1 //===-- RenderScriptRuntime.cpp ---------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 // C Includes
11 // C++ Includes
12 // Other libraries and framework includes
13 // Project includes
14 #include "RenderScriptRuntime.h"
15 
16 #include "lldb/Breakpoint/StoppointCallbackContext.h"
17 #include "lldb/Core/ConstString.h"
18 #include "lldb/Core/Debugger.h"
19 #include "lldb/Core/Error.h"
20 #include "lldb/Core/Log.h"
21 #include "lldb/Core/PluginManager.h"
22 #include "lldb/Core/RegularExpression.h"
23 #include "lldb/Core/ValueObjectVariable.h"
24 #include "lldb/DataFormatters/DumpValueObjectOptions.h"
25 #include "lldb/Expression/UserExpression.h"
26 #include "lldb/Host/StringConvert.h"
27 #include "lldb/Interpreter/Args.h"
28 #include "lldb/Interpreter/CommandInterpreter.h"
29 #include "lldb/Interpreter/CommandObjectMultiword.h"
30 #include "lldb/Interpreter/CommandReturnObject.h"
31 #include "lldb/Interpreter/Options.h"
32 #include "lldb/Symbol/Symbol.h"
33 #include "lldb/Symbol/Type.h"
34 #include "lldb/Symbol/VariableList.h"
35 #include "lldb/Target/Process.h"
36 #include "lldb/Target/RegisterContext.h"
37 #include "lldb/Target/Target.h"
38 #include "lldb/Target/Thread.h"
39 
40 using namespace lldb;
41 using namespace lldb_private;
42 using namespace lldb_renderscript;
43 
44 namespace
45 {
46 
47 // The empirical_type adds a basic level of validation to arbitrary data
48 // allowing us to track if data has been discovered and stored or not.
49 // An empirical_type will be marked as valid only if it has been explicitly assigned to.
50 template <typename type_t> class empirical_type
51 {
52 public:
53     // Ctor. Contents is invalid when constructed.
54     empirical_type() : valid(false) {}
55 
56     // Return true and copy contents to out if valid, else return false.
57     bool
58     get(type_t &out) const
59     {
60         if (valid)
61             out = data;
62         return valid;
63     }
64 
65     // Return a pointer to the contents or nullptr if it was not valid.
66     const type_t *
67     get() const
68     {
69         return valid ? &data : nullptr;
70     }
71 
72     // Assign data explicitly.
73     void
74     set(const type_t in)
75     {
76         data = in;
77         valid = true;
78     }
79 
80     // Mark contents as invalid.
81     void
82     invalidate()
83     {
84         valid = false;
85     }
86 
87     // Returns true if this type contains valid data.
88     bool
89     isValid() const
90     {
91         return valid;
92     }
93 
94     // Assignment operator.
95     empirical_type<type_t> &
96     operator=(const type_t in)
97     {
98         set(in);
99         return *this;
100     }
101 
102     // Dereference operator returns contents.
103     // Warning: Will assert if not valid so use only when you know data is valid.
104     const type_t &operator*() const
105     {
106         assert(valid);
107         return data;
108     }
109 
110 protected:
111     bool valid;
112     type_t data;
113 };
114 
115 } // anonymous namespace
116 
117 // The ScriptDetails class collects data associated with a single script instance.
118 struct RenderScriptRuntime::ScriptDetails
119 {
120     ~ScriptDetails() = default;
121 
122     enum ScriptType
123     {
124         eScript,
125         eScriptC
126     };
127 
128     // The derived type of the script.
129     empirical_type<ScriptType> type;
130     // The name of the original source file.
131     empirical_type<std::string> resName;
132     // Path to script .so file on the device.
133     empirical_type<std::string> scriptDyLib;
134     // Directory where kernel objects are cached on device.
135     empirical_type<std::string> cacheDir;
136     // Pointer to the context which owns this script.
137     empirical_type<lldb::addr_t> context;
138     // Pointer to the script object itself.
139     empirical_type<lldb::addr_t> script;
140 };
141 
142 // This Element class represents the Element object in RS,
143 // defining the type associated with an Allocation.
144 struct RenderScriptRuntime::Element
145 {
146     // Taken from rsDefines.h
147     enum DataKind
148     {
149         RS_KIND_USER,
150         RS_KIND_PIXEL_L = 7,
151         RS_KIND_PIXEL_A,
152         RS_KIND_PIXEL_LA,
153         RS_KIND_PIXEL_RGB,
154         RS_KIND_PIXEL_RGBA,
155         RS_KIND_PIXEL_DEPTH,
156         RS_KIND_PIXEL_YUV,
157         RS_KIND_INVALID = 100
158     };
159 
160     // Taken from rsDefines.h
161     enum DataType
162     {
163         RS_TYPE_NONE = 0,
164         RS_TYPE_FLOAT_16,
165         RS_TYPE_FLOAT_32,
166         RS_TYPE_FLOAT_64,
167         RS_TYPE_SIGNED_8,
168         RS_TYPE_SIGNED_16,
169         RS_TYPE_SIGNED_32,
170         RS_TYPE_SIGNED_64,
171         RS_TYPE_UNSIGNED_8,
172         RS_TYPE_UNSIGNED_16,
173         RS_TYPE_UNSIGNED_32,
174         RS_TYPE_UNSIGNED_64,
175         RS_TYPE_BOOLEAN,
176 
177         RS_TYPE_UNSIGNED_5_6_5,
178         RS_TYPE_UNSIGNED_5_5_5_1,
179         RS_TYPE_UNSIGNED_4_4_4_4,
180 
181         RS_TYPE_MATRIX_4X4,
182         RS_TYPE_MATRIX_3X3,
183         RS_TYPE_MATRIX_2X2,
184 
185         RS_TYPE_ELEMENT = 1000,
186         RS_TYPE_TYPE,
187         RS_TYPE_ALLOCATION,
188         RS_TYPE_SAMPLER,
189         RS_TYPE_SCRIPT,
190         RS_TYPE_MESH,
191         RS_TYPE_PROGRAM_FRAGMENT,
192         RS_TYPE_PROGRAM_VERTEX,
193         RS_TYPE_PROGRAM_RASTER,
194         RS_TYPE_PROGRAM_STORE,
195         RS_TYPE_FONT,
196 
197         RS_TYPE_INVALID = 10000
198     };
199 
200     std::vector<Element> children;            // Child Element fields for structs
201     empirical_type<lldb::addr_t> element_ptr; // Pointer to the RS Element of the Type
202     empirical_type<DataType> type;            // Type of each data pointer stored by the allocation
203     empirical_type<DataKind> type_kind;       // Defines pixel type if Allocation is created from an image
204     empirical_type<uint32_t> type_vec_size;   // Vector size of each data point, e.g '4' for uchar4
205     empirical_type<uint32_t> field_count;     // Number of Subelements
206     empirical_type<uint32_t> datum_size;      // Size of a single Element with padding
207     empirical_type<uint32_t> padding;         // Number of padding bytes
208     empirical_type<uint32_t> array_size;      // Number of items in array, only needed for strucrs
209     ConstString type_name;                    // Name of type, only needed for structs
210 
211     static const ConstString &
212     GetFallbackStructName(); // Print this as the type name of a struct Element
213                              // If we can't resolve the actual struct name
214 
215     bool
216     shouldRefresh() const
217     {
218         const bool valid_ptr = element_ptr.isValid() && *element_ptr.get() != 0x0;
219         const bool valid_type = type.isValid() && type_vec_size.isValid() && type_kind.isValid();
220         return !valid_ptr || !valid_type || !datum_size.isValid();
221     }
222 };
223 
224 // This AllocationDetails class collects data associated with a single
225 // allocation instance.
226 struct RenderScriptRuntime::AllocationDetails
227 {
228     struct Dimension
229     {
230         uint32_t dim_1;
231         uint32_t dim_2;
232         uint32_t dim_3;
233         uint32_t cubeMap;
234 
235         Dimension()
236         {
237             dim_1 = 0;
238             dim_2 = 0;
239             dim_3 = 0;
240             cubeMap = 0;
241         }
242     };
243 
244     // The FileHeader struct specifies the header we use for writing allocations to a binary file.
245     // Our format begins with the ASCII characters "RSAD", identifying the file as an allocation dump.
246     // Member variables dims and hdr_size are then written consecutively, immediately followed by an instance of
247     // the ElementHeader struct. Because Elements can contain subelements, there may be more than one instance
248     // of the ElementHeader struct. With this first instance being the root element, and the other instances being
249     // the root's descendants. To identify which instances are an ElementHeader's children, each struct
250     // is immediately followed by a sequence of consecutive offsets to the start of its child structs.
251     // These offsets are 4 bytes in size, and the 0 offset signifies no more children.
252     struct FileHeader
253     {
254         uint8_t ident[4];  // ASCII 'RSAD' identifying the file
255         uint32_t dims[3];  // Dimensions
256         uint16_t hdr_size; // Header size in bytes, including all element headers
257     };
258 
259     struct ElementHeader
260     {
261         uint16_t type;         // DataType enum
262         uint32_t kind;         // DataKind enum
263         uint32_t element_size; // Size of a single element, including padding
264         uint16_t vector_size;  // Vector width
265         uint32_t array_size;   // Number of elements in array
266     };
267 
268     // Monotonically increasing from 1
269     static uint32_t ID;
270 
271     // Maps Allocation DataType enum and vector size to printable strings
272     // using mapping from RenderScript numerical types summary documentation
273     static const char *RsDataTypeToString[][4];
274 
275     // Maps Allocation DataKind enum to printable strings
276     static const char *RsDataKindToString[];
277 
278     // Maps allocation types to format sizes for printing.
279     static const uint32_t RSTypeToFormat[][3];
280 
281     // Give each allocation an ID as a way
282     // for commands to reference it.
283     const uint32_t id;
284 
285     RenderScriptRuntime::Element element;  // Allocation Element type
286     empirical_type<Dimension> dimension;   // Dimensions of the Allocation
287     empirical_type<lldb::addr_t> address;  // Pointer to address of the RS Allocation
288     empirical_type<lldb::addr_t> data_ptr; // Pointer to the data held by the Allocation
289     empirical_type<lldb::addr_t> type_ptr; // Pointer to the RS Type of the Allocation
290     empirical_type<lldb::addr_t> context;  // Pointer to the RS Context of the Allocation
291     empirical_type<uint32_t> size;         // Size of the allocation
292     empirical_type<uint32_t> stride;       // Stride between rows of the allocation
293 
294     // Give each allocation an id, so we can reference it in user commands.
295     AllocationDetails() : id(ID++) {}
296 
297     bool
298     shouldRefresh() const
299     {
300         bool valid_ptrs = data_ptr.isValid() && *data_ptr.get() != 0x0;
301         valid_ptrs = valid_ptrs && type_ptr.isValid() && *type_ptr.get() != 0x0;
302         return !valid_ptrs || !dimension.isValid() || !size.isValid() || element.shouldRefresh();
303     }
304 };
305 
306 const ConstString &
307 RenderScriptRuntime::Element::GetFallbackStructName()
308 {
309     static const ConstString FallbackStructName("struct");
310     return FallbackStructName;
311 }
312 
313 uint32_t RenderScriptRuntime::AllocationDetails::ID = 1;
314 
315 const char *RenderScriptRuntime::AllocationDetails::RsDataKindToString[] = {
316     "User",
317     "Undefined",  "Undefined",   "Undefined", "Undefined", "Undefined",  "Undefined", // Enum jumps from 0 to 7
318     "L Pixel",    "A Pixel",     "LA Pixel",  "RGB Pixel",
319     "RGBA Pixel", "Pixel Depth", "YUV Pixel"};
320 
321 const char *RenderScriptRuntime::AllocationDetails::RsDataTypeToString[][4] = {
322     {"None", "None", "None", "None"},
323     {"half", "half2", "half3", "half4"},
324     {"float", "float2", "float3", "float4"},
325     {"double", "double2", "double3", "double4"},
326     {"char", "char2", "char3", "char4"},
327     {"short", "short2", "short3", "short4"},
328     {"int", "int2", "int3", "int4"},
329     {"long", "long2", "long3", "long4"},
330     {"uchar", "uchar2", "uchar3", "uchar4"},
331     {"ushort", "ushort2", "ushort3", "ushort4"},
332     {"uint", "uint2", "uint3", "uint4"},
333     {"ulong", "ulong2", "ulong3", "ulong4"},
334     {"bool", "bool2", "bool3", "bool4"},
335     {"packed_565", "packed_565", "packed_565", "packed_565"},
336     {"packed_5551", "packed_5551", "packed_5551", "packed_5551"},
337     {"packed_4444", "packed_4444", "packed_4444", "packed_4444"},
338     {"rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4"},
339     {"rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3"},
340     {"rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2"},
341 
342     // Handlers
343     {"RS Element", "RS Element", "RS Element", "RS Element"},
344     {"RS Type", "RS Type", "RS Type", "RS Type"},
345     {"RS Allocation", "RS Allocation", "RS Allocation", "RS Allocation"},
346     {"RS Sampler", "RS Sampler", "RS Sampler", "RS Sampler"},
347     {"RS Script", "RS Script", "RS Script", "RS Script"},
348 
349     // Deprecated
350     {"RS Mesh", "RS Mesh", "RS Mesh", "RS Mesh"},
351     {"RS Program Fragment", "RS Program Fragment", "RS Program Fragment", "RS Program Fragment"},
352     {"RS Program Vertex", "RS Program Vertex", "RS Program Vertex", "RS Program Vertex"},
353     {"RS Program Raster", "RS Program Raster", "RS Program Raster", "RS Program Raster"},
354     {"RS Program Store", "RS Program Store", "RS Program Store", "RS Program Store"},
355     {"RS Font", "RS Font", "RS Font", "RS Font"}};
356 
357 // Used as an index into the RSTypeToFormat array elements
358 enum TypeToFormatIndex
359 {
360     eFormatSingle = 0,
361     eFormatVector,
362     eElementSize
363 };
364 
365 // { format enum of single element, format enum of element vector, size of element}
366 const uint32_t RenderScriptRuntime::AllocationDetails::RSTypeToFormat[][3] = {
367     {eFormatHex, eFormatHex, 1},                                          // RS_TYPE_NONE
368     {eFormatFloat, eFormatVectorOfFloat16, 2},                            // RS_TYPE_FLOAT_16
369     {eFormatFloat, eFormatVectorOfFloat32, sizeof(float)},                // RS_TYPE_FLOAT_32
370     {eFormatFloat, eFormatVectorOfFloat64, sizeof(double)},               // RS_TYPE_FLOAT_64
371     {eFormatDecimal, eFormatVectorOfSInt8, sizeof(int8_t)},               // RS_TYPE_SIGNED_8
372     {eFormatDecimal, eFormatVectorOfSInt16, sizeof(int16_t)},             // RS_TYPE_SIGNED_16
373     {eFormatDecimal, eFormatVectorOfSInt32, sizeof(int32_t)},             // RS_TYPE_SIGNED_32
374     {eFormatDecimal, eFormatVectorOfSInt64, sizeof(int64_t)},             // RS_TYPE_SIGNED_64
375     {eFormatDecimal, eFormatVectorOfUInt8, sizeof(uint8_t)},              // RS_TYPE_UNSIGNED_8
376     {eFormatDecimal, eFormatVectorOfUInt16, sizeof(uint16_t)},            // RS_TYPE_UNSIGNED_16
377     {eFormatDecimal, eFormatVectorOfUInt32, sizeof(uint32_t)},            // RS_TYPE_UNSIGNED_32
378     {eFormatDecimal, eFormatVectorOfUInt64, sizeof(uint64_t)},            // RS_TYPE_UNSIGNED_64
379     {eFormatBoolean, eFormatBoolean, 1},                                  // RS_TYPE_BOOL
380     {eFormatHex, eFormatHex, sizeof(uint16_t)},                           // RS_TYPE_UNSIGNED_5_6_5
381     {eFormatHex, eFormatHex, sizeof(uint16_t)},                           // RS_TYPE_UNSIGNED_5_5_5_1
382     {eFormatHex, eFormatHex, sizeof(uint16_t)},                           // RS_TYPE_UNSIGNED_4_4_4_4
383     {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 16}, // RS_TYPE_MATRIX_4X4
384     {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 9},  // RS_TYPE_MATRIX_3X3
385     {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 4}   // RS_TYPE_MATRIX_2X2
386 };
387 
388 const std::string RenderScriptRuntime::s_runtimeExpandSuffix(".expand");
389 const std::array<const char *, 3> RenderScriptRuntime::s_runtimeCoordVars{{"rsIndex", "p->current.y", "p->current.z"}};
390 //------------------------------------------------------------------
391 // Static Functions
392 //------------------------------------------------------------------
393 LanguageRuntime *
394 RenderScriptRuntime::CreateInstance(Process *process, lldb::LanguageType language)
395 {
396 
397     if (language == eLanguageTypeExtRenderScript)
398         return new RenderScriptRuntime(process);
399     else
400         return nullptr;
401 }
402 
403 // Callback with a module to search for matching symbols.
404 // We first check that the module contains RS kernels.
405 // Then look for a symbol which matches our kernel name.
406 // The breakpoint address is finally set using the address of this symbol.
407 Searcher::CallbackReturn
408 RSBreakpointResolver::SearchCallback(SearchFilter &filter, SymbolContext &context, Address *, bool)
409 {
410     ModuleSP module = context.module_sp;
411 
412     if (!module)
413         return Searcher::eCallbackReturnContinue;
414 
415     // Is this a module containing renderscript kernels?
416     if (nullptr == module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), eSymbolTypeData))
417         return Searcher::eCallbackReturnContinue;
418 
419     // Attempt to set a breakpoint on the kernel name symbol within the module library.
420     // If it's not found, it's likely debug info is unavailable - try to set a
421     // breakpoint on <name>.expand.
422 
423     const Symbol *kernel_sym = module->FindFirstSymbolWithNameAndType(m_kernel_name, eSymbolTypeCode);
424     if (!kernel_sym)
425     {
426         std::string kernel_name_expanded(m_kernel_name.AsCString());
427         kernel_name_expanded.append(".expand");
428         kernel_sym = module->FindFirstSymbolWithNameAndType(ConstString(kernel_name_expanded.c_str()), eSymbolTypeCode);
429     }
430 
431     if (kernel_sym)
432     {
433         Address bp_addr = kernel_sym->GetAddress();
434         if (filter.AddressPasses(bp_addr))
435             m_breakpoint->AddLocation(bp_addr);
436     }
437 
438     return Searcher::eCallbackReturnContinue;
439 }
440 
441 void
442 RenderScriptRuntime::Initialize()
443 {
444     PluginManager::RegisterPlugin(GetPluginNameStatic(), "RenderScript language support", CreateInstance,
445                                   GetCommandObject);
446 }
447 
448 void
449 RenderScriptRuntime::Terminate()
450 {
451     PluginManager::UnregisterPlugin(CreateInstance);
452 }
453 
454 lldb_private::ConstString
455 RenderScriptRuntime::GetPluginNameStatic()
456 {
457     static ConstString g_name("renderscript");
458     return g_name;
459 }
460 
461 RenderScriptRuntime::ModuleKind
462 RenderScriptRuntime::GetModuleKind(const lldb::ModuleSP &module_sp)
463 {
464     if (module_sp)
465     {
466         // Is this a module containing renderscript kernels?
