1 //===-- RenderScriptRuntime.cpp ---------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "RenderScriptRuntime.h"
10 #include "RenderScriptScriptGroup.h"
11 
12 #include "lldb/Breakpoint/StoppointCallbackContext.h"
13 #include "lldb/Core/Debugger.h"
14 #include "lldb/Core/DumpDataExtractor.h"
15 #include "lldb/Core/PluginManager.h"
16 #include "lldb/Core/ValueObjectVariable.h"
17 #include "lldb/DataFormatters/DumpValueObjectOptions.h"
18 #include "lldb/Expression/UserExpression.h"
19 #include "lldb/Host/OptionParser.h"
20 #include "lldb/Host/StringConvert.h"
21 #include "lldb/Interpreter/CommandInterpreter.h"
22 #include "lldb/Interpreter/CommandObjectMultiword.h"
23 #include "lldb/Interpreter/CommandReturnObject.h"
24 #include "lldb/Interpreter/Options.h"
25 #include "lldb/Symbol/Function.h"
26 #include "lldb/Symbol/Symbol.h"
27 #include "lldb/Symbol/Type.h"
28 #include "lldb/Symbol/VariableList.h"
29 #include "lldb/Target/Process.h"
30 #include "lldb/Target/RegisterContext.h"
31 #include "lldb/Target/SectionLoadList.h"
32 #include "lldb/Target/Target.h"
33 #include "lldb/Target/Thread.h"
34 #include "lldb/Utility/Args.h"
35 #include "lldb/Utility/ConstString.h"
36 #include "lldb/Utility/Log.h"
37 #include "lldb/Utility/RegisterValue.h"
38 #include "lldb/Utility/RegularExpression.h"
39 #include "lldb/Utility/Status.h"
40 
41 #include "llvm/ADT/StringSwitch.h"
42 
43 #include <memory>
44 
45 using namespace lldb;
46 using namespace lldb_private;
47 using namespace lldb_renderscript;
48 
49 #define FMT_COORD "(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ")"
50 
51 namespace {
52 
53 // The empirical_type adds a basic level of validation to arbitrary data
54 // allowing us to track if data has been discovered and stored or not. An
55 // empirical_type will be marked as valid only if it has been explicitly
56 // assigned to.
57 template <typename type_t> class empirical_type {
58 public:
59   // Ctor. Contents is invalid when constructed.
60   empirical_type() : valid(false) {}
61 
62   // Return true and copy contents to out if valid, else return false.
63   bool get(type_t &out) const {
64     if (valid)
65       out = data;
66     return valid;
67   }
68 
69   // Return a pointer to the contents or nullptr if it was not valid.
70   const type_t *get() const { return valid ? &data : nullptr; }
71 
72   // Assign data explicitly.
73   void set(const type_t in) {
74     data = in;
75     valid = true;
76   }
77 
78   // Mark contents as invalid.
79   void invalidate() { valid = false; }
80 
81   // Returns true if this type contains valid data.
82   bool isValid() const { return valid; }
83 
84   // Assignment operator.
85   empirical_type<type_t> &operator=(const type_t in) {
86     set(in);
87     return *this;
88   }
89 
90   // Dereference operator returns contents.
91   // Warning: Will assert if not valid so use only when you know data is valid.
92   const type_t &operator*() const {
93     assert(valid);
94     return data;
95   }
96 
97 protected:
98   bool valid;
99   type_t data;
100 };
101 
102 // ArgItem is used by the GetArgs() function when reading function arguments
103 // from the target.
104 struct ArgItem {
105   enum { ePointer, eInt32, eInt64, eLong, eBool } type;
106 
107   uint64_t value;
108 
109   explicit operator uint64_t() const { return value; }
110 };
111 
112 // Context structure to be passed into GetArgsXXX(), argument reading functions
113 // below.
114 struct GetArgsCtx {
115   RegisterContext *reg_ctx;
116   Process *process;
117 };
118 
119 bool GetArgsX86(const GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
120   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
121 
122   Status err;
123 
124   // get the current stack pointer
125   uint64_t sp = ctx.reg_ctx->GetSP();
126 
127   for (size_t i = 0; i < num_args; ++i) {
128     ArgItem &arg = arg_list[i];
129     // advance up the stack by one argument
130     sp += sizeof(uint32_t);
131     // get the argument type size
132     size_t arg_size = sizeof(uint32_t);
133     // read the argument from memory
134     arg.value = 0;
135     Status err;
136     size_t read =
137         ctx.process->ReadMemory(sp, &arg.value, sizeof(uint32_t), err);
138     if (read != arg_size || !err.Success()) {
139       if (log)
140         log->Printf("%s - error reading argument: %" PRIu64 " '%s'",
141                     __FUNCTION__, uint64_t(i), err.AsCString());
142       return false;
143     }
144   }
145   return true;
146 }
147 
148 bool GetArgsX86_64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
149   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
150 
151   // number of arguments passed in registers
152   static const uint32_t args_in_reg = 6;
153   // register passing order
154   static const std::array<const char *, args_in_reg> reg_names{
155       {"rdi", "rsi", "rdx", "rcx", "r8", "r9"}};
156   // argument type to size mapping
157   static const std::array<size_t, 5> arg_size{{
158       8, // ePointer,
159       4, // eInt32,
160       8, // eInt64,
161       8, // eLong,
162       4, // eBool,
163   }};
164 
165   Status err;
166 
167   // get the current stack pointer
168   uint64_t sp = ctx.reg_ctx->GetSP();
169   // step over the return address
170   sp += sizeof(uint64_t);
171 
172   // check the stack alignment was correct (16 byte aligned)
173   if ((sp & 0xf) != 0x0) {
174     if (log)
175       log->Printf("%s - stack misaligned", __FUNCTION__);
176     return false;
177   }
178 
179   // find the start of arguments on the stack
180   uint64_t sp_offset = 0;
181   for (uint32_t i = args_in_reg; i < num_args; ++i) {
182     sp_offset += arg_size[arg_list[i].type];
183   }
184   // round up to multiple of 16
185   sp_offset = (sp_offset + 0xf) & 0xf;
186   sp += sp_offset;
187 
188   for (size_t i = 0; i < num_args; ++i) {
189     bool success = false;
190     ArgItem &arg = arg_list[i];
191     // arguments passed in registers
192     if (i < args_in_reg) {
193       const RegisterInfo *reg =
194           ctx.reg_ctx->GetRegisterInfoByName(reg_names[i]);
195       RegisterValue reg_val;
196       if (ctx.reg_ctx->ReadRegister(reg, reg_val))
197         arg.value = reg_val.GetAsUInt64(0, &success);
198     }
199     // arguments passed on the stack
200     else {
201       // get the argument type size
202       const size_t size = arg_size[arg_list[i].type];
203       // read the argument from memory
204       arg.value = 0;
205       // note: due to little endian layout reading 4 or 8 bytes will give the
206       // correct value.
207       size_t read = ctx.process->ReadMemory(sp, &arg.value, size, err);
208       success = (err.Success() && read == size);
209       // advance past this argument
210       sp -= size;
211     }
212     // fail if we couldn't read this argument
213     if (!success) {
214       if (log)
215         log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s",
216                     __FUNCTION__, uint64_t(i), err.AsCString("n/a"));
217       return false;
218     }
219   }
220   return true;
221 }
222 
223 bool GetArgsArm(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
224   // number of arguments passed in registers
225   static const uint32_t args_in_reg = 4;
226 
227   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
228 
229   Status err;
230 
231   // get the current stack pointer
232   uint64_t sp = ctx.reg_ctx->GetSP();
233 
234   for (size_t i = 0; i < num_args; ++i) {
235     bool success = false;
236     ArgItem &arg = arg_list[i];
237     // arguments passed in registers
238     if (i < args_in_reg) {
239       const RegisterInfo *reg = ctx.reg_ctx->GetRegisterInfoAtIndex(i);
240       RegisterValue reg_val;
241       if (ctx.reg_ctx->ReadRegister(reg, reg_val))
242         arg.value = reg_val.GetAsUInt32(0, &success);
243     }
244     // arguments passed on the stack
245     else {
246       // get the argument type size
247       const size_t arg_size = sizeof(uint32_t);
248       // clear all 64bits
249       arg.value = 0;
250       // read this argument from memory
251       size_t bytes_read =
252           ctx.process->ReadMemory(sp, &arg.value, arg_size, err);
253       success = (err.Success() && bytes_read == arg_size);
254       // advance the stack pointer
255       sp += sizeof(uint32_t);
256     }
257     // fail if we couldn't read this argument
258     if (!success) {
259       if (log)
260         log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s",
261                     __FUNCTION__, uint64_t(i), err.AsCString("n/a"));
262       return false;
263     }
264   }
265   return true;
266 }
267 
268 bool GetArgsAarch64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
269   // number of arguments passed in registers
270   static const uint32_t args_in_reg = 8;
271 
272   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
273 
274   for (size_t i = 0; i < num_args; ++i) {
275     bool success = false;
276     ArgItem &arg = arg_list[i];
277     // arguments passed in registers
278     if (i < args_in_reg) {
279       const RegisterInfo *reg = ctx.reg_ctx->GetRegisterInfoAtIndex(i);
280       RegisterValue reg_val;
281       if (ctx.reg_ctx->ReadRegister(reg, reg_val))
282         arg.value = reg_val.GetAsUInt64(0, &success);
283     }
284     // arguments passed on the stack
285     else {
286       if (log)
287         log->Printf("%s - reading arguments spilled to stack not implemented",
288                     __FUNCTION__);
289     }
290     // fail if we couldn't read this argument
291     if (!success) {
292       if (log)
293         log->Printf("%s - error reading argument: %" PRIu64, __FUNCTION__,
294                     uint64_t(i));
295       return false;
296     }
297   }
298   return true;
299 }
300 
301 bool GetArgsMipsel(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
302   // number of arguments passed in registers
303   static const uint32_t args_in_reg = 4;
304   // register file offset to first argument
305   static const uint32_t reg_offset = 4;
306 
307   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
308 
309   Status err;
310 
311   // find offset to arguments on the stack (+16 to skip over a0-a3 shadow
312   // space)
313   uint64_t sp = ctx.reg_ctx->GetSP() + 16;
314 
315   for (size_t i = 0; i < num_args; ++i) {
316     bool success = false;
317     ArgItem &arg = arg_list[i];
318     // arguments passed in registers
319     if (i < args_in_reg) {
320       const RegisterInfo *reg =
321           ctx.reg_ctx->GetRegisterInfoAtIndex(i + reg_offset);
322       RegisterValue reg_val;
323       if (ctx.reg_ctx->ReadRegister(reg, reg_val))
324         arg.value = reg_val.GetAsUInt64(0, &success);
325     }
326     // arguments passed on the stack
327     else {
328       const size_t arg_size = sizeof(uint32_t);
329       arg.value = 0;
330       size_t bytes_read =
331           ctx.process->ReadMemory(sp, &arg.value, arg_size, err);
332       success = (err.Success() && bytes_read == arg_size);
333       // advance the stack pointer
334       sp += arg_size;
335     }
336     // fail if we couldn't read this argument
337     if (!success) {
338       if (log)
339         log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s",
340                     __FUNCTION__, uint64_t(i), err.AsCString("n/a"));
341       return false;
342     }
343   }
344   return true;
345 }
346 
347 bool GetArgsMips64el(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
348   // number of arguments passed in registers
349   static const uint32_t args_in_reg = 8;
350   // register file offset to first argument
351   static const uint32_t reg_offset = 4;
352 
353   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
354 
355   Status err;
356 
357   // get the current stack pointer
358   uint64_t sp = ctx.reg_ctx->GetSP();
359 
360   for (size_t i = 0; i < num_args; ++i) {
361     bool success = false;
362     ArgItem &arg = arg_list[i];
363     // arguments passed in registers
364     if (i < args_in_reg) {
365       const RegisterInfo *reg =
366           ctx.reg_ctx->GetRegisterInfoAtIndex(i + reg_offset);
367       RegisterValue reg_val;
368       if (ctx.reg_ctx->ReadRegister(reg, reg_val))
369         arg.value = reg_val.GetAsUInt64(0, &success);
370     }
371     // arguments passed on the stack
372     else {
373       // get the argument type size
374       const size_t arg_size = sizeof(uint64_t);
375       // clear all 64bits
376       arg.value = 0;
377       // read this argument from memory
378       size_t bytes_read =
379           ctx.process->ReadMemory(sp, &arg.value, arg_size, err);
380       success = (err.Success() && bytes_read == arg_size);
381       // advance the stack pointer
382       sp += arg_size;
383     }
384     // fail if we couldn't read this argument
385     if (!success) {
386       if (log)
387         log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s",
388                     __FUNCTION__, uint64_t(i), err.AsCString("n/a"));
389       return false;
390     }
391   }
392   return true;
393 }
394 
395 bool GetArgs(ExecutionContext &exe_ctx, ArgItem *arg_list, size_t num_args) {
396   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
397 
398   // verify that we have a target
399   if (!exe_ctx.GetTargetPtr()) {
400     if (log)
401       log->Printf("%s - invalid target", __FUNCTION__);
402     return false;
403   }
404 
405   GetArgsCtx ctx = {exe_ctx.GetRegisterContext(), exe_ctx.GetProcessPtr()};
406   assert(ctx.reg_ctx && ctx.process);
407 
408   // dispatch based on architecture
409   switch (exe_ctx.GetTargetPtr()->GetArchitecture().GetMachine()) {
410   case llvm::Triple::ArchType::x86:
411     return GetArgsX86(ctx, arg_list, num_args);
412 
413   case llvm::Triple::ArchType::x86_64:
414     return GetArgsX86_64(ctx, arg_list, num_args);
415 
416   case llvm::Triple::ArchType::arm:
417     return GetArgsArm(ctx, arg_list, num_args);
418 
419   case llvm::Triple::ArchType::aarch64:
420     return GetArgsAarch64(ctx, arg_list, num_args);
421 
422   case llvm::Triple::ArchType::mipsel:
423     return GetArgsMipsel(ctx, arg_list, num_args);
424 
425   case llvm::Triple::ArchType::mips64el:
426     return GetArgsMips64el(ctx, arg_list, num_args);
427 
428   default:
429     // unsupported architecture
430     if (log) {
431       log->Printf(
432           "%s - architecture not supported: '%s'", __FUNCTION__,
433           exe_ctx.GetTargetRef().GetArchitecture().GetArchitectureName());
434     }
435     return false;
436   }
437 }
438 
439 bool IsRenderScriptScriptModule(ModuleSP module) {
440   if (!module)
441     return false;
442   return module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"),
443                                                 eSymbolTypeData) != nullptr;
444 }
445 
446 bool ParseCoordinate(llvm::StringRef coord_s, RSCoordinate &coord) {
447   // takes an argument of the form 'num[,num][,num]'. Where 'coord_s' is a
448   // comma separated 1,2 or 3-dimensional coordinate with the whitespace
449   // trimmed. Missing coordinates are defaulted to zero. If parsing of any
450   // elements fails the contents of &coord are undefined and `false` is
451   // returned, `true` otherwise
452 
453   RegularExpression regex;
454   RegularExpression::Match regex_match(3);
455 
456   bool matched = false;
457   if (regex.Compile(llvm::StringRef("^([0-9]+),([0-9]+),([0-9]+)$")) &&
458       regex.Execute(coord_s, &regex_match))
459     matched = true;
460   else if (regex.Compile(llvm::StringRef("^([0-9]+),([0-9]+)$")) &&
461            regex.Execute(coord_s, &regex_match))
462     matched = true;
463   else if (regex.Compile(llvm::StringRef("^([0-9]+)$")) &&
464            regex.Execute(coord_s, &regex_match))
465     matched = true;
466 
467   if (!matched)
468     return false;
469 
470   auto get_index = [&](int idx, uint32_t &i) -> bool {
471     std::string group;
472     errno = 0;
473     if (regex_match.GetMatchAtIndex(coord_s.str().c_str(), idx + 1, group))
474       return !llvm::StringRef(group).getAsInteger<uint32_t>(10, i);
475     return true;
476   };
477 
478   return get_index(0, coord.x) && get_index(1, coord.y) &&
479          get_index(2, coord.z);
480 }
481 
482 bool SkipPrologue(lldb::ModuleSP &module, Address &addr) {
483   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
484   SymbolContext sc;
485   uint32_t resolved_flags =
486       module->ResolveSymbolContextForAddress(addr, eSymbolContextFunction, sc);
487   if (resolved_flags & eSymbolContextFunction) {
488     if (sc.function) {
489       const uint32_t offset = sc.function->GetPrologueByteSize();
490       ConstString name = sc.GetFunctionName();
491       if (offset)
492         addr.Slide(offset);
493       if (log)
494         log->Printf("%s: Prologue offset for %s is %" PRIu32, __FUNCTION__,
495                     name.AsCString(), offset);
496     }
497     return true;
498   } else
499     return false;
500 }
501 } // anonymous namespace
502 
503 // The ScriptDetails class collects data associated with a single script
504 // instance.
505 struct RenderScriptRuntime::ScriptDetails {
506   ~ScriptDetails() = default;
507 
508   enum ScriptType { eScript, eScriptC };
509 
510   // The derived type of the script.
511   empirical_type<ScriptType> type;
512   // The name of the original source file.
513   empirical_type<std::string> res_name;
514   // Path to script .so file on the device.
515   empirical_type<std::string> shared_lib;
516   // Directory where kernel objects are cached on device.
517   empirical_type<std::string> cache_dir;
518   // Pointer to the context which owns this script.
519   empirical_type<lldb::addr_t> context;
520   // Pointer to the script object itself.
521   empirical_type<lldb::addr_t> script;
522 };
523 
524 // This Element class represents the Element object in RS, defining the type
525 // associated with an Allocation.
526 struct RenderScriptRuntime::Element {
527   // Taken from rsDefines.h
528   enum DataKind {
529     RS_KIND_USER,
530     RS_KIND_PIXEL_L = 7,
531     RS_KIND_PIXEL_A,
532     RS_KIND_PIXEL_LA,
533     RS_KIND_PIXEL_RGB,
534     RS_KIND_PIXEL_RGBA,
535     RS_KIND_PIXEL_DEPTH,
536     RS_KIND_PIXEL_YUV,
537     RS_KIND_INVALID = 100
538   };
539 
540   // Taken from rsDefines.h
541   enum DataType {
542     RS_TYPE_NONE = 0,
543     RS_TYPE_FLOAT_16,
544     RS_TYPE_FLOAT_32,
545     RS_TYPE_FLOAT_64,
546     RS_TYPE_SIGNED_8,
547     RS_TYPE_SIGNED_16,
548     RS_TYPE_SIGNED_32,
549     RS_TYPE_SIGNED_64,
550     RS_TYPE_UNSIGNED_8,
551     RS_TYPE_UNSIGNED_16,
552     RS_TYPE_UNSIGNED_32,
553     RS_TYPE_UNSIGNED_64,
554     RS_TYPE_BOOLEAN,
555 
556     RS_TYPE_UNSIGNED_5_6_5,
557     RS_TYPE_UNSIGNED_5_5_5_1,
558     RS_TYPE_UNSIGNED_4_4_4_4,
559 
560     RS_TYPE_MATRIX_4X4,
561     RS_TYPE_MATRIX_3X3,
562     RS_TYPE_MATRIX_2X2,
563 
564     RS_TYPE_ELEMENT = 1000,
565     RS_TYPE_TYPE,
566     RS_TYPE_ALLOCATION,
567     RS_TYPE_SAMPLER,
568     RS_TYPE_SCRIPT,
569     RS_TYPE_MESH,
570     RS_TYPE_PROGRAM_FRAGMENT,
571     RS_TYPE_PROGRAM_VERTEX,
572     RS_TYPE_PROGRAM_RASTER,
573     RS_TYPE_PROGRAM_STORE,
574     RS_TYPE_FONT,
575 
576     RS_TYPE_INVALID = 10000
577   };
578 
579   std::vector<Element> children; // Child Element fields for structs
580   empirical_type<lldb::addr_t>
581       element_ptr; // Pointer to the RS Element of the Type
582   empirical_type<DataType>
583       type; // Type of each data pointer stored by the allocation
584   empirical_type<DataKind>
585       type_kind; // Defines pixel type if Allocation is created from an image
586   empirical_type<uint32_t>
587       type_vec_size; // Vector size of each data point, e.g '4' for uchar4
588   empirical_type<uint32_t> field_count; // Number of Subelements
589   empirical_type<uint32_t> datum_size;  // Size of a single Element with padding
590   empirical_type<uint32_t> padding;     // Number of padding bytes
591   empirical_type<uint32_t>
592       array_size;        // Number of items in array, only needed for structs
593   ConstString type_name; // Name of type, only needed for structs
594 
595   static const ConstString &
596   GetFallbackStructName(); // Print this as the type name of a struct Element
597                            // If we can't resolve the actual struct name
598 
599   bool ShouldRefresh() const {
600     const bool valid_ptr = element_ptr.isValid() && *element_ptr.get() != 0x0;
601     const bool valid_type =
602         type.isValid() && type_vec_size.isValid() && type_kind.isValid();
603     return !valid_ptr || !valid_type || !datum_size.isValid();
604   }
605 };
606 
607 // This AllocationDetails class collects data associated with a single
608 // allocation instance.
609 struct RenderScriptRuntime::AllocationDetails {
610   struct Dimension {
611     uint32_t dim_1;
612     uint32_t dim_2;
613     uint32_t dim_3;
614     uint32_t cube_map;
615 
616     Dimension() {
617       dim_1 = 0;
618       dim_2 = 0;
619       dim_3 = 0;
620       cube_map = 0;
621     }
622   };
623 
624   // The FileHeader struct specifies the header we use for writing allocations
625   // to a binary file. Our format begins with the ASCII characters "RSAD",
626   // identifying the file as an allocation dump. Member variables dims and
627   // hdr_size are then written consecutively, immediately followed by an
628   // instance of the ElementHeader struct. Because Elements can contain
629   // subelements, there may be more than one instance of the ElementHeader
630   // struct. With this first instance being the root element, and the other
631   // instances being the root's descendants. To identify which instances are an
632   // ElementHeader's children, each struct is immediately followed by a
633   // sequence of consecutive offsets to the start of its child structs. These
634   // offsets are
635   // 4 bytes in size, and the 0 offset signifies no more children.
636   struct FileHeader {
637     uint8_t ident[4];  // ASCII 'RSAD' identifying the file
638     uint32_t dims[3];  // Dimensions
639     uint16_t hdr_size; // Header size in bytes, including all element headers
640   };
641 
642   struct ElementHeader {
643     uint16_t type;         // DataType enum
644     uint32_t kind;         // DataKind enum
645     uint32_t element_size; // Size of a single element, including padding
646     uint16_t vector_size;  // Vector width
647     uint32_t array_size;   // Number of elements in array
648   };
649 
650   // Monotonically increasing from 1
651   static uint32_t ID;
652 
653   // Maps Allocation DataType enum and vector size to printable strings using
654   // mapping from RenderScript numerical types summary documentation
655   static const char *RsDataTypeToString[][4];
656 
657   // Maps Allocation DataKind enum to printable strings
658   static const char *RsDataKindToString[];
659 
660   // Maps allocation types to format sizes for printing.
661   static const uint32_t RSTypeToFormat[][3];
662 
663   // Give each allocation an ID as a way
664   // for commands to reference it.
665   const uint32_t id;
666 
667   // Allocation Element type
668   RenderScriptRuntime::Element element;
669   // Dimensions of the Allocation
670   empirical_type<Dimension> dimension;
671   // Pointer to address of the RS Allocation
672   empirical_type<lldb::addr_t> address;
673   // Pointer to the data held by the Allocation
674   empirical_type<lldb::addr_t> data_ptr;
675   // Pointer to the RS Type of the Allocation
676   empirical_type<lldb::addr_t> type_ptr;
677   // Pointer to the RS Context of the Allocation
678   empirical_type<lldb::addr_t> context;
679   // Size of the allocation
680   empirical_type<uint32_t> size;
681   // Stride between rows of the allocation
682   empirical_type<uint32_t> stride;
683 
684   // Give each allocation an id, so we can reference it in user commands.
