1 //===-- ObjectFileELF.cpp ------------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "ObjectFileELF.h"
11 
12 #include <cassert>
13 #include <algorithm>
14 
15 #include "lldb/Core/ArchSpec.h"
16 #include "lldb/Core/DataBuffer.h"
17 #include "lldb/Core/Error.h"
18 #include "lldb/Core/FileSpecList.h"
19 #include "lldb/Core/Log.h"
20 #include "lldb/Core/Module.h"
21 #include "lldb/Core/ModuleSpec.h"
22 #include "lldb/Core/PluginManager.h"
23 #include "lldb/Core/Section.h"
24 #include "lldb/Core/Stream.h"
25 #include "lldb/Core/Timer.h"
26 #include "lldb/Symbol/DWARFCallFrameInfo.h"
27 #include "lldb/Symbol/SymbolContext.h"
28 #include "lldb/Target/SectionLoadList.h"
29 #include "lldb/Target/Target.h"
30 
31 #include "llvm/ADT/PointerUnion.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/Support/MathExtras.h"
34 
35 #define CASE_AND_STREAM(s, def, width)                  \
36     case def: s->Printf("%-*s", width, #def); break;
37 
38 using namespace lldb;
39 using namespace lldb_private;
40 using namespace elf;
41 using namespace llvm::ELF;
42 
43 namespace {
44 
45 // ELF note owner definitions
46 const char *const LLDB_NT_OWNER_FREEBSD = "FreeBSD";
47 const char *const LLDB_NT_OWNER_GNU     = "GNU";
48 const char *const LLDB_NT_OWNER_NETBSD  = "NetBSD";
49 const char *const LLDB_NT_OWNER_CSR     = "csr";
50 const char *const LLDB_NT_OWNER_ANDROID = "Android";
51 
52 // ELF note type definitions
53 const elf_word LLDB_NT_FREEBSD_ABI_TAG  = 0x01;
54 const elf_word LLDB_NT_FREEBSD_ABI_SIZE = 4;
55 
56 const elf_word LLDB_NT_GNU_ABI_TAG      = 0x01;
57 const elf_word LLDB_NT_GNU_ABI_SIZE     = 16;
58 
59 const elf_word LLDB_NT_GNU_BUILD_ID_TAG = 0x03;
60 
61 const elf_word LLDB_NT_NETBSD_ABI_TAG   = 0x01;
62 const elf_word LLDB_NT_NETBSD_ABI_SIZE  = 4;
63 
64 // GNU ABI note OS constants
65 const elf_word LLDB_NT_GNU_ABI_OS_LINUX   = 0x00;
66 const elf_word LLDB_NT_GNU_ABI_OS_HURD    = 0x01;
67 const elf_word LLDB_NT_GNU_ABI_OS_SOLARIS = 0x02;
68 
69 //===----------------------------------------------------------------------===//
70 /// @class ELFRelocation
71 /// @brief Generic wrapper for ELFRel and ELFRela.
72 ///
73 /// This helper class allows us to parse both ELFRel and ELFRela relocation
74 /// entries in a generic manner.
75 class ELFRelocation
76 {
77 public:
78 
79     /// Constructs an ELFRelocation entry with a personality as given by @p
80     /// type.
81     ///
82     /// @param type Either DT_REL or DT_RELA.  Any other value is invalid.
83     ELFRelocation(unsigned type);
84 
85     ~ELFRelocation();
86 
87     bool
88     Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset);
89 
90     static unsigned
91     RelocType32(const ELFRelocation &rel);
92 
93     static unsigned
94     RelocType64(const ELFRelocation &rel);
95 
96     static unsigned
97     RelocSymbol32(const ELFRelocation &rel);
98 
99     static unsigned
100     RelocSymbol64(const ELFRelocation &rel);
101 
102     static unsigned
103     RelocOffset32(const ELFRelocation &rel);
104 
105     static unsigned
106     RelocOffset64(const ELFRelocation &rel);
107 
108     static unsigned
109     RelocAddend32(const ELFRelocation &rel);
110 
111     static unsigned
112     RelocAddend64(const ELFRelocation &rel);
113 
114 private:
115     typedef llvm::PointerUnion<ELFRel*, ELFRela*> RelocUnion;
116 
117     RelocUnion reloc;
118 };
119 
120 ELFRelocation::ELFRelocation(unsigned type)
121 {
122     if (type == DT_REL || type == SHT_REL)
123         reloc = new ELFRel();
124     else if (type == DT_RELA || type == SHT_RELA)
125         reloc = new ELFRela();
126     else {
127         assert(false && "unexpected relocation type");
128         reloc = static_cast<ELFRel*>(NULL);
129     }
130 }
131 
132 ELFRelocation::~ELFRelocation()
133 {
134     if (reloc.is<ELFRel*>())
135         delete reloc.get<ELFRel*>();
136     else
137         delete reloc.get<ELFRela*>();
138 }
139 
140 bool
141 ELFRelocation::Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset)
142 {
143     if (reloc.is<ELFRel*>())
144         return reloc.get<ELFRel*>()->Parse(data, offset);
145     else
146         return reloc.get<ELFRela*>()->Parse(data, offset);
147 }
148 
149 unsigned
150 ELFRelocation::RelocType32(const ELFRelocation &rel)
151 {
152     if (rel.reloc.is<ELFRel*>())
153         return ELFRel::RelocType32(*rel.reloc.get<ELFRel*>());
154     else
155         return ELFRela::RelocType32(*rel.reloc.get<ELFRela*>());
156 }
157 
158 unsigned
159 ELFRelocation::RelocType64(const ELFRelocation &rel)
160 {
161     if (rel.reloc.is<ELFRel*>())
162         return ELFRel::RelocType64(*rel.reloc.get<ELFRel*>());
163     else
164         return ELFRela::RelocType64(*rel.reloc.get<ELFRela*>());
165 }
166 
167 unsigned
168 ELFRelocation::RelocSymbol32(const ELFRelocation &rel)
169 {
170     if (rel.reloc.is<ELFRel*>())
171         return ELFRel::RelocSymbol32(*rel.reloc.get<ELFRel*>());
172     else
173         return ELFRela::RelocSymbol32(*rel.reloc.get<ELFRela*>());
174 }
175 
176 unsigned
177 ELFRelocation::RelocSymbol64(const ELFRelocation &rel)
178 {
179     if (rel.reloc.is<ELFRel*>())
180         return ELFRel::RelocSymbol64(*rel.reloc.get<ELFRel*>());
181     else
182         return ELFRela::RelocSymbol64(*rel.reloc.get<ELFRela*>());
183 }
184 
185 unsigned
186 ELFRelocation::RelocOffset32(const ELFRelocation &rel)
187 {
188     if (rel.reloc.is<ELFRel*>())
189         return rel.reloc.get<ELFRel*>()->r_offset;
190     else
191         return rel.reloc.get<ELFRela*>()->r_offset;
192 }
193 
194 unsigned
195 ELFRelocation::RelocOffset64(const ELFRelocation &rel)
196 {
197     if (rel.reloc.is<ELFRel*>())
198         return rel.reloc.get<ELFRel*>()->r_offset;
199     else
200         return rel.reloc.get<ELFRela*>()->r_offset;
201 }
202 
203 unsigned
204 ELFRelocation::RelocAddend32(const ELFRelocation &rel)
205 {
206     if (rel.reloc.is<ELFRel*>())
207         return 0;
208     else
209         return rel.reloc.get<ELFRela*>()->r_addend;
210 }
211 
212 unsigned
213 ELFRelocation::RelocAddend64(const ELFRelocation &rel)
214 {
215     if (rel.reloc.is<ELFRel*>())
216         return 0;
217     else
218         return rel.reloc.get<ELFRela*>()->r_addend;
219 }
220 
221 } // end anonymous namespace
222 
223 bool
224 ELFNote::Parse(const DataExtractor &data, lldb::offset_t *offset)
225 {
226     // Read all fields.
227     if (data.GetU32(offset, &n_namesz, 3) == NULL)
228         return false;
229 
230     // The name field is required to be nul-terminated, and n_namesz
231     // includes the terminating nul in observed implementations (contrary
232     // to the ELF-64 spec).  A special case is needed for cores generated
233     // by some older Linux versions, which write a note named "CORE"
234     // without a nul terminator and n_namesz = 4.
235     if (n_namesz == 4)
236     {
237         char buf[4];
238         if (data.ExtractBytes (*offset, 4, data.GetByteOrder(), buf) != 4)
239             return false;
240         if (strncmp (buf, "CORE", 4) == 0)
241         {
242             n_name = "CORE";
243             *offset += 4;
244             return true;
245         }
246     }
247 
248     const char *cstr = data.GetCStr(offset, llvm::RoundUpToAlignment (n_namesz, 4));
249     if (cstr == NULL)
250     {
251         Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_SYMBOLS));
252         if (log)
253             log->Printf("Failed to parse note name lacking nul terminator");
254 
255         return false;
256     }
257     n_name = cstr;
258     return true;
259 }
260 
261 static uint32_t
262 kalimbaVariantFromElfFlags(const elf::elf_word e_flags)
263 {
264     const uint32_t dsp_rev = e_flags & 0xFF;
265     uint32_t kal_arch_variant = LLDB_INVALID_CPUTYPE;
266     switch(dsp_rev)
267     {
268         // TODO(mg11) Support more variants
269         case 10:
270             kal_arch_variant = llvm::Triple::KalimbaSubArch_v3;
271             break;
272         case 14:
273             kal_arch_variant = llvm::Triple::KalimbaSubArch_v4;
274             break;
275         case 17:
276         case 20:
277             kal_arch_variant = llvm::Triple::KalimbaSubArch_v5;
278             break;
279         default:
280             break;
281     }
282     return kal_arch_variant;
283 }
284 
285 static uint32_t
286 mipsVariantFromElfFlags(const elf::elf_word e_flags, uint32_t endian)
287 {
288     const uint32_t mips_arch = e_flags & llvm::ELF::EF_MIPS_ARCH;
289     uint32_t arch_variant = ArchSpec::eMIPSSubType_unknown;
290 
291     switch (mips_arch)
292     {
293         case llvm::ELF::EF_MIPS_ARCH_32:
294             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el : ArchSpec::eMIPSSubType_mips32;
295         case llvm::ELF::EF_MIPS_ARCH_32R2:
296             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r2el : ArchSpec::eMIPSSubType_mips32r2;
297         case llvm::ELF::EF_MIPS_ARCH_32R6:
298             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r6el : ArchSpec::eMIPSSubType_mips32r6;
299         case llvm::ELF::EF_MIPS_ARCH_64:
300             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el : ArchSpec::eMIPSSubType_mips64;
301         case llvm::ELF::EF_MIPS_ARCH_64R2:
302             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r2el : ArchSpec::eMIPSSubType_mips64r2;
303         case llvm::ELF::EF_MIPS_ARCH_64R6:
304             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r6el : ArchSpec::eMIPSSubType_mips64r6;
305         default:
306             break;
307     }
308 
309     return arch_variant;
310 }
311 
312 static uint32_t
313 subTypeFromElfHeader(const elf::ELFHeader& header)
314 {
315     if (header.e_machine == llvm::ELF::EM_MIPS)
316         return mipsVariantFromElfFlags (header.e_flags,
317             header.e_ident[EI_DATA]);
318 
319     return
320         llvm::ELF::EM_CSR_KALIMBA == header.e_machine ?
321         kalimbaVariantFromElfFlags(header.e_flags) :
322         LLDB_INVALID_CPUTYPE;
323 }
324 
325 //! The kalimba toolchain identifies a code section as being
326 //! one with the SHT_PROGBITS set in the section sh_type and the top
327 //! bit in the 32-bit address field set.
328 static lldb::SectionType
329 kalimbaSectionType(
330     const elf::ELFHeader& header,
331     const elf::ELFSectionHeader& sect_hdr)
332 {
333     if (llvm::ELF::EM_CSR_KALIMBA != header.e_machine)
334     {
335         return eSectionTypeOther;
336     }
337 
338     if (llvm::ELF::SHT_NOBITS == sect_hdr.sh_type)
339     {
340         return eSectionTypeZeroFill;
341     }
342 
343     if (llvm::ELF::SHT_PROGBITS == sect_hdr.sh_type)
344     {
345         const lldb::addr_t KAL_CODE_BIT = 1 << 31;
346         return KAL_CODE_BIT & sect_hdr.sh_addr ?
347              eSectionTypeCode  : eSectionTypeData;
348     }
349 
350     return eSectionTypeOther;
351 }
352 
353 // Arbitrary constant used as UUID prefix for core files.
354 const uint32_t
355 ObjectFileELF::g_core_uuid_magic(0xE210C);
356 
357 //------------------------------------------------------------------
358 // Static methods.
359 //------------------------------------------------------------------
360 void
361 ObjectFileELF::Initialize()
362 {
363     PluginManager::RegisterPlugin(GetPluginNameStatic(),
364                                   GetPluginDescriptionStatic(),
365                                   CreateInstance,
366                                   CreateMemoryInstance,
367                                   GetModuleSpecifications);
368 }
369 
370 void
371 ObjectFileELF::Terminate()
372 {
373     PluginManager::UnregisterPlugin(CreateInstance);
374 }
375 
376 lldb_private::ConstString
377 ObjectFileELF::GetPluginNameStatic()
378 {
379     static ConstString g_name("elf");
380     return g_name;
381 }
382 
383 const char *
384 ObjectFileELF::GetPluginDescriptionStatic()
385 {
386     return "ELF object file reader.";
387 }
388 
389 ObjectFile *
390 ObjectFileELF::CreateInstance (const lldb::ModuleSP &module_sp,
391                                DataBufferSP &data_sp,
392                                lldb::offset_t data_offset,
393                                const lldb_private::FileSpec* file,
394                                lldb::offset_t file_offset,
395                                lldb::offset_t length)
396 {
397     if (!data_sp)
398     {
399         data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length);
400         data_offset = 0;
401     }
402 
403     if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset))
404     {
405         const uint8_t *magic = data_sp->GetBytes() + data_offset;
406         if (ELFHeader::MagicBytesMatch(magic))
407         {
408             // Update the data to contain the entire file if it doesn't already
409             if (data_sp->GetByteSize() < length) {
410                 data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length);
411                 data_offset = 0;
412                 magic = data_sp->GetBytes();
413             }
414             unsigned address_size = ELFHeader::AddressSizeInBytes(magic);
415             if (address_size == 4 || address_size == 8)
416             {
417                 std::unique_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, data_offset, file, file_offset, length));
418                 ArchSpec spec;
419                 if (objfile_ap->GetArchitecture(spec) &&
420                     objfile_ap->SetModulesArchitecture(spec))
421                     return objfile_ap.release();
422             }
423         }
424     }
425     return NULL;
426 }
427 
428 
429 ObjectFile*
430 ObjectFileELF::CreateMemoryInstance (const lldb::ModuleSP &module_sp,
431                                      DataBufferSP& data_sp,
432                                      const lldb::ProcessSP &process_sp,
433                                      lldb::addr_t header_addr)
434 {
435     if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT))
436     {
437         const uint8_t *magic = data_sp->GetBytes();
438         if (ELFHeader::MagicBytesMatch(magic))
439         {
440             unsigned address_size = ELFHeader::AddressSizeInBytes(magic);
441             if (address_size == 4 || address_size == 8)
442             {
443                 std::auto_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, process_sp, header_addr));
444                 ArchSpec spec;
445                 if (objfile_ap->GetArchitecture(spec) &&
446                     objfile_ap->SetModulesArchitecture(spec))
447                     return objfile_ap.release();
448             }
449         }
450     }
451     return NULL;
452 }
453 
454 bool
455 ObjectFileELF::MagicBytesMatch (DataBufferSP& data_sp,
456                                   lldb::addr_t data_offset,
457                                   lldb::addr_t data_length)
458 {
459     if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset))
460     {
461         const uint8_t *magic = data_sp->GetBytes() + data_offset;
462         return ELFHeader::MagicBytesMatch(magic);
463     }
464     return false;
465 }
466 
467 /*
468  * crc function from http://svnweb.freebsd.org/base/head/sys/libkern/crc32.c
469  *
470  *   COPYRIGHT (C) 1986 Gary S. Brown. You may use this program, or
471  *   code or tables extracted from it, as desired without restriction.
