1 //===-- ObjectFileELF.cpp ------------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "ObjectFileELF.h"
11 
12 #include <cassert>
13 #include <algorithm>
14 
15 #include "lldb/Core/ArchSpec.h"
16 #include "lldb/Core/DataBuffer.h"
17 #include "lldb/Core/Error.h"
18 #include "lldb/Core/FileSpecList.h"
19 #include "lldb/Core/Log.h"
20 #include "lldb/Core/Module.h"
21 #include "lldb/Core/ModuleSpec.h"
22 #include "lldb/Core/PluginManager.h"
23 #include "lldb/Core/Section.h"
24 #include "lldb/Core/Stream.h"
25 #include "lldb/Core/Timer.h"
26 #include "lldb/Symbol/DWARFCallFrameInfo.h"
27 #include "lldb/Symbol/SymbolContext.h"
28 #include "lldb/Target/SectionLoadList.h"
29 #include "lldb/Target/Target.h"
30 
31 #include "llvm/ADT/PointerUnion.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/Support/MathExtras.h"
34 
35 #define CASE_AND_STREAM(s, def, width)                  \
36     case def: s->Printf("%-*s", width, #def); break;
37 
38 using namespace lldb;
39 using namespace lldb_private;
40 using namespace elf;
41 using namespace llvm::ELF;
42 
43 namespace {
44 
45 // ELF note owner definitions
46 const char *const LLDB_NT_OWNER_FREEBSD = "FreeBSD";
47 const char *const LLDB_NT_OWNER_GNU     = "GNU";
48 const char *const LLDB_NT_OWNER_NETBSD  = "NetBSD";
49 const char *const LLDB_NT_OWNER_CSR     = "csr";
50 const char *const LLDB_NT_OWNER_ANDROID = "Android";
51 
52 // ELF note type definitions
53 const elf_word LLDB_NT_FREEBSD_ABI_TAG  = 0x01;
54 const elf_word LLDB_NT_FREEBSD_ABI_SIZE = 4;
55 
56 const elf_word LLDB_NT_GNU_ABI_TAG      = 0x01;
57 const elf_word LLDB_NT_GNU_ABI_SIZE     = 16;
58 
59 const elf_word LLDB_NT_GNU_BUILD_ID_TAG = 0x03;
60 
61 const elf_word LLDB_NT_NETBSD_ABI_TAG   = 0x01;
62 const elf_word LLDB_NT_NETBSD_ABI_SIZE  = 4;
63 
64 // GNU ABI note OS constants
65 const elf_word LLDB_NT_GNU_ABI_OS_LINUX   = 0x00;
66 const elf_word LLDB_NT_GNU_ABI_OS_HURD    = 0x01;
67 const elf_word LLDB_NT_GNU_ABI_OS_SOLARIS = 0x02;
68 
69 //===----------------------------------------------------------------------===//
70 /// @class ELFRelocation
71 /// @brief Generic wrapper for ELFRel and ELFRela.
72 ///
73 /// This helper class allows us to parse both ELFRel and ELFRela relocation
74 /// entries in a generic manner.
75 class ELFRelocation
76 {
77 public:
78 
79     /// Constructs an ELFRelocation entry with a personality as given by @p
80     /// type.
81     ///
82     /// @param type Either DT_REL or DT_RELA.  Any other value is invalid.
83     ELFRelocation(unsigned type);
84 
85     ~ELFRelocation();
86 
87     bool
88     Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset);
89 
90     static unsigned
91     RelocType32(const ELFRelocation &rel);
92 
93     static unsigned
94     RelocType64(const ELFRelocation &rel);
95 
96     static unsigned
97     RelocSymbol32(const ELFRelocation &rel);
98 
99     static unsigned
100     RelocSymbol64(const ELFRelocation &rel);
101 
102     static unsigned
103     RelocOffset32(const ELFRelocation &rel);
104 
105     static unsigned
106     RelocOffset64(const ELFRelocation &rel);
107 
108     static unsigned
109     RelocAddend32(const ELFRelocation &rel);
110 
111     static unsigned
112     RelocAddend64(const ELFRelocation &rel);
113 
114 private:
115     typedef llvm::PointerUnion<ELFRel*, ELFRela*> RelocUnion;
116 
117     RelocUnion reloc;
118 };
119 
120 ELFRelocation::ELFRelocation(unsigned type)
121 {
122     if (type == DT_REL || type == SHT_REL)
123         reloc = new ELFRel();
124     else if (type == DT_RELA || type == SHT_RELA)
125         reloc = new ELFRela();
126     else {
127         assert(false && "unexpected relocation type");
128         reloc = static_cast<ELFRel*>(NULL);
129     }
130 }
131 
132 ELFRelocation::~ELFRelocation()
133 {
134     if (reloc.is<ELFRel*>())
135         delete reloc.get<ELFRel*>();
136     else
137         delete reloc.get<ELFRela*>();
138 }
139 
140 bool
141 ELFRelocation::Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset)
142 {
143     if (reloc.is<ELFRel*>())
144         return reloc.get<ELFRel*>()->Parse(data, offset);
145     else
146         return reloc.get<ELFRela*>()->Parse(data, offset);
147 }
148 
149 unsigned
150 ELFRelocation::RelocType32(const ELFRelocation &rel)
151 {
152     if (rel.reloc.is<ELFRel*>())
153         return ELFRel::RelocType32(*rel.reloc.get<ELFRel*>());
154     else
155         return ELFRela::RelocType32(*rel.reloc.get<ELFRela*>());
156 }
157 
158 unsigned
159 ELFRelocation::RelocType64(const ELFRelocation &rel)
160 {
161     if (rel.reloc.is<ELFRel*>())
162         return ELFRel::RelocType64(*rel.reloc.get<ELFRel*>());
163     else
164         return ELFRela::RelocType64(*rel.reloc.get<ELFRela*>());
165 }
166 
167 unsigned
168 ELFRelocation::RelocSymbol32(const ELFRelocation &rel)
169 {
170     if (rel.reloc.is<ELFRel*>())
171         return ELFRel::RelocSymbol32(*rel.reloc.get<ELFRel*>());
172     else
173         return ELFRela::RelocSymbol32(*rel.reloc.get<ELFRela*>());
174 }
175 
176 unsigned
177 ELFRelocation::RelocSymbol64(const ELFRelocation &rel)
178 {
179     if (rel.reloc.is<ELFRel*>())
180         return ELFRel::RelocSymbol64(*rel.reloc.get<ELFRel*>());
181     else
182         return ELFRela::RelocSymbol64(*rel.reloc.get<ELFRela*>());
183 }
184 
185 unsigned
186 ELFRelocation::RelocOffset32(const ELFRelocation &rel)
187 {
188     if (rel.reloc.is<ELFRel*>())
189         return rel.reloc.get<ELFRel*>()->r_offset;
190     else
191         return rel.reloc.get<ELFRela*>()->r_offset;
192 }
193 
194 unsigned
195 ELFRelocation::RelocOffset64(const ELFRelocation &rel)
196 {
197     if (rel.reloc.is<ELFRel*>())
198         return rel.reloc.get<ELFRel*>()->r_offset;
199     else
200         return rel.reloc.get<ELFRela*>()->r_offset;
201 }
202 
203 unsigned
204 ELFRelocation::RelocAddend32(const ELFRelocation &rel)
205 {
206     if (rel.reloc.is<ELFRel*>())
207         return 0;
208     else
209         return rel.reloc.get<ELFRela*>()->r_addend;
210 }
211 
212 unsigned
213 ELFRelocation::RelocAddend64(const ELFRelocation &rel)
214 {
215     if (rel.reloc.is<ELFRel*>())
216         return 0;
217     else
218         return rel.reloc.get<ELFRela*>()->r_addend;
219 }
220 
221 } // end anonymous namespace
222 
223 bool
224 ELFNote::Parse(const DataExtractor &data, lldb::offset_t *offset)
225 {
226     // Read all fields.
227     if (data.GetU32(offset, &n_namesz, 3) == NULL)
228         return false;
229 
230     // The name field is required to be nul-terminated, and n_namesz
231     // includes the terminating nul in observed implementations (contrary
232     // to the ELF-64 spec).  A special case is needed for cores generated
233     // by some older Linux versions, which write a note named "CORE"
234     // without a nul terminator and n_namesz = 4.
235     if (n_namesz == 4)
236     {
237         char buf[4];
238         if (data.ExtractBytes (*offset, 4, data.GetByteOrder(), buf) != 4)
239             return false;
240         if (strncmp (buf, "CORE", 4) == 0)
241         {
242             n_name = "CORE";
243             *offset += 4;
244             return true;
245         }
246     }
247 
248     const char *cstr = data.GetCStr(offset, llvm::RoundUpToAlignment (n_namesz, 4));
249     if (cstr == NULL)
250     {
251         Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_SYMBOLS));
252         if (log)
253             log->Printf("Failed to parse note name lacking nul terminator");
254 
255         return false;
256     }
257     n_name = cstr;
258     return true;
259 }
260 
261 static uint32_t
262 kalimbaVariantFromElfFlags(const elf::elf_word e_flags)
263 {
264     const uint32_t dsp_rev = e_flags & 0xFF;
265     uint32_t kal_arch_variant = LLDB_INVALID_CPUTYPE;
266     switch(dsp_rev)
267     {
268         // TODO(mg11) Support more variants
269         case 10:
270             kal_arch_variant = llvm::Triple::KalimbaSubArch_v3;
271             break;
272         case 14:
273             kal_arch_variant = llvm::Triple::KalimbaSubArch_v4;
274             break;
275         case 17:
276         case 20:
277             kal_arch_variant = llvm::Triple::KalimbaSubArch_v5;
278             break;
279         default:
280             break;
281     }
282     return kal_arch_variant;
283 }
284 
285 static uint32_t
286 mipsVariantFromElfFlags(const elf::elf_word e_flags, uint32_t endian)
287 {
288     const uint32_t mips_arch = e_flags & llvm::ELF::EF_MIPS_ARCH;
289     uint32_t arch_variant = ArchSpec::eMIPSSubType_unknown;
290 
291     switch (mips_arch)
292     {
293         case llvm::ELF::EF_MIPS_ARCH_32:
294             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el : ArchSpec::eMIPSSubType_mips32;
295         case llvm::ELF::EF_MIPS_ARCH_32R2:
296             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r2el : ArchSpec::eMIPSSubType_mips32r2;
297         case llvm::ELF::EF_MIPS_ARCH_32R6:
298             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r6el : ArchSpec::eMIPSSubType_mips32r6;
299         case llvm::ELF::EF_MIPS_ARCH_64:
300             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el : ArchSpec::eMIPSSubType_mips64;
301         case llvm::ELF::EF_MIPS_ARCH_64R2:
302             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r2el : ArchSpec::eMIPSSubType_mips64r2;
303         case llvm::ELF::EF_MIPS_ARCH_64R6:
304             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r6el : ArchSpec::eMIPSSubType_mips64r6;
305         default:
306             break;
307     }
308 
309     return arch_variant;
310 }
311 
312 static uint32_t
313 subTypeFromElfHeader(const elf::ELFHeader& header)
314 {
315     if (header.e_machine == llvm::ELF::EM_MIPS)
316         return mipsVariantFromElfFlags (header.e_flags,
317             header.e_ident[EI_DATA]);
318 
319     return
320         llvm::ELF::EM_CSR_KALIMBA == header.e_machine ?
321         kalimbaVariantFromElfFlags(header.e_flags) :
322         LLDB_INVALID_CPUTYPE;
323 }
324 
325 //! The kalimba toolchain identifies a code section as being
326 //! one with the SHT_PROGBITS set in the section sh_type and the top
327 //! bit in the 32-bit address field set.
328 static lldb::SectionType
329 kalimbaSectionType(
330     const elf::ELFHeader& header,
331     const elf::ELFSectionHeader& sect_hdr)
332 {
333     if (llvm::ELF::EM_CSR_KALIMBA != header.e_machine)
334     {
335         return eSectionTypeOther;
336     }
337 
338     if (llvm::ELF::SHT_NOBITS == sect_hdr.sh_type)
339     {
340         return eSectionTypeZeroFill;
341     }
342 
343     if (llvm::ELF::SHT_PROGBITS == sect_hdr.sh_type)
344     {
345         const lldb::addr_t KAL_CODE_BIT = 1 << 31;
346         return KAL_CODE_BIT & sect_hdr.sh_addr ?
347              eSectionTypeCode  : eSectionTypeData;
348     }
349 
350     return eSectionTypeOther;
351 }
352 
353 // Arbitrary constant used as UUID prefix for core files.
354 const uint32_t
355 ObjectFileELF::g_core_uuid_magic(0xE210C);
356 
357 //------------------------------------------------------------------
358 // Static methods.
359 //------------------------------------------------------------------
360 void
361 ObjectFileELF::Initialize()
362 {
363     PluginManager::RegisterPlugin(GetPluginNameStatic(),
364                                   GetPluginDescriptionStatic(),
365                                   CreateInstance,
366                                   CreateMemoryInstance,
367                                   GetModuleSpecifications);
368 }
369 
370 void
371 ObjectFileELF::Terminate()
372 {
373     PluginManager::UnregisterPlugin(CreateInstance);
374 }
375 
376 lldb_private::ConstString
377 ObjectFileELF::GetPluginNameStatic()
378 {
379     static ConstString g_name("elf");
380     return g_name;
381 }
382 
383 const char *
384 ObjectFileELF::GetPluginDescriptionStatic()
385 {
386     return "ELF object file reader.";
387 }
388 
389 ObjectFile *
390 ObjectFileELF::CreateInstance (const lldb::ModuleSP &module_sp,
391                                DataBufferSP &data_sp,
392                                lldb::offset_t data_offset,
393                                const lldb_private::FileSpec* file,
394                                lldb::offset_t file_offset,
395                                lldb::offset_t length)
396 {
397     if (!data_sp)
398     {
399         data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length);
400         data_offset = 0;
401     }
402 
403     if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset))
404     {
405         const uint8_t *magic = data_sp->GetBytes() + data_offset;
406         if (ELFHeader::MagicBytesMatch(magic))
407         {
408             // Update the data to contain the entire file if it doesn't already
409             if (data_sp->GetByteSize() < length) {
410                 data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length);
411                 data_offset = 0;
412                 magic = data_sp->GetBytes();
413             }
414             unsigned address_size = ELFHeader::AddressSizeInBytes(magic);
415             if (address_size == 4 || address_size == 8)
416             {
417                 std::unique_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, data_offset, file, file_offset, length));
418                 ArchSpec spec;
419                 if (objfile_ap->GetArchitecture(spec) &&
420                     objfile_ap->SetModulesArchitecture(spec))
421                     return objfile_ap.release();
422             }
423         }
424     }
425     return NULL;
426 }
427 
428 
429 ObjectFile*
430 ObjectFileELF::CreateMemoryInstance (const lldb::ModuleSP &module_sp,
431                                      DataBufferSP& data_sp,
432                                      const lldb::ProcessSP &process_sp,
433                                      lldb::addr_t header_addr)
434 {
435     if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT))
436     {
437         const uint8_t *magic = data_sp->GetBytes();
438         if (ELFHeader::MagicBytesMatch(magic))
439         {
440             unsigned address_size = ELFHeader::AddressSizeInBytes(magic);
441             if (address_size == 4 || address_size == 8)
442             {
443                 std::auto_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, process_sp, header_addr));
444                 ArchSpec spec;
445                 if (objfile_ap->GetArchitecture(spec) &&
446                     objfile_ap->SetModulesArchitecture(spec))
447                     return objfile_ap.release();
448             }
449         }
450     }
451     return NULL;
452 }
453 
454 bool
455 ObjectFileELF::MagicBytesMatch (DataBufferSP& data_sp,
456                                   lldb::addr_t data_offset,
457                                   lldb::addr_t data_length)
458 {
459     if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset))
460     {
461         const uint8_t *magic = data_sp->GetBytes() + data_offset;
462         return ELFHeader::MagicBytesMatch(magic);
463     }
464     return false;
465 }
466 
467 /*
468  * crc function from http://svnweb.freebsd.org/base/head/sys/libkern/crc32.c
469  *
470  *   COPYRIGHT (C) 1986 Gary S. Brown. You may use this program, or
471  *   code or tables extracted from it, as desired without restriction.