467         const Symbol *info_sym = module_sp->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), eSymbolTypeData);
468         if (info_sym)
469         {
470             return eModuleKindKernelObj;
471         }
472 
473         // Is this the main RS runtime library
474         const ConstString rs_lib("libRS.so");
475         if (module_sp->GetFileSpec().GetFilename() == rs_lib)
476         {
477             return eModuleKindLibRS;
478         }
479 
480         const ConstString rs_driverlib("libRSDriver.so");
481         if (module_sp->GetFileSpec().GetFilename() == rs_driverlib)
482         {
483             return eModuleKindDriver;
484         }
485 
486         const ConstString rs_cpureflib("libRSCpuRef.so");
487         if (module_sp->GetFileSpec().GetFilename() == rs_cpureflib)
488         {
489             return eModuleKindImpl;
490         }
491     }
492     return eModuleKindIgnored;
493 }
494 
495 bool
496 RenderScriptRuntime::IsRenderScriptModule(const lldb::ModuleSP &module_sp)
497 {
498     return GetModuleKind(module_sp) != eModuleKindIgnored;
499 }
500 
501 void
502 RenderScriptRuntime::ModulesDidLoad(const ModuleList &module_list)
503 {
504     Mutex::Locker locker(module_list.GetMutex());
505 
506     size_t num_modules = module_list.GetSize();
507     for (size_t i = 0; i < num_modules; i++)
508     {
509         auto mod = module_list.GetModuleAtIndex(i);
510         if (IsRenderScriptModule(mod))
511         {
512             LoadModule(mod);
513         }
514     }
515 }
516 
517 //------------------------------------------------------------------
518 // PluginInterface protocol
519 //------------------------------------------------------------------
520 lldb_private::ConstString
521 RenderScriptRuntime::GetPluginName()
522 {
523     return GetPluginNameStatic();
524 }
525 
526 uint32_t
527 RenderScriptRuntime::GetPluginVersion()
528 {
529     return 1;
530 }
531 
532 bool
533 RenderScriptRuntime::IsVTableName(const char *name)
534 {
535     return false;
536 }
537 
538 bool
539 RenderScriptRuntime::GetDynamicTypeAndAddress(ValueObject &in_value, lldb::DynamicValueType use_dynamic,
540                                               TypeAndOrName &class_type_or_name, Address &address,
541                                               Value::ValueType &value_type)
542 {
543     return false;
544 }
545 
546 TypeAndOrName
547 RenderScriptRuntime::FixUpDynamicType(const TypeAndOrName &type_and_or_name, ValueObject &static_value)
548 {
549     return type_and_or_name;
550 }
551 
552 bool
553 RenderScriptRuntime::CouldHaveDynamicValue(ValueObject &in_value)
554 {
555     return false;
556 }
557 
558 lldb::BreakpointResolverSP
559 RenderScriptRuntime::CreateExceptionResolver(Breakpoint *bkpt, bool catch_bp, bool throw_bp)
560 {
561     BreakpointResolverSP resolver_sp;
562     return resolver_sp;
563 }
564 
565 const RenderScriptRuntime::HookDefn RenderScriptRuntime::s_runtimeHookDefns[] = {
566     // rsdScript
567     {
568         "rsdScriptInit",
569         "_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_7ScriptCEPKcS7_PKhjj",
570         "_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_7ScriptCEPKcS7_PKhmj",
571         0,
572         RenderScriptRuntime::eModuleKindDriver,
573         &lldb_private::RenderScriptRuntime::CaptureScriptInit
574     },
575     {
576         "rsdScriptInvokeForEachMulti",
577         "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0_6ScriptEjPPKNS0_10AllocationEjPS6_PKvjPK12RsScriptCall",
578         "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0_6ScriptEjPPKNS0_10AllocationEmPS6_PKvmPK12RsScriptCall",
579         0,
580         RenderScriptRuntime::eModuleKindDriver,
581         &lldb_private::RenderScriptRuntime::CaptureScriptInvokeForEachMulti
582     },
583     {
584         "rsdScriptSetGlobalVar",
585         "_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_6ScriptEjPvj",
586         "_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_6ScriptEjPvm",
587         0,
588         RenderScriptRuntime::eModuleKindDriver,
589         &lldb_private::RenderScriptRuntime::CaptureSetGlobalVar
590     },
591 
592     // rsdAllocation
593     {
594         "rsdAllocationInit",
595         "_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_10AllocationEb",
596         "_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_10AllocationEb",
597         0,
598         RenderScriptRuntime::eModuleKindDriver,
599         &lldb_private::RenderScriptRuntime::CaptureAllocationInit
600     },
601     {
602         "rsdAllocationRead2D",
603         "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_10AllocationEjjj23RsAllocationCubemapFacejjPvjj",
604         "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_10AllocationEjjj23RsAllocationCubemapFacejjPvmm",
605         0,
606         RenderScriptRuntime::eModuleKindDriver,
607         nullptr
608     },
609     {
610         "rsdAllocationDestroy",
611         "_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_10AllocationE",
612         "_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_10AllocationE",
613         0,
614         RenderScriptRuntime::eModuleKindDriver,
615         &lldb_private::RenderScriptRuntime::CaptureAllocationDestroy
616     },
617 };
618 
619 const size_t RenderScriptRuntime::s_runtimeHookCount = sizeof(s_runtimeHookDefns) / sizeof(s_runtimeHookDefns[0]);
620 
621 bool
622 RenderScriptRuntime::HookCallback(void *baton, StoppointCallbackContext *ctx, lldb::user_id_t break_id,
623                                   lldb::user_id_t break_loc_id)
624 {
625     RuntimeHook *hook_info = (RuntimeHook *)baton;
626     ExecutionContext context(ctx->exe_ctx_ref);
627 
628     RenderScriptRuntime *lang_rt =
629         (RenderScriptRuntime *)context.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
630 
631     lang_rt->HookCallback(hook_info, context);
632 
633     return false;
634 }
635 
636 void
637 RenderScriptRuntime::HookCallback(RuntimeHook *hook_info, ExecutionContext &context)
638 {
639     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
640 
641     if (log)
642         log->Printf("%s - '%s'", __FUNCTION__, hook_info->defn->name);
643 
644     if (hook_info->defn->grabber)
645     {
646         (this->*(hook_info->defn->grabber))(hook_info, context);
647     }
648 }
649 
650 bool
651 RenderScriptRuntime::GetArgSimple(ExecutionContext &context, uint32_t arg, uint64_t *data)
652 {
653     // Get a positional integer argument.
654     // Given an ExecutionContext, ``context`` which should be a RenderScript
655     // frame, get the value of the positional argument ``arg`` and save its value
656     // to the address pointed to by ``data``.
657     // returns true on success, false otherwise.
658     // If unsuccessful, the value pointed to by ``data`` is undefined. Otherwise,
659     // ``data`` will be set to the value of the the given ``arg``.
660     // NOTE: only natural width integer arguments for the machine are supported.
661     // Behaviour with non primitive arguments is undefined.
662 
663     if (!data)
664         return false;
665 
666     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
667     Error error;
668     RegisterContext *reg_ctx = context.GetRegisterContext();
669     Process *process = context.GetProcessPtr();
670     bool success = false; // return value
671 
672     if (!context.GetTargetPtr())
673     {
674         if (log)
675             log->Printf("%s - invalid target", __FUNCTION__);
676 
677         return false;
678     }
679 
680     switch (context.GetTargetPtr()->GetArchitecture().GetMachine())
681     {
682         case llvm::Triple::ArchType::x86:
683         {
684             uint64_t sp = reg_ctx->GetSP();
685             uint32_t offset = (1 + arg) * sizeof(uint32_t);
686             uint32_t result = 0;
687             process->ReadMemory(sp + offset, &result, sizeof(uint32_t), error);
688             if (error.Fail())
689             {
690                 if (log)
691                     log->Printf("%s - error reading X86 stack: '%s'.", __FUNCTION__, error.AsCString());
692             }
693             else
694             {
695                 *data = result;
696                 success = true;
697             }
698             break;
699         }
700         case llvm::Triple::ArchType::x86_64:
701         {
702             // amd64 has 6 integer registers, and 8 XMM registers for parameter passing.
703             // Surplus args are spilled onto the stack.
704             // rdi, rsi, rdx, rcx, r8, r9, (zmm0 - 7 for vectors)
705             // ref: AMD64 ABI Draft 0.99.6 – October 7, 2013 – 10:35; Figure 3.4. Retrieved from
706             // http://www.x86-64.org/documentation/abi.pdf
707             if (arg > 5)
708             {
709                 if (log)
710                     log->Warning("%s - X86_64 - reading arguments passed on stack not supported yet.",
711                                  __FUNCTION__);
712                 break;
713             }
714             const char *regnames[] = {"rdi", "rsi", "rdx", "rcx", "r8", "r9"};
715             assert((sizeof(regnames) / sizeof(const char *)) > arg);
716             const RegisterInfo *rArg = reg_ctx->GetRegisterInfoByName(regnames[arg]);
717             RegisterValue rVal;
718             success = reg_ctx->ReadRegister(rArg, rVal);
719             if (success)
720             {
721                 *data = rVal.GetAsUInt64(0u, &success);
722             }
723             else
724             {
725                 if (log)
726                     log->Printf("%s - error reading x86_64 register: %" PRId32 ".", __FUNCTION__, arg);
727             }
728             break;
729         }
730         case llvm::Triple::ArchType::arm:
731         {
732             // arm 32 bit
733             // first 4 arguments are passed via registers
734             if (arg < 4)
735             {
736                 const RegisterInfo *rArg = reg_ctx->GetRegisterInfoAtIndex(arg);
737                 RegisterValue rVal;
738                 success = reg_ctx->ReadRegister(rArg, rVal);
739                 if (success)
740                 {
741                     (*data) = rVal.GetAsUInt32(0u, &success);
742                 }
743                 else
744                 {
745                     if (log)
746                         log->Printf("%s - error reading ARM register: %" PRId32 ".", __FUNCTION__, arg);
747                 }
748             }
749             else
750             {
751                 uint64_t sp = reg_ctx->GetSP();
752                 uint32_t offset = (arg - 4) * sizeof(uint32_t);
753                 uint32_t value = 0;
754                 size_t bytes_read = process->ReadMemory(sp + offset, &value, sizeof(value), error);
755                 if (error.Fail() || bytes_read != sizeof(value))
756                 {
757                     if (log)
758                         log->Printf("%s - error reading ARM stack: %s.", __FUNCTION__, error.AsCString());
759                 }
760                 else
761                 {
762                     *data = value;
763                     success = true;
764                 }
765             }
766             break;
767         }
768         case llvm::Triple::ArchType::aarch64:
769         {
770             // arm 64 bit
771             // first 8 arguments are in the registers
772             if (arg < 8)
773             {
774                 const RegisterInfo *rArg = reg_ctx->GetRegisterInfoAtIndex(arg);
775                 RegisterValue rVal;
776                 success = reg_ctx->ReadRegister(rArg, rVal);
777                 if (success)
778                 {
779                     *data = rVal.GetAsUInt64(0u, &success);
780                 }
781                 else
782                 {
783                     if (log)
784                         log->Printf("%s - AARCH64 - error while reading the argument #%" PRId32 ".",
785                                     __FUNCTION__, arg);
786                 }
787             }
788             else
789             {
790                 // @TODO: need to find the argument in the stack
791                 if (log)
792                     log->Printf("%s - AARCH64 - reading arguments passed on stack not supported yet.",
793                                 __FUNCTION__);
794             }
795             break;
796         }
797         case llvm::Triple::ArchType::mipsel:
798         {
799             // read from the registers
800             // first 4 arguments are passed in registers
801             if (arg < 4)
802             {
803                 const RegisterInfo *rArg = reg_ctx->GetRegisterInfoAtIndex(arg + 4);
804                 RegisterValue rVal;
805                 success = reg_ctx->ReadRegister(rArg, rVal);
806                 if (success)
807                 {
808                     *data = rVal.GetAsUInt64(0u, &success);
809                 }
810                 else
811                 {
812                     if (log)
813                         log->Printf("%s - Mips - error while reading the argument #%" PRId32 "",
814                                     __FUNCTION__, arg);
815                 }
816             }
817             // arguments > 4 are read from the stack
818             else
819             {
820                 uint64_t sp = reg_ctx->GetSP();
821                 uint32_t offset = arg * sizeof(uint32_t);
822                 uint32_t value = 0;
823                 size_t bytes_read = process->ReadMemory(sp + offset, &value, sizeof(value), error);
824                 if (error.Fail() || bytes_read != sizeof(value))
825                 {
826                     if (log)
827                         log->Printf("%s - error reading Mips stack: %s.",
828                                     __FUNCTION__, error.AsCString());
829                 }
830                 else
831                 {
832                     *data = value;
833                     success = true;
834                 }
835             }
836             break;
837         }
838         case llvm::Triple::ArchType::mips64el:
839         {
840             // read from the registers
841             if (arg < 8)
842             {
843                 const RegisterInfo *rArg = reg_ctx->GetRegisterInfoAtIndex(arg + 4);
844                 RegisterValue rVal;
845                 success = reg_ctx->ReadRegister(rArg, rVal);
846                 if (success)
847                 {
848                     (*data) = rVal.GetAsUInt64(0u, &success);
849                 }
850                 else
851                 {
852                     if (log)
853                         log->Printf("%s - Mips64 - error reading the argument #%" PRId32 "",
854                                     __FUNCTION__, arg);
855                 }
856             }
857             // arguments > 8 are read from the stack
858             else
859             {
860                 uint64_t sp = reg_ctx->GetSP();
861                 uint32_t offset = (arg - 8) * sizeof(uint64_t);
862                 uint64_t value = 0;
863                 size_t bytes_read = process->ReadMemory(sp + offset, &value, sizeof(value), error);
864                 if (error.Fail() || bytes_read != sizeof(value))
865                 {
866                     if (log)
867                         log->Printf("%s - Mips64 - error reading Mips64 stack: %s.",
868                                     __FUNCTION__, error.AsCString());
869                 }
870                 else
871                 {
872                     *data = value;
873                     success = true;
874                 }
875             }
876             break;
877         }
878         default:
879         {
880             // invalid architecture
881             if (log)
882                 log->Printf("%s - architecture not supported.", __FUNCTION__);
883         }
884     }
885 
886     if (!success)
887     {
888         if (log)
889             log->Printf("%s - failed to get argument at index %" PRIu32 ".", __FUNCTION__, arg);
890     }
891     return success;
892 }
893 
894 void
895 RenderScriptRuntime::CaptureScriptInvokeForEachMulti(RuntimeHook* hook_info,
896                                                      ExecutionContext& context)
897 {
898     Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
899 
900     struct args_t
901     {
902         uint64_t context;   // const Context       *rsc
903         uint64_t script;    // Script              *s
904         uint64_t slot;      // uint32_t             slot
905         uint64_t aIns;      // const Allocation   **aIns
906         uint64_t inLen;     // size_t               inLen
907         uint64_t aOut;      // Allocation          *aout
908         uint64_t usr;       // const void          *usr
909         uint64_t usrLen;    // size_t               usrLen
910         uint64_t sc;        // const RsScriptCall  *sc
911     }
912     args;
913 
914     bool success =
915         GetArgSimple(context, 0, &args.context) &&
916         GetArgSimple(context, 1, &args.script) &&
917         GetArgSimple(context, 2, &args.slot) &&
918         GetArgSimple(context, 3, &args.aIns) &&
919         GetArgSimple(context, 4, &args.inLen) &&
920         GetArgSimple(context, 5, &args.aOut) &&
921         GetArgSimple(context, 6, &args.usr) &&
922         GetArgSimple(context, 7, &args.usrLen) &&
923         GetArgSimple(context, 8, &args.sc);
924 
925     if (!success)
926     {
927         if (log)
928             log->Printf("%s - Error while reading the function parameters", __FUNCTION__);
929         return;
930     }
931 
932     const uint32_t target_ptr_size = m_process->GetAddressByteSize();
933     Error error;
934     std::vector<uint64_t> allocs;
935 
936     // traverse allocation list
937     for (uint64_t i = 0; i < args.inLen; ++i)
938     {
939         // calculate offest to allocation pointer
940         const lldb::addr_t addr = args.aIns + i * target_ptr_size;
941 
942         // Note: due to little endian layout, reading 32bits or 64bits into res64 will
943         //       give the correct results.