472  */
473 static uint32_t
474 calc_crc32(uint32_t crc, const void *buf, size_t size)
475 {
476     static const uint32_t g_crc32_tab[] =
477     {
478         0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f,
479         0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988,
480         0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2,
481         0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7,
482         0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
483         0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172,
484         0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c,
485         0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59,
486         0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423,
487         0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
488         0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106,
489         0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,
490         0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d,
491         0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e,
492         0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
493         0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,
494         0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7,
495         0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0,
496         0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa,
497         0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
498         0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81,
499         0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a,
500         0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84,
501         0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,
502         0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
503         0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc,
504         0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e,
505         0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,
506         0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55,
507         0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
508         0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28,
509         0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d,
510         0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f,
511         0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38,
512         0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
513         0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,
514         0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69,
515         0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2,
516         0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc,
517         0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
518         0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693,
519         0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94,
520         0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d
521     };
522     const uint8_t *p = (const uint8_t *)buf;
523 
524     crc = crc ^ ~0U;
525     while (size--)
526         crc = g_crc32_tab[(crc ^ *p++) & 0xFF] ^ (crc >> 8);
527     return crc ^ ~0U;
528 }
529 
530 static uint32_t
531 calc_gnu_debuglink_crc32(const void *buf, size_t size)
532 {
533     return calc_crc32(0U, buf, size);
534 }
535 
536 uint32_t
537 ObjectFileELF::CalculateELFNotesSegmentsCRC32 (const ProgramHeaderColl& program_headers,
538                                                DataExtractor& object_data)
539 {
540     typedef ProgramHeaderCollConstIter Iter;
541 
542     uint32_t core_notes_crc = 0;
543 
544     for (Iter I = program_headers.begin(); I != program_headers.end(); ++I)
545     {
546         if (I->p_type == llvm::ELF::PT_NOTE)
547         {
548             const elf_off ph_offset = I->p_offset;
549             const size_t ph_size = I->p_filesz;
550 
551             DataExtractor segment_data;
552             if (segment_data.SetData(object_data, ph_offset, ph_size) != ph_size)
553             {
554                 // The ELF program header contained incorrect data,
555                 // probably corefile is incomplete or corrupted.
556                 break;
557             }
558 
559             core_notes_crc = calc_crc32(core_notes_crc,
560                                         segment_data.GetDataStart(),
561                                         segment_data.GetByteSize());
562         }
563     }
564 
565     return core_notes_crc;
566 }
567 
568 static const char*
569 OSABIAsCString (unsigned char osabi_byte)
570 {
571 #define _MAKE_OSABI_CASE(x) case x: return #x
572     switch (osabi_byte)
573     {
574         _MAKE_OSABI_CASE(ELFOSABI_NONE);
575         _MAKE_OSABI_CASE(ELFOSABI_HPUX);
576         _MAKE_OSABI_CASE(ELFOSABI_NETBSD);
577         _MAKE_OSABI_CASE(ELFOSABI_GNU);
578         _MAKE_OSABI_CASE(ELFOSABI_HURD);
579         _MAKE_OSABI_CASE(ELFOSABI_SOLARIS);
580         _MAKE_OSABI_CASE(ELFOSABI_AIX);
581         _MAKE_OSABI_CASE(ELFOSABI_IRIX);
582         _MAKE_OSABI_CASE(ELFOSABI_FREEBSD);
583         _MAKE_OSABI_CASE(ELFOSABI_TRU64);
584         _MAKE_OSABI_CASE(ELFOSABI_MODESTO);
585         _MAKE_OSABI_CASE(ELFOSABI_OPENBSD);
586         _MAKE_OSABI_CASE(ELFOSABI_OPENVMS);
587         _MAKE_OSABI_CASE(ELFOSABI_NSK);
588         _MAKE_OSABI_CASE(ELFOSABI_AROS);
589         _MAKE_OSABI_CASE(ELFOSABI_FENIXOS);
590         _MAKE_OSABI_CASE(ELFOSABI_C6000_ELFABI);
591         _MAKE_OSABI_CASE(ELFOSABI_C6000_LINUX);
592         _MAKE_OSABI_CASE(ELFOSABI_ARM);
593         _MAKE_OSABI_CASE(ELFOSABI_STANDALONE);
594         default:
595             return "<unknown-osabi>";
596     }
597 #undef _MAKE_OSABI_CASE
598 }
599 
600 //
601 // WARNING : This function is being deprecated
602 // It's functionality has moved to ArchSpec::SetArchitecture
603 // This function is only being kept to validate the move.
604 //
605 // TODO : Remove this function
606 static bool
607 GetOsFromOSABI (unsigned char osabi_byte, llvm::Triple::OSType &ostype)
608 {
609     switch (osabi_byte)
610     {
611         case ELFOSABI_AIX:      ostype = llvm::Triple::OSType::AIX; break;
612         case ELFOSABI_FREEBSD:  ostype = llvm::Triple::OSType::FreeBSD; break;
613         case ELFOSABI_GNU:      ostype = llvm::Triple::OSType::Linux; break;
614         case ELFOSABI_NETBSD:   ostype = llvm::Triple::OSType::NetBSD; break;
615         case ELFOSABI_OPENBSD:  ostype = llvm::Triple::OSType::OpenBSD; break;
616         case ELFOSABI_SOLARIS:  ostype = llvm::Triple::OSType::Solaris; break;
617         default:
618             ostype = llvm::Triple::OSType::UnknownOS;
619     }
620     return ostype != llvm::Triple::OSType::UnknownOS;
621 }
622 
623 size_t
624 ObjectFileELF::GetModuleSpecifications (const lldb_private::FileSpec& file,
625                                         lldb::DataBufferSP& data_sp,
626                                         lldb::offset_t data_offset,
627                                         lldb::offset_t file_offset,
628                                         lldb::offset_t length,
629                                         lldb_private::ModuleSpecList &specs)
630 {
631     Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES));
632 
633     const size_t initial_count = specs.GetSize();
634 
635     if (ObjectFileELF::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize()))
636     {
637         DataExtractor data;
638         data.SetData(data_sp);
639         elf::ELFHeader header;
640         if (header.Parse(data, &data_offset))
641         {
642             if (data_sp)
643             {
644                 ModuleSpec spec (file);
645 
646                 const uint32_t sub_type = subTypeFromElfHeader(header);
647                 spec.GetArchitecture().SetArchitecture(eArchTypeELF,
648                                                        header.e_machine,
649                                                        sub_type,
650                                                        header.e_ident[EI_OSABI]);
651 
652                 if (spec.GetArchitecture().IsValid())
653                 {
654                     llvm::Triple::OSType ostype;
655                     llvm::Triple::VendorType vendor;
656                     llvm::Triple::OSType spec_ostype = spec.GetArchitecture ().GetTriple ().getOS ();
657 
658                     if (log)
659                         log->Printf ("ObjectFileELF::%s file '%s' module OSABI: %s", __FUNCTION__, file.GetPath ().c_str (), OSABIAsCString (header.e_ident[EI_OSABI]));
660 
661                     // SetArchitecture should have set the vendor to unknown
662                     vendor = spec.GetArchitecture ().GetTriple ().getVendor ();
663                     assert(vendor == llvm::Triple::UnknownVendor);
664 
665                     //
666                     // Validate it is ok to remove GetOsFromOSABI
667                     GetOsFromOSABI (header.e_ident[EI_OSABI], ostype);
668                     assert(spec_ostype == ostype);
669                     if (spec_ostype != llvm::Triple::OSType::UnknownOS)
670                     {
671                         if (log)
672                             log->Printf ("ObjectFileELF::%s file '%s' set ELF module OS type from ELF header OSABI.", __FUNCTION__, file.GetPath ().c_str ());
673                     }
674 
675                     // Try to get the UUID from the section list. Usually that's at the end, so
676                     // map the file in if we don't have it already.
677                     size_t section_header_end = header.e_shoff + header.e_shnum * header.e_shentsize;
678                     if (section_header_end > data_sp->GetByteSize())
679                     {
680                         data_sp = file.MemoryMapFileContentsIfLocal (file_offset, section_header_end);
681                         data.SetData(data_sp);
682                     }
683 
684                     uint32_t gnu_debuglink_crc = 0;
685                     std::string gnu_debuglink_file;
686                     SectionHeaderColl section_headers;
687                     lldb_private::UUID &uuid = spec.GetUUID();
688 
689                     GetSectionHeaderInfo(section_headers, data, header, uuid, gnu_debuglink_file, gnu_debuglink_crc, spec.GetArchitecture ());
690 
691                     llvm::Triple &spec_triple = spec.GetArchitecture ().GetTriple ();
692 
693                     if (log)
694                         log->Printf ("ObjectFileELF::%s file '%s' module set to triple: %s (architecture %s)", __FUNCTION__, file.GetPath ().c_str (), spec_triple.getTriple ().c_str (), spec.GetArchitecture ().GetArchitectureName ());
695 
696                     if (!uuid.IsValid())
697                     {
698                         uint32_t core_notes_crc = 0;
699 
700                         if (!gnu_debuglink_crc)
701                         {
702                             lldb_private::Timer scoped_timer (__PRETTY_FUNCTION__,
703                                                               "Calculating module crc32 %s with size %" PRIu64 " KiB",
704                                                               file.GetLastPathComponent().AsCString(),
705                                                               (file.GetByteSize()-file_offset)/1024);
706 
707                             // For core files - which usually don't happen to have a gnu_debuglink,
708                             // and are pretty bulky - calculating whole contents crc32 would be too much of luxury.
709                             // Thus we will need to fallback to something simpler.
710                             if (header.e_type == llvm::ELF::ET_CORE)
711                             {
712                                 size_t program_headers_end = header.e_phoff + header.e_phnum * header.e_phentsize;
713                                 if (program_headers_end > data_sp->GetByteSize())
714                                 {
715                                     data_sp = file.MemoryMapFileContentsIfLocal(file_offset, program_headers_end);
716                                     data.SetData(data_sp);
717                                 }
718                                 ProgramHeaderColl program_headers;
719                                 GetProgramHeaderInfo(program_headers, data, header);
720 
721                                 size_t segment_data_end = 0;
722                                 for (ProgramHeaderCollConstIter I = program_headers.begin();
723                                      I != program_headers.end(); ++I)
724                                 {
725                                      segment_data_end = std::max<unsigned long long> (I->p_offset + I->p_filesz, segment_data_end);
726                                 }
727 
728                                 if (segment_data_end > data_sp->GetByteSize())
729                                 {
730                                     data_sp = file.MemoryMapFileContentsIfLocal(file_offset, segment_data_end);
731                                     data.SetData(data_sp);
732                                 }
733 
734                                 core_notes_crc = CalculateELFNotesSegmentsCRC32 (program_headers, data);
735                             }
736                             else
737                             {
738                                 // Need to map entire file into memory to calculate the crc.
739                                 data_sp = file.MemoryMapFileContentsIfLocal (file_offset, SIZE_MAX);
740                                 data.SetData(data_sp);
741                                 gnu_debuglink_crc = calc_gnu_debuglink_crc32 (data.GetDataStart(), data.GetByteSize());
742                             }
743                         }
744                         if (gnu_debuglink_crc)
745                         {
746                             // Use 4 bytes of crc from the .gnu_debuglink section.
747                             uint32_t uuidt[4] = { gnu_debuglink_crc, 0, 0, 0 };
748                             uuid.SetBytes (uuidt, sizeof(uuidt));
749                         }
750                         else if (core_notes_crc)
751                         {
752                             // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it look different form
753                             // .gnu_debuglink crc followed by 4 bytes of note segments crc.
754                             uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 };
755                             uuid.SetBytes (uuidt, sizeof(uuidt));
756                         }
757                     }
758 
759                     specs.Append(spec);
760                 }
761             }
762         }
763     }
764 
765     return specs.GetSize() - initial_count;
766 }
767 
768 //------------------------------------------------------------------
769 // PluginInterface protocol
770 //------------------------------------------------------------------
771 lldb_private::ConstString
772 ObjectFileELF::GetPluginName()
773 {
774     return GetPluginNameStatic();
775 }
776 
777 uint32_t
778 ObjectFileELF::GetPluginVersion()
779 {
780     return m_plugin_version;
781 }
782 //------------------------------------------------------------------
783 // ObjectFile protocol
784 //------------------------------------------------------------------
785 
786 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp,
787                               DataBufferSP& data_sp,
788                               lldb::offset_t data_offset,
789                               const FileSpec* file,
790                               lldb::offset_t file_offset,
791                               lldb::offset_t length) :
792     ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset),
793     m_header(),
794     m_uuid(),
795     m_gnu_debuglink_file(),
796     m_gnu_debuglink_crc(0),
797     m_program_headers(),
798     m_section_headers(),
799     m_dynamic_symbols(),
800     m_filespec_ap(),
801     m_entry_point_address(),
802     m_arch_spec()
803 {
804     if (file)
805         m_file = *file;
806     ::memset(&m_header, 0, sizeof(m_header));
807 }
808 
809 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp,
810                               DataBufferSP& header_data_sp,
811                               const lldb::ProcessSP &process_sp,
812                               addr_t header_addr) :
813     ObjectFile(module_sp, process_sp, header_addr, header_data_sp),
814     m_header(),
815     m_uuid(),
816     m_gnu_debuglink_file(),
817     m_gnu_debuglink_crc(0),
818     m_program_headers(),
819     m_section_headers(),
820     m_dynamic_symbols(),
821     m_filespec_ap(),
822     m_entry_point_address(),
823     m_arch_spec()
824 {
825     ::memset(&m_header, 0, sizeof(m_header));
826 }
827 
828 ObjectFileELF::~ObjectFileELF()
829 {
830 }
831 
832 bool
833 ObjectFileELF::IsExecutable() const
834 {
835     return ((m_header.e_type & ET_EXEC) != 0) || (m_header.e_entry != 0);
836 }
837 
838 bool
839 ObjectFileELF::SetLoadAddress (Target &target,
840                                lldb::addr_t value,
841                                bool value_is_offset)
842 {
843     ModuleSP module_sp = GetModule();
844     if (module_sp)
845     {
846         size_t num_loaded_sections = 0;
847         SectionList *section_list = GetSectionList ();
848         if (section_list)
849         {
850             if (!value_is_offset)
851             {
852                 bool found_offset = false;
853                 for (size_t i = 0, count = GetProgramHeaderCount(); i < count; ++i)
854                 {
855                     const elf::ELFProgramHeader* header = GetProgramHeaderByIndex(i);
856                     if (header == nullptr)
857                         continue;
858 
859                     if (header->p_type != PT_LOAD || header->p_offset != 0)
860                         continue;
861 
862                     value = value - header->p_vaddr;
863                     found_offset = true;
864                     break;
865                 }
866                 if (!found_offset)
867                     return false;
868             }
869 
870             const size_t num_sections = section_list->GetSize();
871             size_t sect_idx = 0;
872 
873             for (sect_idx = 0; sect_idx < num_sections; ++sect_idx)
874             {
875                 // Iterate through the object file sections to find all
876                 // of the sections that have SHF_ALLOC in their flag bits.
877                 SectionSP section_sp (section_list->GetSectionAtIndex (sect_idx));
878                 // if (section_sp && !section_sp->IsThreadSpecific())
879                 if (section_sp && section_sp->Test(SHF_ALLOC))
880                 {
881                     lldb::addr_t load_addr = section_sp->GetFileAddress() + value;
882 
883                     // On 32-bit systems the load address have to fit into 4 bytes. The rest of
884                     // the bytes are the overflow from the addition.