472  */
473 static uint32_t
474 calc_crc32(uint32_t crc, const void *buf, size_t size)
475 {
476     static const uint32_t g_crc32_tab[] =
477     {
478         0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f,
479         0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988,
480         0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2,
481         0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7,
482         0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
483         0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172,
484         0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c,
485         0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59,
486         0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423,
487         0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
488         0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106,
489         0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,
490         0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d,
491         0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e,
492         0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
493         0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,
494         0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7,
495         0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0,
496         0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa,
497         0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
498         0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81,
499         0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a,
500         0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84,
501         0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,
502         0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
503         0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc,
504         0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e,
505         0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,
506         0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55,
507         0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
508         0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28,
509         0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d,
510         0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f,
511         0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38,
512         0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
513         0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,
514         0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69,
515         0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2,
516         0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc,
517         0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
518         0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693,
519         0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94,
520         0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d
521     };
522     const uint8_t *p = (const uint8_t *)buf;
523 
524     crc = crc ^ ~0U;
525     while (size--)
526         crc = g_crc32_tab[(crc ^ *p++) & 0xFF] ^ (crc >> 8);
527     return crc ^ ~0U;
528 }
529 
530 static uint32_t
531 calc_gnu_debuglink_crc32(const void *buf, size_t size)
532 {
533     return calc_crc32(0U, buf, size);
534 }
535 
536 uint32_t
537 ObjectFileELF::CalculateELFNotesSegmentsCRC32 (const ProgramHeaderColl& program_headers,
538                                                DataExtractor& object_data)
539 {
540     typedef ProgramHeaderCollConstIter Iter;
541 
542     uint32_t core_notes_crc = 0;
543 
544     for (Iter I = program_headers.begin(); I != program_headers.end(); ++I)
545     {
546         if (I->p_type == llvm::ELF::PT_NOTE)
547         {
548             const elf_off ph_offset = I->p_offset;
549             const size_t ph_size = I->p_filesz;
550 
551             DataExtractor segment_data;
552             if (segment_data.SetData(object_data, ph_offset, ph_size) != ph_size)
553             {
554                 // The ELF program header contained incorrect data,
555                 // probably corefile is incomplete or corrupted.
556                 break;
557             }
558 
559             core_notes_crc = calc_crc32(core_notes_crc,
560                                         segment_data.GetDataStart(),
561                                         segment_data.GetByteSize());
562         }
563     }
564 
565     return core_notes_crc;
566 }
567 
568 static const char*
569 OSABIAsCString (unsigned char osabi_byte)
570 {
571 #define _MAKE_OSABI_CASE(x) case x: return #x
572     switch (osabi_byte)
573     {
574         _MAKE_OSABI_CASE(ELFOSABI_NONE);
575         _MAKE_OSABI_CASE(ELFOSABI_HPUX);
576         _MAKE_OSABI_CASE(ELFOSABI_NETBSD);
577         _MAKE_OSABI_CASE(ELFOSABI_GNU);
578         _MAKE_OSABI_CASE(ELFOSABI_HURD);
579         _MAKE_OSABI_CASE(ELFOSABI_SOLARIS);
580         _MAKE_OSABI_CASE(ELFOSABI_AIX);
581         _MAKE_OSABI_CASE(ELFOSABI_IRIX);
582         _MAKE_OSABI_CASE(ELFOSABI_FREEBSD);
583         _MAKE_OSABI_CASE(ELFOSABI_TRU64);
584         _MAKE_OSABI_CASE(ELFOSABI_MODESTO);
585         _MAKE_OSABI_CASE(ELFOSABI_OPENBSD);
586         _MAKE_OSABI_CASE(ELFOSABI_OPENVMS);
587         _MAKE_OSABI_CASE(ELFOSABI_NSK);
588         _MAKE_OSABI_CASE(ELFOSABI_AROS);
589         _MAKE_OSABI_CASE(ELFOSABI_FENIXOS);
590         _MAKE_OSABI_CASE(ELFOSABI_C6000_ELFABI);
591         _MAKE_OSABI_CASE(ELFOSABI_C6000_LINUX);
592         _MAKE_OSABI_CASE(ELFOSABI_ARM);
593         _MAKE_OSABI_CASE(ELFOSABI_STANDALONE);
594         default:
595             return "<unknown-osabi>";
596     }
597 #undef _MAKE_OSABI_CASE
598 }
599 
600 //
601 // WARNING : This function is being deprecated
602 // It's functionality has moved to ArchSpec::SetArchitecture
603 // This function is only being kept to validate the move.
604 //
605 // TODO : Remove this function
606 static bool
607 GetOsFromOSABI (unsigned char osabi_byte, llvm::Triple::OSType &ostype)
608 {
609     switch (osabi_byte)
610     {
611         case ELFOSABI_AIX:      ostype = llvm::Triple::OSType::AIX; break;
612         case ELFOSABI_FREEBSD:  ostype = llvm::Triple::OSType::FreeBSD; break;
613         case ELFOSABI_GNU:      ostype = llvm::Triple::OSType::Linux; break;
614         case ELFOSABI_NETBSD:   ostype = llvm::Triple::OSType::NetBSD; break;
615         case ELFOSABI_OPENBSD:  ostype = llvm::Triple::OSType::OpenBSD; break;
616         case ELFOSABI_SOLARIS:  ostype = llvm::Triple::OSType::Solaris; break;
617         default:
618             ostype = llvm::Triple::OSType::UnknownOS;
619     }
620     return ostype != llvm::Triple::OSType::UnknownOS;
621 }
622 
623 size_t
624 ObjectFileELF::GetModuleSpecifications (const lldb_private::FileSpec& file,
625                                         lldb::DataBufferSP& data_sp,
626                                         lldb::offset_t data_offset,
627                                         lldb::offset_t file_offset,
628                                         lldb::offset_t length,
629                                         lldb_private::ModuleSpecList &specs)
630 {
631     Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES));
632 
633     const size_t initial_count = specs.GetSize();
634 
635     if (ObjectFileELF::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize()))
636     {
637         DataExtractor data;
638         data.SetData(data_sp);
639         elf::ELFHeader header;
640         if (header.Parse(data, &data_offset))
641         {
642             if (data_sp)
643             {
644                 ModuleSpec spec (file);
645 
646                 const uint32_t sub_type = subTypeFromElfHeader(header);
647                 spec.GetArchitecture().SetArchitecture(eArchTypeELF,
648                                                        header.e_machine,
649                                                        sub_type,
650                                                        header.e_ident[EI_OSABI]);
651 
652                 if (spec.GetArchitecture().IsValid())
653                 {
654                     llvm::Triple::OSType ostype;
655                     llvm::Triple::VendorType vendor;
656                     llvm::Triple::OSType spec_ostype = spec.GetArchitecture ().GetTriple ().getOS ();
657 
658                     if (log)
659                         log->Printf ("ObjectFileELF::%s file '%s' module OSABI: %s", __FUNCTION__, file.GetPath ().c_str (), OSABIAsCString (header.e_ident[EI_OSABI]));
660 
661                     // SetArchitecture should have set the vendor to unknown
662                     vendor = spec.GetArchitecture ().GetTriple ().getVendor ();
663                     assert(vendor == llvm::Triple::UnknownVendor);
664 
665                     //
666                     // Validate it is ok to remove GetOsFromOSABI
667                     GetOsFromOSABI (header.e_ident[EI_OSABI], ostype);
668                     assert(spec_ostype == ostype);
669                     if (spec_ostype != llvm::Triple::OSType::UnknownOS)
670                     {
671                         if (log)
672                             log->Printf ("ObjectFileELF::%s file '%s' set ELF module OS type from ELF header OSABI.", __FUNCTION__, file.GetPath ().c_str ());
673                     }
674 
675                     // Try to get the UUID from the section list. Usually that's at the end, so
676                     // map the file in if we don't have it already.
677                     size_t section_header_end = header.e_shoff + header.e_shnum * header.e_shentsize;
678                     if (section_header_end > data_sp->GetByteSize())
679                     {
680                         data_sp = file.MemoryMapFileContentsIfLocal (file_offset, section_header_end);
681                         data.SetData(data_sp);
682                     }
683 
684                     uint32_t gnu_debuglink_crc = 0;
685                     std::string gnu_debuglink_file;
686                     SectionHeaderColl section_headers;
687                     lldb_private::UUID &uuid = spec.GetUUID();
688 
689                     GetSectionHeaderInfo(section_headers, data, header, uuid, gnu_debuglink_file, gnu_debuglink_crc, spec.GetArchitecture ());
690 
691                     llvm::Triple &spec_triple = spec.GetArchitecture ().GetTriple ();
692 
693                     if (log)
694                         log->Printf ("ObjectFileELF::%s file '%s' module set to triple: %s (architecture %s)", __FUNCTION__, file.GetPath ().c_str (), spec_triple.getTriple ().c_str (), spec.GetArchitecture ().GetArchitectureName ());
695 
696                     if (!uuid.IsValid())
697                     {
698                         uint32_t core_notes_crc = 0;
699 
700                         if (!gnu_debuglink_crc)
701                         {
702                             lldb_private::Timer scoped_timer (__PRETTY_FUNCTION__,
703                                                               "Calculating module crc32 %s with size %" PRIu64 " KiB",
704                                                               file.GetLastPathComponent().AsCString(),
705                                                               (file.GetByteSize()-file_offset)/1024);
706 
707                             // For core files - which usually don't happen to have a gnu_debuglink,
708                             // and are pretty bulky - calculating whole contents crc32 would be too much of luxury.
709                             // Thus we will need to fallback to something simpler.
710                             if (header.e_type == llvm::ELF::ET_CORE)
711                             {
712                                 size_t program_headers_end = header.e_phoff + header.e_phnum * header.e_phentsize;
713                                 if (program_headers_end > data_sp->GetByteSize())
714                                 {
715                                     data_sp = file.MemoryMapFileContentsIfLocal(file_offset, program_headers_end);
716                                     data.SetData(data_sp);
717                                 }
718                                 ProgramHeaderColl program_headers;
719                                 GetProgramHeaderInfo(program_headers, data, header);
720 
721                                 size_t segment_data_end = 0;
722                                 for (ProgramHeaderCollConstIter I = program_headers.begin();
723                                      I != program_headers.end(); ++I)
724                                 {
725                                      segment_data_end = std::max<unsigned long long> (I->p_offset + I->p_filesz, segment_data_end);
726                                 }
727 
728                                 if (segment_data_end > data_sp->GetByteSize())
729                                 {
730                                     data_sp = file.MemoryMapFileContentsIfLocal(file_offset, segment_data_end);
731                                     data.SetData(data_sp);
732                                 }
733 
734                                 core_notes_crc = CalculateELFNotesSegmentsCRC32 (program_headers, data);
735                             }
736                             else
737                             {
738                                 // Need to map entire file into memory to calculate the crc.
739                                 data_sp = file.MemoryMapFileContentsIfLocal (file_offset, SIZE_MAX);
740                                 data.SetData(data_sp);
741                                 gnu_debuglink_crc = calc_gnu_debuglink_crc32 (data.GetDataStart(), data.GetByteSize());
742                             }
743                         }
744                         if (gnu_debuglink_crc)
745                         {
746                             // Use 4 bytes of crc from the .gnu_debuglink section.
747                             uint32_t uuidt[4] = { gnu_debuglink_crc, 0, 0, 0 };
748                             uuid.SetBytes (uuidt, sizeof(uuidt));
749                         }
750                         else if (core_notes_crc)
751                         {
752                             // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it look different form
753                             // .gnu_debuglink crc followed by 4 bytes of note segments crc.
754                             uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 };
755                             uuid.SetBytes (uuidt, sizeof(uuidt));
756                         }
757                     }
758 
759                     specs.Append(spec);
760                 }
761             }
762         }
763     }
764 
765     return specs.GetSize() - initial_count;
766 }
767 
768 //------------------------------------------------------------------
769 // PluginInterface protocol
770 //------------------------------------------------------------------
771 lldb_private::ConstString
772 ObjectFileELF::GetPluginName()
773 {
774     return GetPluginNameStatic();
775 }
776 
777 uint32_t
778 ObjectFileELF::GetPluginVersion()
779 {
780     return m_plugin_version;
781 }
782 //------------------------------------------------------------------
783 // ObjectFile protocol
784 //------------------------------------------------------------------
785 
786 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp,
787                               DataBufferSP& data_sp,
788                               lldb::offset_t data_offset,
789                               const FileSpec* file,
790                               lldb::offset_t file_offset,
791                               lldb::offset_t length) :
792     ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset),
793     m_header(),
794     m_uuid(),
795     m_gnu_debuglink_file(),
796     m_gnu_debuglink_crc(0),
797     m_program_headers(),
798     m_section_headers(),
799     m_dynamic_symbols(),
800     m_filespec_ap(),
801     m_entry_point_address(),
802     m_arch_spec()
803 {
804     if (file)
805         m_file = *file;
806     ::memset(&m_header, 0, sizeof(m_header));
807 }
808 
809 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp,
810                               DataBufferSP& header_data_sp,
811                               const lldb::ProcessSP &process_sp,
812                               addr_t header_addr) :
813     ObjectFile(module_sp, process_sp, header_addr, header_data_sp),
814     m_header(),
815     m_uuid(),
816     m_gnu_debuglink_file(),
817     m_gnu_debuglink_crc(0),
818     m_program_headers(),
819     m_section_headers(),
820     m_dynamic_symbols(),
821     m_filespec_ap(),
822     m_entry_point_address(),
823     m_arch_spec()
824 {
825     ::memset(&m_header, 0, sizeof(m_header));
826 }
827 
828 ObjectFileELF::~ObjectFileELF()
829 {
830 }
831 
832 bool
833 ObjectFileELF::IsExecutable() const
834 {
835     return ((m_header.e_type & ET_EXEC) != 0) || (m_header.e_entry != 0);
836 }
837 
838 bool
839 ObjectFileELF::SetLoadAddress (Target &target,
840                                lldb::addr_t value,
841                                bool value_is_offset)
842 {
843     ModuleSP module_sp = GetModule();
844     if (module_sp)
845     {
846         size_t num_loaded_sections = 0;
847         SectionList *section_list = GetSectionList ();
848         if (section_list)
849         {
850             if (value_is_offset)
851             {
852                 const size_t num_sections = section_list->GetSize();
853                 size_t sect_idx = 0;
854 
855                 for (sect_idx = 0; sect_idx < num_sections; ++sect_idx)
856                 {
857                     // Iterate through the object file sections to find all
858                     // of the sections that have SHF_ALLOC in their flag bits.
