1 //===-- ObjectFileELF.cpp ------------------------------------- -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "ObjectFileELF.h" 11 12 #include <cassert> 13 #include <algorithm> 14 15 #include "lldb/Core/ArchSpec.h" 16 #include "lldb/Core/DataBuffer.h" 17 #include "lldb/Core/Error.h" 18 #include "lldb/Core/FileSpecList.h" 19 #include "lldb/Core/Log.h" 20 #include "lldb/Core/Module.h" 21 #include "lldb/Core/ModuleSpec.h" 22 #include "lldb/Core/PluginManager.h" 23 #include "lldb/Core/Section.h" 24 #include "lldb/Core/Stream.h" 25 #include "lldb/Core/Timer.h" 26 #include "lldb/Symbol/DWARFCallFrameInfo.h" 27 #include "lldb/Symbol/SymbolContext.h" 28 #include "lldb/Target/SectionLoadList.h" 29 #include "lldb/Target/Target.h" 30 31 #include "llvm/ADT/PointerUnion.h" 32 #include "llvm/ADT/StringRef.h" 33 #include "llvm/Support/MathExtras.h" 34 35 #define CASE_AND_STREAM(s, def, width) \ 36 case def: s->Printf("%-*s", width, #def); break; 37 38 using namespace lldb; 39 using namespace lldb_private; 40 using namespace elf; 41 using namespace llvm::ELF; 42 43 namespace { 44 45 // ELF note owner definitions 46 const char *const LLDB_NT_OWNER_FREEBSD = "FreeBSD"; 47 const char *const LLDB_NT_OWNER_GNU = "GNU"; 48 const char *const LLDB_NT_OWNER_NETBSD = "NetBSD"; 49 const char *const LLDB_NT_OWNER_CSR = "csr"; 50 const char *const LLDB_NT_OWNER_ANDROID = "Android"; 51 52 // ELF note type definitions 53 const elf_word LLDB_NT_FREEBSD_ABI_TAG = 0x01; 54 const elf_word LLDB_NT_FREEBSD_ABI_SIZE = 4; 55 56 const elf_word LLDB_NT_GNU_ABI_TAG = 0x01; 57 const elf_word LLDB_NT_GNU_ABI_SIZE = 16; 58 59 const elf_word LLDB_NT_GNU_BUILD_ID_TAG = 0x03; 60 61 const elf_word LLDB_NT_NETBSD_ABI_TAG = 0x01; 62 const elf_word LLDB_NT_NETBSD_ABI_SIZE = 4; 63 64 // GNU ABI note OS constants 65 const elf_word LLDB_NT_GNU_ABI_OS_LINUX = 0x00; 66 const elf_word LLDB_NT_GNU_ABI_OS_HURD = 0x01; 67 const elf_word LLDB_NT_GNU_ABI_OS_SOLARIS = 0x02; 68 69 //===----------------------------------------------------------------------===// 70 /// @class ELFRelocation 71 /// @brief Generic wrapper for ELFRel and ELFRela. 72 /// 73 /// This helper class allows us to parse both ELFRel and ELFRela relocation 74 /// entries in a generic manner. 75 class ELFRelocation 76 { 77 public: 78 79 /// Constructs an ELFRelocation entry with a personality as given by @p 80 /// type. 81 /// 82 /// @param type Either DT_REL or DT_RELA. Any other value is invalid. 83 ELFRelocation(unsigned type); 84 85 ~ELFRelocation(); 86 87 bool 88 Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset); 89 90 static unsigned 91 RelocType32(const ELFRelocation &rel); 92 93 static unsigned 94 RelocType64(const ELFRelocation &rel); 95 96 static unsigned 97 RelocSymbol32(const ELFRelocation &rel); 98 99 static unsigned 100 RelocSymbol64(const ELFRelocation &rel); 101 102 static unsigned 103 RelocOffset32(const ELFRelocation &rel); 104 105 static unsigned 106 RelocOffset64(const ELFRelocation &rel); 107 108 static unsigned 109 RelocAddend32(const ELFRelocation &rel); 110 111 static unsigned 112 RelocAddend64(const ELFRelocation &rel); 113 114 private: 115 typedef llvm::PointerUnion<ELFRel*, ELFRela*> RelocUnion; 116 117 RelocUnion reloc; 118 }; 119 120 ELFRelocation::ELFRelocation(unsigned type) 121 { 122 if (type == DT_REL || type == SHT_REL) 123 reloc = new ELFRel(); 124 else if (type == DT_RELA || type == SHT_RELA) 125 reloc = new ELFRela(); 126 else { 127 assert(false && "unexpected relocation type"); 128 reloc = static_cast<ELFRel*>(NULL); 129 } 130 } 131 132 ELFRelocation::~ELFRelocation() 133 { 134 if (reloc.is<ELFRel*>()) 135 delete reloc.get<ELFRel*>(); 136 else 137 delete reloc.get<ELFRela*>(); 138 } 139 140 bool 141 ELFRelocation::Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset) 142 { 143 if (reloc.is<ELFRel*>()) 144 return reloc.get<ELFRel*>()->Parse(data, offset); 145 else 146 return reloc.get<ELFRela*>()->Parse(data, offset); 147 } 148 149 unsigned 150 ELFRelocation::RelocType32(const ELFRelocation &rel) 151 { 152 if (rel.reloc.is<ELFRel*>()) 153 return ELFRel::RelocType32(*rel.reloc.get<ELFRel*>()); 154 else 155 return ELFRela::RelocType32(*rel.reloc.get<ELFRela*>()); 156 } 157 158 unsigned 159 ELFRelocation::RelocType64(const ELFRelocation &rel) 160 { 161 if (rel.reloc.is<ELFRel*>()) 162 return ELFRel::RelocType64(*rel.reloc.get<ELFRel*>()); 163 else 164 return ELFRela::RelocType64(*rel.reloc.get<ELFRela*>()); 165 } 166 167 unsigned 168 ELFRelocation::RelocSymbol32(const ELFRelocation &rel) 169 { 170 if (rel.reloc.is<ELFRel*>()) 171 return ELFRel::RelocSymbol32(*rel.reloc.get<ELFRel*>()); 172 else 173 return ELFRela::RelocSymbol32(*rel.reloc.get<ELFRela*>()); 174 } 175 176 unsigned 177 ELFRelocation::RelocSymbol64(const ELFRelocation &rel) 178 { 179 if (rel.reloc.is<ELFRel*>()) 180 return ELFRel::RelocSymbol64(*rel.reloc.get<ELFRel*>()); 181 else 182 return ELFRela::RelocSymbol64(*rel.reloc.get<ELFRela*>()); 183 } 184 185 unsigned 186 ELFRelocation::RelocOffset32(const ELFRelocation &rel) 187 { 188 if (rel.reloc.is<ELFRel*>()) 189 return rel.reloc.get<ELFRel*>()->r_offset; 190 else 191 return rel.reloc.get<ELFRela*>()->r_offset; 192 } 193 194 unsigned 195 ELFRelocation::RelocOffset64(const ELFRelocation &rel) 196 { 197 if (rel.reloc.is<ELFRel*>()) 198 return rel.reloc.get<ELFRel*>()->r_offset; 199 else 200 return rel.reloc.get<ELFRela*>()->r_offset; 201 } 202 203 unsigned 204 ELFRelocation::RelocAddend32(const ELFRelocation &rel) 205 { 206 if (rel.reloc.is<ELFRel*>()) 207 return 0; 208 else 209 return rel.reloc.get<ELFRela*>()->r_addend; 210 } 211 212 unsigned 213 ELFRelocation::RelocAddend64(const ELFRelocation &rel) 214 { 215 if (rel.reloc.is<ELFRel*>()) 216 return 0; 217 else 218 return rel.reloc.get<ELFRela*>()->r_addend; 219 } 220 221 } // end anonymous namespace 222 223 bool 224 ELFNote::Parse(const DataExtractor &data, lldb::offset_t *offset) 225 { 226 // Read all fields. 227 if (data.GetU32(offset, &n_namesz, 3) == NULL) 228 return false; 229 230 // The name field is required to be nul-terminated, and n_namesz 231 // includes the terminating nul in observed implementations (contrary 232 // to the ELF-64 spec). A special case is needed for cores generated 233 // by some older Linux versions, which write a note named "CORE" 234 // without a nul terminator and n_namesz = 4. 235 if (n_namesz == 4) 236 { 237 char buf[4]; 238 if (data.ExtractBytes (*offset, 4, data.GetByteOrder(), buf) != 4) 239 return false; 240 if (strncmp (buf, "CORE", 4) == 0) 241 { 242 n_name = "CORE"; 243 *offset += 4; 244 return true; 245 } 246 } 247 248 const char *cstr = data.GetCStr(offset, llvm::RoundUpToAlignment (n_namesz, 4)); 249 if (cstr == NULL) 250 { 251 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_SYMBOLS)); 252 if (log) 253 log->Printf("Failed to parse note name lacking nul terminator"); 254 255 return false; 256 } 257 n_name = cstr; 258 return true; 259 } 260 261 static uint32_t 262 kalimbaVariantFromElfFlags(const elf::elf_word e_flags) 263 { 264 const uint32_t dsp_rev = e_flags & 0xFF; 265 uint32_t kal_arch_variant = LLDB_INVALID_CPUTYPE; 266 switch(dsp_rev) 267 { 268 // TODO(mg11) Support more variants 269 case 10: 270 kal_arch_variant = llvm::Triple::KalimbaSubArch_v3; 271 break; 272 case 14: 273 kal_arch_variant = llvm::Triple::KalimbaSubArch_v4; 274 break; 275 case 17: 276 case 20: 277 kal_arch_variant = llvm::Triple::KalimbaSubArch_v5; 278 break; 279 default: 280 break; 281 } 282 return kal_arch_variant; 283 } 284 285 static uint32_t 286 mipsVariantFromElfFlags(const elf::elf_word e_flags, uint32_t endian) 287 { 288 const uint32_t mips_arch = e_flags & llvm::ELF::EF_MIPS_ARCH; 289 uint32_t arch_variant = ArchSpec::eMIPSSubType_unknown; 290 291 switch (mips_arch) 292 { 293 case llvm::ELF::EF_MIPS_ARCH_32: 294 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el : ArchSpec::eMIPSSubType_mips32; 295 case llvm::ELF::EF_MIPS_ARCH_32R2: 296 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r2el : ArchSpec::eMIPSSubType_mips32r2; 297 case llvm::ELF::EF_MIPS_ARCH_32R6: 298 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r6el : ArchSpec::eMIPSSubType_mips32r6; 299 case llvm::ELF::EF_MIPS_ARCH_64: 300 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el : ArchSpec::eMIPSSubType_mips64; 301 case llvm::ELF::EF_MIPS_ARCH_64R2: 302 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r2el : ArchSpec::eMIPSSubType_mips64r2; 303 case llvm::ELF::EF_MIPS_ARCH_64R6: 304 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r6el : ArchSpec::eMIPSSubType_mips64r6; 305 default: 306 break; 307 } 308 309 return arch_variant; 310 } 311 312 static uint32_t 313 subTypeFromElfHeader(const elf::ELFHeader& header) 314 { 315 if (header.e_machine == llvm::ELF::EM_MIPS) 316 return mipsVariantFromElfFlags (header.e_flags, 317 header.e_ident[EI_DATA]); 318 319 return 320 llvm::ELF::EM_CSR_KALIMBA == header.e_machine ? 321 kalimbaVariantFromElfFlags(header.e_flags) : 322 LLDB_INVALID_CPUTYPE; 323 } 324 325 //! The kalimba toolchain identifies a code section as being 326 //! one with the SHT_PROGBITS set in the section sh_type and the top 327 //! bit in the 32-bit address field set. 328 static lldb::SectionType 329 kalimbaSectionType( 330 const elf::ELFHeader& header, 331 const elf::ELFSectionHeader& sect_hdr) 332 { 333 if (llvm::ELF::EM_CSR_KALIMBA != header.e_machine) 334 { 335 return eSectionTypeOther; 336 } 337 338 if (llvm::ELF::SHT_NOBITS == sect_hdr.sh_type) 339 { 340 return eSectionTypeZeroFill; 341 } 342 343 if (llvm::ELF::SHT_PROGBITS == sect_hdr.sh_type) 344 { 345 const lldb::addr_t KAL_CODE_BIT = 1 << 31; 346 return KAL_CODE_BIT & sect_hdr.sh_addr ? 347 eSectionTypeCode : eSectionTypeData; 348 } 349 350 return eSectionTypeOther; 351 } 352 353 // Arbitrary constant used as UUID prefix for core files. 354 const uint32_t 355 ObjectFileELF::g_core_uuid_magic(0xE210C); 356 357 //------------------------------------------------------------------ 358 // Static methods. 359 //------------------------------------------------------------------ 360 void 361 ObjectFileELF::Initialize() 362 { 363 PluginManager::RegisterPlugin(GetPluginNameStatic(), 364 GetPluginDescriptionStatic(), 365 CreateInstance, 366 CreateMemoryInstance, 367 GetModuleSpecifications); 368 } 369 370 void 371 ObjectFileELF::Terminate() 372 { 373 PluginManager::UnregisterPlugin(CreateInstance); 374 } 375 376 lldb_private::ConstString 377 ObjectFileELF::GetPluginNameStatic() 378 { 379 static ConstString g_name("elf"); 380 return g_name; 381 } 382 383 const char * 384 ObjectFileELF::GetPluginDescriptionStatic() 385 { 386 return "ELF object file reader."; 387 } 388 389 ObjectFile * 390 ObjectFileELF::CreateInstance (const lldb::ModuleSP &module_sp, 391 DataBufferSP &data_sp, 392 lldb::offset_t data_offset, 393 const lldb_private::FileSpec* file, 394 lldb::offset_t file_offset, 395 lldb::offset_t length) 396 { 397 if (!data_sp) 398 { 399 data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length); 400 data_offset = 0; 401 } 402 403 if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset)) 404 { 405 const uint8_t *magic = data_sp->GetBytes() + data_offset; 406 if (ELFHeader::MagicBytesMatch(magic)) 407 { 408 // Update the data to contain the entire file if it doesn't already 409 if (data_sp->GetByteSize() < length) { 410 data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length); 411 data_offset = 0; 412 magic = data_sp->GetBytes(); 413 } 414 unsigned address_size = ELFHeader::AddressSizeInBytes(magic); 415 if (address_size == 4 || address_size == 8) 416 { 417 std::unique_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, data_offset, file, file_offset, length)); 418 ArchSpec spec; 419 if (objfile_ap->GetArchitecture(spec) && 420 objfile_ap->SetModulesArchitecture(spec)) 421 return objfile_ap.release(); 422 } 423 } 424 } 425 return NULL; 426 } 427 428 429 ObjectFile* 430 ObjectFileELF::CreateMemoryInstance (const lldb::ModuleSP &module_sp, 431 DataBufferSP& data_sp, 432 const lldb::ProcessSP &process_sp, 433 lldb::addr_t header_addr) 434 { 435 if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT)) 436 { 437 const uint8_t *magic = data_sp->GetBytes(); 438 if (ELFHeader::MagicBytesMatch(magic)) 439 { 440 unsigned address_size = ELFHeader::AddressSizeInBytes(magic); 441 if (address_size == 4 || address_size == 8) 442 { 443 std::auto_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, process_sp, header_addr)); 444 ArchSpec spec; 445 if (objfile_ap->GetArchitecture(spec) && 446 objfile_ap->SetModulesArchitecture(spec)) 447 return objfile_ap.release(); 448 } 449 } 450 } 451 return NULL; 452 } 453 454 bool 455 ObjectFileELF::MagicBytesMatch (DataBufferSP& data_sp, 456 lldb::addr_t data_offset, 457 lldb::addr_t data_length) 458 { 459 if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset)) 460 { 461 const uint8_t *magic = data_sp->GetBytes() + data_offset; 462 return ELFHeader::MagicBytesMatch(magic); 463 } 464 return false; 465 } 466 467 /* 468 * crc function from http://svnweb.freebsd.org/base/head/sys/libkern/crc32.c 469 * 470 * COPYRIGHT (C) 1986 Gary S. Brown. You may use this program, or 471 * code or tables extracted from it, as desired without restriction. 