1 //===-- RenderScriptRuntime.cpp ---------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 // C Includes
11 // C++ Includes
12 // Other libraries and framework includes
13 // Project includes
14 #include "RenderScriptRuntime.h"
15 
16 #include "lldb/Breakpoint/StoppointCallbackContext.h"
17 #include "lldb/Core/ConstString.h"
18 #include "lldb/Core/Debugger.h"
19 #include "lldb/Core/Error.h"
20 #include "lldb/Core/Log.h"
21 #include "lldb/Core/PluginManager.h"
22 #include "lldb/Core/RegularExpression.h"
23 #include "lldb/Core/ValueObjectVariable.h"
24 #include "lldb/DataFormatters/DumpValueObjectOptions.h"
25 #include "lldb/Expression/UserExpression.h"
26 #include "lldb/Host/StringConvert.h"
27 #include "lldb/Interpreter/Args.h"
28 #include "lldb/Interpreter/CommandInterpreter.h"
29 #include "lldb/Interpreter/CommandObjectMultiword.h"
30 #include "lldb/Interpreter/CommandReturnObject.h"
31 #include "lldb/Interpreter/Options.h"
32 #include "lldb/Symbol/Symbol.h"
33 #include "lldb/Symbol/Type.h"
34 #include "lldb/Symbol/VariableList.h"
35 #include "lldb/Target/Process.h"
36 #include "lldb/Target/RegisterContext.h"
37 #include "lldb/Target/Target.h"
38 #include "lldb/Target/Thread.h"
39 
40 using namespace lldb;
41 using namespace lldb_private;
42 using namespace lldb_renderscript;
43 
44 namespace
45 {
46 
47 // The empirical_type adds a basic level of validation to arbitrary data
48 // allowing us to track if data has been discovered and stored or not.
49 // An empirical_type will be marked as valid only if it has been explicitly assigned to.
50 template <typename type_t> class empirical_type
51 {
52 public:
53     // Ctor. Contents is invalid when constructed.
54     empirical_type() : valid(false) {}
55 
56     // Return true and copy contents to out if valid, else return false.
57     bool
58     get(type_t &out) const
59     {
60         if (valid)
61             out = data;
62         return valid;
63     }
64 
65     // Return a pointer to the contents or nullptr if it was not valid.
66     const type_t *
67     get() const
68     {
69         return valid ? &data : nullptr;
70     }
71 
72     // Assign data explicitly.
73     void
74     set(const type_t in)
75     {
76         data = in;
77         valid = true;
78     }
79 
80     // Mark contents as invalid.
81     void
82     invalidate()
83     {
84         valid = false;
85     }
86 
87     // Returns true if this type contains valid data.
88     bool
89     isValid() const
90     {
91         return valid;
92     }
93 
94     // Assignment operator.
95     empirical_type<type_t> &
96     operator=(const type_t in)
97     {
98         set(in);
99         return *this;
100     }
101 
102     // Dereference operator returns contents.
103     // Warning: Will assert if not valid so use only when you know data is valid.
104     const type_t &operator*() const
105     {
106         assert(valid);
107         return data;
108     }
109 
110 protected:
111     bool valid;
112     type_t data;
113 };
114 
115 // ArgItem is used by the GetArgs() function when reading function arguments from the target.
116 struct ArgItem
117 {
118     enum
119     {
120         ePointer,
121         eInt32,
122         eInt64,
123         eLong,
124         eBool
125     } type;
126 
127     uint64_t value;
128 
129     explicit operator uint64_t() const { return value; }
130 };
131 
132 // Context structure to be passed into GetArgsXXX(), argument reading functions below.
133 struct GetArgsCtx
134 {
135     RegisterContext *reg_ctx;
136     Process *process;
137 };
138 
139 bool
140 GetArgsX86(const GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args)
141 {
142     Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
143 
144     // get the current stack pointer
145     uint64_t sp = ctx.reg_ctx->GetSP();
146 
147     for (size_t i = 0; i < num_args; ++i)
148     {
149         ArgItem &arg = arg_list[i];
150         // advance up the stack by one argument
151         sp += sizeof(uint32_t);
152         // get the argument type size
153         size_t arg_size = sizeof(uint32_t);
154         // read the argument from memory
155         arg.value = 0;
156         Error error;
157         size_t read = ctx.process->ReadMemory(sp, &arg.value, sizeof(uint32_t), error);
158         if (read != arg_size || !error.Success())
159         {
160             if (log)
161                 log->Printf("%s - error reading argument: %" PRIu64 " '%s'", __FUNCTION__, uint64_t(i),
162                             error.AsCString());
163             return false;
164         }
165     }
166     return true;
167 }
168 
169 bool
170 GetArgsX86_64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args)
171 {
172     Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
173 
174     // number of arguments passed in registers
175     static const uint32_t c_args_in_reg = 6;
176     // register passing order
177     static const std::array<const char *, c_args_in_reg> c_reg_names = {"rdi", "rsi", "rdx", "rcx", "r8", "r9"};
178     // argument type to size mapping
179     static const std::array<size_t, 5> arg_size = {
180         8, // ePointer,
181         4, // eInt32,
182         8, // eInt64,
183         8, // eLong,
184         4, // eBool,
185     };
186 
187     // get the current stack pointer
188     uint64_t sp = ctx.reg_ctx->GetSP();
189     // step over the return address
190     sp += sizeof(uint64_t);
191 
192     // check the stack alignment was correct (16 byte aligned)
193     if ((sp & 0xf) != 0x0)
194     {
195         if (log)
196             log->Printf("%s - stack misaligned", __FUNCTION__);
197         return false;
198     }
199 
200     // find the start of arguments on the stack
201     uint64_t sp_offset = 0;
202     for (uint32_t i = c_args_in_reg; i < num_args; ++i)
203     {
204         sp_offset += arg_size[arg_list[i].type];
205     }
206     // round up to multiple of 16
207     sp_offset = (sp_offset + 0xf) & 0xf;
208     sp += sp_offset;
209 
210     for (size_t i = 0; i < num_args; ++i)
211     {
212         bool success = false;
213         ArgItem &arg = arg_list[i];
214         // arguments passed in registers
215         if (i < c_args_in_reg)
216         {
217             const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoByName(c_reg_names[i]);
218             RegisterValue rVal;
219             if (ctx.reg_ctx->ReadRegister(rArg, rVal))
220                 arg.value = rVal.GetAsUInt64(0, &success);
221         }
222         // arguments passed on the stack
223         else
224         {
225             // get the argument type size
226             const size_t size = arg_size[arg_list[i].type];
227             // read the argument from memory
228             arg.value = 0;
229             // note: due to little endian layout reading 4 or 8 bytes will give the correct value.
230             Error error;
231             size_t read = ctx.process->ReadMemory(sp, &arg.value, size, error);
232             success = (error.Success() && read==size);
233             // advance past this argument
234             sp -= size;
235         }
236         // fail if we couldn't read this argument
237         if (!success)
238         {
239             if (log)
240                 log->Printf("%s - error reading argument: %" PRIu64, __FUNCTION__, uint64_t(i));
241             return false;
242         }
243     }
244     return true;
245 }
246 
247 bool
248 GetArgsArm(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args)
249 {
250     // number of arguments passed in registers
251     static const uint32_t c_args_in_reg = 4;
252 
253     Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
254 
255     // get the current stack pointer
256     uint64_t sp = ctx.reg_ctx->GetSP();
257 
258     for (size_t i = 0; i < num_args; ++i)
259     {
260         bool success = false;
261         ArgItem &arg = arg_list[i];
262         // arguments passed in registers
263         if (i < c_args_in_reg)
264         {
265             const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoAtIndex(i);
266             RegisterValue rVal;
267             if (ctx.reg_ctx->ReadRegister(rArg, rVal))
268                 arg.value = rVal.GetAsUInt32(0, &success);
269         }
270         // arguments passed on the stack
271         else
272         {
273             // get the argument type size
274             const size_t arg_size = sizeof(uint32_t);
275             // clear all 64bits
276             arg.value = 0;
277             // read this argument from memory
278             Error error;
279             size_t bytes_read = ctx.process->ReadMemory(sp, &arg.value, arg_size, error);
280             success = (error.Success() && bytes_read == arg_size);
281             // advance the stack pointer
282             sp += sizeof(uint32_t);
283         }
284         // fail if we couldn't read this argument
285         if (!success)
286         {
287             if (log)
288                 log->Printf("%s - error reading argument: %" PRIu64, __FUNCTION__, uint64_t(i));
289             return false;
290         }
291     }
292     return true;
293 }
294 
295 bool
296 GetArgsAarch64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args)
297 {
298     // number of arguments passed in registers
299     static const uint32_t c_args_in_reg = 8;
300 
301     Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
302 
303     for (size_t i = 0; i < num_args; ++i)
304     {
305         bool success = false;
306         ArgItem &arg = arg_list[i];
307         // arguments passed in registers
308         if (i < c_args_in_reg)
309         {
310             const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoAtIndex(i);
311             RegisterValue rVal;
312             if (ctx.reg_ctx->ReadRegister(rArg, rVal))
313                 arg.value = rVal.GetAsUInt64(0, &success);
314         }
315         // arguments passed on the stack
316         else
317         {
318             if (log)
319                 log->Printf("%s - reading arguments spilled to stack not implemented", __FUNCTION__);
320         }
321         // fail if we couldn't read this argument
322         if (!success)
323         {
324             if (log)
325                 log->Printf("%s - error reading argument: %" PRIu64, __FUNCTION__,
326                             uint64_t(i));
327             return false;
328         }
329     }
330     return true;
331 }
332 
333 bool
334 GetArgsMipsel(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args)
335 {
336     // number of arguments passed in registers
337     static const uint32_t c_args_in_reg = 4;
338     // register file offset to first argument
339     static const uint32_t c_reg_offset = 4;
340 
341     Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
342 
343     for (size_t i = 0; i < num_args; ++i)
344     {
345         bool success = false;
346         ArgItem &arg = arg_list[i];
347         // arguments passed in registers
348         if (i < c_args_in_reg)
349         {
350             const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoAtIndex(i + c_reg_offset);
351             RegisterValue rVal;
352             if (ctx.reg_ctx->ReadRegister(rArg, rVal))
353                 arg.value = rVal.GetAsUInt64(0, &success);
354         }
355         // arguments passed on the stack
356         else
357         {
358             if (log)
359                 log->Printf("%s - reading arguments spilled to stack not implemented.", __FUNCTION__);
360         }
361         // fail if we couldn't read this argument
362         if (!success)
363         {
364             if (log)
365                 log->Printf("%s - error reading argument: %" PRIu64, __FUNCTION__, uint64_t(i));
366             return false;
367         }
368     }
369     return true;
370 }
371 
372 bool
373 GetArgsMips64el(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args)
374 {
375     // number of arguments passed in registers
376     static const uint32_t c_args_in_reg = 8;
377     // register file offset to first argument
378     static const uint32_t c_reg_offset = 4;
379 
380     Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
381 
382     // get the current stack pointer
383     uint64_t sp = ctx.reg_ctx->GetSP();
384 
385     for (size_t i = 0; i < num_args; ++i)
386     {
387         bool success = false;
388         ArgItem &arg = arg_list[i];
389         // arguments passed in registers
390         if (i < c_args_in_reg)
391         {
392             const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoAtIndex(i + c_reg_offset);
393             RegisterValue rVal;
394             if (ctx.reg_ctx->ReadRegister(rArg, rVal))
395                 arg.value = rVal.GetAsUInt32(0, &success);
396         }
397         // arguments passed on the stack
398         else
399         {
400             // get the argument type size
401             const size_t arg_size = sizeof(uint64_t);
402             // clear all 64bits
403             arg.value = 0;
404             // read this argument from memory
405             Error error;
406             size_t bytes_read = ctx.process->ReadMemory(sp, &arg.value, arg_size, error);
407             success = (error.Success() && bytes_read == arg_size);
408             // advance the stack pointer
409             sp += arg_size;
410         }
411         // fail if we couldn't read this argument
412         if (!success)
413         {
414             if (log)
415                 log->Printf("%s - error reading argument: %" PRIu64, __FUNCTION__, uint64_t(i));
416             return false;
417         }
418     }
419     return true;
420 }
421 
422 bool
423 GetArgs(ExecutionContext &context, ArgItem *arg_list, size_t num_args)
424 {
425     Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
426 
427     // verify that we have a target
428     if (!context.GetTargetPtr())
429     {
430         if (log)
431             log->Printf("%s - invalid target", __FUNCTION__);
432         return false;
433     }
434 
435     GetArgsCtx ctx = {context.GetRegisterContext(), context.GetProcessPtr()};
436     assert(ctx.reg_ctx && ctx.process);
437 
438     // dispatch based on architecture
439     switch (context.GetTargetPtr()->GetArchitecture().GetMachine())
440     {
441         case llvm::Triple::ArchType::x86:
442             return GetArgsX86(ctx, arg_list, num_args);
443 
444         case llvm::Triple::ArchType::x86_64:
445             return GetArgsX86_64(ctx, arg_list, num_args);
446 
447         case llvm::Triple::ArchType::arm:
448             return GetArgsArm(ctx, arg_list, num_args);
449 
450         case llvm::Triple::ArchType::aarch64:
451             return GetArgsAarch64(ctx, arg_list, num_args);
452 
453         case llvm::Triple::ArchType::mipsel:
454             return GetArgsMipsel(ctx, arg_list, num_args);
455 
456         case llvm::Triple::ArchType::mips64el:
457             return GetArgsMips64el(ctx, arg_list, num_args);
458 
459         default:
460             // unsupported architecture
461             if (log)
462             {
463                 log->Printf("%s - architecture not supported: '%s'", __FUNCTION__,
464                             context.GetTargetRef().GetArchitecture().GetArchitectureName());
465             }
466             return false;
467     }
468 }
469 } // anonymous namespace
470 
471 // The ScriptDetails class collects data associated with a single script instance.
472 struct RenderScriptRuntime::ScriptDetails
473 {
474     ~ScriptDetails() = default;
475 
476     enum ScriptType
477     {
478         eScript,
479         eScriptC
480     };
481 
482     // The derived type of the script.
483     empirical_type<ScriptType> type;
484     // The name of the original source file.
485     empirical_type<std::string> resName;
486     // Path to script .so file on the device.
487     empirical_type<std::string> scriptDyLib;
488     // Directory where kernel objects are cached on device.
489     empirical_type<std::string> cacheDir;
490     // Pointer to the context which owns this script.
491     empirical_type<lldb::addr_t> context;
492     // Pointer to the script object itself.
493     empirical_type<lldb::addr_t> script;
494 };
495 
496 // This Element class represents the Element object in RS,
497 // defining the type associated with an Allocation.
498 struct RenderScriptRuntime::Element
499 {
500     // Taken from rsDefines.h
501     enum DataKind
502     {
503         RS_KIND_USER,
504         RS_KIND_PIXEL_L = 7,
505         RS_KIND_PIXEL_A,
506         RS_KIND_PIXEL_LA,
507         RS_KIND_PIXEL_RGB,
508         RS_KIND_PIXEL_RGBA,
509         RS_KIND_PIXEL_DEPTH,
510         RS_KIND_PIXEL_YUV,
511         RS_KIND_INVALID = 100
512     };
513 
514     // Taken from rsDefines.h
515     enum DataType
516     {
517         RS_TYPE_NONE = 0,
518         RS_TYPE_FLOAT_16,
519         RS_TYPE_FLOAT_32,
520         RS_TYPE_FLOAT_64,
521         RS_TYPE_SIGNED_8,
522         RS_TYPE_SIGNED_16,
523         RS_TYPE_SIGNED_32,
524         RS_TYPE_SIGNED_64,
525         RS_TYPE_UNSIGNED_8,
526         RS_TYPE_UNSIGNED_16,
527         RS_TYPE_UNSIGNED_32,
528         RS_TYPE_UNSIGNED_64,
529         RS_TYPE_BOOLEAN,
530 
531         RS_TYPE_UNSIGNED_5_6_5,
532         RS_TYPE_UNSIGNED_5_5_5_1,
533         RS_TYPE_UNSIGNED_4_4_4_4,
534 
535         RS_TYPE_MATRIX_4X4,
536         RS_TYPE_MATRIX_3X3,
537         RS_TYPE_MATRIX_2X2,
538 
539         RS_TYPE_ELEMENT = 1000,
540         RS_TYPE_TYPE,
541         RS_TYPE_ALLOCATION,
542         RS_TYPE_SAMPLER,
543         RS_TYPE_SCRIPT,
544         RS_TYPE_MESH,
545         RS_TYPE_PROGRAM_FRAGMENT,
546         RS_TYPE_PROGRAM_VERTEX,
547         RS_TYPE_PROGRAM_RASTER,
548         RS_TYPE_PROGRAM_STORE,
549         RS_TYPE_FONT,
550 
551         RS_TYPE_INVALID = 10000
552     };
553 
554     std::vector<Element> children;            // Child Element fields for structs
555     empirical_type<lldb::addr_t> element_ptr; // Pointer to the RS Element of the Type
556     empirical_type<DataType> type;            // Type of each data pointer stored by the allocation
557     empirical_type<DataKind> type_kind;       // Defines pixel type if Allocation is created from an image
558     empirical_type<uint32_t> type_vec_size;   // Vector size of each data point, e.g '4' for uchar4
559     empirical_type<uint32_t> field_count;     // Number of Subelements
560     empirical_type<uint32_t> datum_size;      // Size of a single Element with padding
561     empirical_type<uint32_t> padding;         // Number of padding bytes
562     empirical_type<uint32_t> array_size;      // Number of items in array, only needed for strucrs
563     ConstString type_name;                    // Name of type, only needed for structs
564 
565     static const ConstString &
566     GetFallbackStructName(); // Print this as the type name of a struct Element
567                              // If we can't resolve the actual struct name
568 
569     bool
570     shouldRefresh() const
571     {
572         const bool valid_ptr = element_ptr.isValid() && *element_ptr.get() != 0x0;
573         const bool valid_type = type.isValid() && type_vec_size.isValid() && type_kind.isValid();
574         return !valid_ptr || !valid_type || !datum_size.isValid();
575     }
576 };
577 
578 // This AllocationDetails class collects data associated with a single
579 // allocation instance.
580 struct RenderScriptRuntime::AllocationDetails
581 {
582     struct Dimension
583     {
584         uint32_t dim_1;
585         uint32_t dim_2;
586         uint32_t dim_3;
587         uint32_t cubeMap;
588 
589         Dimension()
590         {
591             dim_1 = 0;
592             dim_2 = 0;
593             dim_3 = 0;
594             cubeMap = 0;
595         }
596     };
597 
598     // The FileHeader struct specifies the header we use for writing allocations to a binary file.
599     // Our format begins with the ASCII characters "RSAD", identifying the file as an allocation dump.
600     // Member variables dims and hdr_size are then written consecutively, immediately followed by an instance of
601     // the ElementHeader struct. Because Elements can contain subelements, there may be more than one instance
602     // of the ElementHeader struct. With this first instance being the root element, and the other instances being
603     // the root's descendants. To identify which instances are an ElementHeader's children, each struct
604     // is immediately followed by a sequence of consecutive offsets to the start of its child structs.
605     // These offsets are 4 bytes in size, and the 0 offset signifies no more children.
606     struct FileHeader
607     {
608         uint8_t ident[4];  // ASCII 'RSAD' identifying the file
609         uint32_t dims[3];  // Dimensions
610         uint16_t hdr_size; // Header size in bytes, including all element headers
611     };
612 
613     struct ElementHeader
614     {
615         uint16_t type;         // DataType enum
616         uint32_t kind;         // DataKind enum
617         uint32_t element_size; // Size of a single element, including padding
618         uint16_t vector_size;  // Vector width
619         uint32_t array_size;   // Number of elements in array
620     };
621 
622     // Monotonically increasing from 1
623     static uint32_t ID;
624 
625     // Maps Allocation DataType enum and vector size to printable strings
626     // using mapping from RenderScript numerical types summary documentation
627     static const char *RsDataTypeToString[][4];
628 
629     // Maps Allocation DataKind enum to printable strings
630     static const char *RsDataKindToString[];
631 
632     // Maps allocation types to format sizes for printing.
633     static const uint32_t RSTypeToFormat[][3];
634 
635     // Give each allocation an ID as a way
636     // for commands to reference it.
