1 //===-- RenderScriptRuntime.cpp ---------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 // C Includes
11 // C++ Includes
12 // Other libraries and framework includes
13 // Project includes
14 #include "RenderScriptRuntime.h"
15 
16 #include "lldb/Breakpoint/StoppointCallbackContext.h"
17 #include "lldb/Core/ConstString.h"
18 #include "lldb/Core/Debugger.h"
19 #include "lldb/Core/Error.h"
20 #include "lldb/Core/Log.h"
21 #include "lldb/Core/PluginManager.h"
22 #include "lldb/Core/RegularExpression.h"
23 #include "lldb/Core/ValueObjectVariable.h"
24 #include "lldb/DataFormatters/DumpValueObjectOptions.h"
25 #include "lldb/Expression/UserExpression.h"
26 #include "lldb/Host/StringConvert.h"
27 #include "lldb/Interpreter/Args.h"
28 #include "lldb/Interpreter/CommandInterpreter.h"
29 #include "lldb/Interpreter/CommandObjectMultiword.h"
30 #include "lldb/Interpreter/CommandReturnObject.h"
31 #include "lldb/Interpreter/Options.h"
32 #include "lldb/Symbol/Symbol.h"
33 #include "lldb/Symbol/Type.h"
34 #include "lldb/Symbol/VariableList.h"
35 #include "lldb/Target/Process.h"
36 #include "lldb/Target/RegisterContext.h"
37 #include "lldb/Target/Target.h"
38 #include "lldb/Target/Thread.h"
39 
40 using namespace lldb;
41 using namespace lldb_private;
42 using namespace lldb_renderscript;
43 
44 namespace
45 {
46 
47 // The empirical_type adds a basic level of validation to arbitrary data
48 // allowing us to track if data has been discovered and stored or not.
49 // An empirical_type will be marked as valid only if it has been explicitly assigned to.
50 template <typename type_t> class empirical_type
51 {
52 public:
53     // Ctor. Contents is invalid when constructed.
54     empirical_type() : valid(false) {}
55 
56     // Return true and copy contents to out if valid, else return false.
57     bool
58     get(type_t &out) const
59     {
60         if (valid)
61             out = data;
62         return valid;
63     }
64 
65     // Return a pointer to the contents or nullptr if it was not valid.
66     const type_t *
67     get() const
68     {
69         return valid ? &data : nullptr;
70     }
71 
72     // Assign data explicitly.
73     void
74     set(const type_t in)
75     {
76         data = in;
77         valid = true;
78     }
79 
80     // Mark contents as invalid.
81     void
82     invalidate()
83     {
84         valid = false;
85     }
86 
87     // Returns true if this type contains valid data.
88     bool
89     isValid() const
90     {
91         return valid;
92     }
93 
94     // Assignment operator.
95     empirical_type<type_t> &
96     operator=(const type_t in)
97     {
98         set(in);
99         return *this;
100     }
101 
102     // Dereference operator returns contents.
103     // Warning: Will assert if not valid so use only when you know data is valid.
104     const type_t &operator*() const
105     {
106         assert(valid);
107         return data;
108     }
109 
110 protected:
111     bool valid;
112     type_t data;
113 };
114 
115 // ArgItem is used by the GetArgs() function when reading function arguments from the target.
116 struct ArgItem
117 {
118     enum
119     {
120         ePointer,
121         eInt32,
122         eInt64,
123         eLong,
124         eBool
125     } type;
126 
127     uint64_t value;
128 
129     explicit operator uint64_t() const { return value; }
130 };
131 
132 // Context structure to be passed into GetArgsXXX(), argument reading functions below.
133 struct GetArgsCtx
134 {
135     RegisterContext *reg_ctx;
136     Process *process;
137 };
138 
139 bool
140 GetArgsX86(const GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args)
141 {
142     Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
143 
144     // get the current stack pointer
145     uint64_t sp = ctx.reg_ctx->GetSP();
146 
147     for (size_t i = 0; i < num_args; ++i)
148     {
149         ArgItem &arg = arg_list[i];
150         // advance up the stack by one argument
151         sp += sizeof(uint32_t);
152         // get the argument type size
153         size_t arg_size = sizeof(uint32_t);
154         // read the argument from memory
155         arg.value = 0;
156         Error error;
157         size_t read = ctx.process->ReadMemory(sp, &arg.value, sizeof(uint32_t), error);
158         if (read != arg_size || !error.Success())
159         {
160             if (log)
161                 log->Printf("%s - error reading argument: %" PRIu64 " '%s'", __FUNCTION__, uint64_t(i),
162                             error.AsCString());
163             return false;
164         }
165     }
166     return true;
167 }
168 
169 bool
170 GetArgsX86_64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args)
171 {
172     Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
173 
174     // number of arguments passed in registers
175     static const uint32_t c_args_in_reg = 6;
176     // register passing order
177     static const std::array<const char *, c_args_in_reg> c_reg_names{{"rdi", "rsi", "rdx", "rcx", "r8", "r9"}};
178     // argument type to size mapping
179     static const std::array<size_t, 5> arg_size{{
180         8, // ePointer,
181         4, // eInt32,
182         8, // eInt64,
183         8, // eLong,
184         4, // eBool,
185     }};
186 
187     // get the current stack pointer
188     uint64_t sp = ctx.reg_ctx->GetSP();
189     // step over the return address
190     sp += sizeof(uint64_t);
191 
192     // check the stack alignment was correct (16 byte aligned)
193     if ((sp & 0xf) != 0x0)
194     {
195         if (log)
196             log->Printf("%s - stack misaligned", __FUNCTION__);
197         return false;
198     }
199 
200     // find the start of arguments on the stack
201     uint64_t sp_offset = 0;
202     for (uint32_t i = c_args_in_reg; i < num_args; ++i)
203     {
204         sp_offset += arg_size[arg_list[i].type];
205     }
206     // round up to multiple of 16
207     sp_offset = (sp_offset + 0xf) & 0xf;
208     sp += sp_offset;
209 
210     for (size_t i = 0; i < num_args; ++i)
211     {
212         bool success = false;
213         ArgItem &arg = arg_list[i];
214         // arguments passed in registers
215         if (i < c_args_in_reg)
216         {
217             const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoByName(c_reg_names[i]);
218             RegisterValue rVal;
219             if (ctx.reg_ctx->ReadRegister(rArg, rVal))
220                 arg.value = rVal.GetAsUInt64(0, &success);
221         }
222         // arguments passed on the stack
223         else
224         {
225             // get the argument type size
226             const size_t size = arg_size[arg_list[i].type];
227             // read the argument from memory
228             arg.value = 0;
229             // note: due to little endian layout reading 4 or 8 bytes will give the correct value.
230             Error error;
231             size_t read = ctx.process->ReadMemory(sp, &arg.value, size, error);
232             success = (error.Success() && read==size);
233             // advance past this argument
234             sp -= size;
235         }
236         // fail if we couldn't read this argument
237         if (!success)
238         {
239             if (log)
240                 log->Printf("%s - error reading argument: %" PRIu64, __FUNCTION__, uint64_t(i));
241             return false;
242         }
243     }
244     return true;
245 }
246 
247 bool
248 GetArgsArm(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args)
249 {
250     // number of arguments passed in registers
251     static const uint32_t c_args_in_reg = 4;
252 
253     Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
254 
255     // get the current stack pointer
256     uint64_t sp = ctx.reg_ctx->GetSP();
257 
258     for (size_t i = 0; i < num_args; ++i)
259     {
260         bool success = false;
261         ArgItem &arg = arg_list[i];
262         // arguments passed in registers
263         if (i < c_args_in_reg)
264         {
265             const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoAtIndex(i);
266             RegisterValue rVal;
267             if (ctx.reg_ctx->ReadRegister(rArg, rVal))
268                 arg.value = rVal.GetAsUInt32(0, &success);
269         }
270         // arguments passed on the stack
271         else
272         {
273             // get the argument type size
274             const size_t arg_size = sizeof(uint32_t);
275             // clear all 64bits
276             arg.value = 0;
277             // read this argument from memory
278             Error error;
279             size_t bytes_read = ctx.process->ReadMemory(sp, &arg.value, arg_size, error);
280             success = (error.Success() && bytes_read == arg_size);
281             // advance the stack pointer
282             sp += sizeof(uint32_t);
283         }
284         // fail if we couldn't read this argument
285         if (!success)
286         {
287             if (log)
288                 log->Printf("%s - error reading argument: %" PRIu64, __FUNCTION__, uint64_t(i));
289             return false;
290         }
291     }
292     return true;
293 }
294 
295 bool
296 GetArgsAarch64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args)
297 {
298     // number of arguments passed in registers
299     static const uint32_t c_args_in_reg = 8;
300 
301     Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
302 
303     for (size_t i = 0; i < num_args; ++i)
304     {
305         bool success = false;
306         ArgItem &arg = arg_list[i];
307         // arguments passed in registers
308         if (i < c_args_in_reg)
309         {
310             const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoAtIndex(i);
311             RegisterValue rVal;
312             if (ctx.reg_ctx->ReadRegister(rArg, rVal))
313                 arg.value = rVal.GetAsUInt64(0, &success);
314         }
315         // arguments passed on the stack
316         else
317         {
318             if (log)
319                 log->Printf("%s - reading arguments spilled to stack not implemented", __FUNCTION__);
320         }
321         // fail if we couldn't read this argument
322         if (!success)
323         {
324             if (log)
325                 log->Printf("%s - error reading argument: %" PRIu64, __FUNCTION__,
326                             uint64_t(i));
327             return false;
328         }
329     }
330     return true;
331 }
332 
333 bool
334 GetArgsMipsel(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args)
335 {
336     // number of arguments passed in registers
337     static const uint32_t c_args_in_reg = 4;
338     // register file offset to first argument
339     static const uint32_t c_reg_offset = 4;
340 
341     Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
342 
343     for (size_t i = 0; i < num_args; ++i)
344     {
345         bool success = false;
346         ArgItem &arg = arg_list[i];
347         // arguments passed in registers
348         if (i < c_args_in_reg)
349         {
350             const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoAtIndex(i + c_reg_offset);
351             RegisterValue rVal;
352             if (ctx.reg_ctx->ReadRegister(rArg, rVal))
353                 arg.value = rVal.GetAsUInt64(0, &success);
354         }
355         // arguments passed on the stack
356         else
357         {
358             if (log)
359                 log->Printf("%s - reading arguments spilled to stack not implemented.", __FUNCTION__);
360         }
361         // fail if we couldn't read this argument
362         if (!success)
363         {
364             if (log)
365                 log->Printf("%s - error reading argument: %" PRIu64, __FUNCTION__, uint64_t(i));
366             return false;
367         }
368     }
369     return true;
370 }
371 
372 bool
373 GetArgsMips64el(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args)
374 {
375     // number of arguments passed in registers
376     static const uint32_t c_args_in_reg = 8;
377     // register file offset to first argument
378     static const uint32_t c_reg_offset = 4;
379 
380     Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
381 
382     // get the current stack pointer
383     uint64_t sp = ctx.reg_ctx->GetSP();
384 
385     for (size_t i = 0; i < num_args; ++i)
386     {
387         bool success = false;
388         ArgItem &arg = arg_list[i];
389         // arguments passed in registers
390         if (i < c_args_in_reg)
391         {
392             const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoAtIndex(i + c_reg_offset);
393             RegisterValue rVal;
394             if (ctx.reg_ctx->ReadRegister(rArg, rVal))
395                 arg.value = rVal.GetAsUInt64(0, &success);
396         }
397         // arguments passed on the stack
398         else
399         {
400             // get the argument type size
401             const size_t arg_size = sizeof(uint64_t);
402             // clear all 64bits
403             arg.value = 0;
404             // read this argument from memory
405             Error error;
406             size_t bytes_read = ctx.process->ReadMemory(sp, &arg.value, arg_size, error);
407             success = (error.Success() && bytes_read == arg_size);
408             // advance the stack pointer
409             sp += arg_size;
410         }
411         // fail if we couldn't read this argument
412         if (!success)
413         {
414             if (log)
415                 log->Printf("%s - error reading argument: %" PRIu64, __FUNCTION__, uint64_t(i));
416             return false;
417         }
418     }
419     return true;
420 }
421 
422 bool
423 GetArgs(ExecutionContext &context, ArgItem *arg_list, size_t num_args)
424 {
425     Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
426 
427     // verify that we have a target
428     if (!context.GetTargetPtr())
429     {
430         if (log)
431             log->Printf("%s - invalid target", __FUNCTION__);
432         return false;
433     }
434 
435     GetArgsCtx ctx = {context.GetRegisterContext(), context.GetProcessPtr()};
436     assert(ctx.reg_ctx && ctx.process);
437 
438     // dispatch based on architecture
439     switch (context.GetTargetPtr()->GetArchitecture().GetMachine())
440     {
441         case llvm::Triple::ArchType::x86:
442             return GetArgsX86(ctx, arg_list, num_args);
443 
444         case llvm::Triple::ArchType::x86_64:
445             return GetArgsX86_64(ctx, arg_list, num_args);
446 
447         case llvm::Triple::ArchType::arm:
448             return GetArgsArm(ctx, arg_list, num_args);
449 
450         case llvm::Triple::ArchType::aarch64:
451             return GetArgsAarch64(ctx, arg_list, num_args);
452 
453         case llvm::Triple::ArchType::mipsel:
454             return GetArgsMipsel(ctx, arg_list, num_args);
455 
456         case llvm::Triple::ArchType::mips64el:
457             return GetArgsMips64el(ctx, arg_list, num_args);
458 
459         default:
460             // unsupported architecture
461             if (log)
462             {
463                 log->Printf("%s - architecture not supported: '%s'", __FUNCTION__,
464                             context.GetTargetRef().GetArchitecture().GetArchitectureName());
465             }
466             return false;
467     }
468 }
469 } // anonymous namespace
470 
471 // The ScriptDetails class collects data associated with a single script instance.
472 struct RenderScriptRuntime::ScriptDetails
473 {
474     ~ScriptDetails() = default;
475 
476     enum ScriptType
477     {
478         eScript,
479         eScriptC
480     };
481 
482     // The derived type of the script.
483     empirical_type<ScriptType> type;
484     // The name of the original source file.
485     empirical_type<std::string> resName;
486     // Path to script .so file on the device.
487     empirical_type<std::string> scriptDyLib;
488     // Directory where kernel objects are cached on device.
489     empirical_type<std::string> cacheDir;
490     // Pointer to the context which owns this script.
491     empirical_type<lldb::addr_t> context;
492     // Pointer to the script object itself.
493     empirical_type<lldb::addr_t> script;
494 };
495 
496 // This Element class represents the Element object in RS,
497 // defining the type associated with an Allocation.
498 struct RenderScriptRuntime::Element
499 {
500     // Taken from rsDefines.h
501     enum DataKind
502     {
503         RS_KIND_USER,
504         RS_KIND_PIXEL_L = 7,
505         RS_KIND_PIXEL_A,
506         RS_KIND_PIXEL_LA,
507         RS_KIND_PIXEL_RGB,
508         RS_KIND_PIXEL_RGBA,
509         RS_KIND_PIXEL_DEPTH,
510         RS_KIND_PIXEL_YUV,
511         RS_KIND_INVALID = 100
512     };
513 
514     // Taken from rsDefines.h
515     enum DataType
516     {
517         RS_TYPE_NONE = 0,
518         RS_TYPE_FLOAT_16,
519         RS_TYPE_FLOAT_32,
520         RS_TYPE_FLOAT_64,
521         RS_TYPE_SIGNED_8,
522         RS_TYPE_SIGNED_16,
523         RS_TYPE_SIGNED_32,
524         RS_TYPE_SIGNED_64,
525         RS_TYPE_UNSIGNED_8,
526         RS_TYPE_UNSIGNED_16,
527         RS_TYPE_UNSIGNED_32,
528         RS_TYPE_UNSIGNED_64,
529         RS_TYPE_BOOLEAN,
530 
531         RS_TYPE_UNSIGNED_5_6_5,
532         RS_TYPE_UNSIGNED_5_5_5_1,
533         RS_TYPE_UNSIGNED_4_4_4_4,
534 
535         RS_TYPE_MATRIX_4X4,
536         RS_TYPE_MATRIX_3X3,
537         RS_TYPE_MATRIX_2X2,
538 
539         RS_TYPE_ELEMENT = 1000,
540         RS_TYPE_TYPE,
541         RS_TYPE_ALLOCATION,
542         RS_TYPE_SAMPLER,
543         RS_TYPE_SCRIPT,
544         RS_TYPE_MESH,
545         RS_TYPE_PROGRAM_FRAGMENT,
546         RS_TYPE_PROGRAM_VERTEX,
547         RS_TYPE_PROGRAM_RASTER,
548         RS_TYPE_PROGRAM_STORE,
549         RS_TYPE_FONT,
550 
551         RS_TYPE_INVALID = 10000
552     };
553 
554     std::vector<Element> children;            // Child Element fields for structs
555     empirical_type<lldb::addr_t> element_ptr; // Pointer to the RS Element of the Type
556     empirical_type<DataType> type;            // Type of each data pointer stored by the allocation
557     empirical_type<DataKind> type_kind;       // Defines pixel type if Allocation is created from an image
558     empirical_type<uint32_t> type_vec_size;   // Vector size of each data point, e.g '4' for uchar4
559     empirical_type<uint32_t> field_count;     // Number of Subelements
560     empirical_type<uint32_t> datum_size;      // Size of a single Element with padding
561     empirical_type<uint32_t> padding;         // Number of padding bytes
562     empirical_type<uint32_t> array_size;      // Number of items in array, only needed for strucrs
563     ConstString type_name;                    // Name of type, only needed for structs
564 
565     static const ConstString &
566     GetFallbackStructName(); // Print this as the type name of a struct Element
567                              // If we can't resolve the actual struct name
568 
569     bool
570     shouldRefresh() const
571     {
572         const bool valid_ptr = element_ptr.isValid() && *element_ptr.get() != 0x0;
573         const bool valid_type = type.isValid() && type_vec_size.isValid() && type_kind.isValid();
574         return !valid_ptr || !valid_type || !datum_size.isValid();
575     }
576 };
577 
578 // This AllocationDetails class collects data associated with a single
579 // allocation instance.
580 struct RenderScriptRuntime::AllocationDetails
581 {
582     struct Dimension
583     {
584         uint32_t dim_1;
585         uint32_t dim_2;
586         uint32_t dim_3;
587         uint32_t cubeMap;
588 
589         Dimension()
590         {
591             dim_1 = 0;
592             dim_2 = 0;
593             dim_3 = 0;
594             cubeMap = 0;
595         }
596     };
597 
598     // The FileHeader struct specifies the header we use for writing allocations to a binary file.
599     // Our format begins with the ASCII characters "RSAD", identifying the file as an allocation dump.
600     // Member variables dims and hdr_size are then written consecutively, immediately followed by an instance of
601     // the ElementHeader struct. Because Elements can contain subelements, there may be more than one instance
602     // of the ElementHeader struct. With this first instance being the root element, and the other instances being
603     // the root's descendants. To identify which instances are an ElementHeader's children, each struct
604     // is immediately followed by a sequence of consecutive offsets to the start of its child structs.
605     // These offsets are 4 bytes in size, and the 0 offset signifies no more children.
606     struct FileHeader
607     {
608         uint8_t ident[4];  // ASCII 'RSAD' identifying the file
609         uint32_t dims[3];  // Dimensions
610         uint16_t hdr_size; // Header size in bytes, including all element headers
611     };
612 
613     struct ElementHeader
614     {
615         uint16_t type;         // DataType enum
616         uint32_t kind;         // DataKind enum
617         uint32_t element_size; // Size of a single element, including padding
618         uint16_t vector_size;  // Vector width
619         uint32_t array_size;   // Number of elements in array
620     };
621 
622     // Monotonically increasing from 1
623     static uint32_t ID;
624 
625     // Maps Allocation DataType enum and vector size to printable strings
626     // using mapping from RenderScript numerical types summary documentation
627     static const char *RsDataTypeToString[][4];
628 
629     // Maps Allocation DataKind enum to printable strings
630     static const char *RsDataKindToString[];
631 
632     // Maps allocation types to format sizes for printing.
633     static const uint32_t RSTypeToFormat[][3];
634 
635     // Give each allocation an ID as a way
636     // for commands to reference it.
