1 //===-- ObjectFileELF.cpp ------------------------------------- -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "ObjectFileELF.h"
10 
11 #include <algorithm>
12 #include <cassert>
13 #include <unordered_map>
14 
15 #include "lldb/Core/FileSpecList.h"
16 #include "lldb/Core/Module.h"
17 #include "lldb/Core/ModuleSpec.h"
18 #include "lldb/Core/PluginManager.h"
19 #include "lldb/Core/Section.h"
20 #include "lldb/Host/FileSystem.h"
21 #include "lldb/Host/LZMA.h"
22 #include "lldb/Symbol/DWARFCallFrameInfo.h"
23 #include "lldb/Symbol/SymbolContext.h"
24 #include "lldb/Target/SectionLoadList.h"
25 #include "lldb/Target/Target.h"
26 #include "lldb/Utility/ArchSpec.h"
27 #include "lldb/Utility/DataBufferHeap.h"
28 #include "lldb/Utility/Log.h"
29 #include "lldb/Utility/RangeMap.h"
30 #include "lldb/Utility/Status.h"
31 #include "lldb/Utility/Stream.h"
32 #include "lldb/Utility/Timer.h"
33 #include "llvm/ADT/IntervalMap.h"
34 #include "llvm/ADT/PointerUnion.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/BinaryFormat/ELF.h"
37 #include "llvm/Object/Decompressor.h"
38 #include "llvm/Support/ARMBuildAttributes.h"
39 #include "llvm/Support/CRC.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/MemoryBuffer.h"
42 #include "llvm/Support/MipsABIFlags.h"
43 
44 #define CASE_AND_STREAM(s, def, width)                                         \
45   case def:                                                                    \
46     s->Printf("%-*s", width, #def);                                            \
47     break;
48 
49 using namespace lldb;
50 using namespace lldb_private;
51 using namespace elf;
52 using namespace llvm::ELF;
53 
54 namespace {
55 
56 // ELF note owner definitions
57 const char *const LLDB_NT_OWNER_FREEBSD = "FreeBSD";
58 const char *const LLDB_NT_OWNER_GNU = "GNU";
59 const char *const LLDB_NT_OWNER_NETBSD = "NetBSD";
60 const char *const LLDB_NT_OWNER_NETBSDCORE = "NetBSD-CORE";
61 const char *const LLDB_NT_OWNER_OPENBSD = "OpenBSD";
62 const char *const LLDB_NT_OWNER_ANDROID = "Android";
63 const char *const LLDB_NT_OWNER_CORE = "CORE";
64 const char *const LLDB_NT_OWNER_LINUX = "LINUX";
65 
66 // ELF note type definitions
67 const elf_word LLDB_NT_FREEBSD_ABI_TAG = 0x01;
68 const elf_word LLDB_NT_FREEBSD_ABI_SIZE = 4;
69 
70 const elf_word LLDB_NT_GNU_ABI_TAG = 0x01;
71 const elf_word LLDB_NT_GNU_ABI_SIZE = 16;
72 
73 const elf_word LLDB_NT_GNU_BUILD_ID_TAG = 0x03;
74 
75 const elf_word LLDB_NT_NETBSD_IDENT_TAG = 1;
76 const elf_word LLDB_NT_NETBSD_IDENT_DESCSZ = 4;
77 const elf_word LLDB_NT_NETBSD_IDENT_NAMESZ = 7;
78 const elf_word LLDB_NT_NETBSD_PROCINFO = 1;
79 
80 // GNU ABI note OS constants
81 const elf_word LLDB_NT_GNU_ABI_OS_LINUX = 0x00;
82 const elf_word LLDB_NT_GNU_ABI_OS_HURD = 0x01;
83 const elf_word LLDB_NT_GNU_ABI_OS_SOLARIS = 0x02;
84 
85 //===----------------------------------------------------------------------===//
86 /// \class ELFRelocation
87 /// Generic wrapper for ELFRel and ELFRela.
88 ///
89 /// This helper class allows us to parse both ELFRel and ELFRela relocation
90 /// entries in a generic manner.
91 class ELFRelocation {
92 public:
93   /// Constructs an ELFRelocation entry with a personality as given by @p
94   /// type.
95   ///
96   /// \param type Either DT_REL or DT_RELA.  Any other value is invalid.
97   ELFRelocation(unsigned type);
98 
99   ~ELFRelocation();
100 
101   bool Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset);
102 
103   static unsigned RelocType32(const ELFRelocation &rel);
104 
105   static unsigned RelocType64(const ELFRelocation &rel);
106 
107   static unsigned RelocSymbol32(const ELFRelocation &rel);
108 
109   static unsigned RelocSymbol64(const ELFRelocation &rel);
110 
111   static unsigned RelocOffset32(const ELFRelocation &rel);
112 
113   static unsigned RelocOffset64(const ELFRelocation &rel);
114 
115   static unsigned RelocAddend32(const ELFRelocation &rel);
116 
117   static unsigned RelocAddend64(const ELFRelocation &rel);
118 
119 private:
120   typedef llvm::PointerUnion<ELFRel *, ELFRela *> RelocUnion;
121 
122   RelocUnion reloc;
123 };
124 
125 ELFRelocation::ELFRelocation(unsigned type) {
126   if (type == DT_REL || type == SHT_REL)
127     reloc = new ELFRel();
128   else if (type == DT_RELA || type == SHT_RELA)
129     reloc = new ELFRela();
130   else {
131     assert(false && "unexpected relocation type");
132     reloc = static_cast<ELFRel *>(nullptr);
133   }
134 }
135 
136 ELFRelocation::~ELFRelocation() {
137   if (reloc.is<ELFRel *>())
138     delete reloc.get<ELFRel *>();
139   else
140     delete reloc.get<ELFRela *>();
141 }
142 
143 bool ELFRelocation::Parse(const lldb_private::DataExtractor &data,
144                           lldb::offset_t *offset) {
145   if (reloc.is<ELFRel *>())
146     return reloc.get<ELFRel *>()->Parse(data, offset);
147   else
148     return reloc.get<ELFRela *>()->Parse(data, offset);
149 }
150 
151 unsigned ELFRelocation::RelocType32(const ELFRelocation &rel) {
152   if (rel.reloc.is<ELFRel *>())
153     return ELFRel::RelocType32(*rel.reloc.get<ELFRel *>());
154   else
155     return ELFRela::RelocType32(*rel.reloc.get<ELFRela *>());
156 }
157 
158 unsigned ELFRelocation::RelocType64(const ELFRelocation &rel) {
159   if (rel.reloc.is<ELFRel *>())
160     return ELFRel::RelocType64(*rel.reloc.get<ELFRel *>());
161   else
162     return ELFRela::RelocType64(*rel.reloc.get<ELFRela *>());
163 }
164 
165 unsigned ELFRelocation::RelocSymbol32(const ELFRelocation &rel) {
166   if (rel.reloc.is<ELFRel *>())
167     return ELFRel::RelocSymbol32(*rel.reloc.get<ELFRel *>());
168   else
169     return ELFRela::RelocSymbol32(*rel.reloc.get<ELFRela *>());
170 }
171 
172 unsigned ELFRelocation::RelocSymbol64(const ELFRelocation &rel) {
173   if (rel.reloc.is<ELFRel *>())
174     return ELFRel::RelocSymbol64(*rel.reloc.get<ELFRel *>());
175   else
176     return ELFRela::RelocSymbol64(*rel.reloc.get<ELFRela *>());
177 }
178 
179 unsigned ELFRelocation::RelocOffset32(const ELFRelocation &rel) {
180   if (rel.reloc.is<ELFRel *>())
181     return rel.reloc.get<ELFRel *>()->r_offset;
182   else
183     return rel.reloc.get<ELFRela *>()->r_offset;
184 }
185 
186 unsigned ELFRelocation::RelocOffset64(const ELFRelocation &rel) {
187   if (rel.reloc.is<ELFRel *>())
188     return rel.reloc.get<ELFRel *>()->r_offset;
189   else
190     return rel.reloc.get<ELFRela *>()->r_offset;
191 }
192 
193 unsigned ELFRelocation::RelocAddend32(const ELFRelocation &rel) {
194   if (rel.reloc.is<ELFRel *>())
195     return 0;
196   else
197     return rel.reloc.get<ELFRela *>()->r_addend;
198 }
199 
200 unsigned ELFRelocation::RelocAddend64(const ELFRelocation &rel) {
201   if (rel.reloc.is<ELFRel *>())
202     return 0;
203   else
204     return rel.reloc.get<ELFRela *>()->r_addend;
205 }
206 
207 } // end anonymous namespace
208 
209 static user_id_t SegmentID(size_t PHdrIndex) { return ~PHdrIndex; }
210 
211 bool ELFNote::Parse(const DataExtractor &data, lldb::offset_t *offset) {
212   // Read all fields.
213   if (data.GetU32(offset, &n_namesz, 3) == nullptr)
214     return false;
215 
216   // The name field is required to be nul-terminated, and n_namesz includes the
217   // terminating nul in observed implementations (contrary to the ELF-64 spec).
218   // A special case is needed for cores generated by some older Linux versions,
219   // which write a note named "CORE" without a nul terminator and n_namesz = 4.
220   if (n_namesz == 4) {
221     char buf[4];
222     if (data.ExtractBytes(*offset, 4, data.GetByteOrder(), buf) != 4)
223       return false;
224     if (strncmp(buf, "CORE", 4) == 0) {
225       n_name = "CORE";
226       *offset += 4;
227       return true;
228     }
229   }
230 
231   const char *cstr = data.GetCStr(offset, llvm::alignTo(n_namesz, 4));
232   if (cstr == nullptr) {
233     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS));
234     LLDB_LOGF(log, "Failed to parse note name lacking nul terminator");
235 
236     return false;
237   }
238   n_name = cstr;
239   return true;
240 }
241 
242 static uint32_t mipsVariantFromElfFlags (const elf::ELFHeader &header) {
243   const uint32_t mips_arch = header.e_flags & llvm::ELF::EF_MIPS_ARCH;
244   uint32_t endian = header.e_ident[EI_DATA];
245   uint32_t arch_variant = ArchSpec::eMIPSSubType_unknown;
246   uint32_t fileclass = header.e_ident[EI_CLASS];
247 
248   // If there aren't any elf flags available (e.g core elf file) then return
249   // default
250   // 32 or 64 bit arch (without any architecture revision) based on object file's class.
251   if (header.e_type == ET_CORE) {
252     switch (fileclass) {
253     case llvm::ELF::ELFCLASS32:
254       return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el
255                                      : ArchSpec::eMIPSSubType_mips32;
256     case llvm::ELF::ELFCLASS64:
257       return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el
258                                      : ArchSpec::eMIPSSubType_mips64;
259     default:
260       return arch_variant;
261     }
262   }
263 
264   switch (mips_arch) {
265   case llvm::ELF::EF_MIPS_ARCH_1:
266   case llvm::ELF::EF_MIPS_ARCH_2:
267   case llvm::ELF::EF_MIPS_ARCH_32:
268     return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el
269                                    : ArchSpec::eMIPSSubType_mips32;
270   case llvm::ELF::EF_MIPS_ARCH_32R2:
271     return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r2el
272                                    : ArchSpec::eMIPSSubType_mips32r2;
273   case llvm::ELF::EF_MIPS_ARCH_32R6:
274     return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r6el
275                                    : ArchSpec::eMIPSSubType_mips32r6;
276   case llvm::ELF::EF_MIPS_ARCH_3:
277   case llvm::ELF::EF_MIPS_ARCH_4:
278   case llvm::ELF::EF_MIPS_ARCH_5:
279   case llvm::ELF::EF_MIPS_ARCH_64:
280     return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el
281                                    : ArchSpec::eMIPSSubType_mips64;
282   case llvm::ELF::EF_MIPS_ARCH_64R2:
283     return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r2el
284                                    : ArchSpec::eMIPSSubType_mips64r2;
285   case llvm::ELF::EF_MIPS_ARCH_64R6:
286     return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r6el
287                                    : ArchSpec::eMIPSSubType_mips64r6;
288   default:
289     break;
290   }
291 
292   return arch_variant;
293 }
294 
295 static uint32_t subTypeFromElfHeader(const elf::ELFHeader &header) {
296   if (header.e_machine == llvm::ELF::EM_MIPS)
297     return mipsVariantFromElfFlags(header);
298 
299   return LLDB_INVALID_CPUTYPE;
300 }
301 
302 char ObjectFileELF::ID;
303 
304 // Arbitrary constant used as UUID prefix for core files.
305 const uint32_t ObjectFileELF::g_core_uuid_magic(0xE210C);
306 
307 // Static methods.
308 void ObjectFileELF::Initialize() {
309   PluginManager::RegisterPlugin(GetPluginNameStatic(),
310                                 GetPluginDescriptionStatic(), CreateInstance,
311                                 CreateMemoryInstance, GetModuleSpecifications);
312 }
313 
314 void ObjectFileELF::Terminate() {
315   PluginManager::UnregisterPlugin(CreateInstance);
316 }
317 
318 lldb_private::ConstString ObjectFileELF::GetPluginNameStatic() {
319   static ConstString g_name("elf");
320   return g_name;
321 }
322 
323 const char *ObjectFileELF::GetPluginDescriptionStatic() {
324   return "ELF object file reader.";
325 }
326 
327 ObjectFile *ObjectFileELF::CreateInstance(const lldb::ModuleSP &module_sp,
328                                           DataBufferSP &data_sp,
329                                           lldb::offset_t data_offset,
330                                           const lldb_private::FileSpec *file,
331                                           lldb::offset_t file_offset,
332                                           lldb::offset_t length) {
333   if (!data_sp) {
334     data_sp = MapFileData(*file, length, file_offset);
335     if (!data_sp)
336       return nullptr;
337     data_offset = 0;
338   }
339 
340   assert(data_sp);
341 
342   if (data_sp->GetByteSize() <= (llvm::ELF::EI_NIDENT + data_offset))
343     return nullptr;
344 
345   const uint8_t *magic = data_sp->GetBytes() + data_offset;
346   if (!ELFHeader::MagicBytesMatch(magic))
347     return nullptr;
348 
349   // Update the data to contain the entire file if it doesn't already
350   if (data_sp->GetByteSize() < length) {
351     data_sp = MapFileData(*file, length, file_offset);
352     if (!data_sp)
353       return nullptr;
354     data_offset = 0;
355     magic = data_sp->GetBytes();
356   }
357 
358   unsigned address_size = ELFHeader::AddressSizeInBytes(magic);
359   if (address_size == 4 || address_size == 8) {
360     std::unique_ptr<ObjectFileELF> objfile_up(new ObjectFileELF(
361         module_sp, data_sp, data_offset, file, file_offset, length));
362     ArchSpec spec = objfile_up->GetArchitecture();
363     if (spec && objfile_up->SetModulesArchitecture(spec))
364       return objfile_up.release();
365   }
366 
367   return nullptr;
368 }
369 
370 ObjectFile *ObjectFileELF::CreateMemoryInstance(
371     const lldb::ModuleSP &module_sp, DataBufferSP &data_sp,
372     const lldb::ProcessSP &process_sp, lldb::addr_t header_addr) {
373   if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT)) {
374     const uint8_t *magic = data_sp->GetBytes();
375     if (ELFHeader::MagicBytesMatch(magic)) {
376       unsigned address_size = ELFHeader::AddressSizeInBytes(magic);
377       if (address_size == 4 || address_size == 8) {
378         std::unique_ptr<ObjectFileELF> objfile_up(
379             new ObjectFileELF(module_sp, data_sp, process_sp, header_addr));
380         ArchSpec spec = objfile_up->GetArchitecture();
381         if (spec && objfile_up->SetModulesArchitecture(spec))
382           return objfile_up.release();
383       }
384     }
385   }
386   return nullptr;
387 }
388 
389 bool ObjectFileELF::MagicBytesMatch(DataBufferSP &data_sp,
390                                     lldb::addr_t data_offset,
391                                     lldb::addr_t data_length) {
392   if (data_sp &&
393       data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset)) {
394     const uint8_t *magic = data_sp->GetBytes() + data_offset;
395     return ELFHeader::MagicBytesMatch(magic);
396   }
397   return false;
398 }
399 
400 static uint32_t calc_crc32(uint32_t init, const DataExtractor &data) {
401   return llvm::crc32(
402       init, llvm::makeArrayRef(data.GetDataStart(), data.GetByteSize()));
403 }
404 
405 uint32_t ObjectFileELF::CalculateELFNotesSegmentsCRC32(
406     const ProgramHeaderColl &program_headers, DataExtractor &object_data) {
407 
408   uint32_t core_notes_crc = 0;
409 
410   for (const ELFProgramHeader &H : program_headers) {
411     if (H.p_type == llvm::ELF::PT_NOTE) {
412       const elf_off ph_offset = H.p_offset;
413       const size_t ph_size = H.p_filesz;
414 
415       DataExtractor segment_data;
416       if (segment_data.SetData(object_data, ph_offset, ph_size) != ph_size) {
417         // The ELF program header contained incorrect data, probably corefile
418         // is incomplete or corrupted.
419         break;
420       }
421 
422       core_notes_crc = calc_crc32(core_notes_crc, segment_data);
423     }
424   }
425 
426   return core_notes_crc;
427 }
428 
429 static const char *OSABIAsCString(unsigned char osabi_byte) {
430 #define _MAKE_OSABI_CASE(x)                                                    \
431   case x:                                                                      \
432     return #x
433   switch (osabi_byte) {
434     _MAKE_OSABI_CASE(ELFOSABI_NONE);
435     _MAKE_OSABI_CASE(ELFOSABI_HPUX);
436     _MAKE_OSABI_CASE(ELFOSABI_NETBSD);
437     _MAKE_OSABI_CASE(ELFOSABI_GNU);
438     _MAKE_OSABI_CASE(ELFOSABI_HURD);
439     _MAKE_OSABI_CASE(ELFOSABI_SOLARIS);
440     _MAKE_OSABI_CASE(ELFOSABI_AIX);
441     _MAKE_OSABI_CASE(ELFOSABI_IRIX);
442     _MAKE_OSABI_CASE(ELFOSABI_FREEBSD);
443     _MAKE_OSABI_CASE(ELFOSABI_TRU64);
444     _MAKE_OSABI_CASE(ELFOSABI_MODESTO);
445     _MAKE_OSABI_CASE(ELFOSABI_OPENBSD);
446     _MAKE_OSABI_CASE(ELFOSABI_OPENVMS);
447     _MAKE_OSABI_CASE(ELFOSABI_NSK);
448     _MAKE_OSABI_CASE(ELFOSABI_AROS);
449     _MAKE_OSABI_CASE(ELFOSABI_FENIXOS);
450     _MAKE_OSABI_CASE(ELFOSABI_C6000_ELFABI);
451     _MAKE_OSABI_CASE(ELFOSABI_C6000_LINUX);
452     _MAKE_OSABI_CASE(ELFOSABI_ARM);
453     _MAKE_OSABI_CASE(ELFOSABI_STANDALONE);
454   default:
455     return "<unknown-osabi>";
456   }
457 #undef _MAKE_OSABI_CASE
458 }
459 
460 //
461 // WARNING : This function is being deprecated
462 // It's functionality has moved to ArchSpec::SetArchitecture This function is
463 // only being kept to validate the move.
