1 //===-- ObjectFileELF.cpp ------------------------------------- -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "ObjectFileELF.h" 11 12 #include <cassert> 13 #include <algorithm> 14 15 #include "lldb/Core/ArchSpec.h" 16 #include "lldb/Core/DataBuffer.h" 17 #include "lldb/Core/Error.h" 18 #include "lldb/Core/FileSpecList.h" 19 #include "lldb/Core/Log.h" 20 #include "lldb/Core/Module.h" 21 #include "lldb/Core/ModuleSpec.h" 22 #include "lldb/Core/PluginManager.h" 23 #include "lldb/Core/Section.h" 24 #include "lldb/Core/Stream.h" 25 #include "lldb/Core/Timer.h" 26 #include "lldb/Symbol/DWARFCallFrameInfo.h" 27 #include "lldb/Symbol/SymbolContext.h" 28 #include "lldb/Target/SectionLoadList.h" 29 #include "lldb/Target/Target.h" 30 #include "lldb/Host/HostInfo.h" 31 32 #include "llvm/ADT/PointerUnion.h" 33 #include "llvm/ADT/StringRef.h" 34 #include "llvm/Support/MathExtras.h" 35 36 #define CASE_AND_STREAM(s, def, width) \ 37 case def: s->Printf("%-*s", width, #def); break; 38 39 using namespace lldb; 40 using namespace lldb_private; 41 using namespace elf; 42 using namespace llvm::ELF; 43 44 namespace { 45 46 // ELF note owner definitions 47 const char *const LLDB_NT_OWNER_FREEBSD = "FreeBSD"; 48 const char *const LLDB_NT_OWNER_GNU = "GNU"; 49 const char *const LLDB_NT_OWNER_NETBSD = "NetBSD"; 50 const char *const LLDB_NT_OWNER_CSR = "csr"; 51 52 // ELF note type definitions 53 const elf_word LLDB_NT_FREEBSD_ABI_TAG = 0x01; 54 const elf_word LLDB_NT_FREEBSD_ABI_SIZE = 4; 55 56 const elf_word LLDB_NT_GNU_ABI_TAG = 0x01; 57 const elf_word LLDB_NT_GNU_ABI_SIZE = 16; 58 59 const elf_word LLDB_NT_GNU_BUILD_ID_TAG = 0x03; 60 61 const elf_word LLDB_NT_NETBSD_ABI_TAG = 0x01; 62 const elf_word LLDB_NT_NETBSD_ABI_SIZE = 4; 63 64 // GNU ABI note OS constants 65 const elf_word LLDB_NT_GNU_ABI_OS_LINUX = 0x00; 66 const elf_word LLDB_NT_GNU_ABI_OS_HURD = 0x01; 67 const elf_word LLDB_NT_GNU_ABI_OS_SOLARIS = 0x02; 68 69 //===----------------------------------------------------------------------===// 70 /// @class ELFRelocation 71 /// @brief Generic wrapper for ELFRel and ELFRela. 72 /// 73 /// This helper class allows us to parse both ELFRel and ELFRela relocation 74 /// entries in a generic manner. 75 class ELFRelocation 76 { 77 public: 78 79 /// Constructs an ELFRelocation entry with a personality as given by @p 80 /// type. 81 /// 82 /// @param type Either DT_REL or DT_RELA. Any other value is invalid. 83 ELFRelocation(unsigned type); 84 85 ~ELFRelocation(); 86 87 bool 88 Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset); 89 90 static unsigned 91 RelocType32(const ELFRelocation &rel); 92 93 static unsigned 94 RelocType64(const ELFRelocation &rel); 95 96 static unsigned 97 RelocSymbol32(const ELFRelocation &rel); 98 99 static unsigned 100 RelocSymbol64(const ELFRelocation &rel); 101 102 static unsigned 103 RelocOffset32(const ELFRelocation &rel); 104 105 static unsigned 106 RelocOffset64(const ELFRelocation &rel); 107 108 static unsigned 109 RelocAddend32(const ELFRelocation &rel); 110 111 static unsigned 112 RelocAddend64(const ELFRelocation &rel); 113 114 private: 115 typedef llvm::PointerUnion<ELFRel*, ELFRela*> RelocUnion; 116 117 RelocUnion reloc; 118 }; 119 120 ELFRelocation::ELFRelocation(unsigned type) 121 { 122 if (type == DT_REL || type == SHT_REL) 123 reloc = new ELFRel(); 124 else if (type == DT_RELA || type == SHT_RELA) 125 reloc = new ELFRela(); 126 else { 127 assert(false && "unexpected relocation type"); 128 reloc = static_cast<ELFRel*>(NULL); 129 } 130 } 131 132 ELFRelocation::~ELFRelocation() 133 { 134 if (reloc.is<ELFRel*>()) 135 delete reloc.get<ELFRel*>(); 136 else 137 delete reloc.get<ELFRela*>(); 138 } 139 140 bool 141 ELFRelocation::Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset) 142 { 143 if (reloc.is<ELFRel*>()) 144 return reloc.get<ELFRel*>()->Parse(data, offset); 145 else 146 return reloc.get<ELFRela*>()->Parse(data, offset); 147 } 148 149 unsigned 150 ELFRelocation::RelocType32(const ELFRelocation &rel) 151 { 152 if (rel.reloc.is<ELFRel*>()) 153 return ELFRel::RelocType32(*rel.reloc.get<ELFRel*>()); 154 else 155 return ELFRela::RelocType32(*rel.reloc.get<ELFRela*>()); 156 } 157 158 unsigned 159 ELFRelocation::RelocType64(const ELFRelocation &rel) 160 { 161 if (rel.reloc.is<ELFRel*>()) 162 return ELFRel::RelocType64(*rel.reloc.get<ELFRel*>()); 163 else 164 return ELFRela::RelocType64(*rel.reloc.get<ELFRela*>()); 165 } 166 167 unsigned 168 ELFRelocation::RelocSymbol32(const ELFRelocation &rel) 169 { 170 if (rel.reloc.is<ELFRel*>()) 171 return ELFRel::RelocSymbol32(*rel.reloc.get<ELFRel*>()); 172 else 173 return ELFRela::RelocSymbol32(*rel.reloc.get<ELFRela*>()); 174 } 175 176 unsigned 177 ELFRelocation::RelocSymbol64(const ELFRelocation &rel) 178 { 179 if (rel.reloc.is<ELFRel*>()) 180 return ELFRel::RelocSymbol64(*rel.reloc.get<ELFRel*>()); 181 else 182 return ELFRela::RelocSymbol64(*rel.reloc.get<ELFRela*>()); 183 } 184 185 unsigned 186 ELFRelocation::RelocOffset32(const ELFRelocation &rel) 187 { 188 if (rel.reloc.is<ELFRel*>()) 189 return rel.reloc.get<ELFRel*>()->r_offset; 190 else 191 return rel.reloc.get<ELFRela*>()->r_offset; 192 } 193 194 unsigned 195 ELFRelocation::RelocOffset64(const ELFRelocation &rel) 196 { 197 if (rel.reloc.is<ELFRel*>()) 198 return rel.reloc.get<ELFRel*>()->r_offset; 199 else 200 return rel.reloc.get<ELFRela*>()->r_offset; 201 } 202 203 unsigned 204 ELFRelocation::RelocAddend32(const ELFRelocation &rel) 205 { 206 if (rel.reloc.is<ELFRel*>()) 207 return 0; 208 else 209 return rel.reloc.get<ELFRela*>()->r_addend; 210 } 211 212 unsigned 213 ELFRelocation::RelocAddend64(const ELFRelocation &rel) 214 { 215 if (rel.reloc.is<ELFRel*>()) 216 return 0; 217 else 218 return rel.reloc.get<ELFRela*>()->r_addend; 219 } 220 221 } // end anonymous namespace 222 223 bool 224 ELFNote::Parse(const DataExtractor &data, lldb::offset_t *offset) 225 { 226 // Read all fields. 227 if (data.GetU32(offset, &n_namesz, 3) == NULL) 228 return false; 229 230 // The name field is required to be nul-terminated, and n_namesz 231 // includes the terminating nul in observed implementations (contrary 232 // to the ELF-64 spec). A special case is needed for cores generated 233 // by some older Linux versions, which write a note named "CORE" 234 // without a nul terminator and n_namesz = 4. 235 if (n_namesz == 4) 236 { 237 char buf[4]; 238 if (data.ExtractBytes (*offset, 4, data.GetByteOrder(), buf) != 4) 239 return false; 240 if (strncmp (buf, "CORE", 4) == 0) 241 { 242 n_name = "CORE"; 243 *offset += 4; 244 return true; 245 } 246 } 247 248 const char *cstr = data.GetCStr(offset, llvm::RoundUpToAlignment (n_namesz, 4)); 249 if (cstr == NULL) 250 { 251 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_SYMBOLS)); 252 if (log) 253 log->Printf("Failed to parse note name lacking nul terminator"); 254 255 return false; 256 } 257 n_name = cstr; 258 return true; 259 } 260 261 // Arbitrary constant used as UUID prefix for core files. 262 const uint32_t 263 ObjectFileELF::g_core_uuid_magic(0xE210C); 264 265 //------------------------------------------------------------------ 266 // Static methods. 267 //------------------------------------------------------------------ 268 void 269 ObjectFileELF::Initialize() 270 { 271 PluginManager::RegisterPlugin(GetPluginNameStatic(), 272 GetPluginDescriptionStatic(), 273 CreateInstance, 274 CreateMemoryInstance, 275 GetModuleSpecifications); 276 } 277 278 void 279 ObjectFileELF::Terminate() 280 { 281 PluginManager::UnregisterPlugin(CreateInstance); 282 } 283 284 lldb_private::ConstString 285 ObjectFileELF::GetPluginNameStatic() 286 { 287 static ConstString g_name("elf"); 288 return g_name; 289 } 290 291 const char * 292 ObjectFileELF::GetPluginDescriptionStatic() 293 { 294 return "ELF object file reader."; 295 } 296 297 ObjectFile * 298 ObjectFileELF::CreateInstance (const lldb::ModuleSP &module_sp, 299 DataBufferSP &data_sp, 300 lldb::offset_t data_offset, 301 const lldb_private::FileSpec* file, 302 lldb::offset_t file_offset, 303 lldb::offset_t length) 304 { 305 if (!data_sp) 306 { 307 data_sp = file->MemoryMapFileContents(file_offset, length); 308 data_offset = 0; 309 } 310 311 if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset)) 312 { 313 const uint8_t *magic = data_sp->GetBytes() + data_offset; 314 if (ELFHeader::MagicBytesMatch(magic)) 315 { 316 // Update the data to contain the entire file if it doesn't already 317 if (data_sp->GetByteSize() < length) { 318 data_sp = file->MemoryMapFileContents(file_offset, length); 319 data_offset = 0; 320 magic = data_sp->GetBytes(); 321 } 322 unsigned address_size = ELFHeader::AddressSizeInBytes(magic); 323 if (address_size == 4 || address_size == 8) 324 { 325 std::unique_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, data_offset, file, file_offset, length)); 326 ArchSpec spec; 327 if (objfile_ap->GetArchitecture(spec) && 328 objfile_ap->SetModulesArchitecture(spec)) 329 return objfile_ap.release(); 330 } 331 } 332 } 333 return NULL; 334 } 335 336 337 ObjectFile* 338 ObjectFileELF::CreateMemoryInstance (const lldb::ModuleSP &module_sp, 339 DataBufferSP& data_sp, 340 const lldb::ProcessSP &process_sp, 341 lldb::addr_t header_addr) 342 { 343 if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT)) 344 { 345 const uint8_t *magic = data_sp->GetBytes(); 346 if (ELFHeader::MagicBytesMatch(magic)) 347 { 348 unsigned address_size = ELFHeader::AddressSizeInBytes(magic); 349 if (address_size == 4 || address_size == 8) 350 { 351 std::auto_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, process_sp, header_addr)); 352 ArchSpec spec; 353 if (objfile_ap->GetArchitecture(spec) && 354 objfile_ap->SetModulesArchitecture(spec)) 355 return objfile_ap.release(); 356 } 357 } 358 } 359 return NULL; 360 } 361 362 bool 363 ObjectFileELF::MagicBytesMatch (DataBufferSP& data_sp, 364 lldb::addr_t data_offset, 365 lldb::addr_t data_length) 366 { 367 if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset)) 368 { 369 const uint8_t *magic = data_sp->GetBytes() + data_offset; 370 return ELFHeader::MagicBytesMatch(magic); 371 } 372 return false; 373 } 374 375 /* 376 * crc function from http://svnweb.freebsd.org/base/head/sys/libkern/crc32.c 377 * 378 * COPYRIGHT (C) 1986 Gary S. Brown. You may use this program, or 379 * code or tables extracted from it, as desired without restriction. 