637     const uint32_t id;
638 
639     RenderScriptRuntime::Element element;  // Allocation Element type
640     empirical_type<Dimension> dimension;   // Dimensions of the Allocation
641     empirical_type<lldb::addr_t> address;  // Pointer to address of the RS Allocation
642     empirical_type<lldb::addr_t> data_ptr; // Pointer to the data held by the Allocation
643     empirical_type<lldb::addr_t> type_ptr; // Pointer to the RS Type of the Allocation
644     empirical_type<lldb::addr_t> context;  // Pointer to the RS Context of the Allocation
645     empirical_type<uint32_t> size;         // Size of the allocation
646     empirical_type<uint32_t> stride;       // Stride between rows of the allocation
647 
648     // Give each allocation an id, so we can reference it in user commands.
649     AllocationDetails() : id(ID++) {}
650 
651     bool
652     shouldRefresh() const
653     {
654         bool valid_ptrs = data_ptr.isValid() && *data_ptr.get() != 0x0;
655         valid_ptrs = valid_ptrs && type_ptr.isValid() && *type_ptr.get() != 0x0;
656         return !valid_ptrs || !dimension.isValid() || !size.isValid() || element.shouldRefresh();
657     }
658 };
659 
660 const ConstString &
661 RenderScriptRuntime::Element::GetFallbackStructName()
662 {
663     static const ConstString FallbackStructName("struct");
664     return FallbackStructName;
665 }
666 
667 uint32_t RenderScriptRuntime::AllocationDetails::ID = 1;
668 
669 const char *RenderScriptRuntime::AllocationDetails::RsDataKindToString[] = {
670     "User",
671     "Undefined",  "Undefined",   "Undefined", "Undefined", "Undefined",  "Undefined", // Enum jumps from 0 to 7
672     "L Pixel",    "A Pixel",     "LA Pixel",  "RGB Pixel",
673     "RGBA Pixel", "Pixel Depth", "YUV Pixel"};
674 
675 const char *RenderScriptRuntime::AllocationDetails::RsDataTypeToString[][4] = {
676     {"None", "None", "None", "None"},
677     {"half", "half2", "half3", "half4"},
678     {"float", "float2", "float3", "float4"},
679     {"double", "double2", "double3", "double4"},
680     {"char", "char2", "char3", "char4"},
681     {"short", "short2", "short3", "short4"},
682     {"int", "int2", "int3", "int4"},
683     {"long", "long2", "long3", "long4"},
684     {"uchar", "uchar2", "uchar3", "uchar4"},
685     {"ushort", "ushort2", "ushort3", "ushort4"},
686     {"uint", "uint2", "uint3", "uint4"},
687     {"ulong", "ulong2", "ulong3", "ulong4"},
688     {"bool", "bool2", "bool3", "bool4"},
689     {"packed_565", "packed_565", "packed_565", "packed_565"},
690     {"packed_5551", "packed_5551", "packed_5551", "packed_5551"},
691     {"packed_4444", "packed_4444", "packed_4444", "packed_4444"},
692     {"rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4"},
693     {"rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3"},
694     {"rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2"},
695 
696     // Handlers
697     {"RS Element", "RS Element", "RS Element", "RS Element"},
698     {"RS Type", "RS Type", "RS Type", "RS Type"},
699     {"RS Allocation", "RS Allocation", "RS Allocation", "RS Allocation"},
700     {"RS Sampler", "RS Sampler", "RS Sampler", "RS Sampler"},
701     {"RS Script", "RS Script", "RS Script", "RS Script"},
702 
703     // Deprecated
704     {"RS Mesh", "RS Mesh", "RS Mesh", "RS Mesh"},
705     {"RS Program Fragment", "RS Program Fragment", "RS Program Fragment", "RS Program Fragment"},
706     {"RS Program Vertex", "RS Program Vertex", "RS Program Vertex", "RS Program Vertex"},
707     {"RS Program Raster", "RS Program Raster", "RS Program Raster", "RS Program Raster"},
708     {"RS Program Store", "RS Program Store", "RS Program Store", "RS Program Store"},
709     {"RS Font", "RS Font", "RS Font", "RS Font"}};
710 
711 // Used as an index into the RSTypeToFormat array elements
712 enum TypeToFormatIndex
713 {
714     eFormatSingle = 0,
715     eFormatVector,
716     eElementSize
717 };
718 
719 // { format enum of single element, format enum of element vector, size of element}
720 const uint32_t RenderScriptRuntime::AllocationDetails::RSTypeToFormat[][3] = {
721     {eFormatHex, eFormatHex, 1},                                          // RS_TYPE_NONE
722     {eFormatFloat, eFormatVectorOfFloat16, 2},                            // RS_TYPE_FLOAT_16
723     {eFormatFloat, eFormatVectorOfFloat32, sizeof(float)},                // RS_TYPE_FLOAT_32
724     {eFormatFloat, eFormatVectorOfFloat64, sizeof(double)},               // RS_TYPE_FLOAT_64
725     {eFormatDecimal, eFormatVectorOfSInt8, sizeof(int8_t)},               // RS_TYPE_SIGNED_8
726     {eFormatDecimal, eFormatVectorOfSInt16, sizeof(int16_t)},             // RS_TYPE_SIGNED_16
727     {eFormatDecimal, eFormatVectorOfSInt32, sizeof(int32_t)},             // RS_TYPE_SIGNED_32
728     {eFormatDecimal, eFormatVectorOfSInt64, sizeof(int64_t)},             // RS_TYPE_SIGNED_64
729     {eFormatDecimal, eFormatVectorOfUInt8, sizeof(uint8_t)},              // RS_TYPE_UNSIGNED_8
730     {eFormatDecimal, eFormatVectorOfUInt16, sizeof(uint16_t)},            // RS_TYPE_UNSIGNED_16
731     {eFormatDecimal, eFormatVectorOfUInt32, sizeof(uint32_t)},            // RS_TYPE_UNSIGNED_32
732     {eFormatDecimal, eFormatVectorOfUInt64, sizeof(uint64_t)},            // RS_TYPE_UNSIGNED_64
733     {eFormatBoolean, eFormatBoolean, 1},                                  // RS_TYPE_BOOL
734     {eFormatHex, eFormatHex, sizeof(uint16_t)},                           // RS_TYPE_UNSIGNED_5_6_5
735     {eFormatHex, eFormatHex, sizeof(uint16_t)},                           // RS_TYPE_UNSIGNED_5_5_5_1
736     {eFormatHex, eFormatHex, sizeof(uint16_t)},                           // RS_TYPE_UNSIGNED_4_4_4_4
737     {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 16}, // RS_TYPE_MATRIX_4X4
738     {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 9},  // RS_TYPE_MATRIX_3X3
739     {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 4}   // RS_TYPE_MATRIX_2X2
740 };
741 
742 const std::string RenderScriptRuntime::s_runtimeExpandSuffix(".expand");
743 const std::array<const char *, 3> RenderScriptRuntime::s_runtimeCoordVars{{"rsIndex", "p->current.y", "p->current.z"}};
744 //------------------------------------------------------------------
745 // Static Functions
746 //------------------------------------------------------------------
747 LanguageRuntime *
748 RenderScriptRuntime::CreateInstance(Process *process, lldb::LanguageType language)
749 {
750 
751     if (language == eLanguageTypeExtRenderScript)
752         return new RenderScriptRuntime(process);
753     else
754         return nullptr;
755 }
756 
757 // Callback with a module to search for matching symbols.
758 // We first check that the module contains RS kernels.
759 // Then look for a symbol which matches our kernel name.
760 // The breakpoint address is finally set using the address of this symbol.
761 Searcher::CallbackReturn
762 RSBreakpointResolver::SearchCallback(SearchFilter &filter, SymbolContext &context, Address *, bool)
763 {
764     ModuleSP module = context.module_sp;
765 
766     if (!module)
767         return Searcher::eCallbackReturnContinue;
768 
769     // Is this a module containing renderscript kernels?
770     if (nullptr == module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), eSymbolTypeData))
771         return Searcher::eCallbackReturnContinue;
772 
773     // Attempt to set a breakpoint on the kernel name symbol within the module library.
774     // If it's not found, it's likely debug info is unavailable - try to set a
775     // breakpoint on <name>.expand.
776 
777     const Symbol *kernel_sym = module->FindFirstSymbolWithNameAndType(m_kernel_name, eSymbolTypeCode);
778     if (!kernel_sym)
779     {
780         std::string kernel_name_expanded(m_kernel_name.AsCString());
781         kernel_name_expanded.append(".expand");
782         kernel_sym = module->FindFirstSymbolWithNameAndType(ConstString(kernel_name_expanded.c_str()), eSymbolTypeCode);
783     }
784 
785     if (kernel_sym)
786     {
787         Address bp_addr = kernel_sym->GetAddress();
788         if (filter.AddressPasses(bp_addr))
789             m_breakpoint->AddLocation(bp_addr);
790     }
791 
792     return Searcher::eCallbackReturnContinue;
793 }
794 
795 void
796 RenderScriptRuntime::Initialize()
797 {
798     PluginManager::RegisterPlugin(GetPluginNameStatic(), "RenderScript language support", CreateInstance,
799                                   GetCommandObject);
800 }
801 
802 void
803 RenderScriptRuntime::Terminate()
804 {
805     PluginManager::UnregisterPlugin(CreateInstance);
806 }
807 
808 lldb_private::ConstString
809 RenderScriptRuntime::GetPluginNameStatic()
810 {
811     static ConstString g_name("renderscript");
812     return g_name;
813 }
814 
815 RenderScriptRuntime::ModuleKind
816 RenderScriptRuntime::GetModuleKind(const lldb::ModuleSP &module_sp)
817 {
818     if (module_sp)
819     {
820         // Is this a module containing renderscript kernels?
821         const Symbol *info_sym = module_sp->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), eSymbolTypeData);
822         if (info_sym)
823         {
824             return eModuleKindKernelObj;
825         }
826 
827         // Is this the main RS runtime library
828         const ConstString rs_lib("libRS.so");
829         if (module_sp->GetFileSpec().GetFilename() == rs_lib)
830         {
831             return eModuleKindLibRS;
832         }
833 
834         const ConstString rs_driverlib("libRSDriver.so");
835         if (module_sp->GetFileSpec().GetFilename() == rs_driverlib)
836         {
837             return eModuleKindDriver;
838         }
839 
840         const ConstString rs_cpureflib("libRSCpuRef.so");
841         if (module_sp->GetFileSpec().GetFilename() == rs_cpureflib)
842         {
843             return eModuleKindImpl;
844         }
845     }
846     return eModuleKindIgnored;
847 }
848 
849 bool
850 RenderScriptRuntime::IsRenderScriptModule(const lldb::ModuleSP &module_sp)
851 {
852     return GetModuleKind(module_sp) != eModuleKindIgnored;
853 }
854 
855 void
856 RenderScriptRuntime::ModulesDidLoad(const ModuleList &module_list)
857 {
858     Mutex::Locker locker(module_list.GetMutex());
859 
860     size_t num_modules = module_list.GetSize();
861     for (size_t i = 0; i < num_modules; i++)
862     {
863         auto mod = module_list.GetModuleAtIndex(i);
864         if (IsRenderScriptModule(mod))
865         {
866             LoadModule(mod);
867         }
868     }
869 }
870 
871 //------------------------------------------------------------------
872 // PluginInterface protocol
873 //------------------------------------------------------------------
874 lldb_private::ConstString
875 RenderScriptRuntime::GetPluginName()
876 {
877     return GetPluginNameStatic();
878 }
879 
880 uint32_t
881 RenderScriptRuntime::GetPluginVersion()
882 {
883     return 1;
884 }
885 
886 bool
887 RenderScriptRuntime::IsVTableName(const char *name)
888 {
889     return false;
890 }
891 
892 bool
893 RenderScriptRuntime::GetDynamicTypeAndAddress(ValueObject &in_value, lldb::DynamicValueType use_dynamic,
894                                               TypeAndOrName &class_type_or_name, Address &address,
895                                               Value::ValueType &value_type)
896 {
897     return false;
898 }
899 
900 TypeAndOrName
901 RenderScriptRuntime::FixUpDynamicType(const TypeAndOrName &type_and_or_name, ValueObject &static_value)
902 {
903     return type_and_or_name;
904 }
905 
906 bool
907 RenderScriptRuntime::CouldHaveDynamicValue(ValueObject &in_value)
908 {
909     return false;
910 }
911 
912 lldb::BreakpointResolverSP
913 RenderScriptRuntime::CreateExceptionResolver(Breakpoint *bkpt, bool catch_bp, bool throw_bp)
914 {
915     BreakpointResolverSP resolver_sp;
916     return resolver_sp;
917 }
918 
919 const RenderScriptRuntime::HookDefn RenderScriptRuntime::s_runtimeHookDefns[] = {
920     // rsdScript
921     {
922         "rsdScriptInit",
923         "_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_7ScriptCEPKcS7_PKhjj",
924         "_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_7ScriptCEPKcS7_PKhmj",
925         0,
926         RenderScriptRuntime::eModuleKindDriver,
927         &lldb_private::RenderScriptRuntime::CaptureScriptInit
928     },
929     {
930         "rsdScriptInvokeForEachMulti",
931         "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0_6ScriptEjPPKNS0_10AllocationEjPS6_PKvjPK12RsScriptCall",
932         "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0_6ScriptEjPPKNS0_10AllocationEmPS6_PKvmPK12RsScriptCall",
933         0,
934         RenderScriptRuntime::eModuleKindDriver,
935         &lldb_private::RenderScriptRuntime::CaptureScriptInvokeForEachMulti
936     },
937     {
938         "rsdScriptSetGlobalVar",
939         "_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_6ScriptEjPvj",
940         "_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_6ScriptEjPvm",
941         0,
942         RenderScriptRuntime::eModuleKindDriver,
943         &lldb_private::RenderScriptRuntime::CaptureSetGlobalVar
944     },
945 
946     // rsdAllocation
947     {
948         "rsdAllocationInit",
949         "_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_10AllocationEb",
950         "_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_10AllocationEb",
951         0,
952         RenderScriptRuntime::eModuleKindDriver,
953         &lldb_private::RenderScriptRuntime::CaptureAllocationInit
954     },
955     {
956         "rsdAllocationRead2D",
957         "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_10AllocationEjjj23RsAllocationCubemapFacejjPvjj",
958         "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_10AllocationEjjj23RsAllocationCubemapFacejjPvmm",
959         0,
960         RenderScriptRuntime::eModuleKindDriver,
961         nullptr
962     },
963     {
964         "rsdAllocationDestroy",
965         "_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_10AllocationE",
966         "_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_10AllocationE",
967         0,
968         RenderScriptRuntime::eModuleKindDriver,
969         &lldb_private::RenderScriptRuntime::CaptureAllocationDestroy
970     },
971 };
972 
973 const size_t RenderScriptRuntime::s_runtimeHookCount = sizeof(s_runtimeHookDefns) / sizeof(s_runtimeHookDefns[0]);
974 
975 bool
976 RenderScriptRuntime::HookCallback(void *baton, StoppointCallbackContext *ctx, lldb::user_id_t break_id,
977                                   lldb::user_id_t break_loc_id)
978 {
979     RuntimeHook *hook_info = (RuntimeHook *)baton;
980     ExecutionContext context(ctx->exe_ctx_ref);
981 
982     RenderScriptRuntime *lang_rt =
983         (RenderScriptRuntime *)context.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
984 
985     lang_rt->HookCallback(hook_info, context);
986 
987     return false;
988 }
989 
990 void
991 RenderScriptRuntime::HookCallback(RuntimeHook *hook_info, ExecutionContext &context)
992 {
993     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
994 
995     if (log)
996         log->Printf("%s - '%s'", __FUNCTION__, hook_info->defn->name);
997 
998     if (hook_info->defn->grabber)
999     {
1000         (this->*(hook_info->defn->grabber))(hook_info, context);
1001     }
1002 }
1003 
1004 void
1005 RenderScriptRuntime::CaptureScriptInvokeForEachMulti(RuntimeHook* hook_info,
1006                                                      ExecutionContext& context)
1007 {
1008     Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1009 
1010     enum
1011     {
1012         eRsContext = 0,
1013         eRsScript,
1014         eRsSlot,
1015         eRsAIns,
1016         eRsInLen,
1017         eRsAOut,
1018         eRsUsr,
1019         eRsUsrLen,
1020         eRsSc,
1021     };
1022 
1023     std::array<ArgItem, 9> args{{
1024         ArgItem{ArgItem::ePointer, 0}, // const Context       *rsc
1025         ArgItem{ArgItem::ePointer, 0}, // Script              *s
1026         ArgItem{ArgItem::eInt32, 0},   // uint32_t             slot
1027         ArgItem{ArgItem::ePointer, 0}, // const Allocation   **aIns
1028         ArgItem{ArgItem::eInt32, 0},   // size_t               inLen
1029         ArgItem{ArgItem::ePointer, 0}, // Allocation          *aout
1030         ArgItem{ArgItem::ePointer, 0}, // const void          *usr
1031         ArgItem{ArgItem::eInt32, 0},   // size_t               usrLen
1032         ArgItem{ArgItem::ePointer, 0}, // const RsScriptCall  *sc
1033     }};
1034 
1035     bool success = GetArgs(context, &args[0], args.size());
1036     if (!success)
1037     {
1038         if (log)
1039             log->Printf("%s - Error while reading the function parameters", __FUNCTION__);
1040         return;
1041     }
1042 
1043     const uint32_t target_ptr_size = m_process->GetAddressByteSize();
1044     Error error;
1045     std::vector<uint64_t> allocs;
1046 
1047     // traverse allocation list
1048     for (uint64_t i = 0; i < uint64_t(args[eRsInLen]); ++i)
1049     {
1050         // calculate offest to allocation pointer
1051         const addr_t addr = addr_t(args[eRsAIns]) + i * target_ptr_size;
1052 
1053         // Note: due to little endian layout, reading 32bits or 64bits into res64 will
1054         //       give the correct results.