464 //
465 // TODO : Remove this function
466 static bool GetOsFromOSABI(unsigned char osabi_byte,
467                            llvm::Triple::OSType &ostype) {
468   switch (osabi_byte) {
469   case ELFOSABI_AIX:
470     ostype = llvm::Triple::OSType::AIX;
471     break;
472   case ELFOSABI_FREEBSD:
473     ostype = llvm::Triple::OSType::FreeBSD;
474     break;
475   case ELFOSABI_GNU:
476     ostype = llvm::Triple::OSType::Linux;
477     break;
478   case ELFOSABI_NETBSD:
479     ostype = llvm::Triple::OSType::NetBSD;
480     break;
481   case ELFOSABI_OPENBSD:
482     ostype = llvm::Triple::OSType::OpenBSD;
483     break;
484   case ELFOSABI_SOLARIS:
485     ostype = llvm::Triple::OSType::Solaris;
486     break;
487   default:
488     ostype = llvm::Triple::OSType::UnknownOS;
489   }
490   return ostype != llvm::Triple::OSType::UnknownOS;
491 }
492 
493 size_t ObjectFileELF::GetModuleSpecifications(
494     const lldb_private::FileSpec &file, lldb::DataBufferSP &data_sp,
495     lldb::offset_t data_offset, lldb::offset_t file_offset,
496     lldb::offset_t length, lldb_private::ModuleSpecList &specs) {
497   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES));
498 
499   const size_t initial_count = specs.GetSize();
500 
501   if (ObjectFileELF::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
502     DataExtractor data;
503     data.SetData(data_sp);
504     elf::ELFHeader header;
505     lldb::offset_t header_offset = data_offset;
506     if (header.Parse(data, &header_offset)) {
507       if (data_sp) {
508         ModuleSpec spec(file);
509 
510         const uint32_t sub_type = subTypeFromElfHeader(header);
511         spec.GetArchitecture().SetArchitecture(
512             eArchTypeELF, header.e_machine, sub_type, header.e_ident[EI_OSABI]);
513 
514         if (spec.GetArchitecture().IsValid()) {
515           llvm::Triple::OSType ostype;
516           llvm::Triple::VendorType vendor;
517           llvm::Triple::OSType spec_ostype =
518               spec.GetArchitecture().GetTriple().getOS();
519 
520           LLDB_LOGF(log, "ObjectFileELF::%s file '%s' module OSABI: %s",
521                     __FUNCTION__, file.GetPath().c_str(),
522                     OSABIAsCString(header.e_ident[EI_OSABI]));
523 
524           // SetArchitecture should have set the vendor to unknown
525           vendor = spec.GetArchitecture().GetTriple().getVendor();
526           assert(vendor == llvm::Triple::UnknownVendor);
527           UNUSED_IF_ASSERT_DISABLED(vendor);
528 
529           //
530           // Validate it is ok to remove GetOsFromOSABI
531           GetOsFromOSABI(header.e_ident[EI_OSABI], ostype);
532           assert(spec_ostype == ostype);
533           if (spec_ostype != llvm::Triple::OSType::UnknownOS) {
534             LLDB_LOGF(log,
535                       "ObjectFileELF::%s file '%s' set ELF module OS type "
536                       "from ELF header OSABI.",
537                       __FUNCTION__, file.GetPath().c_str());
538           }
539 
540           data_sp = MapFileData(file, -1, file_offset);
541           if (data_sp)
542             data.SetData(data_sp);
543           // In case there is header extension in the section #0, the header we
544           // parsed above could have sentinel values for e_phnum, e_shnum, and
545           // e_shstrndx.  In this case we need to reparse the header with a
546           // bigger data source to get the actual values.
547           if (header.HasHeaderExtension()) {
548             lldb::offset_t header_offset = data_offset;
549             header.Parse(data, &header_offset);
550           }
551 
552           uint32_t gnu_debuglink_crc = 0;
553           std::string gnu_debuglink_file;
554           SectionHeaderColl section_headers;
555           lldb_private::UUID &uuid = spec.GetUUID();
556 
557           GetSectionHeaderInfo(section_headers, data, header, uuid,
558                                gnu_debuglink_file, gnu_debuglink_crc,
559                                spec.GetArchitecture());
560 
561           llvm::Triple &spec_triple = spec.GetArchitecture().GetTriple();
562 
563           LLDB_LOGF(log,
564                     "ObjectFileELF::%s file '%s' module set to triple: %s "
565                     "(architecture %s)",
566                     __FUNCTION__, file.GetPath().c_str(),
567                     spec_triple.getTriple().c_str(),
568                     spec.GetArchitecture().GetArchitectureName());
569 
570           if (!uuid.IsValid()) {
571             uint32_t core_notes_crc = 0;
572 
573             if (!gnu_debuglink_crc) {
574               static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
575               lldb_private::Timer scoped_timer(
576                   func_cat,
577                   "Calculating module crc32 %s with size %" PRIu64 " KiB",
578                   file.GetLastPathComponent().AsCString(),
579                   (FileSystem::Instance().GetByteSize(file) - file_offset) /
580                       1024);
581 
582               // For core files - which usually don't happen to have a
583               // gnu_debuglink, and are pretty bulky - calculating whole
584               // contents crc32 would be too much of luxury.  Thus we will need
585               // to fallback to something simpler.
586               if (header.e_type == llvm::ELF::ET_CORE) {
587                 ProgramHeaderColl program_headers;
588                 GetProgramHeaderInfo(program_headers, data, header);
589 
590                 core_notes_crc =
591                     CalculateELFNotesSegmentsCRC32(program_headers, data);
592               } else {
593                 gnu_debuglink_crc = calc_crc32(0, data);
594               }
595             }
596             using u32le = llvm::support::ulittle32_t;
597             if (gnu_debuglink_crc) {
598               // Use 4 bytes of crc from the .gnu_debuglink section.
599               u32le data(gnu_debuglink_crc);
600               uuid = UUID::fromData(&data, sizeof(data));
601             } else if (core_notes_crc) {
602               // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make
603               // it look different form .gnu_debuglink crc followed by 4 bytes
604               // of note segments crc.
605               u32le data[] = {u32le(g_core_uuid_magic), u32le(core_notes_crc)};
606               uuid = UUID::fromData(data, sizeof(data));
607             }
608           }
609 
610           specs.Append(spec);
611         }
612       }
613     }
614   }
615 
616   return specs.GetSize() - initial_count;
617 }
618 
619 // PluginInterface protocol
620 lldb_private::ConstString ObjectFileELF::GetPluginName() {
621   return GetPluginNameStatic();
622 }
623 
624 uint32_t ObjectFileELF::GetPluginVersion() { return m_plugin_version; }
625 // ObjectFile protocol
626 
627 ObjectFileELF::ObjectFileELF(const lldb::ModuleSP &module_sp,
628                              DataBufferSP &data_sp, lldb::offset_t data_offset,
629                              const FileSpec *file, lldb::offset_t file_offset,
630                              lldb::offset_t length)
631     : ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset) {
632   if (file)
633     m_file = *file;
634 }
635 
636 ObjectFileELF::ObjectFileELF(const lldb::ModuleSP &module_sp,
637                              DataBufferSP &header_data_sp,
638                              const lldb::ProcessSP &process_sp,
639                              addr_t header_addr)
640     : ObjectFile(module_sp, process_sp, header_addr, header_data_sp) {}
641 
642 bool ObjectFileELF::IsExecutable() const {
643   return ((m_header.e_type & ET_EXEC) != 0) || (m_header.e_entry != 0);
644 }
645 
646 bool ObjectFileELF::SetLoadAddress(Target &target, lldb::addr_t value,
647                                    bool value_is_offset) {
648   ModuleSP module_sp = GetModule();
649   if (module_sp) {
650     size_t num_loaded_sections = 0;
651     SectionList *section_list = GetSectionList();
652     if (section_list) {
653       if (!value_is_offset) {
654         addr_t base = GetBaseAddress().GetFileAddress();
655         if (base == LLDB_INVALID_ADDRESS)
656           return false;
657         value -= base;
658       }
659 
660       const size_t num_sections = section_list->GetSize();
661       size_t sect_idx = 0;
662 
663       for (sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
664         // Iterate through the object file sections to find all of the sections
665         // that have SHF_ALLOC in their flag bits.
666         SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
667         if (section_sp->Test(SHF_ALLOC) ||
668             section_sp->GetType() == eSectionTypeContainer) {
669           lldb::addr_t load_addr = section_sp->GetFileAddress();
670           // We don't want to update the load address of a section with type
671           // eSectionTypeAbsoluteAddress as they already have the absolute load
672           // address already specified
673           if (section_sp->GetType() != eSectionTypeAbsoluteAddress)
674             load_addr += value;
675 
676           // On 32-bit systems the load address have to fit into 4 bytes. The
677           // rest of the bytes are the overflow from the addition.
678           if (GetAddressByteSize() == 4)
679             load_addr &= 0xFFFFFFFF;
680 
681           if (target.GetSectionLoadList().SetSectionLoadAddress(section_sp,
682                                                                 load_addr))
683             ++num_loaded_sections;
684         }
685       }
686       return num_loaded_sections > 0;
687     }
688   }
689   return false;
690 }
691 
692 ByteOrder ObjectFileELF::GetByteOrder() const {
693   if (m_header.e_ident[EI_DATA] == ELFDATA2MSB)
694     return eByteOrderBig;
695   if (m_header.e_ident[EI_DATA] == ELFDATA2LSB)
696     return eByteOrderLittle;
697   return eByteOrderInvalid;
698 }
699 
700 uint32_t ObjectFileELF::GetAddressByteSize() const {
701   return m_data.GetAddressByteSize();
702 }
703 
704 AddressClass ObjectFileELF::GetAddressClass(addr_t file_addr) {
705   Symtab *symtab = GetSymtab();
706   if (!symtab)
707     return AddressClass::eUnknown;
708 
709   // The address class is determined based on the symtab. Ask it from the
710   // object file what contains the symtab information.
711   ObjectFile *symtab_objfile = symtab->GetObjectFile();
712   if (symtab_objfile != nullptr && symtab_objfile != this)
713     return symtab_objfile->GetAddressClass(file_addr);
714 
715   auto res = ObjectFile::GetAddressClass(file_addr);
716   if (res != AddressClass::eCode)
717     return res;
718 
719   auto ub = m_address_class_map.upper_bound(file_addr);
720   if (ub == m_address_class_map.begin()) {
721     // No entry in the address class map before the address. Return default
722     // address class for an address in a code section.
723     return AddressClass::eCode;
724   }
725 
726   // Move iterator to the address class entry preceding address
727   --ub;
728 
729   return ub->second;
730 }
731 
732 size_t ObjectFileELF::SectionIndex(const SectionHeaderCollIter &I) {
733   return std::distance(m_section_headers.begin(), I);
734 }
735 
736 size_t ObjectFileELF::SectionIndex(const SectionHeaderCollConstIter &I) const {
737   return std::distance(m_section_headers.begin(), I);
738 }
739 
740 bool ObjectFileELF::ParseHeader() {
741   lldb::offset_t offset = 0;
742   return m_header.Parse(m_data, &offset);
743 }
744 
745 UUID ObjectFileELF::GetUUID() {
746   // Need to parse the section list to get the UUIDs, so make sure that's been
747   // done.
748   if (!ParseSectionHeaders() && GetType() != ObjectFile::eTypeCoreFile)
749     return UUID();
750 
751   if (!m_uuid) {
752     using u32le = llvm::support::ulittle32_t;
753     if (GetType() == ObjectFile::eTypeCoreFile) {
754       uint32_t core_notes_crc = 0;
755 
756       if (!ParseProgramHeaders())
757         return UUID();
758 
759       core_notes_crc =
760           CalculateELFNotesSegmentsCRC32(m_program_headers, m_data);
761 
762       if (core_notes_crc) {
763         // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it
764         // look different form .gnu_debuglink crc - followed by 4 bytes of note
765         // segments crc.
766         u32le data[] = {u32le(g_core_uuid_magic), u32le(core_notes_crc)};
767         m_uuid = UUID::fromData(data, sizeof(data));
768       }
769     } else {
770       if (!m_gnu_debuglink_crc)
771         m_gnu_debuglink_crc = calc_crc32(0, m_data);
772       if (m_gnu_debuglink_crc) {
773         // Use 4 bytes of crc from the .gnu_debuglink section.
774         u32le data(m_gnu_debuglink_crc);
775         m_uuid = UUID::fromData(&data, sizeof(data));
776       }
777     }
778   }
779 
780   return m_uuid;
781 }
782 
783 llvm::Optional<FileSpec> ObjectFileELF::GetDebugLink() {
784   if (m_gnu_debuglink_file.empty())
785     return llvm::None;
786   return FileSpec(m_gnu_debuglink_file);
787 }
788 
789 uint32_t ObjectFileELF::GetDependentModules(FileSpecList &files) {
790   size_t num_modules = ParseDependentModules();
791   uint32_t num_specs = 0;
792 
793   for (unsigned i = 0; i < num_modules; ++i) {
794     if (files.AppendIfUnique(m_filespec_up->GetFileSpecAtIndex(i)))
795       num_specs++;
796   }
797 
798   return num_specs;
799 }
800 
801 Address ObjectFileELF::GetImageInfoAddress(Target *target) {
802   if (!ParseDynamicSymbols())
803     return Address();
804 
805   SectionList *section_list = GetSectionList();
806   if (!section_list)
807     return Address();
808 
809   // Find the SHT_DYNAMIC (.dynamic) section.
810   SectionSP dynsym_section_sp(
811       section_list->FindSectionByType(eSectionTypeELFDynamicLinkInfo, true));
812   if (!dynsym_section_sp)
813     return Address();
814   assert(dynsym_section_sp->GetObjectFile() == this);
815 
816   user_id_t dynsym_id = dynsym_section_sp->GetID();
817   const ELFSectionHeaderInfo *dynsym_hdr = GetSectionHeaderByIndex(dynsym_id);
818   if (!dynsym_hdr)
819     return Address();
820 
821   for (size_t i = 0; i < m_dynamic_symbols.size(); ++i) {
822     ELFDynamic &symbol = m_dynamic_symbols[i];
823 
824     if (symbol.d_tag == DT_DEBUG) {
825       // Compute the offset as the number of previous entries plus the size of
826       // d_tag.
827       addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize();
828       return Address(dynsym_section_sp, offset);
829     }
830     // MIPS executables uses DT_MIPS_RLD_MAP_REL to support PIE. DT_MIPS_RLD_MAP
831     // exists in non-PIE.
832     else if ((symbol.d_tag == DT_MIPS_RLD_MAP ||
833               symbol.d_tag == DT_MIPS_RLD_MAP_REL) &&
834              target) {
835       addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize();
836       addr_t dyn_base = dynsym_section_sp->GetLoadBaseAddress(target);
837       if (dyn_base == LLDB_INVALID_ADDRESS)
838         return Address();
839 
840       Status error;
841       if (symbol.d_tag == DT_MIPS_RLD_MAP) {
842         // DT_MIPS_RLD_MAP tag stores an absolute address of the debug pointer.
843         Address addr;
844         if (target->ReadPointerFromMemory(dyn_base + offset, false, error,
845                                           addr))
846           return addr;
847       }
848       if (symbol.d_tag == DT_MIPS_RLD_MAP_REL) {
849         // DT_MIPS_RLD_MAP_REL tag stores the offset to the debug pointer,
850         // relative to the address of the tag.
851         uint64_t rel_offset;
852         rel_offset = target->ReadUnsignedIntegerFromMemory(
853             dyn_base + offset, false, GetAddressByteSize(), UINT64_MAX, error);
854         if (error.Success() && rel_offset != UINT64_MAX) {
855           Address addr;
856           addr_t debug_ptr_address =
857               dyn_base + (offset - GetAddressByteSize()) + rel_offset;
858           addr.SetOffset(debug_ptr_address);
859           return addr;
860         }
861       }
862     }
863   }
864 
865   return Address();
866 }
867 
868 lldb_private::Address ObjectFileELF::GetEntryPointAddress() {
869   if (m_entry_point_address.IsValid())
870     return m_entry_point_address;
871 
872   if (!ParseHeader() || !IsExecutable())
873     return m_entry_point_address;
874 
875   SectionList *section_list = GetSectionList();
876   addr_t offset = m_header.e_entry;
877 
878   if (!section_list)
879     m_entry_point_address.SetOffset(offset);
880   else
881     m_entry_point_address.ResolveAddressUsingFileSections(offset, section_list);
882   return m_entry_point_address;
883 }
884 
885 Address ObjectFileELF::GetBaseAddress() {
886   for (const auto &EnumPHdr : llvm::enumerate(ProgramHeaders())) {
887     const ELFProgramHeader &H = EnumPHdr.value();
888     if (H.p_type != PT_LOAD)
889       continue;
890 
891     return Address(
892         GetSectionList()->FindSectionByID(SegmentID(EnumPHdr.index())), 0);
893   }
894   return LLDB_INVALID_ADDRESS;
895 }
896 
897 // ParseDependentModules
898 size_t ObjectFileELF::ParseDependentModules() {
899   if (m_filespec_up)
900     return m_filespec_up->GetSize();
901 
902   m_filespec_up.reset(new FileSpecList());
903 
904   if (!ParseSectionHeaders())
905     return 0;
906 
907   SectionList *section_list = GetSectionList();
908   if (!section_list)
909     return 0;
910 
911   // Find the SHT_DYNAMIC section.
912   Section *dynsym =
913       section_list->FindSectionByType(eSectionTypeELFDynamicLinkInfo, true)
914           .get();
915   if (!dynsym)
916     return 0;
917   assert(dynsym->GetObjectFile() == this);
918 
919   const ELFSectionHeaderInfo *header = GetSectionHeaderByIndex(dynsym->GetID());
920   if (!header)
921     return 0;
922   // sh_link: section header index of string table used by entries in the
923   // section.