859                     SectionSP section_sp (section_list->GetSectionAtIndex (sect_idx));
860                     // if (section_sp && !section_sp->IsThreadSpecific())
861                     if (section_sp && section_sp->Test(SHF_ALLOC))
862                     {
863                         lldb::addr_t load_addr = section_sp->GetFileAddress() + value;
864 
865                         // On 32-bit systems the load address have to fit into 4 bytes. The rest of
866                         // the bytes are the overflow from the addition.
867                         if (GetAddressByteSize() == 4)
868                             load_addr &= 0xFFFFFFFF;
869 
870                         if (target.GetSectionLoadList().SetSectionLoadAddress (section_sp, load_addr))
871                             ++num_loaded_sections;
872                     }
873                 }
874                 return num_loaded_sections > 0;
875             }
876             else
877             {
878                 // Not sure how to slide an ELF file given the base address
879                 // of the ELF file in memory
880             }
881         }
882     }
883     return false; // If it changed
884 }
885 
886 ByteOrder
887 ObjectFileELF::GetByteOrder() const
888 {
889     if (m_header.e_ident[EI_DATA] == ELFDATA2MSB)
890         return eByteOrderBig;
891     if (m_header.e_ident[EI_DATA] == ELFDATA2LSB)
892         return eByteOrderLittle;
893     return eByteOrderInvalid;
894 }
895 
896 uint32_t
897 ObjectFileELF::GetAddressByteSize() const
898 {
899     return m_data.GetAddressByteSize();
900 }
901 
902 // Top 16 bits of the `Symbol` flags are available.
903 #define ARM_ELF_SYM_IS_THUMB    (1 << 16)
904 
905 AddressClass
906 ObjectFileELF::GetAddressClass (addr_t file_addr)
907 {
908     auto res = ObjectFile::GetAddressClass (file_addr);
909 
910     if (res != eAddressClassCode)
911         return res;
912 
913     auto ub = m_address_class_map.upper_bound(file_addr);
914     if (ub == m_address_class_map.begin())
915     {
916         // No entry in the address class map before the address. Return
917         // default address class for an address in a code section.
918         return eAddressClassCode;
919     }
920 
921     // Move iterator to the address class entry preceding address
922     --ub;
923 
924     return ub->second;
925 }
926 
927 size_t
928 ObjectFileELF::SectionIndex(const SectionHeaderCollIter &I)
929 {
930     return std::distance(m_section_headers.begin(), I) + 1u;
931 }
932 
933 size_t
934 ObjectFileELF::SectionIndex(const SectionHeaderCollConstIter &I) const
935 {
936     return std::distance(m_section_headers.begin(), I) + 1u;
937 }
938 
939 bool
940 ObjectFileELF::ParseHeader()
941 {
942     lldb::offset_t offset = 0;
943     if (!m_header.Parse(m_data, &offset))
944         return false;
945 
946     if (!IsInMemory())
947         return true;
948 
949     // For in memory object files m_data might not contain the full object file. Try to load it
950     // until the end of the "Section header table" what is at the end of the ELF file.
951     addr_t file_size = m_header.e_shoff + m_header.e_shnum * m_header.e_shentsize;
952     if (m_data.GetByteSize() < file_size)
953     {
954         ProcessSP process_sp (m_process_wp.lock());
955         if (!process_sp)
956             return false;
957 
958         DataBufferSP data_sp = ReadMemory(process_sp, m_memory_addr, file_size);
959         if (!data_sp)
960             return false;
961         m_data.SetData(data_sp, 0, file_size);
962     }
963 
964     return true;
965 }
966 
967 bool
968 ObjectFileELF::GetUUID(lldb_private::UUID* uuid)
969 {
970     // Need to parse the section list to get the UUIDs, so make sure that's been done.
971     if (!ParseSectionHeaders() && GetType() != ObjectFile::eTypeCoreFile)
972         return false;
973 
974     if (m_uuid.IsValid())
975     {
976         // We have the full build id uuid.
977         *uuid = m_uuid;
978         return true;
979     }
980     else if (GetType() == ObjectFile::eTypeCoreFile)
981     {
982         uint32_t core_notes_crc = 0;
983 
984         if (!ParseProgramHeaders())
985             return false;
986 
987         core_notes_crc = CalculateELFNotesSegmentsCRC32(m_program_headers, m_data);
988 
989         if (core_notes_crc)
990         {
991             // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it
992             // look different form .gnu_debuglink crc - followed by 4 bytes of note
993             // segments crc.
994             uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 };
995             m_uuid.SetBytes (uuidt, sizeof(uuidt));
996         }
997     }
998     else
999     {
1000         if (!m_gnu_debuglink_crc)
1001             m_gnu_debuglink_crc = calc_gnu_debuglink_crc32 (m_data.GetDataStart(), m_data.GetByteSize());
1002         if (m_gnu_debuglink_crc)
1003         {
1004             // Use 4 bytes of crc from the .gnu_debuglink section.
1005             uint32_t uuidt[4] = { m_gnu_debuglink_crc, 0, 0, 0 };
1006             m_uuid.SetBytes (uuidt, sizeof(uuidt));
1007         }
1008     }
1009 
1010     if (m_uuid.IsValid())
1011     {
1012         *uuid = m_uuid;
1013         return true;
1014     }
1015 
1016     return false;
1017 }
1018 
1019 lldb_private::FileSpecList
1020 ObjectFileELF::GetDebugSymbolFilePaths()
1021 {
1022     FileSpecList file_spec_list;
1023 
1024     if (!m_gnu_debuglink_file.empty())
1025     {
1026         FileSpec file_spec (m_gnu_debuglink_file.c_str(), false);
1027         file_spec_list.Append (file_spec);
1028     }
1029     return file_spec_list;
1030 }
1031 
1032 uint32_t
1033 ObjectFileELF::GetDependentModules(FileSpecList &files)
1034 {
1035     size_t num_modules = ParseDependentModules();
1036     uint32_t num_specs = 0;
1037 
1038     for (unsigned i = 0; i < num_modules; ++i)
1039     {
1040         if (files.AppendIfUnique(m_filespec_ap->GetFileSpecAtIndex(i)))
1041             num_specs++;
1042     }
1043 
1044     return num_specs;
1045 }
1046 
1047 Address
1048 ObjectFileELF::GetImageInfoAddress(Target *target)
1049 {
1050     if (!ParseDynamicSymbols())
1051         return Address();
1052 
1053     SectionList *section_list = GetSectionList();
1054     if (!section_list)
1055         return Address();
1056 
1057     // Find the SHT_DYNAMIC (.dynamic) section.
1058     SectionSP dynsym_section_sp (section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true));
1059     if (!dynsym_section_sp)
1060         return Address();
1061     assert (dynsym_section_sp->GetObjectFile() == this);
1062 
1063     user_id_t dynsym_id = dynsym_section_sp->GetID();
1064     const ELFSectionHeaderInfo *dynsym_hdr = GetSectionHeaderByIndex(dynsym_id);
1065     if (!dynsym_hdr)
1066         return Address();
1067 
1068     for (size_t i = 0; i < m_dynamic_symbols.size(); ++i)
1069     {
1070         ELFDynamic &symbol = m_dynamic_symbols[i];
1071 
1072         if (symbol.d_tag == DT_DEBUG)
1073         {
1074             // Compute the offset as the number of previous entries plus the
1075             // size of d_tag.
1076             addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize();
1077             return Address(dynsym_section_sp, offset);
1078         }
1079         else if (symbol.d_tag == DT_MIPS_RLD_MAP && target)
1080         {
1081             addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize();
1082             addr_t dyn_base = dynsym_section_sp->GetLoadBaseAddress(target);
1083             if (dyn_base == LLDB_INVALID_ADDRESS)
1084                 return Address();
1085             Address addr;
1086             Error error;
1087             if (target->ReadPointerFromMemory(dyn_base + offset, false, error, addr))
1088                 return addr;
1089         }
1090     }
1091 
1092     return Address();
1093 }
1094 
1095 lldb_private::Address
1096 ObjectFileELF::GetEntryPointAddress ()
1097 {
1098     if (m_entry_point_address.IsValid())
1099         return m_entry_point_address;
1100 
1101     if (!ParseHeader() || !IsExecutable())
1102         return m_entry_point_address;
1103 
1104     SectionList *section_list = GetSectionList();
1105     addr_t offset = m_header.e_entry;
1106 
1107     if (!section_list)
1108         m_entry_point_address.SetOffset(offset);
1109     else
1110         m_entry_point_address.ResolveAddressUsingFileSections(offset, section_list);
1111     return m_entry_point_address;
1112 }
1113 
1114 //----------------------------------------------------------------------
1115 // ParseDependentModules
1116 //----------------------------------------------------------------------
1117 size_t
1118 ObjectFileELF::ParseDependentModules()
1119 {
1120     if (m_filespec_ap.get())
1121         return m_filespec_ap->GetSize();
1122 
1123     m_filespec_ap.reset(new FileSpecList());
1124 
1125     if (!ParseSectionHeaders())
1126         return 0;
1127 
1128     SectionList *section_list = GetSectionList();
1129     if (!section_list)
1130         return 0;
1131 
1132     // Find the SHT_DYNAMIC section.
1133     Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get();
1134     if (!dynsym)
1135         return 0;
1136     assert (dynsym->GetObjectFile() == this);
1137 
1138     const ELFSectionHeaderInfo *header = GetSectionHeaderByIndex (dynsym->GetID());
1139     if (!header)
1140         return 0;
1141     // sh_link: section header index of string table used by entries in the section.
1142     Section *dynstr = section_list->FindSectionByID (header->sh_link + 1).get();
1143     if (!dynstr)
1144         return 0;
1145 
1146     DataExtractor dynsym_data;
1147     DataExtractor dynstr_data;
1148     if (ReadSectionData(dynsym, dynsym_data) &&
1149         ReadSectionData(dynstr, dynstr_data))
1150     {
1151         ELFDynamic symbol;
1152         const lldb::offset_t section_size = dynsym_data.GetByteSize();
1153         lldb::offset_t offset = 0;
1154 
1155         // The only type of entries we are concerned with are tagged DT_NEEDED,
1156         // yielding the name of a required library.
1157         while (offset < section_size)
1158         {
1159             if (!symbol.Parse(dynsym_data, &offset))
1160                 break;
1161 
1162             if (symbol.d_tag != DT_NEEDED)
1163                 continue;
1164 
1165             uint32_t str_index = static_cast<uint32_t>(symbol.d_val);
1166             const char *lib_name = dynstr_data.PeekCStr(str_index);
1167             m_filespec_ap->Append(FileSpec(lib_name, true));
1168         }
1169     }
1170 
1171     return m_filespec_ap->GetSize();
1172 }
1173 
1174 //----------------------------------------------------------------------
1175 // GetProgramHeaderInfo
1176 //----------------------------------------------------------------------
1177 size_t
1178 ObjectFileELF::GetProgramHeaderInfo(ProgramHeaderColl &program_headers,
1179                                     DataExtractor &object_data,
1180                                     const ELFHeader &header)
1181 {
1182     // We have already parsed the program headers
1183     if (!program_headers.empty())
1184         return program_headers.size();
1185 
1186     // If there are no program headers to read we are done.
1187     if (header.e_phnum == 0)
1188         return 0;
1189 
1190     program_headers.resize(header.e_phnum);
1191     if (program_headers.size() != header.e_phnum)
1192         return 0;
1193 
1194     const size_t ph_size = header.e_phnum * header.e_phentsize;
1195     const elf_off ph_offset = header.e_phoff;
1196     DataExtractor data;
1197     if (data.SetData(object_data, ph_offset, ph_size) != ph_size)
1198         return 0;
1199 
1200     uint32_t idx;
1201     lldb::offset_t offset;
1202     for (idx = 0, offset = 0; idx < header.e_phnum; ++idx)
1203     {
1204         if (program_headers[idx].Parse(data, &offset) == false)
1205             break;
1206     }
1207 
1208     if (idx < program_headers.size())
1209         program_headers.resize(idx);
1210 
1211     return program_headers.size();
1212 
1213 }
1214 
1215 //----------------------------------------------------------------------
1216 // ParseProgramHeaders
1217 //----------------------------------------------------------------------
1218 size_t
1219 ObjectFileELF::ParseProgramHeaders()
1220 {
1221     return GetProgramHeaderInfo(m_program_headers, m_data, m_header);
1222 }
1223 
1224 lldb_private::Error
1225 ObjectFileELF::RefineModuleDetailsFromNote (lldb_private::DataExtractor &data, lldb_private::ArchSpec &arch_spec, lldb_private::UUID &uuid)
1226 {
1227     Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES));
1228     Error error;
1229 
1230     lldb::offset_t offset = 0;
1231 
1232     while (true)
1233     {
1234         // Parse the note header.  If this fails, bail out.
1235         ELFNote note = ELFNote();
1236         if (!note.Parse(data, &offset))
1237         {
1238             // We're done.
1239             return error;
1240         }
1241 
1242         // If a tag processor handles the tag, it should set processed to true, and
1243         // the loop will assume the tag processing has moved entirely past the note's payload.
1244         // Otherwise, leave it false and the end of the loop will handle the offset properly.
1245         bool processed = false;
1246 
1247         if (log)
1248             log->Printf ("ObjectFileELF::%s parsing note name='%s', type=%" PRIu32, __FUNCTION__, note.n_name.c_str (), note.n_type);
1249 
1250         // Process FreeBSD ELF notes.
1251         if ((note.n_name == LLDB_NT_OWNER_FREEBSD) &&
1252             (note.n_type == LLDB_NT_FREEBSD_ABI_TAG) &&
1253             (note.n_descsz == LLDB_NT_FREEBSD_ABI_SIZE))
1254         {
1255             // We'll consume the payload below.
1256             processed = true;
1257 
1258             // Pull out the min version info.
1259             uint32_t version_info;
1260             if (data.GetU32 (&offset, &version_info, 1) == nullptr)
1261             {
1262                 error.SetErrorString ("failed to read FreeBSD ABI note payload");
1263                 return error;
1264             }
1265 
1266             // Convert the version info into a major/minor number.
1267             const uint32_t version_major = version_info / 100000;
1268             const uint32_t version_minor = (version_info / 1000) % 100;
1269 
1270             char os_name[32];
1271             snprintf (os_name, sizeof (os_name), "freebsd%" PRIu32 ".%" PRIu32, version_major, version_minor);
1272 
1273             // Set the elf OS version to FreeBSD.  Also clear the vendor.