685   AllocationDetails() : id(ID++) {}
686 
687   bool ShouldRefresh() const {
688     bool valid_ptrs = data_ptr.isValid() && *data_ptr.get() != 0x0;
689     valid_ptrs = valid_ptrs && type_ptr.isValid() && *type_ptr.get() != 0x0;
690     return !valid_ptrs || !dimension.isValid() || !size.isValid() ||
691            element.ShouldRefresh();
692   }
693 };
694 
695 const ConstString &RenderScriptRuntime::Element::GetFallbackStructName() {
696   static const ConstString FallbackStructName("struct");
697   return FallbackStructName;
698 }
699 
700 uint32_t RenderScriptRuntime::AllocationDetails::ID = 1;
701 
702 const char *RenderScriptRuntime::AllocationDetails::RsDataKindToString[] = {
703     "User",       "Undefined",   "Undefined", "Undefined",
704     "Undefined",  "Undefined",   "Undefined", // Enum jumps from 0 to 7
705     "L Pixel",    "A Pixel",     "LA Pixel",  "RGB Pixel",
706     "RGBA Pixel", "Pixel Depth", "YUV Pixel"};
707 
708 const char *RenderScriptRuntime::AllocationDetails::RsDataTypeToString[][4] = {
709     {"None", "None", "None", "None"},
710     {"half", "half2", "half3", "half4"},
711     {"float", "float2", "float3", "float4"},
712     {"double", "double2", "double3", "double4"},
713     {"char", "char2", "char3", "char4"},
714     {"short", "short2", "short3", "short4"},
715     {"int", "int2", "int3", "int4"},
716     {"long", "long2", "long3", "long4"},
717     {"uchar", "uchar2", "uchar3", "uchar4"},
718     {"ushort", "ushort2", "ushort3", "ushort4"},
719     {"uint", "uint2", "uint3", "uint4"},
720     {"ulong", "ulong2", "ulong3", "ulong4"},
721     {"bool", "bool2", "bool3", "bool4"},
722     {"packed_565", "packed_565", "packed_565", "packed_565"},
723     {"packed_5551", "packed_5551", "packed_5551", "packed_5551"},
724     {"packed_4444", "packed_4444", "packed_4444", "packed_4444"},
725     {"rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4"},
726     {"rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3"},
727     {"rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2"},
728 
729     // Handlers
730     {"RS Element", "RS Element", "RS Element", "RS Element"},
731     {"RS Type", "RS Type", "RS Type", "RS Type"},
732     {"RS Allocation", "RS Allocation", "RS Allocation", "RS Allocation"},
733     {"RS Sampler", "RS Sampler", "RS Sampler", "RS Sampler"},
734     {"RS Script", "RS Script", "RS Script", "RS Script"},
735 
736     // Deprecated
737     {"RS Mesh", "RS Mesh", "RS Mesh", "RS Mesh"},
738     {"RS Program Fragment", "RS Program Fragment", "RS Program Fragment",
739      "RS Program Fragment"},
740     {"RS Program Vertex", "RS Program Vertex", "RS Program Vertex",
741      "RS Program Vertex"},
742     {"RS Program Raster", "RS Program Raster", "RS Program Raster",
743      "RS Program Raster"},
744     {"RS Program Store", "RS Program Store", "RS Program Store",
745      "RS Program Store"},
746     {"RS Font", "RS Font", "RS Font", "RS Font"}};
747 
748 // Used as an index into the RSTypeToFormat array elements
749 enum TypeToFormatIndex { eFormatSingle = 0, eFormatVector, eElementSize };
750 
751 // { format enum of single element, format enum of element vector, size of
752 // element}
753 const uint32_t RenderScriptRuntime::AllocationDetails::RSTypeToFormat[][3] = {
754     // RS_TYPE_NONE
755     {eFormatHex, eFormatHex, 1},
756     // RS_TYPE_FLOAT_16
757     {eFormatFloat, eFormatVectorOfFloat16, 2},
758     // RS_TYPE_FLOAT_32
759     {eFormatFloat, eFormatVectorOfFloat32, sizeof(float)},
760     // RS_TYPE_FLOAT_64
761     {eFormatFloat, eFormatVectorOfFloat64, sizeof(double)},
762     // RS_TYPE_SIGNED_8
763     {eFormatDecimal, eFormatVectorOfSInt8, sizeof(int8_t)},
764     // RS_TYPE_SIGNED_16
765     {eFormatDecimal, eFormatVectorOfSInt16, sizeof(int16_t)},
766     // RS_TYPE_SIGNED_32
767     {eFormatDecimal, eFormatVectorOfSInt32, sizeof(int32_t)},
768     // RS_TYPE_SIGNED_64
769     {eFormatDecimal, eFormatVectorOfSInt64, sizeof(int64_t)},
770     // RS_TYPE_UNSIGNED_8
771     {eFormatDecimal, eFormatVectorOfUInt8, sizeof(uint8_t)},
772     // RS_TYPE_UNSIGNED_16
773     {eFormatDecimal, eFormatVectorOfUInt16, sizeof(uint16_t)},
774     // RS_TYPE_UNSIGNED_32
775     {eFormatDecimal, eFormatVectorOfUInt32, sizeof(uint32_t)},
776     // RS_TYPE_UNSIGNED_64
777     {eFormatDecimal, eFormatVectorOfUInt64, sizeof(uint64_t)},
778     // RS_TYPE_BOOL
779     {eFormatBoolean, eFormatBoolean, 1},
780     // RS_TYPE_UNSIGNED_5_6_5
781     {eFormatHex, eFormatHex, sizeof(uint16_t)},
782     // RS_TYPE_UNSIGNED_5_5_5_1
783     {eFormatHex, eFormatHex, sizeof(uint16_t)},
784     // RS_TYPE_UNSIGNED_4_4_4_4
785     {eFormatHex, eFormatHex, sizeof(uint16_t)},
786     // RS_TYPE_MATRIX_4X4
787     {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 16},
788     // RS_TYPE_MATRIX_3X3
789     {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 9},
790     // RS_TYPE_MATRIX_2X2
791     {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 4}};
792 
793 //------------------------------------------------------------------
794 // Static Functions
795 //------------------------------------------------------------------
796 LanguageRuntime *
797 RenderScriptRuntime::CreateInstance(Process *process,
798                                     lldb::LanguageType language) {
799 
800   if (language == eLanguageTypeExtRenderScript)
801     return new RenderScriptRuntime(process);
802   else
803     return nullptr;
804 }
805 
806 // Callback with a module to search for matching symbols. We first check that
807 // the module contains RS kernels. Then look for a symbol which matches our
808 // kernel name. The breakpoint address is finally set using the address of this
809 // symbol.
810 Searcher::CallbackReturn
811 RSBreakpointResolver::SearchCallback(SearchFilter &filter,
812                                      SymbolContext &context, Address *, bool) {
813   ModuleSP module = context.module_sp;
814 
815   if (!module || !IsRenderScriptScriptModule(module))
816     return Searcher::eCallbackReturnContinue;
817 
818   // Attempt to set a breakpoint on the kernel name symbol within the module
819   // library. If it's not found, it's likely debug info is unavailable - try to
820   // set a breakpoint on <name>.expand.
821   const Symbol *kernel_sym =
822       module->FindFirstSymbolWithNameAndType(m_kernel_name, eSymbolTypeCode);
823   if (!kernel_sym) {
824     std::string kernel_name_expanded(m_kernel_name.AsCString());
825     kernel_name_expanded.append(".expand");
826     kernel_sym = module->FindFirstSymbolWithNameAndType(
827         ConstString(kernel_name_expanded.c_str()), eSymbolTypeCode);
828   }
829 
830   if (kernel_sym) {
831     Address bp_addr = kernel_sym->GetAddress();
832     if (filter.AddressPasses(bp_addr))
833       m_breakpoint->AddLocation(bp_addr);
834   }
835 
836   return Searcher::eCallbackReturnContinue;
837 }
838 
839 Searcher::CallbackReturn
840 RSReduceBreakpointResolver::SearchCallback(lldb_private::SearchFilter &filter,
841                                            lldb_private::SymbolContext &context,
842                                            Address *, bool) {
843   // We need to have access to the list of reductions currently parsed, as
844   // reduce names don't actually exist as symbols in a module. They are only
845   // identifiable by parsing the .rs.info packet, or finding the expand symbol.
846   // We therefore need access to the list of parsed rs modules to properly
847   // resolve reduction names.
848   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_BREAKPOINTS));
849   ModuleSP module = context.module_sp;
850 
851   if (!module || !IsRenderScriptScriptModule(module))
852     return Searcher::eCallbackReturnContinue;
853 
854   if (!m_rsmodules)
855     return Searcher::eCallbackReturnContinue;
856 
857   for (const auto &module_desc : *m_rsmodules) {
858     if (module_desc->m_module != module)
859       continue;
860 
861     for (const auto &reduction : module_desc->m_reductions) {
862       if (reduction.m_reduce_name != m_reduce_name)
863         continue;
864 
865       std::array<std::pair<ConstString, int>, 5> funcs{
866           {{reduction.m_init_name, eKernelTypeInit},
867            {reduction.m_accum_name, eKernelTypeAccum},
868            {reduction.m_comb_name, eKernelTypeComb},
869            {reduction.m_outc_name, eKernelTypeOutC},
870            {reduction.m_halter_name, eKernelTypeHalter}}};
871 
872       for (const auto &kernel : funcs) {
873         // Skip constituent functions that don't match our spec
874         if (!(m_kernel_types & kernel.second))
875           continue;
876 
877         const auto kernel_name = kernel.first;
878         const auto symbol = module->FindFirstSymbolWithNameAndType(
879             kernel_name, eSymbolTypeCode);
880         if (!symbol)
881           continue;
882 
883         auto address = symbol->GetAddress();
884         if (filter.AddressPasses(address)) {
885           bool new_bp;
886           if (!SkipPrologue(module, address)) {
887             if (log)
888               log->Printf("%s: Error trying to skip prologue", __FUNCTION__);
889           }
890           m_breakpoint->AddLocation(address, &new_bp);
891           if (log)
892             log->Printf("%s: %s reduction breakpoint on %s in %s", __FUNCTION__,
893                         new_bp ? "new" : "existing", kernel_name.GetCString(),
894                         address.GetModule()->GetFileSpec().GetCString());
895         }
896       }
897     }
898   }
899   return eCallbackReturnContinue;
900 }
901 
902 Searcher::CallbackReturn RSScriptGroupBreakpointResolver::SearchCallback(
903     SearchFilter &filter, SymbolContext &context, Address *addr,
904     bool containing) {
905 
906   if (!m_breakpoint)
907     return eCallbackReturnContinue;
908 
909   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_BREAKPOINTS));
910   ModuleSP &module = context.module_sp;
911 
912   if (!module || !IsRenderScriptScriptModule(module))
913     return Searcher::eCallbackReturnContinue;
914 
915   std::vector<std::string> names;
916   m_breakpoint->GetNames(names);
917   if (names.empty())
918     return eCallbackReturnContinue;
919 
920   for (auto &name : names) {
921     const RSScriptGroupDescriptorSP sg = FindScriptGroup(ConstString(name));
922     if (!sg) {
923       if (log)
924         log->Printf("%s: could not find script group for %s", __FUNCTION__,
925                     name.c_str());
926       continue;
927     }
928 
929     if (log)
930       log->Printf("%s: Found ScriptGroup for %s", __FUNCTION__, name.c_str());
931 
932     for (const RSScriptGroupDescriptor::Kernel &k : sg->m_kernels) {
933       if (log) {
934         log->Printf("%s: Adding breakpoint for %s", __FUNCTION__,
935                     k.m_name.AsCString());
936         log->Printf("%s: Kernel address 0x%" PRIx64, __FUNCTION__, k.m_addr);
937       }
938 
939       const lldb_private::Symbol *sym =
940           module->FindFirstSymbolWithNameAndType(k.m_name, eSymbolTypeCode);
941       if (!sym) {
942         if (log)
943           log->Printf("%s: Unable to find symbol for %s", __FUNCTION__,
944                       k.m_name.AsCString());
945         continue;
946       }
947 
948       if (log) {
949         log->Printf("%s: Found symbol name is %s", __FUNCTION__,
950                     sym->GetName().AsCString());
951       }
952 
953       auto address = sym->GetAddress();
954       if (!SkipPrologue(module, address)) {
955         if (log)
956           log->Printf("%s: Error trying to skip prologue", __FUNCTION__);
957       }
958 
959       bool new_bp;
960       m_breakpoint->AddLocation(address, &new_bp);
961 
962       if (log)
963         log->Printf("%s: Placed %sbreakpoint on %s", __FUNCTION__,
964                     new_bp ? "new " : "", k.m_name.AsCString());
965 
966       // exit after placing the first breakpoint if we do not intend to stop on
967       // all kernels making up this script group
968       if (!m_stop_on_all)
969         break;
970     }
971   }
972 
973   return eCallbackReturnContinue;
974 }
975 
976 void RenderScriptRuntime::Initialize() {
977   PluginManager::RegisterPlugin(GetPluginNameStatic(),
978                                 "RenderScript language support", CreateInstance,
979                                 GetCommandObject);
980 }
981 
982 void RenderScriptRuntime::Terminate() {
983   PluginManager::UnregisterPlugin(CreateInstance);
984 }
985 
986 lldb_private::ConstString RenderScriptRuntime::GetPluginNameStatic() {
987   static ConstString plugin_name("renderscript");
988   return plugin_name;
989 }
990 
991 RenderScriptRuntime::ModuleKind
992 RenderScriptRuntime::GetModuleKind(const lldb::ModuleSP &module_sp) {
993   if (module_sp) {
994     if (IsRenderScriptScriptModule(module_sp))
995       return eModuleKindKernelObj;
996 
997     // Is this the main RS runtime library
998     const ConstString rs_lib("libRS.so");
999     if (module_sp->GetFileSpec().GetFilename() == rs_lib) {
1000       return eModuleKindLibRS;
1001     }
1002 
1003     const ConstString rs_driverlib("libRSDriver.so");
1004     if (module_sp->GetFileSpec().GetFilename() == rs_driverlib) {
1005       return eModuleKindDriver;
1006     }
1007 
1008     const ConstString rs_cpureflib("libRSCpuRef.so");
1009     if (module_sp->GetFileSpec().GetFilename() == rs_cpureflib) {
1010       return eModuleKindImpl;
1011     }
1012   }
1013   return eModuleKindIgnored;
1014 }
1015 
1016 bool RenderScriptRuntime::IsRenderScriptModule(
1017     const lldb::ModuleSP &module_sp) {
1018   return GetModuleKind(module_sp) != eModuleKindIgnored;
1019 }
1020 
1021 void RenderScriptRuntime::ModulesDidLoad(const ModuleList &module_list) {
1022   std::lock_guard<std::recursive_mutex> guard(module_list.GetMutex());
1023 
1024   size_t num_modules = module_list.GetSize();
1025   for (size_t i = 0; i < num_modules; i++) {
1026     auto mod = module_list.GetModuleAtIndex(i);
1027     if (IsRenderScriptModule(mod)) {
1028       LoadModule(mod);
1029     }
1030   }
1031 }
1032 
1033 //------------------------------------------------------------------
1034 // PluginInterface protocol
1035 //------------------------------------------------------------------
1036 lldb_private::ConstString RenderScriptRuntime::GetPluginName() {
1037   return GetPluginNameStatic();
1038 }
1039 
1040 uint32_t RenderScriptRuntime::GetPluginVersion() { return 1; }
1041 
1042 bool RenderScriptRuntime::IsVTableName(const char *name) { return false; }
1043 
1044 bool RenderScriptRuntime::GetDynamicTypeAndAddress(
1045     ValueObject &in_value, lldb::DynamicValueType use_dynamic,
1046     TypeAndOrName &class_type_or_name, Address &address,
1047     Value::ValueType &value_type) {
1048   return false;
1049 }
1050 
1051 TypeAndOrName
1052 RenderScriptRuntime::FixUpDynamicType(const TypeAndOrName &type_and_or_name,
1053                                       ValueObject &static_value) {
1054   return type_and_or_name;
1055 }
1056 
1057 bool RenderScriptRuntime::CouldHaveDynamicValue(ValueObject &in_value) {
1058   return false;
1059 }
1060 
1061 lldb::BreakpointResolverSP
1062 RenderScriptRuntime::CreateExceptionResolver(Breakpoint *bp, bool catch_bp,
1063                                              bool throw_bp) {
1064   BreakpointResolverSP resolver_sp;
1065   return resolver_sp;
1066 }
1067 
1068 const RenderScriptRuntime::HookDefn RenderScriptRuntime::s_runtimeHookDefns[] =
1069     {
1070         // rsdScript
1071         {"rsdScriptInit", "_Z13rsdScriptInitPKN7android12renderscript7ContextEP"
1072                           "NS0_7ScriptCEPKcS7_PKhjj",
1073          "_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_"
1074          "7ScriptCEPKcS7_PKhmj",
1075          0, RenderScriptRuntime::eModuleKindDriver,
1076          &lldb_private::RenderScriptRuntime::CaptureScriptInit},
1077         {"rsdScriptInvokeForEachMulti",
1078          "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0"
1079          "_6ScriptEjPPKNS0_10AllocationEjPS6_PKvjPK12RsScriptCall",
1080          "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0"
1081          "_6ScriptEjPPKNS0_10AllocationEmPS6_PKvmPK12RsScriptCall",
1082          0, RenderScriptRuntime::eModuleKindDriver,
1083          &lldb_private::RenderScriptRuntime::CaptureScriptInvokeForEachMulti},
1084         {"rsdScriptSetGlobalVar", "_Z21rsdScriptSetGlobalVarPKN7android12render"
1085                                   "script7ContextEPKNS0_6ScriptEjPvj",
1086          "_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_"
1087          "6ScriptEjPvm",
1088          0, RenderScriptRuntime::eModuleKindDriver,
1089          &lldb_private::RenderScriptRuntime::CaptureSetGlobalVar},
1090 
1091         // rsdAllocation
1092         {"rsdAllocationInit", "_Z17rsdAllocationInitPKN7android12renderscript7C"
1093                               "ontextEPNS0_10AllocationEb",
1094          "_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_"
1095          "10AllocationEb",
1096          0, RenderScriptRuntime::eModuleKindDriver,
1097          &lldb_private::RenderScriptRuntime::CaptureAllocationInit},
1098         {"rsdAllocationRead2D",
1099          "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_"
1100          "10AllocationEjjj23RsAllocationCubemapFacejjPvjj",
1101          "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_"
1102          "10AllocationEjjj23RsAllocationCubemapFacejjPvmm",
1103          0, RenderScriptRuntime::eModuleKindDriver, nullptr},
1104         {"rsdAllocationDestroy", "_Z20rsdAllocationDestroyPKN7android12rendersc"
1105                                  "ript7ContextEPNS0_10AllocationE",
1106          "_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_"
1107          "10AllocationE",
1108          0, RenderScriptRuntime::eModuleKindDriver,
1109          &lldb_private::RenderScriptRuntime::CaptureAllocationDestroy},
1110 
1111         // renderscript script groups
1112         {"rsdDebugHintScriptGroup2", "_ZN7android12renderscript21debugHintScrip"
1113                                      "tGroup2EPKcjPKPFvPK24RsExpandKernelDriver"
1114                                      "InfojjjEj",
1115          "_ZN7android12renderscript21debugHintScriptGroup2EPKcjPKPFvPK24RsExpan"
1116          "dKernelDriverInfojjjEj",
1117          0, RenderScriptRuntime::eModuleKindImpl,
1118          &lldb_private::RenderScriptRuntime::CaptureDebugHintScriptGroup2}};
1119 
1120 const size_t RenderScriptRuntime::s_runtimeHookCount =
1121     sizeof(s_runtimeHookDefns) / sizeof(s_runtimeHookDefns[0]);
1122 
1123 bool RenderScriptRuntime::HookCallback(void *baton,
1124                                        StoppointCallbackContext *ctx,
1125                                        lldb::user_id_t break_id,
1126                                        lldb::user_id_t break_loc_id) {
1127   RuntimeHook *hook = (RuntimeHook *)baton;
1128   ExecutionContext exe_ctx(ctx->exe_ctx_ref);
1129 
1130   RenderScriptRuntime *lang_rt =
1131       (RenderScriptRuntime *)exe_ctx.GetProcessPtr()->GetLanguageRuntime(
1132           eLanguageTypeExtRenderScript);
1133 
1134   lang_rt->HookCallback(hook, exe_ctx);
1135 
1136   return false;
1137 }
1138 
1139 void RenderScriptRuntime::HookCallback(RuntimeHook *hook,
1140                                        ExecutionContext &exe_ctx) {
1141   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1142 
1143   if (log)
1144     log->Printf("%s - '%s'", __FUNCTION__, hook->defn->name);
1145 
1146   if (hook->defn->grabber) {
1147     (this->*(hook->defn->grabber))(hook, exe_ctx);
1148   }
1149 }
1150 
1151 void RenderScriptRuntime::CaptureDebugHintScriptGroup2(
1152     RuntimeHook *hook_info, ExecutionContext &context) {
1153   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1154 
1155   enum {
1156     eGroupName = 0,
1157     eGroupNameSize,
1158     eKernel,
1159     eKernelCount,
1160   };
1161 
1162   std::array<ArgItem, 4> args{{
1163       {ArgItem::ePointer, 0}, // const char         *groupName
1164       {ArgItem::eInt32, 0},   // const uint32_t      groupNameSize
1165       {ArgItem::ePointer, 0}, // const ExpandFuncTy *kernel
1166       {ArgItem::eInt32, 0},   // const uint32_t      kernelCount
1167   }};
1168 
1169   if (!GetArgs(context, args.data(), args.size())) {
1170     if (log)
1171       log->Printf("%s - Error while reading the function parameters",
1172                   __FUNCTION__);
1173     return;
1174   } else if (log) {
1175     log->Printf("%s - groupName    : 0x%" PRIx64, __FUNCTION__,
1176                 addr_t(args[eGroupName]));
1177     log->Printf("%s - groupNameSize: %" PRIu64, __FUNCTION__,
1178                 uint64_t(args[eGroupNameSize]));
1179     log->Printf("%s - kernel       : 0x%" PRIx64, __FUNCTION__,
1180                 addr_t(args[eKernel]));
1181     log->Printf("%s - kernelCount  : %" PRIu64, __FUNCTION__,
1182                 uint64_t(args[eKernelCount]));
1183   }
1184 
1185   // parse script group name
1186   ConstString group_name;
1187   {
1188     Status err;
1189     const uint64_t len = uint64_t(args[eGroupNameSize]);
1190     std::unique_ptr<char[]> buffer(new char[uint32_t(len + 1)]);
1191     m_process->ReadMemory(addr_t(args[eGroupName]), buffer.get(), len, err);
1192     buffer.get()[len] = '\0';
1193     if (!err.Success()) {
1194       if (log)
1195         log->Printf("Error reading scriptgroup name from target");
1196       return;
1197     } else {
1198       if (log)
1199         log->Printf("Extracted scriptgroup name %s", buffer.get());
1200     }
1201     // write back the script group name
1202     group_name.SetCString(buffer.get());
1203   }
1204 
1205   // create or access existing script group
1206   RSScriptGroupDescriptorSP group;
1207   {
1208     // search for existing script group
1209     for (auto sg : m_scriptGroups) {
1210       if (sg->m_name == group_name) {
1211         group = sg;
1212         break;
1213       }
1214     }
1215     if (!group) {
1216       group = std::make_shared<RSScriptGroupDescriptor>();
1217       group->m_name = group_name;
1218       m_scriptGroups.push_back(group);
1219     } else {
1220       // already have this script group
1221       if (log)
1222         log->Printf("Attempt to add duplicate script group %s",
1223                     group_name.AsCString());
1224       return;
1225     }
1226   }
1227   assert(group);
1228 
1229   const uint32_t target_ptr_size = m_process->GetAddressByteSize();
1230   std::vector<addr_t> kernels;
1231   // parse kernel addresses in script group
1232   for (uint64_t i = 0; i < uint64_t(args[eKernelCount]); ++i) {
1233     RSScriptGroupDescriptor::Kernel kernel;
1234     // extract script group kernel addresses from the target
1235     const addr_t ptr_addr = addr_t(args[eKernel]) + i * target_ptr_size;
1236     uint64_t kernel_addr = 0;
1237     Status err;
1238     size_t read =
1239         m_process->ReadMemory(ptr_addr, &kernel_addr, target_ptr_size, err);
1240     if (!err.Success() || read != target_ptr_size) {
1241       if (log)
1242         log->Printf("Error parsing kernel address %" PRIu64 " in script group",
1243                     i);
1244       return;
1245     }
1246     if (log)
1247       log->Printf("Extracted scriptgroup kernel address - 0x%" PRIx64,
1248                   kernel_addr);
1249     kernel.m_addr = kernel_addr;
1250 
1251     // try to resolve the associated kernel name
1252     if (!ResolveKernelName(kernel.m_addr, kernel.m_name)) {
1253       if (log)
1254         log->Printf("Parsed scriptgroup kernel %" PRIu64 " - 0x%" PRIx64, i,
1255                     kernel_addr);
1256       return;
1257     }
1258 
1259     // try to find the non '.expand' function
1260     {
1261       const llvm::StringRef expand(".expand");
1262       const llvm::StringRef name_ref = kernel.m_name.GetStringRef();
1263       if (name_ref.endswith(expand)) {
1264         const ConstString base_kernel(name_ref.drop_back(expand.size()));
1265         // verify this function is a valid kernel
1266         if (IsKnownKernel(base_kernel)) {
1267           kernel.m_name = base_kernel;
1268           if (log)
1269             log->Printf("%s - found non expand version '%s'", __FUNCTION__,
1270                         base_kernel.GetCString());
1271         }
1272       }
1273     }
1274     // add to a list of script group kernels we know about
1275     group->m_kernels.push_back(kernel);
1276   }
1277 
1278   // Resolve any pending scriptgroup breakpoints
1279   {
1280     Target &target = m_process->GetTarget();
1281     const BreakpointList &list = target.GetBreakpointList();
1282     const size_t num_breakpoints = list.GetSize();
1283     if (log)
1284       log->Printf("Resolving %zu breakpoints", num_breakpoints);
1285     for (size_t i = 0; i < num_breakpoints; ++i) {
1286       const BreakpointSP bp = list.GetBreakpointAtIndex(i);
1287       if (bp) {
1288         if (bp->MatchesName(group_name.AsCString())) {
1289           if (log)
1290             log->Printf("Found breakpoint with name %s",
1291                         group_name.AsCString());
1292           bp->ResolveBreakpoint();
1293         }
1294       }
1295     }
1296   }
1297 }
1298 
1299 void RenderScriptRuntime::CaptureScriptInvokeForEachMulti(
1300     RuntimeHook *hook, ExecutionContext &exe_ctx) {
1301   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1302 
1303   enum {
1304     eRsContext = 0,
1305     eRsScript,
1306     eRsSlot,
1307     eRsAIns,
1308     eRsInLen,
1309     eRsAOut,
1310     eRsUsr,
1311     eRsUsrLen,
1312     eRsSc,
1313   };
1314 
1315   std::array<ArgItem, 9> args{{
1316       ArgItem{ArgItem::ePointer, 0}, // const Context       *rsc
1317       ArgItem{ArgItem::ePointer, 0}, // Script              *s
1318       ArgItem{ArgItem::eInt32, 0},   // uint32_t             slot
1319       ArgItem{ArgItem::ePointer, 0}, // const Allocation   **aIns
1320       ArgItem{ArgItem::eInt32, 0},   // size_t               inLen
1321       ArgItem{ArgItem::ePointer, 0}, // Allocation          *aout
1322       ArgItem{ArgItem::ePointer, 0}, // const void          *usr
1323       ArgItem{ArgItem::eInt32, 0},   // size_t               usrLen
1324       ArgItem{ArgItem::ePointer, 0}, // const RsScriptCall  *sc
1325   }};
1326 
1327   bool success = GetArgs(exe_ctx, &args[0], args.size());
1328   if (!success) {
1329     if (log)
1330       log->Printf("%s - Error while reading the function parameters",
1331                   __FUNCTION__);
1332     return;
1333   }
1334 
1335   const uint32_t target_ptr_size = m_process->GetAddressByteSize();
1336   Status err;
1337   std::vector<uint64_t> allocs;
1338 
1339   // traverse allocation list
1340   for (uint64_t i = 0; i < uint64_t(args[eRsInLen]); ++i) {
1341     // calculate offest to allocation pointer
1342     const addr_t addr = addr_t(args[eRsAIns]) + i * target_ptr_size;
1343 
1344     // Note: due to little endian layout, reading 32bits or 64bits into res
1345     // will give the correct results.