637     const uint32_t id;
638 
639     RenderScriptRuntime::Element element;  // Allocation Element type
640     empirical_type<Dimension> dimension;   // Dimensions of the Allocation
641     empirical_type<lldb::addr_t> address;  // Pointer to address of the RS Allocation
642     empirical_type<lldb::addr_t> data_ptr; // Pointer to the data held by the Allocation
643     empirical_type<lldb::addr_t> type_ptr; // Pointer to the RS Type of the Allocation
644     empirical_type<lldb::addr_t> context;  // Pointer to the RS Context of the Allocation
645     empirical_type<uint32_t> size;         // Size of the allocation
646     empirical_type<uint32_t> stride;       // Stride between rows of the allocation
647 
648     // Give each allocation an id, so we can reference it in user commands.
649     AllocationDetails() : id(ID++) {}
650 
651     bool
652     shouldRefresh() const
653     {
654         bool valid_ptrs = data_ptr.isValid() && *data_ptr.get() != 0x0;
655         valid_ptrs = valid_ptrs && type_ptr.isValid() && *type_ptr.get() != 0x0;
656         return !valid_ptrs || !dimension.isValid() || !size.isValid() || element.shouldRefresh();
657     }
658 };
659 
660 const ConstString &
661 RenderScriptRuntime::Element::GetFallbackStructName()
662 {
663     static const ConstString FallbackStructName("struct");
664     return FallbackStructName;
665 }
666 
667 uint32_t RenderScriptRuntime::AllocationDetails::ID = 1;
668 
669 const char *RenderScriptRuntime::AllocationDetails::RsDataKindToString[] = {
670     "User",
671     "Undefined",  "Undefined",   "Undefined", "Undefined", "Undefined",  "Undefined", // Enum jumps from 0 to 7
672     "L Pixel",    "A Pixel",     "LA Pixel",  "RGB Pixel",
673     "RGBA Pixel", "Pixel Depth", "YUV Pixel"};
674 
675 const char *RenderScriptRuntime::AllocationDetails::RsDataTypeToString[][4] = {
676     {"None", "None", "None", "None"},
677     {"half", "half2", "half3", "half4"},
678     {"float", "float2", "float3", "float4"},
679     {"double", "double2", "double3", "double4"},
680     {"char", "char2", "char3", "char4"},
681     {"short", "short2", "short3", "short4"},
682     {"int", "int2", "int3", "int4"},
683     {"long", "long2", "long3", "long4"},
684     {"uchar", "uchar2", "uchar3", "uchar4"},
685     {"ushort", "ushort2", "ushort3", "ushort4"},
686     {"uint", "uint2", "uint3", "uint4"},
687     {"ulong", "ulong2", "ulong3", "ulong4"},
688     {"bool", "bool2", "bool3", "bool4"},
689     {"packed_565", "packed_565", "packed_565", "packed_565"},
690     {"packed_5551", "packed_5551", "packed_5551", "packed_5551"},
691     {"packed_4444", "packed_4444", "packed_4444", "packed_4444"},
692     {"rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4"},
693     {"rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3"},
694     {"rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2"},
695 
696     // Handlers
697     {"RS Element", "RS Element", "RS Element", "RS Element"},
698     {"RS Type", "RS Type", "RS Type", "RS Type"},
699     {"RS Allocation", "RS Allocation", "RS Allocation", "RS Allocation"},
700     {"RS Sampler", "RS Sampler", "RS Sampler", "RS Sampler"},
701     {"RS Script", "RS Script", "RS Script", "RS Script"},
702 
703     // Deprecated
704     {"RS Mesh", "RS Mesh", "RS Mesh", "RS Mesh"},
705     {"RS Program Fragment", "RS Program Fragment", "RS Program Fragment", "RS Program Fragment"},
706     {"RS Program Vertex", "RS Program Vertex", "RS Program Vertex", "RS Program Vertex"},
707     {"RS Program Raster", "RS Program Raster", "RS Program Raster", "RS Program Raster"},
708     {"RS Program Store", "RS Program Store", "RS Program Store", "RS Program Store"},
709     {"RS Font", "RS Font", "RS Font", "RS Font"}};
710 
711 // Used as an index into the RSTypeToFormat array elements
712 enum TypeToFormatIndex
713 {
714     eFormatSingle = 0,
715     eFormatVector,
716     eElementSize
717 };
718 
719 // { format enum of single element, format enum of element vector, size of element}
720 const uint32_t RenderScriptRuntime::AllocationDetails::RSTypeToFormat[][3] = {
721     {eFormatHex, eFormatHex, 1},                                          // RS_TYPE_NONE
722     {eFormatFloat, eFormatVectorOfFloat16, 2},                            // RS_TYPE_FLOAT_16
723     {eFormatFloat, eFormatVectorOfFloat32, sizeof(float)},                // RS_TYPE_FLOAT_32
724     {eFormatFloat, eFormatVectorOfFloat64, sizeof(double)},               // RS_TYPE_FLOAT_64
725     {eFormatDecimal, eFormatVectorOfSInt8, sizeof(int8_t)},               // RS_TYPE_SIGNED_8
726     {eFormatDecimal, eFormatVectorOfSInt16, sizeof(int16_t)},             // RS_TYPE_SIGNED_16
727     {eFormatDecimal, eFormatVectorOfSInt32, sizeof(int32_t)},             // RS_TYPE_SIGNED_32
728     {eFormatDecimal, eFormatVectorOfSInt64, sizeof(int64_t)},             // RS_TYPE_SIGNED_64
729     {eFormatDecimal, eFormatVectorOfUInt8, sizeof(uint8_t)},              // RS_TYPE_UNSIGNED_8
730     {eFormatDecimal, eFormatVectorOfUInt16, sizeof(uint16_t)},            // RS_TYPE_UNSIGNED_16
731     {eFormatDecimal, eFormatVectorOfUInt32, sizeof(uint32_t)},            // RS_TYPE_UNSIGNED_32
732     {eFormatDecimal, eFormatVectorOfUInt64, sizeof(uint64_t)},            // RS_TYPE_UNSIGNED_64
733     {eFormatBoolean, eFormatBoolean, 1},                                  // RS_TYPE_BOOL
734     {eFormatHex, eFormatHex, sizeof(uint16_t)},                           // RS_TYPE_UNSIGNED_5_6_5
735     {eFormatHex, eFormatHex, sizeof(uint16_t)},                           // RS_TYPE_UNSIGNED_5_5_5_1
736     {eFormatHex, eFormatHex, sizeof(uint16_t)},                           // RS_TYPE_UNSIGNED_4_4_4_4
737     {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 16}, // RS_TYPE_MATRIX_4X4
738     {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 9},  // RS_TYPE_MATRIX_3X3
739     {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 4}   // RS_TYPE_MATRIX_2X2
740 };
741 
742 const std::string RenderScriptRuntime::s_runtimeExpandSuffix(".expand");
743 const std::array<const char *, 3> RenderScriptRuntime::s_runtimeCoordVars{{"rsIndex", "p->current.y", "p->current.z"}};
744 //------------------------------------------------------------------
745 // Static Functions
746 //------------------------------------------------------------------
747 LanguageRuntime *
748 RenderScriptRuntime::CreateInstance(Process *process, lldb::LanguageType language)
749 {
750 
751     if (language == eLanguageTypeExtRenderScript)
752         return new RenderScriptRuntime(process);
753     else
754         return nullptr;
755 }
756 
757 // Callback with a module to search for matching symbols.
758 // We first check that the module contains RS kernels.
759 // Then look for a symbol which matches our kernel name.
760 // The breakpoint address is finally set using the address of this symbol.
761 Searcher::CallbackReturn
762 RSBreakpointResolver::SearchCallback(SearchFilter &filter, SymbolContext &context, Address *, bool)
763 {
764     ModuleSP module = context.module_sp;
765 
766     if (!module)
767         return Searcher::eCallbackReturnContinue;
768 
769     // Is this a module containing renderscript kernels?
770     if (nullptr == module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), eSymbolTypeData))
771         return Searcher::eCallbackReturnContinue;
772 
773     // Attempt to set a breakpoint on the kernel name symbol within the module library.
774     // If it's not found, it's likely debug info is unavailable - try to set a
775     // breakpoint on <name>.expand.
776 
777     const Symbol *kernel_sym = module->FindFirstSymbolWithNameAndType(m_kernel_name, eSymbolTypeCode);
778     if (!kernel_sym)
779     {
780         std::string kernel_name_expanded(m_kernel_name.AsCString());
781         kernel_name_expanded.append(".expand");
782         kernel_sym = module->FindFirstSymbolWithNameAndType(ConstString(kernel_name_expanded.c_str()), eSymbolTypeCode);
783     }
784 
785     if (kernel_sym)
786     {
787         Address bp_addr = kernel_sym->GetAddress();
788         if (filter.AddressPasses(bp_addr))
789             m_breakpoint->AddLocation(bp_addr);
790     }
791 
792     return Searcher::eCallbackReturnContinue;
793 }
794 
795 void
796 RenderScriptRuntime::Initialize()
797 {
798     PluginManager::RegisterPlugin(GetPluginNameStatic(), "RenderScript language support", CreateInstance,
799                                   GetCommandObject);
800 }
801 
802 void
803 RenderScriptRuntime::Terminate()
804 {
805     PluginManager::UnregisterPlugin(CreateInstance);
806 }
807 
808 lldb_private::ConstString
809 RenderScriptRuntime::GetPluginNameStatic()
810 {
811     static ConstString g_name("renderscript");
812     return g_name;
813 }
814 
815 RenderScriptRuntime::ModuleKind
816 RenderScriptRuntime::GetModuleKind(const lldb::ModuleSP &module_sp)
817 {
818     if (module_sp)
819     {
820         // Is this a module containing renderscript kernels?
821         const Symbol *info_sym = module_sp->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), eSymbolTypeData);
822         if (info_sym)
823         {
824             return eModuleKindKernelObj;
825         }
826 
827         // Is this the main RS runtime library
828         const ConstString rs_lib("libRS.so");
829         if (module_sp->GetFileSpec().GetFilename() == rs_lib)
830         {
831             return eModuleKindLibRS;
832         }
833 
834         const ConstString rs_driverlib("libRSDriver.so");
835         if (module_sp->GetFileSpec().GetFilename() == rs_driverlib)
836         {
837             return eModuleKindDriver;
838         }
839 
840         const ConstString rs_cpureflib("libRSCpuRef.so");
841         if (module_sp->GetFileSpec().GetFilename() == rs_cpureflib)
842         {
843             return eModuleKindImpl;
844         }
845     }
846     return eModuleKindIgnored;
847 }
848 
849 bool
850 RenderScriptRuntime::IsRenderScriptModule(const lldb::ModuleSP &module_sp)
851 {
852     return GetModuleKind(module_sp) != eModuleKindIgnored;
853 }
854 
855 void
856 RenderScriptRuntime::ModulesDidLoad(const ModuleList &module_list)
857 {
858     Mutex::Locker locker(module_list.GetMutex());
859 
860     size_t num_modules = module_list.GetSize();
861     for (size_t i = 0; i < num_modules; i++)
862     {
863         auto mod = module_list.GetModuleAtIndex(i);
864         if (IsRenderScriptModule(mod))
865         {
866             LoadModule(mod);
867         }
868     }
869 }
870 
871 //------------------------------------------------------------------
872 // PluginInterface protocol
873 //------------------------------------------------------------------
874 lldb_private::ConstString
875 RenderScriptRuntime::GetPluginName()
876 {
877     return GetPluginNameStatic();
878 }
879 
880 uint32_t
881 RenderScriptRuntime::GetPluginVersion()
882 {
883     return 1;
884 }
885 
886 bool
887 RenderScriptRuntime::IsVTableName(const char *name)
888 {
889     return false;
890 }
891 
892 bool
893 RenderScriptRuntime::GetDynamicTypeAndAddress(ValueObject &in_value, lldb::DynamicValueType use_dynamic,
894                                               TypeAndOrName &class_type_or_name, Address &address,
895                                               Value::ValueType &value_type)
896 {
897     return false;
898 }
899 
900 TypeAndOrName
901 RenderScriptRuntime::FixUpDynamicType(const TypeAndOrName &type_and_or_name, ValueObject &static_value)
902 {
903     return type_and_or_name;
904 }
905 
906 bool
907 RenderScriptRuntime::CouldHaveDynamicValue(ValueObject &in_value)
908 {
909     return false;
910 }
911 
912 lldb::BreakpointResolverSP
913 RenderScriptRuntime::CreateExceptionResolver(Breakpoint *bkpt, bool catch_bp, bool throw_bp)
914 {
915     BreakpointResolverSP resolver_sp;
916     return resolver_sp;
917 }
918 
919 const RenderScriptRuntime::HookDefn RenderScriptRuntime::s_runtimeHookDefns[] = {
920     // rsdScript
921     {
922         "rsdScriptInit",
923         "_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_7ScriptCEPKcS7_PKhjj",
924         "_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_7ScriptCEPKcS7_PKhmj",
925         0,
926         RenderScriptRuntime::eModuleKindDriver,
927         &lldb_private::RenderScriptRuntime::CaptureScriptInit
928     },
929     {
930         "rsdScriptInvokeForEachMulti",
931         "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0_6ScriptEjPPKNS0_10AllocationEjPS6_PKvjPK12RsScriptCall",
932         "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0_6ScriptEjPPKNS0_10AllocationEmPS6_PKvmPK12RsScriptCall",
933         0,
934         RenderScriptRuntime::eModuleKindDriver,
935         &lldb_private::RenderScriptRuntime::CaptureScriptInvokeForEachMulti
936     },
937     {
938         "rsdScriptSetGlobalVar",
939         "_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_6ScriptEjPvj",
940         "_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_6ScriptEjPvm",
941         0,
942         RenderScriptRuntime::eModuleKindDriver,
943         &lldb_private::RenderScriptRuntime::CaptureSetGlobalVar
944     },
945 
946     // rsdAllocation
947     {
948         "rsdAllocationInit",
949         "_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_10AllocationEb",
950         "_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_10AllocationEb",
951         0,
952         RenderScriptRuntime::eModuleKindDriver,
953         &lldb_private::RenderScriptRuntime::CaptureAllocationInit
954     },
955     {
956         "rsdAllocationRead2D",
957         "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_10AllocationEjjj23RsAllocationCubemapFacejjPvjj",
958         "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_10AllocationEjjj23RsAllocationCubemapFacejjPvmm",
959         0,
960         RenderScriptRuntime::eModuleKindDriver,
961         nullptr
962     },
963     {
964         "rsdAllocationDestroy",
965         "_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_10AllocationE",
966         "_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_10AllocationE",
967         0,
968         RenderScriptRuntime::eModuleKindDriver,
969         &lldb_private::RenderScriptRuntime::CaptureAllocationDestroy
970     },
971 };
972 
973 const size_t RenderScriptRuntime::s_runtimeHookCount = sizeof(s_runtimeHookDefns) / sizeof(s_runtimeHookDefns[0]);
974 
975 bool
976 RenderScriptRuntime::HookCallback(void *baton, StoppointCallbackContext *ctx, lldb::user_id_t break_id,
977                                   lldb::user_id_t break_loc_id)
978 {
979     RuntimeHook *hook_info = (RuntimeHook *)baton;
980     ExecutionContext context(ctx->exe_ctx_ref);
981 
982     RenderScriptRuntime *lang_rt =
983         (RenderScriptRuntime *)context.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
984 
985     lang_rt->HookCallback(hook_info, context);
986 
987     return false;
988 }
989 
990 void
991 RenderScriptRuntime::HookCallback(RuntimeHook *hook_info, ExecutionContext &context)
992 {
993     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
994 
995     if (log)
996         log->Printf("%s - '%s'", __FUNCTION__, hook_info->defn->name);
997 
998     if (hook_info->defn->grabber)
999     {
1000         (this->*(hook_info->defn->grabber))(hook_info, context);
1001     }
1002 }
1003 
1004 void
1005 RenderScriptRuntime::CaptureScriptInvokeForEachMulti(RuntimeHook* hook_info,
1006                                                      ExecutionContext& context)
1007 {
1008     Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1009 
1010     enum
1011     {
1012         eRsContext = 0,
1013         eRsScript,
1014         eRsSlot,
1015         eRsAIns,
1016         eRsInLen,
1017         eRsAOut,
1018         eRsUsr,
1019         eRsUsrLen,
1020         eRsSc,
1021     };
1022 
1023     std::array<ArgItem, 9> args = {
1024         ArgItem{ArgItem::ePointer, 0}, // const Context       *rsc
1025         ArgItem{ArgItem::ePointer, 0}, // Script              *s
1026         ArgItem{ArgItem::eInt32, 0},   // uint32_t             slot
1027         ArgItem{ArgItem::ePointer, 0}, // const Allocation   **aIns
1028         ArgItem{ArgItem::eInt32, 0},   // size_t               inLen
1029         ArgItem{ArgItem::ePointer, 0}, // Allocation          *aout
1030         ArgItem{ArgItem::ePointer, 0}, // const void          *usr
1031         ArgItem{ArgItem::eInt32, 0},   // size_t               usrLen
1032         ArgItem{ArgItem::ePointer, 0}, // const RsScriptCall  *sc
1033     };
1034 
1035     bool success = GetArgs(context, &args[0], args.size());
1036     if (!success)
1037     {
1038         if (log)
1039             log->Printf("%s - Error while reading the function parameters", __FUNCTION__);
1040         return;
1041     }
1042 
1043     const uint32_t target_ptr_size = m_process->GetAddressByteSize();
1044     Error error;
1045     std::vector<uint64_t> allocs;
1046 
1047     // traverse allocation list
1048     for (uint64_t i = 0; i < uint64_t(args[eRsInLen]); ++i)
1049     {
1050         // calculate offest to allocation pointer
1051         const addr_t addr = addr_t(args[eRsAIns]) + i * target_ptr_size;
1052 
1053         // Note: due to little endian layout, reading 32bits or 64bits into res64 will
1054         //       give the correct results.