380 */ 381 static uint32_t 382 calc_crc32(uint32_t crc, const void *buf, size_t size) 383 { 384 static const uint32_t g_crc32_tab[] = 385 { 386 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, 387 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988, 388 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2, 389 0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 390 0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9, 391 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172, 392 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c, 393 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 394 0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 395 0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924, 396 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106, 397 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433, 398 0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 399 0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 400 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950, 401 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65, 402 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7, 403 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0, 404 0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 405 0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f, 406 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81, 407 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a, 408 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84, 409 0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 410 0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb, 411 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc, 412 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e, 413 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 414 0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 415 0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236, 416 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28, 417 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d, 418 0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f, 419 0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 420 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242, 421 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777, 422 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69, 423 0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 424 0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 425 0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9, 426 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693, 427 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94, 428 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d 429 }; 430 const uint8_t *p = (const uint8_t *)buf; 431 432 crc = crc ^ ~0U; 433 while (size--) 434 crc = g_crc32_tab[(crc ^ *p++) & 0xFF] ^ (crc >> 8); 435 return crc ^ ~0U; 436 } 437 438 static uint32_t 439 calc_gnu_debuglink_crc32(const void *buf, size_t size) 440 { 441 return calc_crc32(0U, buf, size); 442 } 443 444 uint32_t 445 ObjectFileELF::CalculateELFNotesSegmentsCRC32 (const ProgramHeaderColl& program_headers, 446 DataExtractor& object_data) 447 { 448 typedef ProgramHeaderCollConstIter Iter; 449 450 uint32_t core_notes_crc = 0; 451 452 for (Iter I = program_headers.begin(); I != program_headers.end(); ++I) 453 { 454 if (I->p_type == llvm::ELF::PT_NOTE) 455 { 456 const elf_off ph_offset = I->p_offset; 457 const size_t ph_size = I->p_filesz; 458 459 DataExtractor segment_data; 460 if (segment_data.SetData(object_data, ph_offset, ph_size) != ph_size) 461 { 462 // The ELF program header contained incorrect data, 463 // probably corefile is incomplete or corrupted. 464 break; 465 } 466 467 core_notes_crc = calc_crc32(core_notes_crc, 468 segment_data.GetDataStart(), 469 segment_data.GetByteSize()); 470 } 471 } 472 473 return core_notes_crc; 474 } 475 476 static const char* 477 OSABIAsCString (unsigned char osabi_byte) 478 { 479 #define _MAKE_OSABI_CASE(x) case x: return #x 480 switch (osabi_byte) 481 { 482 _MAKE_OSABI_CASE(ELFOSABI_NONE); 483 _MAKE_OSABI_CASE(ELFOSABI_HPUX); 484 _MAKE_OSABI_CASE(ELFOSABI_NETBSD); 485 _MAKE_OSABI_CASE(ELFOSABI_GNU); 486 _MAKE_OSABI_CASE(ELFOSABI_HURD); 487 _MAKE_OSABI_CASE(ELFOSABI_SOLARIS); 488 _MAKE_OSABI_CASE(ELFOSABI_AIX); 489 _MAKE_OSABI_CASE(ELFOSABI_IRIX); 490 _MAKE_OSABI_CASE(ELFOSABI_FREEBSD); 491 _MAKE_OSABI_CASE(ELFOSABI_TRU64); 492 _MAKE_OSABI_CASE(ELFOSABI_MODESTO); 493 _MAKE_OSABI_CASE(ELFOSABI_OPENBSD); 494 _MAKE_OSABI_CASE(ELFOSABI_OPENVMS); 495 _MAKE_OSABI_CASE(ELFOSABI_NSK); 496 _MAKE_OSABI_CASE(ELFOSABI_AROS); 497 _MAKE_OSABI_CASE(ELFOSABI_FENIXOS); 498 _MAKE_OSABI_CASE(ELFOSABI_C6000_ELFABI); 499 _MAKE_OSABI_CASE(ELFOSABI_C6000_LINUX); 500 _MAKE_OSABI_CASE(ELFOSABI_ARM); 501 _MAKE_OSABI_CASE(ELFOSABI_STANDALONE); 502 default: 503 return "<unknown-osabi>"; 504 } 505 #undef _MAKE_OSABI_CASE 506 } 507 508 static bool 509 GetOsFromOSABI (unsigned char osabi_byte, llvm::Triple::OSType &ostype) 510 { 511 switch (osabi_byte) 512 { 513 case ELFOSABI_AIX: ostype = llvm::Triple::OSType::AIX; break; 514 case ELFOSABI_FREEBSD: ostype = llvm::Triple::OSType::FreeBSD; break; 515 case ELFOSABI_GNU: ostype = llvm::Triple::OSType::Linux; break; 516 case ELFOSABI_NETBSD: ostype = llvm::Triple::OSType::NetBSD; break; 517 case ELFOSABI_OPENBSD: ostype = llvm::Triple::OSType::OpenBSD; break; 518 case ELFOSABI_SOLARIS: ostype = llvm::Triple::OSType::Solaris; break; 519 default: 520 ostype = llvm::Triple::OSType::UnknownOS; 521 } 522 return ostype != llvm::Triple::OSType::UnknownOS; 523 } 524 525 size_t 526 ObjectFileELF::GetModuleSpecifications (const lldb_private::FileSpec& file, 527 lldb::DataBufferSP& data_sp, 528 lldb::offset_t data_offset, 529 lldb::offset_t file_offset, 530 lldb::offset_t length, 531 lldb_private::ModuleSpecList &specs) 532 { 533 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES)); 534 535 const size_t initial_count = specs.GetSize(); 536 537 if (ObjectFileELF::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) 538 { 539 DataExtractor data; 540 data.SetData(data_sp); 541 elf::ELFHeader header; 542 if (header.Parse(data, &data_offset)) 543 { 544 if (data_sp) 545 { 546 ModuleSpec spec; 547 spec.GetFileSpec() = file; 548 spec.GetArchitecture().SetArchitecture(eArchTypeELF, 549 header.e_machine, 550 LLDB_INVALID_CPUTYPE); 551 if (spec.GetArchitecture().IsValid()) 552 { 553 llvm::Triple::OSType ostype; 554 // First try to determine the OS type from the OSABI field in the elf header. 555 556 if (log) 557 log->Printf ("ObjectFileELF::%s file '%s' module OSABI: %s", __FUNCTION__, file.GetPath ().c_str (), OSABIAsCString (header.e_ident[EI_OSABI])); 558 if (GetOsFromOSABI (header.e_ident[EI_OSABI], ostype) && ostype != llvm::Triple::OSType::UnknownOS) 559 { 560 spec.GetArchitecture ().GetTriple ().setOS (ostype); 561 562 // Also clear the vendor so we don't end up with situations like 563 // x86_64-apple-FreeBSD. 564 spec.GetArchitecture ().GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 565 566 if (log) 567 log->Printf ("ObjectFileELF::%s file '%s' set ELF module OS type from ELF header OSABI.", __FUNCTION__, file.GetPath ().c_str ()); 568 } 569 570 // Try to get the UUID from the section list. Usually that's at the end, so 571 // map the file in if we don't have it already. 572 size_t section_header_end = header.e_shoff + header.e_shnum * header.e_shentsize; 573 if (section_header_end > data_sp->GetByteSize()) 574 { 575 data_sp = file.MemoryMapFileContents (file_offset, section_header_end); 576 data.SetData(data_sp); 577 } 578 579 uint32_t gnu_debuglink_crc = 0; 580 std::string gnu_debuglink_file; 581 SectionHeaderColl section_headers; 582 lldb_private::UUID &uuid = spec.GetUUID(); 583 584 GetSectionHeaderInfo(section_headers, data, header, uuid, gnu_debuglink_file, gnu_debuglink_crc, spec.GetArchitecture ()); 585 586 // If the module vendor is not set and the module OS matches this host OS, set the module vendor to the host vendor. 587 llvm::Triple &spec_triple = spec.GetArchitecture ().GetTriple (); 588 if (spec_triple.getVendor () == llvm::Triple::VendorType::UnknownVendor) 589 { 590 const llvm::Triple &host_triple = HostInfo::GetArchitecture().GetTriple(); 591 if (spec_triple.getOS () == host_triple.getOS ()) 592 spec_triple.setVendor (host_triple.getVendor ()); 593 } 594 595 if (log) 596 log->Printf ("ObjectFileELF::%s file '%s' module set to triple: %s (architecture %s)", __FUNCTION__, file.GetPath ().c_str (), spec_triple.getTriple ().c_str (), spec.GetArchitecture ().GetArchitectureName ()); 597 598 if (!uuid.IsValid()) 599 { 600 uint32_t core_notes_crc = 0; 601 602 if (!gnu_debuglink_crc) 603 { 604 lldb_private::Timer scoped_timer (__PRETTY_FUNCTION__, 605 "Calculating module crc32 %s with size %" PRIu64 " KiB", 606 file.GetLastPathComponent().AsCString(), 607 (file.GetByteSize()-file_offset)/1024); 608 609 // For core files - which usually don't happen to have a gnu_debuglink, 610 // and are pretty bulky - calculating whole contents crc32 would be too much of luxury. 611 // Thus we will need to fallback to something simpler. 612 if (header.e_type == llvm::ELF::ET_CORE) 613 { 614 size_t program_headers_end = header.e_phoff + header.e_phnum * header.e_phentsize; 615 if (program_headers_end > data_sp->GetByteSize()) 616 { 617 data_sp = file.MemoryMapFileContents(file_offset, program_headers_end); 618 data.SetData(data_sp); 619 } 620 ProgramHeaderColl program_headers; 621 GetProgramHeaderInfo(program_headers, data, header); 622 623 size_t segment_data_end = 0; 624 for (ProgramHeaderCollConstIter I = program_headers.begin(); 625 I != program_headers.end(); ++I) 626 { 627 segment_data_end = std::max<unsigned long long> (I->p_offset + I->p_filesz, segment_data_end); 628 } 629 630 if (segment_data_end > data_sp->GetByteSize()) 631 { 632 data_sp = file.MemoryMapFileContents(file_offset, segment_data_end); 633 data.SetData(data_sp); 634 } 635 636 core_notes_crc = CalculateELFNotesSegmentsCRC32 (program_headers, data); 637 } 638 else 639 { 640 // Need to map entire file into memory to calculate the crc. 641 data_sp = file.MemoryMapFileContents (file_offset, SIZE_MAX); 642 data.SetData(data_sp); 643 gnu_debuglink_crc = calc_gnu_debuglink_crc32 (data.GetDataStart(), data.GetByteSize()); 644 } 645 } 646 if (gnu_debuglink_crc) 647 { 648 // Use 4 bytes of crc from the .gnu_debuglink section. 