885                     if (GetAddressByteSize() == 4)
886                         load_addr &= 0xFFFFFFFF;
887 
888                     if (target.GetSectionLoadList().SetSectionLoadAddress (section_sp, load_addr))
889                         ++num_loaded_sections;
890                 }
891             }
892             return num_loaded_sections > 0;
893         }
894     }
895     return false;
896 }
897 
898 ByteOrder
899 ObjectFileELF::GetByteOrder() const
900 {
901     if (m_header.e_ident[EI_DATA] == ELFDATA2MSB)
902         return eByteOrderBig;
903     if (m_header.e_ident[EI_DATA] == ELFDATA2LSB)
904         return eByteOrderLittle;
905     return eByteOrderInvalid;
906 }
907 
908 uint32_t
909 ObjectFileELF::GetAddressByteSize() const
910 {
911     return m_data.GetAddressByteSize();
912 }
913 
914 // Top 16 bits of the `Symbol` flags are available.
915 #define ARM_ELF_SYM_IS_THUMB    (1 << 16)
916 
917 AddressClass
918 ObjectFileELF::GetAddressClass (addr_t file_addr)
919 {
920     Symtab* symtab = GetSymtab();
921     if (!symtab)
922         return eAddressClassUnknown;
923 
924     // The address class is determined based on the symtab. Ask it from the object file what
925     // contains the symtab information.
926     ObjectFile* symtab_objfile = symtab->GetObjectFile();
927     if (symtab_objfile != nullptr && symtab_objfile != this)
928         return symtab_objfile->GetAddressClass(file_addr);
929 
930     auto res = ObjectFile::GetAddressClass (file_addr);
931     if (res != eAddressClassCode)
932         return res;
933 
934     auto ub = m_address_class_map.upper_bound(file_addr);
935     if (ub == m_address_class_map.begin())
936     {
937         // No entry in the address class map before the address. Return
938         // default address class for an address in a code section.
939         return eAddressClassCode;
940     }
941 
942     // Move iterator to the address class entry preceding address
943     --ub;
944 
945     return ub->second;
946 }
947 
948 size_t
949 ObjectFileELF::SectionIndex(const SectionHeaderCollIter &I)
950 {
951     return std::distance(m_section_headers.begin(), I) + 1u;
952 }
953 
954 size_t
955 ObjectFileELF::SectionIndex(const SectionHeaderCollConstIter &I) const
956 {
957     return std::distance(m_section_headers.begin(), I) + 1u;
958 }
959 
960 bool
961 ObjectFileELF::ParseHeader()
962 {
963     lldb::offset_t offset = 0;
964     if (!m_header.Parse(m_data, &offset))
965         return false;
966 
967     if (!IsInMemory())
968         return true;
969 
970     // For in memory object files m_data might not contain the full object file. Try to load it
971     // until the end of the "Section header table" what is at the end of the ELF file.
972     addr_t file_size = m_header.e_shoff + m_header.e_shnum * m_header.e_shentsize;
973     if (m_data.GetByteSize() < file_size)
974     {
975         ProcessSP process_sp (m_process_wp.lock());
976         if (!process_sp)
977             return false;
978 
979         DataBufferSP data_sp = ReadMemory(process_sp, m_memory_addr, file_size);
980         if (!data_sp)
981             return false;
982         m_data.SetData(data_sp, 0, file_size);
983     }
984 
985     return true;
986 }
987 
988 bool
989 ObjectFileELF::GetUUID(lldb_private::UUID* uuid)
990 {
991     // Need to parse the section list to get the UUIDs, so make sure that's been done.
992     if (!ParseSectionHeaders() && GetType() != ObjectFile::eTypeCoreFile)
993         return false;
994 
995     if (m_uuid.IsValid())
996     {
997         // We have the full build id uuid.
998         *uuid = m_uuid;
999         return true;
1000     }
1001     else if (GetType() == ObjectFile::eTypeCoreFile)
1002     {
1003         uint32_t core_notes_crc = 0;
1004 
1005         if (!ParseProgramHeaders())
1006             return false;
1007 
1008         core_notes_crc = CalculateELFNotesSegmentsCRC32(m_program_headers, m_data);
1009 
1010         if (core_notes_crc)
1011         {
1012             // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it
1013             // look different form .gnu_debuglink crc - followed by 4 bytes of note
1014             // segments crc.
1015             uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 };
1016             m_uuid.SetBytes (uuidt, sizeof(uuidt));
1017         }
1018     }
1019     else
1020     {
1021         if (!m_gnu_debuglink_crc)
1022             m_gnu_debuglink_crc = calc_gnu_debuglink_crc32 (m_data.GetDataStart(), m_data.GetByteSize());
1023         if (m_gnu_debuglink_crc)
1024         {
1025             // Use 4 bytes of crc from the .gnu_debuglink section.
1026             uint32_t uuidt[4] = { m_gnu_debuglink_crc, 0, 0, 0 };
1027             m_uuid.SetBytes (uuidt, sizeof(uuidt));
1028         }
1029     }
1030 
1031     if (m_uuid.IsValid())
1032     {
1033         *uuid = m_uuid;
1034         return true;
1035     }
1036 
1037     return false;
1038 }
1039 
1040 lldb_private::FileSpecList
1041 ObjectFileELF::GetDebugSymbolFilePaths()
1042 {
1043     FileSpecList file_spec_list;
1044 
1045     if (!m_gnu_debuglink_file.empty())
1046     {
1047         FileSpec file_spec (m_gnu_debuglink_file.c_str(), false);
1048         file_spec_list.Append (file_spec);
1049     }
1050     return file_spec_list;
1051 }
1052 
1053 uint32_t
1054 ObjectFileELF::GetDependentModules(FileSpecList &files)
1055 {
1056     size_t num_modules = ParseDependentModules();
1057     uint32_t num_specs = 0;
1058 
1059     for (unsigned i = 0; i < num_modules; ++i)
1060     {
1061         if (files.AppendIfUnique(m_filespec_ap->GetFileSpecAtIndex(i)))
1062             num_specs++;
1063     }
1064 
1065     return num_specs;
1066 }
1067 
1068 Address
1069 ObjectFileELF::GetImageInfoAddress(Target *target)
1070 {
1071     if (!ParseDynamicSymbols())
1072         return Address();
1073 
1074     SectionList *section_list = GetSectionList();
1075     if (!section_list)
1076         return Address();
1077 
1078     // Find the SHT_DYNAMIC (.dynamic) section.
1079     SectionSP dynsym_section_sp (section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true));
1080     if (!dynsym_section_sp)
1081         return Address();
1082     assert (dynsym_section_sp->GetObjectFile() == this);
1083 
1084     user_id_t dynsym_id = dynsym_section_sp->GetID();
1085     const ELFSectionHeaderInfo *dynsym_hdr = GetSectionHeaderByIndex(dynsym_id);
1086     if (!dynsym_hdr)
1087         return Address();
1088 
1089     for (size_t i = 0; i < m_dynamic_symbols.size(); ++i)
1090     {
1091         ELFDynamic &symbol = m_dynamic_symbols[i];
1092 
1093         if (symbol.d_tag == DT_DEBUG)
1094         {
1095             // Compute the offset as the number of previous entries plus the
1096             // size of d_tag.
1097             addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize();
1098             return Address(dynsym_section_sp, offset);
1099         }
1100         else if (symbol.d_tag == DT_MIPS_RLD_MAP && target)
1101         {
1102             addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize();
1103             addr_t dyn_base = dynsym_section_sp->GetLoadBaseAddress(target);
1104             if (dyn_base == LLDB_INVALID_ADDRESS)
1105                 return Address();
1106             Address addr;
1107             Error error;
1108             if (target->ReadPointerFromMemory(dyn_base + offset, false, error, addr))
1109                 return addr;
1110         }
1111     }
1112 
1113     return Address();
1114 }
1115 
1116 lldb_private::Address
1117 ObjectFileELF::GetEntryPointAddress ()
1118 {
1119     if (m_entry_point_address.IsValid())
1120         return m_entry_point_address;
1121 
1122     if (!ParseHeader() || !IsExecutable())
1123         return m_entry_point_address;
1124 
1125     SectionList *section_list = GetSectionList();
1126     addr_t offset = m_header.e_entry;
1127 
1128     if (!section_list)
1129         m_entry_point_address.SetOffset(offset);
1130     else
1131         m_entry_point_address.ResolveAddressUsingFileSections(offset, section_list);
1132     return m_entry_point_address;
1133 }
1134 
1135 //----------------------------------------------------------------------
1136 // ParseDependentModules
1137 //----------------------------------------------------------------------
1138 size_t
1139 ObjectFileELF::ParseDependentModules()
1140 {
1141     if (m_filespec_ap.get())
1142         return m_filespec_ap->GetSize();
1143 
1144     m_filespec_ap.reset(new FileSpecList());
1145 
1146     if (!ParseSectionHeaders())
1147         return 0;
1148 
1149     SectionList *section_list = GetSectionList();
1150     if (!section_list)
1151         return 0;
1152 
1153     // Find the SHT_DYNAMIC section.
1154     Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get();
1155     if (!dynsym)
1156         return 0;
1157     assert (dynsym->GetObjectFile() == this);
1158 
1159     const ELFSectionHeaderInfo *header = GetSectionHeaderByIndex (dynsym->GetID());
1160     if (!header)
1161         return 0;
1162     // sh_link: section header index of string table used by entries in the section.
1163     Section *dynstr = section_list->FindSectionByID (header->sh_link + 1).get();
1164     if (!dynstr)
1165         return 0;
1166 
1167     DataExtractor dynsym_data;
1168     DataExtractor dynstr_data;
1169     if (ReadSectionData(dynsym, dynsym_data) &&
1170         ReadSectionData(dynstr, dynstr_data))
1171     {
1172         ELFDynamic symbol;
1173         const lldb::offset_t section_size = dynsym_data.GetByteSize();
1174         lldb::offset_t offset = 0;
1175 
1176         // The only type of entries we are concerned with are tagged DT_NEEDED,
1177         // yielding the name of a required library.
1178         while (offset < section_size)
1179         {
1180             if (!symbol.Parse(dynsym_data, &offset))
1181                 break;
1182 
1183             if (symbol.d_tag != DT_NEEDED)
1184                 continue;
1185 
1186             uint32_t str_index = static_cast<uint32_t>(symbol.d_val);
1187             const char *lib_name = dynstr_data.PeekCStr(str_index);
1188             m_filespec_ap->Append(FileSpec(lib_name, true));
1189         }
1190     }
1191 
1192     return m_filespec_ap->GetSize();
1193 }
1194 
1195 //----------------------------------------------------------------------
1196 // GetProgramHeaderInfo
1197 //----------------------------------------------------------------------
1198 size_t
1199 ObjectFileELF::GetProgramHeaderInfo(ProgramHeaderColl &program_headers,
1200                                     DataExtractor &object_data,
1201                                     const ELFHeader &header)
1202 {
1203     // We have already parsed the program headers
1204     if (!program_headers.empty())
1205         return program_headers.size();
1206 
1207     // If there are no program headers to read we are done.
1208     if (header.e_phnum == 0)
1209         return 0;
1210 
1211     program_headers.resize(header.e_phnum);
1212     if (program_headers.size() != header.e_phnum)
1213         return 0;
1214 
1215     const size_t ph_size = header.e_phnum * header.e_phentsize;
1216     const elf_off ph_offset = header.e_phoff;
1217     DataExtractor data;
1218     if (data.SetData(object_data, ph_offset, ph_size) != ph_size)
1219         return 0;
1220 
1221     uint32_t idx;
1222     lldb::offset_t offset;
1223     for (idx = 0, offset = 0; idx < header.e_phnum; ++idx)
1224     {
1225         if (program_headers[idx].Parse(data, &offset) == false)
1226             break;
1227     }
1228 
1229     if (idx < program_headers.size())
1230         program_headers.resize(idx);
1231 
1232     return program_headers.size();
1233 
1234 }
1235 
1236 //----------------------------------------------------------------------
1237 // ParseProgramHeaders
1238 //----------------------------------------------------------------------
1239 size_t
1240 ObjectFileELF::ParseProgramHeaders()
1241 {
1242     return GetProgramHeaderInfo(m_program_headers, m_data, m_header);
1243 }
1244 
1245 lldb_private::Error
1246 ObjectFileELF::RefineModuleDetailsFromNote (lldb_private::DataExtractor &data, lldb_private::ArchSpec &arch_spec, lldb_private::UUID &uuid)
1247 {
1248     Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES));
1249     Error error;
1250 
1251     lldb::offset_t offset = 0;
1252 
1253     while (true)
1254     {
1255         // Parse the note header.  If this fails, bail out.
1256         ELFNote note = ELFNote();
1257         if (!note.Parse(data, &offset))
1258         {
1259             // We're done.
1260             return error;
1261         }
1262 
1263         // If a tag processor handles the tag, it should set processed to true, and
1264         // the loop will assume the tag processing has moved entirely past the note's payload.
1265         // Otherwise, leave it false and the end of the loop will handle the offset properly.
1266         bool processed = false;
1267 
1268         if (log)
1269             log->Printf ("ObjectFileELF::%s parsing note name='%s', type=%" PRIu32, __FUNCTION__, note.n_name.c_str (), note.n_type);
1270 
1271         // Process FreeBSD ELF notes.
1272         if ((note.n_name == LLDB_NT_OWNER_FREEBSD) &&
1273             (note.n_type == LLDB_NT_FREEBSD_ABI_TAG) &&
1274             (note.n_descsz == LLDB_NT_FREEBSD_ABI_SIZE))
1275         {
1276             // We'll consume the payload below.
1277             processed = true;
1278 
1279             // Pull out the min version info.
1280             uint32_t version_info;
1281             if (data.GetU32 (&offset, &version_info, 1) == nullptr)
1282             {
1283                 error.SetErrorString ("failed to read FreeBSD ABI note payload");
1284                 return error;
1285             }
1286 
1287             // Convert the version info into a major/minor number.
1288             const uint32_t version_major = version_info / 100000;
1289             const uint32_t version_minor = (version_info / 1000) % 100;
1290 
1291             char os_name[32];
1292             snprintf (os_name, sizeof (os_name), "freebsd%" PRIu32 ".%" PRIu32, version_major, version_minor);
1293 
1294             // Set the elf OS version to FreeBSD.  Also clear the vendor.
1295             arch_spec.GetTriple ().setOSName (os_name);
1296             arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1297 
1298             if (log)
1299                 log->Printf ("ObjectFileELF::%s detected FreeBSD %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_major, version_minor, static_cast<uint32_t> (version_info % 1000));
1300         }
1301         // Process GNU ELF notes.
1302         else if (note.n_name == LLDB_NT_OWNER_GNU)
1303         {
1304             switch (note.n_type)
1305             {
1306                 case LLDB_NT_GNU_ABI_TAG:
1307                     if (note.n_descsz == LLDB_NT_GNU_ABI_SIZE)
1308                     {
1309                         // We'll consume the payload below.
1310                         processed = true;
1311 
1312                         // Pull out the min OS version supporting the ABI.
1313                         uint32_t version_info[4];
1314                         if (data.GetU32 (&offset, &version_info[0], note.n_descsz / 4) == nullptr)
1315                         {
1316                             error.SetErrorString ("failed to read GNU ABI note payload");
1317                             return error;
1318                         }
1319 
1320                         // Set the OS per the OS field.
