DT_MIPS_RLD_MAP_REL) 1166 { 1167 // DT_MIPS_RLD_MAP_REL tag stores the offset to the debug pointer, relative to the address of the tag. 1168 uint64_t rel_offset; 1169 rel_offset = target->ReadUnsignedIntegerFromMemory(dyn_base + offset, false, GetAddressByteSize(), UINT64_MAX, error); 1170 if (error.Success() && rel_offset != UINT64_MAX) 1171 { 1172 Address addr; 1173 addr_t debug_ptr_address = dyn_base + (offset - GetAddressByteSize()) + rel_offset; 1174 addr.SetOffset (debug_ptr_address); 1175 return addr; 1176 } 1177 } 1178 } 1179 } 1180 1181 return Address(); 1182 } 1183 1184 lldb_private::Address 1185 ObjectFileELF::GetEntryPointAddress () 1186 { 1187 if (m_entry_point_address.IsValid()) 1188 return m_entry_point_address; 1189 1190 if (!ParseHeader() || !IsExecutable()) 1191 return m_entry_point_address; 1192 1193 SectionList *section_list = GetSectionList(); 1194 addr_t offset = m_header.e_entry; 1195 1196 if (!section_list) 1197 m_entry_point_address.SetOffset(offset); 1198 else 1199 m_entry_point_address.ResolveAddressUsingFileSections(offset, section_list); 1200 return m_entry_point_address; 1201 } 1202 1203 //---------------------------------------------------------------------- 1204 // ParseDependentModules 1205 //---------------------------------------------------------------------- 1206 size_t 1207 ObjectFileELF::ParseDependentModules() 1208 { 1209 if (m_filespec_ap.get()) 1210 return m_filespec_ap->GetSize(); 1211 1212 m_filespec_ap.reset(new FileSpecList()); 1213 1214 if (!ParseSectionHeaders()) 1215 return 0; 1216 1217 SectionList *section_list = GetSectionList(); 1218 if (!section_list) 1219 return 0; 1220 1221 // Find the SHT_DYNAMIC section. 1222 Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get(); 1223 if (!dynsym) 1224 return 0; 1225 assert (dynsym->GetObjectFile() == this); 1226 1227 const ELFSectionHeaderInfo *header = GetSectionHeaderByIndex (dynsym->GetID()); 1228 if (!header) 1229 return 0; 1230 // sh_link: section header index of string table used by entries in the section. 1231 Section *dynstr = section_list->FindSectionByID (header->sh_link + 1).get(); 1232 if (!dynstr) 1233 return 0; 1234 1235 DataExtractor dynsym_data; 1236 DataExtractor dynstr_data; 1237 if (ReadSectionData(dynsym, dynsym_data) && 1238 ReadSectionData(dynstr, dynstr_data)) 1239 { 1240 ELFDynamic symbol; 1241 const lldb::offset_t section_size = dynsym_data.GetByteSize(); 1242 lldb::offset_t offset = 0; 1243 1244 // The only type of entries we are concerned with are tagged DT_NEEDED, 1245 // yielding the name of a required library. 1246 while (offset < section_size) 1247 { 1248 if (!symbol.Parse(dynsym_data, &offset)) 1249 break; 1250 1251 if (symbol.d_tag != DT_NEEDED) 1252 continue; 1253 1254 uint32_t str_index = static_cast<uint32_t>(symbol.d_val); 1255 const char *lib_name = dynstr_data.PeekCStr(str_index); 1256 m_filespec_ap->Append(FileSpec(lib_name, true)); 1257 } 1258 } 1259 1260 return m_filespec_ap->GetSize(); 1261 } 1262 1263 //---------------------------------------------------------------------- 1264 // GetProgramHeaderInfo 1265 //---------------------------------------------------------------------- 1266 size_t 1267 ObjectFileELF::GetProgramHeaderInfo(ProgramHeaderColl &program_headers, 1268 const SetDataFunction &set_data, 1269 const ELFHeader &header) 1270 { 1271 // We have already parsed the program headers 1272 if (!program_headers.empty()) 1273 return program_headers.size(); 1274 1275 // If there are no program headers to read we are done. 1276 if (header.e_phnum == 0) 1277 return 0; 1278 1279 program_headers.resize(header.e_phnum); 1280 if (program_headers.size() != header.e_phnum) 1281 return 0; 1282 1283 const size_t ph_size = header.e_phnum * header.e_phentsize; 1284 const elf_off ph_offset = header.e_phoff; 1285 DataExtractor data; 1286 if (set_data(data, ph_offset, ph_size) != ph_size) 1287 return 0; 1288 1289 uint32_t idx; 1290 lldb::offset_t offset; 1291 for (idx = 0, offset = 0; idx < header.e_phnum; ++idx) 1292 { 1293 if (program_headers[idx].Parse(data, &offset) == false) 1294 break; 1295 } 1296 1297 if (idx < program_headers.size()) 1298 program_headers.resize(idx); 1299 1300 return program_headers.size(); 1301 1302 } 1303 1304 //---------------------------------------------------------------------- 1305 // ParseProgramHeaders 1306 //---------------------------------------------------------------------- 1307 size_t 1308 ObjectFileELF::ParseProgramHeaders() 1309 { 1310 using namespace std::placeholders; 1311 return GetProgramHeaderInfo(m_program_headers, 1312 std::bind(&ObjectFileELF::SetDataWithReadMemoryFallback, this, _1, _2, _3), 1313 m_header); 1314 } 1315 1316 lldb_private::Error 1317 ObjectFileELF::RefineModuleDetailsFromNote (lldb_private::DataExtractor &data, lldb_private::ArchSpec &arch_spec, lldb_private::UUID &uuid) 1318 { 1319 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES)); 1320 Error error; 1321 1322 lldb::offset_t offset = 0; 1323 1324 while (true) 1325 { 1326 // Parse the note header. If this fails, bail out. 1327 const lldb::offset_t note_offset = offset; 1328 ELFNote note = ELFNote(); 1329 if (!note.Parse(data, &offset)) 1330 { 1331 // We're done. 1332 return error; 1333 } 1334 1335 if (log) 1336 log->Printf ("ObjectFileELF::%s parsing note name='%s', type=%" PRIu32, __FUNCTION__, note.n_name.c_str (), note.n_type); 1337 1338 // Process FreeBSD ELF notes. 1339 if ((note.n_name == LLDB_NT_OWNER_FREEBSD) && 1340 (note.n_type == LLDB_NT_FREEBSD_ABI_TAG) && 1341 (note.n_descsz == LLDB_NT_FREEBSD_ABI_SIZE)) 1342 { 1343 // Pull out the min version info. 1344 uint32_t version_info; 1345 if (data.GetU32 (&offset, &version_info, 1) == nullptr) 1346 { 1347 error.SetErrorString ("failed to read FreeBSD ABI note payload"); 1348 return error; 1349 } 1350 1351 // Convert the version info into a major/minor number. 1352 const uint32_t version_major = version_info / 100000; 1353 const uint32_t version_minor = (version_info / 1000) % 100; 1354 1355 char os_name[32]; 1356 snprintf (os_name, sizeof (os_name), "freebsd%" PRIu32 ".%" PRIu32, version_major, version_minor); 1357 1358 // Set the elf OS version to FreeBSD. Also clear the vendor. 1359 arch_spec.GetTriple ().setOSName (os_name); 1360 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1361 1362 if (log) 1363 log->Printf ("ObjectFileELF::%s detected FreeBSD %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_major, version_minor, static_cast<uint32_t> (version_info % 1000)); 1364 } 1365 // Process GNU ELF notes. 1366 else if (note.n_name == LLDB_NT_OWNER_GNU) 1367 { 1368 switch (note.n_type) 1369 { 1370 case LLDB_NT_GNU_ABI_TAG: 1371 if (note.n_descsz == LLDB_NT_GNU_ABI_SIZE) 1372 { 1373 // Pull out the min OS version supporting the ABI. 1374 uint32_t version_info[4]; 1375 if (data.GetU32 (&offset, &version_info[0], note.n_descsz / 4) == nullptr) 1376 { 1377 error.SetErrorString ("failed to read GNU ABI note payload"); 1378 return error; 1379 } 1380 1381 // Set the OS per the OS field. 1382 switch (version_info[0]) 1383 { 1384 case LLDB_NT_GNU_ABI_OS_LINUX: 1385 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Linux); 1386 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1387 if (log) 1388 log->Printf ("ObjectFileELF::%s detected Linux, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]); 1389 // FIXME we have the minimal version number, we could be propagating that. version_info[1] = OS Major, version_info[2] = OS Minor, version_info[3] = Revision. 1390 break; 1391 case LLDB_NT_GNU_ABI_OS_HURD: 1392 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::UnknownOS); 1393 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1394 if (log) 1395 log->Printf ("ObjectFileELF::%s detected Hurd (unsupported), min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]); 1396 break; 1397 case LLDB_NT_GNU_ABI_OS_SOLARIS: 1398 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Solaris); 1399 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1400 if (log) 1401 log->Printf ("ObjectFileELF::%s detected Solaris, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]); 1402 break; 1403 default: 1404 if (log) 1405 log->Printf ("ObjectFileELF::%s unrecognized OS in note, id %" PRIu32 ", min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[0], version_info[1], version_info[2], version_info[3]); 1406 break; 1407 } 1408 } 1409 break; 1410 1411 case LLDB_NT_GNU_BUILD_ID_TAG: 1412 // Only bother processing this if we don't already have the uuid set. 1413 if (!uuid.IsValid()) 1414 { 1415 // 16 bytes is UUID|MD5, 20 bytes is SHA1. Other linkers may produce a build-id of a different 1416 // length. Accept it as long as it's at least 4 bytes as it will be better than our own crc32. 1417 if (note.n_descsz >= 4 && note.n_descsz <= 20) 1418 { 1419 uint8_t uuidbuf[20]; 1420 if (data.GetU8 (&offset, &uuidbuf, note.n_descsz) == nullptr) 1421 { 1422 error.SetErrorString ("failed to read GNU_BUILD_ID note payload"); 1423 return error; 1424 } 1425 1426 // Save the build id as the UUID for the module. 1427 uuid.SetBytes (uuidbuf, note.n_descsz); 1428 } 1429 } 1430 break; 1431 } 1432 } 1433 // Process NetBSD ELF notes. 1434 else if ((note.n_name == LLDB_NT_OWNER_NETBSD) && 1435 (note.n_type == LLDB_NT_NETBSD_ABI_TAG) && 1436 (note.n_descsz == LLDB_NT_NETBSD_ABI_SIZE)) 1437 { 1438 // Pull out the min version info. 1439 uint32_t version_info; 1440 if (data.GetU32 (&offset, &version_info, 1) == nullptr) 1441 { 1442 error.SetErrorString ("failed to read NetBSD ABI note payload"); 1443 return error; 1444 } 1445 1446 // Set the elf OS version to NetBSD. Also clear the vendor. 1447 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::NetBSD); 1448 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1449 1450 if (log) 1451 log->Printf ("ObjectFileELF::%s detected NetBSD, min version constant %" PRIu32, __FUNCTION__, version_info); 1452 } 1453 // Process CSR kalimba notes 1454 else if ((note.n_type == LLDB_NT_GNU_ABI_TAG) && 1455 (note.n_name == LLDB_NT_OWNER_CSR)) 1456 { 1457 arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS); 1458 arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::CSR); 1459 1460 // TODO At some point the description string could be processed. 1461 // It could provide a steer towards the kalimba variant which 1462 // this ELF targets. 