1274             arch_spec.GetTriple ().setOSName (os_name);
1275             arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1276 
1277             if (log)
1278                 log->Printf ("ObjectFileELF::%s detected FreeBSD %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_major, version_minor, static_cast<uint32_t> (version_info % 1000));
1279         }
1280         // Process GNU ELF notes.
1281         else if (note.n_name == LLDB_NT_OWNER_GNU)
1282         {
1283             switch (note.n_type)
1284             {
1285                 case LLDB_NT_GNU_ABI_TAG:
1286                     if (note.n_descsz == LLDB_NT_GNU_ABI_SIZE)
1287                     {
1288                         // We'll consume the payload below.
1289                         processed = true;
1290 
1291                         // Pull out the min OS version supporting the ABI.
1292                         uint32_t version_info[4];
1293                         if (data.GetU32 (&offset, &version_info[0], note.n_descsz / 4) == nullptr)
1294                         {
1295                             error.SetErrorString ("failed to read GNU ABI note payload");
1296                             return error;
1297                         }
1298 
1299                         // Set the OS per the OS field.
1300                         switch (version_info[0])
1301                         {
1302                             case LLDB_NT_GNU_ABI_OS_LINUX:
1303                                 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Linux);
1304                                 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1305                                 if (log)
1306                                     log->Printf ("ObjectFileELF::%s detected Linux, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]);
1307                                 // FIXME we have the minimal version number, we could be propagating that.  version_info[1] = OS Major, version_info[2] = OS Minor, version_info[3] = Revision.
1308                                 break;
1309                             case LLDB_NT_GNU_ABI_OS_HURD:
1310                                 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::UnknownOS);
1311                                 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1312                                 if (log)
1313                                     log->Printf ("ObjectFileELF::%s detected Hurd (unsupported), min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]);
1314                                 break;
1315                             case LLDB_NT_GNU_ABI_OS_SOLARIS:
1316                                 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Solaris);
1317                                 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1318                                 if (log)
1319                                     log->Printf ("ObjectFileELF::%s detected Solaris, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]);
1320                                 break;
1321                             default:
1322                                 if (log)
1323                                     log->Printf ("ObjectFileELF::%s unrecognized OS in note, id %" PRIu32 ", min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[0], version_info[1], version_info[2], version_info[3]);
1324                                 break;
1325                         }
1326                     }
1327                     break;
1328 
1329                 case LLDB_NT_GNU_BUILD_ID_TAG:
1330                     // Only bother processing this if we don't already have the uuid set.
1331                     if (!uuid.IsValid())
1332                     {
1333                         // We'll consume the payload below.
1334                         processed = true;
1335 
1336                         // 16 bytes is UUID|MD5, 20 bytes is SHA1
1337                         if ((note.n_descsz == 16 || note.n_descsz == 20))
1338                         {
1339                             uint8_t uuidbuf[20];
1340                             if (data.GetU8 (&offset, &uuidbuf, note.n_descsz) == nullptr)
1341                             {
1342                                 error.SetErrorString ("failed to read GNU_BUILD_ID note payload");
1343                                 return error;
1344                             }
1345 
1346                             // Save the build id as the UUID for the module.
1347                             uuid.SetBytes (uuidbuf, note.n_descsz);
1348                         }
1349                     }
1350                     break;
1351             }
1352         }
1353         // Process NetBSD ELF notes.
1354         else if ((note.n_name == LLDB_NT_OWNER_NETBSD) &&
1355                  (note.n_type == LLDB_NT_NETBSD_ABI_TAG) &&
1356                  (note.n_descsz == LLDB_NT_NETBSD_ABI_SIZE))
1357         {
1358 
1359             // We'll consume the payload below.
1360             processed = true;
1361 
1362             // Pull out the min version info.
1363             uint32_t version_info;
1364             if (data.GetU32 (&offset, &version_info, 1) == nullptr)
1365             {
1366                 error.SetErrorString ("failed to read NetBSD ABI note payload");
1367                 return error;
1368             }
1369 
1370             // Set the elf OS version to NetBSD.  Also clear the vendor.
1371             arch_spec.GetTriple ().setOS (llvm::Triple::OSType::NetBSD);
1372             arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1373 
1374             if (log)
1375                 log->Printf ("ObjectFileELF::%s detected NetBSD, min version constant %" PRIu32, __FUNCTION__, version_info);
1376         }
1377         // Process CSR kalimba notes
1378         else if ((note.n_type == LLDB_NT_GNU_ABI_TAG) &&
1379                 (note.n_name == LLDB_NT_OWNER_CSR))
1380         {
1381             // We'll consume the payload below.
1382             processed = true;
1383             arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS);
1384             arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::CSR);
1385 
1386             // TODO At some point the description string could be processed.
1387             // It could provide a steer towards the kalimba variant which
1388             // this ELF targets.
1389             if(note.n_descsz)
1390             {
1391                 const char *cstr = data.GetCStr(&offset, llvm::RoundUpToAlignment (note.n_descsz, 4));
1392                 (void)cstr;
1393             }
1394         }
1395         else if (note.n_name == LLDB_NT_OWNER_ANDROID)
1396         {
1397             arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1398             arch_spec.GetTriple().setEnvironment(llvm::Triple::EnvironmentType::Android);
1399         }
1400 
1401         if (!processed)
1402             offset += llvm::RoundUpToAlignment(note.n_descsz, 4);
1403     }
1404 
1405     return error;
1406 }
1407 
1408 
1409 //----------------------------------------------------------------------
1410 // GetSectionHeaderInfo
1411 //----------------------------------------------------------------------
1412 size_t
1413 ObjectFileELF::GetSectionHeaderInfo(SectionHeaderColl &section_headers,
1414                                     lldb_private::DataExtractor &object_data,
1415                                     const elf::ELFHeader &header,
1416                                     lldb_private::UUID &uuid,
1417                                     std::string &gnu_debuglink_file,
1418                                     uint32_t &gnu_debuglink_crc,
1419                                     ArchSpec &arch_spec)
1420 {
1421     // Don't reparse the section headers if we already did that.
1422     if (!section_headers.empty())
1423         return section_headers.size();
1424 
1425     // Only initialize the arch_spec to okay defaults if they're not already set.
1426     // We'll refine this with note data as we parse the notes.
1427     if (arch_spec.GetTriple ().getOS () == llvm::Triple::OSType::UnknownOS)
1428     {
1429         llvm::Triple::OSType ostype;
1430         llvm::Triple::OSType spec_ostype;
1431         const uint32_t sub_type = subTypeFromElfHeader(header);
1432         arch_spec.SetArchitecture (eArchTypeELF, header.e_machine, sub_type, header.e_ident[EI_OSABI]);
1433         //
1434         // Validate if it is ok to remove GetOsFromOSABI
1435         GetOsFromOSABI (header.e_ident[EI_OSABI], ostype);
1436         spec_ostype = arch_spec.GetTriple ().getOS ();
1437         assert(spec_ostype == ostype);
1438     }
1439 
1440     // If there are no section headers we are done.
1441     if (header.e_shnum == 0)
1442         return 0;
1443 
1444     Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES));
1445 
1446     section_headers.resize(header.e_shnum);
1447     if (section_headers.size() != header.e_shnum)
1448         return 0;
1449 
1450     const size_t sh_size = header.e_shnum * header.e_shentsize;
1451     const elf_off sh_offset = header.e_shoff;
1452     DataExtractor sh_data;
1453     if (sh_data.SetData (object_data, sh_offset, sh_size) != sh_size)
1454         return 0;
1455 
1456     uint32_t idx;
1457     lldb::offset_t offset;
1458     for (idx = 0, offset = 0; idx < header.e_shnum; ++idx)
1459     {
1460         if (section_headers[idx].Parse(sh_data, &offset) == false)
1461             break;
1462     }
1463     if (idx < section_headers.size())
1464         section_headers.resize(idx);
1465 
1466     const unsigned strtab_idx = header.e_shstrndx;
1467     if (strtab_idx && strtab_idx < section_headers.size())
1468     {
1469         const ELFSectionHeaderInfo &sheader = section_headers[strtab_idx];
1470         const size_t byte_size = sheader.sh_size;
1471         const Elf64_Off offset = sheader.sh_offset;
1472         lldb_private::DataExtractor shstr_data;
1473 
1474         if (shstr_data.SetData (object_data, offset, byte_size) == byte_size)
1475         {
1476             for (SectionHeaderCollIter I = section_headers.begin();
1477                  I != section_headers.end(); ++I)
1478             {
1479                 static ConstString g_sect_name_gnu_debuglink (".gnu_debuglink");
1480                 const ELFSectionHeaderInfo &header = *I;
1481                 const uint64_t section_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size;
1482                 ConstString name(shstr_data.PeekCStr(I->sh_name));
1483 
1484                 I->section_name = name;
1485 
1486                 if (name == g_sect_name_gnu_debuglink)
1487                 {
1488                     DataExtractor data;
1489                     if (section_size && (data.SetData (object_data, header.sh_offset, section_size) == section_size))
1490                     {
1491                         lldb::offset_t gnu_debuglink_offset = 0;
1492                         gnu_debuglink_file = data.GetCStr (&gnu_debuglink_offset);
1493                         gnu_debuglink_offset = llvm::RoundUpToAlignment (gnu_debuglink_offset, 4);
1494                         data.GetU32 (&gnu_debuglink_offset, &gnu_debuglink_crc, 1);
1495                     }
1496                 }
1497 
1498                 // Process ELF note section entries.
1499                 bool is_note_header = (header.sh_type == SHT_NOTE);
1500 
1501                 // The section header ".note.android.ident" is stored as a
1502                 // PROGBITS type header but it is actually a note header.
1503                 static ConstString g_sect_name_android_ident (".note.android.ident");
1504                 if (!is_note_header && name == g_sect_name_android_ident)
1505                     is_note_header = true;
1506 
1507                 if (is_note_header)
1508                 {
1509                     // Allow notes to refine module info.
1510                     DataExtractor data;
1511                     if (section_size && (data.SetData (object_data, header.sh_offset, section_size) == section_size))
1512                     {
1513                         Error error = RefineModuleDetailsFromNote (data, arch_spec, uuid);
1514                         if (error.Fail ())
1515                         {
1516                             if (log)
1517                                 log->Printf ("ObjectFileELF::%s ELF note processing failed: %s", __FUNCTION__, error.AsCString ());
1518                         }
1519                     }
1520                 }
1521             }
1522 
1523             return section_headers.size();
1524         }
1525     }
1526 
1527     section_headers.clear();
1528     return 0;
1529 }
1530 
1531 size_t
1532 ObjectFileELF::GetProgramHeaderCount()
1533 {
1534     return ParseProgramHeaders();
1535 }
1536 
1537 const elf::ELFProgramHeader *
1538 ObjectFileELF::GetProgramHeaderByIndex(lldb::user_id_t id)
1539 {
1540     if (!id || !ParseProgramHeaders())
1541         return NULL;
1542 
1543     if (--id < m_program_headers.size())
1544         return &m_program_headers[id];
1545 
1546     return NULL;
1547 }
1548 
1549 DataExtractor
1550 ObjectFileELF::GetSegmentDataByIndex(lldb::user_id_t id)
1551 {
1552     const elf::ELFProgramHeader *segment_header = GetProgramHeaderByIndex(id);
1553     if (segment_header == NULL)
1554         return DataExtractor();
1555     return DataExtractor(m_data, segment_header->p_offset, segment_header->p_filesz);
1556 }
1557 
1558 std::string
1559 ObjectFileELF::StripLinkerSymbolAnnotations(llvm::StringRef symbol_name) const
1560 {
1561     size_t pos = symbol_name.find('@');
1562     return symbol_name.substr(0, pos).str();
1563 }
1564 
1565 //----------------------------------------------------------------------
1566 // ParseSectionHeaders
1567 //----------------------------------------------------------------------
1568 size_t
1569 ObjectFileELF::ParseSectionHeaders()
1570 {
1571     return GetSectionHeaderInfo(m_section_headers, m_data, m_header, m_uuid, m_gnu_debuglink_file, m_gnu_debuglink_crc, m_arch_spec);
1572 }
1573 
1574 const ObjectFileELF::ELFSectionHeaderInfo *
1575 ObjectFileELF::GetSectionHeaderByIndex(lldb::user_id_t id)
1576 {
1577     if (!id || !ParseSectionHeaders())
1578         return NULL;
1579 
1580     if (--id < m_section_headers.size())
1581         return &m_section_headers[id];
1582 
1583     return NULL;
1584 }
1585 
1586 lldb::user_id_t
1587 ObjectFileELF::GetSectionIndexByName(const char* name)
1588 {
1589     if (!name || !name[0] || !ParseSectionHeaders())
1590         return 0;
1591     for (size_t i = 1; i < m_section_headers.size(); ++i)
1592         if (m_section_headers[i].section_name == ConstString(name))
1593             return i;
1594     return 0;
1595 }
1596 
1597 void
1598 ObjectFileELF::CreateSections(SectionList &unified_section_list)
1599 {
1600     if (!m_sections_ap.get() && ParseSectionHeaders())
1601     {
1602         m_sections_ap.reset(new SectionList());
1603 
1604         for (SectionHeaderCollIter I = m_section_headers.begin();
1605              I != m_section_headers.end(); ++I)
1606         {
1607             const ELFSectionHeaderInfo &header = *I;
1608 
1609             ConstString& name = I->section_name;
1610             const uint64_t file_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size;
1611             const uint64_t vm_size = header.sh_flags & SHF_ALLOC ? header.sh_size : 0;
1612 
1613             static ConstString g_sect_name_text (".text");
1614             static ConstString g_sect_name_data (".data");
1615             static ConstString g_sect_name_bss (".bss");
1616             static ConstString g_sect_name_tdata (".tdata");
1617             static ConstString g_sect_name_tbss (".tbss");
1618             static ConstString g_sect_name_dwarf_debug_abbrev (".debug_abbrev");
1619             static ConstString g_sect_name_dwarf_debug_aranges (".debug_aranges");
1620             static ConstString g_sect_name_dwarf_debug_frame (".debug_frame");
1621             static ConstString g_sect_name_dwarf_debug_info (".debug_info");
1622             static ConstString g_sect_name_dwarf_debug_line (".debug_line");
1623             static ConstString g_sect_name_dwarf_debug_loc (".debug_loc");
1624             static ConstString g_sect_name_dwarf_debug_macinfo (".debug_macinfo");
1625             static ConstString g_sect_name_dwarf_debug_pubnames (".debug_pubnames");
1626             static ConstString g_sect_name_dwarf_debug_pubtypes (".debug_pubtypes");
1627             static ConstString g_sect_name_dwarf_debug_ranges (".debug_ranges");
1628             static ConstString g_sect_name_dwarf_debug_str (".debug_str");
1629             static ConstString g_sect_name_eh_frame (".eh_frame");
1630 
1631             SectionType sect_type = eSectionTypeOther;
1632 
1633             bool is_thread_specific = false;
1634 
1635             if      (name == g_sect_name_text)                  sect_type = eSectionTypeCode;
1636             else if (name == g_sect_name_data)                  sect_type = eSectionTypeData;
1637             else if (name == g_sect_name_bss)                   sect_type = eSectionTypeZeroFill;
1638             else if (name == g_sect_name_tdata)
1639             {
1640                 sect_type = eSectionTypeData;
1641                 is_thread_specific = true;
1642             }
1643             else if (name == g_sect_name_tbss)
1644             {
1645                 sect_type = eSectionTypeZeroFill;
1646                 is_thread_specific = true;
1647             }
1648             // .debug_abbrev – Abbreviations used in the .debug_info section
1649             // .debug_aranges – Lookup table for mapping addresses to compilation units
1650             // .debug_frame – Call frame information
1651             // .debug_info – The core DWARF information section
1652             // .debug_line – Line number information
1653             // .debug_loc – Location lists used in DW_AT_location attributes
1654             // .debug_macinfo – Macro information
1655             // .debug_pubnames – Lookup table for mapping object and function names to compilation units
1656             // .debug_pubtypes – Lookup table for mapping type names to compilation units
1657             // .debug_ranges – Address ranges used in DW_AT_ranges attributes
1658             // .debug_str – String table used in .debug_info
1659             // MISSING? .gnu_debugdata - "mini debuginfo / MiniDebugInfo" section, http://sourceware.org/gdb/onlinedocs/gdb/MiniDebugInfo.html
1660             // MISSING? .debug-index - http://src.chromium.org/viewvc/chrome/trunk/src/build/gdb-add-index?pathrev=144644
1661             // MISSING? .debug_types - Type descriptions from DWARF 4? See http://gcc.gnu.org/wiki/DwarfSeparateTypeInfo
1662             else if (name == g_sect_name_dwarf_debug_abbrev)    sect_type = eSectionTypeDWARFDebugAbbrev;
1663             else if (name == g_sect_name_dwarf_debug_aranges)   sect_type = eSectionTypeDWARFDebugAranges;
1664             else if (name == g_sect_name_dwarf_debug_frame)     sect_type = eSectionTypeDWARFDebugFrame;
1665             else if (name == g_sect_name_dwarf_debug_info)      sect_type = eSectionTypeDWARFDebugInfo;
1666             else if (name == g_sect_name_dwarf_debug_line)      sect_type = eSectionTypeDWARFDebugLine;
1667             else if (name == g_sect_name_dwarf_debug_loc)       sect_type = eSectionTypeDWARFDebugLoc;
1668             else if (name == g_sect_name_dwarf_debug_macinfo)   sect_type = eSectionTypeDWARFDebugMacInfo;
1669             else if (name == g_sect_name_dwarf_debug_pubnames)  sect_type = eSectionTypeDWARFDebugPubNames;
1670             else if (name == g_sect_name_dwarf_debug_pubtypes)  sect_type = eSectionTypeDWARFDebugPubTypes;
1671             else if (name == g_sect_name_dwarf_debug_ranges)    sect_type = eSectionTypeDWARFDebugRanges;
1672             else if (name == g_sect_name_dwarf_debug_str)       sect_type = eSectionTypeDWARFDebugStr;
1673             else if (name == g_sect_name_eh_frame)              sect_type = eSectionTypeEHFrame;
1674 
1675             switch (header.sh_type)
1676             {
1677                 case SHT_SYMTAB:
1678                     assert (sect_type == eSectionTypeOther);
1679                     sect_type = eSectionTypeELFSymbolTable;
1680                     break;
1681                 case SHT_DYNSYM:
1682                     assert (sect_type == eSectionTypeOther);
1683                     sect_type = eSectionTypeELFDynamicSymbols;
1684                     break;
1685                 case SHT_RELA:
1686                 case SHT_REL:
1687                     assert (sect_type == eSectionTypeOther);
1688                     sect_type = eSectionTypeELFRelocationEntries;
1689                     break;
1690                 case SHT_DYNAMIC:
1691                     assert (sect_type == eSectionTypeOther);
1692                     sect_type = eSectionTypeELFDynamicLinkInfo;
1693                     break;
1694             }
1695 
1696             if (eSectionTypeOther == sect_type)
1697             {
1698                 // the kalimba toolchain assumes that ELF section names are free-form. It does
1699                 // supports linkscripts which (can) give rise to various arbitarily named
1700                 // sections being "Code" or "Data".