1321                         switch (version_info[0])
1322                         {
1323                             case LLDB_NT_GNU_ABI_OS_LINUX:
1324                                 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Linux);
1325                                 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1326                                 if (log)
1327                                     log->Printf ("ObjectFileELF::%s detected Linux, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]);
1328                                 // FIXME we have the minimal version number, we could be propagating that.  version_info[1] = OS Major, version_info[2] = OS Minor, version_info[3] = Revision.
1329                                 break;
1330                             case LLDB_NT_GNU_ABI_OS_HURD:
1331                                 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::UnknownOS);
1332                                 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1333                                 if (log)
1334                                     log->Printf ("ObjectFileELF::%s detected Hurd (unsupported), min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]);
1335                                 break;
1336                             case LLDB_NT_GNU_ABI_OS_SOLARIS:
1337                                 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Solaris);
1338                                 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1339                                 if (log)
1340                                     log->Printf ("ObjectFileELF::%s detected Solaris, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]);
1341                                 break;
1342                             default:
1343                                 if (log)
1344                                     log->Printf ("ObjectFileELF::%s unrecognized OS in note, id %" PRIu32 ", min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[0], version_info[1], version_info[2], version_info[3]);
1345                                 break;
1346                         }
1347                     }
1348                     break;
1349 
1350                 case LLDB_NT_GNU_BUILD_ID_TAG:
1351                     // Only bother processing this if we don't already have the uuid set.
1352                     if (!uuid.IsValid())
1353                     {
1354                         // We'll consume the payload below.
1355                         processed = true;
1356 
1357                         // 16 bytes is UUID|MD5, 20 bytes is SHA1
1358                         if ((note.n_descsz == 16 || note.n_descsz == 20))
1359                         {
1360                             uint8_t uuidbuf[20];
1361                             if (data.GetU8 (&offset, &uuidbuf, note.n_descsz) == nullptr)
1362                             {
1363                                 error.SetErrorString ("failed to read GNU_BUILD_ID note payload");
1364                                 return error;
1365                             }
1366 
1367                             // Save the build id as the UUID for the module.
1368                             uuid.SetBytes (uuidbuf, note.n_descsz);
1369                         }
1370                     }
1371                     break;
1372             }
1373         }
1374         // Process NetBSD ELF notes.
1375         else if ((note.n_name == LLDB_NT_OWNER_NETBSD) &&
1376                  (note.n_type == LLDB_NT_NETBSD_ABI_TAG) &&
1377                  (note.n_descsz == LLDB_NT_NETBSD_ABI_SIZE))
1378         {
1379 
1380             // We'll consume the payload below.
1381             processed = true;
1382 
1383             // Pull out the min version info.
1384             uint32_t version_info;
1385             if (data.GetU32 (&offset, &version_info, 1) == nullptr)
1386             {
1387                 error.SetErrorString ("failed to read NetBSD ABI note payload");
1388                 return error;
1389             }
1390 
1391             // Set the elf OS version to NetBSD.  Also clear the vendor.
1392             arch_spec.GetTriple ().setOS (llvm::Triple::OSType::NetBSD);
1393             arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1394 
1395             if (log)
1396                 log->Printf ("ObjectFileELF::%s detected NetBSD, min version constant %" PRIu32, __FUNCTION__, version_info);
1397         }
1398         // Process CSR kalimba notes
1399         else if ((note.n_type == LLDB_NT_GNU_ABI_TAG) &&
1400                 (note.n_name == LLDB_NT_OWNER_CSR))
1401         {
1402             // We'll consume the payload below.
1403             processed = true;
1404             arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS);
1405             arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::CSR);
1406 
1407             // TODO At some point the description string could be processed.
1408             // It could provide a steer towards the kalimba variant which
1409             // this ELF targets.
1410             if(note.n_descsz)
1411             {
1412                 const char *cstr = data.GetCStr(&offset, llvm::RoundUpToAlignment (note.n_descsz, 4));
1413                 (void)cstr;
1414             }
1415         }
1416         else if (note.n_name == LLDB_NT_OWNER_ANDROID)
1417         {
1418             arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1419             arch_spec.GetTriple().setEnvironment(llvm::Triple::EnvironmentType::Android);
1420         }
1421 
1422         if (!processed)
1423             offset += llvm::RoundUpToAlignment(note.n_descsz, 4);
1424     }
1425 
1426     return error;
1427 }
1428 
1429 
1430 //----------------------------------------------------------------------
1431 // GetSectionHeaderInfo
1432 //----------------------------------------------------------------------
1433 size_t
1434 ObjectFileELF::GetSectionHeaderInfo(SectionHeaderColl &section_headers,
1435                                     lldb_private::DataExtractor &object_data,
1436                                     const elf::ELFHeader &header,
1437                                     lldb_private::UUID &uuid,
1438                                     std::string &gnu_debuglink_file,
1439                                     uint32_t &gnu_debuglink_crc,
1440                                     ArchSpec &arch_spec)
1441 {
1442     // Don't reparse the section headers if we already did that.
1443     if (!section_headers.empty())
1444         return section_headers.size();
1445 
1446     // Only initialize the arch_spec to okay defaults if they're not already set.
1447     // We'll refine this with note data as we parse the notes.
1448     if (arch_spec.GetTriple ().getOS () == llvm::Triple::OSType::UnknownOS)
1449     {
1450         llvm::Triple::OSType ostype;
1451         llvm::Triple::OSType spec_ostype;
1452         const uint32_t sub_type = subTypeFromElfHeader(header);
1453         arch_spec.SetArchitecture (eArchTypeELF, header.e_machine, sub_type, header.e_ident[EI_OSABI]);
1454         //
1455         // Validate if it is ok to remove GetOsFromOSABI
1456         GetOsFromOSABI (header.e_ident[EI_OSABI], ostype);
1457         spec_ostype = arch_spec.GetTriple ().getOS ();
1458         assert(spec_ostype == ostype);
1459     }
1460 
1461     if (arch_spec.GetMachine() == llvm::Triple::mips || arch_spec.GetMachine() == llvm::Triple::mipsel
1462         || arch_spec.GetMachine() == llvm::Triple::mips64 || arch_spec.GetMachine() == llvm::Triple::mips64el)
1463     {
1464         switch (header.e_flags & llvm::ELF::EF_MIPS_ARCH_ASE)
1465         {
1466             case llvm::ELF::EF_MIPS_MICROMIPS:
1467                 arch_spec.SetFlags (ArchSpec::eMIPSAse_micromips);
1468                 break;
1469             case llvm::ELF::EF_MIPS_ARCH_ASE_M16:
1470                 arch_spec.SetFlags (ArchSpec::eMIPSAse_mips16);
1471                 break;
1472             case llvm::ELF::EF_MIPS_ARCH_ASE_MDMX:
1473                 arch_spec.SetFlags (ArchSpec::eMIPSAse_mdmx);
1474                 break;
1475             default:
1476                 break;
1477         }
1478     }
1479 
1480     // If there are no section headers we are done.
1481     if (header.e_shnum == 0)
1482         return 0;
1483 
1484     Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES));
1485 
1486     section_headers.resize(header.e_shnum);
1487     if (section_headers.size() != header.e_shnum)
1488         return 0;
1489 
1490     const size_t sh_size = header.e_shnum * header.e_shentsize;
1491     const elf_off sh_offset = header.e_shoff;
1492     DataExtractor sh_data;
1493     if (sh_data.SetData (object_data, sh_offset, sh_size) != sh_size)
1494         return 0;
1495 
1496     uint32_t idx;
1497     lldb::offset_t offset;
1498     for (idx = 0, offset = 0; idx < header.e_shnum; ++idx)
1499     {
1500         if (section_headers[idx].Parse(sh_data, &offset) == false)
1501             break;
1502     }
1503     if (idx < section_headers.size())
1504         section_headers.resize(idx);
1505 
1506     const unsigned strtab_idx = header.e_shstrndx;
1507     if (strtab_idx && strtab_idx < section_headers.size())
1508     {
1509         const ELFSectionHeaderInfo &sheader = section_headers[strtab_idx];
1510         const size_t byte_size = sheader.sh_size;
1511         const Elf64_Off offset = sheader.sh_offset;
1512         lldb_private::DataExtractor shstr_data;
1513 
1514         if (shstr_data.SetData (object_data, offset, byte_size) == byte_size)
1515         {
1516             for (SectionHeaderCollIter I = section_headers.begin();
1517                  I != section_headers.end(); ++I)
1518             {
1519                 static ConstString g_sect_name_gnu_debuglink (".gnu_debuglink");
1520                 const ELFSectionHeaderInfo &sheader = *I;
1521                 const uint64_t section_size = sheader.sh_type == SHT_NOBITS ? 0 : sheader.sh_size;
1522                 ConstString name(shstr_data.PeekCStr(I->sh_name));
1523 
1524                 I->section_name = name;
1525 
1526                 if (arch_spec.GetMachine() == llvm::Triple::mips || arch_spec.GetMachine() == llvm::Triple::mipsel
1527                     || arch_spec.GetMachine() == llvm::Triple::mips64 || arch_spec.GetMachine() == llvm::Triple::mips64el)
1528                 {
1529                     uint32_t arch_flags = arch_spec.GetFlags ();
1530                     DataExtractor data;
1531                     if (sheader.sh_type == SHT_MIPS_ABIFLAGS)
1532                     {
1533 
1534                         if (section_size && (data.SetData (object_data, sheader.sh_offset, section_size) == section_size))
1535                         {
1536                             lldb::offset_t ase_offset = 12; // MIPS ABI Flags Version: 0
1537                             arch_flags |= data.GetU32 (&ase_offset);
1538                         }
1539                     }
1540                     // Settings appropriate ArchSpec ABI Flags
1541                     if (header.e_flags & llvm::ELF::EF_MIPS_ABI2)
1542                     {
1543                         arch_flags |= lldb_private::ArchSpec::eMIPSABI_N32;
1544                     }
1545                     else if (header.e_flags & llvm::ELF::EF_MIPS_ABI_O32)
1546                     {
1547                          arch_flags |= lldb_private::ArchSpec::eMIPSABI_O32;
1548                     }
1549                     arch_spec.SetFlags (arch_flags);
1550                 }
1551 
1552                 if (name == g_sect_name_gnu_debuglink)
1553                 {
1554                     DataExtractor data;
1555                     if (section_size && (data.SetData (object_data, sheader.sh_offset, section_size) == section_size))
1556                     {
1557                         lldb::offset_t gnu_debuglink_offset = 0;
1558                         gnu_debuglink_file = data.GetCStr (&gnu_debuglink_offset);
1559                         gnu_debuglink_offset = llvm::RoundUpToAlignment (gnu_debuglink_offset, 4);
1560                         data.GetU32 (&gnu_debuglink_offset, &gnu_debuglink_crc, 1);
1561                     }
1562                 }
1563 
1564                 // Process ELF note section entries.
1565                 bool is_note_header = (sheader.sh_type == SHT_NOTE);
1566 
1567                 // The section header ".note.android.ident" is stored as a
1568                 // PROGBITS type header but it is actually a note header.
1569                 static ConstString g_sect_name_android_ident (".note.android.ident");
1570                 if (!is_note_header && name == g_sect_name_android_ident)
1571                     is_note_header = true;
1572 
1573                 if (is_note_header)
1574                 {
1575                     // Allow notes to refine module info.