1463 if(note.n_descsz) 1464 { 1465 const char *cstr = data.GetCStr(&offset, llvm::alignTo (note.n_descsz, 4)); 1466 (void)cstr; 1467 } 1468 } 1469 else if (note.n_name == LLDB_NT_OWNER_ANDROID) 1470 { 1471 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1472 arch_spec.GetTriple().setEnvironment(llvm::Triple::EnvironmentType::Android); 1473 } 1474 else if (note.n_name == LLDB_NT_OWNER_LINUX) 1475 { 1476 // This is sometimes found in core files and usually contains extended register info 1477 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1478 } 1479 else if (note.n_name == LLDB_NT_OWNER_CORE) 1480 { 1481 // Parse the NT_FILE to look for stuff in paths to shared libraries 1482 // As the contents look like: 1483 // count = 0x000000000000000a (10) 1484 // page_size = 0x0000000000001000 (4096) 1485 // Index start end file_ofs path 1486 // ===== ------------------ ------------------ ------------------ ------------------------------------- 1487 // [ 0] 0x0000000000400000 0x0000000000401000 0x0000000000000000 /tmp/a.out 1488 // [ 1] 0x0000000000600000 0x0000000000601000 0x0000000000000000 /tmp/a.out 1489 // [ 2] 0x0000000000601000 0x0000000000602000 0x0000000000000001 /tmp/a.out 1490 // [ 3] 0x00007fa79c9ed000 0x00007fa79cba8000 0x0000000000000000 /lib/x86_64-linux-gnu/libc-2.19.so 1491 // [ 4] 0x00007fa79cba8000 0x00007fa79cda7000 0x00000000000001bb /lib/x86_64-linux-gnu/libc-2.19.so 1492 // [ 5] 0x00007fa79cda7000 0x00007fa79cdab000 0x00000000000001ba /lib/x86_64-linux-gnu/libc-2.19.so 1493 // [ 6] 0x00007fa79cdab000 0x00007fa79cdad000 0x00000000000001be /lib/x86_64-linux-gnu/libc-2.19.so 1494 // [ 7] 0x00007fa79cdb2000 0x00007fa79cdd5000 0x0000000000000000 /lib/x86_64-linux-gnu/ld-2.19.so 1495 // [ 8] 0x00007fa79cfd4000 0x00007fa79cfd5000 0x0000000000000022 /lib/x86_64-linux-gnu/ld-2.19.so 1496 // [ 9] 0x00007fa79cfd5000 0x00007fa79cfd6000 0x0000000000000023 /lib/x86_64-linux-gnu/ld-2.19.so 1497 if (note.n_type == NT_FILE) 1498 { 1499 uint64_t count = data.GetU64(&offset); 1500 offset += 8 + 3*8*count; // Skip page size and all start/end/file_ofs 1501 for (size_t i=0; i<count; ++i) 1502 { 1503 llvm::StringRef path(data.GetCStr(&offset)); 1504 if (path.startswith("/lib/x86_64-linux-gnu")) 1505 { 1506 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1507 break; 1508 } 1509 } 1510 } 1511 } 1512 1513 // Calculate the offset of the next note just in case "offset" has been used 1514 // to poke at the contents of the note data 1515 offset = note_offset + note.GetByteSize(); 1516 } 1517 1518 return error; 1519 } 1520 1521 void 1522 ObjectFileELF::ParseARMAttributes(DataExtractor &data, uint64_t length, ArchSpec &arch_spec) 1523 { 1524 lldb::offset_t Offset = 0; 1525 1526 uint8_t FormatVersion = data.GetU8(&Offset); 1527 if (FormatVersion != llvm::ARMBuildAttrs::Format_Version) 1528 return; 1529 1530 Offset = Offset + sizeof(uint32_t); // Section Length 1531 llvm::StringRef VendorName = data.GetCStr(&Offset); 1532 1533 if (VendorName != "aeabi") 1534 return; 1535 1536 if (arch_spec.GetTriple().getEnvironment() == llvm::Triple::UnknownEnvironment) 1537 arch_spec.GetTriple().setEnvironment(llvm::Triple::EABI); 1538 1539 while (Offset < length) 1540 { 1541 uint8_t Tag = data.GetU8(&Offset); 1542 uint32_t Size = data.GetU32(&Offset); 1543 1544 if (Tag != llvm::ARMBuildAttrs::File || Size == 0) 1545 continue; 1546 1547 while (Offset < length) 1548 { 1549 uint64_t Tag = data.GetULEB128(&Offset); 1550 switch (Tag) 1551 { 1552 default: 1553 if (Tag < 32) 1554 data.GetULEB128(&Offset); 1555 else if (Tag % 2 == 0) 1556 data.GetULEB128(&Offset); 1557 else 1558 data.GetCStr(&Offset); 1559 1560 break; 1561 1562 case llvm::ARMBuildAttrs::CPU_raw_name: 1563 case llvm::ARMBuildAttrs::CPU_name: 1564 data.GetCStr(&Offset); 1565 1566 break; 1567 1568 case llvm::ARMBuildAttrs::ABI_VFP_args: 1569 { 1570 uint64_t VFPArgs = data.GetULEB128(&Offset); 1571 1572 if (VFPArgs == llvm::ARMBuildAttrs::BaseAAPCS) 1573 { 1574 if (arch_spec.GetTriple().getEnvironment() == llvm::Triple::UnknownEnvironment || 1575 arch_spec.GetTriple().getEnvironment() == llvm::Triple::EABIHF) 1576 arch_spec.GetTriple().setEnvironment(llvm::Triple::EABI); 1577 1578 arch_spec.SetFlags(ArchSpec::eARM_abi_soft_float); 1579 } 1580 else if (VFPArgs == llvm::ARMBuildAttrs::HardFPAAPCS) 1581 { 1582 if (arch_spec.GetTriple().getEnvironment() == llvm::Triple::UnknownEnvironment || 1583 arch_spec.GetTriple().getEnvironment() == llvm::Triple::EABI) 1584 arch_spec.GetTriple().setEnvironment(llvm::Triple::EABIHF); 1585 1586 arch_spec.SetFlags(ArchSpec::eARM_abi_hard_float); 1587 } 1588 1589 break; 1590 } 1591 } 1592 } 1593 } 1594 } 1595 1596 //---------------------------------------------------------------------- 1597 // GetSectionHeaderInfo 1598 //---------------------------------------------------------------------- 1599 size_t 1600 ObjectFileELF::GetSectionHeaderInfo(SectionHeaderColl §ion_headers, 1601 const SetDataFunction &set_data, 1602 const elf::ELFHeader &header, 1603 lldb_private::UUID &uuid, 1604 std::string &gnu_debuglink_file, 1605 uint32_t &gnu_debuglink_crc, 1606 ArchSpec &arch_spec) 1607 { 1608 // Don't reparse the section headers if we already did that. 1609 if (!section_headers.empty()) 1610 return section_headers.size(); 1611 1612 // Only initialize the arch_spec to okay defaults if they're not already set. 1613 // We'll refine this with note data as we parse the notes. 1614 if (arch_spec.GetTriple ().getOS () == llvm::Triple::OSType::UnknownOS) 1615 { 1616 llvm::Triple::OSType ostype; 1617 llvm::Triple::OSType spec_ostype; 1618 const uint32_t sub_type = subTypeFromElfHeader(header); 1619 arch_spec.SetArchitecture (eArchTypeELF, header.e_machine, sub_type, header.e_ident[EI_OSABI]); 1620 // 1621 // Validate if it is ok to remove GetOsFromOSABI 1622 GetOsFromOSABI (header.e_ident[EI_OSABI], ostype); 1623 spec_ostype = arch_spec.GetTriple ().getOS (); 1624 assert(spec_ostype == ostype); 1625 } 1626 1627 if (arch_spec.GetMachine() == llvm::Triple::mips || arch_spec.GetMachine() == llvm::Triple::mipsel 1628 || arch_spec.GetMachine() == llvm::Triple::mips64 || arch_spec.GetMachine() == llvm::Triple::mips64el) 1629 { 1630 switch (header.e_flags & llvm::ELF::EF_MIPS_ARCH_ASE) 1631 { 1632 case llvm::ELF::EF_MIPS_MICROMIPS: 1633 arch_spec.SetFlags (ArchSpec::eMIPSAse_micromips); 1634 break; 1635 case llvm::ELF::EF_MIPS_ARCH_ASE_M16: 1636 arch_spec.SetFlags (ArchSpec::eMIPSAse_mips16); 1637 break; 1638 case llvm::ELF::EF_MIPS_ARCH_ASE_MDMX: 1639 arch_spec.SetFlags (ArchSpec::eMIPSAse_mdmx); 1640 break; 1641 default: 1642 break; 1643 } 1644 } 1645 1646 if (arch_spec.GetMachine() == llvm::Triple::arm || 1647 arch_spec.GetMachine() == llvm::Triple::thumb) 1648 { 1649 if (header.e_flags & llvm::ELF::EF_ARM_SOFT_FLOAT) 1650 arch_spec.SetFlags (ArchSpec::eARM_abi_soft_float); 1651 else if (header.e_flags & llvm::ELF::EF_ARM_VFP_FLOAT) 1652 arch_spec.SetFlags (ArchSpec::eARM_abi_hard_float); 1653 } 1654 1655 // If there are no section headers we are done. 1656 if (header.e_shnum == 0) 1657 return 0; 1658 1659 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES)); 1660 1661 section_headers.resize(header.e_shnum); 1662 if (section_headers.size() != header.e_shnum) 1663 return 0; 1664 1665 const size_t sh_size = header.e_shnum * header.e_shentsize; 1666 const elf_off sh_offset = header.e_shoff; 1667 DataExtractor sh_data; 1668 if (set_data (sh_data, sh_offset, sh_size) != sh_size) 1669 return 0; 1670 1671 uint32_t idx; 1672 lldb::offset_t offset; 1673 for (idx = 0, offset = 0; idx < header.e_shnum; ++idx) 1674 { 1675 if (section_headers[idx].Parse(sh_data, &offset) == false) 1676 break; 1677 } 1678 if (idx < section_headers.size()) 1679 section_headers.resize(idx); 1680 1681 const unsigned strtab_idx = header.e_shstrndx; 1682 if (strtab_idx && strtab_idx < section_headers.size()) 1683 { 1684 const ELFSectionHeaderInfo &sheader = section_headers[strtab_idx]; 1685 const size_t byte_size = sheader.sh_size; 1686 const Elf64_Off offset = sheader.sh_offset; 1687 lldb_private::DataExtractor shstr_data; 1688 1689 if (set_data (shstr_data, offset, byte_size) == byte_size) 1690 { 1691 for (SectionHeaderCollIter I = section_headers.begin(); 1692 I != section_headers.end(); ++I) 1693 { 1694 static ConstString g_sect_name_gnu_debuglink (".gnu_debuglink"); 1695 const ELFSectionHeaderInfo &sheader = *I; 1696 const uint64_t section_size = sheader.sh_type == SHT_NOBITS ? 0 : sheader.sh_size; 1697 ConstString name(shstr_data.PeekCStr(I->sh_name)); 1698 1699 I->section_name = name; 1700 1701 if (arch_spec.IsMIPS()) 1702 { 1703 uint32_t arch_flags = arch_spec.GetFlags (); 1704 DataExtractor data; 1705 if (sheader.sh_type == SHT_MIPS_ABIFLAGS) 1706 { 1707 1708 if (section_size && (set_data (data, sheader.sh_offset, section_size) == section_size)) 1709 { 1710 // MIPS ASE Mask is at offset 12 in MIPS.abiflags section 1711 lldb::offset_t offset = 12; // MIPS ABI Flags Version: 0 1712 arch_flags |= data.GetU32 (&offset); 1713 1714 // The floating point ABI is at offset 7 1715 offset = 7; 1716 switch (data.GetU8 (&offset)) 1717 { 1718 case llvm::Mips::Val_GNU_MIPS_ABI_FP_ANY : 1719 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_ANY; 1720 break; 1721 case llvm::Mips::Val_GNU_MIPS_ABI_FP_DOUBLE : 1722 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_DOUBLE; 1723 break; 1724 case llvm::Mips::Val_GNU_MIPS_ABI_FP_SINGLE : 1725 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_SINGLE; 1726 break; 1727 case llvm::Mips::Val_GNU_MIPS_ABI_FP_SOFT : 1728 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_SOFT; 1729 break; 1730 case llvm::Mips::Val_GNU_MIPS_ABI_FP_OLD_64 : 1731 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_OLD_64; 1732 break; 1733 case llvm::Mips::Val_GNU_MIPS_ABI_FP_XX : 1734 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_XX; 1735 break; 1736 case llvm::Mips::Val_GNU_MIPS_ABI_FP_64 : 1737 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_64; 1738 break; 1739 case llvm::Mips::Val_GNU_MIPS_ABI_FP_64A : 1740 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_64A; 1741 break; 1742 } 1743 } 1744 } 1745 // Settings appropriate ArchSpec ABI Flags 1746 switch(header.e_flags & llvm::ELF::EF_MIPS_ABI) 1747 { 1748 case llvm::ELF::EF_MIPS_ABI_O32: 1749 arch_flags |= lldb_private::ArchSpec::eMIPSABI_O32; 1750 break; 1751 case EF_MIPS_ABI_O64: 1752 arch_flags |= lldb_private::ArchSpec::eMIPSABI_O64; 1753 break; 1754 case EF_MIPS_ABI_EABI32: 1755 arch_flags |= lldb_private::ArchSpec::eMIPSABI_EABI32; 1756 break; 1757 case EF_MIPS_ABI_EABI64: 1758 arch_flags |= lldb_private::ArchSpec::eMIPSABI_EABI64; 1759 break; 1760 default: 1761 // ABI Mask doesn't cover N32 and N64 ABI. 1762 if (header.e_ident[EI_CLASS] == llvm::ELF::ELFCLASS64) 1763 arch_flags |= lldb_private::ArchSpec::eMIPSABI_N64; 1764 else if (header.e_flags && llvm::ELF::EF_MIPS_ABI2) 1765 arch_flags |= lldb_private::ArchSpec::eMIPSABI_N32; 1766 break; 1767 } 1768 arch_spec.SetFlags (arch_flags); 1769 } 1770 1771 if (arch_spec.GetMachine() == llvm::Triple::arm || arch_spec.GetMachine() == llvm::Triple::thumb) 1772 { 1773 DataExtractor data; 1774 1775 if (sheader.sh_type == SHT_ARM_ATTRIBUTES && section_size != 0 && 1776 set_data(data, sheader.sh_offset, section_size) == section_size) 1777 ParseARMAttributes(data, section_size, arch_spec); 1778 } 1779 1780 if (name == g_sect_name_gnu_debuglink) 1781 { 1782 DataExtractor data; 1783 if (section_size && (set_data (data, sheader.sh_offset, section_size) == section_size)) 1784 { 1785 lldb::offset_t gnu_debuglink_offset = 0; 1786 gnu_debuglink_file = data.GetCStr (&gnu_debuglink_offset); 1787 gnu_debuglink_offset = llvm::alignTo (gnu_debuglink_offset, 4); 1788 data.GetU32 (&gnu_debuglink_offset, &gnu_debuglink_crc, 1); 1789 } 1790 } 1791 1792 // Process ELF note section entries. 