1055 
1056         uint64_t res64 = 0;
1057         size_t read = m_process->ReadMemory(addr, &res64, target_ptr_size, error);
1058         if (read != target_ptr_size || !error.Success())
1059         {
1060             if (log)
1061                 log->Printf("%s - Error while reading allocation list argument %" PRIu64, __FUNCTION__, i);
1062         }
1063         else
1064         {
1065             allocs.push_back(res64);
1066         }
1067     }
1068 
1069     // if there is an output allocation track it
1070     if (uint64_t aOut = uint64_t(args[eRsAOut]))
1071     {
1072         allocs.push_back(aOut);
1073     }
1074 
1075     // for all allocations we have found
1076     for (const uint64_t alloc_addr : allocs)
1077     {
1078         AllocationDetails* alloc = LookUpAllocation(alloc_addr, true);
1079         if (alloc)
1080         {
1081             // save the allocation address
1082             if (alloc->address.isValid())
1083             {
1084                 // check the allocation address we already have matches
1085                 assert(*alloc->address.get() == alloc_addr);
1086             }
1087             else
1088             {
1089                 alloc->address = alloc_addr;
1090             }
1091 
1092             // save the context
1093             if (log)
1094             {
1095                 if (alloc->context.isValid() && *alloc->context.get() != addr_t(args[eRsContext]))
1096                     log->Printf("%s - Allocation used by multiple contexts", __FUNCTION__);
1097             }
1098             alloc->context = addr_t(args[eRsContext]);
1099         }
1100     }
1101 
1102     // make sure we track this script object
1103     if (lldb_private::RenderScriptRuntime::ScriptDetails *script = LookUpScript(addr_t(args[eRsScript]), true))
1104     {
1105         if (log)
1106         {
1107             if (script->context.isValid() && *script->context.get() != addr_t(args[eRsContext]))
1108                 log->Printf("%s - Script used by multiple contexts", __FUNCTION__);
1109         }
1110         script->context = addr_t(args[eRsContext]);
1111     }
1112 }
1113 
1114 void
1115 RenderScriptRuntime::CaptureSetGlobalVar(RuntimeHook *hook_info, ExecutionContext &context)
1116 {
1117     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1118 
1119     enum
1120     {
1121         eRsContext,
1122         eRsScript,
1123         eRsId,
1124         eRsData,
1125         eRsLength,
1126     };
1127 
1128     std::array<ArgItem, 5> args = {
1129         ArgItem{ArgItem::ePointer, 0}, // eRsContext
1130         ArgItem{ArgItem::ePointer, 0}, // eRsScript
1131         ArgItem{ArgItem::eInt32, 0},   // eRsId
1132         ArgItem{ArgItem::ePointer, 0}, // eRsData
1133         ArgItem{ArgItem::eInt32, 0},   // eRsLength
1134     };
1135 
1136     bool success = GetArgs(context, &args[0], args.size());
1137     if (!success)
1138     {
1139         if (log)
1140             log->Printf("%s - error reading the function parameters.", __FUNCTION__);
1141         return;
1142     }
1143 
1144     if (log)
1145     {
1146         log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " slot %" PRIu64 " = 0x%" PRIx64 ":%" PRIu64 "bytes.", __FUNCTION__,
1147                     uint64_t(args[eRsContext]), uint64_t(args[eRsScript]), uint64_t(args[eRsId]),
1148                     uint64_t(args[eRsData]), uint64_t(args[eRsLength]));
1149 
1150         addr_t script_addr = addr_t(args[eRsScript]);
1151         if (m_scriptMappings.find(script_addr) != m_scriptMappings.end())
1152         {
1153             auto rsm = m_scriptMappings[script_addr];
1154             if (uint64_t(args[eRsId]) < rsm->m_globals.size())
1155             {
1156                 auto rsg = rsm->m_globals[uint64_t(args[eRsId])];
1157                 log->Printf("%s - Setting of '%s' within '%s' inferred", __FUNCTION__, rsg.m_name.AsCString(),
1158                             rsm->m_module->GetFileSpec().GetFilename().AsCString());
1159             }
1160         }
1161     }
1162 }
1163 
1164 void
1165 RenderScriptRuntime::CaptureAllocationInit(RuntimeHook *hook_info, ExecutionContext &context)
1166 {
1167     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1168 
1169     enum
1170     {
1171         eRsContext,
1172         eRsAlloc,
1173         eRsForceZero
1174     };
1175 
1176     std::array<ArgItem, 3> args = {
1177         ArgItem{ArgItem::ePointer, 0}, // eRsContext
1178         ArgItem{ArgItem::ePointer, 0}, // eRsAlloc
1179         ArgItem{ArgItem::eBool, 0},    // eRsForceZero
1180     };
1181 
1182     bool success = GetArgs(context, &args[0], args.size());
1183     if (!success) // error case
1184     {
1185         if (log)
1186             log->Printf("%s - error while reading the function parameters", __FUNCTION__);
1187         return; // abort
1188     }
1189 
1190     if (log)
1191         log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 ",0x%" PRIx64 " .", __FUNCTION__, uint64_t(args[eRsContext]),
1192                     uint64_t(args[eRsAlloc]), uint64_t(args[eRsForceZero]));
1193 
1194     AllocationDetails *alloc = LookUpAllocation(uint64_t(args[eRsAlloc]), true);
1195     if (alloc)
1196         alloc->context = uint64_t(args[eRsContext]);
1197 }
1198 
1199 void
1200 RenderScriptRuntime::CaptureAllocationDestroy(RuntimeHook *hook_info, ExecutionContext &context)
1201 {
1202     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1203 
1204     enum
1205     {
1206         eRsContext,
1207         eRsAlloc,
1208     };
1209 
1210     std::array<ArgItem, 2> args = {
1211         ArgItem{ArgItem::ePointer, 0}, // eRsContext
1212         ArgItem{ArgItem::ePointer, 0}, // eRsAlloc
1213     };
1214 
1215     bool success = GetArgs(context, &args[0], args.size());
1216     if (!success)
1217     {
1218         if (log)
1219             log->Printf("%s - error while reading the function parameters.", __FUNCTION__);
1220         return;
1221     }
1222 
1223     if (log)
1224         log->Printf("%s - 0x%" PRIx64 ", 0x%" PRIx64 ".", __FUNCTION__, uint64_t(args[eRsContext]),
1225                     uint64_t(args[eRsAlloc]));
1226 
1227     for (auto iter = m_allocations.begin(); iter != m_allocations.end(); ++iter)
1228     {
1229         auto &allocation_ap = *iter; // get the unique pointer
1230         if (allocation_ap->address.isValid() && *allocation_ap->address.get() == addr_t(args[eRsAlloc]))
1231         {
1232             m_allocations.erase(iter);
1233             if (log)
1234                 log->Printf("%s - deleted allocation entry.", __FUNCTION__);
1235             return;
1236         }
1237     }
1238 
1239     if (log)
1240         log->Printf("%s - couldn't find destroyed allocation.", __FUNCTION__);
1241 }
1242 
1243 void
1244 RenderScriptRuntime::CaptureScriptInit(RuntimeHook *hook_info, ExecutionContext &context)
1245 {
1246     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1247 
1248     Error error;
1249     Process *process = context.GetProcessPtr();
1250 
1251     enum
1252     {
1253         eRsContext,
1254         eRsScript,
1255         eRsResNamePtr,
1256         eRsCachedDirPtr
1257     };
1258 
1259     std::array<ArgItem, 4> args = {ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0},
1260                                    ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}};
1261     bool success = GetArgs(context, &args[0], args.size());
1262     if (!success)
1263     {
1264         if (log)
1265             log->Printf("%s - error while reading the function parameters.", __FUNCTION__);
1266         return;
1267     }
1268 
1269     std::string resname;
1270     process->ReadCStringFromMemory(addr_t(args[eRsResNamePtr]), resname, error);
1271     if (error.Fail())
1272     {
1273         if (log)
1274             log->Printf("%s - error reading resname: %s.", __FUNCTION__, error.AsCString());
1275     }
1276 
1277     std::string cachedir;
1278     process->ReadCStringFromMemory(addr_t(args[eRsCachedDirPtr]), cachedir, error);
1279     if (error.Fail())
1280     {
1281         if (log)
1282             log->Printf("%s - error reading cachedir: %s.", __FUNCTION__, error.AsCString());
1283     }
1284 
1285     if (log)
1286         log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " => '%s' at '%s' .", __FUNCTION__, uint64_t(args[eRsContext]),
1287                     uint64_t(args[eRsScript]), resname.c_str(), cachedir.c_str());
1288 
1289     if (resname.size() > 0)
1290     {
1291         StreamString strm;
1292         strm.Printf("librs.%s.so", resname.c_str());
1293 
1294         ScriptDetails *script = LookUpScript(addr_t(args[eRsScript]), true);
1295         if (script)
1296         {
1297             script->type = ScriptDetails::eScriptC;
1298             script->cacheDir = cachedir;
1299             script->resName = resname;
1300             script->scriptDyLib = strm.GetData();
1301             script->context = addr_t(args[eRsContext]);
1302         }
1303 
1304         if (log)
1305             log->Printf("%s - '%s' tagged with context 0x%" PRIx64 " and script 0x%" PRIx64 ".", __FUNCTION__,
1306                         strm.GetData(), uint64_t(args[eRsContext]), uint64_t(args[eRsScript]));
1307     }
1308     else if (log)
1309     {
1310         log->Printf("%s - resource name invalid, Script not tagged.", __FUNCTION__);
1311     }
1312 }
1313 
1314 void
1315 RenderScriptRuntime::LoadRuntimeHooks(lldb::ModuleSP module, ModuleKind kind)
1316 {
1317     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1318 
1319     if (!module)
1320     {
1321         return;
1322     }
1323 
1324     Target &target = GetProcess()->GetTarget();
1325     llvm::Triple::ArchType targetArchType = target.GetArchitecture().GetMachine();
1326 
1327     if (targetArchType != llvm::Triple::ArchType::x86 &&
1328         targetArchType != llvm::Triple::ArchType::arm &&
1329         targetArchType != llvm::Triple::ArchType::aarch64 &&
1330         targetArchType != llvm::Triple::ArchType::mipsel &&
1331         targetArchType != llvm::Triple::ArchType::mips64el &&
1332         targetArchType != llvm::Triple::ArchType::x86_64)
1333     {
1334         if (log)
1335             log->Printf("%s - unable to hook runtime functions.", __FUNCTION__);
1336         return;
1337     }
1338 
1339     uint32_t archByteSize = target.GetArchitecture().GetAddressByteSize();
1340 
1341     for (size_t idx = 0; idx < s_runtimeHookCount; idx++)
1342     {
1343         const HookDefn *hook_defn = &s_runtimeHookDefns[idx];
1344         if (hook_defn->kind != kind)
1345         {
1346             continue;
1347         }
1348 
1349         const char *symbol_name = (archByteSize == 4) ? hook_defn->symbol_name_m32 : hook_defn->symbol_name_m64;
1350 
1351         const Symbol *sym = module->FindFirstSymbolWithNameAndType(ConstString(symbol_name), eSymbolTypeCode);
1352         if (!sym)
1353         {
1354             if (log)
1355             {
1356                 log->Printf("%s - symbol '%s' related to the function %s not found",
1357                             __FUNCTION__, symbol_name, hook_defn->name);
1358             }
1359             continue;
1360         }
1361 
1362         addr_t addr = sym->GetLoadAddress(&target);
1363         if (addr == LLDB_INVALID_ADDRESS)
1364         {
1365             if (log)
1366                 log->Printf("%s - unable to resolve the address of hook function '%s' with symbol '%s'.",
1367                             __FUNCTION__, hook_defn->name, symbol_name);
1368             continue;
1369         }
1370         else
1371         {
1372             if (log)
1373                 log->Printf("%s - function %s, address resolved at 0x%" PRIx64,
1374                             __FUNCTION__, hook_defn->name, addr);
1375         }
1376 
1377         RuntimeHookSP hook(new RuntimeHook());
1378         hook->address = addr;
1379         hook->defn = hook_defn;
1380         hook->bp_sp = target.CreateBreakpoint(addr, true, false);
1381         hook->bp_sp->SetCallback(HookCallback, hook.get(), true);
1382         m_runtimeHooks[addr] = hook;
1383         if (log)
1384         {
1385             log->Printf("%s - successfully hooked '%s' in '%s' version %" PRIu64 " at 0x%" PRIx64 ".",
1386                         __FUNCTION__, hook_defn->name, module->GetFileSpec().GetFilename().AsCString(),
1387                         (uint64_t)hook_defn->version, (uint64_t)addr);
1388         }
1389     }
1390 }
1391 
1392 void
1393 RenderScriptRuntime::FixupScriptDetails(RSModuleDescriptorSP rsmodule_sp)
1394 {
1395     if (!rsmodule_sp)
1396         return;
1397 
1398     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1399 
1400     const ModuleSP module = rsmodule_sp->m_module;
1401     const FileSpec &file = module->GetPlatformFileSpec();
1402 
1403     // Iterate over all of the scripts that we currently know of.
1404     // Note: We cant push or pop to m_scripts here or it may invalidate rs_script.
1405     for (const auto &rs_script : m_scripts)
1406     {
1407         // Extract the expected .so file path for this script.
1408         std::string dylib;
1409         if (!rs_script->scriptDyLib.get(dylib))
1410             continue;
1411 
1412         // Only proceed if the module that has loaded corresponds to this script.
1413         if (file.GetFilename() != ConstString(dylib.c_str()))
1414             continue;
1415 
1416         // Obtain the script address which we use as a key.
1417         lldb::addr_t script;
1418         if (!rs_script->script.get(script))
1419             continue;
1420 
1421         // If we have a script mapping for the current script.
1422         if (m_scriptMappings.find(script) != m_scriptMappings.end())
1423         {
1424             // if the module we have stored is different to the one we just received.
1425             if (m_scriptMappings[script] != rsmodule_sp)
1426             {
1427                 if (log)
1428                     log->Printf("%s - script %" PRIx64 " wants reassigned to new rsmodule '%s'.", __FUNCTION__,
1429                                 (uint64_t)script, rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString());
1430             }
1431         }
1432         // We don't have a script mapping for the current script.
1433         else
1434         {
1435             // Obtain the script resource name.
1436             std::string resName;
1437             if (rs_script->resName.get(resName))
1438                 // Set the modules resource name.
1439                 rsmodule_sp->m_resname = resName;
1440             // Add Script/Module pair to map.
1441             m_scriptMappings[script] = rsmodule_sp;
1442             if (log)
1443                 log->Printf("%s - script %" PRIx64 " associated with rsmodule '%s'.", __FUNCTION__,
1444                             (uint64_t)script, rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString());
1445         }
1446     }
1447 }
1448 
1449 // Uses the Target API to evaluate the expression passed as a parameter to the function
1450 // The result of that expression is returned an unsigned 64 bit int, via the result* paramter.
1451 // Function returns true on success, and false on failure
1452 bool
1453 RenderScriptRuntime::EvalRSExpression(const char *expression, StackFrame *frame_ptr, uint64_t *result)
1454 {
1455     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1456     if (log)
1457         log->Printf("%s(%s)", __FUNCTION__, expression);
1458 
1459     ValueObjectSP expr_result;
1460     // Perform the actual expression evaluation
1461     GetProcess()->GetTarget().EvaluateExpression(expression, frame_ptr, expr_result);
1462 
1463     if (!expr_result)
1464     {
1465         if (log)
1466             log->Printf("%s: couldn't evaluate expression.", __FUNCTION__);
1467         return false;
1468     }
1469 
1470     // The result of the expression is invalid
1471     if (!expr_result->GetError().Success())
1472     {
1473         Error err = expr_result->GetError();
1474         if (err.GetError() == UserExpression::kNoResult) // Expression returned void, so this is actually a success
1475         {
1476             if (log)
1477                 log->Printf("%s - expression returned void.", __FUNCTION__);
1478 
1479             result = nullptr;
1480             return true;
1481         }
1482 
1483         if (log)
1484             log->Printf("%s - error evaluating expression result: %s", __FUNCTION__,
1485                         err.AsCString());
1486         return false;
1487     }
1488 
1489     bool success = false;
1490     *result = expr_result->GetValueAsUnsigned(0, &success); // We only read the result as an uint32_t.
1491 
1492     if (!success)
1493     {
1494         if (log)
1495             log->Printf("%s - couldn't convert expression result to uint32_t", __FUNCTION__);
1496         return false;
1497     }
1498 
1499     return true;
1500 }
1501 
1502 namespace
1503 {
1504 // Used to index expression format strings
1505 enum ExpressionStrings
1506 {
1507    eExprGetOffsetPtr = 0,
1508    eExprAllocGetType,
1509    eExprTypeDimX,
1510    eExprTypeDimY,
1511    eExprTypeDimZ,
1512    eExprTypeElemPtr,
1513    eExprElementType,
1514    eExprElementKind,
1515    eExprElementVec,
1516    eExprElementFieldCount,
1517    eExprSubelementsId,
1518    eExprSubelementsName,
1519    eExprSubelementsArrSize,
1520 
1521    _eExprLast // keep at the end, implicit size of the array runtimeExpressions
1522 };
1523 
1524 // max length of an expanded expression
1525 const int jit_max_expr_size = 512;
1526 
1527 // Retrieve the string to JIT for the given expression
1528 const char*
1529 JITTemplate(ExpressionStrings e)
1530 {
1531     // Format strings containing the expressions we may need to evaluate.
1532     static std::array<const char*, _eExprLast> runtimeExpressions = {{
1533      // Mangled GetOffsetPointer(Allocation*, xoff, yoff, zoff, lod, cubemap)
1534      "(int*)_Z12GetOffsetPtrPKN7android12renderscript10AllocationEjjjj23RsAllocationCubemapFace(0x%lx, %u, %u, %u, 0, 0)",
1535 
1536      // Type* rsaAllocationGetType(Context*, Allocation*)
1537      "(void*)rsaAllocationGetType(0x%lx, 0x%lx)",
1538 
1539      // rsaTypeGetNativeData(Context*, Type*, void* typeData, size)
1540      // Pack the data in the following way mHal.state.dimX; mHal.state.dimY; mHal.state.dimZ;
1541      // mHal.state.lodCount; mHal.state.faces; mElement; into typeData
1542      // Need to specify 32 or 64 bit for uint_t since this differs between devices
1543      "uint%u_t data[6]; (void*)rsaTypeGetNativeData(0x%lx, 0x%lx, data, 6); data[0]", // X dim
1544      "uint%u_t data[6]; (void*)rsaTypeGetNativeData(0x%lx, 0x%lx, data, 6); data[1]", // Y dim
1545      "uint%u_t data[6]; (void*)rsaTypeGetNativeData(0x%lx, 0x%lx, data, 6); data[2]", // Z dim
1546      "uint%u_t data[6]; (void*)rsaTypeGetNativeData(0x%lx, 0x%lx, data, 6); data[5]", // Element ptr
1547 
1548      // rsaElementGetNativeData(Context*, Element*, uint32_t* elemData,size)
1549      // Pack mType; mKind; mNormalized; mVectorSize; NumSubElements into elemData
1550      "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%lx, 0x%lx, data, 5); data[0]", // Type
1551      "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%lx, 0x%lx, data, 5); data[1]", // Kind
1552      "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%lx, 0x%lx, data, 5); data[3]", // Vector Size
1553      "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%lx, 0x%lx, data, 5); data[4]", // Field Count
1554 
1555       // rsaElementGetSubElements(RsContext con, RsElement elem, uintptr_t *ids, const char **names,
1556       // size_t *arraySizes, uint32_t dataSize)
1557       // Needed for Allocations of structs to gather details about fields/Subelements
1558      "void *ids[%u]; const char *names[%u]; size_t arr_size[%u];"
1559      "(void*)rsaElementGetSubElements(0x%lx, 0x%lx, ids, names, arr_size, %u); ids[%u]",     // Element* of field
1560 
1561      "void *ids[%u]; const char *names[%u]; size_t arr_size[%u];"
1562      "(void*)rsaElementGetSubElements(0x%lx, 0x%lx, ids, names, arr_size, %u); names[%u]",   // Name of field
1563 
1564      "void *ids[%u]; const char *names[%u]; size_t arr_size[%u];"
1565      "(void*)rsaElementGetSubElements(0x%lx, 0x%lx, ids, names, arr_size, %u); arr_size[%u]" // Array size of field
1566     }};
1567 
1568     return runtimeExpressions[e];
1569 }
1570 } // end of the anonymous namespace
1571 
1572 
1573 // JITs the RS runtime for the internal data pointer of an allocation.
1574 // Is passed x,y,z coordinates for the pointer to a specific element.
1575 // Then sets the data_ptr member in Allocation with the result.
1576 // Returns true on success, false otherwise
1577 bool
1578 RenderScriptRuntime::JITDataPointer(AllocationDetails *allocation, StackFrame *frame_ptr, uint32_t x,
1579                                     uint32_t y, uint32_t z)
1580 {
1581     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1582 
1583     if (!allocation->address.isValid())
1584     {
1585         if (log)
1586             log->Printf("%s - failed to find allocation details.", __FUNCTION__);
1587         return false;
1588     }
1589 
1590     const char *expr_cstr = JITTemplate(eExprGetOffsetPtr);
1591     char buffer[jit_max_expr_size];
1592 
1593     int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->address.get(), x, y, z);
1594     if (chars_written < 0)
1595     {
1596         if (log)
1597             log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
1598         return false;
1599     }
1600     else if (chars_written >= jit_max_expr_size)
1601     {
1602         if (log)
1603             log->Printf("%s - expression too long.", __FUNCTION__);
1604         return false;
1605     }
1606 
1607     uint64_t result = 0;
1608     if (!EvalRSExpression(buffer, frame_ptr, &result))
1609         return false;
1610 
1611     addr_t mem_ptr = static_cast<lldb::addr_t>(result);
1612     allocation->data_ptr = mem_ptr;
1613 
1614     return true;
1615 }
1616 
1617 // JITs the RS runtime for the internal pointer to the RS Type of an allocation
1618 // Then sets the type_ptr member in Allocation with the result.
1619 // Returns true on success, false otherwise
1620 bool
1621 RenderScriptRuntime::JITTypePointer(AllocationDetails *allocation, StackFrame *frame_ptr)
1622 {
1623     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1624 
1625     if (!allocation->address.isValid() || !allocation->context.isValid())
1626     {
1627         if (log)
1628             log->Printf("%s - failed to find allocation details.", __FUNCTION__);
1629         return false;
1630     }
1631 
1632     const char *expr_cstr = JITTemplate(eExprAllocGetType);
1633     char buffer[jit_max_expr_size];
1634 
1635     int chars_written =
1636         snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->context.get(), *allocation->address.get());
1637     if (chars_written < 0)
1638     {
1639         if (log)
1640             log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
1641         return false;
1642     }
1643     else if (chars_written >= jit_max_expr_size)
1644     {
1645         if (log)
1646             log->Printf("%s - expression too long.", __FUNCTION__);
1647         return false;
1648     }
1649 
1650     uint64_t result = 0;
1651     if (!EvalRSExpression(buffer, frame_ptr, &result))
1652         return false;
1653 
1654     addr_t type_ptr = static_cast<lldb::addr_t>(result);
1655     allocation->type_ptr = type_ptr;
1656 
1657     return true;
1658 }
1659 
1660 // JITs the RS runtime for information about the dimensions and type of an allocation
1661 // Then sets dimension and element_ptr members in Allocation with the result.