472 */ 473 static uint32_t 474 calc_crc32(uint32_t crc, const void *buf, size_t size) 475 { 476 static const uint32_t g_crc32_tab[] = 477 { 478 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, 479 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988, 480 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2, 481 0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 482 0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9, 483 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172, 484 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c, 485 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 486 0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 487 0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924, 488 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106, 489 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433, 490 0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 491 0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 492 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950, 493 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65, 494 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7, 495 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0, 496 0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 497 0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f, 498 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81, 499 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a, 500 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84, 501 0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 502 0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb, 503 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc, 504 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e, 505 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 506 0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 507 0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236, 508 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28, 509 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d, 510 0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f, 511 0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 512 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242, 513 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777, 514 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69, 515 0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 516 0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 517 0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9, 518 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693, 519 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94, 520 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d 521 }; 522 const uint8_t *p = (const uint8_t *)buf; 523 524 crc = crc ^ ~0U; 525 while (size--) 526 crc = g_crc32_tab[(crc ^ *p++) & 0xFF] ^ (crc >> 8); 527 return crc ^ ~0U; 528 } 529 530 static uint32_t 531 calc_gnu_debuglink_crc32(const void *buf, size_t size) 532 { 533 return calc_crc32(0U, buf, size); 534 } 535 536 uint32_t 537 ObjectFileELF::CalculateELFNotesSegmentsCRC32 (const ProgramHeaderColl& program_headers, 538 DataExtractor& object_data) 539 { 540 typedef ProgramHeaderCollConstIter Iter; 541 542 uint32_t core_notes_crc = 0; 543 544 for (Iter I = program_headers.begin(); I != program_headers.end(); ++I) 545 { 546 if (I->p_type == llvm::ELF::PT_NOTE) 547 { 548 const elf_off ph_offset = I->p_offset; 549 const size_t ph_size = I->p_filesz; 550 551 DataExtractor segment_data; 552 if (segment_data.SetData(object_data, ph_offset, ph_size) != ph_size) 553 { 554 // The ELF program header contained incorrect data, 555 // probably corefile is incomplete or corrupted. 556 break; 557 } 558 559 core_notes_crc = calc_crc32(core_notes_crc, 560 segment_data.GetDataStart(), 561 segment_data.GetByteSize()); 562 } 563 } 564 565 return core_notes_crc; 566 } 567 568 static const char* 569 OSABIAsCString (unsigned char osabi_byte) 570 { 571 #define _MAKE_OSABI_CASE(x) case x: return #x 572 switch (osabi_byte) 573 { 574 _MAKE_OSABI_CASE(ELFOSABI_NONE); 575 _MAKE_OSABI_CASE(ELFOSABI_HPUX); 576 _MAKE_OSABI_CASE(ELFOSABI_NETBSD); 577 _MAKE_OSABI_CASE(ELFOSABI_GNU); 578 _MAKE_OSABI_CASE(ELFOSABI_HURD); 579 _MAKE_OSABI_CASE(ELFOSABI_SOLARIS); 580 _MAKE_OSABI_CASE(ELFOSABI_AIX); 581 _MAKE_OSABI_CASE(ELFOSABI_IRIX); 582 _MAKE_OSABI_CASE(ELFOSABI_FREEBSD); 583 _MAKE_OSABI_CASE(ELFOSABI_TRU64); 584 _MAKE_OSABI_CASE(ELFOSABI_MODESTO); 585 _MAKE_OSABI_CASE(ELFOSABI_OPENBSD); 586 _MAKE_OSABI_CASE(ELFOSABI_OPENVMS); 587 _MAKE_OSABI_CASE(ELFOSABI_NSK); 588 _MAKE_OSABI_CASE(ELFOSABI_AROS); 589 _MAKE_OSABI_CASE(ELFOSABI_FENIXOS); 590 _MAKE_OSABI_CASE(ELFOSABI_C6000_ELFABI); 591 _MAKE_OSABI_CASE(ELFOSABI_C6000_LINUX); 592 _MAKE_OSABI_CASE(ELFOSABI_ARM); 593 _MAKE_OSABI_CASE(ELFOSABI_STANDALONE); 594 default: 595 return "<unknown-osabi>"; 596 } 597 #undef _MAKE_OSABI_CASE 598 } 599 600 // 601 // WARNING : This function is being deprecated 602 // It's functionality has moved to ArchSpec::SetArchitecture 603 // This function is only being kept to validate the move. 604 // 605 // TODO : Remove this function 606 static bool 607 GetOsFromOSABI (unsigned char osabi_byte, llvm::Triple::OSType &ostype) 608 { 609 switch (osabi_byte) 610 { 611 case ELFOSABI_AIX: ostype = llvm::Triple::OSType::AIX; break; 612 case ELFOSABI_FREEBSD: ostype = llvm::Triple::OSType::FreeBSD; break; 613 case ELFOSABI_GNU: ostype = llvm::Triple::OSType::Linux; break; 614 case ELFOSABI_NETBSD: ostype = llvm::Triple::OSType::NetBSD; break; 615 case ELFOSABI_OPENBSD: ostype = llvm::Triple::OSType::OpenBSD; break; 616 case ELFOSABI_SOLARIS: ostype = llvm::Triple::OSType::Solaris; break; 617 default: 618 ostype = llvm::Triple::OSType::UnknownOS; 619 } 620 return ostype != llvm::Triple::OSType::UnknownOS; 621 } 622 623 size_t 624 ObjectFileELF::GetModuleSpecifications (const lldb_private::FileSpec& file, 625 lldb::DataBufferSP& data_sp, 626 lldb::offset_t data_offset, 627 lldb::offset_t file_offset, 628 lldb::offset_t length, 629 lldb_private::ModuleSpecList &specs) 630 { 631 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES)); 632 633 const size_t initial_count = specs.GetSize(); 634 635 if (ObjectFileELF::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) 636 { 637 DataExtractor data; 638 data.SetData(data_sp); 639 elf::ELFHeader header; 640 if (header.Parse(data, &data_offset)) 641 { 642 if (data_sp) 643 { 644 ModuleSpec spec (file); 645 646 const uint32_t sub_type = subTypeFromElfHeader(header); 647 spec.GetArchitecture().SetArchitecture(eArchTypeELF, 648 header.e_machine, 649 sub_type, 650 header.e_ident[EI_OSABI]); 651 652 if (spec.GetArchitecture().IsValid()) 653 { 654 llvm::Triple::OSType ostype; 655 llvm::Triple::VendorType vendor; 656 llvm::Triple::OSType spec_ostype = spec.GetArchitecture ().GetTriple ().getOS (); 657 658 if (log) 659 log->Printf ("ObjectFileELF::%s file '%s' module OSABI: %s", __FUNCTION__, file.GetPath ().c_str (), OSABIAsCString (header.e_ident[EI_OSABI])); 660 661 // SetArchitecture should have set the vendor to unknown 662 vendor = spec.GetArchitecture ().GetTriple ().getVendor (); 663 assert(vendor == llvm::Triple::UnknownVendor); 664 665 // 666 // Validate it is ok to remove GetOsFromOSABI 667 GetOsFromOSABI (header.e_ident[EI_OSABI], ostype); 668 assert(spec_ostype == ostype); 669 if (spec_ostype != llvm::Triple::OSType::UnknownOS) 670 { 671 if (log) 672 log->Printf ("ObjectFileELF::%s file '%s' set ELF module OS type from ELF header OSABI.", __FUNCTION__, file.GetPath ().c_str ()); 673 } 674 675 // Try to get the UUID from the section list. Usually that's at the end, so 676 // map the file in if we don't have it already. 677 size_t section_header_end = header.e_shoff + header.e_shnum * header.e_shentsize; 678 if (section_header_end > data_sp->GetByteSize()) 679 { 680 data_sp = file.MemoryMapFileContentsIfLocal (file_offset, section_header_end); 681 data.SetData(data_sp); 682 } 683 684 uint32_t gnu_debuglink_crc = 0; 685 std::string gnu_debuglink_file; 686 SectionHeaderColl section_headers; 687 lldb_private::UUID &uuid = spec.GetUUID(); 688 689 GetSectionHeaderInfo(section_headers, data, header, uuid, gnu_debuglink_file, gnu_debuglink_crc, spec.GetArchitecture ()); 690 691 llvm::Triple &spec_triple = spec.GetArchitecture ().GetTriple (); 692 693 if (log) 694 log->Printf ("ObjectFileELF::%s file '%s' module set to triple: %s (architecture %s)", __FUNCTION__, file.GetPath ().c_str (), spec_triple.getTriple ().c_str (), spec.GetArchitecture ().GetArchitectureName ()); 695 696 if (!uuid.IsValid()) 697 { 698 uint32_t core_notes_crc = 0; 699 700 if (!gnu_debuglink_crc) 701 { 702 lldb_private::Timer scoped_timer (__PRETTY_FUNCTION__, 703 "Calculating module crc32 %s with size %" PRIu64 " KiB", 704 file.GetLastPathComponent().AsCString(), 705 (file.GetByteSize()-file_offset)/1024); 706 707 // For core files - which usually don't happen to have a gnu_debuglink, 708 // and are pretty bulky - calculating whole contents crc32 would be too much of luxury. 709 // Thus we will need to fallback to something simpler. 710 if (header.e_type == llvm::ELF::ET_CORE) 711 { 712 size_t program_headers_end = header.e_phoff + header.e_phnum * header.e_phentsize; 713 if (program_headers_end > data_sp->GetByteSize()) 714 { 715 data_sp = file.MemoryMapFileContentsIfLocal(file_offset, program_headers_end); 716 data.SetData(data_sp); 717 } 718 ProgramHeaderColl program_headers; 719 GetProgramHeaderInfo(program_headers, data, header); 720 721 size_t segment_data_end = 0; 722 for (ProgramHeaderCollConstIter I = program_headers.begin(); 723 I != program_headers.end(); ++I) 724 { 725 segment_data_end = std::max<unsigned long long> (I->p_offset + I->p_filesz, segment_data_end); 726 } 727 728 if (segment_data_end > data_sp->GetByteSize()) 729 { 730 data_sp = file.MemoryMapFileContentsIfLocal(file_offset, segment_data_end); 731 data.SetData(data_sp); 732 } 733 734 core_notes_crc = CalculateELFNotesSegmentsCRC32 (program_headers, data); 735 } 736 else 737 { 738 // Need to map entire file into memory to calculate the crc. 739 data_sp = file.MemoryMapFileContentsIfLocal (file_offset, SIZE_MAX); 740 data.SetData(data_sp); 741 gnu_debuglink_crc = calc_gnu_debuglink_crc32 (data.GetDataStart(), data.GetByteSize()); 742 } 743 } 744 if (gnu_debuglink_crc) 745 { 746 // Use 4 bytes of crc from the .gnu_debuglink section. 