1793 bool is_note_header = (sheader.sh_type == SHT_NOTE); 1794 1795 // The section header ".note.android.ident" is stored as a 1796 // PROGBITS type header but it is actually a note header. 1797 static ConstString g_sect_name_android_ident (".note.android.ident"); 1798 if (!is_note_header && name == g_sect_name_android_ident) 1799 is_note_header = true; 1800 1801 if (is_note_header) 1802 { 1803 // Allow notes to refine module info. 1804 DataExtractor data; 1805 if (section_size && (set_data (data, sheader.sh_offset, section_size) == section_size)) 1806 { 1807 Error error = RefineModuleDetailsFromNote (data, arch_spec, uuid); 1808 if (error.Fail ()) 1809 { 1810 if (log) 1811 log->Printf ("ObjectFileELF::%s ELF note processing failed: %s", __FUNCTION__, error.AsCString ()); 1812 } 1813 } 1814 } 1815 } 1816 1817 // Make any unknown triple components to be unspecified unknowns. 1818 if (arch_spec.GetTriple().getVendor() == llvm::Triple::UnknownVendor) 1819 arch_spec.GetTriple().setVendorName (llvm::StringRef()); 1820 if (arch_spec.GetTriple().getOS() == llvm::Triple::UnknownOS) 1821 arch_spec.GetTriple().setOSName (llvm::StringRef()); 1822 1823 return section_headers.size(); 1824 } 1825 } 1826 1827 section_headers.clear(); 1828 return 0; 1829 } 1830 1831 size_t 1832 ObjectFileELF::GetProgramHeaderCount() 1833 { 1834 return ParseProgramHeaders(); 1835 } 1836 1837 const elf::ELFProgramHeader * 1838 ObjectFileELF::GetProgramHeaderByIndex(lldb::user_id_t id) 1839 { 1840 if (!id || !ParseProgramHeaders()) 1841 return NULL; 1842 1843 if (--id < m_program_headers.size()) 1844 return &m_program_headers[id]; 1845 1846 return NULL; 1847 } 1848 1849 DataExtractor 1850 ObjectFileELF::GetSegmentDataByIndex(lldb::user_id_t id) 1851 { 1852 const elf::ELFProgramHeader *segment_header = GetProgramHeaderByIndex(id); 1853 if (segment_header == NULL) 1854 return DataExtractor(); 1855 return DataExtractor(m_data, segment_header->p_offset, segment_header->p_filesz); 1856 } 1857 1858 std::string 1859 ObjectFileELF::StripLinkerSymbolAnnotations(llvm::StringRef symbol_name) const 1860 { 1861 size_t pos = symbol_name.find('@'); 1862 return symbol_name.substr(0, pos).str(); 1863 } 1864 1865 //---------------------------------------------------------------------- 1866 // ParseSectionHeaders 1867 //---------------------------------------------------------------------- 1868 size_t 1869 ObjectFileELF::ParseSectionHeaders() 1870 { 1871 using namespace std::placeholders; 1872 1873 return GetSectionHeaderInfo(m_section_headers, 1874 std::bind(&ObjectFileELF::SetDataWithReadMemoryFallback, this, _1, _2, _3), 1875 m_header, 1876 m_uuid, 1877 m_gnu_debuglink_file, 1878 m_gnu_debuglink_crc, 1879 m_arch_spec); 1880 } 1881 1882 lldb::offset_t 1883 ObjectFileELF::SetData(const lldb_private::DataExtractor &src, lldb_private::DataExtractor &dst, lldb::offset_t offset, lldb::offset_t length) 1884 { 1885 return dst.SetData(src, offset, length); 1886 } 1887 1888 lldb::offset_t 1889 ObjectFileELF::SetDataWithReadMemoryFallback(lldb_private::DataExtractor &dst, lldb::offset_t offset, lldb::offset_t length) 1890 { 1891 if (offset + length <= m_data.GetByteSize()) 1892 return dst.SetData(m_data, offset, length); 1893 1894 const auto process_sp = m_process_wp.lock(); 1895 if (process_sp != nullptr) 1896 { 1897 addr_t file_size = offset + length; 1898 1899 DataBufferSP data_sp = ReadMemory(process_sp, m_memory_addr, file_size); 1900 if (!data_sp) 1901 return false; 1902 m_data.SetData(data_sp, 0, file_size); 1903 } 1904 1905 return dst.SetData(m_data, offset, length); 1906 } 1907 1908 const ObjectFileELF::ELFSectionHeaderInfo * 1909 ObjectFileELF::GetSectionHeaderByIndex(lldb::user_id_t id) 1910 { 1911 if (!id || !ParseSectionHeaders()) 1912 return NULL; 1913 1914 if (--id < m_section_headers.size()) 1915 return &m_section_headers[id]; 1916 1917 return NULL; 1918 } 1919 1920 lldb::user_id_t 1921 ObjectFileELF::GetSectionIndexByName(const char* name) 1922 { 1923 if (!name || !name[0] || !ParseSectionHeaders()) 1924 return 0; 1925 for (size_t i = 1; i < m_section_headers.size(); ++i) 1926 if (m_section_headers[i].section_name == ConstString(name)) 1927 return i; 1928 return 0; 1929 } 1930 1931 void 1932 ObjectFileELF::CreateSections(SectionList &unified_section_list) 1933 { 1934 if (!m_sections_ap.get() && ParseSectionHeaders()) 1935 { 1936 m_sections_ap.reset(new SectionList()); 1937 1938 for (SectionHeaderCollIter I = m_section_headers.begin(); 1939 I != m_section_headers.end(); ++I) 1940 { 1941 const ELFSectionHeaderInfo &header = *I; 1942 1943 ConstString& name = I->section_name; 1944 const uint64_t file_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size; 1945 const uint64_t vm_size = header.sh_flags & SHF_ALLOC ? header.sh_size : 0; 1946 1947 static ConstString g_sect_name_text (".text"); 1948 static ConstString g_sect_name_data (".data"); 1949 static ConstString g_sect_name_bss (".bss"); 1950 static ConstString g_sect_name_tdata (".tdata"); 1951 static ConstString g_sect_name_tbss (".tbss"); 1952 static ConstString g_sect_name_dwarf_debug_abbrev (".debug_abbrev"); 1953 static ConstString g_sect_name_dwarf_debug_addr (".debug_addr"); 1954 static ConstString g_sect_name_dwarf_debug_aranges (".debug_aranges"); 1955 static ConstString g_sect_name_dwarf_debug_frame (".debug_frame"); 1956 static ConstString g_sect_name_dwarf_debug_info (".debug_info"); 1957 static ConstString g_sect_name_dwarf_debug_line (".debug_line"); 1958 static ConstString g_sect_name_dwarf_debug_loc (".debug_loc"); 1959 static ConstString g_sect_name_dwarf_debug_macinfo (".debug_macinfo"); 1960 static ConstString g_sect_name_dwarf_debug_macro (".debug_macro"); 1961 static ConstString g_sect_name_dwarf_debug_pubnames (".debug_pubnames"); 1962 static ConstString g_sect_name_dwarf_debug_pubtypes (".debug_pubtypes"); 1963 static ConstString g_sect_name_dwarf_debug_ranges (".debug_ranges"); 1964 static ConstString g_sect_name_dwarf_debug_str (".debug_str"); 1965 static ConstString g_sect_name_dwarf_debug_str_offsets (".debug_str_offsets"); 1966 static ConstString g_sect_name_dwarf_debug_abbrev_dwo (".debug_abbrev.dwo"); 1967 static ConstString g_sect_name_dwarf_debug_info_dwo (".debug_info.dwo"); 1968 static ConstString g_sect_name_dwarf_debug_line_dwo (".debug_line.dwo"); 1969 static ConstString g_sect_name_dwarf_debug_macro_dwo (".debug_macro.dwo"); 1970 static ConstString g_sect_name_dwarf_debug_loc_dwo (".debug_loc.dwo"); 1971 static ConstString g_sect_name_dwarf_debug_str_dwo (".debug_str.dwo"); 1972 static ConstString g_sect_name_dwarf_debug_str_offsets_dwo (".debug_str_offsets.dwo"); 1973 static ConstString g_sect_name_eh_frame (".eh_frame"); 1974 static ConstString g_sect_name_arm_exidx (".ARM.exidx"); 1975 static ConstString g_sect_name_arm_extab (".ARM.extab"); 1976 static ConstString g_sect_name_go_symtab (".gosymtab"); 1977 1978 SectionType sect_type = eSectionTypeOther; 1979 1980 bool is_thread_specific = false; 1981 1982 if (name == g_sect_name_text) sect_type = eSectionTypeCode; 1983 else if (name == g_sect_name_data) sect_type = eSectionTypeData; 1984 else if (name == g_sect_name_bss) sect_type = eSectionTypeZeroFill; 1985 else if (name == g_sect_name_tdata) 1986 { 1987 sect_type = eSectionTypeData; 1988 is_thread_specific = true; 1989 } 1990 else if (name == g_sect_name_tbss) 1991 { 1992 sect_type = eSectionTypeZeroFill; 1993 is_thread_specific = true; 1994 } 1995 // .debug_abbrev – Abbreviations used in the .debug_info section 1996 // .debug_aranges – Lookup table for mapping addresses to compilation units 1997 // .debug_frame – Call frame information 1998 // .debug_info – The core DWARF information section 1999 // .debug_line – Line number information 2000 // .debug_loc – Location lists used in DW_AT_location attributes 2001 // .debug_macinfo – Macro information 2002 // .debug_pubnames – Lookup table for mapping object and function names to compilation units 2003 // .debug_pubtypes – Lookup table for mapping type names to compilation units 2004 // .debug_ranges – Address ranges used in DW_AT_ranges attributes 2005 // .debug_str – String table used in .debug_info 2006 // MISSING? .gnu_debugdata - "mini debuginfo / MiniDebugInfo" section, http://sourceware.org/gdb/onlinedocs/gdb/MiniDebugInfo.html 2007 // MISSING? .debug-index - http://src.chromium.org/viewvc/chrome/trunk/src/build/gdb-add-index?pathrev=144644 2008 // MISSING? .debug_types - Type descriptions from DWARF 4? See http://gcc.gnu.org/wiki/DwarfSeparateTypeInfo 2009 else if (name == g_sect_name_dwarf_debug_abbrev) sect_type = eSectionTypeDWARFDebugAbbrev; 2010 else if (name == g_sect_name_dwarf_debug_addr) sect_type = eSectionTypeDWARFDebugAddr; 2011 else if (name == g_sect_name_dwarf_debug_aranges) sect_type = eSectionTypeDWARFDebugAranges; 2012 else if (name == g_sect_name_dwarf_debug_frame) sect_type = eSectionTypeDWARFDebugFrame; 2013 else if (name == g_sect_name_dwarf_debug_info) sect_type = eSectionTypeDWARFDebugInfo; 2014 else if (name == g_sect_name_dwarf_debug_line) sect_type = eSectionTypeDWARFDebugLine; 2015 else if (name == g_sect_name_dwarf_debug_loc) sect_type = eSectionTypeDWARFDebugLoc; 2016 else if (name == g_sect_name_dwarf_debug_macinfo) sect_type = eSectionTypeDWARFDebugMacInfo; 2017 else if (name == g_sect_name_dwarf_debug_macro) sect_type = eSectionTypeDWARFDebugMacro; 2018 else if (name == g_sect_name_dwarf_debug_pubnames) sect_type = eSectionTypeDWARFDebugPubNames; 2019 else if (name == g_sect_name_dwarf_debug_pubtypes) sect_type = eSectionTypeDWARFDebugPubTypes; 2020 else if (name == g_sect_name_dwarf_debug_ranges) sect_type = eSectionTypeDWARFDebugRanges; 2021 else if (name == g_sect_name_dwarf_debug_str) sect_type = eSectionTypeDWARFDebugStr; 2022 else if (name == g_sect_name_dwarf_debug_str_offsets) sect_type = eSectionTypeDWARFDebugStrOffsets; 2023 else