1055 
1056         uint64_t res64 = 0;
1057         size_t read = m_process->ReadMemory(addr, &res64, target_ptr_size, error);
1058         if (read != target_ptr_size || !error.Success())
1059         {
1060             if (log)
1061                 log->Printf("%s - Error while reading allocation list argument %" PRIu64, __FUNCTION__, i);
1062         }
1063         else
1064         {
1065             allocs.push_back(res64);
1066         }
1067     }
1068 
1069     // if there is an output allocation track it
1070     if (uint64_t aOut = uint64_t(args[eRsAOut]))
1071     {
1072         allocs.push_back(aOut);
1073     }
1074 
1075     // for all allocations we have found
1076     for (const uint64_t alloc_addr : allocs)
1077     {
1078         AllocationDetails* alloc = LookUpAllocation(alloc_addr, true);
1079         if (alloc)
1080         {
1081             // save the allocation address
1082             if (alloc->address.isValid())
1083             {
1084                 // check the allocation address we already have matches
1085                 assert(*alloc->address.get() == alloc_addr);
1086             }
1087             else
1088             {
1089                 alloc->address = alloc_addr;
1090             }
1091 
1092             // save the context
1093             if (log)
1094             {
1095                 if (alloc->context.isValid() && *alloc->context.get() != addr_t(args[eRsContext]))
1096                     log->Printf("%s - Allocation used by multiple contexts", __FUNCTION__);
1097             }
1098             alloc->context = addr_t(args[eRsContext]);
1099         }
1100     }
1101 
1102     // make sure we track this script object
1103     if (lldb_private::RenderScriptRuntime::ScriptDetails *script = LookUpScript(addr_t(args[eRsScript]), true))
1104     {
1105         if (log)
1106         {
1107             if (script->context.isValid() && *script->context.get() != addr_t(args[eRsContext]))
1108                 log->Printf("%s - Script used by multiple contexts", __FUNCTION__);
1109         }
1110         script->context = addr_t(args[eRsContext]);
1111     }
1112 }
1113 
1114 void
1115 RenderScriptRuntime::CaptureSetGlobalVar(RuntimeHook *hook_info, ExecutionContext &context)
1116 {
1117     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1118 
1119     enum
1120     {
1121         eRsContext,
1122         eRsScript,
1123         eRsId,
1124         eRsData,
1125         eRsLength,
1126     };
1127 
1128     std::array<ArgItem, 5> args{{
1129         ArgItem{ArgItem::ePointer, 0}, // eRsContext
1130         ArgItem{ArgItem::ePointer, 0}, // eRsScript
1131         ArgItem{ArgItem::eInt32, 0},   // eRsId
1132         ArgItem{ArgItem::ePointer, 0}, // eRsData
1133         ArgItem{ArgItem::eInt32, 0},   // eRsLength
1134     }};
1135 
1136     bool success = GetArgs(context, &args[0], args.size());
1137     if (!success)
1138     {
1139         if (log)
1140             log->Printf("%s - error reading the function parameters.", __FUNCTION__);
1141         return;
1142     }
1143 
1144     if (log)
1145     {
1146         log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " slot %" PRIu64 " = 0x%" PRIx64 ":%" PRIu64 "bytes.", __FUNCTION__,
1147                     uint64_t(args[eRsContext]), uint64_t(args[eRsScript]), uint64_t(args[eRsId]),
1148                     uint64_t(args[eRsData]), uint64_t(args[eRsLength]));
1149 
1150         addr_t script_addr = addr_t(args[eRsScript]);
1151         if (m_scriptMappings.find(script_addr) != m_scriptMappings.end())
1152         {
1153             auto rsm = m_scriptMappings[script_addr];
1154             if (uint64_t(args[eRsId]) < rsm->m_globals.size())
1155             {
1156                 auto rsg = rsm->m_globals[uint64_t(args[eRsId])];
1157                 log->Printf("%s - Setting of '%s' within '%s' inferred", __FUNCTION__, rsg.m_name.AsCString(),
1158                             rsm->m_module->GetFileSpec().GetFilename().AsCString());
1159             }
1160         }
1161     }
1162 }
1163 
1164 void
1165 RenderScriptRuntime::CaptureAllocationInit(RuntimeHook *hook_info, ExecutionContext &context)
1166 {
1167     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1168 
1169     enum
1170     {
1171         eRsContext,
1172         eRsAlloc,
1173         eRsForceZero
1174     };
1175 
1176     std::array<ArgItem, 3> args{{
1177         ArgItem{ArgItem::ePointer, 0}, // eRsContext
1178         ArgItem{ArgItem::ePointer, 0}, // eRsAlloc
1179         ArgItem{ArgItem::eBool, 0},    // eRsForceZero
1180     }};
1181 
1182     bool success = GetArgs(context, &args[0], args.size());
1183     if (!success) // error case
1184     {
1185         if (log)
1186             log->Printf("%s - error while reading the function parameters", __FUNCTION__);
1187         return; // abort
1188     }
1189 
1190     if (log)
1191         log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 ",0x%" PRIx64 " .", __FUNCTION__, uint64_t(args[eRsContext]),
1192                     uint64_t(args[eRsAlloc]), uint64_t(args[eRsForceZero]));
1193 
1194     AllocationDetails *alloc = LookUpAllocation(uint64_t(args[eRsAlloc]), true);
1195     if (alloc)
1196         alloc->context = uint64_t(args[eRsContext]);
1197 }
1198 
1199 void
1200 RenderScriptRuntime::CaptureAllocationDestroy(RuntimeHook *hook_info, ExecutionContext &context)
1201 {
1202     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1203 
1204     enum
1205     {
1206         eRsContext,
1207         eRsAlloc,
1208     };
1209 
1210     std::array<ArgItem, 2> args{{
1211         ArgItem{ArgItem::ePointer, 0}, // eRsContext
1212         ArgItem{ArgItem::ePointer, 0}, // eRsAlloc
1213     }};
1214 
1215     bool success = GetArgs(context, &args[0], args.size());
1216     if (!success)
1217     {
1218         if (log)
1219             log->Printf("%s - error while reading the function parameters.", __FUNCTION__);
1220         return;
1221     }
1222 
1223     if (log)
1224         log->Printf("%s - 0x%" PRIx64 ", 0x%" PRIx64 ".", __FUNCTION__, uint64_t(args[eRsContext]),
1225                     uint64_t(args[eRsAlloc]));
1226 
1227     for (auto iter = m_allocations.begin(); iter != m_allocations.end(); ++iter)
1228     {
1229         auto &allocation_ap = *iter; // get the unique pointer
1230         if (allocation_ap->address.isValid() && *allocation_ap->address.get() == addr_t(args[eRsAlloc]))
1231         {
1232             m_allocations.erase(iter);
1233             if (log)
1234                 log->Printf("%s - deleted allocation entry.", __FUNCTION__);
1235             return;
1236         }
1237     }
1238 
1239     if (log)
1240         log->Printf("%s - couldn't find destroyed allocation.", __FUNCTION__);
1241 }
1242 
1243 void
1244 RenderScriptRuntime::CaptureScriptInit(RuntimeHook *hook_info, ExecutionContext &context)
1245 {
1246     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1247 
1248     Error error;
1249     Process *process = context.GetProcessPtr();
1250 
1251     enum
1252     {
1253         eRsContext,
1254         eRsScript,
1255         eRsResNamePtr,
1256         eRsCachedDirPtr
1257     };
1258 
1259     std::array<ArgItem, 4> args{{ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0},
1260                                  ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}}};
1261     bool success = GetArgs(context, &args[0], args.size());
1262     if (!success)
1263     {
1264         if (log)
1265             log->Printf("%s - error while reading the function parameters.", __FUNCTION__);
1266         return;
1267     }
1268 
1269     std::string resname;
1270     process->ReadCStringFromMemory(addr_t(args[eRsResNamePtr]), resname, error);
1271     if (error.Fail())
1272     {
1273         if (log)
1274             log->Printf("%s - error reading resname: %s.", __FUNCTION__, error.AsCString());
1275     }
1276 
1277     std::string cachedir;
1278     process->ReadCStringFromMemory(addr_t(args[eRsCachedDirPtr]), cachedir, error);
1279     if (error.Fail())
1280     {
1281         if (log)
1282             log->Printf("%s - error reading cachedir: %s.", __FUNCTION__, error.AsCString());
1283     }
1284 
1285     if (log)
1286         log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " => '%s' at '%s' .", __FUNCTION__, uint64_t(args[eRsContext]),
1287                     uint64_t(args[eRsScript]), resname.c_str(), cachedir.c_str());
1288 
1289     if (resname.size() > 0)
1290     {
1291         StreamString strm;
1292         strm.Printf("librs.%s.so", resname.c_str());
1293 
1294         ScriptDetails *script = LookUpScript(addr_t(args[eRsScript]), true);
1295         if (script)
1296         {
1297             script->type = ScriptDetails::eScriptC;
1298             script->cacheDir = cachedir;
1299             script->resName = resname;
1300             script->scriptDyLib = strm.GetData();
1301             script->context = addr_t(args[eRsContext]);
1302         }
1303 
1304         if (log)
1305             log->Printf("%s - '%s' tagged with context 0x%" PRIx64 " and script 0x%" PRIx64 ".", __FUNCTION__,
1306                         strm.GetData(), uint64_t(args[eRsContext]), uint64_t(args[eRsScript]));
1307     }
1308     else if (log)
1309     {
1310         log->Printf("%s - resource name invalid, Script not tagged.", __FUNCTION__);
1311     }
1312 }
1313 
1314 void
1315 RenderScriptRuntime::LoadRuntimeHooks(lldb::ModuleSP module, ModuleKind kind)
1316 {
1317     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1318 
1319     if (!module)
1320     {
1321         return;
1322     }
1323 
1324     Target &target = GetProcess()->GetTarget();
1325     llvm::Triple::ArchType targetArchType = target.GetArchitecture().GetMachine();
1326 
1327     if (targetArchType != llvm::Triple::ArchType::x86 &&
1328         targetArchType != llvm::Triple::ArchType::arm &&
1329         targetArchType != llvm::Triple::ArchType::aarch64 &&
1330         targetArchType != llvm::Triple::ArchType::mipsel &&
1331         targetArchType != llvm::Triple::ArchType::mips64el &&
1332         targetArchType != llvm::Triple::ArchType::x86_64)
1333     {
1334         if (log)
1335             log->Printf("%s - unable to hook runtime functions.", __FUNCTION__);
1336         return;
1337     }
1338 
1339     uint32_t archByteSize = target.GetArchitecture().GetAddressByteSize();
1340 
1341     for (size_t idx = 0; idx < s_runtimeHookCount; idx++)
1342     {
1343         const HookDefn *hook_defn = &s_runtimeHookDefns[idx];
1344         if (hook_defn->kind != kind)
1345         {
1346             continue;
1347         }
1348 
1349         const char *symbol_name = (archByteSize == 4) ? hook_defn->symbol_name_m32 : hook_defn->symbol_name_m64;
1350 
1351         const Symbol *sym = module->FindFirstSymbolWithNameAndType(ConstString(symbol_name), eSymbolTypeCode);
1352         if (!sym)
1353         {
1354             if (log)
1355             {
1356                 log->Printf("%s - symbol '%s' related to the function %s not found",
1357                             __FUNCTION__, symbol_name, hook_defn->name);
1358             }
1359             continue;
1360         }
1361 
1362         addr_t addr = sym->GetLoadAddress(&target);
1363         if (addr == LLDB_INVALID_ADDRESS)
1364         {
1365             if (log)
1366                 log->Printf("%s - unable to resolve the address of hook function '%s' with symbol '%s'.",
1367                             __FUNCTION__, hook_defn->name, symbol_name);
1368             continue;
1369         }
1370         else
1371         {
1372             if (log)
1373                 log->Printf("%s - function %s, address resolved at 0x%" PRIx64,
1374                             __FUNCTION__, hook_defn->name, addr);
1375         }
1376 
1377         RuntimeHookSP hook(new RuntimeHook());
1378         hook->address = addr;
1379         hook->defn = hook_defn;
1380         hook->bp_sp = target.CreateBreakpoint(addr, true, false);
1381         hook->bp_sp->SetCallback(HookCallback, hook.get(), true);
1382         m_runtimeHooks[addr] = hook;
1383         if (log)
1384         {
1385             log->Printf("%s - successfully hooked '%s' in '%s' version %" PRIu64 " at 0x%" PRIx64 ".",
1386                         __FUNCTION__, hook_defn->name, module->GetFileSpec().GetFilename().AsCString(),
1387                         (uint64_t)hook_defn->version, (uint64_t)addr);
1388         }
1389     }
1390 }
1391 
1392 void
1393 RenderScriptRuntime::FixupScriptDetails(RSModuleDescriptorSP rsmodule_sp)
1394 {
1395     if (!rsmodule_sp)
1396         return;
1397 
1398     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1399 
1400     const ModuleSP module = rsmodule_sp->m_module;
1401     const FileSpec &file = module->GetPlatformFileSpec();
1402 
1403     // Iterate over all of the scripts that we currently know of.
1404     // Note: We cant push or pop to m_scripts here or it may invalidate rs_script.
1405     for (const auto &rs_script : m_scripts)
1406     {
1407         // Extract the expected .so file path for this script.
1408         std::string dylib;
1409         if (!rs_script->scriptDyLib.get(dylib))
1410             continue;
1411 
1412         // Only proceed if the module that has loaded corresponds to this script.
1413         if (file.GetFilename() != ConstString(dylib.c_str()))
1414             continue;
1415 
1416         // Obtain the script address which we use as a key.
1417         lldb::addr_t script;
1418         if (!rs_script->script.get(script))
1419             continue;
1420 
1421         // If we have a script mapping for the current script.
1422         if (m_scriptMappings.find(script) != m_scriptMappings.end())
1423         {
1424             // if the module we have stored is different to the one we just received.
1425             if (m_scriptMappings[script] != rsmodule_sp)
1426             {
1427                 if (log)
1428                     log->Printf("%s - script %" PRIx64 " wants reassigned to new rsmodule '%s'.", __FUNCTION__,
1429                                 (uint64_t)script, rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString());
1430             }
1431         }
1432         // We don't have a script mapping for the current script.
1433         else
1434         {
1435             // Obtain the script resource name.
1436             std::string resName;
1437             if (rs_script->resName.get(resName))
1438                 // Set the modules resource name.
1439                 rsmodule_sp->m_resname = resName;
1440             // Add Script/Module pair to map.
1441             m_scriptMappings[script] = rsmodule_sp;
1442             if (log)
1443                 log->Printf("%s - script %" PRIx64 " associated with rsmodule '%s'.", __FUNCTION__,
1444                             (uint64_t)script, rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString());
1445         }
1446     }
1447 }
1448 
1449 // Uses the Target API to evaluate the expression passed as a parameter to the function
1450 // The result of that expression is returned an unsigned 64 bit int, via the result* paramter.
1451 // Function returns true on success, and false on failure
1452 bool
1453 RenderScriptRuntime::EvalRSExpression(const char *expression, StackFrame *frame_ptr, uint64_t *result)
1454 {
1455     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1456     if (log)
1457         log->Printf("%s(%s)", __FUNCTION__, expression);
1458 
1459     ValueObjectSP expr_result;
1460     // Perform the actual expression evaluation
1461     GetProcess()->GetTarget().EvaluateExpression(expression, frame_ptr, expr_result);
1462 
1463     if (!expr_result)
1464     {
1465         if (log)
1466             log->Printf("%s: couldn't evaluate expression.", __FUNCTION__);
1467         return false;
1468     }
1469 
1470     // The result of the expression is invalid
1471     if (!expr_result->GetError().Success())
1472     {
1473         Error err = expr_result->GetError();
1474         if (err.GetError() == UserExpression::kNoResult) // Expression returned void, so this is actually a success
1475         {
1476             if (log)
1477                 log->Printf("%s - expression returned void.", __FUNCTION__);
1478 
1479             result = nullptr;
1480             return true;
1481         }
1482 
1483         if (log)
1484             log->Printf("%s - error evaluating expression result: %s", __FUNCTION__,
1485                         err.AsCString());
1486         return false;
1487     }
1488 
1489     bool success = false;
1490     *result = expr_result->GetValueAsUnsigned(0, &success); // We only read the result as an uint32_t.
1491 
1492     if (!success)
1493     {
1494         if (log)
1495             log->Printf("%s - couldn't convert expression result to uint32_t", __FUNCTION__);
1496         return false;
1497     }
1498 
1499     return true;
1500 }
1501 
1502 namespace
1503 {
1504 // Used to index expression format strings
1505 enum ExpressionStrings
1506 {
1507    eExprGetOffsetPtr = 0,
1508    eExprAllocGetType,
1509    eExprTypeDimX,
1510    eExprTypeDimY,
1511    eExprTypeDimZ,
1512    eExprTypeElemPtr,
1513    eExprElementType,
1514    eExprElementKind,
1515    eExprElementVec,
1516    eExprElementFieldCount,
1517    eExprSubelementsId,
1518    eExprSubelementsName,
1519    eExprSubelementsArrSize,
1520 
1521    _eExprLast // keep at the end, implicit size of the array runtimeExpressions
1522 };
1523 
1524 // max length of an expanded expression
1525 const int jit_max_expr_size = 512;
1526 
1527 // Retrieve the string to JIT for the given expression
1528 const char*
1529 JITTemplate(ExpressionStrings e)
1530 {
1531     // Format strings containing the expressions we may need to evaluate.
1532     static std::array<const char*, _eExprLast> runtimeExpressions = {{
1533      // Mangled GetOffsetPointer(Allocation*, xoff, yoff, zoff, lod, cubemap)
1534      "(int*)_Z12GetOffsetPtrPKN7android12renderscript10AllocationEjjjj23RsAllocationCubemapFace"
1535      "(0x%" PRIx64 ", %" PRIu32 ", %" PRIu32 ", %" PRIu32 ", 0, 0)",
1536 
1537      // Type* rsaAllocationGetType(Context*, Allocation*)
1538      "(void*)rsaAllocationGetType(0x%" PRIx64 ", 0x%" PRIx64 ")",
1539 
1540      // rsaTypeGetNativeData(Context*, Type*, void* typeData, size)
1541      // Pack the data in the following way mHal.state.dimX; mHal.state.dimY; mHal.state.dimZ;
1542      // mHal.state.lodCount; mHal.state.faces; mElement; into typeData
1543      // Need to specify 32 or 64 bit for uint_t since this differs between devices
1544      "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 6); data[0]", // X dim
1545      "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 6); data[1]", // Y dim
1546      "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 6); data[2]", // Z dim
1547      "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 6); data[5]", // Element ptr
1548 
1549      // rsaElementGetNativeData(Context*, Element*, uint32_t* elemData,size)
1550      // Pack mType; mKind; mNormalized; mVectorSize; NumSubElements into elemData
1551      "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 5); data[0]", // Type
1552      "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 5); data[1]", // Kind
1553      "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 5); data[3]", // Vector Size
1554      "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 5); data[4]", // Field Count
1555 
1556      // rsaElementGetSubElements(RsContext con, RsElement elem, uintptr_t *ids, const char **names,
1557      // size_t *arraySizes, uint32_t dataSize)
1558      // Needed for Allocations of structs to gather details about fields/Subelements
1559      // Element* of field
1560      "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 "]; size_t arr_size[%" PRIu32 "];"
1561      "(void*)rsaElementGetSubElements(0x%" PRIx64 ", 0x%" PRIx64 ", ids, names, arr_size, %" PRIu32 "); ids[%" PRIu32 "]",
1562 
1563      // Name of field
1564      "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 "]; size_t arr_size[%" PRIu32 "];"
1565      "(void*)rsaElementGetSubElements(0x%" PRIx64 ", 0x%" PRIx64 ", ids, names, arr_size, %" PRIu32 "); names[%" PRIu32 "]",
1566 
1567      // Array size of field
1568      "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 "]; size_t arr_size[%" PRIu32 "];"
1569      "(void*)rsaElementGetSubElements(0x%" PRIx64 ", 0x%" PRIx64 ", ids, names, arr_size, %" PRIu32 "); arr_size[%" PRIu32 "]"
1570     }};
1571 
1572     return runtimeExpressions[e];
1573 }
1574 } // end of the anonymous namespace
1575 
1576 
1577 // JITs the RS runtime for the internal data pointer of an allocation.
1578 // Is passed x,y,z coordinates for the pointer to a specific element.
1579 // Then sets the data_ptr member in Allocation with the result.
1580 // Returns true on success, false otherwise
1581 bool
1582 RenderScriptRuntime::JITDataPointer(AllocationDetails *allocation, StackFrame *frame_ptr, uint32_t x,
1583                                     uint32_t y, uint32_t z)
1584 {
1585     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1586 
1587     if (!allocation->address.isValid())
1588     {
1589         if (log)
1590             log->Printf("%s - failed to find allocation details.", __FUNCTION__);
1591         return false;
1592     }
1593 
1594     const char *expr_cstr = JITTemplate(eExprGetOffsetPtr);
1595     char buffer[jit_max_expr_size];
1596 
1597     int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->address.get(), x, y, z);
1598     if (chars_written < 0)
1599     {
1600         if (log)
1601             log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
1602         return false;
1603     }
1604     else if (chars_written >= jit_max_expr_size)
1605     {
1606         if (log)
1607             log->Printf("%s - expression too long.", __FUNCTION__);
1608         return false;
1609     }
1610 
1611     uint64_t result = 0;
1612     if (!EvalRSExpression(buffer, frame_ptr, &result))
1613         return false;
1614 
1615     addr_t mem_ptr = static_cast<lldb::addr_t>(result);
1616     allocation->data_ptr = mem_ptr;
1617 
1618     return true;
1619 }
1620 
1621 // JITs the RS runtime for the internal pointer to the RS Type of an allocation
1622 // Then sets the type_ptr member in Allocation with the result.
1623 // Returns true on success, false otherwise
1624 bool
1625 RenderScriptRuntime::JITTypePointer(AllocationDetails *allocation, StackFrame *frame_ptr)
1626 {
1627     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1628 
1629     if (!allocation->address.isValid() || !allocation->context.isValid())
1630     {
1631         if (log)
1632             log->Printf("%s - failed to find allocation details.", __FUNCTION__);
1633         return false;
1634     }
1635 
1636     const char *expr_cstr = JITTemplate(eExprAllocGetType);
1637     char buffer[jit_max_expr_size];
1638 
1639     int chars_written =
1640         snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->context.get(), *allocation->address.get());
1641     if (chars_written < 0)
1642     {
1643         if (log)
1644             log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
1645         return false;
1646     }
1647     else if (chars_written >= jit_max_expr_size)
1648     {
1649         if (log)
1650             log->Printf("%s - expression too long.", __FUNCTION__);
1651         return false;
1652     }
1653 
1654     uint64_t result = 0;
1655     if (!EvalRSExpression(buffer, frame_ptr, &result))
1656         return false;
1657 
1658     addr_t type_ptr = static_cast<lldb::addr_t>(result);
1659     allocation->type_ptr = type_ptr;
1660 
1661     return true;
1662 }
1663 
1664 // JITs the RS runtime for information about the dimensions and type of an allocation
1665 // Then sets dimension and element_ptr members in Allocation with the result.