747 uint32_t uuidt[4] = { gnu_debuglink_crc, 0, 0, 0 }; 748 uuid.SetBytes (uuidt, sizeof(uuidt)); 749 } 750 else if (core_notes_crc) 751 { 752 // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it look different form 753 // .gnu_debuglink crc followed by 4 bytes of note segments crc. 754 uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 }; 755 uuid.SetBytes (uuidt, sizeof(uuidt)); 756 } 757 } 758 759 specs.Append(spec); 760 } 761 } 762 } 763 } 764 765 return specs.GetSize() - initial_count; 766 } 767 768 //------------------------------------------------------------------ 769 // PluginInterface protocol 770 //------------------------------------------------------------------ 771 lldb_private::ConstString 772 ObjectFileELF::GetPluginName() 773 { 774 return GetPluginNameStatic(); 775 } 776 777 uint32_t 778 ObjectFileELF::GetPluginVersion() 779 { 780 return m_plugin_version; 781 } 782 //------------------------------------------------------------------ 783 // ObjectFile protocol 784 //------------------------------------------------------------------ 785 786 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp, 787 DataBufferSP& data_sp, 788 lldb::offset_t data_offset, 789 const FileSpec* file, 790 lldb::offset_t file_offset, 791 lldb::offset_t length) : 792 ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset), 793 m_header(), 794 m_uuid(), 795 m_gnu_debuglink_file(), 796 m_gnu_debuglink_crc(0), 797 m_program_headers(), 798 m_section_headers(), 799 m_dynamic_symbols(), 800 m_filespec_ap(), 801 m_entry_point_address(), 802 m_arch_spec() 803 { 804 if (file) 805 m_file = *file; 806 ::memset(&m_header, 0, sizeof(m_header)); 807 } 808 809 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp, 810 DataBufferSP& header_data_sp, 811 const lldb::ProcessSP &process_sp, 812 addr_t header_addr) : 813 ObjectFile(module_sp, process_sp, header_addr, header_data_sp), 814 m_header(), 815 m_uuid(), 816 m_gnu_debuglink_file(), 817 m_gnu_debuglink_crc(0), 818 m_program_headers(), 819 m_section_headers(), 820 m_dynamic_symbols(), 821 m_filespec_ap(), 822 m_entry_point_address(), 823 m_arch_spec() 824 { 825 ::memset(&m_header, 0, sizeof(m_header)); 826 } 827 828 ObjectFileELF::~ObjectFileELF() 829 { 830 } 831 832 bool 833 ObjectFileELF::IsExecutable() const 834 { 835 return ((m_header.e_type & ET_EXEC) != 0) || (m_header.e_entry != 0); 836 } 837 838 bool 839 ObjectFileELF::SetLoadAddress (Target &target, 840 lldb::addr_t value, 841 bool value_is_offset) 842 { 843 ModuleSP module_sp = GetModule(); 844 if (module_sp) 845 { 846 size_t num_loaded_sections = 0; 847 SectionList *section_list = GetSectionList (); 848 if (section_list) 849 { 850 if (value_is_offset) 851 { 852 const size_t num_sections = section_list->GetSize(); 853 size_t sect_idx = 0; 854 855 for (sect_idx = 0; sect_idx < num_sections; ++sect_idx) 856 { 857 // Iterate through the object file sections to find all 858 // of the sections that have SHF_ALLOC in their flag bits. 859 SectionSP section_sp (section_list->GetSectionAtIndex (sect_idx)); 860 // if (section_sp && !section_sp->IsThreadSpecific()) 861 if (section_sp && section_sp->Test(SHF_ALLOC)) 862 { 863 lldb::addr_t load_addr = section_sp->GetFileAddress() + value; 864 865 // On 32-bit systems the load address have to fit into 4 bytes. The rest of 866 // the bytes are the overflow from the addition. 867 if (GetAddressByteSize() == 4) 868 load_addr &= 0xFFFFFFFF; 869 870 if (target.GetSectionLoadList().SetSectionLoadAddress (section_sp, load_addr)) 871 ++num_loaded_sections; 872 } 873 } 874 return num_loaded_sections > 0; 875 } 876 else 877 { 878 // Not sure how to slide an ELF file given the base address 879 // of the ELF file in memory 880 } 881 } 882 } 883 return false; // If it changed 884 } 885 886 ByteOrder 887 ObjectFileELF::GetByteOrder() const 888 { 889 if (m_header.e_ident[EI_DATA] == ELFDATA2MSB) 890 return eByteOrderBig; 891 if (m_header.e_ident[EI_DATA] == ELFDATA2LSB) 892 return eByteOrderLittle; 893 return eByteOrderInvalid; 894 } 895 896 uint32_t 897 ObjectFileELF::GetAddressByteSize() const 898 { 899 return m_data.GetAddressByteSize(); 900 } 901 902 // Top 16 bits of the `Symbol` flags are available. 903 #define ARM_ELF_SYM_IS_THUMB (1 << 16) 904 905 AddressClass 906 ObjectFileELF::GetAddressClass (addr_t file_addr) 907 { 908 auto res = ObjectFile::GetAddressClass (file_addr); 909 910 if (res != eAddressClassCode) 911 return res; 912 913 auto ub = m_address_class_map.upper_bound(file_addr); 914 if (ub == m_address_class_map.begin()) 915 { 916 // No entry in the address class map before the address. Return 917 // default address class for an address in a code section. 918 return eAddressClassCode; 919 } 920 921 // Move iterator to the address class entry preceding address 922 --ub; 923 924 return ub->second; 925 } 926 927 size_t 928 ObjectFileELF::SectionIndex(const SectionHeaderCollIter &I) 929 { 930 return std::distance(m_section_headers.begin(), I) + 1u; 931 } 932 933 size_t 934 ObjectFileELF::SectionIndex(const SectionHeaderCollConstIter &I) const 935 { 936 return std::distance(m_section_headers.begin(), I) + 1u; 937 } 938 939 bool 940 ObjectFileELF::ParseHeader() 941 { 942 lldb::offset_t offset = 0; 943 if (!m_header.Parse(m_data, &offset)) 944 return false; 945 946 if (!IsInMemory()) 947 return true; 948 949 // For in memory object files m_data might not contain the full object file. Try to load it 950 // until the end of the "Section header table" what is at the end of the ELF file. 951 addr_t file_size = m_header.e_shoff + m_header.e_shnum * m_header.e_shentsize; 952 if (m_data.GetByteSize() < file_size) 953 { 954 ProcessSP process_sp (m_process_wp.lock()); 955 if (!process_sp) 956 return false; 957 958 DataBufferSP data_sp = ReadMemory(process_sp, m_memory_addr, file_size); 959 if (!data_sp) 960 return false; 961 m_data.SetData(data_sp, 0, file_size); 962 } 963 964 return true; 965 } 966 967 bool 968 ObjectFileELF::GetUUID(lldb_private::UUID* uuid) 969 { 970 // Need to parse the section list to get the UUIDs, so make sure that's been done. 971 if (!ParseSectionHeaders() && GetType() != ObjectFile::eTypeCoreFile) 972 return false; 973 974 if (m_uuid.IsValid()) 975 { 976 // We have the full build id uuid. 977 *uuid = m_uuid; 978 return true; 979 } 980 else if (GetType() == ObjectFile::eTypeCoreFile) 981 { 982 uint32_t core_notes_crc = 0; 983 984 if (!ParseProgramHeaders()) 985 return false; 986 987 core_notes_crc = CalculateELFNotesSegmentsCRC32(m_program_headers, m_data); 988 989 if (core_notes_crc) 990 { 991 // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it 992 // look different form .gnu_debuglink crc - followed by 4 bytes of note 993 // segments crc. 994 uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 }; 995 m_uuid.SetBytes (uuidt, sizeof(uuidt)); 996 } 997 } 998 else 999 { 1000 if (!m_gnu_debuglink_crc) 1001 m_gnu_debuglink_crc = calc_gnu_debuglink_crc32 (m_data.GetDataStart(), m_data.GetByteSize()); 1002 if (m_gnu_debuglink_crc) 1003 { 1004 // Use 4 bytes of crc from the .gnu_debuglink section. 1005 uint32_t uuidt[4] = { m_gnu_debuglink_crc, 0, 0, 0 }; 1006 m_uuid.SetBytes (uuidt, sizeof(uuidt)); 1007 } 1008 } 1009 1010 if (m_uuid.IsValid()) 1011 { 1012 *uuid = m_uuid; 1013 return true; 1014 } 1015 1016 return false; 1017 } 1018 1019 lldb_private::FileSpecList 1020 ObjectFileELF::GetDebugSymbolFilePaths() 1021 { 1022 FileSpecList file_spec_list; 1023 1024 if (!m_gnu_debuglink_file.empty()) 1025 { 1026 FileSpec file_spec (m_gnu_debuglink_file.c_str(), false); 1027 file_spec_list.Append (file_spec); 1028 } 1029 return file_spec_list; 1030 } 1031 1032 uint32_t 1033 ObjectFileELF::GetDependentModules(FileSpecList &files) 1034 { 1035 size_t num_modules = ParseDependentModules(); 1036 uint32_t num_specs = 0; 1037 1038 for (unsigned i = 0; i < num_modules; ++i) 1039 { 1040 if (files.AppendIfUnique(m_filespec_ap->GetFileSpecAtIndex(i))) 1041 num_specs++; 1042 } 1043 1044 return num_specs; 1045 } 1046 1047 Address 1048 ObjectFileELF::GetImageInfoAddress(Target *target) 1049 { 1050 if (!ParseDynamicSymbols()) 1051 return Address(); 1052 1053 SectionList *section_list = GetSectionList(); 1054 if (!section_list) 1055 return Address(); 1056 1057 // Find the SHT_DYNAMIC (.dynamic) section. 1058 SectionSP dynsym_section_sp (section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true)); 1059 if (!dynsym_section_sp) 1060 return Address(); 1061 assert (dynsym_section_sp->GetObjectFile() == this); 1062 1063 user_id_t dynsym_id = dynsym_section_sp->GetID(); 1064 const ELFSectionHeaderInfo *dynsym_hdr = GetSectionHeaderByIndex(dynsym_id); 1065 if (!dynsym_hdr) 1066 return Address(); 1067 1068 for (size_t i = 0; i < m_dynamic_symbols.size(); ++i) 1069 { 1070 ELFDynamic &symbol = m_dynamic_symbols[i]; 1071 1072 if (symbol.d_tag == DT_DEBUG) 1073 { 1074 // Compute the offset as the number of previous entries plus the 1075 // size of d_tag. 1076 addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize(); 1077 return Address(dynsym_section_sp, offset); 1078 } 1079 else if (symbol.d_tag == DT_MIPS_RLD_MAP && target) 1080 { 1081 addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize(); 1082 addr_t dyn_base = dynsym_section_sp->GetLoadBaseAddress(target); 1083 if (dyn_base == LLDB_INVALID_ADDRESS) 1084 return Address(); 1085 Address addr; 1086 Error error; 1087 if (target->ReadPointerFromMemory(dyn_base + offset, false, error, addr)) 1088 return addr; 1089 } 1090 } 1091 1092 return Address(); 1093 } 1094 1095 lldb_private::Address 1096 ObjectFileELF::GetEntryPointAddress () 1097 { 1098 if (m_entry_point_address.IsValid()) 1099 return m_entry_point_address; 1100 1101 if (!ParseHeader() || !IsExecutable()) 1102 return m_entry_point_address; 1103 1104 SectionList *section_list = GetSectionList(); 1105 addr_t offset = m_header.e_entry; 1106 1107 if (!section_list) 1108 m_entry_point_address.SetOffset(offset); 1109 else 1110 m_entry_point_address.ResolveAddressUsingFileSections(offset, section_list); 1111 return m_entry_point_address; 1112 } 1113 1114 //---------------------------------------------------------------------- 1115 // ParseDependentModules 1116 //---------------------------------------------------------------------- 1117 size_t 1118 ObjectFileELF::ParseDependentModules() 1119 { 1120 if (m_filespec_ap.get()) 1121 return m_filespec_ap->GetSize(); 1122 1123 m_filespec_ap.reset(new FileSpecList()); 1124 1125 if (!ParseSectionHeaders()) 1126 return 0; 1127 1128 SectionList *section_list = GetSectionList(); 1129 if (!section_list) 1130 return 0; 1131 1132 // Find the SHT_DYNAMIC section. 1133 Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get(); 1134 if (!dynsym) 1135 return 0; 1136 assert (dynsym->GetObjectFile() == this); 1137 1138 const ELFSectionHeaderInfo *header = GetSectionHeaderByIndex (dynsym->GetID()); 1139 if (!header) 1140 return 0; 1141 // sh_link: section header index of string table used by entries in the section. 1142 Section *dynstr = section_list->FindSectionByID (header->sh_link + 1).get(); 1143 if (!dynstr) 1144 return 0; 1145 1146 DataExtractor dynsym_data; 1147 DataExtractor dynstr_data; 1148 if (ReadSectionData(dynsym, dynsym_data) && 1149 ReadSectionData(dynstr, dynstr_data)) 1150 { 1151 ELFDynamic symbol; 1152 const lldb::offset_t section_size = dynsym_data.GetByteSize(); 1153 lldb::offset_t offset = 0; 1154 1155 // The only type of entries we are concerned with are tagged DT_NEEDED, 1156 // yielding the name of a required library. 1157 while (offset < section_size) 1158 { 1159 if (!symbol.Parse(dynsym_data, &offset)) 1160 break; 1161 1162 if (symbol.d_tag != DT_NEEDED) 1163 continue; 1164 1165 uint32_t str_index = static_cast<uint32_t>(symbol.d_val); 1166 const char *lib_name = dynstr_data.PeekCStr(str_index); 1167 m_filespec_ap->Append(FileSpec(lib_name, true)); 1168 } 1169 } 1170 1171 return m_filespec_ap->GetSize(); 1172 } 1173 1174 //---------------------------------------------------------------------- 1175 // GetProgramHeaderInfo 1176 //---------------------------------------------------------------------- 1177 size_t 1178 ObjectFileELF::GetProgramHeaderInfo(ProgramHeaderColl &program_headers, 1179 DataExtractor &object_data, 1180 const ELFHeader &header) 1181 { 1182 // We have already parsed the program headers 1183 if (!program_headers.empty()) 1184 return program_headers.size(); 1185 1186 // If there are no program headers to read we are done. 1187 if (header.e_phnum == 0) 1188 return 0; 1189 1190 program_headers.resize(header.e_phnum); 1191 if (program_headers.size() != header.e_phnum) 1192 return 0; 1193 1194 const size_t ph_size = header.e_phnum * header.e_phentsize; 1195 const elf_off ph_offset = header.e_phoff; 1196 DataExtractor data; 1197 if (data.SetData(object_data, ph_offset, ph_size) != ph_size) 1198 return 0; 1199 1200 uint32_t idx; 1201 lldb::offset_t offset; 1202 for (idx = 0, offset = 0; idx < header.e_phnum; ++idx) 1203 { 1204 if (program_headers[idx].Parse(data, &offset) == false) 1205 break; 1206 } 1207 1208 if (idx < program_headers.size()) 1209 program_headers.resize(idx); 1210 1211 return program_headers.size(); 1212 1213 } 1214 1215 //---------------------------------------------------------------------- 1216 // ParseProgramHeaders 1217 //---------------------------------------------------------------------- 1218 size_t 1219 ObjectFileELF::ParseProgramHeaders() 1220 { 1221 return GetProgramHeaderInfo(m_program_headers, m_data, m_header); 1222 } 1223 1224 lldb_private::Error 1225 ObjectFileELF::RefineModuleDetailsFromNote (lldb_private::DataExtractor &data, lldb_private::ArchSpec &arch_spec, lldb_private::UUID &uuid) 1226 { 1227 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES)); 1228 Error error; 1229 1230 lldb::offset_t offset = 0; 1231 1232 while (true) 1233 { 1234 // Parse the note header. If this fails, bail out. 1235 ELFNote note = ELFNote(); 1236 if (!note.Parse(data, &offset)) 1237 { 1238 // We're done. 1239 return error; 1240 } 1241 1242 // If a tag processor handles the tag, it should set processed to true, and 1243 // the loop will assume the tag processing has moved entirely past the note's payload. 1244 // Otherwise, leave it false and the end of the loop will handle the offset properly. 