944 
945         uint64_t res64 = 0;
946         size_t read = m_process->ReadMemory(addr, &res64, target_ptr_size, error);
947         if (read != target_ptr_size || !error.Success())
948         {
949             if (log)
950                 log->Printf("%s - Error while reading allocation list argument %" PRId64, __FUNCTION__, i);
951         }
952         else
953         {
954             allocs.push_back(res64);
955         }
956     }
957 
958     // if there is an output allocation track it
959     if (args.aOut)
960     {
961         allocs.push_back(args.aOut);
962     }
963 
964     // for all allocations we have found
965     for (const uint64_t alloc_addr : allocs)
966     {
967         AllocationDetails* alloc = LookUpAllocation(alloc_addr, true);
968         if (alloc)
969         {
970             // save the allocation address
971             if (alloc->address.isValid())
972             {
973                 // check the allocation address we already have matches
974                 assert(*alloc->address.get() == alloc_addr);
975             }
976             else
977             {
978                 alloc->address = alloc_addr;
979             }
980 
981             // save the context
982             if (log)
983             {
984                 if (alloc->context.isValid() && *alloc->context.get() != args.context)
985                     log->Printf("%s - Allocation used by multiple contexts", __FUNCTION__);
986             }
987             alloc->context = args.context;
988         }
989     }
990 
991     // make sure we track this script object
992     if (lldb_private::RenderScriptRuntime::ScriptDetails * script = LookUpScript(args.script, true))
993     {
994         if (log)
995         {
996             if (script->context.isValid() && *script->context.get() != args.context)
997                 log->Printf("%s - Script used by multiple contexts", __FUNCTION__);
998         }
999         script->context = args.context;
1000     }
1001 }
1002 
1003 void
1004 RenderScriptRuntime::CaptureSetGlobalVar(RuntimeHook *hook_info, ExecutionContext &context)
1005 {
1006     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1007 
1008     // Context, Script, int, data, length
1009 
1010     uint64_t rs_context_u64 = 0U;
1011     uint64_t rs_script_u64 = 0U;
1012     uint64_t rs_id_u64 = 0U;
1013     uint64_t rs_data_u64 = 0U;
1014     uint64_t rs_length_u64 = 0U;
1015 
1016     bool success = GetArgSimple(context, 0, &rs_context_u64) &&
1017                    GetArgSimple(context, 1, &rs_script_u64) &&
1018                    GetArgSimple(context, 2, &rs_id_u64) &&
1019                    GetArgSimple(context, 3, &rs_data_u64) &&
1020                    GetArgSimple(context, 4, &rs_length_u64);
1021 
1022     if (!success)
1023     {
1024         if (log)
1025             log->Printf("%s - error reading the function parameters.", __FUNCTION__);
1026         return;
1027     }
1028 
1029     if (log)
1030     {
1031         log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " slot %" PRIu64 " = 0x%" PRIx64 ":%" PRIu64 "bytes.",
1032                     __FUNCTION__, rs_context_u64, rs_script_u64, rs_id_u64, rs_data_u64, rs_length_u64);
1033 
1034         addr_t script_addr = (addr_t)rs_script_u64;
1035         if (m_scriptMappings.find(script_addr) != m_scriptMappings.end())
1036         {
1037             auto rsm = m_scriptMappings[script_addr];
1038             if (rs_id_u64 < rsm->m_globals.size())
1039             {
1040                 auto rsg = rsm->m_globals[rs_id_u64];
1041                 log->Printf("%s - setting of '%s' within '%s' inferred.", __FUNCTION__,
1042                             rsg.m_name.AsCString(), rsm->m_module->GetFileSpec().GetFilename().AsCString());
1043             }
1044         }
1045     }
1046 }
1047 
1048 void
1049 RenderScriptRuntime::CaptureAllocationInit(RuntimeHook *hook_info, ExecutionContext &context)
1050 {
1051     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1052 
1053     // Context, Alloc, bool
1054 
1055     uint64_t rs_context_u64 = 0U;
1056     uint64_t rs_alloc_u64 = 0U;
1057     uint64_t rs_forceZero_u64 = 0U;
1058 
1059     bool success = GetArgSimple(context, 0, &rs_context_u64) &&
1060                    GetArgSimple(context, 1, &rs_alloc_u64) &&
1061                    GetArgSimple(context, 2, &rs_forceZero_u64);
1062     if (!success) // error case
1063     {
1064         if (log)
1065             log->Printf("%s - error while reading the function parameters", __FUNCTION__);
1066         return; // abort
1067     }
1068 
1069     if (log)
1070         log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 ",0x%" PRIx64 " .", __FUNCTION__,
1071                     rs_context_u64, rs_alloc_u64, rs_forceZero_u64);
1072 
1073     AllocationDetails *alloc = LookUpAllocation(rs_alloc_u64, true);
1074     if (alloc)
1075         alloc->context = rs_context_u64;
1076 }
1077 
1078 void
1079 RenderScriptRuntime::CaptureAllocationDestroy(RuntimeHook *hook_info, ExecutionContext &context)
1080 {
1081     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1082 
1083     // Context, Alloc
1084     uint64_t rs_context_u64 = 0U;
1085     uint64_t rs_alloc_u64 = 0U;
1086 
1087     bool success = GetArgSimple(context, 0, &rs_context_u64) &&
1088                    GetArgSimple(context, 1, &rs_alloc_u64);
1089     if (!success)
1090     {
1091         if (log)
1092             log->Printf("%s - error while reading the function parameters.", __FUNCTION__);
1093         return;
1094     }
1095 
1096     if (log)
1097         log->Printf("%s - 0x%" PRIx64 ", 0x%" PRIx64 ".", __FUNCTION__, rs_context_u64, rs_alloc_u64);
1098 
1099     for (auto iter = m_allocations.begin(); iter != m_allocations.end(); ++iter)
1100     {
1101         auto &allocation_ap = *iter; // get the unique pointer
1102         if (allocation_ap->address.isValid() && *allocation_ap->address.get() == rs_alloc_u64)
1103         {
1104             m_allocations.erase(iter);
1105             if (log)
1106                 log->Printf("%s - deleted allocation entry.", __FUNCTION__);
1107             return;
1108         }
1109     }
1110 
1111     if (log)
1112         log->Printf("%s - couldn't find destroyed allocation.", __FUNCTION__);
1113 }
1114 
1115 void
1116 RenderScriptRuntime::CaptureScriptInit(RuntimeHook *hook_info, ExecutionContext &context)
1117 {
1118     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1119 
1120     // Context, Script, resname Str, cachedir Str
1121     Error error;
1122     Process *process = context.GetProcessPtr();
1123 
1124     uint64_t rs_context_u64 = 0U;
1125     uint64_t rs_script_u64 = 0U;
1126     uint64_t rs_resnameptr_u64 = 0U;
1127     uint64_t rs_cachedirptr_u64 = 0U;
1128 
1129     std::string resname;
1130     std::string cachedir;
1131 
1132     // read the function parameters
1133     bool success = GetArgSimple(context, 0, &rs_context_u64) &&
1134                    GetArgSimple(context, 1, &rs_script_u64) &&
1135                    GetArgSimple(context, 2, &rs_resnameptr_u64) &&
1136                    GetArgSimple(context, 3, &rs_cachedirptr_u64);
1137 
1138     if (!success)
1139     {
1140         if (log)
1141             log->Printf("%s - error while reading the function parameters.", __FUNCTION__);
1142         return;
1143     }
1144 
1145     process->ReadCStringFromMemory((lldb::addr_t)rs_resnameptr_u64, resname, error);
1146     if (error.Fail())
1147     {
1148         if (log)
1149             log->Printf("%s - error reading resname: %s.", __FUNCTION__, error.AsCString());
1150     }
1151 
1152     process->ReadCStringFromMemory((lldb::addr_t)rs_cachedirptr_u64, cachedir, error);
1153     if (error.Fail())
1154     {
1155         if (log)
1156             log->Printf("%s - error reading cachedir: %s.", __FUNCTION__, error.AsCString());
1157     }
1158 
1159     if (log)
1160         log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " => '%s' at '%s' .", __FUNCTION__,
1161                     rs_context_u64, rs_script_u64, resname.c_str(), cachedir.c_str());
1162 
1163     if (resname.size() > 0)
1164     {
1165         StreamString strm;
1166         strm.Printf("librs.%s.so", resname.c_str());
1167 
1168         ScriptDetails *script = LookUpScript(rs_script_u64, true);
1169         if (script)
1170         {
1171             script->type = ScriptDetails::eScriptC;
1172             script->cacheDir = cachedir;
1173             script->resName = resname;
1174             script->scriptDyLib = strm.GetData();
1175             script->context = addr_t(rs_context_u64);
1176         }
1177 
1178         if (log)
1179             log->Printf("%s - '%s' tagged with context 0x%" PRIx64 " and script 0x%" PRIx64 ".",
1180                         __FUNCTION__, strm.GetData(), rs_context_u64, rs_script_u64);
1181     }
1182     else if (log)
1183     {
1184         log->Printf("%s - resource name invalid, Script not tagged.", __FUNCTION__);
1185     }
1186 }
1187 
1188 void
1189 RenderScriptRuntime::LoadRuntimeHooks(lldb::ModuleSP module, ModuleKind kind)
1190 {
1191     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1192 
1193     if (!module)
1194     {
1195         return;
1196     }
1197 
1198     Target &target = GetProcess()->GetTarget();
1199     llvm::Triple::ArchType targetArchType = target.GetArchitecture().GetMachine();
1200 
1201     if (targetArchType != llvm::Triple::ArchType::x86 &&
1202         targetArchType != llvm::Triple::ArchType::arm &&
1203         targetArchType != llvm::Triple::ArchType::aarch64 &&
1204         targetArchType != llvm::Triple::ArchType::mipsel &&
1205         targetArchType != llvm::Triple::ArchType::mips64el &&
1206         targetArchType != llvm::Triple::ArchType::x86_64)
1207     {
1208         if (log)
1209             log->Printf("%s - unable to hook runtime functions.", __FUNCTION__);
1210         return;
1211     }
1212 
1213     uint32_t archByteSize = target.GetArchitecture().GetAddressByteSize();
1214 
1215     for (size_t idx = 0; idx < s_runtimeHookCount; idx++)
1216     {
1217         const HookDefn *hook_defn = &s_runtimeHookDefns[idx];
1218         if (hook_defn->kind != kind)
1219         {
1220             continue;
1221         }
1222 
1223         const char *symbol_name = (archByteSize == 4) ? hook_defn->symbol_name_m32 : hook_defn->symbol_name_m64;
1224 
1225         const Symbol *sym = module->FindFirstSymbolWithNameAndType(ConstString(symbol_name), eSymbolTypeCode);
1226         if (!sym)
1227         {
1228             if (log)
1229             {
1230                 log->Printf("%s - symbol '%s' related to the function %s not found",
1231                             __FUNCTION__, symbol_name, hook_defn->name);
1232             }
1233             continue;
1234         }
1235 
1236         addr_t addr = sym->GetLoadAddress(&target);
1237         if (addr == LLDB_INVALID_ADDRESS)
1238         {
1239             if (log)
1240                 log->Printf("%s - unable to resolve the address of hook function '%s' with symbol '%s'.",
1241                             __FUNCTION__, hook_defn->name, symbol_name);
1242             continue;
1243         }
1244         else
1245         {
1246             if (log)
1247                 log->Printf("%s - function %s, address resolved at 0x%" PRIx64,
1248                             __FUNCTION__, hook_defn->name, addr);
1249         }
1250 
1251         RuntimeHookSP hook(new RuntimeHook());
1252         hook->address = addr;
1253         hook->defn = hook_defn;
1254         hook->bp_sp = target.CreateBreakpoint(addr, true, false);
1255         hook->bp_sp->SetCallback(HookCallback, hook.get(), true);
1256         m_runtimeHooks[addr] = hook;
1257         if (log)
1258         {
1259             log->Printf("%s - successfully hooked '%s' in '%s' version %" PRIu64 " at 0x%" PRIx64 ".",
1260                         __FUNCTION__, hook_defn->name, module->GetFileSpec().GetFilename().AsCString(),
1261                         (uint64_t)hook_defn->version, (uint64_t)addr);
1262         }
1263     }
1264 }
1265 
1266 void
1267 RenderScriptRuntime::FixupScriptDetails(RSModuleDescriptorSP rsmodule_sp)
1268 {
1269     if (!rsmodule_sp)
1270         return;
1271 
1272     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1273 
1274     const ModuleSP module = rsmodule_sp->m_module;
1275     const FileSpec &file = module->GetPlatformFileSpec();
1276 
1277     // Iterate over all of the scripts that we currently know of.
1278     // Note: We cant push or pop to m_scripts here or it may invalidate rs_script.
1279     for (const auto &rs_script : m_scripts)
1280     {
1281         // Extract the expected .so file path for this script.
1282         std::string dylib;
1283         if (!rs_script->scriptDyLib.get(dylib))
1284             continue;
1285 
1286         // Only proceed if the module that has loaded corresponds to this script.
1287         if (file.GetFilename() != ConstString(dylib.c_str()))
1288             continue;
1289 
1290         // Obtain the script address which we use as a key.
1291         lldb::addr_t script;
1292         if (!rs_script->script.get(script))
1293             continue;
1294 
1295         // If we have a script mapping for the current script.
1296         if (m_scriptMappings.find(script) != m_scriptMappings.end())
1297         {
1298             // if the module we have stored is different to the one we just received.
1299             if (m_scriptMappings[script] != rsmodule_sp)
1300             {
1301                 if (log)
1302                     log->Printf("%s - script %" PRIx64 " wants reassigned to new rsmodule '%s'.", __FUNCTION__,
1303                                 (uint64_t)script, rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString());
1304             }
1305         }
1306         // We don't have a script mapping for the current script.
1307         else
1308         {
1309             // Obtain the script resource name.
1310             std::string resName;
1311             if (rs_script->resName.get(resName))
1312                 // Set the modules resource name.
1313                 rsmodule_sp->m_resname = resName;
1314             // Add Script/Module pair to map.
1315             m_scriptMappings[script] = rsmodule_sp;
1316             if (log)
1317                 log->Printf("%s - script %" PRIx64 " associated with rsmodule '%s'.", __FUNCTION__,
1318                             (uint64_t)script, rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString());
1319         }
1320     }
1321 }
1322 
1323 // Uses the Target API to evaluate the expression passed as a parameter to the function
1324 // The result of that expression is returned an unsigned 64 bit int, via the result* paramter.
1325 // Function returns true on success, and false on failure
1326 bool
1327 RenderScriptRuntime::EvalRSExpression(const char *expression, StackFrame *frame_ptr, uint64_t *result)
1328 {
1329     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1330     if (log)
1331         log->Printf("%s(%s)", __FUNCTION__, expression);
1332 
1333     ValueObjectSP expr_result;
1334     // Perform the actual expression evaluation
1335     GetProcess()->GetTarget().EvaluateExpression(expression, frame_ptr, expr_result);
1336 
1337     if (!expr_result)
1338     {
1339         if (log)
1340             log->Printf("%s: couldn't evaluate expression.", __FUNCTION__);
1341         return false;
1342     }
1343 
1344     // The result of the expression is invalid
1345     if (!expr_result->GetError().Success())
1346     {
1347         Error err = expr_result->GetError();
1348         if (err.GetError() == UserExpression::kNoResult) // Expression returned void, so this is actually a success
1349         {
1350             if (log)
1351                 log->Printf("%s - expression returned void.", __FUNCTION__);
1352 
1353             result = nullptr;
1354             return true;
1355         }
1356 
1357         if (log)
1358             log->Printf("%s - error evaluating expression result: %s", __FUNCTION__,
1359                         err.AsCString());
1360         return false;
1361     }
1362 
1363     bool success = false;
1364     *result = expr_result->GetValueAsUnsigned(0, &success); // We only read the result as an uint32_t.
1365 
1366     if (!success)
1367     {
1368         if (log)
1369             log->Printf("%s - couldn't convert expression result to uint32_t", __FUNCTION__);
1370         return false;
1371     }
1372 
1373     return true;
1374 }
1375 
1376 namespace
1377 {
1378 // Used to index expression format strings
1379 enum ExpressionStrings
1380 {
1381    eExprGetOffsetPtr = 0,
1382    eExprAllocGetType,
1383    eExprTypeDimX,
1384    eExprTypeDimY,
1385    eExprTypeDimZ,
1386    eExprTypeElemPtr,
1387    eExprElementType,
1388    eExprElementKind,
1389    eExprElementVec,
1390    eExprElementFieldCount,
1391    eExprSubelementsId,
1392    eExprSubelementsName,
1393    eExprSubelementsArrSize,
1394 
1395    _eExprLast // keep at the end, implicit size of the array runtimeExpressions
1396 };
1397 
1398 // max length of an expanded expression
1399 const int jit_max_expr_size = 512;
1400 
1401 // Retrieve the string to JIT for the given expression
1402 const char*
1403 JITTemplate(ExpressionStrings e)
1404 {
1405     // Format strings containing the expressions we may need to evaluate.
1406     static std::array<const char*, _eExprLast> runtimeExpressions = {{
1407      // Mangled GetOffsetPointer(Allocation*, xoff, yoff, zoff, lod, cubemap)
1408      "(int*)_Z12GetOffsetPtrPKN7android12renderscript10AllocationEjjjj23RsAllocationCubemapFace(0x%lx, %u, %u, %u, 0, 0)",
1409 
1410      // Type* rsaAllocationGetType(Context*, Allocation*)
1411      "(void*)rsaAllocationGetType(0x%lx, 0x%lx)",
1412 
1413      // rsaTypeGetNativeData(Context*, Type*, void* typeData, size)
1414      // Pack the data in the following way mHal.state.dimX; mHal.state.dimY; mHal.state.dimZ;
1415      // mHal.state.lodCount; mHal.state.faces; mElement; into typeData
1416      // Need to specify 32 or 64 bit for uint_t since this differs between devices
1417      "uint%u_t data[6]; (void*)rsaTypeGetNativeData(0x%lx, 0x%lx, data, 6); data[0]", // X dim
1418      "uint%u_t data[6]; (void*)rsaTypeGetNativeData(0x%lx, 0x%lx, data, 6); data[1]", // Y dim
1419      "uint%u_t data[6]; (void*)rsaTypeGetNativeData(0x%lx, 0x%lx, data, 6); data[2]", // Z dim
1420      "uint%u_t data[6]; (void*)rsaTypeGetNativeData(0x%lx, 0x%lx, data, 6); data[5]", // Element ptr
1421 
1422      // rsaElementGetNativeData(Context*, Element*, uint32_t* elemData,size)
1423      // Pack mType; mKind; mNormalized; mVectorSize; NumSubElements into elemData
1424      "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%lx, 0x%lx, data, 5); data[0]", // Type
1425      "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%lx, 0x%lx, data, 5); data[1]", // Kind
1426      "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%lx, 0x%lx, data, 5); data[3]", // Vector Size
1427      "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%lx, 0x%lx, data, 5); data[4]", // Field Count
1428 
1429       // rsaElementGetSubElements(RsContext con, RsElement elem, uintptr_t *ids, const char **names,
1430       // size_t *arraySizes, uint32_t dataSize)
1431       // Needed for Allocations of structs to gather details about fields/Subelements
1432      "void *ids[%u]; const char *names[%u]; size_t arr_size[%u];"
1433      "(void*)rsaElementGetSubElements(0x%lx, 0x%lx, ids, names, arr_size, %u); ids[%u]",     // Element* of field
1434 
1435      "void *ids[%u]; const char *names[%u]; size_t arr_size[%u];"
1436      "(void*)rsaElementGetSubElements(0x%lx, 0x%lx, ids, names, arr_size, %u); names[%u]",   // Name of field
1437 
1438      "void *ids[%u]; const char *names[%u]; size_t arr_size[%u];"
1439      "(void*)rsaElementGetSubElements(0x%lx, 0x%lx, ids, names, arr_size, %u); arr_size[%u]" // Array size of field
1440     }};
1441 
1442     return runtimeExpressions[e];
1443 }
1444 } // end of the anonymous namespace
1445 
1446 
1447 // JITs the RS runtime for the internal data pointer of an allocation.
1448 // Is passed x,y,z coordinates for the pointer to a specific element.
1449 // Then sets the data_ptr member in Allocation with the result.
1450 // Returns true on success, false otherwise
1451 bool
1452 RenderScriptRuntime::JITDataPointer(AllocationDetails *allocation, StackFrame *frame_ptr, uint32_t x,
1453                                     uint32_t y, uint32_t z)
1454 {
1455     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1456 
1457     if (!allocation->address.isValid())
1458     {
1459         if (log)
1460             log->Printf("%s - failed to find allocation details.", __FUNCTION__);
1461         return false;
1462     }
1463 
1464     const char *expr_cstr = JITTemplate(eExprGetOffsetPtr);
1465     char buffer[jit_max_expr_size];
1466 
1467     int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->address.get(), x, y, z);
1468     if (chars_written < 0)
1469     {
1470         if (log)
1471             log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
1472         return false;
1473     }
1474     else if (chars_written >= jit_max_expr_size)
1475     {
1476         if (log)
1477             log->Printf("%s - expression too long.", __FUNCTION__);
1478         return false;
1479     }
1480 
1481     uint64_t result = 0;
1482     if (!EvalRSExpression(buffer, frame_ptr, &result))
1483         return false;
1484 
1485     addr_t mem_ptr = static_cast<lldb::addr_t>(result);
1486     allocation->data_ptr = mem_ptr;
1487 
1488     return true;
1489 }
1490 
1491 // JITs the RS runtime for the internal pointer to the RS Type of an allocation
1492 // Then sets the type_ptr member in Allocation with the result.
1493 // Returns true on success, false otherwise
1494 bool
1495 RenderScriptRuntime::JITTypePointer(AllocationDetails *allocation, StackFrame *frame_ptr)
1496 {
1497     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1498 
1499     if (!allocation->address.isValid() || !allocation->context.isValid())
1500     {
1501         if (log)
1502             log->Printf("%s - failed to find allocation details.", __FUNCTION__);
1503         return false;
1504     }
1505 
1506     const char *expr_cstr = JITTemplate(eExprAllocGetType);
1507     char buffer[jit_max_expr_size];
1508 
1509     int chars_written =
1510         snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->context.get(), *allocation->address.get());
1511     if (chars_written < 0)
1512     {
1513         if (log)
1514             log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
1515         return false;
1516     }
1517     else if (chars_written >= jit_max_expr_size)
1518     {
1519         if (log)
1520             log->Printf("%s - expression too long.", __FUNCTION__);
1521         return false;
1522     }
1523 
1524     uint64_t result = 0;
1525     if (!EvalRSExpression(buffer, frame_ptr, &result))
1526         return false;
1527 
1528     addr_t type_ptr = static_cast<lldb::addr_t>(result);
1529     allocation->type_ptr = type_ptr;
1530 
1531     return true;
1532 }
1533 
1534 // JITs the RS runtime for information about the dimensions and type of an allocation
1535 // Then sets dimension and element_ptr members in Allocation with the result.
1536 // Returns true on success, false otherwise
1537 bool
1538 RenderScriptRuntime::JITTypePacked(AllocationDetails *allocation, StackFrame *frame_ptr)
1539 {
1540     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1541 
1542     if (!allocation->type_ptr.isValid() || !allocation->context.isValid())
1543     {
1544         if (log)
1545             log->Printf("%s - Failed to find allocation details.", __FUNCTION__);
1546         return false;
1547     }
1548 
1549     // Expression is different depending on if device is 32 or 64 bit
1550     uint32_t archByteSize = GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
1551     const uint32_t bits = archByteSize == 4 ? 32 : 64;
1552 
1553     // We want 4 elements from packed data
1554     const uint32_t num_exprs = 4;
1555     assert(num_exprs == (eExprTypeElemPtr - eExprTypeDimX + 1) && "Invalid number of expressions");
1556 
1557     char buffer[num_exprs][jit_max_expr_size];
1558     uint64_t results[num_exprs];
1559 
1560     for (uint32_t i = 0; i < num_exprs; ++i)
1561     {
1562         const char *expr_cstr = JITTemplate(ExpressionStrings(eExprTypeDimX + i));
1563         int chars_written = snprintf(buffer[i], jit_max_expr_size, expr_cstr, bits, *allocation->context.get(),
1564                                      *allocation->type_ptr.get());
1565         if (chars_written < 0)
1566         {
1567             if (log)
1568                 log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
1569             return false;
1570         }
1571         else if (chars_written >= jit_max_expr_size)
1572         {
1573             if (log)
1574                 log->Printf("%s - expression too long.", __FUNCTION__);
1575             return false;
1576         }
1577 
1578         // Perform expression evaluation
1579         if (!EvalRSExpression(buffer[i], frame_ptr, &results[i]))
1580             return false;
1581     }
1582 
1583     // Assign results to allocation members
1584     AllocationDetails::Dimension dims;
1585     dims.dim_1 = static_cast<uint32_t>(results[0]);
1586     dims.dim_2 = static_cast<uint32_t>(results[1]);
1587     dims.dim_3 = static_cast<uint32_t>(results[2]);
1588     allocation->dimension = dims;
1589 
1590     addr_t elem_ptr = static_cast<lldb::addr_t>(results[3]);
1591     allocation->element.element_ptr = elem_ptr;
1592 
1593     if (log)
1594         log->Printf("%s - dims (%" PRIu32 ", %" PRIu32 ", %" PRIu32 ") Element*: 0x%" PRIx64 ".", __FUNCTION__,
1595                     dims.dim_1, dims.dim_2, dims.dim_3, elem_ptr);
1596 
1597     return true;
1598 }
1599 
1600 // JITs the RS runtime for information about the Element of an allocation
1601 // Then sets type, type_vec_size, field_count and type_kind members in Element with the result.