1666 // Returns true on success, false otherwise
1667 bool
1668 RenderScriptRuntime::JITTypePacked(AllocationDetails *allocation, StackFrame *frame_ptr)
1669 {
1670     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1671 
1672     if (!allocation->type_ptr.isValid() || !allocation->context.isValid())
1673     {
1674         if (log)
1675             log->Printf("%s - Failed to find allocation details.", __FUNCTION__);
1676         return false;
1677     }
1678 
1679     // Expression is different depending on if device is 32 or 64 bit
1680     uint32_t archByteSize = GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
1681     const uint32_t bits = archByteSize == 4 ? 32 : 64;
1682 
1683     // We want 4 elements from packed data
1684     const uint32_t num_exprs = 4;
1685     assert(num_exprs == (eExprTypeElemPtr - eExprTypeDimX + 1) && "Invalid number of expressions");
1686 
1687     char buffer[num_exprs][jit_max_expr_size];
1688     uint64_t results[num_exprs];
1689 
1690     for (uint32_t i = 0; i < num_exprs; ++i)
1691     {
1692         const char *expr_cstr = JITTemplate(ExpressionStrings(eExprTypeDimX + i));
1693         int chars_written = snprintf(buffer[i], jit_max_expr_size, expr_cstr, bits, *allocation->context.get(),
1694                                      *allocation->type_ptr.get());
1695         if (chars_written < 0)
1696         {
1697             if (log)
1698                 log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
1699             return false;
1700         }
1701         else if (chars_written >= jit_max_expr_size)
1702         {
1703             if (log)
1704                 log->Printf("%s - expression too long.", __FUNCTION__);
1705             return false;
1706         }
1707 
1708         // Perform expression evaluation
1709         if (!EvalRSExpression(buffer[i], frame_ptr, &results[i]))
1710             return false;
1711     }
1712 
1713     // Assign results to allocation members
1714     AllocationDetails::Dimension dims;
1715     dims.dim_1 = static_cast<uint32_t>(results[0]);
1716     dims.dim_2 = static_cast<uint32_t>(results[1]);
1717     dims.dim_3 = static_cast<uint32_t>(results[2]);
1718     allocation->dimension = dims;
1719 
1720     addr_t elem_ptr = static_cast<lldb::addr_t>(results[3]);
1721     allocation->element.element_ptr = elem_ptr;
1722 
1723     if (log)
1724         log->Printf("%s - dims (%" PRIu32 ", %" PRIu32 ", %" PRIu32 ") Element*: 0x%" PRIx64 ".", __FUNCTION__,
1725                     dims.dim_1, dims.dim_2, dims.dim_3, elem_ptr);
1726 
1727     return true;
1728 }
1729 
1730 // JITs the RS runtime for information about the Element of an allocation
1731 // Then sets type, type_vec_size, field_count and type_kind members in Element with the result.
1732 // Returns true on success, false otherwise
1733 bool
1734 RenderScriptRuntime::JITElementPacked(Element &elem, const lldb::addr_t context, StackFrame *frame_ptr)
1735 {
1736     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1737 
1738     if (!elem.element_ptr.isValid())
1739     {
1740         if (log)
1741             log->Printf("%s - failed to find allocation details.", __FUNCTION__);
1742         return false;
1743     }
1744 
1745     // We want 4 elements from packed data
1746     const uint32_t num_exprs = 4;
1747     assert(num_exprs == (eExprElementFieldCount - eExprElementType + 1) && "Invalid number of expressions");
1748 
1749     char buffer[num_exprs][jit_max_expr_size];
1750     uint64_t results[num_exprs];
1751 
1752     for (uint32_t i = 0; i < num_exprs; i++)
1753     {
1754         const char *expr_cstr = JITTemplate(ExpressionStrings(eExprElementType + i));
1755         int chars_written = snprintf(buffer[i], jit_max_expr_size, expr_cstr, context, *elem.element_ptr.get());
1756         if (chars_written < 0)
1757         {
1758             if (log)
1759                 log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
1760             return false;
1761         }
1762         else if (chars_written >= jit_max_expr_size)
1763         {
1764             if (log)
1765                 log->Printf("%s - expression too long.", __FUNCTION__);
1766             return false;
1767         }
1768 
1769         // Perform expression evaluation
1770         if (!EvalRSExpression(buffer[i], frame_ptr, &results[i]))
1771             return false;
1772     }
1773 
1774     // Assign results to allocation members
1775     elem.type = static_cast<RenderScriptRuntime::Element::DataType>(results[0]);
1776     elem.type_kind = static_cast<RenderScriptRuntime::Element::DataKind>(results[1]);
1777     elem.type_vec_size = static_cast<uint32_t>(results[2]);
1778     elem.field_count = static_cast<uint32_t>(results[3]);
1779 
1780     if (log)
1781         log->Printf("%s - data type %" PRIu32 ", pixel type %" PRIu32 ", vector size %" PRIu32 ", field count %" PRIu32,
1782                     __FUNCTION__, *elem.type.get(), *elem.type_kind.get(), *elem.type_vec_size.get(), *elem.field_count.get());
1783 
1784     // If this Element has subelements then JIT rsaElementGetSubElements() for details about its fields
1785     if (*elem.field_count.get() > 0 && !JITSubelements(elem, context, frame_ptr))
1786         return false;
1787 
1788     return true;
1789 }
1790 
1791 // JITs the RS runtime for information about the subelements/fields of a struct allocation
1792 // This is necessary for infering the struct type so we can pretty print the allocation's contents.
1793 // Returns true on success, false otherwise
1794 bool
1795 RenderScriptRuntime::JITSubelements(Element &elem, const lldb::addr_t context, StackFrame *frame_ptr)
1796 {
1797     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1798 
1799     if (!elem.element_ptr.isValid() || !elem.field_count.isValid())
1800     {
1801         if (log)
1802             log->Printf("%s - failed to find allocation details.", __FUNCTION__);
1803         return false;
1804     }
1805 
1806     const short num_exprs = 3;
1807     assert(num_exprs == (eExprSubelementsArrSize - eExprSubelementsId + 1) && "Invalid number of expressions");
1808 
1809     char expr_buffer[jit_max_expr_size];
1810     uint64_t results;
1811 
1812     // Iterate over struct fields.
1813     const uint32_t field_count = *elem.field_count.get();
1814     for (uint32_t field_index = 0; field_index < field_count; ++field_index)
1815     {
1816         Element child;
1817         for (uint32_t expr_index = 0; expr_index < num_exprs; ++expr_index)
1818         {
1819             const char *expr_cstr = JITTemplate(ExpressionStrings(eExprSubelementsId + expr_index));
1820             int chars_written = snprintf(expr_buffer, jit_max_expr_size, expr_cstr,
1821                                          field_count, field_count, field_count,
1822                                          context, *elem.element_ptr.get(), field_count, field_index);
1823             if (chars_written < 0)
1824             {
1825                 if (log)
1826                     log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
1827                 return false;
1828             }
1829             else if (chars_written >= jit_max_expr_size)
1830             {
1831                 if (log)
1832                     log->Printf("%s - expression too long.", __FUNCTION__);
1833                 return false;
1834             }
1835 
1836             // Perform expression evaluation
1837             if (!EvalRSExpression(expr_buffer, frame_ptr, &results))
1838                 return false;
1839 
1840             if (log)
1841                 log->Printf("%s - expr result 0x%" PRIx64 ".", __FUNCTION__, results);
1842 
1843             switch (expr_index)
1844             {
1845                 case 0: // Element* of child
1846                     child.element_ptr = static_cast<addr_t>(results);
1847                     break;
1848                 case 1: // Name of child
1849                 {
1850                     lldb::addr_t address = static_cast<addr_t>(results);
1851                     Error err;
1852                     std::string name;
1853                     GetProcess()->ReadCStringFromMemory(address, name, err);
1854                     if (!err.Fail())
1855                         child.type_name = ConstString(name);
1856                     else
1857                     {
1858                         if (log)
1859                             log->Printf("%s - warning: Couldn't read field name.", __FUNCTION__);
1860                     }
1861                     break;
1862                 }
1863                 case 2: // Array size of child
1864                     child.array_size = static_cast<uint32_t>(results);
1865                     break;
1866             }
1867         }
1868 
1869         // We need to recursively JIT each Element field of the struct since
1870         // structs can be nested inside structs.
1871         if (!JITElementPacked(child, context, frame_ptr))
1872             return false;
1873         elem.children.push_back(child);
1874     }
1875 
1876     // Try to infer the name of the struct type so we can pretty print the allocation contents.
1877     FindStructTypeName(elem, frame_ptr);
1878 
1879     return true;
1880 }
1881 
1882 // JITs the RS runtime for the address of the last element in the allocation.
1883 // The `elem_size` paramter represents the size of a single element, including padding.
1884 // Which is needed as an offset from the last element pointer.
1885 // Using this offset minus the starting address we can calculate the size of the allocation.
1886 // Returns true on success, false otherwise
1887 bool
1888 RenderScriptRuntime::JITAllocationSize(AllocationDetails *allocation, StackFrame *frame_ptr)
1889 {
1890     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1891 
1892     if (!allocation->address.isValid() || !allocation->dimension.isValid() || !allocation->data_ptr.isValid() ||
1893         !allocation->element.datum_size.isValid())
1894     {
1895         if (log)
1896             log->Printf("%s - failed to find allocation details.", __FUNCTION__);
1897         return false;
1898     }
1899 
1900     // Find dimensions
1901     uint32_t dim_x = allocation->dimension.get()->dim_1;
1902     uint32_t dim_y = allocation->dimension.get()->dim_2;
1903     uint32_t dim_z = allocation->dimension.get()->dim_3;
1904 
1905     // Our plan of jitting the last element address doesn't seem to work for struct Allocations
1906     // Instead try to infer the size ourselves without any inter element padding.
1907     if (allocation->element.children.size() > 0)
1908     {
1909         if (dim_x == 0) dim_x = 1;
1910         if (dim_y == 0) dim_y = 1;
1911         if (dim_z == 0) dim_z = 1;
1912 
1913         allocation->size = dim_x * dim_y * dim_z * *allocation->element.datum_size.get();
1914 
1915         if (log)
1916             log->Printf("%s - infered size of struct allocation %" PRIu32 ".", __FUNCTION__,
1917                         *allocation->size.get());
1918         return true;
1919     }
1920 
1921     const char *expr_cstr = JITTemplate(eExprGetOffsetPtr);
1922     char buffer[jit_max_expr_size];
1923 
1924     // Calculate last element
1925     dim_x = dim_x == 0 ? 0 : dim_x - 1;
1926     dim_y = dim_y == 0 ? 0 : dim_y - 1;
1927     dim_z = dim_z == 0 ? 0 : dim_z - 1;
1928 
1929     int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->address.get(), dim_x, dim_y, dim_z);
1930     if (chars_written < 0)
1931     {
1932         if (log)
1933             log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
1934         return false;
1935     }
1936     else if (chars_written >= jit_max_expr_size)
1937     {
1938         if (log)
1939             log->Printf("%s - expression too long.", __FUNCTION__);
1940         return false;
1941     }
1942 
1943     uint64_t result = 0;
1944     if (!EvalRSExpression(buffer, frame_ptr, &result))
1945         return false;
1946 
1947     addr_t mem_ptr = static_cast<lldb::addr_t>(result);
1948     // Find pointer to last element and add on size of an element
1949     allocation->size =
1950         static_cast<uint32_t>(mem_ptr - *allocation->data_ptr.get()) + *allocation->element.datum_size.get();
1951 
1952     return true;
1953 }
1954 
1955 // JITs the RS runtime for information about the stride between rows in the allocation.
1956 // This is done to detect padding, since allocated memory is 16-byte aligned.
1957 // Returns true on success, false otherwise
1958 bool
1959 RenderScriptRuntime::JITAllocationStride(AllocationDetails *allocation, StackFrame *frame_ptr)
1960 {
1961     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1962 
1963     if (!allocation->address.isValid() || !allocation->data_ptr.isValid())
1964     {
1965         if (log)
1966             log->Printf("%s - failed to find allocation details.", __FUNCTION__);
1967         return false;
1968     }
1969 
1970     const char *expr_cstr = JITTemplate(eExprGetOffsetPtr);
1971     char buffer[jit_max_expr_size];
1972 
1973     int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->address.get(), 0, 1, 0);
1974     if (chars_written < 0)
1975     {
1976         if (log)
1977             log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
1978         return false;
1979     }
1980     else if (chars_written >= jit_max_expr_size)
1981     {
1982         if (log)
1983             log->Printf("%s - expression too long.", __FUNCTION__);
1984         return false;
1985     }
1986 
1987     uint64_t result = 0;
1988     if (!EvalRSExpression(buffer, frame_ptr, &result))
1989         return false;
1990 
1991     addr_t mem_ptr = static_cast<lldb::addr_t>(result);
1992     allocation->stride = static_cast<uint32_t>(mem_ptr - *allocation->data_ptr.get());
1993 
1994     return true;
1995 }
1996 
1997 // JIT all the current runtime info regarding an allocation
1998 bool
1999 RenderScriptRuntime::RefreshAllocation(AllocationDetails *allocation, StackFrame *frame_ptr)
2000 {
2001     // GetOffsetPointer()
2002     if (!JITDataPointer(allocation, frame_ptr))
2003         return false;
2004 
2005     // rsaAllocationGetType()
2006     if (!JITTypePointer(allocation, frame_ptr))
2007         return false;
2008 
2009     // rsaTypeGetNativeData()
2010     if (!JITTypePacked(allocation, frame_ptr))
2011         return false;
2012 
2013     // rsaElementGetNativeData()
2014     if (!JITElementPacked(allocation->element, *allocation->context.get(), frame_ptr))
2015         return false;
2016 
2017     // Sets the datum_size member in Element
2018     SetElementSize(allocation->element);
2019 
2020     // Use GetOffsetPointer() to infer size of the allocation
2021     if (!JITAllocationSize(allocation, frame_ptr))
2022         return false;
2023 
2024     return true;
2025 }
2026 
2027 // Function attempts to set the type_name member of the paramaterised Element object.
2028 // This string should be the name of the struct type the Element represents.
2029 // We need this string for pretty printing the Element to users.
2030 void
2031 RenderScriptRuntime::FindStructTypeName(Element &elem, StackFrame *frame_ptr)
2032 {
2033     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2034 
2035     if (!elem.type_name.IsEmpty()) // Name already set
2036         return;
2037     else
2038         elem.type_name = Element::GetFallbackStructName(); // Default type name if we don't succeed
2039 
2040     // Find all the global variables from the script rs modules
2041     VariableList variable_list;
2042     for (auto module_sp : m_rsmodules)
2043         module_sp->m_module->FindGlobalVariables(RegularExpression("."), true, UINT32_MAX, variable_list);
2044 
2045     // Iterate over all the global variables looking for one with a matching type to the Element.
2046     // We make the assumption a match exists since there needs to be a global variable to reflect the
2047     // struct type back into java host code.
2048     for (uint32_t var_index = 0; var_index < variable_list.GetSize(); ++var_index)
2049     {
2050         const VariableSP var_sp(variable_list.GetVariableAtIndex(var_index));
2051         if (!var_sp)
2052             continue;
2053 
2054         ValueObjectSP valobj_sp = ValueObjectVariable::Create(frame_ptr, var_sp);
2055         if (!valobj_sp)
2056             continue;
2057 
2058         // Find the number of variable fields.
2059         // If it has no fields, or more fields than our Element, then it can't be the struct we're looking for.
2060         // Don't check for equality since RS can add extra struct members for padding.
2061         size_t num_children = valobj_sp->GetNumChildren();
2062         if (num_children > elem.children.size() || num_children == 0)
2063             continue;
2064 
2065         // Iterate over children looking for members with matching field names.
2066         // If all the field names match, this is likely the struct we want.
2067         //
2068         //   TODO: This could be made more robust by also checking children data sizes, or array size
2069         bool found = true;
2070         for (size_t child_index = 0; child_index < num_children; ++child_index)
2071         {
2072             ValueObjectSP child = valobj_sp->GetChildAtIndex(child_index, true);
2073             if (!child || (child->GetName() != elem.children[child_index].type_name))
2074             {
2075                 found = false;
2076                 break;
2077             }
2078         }
2079 
2080         // RS can add extra struct members for padding in the format '#rs_padding_[0-9]+'
2081         if (found && num_children < elem.children.size())
2082         {
2083             const uint32_t size_diff = elem.children.size() - num_children;
2084             if (log)
2085                 log->Printf("%s - %" PRIu32 " padding struct entries", __FUNCTION__, size_diff);
2086 
2087             for (uint32_t padding_index = 0; padding_index < size_diff; ++padding_index)
2088             {
2089                 const ConstString &name = elem.children[num_children + padding_index].type_name;
2090                 if (strcmp(name.AsCString(), "#rs_padding") < 0)
2091                     found = false;
2092             }
2093         }
2094 
2095         // We've found a global var with matching type
2096         if (found)
2097         {
2098             // Dereference since our Element type isn't a pointer.
2099             if (valobj_sp->IsPointerType())
2100             {
2101                 Error err;
2102                 ValueObjectSP deref_valobj = valobj_sp->Dereference(err);
2103                 if (!err.Fail())
2104                     valobj_sp = deref_valobj;
2105             }
2106 
2107             // Save name of variable in Element.
2108             elem.type_name = valobj_sp->GetTypeName();
2109             if (log)
2110                 log->Printf("%s - element name set to %s", __FUNCTION__, elem.type_name.AsCString());
2111 
2112             return;
2113         }
2114     }
2115 }
2116 
2117 // Function sets the datum_size member of Element. Representing the size of a single instance including padding.
2118 // Assumes the relevant allocation information has already been jitted.
2119 void
2120 RenderScriptRuntime::SetElementSize(Element &elem)
2121 {
2122     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2123     const Element::DataType type = *elem.type.get();
2124     assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && "Invalid allocation type");
2125 
2126     const uint32_t vec_size = *elem.type_vec_size.get();
2127     uint32_t data_size = 0;
2128     uint32_t padding = 0;
2129 
2130     // Element is of a struct type, calculate size recursively.
2131     if ((type == Element::RS_TYPE_NONE) && (elem.children.size() > 0))
2132     {
2133         for (Element &child : elem.children)
2134         {
2135             SetElementSize(child);
2136             const uint32_t array_size = child.array_size.isValid() ? *child.array_size.get() : 1;
2137             data_size += *child.datum_size.get() * array_size;
2138         }
2139     }
2140     // These have been packed already
2141     else if (type == Element::RS_TYPE_UNSIGNED_5_6_5   ||
2142              type == Element::RS_TYPE_UNSIGNED_5_5_5_1 ||
2143              type == Element::RS_TYPE_UNSIGNED_4_4_4_4)
2144     {
2145         data_size = AllocationDetails::RSTypeToFormat[type][eElementSize];
2146     }
2147     else if (type < Element::RS_TYPE_ELEMENT)
2148     {
2149         data_size = vec_size * AllocationDetails::RSTypeToFormat[type][eElementSize];
2150         if (vec_size == 3)
2151             padding = AllocationDetails::RSTypeToFormat[type][eElementSize];
2152     }
2153     else
2154         data_size = GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
2155 
2156     elem.padding = padding;
2157     elem.datum_size = data_size + padding;
2158     if (log)
2159         log->Printf("%s - element size set to %" PRIu32, __FUNCTION__, data_size + padding);
2160 }
2161 
2162 // Given an allocation, this function copies the allocation contents from device into a buffer on the heap.
2163 // Returning a shared pointer to the buffer containing the data.
2164 std::shared_ptr<uint8_t>
2165 RenderScriptRuntime::GetAllocationData(AllocationDetails *allocation, StackFrame *frame_ptr)
2166 {
2167     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2168 
2169     // JIT all the allocation details
2170     if (allocation->shouldRefresh())
2171     {
2172         if (log)
2173             log->Printf("%s - allocation details not calculated yet, jitting info", __FUNCTION__);
2174 
2175         if (!RefreshAllocation(allocation, frame_ptr))
2176         {
2177             if (log)
2178                 log->Printf("%s - couldn't JIT allocation details", __FUNCTION__);
2179             return nullptr;
2180         }
2181     }
2182 
2183     assert(allocation->data_ptr.isValid() && allocation->element.type.isValid() &&
2184            allocation->element.type_vec_size.isValid() && allocation->size.isValid() &&
2185            "Allocation information not available");
2186 
2187     // Allocate a buffer to copy data into
2188     const uint32_t size = *allocation->size.get();
2189     std::shared_ptr<uint8_t> buffer(new uint8_t[size]);
2190     if (!buffer)
2191     {
2192         if (log)
2193             log->Printf("%s - couldn't allocate a %" PRIu32 " byte buffer", __FUNCTION__, size);
2194         return nullptr;
2195     }
2196 
2197     // Read the inferior memory
2198     Error error;
2199     lldb::addr_t data_ptr = *allocation->data_ptr.get();
2200     GetProcess()->ReadMemory(data_ptr, buffer.get(), size, error);
2201     if (error.Fail())
2202     {
2203         if (log)
2204             log->Printf("%s - '%s' Couldn't read %" PRIu32 " bytes of allocation data from 0x%" PRIx64,
2205                         __FUNCTION__, error.AsCString(), size, data_ptr);
2206         return nullptr;
2207     }
2208 
2209     return buffer;
2210 }
2211 
2212 // Function copies data from a binary file into an allocation.