1245 bool processed = false; 1246 1247 if (log) 1248 log->Printf ("ObjectFileELF::%s parsing note name='%s', type=%" PRIu32, __FUNCTION__, note.n_name.c_str (), note.n_type); 1249 1250 // Process FreeBSD ELF notes. 1251 if ((note.n_name == LLDB_NT_OWNER_FREEBSD) && 1252 (note.n_type == LLDB_NT_FREEBSD_ABI_TAG) && 1253 (note.n_descsz == LLDB_NT_FREEBSD_ABI_SIZE)) 1254 { 1255 // We'll consume the payload below. 1256 processed = true; 1257 1258 // Pull out the min version info. 1259 uint32_t version_info; 1260 if (data.GetU32 (&offset, &version_info, 1) == nullptr) 1261 { 1262 error.SetErrorString ("failed to read FreeBSD ABI note payload"); 1263 return error; 1264 } 1265 1266 // Convert the version info into a major/minor number. 1267 const uint32_t version_major = version_info / 100000; 1268 const uint32_t version_minor = (version_info / 1000) % 100; 1269 1270 char os_name[32]; 1271 snprintf (os_name, sizeof (os_name), "freebsd%" PRIu32 ".%" PRIu32, version_major, version_minor); 1272 1273 // Set the elf OS version to FreeBSD. Also clear the vendor. 1274 arch_spec.GetTriple ().setOSName (os_name); 1275 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1276 1277 if (log) 1278 log->Printf ("ObjectFileELF::%s detected FreeBSD %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_major, version_minor, static_cast<uint32_t> (version_info % 1000)); 1279 } 1280 // Process GNU ELF notes. 1281 else if (note.n_name == LLDB_NT_OWNER_GNU) 1282 { 1283 switch (note.n_type) 1284 { 1285 case LLDB_NT_GNU_ABI_TAG: 1286 if (note.n_descsz == LLDB_NT_GNU_ABI_SIZE) 1287 { 1288 // We'll consume the payload below. 1289 processed = true; 1290 1291 // Pull out the min OS version supporting the ABI. 1292 uint32_t version_info[4]; 1293 if (data.GetU32 (&offset, &version_info[0], note.n_descsz / 4) == nullptr) 1294 { 1295 error.SetErrorString ("failed to read GNU ABI note payload"); 1296 return error; 1297 } 1298 1299 // Set the OS per the OS field. 1300 switch (version_info[0]) 1301 { 1302 case LLDB_NT_GNU_ABI_OS_LINUX: 1303 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Linux); 1304 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1305 if (log) 1306 log->Printf ("ObjectFileELF::%s detected Linux, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]); 1307 // FIXME we have the minimal version number, we could be propagating that. version_info[1] = OS Major, version_info[2] = OS Minor, version_info[3] = Revision. 1308 break; 1309 case LLDB_NT_GNU_ABI_OS_HURD: 1310 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::UnknownOS); 1311 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1312 if (log) 1313 log->Printf ("ObjectFileELF::%s detected Hurd (unsupported), min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]); 1314 break; 1315 case LLDB_NT_GNU_ABI_OS_SOLARIS: 1316 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Solaris); 1317 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1318 if (log) 1319 log->Printf ("ObjectFileELF::%s detected Solaris, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]); 1320 break; 1321 default: 1322 if (log) 1323 log->Printf ("ObjectFileELF::%s unrecognized OS in note, id %" PRIu32 ", min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[0], version_info[1], version_info[2], version_info[3]); 1324 break; 1325 } 1326 } 1327 break; 1328 1329 case LLDB_NT_GNU_BUILD_ID_TAG: 1330 // Only bother processing this if we don't already have the uuid set. 1331 if (!uuid.IsValid()) 1332 { 1333 // We'll consume the payload below. 1334 processed = true; 1335 1336 // 16 bytes is UUID|MD5, 20 bytes is SHA1 1337 if ((note.n_descsz == 16 || note.n_descsz == 20)) 1338 { 1339 uint8_t uuidbuf[20]; 1340 if (data.GetU8 (&offset, &uuidbuf, note.n_descsz) == nullptr) 1341 { 1342 error.SetErrorString ("failed to read GNU_BUILD_ID note payload"); 1343 return error; 1344 } 1345 1346 // Save the build id as the UUID for the module. 1347 uuid.SetBytes (uuidbuf, note.n_descsz); 1348 } 1349 } 1350 break; 1351 } 1352 } 1353 // Process NetBSD ELF notes. 1354 else if ((note.n_name == LLDB_NT_OWNER_NETBSD) && 1355 (note.n_type == LLDB_NT_NETBSD_ABI_TAG) && 1356 (note.n_descsz == LLDB_NT_NETBSD_ABI_SIZE)) 1357 { 1358 1359 // We'll consume the payload below. 1360 processed = true; 1361 1362 // Pull out the min version info. 1363 uint32_t version_info; 1364 if (data.GetU32 (&offset, &version_info, 1) == nullptr) 1365 { 1366 error.SetErrorString ("failed to read NetBSD ABI note payload"); 1367 return error; 1368 } 1369 1370 // Set the elf OS version to NetBSD. Also clear the vendor. 1371 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::NetBSD); 1372 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1373 1374 if (log) 1375 log->Printf ("ObjectFileELF::%s detected NetBSD, min version constant %" PRIu32, __FUNCTION__, version_info); 1376 } 1377 // Process CSR kalimba notes 1378 else if ((note.n_type == LLDB_NT_GNU_ABI_TAG) && 1379 (note.n_name == LLDB_NT_OWNER_CSR)) 1380 { 1381 // We'll consume the payload below. 1382 processed = true; 1383 arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS); 1384 arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::CSR); 1385 1386 // TODO At some point the description string could be processed. 1387 // It could provide a steer towards the kalimba variant which 1388 // this ELF targets. 1389 if(note.n_descsz) 1390 { 1391 const char *cstr = data.GetCStr(&offset, llvm::RoundUpToAlignment (note.n_descsz, 4)); 1392 (void)cstr; 1393 } 1394 } 1395 else if (note.n_name == LLDB_NT_OWNER_ANDROID) 1396 { 1397 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1398 arch_spec.GetTriple().setEnvironment(llvm::Triple::EnvironmentType::Android); 1399 } 1400 1401 if (!processed) 1402 offset += llvm::RoundUpToAlignment(note.n_descsz, 4); 1403 } 1404 1405 return error; 1406 } 1407 1408 1409 //---------------------------------------------------------------------- 1410 // GetSectionHeaderInfo 1411 //---------------------------------------------------------------------- 1412 size_t 1413 ObjectFileELF::GetSectionHeaderInfo(SectionHeaderColl §ion_headers, 1414 lldb_private::DataExtractor &object_data, 1415 const elf::ELFHeader &header, 1416 lldb_private::UUID &uuid, 1417 std::string &gnu_debuglink_file, 1418 uint32_t &gnu_debuglink_crc, 1419 ArchSpec &arch_spec) 1420 { 1421 // Don't reparse the section headers if we already did that. 1422 if (!section_headers.empty()) 1423 return section_headers.size(); 1424 1425 // Only initialize the arch_spec to okay defaults if they're not already set. 1426 // We'll refine this with note data as we parse the notes. 1427 if (arch_spec.GetTriple ().getOS () == llvm::Triple::OSType::UnknownOS) 1428 { 1429 llvm::Triple::OSType ostype; 1430 llvm::Triple::OSType spec_ostype; 1431 const uint32_t sub_type = subTypeFromElfHeader(header); 1432 arch_spec.SetArchitecture (eArchTypeELF, header.e_machine, sub_type, header.e_ident[EI_OSABI]); 1433 // 1434 // Validate if it is ok to remove GetOsFromOSABI 1435 GetOsFromOSABI (header.e_ident[EI_OSABI], ostype); 1436 spec_ostype = arch_spec.GetTriple ().getOS (); 1437 assert(spec_ostype == ostype); 1438 } 1439 1440 // If there are no section headers we are done. 1441 if (header.e_shnum == 0) 1442 return 0; 1443 1444 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES)); 1445 1446 section_headers.resize(header.e_shnum); 1447 if (section_headers.size() != header.e_shnum) 1448 return 0; 1449 1450 const size_t sh_size = header.e_shnum * header.e_shentsize; 1451 const elf_off sh_offset = header.e_shoff; 1452 DataExtractor sh_data; 1453 if (sh_data.SetData (object_data, sh_offset, sh_size) != sh_size) 1454 return 0; 1455 1456 uint32_t idx; 1457 lldb::offset_t offset; 1458 for (idx = 0, offset = 0; idx < header.e_shnum; ++idx) 1459 { 1460 if (section_headers[idx].Parse(sh_data, &offset) == false) 1461 break; 1462 } 1463 if (idx < section_headers.size()) 1464 section_headers.resize(idx); 1465 1466 const unsigned strtab_idx = header.e_shstrndx; 1467 if (strtab_idx && strtab_idx < section_headers.size()) 1468 { 1469 const ELFSectionHeaderInfo &sheader = section_headers[strtab_idx]; 1470 const size_t byte_size = sheader.sh_size; 1471 const Elf64_Off offset = sheader.sh_offset; 1472 lldb_private::DataExtractor shstr_data; 1473 1474 if (shstr_data.SetData (object_data, offset, byte_size) == byte_size) 1475 { 1476 for (SectionHeaderCollIter I = section_headers.begin(); 1477 I != section_headers.end(); ++I) 1478 { 1479 static ConstString g_sect_name_gnu_debuglink (".gnu_debuglink"); 1480 const ELFSectionHeaderInfo &header = *I; 1481 const uint64_t section_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size; 1482 ConstString name(shstr_data.PeekCStr(I->sh_name)); 1483 1484 I->section_name = name; 1485 1486 if (name == g_sect_name_gnu_debuglink) 1487 { 1488 DataExtractor data; 1489 if (section_size && (data.SetData (object_data, header.sh_offset, section_size) == section_size)) 1490 { 1491 lldb::offset_t gnu_debuglink_offset = 0; 1492 gnu_debuglink_file = data.GetCStr (&gnu_debuglink_offset); 1493 gnu_debuglink_offset = llvm::RoundUpToAlignment (gnu_debuglink_offset, 4); 1494 data.GetU32 (&gnu_debuglink_offset, &gnu_debuglink_crc, 1); 1495 } 1496 } 1497 1498 // Process ELF note section entries. 1499 bool is_note_header = (header.sh_type == SHT_NOTE); 1500 1501 // The section header ".note.android.ident" is stored as a 1502 // PROGBITS type header but it is actually a note header. 1503 static ConstString g_sect_name_android_ident (".note.android.ident"); 1504 if (!is_note_header && name == g_sect_name_android_ident) 1505 is_note_header = true; 1506 1507 if (is_note_header) 1508 { 1509 // Allow notes to refine module info. 1510 DataExtractor data; 1511 if (section_size && (data.SetData (object_data, header.sh_offset, section_size) == section_size)) 1512 { 1513 Error error = RefineModuleDetailsFromNote (data, arch_spec, uuid); 1514 if (error.Fail ()) 1515 { 1516 if (log) 1517 log->Printf ("ObjectFileELF::%s ELF note processing failed: %s", __FUNCTION__, error.AsCString ()); 1518 } 1519 } 1520 } 1521 } 1522 1523 return section_headers.size(); 1524 } 1525 } 1526 1527 section_headers.clear(); 1528 return 0; 1529 } 1530 1531 size_t 1532 ObjectFileELF::GetProgramHeaderCount() 1533 { 1534 return ParseProgramHeaders(); 1535 } 1536 1537 const elf::ELFProgramHeader * 1538 ObjectFileELF::GetProgramHeaderByIndex(lldb::user_id_t id) 1539 { 1540 if (!id || !ParseProgramHeaders()) 1541 return NULL; 1542 1543 if (--id < m_program_headers.size()) 1544 return &m_program_headers[id]; 1545 1546 return NULL; 1547 } 1548 1549 DataExtractor 1550 ObjectFileELF::GetSegmentDataByIndex(lldb::user_id_t id) 1551 { 1552 const elf::ELFProgramHeader *segment_header = GetProgramHeaderByIndex(id); 1553 if (segment_header == NULL) 1554 return DataExtractor(); 1555 return DataExtractor(m_data, segment_header->p_offset, segment_header->p_filesz); 1556 } 1557 1558 std::string 1559 ObjectFileELF::StripLinkerSymbolAnnotations(llvm::StringRef symbol_name) const 1560 { 1561 size_t pos = symbol_name.find('@'); 1562 return symbol_name.substr(0, pos).str(); 1563 } 1564 1565 //---------------------------------------------------------------------- 1566 // ParseSectionHeaders 1567 //---------------------------------------------------------------------- 1568 size_t 1569 ObjectFileELF::ParseSectionHeaders() 1570 { 1571 return GetSectionHeaderInfo(m_section_headers, m_data, m_header, m_uuid, m_gnu_debuglink_file, m_gnu_debuglink_crc, m_arch_spec); 1572 } 1573 1574 const ObjectFileELF::ELFSectionHeaderInfo * 1575 ObjectFileELF::GetSectionHeaderByIndex(lldb::user_id_t id) 1576 { 1577 if (!id || !ParseSectionHeaders()) 1578 return NULL; 1579 1580 if (--id < m_section_headers.size()) 1581 return &m_section_headers[id]; 1582 1583 return NULL; 1584 } 1585 1586 lldb::user_id_t 1587 ObjectFileELF::GetSectionIndexByName(const char* name) 1588 { 1589 if (!name || !name[0] || !ParseSectionHeaders()) 1590 return 0; 1591 for (size_t i = 1; i < m_section_headers.size(); ++i) 1592 if (m_section_headers[i].section_name == ConstString(name)) 1593 return i; 1594 return 0; 1595 } 1596 1597 void 1598 ObjectFileELF::CreateSections(SectionList &unified_section_list) 1599 { 1600 if (!m_sections_ap.get() && ParseSectionHeaders()) 1601 { 1602 m_sections_ap.reset(new SectionList()); 1603 1604 for (SectionHeaderCollIter I = m_section_headers.begin(); 1605 I != m_section_headers.end(); ++I) 1606 { 1607 const ELFSectionHeaderInfo &header = *I; 1608 1609 ConstString& name = I->section_name; 1610 const uint64_t file_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size; 1611 const uint64_t vm_size = header.sh_flags & SHF_ALLOC ? header.sh_size : 0; 1612 1613 static ConstString g_sect_name_text (".text"); 1614 