1662 // Returns true on success, false otherwise
1663 bool
1664 RenderScriptRuntime::JITTypePacked(AllocationDetails *allocation, StackFrame *frame_ptr)
1665 {
1666     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1667 
1668     if (!allocation->type_ptr.isValid() || !allocation->context.isValid())
1669     {
1670         if (log)
1671             log->Printf("%s - Failed to find allocation details.", __FUNCTION__);
1672         return false;
1673     }
1674 
1675     // Expression is different depending on if device is 32 or 64 bit
1676     uint32_t archByteSize = GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
1677     const uint32_t bits = archByteSize == 4 ? 32 : 64;
1678 
1679     // We want 4 elements from packed data
1680     const uint32_t num_exprs = 4;
1681     assert(num_exprs == (eExprTypeElemPtr - eExprTypeDimX + 1) && "Invalid number of expressions");
1682 
1683     char buffer[num_exprs][jit_max_expr_size];
1684     uint64_t results[num_exprs];
1685 
1686     for (uint32_t i = 0; i < num_exprs; ++i)
1687     {
1688         const char *expr_cstr = JITTemplate(ExpressionStrings(eExprTypeDimX + i));
1689         int chars_written = snprintf(buffer[i], jit_max_expr_size, expr_cstr, bits, *allocation->context.get(),
1690                                      *allocation->type_ptr.get());
1691         if (chars_written < 0)
1692         {
1693             if (log)
1694                 log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
1695             return false;
1696         }
1697         else if (chars_written >= jit_max_expr_size)
1698         {
1699             if (log)
1700                 log->Printf("%s - expression too long.", __FUNCTION__);
1701             return false;
1702         }
1703 
1704         // Perform expression evaluation
1705         if (!EvalRSExpression(buffer[i], frame_ptr, &results[i]))
1706             return false;
1707     }
1708 
1709     // Assign results to allocation members
1710     AllocationDetails::Dimension dims;
1711     dims.dim_1 = static_cast<uint32_t>(results[0]);
1712     dims.dim_2 = static_cast<uint32_t>(results[1]);
1713     dims.dim_3 = static_cast<uint32_t>(results[2]);
1714     allocation->dimension = dims;
1715 
1716     addr_t elem_ptr = static_cast<lldb::addr_t>(results[3]);
1717     allocation->element.element_ptr = elem_ptr;
1718 
1719     if (log)
1720         log->Printf("%s - dims (%" PRIu32 ", %" PRIu32 ", %" PRIu32 ") Element*: 0x%" PRIx64 ".", __FUNCTION__,
1721                     dims.dim_1, dims.dim_2, dims.dim_3, elem_ptr);
1722 
1723     return true;
1724 }
1725 
1726 // JITs the RS runtime for information about the Element of an allocation
1727 // Then sets type, type_vec_size, field_count and type_kind members in Element with the result.
1728 // Returns true on success, false otherwise
1729 bool
1730 RenderScriptRuntime::JITElementPacked(Element &elem, const lldb::addr_t context, StackFrame *frame_ptr)
1731 {
1732     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1733 
1734     if (!elem.element_ptr.isValid())
1735     {
1736         if (log)
1737             log->Printf("%s - failed to find allocation details.", __FUNCTION__);
1738         return false;
1739     }
1740 
1741     // We want 4 elements from packed data
1742     const uint32_t num_exprs = 4;
1743     assert(num_exprs == (eExprElementFieldCount - eExprElementType + 1) && "Invalid number of expressions");
1744 
1745     char buffer[num_exprs][jit_max_expr_size];
1746     uint64_t results[num_exprs];
1747 
1748     for (uint32_t i = 0; i < num_exprs; i++)
1749     {
1750         const char *expr_cstr = JITTemplate(ExpressionStrings(eExprElementType + i));
1751         int chars_written = snprintf(buffer[i], jit_max_expr_size, expr_cstr, context, *elem.element_ptr.get());
1752         if (chars_written < 0)
1753         {
1754             if (log)
1755                 log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
1756             return false;
1757         }
1758         else if (chars_written >= jit_max_expr_size)
1759         {
1760             if (log)
1761                 log->Printf("%s - expression too long.", __FUNCTION__);
1762             return false;
1763         }
1764 
1765         // Perform expression evaluation
1766         if (!EvalRSExpression(buffer[i], frame_ptr, &results[i]))
1767             return false;
1768     }
1769 
1770     // Assign results to allocation members
1771     elem.type = static_cast<RenderScriptRuntime::Element::DataType>(results[0]);
1772     elem.type_kind = static_cast<RenderScriptRuntime::Element::DataKind>(results[1]);
1773     elem.type_vec_size = static_cast<uint32_t>(results[2]);
1774     elem.field_count = static_cast<uint32_t>(results[3]);
1775 
1776     if (log)
1777         log->Printf("%s - data type %" PRIu32 ", pixel type %" PRIu32 ", vector size %" PRIu32 ", field count %" PRIu32,
1778                     __FUNCTION__, *elem.type.get(), *elem.type_kind.get(), *elem.type_vec_size.get(), *elem.field_count.get());
1779 
1780     // If this Element has subelements then JIT rsaElementGetSubElements() for details about its fields
1781     if (*elem.field_count.get() > 0 && !JITSubelements(elem, context, frame_ptr))
1782         return false;
1783 
1784     return true;
1785 }
1786 
1787 // JITs the RS runtime for information about the subelements/fields of a struct allocation
1788 // This is necessary for infering the struct type so we can pretty print the allocation's contents.
1789 // Returns true on success, false otherwise
1790 bool
1791 RenderScriptRuntime::JITSubelements(Element &elem, const lldb::addr_t context, StackFrame *frame_ptr)
1792 {
1793     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1794 
1795     if (!elem.element_ptr.isValid() || !elem.field_count.isValid())
1796     {
1797         if (log)
1798             log->Printf("%s - failed to find allocation details.", __FUNCTION__);
1799         return false;
1800     }
1801 
1802     const short num_exprs = 3;
1803     assert(num_exprs == (eExprSubelementsArrSize - eExprSubelementsId + 1) && "Invalid number of expressions");
1804 
1805     char expr_buffer[jit_max_expr_size];
1806     uint64_t results;
1807 
1808     // Iterate over struct fields.
1809     const uint32_t field_count = *elem.field_count.get();
1810     for (uint32_t field_index = 0; field_index < field_count; ++field_index)
1811     {
1812         Element child;
1813         for (uint32_t expr_index = 0; expr_index < num_exprs; ++expr_index)
1814         {
1815             const char *expr_cstr = JITTemplate(ExpressionStrings(eExprSubelementsId + expr_index));
1816             int chars_written = snprintf(expr_buffer, jit_max_expr_size, expr_cstr,
1817                                          field_count, field_count, field_count,
1818                                          context, *elem.element_ptr.get(), field_count, field_index);
1819             if (chars_written < 0)
1820             {
1821                 if (log)
1822                     log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
1823                 return false;
1824             }
1825             else if (chars_written >= jit_max_expr_size)
1826             {
1827                 if (log)
1828                     log->Printf("%s - expression too long.", __FUNCTION__);
1829                 return false;
1830             }
1831 
1832             // Perform expression evaluation
1833             if (!EvalRSExpression(expr_buffer, frame_ptr, &results))
1834                 return false;
1835 
1836             if (log)
1837                 log->Printf("%s - expr result 0x%" PRIx64 ".", __FUNCTION__, results);
1838 
1839             switch (expr_index)
1840             {
1841                 case 0: // Element* of child
1842                     child.element_ptr = static_cast<addr_t>(results);
1843                     break;
1844                 case 1: // Name of child
1845                 {
1846                     lldb::addr_t address = static_cast<addr_t>(results);
1847                     Error err;
1848                     std::string name;
1849                     GetProcess()->ReadCStringFromMemory(address, name, err);
1850                     if (!err.Fail())
1851                         child.type_name = ConstString(name);
1852                     else
1853                     {
1854                         if (log)
1855                             log->Printf("%s - warning: Couldn't read field name.", __FUNCTION__);
1856                     }
1857                     break;
1858                 }
1859                 case 2: // Array size of child
1860                     child.array_size = static_cast<uint32_t>(results);
1861                     break;
1862             }
1863         }
1864 
1865         // We need to recursively JIT each Element field of the struct since
1866         // structs can be nested inside structs.
1867         if (!JITElementPacked(child, context, frame_ptr))
1868             return false;
1869         elem.children.push_back(child);
1870     }
1871 
1872     // Try to infer the name of the struct type so we can pretty print the allocation contents.
1873     FindStructTypeName(elem, frame_ptr);
1874 
1875     return true;
1876 }
1877 
1878 // JITs the RS runtime for the address of the last element in the allocation.
1879 // The `elem_size` paramter represents the size of a single element, including padding.
1880 // Which is needed as an offset from the last element pointer.
1881 // Using this offset minus the starting address we can calculate the size of the allocation.
1882 // Returns true on success, false otherwise
1883 bool
1884 RenderScriptRuntime::JITAllocationSize(AllocationDetails *allocation, StackFrame *frame_ptr)
1885 {
1886     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1887 
1888     if (!allocation->address.isValid() || !allocation->dimension.isValid() || !allocation->data_ptr.isValid() ||
1889         !allocation->element.datum_size.isValid())
1890     {
1891         if (log)
1892             log->Printf("%s - failed to find allocation details.", __FUNCTION__);
1893         return false;
1894     }
1895 
1896     // Find dimensions
1897     uint32_t dim_x = allocation->dimension.get()->dim_1;
1898     uint32_t dim_y = allocation->dimension.get()->dim_2;
1899     uint32_t dim_z = allocation->dimension.get()->dim_3;
1900 
1901     // Our plan of jitting the last element address doesn't seem to work for struct Allocations
1902     // Instead try to infer the size ourselves without any inter element padding.
1903     if (allocation->element.children.size() > 0)
1904     {
1905         if (dim_x == 0) dim_x = 1;
1906         if (dim_y == 0) dim_y = 1;
1907         if (dim_z == 0) dim_z = 1;
1908 
1909         allocation->size = dim_x * dim_y * dim_z * *allocation->element.datum_size.get();
1910 
1911         if (log)
1912             log->Printf("%s - infered size of struct allocation %" PRIu32 ".", __FUNCTION__,
1913                         *allocation->size.get());
1914         return true;
1915     }
1916 
1917     const char *expr_cstr = JITTemplate(eExprGetOffsetPtr);
1918     char buffer[jit_max_expr_size];
1919 
1920     // Calculate last element
1921     dim_x = dim_x == 0 ? 0 : dim_x - 1;
1922     dim_y = dim_y == 0 ? 0 : dim_y - 1;
1923     dim_z = dim_z == 0 ? 0 : dim_z - 1;
1924 
1925     int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->address.get(), dim_x, dim_y, dim_z);
1926     if (chars_written < 0)
1927     {
1928         if (log)
1929             log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
1930         return false;
1931     }
1932     else if (chars_written >= jit_max_expr_size)
1933     {
1934         if (log)
1935             log->Printf("%s - expression too long.", __FUNCTION__);
1936         return false;
1937     }
1938 
1939     uint64_t result = 0;
1940     if (!EvalRSExpression(buffer, frame_ptr, &result))
1941         return false;
1942 
1943     addr_t mem_ptr = static_cast<lldb::addr_t>(result);
1944     // Find pointer to last element and add on size of an element
1945     allocation->size =
1946         static_cast<uint32_t>(mem_ptr - *allocation->data_ptr.get()) + *allocation->element.datum_size.get();
1947 
1948     return true;
1949 }
1950 
1951 // JITs the RS runtime for information about the stride between rows in the allocation.
1952 // This is done to detect padding, since allocated memory is 16-byte aligned.
1953 // Returns true on success, false otherwise
1954 bool
1955 RenderScriptRuntime::JITAllocationStride(AllocationDetails *allocation, StackFrame *frame_ptr)
1956 {
1957     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1958 
1959     if (!allocation->address.isValid() || !allocation->data_ptr.isValid())
1960     {
1961         if (log)
1962             log->Printf("%s - failed to find allocation details.", __FUNCTION__);
1963         return false;
1964     }
1965 
1966     const char *expr_cstr = JITTemplate(eExprGetOffsetPtr);
1967     char buffer[jit_max_expr_size];
1968 
1969     int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->address.get(), 0, 1, 0);
1970     if (chars_written < 0)
1971     {
1972         if (log)
1973             log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
1974         return false;
1975     }
1976     else if (chars_written >= jit_max_expr_size)
1977     {
1978         if (log)
1979             log->Printf("%s - expression too long.", __FUNCTION__);
1980         return false;
1981     }
1982 
1983     uint64_t result = 0;
1984     if (!EvalRSExpression(buffer, frame_ptr, &result))
1985         return false;
1986 
1987     addr_t mem_ptr = static_cast<lldb::addr_t>(result);
1988     allocation->stride = static_cast<uint32_t>(mem_ptr - *allocation->data_ptr.get());
1989 
1990     return true;
1991 }
1992 
1993 // JIT all the current runtime info regarding an allocation
1994 bool
1995 RenderScriptRuntime::RefreshAllocation(AllocationDetails *allocation, StackFrame *frame_ptr)
1996 {
1997     // GetOffsetPointer()
1998     if (!JITDataPointer(allocation, frame_ptr))
1999         return false;
2000 
2001     // rsaAllocationGetType()
2002     if (!JITTypePointer(allocation, frame_ptr))
2003         return false;
2004 
2005     // rsaTypeGetNativeData()
2006     if (!JITTypePacked(allocation, frame_ptr))
2007         return false;
2008 
2009     // rsaElementGetNativeData()
2010     if (!JITElementPacked(allocation->element, *allocation->context.get(), frame_ptr))
2011         return false;
2012 
2013     // Sets the datum_size member in Element
2014     SetElementSize(allocation->element);
2015 
2016     // Use GetOffsetPointer() to infer size of the allocation
2017     if (!JITAllocationSize(allocation, frame_ptr))
2018         return false;
2019 
2020     return true;
2021 }
2022 
2023 // Function attempts to set the type_name member of the paramaterised Element object.
2024 // This string should be the name of the struct type the Element represents.
2025 // We need this string for pretty printing the Element to users.
2026 void
2027 RenderScriptRuntime::FindStructTypeName(Element &elem, StackFrame *frame_ptr)
2028 {
2029     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2030 
2031     if (!elem.type_name.IsEmpty()) // Name already set
2032         return;
2033     else
2034         elem.type_name = Element::GetFallbackStructName(); // Default type name if we don't succeed
2035 
2036     // Find all the global variables from the script rs modules
2037     VariableList variable_list;
2038     for (auto module_sp : m_rsmodules)
2039         module_sp->m_module->FindGlobalVariables(RegularExpression("."), true, UINT32_MAX, variable_list);
2040 
2041     // Iterate over all the global variables looking for one with a matching type to the Element.
2042     // We make the assumption a match exists since there needs to be a global variable to reflect the
2043     // struct type back into java host code.
2044     for (uint32_t var_index = 0; var_index < variable_list.GetSize(); ++var_index)
2045     {
2046         const VariableSP var_sp(variable_list.GetVariableAtIndex(var_index));
2047         if (!var_sp)
2048             continue;
2049 
2050         ValueObjectSP valobj_sp = ValueObjectVariable::Create(frame_ptr, var_sp);
2051         if (!valobj_sp)
2052             continue;
2053 
2054         // Find the number of variable fields.
2055         // If it has no fields, or more fields than our Element, then it can't be the struct we're looking for.
2056         // Don't check for equality since RS can add extra struct members for padding.
2057         size_t num_children = valobj_sp->GetNumChildren();
2058         if (num_children > elem.children.size() || num_children == 0)
2059             continue;
2060 
2061         // Iterate over children looking for members with matching field names.
2062         // If all the field names match, this is likely the struct we want.
2063         //
2064         //   TODO: This could be made more robust by also checking children data sizes, or array size
2065         bool found = true;
2066         for (size_t child_index = 0; child_index < num_children; ++child_index)
2067         {
2068             ValueObjectSP child = valobj_sp->GetChildAtIndex(child_index, true);
2069             if (!child || (child->GetName() != elem.children[child_index].type_name))
2070             {
2071                 found = false;
2072                 break;
2073             }
2074         }
2075 
2076         // RS can add extra struct members for padding in the format '#rs_padding_[0-9]+'
2077         if (found && num_children < elem.children.size())
2078         {
2079             const uint32_t size_diff = elem.children.size() - num_children;
2080             if (log)
2081                 log->Printf("%s - %" PRIu32 " padding struct entries", __FUNCTION__, size_diff);
2082 
2083             for (uint32_t padding_index = 0; padding_index < size_diff; ++padding_index)
2084             {
2085                 const ConstString &name = elem.children[num_children + padding_index].type_name;
2086                 if (strcmp(name.AsCString(), "#rs_padding") < 0)
2087                     found = false;
2088             }
2089         }
2090 
2091         // We've found a global var with matching type
2092         if (found)
2093         {
2094             // Dereference since our Element type isn't a pointer.
2095             if (valobj_sp->IsPointerType())
2096             {
2097                 Error err;
2098                 ValueObjectSP deref_valobj = valobj_sp->Dereference(err);
2099                 if (!err.Fail())
2100                     valobj_sp = deref_valobj;
2101             }
2102 
2103             // Save name of variable in Element.
2104             elem.type_name = valobj_sp->GetTypeName();
2105             if (log)
2106                 log->Printf("%s - element name set to %s", __FUNCTION__, elem.type_name.AsCString());
2107 
2108             return;
2109         }
2110     }
2111 }
2112 
2113 // Function sets the datum_size member of Element. Representing the size of a single instance including padding.
2114 // Assumes the relevant allocation information has already been jitted.
2115 void
2116 RenderScriptRuntime::SetElementSize(Element &elem)
2117 {
2118     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2119     const Element::DataType type = *elem.type.get();
2120     assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && "Invalid allocation type");
2121 
2122     const uint32_t vec_size = *elem.type_vec_size.get();
2123     uint32_t data_size = 0;
2124     uint32_t padding = 0;
2125 
2126     // Element is of a struct type, calculate size recursively.
2127     if ((type == Element::RS_TYPE_NONE) && (elem.children.size() > 0))
2128     {
2129         for (Element &child : elem.children)
2130         {
2131             SetElementSize(child);
2132             const uint32_t array_size = child.array_size.isValid() ? *child.array_size.get() : 1;
2133             data_size += *child.datum_size.get() * array_size;
2134         }
2135     }
2136     // These have been packed already
2137     else if (type == Element::RS_TYPE_UNSIGNED_5_6_5   ||
2138              type == Element::RS_TYPE_UNSIGNED_5_5_5_1 ||
2139              type == Element::RS_TYPE_UNSIGNED_4_4_4_4)
2140     {
2141         data_size = AllocationDetails::RSTypeToFormat[type][eElementSize];
2142     }
2143     else if (type < Element::RS_TYPE_ELEMENT)
2144     {
2145         data_size = vec_size * AllocationDetails::RSTypeToFormat[type][eElementSize];
2146         if (vec_size == 3)
2147             padding = AllocationDetails::RSTypeToFormat[type][eElementSize];
2148     }
2149     else
2150         data_size = GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
2151 
2152     elem.padding = padding;
2153     elem.datum_size = data_size + padding;
2154     if (log)
2155         log->Printf("%s - element size set to %" PRIu32, __FUNCTION__, data_size + padding);
2156 }
2157 
2158 // Given an allocation, this function copies the allocation contents from device into a buffer on the heap.
2159 // Returning a shared pointer to the buffer containing the data.