649 uint32_t uuidt[4] = { gnu_debuglink_crc, 0, 0, 0 }; 650 uuid.SetBytes (uuidt, sizeof(uuidt)); 651 } 652 else if (core_notes_crc) 653 { 654 // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it look different form 655 // .gnu_debuglink crc followed by 4 bytes of note segments crc. 656 uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 }; 657 uuid.SetBytes (uuidt, sizeof(uuidt)); 658 } 659 } 660 661 specs.Append(spec); 662 } 663 } 664 } 665 } 666 667 return specs.GetSize() - initial_count; 668 } 669 670 //------------------------------------------------------------------ 671 // PluginInterface protocol 672 //------------------------------------------------------------------ 673 lldb_private::ConstString 674 ObjectFileELF::GetPluginName() 675 { 676 return GetPluginNameStatic(); 677 } 678 679 uint32_t 680 ObjectFileELF::GetPluginVersion() 681 { 682 return m_plugin_version; 683 } 684 //------------------------------------------------------------------ 685 // ObjectFile protocol 686 //------------------------------------------------------------------ 687 688 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp, 689 DataBufferSP& data_sp, 690 lldb::offset_t data_offset, 691 const FileSpec* file, 692 lldb::offset_t file_offset, 693 lldb::offset_t length) : 694 ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset), 695 m_header(), 696 m_uuid(), 697 m_gnu_debuglink_file(), 698 m_gnu_debuglink_crc(0), 699 m_program_headers(), 700 m_section_headers(), 701 m_dynamic_symbols(), 702 m_filespec_ap(), 703 m_entry_point_address(), 704 m_arch_spec() 705 { 706 if (file) 707 m_file = *file; 708 ::memset(&m_header, 0, sizeof(m_header)); 709 } 710 711 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp, 712 DataBufferSP& data_sp, 713 const lldb::ProcessSP &process_sp, 714 addr_t header_addr) : 715 ObjectFile(module_sp, process_sp, LLDB_INVALID_ADDRESS, data_sp), 716 m_header(), 717 m_uuid(), 718 m_gnu_debuglink_file(), 719 m_gnu_debuglink_crc(0), 720 m_program_headers(), 721 m_section_headers(), 722 m_dynamic_symbols(), 723 m_filespec_ap(), 724 m_entry_point_address(), 725 m_arch_spec() 726 { 727 ::memset(&m_header, 0, sizeof(m_header)); 728 } 729 730 ObjectFileELF::~ObjectFileELF() 731 { 732 } 733 734 bool 735 ObjectFileELF::IsExecutable() const 736 { 737 return ((m_header.e_type & ET_EXEC) != 0) || (m_header.e_entry != 0); 738 } 739 740 bool 741 ObjectFileELF::SetLoadAddress (Target &target, 742 lldb::addr_t value, 743 bool value_is_offset) 744 { 745 ModuleSP module_sp = GetModule(); 746 if (module_sp) 747 { 748 size_t num_loaded_sections = 0; 749 SectionList *section_list = GetSectionList (); 750 if (section_list) 751 { 752 if (value_is_offset) 753 { 754 const size_t num_sections = section_list->GetSize(); 755 size_t sect_idx = 0; 756 757 for (sect_idx = 0; sect_idx < num_sections; ++sect_idx) 758 { 759 // Iterate through the object file sections to find all 760 // of the sections that have SHF_ALLOC in their flag bits. 761 SectionSP section_sp (section_list->GetSectionAtIndex (sect_idx)); 762 // if (section_sp && !section_sp->IsThreadSpecific()) 763 if (section_sp && section_sp->Test(SHF_ALLOC)) 764 { 765 if (target.GetSectionLoadList().SetSectionLoadAddress (section_sp, section_sp->GetFileAddress() + value)) 766 ++num_loaded_sections; 767 } 768 } 769 return num_loaded_sections > 0; 770 } 771 else 772 { 773 // Not sure how to slide an ELF file given the base address 774 // of the ELF file in memory 775 } 776 } 777 } 778 return false; // If it changed 779 } 780 781 ByteOrder 782 ObjectFileELF::GetByteOrder() const 783 { 784 if (m_header.e_ident[EI_DATA] == ELFDATA2MSB) 785 return eByteOrderBig; 786 if (m_header.e_ident[EI_DATA] == ELFDATA2LSB) 787 return eByteOrderLittle; 788 return eByteOrderInvalid; 789 } 790 791 uint32_t 792 ObjectFileELF::GetAddressByteSize() const 793 { 794 return m_data.GetAddressByteSize(); 795 } 796 797 size_t 798 ObjectFileELF::SectionIndex(const SectionHeaderCollIter &I) 799 { 800 return std::distance(m_section_headers.begin(), I) + 1u; 801 } 802 803 size_t 804 ObjectFileELF::SectionIndex(const SectionHeaderCollConstIter &I) const 805 { 806 return std::distance(m_section_headers.begin(), I) + 1u; 807 } 808 809 bool 810 ObjectFileELF::ParseHeader() 811 { 812 lldb::offset_t offset = 0; 813 return m_header.Parse(m_data, &offset); 814 } 815 816 bool 817 ObjectFileELF::GetUUID(lldb_private::UUID* uuid) 818 { 819 // Need to parse the section list to get the UUIDs, so make sure that's been done. 820 if (!ParseSectionHeaders() && GetType() != ObjectFile::eTypeCoreFile) 821 return false; 822 823 if (m_uuid.IsValid()) 824 { 825 // We have the full build id uuid. 826 *uuid = m_uuid; 827 return true; 828 } 829 else if (GetType() == ObjectFile::eTypeCoreFile) 830 { 831 uint32_t core_notes_crc = 0; 832 833 if (!ParseProgramHeaders()) 834 return false; 835 836 core_notes_crc = CalculateELFNotesSegmentsCRC32(m_program_headers, m_data); 837 838 if (core_notes_crc) 839 { 840 // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it 841 // look different form .gnu_debuglink crc - followed by 4 bytes of note 842 // segments crc. 843 uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 }; 844 m_uuid.SetBytes (uuidt, sizeof(uuidt)); 845 } 846 } 847 else 848 { 849 if (!m_gnu_debuglink_crc) 850 m_gnu_debuglink_crc = calc_gnu_debuglink_crc32 (m_data.GetDataStart(), m_data.GetByteSize()); 851 if (m_gnu_debuglink_crc) 852 { 853 // Use 4 bytes of crc from the .gnu_debuglink section. 854 uint32_t uuidt[4] = { m_gnu_debuglink_crc, 0, 0, 0 }; 855 m_uuid.SetBytes (uuidt, sizeof(uuidt)); 856 } 857 } 858 859 if (m_uuid.IsValid()) 860 { 861 *uuid = m_uuid; 862 return true; 863 } 864 865 return false; 866 } 867 868 lldb_private::FileSpecList 869 ObjectFileELF::GetDebugSymbolFilePaths() 870 { 871 FileSpecList file_spec_list; 872 873 if (!m_gnu_debuglink_file.empty()) 874 { 875 FileSpec file_spec (m_gnu_debuglink_file.c_str(), false); 876 file_spec_list.Append (file_spec); 877 } 878 return file_spec_list; 879 } 880 881 uint32_t 882 ObjectFileELF::GetDependentModules(FileSpecList &files) 883 { 884 size_t num_modules = ParseDependentModules(); 885 uint32_t num_specs = 0; 886 887 for (unsigned i = 0; i < num_modules; ++i) 888 { 889 if (files.AppendIfUnique(m_filespec_ap->GetFileSpecAtIndex(i))) 890 num_specs++; 891 } 892 893 return num_specs; 894 } 895 896 Address 897 ObjectFileELF::GetImageInfoAddress(Target *target) 898 { 899 if (!ParseDynamicSymbols()) 900 return Address(); 901 902 SectionList *section_list = GetSectionList(); 903 if (!section_list) 904 return Address(); 905 906 // Find the SHT_DYNAMIC (.dynamic) section. 907 SectionSP dynsym_section_sp (section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true)); 908 if (!dynsym_section_sp) 909 return Address(); 910 assert (dynsym_section_sp->GetObjectFile() == this); 911 912 user_id_t dynsym_id = dynsym_section_sp->GetID(); 913 const ELFSectionHeaderInfo *dynsym_hdr = GetSectionHeaderByIndex(dynsym_id); 914 if (!dynsym_hdr) 915 return Address(); 916 917 for (size_t i = 0; i < m_dynamic_symbols.size(); ++i) 918 { 919 ELFDynamic &symbol = m_dynamic_symbols[i]; 920 921 if (symbol.d_tag == DT_DEBUG) 922 { 923 // Compute the offset as the number of previous entries plus the 924 // size of d_tag. 925 addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize(); 926 return Address(dynsym_section_sp, offset); 927 } 928 else if (symbol.d_tag == DT_MIPS_RLD_MAP && target) 929 { 930 addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize(); 931 addr_t dyn_base = dynsym_section_sp->GetLoadBaseAddress(target); 932 if (dyn_base == LLDB_INVALID_ADDRESS) 933 return Address(); 934 Address addr; 935 Error error; 936 if (target->ReadPointerFromMemory(dyn_base + offset, false, error, addr)) 937 return addr; 938 } 939 } 940 941 return Address(); 942 } 943 944 lldb_private::Address 945 ObjectFileELF::GetEntryPointAddress () 946 { 947 if (m_entry_point_address.IsValid()) 948 return m_entry_point_address; 949 950 if (!ParseHeader() || !IsExecutable()) 951 return m_entry_point_address; 952 953 SectionList *section_list = GetSectionList(); 954 addr_t offset = m_header.e_entry; 955 956 if (!section_list) 957 m_entry_point_address.SetOffset(offset); 958 else 959 m_entry_point_address.ResolveAddressUsingFileSections(offset, section_list); 960 return m_entry_point_address; 961 } 962 963 //---------------------------------------------------------------------- 964 // ParseDependentModules 965 //---------------------------------------------------------------------- 966 size_t 967 ObjectFileELF::ParseDependentModules() 968 { 969 if (m_filespec_ap.get()) 970 return m_filespec_ap->GetSize(); 971 972 m_filespec_ap.reset(new FileSpecList()); 973 974 if (!ParseSectionHeaders()) 975 return 0; 976 977 SectionList *section_list = GetSectionList(); 978 if (!section_list) 979 return 0; 980 981 // Find the SHT_DYNAMIC section. 982 Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get(); 983 if (!dynsym) 984 return 0; 985 assert (dynsym->GetObjectFile() == this); 986 987 const ELFSectionHeaderInfo *header = GetSectionHeaderByIndex (dynsym->GetID()); 988 if (!header) 989 return 0; 990 // sh_link: section header index of string table used by entries in the section. 991 Section *dynstr = section_list->FindSectionByID (header->sh_link + 1).get(); 992 if (!dynstr) 993 return 0; 994 995 DataExtractor dynsym_data; 996 DataExtractor dynstr_data; 997 if (ReadSectionData(dynsym, dynsym_data) && 998 ReadSectionData(dynstr, dynstr_data)) 999 { 1000 ELFDynamic symbol; 1001 const lldb::offset_t section_size = dynsym_data.GetByteSize(); 1002 lldb::offset_t offset = 0; 1003 1004 // The only type of entries we are concerned with are tagged DT_NEEDED, 1005 // yielding the name of a required library. 1006 while (offset < section_size) 1007 { 1008 if (!symbol.Parse(dynsym_data, &offset)) 1009 break; 1010 1011 if (symbol.d_tag != DT_NEEDED) 1012 continue; 1013 1014 uint32_t str_index = static_cast<uint32_t>(symbol.d_val); 1015 const char *lib_name = dynstr_data.PeekCStr(str_index); 1016 m_filespec_ap->Append(FileSpec(lib_name, true)); 1017 } 1018 } 1019 1020 return m_filespec_ap->GetSize(); 1021 } 1022 1023 //---------------------------------------------------------------------- 1024 // GetProgramHeaderInfo 1025 //---------------------------------------------------------------------- 1026 size_t 1027 ObjectFileELF::GetProgramHeaderInfo(ProgramHeaderColl &program_headers, 1028 DataExtractor &object_data, 1029 const ELFHeader &header) 1030 { 1031 // We have already parsed the program headers 1032 if (!program_headers.empty()) 1033 return program_headers.size(); 1034 1035 // If there are no program headers to read we are done. 1036 if (header.e_phnum == 0) 1037 return 0; 1038 1039 program_headers.resize(header.e_phnum); 1040 if (program_headers.size() != header.e_phnum) 1041 return 0; 1042 1043 const size_t ph_size = header.e_phnum * header.e_phentsize; 1044 const elf_off ph_offset = header.e_phoff; 1045 DataExtractor data; 1046 if (data.SetData(object_data, ph_offset, ph_size) != ph_size) 1047 return 0; 1048 1049 uint32_t idx; 1050 lldb::offset_t offset; 1051 for (idx = 0, offset = 0; idx < header.e_phnum; ++idx) 1052 { 1053 if (program_headers[idx].Parse(data, &offset) == false) 1054 break; 1055 } 1056 1057 if (idx < program_headers.size()) 1058 program_headers.resize(idx); 1059 1060 return program_headers.size(); 1061 1062 } 1063 1064 //---------------------------------------------------------------------- 1065 // ParseProgramHeaders 1066 //---------------------------------------------------------------------- 1067 size_t 1068 ObjectFileELF::ParseProgramHeaders() 1069 { 1070 return GetProgramHeaderInfo(m_program_headers, m_data, m_header); 1071 } 1072 1073 lldb_private::Error 1074 ObjectFileELF::RefineModuleDetailsFromNote (lldb_private::DataExtractor &data, lldb_private::ArchSpec &arch_spec, lldb_private::UUID &uuid) 1075 { 1076 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES)); 1077 Error error; 1078 1079 lldb::offset_t offset = 0; 1080 1081 while (true) 1082 { 1083 // Parse the note header. If this fails, bail out. 1084 ELFNote note = ELFNote(); 1085 if (!note.Parse(data, &offset)) 1086 { 1087 // We're done. 1088 return error; 1089 } 1090 1091 // If a tag processor handles the tag, it should set processed to true, and 1092 // the loop will assume the tag processing has moved entirely past the note's payload. 