1346     uint64_t result = 0;
1347     size_t read = m_process->ReadMemory(addr, &result, target_ptr_size, err);
1348     if (read != target_ptr_size || !err.Success()) {
1349       if (log)
1350         log->Printf(
1351             "%s - Error while reading allocation list argument %" PRIu64,
1352             __FUNCTION__, i);
1353     } else {
1354       allocs.push_back(result);
1355     }
1356   }
1357 
1358   // if there is an output allocation track it
1359   if (uint64_t alloc_out = uint64_t(args[eRsAOut])) {
1360     allocs.push_back(alloc_out);
1361   }
1362 
1363   // for all allocations we have found
1364   for (const uint64_t alloc_addr : allocs) {
1365     AllocationDetails *alloc = LookUpAllocation(alloc_addr);
1366     if (!alloc)
1367       alloc = CreateAllocation(alloc_addr);
1368 
1369     if (alloc) {
1370       // save the allocation address
1371       if (alloc->address.isValid()) {
1372         // check the allocation address we already have matches
1373         assert(*alloc->address.get() == alloc_addr);
1374       } else {
1375         alloc->address = alloc_addr;
1376       }
1377 
1378       // save the context
1379       if (log) {
1380         if (alloc->context.isValid() &&
1381             *alloc->context.get() != addr_t(args[eRsContext]))
1382           log->Printf("%s - Allocation used by multiple contexts",
1383                       __FUNCTION__);
1384       }
1385       alloc->context = addr_t(args[eRsContext]);
1386     }
1387   }
1388 
1389   // make sure we track this script object
1390   if (lldb_private::RenderScriptRuntime::ScriptDetails *script =
1391           LookUpScript(addr_t(args[eRsScript]), true)) {
1392     if (log) {
1393       if (script->context.isValid() &&
1394           *script->context.get() != addr_t(args[eRsContext]))
1395         log->Printf("%s - Script used by multiple contexts", __FUNCTION__);
1396     }
1397     script->context = addr_t(args[eRsContext]);
1398   }
1399 }
1400 
1401 void RenderScriptRuntime::CaptureSetGlobalVar(RuntimeHook *hook,
1402                                               ExecutionContext &context) {
1403   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1404 
1405   enum {
1406     eRsContext,
1407     eRsScript,
1408     eRsId,
1409     eRsData,
1410     eRsLength,
1411   };
1412 
1413   std::array<ArgItem, 5> args{{
1414       ArgItem{ArgItem::ePointer, 0}, // eRsContext
1415       ArgItem{ArgItem::ePointer, 0}, // eRsScript
1416       ArgItem{ArgItem::eInt32, 0},   // eRsId
1417       ArgItem{ArgItem::ePointer, 0}, // eRsData
1418       ArgItem{ArgItem::eInt32, 0},   // eRsLength
1419   }};
1420 
1421   bool success = GetArgs(context, &args[0], args.size());
1422   if (!success) {
1423     if (log)
1424       log->Printf("%s - error reading the function parameters.", __FUNCTION__);
1425     return;
1426   }
1427 
1428   if (log) {
1429     log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " slot %" PRIu64 " = 0x%" PRIx64
1430                 ":%" PRIu64 "bytes.",
1431                 __FUNCTION__, uint64_t(args[eRsContext]),
1432                 uint64_t(args[eRsScript]), uint64_t(args[eRsId]),
1433                 uint64_t(args[eRsData]), uint64_t(args[eRsLength]));
1434 
1435     addr_t script_addr = addr_t(args[eRsScript]);
1436     if (m_scriptMappings.find(script_addr) != m_scriptMappings.end()) {
1437       auto rsm = m_scriptMappings[script_addr];
1438       if (uint64_t(args[eRsId]) < rsm->m_globals.size()) {
1439         auto rsg = rsm->m_globals[uint64_t(args[eRsId])];
1440         log->Printf("%s - Setting of '%s' within '%s' inferred", __FUNCTION__,
1441                     rsg.m_name.AsCString(),
1442                     rsm->m_module->GetFileSpec().GetFilename().AsCString());
1443       }
1444     }
1445   }
1446 }
1447 
1448 void RenderScriptRuntime::CaptureAllocationInit(RuntimeHook *hook,
1449                                                 ExecutionContext &exe_ctx) {
1450   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1451 
1452   enum { eRsContext, eRsAlloc, eRsForceZero };
1453 
1454   std::array<ArgItem, 3> args{{
1455       ArgItem{ArgItem::ePointer, 0}, // eRsContext
1456       ArgItem{ArgItem::ePointer, 0}, // eRsAlloc
1457       ArgItem{ArgItem::eBool, 0},    // eRsForceZero
1458   }};
1459 
1460   bool success = GetArgs(exe_ctx, &args[0], args.size());
1461   if (!success) {
1462     if (log)
1463       log->Printf("%s - error while reading the function parameters",
1464                   __FUNCTION__);
1465     return;
1466   }
1467 
1468   if (log)
1469     log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 ",0x%" PRIx64 " .",
1470                 __FUNCTION__, uint64_t(args[eRsContext]),
1471                 uint64_t(args[eRsAlloc]), uint64_t(args[eRsForceZero]));
1472 
1473   AllocationDetails *alloc = CreateAllocation(uint64_t(args[eRsAlloc]));
1474   if (alloc)
1475     alloc->context = uint64_t(args[eRsContext]);
1476 }
1477 
1478 void RenderScriptRuntime::CaptureAllocationDestroy(RuntimeHook *hook,
1479                                                    ExecutionContext &exe_ctx) {
1480   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1481 
1482   enum {
1483     eRsContext,
1484     eRsAlloc,
1485   };
1486 
1487   std::array<ArgItem, 2> args{{
1488       ArgItem{ArgItem::ePointer, 0}, // eRsContext
1489       ArgItem{ArgItem::ePointer, 0}, // eRsAlloc
1490   }};
1491 
1492   bool success = GetArgs(exe_ctx, &args[0], args.size());
1493   if (!success) {
1494     if (log)
1495       log->Printf("%s - error while reading the function parameters.",
1496                   __FUNCTION__);
1497     return;
1498   }
1499 
1500   if (log)
1501     log->Printf("%s - 0x%" PRIx64 ", 0x%" PRIx64 ".", __FUNCTION__,
1502                 uint64_t(args[eRsContext]), uint64_t(args[eRsAlloc]));
1503 
1504   for (auto iter = m_allocations.begin(); iter != m_allocations.end(); ++iter) {
1505     auto &allocation_up = *iter; // get the unique pointer
1506     if (allocation_up->address.isValid() &&
1507         *allocation_up->address.get() == addr_t(args[eRsAlloc])) {
1508       m_allocations.erase(iter);
1509       if (log)
1510         log->Printf("%s - deleted allocation entry.", __FUNCTION__);
1511       return;
1512     }
1513   }
1514 
1515   if (log)
1516     log->Printf("%s - couldn't find destroyed allocation.", __FUNCTION__);
1517 }
1518 
1519 void RenderScriptRuntime::CaptureScriptInit(RuntimeHook *hook,
1520                                             ExecutionContext &exe_ctx) {
1521   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1522 
1523   Status err;
1524   Process *process = exe_ctx.GetProcessPtr();
1525 
1526   enum { eRsContext, eRsScript, eRsResNamePtr, eRsCachedDirPtr };
1527 
1528   std::array<ArgItem, 4> args{
1529       {ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0},
1530        ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}}};
1531   bool success = GetArgs(exe_ctx, &args[0], args.size());
1532   if (!success) {
1533     if (log)
1534       log->Printf("%s - error while reading the function parameters.",
1535                   __FUNCTION__);
1536     return;
1537   }
1538 
1539   std::string res_name;
1540   process->ReadCStringFromMemory(addr_t(args[eRsResNamePtr]), res_name, err);
1541   if (err.Fail()) {
1542     if (log)
1543       log->Printf("%s - error reading res_name: %s.", __FUNCTION__,
1544                   err.AsCString());
1545   }
1546 
1547   std::string cache_dir;
1548   process->ReadCStringFromMemory(addr_t(args[eRsCachedDirPtr]), cache_dir, err);
1549   if (err.Fail()) {
1550     if (log)
1551       log->Printf("%s - error reading cache_dir: %s.", __FUNCTION__,
1552                   err.AsCString());
1553   }
1554 
1555   if (log)
1556     log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " => '%s' at '%s' .",
1557                 __FUNCTION__, uint64_t(args[eRsContext]),
1558                 uint64_t(args[eRsScript]), res_name.c_str(), cache_dir.c_str());
1559 
1560   if (res_name.size() > 0) {
1561     StreamString strm;
1562     strm.Printf("librs.%s.so", res_name.c_str());
1563 
1564     ScriptDetails *script = LookUpScript(addr_t(args[eRsScript]), true);
1565     if (script) {
1566       script->type = ScriptDetails::eScriptC;
1567       script->cache_dir = cache_dir;
1568       script->res_name = res_name;
1569       script->shared_lib = strm.GetString();
1570       script->context = addr_t(args[eRsContext]);
1571     }
1572 
1573     if (log)
1574       log->Printf("%s - '%s' tagged with context 0x%" PRIx64
1575                   " and script 0x%" PRIx64 ".",
1576                   __FUNCTION__, strm.GetData(), uint64_t(args[eRsContext]),
1577                   uint64_t(args[eRsScript]));
1578   } else if (log) {
1579     log->Printf("%s - resource name invalid, Script not tagged.", __FUNCTION__);
1580   }
1581 }
1582 
1583 void RenderScriptRuntime::LoadRuntimeHooks(lldb::ModuleSP module,
1584                                            ModuleKind kind) {
1585   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1586 
1587   if (!module) {
1588     return;
1589   }
1590 
1591   Target &target = GetProcess()->GetTarget();
1592   const llvm::Triple::ArchType machine = target.GetArchitecture().GetMachine();
1593 
1594   if (machine != llvm::Triple::ArchType::x86 &&
1595       machine != llvm::Triple::ArchType::arm &&
1596       machine != llvm::Triple::ArchType::aarch64 &&
1597       machine != llvm::Triple::ArchType::mipsel &&
1598       machine != llvm::Triple::ArchType::mips64el &&
1599       machine != llvm::Triple::ArchType::x86_64) {
1600     if (log)
1601       log->Printf("%s - unable to hook runtime functions.", __FUNCTION__);
1602     return;
1603   }
1604 
1605   const uint32_t target_ptr_size =
1606       target.GetArchitecture().GetAddressByteSize();
1607 
1608   std::array<bool, s_runtimeHookCount> hook_placed;
1609   hook_placed.fill(false);
1610 
1611   for (size_t idx = 0; idx < s_runtimeHookCount; idx++) {
1612     const HookDefn *hook_defn = &s_runtimeHookDefns[idx];
1613     if (hook_defn->kind != kind) {
1614       continue;
1615     }
1616 
1617     const char *symbol_name = (target_ptr_size == 4)
1618                                   ? hook_defn->symbol_name_m32
1619                                   : hook_defn->symbol_name_m64;
1620 
1621     const Symbol *sym = module->FindFirstSymbolWithNameAndType(
1622         ConstString(symbol_name), eSymbolTypeCode);
1623     if (!sym) {
1624       if (log) {
1625         log->Printf("%s - symbol '%s' related to the function %s not found",
1626                     __FUNCTION__, symbol_name, hook_defn->name);
1627       }
1628       continue;
1629     }
1630 
1631     addr_t addr = sym->GetLoadAddress(&target);
1632     if (addr == LLDB_INVALID_ADDRESS) {
1633       if (log)
1634         log->Printf("%s - unable to resolve the address of hook function '%s' "
1635                     "with symbol '%s'.",
1636                     __FUNCTION__, hook_defn->name, symbol_name);
1637       continue;
1638     } else {
1639       if (log)
1640         log->Printf("%s - function %s, address resolved at 0x%" PRIx64,
1641                     __FUNCTION__, hook_defn->name, addr);
1642     }
1643 
1644     RuntimeHookSP hook(new RuntimeHook());
1645     hook->address = addr;
1646     hook->defn = hook_defn;
1647     hook->bp_sp = target.CreateBreakpoint(addr, true, false);
1648     hook->bp_sp->SetCallback(HookCallback, hook.get(), true);
1649     m_runtimeHooks[addr] = hook;
1650     if (log) {
1651       log->Printf("%s - successfully hooked '%s' in '%s' version %" PRIu64
1652                   " at 0x%" PRIx64 ".",
1653                   __FUNCTION__, hook_defn->name,
1654                   module->GetFileSpec().GetFilename().AsCString(),
1655                   (uint64_t)hook_defn->version, (uint64_t)addr);
1656     }
1657     hook_placed[idx] = true;
1658   }
1659 
1660   // log any unhooked function
1661   if (log) {
1662     for (size_t i = 0; i < hook_placed.size(); ++i) {
1663       if (hook_placed[i])
1664         continue;
1665       const HookDefn &hook_defn = s_runtimeHookDefns[i];
1666       if (hook_defn.kind != kind)
1667         continue;
1668       log->Printf("%s - function %s was not hooked", __FUNCTION__,
1669                   hook_defn.name);
1670     }
1671   }
1672 }
1673 
1674 void RenderScriptRuntime::FixupScriptDetails(RSModuleDescriptorSP rsmodule_sp) {
1675   if (!rsmodule_sp)
1676     return;
1677 
1678   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1679 
1680   const ModuleSP module = rsmodule_sp->m_module;
1681   const FileSpec &file = module->GetPlatformFileSpec();
1682 
1683   // Iterate over all of the scripts that we currently know of. Note: We cant
1684   // push or pop to m_scripts here or it may invalidate rs_script.
1685   for (const auto &rs_script : m_scripts) {
1686     // Extract the expected .so file path for this script.
1687     std::string shared_lib;
1688     if (!rs_script->shared_lib.get(shared_lib))
1689       continue;
1690 
1691     // Only proceed if the module that has loaded corresponds to this script.
1692     if (file.GetFilename() != ConstString(shared_lib.c_str()))
1693       continue;
1694 
1695     // Obtain the script address which we use as a key.
1696     lldb::addr_t script;
1697     if (!rs_script->script.get(script))
1698       continue;
1699 
1700     // If we have a script mapping for the current script.
1701     if (m_scriptMappings.find(script) != m_scriptMappings.end()) {
1702       // if the module we have stored is different to the one we just received.
1703       if (m_scriptMappings[script] != rsmodule_sp) {
1704         if (log)
1705           log->Printf(
1706               "%s - script %" PRIx64 " wants reassigned to new rsmodule '%s'.",
1707               __FUNCTION__, (uint64_t)script,
1708               rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString());
1709       }
1710     }
1711     // We don't have a script mapping for the current script.
1712     else {
1713       // Obtain the script resource name.
1714       std::string res_name;
1715       if (rs_script->res_name.get(res_name))
1716         // Set the modules resource name.
1717         rsmodule_sp->m_resname = res_name;
1718       // Add Script/Module pair to map.
1719       m_scriptMappings[script] = rsmodule_sp;
1720       if (log)
1721         log->Printf(
1722             "%s - script %" PRIx64 " associated with rsmodule '%s'.",
1723             __FUNCTION__, (uint64_t)script,
1724             rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString());
1725     }
1726   }
1727 }
1728 
1729 // Uses the Target API to evaluate the expression passed as a parameter to the
1730 // function The result of that expression is returned an unsigned 64 bit int,
1731 // via the result* parameter. Function returns true on success, and false on
1732 // failure
1733 bool RenderScriptRuntime::EvalRSExpression(const char *expr,
1734                                            StackFrame *frame_ptr,
1735                                            uint64_t *result) {
1736   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1737   if (log)
1738     log->Printf("%s(%s)", __FUNCTION__, expr);
1739 
1740   ValueObjectSP expr_result;
1741   EvaluateExpressionOptions options;
1742   options.SetLanguage(lldb::eLanguageTypeC_plus_plus);
1743   // Perform the actual expression evaluation
1744   auto &target = GetProcess()->GetTarget();
1745   target.EvaluateExpression(expr, frame_ptr, expr_result, options);
1746 
1747   if (!expr_result) {
1748     if (log)
1749       log->Printf("%s: couldn't evaluate expression.", __FUNCTION__);
1750     return false;
1751   }
1752 
1753   // The result of the expression is invalid
1754   if (!expr_result->GetError().Success()) {
1755     Status err = expr_result->GetError();
1756     // Expression returned is void, so this is actually a success
1757     if (err.GetError() == UserExpression::kNoResult) {
1758       if (log)
1759         log->Printf("%s - expression returned void.", __FUNCTION__);
1760 
1761       result = nullptr;
1762       return true;
1763     }
1764 
1765     if (log)
1766       log->Printf("%s - error evaluating expression result: %s", __FUNCTION__,
1767                   err.AsCString());
1768     return false;
1769   }
1770 
1771   bool success = false;
1772   // We only read the result as an uint32_t.
1773   *result = expr_result->GetValueAsUnsigned(0, &success);
1774 
1775   if (!success) {
1776     if (log)
1777       log->Printf("%s - couldn't convert expression result to uint32_t",
1778                   __FUNCTION__);
1779     return false;
1780   }
1781 
1782   return true;
1783 }
1784 
1785 namespace {
1786 // Used to index expression format strings
1787 enum ExpressionStrings {
1788   eExprGetOffsetPtr = 0,
1789   eExprAllocGetType,
1790   eExprTypeDimX,
1791   eExprTypeDimY,
1792   eExprTypeDimZ,
1793   eExprTypeElemPtr,
1794   eExprElementType,
1795   eExprElementKind,
1796   eExprElementVec,
1797   eExprElementFieldCount,
1798   eExprSubelementsId,
1799   eExprSubelementsName,
1800   eExprSubelementsArrSize,
1801 
1802   _eExprLast // keep at the end, implicit size of the array runtime_expressions
1803 };
1804 
1805 // max length of an expanded expression
1806 const int jit_max_expr_size = 512;
1807 
1808 // Retrieve the string to JIT for the given expression
1809 #define JIT_TEMPLATE_CONTEXT "void* ctxt = (void*)rsDebugGetContextWrapper(0x%" PRIx64 "); "
1810 const char *JITTemplate(ExpressionStrings e) {
1811   // Format strings containing the expressions we may need to evaluate.