2160 std::shared_ptr<uint8_t>
2161 RenderScriptRuntime::GetAllocationData(AllocationDetails *allocation, StackFrame *frame_ptr)
2162 {
2163     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2164 
2165     // JIT all the allocation details
2166     if (allocation->shouldRefresh())
2167     {
2168         if (log)
2169             log->Printf("%s - allocation details not calculated yet, jitting info", __FUNCTION__);
2170 
2171         if (!RefreshAllocation(allocation, frame_ptr))
2172         {
2173             if (log)
2174                 log->Printf("%s - couldn't JIT allocation details", __FUNCTION__);
2175             return nullptr;
2176         }
2177     }
2178 
2179     assert(allocation->data_ptr.isValid() && allocation->element.type.isValid() &&
2180            allocation->element.type_vec_size.isValid() && allocation->size.isValid() &&
2181            "Allocation information not available");
2182 
2183     // Allocate a buffer to copy data into
2184     const uint32_t size = *allocation->size.get();
2185     std::shared_ptr<uint8_t> buffer(new uint8_t[size]);
2186     if (!buffer)
2187     {
2188         if (log)
2189             log->Printf("%s - couldn't allocate a %" PRIu32 " byte buffer", __FUNCTION__, size);
2190         return nullptr;
2191     }
2192 
2193     // Read the inferior memory
2194     Error error;
2195     lldb::addr_t data_ptr = *allocation->data_ptr.get();
2196     GetProcess()->ReadMemory(data_ptr, buffer.get(), size, error);
2197     if (error.Fail())
2198     {
2199         if (log)
2200             log->Printf("%s - '%s' Couldn't read %" PRIu32 " bytes of allocation data from 0x%" PRIx64,
2201                         __FUNCTION__, error.AsCString(), size, data_ptr);
2202         return nullptr;
2203     }
2204 
2205     return buffer;
2206 }
2207 
2208 // Function copies data from a binary file into an allocation.
2209 // There is a header at the start of the file, FileHeader, before the data content itself.
2210 // Information from this header is used to display warnings to the user about incompatabilities
2211 bool
2212 RenderScriptRuntime::LoadAllocation(Stream &strm, const uint32_t alloc_id, const char *filename, StackFrame *frame_ptr)
2213 {
2214     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2215 
2216     // Find allocation with the given id
2217     AllocationDetails *alloc = FindAllocByID(strm, alloc_id);
2218     if (!alloc)
2219         return false;
2220 
2221     if (log)
2222         log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__, *alloc->address.get());
2223 
2224     // JIT all the allocation details
2225     if (alloc->shouldRefresh())
2226     {
2227         if (log)
2228             log->Printf("%s - allocation details not calculated yet, jitting info.", __FUNCTION__);
2229 
2230         if (!RefreshAllocation(alloc, frame_ptr))
2231         {
2232             if (log)
2233                 log->Printf("%s - couldn't JIT allocation details", __FUNCTION__);
2234             return false;
2235         }
2236     }
2237 
2238     assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && alloc->element.type_vec_size.isValid() &&
2239            alloc->size.isValid() && alloc->element.datum_size.isValid() && "Allocation information not available");
2240 
2241     // Check we can read from file
2242     FileSpec file(filename, true);
2243     if (!file.Exists())
2244     {
2245         strm.Printf("Error: File %s does not exist", filename);
2246         strm.EOL();
2247         return false;
2248     }
2249 
2250     if (!file.Readable())
2251     {
2252         strm.Printf("Error: File %s does not have readable permissions", filename);
2253         strm.EOL();
2254         return false;
2255     }
2256 
2257     // Read file into data buffer
2258     DataBufferSP data_sp(file.ReadFileContents());
2259 
2260     // Cast start of buffer to FileHeader and use pointer to read metadata
2261     void *file_buffer = data_sp->GetBytes();
2262     if (file_buffer == nullptr ||
2263         data_sp->GetByteSize() < (sizeof(AllocationDetails::FileHeader) + sizeof(AllocationDetails::ElementHeader)))
2264     {
2265         strm.Printf("Error: File %s does not contain enough data for header", filename);
2266         strm.EOL();
2267         return false;
2268     }
2269     const AllocationDetails::FileHeader *file_header = static_cast<AllocationDetails::FileHeader *>(file_buffer);
2270 
2271     // Check file starts with ascii characters "RSAD"
2272     if (memcmp(file_header->ident, "RSAD", 4))
2273     {
2274         strm.Printf("Error: File doesn't contain identifier for an RS allocation dump. Are you sure this is the correct file?");
2275         strm.EOL();
2276         return false;
2277     }
2278 
2279     // Look at the type of the root element in the header
2280     AllocationDetails::ElementHeader root_element_header;
2281     memcpy(&root_element_header, static_cast<uint8_t *>(file_buffer) + sizeof(AllocationDetails::FileHeader),
2282            sizeof(AllocationDetails::ElementHeader));
2283 
2284     if (log)
2285         log->Printf("%s - header type %" PRIu32 ", element size %" PRIu32, __FUNCTION__,
2286                     root_element_header.type, root_element_header.element_size);
2287 
2288     // Check if the target allocation and file both have the same number of bytes for an Element
2289     if (*alloc->element.datum_size.get() != root_element_header.element_size)
2290     {
2291         strm.Printf("Warning: Mismatched Element sizes - file %" PRIu32 " bytes, allocation %" PRIu32 " bytes",
2292                     root_element_header.element_size, *alloc->element.datum_size.get());
2293         strm.EOL();
2294     }
2295 
2296     // Check if the target allocation and file both have the same type
2297     const uint32_t alloc_type = static_cast<uint32_t>(*alloc->element.type.get());
2298     const uint32_t file_type = root_element_header.type;
2299 
2300     if (file_type > Element::RS_TYPE_FONT)
2301     {
2302         strm.Printf("Warning: File has unknown allocation type");
2303         strm.EOL();
2304     }
2305     else if (alloc_type != file_type)
2306     {
2307         // Enum value isn't monotonous, so doesn't always index RsDataTypeToString array
2308         uint32_t printable_target_type_index = alloc_type;
2309         uint32_t printable_head_type_index = file_type;
2310         if (alloc_type >= Element::RS_TYPE_ELEMENT && alloc_type <= Element::RS_TYPE_FONT)
2311             printable_target_type_index = static_cast<Element::DataType>((alloc_type - Element::RS_TYPE_ELEMENT) +
2312                                                                          Element::RS_TYPE_MATRIX_2X2 + 1);
2313 
2314         if (file_type >= Element::RS_TYPE_ELEMENT && file_type <= Element::RS_TYPE_FONT)
2315             printable_head_type_index = static_cast<Element::DataType>((file_type - Element::RS_TYPE_ELEMENT) +
2316                                                                        Element::RS_TYPE_MATRIX_2X2 + 1);
2317 
2318         const char *file_type_cstr = AllocationDetails::RsDataTypeToString[printable_head_type_index][0];
2319         const char *target_type_cstr = AllocationDetails::RsDataTypeToString[printable_target_type_index][0];
2320 
2321         strm.Printf("Warning: Mismatched Types - file '%s' type, allocation '%s' type", file_type_cstr,
2322                     target_type_cstr);
2323         strm.EOL();
2324     }
2325 
2326     // Advance buffer past header
2327     file_buffer = static_cast<uint8_t *>(file_buffer) + file_header->hdr_size;
2328 
2329     // Calculate size of allocation data in file
2330     size_t length = data_sp->GetByteSize() - file_header->hdr_size;
2331 
2332     // Check if the target allocation and file both have the same total data size.
2333     const uint32_t alloc_size = *alloc->size.get();
2334     if (alloc_size != length)
2335     {
2336         strm.Printf("Warning: Mismatched allocation sizes - file 0x%" PRIx64 " bytes, allocation 0x%" PRIx32 " bytes",
2337                     (uint64_t)length, alloc_size);
2338         strm.EOL();
2339         length = alloc_size < length ? alloc_size : length; // Set length to copy to minimum
2340     }
2341 
2342     // Copy file data from our buffer into the target allocation.
2343     lldb::addr_t alloc_data = *alloc->data_ptr.get();
2344     Error error;
2345     size_t bytes_written = GetProcess()->WriteMemory(alloc_data, file_buffer, length, error);
2346     if (!error.Success() || bytes_written != length)
2347     {
2348         strm.Printf("Error: Couldn't write data to allocation %s", error.AsCString());
2349         strm.EOL();
2350         return false;
2351     }
2352 
2353     strm.Printf("Contents of file '%s' read into allocation %" PRIu32, filename, alloc->id);
2354     strm.EOL();
2355 
2356     return true;
2357 }
2358 
2359 // Function takes as parameters a byte buffer, which will eventually be written to file as the element header,
2360 // an offset into that buffer, and an Element that will be saved into the buffer at the parametrised offset.
2361 // Return value is the new offset after writing the element into the buffer.
2362 // Elements are saved to the file as the ElementHeader struct followed by offsets to the structs of all the element's
2363 // children.
2364 size_t
2365 RenderScriptRuntime::PopulateElementHeaders(const std::shared_ptr<uint8_t> header_buffer, size_t offset,
2366                                             const Element &elem)
2367 {
2368     // File struct for an element header with all the relevant details copied from elem.
2369     // We assume members are valid already.
2370     AllocationDetails::ElementHeader elem_header;
2371     elem_header.type = *elem.type.get();
2372     elem_header.kind = *elem.type_kind.get();
2373     elem_header.element_size = *elem.datum_size.get();
2374     elem_header.vector_size = *elem.type_vec_size.get();
2375     elem_header.array_size = elem.array_size.isValid() ? *elem.array_size.get() : 0;
2376     const size_t elem_header_size = sizeof(AllocationDetails::ElementHeader);
2377 
2378     // Copy struct into buffer and advance offset
2379     // We assume that header_buffer has been checked for nullptr before this method is called
2380     memcpy(header_buffer.get() + offset, &elem_header, elem_header_size);
2381     offset += elem_header_size;
2382 
2383     // Starting offset of child ElementHeader struct
2384     size_t child_offset = offset + ((elem.children.size() + 1) * sizeof(uint32_t));
2385     for (const RenderScriptRuntime::Element &child : elem.children)
2386     {
2387         // Recursively populate the buffer with the element header structs of children.
2388         // Then save the offsets where they were set after the parent element header.
2389         memcpy(header_buffer.get() + offset, &child_offset, sizeof(uint32_t));
2390         offset += sizeof(uint32_t);
2391 
2392         child_offset = PopulateElementHeaders(header_buffer, child_offset, child);
2393     }
2394 
2395     // Zero indicates no more children
2396     memset(header_buffer.get() + offset, 0, sizeof(uint32_t));
2397 
2398     return child_offset;
2399 }
2400 
2401 // Given an Element object this function returns the total size needed in the file header to store the element's
2402 // details.
2403 // Taking into account the size of the element header struct, plus the offsets to all the element's children.
2404 // Function is recursive so that the size of all ancestors is taken into account.
2405 size_t
2406 RenderScriptRuntime::CalculateElementHeaderSize(const Element &elem)
2407 {
2408     size_t size = (elem.children.size() + 1) * sizeof(uint32_t); // Offsets to children plus zero terminator
2409     size += sizeof(AllocationDetails::ElementHeader);            // Size of header struct with type details
2410 
2411     // Calculate recursively for all descendants
2412     for (const Element &child : elem.children)
2413         size += CalculateElementHeaderSize(child);
2414 
2415     return size;
2416 }
2417 
2418 // Function copies allocation contents into a binary file.
2419 // This file can then be loaded later into a different allocation.
2420 // There is a header, FileHeader, before the allocation data containing meta-data.
2421 bool
2422 RenderScriptRuntime::SaveAllocation(Stream &strm, const uint32_t alloc_id, const char *filename, StackFrame *frame_ptr)
2423 {
2424     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2425 
2426     // Find allocation with the given id
2427     AllocationDetails *alloc = FindAllocByID(strm, alloc_id);
2428     if (!alloc)
2429         return false;
2430 
2431     if (log)
2432         log->Printf("%s - found allocation 0x%" PRIx64 ".", __FUNCTION__, *alloc->address.get());
2433 
2434     // JIT all the allocation details
2435     if (alloc->shouldRefresh())
2436     {
2437         if (log)
2438             log->Printf("%s - allocation details not calculated yet, jitting info.", __FUNCTION__);
2439 
2440         if (!RefreshAllocation(alloc, frame_ptr))
2441         {
2442             if (log)
2443                 log->Printf("%s - couldn't JIT allocation details.", __FUNCTION__);
2444             return false;
2445         }
2446     }
2447 
2448     assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && alloc->element.type_vec_size.isValid() &&
2449            alloc->element.datum_size.get() && alloc->element.type_kind.isValid() && alloc->dimension.isValid() &&
2450            "Allocation information not available");
2451 
2452     // Check we can create writable file
2453     FileSpec file_spec(filename, true);
2454     File file(file_spec, File::eOpenOptionWrite | File::eOpenOptionCanCreate | File::eOpenOptionTruncate);
2455     if (!file)
2456     {
2457         strm.Printf("Error: Failed to open '%s' for writing", filename);
2458         strm.EOL();
2459         return false;
2460     }
2461 
2462     // Read allocation into buffer of heap memory
2463     const std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr);
2464     if (!buffer)
2465     {
2466         strm.Printf("Error: Couldn't read allocation data into buffer");
2467         strm.EOL();
2468         return false;
2469     }
2470 
2471     // Create the file header
2472     AllocationDetails::FileHeader head;
2473     memcpy(head.ident, "RSAD", 4);
2474     head.dims[0] = static_cast<uint32_t>(alloc->dimension.get()->dim_1);
2475     head.dims[1] = static_cast<uint32_t>(alloc->dimension.get()->dim_2);
2476     head.dims[2] = static_cast<uint32_t>(alloc->dimension.get()->dim_3);
2477 
2478     const size_t element_header_size = CalculateElementHeaderSize(alloc->element);
2479     assert((sizeof(AllocationDetails::FileHeader) + element_header_size) < UINT16_MAX && "Element header too large");
2480     head.hdr_size = static_cast<uint16_t>(sizeof(AllocationDetails::FileHeader) + element_header_size);
2481 
2482     // Write the file header
2483     size_t num_bytes = sizeof(AllocationDetails::FileHeader);
2484     if (log)
2485         log->Printf("%s - writing File Header, 0x%" PRIx64 " bytes", __FUNCTION__, num_bytes);
2486 
2487     Error err = file.Write(&head, num_bytes);
2488     if (!err.Success())
2489     {
2490         strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), filename);
2491         strm.EOL();
2492         return false;
2493     }
2494 
2495     // Create the headers describing the element type of the allocation.
2496     std::shared_ptr<uint8_t> element_header_buffer(new uint8_t[element_header_size]);
2497     if (element_header_buffer == nullptr)
2498     {
2499         strm.Printf("Internal Error: Couldn't allocate %" PRIu64 " bytes on the heap", element_header_size);
2500         strm.EOL();
2501         return false;
2502     }
2503 
2504     PopulateElementHeaders(element_header_buffer, 0, alloc->element);
2505 
2506     // Write headers for allocation element type to file
2507     num_bytes = element_header_size;
2508     if (log)
2509         log->Printf("%s - writing element headers, 0x%" PRIx64 " bytes.", __FUNCTION__, num_bytes);
2510 
2511     err = file.Write(element_header_buffer.get(), num_bytes);
2512     if (!err.Success())
2513     {
2514         strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), filename);
2515         strm.EOL();
2516         return false;
2517     }
2518 
2519     // Write allocation data to file
2520     num_bytes = static_cast<size_t>(*alloc->size.get());
2521     if (log)
2522         log->Printf("%s - writing 0x%" PRIx64 " bytes", __FUNCTION__, num_bytes);
2523 
2524     err = file.Write(buffer.get(), num_bytes);
2525     if (!err.Success())
2526     {
2527         strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), filename);
2528         strm.EOL();
2529         return false;
2530     }
2531 
2532     strm.Printf("Allocation written to file '%s'", filename);
2533     strm.EOL();
2534     return true;
2535 }
2536 
2537 bool
2538 RenderScriptRuntime::LoadModule(const lldb::ModuleSP &module_sp)
2539 {
2540     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2541 
2542     if (module_sp)
2543     {
2544         for (const auto &rs_module : m_rsmodules)
2545         {
2546             if (rs_module->m_module == module_sp)
2547             {
2548                 // Check if the user has enabled automatically breaking on
2549                 // all RS kernels.
2550                 if (m_breakAllKernels)
2551                     BreakOnModuleKernels(rs_module);
2552 
2553                 return false;
2554             }
2555         }
2556         bool module_loaded = false;
2557         switch (GetModuleKind(module_sp))
2558         {
2559             case eModuleKindKernelObj:
2560             {
2561                 RSModuleDescriptorSP module_desc;
2562                 module_desc.reset(new RSModuleDescriptor(module_sp));
2563                 if (module_desc->ParseRSInfo())
2564                 {
2565                     m_rsmodules.push_back(module_desc);
2566                     module_loaded = true;
2567                 }
2568                 if (module_loaded)
2569                 {
2570                     FixupScriptDetails(module_desc);
2571                 }
2572                 break;
2573             }
2574             case eModuleKindDriver:
2575             {
2576                 if (!m_libRSDriver)
2577                 {
2578                     m_libRSDriver = module_sp;
2579                     LoadRuntimeHooks(m_libRSDriver, RenderScriptRuntime::eModuleKindDriver);
2580                 }
2581                 break;
2582             }
2583             case eModuleKindImpl:
2584             {
2585                 m_libRSCpuRef = module_sp;
2586                 break;
2587             }
2588             case eModuleKindLibRS:
2589             {
2590                 if (!m_libRS)
2591                 {
2592                     m_libRS = module_sp;
2593                     static ConstString gDbgPresentStr("gDebuggerPresent");
2594                     const Symbol *debug_present =
2595                         m_libRS->FindFirstSymbolWithNameAndType(gDbgPresentStr, eSymbolTypeData);
2596                     if (debug_present)
2597                     {
2598                         Error error;
2599                         uint32_t flag = 0x00000001U;
2600                         Target &target = GetProcess()->GetTarget();
2601                         addr_t addr = debug_present->GetLoadAddress(&target);
2602                         GetProcess()->WriteMemory(addr, &flag, sizeof(flag), error);
2603                         if (error.Success())
2604                         {
2605                             if (log)
2606                                 log->Printf("%s - debugger present flag set on debugee.", __FUNCTION__);
2607 
2608                             m_debuggerPresentFlagged = true;
2609                         }
2610                         else if (log)
2611                         {
2612                             log->Printf("%s - error writing debugger present flags '%s' ", __FUNCTION__,
2613                                         error.AsCString());
2614                         }
2615                     }
2616                     else if (log)
2617                     {
2618                         log->Printf("%s - error writing debugger present flags - symbol not found", __FUNCTION__);
2619                     }
2620                 }
2621                 break;
2622             }
2623             default:
2624                 break;
2625         }
2626         if (module_loaded)
2627             Update();
2628         return module_loaded;
2629     }
2630     return false;
2631 }
2632 
2633 void
2634 RenderScriptRuntime::Update()
2635 {
2636     if (m_rsmodules.size() > 0)
2637     {
2638         if (!m_initiated)
2639         {
2640             Initiate();
2641         }
2642     }
2643 }
2644 
2645 // The maximum line length of an .rs.info packet
2646 #define MAXLINE 500
2647 
2648 // The .rs.info symbol in renderscript modules contains a string which needs to be parsed.
2649 // The string is basic and is parsed on a line by line basis.