static ConstString g_sect_name_data (".data"); 1615 static ConstString g_sect_name_bss (".bss"); 1616 static ConstString g_sect_name_tdata (".tdata"); 1617 static ConstString g_sect_name_tbss (".tbss"); 1618 static ConstString g_sect_name_dwarf_debug_abbrev (".debug_abbrev"); 1619 static ConstString g_sect_name_dwarf_debug_aranges (".debug_aranges"); 1620 static ConstString g_sect_name_dwarf_debug_frame (".debug_frame"); 1621 static ConstString g_sect_name_dwarf_debug_info (".debug_info"); 1622 static ConstString g_sect_name_dwarf_debug_line (".debug_line"); 1623 static ConstString g_sect_name_dwarf_debug_loc (".debug_loc"); 1624 static ConstString g_sect_name_dwarf_debug_macinfo (".debug_macinfo"); 1625 static ConstString g_sect_name_dwarf_debug_pubnames (".debug_pubnames"); 1626 static ConstString g_sect_name_dwarf_debug_pubtypes (".debug_pubtypes"); 1627 static ConstString g_sect_name_dwarf_debug_ranges (".debug_ranges"); 1628 static ConstString g_sect_name_dwarf_debug_str (".debug_str"); 1629 static ConstString g_sect_name_eh_frame (".eh_frame"); 1630 1631 SectionType sect_type = eSectionTypeOther; 1632 1633 bool is_thread_specific = false; 1634 1635 if (name == g_sect_name_text) sect_type = eSectionTypeCode; 1636 else if (name == g_sect_name_data) sect_type = eSectionTypeData; 1637 else if (name == g_sect_name_bss) sect_type = eSectionTypeZeroFill; 1638 else if (name == g_sect_name_tdata) 1639 { 1640 sect_type = eSectionTypeData; 1641 is_thread_specific = true; 1642 } 1643 else if (name == g_sect_name_tbss) 1644 { 1645 sect_type = eSectionTypeZeroFill; 1646 is_thread_specific = true; 1647 } 1648 // .debug_abbrev – Abbreviations used in the .debug_info section 1649 // .debug_aranges – Lookup table for mapping addresses to compilation units 1650 // .debug_frame – Call frame information 1651 // .debug_info – The core DWARF information section 1652 // .debug_line – Line number information 1653 // .debug_loc – Location lists used in DW_AT_location attributes 1654 // .debug_macinfo – Macro information 1655 // .debug_pubnames – Lookup table for mapping object and function names to compilation units 1656 // .debug_pubtypes – Lookup table for mapping type names to compilation units 1657 // .debug_ranges – Address ranges used in DW_AT_ranges attributes 1658 // .debug_str – String table used in .debug_info 1659 // MISSING? .gnu_debugdata - "mini debuginfo / MiniDebugInfo" section, http://sourceware.org/gdb/onlinedocs/gdb/MiniDebugInfo.html 1660 // MISSING? .debug-index - http://src.chromium.org/viewvc/chrome/trunk/src/build/gdb-add-index?pathrev=144644 1661 // MISSING? .debug_types - Type descriptions from DWARF 4? See http://gcc.gnu.org/wiki/DwarfSeparateTypeInfo 1662 else if (name == g_sect_name_dwarf_debug_abbrev) sect_type = eSectionTypeDWARFDebugAbbrev; 1663 else if (name == g_sect_name_dwarf_debug_aranges) sect_type = eSectionTypeDWARFDebugAranges; 1664 else if (name == g_sect_name_dwarf_debug_frame) sect_type = eSectionTypeDWARFDebugFrame; 1665 else if (name == g_sect_name_dwarf_debug_info) sect_type = eSectionTypeDWARFDebugInfo; 1666 else if (name == g_sect_name_dwarf_debug_line) sect_type = eSectionTypeDWARFDebugLine; 1667 else if (name == g_sect_name_dwarf_debug_loc) sect_type = eSectionTypeDWARFDebugLoc; 1668 else if (name == g_sect_name_dwarf_debug_macinfo) sect_type = eSectionTypeDWARFDebugMacInfo; 1669 else if (name == g_sect_name_dwarf_debug_pubnames) sect_type = eSectionTypeDWARFDebugPubNames; 1670 else if (name == g_sect_name_dwarf_debug_pubtypes) sect_type = eSectionTypeDWARFDebugPubTypes; 1671 else if (name == g_sect_name_dwarf_debug_ranges) sect_type = eSectionTypeDWARFDebugRanges; 1672 else if (name == g_sect_name_dwarf_debug_str) sect_type = eSectionTypeDWARFDebugStr; 1673 else if (name == g_sect_name_eh_frame) sect_type = eSectionTypeEHFrame; 1674 1675 switch (header.sh_type) 1676 { 1677 case SHT_SYMTAB: 1678 assert (sect_type == eSectionTypeOther); 1679 sect_type = eSectionTypeELFSymbolTable; 1680 break; 1681 case SHT_DYNSYM: 1682 assert (sect_type == eSectionTypeOther); 1683 sect_type = eSectionTypeELFDynamicSymbols; 1684 break; 1685 case SHT_RELA: 1686 case SHT_REL: 1687 assert (sect_type == eSectionTypeOther); 1688 sect_type = eSectionTypeELFRelocationEntries; 1689 break; 1690 case SHT_DYNAMIC: 1691 assert (sect_type == eSectionTypeOther); 1692 sect_type = eSectionTypeELFDynamicLinkInfo; 1693 break; 1694 } 1695 1696 if (eSectionTypeOther == sect_type) 1697 { 1698 // the kalimba toolchain assumes that ELF section names are free-form. It does 1699 // supports linkscripts which (can) give rise to various arbitarily named 1700 // sections being "Code" or "Data". 1701 sect_type = kalimbaSectionType(m_header, header); 1702 } 1703 1704 const uint32_t target_bytes_size = 1705 (eSectionTypeData == sect_type || eSectionTypeZeroFill == sect_type) ? 1706 m_arch_spec.GetDataByteSize() : 1707 eSectionTypeCode == sect_type ? 1708 m_arch_spec.GetCodeByteSize() : 1; 1709 1710 elf::elf_xword log2align = (header.sh_addralign==0) 1711 ? 0 1712 : llvm::Log2_64(header.sh_addralign); 1713 SectionSP section_sp (new Section(GetModule(), // Module to which this section belongs. 1714 this, // ObjectFile to which this section belongs and should read section data from. 1715 SectionIndex(I), // Section ID. 1716 name, // Section name. 1717 sect_type, // Section type. 1718 header.sh_addr, // VM address. 1719 vm_size, // VM size in bytes of this section. 1720 header.sh_offset, // Offset of this section in the file. 1721 file_size, // Size of the section as found in the file. 1722 log2align, // Alignment of the section 1723 header.sh_flags, // Flags for this section. 1724 target_bytes_size));// Number of host bytes per target byte 1725 1726 if (is_thread_specific) 1727 section_sp->SetIsThreadSpecific (is_thread_specific); 1728 m_sections_ap->AddSection(section_sp); 1729 } 1730 } 1731 1732 if (m_sections_ap.get()) 1733 { 1734 if (GetType() == eTypeDebugInfo) 1735 { 1736 static const SectionType g_sections[] = 1737 { 1738 eSectionTypeDWARFDebugAranges, 1739 eSectionTypeDWARFDebugInfo, 1740 eSectionTypeDWARFDebugAbbrev, 1741 eSectionTypeDWARFDebugFrame, 1742 eSectionTypeDWARFDebugLine, 1743 eSectionTypeDWARFDebugStr, 1744 eSectionTypeDWARFDebugLoc, 1745 eSectionTypeDWARFDebugMacInfo, 1746 eSectionTypeDWARFDebugPubNames, 1747 eSectionTypeDWARFDebugPubTypes, 1748 eSectionTypeDWARFDebugRanges, 1749 eSectionTypeELFSymbolTable, 1750 }; 1751 SectionList *elf_section_list = m_sections_ap.get(); 1752 for (size_t idx = 0; idx < sizeof(g_sections) / sizeof(g_sections[0]); ++idx) 1753 { 1754 SectionType section_type = g_sections[idx]; 1755 SectionSP section_sp (elf_section_list->FindSectionByType (section_type, true)); 1756 if (section_sp) 1757 { 1758 SectionSP module_section_sp (unified_section_list.FindSectionByType (section_type, true)); 1759 if (module_section_sp) 1760 unified_section_list.ReplaceSection (module_section_sp->GetID(), section_sp); 1761 else 1762 unified_section_list.AddSection (section_sp); 1763 } 1764 } 1765 } 1766 else 1767 { 1768 unified_section_list = *m_sections_ap; 1769 } 1770 } 1771 } 1772 1773 // private 1774 unsigned 1775 ObjectFileELF::ParseSymbols (Symtab *symtab, 1776 user_id_t start_id, 1777 SectionList *section_list, 1778 const size_t num_symbols, 1779 const DataExtractor &symtab_data, 1780 const DataExtractor &strtab_data) 1781 { 1782 ELFSymbol symbol; 1783 lldb::offset_t offset = 0; 1784 1785 static ConstString text_section_name(".text"); 1786 static ConstString init_section_name(".init"); 1787 static ConstString fini_section_name(".fini"); 1788 static ConstString ctors_section_name(".ctors"); 1789 static ConstString dtors_section_name(".dtors"); 1790 1791 static ConstString data_section_name(".data"); 1792 static ConstString rodata_section_name(".rodata"); 1793 static ConstString rodata1_section_name(".rodata1"); 1794 static ConstString data2_section_name(".data1"); 1795 static ConstString bss_section_name(".bss"); 1796 static ConstString opd_section_name(".opd"); // For ppc64 1797 1798 // On Android the oatdata and the oatexec symbols in system@[email protected] covers the full 1799 // .text section what causes issues with displaying unusable symbol name to the user and very 1800 // slow unwinding speed because the instruction emulation based unwind plans try to emulate all 1801 // instructions in these symbols. Don't add these symbols to the symbol list as they have no 1802 // use for the debugger and they are causing a lot of trouble. 1803 // Filtering can't be restricted to Android because this special object file don't contain the 1804 // note section specifying the environment to Android but the custom extension and file name 1805 // makes it highly unlikely that this will collide with anything else. 1806 bool skip_oatdata_oatexec = m_file.GetFilename() == ConstString("system@[email protected]"); 1807 1808 unsigned i; 1809 for (i = 0; i < num_symbols; ++i) 1810 { 1811 if (symbol.Parse(symtab_data, &offset) == false) 1812 break; 1813 1814 const char *symbol_name = strtab_data.PeekCStr(symbol.st_name); 1815 1816 // No need to add non-section symbols that have no names 1817 if (symbol.getType() != STT_SECTION && 1818 (symbol_name == NULL || symbol_name[0] == '\0')) 1819 continue; 1820 1821 // Skipping oatdata and oatexec sections if it is requested. See details above the 1822 // definition of skip_oatdata_oatexec for the reasons. 1823 if (skip_oatdata_oatexec && (::strcmp(symbol_name, "oatdata") == 0 || ::strcmp(symbol_name, "oatexec") == 0)) 1824 continue; 1825 1826 SectionSP symbol_section_sp; 1827 SymbolType symbol_type = eSymbolTypeInvalid; 1828 Elf64_Half symbol_idx = symbol.st_shndx; 1829 1830 switch (symbol_idx) 1831 { 1832 case SHN_ABS: 1833 symbol_type = eSymbolTypeAbsolute; 1834 break; 1835 case SHN_UNDEF: 1836 symbol_type = eSymbolTypeUndefined; 1837 break; 1838 default: 1839 symbol_section_sp = section_list->GetSectionAtIndex(symbol_idx); 1840 break; 1841 } 1842 1843 // If a symbol is undefined do not process it further even if it has a STT type 1844 if (symbol_type != eSymbolTypeUndefined) 1845 { 1846 switch (symbol.getType()) 1847 { 1848 default: 1849 case STT_NOTYPE: 1850 // The symbol's type is not specified. 1851 break; 1852 1853 case STT_OBJECT: 1854 // The symbol is associated with a data object, such as a variable, 1855 // an array, etc. 1856 symbol_type = eSymbolTypeData; 1857 break; 1858 1859 case STT_FUNC: 1860 // The symbol is associated with a function or other executable code. 1861 symbol_type = eSymbolTypeCode; 1862 break; 1863 1864 case STT_SECTION: 1865 // The symbol is associated with a section. Symbol table entries of 1866 // this type exist primarily for relocation and normally have 1867 // STB_LOCAL binding. 1868 break; 1869 1870 case STT_FILE: 1871 // Conventionally, the symbol's name gives the name of the source 1872 // file associated with the object file. A file symbol has STB_LOCAL 1873 // binding, its section index is SHN_ABS, and it precedes the other 1874 // STB_LOCAL symbols for the file, if it is present. 1875 symbol_type = eSymbolTypeSourceFile; 1876 break; 1877 1878 case STT_GNU_IFUNC: 1879 // The symbol is associated with an indirect function. The actual 1880 // function will be resolved if it is referenced. 1881 symbol_type = eSymbolTypeResolver; 1882 break; 1883 } 1884 } 1885 1886 if (symbol_type == eSymbolTypeInvalid) 1887 { 1888 if (symbol_section_sp) 1889 { 1890 const ConstString §_name = symbol_section_sp->GetName(); 1891 if (sect_name == text_section_name || 1892 sect_name == init_section_name || 1893 sect_name == fini_section_name || 1894 sect_name == ctors_section_name || 1895 sect_name == dtors_section_name) 1896 { 1897 symbol_type = eSymbolTypeCode; 1898 } 1899 else if (sect_name == data_section_name || 1900 sect_name == data2_section_name || 1901 sect_name == rodata_section_name || 1902 sect_name == rodata1_section_name || 1903 sect_name == bss_section_name) 1904 { 1905 symbol_type = eSymbolTypeData; 1906 } 1907 } 1908 } 1909 1910 int64_t symbol_value_offset = 0; 1911 uint32_t additional_flags = 0; 1912 1913 ArchSpec arch; 1914 if (GetArchitecture(arch)) 1915 { 1916 if (arch.GetMachine() == llvm::Triple::arm) 1917 { 1918 if (symbol.getBinding() == STB_LOCAL && symbol_name && symbol_name[0] == '$') 1919 { 1920 // These are reserved for the specification (e.g.: mapping 1921 // symbols). We don't want to add them to the symbol table. 1922 1923 if (symbol_type == eSymbolTypeCode) 1924 { 1925 llvm::StringRef symbol_name_ref(symbol_name); 1926 if (symbol_name_ref == "$a" || symbol_name_ref.startswith("$a.")) 1927 { 1928 // $a[.