1602 // Returns true on success, false otherwise
1603 bool
1604 RenderScriptRuntime::JITElementPacked(Element &elem, const lldb::addr_t context, StackFrame *frame_ptr)
1605 {
1606     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1607 
1608     if (!elem.element_ptr.isValid())
1609     {
1610         if (log)
1611             log->Printf("%s - failed to find allocation details.", __FUNCTION__);
1612         return false;
1613     }
1614 
1615     // We want 4 elements from packed data
1616     const uint32_t num_exprs = 4;
1617     assert(num_exprs == (eExprElementFieldCount - eExprElementType + 1) && "Invalid number of expressions");
1618 
1619     char buffer[num_exprs][jit_max_expr_size];
1620     uint64_t results[num_exprs];
1621 
1622     for (uint32_t i = 0; i < num_exprs; i++)
1623     {
1624         const char *expr_cstr = JITTemplate(ExpressionStrings(eExprElementType + i));
1625         int chars_written = snprintf(buffer[i], jit_max_expr_size, expr_cstr, context, *elem.element_ptr.get());
1626         if (chars_written < 0)
1627         {
1628             if (log)
1629                 log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
1630             return false;
1631         }
1632         else if (chars_written >= jit_max_expr_size)
1633         {
1634             if (log)
1635                 log->Printf("%s - expression too long.", __FUNCTION__);
1636             return false;
1637         }
1638 
1639         // Perform expression evaluation
1640         if (!EvalRSExpression(buffer[i], frame_ptr, &results[i]))
1641             return false;
1642     }
1643 
1644     // Assign results to allocation members
1645     elem.type = static_cast<RenderScriptRuntime::Element::DataType>(results[0]);
1646     elem.type_kind = static_cast<RenderScriptRuntime::Element::DataKind>(results[1]);
1647     elem.type_vec_size = static_cast<uint32_t>(results[2]);
1648     elem.field_count = static_cast<uint32_t>(results[3]);
1649 
1650     if (log)
1651         log->Printf("%s - data type %" PRIu32 ", pixel type %" PRIu32 ", vector size %" PRIu32 ", field count %" PRIu32,
1652                     __FUNCTION__, *elem.type.get(), *elem.type_kind.get(), *elem.type_vec_size.get(), *elem.field_count.get());
1653 
1654     // If this Element has subelements then JIT rsaElementGetSubElements() for details about its fields
1655     if (*elem.field_count.get() > 0 && !JITSubelements(elem, context, frame_ptr))
1656         return false;
1657 
1658     return true;
1659 }
1660 
1661 // JITs the RS runtime for information about the subelements/fields of a struct allocation
1662 // This is necessary for infering the struct type so we can pretty print the allocation's contents.
1663 // Returns true on success, false otherwise
1664 bool
1665 RenderScriptRuntime::JITSubelements(Element &elem, const lldb::addr_t context, StackFrame *frame_ptr)
1666 {
1667     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1668 
1669     if (!elem.element_ptr.isValid() || !elem.field_count.isValid())
1670     {
1671         if (log)
1672             log->Printf("%s - failed to find allocation details.", __FUNCTION__);
1673         return false;
1674     }
1675 
1676     const short num_exprs = 3;
1677     assert(num_exprs == (eExprSubelementsArrSize - eExprSubelementsId + 1) && "Invalid number of expressions");
1678 
1679     char expr_buffer[jit_max_expr_size];
1680     uint64_t results;
1681 
1682     // Iterate over struct fields.
1683     const uint32_t field_count = *elem.field_count.get();
1684     for (uint32_t field_index = 0; field_index < field_count; ++field_index)
1685     {
1686         Element child;
1687         for (uint32_t expr_index = 0; expr_index < num_exprs; ++expr_index)
1688         {
1689             const char *expr_cstr = JITTemplate(ExpressionStrings(eExprSubelementsId + expr_index));
1690             int chars_written = snprintf(expr_buffer, jit_max_expr_size, expr_cstr,
1691                                          field_count, field_count, field_count,
1692                                          context, *elem.element_ptr.get(), field_count, field_index);
1693             if (chars_written < 0)
1694             {
1695                 if (log)
1696                     log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
1697                 return false;
1698             }
1699             else if (chars_written >= jit_max_expr_size)
1700             {
1701                 if (log)
1702                     log->Printf("%s - expression too long.", __FUNCTION__);
1703                 return false;
1704             }
1705 
1706             // Perform expression evaluation
1707             if (!EvalRSExpression(expr_buffer, frame_ptr, &results))
1708                 return false;
1709 
1710             if (log)
1711                 log->Printf("%s - expr result 0x%" PRIx64 ".", __FUNCTION__, results);
1712 
1713             switch (expr_index)
1714             {
1715                 case 0: // Element* of child
1716                     child.element_ptr = static_cast<addr_t>(results);
1717                     break;
1718                 case 1: // Name of child
1719                 {
1720                     lldb::addr_t address = static_cast<addr_t>(results);
1721                     Error err;
1722                     std::string name;
1723                     GetProcess()->ReadCStringFromMemory(address, name, err);
1724                     if (!err.Fail())
1725                         child.type_name = ConstString(name);
1726                     else
1727                     {
1728                         if (log)
1729                             log->Printf("%s - warning: Couldn't read field name.", __FUNCTION__);
1730                     }
1731                     break;
1732                 }
1733                 case 2: // Array size of child
1734                     child.array_size = static_cast<uint32_t>(results);
1735                     break;
1736             }
1737         }
1738 
1739         // We need to recursively JIT each Element field of the struct since
1740         // structs can be nested inside structs.
1741         if (!JITElementPacked(child, context, frame_ptr))
1742             return false;
1743         elem.children.push_back(child);
1744     }
1745 
1746     // Try to infer the name of the struct type so we can pretty print the allocation contents.
1747     FindStructTypeName(elem, frame_ptr);
1748 
1749     return true;
1750 }
1751 
1752 // JITs the RS runtime for the address of the last element in the allocation.
1753 // The `elem_size` paramter represents the size of a single element, including padding.
1754 // Which is needed as an offset from the last element pointer.
1755 // Using this offset minus the starting address we can calculate the size of the allocation.
1756 // Returns true on success, false otherwise
1757 bool
1758 RenderScriptRuntime::JITAllocationSize(AllocationDetails *allocation, StackFrame *frame_ptr)
1759 {
1760     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1761 
1762     if (!allocation->address.isValid() || !allocation->dimension.isValid() || !allocation->data_ptr.isValid() ||
1763         !allocation->element.datum_size.isValid())
1764     {
1765         if (log)
1766             log->Printf("%s - failed to find allocation details.", __FUNCTION__);
1767         return false;
1768     }
1769 
1770     // Find dimensions
1771     uint32_t dim_x = allocation->dimension.get()->dim_1;
1772     uint32_t dim_y = allocation->dimension.get()->dim_2;
1773     uint32_t dim_z = allocation->dimension.get()->dim_3;
1774 
1775     // Our plan of jitting the last element address doesn't seem to work for struct Allocations
1776     // Instead try to infer the size ourselves without any inter element padding.
1777     if (allocation->element.children.size() > 0)
1778     {
1779         if (dim_x == 0) dim_x = 1;
1780         if (dim_y == 0) dim_y = 1;
1781         if (dim_z == 0) dim_z = 1;
1782 
1783         allocation->size = dim_x * dim_y * dim_z * *allocation->element.datum_size.get();
1784 
1785         if (log)
1786             log->Printf("%s - infered size of struct allocation %" PRIu32 ".", __FUNCTION__,
1787                         *allocation->size.get());
1788         return true;
1789     }
1790 
1791     const char *expr_cstr = JITTemplate(eExprGetOffsetPtr);
1792     char buffer[jit_max_expr_size];
1793 
1794     // Calculate last element
1795     dim_x = dim_x == 0 ? 0 : dim_x - 1;
1796     dim_y = dim_y == 0 ? 0 : dim_y - 1;
1797     dim_z = dim_z == 0 ? 0 : dim_z - 1;
1798 
1799     int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->address.get(), dim_x, dim_y, dim_z);
1800     if (chars_written < 0)
1801     {
1802         if (log)
1803             log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
1804         return false;
1805     }
1806     else if (chars_written >= jit_max_expr_size)
1807     {
1808         if (log)
1809             log->Printf("%s - expression too long.", __FUNCTION__);
1810         return false;
1811     }
1812 
1813     uint64_t result = 0;
1814     if (!EvalRSExpression(buffer, frame_ptr, &result))
1815         return false;
1816 
1817     addr_t mem_ptr = static_cast<lldb::addr_t>(result);
1818     // Find pointer to last element and add on size of an element
1819     allocation->size =
1820         static_cast<uint32_t>(mem_ptr - *allocation->data_ptr.get()) + *allocation->element.datum_size.get();
1821 
1822     return true;
1823 }
1824 
1825 // JITs the RS runtime for information about the stride between rows in the allocation.
1826 // This is done to detect padding, since allocated memory is 16-byte aligned.
1827 // Returns true on success, false otherwise
1828 bool
1829 RenderScriptRuntime::JITAllocationStride(AllocationDetails *allocation, StackFrame *frame_ptr)
1830 {
1831     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1832 
1833     if (!allocation->address.isValid() || !allocation->data_ptr.isValid())
1834     {
1835         if (log)
1836             log->Printf("%s - failed to find allocation details.", __FUNCTION__);
1837         return false;
1838     }
1839 
1840     const char *expr_cstr = JITTemplate(eExprGetOffsetPtr);
1841     char buffer[jit_max_expr_size];
1842 
1843     int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->address.get(), 0, 1, 0);
1844     if (chars_written < 0)
1845     {
1846         if (log)
1847             log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
1848         return false;
1849     }
1850     else if (chars_written >= jit_max_expr_size)
1851     {
1852         if (log)
1853             log->Printf("%s - expression too long.", __FUNCTION__);
1854         return false;
1855     }
1856 
1857     uint64_t result = 0;
1858     if (!EvalRSExpression(buffer, frame_ptr, &result))
1859         return false;
1860 
1861     addr_t mem_ptr = static_cast<lldb::addr_t>(result);
1862     allocation->stride = static_cast<uint32_t>(mem_ptr - *allocation->data_ptr.get());
1863 
1864     return true;
1865 }
1866 
1867 // JIT all the current runtime info regarding an allocation
1868 bool
1869 RenderScriptRuntime::RefreshAllocation(AllocationDetails *allocation, StackFrame *frame_ptr)
1870 {
1871     // GetOffsetPointer()
1872     if (!JITDataPointer(allocation, frame_ptr))
1873         return false;
1874 
1875     // rsaAllocationGetType()
1876     if (!JITTypePointer(allocation, frame_ptr))
1877         return false;
1878 
1879     // rsaTypeGetNativeData()
1880     if (!JITTypePacked(allocation, frame_ptr))
1881         return false;
1882 
1883     // rsaElementGetNativeData()
1884     if (!JITElementPacked(allocation->element, *allocation->context.get(), frame_ptr))
1885         return false;
1886 
1887     // Sets the datum_size member in Element
1888     SetElementSize(allocation->element);
1889 
1890     // Use GetOffsetPointer() to infer size of the allocation
1891     if (!JITAllocationSize(allocation, frame_ptr))
1892         return false;
1893 
1894     return true;
1895 }
1896 
1897 // Function attempts to set the type_name member of the paramaterised Element object.
1898 // This string should be the name of the struct type the Element represents.
1899 // We need this string for pretty printing the Element to users.
1900 void
1901 RenderScriptRuntime::FindStructTypeName(Element &elem, StackFrame *frame_ptr)
1902 {
1903     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1904 
1905     if (!elem.type_name.IsEmpty()) // Name already set
1906         return;
1907     else
1908         elem.type_name = Element::GetFallbackStructName(); // Default type name if we don't succeed
1909 
1910     // Find all the global variables from the script rs modules
1911     VariableList variable_list;
1912     for (auto module_sp : m_rsmodules)
1913         module_sp->m_module->FindGlobalVariables(RegularExpression("."), true, UINT32_MAX, variable_list);
1914 
1915     // Iterate over all the global variables looking for one with a matching type to the Element.
1916     // We make the assumption a match exists since there needs to be a global variable to reflect the
1917     // struct type back into java host code.
1918     for (uint32_t var_index = 0; var_index < variable_list.GetSize(); ++var_index)
1919     {
1920         const VariableSP var_sp(variable_list.GetVariableAtIndex(var_index));
1921         if (!var_sp)
1922             continue;
1923 
1924         ValueObjectSP valobj_sp = ValueObjectVariable::Create(frame_ptr, var_sp);
1925         if (!valobj_sp)
1926             continue;
1927 
1928         // Find the number of variable fields.
1929         // If it has no fields, or more fields than our Element, then it can't be the struct we're looking for.
1930         // Don't check for equality since RS can add extra struct members for padding.
1931         size_t num_children = valobj_sp->GetNumChildren();
1932         if (num_children > elem.children.size() || num_children == 0)
1933             continue;
1934 
1935         // Iterate over children looking for members with matching field names.
1936         // If all the field names match, this is likely the struct we want.
1937         //
1938         //   TODO: This could be made more robust by also checking children data sizes, or array size
1939         bool found = true;
1940         for (size_t child_index = 0; child_index < num_children; ++child_index)
1941         {
1942             ValueObjectSP child = valobj_sp->GetChildAtIndex(child_index, true);
1943             if (!child || (child->GetName() != elem.children[child_index].type_name))
1944             {
1945                 found = false;
1946                 break;
1947             }
1948         }
1949 
1950         // RS can add extra struct members for padding in the format '#rs_padding_[0-9]+'
1951         if (found && num_children < elem.children.size())
1952         {
1953             const uint32_t size_diff = elem.children.size() - num_children;
1954             if (log)
1955                 log->Printf("%s - %" PRIu32 " padding struct entries", __FUNCTION__, size_diff);
1956 
1957             for (uint32_t padding_index = 0; padding_index < size_diff; ++padding_index)
1958             {
1959                 const ConstString &name = elem.children[num_children + padding_index].type_name;
1960                 if (strcmp(name.AsCString(), "#rs_padding") < 0)
1961                     found = false;
1962             }
1963         }
1964 
1965         // We've found a global var with matching type
1966         if (found)
1967         {
1968             // Dereference since our Element type isn't a pointer.
1969             if (valobj_sp->IsPointerType())
1970             {
1971                 Error err;
1972                 ValueObjectSP deref_valobj = valobj_sp->Dereference(err);
1973                 if (!err.Fail())
1974                     valobj_sp = deref_valobj;
1975             }
1976 
1977             // Save name of variable in Element.
1978             elem.type_name = valobj_sp->GetTypeName();
1979             if (log)
1980                 log->Printf("%s - element name set to %s", __FUNCTION__, elem.type_name.AsCString());
1981 
1982             return;
1983         }
1984     }
1985 }
1986 
1987 // Function sets the datum_size member of Element. Representing the size of a single instance including padding.
1988 // Assumes the relevant allocation information has already been jitted.
1989 void
1990 RenderScriptRuntime::SetElementSize(Element &elem)
1991 {
1992     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1993     const Element::DataType type = *elem.type.get();
1994     assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && "Invalid allocation type");
1995 
1996     const uint32_t vec_size = *elem.type_vec_size.get();
1997     uint32_t data_size = 0;
1998     uint32_t padding = 0;
1999 
2000     // Element is of a struct type, calculate size recursively.
2001     if ((type == Element::RS_TYPE_NONE) && (elem.children.size() > 0))
2002     {
2003         for (Element &child : elem.children)
2004         {
2005             SetElementSize(child);
2006             const uint32_t array_size = child.array_size.isValid() ? *child.array_size.get() : 1;
2007             data_size += *child.datum_size.get() * array_size;
2008         }
2009     }
2010     // These have been packed already
2011     else if (type == Element::RS_TYPE_UNSIGNED_5_6_5   ||
2012              type == Element::RS_TYPE_UNSIGNED_5_5_5_1 ||
2013              type == Element::RS_TYPE_UNSIGNED_4_4_4_4)
2014     {
2015         data_size = AllocationDetails::RSTypeToFormat[type][eElementSize];
2016     }
2017     else if (type < Element::RS_TYPE_ELEMENT)
2018     {
2019         data_size = vec_size * AllocationDetails::RSTypeToFormat[type][eElementSize];
2020         if (vec_size == 3)
2021             padding = AllocationDetails::RSTypeToFormat[type][eElementSize];
2022     }
2023     else
2024         data_size = GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
2025 
2026     elem.padding = padding;
2027     elem.datum_size = data_size + padding;
2028     if (log)
2029         log->Printf("%s - element size set to %" PRIu32, __FUNCTION__, data_size + padding);
2030 }
2031 
2032 // Given an allocation, this function copies the allocation contents from device into a buffer on the heap.
2033 // Returning a shared pointer to the buffer containing the data.
2034 std::shared_ptr<uint8_t>
2035 RenderScriptRuntime::GetAllocationData(AllocationDetails *allocation, StackFrame *frame_ptr)
2036 {
2037     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2038 
2039     // JIT all the allocation details
2040     if (allocation->shouldRefresh())
2041     {
2042         if (log)
2043             log->Printf("%s - allocation details not calculated yet, jitting info", __FUNCTION__);
2044 
2045         if (!RefreshAllocation(allocation, frame_ptr))
2046         {
2047             if (log)
2048                 log->Printf("%s - couldn't JIT allocation details", __FUNCTION__);
2049             return nullptr;
2050         }
2051     }
2052 
2053     assert(allocation->data_ptr.isValid() && allocation->element.type.isValid() &&
2054            allocation->element.type_vec_size.isValid() && allocation->size.isValid() &&
2055            "Allocation information not available");
2056 
2057     // Allocate a buffer to copy data into
2058     const uint32_t size = *allocation->size.get();
2059     std::shared_ptr<uint8_t> buffer(new uint8_t[size]);
2060     if (!buffer)
2061     {
2062         if (log)
2063             log->Printf("%s - couldn't allocate a %" PRIu32 " byte buffer", __FUNCTION__, size);
2064         return nullptr;
2065     }
2066 
2067     // Read the inferior memory
2068     Error error;
2069     lldb::addr_t data_ptr = *allocation->data_ptr.get();
2070     GetProcess()->ReadMemory(data_ptr, buffer.get(), size, error);
2071     if (error.Fail())
2072     {
2073         if (log)
2074             log->Printf("%s - '%s' Couldn't read %" PRIu32 " bytes of allocation data from 0x%" PRIx64,
2075                         __FUNCTION__, error.AsCString(), size, data_ptr);
2076         return nullptr;
2077     }
2078 
2079     return buffer;
2080 }
2081 
2082 // Function copies data from a binary file into an allocation.
2083 // There is a header at the start of the file, FileHeader, before the data content itself.