1576                     DataExtractor data;
1577                     if (section_size && (data.SetData (object_data, sheader.sh_offset, section_size) == section_size))
1578                     {
1579                         Error error = RefineModuleDetailsFromNote (data, arch_spec, uuid);
1580                         if (error.Fail ())
1581                         {
1582                             if (log)
1583                                 log->Printf ("ObjectFileELF::%s ELF note processing failed: %s", __FUNCTION__, error.AsCString ());
1584                         }
1585                     }
1586                 }
1587             }
1588 
1589             return section_headers.size();
1590         }
1591     }
1592 
1593     section_headers.clear();
1594     return 0;
1595 }
1596 
1597 size_t
1598 ObjectFileELF::GetProgramHeaderCount()
1599 {
1600     return ParseProgramHeaders();
1601 }
1602 
1603 const elf::ELFProgramHeader *
1604 ObjectFileELF::GetProgramHeaderByIndex(lldb::user_id_t id)
1605 {
1606     if (!id || !ParseProgramHeaders())
1607         return NULL;
1608 
1609     if (--id < m_program_headers.size())
1610         return &m_program_headers[id];
1611 
1612     return NULL;
1613 }
1614 
1615 DataExtractor
1616 ObjectFileELF::GetSegmentDataByIndex(lldb::user_id_t id)
1617 {
1618     const elf::ELFProgramHeader *segment_header = GetProgramHeaderByIndex(id);
1619     if (segment_header == NULL)
1620         return DataExtractor();
1621     return DataExtractor(m_data, segment_header->p_offset, segment_header->p_filesz);
1622 }
1623 
1624 std::string
1625 ObjectFileELF::StripLinkerSymbolAnnotations(llvm::StringRef symbol_name) const
1626 {
1627     size_t pos = symbol_name.find('@');
1628     return symbol_name.substr(0, pos).str();
1629 }
1630 
1631 //----------------------------------------------------------------------
1632 // ParseSectionHeaders
1633 //----------------------------------------------------------------------
1634 size_t
1635 ObjectFileELF::ParseSectionHeaders()
1636 {
1637     return GetSectionHeaderInfo(m_section_headers, m_data, m_header, m_uuid, m_gnu_debuglink_file, m_gnu_debuglink_crc, m_arch_spec);
1638 }
1639 
1640 const ObjectFileELF::ELFSectionHeaderInfo *
1641 ObjectFileELF::GetSectionHeaderByIndex(lldb::user_id_t id)
1642 {
1643     if (!id || !ParseSectionHeaders())
1644         return NULL;
1645 
1646     if (--id < m_section_headers.size())
1647         return &m_section_headers[id];
1648 
1649     return NULL;
1650 }
1651 
1652 lldb::user_id_t
1653 ObjectFileELF::GetSectionIndexByName(const char* name)
1654 {
1655     if (!name || !name[0] || !ParseSectionHeaders())
1656         return 0;
1657     for (size_t i = 1; i < m_section_headers.size(); ++i)
1658         if (m_section_headers[i].section_name == ConstString(name))
1659             return i;
1660     return 0;
1661 }
1662 
1663 void
1664 ObjectFileELF::CreateSections(SectionList &unified_section_list)
1665 {
1666     if (!m_sections_ap.get() && ParseSectionHeaders())
1667     {
1668         m_sections_ap.reset(new SectionList());
1669 
1670         for (SectionHeaderCollIter I = m_section_headers.begin();
1671              I != m_section_headers.end(); ++I)
1672         {
1673             const ELFSectionHeaderInfo &header = *I;
1674 
1675             ConstString& name = I->section_name;
1676             const uint64_t file_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size;
1677             const uint64_t vm_size = header.sh_flags & SHF_ALLOC ? header.sh_size : 0;
1678 
1679             static ConstString g_sect_name_text (".text");
1680             static ConstString g_sect_name_data (".data");
1681             static ConstString g_sect_name_bss (".bss");
1682             static ConstString g_sect_name_tdata (".tdata");
1683             static ConstString g_sect_name_tbss (".tbss");
1684             static ConstString g_sect_name_dwarf_debug_abbrev (".debug_abbrev");
1685             static ConstString g_sect_name_dwarf_debug_addr (".debug_addr");
1686             static ConstString g_sect_name_dwarf_debug_aranges (".debug_aranges");
1687             static ConstString g_sect_name_dwarf_debug_frame (".debug_frame");
1688             static ConstString g_sect_name_dwarf_debug_info (".debug_info");
1689             static ConstString g_sect_name_dwarf_debug_line (".debug_line");
1690             static ConstString g_sect_name_dwarf_debug_loc (".debug_loc");
1691             static ConstString g_sect_name_dwarf_debug_macinfo (".debug_macinfo");
1692             static ConstString g_sect_name_dwarf_debug_pubnames (".debug_pubnames");
1693             static ConstString g_sect_name_dwarf_debug_pubtypes (".debug_pubtypes");
1694             static ConstString g_sect_name_dwarf_debug_ranges (".debug_ranges");
1695             static ConstString g_sect_name_dwarf_debug_str (".debug_str");
1696             static ConstString g_sect_name_dwarf_debug_str_offsets (".debug_str_offsets");
1697             static ConstString g_sect_name_dwarf_debug_abbrev_dwo (".debug_abbrev.dwo");
1698             static ConstString g_sect_name_dwarf_debug_info_dwo (".debug_info.dwo");
1699             static ConstString g_sect_name_dwarf_debug_line_dwo (".debug_line.dwo");
1700             static ConstString g_sect_name_dwarf_debug_loc_dwo (".debug_loc.dwo");
1701             static ConstString g_sect_name_dwarf_debug_str_dwo (".debug_str.dwo");
1702             static ConstString g_sect_name_dwarf_debug_str_offsets_dwo (".debug_str_offsets.dwo");
1703             static ConstString g_sect_name_eh_frame (".eh_frame");
1704 
1705             SectionType sect_type = eSectionTypeOther;
1706 
1707             bool is_thread_specific = false;
1708 
1709             if      (name == g_sect_name_text)                  sect_type = eSectionTypeCode;
1710             else if (name == g_sect_name_data)                  sect_type = eSectionTypeData;
1711             else if (name == g_sect_name_bss)                   sect_type = eSectionTypeZeroFill;
1712             else if (name == g_sect_name_tdata)
1713             {
1714                 sect_type = eSectionTypeData;
1715                 is_thread_specific = true;
1716             }
1717             else if (name == g_sect_name_tbss)
1718             {
1719                 sect_type = eSectionTypeZeroFill;
1720                 is_thread_specific = true;
1721             }
1722             // .debug_abbrev – Abbreviations used in the .debug_info section
1723             // .debug_aranges – Lookup table for mapping addresses to compilation units
1724             // .debug_frame – Call frame information
1725             // .debug_info – The core DWARF information section
1726             // .debug_line – Line number information
1727             // .debug_loc – Location lists used in DW_AT_location attributes
1728             // .debug_macinfo – Macro information
1729             // .debug_pubnames – Lookup table for mapping object and function names to compilation units
1730             // .debug_pubtypes – Lookup table for mapping type names to compilation units
1731             // .debug_ranges – Address ranges used in DW_AT_ranges attributes
1732             // .debug_str – String table used in .debug_info
1733             // MISSING? .gnu_debugdata - "mini debuginfo / MiniDebugInfo" section, http://sourceware.org/gdb/onlinedocs/gdb/MiniDebugInfo.html
1734             // MISSING? .debug-index - http://src.chromium.org/viewvc/chrome/trunk/src/build/gdb-add-index?pathrev=144644
1735             // MISSING? .debug_types - Type descriptions from DWARF 4? See http://gcc.gnu.org/wiki/DwarfSeparateTypeInfo
1736             else if (name == g_sect_name_dwarf_debug_abbrev)          sect_type = eSectionTypeDWARFDebugAbbrev;
1737             else if (name == g_sect_name_dwarf_debug_addr)            sect_type = eSectionTypeDWARFDebugAddr;
1738             else if (name == g_sect_name_dwarf_debug_aranges)         sect_type = eSectionTypeDWARFDebugAranges;
1739             else if (name == g_sect_name_dwarf_debug_frame)           sect_type = eSectionTypeDWARFDebugFrame;
1740             else if (name == g_sect_name_dwarf_debug_info)            sect_type = eSectionTypeDWARFDebugInfo;
1741             else if (name == g_sect_name_dwarf_debug_line)            sect_type = eSectionTypeDWARFDebugLine;
1742             else if (name == g_sect_name_dwarf_debug_loc)             sect_type = eSectionTypeDWARFDebugLoc;
1743             else if (name == g_sect_name_dwarf_debug_macinfo)         sect_type = eSectionTypeDWARFDebugMacInfo;
1744             else if (name == g_sect_name_dwarf_debug_pubnames)        sect_type = eSectionTypeDWARFDebugPubNames;
1745             else if (name == g_sect_name_dwarf_debug_pubtypes)        sect_type = eSectionTypeDWARFDebugPubTypes;
1746             else if (name == g_sect_name_dwarf_debug_ranges)          sect_type = eSectionTypeDWARFDebugRanges;
1747             else if (name == g_sect_name_dwarf_debug_str)             sect_type = eSectionTypeDWARFDebugStr;
1748             else if (name == g_sect_name_dwarf_debug_str_offsets)     sect_type = eSectionTypeDWARFDebugStrOffsets;
1749             else if (name == g_sect_name_dwarf_debug_abbrev_dwo)      sect_type = eSectionTypeDWARFDebugAbbrev;
1750             else if (name == g_sect_name_dwarf_debug_info_dwo)        sect_type = eSectionTypeDWARFDebugInfo;
1751             else if (name == g_sect_name_dwarf_debug_line_dwo)        sect_type = eSectionTypeDWARFDebugLine;
1752             else if (name == g_sect_name_dwarf_debug_loc_dwo)         sect_type = eSectionTypeDWARFDebugLoc;
1753             else if (name == g_sect_name_dwarf_debug_str_dwo)         sect_type = eSectionTypeDWARFDebugStr;
1754             else if (name == g_sect_name_dwarf_debug_str_offsets_dwo) sect_type = eSectionTypeDWARFDebugStrOffsets;
1755             else if (name == g_sect_name_eh_frame)                    sect_type = eSectionTypeEHFrame;
1756 
1757             switch (header.sh_type)
1758             {
1759                 case SHT_SYMTAB:
1760                     assert (sect_type == eSectionTypeOther);
1761                     sect_type = eSectionTypeELFSymbolTable;
1762                     break;
1763                 case SHT_DYNSYM:
1764                     assert (sect_type == eSectionTypeOther);
1765                     sect_type = eSectionTypeELFDynamicSymbols;
1766                     break;
1767                 case SHT_RELA:
1768                 case SHT_REL:
1769                     assert (sect_type == eSectionTypeOther);
1770                     sect_type = eSectionTypeELFRelocationEntries;
1771                     break;
1772                 case SHT_DYNAMIC:
1773                     assert (sect_type == eSectionTypeOther);
1774                     sect_type = eSectionTypeELFDynamicLinkInfo;
1775                     break;
1776             }
1777 
1778             if (eSectionTypeOther == sect_type)
1779             {
1780                 // the kalimba toolchain assumes that ELF section names are free-form. It does
1781                 // support linkscripts which (can) give rise to various arbitrarily named
1782                 // sections being "Code" or "Data".
1783                 sect_type = kalimbaSectionType(m_header, header);
1784             }
1785 
1786             const uint32_t target_bytes_size =
1787                 (eSectionTypeData == sect_type || eSectionTypeZeroFill == sect_type) ?
1788                 m_arch_spec.GetDataByteSize() :
1789                     eSectionTypeCode == sect_type ?
1790                     m_arch_spec.GetCodeByteSize() : 1;
1791 
1792             elf::elf_xword log2align = (header.sh_addralign==0)
1793                                         ? 0
1794                                         : llvm::Log2_64(header.sh_addralign);
1795             SectionSP section_sp (new Section(GetModule(),        // Module to which this section belongs.
1796                                               this,               // ObjectFile to which this section belongs and should read section data from.
1797                                               SectionIndex(I),    // Section ID.
1798                                               name,               // Section name.
1799                                               sect_type,          // Section type.
1800                                               header.sh_addr,     // VM address.
1801                                               vm_size,            // VM size in bytes of this section.
1802                                               header.sh_offset,   // Offset of this section in the file.
1803                                               file_size,          // Size of the section as found in the file.
1804                                               log2align,          // Alignment of the section
1805                                               header.sh_flags,    // Flags for this section.
1806                                               target_bytes_size));// Number of host bytes per target byte
1807 
1808             if (is_thread_specific)
1809                 section_sp->SetIsThreadSpecific (is_thread_specific);
1810             m_sections_ap->AddSection(section_sp);
1811         }
1812     }
1813 
1814     if (m_sections_ap.get())
1815     {
1816         if (GetType() == eTypeDebugInfo)
1817         {
1818             static const SectionType g_sections[] =
1819             {
1820                 eSectionTypeDWARFDebugAbbrev,
1821                 eSectionTypeDWARFDebugAddr,
1822                 eSectionTypeDWARFDebugAranges,
1823                 eSectionTypeDWARFDebugFrame,
1824                 eSectionTypeDWARFDebugInfo,
1825                 eSectionTypeDWARFDebugLine,
1826                 eSectionTypeDWARFDebugLoc,
1827                 eSectionTypeDWARFDebugMacInfo,
1828                 eSectionTypeDWARFDebugPubNames,
1829                 eSectionTypeDWARFDebugPubTypes,
1830                 eSectionTypeDWARFDebugRanges,
1831                 eSectionTypeDWARFDebugStr,
1832                 eSectionTypeDWARFDebugStrOffsets,
1833                 eSectionTypeELFSymbolTable,
1834             };
1835             SectionList *elf_section_list = m_sections_ap.get();
1836             for (size_t idx = 0; idx < sizeof(g_sections) / sizeof(g_sections[0]); ++idx)
1837             {
1838                 SectionType section_type = g_sections[idx];
1839                 SectionSP section_sp (elf_section_list->FindSectionByType (section_type, true));
1840                 if (section_sp)
1841                 {
1842                     SectionSP module_section_sp (unified_section_list.FindSectionByType (section_type, true));
1843                     if (module_section_sp)
1844                         unified_section_list.ReplaceSection (module_section_sp->GetID(), section_sp);
1845                     else
1846                         unified_section_list.AddSection (section_sp);
1847                 }
1848             }
1849         }
1850         else
1851         {
1852             unified_section_list = *m_sections_ap;
1853         }
1854     }
1855 }
1856 
1857 // private
1858 unsigned
1859 ObjectFileELF::ParseSymbols (Symtab *symtab,
1860                              user_id_t start_id,
1861                              SectionList *section_list,
1862                              const size_t num_symbols,
1863                              const DataExtractor &symtab_data,
1864                              const DataExtractor &strtab_data)
1865 {
1866     ELFSymbol symbol;
1867     lldb::offset_t offset = 0;
1868 
1869     static ConstString text_section_name(".text");
1870     static ConstString init_section_name(".init");
1871     static ConstString fini_section_name(".fini");
1872     static ConstString ctors_section_name(".ctors");
1873     static ConstString dtors_section_name(".dtors");
1874 
1875     static ConstString data_section_name(".data");
1876     static ConstString rodata_section_name(".rodata");
1877     static ConstString rodata1_section_name(".rodata1");
1878     static ConstString data2_section_name(".data1");
1879     static ConstString bss_section_name(".bss");
1880     static ConstString opd_section_name(".opd");    // For ppc64
1881 
1882     // On Android the oatdata and the oatexec symbols in system@[email protected] covers the full
1883     // .text section what causes issues with displaying unusable symbol name to the user and very
1884     // slow unwinding speed because the instruction emulation based unwind plans try to emulate all
1885     // instructions in these symbols. Don't add these symbols to the symbol list as they have no
1886     // use for the debugger and they are causing a lot of trouble.
1887     // Filtering can't be restricted to Android because this special object file don't contain the
1888     // note section specifying the environment to Android but the custom extension and file name
1889     // makes it highly unlikely that this will collide with anything else.
1890     bool skip_oatdata_oatexec = m_file.GetFilename() == ConstString("system@[email protected]");
1891 
1892     unsigned i;
1893     for (i = 0; i < num_symbols; ++i)
1894     {
1895         if (symbol.Parse(symtab_data, &offset) == false)
1896             break;
1897 
1898         const char *symbol_name = strtab_data.PeekCStr(symbol.st_name);
1899 
1900         // No need to add non-section symbols that have no names
1901         if (symbol.getType() != STT_SECTION &&
1902             (symbol_name == NULL || symbol_name[0] == '\0'))
1903             continue;
1904 
1905         // Skipping oatdata and oatexec sections if it is requested. See details above the
1906         // definition of skip_oatdata_oatexec for the reasons.
1907         if (skip_oatdata_oatexec && (::strcmp(symbol_name, "oatdata") == 0 || ::strcmp(symbol_name, "oatexec") == 0))
1908             continue;
1909 
1910         SectionSP symbol_section_sp;
1911         SymbolType symbol_type = eSymbolTypeInvalid;
1912         Elf64_Half symbol_idx = symbol.st_shndx;
1913 
1914         switch (symbol_idx)
1915         {
1916         case SHN_ABS:
1917             symbol_type = eSymbolTypeAbsolute;
1918             break;
1919         case SHN_UNDEF:
1920             symbol_type = eSymbolTypeUndefined;
1921             break;
1922         default:
1923             symbol_section_sp = section_list->GetSectionAtIndex(symbol_idx);
1924             break;
1925         }
1926 
1927         // If a symbol is undefined do not process it further even if it has a STT type
1928         if (symbol_type != eSymbolTypeUndefined)
1929         {
1930             switch (symbol.getType())
1931             {
1932             default:
1933             case STT_NOTYPE:
1934                 // The symbol's type is not specified.
1935                 break;
1936 
1937             case STT_OBJECT:
1938                 // The symbol is associated with a data object, such as a variable,
1939                 // an array, etc.
1940                 symbol_type = eSymbolTypeData;
1941                 break;
1942 
1943             case STT_FUNC:
1944                 // The symbol is associated with a function or other executable code.
1945                 symbol_type = eSymbolTypeCode;
1946                 break;
1947 
1948             case STT_SECTION:
1949                 // The symbol is associated with a section. Symbol table entries of
1950                 // this type exist primarily for relocation and normally have
1951                 // STB_LOCAL binding.
1952                 break;
1953 
1954             case STT_FILE:
1955                 // Conventionally, the symbol's name gives the name of the source
1956                 // file associated with the object file. A file symbol has STB_LOCAL
1957                 // binding, its section index is SHN_ABS, and it precedes the other
1958                 // STB_LOCAL symbols for the file, if it is present.
1959                 symbol_type = eSymbolTypeSourceFile;
1960                 break;
1961 
1962             case STT_GNU_IFUNC:
1963                 // The symbol is associated with an indirect function. The actual
1964                 // function will be resolved if it is referenced.
1965                 symbol_type = eSymbolTypeResolver;
1966                 break;
1967             }
1968         }
1969 
1970         if (symbol_type == eSymbolTypeInvalid)
1971         {
1972             if (symbol_section_sp)
1973             {
1974                 const ConstString &sect_name = symbol_section_sp->GetName();
1975                 if (sect_name == text_section_name ||
1976                     sect_name == init_section_name ||
1977                     sect_name == fini_section_name ||
1978                     sect_name == ctors_section_name ||
1979                     sect_name == dtors_section_name)
1980                 {
1981                     symbol_type = eSymbolTypeCode;
1982                 }
1983                 else if (sect_name == data_section_name ||
1984                          sect_name == data2_section_name ||
1985                          sect_name == rodata_section_name ||
1986                          sect_name == rodata1_section_name ||
1987                          sect_name == bss_section_name)
1988                 {
1989                     symbol_type = eSymbolTypeData;
1990                 }
1991             }
1992         }
1993 
1994         int64_t symbol_value_offset = 0;
1995         uint32_t additional_flags = 0;
1996 
1997         ArchSpec arch;
1998         if (GetArchitecture(arch))
1999         {
2000             if (arch.GetMachine() == llvm::Triple::arm)
2001             {
2002                 if (symbol.getBinding() == STB_LOCAL && symbol_name && symbol_name[0] == '$')
2003                 {
2004                     // These are reserved for the specification (e.g.: mapping
2005                     // symbols). We don't want to add them to the symbol table.