2213 // There is a header at the start of the file, FileHeader, before the data content itself.
2214 // Information from this header is used to display warnings to the user about incompatabilities
2215 bool
2216 RenderScriptRuntime::LoadAllocation(Stream &strm, const uint32_t alloc_id, const char *filename, StackFrame *frame_ptr)
2217 {
2218     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2219 
2220     // Find allocation with the given id
2221     AllocationDetails *alloc = FindAllocByID(strm, alloc_id);
2222     if (!alloc)
2223         return false;
2224 
2225     if (log)
2226         log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__, *alloc->address.get());
2227 
2228     // JIT all the allocation details
2229     if (alloc->shouldRefresh())
2230     {
2231         if (log)
2232             log->Printf("%s - allocation details not calculated yet, jitting info.", __FUNCTION__);
2233 
2234         if (!RefreshAllocation(alloc, frame_ptr))
2235         {
2236             if (log)
2237                 log->Printf("%s - couldn't JIT allocation details", __FUNCTION__);
2238             return false;
2239         }
2240     }
2241 
2242     assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && alloc->element.type_vec_size.isValid() &&
2243            alloc->size.isValid() && alloc->element.datum_size.isValid() && "Allocation information not available");
2244 
2245     // Check we can read from file
2246     FileSpec file(filename, true);
2247     if (!file.Exists())
2248     {
2249         strm.Printf("Error: File %s does not exist", filename);
2250         strm.EOL();
2251         return false;
2252     }
2253 
2254     if (!file.Readable())
2255     {
2256         strm.Printf("Error: File %s does not have readable permissions", filename);
2257         strm.EOL();
2258         return false;
2259     }
2260 
2261     // Read file into data buffer
2262     DataBufferSP data_sp(file.ReadFileContents());
2263 
2264     // Cast start of buffer to FileHeader and use pointer to read metadata
2265     void *file_buffer = data_sp->GetBytes();
2266     if (file_buffer == nullptr ||
2267         data_sp->GetByteSize() < (sizeof(AllocationDetails::FileHeader) + sizeof(AllocationDetails::ElementHeader)))
2268     {
2269         strm.Printf("Error: File %s does not contain enough data for header", filename);
2270         strm.EOL();
2271         return false;
2272     }
2273     const AllocationDetails::FileHeader *file_header = static_cast<AllocationDetails::FileHeader *>(file_buffer);
2274 
2275     // Check file starts with ascii characters "RSAD"
2276     if (memcmp(file_header->ident, "RSAD", 4))
2277     {
2278         strm.Printf("Error: File doesn't contain identifier for an RS allocation dump. Are you sure this is the correct file?");
2279         strm.EOL();
2280         return false;
2281     }
2282 
2283     // Look at the type of the root element in the header
2284     AllocationDetails::ElementHeader root_element_header;
2285     memcpy(&root_element_header, static_cast<uint8_t *>(file_buffer) + sizeof(AllocationDetails::FileHeader),
2286            sizeof(AllocationDetails::ElementHeader));
2287 
2288     if (log)
2289         log->Printf("%s - header type %" PRIu32 ", element size %" PRIu32, __FUNCTION__,
2290                     root_element_header.type, root_element_header.element_size);
2291 
2292     // Check if the target allocation and file both have the same number of bytes for an Element
2293     if (*alloc->element.datum_size.get() != root_element_header.element_size)
2294     {
2295         strm.Printf("Warning: Mismatched Element sizes - file %" PRIu32 " bytes, allocation %" PRIu32 " bytes",
2296                     root_element_header.element_size, *alloc->element.datum_size.get());
2297         strm.EOL();
2298     }
2299 
2300     // Check if the target allocation and file both have the same type
2301     const uint32_t alloc_type = static_cast<uint32_t>(*alloc->element.type.get());
2302     const uint32_t file_type = root_element_header.type;
2303 
2304     if (file_type > Element::RS_TYPE_FONT)
2305     {
2306         strm.Printf("Warning: File has unknown allocation type");
2307         strm.EOL();
2308     }
2309     else if (alloc_type != file_type)
2310     {
2311         // Enum value isn't monotonous, so doesn't always index RsDataTypeToString array
2312         uint32_t printable_target_type_index = alloc_type;
2313         uint32_t printable_head_type_index = file_type;
2314         if (alloc_type >= Element::RS_TYPE_ELEMENT && alloc_type <= Element::RS_TYPE_FONT)
2315             printable_target_type_index = static_cast<Element::DataType>((alloc_type - Element::RS_TYPE_ELEMENT) +
2316                                                                          Element::RS_TYPE_MATRIX_2X2 + 1);
2317 
2318         if (file_type >= Element::RS_TYPE_ELEMENT && file_type <= Element::RS_TYPE_FONT)
2319             printable_head_type_index = static_cast<Element::DataType>((file_type - Element::RS_TYPE_ELEMENT) +
2320                                                                        Element::RS_TYPE_MATRIX_2X2 + 1);
2321 
2322         const char *file_type_cstr = AllocationDetails::RsDataTypeToString[printable_head_type_index][0];
2323         const char *target_type_cstr = AllocationDetails::RsDataTypeToString[printable_target_type_index][0];
2324 
2325         strm.Printf("Warning: Mismatched Types - file '%s' type, allocation '%s' type", file_type_cstr,
2326                     target_type_cstr);
2327         strm.EOL();
2328     }
2329 
2330     // Advance buffer past header
2331     file_buffer = static_cast<uint8_t *>(file_buffer) + file_header->hdr_size;
2332 
2333     // Calculate size of allocation data in file
2334     size_t length = data_sp->GetByteSize() - file_header->hdr_size;
2335 
2336     // Check if the target allocation and file both have the same total data size.
2337     const uint32_t alloc_size = *alloc->size.get();
2338     if (alloc_size != length)
2339     {
2340         strm.Printf("Warning: Mismatched allocation sizes - file 0x%" PRIx64 " bytes, allocation 0x%" PRIx32 " bytes",
2341                     (uint64_t)length, alloc_size);
2342         strm.EOL();
2343         length = alloc_size < length ? alloc_size : length; // Set length to copy to minimum
2344     }
2345 
2346     // Copy file data from our buffer into the target allocation.
2347     lldb::addr_t alloc_data = *alloc->data_ptr.get();
2348     Error error;
2349     size_t bytes_written = GetProcess()->WriteMemory(alloc_data, file_buffer, length, error);
2350     if (!error.Success() || bytes_written != length)
2351     {
2352         strm.Printf("Error: Couldn't write data to allocation %s", error.AsCString());
2353         strm.EOL();
2354         return false;
2355     }
2356 
2357     strm.Printf("Contents of file '%s' read into allocation %" PRIu32, filename, alloc->id);
2358     strm.EOL();
2359 
2360     return true;
2361 }
2362 
2363 // Function takes as parameters a byte buffer, which will eventually be written to file as the element header,
2364 // an offset into that buffer, and an Element that will be saved into the buffer at the parametrised offset.
2365 // Return value is the new offset after writing the element into the buffer.
2366 // Elements are saved to the file as the ElementHeader struct followed by offsets to the structs of all the element's
2367 // children.
2368 size_t
2369 RenderScriptRuntime::PopulateElementHeaders(const std::shared_ptr<uint8_t> header_buffer, size_t offset,
2370                                             const Element &elem)
2371 {
2372     // File struct for an element header with all the relevant details copied from elem.
2373     // We assume members are valid already.
2374     AllocationDetails::ElementHeader elem_header;
2375     elem_header.type = *elem.type.get();
2376     elem_header.kind = *elem.type_kind.get();
2377     elem_header.element_size = *elem.datum_size.get();
2378     elem_header.vector_size = *elem.type_vec_size.get();
2379     elem_header.array_size = elem.array_size.isValid() ? *elem.array_size.get() : 0;
2380     const size_t elem_header_size = sizeof(AllocationDetails::ElementHeader);
2381 
2382     // Copy struct into buffer and advance offset
2383     // We assume that header_buffer has been checked for nullptr before this method is called
2384     memcpy(header_buffer.get() + offset, &elem_header, elem_header_size);
2385     offset += elem_header_size;
2386 
2387     // Starting offset of child ElementHeader struct
2388     size_t child_offset = offset + ((elem.children.size() + 1) * sizeof(uint32_t));
2389     for (const RenderScriptRuntime::Element &child : elem.children)
2390     {
2391         // Recursively populate the buffer with the element header structs of children.
2392         // Then save the offsets where they were set after the parent element header.
2393         memcpy(header_buffer.get() + offset, &child_offset, sizeof(uint32_t));
2394         offset += sizeof(uint32_t);
2395 
2396         child_offset = PopulateElementHeaders(header_buffer, child_offset, child);
2397     }
2398 
2399     // Zero indicates no more children
2400     memset(header_buffer.get() + offset, 0, sizeof(uint32_t));
2401 
2402     return child_offset;
2403 }
2404 
2405 // Given an Element object this function returns the total size needed in the file header to store the element's
2406 // details.
2407 // Taking into account the size of the element header struct, plus the offsets to all the element's children.
2408 // Function is recursive so that the size of all ancestors is taken into account.
2409 size_t
2410 RenderScriptRuntime::CalculateElementHeaderSize(const Element &elem)
2411 {
2412     size_t size = (elem.children.size() + 1) * sizeof(uint32_t); // Offsets to children plus zero terminator
2413     size += sizeof(AllocationDetails::ElementHeader);            // Size of header struct with type details
2414 
2415     // Calculate recursively for all descendants
2416     for (const Element &child : elem.children)
2417         size += CalculateElementHeaderSize(child);
2418 
2419     return size;
2420 }
2421 
2422 // Function copies allocation contents into a binary file.
2423 // This file can then be loaded later into a different allocation.
2424 // There is a header, FileHeader, before the allocation data containing meta-data.
2425 bool
2426 RenderScriptRuntime::SaveAllocation(Stream &strm, const uint32_t alloc_id, const char *filename, StackFrame *frame_ptr)
2427 {
2428     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2429 
2430     // Find allocation with the given id
2431     AllocationDetails *alloc = FindAllocByID(strm, alloc_id);
2432     if (!alloc)
2433         return false;
2434 
2435     if (log)
2436         log->Printf("%s - found allocation 0x%" PRIx64 ".", __FUNCTION__, *alloc->address.get());
2437 
2438     // JIT all the allocation details
2439     if (alloc->shouldRefresh())
2440     {
2441         if (log)
2442             log->Printf("%s - allocation details not calculated yet, jitting info.", __FUNCTION__);
2443 
2444         if (!RefreshAllocation(alloc, frame_ptr))
2445         {
2446             if (log)
2447                 log->Printf("%s - couldn't JIT allocation details.", __FUNCTION__);
2448             return false;
2449         }
2450     }
2451 
2452     assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && alloc->element.type_vec_size.isValid() &&
2453            alloc->element.datum_size.get() && alloc->element.type_kind.isValid() && alloc->dimension.isValid() &&
2454            "Allocation information not available");
2455 
2456     // Check we can create writable file
2457     FileSpec file_spec(filename, true);
2458     File file(file_spec, File::eOpenOptionWrite | File::eOpenOptionCanCreate | File::eOpenOptionTruncate);
2459     if (!file)
2460     {
2461         strm.Printf("Error: Failed to open '%s' for writing", filename);
2462         strm.EOL();
2463         return false;
2464     }
2465 
2466     // Read allocation into buffer of heap memory
2467     const std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr);
2468     if (!buffer)
2469     {
2470         strm.Printf("Error: Couldn't read allocation data into buffer");
2471         strm.EOL();
2472         return false;
2473     }
2474 
2475     // Create the file header
2476     AllocationDetails::FileHeader head;
2477     memcpy(head.ident, "RSAD", 4);
2478     head.dims[0] = static_cast<uint32_t>(alloc->dimension.get()->dim_1);
2479     head.dims[1] = static_cast<uint32_t>(alloc->dimension.get()->dim_2);
2480     head.dims[2] = static_cast<uint32_t>(alloc->dimension.get()->dim_3);
2481 
2482     const size_t element_header_size = CalculateElementHeaderSize(alloc->element);
2483     assert((sizeof(AllocationDetails::FileHeader) + element_header_size) < UINT16_MAX && "Element header too large");
2484     head.hdr_size = static_cast<uint16_t>(sizeof(AllocationDetails::FileHeader) + element_header_size);
2485 
2486     // Write the file header
2487     size_t num_bytes = sizeof(AllocationDetails::FileHeader);
2488     if (log)
2489         log->Printf("%s - writing File Header, 0x%" PRIx64 " bytes", __FUNCTION__, (uint64_t)num_bytes);
2490 
2491     Error err = file.Write(&head, num_bytes);
2492     if (!err.Success())
2493     {
2494         strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), filename);
2495         strm.EOL();
2496         return false;
2497     }
2498 
2499     // Create the headers describing the element type of the allocation.
2500     std::shared_ptr<uint8_t> element_header_buffer(new uint8_t[element_header_size]);
2501     if (element_header_buffer == nullptr)
2502     {
2503         strm.Printf("Internal Error: Couldn't allocate %" PRIu64 " bytes on the heap", (uint64_t)element_header_size);
2504         strm.EOL();
2505         return false;
2506     }
2507 
2508     PopulateElementHeaders(element_header_buffer, 0, alloc->element);
2509 
2510     // Write headers for allocation element type to file
2511     num_bytes = element_header_size;
2512     if (log)
2513         log->Printf("%s - writing element headers, 0x%" PRIx64 " bytes.", __FUNCTION__, (uint64_t)num_bytes);
2514 
2515     err = file.Write(element_header_buffer.get(), num_bytes);
2516     if (!err.Success())
2517     {
2518         strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), filename);
2519         strm.EOL();
2520         return false;
2521     }
2522 
2523     // Write allocation data to file
2524     num_bytes = static_cast<size_t>(*alloc->size.get());
2525     if (log)
2526         log->Printf("%s - writing 0x%" PRIx64 " bytes", __FUNCTION__, (uint64_t)num_bytes);
2527 
2528     err = file.Write(buffer.get(), num_bytes);
2529     if (!err.Success())
2530     {
2531         strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), filename);
2532         strm.EOL();
2533         return false;
2534     }
2535 
2536     strm.Printf("Allocation written to file '%s'", filename);
2537     strm.EOL();
2538     return true;
2539 }
2540 
2541 bool
2542 RenderScriptRuntime::LoadModule(const lldb::ModuleSP &module_sp)
2543 {
2544     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2545 
2546     if (module_sp)
2547     {
2548         for (const auto &rs_module : m_rsmodules)
2549         {
2550             if (rs_module->m_module == module_sp)
2551             {
2552                 // Check if the user has enabled automatically breaking on
2553                 // all RS kernels.
2554                 if (m_breakAllKernels)
2555                     BreakOnModuleKernels(rs_module);
2556 
2557                 return false;
2558             }
2559         }
2560         bool module_loaded = false;
2561         switch (GetModuleKind(module_sp))
2562         {
2563             case eModuleKindKernelObj:
2564             {
2565                 RSModuleDescriptorSP module_desc;
2566                 module_desc.reset(new RSModuleDescriptor(module_sp));
2567                 if (module_desc->ParseRSInfo())
2568                 {
2569                     m_rsmodules.push_back(module_desc);
2570                     module_loaded = true;
2571                 }
2572                 if (module_loaded)
2573                 {
2574                     FixupScriptDetails(module_desc);
2575                 }
2576                 break;
2577             }
2578             case eModuleKindDriver:
2579             {
2580                 if (!m_libRSDriver)
2581                 {
2582                     m_libRSDriver = module_sp;
2583                     LoadRuntimeHooks(m_libRSDriver, RenderScriptRuntime::eModuleKindDriver);
2584                 }
2585                 break;
2586             }
2587             case eModuleKindImpl:
2588             {
2589                 m_libRSCpuRef = module_sp;
2590                 break;
2591             }
2592             case eModuleKindLibRS:
2593             {
2594                 if (!m_libRS)
2595                 {
2596                     m_libRS = module_sp;
2597                     static ConstString gDbgPresentStr("gDebuggerPresent");
2598                     const Symbol *debug_present =
2599                         m_libRS->FindFirstSymbolWithNameAndType(gDbgPresentStr, eSymbolTypeData);
2600                     if (debug_present)
2601                     {
2602                         Error error;
2603                         uint32_t flag = 0x00000001U;
2604                         Target &target = GetProcess()->GetTarget();
2605                         addr_t addr = debug_present->GetLoadAddress(&target);
2606                         GetProcess()->WriteMemory(addr, &flag, sizeof(flag), error);
2607                         if (error.Success())
2608                         {
2609                             if (log)
2610                                 log->Printf("%s - debugger present flag set on debugee.", __FUNCTION__);
2611 
2612                             m_debuggerPresentFlagged = true;
2613                         }
2614                         else if (log)
2615                         {
2616                             log->Printf("%s - error writing debugger present flags '%s' ", __FUNCTION__,
2617                                         error.AsCString());
2618                         }
2619                     }
2620                     else if (log)
2621                     {
2622                         log->Printf("%s - error writing debugger present flags - symbol not found", __FUNCTION__);
2623                     }
2624                 }
2625                 break;
2626             }
2627             default:
2628                 break;
2629         }
2630         if (module_loaded)
2631             Update();
2632         return module_loaded;
2633     }
2634     return false;
2635 }
2636 
2637 void
2638 RenderScriptRuntime::Update()
2639 {
2640     if (m_rsmodules.size() > 0)
2641     {
2642         if (!m_initiated)
2643         {
2644             Initiate();
2645         }
2646     }
2647 }
2648 
2649 // The maximum line length of an .rs.info packet
2650 #define MAXLINE 500
2651 #define STRINGIFY(x) #x
2652 #define MAXLINESTR_(x) "%" STRINGIFY(x) "s"
2653 #define MAXLINESTR MAXLINESTR_(MAXLINE)
2654 
2655 // The .rs.info symbol in renderscript modules contains a string which needs to be parsed.
2656 // The string is basic and is parsed on a line by line basis.
