1 //===-- RenderScriptRuntime.cpp -------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "RenderScriptRuntime.h" 10 #include "RenderScriptScriptGroup.h" 11 12 #include "lldb/Breakpoint/StoppointCallbackContext.h" 13 #include "lldb/Core/Debugger.h" 14 #include "lldb/Core/DumpDataExtractor.h" 15 #include "lldb/Core/PluginManager.h" 16 #include "lldb/Core/ValueObjectVariable.h" 17 #include "lldb/DataFormatters/DumpValueObjectOptions.h" 18 #include "lldb/Expression/UserExpression.h" 19 #include "lldb/Host/OptionParser.h" 20 #include "lldb/Host/StringConvert.h" 21 #include "lldb/Interpreter/CommandInterpreter.h" 22 #include "lldb/Interpreter/CommandObjectMultiword.h" 23 #include "lldb/Interpreter/CommandReturnObject.h" 24 #include "lldb/Interpreter/Options.h" 25 #include "lldb/Symbol/Function.h" 26 #include "lldb/Symbol/Symbol.h" 27 #include "lldb/Symbol/Type.h" 28 #include "lldb/Symbol/VariableList.h" 29 #include "lldb/Target/Process.h" 30 #include "lldb/Target/RegisterContext.h" 31 #include "lldb/Target/SectionLoadList.h" 32 #include "lldb/Target/Target.h" 33 #include "lldb/Target/Thread.h" 34 #include "lldb/Utility/Args.h" 35 #include "lldb/Utility/ConstString.h" 36 #include "lldb/Utility/Log.h" 37 #include "lldb/Utility/RegisterValue.h" 38 #include "lldb/Utility/RegularExpression.h" 39 #include "lldb/Utility/Status.h" 40 41 #include "llvm/ADT/StringSwitch.h" 42 43 #include <memory> 44 45 using namespace lldb; 46 using namespace lldb_private; 47 using namespace lldb_renderscript; 48 49 LLDB_PLUGIN_DEFINE(RenderScriptRuntime) 50 51 #define FMT_COORD "(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ")" 52 53 char RenderScriptRuntime::ID = 0; 54 55 namespace { 56 57 // The empirical_type adds a basic level of validation to arbitrary data 58 // allowing us to track if data has been discovered and stored or not. An 59 // empirical_type will be marked as valid only if it has been explicitly 60 // assigned to. 61 template <typename type_t> class empirical_type { 62 public: 63 // Ctor. Contents is invalid when constructed. 64 empirical_type() = default; 65 66 // Return true and copy contents to out if valid, else return false. 67 bool get(type_t &out) const { 68 if (valid) 69 out = data; 70 return valid; 71 } 72 73 // Return a pointer to the contents or nullptr if it was not valid. 74 const type_t *get() const { return valid ? &data : nullptr; } 75 76 // Assign data explicitly. 77 void set(const type_t in) { 78 data = in; 79 valid = true; 80 } 81 82 // Mark contents as invalid. 83 void invalidate() { valid = false; } 84 85 // Returns true if this type contains valid data. 86 bool isValid() const { return valid; } 87 88 // Assignment operator. 89 empirical_type<type_t> &operator=(const type_t in) { 90 set(in); 91 return *this; 92 } 93 94 // Dereference operator returns contents. 95 // Warning: Will assert if not valid so use only when you know data is valid. 96 const type_t &operator*() const { 97 assert(valid); 98 return data; 99 } 100 101 protected: 102 bool valid = false; 103 type_t data; 104 }; 105 106 // ArgItem is used by the GetArgs() function when reading function arguments 107 // from the target. 108 struct ArgItem { 109 enum { ePointer, eInt32, eInt64, eLong, eBool } type; 110 111 uint64_t value; 112 113 explicit operator uint64_t() const { return value; } 114 }; 115 116 // Context structure to be passed into GetArgsXXX(), argument reading functions 117 // below. 118 struct GetArgsCtx { 119 RegisterContext *reg_ctx; 120 Process *process; 121 }; 122 123 bool GetArgsX86(const GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 124 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 125 126 Status err; 127 128 // get the current stack pointer 129 uint64_t sp = ctx.reg_ctx->GetSP(); 130 131 for (size_t i = 0; i < num_args; ++i) { 132 ArgItem &arg = arg_list[i]; 133 // advance up the stack by one argument 134 sp += sizeof(uint32_t); 135 // get the argument type size 136 size_t arg_size = sizeof(uint32_t); 137 // read the argument from memory 138 arg.value = 0; 139 Status err; 140 size_t read = 141 ctx.process->ReadMemory(sp, &arg.value, sizeof(uint32_t), err); 142 if (read != arg_size || !err.Success()) { 143 LLDB_LOGF(log, "%s - error reading argument: %" PRIu64 " '%s'", 144 __FUNCTION__, uint64_t(i), err.AsCString()); 145 return false; 146 } 147 } 148 return true; 149 } 150 151 bool GetArgsX86_64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 152 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 153 154 // number of arguments passed in registers 155 static const uint32_t args_in_reg = 6; 156 // register passing order 157 static const std::array<const char *, args_in_reg> reg_names{ 158 {"rdi", "rsi", "rdx", "rcx", "r8", "r9"}}; 159 // argument type to size mapping 160 static const std::array<size_t, 5> arg_size{{ 161 8, // ePointer, 162 4, // eInt32, 163 8, // eInt64, 164 8, // eLong, 165 4, // eBool, 166 }}; 167 168 Status err; 169 170 // get the current stack pointer 171 uint64_t sp = ctx.reg_ctx->GetSP(); 172 // step over the return address 173 sp += sizeof(uint64_t); 174 175 // check the stack alignment was correct (16 byte aligned) 176 if ((sp & 0xf) != 0x0) { 177 LLDB_LOGF(log, "%s - stack misaligned", __FUNCTION__); 178 return false; 179 } 180 181 // find the start of arguments on the stack 182 uint64_t sp_offset = 0; 183 for (uint32_t i = args_in_reg; i < num_args; ++i) { 184 sp_offset += arg_size[arg_list[i].type]; 185 } 186 // round up to multiple of 16 187 sp_offset = (sp_offset + 0xf) & 0xf; 188 sp += sp_offset; 189 190 for (size_t i = 0; i < num_args; ++i) { 191 bool success = false; 192 ArgItem &arg = arg_list[i]; 193 // arguments passed in registers 194 if (i < args_in_reg) { 195 const RegisterInfo *reg = 196 ctx.reg_ctx->GetRegisterInfoByName(reg_names[i]); 197 RegisterValue reg_val; 198 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 199 arg.value = reg_val.GetAsUInt64(0, &success); 200 } 201 // arguments passed on the stack 202 else { 203 // get the argument type size 204 const size_t size = arg_size[arg_list[i].type]; 205 // read the argument from memory 206 arg.value = 0; 207 // note: due to little endian layout reading 4 or 8 bytes will give the 208 // correct value. 209 size_t read = ctx.process->ReadMemory(sp, &arg.value, size, err); 210 success = (err.Success() && read == size); 211 // advance past this argument 212 sp -= size; 213 } 214 // fail if we couldn't read this argument 215 if (!success) { 216 LLDB_LOGF(log, "%s - error reading argument: %" PRIu64 ", reason: %s", 217 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 218 return false; 219 } 220 } 221 return true; 222 } 223 224 bool GetArgsArm(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 225 // number of arguments passed in registers 226 static const uint32_t args_in_reg = 4; 227 228 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 229 230 Status err; 231 232 // get the current stack pointer 233 uint64_t sp = ctx.reg_ctx->GetSP(); 234 235 for (size_t i = 0; i < num_args; ++i) { 236 bool success = false; 237 ArgItem &arg = arg_list[i]; 238 // arguments passed in registers 239 if (i < args_in_reg) { 240 const RegisterInfo *reg = ctx.reg_ctx->GetRegisterInfoAtIndex(i); 241 RegisterValue reg_val; 242 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 243 arg.value = reg_val.GetAsUInt32(0, &success); 244 } 245 // arguments passed on the stack 246 else { 247 // get the argument type size 248 const size_t arg_size = sizeof(uint32_t); 249 // clear all 64bits 250 arg.value = 0; 251 // read this argument from memory 252 size_t bytes_read = 253 ctx.process->ReadMemory(sp, &arg.value, arg_size, err); 254 success = (err.Success() && bytes_read == arg_size); 255 // advance the stack pointer 256 sp += sizeof(uint32_t); 257 } 258 // fail if we couldn't read this argument 259 if (!success) { 260 LLDB_LOGF(log, "%s - error reading argument: %" PRIu64 ", reason: %s", 261 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 262 return false; 263 } 264 } 265 return true; 266 } 267 268 bool GetArgsAarch64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 269 // number of arguments passed in registers 270 static const uint32_t args_in_reg = 8; 271 272 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 273 274 for (size_t i = 0; i < num_args; ++i) { 275 bool success = false; 276 ArgItem &arg = arg_list[i]; 277 // arguments passed in registers 278 if (i < args_in_reg) { 279 const RegisterInfo *reg = ctx.reg_ctx->GetRegisterInfoAtIndex(i); 280 RegisterValue reg_val; 281 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 282 arg.value = reg_val.GetAsUInt64(0, &success); 283 } 284 // arguments passed on the stack 285 else { 286 LLDB_LOGF(log, "%s - reading arguments spilled to stack not implemented", 287 __FUNCTION__); 288 } 289 // fail if we couldn't read this