if (name == g_sect_name_dwarf_debug_abbrev_dwo) sect_type = eSectionTypeDWARFDebugAbbrev; 2024 else if (name == g_sect_name_dwarf_debug_info_dwo) sect_type = eSectionTypeDWARFDebugInfo; 2025 else if (name == g_sect_name_dwarf_debug_line_dwo) sect_type = eSectionTypeDWARFDebugLine; 2026 else if (name == g_sect_name_dwarf_debug_macro_dwo) sect_type = eSectionTypeDWARFDebugMacro; 2027 else if (name == g_sect_name_dwarf_debug_loc_dwo) sect_type = eSectionTypeDWARFDebugLoc; 2028 else if (name == g_sect_name_dwarf_debug_str_dwo) sect_type = eSectionTypeDWARFDebugStr; 2029 else if (name == g_sect_name_dwarf_debug_str_offsets_dwo) sect_type = eSectionTypeDWARFDebugStrOffsets; 2030 else if (name == g_sect_name_eh_frame) sect_type = eSectionTypeEHFrame; 2031 else if (name == g_sect_name_arm_exidx) sect_type = eSectionTypeARMexidx; 2032 else if (name == g_sect_name_arm_extab) sect_type = eSectionTypeARMextab; 2033 else if (name == g_sect_name_go_symtab) sect_type = eSectionTypeGoSymtab; 2034 2035 switch (header.sh_type) 2036 { 2037 case SHT_SYMTAB: 2038 assert (sect_type == eSectionTypeOther); 2039 sect_type = eSectionTypeELFSymbolTable; 2040 break; 2041 case SHT_DYNSYM: 2042 assert (sect_type == eSectionTypeOther); 2043 sect_type = eSectionTypeELFDynamicSymbols; 2044 break; 2045 case SHT_RELA: 2046 case SHT_REL: 2047 assert (sect_type == eSectionTypeOther); 2048 sect_type = eSectionTypeELFRelocationEntries; 2049 break; 2050 case SHT_DYNAMIC: 2051 assert (sect_type == eSectionTypeOther); 2052 sect_type = eSectionTypeELFDynamicLinkInfo; 2053 break; 2054 } 2055 2056 if (eSectionTypeOther == sect_type) 2057 { 2058 // the kalimba toolchain assumes that ELF section names are free-form. It does 2059 // support linkscripts which (can) give rise to various arbitrarily named 2060 // sections being "Code" or "Data". 2061 sect_type = kalimbaSectionType(m_header, header); 2062 } 2063 2064 const uint32_t target_bytes_size = 2065 (eSectionTypeData == sect_type || eSectionTypeZeroFill == sect_type) ? 2066 m_arch_spec.GetDataByteSize() : 2067 eSectionTypeCode == sect_type ? 2068 m_arch_spec.GetCodeByteSize() : 1; 2069 2070 elf::elf_xword log2align = (header.sh_addralign==0) 2071 ? 0 2072 : llvm::Log2_64(header.sh_addralign); 2073 SectionSP section_sp (new Section(GetModule(), // Module to which this section belongs. 2074 this, // ObjectFile to which this section belongs and should read section data from. 2075 SectionIndex(I), // Section ID. 2076 name, // Section name. 2077 sect_type, // Section type. 2078 header.sh_addr, // VM address. 2079 vm_size, // VM size in bytes of this section. 2080 header.sh_offset, // Offset of this section in the file. 2081 file_size, // Size of the section as found in the file. 2082 log2align, // Alignment of the section 2083 header.sh_flags, // Flags for this section. 2084 target_bytes_size));// Number of host bytes per target byte 2085 2086 if (is_thread_specific) 2087 section_sp->SetIsThreadSpecific (is_thread_specific); 2088 m_sections_ap->AddSection(section_sp); 2089 } 2090 } 2091 2092 if (m_sections_ap.get()) 2093 { 2094 if (GetType() == eTypeDebugInfo) 2095 { 2096 static const SectionType g_sections[] = 2097 { 2098 eSectionTypeDWARFDebugAbbrev, 2099 eSectionTypeDWARFDebugAddr, 2100 eSectionTypeDWARFDebugAranges, 2101 eSectionTypeDWARFDebugFrame, 2102 eSectionTypeDWARFDebugInfo, 2103 eSectionTypeDWARFDebugLine, 2104 eSectionTypeDWARFDebugLoc, 2105 eSectionTypeDWARFDebugMacInfo, 2106 eSectionTypeDWARFDebugPubNames, 2107 eSectionTypeDWARFDebugPubTypes, 2108 eSectionTypeDWARFDebugRanges, 2109 eSectionTypeDWARFDebugStr, 2110 eSectionTypeDWARFDebugStrOffsets, 2111 eSectionTypeELFSymbolTable, 2112 }; 2113 SectionList *elf_section_list = m_sections_ap.get(); 2114 for (size_t idx = 0; idx < sizeof(g_sections) / sizeof(g_sections[0]); ++idx) 2115 { 2116 SectionType section_type = g_sections[idx]; 2117 SectionSP section_sp (elf_section_list->FindSectionByType (section_type, true)); 2118 if (section_sp) 2119 { 2120 SectionSP module_section_sp (unified_section_list.FindSectionByType (section_type, true)); 2121 if (module_section_sp) 2122 unified_section_list.ReplaceSection (module_section_sp->GetID(), section_sp); 2123 else 2124 unified_section_list.AddSection (section_sp); 2125 } 2126 } 2127 } 2128 else 2129 { 2130 unified_section_list = *m_sections_ap; 2131 } 2132 } 2133 } 2134 2135 // Find the arm/aarch64 mapping symbol character in the given symbol name. Mapping symbols have the 2136 // form of "$<char>[.<any>]*". Additionally we recognize cases when the mapping symbol prefixed by 2137 // an arbitrary string because if a symbol prefix added to each symbol in the object file with 2138 // objcopy then the mapping symbols are also prefixed. 2139 static char 2140 FindArmAarch64MappingSymbol(const char* symbol_name) 2141 { 2142 if (!symbol_name) 2143 return '\0'; 2144 2145 const char* dollar_pos = ::strchr(symbol_name, '$'); 2146 if (!dollar_pos || dollar_pos[1] == '\0') 2147 return '\0'; 2148 2149 if (dollar_pos[2] == '\0' || dollar_pos[2] == '.') 2150 return dollar_pos[1]; 2151 return '\0'; 2152 } 2153 2154 #define STO_MIPS_ISA (3 << 6) 2155 #define STO_MICROMIPS (2 << 6) 2156 #define IS_MICROMIPS(ST_OTHER) (((ST_OTHER) & STO_MIPS_ISA) == STO_MICROMIPS) 2157 2158 // private 2159 unsigned 2160 ObjectFileELF::ParseSymbols (Symtab *symtab, 2161 user_id_t start_id, 2162 SectionList *section_list, 2163 const size_t num_symbols, 2164 const DataExtractor &symtab_data, 2165 const DataExtractor &strtab_data) 2166 { 2167 ELFSymbol symbol; 2168 lldb::offset_t offset = 0; 2169 2170 static ConstString text_section_name(".text"); 2171 static ConstString init_section_name(".init"); 2172 static ConstString fini_section_name(".fini"); 2173 static ConstString ctors_section_name(".ctors"); 2174 static ConstString dtors_section_name(".dtors"); 2175 2176 static ConstString data_section_name(".data"); 2177 static ConstString rodata_section_name(".rodata"); 2178 static ConstString rodata1_section_name(".rodata1"); 2179 static ConstString data2_section_name(".data1"); 2180 static ConstString bss_section_name(".bss"); 2181 static ConstString opd_section_name(".opd"); // For ppc64 2182 2183 // On Android the oatdata and the oatexec symbols in system@[email protected] covers the full 2184 // .text section what causes issues with displaying unusable symbol name to the user and very 2185 // slow unwinding speed because the instruction emulation based unwind plans try to emulate all 2186 // instructions in these symbols. Don't add these symbols to the symbol list as they have no 2187 // use for the debugger and they are causing a lot of trouble. 2188 // Filtering can't be restricted to Android because this special object file don't contain the 2189 // note section specifying the environment to Android but the custom extension and file name 2190 // makes it highly unlikely that this will collide with anything else. 2191 bool skip_oatdata_oatexec = m_file.GetFilename() == ConstString("system@[email protected]"); 2192 2193 ArchSpec arch; 2194 GetArchitecture(arch); 2195 ModuleSP module_sp(GetModule()); 2196 SectionList* module_section_list = module_sp ? module_sp->GetSectionList() : nullptr; 2197 2198 // Local cache to avoid doing a FindSectionByName for each symbol. The "const char*" key must 2199 // came from a ConstString object so they can be compared by pointer 2200 std::unordered_map<const char*, lldb::SectionSP> section_name_to_section; 2201 2202 unsigned i; 2203 for (i = 0; i < num_symbols; ++i) 2204 { 2205 if (symbol.Parse(symtab_data, &offset) == false) 2206 break; 2207 2208 const char *symbol_name = strtab_data.PeekCStr(symbol.st_name); 2209 2210 // No need to add non-section symbols that have no names 2211 if (symbol.getType() != STT_SECTION && 2212 (symbol_name == NULL || symbol_name[0] == '\0')) 2213 continue; 2214 2215 // Skipping oatdata and oatexec sections if it is requested. See details above the 2216 // definition of skip_oatdata_oatexec for the reasons. 2217 if (skip_oatdata_oatexec && (::strcmp(symbol_name, "oatdata") == 0 || ::strcmp(symbol_name, "oatexec") == 0)) 2218 continue; 2219 2220 SectionSP symbol_section_sp; 2221 SymbolType symbol_type = eSymbolTypeInvalid; 2222 Elf64_Half section_idx = symbol.st_shndx; 2223 2224 switch (section_idx) 2225 { 2226 case SHN_ABS: 2227 symbol_type = eSymbolTypeAbsolute; 2228 break; 2229 case SHN_UNDEF: 2230 symbol_type = eSymbolTypeUndefined; 2231 break; 2232 default: 2233 symbol_section_sp = section_list->GetSectionAtIndex(section_idx); 2234 break; 2235 } 2236 2237 // If a symbol is undefined do not process it further even if it has a STT type 2238 if (symbol_type != eSymbolTypeUndefined) 2239 { 2240 switch (symbol.getType()) 2241 { 2242 default: 2243 case STT_NOTYPE: 2244 // The symbol's type is not specified. 2245 break; 2246 2247 case STT_OBJECT: 2248 // The symbol is associated with a data object, such as a variable, 2249 // an array, etc. 2250 symbol_type = eSymbolTypeData; 2251 break; 2252 2253 case STT_FUNC: 2254 // The symbol is associated with a function or other executable code. 2255 symbol_type = eSymbolTypeCode; 2256 break; 2257 2258 case STT_SECTION: 2259 // The symbol is associated with a section. Symbol table entries of 2260 // this type exist primarily for relocation and normally have 2261 // STB_LOCAL binding. 2262 break; 2263 2264 case STT_FILE: 2265 // Conventionally, the symbol's name gives the name of the source 2266 // file associated with the object file. A file symbol has STB_LOCAL 2267 // binding, its section index is SHN_ABS, and it precedes the other 2268 // STB_LOCAL symbols for the file, if it is present. 2269 symbol_type = eSymbolTypeSourceFile; 2270 break; 2271 2272 case STT_GNU_IFUNC: 2273 // The symbol is associated with an indirect function. The actual 2274 // function will be resolved if it is referenced. 2275 symbol_type = eSymbolTypeResolver; 2276 break; 2277 } 2278 } 2279 2280 if (symbol_type == eSymbolTypeInvalid && symbol.getType() != STT_SECTION) 2281 { 2282 if (symbol_section_sp) 2283 { 2284 const ConstString §_name = symbol_section_sp->GetName(); 2285 if (sect_name == text_section_name || 2286 sect_name == init_section_name || 2287 sect_name == fini_section_name || 2288 sect_name == ctors_section_name || 2289 sect_name == dtors_section_name) 2290 { 2291 symbol_type = eSymbolTypeCode; 2292 } 2293 else if (sect_name == data_section_name || 2294 sect_name == data2_section_name || 2295 sect_name == rodata_section_name || 2296 sect_name == rodata1_section_name || 2297 sect_name == bss_section_name) 2298 { 2299 symbol_type = eSymbolTypeData; 2300 } 2301 } 2302 } 2303 2304 int64_t symbol_value_offset = 0; 2305 uint32_t additional_flags = 0; 2306 2307 if (arch.IsValid()) 2308 { 2309 if (arch.GetMachine() == llvm::Triple::arm) 2310 { 2311 if (symbol.getBinding() == STB_LOCAL) 2312 { 2313 char mapping_symbol = FindArmAarch64MappingSymbol(symbol_name); 2314 if (symbol_type == eSymbolTypeCode) 2315 { 2316 switch (mapping_symbol) 2317 { 2318 case 'a': 2319 // $a[.