2084 // Information from this header is used to display warnings to the user about incompatabilities
2085 bool
2086 RenderScriptRuntime::LoadAllocation(Stream &strm, const uint32_t alloc_id, const char *filename, StackFrame *frame_ptr)
2087 {
2088     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2089 
2090     // Find allocation with the given id
2091     AllocationDetails *alloc = FindAllocByID(strm, alloc_id);
2092     if (!alloc)
2093         return false;
2094 
2095     if (log)
2096         log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__, *alloc->address.get());
2097 
2098     // JIT all the allocation details
2099     if (alloc->shouldRefresh())
2100     {
2101         if (log)
2102             log->Printf("%s - allocation details not calculated yet, jitting info.", __FUNCTION__);
2103 
2104         if (!RefreshAllocation(alloc, frame_ptr))
2105         {
2106             if (log)
2107                 log->Printf("%s - couldn't JIT allocation details", __FUNCTION__);
2108             return false;
2109         }
2110     }
2111 
2112     assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && alloc->element.type_vec_size.isValid() &&
2113            alloc->size.isValid() && alloc->element.datum_size.isValid() && "Allocation information not available");
2114 
2115     // Check we can read from file
2116     FileSpec file(filename, true);
2117     if (!file.Exists())
2118     {
2119         strm.Printf("Error: File %s does not exist", filename);
2120         strm.EOL();
2121         return false;
2122     }
2123 
2124     if (!file.Readable())
2125     {
2126         strm.Printf("Error: File %s does not have readable permissions", filename);
2127         strm.EOL();
2128         return false;
2129     }
2130 
2131     // Read file into data buffer
2132     DataBufferSP data_sp(file.ReadFileContents());
2133 
2134     // Cast start of buffer to FileHeader and use pointer to read metadata
2135     void *file_buffer = data_sp->GetBytes();
2136     if (file_buffer == nullptr ||
2137         data_sp->GetByteSize() < (sizeof(AllocationDetails::FileHeader) + sizeof(AllocationDetails::ElementHeader)))
2138     {
2139         strm.Printf("Error: File %s does not contain enough data for header", filename);
2140         strm.EOL();
2141         return false;
2142     }
2143     const AllocationDetails::FileHeader *file_header = static_cast<AllocationDetails::FileHeader *>(file_buffer);
2144 
2145     // Check file starts with ascii characters "RSAD"
2146     if (memcmp(file_header->ident, "RSAD", 4))
2147     {
2148         strm.Printf("Error: File doesn't contain identifier for an RS allocation dump. Are you sure this is the correct file?");
2149         strm.EOL();
2150         return false;
2151     }
2152 
2153     // Look at the type of the root element in the header
2154     AllocationDetails::ElementHeader root_element_header;
2155     memcpy(&root_element_header, static_cast<uint8_t *>(file_buffer) + sizeof(AllocationDetails::FileHeader),
2156            sizeof(AllocationDetails::ElementHeader));
2157 
2158     if (log)
2159         log->Printf("%s - header type %" PRIu32 ", element size %" PRIu32, __FUNCTION__,
2160                     root_element_header.type, root_element_header.element_size);
2161 
2162     // Check if the target allocation and file both have the same number of bytes for an Element
2163     if (*alloc->element.datum_size.get() != root_element_header.element_size)
2164     {
2165         strm.Printf("Warning: Mismatched Element sizes - file %" PRIu32 " bytes, allocation %" PRIu32 " bytes",
2166                     root_element_header.element_size, *alloc->element.datum_size.get());
2167         strm.EOL();
2168     }
2169 
2170     // Check if the target allocation and file both have the same type
2171     const uint32_t alloc_type = static_cast<uint32_t>(*alloc->element.type.get());
2172     const uint32_t file_type = root_element_header.type;
2173 
2174     if (file_type > Element::RS_TYPE_FONT)
2175     {
2176         strm.Printf("Warning: File has unknown allocation type");
2177         strm.EOL();
2178     }
2179     else if (alloc_type != file_type)
2180     {
2181         // Enum value isn't monotonous, so doesn't always index RsDataTypeToString array
2182         uint32_t printable_target_type_index = alloc_type;
2183         uint32_t printable_head_type_index = file_type;
2184         if (alloc_type >= Element::RS_TYPE_ELEMENT && alloc_type <= Element::RS_TYPE_FONT)
2185             printable_target_type_index = static_cast<Element::DataType>((alloc_type - Element::RS_TYPE_ELEMENT) +
2186                                                                          Element::RS_TYPE_MATRIX_2X2 + 1);
2187 
2188         if (file_type >= Element::RS_TYPE_ELEMENT && file_type <= Element::RS_TYPE_FONT)
2189             printable_head_type_index = static_cast<Element::DataType>((file_type - Element::RS_TYPE_ELEMENT) +
2190                                                                        Element::RS_TYPE_MATRIX_2X2 + 1);
2191 
2192         const char *file_type_cstr = AllocationDetails::RsDataTypeToString[printable_head_type_index][0];
2193         const char *target_type_cstr = AllocationDetails::RsDataTypeToString[printable_target_type_index][0];
2194 
2195         strm.Printf("Warning: Mismatched Types - file '%s' type, allocation '%s' type", file_type_cstr,
2196                     target_type_cstr);
2197         strm.EOL();
2198     }
2199 
2200     // Advance buffer past header
2201     file_buffer = static_cast<uint8_t *>(file_buffer) + file_header->hdr_size;
2202 
2203     // Calculate size of allocation data in file
2204     size_t length = data_sp->GetByteSize() - file_header->hdr_size;
2205 
2206     // Check if the target allocation and file both have the same total data size.
2207     const uint32_t alloc_size = *alloc->size.get();
2208     if (alloc_size != length)
2209     {
2210         strm.Printf("Warning: Mismatched allocation sizes - file 0x%" PRIx64 " bytes, allocation 0x%" PRIx32 " bytes",
2211                     (uint64_t)length, alloc_size);
2212         strm.EOL();
2213         length = alloc_size < length ? alloc_size : length; // Set length to copy to minimum
2214     }
2215 
2216     // Copy file data from our buffer into the target allocation.
2217     lldb::addr_t alloc_data = *alloc->data_ptr.get();
2218     Error error;
2219     size_t bytes_written = GetProcess()->WriteMemory(alloc_data, file_buffer, length, error);
2220     if (!error.Success() || bytes_written != length)
2221     {
2222         strm.Printf("Error: Couldn't write data to allocation %s", error.AsCString());
2223         strm.EOL();
2224         return false;
2225     }
2226 
2227     strm.Printf("Contents of file '%s' read into allocation %" PRIu32, filename, alloc->id);
2228     strm.EOL();
2229 
2230     return true;
2231 }
2232 
2233 // Function takes as parameters a byte buffer, which will eventually be written to file as the element header,
2234 // an offset into that buffer, and an Element that will be saved into the buffer at the parametrised offset.
2235 // Return value is the new offset after writing the element into the buffer.
2236 // Elements are saved to the file as the ElementHeader struct followed by offsets to the structs of all the element's
2237 // children.
2238 size_t
2239 RenderScriptRuntime::PopulateElementHeaders(const std::shared_ptr<uint8_t> header_buffer, size_t offset,
2240                                             const Element &elem)
2241 {
2242     // File struct for an element header with all the relevant details copied from elem.
2243     // We assume members are valid already.
2244     AllocationDetails::ElementHeader elem_header;
2245     elem_header.type = *elem.type.get();
2246     elem_header.kind = *elem.type_kind.get();
2247     elem_header.element_size = *elem.datum_size.get();
2248     elem_header.vector_size = *elem.type_vec_size.get();
2249     elem_header.array_size = elem.array_size.isValid() ? *elem.array_size.get() : 0;
2250     const size_t elem_header_size = sizeof(AllocationDetails::ElementHeader);
2251 
2252     // Copy struct into buffer and advance offset
2253     // We assume that header_buffer has been checked for nullptr before this method is called
2254     memcpy(header_buffer.get() + offset, &elem_header, elem_header_size);
2255     offset += elem_header_size;
2256 
2257     // Starting offset of child ElementHeader struct
2258     size_t child_offset = offset + ((elem.children.size() + 1) * sizeof(uint32_t));
2259     for (const RenderScriptRuntime::Element &child : elem.children)
2260     {
2261         // Recursively populate the buffer with the element header structs of children.
2262         // Then save the offsets where they were set after the parent element header.
2263         memcpy(header_buffer.get() + offset, &child_offset, sizeof(uint32_t));
2264         offset += sizeof(uint32_t);
2265 
2266         child_offset = PopulateElementHeaders(header_buffer, child_offset, child);
2267     }
2268 
2269     // Zero indicates no more children
2270     memset(header_buffer.get() + offset, 0, sizeof(uint32_t));
2271 
2272     return child_offset;
2273 }
2274 
2275 // Given an Element object this function returns the total size needed in the file header to store the element's
2276 // details.
2277 // Taking into account the size of the element header struct, plus the offsets to all the element's children.
2278 // Function is recursive so that the size of all ancestors is taken into account.
2279 size_t
2280 RenderScriptRuntime::CalculateElementHeaderSize(const Element &elem)
2281 {
2282     size_t size = (elem.children.size() + 1) * sizeof(uint32_t); // Offsets to children plus zero terminator
2283     size += sizeof(AllocationDetails::ElementHeader);            // Size of header struct with type details
2284 
2285     // Calculate recursively for all descendants
2286     for (const Element &child : elem.children)
2287         size += CalculateElementHeaderSize(child);
2288 
2289     return size;
2290 }
2291 
2292 // Function copies allocation contents into a binary file.
2293 // This file can then be loaded later into a different allocation.
2294 // There is a header, FileHeader, before the allocation data containing meta-data.
2295 bool
2296 RenderScriptRuntime::SaveAllocation(Stream &strm, const uint32_t alloc_id, const char *filename, StackFrame *frame_ptr)
2297 {
2298     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2299 
2300     // Find allocation with the given id
2301     AllocationDetails *alloc = FindAllocByID(strm, alloc_id);
2302     if (!alloc)
2303         return false;
2304 
2305     if (log)
2306         log->Printf("%s - found allocation 0x%" PRIx64 ".", __FUNCTION__, *alloc->address.get());
2307 
2308     // JIT all the allocation details
2309     if (alloc->shouldRefresh())
2310     {
2311         if (log)
2312             log->Printf("%s - allocation details not calculated yet, jitting info.", __FUNCTION__);
2313 
2314         if (!RefreshAllocation(alloc, frame_ptr))
2315         {
2316             if (log)
2317                 log->Printf("%s - couldn't JIT allocation details.", __FUNCTION__);
2318             return false;
2319         }
2320     }
2321 
2322     assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && alloc->element.type_vec_size.isValid() &&
2323            alloc->element.datum_size.get() && alloc->element.type_kind.isValid() && alloc->dimension.isValid() &&
2324            "Allocation information not available");
2325 
2326     // Check we can create writable file
2327     FileSpec file_spec(filename, true);
2328     File file(file_spec, File::eOpenOptionWrite | File::eOpenOptionCanCreate | File::eOpenOptionTruncate);
2329     if (!file)
2330     {
2331         strm.Printf("Error: Failed to open '%s' for writing", filename);
2332         strm.EOL();
2333         return false;
2334     }
2335 
2336     // Read allocation into buffer of heap memory
2337     const std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr);
2338     if (!buffer)
2339     {
2340         strm.Printf("Error: Couldn't read allocation data into buffer");
2341         strm.EOL();
2342         return false;
2343     }
2344 
2345     // Create the file header
2346     AllocationDetails::FileHeader head;
2347     memcpy(head.ident, "RSAD", 4);
2348     head.dims[0] = static_cast<uint32_t>(alloc->dimension.get()->dim_1);
2349     head.dims[1] = static_cast<uint32_t>(alloc->dimension.get()->dim_2);
2350     head.dims[2] = static_cast<uint32_t>(alloc->dimension.get()->dim_3);
2351 
2352     const size_t element_header_size = CalculateElementHeaderSize(alloc->element);
2353     assert((sizeof(AllocationDetails::FileHeader) + element_header_size) < UINT16_MAX && "Element header too large");
2354     head.hdr_size = static_cast<uint16_t>(sizeof(AllocationDetails::FileHeader) + element_header_size);
2355 
2356     // Write the file header
2357     size_t num_bytes = sizeof(AllocationDetails::FileHeader);
2358     if (log)
2359         log->Printf("%s - writing File Header, 0x%" PRIx64 " bytes", __FUNCTION__, num_bytes);
2360 
2361     Error err = file.Write(&head, num_bytes);
2362     if (!err.Success())
2363     {
2364         strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), filename);
2365         strm.EOL();
2366         return false;
2367     }
2368 
2369     // Create the headers describing the element type of the allocation.
2370     std::shared_ptr<uint8_t> element_header_buffer(new uint8_t[element_header_size]);
2371     if (element_header_buffer == nullptr)
2372     {
2373         strm.Printf("Internal Error: Couldn't allocate %" PRIu64 " bytes on the heap", element_header_size);
2374         strm.EOL();
2375         return false;
2376     }
2377 
2378     PopulateElementHeaders(element_header_buffer, 0, alloc->element);
2379 
2380     // Write headers for allocation element type to file
2381     num_bytes = element_header_size;
2382     if (log)
2383         log->Printf("%s - writing element headers, 0x%" PRIx64 " bytes.", __FUNCTION__, num_bytes);
2384 
2385     err = file.Write(element_header_buffer.get(), num_bytes);
2386     if (!err.Success())
2387     {
2388         strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), filename);
2389         strm.EOL();
2390         return false;
2391     }
2392 
2393     // Write allocation data to file
2394     num_bytes = static_cast<size_t>(*alloc->size.get());
2395     if (log)
2396         log->Printf("%s - writing 0x%" PRIx64 " bytes", __FUNCTION__, num_bytes);
2397 
2398     err = file.Write(buffer.get(), num_bytes);
2399     if (!err.Success())
2400     {
2401         strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), filename);
2402         strm.EOL();
2403         return false;
2404     }
2405 
2406     strm.Printf("Allocation written to file '%s'", filename);
2407     strm.EOL();
2408     return true;
2409 }
2410 
2411 bool
2412 RenderScriptRuntime::LoadModule(const lldb::ModuleSP &module_sp)
2413 {
2414     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2415 
2416     if (module_sp)
2417     {
2418         for (const auto &rs_module : m_rsmodules)
2419         {
2420             if (rs_module->m_module == module_sp)
2421             {
2422                 // Check if the user has enabled automatically breaking on
2423                 // all RS kernels.
2424                 if (m_breakAllKernels)
2425                     BreakOnModuleKernels(rs_module);
2426 
2427                 return false;
2428             }
2429         }
2430         bool module_loaded = false;
2431         switch (GetModuleKind(module_sp))
2432         {
2433             case eModuleKindKernelObj:
2434             {
2435                 RSModuleDescriptorSP module_desc;
2436                 module_desc.reset(new RSModuleDescriptor(module_sp));
2437                 if (module_desc->ParseRSInfo())
2438                 {
2439                     m_rsmodules.push_back(module_desc);
2440                     module_loaded = true;
2441                 }
2442                 if (module_loaded)
2443                 {
2444                     FixupScriptDetails(module_desc);
2445                 }
2446                 break;
2447             }
2448             case eModuleKindDriver:
2449             {
2450                 if (!m_libRSDriver)
2451                 {
2452                     m_libRSDriver = module_sp;
2453                     LoadRuntimeHooks(m_libRSDriver, RenderScriptRuntime::eModuleKindDriver);
2454                 }
2455                 break;
2456             }
2457             case eModuleKindImpl:
2458             {
2459                 m_libRSCpuRef = module_sp;
2460                 break;
2461             }
2462             case eModuleKindLibRS:
2463             {
2464                 if (!m_libRS)
2465                 {
2466                     m_libRS = module_sp;
2467                     static ConstString gDbgPresentStr("gDebuggerPresent");
2468                     const Symbol *debug_present =
2469                         m_libRS->FindFirstSymbolWithNameAndType(gDbgPresentStr, eSymbolTypeData);
2470                     if (debug_present)
2471                     {
2472                         Error error;
2473                         uint32_t flag = 0x00000001U;
2474                         Target &target = GetProcess()->GetTarget();
2475                         addr_t addr = debug_present->GetLoadAddress(&target);
2476                         GetProcess()->WriteMemory(addr, &flag, sizeof(flag), error);
2477                         if (error.Success())
2478                         {
2479                             if (log)
2480                                 log->Printf("%s - debugger present flag set on debugee.", __FUNCTION__);
2481 
2482                             m_debuggerPresentFlagged = true;
2483                         }
2484                         else if (log)
2485                         {
2486                             log->Printf("%s - error writing debugger present flags '%s' ", __FUNCTION__,
2487                                         error.AsCString());
2488                         }
2489                     }
2490                     else if (log)
2491                     {
2492                         log->Printf("%s - error writing debugger present flags - symbol not found", __FUNCTION__);
2493                     }
2494                 }
2495                 break;
2496             }
2497             default:
2498                 break;
2499         }
2500         if (module_loaded)
2501             Update();
2502         return module_loaded;
2503     }
2504     return false;
2505 }
2506 
2507 void
2508 RenderScriptRuntime::Update()
2509 {
2510     if (m_rsmodules.size() > 0)
2511     {
2512         if (!m_initiated)
2513         {
2514             Initiate();
2515         }
2516     }
2517 }
2518 
2519 // The maximum line length of an .rs.info packet
2520 #define MAXLINE 500
2521 
2522 // The .rs.info symbol in renderscript modules contains a string which needs to be parsed.
2523 // The string is basic and is parsed on a line by line basis.
2524 bool
2525 RSModuleDescriptor::ParseRSInfo()
2526 {
2527     const Symbol *info_sym = m_module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), eSymbolTypeData);
2528     if (info_sym)
2529     {
2530         const addr_t addr = info_sym->GetAddressRef().GetFileAddress();
2531         const addr_t size = info_sym->GetByteSize();
2532         const FileSpec fs = m_module->GetFileSpec();
2533 
2534         DataBufferSP buffer = fs.ReadFileContents(addr, size);
2535 
2536         if (!buffer)
2537             return false;
2538 
2539         std::string info((const char *)buffer->GetBytes());
2540 
2541         std::vector<std::string> info_lines;
2542         size_t lpos = info.find('\n');
2543         while (lpos != std::string::npos)
2544         {
2545             info_lines.push_back(info.substr(0, lpos));
2546             info = info.substr(lpos + 1);
2547             lpos = info.find('\n');
2548         }
2549         size_t offset = 0;
2550         while (offset < info_lines.size())
2551         {
2552             std::string line = info_lines[offset];
2553             // Parse directives
2554             uint32_t numDefns = 0;
2555             if (sscanf(line.c_str(), "exportVarCount: %" PRIu32 "", &numDefns) == 1)
2556             {
2557                 while (numDefns--)
2558                     m_globals.push_back(RSGlobalDescriptor(this, info_lines[++offset].c_str()));
2559             }
2560             else if (sscanf(line.c_str(), "exportFuncCount: %" PRIu32 "", &numDefns) == 1)
2561             {
2562             }
2563             else if (sscanf(line.c_str(), "exportForEachCount: %" PRIu32 "", &numDefns) == 1)
2564             {
2565                 char name[MAXLINE];
2566                 while (numDefns--)
2567                 {
2568                     uint32_t slot = 0;
2569                     name[0] = '\0';
2570                     if (sscanf(info_lines[++offset].c_str(), "%" PRIu32 " - %s", &slot, &name[0]) == 2)
2571                     {
2572                         m_kernels.push_back(RSKernelDescriptor(this, name, slot));
2573                     }
2574                 }
2575             }
2576             else if (sscanf(line.c_str(), "pragmaCount: %" PRIu32 "", &numDefns) == 1)
2577             {
2578                 char name[MAXLINE];
2579                 char value[MAXLINE];
2580                 while (numDefns--)
2581                 {
2582                     name[0] = '\0';
2583                     value[0] = '\0';
2584                     if (sscanf(info_lines[++offset].c_str(), "%s - %s", &name[0], &value[0]) != 0 && (name[0] != '\0'))
2585                     {
2586                         m_pragmas[std::string(name)] = value;
2587                     }
2588                 }
2589             }
2590             else if (sscanf(line.c_str(), "objectSlotCount: %" PRIu32 "", &numDefns) == 1)
2591             {
2592             }
2593 
2594             offset++;
2595         }
2596         return m_kernels.size() > 0;
2597     }
2598     return false;
2599 }
2600 
2601 void
2602 RenderScriptRuntime::Status(Stream &strm) const
2603 {
2604     if (m_libRS)
2605     {
2606         strm.Printf("Runtime Library discovered.");
2607         strm.EOL();
2608     }
2609     if (m_libRSDriver)
2610     {
2611         strm.Printf("Runtime Driver discovered.");
2612         strm.EOL();
2613     }
2614     if (m_libRSCpuRef)
2615     {
2616         strm.Printf("CPU Reference Implementation discovered.");
2617         strm.EOL();
2618     }
2619 
2620     if (m_runtimeHooks.size())
2621     {
2622         strm.Printf("Runtime functions hooked:");
2623         strm.EOL();
2624         for (auto b : m_runtimeHooks)
2625         {
2626             strm.Indent(b.second->defn->name);
2627             strm.EOL();
2628         }
2629     }
2630     else
2631     {
2632         strm.Printf("Runtime is not hooked.");
2633         strm.EOL();
2634     }
2635 }
2636 
2637 void
2638 RenderScriptRuntime::DumpContexts(Stream &strm) const
2639 {
2640     strm.Printf("Inferred RenderScript Contexts:");
2641     strm.EOL();
2642     strm.IndentMore();
2643 
2644     std::map<addr_t, uint64_t> contextReferences;
2645 
2646     // Iterate over all of the currently discovered scripts.