<any>]* - marks an ARM instruction sequence 1929 m_address_class_map[symbol.st_value] = eAddressClassCode; 1930 } 1931 else if (symbol_name_ref == "$b" || symbol_name_ref.startswith("$b.") || 1932 symbol_name_ref == "$t" || symbol_name_ref.startswith("$t.")) 1933 { 1934 // $b[.<any>]* - marks a THUMB BL instruction sequence 1935 // $t[.<any>]* - marks a THUMB instruction sequence 1936 m_address_class_map[symbol.st_value] = eAddressClassCodeAlternateISA; 1937 } 1938 else if (symbol_name_ref == "$d" || symbol_name_ref.startswith("$d.")) 1939 { 1940 // $d[.<any>]* - marks a data item sequence (e.g. lit pool) 1941 m_address_class_map[symbol.st_value] = eAddressClassData; 1942 } 1943 } 1944 1945 continue; 1946 } 1947 } 1948 else if (arch.GetMachine() == llvm::Triple::aarch64) 1949 { 1950 if (symbol.getBinding() == STB_LOCAL && symbol_name && symbol_name[0] == '$') 1951 { 1952 // These are reserved for the specification (e.g.: mapping 1953 // symbols). We don't want to add them to the symbol table. 1954 1955 if (symbol_type == eSymbolTypeCode) 1956 { 1957 llvm::StringRef symbol_name_ref(symbol_name); 1958 if (symbol_name_ref == "$x" || symbol_name_ref.startswith("$x.")) 1959 { 1960 // $x[.<any>]* - marks an A64 instruction sequence 1961 m_address_class_map[symbol.st_value] = eAddressClassCode; 1962 } 1963 else if (symbol_name_ref == "$d" || symbol_name_ref.startswith("$d.")) 1964 { 1965 // $d[.<any>]* - marks a data item sequence (e.g. lit pool) 1966 m_address_class_map[symbol.st_value] = eAddressClassData; 1967 } 1968 } 1969 1970 continue; 1971 } 1972 } 1973 1974 if (arch.GetMachine() == llvm::Triple::arm) 1975 { 1976 if (symbol_type == eSymbolTypeCode) 1977 { 1978 if (symbol.st_value & 1) 1979 { 1980 // Subtracting 1 from the address effectively unsets 1981 // the low order bit, which results in the address 1982 // actually pointing to the beginning of the symbol. 1983 // This delta will be used below in conjunction with 1984 // symbol.st_value to produce the final symbol_value 1985 // that we store in the symtab. 1986 symbol_value_offset = -1; 1987 additional_flags = ARM_ELF_SYM_IS_THUMB; 1988 m_address_class_map[symbol.st_value^1] = eAddressClassCodeAlternateISA; 1989 } 1990 else 1991 { 1992 // This address is ARM 1993 m_address_class_map[symbol.st_value] = eAddressClassCode; 1994 } 1995 } 1996 } 1997 } 1998 1999 // If the symbol section we've found has no data (SHT_NOBITS), then check the module section 2000 // list. This can happen if we're parsing the debug file and it has no .text section, for example. 2001 if (symbol_section_sp && (symbol_section_sp->GetFileSize() == 0)) 2002 { 2003 ModuleSP module_sp(GetModule()); 2004 if (module_sp) 2005 { 2006 SectionList *module_section_list = module_sp->GetSectionList(); 2007 if (module_section_list && module_section_list != section_list) 2008 { 2009 const ConstString §_name = symbol_section_sp->GetName(); 2010 lldb::SectionSP section_sp (module_section_list->FindSectionByName (sect_name)); 2011 if (section_sp && section_sp->GetFileSize()) 2012 { 2013 symbol_section_sp = section_sp; 2014 } 2015 } 2016 } 2017 } 2018 2019 // symbol_value_offset may contain 0 for ARM symbols or -1 for 2020 // THUMB symbols. See above for more details. 2021 uint64_t symbol_value = symbol.st_value + symbol_value_offset; 2022 if (symbol_section_sp && CalculateType() != ObjectFile::Type::eTypeObjectFile) 2023 symbol_value -= symbol_section_sp->GetFileAddress(); 2024 bool is_global = symbol.getBinding() == STB_GLOBAL; 2025 uint32_t flags = symbol.st_other << 8 | symbol.st_info | additional_flags; 2026 bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false; 2027 2028 llvm::StringRef symbol_ref(symbol_name); 2029 2030 // Symbol names may contain @VERSION suffixes. Find those and strip them temporarily. 2031 size_t version_pos = symbol_ref.find('@'); 2032 bool has_suffix = version_pos != llvm::StringRef::npos; 2033 llvm::StringRef symbol_bare = symbol_ref.substr(0, version_pos); 2034 Mangled mangled(ConstString(symbol_bare), is_mangled); 2035 2036 // Now append the suffix back to mangled and unmangled names. Only do it if the 2037 // demangling was sucessful (string is not empty). 2038 if (has_suffix) 2039 { 2040 llvm::StringRef suffix = symbol_ref.substr(version_pos); 2041 2042 llvm::StringRef mangled_name = mangled.GetMangledName().GetStringRef(); 2043 if (! mangled_name.empty()) 2044 mangled.SetMangledName( ConstString((mangled_name + suffix).str()) ); 2045 2046 ConstString demangled = mangled.GetDemangledName(lldb::eLanguageTypeUnknown); 2047 llvm::StringRef demangled_name = demangled.GetStringRef(); 2048 if (!demangled_name.empty()) 2049 mangled.SetDemangledName( ConstString((demangled_name + suffix).str()) ); 2050 } 2051 2052 Symbol dc_symbol( 2053 i + start_id, // ID is the original symbol table index. 2054 mangled, 2055 symbol_type, // Type of this symbol 2056 is_global, // Is this globally visible? 2057 false, // Is this symbol debug info? 2058 false, // Is this symbol a trampoline? 2059 false, // Is this symbol artificial? 2060 AddressRange( 2061 symbol_section_sp, // Section in which this symbol is defined or null. 2062 symbol_value, // Offset in section or symbol value. 2063 symbol.st_size), // Size in bytes of this symbol. 2064 symbol.st_size != 0, // Size is valid if it is not 0 2065 has_suffix, // Contains linker annotations? 2066 flags); // Symbol flags. 2067 symtab->AddSymbol(dc_symbol); 2068 } 2069 return i; 2070 } 2071 2072 unsigned 2073 ObjectFileELF::ParseSymbolTable(Symtab *symbol_table, user_id_t start_id, lldb_private::Section *symtab) 2074 { 2075 if (symtab->GetObjectFile() != this) 2076 { 2077 // If the symbol table section is owned by a different object file, have it do the 2078 // parsing. 2079 ObjectFileELF *obj_file_elf = static_cast<ObjectFileELF *>(symtab->GetObjectFile()); 2080 return obj_file_elf->ParseSymbolTable (symbol_table, start_id, symtab); 2081 } 2082 2083 // Get section list for this object file. 2084 SectionList *section_list = m_sections_ap.get(); 2085 if (!section_list) 2086 return 0; 2087 2088 user_id_t symtab_id = symtab->GetID(); 2089 const ELFSectionHeaderInfo *symtab_hdr = GetSectionHeaderByIndex(symtab_id); 2090 assert(symtab_hdr->sh_type == SHT_SYMTAB || 2091 symtab_hdr->sh_type == SHT_DYNSYM); 2092 2093 // sh_link: section header index of associated string table. 2094 // Section ID's are ones based. 2095 user_id_t strtab_id = symtab_hdr->sh_link + 1; 2096 Section *strtab = section_list->FindSectionByID(strtab_id).get(); 2097 2098 if (symtab && strtab) 2099 { 2100 assert (symtab->GetObjectFile() == this); 2101 assert (strtab->GetObjectFile() == this); 2102 2103 DataExtractor symtab_data; 2104 DataExtractor strtab_data; 2105 if (ReadSectionData(symtab, symtab_data) && 2106 ReadSectionData(strtab, strtab_data)) 2107 { 2108 size_t num_symbols = symtab_data.GetByteSize() / symtab_hdr->sh_entsize; 2109 2110 return ParseSymbols(symbol_table, start_id, section_list, 2111 num_symbols, symtab_data, strtab_data); 2112 } 2113 } 2114 2115 return 0; 2116 } 2117 2118 size_t 2119 ObjectFileELF::ParseDynamicSymbols() 2120 { 2121 if (m_dynamic_symbols.size()) 2122 return m_dynamic_symbols.size(); 2123 2124 SectionList *section_list = GetSectionList(); 2125 if (!section_list) 2126 return 0; 2127 2128 // Find the SHT_DYNAMIC section. 2129 Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get(); 2130 if (!dynsym) 2131 return 0; 2132 assert (dynsym->GetObjectFile() == this); 2133 2134 ELFDynamic symbol; 2135 DataExtractor dynsym_data; 2136 if (ReadSectionData(dynsym, dynsym_data)) 2137 { 2138 const lldb::offset_t section_size = dynsym_data.GetByteSize(); 2139 lldb::offset_t cursor = 0; 2140 2141 while (cursor < section_size) 2142 { 2143 if (!symbol.Parse(dynsym_data, &cursor)) 2144 break; 2145 2146 m_dynamic_symbols.push_back(symbol); 2147 } 2148 } 2149 2150 return m_dynamic_symbols.size(); 2151 } 2152 2153 const ELFDynamic * 2154 ObjectFileELF::FindDynamicSymbol(unsigned tag) 2155 { 2156 if (!ParseDynamicSymbols()) 2157 return NULL; 2158 2159 DynamicSymbolCollIter I = m_dynamic_symbols.begin(); 2160 DynamicSymbolCollIter E = m_dynamic_symbols.end(); 2161 for ( ; I != E; ++I) 2162 { 2163 ELFDynamic *symbol = &*I; 2164 2165 if (symbol->d_tag == tag) 2166 return symbol; 2167 } 2168 2169 return NULL; 2170 } 2171 2172 unsigned 2173 ObjectFileELF::PLTRelocationType() 2174 { 2175 // DT_PLTREL 2176 // This member specifies the type of relocation entry to which the 2177 // procedure linkage table refers. The d_val member holds DT_REL or 2178 // DT_RELA, as appropriate. All relocations in a procedure linkage table 2179 // must use the same relocation. 2180 const ELFDynamic *symbol = FindDynamicSymbol(DT_PLTREL); 2181 2182 if (symbol) 2183 return symbol->d_val; 2184 2185 return 0; 2186 } 2187 2188 // Returns the size of the normal plt entries and the offset of the first normal plt entry. The 2189 // 0th entry in the plt table is ususally a resolution entry which have different size in some 2190 // architectures then the rest of the plt entries. 2191 static std::pair<uint64_t, uint64_t> 2192 GetPltEntrySizeAndOffset(const ELFSectionHeader* rel_hdr, const ELFSectionHeader* plt_hdr) 2193 { 2194 const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2195 2196 // Clang 3.3 sets entsize to 4 for 32-bit binaries, but the plt entries are 16 bytes. 2197 // So round the entsize up by the alignment if addralign is set. 2198 elf_xword plt_entsize = plt_hdr->sh_addralign ? 2199 llvm::RoundUpToAlignment (plt_hdr->sh_entsize, plt_hdr->sh_addralign) : plt_hdr->sh_entsize; 2200 2201 if (plt_entsize == 0) 2202 { 2203 // The linker haven't set the plt_hdr->sh_entsize field. Try to guess the size of the plt 2204 // entries based on the number of entries and the size of the plt section with the 2205 // asumption that the size of the 0th entry is at least as big as the size of the normal 2206 // entries and it isn't mutch bigger then that. 2207 if (plt_hdr->sh_addralign) 2208 plt_entsize = plt_hdr->sh_size / plt_hdr->sh_addralign / (num_relocations + 1) * plt_hdr->sh_addralign; 2209 else 2210 plt_entsize = plt_hdr->sh_size / (num_relocations + 1); 2211 } 2212 2213 elf_xword plt_offset = plt_hdr->sh_size - num_relocations * plt_entsize; 2214 2215 return std::make_pair(plt_entsize, plt_offset); 2216 } 2217 2218 static unsigned 2219 ParsePLTRelocations(Symtab *symbol_table, 2220 user_id_t start_id, 2221 unsigned rel_type, 2222 const ELFHeader *hdr, 2223 const ELFSectionHeader *rel_hdr, 2224 const ELFSectionHeader *plt_hdr, 2225 const ELFSectionHeader *sym_hdr, 2226 const lldb::SectionSP &plt_section_sp, 2227 DataExtractor &rel_data, 2228 DataExtractor &symtab_data, 2229 DataExtractor &strtab_data) 2230 { 2231 ELFRelocation rel(rel_type); 2232 ELFSymbol symbol; 2233 lldb::offset_t offset = 0; 2234 2235 uint64_t plt_offset, plt_entsize; 2236 std::tie(plt_entsize, plt_offset) = GetPltEntrySizeAndOffset(rel_hdr, plt_hdr); 2237 const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2238 2239 typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel); 2240 reloc_info_fn reloc_type; 2241 reloc_info_fn reloc_symbol; 2242 2243 if (hdr->Is32Bit()) 2244 { 2245 reloc_type = ELFRelocation::RelocType32; 2246 reloc_symbol = ELFRelocation::RelocSymbol32; 2247 } 2248 else 2249 { 2250 reloc_type = ELFRelocation::RelocType64; 2251 reloc_symbol = ELFRelocation::RelocSymbol64; 2252 } 2253 2254 unsigned slot_type = hdr->GetRelocationJumpSlotType(); 2255 unsigned i; 2256 for (i = 0; i < num_relocations; ++i) 2257 { 2258 if (rel.Parse(rel_data, &offset) == false) 2259 break; 2260 2261 if (reloc_type(rel) != slot_type) 2262 continue; 2263 2264 lldb::offset_t symbol_offset = reloc_symbol(rel) * sym_hdr->sh_entsize; 2265 if (!symbol.Parse(symtab_data, &symbol_offset)) 2266 break; 2267 2268 const char *symbol_name = strtab_data.PeekCStr(symbol.st_name); 2269 bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false; 2270 uint64_t plt_index = plt_offset + i * plt_entsize; 2271 2272 Symbol jump_symbol( 2273 i + start_id, // Symbol table index 2274 symbol_name, // symbol name. 2275 is_mangled, // is the symbol name mangled? 2276 eSymbolTypeTrampoline, // Type of this symbol 2277 false, // Is this globally visible? 2278 false, // Is this symbol debug info? 2279 true, // Is this symbol a trampoline? 2280 true, // Is this symbol artificial? 2281 plt_section_sp, // Section in which this symbol is defined or null. 2282 plt_index, // Offset in section or symbol value. 2283 plt_entsize, // Size in bytes of this symbol. 2284 true, // Size is valid 2285 false, // Contains linker annotations? 2286 0); // Symbol flags. 