1812   static std::array<const char *, _eExprLast> runtime_expressions = {
1813       {// Mangled GetOffsetPointer(Allocation*, xoff, yoff, zoff, lod, cubemap)
1814        "(int*)_"
1815        "Z12GetOffsetPtrPKN7android12renderscript10AllocationEjjjj23RsAllocation"
1816        "CubemapFace"
1817        "(0x%" PRIx64 ", %" PRIu32 ", %" PRIu32 ", %" PRIu32 ", 0, 0)", // eExprGetOffsetPtr
1818 
1819        // Type* rsaAllocationGetType(Context*, Allocation*)
1820        JIT_TEMPLATE_CONTEXT "(void*)rsaAllocationGetType(ctxt, 0x%" PRIx64 ")", // eExprAllocGetType
1821 
1822        // rsaTypeGetNativeData(Context*, Type*, void* typeData, size) Pack the
1823        // data in the following way mHal.state.dimX; mHal.state.dimY;
1824        // mHal.state.dimZ; mHal.state.lodCount; mHal.state.faces; mElement;
1825        // into typeData Need to specify 32 or 64 bit for uint_t since this
1826        // differs between devices
1827        JIT_TEMPLATE_CONTEXT
1828        "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt"
1829        ", 0x%" PRIx64 ", data, 6); data[0]", // eExprTypeDimX
1830        JIT_TEMPLATE_CONTEXT
1831        "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt"
1832        ", 0x%" PRIx64 ", data, 6); data[1]", // eExprTypeDimY
1833        JIT_TEMPLATE_CONTEXT
1834        "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt"
1835        ", 0x%" PRIx64 ", data, 6); data[2]", // eExprTypeDimZ
1836        JIT_TEMPLATE_CONTEXT
1837        "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt"
1838        ", 0x%" PRIx64 ", data, 6); data[5]", // eExprTypeElemPtr
1839 
1840        // rsaElementGetNativeData(Context*, Element*, uint32_t* elemData,size)
1841        // Pack mType; mKind; mNormalized; mVectorSize; NumSubElements into
1842        // elemData
1843        JIT_TEMPLATE_CONTEXT
1844        "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt"
1845        ", 0x%" PRIx64 ", data, 5); data[0]", // eExprElementType
1846        JIT_TEMPLATE_CONTEXT
1847        "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt"
1848        ", 0x%" PRIx64 ", data, 5); data[1]", // eExprElementKind
1849        JIT_TEMPLATE_CONTEXT
1850        "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt"
1851        ", 0x%" PRIx64 ", data, 5); data[3]", // eExprElementVec
1852        JIT_TEMPLATE_CONTEXT
1853        "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt"
1854        ", 0x%" PRIx64 ", data, 5); data[4]", // eExprElementFieldCount
1855 
1856        // rsaElementGetSubElements(RsContext con, RsElement elem, uintptr_t
1857        // *ids, const char **names, size_t *arraySizes, uint32_t dataSize)
1858        // Needed for Allocations of structs to gather details about
1859        // fields/Subelements Element* of field
1860        JIT_TEMPLATE_CONTEXT "void* ids[%" PRIu32 "]; const char* names[%" PRIu32
1861        "]; size_t arr_size[%" PRIu32 "];"
1862        "(void*)rsaElementGetSubElements(ctxt, 0x%" PRIx64
1863        ", ids, names, arr_size, %" PRIu32 "); ids[%" PRIu32 "]", // eExprSubelementsId
1864 
1865        // Name of field
1866        JIT_TEMPLATE_CONTEXT "void* ids[%" PRIu32 "]; const char* names[%" PRIu32
1867        "]; size_t arr_size[%" PRIu32 "];"
1868        "(void*)rsaElementGetSubElements(ctxt, 0x%" PRIx64
1869        ", ids, names, arr_size, %" PRIu32 "); names[%" PRIu32 "]", // eExprSubelementsName
1870 
1871        // Array size of field
1872        JIT_TEMPLATE_CONTEXT "void* ids[%" PRIu32 "]; const char* names[%" PRIu32
1873        "]; size_t arr_size[%" PRIu32 "];"
1874        "(void*)rsaElementGetSubElements(ctxt, 0x%" PRIx64
1875        ", ids, names, arr_size, %" PRIu32 "); arr_size[%" PRIu32 "]"}}; // eExprSubelementsArrSize
1876 
1877   return runtime_expressions[e];
1878 }
1879 } // end of the anonymous namespace
1880 
1881 // JITs the RS runtime for the internal data pointer of an allocation. Is
1882 // passed x,y,z coordinates for the pointer to a specific element. Then sets
1883 // the data_ptr member in Allocation with the result. Returns true on success,
1884 // false otherwise
1885 bool RenderScriptRuntime::JITDataPointer(AllocationDetails *alloc,
1886                                          StackFrame *frame_ptr, uint32_t x,
1887                                          uint32_t y, uint32_t z) {
1888   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1889 
1890   if (!alloc->address.isValid()) {
1891     if (log)
1892       log->Printf("%s - failed to find allocation details.", __FUNCTION__);
1893     return false;
1894   }
1895 
1896   const char *fmt_str = JITTemplate(eExprGetOffsetPtr);
1897   char expr_buf[jit_max_expr_size];
1898 
1899   int written = snprintf(expr_buf, jit_max_expr_size, fmt_str,
1900                          *alloc->address.get(), x, y, z);
1901   if (written < 0) {
1902     if (log)
1903       log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
1904     return false;
1905   } else if (written >= jit_max_expr_size) {
1906     if (log)
1907       log->Printf("%s - expression too long.", __FUNCTION__);
1908     return false;
1909   }
1910 
1911   uint64_t result = 0;
1912   if (!EvalRSExpression(expr_buf, frame_ptr, &result))
1913     return false;
1914 
1915   addr_t data_ptr = static_cast<lldb::addr_t>(result);
1916   alloc->data_ptr = data_ptr;
1917 
1918   return true;
1919 }
1920 
1921 // JITs the RS runtime for the internal pointer to the RS Type of an allocation
1922 // Then sets the type_ptr member in Allocation with the result. Returns true on
1923 // success, false otherwise
1924 bool RenderScriptRuntime::JITTypePointer(AllocationDetails *alloc,
1925                                          StackFrame *frame_ptr) {
1926   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1927 
1928   if (!alloc->address.isValid() || !alloc->context.isValid()) {
1929     if (log)
1930       log->Printf("%s - failed to find allocation details.", __FUNCTION__);
1931     return false;
1932   }
1933 
1934   const char *fmt_str = JITTemplate(eExprAllocGetType);
1935   char expr_buf[jit_max_expr_size];
1936 
1937   int written = snprintf(expr_buf, jit_max_expr_size, fmt_str,
1938                          *alloc->context.get(), *alloc->address.get());
1939   if (written < 0) {
1940     if (log)
1941       log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
1942     return false;
1943   } else if (written >= jit_max_expr_size) {
1944     if (log)
1945       log->Printf("%s - expression too long.", __FUNCTION__);
1946     return false;
1947   }
1948 
1949   uint64_t result = 0;
1950   if (!EvalRSExpression(expr_buf, frame_ptr, &result))
1951     return false;
1952 
1953   addr_t type_ptr = static_cast<lldb::addr_t>(result);
1954   alloc->type_ptr = type_ptr;
1955 
1956   return true;
1957 }
1958 
1959 // JITs the RS runtime for information about the dimensions and type of an
1960 // allocation Then sets dimension and element_ptr members in Allocation with
1961 // the result. Returns true on success, false otherwise
1962 bool RenderScriptRuntime::JITTypePacked(AllocationDetails *alloc,
1963                                         StackFrame *frame_ptr) {
1964   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1965 
1966   if (!alloc->type_ptr.isValid() || !alloc->context.isValid()) {
1967     if (log)
1968       log->Printf("%s - Failed to find allocation details.", __FUNCTION__);
1969     return false;
1970   }
1971 
1972   // Expression is different depending on if device is 32 or 64 bit
1973   uint32_t target_ptr_size =
1974       GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
1975   const uint32_t bits = target_ptr_size == 4 ? 32 : 64;
1976 
1977   // We want 4 elements from packed data
1978   const uint32_t num_exprs = 4;
1979   assert(num_exprs == (eExprTypeElemPtr - eExprTypeDimX + 1) &&
1980          "Invalid number of expressions");
1981 
1982   char expr_bufs[num_exprs][jit_max_expr_size];
1983   uint64_t results[num_exprs];
1984 
1985   for (uint32_t i = 0; i < num_exprs; ++i) {
1986     const char *fmt_str = JITTemplate(ExpressionStrings(eExprTypeDimX + i));
1987     int written = snprintf(expr_bufs[i], jit_max_expr_size, fmt_str,
1988                            *alloc->context.get(), bits, *alloc->type_ptr.get());
1989     if (written < 0) {
1990       if (log)
1991         log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
1992       return false;
1993     } else if (written >= jit_max_expr_size) {
1994       if (log)
1995         log->Printf("%s - expression too long.", __FUNCTION__);
1996       return false;
1997     }
1998 
1999     // Perform expression evaluation
2000     if (!EvalRSExpression(expr_bufs[i], frame_ptr, &results[i]))
2001       return false;
2002   }
2003 
2004   // Assign results to allocation members
2005   AllocationDetails::Dimension dims;
2006   dims.dim_1 = static_cast<uint32_t>(results[0]);
2007   dims.dim_2 = static_cast<uint32_t>(results[1]);
2008   dims.dim_3 = static_cast<uint32_t>(results[2]);
2009   alloc->dimension = dims;
2010 
2011   addr_t element_ptr = static_cast<lldb::addr_t>(results[3]);
2012   alloc->element.element_ptr = element_ptr;
2013 
2014   if (log)
2015     log->Printf("%s - dims (%" PRIu32 ", %" PRIu32 ", %" PRIu32
2016                 ") Element*: 0x%" PRIx64 ".",
2017                 __FUNCTION__, dims.dim_1, dims.dim_2, dims.dim_3, element_ptr);
2018 
2019   return true;
2020 }
2021 
2022 // JITs the RS runtime for information about the Element of an allocation Then
2023 // sets type, type_vec_size, field_count and type_kind members in Element with
2024 // the result. Returns true on success, false otherwise
2025 bool RenderScriptRuntime::JITElementPacked(Element &elem,
2026                                            const lldb::addr_t context,
2027                                            StackFrame *frame_ptr) {
2028   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2029 
2030   if (!elem.element_ptr.isValid()) {
2031     if (log)
2032       log->Printf("%s - failed to find allocation details.", __FUNCTION__);
2033     return false;
2034   }
2035 
2036   // We want 4 elements from packed data
2037   const uint32_t num_exprs = 4;
2038   assert(num_exprs == (eExprElementFieldCount - eExprElementType + 1) &&
2039          "Invalid number of expressions");
2040 
2041   char expr_bufs[num_exprs][jit_max_expr_size];
2042   uint64_t results[num_exprs];
2043 
2044   for (uint32_t i = 0; i < num_exprs; i++) {
2045     const char *fmt_str = JITTemplate(ExpressionStrings(eExprElementType + i));
2046     int written = snprintf(expr_bufs[i], jit_max_expr_size, fmt_str, context,
2047                            *elem.element_ptr.get());
2048     if (written < 0) {
2049       if (log)
2050         log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
2051       return false;
2052     } else if (written >= jit_max_expr_size) {
2053       if (log)
2054         log->Printf("%s - expression too long.", __FUNCTION__);
2055       return false;
2056     }
2057 
2058     // Perform expression evaluation
2059     if (!EvalRSExpression(expr_bufs[i], frame_ptr, &results[i]))
2060       return false;
2061   }
2062 
2063   // Assign results to allocation members
2064   elem.type = static_cast<RenderScriptRuntime::Element::DataType>(results[0]);
2065   elem.type_kind =
2066       static_cast<RenderScriptRuntime::Element::DataKind>(results[1]);
2067   elem.type_vec_size = static_cast<uint32_t>(results[2]);
2068   elem.field_count = static_cast<uint32_t>(results[3]);
2069 
2070   if (log)
2071     log->Printf("%s - data type %" PRIu32 ", pixel type %" PRIu32
2072                 ", vector size %" PRIu32 ", field count %" PRIu32,
2073                 __FUNCTION__, *elem.type.get(), *elem.type_kind.get(),
2074                 *elem.type_vec_size.get(), *elem.field_count.get());
2075 
2076   // If this Element has subelements then JIT rsaElementGetSubElements() for
2077   // details about its fields
2078   return !(*elem.field_count.get() > 0 &&
2079            !JITSubelements(elem, context, frame_ptr));
2080 }
2081 
2082 // JITs the RS runtime for information about the subelements/fields of a struct
2083 // allocation This is necessary for infering the struct type so we can pretty
2084 // print the allocation's contents. Returns true on success, false otherwise
2085 bool RenderScriptRuntime::JITSubelements(Element &elem,
2086                                          const lldb::addr_t context,
2087                                          StackFrame *frame_ptr) {
2088   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2089 
2090   if (!elem.element_ptr.isValid() || !elem.field_count.isValid()) {
2091     if (log)
2092       log->Printf("%s - failed to find allocation details.", __FUNCTION__);
2093     return false;
2094   }
2095 
2096   const short num_exprs = 3;
2097   assert(num_exprs == (eExprSubelementsArrSize - eExprSubelementsId + 1) &&
2098          "Invalid number of expressions");
2099 
2100   char expr_buffer[jit_max_expr_size];
2101   uint64_t results;
2102 
2103   // Iterate over struct fields.
2104   const uint32_t field_count = *elem.field_count.get();
2105   for (uint32_t field_index = 0; field_index < field_count; ++field_index) {
2106     Element child;
2107     for (uint32_t expr_index = 0; expr_index < num_exprs; ++expr_index) {
2108       const char *fmt_str =
2109           JITTemplate(ExpressionStrings(eExprSubelementsId + expr_index));
2110       int written = snprintf(expr_buffer, jit_max_expr_size, fmt_str,
2111                              context, field_count, field_count, field_count,
2112                              *elem.element_ptr.get(), field_count, field_index);
2113       if (written < 0) {
2114         if (log)
2115           log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
2116         return false;
2117       } else if (written >= jit_max_expr_size) {
2118         if (log)
2119           log->Printf("%s - expression too long.", __FUNCTION__);
2120         return false;
2121       }
2122 
2123       // Perform expression evaluation
2124       if (!EvalRSExpression(expr_buffer, frame_ptr, &results))
2125         return false;
2126 
2127       if (log)
2128         log->Printf("%s - expr result 0x%" PRIx64 ".", __FUNCTION__, results);
2129 
2130       switch (expr_index) {
2131       case 0: // Element* of child
2132         child.element_ptr = static_cast<addr_t>(results);
2133         break;
2134       case 1: // Name of child
2135       {
2136         lldb::addr_t address = static_cast<addr_t>(results);
2137         Status err;
2138         std::string name;
2139         GetProcess()->ReadCStringFromMemory(address, name, err);
2140         if (!err.Fail())
2141           child.type_name = ConstString(name);
2142         else {
2143           if (log)
2144             log->Printf("%s - warning: Couldn't read field name.",
2145                         __FUNCTION__);
2146         }
2147         break;
2148       }
2149       case 2: // Array size of child
2150         child.array_size = static_cast<uint32_t>(results);
2151         break;
2152       }
2153     }
2154 
2155     // We need to recursively JIT each Element field of the struct since
2156     // structs can be nested inside structs.
2157     if (!JITElementPacked(child, context, frame_ptr))
2158       return false;
2159     elem.children.push_back(child);
2160   }
2161 
2162   // Try to infer the name of the struct type so we can pretty print the
2163   // allocation contents.
2164   FindStructTypeName(elem, frame_ptr);
2165 
2166   return true;
2167 }
2168 
2169 // JITs the RS runtime for the address of the last element in the allocation.
2170 // The `elem_size` parameter represents the size of a single element, including
2171 // padding. Which is needed as an offset from the last element pointer. Using
2172 // this offset minus the starting address we can calculate the size of the
2173 // allocation. Returns true on success, false otherwise
2174 bool RenderScriptRuntime::JITAllocationSize(AllocationDetails *alloc,
2175                                             StackFrame *frame_ptr) {
2176   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2177 
2178   if (!alloc->address.isValid() || !alloc->dimension.isValid() ||
2179       !alloc->data_ptr.isValid() || !alloc->element.datum_size.isValid()) {
2180     if (log)
2181       log->Printf("%s - failed to find allocation details.", __FUNCTION__);
2182     return false;
2183   }
2184 
2185   // Find dimensions
2186   uint32_t dim_x = alloc->dimension.get()->dim_1;
2187   uint32_t dim_y = alloc->dimension.get()->dim_2;
2188   uint32_t dim_z = alloc->dimension.get()->dim_3;
2189 
2190   // Our plan of jitting the last element address doesn't seem to work for
2191   // struct Allocations` Instead try to infer the size ourselves without any
2192   // inter element padding.
2193   if (alloc->element.children.size() > 0) {
2194     if (dim_x == 0)
2195       dim_x = 1;
2196     if (dim_y == 0)
2197       dim_y = 1;
2198     if (dim_z == 0)
2199       dim_z = 1;
2200 
2201     alloc->size = dim_x * dim_y * dim_z * *alloc->element.datum_size.get();
2202 
2203     if (log)
2204       log->Printf("%s - inferred size of struct allocation %" PRIu32 ".",
2205                   __FUNCTION__, *alloc->size.get());
2206     return true;
2207   }
2208 
2209   const char *fmt_str = JITTemplate(eExprGetOffsetPtr);
2210   char expr_buf[jit_max_expr_size];
2211 
2212   // Calculate last element
2213   dim_x = dim_x == 0 ? 0 : dim_x - 1;
2214   dim_y = dim_y == 0 ? 0 : dim_y - 1;
2215   dim_z = dim_z == 0 ? 0 : dim_z - 1;
2216 
2217   int written = snprintf(expr_buf, jit_max_expr_size, fmt_str,
2218                          *alloc->address.get(), dim_x, dim_y, dim_z);
2219   if (written < 0) {
2220     if (log)
2221       log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
2222     return false;
2223   } else if (written >= jit_max_expr_size) {
2224     if (log)
2225       log->Printf("%s - expression too long.", __FUNCTION__);
2226     return false;
2227   }
2228 
2229   uint64_t result = 0;
2230   if (!EvalRSExpression(expr_buf, frame_ptr, &result))
2231     return false;
2232 
2233   addr_t mem_ptr = static_cast<lldb::addr_t>(result);
2234   // Find pointer to last element and add on size of an element
2235   alloc->size = static_cast<uint32_t>(mem_ptr - *alloc->data_ptr.get()) +
2236                 *alloc->element.datum_size.get();
2237 
2238   return true;
2239 }
2240 
2241 // JITs the RS runtime for information about the stride between rows in the
2242 // allocation. This is done to detect padding, since allocated memory is
2243 // 16-byte aligned. Returns true on success, false otherwise
2244 bool RenderScriptRuntime::JITAllocationStride(AllocationDetails *alloc,
2245                                               StackFrame *frame_ptr) {
2246   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2247 
2248   if (!alloc->address.isValid() || !alloc->data_ptr.isValid()) {
2249     if (log)
2250       log->Printf("%s - failed to find allocation details.", __FUNCTION__);
2251     return false;
2252   }
2253 
2254   const char *fmt_str = JITTemplate(eExprGetOffsetPtr);
2255   char expr_buf[jit_max_expr_size];
2256 
2257   int written = snprintf(expr_buf, jit_max_expr_size, fmt_str,
2258                          *alloc->address.get(), 0, 1, 0);
2259   if (written < 0) {
2260     if (log)
2261       log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
2262     return false;
2263   } else if (written >= jit_max_expr_size) {
2264     if (log)
2265       log->Printf("%s - expression too long.", __FUNCTION__);
2266     return false;
2267   }
2268 
2269   uint64_t result = 0;
2270   if (!EvalRSExpression(expr_buf, frame_ptr, &result))
2271     return false;
2272 
2273   addr_t mem_ptr = static_cast<lldb::addr_t>(result);
2274   alloc->stride = static_cast<uint32_t>(mem_ptr - *alloc->data_ptr.get());
2275 
2276   return true;
2277 }
2278 
2279 // JIT all the current runtime info regarding an allocation
2280 bool RenderScriptRuntime::RefreshAllocation(AllocationDetails *alloc,
2281                                             StackFrame *frame_ptr) {
2282   // GetOffsetPointer()
2283   if (!JITDataPointer(alloc, frame_ptr))
2284     return false;
2285 
2286   // rsaAllocationGetType()
2287   if (!JITTypePointer(alloc, frame_ptr))
2288     return false;
2289 
2290   // rsaTypeGetNativeData()
2291   if (!JITTypePacked(alloc, frame_ptr))
2292     return false;
2293 
2294   // rsaElementGetNativeData()
2295   if (!JITElementPacked(alloc->element, *alloc->context.get(), frame_ptr))
2296     return false;
2297 
2298   // Sets the datum_size member in Element
2299   SetElementSize(alloc->element);
2300 
2301   // Use GetOffsetPointer() to infer size of the allocation
2302   return JITAllocationSize(alloc, frame_ptr);
2303 }
2304 
2305 // Function attempts to set the type_name member of the paramaterised Element
2306 // object. This string should be the name of the struct type the Element
2307 // represents. We need this string for pretty printing the Element to users.
2308 void RenderScriptRuntime::FindStructTypeName(Element &elem,
2309                                              StackFrame *frame_ptr) {
2310   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2311 
2312   if (!elem.type_name.IsEmpty()) // Name already set
2313     return;
2314   else
2315     elem.type_name = Element::GetFallbackStructName(); // Default type name if
2316                                                        // we don't succeed
2317 
2318   // Find all the global variables from the script rs modules
2319   VariableList var_list;
2320   for (auto module_sp : m_rsmodules)
2321     module_sp->m_module->FindGlobalVariables(
2322         RegularExpression(llvm::StringRef(".")), UINT32_MAX, var_list);
2323 
2324   // Iterate over all the global variables looking for one with a matching type
2325   // to the Element. We make the assumption a match exists since there needs to
2326   // be a global variable to reflect the struct type back into java host code.
2327   for (uint32_t i = 0; i < var_list.GetSize(); ++i) {
2328     const VariableSP var_sp(var_list.GetVariableAtIndex(i));
2329     if (!var_sp)
2330       continue;
2331 
2332     ValueObjectSP valobj_sp = ValueObjectVariable::Create(frame_ptr, var_sp);
2333     if (!valobj_sp)
2334       continue;
2335 
2336     // Find the number of variable fields.
2337     // If it has no fields, or more fields than our Element, then it can't be
2338     // the struct we're looking for. Don't check for equality since RS can add
2339     // extra struct members for padding.
2340     size_t num_children = valobj_sp->GetNumChildren();
2341     if (num_children > elem.children.size() || num_children == 0)
2342       continue;
2343 
2344     // Iterate over children looking for members with matching field names. If
2345     // all the field names match, this is likely the struct we want.
2346     //   TODO: This could be made more robust by also checking children data
2347     //   sizes, or array size
2348     bool found = true;
2349     for (size_t i = 0; i < num_children; ++i) {
2350       ValueObjectSP child = valobj_sp->GetChildAtIndex(i, true);
2351       if (!child || (child->GetName() != elem.children[i].type_name)) {
2352         found = false;
2353         break;
2354       }
2355     }
2356 
2357     // RS can add extra struct members for padding in the format
2358     // '#rs_padding_[0-9]+'
2359     if (found && num_children < elem.children.size()) {
2360       const uint32_t size_diff = elem.children.size() - num_children;
2361       if (log)
2362         log->Printf("%s - %" PRIu32 " padding struct entries", __FUNCTION__,
2363                     size_diff);
2364 
2365       for (uint32_t i = 0; i < size_diff; ++i) {
2366         const ConstString &name = elem.children[num_children + i].type_name;
2367         if (strcmp(name.AsCString(), "#rs_padding") < 0)
2368           found = false;
2369       }
2370     }
2371 
2372     // We've found a global variable with matching type
2373     if (found) {
2374       // Dereference since our Element type isn't a pointer.
2375       if (valobj_sp->IsPointerType()) {
2376         Status err;
2377         ValueObjectSP deref_valobj = valobj_sp->Dereference(err);
2378         if (!err.Fail())
2379           valobj_sp = deref_valobj;
2380       }
2381 
2382       // Save name of variable in Element.
2383       elem.type_name = valobj_sp->GetTypeName();
2384       if (log)
2385         log->Printf("%s - element name set to %s", __FUNCTION__,
2386                     elem.type_name.AsCString());
2387 
2388       return;
2389     }
2390   }
2391 }
2392 
2393 // Function sets the datum_size member of Element. Representing the size of a
2394 // single instance including padding. Assumes the relevant allocation
2395 // information has already been jitted.
2396 void RenderScriptRuntime::SetElementSize(Element &elem) {
2397   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2398   const Element::DataType type = *elem.type.get();
2399   assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT &&
2400          "Invalid allocation type");
2401 
2402   const uint32_t vec_size = *elem.type_vec_size.get();
2403   uint32_t data_size = 0;
2404   uint32_t padding = 0;
2405 
2406   // Element is of a struct type, calculate size recursively.
2407   if ((type == Element::RS_TYPE_NONE) && (elem.children.size() > 0)) {
2408     for (Element &child : elem.children) {
2409       SetElementSize(child);
2410       const uint32_t array_size =
2411           child.array_size.isValid() ? *child.array_size.get() : 1;
2412       data_size += *child.datum_size.get() * array_size;
2413     }
2414   }
2415   // These have been packed already
2416   else if (type == Element::RS_TYPE_UNSIGNED_5_6_5 ||
2417            type == Element::RS_TYPE_UNSIGNED_5_5_5_1 ||
2418            type == Element::RS_TYPE_UNSIGNED_4_4_4_4) {
2419     data_size = AllocationDetails::RSTypeToFormat[type][eElementSize];
2420   } else if (type < Element::RS_TYPE_ELEMENT) {
2421     data_size =
2422         vec_size * AllocationDetails::RSTypeToFormat[type][eElementSize];
2423     if (vec_size == 3)
2424       padding = AllocationDetails::RSTypeToFormat[type][eElementSize];
2425   } else
2426     data_size =
2427         GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
2428 
2429   elem.padding = padding;
2430   elem.datum_size = data_size + padding;
2431   if (log)
2432     log->Printf("%s - element size set to %" PRIu32, __FUNCTION__,
2433                 data_size + padding);
2434 }
2435 
2436 // Given an allocation, this function copies the allocation contents from
2437 // device into a buffer on the heap. Returning a shared pointer to the buffer
2438 // containing the data.
2439 std::shared_ptr<uint8_t>
2440 RenderScriptRuntime::GetAllocationData(AllocationDetails *alloc,
2441                                        StackFrame *frame_ptr) {
2442   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2443 
2444   // JIT all the allocation details
2445   if (alloc->ShouldRefresh()) {
2446     if (log)
2447       log->Printf("%s - allocation details not calculated yet, jitting info",
2448                   __FUNCTION__);
2449 
2450     if (!RefreshAllocation(alloc, frame_ptr)) {
2451       if (log)
2452         log->Printf("%s - couldn't JIT allocation details", __FUNCTION__);
2453       return nullptr;
2454     }
2455   }
2456 
2457   assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() &&
2458          alloc->element.type_vec_size.isValid() && alloc->size.isValid() &&
2459          "Allocation information not available");
2460 
2461   // Allocate a buffer to copy data into
2462   const uint32_t size = *alloc->size.get();
2463   std::shared_ptr<uint8_t> buffer(new uint8_t[size]);
2464   if (!buffer) {
2465     if (log)
2466       log->Printf("%s - couldn't allocate a %" PRIu32 " byte buffer",
2467                   __FUNCTION__, size);
2468     return nullptr;
2469   }
2470 
2471   // Read the inferior memory
2472   Status err;
2473   lldb::addr_t data_ptr = *alloc->data_ptr.get();
2474   GetProcess()->ReadMemory(data_ptr, buffer.get(), size, err);
2475   if (err.Fail()) {
2476     if (log)
2477       log->Printf("%s - '%s' Couldn't read %" PRIu32
2478                   " bytes of allocation data from 0x%" PRIx64,
2479                   __FUNCTION__, err.AsCString(), size, data_ptr);
2480     return nullptr;
2481   }
2482 
2483   return buffer;
2484 }
2485 
2486 // Function copies data from a binary file into an allocation. There is a
2487 // header at the start of the file, FileHeader, before the data content itself.