argument 290 if (!success) { 291 LLDB_LOGF(log, "%s - error reading argument: %" PRIu64, __FUNCTION__, 292 uint64_t(i)); 293 return false; 294 } 295 } 296 return true; 297 } 298 299 bool GetArgsMipsel(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 300 // number of arguments passed in registers 301 static const uint32_t args_in_reg = 4; 302 // register file offset to first argument 303 static const uint32_t reg_offset = 4; 304 305 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 306 307 Status err; 308 309 // find offset to arguments on the stack (+16 to skip over a0-a3 shadow 310 // space) 311 uint64_t sp = ctx.reg_ctx->GetSP() + 16; 312 313 for (size_t i = 0; i < num_args; ++i) { 314 bool success = false; 315 ArgItem &arg = arg_list[i]; 316 // arguments passed in registers 317 if (i < args_in_reg) { 318 const RegisterInfo *reg = 319 ctx.reg_ctx->GetRegisterInfoAtIndex(i + reg_offset); 320 RegisterValue reg_val; 321 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 322 arg.value = reg_val.GetAsUInt64(0, &success); 323 } 324 // arguments passed on the stack 325 else { 326 const size_t arg_size = sizeof(uint32_t); 327 arg.value = 0; 328 size_t bytes_read = 329 ctx.process->ReadMemory(sp, &arg.value, arg_size, err); 330 success = (err.Success() && bytes_read == arg_size); 331 // advance the stack pointer 332 sp += arg_size; 333 } 334 // fail if we couldn't read this argument 335 if (!success) { 336 LLDB_LOGF(log, "%s - error reading argument: %" PRIu64 ", reason: %s", 337 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 338 return false; 339 } 340 } 341 return true; 342 } 343 344 bool GetArgsMips64el(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 345 // number of arguments passed in registers 346 static const uint32_t args_in_reg = 8; 347 // register file offset to first argument 348 static const uint32_t reg_offset = 4; 349 350 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 351 352 Status err; 353 354 // get the current stack pointer 355 uint64_t sp = ctx.reg_ctx->GetSP(); 356 357 for (size_t i = 0; i < num_args; ++i) { 358 bool success = false; 359 ArgItem &arg = arg_list[i]; 360 // arguments passed in registers 361 if (i < args_in_reg) { 362 const RegisterInfo *reg = 363 ctx.reg_ctx->GetRegisterInfoAtIndex(i + reg_offset); 364 RegisterValue reg_val; 365 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 366 arg.value = reg_val.GetAsUInt64(0, &success); 367 } 368 // arguments passed on the stack 369 else { 370 // get the argument type size 371 const size_t arg_size = sizeof(uint64_t); 372 // clear all 64bits 373 arg.value = 0; 374 // read this argument from memory 375 size_t bytes_read = 376 ctx.process->ReadMemory(sp, &arg.value, arg_size, err); 377 success = (err.Success() && bytes_read == arg_size); 378 // advance the stack pointer 379 sp += arg_size; 380 } 381 // fail if we couldn't read this argument 382 if (!success) { 383 LLDB_LOGF(log, "%s - error reading argument: %" PRIu64 ", reason: %s", 384 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 385 return false; 386 } 387 } 388 return true; 389 } 390 391 bool GetArgs(ExecutionContext &exe_ctx, ArgItem *arg_list, size_t num_args) { 392 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 393 394 // verify that we have a target 395 if (!exe_ctx.GetTargetPtr()) { 396 LLDB_LOGF(log, "%s - invalid target", __FUNCTION__); 397 return false; 398 } 399 400 GetArgsCtx ctx = {exe_ctx.GetRegisterContext(), exe_ctx.GetProcessPtr()}; 401 assert(ctx.reg_ctx && ctx.process); 402 403 // dispatch based on architecture 404 switch (exe_ctx.GetTargetPtr()->GetArchitecture().GetMachine()) { 405 case llvm::Triple::ArchType::x86: 406 return GetArgsX86(ctx, arg_list, num_args); 407 408 case llvm::Triple::ArchType::x86_64: 409 return GetArgsX86_64(ctx, arg_list, num_args); 410 411 case llvm::Triple::ArchType::arm: 412 return GetArgsArm(ctx, arg_list, num_args); 413 414 case llvm::Triple::ArchType::aarch64: 415 return GetArgsAarch64(ctx, arg_list, num_args); 416 417 case llvm::Triple::ArchType::mipsel: 418 return GetArgsMipsel(ctx, arg_list, num_args); 419 420 case llvm::Triple::ArchType::mips64el: 421 return GetArgsMips64el(ctx, arg_list, num_args); 422 423 default: 424 // unsupported architecture 425 if (log) { 426 LLDB_LOGF(log, "%s - architecture not supported: '%s'", __FUNCTION__, 427 exe_ctx.GetTargetRef().GetArchitecture().GetArchitectureName()); 428 } 429 return false; 430 } 431 } 432 433 bool IsRenderScriptScriptModule(ModuleSP module) { 434 if (!module) 435 return false; 436 return module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), 437 eSymbolTypeData) != nullptr; 438 } 439 440 bool ParseCoordinate(llvm::StringRef coord_s, RSCoordinate &coord) { 441 // takes an argument of the form 'num[,num][,num]'. Where 'coord_s' is a 442 // comma separated 1,2 or 3-dimensional coordinate with the whitespace 443 // trimmed. Missing coordinates are defaulted to zero. If parsing of any 444 // elements fails the contents of &coord are undefined and `false` is 445 // returned, `true` otherwise 446 447 llvm::SmallVector<llvm::StringRef, 4> matches; 448 449 if (!RegularExpression("^([0-9]+),([0-9]+),([0-9]+)$") 450 .Execute(coord_s, &matches) && 451 !RegularExpression("^([0-9]+),([0-9]+)$").Execute(coord_s, &matches) && 452 !RegularExpression("^([0-9]+)$").Execute(coord_s, &matches)) 453 return false; 454 455 auto get_index = [&](size_t idx, uint32_t &i) -> bool { 456 std::string group; 457 errno = 0; 458 if (idx + 1 < matches.size()) { 459 return !llvm::StringRef(matches[idx + 1]).getAsInteger<uint32_t>(10, i); 460 } 461 return true; 462 }; 463 464 return get_index(0, coord.x) && get_index(1, coord.y) && 465 get_index(2, coord.z); 466 } 467 468 bool SkipPrologue(lldb::ModuleSP &module, Address &addr) { 469 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 470 SymbolContext sc; 471 uint32_t resolved_flags = 472 module->ResolveSymbolContextForAddress(addr, eSymbolContextFunction, sc); 473 if (resolved_flags & eSymbolContextFunction) { 474 if (sc.function) { 475 const uint32_t offset = sc.function->GetPrologueByteSize(); 476 ConstString name = sc.GetFunctionName(); 477 if (offset) 478 addr.Slide(offset); 479 LLDB_LOGF(log, "%s: Prologue offset for %s is %" PRIu32, __FUNCTION__, 480 name.AsCString(), offset); 481 } 482 return true; 483 } else 484 return false; 485 } 486 } // anonymous namespace 487 488 // The ScriptDetails class collects data associated with a single script 489 // instance. 490 struct RenderScriptRuntime::ScriptDetails { 491 ~ScriptDetails() = default; 492 493 enum ScriptType { eScript, eScriptC }; 494 495 // The derived type of the script. 496 empirical_type<ScriptType> type; 497 // The name of the original source file. 498 empirical_type<std::string> res_name; 499 // Path to script .so file on the device. 500 empirical_type<std::string> shared_lib; 501 // Directory where kernel objects are cached on device. 502 empirical_type<std::string> cache_dir; 503 // Pointer to the context which owns this script. 504 empirical_type<lldb::addr_t> context; 505 // Pointer to the script object itself. 506 empirical_type<lldb::addr_t> script; 507 }; 508 509 // This Element class represents the Element object in RS, defining the type 510 // associated with an Allocation. 511 struct RenderScriptRuntime::Element { 512 // Taken from rsDefines.h 513 enum DataKind { 514 RS_KIND_USER, 515 RS_KIND_PIXEL_L = 7, 516 RS_KIND_PIXEL_A, 517 RS_KIND_PIXEL_LA, 518 RS_KIND_PIXEL_RGB, 519 RS_KIND_PIXEL_RGBA, 520 RS_KIND_PIXEL_DEPTH, 521 RS_KIND_PIXEL_YUV, 522 RS_KIND_INVALID = 100 523 }; 524 525 // Taken from rsDefines.h 526 enum DataType { 527 RS_TYPE_NONE = 0, 528 RS_TYPE_FLOAT_16, 529 RS_TYPE_FLOAT_32, 530 RS_TYPE_FLOAT_64, 531 RS_TYPE_SIGNED_8, 532 RS_TYPE_SIGNED_16, 533 RS_TYPE_SIGNED_32, 534 RS_TYPE_SIGNED_64, 535 RS_TYPE_UNSIGNED_8, 536 RS_TYPE_UNSIGNED_16, 537 RS_TYPE_UNSIGNED_32, 538 RS_TYPE_UNSIGNED_64, 539 RS_TYPE_BOOLEAN, 540 541 RS_TYPE_UNSIGNED_5_6_5, 542 RS_TYPE_UNSIGNED_5_5_5_1, 543 RS_TYPE_UNSIGNED_4_4_4_4, 544 545 RS_TYPE_MATRIX_4X4, 546 RS_TYPE_MATRIX_3X3, 547 RS_TYPE_MATRIX_2X2, 548 549 RS_TYPE_ELEMENT = 1000, 550 RS_TYPE_TYPE, 551 RS_TYPE_ALLOCATION, 552 RS_TYPE_SAMPLER, 553 RS_TYPE_SCRIPT, 554 RS_TYPE_MESH, 555 RS_TYPE_PROGRAM_FRAGMENT, 556 RS_TYPE_PROGRAM_VERTEX, 557 RS_TYPE_PROGRAM_RASTER, 558 RS_TYPE_PROGRAM_STORE, 559 RS_TYPE_FONT, 560 561 RS_TYPE_INVALID = 10000 562 }; 563 564 std::vector<Element> children; // Child Element fields for structs 565 empirical_type<lldb::addr_t> 566 element_ptr; // Pointer to the RS Element of the Type 567 empirical_type<DataType> 568 type; // Type of each data pointer stored by the allocation 569 empirical_type<DataKind> 570 type_kind; // Defines pixel type if Allocation is created from an image 571 empirical_type<uint32_t> 572 type_vec_size; // Vector size of each data point, e.g '4' for uchar4 573 empirical_type<uint32_t> field_count; // Number of Subelements 574 empirical_type<uint32_t> datum_size; // Size of a single Element with padding 575 empirical_type<uint32_t> padding; // Number of padding bytes 576 empirical_type<uint32_t> 577 array_size; // Number of items in array, only needed for structs 578 ConstString type_name; // Name of type, only needed for structs 579 580 static ConstString 581 GetFallbackStructName(); // Print this as the type name of a struct Element 582 // If we can't resolve the actual struct name 583 584 bool ShouldRefresh() const { 585 const bool valid_ptr = element_ptr.isValid() && *element_ptr.get() != 0x0; 586 const bool valid_type = 587 type.isValid() && type_vec_size.isValid() && type_kind.isValid(); 588 return !valid_ptr || !valid_type || !datum_size.isValid(); 589 } 590 }; 591 592 // This AllocationDetails class collects data associated with a single 593 // allocation instance. 