2287 2288 symbol_table->AddSymbol(jump_symbol); 2289 } 2290 2291 return i; 2292 } 2293 2294 unsigned 2295 ObjectFileELF::ParseTrampolineSymbols(Symtab *symbol_table, 2296 user_id_t start_id, 2297 const ELFSectionHeaderInfo *rel_hdr, 2298 user_id_t rel_id) 2299 { 2300 assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL); 2301 2302 // The link field points to the associated symbol table. The info field 2303 // points to the section holding the plt. 2304 user_id_t symtab_id = rel_hdr->sh_link; 2305 user_id_t plt_id = rel_hdr->sh_info; 2306 2307 // If the link field doesn't point to the appropriate symbol name table then 2308 // try to find it by name as some compiler don't fill in the link fields. 2309 if (!symtab_id) 2310 symtab_id = GetSectionIndexByName(".dynsym"); 2311 if (!plt_id) 2312 plt_id = GetSectionIndexByName(".plt"); 2313 2314 if (!symtab_id || !plt_id) 2315 return 0; 2316 2317 // Section ID's are ones based; 2318 symtab_id++; 2319 plt_id++; 2320 2321 const ELFSectionHeaderInfo *plt_hdr = GetSectionHeaderByIndex(plt_id); 2322 if (!plt_hdr) 2323 return 0; 2324 2325 const ELFSectionHeaderInfo *sym_hdr = GetSectionHeaderByIndex(symtab_id); 2326 if (!sym_hdr) 2327 return 0; 2328 2329 SectionList *section_list = m_sections_ap.get(); 2330 if (!section_list) 2331 return 0; 2332 2333 Section *rel_section = section_list->FindSectionByID(rel_id).get(); 2334 if (!rel_section) 2335 return 0; 2336 2337 SectionSP plt_section_sp (section_list->FindSectionByID(plt_id)); 2338 if (!plt_section_sp) 2339 return 0; 2340 2341 Section *symtab = section_list->FindSectionByID(symtab_id).get(); 2342 if (!symtab) 2343 return 0; 2344 2345 // sh_link points to associated string table. 2346 Section *strtab = section_list->FindSectionByID(sym_hdr->sh_link + 1).get(); 2347 if (!strtab) 2348 return 0; 2349 2350 DataExtractor rel_data; 2351 if (!ReadSectionData(rel_section, rel_data)) 2352 return 0; 2353 2354 DataExtractor symtab_data; 2355 if (!ReadSectionData(symtab, symtab_data)) 2356 return 0; 2357 2358 DataExtractor strtab_data; 2359 if (!ReadSectionData(strtab, strtab_data)) 2360 return 0; 2361 2362 unsigned rel_type = PLTRelocationType(); 2363 if (!rel_type) 2364 return 0; 2365 2366 return ParsePLTRelocations (symbol_table, 2367 start_id, 2368 rel_type, 2369 &m_header, 2370 rel_hdr, 2371 plt_hdr, 2372 sym_hdr, 2373 plt_section_sp, 2374 rel_data, 2375 symtab_data, 2376 strtab_data); 2377 } 2378 2379 unsigned 2380 ObjectFileELF::RelocateSection(Symtab* symtab, const ELFHeader *hdr, const ELFSectionHeader *rel_hdr, 2381 const ELFSectionHeader *symtab_hdr, const ELFSectionHeader *debug_hdr, 2382 DataExtractor &rel_data, DataExtractor &symtab_data, 2383 DataExtractor &debug_data, Section* rel_section) 2384 { 2385 ELFRelocation rel(rel_hdr->sh_type); 2386 lldb::addr_t offset = 0; 2387 const unsigned num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2388 typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel); 2389 reloc_info_fn reloc_type; 2390 reloc_info_fn reloc_symbol; 2391 2392 if (hdr->Is32Bit()) 2393 { 2394 reloc_type = ELFRelocation::RelocType32; 2395 reloc_symbol = ELFRelocation::RelocSymbol32; 2396 } 2397 else 2398 { 2399 reloc_type = ELFRelocation::RelocType64; 2400 reloc_symbol = ELFRelocation::RelocSymbol64; 2401 } 2402 2403 for (unsigned i = 0; i < num_relocations; ++i) 2404 { 2405 if (rel.Parse(rel_data, &offset) == false) 2406 break; 2407 2408 Symbol* symbol = NULL; 2409 2410 if (hdr->Is32Bit()) 2411 { 2412 switch (reloc_type(rel)) { 2413 case R_386_32: 2414 case R_386_PC32: 2415 default: 2416 assert(false && "unexpected relocation type"); 2417 } 2418 } else { 2419 switch (reloc_type(rel)) { 2420 case R_X86_64_64: 2421 { 2422 symbol = symtab->FindSymbolByID(reloc_symbol(rel)); 2423 if (symbol) 2424 { 2425 addr_t value = symbol->GetAddressRef().GetFileAddress(); 2426 DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer(); 2427 uint64_t* dst = reinterpret_cast<uint64_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset64(rel)); 2428 *dst = value + ELFRelocation::RelocAddend64(rel); 2429 } 2430 break; 2431 } 2432 case R_X86_64_32: 2433 case R_X86_64_32S: 2434 { 2435 symbol = symtab->FindSymbolByID(reloc_symbol(rel)); 2436 if (symbol) 2437 { 2438 addr_t value = symbol->GetAddressRef().GetFileAddress(); 2439 value += ELFRelocation::RelocAddend32(rel); 2440 assert((reloc_type(rel) == R_X86_64_32 && (value <= UINT32_MAX)) || 2441 (reloc_type(rel) == R_X86_64_32S && 2442 ((int64_t)value <= INT32_MAX && (int64_t)value >= INT32_MIN))); 2443 uint32_t truncated_addr = (value & 0xFFFFFFFF); 2444 DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer(); 2445 uint32_t* dst = reinterpret_cast<uint32_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset32(rel)); 2446 *dst = truncated_addr; 2447 } 2448 break; 2449 } 2450 case R_X86_64_PC32: 2451 default: 2452 assert(false && "unexpected relocation type"); 2453 } 2454 } 2455 } 2456 2457 return 0; 2458 } 2459 2460 unsigned 2461 ObjectFileELF::RelocateDebugSections(const ELFSectionHeader *rel_hdr, user_id_t rel_id) 2462 { 2463 assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL); 2464 2465 // Parse in the section list if needed. 2466 SectionList *section_list = GetSectionList(); 2467 if (!section_list) 2468 return 0; 2469 2470 // Section ID's are ones based. 2471 user_id_t symtab_id = rel_hdr->sh_link + 1; 2472 user_id_t debug_id = rel_hdr->sh_info + 1; 2473 2474 const ELFSectionHeader *symtab_hdr = GetSectionHeaderByIndex(symtab_id); 2475 if (!symtab_hdr) 2476 return 0; 2477 2478 const ELFSectionHeader *debug_hdr = GetSectionHeaderByIndex(debug_id); 2479 if (!debug_hdr) 2480 return 0; 2481 2482 Section *rel = section_list->FindSectionByID(rel_id).get(); 2483 if (!rel) 2484 return 0; 2485 2486 Section *symtab = section_list->FindSectionByID(symtab_id).get(); 2487 if (!symtab) 2488 return 0; 2489 2490 Section *debug = section_list->FindSectionByID(debug_id).get(); 2491 if (!debug) 2492 return 0; 2493 2494 DataExtractor rel_data; 2495 DataExtractor symtab_data; 2496 DataExtractor debug_data; 2497 2498 if (ReadSectionData(rel, rel_data) && 2499 ReadSectionData(symtab, symtab_data) && 2500 ReadSectionData(debug, debug_data)) 2501 { 2502 RelocateSection(m_symtab_ap.get(), &m_header, rel_hdr, symtab_hdr, debug_hdr, 2503 rel_data, symtab_data, debug_data, debug); 2504 } 2505 2506 return 0; 2507 } 2508 2509 Symtab * 2510 ObjectFileELF::GetSymtab() 2511 { 2512 ModuleSP module_sp(GetModule()); 2513 if (!module_sp) 2514 return NULL; 2515 2516 // We always want to use the main object file so we (hopefully) only have one cached copy 2517 // of our symtab, dynamic sections, etc. 2518 ObjectFile *module_obj_file = module_sp->GetObjectFile(); 2519 if (module_obj_file && module_obj_file != this) 2520 return module_obj_file->GetSymtab(); 2521 2522 if (m_symtab_ap.get() == NULL) 2523 { 2524 SectionList *section_list = module_sp->GetSectionList(); 2525 if (!section_list) 2526 return NULL; 2527 2528 uint64_t symbol_id = 0; 2529 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 2530 2531 m_symtab_ap.reset(new Symtab(this)); 2532 2533 // Sharable objects and dynamic executables usually have 2 distinct symbol 2534 // tables, one named ".symtab", and the other ".dynsym". The dynsym is a smaller 2535 // version of the symtab that only contains global symbols. The information found 2536 // in the dynsym is therefore also found in the symtab, while the reverse is not 2537 // necessarily true. 2538 Section *symtab = section_list->FindSectionByType (eSectionTypeELFSymbolTable, true).get(); 2539 if (!symtab) 2540 { 2541 // The symtab section is non-allocable and can be stripped, so if it doesn't exist 2542 // then use the dynsym section which should always be there. 2543 symtab = section_list->FindSectionByType (eSectionTypeELFDynamicSymbols, true).get(); 2544 } 2545 if (symtab) 2546 symbol_id += ParseSymbolTable (m_symtab_ap.get(), symbol_id, symtab); 2547 2548 // DT_JMPREL 2549 // If present, this entry's d_ptr member holds the address of relocation 2550 // entries associated solely with the procedure linkage table. Separating 2551 // these relocation entries lets the dynamic linker ignore them during 2552 // process initialization, if lazy binding is enabled. If this entry is 2553 // present, the related entries of types DT_PLTRELSZ and DT_PLTREL must 2554 // also be present. 2555 const ELFDynamic *symbol = FindDynamicSymbol(DT_JMPREL); 2556 if (symbol) 2557 { 2558 // Synthesize trampoline symbols to help navigate the PLT. 2559 addr_t addr = symbol->d_ptr; 2560 Section *reloc_section = section_list->FindSectionContainingFileAddress(addr).get(); 2561 if (reloc_section) 2562 { 2563 user_id_t reloc_id = reloc_section->GetID(); 2564 const ELFSectionHeaderInfo *reloc_header = GetSectionHeaderByIndex(reloc_id); 2565 assert(reloc_header); 2566 2567 ParseTrampolineSymbols (m_symtab_ap.get(), symbol_id, reloc_header, reloc_id); 2568 } 2569 } 2570 m_symtab_ap->CalculateSymbolSizes(); 2571 } 2572 2573 for (SectionHeaderCollIter I = m_section_headers.begin(); 2574 I != m_section_headers.end(); ++I) 2575 { 2576 if (I->sh_type == SHT_RELA || I->sh_type == SHT_REL) 2577 { 2578 if (CalculateType() == eTypeObjectFile) 2579 { 2580 const char *section_name = I->section_name.AsCString(""); 2581 if (strstr(section_name, ".rela.debug") || 2582 strstr(section_name, ".rel.debug")) 2583 { 2584 const ELFSectionHeader &reloc_header = *I; 2585 user_id_t reloc_id = SectionIndex(I); 2586 RelocateDebugSections(&reloc_header, reloc_id); 2587 } 2588 } 2589 } 2590 } 2591 return m_symtab_ap.get(); 2592 } 2593 2594 Symbol * 2595 ObjectFileELF::ResolveSymbolForAddress(const Address& so_addr, bool verify_unique) 2596 { 2597 if (!m_symtab_ap.get()) 2598 return nullptr; // GetSymtab() should be called first. 2599 2600 const SectionList *section_list = GetSectionList(); 2601 if (!section_list) 2602 return nullptr; 2603 2604 if (DWARFCallFrameInfo *eh_frame = GetUnwindTable().GetEHFrameInfo()) 2605 { 2606 AddressRange range; 2607 if (eh_frame->GetAddressRange (so_addr, range)) 2608 { 2609 const addr_t file_addr = range.GetBaseAddress().GetFileAddress(); 2610 Symbol * symbol = verify_unique ? m_symtab_ap->FindSymbolContainingFileAddress(file_addr) : nullptr; 2611 if (symbol) 2612 return symbol; 2613 2614 // Note that a (stripped) symbol won't be found by GetSymtab()... 2615 lldb::SectionSP eh_sym_section_sp = section_list->FindSectionContainingFileAddress(file_addr); 2616 if (eh_sym_section_sp.get()) 2617 { 2618 addr_t section_base = eh_sym_section_sp->GetFileAddress(); 2619 addr_t offset = file_addr - section_base; 2620 uint64_t symbol_id = m_symtab_ap->GetNumSymbols(); 2621 2622 Symbol eh_symbol( 2623 symbol_id, // Symbol table index. 2624 "???", // Symbol name. 2625 false, // Is the symbol name mangled? 2626 eSymbolTypeCode, // Type of this symbol. 2627 true, // Is this globally visible? 2628 false, // Is this symbol debug info? 2629 false, // Is this symbol a trampoline? 2630 true, // Is this symbol artificial? 2631 eh_sym_section_sp, // Section in which this symbol is defined or null. 2632 offset, // Offset in section or symbol value. 2633 range.GetByteSize(), // Size in bytes of this symbol. 2634 true, // Size is valid. 2635 false, // Contains linker annotations? 2636 0); // Symbol flags. 2637 if (symbol_id == m_symtab_ap->AddSymbol(eh_symbol)) 2638 return m_symtab_ap->SymbolAtIndex(symbol_id); 2639 } 2640 } 2641 } 2642 return nullptr; 2643 } 2644 2645 2646 bool 2647 ObjectFileELF::IsStripped () 2648 { 2649 // TODO: determine this for ELF 2650 return false; 2651 } 2652 2653 //===----------------------------------------------------------------------===// 2654 // Dump 2655 // 2656 // Dump the specifics of the runtime file container (such as any headers 2657 // segments, sections, etc). 