<any>]* - marks an ARM instruction sequence 2320 m_address_class_map[symbol.st_value] = eAddressClassCode; 2321 break; 2322 case 'b': 2323 case 't': 2324 // $b[.<any>]* - marks a THUMB BL instruction sequence 2325 // $t[.<any>]* - marks a THUMB instruction sequence 2326 m_address_class_map[symbol.st_value] = eAddressClassCodeAlternateISA; 2327 break; 2328 case 'd': 2329 // $d[.<any>]* - marks a data item sequence (e.g. lit pool) 2330 m_address_class_map[symbol.st_value] = eAddressClassData; 2331 break; 2332 } 2333 } 2334 if (mapping_symbol) 2335 continue; 2336 } 2337 } 2338 else if (arch.GetMachine() == llvm::Triple::aarch64) 2339 { 2340 if (symbol.getBinding() == STB_LOCAL) 2341 { 2342 char mapping_symbol = FindArmAarch64MappingSymbol(symbol_name); 2343 if (symbol_type == eSymbolTypeCode) 2344 { 2345 switch (mapping_symbol) 2346 { 2347 case 'x': 2348 // $x[.<any>]* - marks an A64 instruction sequence 2349 m_address_class_map[symbol.st_value] = eAddressClassCode; 2350 break; 2351 case 'd': 2352 // $d[.<any>]* - marks a data item sequence (e.g. lit pool) 2353 m_address_class_map[symbol.st_value] = eAddressClassData; 2354 break; 2355 } 2356 } 2357 if (mapping_symbol) 2358 continue; 2359 } 2360 } 2361 2362 if (arch.GetMachine() == llvm::Triple::arm) 2363 { 2364 if (symbol_type == eSymbolTypeCode) 2365 { 2366 if (symbol.st_value & 1) 2367 { 2368 // Subtracting 1 from the address effectively unsets 2369 // the low order bit, which results in the address 2370 // actually pointing to the beginning of the symbol. 2371 // This delta will be used below in conjunction with 2372 // symbol.st_value to produce the final symbol_value 2373 // that we store in the symtab. 2374 symbol_value_offset = -1; 2375 m_address_class_map[symbol.st_value^1] = eAddressClassCodeAlternateISA; 2376 } 2377 else 2378 { 2379 // This address is ARM 2380 m_address_class_map[symbol.st_value] = eAddressClassCode; 2381 } 2382 } 2383 } 2384 2385 /* 2386 * MIPS: 2387 * The bit #0 of an address is used for ISA mode (1 for microMIPS, 0 for MIPS). 2388 * This allows processer to switch between microMIPS and MIPS without any need 2389 * for special mode-control register. However, apart from .debug_line, none of 2390 * the ELF/DWARF sections set the ISA bit (for symbol or section). Use st_other 2391 * flag to check whether the symbol is microMIPS and then set the address class 2392 * accordingly. 2393 */ 2394 const llvm::Triple::ArchType llvm_arch = arch.GetMachine(); 2395 if (llvm_arch == llvm::Triple::mips || llvm_arch == llvm::Triple::mipsel 2396 || llvm_arch == llvm::Triple::mips64 || llvm_arch == llvm::Triple::mips64el) 2397 { 2398 if (IS_MICROMIPS(symbol.st_other)) 2399 m_address_class_map[symbol.st_value] = eAddressClassCodeAlternateISA; 2400 else if ((symbol.st_value & 1) && (symbol_type == eSymbolTypeCode)) 2401 { 2402 symbol.st_value = symbol.st_value & (~1ull); 2403 m_address_class_map[symbol.st_value] = eAddressClassCodeAlternateISA; 2404 } 2405 else 2406 { 2407 if (symbol_type == eSymbolTypeCode) 2408 m_address_class_map[symbol.st_value] = eAddressClassCode; 2409 else if (symbol_type == eSymbolTypeData) 2410 m_address_class_map[symbol.st_value] = eAddressClassData; 2411 else 2412 m_address_class_map[symbol.st_value] = eAddressClassUnknown; 2413 } 2414 } 2415 } 2416 2417 // symbol_value_offset may contain 0 for ARM symbols or -1 for THUMB symbols. See above for 2418 // more details. 2419 uint64_t symbol_value = symbol.st_value + symbol_value_offset; 2420 2421 if (symbol_section_sp == nullptr && section_idx == SHN_ABS && symbol.st_size != 0) 2422 { 2423 // We don't have a section for a symbol with non-zero size. Create a new section for it 2424 // so the address range covered by the symbol is also covered by the module (represented 2425 // through the section list). It is needed so module lookup for the addresses covered 2426 // by this symbol will be successfull. This case happens for absolute symbols. 2427 ConstString fake_section_name(std::string(".absolute.") + symbol_name); 2428 symbol_section_sp = std::make_shared<Section>(module_sp, 2429 this, 2430 SHN_ABS, 2431 fake_section_name, 2432 eSectionTypeAbsoluteAddress, 2433 symbol_value, 2434 symbol.st_size, 2435 0, 0, 0, 2436 SHF_ALLOC); 2437 2438 module_section_list->AddSection(symbol_section_sp); 2439 section_list->AddSection(symbol_section_sp); 2440 } 2441 2442 if (symbol_section_sp && CalculateType() != ObjectFile::Type::eTypeObjectFile) 2443 symbol_value -= symbol_section_sp->GetFileAddress(); 2444 2445 if (symbol_section_sp && module_section_list && module_section_list != section_list) 2446 { 2447 const ConstString §_name = symbol_section_sp->GetName(); 2448 auto section_it = section_name_to_section.find(sect_name.GetCString()); 2449 if (section_it == section_name_to_section.end()) 2450 section_it = section_name_to_section.emplace( 2451 sect_name.GetCString(), 2452 module_section_list->FindSectionByName (sect_name)).first; 2453 if (section_it->second && section_it->second->GetFileSize()) 2454 symbol_section_sp = section_it->second; 2455 } 2456 2457 bool is_global = symbol.getBinding() == STB_GLOBAL; 2458 uint32_t flags = symbol.st_other << 8 | symbol.st_info | additional_flags; 2459 bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false; 2460 2461 llvm::StringRef symbol_ref(symbol_name); 2462 2463 // Symbol names may contain @VERSION suffixes. Find those and strip them temporarily. 2464 size_t version_pos = symbol_ref.find('@'); 2465 bool has_suffix = version_pos != llvm::StringRef::npos; 2466 llvm::StringRef symbol_bare = symbol_ref.substr(0, version_pos); 2467 Mangled mangled(ConstString(symbol_bare), is_mangled); 2468 2469 // Now append the suffix back to mangled and unmangled names. Only do it if the 2470 // demangling was successful (string is not empty). 2471 if (has_suffix) 2472 { 2473 llvm::StringRef suffix = symbol_ref.substr(version_pos); 2474 2475 llvm::StringRef mangled_name = mangled.GetMangledName().GetStringRef(); 2476 if (! mangled_name.empty()) 2477 mangled.SetMangledName( ConstString((mangled_name + suffix).str()) ); 2478 2479 ConstString demangled = mangled.GetDemangledName(lldb::eLanguageTypeUnknown); 2480 llvm::StringRef demangled_name = demangled.GetStringRef(); 2481 if (!demangled_name.empty()) 2482 mangled.SetDemangledName( ConstString((demangled_name + suffix).str()) ); 2483 } 2484 2485 // In ELF all symbol should have a valid size but it is not true for some function symbols 2486 // coming from hand written assembly. As none of the function symbol should have 0 size we 2487 // try to calculate the size for these symbols in the symtab with saying that their original 2488 // size is not valid. 2489 bool symbol_size_valid = symbol.st_size != 0 || symbol.getType() != STT_FUNC; 2490 2491 Symbol dc_symbol( 2492 i + start_id, // ID is the original symbol table index. 2493 mangled, 2494 symbol_type, // Type of this symbol 2495 is_global, // Is this globally visible? 2496 false, // Is this symbol debug info? 2497 false, // Is this symbol a trampoline? 2498 false, // Is this symbol artificial? 2499 AddressRange( 2500 symbol_section_sp, // Section in which this symbol is defined or null. 2501 symbol_value, // Offset in section or symbol value. 2502 symbol.st_size), // Size in bytes of this symbol. 2503 symbol_size_valid, // Symbol size is valid 2504 has_suffix, // Contains linker annotations? 2505 flags); // Symbol flags. 2506 symtab->AddSymbol(dc_symbol); 2507 } 2508 return i; 2509 } 2510 2511 unsigned 2512 ObjectFileELF::ParseSymbolTable(Symtab *symbol_table, 2513 user_id_t start_id, 2514 lldb_private::Section *symtab) 2515 { 2516 if (symtab->GetObjectFile() != this) 2517 { 2518 // If the symbol table section is owned by a different object file, have it do the 2519 // parsing. 2520 ObjectFileELF *obj_file_elf = static_cast<ObjectFileELF *>(symtab->GetObjectFile()); 2521 return obj_file_elf->ParseSymbolTable (symbol_table, start_id, symtab); 2522 } 2523 2524 // Get section list for this object file. 2525 SectionList *section_list = m_sections_ap.get(); 2526 if (!section_list) 2527 return 0; 2528 2529 user_id_t symtab_id = symtab->GetID(); 2530 const ELFSectionHeaderInfo *symtab_hdr = GetSectionHeaderByIndex(symtab_id); 2531 assert(symtab_hdr->sh_type == SHT_SYMTAB || 2532 symtab_hdr->sh_type == SHT_DYNSYM); 2533 2534 // sh_link: section header index of associated string table. 2535 // Section ID's are ones based. 2536 user_id_t strtab_id = symtab_hdr->sh_link + 1; 2537 Section *strtab = section_list->FindSectionByID(strtab_id).get(); 2538 2539 if (symtab && strtab) 2540 { 2541 assert (symtab->GetObjectFile() == this); 2542 assert (strtab->GetObjectFile() == this); 2543 2544 DataExtractor symtab_data; 2545 DataExtractor strtab_data; 2546 if (ReadSectionData(symtab, symtab_data) && 2547 ReadSectionData(strtab, strtab_data)) 2548 { 2549 size_t num_symbols = symtab_data.GetByteSize() / symtab_hdr->sh_entsize; 2550 2551 return ParseSymbols(symbol_table, start_id, section_list, 2552 num_symbols, symtab_data, strtab_data); 2553 } 2554 } 2555 2556 return 0; 2557 } 2558 2559 size_t 2560 ObjectFileELF::ParseDynamicSymbols() 2561 { 2562 if (m_dynamic_symbols.size()) 2563 return m_dynamic_symbols.size(); 2564 2565 SectionList *section_list = GetSectionList(); 2566 if (!section_list) 2567 return 0; 2568 2569 // Find the SHT_DYNAMIC section. 2570 Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get(); 2571 if (!dynsym) 2572 return 0; 2573 assert (dynsym->GetObjectFile() == this); 2574 2575 ELFDynamic symbol; 2576 DataExtractor dynsym_data; 2577 if (ReadSectionData(dynsym, dynsym_data)) 2578 { 2579 const lldb::offset_t section_size = dynsym_data.GetByteSize(); 2580 lldb::offset_t cursor = 0; 2581 2582 while (cursor < section_size) 2583 { 2584 if (!symbol.Parse(dynsym_data, &cursor)) 2585 break; 2586 2587 m_dynamic_symbols.push_back(symbol); 2588 } 2589 } 2590 2591 return m_dynamic_symbols.size(); 2592 } 2593 2594 const ELFDynamic * 2595 ObjectFileELF::FindDynamicSymbol(unsigned tag) 2596 { 2597 if (!ParseDynamicSymbols()) 2598 return NULL; 2599 2600 DynamicSymbolCollIter I = m_dynamic_symbols.begin(); 2601 DynamicSymbolCollIter E = m_dynamic_symbols.end(); 2602 for ( ; I != E; ++I) 2603 { 2604 ELFDynamic *symbol = &*I; 2605 2606 if (symbol->d_tag == tag) 2607 return symbol; 2608 } 2609 2610 return NULL; 2611 } 2612 2613 unsigned 2614 ObjectFileELF::PLTRelocationType() 2615 { 2616 // DT_PLTREL 2617 // This member specifies the type of relocation entry to which the 2618 // procedure linkage table refers. The d_val member holds DT_REL or 2619 // DT_RELA, as appropriate. All relocations in a procedure linkage table 2620 // must use the same relocation. 