594 struct RenderScriptRuntime::AllocationDetails { 595 struct Dimension { 596 uint32_t dim_1; 597 uint32_t dim_2; 598 uint32_t dim_3; 599 uint32_t cube_map; 600 601 Dimension() { 602 dim_1 = 0; 603 dim_2 = 0; 604 dim_3 = 0; 605 cube_map = 0; 606 } 607 }; 608 609 // The FileHeader struct specifies the header we use for writing allocations 610 // to a binary file. Our format begins with the ASCII characters "RSAD", 611 // identifying the file as an allocation dump. Member variables dims and 612 // hdr_size are then written consecutively, immediately followed by an 613 // instance of the ElementHeader struct. Because Elements can contain 614 // subelements, there may be more than one instance of the ElementHeader 615 // struct. With this first instance being the root element, and the other 616 // instances being the root's descendants. To identify which instances are an 617 // ElementHeader's children, each struct is immediately followed by a 618 // sequence of consecutive offsets to the start of its child structs. These 619 // offsets are 620 // 4 bytes in size, and the 0 offset signifies no more children. 621 struct FileHeader { 622 uint8_t ident[4]; // ASCII 'RSAD' identifying the file 623 uint32_t dims[3]; // Dimensions 624 uint16_t hdr_size; // Header size in bytes, including all element headers 625 }; 626 627 struct ElementHeader { 628 uint16_t type; // DataType enum 629 uint32_t kind; // DataKind enum 630 uint32_t element_size; // Size of a single element, including padding 631 uint16_t vector_size; // Vector width 632 uint32_t array_size; // Number of elements in array 633 }; 634 635 // Monotonically increasing from 1 636 static uint32_t ID; 637 638 // Maps Allocation DataType enum and vector size to printable strings using 639 // mapping from RenderScript numerical types summary documentation 640 static const char *RsDataTypeToString[][4]; 641 642 // Maps Allocation DataKind enum to printable strings 643 static const char *RsDataKindToString[]; 644 645 // Maps allocation types to format sizes for printing. 646 static const uint32_t RSTypeToFormat[][3]; 647 648 // Give each allocation an ID as a way 649 // for commands to reference it. 650 const uint32_t id; 651 652 // Allocation Element type 653 RenderScriptRuntime::Element element; 654 // Dimensions of the Allocation 655 empirical_type<Dimension> dimension; 656 // Pointer to address of the RS Allocation 657 empirical_type<lldb::addr_t> address; 658 // Pointer to the data held by the Allocation 659 empirical_type<lldb::addr_t> data_ptr; 660 // Pointer to the RS Type of the Allocation 661 empirical_type<lldb::addr_t> type_ptr; 662 // Pointer to the RS Context of the Allocation 663 empirical_type<lldb::addr_t> context; 664 // Size of the allocation 665 empirical_type<uint32_t> size; 666 // Stride between rows of the allocation 667 empirical_type<uint32_t> stride; 668 669 // Give each allocation an id, so we can reference it in user commands. 670 AllocationDetails() : id(ID++) {} 671 672 bool ShouldRefresh() const { 673 bool valid_ptrs = data_ptr.isValid() && *data_ptr.get() != 0x0; 674 valid_ptrs = valid_ptrs && type_ptr.isValid() && *type_ptr.get() != 0x0; 675 return !valid_ptrs || !dimension.isValid() || !size.isValid() || 676 element.ShouldRefresh(); 677 } 678 }; 679 680 ConstString RenderScriptRuntime::Element::GetFallbackStructName() { 681 static const ConstString FallbackStructName("struct"); 682 return FallbackStructName; 683 } 684 685 uint32_t RenderScriptRuntime::AllocationDetails::ID = 1; 686 687 const char *RenderScriptRuntime::AllocationDetails::RsDataKindToString[] = { 688 "User", "Undefined", "Undefined", "Undefined", 689 "Undefined", "Undefined", "Undefined", // Enum jumps from 0 to 7 690 "L Pixel", "A Pixel", "LA Pixel", "RGB Pixel", 691 "RGBA Pixel", "Pixel Depth", "YUV Pixel"}; 692 693 const char *RenderScriptRuntime::AllocationDetails::RsDataTypeToString[][4] = { 694 {"None", "None", "None", "None"}, 695 {"half", "half2", "half3", "half4"}, 696 {"float", "float2", "float3", "float4"}, 697 {"double", "double2", "double3", "double4"}, 698 {"char", "char2", "char3", "char4"}, 699 {"short", "short2", "short3", "short4"}, 700 {"int", "int2", "int3", "int4"}, 701 {"long", "long2", "long3", "long4"}, 702 {"uchar", "uchar2", "uchar3", "uchar4"}, 703 {"ushort", "ushort2", "ushort3", "ushort4"}, 704 {"uint", "uint2", "uint3", "uint4"}, 705 {"ulong", "ulong2", "ulong3", "ulong4"}, 706 {"bool", "bool2", "bool3", "bool4"}, 707 {"packed_565", "packed_565", "packed_565", "packed_565"}, 708 {"packed_5551", "packed_5551", "packed_5551", "packed_5551"}, 709 {"packed_4444", "packed_4444", "packed_4444", "packed_4444"}, 710 {"rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4"}, 711 {"rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3"}, 712 {"rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2"}, 713 714 // Handlers 715 {"RS Element", "RS Element", "RS Element", "RS Element"}, 716 {"RS Type", "RS Type", "RS Type", "RS Type"}, 717 {"RS Allocation", "RS Allocation", "RS Allocation", "RS Allocation"}, 718 {"RS Sampler", "RS Sampler", "RS Sampler", "RS Sampler"}, 719 {"RS Script", "RS Script", "RS Script", "RS Script"}, 720 721 // Deprecated 722 {"RS Mesh", "RS Mesh", "RS Mesh", "RS Mesh"}, 723 {"RS Program Fragment", "RS Program Fragment", "RS Program Fragment", 724 "RS Program Fragment"}, 725 {"RS Program Vertex", "RS Program Vertex", "RS Program Vertex", 726 "RS Program Vertex"}, 727 {"RS Program Raster", "RS Program Raster", "RS Program Raster", 728 "RS Program Raster"}, 729 {"RS Program Store", "RS Program Store", "RS Program Store", 730 "RS Program Store"}, 731 {"RS Font", "RS Font", "RS Font", "RS Font"}}; 732 733 // Used as an index into the RSTypeToFormat array elements 734 enum TypeToFormatIndex { eFormatSingle = 0, eFormatVector, eElementSize }; 735 736 // { format enum of single element, format enum of element vector, size of 737 // element} 738 const uint32_t RenderScriptRuntime::AllocationDetails::RSTypeToFormat[][3] = { 739 // RS_TYPE_NONE 740 {eFormatHex, eFormatHex, 1}, 741 // RS_TYPE_FLOAT_16 742 {eFormatFloat, eFormatVectorOfFloat16, 2}, 743 // RS_TYPE_FLOAT_32 744 {eFormatFloat, eFormatVectorOfFloat32, sizeof(float)}, 745 // RS_TYPE_FLOAT_64 746 {eFormatFloat, eFormatVectorOfFloat64, sizeof(double)}, 747 // RS_TYPE_SIGNED_8 748 {eFormatDecimal, eFormatVectorOfSInt8, sizeof(int8_t)}, 749 // RS_TYPE_SIGNED_16 750 {eFormatDecimal, eFormatVectorOfSInt16, sizeof(int16_t)}, 751 // RS_TYPE_SIGNED_32 752 {eFormatDecimal, eFormatVectorOfSInt32, sizeof(int32_t)}, 753 // RS_TYPE_SIGNED_64 754 {eFormatDecimal, eFormatVectorOfSInt64, sizeof(int64_t)}, 755 // RS_TYPE_UNSIGNED_8 756 {eFormatDecimal, eFormatVectorOfUInt8, sizeof(uint8_t)}, 757 // RS_TYPE_UNSIGNED_16 758 {eFormatDecimal, eFormatVectorOfUInt16, sizeof(uint16_t)}, 759 // RS_TYPE_UNSIGNED_32 760 {eFormatDecimal, eFormatVectorOfUInt32, sizeof(uint32_t)}, 761 // RS_TYPE_UNSIGNED_64 762 {eFormatDecimal, eFormatVectorOfUInt64, sizeof(uint64_t)}, 763 // RS_TYPE_BOOL 764 {eFormatBoolean, eFormatBoolean, 1}, 765 // RS_TYPE_UNSIGNED_5_6_5 766 {eFormatHex, eFormatHex, sizeof(uint16_t)}, 767 // RS_TYPE_UNSIGNED_5_5_5_1 768 {eFormatHex, eFormatHex, sizeof(uint16_t)}, 769 // RS_TYPE_UNSIGNED_4_4_4_4 770 {eFormatHex, eFormatHex, sizeof(uint16_t)}, 771 // RS_TYPE_MATRIX_4X4 772 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 16}, 773 // RS_TYPE_MATRIX_3X3 774 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 9}, 775 // RS_TYPE_MATRIX_2X2 776 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 4}}; 777 778 // Static Functions 779 LanguageRuntime * 780 RenderScriptRuntime::CreateInstance(Process *process, 781 lldb::LanguageType language) { 782 783 if (language == eLanguageTypeExtRenderScript) 784 return new RenderScriptRuntime(process); 785 else 786 return nullptr; 787 } 788 789 // Callback with a module to search for matching symbols. We first check that 790 // the module contains RS kernels. Then look for a symbol which matches our 791 // kernel name. The breakpoint address is finally set using the address of this 792 // symbol. 