2650 bool
2651 RSModuleDescriptor::ParseRSInfo()
2652 {
2653     const Symbol *info_sym = m_module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), eSymbolTypeData);
2654     if (info_sym)
2655     {
2656         const addr_t addr = info_sym->GetAddressRef().GetFileAddress();
2657         const addr_t size = info_sym->GetByteSize();
2658         const FileSpec fs = m_module->GetFileSpec();
2659 
2660         DataBufferSP buffer = fs.ReadFileContents(addr, size);
2661 
2662         if (!buffer)
2663             return false;
2664 
2665         std::string info((const char *)buffer->GetBytes());
2666 
2667         std::vector<std::string> info_lines;
2668         size_t lpos = info.find('\n');
2669         while (lpos != std::string::npos)
2670         {
2671             info_lines.push_back(info.substr(0, lpos));
2672             info = info.substr(lpos + 1);
2673             lpos = info.find('\n');
2674         }
2675         size_t offset = 0;
2676         while (offset < info_lines.size())
2677         {
2678             std::string line = info_lines[offset];
2679             // Parse directives
2680             uint32_t numDefns = 0;
2681             if (sscanf(line.c_str(), "exportVarCount: %" PRIu32 "", &numDefns) == 1)
2682             {
2683                 while (numDefns--)
2684                     m_globals.push_back(RSGlobalDescriptor(this, info_lines[++offset].c_str()));
2685             }
2686             else if (sscanf(line.c_str(), "exportFuncCount: %" PRIu32 "", &numDefns) == 1)
2687             {
2688             }
2689             else if (sscanf(line.c_str(), "exportForEachCount: %" PRIu32 "", &numDefns) == 1)
2690             {
2691                 char name[MAXLINE];
2692                 while (numDefns--)
2693                 {
2694                     uint32_t slot = 0;
2695                     name[0] = '\0';
2696                     if (sscanf(info_lines[++offset].c_str(), "%" PRIu32 " - %s", &slot, &name[0]) == 2)
2697                     {
2698                         m_kernels.push_back(RSKernelDescriptor(this, name, slot));
2699                     }
2700                 }
2701             }
2702             else if (sscanf(line.c_str(), "pragmaCount: %" PRIu32 "", &numDefns) == 1)
2703             {
2704                 char name[MAXLINE];
2705                 char value[MAXLINE];
2706                 while (numDefns--)
2707                 {
2708                     name[0] = '\0';
2709                     value[0] = '\0';
2710                     if (sscanf(info_lines[++offset].c_str(), "%s - %s", &name[0], &value[0]) != 0 && (name[0] != '\0'))
2711                     {
2712                         m_pragmas[std::string(name)] = value;
2713                     }
2714                 }
2715             }
2716             else if (sscanf(line.c_str(), "objectSlotCount: %" PRIu32 "", &numDefns) == 1)
2717             {
2718             }
2719 
2720             offset++;
2721         }
2722         return m_kernels.size() > 0;
2723     }
2724     return false;
2725 }
2726 
2727 void
2728 RenderScriptRuntime::Status(Stream &strm) const
2729 {
2730     if (m_libRS)
2731     {
2732         strm.Printf("Runtime Library discovered.");
2733         strm.EOL();
2734     }
2735     if (m_libRSDriver)
2736     {
2737         strm.Printf("Runtime Driver discovered.");
2738         strm.EOL();
2739     }
2740     if (m_libRSCpuRef)
2741     {
2742         strm.Printf("CPU Reference Implementation discovered.");
2743         strm.EOL();
2744     }
2745 
2746     if (m_runtimeHooks.size())
2747     {
2748         strm.Printf("Runtime functions hooked:");
2749         strm.EOL();
2750         for (auto b : m_runtimeHooks)
2751         {
2752             strm.Indent(b.second->defn->name);
2753             strm.EOL();
2754         }
2755     }
2756     else
2757     {
2758         strm.Printf("Runtime is not hooked.");
2759         strm.EOL();
2760     }
2761 }
2762 
2763 void
2764 RenderScriptRuntime::DumpContexts(Stream &strm) const
2765 {
2766     strm.Printf("Inferred RenderScript Contexts:");
2767     strm.EOL();
2768     strm.IndentMore();
2769 
2770     std::map<addr_t, uint64_t> contextReferences;
2771 
2772     // Iterate over all of the currently discovered scripts.
2773     // Note: We cant push or pop from m_scripts inside this loop or it may invalidate script.
2774     for (const auto &script : m_scripts)
2775     {
2776         if (!script->context.isValid())
2777             continue;
2778         lldb::addr_t context = *script->context;
2779 
2780         if (contextReferences.find(context) != contextReferences.end())
2781         {
2782             contextReferences[context]++;
2783         }
2784         else
2785         {
2786             contextReferences[context] = 1;
2787         }
2788     }
2789 
2790     for (const auto &cRef : contextReferences)
2791     {
2792         strm.Printf("Context 0x%" PRIx64 ": %" PRIu64 " script instances", cRef.first, cRef.second);
2793         strm.EOL();
2794     }
2795     strm.IndentLess();
2796 }
2797 
2798 void
2799 RenderScriptRuntime::DumpKernels(Stream &strm) const
2800 {
2801     strm.Printf("RenderScript Kernels:");
2802     strm.EOL();
2803     strm.IndentMore();
2804     for (const auto &module : m_rsmodules)
2805     {
2806         strm.Printf("Resource '%s':", module->m_resname.c_str());
2807         strm.EOL();
2808         for (const auto &kernel : module->m_kernels)
2809         {
2810             strm.Indent(kernel.m_name.AsCString());
2811             strm.EOL();
2812         }
2813     }
2814     strm.IndentLess();
2815 }
2816 
2817 RenderScriptRuntime::AllocationDetails *
2818 RenderScriptRuntime::FindAllocByID(Stream &strm, const uint32_t alloc_id)
2819 {
2820     AllocationDetails *alloc = nullptr;
2821 
2822     // See if we can find allocation using id as an index;
2823     if (alloc_id <= m_allocations.size() && alloc_id != 0 && m_allocations[alloc_id - 1]->id == alloc_id)
2824     {
2825         alloc = m_allocations[alloc_id - 1].get();
2826         return alloc;
2827     }
2828 
2829     // Fallback to searching
2830     for (const auto &a : m_allocations)
2831     {
2832         if (a->id == alloc_id)
2833         {
2834             alloc = a.get();
2835             break;
2836         }
2837     }
2838 
2839     if (alloc == nullptr)
2840     {
2841         strm.Printf("Error: Couldn't find allocation with id matching %" PRIu32, alloc_id);
2842         strm.EOL();
2843     }
2844 
2845     return alloc;
2846 }
2847 
2848 // Prints the contents of an allocation to the output stream, which may be a file
2849 bool
2850 RenderScriptRuntime::DumpAllocation(Stream &strm, StackFrame *frame_ptr, const uint32_t id)
2851 {
2852     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2853 
2854     // Check we can find the desired allocation
2855     AllocationDetails *alloc = FindAllocByID(strm, id);
2856     if (!alloc)
2857         return false; // FindAllocByID() will print error message for us here
2858 
2859     if (log)
2860         log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__, *alloc->address.get());
2861 
2862     // Check we have information about the allocation, if not calculate it
2863     if (alloc->shouldRefresh())
2864     {
2865         if (log)
2866             log->Printf("%s - allocation details not calculated yet, jitting info.", __FUNCTION__);
2867 
2868         // JIT all the allocation information
2869         if (!RefreshAllocation(alloc, frame_ptr))
2870         {
2871             strm.Printf("Error: Couldn't JIT allocation details");
2872             strm.EOL();
2873             return false;
2874         }
2875     }
2876 
2877     // Establish format and size of each data element
2878     const uint32_t vec_size = *alloc->element.type_vec_size.get();
2879     const Element::DataType type = *alloc->element.type.get();
2880 
2881     assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && "Invalid allocation type");
2882 
2883     lldb::Format format;
2884     if (type >= Element::RS_TYPE_ELEMENT)
2885         format = eFormatHex;
2886     else
2887         format = vec_size == 1 ? static_cast<lldb::Format>(AllocationDetails::RSTypeToFormat[type][eFormatSingle])
2888                                : static_cast<lldb::Format>(AllocationDetails::RSTypeToFormat[type][eFormatVector]);
2889 
2890     const uint32_t data_size = *alloc->element.datum_size.get();
2891 
2892     if (log)
2893         log->Printf("%s - element size %" PRIu32 " bytes, including padding", __FUNCTION__, data_size);
2894 
2895     // Allocate a buffer to copy data into
2896     std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr);
2897     if (!buffer)
2898     {
2899         strm.Printf("Error: Couldn't read allocation data");
2900         strm.EOL();
2901         return false;
2902     }
2903 
2904     // Calculate stride between rows as there may be padding at end of rows since
2905     // allocated memory is 16-byte aligned
2906     if (!alloc->stride.isValid())
2907     {
2908         if (alloc->dimension.get()->dim_2 == 0) // We only have one dimension
2909             alloc->stride = 0;
2910         else if (!JITAllocationStride(alloc, frame_ptr))
2911         {
2912             strm.Printf("Error: Couldn't calculate allocation row stride");
2913             strm.EOL();
2914             return false;
2915         }
2916     }
2917     const uint32_t stride = *alloc->stride.get();
2918     const uint32_t size = *alloc->size.get(); // Size of whole allocation
2919     const uint32_t padding = alloc->element.padding.isValid() ? *alloc->element.padding.get() : 0;
2920     if (log)
2921         log->Printf("%s - stride %" PRIu32 " bytes, size %" PRIu32 " bytes, padding %" PRIu32,
2922                     __FUNCTION__, stride, size, padding);
2923 
2924     // Find dimensions used to index loops, so need to be non-zero
2925     uint32_t dim_x = alloc->dimension.get()->dim_1;
2926     dim_x = dim_x == 0 ? 1 : dim_x;
2927 
2928     uint32_t dim_y = alloc->dimension.get()->dim_2;
2929     dim_y = dim_y == 0 ? 1 : dim_y;
2930 
2931     uint32_t dim_z = alloc->dimension.get()->dim_3;
2932     dim_z = dim_z == 0 ? 1 : dim_z;
2933 
2934     // Use data extractor to format output
2935     const uint32_t archByteSize = GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
2936     DataExtractor alloc_data(buffer.get(), size, GetProcess()->GetByteOrder(), archByteSize);
2937 
2938     uint32_t offset = 0;   // Offset in buffer to next element to be printed
2939     uint32_t prev_row = 0; // Offset to the start of the previous row
2940 
2941     // Iterate over allocation dimensions, printing results to user
2942     strm.Printf("Data (X, Y, Z):");
2943     for (uint32_t z = 0; z < dim_z; ++z)
2944     {
2945         for (uint32_t y = 0; y < dim_y; ++y)
2946         {
2947             // Use stride to index start of next row.
2948             if (!(y == 0 && z == 0))
2949                 offset = prev_row + stride;
2950             prev_row = offset;
2951 
2952             // Print each element in the row individually
2953             for (uint32_t x = 0; x < dim_x; ++x)
2954             {
2955                 strm.Printf("\n(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ") = ", x, y, z);
2956                 if ((type == Element::RS_TYPE_NONE) && (alloc->element.children.size() > 0) &&
2957                     (alloc->element.type_name != Element::GetFallbackStructName()))
2958                 {
2959                     // Here we are dumping an Element of struct type.
2960                     // This is done using expression evaluation with the name of the struct type and pointer to element.
2961 
2962                     // Don't print the name of the resulting expression, since this will be '$[0-9]+'
2963                     DumpValueObjectOptions expr_options;
2964                     expr_options.SetHideName(true);
2965 
2966                     // Setup expression as derefrencing a pointer cast to element address.
2967                     char expr_char_buffer[jit_max_expr_size];
2968                     int chars_written = snprintf(expr_char_buffer, jit_max_expr_size, "*(%s*) 0x%" PRIx64,
2969                                                  alloc->element.type_name.AsCString(), *alloc->data_ptr.get() + offset);
2970 
2971                     if (chars_written < 0 || chars_written >= jit_max_expr_size)
2972                     {
2973                         if (log)
2974                             log->Printf("%s - error in snprintf().", __FUNCTION__);
2975                         continue;
2976                     }
2977 
2978                     // Evaluate expression
2979                     ValueObjectSP expr_result;
2980                     GetProcess()->GetTarget().EvaluateExpression(expr_char_buffer, frame_ptr, expr_result);
2981 
2982                     // Print the results to our stream.
2983                     expr_result->Dump(strm, expr_options);
2984                 }
2985                 else
2986                 {
2987                     alloc_data.Dump(&strm, offset, format, data_size - padding, 1, 1, LLDB_INVALID_ADDRESS, 0, 0);
2988                 }
2989                 offset += data_size;
2990             }
2991         }
2992     }
2993     strm.EOL();
2994 
2995     return true;
2996 }
2997 
2998 // Function recalculates all our cached information about allocations by jitting the
2999 // RS runtime regarding each allocation we know about.
3000 // Returns true if all allocations could be recomputed, false otherwise.
3001 bool
3002 RenderScriptRuntime::RecomputeAllAllocations(Stream &strm, StackFrame *frame_ptr)
3003 {
3004     bool success = true;
3005     for (auto &alloc : m_allocations)
3006     {
3007         // JIT current allocation information
3008         if (!RefreshAllocation(alloc.get(), frame_ptr))
3009         {
3010             strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32 "\n", alloc->id);
3011             success = false;
3012         }
3013     }
3014 
3015     if (success)
3016         strm.Printf("All allocations successfully recomputed");
3017     strm.EOL();
3018 
3019     return success;
3020 }
3021 
3022 // Prints information regarding currently loaded allocations.
3023 // These details are gathered by jitting the runtime, which has as latency.
3024 // Index parameter specifies a single allocation ID to print, or a zero value to print them all
3025 void
3026 RenderScriptRuntime::ListAllocations(Stream &strm, StackFrame *frame_ptr, const uint32_t index)
3027 {
3028     strm.Printf("RenderScript Allocations:");
3029     strm.EOL();
3030     strm.IndentMore();
3031 
3032     for (auto &alloc : m_allocations)
3033     {
3034         // index will only be zero if we want to print all allocations
3035         if (index != 0 && index != alloc->id)
3036             continue;
3037 
3038         // JIT current allocation information
3039         if (alloc->shouldRefresh() && !RefreshAllocation(alloc.get(), frame_ptr))
3040         {
3041             strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32, alloc->id);
3042             strm.EOL();
3043             continue;
3044         }
3045 
3046         strm.Printf("%" PRIu32 ":", alloc->id);
3047         strm.EOL();
3048         strm.IndentMore();
3049 
3050         strm.Indent("Context: ");
3051         if (!alloc->context.isValid())
3052             strm.Printf("unknown\n");
3053         else
3054             strm.Printf("0x%" PRIx64 "\n", *alloc->context.get());
3055 
3056         strm.Indent("Address: ");
3057         if (!alloc->address.isValid())
3058             strm.Printf("unknown\n");
3059         else
3060             strm.Printf("0x%" PRIx64 "\n", *alloc->address.get());
3061 
3062         strm.Indent("Data pointer: ");
3063         if (!alloc->data_ptr.isValid())
3064             strm.Printf("unknown\n");
3065         else
3066             strm.Printf("0x%" PRIx64 "\n", *alloc->data_ptr.get());
3067 
3068         strm.Indent("Dimensions: ");
3069         if (!alloc->dimension.isValid())
3070             strm.Printf("unknown\n");
3071         else
3072             strm.Printf("(%" PRId32 ", %" PRId32 ", %" PRId32 ")\n",
3073                         alloc->dimension.get()->dim_1, alloc->dimension.get()->dim_2, alloc->dimension.get()->dim_3);
3074 
3075         strm.Indent("Data Type: ");
3076         if (!alloc->element.type.isValid() || !alloc->element.type_vec_size.isValid())
3077             strm.Printf("unknown\n");
3078         else
3079         {
3080             const int vector_size = *alloc->element.type_vec_size.get();
3081             Element::DataType type = *alloc->element.type.get();
3082 
3083             if (!alloc->element.type_name.IsEmpty())
3084                 strm.Printf("%s\n", alloc->element.type_name.AsCString());
3085             else
3086             {
3087                 // Enum value isn't monotonous, so doesn't always index RsDataTypeToString array
3088                 if (type >= Element::RS_TYPE_ELEMENT && type <= Element::RS_TYPE_FONT)
3089                     type = static_cast<Element::DataType>((type - Element::RS_TYPE_ELEMENT) +
3090                                                           Element::RS_TYPE_MATRIX_2X2 + 1);
3091 
3092                 if (type >= (sizeof(AllocationDetails::RsDataTypeToString) /
3093                              sizeof(AllocationDetails::RsDataTypeToString[0])) ||
3094                     vector_size > 4 || vector_size < 1)
3095                     strm.Printf("invalid type\n");
3096                 else
3097                     strm.Printf("%s\n", AllocationDetails::RsDataTypeToString[static_cast<uint32_t>(type)]
3098                                                                              [vector_size - 1]);
3099             }
3100         }
3101 
3102         strm.Indent("Data Kind: ");
3103         if (!alloc->element.type_kind.isValid())
3104             strm.Printf("unknown\n");
3105         else
3106         {
3107             const Element::DataKind kind = *alloc->element.type_kind.get();
3108             if (kind < Element::RS_KIND_USER || kind > Element::RS_KIND_PIXEL_YUV)
3109                 strm.Printf("invalid kind\n");
3110             else
3111                 strm.Printf("%s\n", AllocationDetails::RsDataKindToString[static_cast<uint32_t>(kind)]);
3112         }
3113 
3114         strm.EOL();
3115         strm.IndentLess();
3116     }
3117     strm.IndentLess();
3118 }
3119 
3120 // Set breakpoints on every kernel found in RS module
3121 void
3122 RenderScriptRuntime::BreakOnModuleKernels(const RSModuleDescriptorSP rsmodule_sp)
3123 {
3124     for (const auto &kernel : rsmodule_sp->m_kernels)
3125     {
3126         // Don't set breakpoint on 'root' kernel
3127         if (strcmp(kernel.m_name.AsCString(), "root") == 0)
3128             continue;
3129 
3130         CreateKernelBreakpoint(kernel.m_name);
3131     }
3132 }
3133 
3134 // Method is internally called by the 'kernel breakpoint all' command to
3135 // enable or disable breaking on all kernels.
3136 //
3137 // When do_break is true we want to enable this functionality.
3138 // When do_break is false we want to disable it.
3139 void
3140 RenderScriptRuntime::SetBreakAllKernels(bool do_break, TargetSP target)
3141 {
3142     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
3143 
3144     InitSearchFilter(target);
3145 
3146     // Set breakpoints on all the kernels
3147     if (do_break && !m_breakAllKernels)
3148     {
3149         m_breakAllKernels = true;
3150 
3151         for (const auto &module : m_rsmodules)
3152             BreakOnModuleKernels(module);
3153 
3154         if (log)
3155             log->Printf("%s(True) - breakpoints set on all currently loaded kernels.", __FUNCTION__);
3156     }
3157     else if (!do_break && m_breakAllKernels) // Breakpoints won't be set on any new kernels.
3158     {
3159         m_breakAllKernels = false;
3160 
3161         if (log)
3162             log->Printf("%s(False) - breakpoints no longer automatically set.", __FUNCTION__);
3163     }
3164 }
3165 
3166 // Given the name of a kernel this function creates a breakpoint using our
3167 // own breakpoint resolver, and returns the Breakpoint shared pointer.
3168 BreakpointSP
3169 RenderScriptRuntime::CreateKernelBreakpoint(const ConstString &name)
3170 {
3171     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
3172 
3173     if (!m_filtersp)
3174     {
3175         if (log)
3176             log->Printf("%s - error, no breakpoint search filter set.", __FUNCTION__);
3177         return nullptr;
3178     }
3179 
3180     BreakpointResolverSP resolver_sp(new RSBreakpointResolver(nullptr, name));
3181     BreakpointSP bp = GetProcess()->GetTarget().CreateBreakpoint(m_filtersp, resolver_sp, false, false, false);
3182 
3183     // Give RS breakpoints a specific name, so the user can manipulate them as a group.
3184     Error err;
3185     if (!bp->AddName("RenderScriptKernel", err) && log)
3186         log->Printf("%s - error setting break name, '%s'.", __FUNCTION__, err.AsCString());
3187 
3188     return bp;
3189 }
3190 
3191 // Given an expression for a variable this function tries to calculate the variable's value.
3192 // If this is possible it returns true and sets the uint64_t parameter to the variables unsigned value.
3193 // Otherwise function returns false.
3194 bool
3195 RenderScriptRuntime::GetFrameVarAsUnsigned(const StackFrameSP frame_sp, const char *var_name, uint64_t &val)
3196 {
3197     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE));
3198     Error error;
3199     VariableSP var_sp;
3200 
3201     // Find variable in stack frame
3202     ValueObjectSP value_sp(frame_sp->GetValueForVariableExpressionPath(
3203         var_name, eNoDynamicValues,
3204         StackFrame::eExpressionPathOptionCheckPtrVsMember | StackFrame::eExpressionPathOptionsAllowDirectIVarAccess,
3205         var_sp, error));
3206     if (!error.Success())
3207     {
3208         if (log)
3209             log->Printf("%s - error, couldn't find '%s' in frame", __FUNCTION__, var_name);
3210         return false;
3211     }
3212 
3213     // Find the uint32_t value for the variable
3214     bool success = false;
3215     val = value_sp->GetValueAsUnsigned(0, &success);
3216     if (!success)
3217     {
3218         if (log)
3219             log->Printf("%s - error, couldn't parse '%s' as an uint32_t.", __FUNCTION__, var_name);
3220         return false;
3221     }
3222 
3223     return true;
3224 }
3225 
3226 // Function attempts to find the current coordinate of a kernel invocation by investigating the
3227 // values of frame variables in the .expand function. These coordinates are returned via the coord
3228 // array reference parameter. Returns true if the coordinates could be found, and false otherwise.