2647     // Note: We cant push or pop from m_scripts inside this loop or it may invalidate script.
2648     for (const auto &script : m_scripts)
2649     {
2650         if (!script->context.isValid())
2651             continue;
2652         lldb::addr_t context = *script->context;
2653 
2654         if (contextReferences.find(context) != contextReferences.end())
2655         {
2656             contextReferences[context]++;
2657         }
2658         else
2659         {
2660             contextReferences[context] = 1;
2661         }
2662     }
2663 
2664     for (const auto &cRef : contextReferences)
2665     {
2666         strm.Printf("Context 0x%" PRIx64 ": %" PRIu64 " script instances", cRef.first, cRef.second);
2667         strm.EOL();
2668     }
2669     strm.IndentLess();
2670 }
2671 
2672 void
2673 RenderScriptRuntime::DumpKernels(Stream &strm) const
2674 {
2675     strm.Printf("RenderScript Kernels:");
2676     strm.EOL();
2677     strm.IndentMore();
2678     for (const auto &module : m_rsmodules)
2679     {
2680         strm.Printf("Resource '%s':", module->m_resname.c_str());
2681         strm.EOL();
2682         for (const auto &kernel : module->m_kernels)
2683         {
2684             strm.Indent(kernel.m_name.AsCString());
2685             strm.EOL();
2686         }
2687     }
2688     strm.IndentLess();
2689 }
2690 
2691 RenderScriptRuntime::AllocationDetails *
2692 RenderScriptRuntime::FindAllocByID(Stream &strm, const uint32_t alloc_id)
2693 {
2694     AllocationDetails *alloc = nullptr;
2695 
2696     // See if we can find allocation using id as an index;
2697     if (alloc_id <= m_allocations.size() && alloc_id != 0 && m_allocations[alloc_id - 1]->id == alloc_id)
2698     {
2699         alloc = m_allocations[alloc_id - 1].get();
2700         return alloc;
2701     }
2702 
2703     // Fallback to searching
2704     for (const auto &a : m_allocations)
2705     {
2706         if (a->id == alloc_id)
2707         {
2708             alloc = a.get();
2709             break;
2710         }
2711     }
2712 
2713     if (alloc == nullptr)
2714     {
2715         strm.Printf("Error: Couldn't find allocation with id matching %" PRIu32, alloc_id);
2716         strm.EOL();
2717     }
2718 
2719     return alloc;
2720 }
2721 
2722 // Prints the contents of an allocation to the output stream, which may be a file
2723 bool
2724 RenderScriptRuntime::DumpAllocation(Stream &strm, StackFrame *frame_ptr, const uint32_t id)
2725 {
2726     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2727 
2728     // Check we can find the desired allocation
2729     AllocationDetails *alloc = FindAllocByID(strm, id);
2730     if (!alloc)
2731         return false; // FindAllocByID() will print error message for us here
2732 
2733     if (log)
2734         log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__, *alloc->address.get());
2735 
2736     // Check we have information about the allocation, if not calculate it
2737     if (alloc->shouldRefresh())
2738     {
2739         if (log)
2740             log->Printf("%s - allocation details not calculated yet, jitting info.", __FUNCTION__);
2741 
2742         // JIT all the allocation information
2743         if (!RefreshAllocation(alloc, frame_ptr))
2744         {
2745             strm.Printf("Error: Couldn't JIT allocation details");
2746             strm.EOL();
2747             return false;
2748         }
2749     }
2750 
2751     // Establish format and size of each data element
2752     const uint32_t vec_size = *alloc->element.type_vec_size.get();
2753     const Element::DataType type = *alloc->element.type.get();
2754 
2755     assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && "Invalid allocation type");
2756 
2757     lldb::Format format;
2758     if (type >= Element::RS_TYPE_ELEMENT)
2759         format = eFormatHex;
2760     else
2761         format = vec_size == 1 ? static_cast<lldb::Format>(AllocationDetails::RSTypeToFormat[type][eFormatSingle])
2762                                : static_cast<lldb::Format>(AllocationDetails::RSTypeToFormat[type][eFormatVector]);
2763 
2764     const uint32_t data_size = *alloc->element.datum_size.get();
2765 
2766     if (log)
2767         log->Printf("%s - element size %" PRIu32 " bytes, including padding", __FUNCTION__, data_size);
2768 
2769     // Allocate a buffer to copy data into
2770     std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr);
2771     if (!buffer)
2772     {
2773         strm.Printf("Error: Couldn't read allocation data");
2774         strm.EOL();
2775         return false;
2776     }
2777 
2778     // Calculate stride between rows as there may be padding at end of rows since
2779     // allocated memory is 16-byte aligned
2780     if (!alloc->stride.isValid())
2781     {
2782         if (alloc->dimension.get()->dim_2 == 0) // We only have one dimension
2783             alloc->stride = 0;
2784         else if (!JITAllocationStride(alloc, frame_ptr))
2785         {
2786             strm.Printf("Error: Couldn't calculate allocation row stride");
2787             strm.EOL();
2788             return false;
2789         }
2790     }
2791     const uint32_t stride = *alloc->stride.get();
2792     const uint32_t size = *alloc->size.get(); // Size of whole allocation
2793     const uint32_t padding = alloc->element.padding.isValid() ? *alloc->element.padding.get() : 0;
2794     if (log)
2795         log->Printf("%s - stride %" PRIu32 " bytes, size %" PRIu32 " bytes, padding %" PRIu32,
2796                     __FUNCTION__, stride, size, padding);
2797 
2798     // Find dimensions used to index loops, so need to be non-zero
2799     uint32_t dim_x = alloc->dimension.get()->dim_1;
2800     dim_x = dim_x == 0 ? 1 : dim_x;
2801 
2802     uint32_t dim_y = alloc->dimension.get()->dim_2;
2803     dim_y = dim_y == 0 ? 1 : dim_y;
2804 
2805     uint32_t dim_z = alloc->dimension.get()->dim_3;
2806     dim_z = dim_z == 0 ? 1 : dim_z;
2807 
2808     // Use data extractor to format output
2809     const uint32_t archByteSize = GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
2810     DataExtractor alloc_data(buffer.get(), size, GetProcess()->GetByteOrder(), archByteSize);
2811 
2812     uint32_t offset = 0;   // Offset in buffer to next element to be printed
2813     uint32_t prev_row = 0; // Offset to the start of the previous row
2814 
2815     // Iterate over allocation dimensions, printing results to user
2816     strm.Printf("Data (X, Y, Z):");
2817     for (uint32_t z = 0; z < dim_z; ++z)
2818     {
2819         for (uint32_t y = 0; y < dim_y; ++y)
2820         {
2821             // Use stride to index start of next row.
2822             if (!(y == 0 && z == 0))
2823                 offset = prev_row + stride;
2824             prev_row = offset;
2825 
2826             // Print each element in the row individually
2827             for (uint32_t x = 0; x < dim_x; ++x)
2828             {
2829                 strm.Printf("\n(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ") = ", x, y, z);
2830                 if ((type == Element::RS_TYPE_NONE) && (alloc->element.children.size() > 0) &&
2831                     (alloc->element.type_name != Element::GetFallbackStructName()))
2832                 {
2833                     // Here we are dumping an Element of struct type.
2834                     // This is done using expression evaluation with the name of the struct type and pointer to element.
2835 
2836                     // Don't print the name of the resulting expression, since this will be '$[0-9]+'
2837                     DumpValueObjectOptions expr_options;
2838                     expr_options.SetHideName(true);
2839 
2840                     // Setup expression as derefrencing a pointer cast to element address.
2841                     char expr_char_buffer[jit_max_expr_size];
2842                     int chars_written = snprintf(expr_char_buffer, jit_max_expr_size, "*(%s*) 0x%" PRIx64,
2843                                                  alloc->element.type_name.AsCString(), *alloc->data_ptr.get() + offset);
2844 
2845                     if (chars_written < 0 || chars_written >= jit_max_expr_size)
2846                     {
2847                         if (log)
2848                             log->Printf("%s - error in snprintf().", __FUNCTION__);
2849                         continue;
2850                     }
2851 
2852                     // Evaluate expression
2853                     ValueObjectSP expr_result;
2854                     GetProcess()->GetTarget().EvaluateExpression(expr_char_buffer, frame_ptr, expr_result);
2855 
2856                     // Print the results to our stream.
2857                     expr_result->Dump(strm, expr_options);
2858                 }
2859                 else
2860                 {
2861                     alloc_data.Dump(&strm, offset, format, data_size - padding, 1, 1, LLDB_INVALID_ADDRESS, 0, 0);
2862                 }
2863                 offset += data_size;
2864             }
2865         }
2866     }
2867     strm.EOL();
2868 
2869     return true;
2870 }
2871 
2872 // Function recalculates all our cached information about allocations by jitting the
2873 // RS runtime regarding each allocation we know about.
2874 // Returns true if all allocations could be recomputed, false otherwise.
2875 bool
2876 RenderScriptRuntime::RecomputeAllAllocations(Stream &strm, StackFrame *frame_ptr)
2877 {
2878     bool success = true;
2879     for (auto &alloc : m_allocations)
2880     {
2881         // JIT current allocation information
2882         if (!RefreshAllocation(alloc.get(), frame_ptr))
2883         {
2884             strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32 "\n", alloc->id);
2885             success = false;
2886         }
2887     }
2888 
2889     if (success)
2890         strm.Printf("All allocations successfully recomputed");
2891     strm.EOL();
2892 
2893     return success;
2894 }
2895 
2896 // Prints information regarding currently loaded allocations.
2897 // These details are gathered by jitting the runtime, which has as latency.
2898 // Index parameter specifies a single allocation ID to print, or a zero value to print them all
2899 void
2900 RenderScriptRuntime::ListAllocations(Stream &strm, StackFrame *frame_ptr, const uint32_t index)
2901 {
2902     strm.Printf("RenderScript Allocations:");
2903     strm.EOL();
2904     strm.IndentMore();
2905 
2906     for (auto &alloc : m_allocations)
2907     {
2908         // index will only be zero if we want to print all allocations
2909         if (index != 0 && index != alloc->id)
2910             continue;
2911 
2912         // JIT current allocation information
2913         if (alloc->shouldRefresh() && !RefreshAllocation(alloc.get(), frame_ptr))
2914         {
2915             strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32, alloc->id);
2916             strm.EOL();
2917             continue;
2918         }
2919 
2920         strm.Printf("%" PRIu32 ":", alloc->id);
2921         strm.EOL();
2922         strm.IndentMore();
2923 
2924         strm.Indent("Context: ");
2925         if (!alloc->context.isValid())
2926             strm.Printf("unknown\n");
2927         else
2928             strm.Printf("0x%" PRIx64 "\n", *alloc->context.get());
2929 
2930         strm.Indent("Address: ");
2931         if (!alloc->address.isValid())
2932             strm.Printf("unknown\n");
2933         else
2934             strm.Printf("0x%" PRIx64 "\n", *alloc->address.get());
2935 
2936         strm.Indent("Data pointer: ");
2937         if (!alloc->data_ptr.isValid())
2938             strm.Printf("unknown\n");
2939         else
2940             strm.Printf("0x%" PRIx64 "\n", *alloc->data_ptr.get());
2941 
2942         strm.Indent("Dimensions: ");
2943         if (!alloc->dimension.isValid())
2944             strm.Printf("unknown\n");
2945         else
2946             strm.Printf("(%" PRId32 ", %" PRId32 ", %" PRId32 ")\n",
2947                         alloc->dimension.get()->dim_1, alloc->dimension.get()->dim_2, alloc->dimension.get()->dim_3);
2948 
2949         strm.Indent("Data Type: ");
2950         if (!alloc->element.type.isValid() || !alloc->element.type_vec_size.isValid())
2951             strm.Printf("unknown\n");
2952         else
2953         {
2954             const int vector_size = *alloc->element.type_vec_size.get();
2955             Element::DataType type = *alloc->element.type.get();
2956 
2957             if (!alloc->element.type_name.IsEmpty())
2958                 strm.Printf("%s\n", alloc->element.type_name.AsCString());
2959             else
2960             {
2961                 // Enum value isn't monotonous, so doesn't always index RsDataTypeToString array
2962                 if (type >= Element::RS_TYPE_ELEMENT && type <= Element::RS_TYPE_FONT)
2963                     type = static_cast<Element::DataType>((type - Element::RS_TYPE_ELEMENT) +
2964                                                           Element::RS_TYPE_MATRIX_2X2 + 1);
2965 
2966                 if (type >= (sizeof(AllocationDetails::RsDataTypeToString) /
2967                              sizeof(AllocationDetails::RsDataTypeToString[0])) ||
2968                     vector_size > 4 || vector_size < 1)
2969                     strm.Printf("invalid type\n");
2970                 else
2971                     strm.Printf("%s\n", AllocationDetails::RsDataTypeToString[static_cast<uint32_t>(type)]
2972                                                                              [vector_size - 1]);
2973             }
2974         }
2975 
2976         strm.Indent("Data Kind: ");
2977         if (!alloc->element.type_kind.isValid())
2978             strm.Printf("unknown\n");
2979         else
2980         {
2981             const Element::DataKind kind = *alloc->element.type_kind.get();
2982             if (kind < Element::RS_KIND_USER || kind > Element::RS_KIND_PIXEL_YUV)
2983                 strm.Printf("invalid kind\n");
2984             else
2985                 strm.Printf("%s\n", AllocationDetails::RsDataKindToString[static_cast<uint32_t>(kind)]);
2986         }
2987 
2988         strm.EOL();
2989         strm.IndentLess();
2990     }
2991     strm.IndentLess();
2992 }
2993 
2994 // Set breakpoints on every kernel found in RS module
2995 void
2996 RenderScriptRuntime::BreakOnModuleKernels(const RSModuleDescriptorSP rsmodule_sp)
2997 {
2998     for (const auto &kernel : rsmodule_sp->m_kernels)
2999     {
3000         // Don't set breakpoint on 'root' kernel
3001         if (strcmp(kernel.m_name.AsCString(), "root") == 0)
3002             continue;
3003 
3004         CreateKernelBreakpoint(kernel.m_name);
3005     }
3006 }
3007 
3008 // Method is internally called by the 'kernel breakpoint all' command to
3009 // enable or disable breaking on all kernels.
3010 //
3011 // When do_break is true we want to enable this functionality.
3012 // When do_break is false we want to disable it.
3013 void
3014 RenderScriptRuntime::SetBreakAllKernels(bool do_break, TargetSP target)
3015 {
3016     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
3017 
3018     InitSearchFilter(target);
3019 
3020     // Set breakpoints on all the kernels
3021     if (do_break && !m_breakAllKernels)
3022     {
3023         m_breakAllKernels = true;
3024 
3025         for (const auto &module : m_rsmodules)
3026             BreakOnModuleKernels(module);
3027 
3028         if (log)
3029             log->Printf("%s(True) - breakpoints set on all currently loaded kernels.", __FUNCTION__);
3030     }
3031     else if (!do_break && m_breakAllKernels) // Breakpoints won't be set on any new kernels.
3032     {
3033         m_breakAllKernels = false;
3034 
3035         if (log)
3036             log->Printf("%s(False) - breakpoints no longer automatically set.", __FUNCTION__);
3037     }
3038 }
3039 
3040 // Given the name of a kernel this function creates a breakpoint using our
3041 // own breakpoint resolver, and returns the Breakpoint shared pointer.
3042 BreakpointSP
3043 RenderScriptRuntime::CreateKernelBreakpoint(const ConstString &name)
3044 {
3045     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
3046 
3047     if (!m_filtersp)
3048     {
3049         if (log)
3050             log->Printf("%s - error, no breakpoint search filter set.", __FUNCTION__);
3051         return nullptr;
3052     }
3053 
3054     BreakpointResolverSP resolver_sp(new RSBreakpointResolver(nullptr, name));
3055     BreakpointSP bp = GetProcess()->GetTarget().CreateBreakpoint(m_filtersp, resolver_sp, false, false, false);
3056 
3057     // Give RS breakpoints a specific name, so the user can manipulate them as a group.
3058     Error err;
3059     if (!bp->AddName("RenderScriptKernel", err) && log)
3060         log->Printf("%s - error setting break name, '%s'.", __FUNCTION__, err.AsCString());
3061 
3062     return bp;
3063 }
3064 
3065 // Given an expression for a variable this function tries to calculate the variable's value.
3066 // If this is possible it returns true and sets the uint64_t parameter to the variables unsigned value.
3067 // Otherwise function returns false.
3068 bool
3069 RenderScriptRuntime::GetFrameVarAsUnsigned(const StackFrameSP frame_sp, const char *var_name, uint64_t &val)
3070 {
3071     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE));
3072     Error error;
3073     VariableSP var_sp;
3074 
3075     // Find variable in stack frame
3076     ValueObjectSP value_sp(frame_sp->GetValueForVariableExpressionPath(
3077         var_name, eNoDynamicValues,
3078         StackFrame::eExpressionPathOptionCheckPtrVsMember | StackFrame::eExpressionPathOptionsAllowDirectIVarAccess,
3079         var_sp, error));
3080     if (!error.Success())
3081     {
3082         if (log)
3083             log->Printf("%s - error, couldn't find '%s' in frame", __FUNCTION__, var_name);
3084         return false;
3085     }
3086 
3087     // Find the uint32_t value for the variable
3088     bool success = false;
3089     val = value_sp->GetValueAsUnsigned(0, &success);
3090     if (!success)
3091     {
3092         if (log)
3093             log->Printf("%s - error, couldn't parse '%s' as an uint32_t.", __FUNCTION__, var_name);
3094         return false;
3095     }
3096 
3097     return true;
3098 }
3099 
3100 // Function attempts to find the current coordinate of a kernel invocation by investigating the
3101 // values of frame variables in the .expand function. These coordinates are returned via the coord
3102 // array reference parameter. Returns true if the coordinates could be found, and false otherwise.
3103 bool
3104 RenderScriptRuntime::GetKernelCoordinate(RSCoordinate &coord, Thread *thread_ptr)
3105 {
3106     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE));
3107 
3108     if (!thread_ptr)
3109     {
3110         if (log)
3111             log->Printf("%s - Error, No thread pointer", __FUNCTION__);
3112 
3113         return false;
3114     }
3115 
3116     // Walk the call stack looking for a function whose name has the suffix '.expand'
3117     // and contains the variables we're looking for.