924   Section *dynstr = section_list->FindSectionByID(header->sh_link).get();
925   if (!dynstr)
926     return 0;
927 
928   DataExtractor dynsym_data;
929   DataExtractor dynstr_data;
930   if (ReadSectionData(dynsym, dynsym_data) &&
931       ReadSectionData(dynstr, dynstr_data)) {
932     ELFDynamic symbol;
933     const lldb::offset_t section_size = dynsym_data.GetByteSize();
934     lldb::offset_t offset = 0;
935 
936     // The only type of entries we are concerned with are tagged DT_NEEDED,
937     // yielding the name of a required library.
938     while (offset < section_size) {
939       if (!symbol.Parse(dynsym_data, &offset))
940         break;
941 
942       if (symbol.d_tag != DT_NEEDED)
943         continue;
944 
945       uint32_t str_index = static_cast<uint32_t>(symbol.d_val);
946       const char *lib_name = dynstr_data.PeekCStr(str_index);
947       FileSpec file_spec(lib_name);
948       FileSystem::Instance().Resolve(file_spec);
949       m_filespec_up->Append(file_spec);
950     }
951   }
952 
953   return m_filespec_up->GetSize();
954 }
955 
956 // GetProgramHeaderInfo
957 size_t ObjectFileELF::GetProgramHeaderInfo(ProgramHeaderColl &program_headers,
958                                            DataExtractor &object_data,
959                                            const ELFHeader &header) {
960   // We have already parsed the program headers
961   if (!program_headers.empty())
962     return program_headers.size();
963 
964   // If there are no program headers to read we are done.
965   if (header.e_phnum == 0)
966     return 0;
967 
968   program_headers.resize(header.e_phnum);
969   if (program_headers.size() != header.e_phnum)
970     return 0;
971 
972   const size_t ph_size = header.e_phnum * header.e_phentsize;
973   const elf_off ph_offset = header.e_phoff;
974   DataExtractor data;
975   if (data.SetData(object_data, ph_offset, ph_size) != ph_size)
976     return 0;
977 
978   uint32_t idx;
979   lldb::offset_t offset;
980   for (idx = 0, offset = 0; idx < header.e_phnum; ++idx) {
981     if (!program_headers[idx].Parse(data, &offset))
982       break;
983   }
984 
985   if (idx < program_headers.size())
986     program_headers.resize(idx);
987 
988   return program_headers.size();
989 }
990 
991 // ParseProgramHeaders
992 bool ObjectFileELF::ParseProgramHeaders() {
993   return GetProgramHeaderInfo(m_program_headers, m_data, m_header) != 0;
994 }
995 
996 lldb_private::Status
997 ObjectFileELF::RefineModuleDetailsFromNote(lldb_private::DataExtractor &data,
998                                            lldb_private::ArchSpec &arch_spec,
999                                            lldb_private::UUID &uuid) {
1000   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES));
1001   Status error;
1002 
1003   lldb::offset_t offset = 0;
1004 
1005   while (true) {
1006     // Parse the note header.  If this fails, bail out.
1007     const lldb::offset_t note_offset = offset;
1008     ELFNote note = ELFNote();
1009     if (!note.Parse(data, &offset)) {
1010       // We're done.
1011       return error;
1012     }
1013 
1014     LLDB_LOGF(log, "ObjectFileELF::%s parsing note name='%s', type=%" PRIu32,
1015               __FUNCTION__, note.n_name.c_str(), note.n_type);
1016 
1017     // Process FreeBSD ELF notes.
1018     if ((note.n_name == LLDB_NT_OWNER_FREEBSD) &&
1019         (note.n_type == LLDB_NT_FREEBSD_ABI_TAG) &&
1020         (note.n_descsz == LLDB_NT_FREEBSD_ABI_SIZE)) {
1021       // Pull out the min version info.
1022       uint32_t version_info;
1023       if (data.GetU32(&offset, &version_info, 1) == nullptr) {
1024         error.SetErrorString("failed to read FreeBSD ABI note payload");
1025         return error;
1026       }
1027 
1028       // Convert the version info into a major/minor number.
1029       const uint32_t version_major = version_info / 100000;
1030       const uint32_t version_minor = (version_info / 1000) % 100;
1031 
1032       char os_name[32];
1033       snprintf(os_name, sizeof(os_name), "freebsd%" PRIu32 ".%" PRIu32,
1034                version_major, version_minor);
1035 
1036       // Set the elf OS version to FreeBSD.  Also clear the vendor.
1037       arch_spec.GetTriple().setOSName(os_name);
1038       arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor);
1039 
1040       LLDB_LOGF(log,
1041                 "ObjectFileELF::%s detected FreeBSD %" PRIu32 ".%" PRIu32
1042                 ".%" PRIu32,
1043                 __FUNCTION__, version_major, version_minor,
1044                 static_cast<uint32_t>(version_info % 1000));
1045     }
1046     // Process GNU ELF notes.
1047     else if (note.n_name == LLDB_NT_OWNER_GNU) {
1048       switch (note.n_type) {
1049       case LLDB_NT_GNU_ABI_TAG:
1050         if (note.n_descsz == LLDB_NT_GNU_ABI_SIZE) {
1051           // Pull out the min OS version supporting the ABI.
1052           uint32_t version_info[4];
1053           if (data.GetU32(&offset, &version_info[0], note.n_descsz / 4) ==
1054               nullptr) {
1055             error.SetErrorString("failed to read GNU ABI note payload");
1056             return error;
1057           }
1058 
1059           // Set the OS per the OS field.
1060           switch (version_info[0]) {
1061           case LLDB_NT_GNU_ABI_OS_LINUX:
1062             arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1063             arch_spec.GetTriple().setVendor(
1064                 llvm::Triple::VendorType::UnknownVendor);
1065             LLDB_LOGF(log,
1066                       "ObjectFileELF::%s detected Linux, min version %" PRIu32
1067                       ".%" PRIu32 ".%" PRIu32,
1068                       __FUNCTION__, version_info[1], version_info[2],
1069                       version_info[3]);
1070             // FIXME we have the minimal version number, we could be propagating
1071             // that.  version_info[1] = OS Major, version_info[2] = OS Minor,
1072             // version_info[3] = Revision.
1073             break;
1074           case LLDB_NT_GNU_ABI_OS_HURD:
1075             arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS);
1076             arch_spec.GetTriple().setVendor(
1077                 llvm::Triple::VendorType::UnknownVendor);
1078             LLDB_LOGF(log,
1079                       "ObjectFileELF::%s detected Hurd (unsupported), min "
1080                       "version %" PRIu32 ".%" PRIu32 ".%" PRIu32,
1081                       __FUNCTION__, version_info[1], version_info[2],
1082                       version_info[3]);
1083             break;
1084           case LLDB_NT_GNU_ABI_OS_SOLARIS:
1085             arch_spec.GetTriple().setOS(llvm::Triple::OSType::Solaris);
1086             arch_spec.GetTriple().setVendor(
1087                 llvm::Triple::VendorType::UnknownVendor);
1088             LLDB_LOGF(log,
1089                       "ObjectFileELF::%s detected Solaris, min version %" PRIu32
1090                       ".%" PRIu32 ".%" PRIu32,
1091                       __FUNCTION__, version_info[1], version_info[2],
1092                       version_info[3]);
1093             break;
1094           default:
1095             LLDB_LOGF(log,
1096                       "ObjectFileELF::%s unrecognized OS in note, id %" PRIu32
1097                       ", min version %" PRIu32 ".%" PRIu32 ".%" PRIu32,
1098                       __FUNCTION__, version_info[0], version_info[1],
1099                       version_info[2], version_info[3]);
1100             break;
1101           }
1102         }
1103         break;
1104 
1105       case LLDB_NT_GNU_BUILD_ID_TAG:
1106         // Only bother processing this if we don't already have the uuid set.
1107         if (!uuid.IsValid()) {
1108           // 16 bytes is UUID|MD5, 20 bytes is SHA1. Other linkers may produce a
1109           // build-id of a different length. Accept it as long as it's at least
1110           // 4 bytes as it will be better than our own crc32.
1111           if (note.n_descsz >= 4) {
1112             if (const uint8_t *buf = data.PeekData(offset, note.n_descsz)) {
1113               // Save the build id as the UUID for the module.
1114               uuid = UUID::fromData(buf, note.n_descsz);
1115             } else {
1116               error.SetErrorString("failed to read GNU_BUILD_ID note payload");
1117               return error;
1118             }
1119           }
1120         }
1121         break;
1122       }
1123       if (arch_spec.IsMIPS() &&
1124           arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS)
1125         // The note.n_name == LLDB_NT_OWNER_GNU is valid for Linux platform
1126         arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1127     }
1128     // Process NetBSD ELF executables and shared libraries
1129     else if ((note.n_name == LLDB_NT_OWNER_NETBSD) &&
1130              (note.n_type == LLDB_NT_NETBSD_IDENT_TAG) &&
1131              (note.n_descsz == LLDB_NT_NETBSD_IDENT_DESCSZ) &&
1132              (note.n_namesz == LLDB_NT_NETBSD_IDENT_NAMESZ)) {
1133       // Pull out the version info.
1134       uint32_t version_info;
1135       if (data.GetU32(&offset, &version_info, 1) == nullptr) {
1136         error.SetErrorString("failed to read NetBSD ABI note payload");
1137         return error;
1138       }
1139       // Convert the version info into a major/minor/patch number.
1140       //     #define __NetBSD_Version__ MMmmrrpp00
1141       //
1142       //     M = major version
1143       //     m = minor version; a minor number of 99 indicates current.
1144       //     r = 0 (since NetBSD 3.0 not used)
1145       //     p = patchlevel
1146       const uint32_t version_major = version_info / 100000000;
1147       const uint32_t version_minor = (version_info % 100000000) / 1000000;
1148       const uint32_t version_patch = (version_info % 10000) / 100;
1149       // Set the elf OS version to NetBSD.  Also clear the vendor.
1150       arch_spec.GetTriple().setOSName(
1151           llvm::formatv("netbsd{0}.{1}.{2}", version_major, version_minor,
1152                         version_patch).str());
1153       arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor);
1154     }
1155     // Process NetBSD ELF core(5) notes
1156     else if ((note.n_name == LLDB_NT_OWNER_NETBSDCORE) &&
1157              (note.n_type == LLDB_NT_NETBSD_PROCINFO)) {
1158       // Set the elf OS version to NetBSD.  Also clear the vendor.
1159       arch_spec.GetTriple().setOS(llvm::Triple::OSType::NetBSD);
1160       arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor);
1161     }
1162     // Process OpenBSD ELF notes.
1163     else if (note.n_name == LLDB_NT_OWNER_OPENBSD) {
1164       // Set the elf OS version to OpenBSD.  Also clear the vendor.
1165       arch_spec.GetTriple().setOS(llvm::Triple::OSType::OpenBSD);
1166       arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor);
1167     } else if (note.n_name == LLDB_NT_OWNER_ANDROID) {
1168       arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1169       arch_spec.GetTriple().setEnvironment(
1170           llvm::Triple::EnvironmentType::Android);
1171     } else if (note.n_name == LLDB_NT_OWNER_LINUX) {
1172       // This is sometimes found in core files and usually contains extended
1173       // register info
1174       arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1175     } else if (note.n_name == LLDB_NT_OWNER_CORE) {
1176       // Parse the NT_FILE to look for stuff in paths to shared libraries As
1177       // the contents look like this in a 64 bit ELF core file: count     =
1178       // 0x000000000000000a (10) page_size = 0x0000000000001000 (4096) Index
1179       // start              end                file_ofs           path =====
1180       // 0x0000000000401000 0x0000000000000000 /tmp/a.out [  1]
1181       // 0x0000000000600000 0x0000000000601000 0x0000000000000000 /tmp/a.out [
1182       // 2] 0x0000000000601000 0x0000000000602000 0x0000000000000001 /tmp/a.out
1183       // [  3] 0x00007fa79c9ed000 0x00007fa79cba8000 0x0000000000000000
1184       // /lib/x86_64-linux-gnu/libc-2.19.so [  4] 0x00007fa79cba8000
1185       // 0x00007fa79cda7000 0x00000000000001bb /lib/x86_64-linux-
1186       // gnu/libc-2.19.so [  5] 0x00007fa79cda7000 0x00007fa79cdab000
1187       // 0x00000000000001ba /lib/x86_64-linux-gnu/libc-2.19.so [  6]
1188       // 0x00007fa79cdab000 0x00007fa79cdad000 0x00000000000001be /lib/x86_64
1189       // -linux-gnu/libc-2.19.so [  7] 0x00007fa79cdb2000 0x00007fa79cdd5000
1190       // 0x0000000000000000 /lib/x86_64-linux-gnu/ld-2.19.so [  8]
1191       // 0x00007fa79cfd4000 0x00007fa79cfd5000 0x0000000000000022 /lib/x86_64
1192       // -linux-gnu/ld-2.19.so [  9] 0x00007fa79cfd5000 0x00007fa79cfd6000
1193       // 0x0000000000000023 /lib/x86_64-linux-gnu/ld-2.19.so In the 32 bit ELFs
1194       // the count, page_size, start, end, file_ofs are uint32_t For reference:
1195       // see readelf source code (in binutils).
1196       if (note.n_type == NT_FILE) {
1197         uint64_t count = data.GetAddress(&offset);
1198         const char *cstr;
1199         data.GetAddress(&offset); // Skip page size
1200         offset += count * 3 *
1201                   data.GetAddressByteSize(); // Skip all start/end/file_ofs
1202         for (size_t i = 0; i < count; ++i) {
1203           cstr = data.GetCStr(&offset);
1204           if (cstr == nullptr) {
1205             error.SetErrorStringWithFormat("ObjectFileELF::%s trying to read "
1206                                            "at an offset after the end "
1207                                            "(GetCStr returned nullptr)",
1208                                            __FUNCTION__);
1209             return error;
1210           }
1211           llvm::StringRef path(cstr);
1212           if (path.contains("/lib/x86_64-linux-gnu") || path.contains("/lib/i386-linux-gnu")) {
1213             arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1214             break;
1215           }
1216         }
1217         if (arch_spec.IsMIPS() &&
1218             arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS)
1219           // In case of MIPSR6, the LLDB_NT_OWNER_GNU note is missing for some
1220           // cases (e.g. compile with -nostdlib) Hence set OS to Linux
1221           arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1222       }
1223     }
1224 
1225     // Calculate the offset of the next note just in case "offset" has been
1226     // used to poke at the contents of the note data
1227     offset = note_offset + note.GetByteSize();
1228   }
1229 
1230   return error;
1231 }
1232 
1233 void ObjectFileELF::ParseARMAttributes(DataExtractor &data, uint64_t length,
1234                                        ArchSpec &arch_spec) {
1235   lldb::offset_t Offset = 0;
1236 
1237   uint8_t FormatVersion = data.GetU8(&Offset);
1238   if (FormatVersion != llvm::ARMBuildAttrs::Format_Version)
1239     return;
1240 
1241   Offset = Offset + sizeof(uint32_t); // Section Length
1242   llvm::StringRef VendorName = data.GetCStr(&Offset);
1243 
1244   if (VendorName != "aeabi")
1245     return;
1246 
1247   if (arch_spec.GetTriple().getEnvironment() ==
1248       llvm::Triple::UnknownEnvironment)
1249     arch_spec.GetTriple().setEnvironment(llvm::Triple::EABI);
1250 
1251   while (Offset < length) {
1252     uint8_t Tag = data.GetU8(&Offset);
1253     uint32_t Size = data.GetU32(&Offset);
1254 
1255     if (Tag != llvm::ARMBuildAttrs::File || Size == 0)
1256       continue;
1257 
1258     while (Offset < length) {
1259       uint64_t Tag = data.GetULEB128(&Offset);
1260       switch (Tag) {
1261       default:
1262         if (Tag < 32)
1263           data.GetULEB128(&Offset);
1264         else if (Tag % 2 == 0)
1265           data.GetULEB128(&Offset);
1266         else
1267           data.GetCStr(&Offset);
1268 
1269         break;
1270 
1271       case llvm::ARMBuildAttrs::CPU_raw_name:
1272       case llvm::ARMBuildAttrs::CPU_name:
1273         data.GetCStr(&Offset);
1274 
1275         break;
1276 
1277       case llvm::ARMBuildAttrs::ABI_VFP_args: {
1278         uint64_t VFPArgs = data.GetULEB128(&Offset);
1279 
1280         if (VFPArgs == llvm::ARMBuildAttrs::BaseAAPCS) {
1281           if (arch_spec.GetTriple().getEnvironment() ==
1282                   llvm::Triple::UnknownEnvironment ||
1283               arch_spec.GetTriple().getEnvironment() == llvm::Triple::EABIHF)
1284             arch_spec.GetTriple().setEnvironment(llvm::Triple::EABI);
1285 
1286           arch_spec.SetFlags(ArchSpec::eARM_abi_soft_float);
1287         } else if (VFPArgs == llvm::ARMBuildAttrs::HardFPAAPCS) {
1288           if (arch_spec.GetTriple().getEnvironment() ==
1289                   llvm::Triple::UnknownEnvironment ||
1290               arch_spec.GetTriple().getEnvironment() == llvm::Triple::EABI)
1291             arch_spec.GetTriple().setEnvironment(llvm::Triple::EABIHF);
1292 
1293           arch_spec.SetFlags(ArchSpec::eARM_abi_hard_float);
1294         }
1295 
1296         break;
1297       }
1298       }
1299     }
1300   }
1301 }
1302 
1303 // GetSectionHeaderInfo
1304 size_t ObjectFileELF::GetSectionHeaderInfo(SectionHeaderColl &section_headers,
1305                                            DataExtractor &object_data,
1306                                            const elf::ELFHeader &header,
1307                                            lldb_private::UUID &uuid,
1308                                            std::string &gnu_debuglink_file,
1309                                            uint32_t &gnu_debuglink_crc,
1310                                            ArchSpec &arch_spec) {
1311   // Don't reparse the section headers if we already did that.
1312   if (!section_headers.empty())
1313     return section_headers.size();
1314 
1315   // Only initialize the arch_spec to okay defaults if they're not already set.
1316   // We'll refine this with note data as we parse the notes.
1317   if (arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS) {
1318     llvm::Triple::OSType ostype;
1319     llvm::Triple::OSType spec_ostype;
1320     const uint32_t sub_type = subTypeFromElfHeader(header);
1321     arch_spec.SetArchitecture(eArchTypeELF, header.e_machine, sub_type,
1322                               header.e_ident[EI_OSABI]);
1323 
1324     // Validate if it is ok to remove GetOsFromOSABI. Note, that now the OS is
1325     // determined based on EI_OSABI flag and the info extracted from ELF notes
1326     // (see RefineModuleDetailsFromNote). However in some cases that still
1327     // might be not enough: for example a shared library might not have any
1328     // notes at all and have EI_OSABI flag set to System V, as result the OS
1329     // will be set to UnknownOS.