3229 bool
3230 RenderScriptRuntime::GetKernelCoordinate(RSCoordinate &coord, Thread *thread_ptr)
3231 {
3232     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE));
3233 
3234     if (!thread_ptr)
3235     {
3236         if (log)
3237             log->Printf("%s - Error, No thread pointer", __FUNCTION__);
3238 
3239         return false;
3240     }
3241 
3242     // Walk the call stack looking for a function whose name has the suffix '.expand'
3243     // and contains the variables we're looking for.
3244     for (uint32_t i = 0; i < thread_ptr->GetStackFrameCount(); ++i)
3245     {
3246         if (!thread_ptr->SetSelectedFrameByIndex(i))
3247             continue;
3248 
3249         StackFrameSP frame_sp = thread_ptr->GetSelectedFrame();
3250         if (!frame_sp)
3251             continue;
3252 
3253         // Find the function name
3254         const SymbolContext sym_ctx = frame_sp->GetSymbolContext(false);
3255         const char *func_name_cstr = sym_ctx.GetFunctionName().AsCString();
3256         if (!func_name_cstr)
3257             continue;
3258 
3259         if (log)
3260             log->Printf("%s - Inspecting function '%s'", __FUNCTION__, func_name_cstr);
3261 
3262         // Check if function name has .expand suffix
3263         std::string func_name(func_name_cstr);
3264         const int length_difference = func_name.length() - RenderScriptRuntime::s_runtimeExpandSuffix.length();
3265         if (length_difference <= 0)
3266             continue;
3267 
3268         const int32_t has_expand_suffix = func_name.compare(length_difference,
3269                                                             RenderScriptRuntime::s_runtimeExpandSuffix.length(),
3270                                                             RenderScriptRuntime::s_runtimeExpandSuffix);
3271 
3272         if (has_expand_suffix != 0)
3273             continue;
3274 
3275         if (log)
3276             log->Printf("%s - Found .expand function '%s'", __FUNCTION__, func_name_cstr);
3277 
3278         // Get values for variables in .expand frame that tell us the current kernel invocation
3279         bool found_coord_variables = true;
3280         assert(RenderScriptRuntime::s_runtimeCoordVars.size() == coord.size());
3281 
3282         for (uint32_t i = 0; i < coord.size(); ++i)
3283         {
3284             uint64_t value = 0;
3285             if (!GetFrameVarAsUnsigned(frame_sp, RenderScriptRuntime::s_runtimeCoordVars[i], value))
3286             {
3287                 found_coord_variables = false;
3288                 break;
3289             }
3290             coord[i] = value;
3291         }
3292 
3293         if (found_coord_variables)
3294             return true;
3295     }
3296     return false;
3297 }
3298 
3299 // Callback when a kernel breakpoint hits and we're looking for a specific coordinate.
3300 // Baton parameter contains a pointer to the target coordinate we want to break on.
3301 // Function then checks the .expand frame for the current coordinate and breaks to user if it matches.
3302 // Parameter 'break_id' is the id of the Breakpoint which made the callback.
3303 // Parameter 'break_loc_id' is the id for the BreakpointLocation which was hit,
3304 // a single logical breakpoint can have multiple addresses.
3305 bool
3306 RenderScriptRuntime::KernelBreakpointHit(void *baton, StoppointCallbackContext *ctx, user_id_t break_id,
3307                                          user_id_t break_loc_id)
3308 {
3309     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
3310 
3311     assert(baton && "Error: null baton in conditional kernel breakpoint callback");
3312 
3313     // Coordinate we want to stop on
3314     const uint32_t *target_coord = static_cast<const uint32_t *>(baton);
3315 
3316     if (log)
3317         log->Printf("%s - Break ID %" PRIu64 ", (%" PRIu32 ", %" PRIu32 ", %" PRIu32 ")", __FUNCTION__, break_id,
3318                     target_coord[0], target_coord[1], target_coord[2]);
3319 
3320     // Select current thread
3321     ExecutionContext context(ctx->exe_ctx_ref);
3322     Thread *thread_ptr = context.GetThreadPtr();
3323     assert(thread_ptr && "Null thread pointer");
3324 
3325     // Find current kernel invocation from .expand frame variables
3326     RSCoordinate current_coord{}; // Zero initialise array
3327     if (!GetKernelCoordinate(current_coord, thread_ptr))
3328     {
3329         if (log)
3330             log->Printf("%s - Error, couldn't select .expand stack frame", __FUNCTION__);
3331         return false;
3332     }
3333 
3334     if (log)
3335         log->Printf("%s - (%" PRIu32 ",%" PRIu32 ",%" PRIu32 ")", __FUNCTION__, current_coord[0], current_coord[1],
3336                     current_coord[2]);
3337 
3338     // Check if the current kernel invocation coordinate matches our target coordinate
3339     if (current_coord[0] == target_coord[0] &&
3340         current_coord[1] == target_coord[1] &&
3341         current_coord[2] == target_coord[2])
3342     {
3343         if (log)
3344             log->Printf("%s, BREAKING (%" PRIu32 ",%" PRIu32 ",%" PRIu32 ")", __FUNCTION__, current_coord[0],
3345                         current_coord[1], current_coord[2]);
3346 
3347         BreakpointSP breakpoint_sp = context.GetTargetPtr()->GetBreakpointByID(break_id);
3348         assert(breakpoint_sp != nullptr && "Error: Couldn't find breakpoint matching break id for callback");
3349         breakpoint_sp->SetEnabled(false); // Optimise since conditional breakpoint should only be hit once.
3350         return true;
3351     }
3352 
3353     // No match on coordinate
3354     return false;
3355 }
3356 
3357 // Tries to set a breakpoint on the start of a kernel, resolved using the kernel name.
3358 // Argument 'coords', represents a three dimensional coordinate which can be used to specify
3359 // a single kernel instance to break on. If this is set then we add a callback to the breakpoint.
3360 void
3361 RenderScriptRuntime::PlaceBreakpointOnKernel(Stream &strm, const char *name, const std::array<int, 3> coords,
3362                                              Error &error, TargetSP target)
3363 {
3364     if (!name)
3365     {
3366         error.SetErrorString("invalid kernel name");
3367         return;
3368     }
3369 
3370     InitSearchFilter(target);
3371 
3372     ConstString kernel_name(name);
3373     BreakpointSP bp = CreateKernelBreakpoint(kernel_name);
3374 
3375     // We have a conditional breakpoint on a specific coordinate
3376     if (coords[0] != -1)
3377     {
3378         strm.Printf("Conditional kernel breakpoint on coordinate %" PRId32 ", %" PRId32 ", %" PRId32,
3379                     coords[0], coords[1], coords[2]);
3380         strm.EOL();
3381 
3382         // Allocate memory for the baton, and copy over coordinate
3383         uint32_t *baton = new uint32_t[coords.size()];
3384         baton[0] = coords[0]; baton[1] = coords[1]; baton[2] = coords[2];
3385 
3386         // Create a callback that will be invoked everytime the breakpoint is hit.
3387         // The baton object passed to the handler is the target coordinate we want to break on.
3388         bp->SetCallback(KernelBreakpointHit, baton, true);
3389 
3390         // Store a shared pointer to the baton, so the memory will eventually be cleaned up after destruction
3391         m_conditional_breaks[bp->GetID()] = std::shared_ptr<uint32_t>(baton);
3392     }
3393 
3394     if (bp)
3395         bp->GetDescription(&strm, lldb::eDescriptionLevelInitial, false);
3396 }
3397 
3398 void
3399 RenderScriptRuntime::DumpModules(Stream &strm) const
3400 {
3401     strm.Printf("RenderScript Modules:");
3402     strm.EOL();
3403     strm.IndentMore();
3404     for (const auto &module : m_rsmodules)
3405     {
3406         module->Dump(strm);
3407     }
3408     strm.IndentLess();
3409 }
3410 
3411 RenderScriptRuntime::ScriptDetails *
3412 RenderScriptRuntime::LookUpScript(addr_t address, bool create)
3413 {
3414     for (const auto &s : m_scripts)
3415     {
3416         if (s->script.isValid())
3417             if (*s->script == address)
3418                 return s.get();
3419     }
3420     if (create)
3421     {
3422         std::unique_ptr<ScriptDetails> s(new ScriptDetails);
3423         s->script = address;
3424         m_scripts.push_back(std::move(s));
3425         return m_scripts.back().get();
3426     }
3427     return nullptr;
3428 }
3429 
3430 RenderScriptRuntime::AllocationDetails *
3431 RenderScriptRuntime::LookUpAllocation(addr_t address, bool create)
3432 {
3433     for (const auto &a : m_allocations)
3434     {
3435         if (a->address.isValid())
3436             if (*a->address == address)
3437                 return a.get();
3438     }
3439     if (create)
3440     {
3441         std::unique_ptr<AllocationDetails> a(new AllocationDetails);
3442         a->address = address;
3443         m_allocations.push_back(std::move(a));
3444         return m_allocations.back().get();
3445     }
3446     return nullptr;
3447 }
3448 
3449 void
3450 RSModuleDescriptor::Dump(Stream &strm) const
3451 {
3452     strm.Indent();
3453     m_module->GetFileSpec().Dump(&strm);
3454     if (m_module->GetNumCompileUnits())
3455     {
3456         strm.Indent("Debug info loaded.");
3457     }
3458     else
3459     {
3460         strm.Indent("Debug info does not exist.");
3461     }
3462     strm.EOL();
3463     strm.IndentMore();
3464     strm.Indent();
3465     strm.Printf("Globals: %" PRIu64, static_cast<uint64_t>(m_globals.size()));
3466     strm.EOL();
3467     strm.IndentMore();
3468     for (const auto &global : m_globals)
3469     {
3470         global.Dump(strm);
3471     }
3472     strm.IndentLess();
3473     strm.Indent();
3474     strm.Printf("Kernels: %" PRIu64, static_cast<uint64_t>(m_kernels.size()));
3475     strm.EOL();
3476     strm.IndentMore();
3477     for (const auto &kernel : m_kernels)
3478     {
3479         kernel.Dump(strm);
3480     }
3481     strm.Printf("Pragmas: %" PRIu64, static_cast<uint64_t>(m_pragmas.size()));
3482     strm.EOL();
3483     strm.IndentMore();
3484     for (const auto &key_val : m_pragmas)
3485     {
3486         strm.Printf("%s: %s", key_val.first.c_str(), key_val.second.c_str());
3487         strm.EOL();
3488     }
3489     strm.IndentLess(4);
3490 }
3491 
3492 void
3493 RSGlobalDescriptor::Dump(Stream &strm) const
3494 {
3495     strm.Indent(m_name.AsCString());
3496     VariableList var_list;
3497     m_module->m_module->FindGlobalVariables(m_name, nullptr, true, 1U, var_list);
3498     if (var_list.GetSize() == 1)
3499     {
3500         auto var = var_list.GetVariableAtIndex(0);
3501         auto type = var->GetType();
3502         if (type)
3503         {
3504             strm.Printf(" - ");
3505             type->DumpTypeName(&strm);
3506         }
3507         else
3508         {
3509             strm.Printf(" - Unknown Type");
3510         }
3511     }
3512     else
3513     {
3514         strm.Printf(" - variable identified, but not found in binary");
3515         const Symbol *s = m_module->m_module->FindFirstSymbolWithNameAndType(m_name, eSymbolTypeData);
3516         if (s)
3517         {
3518             strm.Printf(" (symbol exists) ");
3519         }
3520     }
3521 
3522     strm.EOL();
3523 }
3524 
3525 void
3526 RSKernelDescriptor::Dump(Stream &strm) const
3527 {
3528     strm.Indent(m_name.AsCString());
3529     strm.EOL();
3530 }
3531 
3532 class CommandObjectRenderScriptRuntimeModuleDump : public CommandObjectParsed
3533 {
3534 public:
3535     CommandObjectRenderScriptRuntimeModuleDump(CommandInterpreter &interpreter)
3536         : CommandObjectParsed(interpreter, "renderscript module dump",
3537                               "Dumps renderscript specific information for all modules.", "renderscript module dump",
3538                               eCommandRequiresProcess | eCommandProcessMustBeLaunched)
3539     {
3540     }
3541 
3542     ~CommandObjectRenderScriptRuntimeModuleDump() override = default;
3543 
3544     bool
3545     DoExecute(Args &command, CommandReturnObject &result) override
3546     {
3547         RenderScriptRuntime *runtime =
3548             (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
3549         runtime->DumpModules(result.GetOutputStream());
3550         result.SetStatus(eReturnStatusSuccessFinishResult);
3551         return true;
3552     }
3553 };
3554 
3555 class CommandObjectRenderScriptRuntimeModule : public CommandObjectMultiword
3556 {
3557 public:
3558     CommandObjectRenderScriptRuntimeModule(CommandInterpreter &interpreter)
3559         : CommandObjectMultiword(interpreter, "renderscript module", "Commands that deal with renderscript modules.",
3560                                  nullptr)
3561     {
3562         LoadSubCommand("dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeModuleDump(interpreter)));
3563     }
3564 
3565     ~CommandObjectRenderScriptRuntimeModule() override = default;
3566 };
3567 
3568 class CommandObjectRenderScriptRuntimeKernelList : public CommandObjectParsed
3569 {
3570 public:
3571     CommandObjectRenderScriptRuntimeKernelList(CommandInterpreter &interpreter)
3572         : CommandObjectParsed(interpreter, "renderscript kernel list",
3573                               "Lists renderscript kernel names and associated script resources.",
3574                               "renderscript kernel list", eCommandRequiresProcess | eCommandProcessMustBeLaunched)
3575     {
3576     }
3577 
3578     ~CommandObjectRenderScriptRuntimeKernelList() override = default;
3579 
3580     bool
3581     DoExecute(Args &command, CommandReturnObject &result) override
3582     {
3583         RenderScriptRuntime *runtime =
3584             (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
3585         runtime->DumpKernels(result.GetOutputStream());
3586         result.SetStatus(eReturnStatusSuccessFinishResult);
3587         return true;
3588     }
3589 };
3590 
3591 class CommandObjectRenderScriptRuntimeKernelBreakpointSet : public CommandObjectParsed
3592 {
3593 public:
3594     CommandObjectRenderScriptRuntimeKernelBreakpointSet(CommandInterpreter &interpreter)
3595         : CommandObjectParsed(interpreter, "renderscript kernel breakpoint set",
3596                               "Sets a breakpoint on a renderscript kernel.",
3597                               "renderscript kernel breakpoint set <kernel_name> [-c x,y,z]",
3598                               eCommandRequiresProcess | eCommandProcessMustBeLaunched | eCommandProcessMustBePaused),
3599           m_options(interpreter)
3600     {
3601     }
3602 
3603     ~CommandObjectRenderScriptRuntimeKernelBreakpointSet() override = default;
3604 
3605     Options *
3606     GetOptions() override
3607     {
3608         return &m_options;
3609     }
3610 
3611     class CommandOptions : public Options
3612     {
3613     public:
3614         CommandOptions(CommandInterpreter &interpreter) : Options(interpreter) {}
3615 
3616         ~CommandOptions() override = default;
3617 
3618         Error
3619         SetOptionValue(uint32_t option_idx, const char *option_arg) override
3620         {
3621             Error error;
3622             const int short_option = m_getopt_table[option_idx].val;
3623 
3624             switch (short_option)
3625             {
3626                 case 'c':
3627                     if (!ParseCoordinate(option_arg))
3628                         error.SetErrorStringWithFormat("Couldn't parse coordinate '%s', should be in format 'x,y,z'.",
3629                                                        option_arg);
3630                     break;
3631                 default:
3632                     error.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
3633                     break;
3634             }
3635             return error;
3636         }
3637 
3638         // -c takes an argument of the form 'num[,num][,num]'.
3639         // Where 'id_cstr' is this argument with the whitespace trimmed.
3640         // Missing coordinates are defaulted to zero.