793 Searcher::CallbackReturn 794 RSBreakpointResolver::SearchCallback(SearchFilter &filter, 795 SymbolContext &context, Address *) { 796 BreakpointSP breakpoint_sp = GetBreakpoint(); 797 assert(breakpoint_sp); 798 799 ModuleSP module = context.module_sp; 800 801 if (!module || !IsRenderScriptScriptModule(module)) 802 return Searcher::eCallbackReturnContinue; 803 804 // Attempt to set a breakpoint on the kernel name symbol within the module 805 // library. If it's not found, it's likely debug info is unavailable - try to 806 // set a breakpoint on <name>.expand. 807 const Symbol *kernel_sym = 808 module->FindFirstSymbolWithNameAndType(m_kernel_name, eSymbolTypeCode); 809 if (!kernel_sym) { 810 std::string kernel_name_expanded(m_kernel_name.AsCString()); 811 kernel_name_expanded.append(".expand"); 812 kernel_sym = module->FindFirstSymbolWithNameAndType( 813 ConstString(kernel_name_expanded.c_str()), eSymbolTypeCode); 814 } 815 816 if (kernel_sym) { 817 Address bp_addr = kernel_sym->GetAddress(); 818 if (filter.AddressPasses(bp_addr)) 819 breakpoint_sp->AddLocation(bp_addr); 820 } 821 822 return Searcher::eCallbackReturnContinue; 823 } 824 825 Searcher::CallbackReturn 826 RSReduceBreakpointResolver::SearchCallback(lldb_private::SearchFilter &filter, 827 lldb_private::SymbolContext &context, 828 Address *) { 829 BreakpointSP breakpoint_sp = GetBreakpoint(); 830 assert(breakpoint_sp); 831 832 // We need to have access to the list of reductions currently parsed, as 833 // reduce names don't actually exist as symbols in a module. They are only 834 // identifiable by parsing the .rs.info packet, or finding the expand symbol. 835 // We therefore need access to the list of parsed rs modules to properly 836 // resolve reduction names. 837 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 838 ModuleSP module = context.module_sp; 839 840 if (!module || !IsRenderScriptScriptModule(module)) 841 return Searcher::eCallbackReturnContinue; 842 843 if (!m_rsmodules) 844 return Searcher::eCallbackReturnContinue; 845 846 for (const auto &module_desc : *m_rsmodules) { 847 if (module_desc->m_module != module) 848 continue; 849 850 for (const auto &reduction : module_desc->m_reductions) { 851 if (reduction.m_reduce_name != m_reduce_name) 852 continue; 853 854 std::array<std::pair<ConstString, int>, 5> funcs{ 855 {{reduction.m_init_name, eKernelTypeInit}, 856 {reduction.m_accum_name, eKernelTypeAccum}, 857 {reduction.m_comb_name, eKernelTypeComb}, 858 {reduction.m_outc_name, eKernelTypeOutC}, 859 {reduction.m_halter_name, eKernelTypeHalter}}}; 860 861 for (const auto &kernel : funcs) { 862 // Skip constituent functions that don't match our spec 863 if (!(m_kernel_types & kernel.second)) 864 continue; 865 866 const auto kernel_name = kernel.first; 867 const auto symbol = module->FindFirstSymbolWithNameAndType( 868 kernel_name, eSymbolTypeCode); 869 if (!symbol) 870 continue; 871 872 auto address = symbol->GetAddress(); 873 if (filter.AddressPasses(address)) { 874 bool new_bp; 875 if (!SkipPrologue(module, address)) { 876 LLDB_LOGF(log, "%s: Error trying to skip prologue", __FUNCTION__); 877 } 878 breakpoint_sp->AddLocation(address, &new_bp); 879 LLDB_LOGF(log, "%s: %s reduction breakpoint on %s in %s", 880 __FUNCTION__, new_bp ? "new" : "existing", 881 kernel_name.GetCString(), 882 address.GetModule()->GetFileSpec().GetCString()); 883 } 884 } 885 } 886 } 887 return eCallbackReturnContinue; 888 } 889 890 Searcher::CallbackReturn RSScriptGroupBreakpointResolver::SearchCallback( 891 SearchFilter &filter, SymbolContext &context, Address *addr) { 892 893 BreakpointSP breakpoint_sp = GetBreakpoint(); 894 if (!breakpoint_sp) 895 return eCallbackReturnContinue; 896 897 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 898 ModuleSP &module = context.module_sp; 899 900 if (!module || !IsRenderScriptScriptModule(module)) 901 return Searcher::eCallbackReturnContinue; 902 903 std::vector<std::string> names; 904 Breakpoint& breakpoint = *breakpoint_sp; 905 breakpoint.GetNames(names); 906 if (names.empty()) 907 return eCallbackReturnContinue; 908 909 for (auto &name : names) { 910 const RSScriptGroupDescriptorSP sg = FindScriptGroup(ConstString(name)); 911 if (!sg) { 912 LLDB_LOGF(log, "%s: could not find script group for %s", __FUNCTION__, 913 name.c_str()); 914 continue; 915 } 916 917 LLDB_LOGF(log, "%s: Found ScriptGroup for %s", __FUNCTION__, name.c_str()); 918 919 for (const RSScriptGroupDescriptor::Kernel &k : sg->m_kernels) { 920 if (log) { 921 LLDB_LOGF(log, "%s: Adding breakpoint for %s", __FUNCTION__, 922 k.m_name.AsCString()); 923 LLDB_LOGF(log, "%s: Kernel address 0x%" PRIx64, __FUNCTION__, k.m_addr); 924 } 925 926 const lldb_private::Symbol *sym = 927 module->FindFirstSymbolWithNameAndType(k.m_name, eSymbolTypeCode); 928 if (!sym) { 929 LLDB_LOGF(log, "%s: Unable to find symbol for %s", __FUNCTION__, 930 k.m_name.AsCString()); 931 continue; 932 } 933 934 if (log) { 935 LLDB_LOGF(log, "%s: Found symbol name is %s", __FUNCTION__, 936 sym->GetName().AsCString()); 937 } 938 939 auto address = sym->GetAddress(); 940 if (!SkipPrologue(module, address)) { 941 LLDB_LOGF(log, "%s: Error trying to skip prologue", __FUNCTION__); 942 } 943 944 bool new_bp; 945 breakpoint.AddLocation(address, &new_bp); 946 947 LLDB_LOGF(log, "%s: Placed %sbreakpoint on %s", __FUNCTION__, 948 new_bp ? "new " : "", k.m_name.AsCString()); 949 950 // exit after placing the first breakpoint if we do not intend to stop on 951 // all kernels making up this script group 952 if (!m_stop_on_all) 953 break; 954 } 955 } 956 957 return eCallbackReturnContinue; 958 } 959 960 void RenderScriptRuntime::Initialize() { 961 PluginManager::RegisterPlugin(GetPluginNameStatic(), 962 "RenderScript language support", CreateInstance, 963 GetCommandObject); 964 } 965 966 void RenderScriptRuntime::Terminate() { 967 PluginManager::UnregisterPlugin(CreateInstance); 968 } 969 970 lldb_private::ConstString RenderScriptRuntime::GetPluginNameStatic() { 971 static ConstString plugin_name("renderscript"); 972 return plugin_name; 973 } 974 975 RenderScriptRuntime::ModuleKind 976 RenderScriptRuntime::GetModuleKind(const lldb::ModuleSP &module_sp) { 977 if (module_sp) { 978 if (IsRenderScriptScriptModule(module_sp)) 979 return eModuleKindKernelObj; 980 981 // Is this the main RS runtime library 982 const ConstString rs_lib("libRS.so"); 983 if (module_sp->GetFileSpec().GetFilename() == rs_lib) { 984 return eModuleKindLibRS; 985 } 986 987 const ConstString rs_driverlib("libRSDriver.so"); 988 if (module_sp->GetFileSpec().GetFilename() == rs_driverlib) { 989 return eModuleKindDriver; 990 } 991 992 const ConstString rs_cpureflib("libRSCpuRef.so"); 993 if (module_sp->GetFileSpec().GetFilename() == rs_cpureflib) { 994 return eModuleKindImpl; 995 } 996 } 997 return eModuleKindIgnored; 998 } 999 1000 bool RenderScriptRuntime::IsRenderScriptModule( 1001 const lldb::ModuleSP &module_sp) { 1002 return GetModuleKind(module_sp) != eModuleKindIgnored; 1003 } 1004 1005 void RenderScriptRuntime::ModulesDidLoad(const ModuleList &module_list) { 1006 std::lock_guard<std::recursive_mutex> guard(module_list.GetMutex()); 1007 1008 size_t num_modules = module_list.GetSize(); 1009 for (size_t i = 0; i < num_modules; i++) { 1010 auto mod = module_list.GetModuleAtIndex(i); 1011 if (IsRenderScriptModule(mod)) { 1012 LoadModule(mod); 1013 } 1014 } 1015 } 1016 1017 // PluginInterface protocol 1018 lldb_private::ConstString RenderScriptRuntime::GetPluginName() { 1019 return GetPluginNameStatic(); 1020 } 1021 1022 bool RenderScriptRuntime::GetDynamicTypeAndAddress( 1023 ValueObject &in_value, lldb::DynamicValueType use_dynamic, 1024 TypeAndOrName &class_type_or_name, Address &address, 1025 Value::ValueType &value_type) { 1026 return false; 1027 } 1028 1029 TypeAndOrName 1030 RenderScriptRuntime::FixUpDynamicType(const TypeAndOrName &type_and_or_name, 1031 ValueObject &static_value) { 1032 return type_and_or_name; 1033 } 1034 1035 bool RenderScriptRuntime::CouldHaveDynamicValue(ValueObject &in_value) { 1036 return false; 1037 } 1038 1039 lldb::BreakpointResolverSP 1040 RenderScriptRuntime::CreateExceptionResolver(const lldb::BreakpointSP &bp, 1041 bool catch_bp, bool throw_bp) { 1042 BreakpointResolverSP resolver_sp; 1043 return resolver_sp; 1044 } 1045 1046 const RenderScriptRuntime::HookDefn RenderScriptRuntime::s_runtimeHookDefns[] = 1047 { 1048 // rsdScript 1049 {"rsdScriptInit", "_Z13rsdScriptInitPKN7android12renderscript7ContextEP" 1050 "NS0_7ScriptCEPKcS7_PKhjj", 1051 "_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_" 1052 "7ScriptCEPKcS7_PKhmj", 