1330     GetOsFromOSABI(header.e_ident[EI_OSABI], ostype);
1331     spec_ostype = arch_spec.GetTriple().getOS();
1332     assert(spec_ostype == ostype);
1333     UNUSED_IF_ASSERT_DISABLED(spec_ostype);
1334   }
1335 
1336   if (arch_spec.GetMachine() == llvm::Triple::mips ||
1337       arch_spec.GetMachine() == llvm::Triple::mipsel ||
1338       arch_spec.GetMachine() == llvm::Triple::mips64 ||
1339       arch_spec.GetMachine() == llvm::Triple::mips64el) {
1340     switch (header.e_flags & llvm::ELF::EF_MIPS_ARCH_ASE) {
1341     case llvm::ELF::EF_MIPS_MICROMIPS:
1342       arch_spec.SetFlags(ArchSpec::eMIPSAse_micromips);
1343       break;
1344     case llvm::ELF::EF_MIPS_ARCH_ASE_M16:
1345       arch_spec.SetFlags(ArchSpec::eMIPSAse_mips16);
1346       break;
1347     case llvm::ELF::EF_MIPS_ARCH_ASE_MDMX:
1348       arch_spec.SetFlags(ArchSpec::eMIPSAse_mdmx);
1349       break;
1350     default:
1351       break;
1352     }
1353   }
1354 
1355   if (arch_spec.GetMachine() == llvm::Triple::arm ||
1356       arch_spec.GetMachine() == llvm::Triple::thumb) {
1357     if (header.e_flags & llvm::ELF::EF_ARM_SOFT_FLOAT)
1358       arch_spec.SetFlags(ArchSpec::eARM_abi_soft_float);
1359     else if (header.e_flags & llvm::ELF::EF_ARM_VFP_FLOAT)
1360       arch_spec.SetFlags(ArchSpec::eARM_abi_hard_float);
1361   }
1362 
1363   // If there are no section headers we are done.
1364   if (header.e_shnum == 0)
1365     return 0;
1366 
1367   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES));
1368 
1369   section_headers.resize(header.e_shnum);
1370   if (section_headers.size() != header.e_shnum)
1371     return 0;
1372 
1373   const size_t sh_size = header.e_shnum * header.e_shentsize;
1374   const elf_off sh_offset = header.e_shoff;
1375   DataExtractor sh_data;
1376   if (sh_data.SetData(object_data, sh_offset, sh_size) != sh_size)
1377     return 0;
1378 
1379   uint32_t idx;
1380   lldb::offset_t offset;
1381   for (idx = 0, offset = 0; idx < header.e_shnum; ++idx) {
1382     if (!section_headers[idx].Parse(sh_data, &offset))
1383       break;
1384   }
1385   if (idx < section_headers.size())
1386     section_headers.resize(idx);
1387 
1388   const unsigned strtab_idx = header.e_shstrndx;
1389   if (strtab_idx && strtab_idx < section_headers.size()) {
1390     const ELFSectionHeaderInfo &sheader = section_headers[strtab_idx];
1391     const size_t byte_size = sheader.sh_size;
1392     const Elf64_Off offset = sheader.sh_offset;
1393     lldb_private::DataExtractor shstr_data;
1394 
1395     if (shstr_data.SetData(object_data, offset, byte_size) == byte_size) {
1396       for (SectionHeaderCollIter I = section_headers.begin();
1397            I != section_headers.end(); ++I) {
1398         static ConstString g_sect_name_gnu_debuglink(".gnu_debuglink");
1399         const ELFSectionHeaderInfo &sheader = *I;
1400         const uint64_t section_size =
1401             sheader.sh_type == SHT_NOBITS ? 0 : sheader.sh_size;
1402         ConstString name(shstr_data.PeekCStr(I->sh_name));
1403 
1404         I->section_name = name;
1405 
1406         if (arch_spec.IsMIPS()) {
1407           uint32_t arch_flags = arch_spec.GetFlags();
1408           DataExtractor data;
1409           if (sheader.sh_type == SHT_MIPS_ABIFLAGS) {
1410 
1411             if (section_size && (data.SetData(object_data, sheader.sh_offset,
1412                                               section_size) == section_size)) {
1413               // MIPS ASE Mask is at offset 12 in MIPS.abiflags section
1414               lldb::offset_t offset = 12; // MIPS ABI Flags Version: 0
1415               arch_flags |= data.GetU32(&offset);
1416 
1417               // The floating point ABI is at offset 7
1418               offset = 7;
1419               switch (data.GetU8(&offset)) {
1420               case llvm::Mips::Val_GNU_MIPS_ABI_FP_ANY:
1421                 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_ANY;
1422                 break;
1423               case llvm::Mips::Val_GNU_MIPS_ABI_FP_DOUBLE:
1424                 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_DOUBLE;
1425                 break;
1426               case llvm::Mips::Val_GNU_MIPS_ABI_FP_SINGLE:
1427                 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_SINGLE;
1428                 break;
1429               case llvm::Mips::Val_GNU_MIPS_ABI_FP_SOFT:
1430                 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_SOFT;
1431                 break;
1432               case llvm::Mips::Val_GNU_MIPS_ABI_FP_OLD_64:
1433                 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_OLD_64;
1434                 break;
1435               case llvm::Mips::Val_GNU_MIPS_ABI_FP_XX:
1436                 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_XX;
1437                 break;
1438               case llvm::Mips::Val_GNU_MIPS_ABI_FP_64:
1439                 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_64;
1440                 break;
1441               case llvm::Mips::Val_GNU_MIPS_ABI_FP_64A:
1442                 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_64A;
1443                 break;
1444               }
1445             }
1446           }
1447           // Settings appropriate ArchSpec ABI Flags
1448           switch (header.e_flags & llvm::ELF::EF_MIPS_ABI) {
1449           case llvm::ELF::EF_MIPS_ABI_O32:
1450             arch_flags |= lldb_private::ArchSpec::eMIPSABI_O32;
1451             break;
1452           case EF_MIPS_ABI_O64:
1453             arch_flags |= lldb_private::ArchSpec::eMIPSABI_O64;
1454             break;
1455           case EF_MIPS_ABI_EABI32:
1456             arch_flags |= lldb_private::ArchSpec::eMIPSABI_EABI32;
1457             break;
1458           case EF_MIPS_ABI_EABI64:
1459             arch_flags |= lldb_private::ArchSpec::eMIPSABI_EABI64;
1460             break;
1461           default:
1462             // ABI Mask doesn't cover N32 and N64 ABI.
1463             if (header.e_ident[EI_CLASS] == llvm::ELF::ELFCLASS64)
1464               arch_flags |= lldb_private::ArchSpec::eMIPSABI_N64;
1465             else if (header.e_flags & llvm::ELF::EF_MIPS_ABI2)
1466               arch_flags |= lldb_private::ArchSpec::eMIPSABI_N32;
1467             break;
1468           }
1469           arch_spec.SetFlags(arch_flags);
1470         }
1471 
1472         if (arch_spec.GetMachine() == llvm::Triple::arm ||
1473             arch_spec.GetMachine() == llvm::Triple::thumb) {
1474           DataExtractor data;
1475 
1476           if (sheader.sh_type == SHT_ARM_ATTRIBUTES && section_size != 0 &&
1477               data.SetData(object_data, sheader.sh_offset, section_size) == section_size)
1478             ParseARMAttributes(data, section_size, arch_spec);
1479         }
1480 
1481         if (name == g_sect_name_gnu_debuglink) {
1482           DataExtractor data;
1483           if (section_size && (data.SetData(object_data, sheader.sh_offset,
1484                                             section_size) == section_size)) {
1485             lldb::offset_t gnu_debuglink_offset = 0;
1486             gnu_debuglink_file = data.GetCStr(&gnu_debuglink_offset);
1487             gnu_debuglink_offset = llvm::alignTo(gnu_debuglink_offset, 4);
1488             data.GetU32(&gnu_debuglink_offset, &gnu_debuglink_crc, 1);
1489           }
1490         }
1491 
1492         // Process ELF note section entries.
1493         bool is_note_header = (sheader.sh_type == SHT_NOTE);
1494 
1495         // The section header ".note.android.ident" is stored as a
1496         // PROGBITS type header but it is actually a note header.
1497         static ConstString g_sect_name_android_ident(".note.android.ident");
1498         if (!is_note_header && name == g_sect_name_android_ident)
1499           is_note_header = true;
1500 
1501         if (is_note_header) {
1502           // Allow notes to refine module info.
1503           DataExtractor data;
1504           if (section_size && (data.SetData(object_data, sheader.sh_offset,
1505                                             section_size) == section_size)) {
1506             Status error = RefineModuleDetailsFromNote(data, arch_spec, uuid);
1507             if (error.Fail()) {
1508               LLDB_LOGF(log, "ObjectFileELF::%s ELF note processing failed: %s",
1509                         __FUNCTION__, error.AsCString());
1510             }
1511           }
1512         }
1513       }
1514 
1515       // Make any unknown triple components to be unspecified unknowns.
1516       if (arch_spec.GetTriple().getVendor() == llvm::Triple::UnknownVendor)
1517         arch_spec.GetTriple().setVendorName(llvm::StringRef());
1518       if (arch_spec.GetTriple().getOS() == llvm::Triple::UnknownOS)
1519         arch_spec.GetTriple().setOSName(llvm::StringRef());
1520 
1521       return section_headers.size();
1522     }
1523   }
1524 
1525   section_headers.clear();
1526   return 0;
1527 }
1528 
1529 llvm::StringRef
1530 ObjectFileELF::StripLinkerSymbolAnnotations(llvm::StringRef symbol_name) const {
1531   size_t pos = symbol_name.find('@');
1532   return symbol_name.substr(0, pos);
1533 }
1534 
1535 // ParseSectionHeaders
1536 size_t ObjectFileELF::ParseSectionHeaders() {
1537   return GetSectionHeaderInfo(m_section_headers, m_data, m_header, m_uuid,
1538                               m_gnu_debuglink_file, m_gnu_debuglink_crc,
1539                               m_arch_spec);
1540 }
1541 
1542 const ObjectFileELF::ELFSectionHeaderInfo *
1543 ObjectFileELF::GetSectionHeaderByIndex(lldb::user_id_t id) {
1544   if (!ParseSectionHeaders())
1545     return nullptr;
1546 
1547   if (id < m_section_headers.size())
1548     return &m_section_headers[id];
1549 
1550   return nullptr;
1551 }
1552 
1553 lldb::user_id_t ObjectFileELF::GetSectionIndexByName(const char *name) {
1554   if (!name || !name[0] || !ParseSectionHeaders())
1555     return 0;
1556   for (size_t i = 1; i < m_section_headers.size(); ++i)
1557     if (m_section_headers[i].section_name == ConstString(name))
1558       return i;
1559   return 0;
1560 }
1561 
1562 static SectionType GetSectionTypeFromName(llvm::StringRef Name) {
1563   if (Name.consume_front(".debug_") || Name.consume_front(".zdebug_")) {
1564     return llvm::StringSwitch<SectionType>(Name)
1565         .Case("abbrev", eSectionTypeDWARFDebugAbbrev)
1566         .Case("abbrev.dwo", eSectionTypeDWARFDebugAbbrevDwo)
1567         .Case("addr", eSectionTypeDWARFDebugAddr)
1568         .Case("aranges", eSectionTypeDWARFDebugAranges)
1569         .Case("cu_index", eSectionTypeDWARFDebugCuIndex)
1570         .Case("frame", eSectionTypeDWARFDebugFrame)
1571         .Case("info", eSectionTypeDWARFDebugInfo)
1572         .Case("info.dwo", eSectionTypeDWARFDebugInfoDwo)
1573         .Cases("line", "line.dwo", eSectionTypeDWARFDebugLine)
1574         .Cases("line_str", "line_str.dwo", eSectionTypeDWARFDebugLineStr)
1575         .Cases("loc", "loc.dwo", eSectionTypeDWARFDebugLoc)
1576         .Cases("loclists", "loclists.dwo", eSectionTypeDWARFDebugLocLists)
1577         .Case("macinfo", eSectionTypeDWARFDebugMacInfo)
1578         .Cases("macro", "macro.dwo", eSectionTypeDWARFDebugMacro)
1579         .Case("names", eSectionTypeDWARFDebugNames)
1580         .Case("pubnames", eSectionTypeDWARFDebugPubNames)
1581         .Case("pubtypes", eSectionTypeDWARFDebugPubTypes)
1582         .Case("ranges", eSectionTypeDWARFDebugRanges)
1583         .Case("rnglists", eSectionTypeDWARFDebugRngLists)
1584         .Case("rnglists.dwo", eSectionTypeDWARFDebugRngListsDwo)
1585         .Case("str", eSectionTypeDWARFDebugStr)
1586         .Case("str.dwo", eSectionTypeDWARFDebugStrDwo)
1587         .Case("str_offsets", eSectionTypeDWARFDebugStrOffsets)
1588         .Case("str_offsets.dwo", eSectionTypeDWARFDebugStrOffsetsDwo)
1589         .Case("types", eSectionTypeDWARFDebugTypes)
1590         .Case("types.dwo", eSectionTypeDWARFDebugTypesDwo)
1591         .Default(eSectionTypeOther);
1592   }
1593   return llvm::StringSwitch<SectionType>(Name)
1594       .Case(".ARM.exidx", eSectionTypeARMexidx)
1595       .Case(".ARM.extab", eSectionTypeARMextab)
1596       .Cases(".bss", ".tbss", eSectionTypeZeroFill)
1597       .Cases(".data", ".tdata", eSectionTypeData)
1598       .Case(".eh_frame", eSectionTypeEHFrame)
1599       .Case(".gnu_debugaltlink", eSectionTypeDWARFGNUDebugAltLink)
1600       .Case(".gosymtab", eSectionTypeGoSymtab)
1601       .Case(".text", eSectionTypeCode)
1602       .Default(eSectionTypeOther);
1603 }
1604 
1605 SectionType ObjectFileELF::GetSectionType(const ELFSectionHeaderInfo &H) const {
1606   switch (H.sh_type) {
1607   case SHT_PROGBITS:
1608     if (H.sh_flags & SHF_EXECINSTR)
1609       return eSectionTypeCode;
1610     break;
1611   case SHT_SYMTAB:
1612     return eSectionTypeELFSymbolTable;
1613   case SHT_DYNSYM:
1614     return eSectionTypeELFDynamicSymbols;
1615   case SHT_RELA:
1616   case SHT_REL:
1617     return eSectionTypeELFRelocationEntries;
1618   case SHT_DYNAMIC:
1619     return eSectionTypeELFDynamicLinkInfo;
1620   }
1621   return GetSectionTypeFromName(H.section_name.GetStringRef());
1622 }
1623 
1624 static uint32_t GetTargetByteSize(SectionType Type, const ArchSpec &arch) {
1625   switch (Type) {
1626   case eSectionTypeData:
1627   case eSectionTypeZeroFill:
1628     return arch.GetDataByteSize();
1629   case eSectionTypeCode:
1630     return arch.GetCodeByteSize();
1631   default:
1632     return 1;
1633   }
1634 }
1635 
1636 static Permissions GetPermissions(const ELFSectionHeader &H) {
1637   Permissions Perm = Permissions(0);
1638   if (H.sh_flags & SHF_ALLOC)
1639     Perm |= ePermissionsReadable;
1640   if (H.sh_flags & SHF_WRITE)
1641     Perm |= ePermissionsWritable;
1642   if (H.sh_flags & SHF_EXECINSTR)
1643     Perm |= ePermissionsExecutable;
1644   return Perm;
1645 }
1646 
1647 static Permissions GetPermissions(const ELFProgramHeader &H) {
1648   Permissions Perm = Permissions(0);
1649   if (H.p_flags & PF_R)
1650     Perm |= ePermissionsReadable;
1651   if (H.p_flags & PF_W)
1652     Perm |= ePermissionsWritable;
1653   if (H.p_flags & PF_X)
1654     Perm |= ePermissionsExecutable;
1655   return Perm;
1656 }
1657 
1658 namespace {
1659 
1660 using VMRange = lldb_private::Range<addr_t, addr_t>;
1661 
1662 struct SectionAddressInfo {
1663   SectionSP Segment;
1664   VMRange Range;
1665 };
1666 
1667 // (Unlinked) ELF object files usually have 0 for every section address, meaning
1668 // we need to compute synthetic addresses in order for "file addresses" from
1669 // different sections to not overlap. This class handles that logic.