2006 
2007                     if (symbol_type == eSymbolTypeCode)
2008                     {
2009                         llvm::StringRef symbol_name_ref(symbol_name);
2010                         if (symbol_name_ref == "$a" || symbol_name_ref.startswith("$a."))
2011                         {
2012                             // $a[.<any>]* - marks an ARM instruction sequence
2013                             m_address_class_map[symbol.st_value] = eAddressClassCode;
2014                         }
2015                         else if (symbol_name_ref == "$b" || symbol_name_ref.startswith("$b.") ||
2016                                  symbol_name_ref == "$t" || symbol_name_ref.startswith("$t."))
2017                         {
2018                             // $b[.<any>]* - marks a THUMB BL instruction sequence
2019                             // $t[.<any>]* - marks a THUMB instruction sequence
2020                             m_address_class_map[symbol.st_value] = eAddressClassCodeAlternateISA;
2021                         }
2022                         else if (symbol_name_ref == "$d" || symbol_name_ref.startswith("$d."))
2023                         {
2024                             // $d[.<any>]* - marks a data item sequence (e.g. lit pool)
2025                             m_address_class_map[symbol.st_value] = eAddressClassData;
2026                         }
2027                     }
2028                     continue;
2029                 }
2030             }
2031             else if (arch.GetMachine() == llvm::Triple::aarch64)
2032             {
2033                 if (symbol.getBinding() == STB_LOCAL && symbol_name && symbol_name[0] == '$')
2034                 {
2035                     // These are reserved for the specification (e.g.: mapping
2036                     // symbols). We don't want to add them to the symbol table.
2037 
2038                     if (symbol_type == eSymbolTypeCode)
2039                     {
2040                         llvm::StringRef symbol_name_ref(symbol_name);
2041                         if (symbol_name_ref == "$x" || symbol_name_ref.startswith("$x."))
2042                         {
2043                             // $x[.<any>]* - marks an A64 instruction sequence
2044                             m_address_class_map[symbol.st_value] = eAddressClassCode;
2045                         }
2046                         else if (symbol_name_ref == "$d" || symbol_name_ref.startswith("$d."))
2047                         {
2048                             // $d[.<any>]* - marks a data item sequence (e.g. lit pool)
2049                             m_address_class_map[symbol.st_value] = eAddressClassData;
2050                         }
2051                     }
2052 
2053                     continue;
2054                 }
2055             }
2056 
2057             if (arch.GetMachine() == llvm::Triple::arm)
2058             {
2059                 if (symbol_type == eSymbolTypeCode)
2060                 {
2061                     if (symbol.st_value & 1)
2062                     {
2063                         // Subtracting 1 from the address effectively unsets
2064                         // the low order bit, which results in the address
2065                         // actually pointing to the beginning of the symbol.
2066                         // This delta will be used below in conjunction with
2067                         // symbol.st_value to produce the final symbol_value
2068                         // that we store in the symtab.
2069                         symbol_value_offset = -1;
2070                         additional_flags = ARM_ELF_SYM_IS_THUMB;
2071                         m_address_class_map[symbol.st_value^1] = eAddressClassCodeAlternateISA;
2072                     }
2073                     else
2074                     {
2075                         // This address is ARM
2076                         m_address_class_map[symbol.st_value] = eAddressClassCode;
2077                     }
2078                 }
2079             }
2080         }
2081 
2082         // symbol_value_offset may contain 0 for ARM symbols or -1 for
2083         // THUMB symbols. See above for more details.
2084         uint64_t symbol_value = symbol.st_value + symbol_value_offset;
2085         if (symbol_section_sp && CalculateType() != ObjectFile::Type::eTypeObjectFile)
2086             symbol_value -= symbol_section_sp->GetFileAddress();
2087 
2088         if (symbol_section_sp)
2089         {
2090             ModuleSP module_sp(GetModule());
2091             if (module_sp)
2092             {
2093                 SectionList *module_section_list = module_sp->GetSectionList();
2094                 if (module_section_list && module_section_list != section_list)
2095                 {
2096                     const ConstString &sect_name = symbol_section_sp->GetName();
2097                     lldb::SectionSP section_sp (module_section_list->FindSectionByName (sect_name));
2098                     if (section_sp && section_sp->GetFileSize())
2099                     {
2100                         symbol_section_sp = section_sp;
2101                     }
2102                 }
2103             }
2104         }
2105 
2106         bool is_global = symbol.getBinding() == STB_GLOBAL;
2107         uint32_t flags = symbol.st_other << 8 | symbol.st_info | additional_flags;
2108         bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false;
2109 
2110         llvm::StringRef symbol_ref(symbol_name);
2111 
2112         // Symbol names may contain @VERSION suffixes. Find those and strip them temporarily.
2113         size_t version_pos = symbol_ref.find('@');
2114         bool has_suffix = version_pos != llvm::StringRef::npos;
2115         llvm::StringRef symbol_bare = symbol_ref.substr(0, version_pos);
2116         Mangled mangled(ConstString(symbol_bare), is_mangled);
2117 
2118         // Now append the suffix back to mangled and unmangled names. Only do it if the
2119         // demangling was successful (string is not empty).
2120         if (has_suffix)
2121         {
2122             llvm::StringRef suffix = symbol_ref.substr(version_pos);
2123 
2124             llvm::StringRef mangled_name = mangled.GetMangledName().GetStringRef();
2125             if (! mangled_name.empty())
2126                 mangled.SetMangledName( ConstString((mangled_name + suffix).str()) );
2127 
2128             ConstString demangled = mangled.GetDemangledName(lldb::eLanguageTypeUnknown);
2129             llvm::StringRef demangled_name = demangled.GetStringRef();
2130             if (!demangled_name.empty())
2131                 mangled.SetDemangledName( ConstString((demangled_name + suffix).str()) );
2132         }
2133 
2134         Symbol dc_symbol(
2135             i + start_id,       // ID is the original symbol table index.
2136             mangled,
2137             symbol_type,        // Type of this symbol
2138             is_global,          // Is this globally visible?
2139             false,              // Is this symbol debug info?
2140             false,              // Is this symbol a trampoline?
2141             false,              // Is this symbol artificial?
2142             AddressRange(
2143                 symbol_section_sp,  // Section in which this symbol is defined or null.
2144                 symbol_value,       // Offset in section or symbol value.
2145                 symbol.st_size),    // Size in bytes of this symbol.
2146             symbol.st_size != 0,    // Size is valid if it is not 0
2147             has_suffix,             // Contains linker annotations?
2148             flags);                 // Symbol flags.
2149         symtab->AddSymbol(dc_symbol);
2150     }
2151     return i;
2152 }
2153 
2154 unsigned
2155 ObjectFileELF::ParseSymbolTable(Symtab *symbol_table, user_id_t start_id, lldb_private::Section *symtab)
2156 {
2157     if (symtab->GetObjectFile() != this)
2158     {
2159         // If the symbol table section is owned by a different object file, have it do the
2160         // parsing.
2161         ObjectFileELF *obj_file_elf = static_cast<ObjectFileELF *>(symtab->GetObjectFile());
2162         return obj_file_elf->ParseSymbolTable (symbol_table, start_id, symtab);
2163     }
2164 
2165     // Get section list for this object file.
2166     SectionList *section_list = m_sections_ap.get();
2167     if (!section_list)
2168         return 0;
2169 
2170     user_id_t symtab_id = symtab->GetID();
2171     const ELFSectionHeaderInfo *symtab_hdr = GetSectionHeaderByIndex(symtab_id);
2172     assert(symtab_hdr->sh_type == SHT_SYMTAB ||
2173            symtab_hdr->sh_type == SHT_DYNSYM);
2174 
2175     // sh_link: section header index of associated string table.
2176     // Section ID's are ones based.
2177     user_id_t strtab_id = symtab_hdr->sh_link + 1;
2178     Section *strtab = section_list->FindSectionByID(strtab_id).get();
2179 
2180     if (symtab && strtab)
2181     {
2182         assert (symtab->GetObjectFile() == this);
2183         assert (strtab->GetObjectFile() == this);
2184 
2185         DataExtractor symtab_data;
2186         DataExtractor strtab_data;
2187         if (ReadSectionData(symtab, symtab_data) &&
2188             ReadSectionData(strtab, strtab_data))
2189         {
2190             size_t num_symbols = symtab_data.GetByteSize() / symtab_hdr->sh_entsize;
2191 
2192             return ParseSymbols(symbol_table, start_id, section_list,
2193                                 num_symbols, symtab_data, strtab_data);
2194         }
2195     }
2196 
2197     return 0;
2198 }
2199 
2200 size_t
2201 ObjectFileELF::ParseDynamicSymbols()
2202 {
2203     if (m_dynamic_symbols.size())
2204         return m_dynamic_symbols.size();
2205 
2206     SectionList *section_list = GetSectionList();
2207     if (!section_list)
2208         return 0;
2209 
2210     // Find the SHT_DYNAMIC section.
2211     Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get();
2212     if (!dynsym)
2213         return 0;
2214     assert (dynsym->GetObjectFile() == this);
2215 
2216     ELFDynamic symbol;
2217     DataExtractor dynsym_data;
2218     if (ReadSectionData(dynsym, dynsym_data))
2219     {
2220         const lldb::offset_t section_size = dynsym_data.GetByteSize();
2221         lldb::offset_t cursor = 0;
2222 
2223         while (cursor < section_size)
2224         {
2225             if (!symbol.Parse(dynsym_data, &cursor))
2226                 break;
2227 
2228             m_dynamic_symbols.push_back(symbol);
2229         }
2230     }
2231 
2232     return m_dynamic_symbols.size();
2233 }
2234 
2235 const ELFDynamic *
2236 ObjectFileELF::FindDynamicSymbol(unsigned tag)
2237 {
2238     if (!ParseDynamicSymbols())
2239         return NULL;
2240 
2241     DynamicSymbolCollIter I = m_dynamic_symbols.begin();
2242     DynamicSymbolCollIter E = m_dynamic_symbols.end();
2243     for ( ; I != E; ++I)
2244     {
2245         ELFDynamic *symbol = &*I;
2246 
2247         if (symbol->d_tag == tag)
2248             return symbol;
2249     }
2250 
2251     return NULL;
2252 }
2253 
2254 unsigned
2255 ObjectFileELF::PLTRelocationType()
2256 {
2257     // DT_PLTREL
2258     //  This member specifies the type of relocation entry to which the
2259     //  procedure linkage table refers. The d_val member holds DT_REL or
2260     //  DT_RELA, as appropriate. All relocations in a procedure linkage table
2261     //  must use the same relocation.
2262     const ELFDynamic *symbol = FindDynamicSymbol(DT_PLTREL);
2263 
2264     if (symbol)
2265         return symbol->d_val;
2266 
2267     return 0;
2268 }
2269 
2270 // Returns the size of the normal plt entries and the offset of the first normal plt entry. The
2271 // 0th entry in the plt table is usually a resolution entry which have different size in some
2272 // architectures then the rest of the plt entries.
2273 static std::pair<uint64_t, uint64_t>
2274 GetPltEntrySizeAndOffset(const ELFSectionHeader* rel_hdr, const ELFSectionHeader* plt_hdr)
2275 {
2276     const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2277 
2278     // Clang 3.3 sets entsize to 4 for 32-bit binaries, but the plt entries are 16 bytes.
2279     // So round the entsize up by the alignment if addralign is set.
2280     elf_xword plt_entsize = plt_hdr->sh_addralign ?
2281         llvm::RoundUpToAlignment (plt_hdr->sh_entsize, plt_hdr->sh_addralign) : plt_hdr->sh_entsize;
2282 
2283     if (plt_entsize == 0)
2284     {
2285         // The linker haven't set the plt_hdr->sh_entsize field. Try to guess the size of the plt
2286         // entries based on the number of entries and the size of the plt section with the
2287         // assumption that the size of the 0th entry is at least as big as the size of the normal
2288         // entries and it isn't much bigger then that.
2289         if (plt_hdr->sh_addralign)
2290             plt_entsize = plt_hdr->sh_size / plt_hdr->sh_addralign / (num_relocations + 1) * plt_hdr->sh_addralign;
2291         else
2292             plt_entsize = plt_hdr->sh_size / (num_relocations + 1);
2293     }
2294 
2295     elf_xword plt_offset = plt_hdr->sh_size - num_relocations * plt_entsize;
2296 
2297     return std::make_pair(plt_entsize, plt_offset);
2298 }
2299 
2300 static unsigned
2301 ParsePLTRelocations(Symtab *symbol_table,
2302                     user_id_t start_id,
2303                     unsigned rel_type,
2304                     const ELFHeader *hdr,
2305                     const ELFSectionHeader *rel_hdr,
2306                     const ELFSectionHeader *plt_hdr,
2307                     const ELFSectionHeader *sym_hdr,
2308                     const lldb::SectionSP &plt_section_sp,
2309                     DataExtractor &rel_data,
2310                     DataExtractor &symtab_data,
2311                     DataExtractor &strtab_data)
2312 {
2313     ELFRelocation rel(rel_type);
2314     ELFSymbol symbol;
2315     lldb::offset_t offset = 0;
2316 
2317     uint64_t plt_offset, plt_entsize;
2318     std::tie(plt_entsize, plt_offset) = GetPltEntrySizeAndOffset(rel_hdr, plt_hdr);
2319     const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2320 
2321     typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel);
2322     reloc_info_fn reloc_type;
2323     reloc_info_fn reloc_symbol;
2324 
2325     if (hdr->Is32Bit())
2326     {
2327         reloc_type = ELFRelocation::RelocType32;
2328         reloc_symbol = ELFRelocation::RelocSymbol32;
2329     }
2330     else
2331     {
2332         reloc_type = ELFRelocation::RelocType64;
2333         reloc_symbol = ELFRelocation::RelocSymbol64;
2334     }
2335 
2336     unsigned slot_type = hdr->GetRelocationJumpSlotType();
2337     unsigned i;
2338     for (i = 0; i < num_relocations; ++i)
2339     {
2340         if (rel.Parse(rel_data, &offset) == false)
2341             break;
2342 
2343         if (reloc_type(rel) != slot_type)
2344             continue;
2345 
2346         lldb::offset_t symbol_offset = reloc_symbol(rel) * sym_hdr->sh_entsize;
2347         if (!symbol.Parse(symtab_data, &symbol_offset))
2348             break;
2349 
2350         const char *symbol_name = strtab_data.PeekCStr(symbol.st_name);
2351         bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false;
2352         uint64_t plt_index = plt_offset + i * plt_entsize;
2353 
2354         Symbol jump_symbol(
2355             i + start_id,    // Symbol table index
2356             symbol_name,     // symbol name.
2357             is_mangled,      // is the symbol name mangled?
2358             eSymbolTypeTrampoline, // Type of this symbol
2359             false,           // Is this globally visible?
2360             false,           // Is this symbol debug info?
2361             true,            // Is this symbol a trampoline?
2362             true,            // Is this symbol artificial?
2363             plt_section_sp,  // Section in which this symbol is defined or null.
2364             plt_index,       // Offset in section or symbol value.
2365             plt_entsize,     // Size in bytes of this symbol.
2366             true,            // Size is valid
2367             false,           // Contains linker annotations?
2368             0);              // Symbol flags.
2369 
2370         symbol_table->AddSymbol(jump_symbol);
2371     }
2372 
2373     return i;
2374 }
2375 
2376 unsigned
2377 ObjectFileELF::ParseTrampolineSymbols(Symtab *symbol_table,
2378                                       user_id_t start_id,
2379                                       const ELFSectionHeaderInfo *rel_hdr,
2380                                       user_id_t rel_id)
2381 {
2382     assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL);
2383 
2384     // The link field points to the associated symbol table. The info field
2385     // points to the section holding the plt.