1093 // Otherwise, leave it false and the end of the loop will handle the offset properly. 1094 bool processed = false; 1095 1096 if (log) 1097 log->Printf ("ObjectFileELF::%s parsing note name='%s', type=%" PRIu32, __FUNCTION__, note.n_name.c_str (), note.n_type); 1098 1099 // Process FreeBSD ELF notes. 1100 if ((note.n_name == LLDB_NT_OWNER_FREEBSD) && 1101 (note.n_type == LLDB_NT_FREEBSD_ABI_TAG) && 1102 (note.n_descsz == LLDB_NT_FREEBSD_ABI_SIZE)) 1103 { 1104 // We'll consume the payload below. 1105 processed = true; 1106 1107 // Pull out the min version info. 1108 uint32_t version_info; 1109 if (data.GetU32 (&offset, &version_info, 1) == nullptr) 1110 { 1111 error.SetErrorString ("failed to read FreeBSD ABI note payload"); 1112 return error; 1113 } 1114 1115 // Convert the version info into a major/minor number. 1116 const uint32_t version_major = version_info / 100000; 1117 const uint32_t version_minor = (version_info / 1000) % 100; 1118 1119 char os_name[32]; 1120 snprintf (os_name, sizeof (os_name), "freebsd%" PRIu32 ".%" PRIu32, version_major, version_minor); 1121 1122 // Set the elf OS version to FreeBSD. Also clear the vendor. 1123 arch_spec.GetTriple ().setOSName (os_name); 1124 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1125 1126 if (log) 1127 log->Printf ("ObjectFileELF::%s detected FreeBSD %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_major, version_minor, static_cast<uint32_t> (version_info % 1000)); 1128 } 1129 // Process GNU ELF notes. 1130 else if (note.n_name == LLDB_NT_OWNER_GNU) 1131 { 1132 switch (note.n_type) 1133 { 1134 case LLDB_NT_GNU_ABI_TAG: 1135 if (note.n_descsz == LLDB_NT_GNU_ABI_SIZE) 1136 { 1137 // We'll consume the payload below. 1138 processed = true; 1139 1140 // Pull out the min OS version supporting the ABI. 1141 uint32_t version_info[4]; 1142 if (data.GetU32 (&offset, &version_info[0], note.n_descsz / 4) == nullptr) 1143 { 1144 error.SetErrorString ("failed to read GNU ABI note payload"); 1145 return error; 1146 } 1147 1148 // Set the OS per the OS field. 1149 switch (version_info[0]) 1150 { 1151 case LLDB_NT_GNU_ABI_OS_LINUX: 1152 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Linux); 1153 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1154 if (log) 1155 log->Printf ("ObjectFileELF::%s detected Linux, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]); 1156 // FIXME we have the minimal version number, we could be propagating that. version_info[1] = OS Major, version_info[2] = OS Minor, version_info[3] = Revision. 1157 break; 1158 case LLDB_NT_GNU_ABI_OS_HURD: 1159 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::UnknownOS); 1160 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1161 if (log) 1162 log->Printf ("ObjectFileELF::%s detected Hurd (unsupported), min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]); 1163 break; 1164 case LLDB_NT_GNU_ABI_OS_SOLARIS: 1165 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Solaris); 1166 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1167 if (log) 1168 log->Printf ("ObjectFileELF::%s detected Solaris, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]); 1169 break; 1170 default: 1171 if (log) 1172 log->Printf ("ObjectFileELF::%s unrecognized OS in note, id %" PRIu32 ", min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[0], version_info[1], version_info[2], version_info[3]); 1173 break; 1174 } 1175 } 1176 break; 1177 1178 case LLDB_NT_GNU_BUILD_ID_TAG: 1179 // Only bother processing this if we don't already have the uuid set. 1180 if (!uuid.IsValid()) 1181 { 1182 // We'll consume the payload below. 1183 processed = true; 1184 1185 // 16 bytes is UUID|MD5, 20 bytes is SHA1 1186 if ((note.n_descsz == 16 || note.n_descsz == 20)) 1187 { 1188 uint8_t uuidbuf[20]; 1189 if (data.GetU8 (&offset, &uuidbuf, note.n_descsz) == nullptr) 1190 { 1191 error.SetErrorString ("failed to read GNU_BUILD_ID note payload"); 1192 return error; 1193 } 1194 1195 // Save the build id as the UUID for the module. 1196 uuid.SetBytes (uuidbuf, note.n_descsz); 1197 } 1198 } 1199 break; 1200 } 1201 } 1202 // Process NetBSD ELF notes. 1203 else if ((note.n_name == LLDB_NT_OWNER_NETBSD) && 1204 (note.n_type == LLDB_NT_NETBSD_ABI_TAG) && 1205 (note.n_descsz == LLDB_NT_NETBSD_ABI_SIZE)) 1206 { 1207 1208 // We'll consume the payload below. 1209 processed = true; 1210 1211 // Pull out the min version info. 1212 uint32_t version_info; 1213 if (data.GetU32 (&offset, &version_info, 1) == nullptr) 1214 { 1215 error.SetErrorString ("failed to read NetBSD ABI note payload"); 1216 return error; 1217 } 1218 1219 // Set the elf OS version to NetBSD. Also clear the vendor. 1220 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::NetBSD); 1221 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1222 1223 if (log) 1224 log->Printf ("ObjectFileELF::%s detected NetBSD, min version constant %" PRIu32, __FUNCTION__, version_info); 1225 } 1226 // Process CSR kalimba notes 1227 else if ((note.n_type == LLDB_NT_GNU_ABI_TAG) && 1228 (note.n_name == LLDB_NT_OWNER_CSR)) 1229 { 1230 // We'll consume the payload below. 1231 processed = true; 1232 arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS); 1233 arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::CSR); 1234 1235 // TODO At some point the description string could be processed. 1236 // It could provide a steer towards the kalimba variant which 1237 // this ELF targets. 1238 if(note.n_descsz) 1239 { 1240 const char *cstr = data.GetCStr(&offset, llvm::RoundUpToAlignment (note.n_descsz, 4)); 1241 (void)cstr; 1242 } 1243 } 1244 1245 if (!processed) 1246 offset += llvm::RoundUpToAlignment(note.n_descsz, 4); 1247 } 1248 1249 return error; 1250 } 1251 1252 1253 //---------------------------------------------------------------------- 1254 // GetSectionHeaderInfo 1255 //---------------------------------------------------------------------- 1256 size_t 1257 ObjectFileELF::GetSectionHeaderInfo(SectionHeaderColl §ion_headers, 1258 lldb_private::DataExtractor &object_data, 1259 const elf::ELFHeader &header, 1260 lldb_private::UUID &uuid, 1261 std::string &gnu_debuglink_file, 1262 uint32_t &gnu_debuglink_crc, 1263 ArchSpec &arch_spec) 1264 { 1265 // Don't reparse the section headers if we already did that. 1266 if (!section_headers.empty()) 1267 return section_headers.size(); 1268 1269 // Only initialize the arch_spec to okay defaults if they're not already set. 1270 // We'll refine this with note data as we parse the notes. 1271 if (arch_spec.GetTriple ().getOS () == llvm::Triple::OSType::UnknownOS) 1272 { 1273 arch_spec.SetArchitecture (eArchTypeELF, header.e_machine, LLDB_INVALID_CPUTYPE); 1274 switch (arch_spec.GetAddressByteSize()) 1275 { 1276 case 4: 1277 { 1278 const ArchSpec host_arch32 = HostInfo::GetArchitecture(HostInfo::eArchKind32); 1279 if (host_arch32.GetCore() == arch_spec.GetCore()) 1280 { 1281 arch_spec.GetTriple().setOSName(HostInfo::GetOSString().data()); 1282 arch_spec.GetTriple().setVendorName(HostInfo::GetVendorString().data()); 1283 } 1284 } 1285 break; 1286 case 8: 1287 { 1288 const ArchSpec host_arch64 = HostInfo::GetArchitecture(HostInfo::eArchKind64); 1289 if (host_arch64.GetCore() == arch_spec.GetCore()) 1290 { 1291 arch_spec.GetTriple().setOSName(HostInfo::GetOSString().data()); 1292 arch_spec.GetTriple().setVendorName(HostInfo::GetVendorString().data()); 1293 } 1294 } 1295 break; 1296 } 1297 } 1298 1299 // If there are no section headers we are done. 1300 if (header.e_shnum == 0) 1301 return 0; 1302 1303 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES)); 1304 1305 section_headers.resize(header.e_shnum); 1306 if (section_headers.size() != header.e_shnum) 1307 return 0; 1308 1309 const size_t sh_size = header.e_shnum * header.e_shentsize; 1310 const elf_off sh_offset = header.e_shoff; 1311 DataExtractor sh_data; 1312 if (sh_data.SetData (object_data, sh_offset, sh_size) != sh_size) 1313 return 0; 1314 1315 uint32_t idx; 1316 lldb::offset_t offset; 1317 for (idx = 0, offset = 0; idx < header.e_shnum; ++idx) 1318 { 1319 if (section_headers[idx].Parse(sh_data, &offset) == false) 1320 break; 1321 } 1322 if (idx < section_headers.size()) 1323 section_headers.resize(idx); 1324 1325 const unsigned strtab_idx = header.e_shstrndx; 1326 if (strtab_idx && strtab_idx < section_headers.size()) 1327 { 1328 const ELFSectionHeaderInfo &sheader = section_headers[strtab_idx]; 1329 const size_t byte_size = sheader.sh_size; 1330 const Elf64_Off offset = sheader.sh_offset; 1331 lldb_private::DataExtractor shstr_data; 1332 1333 if (shstr_data.SetData (object_data, offset, byte_size) == byte_size) 1334 { 1335 for (SectionHeaderCollIter I = section_headers.begin(); 1336 I != section_headers.end(); ++I) 1337 { 1338 static ConstString g_sect_name_gnu_debuglink (".gnu_debuglink"); 1339 const ELFSectionHeaderInfo &header = *I; 1340 const uint64_t section_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size; 1341 ConstString name(shstr_data.PeekCStr(I->sh_name)); 1342 1343 I->section_name = name; 1344 1345 if (name == g_sect_name_gnu_debuglink) 1346 { 1347 DataExtractor data; 1348 if (section_size && (data.SetData (object_data, header.sh_offset, section_size) == section_size)) 1349 { 1350 lldb::offset_t gnu_debuglink_offset = 0; 1351 gnu_debuglink_file = data.GetCStr (&gnu_debuglink_offset); 1352 gnu_debuglink_offset = llvm::RoundUpToAlignment (gnu_debuglink_offset, 4); 1353 data.GetU32 (&gnu_debuglink_offset, &gnu_debuglink_crc, 1); 1354 } 1355 } 1356 1357 // Process ELF note section entries. 