1670 class VMAddressProvider {
1671   using VMMap = llvm::IntervalMap<addr_t, SectionSP, 4,
1672                                        llvm::IntervalMapHalfOpenInfo<addr_t>>;
1673 
1674   ObjectFile::Type ObjectType;
1675   addr_t NextVMAddress = 0;
1676   VMMap::Allocator Alloc;
1677   VMMap Segments = VMMap(Alloc);
1678   VMMap Sections = VMMap(Alloc);
1679   lldb_private::Log *Log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES);
1680   size_t SegmentCount = 0;
1681   std::string SegmentName;
1682 
1683   VMRange GetVMRange(const ELFSectionHeader &H) {
1684     addr_t Address = H.sh_addr;
1685     addr_t Size = H.sh_flags & SHF_ALLOC ? H.sh_size : 0;
1686     if (ObjectType == ObjectFile::Type::eTypeObjectFile && Segments.empty() && (H.sh_flags & SHF_ALLOC)) {
1687       NextVMAddress =
1688           llvm::alignTo(NextVMAddress, std::max<addr_t>(H.sh_addralign, 1));
1689       Address = NextVMAddress;
1690       NextVMAddress += Size;
1691     }
1692     return VMRange(Address, Size);
1693   }
1694 
1695 public:
1696   VMAddressProvider(ObjectFile::Type Type, llvm::StringRef SegmentName)
1697       : ObjectType(Type), SegmentName(SegmentName) {}
1698 
1699   std::string GetNextSegmentName() const {
1700     return llvm::formatv("{0}[{1}]", SegmentName, SegmentCount).str();
1701   }
1702 
1703   llvm::Optional<VMRange> GetAddressInfo(const ELFProgramHeader &H) {
1704     if (H.p_memsz == 0) {
1705       LLDB_LOG(Log, "Ignoring zero-sized {0} segment. Corrupt object file?",
1706                SegmentName);
1707       return llvm::None;
1708     }
1709 
1710     if (Segments.overlaps(H.p_vaddr, H.p_vaddr + H.p_memsz)) {
1711       LLDB_LOG(Log, "Ignoring overlapping {0} segment. Corrupt object file?",
1712                SegmentName);
1713       return llvm::None;
1714     }
1715     return VMRange(H.p_vaddr, H.p_memsz);
1716   }
1717 
1718   llvm::Optional<SectionAddressInfo> GetAddressInfo(const ELFSectionHeader &H) {
1719     VMRange Range = GetVMRange(H);
1720     SectionSP Segment;
1721     auto It = Segments.find(Range.GetRangeBase());
1722     if ((H.sh_flags & SHF_ALLOC) && It.valid()) {
1723       addr_t MaxSize;
1724       if (It.start() <= Range.GetRangeBase()) {
1725         MaxSize = It.stop() - Range.GetRangeBase();
1726         Segment = *It;
1727       } else
1728         MaxSize = It.start() - Range.GetRangeBase();
1729       if (Range.GetByteSize() > MaxSize) {
1730         LLDB_LOG(Log, "Shortening section crossing segment boundaries. "
1731                       "Corrupt object file?");
1732         Range.SetByteSize(MaxSize);
1733       }
1734     }
1735     if (Range.GetByteSize() > 0 &&
1736         Sections.overlaps(Range.GetRangeBase(), Range.GetRangeEnd())) {
1737       LLDB_LOG(Log, "Ignoring overlapping section. Corrupt object file?");
1738       return llvm::None;
1739     }
1740     if (Segment)
1741       Range.Slide(-Segment->GetFileAddress());
1742     return SectionAddressInfo{Segment, Range};
1743   }
1744 
1745   void AddSegment(const VMRange &Range, SectionSP Seg) {
1746     Segments.insert(Range.GetRangeBase(), Range.GetRangeEnd(), std::move(Seg));
1747     ++SegmentCount;
1748   }
1749 
1750   void AddSection(SectionAddressInfo Info, SectionSP Sect) {
1751     if (Info.Range.GetByteSize() == 0)
1752       return;
1753     if (Info.Segment)
1754       Info.Range.Slide(Info.Segment->GetFileAddress());
1755     Sections.insert(Info.Range.GetRangeBase(), Info.Range.GetRangeEnd(),
1756                     std::move(Sect));
1757   }
1758 };
1759 }
1760 
1761 void ObjectFileELF::CreateSections(SectionList &unified_section_list) {
1762   if (m_sections_up)
1763     return;
1764 
1765   m_sections_up = std::make_unique<SectionList>();
1766   VMAddressProvider regular_provider(GetType(), "PT_LOAD");
1767   VMAddressProvider tls_provider(GetType(), "PT_TLS");
1768 
1769   for (const auto &EnumPHdr : llvm::enumerate(ProgramHeaders())) {
1770     const ELFProgramHeader &PHdr = EnumPHdr.value();
1771     if (PHdr.p_type != PT_LOAD && PHdr.p_type != PT_TLS)
1772       continue;
1773 
1774     VMAddressProvider &provider =
1775         PHdr.p_type == PT_TLS ? tls_provider : regular_provider;
1776     auto InfoOr = provider.GetAddressInfo(PHdr);
1777     if (!InfoOr)
1778       continue;
1779 
1780     uint32_t Log2Align = llvm::Log2_64(std::max<elf_xword>(PHdr.p_align, 1));
1781     SectionSP Segment = std::make_shared<Section>(
1782         GetModule(), this, SegmentID(EnumPHdr.index()),
1783         ConstString(provider.GetNextSegmentName()), eSectionTypeContainer,
1784         InfoOr->GetRangeBase(), InfoOr->GetByteSize(), PHdr.p_offset,
1785         PHdr.p_filesz, Log2Align, /*flags*/ 0);
1786     Segment->SetPermissions(GetPermissions(PHdr));
1787     Segment->SetIsThreadSpecific(PHdr.p_type == PT_TLS);
1788     m_sections_up->AddSection(Segment);
1789 
1790     provider.AddSegment(*InfoOr, std::move(Segment));
1791   }
1792 
1793   ParseSectionHeaders();
1794   if (m_section_headers.empty())
1795     return;
1796 
1797   for (SectionHeaderCollIter I = std::next(m_section_headers.begin());
1798        I != m_section_headers.end(); ++I) {
1799     const ELFSectionHeaderInfo &header = *I;
1800 
1801     ConstString &name = I->section_name;
1802     const uint64_t file_size =
1803         header.sh_type == SHT_NOBITS ? 0 : header.sh_size;
1804 
1805     VMAddressProvider &provider =
1806         header.sh_flags & SHF_TLS ? tls_provider : regular_provider;
1807     auto InfoOr = provider.GetAddressInfo(header);
1808     if (!InfoOr)
1809       continue;
1810 
1811     SectionType sect_type = GetSectionType(header);
1812 
1813     const uint32_t target_bytes_size =
1814         GetTargetByteSize(sect_type, m_arch_spec);
1815 
1816     elf::elf_xword log2align =
1817         (header.sh_addralign == 0) ? 0 : llvm::Log2_64(header.sh_addralign);
1818 
1819     SectionSP section_sp(new Section(
1820         InfoOr->Segment, GetModule(), // Module to which this section belongs.
1821         this,            // ObjectFile to which this section belongs and should
1822                          // read section data from.
1823         SectionIndex(I), // Section ID.
1824         name,            // Section name.
1825         sect_type,       // Section type.
1826         InfoOr->Range.GetRangeBase(), // VM address.
1827         InfoOr->Range.GetByteSize(),  // VM size in bytes of this section.
1828         header.sh_offset,             // Offset of this section in the file.
1829         file_size,           // Size of the section as found in the file.
1830         log2align,           // Alignment of the section
1831         header.sh_flags,     // Flags for this section.
1832         target_bytes_size)); // Number of host bytes per target byte
1833 
1834     section_sp->SetPermissions(GetPermissions(header));
1835     section_sp->SetIsThreadSpecific(header.sh_flags & SHF_TLS);
1836     (InfoOr->Segment ? InfoOr->Segment->GetChildren() : *m_sections_up)
1837         .AddSection(section_sp);
1838     provider.AddSection(std::move(*InfoOr), std::move(section_sp));
1839   }
1840 
1841   // For eTypeDebugInfo files, the Symbol Vendor will take care of updating the
1842   // unified section list.
1843   if (GetType() != eTypeDebugInfo)
1844     unified_section_list = *m_sections_up;
1845 
1846   // If there's a .gnu_debugdata section, we'll try to read the .symtab that's
1847   // embedded in there and replace the one in the original object file (if any).
1848   // If there's none in the orignal object file, we add it to it.
1849   if (auto gdd_obj_file = GetGnuDebugDataObjectFile()) {
1850     if (auto gdd_objfile_section_list = gdd_obj_file->GetSectionList()) {
1851       if (SectionSP symtab_section_sp =
1852               gdd_objfile_section_list->FindSectionByType(
1853                   eSectionTypeELFSymbolTable, true)) {
1854         SectionSP module_section_sp = unified_section_list.FindSectionByType(
1855             eSectionTypeELFSymbolTable, true);
1856         if (module_section_sp)
1857           unified_section_list.ReplaceSection(module_section_sp->GetID(),
1858                                               symtab_section_sp);
1859         else
1860           unified_section_list.AddSection(symtab_section_sp);
1861       }
1862     }
1863   }
1864 }
1865 
1866 std::shared_ptr<ObjectFileELF> ObjectFileELF::GetGnuDebugDataObjectFile() {
1867   if (m_gnu_debug_data_object_file != nullptr)
1868     return m_gnu_debug_data_object_file;
1869 
1870   SectionSP section =
1871       GetSectionList()->FindSectionByName(ConstString(".gnu_debugdata"));
1872   if (!section)
1873     return nullptr;
1874 
1875   if (!lldb_private::lzma::isAvailable()) {
1876     GetModule()->ReportWarning(
1877         "No LZMA support found for reading .gnu_debugdata section");
1878     return nullptr;
1879   }
1880 
1881   // Uncompress the data
1882   DataExtractor data;
1883   section->GetSectionData(data);
1884   llvm::SmallVector<uint8_t, 0> uncompressedData;
1885   auto err = lldb_private::lzma::uncompress(data.GetData(), uncompressedData);
1886   if (err) {
1887     GetModule()->ReportWarning(
1888         "An error occurred while decompression the section %s: %s",
1889         section->GetName().AsCString(), llvm::toString(std::move(err)).c_str());
1890     return nullptr;
1891   }
1892 
1893   // Construct ObjectFileELF object from decompressed buffer
1894   DataBufferSP gdd_data_buf(
1895       new DataBufferHeap(uncompressedData.data(), uncompressedData.size()));
1896   auto fspec = GetFileSpec().CopyByAppendingPathComponent(
1897       llvm::StringRef("gnu_debugdata"));
1898   m_gnu_debug_data_object_file.reset(new ObjectFileELF(
1899       GetModule(), gdd_data_buf, 0, &fspec, 0, gdd_data_buf->GetByteSize()));
1900 
1901   // This line is essential; otherwise a breakpoint can be set but not hit.
1902   m_gnu_debug_data_object_file->SetType(ObjectFile::eTypeDebugInfo);
1903 
1904   ArchSpec spec = m_gnu_debug_data_object_file->GetArchitecture();
1905   if (spec && m_gnu_debug_data_object_file->SetModulesArchitecture(spec))
1906     return m_gnu_debug_data_object_file;
1907 
1908   return nullptr;
1909 }
1910 
1911 // Find the arm/aarch64 mapping symbol character in the given symbol name.
1912 // Mapping symbols have the form of "$<char>[.<any>]*". Additionally we
1913 // recognize cases when the mapping symbol prefixed by an arbitrary string
1914 // because if a symbol prefix added to each symbol in the object file with
1915 // objcopy then the mapping symbols are also prefixed.
1916 static char FindArmAarch64MappingSymbol(const char *symbol_name) {
1917   if (!symbol_name)
1918     return '\0';
1919 
1920   const char *dollar_pos = ::strchr(symbol_name, '$');
1921   if (!dollar_pos || dollar_pos[1] == '\0')
1922     return '\0';
1923 
1924   if (dollar_pos[2] == '\0' || dollar_pos[2] == '.')
1925     return dollar_pos[1];
1926   return '\0';
1927 }
1928 
1929 #define STO_MIPS_ISA (3 << 6)
1930 #define STO_MICROMIPS (2 << 6)
1931 #define IS_MICROMIPS(ST_OTHER) (((ST_OTHER)&STO_MIPS_ISA) == STO_MICROMIPS)
1932 
1933 // private
1934 unsigned ObjectFileELF::ParseSymbols(Symtab *symtab, user_id_t start_id,
1935                                      SectionList *section_list,
1936                                      const size_t num_symbols,
1937                                      const DataExtractor &symtab_data,
1938                                      const DataExtractor &strtab_data) {
1939   ELFSymbol symbol;
1940   lldb::offset_t offset = 0;
1941 
1942   static ConstString text_section_name(".text");
1943   static ConstString init_section_name(".init");
1944   static ConstString fini_section_name(".fini");
1945   static ConstString ctors_section_name(".ctors");
1946   static ConstString dtors_section_name(".dtors");
1947 
1948   static ConstString data_section_name(".data");
1949   static ConstString rodata_section_name(".rodata");
1950   static ConstString rodata1_section_name(".rodata1");
1951   static ConstString data2_section_name(".data1");
1952   static ConstString bss_section_name(".bss");
1953   static ConstString opd_section_name(".opd"); // For ppc64
1954 
1955   // On Android the oatdata and the oatexec symbols in the oat and odex files
1956   // covers the full .text section what causes issues with displaying unusable
1957   // symbol name to the user and very slow unwinding speed because the
1958   // instruction emulation based unwind plans try to emulate all instructions
1959   // in these symbols. Don't add these symbols to the symbol list as they have
1960   // no use for the debugger and they are causing a lot of trouble. Filtering
1961   // can't be restricted to Android because this special object file don't
1962   // contain the note section specifying the environment to Android but the
1963   // custom extension and file name makes it highly unlikely that this will
1964   // collide with anything else.
1965   ConstString file_extension = m_file.GetFileNameExtension();
1966   bool skip_oatdata_oatexec =
1967       file_extension == ".oat" || file_extension == ".odex";
1968 
1969   ArchSpec arch = GetArchitecture();
1970   ModuleSP module_sp(GetModule());
1971   SectionList *module_section_list =
1972       module_sp ? module_sp->GetSectionList() : nullptr;
1973 
1974   // Local cache to avoid doing a FindSectionByName for each symbol. The "const
1975   // char*" key must came from a ConstString object so they can be compared by
1976   // pointer
1977   std::unordered_map<const char *, lldb::SectionSP> section_name_to_section;
1978 
1979   unsigned i;
1980   for (i = 0; i < num_symbols; ++i) {
1981     if (!symbol.Parse(symtab_data, &offset))
1982       break;
1983 
1984     const char *symbol_name = strtab_data.PeekCStr(symbol.st_name);
1985     if (!symbol_name)
1986       symbol_name = "";
1987 
1988     // No need to add non-section symbols that have no names
1989     if (symbol.getType() != STT_SECTION &&
1990         (symbol_name == nullptr || symbol_name[0] == '\0'))
1991       continue;
1992 
1993     // Skipping oatdata and oatexec sections if it is requested. See details
1994     // above the definition of skip_oatdata_oatexec for the reasons.
1995     if (skip_oatdata_oatexec && (::strcmp(symbol_name, "oatdata") == 0 ||
1996                                  ::strcmp(symbol_name, "oatexec") == 0))
1997       continue;
1998 
1999     SectionSP symbol_section_sp;
2000     SymbolType symbol_type = eSymbolTypeInvalid;
2001     Elf64_Half shndx = symbol.st_shndx;
2002 
2003     switch (shndx) {
2004     case SHN_ABS:
2005       symbol_type = eSymbolTypeAbsolute;
2006       break;
2007     case SHN_UNDEF:
2008       symbol_type = eSymbolTypeUndefined;
2009       break;
2010     default:
2011       symbol_section_sp = section_list->FindSectionByID(shndx);
2012       break;
2013     }
2014 
2015     // If a symbol is undefined do not process it further even if it has a STT
2016     // type
2017     if (symbol_type != eSymbolTypeUndefined) {
2018       switch (symbol.getType()) {
2019       default:
2020       case STT_NOTYPE:
2021         // The symbol's type is not specified.
2022         break;
2023 
2024       case STT_OBJECT:
2025         // The symbol is associated with a data object, such as a variable, an
2026         // array, etc.
2027         symbol_type = eSymbolTypeData;
2028         break;
2029 
2030       case STT_FUNC:
2031         // The symbol is associated with a function or other executable code.
2032         symbol_type = eSymbolTypeCode;
2033         break;
2034 
2035       case STT_SECTION:
2036         // The symbol is associated with a section. Symbol table entries of
2037         // this type exist primarily for relocation and normally have STB_LOCAL
2038         // binding.
2039         break;
2040 
2041       case STT_FILE:
2042         // Conventionally, the symbol's name gives the name of the source file
2043         // associated with the object file. A file symbol has STB_LOCAL
2044         // binding, its section index is SHN_ABS, and it precedes the other
2045         // STB_LOCAL symbols for the file, if it is present.
2046         symbol_type = eSymbolTypeSourceFile;
2047         break;
2048 
2049       case STT_GNU_IFUNC:
2050         // The symbol is associated with an indirect function. The actual
2051         // function will be resolved if it is referenced.
2052         symbol_type = eSymbolTypeResolver;
2053         break;
2054       }
2055     }
2056 
2057     if (symbol_type == eSymbolTypeInvalid && symbol.getType() != STT_SECTION) {
2058       if (symbol_section_sp) {
2059         ConstString sect_name = symbol_section_sp->GetName();
2060         if (sect_name == text_section_name || sect_name == init_section_name ||
2061             sect_name == fini_section_name || sect_name == ctors_section_name ||
2062             sect_name == dtors_section_name) {
2063           symbol_type = eSymbolTypeCode;
2064         } else if (sect_name == data_section_name ||
2065                    sect_name == data2_section_name ||
2066                    sect_name == rodata_section_name ||
2067                    sect_name == rodata1_section_name ||
2068                    sect_name == bss_section_name) {
2069           symbol_type = eSymbolTypeData;
2070         }
2071       }
2072     }
2073 
2074     int64_t symbol_value_offset = 0;
2075     uint32_t additional_flags = 0;
2076 
2077     if (arch.IsValid()) {
2078       if (arch.GetMachine() == llvm::Triple::arm) {
2079         if (symbol.getBinding() == STB_LOCAL) {
2080           char mapping_symbol = FindArmAarch64MappingSymbol(symbol_name);
2081           if (symbol_type == eSymbolTypeCode) {
2082             switch (mapping_symbol) {
2083             case 'a':
2084               // $a[.<any>]* - marks an ARM instruction sequence
2085               m_address_class_map[symbol.st_value] = AddressClass::eCode;
2086               break;
2087             case 'b':
2088             case 't':
2089               // $b[.<any>]* - marks a THUMB BL instruction sequence
2090               // $t[.<any>]* - marks a THUMB instruction sequence
2091               m_address_class_map[symbol.st_value] =
2092                   AddressClass::eCodeAlternateISA;
2093               break;
2094             case 'd':
2095               // $d[.<any>]* - marks a data item sequence (e.g. lit pool)
2096               m_address_class_map[symbol.st_value] = AddressClass::eData;
2097               break;
2098             }
2099           }
2100           if (mapping_symbol)
2101             continue;
2102         }
2103       } else if (arch.GetMachine() == llvm::Triple::aarch64) {
2104         if (symbol.getBinding() == STB_LOCAL) {
2105           char mapping_symbol = FindArmAarch64MappingSymbol(symbol_name);
2106           if (symbol_type == eSymbolTypeCode) {
2107             switch (mapping_symbol) {
2108             case 'x':
2109               // $x[.<any>]* - marks an A64 instruction sequence
2110               m_address_class_map[symbol.st_value] = AddressClass::eCode;
2111               break;
2112             case 'd':
2113               // $d[.<any>]* - marks a data item sequence (e.g. lit pool)
2114               m_address_class_map[symbol.st_value] = AddressClass::eData;
2115               break;
2116             }
2117           }
2118           if (mapping_symbol)
2119             continue;
2120         }
2121       }
2122 
2123       if (arch.GetMachine() == llvm::Triple::arm) {
2124         if (symbol_type == eSymbolTypeCode) {
2125           if (symbol.st_value & 1) {
2126             // Subtracting 1 from the address effectively unsets the low order
2127             // bit, which results in the address actually pointing to the
2128             // beginning of the symbol. This delta will be used below in
2129             // conjunction with symbol.st_value to produce the final
2130             // symbol_value that we store in the symtab.