1053 0, RenderScriptRuntime::eModuleKindDriver, 1054 &lldb_private::RenderScriptRuntime::CaptureScriptInit}, 1055 {"rsdScriptInvokeForEachMulti", 1056 "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0" 1057 "_6ScriptEjPPKNS0_10AllocationEjPS6_PKvjPK12RsScriptCall", 1058 "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0" 1059 "_6ScriptEjPPKNS0_10AllocationEmPS6_PKvmPK12RsScriptCall", 1060 0, RenderScriptRuntime::eModuleKindDriver, 1061 &lldb_private::RenderScriptRuntime::CaptureScriptInvokeForEachMulti}, 1062 {"rsdScriptSetGlobalVar", "_Z21rsdScriptSetGlobalVarPKN7android12render" 1063 "script7ContextEPKNS0_6ScriptEjPvj", 1064 "_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_" 1065 "6ScriptEjPvm", 1066 0, RenderScriptRuntime::eModuleKindDriver, 1067 &lldb_private::RenderScriptRuntime::CaptureSetGlobalVar}, 1068 1069 // rsdAllocation 1070 {"rsdAllocationInit", "_Z17rsdAllocationInitPKN7android12renderscript7C" 1071 "ontextEPNS0_10AllocationEb", 1072 "_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_" 1073 "10AllocationEb", 1074 0, RenderScriptRuntime::eModuleKindDriver, 1075 &lldb_private::RenderScriptRuntime::CaptureAllocationInit}, 1076 {"rsdAllocationRead2D", 1077 "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_" 1078 "10AllocationEjjj23RsAllocationCubemapFacejjPvjj", 1079 "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_" 1080 "10AllocationEjjj23RsAllocationCubemapFacejjPvmm", 1081 0, RenderScriptRuntime::eModuleKindDriver, nullptr}, 1082 {"rsdAllocationDestroy", "_Z20rsdAllocationDestroyPKN7android12rendersc" 1083 "ript7ContextEPNS0_10AllocationE", 1084 "_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_" 1085 "10AllocationE", 1086 0, RenderScriptRuntime::eModuleKindDriver, 1087 &lldb_private::RenderScriptRuntime::CaptureAllocationDestroy}, 1088 1089 // renderscript script groups 1090 {"rsdDebugHintScriptGroup2", "_ZN7android12renderscript21debugHintScrip" 1091 "tGroup2EPKcjPKPFvPK24RsExpandKernelDriver" 1092 "InfojjjEj", 1093 "_ZN7android12renderscript21debugHintScriptGroup2EPKcjPKPFvPK24RsExpan" 1094 "dKernelDriverInfojjjEj", 1095 0, RenderScriptRuntime::eModuleKindImpl, 1096 &lldb_private::RenderScriptRuntime::CaptureDebugHintScriptGroup2}}; 1097 1098 const size_t RenderScriptRuntime::s_runtimeHookCount = 1099 sizeof(s_runtimeHookDefns) / sizeof(s_runtimeHookDefns[0]); 1100 1101 bool RenderScriptRuntime::HookCallback(void *baton, 1102 StoppointCallbackContext *ctx, 1103 lldb::user_id_t break_id, 1104 lldb::user_id_t break_loc_id) { 1105 RuntimeHook *hook = (RuntimeHook *)baton; 1106 ExecutionContext exe_ctx(ctx->exe_ctx_ref); 1107 1108 RenderScriptRuntime *lang_rt = llvm::cast<RenderScriptRuntime>( 1109 exe_ctx.GetProcessPtr()->GetLanguageRuntime( 1110 eLanguageTypeExtRenderScript)); 1111 1112 lang_rt->HookCallback(hook, exe_ctx); 1113 1114 return false; 1115 } 1116 1117 void RenderScriptRuntime::HookCallback(RuntimeHook *hook, 1118 ExecutionContext &exe_ctx) { 1119 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1120 1121 LLDB_LOGF(log, "%s - '%s'", __FUNCTION__, hook->defn->name); 1122 1123 if (hook->defn->grabber) { 1124 (this->*(hook->defn->grabber))(hook, exe_ctx); 1125 } 1126 } 1127 1128 void RenderScriptRuntime::CaptureDebugHintScriptGroup2( 1129 RuntimeHook *hook_info, ExecutionContext &context) { 1130 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1131 1132 enum { 1133 eGroupName = 0, 1134 eGroupNameSize, 1135 eKernel, 1136 eKernelCount, 1137 }; 1138 1139 std::array<ArgItem, 4> args{{ 1140 {ArgItem::ePointer, 0}, // const char *groupName 1141 {ArgItem::eInt32, 0}, // const uint32_t groupNameSize 1142 {ArgItem::ePointer, 0}, // const ExpandFuncTy *kernel 1143 {ArgItem::eInt32, 0}, // const uint32_t kernelCount 1144 }}; 1145 1146 if (!GetArgs(context, args.data(), args.size())) { 1147 LLDB_LOGF(log, "%s - Error while reading the function parameters", 1148 __FUNCTION__); 1149 return; 1150 } else if (log) { 1151 LLDB_LOGF(log, "%s - groupName : 0x%" PRIx64, __FUNCTION__, 1152 addr_t(args[eGroupName])); 1153 LLDB_LOGF(log, "%s - groupNameSize: %" PRIu64, __FUNCTION__, 1154 uint64_t(args[eGroupNameSize])); 1155 LLDB_LOGF(log, "%s - kernel : 0x%" PRIx64, __FUNCTION__, 1156 addr_t(args[eKernel])); 1157 LLDB_LOGF(log, "%s - kernelCount : %" PRIu64, __FUNCTION__, 1158 uint64_t(args[eKernelCount])); 1159 } 1160 1161 // parse script group name 1162 ConstString group_name; 1163 { 1164 Status err; 1165 const uint64_t len = uint64_t(args[eGroupNameSize]); 1166 std::unique_ptr<char[]> buffer(new char[uint32_t(len + 1)]); 1167 m_process->ReadMemory(addr_t(args[eGroupName]), buffer.get(), len, err); 1168 buffer.get()[len] = '\0'; 1169 if (!err.Success()) { 1170 LLDB_LOGF(log, "Error reading scriptgroup name from target"); 1171 return; 1172 } else { 1173 LLDB_LOGF(log, "Extracted scriptgroup name %s", buffer.get()); 1174 } 1175 // write back the script group name 1176 group_name.SetCString(buffer.get()); 1177 } 1178 1179 // create or access existing script group 1180 RSScriptGroupDescriptorSP group; 1181 { 1182 // search for existing script group 1183 for (auto sg : m_scriptGroups) { 1184 if (sg->m_name == group_name) { 1185 group = sg; 1186 break; 1187 } 1188 } 1189 if (!group) { 1190 group = std::make_shared<RSScriptGroupDescriptor>(); 1191 group->m_name = group_name; 1192 m_scriptGroups.push_back(group); 1193 } else { 1194 // already have this script group 1195 LLDB_LOGF(log, "Attempt to add duplicate script group %s", 1196 group_name.AsCString()); 1197 return; 1198 } 1199 } 1200 assert(group); 1201 1202 const uint32_t target_ptr_size = m_process->GetAddressByteSize(); 1203 std::vector<addr_t> kernels; 1204 // parse kernel addresses in script group 1205 for (uint64_t i = 0; i < uint64_t(args[eKernelCount]); ++i) { 1206 RSScriptGroupDescriptor::Kernel kernel; 1207 // extract script group kernel addresses from the target 1208 const addr_t ptr_addr = addr_t(args[eKernel]) + i * target_ptr_size; 1209 uint64_t kernel_addr = 0; 1210 Status err; 1211 size_t read = 1212 m_process->ReadMemory(ptr_addr, &kernel_addr, target_ptr_size, err); 1213 if (!err.Success() || read != target_ptr_size) { 1214 LLDB_LOGF(log, "Error parsing kernel address %" PRIu64 " in script group", 1215 i); 1216 return; 1217 } 1218 LLDB_LOGF(log, "Extracted scriptgroup kernel address - 0x%" PRIx64, 1219 kernel_addr); 1220 kernel.m_addr = kernel_addr; 1221 1222 // try to resolve the associated kernel name 1223 if (!ResolveKernelName(kernel.m_addr, kernel.m_name)) { 1224 LLDB_LOGF(log, "Parsed scriptgroup kernel %" PRIu64 " - 0x%" PRIx64, i, 1225 kernel_addr); 1226 return; 1227 } 1228 1229 // try to find the non '.expand' function 1230 { 1231 const llvm::StringRef expand(".expand"); 1232 const llvm::StringRef name_ref = kernel.m_name.GetStringRef(); 1233 if (name_ref.endswith(expand)) { 1234 const ConstString base_kernel(name_ref.drop_back(expand.size())); 1235 // verify this function is a valid kernel 1236 if (IsKnownKernel(base_kernel)) { 1237 kernel.m_name = base_kernel; 1238 LLDB_LOGF(log, "%s - found non expand version '%s'", __FUNCTION__, 1239 base_kernel.GetCString()); 1240 } 1241 } 1242 } 1243 // add to a list of script group kernels we know about 1244 group->m_kernels.push_back(kernel); 1245 } 1246 1247 // Resolve any pending scriptgroup breakpoints 1248 { 1249 Target &target = m_process->GetTarget(); 1250 const BreakpointList &list = target.GetBreakpointList(); 1251 const size_t num_breakpoints = list.GetSize(); 1252 LLDB_LOGF(log, "Resolving %zu breakpoints", num_breakpoints); 1253 for (size_t i = 0; i < num_breakpoints; ++i) { 1254 const BreakpointSP bp = list.GetBreakpointAtIndex(i); 1255 if (bp) { 1256 if (bp->MatchesName(group_name.AsCString())) { 1257 LLDB_LOGF(log, "Found breakpoint with name %s", 1258 group_name.AsCString()); 1259 bp->ResolveBreakpoint(); 1260 } 1261 } 1262 } 1263 } 1264 } 1265 1266 void RenderScriptRuntime::CaptureScriptInvokeForEachMulti( 1267 RuntimeHook *hook, ExecutionContext &exe_ctx) { 1268 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1269 1270 enum { 1271 eRsContext = 0, 1272 eRsScript, 1273 eRsSlot, 1274 eRsAIns, 1275 eRsInLen, 1276 eRsAOut, 1277 eRsUsr, 1278 eRsUsrLen, 1279 eRsSc, 1280 }; 1281 1282 std::array<ArgItem, 9> args{{ 1283 ArgItem{ArgItem::ePointer, 0}, // const Context *rsc 1284 ArgItem{ArgItem::ePointer, 0}, // Script *s 1285 ArgItem{ArgItem::eInt32, 0}, // uint32_t slot 1286 ArgItem{ArgItem::ePointer, 0}, // const Allocation **aIns 1287 ArgItem{ArgItem::eInt32, 0}, // size_t inLen 1288 ArgItem{ArgItem::ePointer, 0}, // Allocation *aout 1289 ArgItem{ArgItem::ePointer, 0}, // const void *usr 1290 ArgItem{ArgItem::eInt32, 0}, // size_t usrLen 1291 ArgItem{ArgItem::ePointer, 0}, // const RsScriptCall *sc 1292 }}; 1293 1294 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1295 if (!success) { 1296 LLDB_LOGF(log, "%s - Error while reading the function parameters", 1297 __FUNCTION__); 1298 return; 1299 } 1300 1301 const uint32_t target_ptr_size = m_process->GetAddressByteSize(); 1302 Status err; 1303 std::vector<uint64_t> allocs; 1304 1305 // traverse allocation list 1306 for (uint64_t i = 0; i < uint64_t(args[eRsInLen]); ++i) { 1307 // calculate offest to allocation pointer 1308 const addr_t addr = addr_t(args[eRsAIns]) + i * target_ptr_size; 1309 1310 // Note: due to little endian layout, reading 32bits or 64bits into res 1311 // will give the correct results. 