1358 if (header.sh_type == SHT_NOTE) 1359 { 1360 // Allow notes to refine module info. 1361 DataExtractor data; 1362 if (section_size && (data.SetData (object_data, header.sh_offset, section_size) == section_size)) 1363 { 1364 Error error = RefineModuleDetailsFromNote (data, arch_spec, uuid); 1365 if (error.Fail ()) 1366 { 1367 if (log) 1368 log->Printf ("ObjectFileELF::%s ELF note processing failed: %s", __FUNCTION__, error.AsCString ()); 1369 } 1370 } 1371 } 1372 } 1373 1374 return section_headers.size(); 1375 } 1376 } 1377 1378 section_headers.clear(); 1379 return 0; 1380 } 1381 1382 size_t 1383 ObjectFileELF::GetProgramHeaderCount() 1384 { 1385 return ParseProgramHeaders(); 1386 } 1387 1388 const elf::ELFProgramHeader * 1389 ObjectFileELF::GetProgramHeaderByIndex(lldb::user_id_t id) 1390 { 1391 if (!id || !ParseProgramHeaders()) 1392 return NULL; 1393 1394 if (--id < m_program_headers.size()) 1395 return &m_program_headers[id]; 1396 1397 return NULL; 1398 } 1399 1400 DataExtractor 1401 ObjectFileELF::GetSegmentDataByIndex(lldb::user_id_t id) 1402 { 1403 const elf::ELFProgramHeader *segment_header = GetProgramHeaderByIndex(id); 1404 if (segment_header == NULL) 1405 return DataExtractor(); 1406 return DataExtractor(m_data, segment_header->p_offset, segment_header->p_filesz); 1407 } 1408 1409 //---------------------------------------------------------------------- 1410 // ParseSectionHeaders 1411 //---------------------------------------------------------------------- 1412 size_t 1413 ObjectFileELF::ParseSectionHeaders() 1414 { 1415 return GetSectionHeaderInfo(m_section_headers, m_data, m_header, m_uuid, m_gnu_debuglink_file, m_gnu_debuglink_crc, m_arch_spec); 1416 } 1417 1418 const ObjectFileELF::ELFSectionHeaderInfo * 1419 ObjectFileELF::GetSectionHeaderByIndex(lldb::user_id_t id) 1420 { 1421 if (!id || !ParseSectionHeaders()) 1422 return NULL; 1423 1424 if (--id < m_section_headers.size()) 1425 return &m_section_headers[id]; 1426 1427 return NULL; 1428 } 1429 1430 void 1431 ObjectFileELF::CreateSections(SectionList &unified_section_list) 1432 { 1433 if (!m_sections_ap.get() && ParseSectionHeaders()) 1434 { 1435 m_sections_ap.reset(new SectionList()); 1436 1437 for (SectionHeaderCollIter I = m_section_headers.begin(); 1438 I != m_section_headers.end(); ++I) 1439 { 1440 const ELFSectionHeaderInfo &header = *I; 1441 1442 ConstString& name = I->section_name; 1443 const uint64_t file_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size; 1444 const uint64_t vm_size = header.sh_flags & SHF_ALLOC ? header.sh_size : 0; 1445 1446 static ConstString g_sect_name_text (".text"); 1447 static ConstString g_sect_name_data (".data"); 1448 static ConstString g_sect_name_bss (".bss"); 1449 static ConstString g_sect_name_tdata (".tdata"); 1450 static ConstString g_sect_name_tbss (".tbss"); 1451 static ConstString g_sect_name_dwarf_debug_abbrev (".debug_abbrev"); 1452 static ConstString g_sect_name_dwarf_debug_aranges (".debug_aranges"); 1453 static ConstString g_sect_name_dwarf_debug_frame (".debug_frame"); 1454 static ConstString g_sect_name_dwarf_debug_info (".debug_info"); 1455 static ConstString g_sect_name_dwarf_debug_line (".debug_line"); 1456 static ConstString g_sect_name_dwarf_debug_loc (".debug_loc"); 1457 static ConstString g_sect_name_dwarf_debug_macinfo (".debug_macinfo"); 1458 static ConstString g_sect_name_dwarf_debug_pubnames (".debug_pubnames"); 1459 static ConstString g_sect_name_dwarf_debug_pubtypes (".debug_pubtypes"); 1460 static ConstString g_sect_name_dwarf_debug_ranges (".debug_ranges"); 1461 static ConstString g_sect_name_dwarf_debug_str (".debug_str"); 1462 static ConstString g_sect_name_eh_frame (".eh_frame"); 1463 1464 SectionType sect_type = eSectionTypeOther; 1465 1466 bool is_thread_specific = false; 1467 1468 if (name == g_sect_name_text) sect_type = eSectionTypeCode; 1469 else if (name == g_sect_name_data) sect_type = eSectionTypeData; 1470 else if (name == g_sect_name_bss) sect_type = eSectionTypeZeroFill; 1471 else if (name == g_sect_name_tdata) 1472 { 1473 sect_type = eSectionTypeData; 1474 is_thread_specific = true; 1475 } 1476 else if (name == g_sect_name_tbss) 1477 { 1478 sect_type = eSectionTypeZeroFill; 1479 is_thread_specific = true; 1480 } 1481 // .debug_abbrev – Abbreviations used in the .debug_info section 1482 // .debug_aranges – Lookup table for mapping addresses to compilation units 1483 // .debug_frame – Call frame information 1484 // .debug_info – The core DWARF information section 1485 // .debug_line – Line number information 1486 // .debug_loc – Location lists used in DW_AT_location attributes 1487 // .debug_macinfo – Macro information 1488 // .debug_pubnames – Lookup table for mapping object and function names to compilation units 1489 // .debug_pubtypes – Lookup table for mapping type names to compilation units 1490 // .debug_ranges – Address ranges used in DW_AT_ranges attributes 1491 // .debug_str – String table used in .debug_info 1492 // MISSING? .gnu_debugdata - "mini debuginfo / MiniDebugInfo" section, http://sourceware.org/gdb/onlinedocs/gdb/MiniDebugInfo.html 1493 // MISSING? .debug-index - http://src.chromium.org/viewvc/chrome/trunk/src/build/gdb-add-index?pathrev=144644 1494 // MISSING? .debug_types - Type descriptions from DWARF 4? See http://gcc.gnu.org/wiki/DwarfSeparateTypeInfo 1495 else if (name == g_sect_name_dwarf_debug_abbrev) sect_type = eSectionTypeDWARFDebugAbbrev; 1496 else if (name == g_sect_name_dwarf_debug_aranges) sect_type = eSectionTypeDWARFDebugAranges; 1497 else if (name == g_sect_name_dwarf_debug_frame) sect_type = eSectionTypeDWARFDebugFrame; 1498 else if (name == g_sect_name_dwarf_debug_info) sect_type = eSectionTypeDWARFDebugInfo; 1499 else if (name == g_sect_name_dwarf_debug_line) sect_type = eSectionTypeDWARFDebugLine; 1500 else if (name == g_sect_name_dwarf_debug_loc) sect_type = eSectionTypeDWARFDebugLoc; 1501 else if (name == g_sect_name_dwarf_debug_macinfo) sect_type = eSectionTypeDWARFDebugMacInfo; 1502 else if (name == g_sect_name_dwarf_debug_pubnames) sect_type = eSectionTypeDWARFDebugPubNames; 1503 else if (name == g_sect_name_dwarf_debug_pubtypes) sect_type = eSectionTypeDWARFDebugPubTypes; 1504 else if (name == g_sect_name_dwarf_debug_ranges) sect_type = eSectionTypeDWARFDebugRanges; 1505 else if (name == g_sect_name_dwarf_debug_str) sect_type = eSectionTypeDWARFDebugStr; 1506 else if (name == g_sect_name_eh_frame) sect_type = eSectionTypeEHFrame; 1507 1508 switch (header.sh_type) 1509 { 1510 case SHT_SYMTAB: 1511 assert (sect_type == eSectionTypeOther); 1512 sect_type = eSectionTypeELFSymbolTable; 1513 break; 1514 case SHT_DYNSYM: 1515 assert (sect_type == eSectionTypeOther); 1516 sect_type = eSectionTypeELFDynamicSymbols; 1517 break; 1518 case SHT_RELA: 1519 case SHT_REL: 1520 assert (sect_type == eSectionTypeOther); 1521 sect_type = eSectionTypeELFRelocationEntries; 1522 break; 1523 case SHT_DYNAMIC: 1524 assert (sect_type == eSectionTypeOther); 1525 sect_type = eSectionTypeELFDynamicLinkInfo; 1526 break; 1527 } 1528 1529 elf::elf_xword log2align = (header.sh_addralign==0) 1530 ? 0 1531 : llvm::Log2_64(header.sh_addralign); 1532 SectionSP section_sp (new Section(GetModule(), // Module to which this section belongs. 1533 this, // ObjectFile to which this section belongs and should read section data from. 1534 SectionIndex(I), // Section ID. 1535 name, // Section name. 1536 sect_type, // Section type. 1537 header.sh_addr, // VM address. 1538 vm_size, // VM size in bytes of this section. 1539 header.sh_offset, // Offset of this section in the file. 1540 file_size, // Size of the section as found in the file. 1541 log2align, // Alignment of the section 1542 header.sh_flags)); // Flags for this section. 1543 1544 if (is_thread_specific) 1545 section_sp->SetIsThreadSpecific (is_thread_specific); 1546 m_sections_ap->AddSection(section_sp); 1547 } 1548 } 1549 1550 if (m_sections_ap.get()) 1551 { 1552 if (GetType() == eTypeDebugInfo) 1553 { 1554 static const SectionType g_sections[] = 1555 { 1556 eSectionTypeDWARFDebugAranges, 1557 eSectionTypeDWARFDebugInfo, 1558 eSectionTypeDWARFDebugAbbrev, 1559 eSectionTypeDWARFDebugFrame, 1560 eSectionTypeDWARFDebugLine, 1561 eSectionTypeDWARFDebugStr, 1562 eSectionTypeDWARFDebugLoc, 1563 eSectionTypeDWARFDebugMacInfo, 1564 eSectionTypeDWARFDebugPubNames, 1565 eSectionTypeDWARFDebugPubTypes, 1566 eSectionTypeDWARFDebugRanges, 1567 eSectionTypeELFSymbolTable, 1568 }; 1569 SectionList *elf_section_list = m_sections_ap.get(); 1570 for (size_t idx = 0; idx < sizeof(g_sections) / sizeof(g_sections[0]); ++idx) 1571 { 1572 SectionType section_type = g_sections[idx]; 1573 SectionSP section_sp (elf_section_list->FindSectionByType (section_type, true)); 1574 if (section_sp) 1575 { 1576 SectionSP module_section_sp (unified_section_list.FindSectionByType (section_type, true)); 1577 if (module_section_sp) 1578 unified_section_list.ReplaceSection (module_section_sp->GetID(), section_sp); 1579 else 1580 unified_section_list.AddSection (section_sp); 1581 } 1582 } 1583 } 1584 else 1585 { 1586 unified_section_list = *m_sections_ap; 1587 } 1588 } 1589 } 1590 1591 // private 1592 unsigned 1593 ObjectFileELF::ParseSymbols (Symtab *symtab, 1594 user_id_t start_id, 1595 SectionList *section_list, 1596 const size_t num_symbols, 1597 const DataExtractor &symtab_data, 1598 const DataExtractor &strtab_data) 1599 { 1600 ELFSymbol symbol; 1601 lldb::offset_t offset = 0; 1602 1603 static ConstString text_section_name(".text"); 1604 static ConstString init_section_name(".init"); 1605 static ConstString fini_section_name(".fini"); 1606 static ConstString ctors_section_name(".ctors"); 1607 static ConstString dtors_section_name(".dtors"); 1608 1609 static ConstString data_section_name(".data"); 1610 static ConstString rodata_section_name(".rodata"); 1611 static ConstString rodata1_section_name(".rodata1"); 1612 static ConstString data2_section_name(".data1"); 1613 static ConstString bss_section_name(".bss"); 1614 1615 //StreamFile strm(stdout, false); 1616 unsigned i; 1617 for (i = 0; i < num_symbols; ++i) 1618 { 1619 if (symbol.Parse(symtab_data, &offset) == false) 1620 break; 1621 1622 const char *symbol_name = strtab_data.PeekCStr(symbol.st_name); 1623 1624 // No need to add non-section symbols that have no names 1625 if (symbol.getType() != STT_SECTION && 1626 (symbol_name == NULL || symbol_name[0] == '\0')) 1627 continue; 1628 1629 //symbol.Dump (&strm, i, &strtab_data, section_list); 1630 1631 SectionSP symbol_section_sp; 1632 SymbolType symbol_type = eSymbolTypeInvalid; 1633 Elf64_Half symbol_idx = symbol.st_shndx; 1634 1635 switch (symbol_idx) 1636 { 1637 case SHN_ABS: 1638 symbol_type = eSymbolTypeAbsolute; 1639 break; 1640 case SHN_UNDEF: 1641 symbol_type = eSymbolTypeUndefined; 1642 break; 1643 default: 1644 symbol_section_sp = section_list->GetSectionAtIndex(symbol_idx); 1645 break; 1646 } 1647 1648 // If a symbol is undefined do not process it further even if it has a STT type 1649 if (symbol_type != eSymbolTypeUndefined) 1650 { 1651 switch (symbol.getType()) 1652 { 1653 default: 1654 case STT_NOTYPE: 1655 // The symbol's type is not specified. 1656 break; 1657 1658 case STT_OBJECT: 1659 // The symbol is associated with a data object, such as a variable, 1660 // an array, etc. 1661 symbol_type = eSymbolTypeData; 1662 break; 1663 1664 case STT_FUNC: 1665 // The symbol is associated with a function or other executable code. 1666 symbol_type = eSymbolTypeCode; 1667 break; 1668 1669 case STT_SECTION: 1670 // The symbol is associated with a section. Symbol table entries of 1671 // this type exist primarily for relocation and normally have 1672 // STB_LOCAL binding. 1673 break; 1674 1675 case STT_FILE: 1676 // Conventionally, the symbol's name gives the name of the source 1677 // file associated with the object file. A file symbol has STB_LOCAL 1678 // binding, its section index is SHN_ABS, and it precedes the other 1679 // STB_LOCAL symbols for the file, if it is present. 1680 symbol_type = eSymbolTypeSourceFile; 1681 break; 1682 1683 case STT_GNU_IFUNC: 1684 // The symbol is associated with an indirect function. The actual 1685 // function will be resolved if it is referenced. 