2131             symbol_value_offset = -1;
2132             m_address_class_map[symbol.st_value ^ 1] =
2133                 AddressClass::eCodeAlternateISA;
2134           } else {
2135             // This address is ARM
2136             m_address_class_map[symbol.st_value] = AddressClass::eCode;
2137           }
2138         }
2139       }
2140 
2141       /*
2142        * MIPS:
2143        * The bit #0 of an address is used for ISA mode (1 for microMIPS, 0 for
2144        * MIPS).
2145        * This allows processor to switch between microMIPS and MIPS without any
2146        * need
2147        * for special mode-control register. However, apart from .debug_line,
2148        * none of
2149        * the ELF/DWARF sections set the ISA bit (for symbol or section). Use
2150        * st_other
2151        * flag to check whether the symbol is microMIPS and then set the address
2152        * class
2153        * accordingly.
2154       */
2155       if (arch.IsMIPS()) {
2156         if (IS_MICROMIPS(symbol.st_other))
2157           m_address_class_map[symbol.st_value] = AddressClass::eCodeAlternateISA;
2158         else if ((symbol.st_value & 1) && (symbol_type == eSymbolTypeCode)) {
2159           symbol.st_value = symbol.st_value & (~1ull);
2160           m_address_class_map[symbol.st_value] = AddressClass::eCodeAlternateISA;
2161         } else {
2162           if (symbol_type == eSymbolTypeCode)
2163             m_address_class_map[symbol.st_value] = AddressClass::eCode;
2164           else if (symbol_type == eSymbolTypeData)
2165             m_address_class_map[symbol.st_value] = AddressClass::eData;
2166           else
2167             m_address_class_map[symbol.st_value] = AddressClass::eUnknown;
2168         }
2169       }
2170     }
2171 
2172     // symbol_value_offset may contain 0 for ARM symbols or -1 for THUMB
2173     // symbols. See above for more details.
2174     uint64_t symbol_value = symbol.st_value + symbol_value_offset;
2175 
2176     if (symbol_section_sp == nullptr && shndx == SHN_ABS &&
2177         symbol.st_size != 0) {
2178       // We don't have a section for a symbol with non-zero size. Create a new
2179       // section for it so the address range covered by the symbol is also
2180       // covered by the module (represented through the section list). It is
2181       // needed so module lookup for the addresses covered by this symbol will
2182       // be successfull. This case happens for absolute symbols.
2183       ConstString fake_section_name(std::string(".absolute.") + symbol_name);
2184       symbol_section_sp =
2185           std::make_shared<Section>(module_sp, this, SHN_ABS, fake_section_name,
2186                                     eSectionTypeAbsoluteAddress, symbol_value,
2187                                     symbol.st_size, 0, 0, 0, SHF_ALLOC);
2188 
2189       module_section_list->AddSection(symbol_section_sp);
2190       section_list->AddSection(symbol_section_sp);
2191     }
2192 
2193     if (symbol_section_sp &&
2194         CalculateType() != ObjectFile::Type::eTypeObjectFile)
2195       symbol_value -= symbol_section_sp->GetFileAddress();
2196 
2197     if (symbol_section_sp && module_section_list &&
2198         module_section_list != section_list) {
2199       ConstString sect_name = symbol_section_sp->GetName();
2200       auto section_it = section_name_to_section.find(sect_name.GetCString());
2201       if (section_it == section_name_to_section.end())
2202         section_it =
2203             section_name_to_section
2204                 .emplace(sect_name.GetCString(),
2205                          module_section_list->FindSectionByName(sect_name))
2206                 .first;
2207       if (section_it->second)
2208         symbol_section_sp = section_it->second;
2209     }
2210 
2211     bool is_global = symbol.getBinding() == STB_GLOBAL;
2212     uint32_t flags = symbol.st_other << 8 | symbol.st_info | additional_flags;
2213     llvm::StringRef symbol_ref(symbol_name);
2214 
2215     // Symbol names may contain @VERSION suffixes. Find those and strip them
2216     // temporarily.
2217     size_t version_pos = symbol_ref.find('@');
2218     bool has_suffix = version_pos != llvm::StringRef::npos;
2219     llvm::StringRef symbol_bare = symbol_ref.substr(0, version_pos);
2220     Mangled mangled(symbol_bare);
2221 
2222     // Now append the suffix back to mangled and unmangled names. Only do it if
2223     // the demangling was successful (string is not empty).
2224     if (has_suffix) {
2225       llvm::StringRef suffix = symbol_ref.substr(version_pos);
2226 
2227       llvm::StringRef mangled_name = mangled.GetMangledName().GetStringRef();
2228       if (!mangled_name.empty())
2229         mangled.SetMangledName(ConstString((mangled_name + suffix).str()));
2230 
2231       ConstString demangled =
2232           mangled.GetDemangledName(lldb::eLanguageTypeUnknown);
2233       llvm::StringRef demangled_name = demangled.GetStringRef();
2234       if (!demangled_name.empty())
2235         mangled.SetDemangledName(ConstString((demangled_name + suffix).str()));
2236     }
2237 
2238     // In ELF all symbol should have a valid size but it is not true for some
2239     // function symbols coming from hand written assembly. As none of the
2240     // function symbol should have 0 size we try to calculate the size for
2241     // these symbols in the symtab with saying that their original size is not
2242     // valid.
2243     bool symbol_size_valid =
2244         symbol.st_size != 0 || symbol.getType() != STT_FUNC;
2245 
2246     Symbol dc_symbol(
2247         i + start_id, // ID is the original symbol table index.
2248         mangled,
2249         symbol_type,                    // Type of this symbol
2250         is_global,                      // Is this globally visible?
2251         false,                          // Is this symbol debug info?
2252         false,                          // Is this symbol a trampoline?
2253         false,                          // Is this symbol artificial?
2254         AddressRange(symbol_section_sp, // Section in which this symbol is
2255                                         // defined or null.
2256                      symbol_value,      // Offset in section or symbol value.
2257                      symbol.st_size),   // Size in bytes of this symbol.
2258         symbol_size_valid,              // Symbol size is valid
2259         has_suffix,                     // Contains linker annotations?
2260         flags);                         // Symbol flags.
2261     symtab->AddSymbol(dc_symbol);
2262   }
2263   return i;
2264 }
2265 
2266 unsigned ObjectFileELF::ParseSymbolTable(Symtab *symbol_table,
2267                                          user_id_t start_id,
2268                                          lldb_private::Section *symtab) {
2269   if (symtab->GetObjectFile() != this) {
2270     // If the symbol table section is owned by a different object file, have it
2271     // do the parsing.
2272     ObjectFileELF *obj_file_elf =
2273         static_cast<ObjectFileELF *>(symtab->GetObjectFile());
2274     return obj_file_elf->ParseSymbolTable(symbol_table, start_id, symtab);
2275   }
2276 
2277   // Get section list for this object file.
2278   SectionList *section_list = m_sections_up.get();
2279   if (!section_list)
2280     return 0;
2281 
2282   user_id_t symtab_id = symtab->GetID();
2283   const ELFSectionHeaderInfo *symtab_hdr = GetSectionHeaderByIndex(symtab_id);
2284   assert(symtab_hdr->sh_type == SHT_SYMTAB ||
2285          symtab_hdr->sh_type == SHT_DYNSYM);
2286 
2287   // sh_link: section header index of associated string table.
2288   user_id_t strtab_id = symtab_hdr->sh_link;
2289   Section *strtab = section_list->FindSectionByID(strtab_id).get();
2290 
2291   if (symtab && strtab) {
2292     assert(symtab->GetObjectFile() == this);
2293     assert(strtab->GetObjectFile() == this);
2294 
2295     DataExtractor symtab_data;
2296     DataExtractor strtab_data;
2297     if (ReadSectionData(symtab, symtab_data) &&
2298         ReadSectionData(strtab, strtab_data)) {
2299       size_t num_symbols = symtab_data.GetByteSize() / symtab_hdr->sh_entsize;
2300 
2301       return ParseSymbols(symbol_table, start_id, section_list, num_symbols,
2302                           symtab_data, strtab_data);
2303     }
2304   }
2305 
2306   return 0;
2307 }
2308 
2309 size_t ObjectFileELF::ParseDynamicSymbols() {
2310   if (m_dynamic_symbols.size())
2311     return m_dynamic_symbols.size();
2312 
2313   SectionList *section_list = GetSectionList();
2314   if (!section_list)
2315     return 0;
2316 
2317   // Find the SHT_DYNAMIC section.
2318   Section *dynsym =
2319       section_list->FindSectionByType(eSectionTypeELFDynamicLinkInfo, true)
2320           .get();
2321   if (!dynsym)
2322     return 0;
2323   assert(dynsym->GetObjectFile() == this);
2324 
2325   ELFDynamic symbol;
2326   DataExtractor dynsym_data;
2327   if (ReadSectionData(dynsym, dynsym_data)) {
2328     const lldb::offset_t section_size = dynsym_data.GetByteSize();
2329     lldb::offset_t cursor = 0;
2330 
2331     while (cursor < section_size) {
2332       if (!symbol.Parse(dynsym_data, &cursor))
2333         break;
2334 
2335       m_dynamic_symbols.push_back(symbol);
2336     }
2337   }
2338 
2339   return m_dynamic_symbols.size();
2340 }
2341 
2342 const ELFDynamic *ObjectFileELF::FindDynamicSymbol(unsigned tag) {
2343   if (!ParseDynamicSymbols())
2344     return nullptr;
2345 
2346   DynamicSymbolCollIter I = m_dynamic_symbols.begin();
2347   DynamicSymbolCollIter E = m_dynamic_symbols.end();
2348   for (; I != E; ++I) {
2349     ELFDynamic *symbol = &*I;
2350 
2351     if (symbol->d_tag == tag)
2352       return symbol;
2353   }
2354 
2355   return nullptr;
2356 }
2357 
2358 unsigned ObjectFileELF::PLTRelocationType() {
2359   // DT_PLTREL
2360   //  This member specifies the type of relocation entry to which the
2361   //  procedure linkage table refers. The d_val member holds DT_REL or
2362   //  DT_RELA, as appropriate. All relocations in a procedure linkage table
2363   //  must use the same relocation.
2364   const ELFDynamic *symbol = FindDynamicSymbol(DT_PLTREL);
2365 
2366   if (symbol)
2367     return symbol->d_val;
2368 
2369   return 0;
2370 }
2371 
2372 // Returns the size of the normal plt entries and the offset of the first
2373 // normal plt entry. The 0th entry in the plt table is usually a resolution
2374 // entry which have different size in some architectures then the rest of the
2375 // plt entries.
2376 static std::pair<uint64_t, uint64_t>
2377 GetPltEntrySizeAndOffset(const ELFSectionHeader *rel_hdr,
2378                          const ELFSectionHeader *plt_hdr) {
2379   const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2380 
2381   // Clang 3.3 sets entsize to 4 for 32-bit binaries, but the plt entries are
2382   // 16 bytes. So round the entsize up by the alignment if addralign is set.
2383   elf_xword plt_entsize =
2384       plt_hdr->sh_addralign
2385           ? llvm::alignTo(plt_hdr->sh_entsize, plt_hdr->sh_addralign)
2386           : plt_hdr->sh_entsize;
2387 
2388   // Some linkers e.g ld for arm, fill plt_hdr->sh_entsize field incorrectly.
2389   // PLT entries relocation code in general requires multiple instruction and
2390   // should be greater than 4 bytes in most cases. Try to guess correct size
2391   // just in case.
2392   if (plt_entsize <= 4) {
2393     // The linker haven't set the plt_hdr->sh_entsize field. Try to guess the
2394     // size of the plt entries based on the number of entries and the size of
2395     // the plt section with the assumption that the size of the 0th entry is at
2396     // least as big as the size of the normal entries and it isn't much bigger
2397     // then that.
2398     if (plt_hdr->sh_addralign)
2399       plt_entsize = plt_hdr->sh_size / plt_hdr->sh_addralign /
2400                     (num_relocations + 1) * plt_hdr->sh_addralign;
2401     else
2402       plt_entsize = plt_hdr->sh_size / (num_relocations + 1);
2403   }
2404 
2405   elf_xword plt_offset = plt_hdr->sh_size - num_relocations * plt_entsize;
2406 
2407   return std::make_pair(plt_entsize, plt_offset);
2408 }
2409 
2410 static unsigned ParsePLTRelocations(
2411     Symtab *symbol_table, user_id_t start_id, unsigned rel_type,
2412     const ELFHeader *hdr, const ELFSectionHeader *rel_hdr,
2413     const ELFSectionHeader *plt_hdr, const ELFSectionHeader *sym_hdr,
2414     const lldb::SectionSP &plt_section_sp, DataExtractor &rel_data,
2415     DataExtractor &symtab_data, DataExtractor &strtab_data) {
2416   ELFRelocation rel(rel_type);
2417   ELFSymbol symbol;
2418   lldb::offset_t offset = 0;
2419 
2420   uint64_t plt_offset, plt_entsize;
2421   std::tie(plt_entsize, plt_offset) =
2422       GetPltEntrySizeAndOffset(rel_hdr, plt_hdr);
2423   const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2424 
2425   typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel);
2426   reloc_info_fn reloc_type;
2427   reloc_info_fn reloc_symbol;
2428 
2429   if (hdr->Is32Bit()) {
2430     reloc_type = ELFRelocation::RelocType32;
2431     reloc_symbol = ELFRelocation::RelocSymbol32;
2432   } else {
2433     reloc_type = ELFRelocation::RelocType64;
2434     reloc_symbol = ELFRelocation::RelocSymbol64;
2435   }
2436 
2437   unsigned slot_type = hdr->GetRelocationJumpSlotType();
2438   unsigned i;
2439   for (i = 0; i < num_relocations; ++i) {
2440     if (!rel.Parse(rel_data, &offset))
2441       break;
2442 
2443     if (reloc_type(rel) != slot_type)
2444       continue;
2445 
2446     lldb::offset_t symbol_offset = reloc_symbol(rel) * sym_hdr->sh_entsize;
2447     if (!symbol.Parse(symtab_data, &symbol_offset))
2448       break;
2449 
2450     const char *symbol_name = strtab_data.PeekCStr(symbol.st_name);
2451     uint64_t plt_index = plt_offset + i * plt_entsize;
2452 
2453     Symbol jump_symbol(
2454         i + start_id,          // Symbol table index
2455         symbol_name,           // symbol name.
2456         eSymbolTypeTrampoline, // Type of this symbol
2457         false,                 // Is this globally visible?
2458         false,                 // Is this symbol debug info?
2459         true,                  // Is this symbol a trampoline?
2460         true,                  // Is this symbol artificial?
2461         plt_section_sp, // Section in which this symbol is defined or null.
2462         plt_index,      // Offset in section or symbol value.
2463         plt_entsize,    // Size in bytes of this symbol.
2464         true,           // Size is valid
2465         false,          // Contains linker annotations?
2466         0);             // Symbol flags.
2467 
2468     symbol_table->AddSymbol(jump_symbol);
2469   }
2470 
2471   return i;
2472 }
2473 
2474 unsigned
2475 ObjectFileELF::ParseTrampolineSymbols(Symtab *symbol_table, user_id_t start_id,
2476                                       const ELFSectionHeaderInfo *rel_hdr,
2477                                       user_id_t rel_id) {
2478   assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL);
2479 
2480   // The link field points to the associated symbol table.
2481   user_id_t symtab_id = rel_hdr->sh_link;
2482 
2483   // If the link field doesn't point to the appropriate symbol name table then
2484   // try to find it by name as some compiler don't fill in the link fields.
2485   if (!symtab_id)
2486     symtab_id = GetSectionIndexByName(".dynsym");
2487 
2488   // Get PLT section.  We cannot use rel_hdr->sh_info, since current linkers
2489   // point that to the .got.plt or .got section instead of .plt.
2490   user_id_t plt_id = GetSectionIndexByName(".plt");
2491 
2492   if (!symtab_id || !plt_id)
2493     return 0;
2494 
2495   const ELFSectionHeaderInfo *plt_hdr = GetSectionHeaderByIndex(plt_id);
2496   if (!plt_hdr)
2497     return 0;
2498 
2499   const ELFSectionHeaderInfo *sym_hdr = GetSectionHeaderByIndex(symtab_id);
2500   if (!sym_hdr)
2501     return 0;
2502 
2503   SectionList *section_list = m_sections_up.get();
2504   if (!section_list)
2505     return 0;
2506 
2507   Section *rel_section = section_list->FindSectionByID(rel_id).get();
2508   if (!rel_section)
2509     return 0;
2510 
2511   SectionSP plt_section_sp(section_list->FindSectionByID(plt_id));
2512   if (!plt_section_sp)
2513     return 0;
2514 
2515   Section *symtab = section_list->FindSectionByID(symtab_id).get();
2516   if (!symtab)
2517     return 0;
2518 
2519   // sh_link points to associated string table.
2520   Section *strtab = section_list->FindSectionByID(sym_hdr->sh_link).get();
2521   if (!strtab)
2522     return 0;
2523 
2524   DataExtractor rel_data;
2525   if (!ReadSectionData(rel_section, rel_data))
2526     return 0;
2527 
2528   DataExtractor symtab_data;
2529   if (!ReadSectionData(symtab, symtab_data))
2530     return 0;
2531 
2532   DataExtractor strtab_data;
2533   if (!ReadSectionData(strtab, strtab_data))
2534     return 0;
2535 
2536   unsigned rel_type = PLTRelocationType();
2537   if (!rel_type)
2538     return 0;
2539 
2540   return ParsePLTRelocations(symbol_table, start_id, rel_type, &m_header,
2541                              rel_hdr, plt_hdr, sym_hdr, plt_section_sp,
2542                              rel_data, symtab_data, strtab_data);
2543 }
2544 
2545 unsigned ObjectFileELF::ApplyRelocations(
2546     Symtab *symtab, const ELFHeader *hdr, const ELFSectionHeader *rel_hdr,
2547     const ELFSectionHeader *symtab_hdr, const ELFSectionHeader *debug_hdr,
2548     DataExtractor &rel_data, DataExtractor &symtab_data,
2549     DataExtractor &debug_data, Section *rel_section) {
2550   ELFRelocation rel(rel_hdr->sh_type);
2551   lldb::addr_t offset = 0;
2552   const unsigned num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2553   typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel);
2554   reloc_info_fn reloc_type;
2555   reloc_info_fn reloc_symbol;
2556 
2557   if (hdr->Is32Bit()) {
2558     reloc_type = ELFRelocation::RelocType32;
2559     reloc_symbol = ELFRelocation::RelocSymbol32;
2560   } else {
2561     reloc_type = ELFRelocation::RelocType64;
2562     reloc_symbol = ELFRelocation::RelocSymbol64;
2563   }
2564 
2565   for (unsigned i = 0; i < num_relocations; ++i) {
2566     if (!rel.Parse(rel_data, &offset))
2567       break;
2568 
2569     Symbol *symbol = nullptr;
2570 
2571     if (hdr->Is32Bit()) {
2572       switch (reloc_type(rel)) {
2573       case R_386_32:
2574       case R_386_PC32:
2575       default:
2576         // FIXME: This asserts with this input:
2577         //
2578         // foo.cpp
2579         // int main(int argc, char **argv) { return 0; }
2580         //
2581         // clang++.exe --target=i686-unknown-linux-gnu -g -c foo.cpp -o foo.o
2582         //
2583         // and running this on the foo.o module.