3641         bool
3642         ParseCoordinate(const char *id_cstr)
3643         {
3644             RegularExpression regex;
3645             RegularExpression::Match regex_match(3);
3646 
3647             bool matched = false;
3648             if (regex.Compile("^([0-9]+),([0-9]+),([0-9]+)$") && regex.Execute(id_cstr, &regex_match))
3649                 matched = true;
3650             else if (regex.Compile("^([0-9]+),([0-9]+)$") && regex.Execute(id_cstr, &regex_match))
3651                 matched = true;
3652             else if (regex.Compile("^([0-9]+)$") && regex.Execute(id_cstr, &regex_match))
3653                 matched = true;
3654             for (uint32_t i = 0; i < 3; i++)
3655             {
3656                 std::string group;
3657                 if (regex_match.GetMatchAtIndex(id_cstr, i + 1, group))
3658                     m_coord[i] = (uint32_t)strtoul(group.c_str(), nullptr, 0);
3659                 else
3660                     m_coord[i] = 0;
3661             }
3662             return matched;
3663         }
3664 
3665         void
3666         OptionParsingStarting() override
3667         {
3668             // -1 means the -c option hasn't been set
3669             m_coord[0] = -1;
3670             m_coord[1] = -1;
3671             m_coord[2] = -1;
3672         }
3673 
3674         const OptionDefinition *
3675         GetDefinitions() override
3676         {
3677             return g_option_table;
3678         }
3679 
3680         static OptionDefinition g_option_table[];
3681         std::array<int, 3> m_coord;
3682     };
3683 
3684     bool
3685     DoExecute(Args &command, CommandReturnObject &result) override
3686     {
3687         const size_t argc = command.GetArgumentCount();
3688         if (argc < 1)
3689         {
3690             result.AppendErrorWithFormat("'%s' takes 1 argument of kernel name, and an optional coordinate.",
3691                                          m_cmd_name.c_str());
3692             result.SetStatus(eReturnStatusFailed);
3693             return false;
3694         }
3695 
3696         RenderScriptRuntime *runtime =
3697             (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
3698 
3699         Error error;
3700         runtime->PlaceBreakpointOnKernel(result.GetOutputStream(), command.GetArgumentAtIndex(0), m_options.m_coord,
3701                                          error, m_exe_ctx.GetTargetSP());
3702 
3703         if (error.Success())
3704         {
3705             result.AppendMessage("Breakpoint(s) created");
3706             result.SetStatus(eReturnStatusSuccessFinishResult);
3707             return true;
3708         }
3709         result.SetStatus(eReturnStatusFailed);
3710         result.AppendErrorWithFormat("Error: %s", error.AsCString());
3711         return false;
3712     }
3713 
3714 private:
3715     CommandOptions m_options;
3716 };
3717 
3718 OptionDefinition CommandObjectRenderScriptRuntimeKernelBreakpointSet::CommandOptions::g_option_table[] = {
3719     {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeValue,
3720      "Set a breakpoint on a single invocation of the kernel with specified coordinate.\n"
3721      "Coordinate takes the form 'x[,y][,z] where x,y,z are positive integers representing kernel dimensions. "
3722      "Any unset dimensions will be defaulted to zero."},
3723     {0, false, nullptr, 0, 0, nullptr, nullptr, 0, eArgTypeNone, nullptr}};
3724 
3725 class CommandObjectRenderScriptRuntimeKernelBreakpointAll : public CommandObjectParsed
3726 {
3727 public:
3728     CommandObjectRenderScriptRuntimeKernelBreakpointAll(CommandInterpreter &interpreter)
3729         : CommandObjectParsed(
3730               interpreter, "renderscript kernel breakpoint all",
3731               "Automatically sets a breakpoint on all renderscript kernels that are or will be loaded.\n"
3732               "Disabling option means breakpoints will no longer be set on any kernels loaded in the future, "
3733               "but does not remove currently set breakpoints.",
3734               "renderscript kernel breakpoint all <enable/disable>",
3735               eCommandRequiresProcess | eCommandProcessMustBeLaunched | eCommandProcessMustBePaused)
3736     {
3737     }
3738 
3739     ~CommandObjectRenderScriptRuntimeKernelBreakpointAll() override = default;
3740 
3741     bool
3742     DoExecute(Args &command, CommandReturnObject &result) override
3743     {
3744         const size_t argc = command.GetArgumentCount();
3745         if (argc != 1)
3746         {
3747             result.AppendErrorWithFormat("'%s' takes 1 argument of 'enable' or 'disable'", m_cmd_name.c_str());
3748             result.SetStatus(eReturnStatusFailed);
3749             return false;
3750         }
3751 
3752         RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
3753             m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
3754 
3755         bool do_break = false;
3756         const char *argument = command.GetArgumentAtIndex(0);
3757         if (strcmp(argument, "enable") == 0)
3758         {
3759             do_break = true;
3760             result.AppendMessage("Breakpoints will be set on all kernels.");
3761         }
3762         else if (strcmp(argument, "disable") == 0)
3763         {
3764             do_break = false;
3765             result.AppendMessage("Breakpoints will not be set on any new kernels.");
3766         }
3767         else
3768         {
3769             result.AppendErrorWithFormat("Argument must be either 'enable' or 'disable'");
3770             result.SetStatus(eReturnStatusFailed);
3771             return false;
3772         }
3773 
3774         runtime->SetBreakAllKernels(do_break, m_exe_ctx.GetTargetSP());
3775 
3776         result.SetStatus(eReturnStatusSuccessFinishResult);
3777         return true;
3778     }
3779 };
3780 
3781 class CommandObjectRenderScriptRuntimeKernelCoordinate : public CommandObjectParsed
3782 {
3783 public:
3784     CommandObjectRenderScriptRuntimeKernelCoordinate(CommandInterpreter &interpreter)
3785         : CommandObjectParsed(interpreter, "renderscript kernel coordinate",
3786                               "Shows the (x,y,z) coordinate of the current kernel invocation.",
3787                               "renderscript kernel coordinate",
3788                               eCommandRequiresProcess | eCommandProcessMustBeLaunched | eCommandProcessMustBePaused)
3789     {
3790     }
3791 
3792     ~CommandObjectRenderScriptRuntimeKernelCoordinate() override = default;
3793 
3794     bool
3795     DoExecute(Args &command, CommandReturnObject &result) override
3796     {
3797         RSCoordinate coord{}; // Zero initialize array
3798         bool success = RenderScriptRuntime::GetKernelCoordinate(coord, m_exe_ctx.GetThreadPtr());
3799         Stream &stream = result.GetOutputStream();
3800 
3801         if (success)
3802         {
3803             stream.Printf("Coordinate: (%" PRIu32 ", %" PRIu32 ", %" PRIu32 ")", coord[0], coord[1], coord[2]);
3804             stream.EOL();
3805             result.SetStatus(eReturnStatusSuccessFinishResult);
3806         }
3807         else
3808         {
3809             stream.Printf("Error: Coordinate could not be found.");
3810             stream.EOL();
3811             result.SetStatus(eReturnStatusFailed);
3812         }
3813         return true;
3814     }
3815 };
3816 
3817 class CommandObjectRenderScriptRuntimeKernelBreakpoint : public CommandObjectMultiword
3818 {
3819 public:
3820     CommandObjectRenderScriptRuntimeKernelBreakpoint(CommandInterpreter &interpreter)
3821         : CommandObjectMultiword(interpreter, "renderscript kernel",
3822                                  "Commands that generate breakpoints on renderscript kernels.", nullptr)
3823     {
3824         LoadSubCommand("set", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointSet(interpreter)));
3825         LoadSubCommand("all", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointAll(interpreter)));
3826     }
3827 
3828     ~CommandObjectRenderScriptRuntimeKernelBreakpoint() override = default;
3829 };
3830 
3831 class CommandObjectRenderScriptRuntimeKernel : public CommandObjectMultiword
3832 {
3833 public:
3834     CommandObjectRenderScriptRuntimeKernel(CommandInterpreter &interpreter)
3835         : CommandObjectMultiword(interpreter, "renderscript kernel", "Commands that deal with renderscript kernels.",
3836                                  nullptr)
3837     {
3838         LoadSubCommand("list", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelList(interpreter)));
3839         LoadSubCommand("coordinate",
3840                        CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelCoordinate(interpreter)));
3841         LoadSubCommand("breakpoint",
3842                        CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpoint(interpreter)));
3843     }
3844 
3845     ~CommandObjectRenderScriptRuntimeKernel() override = default;
3846 };
3847 
3848 class CommandObjectRenderScriptRuntimeContextDump : public CommandObjectParsed
3849 {
3850 public:
3851     CommandObjectRenderScriptRuntimeContextDump(CommandInterpreter &interpreter)
3852         : CommandObjectParsed(interpreter, "renderscript context dump", "Dumps renderscript context information.",
3853                               "renderscript context dump", eCommandRequiresProcess | eCommandProcessMustBeLaunched)
3854     {
3855     }
3856 
3857     ~CommandObjectRenderScriptRuntimeContextDump() override = default;
3858 
3859     bool
3860     DoExecute(Args &command, CommandReturnObject &result) override
3861     {
3862         RenderScriptRuntime *runtime =
3863             (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
3864         runtime->DumpContexts(result.GetOutputStream());
3865         result.SetStatus(eReturnStatusSuccessFinishResult);
3866         return true;
3867     }
3868 };
3869 
3870 class CommandObjectRenderScriptRuntimeContext : public CommandObjectMultiword
3871 {
3872 public:
3873     CommandObjectRenderScriptRuntimeContext(CommandInterpreter &interpreter)
3874         : CommandObjectMultiword(interpreter, "renderscript context", "Commands that deal with renderscript contexts.",
3875                                  nullptr)
3876     {
3877         LoadSubCommand("dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeContextDump(interpreter)));
3878     }
3879 
3880     ~CommandObjectRenderScriptRuntimeContext() override = default;
3881 };
3882 
3883 class CommandObjectRenderScriptRuntimeAllocationDump : public CommandObjectParsed
3884 {
3885 public:
3886     CommandObjectRenderScriptRuntimeAllocationDump(CommandInterpreter &interpreter)
3887         : CommandObjectParsed(interpreter, "renderscript allocation dump",
3888                               "Displays the contents of a particular allocation", "renderscript allocation dump <ID>",
3889                               eCommandRequiresProcess | eCommandProcessMustBeLaunched),
3890           m_options(interpreter)
3891     {
3892     }
3893 
3894     ~CommandObjectRenderScriptRuntimeAllocationDump() override = default;
3895 
3896     Options *
3897     GetOptions() override
3898     {
3899         return &m_options;
3900     }
3901 
3902     class CommandOptions : public Options
3903     {
3904     public:
3905         CommandOptions(CommandInterpreter &interpreter) : Options(interpreter) {}
3906 
3907         ~CommandOptions() override = default;
3908 
3909         Error
3910         SetOptionValue(uint32_t option_idx, const char *option_arg) override
3911         {
3912             Error error;
3913             const int short_option = m_getopt_table[option_idx].val;
3914 
3915             switch (short_option)
3916             {
3917                 case 'f':
3918                     m_outfile.SetFile(option_arg, true);
3919                     if (m_outfile.Exists())
3920                     {
3921                         m_outfile.Clear();
3922                         error.SetErrorStringWithFormat("file already exists: '%s'", option_arg);
3923                     }
3924                     break;
3925                 default:
3926                     error.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
3927                     break;
3928             }
3929             return error;
3930         }
3931 
3932         void
3933         OptionParsingStarting() override
3934         {
3935             m_outfile.Clear();
3936         }
3937 
3938         const OptionDefinition *
3939         GetDefinitions() override
3940         {
3941             return g_option_table;
3942         }
3943 
3944         static OptionDefinition g_option_table[];
3945         FileSpec m_outfile;
3946     };
3947 
3948     bool
3949     DoExecute(Args &command, CommandReturnObject &result) override
3950     {
3951         const size_t argc = command.GetArgumentCount();
3952         if (argc < 1)
3953         {
3954             result.AppendErrorWithFormat("'%s' takes 1 argument, an allocation ID. As well as an optional -f argument",
3955                                          m_cmd_name.c_str());
3956             result.SetStatus(eReturnStatusFailed);
3957             return false;
3958         }
3959 
3960         RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
3961             m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
3962 
3963         const char *id_cstr = command.GetArgumentAtIndex(0);
3964         bool convert_complete = false;
3965         const uint32_t id = StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete);
3966         if (!convert_complete)
3967         {
3968             result.AppendErrorWithFormat("invalid allocation id argument '%s'", id_cstr);
3969             result.SetStatus(eReturnStatusFailed);
3970             return false;
3971         }
3972 
3973         Stream *output_strm = nullptr;
3974         StreamFile outfile_stream;
3975         const FileSpec &outfile_spec = m_options.m_outfile; // Dump allocation to file instead
3976         if (outfile_spec)
3977         {
3978             // Open output file
3979             char path[256];
3980             outfile_spec.GetPath(path, sizeof(path));
3981             if (outfile_stream.GetFile().Open(path, File::eOpenOptionWrite | File::eOpenOptionCanCreate).Success())
3982             {
3983                 output_strm = &outfile_stream;
3984                 result.GetOutputStream().Printf("Results written to '%s'", path);
3985                 result.GetOutputStream().EOL();
3986             }
3987             else
3988             {
3989                 result.AppendErrorWithFormat("Couldn't open file '%s'", path);
3990                 result.SetStatus(eReturnStatusFailed);
3991                 return false;
3992             }
3993         }
3994         else
3995             output_strm = &result.GetOutputStream();
3996 
3997         assert(output_strm != nullptr);
3998         bool success = runtime->DumpAllocation(*output_strm, m_exe_ctx.GetFramePtr(), id);
3999 
4000         if (success)
4001             result.SetStatus(eReturnStatusSuccessFinishResult);
4002         else
4003             result.SetStatus(eReturnStatusFailed);
4004 
4005         return true;
4006     }
4007 
4008 private:
4009     CommandOptions m_options;
4010 };
4011 
4012 OptionDefinition CommandObjectRenderScriptRuntimeAllocationDump::CommandOptions::g_option_table[] = {
4013     {LLDB_OPT_SET_1, false, "file", 'f', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeFilename,
4014      "Print results to specified file instead of command line."},
4015     {0, false, nullptr, 0, 0, nullptr, nullptr, 0, eArgTypeNone, nullptr}};
4016 
4017 class CommandObjectRenderScriptRuntimeAllocationList : public CommandObjectParsed
4018 {
4019 public:
4020     CommandObjectRenderScriptRuntimeAllocationList(CommandInterpreter &interpreter)
4021         : CommandObjectParsed(interpreter, "renderscript allocation list",
4022                               "List renderscript allocations and their information.", "renderscript allocation list",
4023                               eCommandRequiresProcess | eCommandProcessMustBeLaunched),
4024           m_options(interpreter)
4025     {
4026     }
4027 
4028     ~CommandObjectRenderScriptRuntimeAllocationList() override = default;
4029 
4030     Options *
4031     GetOptions() override
4032     {
4033         return &m_options;
4034     }
4035 
4036     class CommandOptions : public Options
4037     {
4038     public:
4039         CommandOptions(CommandInterpreter &interpreter) : Options(interpreter), m_id(0) {}
4040 
4041         ~CommandOptions() override = default;
4042 
4043         Error
4044         SetOptionValue(uint32_t option_idx, const char *option_arg) override
4045         {
4046             Error error;
4047             const int short_option = m_getopt_table[option_idx].val;
4048 
4049             switch (short_option)
4050             {
4051                 case 'i':
4052                     bool success;
4053                     m_id = StringConvert::ToUInt32(option_arg, 0, 0, &success);
4054                     if (!success)
4055                         error.SetErrorStringWithFormat("invalid integer value for option '%c'", short_option);
4056                     break;
4057                 default:
4058                     error.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
4059                     break;
4060             }
4061             return error;
4062         }
4063 
4064         void
4065         OptionParsingStarting() override
4066         {
4067             m_id = 0;
4068         }
4069 
4070         const OptionDefinition *
4071         GetDefinitions() override
4072         {
4073             return g_option_table;
4074         }
4075 
4076         static OptionDefinition g_option_table[];
4077         uint32_t m_id;
4078     };
4079 
4080     bool
4081     DoExecute(Args &command, CommandReturnObject &result) override
4082     {
4083         RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4084             m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
4085         runtime->ListAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr(), m_options.m_id);
4086         result.SetStatus(eReturnStatusSuccessFinishResult);
4087         return true;
4088     }
4089 
4090 private:
4091     CommandOptions m_options;
4092 };
4093 
4094 OptionDefinition CommandObjectRenderScriptRuntimeAllocationList::CommandOptions::g_option_table[] = {
4095     {LLDB_OPT_SET_1, false, "id", 'i', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeIndex,
4096      "Only show details of a single allocation with specified id."},
4097     {0, false, nullptr, 0, 0, nullptr, nullptr, 0, eArgTypeNone, nullptr}};
4098 
4099 class CommandObjectRenderScriptRuntimeAllocationLoad : public CommandObjectParsed
4100 {
4101 public:
4102     CommandObjectRenderScriptRuntimeAllocationLoad(CommandInterpreter &interpreter)
4103         : CommandObjectParsed(
4104               interpreter, "renderscript allocation load", "Loads renderscript allocation contents from a file.",
4105               "renderscript allocation load <ID> <filename>", eCommandRequiresProcess | eCommandProcessMustBeLaunched)
4106     {
4107     }
4108 
4109     ~CommandObjectRenderScriptRuntimeAllocationLoad() override = default;
4110 
4111     bool
4112     DoExecute(Args &command, CommandReturnObject &result) override
4113     {
4114         const size_t argc = command.GetArgumentCount();
4115         if (argc != 2)
4116         {
4117             result.AppendErrorWithFormat("'%s' takes 2 arguments, an allocation ID and filename to read from.",
4118                                          m_cmd_name.c_str());
4119             result.SetStatus(eReturnStatusFailed);
4120             return false;
4121         }
4122 
4123         RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4124             m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
4125 
4126         const char *id_cstr = command.GetArgumentAtIndex(0);
4127         bool convert_complete = false;
4128         const uint32_t id = StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete);
4129         if (!convert_complete)
4130         {
4131             result.AppendErrorWithFormat("invalid allocation id argument '%s'", id_cstr);
4132             result.SetStatus(eReturnStatusFailed);
4133             return false;
4134         }
4135 
4136         const char *filename = command.GetArgumentAtIndex(1);
4137         bool success = runtime->LoadAllocation(result.GetOutputStream(), id, filename, m_exe_ctx.GetFramePtr());
4138 
4139         if (success)
4140             result.SetStatus(eReturnStatusSuccessFinishResult);
4141         else
4142             result.SetStatus(eReturnStatusFailed);
4143 
4144         return true;
4145     }
4146 };
4147 
4148 class CommandObjectRenderScriptRuntimeAllocationSave : public CommandObjectParsed
4149 {
4150 public:
4151     CommandObjectRenderScriptRuntimeAllocationSave(CommandInterpreter &interpreter)
4152         : CommandObjectParsed(
4153               interpreter, "renderscript allocation save", "Write renderscript allocation contents to a file.",
4154               "renderscript allocation save <ID> <filename>", eCommandRequiresProcess | eCommandProcessMustBeLaunched)
4155     {
4156     }
4157 
4158     ~CommandObjectRenderScriptRuntimeAllocationSave() override = default;
4159 
4160     bool
4161     DoExecute(Args &command, CommandReturnObject &result) override
4162     {
4163         const size_t argc = command.GetArgumentCount();
4164         if (argc != 2)
4165         {
4166             result.AppendErrorWithFormat("'%s' takes 2 arguments, an allocation ID and filename to read from.",
4167                                          m_cmd_name.c_str());
4168             result.SetStatus(eReturnStatusFailed);
4169             return false;
4170         }
4171 
4172         RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4173             m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
4174 
4175         const char *id_cstr = command.GetArgumentAtIndex(0);
4176         bool convert_complete = false;
4177         const uint32_t id = StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete);
4178         if (!convert_complete)
4179         {
4180             result.AppendErrorWithFormat("invalid allocation id argument '%s'", id_cstr);
4181             result.SetStatus(eReturnStatusFailed);
4182             return false;
4183         }
4184 
4185         const char *filename = command.GetArgumentAtIndex(1);
4186         bool success = runtime->SaveAllocation(result.GetOutputStream(), id, filename, m_exe_ctx.GetFramePtr());
4187 
4188         if (success)
4189             result.SetStatus(eReturnStatusSuccessFinishResult);
4190         else
4191             result.SetStatus(eReturnStatusFailed);
4192 
4193         return true;
4194     }
4195 };
4196 
4197 class CommandObjectRenderScriptRuntimeAllocationRefresh : public CommandObjectParsed
4198 {
4199 public:
4200     CommandObjectRenderScriptRuntimeAllocationRefresh(CommandInterpreter &interpreter)
4201         : CommandObjectParsed(interpreter, "renderscript allocation refresh",
4202                               "Recomputes the details of all allocations.", "renderscript allocation refresh",
4203                               eCommandRequiresProcess | eCommandProcessMustBeLaunched)
4204     {
4205     }
4206 
4207     ~CommandObjectRenderScriptRuntimeAllocationRefresh() override = default;
4208 
4209     bool
4210     DoExecute(Args &command, CommandReturnObject &result) override
4211     {
4212         RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4213             m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
4214 
4215         bool success = runtime->RecomputeAllAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr());
4216 
4217         if (success)
4218         {
4219             result.SetStatus(eReturnStatusSuccessFinishResult);
4220             return true;
4221         }
4222         else
4223         {
4224             result.SetStatus(eReturnStatusFailed);
4225             return false;
4226         }
4227     }
4228 };
4229 
4230 class CommandObjectRenderScriptRuntimeAllocation : public CommandObjectMultiword
4231 {
4232 public:
4233     CommandObjectRenderScriptRuntimeAllocation(CommandInterpreter &interpreter)
4234         : CommandObjectMultiword(interpreter, "renderscript allocation",
4235                                  "Commands that deal with renderscript allocations.", nullptr)
4236     {
4237         LoadSubCommand("list", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationList(interpreter)));
4238         LoadSubCommand("dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationDump(interpreter)));
4239         LoadSubCommand("save", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationSave(interpreter)));
4240         LoadSubCommand("load", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationLoad(interpreter)));
4241         LoadSubCommand("refresh", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationRefresh(interpreter)));
4242     }
4243 
4244     ~CommandObjectRenderScriptRuntimeAllocation() override = default;
4245 };
4246 
4247 class CommandObjectRenderScriptRuntimeStatus : public CommandObjectParsed
4248 {
4249 public:
4250     CommandObjectRenderScriptRuntimeStatus(CommandInterpreter &interpreter)
4251         : CommandObjectParsed(interpreter, "renderscript status", "Displays current renderscript runtime status.",
4252                               "renderscript status", eCommandRequiresProcess | eCommandProcessMustBeLaunched)
4253     {
4254     }
4255 
4256     ~CommandObjectRenderScriptRuntimeStatus() override = default;
4257 
4258     bool
4259     DoExecute(Args &command, CommandReturnObject &result) override
4260     {
4261         RenderScriptRuntime *runtime =
4262             (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
4263         runtime->Status(result.GetOutputStream());
4264         result.SetStatus(eReturnStatusSuccessFinishResult);
4265         return true;
4266     }
4267 };
4268 
4269 class CommandObjectRenderScriptRuntime : public CommandObjectMultiword
4270 {
4271 public:
4272     CommandObjectRenderScriptRuntime(CommandInterpreter &interpreter)
4273         : CommandObjectMultiword(interpreter, "renderscript", "A set of commands for operating on renderscript.",
4274                                  "renderscript <subcommand> [<subcommand-options>]")
4275     {
4276         LoadSubCommand("module", CommandObjectSP(new CommandObjectRenderScriptRuntimeModule(interpreter)));
4277         LoadSubCommand("status", CommandObjectSP(new CommandObjectRenderScriptRuntimeStatus(interpreter)));
4278         LoadSubCommand("kernel", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernel(interpreter)));
4279         LoadSubCommand("context", CommandObjectSP(new CommandObjectRenderScriptRuntimeContext(interpreter)));
4280         LoadSubCommand("allocation", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocation(interpreter)));
4281     }
4282 
4283     ~CommandObjectRenderScriptRuntime() override = default;
4284 };
4285 
4286 void
4287 RenderScriptRuntime::Initiate()
4288 {
4289     assert(!m_initiated);
4290 }
4291 
4292 RenderScriptRuntime::RenderScriptRuntime(Process *process)
4293     : lldb_private::CPPLanguageRuntime(process),
4294       m_initiated(false),
4295       m_debuggerPresentFlagged(false),
4296       m_breakAllKernels(false)
4297 {
4298     ModulesDidLoad(process->GetTarget().GetImages());
4299 }
4300 
4301 lldb::CommandObjectSP
4302 RenderScriptRuntime::GetCommandObject(lldb_private::CommandInterpreter &interpreter)
4303 {
4304     return CommandObjectSP(new CommandObjectRenderScriptRuntime(interpreter));
4305 }
4306 
4307 RenderScriptRuntime::~RenderScriptRuntime() = default;
4308