2657 bool
2658 RSModuleDescriptor::ParseRSInfo()
2659 {
2660     assert(m_module);
2661     const Symbol *info_sym = m_module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), eSymbolTypeData);
2662     if (!info_sym)
2663         return false;
2664 
2665     const addr_t addr = info_sym->GetAddressRef().GetFileAddress();
2666     if (addr == LLDB_INVALID_ADDRESS)
2667         return false;
2668 
2669     const addr_t size = info_sym->GetByteSize();
2670     const FileSpec fs = m_module->GetFileSpec();
2671 
2672     const DataBufferSP buffer = fs.ReadFileContents(addr, size);
2673     if (!buffer)
2674         return false;
2675 
2676     // split rs.info. contents into lines
2677     std::vector<std::string> info_lines;
2678     {
2679         const std::string info((const char *)buffer->GetBytes());
2680         for (size_t tail = 0; tail < info.size();)
2681         {
2682             // find next new line or end of string
2683             size_t head = info.find('\n', tail);
2684             head = (head == std::string::npos) ? info.size() : head;
2685             std::string line = info.substr(tail, head - tail);
2686             // add to line list
2687             info_lines.push_back(line);
2688             tail = head + 1;
2689         }
2690     }
2691 
2692     std::array<char, MAXLINE> name{{'\0'}};
2693     std::array<char, MAXLINE> value{{'\0'}};
2694 
2695     // parse all text lines of .rs.info
2696     for (auto line = info_lines.begin(); line != info_lines.end(); ++line)
2697     {
2698         uint32_t numDefns = 0;
2699         if (sscanf(line->c_str(), "exportVarCount: %" PRIu32 "", &numDefns) == 1)
2700         {
2701             while (numDefns--)
2702                 m_globals.push_back(RSGlobalDescriptor(this, (++line)->c_str()));
2703         }
2704         else if (sscanf(line->c_str(), "exportForEachCount: %" PRIu32 "", &numDefns) == 1)
2705         {
2706             while (numDefns--)
2707             {
2708                 uint32_t slot = 0;
2709                 name[0] = '\0';
2710                 static const char *fmt_s = "%" PRIu32 " - " MAXLINESTR;
2711                 if (sscanf((++line)->c_str(), fmt_s, &slot, name.data()) == 2)
2712                 {
2713                     if (name[0] != '\0')
2714                         m_kernels.push_back(RSKernelDescriptor(this, name.data(), slot));
2715                 }
2716             }
2717         }
2718         else if (sscanf(line->c_str(), "pragmaCount: %" PRIu32 "", &numDefns) == 1)
2719         {
2720             while (numDefns--)
2721             {
2722                 name[0] = value[0] = '\0';
2723                 static const char *fmt_s = MAXLINESTR " - " MAXLINESTR;
2724                 if (sscanf((++line)->c_str(), fmt_s, name.data(), value.data()) != 0)
2725                 {
2726                     if (name[0] != '\0')
2727                         m_pragmas[std::string(name.data())] = value.data();
2728                 }
2729             }
2730         }
2731         else
2732         {
2733             Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2734             if (log)
2735             {
2736                 log->Printf("%s - skipping .rs.info field '%s'", __FUNCTION__, line->c_str());
2737             }
2738         }
2739     }
2740 
2741     // 'root' kernel should always be present
2742     return m_kernels.size() > 0;
2743 }
2744 
2745 void
2746 RenderScriptRuntime::Status(Stream &strm) const
2747 {
2748     if (m_libRS)
2749     {
2750         strm.Printf("Runtime Library discovered.");
2751         strm.EOL();
2752     }
2753     if (m_libRSDriver)
2754     {
2755         strm.Printf("Runtime Driver discovered.");
2756         strm.EOL();
2757     }
2758     if (m_libRSCpuRef)
2759     {
2760         strm.Printf("CPU Reference Implementation discovered.");
2761         strm.EOL();
2762     }
2763 
2764     if (m_runtimeHooks.size())
2765     {
2766         strm.Printf("Runtime functions hooked:");
2767         strm.EOL();
2768         for (auto b : m_runtimeHooks)
2769         {
2770             strm.Indent(b.second->defn->name);
2771             strm.EOL();
2772         }
2773     }
2774     else
2775     {
2776         strm.Printf("Runtime is not hooked.");
2777         strm.EOL();
2778     }
2779 }
2780 
2781 void
2782 RenderScriptRuntime::DumpContexts(Stream &strm) const
2783 {
2784     strm.Printf("Inferred RenderScript Contexts:");
2785     strm.EOL();
2786     strm.IndentMore();
2787 
2788     std::map<addr_t, uint64_t> contextReferences;
2789 
2790     // Iterate over all of the currently discovered scripts.
2791     // Note: We cant push or pop from m_scripts inside this loop or it may invalidate script.
2792     for (const auto &script : m_scripts)
2793     {
2794         if (!script->context.isValid())
2795             continue;
2796         lldb::addr_t context = *script->context;
2797 
2798         if (contextReferences.find(context) != contextReferences.end())
2799         {
2800             contextReferences[context]++;
2801         }
2802         else
2803         {
2804             contextReferences[context] = 1;
2805         }
2806     }
2807 
2808     for (const auto &cRef : contextReferences)
2809     {
2810         strm.Printf("Context 0x%" PRIx64 ": %" PRIu64 " script instances", cRef.first, cRef.second);
2811         strm.EOL();
2812     }
2813     strm.IndentLess();
2814 }
2815 
2816 void
2817 RenderScriptRuntime::DumpKernels(Stream &strm) const
2818 {
2819     strm.Printf("RenderScript Kernels:");
2820     strm.EOL();
2821     strm.IndentMore();
2822     for (const auto &module : m_rsmodules)
2823     {
2824         strm.Printf("Resource '%s':", module->m_resname.c_str());
2825         strm.EOL();
2826         for (const auto &kernel : module->m_kernels)
2827         {
2828             strm.Indent(kernel.m_name.AsCString());
2829             strm.EOL();
2830         }
2831     }
2832     strm.IndentLess();
2833 }
2834 
2835 RenderScriptRuntime::AllocationDetails *
2836 RenderScriptRuntime::FindAllocByID(Stream &strm, const uint32_t alloc_id)
2837 {
2838     AllocationDetails *alloc = nullptr;
2839 
2840     // See if we can find allocation using id as an index;
2841     if (alloc_id <= m_allocations.size() && alloc_id != 0 && m_allocations[alloc_id - 1]->id == alloc_id)
2842     {
2843         alloc = m_allocations[alloc_id - 1].get();
2844         return alloc;
2845     }
2846 
2847     // Fallback to searching
2848     for (const auto &a : m_allocations)
2849     {
2850         if (a->id == alloc_id)
2851         {
2852             alloc = a.get();
2853             break;
2854         }
2855     }
2856 
2857     if (alloc == nullptr)
2858     {
2859         strm.Printf("Error: Couldn't find allocation with id matching %" PRIu32, alloc_id);
2860         strm.EOL();
2861     }
2862 
2863     return alloc;
2864 }
2865 
2866 // Prints the contents of an allocation to the output stream, which may be a file
2867 bool
2868 RenderScriptRuntime::DumpAllocation(Stream &strm, StackFrame *frame_ptr, const uint32_t id)
2869 {
2870     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2871 
2872     // Check we can find the desired allocation
2873     AllocationDetails *alloc = FindAllocByID(strm, id);
2874     if (!alloc)
2875         return false; // FindAllocByID() will print error message for us here
2876 
2877     if (log)
2878         log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__, *alloc->address.get());
2879 
2880     // Check we have information about the allocation, if not calculate it
2881     if (alloc->shouldRefresh())
2882     {
2883         if (log)
2884             log->Printf("%s - allocation details not calculated yet, jitting info.", __FUNCTION__);
2885 
2886         // JIT all the allocation information
2887         if (!RefreshAllocation(alloc, frame_ptr))
2888         {
2889             strm.Printf("Error: Couldn't JIT allocation details");
2890             strm.EOL();
2891             return false;
2892         }
2893     }
2894 
2895     // Establish format and size of each data element
2896     const uint32_t vec_size = *alloc->element.type_vec_size.get();
2897     const Element::DataType type = *alloc->element.type.get();
2898 
2899     assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && "Invalid allocation type");
2900 
2901     lldb::Format format;
2902     if (type >= Element::RS_TYPE_ELEMENT)
2903         format = eFormatHex;
2904     else
2905         format = vec_size == 1 ? static_cast<lldb::Format>(AllocationDetails::RSTypeToFormat[type][eFormatSingle])
2906                                : static_cast<lldb::Format>(AllocationDetails::RSTypeToFormat[type][eFormatVector]);
2907 
2908     const uint32_t data_size = *alloc->element.datum_size.get();
2909 
2910     if (log)
2911         log->Printf("%s - element size %" PRIu32 " bytes, including padding", __FUNCTION__, data_size);
2912 
2913     // Allocate a buffer to copy data into
2914     std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr);
2915     if (!buffer)
2916     {
2917         strm.Printf("Error: Couldn't read allocation data");
2918         strm.EOL();
2919         return false;
2920     }
2921 
2922     // Calculate stride between rows as there may be padding at end of rows since
2923     // allocated memory is 16-byte aligned
2924     if (!alloc->stride.isValid())
2925     {
2926         if (alloc->dimension.get()->dim_2 == 0) // We only have one dimension
2927             alloc->stride = 0;
2928         else if (!JITAllocationStride(alloc, frame_ptr))
2929         {
2930             strm.Printf("Error: Couldn't calculate allocation row stride");
2931             strm.EOL();
2932             return false;
2933         }
2934     }
2935     const uint32_t stride = *alloc->stride.get();
2936     const uint32_t size = *alloc->size.get(); // Size of whole allocation
2937     const uint32_t padding = alloc->element.padding.isValid() ? *alloc->element.padding.get() : 0;
2938     if (log)
2939         log->Printf("%s - stride %" PRIu32 " bytes, size %" PRIu32 " bytes, padding %" PRIu32,
2940                     __FUNCTION__, stride, size, padding);
2941 
2942     // Find dimensions used to index loops, so need to be non-zero
2943     uint32_t dim_x = alloc->dimension.get()->dim_1;
2944     dim_x = dim_x == 0 ? 1 : dim_x;
2945 
2946     uint32_t dim_y = alloc->dimension.get()->dim_2;
2947     dim_y = dim_y == 0 ? 1 : dim_y;
2948 
2949     uint32_t dim_z = alloc->dimension.get()->dim_3;
2950     dim_z = dim_z == 0 ? 1 : dim_z;
2951 
2952     // Use data extractor to format output
2953     const uint32_t archByteSize = GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
2954     DataExtractor alloc_data(buffer.get(), size, GetProcess()->GetByteOrder(), archByteSize);
2955 
2956     uint32_t offset = 0;   // Offset in buffer to next element to be printed
2957     uint32_t prev_row = 0; // Offset to the start of the previous row
2958 
2959     // Iterate over allocation dimensions, printing results to user
2960     strm.Printf("Data (X, Y, Z):");
2961     for (uint32_t z = 0; z < dim_z; ++z)
2962     {
2963         for (uint32_t y = 0; y < dim_y; ++y)
2964         {
2965             // Use stride to index start of next row.
2966             if (!(y == 0 && z == 0))
2967                 offset = prev_row + stride;
2968             prev_row = offset;
2969 
2970             // Print each element in the row individually
2971             for (uint32_t x = 0; x < dim_x; ++x)
2972             {
2973                 strm.Printf("\n(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ") = ", x, y, z);
2974                 if ((type == Element::RS_TYPE_NONE) && (alloc->element.children.size() > 0) &&
2975                     (alloc->element.type_name != Element::GetFallbackStructName()))
2976                 {
2977                     // Here we are dumping an Element of struct type.
2978                     // This is done using expression evaluation with the name of the struct type and pointer to element.
2979 
2980                     // Don't print the name of the resulting expression, since this will be '$[0-9]+'
2981                     DumpValueObjectOptions expr_options;
2982                     expr_options.SetHideName(true);
2983 
2984                     // Setup expression as derefrencing a pointer cast to element address.
2985                     char expr_char_buffer[jit_max_expr_size];
2986                     int chars_written = snprintf(expr_char_buffer, jit_max_expr_size, "*(%s*) 0x%" PRIx64,
2987                                                  alloc->element.type_name.AsCString(), *alloc->data_ptr.get() + offset);
2988 
2989                     if (chars_written < 0 || chars_written >= jit_max_expr_size)
2990                     {
2991                         if (log)
2992                             log->Printf("%s - error in snprintf().", __FUNCTION__);
2993                         continue;
2994                     }
2995 
2996                     // Evaluate expression
2997                     ValueObjectSP expr_result;
2998                     GetProcess()->GetTarget().EvaluateExpression(expr_char_buffer, frame_ptr, expr_result);
2999 
3000                     // Print the results to our stream.
3001                     expr_result->Dump(strm, expr_options);
3002                 }
3003                 else
3004                 {
3005                     alloc_data.Dump(&strm, offset, format, data_size - padding, 1, 1, LLDB_INVALID_ADDRESS, 0, 0);
3006                 }
3007                 offset += data_size;
3008             }
3009         }
3010     }
3011     strm.EOL();
3012 
3013     return true;
3014 }
3015 
3016 // Function recalculates all our cached information about allocations by jitting the
3017 // RS runtime regarding each allocation we know about.
3018 // Returns true if all allocations could be recomputed, false otherwise.
3019 bool
3020 RenderScriptRuntime::RecomputeAllAllocations(Stream &strm, StackFrame *frame_ptr)
3021 {
3022     bool success = true;
3023     for (auto &alloc : m_allocations)
3024     {
3025         // JIT current allocation information
3026         if (!RefreshAllocation(alloc.get(), frame_ptr))
3027         {
3028             strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32 "\n", alloc->id);
3029             success = false;
3030         }
3031     }
3032 
3033     if (success)
3034         strm.Printf("All allocations successfully recomputed");
3035     strm.EOL();
3036 
3037     return success;
3038 }
3039 
3040 // Prints information regarding currently loaded allocations.
3041 // These details are gathered by jitting the runtime, which has as latency.
3042 // Index parameter specifies a single allocation ID to print, or a zero value to print them all
3043 void
3044 RenderScriptRuntime::ListAllocations(Stream &strm, StackFrame *frame_ptr, const uint32_t index)
3045 {
3046     strm.Printf("RenderScript Allocations:");
3047     strm.EOL();
3048     strm.IndentMore();
3049 
3050     for (auto &alloc : m_allocations)
3051     {
3052         // index will only be zero if we want to print all allocations
3053         if (index != 0 && index != alloc->id)
3054             continue;
3055 
3056         // JIT current allocation information
3057         if (alloc->shouldRefresh() && !RefreshAllocation(alloc.get(), frame_ptr))
3058         {
3059             strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32, alloc->id);
3060             strm.EOL();
3061             continue;
3062         }
3063 
3064         strm.Printf("%" PRIu32 ":", alloc->id);
3065         strm.EOL();
3066         strm.IndentMore();
3067 
3068         strm.Indent("Context: ");
3069         if (!alloc->context.isValid())
3070             strm.Printf("unknown\n");
3071         else
3072             strm.Printf("0x%" PRIx64 "\n", *alloc->context.get());
3073 
3074         strm.Indent("Address: ");
3075         if (!alloc->address.isValid())
3076             strm.Printf("unknown\n");
3077         else
3078             strm.Printf("0x%" PRIx64 "\n", *alloc->address.get());
3079 
3080         strm.Indent("Data pointer: ");
3081         if (!alloc->data_ptr.isValid())
3082             strm.Printf("unknown\n");
3083         else
3084             strm.Printf("0x%" PRIx64 "\n", *alloc->data_ptr.get());
3085 
3086         strm.Indent("Dimensions: ");
3087         if (!alloc->dimension.isValid())
3088             strm.Printf("unknown\n");
3089         else
3090             strm.Printf("(%" PRId32 ", %" PRId32 ", %" PRId32 ")\n",
3091                         alloc->dimension.get()->dim_1, alloc->dimension.get()->dim_2, alloc->dimension.get()->dim_3);
3092 
3093         strm.Indent("Data Type: ");
3094         if (!alloc->element.type.isValid() || !alloc->element.type_vec_size.isValid())
3095             strm.Printf("unknown\n");
3096         else
3097         {
3098             const int vector_size = *alloc->element.type_vec_size.get();
3099             Element::DataType type = *alloc->element.type.get();
3100 
3101             if (!alloc->element.type_name.IsEmpty())
3102                 strm.Printf("%s\n", alloc->element.type_name.AsCString());
3103             else
3104             {
3105                 // Enum value isn't monotonous, so doesn't always index RsDataTypeToString array
3106                 if (type >= Element::RS_TYPE_ELEMENT && type <= Element::RS_TYPE_FONT)
3107                     type = static_cast<Element::DataType>((type - Element::RS_TYPE_ELEMENT) +
3108                                                           Element::RS_TYPE_MATRIX_2X2 + 1);
3109 
3110                 if (type >= (sizeof(AllocationDetails::RsDataTypeToString) /
3111                              sizeof(AllocationDetails::RsDataTypeToString[0])) ||
3112                     vector_size > 4 || vector_size < 1)
3113                     strm.Printf("invalid type\n");
3114                 else
3115                     strm.Printf("%s\n", AllocationDetails::RsDataTypeToString[static_cast<uint32_t>(type)]
3116                                                                              [vector_size - 1]);
3117             }
3118         }
3119 
3120         strm.Indent("Data Kind: ");
3121         if (!alloc->element.type_kind.isValid())
3122             strm.Printf("unknown\n");
3123         else
3124         {
3125             const Element::DataKind kind = *alloc->element.type_kind.get();
3126             if (kind < Element::RS_KIND_USER || kind > Element::RS_KIND_PIXEL_YUV)
3127                 strm.Printf("invalid kind\n");
3128             else
3129                 strm.Printf("%s\n", AllocationDetails::RsDataKindToString[static_cast<uint32_t>(kind)]);
3130         }
3131 
3132         strm.EOL();
3133         strm.IndentLess();
3134     }
3135     strm.IndentLess();
3136 }
3137 
3138 // Set breakpoints on every kernel found in RS module
3139 void
3140 RenderScriptRuntime::BreakOnModuleKernels(const RSModuleDescriptorSP rsmodule_sp)
3141 {
3142     for (const auto &kernel : rsmodule_sp->m_kernels)
3143     {
3144         // Don't set breakpoint on 'root' kernel
3145         if (strcmp(kernel.m_name.AsCString(), "root") == 0)
3146             continue;
3147 
3148         CreateKernelBreakpoint(kernel.m_name);
3149     }
3150 }
3151 
3152 // Method is internally called by the 'kernel breakpoint all' command to
3153 // enable or disable breaking on all kernels.
3154 //
3155 // When do_break is true we want to enable this functionality.
3156 // When do_break is false we want to disable it.
3157 void
3158 RenderScriptRuntime::SetBreakAllKernels(bool do_break, TargetSP target)
3159 {
3160     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
3161 
3162     InitSearchFilter(target);
3163 
3164     // Set breakpoints on all the kernels
3165     if (do_break && !m_breakAllKernels)
3166     {
3167         m_breakAllKernels = true;
3168 
3169         for (const auto &module : m_rsmodules)
3170             BreakOnModuleKernels(module);
3171 
3172         if (log)
3173             log->Printf("%s(True) - breakpoints set on all currently loaded kernels.", __FUNCTION__);
3174     }
3175     else if (!do_break && m_breakAllKernels) // Breakpoints won't be set on any new kernels.
3176     {
3177         m_breakAllKernels = false;
3178 
3179         if (log)
3180             log->Printf("%s(False) - breakpoints no longer automatically set.", __FUNCTION__);
3181     }
3182 }
3183 
3184 // Given the name of a kernel this function creates a breakpoint using our
3185 // own breakpoint resolver, and returns the Breakpoint shared pointer.
3186 BreakpointSP
3187 RenderScriptRuntime::CreateKernelBreakpoint(const ConstString &name)
3188 {
3189     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
3190 
3191     if (!m_filtersp)
3192     {
3193         if (log)
3194             log->Printf("%s - error, no breakpoint search filter set.", __FUNCTION__);
3195         return nullptr;
3196     }
3197 
3198     BreakpointResolverSP resolver_sp(new RSBreakpointResolver(nullptr, name));
3199     BreakpointSP bp = GetProcess()->GetTarget().CreateBreakpoint(m_filtersp, resolver_sp, false, false, false);
3200 
3201     // Give RS breakpoints a specific name, so the user can manipulate them as a group.
3202     Error err;
3203     if (!bp->AddName("RenderScriptKernel", err) && log)
3204         log->Printf("%s - error setting break name, '%s'.", __FUNCTION__, err.AsCString());
3205 
3206     return bp;
3207 }
3208 
3209 // Given an expression for a variable this function tries to calculate the variable's value.
3210 // If this is possible it returns true and sets the uint64_t parameter to the variables unsigned value.
3211 // Otherwise function returns false.
3212 bool
3213 RenderScriptRuntime::GetFrameVarAsUnsigned(const StackFrameSP frame_sp, const char *var_name, uint64_t &val)
3214 {
3215     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE));
3216     Error error;
3217     VariableSP var_sp;
3218 
3219     // Find variable in stack frame
3220     ValueObjectSP value_sp(frame_sp->GetValueForVariableExpressionPath(
3221         var_name, eNoDynamicValues,
3222         StackFrame::eExpressionPathOptionCheckPtrVsMember | StackFrame::eExpressionPathOptionsAllowDirectIVarAccess,
3223         var_sp, error));
3224     if (!error.Success())
3225     {
3226         if (log)
3227             log->Printf("%s - error, couldn't find '%s' in frame", __FUNCTION__, var_name);
3228         return false;
3229     }
3230 
3231     // Find the uint32_t value for the variable
3232     bool success = false;
3233     val = value_sp->GetValueAsUnsigned(0, &success);
3234     if (!success)
3235     {
3236         if (log)
3237             log->Printf("%s - error, couldn't parse '%s' as an uint32_t.", __FUNCTION__, var_name);
3238         return false;
3239     }
3240 
3241     return true;
3242 }
3243 
3244 // Function attempts to find the current coordinate of a kernel invocation by investigating the
3245 // values of frame variables in the .expand function. These coordinates are returned via the coord
3246 // array reference parameter. Returns true if the coordinates could be found, and false otherwise.