2386     user_id_t symtab_id = rel_hdr->sh_link;
2387     user_id_t plt_id = rel_hdr->sh_info;
2388 
2389     // If the link field doesn't point to the appropriate symbol name table then
2390     // try to find it by name as some compiler don't fill in the link fields.
2391     if (!symtab_id)
2392         symtab_id = GetSectionIndexByName(".dynsym");
2393     if (!plt_id)
2394         plt_id = GetSectionIndexByName(".plt");
2395 
2396     if (!symtab_id || !plt_id)
2397         return 0;
2398 
2399     // Section ID's are ones based;
2400     symtab_id++;
2401     plt_id++;
2402 
2403     const ELFSectionHeaderInfo *plt_hdr = GetSectionHeaderByIndex(plt_id);
2404     if (!plt_hdr)
2405         return 0;
2406 
2407     const ELFSectionHeaderInfo *sym_hdr = GetSectionHeaderByIndex(symtab_id);
2408     if (!sym_hdr)
2409         return 0;
2410 
2411     SectionList *section_list = m_sections_ap.get();
2412     if (!section_list)
2413         return 0;
2414 
2415     Section *rel_section = section_list->FindSectionByID(rel_id).get();
2416     if (!rel_section)
2417         return 0;
2418 
2419     SectionSP plt_section_sp (section_list->FindSectionByID(plt_id));
2420     if (!plt_section_sp)
2421         return 0;
2422 
2423     Section *symtab = section_list->FindSectionByID(symtab_id).get();
2424     if (!symtab)
2425         return 0;
2426 
2427     // sh_link points to associated string table.
2428     Section *strtab = section_list->FindSectionByID(sym_hdr->sh_link + 1).get();
2429     if (!strtab)
2430         return 0;
2431 
2432     DataExtractor rel_data;
2433     if (!ReadSectionData(rel_section, rel_data))
2434         return 0;
2435 
2436     DataExtractor symtab_data;
2437     if (!ReadSectionData(symtab, symtab_data))
2438         return 0;
2439 
2440     DataExtractor strtab_data;
2441     if (!ReadSectionData(strtab, strtab_data))
2442         return 0;
2443 
2444     unsigned rel_type = PLTRelocationType();
2445     if (!rel_type)
2446         return 0;
2447 
2448     return ParsePLTRelocations (symbol_table,
2449                                 start_id,
2450                                 rel_type,
2451                                 &m_header,
2452                                 rel_hdr,
2453                                 plt_hdr,
2454                                 sym_hdr,
2455                                 plt_section_sp,
2456                                 rel_data,
2457                                 symtab_data,
2458                                 strtab_data);
2459 }
2460 
2461 unsigned
2462 ObjectFileELF::RelocateSection(Symtab* symtab, const ELFHeader *hdr, const ELFSectionHeader *rel_hdr,
2463                 const ELFSectionHeader *symtab_hdr, const ELFSectionHeader *debug_hdr,
2464                 DataExtractor &rel_data, DataExtractor &symtab_data,
2465                 DataExtractor &debug_data, Section* rel_section)
2466 {
2467     ELFRelocation rel(rel_hdr->sh_type);
2468     lldb::addr_t offset = 0;
2469     const unsigned num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2470     typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel);
2471     reloc_info_fn reloc_type;
2472     reloc_info_fn reloc_symbol;
2473 
2474     if (hdr->Is32Bit())
2475     {
2476         reloc_type = ELFRelocation::RelocType32;
2477         reloc_symbol = ELFRelocation::RelocSymbol32;
2478     }
2479     else
2480     {
2481         reloc_type = ELFRelocation::RelocType64;
2482         reloc_symbol = ELFRelocation::RelocSymbol64;
2483     }
2484 
2485     for (unsigned i = 0; i < num_relocations; ++i)
2486     {
2487         if (rel.Parse(rel_data, &offset) == false)
2488             break;
2489 
2490         Symbol* symbol = NULL;
2491 
2492         if (hdr->Is32Bit())
2493         {
2494             switch (reloc_type(rel)) {
2495             case R_386_32:
2496             case R_386_PC32:
2497             default:
2498                 assert(false && "unexpected relocation type");
2499             }
2500         } else {
2501             switch (reloc_type(rel)) {
2502             case R_X86_64_64:
2503             {
2504                 symbol = symtab->FindSymbolByID(reloc_symbol(rel));
2505                 if (symbol)
2506                 {
2507                     addr_t value = symbol->GetAddressRef().GetFileAddress();
2508                     DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer();
2509                     uint64_t* dst = reinterpret_cast<uint64_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset64(rel));
2510                     *dst = value + ELFRelocation::RelocAddend64(rel);
2511                 }
2512                 break;
2513             }
2514             case R_X86_64_32:
2515             case R_X86_64_32S:
2516             {
2517                 symbol = symtab->FindSymbolByID(reloc_symbol(rel));
2518                 if (symbol)
2519                 {
2520                     addr_t value = symbol->GetAddressRef().GetFileAddress();
2521                     value += ELFRelocation::RelocAddend32(rel);
2522                     assert((reloc_type(rel) == R_X86_64_32 && (value <= UINT32_MAX)) ||
2523                            (reloc_type(rel) == R_X86_64_32S &&
2524                             ((int64_t)value <= INT32_MAX && (int64_t)value >= INT32_MIN)));
2525                     uint32_t truncated_addr = (value & 0xFFFFFFFF);
2526                     DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer();
2527                     uint32_t* dst = reinterpret_cast<uint32_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset32(rel));
2528                     *dst = truncated_addr;
2529                 }
2530                 break;
2531             }
2532             case R_X86_64_PC32:
2533             default:
2534                 assert(false && "unexpected relocation type");
2535             }
2536         }
2537     }
2538 
2539     return 0;
2540 }
2541 
2542 unsigned
2543 ObjectFileELF::RelocateDebugSections(const ELFSectionHeader *rel_hdr, user_id_t rel_id)
2544 {
2545     assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL);
2546 
2547     // Parse in the section list if needed.
2548     SectionList *section_list = GetSectionList();
2549     if (!section_list)
2550         return 0;
2551 
2552     // Section ID's are ones based.
2553     user_id_t symtab_id = rel_hdr->sh_link + 1;
2554     user_id_t debug_id = rel_hdr->sh_info + 1;
2555 
2556     const ELFSectionHeader *symtab_hdr = GetSectionHeaderByIndex(symtab_id);
2557     if (!symtab_hdr)
2558         return 0;
2559 
2560     const ELFSectionHeader *debug_hdr = GetSectionHeaderByIndex(debug_id);
2561     if (!debug_hdr)
2562         return 0;
2563 
2564     Section *rel = section_list->FindSectionByID(rel_id).get();
2565     if (!rel)
2566         return 0;
2567 
2568     Section *symtab = section_list->FindSectionByID(symtab_id).get();
2569     if (!symtab)
2570         return 0;
2571 
2572     Section *debug = section_list->FindSectionByID(debug_id).get();
2573     if (!debug)
2574         return 0;
2575 
2576     DataExtractor rel_data;
2577     DataExtractor symtab_data;
2578     DataExtractor debug_data;
2579 
2580     if (ReadSectionData(rel, rel_data) &&
2581         ReadSectionData(symtab, symtab_data) &&
2582         ReadSectionData(debug, debug_data))
2583     {
2584         RelocateSection(m_symtab_ap.get(), &m_header, rel_hdr, symtab_hdr, debug_hdr,
2585                         rel_data, symtab_data, debug_data, debug);
2586     }
2587 
2588     return 0;
2589 }
2590 
2591 Symtab *
2592 ObjectFileELF::GetSymtab()
2593 {
2594     ModuleSP module_sp(GetModule());
2595     if (!module_sp)
2596         return NULL;
2597 
2598     // We always want to use the main object file so we (hopefully) only have one cached copy
2599     // of our symtab, dynamic sections, etc.
2600     ObjectFile *module_obj_file = module_sp->GetObjectFile();
2601     if (module_obj_file && module_obj_file != this)
2602         return module_obj_file->GetSymtab();
2603 
2604     if (m_symtab_ap.get() == NULL)
2605     {
2606         SectionList *section_list = module_sp->GetSectionList();
2607         if (!section_list)
2608             return NULL;
2609 
2610         uint64_t symbol_id = 0;
2611         lldb_private::Mutex::Locker locker(module_sp->GetMutex());
2612 
2613         // Sharable objects and dynamic executables usually have 2 distinct symbol
2614         // tables, one named ".symtab", and the other ".dynsym". The dynsym is a smaller
2615         // version of the symtab that only contains global symbols. The information found
2616         // in the dynsym is therefore also found in the symtab, while the reverse is not
2617         // necessarily true.
2618         Section *symtab = section_list->FindSectionByType (eSectionTypeELFSymbolTable, true).get();
2619         if (!symtab)
2620         {
2621             // The symtab section is non-allocable and can be stripped, so if it doesn't exist
2622             // then use the dynsym section which should always be there.
2623             symtab = section_list->FindSectionByType (eSectionTypeELFDynamicSymbols, true).get();
2624         }
2625         if (symtab)
2626         {
2627             m_symtab_ap.reset(new Symtab(symtab->GetObjectFile()));
2628             symbol_id += ParseSymbolTable (m_symtab_ap.get(), symbol_id, symtab);
2629         }
2630 
2631         // DT_JMPREL
2632         //      If present, this entry's d_ptr member holds the address of relocation
2633         //      entries associated solely with the procedure linkage table. Separating
2634         //      these relocation entries lets the dynamic linker ignore them during
2635         //      process initialization, if lazy binding is enabled. If this entry is
2636         //      present, the related entries of types DT_PLTRELSZ and DT_PLTREL must
2637         //      also be present.
2638         const ELFDynamic *symbol = FindDynamicSymbol(DT_JMPREL);
2639         if (symbol)
2640         {
2641             // Synthesize trampoline symbols to help navigate the PLT.
2642             addr_t addr = symbol->d_ptr;
2643             Section *reloc_section = section_list->FindSectionContainingFileAddress(addr).get();
2644             if (reloc_section)
2645             {
2646                 user_id_t reloc_id = reloc_section->GetID();
2647                 const ELFSectionHeaderInfo *reloc_header = GetSectionHeaderByIndex(reloc_id);
2648                 assert(reloc_header);
2649 
2650                 if (m_symtab_ap == nullptr)
2651                     m_symtab_ap.reset(new Symtab(reloc_section->GetObjectFile()));
2652 
2653                 ParseTrampolineSymbols (m_symtab_ap.get(), symbol_id, reloc_header, reloc_id);
2654             }
2655         }
2656 
2657         // If we still don't have any symtab then create an empty instance to avoid do the section
2658         // lookup next time.
2659         if (m_symtab_ap == nullptr)
2660             m_symtab_ap.reset(new Symtab(this));
2661 
2662         m_symtab_ap->CalculateSymbolSizes();
2663     }
2664 
2665     for (SectionHeaderCollIter I = m_section_headers.begin();
2666          I != m_section_headers.end(); ++I)
2667     {
2668         if (I->sh_type == SHT_RELA || I->sh_type == SHT_REL)
2669         {
2670             if (CalculateType() == eTypeObjectFile)
2671             {
2672                 const char *section_name = I->section_name.AsCString("");
2673                 if (strstr(section_name, ".rela.debug") ||
2674                     strstr(section_name, ".rel.debug"))
2675                 {
2676                     const ELFSectionHeader &reloc_header = *I;
2677                     user_id_t reloc_id = SectionIndex(I);
2678                     RelocateDebugSections(&reloc_header, reloc_id);
2679                 }
2680             }
2681         }
2682     }
2683     return m_symtab_ap.get();
2684 }
2685 
2686 Symbol *
2687 ObjectFileELF::ResolveSymbolForAddress(const Address& so_addr, bool verify_unique)
2688 {
2689     if (!m_symtab_ap.get())
2690         return nullptr; // GetSymtab() should be called first.
2691 
2692     const SectionList *section_list = GetSectionList();
2693     if (!section_list)
2694         return nullptr;
2695 
2696     if (DWARFCallFrameInfo *eh_frame = GetUnwindTable().GetEHFrameInfo())
2697     {
2698         AddressRange range;
2699         if (eh_frame->GetAddressRange (so_addr, range))
2700         {
2701             const addr_t file_addr = range.GetBaseAddress().GetFileAddress();
2702             Symbol * symbol = verify_unique ? m_symtab_ap->FindSymbolContainingFileAddress(file_addr) : nullptr;
2703             if (symbol)
2704                 return symbol;
2705 
2706             // Note that a (stripped) symbol won't be found by GetSymtab()...
2707             lldb::SectionSP eh_sym_section_sp = section_list->FindSectionContainingFileAddress(file_addr);
2708             if (eh_sym_section_sp.get())
2709             {
2710                 addr_t section_base = eh_sym_section_sp->GetFileAddress();
2711                 addr_t offset = file_addr - section_base;
2712                 uint64_t symbol_id = m_symtab_ap->GetNumSymbols();
2713 
2714                 Symbol eh_symbol(
2715                         symbol_id,            // Symbol table index.
2716                         "???",                // Symbol name.
2717                         false,                // Is the symbol name mangled?
2718                         eSymbolTypeCode,      // Type of this symbol.
2719                         true,                 // Is this globally visible?
2720                         false,                // Is this symbol debug info?
2721                         false,                // Is this symbol a trampoline?
2722                         true,                 // Is this symbol artificial?
2723                         eh_sym_section_sp,    // Section in which this symbol is defined or null.
2724                         offset,               // Offset in section or symbol value.
2725                         range.GetByteSize(),  // Size in bytes of this symbol.
2726                         true,                 // Size is valid.
2727                         false,                // Contains linker annotations?
2728                         0);                   // Symbol flags.
2729                 if (symbol_id == m_symtab_ap->AddSymbol(eh_symbol))
2730                     return m_symtab_ap->SymbolAtIndex(symbol_id);
2731             }
2732         }
2733     }
2734     return nullptr;
2735 }
2736 
2737 
2738 bool
2739 ObjectFileELF::IsStripped ()
2740 {
2741     // TODO: determine this for ELF
2742     return false;
2743 }
2744 
2745 //===----------------------------------------------------------------------===//
2746 // Dump
2747 //
2748 // Dump the specifics of the runtime file container (such as any headers
2749 // segments, sections, etc).