1701                 sect_type = kalimbaSectionType(m_header, header);
1702             }
1703 
1704             const uint32_t target_bytes_size =
1705                 (eSectionTypeData == sect_type || eSectionTypeZeroFill == sect_type) ?
1706                 m_arch_spec.GetDataByteSize() :
1707                     eSectionTypeCode == sect_type ?
1708                     m_arch_spec.GetCodeByteSize() : 1;
1709 
1710             elf::elf_xword log2align = (header.sh_addralign==0)
1711                                         ? 0
1712                                         : llvm::Log2_64(header.sh_addralign);
1713             SectionSP section_sp (new Section(GetModule(),        // Module to which this section belongs.
1714                                               this,               // ObjectFile to which this section belongs and should read section data from.
1715                                               SectionIndex(I),    // Section ID.
1716                                               name,               // Section name.
1717                                               sect_type,          // Section type.
1718                                               header.sh_addr,     // VM address.
1719                                               vm_size,            // VM size in bytes of this section.
1720                                               header.sh_offset,   // Offset of this section in the file.
1721                                               file_size,          // Size of the section as found in the file.
1722                                               log2align,          // Alignment of the section
1723                                               header.sh_flags,    // Flags for this section.
1724                                               target_bytes_size));// Number of host bytes per target byte
1725 
1726             if (is_thread_specific)
1727                 section_sp->SetIsThreadSpecific (is_thread_specific);
1728             m_sections_ap->AddSection(section_sp);
1729         }
1730     }
1731 
1732     if (m_sections_ap.get())
1733     {
1734         if (GetType() == eTypeDebugInfo)
1735         {
1736             static const SectionType g_sections[] =
1737             {
1738                 eSectionTypeDWARFDebugAranges,
1739                 eSectionTypeDWARFDebugInfo,
1740                 eSectionTypeDWARFDebugAbbrev,
1741                 eSectionTypeDWARFDebugFrame,
1742                 eSectionTypeDWARFDebugLine,
1743                 eSectionTypeDWARFDebugStr,
1744                 eSectionTypeDWARFDebugLoc,
1745                 eSectionTypeDWARFDebugMacInfo,
1746                 eSectionTypeDWARFDebugPubNames,
1747                 eSectionTypeDWARFDebugPubTypes,
1748                 eSectionTypeDWARFDebugRanges,
1749                 eSectionTypeELFSymbolTable,
1750             };
1751             SectionList *elf_section_list = m_sections_ap.get();
1752             for (size_t idx = 0; idx < sizeof(g_sections) / sizeof(g_sections[0]); ++idx)
1753             {
1754                 SectionType section_type = g_sections[idx];
1755                 SectionSP section_sp (elf_section_list->FindSectionByType (section_type, true));
1756                 if (section_sp)
1757                 {
1758                     SectionSP module_section_sp (unified_section_list.FindSectionByType (section_type, true));
1759                     if (module_section_sp)
1760                         unified_section_list.ReplaceSection (module_section_sp->GetID(), section_sp);
1761                     else
1762                         unified_section_list.AddSection (section_sp);
1763                 }
1764             }
1765         }
1766         else
1767         {
1768             unified_section_list = *m_sections_ap;
1769         }
1770     }
1771 }
1772 
1773 // private
1774 unsigned
1775 ObjectFileELF::ParseSymbols (Symtab *symtab,
1776                              user_id_t start_id,
1777                              SectionList *section_list,
1778                              const size_t num_symbols,
1779                              const DataExtractor &symtab_data,
1780                              const DataExtractor &strtab_data)
1781 {
1782     ELFSymbol symbol;
1783     lldb::offset_t offset = 0;
1784 
1785     static ConstString text_section_name(".text");
1786     static ConstString init_section_name(".init");
1787     static ConstString fini_section_name(".fini");
1788     static ConstString ctors_section_name(".ctors");
1789     static ConstString dtors_section_name(".dtors");
1790 
1791     static ConstString data_section_name(".data");
1792     static ConstString rodata_section_name(".rodata");
1793     static ConstString rodata1_section_name(".rodata1");
1794     static ConstString data2_section_name(".data1");
1795     static ConstString bss_section_name(".bss");
1796     static ConstString opd_section_name(".opd");    // For ppc64
1797 
1798     // On Android the oatdata and the oatexec symbols in system@[email protected] covers the full
1799     // .text section what causes issues with displaying unusable symbol name to the user and very
1800     // slow unwinding speed because the instruction emulation based unwind plans try to emulate all
1801     // instructions in these symbols. Don't add these symbols to the symbol list as they have no
1802     // use for the debugger and they are causing a lot of trouble.
1803     // Filtering can't be restricted to Android because this special object file don't contain the
1804     // note section specifying the environment to Android but the custom extension and file name
1805     // makes it highly unlikely that this will collide with anything else.
1806     bool skip_oatdata_oatexec = m_file.GetFilename() == ConstString("system@[email protected]");
1807 
1808     unsigned i;
1809     for (i = 0; i < num_symbols; ++i)
1810     {
1811         if (symbol.Parse(symtab_data, &offset) == false)
1812             break;
1813 
1814         const char *symbol_name = strtab_data.PeekCStr(symbol.st_name);
1815 
1816         // No need to add non-section symbols that have no names
1817         if (symbol.getType() != STT_SECTION &&
1818             (symbol_name == NULL || symbol_name[0] == '\0'))
1819             continue;
1820 
1821         // Skipping oatdata and oatexec sections if it is requested. See details above the
1822         // definition of skip_oatdata_oatexec for the reasons.
1823         if (skip_oatdata_oatexec && (::strcmp(symbol_name, "oatdata") == 0 || ::strcmp(symbol_name, "oatexec") == 0))
1824             continue;
1825 
1826         SectionSP symbol_section_sp;
1827         SymbolType symbol_type = eSymbolTypeInvalid;
1828         Elf64_Half symbol_idx = symbol.st_shndx;
1829 
1830         switch (symbol_idx)
1831         {
1832         case SHN_ABS:
1833             symbol_type = eSymbolTypeAbsolute;
1834             break;
1835         case SHN_UNDEF:
1836             symbol_type = eSymbolTypeUndefined;
1837             break;
1838         default:
1839             symbol_section_sp = section_list->GetSectionAtIndex(symbol_idx);
1840             break;
1841         }
1842 
1843         // If a symbol is undefined do not process it further even if it has a STT type
1844         if (symbol_type != eSymbolTypeUndefined)
1845         {
1846             switch (symbol.getType())
1847             {
1848             default:
1849             case STT_NOTYPE:
1850                 // The symbol's type is not specified.
1851                 break;
1852 
1853             case STT_OBJECT:
1854                 // The symbol is associated with a data object, such as a variable,
1855                 // an array, etc.
1856                 symbol_type = eSymbolTypeData;
1857                 break;
1858 
1859             case STT_FUNC:
1860                 // The symbol is associated with a function or other executable code.
1861                 symbol_type = eSymbolTypeCode;
1862                 break;
1863 
1864             case STT_SECTION:
1865                 // The symbol is associated with a section. Symbol table entries of
1866                 // this type exist primarily for relocation and normally have
1867                 // STB_LOCAL binding.
1868                 break;
1869 
1870             case STT_FILE:
1871                 // Conventionally, the symbol's name gives the name of the source
1872                 // file associated with the object file. A file symbol has STB_LOCAL
1873                 // binding, its section index is SHN_ABS, and it precedes the other
1874                 // STB_LOCAL symbols for the file, if it is present.
1875                 symbol_type = eSymbolTypeSourceFile;
1876                 break;
1877 
1878             case STT_GNU_IFUNC:
1879                 // The symbol is associated with an indirect function. The actual
1880                 // function will be resolved if it is referenced.
1881                 symbol_type = eSymbolTypeResolver;
1882                 break;
1883             }
1884         }
1885 
1886         if (symbol_type == eSymbolTypeInvalid)
1887         {
1888             if (symbol_section_sp)
1889             {
1890                 const ConstString &sect_name = symbol_section_sp->GetName();
1891                 if (sect_name == text_section_name ||
1892                     sect_name == init_section_name ||
1893                     sect_name == fini_section_name ||
1894                     sect_name == ctors_section_name ||
1895                     sect_name == dtors_section_name)
1896                 {
1897                     symbol_type = eSymbolTypeCode;
1898                 }
1899                 else if (sect_name == data_section_name ||
1900                          sect_name == data2_section_name ||
1901                          sect_name == rodata_section_name ||
1902                          sect_name == rodata1_section_name ||
1903                          sect_name == bss_section_name)
1904                 {
1905                     symbol_type = eSymbolTypeData;
1906                 }
1907             }
1908         }
1909 
1910         int64_t symbol_value_offset = 0;
1911         uint32_t additional_flags = 0;
1912 
1913         ArchSpec arch;
1914         if (GetArchitecture(arch))
1915         {
1916             if (arch.GetMachine() == llvm::Triple::arm)
1917             {
1918                 if (symbol.getBinding() == STB_LOCAL && symbol_name && symbol_name[0] == '$')
1919                 {
1920                     // These are reserved for the specification (e.g.: mapping
1921                     // symbols). We don't want to add them to the symbol table.
1922 
1923                     if (symbol_type == eSymbolTypeCode)
1924                     {
1925                         llvm::StringRef symbol_name_ref(symbol_name);
1926                         if (symbol_name_ref == "$a" || symbol_name_ref.startswith("$a."))
1927                         {
1928                             // $a[.<any>]* - marks an ARM instruction sequence
1929                             m_address_class_map[symbol.st_value] = eAddressClassCode;
1930                         }
1931                         else if (symbol_name_ref == "$b" || symbol_name_ref.startswith("$b.") ||
1932                                  symbol_name_ref == "$t" || symbol_name_ref.startswith("$t."))
1933                         {
1934                             // $b[.<any>]* - marks a THUMB BL instruction sequence
1935                             // $t[.<any>]* - marks a THUMB instruction sequence
1936                             m_address_class_map[symbol.st_value] = eAddressClassCodeAlternateISA;
1937                         }
1938                         else if (symbol_name_ref == "$d" || symbol_name_ref.startswith("$d."))
1939                         {
1940                             // $d[.<any>]* - marks a data item sequence (e.g. lit pool)
1941                             m_address_class_map[symbol.st_value] = eAddressClassData;
1942                         }
1943                     }
1944 
1945                     continue;
1946                 }
1947             }
1948             else if (arch.GetMachine() == llvm::Triple::aarch64)
1949             {
1950                 if (symbol.getBinding() == STB_LOCAL && symbol_name && symbol_name[0] == '$')
1951                 {
1952                     // These are reserved for the specification (e.g.: mapping
1953                     // symbols). We don't want to add them to the symbol table.
1954 
1955                     if (symbol_type == eSymbolTypeCode)
1956                     {
1957                         llvm::StringRef symbol_name_ref(symbol_name);
1958                         if (symbol_name_ref == "$x" || symbol_name_ref.startswith("$x."))