1312 uint64_t result = 0; 1313 size_t read = m_process->ReadMemory(addr, &result, target_ptr_size, err); 1314 if (read != target_ptr_size || !err.Success()) { 1315 LLDB_LOGF(log, 1316 "%s - Error while reading allocation list argument %" PRIu64, 1317 __FUNCTION__, i); 1318 } else { 1319 allocs.push_back(result); 1320 } 1321 } 1322 1323 // if there is an output allocation track it 1324 if (uint64_t alloc_out = uint64_t(args[eRsAOut])) { 1325 allocs.push_back(alloc_out); 1326 } 1327 1328 // for all allocations we have found 1329 for (const uint64_t alloc_addr : allocs) { 1330 AllocationDetails *alloc = LookUpAllocation(alloc_addr); 1331 if (!alloc) 1332 alloc = CreateAllocation(alloc_addr); 1333 1334 if (alloc) { 1335 // save the allocation address 1336 if (alloc->address.isValid()) { 1337 // check the allocation address we already have matches 1338 assert(*alloc->address.get() == alloc_addr); 1339 } else { 1340 alloc->address = alloc_addr; 1341 } 1342 1343 // save the context 1344 if (log) { 1345 if (alloc->context.isValid() && 1346 *alloc->context.get() != addr_t(args[eRsContext])) 1347 LLDB_LOGF(log, "%s - Allocation used by multiple contexts", 1348 __FUNCTION__); 1349 } 1350 alloc->context = addr_t(args[eRsContext]); 1351 } 1352 } 1353 1354 // make sure we track this script object 1355 if (lldb_private::RenderScriptRuntime::ScriptDetails *script = 1356 LookUpScript(addr_t(args[eRsScript]), true)) { 1357 if (log) { 1358 if (script->context.isValid() && 1359 *script->context.get() != addr_t(args[eRsContext])) 1360 LLDB_LOGF(log, "%s - Script used by multiple contexts", __FUNCTION__); 1361 } 1362 script->context = addr_t(args[eRsContext]); 1363 } 1364 } 1365 1366 void RenderScriptRuntime::CaptureSetGlobalVar(RuntimeHook *hook, 1367 ExecutionContext &context) { 1368 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1369 1370 enum { 1371 eRsContext, 1372 eRsScript, 1373 eRsId, 1374 eRsData, 1375 eRsLength, 1376 }; 1377 1378 std::array<ArgItem, 5> args{{ 1379 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1380 ArgItem{ArgItem::ePointer, 0}, // eRsScript 1381 ArgItem{ArgItem::eInt32, 0}, // eRsId 1382 ArgItem{ArgItem::ePointer, 0}, // eRsData 1383 ArgItem{ArgItem::eInt32, 0}, // eRsLength 1384 }}; 1385 1386 bool success = GetArgs(context, &args[0], args.size()); 1387 if (!success) { 1388 LLDB_LOGF(log, "%s - error reading the function parameters.", __FUNCTION__); 1389 return; 1390 } 1391 1392 if (log) { 1393 LLDB_LOGF(log, 1394 "%s - 0x%" PRIx64 ",0x%" PRIx64 " slot %" PRIu64 " = 0x%" PRIx64 1395 ":%" PRIu64 "bytes.", 1396 __FUNCTION__, uint64_t(args[eRsContext]), 1397 uint64_t(args[eRsScript]), uint64_t(args[eRsId]), 1398 uint64_t(args[eRsData]), uint64_t(args[eRsLength])); 1399 1400 addr_t script_addr = addr_t(args[eRsScript]); 1401 if (m_scriptMappings.find(script_addr) != m_scriptMappings.end()) { 1402 auto rsm = m_scriptMappings[script_addr]; 1403 if (uint64_t(args[eRsId]) < rsm->m_globals.size()) { 1404 auto rsg = rsm->m_globals[uint64_t(args[eRsId])]; 1405 LLDB_LOGF(log, "%s - Setting of '%s' within '%s' inferred", 1406 __FUNCTION__, rsg.m_name.AsCString(), 1407 rsm->m_module->GetFileSpec().GetFilename().AsCString()); 1408 } 1409 } 1410 } 1411 } 1412 1413 void RenderScriptRuntime::CaptureAllocationInit(RuntimeHook *hook, 1414 ExecutionContext &exe_ctx) { 1415 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1416 1417 enum { eRsContext, eRsAlloc, eRsForceZero }; 1418 1419 std::array<ArgItem, 3> args{{ 1420 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1421 ArgItem{ArgItem::ePointer, 0}, // eRsAlloc 1422 ArgItem{ArgItem::eBool, 0}, // eRsForceZero 1423 }}; 1424 1425 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1426 if (!success) { 1427 LLDB_LOGF(log, "%s - error while reading the function parameters", 1428 __FUNCTION__); 1429 return; 1430 } 1431 1432 LLDB_LOGF(log, "%s - 0x%" PRIx64 ",0x%" PRIx64 ",0x%" PRIx64 " .", 1433 __FUNCTION__, uint64_t(args[eRsContext]), uint64_t(args[eRsAlloc]), 1434 uint64_t(args[eRsForceZero])); 1435 1436 AllocationDetails *alloc = CreateAllocation(uint64_t(args[eRsAlloc])); 1437 if (alloc) 1438 alloc->context = uint64_t(args[eRsContext]); 1439 } 1440 1441 void RenderScriptRuntime::CaptureAllocationDestroy(RuntimeHook *hook, 1442 ExecutionContext &exe_ctx) { 1443 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1444 1445 enum { 1446 eRsContext, 1447 eRsAlloc, 1448 }; 1449 1450 std::array<ArgItem, 2> args{{ 1451 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1452 ArgItem{ArgItem::ePointer, 0}, // eRsAlloc 1453 }}; 1454 1455 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1456 if (!success) { 1457 LLDB_LOGF(log, "%s - error while reading the function parameters.", 1458 __FUNCTION__); 1459 return; 1460 } 1461 1462 LLDB_LOGF(log, "%s - 0x%" PRIx64 ", 0x%" PRIx64 ".", __FUNCTION__, 1463 uint64_t(args[eRsContext]), uint64_t(args[eRsAlloc])); 1464 1465 for (auto iter = m_allocations.begin(); iter != m_allocations.end(); ++iter) { 1466 auto &allocation_up = *iter; // get the unique pointer 1467 if (allocation_up->address.isValid() && 1468 *allocation_up->address.get() == addr_t(args[eRsAlloc])) { 1469 m_allocations.erase(iter); 1470 LLDB_LOGF(log, "%s - deleted allocation entry.", __FUNCTION__); 1471 return; 1472 } 1473 } 1474 1475 LLDB_LOGF(log, "%s - couldn't find destroyed allocation.", __FUNCTION__); 1476 } 1477 1478 void RenderScriptRuntime::CaptureScriptInit(RuntimeHook *hook, 1479 ExecutionContext &exe_ctx) { 1480 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1481 1482 Status err; 1483 Process *process = exe_ctx.GetProcessPtr(); 1484 1485 enum { eRsContext, eRsScript, eRsResNamePtr, eRsCachedDirPtr }; 1486 1487 std::array<ArgItem, 4> args{ 1488 {ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}, 1489 ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}}}; 1490 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1491 if (!success) { 1492 LLDB_LOGF(log, "%s - error while reading the function parameters.", 1493 __FUNCTION__); 1494 return; 1495 } 1496 1497 std::string res_name; 1498 process->ReadCStringFromMemory(addr_t(args[eRsResNamePtr]), res_name, err); 1499 if (err.Fail()) { 1500 LLDB_LOGF(log, "%s - error reading res_name: %s.", __FUNCTION__, 1501 err.AsCString()); 1502 } 1503 1504 std::string cache_dir; 1505 process->ReadCStringFromMemory(addr_t(args[eRsCachedDirPtr]), cache_dir, err); 1506 if (err.Fail()) { 1507 LLDB_LOGF(log, "%s - error reading cache_dir: %s.", __FUNCTION__, 1508 err.AsCString()); 1509 } 1510 1511 LLDB_LOGF(log, "%s - 0x%" PRIx64 ",0x%" PRIx64 " => '%s' at '%s' .", 1512 __FUNCTION__, uint64_t(args[eRsContext]), uint64_t(args[eRsScript]), 1513 res_name.c_str(), cache_dir.c_str()); 1514 1515 if (res_name.size() > 0) { 1516 StreamString strm; 1517 strm.Printf("librs.%s.so", res_name.c_str()); 1518 1519 ScriptDetails *script = LookUpScript(addr_t(args[eRsScript]), true); 1520 if (script) { 1521 script->type = ScriptDetails::eScriptC; 1522 script->cache_dir = cache_dir; 1523 script->res_name = res_name; 1524 script->shared_lib = std::string(strm.GetString()); 1525 script->context = addr_t(args[eRsContext]); 1526 } 1527 1528 LLDB_LOGF(log, 1529 "%s - '%s' tagged with context 0x%" PRIx64 1530 " and script 0x%" PRIx64 ".", 1531 __FUNCTION__, strm.GetData(), uint64_t(args[eRsContext]), 1532 uint64_t(args[eRsScript])); 1533 } else if (log) { 1534 LLDB_LOGF(log, "%s - resource name invalid, Script not tagged.", 1535 __FUNCTION__); 1536 } 1537 } 1538 1539 void RenderScriptRuntime::LoadRuntimeHooks(lldb::ModuleSP module, 1540 ModuleKind kind) { 1541 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1542 1543 if (!module) { 1544 return; 1545 } 1546 1547 Target &target = GetProcess()->GetTarget(); 1548 const llvm::Triple::ArchType machine = target.GetArchitecture().GetMachine(); 1549 1550 if (machine != llvm::Triple::ArchType::x86 && 1551 machine != llvm::Triple::ArchType::arm && 1552 machine != llvm::Triple::ArchType::aarch64 && 1553 machine != llvm::Triple::ArchType::mipsel && 1554 machine != llvm::Triple::ArchType::mips64el && 1555 machine != llvm::Triple::ArchType::x86_64) { 1556 LLDB_LOGF(log, "%s - unable to hook runtime functions.", __FUNCTION__); 1557 return; 1558 } 1559 1560 const uint32_t target_ptr_size = 1561 target.GetArchitecture().GetAddressByteSize(); 1562 1563 std::array<bool, s_runtimeHookCount> hook_placed; 1564 hook_placed.fill(false); 1565 1566 for (size_t idx = 0; idx < s_runtimeHookCount; idx++) { 1567 const HookDefn *hook_defn = &s_runtimeHookDefns[idx]; 1568 if (hook_defn->kind != kind) { 1569 continue; 1570 } 1571 1572 const char *symbol_name = (target_ptr_size == 4) 1573 ? hook_defn->symbol_name_m32 1574 : hook_defn->symbol_name_m64; 1575 1576 const Symbol *sym = module->FindFirstSymbolWithNameAndType( 1577 ConstString(symbol_name), eSymbolTypeCode); 1578 if (!sym) { 1579 if (log) { 1580 LLDB_LOGF(log, "%s - symbol '%s' related to the function %s not found", 1581 __FUNCTION__, symbol_name, hook_defn->name); 1582 } 1583 continue; 1584 } 1585 1586 addr_t addr = sym->GetLoadAddress(&target); 1587 if (addr == LLDB_INVALID_ADDRESS) { 1588 LLDB_LOGF(log, 1589 "%s - unable to resolve the address of hook function '%s' " 1590 "with symbol '%s'.", 1591 __FUNCTION__, hook_defn->name, symbol_name); 1592 continue; 1593 } else { 1594 LLDB_LOGF(log, "%s - function %s, address resolved at 0x%" PRIx64, 1595 __FUNCTION__, hook_defn->name, addr); 1596 } 1597 1598 RuntimeHookSP hook(new RuntimeHook()); 1599 hook->address = addr; 1600 hook->defn = hook_defn; 1601 hook->bp_sp = target.CreateBreakpoint(addr, true, false); 1602 hook->bp_sp->SetCallback(HookCallback, hook.get(), true); 1603 m_runtimeHooks[addr] = hook; 1604 if (log) { 1605 LLDB_LOGF(log, 1606 "%s - successfully hooked '%s' in '%s' version %" PRIu64 1607 " at 0x%" PRIx64 ".", 1608 __FUNCTION__, hook_defn->name, 1609 module->GetFileSpec().GetFilename().AsCString(), 1610 (uint64_t)hook_defn->version, (uint64_t)addr); 1611 } 1612 hook_placed[idx] = true; 1613 } 1614 1615 // log any unhooked function 1616 if (log) { 1617 for (size_t i = 0; i < hook_placed.size(); ++i) { 1618 if (hook_placed[i]) 1619 continue; 1620 const HookDefn &hook_defn = s_runtimeHookDefns[i]; 1621 if (hook_defn.kind != kind) 1622 continue; 1623 LLDB_LOGF(log, "%s - function %s was not hooked", __FUNCTION__, 1624 hook_defn.name); 1625 } 1626 } 1627 } 1628 1629 void RenderScriptRuntime::FixupScriptDetails(RSModuleDescriptorSP rsmodule_sp) { 1630 if (!rsmodule_sp) 1631 return; 1632 1633 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1634 1635 const ModuleSP module = rsmodule_sp->m_module; 1636 const FileSpec &file = module->GetPlatformFileSpec(); 1637 1638 // Iterate over all of the scripts that we currently know of. Note: We cant 1639 // push or pop to m_scripts here or it may invalidate rs_script. 1640 for (const auto &rs_script : m_scripts) { 1641 // Extract the expected .so file path for this script. 1642 std::string shared_lib; 1643 if (!rs_script->shared_lib.get(shared_lib)) 1644 continue; 1645 1646 // Only proceed if the module that has loaded corresponds to this script. 1647 if (file.GetFilename() != ConstString(shared_lib.c_str())) 1648 continue; 1649 1650 // Obtain the script address which we use as a key. 1651 lldb::addr_t script; 1652 if (!rs_script->script.get(script)) 1653 continue; 1654 1655 // If we have a script mapping for the current script. 1656 if (m_scriptMappings.find(script) != m_scriptMappings.end()) { 1657 // if the module we have stored is different to the one we just received. 1658 if (m_scriptMappings[script] != rsmodule_sp) { 1659 LLDB_LOGF( 1660 log, 1661 "%s - script %" PRIx64 " wants reassigned to new rsmodule '%s'.", 1662 __FUNCTION__, (uint64_t)script, 1663 rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString()); 1664 } 1665 } 1666 // We don't have a script mapping for the current script. 1667 else { 1668 // Obtain the script resource name. 1669 std::string res_name; 1670 if (rs_script->res_name.get(res_name)) 1671 // Set the modules resource name. 1672 rsmodule_sp->m_resname = res_name; 1673 // Add Script/Module pair to map. 1674 m_scriptMappings[script] = rsmodule_sp; 1675 LLDB_LOGF(log, "%s - script %" PRIx64 " associated with rsmodule '%s'.", 1676 __FUNCTION__, (uint64_t)script, 1677 rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString()); 1678 } 1679 } 1680 } 1681 1682 // Uses the Target API to evaluate the expression passed as a parameter to the 1683 // function The result of that expression is returned an unsigned 64 bit int, 1684 // via the result* parameter. Function returns true on success, and false on 1685 // failure 1686 bool RenderScriptRuntime::EvalRSExpression(const char *expr, 1687 StackFrame *frame_ptr, 1688 uint64_t *result) { 1689 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1690 LLDB_LOGF(log, "%s(%s)", __FUNCTION__, expr); 1691 1692 ValueObjectSP expr_result; 1693 EvaluateExpressionOptions options; 1694 options.SetLanguage(lldb::eLanguageTypeC_plus_plus); 1695 // Perform the actual expression evaluation 1696 auto &target = GetProcess()->GetTarget(); 1697 target.EvaluateExpression(expr, frame_ptr, expr_result, options); 1698 1699 if (!expr_result) { 1700 LLDB_LOGF(log, "%s: couldn't evaluate expression.", __FUNCTION__); 1701 return false; 1702 } 1703 1704 // The result of the expression is invalid 1705 if (!expr_result->GetError().Success()) { 1706 Status err = expr_result->GetError(); 1707 // Expression returned is void, so this is actually a success 1708 if (err.GetError() == UserExpression::kNoResult) { 1709 LLDB_LOGF(log, "%s - expression returned void.", __FUNCTION__); 1710 1711 result = nullptr; 1712 return true; 1713 } 1714 1715 LLDB_LOGF(log, "%s - error evaluating expression result: %s", __FUNCTION__, 1716 err.AsCString()); 1717 return false; 1718 } 1719 1720 bool success = false; 1721 // We only read the result as an uint32_t. 1722 *result = expr_result->GetValueAsUnsigned(0, &success); 1723 1724 if (!success) { 1725 LLDB_LOGF(log, "%s - couldn't convert expression result to uint32_t", 1726 __FUNCTION__); 1727 return false; 1728 } 1729 1730 return true; 1731 } 1732 1733 namespace { 1734 // Used to index expression format strings 1735 enum ExpressionStrings { 1736 eExprGetOffsetPtr = 0, 1737 eExprAllocGetType, 1738 eExprTypeDimX, 1739 eExprTypeDimY, 1740 eExprTypeDimZ, 1741 eExprTypeElemPtr, 1742 eExprElementType, 1743 eExprElementKind, 1744 eExprElementVec, 1745 eExprElementFieldCount, 1746 eExprSubelementsId, 1747 eExprSubelementsName, 1748 eExprSubelementsArrSize, 1749 1750 _eExprLast // keep at the end, implicit size of the array runtime_expressions 1751 }; 1752 1753 // max length of an expanded expression 1754 const int jit_max_expr_size = 512; 1755 1756 // Retrieve the string to JIT for the given expression 1757 #define JIT_TEMPLATE_CONTEXT "void* ctxt = (void*)rsDebugGetContextWrapper(0x%" PRIx64 "); " 1758 const char *JITTemplate(ExpressionStrings e) { 1759 // Format strings containing the expressions we may need to evaluate. 1760 static std::array<const char *, _eExprLast> runtime_expressions = { 1761 {// Mangled GetOffsetPointer(Allocation*, xoff, yoff, zoff, lod, cubemap) 1762 "(int*)_" 1763 "Z12GetOffsetPtrPKN7android12renderscript10AllocationEjjjj23RsAllocation" 1764 "CubemapFace" 1765 "(0x%" PRIx64 ", %" PRIu32 ", %" PRIu32 ", %" PRIu32 ", 0, 0)", // eExprGetOffsetPtr 1766 1767 // Type* rsaAllocationGetType(Context*, Allocation*) 1768 JIT_TEMPLATE_CONTEXT "(void*)rsaAllocationGetType(ctxt, 0x%" PRIx64 ")", // eExprAllocGetType 1769 1770 // rsaTypeGetNativeData(Context*, Type*, void* typeData, size) Pack the 1771 // data in the following way mHal.state.dimX; mHal.state.dimY; 1772 // mHal.state.dimZ; mHal.state.lodCount; mHal.state.faces; mElement; 1773 // into typeData Need to specify 32 or 64 bit for uint_t since this 1774 // differs between devices 1775 JIT_TEMPLATE_CONTEXT 1776 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt" 1777 ", 0x%" PRIx64 ", data, 6); data[0]", // eExprTypeDimX 1778 JIT_TEMPLATE_CONTEXT 1779 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt" 1780 ", 0x%" PRIx64 ", data, 6); data[1]", // eExprTypeDimY 1781 JIT_TEMPLATE_CONTEXT 1782 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt" 1783 ", 0x%" PRIx64 ", data, 6); data[2]", // eExprTypeDimZ 1784 JIT_TEMPLATE_CONTEXT 1785 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt" 1786 ", 0x%" PRIx64 ", data, 6); data[5]", // eExprTypeElemPtr 1787 1788 // rsaElementGetNativeData(Context*, Element*, uint32_t* elemData,size) 1789 // Pack mType; mKind; mNormalized; mVectorSize; NumSubElements into 1790 // elemData 1791 JIT_TEMPLATE_CONTEXT 1792 "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt" 1793 ", 0x%" PRIx64 ", data, 5); data[0]", // eExprElementType 1794 JIT_TEMPLATE_CONTEXT 1795 "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt" 1796 ", 0x%" PRIx64 ", data, 5); data[1]", // eExprElementKind 1797 JIT_TEMPLATE_CONTEXT 1798 "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt" 1799 ", 0x%" PRIx64 ", data, 5); data[3]", // eExprElementVec 