2488 // Information from this header is used to display warnings to the user about
2489 // incompatibilities
2490 bool RenderScriptRuntime::LoadAllocation(Stream &strm, const uint32_t alloc_id,
2491                                          const char *path,
2492                                          StackFrame *frame_ptr) {
2493   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2494 
2495   // Find allocation with the given id
2496   AllocationDetails *alloc = FindAllocByID(strm, alloc_id);
2497   if (!alloc)
2498     return false;
2499 
2500   if (log)
2501     log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__,
2502                 *alloc->address.get());
2503 
2504   // JIT all the allocation details
2505   if (alloc->ShouldRefresh()) {
2506     if (log)
2507       log->Printf("%s - allocation details not calculated yet, jitting info.",
2508                   __FUNCTION__);
2509 
2510     if (!RefreshAllocation(alloc, frame_ptr)) {
2511       if (log)
2512         log->Printf("%s - couldn't JIT allocation details", __FUNCTION__);
2513       return false;
2514     }
2515   }
2516 
2517   assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() &&
2518          alloc->element.type_vec_size.isValid() && alloc->size.isValid() &&
2519          alloc->element.datum_size.isValid() &&
2520          "Allocation information not available");
2521 
2522   // Check we can read from file
2523   FileSpec file(path);
2524   FileSystem::Instance().Resolve(file);
2525   if (!FileSystem::Instance().Exists(file)) {
2526     strm.Printf("Error: File %s does not exist", path);
2527     strm.EOL();
2528     return false;
2529   }
2530 
2531   if (!FileSystem::Instance().Readable(file)) {
2532     strm.Printf("Error: File %s does not have readable permissions", path);
2533     strm.EOL();
2534     return false;
2535   }
2536 
2537   // Read file into data buffer
2538   auto data_sp = FileSystem::Instance().CreateDataBuffer(file.GetPath());
2539 
2540   // Cast start of buffer to FileHeader and use pointer to read metadata
2541   void *file_buf = data_sp->GetBytes();
2542   if (file_buf == nullptr ||
2543       data_sp->GetByteSize() < (sizeof(AllocationDetails::FileHeader) +
2544                                 sizeof(AllocationDetails::ElementHeader))) {
2545     strm.Printf("Error: File %s does not contain enough data for header", path);
2546     strm.EOL();
2547     return false;
2548   }
2549   const AllocationDetails::FileHeader *file_header =
2550       static_cast<AllocationDetails::FileHeader *>(file_buf);
2551 
2552   // Check file starts with ascii characters "RSAD"
2553   if (memcmp(file_header->ident, "RSAD", 4)) {
2554     strm.Printf("Error: File doesn't contain identifier for an RS allocation "
2555                 "dump. Are you sure this is the correct file?");
2556     strm.EOL();
2557     return false;
2558   }
2559 
2560   // Look at the type of the root element in the header
2561   AllocationDetails::ElementHeader root_el_hdr;
2562   memcpy(&root_el_hdr, static_cast<uint8_t *>(file_buf) +
2563                            sizeof(AllocationDetails::FileHeader),
2564          sizeof(AllocationDetails::ElementHeader));
2565 
2566   if (log)
2567     log->Printf("%s - header type %" PRIu32 ", element size %" PRIu32,
2568                 __FUNCTION__, root_el_hdr.type, root_el_hdr.element_size);
2569 
2570   // Check if the target allocation and file both have the same number of bytes
2571   // for an Element
2572   if (*alloc->element.datum_size.get() != root_el_hdr.element_size) {
2573     strm.Printf("Warning: Mismatched Element sizes - file %" PRIu32
2574                 " bytes, allocation %" PRIu32 " bytes",
2575                 root_el_hdr.element_size, *alloc->element.datum_size.get());
2576     strm.EOL();
2577   }
2578 
2579   // Check if the target allocation and file both have the same type
2580   const uint32_t alloc_type = static_cast<uint32_t>(*alloc->element.type.get());
2581   const uint32_t file_type = root_el_hdr.type;
2582 
2583   if (file_type > Element::RS_TYPE_FONT) {
2584     strm.Printf("Warning: File has unknown allocation type");
2585     strm.EOL();
2586   } else if (alloc_type != file_type) {
2587     // Enum value isn't monotonous, so doesn't always index RsDataTypeToString
2588     // array
2589     uint32_t target_type_name_idx = alloc_type;
2590     uint32_t head_type_name_idx = file_type;
2591     if (alloc_type >= Element::RS_TYPE_ELEMENT &&
2592         alloc_type <= Element::RS_TYPE_FONT)
2593       target_type_name_idx = static_cast<Element::DataType>(
2594           (alloc_type - Element::RS_TYPE_ELEMENT) +
2595           Element::RS_TYPE_MATRIX_2X2 + 1);
2596 
2597     if (file_type >= Element::RS_TYPE_ELEMENT &&
2598         file_type <= Element::RS_TYPE_FONT)
2599       head_type_name_idx = static_cast<Element::DataType>(
2600           (file_type - Element::RS_TYPE_ELEMENT) + Element::RS_TYPE_MATRIX_2X2 +
2601           1);
2602 
2603     const char *head_type_name =
2604         AllocationDetails::RsDataTypeToString[head_type_name_idx][0];
2605     const char *target_type_name =
2606         AllocationDetails::RsDataTypeToString[target_type_name_idx][0];
2607 
2608     strm.Printf(
2609         "Warning: Mismatched Types - file '%s' type, allocation '%s' type",
2610         head_type_name, target_type_name);
2611     strm.EOL();
2612   }
2613 
2614   // Advance buffer past header
2615   file_buf = static_cast<uint8_t *>(file_buf) + file_header->hdr_size;
2616 
2617   // Calculate size of allocation data in file
2618   size_t size = data_sp->GetByteSize() - file_header->hdr_size;
2619 
2620   // Check if the target allocation and file both have the same total data
2621   // size.
2622   const uint32_t alloc_size = *alloc->size.get();
2623   if (alloc_size != size) {
2624     strm.Printf("Warning: Mismatched allocation sizes - file 0x%" PRIx64
2625                 " bytes, allocation 0x%" PRIx32 " bytes",
2626                 (uint64_t)size, alloc_size);
2627     strm.EOL();
2628     // Set length to copy to minimum
2629     size = alloc_size < size ? alloc_size : size;
2630   }
2631 
2632   // Copy file data from our buffer into the target allocation.
2633   lldb::addr_t alloc_data = *alloc->data_ptr.get();
2634   Status err;
2635   size_t written = GetProcess()->WriteMemory(alloc_data, file_buf, size, err);
2636   if (!err.Success() || written != size) {
2637     strm.Printf("Error: Couldn't write data to allocation %s", err.AsCString());
2638     strm.EOL();
2639     return false;
2640   }
2641 
2642   strm.Printf("Contents of file '%s' read into allocation %" PRIu32, path,
2643               alloc->id);
2644   strm.EOL();
2645 
2646   return true;
2647 }
2648 
2649 // Function takes as parameters a byte buffer, which will eventually be written
2650 // to file as the element header, an offset into that buffer, and an Element
2651 // that will be saved into the buffer at the parametrised offset. Return value
2652 // is the new offset after writing the element into the buffer. Elements are
2653 // saved to the file as the ElementHeader struct followed by offsets to the
2654 // structs of all the element's children.
2655 size_t RenderScriptRuntime::PopulateElementHeaders(
2656     const std::shared_ptr<uint8_t> header_buffer, size_t offset,
2657     const Element &elem) {
2658   // File struct for an element header with all the relevant details copied
2659   // from elem. We assume members are valid already.
2660   AllocationDetails::ElementHeader elem_header;
2661   elem_header.type = *elem.type.get();
2662   elem_header.kind = *elem.type_kind.get();
2663   elem_header.element_size = *elem.datum_size.get();
2664   elem_header.vector_size = *elem.type_vec_size.get();
2665   elem_header.array_size =
2666       elem.array_size.isValid() ? *elem.array_size.get() : 0;
2667   const size_t elem_header_size = sizeof(AllocationDetails::ElementHeader);
2668 
2669   // Copy struct into buffer and advance offset We assume that header_buffer
2670   // has been checked for nullptr before this method is called
2671   memcpy(header_buffer.get() + offset, &elem_header, elem_header_size);
2672   offset += elem_header_size;
2673 
2674   // Starting offset of child ElementHeader struct
2675   size_t child_offset =
2676       offset + ((elem.children.size() + 1) * sizeof(uint32_t));
2677   for (const RenderScriptRuntime::Element &child : elem.children) {
2678     // Recursively populate the buffer with the element header structs of
2679     // children. Then save the offsets where they were set after the parent
2680     // element header.
2681     memcpy(header_buffer.get() + offset, &child_offset, sizeof(uint32_t));
2682     offset += sizeof(uint32_t);
2683 
2684     child_offset = PopulateElementHeaders(header_buffer, child_offset, child);
2685   }
2686 
2687   // Zero indicates no more children
2688   memset(header_buffer.get() + offset, 0, sizeof(uint32_t));
2689 
2690   return child_offset;
2691 }
2692 
2693 // Given an Element object this function returns the total size needed in the
2694 // file header to store the element's details. Taking into account the size of
2695 // the element header struct, plus the offsets to all the element's children.
2696 // Function is recursive so that the size of all ancestors is taken into
2697 // account.
2698 size_t RenderScriptRuntime::CalculateElementHeaderSize(const Element &elem) {
2699   // Offsets to children plus zero terminator
2700   size_t size = (elem.children.size() + 1) * sizeof(uint32_t);
2701   // Size of header struct with type details
2702   size += sizeof(AllocationDetails::ElementHeader);
2703 
2704   // Calculate recursively for all descendants
2705   for (const Element &child : elem.children)
2706     size += CalculateElementHeaderSize(child);
2707 
2708   return size;
2709 }
2710 
2711 // Function copies allocation contents into a binary file. This file can then
2712 // be loaded later into a different allocation. There is a header, FileHeader,
2713 // before the allocation data containing meta-data.
2714 bool RenderScriptRuntime::SaveAllocation(Stream &strm, const uint32_t alloc_id,
2715                                          const char *path,
2716                                          StackFrame *frame_ptr) {
2717   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2718 
2719   // Find allocation with the given id
2720   AllocationDetails *alloc = FindAllocByID(strm, alloc_id);
2721   if (!alloc)
2722     return false;
2723 
2724   if (log)
2725     log->Printf("%s - found allocation 0x%" PRIx64 ".", __FUNCTION__,
2726                 *alloc->address.get());
2727 
2728   // JIT all the allocation details
2729   if (alloc->ShouldRefresh()) {
2730     if (log)
2731       log->Printf("%s - allocation details not calculated yet, jitting info.",
2732                   __FUNCTION__);
2733 
2734     if (!RefreshAllocation(alloc, frame_ptr)) {
2735       if (log)
2736         log->Printf("%s - couldn't JIT allocation details.", __FUNCTION__);
2737       return false;
2738     }
2739   }
2740 
2741   assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() &&
2742          alloc->element.type_vec_size.isValid() &&
2743          alloc->element.datum_size.get() &&
2744          alloc->element.type_kind.isValid() && alloc->dimension.isValid() &&
2745          "Allocation information not available");
2746 
2747   // Check we can create writable file
2748   FileSpec file_spec(path);
2749   FileSystem::Instance().Resolve(file_spec);
2750   File file;
2751   FileSystem::Instance().Open(file, file_spec,
2752                               File::eOpenOptionWrite |
2753                                   File::eOpenOptionCanCreate |
2754                                   File::eOpenOptionTruncate);
2755 
2756   if (!file) {
2757     strm.Printf("Error: Failed to open '%s' for writing", path);
2758     strm.EOL();
2759     return false;
2760   }
2761 
2762   // Read allocation into buffer of heap memory
2763   const std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr);
2764   if (!buffer) {
2765     strm.Printf("Error: Couldn't read allocation data into buffer");
2766     strm.EOL();
2767     return false;
2768   }
2769 
2770   // Create the file header
2771   AllocationDetails::FileHeader head;
2772   memcpy(head.ident, "RSAD", 4);
2773   head.dims[0] = static_cast<uint32_t>(alloc->dimension.get()->dim_1);
2774   head.dims[1] = static_cast<uint32_t>(alloc->dimension.get()->dim_2);
2775   head.dims[2] = static_cast<uint32_t>(alloc->dimension.get()->dim_3);
2776 
2777   const size_t element_header_size = CalculateElementHeaderSize(alloc->element);
2778   assert((sizeof(AllocationDetails::FileHeader) + element_header_size) <
2779              UINT16_MAX &&
2780          "Element header too large");
2781   head.hdr_size = static_cast<uint16_t>(sizeof(AllocationDetails::FileHeader) +
2782                                         element_header_size);
2783 
2784   // Write the file header
2785   size_t num_bytes = sizeof(AllocationDetails::FileHeader);
2786   if (log)
2787     log->Printf("%s - writing File Header, 0x%" PRIx64 " bytes", __FUNCTION__,
2788                 (uint64_t)num_bytes);
2789 
2790   Status err = file.Write(&head, num_bytes);
2791   if (!err.Success()) {
2792     strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path);
2793     strm.EOL();
2794     return false;
2795   }
2796 
2797   // Create the headers describing the element type of the allocation.
2798   std::shared_ptr<uint8_t> element_header_buffer(
2799       new uint8_t[element_header_size]);
2800   if (element_header_buffer == nullptr) {
2801     strm.Printf("Internal Error: Couldn't allocate %" PRIu64
2802                 " bytes on the heap",
2803                 (uint64_t)element_header_size);
2804     strm.EOL();
2805     return false;
2806   }
2807 
2808   PopulateElementHeaders(element_header_buffer, 0, alloc->element);
2809 
2810   // Write headers for allocation element type to file
2811   num_bytes = element_header_size;
2812   if (log)
2813     log->Printf("%s - writing element headers, 0x%" PRIx64 " bytes.",
2814                 __FUNCTION__, (uint64_t)num_bytes);
2815 
2816   err = file.Write(element_header_buffer.get(), num_bytes);
2817   if (!err.Success()) {
2818     strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path);
2819     strm.EOL();
2820     return false;
2821   }
2822 
2823   // Write allocation data to file
2824   num_bytes = static_cast<size_t>(*alloc->size.get());
2825   if (log)
2826     log->Printf("%s - writing 0x%" PRIx64 " bytes", __FUNCTION__,
2827                 (uint64_t)num_bytes);
2828 
2829   err = file.Write(buffer.get(), num_bytes);
2830   if (!err.Success()) {
2831     strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path);
2832     strm.EOL();
2833     return false;
2834   }
2835 
2836   strm.Printf("Allocation written to file '%s'", path);
2837   strm.EOL();
2838   return true;
2839 }
2840 
2841 bool RenderScriptRuntime::LoadModule(const lldb::ModuleSP &module_sp) {
2842   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2843 
2844   if (module_sp) {
2845     for (const auto &rs_module : m_rsmodules) {
2846       if (rs_module->m_module == module_sp) {
2847         // Check if the user has enabled automatically breaking on all RS
2848         // kernels.
2849         if (m_breakAllKernels)
2850           BreakOnModuleKernels(rs_module);
2851 
2852         return false;
2853       }
2854     }
2855     bool module_loaded = false;
2856     switch (GetModuleKind(module_sp)) {
2857     case eModuleKindKernelObj: {
2858       RSModuleDescriptorSP module_desc;
2859       module_desc = std::make_shared<RSModuleDescriptor>(module_sp);
2860       if (module_desc->ParseRSInfo()) {
2861         m_rsmodules.push_back(module_desc);
2862         module_desc->WarnIfVersionMismatch(GetProcess()
2863                                                ->GetTarget()
2864                                                .GetDebugger()
2865                                                .GetAsyncOutputStream()
2866                                                .get());
2867         module_loaded = true;
2868       }
2869       if (module_loaded) {
2870         FixupScriptDetails(module_desc);
2871       }
2872       break;
2873     }
2874     case eModuleKindDriver: {
2875       if (!m_libRSDriver) {
2876         m_libRSDriver = module_sp;
2877         LoadRuntimeHooks(m_libRSDriver, RenderScriptRuntime::eModuleKindDriver);
2878       }
2879       break;
2880     }
2881     case eModuleKindImpl: {
2882       if (!m_libRSCpuRef) {
2883         m_libRSCpuRef = module_sp;
2884         LoadRuntimeHooks(m_libRSCpuRef, RenderScriptRuntime::eModuleKindImpl);
2885       }
2886       break;
2887     }
2888     case eModuleKindLibRS: {
2889       if (!m_libRS) {
2890         m_libRS = module_sp;
2891         static ConstString gDbgPresentStr("gDebuggerPresent");
2892         const Symbol *debug_present = m_libRS->FindFirstSymbolWithNameAndType(
2893             gDbgPresentStr, eSymbolTypeData);
2894         if (debug_present) {
2895           Status err;
2896           uint32_t flag = 0x00000001U;
2897           Target &target = GetProcess()->GetTarget();
2898           addr_t addr = debug_present->GetLoadAddress(&target);
2899           GetProcess()->WriteMemory(addr, &flag, sizeof(flag), err);
2900           if (err.Success()) {
2901             if (log)
2902               log->Printf("%s - debugger present flag set on debugee.",
2903                           __FUNCTION__);
2904 
2905             m_debuggerPresentFlagged = true;
2906           } else if (log) {
2907             log->Printf("%s - error writing debugger present flags '%s' ",
2908                         __FUNCTION__, err.AsCString());
2909           }
2910         } else if (log) {
2911           log->Printf(
2912               "%s - error writing debugger present flags - symbol not found",
2913               __FUNCTION__);
2914         }
2915       }
2916       break;
2917     }
2918     default:
2919       break;
2920     }
2921     if (module_loaded)
2922       Update();
2923     return module_loaded;
2924   }
2925   return false;
2926 }
2927 
2928 void RenderScriptRuntime::Update() {
2929   if (m_rsmodules.size() > 0) {
2930     if (!m_initiated) {
2931       Initiate();
2932     }
2933   }
2934 }
2935 
2936 void RSModuleDescriptor::WarnIfVersionMismatch(lldb_private::Stream *s) const {
2937   if (!s)
2938     return;
2939 
2940   if (m_slang_version.empty() || m_bcc_version.empty()) {
2941     s->PutCString("WARNING: Unknown bcc or slang (llvm-rs-cc) version; debug "
2942                   "experience may be unreliable");
2943     s->EOL();
2944   } else if (m_slang_version != m_bcc_version) {
2945     s->Printf("WARNING: The debug info emitted by the slang frontend "
2946               "(llvm-rs-cc) used to build this module (%s) does not match the "
2947               "version of bcc used to generate the debug information (%s). "
2948               "This is an unsupported configuration and may result in a poor "
2949               "debugging experience; proceed with caution",
2950               m_slang_version.c_str(), m_bcc_version.c_str());
2951     s->EOL();
2952   }
2953 }
2954 
2955 bool RSModuleDescriptor::ParsePragmaCount(llvm::StringRef *lines,
2956                                           size_t n_lines) {
2957   // Skip the pragma prototype line
2958   ++lines;
2959   for (; n_lines--; ++lines) {
2960     const auto kv_pair = lines->split(" - ");
2961     m_pragmas[kv_pair.first.trim().str()] = kv_pair.second.trim().str();
2962   }
2963   return true;
2964 }
2965 
2966 bool RSModuleDescriptor::ParseExportReduceCount(llvm::StringRef *lines,
2967                                                 size_t n_lines) {
2968   // The list of reduction kernels in the `.rs.info` symbol is of the form
2969   // "signature - accumulatordatasize - reduction_name - initializer_name -
2970   // accumulator_name - combiner_name - outconverter_name - halter_name" Where
2971   // a function is not explicitly named by the user, or is not generated by the
2972   // compiler, it is named "." so the dash separated list should always be 8
2973   // items long
2974   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
2975   // Skip the exportReduceCount line
2976   ++lines;
2977   for (; n_lines--; ++lines) {
2978     llvm::SmallVector<llvm::StringRef, 8> spec;
2979     lines->split(spec, " - ");
2980     if (spec.size() != 8) {
2981       if (spec.size() < 8) {
2982         if (log)
2983           log->Error("Error parsing RenderScript reduction spec. wrong number "
2984                      "of fields");
2985         return false;
2986       } else if (log)
2987         log->Warning("Extraneous members in reduction spec: '%s'",
2988                      lines->str().c_str());
2989     }
2990 
2991     const auto sig_s = spec[0];
2992     uint32_t sig;
2993     if (sig_s.getAsInteger(10, sig)) {
2994       if (log)
2995         log->Error("Error parsing Renderscript reduction spec: invalid kernel "
2996                    "signature: '%s'",
2997                    sig_s.str().c_str());
2998       return false;
2999     }
3000 
3001     const auto accum_data_size_s = spec[1];
3002     uint32_t accum_data_size;
3003     if (accum_data_size_s.getAsInteger(10, accum_data_size)) {
3004       if (log)
3005         log->Error("Error parsing Renderscript reduction spec: invalid "
3006                    "accumulator data size %s",
3007                    accum_data_size_s.str().c_str());
3008       return false;
3009     }
3010 
3011     if (log)
3012       log->Printf("Found RenderScript reduction '%s'", spec[2].str().c_str());
3013 
3014     m_reductions.push_back(RSReductionDescriptor(this, sig, accum_data_size,
3015                                                  spec[2], spec[3], spec[4],
3016                                                  spec[5], spec[6], spec[7]));
3017   }
3018   return true;
3019 }
3020 
3021 bool RSModuleDescriptor::ParseVersionInfo(llvm::StringRef *lines,
3022                                           size_t n_lines) {
3023   // Skip the versionInfo line
3024   ++lines;
3025   for (; n_lines--; ++lines) {
3026     // We're only interested in bcc and slang versions, and ignore all other
3027     // versionInfo lines
3028     const auto kv_pair = lines->split(" - ");
3029     if (kv_pair.first == "slang")
3030       m_slang_version = kv_pair.second.str();
3031     else if (kv_pair.first == "bcc")
3032       m_bcc_version = kv_pair.second.str();
3033   }
3034   return true;
3035 }
3036 
3037 bool RSModuleDescriptor::ParseExportForeachCount(llvm::StringRef *lines,
3038                                                  size_t n_lines) {
3039   // Skip the exportForeachCount line
3040   ++lines;
3041   for (; n_lines--; ++lines) {
3042     uint32_t slot;
3043     // `forEach` kernels are listed in the `.rs.info` packet as a "slot - name"
3044     // pair per line
3045     const auto kv_pair = lines->split(" - ");
3046     if (kv_pair.first.getAsInteger(10, slot))
3047       return false;
3048     m_kernels.push_back(RSKernelDescriptor(this, kv_pair.second, slot));
3049   }
3050   return true;
3051 }
3052 
3053 bool RSModuleDescriptor::ParseExportVarCount(llvm::StringRef *lines,
3054                                              size_t n_lines) {
3055   // Skip the ExportVarCount line
3056   ++lines;
3057   for (; n_lines--; ++lines)
3058     m_globals.push_back(RSGlobalDescriptor(this, *lines));
3059   return true;
3060 }
3061 
3062 // The .rs.info symbol in renderscript modules contains a string which needs to
3063 // be parsed. The string is basic and is parsed on a line by line basis.
3064 bool RSModuleDescriptor::ParseRSInfo() {
3065   assert(m_module);
3066   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
3067   const Symbol *info_sym = m_module->FindFirstSymbolWithNameAndType(
3068       ConstString(".rs.info"), eSymbolTypeData);
3069   if (!info_sym)
3070     return false;
3071 
3072   const addr_t addr = info_sym->GetAddressRef().GetFileAddress();
3073   if (addr == LLDB_INVALID_ADDRESS)
3074     return false;
3075 
3076   const addr_t size = info_sym->GetByteSize();
3077   const FileSpec fs = m_module->GetFileSpec();
3078 
3079   auto buffer =
3080       FileSystem::Instance().CreateDataBuffer(fs.GetPath(), size, addr);
3081   if (!buffer)
3082     return false;
3083 
3084   // split rs.info. contents into lines
3085   llvm::SmallVector<llvm::StringRef, 128> info_lines;
3086   {
3087     const llvm::StringRef raw_rs_info((const char *)buffer->GetBytes());
3088     raw_rs_info.split(info_lines, '\n');
3089     if (log)
3090       log->Printf("'.rs.info symbol for '%s':\n%s",
3091                   m_module->GetFileSpec().GetCString(),
3092                   raw_rs_info.str().c_str());
3093   }
3094 
3095   enum {
3096     eExportVar,
3097     eExportForEach,
3098     eExportReduce,
3099     ePragma,
3100     eBuildChecksum,
3101     eObjectSlot,
3102     eVersionInfo,
3103   };
3104 
3105   const auto rs_info_handler = [](llvm::StringRef name) -> int {
3106     return llvm::StringSwitch<int>(name)
3107         // The number of visible global variables in the script
3108         .Case("exportVarCount", eExportVar)
3109         // The number of RenderScrip `forEach` kernels __attribute__((kernel))
3110         .Case("exportForEachCount", eExportForEach)
3111         // The number of generalreductions: This marked in the script by
3112         // `#pragma reduce()`
3113         .Case("exportReduceCount", eExportReduce)
3114         // Total count of all RenderScript specific `#pragmas` used in the
3115         // script
3116         .Case("pragmaCount", ePragma)
3117         .Case("objectSlotCount", eObjectSlot)
3118         .Case("versionInfo", eVersionInfo)
3119         .Default(-1);
3120   };
3121 
3122   // parse all text lines of .rs.info
3123   for (auto line = info_lines.begin(); line != info_lines.end(); ++line) {
3124     const auto kv_pair = line->split(": ");
3125     const auto key = kv_pair.first;
3126     const auto val = kv_pair.second.trim();
3127 
3128     const auto handler = rs_info_handler(key);
3129     if (handler == -1)
3130       continue;
3131     // getAsInteger returns `true` on an error condition - we're only
3132     // interested in numeric fields at the moment
3133     uint64_t n_lines;
3134     if (val.getAsInteger(10, n_lines)) {
3135       LLDB_LOGV(log, "Failed to parse non-numeric '.rs.info' section {0}",
3136                 line->str());
3137       continue;
3138     }
3139     if (info_lines.end() - (line + 1) < (ptrdiff_t)n_lines)
3140       return false;
3141 
3142     bool success = false;
3143     switch (handler) {
3144     case eExportVar:
3145       success = ParseExportVarCount(line, n_lines);
3146       break;
3147     case eExportForEach:
3148       success = ParseExportForeachCount(line, n_lines);
3149       break;
3150     case eExportReduce:
3151       success = ParseExportReduceCount(line, n_lines);
3152       break;
3153     case ePragma:
3154       success = ParsePragmaCount(line, n_lines);
3155       break;
3156     case eVersionInfo:
3157       success = ParseVersionInfo(line, n_lines);
3158       break;
3159     default: {
3160       if (log)
3161         log->Printf("%s - skipping .rs.info field '%s'", __FUNCTION__,
3162                     line->str().c_str());
3163       continue;
3164     }
3165     }
3166     if (!success)
3167       return false;
3168     line += n_lines;
3169   }
3170   return info_lines.size() > 0;
3171 }
3172 
3173 void RenderScriptRuntime::DumpStatus(Stream &strm) const {
3174   if (m_libRS) {
3175     strm.Printf("Runtime Library discovered.");
3176     strm.EOL();
3177   }
3178   if (m_libRSDriver) {
3179     strm.Printf("Runtime Driver discovered.");
3180     strm.EOL();
3181   }
3182   if (m_libRSCpuRef) {
3183     strm.Printf("CPU Reference Implementation discovered.");
3184     strm.EOL();
3185   }
3186 
3187   if (m_runtimeHooks.size()) {
3188     strm.Printf("Runtime functions hooked:");
3189     strm.EOL();
3190     for (auto b : m_runtimeHooks) {
3191       strm.Indent(b.second->defn->name);
3192       strm.EOL();
3193     }
3194   } else {
3195     strm.Printf("Runtime is not hooked.");
3196     strm.EOL();
3197   }
3198 }
3199 
3200 void RenderScriptRuntime::DumpContexts(Stream &strm) const {
3201   strm.Printf("Inferred RenderScript Contexts:");
3202   strm.EOL();
3203   strm.IndentMore();
3204 
3205   std::map<addr_t, uint64_t> contextReferences;
3206 
3207   // Iterate over all of the currently discovered scripts. Note: We cant push
3208   // or pop from m_scripts inside this loop or it may invalidate script.