3247 bool
3248 RenderScriptRuntime::GetKernelCoordinate(RSCoordinate &coord, Thread *thread_ptr)
3249 {
3250     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE));
3251 
3252     if (!thread_ptr)
3253     {
3254         if (log)
3255             log->Printf("%s - Error, No thread pointer", __FUNCTION__);
3256 
3257         return false;
3258     }
3259 
3260     // Walk the call stack looking for a function whose name has the suffix '.expand'
3261     // and contains the variables we're looking for.
3262     for (uint32_t i = 0; i < thread_ptr->GetStackFrameCount(); ++i)
3263     {
3264         if (!thread_ptr->SetSelectedFrameByIndex(i))
3265             continue;
3266 
3267         StackFrameSP frame_sp = thread_ptr->GetSelectedFrame();
3268         if (!frame_sp)
3269             continue;
3270 
3271         // Find the function name
3272         const SymbolContext sym_ctx = frame_sp->GetSymbolContext(false);
3273         const char *func_name_cstr = sym_ctx.GetFunctionName().AsCString();
3274         if (!func_name_cstr)
3275             continue;
3276 
3277         if (log)
3278             log->Printf("%s - Inspecting function '%s'", __FUNCTION__, func_name_cstr);
3279 
3280         // Check if function name has .expand suffix
3281         std::string func_name(func_name_cstr);
3282         const int length_difference = func_name.length() - RenderScriptRuntime::s_runtimeExpandSuffix.length();
3283         if (length_difference <= 0)
3284             continue;
3285 
3286         const int32_t has_expand_suffix = func_name.compare(length_difference,
3287                                                             RenderScriptRuntime::s_runtimeExpandSuffix.length(),
3288                                                             RenderScriptRuntime::s_runtimeExpandSuffix);
3289 
3290         if (has_expand_suffix != 0)
3291             continue;
3292 
3293         if (log)
3294             log->Printf("%s - Found .expand function '%s'", __FUNCTION__, func_name_cstr);
3295 
3296         // Get values for variables in .expand frame that tell us the current kernel invocation
3297         bool found_coord_variables = true;
3298         assert(RenderScriptRuntime::s_runtimeCoordVars.size() == coord.size());
3299 
3300         for (uint32_t i = 0; i < coord.size(); ++i)
3301         {
3302             uint64_t value = 0;
3303             if (!GetFrameVarAsUnsigned(frame_sp, RenderScriptRuntime::s_runtimeCoordVars[i], value))
3304             {
3305                 found_coord_variables = false;
3306                 break;
3307             }
3308             coord[i] = value;
3309         }
3310 
3311         if (found_coord_variables)
3312             return true;
3313     }
3314     return false;
3315 }
3316 
3317 // Callback when a kernel breakpoint hits and we're looking for a specific coordinate.
3318 // Baton parameter contains a pointer to the target coordinate we want to break on.
3319 // Function then checks the .expand frame for the current coordinate and breaks to user if it matches.
3320 // Parameter 'break_id' is the id of the Breakpoint which made the callback.
3321 // Parameter 'break_loc_id' is the id for the BreakpointLocation which was hit,
3322 // a single logical breakpoint can have multiple addresses.
3323 bool
3324 RenderScriptRuntime::KernelBreakpointHit(void *baton, StoppointCallbackContext *ctx, user_id_t break_id,
3325                                          user_id_t break_loc_id)
3326 {
3327     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
3328 
3329     assert(baton && "Error: null baton in conditional kernel breakpoint callback");
3330 
3331     // Coordinate we want to stop on
3332     const uint32_t *target_coord = static_cast<const uint32_t *>(baton);
3333 
3334     if (log)
3335         log->Printf("%s - Break ID %" PRIu64 ", (%" PRIu32 ", %" PRIu32 ", %" PRIu32 ")", __FUNCTION__, break_id,
3336                     target_coord[0], target_coord[1], target_coord[2]);
3337 
3338     // Select current thread
3339     ExecutionContext context(ctx->exe_ctx_ref);
3340     Thread *thread_ptr = context.GetThreadPtr();
3341     assert(thread_ptr && "Null thread pointer");
3342 
3343     // Find current kernel invocation from .expand frame variables
3344     RSCoordinate current_coord{}; // Zero initialise array
3345     if (!GetKernelCoordinate(current_coord, thread_ptr))
3346     {
3347         if (log)
3348             log->Printf("%s - Error, couldn't select .expand stack frame", __FUNCTION__);
3349         return false;
3350     }
3351 
3352     if (log)
3353         log->Printf("%s - (%" PRIu32 ",%" PRIu32 ",%" PRIu32 ")", __FUNCTION__, current_coord[0], current_coord[1],
3354                     current_coord[2]);
3355 
3356     // Check if the current kernel invocation coordinate matches our target coordinate
3357     if (current_coord[0] == target_coord[0] &&
3358         current_coord[1] == target_coord[1] &&
3359         current_coord[2] == target_coord[2])
3360     {
3361         if (log)
3362             log->Printf("%s, BREAKING (%" PRIu32 ",%" PRIu32 ",%" PRIu32 ")", __FUNCTION__, current_coord[0],
3363                         current_coord[1], current_coord[2]);
3364 
3365         BreakpointSP breakpoint_sp = context.GetTargetPtr()->GetBreakpointByID(break_id);
3366         assert(breakpoint_sp != nullptr && "Error: Couldn't find breakpoint matching break id for callback");
3367         breakpoint_sp->SetEnabled(false); // Optimise since conditional breakpoint should only be hit once.
3368         return true;
3369     }
3370 
3371     // No match on coordinate
3372     return false;
3373 }
3374 
3375 // Tries to set a breakpoint on the start of a kernel, resolved using the kernel name.
3376 // Argument 'coords', represents a three dimensional coordinate which can be used to specify
3377 // a single kernel instance to break on. If this is set then we add a callback to the breakpoint.
3378 void
3379 RenderScriptRuntime::PlaceBreakpointOnKernel(Stream &strm, const char *name, const std::array<int, 3> coords,
3380                                              Error &error, TargetSP target)
3381 {
3382     if (!name)
3383     {
3384         error.SetErrorString("invalid kernel name");
3385         return;
3386     }
3387 
3388     InitSearchFilter(target);
3389 
3390     ConstString kernel_name(name);
3391     BreakpointSP bp = CreateKernelBreakpoint(kernel_name);
3392 
3393     // We have a conditional breakpoint on a specific coordinate
3394     if (coords[0] != -1)
3395     {
3396         strm.Printf("Conditional kernel breakpoint on coordinate %" PRId32 ", %" PRId32 ", %" PRId32,
3397                     coords[0], coords[1], coords[2]);
3398         strm.EOL();
3399 
3400         // Allocate memory for the baton, and copy over coordinate
3401         uint32_t *baton = new uint32_t[coords.size()];
3402         baton[0] = coords[0]; baton[1] = coords[1]; baton[2] = coords[2];
3403 
3404         // Create a callback that will be invoked everytime the breakpoint is hit.
3405         // The baton object passed to the handler is the target coordinate we want to break on.
3406         bp->SetCallback(KernelBreakpointHit, baton, true);
3407 
3408         // Store a shared pointer to the baton, so the memory will eventually be cleaned up after destruction
3409         m_conditional_breaks[bp->GetID()] = std::shared_ptr<uint32_t>(baton);
3410     }
3411 
3412     if (bp)
3413         bp->GetDescription(&strm, lldb::eDescriptionLevelInitial, false);
3414 }
3415 
3416 void
3417 RenderScriptRuntime::DumpModules(Stream &strm) const
3418 {
3419     strm.Printf("RenderScript Modules:");
3420     strm.EOL();
3421     strm.IndentMore();
3422     for (const auto &module : m_rsmodules)
3423     {
3424         module->Dump(strm);
3425     }
3426     strm.IndentLess();
3427 }
3428 
3429 RenderScriptRuntime::ScriptDetails *
3430 RenderScriptRuntime::LookUpScript(addr_t address, bool create)
3431 {
3432     for (const auto &s : m_scripts)
3433     {
3434         if (s->script.isValid())
3435             if (*s->script == address)
3436                 return s.get();
3437     }
3438     if (create)
3439     {
3440         std::unique_ptr<ScriptDetails> s(new ScriptDetails);
3441         s->script = address;
3442         m_scripts.push_back(std::move(s));
3443         return m_scripts.back().get();
3444     }
3445     return nullptr;
3446 }
3447 
3448 RenderScriptRuntime::AllocationDetails *
3449 RenderScriptRuntime::LookUpAllocation(addr_t address, bool create)
3450 {
3451     for (const auto &a : m_allocations)
3452     {
3453         if (a->address.isValid())
3454             if (*a->address == address)
3455                 return a.get();
3456     }
3457     if (create)
3458     {
3459         std::unique_ptr<AllocationDetails> a(new AllocationDetails);
3460         a->address = address;
3461         m_allocations.push_back(std::move(a));
3462         return m_allocations.back().get();
3463     }
3464     return nullptr;
3465 }
3466 
3467 void
3468 RSModuleDescriptor::Dump(Stream &strm) const
3469 {
3470     strm.Indent();
3471     m_module->GetFileSpec().Dump(&strm);
3472     if (m_module->GetNumCompileUnits())
3473     {
3474         strm.Indent("Debug info loaded.");
3475     }
3476     else
3477     {
3478         strm.Indent("Debug info does not exist.");
3479     }
3480     strm.EOL();
3481     strm.IndentMore();
3482     strm.Indent();
3483     strm.Printf("Globals: %" PRIu64, static_cast<uint64_t>(m_globals.size()));
3484     strm.EOL();
3485     strm.IndentMore();
3486     for (const auto &global : m_globals)
3487     {
3488         global.Dump(strm);
3489     }
3490     strm.IndentLess();
3491     strm.Indent();
3492     strm.Printf("Kernels: %" PRIu64, static_cast<uint64_t>(m_kernels.size()));
3493     strm.EOL();
3494     strm.IndentMore();
3495     for (const auto &kernel : m_kernels)
3496     {
3497         kernel.Dump(strm);
3498     }
3499     strm.Printf("Pragmas: %" PRIu64, static_cast<uint64_t>(m_pragmas.size()));
3500     strm.EOL();
3501     strm.IndentMore();
3502     for (const auto &key_val : m_pragmas)
3503     {
3504         strm.Printf("%s: %s", key_val.first.c_str(), key_val.second.c_str());
3505         strm.EOL();
3506     }
3507     strm.IndentLess(4);
3508 }
3509 
3510 void
3511 RSGlobalDescriptor::Dump(Stream &strm) const
3512 {
3513     strm.Indent(m_name.AsCString());
3514     VariableList var_list;
3515     m_module->m_module->FindGlobalVariables(m_name, nullptr, true, 1U, var_list);
3516     if (var_list.GetSize() == 1)
3517     {
3518         auto var = var_list.GetVariableAtIndex(0);
3519         auto type = var->GetType();
3520         if (type)
3521         {
3522             strm.Printf(" - ");
3523             type->DumpTypeName(&strm);
3524         }
3525         else
3526         {
3527             strm.Printf(" - Unknown Type");
3528         }
3529     }
3530     else
3531     {
3532         strm.Printf(" - variable identified, but not found in binary");
3533         const Symbol *s = m_module->m_module->FindFirstSymbolWithNameAndType(m_name, eSymbolTypeData);
3534         if (s)
3535         {
3536             strm.Printf(" (symbol exists) ");
3537         }
3538     }
3539 
3540     strm.EOL();
3541 }
3542 
3543 void
3544 RSKernelDescriptor::Dump(Stream &strm) const
3545 {
3546     strm.Indent(m_name.AsCString());
3547     strm.EOL();
3548 }
3549 
3550 class CommandObjectRenderScriptRuntimeModuleDump : public CommandObjectParsed
3551 {
3552 public:
3553     CommandObjectRenderScriptRuntimeModuleDump(CommandInterpreter &interpreter)
3554         : CommandObjectParsed(interpreter, "renderscript module dump",
3555                               "Dumps renderscript specific information for all modules.", "renderscript module dump",
3556                               eCommandRequiresProcess | eCommandProcessMustBeLaunched)
3557     {
3558     }
3559 
3560     ~CommandObjectRenderScriptRuntimeModuleDump() override = default;
3561 
3562     bool
3563     DoExecute(Args &command, CommandReturnObject &result) override
3564     {
3565         RenderScriptRuntime *runtime =
3566             (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
3567         runtime->DumpModules(result.GetOutputStream());
3568         result.SetStatus(eReturnStatusSuccessFinishResult);
3569         return true;
3570     }
3571 };
3572 
3573 class CommandObjectRenderScriptRuntimeModule : public CommandObjectMultiword
3574 {
3575 public:
3576     CommandObjectRenderScriptRuntimeModule(CommandInterpreter &interpreter)
3577         : CommandObjectMultiword(interpreter, "renderscript module", "Commands that deal with renderscript modules.",
3578                                  nullptr)
3579     {
3580         LoadSubCommand("dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeModuleDump(interpreter)));
3581     }
3582 
3583     ~CommandObjectRenderScriptRuntimeModule() override = default;
3584 };
3585 
3586 class CommandObjectRenderScriptRuntimeKernelList : public CommandObjectParsed
3587 {
3588 public:
3589     CommandObjectRenderScriptRuntimeKernelList(CommandInterpreter &interpreter)
3590         : CommandObjectParsed(interpreter, "renderscript kernel list",
3591                               "Lists renderscript kernel names and associated script resources.",
3592                               "renderscript kernel list", eCommandRequiresProcess | eCommandProcessMustBeLaunched)
3593     {
3594     }
3595 
3596     ~CommandObjectRenderScriptRuntimeKernelList() override = default;
3597 
3598     bool
3599     DoExecute(Args &command, CommandReturnObject &result) override
3600     {
3601         RenderScriptRuntime *runtime =
3602             (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
3603         runtime->DumpKernels(result.GetOutputStream());
3604         result.SetStatus(eReturnStatusSuccessFinishResult);
3605         return true;
3606     }
3607 };
3608 
3609 class CommandObjectRenderScriptRuntimeKernelBreakpointSet : public CommandObjectParsed
3610 {
3611 public:
3612     CommandObjectRenderScriptRuntimeKernelBreakpointSet(CommandInterpreter &interpreter)
3613         : CommandObjectParsed(interpreter, "renderscript kernel breakpoint set",
3614                               "Sets a breakpoint on a renderscript kernel.",
3615                               "renderscript kernel breakpoint set <kernel_name> [-c x,y,z]",
3616                               eCommandRequiresProcess | eCommandProcessMustBeLaunched | eCommandProcessMustBePaused),
3617           m_options(interpreter)
3618     {
3619     }
3620 
3621     ~CommandObjectRenderScriptRuntimeKernelBreakpointSet() override = default;
3622 
3623     Options *
3624     GetOptions() override
3625     {
3626         return &m_options;
3627     }
3628 
3629     class CommandOptions : public Options
3630     {
3631     public:
3632         CommandOptions(CommandInterpreter &interpreter) : Options(interpreter) {}
3633 
3634         ~CommandOptions() override = default;
3635 
3636         Error
3637         SetOptionValue(uint32_t option_idx, const char *option_arg) override
3638         {
3639             Error error;
3640             const int short_option = m_getopt_table[option_idx].val;
3641 
3642             switch (short_option)
3643             {
3644                 case 'c':
3645                     if (!ParseCoordinate(option_arg))
3646                         error.SetErrorStringWithFormat("Couldn't parse coordinate '%s', should be in format 'x,y,z'.",
3647                                                        option_arg);
3648                     break;
3649                 default:
3650                     error.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
3651                     break;
3652             }
3653             return error;
3654         }
3655 
3656         // -c takes an argument of the form 'num[,num][,num]'.
3657         // Where 'id_cstr' is this argument with the whitespace trimmed.
3658         // Missing coordinates are defaulted to zero.