1959                         {
1960                             // $x[.<any>]* - marks an A64 instruction sequence
1961                             m_address_class_map[symbol.st_value] = eAddressClassCode;
1962                         }
1963                         else if (symbol_name_ref == "$d" || symbol_name_ref.startswith("$d."))
1964                         {
1965                             // $d[.<any>]* - marks a data item sequence (e.g. lit pool)
1966                             m_address_class_map[symbol.st_value] = eAddressClassData;
1967                         }
1968                     }
1969 
1970                     continue;
1971                 }
1972             }
1973 
1974             if (arch.GetMachine() == llvm::Triple::arm)
1975             {
1976                 if (symbol_type == eSymbolTypeCode)
1977                 {
1978                     if (symbol.st_value & 1)
1979                     {
1980                         // Subtracting 1 from the address effectively unsets
1981                         // the low order bit, which results in the address
1982                         // actually pointing to the beginning of the symbol.
1983                         // This delta will be used below in conjunction with
1984                         // symbol.st_value to produce the final symbol_value
1985                         // that we store in the symtab.
1986                         symbol_value_offset = -1;
1987                         additional_flags = ARM_ELF_SYM_IS_THUMB;
1988                         m_address_class_map[symbol.st_value^1] = eAddressClassCodeAlternateISA;
1989                     }
1990                     else
1991                     {
1992                         // This address is ARM
1993                         m_address_class_map[symbol.st_value] = eAddressClassCode;
1994                     }
1995                 }
1996             }
1997         }
1998 
1999         // If the symbol section we've found has no data (SHT_NOBITS), then check the module section
2000         // list. This can happen if we're parsing the debug file and it has no .text section, for example.
2001         if (symbol_section_sp && (symbol_section_sp->GetFileSize() == 0))
2002         {
2003             ModuleSP module_sp(GetModule());
2004             if (module_sp)
2005             {
2006                 SectionList *module_section_list = module_sp->GetSectionList();
2007                 if (module_section_list && module_section_list != section_list)
2008                 {
2009                     const ConstString &sect_name = symbol_section_sp->GetName();
2010                     lldb::SectionSP section_sp (module_section_list->FindSectionByName (sect_name));
2011                     if (section_sp && section_sp->GetFileSize())
2012                     {
2013                         symbol_section_sp = section_sp;
2014                     }
2015                 }
2016             }
2017         }
2018 
2019         // symbol_value_offset may contain 0 for ARM symbols or -1 for
2020         // THUMB symbols. See above for more details.
2021         uint64_t symbol_value = symbol.st_value + symbol_value_offset;
2022         if (symbol_section_sp && CalculateType() != ObjectFile::Type::eTypeObjectFile)
2023             symbol_value -= symbol_section_sp->GetFileAddress();
2024         bool is_global = symbol.getBinding() == STB_GLOBAL;
2025         uint32_t flags = symbol.st_other << 8 | symbol.st_info | additional_flags;
2026         bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false;
2027 
2028         llvm::StringRef symbol_ref(symbol_name);
2029 
2030         // Symbol names may contain @VERSION suffixes. Find those and strip them temporarily.
2031         size_t version_pos = symbol_ref.find('@');
2032         bool has_suffix = version_pos != llvm::StringRef::npos;
2033         llvm::StringRef symbol_bare = symbol_ref.substr(0, version_pos);
2034         Mangled mangled(ConstString(symbol_bare), is_mangled);
2035 
2036         // Now append the suffix back to mangled and unmangled names. Only do it if the
2037         // demangling was sucessful (string is not empty).
2038         if (has_suffix)
2039         {
2040             llvm::StringRef suffix = symbol_ref.substr(version_pos);
2041 
2042             llvm::StringRef mangled_name = mangled.GetMangledName().GetStringRef();
2043             if (! mangled_name.empty())
2044                 mangled.SetMangledName( ConstString((mangled_name + suffix).str()) );
2045 
2046             ConstString demangled = mangled.GetDemangledName(lldb::eLanguageTypeUnknown);
2047             llvm::StringRef demangled_name = demangled.GetStringRef();
2048             if (!demangled_name.empty())
2049                 mangled.SetDemangledName( ConstString((demangled_name + suffix).str()) );
2050         }
2051 
2052         Symbol dc_symbol(
2053             i + start_id,       // ID is the original symbol table index.
2054             mangled,
2055             symbol_type,        // Type of this symbol
2056             is_global,          // Is this globally visible?
2057             false,              // Is this symbol debug info?
2058             false,              // Is this symbol a trampoline?
2059             false,              // Is this symbol artificial?
2060             AddressRange(
2061                 symbol_section_sp,  // Section in which this symbol is defined or null.
2062                 symbol_value,       // Offset in section or symbol value.
2063                 symbol.st_size),    // Size in bytes of this symbol.
2064             symbol.st_size != 0,    // Size is valid if it is not 0
2065             has_suffix,             // Contains linker annotations?
2066             flags);                 // Symbol flags.
2067         symtab->AddSymbol(dc_symbol);
2068     }
2069     return i;
2070 }
2071 
2072 unsigned
2073 ObjectFileELF::ParseSymbolTable(Symtab *symbol_table, user_id_t start_id, lldb_private::Section *symtab)
2074 {
2075     if (symtab->GetObjectFile() != this)
2076     {
2077         // If the symbol table section is owned by a different object file, have it do the
2078         // parsing.
2079         ObjectFileELF *obj_file_elf = static_cast<ObjectFileELF *>(symtab->GetObjectFile());
2080         return obj_file_elf->ParseSymbolTable (symbol_table, start_id, symtab);
2081     }
2082 
2083     // Get section list for this object file.
2084     SectionList *section_list = m_sections_ap.get();
2085     if (!section_list)
2086         return 0;
2087 
2088     user_id_t symtab_id = symtab->GetID();
2089     const ELFSectionHeaderInfo *symtab_hdr = GetSectionHeaderByIndex(symtab_id);
2090     assert(symtab_hdr->sh_type == SHT_SYMTAB ||
2091            symtab_hdr->sh_type == SHT_DYNSYM);
2092 
2093     // sh_link: section header index of associated string table.
2094     // Section ID's are ones based.
2095     user_id_t strtab_id = symtab_hdr->sh_link + 1;
2096     Section *strtab = section_list->FindSectionByID(strtab_id).get();
2097 
2098     if (symtab && strtab)
2099     {
2100         assert (symtab->GetObjectFile() == this);
2101         assert (strtab->GetObjectFile() == this);
2102 
2103         DataExtractor symtab_data;
2104         DataExtractor strtab_data;
2105         if (ReadSectionData(symtab, symtab_data) &&
2106             ReadSectionData(strtab, strtab_data))
2107         {
2108             size_t num_symbols = symtab_data.GetByteSize() / symtab_hdr->sh_entsize;
2109 
2110             return ParseSymbols(symbol_table, start_id, section_list,
2111                                 num_symbols, symtab_data, strtab_data);
2112         }
2113     }
2114 
2115     return 0;
2116 }
2117 
2118 size_t
2119 ObjectFileELF::ParseDynamicSymbols()
2120 {
2121     if (m_dynamic_symbols.size())
2122         return m_dynamic_symbols.size();
2123 
2124     SectionList *section_list = GetSectionList();
2125     if (!section_list)
2126         return 0;
2127 
2128     // Find the SHT_DYNAMIC section.
2129     Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get();
2130     if (!dynsym)
2131         return 0;
2132     assert (dynsym->GetObjectFile() == this);
2133 
2134     ELFDynamic symbol;
2135     DataExtractor dynsym_data;
2136     if (ReadSectionData(dynsym, dynsym_data))
2137     {
2138         const lldb::offset_t section_size = dynsym_data.GetByteSize();
2139         lldb::offset_t cursor = 0;
2140 
2141         while (cursor < section_size)
2142         {
2143             if (!symbol.Parse(dynsym_data, &cursor))
2144                 break;
2145 
2146             m_dynamic_symbols.push_back(symbol);
2147         }
2148     }
2149 
2150     return m_dynamic_symbols.size();
2151 }
2152 
2153 const ELFDynamic *
2154 ObjectFileELF::FindDynamicSymbol(unsigned tag)
2155 {
2156     if (!ParseDynamicSymbols())
2157         return NULL;
2158 
2159     DynamicSymbolCollIter I = m_dynamic_symbols.begin();
2160     DynamicSymbolCollIter E = m_dynamic_symbols.end();
2161     for ( ; I != E; ++I)
2162     {
2163         ELFDynamic *symbol = &*I;
2164 
2165         if (symbol->d_tag == tag)
2166             return symbol;
2167     }
2168 
2169     return NULL;
2170 }
2171 
2172 unsigned
2173 ObjectFileELF::PLTRelocationType()
2174 {
2175     // DT_PLTREL
2176     //  This member specifies the type of relocation entry to which the
2177     //  procedure linkage table refers. The d_val member holds DT_REL or
2178     //  DT_RELA, as appropriate. All relocations in a procedure linkage table
2179     //  must use the same relocation.
2180     const ELFDynamic *symbol = FindDynamicSymbol(DT_PLTREL);
2181 
2182     if (symbol)
2183         return symbol->d_val;
2184 
2185     return 0;
2186 }
2187 
2188 // Returns the size of the normal plt entries and the offset of the first normal plt entry. The
2189 // 0th entry in the plt table is ususally a resolution entry which have different size in some
2190 // architectures then the rest of the plt entries.
2191 static std::pair<uint64_t, uint64_t>
2192 GetPltEntrySizeAndOffset(const ELFSectionHeader* rel_hdr, const ELFSectionHeader* plt_hdr)
2193 {
2194     const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2195 
2196     // Clang 3.3 sets entsize to 4 for 32-bit binaries, but the plt entries are 16 bytes.
2197     // So round the entsize up by the alignment if addralign is set.
2198     elf_xword plt_entsize = plt_hdr->sh_addralign ?
2199         llvm::RoundUpToAlignment (plt_hdr->sh_entsize, plt_hdr->sh_addralign) : plt_hdr->sh_entsize;
2200 
2201     if (plt_entsize == 0)
2202     {
2203         // The linker haven't set the plt_hdr->sh_entsize field. Try to guess the size of the plt
2204         // entries based on the number of entries and the size of the plt section with the
2205         // asumption that the size of the 0th entry is at least as big as the size of the normal
2206         // entries and it isn't mutch bigger then that.
2207         if (plt_hdr->sh_addralign)
2208             plt_entsize = plt_hdr->sh_size / plt_hdr->sh_addralign / (num_relocations + 1) * plt_hdr->sh_addralign;
2209         else
2210             plt_entsize = plt_hdr->sh_size / (num_relocations + 1);
2211     }
2212 
2213     elf_xword plt_offset = plt_hdr->sh_size - num_relocations * plt_entsize;
2214 
2215     return std::make_pair(plt_entsize, plt_offset);
2216 }
2217 
2218 static unsigned
2219 ParsePLTRelocations(Symtab *symbol_table,
2220                     user_id_t start_id,
2221                     unsigned rel_type,
2222                     const ELFHeader *hdr,
2223                     const ELFSectionHeader *rel_hdr,
2224                     const ELFSectionHeader *plt_hdr,
2225                     const ELFSectionHeader *sym_hdr,
2226                     const lldb::SectionSP &plt_section_sp,
2227                     DataExtractor &rel_data,
2228                     DataExtractor &symtab_data,
2229                     DataExtractor &strtab_data)
2230 {
2231     ELFRelocation rel(rel_type);
2232     ELFSymbol symbol;
2233     lldb::offset_t offset = 0;
2234 
2235     uint64_t plt_offset, plt_entsize;
2236     std::tie(plt_entsize, plt_offset) = GetPltEntrySizeAndOffset(rel_hdr, plt_hdr);
2237     const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2238 
2239     typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel);
2240     reloc_info_fn reloc_type;
2241     reloc_info_fn reloc_symbol;
2242 
2243     if (hdr->Is32Bit())
2244     {
2245         reloc_type = ELFRelocation::RelocType32;
2246         reloc_symbol = ELFRelocation::RelocSymbol32;
2247     }
2248     else
2249     {
2250         reloc_type = ELFRelocation::RelocType64;
2251         reloc_symbol = ELFRelocation::RelocSymbol64;
2252     }
2253 
2254     unsigned slot_type = hdr->GetRelocationJumpSlotType();
2255     unsigned i;
2256     for (i = 0; i < num_relocations; ++i)
2257     {
2258         if (rel.Parse(rel_data, &offset) == false)
2259             break;
2260 
2261         if (reloc_type(rel) != slot_type)
2262             continue;
2263 
2264         lldb::offset_t symbol_offset = reloc_symbol(rel) * sym_hdr->sh_entsize;
2265         if (!symbol.Parse(symtab_data, &symbol_offset))
2266             break;
2267 
2268         const char *symbol_name = strtab_data.PeekCStr(symbol.st_name);
2269         bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false;
2270         uint64_t plt_index = plt_offset + i * plt_entsize;
2271 
2272         Symbol jump_symbol(
2273             i + start_id,    // Symbol table index
2274             symbol_name,     // symbol name.
2275             is_mangled,      // is the symbol name mangled?
2276             eSymbolTypeTrampoline, // Type of this symbol
2277             false,           // Is this globally visible?
2278             false,           // Is this symbol debug info?
2279             true,            // Is this symbol a trampoline?
2280             true,            // Is this symbol artificial?
2281             plt_section_sp,  // Section in which this symbol is defined or null.
2282             plt_index,       // Offset in section or symbol value.
2283             plt_entsize,     // Size in bytes of this symbol.
2284             true,            // Size is valid
2285             false,           // Contains linker annotations?
2286             0);              // Symbol flags.
2287 
2288         symbol_table->AddSymbol(jump_symbol);
2289     }
2290 
2291     return i;
2292 }
2293 
2294 unsigned
2295 ObjectFileELF::ParseTrampolineSymbols(Symtab *symbol_table,
2296                                       user_id_t start_id,
2297                                       const ELFSectionHeaderInfo *rel_hdr,
2298                                       user_id_t rel_id)
2299 {
2300     assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL);
2301 
2302     // The link field points to the associated symbol table. The info field
2303     // points to the section holding the plt.
2304     user_id_t symtab_id = rel_hdr->sh_link;
2305     user_id_t plt_id = rel_hdr->sh_info;
2306 
2307     // If the link field doesn't point to the appropriate symbol name table then
2308     // try to find it by name as some compiler don't fill in the link fields.
2309     if (!symtab_id)
2310         symtab_id = GetSectionIndexByName(".dynsym");
2311     if (!plt_id)
2312         plt_id = GetSectionIndexByName(".plt");
2313 
2314     if (!symtab_id || !plt_id)
2315         return 0;
2316 
2317     // Section ID's are ones based;
2318     symtab_id++;
2319     plt_id++;
2320 
2321     const ELFSectionHeaderInfo *plt_hdr = GetSectionHeaderByIndex(plt_id);
2322     if (!plt_hdr)
2323         return 0;
2324 
2325     const ELFSectionHeaderInfo *sym_hdr = GetSectionHeaderByIndex(symtab_id);
2326     if (!sym_hdr)
2327         return 0;
2328 
2329     SectionList *section_list = m_sections_ap.get();
2330     if (!section_list)
2331         return 0;
2332 
2333     Section *rel_section = section_list->FindSectionByID(rel_id).get();
2334     if (!rel_section)
2335         return 0;
2336 
2337     SectionSP plt_section_sp (section_list->FindSectionByID(plt_id));
2338     if (!plt_section_sp)
2339         return 0;
2340 
2341     Section *symtab = section_list->FindSectionByID(symtab_id).get();
2342     if (!symtab)
2343         return 0;
2344 
2345     // sh_link points to associated string table.