3209   for (const auto &script : m_scripts) {
3210     if (!script->context.isValid())
3211       continue;
3212     lldb::addr_t context = *script->context;
3213 
3214     if (contextReferences.find(context) != contextReferences.end()) {
3215       contextReferences[context]++;
3216     } else {
3217       contextReferences[context] = 1;
3218     }
3219   }
3220 
3221   for (const auto &cRef : contextReferences) {
3222     strm.Printf("Context 0x%" PRIx64 ": %" PRIu64 " script instances",
3223                 cRef.first, cRef.second);
3224     strm.EOL();
3225   }
3226   strm.IndentLess();
3227 }
3228 
3229 void RenderScriptRuntime::DumpKernels(Stream &strm) const {
3230   strm.Printf("RenderScript Kernels:");
3231   strm.EOL();
3232   strm.IndentMore();
3233   for (const auto &module : m_rsmodules) {
3234     strm.Printf("Resource '%s':", module->m_resname.c_str());
3235     strm.EOL();
3236     for (const auto &kernel : module->m_kernels) {
3237       strm.Indent(kernel.m_name.AsCString());
3238       strm.EOL();
3239     }
3240   }
3241   strm.IndentLess();
3242 }
3243 
3244 RenderScriptRuntime::AllocationDetails *
3245 RenderScriptRuntime::FindAllocByID(Stream &strm, const uint32_t alloc_id) {
3246   AllocationDetails *alloc = nullptr;
3247 
3248   // See if we can find allocation using id as an index;
3249   if (alloc_id <= m_allocations.size() && alloc_id != 0 &&
3250       m_allocations[alloc_id - 1]->id == alloc_id) {
3251     alloc = m_allocations[alloc_id - 1].get();
3252     return alloc;
3253   }
3254 
3255   // Fallback to searching
3256   for (const auto &a : m_allocations) {
3257     if (a->id == alloc_id) {
3258       alloc = a.get();
3259       break;
3260     }
3261   }
3262 
3263   if (alloc == nullptr) {
3264     strm.Printf("Error: Couldn't find allocation with id matching %" PRIu32,
3265                 alloc_id);
3266     strm.EOL();
3267   }
3268 
3269   return alloc;
3270 }
3271 
3272 // Prints the contents of an allocation to the output stream, which may be a
3273 // file
3274 bool RenderScriptRuntime::DumpAllocation(Stream &strm, StackFrame *frame_ptr,
3275                                          const uint32_t id) {
3276   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
3277 
3278   // Check we can find the desired allocation
3279   AllocationDetails *alloc = FindAllocByID(strm, id);
3280   if (!alloc)
3281     return false; // FindAllocByID() will print error message for us here
3282 
3283   if (log)
3284     log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__,
3285                 *alloc->address.get());
3286 
3287   // Check we have information about the allocation, if not calculate it
3288   if (alloc->ShouldRefresh()) {
3289     if (log)
3290       log->Printf("%s - allocation details not calculated yet, jitting info.",
3291                   __FUNCTION__);
3292 
3293     // JIT all the allocation information
3294     if (!RefreshAllocation(alloc, frame_ptr)) {
3295       strm.Printf("Error: Couldn't JIT allocation details");
3296       strm.EOL();
3297       return false;
3298     }
3299   }
3300 
3301   // Establish format and size of each data element
3302   const uint32_t vec_size = *alloc->element.type_vec_size.get();
3303   const Element::DataType type = *alloc->element.type.get();
3304 
3305   assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT &&
3306          "Invalid allocation type");
3307 
3308   lldb::Format format;
3309   if (type >= Element::RS_TYPE_ELEMENT)
3310     format = eFormatHex;
3311   else
3312     format = vec_size == 1
3313                  ? static_cast<lldb::Format>(
3314                        AllocationDetails::RSTypeToFormat[type][eFormatSingle])
3315                  : static_cast<lldb::Format>(
3316                        AllocationDetails::RSTypeToFormat[type][eFormatVector]);
3317 
3318   const uint32_t data_size = *alloc->element.datum_size.get();
3319 
3320   if (log)
3321     log->Printf("%s - element size %" PRIu32 " bytes, including padding",
3322                 __FUNCTION__, data_size);
3323 
3324   // Allocate a buffer to copy data into
3325   std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr);
3326   if (!buffer) {
3327     strm.Printf("Error: Couldn't read allocation data");
3328     strm.EOL();
3329     return false;
3330   }
3331 
3332   // Calculate stride between rows as there may be padding at end of rows since
3333   // allocated memory is 16-byte aligned
3334   if (!alloc->stride.isValid()) {
3335     if (alloc->dimension.get()->dim_2 == 0) // We only have one dimension
3336       alloc->stride = 0;
3337     else if (!JITAllocationStride(alloc, frame_ptr)) {
3338       strm.Printf("Error: Couldn't calculate allocation row stride");
3339       strm.EOL();
3340       return false;
3341     }
3342   }
3343   const uint32_t stride = *alloc->stride.get();
3344   const uint32_t size = *alloc->size.get(); // Size of whole allocation
3345   const uint32_t padding =
3346       alloc->element.padding.isValid() ? *alloc->element.padding.get() : 0;
3347   if (log)
3348     log->Printf("%s - stride %" PRIu32 " bytes, size %" PRIu32
3349                 " bytes, padding %" PRIu32,
3350                 __FUNCTION__, stride, size, padding);
3351 
3352   // Find dimensions used to index loops, so need to be non-zero
3353   uint32_t dim_x = alloc->dimension.get()->dim_1;
3354   dim_x = dim_x == 0 ? 1 : dim_x;
3355 
3356   uint32_t dim_y = alloc->dimension.get()->dim_2;
3357   dim_y = dim_y == 0 ? 1 : dim_y;
3358 
3359   uint32_t dim_z = alloc->dimension.get()->dim_3;
3360   dim_z = dim_z == 0 ? 1 : dim_z;
3361 
3362   // Use data extractor to format output
3363   const uint32_t target_ptr_size =
3364       GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
3365   DataExtractor alloc_data(buffer.get(), size, GetProcess()->GetByteOrder(),
3366                            target_ptr_size);
3367 
3368   uint32_t offset = 0;   // Offset in buffer to next element to be printed
3369   uint32_t prev_row = 0; // Offset to the start of the previous row
3370 
3371   // Iterate over allocation dimensions, printing results to user
3372   strm.Printf("Data (X, Y, Z):");
3373   for (uint32_t z = 0; z < dim_z; ++z) {
3374     for (uint32_t y = 0; y < dim_y; ++y) {
3375       // Use stride to index start of next row.
3376       if (!(y == 0 && z == 0))
3377         offset = prev_row + stride;
3378       prev_row = offset;
3379 
3380       // Print each element in the row individually
3381       for (uint32_t x = 0; x < dim_x; ++x) {
3382         strm.Printf("\n(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ") = ", x, y, z);
3383         if ((type == Element::RS_TYPE_NONE) &&
3384             (alloc->element.children.size() > 0) &&
3385             (alloc->element.type_name != Element::GetFallbackStructName())) {
3386           // Here we are dumping an Element of struct type. This is done using
3387           // expression evaluation with the name of the struct type and pointer
3388           // to element. Don't print the name of the resulting expression,
3389           // since this will be '$[0-9]+'
3390           DumpValueObjectOptions expr_options;
3391           expr_options.SetHideName(true);
3392 
3393           // Setup expression as dereferencing a pointer cast to element
3394           // address.
3395           char expr_char_buffer[jit_max_expr_size];
3396           int written =
3397               snprintf(expr_char_buffer, jit_max_expr_size, "*(%s*) 0x%" PRIx64,
3398                        alloc->element.type_name.AsCString(),
3399                        *alloc->data_ptr.get() + offset);
3400 
3401           if (written < 0 || written >= jit_max_expr_size) {
3402             if (log)
3403               log->Printf("%s - error in snprintf().", __FUNCTION__);
3404             continue;
3405           }
3406 
3407           // Evaluate expression
3408           ValueObjectSP expr_result;
3409           GetProcess()->GetTarget().EvaluateExpression(expr_char_buffer,
3410                                                        frame_ptr, expr_result);
3411 
3412           // Print the results to our stream.
3413           expr_result->Dump(strm, expr_options);
3414         } else {
3415           DumpDataExtractor(alloc_data, &strm, offset, format,
3416                             data_size - padding, 1, 1, LLDB_INVALID_ADDRESS, 0,
3417                             0);
3418         }
3419         offset += data_size;
3420       }
3421     }
3422   }
3423   strm.EOL();
3424 
3425   return true;
3426 }
3427 
3428 // Function recalculates all our cached information about allocations by
3429 // jitting the RS runtime regarding each allocation we know about. Returns true
3430 // if all allocations could be recomputed, false otherwise.
3431 bool RenderScriptRuntime::RecomputeAllAllocations(Stream &strm,
3432                                                   StackFrame *frame_ptr) {
3433   bool success = true;
3434   for (auto &alloc : m_allocations) {
3435     // JIT current allocation information
3436     if (!RefreshAllocation(alloc.get(), frame_ptr)) {
3437       strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32
3438                   "\n",
3439                   alloc->id);
3440       success = false;
3441     }
3442   }
3443 
3444   if (success)
3445     strm.Printf("All allocations successfully recomputed");
3446   strm.EOL();
3447 
3448   return success;
3449 }
3450 
3451 // Prints information regarding currently loaded allocations. These details are
3452 // gathered by jitting the runtime, which has as latency. Index parameter
3453 // specifies a single allocation ID to print, or a zero value to print them all
3454 void RenderScriptRuntime::ListAllocations(Stream &strm, StackFrame *frame_ptr,
3455                                           const uint32_t index) {
3456   strm.Printf("RenderScript Allocations:");
3457   strm.EOL();
3458   strm.IndentMore();
3459 
3460   for (auto &alloc : m_allocations) {
3461     // index will only be zero if we want to print all allocations
3462     if (index != 0 && index != alloc->id)
3463       continue;
3464 
3465     // JIT current allocation information
3466     if (alloc->ShouldRefresh() && !RefreshAllocation(alloc.get(), frame_ptr)) {
3467       strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32,
3468                   alloc->id);
3469       strm.EOL();
3470       continue;
3471     }
3472 
3473     strm.Printf("%" PRIu32 ":", alloc->id);
3474     strm.EOL();
3475     strm.IndentMore();
3476 
3477     strm.Indent("Context: ");
3478     if (!alloc->context.isValid())
3479       strm.Printf("unknown\n");
3480     else
3481       strm.Printf("0x%" PRIx64 "\n", *alloc->context.get());
3482 
3483     strm.Indent("Address: ");
3484     if (!alloc->address.isValid())
3485       strm.Printf("unknown\n");
3486     else
3487       strm.Printf("0x%" PRIx64 "\n", *alloc->address.get());
3488 
3489     strm.Indent("Data pointer: ");
3490     if (!alloc->data_ptr.isValid())
3491       strm.Printf("unknown\n");
3492     else
3493       strm.Printf("0x%" PRIx64 "\n", *alloc->data_ptr.get());
3494 
3495     strm.Indent("Dimensions: ");
3496     if (!alloc->dimension.isValid())
3497       strm.Printf("unknown\n");
3498     else
3499       strm.Printf("(%" PRId32 ", %" PRId32 ", %" PRId32 ")\n",
3500                   alloc->dimension.get()->dim_1, alloc->dimension.get()->dim_2,
3501                   alloc->dimension.get()->dim_3);
3502 
3503     strm.Indent("Data Type: ");
3504     if (!alloc->element.type.isValid() ||
3505         !alloc->element.type_vec_size.isValid())
3506       strm.Printf("unknown\n");
3507     else {
3508       const int vector_size = *alloc->element.type_vec_size.get();
3509       Element::DataType type = *alloc->element.type.get();
3510 
3511       if (!alloc->element.type_name.IsEmpty())
3512         strm.Printf("%s\n", alloc->element.type_name.AsCString());
3513       else {
3514         // Enum value isn't monotonous, so doesn't always index
3515         // RsDataTypeToString array
3516         if (type >= Element::RS_TYPE_ELEMENT && type <= Element::RS_TYPE_FONT)
3517           type =
3518               static_cast<Element::DataType>((type - Element::RS_TYPE_ELEMENT) +
3519                                              Element::RS_TYPE_MATRIX_2X2 + 1);
3520 
3521         if (type >= (sizeof(AllocationDetails::RsDataTypeToString) /
3522                      sizeof(AllocationDetails::RsDataTypeToString[0])) ||
3523             vector_size > 4 || vector_size < 1)
3524           strm.Printf("invalid type\n");
3525         else
3526           strm.Printf(
3527               "%s\n",
3528               AllocationDetails::RsDataTypeToString[static_cast<uint32_t>(type)]
3529                                                    [vector_size - 1]);
3530       }
3531     }
3532 
3533     strm.Indent("Data Kind: ");
3534     if (!alloc->element.type_kind.isValid())
3535       strm.Printf("unknown\n");
3536     else {
3537       const Element::DataKind kind = *alloc->element.type_kind.get();
3538       if (kind < Element::RS_KIND_USER || kind > Element::RS_KIND_PIXEL_YUV)
3539         strm.Printf("invalid kind\n");
3540       else
3541         strm.Printf(
3542             "%s\n",
3543             AllocationDetails::RsDataKindToString[static_cast<uint32_t>(kind)]);
3544     }
3545 
3546     strm.EOL();
3547     strm.IndentLess();
3548   }
3549   strm.IndentLess();
3550 }
3551 
3552 // Set breakpoints on every kernel found in RS module
3553 void RenderScriptRuntime::BreakOnModuleKernels(
3554     const RSModuleDescriptorSP rsmodule_sp) {
3555   for (const auto &kernel : rsmodule_sp->m_kernels) {
3556     // Don't set breakpoint on 'root' kernel
3557     if (strcmp(kernel.m_name.AsCString(), "root") == 0)
3558       continue;
3559 
3560     CreateKernelBreakpoint(kernel.m_name);
3561   }
3562 }
3563 
3564 // Method is internally called by the 'kernel breakpoint all' command to enable
3565 // or disable breaking on all kernels. When do_break is true we want to enable
3566 // this functionality. When do_break is false we want to disable it.
3567 void RenderScriptRuntime::SetBreakAllKernels(bool do_break, TargetSP target) {
3568   Log *log(
3569       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
3570 
3571   InitSearchFilter(target);
3572 
3573   // Set breakpoints on all the kernels
3574   if (do_break && !m_breakAllKernels) {
3575     m_breakAllKernels = true;
3576 
3577     for (const auto &module : m_rsmodules)
3578       BreakOnModuleKernels(module);
3579 
3580     if (log)
3581       log->Printf("%s(True) - breakpoints set on all currently loaded kernels.",
3582                   __FUNCTION__);
3583   } else if (!do_break &&
3584              m_breakAllKernels) // Breakpoints won't be set on any new kernels.
3585   {
3586     m_breakAllKernels = false;
3587 
3588     if (log)
3589       log->Printf("%s(False) - breakpoints no longer automatically set.",
3590                   __FUNCTION__);
3591   }
3592 }
3593 
3594 // Given the name of a kernel this function creates a breakpoint using our own
3595 // breakpoint resolver, and returns the Breakpoint shared pointer.
3596 BreakpointSP
3597 RenderScriptRuntime::CreateKernelBreakpoint(const ConstString &name) {
3598   Log *log(
3599       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
3600 
3601   if (!m_filtersp) {
3602     if (log)
3603       log->Printf("%s - error, no breakpoint search filter set.", __FUNCTION__);
3604     return nullptr;
3605   }
3606 
3607   BreakpointResolverSP resolver_sp(new RSBreakpointResolver(nullptr, name));
3608   Target &target = GetProcess()->GetTarget();
3609   BreakpointSP bp = target.CreateBreakpoint(
3610       m_filtersp, resolver_sp, false, false, false);
3611 
3612   // Give RS breakpoints a specific name, so the user can manipulate them as a
3613   // group.
3614   Status err;
3615   target.AddNameToBreakpoint(bp, "RenderScriptKernel", err);
3616   if (err.Fail() && log)
3617     if (log)
3618       log->Printf("%s - error setting break name, '%s'.", __FUNCTION__,
3619                   err.AsCString());
3620 
3621   return bp;
3622 }
3623 
3624 BreakpointSP
3625 RenderScriptRuntime::CreateReductionBreakpoint(const ConstString &name,
3626                                                int kernel_types) {
3627   Log *log(
3628       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
3629 
3630   if (!m_filtersp) {
3631     if (log)
3632       log->Printf("%s - error, no breakpoint search filter set.", __FUNCTION__);
3633     return nullptr;
3634   }
3635 
3636   BreakpointResolverSP resolver_sp(new RSReduceBreakpointResolver(
3637       nullptr, name, &m_rsmodules, kernel_types));
3638   Target &target = GetProcess()->GetTarget();
3639   BreakpointSP bp = target.CreateBreakpoint(
3640       m_filtersp, resolver_sp, false, false, false);
3641 
3642   // Give RS breakpoints a specific name, so the user can manipulate them as a
3643   // group.
3644   Status err;
3645   target.AddNameToBreakpoint(bp, "RenderScriptReduction", err);
3646   if (err.Fail() && log)
3647       log->Printf("%s - error setting break name, '%s'.", __FUNCTION__,
3648                   err.AsCString());
3649 
3650   return bp;
3651 }
3652 
3653 // Given an expression for a variable this function tries to calculate the
3654 // variable's value. If this is possible it returns true and sets the uint64_t
3655 // parameter to the variables unsigned value. Otherwise function returns false.
3656 bool RenderScriptRuntime::GetFrameVarAsUnsigned(const StackFrameSP frame_sp,
3657                                                 const char *var_name,
3658                                                 uint64_t &val) {
3659   Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE));
3660   Status err;
3661   VariableSP var_sp;
3662 
3663   // Find variable in stack frame
3664   ValueObjectSP value_sp(frame_sp->GetValueForVariableExpressionPath(
3665       var_name, eNoDynamicValues,
3666       StackFrame::eExpressionPathOptionCheckPtrVsMember |
3667           StackFrame::eExpressionPathOptionsAllowDirectIVarAccess,
3668       var_sp, err));
3669   if (!err.Success()) {
3670     if (log)
3671       log->Printf("%s - error, couldn't find '%s' in frame", __FUNCTION__,
3672                   var_name);
3673     return false;
3674   }
3675 
3676   // Find the uint32_t value for the variable
3677   bool success = false;
3678   val = value_sp->GetValueAsUnsigned(0, &success);
3679   if (!success) {
3680     if (log)
3681       log->Printf("%s - error, couldn't parse '%s' as an uint32_t.",
3682                   __FUNCTION__, var_name);
3683     return false;
3684   }
3685 
3686   return true;
3687 }
3688 
3689 // Function attempts to find the current coordinate of a kernel invocation by
3690 // investigating the values of frame variables in the .expand function. These
3691 // coordinates are returned via the coord array reference parameter. Returns
3692 // true if the coordinates could be found, and false otherwise.
3693 bool RenderScriptRuntime::GetKernelCoordinate(RSCoordinate &coord,
3694                                               Thread *thread_ptr) {
3695   static const char *const x_expr = "rsIndex";
3696   static const char *const y_expr = "p->current.y";
3697   static const char *const z_expr = "p->current.z";
3698 
3699   Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE));
3700 
3701   if (!thread_ptr) {
3702     if (log)
3703       log->Printf("%s - Error, No thread pointer", __FUNCTION__);
3704 
3705     return false;
3706   }
3707 
3708   // Walk the call stack looking for a function whose name has the suffix
3709   // '.expand' and contains the variables we're looking for.
3710   for (uint32_t i = 0; i < thread_ptr->GetStackFrameCount(); ++i) {
3711     if (!thread_ptr->SetSelectedFrameByIndex(i))
3712       continue;
3713 
3714     StackFrameSP frame_sp = thread_ptr->GetSelectedFrame();
3715     if (!frame_sp)
3716       continue;
3717 
3718     // Find the function name
3719     const SymbolContext sym_ctx =
3720         frame_sp->GetSymbolContext(eSymbolContextFunction);
3721     const ConstString func_name = sym_ctx.GetFunctionName();
3722     if (!func_name)
3723       continue;
3724 
3725     if (log)
3726       log->Printf("%s - Inspecting function '%s'", __FUNCTION__,
3727                   func_name.GetCString());
3728 
3729     // Check if function name has .expand suffix
3730     if (!func_name.GetStringRef().endswith(".expand"))
3731       continue;
3732 
3733     if (log)
3734       log->Printf("%s - Found .expand function '%s'", __FUNCTION__,
3735                   func_name.GetCString());
3736 
3737     // Get values for variables in .expand frame that tell us the current
3738     // kernel invocation
3739     uint64_t x, y, z;
3740     bool found = GetFrameVarAsUnsigned(frame_sp, x_expr, x) &&
3741                  GetFrameVarAsUnsigned(frame_sp, y_expr, y) &&
3742                  GetFrameVarAsUnsigned(frame_sp, z_expr, z);
3743 
3744     if (found) {
3745       // The RenderScript runtime uses uint32_t for these vars. If they're not
3746       // within bounds, our frame parsing is garbage
3747       assert(x <= UINT32_MAX && y <= UINT32_MAX && z <= UINT32_MAX);
3748       coord.x = (uint32_t)x;
3749       coord.y = (uint32_t)y;
3750       coord.z = (uint32_t)z;
3751       return true;
3752     }
3753   }
3754   return false;
3755 }
3756 
3757 // Callback when a kernel breakpoint hits and we're looking for a specific
3758 // coordinate. Baton parameter contains a pointer to the target coordinate we
3759 // want to break on. Function then checks the .expand frame for the current
3760 // coordinate and breaks to user if it matches. Parameter 'break_id' is the id
3761 // of the Breakpoint which made the callback. Parameter 'break_loc_id' is the
3762 // id for the BreakpointLocation which was hit, a single logical breakpoint can
3763 // have multiple addresses.