1686 symbol_type = eSymbolTypeResolver; 1687 break; 1688 } 1689 } 1690 1691 if (symbol_type == eSymbolTypeInvalid) 1692 { 1693 if (symbol_section_sp) 1694 { 1695 const ConstString §_name = symbol_section_sp->GetName(); 1696 if (sect_name == text_section_name || 1697 sect_name == init_section_name || 1698 sect_name == fini_section_name || 1699 sect_name == ctors_section_name || 1700 sect_name == dtors_section_name) 1701 { 1702 symbol_type = eSymbolTypeCode; 1703 } 1704 else if (sect_name == data_section_name || 1705 sect_name == data2_section_name || 1706 sect_name == rodata_section_name || 1707 sect_name == rodata1_section_name || 1708 sect_name == bss_section_name) 1709 { 1710 symbol_type = eSymbolTypeData; 1711 } 1712 } 1713 } 1714 1715 // If the symbol section we've found has no data (SHT_NOBITS), then check the module section 1716 // list. This can happen if we're parsing the debug file and it has no .text section, for example. 1717 if (symbol_section_sp && (symbol_section_sp->GetFileSize() == 0)) 1718 { 1719 ModuleSP module_sp(GetModule()); 1720 if (module_sp) 1721 { 1722 SectionList *module_section_list = module_sp->GetSectionList(); 1723 if (module_section_list && module_section_list != section_list) 1724 { 1725 const ConstString §_name = symbol_section_sp->GetName(); 1726 lldb::SectionSP section_sp (module_section_list->FindSectionByName (sect_name)); 1727 if (section_sp && section_sp->GetFileSize()) 1728 { 1729 symbol_section_sp = section_sp; 1730 } 1731 } 1732 } 1733 } 1734 1735 uint64_t symbol_value = symbol.st_value; 1736 if (symbol_section_sp && CalculateType() != ObjectFile::Type::eTypeObjectFile) 1737 symbol_value -= symbol_section_sp->GetFileAddress(); 1738 bool is_global = symbol.getBinding() == STB_GLOBAL; 1739 uint32_t flags = symbol.st_other << 8 | symbol.st_info; 1740 bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false; 1741 Symbol dc_symbol( 1742 i + start_id, // ID is the original symbol table index. 1743 symbol_name, // Symbol name. 1744 is_mangled, // Is the symbol name mangled? 1745 symbol_type, // Type of this symbol 1746 is_global, // Is this globally visible? 1747 false, // Is this symbol debug info? 1748 false, // Is this symbol a trampoline? 1749 false, // Is this symbol artificial? 1750 symbol_section_sp, // Section in which this symbol is defined or null. 1751 symbol_value, // Offset in section or symbol value. 1752 symbol.st_size, // Size in bytes of this symbol. 1753 true, // Size is valid 1754 flags); // Symbol flags. 1755 symtab->AddSymbol(dc_symbol); 1756 } 1757 1758 return i; 1759 } 1760 1761 unsigned 1762 ObjectFileELF::ParseSymbolTable(Symtab *symbol_table, user_id_t start_id, lldb_private::Section *symtab) 1763 { 1764 if (symtab->GetObjectFile() != this) 1765 { 1766 // If the symbol table section is owned by a different object file, have it do the 1767 // parsing. 1768 ObjectFileELF *obj_file_elf = static_cast<ObjectFileELF *>(symtab->GetObjectFile()); 1769 return obj_file_elf->ParseSymbolTable (symbol_table, start_id, symtab); 1770 } 1771 1772 // Get section list for this object file. 1773 SectionList *section_list = m_sections_ap.get(); 1774 if (!section_list) 1775 return 0; 1776 1777 user_id_t symtab_id = symtab->GetID(); 1778 const ELFSectionHeaderInfo *symtab_hdr = GetSectionHeaderByIndex(symtab_id); 1779 assert(symtab_hdr->sh_type == SHT_SYMTAB || 1780 symtab_hdr->sh_type == SHT_DYNSYM); 1781 1782 // sh_link: section header index of associated string table. 1783 // Section ID's are ones based. 1784 user_id_t strtab_id = symtab_hdr->sh_link + 1; 1785 Section *strtab = section_list->FindSectionByID(strtab_id).get(); 1786 1787 if (symtab && strtab) 1788 { 1789 assert (symtab->GetObjectFile() == this); 1790 assert (strtab->GetObjectFile() == this); 1791 1792 DataExtractor symtab_data; 1793 DataExtractor strtab_data; 1794 if (ReadSectionData(symtab, symtab_data) && 1795 ReadSectionData(strtab, strtab_data)) 1796 { 1797 size_t num_symbols = symtab_data.GetByteSize() / symtab_hdr->sh_entsize; 1798 1799 return ParseSymbols(symbol_table, start_id, section_list, 1800 num_symbols, symtab_data, strtab_data); 1801 } 1802 } 1803 1804 return 0; 1805 } 1806 1807 size_t 1808 ObjectFileELF::ParseDynamicSymbols() 1809 { 1810 if (m_dynamic_symbols.size()) 1811 return m_dynamic_symbols.size(); 1812 1813 SectionList *section_list = GetSectionList(); 1814 if (!section_list) 1815 return 0; 1816 1817 // Find the SHT_DYNAMIC section. 1818 Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get(); 1819 if (!dynsym) 1820 return 0; 1821 assert (dynsym->GetObjectFile() == this); 1822 1823 ELFDynamic symbol; 1824 DataExtractor dynsym_data; 1825 if (ReadSectionData(dynsym, dynsym_data)) 1826 { 1827 const lldb::offset_t section_size = dynsym_data.GetByteSize(); 1828 lldb::offset_t cursor = 0; 1829 1830 while (cursor < section_size) 1831 { 1832 if (!symbol.Parse(dynsym_data, &cursor)) 1833 break; 1834 1835 m_dynamic_symbols.push_back(symbol); 1836 } 1837 } 1838 1839 return m_dynamic_symbols.size(); 1840 } 1841 1842 const ELFDynamic * 1843 ObjectFileELF::FindDynamicSymbol(unsigned tag) 1844 { 1845 if (!ParseDynamicSymbols()) 1846 return NULL; 1847 1848 DynamicSymbolCollIter I = m_dynamic_symbols.begin(); 1849 DynamicSymbolCollIter E = m_dynamic_symbols.end(); 1850 for ( ; I != E; ++I) 1851 { 1852 ELFDynamic *symbol = &*I; 1853 1854 if (symbol->d_tag == tag) 1855 return symbol; 1856 } 1857 1858 return NULL; 1859 } 1860 1861 unsigned 1862 ObjectFileELF::PLTRelocationType() 1863 { 1864 // DT_PLTREL 1865 // This member specifies the type of relocation entry to which the 1866 // procedure linkage table refers. The d_val member holds DT_REL or 1867 // DT_RELA, as appropriate. All relocations in a procedure linkage table 1868 // must use the same relocation. 1869 const ELFDynamic *symbol = FindDynamicSymbol(DT_PLTREL); 1870 1871 if (symbol) 1872 return symbol->d_val; 1873 1874 return 0; 1875 } 1876 1877 static unsigned 1878 ParsePLTRelocations(Symtab *symbol_table, 1879 user_id_t start_id, 1880 unsigned rel_type, 1881 const ELFHeader *hdr, 1882 const ELFSectionHeader *rel_hdr, 1883 const ELFSectionHeader *plt_hdr, 1884 const ELFSectionHeader *sym_hdr, 1885 const lldb::SectionSP &plt_section_sp, 1886 DataExtractor &rel_data, 1887 DataExtractor &symtab_data, 1888 DataExtractor &strtab_data) 1889 { 1890 ELFRelocation rel(rel_type); 1891 ELFSymbol symbol; 1892 lldb::offset_t offset = 0; 1893 // Clang 3.3 sets entsize to 4 for 32-bit binaries, but the plt entries are 16 bytes. 1894 // So round the entsize up by the alignment if addralign is set. 1895 const elf_xword plt_entsize = plt_hdr->sh_addralign ? 1896 llvm::RoundUpToAlignment (plt_hdr->sh_entsize, plt_hdr->sh_addralign) : plt_hdr->sh_entsize; 1897 const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 1898 1899 typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel); 1900 reloc_info_fn reloc_type; 1901 reloc_info_fn reloc_symbol; 1902 1903 if (hdr->Is32Bit()) 1904 { 1905 reloc_type = ELFRelocation::RelocType32; 1906 reloc_symbol = ELFRelocation::RelocSymbol32; 1907 } 1908 else 1909 { 1910 reloc_type = ELFRelocation::RelocType64; 1911 reloc_symbol = ELFRelocation::RelocSymbol64; 1912 } 1913 1914 unsigned slot_type = hdr->GetRelocationJumpSlotType(); 1915 unsigned i; 1916 for (i = 0; i < num_relocations; ++i) 1917 { 1918 if (rel.Parse(rel_data, &offset) == false) 1919 break; 1920 1921 if (reloc_type(rel) != slot_type) 1922 continue; 1923 1924 lldb::offset_t symbol_offset = reloc_symbol(rel) * sym_hdr->sh_entsize; 1925 uint64_t plt_index = (i + 1) * plt_entsize; 1926 1927 if (!symbol.Parse(symtab_data, &symbol_offset)) 1928 break; 1929 1930 const char *symbol_name = strtab_data.PeekCStr(symbol.st_name); 1931 bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false; 1932 1933 Symbol jump_symbol( 1934 i + start_id, // Symbol table index 1935 symbol_name, // symbol name. 1936 is_mangled, // is the symbol name mangled? 1937 eSymbolTypeTrampoline, // Type of this symbol 1938 false, // Is this globally visible? 1939 false, // Is this symbol debug info? 1940 true, // Is this symbol a trampoline? 1941 true, // Is this symbol artificial? 1942 plt_section_sp, // Section in which this symbol is defined or null. 1943 plt_index, // Offset in section or symbol value. 1944 plt_entsize, // Size in bytes of this symbol. 1945 true, // Size is valid 1946 0); // Symbol flags. 1947 1948 symbol_table->AddSymbol(jump_symbol); 1949 } 1950 1951 return i; 1952 } 1953 1954 unsigned 1955 ObjectFileELF::ParseTrampolineSymbols(Symtab *symbol_table, 1956 user_id_t start_id, 1957 const ELFSectionHeaderInfo *rel_hdr, 1958 user_id_t rel_id) 1959 { 1960 assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL); 1961 1962 // The link field points to the associated symbol table. The info field 1963 // points to the section holding the plt. 1964 user_id_t symtab_id = rel_hdr->sh_link; 1965 user_id_t plt_id = rel_hdr->sh_info; 1966 1967 if (!symtab_id || !plt_id) 1968 return 0; 1969 1970 // Section ID's are ones based; 1971 symtab_id++; 1972 plt_id++; 1973 1974 const ELFSectionHeaderInfo *plt_hdr = GetSectionHeaderByIndex(plt_id); 1975 if (!plt_hdr) 1976 return 0; 1977 1978 const ELFSectionHeaderInfo *sym_hdr = GetSectionHeaderByIndex(symtab_id); 1979 if (!sym_hdr) 1980 return 0; 1981 1982 SectionList *section_list = m_sections_ap.get(); 1983 if (!section_list) 1984 return 0; 1985 1986 Section *rel_section = section_list->FindSectionByID(rel_id).get(); 1987 if (!rel_section) 1988 return 0; 1989 1990 SectionSP plt_section_sp (section_list->FindSectionByID(plt_id)); 1991 if (!plt_section_sp) 1992 return 0; 1993 1994 Section *symtab = section_list->FindSectionByID(symtab_id).get(); 1995 if (!symtab) 1996 return 0; 1997 1998 // sh_link points to associated string table. 