2621 const ELFDynamic *symbol = FindDynamicSymbol(DT_PLTREL); 2622 2623 if (symbol) 2624 return symbol->d_val; 2625 2626 return 0; 2627 } 2628 2629 // Returns the size of the normal plt entries and the offset of the first normal plt entry. The 2630 // 0th entry in the plt table is usually a resolution entry which have different size in some 2631 // architectures then the rest of the plt entries. 2632 static std::pair<uint64_t, uint64_t> 2633 GetPltEntrySizeAndOffset(const ELFSectionHeader* rel_hdr, const ELFSectionHeader* plt_hdr) 2634 { 2635 const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2636 2637 // Clang 3.3 sets entsize to 4 for 32-bit binaries, but the plt entries are 16 bytes. 2638 // So round the entsize up by the alignment if addralign is set. 2639 elf_xword plt_entsize = plt_hdr->sh_addralign ? 2640 llvm::alignTo (plt_hdr->sh_entsize, plt_hdr->sh_addralign) : plt_hdr->sh_entsize; 2641 2642 // Some linkers e.g ld for arm, fill plt_hdr->sh_entsize field incorrectly. 2643 // PLT entries relocation code in general requires multiple instruction and 2644 // should be greater than 4 bytes in most cases. Try to guess correct size just in case. 2645 if (plt_entsize <= 4) 2646 { 2647 // The linker haven't set the plt_hdr->sh_entsize field. Try to guess the size of the plt 2648 // entries based on the number of entries and the size of the plt section with the 2649 // assumption that the size of the 0th entry is at least as big as the size of the normal 2650 // entries and it isn't much bigger then that. 2651 if (plt_hdr->sh_addralign) 2652 plt_entsize = plt_hdr->sh_size / plt_hdr->sh_addralign / (num_relocations + 1) * plt_hdr->sh_addralign; 2653 else 2654 plt_entsize = plt_hdr->sh_size / (num_relocations + 1); 2655 } 2656 2657 elf_xword plt_offset = plt_hdr->sh_size - num_relocations * plt_entsize; 2658 2659 return std::make_pair(plt_entsize, plt_offset); 2660 } 2661 2662 static unsigned 2663 ParsePLTRelocations(Symtab *symbol_table, 2664 user_id_t start_id, 2665 unsigned rel_type, 2666 const ELFHeader *hdr, 2667 const ELFSectionHeader *rel_hdr, 2668 const ELFSectionHeader *plt_hdr, 2669 const ELFSectionHeader *sym_hdr, 2670 const lldb::SectionSP &plt_section_sp, 2671 DataExtractor &rel_data, 2672 DataExtractor &symtab_data, 2673 DataExtractor &strtab_data) 2674 { 2675 ELFRelocation rel(rel_type); 2676 ELFSymbol symbol; 2677 lldb::offset_t offset = 0; 2678 2679 uint64_t plt_offset, plt_entsize; 2680 std::tie(plt_entsize, plt_offset) = GetPltEntrySizeAndOffset(rel_hdr, plt_hdr); 2681 const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2682 2683 typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel); 2684 reloc_info_fn reloc_type; 2685 reloc_info_fn reloc_symbol; 2686 2687 if (hdr->Is32Bit()) 2688 { 2689 reloc_type = ELFRelocation::RelocType32; 2690 reloc_symbol = ELFRelocation::RelocSymbol32; 2691 } 2692 else 2693 { 2694 reloc_type = ELFRelocation::RelocType64; 2695 reloc_symbol = ELFRelocation::RelocSymbol64; 2696 } 2697 2698 unsigned slot_type = hdr->GetRelocationJumpSlotType(); 2699 unsigned i; 2700 for (i = 0; i < num_relocations; ++i) 2701 { 2702 if (rel.Parse(rel_data, &offset) == false) 2703 break; 2704 2705 if (reloc_type(rel) != slot_type) 2706 continue; 2707 2708 lldb::offset_t symbol_offset = reloc_symbol(rel) * sym_hdr->sh_entsize; 2709 if (!symbol.Parse(symtab_data, &symbol_offset)) 2710 break; 2711 2712 const char *symbol_name = strtab_data.PeekCStr(symbol.st_name); 2713 bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false; 2714 uint64_t plt_index = plt_offset + i * plt_entsize; 2715 2716 Symbol jump_symbol( 2717 i + start_id, // Symbol table index 2718 symbol_name, // symbol name. 2719 is_mangled, // is the symbol name mangled? 2720 eSymbolTypeTrampoline, // Type of this symbol 2721 false, // Is this globally visible? 2722 false, // Is this symbol debug info? 2723 true, // Is this symbol a trampoline? 2724 true, // Is this symbol artificial? 2725 plt_section_sp, // Section in which this symbol is defined or null. 2726 plt_index, // Offset in section or symbol value. 2727 plt_entsize, // Size in bytes of this symbol. 2728 true, // Size is valid 2729 false, // Contains linker annotations? 2730 0); // Symbol flags. 2731 2732 symbol_table->AddSymbol(jump_symbol); 2733 } 2734 2735 return i; 2736 } 2737 2738 unsigned 2739 ObjectFileELF::ParseTrampolineSymbols(Symtab *symbol_table, 2740 user_id_t start_id, 2741 const ELFSectionHeaderInfo *rel_hdr, 2742 user_id_t rel_id) 2743 { 2744 assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL); 2745 2746 // The link field points to the associated symbol table. 2747 user_id_t symtab_id = rel_hdr->sh_link; 2748 2749 // If the link field doesn't point to the appropriate symbol name table then 2750 // try to find it by name as some compiler don't fill in the link fields. 2751 if (!symtab_id) 2752 symtab_id = GetSectionIndexByName(".dynsym"); 2753 2754 // Get PLT section. We cannot use rel_hdr->sh_info, since current linkers 2755 // point that to the .got.plt or .got section instead of .plt. 2756 user_id_t plt_id = GetSectionIndexByName(".plt"); 2757 2758 if (!symtab_id || !plt_id) 2759 return 0; 2760 2761 // Section ID's are ones based; 2762 symtab_id++; 2763 plt_id++; 2764 2765 const ELFSectionHeaderInfo *plt_hdr = GetSectionHeaderByIndex(plt_id); 2766 if (!plt_hdr) 2767 return 0; 2768 2769 const ELFSectionHeaderInfo *sym_hdr = GetSectionHeaderByIndex(symtab_id); 2770 if (!sym_hdr) 2771 return 0; 2772 2773 SectionList *section_list = m_sections_ap.get(); 2774 if (!section_list) 2775 return 0; 2776 2777 Section *rel_section = section_list->FindSectionByID(rel_id).get(); 2778 if (!rel_section) 2779 return 0; 2780 2781 SectionSP plt_section_sp (section_list->FindSectionByID(plt_id)); 2782 if (!plt_section_sp) 2783 return 0; 2784 2785 Section *symtab = section_list->FindSectionByID(symtab_id).get(); 2786 if (!symtab) 2787 return 0; 2788 2789 // sh_link points to associated string table. 2790 Section *strtab = section_list->FindSectionByID(sym_hdr->sh_link + 1).get(); 2791 if (!strtab) 2792 return 0; 2793 2794 DataExtractor rel_data; 2795 if (!ReadSectionData(rel_section, rel_data)) 2796 return 0; 2797 2798 DataExtractor symtab_data; 2799 if (!ReadSectionData(symtab, symtab_data)) 2800 return 0; 2801 2802 DataExtractor strtab_data; 2803 if (!ReadSectionData(strtab, strtab_data)) 2804 return 0; 2805 2806 unsigned rel_type = PLTRelocationType(); 2807 if (!rel_type) 2808 return 0; 2809 2810 return ParsePLTRelocations (symbol_table, 2811 start_id, 2812 rel_type, 2813 &m_header, 2814 rel_hdr, 2815 plt_hdr, 2816 sym_hdr, 2817 plt_section_sp, 2818 rel_data, 2819 symtab_data, 2820 strtab_data); 2821 } 2822 2823 unsigned 2824 ObjectFileELF::RelocateSection(Symtab* symtab, const ELFHeader *hdr, const ELFSectionHeader *rel_hdr, 2825 const ELFSectionHeader *symtab_hdr, const ELFSectionHeader *debug_hdr, 2826 DataExtractor &rel_data, DataExtractor &symtab_data, 2827 DataExtractor &debug_data, Section* rel_section) 2828 { 2829 ELFRelocation rel(rel_hdr->sh_type); 2830 lldb::addr_t offset = 0; 2831 const unsigned num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2832 typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel); 2833 reloc_info_fn reloc_type; 2834 reloc_info_fn reloc_symbol; 2835 2836 if (hdr->Is32Bit()) 2837 { 2838 reloc_type = ELFRelocation::RelocType32; 2839 reloc_symbol = ELFRelocation::RelocSymbol32; 2840 } 2841 else 2842 { 2843 reloc_type = ELFRelocation::RelocType64; 2844 reloc_symbol = ELFRelocation::RelocSymbol64; 2845 } 2846 2847 for (unsigned i = 0; i < num_relocations; ++i) 2848 { 2849 if (rel.Parse(rel_data, &offset) == false) 2850 break; 2851 2852 Symbol* symbol = NULL; 2853 2854 if (hdr->Is32Bit()) 2855 { 2856 switch (reloc_type(rel)) { 2857 case R_386_32: 2858 case R_386_PC32: 2859 default: 2860 assert(false && "unexpected relocation type"); 2861 } 2862 } else { 2863 switch (reloc_type(rel)) { 2864 case R_X86_64_64: 2865 { 2866 symbol = symtab->FindSymbolByID(reloc_symbol(rel)); 2867 if (symbol) 2868 { 2869 addr_t value = symbol->GetAddressRef().GetFileAddress(); 2870 DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer(); 2871 uint64_t* dst = reinterpret_cast<uint64_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset64(rel)); 2872 *dst = value + ELFRelocation::RelocAddend64(rel); 2873 } 2874 break; 2875 } 2876 case R_X86_64_32: 2877 case R_X86_64_32S: 2878 { 2879 symbol = symtab->FindSymbolByID(reloc_symbol(rel)); 2880 if (symbol) 2881 { 2882 addr_t value = symbol->GetAddressRef().GetFileAddress(); 2883 value += ELFRelocation::RelocAddend32(rel); 2884 assert((reloc_type(rel) == R_X86_64_32 && (value <= UINT32_MAX)) || 2885 (reloc_type(rel) == R_X86_64_32S && 2886 ((int64_t)value <= INT32_MAX && (int64_t)value >= INT32_MIN))); 2887 uint32_t truncated_addr = (value & 0xFFFFFFFF); 2888 DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer(); 2889 uint32_t* dst = reinterpret_cast<uint32_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset32(rel)); 2890 *dst = truncated_addr; 2891 } 2892 break; 2893 } 2894 case R_X86_64_PC32: 2895 default: 2896 assert(false && "unexpected relocation type"); 2897 } 2898 } 2899 } 2900 2901 return 0; 2902 } 2903 2904 unsigned 2905 ObjectFileELF::RelocateDebugSections(const ELFSectionHeader *rel_hdr, user_id_t rel_id) 2906 { 2907 assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL); 2908 2909 // Parse in the section list if needed. 2910 SectionList *section_list = GetSectionList(); 2911 if (!section_list) 2912 return 0; 2913 2914 // Section ID's are ones based. 