3764 bool RenderScriptRuntime::KernelBreakpointHit(void *baton,
3765                                               StoppointCallbackContext *ctx,
3766                                               user_id_t break_id,
3767                                               user_id_t break_loc_id) {
3768   Log *log(
3769       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
3770 
3771   assert(baton &&
3772          "Error: null baton in conditional kernel breakpoint callback");
3773 
3774   // Coordinate we want to stop on
3775   RSCoordinate target_coord = *static_cast<RSCoordinate *>(baton);
3776 
3777   if (log)
3778     log->Printf("%s - Break ID %" PRIu64 ", " FMT_COORD, __FUNCTION__, break_id,
3779                 target_coord.x, target_coord.y, target_coord.z);
3780 
3781   // Select current thread
3782   ExecutionContext context(ctx->exe_ctx_ref);
3783   Thread *thread_ptr = context.GetThreadPtr();
3784   assert(thread_ptr && "Null thread pointer");
3785 
3786   // Find current kernel invocation from .expand frame variables
3787   RSCoordinate current_coord{};
3788   if (!GetKernelCoordinate(current_coord, thread_ptr)) {
3789     if (log)
3790       log->Printf("%s - Error, couldn't select .expand stack frame",
3791                   __FUNCTION__);
3792     return false;
3793   }
3794 
3795   if (log)
3796     log->Printf("%s - " FMT_COORD, __FUNCTION__, current_coord.x,
3797                 current_coord.y, current_coord.z);
3798 
3799   // Check if the current kernel invocation coordinate matches our target
3800   // coordinate
3801   if (target_coord == current_coord) {
3802     if (log)
3803       log->Printf("%s, BREAKING " FMT_COORD, __FUNCTION__, current_coord.x,
3804                   current_coord.y, current_coord.z);
3805 
3806     BreakpointSP breakpoint_sp =
3807         context.GetTargetPtr()->GetBreakpointByID(break_id);
3808     assert(breakpoint_sp != nullptr &&
3809            "Error: Couldn't find breakpoint matching break id for callback");
3810     breakpoint_sp->SetEnabled(false); // Optimise since conditional breakpoint
3811                                       // should only be hit once.
3812     return true;
3813   }
3814 
3815   // No match on coordinate
3816   return false;
3817 }
3818 
3819 void RenderScriptRuntime::SetConditional(BreakpointSP bp, Stream &messages,
3820                                          const RSCoordinate &coord) {
3821   messages.Printf("Conditional kernel breakpoint on coordinate " FMT_COORD,
3822                   coord.x, coord.y, coord.z);
3823   messages.EOL();
3824 
3825   // Allocate memory for the baton, and copy over coordinate
3826   RSCoordinate *baton = new RSCoordinate(coord);
3827 
3828   // Create a callback that will be invoked every time the breakpoint is hit.
3829   // The baton object passed to the handler is the target coordinate we want to
3830   // break on.
3831   bp->SetCallback(KernelBreakpointHit, baton, true);
3832 
3833   // Store a shared pointer to the baton, so the memory will eventually be
3834   // cleaned up after destruction
3835   m_conditional_breaks[bp->GetID()] = std::unique_ptr<RSCoordinate>(baton);
3836 }
3837 
3838 // Tries to set a breakpoint on the start of a kernel, resolved using the
3839 // kernel name. Argument 'coords', represents a three dimensional coordinate
3840 // which can be used to specify a single kernel instance to break on. If this
3841 // is set then we add a callback to the breakpoint.
3842 bool RenderScriptRuntime::PlaceBreakpointOnKernel(TargetSP target,
3843                                                   Stream &messages,
3844                                                   const char *name,
3845                                                   const RSCoordinate *coord) {
3846   if (!name)
3847     return false;
3848 
3849   InitSearchFilter(target);
3850 
3851   ConstString kernel_name(name);
3852   BreakpointSP bp = CreateKernelBreakpoint(kernel_name);
3853   if (!bp)
3854     return false;
3855 
3856   // We have a conditional breakpoint on a specific coordinate
3857   if (coord)
3858     SetConditional(bp, messages, *coord);
3859 
3860   bp->GetDescription(&messages, lldb::eDescriptionLevelInitial, false);
3861 
3862   return true;
3863 }
3864 
3865 BreakpointSP
3866 RenderScriptRuntime::CreateScriptGroupBreakpoint(const ConstString &name,
3867                                                  bool stop_on_all) {
3868   Log *log(
3869       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
3870 
3871   if (!m_filtersp) {
3872     if (log)
3873       log->Printf("%s - error, no breakpoint search filter set.", __FUNCTION__);
3874     return nullptr;
3875   }
3876 
3877   BreakpointResolverSP resolver_sp(new RSScriptGroupBreakpointResolver(
3878       nullptr, name, m_scriptGroups, stop_on_all));
3879   Target &target = GetProcess()->GetTarget();
3880   BreakpointSP bp = target.CreateBreakpoint(
3881       m_filtersp, resolver_sp, false, false, false);
3882   // Give RS breakpoints a specific name, so the user can manipulate them as a
3883   // group.
3884   Status err;
3885   target.AddNameToBreakpoint(bp, name.GetCString(), err);
3886   if (err.Fail() && log)
3887     log->Printf("%s - error setting break name, '%s'.", __FUNCTION__,
3888                 err.AsCString());
3889   // ask the breakpoint to resolve itself
3890   bp->ResolveBreakpoint();
3891   return bp;
3892 }
3893 
3894 bool RenderScriptRuntime::PlaceBreakpointOnScriptGroup(TargetSP target,
3895                                                        Stream &strm,
3896                                                        const ConstString &name,
3897                                                        bool multi) {
3898   InitSearchFilter(target);
3899   BreakpointSP bp = CreateScriptGroupBreakpoint(name, multi);
3900   if (bp)
3901     bp->GetDescription(&strm, lldb::eDescriptionLevelInitial, false);
3902   return bool(bp);
3903 }
3904 
3905 bool RenderScriptRuntime::PlaceBreakpointOnReduction(TargetSP target,
3906                                                      Stream &messages,
3907                                                      const char *reduce_name,
3908                                                      const RSCoordinate *coord,
3909                                                      int kernel_types) {
3910   if (!reduce_name)
3911     return false;
3912 
3913   InitSearchFilter(target);
3914   BreakpointSP bp =
3915       CreateReductionBreakpoint(ConstString(reduce_name), kernel_types);
3916   if (!bp)
3917     return false;
3918 
3919   if (coord)
3920     SetConditional(bp, messages, *coord);
3921 
3922   bp->GetDescription(&messages, lldb::eDescriptionLevelInitial, false);
3923 
3924   return true;
3925 }
3926 
3927 void RenderScriptRuntime::DumpModules(Stream &strm) const {
3928   strm.Printf("RenderScript Modules:");
3929   strm.EOL();
3930   strm.IndentMore();
3931   for (const auto &module : m_rsmodules) {
3932     module->Dump(strm);
3933   }
3934   strm.IndentLess();
3935 }
3936 
3937 RenderScriptRuntime::ScriptDetails *
3938 RenderScriptRuntime::LookUpScript(addr_t address, bool create) {
3939   for (const auto &s : m_scripts) {
3940     if (s->script.isValid())
3941       if (*s->script == address)
3942         return s.get();
3943   }
3944   if (create) {
3945     std::unique_ptr<ScriptDetails> s(new ScriptDetails);
3946     s->script = address;
3947     m_scripts.push_back(std::move(s));
3948     return m_scripts.back().get();
3949   }
3950   return nullptr;
3951 }
3952 
3953 RenderScriptRuntime::AllocationDetails *
3954 RenderScriptRuntime::LookUpAllocation(addr_t address) {
3955   for (const auto &a : m_allocations) {
3956     if (a->address.isValid())
3957       if (*a->address == address)
3958         return a.get();
3959   }
3960   return nullptr;
3961 }
3962 
3963 RenderScriptRuntime::AllocationDetails *
3964 RenderScriptRuntime::CreateAllocation(addr_t address) {
3965   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
3966 
3967   // Remove any previous allocation which contains the same address
3968   auto it = m_allocations.begin();
3969   while (it != m_allocations.end()) {
3970     if (*((*it)->address) == address) {
3971       if (log)
3972         log->Printf("%s - Removing allocation id: %d, address: 0x%" PRIx64,
3973                     __FUNCTION__, (*it)->id, address);
3974 
3975       it = m_allocations.erase(it);
3976     } else {
3977       it++;
3978     }
3979   }
3980 
3981   std::unique_ptr<AllocationDetails> a(new AllocationDetails);
3982   a->address = address;
3983   m_allocations.push_back(std::move(a));
3984   return m_allocations.back().get();
3985 }
3986 
3987 bool RenderScriptRuntime::ResolveKernelName(lldb::addr_t kernel_addr,
3988                                             ConstString &name) {
3989   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS);
3990 
3991   Target &target = GetProcess()->GetTarget();
3992   Address resolved;
3993   // RenderScript module
3994   if (!target.GetSectionLoadList().ResolveLoadAddress(kernel_addr, resolved)) {
3995     if (log)
3996       log->Printf("%s: unable to resolve 0x%" PRIx64 " to a loaded symbol",
3997                   __FUNCTION__, kernel_addr);
3998     return false;
3999   }
4000 
4001   Symbol *sym = resolved.CalculateSymbolContextSymbol();
4002   if (!sym)
4003     return false;
4004 
4005   name = sym->GetName();
4006   assert(IsRenderScriptModule(resolved.CalculateSymbolContextModule()));
4007   if (log)
4008     log->Printf("%s: 0x%" PRIx64 " resolved to the symbol '%s'", __FUNCTION__,
4009                 kernel_addr, name.GetCString());
4010   return true;
4011 }
4012 
4013 void RSModuleDescriptor::Dump(Stream &strm) const {
4014   int indent = strm.GetIndentLevel();
4015 
4016   strm.Indent();
4017   m_module->GetFileSpec().Dump(&strm);
4018   strm.Indent(m_module->GetNumCompileUnits() ? "Debug info loaded."
4019                                              : "Debug info does not exist.");
4020   strm.EOL();
4021   strm.IndentMore();
4022 
4023   strm.Indent();
4024   strm.Printf("Globals: %" PRIu64, static_cast<uint64_t>(m_globals.size()));
4025   strm.EOL();
4026   strm.IndentMore();
4027   for (const auto &global : m_globals) {
4028     global.Dump(strm);
4029   }
4030   strm.IndentLess();
4031 
4032   strm.Indent();
4033   strm.Printf("Kernels: %" PRIu64, static_cast<uint64_t>(m_kernels.size()));
4034   strm.EOL();
4035   strm.IndentMore();
4036   for (const auto &kernel : m_kernels) {
4037     kernel.Dump(strm);
4038   }
4039   strm.IndentLess();
4040 
4041   strm.Indent();
4042   strm.Printf("Pragmas: %" PRIu64, static_cast<uint64_t>(m_pragmas.size()));
4043   strm.EOL();
4044   strm.IndentMore();
4045   for (const auto &key_val : m_pragmas) {
4046     strm.Indent();
4047     strm.Printf("%s: %s", key_val.first.c_str(), key_val.second.c_str());
4048     strm.EOL();
4049   }
4050   strm.IndentLess();
4051 
4052   strm.Indent();
4053   strm.Printf("Reductions: %" PRIu64,
4054               static_cast<uint64_t>(m_reductions.size()));
4055   strm.EOL();
4056   strm.IndentMore();
4057   for (const auto &reduction : m_reductions) {
4058     reduction.Dump(strm);
4059   }
4060 
4061   strm.SetIndentLevel(indent);
4062 }
4063 
4064 void RSGlobalDescriptor::Dump(Stream &strm) const {
4065   strm.Indent(m_name.AsCString());
4066   VariableList var_list;
4067   m_module->m_module->FindGlobalVariables(m_name, nullptr, 1U, var_list);
4068   if (var_list.GetSize() == 1) {
4069     auto var = var_list.GetVariableAtIndex(0);
4070     auto type = var->GetType();
4071     if (type) {
4072       strm.Printf(" - ");
4073       type->DumpTypeName(&strm);
4074     } else {
4075       strm.Printf(" - Unknown Type");
4076     }
4077   } else {
4078     strm.Printf(" - variable identified, but not found in binary");
4079     const Symbol *s = m_module->m_module->FindFirstSymbolWithNameAndType(
4080         m_name, eSymbolTypeData);
4081     if (s) {
4082       strm.Printf(" (symbol exists) ");
4083     }
4084   }
4085 
4086   strm.EOL();
4087 }
4088 
4089 void RSKernelDescriptor::Dump(Stream &strm) const {
4090   strm.Indent(m_name.AsCString());
4091   strm.EOL();
4092 }
4093 
4094 void RSReductionDescriptor::Dump(lldb_private::Stream &stream) const {
4095   stream.Indent(m_reduce_name.AsCString());
4096   stream.IndentMore();
4097   stream.EOL();
4098   stream.Indent();
4099   stream.Printf("accumulator: %s", m_accum_name.AsCString());
4100   stream.EOL();
4101   stream.Indent();
4102   stream.Printf("initializer: %s", m_init_name.AsCString());
4103   stream.EOL();
4104   stream.Indent();
4105   stream.Printf("combiner: %s", m_comb_name.AsCString());
4106   stream.EOL();
4107   stream.Indent();
4108   stream.Printf("outconverter: %s", m_outc_name.AsCString());
4109   stream.EOL();
4110   // XXX This is currently unspecified by RenderScript, and unused
4111   // stream.Indent();
4112   // stream.Printf("halter: '%s'", m_init_name.AsCString());
4113   // stream.EOL();
4114   stream.IndentLess();
4115 }
4116 
4117 class CommandObjectRenderScriptRuntimeModuleDump : public CommandObjectParsed {
4118 public:
4119   CommandObjectRenderScriptRuntimeModuleDump(CommandInterpreter &interpreter)
4120       : CommandObjectParsed(
4121             interpreter, "renderscript module dump",
4122             "Dumps renderscript specific information for all modules.",
4123             "renderscript module dump",
4124             eCommandRequiresProcess | eCommandProcessMustBeLaunched) {}
4125 
4126   ~CommandObjectRenderScriptRuntimeModuleDump() override = default;
4127 
4128   bool DoExecute(Args &command, CommandReturnObject &result) override {
4129     RenderScriptRuntime *runtime =
4130         (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4131             eLanguageTypeExtRenderScript);
4132     runtime->DumpModules(result.GetOutputStream());
4133     result.SetStatus(eReturnStatusSuccessFinishResult);
4134     return true;
4135   }
4136 };
4137 
4138 class CommandObjectRenderScriptRuntimeModule : public CommandObjectMultiword {
4139 public:
4140   CommandObjectRenderScriptRuntimeModule(CommandInterpreter &interpreter)
4141       : CommandObjectMultiword(interpreter, "renderscript module",
4142                                "Commands that deal with RenderScript modules.",
4143                                nullptr) {
4144     LoadSubCommand(
4145         "dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeModuleDump(
4146                     interpreter)));
4147   }
4148 
4149   ~CommandObjectRenderScriptRuntimeModule() override = default;
4150 };
4151 
4152 class CommandObjectRenderScriptRuntimeKernelList : public CommandObjectParsed {
4153 public:
4154   CommandObjectRenderScriptRuntimeKernelList(CommandInterpreter &interpreter)
4155       : CommandObjectParsed(
4156             interpreter, "renderscript kernel list",
4157             "Lists renderscript kernel names and associated script resources.",
4158             "renderscript kernel list",
4159             eCommandRequiresProcess | eCommandProcessMustBeLaunched) {}
4160 
4161   ~CommandObjectRenderScriptRuntimeKernelList() override = default;
4162 
4163   bool DoExecute(Args &command, CommandReturnObject &result) override {
4164     RenderScriptRuntime *runtime =
4165         (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4166             eLanguageTypeExtRenderScript);
4167     runtime->DumpKernels(result.GetOutputStream());
4168     result.SetStatus(eReturnStatusSuccessFinishResult);
4169     return true;
4170   }
4171 };
4172 
4173 static constexpr OptionDefinition g_renderscript_reduction_bp_set_options[] = {
4174     {LLDB_OPT_SET_1, false, "function-role", 't',
4175      OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeOneLiner,
4176      "Break on a comma separated set of reduction kernel types "
4177      "(accumulator,outcoverter,combiner,initializer"},
4178     {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument,
4179      nullptr, {}, 0, eArgTypeValue,
4180      "Set a breakpoint on a single invocation of the kernel with specified "
4181      "coordinate.\n"
4182      "Coordinate takes the form 'x[,y][,z] where x,y,z are positive "
4183      "integers representing kernel dimensions. "
4184      "Any unset dimensions will be defaulted to zero."}};
4185 
4186 class CommandObjectRenderScriptRuntimeReductionBreakpointSet
4187     : public CommandObjectParsed {
4188 public:
4189   CommandObjectRenderScriptRuntimeReductionBreakpointSet(
4190       CommandInterpreter &interpreter)
4191       : CommandObjectParsed(
4192             interpreter, "renderscript reduction breakpoint set",
4193             "Set a breakpoint on named RenderScript general reductions",
4194             "renderscript reduction breakpoint set  <kernel_name> [-t "
4195             "<reduction_kernel_type,...>]",
4196             eCommandRequiresProcess | eCommandProcessMustBeLaunched |
4197                 eCommandProcessMustBePaused),
4198         m_options(){};
4199 
4200   class CommandOptions : public Options {
4201   public:
4202     CommandOptions()
4203         : Options(),
4204           m_kernel_types(RSReduceBreakpointResolver::eKernelTypeAll) {}
4205 
4206     ~CommandOptions() override = default;
4207 
4208     Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg,
4209                           ExecutionContext *exe_ctx) override {
4210       Status err;
4211       StreamString err_str;
4212       const int short_option = m_getopt_table[option_idx].val;
4213       switch (short_option) {
4214       case 't':
4215         if (!ParseReductionTypes(option_arg, err_str))
4216           err.SetErrorStringWithFormat(
4217               "Unable to deduce reduction types for %s: %s",
4218               option_arg.str().c_str(), err_str.GetData());
4219         break;
4220       case 'c': {
4221         auto coord = RSCoordinate{};
4222         if (!ParseCoordinate(option_arg, coord))
4223           err.SetErrorStringWithFormat("unable to parse coordinate for %s",
4224                                        option_arg.str().c_str());
4225         else {
4226           m_have_coord = true;
4227           m_coord = coord;
4228         }
4229         break;
4230       }
4231       default:
4232         err.SetErrorStringWithFormat("Invalid option '-%c'", short_option);
4233       }
4234       return err;
4235     }
4236 
4237     void OptionParsingStarting(ExecutionContext *exe_ctx) override {
4238       m_have_coord = false;
4239     }
4240 
4241     llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
4242       return llvm::makeArrayRef(g_renderscript_reduction_bp_set_options);
4243     }
4244 
4245     bool ParseReductionTypes(llvm::StringRef option_val,
4246                              StreamString &err_str) {
4247       m_kernel_types = RSReduceBreakpointResolver::eKernelTypeNone;
4248       const auto reduce_name_to_type = [](llvm::StringRef name) -> int {
4249         return llvm::StringSwitch<int>(name)
4250             .Case("accumulator", RSReduceBreakpointResolver::eKernelTypeAccum)
4251             .Case("initializer", RSReduceBreakpointResolver::eKernelTypeInit)
4252             .Case("outconverter", RSReduceBreakpointResolver::eKernelTypeOutC)
4253             .Case("combiner", RSReduceBreakpointResolver::eKernelTypeComb)
4254             .Case("all", RSReduceBreakpointResolver::eKernelTypeAll)
4255             // Currently not exposed by the runtime
4256             // .Case("halter", RSReduceBreakpointResolver::eKernelTypeHalter)
4257             .Default(0);
4258       };
4259 
4260       // Matching a comma separated list of known words is fairly
4261       // straightforward with PCRE, but we're using ERE, so we end up with a
4262       // little ugliness...