2346     Section *strtab = section_list->FindSectionByID(sym_hdr->sh_link + 1).get();
2347     if (!strtab)
2348         return 0;
2349 
2350     DataExtractor rel_data;
2351     if (!ReadSectionData(rel_section, rel_data))
2352         return 0;
2353 
2354     DataExtractor symtab_data;
2355     if (!ReadSectionData(symtab, symtab_data))
2356         return 0;
2357 
2358     DataExtractor strtab_data;
2359     if (!ReadSectionData(strtab, strtab_data))
2360         return 0;
2361 
2362     unsigned rel_type = PLTRelocationType();
2363     if (!rel_type)
2364         return 0;
2365 
2366     return ParsePLTRelocations (symbol_table,
2367                                 start_id,
2368                                 rel_type,
2369                                 &m_header,
2370                                 rel_hdr,
2371                                 plt_hdr,
2372                                 sym_hdr,
2373                                 plt_section_sp,
2374                                 rel_data,
2375                                 symtab_data,
2376                                 strtab_data);
2377 }
2378 
2379 unsigned
2380 ObjectFileELF::RelocateSection(Symtab* symtab, const ELFHeader *hdr, const ELFSectionHeader *rel_hdr,
2381                 const ELFSectionHeader *symtab_hdr, const ELFSectionHeader *debug_hdr,
2382                 DataExtractor &rel_data, DataExtractor &symtab_data,
2383                 DataExtractor &debug_data, Section* rel_section)
2384 {
2385     ELFRelocation rel(rel_hdr->sh_type);
2386     lldb::addr_t offset = 0;
2387     const unsigned num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2388     typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel);
2389     reloc_info_fn reloc_type;
2390     reloc_info_fn reloc_symbol;
2391 
2392     if (hdr->Is32Bit())
2393     {
2394         reloc_type = ELFRelocation::RelocType32;
2395         reloc_symbol = ELFRelocation::RelocSymbol32;
2396     }
2397     else
2398     {
2399         reloc_type = ELFRelocation::RelocType64;
2400         reloc_symbol = ELFRelocation::RelocSymbol64;
2401     }
2402 
2403     for (unsigned i = 0; i < num_relocations; ++i)
2404     {
2405         if (rel.Parse(rel_data, &offset) == false)
2406             break;
2407 
2408         Symbol* symbol = NULL;
2409 
2410         if (hdr->Is32Bit())
2411         {
2412             switch (reloc_type(rel)) {
2413             case R_386_32:
2414             case R_386_PC32:
2415             default:
2416                 assert(false && "unexpected relocation type");
2417             }
2418         } else {
2419             switch (reloc_type(rel)) {
2420             case R_X86_64_64:
2421             {
2422                 symbol = symtab->FindSymbolByID(reloc_symbol(rel));
2423                 if (symbol)
2424                 {
2425                     addr_t value = symbol->GetAddressRef().GetFileAddress();
2426                     DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer();
2427                     uint64_t* dst = reinterpret_cast<uint64_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset64(rel));
2428                     *dst = value + ELFRelocation::RelocAddend64(rel);
2429                 }
2430                 break;
2431             }
2432             case R_X86_64_32:
2433             case R_X86_64_32S:
2434             {
2435                 symbol = symtab->FindSymbolByID(reloc_symbol(rel));
2436                 if (symbol)
2437                 {
2438                     addr_t value = symbol->GetAddressRef().GetFileAddress();
2439                     value += ELFRelocation::RelocAddend32(rel);
2440                     assert((reloc_type(rel) == R_X86_64_32 && (value <= UINT32_MAX)) ||
2441                            (reloc_type(rel) == R_X86_64_32S &&
2442                             ((int64_t)value <= INT32_MAX && (int64_t)value >= INT32_MIN)));
2443                     uint32_t truncated_addr = (value & 0xFFFFFFFF);
2444                     DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer();
2445                     uint32_t* dst = reinterpret_cast<uint32_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset32(rel));
2446                     *dst = truncated_addr;
2447                 }
2448                 break;
2449             }
2450             case R_X86_64_PC32:
2451             default:
2452                 assert(false && "unexpected relocation type");
2453             }
2454         }
2455     }
2456 
2457     return 0;
2458 }
2459 
2460 unsigned
2461 ObjectFileELF::RelocateDebugSections(const ELFSectionHeader *rel_hdr, user_id_t rel_id)
2462 {
2463     assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL);
2464 
2465     // Parse in the section list if needed.
2466     SectionList *section_list = GetSectionList();
2467     if (!section_list)
2468         return 0;
2469 
2470     // Section ID's are ones based.
2471     user_id_t symtab_id = rel_hdr->sh_link + 1;
2472     user_id_t debug_id = rel_hdr->sh_info + 1;
2473 
2474     const ELFSectionHeader *symtab_hdr = GetSectionHeaderByIndex(symtab_id);
2475     if (!symtab_hdr)
2476         return 0;
2477 
2478     const ELFSectionHeader *debug_hdr = GetSectionHeaderByIndex(debug_id);
2479     if (!debug_hdr)
2480         return 0;
2481 
2482     Section *rel = section_list->FindSectionByID(rel_id).get();
2483     if (!rel)
2484         return 0;
2485 
2486     Section *symtab = section_list->FindSectionByID(symtab_id).get();
2487     if (!symtab)
2488         return 0;
2489 
2490     Section *debug = section_list->FindSectionByID(debug_id).get();
2491     if (!debug)
2492         return 0;
2493 
2494     DataExtractor rel_data;
2495     DataExtractor symtab_data;
2496     DataExtractor debug_data;
2497 
2498     if (ReadSectionData(rel, rel_data) &&
2499         ReadSectionData(symtab, symtab_data) &&
2500         ReadSectionData(debug, debug_data))
2501     {
2502         RelocateSection(m_symtab_ap.get(), &m_header, rel_hdr, symtab_hdr, debug_hdr,
2503                         rel_data, symtab_data, debug_data, debug);
2504     }
2505 
2506     return 0;
2507 }
2508 
2509 Symtab *
2510 ObjectFileELF::GetSymtab()
2511 {
2512     ModuleSP module_sp(GetModule());
2513     if (!module_sp)
2514         return NULL;
2515 
2516     // We always want to use the main object file so we (hopefully) only have one cached copy
2517     // of our symtab, dynamic sections, etc.
2518     ObjectFile *module_obj_file = module_sp->GetObjectFile();
2519     if (module_obj_file && module_obj_file != this)
2520         return module_obj_file->GetSymtab();
2521 
2522     if (m_symtab_ap.get() == NULL)
2523     {
2524         SectionList *section_list = module_sp->GetSectionList();
2525         if (!section_list)
2526             return NULL;
2527 
2528         uint64_t symbol_id = 0;
2529         lldb_private::Mutex::Locker locker(module_sp->GetMutex());
2530 
2531         m_symtab_ap.reset(new Symtab(this));
2532 
2533         // Sharable objects and dynamic executables usually have 2 distinct symbol
2534         // tables, one named ".symtab", and the other ".dynsym". The dynsym is a smaller
2535         // version of the symtab that only contains global symbols. The information found
2536         // in the dynsym is therefore also found in the symtab, while the reverse is not
2537         // necessarily true.
2538         Section *symtab = section_list->FindSectionByType (eSectionTypeELFSymbolTable, true).get();
2539         if (!symtab)
2540         {
2541             // The symtab section is non-allocable and can be stripped, so if it doesn't exist
2542             // then use the dynsym section which should always be there.
2543             symtab = section_list->FindSectionByType (eSectionTypeELFDynamicSymbols, true).get();
2544         }
2545         if (symtab)
2546             symbol_id += ParseSymbolTable (m_symtab_ap.get(), symbol_id, symtab);
2547 
2548         // DT_JMPREL
2549         //      If present, this entry's d_ptr member holds the address of relocation
2550         //      entries associated solely with the procedure linkage table. Separating
2551         //      these relocation entries lets the dynamic linker ignore them during
2552         //      process initialization, if lazy binding is enabled. If this entry is
2553         //      present, the related entries of types DT_PLTRELSZ and DT_PLTREL must
2554         //      also be present.
2555         const ELFDynamic *symbol = FindDynamicSymbol(DT_JMPREL);
2556         if (symbol)
2557         {
2558             // Synthesize trampoline symbols to help navigate the PLT.
2559             addr_t addr = symbol->d_ptr;
2560             Section *reloc_section = section_list->FindSectionContainingFileAddress(addr).get();
2561             if (reloc_section)
2562             {
2563                 user_id_t reloc_id = reloc_section->GetID();
2564                 const ELFSectionHeaderInfo *reloc_header = GetSectionHeaderByIndex(reloc_id);
2565                 assert(reloc_header);
2566 
2567                 ParseTrampolineSymbols (m_symtab_ap.get(), symbol_id, reloc_header, reloc_id);
2568             }
2569         }
2570         m_symtab_ap->CalculateSymbolSizes();
2571     }
2572 
2573     for (SectionHeaderCollIter I = m_section_headers.begin();
2574          I != m_section_headers.end(); ++I)
2575     {
2576         if (I->sh_type == SHT_RELA || I->sh_type == SHT_REL)
2577         {
2578             if (CalculateType() == eTypeObjectFile)
2579             {
2580                 const char *section_name = I->section_name.AsCString("");
2581                 if (strstr(section_name, ".rela.debug") ||
2582                     strstr(section_name, ".rel.debug"))
2583                 {
2584                     const ELFSectionHeader &reloc_header = *I;
2585                     user_id_t reloc_id = SectionIndex(I);
2586                     RelocateDebugSections(&reloc_header, reloc_id);
2587                 }
2588             }
2589         }
2590     }
2591     return m_symtab_ap.get();
2592 }
2593 
2594 Symbol *
2595 ObjectFileELF::ResolveSymbolForAddress(const Address& so_addr, bool verify_unique)
2596 {
2597     if (!m_symtab_ap.get())
2598         return nullptr; // GetSymtab() should be called first.
2599 
2600     const SectionList *section_list = GetSectionList();
2601     if (!section_list)
2602         return nullptr;
2603 
2604     if (DWARFCallFrameInfo *eh_frame = GetUnwindTable().GetEHFrameInfo())
2605     {
2606         AddressRange range;
2607         if (eh_frame->GetAddressRange (so_addr, range))
2608         {
2609             const addr_t file_addr = range.GetBaseAddress().GetFileAddress();
2610             Symbol * symbol = verify_unique ? m_symtab_ap->FindSymbolContainingFileAddress(file_addr) : nullptr;
2611             if (symbol)
2612                 return symbol;
2613 
2614             // Note that a (stripped) symbol won't be found by GetSymtab()...
2615             lldb::SectionSP eh_sym_section_sp = section_list->FindSectionContainingFileAddress(file_addr);
2616             if (eh_sym_section_sp.get())
2617             {
2618                 addr_t section_base = eh_sym_section_sp->GetFileAddress();
2619                 addr_t offset = file_addr - section_base;
2620                 uint64_t symbol_id = m_symtab_ap->GetNumSymbols();
2621 
2622                 Symbol eh_symbol(
2623                         symbol_id,            // Symbol table index.
2624                         "???",                // Symbol name.
2625                         false,                // Is the symbol name mangled?
2626                         eSymbolTypeCode,      // Type of this symbol.
2627                         true,                 // Is this globally visible?
2628                         false,                // Is this symbol debug info?
2629                         false,                // Is this symbol a trampoline?
2630                         true,                 // Is this symbol artificial?
2631                         eh_sym_section_sp,    // Section in which this symbol is defined or null.
2632                         offset,               // Offset in section or symbol value.
2633                         range.GetByteSize(),  // Size in bytes of this symbol.
2634                         true,                 // Size is valid.
2635                         false,                // Contains linker annotations?
2636                         0);                   // Symbol flags.
2637                 if (symbol_id == m_symtab_ap->AddSymbol(eh_symbol))
2638                     return m_symtab_ap->SymbolAtIndex(symbol_id);
2639             }
2640         }
2641     }
2642     return nullptr;
2643 }
2644 
2645 
2646 bool
2647 ObjectFileELF::IsStripped ()
2648 {
2649     // TODO: determine this for ELF
2650     return false;
2651 }
2652 
2653 //===----------------------------------------------------------------------===//
2654 // Dump
2655 //
2656 // Dump the specifics of the runtime file container (such as any headers
2657 // segments, sections, etc).