2584         assert(false && "unexpected relocation type");
2585       }
2586     } else {
2587       switch (reloc_type(rel)) {
2588       case R_AARCH64_ABS64:
2589       case R_X86_64_64: {
2590         symbol = symtab->FindSymbolByID(reloc_symbol(rel));
2591         if (symbol) {
2592           addr_t value = symbol->GetAddressRef().GetFileAddress();
2593           DataBufferSP &data_buffer_sp = debug_data.GetSharedDataBuffer();
2594           uint64_t *dst = reinterpret_cast<uint64_t *>(
2595               data_buffer_sp->GetBytes() + rel_section->GetFileOffset() +
2596               ELFRelocation::RelocOffset64(rel));
2597           uint64_t val_offset = value + ELFRelocation::RelocAddend64(rel);
2598           memcpy(dst, &val_offset, sizeof(uint64_t));
2599         }
2600         break;
2601       }
2602       case R_X86_64_32:
2603       case R_X86_64_32S:
2604       case R_AARCH64_ABS32: {
2605         symbol = symtab->FindSymbolByID(reloc_symbol(rel));
2606         if (symbol) {
2607           addr_t value = symbol->GetAddressRef().GetFileAddress();
2608           value += ELFRelocation::RelocAddend32(rel);
2609           if ((reloc_type(rel) == R_X86_64_32 && (value > UINT32_MAX)) ||
2610               (reloc_type(rel) == R_X86_64_32S &&
2611                ((int64_t)value > INT32_MAX && (int64_t)value < INT32_MIN)) ||
2612               (reloc_type(rel) == R_AARCH64_ABS32 &&
2613                ((int64_t)value > INT32_MAX && (int64_t)value < INT32_MIN))) {
2614             Log *log =
2615                 lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES);
2616             LLDB_LOGF(log, "Failed to apply debug info relocations");
2617             break;
2618           }
2619           uint32_t truncated_addr = (value & 0xFFFFFFFF);
2620           DataBufferSP &data_buffer_sp = debug_data.GetSharedDataBuffer();
2621           uint32_t *dst = reinterpret_cast<uint32_t *>(
2622               data_buffer_sp->GetBytes() + rel_section->GetFileOffset() +
2623               ELFRelocation::RelocOffset32(rel));
2624           memcpy(dst, &truncated_addr, sizeof(uint32_t));
2625         }
2626         break;
2627       }
2628       case R_X86_64_PC32:
2629       default:
2630         assert(false && "unexpected relocation type");
2631       }
2632     }
2633   }
2634 
2635   return 0;
2636 }
2637 
2638 unsigned ObjectFileELF::RelocateDebugSections(const ELFSectionHeader *rel_hdr,
2639                                               user_id_t rel_id,
2640                                               lldb_private::Symtab *thetab) {
2641   assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL);
2642 
2643   // Parse in the section list if needed.
2644   SectionList *section_list = GetSectionList();
2645   if (!section_list)
2646     return 0;
2647 
2648   user_id_t symtab_id = rel_hdr->sh_link;
2649   user_id_t debug_id = rel_hdr->sh_info;
2650 
2651   const ELFSectionHeader *symtab_hdr = GetSectionHeaderByIndex(symtab_id);
2652   if (!symtab_hdr)
2653     return 0;
2654 
2655   const ELFSectionHeader *debug_hdr = GetSectionHeaderByIndex(debug_id);
2656   if (!debug_hdr)
2657     return 0;
2658 
2659   Section *rel = section_list->FindSectionByID(rel_id).get();
2660   if (!rel)
2661     return 0;
2662 
2663   Section *symtab = section_list->FindSectionByID(symtab_id).get();
2664   if (!symtab)
2665     return 0;
2666 
2667   Section *debug = section_list->FindSectionByID(debug_id).get();
2668   if (!debug)
2669     return 0;
2670 
2671   DataExtractor rel_data;
2672   DataExtractor symtab_data;
2673   DataExtractor debug_data;
2674 
2675   if (GetData(rel->GetFileOffset(), rel->GetFileSize(), rel_data) &&
2676       GetData(symtab->GetFileOffset(), symtab->GetFileSize(), symtab_data) &&
2677       GetData(debug->GetFileOffset(), debug->GetFileSize(), debug_data)) {
2678     ApplyRelocations(thetab, &m_header, rel_hdr, symtab_hdr, debug_hdr,
2679                      rel_data, symtab_data, debug_data, debug);
2680   }
2681 
2682   return 0;
2683 }
2684 
2685 Symtab *ObjectFileELF::GetSymtab() {
2686   ModuleSP module_sp(GetModule());
2687   if (!module_sp)
2688     return nullptr;
2689 
2690   // We always want to use the main object file so we (hopefully) only have one
2691   // cached copy of our symtab, dynamic sections, etc.
2692   ObjectFile *module_obj_file = module_sp->GetObjectFile();
2693   if (module_obj_file && module_obj_file != this)
2694     return module_obj_file->GetSymtab();
2695 
2696   if (m_symtab_up == nullptr) {
2697     SectionList *section_list = module_sp->GetSectionList();
2698     if (!section_list)
2699       return nullptr;
2700 
2701     uint64_t symbol_id = 0;
2702     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
2703 
2704     // Sharable objects and dynamic executables usually have 2 distinct symbol
2705     // tables, one named ".symtab", and the other ".dynsym". The dynsym is a
2706     // smaller version of the symtab that only contains global symbols. The
2707     // information found in the dynsym is therefore also found in the symtab,
2708     // while the reverse is not necessarily true.
2709     Section *symtab =
2710         section_list->FindSectionByType(eSectionTypeELFSymbolTable, true).get();
2711     if (symtab) {
2712       m_symtab_up.reset(new Symtab(symtab->GetObjectFile()));
2713       symbol_id += ParseSymbolTable(m_symtab_up.get(), symbol_id, symtab);
2714     }
2715 
2716     // The symtab section is non-allocable and can be stripped, while the
2717     // .dynsym section which should always be always be there. To support the
2718     // minidebuginfo case we parse .dynsym when there's a .gnu_debuginfo
2719     // section, nomatter if .symtab was already parsed or not. This is because
2720     // minidebuginfo normally removes the .symtab symbols which have their
2721     // matching .dynsym counterparts.
2722     if (!symtab ||
2723         GetSectionList()->FindSectionByName(ConstString(".gnu_debugdata"))) {
2724       Section *dynsym =
2725           section_list->FindSectionByType(eSectionTypeELFDynamicSymbols, true)
2726               .get();
2727       if (dynsym) {
2728         if (!m_symtab_up)
2729           m_symtab_up.reset(new Symtab(dynsym->GetObjectFile()));
2730         symbol_id += ParseSymbolTable(m_symtab_up.get(), symbol_id, dynsym);
2731       }
2732     }
2733 
2734     // DT_JMPREL
2735     //      If present, this entry's d_ptr member holds the address of
2736     //      relocation
2737     //      entries associated solely with the procedure linkage table.
2738     //      Separating
2739     //      these relocation entries lets the dynamic linker ignore them during
2740     //      process initialization, if lazy binding is enabled. If this entry is
2741     //      present, the related entries of types DT_PLTRELSZ and DT_PLTREL must
2742     //      also be present.
2743     const ELFDynamic *symbol = FindDynamicSymbol(DT_JMPREL);
2744     if (symbol) {
2745       // Synthesize trampoline symbols to help navigate the PLT.
2746       addr_t addr = symbol->d_ptr;
2747       Section *reloc_section =
2748           section_list->FindSectionContainingFileAddress(addr).get();
2749       if (reloc_section) {
2750         user_id_t reloc_id = reloc_section->GetID();
2751         const ELFSectionHeaderInfo *reloc_header =
2752             GetSectionHeaderByIndex(reloc_id);
2753         assert(reloc_header);
2754 
2755         if (m_symtab_up == nullptr)
2756           m_symtab_up.reset(new Symtab(reloc_section->GetObjectFile()));
2757 
2758         ParseTrampolineSymbols(m_symtab_up.get(), symbol_id, reloc_header,
2759                                reloc_id);
2760       }
2761     }
2762 
2763     if (DWARFCallFrameInfo *eh_frame =
2764             GetModule()->GetUnwindTable().GetEHFrameInfo()) {
2765       if (m_symtab_up == nullptr)
2766         m_symtab_up.reset(new Symtab(this));
2767       ParseUnwindSymbols(m_symtab_up.get(), eh_frame);
2768     }
2769 
2770     // If we still don't have any symtab then create an empty instance to avoid
2771     // do the section lookup next time.
2772     if (m_symtab_up == nullptr)
2773       m_symtab_up.reset(new Symtab(this));
2774 
2775     // In the event that there's no symbol entry for the entry point we'll
2776     // artifically create one. We delegate to the symtab object the figuring
2777     // out of the proper size, this will usually make it span til the next
2778     // symbol it finds in the section. This means that if there are missing
2779     // symbols the entry point might span beyond its function definition.
2780     // We're fine with this as it doesn't make it worse than not having a
2781     // symbol entry at all.
2782     if (CalculateType() == eTypeExecutable) {
2783       ArchSpec arch = GetArchitecture();
2784       auto entry_point_addr = GetEntryPointAddress();
2785       bool is_valid_entry_point =
2786           entry_point_addr.IsValid() && entry_point_addr.IsSectionOffset();
2787       addr_t entry_point_file_addr = entry_point_addr.GetFileAddress();
2788       if (is_valid_entry_point && !m_symtab_up->FindSymbolContainingFileAddress(
2789                                       entry_point_file_addr)) {
2790         uint64_t symbol_id = m_symtab_up->GetNumSymbols();
2791         Symbol symbol(symbol_id,
2792                       GetNextSyntheticSymbolName().GetCString(), // Symbol name.
2793                       eSymbolTypeCode, // Type of this symbol.
2794                       true,            // Is this globally visible?
2795                       false,           // Is this symbol debug info?
2796                       false,           // Is this symbol a trampoline?
2797                       true,            // Is this symbol artificial?
2798                       entry_point_addr.GetSection(), // Section where this
2799                                                      // symbol is defined.
2800                       0,     // Offset in section or symbol value.
2801                       0,     // Size.
2802                       false, // Size is valid.
2803                       false, // Contains linker annotations?
2804                       0);    // Symbol flags.
2805         m_symtab_up->AddSymbol(symbol);
2806         // When the entry point is arm thumb we need to explicitly set its
2807         // class address to reflect that. This is important because expression
2808         // evaluation relies on correctly setting a breakpoint at this
2809         // address.
2810         if (arch.GetMachine() == llvm::Triple::arm &&
2811             (entry_point_file_addr & 1))
2812           m_address_class_map[entry_point_file_addr ^ 1] =
2813               AddressClass::eCodeAlternateISA;
2814         else
2815           m_address_class_map[entry_point_file_addr] = AddressClass::eCode;
2816       }
2817     }
2818 
2819     m_symtab_up->CalculateSymbolSizes();
2820   }
2821 
2822   return m_symtab_up.get();
2823 }
2824 
2825 void ObjectFileELF::RelocateSection(lldb_private::Section *section)
2826 {
2827   static const char *debug_prefix = ".debug";
2828 
2829   // Set relocated bit so we stop getting called, regardless of whether we
2830   // actually relocate.
2831   section->SetIsRelocated(true);
2832 
2833   // We only relocate in ELF relocatable files
2834   if (CalculateType() != eTypeObjectFile)
2835     return;
2836 
2837   const char *section_name = section->GetName().GetCString();
2838   // Can't relocate that which can't be named
2839   if (section_name == nullptr)
2840     return;
2841 
2842   // We don't relocate non-debug sections at the moment
2843   if (strncmp(section_name, debug_prefix, strlen(debug_prefix)))
2844     return;
2845 
2846   // Relocation section names to look for
2847   std::string needle = std::string(".rel") + section_name;
2848   std::string needlea = std::string(".rela") + section_name;
2849 
2850   for (SectionHeaderCollIter I = m_section_headers.begin();
2851        I != m_section_headers.end(); ++I) {
2852     if (I->sh_type == SHT_RELA || I->sh_type == SHT_REL) {
2853       const char *hay_name = I->section_name.GetCString();
2854       if (hay_name == nullptr)
2855         continue;
2856       if (needle == hay_name || needlea == hay_name) {
2857         const ELFSectionHeader &reloc_header = *I;
2858         user_id_t reloc_id = SectionIndex(I);
2859         RelocateDebugSections(&reloc_header, reloc_id, GetSymtab());
2860         break;
2861       }
2862     }
2863   }
2864 }
2865 
2866 void ObjectFileELF::ParseUnwindSymbols(Symtab *symbol_table,
2867                                        DWARFCallFrameInfo *eh_frame) {
2868   SectionList *section_list = GetSectionList();
2869   if (!section_list)
2870     return;
2871 
2872   // First we save the new symbols into a separate list and add them to the
2873   // symbol table after we colleced all symbols we want to add. This is
2874   // neccessary because adding a new symbol invalidates the internal index of
2875   // the symtab what causing the next lookup to be slow because it have to
2876   // recalculate the index first.
2877   std::vector<Symbol> new_symbols;
2878 
2879   eh_frame->ForEachFDEEntries([this, symbol_table, section_list, &new_symbols](
2880       lldb::addr_t file_addr, uint32_t size, dw_offset_t) {
2881     Symbol *symbol = symbol_table->FindSymbolAtFileAddress(file_addr);
2882     if (symbol) {
2883       if (!symbol->GetByteSizeIsValid()) {
2884         symbol->SetByteSize(size);
2885         symbol->SetSizeIsSynthesized(true);
2886       }
2887     } else {
2888       SectionSP section_sp =
2889           section_list->FindSectionContainingFileAddress(file_addr);
2890       if (section_sp) {
2891         addr_t offset = file_addr - section_sp->GetFileAddress();
2892         const char *symbol_name = GetNextSyntheticSymbolName().GetCString();
2893         uint64_t symbol_id = symbol_table->GetNumSymbols();
2894         Symbol eh_symbol(
2895             symbol_id,       // Symbol table index.
2896             symbol_name,     // Symbol name.
2897             eSymbolTypeCode, // Type of this symbol.
2898             true,            // Is this globally visible?
2899             false,           // Is this symbol debug info?
2900             false,           // Is this symbol a trampoline?
2901             true,            // Is this symbol artificial?
2902             section_sp,      // Section in which this symbol is defined or null.
2903             offset,          // Offset in section or symbol value.
2904             0,     // Size:          Don't specify the size as an FDE can
2905             false, // Size is valid: cover multiple symbols.
2906             false, // Contains linker annotations?
2907             0);    // Symbol flags.
2908         new_symbols.push_back(eh_symbol);
2909       }
2910     }
2911     return true;
2912   });
2913 
2914   for (const Symbol &s : new_symbols)
2915     symbol_table->AddSymbol(s);
2916 }
2917 
2918 bool ObjectFileELF::IsStripped() {
2919   // TODO: determine this for ELF
2920   return false;
2921 }
2922 
2923 //===----------------------------------------------------------------------===//
2924 // Dump
2925 //
2926 // Dump the specifics of the runtime file container (such as any headers
2927 // segments, sections, etc).