4263       RegularExpression::Match match(/* max_matches */ 5);
4264       RegularExpression match_type_list(
4265           llvm::StringRef("^([[:alpha:]]+)(,[[:alpha:]]+){0,4}$"));
4266 
4267       assert(match_type_list.IsValid());
4268 
4269       if (!match_type_list.Execute(option_val, &match)) {
4270         err_str.PutCString(
4271             "a comma-separated list of kernel types is required");
4272         return false;
4273       }
4274 
4275       // splitting on commas is much easier with llvm::StringRef than regex
4276       llvm::SmallVector<llvm::StringRef, 5> type_names;
4277       llvm::StringRef(option_val).split(type_names, ',');
4278 
4279       for (const auto &name : type_names) {
4280         const int type = reduce_name_to_type(name);
4281         if (!type) {
4282           err_str.Printf("unknown kernel type name %s", name.str().c_str());
4283           return false;
4284         }
4285         m_kernel_types |= type;
4286       }
4287 
4288       return true;
4289     }
4290 
4291     int m_kernel_types;
4292     llvm::StringRef m_reduce_name;
4293     RSCoordinate m_coord;
4294     bool m_have_coord;
4295   };
4296 
4297   Options *GetOptions() override { return &m_options; }
4298 
4299   bool DoExecute(Args &command, CommandReturnObject &result) override {
4300     const size_t argc = command.GetArgumentCount();
4301     if (argc < 1) {
4302       result.AppendErrorWithFormat("'%s' takes 1 argument of reduction name, "
4303                                    "and an optional kernel type list",
4304                                    m_cmd_name.c_str());
4305       result.SetStatus(eReturnStatusFailed);
4306       return false;
4307     }
4308 
4309     RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4310         m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4311             eLanguageTypeExtRenderScript));
4312 
4313     auto &outstream = result.GetOutputStream();
4314     auto name = command.GetArgumentAtIndex(0);
4315     auto &target = m_exe_ctx.GetTargetSP();
4316     auto coord = m_options.m_have_coord ? &m_options.m_coord : nullptr;
4317     if (!runtime->PlaceBreakpointOnReduction(target, outstream, name, coord,
4318                                              m_options.m_kernel_types)) {
4319       result.SetStatus(eReturnStatusFailed);
4320       result.AppendError("Error: unable to place breakpoint on reduction");
4321       return false;
4322     }
4323     result.AppendMessage("Breakpoint(s) created");
4324     result.SetStatus(eReturnStatusSuccessFinishResult);
4325     return true;
4326   }
4327 
4328 private:
4329   CommandOptions m_options;
4330 };
4331 
4332 static constexpr OptionDefinition g_renderscript_kernel_bp_set_options[] = {
4333     {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument,
4334      nullptr, {}, 0, eArgTypeValue,
4335      "Set a breakpoint on a single invocation of the kernel with specified "
4336      "coordinate.\n"
4337      "Coordinate takes the form 'x[,y][,z] where x,y,z are positive "
4338      "integers representing kernel dimensions. "
4339      "Any unset dimensions will be defaulted to zero."}};
4340 
4341 class CommandObjectRenderScriptRuntimeKernelBreakpointSet
4342     : public CommandObjectParsed {
4343 public:
4344   CommandObjectRenderScriptRuntimeKernelBreakpointSet(
4345       CommandInterpreter &interpreter)
4346       : CommandObjectParsed(
4347             interpreter, "renderscript kernel breakpoint set",
4348             "Sets a breakpoint on a renderscript kernel.",
4349             "renderscript kernel breakpoint set <kernel_name> [-c x,y,z]",
4350             eCommandRequiresProcess | eCommandProcessMustBeLaunched |
4351                 eCommandProcessMustBePaused),
4352         m_options() {}
4353 
4354   ~CommandObjectRenderScriptRuntimeKernelBreakpointSet() override = default;
4355 
4356   Options *GetOptions() override { return &m_options; }
4357 
4358   class CommandOptions : public Options {
4359   public:
4360     CommandOptions() : Options() {}
4361 
4362     ~CommandOptions() override = default;
4363 
4364     Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg,
4365                           ExecutionContext *exe_ctx) override {
4366       Status err;
4367       const int short_option = m_getopt_table[option_idx].val;
4368 
4369       switch (short_option) {
4370       case 'c': {
4371         auto coord = RSCoordinate{};
4372         if (!ParseCoordinate(option_arg, coord))
4373           err.SetErrorStringWithFormat(
4374               "Couldn't parse coordinate '%s', should be in format 'x,y,z'.",
4375               option_arg.str().c_str());
4376         else {
4377           m_have_coord = true;
4378           m_coord = coord;
4379         }
4380         break;
4381       }
4382       default:
4383         err.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
4384         break;
4385       }
4386       return err;
4387     }
4388 
4389     void OptionParsingStarting(ExecutionContext *exe_ctx) override {
4390       m_have_coord = false;
4391     }
4392 
4393     llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
4394       return llvm::makeArrayRef(g_renderscript_kernel_bp_set_options);
4395     }
4396 
4397     RSCoordinate m_coord;
4398     bool m_have_coord;
4399   };
4400 
4401   bool DoExecute(Args &command, CommandReturnObject &result) override {
4402     const size_t argc = command.GetArgumentCount();
4403     if (argc < 1) {
4404       result.AppendErrorWithFormat(
4405           "'%s' takes 1 argument of kernel name, and an optional coordinate.",
4406           m_cmd_name.c_str());
4407       result.SetStatus(eReturnStatusFailed);
4408       return false;
4409     }
4410 
4411     RenderScriptRuntime *runtime =
4412         (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4413             eLanguageTypeExtRenderScript);
4414 
4415     auto &outstream = result.GetOutputStream();
4416     auto &target = m_exe_ctx.GetTargetSP();
4417     auto name = command.GetArgumentAtIndex(0);
4418     auto coord = m_options.m_have_coord ? &m_options.m_coord : nullptr;
4419     if (!runtime->PlaceBreakpointOnKernel(target, outstream, name, coord)) {
4420       result.SetStatus(eReturnStatusFailed);
4421       result.AppendErrorWithFormat(
4422           "Error: unable to set breakpoint on kernel '%s'", name);
4423       return false;
4424     }
4425 
4426     result.AppendMessage("Breakpoint(s) created");
4427     result.SetStatus(eReturnStatusSuccessFinishResult);
4428     return true;
4429   }
4430 
4431 private:
4432   CommandOptions m_options;
4433 };
4434 
4435 class CommandObjectRenderScriptRuntimeKernelBreakpointAll
4436     : public CommandObjectParsed {
4437 public:
4438   CommandObjectRenderScriptRuntimeKernelBreakpointAll(
4439       CommandInterpreter &interpreter)
4440       : CommandObjectParsed(
4441             interpreter, "renderscript kernel breakpoint all",
4442             "Automatically sets a breakpoint on all renderscript kernels that "
4443             "are or will be loaded.\n"
4444             "Disabling option means breakpoints will no longer be set on any "
4445             "kernels loaded in the future, "
4446             "but does not remove currently set breakpoints.",
4447             "renderscript kernel breakpoint all <enable/disable>",
4448             eCommandRequiresProcess | eCommandProcessMustBeLaunched |
4449                 eCommandProcessMustBePaused) {}
4450 
4451   ~CommandObjectRenderScriptRuntimeKernelBreakpointAll() override = default;
4452 
4453   bool DoExecute(Args &command, CommandReturnObject &result) override {
4454     const size_t argc = command.GetArgumentCount();
4455     if (argc != 1) {
4456       result.AppendErrorWithFormat(
4457           "'%s' takes 1 argument of 'enable' or 'disable'", m_cmd_name.c_str());
4458       result.SetStatus(eReturnStatusFailed);
4459       return false;
4460     }
4461 
4462     RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4463         m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4464             eLanguageTypeExtRenderScript));
4465 
4466     bool do_break = false;
4467     const char *argument = command.GetArgumentAtIndex(0);
4468     if (strcmp(argument, "enable") == 0) {
4469       do_break = true;
4470       result.AppendMessage("Breakpoints will be set on all kernels.");
4471     } else if (strcmp(argument, "disable") == 0) {
4472       do_break = false;
4473       result.AppendMessage("Breakpoints will not be set on any new kernels.");
4474     } else {
4475       result.AppendErrorWithFormat(
4476           "Argument must be either 'enable' or 'disable'");
4477       result.SetStatus(eReturnStatusFailed);
4478       return false;
4479     }
4480 
4481     runtime->SetBreakAllKernels(do_break, m_exe_ctx.GetTargetSP());
4482 
4483     result.SetStatus(eReturnStatusSuccessFinishResult);
4484     return true;
4485   }
4486 };
4487 
4488 class CommandObjectRenderScriptRuntimeReductionBreakpoint
4489     : public CommandObjectMultiword {
4490 public:
4491   CommandObjectRenderScriptRuntimeReductionBreakpoint(
4492       CommandInterpreter &interpreter)
4493       : CommandObjectMultiword(interpreter, "renderscript reduction breakpoint",
4494                                "Commands that manipulate breakpoints on "
4495                                "renderscript general reductions.",
4496                                nullptr) {
4497     LoadSubCommand(
4498         "set", CommandObjectSP(
4499                    new CommandObjectRenderScriptRuntimeReductionBreakpointSet(
4500                        interpreter)));
4501   }
4502 
4503   ~CommandObjectRenderScriptRuntimeReductionBreakpoint() override = default;
4504 };
4505 
4506 class CommandObjectRenderScriptRuntimeKernelCoordinate
4507     : public CommandObjectParsed {
4508 public:
4509   CommandObjectRenderScriptRuntimeKernelCoordinate(
4510       CommandInterpreter &interpreter)
4511       : CommandObjectParsed(
4512             interpreter, "renderscript kernel coordinate",
4513             "Shows the (x,y,z) coordinate of the current kernel invocation.",
4514             "renderscript kernel coordinate",
4515             eCommandRequiresProcess | eCommandProcessMustBeLaunched |
4516                 eCommandProcessMustBePaused) {}
4517 
4518   ~CommandObjectRenderScriptRuntimeKernelCoordinate() override = default;
4519 
4520   bool DoExecute(Args &command, CommandReturnObject &result) override {
4521     RSCoordinate coord{};
4522     bool success = RenderScriptRuntime::GetKernelCoordinate(
4523         coord, m_exe_ctx.GetThreadPtr());
4524     Stream &stream = result.GetOutputStream();
4525 
4526     if (success) {
4527       stream.Printf("Coordinate: " FMT_COORD, coord.x, coord.y, coord.z);
4528       stream.EOL();
4529       result.SetStatus(eReturnStatusSuccessFinishResult);
4530     } else {
4531       stream.Printf("Error: Coordinate could not be found.");
4532       stream.EOL();
4533       result.SetStatus(eReturnStatusFailed);
4534     }
4535     return true;
4536   }
4537 };
4538 
4539 class CommandObjectRenderScriptRuntimeKernelBreakpoint
4540     : public CommandObjectMultiword {
4541 public:
4542   CommandObjectRenderScriptRuntimeKernelBreakpoint(
4543       CommandInterpreter &interpreter)
4544       : CommandObjectMultiword(
4545             interpreter, "renderscript kernel",
4546             "Commands that generate breakpoints on renderscript kernels.",
4547             nullptr) {
4548     LoadSubCommand(
4549         "set",
4550         CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointSet(
4551             interpreter)));
4552     LoadSubCommand(
4553         "all",
4554         CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointAll(
4555             interpreter)));
4556   }
4557 
4558   ~CommandObjectRenderScriptRuntimeKernelBreakpoint() override = default;
4559 };
4560 
4561 class CommandObjectRenderScriptRuntimeKernel : public CommandObjectMultiword {
4562 public:
4563   CommandObjectRenderScriptRuntimeKernel(CommandInterpreter &interpreter)
4564       : CommandObjectMultiword(interpreter, "renderscript kernel",
4565                                "Commands that deal with RenderScript kernels.",
4566                                nullptr) {
4567     LoadSubCommand(
4568         "list", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelList(
4569                     interpreter)));
4570     LoadSubCommand(
4571         "coordinate",
4572         CommandObjectSP(
4573             new CommandObjectRenderScriptRuntimeKernelCoordinate(interpreter)));
4574     LoadSubCommand(
4575         "breakpoint",
4576         CommandObjectSP(
4577             new CommandObjectRenderScriptRuntimeKernelBreakpoint(interpreter)));
4578   }
4579 
4580   ~CommandObjectRenderScriptRuntimeKernel() override = default;
4581 };
4582 
4583 class CommandObjectRenderScriptRuntimeContextDump : public CommandObjectParsed {
4584 public:
4585   CommandObjectRenderScriptRuntimeContextDump(CommandInterpreter &interpreter)
4586       : CommandObjectParsed(interpreter, "renderscript context dump",
4587                             "Dumps renderscript context information.",
4588                             "renderscript context dump",
4589                             eCommandRequiresProcess |
4590                                 eCommandProcessMustBeLaunched) {}
4591 
4592   ~CommandObjectRenderScriptRuntimeContextDump() override = default;
4593 
4594   bool DoExecute(Args &command, CommandReturnObject &result) override {
4595     RenderScriptRuntime *runtime =
4596         (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4597             eLanguageTypeExtRenderScript);
4598     runtime->DumpContexts(result.GetOutputStream());
4599     result.SetStatus(eReturnStatusSuccessFinishResult);
4600     return true;
4601   }
4602 };
4603 
4604 static constexpr OptionDefinition g_renderscript_runtime_alloc_dump_options[] = {
4605     {LLDB_OPT_SET_1, false, "file", 'f', OptionParser::eRequiredArgument,
4606      nullptr, {}, 0, eArgTypeFilename,
4607      "Print results to specified file instead of command line."}};
4608 
4609 class CommandObjectRenderScriptRuntimeContext : public CommandObjectMultiword {
4610 public:
4611   CommandObjectRenderScriptRuntimeContext(CommandInterpreter &interpreter)
4612       : CommandObjectMultiword(interpreter, "renderscript context",
4613                                "Commands that deal with RenderScript contexts.",
4614                                nullptr) {
4615     LoadSubCommand(
4616         "dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeContextDump(
4617                     interpreter)));
4618   }
4619 
4620   ~CommandObjectRenderScriptRuntimeContext() override = default;
4621 };
4622 
4623 class CommandObjectRenderScriptRuntimeAllocationDump
4624     : public CommandObjectParsed {
4625 public:
4626   CommandObjectRenderScriptRuntimeAllocationDump(
4627       CommandInterpreter &interpreter)
4628       : CommandObjectParsed(interpreter, "renderscript allocation dump",
4629                             "Displays the contents of a particular allocation",
4630                             "renderscript allocation dump <ID>",
4631                             eCommandRequiresProcess |
4632                                 eCommandProcessMustBeLaunched),
4633         m_options() {}
4634 
4635   ~CommandObjectRenderScriptRuntimeAllocationDump() override = default;
4636 
4637   Options *GetOptions() override { return &m_options; }
4638 
4639   class CommandOptions : public Options {
4640   public:
4641     CommandOptions() : Options() {}
4642 
4643     ~CommandOptions() override = default;
4644 
4645     Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg,
4646                           ExecutionContext *exe_ctx) override {
4647       Status err;
4648       const int short_option = m_getopt_table[option_idx].val;
4649 
4650       switch (short_option) {
4651       case 'f':
4652         m_outfile.SetFile(option_arg, FileSpec::Style::native);
4653         FileSystem::Instance().Resolve(m_outfile);
4654         if (FileSystem::Instance().Exists(m_outfile)) {
4655           m_outfile.Clear();
4656           err.SetErrorStringWithFormat("file already exists: '%s'",
4657                                        option_arg.str().c_str());
4658         }
4659         break;
4660       default:
4661         err.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
4662         break;
4663       }
4664       return err;
4665     }
4666 
4667     void OptionParsingStarting(ExecutionContext *exe_ctx) override {
4668       m_outfile.Clear();
4669     }
4670 
4671     llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
4672       return llvm::makeArrayRef(g_renderscript_runtime_alloc_dump_options);
4673     }
4674 
4675     FileSpec m_outfile;
4676   };
4677 
4678   bool DoExecute(Args &command, CommandReturnObject &result) override {
4679     const size_t argc = command.GetArgumentCount();
4680     if (argc < 1) {
4681       result.AppendErrorWithFormat("'%s' takes 1 argument, an allocation ID. "
4682                                    "As well as an optional -f argument",
4683                                    m_cmd_name.c_str());
4684       result.SetStatus(eReturnStatusFailed);
4685       return false;
4686     }
4687 
4688     RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4689         m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4690             eLanguageTypeExtRenderScript));
4691 
4692     const char *id_cstr = command.GetArgumentAtIndex(0);
4693     bool success = false;
4694     const uint32_t id =
4695         StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success);
4696     if (!success) {
4697       result.AppendErrorWithFormat("invalid allocation id argument '%s'",
4698                                    id_cstr);
4699       result.SetStatus(eReturnStatusFailed);
4700       return false;
4701     }
4702 
4703     Stream *output_strm = nullptr;
4704     StreamFile outfile_stream;
4705     const FileSpec &outfile_spec =
4706         m_options.m_outfile; // Dump allocation to file instead
4707     if (outfile_spec) {
4708       // Open output file
4709       std::string path = outfile_spec.GetPath();
4710       auto error = FileSystem::Instance().Open(
4711           outfile_stream.GetFile(), outfile_spec,
4712           File::eOpenOptionWrite | File::eOpenOptionCanCreate);
4713       if (error.Success()) {
4714         output_strm = &outfile_stream;
4715         result.GetOutputStream().Printf("Results written to '%s'",
4716                                         path.c_str());
4717         result.GetOutputStream().EOL();
4718       } else {
4719         result.AppendErrorWithFormat("Couldn't open file '%s'", path.c_str());
4720         result.SetStatus(eReturnStatusFailed);
4721         return false;
4722       }
4723     } else
4724       output_strm = &result.GetOutputStream();
4725 
4726     assert(output_strm != nullptr);
4727     bool dumped =
4728         runtime->DumpAllocation(*output_strm, m_exe_ctx.GetFramePtr(), id);
4729 
4730     if (dumped)
4731       result.SetStatus(eReturnStatusSuccessFinishResult);
4732     else
4733       result.SetStatus(eReturnStatusFailed);
4734 
4735     return true;
4736   }
4737 
4738 private:
4739   CommandOptions m_options;
4740 };
4741 
4742 static constexpr OptionDefinition g_renderscript_runtime_alloc_list_options[] = {
4743     {LLDB_OPT_SET_1, false, "id", 'i', OptionParser::eRequiredArgument, nullptr,
4744      {}, 0, eArgTypeIndex,
4745      "Only show details of a single allocation with specified id."}};
4746 
4747 class CommandObjectRenderScriptRuntimeAllocationList
4748     : public CommandObjectParsed {
4749 public:
4750   CommandObjectRenderScriptRuntimeAllocationList(
4751       CommandInterpreter &interpreter)
4752       : CommandObjectParsed(
4753             interpreter, "renderscript allocation list",
4754             "List renderscript allocations and their information.",
4755             "renderscript allocation list",
4756             eCommandRequiresProcess | eCommandProcessMustBeLaunched),
4757         m_options() {}
4758 
4759   ~CommandObjectRenderScriptRuntimeAllocationList() override = default;
4760 
4761   Options *GetOptions() override { return &m_options; }
4762 
4763   class CommandOptions : public Options {
4764   public:
4765     CommandOptions() : Options(), m_id(0) {}
4766 
4767     ~CommandOptions() override = default;
4768 
4769     Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg,
4770                           ExecutionContext *exe_ctx) override {
4771       Status err;
4772       const int short_option = m_getopt_table[option_idx].val;
4773 
4774       switch (short_option) {
4775       case 'i':
4776         if (option_arg.getAsInteger(0, m_id))
4777           err.SetErrorStringWithFormat("invalid integer value for option '%c'",
4778                                        short_option);
4779         break;
4780       default:
4781         err.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
4782         break;
4783       }
4784       return err;
4785     }
4786 
4787     void OptionParsingStarting(ExecutionContext *exe_ctx) override { m_id = 0; }
4788 
4789     llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
4790       return llvm::makeArrayRef(g_renderscript_runtime_alloc_list_options);
4791     }
4792 
4793     uint32_t m_id;
4794   };
4795 
4796   bool DoExecute(Args &command, CommandReturnObject &result) override {
4797     RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4798         m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4799             eLanguageTypeExtRenderScript));
4800     runtime->ListAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr(),
4801                              m_options.m_id);
4802     result.SetStatus(eReturnStatusSuccessFinishResult);
4803     return true;
4804   }
4805 
4806 private:
4807   CommandOptions m_options;
4808 };
4809 
4810 class CommandObjectRenderScriptRuntimeAllocationLoad
4811     : public CommandObjectParsed {
4812 public:
4813   CommandObjectRenderScriptRuntimeAllocationLoad(
4814       CommandInterpreter &interpreter)
4815       : CommandObjectParsed(
4816             interpreter, "renderscript allocation load",
4817             "Loads renderscript allocation contents from a file.",
4818             "renderscript allocation load <ID> <filename>",
4819             eCommandRequiresProcess | eCommandProcessMustBeLaunched) {}
4820 
4821   ~CommandObjectRenderScriptRuntimeAllocationLoad() override = default;
4822 
4823   bool DoExecute(Args &command, CommandReturnObject &result) override {
4824     const size_t argc = command.GetArgumentCount();
4825     if (argc != 2) {
4826       result.AppendErrorWithFormat(
4827           "'%s' takes 2 arguments, an allocation ID and filename to read from.",
4828           m_cmd_name.c_str());
4829       result.SetStatus(eReturnStatusFailed);
4830       return false;
4831     }
4832 
4833     RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4834         m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4835             eLanguageTypeExtRenderScript));
4836 
4837     const char *id_cstr = command.GetArgumentAtIndex(0);
4838     bool success = false;
4839     const uint32_t id =
4840         StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success);
4841     if (!success) {
4842       result.AppendErrorWithFormat("invalid allocation id argument '%s'",
4843                                    id_cstr);
4844       result.SetStatus(eReturnStatusFailed);
4845       return false;
4846     }
4847 
4848     const char *path = command.GetArgumentAtIndex(1);
4849     bool loaded = runtime->LoadAllocation(result.GetOutputStream(), id, path,
4850                                           m_exe_ctx.GetFramePtr());
4851 
4852     if (loaded)
4853       result.SetStatus(eReturnStatusSuccessFinishResult);
4854     else
4855       result.SetStatus(eReturnStatusFailed);
4856 
4857     return true;
4858   }
4859 };
4860 
4861 class CommandObjectRenderScriptRuntimeAllocationSave
4862     : public CommandObjectParsed {
4863 public:
4864   CommandObjectRenderScriptRuntimeAllocationSave(
4865       CommandInterpreter &interpreter)
4866       : CommandObjectParsed(interpreter, "renderscript allocation save",
4867                             "Write renderscript allocation contents to a file.",
4868                             "renderscript allocation save <ID> <filename>",
4869                             eCommandRequiresProcess |
4870                                 eCommandProcessMustBeLaunched) {}
4871 
4872   ~CommandObjectRenderScriptRuntimeAllocationSave() override = default;
4873 
4874   bool DoExecute(Args &command, CommandReturnObject &result) override {
4875     const size_t argc = command.GetArgumentCount();
4876     if (argc != 2) {
4877       result.AppendErrorWithFormat(
4878           "'%s' takes 2 arguments, an allocation ID and filename to read from.",
4879           m_cmd_name.c_str());
4880       result.SetStatus(eReturnStatusFailed);
4881       return false;
4882     }
4883 
4884     RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4885         m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4886             eLanguageTypeExtRenderScript));
4887 
4888     const char *id_cstr = command.GetArgumentAtIndex(0);
4889     bool success = false;
4890     const uint32_t id =
4891         StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success);
4892     if (!success) {
4893       result.AppendErrorWithFormat("invalid allocation id argument '%s'",
4894                                    id_cstr);
4895       result.SetStatus(eReturnStatusFailed);
4896       return false;
4897     }
4898 
4899     const char *path = command.GetArgumentAtIndex(1);
4900     bool saved = runtime->SaveAllocation(result.GetOutputStream(), id, path,
4901                                          m_exe_ctx.GetFramePtr());
4902 
4903     if (saved)
4904       result.SetStatus(eReturnStatusSuccessFinishResult);
4905     else
4906       result.SetStatus(eReturnStatusFailed);
4907 
4908     return true;
4909   }
4910 };
4911 
4912 class CommandObjectRenderScriptRuntimeAllocationRefresh
4913     : public CommandObjectParsed {
4914 public:
4915   CommandObjectRenderScriptRuntimeAllocationRefresh(
4916       CommandInterpreter &interpreter)
4917       : CommandObjectParsed(interpreter, "renderscript allocation refresh",
4918                             "Recomputes the details of all allocations.",
4919                             "renderscript allocation refresh",
4920                             eCommandRequiresProcess |
4921                                 eCommandProcessMustBeLaunched) {}
4922 
4923   ~CommandObjectRenderScriptRuntimeAllocationRefresh() override = default;
4924 
4925   bool DoExecute(Args &command, CommandReturnObject &result) override {
4926     RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4927         m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4928             eLanguageTypeExtRenderScript));
4929 
4930     bool success = runtime->RecomputeAllAllocations(result.GetOutputStream(),
4931                                                     m_exe_ctx.GetFramePtr());
4932 
4933     if (success) {
4934       result.SetStatus(eReturnStatusSuccessFinishResult);
4935       return true;
4936     } else {
4937       result.SetStatus(eReturnStatusFailed);
4938       return false;
4939     }
4940   }
4941 };
4942 
4943 class CommandObjectRenderScriptRuntimeAllocation
4944     : public CommandObjectMultiword {
4945 public:
4946   CommandObjectRenderScriptRuntimeAllocation(CommandInterpreter &interpreter)
4947       : CommandObjectMultiword(
4948             interpreter, "renderscript allocation",
4949             "Commands that deal with RenderScript allocations.", nullptr) {
4950     LoadSubCommand(
4951         "list",
4952         CommandObjectSP(
4953             new CommandObjectRenderScriptRuntimeAllocationList(interpreter)));
4954     LoadSubCommand(
4955         "dump",
4956         CommandObjectSP(
4957             new CommandObjectRenderScriptRuntimeAllocationDump(interpreter)));
4958     LoadSubCommand(
4959         "save",
4960         CommandObjectSP(
4961             new CommandObjectRenderScriptRuntimeAllocationSave(interpreter)));
4962     LoadSubCommand(
4963         "load",
4964         CommandObjectSP(
4965             new CommandObjectRenderScriptRuntimeAllocationLoad(interpreter)));
4966     LoadSubCommand(
4967         "refresh",
4968         CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationRefresh(
4969             interpreter)));
4970   }
4971 
4972   ~CommandObjectRenderScriptRuntimeAllocation() override = default;
4973 };
4974 
4975 class CommandObjectRenderScriptRuntimeStatus : public CommandObjectParsed {
4976 public:
4977   CommandObjectRenderScriptRuntimeStatus(CommandInterpreter &interpreter)
4978       : CommandObjectParsed(interpreter, "renderscript status",
4979                             "Displays current RenderScript runtime status.",
4980                             "renderscript status",
4981                             eCommandRequiresProcess |
4982                                 eCommandProcessMustBeLaunched) {}
4983 
4984   ~CommandObjectRenderScriptRuntimeStatus() override = default;
4985 
4986   bool DoExecute(Args &command, CommandReturnObject &result) override {
4987     RenderScriptRuntime *runtime =
4988         (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4989             eLanguageTypeExtRenderScript);
4990     runtime->DumpStatus(result.GetOutputStream());
4991     result.SetStatus(eReturnStatusSuccessFinishResult);
4992     return true;
4993   }
4994 };
4995 
4996 class CommandObjectRenderScriptRuntimeReduction
4997     : public CommandObjectMultiword {
4998 public:
4999   CommandObjectRenderScriptRuntimeReduction(CommandInterpreter &interpreter)
5000       : CommandObjectMultiword(interpreter, "renderscript reduction",
5001                                "Commands that handle general reduction kernels",
5002                                nullptr) {
5003     LoadSubCommand(
5004         "breakpoint",
5005         CommandObjectSP(new CommandObjectRenderScriptRuntimeReductionBreakpoint(
5006             interpreter)));
5007   }
5008   ~CommandObjectRenderScriptRuntimeReduction() override = default;
5009 };
5010 
5011 class CommandObjectRenderScriptRuntime : public CommandObjectMultiword {
5012 public:
5013   CommandObjectRenderScriptRuntime(CommandInterpreter &interpreter)
5014       : CommandObjectMultiword(
5015             interpreter, "renderscript",
5016             "Commands for operating on the RenderScript runtime.",
5017             "renderscript <subcommand> [<subcommand-options>]") {
5018     LoadSubCommand(
5019         "module", CommandObjectSP(
5020                       new CommandObjectRenderScriptRuntimeModule(interpreter)));
5021     LoadSubCommand(
5022         "status", CommandObjectSP(
5023                       new CommandObjectRenderScriptRuntimeStatus(interpreter)));
5024     LoadSubCommand(
5025         "kernel", CommandObjectSP(
5026                       new CommandObjectRenderScriptRuntimeKernel(interpreter)));
5027     LoadSubCommand("context",
5028                    CommandObjectSP(new CommandObjectRenderScriptRuntimeContext(
5029                        interpreter)));
5030     LoadSubCommand(
5031         "allocation",
5032         CommandObjectSP(
5033             new CommandObjectRenderScriptRuntimeAllocation(interpreter)));
5034     LoadSubCommand("scriptgroup",
5035                    NewCommandObjectRenderScriptScriptGroup(interpreter));
5036     LoadSubCommand(
5037         "reduction",
5038         CommandObjectSP(
5039             new CommandObjectRenderScriptRuntimeReduction(interpreter)));
5040   }
5041 
5042   ~CommandObjectRenderScriptRuntime() override = default;
5043 };
5044 
5045 void RenderScriptRuntime::Initiate() { assert(!m_initiated); }
5046 
5047 RenderScriptRuntime::RenderScriptRuntime(Process *process)
5048     : lldb_private::CPPLanguageRuntime(process), m_initiated(false),
5049       m_debuggerPresentFlagged(false), m_breakAllKernels(false),
5050       m_ir_passes(nullptr) {
5051   ModulesDidLoad(process->GetTarget().GetImages());
5052 }
5053 
5054 lldb::CommandObjectSP RenderScriptRuntime::GetCommandObject(
5055     lldb_private::CommandInterpreter &interpreter) {
5056   return CommandObjectSP(new CommandObjectRenderScriptRuntime(interpreter));
5057 }
5058 
5059 RenderScriptRuntime::~RenderScriptRuntime() = default;
5060