2915 user_id_t symtab_id = rel_hdr->sh_link + 1; 2916 user_id_t debug_id = rel_hdr->sh_info + 1; 2917 2918 const ELFSectionHeader *symtab_hdr = GetSectionHeaderByIndex(symtab_id); 2919 if (!symtab_hdr) 2920 return 0; 2921 2922 const ELFSectionHeader *debug_hdr = GetSectionHeaderByIndex(debug_id); 2923 if (!debug_hdr) 2924 return 0; 2925 2926 Section *rel = section_list->FindSectionByID(rel_id).get(); 2927 if (!rel) 2928 return 0; 2929 2930 Section *symtab = section_list->FindSectionByID(symtab_id).get(); 2931 if (!symtab) 2932 return 0; 2933 2934 Section *debug = section_list->FindSectionByID(debug_id).get(); 2935 if (!debug) 2936 return 0; 2937 2938 DataExtractor rel_data; 2939 DataExtractor symtab_data; 2940 DataExtractor debug_data; 2941 2942 if (ReadSectionData(rel, rel_data) && 2943 ReadSectionData(symtab, symtab_data) && 2944 ReadSectionData(debug, debug_data)) 2945 { 2946 RelocateSection(m_symtab_ap.get(), &m_header, rel_hdr, symtab_hdr, debug_hdr, 2947 rel_data, symtab_data, debug_data, debug); 2948 } 2949 2950 return 0; 2951 } 2952 2953 Symtab * 2954 ObjectFileELF::GetSymtab() 2955 { 2956 ModuleSP module_sp(GetModule()); 2957 if (!module_sp) 2958 return NULL; 2959 2960 // We always want to use the main object file so we (hopefully) only have one cached copy 2961 // of our symtab, dynamic sections, etc. 2962 ObjectFile *module_obj_file = module_sp->GetObjectFile(); 2963 if (module_obj_file && module_obj_file != this) 2964 return module_obj_file->GetSymtab(); 2965 2966 if (m_symtab_ap.get() == NULL) 2967 { 2968 SectionList *section_list = module_sp->GetSectionList(); 2969 if (!section_list) 2970 return NULL; 2971 2972 uint64_t symbol_id = 0; 2973 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 2974 2975 // Sharable objects and dynamic executables usually have 2 distinct symbol 2976 // tables, one named ".symtab", and the other ".dynsym". The dynsym is a smaller 2977 // version of the symtab that only contains global symbols. The information found 2978 // in the dynsym is therefore also found in the symtab, while the reverse is not 2979 // necessarily true. 2980 Section *symtab = section_list->FindSectionByType (eSectionTypeELFSymbolTable, true).get(); 2981 if (!symtab) 2982 { 2983 // The symtab section is non-allocable and can be stripped, so if it doesn't exist 2984 // then use the dynsym section which should always be there. 2985 symtab = section_list->FindSectionByType (eSectionTypeELFDynamicSymbols, true).get(); 2986 } 2987 if (symtab) 2988 { 2989 m_symtab_ap.reset(new Symtab(symtab->GetObjectFile())); 2990 symbol_id += ParseSymbolTable (m_symtab_ap.get(), symbol_id, symtab); 2991 } 2992 2993 // DT_JMPREL 2994 // If present, this entry's d_ptr member holds the address of relocation 2995 // entries associated solely with the procedure linkage table. Separating 2996 // these relocation entries lets the dynamic linker ignore them during 2997 // process initialization, if lazy binding is enabled. If this entry is 2998 // present, the related entries of types DT_PLTRELSZ and DT_PLTREL must 2999 // also be present. 3000 const ELFDynamic *symbol = FindDynamicSymbol(DT_JMPREL); 3001 if (symbol) 3002 { 3003 // Synthesize trampoline symbols to help navigate the PLT. 3004 addr_t addr = symbol->d_ptr; 3005 Section *reloc_section = section_list->FindSectionContainingFileAddress(addr).get(); 3006 if (reloc_section) 3007 { 3008 user_id_t reloc_id = reloc_section->GetID(); 3009 const ELFSectionHeaderInfo *reloc_header = GetSectionHeaderByIndex(reloc_id); 3010 assert(reloc_header); 3011 3012 if (m_symtab_ap == nullptr) 3013 m_symtab_ap.reset(new Symtab(reloc_section->GetObjectFile())); 3014 3015 ParseTrampolineSymbols (m_symtab_ap.get(), symbol_id, reloc_header, reloc_id); 3016 } 3017 } 3018 3019 DWARFCallFrameInfo* eh_frame = GetUnwindTable().GetEHFrameInfo(); 3020 if (eh_frame) 3021 { 3022 if (m_symtab_ap == nullptr) 3023 m_symtab_ap.reset(new Symtab(this)); 3024 ParseUnwindSymbols (m_symtab_ap.get(), eh_frame); 3025 } 3026 3027 // If we still don't have any symtab then create an empty instance to avoid do the section 3028 // lookup next time. 3029 if (m_symtab_ap == nullptr) 3030 m_symtab_ap.reset(new Symtab(this)); 3031 3032 m_symtab_ap->CalculateSymbolSizes(); 3033 } 3034 3035 for (SectionHeaderCollIter I = m_section_headers.begin(); 3036 I != m_section_headers.end(); ++I) 3037 { 3038 if (I->sh_type == SHT_RELA || I->sh_type == SHT_REL) 3039 { 3040 if (CalculateType() == eTypeObjectFile) 3041 { 3042 const char *section_name = I->section_name.AsCString(""); 3043 if (strstr(section_name, ".rela.debug") || 3044 strstr(section_name, ".rel.debug")) 3045 { 3046 const ELFSectionHeader &reloc_header = *I; 3047 user_id_t reloc_id = SectionIndex(I); 3048 RelocateDebugSections(&reloc_header, reloc_id); 3049 } 3050 } 3051 } 3052 } 3053 return m_symtab_ap.get(); 3054 } 3055 3056 void 3057 ObjectFileELF::ParseUnwindSymbols(Symtab *symbol_table, DWARFCallFrameInfo* eh_frame) 3058 { 3059 SectionList* section_list = GetSectionList(); 3060 if (!section_list) 3061 return; 3062 3063 // First we save the new symbols into a separate list and add them to the symbol table after 3064 // we colleced all symbols we want to add. This is neccessary because adding a new symbol 3065 // invalidates the internal index of the symtab what causing the next lookup to be slow because 3066 // it have to recalculate the index first. 3067 std::vector<Symbol> new_symbols; 3068 3069 eh_frame->ForEachFDEEntries( 3070 [this, symbol_table, section_list, &new_symbols](lldb::addr_t file_addr, 3071 uint32_t size, 3072 dw_offset_t) { 3073 Symbol* symbol = symbol_table->FindSymbolAtFileAddress(file_addr); 3074 if (symbol) 3075 { 3076 if (!symbol->GetByteSizeIsValid()) 3077 { 3078 symbol->SetByteSize(size); 3079 symbol->SetSizeIsSynthesized(true); 3080 } 3081 } 3082 else 3083 { 3084 SectionSP section_sp = section_list->FindSectionContainingFileAddress(file_addr); 3085 if (section_sp) 3086 { 3087 addr_t offset = file_addr - section_sp->GetFileAddress(); 3088 const char* symbol_name = GetNextSyntheticSymbolName().GetCString(); 3089 uint64_t symbol_id = symbol_table->GetNumSymbols(); 3090 Symbol eh_symbol( 3091 symbol_id, // Symbol table index. 3092 symbol_name, // Symbol name. 3093 false, // Is the symbol name mangled? 3094 eSymbolTypeCode, // Type of this symbol. 3095 true, // Is this globally visible? 3096 false, // Is this symbol debug info? 3097 false, // Is this symbol a trampoline? 3098 true, // Is this symbol artificial? 3099 section_sp, // Section in which this symbol is defined or null. 3100 offset, // Offset in section or symbol value. 3101 0, // Size: Don't specify the size as an FDE can 3102 false, // Size is valid: cover multiple symbols. 3103 false, // Contains linker annotations? 3104 0); // Symbol flags. 3105 new_symbols.push_back(eh_symbol); 3106 } 3107 } 3108 return true; 3109 }); 3110 3111 for (const Symbol& s : new_symbols) 3112 symbol_table->AddSymbol(s); 3113 } 3114 3115 bool 3116 ObjectFileELF::IsStripped () 3117 { 3118 // TODO: determine this for ELF 3119 return false; 3120 } 3121 3122 //===----------------------------------------------------------------------===// 3123 // Dump 3124 // 3125 // Dump the specifics of the runtime file container (such as any headers 3126 // segments, sections, etc). 3127 //---------------------------------------------------------------------- 3128 void 3129 ObjectFileELF::Dump(Stream *s) 3130 { 3131 ModuleSP module_sp(GetModule()); 3132 if (!module_sp) 3133 { 3134 return; 3135 } 3136 3137 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 3138 s->Printf("%p: ", static_cast<void *>(this)); 3139 s->Indent(); 3140 s->PutCString("ObjectFileELF"); 3141 3142 ArchSpec header_arch; 3143 GetArchitecture(header_arch); 3144 3145 *s << ", file = '" << m_file << "', arch = " << header_arch.GetArchitectureName() << "\n"; 3146 3147 DumpELFHeader(s, m_header); 3148 s->EOL(); 3149 DumpELFProgramHeaders(s); 3150 s->EOL(); 3151 DumpELFSectionHeaders(s); 3152 s->EOL(); 3153 SectionList *section_list = GetSectionList(); 3154 if (section_list) 3155 section_list->Dump(s, NULL, true, UINT32_MAX); 3156 Symtab *symtab = GetSymtab(); 3157 if (symtab) 3158 symtab->Dump(s, NULL, eSortOrderNone); 3159 s->EOL(); 3160 DumpDependentModules(s); 3161 s->EOL(); 3162 } 3163 3164 //---------------------------------------------------------------------- 3165 // DumpELFHeader 3166 // 3167 // Dump the ELF header to the specified output stream 3168 //---------------------------------------------------------------------- 3169 void 3170 ObjectFileELF::DumpELFHeader(Stream *s, const ELFHeader &header) 3171 { 3172 s->PutCString("ELF Header\n"); 3173 s->Printf("e_ident[EI_MAG0 ] = 0x%2.2x\n", header.e_ident[EI_MAG0]); 3174 s->Printf("e_ident[EI_MAG1 ] = 0x%2.2x '%c'\n", 3175 header.e_ident[EI_MAG1], header.e_ident[EI_MAG1]); 3176 s->Printf("e_ident[EI_MAG2 ] = 0x%2.2x '%c'\n", 3177 header.e_ident[EI_MAG2], header.e_ident[EI_MAG2]); 3178 s->Printf("e_ident[EI_MAG3 ] = 0x%2.2x '%c'\n", 3179 header.e_ident[EI_MAG3], header.e_ident[EI_MAG3]); 3180 3181 s->Printf("e_ident[EI_CLASS ] = 0x%2.2x\n", header.e_ident[EI_CLASS]); 3182 s->Printf("e_ident[EI_DATA ] = 0x%2.2x ", header.e_ident[EI_DATA]); 3183 DumpELFHeader_e_ident_EI_DATA(s, header.e_ident[EI_DATA]); 3184 s->Printf ("\ne_ident[EI_VERSION] = 0x%2.2x\n", header.e_ident[EI_VERSION]); 3185 s->Printf ("e_ident[EI_PAD ] = 0x%2.2x\n", header.e_ident[EI_PAD]); 3186 3187 s->Printf("e_type = 0x%4.4x ", header.e_type); 3188 DumpELFHeader_e_type(s, header.e_type); 3189 s->Printf("\ne_machine = 0x%4.4x\n", header.e_machine); 3190 s->Printf("e_version = 0x%8.8x\n", header.e_version); 3191 s->Printf("e_entry = 0x%8.8" PRIx64 "\n", header.e_entry); 3192 s->Printf("e_phoff = 0x%8.8" PRIx64 "\n", header.e_phoff); 3193 s->Printf("e_shoff = 0x%8.8" PRIx64 "\n", header.e_shoff); 3194 s->Printf("e_flags = 0x%8.8x\n", header.e_flags); 3195 s->Printf("e_ehsize = 0x%4.4x\n", header.e_ehsize); 3196 s->Printf("e_phentsize = 0x%4.4x\n", header.e_phentsize); 3197 s->Printf("e_phnum = 0x%4.4x\n", header.e_phnum); 3198 s->Printf("e_shentsize = 0x%4.4x\n", header.e_shentsize); 3199 s->Printf("e_shnum = 0x%4.4x\n", header.e_shnum); 3200 s->Printf("e_shstrndx = 0x%4.4x\n", header.e_shstrndx); 3201 } 3202 3203 //---------------------------------------------------------------------- 3204 // DumpELFHeader_e_type 3205 // 3206 // Dump an token value for the ELF header member e_type 3207 //---------------------------------------------------------------------- 3208 void 3209 ObjectFileELF::DumpELFHeader_e_type(Stream *s, elf_half e_type) 3210 { 3211 switch (e_type) 3212 { 3213 case ET_NONE: *s << "ET_NONE"; break; 3214 case ET_REL: *s << "ET_REL"; break; 3215 case ET_EXEC: *s << "ET_EXEC"; break; 3216 case ET_DYN: *s << "ET_DYN"; break; 3217 case ET_CORE: *s << "ET_CORE"; break; 3218 default: 3219 break; 3220 } 3221 } 3222 3223 //---------------------------------------------------------------------- 3224 // DumpELFHeader_e_ident_EI_DATA 3225 // 3226 // Dump an token value for the ELF header member e_ident[EI_DATA] 3227 //---------------------------------------------------------------------- 3228 void 3229 ObjectFileELF::DumpELFHeader_e_ident_EI_DATA(Stream *s, unsigned char ei_data) 3230 { 3231 switch (ei_data) 3232 { 3233 case ELFDATANONE: *s << "ELFDATANONE"; break; 3234 case ELFDATA2LSB: *s << "ELFDATA2LSB - Little Endian"; break; 3235 case ELFDATA2MSB: *s << "ELFDATA2MSB - Big Endian"; break; 3236 default: 3237 break; 3238 } 3239 } 3240 3241 3242 //---------------------------------------------------------------------- 3243 // DumpELFProgramHeader 3244 // 3245 // Dump a single ELF program header to the specified output stream 3246 //---------------------------------------------------------------------- 3247 void 3248 ObjectFileELF::DumpELFProgramHeader(Stream *s, const ELFProgramHeader &ph) 3249 { 3250 DumpELFProgramHeader_p_type(s, ph.p_type); 3251 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, ph.p_offset, ph.p_vaddr, ph.p_paddr); 3252 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8x (", ph.p_filesz, ph.p_memsz, ph.p_flags); 3253 3254 DumpELFProgramHeader_p_flags(s, ph.p_flags); 3255 s->Printf(") %8.8" PRIx64, ph.p_align); 3256 } 3257 3258 //---------------------------------------------------------------------- 3259 // DumpELFProgramHeader_p_type 3260 // 3261 // Dump an token value for the ELF program header member p_type which 3262 // describes the type of the program header 3263 // ---------------------------------------------------------------------- 3264 void 3265 ObjectFileELF::DumpELFProgramHeader_p_type(Stream *s, elf_word p_type) 3266 { 3267 const int kStrWidth = 15; 3268 switch (p_type) 3269 { 3270 CASE_AND_STREAM(s, PT_NULL , kStrWidth); 3271 CASE_AND_STREAM(s, PT_LOAD , kStrWidth); 3272 CASE_AND_STREAM(s, PT_DYNAMIC , kStrWidth); 3273 CASE_AND_STREAM(s, PT_INTERP , kStrWidth); 3274 CASE_AND_STREAM(s, PT_NOTE , kStrWidth); 3275 CASE_AND_STREAM(s, PT_SHLIB , kStrWidth); 3276 CASE_AND_STREAM(s, PT_PHDR , kStrWidth); 3277 CASE_AND_STREAM(s, PT_TLS , kStrWidth); 3278 CASE_AND_STREAM(s, PT_GNU_EH_FRAME, kStrWidth); 3279 default: 3280 s->Printf("0x%8.8x%*s", p_type, kStrWidth - 10, ""); 3281 break; 3282 } 3283 } 3284 3285 3286 //---------------------------------------------------------------------- 3287 // DumpELFProgramHeader_p_flags 3288 // 3289 // Dump an token value for the ELF program header member p_flags 3290 //---------------------------------------------------------------------- 3291 void 3292 ObjectFileELF::DumpELFProgramHeader_p_flags(Stream *s, elf_word p_flags) 3293 { 3294 *s << ((p_flags & PF_X) ? "PF_X" : " ") 3295 << (((p_flags & PF_X) && (p_flags & PF_W)) ? '+' : ' ') 3296 << ((p_flags & PF_W) ? "PF_W" : " ") 3297 << (((p_flags & PF_W) && (p_flags & PF_R)) ? '+' : ' ') 3298 << ((p_flags & PF_R) ? "PF_R" : " "); 3299 } 3300 3301 //---------------------------------------------------------------------- 3302 // DumpELFProgramHeaders 3303 // 3304 // Dump all of the ELF program header to the specified output stream 3305 //---------------------------------------------------------------------- 3306 void 3307 ObjectFileELF::DumpELFProgramHeaders(Stream *s) 3308 { 3309 if (!ParseProgramHeaders()) 3310 return; 3311 3312 s->PutCString("Program Headers\n"); 3313 s->PutCString("IDX p_type p_offset p_vaddr p_paddr " 3314 "p_filesz p_memsz p_flags p_align\n"); 3315 s->PutCString("==== --------------- -------- -------- -------- " 3316 "-------- -------- ------------------------- --------\n"); 3317 3318 uint32_t idx = 0; 3319 for (ProgramHeaderCollConstIter I = m_program_headers.begin(); 3320 I != m_program_headers.end(); ++I, ++idx) 3321 { 3322 s->Printf("[%2u] ", idx); 3323 ObjectFileELF::DumpELFProgramHeader(s, *I); 3324 s->EOL(); 3325 } 3326 } 3327 3328 //---------------------------------------------------------------------- 3329 // DumpELFSectionHeader 3330 // 3331 // Dump a single ELF section header to the specified output stream 3332 //---------------------------------------------------------------------- 3333 void 3334 ObjectFileELF::DumpELFSectionHeader(Stream *s, const ELFSectionHeaderInfo &sh) 3335 { 3336 s->Printf("%8.8x ", sh.sh_name); 3337 DumpELFSectionHeader_sh_type(s, sh.sh_type); 3338 s->Printf(" %8.8" PRIx64 " (", sh.sh_flags); 3339 DumpELFSectionHeader_sh_flags(s, sh.sh_flags); 3340 s->Printf(") %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addr, sh.sh_offset, sh.sh_size); 3341 s->Printf(" %8.8x %8.8x", sh.sh_link, sh.sh_info); 3342 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addralign, sh.sh_entsize); 3343 } 3344 3345 //---------------------------------------------------------------------- 3346 // DumpELFSectionHeader_sh_type 3347 // 3348 // Dump an token value for the ELF section header member sh_type which 3349 // describes the type of the section 3350 //---------------------------------------------------------------------- 3351 void 3352 ObjectFileELF::DumpELFSectionHeader_sh_type(Stream *s, elf_word sh_type) 3353 { 3354 const int kStrWidth = 12; 3355 switch (sh_type) 3356 { 3357 CASE_AND_STREAM(s, SHT_NULL , kStrWidth); 3358 CASE_AND_STREAM(s, SHT_PROGBITS , kStrWidth); 3359 CASE_AND_STREAM(s, SHT_SYMTAB , kStrWidth); 3360 CASE_AND_STREAM(s, SHT_STRTAB , kStrWidth); 3361 CASE_AND_STREAM(s, SHT_RELA , kStrWidth); 3362 CASE_AND_STREAM(s, SHT_HASH , kStrWidth); 3363 CASE_AND_STREAM(s, SHT_DYNAMIC , kStrWidth); 3364 CASE_AND_STREAM(s, SHT_NOTE , kStrWidth); 3365 CASE_AND_STREAM(s, SHT_NOBITS , kStrWidth); 3366 CASE_AND_STREAM(s, SHT_REL , kStrWidth); 3367 CASE_AND_STREAM(s, SHT_SHLIB , kStrWidth); 3368 CASE_AND_STREAM(s, SHT_DYNSYM , kStrWidth); 3369 CASE_AND_STREAM(s, SHT_LOPROC , kStrWidth); 3370 CASE_AND_STREAM(s, SHT_HIPROC , kStrWidth); 3371 CASE_AND_STREAM(s, SHT_LOUSER , kStrWidth); 3372 CASE_AND_STREAM(s, SHT_HIUSER , kStrWidth); 3373 default: 3374 s->Printf("0x%8.8x%*s", sh_type, kStrWidth - 10, ""); 3375 break; 3376 } 3377 } 3378 3379 //---------------------------------------------------------------------- 3380 // DumpELFSectionHeader_sh_flags 3381 // 3382 // Dump an token value for the ELF section header member sh_flags 3383 //---------------------------------------------------------------------- 3384 void 3385 ObjectFileELF::DumpELFSectionHeader_sh_flags(Stream *s, elf_xword sh_flags) 3386 { 3387 *s << ((sh_flags & SHF_WRITE) ? "WRITE" : " ") 3388 << (((sh_flags & SHF_WRITE) && (sh_flags & SHF_ALLOC)) ? '+' : ' ') 3389 << ((sh_flags & SHF_ALLOC) ? "ALLOC" : " ") 3390 << (((sh_flags & SHF_ALLOC) && (sh_flags & SHF_EXECINSTR)) ? '+' : ' ') 3391 << ((sh_flags & SHF_EXECINSTR) ? "EXECINSTR" : " "); 3392 } 3393 3394 //---------------------------------------------------------------------- 3395 // DumpELFSectionHeaders 3396 // 3397 // Dump all of the ELF section header to the specified output stream 3398 //---------------------------------------------------------------------- 3399 void 3400 ObjectFileELF::DumpELFSectionHeaders(Stream *s) 3401 { 3402 if (!ParseSectionHeaders()) 3403 return; 3404 3405 s->PutCString("Section Headers\n"); 3406 s->PutCString("IDX name type flags " 3407 "addr offset size link info addralgn " 3408 "entsize Name\n"); 3409 s->PutCString("==== -------- ------------ -------------------------------- " 3410 "-------- -------- -------- -------- -------- -------- " 3411 "-------- ====================\n"); 3412 3413 uint32_t idx = 0; 3414 for (SectionHeaderCollConstIter I = m_section_headers.begin(); 3415 I != m_section_headers.end(); ++I, ++idx) 3416 { 3417 s->Printf("[%2u] ", idx); 3418 ObjectFileELF::DumpELFSectionHeader(s, *I); 3419 const char* section_name = I->section_name.AsCString(""); 3420 if (section_name) 3421 *s << ' ' << section_name << "\n"; 3422 } 3423 } 3424 3425 void 3426 ObjectFileELF::DumpDependentModules(lldb_private::Stream *s) 3427 { 3428 size_t num_modules = ParseDependentModules(); 3429 3430 if (num_modules > 0) 3431 { 3432 s->PutCString("Dependent Modules:\n"); 3433 for (unsigned i = 0; i < num_modules; ++i) 3434 { 3435 const FileSpec &spec = m_filespec_ap->GetFileSpecAtIndex(i); 3436 s->Printf(" %s\n", spec.GetFilename().GetCString()); 3437 } 3438 } 3439 } 3440 3441 bool 3442 ObjectFileELF::GetArchitecture (ArchSpec &arch) 3443 { 3444 if (!ParseHeader()) 3445 return false; 3446 3447 if (m_section_headers.empty()) 3448 { 3449 // Allow elf notes to be parsed which may affect the detected architecture. 3450 ParseSectionHeaders(); 3451 } 3452 3453 if (CalculateType() == eTypeCoreFile && m_arch_spec.TripleOSIsUnspecifiedUnknown()) 3454 { 3455 // Core files don't have section headers yet they have PT_NOTE program headers 3456 // that might shed more light on the architecture 3457 if (ParseProgramHeaders()) 3458 { 3459 for (size_t i = 0, count = GetProgramHeaderCount(); i < count; ++i) 3460 { 3461 const elf::ELFProgramHeader* header = GetProgramHeaderByIndex(i); 3462 if (header && header->p_type == PT_NOTE && header->p_offset != 0 && header->p_filesz > 0) 3463 { 3464 DataExtractor data; 3465 if (data.SetData (m_data, header->p_offset, header->p_filesz) == header->p_filesz) 3466 { 3467 lldb_private::UUID uuid; 3468 RefineModuleDetailsFromNote (data, m_arch_spec, uuid); 3469 } 3470 } 3471 } 3472 } 3473 } 3474 arch = m_arch_spec; 3475 return true; 3476 } 3477 3478 ObjectFile::Type 3479 ObjectFileELF::CalculateType() 3480 { 3481 switch (m_header.e_type) 3482 { 3483 case llvm::ELF::ET_NONE: 3484 // 0 - No file type 3485 return eTypeUnknown; 3486 3487 case llvm::ELF::ET_REL: 3488 // 1 - Relocatable file 3489 return eTypeObjectFile; 3490 3491 case llvm::ELF::ET_EXEC: 3492 // 2 - Executable file 3493 return eTypeExecutable; 3494 3495 case llvm::ELF::ET_DYN: 3496 // 3 - Shared object file 3497 return eTypeSharedLibrary; 3498 3499 case ET_CORE: 3500 // 4 - Core file 3501 return eTypeCoreFile; 3502 3503 default: 3504 break; 3505 } 3506 return eTypeUnknown; 3507 } 3508 3509 ObjectFile::Strata 3510 ObjectFileELF::CalculateStrata() 3511 { 3512 switch (m_header.e_type) 3513 { 3514 case llvm::ELF::ET_NONE: 3515 // 0 - No file type 3516 return eStrataUnknown; 3517 3518 case llvm::ELF::ET_REL: 3519 // 1 - Relocatable file 3520 return eStrataUnknown; 3521 3522 case llvm::ELF::ET_EXEC: 3523 // 2 - Executable file 3524 // TODO: is there any way to detect that an executable is a kernel 3525 // related executable by inspecting the program headers, section 3526 // headers, symbols, or any other flag bits??? 3527 return eStrataUser; 3528 3529 case llvm::ELF::ET_DYN: 3530 // 3 - Shared object file 3531 // TODO: is there any way to detect that an shared library is a kernel 3532 // related executable by inspecting the program headers, section 3533 // headers, symbols, or any other flag bits??? 3534 return eStrataUnknown; 3535 3536 case ET_CORE: 3537 // 4 - Core file 3538 // TODO: is there any way to detect that an core file is a kernel 3539 // related executable by inspecting the program headers, section 3540 // headers, symbols, or any other flag bits??? 3541 return eStrataUnknown; 3542 3543 default: 3544 break; 3545 } 3546 return eStrataUnknown; 3547 } 3548 3549