2928 void ObjectFileELF::Dump(Stream *s) {
2929   ModuleSP module_sp(GetModule());
2930   if (!module_sp) {
2931     return;
2932   }
2933 
2934   std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
2935   s->Printf("%p: ", static_cast<void *>(this));
2936   s->Indent();
2937   s->PutCString("ObjectFileELF");
2938 
2939   ArchSpec header_arch = GetArchitecture();
2940 
2941   *s << ", file = '" << m_file
2942      << "', arch = " << header_arch.GetArchitectureName() << "\n";
2943 
2944   DumpELFHeader(s, m_header);
2945   s->EOL();
2946   DumpELFProgramHeaders(s);
2947   s->EOL();
2948   DumpELFSectionHeaders(s);
2949   s->EOL();
2950   SectionList *section_list = GetSectionList();
2951   if (section_list)
2952     section_list->Dump(s, nullptr, true, UINT32_MAX);
2953   Symtab *symtab = GetSymtab();
2954   if (symtab)
2955     symtab->Dump(s, nullptr, eSortOrderNone);
2956   s->EOL();
2957   DumpDependentModules(s);
2958   s->EOL();
2959 }
2960 
2961 // DumpELFHeader
2962 //
2963 // Dump the ELF header to the specified output stream
2964 void ObjectFileELF::DumpELFHeader(Stream *s, const ELFHeader &header) {
2965   s->PutCString("ELF Header\n");
2966   s->Printf("e_ident[EI_MAG0   ] = 0x%2.2x\n", header.e_ident[EI_MAG0]);
2967   s->Printf("e_ident[EI_MAG1   ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG1],
2968             header.e_ident[EI_MAG1]);
2969   s->Printf("e_ident[EI_MAG2   ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG2],
2970             header.e_ident[EI_MAG2]);
2971   s->Printf("e_ident[EI_MAG3   ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG3],
2972             header.e_ident[EI_MAG3]);
2973 
2974   s->Printf("e_ident[EI_CLASS  ] = 0x%2.2x\n", header.e_ident[EI_CLASS]);
2975   s->Printf("e_ident[EI_DATA   ] = 0x%2.2x ", header.e_ident[EI_DATA]);
2976   DumpELFHeader_e_ident_EI_DATA(s, header.e_ident[EI_DATA]);
2977   s->Printf("\ne_ident[EI_VERSION] = 0x%2.2x\n", header.e_ident[EI_VERSION]);
2978   s->Printf("e_ident[EI_PAD    ] = 0x%2.2x\n", header.e_ident[EI_PAD]);
2979 
2980   s->Printf("e_type      = 0x%4.4x ", header.e_type);
2981   DumpELFHeader_e_type(s, header.e_type);
2982   s->Printf("\ne_machine   = 0x%4.4x\n", header.e_machine);
2983   s->Printf("e_version   = 0x%8.8x\n", header.e_version);
2984   s->Printf("e_entry     = 0x%8.8" PRIx64 "\n", header.e_entry);
2985   s->Printf("e_phoff     = 0x%8.8" PRIx64 "\n", header.e_phoff);
2986   s->Printf("e_shoff     = 0x%8.8" PRIx64 "\n", header.e_shoff);
2987   s->Printf("e_flags     = 0x%8.8x\n", header.e_flags);
2988   s->Printf("e_ehsize    = 0x%4.4x\n", header.e_ehsize);
2989   s->Printf("e_phentsize = 0x%4.4x\n", header.e_phentsize);
2990   s->Printf("e_phnum     = 0x%8.8x\n", header.e_phnum);
2991   s->Printf("e_shentsize = 0x%4.4x\n", header.e_shentsize);
2992   s->Printf("e_shnum     = 0x%8.8x\n", header.e_shnum);
2993   s->Printf("e_shstrndx  = 0x%8.8x\n", header.e_shstrndx);
2994 }
2995 
2996 // DumpELFHeader_e_type
2997 //
2998 // Dump an token value for the ELF header member e_type
2999 void ObjectFileELF::DumpELFHeader_e_type(Stream *s, elf_half e_type) {
3000   switch (e_type) {
3001   case ET_NONE:
3002     *s << "ET_NONE";
3003     break;
3004   case ET_REL:
3005     *s << "ET_REL";
3006     break;
3007   case ET_EXEC:
3008     *s << "ET_EXEC";
3009     break;
3010   case ET_DYN:
3011     *s << "ET_DYN";
3012     break;
3013   case ET_CORE:
3014     *s << "ET_CORE";
3015     break;
3016   default:
3017     break;
3018   }
3019 }
3020 
3021 // DumpELFHeader_e_ident_EI_DATA
3022 //
3023 // Dump an token value for the ELF header member e_ident[EI_DATA]
3024 void ObjectFileELF::DumpELFHeader_e_ident_EI_DATA(Stream *s,
3025                                                   unsigned char ei_data) {
3026   switch (ei_data) {
3027   case ELFDATANONE:
3028     *s << "ELFDATANONE";
3029     break;
3030   case ELFDATA2LSB:
3031     *s << "ELFDATA2LSB - Little Endian";
3032     break;
3033   case ELFDATA2MSB:
3034     *s << "ELFDATA2MSB - Big Endian";
3035     break;
3036   default:
3037     break;
3038   }
3039 }
3040 
3041 // DumpELFProgramHeader
3042 //
3043 // Dump a single ELF program header to the specified output stream
3044 void ObjectFileELF::DumpELFProgramHeader(Stream *s,
3045                                          const ELFProgramHeader &ph) {
3046   DumpELFProgramHeader_p_type(s, ph.p_type);
3047   s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, ph.p_offset,
3048             ph.p_vaddr, ph.p_paddr);
3049   s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8x (", ph.p_filesz, ph.p_memsz,
3050             ph.p_flags);
3051 
3052   DumpELFProgramHeader_p_flags(s, ph.p_flags);
3053   s->Printf(") %8.8" PRIx64, ph.p_align);
3054 }
3055 
3056 // DumpELFProgramHeader_p_type
3057 //
3058 // Dump an token value for the ELF program header member p_type which describes
3059 // the type of the program header
3060 void ObjectFileELF::DumpELFProgramHeader_p_type(Stream *s, elf_word p_type) {
3061   const int kStrWidth = 15;
3062   switch (p_type) {
3063     CASE_AND_STREAM(s, PT_NULL, kStrWidth);
3064     CASE_AND_STREAM(s, PT_LOAD, kStrWidth);
3065     CASE_AND_STREAM(s, PT_DYNAMIC, kStrWidth);
3066     CASE_AND_STREAM(s, PT_INTERP, kStrWidth);
3067     CASE_AND_STREAM(s, PT_NOTE, kStrWidth);
3068     CASE_AND_STREAM(s, PT_SHLIB, kStrWidth);
3069     CASE_AND_STREAM(s, PT_PHDR, kStrWidth);
3070     CASE_AND_STREAM(s, PT_TLS, kStrWidth);
3071     CASE_AND_STREAM(s, PT_GNU_EH_FRAME, kStrWidth);
3072   default:
3073     s->Printf("0x%8.8x%*s", p_type, kStrWidth - 10, "");
3074     break;
3075   }
3076 }
3077 
3078 // DumpELFProgramHeader_p_flags
3079 //
3080 // Dump an token value for the ELF program header member p_flags
3081 void ObjectFileELF::DumpELFProgramHeader_p_flags(Stream *s, elf_word p_flags) {
3082   *s << ((p_flags & PF_X) ? "PF_X" : "    ")
3083      << (((p_flags & PF_X) && (p_flags & PF_W)) ? '+' : ' ')
3084      << ((p_flags & PF_W) ? "PF_W" : "    ")
3085      << (((p_flags & PF_W) && (p_flags & PF_R)) ? '+' : ' ')
3086      << ((p_flags & PF_R) ? "PF_R" : "    ");
3087 }
3088 
3089 // DumpELFProgramHeaders
3090 //
3091 // Dump all of the ELF program header to the specified output stream
3092 void ObjectFileELF::DumpELFProgramHeaders(Stream *s) {
3093   if (!ParseProgramHeaders())
3094     return;
3095 
3096   s->PutCString("Program Headers\n");
3097   s->PutCString("IDX  p_type          p_offset p_vaddr  p_paddr  "
3098                 "p_filesz p_memsz  p_flags                   p_align\n");
3099   s->PutCString("==== --------------- -------- -------- -------- "
3100                 "-------- -------- ------------------------- --------\n");
3101 
3102   for (const auto &H : llvm::enumerate(m_program_headers)) {
3103     s->Format("[{0,2}] ", H.index());
3104     ObjectFileELF::DumpELFProgramHeader(s, H.value());
3105     s->EOL();
3106   }
3107 }
3108 
3109 // DumpELFSectionHeader
3110 //
3111 // Dump a single ELF section header to the specified output stream
3112 void ObjectFileELF::DumpELFSectionHeader(Stream *s,
3113                                          const ELFSectionHeaderInfo &sh) {
3114   s->Printf("%8.8x ", sh.sh_name);
3115   DumpELFSectionHeader_sh_type(s, sh.sh_type);
3116   s->Printf(" %8.8" PRIx64 " (", sh.sh_flags);
3117   DumpELFSectionHeader_sh_flags(s, sh.sh_flags);
3118   s->Printf(") %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addr,
3119             sh.sh_offset, sh.sh_size);
3120   s->Printf(" %8.8x %8.8x", sh.sh_link, sh.sh_info);
3121   s->Printf(" %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addralign, sh.sh_entsize);
3122 }
3123 
3124 // DumpELFSectionHeader_sh_type
3125 //
3126 // Dump an token value for the ELF section header member sh_type which
3127 // describes the type of the section
3128 void ObjectFileELF::DumpELFSectionHeader_sh_type(Stream *s, elf_word sh_type) {
3129   const int kStrWidth = 12;
3130   switch (sh_type) {
3131     CASE_AND_STREAM(s, SHT_NULL, kStrWidth);
3132     CASE_AND_STREAM(s, SHT_PROGBITS, kStrWidth);
3133     CASE_AND_STREAM(s, SHT_SYMTAB, kStrWidth);
3134     CASE_AND_STREAM(s, SHT_STRTAB, kStrWidth);
3135     CASE_AND_STREAM(s, SHT_RELA, kStrWidth);
3136     CASE_AND_STREAM(s, SHT_HASH, kStrWidth);
3137     CASE_AND_STREAM(s, SHT_DYNAMIC, kStrWidth);
3138     CASE_AND_STREAM(s, SHT_NOTE, kStrWidth);
3139     CASE_AND_STREAM(s, SHT_NOBITS, kStrWidth);
3140     CASE_AND_STREAM(s, SHT_REL, kStrWidth);
3141     CASE_AND_STREAM(s, SHT_SHLIB, kStrWidth);
3142     CASE_AND_STREAM(s, SHT_DYNSYM, kStrWidth);
3143     CASE_AND_STREAM(s, SHT_LOPROC, kStrWidth);
3144     CASE_AND_STREAM(s, SHT_HIPROC, kStrWidth);
3145     CASE_AND_STREAM(s, SHT_LOUSER, kStrWidth);
3146     CASE_AND_STREAM(s, SHT_HIUSER, kStrWidth);
3147   default:
3148     s->Printf("0x%8.8x%*s", sh_type, kStrWidth - 10, "");
3149     break;
3150   }
3151 }
3152 
3153 // DumpELFSectionHeader_sh_flags
3154 //
3155 // Dump an token value for the ELF section header member sh_flags
3156 void ObjectFileELF::DumpELFSectionHeader_sh_flags(Stream *s,
3157                                                   elf_xword sh_flags) {
3158   *s << ((sh_flags & SHF_WRITE) ? "WRITE" : "     ")
3159      << (((sh_flags & SHF_WRITE) && (sh_flags & SHF_ALLOC)) ? '+' : ' ')
3160      << ((sh_flags & SHF_ALLOC) ? "ALLOC" : "     ")
3161      << (((sh_flags & SHF_ALLOC) && (sh_flags & SHF_EXECINSTR)) ? '+' : ' ')
3162      << ((sh_flags & SHF_EXECINSTR) ? "EXECINSTR" : "         ");
3163 }
3164 
3165 // DumpELFSectionHeaders
3166 //
3167 // Dump all of the ELF section header to the specified output stream
3168 void ObjectFileELF::DumpELFSectionHeaders(Stream *s) {
3169   if (!ParseSectionHeaders())
3170     return;
3171 
3172   s->PutCString("Section Headers\n");
3173   s->PutCString("IDX  name     type         flags                            "
3174                 "addr     offset   size     link     info     addralgn "
3175                 "entsize  Name\n");
3176   s->PutCString("==== -------- ------------ -------------------------------- "
3177                 "-------- -------- -------- -------- -------- -------- "
3178                 "-------- ====================\n");
3179 
3180   uint32_t idx = 0;
3181   for (SectionHeaderCollConstIter I = m_section_headers.begin();
3182        I != m_section_headers.end(); ++I, ++idx) {
3183     s->Printf("[%2u] ", idx);
3184     ObjectFileELF::DumpELFSectionHeader(s, *I);
3185     const char *section_name = I->section_name.AsCString("");
3186     if (section_name)
3187       *s << ' ' << section_name << "\n";
3188   }
3189 }
3190 
3191 void ObjectFileELF::DumpDependentModules(lldb_private::Stream *s) {
3192   size_t num_modules = ParseDependentModules();
3193 
3194   if (num_modules > 0) {
3195     s->PutCString("Dependent Modules:\n");
3196     for (unsigned i = 0; i < num_modules; ++i) {
3197       const FileSpec &spec = m_filespec_up->GetFileSpecAtIndex(i);
3198       s->Printf("   %s\n", spec.GetFilename().GetCString());
3199     }
3200   }
3201 }
3202 
3203 ArchSpec ObjectFileELF::GetArchitecture() {
3204   if (!ParseHeader())
3205     return ArchSpec();
3206 
3207   if (m_section_headers.empty()) {
3208     // Allow elf notes to be parsed which may affect the detected architecture.
3209     ParseSectionHeaders();
3210   }
3211 
3212   if (CalculateType() == eTypeCoreFile &&
3213       !m_arch_spec.TripleOSWasSpecified()) {
3214     // Core files don't have section headers yet they have PT_NOTE program
3215     // headers that might shed more light on the architecture
3216     for (const elf::ELFProgramHeader &H : ProgramHeaders()) {
3217       if (H.p_type != PT_NOTE || H.p_offset == 0 || H.p_filesz == 0)
3218         continue;
3219       DataExtractor data;
3220       if (data.SetData(m_data, H.p_offset, H.p_filesz) == H.p_filesz) {
3221         UUID uuid;
3222         RefineModuleDetailsFromNote(data, m_arch_spec, uuid);
3223       }
3224     }
3225   }
3226   return m_arch_spec;
3227 }
3228 
3229 ObjectFile::Type ObjectFileELF::CalculateType() {
3230   switch (m_header.e_type) {
3231   case llvm::ELF::ET_NONE:
3232     // 0 - No file type
3233     return eTypeUnknown;
3234 
3235   case llvm::ELF::ET_REL:
3236     // 1 - Relocatable file
3237     return eTypeObjectFile;
3238 
3239   case llvm::ELF::ET_EXEC:
3240     // 2 - Executable file
3241     return eTypeExecutable;
3242 
3243   case llvm::ELF::ET_DYN:
3244     // 3 - Shared object file
3245     return eTypeSharedLibrary;
3246 
3247   case ET_CORE:
3248     // 4 - Core file
3249     return eTypeCoreFile;
3250 
3251   default:
3252     break;
3253   }
3254   return eTypeUnknown;
3255 }
3256 
3257 ObjectFile::Strata ObjectFileELF::CalculateStrata() {
3258   switch (m_header.e_type) {
3259   case llvm::ELF::ET_NONE:
3260     // 0 - No file type
3261     return eStrataUnknown;
3262 
3263   case llvm::ELF::ET_REL:
3264     // 1 - Relocatable file
3265     return eStrataUnknown;
3266 
3267   case llvm::ELF::ET_EXEC:
3268     // 2 - Executable file
3269     // TODO: is there any way to detect that an executable is a kernel
3270     // related executable by inspecting the program headers, section headers,
3271     // symbols, or any other flag bits???
3272     return eStrataUser;
3273 
3274   case llvm::ELF::ET_DYN:
3275     // 3 - Shared object file
3276     // TODO: is there any way to detect that an shared library is a kernel
3277     // related executable by inspecting the program headers, section headers,
3278     // symbols, or any other flag bits???
3279     return eStrataUnknown;
3280 
3281   case ET_CORE:
3282     // 4 - Core file
3283     // TODO: is there any way to detect that an core file is a kernel
3284     // related executable by inspecting the program headers, section headers,
3285     // symbols, or any other flag bits???
3286     return eStrataUnknown;
3287 
3288   default:
3289     break;
3290   }
3291   return eStrataUnknown;
3292 }
3293 
3294 size_t ObjectFileELF::ReadSectionData(Section *section,
3295                        lldb::offset_t section_offset, void *dst,
3296                        size_t dst_len) {
3297   // If some other objectfile owns this data, pass this to them.
3298   if (section->GetObjectFile() != this)
3299     return section->GetObjectFile()->ReadSectionData(section, section_offset,
3300                                                      dst, dst_len);
3301 
3302   if (!section->Test(SHF_COMPRESSED))
3303     return ObjectFile::ReadSectionData(section, section_offset, dst, dst_len);
3304 
3305   // For compressed sections we need to read to full data to be able to
3306   // decompress.
3307   DataExtractor data;
3308   ReadSectionData(section, data);
3309   return data.CopyData(section_offset, dst_len, dst);
3310 }
3311 
3312 size_t ObjectFileELF::ReadSectionData(Section *section,
3313                                       DataExtractor &section_data) {
3314   // If some other objectfile owns this data, pass this to them.
3315   if (section->GetObjectFile() != this)
3316     return section->GetObjectFile()->ReadSectionData(section, section_data);
3317 
3318   size_t result = ObjectFile::ReadSectionData(section, section_data);
3319   if (result == 0 || !llvm::object::Decompressor::isCompressedELFSection(
3320                          section->Get(), section->GetName().GetStringRef()))
3321     return result;
3322 
3323   auto Decompressor = llvm::object::Decompressor::create(
3324       section->GetName().GetStringRef(),
3325       {reinterpret_cast<const char *>(section_data.GetDataStart()),
3326        size_t(section_data.GetByteSize())},
3327       GetByteOrder() == eByteOrderLittle, GetAddressByteSize() == 8);
3328   if (!Decompressor) {
3329     GetModule()->ReportWarning(
3330         "Unable to initialize decompressor for section '%s': %s",
3331         section->GetName().GetCString(),
3332         llvm::toString(Decompressor.takeError()).c_str());
3333     section_data.Clear();
3334     return 0;
3335   }
3336 
3337   auto buffer_sp =
3338       std::make_shared<DataBufferHeap>(Decompressor->getDecompressedSize(), 0);
3339   if (auto error = Decompressor->decompress(
3340           {reinterpret_cast<char *>(buffer_sp->GetBytes()),
3341            size_t(buffer_sp->GetByteSize())})) {
3342     GetModule()->ReportWarning(
3343         "Decompression of section '%s' failed: %s",
3344         section->GetName().GetCString(),
3345         llvm::toString(std::move(error)).c_str());
3346     section_data.Clear();
3347     return 0;
3348   }
3349 
3350   section_data.SetData(buffer_sp);
3351   return buffer_sp->GetByteSize();
3352 }
3353 
3354 llvm::ArrayRef<ELFProgramHeader> ObjectFileELF::ProgramHeaders() {
3355   ParseProgramHeaders();
3356   return m_program_headers;
3357 }
3358 
3359 DataExtractor ObjectFileELF::GetSegmentData(const ELFProgramHeader &H) {
3360   return DataExtractor(m_data, H.p_offset, H.p_filesz);
3361 }
3362 
3363 bool ObjectFileELF::AnySegmentHasPhysicalAddress() {
3364   for (const ELFProgramHeader &H : ProgramHeaders()) {
3365     if (H.p_paddr != 0)
3366       return true;
3367   }
3368   return false;
3369 }
3370 
3371 std::vector<ObjectFile::LoadableData>
3372 ObjectFileELF::GetLoadableData(Target &target) {
3373   // Create a list of loadable data from loadable segments, using physical
3374   // addresses if they aren't all null
3375   std::vector<LoadableData> loadables;
3376   bool should_use_paddr = AnySegmentHasPhysicalAddress();
3377   for (const ELFProgramHeader &H : ProgramHeaders()) {
3378     LoadableData loadable;
3379     if (H.p_type != llvm::ELF::PT_LOAD)
3380       continue;
3381     loadable.Dest = should_use_paddr ? H.p_paddr : H.p_vaddr;
3382     if (loadable.Dest == LLDB_INVALID_ADDRESS)
3383       continue;
3384     if (H.p_filesz == 0)
3385       continue;
3386     auto segment_data = GetSegmentData(H);
3387     loadable.Contents = llvm::ArrayRef<uint8_t>(segment_data.GetDataStart(),
3388                                                 segment_data.GetByteSize());
3389     loadables.push_back(loadable);
3390   }
3391   return loadables;
3392 }
3393