3118     for (uint32_t i = 0; i < thread_ptr->GetStackFrameCount(); ++i)
3119     {
3120         if (!thread_ptr->SetSelectedFrameByIndex(i))
3121             continue;
3122 
3123         StackFrameSP frame_sp = thread_ptr->GetSelectedFrame();
3124         if (!frame_sp)
3125             continue;
3126 
3127         // Find the function name
3128         const SymbolContext sym_ctx = frame_sp->GetSymbolContext(false);
3129         const char *func_name_cstr = sym_ctx.GetFunctionName().AsCString();
3130         if (!func_name_cstr)
3131             continue;
3132 
3133         if (log)
3134             log->Printf("%s - Inspecting function '%s'", __FUNCTION__, func_name_cstr);
3135 
3136         // Check if function name has .expand suffix
3137         std::string func_name(func_name_cstr);
3138         const int length_difference = func_name.length() - RenderScriptRuntime::s_runtimeExpandSuffix.length();
3139         if (length_difference <= 0)
3140             continue;
3141 
3142         const int32_t has_expand_suffix = func_name.compare(length_difference,
3143                                                             RenderScriptRuntime::s_runtimeExpandSuffix.length(),
3144                                                             RenderScriptRuntime::s_runtimeExpandSuffix);
3145 
3146         if (has_expand_suffix != 0)
3147             continue;
3148 
3149         if (log)
3150             log->Printf("%s - Found .expand function '%s'", __FUNCTION__, func_name_cstr);
3151 
3152         // Get values for variables in .expand frame that tell us the current kernel invocation
3153         bool found_coord_variables = true;
3154         assert(RenderScriptRuntime::s_runtimeCoordVars.size() == coord.size());
3155 
3156         for (uint32_t i = 0; i < coord.size(); ++i)
3157         {
3158             uint64_t value = 0;
3159             if (!GetFrameVarAsUnsigned(frame_sp, RenderScriptRuntime::s_runtimeCoordVars[i], value))
3160             {
3161                 found_coord_variables = false;
3162                 break;
3163             }
3164             coord[i] = value;
3165         }
3166 
3167         if (found_coord_variables)
3168             return true;
3169     }
3170     return false;
3171 }
3172 
3173 // Callback when a kernel breakpoint hits and we're looking for a specific coordinate.
3174 // Baton parameter contains a pointer to the target coordinate we want to break on.
3175 // Function then checks the .expand frame for the current coordinate and breaks to user if it matches.
3176 // Parameter 'break_id' is the id of the Breakpoint which made the callback.
3177 // Parameter 'break_loc_id' is the id for the BreakpointLocation which was hit,
3178 // a single logical breakpoint can have multiple addresses.
3179 bool
3180 RenderScriptRuntime::KernelBreakpointHit(void *baton, StoppointCallbackContext *ctx, user_id_t break_id,
3181                                          user_id_t break_loc_id)
3182 {
3183     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
3184 
3185     assert(baton && "Error: null baton in conditional kernel breakpoint callback");
3186 
3187     // Coordinate we want to stop on
3188     const uint32_t *target_coord = static_cast<const uint32_t *>(baton);
3189 
3190     if (log)
3191         log->Printf("%s - Break ID %" PRIu64 ", (%" PRIu32 ", %" PRIu32 ", %" PRIu32 ")", __FUNCTION__, break_id,
3192                     target_coord[0], target_coord[1], target_coord[2]);
3193 
3194     // Select current thread
3195     ExecutionContext context(ctx->exe_ctx_ref);
3196     Thread *thread_ptr = context.GetThreadPtr();
3197     assert(thread_ptr && "Null thread pointer");
3198 
3199     // Find current kernel invocation from .expand frame variables
3200     RSCoordinate current_coord{}; // Zero initialise array
3201     if (!GetKernelCoordinate(current_coord, thread_ptr))
3202     {
3203         if (log)
3204             log->Printf("%s - Error, couldn't select .expand stack frame", __FUNCTION__);
3205         return false;
3206     }
3207 
3208     if (log)
3209         log->Printf("%s - (%" PRIu32 ",%" PRIu32 ",%" PRIu32 ")", __FUNCTION__, current_coord[0], current_coord[1],
3210                     current_coord[2]);
3211 
3212     // Check if the current kernel invocation coordinate matches our target coordinate
3213     if (current_coord[0] == target_coord[0] &&
3214         current_coord[1] == target_coord[1] &&
3215         current_coord[2] == target_coord[2])
3216     {
3217         if (log)
3218             log->Printf("%s, BREAKING (%" PRIu32 ",%" PRIu32 ",%" PRIu32 ")", __FUNCTION__, current_coord[0],
3219                         current_coord[1], current_coord[2]);
3220 
3221         BreakpointSP breakpoint_sp = context.GetTargetPtr()->GetBreakpointByID(break_id);
3222         assert(breakpoint_sp != nullptr && "Error: Couldn't find breakpoint matching break id for callback");
3223         breakpoint_sp->SetEnabled(false); // Optimise since conditional breakpoint should only be hit once.
3224         return true;
3225     }
3226 
3227     // No match on coordinate
3228     return false;
3229 }
3230 
3231 // Tries to set a breakpoint on the start of a kernel, resolved using the kernel name.
3232 // Argument 'coords', represents a three dimensional coordinate which can be used to specify
3233 // a single kernel instance to break on. If this is set then we add a callback to the breakpoint.
3234 void
3235 RenderScriptRuntime::PlaceBreakpointOnKernel(Stream &strm, const char *name, const std::array<int, 3> coords,
3236                                              Error &error, TargetSP target)
3237 {
3238     if (!name)
3239     {
3240         error.SetErrorString("invalid kernel name");
3241         return;
3242     }
3243 
3244     InitSearchFilter(target);
3245 
3246     ConstString kernel_name(name);
3247     BreakpointSP bp = CreateKernelBreakpoint(kernel_name);
3248 
3249     // We have a conditional breakpoint on a specific coordinate
3250     if (coords[0] != -1)
3251     {
3252         strm.Printf("Conditional kernel breakpoint on coordinate %" PRId32 ", %" PRId32 ", %" PRId32,
3253                     coords[0], coords[1], coords[2]);
3254         strm.EOL();
3255 
3256         // Allocate memory for the baton, and copy over coordinate
3257         uint32_t *baton = new uint32_t[coords.size()];
3258         baton[0] = coords[0]; baton[1] = coords[1]; baton[2] = coords[2];
3259 
3260         // Create a callback that will be invoked everytime the breakpoint is hit.
3261         // The baton object passed to the handler is the target coordinate we want to break on.
3262         bp->SetCallback(KernelBreakpointHit, baton, true);
3263 
3264         // Store a shared pointer to the baton, so the memory will eventually be cleaned up after destruction
3265         m_conditional_breaks[bp->GetID()] = std::shared_ptr<uint32_t>(baton);
3266     }
3267 
3268     if (bp)
3269         bp->GetDescription(&strm, lldb::eDescriptionLevelInitial, false);
3270 }
3271 
3272 void
3273 RenderScriptRuntime::DumpModules(Stream &strm) const
3274 {
3275     strm.Printf("RenderScript Modules:");
3276     strm.EOL();
3277     strm.IndentMore();
3278     for (const auto &module : m_rsmodules)
3279     {
3280         module->Dump(strm);
3281     }
3282     strm.IndentLess();
3283 }
3284 
3285 RenderScriptRuntime::ScriptDetails *
3286 RenderScriptRuntime::LookUpScript(addr_t address, bool create)
3287 {
3288     for (const auto &s : m_scripts)
3289     {
3290         if (s->script.isValid())
3291             if (*s->script == address)
3292                 return s.get();
3293     }
3294     if (create)
3295     {
3296         std::unique_ptr<ScriptDetails> s(new ScriptDetails);
3297         s->script = address;
3298         m_scripts.push_back(std::move(s));
3299         return m_scripts.back().get();
3300     }
3301     return nullptr;
3302 }
3303 
3304 RenderScriptRuntime::AllocationDetails *
3305 RenderScriptRuntime::LookUpAllocation(addr_t address, bool create)
3306 {
3307     for (const auto &a : m_allocations)
3308     {
3309         if (a->address.isValid())
3310             if (*a->address == address)
3311                 return a.get();
3312     }
3313     if (create)
3314     {
3315         std::unique_ptr<AllocationDetails> a(new AllocationDetails);
3316         a->address = address;
3317         m_allocations.push_back(std::move(a));
3318         return m_allocations.back().get();
3319     }
3320     return nullptr;
3321 }
3322 
3323 void
3324 RSModuleDescriptor::Dump(Stream &strm) const
3325 {
3326     strm.Indent();
3327     m_module->GetFileSpec().Dump(&strm);
3328     if (m_module->GetNumCompileUnits())
3329     {
3330         strm.Indent("Debug info loaded.");
3331     }
3332     else
3333     {
3334         strm.Indent("Debug info does not exist.");
3335     }
3336     strm.EOL();
3337     strm.IndentMore();
3338     strm.Indent();
3339     strm.Printf("Globals: %" PRIu64, static_cast<uint64_t>(m_globals.size()));
3340     strm.EOL();
3341     strm.IndentMore();
3342     for (const auto &global : m_globals)
3343     {
3344         global.Dump(strm);
3345     }
3346     strm.IndentLess();
3347     strm.Indent();
3348     strm.Printf("Kernels: %" PRIu64, static_cast<uint64_t>(m_kernels.size()));
3349     strm.EOL();
3350     strm.IndentMore();
3351     for (const auto &kernel : m_kernels)
3352     {
3353         kernel.Dump(strm);
3354     }
3355     strm.Printf("Pragmas: %" PRIu64, static_cast<uint64_t>(m_pragmas.size()));
3356     strm.EOL();
3357     strm.IndentMore();
3358     for (const auto &key_val : m_pragmas)
3359     {
3360         strm.Printf("%s: %s", key_val.first.c_str(), key_val.second.c_str());
3361         strm.EOL();
3362     }
3363     strm.IndentLess(4);
3364 }
3365 
3366 void
3367 RSGlobalDescriptor::Dump(Stream &strm) const
3368 {
3369     strm.Indent(m_name.AsCString());
3370     VariableList var_list;
3371     m_module->m_module->FindGlobalVariables(m_name, nullptr, true, 1U, var_list);
3372     if (var_list.GetSize() == 1)
3373     {
3374         auto var = var_list.GetVariableAtIndex(0);
3375         auto type = var->GetType();
3376         if (type)
3377         {
3378             strm.Printf(" - ");
3379             type->DumpTypeName(&strm);
3380         }
3381         else
3382         {
3383             strm.Printf(" - Unknown Type");
3384         }
3385     }
3386     else
3387     {
3388         strm.Printf(" - variable identified, but not found in binary");
3389         const Symbol *s = m_module->m_module->FindFirstSymbolWithNameAndType(m_name, eSymbolTypeData);
3390         if (s)
3391         {
3392             strm.Printf(" (symbol exists) ");
3393         }
3394     }
3395 
3396     strm.EOL();
3397 }
3398 
3399 void
3400 RSKernelDescriptor::Dump(Stream &strm) const
3401 {
3402     strm.Indent(m_name.AsCString());
3403     strm.EOL();
3404 }
3405 
3406 class CommandObjectRenderScriptRuntimeModuleDump : public CommandObjectParsed
3407 {
3408 public:
3409     CommandObjectRenderScriptRuntimeModuleDump(CommandInterpreter &interpreter)
3410         : CommandObjectParsed(interpreter, "renderscript module dump",
3411                               "Dumps renderscript specific information for all modules.", "renderscript module dump",
3412                               eCommandRequiresProcess | eCommandProcessMustBeLaunched)
3413     {
3414     }
3415 
3416     ~CommandObjectRenderScriptRuntimeModuleDump() override = default;
3417 
3418     bool
3419     DoExecute(Args &command, CommandReturnObject &result) override
3420     {
3421         RenderScriptRuntime *runtime =
3422             (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
3423         runtime->DumpModules(result.GetOutputStream());
3424         result.SetStatus(eReturnStatusSuccessFinishResult);
3425         return true;
3426     }
3427 };
3428 
3429 class CommandObjectRenderScriptRuntimeModule : public CommandObjectMultiword
3430 {
3431 public:
3432     CommandObjectRenderScriptRuntimeModule(CommandInterpreter &interpreter)
3433         : CommandObjectMultiword(interpreter, "renderscript module", "Commands that deal with renderscript modules.",
3434                                  nullptr)
3435     {
3436         LoadSubCommand("dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeModuleDump(interpreter)));
3437     }
3438 
3439     ~CommandObjectRenderScriptRuntimeModule() override = default;
3440 };
3441 
3442 class CommandObjectRenderScriptRuntimeKernelList : public CommandObjectParsed
3443 {
3444 public:
3445     CommandObjectRenderScriptRuntimeKernelList(CommandInterpreter &interpreter)
3446         : CommandObjectParsed(interpreter, "renderscript kernel list",
3447                               "Lists renderscript kernel names and associated script resources.",
3448                               "renderscript kernel list", eCommandRequiresProcess | eCommandProcessMustBeLaunched)
3449     {
3450     }
3451 
3452     ~CommandObjectRenderScriptRuntimeKernelList() override = default;
3453 
3454     bool
3455     DoExecute(Args &command, CommandReturnObject &result) override
3456     {
3457         RenderScriptRuntime *runtime =
3458             (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
3459         runtime->DumpKernels(result.GetOutputStream());
3460         result.SetStatus(eReturnStatusSuccessFinishResult);
3461         return true;
3462     }
3463 };
3464 
3465 class CommandObjectRenderScriptRuntimeKernelBreakpointSet : public CommandObjectParsed
3466 {
3467 public:
3468     CommandObjectRenderScriptRuntimeKernelBreakpointSet(CommandInterpreter &interpreter)
3469         : CommandObjectParsed(interpreter, "renderscript kernel breakpoint set",
3470                               "Sets a breakpoint on a renderscript kernel.",
3471                               "renderscript kernel breakpoint set <kernel_name> [-c x,y,z]",
3472                               eCommandRequiresProcess | eCommandProcessMustBeLaunched | eCommandProcessMustBePaused),
3473           m_options(interpreter)
3474     {
3475     }
3476 
3477     ~CommandObjectRenderScriptRuntimeKernelBreakpointSet() override = default;
3478 
3479     Options *
3480     GetOptions() override
3481     {
3482         return &m_options;
3483     }
3484 
3485     class CommandOptions : public Options
3486     {
3487     public:
3488         CommandOptions(CommandInterpreter &interpreter) : Options(interpreter) {}
3489 
3490         ~CommandOptions() override = default;
3491 
3492         Error
3493         SetOptionValue(uint32_t option_idx, const char *option_arg) override
3494         {
3495             Error error;
3496             const int short_option = m_getopt_table[option_idx].val;
3497 
3498             switch (short_option)
3499             {
3500                 case 'c':
3501                     if (!ParseCoordinate(option_arg))
3502                         error.SetErrorStringWithFormat("Couldn't parse coordinate '%s', should be in format 'x,y,z'.",
3503                                                        option_arg);
3504                     break;
3505                 default:
3506                     error.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
3507                     break;
3508             }
3509             return error;
3510         }
3511 
3512         // -c takes an argument of the form 'num[,num][,num]'.
3513         // Where 'id_cstr' is this argument with the whitespace trimmed.
3514         // Missing coordinates are defaulted to zero.