2658 //---------------------------------------------------------------------- 2659 void 2660 ObjectFileELF::Dump(Stream *s) 2661 { 2662 DumpELFHeader(s, m_header); 2663 s->EOL(); 2664 DumpELFProgramHeaders(s); 2665 s->EOL(); 2666 DumpELFSectionHeaders(s); 2667 s->EOL(); 2668 SectionList *section_list = GetSectionList(); 2669 if (section_list) 2670 section_list->Dump(s, NULL, true, UINT32_MAX); 2671 Symtab *symtab = GetSymtab(); 2672 if (symtab) 2673 symtab->Dump(s, NULL, eSortOrderNone); 2674 s->EOL(); 2675 DumpDependentModules(s); 2676 s->EOL(); 2677 } 2678 2679 //---------------------------------------------------------------------- 2680 // DumpELFHeader 2681 // 2682 // Dump the ELF header to the specified output stream 2683 //---------------------------------------------------------------------- 2684 void 2685 ObjectFileELF::DumpELFHeader(Stream *s, const ELFHeader &header) 2686 { 2687 s->PutCString("ELF Header\n"); 2688 s->Printf("e_ident[EI_MAG0 ] = 0x%2.2x\n", header.e_ident[EI_MAG0]); 2689 s->Printf("e_ident[EI_MAG1 ] = 0x%2.2x '%c'\n", 2690 header.e_ident[EI_MAG1], header.e_ident[EI_MAG1]); 2691 s->Printf("e_ident[EI_MAG2 ] = 0x%2.2x '%c'\n", 2692 header.e_ident[EI_MAG2], header.e_ident[EI_MAG2]); 2693 s->Printf("e_ident[EI_MAG3 ] = 0x%2.2x '%c'\n", 2694 header.e_ident[EI_MAG3], header.e_ident[EI_MAG3]); 2695 2696 s->Printf("e_ident[EI_CLASS ] = 0x%2.2x\n", header.e_ident[EI_CLASS]); 2697 s->Printf("e_ident[EI_DATA ] = 0x%2.2x ", header.e_ident[EI_DATA]); 2698 DumpELFHeader_e_ident_EI_DATA(s, header.e_ident[EI_DATA]); 2699 s->Printf ("\ne_ident[EI_VERSION] = 0x%2.2x\n", header.e_ident[EI_VERSION]); 2700 s->Printf ("e_ident[EI_PAD ] = 0x%2.2x\n", header.e_ident[EI_PAD]); 2701 2702 s->Printf("e_type = 0x%4.4x ", header.e_type); 2703 DumpELFHeader_e_type(s, header.e_type); 2704 s->Printf("\ne_machine = 0x%4.4x\n", header.e_machine); 2705 s->Printf("e_version = 0x%8.8x\n", header.e_version); 2706 s->Printf("e_entry = 0x%8.8" PRIx64 "\n", header.e_entry); 2707 s->Printf("e_phoff = 0x%8.8" PRIx64 "\n", header.e_phoff); 2708 s->Printf("e_shoff = 0x%8.8" PRIx64 "\n", header.e_shoff); 2709 s->Printf("e_flags = 0x%8.8x\n", header.e_flags); 2710 s->Printf("e_ehsize = 0x%4.4x\n", header.e_ehsize); 2711 s->Printf("e_phentsize = 0x%4.4x\n", header.e_phentsize); 2712 s->Printf("e_phnum = 0x%4.4x\n", header.e_phnum); 2713 s->Printf("e_shentsize = 0x%4.4x\n", header.e_shentsize); 2714 s->Printf("e_shnum = 0x%4.4x\n", header.e_shnum); 2715 s->Printf("e_shstrndx = 0x%4.4x\n", header.e_shstrndx); 2716 } 2717 2718 //---------------------------------------------------------------------- 2719 // DumpELFHeader_e_type 2720 // 2721 // Dump an token value for the ELF header member e_type 2722 //---------------------------------------------------------------------- 2723 void 2724 ObjectFileELF::DumpELFHeader_e_type(Stream *s, elf_half e_type) 2725 { 2726 switch (e_type) 2727 { 2728 case ET_NONE: *s << "ET_NONE"; break; 2729 case ET_REL: *s << "ET_REL"; break; 2730 case ET_EXEC: *s << "ET_EXEC"; break; 2731 case ET_DYN: *s << "ET_DYN"; break; 2732 case ET_CORE: *s << "ET_CORE"; break; 2733 default: 2734 break; 2735 } 2736 } 2737 2738 //---------------------------------------------------------------------- 2739 // DumpELFHeader_e_ident_EI_DATA 2740 // 2741 // Dump an token value for the ELF header member e_ident[EI_DATA] 2742 //---------------------------------------------------------------------- 2743 void 2744 ObjectFileELF::DumpELFHeader_e_ident_EI_DATA(Stream *s, unsigned char ei_data) 2745 { 2746 switch (ei_data) 2747 { 2748 case ELFDATANONE: *s << "ELFDATANONE"; break; 2749 case ELFDATA2LSB: *s << "ELFDATA2LSB - Little Endian"; break; 2750 case ELFDATA2MSB: *s << "ELFDATA2MSB - Big Endian"; break; 2751 default: 2752 break; 2753 } 2754 } 2755 2756 2757 //---------------------------------------------------------------------- 2758 // DumpELFProgramHeader 2759 // 2760 // Dump a single ELF program header to the specified output stream 2761 //---------------------------------------------------------------------- 2762 void 2763 ObjectFileELF::DumpELFProgramHeader(Stream *s, const ELFProgramHeader &ph) 2764 { 2765 DumpELFProgramHeader_p_type(s, ph.p_type); 2766 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, ph.p_offset, ph.p_vaddr, ph.p_paddr); 2767 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8x (", ph.p_filesz, ph.p_memsz, ph.p_flags); 2768 2769 DumpELFProgramHeader_p_flags(s, ph.p_flags); 2770 s->Printf(") %8.8" PRIx64, ph.p_align); 2771 } 2772 2773 //---------------------------------------------------------------------- 2774 // DumpELFProgramHeader_p_type 2775 // 2776 // Dump an token value for the ELF program header member p_type which 2777 // describes the type of the program header 2778 // ---------------------------------------------------------------------- 2779 void 2780 ObjectFileELF::DumpELFProgramHeader_p_type(Stream *s, elf_word p_type) 2781 { 2782 const int kStrWidth = 15; 2783 switch (p_type) 2784 { 2785 CASE_AND_STREAM(s, PT_NULL , kStrWidth); 2786 CASE_AND_STREAM(s, PT_LOAD , kStrWidth); 2787 CASE_AND_STREAM(s, PT_DYNAMIC , kStrWidth); 2788 CASE_AND_STREAM(s, PT_INTERP , kStrWidth); 2789 CASE_AND_STREAM(s, PT_NOTE , kStrWidth); 2790 CASE_AND_STREAM(s, PT_SHLIB , kStrWidth); 2791 CASE_AND_STREAM(s, PT_PHDR , kStrWidth); 2792 CASE_AND_STREAM(s, PT_TLS , kStrWidth); 2793 CASE_AND_STREAM(s, PT_GNU_EH_FRAME, kStrWidth); 2794 default: 2795 s->Printf("0x%8.8x%*s", p_type, kStrWidth - 10, ""); 2796 break; 2797 } 2798 } 2799 2800 2801 //---------------------------------------------------------------------- 2802 // DumpELFProgramHeader_p_flags 2803 // 2804 // Dump an token value for the ELF program header member p_flags 2805 //---------------------------------------------------------------------- 2806 void 2807 ObjectFileELF::DumpELFProgramHeader_p_flags(Stream *s, elf_word p_flags) 2808 { 2809 *s << ((p_flags & PF_X) ? "PF_X" : " ") 2810 << (((p_flags & PF_X) && (p_flags & PF_W)) ? '+' : ' ') 2811 << ((p_flags & PF_W) ? "PF_W" : " ") 2812 << (((p_flags & PF_W) && (p_flags & PF_R)) ? '+' : ' ') 2813 << ((p_flags & PF_R) ? "PF_R" : " "); 2814 } 2815 2816 //---------------------------------------------------------------------- 2817 // DumpELFProgramHeaders 2818 // 2819 // Dump all of the ELF program header to the specified output stream 2820 //---------------------------------------------------------------------- 2821 void 2822 ObjectFileELF::DumpELFProgramHeaders(Stream *s) 2823 { 2824 if (!ParseProgramHeaders()) 2825 return; 2826 2827 s->PutCString("Program Headers\n"); 2828 s->PutCString("IDX p_type p_offset p_vaddr p_paddr " 2829 "p_filesz p_memsz p_flags p_align\n"); 2830 s->PutCString("==== --------------- -------- -------- -------- " 2831 "-------- -------- ------------------------- --------\n"); 2832 2833 uint32_t idx = 0; 2834 for (ProgramHeaderCollConstIter I = m_program_headers.begin(); 2835 I != m_program_headers.end(); ++I, ++idx) 2836 { 2837 s->Printf("[%2u] ", idx); 2838 ObjectFileELF::DumpELFProgramHeader(s, *I); 2839 s->EOL(); 2840 } 2841 } 2842 2843 //---------------------------------------------------------------------- 2844 // DumpELFSectionHeader 2845 // 2846 // Dump a single ELF section header to the specified output stream 2847 //---------------------------------------------------------------------- 2848 void 2849 ObjectFileELF::DumpELFSectionHeader(Stream *s, const ELFSectionHeaderInfo &sh) 2850 { 2851 s->Printf("%8.8x ", sh.sh_name); 2852 DumpELFSectionHeader_sh_type(s, sh.sh_type); 2853 s->Printf(" %8.8" PRIx64 " (", sh.sh_flags); 2854 DumpELFSectionHeader_sh_flags(s, sh.sh_flags); 2855 s->Printf(") %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addr, sh.sh_offset, sh.sh_size); 2856 s->Printf(" %8.8x %8.8x", sh.sh_link, sh.sh_info); 2857 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addralign, sh.sh_entsize); 2858 } 2859 2860 //---------------------------------------------------------------------- 2861 // DumpELFSectionHeader_sh_type 2862 // 2863 // Dump an token value for the ELF section header member sh_type which 2864 // describes the type of the section 2865 //---------------------------------------------------------------------- 2866 void 2867 ObjectFileELF::DumpELFSectionHeader_sh_type(Stream *s, elf_word sh_type) 2868 { 2869 const int kStrWidth = 12; 2870 switch (sh_type) 2871 { 2872 CASE_AND_STREAM(s, SHT_NULL , kStrWidth); 2873 CASE_AND_STREAM(s, SHT_PROGBITS , kStrWidth); 2874 CASE_AND_STREAM(s, SHT_SYMTAB , kStrWidth); 2875 CASE_AND_STREAM(s, SHT_STRTAB , kStrWidth); 2876 CASE_AND_STREAM(s, SHT_RELA , kStrWidth); 2877 CASE_AND_STREAM(s, SHT_HASH , kStrWidth); 2878 CASE_AND_STREAM(s, SHT_DYNAMIC , kStrWidth); 2879 CASE_AND_STREAM(s, SHT_NOTE , kStrWidth); 2880 CASE_AND_STREAM(s, SHT_NOBITS , kStrWidth); 2881 CASE_AND_STREAM(s, SHT_REL , kStrWidth); 2882 CASE_AND_STREAM(s, SHT_SHLIB , kStrWidth); 2883 CASE_AND_STREAM(s, SHT_DYNSYM , kStrWidth); 2884 CASE_AND_STREAM(s, SHT_LOPROC , kStrWidth); 2885 CASE_AND_STREAM(s, SHT_HIPROC , kStrWidth); 2886 CASE_AND_STREAM(s, SHT_LOUSER , kStrWidth); 2887 CASE_AND_STREAM(s, SHT_HIUSER , kStrWidth); 2888 default: 2889 s->Printf("0x%8.8x%*s", sh_type, kStrWidth - 10, ""); 2890 break; 2891 } 2892 } 2893 2894 //---------------------------------------------------------------------- 2895 // DumpELFSectionHeader_sh_flags 2896 // 2897 // Dump an token value for the ELF section header member sh_flags 2898 //---------------------------------------------------------------------- 2899 void 2900 ObjectFileELF::DumpELFSectionHeader_sh_flags(Stream *s, elf_xword sh_flags) 2901 { 2902 *s << ((sh_flags & SHF_WRITE) ? "WRITE" : " ") 2903 << (((sh_flags & SHF_WRITE) && (sh_flags & SHF_ALLOC)) ? '+' : ' ') 2904 << ((sh_flags & SHF_ALLOC) ? "ALLOC" : " ") 2905 << (((sh_flags & SHF_ALLOC) && (sh_flags & SHF_EXECINSTR)) ? '+' : ' ') 2906 << ((sh_flags & SHF_EXECINSTR) ? "EXECINSTR" : " "); 2907 } 2908 2909 //---------------------------------------------------------------------- 2910 // DumpELFSectionHeaders 2911 // 2912 // Dump all of the ELF section header to the specified output stream 2913 //---------------------------------------------------------------------- 2914 void 2915 ObjectFileELF::DumpELFSectionHeaders(Stream *s) 2916 { 2917 if (!ParseSectionHeaders()) 2918 return; 2919 2920 s->PutCString("Section Headers\n"); 2921 s->PutCString("IDX name type flags " 2922 "addr offset size link info addralgn " 2923 "entsize Name\n"); 2924 s->PutCString("==== -------- ------------ -------------------------------- " 2925 "-------- -------- -------- -------- -------- -------- " 2926 "-------- ====================\n"); 2927 2928 uint32_t idx = 0; 2929 for (SectionHeaderCollConstIter I = m_section_headers.begin(); 2930 I != m_section_headers.end(); ++I, ++idx) 2931 { 2932 s->Printf("[%2u] ", idx); 2933 ObjectFileELF::DumpELFSectionHeader(s, *I); 2934 const char* section_name = I->section_name.AsCString(""); 2935 if (section_name) 2936 *s << ' ' << section_name << "\n"; 2937 } 2938 } 2939 2940 void 2941 ObjectFileELF::DumpDependentModules(lldb_private::Stream *s) 2942 { 2943 size_t num_modules = ParseDependentModules(); 2944 2945 if (num_modules > 0) 2946 { 2947 s->PutCString("Dependent Modules:\n"); 2948 for (unsigned i = 0; i < num_modules; ++i) 2949 { 2950 const FileSpec &spec = m_filespec_ap->GetFileSpecAtIndex(i); 2951 s->Printf(" %s\n", spec.GetFilename().GetCString()); 2952 } 2953 } 2954 } 2955 2956 bool 2957 ObjectFileELF::GetArchitecture (ArchSpec &arch) 2958 { 2959 if (!ParseHeader()) 2960 return false; 2961 2962 if (m_section_headers.empty()) 2963 { 2964 // Allow elf notes to be parsed which may affect the detected architecture. 2965 ParseSectionHeaders(); 2966 } 2967 2968 arch = m_arch_spec; 2969 return true; 2970 } 2971 2972 ObjectFile::Type 2973 ObjectFileELF::CalculateType() 2974 { 2975 switch (m_header.e_type) 2976 { 2977 case llvm::ELF::ET_NONE: 2978 // 0 - No file type 2979 return eTypeUnknown; 2980 2981 case llvm::ELF::ET_REL: 2982 // 1 - Relocatable file 2983 return eTypeObjectFile; 2984 2985 case llvm::ELF::ET_EXEC: 2986 // 2 - Executable file 2987 return eTypeExecutable; 2988 2989 case llvm::ELF::ET_DYN: 2990 // 3 - Shared object file 2991 return eTypeSharedLibrary; 2992 2993 case ET_CORE: 2994 // 4 - Core file 2995 return eTypeCoreFile; 2996 2997 default: 2998 break; 2999 } 3000 return eTypeUnknown; 3001 } 3002 3003 ObjectFile::Strata 3004 ObjectFileELF::CalculateStrata() 3005 { 3006 switch (m_header.e_type) 3007 { 3008 case llvm::ELF::ET_NONE: 3009 // 0 - No file type 3010 return eStrataUnknown; 3011 3012 case llvm::ELF::ET_REL: 3013 // 1 - Relocatable file 3014 return eStrataUnknown; 3015 3016 case llvm::ELF::ET_EXEC: 3017 // 2 - Executable file 3018 // TODO: is there any way to detect that an executable is a kernel 3019 // related executable by inspecting the program headers, section 3020 // headers, symbols, or any other flag bits??? 3021 return eStrataUser; 3022 3023 case llvm::ELF::ET_DYN: 3024 // 3 - Shared object file 3025 // TODO: is there any way to detect that an shared library is a kernel 3026 // related executable by inspecting the program headers, section 3027 // headers, symbols, or any other flag bits??? 3028 return eStrataUnknown; 3029 3030 case ET_CORE: 3031 // 4 - Core file 3032 // TODO: is there any way to detect that an core file is a kernel 3033 // related executable by inspecting the program headers, section 3034 // headers, symbols, or any other flag bits??? 3035 return eStrataUnknown; 3036 3037 default: 3038 break; 3039 } 3040 return eStrataUnknown; 3041 } 3042 3043