2658 //----------------------------------------------------------------------
2659 void
2660 ObjectFileELF::Dump(Stream *s)
2661 {
2662     DumpELFHeader(s, m_header);
2663     s->EOL();
2664     DumpELFProgramHeaders(s);
2665     s->EOL();
2666     DumpELFSectionHeaders(s);
2667     s->EOL();
2668     SectionList *section_list = GetSectionList();
2669     if (section_list)
2670         section_list->Dump(s, NULL, true, UINT32_MAX);
2671     Symtab *symtab = GetSymtab();
2672     if (symtab)
2673         symtab->Dump(s, NULL, eSortOrderNone);
2674     s->EOL();
2675     DumpDependentModules(s);
2676     s->EOL();
2677 }
2678 
2679 //----------------------------------------------------------------------
2680 // DumpELFHeader
2681 //
2682 // Dump the ELF header to the specified output stream
2683 //----------------------------------------------------------------------
2684 void
2685 ObjectFileELF::DumpELFHeader(Stream *s, const ELFHeader &header)
2686 {
2687     s->PutCString("ELF Header\n");
2688     s->Printf("e_ident[EI_MAG0   ] = 0x%2.2x\n", header.e_ident[EI_MAG0]);
2689     s->Printf("e_ident[EI_MAG1   ] = 0x%2.2x '%c'\n",
2690               header.e_ident[EI_MAG1], header.e_ident[EI_MAG1]);
2691     s->Printf("e_ident[EI_MAG2   ] = 0x%2.2x '%c'\n",
2692               header.e_ident[EI_MAG2], header.e_ident[EI_MAG2]);
2693     s->Printf("e_ident[EI_MAG3   ] = 0x%2.2x '%c'\n",
2694               header.e_ident[EI_MAG3], header.e_ident[EI_MAG3]);
2695 
2696     s->Printf("e_ident[EI_CLASS  ] = 0x%2.2x\n", header.e_ident[EI_CLASS]);
2697     s->Printf("e_ident[EI_DATA   ] = 0x%2.2x ", header.e_ident[EI_DATA]);
2698     DumpELFHeader_e_ident_EI_DATA(s, header.e_ident[EI_DATA]);
2699     s->Printf ("\ne_ident[EI_VERSION] = 0x%2.2x\n", header.e_ident[EI_VERSION]);
2700     s->Printf ("e_ident[EI_PAD    ] = 0x%2.2x\n", header.e_ident[EI_PAD]);
2701 
2702     s->Printf("e_type      = 0x%4.4x ", header.e_type);
2703     DumpELFHeader_e_type(s, header.e_type);
2704     s->Printf("\ne_machine   = 0x%4.4x\n", header.e_machine);
2705     s->Printf("e_version   = 0x%8.8x\n", header.e_version);
2706     s->Printf("e_entry     = 0x%8.8" PRIx64 "\n", header.e_entry);
2707     s->Printf("e_phoff     = 0x%8.8" PRIx64 "\n", header.e_phoff);
2708     s->Printf("e_shoff     = 0x%8.8" PRIx64 "\n", header.e_shoff);
2709     s->Printf("e_flags     = 0x%8.8x\n", header.e_flags);
2710     s->Printf("e_ehsize    = 0x%4.4x\n", header.e_ehsize);
2711     s->Printf("e_phentsize = 0x%4.4x\n", header.e_phentsize);
2712     s->Printf("e_phnum     = 0x%4.4x\n", header.e_phnum);
2713     s->Printf("e_shentsize = 0x%4.4x\n", header.e_shentsize);
2714     s->Printf("e_shnum     = 0x%4.4x\n", header.e_shnum);
2715     s->Printf("e_shstrndx  = 0x%4.4x\n", header.e_shstrndx);
2716 }
2717 
2718 //----------------------------------------------------------------------
2719 // DumpELFHeader_e_type
2720 //
2721 // Dump an token value for the ELF header member e_type
2722 //----------------------------------------------------------------------
2723 void
2724 ObjectFileELF::DumpELFHeader_e_type(Stream *s, elf_half e_type)
2725 {
2726     switch (e_type)
2727     {
2728     case ET_NONE:   *s << "ET_NONE"; break;
2729     case ET_REL:    *s << "ET_REL"; break;
2730     case ET_EXEC:   *s << "ET_EXEC"; break;
2731     case ET_DYN:    *s << "ET_DYN"; break;
2732     case ET_CORE:   *s << "ET_CORE"; break;
2733     default:
2734         break;
2735     }
2736 }
2737 
2738 //----------------------------------------------------------------------
2739 // DumpELFHeader_e_ident_EI_DATA
2740 //
2741 // Dump an token value for the ELF header member e_ident[EI_DATA]
2742 //----------------------------------------------------------------------
2743 void
2744 ObjectFileELF::DumpELFHeader_e_ident_EI_DATA(Stream *s, unsigned char ei_data)
2745 {
2746     switch (ei_data)
2747     {
2748     case ELFDATANONE:   *s << "ELFDATANONE"; break;
2749     case ELFDATA2LSB:   *s << "ELFDATA2LSB - Little Endian"; break;
2750     case ELFDATA2MSB:   *s << "ELFDATA2MSB - Big Endian"; break;
2751     default:
2752         break;
2753     }
2754 }
2755 
2756 
2757 //----------------------------------------------------------------------
2758 // DumpELFProgramHeader
2759 //
2760 // Dump a single ELF program header to the specified output stream
2761 //----------------------------------------------------------------------
2762 void
2763 ObjectFileELF::DumpELFProgramHeader(Stream *s, const ELFProgramHeader &ph)
2764 {
2765     DumpELFProgramHeader_p_type(s, ph.p_type);
2766     s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, ph.p_offset, ph.p_vaddr, ph.p_paddr);
2767     s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8x (", ph.p_filesz, ph.p_memsz, ph.p_flags);
2768 
2769     DumpELFProgramHeader_p_flags(s, ph.p_flags);
2770     s->Printf(") %8.8" PRIx64, ph.p_align);
2771 }
2772 
2773 //----------------------------------------------------------------------
2774 // DumpELFProgramHeader_p_type
2775 //
2776 // Dump an token value for the ELF program header member p_type which
2777 // describes the type of the program header
2778 // ----------------------------------------------------------------------
2779 void
2780 ObjectFileELF::DumpELFProgramHeader_p_type(Stream *s, elf_word p_type)
2781 {
2782     const int kStrWidth = 15;
2783     switch (p_type)
2784     {
2785     CASE_AND_STREAM(s, PT_NULL        , kStrWidth);
2786     CASE_AND_STREAM(s, PT_LOAD        , kStrWidth);
2787     CASE_AND_STREAM(s, PT_DYNAMIC     , kStrWidth);
2788     CASE_AND_STREAM(s, PT_INTERP      , kStrWidth);
2789     CASE_AND_STREAM(s, PT_NOTE        , kStrWidth);
2790     CASE_AND_STREAM(s, PT_SHLIB       , kStrWidth);
2791     CASE_AND_STREAM(s, PT_PHDR        , kStrWidth);
2792     CASE_AND_STREAM(s, PT_TLS         , kStrWidth);
2793     CASE_AND_STREAM(s, PT_GNU_EH_FRAME, kStrWidth);
2794     default:
2795         s->Printf("0x%8.8x%*s", p_type, kStrWidth - 10, "");
2796         break;
2797     }
2798 }
2799 
2800 
2801 //----------------------------------------------------------------------
2802 // DumpELFProgramHeader_p_flags
2803 //
2804 // Dump an token value for the ELF program header member p_flags
2805 //----------------------------------------------------------------------
2806 void
2807 ObjectFileELF::DumpELFProgramHeader_p_flags(Stream *s, elf_word p_flags)
2808 {
2809     *s  << ((p_flags & PF_X) ? "PF_X" : "    ")
2810         << (((p_flags & PF_X) && (p_flags & PF_W)) ? '+' : ' ')
2811         << ((p_flags & PF_W) ? "PF_W" : "    ")
2812         << (((p_flags & PF_W) && (p_flags & PF_R)) ? '+' : ' ')
2813         << ((p_flags & PF_R) ? "PF_R" : "    ");
2814 }
2815 
2816 //----------------------------------------------------------------------
2817 // DumpELFProgramHeaders
2818 //
2819 // Dump all of the ELF program header to the specified output stream
2820 //----------------------------------------------------------------------
2821 void
2822 ObjectFileELF::DumpELFProgramHeaders(Stream *s)
2823 {
2824     if (!ParseProgramHeaders())
2825         return;
2826 
2827     s->PutCString("Program Headers\n");
2828     s->PutCString("IDX  p_type          p_offset p_vaddr  p_paddr  "
2829                   "p_filesz p_memsz  p_flags                   p_align\n");
2830     s->PutCString("==== --------------- -------- -------- -------- "
2831                   "-------- -------- ------------------------- --------\n");
2832 
2833     uint32_t idx = 0;
2834     for (ProgramHeaderCollConstIter I = m_program_headers.begin();
2835          I != m_program_headers.end(); ++I, ++idx)
2836     {
2837         s->Printf("[%2u] ", idx);
2838         ObjectFileELF::DumpELFProgramHeader(s, *I);
2839         s->EOL();
2840     }
2841 }
2842 
2843 //----------------------------------------------------------------------
2844 // DumpELFSectionHeader
2845 //
2846 // Dump a single ELF section header to the specified output stream
2847 //----------------------------------------------------------------------
2848 void
2849 ObjectFileELF::DumpELFSectionHeader(Stream *s, const ELFSectionHeaderInfo &sh)
2850 {
2851     s->Printf("%8.8x ", sh.sh_name);
2852     DumpELFSectionHeader_sh_type(s, sh.sh_type);
2853     s->Printf(" %8.8" PRIx64 " (", sh.sh_flags);
2854     DumpELFSectionHeader_sh_flags(s, sh.sh_flags);
2855     s->Printf(") %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addr, sh.sh_offset, sh.sh_size);
2856     s->Printf(" %8.8x %8.8x", sh.sh_link, sh.sh_info);
2857     s->Printf(" %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addralign, sh.sh_entsize);
2858 }
2859 
2860 //----------------------------------------------------------------------
2861 // DumpELFSectionHeader_sh_type
2862 //
2863 // Dump an token value for the ELF section header member sh_type which
2864 // describes the type of the section
2865 //----------------------------------------------------------------------
2866 void
2867 ObjectFileELF::DumpELFSectionHeader_sh_type(Stream *s, elf_word sh_type)
2868 {
2869     const int kStrWidth = 12;
2870     switch (sh_type)
2871     {
2872     CASE_AND_STREAM(s, SHT_NULL     , kStrWidth);
2873     CASE_AND_STREAM(s, SHT_PROGBITS , kStrWidth);
2874     CASE_AND_STREAM(s, SHT_SYMTAB   , kStrWidth);
2875     CASE_AND_STREAM(s, SHT_STRTAB   , kStrWidth);
2876     CASE_AND_STREAM(s, SHT_RELA     , kStrWidth);
2877     CASE_AND_STREAM(s, SHT_HASH     , kStrWidth);
2878     CASE_AND_STREAM(s, SHT_DYNAMIC  , kStrWidth);
2879     CASE_AND_STREAM(s, SHT_NOTE     , kStrWidth);
2880     CASE_AND_STREAM(s, SHT_NOBITS   , kStrWidth);
2881     CASE_AND_STREAM(s, SHT_REL      , kStrWidth);
2882     CASE_AND_STREAM(s, SHT_SHLIB    , kStrWidth);
2883     CASE_AND_STREAM(s, SHT_DYNSYM   , kStrWidth);
2884     CASE_AND_STREAM(s, SHT_LOPROC   , kStrWidth);
2885     CASE_AND_STREAM(s, SHT_HIPROC   , kStrWidth);
2886     CASE_AND_STREAM(s, SHT_LOUSER   , kStrWidth);
2887     CASE_AND_STREAM(s, SHT_HIUSER   , kStrWidth);
2888     default:
2889         s->Printf("0x%8.8x%*s", sh_type, kStrWidth - 10, "");
2890         break;
2891     }
2892 }
2893 
2894 //----------------------------------------------------------------------
2895 // DumpELFSectionHeader_sh_flags
2896 //
2897 // Dump an token value for the ELF section header member sh_flags
2898 //----------------------------------------------------------------------
2899 void
2900 ObjectFileELF::DumpELFSectionHeader_sh_flags(Stream *s, elf_xword sh_flags)
2901 {
2902     *s  << ((sh_flags & SHF_WRITE) ? "WRITE" : "     ")
2903         << (((sh_flags & SHF_WRITE) && (sh_flags & SHF_ALLOC)) ? '+' : ' ')
2904         << ((sh_flags & SHF_ALLOC) ? "ALLOC" : "     ")
2905         << (((sh_flags & SHF_ALLOC) && (sh_flags & SHF_EXECINSTR)) ? '+' : ' ')
2906         << ((sh_flags & SHF_EXECINSTR) ? "EXECINSTR" : "         ");
2907 }
2908 
2909 //----------------------------------------------------------------------
2910 // DumpELFSectionHeaders
2911 //
2912 // Dump all of the ELF section header to the specified output stream
2913 //----------------------------------------------------------------------
2914 void
2915 ObjectFileELF::DumpELFSectionHeaders(Stream *s)
2916 {
2917     if (!ParseSectionHeaders())
2918         return;
2919 
2920     s->PutCString("Section Headers\n");
2921     s->PutCString("IDX  name     type         flags                            "
2922                   "addr     offset   size     link     info     addralgn "
2923                   "entsize  Name\n");
2924     s->PutCString("==== -------- ------------ -------------------------------- "
2925                   "-------- -------- -------- -------- -------- -------- "
2926                   "-------- ====================\n");
2927 
2928     uint32_t idx = 0;
2929     for (SectionHeaderCollConstIter I = m_section_headers.begin();
2930          I != m_section_headers.end(); ++I, ++idx)
2931     {
2932         s->Printf("[%2u] ", idx);
2933         ObjectFileELF::DumpELFSectionHeader(s, *I);
2934         const char* section_name = I->section_name.AsCString("");
2935         if (section_name)
2936             *s << ' ' << section_name << "\n";
2937     }
2938 }
2939 
2940 void
2941 ObjectFileELF::DumpDependentModules(lldb_private::Stream *s)
2942 {
2943     size_t num_modules = ParseDependentModules();
2944 
2945     if (num_modules > 0)
2946     {
2947         s->PutCString("Dependent Modules:\n");
2948         for (unsigned i = 0; i < num_modules; ++i)
2949         {
2950             const FileSpec &spec = m_filespec_ap->GetFileSpecAtIndex(i);
2951             s->Printf("   %s\n", spec.GetFilename().GetCString());
2952         }
2953     }
2954 }
2955 
2956 bool
2957 ObjectFileELF::GetArchitecture (ArchSpec &arch)
2958 {
2959     if (!ParseHeader())
2960         return false;
2961 
2962     if (m_section_headers.empty())
2963     {
2964         // Allow elf notes to be parsed which may affect the detected architecture.
2965         ParseSectionHeaders();
2966     }
2967 
2968     arch = m_arch_spec;
2969     return true;
2970 }
2971 
2972 ObjectFile::Type
2973 ObjectFileELF::CalculateType()
2974 {
2975     switch (m_header.e_type)
2976     {
2977         case llvm::ELF::ET_NONE:
2978             // 0 - No file type
2979             return eTypeUnknown;
2980 
2981         case llvm::ELF::ET_REL:
2982             // 1 - Relocatable file
2983             return eTypeObjectFile;
2984 
2985         case llvm::ELF::ET_EXEC:
2986             // 2 - Executable file
2987             return eTypeExecutable;
2988 
2989         case llvm::ELF::ET_DYN:
2990             // 3 - Shared object file
2991             return eTypeSharedLibrary;
2992 
2993         case ET_CORE:
2994             // 4 - Core file
2995             return eTypeCoreFile;
2996 
2997         default:
2998             break;
2999     }
3000     return eTypeUnknown;
3001 }
3002 
3003 ObjectFile::Strata
3004 ObjectFileELF::CalculateStrata()
3005 {
3006     switch (m_header.e_type)
3007     {
3008         case llvm::ELF::ET_NONE:
3009             // 0 - No file type
3010             return eStrataUnknown;
3011 
3012         case llvm::ELF::ET_REL:
3013             // 1 - Relocatable file
3014             return eStrataUnknown;
3015 
3016         case llvm::ELF::ET_EXEC:
3017             // 2 - Executable file
3018             // TODO: is there any way to detect that an executable is a kernel
3019             // related executable by inspecting the program headers, section
3020             // headers, symbols, or any other flag bits???
3021             return eStrataUser;
3022 
3023         case llvm::ELF::ET_DYN:
3024             // 3 - Shared object file
3025             // TODO: is there any way to detect that an shared library is a kernel
3026             // related executable by inspecting the program headers, section
3027             // headers, symbols, or any other flag bits???
3028             return eStrataUnknown;
3029 
3030         case ET_CORE:
3031             // 4 - Core file
3032             // TODO: is there any way to detect that an core file is a kernel
3033             // related executable by inspecting the program headers, section
3034             // headers, symbols, or any other flag bits???
3035             return eStrataUnknown;
3036 
3037         default:
3038             break;
3039     }
3040     return eStrataUnknown;
3041 }
3042 
3043