3515         bool
3516         ParseCoordinate(const char *id_cstr)
3517         {
3518             RegularExpression regex;
3519             RegularExpression::Match regex_match(3);
3520 
3521             bool matched = false;
3522             if (regex.Compile("^([0-9]+),([0-9]+),([0-9]+)$") && regex.Execute(id_cstr, &regex_match))
3523                 matched = true;
3524             else if (regex.Compile("^([0-9]+),([0-9]+)$") && regex.Execute(id_cstr, &regex_match))
3525                 matched = true;
3526             else if (regex.Compile("^([0-9]+)$") && regex.Execute(id_cstr, &regex_match))
3527                 matched = true;
3528             for (uint32_t i = 0; i < 3; i++)
3529             {
3530                 std::string group;
3531                 if (regex_match.GetMatchAtIndex(id_cstr, i + 1, group))
3532                     m_coord[i] = (uint32_t)strtoul(group.c_str(), nullptr, 0);
3533                 else
3534                     m_coord[i] = 0;
3535             }
3536             return matched;
3537         }
3538 
3539         void
3540         OptionParsingStarting() override
3541         {
3542             // -1 means the -c option hasn't been set
3543             m_coord[0] = -1;
3544             m_coord[1] = -1;
3545             m_coord[2] = -1;
3546         }
3547 
3548         const OptionDefinition *
3549         GetDefinitions() override
3550         {
3551             return g_option_table;
3552         }
3553 
3554         static OptionDefinition g_option_table[];
3555         std::array<int, 3> m_coord;
3556     };
3557 
3558     bool
3559     DoExecute(Args &command, CommandReturnObject &result) override
3560     {
3561         const size_t argc = command.GetArgumentCount();
3562         if (argc < 1)
3563         {
3564             result.AppendErrorWithFormat("'%s' takes 1 argument of kernel name, and an optional coordinate.",
3565                                          m_cmd_name.c_str());
3566             result.SetStatus(eReturnStatusFailed);
3567             return false;
3568         }
3569 
3570         RenderScriptRuntime *runtime =
3571             (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
3572 
3573         Error error;
3574         runtime->PlaceBreakpointOnKernel(result.GetOutputStream(), command.GetArgumentAtIndex(0), m_options.m_coord,
3575                                          error, m_exe_ctx.GetTargetSP());
3576 
3577         if (error.Success())
3578         {
3579             result.AppendMessage("Breakpoint(s) created");
3580             result.SetStatus(eReturnStatusSuccessFinishResult);
3581             return true;
3582         }
3583         result.SetStatus(eReturnStatusFailed);
3584         result.AppendErrorWithFormat("Error: %s", error.AsCString());
3585         return false;
3586     }
3587 
3588 private:
3589     CommandOptions m_options;
3590 };
3591 
3592 OptionDefinition CommandObjectRenderScriptRuntimeKernelBreakpointSet::CommandOptions::g_option_table[] = {
3593     {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeValue,
3594      "Set a breakpoint on a single invocation of the kernel with specified coordinate.\n"
3595      "Coordinate takes the form 'x[,y][,z] where x,y,z are positive integers representing kernel dimensions. "
3596      "Any unset dimensions will be defaulted to zero."},
3597     {0, false, nullptr, 0, 0, nullptr, nullptr, 0, eArgTypeNone, nullptr}};
3598 
3599 class CommandObjectRenderScriptRuntimeKernelBreakpointAll : public CommandObjectParsed
3600 {
3601 public:
3602     CommandObjectRenderScriptRuntimeKernelBreakpointAll(CommandInterpreter &interpreter)
3603         : CommandObjectParsed(
3604               interpreter, "renderscript kernel breakpoint all",
3605               "Automatically sets a breakpoint on all renderscript kernels that are or will be loaded.\n"
3606               "Disabling option means breakpoints will no longer be set on any kernels loaded in the future, "
3607               "but does not remove currently set breakpoints.",
3608               "renderscript kernel breakpoint all <enable/disable>",
3609               eCommandRequiresProcess | eCommandProcessMustBeLaunched | eCommandProcessMustBePaused)
3610     {
3611     }
3612 
3613     ~CommandObjectRenderScriptRuntimeKernelBreakpointAll() override = default;
3614 
3615     bool
3616     DoExecute(Args &command, CommandReturnObject &result) override
3617     {
3618         const size_t argc = command.GetArgumentCount();
3619         if (argc != 1)
3620         {
3621             result.AppendErrorWithFormat("'%s' takes 1 argument of 'enable' or 'disable'", m_cmd_name.c_str());
3622             result.SetStatus(eReturnStatusFailed);
3623             return false;
3624         }
3625 
3626         RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
3627             m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
3628 
3629         bool do_break = false;
3630         const char *argument = command.GetArgumentAtIndex(0);
3631         if (strcmp(argument, "enable") == 0)
3632         {
3633             do_break = true;
3634             result.AppendMessage("Breakpoints will be set on all kernels.");
3635         }
3636         else if (strcmp(argument, "disable") == 0)
3637         {
3638             do_break = false;
3639             result.AppendMessage("Breakpoints will not be set on any new kernels.");
3640         }
3641         else
3642         {
3643             result.AppendErrorWithFormat("Argument must be either 'enable' or 'disable'");
3644             result.SetStatus(eReturnStatusFailed);
3645             return false;
3646         }
3647 
3648         runtime->SetBreakAllKernels(do_break, m_exe_ctx.GetTargetSP());
3649 
3650         result.SetStatus(eReturnStatusSuccessFinishResult);
3651         return true;
3652     }
3653 };
3654 
3655 class CommandObjectRenderScriptRuntimeKernelCoordinate : public CommandObjectParsed
3656 {
3657 public:
3658     CommandObjectRenderScriptRuntimeKernelCoordinate(CommandInterpreter &interpreter)
3659         : CommandObjectParsed(interpreter, "renderscript kernel coordinate",
3660                               "Shows the (x,y,z) coordinate of the current kernel invocation.",
3661                               "renderscript kernel coordinate",
3662                               eCommandRequiresProcess | eCommandProcessMustBeLaunched | eCommandProcessMustBePaused)
3663     {
3664     }
3665 
3666     ~CommandObjectRenderScriptRuntimeKernelCoordinate() override = default;
3667 
3668     bool
3669     DoExecute(Args &command, CommandReturnObject &result) override
3670     {
3671         RSCoordinate coord{}; // Zero initialize array
3672         bool success = RenderScriptRuntime::GetKernelCoordinate(coord, m_exe_ctx.GetThreadPtr());
3673         Stream &stream = result.GetOutputStream();
3674 
3675         if (success)
3676         {
3677             stream.Printf("Coordinate: (%" PRIu32 ", %" PRIu32 ", %" PRIu32 ")", coord[0], coord[1], coord[2]);
3678             stream.EOL();
3679             result.SetStatus(eReturnStatusSuccessFinishResult);
3680         }
3681         else
3682         {
3683             stream.Printf("Error: Coordinate could not be found.");
3684             stream.EOL();
3685             result.SetStatus(eReturnStatusFailed);
3686         }
3687         return true;
3688     }
3689 };
3690 
3691 class CommandObjectRenderScriptRuntimeKernelBreakpoint : public CommandObjectMultiword
3692 {
3693 public:
3694     CommandObjectRenderScriptRuntimeKernelBreakpoint(CommandInterpreter &interpreter)
3695         : CommandObjectMultiword(interpreter, "renderscript kernel",
3696                                  "Commands that generate breakpoints on renderscript kernels.", nullptr)
3697     {
3698         LoadSubCommand("set", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointSet(interpreter)));
3699         LoadSubCommand("all", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointAll(interpreter)));
3700     }
3701 
3702     ~CommandObjectRenderScriptRuntimeKernelBreakpoint() override = default;
3703 };
3704 
3705 class CommandObjectRenderScriptRuntimeKernel : public CommandObjectMultiword
3706 {
3707 public:
3708     CommandObjectRenderScriptRuntimeKernel(CommandInterpreter &interpreter)
3709         : CommandObjectMultiword(interpreter, "renderscript kernel", "Commands that deal with renderscript kernels.",
3710                                  nullptr)
3711     {
3712         LoadSubCommand("list", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelList(interpreter)));
3713         LoadSubCommand("coordinate",
3714                        CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelCoordinate(interpreter)));
3715         LoadSubCommand("breakpoint",
3716                        CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpoint(interpreter)));
3717     }
3718 
3719     ~CommandObjectRenderScriptRuntimeKernel() override = default;
3720 };
3721 
3722 class CommandObjectRenderScriptRuntimeContextDump : public CommandObjectParsed
3723 {
3724 public:
3725     CommandObjectRenderScriptRuntimeContextDump(CommandInterpreter &interpreter)
3726         : CommandObjectParsed(interpreter, "renderscript context dump", "Dumps renderscript context information.",
3727                               "renderscript context dump", eCommandRequiresProcess | eCommandProcessMustBeLaunched)
3728     {
3729     }
3730 
3731     ~CommandObjectRenderScriptRuntimeContextDump() override = default;
3732 
3733     bool
3734     DoExecute(Args &command, CommandReturnObject &result) override
3735     {
3736         RenderScriptRuntime *runtime =
3737             (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
3738         runtime->DumpContexts(result.GetOutputStream());
3739         result.SetStatus(eReturnStatusSuccessFinishResult);
3740         return true;
3741     }
3742 };
3743 
3744 class CommandObjectRenderScriptRuntimeContext : public CommandObjectMultiword
3745 {
3746 public:
3747     CommandObjectRenderScriptRuntimeContext(CommandInterpreter &interpreter)
3748         : CommandObjectMultiword(interpreter, "renderscript context", "Commands that deal with renderscript contexts.",
3749                                  nullptr)
3750     {
3751         LoadSubCommand("dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeContextDump(interpreter)));
3752     }
3753 
3754     ~CommandObjectRenderScriptRuntimeContext() override = default;
3755 };
3756 
3757 class CommandObjectRenderScriptRuntimeAllocationDump : public CommandObjectParsed
3758 {
3759 public:
3760     CommandObjectRenderScriptRuntimeAllocationDump(CommandInterpreter &interpreter)
3761         : CommandObjectParsed(interpreter, "renderscript allocation dump",
3762                               "Displays the contents of a particular allocation", "renderscript allocation dump <ID>",
3763                               eCommandRequiresProcess | eCommandProcessMustBeLaunched),
3764           m_options(interpreter)
3765     {
3766     }
3767 
3768     ~CommandObjectRenderScriptRuntimeAllocationDump() override = default;
3769 
3770     Options *
3771     GetOptions() override
3772     {
3773         return &m_options;
3774     }
3775 
3776     class CommandOptions : public Options
3777     {
3778     public:
3779         CommandOptions(CommandInterpreter &interpreter) : Options(interpreter) {}
3780 
3781         ~CommandOptions() override = default;
3782 
3783         Error
3784         SetOptionValue(uint32_t option_idx, const char *option_arg) override
3785         {
3786             Error error;
3787             const int short_option = m_getopt_table[option_idx].val;
3788 
3789             switch (short_option)
3790             {
3791                 case 'f':
3792                     m_outfile.SetFile(option_arg, true);
3793                     if (m_outfile.Exists())
3794                     {
3795                         m_outfile.Clear();
3796                         error.SetErrorStringWithFormat("file already exists: '%s'", option_arg);
3797                     }
3798                     break;
3799                 default:
3800                     error.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
3801                     break;
3802             }
3803             return error;
3804         }
3805 
3806         void
3807         OptionParsingStarting() override
3808         {
3809             m_outfile.Clear();
3810         }
3811 
3812         const OptionDefinition *
3813         GetDefinitions() override
3814         {
3815             return g_option_table;
3816         }
3817 
3818         static OptionDefinition g_option_table[];
3819         FileSpec m_outfile;
3820     };
3821 
3822     bool
3823     DoExecute(Args &command, CommandReturnObject &result) override
3824     {
3825         const size_t argc = command.GetArgumentCount();
3826         if (argc < 1)
3827         {
3828             result.AppendErrorWithFormat("'%s' takes 1 argument, an allocation ID. As well as an optional -f argument",
3829                                          m_cmd_name.c_str());
3830             result.SetStatus(eReturnStatusFailed);
3831             return false;
3832         }
3833 
3834         RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
3835             m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
3836 
3837         const char *id_cstr = command.GetArgumentAtIndex(0);
3838         bool convert_complete = false;
3839         const uint32_t id = StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete);
3840         if (!convert_complete)
3841         {
3842             result.AppendErrorWithFormat("invalid allocation id argument '%s'", id_cstr);
3843             result.SetStatus(eReturnStatusFailed);
3844             return false;
3845         }
3846 
3847         Stream *output_strm = nullptr;
3848         StreamFile outfile_stream;
3849         const FileSpec &outfile_spec = m_options.m_outfile; // Dump allocation to file instead
3850         if (outfile_spec)
3851         {
3852             // Open output file
3853             char path[256];
3854             outfile_spec.GetPath(path, sizeof(path));
3855             if (outfile_stream.GetFile().Open(path, File::eOpenOptionWrite | File::eOpenOptionCanCreate).Success())
3856             {
3857                 output_strm = &outfile_stream;
3858                 result.GetOutputStream().Printf("Results written to '%s'", path);
3859                 result.GetOutputStream().EOL();
3860             }
3861             else
3862             {
3863                 result.AppendErrorWithFormat("Couldn't open file '%s'", path);
3864                 result.SetStatus(eReturnStatusFailed);
3865                 return false;
3866             }
3867         }
3868         else
3869             output_strm = &result.GetOutputStream();
3870 
3871         assert(output_strm != nullptr);
3872         bool success = runtime->DumpAllocation(*output_strm, m_exe_ctx.GetFramePtr(), id);
3873 
3874         if (success)
3875             result.SetStatus(eReturnStatusSuccessFinishResult);
3876         else
3877             result.SetStatus(eReturnStatusFailed);
3878 
3879         return true;
3880     }
3881 
3882 private:
3883     CommandOptions m_options;
3884 };
3885 
3886 OptionDefinition CommandObjectRenderScriptRuntimeAllocationDump::CommandOptions::g_option_table[] = {
3887     {LLDB_OPT_SET_1, false, "file", 'f', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeFilename,
3888      "Print results to specified file instead of command line."},
3889     {0, false, nullptr, 0, 0, nullptr, nullptr, 0, eArgTypeNone, nullptr}};
3890 
3891 class CommandObjectRenderScriptRuntimeAllocationList : public CommandObjectParsed
3892 {
3893 public:
3894     CommandObjectRenderScriptRuntimeAllocationList(CommandInterpreter &interpreter)
3895         : CommandObjectParsed(interpreter, "renderscript allocation list",
3896                               "List renderscript allocations and their information.", "renderscript allocation list",
3897                               eCommandRequiresProcess | eCommandProcessMustBeLaunched),
3898           m_options(interpreter)
3899     {
3900     }
3901 
3902     ~CommandObjectRenderScriptRuntimeAllocationList() override = default;
3903 
3904     Options *
3905     GetOptions() override
3906     {
3907         return &m_options;
3908     }
3909 
3910     class CommandOptions : public Options
3911     {
3912     public:
3913         CommandOptions(CommandInterpreter &interpreter) : Options(interpreter), m_id(0) {}
3914 
3915         ~CommandOptions() override = default;
3916 
3917         Error
3918         SetOptionValue(uint32_t option_idx, const char *option_arg) override
3919         {
3920             Error error;
3921             const int short_option = m_getopt_table[option_idx].val;
3922 
3923             switch (short_option)
3924             {
3925                 case 'i':
3926                     bool success;
3927                     m_id = StringConvert::ToUInt32(option_arg, 0, 0, &success);
3928                     if (!success)
3929                         error.SetErrorStringWithFormat("invalid integer value for option '%c'", short_option);
3930                     break;
3931                 default:
3932                     error.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
3933                     break;
3934             }
3935             return error;
3936         }
3937 
3938         void
3939         OptionParsingStarting() override
3940         {
3941             m_id = 0;
3942         }
3943 
3944         const OptionDefinition *
3945         GetDefinitions() override
3946         {
3947             return g_option_table;
3948         }
3949 
3950         static OptionDefinition g_option_table[];
3951         uint32_t m_id;
3952     };
3953 
3954     bool
3955     DoExecute(Args &command, CommandReturnObject &result) override
3956     {
3957         RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
3958             m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
3959         runtime->ListAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr(), m_options.m_id);
3960         result.SetStatus(eReturnStatusSuccessFinishResult);
3961         return true;
3962     }
3963 
3964 private:
3965     CommandOptions m_options;
3966 };
3967 
3968 OptionDefinition CommandObjectRenderScriptRuntimeAllocationList::CommandOptions::g_option_table[] = {
3969     {LLDB_OPT_SET_1, false, "id", 'i', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeIndex,
3970      "Only show details of a single allocation with specified id."},
3971     {0, false, nullptr, 0, 0, nullptr, nullptr, 0, eArgTypeNone, nullptr}};
3972 
3973 class CommandObjectRenderScriptRuntimeAllocationLoad : public CommandObjectParsed
3974 {
3975 public:
3976     CommandObjectRenderScriptRuntimeAllocationLoad(CommandInterpreter &interpreter)
3977         : CommandObjectParsed(
3978               interpreter, "renderscript allocation load", "Loads renderscript allocation contents from a file.",
3979               "renderscript allocation load <ID> <filename>", eCommandRequiresProcess | eCommandProcessMustBeLaunched)
3980     {
3981     }
3982 
3983     ~CommandObjectRenderScriptRuntimeAllocationLoad() override = default;
3984 
3985     bool
3986     DoExecute(Args &command, CommandReturnObject &result) override
3987     {
3988         const size_t argc = command.GetArgumentCount();
3989         if (argc != 2)
3990         {
3991             result.AppendErrorWithFormat("'%s' takes 2 arguments, an allocation ID and filename to read from.",
3992                                          m_cmd_name.c_str());
3993             result.SetStatus(eReturnStatusFailed);
3994             return false;
3995         }
3996 
3997         RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
3998             m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
3999 
4000         const char *id_cstr = command.GetArgumentAtIndex(0);
4001         bool convert_complete = false;
4002         const uint32_t id = StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete);
4003         if (!convert_complete)
4004         {
4005             result.AppendErrorWithFormat("invalid allocation id argument '%s'", id_cstr);
4006             result.SetStatus(eReturnStatusFailed);
4007             return false;
4008         }
4009 
4010         const char *filename = command.GetArgumentAtIndex(1);
4011         bool success = runtime->LoadAllocation(result.GetOutputStream(), id, filename, m_exe_ctx.GetFramePtr());
4012 
4013         if (success)
4014             result.SetStatus(eReturnStatusSuccessFinishResult);
4015         else
4016             result.SetStatus(eReturnStatusFailed);
4017 
4018         return true;
4019     }
4020 };
4021 
4022 class CommandObjectRenderScriptRuntimeAllocationSave : public CommandObjectParsed
4023 {
4024 public:
4025     CommandObjectRenderScriptRuntimeAllocationSave(CommandInterpreter &interpreter)
4026         : CommandObjectParsed(
4027               interpreter, "renderscript allocation save", "Write renderscript allocation contents to a file.",
4028               "renderscript allocation save <ID> <filename>", eCommandRequiresProcess | eCommandProcessMustBeLaunched)
4029     {
4030     }
4031 
4032     ~CommandObjectRenderScriptRuntimeAllocationSave() override = default;
4033 
4034     bool
4035     DoExecute(Args &command, CommandReturnObject &result) override
4036     {
4037         const size_t argc = command.GetArgumentCount();
4038         if (argc != 2)
4039         {
4040             result.AppendErrorWithFormat("'%s' takes 2 arguments, an allocation ID and filename to read from.",
4041                                          m_cmd_name.c_str());
4042             result.SetStatus(eReturnStatusFailed);
4043             return false;
4044         }
4045 
4046         RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4047             m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
4048 
4049         const char *id_cstr = command.GetArgumentAtIndex(0);
4050         bool convert_complete = false;
4051         const uint32_t id = StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete);
4052         if (!convert_complete)
4053         {
4054             result.AppendErrorWithFormat("invalid allocation id argument '%s'", id_cstr);
4055             result.SetStatus(eReturnStatusFailed);
4056             return false;
4057         }
4058 
4059         const char *filename = command.GetArgumentAtIndex(1);
4060         bool success = runtime->SaveAllocation(result.GetOutputStream(), id, filename, m_exe_ctx.GetFramePtr());
4061 
4062         if (success)
4063             result.SetStatus(eReturnStatusSuccessFinishResult);
4064         else
4065             result.SetStatus(eReturnStatusFailed);
4066 
4067         return true;
4068     }
4069 };
4070 
4071 class CommandObjectRenderScriptRuntimeAllocationRefresh : public CommandObjectParsed
4072 {
4073 public:
4074     CommandObjectRenderScriptRuntimeAllocationRefresh(CommandInterpreter &interpreter)
4075         : CommandObjectParsed(interpreter, "renderscript allocation refresh",
4076                               "Recomputes the details of all allocations.", "renderscript allocation refresh",
4077                               eCommandRequiresProcess | eCommandProcessMustBeLaunched)
4078     {
4079     }
4080 
4081     ~CommandObjectRenderScriptRuntimeAllocationRefresh() override = default;
4082 
4083     bool
4084     DoExecute(Args &command, CommandReturnObject &result) override
4085     {
4086         RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4087             m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
4088 
4089         bool success = runtime->RecomputeAllAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr());
4090 
4091         if (success)
4092         {
4093             result.SetStatus(eReturnStatusSuccessFinishResult);
4094             return true;
4095         }
4096         else
4097         {
4098             result.SetStatus(eReturnStatusFailed);
4099             return false;
4100         }
4101     }
4102 };
4103 
4104 class CommandObjectRenderScriptRuntimeAllocation : public CommandObjectMultiword
4105 {
4106 public:
4107     CommandObjectRenderScriptRuntimeAllocation(CommandInterpreter &interpreter)
4108         : CommandObjectMultiword(interpreter, "renderscript allocation",
4109                                  "Commands that deal with renderscript allocations.", nullptr)
4110     {
4111         LoadSubCommand("list", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationList(interpreter)));
4112         LoadSubCommand("dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationDump(interpreter)));
4113         LoadSubCommand("save", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationSave(interpreter)));
4114         LoadSubCommand("load", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationLoad(interpreter)));
4115         LoadSubCommand("refresh", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationRefresh(interpreter)));
4116     }
4117 
4118     ~CommandObjectRenderScriptRuntimeAllocation() override = default;
4119 };
4120 
4121 class CommandObjectRenderScriptRuntimeStatus : public CommandObjectParsed
4122 {
4123 public:
4124     CommandObjectRenderScriptRuntimeStatus(CommandInterpreter &interpreter)
4125         : CommandObjectParsed(interpreter, "renderscript status", "Displays current renderscript runtime status.",
4126                               "renderscript status", eCommandRequiresProcess | eCommandProcessMustBeLaunched)
4127     {
4128     }
4129 
4130     ~CommandObjectRenderScriptRuntimeStatus() override = default;
4131 
4132     bool
4133     DoExecute(Args &command, CommandReturnObject &result) override
4134     {
4135         RenderScriptRuntime *runtime =
4136             (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
4137         runtime->Status(result.GetOutputStream());
4138         result.SetStatus(eReturnStatusSuccessFinishResult);
4139         return true;
4140     }
4141 };
4142 
4143 class CommandObjectRenderScriptRuntime : public CommandObjectMultiword
4144 {
4145 public:
4146     CommandObjectRenderScriptRuntime(CommandInterpreter &interpreter)
4147         : CommandObjectMultiword(interpreter, "renderscript", "A set of commands for operating on renderscript.",
4148                                  "renderscript <subcommand> [<subcommand-options>]")
4149     {
4150         LoadSubCommand("module", CommandObjectSP(new CommandObjectRenderScriptRuntimeModule(interpreter)));
4151         LoadSubCommand("status", CommandObjectSP(new CommandObjectRenderScriptRuntimeStatus(interpreter)));
4152         LoadSubCommand("kernel", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernel(interpreter)));
4153         LoadSubCommand("context", CommandObjectSP(new CommandObjectRenderScriptRuntimeContext(interpreter)));
4154         LoadSubCommand("allocation", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocation(interpreter)));
4155     }
4156 
4157     ~CommandObjectRenderScriptRuntime() override = default;
4158 };
4159 
4160 void
4161 RenderScriptRuntime::Initiate()
4162 {
4163     assert(!m_initiated);
4164 }
4165 
4166 RenderScriptRuntime::RenderScriptRuntime(Process *process)
4167     : lldb_private::CPPLanguageRuntime(process),
4168       m_initiated(false),
4169       m_debuggerPresentFlagged(false),
4170       m_breakAllKernels(false)
4171 {
4172     ModulesDidLoad(process->GetTarget().GetImages());
4173 }
4174 
4175 lldb::CommandObjectSP
4176 RenderScriptRuntime::GetCommandObject(lldb_private::CommandInterpreter &interpreter)
4177 {
4178     return CommandObjectSP(new CommandObjectRenderScriptRuntime(interpreter));
4179 }
4180 
4181 RenderScriptRuntime::~RenderScriptRuntime() = default;
4182