1999 Section *strtab = section_list->FindSectionByID(sym_hdr->sh_link + 1).get(); 2000 if (!strtab) 2001 return 0; 2002 2003 DataExtractor rel_data; 2004 if (!ReadSectionData(rel_section, rel_data)) 2005 return 0; 2006 2007 DataExtractor symtab_data; 2008 if (!ReadSectionData(symtab, symtab_data)) 2009 return 0; 2010 2011 DataExtractor strtab_data; 2012 if (!ReadSectionData(strtab, strtab_data)) 2013 return 0; 2014 2015 unsigned rel_type = PLTRelocationType(); 2016 if (!rel_type) 2017 return 0; 2018 2019 return ParsePLTRelocations (symbol_table, 2020 start_id, 2021 rel_type, 2022 &m_header, 2023 rel_hdr, 2024 plt_hdr, 2025 sym_hdr, 2026 plt_section_sp, 2027 rel_data, 2028 symtab_data, 2029 strtab_data); 2030 } 2031 2032 unsigned 2033 ObjectFileELF::RelocateSection(Symtab* symtab, const ELFHeader *hdr, const ELFSectionHeader *rel_hdr, 2034 const ELFSectionHeader *symtab_hdr, const ELFSectionHeader *debug_hdr, 2035 DataExtractor &rel_data, DataExtractor &symtab_data, 2036 DataExtractor &debug_data, Section* rel_section) 2037 { 2038 ELFRelocation rel(rel_hdr->sh_type); 2039 lldb::addr_t offset = 0; 2040 const unsigned num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2041 typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel); 2042 reloc_info_fn reloc_type; 2043 reloc_info_fn reloc_symbol; 2044 2045 if (hdr->Is32Bit()) 2046 { 2047 reloc_type = ELFRelocation::RelocType32; 2048 reloc_symbol = ELFRelocation::RelocSymbol32; 2049 } 2050 else 2051 { 2052 reloc_type = ELFRelocation::RelocType64; 2053 reloc_symbol = ELFRelocation::RelocSymbol64; 2054 } 2055 2056 for (unsigned i = 0; i < num_relocations; ++i) 2057 { 2058 if (rel.Parse(rel_data, &offset) == false) 2059 break; 2060 2061 Symbol* symbol = NULL; 2062 2063 if (hdr->Is32Bit()) 2064 { 2065 switch (reloc_type(rel)) { 2066 case R_386_32: 2067 case R_386_PC32: 2068 default: 2069 assert(false && "unexpected relocation type"); 2070 } 2071 } else { 2072 switch (reloc_type(rel)) { 2073 case R_X86_64_64: 2074 { 2075 symbol = symtab->FindSymbolByID(reloc_symbol(rel)); 2076 if (symbol) 2077 { 2078 addr_t value = symbol->GetAddress().GetFileAddress(); 2079 DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer(); 2080 uint64_t* dst = reinterpret_cast<uint64_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset64(rel)); 2081 *dst = value + ELFRelocation::RelocAddend64(rel); 2082 } 2083 break; 2084 } 2085 case R_X86_64_32: 2086 case R_X86_64_32S: 2087 { 2088 symbol = symtab->FindSymbolByID(reloc_symbol(rel)); 2089 if (symbol) 2090 { 2091 addr_t value = symbol->GetAddress().GetFileAddress(); 2092 value += ELFRelocation::RelocAddend32(rel); 2093 assert((reloc_type(rel) == R_X86_64_32 && (value <= UINT32_MAX)) || 2094 (reloc_type(rel) == R_X86_64_32S && 2095 ((int64_t)value <= INT32_MAX && (int64_t)value >= INT32_MIN))); 2096 uint32_t truncated_addr = (value & 0xFFFFFFFF); 2097 DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer(); 2098 uint32_t* dst = reinterpret_cast<uint32_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset32(rel)); 2099 *dst = truncated_addr; 2100 } 2101 break; 2102 } 2103 case R_X86_64_PC32: 2104 default: 2105 assert(false && "unexpected relocation type"); 2106 } 2107 } 2108 } 2109 2110 return 0; 2111 } 2112 2113 unsigned 2114 ObjectFileELF::RelocateDebugSections(const ELFSectionHeader *rel_hdr, user_id_t rel_id) 2115 { 2116 assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL); 2117 2118 // Parse in the section list if needed. 2119 SectionList *section_list = GetSectionList(); 2120 if (!section_list) 2121 return 0; 2122 2123 // Section ID's are ones based. 2124 user_id_t symtab_id = rel_hdr->sh_link + 1; 2125 user_id_t debug_id = rel_hdr->sh_info + 1; 2126 2127 const ELFSectionHeader *symtab_hdr = GetSectionHeaderByIndex(symtab_id); 2128 if (!symtab_hdr) 2129 return 0; 2130 2131 const ELFSectionHeader *debug_hdr = GetSectionHeaderByIndex(debug_id); 2132 if (!debug_hdr) 2133 return 0; 2134 2135 Section *rel = section_list->FindSectionByID(rel_id).get(); 2136 if (!rel) 2137 return 0; 2138 2139 Section *symtab = section_list->FindSectionByID(symtab_id).get(); 2140 if (!symtab) 2141 return 0; 2142 2143 Section *debug = section_list->FindSectionByID(debug_id).get(); 2144 if (!debug) 2145 return 0; 2146 2147 DataExtractor rel_data; 2148 DataExtractor symtab_data; 2149 DataExtractor debug_data; 2150 2151 if (ReadSectionData(rel, rel_data) && 2152 ReadSectionData(symtab, symtab_data) && 2153 ReadSectionData(debug, debug_data)) 2154 { 2155 RelocateSection(m_symtab_ap.get(), &m_header, rel_hdr, symtab_hdr, debug_hdr, 2156 rel_data, symtab_data, debug_data, debug); 2157 } 2158 2159 return 0; 2160 } 2161 2162 Symtab * 2163 ObjectFileELF::GetSymtab() 2164 { 2165 ModuleSP module_sp(GetModule()); 2166 if (!module_sp) 2167 return NULL; 2168 2169 // We always want to use the main object file so we (hopefully) only have one cached copy 2170 // of our symtab, dynamic sections, etc. 2171 ObjectFile *module_obj_file = module_sp->GetObjectFile(); 2172 if (module_obj_file && module_obj_file != this) 2173 return module_obj_file->GetSymtab(); 2174 2175 if (m_symtab_ap.get() == NULL) 2176 { 2177 SectionList *section_list = GetSectionList(); 2178 if (!section_list) 2179 return NULL; 2180 2181 uint64_t symbol_id = 0; 2182 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 2183 2184 m_symtab_ap.reset(new Symtab(this)); 2185 2186 // Sharable objects and dynamic executables usually have 2 distinct symbol 2187 // tables, one named ".symtab", and the other ".dynsym". The dynsym is a smaller 2188 // version of the symtab that only contains global symbols. The information found 2189 // in the dynsym is therefore also found in the symtab, while the reverse is not 2190 // necessarily true. 2191 Section *symtab = section_list->FindSectionByType (eSectionTypeELFSymbolTable, true).get(); 2192 if (!symtab) 2193 { 2194 // The symtab section is non-allocable and can be stripped, so if it doesn't exist 2195 // then use the dynsym section which should always be there. 2196 symtab = section_list->FindSectionByType (eSectionTypeELFDynamicSymbols, true).get(); 2197 } 2198 if (symtab) 2199 symbol_id += ParseSymbolTable (m_symtab_ap.get(), symbol_id, symtab); 2200 2201 // DT_JMPREL 2202 // If present, this entry's d_ptr member holds the address of relocation 2203 // entries associated solely with the procedure linkage table. Separating 2204 // these relocation entries lets the dynamic linker ignore them during 2205 // process initialization, if lazy binding is enabled. If this entry is 2206 // present, the related entries of types DT_PLTRELSZ and DT_PLTREL must 2207 // also be present. 2208 const ELFDynamic *symbol = FindDynamicSymbol(DT_JMPREL); 2209 if (symbol) 2210 { 2211 // Synthesize trampoline symbols to help navigate the PLT. 2212 addr_t addr = symbol->d_ptr; 2213 Section *reloc_section = section_list->FindSectionContainingFileAddress(addr).get(); 2214 if (reloc_section) 2215 { 2216 user_id_t reloc_id = reloc_section->GetID(); 2217 const ELFSectionHeaderInfo *reloc_header = GetSectionHeaderByIndex(reloc_id); 2218 assert(reloc_header); 2219 2220 ParseTrampolineSymbols (m_symtab_ap.get(), symbol_id, reloc_header, reloc_id); 2221 } 2222 } 2223 } 2224 2225 for (SectionHeaderCollIter I = m_section_headers.begin(); 2226 I != m_section_headers.end(); ++I) 2227 { 2228 if (I->sh_type == SHT_RELA || I->sh_type == SHT_REL) 2229 { 2230 if (CalculateType() == eTypeObjectFile) 2231 { 2232 const char *section_name = I->section_name.AsCString(""); 2233 if (strstr(section_name, ".rela.debug") || 2234 strstr(section_name, ".rel.debug")) 2235 { 2236 const ELFSectionHeader &reloc_header = *I; 2237 user_id_t reloc_id = SectionIndex(I); 2238 RelocateDebugSections(&reloc_header, reloc_id); 2239 } 2240 } 2241 } 2242 } 2243 return m_symtab_ap.get(); 2244 } 2245 2246 Symbol * 2247 ObjectFileELF::ResolveSymbolForAddress(const Address& so_addr, bool verify_unique) 2248 { 2249 if (!m_symtab_ap.get()) 2250 return nullptr; // GetSymtab() should be called first. 2251 2252 const SectionList *section_list = GetSectionList(); 2253 if (!section_list) 2254 return nullptr; 2255 2256 if (DWARFCallFrameInfo *eh_frame = GetUnwindTable().GetEHFrameInfo()) 2257 { 2258 AddressRange range; 2259 if (eh_frame->GetAddressRange (so_addr, range)) 2260 { 2261 const addr_t file_addr = range.GetBaseAddress().GetFileAddress(); 2262 Symbol * symbol = verify_unique ? m_symtab_ap->FindSymbolContainingFileAddress(file_addr) : nullptr; 2263 if (symbol) 2264 return symbol; 2265 2266 // Note that a (stripped) symbol won't be found by GetSymtab()... 2267 lldb::SectionSP eh_sym_section_sp = section_list->FindSectionContainingFileAddress(file_addr); 2268 if (eh_sym_section_sp.get()) 2269 { 2270 addr_t section_base = eh_sym_section_sp->GetFileAddress(); 2271 addr_t offset = file_addr - section_base; 2272 uint64_t symbol_id = m_symtab_ap->GetNumSymbols(); 2273 2274 Symbol eh_symbol( 2275 symbol_id, // Symbol table index. 2276 "???", // Symbol name. 2277 false, // Is the symbol name mangled? 2278 eSymbolTypeCode, // Type of this symbol. 2279 true, // Is this globally visible? 2280 false, // Is this symbol debug info? 2281 false, // Is this symbol a trampoline? 2282 true, // Is this symbol artificial? 2283 eh_sym_section_sp, // Section in which this symbol is defined or null. 2284 offset, // Offset in section or symbol value. 2285 range.GetByteSize(), // Size in bytes of this symbol. 2286 true, // Size is valid. 2287 0); // Symbol flags. 2288 if (symbol_id == m_symtab_ap->AddSymbol(eh_symbol)) 2289 return m_symtab_ap->SymbolAtIndex(symbol_id); 2290 } 2291 } 2292 } 2293 return nullptr; 2294 } 2295 2296 2297 bool 2298 ObjectFileELF::IsStripped () 2299 { 2300 // TODO: determine this for ELF 2301 return false; 2302 } 2303 2304 //===----------------------------------------------------------------------===// 2305 // Dump 2306 // 2307 // Dump the specifics of the runtime file container (such as any headers 2308 // segments, sections, etc). 2309 //---------------------------------------------------------------------- 2310 void 2311 ObjectFileELF::Dump(Stream *s) 2312 { 2313 DumpELFHeader(s, m_header); 2314 s->EOL(); 2315 DumpELFProgramHeaders(s); 2316 s->EOL(); 2317 DumpELFSectionHeaders(s); 2318 s->EOL(); 2319 SectionList *section_list = GetSectionList(); 2320 if (section_list) 2321 section_list->Dump(s, NULL, true, UINT32_MAX); 2322 Symtab *symtab = GetSymtab(); 2323 if (symtab) 2324 symtab->Dump(s, NULL, eSortOrderNone); 2325 s->EOL(); 2326 DumpDependentModules(s); 2327 s->EOL(); 2328 } 2329 2330 //---------------------------------------------------------------------- 2331 // DumpELFHeader 2332 // 2333 // Dump the ELF header to the specified output stream 2334 //---------------------------------------------------------------------- 2335 void 2336 ObjectFileELF::DumpELFHeader(Stream *s, const ELFHeader &header) 2337 { 2338 s->PutCString("ELF Header\n"); 2339 s->Printf("e_ident[EI_MAG0 ] = 0x%2.2x\n", header.e_ident[EI_MAG0]); 2340 s->Printf("e_ident[EI_MAG1 ] = 0x%2.2x '%c'\n", 2341 header.e_ident[EI_MAG1], header.e_ident[EI_MAG1]); 2342 s->Printf("e_ident[EI_MAG2 ] = 0x%2.2x '%c'\n", 2343 header.e_ident[EI_MAG2], header.e_ident[EI_MAG2]); 2344 s->Printf("e_ident[EI_MAG3 ] = 0x%2.2x '%c'\n", 2345 header.e_ident[EI_MAG3], header.e_ident[EI_MAG3]); 2346 2347 s->Printf("e_ident[EI_CLASS ] = 0x%2.2x\n", header.e_ident[EI_CLASS]); 2348 s->Printf("e_ident[EI_DATA ] = 0x%2.2x ", header.e_ident[EI_DATA]); 2349 DumpELFHeader_e_ident_EI_DATA(s, header.e_ident[EI_DATA]); 2350 s->Printf ("\ne_ident[EI_VERSION] = 0x%2.2x\n", header.e_ident[EI_VERSION]); 2351 s->Printf ("e_ident[EI_PAD ] = 0x%2.2x\n", header.e_ident[EI_PAD]); 2352 2353 s->Printf("e_type = 0x%4.4x ", header.e_type); 2354 DumpELFHeader_e_type(s, header.e_type); 2355 s->Printf("\ne_machine = 0x%4.4x\n", header.e_machine); 2356 s->Printf("e_version = 0x%8.8x\n", header.e_version); 2357 s->Printf("e_entry = 0x%8.8" PRIx64 "\n", header.e_entry); 2358 s->Printf("e_phoff = 0x%8.8" PRIx64 "\n", header.e_phoff); 2359 s->Printf("e_shoff = 0x%8.8" PRIx64 "\n", header.e_shoff); 2360 s->Printf("e_flags = 0x%8.8x\n", header.e_flags); 2361 s->Printf("e_ehsize = 0x%4.4x\n", header.e_ehsize); 2362 s->Printf("e_phentsize = 0x%4.4x\n", header.e_phentsize); 2363 s->Printf("e_phnum = 0x%4.4x\n", header.e_phnum); 2364 s->Printf("e_shentsize = 0x%4.4x\n", header.e_shentsize); 2365 s->Printf("e_shnum = 0x%4.4x\n", header.e_shnum); 2366 s->Printf("e_shstrndx = 0x%4.4x\n", header.e_shstrndx); 2367 } 2368 2369 //---------------------------------------------------------------------- 2370 // DumpELFHeader_e_type 2371 // 2372 // Dump an token value for the ELF header member e_type 2373 //---------------------------------------------------------------------- 2374 void 2375 ObjectFileELF::DumpELFHeader_e_type(Stream *s, elf_half e_type) 2376 { 2377 switch (e_type) 2378 { 2379 case ET_NONE: *s << "ET_NONE"; break; 2380 case ET_REL: *s << "ET_REL"; break; 2381 case ET_EXEC: *s << "ET_EXEC"; break; 2382 case ET_DYN: *s << "ET_DYN"; break; 2383 case ET_CORE: *s << "ET_CORE"; break; 2384 default: 2385 break; 2386 } 2387 } 2388 2389 //---------------------------------------------------------------------- 2390 // DumpELFHeader_e_ident_EI_DATA 2391 // 2392 // Dump an token value for the ELF header member e_ident[EI_DATA] 2393 //---------------------------------------------------------------------- 2394 void 2395 ObjectFileELF::DumpELFHeader_e_ident_EI_DATA(Stream *s, unsigned char ei_data) 2396 { 2397 switch (ei_data) 2398 { 2399 case ELFDATANONE: *s << "ELFDATANONE"; break; 2400 case ELFDATA2LSB: *s << "ELFDATA2LSB - Little Endian"; break; 2401 case ELFDATA2MSB: *s << "ELFDATA2MSB - Big Endian"; break; 2402 default: 2403 break; 2404 } 2405 } 2406 2407 2408 //---------------------------------------------------------------------- 2409 // DumpELFProgramHeader 2410 // 2411 // Dump a single ELF program header to the specified output stream 2412 //---------------------------------------------------------------------- 2413 void 2414 ObjectFileELF::DumpELFProgramHeader(Stream *s, const ELFProgramHeader &ph) 2415 { 2416 DumpELFProgramHeader_p_type(s, ph.p_type); 2417 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, ph.p_offset, ph.p_vaddr, ph.p_paddr); 2418 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8x (", ph.p_filesz, ph.p_memsz, ph.p_flags); 2419 2420 DumpELFProgramHeader_p_flags(s, ph.p_flags); 2421 s->Printf(") %8.8" PRIx64, ph.p_align); 2422 } 2423 2424 //---------------------------------------------------------------------- 2425 // DumpELFProgramHeader_p_type 2426 // 2427 // Dump an token value for the ELF program header member p_type which 2428 // describes the type of the program header 2429 // ---------------------------------------------------------------------- 2430 void 2431 ObjectFileELF::DumpELFProgramHeader_p_type(Stream *s, elf_word p_type) 2432 { 2433 const int kStrWidth = 15; 2434 switch (p_type) 2435 { 2436 CASE_AND_STREAM(s, PT_NULL , kStrWidth); 2437 CASE_AND_STREAM(s, PT_LOAD , kStrWidth); 2438 CASE_AND_STREAM(s, PT_DYNAMIC , kStrWidth); 2439 CASE_AND_STREAM(s, PT_INTERP , kStrWidth); 2440 CASE_AND_STREAM(s, PT_NOTE , kStrWidth); 2441 CASE_AND_STREAM(s, PT_SHLIB , kStrWidth); 2442 CASE_AND_STREAM(s, PT_PHDR , kStrWidth); 2443 CASE_AND_STREAM(s, PT_TLS , kStrWidth); 2444 CASE_AND_STREAM(s, PT_GNU_EH_FRAME, kStrWidth); 2445 default: 2446 s->Printf("0x%8.8x%*s", p_type, kStrWidth - 10, ""); 2447 break; 2448 } 2449 } 2450 2451 2452 //---------------------------------------------------------------------- 2453 // DumpELFProgramHeader_p_flags 2454 // 2455 // Dump an token value for the ELF program header member p_flags 2456 //---------------------------------------------------------------------- 2457 void 2458 ObjectFileELF::DumpELFProgramHeader_p_flags(Stream *s, elf_word p_flags) 2459 { 2460 *s << ((p_flags & PF_X) ? "PF_X" : " ") 2461 << (((p_flags & PF_X) && (p_flags & PF_W)) ? '+' : ' ') 2462 << ((p_flags & PF_W) ? "PF_W" : " ") 2463 << (((p_flags & PF_W) && (p_flags & PF_R)) ? '+' : ' ') 2464 << ((p_flags & PF_R) ? "PF_R" : " "); 2465 } 2466 2467 //---------------------------------------------------------------------- 2468 // DumpELFProgramHeaders 2469 // 2470 // Dump all of the ELF program header to the specified output stream 2471 //---------------------------------------------------------------------- 2472 void 2473 ObjectFileELF::DumpELFProgramHeaders(Stream *s) 2474 { 2475 if (ParseProgramHeaders()) 2476 { 2477 s->PutCString("Program Headers\n"); 2478 s->PutCString("IDX p_type p_offset p_vaddr p_paddr " 2479 "p_filesz p_memsz p_flags p_align\n"); 2480 s->PutCString("==== --------------- -------- -------- -------- " 2481 "-------- -------- ------------------------- --------\n"); 2482 2483 uint32_t idx = 0; 2484 for (ProgramHeaderCollConstIter I = m_program_headers.begin(); 2485 I != m_program_headers.end(); ++I, ++idx) 2486 { 2487 s->Printf("[%2u] ", idx); 2488 ObjectFileELF::DumpELFProgramHeader(s, *I); 2489 s->EOL(); 2490 } 2491 } 2492 } 2493 2494 //---------------------------------------------------------------------- 2495 // DumpELFSectionHeader 2496 // 2497 // Dump a single ELF section header to the specified output stream 2498 //---------------------------------------------------------------------- 2499 void 2500 ObjectFileELF::DumpELFSectionHeader(Stream *s, const ELFSectionHeaderInfo &sh) 2501 { 2502 s->Printf("%8.8x ", sh.sh_name); 2503 DumpELFSectionHeader_sh_type(s, sh.sh_type); 2504 s->Printf(" %8.8" PRIx64 " (", sh.sh_flags); 2505 DumpELFSectionHeader_sh_flags(s, sh.sh_flags); 2506 s->Printf(") %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addr, sh.sh_offset, sh.sh_size); 2507 s->Printf(" %8.8x %8.8x", sh.sh_link, sh.sh_info); 2508 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addralign, sh.sh_entsize); 2509 } 2510 2511 //---------------------------------------------------------------------- 2512 // DumpELFSectionHeader_sh_type 2513 // 2514 // Dump an token value for the ELF section header member sh_type which 2515 // describes the type of the section 2516 //---------------------------------------------------------------------- 2517 void 2518 ObjectFileELF::DumpELFSectionHeader_sh_type(Stream *s, elf_word sh_type) 2519 { 2520 const int kStrWidth = 12; 2521 switch (sh_type) 2522 { 2523 CASE_AND_STREAM(s, SHT_NULL , kStrWidth); 2524 CASE_AND_STREAM(s, SHT_PROGBITS , kStrWidth); 2525 CASE_AND_STREAM(s, SHT_SYMTAB , kStrWidth); 2526 CASE_AND_STREAM(s, SHT_STRTAB , kStrWidth); 2527 CASE_AND_STREAM(s, SHT_RELA , kStrWidth); 2528 CASE_AND_STREAM(s, SHT_HASH , kStrWidth); 2529 CASE_AND_STREAM(s, SHT_DYNAMIC , kStrWidth); 2530 CASE_AND_STREAM(s, SHT_NOTE , kStrWidth); 2531 CASE_AND_STREAM(s, SHT_NOBITS , kStrWidth); 2532 CASE_AND_STREAM(s, SHT_REL , kStrWidth); 2533 CASE_AND_STREAM(s, SHT_SHLIB , kStrWidth); 2534 CASE_AND_STREAM(s, SHT_DYNSYM , kStrWidth); 2535 CASE_AND_STREAM(s, SHT_LOPROC , kStrWidth); 2536 CASE_AND_STREAM(s, SHT_HIPROC , kStrWidth); 2537 CASE_AND_STREAM(s, SHT_LOUSER , kStrWidth); 2538 CASE_AND_STREAM(s, SHT_HIUSER , kStrWidth); 2539 default: 2540 s->Printf("0x%8.8x%*s", sh_type, kStrWidth - 10, ""); 2541 break; 2542 } 2543 } 2544 2545 //---------------------------------------------------------------------- 2546 // DumpELFSectionHeader_sh_flags 2547 // 2548 // Dump an token value for the ELF section header member sh_flags 2549 //---------------------------------------------------------------------- 2550 void 2551 ObjectFileELF::DumpELFSectionHeader_sh_flags(Stream *s, elf_xword sh_flags) 2552 { 2553 *s << ((sh_flags & SHF_WRITE) ? "WRITE" : " ") 2554 << (((sh_flags & SHF_WRITE) && (sh_flags & SHF_ALLOC)) ? '+' : ' ') 2555 << ((sh_flags & SHF_ALLOC) ? "ALLOC" : " ") 2556 << (((sh_flags & SHF_ALLOC) && (sh_flags & SHF_EXECINSTR)) ? '+' : ' ') 2557 << ((sh_flags & SHF_EXECINSTR) ? "EXECINSTR" : " "); 2558 } 2559 2560 //---------------------------------------------------------------------- 2561 // DumpELFSectionHeaders 2562 // 2563 // Dump all of the ELF section header to the specified output stream 2564 //---------------------------------------------------------------------- 2565 void 2566 ObjectFileELF::DumpELFSectionHeaders(Stream *s) 2567 { 2568 if (!ParseSectionHeaders()) 2569 return; 2570 2571 s->PutCString("Section Headers\n"); 2572 s->PutCString("IDX name type flags " 2573 "addr offset size link info addralgn " 2574 "entsize Name\n"); 2575 s->PutCString("==== -------- ------------ -------------------------------- " 2576 "-------- -------- -------- -------- -------- -------- " 2577 "-------- ====================\n"); 2578 2579 uint32_t idx = 0; 2580 for (SectionHeaderCollConstIter I = m_section_headers.begin(); 2581 I != m_section_headers.end(); ++I, ++idx) 2582 { 2583 s->Printf("[%2u] ", idx); 2584 ObjectFileELF::DumpELFSectionHeader(s, *I); 2585 const char* section_name = I->section_name.AsCString(""); 2586 if (section_name) 2587 *s << ' ' << section_name << "\n"; 2588 } 2589 } 2590 2591 void 2592 ObjectFileELF::DumpDependentModules(lldb_private::Stream *s) 2593 { 2594 size_t num_modules = ParseDependentModules(); 2595 2596 if (num_modules > 0) 2597 { 2598 s->PutCString("Dependent Modules:\n"); 2599 for (unsigned i = 0; i < num_modules; ++i) 2600 { 2601 const FileSpec &spec = m_filespec_ap->GetFileSpecAtIndex(i); 2602 s->Printf(" %s\n", spec.GetFilename().GetCString()); 2603 } 2604 } 2605 } 2606 2607 bool 2608 ObjectFileELF::GetArchitecture (ArchSpec &arch) 2609 { 2610 if (!ParseHeader()) 2611 return false; 2612 2613 if (m_section_headers.empty()) 2614 { 2615 // Allow elf notes to be parsed which may affect the detected architecture. 2616 ParseSectionHeaders(); 2617 } 2618 2619 arch = m_arch_spec; 2620 return true; 2621 } 2622 2623 ObjectFile::Type 2624 ObjectFileELF::CalculateType() 2625 { 2626 switch (m_header.e_type) 2627 { 2628 case llvm::ELF::ET_NONE: 2629 // 0 - No file type 2630 return eTypeUnknown; 2631 2632 case llvm::ELF::ET_REL: 2633 // 1 - Relocatable file 2634 return eTypeObjectFile; 2635 2636 case llvm::ELF::ET_EXEC: 2637 // 2 - Executable file 2638 return eTypeExecutable; 2639 2640 case llvm::ELF::ET_DYN: 2641 // 3 - Shared object file 2642 return eTypeSharedLibrary; 2643 2644 case ET_CORE: 2645 // 4 - Core file 2646 return eTypeCoreFile; 2647 2648 default: 2649 break; 2650 } 2651 return eTypeUnknown; 2652 } 2653 2654 ObjectFile::Strata 2655 ObjectFileELF::CalculateStrata() 2656 { 2657 switch (m_header.e_type) 2658 { 2659 case llvm::ELF::ET_NONE: 2660 // 0 - No file type 2661 return eStrataUnknown; 2662 2663 case llvm::ELF::ET_REL: 2664 // 1 - Relocatable file 2665 return eStrataUnknown; 2666 2667 case llvm::ELF::ET_EXEC: 2668 // 2 - Executable file 2669 // TODO: is there any way to detect that an executable is a kernel 2670 // related executable by inspecting the program headers, section 2671 // headers, symbols, or any other flag bits??? 2672 return eStrataUser; 2673 2674 case llvm::ELF::ET_DYN: 2675 // 3 - Shared object file 2676 // TODO: is there any way to detect that an shared library is a kernel 2677 // related executable by inspecting the program headers, section 2678 // headers, symbols, or any other flag bits??? 2679 return eStrataUnknown; 2680 2681 case ET_CORE: 2682 // 4 - Core file 2683 // TODO: is there any way to detect that an core file is a kernel 2684 // related executable by inspecting the program headers, section 2685 // headers, symbols, or any other flag bits??? 2686 return eStrataUnknown; 2687 2688 default: 2689 break; 2690 } 2691 return eStrataUnknown; 2692 } 2693 2694