2750 //----------------------------------------------------------------------
2751 void
2752 ObjectFileELF::Dump(Stream *s)
2753 {
2754     DumpELFHeader(s, m_header);
2755     s->EOL();
2756     DumpELFProgramHeaders(s);
2757     s->EOL();
2758     DumpELFSectionHeaders(s);
2759     s->EOL();
2760     SectionList *section_list = GetSectionList();
2761     if (section_list)
2762         section_list->Dump(s, NULL, true, UINT32_MAX);
2763     Symtab *symtab = GetSymtab();
2764     if (symtab)
2765         symtab->Dump(s, NULL, eSortOrderNone);
2766     s->EOL();
2767     DumpDependentModules(s);
2768     s->EOL();
2769 }
2770 
2771 //----------------------------------------------------------------------
2772 // DumpELFHeader
2773 //
2774 // Dump the ELF header to the specified output stream
2775 //----------------------------------------------------------------------
2776 void
2777 ObjectFileELF::DumpELFHeader(Stream *s, const ELFHeader &header)
2778 {
2779     s->PutCString("ELF Header\n");
2780     s->Printf("e_ident[EI_MAG0   ] = 0x%2.2x\n", header.e_ident[EI_MAG0]);
2781     s->Printf("e_ident[EI_MAG1   ] = 0x%2.2x '%c'\n",
2782               header.e_ident[EI_MAG1], header.e_ident[EI_MAG1]);
2783     s->Printf("e_ident[EI_MAG2   ] = 0x%2.2x '%c'\n",
2784               header.e_ident[EI_MAG2], header.e_ident[EI_MAG2]);
2785     s->Printf("e_ident[EI_MAG3   ] = 0x%2.2x '%c'\n",
2786               header.e_ident[EI_MAG3], header.e_ident[EI_MAG3]);
2787 
2788     s->Printf("e_ident[EI_CLASS  ] = 0x%2.2x\n", header.e_ident[EI_CLASS]);
2789     s->Printf("e_ident[EI_DATA   ] = 0x%2.2x ", header.e_ident[EI_DATA]);
2790     DumpELFHeader_e_ident_EI_DATA(s, header.e_ident[EI_DATA]);
2791     s->Printf ("\ne_ident[EI_VERSION] = 0x%2.2x\n", header.e_ident[EI_VERSION]);
2792     s->Printf ("e_ident[EI_PAD    ] = 0x%2.2x\n", header.e_ident[EI_PAD]);
2793 
2794     s->Printf("e_type      = 0x%4.4x ", header.e_type);
2795     DumpELFHeader_e_type(s, header.e_type);
2796     s->Printf("\ne_machine   = 0x%4.4x\n", header.e_machine);
2797     s->Printf("e_version   = 0x%8.8x\n", header.e_version);
2798     s->Printf("e_entry     = 0x%8.8" PRIx64 "\n", header.e_entry);
2799     s->Printf("e_phoff     = 0x%8.8" PRIx64 "\n", header.e_phoff);
2800     s->Printf("e_shoff     = 0x%8.8" PRIx64 "\n", header.e_shoff);
2801     s->Printf("e_flags     = 0x%8.8x\n", header.e_flags);
2802     s->Printf("e_ehsize    = 0x%4.4x\n", header.e_ehsize);
2803     s->Printf("e_phentsize = 0x%4.4x\n", header.e_phentsize);
2804     s->Printf("e_phnum     = 0x%4.4x\n", header.e_phnum);
2805     s->Printf("e_shentsize = 0x%4.4x\n", header.e_shentsize);
2806     s->Printf("e_shnum     = 0x%4.4x\n", header.e_shnum);
2807     s->Printf("e_shstrndx  = 0x%4.4x\n", header.e_shstrndx);
2808 }
2809 
2810 //----------------------------------------------------------------------
2811 // DumpELFHeader_e_type
2812 //
2813 // Dump an token value for the ELF header member e_type
2814 //----------------------------------------------------------------------
2815 void
2816 ObjectFileELF::DumpELFHeader_e_type(Stream *s, elf_half e_type)
2817 {
2818     switch (e_type)
2819     {
2820     case ET_NONE:   *s << "ET_NONE"; break;
2821     case ET_REL:    *s << "ET_REL"; break;
2822     case ET_EXEC:   *s << "ET_EXEC"; break;
2823     case ET_DYN:    *s << "ET_DYN"; break;
2824     case ET_CORE:   *s << "ET_CORE"; break;
2825     default:
2826         break;
2827     }
2828 }
2829 
2830 //----------------------------------------------------------------------
2831 // DumpELFHeader_e_ident_EI_DATA
2832 //
2833 // Dump an token value for the ELF header member e_ident[EI_DATA]
2834 //----------------------------------------------------------------------
2835 void
2836 ObjectFileELF::DumpELFHeader_e_ident_EI_DATA(Stream *s, unsigned char ei_data)
2837 {
2838     switch (ei_data)
2839     {
2840     case ELFDATANONE:   *s << "ELFDATANONE"; break;
2841     case ELFDATA2LSB:   *s << "ELFDATA2LSB - Little Endian"; break;
2842     case ELFDATA2MSB:   *s << "ELFDATA2MSB - Big Endian"; break;
2843     default:
2844         break;
2845     }
2846 }
2847 
2848 
2849 //----------------------------------------------------------------------
2850 // DumpELFProgramHeader
2851 //
2852 // Dump a single ELF program header to the specified output stream
2853 //----------------------------------------------------------------------
2854 void
2855 ObjectFileELF::DumpELFProgramHeader(Stream *s, const ELFProgramHeader &ph)
2856 {
2857     DumpELFProgramHeader_p_type(s, ph.p_type);
2858     s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, ph.p_offset, ph.p_vaddr, ph.p_paddr);
2859     s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8x (", ph.p_filesz, ph.p_memsz, ph.p_flags);
2860 
2861     DumpELFProgramHeader_p_flags(s, ph.p_flags);
2862     s->Printf(") %8.8" PRIx64, ph.p_align);
2863 }
2864 
2865 //----------------------------------------------------------------------
2866 // DumpELFProgramHeader_p_type
2867 //
2868 // Dump an token value for the ELF program header member p_type which
2869 // describes the type of the program header
2870 // ----------------------------------------------------------------------
2871 void
2872 ObjectFileELF::DumpELFProgramHeader_p_type(Stream *s, elf_word p_type)
2873 {
2874     const int kStrWidth = 15;
2875     switch (p_type)
2876     {
2877     CASE_AND_STREAM(s, PT_NULL        , kStrWidth);
2878     CASE_AND_STREAM(s, PT_LOAD        , kStrWidth);
2879     CASE_AND_STREAM(s, PT_DYNAMIC     , kStrWidth);
2880     CASE_AND_STREAM(s, PT_INTERP      , kStrWidth);
2881     CASE_AND_STREAM(s, PT_NOTE        , kStrWidth);
2882     CASE_AND_STREAM(s, PT_SHLIB       , kStrWidth);
2883     CASE_AND_STREAM(s, PT_PHDR        , kStrWidth);
2884     CASE_AND_STREAM(s, PT_TLS         , kStrWidth);
2885     CASE_AND_STREAM(s, PT_GNU_EH_FRAME, kStrWidth);
2886     default:
2887         s->Printf("0x%8.8x%*s", p_type, kStrWidth - 10, "");
2888         break;
2889     }
2890 }
2891 
2892 
2893 //----------------------------------------------------------------------
2894 // DumpELFProgramHeader_p_flags
2895 //
2896 // Dump an token value for the ELF program header member p_flags
2897 //----------------------------------------------------------------------
2898 void
2899 ObjectFileELF::DumpELFProgramHeader_p_flags(Stream *s, elf_word p_flags)
2900 {
2901     *s  << ((p_flags & PF_X) ? "PF_X" : "    ")
2902         << (((p_flags & PF_X) && (p_flags & PF_W)) ? '+' : ' ')
2903         << ((p_flags & PF_W) ? "PF_W" : "    ")
2904         << (((p_flags & PF_W) && (p_flags & PF_R)) ? '+' : ' ')
2905         << ((p_flags & PF_R) ? "PF_R" : "    ");
2906 }
2907 
2908 //----------------------------------------------------------------------
2909 // DumpELFProgramHeaders
2910 //
2911 // Dump all of the ELF program header to the specified output stream
2912 //----------------------------------------------------------------------
2913 void
2914 ObjectFileELF::DumpELFProgramHeaders(Stream *s)
2915 {
2916     if (!ParseProgramHeaders())
2917         return;
2918 
2919     s->PutCString("Program Headers\n");
2920     s->PutCString("IDX  p_type          p_offset p_vaddr  p_paddr  "
2921                   "p_filesz p_memsz  p_flags                   p_align\n");
2922     s->PutCString("==== --------------- -------- -------- -------- "
2923                   "-------- -------- ------------------------- --------\n");
2924 
2925     uint32_t idx = 0;
2926     for (ProgramHeaderCollConstIter I = m_program_headers.begin();
2927          I != m_program_headers.end(); ++I, ++idx)
2928     {
2929         s->Printf("[%2u] ", idx);
2930         ObjectFileELF::DumpELFProgramHeader(s, *I);
2931         s->EOL();
2932     }
2933 }
2934 
2935 //----------------------------------------------------------------------
2936 // DumpELFSectionHeader
2937 //
2938 // Dump a single ELF section header to the specified output stream
2939 //----------------------------------------------------------------------
2940 void
2941 ObjectFileELF::DumpELFSectionHeader(Stream *s, const ELFSectionHeaderInfo &sh)
2942 {
2943     s->Printf("%8.8x ", sh.sh_name);
2944     DumpELFSectionHeader_sh_type(s, sh.sh_type);
2945     s->Printf(" %8.8" PRIx64 " (", sh.sh_flags);
2946     DumpELFSectionHeader_sh_flags(s, sh.sh_flags);
2947     s->Printf(") %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addr, sh.sh_offset, sh.sh_size);
2948     s->Printf(" %8.8x %8.8x", sh.sh_link, sh.sh_info);
2949     s->Printf(" %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addralign, sh.sh_entsize);
2950 }
2951 
2952 //----------------------------------------------------------------------
2953 // DumpELFSectionHeader_sh_type
2954 //
2955 // Dump an token value for the ELF section header member sh_type which
2956 // describes the type of the section
2957 //----------------------------------------------------------------------
2958 void
2959 ObjectFileELF::DumpELFSectionHeader_sh_type(Stream *s, elf_word sh_type)
2960 {
2961     const int kStrWidth = 12;
2962     switch (sh_type)
2963     {
2964     CASE_AND_STREAM(s, SHT_NULL     , kStrWidth);
2965     CASE_AND_STREAM(s, SHT_PROGBITS , kStrWidth);
2966     CASE_AND_STREAM(s, SHT_SYMTAB   , kStrWidth);
2967     CASE_AND_STREAM(s, SHT_STRTAB   , kStrWidth);
2968     CASE_AND_STREAM(s, SHT_RELA     , kStrWidth);
2969     CASE_AND_STREAM(s, SHT_HASH     , kStrWidth);
2970     CASE_AND_STREAM(s, SHT_DYNAMIC  , kStrWidth);
2971     CASE_AND_STREAM(s, SHT_NOTE     , kStrWidth);
2972     CASE_AND_STREAM(s, SHT_NOBITS   , kStrWidth);
2973     CASE_AND_STREAM(s, SHT_REL      , kStrWidth);
2974     CASE_AND_STREAM(s, SHT_SHLIB    , kStrWidth);
2975     CASE_AND_STREAM(s, SHT_DYNSYM   , kStrWidth);
2976     CASE_AND_STREAM(s, SHT_LOPROC   , kStrWidth);
2977     CASE_AND_STREAM(s, SHT_HIPROC   , kStrWidth);
2978     CASE_AND_STREAM(s, SHT_LOUSER   , kStrWidth);
2979     CASE_AND_STREAM(s, SHT_HIUSER   , kStrWidth);
2980     default:
2981         s->Printf("0x%8.8x%*s", sh_type, kStrWidth - 10, "");
2982         break;
2983     }
2984 }
2985 
2986 //----------------------------------------------------------------------
2987 // DumpELFSectionHeader_sh_flags
2988 //
2989 // Dump an token value for the ELF section header member sh_flags
2990 //----------------------------------------------------------------------
2991 void
2992 ObjectFileELF::DumpELFSectionHeader_sh_flags(Stream *s, elf_xword sh_flags)
2993 {
2994     *s  << ((sh_flags & SHF_WRITE) ? "WRITE" : "     ")
2995         << (((sh_flags & SHF_WRITE) && (sh_flags & SHF_ALLOC)) ? '+' : ' ')
2996         << ((sh_flags & SHF_ALLOC) ? "ALLOC" : "     ")
2997         << (((sh_flags & SHF_ALLOC) && (sh_flags & SHF_EXECINSTR)) ? '+' : ' ')
2998         << ((sh_flags & SHF_EXECINSTR) ? "EXECINSTR" : "         ");
2999 }
3000 
3001 //----------------------------------------------------------------------
3002 // DumpELFSectionHeaders
3003 //
3004 // Dump all of the ELF section header to the specified output stream
3005 //----------------------------------------------------------------------
3006 void
3007 ObjectFileELF::DumpELFSectionHeaders(Stream *s)
3008 {
3009     if (!ParseSectionHeaders())
3010         return;
3011 
3012     s->PutCString("Section Headers\n");
3013     s->PutCString("IDX  name     type         flags                            "
3014                   "addr     offset   size     link     info     addralgn "
3015                   "entsize  Name\n");
3016     s->PutCString("==== -------- ------------ -------------------------------- "
3017                   "-------- -------- -------- -------- -------- -------- "
3018                   "-------- ====================\n");
3019 
3020     uint32_t idx = 0;
3021     for (SectionHeaderCollConstIter I = m_section_headers.begin();
3022          I != m_section_headers.end(); ++I, ++idx)
3023     {
3024         s->Printf("[%2u] ", idx);
3025         ObjectFileELF::DumpELFSectionHeader(s, *I);
3026         const char* section_name = I->section_name.AsCString("");
3027         if (section_name)
3028             *s << ' ' << section_name << "\n";
3029     }
3030 }
3031 
3032 void
3033 ObjectFileELF::DumpDependentModules(lldb_private::Stream *s)
3034 {
3035     size_t num_modules = ParseDependentModules();
3036 
3037     if (num_modules > 0)
3038     {
3039         s->PutCString("Dependent Modules:\n");
3040         for (unsigned i = 0; i < num_modules; ++i)
3041         {
3042             const FileSpec &spec = m_filespec_ap->GetFileSpecAtIndex(i);
3043             s->Printf("   %s\n", spec.GetFilename().GetCString());
3044         }
3045     }
3046 }
3047 
3048 bool
3049 ObjectFileELF::GetArchitecture (ArchSpec &arch)
3050 {
3051     if (!ParseHeader())
3052         return false;
3053 
3054     if (m_section_headers.empty())
3055     {
3056         // Allow elf notes to be parsed which may affect the detected architecture.
3057         ParseSectionHeaders();
3058     }
3059 
3060     arch = m_arch_spec;
3061     return true;
3062 }
3063 
3064 ObjectFile::Type
3065 ObjectFileELF::CalculateType()
3066 {
3067     switch (m_header.e_type)
3068     {
3069         case llvm::ELF::ET_NONE:
3070             // 0 - No file type
3071             return eTypeUnknown;
3072 
3073         case llvm::ELF::ET_REL:
3074             // 1 - Relocatable file
3075             return eTypeObjectFile;
3076 
3077         case llvm::ELF::ET_EXEC:
3078             // 2 - Executable file
3079             return eTypeExecutable;
3080 
3081         case llvm::ELF::ET_DYN:
3082             // 3 - Shared object file
3083             return eTypeSharedLibrary;
3084 
3085         case ET_CORE:
3086             // 4 - Core file
3087             return eTypeCoreFile;
3088 
3089         default:
3090             break;
3091     }
3092     return eTypeUnknown;
3093 }
3094 
3095 ObjectFile::Strata
3096 ObjectFileELF::CalculateStrata()
3097 {
3098     switch (m_header.e_type)
3099     {
3100         case llvm::ELF::ET_NONE:
3101             // 0 - No file type
3102             return eStrataUnknown;
3103 
3104         case llvm::ELF::ET_REL:
3105             // 1 - Relocatable file
3106             return eStrataUnknown;
3107 
3108         case llvm::ELF::ET_EXEC:
3109             // 2 - Executable file
3110             // TODO: is there any way to detect that an executable is a kernel
3111             // related executable by inspecting the program headers, section
3112             // headers, symbols, or any other flag bits???
3113             return eStrataUser;
3114 
3115         case llvm::ELF::ET_DYN:
3116             // 3 - Shared object file
3117             // TODO: is there any way to detect that an shared library is a kernel
3118             // related executable by inspecting the program headers, section
3119             // headers, symbols, or any other flag bits???
3120             return eStrataUnknown;
3121 
3122         case ET_CORE:
3123             // 4 - Core file
3124             // TODO: is there any way to detect that an core file is a kernel
3125             // related executable by inspecting the program headers, section
3126             // headers, symbols, or any other flag bits???
3127             return eStrataUnknown;
3128 
3129         default:
3130             break;
3131     }
3132     return eStrataUnknown;
3133 }
3134 
3135