3659         bool
3660         ParseCoordinate(const char *id_cstr)
3661         {
3662             RegularExpression regex;
3663             RegularExpression::Match regex_match(3);
3664 
3665             bool matched = false;
3666             if (regex.Compile("^([0-9]+),([0-9]+),([0-9]+)$") && regex.Execute(id_cstr, &regex_match))
3667                 matched = true;
3668             else if (regex.Compile("^([0-9]+),([0-9]+)$") && regex.Execute(id_cstr, &regex_match))
3669                 matched = true;
3670             else if (regex.Compile("^([0-9]+)$") && regex.Execute(id_cstr, &regex_match))
3671                 matched = true;
3672             for (uint32_t i = 0; i < 3; i++)
3673             {
3674                 std::string group;
3675                 if (regex_match.GetMatchAtIndex(id_cstr, i + 1, group))
3676                     m_coord[i] = (uint32_t)strtoul(group.c_str(), nullptr, 0);
3677                 else
3678                     m_coord[i] = 0;
3679             }
3680             return matched;
3681         }
3682 
3683         void
3684         OptionParsingStarting() override
3685         {
3686             // -1 means the -c option hasn't been set
3687             m_coord[0] = -1;
3688             m_coord[1] = -1;
3689             m_coord[2] = -1;
3690         }
3691 
3692         const OptionDefinition *
3693         GetDefinitions() override
3694         {
3695             return g_option_table;
3696         }
3697 
3698         static OptionDefinition g_option_table[];
3699         std::array<int, 3> m_coord;
3700     };
3701 
3702     bool
3703     DoExecute(Args &command, CommandReturnObject &result) override
3704     {
3705         const size_t argc = command.GetArgumentCount();
3706         if (argc < 1)
3707         {
3708             result.AppendErrorWithFormat("'%s' takes 1 argument of kernel name, and an optional coordinate.",
3709                                          m_cmd_name.c_str());
3710             result.SetStatus(eReturnStatusFailed);
3711             return false;
3712         }
3713 
3714         RenderScriptRuntime *runtime =
3715             (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
3716 
3717         Error error;
3718         runtime->PlaceBreakpointOnKernel(result.GetOutputStream(), command.GetArgumentAtIndex(0), m_options.m_coord,
3719                                          error, m_exe_ctx.GetTargetSP());
3720 
3721         if (error.Success())
3722         {
3723             result.AppendMessage("Breakpoint(s) created");
3724             result.SetStatus(eReturnStatusSuccessFinishResult);
3725             return true;
3726         }
3727         result.SetStatus(eReturnStatusFailed);
3728         result.AppendErrorWithFormat("Error: %s", error.AsCString());
3729         return false;
3730     }
3731 
3732 private:
3733     CommandOptions m_options;
3734 };
3735 
3736 OptionDefinition CommandObjectRenderScriptRuntimeKernelBreakpointSet::CommandOptions::g_option_table[] = {
3737     {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeValue,
3738      "Set a breakpoint on a single invocation of the kernel with specified coordinate.\n"
3739      "Coordinate takes the form 'x[,y][,z] where x,y,z are positive integers representing kernel dimensions. "
3740      "Any unset dimensions will be defaulted to zero."},
3741     {0, false, nullptr, 0, 0, nullptr, nullptr, 0, eArgTypeNone, nullptr}};
3742 
3743 class CommandObjectRenderScriptRuntimeKernelBreakpointAll : public CommandObjectParsed
3744 {
3745 public:
3746     CommandObjectRenderScriptRuntimeKernelBreakpointAll(CommandInterpreter &interpreter)
3747         : CommandObjectParsed(
3748               interpreter, "renderscript kernel breakpoint all",
3749               "Automatically sets a breakpoint on all renderscript kernels that are or will be loaded.\n"
3750               "Disabling option means breakpoints will no longer be set on any kernels loaded in the future, "
3751               "but does not remove currently set breakpoints.",
3752               "renderscript kernel breakpoint all <enable/disable>",
3753               eCommandRequiresProcess | eCommandProcessMustBeLaunched | eCommandProcessMustBePaused)
3754     {
3755     }
3756 
3757     ~CommandObjectRenderScriptRuntimeKernelBreakpointAll() override = default;
3758 
3759     bool
3760     DoExecute(Args &command, CommandReturnObject &result) override
3761     {
3762         const size_t argc = command.GetArgumentCount();
3763         if (argc != 1)
3764         {
3765             result.AppendErrorWithFormat("'%s' takes 1 argument of 'enable' or 'disable'", m_cmd_name.c_str());
3766             result.SetStatus(eReturnStatusFailed);
3767             return false;
3768         }
3769 
3770         RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
3771             m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
3772 
3773         bool do_break = false;
3774         const char *argument = command.GetArgumentAtIndex(0);
3775         if (strcmp(argument, "enable") == 0)
3776         {
3777             do_break = true;
3778             result.AppendMessage("Breakpoints will be set on all kernels.");
3779         }
3780         else if (strcmp(argument, "disable") == 0)
3781         {
3782             do_break = false;
3783             result.AppendMessage("Breakpoints will not be set on any new kernels.");
3784         }
3785         else
3786         {
3787             result.AppendErrorWithFormat("Argument must be either 'enable' or 'disable'");
3788             result.SetStatus(eReturnStatusFailed);
3789             return false;
3790         }
3791 
3792         runtime->SetBreakAllKernels(do_break, m_exe_ctx.GetTargetSP());
3793 
3794         result.SetStatus(eReturnStatusSuccessFinishResult);
3795         return true;
3796     }
3797 };
3798 
3799 class CommandObjectRenderScriptRuntimeKernelCoordinate : public CommandObjectParsed
3800 {
3801 public:
3802     CommandObjectRenderScriptRuntimeKernelCoordinate(CommandInterpreter &interpreter)
3803         : CommandObjectParsed(interpreter, "renderscript kernel coordinate",
3804                               "Shows the (x,y,z) coordinate of the current kernel invocation.",
3805                               "renderscript kernel coordinate",
3806                               eCommandRequiresProcess | eCommandProcessMustBeLaunched | eCommandProcessMustBePaused)
3807     {
3808     }
3809 
3810     ~CommandObjectRenderScriptRuntimeKernelCoordinate() override = default;
3811 
3812     bool
3813     DoExecute(Args &command, CommandReturnObject &result) override
3814     {
3815         RSCoordinate coord{}; // Zero initialize array
3816         bool success = RenderScriptRuntime::GetKernelCoordinate(coord, m_exe_ctx.GetThreadPtr());
3817         Stream &stream = result.GetOutputStream();
3818 
3819         if (success)
3820         {
3821             stream.Printf("Coordinate: (%" PRIu32 ", %" PRIu32 ", %" PRIu32 ")", coord[0], coord[1], coord[2]);
3822             stream.EOL();
3823             result.SetStatus(eReturnStatusSuccessFinishResult);
3824         }
3825         else
3826         {
3827             stream.Printf("Error: Coordinate could not be found.");
3828             stream.EOL();
3829             result.SetStatus(eReturnStatusFailed);
3830         }
3831         return true;
3832     }
3833 };
3834 
3835 class CommandObjectRenderScriptRuntimeKernelBreakpoint : public CommandObjectMultiword
3836 {
3837 public:
3838     CommandObjectRenderScriptRuntimeKernelBreakpoint(CommandInterpreter &interpreter)
3839         : CommandObjectMultiword(interpreter, "renderscript kernel",
3840                                  "Commands that generate breakpoints on renderscript kernels.", nullptr)
3841     {
3842         LoadSubCommand("set", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointSet(interpreter)));
3843         LoadSubCommand("all", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointAll(interpreter)));
3844     }
3845 
3846     ~CommandObjectRenderScriptRuntimeKernelBreakpoint() override = default;
3847 };
3848 
3849 class CommandObjectRenderScriptRuntimeKernel : public CommandObjectMultiword
3850 {
3851 public:
3852     CommandObjectRenderScriptRuntimeKernel(CommandInterpreter &interpreter)
3853         : CommandObjectMultiword(interpreter, "renderscript kernel", "Commands that deal with renderscript kernels.",
3854                                  nullptr)
3855     {
3856         LoadSubCommand("list", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelList(interpreter)));
3857         LoadSubCommand("coordinate",
3858                        CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelCoordinate(interpreter)));
3859         LoadSubCommand("breakpoint",
3860                        CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpoint(interpreter)));
3861     }
3862 
3863     ~CommandObjectRenderScriptRuntimeKernel() override = default;
3864 };
3865 
3866 class CommandObjectRenderScriptRuntimeContextDump : public CommandObjectParsed
3867 {
3868 public:
3869     CommandObjectRenderScriptRuntimeContextDump(CommandInterpreter &interpreter)
3870         : CommandObjectParsed(interpreter, "renderscript context dump", "Dumps renderscript context information.",
3871                               "renderscript context dump", eCommandRequiresProcess | eCommandProcessMustBeLaunched)
3872     {
3873     }
3874 
3875     ~CommandObjectRenderScriptRuntimeContextDump() override = default;
3876 
3877     bool
3878     DoExecute(Args &command, CommandReturnObject &result) override
3879     {
3880         RenderScriptRuntime *runtime =
3881             (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
3882         runtime->DumpContexts(result.GetOutputStream());
3883         result.SetStatus(eReturnStatusSuccessFinishResult);
3884         return true;
3885     }
3886 };
3887 
3888 class CommandObjectRenderScriptRuntimeContext : public CommandObjectMultiword
3889 {
3890 public:
3891     CommandObjectRenderScriptRuntimeContext(CommandInterpreter &interpreter)
3892         : CommandObjectMultiword(interpreter, "renderscript context", "Commands that deal with renderscript contexts.",
3893                                  nullptr)
3894     {
3895         LoadSubCommand("dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeContextDump(interpreter)));
3896     }
3897 
3898     ~CommandObjectRenderScriptRuntimeContext() override = default;
3899 };
3900 
3901 class CommandObjectRenderScriptRuntimeAllocationDump : public CommandObjectParsed
3902 {
3903 public:
3904     CommandObjectRenderScriptRuntimeAllocationDump(CommandInterpreter &interpreter)
3905         : CommandObjectParsed(interpreter, "renderscript allocation dump",
3906                               "Displays the contents of a particular allocation", "renderscript allocation dump <ID>",
3907                               eCommandRequiresProcess | eCommandProcessMustBeLaunched),
3908           m_options(interpreter)
3909     {
3910     }
3911 
3912     ~CommandObjectRenderScriptRuntimeAllocationDump() override = default;
3913 
3914     Options *
3915     GetOptions() override
3916     {
3917         return &m_options;
3918     }
3919 
3920     class CommandOptions : public Options
3921     {
3922     public:
3923         CommandOptions(CommandInterpreter &interpreter) : Options(interpreter) {}
3924 
3925         ~CommandOptions() override = default;
3926 
3927         Error
3928         SetOptionValue(uint32_t option_idx, const char *option_arg) override
3929         {
3930             Error error;
3931             const int short_option = m_getopt_table[option_idx].val;
3932 
3933             switch (short_option)
3934             {
3935                 case 'f':
3936                     m_outfile.SetFile(option_arg, true);
3937                     if (m_outfile.Exists())
3938                     {
3939                         m_outfile.Clear();
3940                         error.SetErrorStringWithFormat("file already exists: '%s'", option_arg);
3941                     }
3942                     break;
3943                 default:
3944                     error.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
3945                     break;
3946             }
3947             return error;
3948         }
3949 
3950         void
3951         OptionParsingStarting() override
3952         {
3953             m_outfile.Clear();
3954         }
3955 
3956         const OptionDefinition *
3957         GetDefinitions() override
3958         {
3959             return g_option_table;
3960         }
3961 
3962         static OptionDefinition g_option_table[];
3963         FileSpec m_outfile;
3964     };
3965 
3966     bool
3967     DoExecute(Args &command, CommandReturnObject &result) override
3968     {
3969         const size_t argc = command.GetArgumentCount();
3970         if (argc < 1)
3971         {
3972             result.AppendErrorWithFormat("'%s' takes 1 argument, an allocation ID. As well as an optional -f argument",
3973                                          m_cmd_name.c_str());
3974             result.SetStatus(eReturnStatusFailed);
3975             return false;
3976         }
3977 
3978         RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
3979             m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
3980 
3981         const char *id_cstr = command.GetArgumentAtIndex(0);
3982         bool convert_complete = false;
3983         const uint32_t id = StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete);
3984         if (!convert_complete)
3985         {
3986             result.AppendErrorWithFormat("invalid allocation id argument '%s'", id_cstr);
3987             result.SetStatus(eReturnStatusFailed);
3988             return false;
3989         }
3990 
3991         Stream *output_strm = nullptr;
3992         StreamFile outfile_stream;
3993         const FileSpec &outfile_spec = m_options.m_outfile; // Dump allocation to file instead
3994         if (outfile_spec)
3995         {
3996             // Open output file
3997             char path[256];
3998             outfile_spec.GetPath(path, sizeof(path));
3999             if (outfile_stream.GetFile().Open(path, File::eOpenOptionWrite | File::eOpenOptionCanCreate).Success())
4000             {
4001                 output_strm = &outfile_stream;
4002                 result.GetOutputStream().Printf("Results written to '%s'", path);
4003                 result.GetOutputStream().EOL();
4004             }
4005             else
4006             {
4007                 result.AppendErrorWithFormat("Couldn't open file '%s'", path);
4008                 result.SetStatus(eReturnStatusFailed);
4009                 return false;
4010             }
4011         }
4012         else
4013             output_strm = &result.GetOutputStream();
4014 
4015         assert(output_strm != nullptr);
4016         bool success = runtime->DumpAllocation(*output_strm, m_exe_ctx.GetFramePtr(), id);
4017 
4018         if (success)
4019             result.SetStatus(eReturnStatusSuccessFinishResult);
4020         else
4021             result.SetStatus(eReturnStatusFailed);
4022 
4023         return true;
4024     }
4025 
4026 private:
4027     CommandOptions m_options;
4028 };
4029 
4030 OptionDefinition CommandObjectRenderScriptRuntimeAllocationDump::CommandOptions::g_option_table[] = {
4031     {LLDB_OPT_SET_1, false, "file", 'f', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeFilename,
4032      "Print results to specified file instead of command line."},
4033     {0, false, nullptr, 0, 0, nullptr, nullptr, 0, eArgTypeNone, nullptr}};
4034 
4035 class CommandObjectRenderScriptRuntimeAllocationList : public CommandObjectParsed
4036 {
4037 public:
4038     CommandObjectRenderScriptRuntimeAllocationList(CommandInterpreter &interpreter)
4039         : CommandObjectParsed(interpreter, "renderscript allocation list",
4040                               "List renderscript allocations and their information.", "renderscript allocation list",
4041                               eCommandRequiresProcess | eCommandProcessMustBeLaunched),
4042           m_options(interpreter)
4043     {
4044     }
4045 
4046     ~CommandObjectRenderScriptRuntimeAllocationList() override = default;
4047 
4048     Options *
4049     GetOptions() override
4050     {
4051         return &m_options;
4052     }
4053 
4054     class CommandOptions : public Options
4055     {
4056     public:
4057         CommandOptions(CommandInterpreter &interpreter) : Options(interpreter), m_id(0) {}
4058 
4059         ~CommandOptions() override = default;
4060 
4061         Error
4062         SetOptionValue(uint32_t option_idx, const char *option_arg) override
4063         {
4064             Error error;
4065             const int short_option = m_getopt_table[option_idx].val;
4066 
4067             switch (short_option)
4068             {
4069                 case 'i':
4070                     bool success;
4071                     m_id = StringConvert::ToUInt32(option_arg, 0, 0, &success);
4072                     if (!success)
4073                         error.SetErrorStringWithFormat("invalid integer value for option '%c'", short_option);
4074                     break;
4075                 default:
4076                     error.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
4077                     break;
4078             }
4079             return error;
4080         }
4081 
4082         void
4083         OptionParsingStarting() override
4084         {
4085             m_id = 0;
4086         }
4087 
4088         const OptionDefinition *
4089         GetDefinitions() override
4090         {
4091             return g_option_table;
4092         }
4093 
4094         static OptionDefinition g_option_table[];
4095         uint32_t m_id;
4096     };
4097 
4098     bool
4099     DoExecute(Args &command, CommandReturnObject &result) override
4100     {
4101         RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4102             m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
4103         runtime->ListAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr(), m_options.m_id);
4104         result.SetStatus(eReturnStatusSuccessFinishResult);
4105         return true;
4106     }
4107 
4108 private:
4109     CommandOptions m_options;
4110 };
4111 
4112 OptionDefinition CommandObjectRenderScriptRuntimeAllocationList::CommandOptions::g_option_table[] = {
4113     {LLDB_OPT_SET_1, false, "id", 'i', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeIndex,
4114      "Only show details of a single allocation with specified id."},
4115     {0, false, nullptr, 0, 0, nullptr, nullptr, 0, eArgTypeNone, nullptr}};
4116 
4117 class CommandObjectRenderScriptRuntimeAllocationLoad : public CommandObjectParsed
4118 {
4119 public:
4120     CommandObjectRenderScriptRuntimeAllocationLoad(CommandInterpreter &interpreter)
4121         : CommandObjectParsed(
4122               interpreter, "renderscript allocation load", "Loads renderscript allocation contents from a file.",
4123               "renderscript allocation load <ID> <filename>", eCommandRequiresProcess | eCommandProcessMustBeLaunched)
4124     {
4125     }
4126 
4127     ~CommandObjectRenderScriptRuntimeAllocationLoad() override = default;
4128 
4129     bool
4130     DoExecute(Args &command, CommandReturnObject &result) override
4131     {
4132         const size_t argc = command.GetArgumentCount();
4133         if (argc != 2)
4134         {
4135             result.AppendErrorWithFormat("'%s' takes 2 arguments, an allocation ID and filename to read from.",
4136                                          m_cmd_name.c_str());
4137             result.SetStatus(eReturnStatusFailed);
4138             return false;
4139         }
4140 
4141         RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4142             m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
4143 
4144         const char *id_cstr = command.GetArgumentAtIndex(0);
4145         bool convert_complete = false;
4146         const uint32_t id = StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete);
4147         if (!convert_complete)
4148         {
4149             result.AppendErrorWithFormat("invalid allocation id argument '%s'", id_cstr);
4150             result.SetStatus(eReturnStatusFailed);
4151             return false;
4152         }
4153 
4154         const char *filename = command.GetArgumentAtIndex(1);
4155         bool success = runtime->LoadAllocation(result.GetOutputStream(), id, filename, m_exe_ctx.GetFramePtr());
4156 
4157         if (success)
4158             result.SetStatus(eReturnStatusSuccessFinishResult);
4159         else
4160             result.SetStatus(eReturnStatusFailed);
4161 
4162         return true;
4163     }
4164 };
4165 
4166 class CommandObjectRenderScriptRuntimeAllocationSave : public CommandObjectParsed
4167 {
4168 public:
4169     CommandObjectRenderScriptRuntimeAllocationSave(CommandInterpreter &interpreter)
4170         : CommandObjectParsed(
4171               interpreter, "renderscript allocation save", "Write renderscript allocation contents to a file.",
4172               "renderscript allocation save <ID> <filename>", eCommandRequiresProcess | eCommandProcessMustBeLaunched)
4173     {
4174     }
4175 
4176     ~CommandObjectRenderScriptRuntimeAllocationSave() override = default;
4177 
4178     bool
4179     DoExecute(Args &command, CommandReturnObject &result) override
4180     {
4181         const size_t argc = command.GetArgumentCount();
4182         if (argc != 2)
4183         {
4184             result.AppendErrorWithFormat("'%s' takes 2 arguments, an allocation ID and filename to read from.",
4185                                          m_cmd_name.c_str());
4186             result.SetStatus(eReturnStatusFailed);
4187             return false;
4188         }
4189 
4190         RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4191             m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
4192 
4193         const char *id_cstr = command.GetArgumentAtIndex(0);
4194         bool convert_complete = false;
4195         const uint32_t id = StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete);
4196         if (!convert_complete)
4197         {
4198             result.AppendErrorWithFormat("invalid allocation id argument '%s'", id_cstr);
4199             result.SetStatus(eReturnStatusFailed);
4200             return false;
4201         }
4202 
4203         const char *filename = command.GetArgumentAtIndex(1);
4204         bool success = runtime->SaveAllocation(result.GetOutputStream(), id, filename, m_exe_ctx.GetFramePtr());
4205 
4206         if (success)
4207             result.SetStatus(eReturnStatusSuccessFinishResult);
4208         else
4209             result.SetStatus(eReturnStatusFailed);
4210 
4211         return true;
4212     }
4213 };
4214 
4215 class CommandObjectRenderScriptRuntimeAllocationRefresh : public CommandObjectParsed
4216 {
4217 public:
4218     CommandObjectRenderScriptRuntimeAllocationRefresh(CommandInterpreter &interpreter)
4219         : CommandObjectParsed(interpreter, "renderscript allocation refresh",
4220                               "Recomputes the details of all allocations.", "renderscript allocation refresh",
4221                               eCommandRequiresProcess | eCommandProcessMustBeLaunched)
4222     {
4223     }
4224 
4225     ~CommandObjectRenderScriptRuntimeAllocationRefresh() override = default;
4226 
4227     bool
4228     DoExecute(Args &command, CommandReturnObject &result) override
4229     {
4230         RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4231             m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
4232 
4233         bool success = runtime->RecomputeAllAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr());
4234 
4235         if (success)
4236         {
4237             result.SetStatus(eReturnStatusSuccessFinishResult);
4238             return true;
4239         }
4240         else
4241         {
4242             result.SetStatus(eReturnStatusFailed);
4243             return false;
4244         }
4245     }
4246 };
4247 
4248 class CommandObjectRenderScriptRuntimeAllocation : public CommandObjectMultiword
4249 {
4250 public:
4251     CommandObjectRenderScriptRuntimeAllocation(CommandInterpreter &interpreter)
4252         : CommandObjectMultiword(interpreter, "renderscript allocation",
4253                                  "Commands that deal with renderscript allocations.", nullptr)
4254     {
4255         LoadSubCommand("list", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationList(interpreter)));
4256         LoadSubCommand("dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationDump(interpreter)));
4257         LoadSubCommand("save", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationSave(interpreter)));
4258         LoadSubCommand("load", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationLoad(interpreter)));
4259         LoadSubCommand("refresh", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationRefresh(interpreter)));
4260     }
4261 
4262     ~CommandObjectRenderScriptRuntimeAllocation() override = default;
4263 };
4264 
4265 class CommandObjectRenderScriptRuntimeStatus : public CommandObjectParsed
4266 {
4267 public:
4268     CommandObjectRenderScriptRuntimeStatus(CommandInterpreter &interpreter)
4269         : CommandObjectParsed(interpreter, "renderscript status", "Displays current renderscript runtime status.",
4270                               "renderscript status", eCommandRequiresProcess | eCommandProcessMustBeLaunched)
4271     {
4272     }
4273 
4274     ~CommandObjectRenderScriptRuntimeStatus() override = default;
4275 
4276     bool
4277     DoExecute(Args &command, CommandReturnObject &result) override
4278     {
4279         RenderScriptRuntime *runtime =
4280             (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
4281         runtime->Status(result.GetOutputStream());
4282         result.SetStatus(eReturnStatusSuccessFinishResult);
4283         return true;
4284     }
4285 };
4286 
4287 class CommandObjectRenderScriptRuntime : public CommandObjectMultiword
4288 {
4289 public:
4290     CommandObjectRenderScriptRuntime(CommandInterpreter &interpreter)
4291         : CommandObjectMultiword(interpreter, "renderscript", "A set of commands for operating on renderscript.",
4292                                  "renderscript <subcommand> [<subcommand-options>]")
4293     {
4294         LoadSubCommand("module", CommandObjectSP(new CommandObjectRenderScriptRuntimeModule(interpreter)));
4295         LoadSubCommand("status", CommandObjectSP(new CommandObjectRenderScriptRuntimeStatus(interpreter)));
4296         LoadSubCommand("kernel", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernel(interpreter)));
4297         LoadSubCommand("context", CommandObjectSP(new CommandObjectRenderScriptRuntimeContext(interpreter)));
4298         LoadSubCommand("allocation", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocation(interpreter)));
4299     }
4300 
4301     ~CommandObjectRenderScriptRuntime() override = default;
4302 };
4303 
4304 void
4305 RenderScriptRuntime::Initiate()
4306 {
4307     assert(!m_initiated);
4308 }
4309 
4310 RenderScriptRuntime::RenderScriptRuntime(Process *process)
4311     : lldb_private::CPPLanguageRuntime(process),
4312       m_initiated(false),
4313       m_debuggerPresentFlagged(false),
4314       m_breakAllKernels(false)
4315 {
4316     ModulesDidLoad(process->GetTarget().GetImages());
4317 }
4318 
4319 lldb::CommandObjectSP
4320 RenderScriptRuntime::GetCommandObject(lldb_private::CommandInterpreter &interpreter)
4321 {
4322     return CommandObjectSP(new CommandObjectRenderScriptRuntime(interpreter));
4323 }
4324 
4325 RenderScriptRuntime::~RenderScriptRuntime() = default;
4326