1800 JIT_TEMPLATE_CONTEXT 1801 "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt" 1802 ", 0x%" PRIx64 ", data, 5); data[4]", // eExprElementFieldCount 1803 1804 // rsaElementGetSubElements(RsContext con, RsElement elem, uintptr_t 1805 // *ids, const char **names, size_t *arraySizes, uint32_t dataSize) 1806 // Needed for Allocations of structs to gather details about 1807 // fields/Subelements Element* of field 1808 JIT_TEMPLATE_CONTEXT "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 1809 "]; size_t arr_size[%" PRIu32 "];" 1810 "(void*)rsaElementGetSubElements(ctxt, 0x%" PRIx64 1811 ", ids, names, arr_size, %" PRIu32 "); ids[%" PRIu32 "]", // eExprSubelementsId 1812 1813 // Name of field 1814 JIT_TEMPLATE_CONTEXT "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 1815 "]; size_t arr_size[%" PRIu32 "];" 1816 "(void*)rsaElementGetSubElements(ctxt, 0x%" PRIx64 1817 ", ids, names, arr_size, %" PRIu32 "); names[%" PRIu32 "]", // eExprSubelementsName 1818 1819 // Array size of field 1820 JIT_TEMPLATE_CONTEXT "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 1821 "]; size_t arr_size[%" PRIu32 "];" 1822 "(void*)rsaElementGetSubElements(ctxt, 0x%" PRIx64 1823 ", ids, names, arr_size, %" PRIu32 "); arr_size[%" PRIu32 "]"}}; // eExprSubelementsArrSize 1824 1825 return runtime_expressions[e]; 1826 } 1827 } // end of the anonymous namespace 1828 1829 // JITs the RS runtime for the internal data pointer of an allocation. Is 1830 // passed x,y,z coordinates for the pointer to a specific element. Then sets 1831 // the data_ptr member in Allocation with the result. Returns true on success, 1832 // false otherwise 1833 bool RenderScriptRuntime::JITDataPointer(AllocationDetails *alloc, 1834 StackFrame *frame_ptr, uint32_t x, 1835 uint32_t y, uint32_t z) { 1836 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1837 1838 if (!alloc->address.isValid()) { 1839 LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__); 1840 return false; 1841 } 1842 1843 const char *fmt_str = JITTemplate(eExprGetOffsetPtr); 1844 char expr_buf[jit_max_expr_size]; 1845 1846 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 1847 *alloc->address.get(), x, y, z); 1848 if (written < 0) { 1849 LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__); 1850 return false; 1851 } else if (written >= jit_max_expr_size) { 1852 LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__); 1853 return false; 1854 } 1855 1856 uint64_t result = 0; 1857 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 1858 return false; 1859 1860 addr_t data_ptr = static_cast<lldb::addr_t>(result); 1861 alloc->data_ptr = data_ptr; 1862 1863 return true; 1864 } 1865 1866 // JITs the RS runtime for the internal pointer to the RS Type of an allocation 1867 // Then sets the type_ptr member in Allocation with the result. Returns true on 1868 // success, false otherwise 1869 bool RenderScriptRuntime::JITTypePointer(AllocationDetails *alloc, 1870 StackFrame *frame_ptr) { 1871 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1872 1873 if (!alloc->address.isValid() || !alloc->context.isValid()) { 1874 LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__); 1875 return false; 1876 } 1877 1878 const char *fmt_str = JITTemplate(eExprAllocGetType); 1879 char expr_buf[jit_max_expr_size]; 1880 1881 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 1882 *alloc->context.get(), *alloc->address.get()); 1883 if (written < 0) { 1884 LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__); 1885 return false; 1886 } else if (written >= jit_max_expr_size) { 1887 LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__); 1888 return false; 1889 } 1890 1891 uint64_t result = 0; 1892 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 1893 return false; 1894 1895 addr_t type_ptr = static_cast<lldb::addr_t>(result); 1896 alloc->type_ptr = type_ptr; 1897 1898 return true; 1899 } 1900 1901 // JITs the RS runtime for information about the dimensions and type of an 1902 // allocation Then sets dimension and element_ptr members in Allocation with 1903 // the result. Returns true on success, false otherwise 1904 bool RenderScriptRuntime::JITTypePacked(AllocationDetails *alloc, 1905 StackFrame *frame_ptr) { 1906 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1907 1908 if (!alloc->type_ptr.isValid() || !alloc->context.isValid()) { 1909 LLDB_LOGF(log, "%s - Failed to find allocation details.", __FUNCTION__); 1910 return false; 1911 } 1912 1913 // Expression is different depending on if device is 32 or 64 bit 1914 uint32_t target_ptr_size = 1915 GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 1916 const uint32_t bits = target_ptr_size == 4 ? 32 : 64; 1917 1918 // We want 4 elements from packed data 1919 const uint32_t num_exprs = 4; 1920 static_assert(num_exprs == (eExprTypeElemPtr - eExprTypeDimX + 1), 1921 "Invalid number of expressions"); 1922 1923 char expr_bufs[num_exprs][jit_max_expr_size]; 1924 uint64_t results[num_exprs]; 1925 1926 for (uint32_t i = 0; i < num_exprs; ++i) { 1927 const char *fmt_str = JITTemplate(ExpressionStrings(eExprTypeDimX + i)); 1928 int written = snprintf(expr_bufs[i], jit_max_expr_size, fmt_str, 1929 *alloc->context.get(), bits, *alloc->type_ptr.get()); 1930 if (written < 0) { 1931 LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__); 1932 return false; 1933 } else if (written >= jit_max_expr_size) { 1934 LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__); 1935 return false; 1936 } 1937 1938 // Perform expression evaluation 1939 if (!EvalRSExpression(expr_bufs[i], frame_ptr, &results[i])) 1940 return false; 1941 } 1942 1943 // Assign results to allocation members 1944 AllocationDetails::Dimension dims; 1945 dims.dim_1 = static_cast<uint32_t>(results[0]); 1946 dims.dim_2 = static_cast<uint32_t>(results[1]); 1947 dims.dim_3 = static_cast<uint32_t>(results[2]); 1948 alloc->dimension = dims; 1949 1950 addr_t element_ptr = static_cast<lldb::addr_t>(results[3]); 1951 alloc->element.element_ptr = element_ptr; 1952 1953 LLDB_LOGF(log, 1954 "%s - dims (%" PRIu32 ", %" PRIu32 ", %" PRIu32 1955 ") Element*: 0x%" PRIx64 ".", 1956 __FUNCTION__, dims.dim_1, dims.dim_2, dims.dim_3, element_ptr); 1957 1958 return true; 1959 } 1960 1961 // JITs the RS runtime for information about the Element of an allocation Then 1962 // sets type, type_vec_size, field_count and type_kind members in Element with 1963 // the result. Returns true on success, false otherwise 1964 bool RenderScriptRuntime::JITElementPacked(Element &elem, 1965 const lldb::addr_t context, 1966 StackFrame *frame_ptr) { 1967 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1968 1969 if (!elem.element_ptr.isValid()) { 1970 LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__); 1971 return false; 1972 } 1973 1974 // We want 4 elements from packed data 1975 const uint32_t num_exprs = 4; 1976 static_assert(num_exprs == (eExprElementFieldCount - eExprElementType + 1), 1977 "Invalid number of expressions"); 1978 1979 char expr_bufs[num_exprs][jit_max_expr_size]; 1980 uint64_t results[num_exprs]; 1981 1982 for (uint32_t i = 0; i < num_exprs; i++) { 1983 const char *fmt_str = JITTemplate(ExpressionStrings(eExprElementType + i)); 1984 int written = snprintf(expr_bufs[i], jit_max_expr_size, fmt_str, context, 1985 *elem.element_ptr.get()); 1986 if (written < 0) { 1987 LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__); 1988 return false; 1989 } else if (written >= jit_max_expr_size) { 1990 LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__); 1991 return false; 1992 } 1993 1994 // Perform expression evaluation 1995 if (!EvalRSExpression(expr_bufs[i], frame_ptr, &results[i])) 1996 return false; 1997 } 1998 1999 // Assign results to allocation members 2000 elem.type = static_cast<RenderScriptRuntime::Element::DataType>(results[0]); 2001 elem.type_kind = 2002 static_cast<RenderScriptRuntime::Element::DataKind>(results[1]); 2003 elem.type_vec_size = static_cast<uint32_t>(results[2]); 2004 elem.field_count = static_cast<uint32_t>(results[3]); 2005 2006 LLDB_LOGF(log, 2007 "%s - data type %" PRIu32 ", pixel type %" PRIu32 2008 ", vector size %" PRIu32 ", field count %" PRIu32, 2009 __FUNCTION__, *elem.type.get(), *elem.type_kind.get(), 2010 *elem.type_vec_size.get(), *elem.field_count.get()); 2011 2012 // If this Element has subelements then JIT rsaElementGetSubElements() for 2013 // details about its fields 2014 return !(*elem.field_count.get() > 0 && 2015 !JITSubelements(elem, context, frame_ptr)); 2016 } 2017 2018 // JITs the RS runtime for information about the subelements/fields of a struct 2019 // allocation This is necessary for infering the struct type so we can pretty 2020 // print the allocation's contents. Returns true on success, false otherwise 2021 bool RenderScriptRuntime::JITSubelements(Element &elem, 2022 const lldb::addr_t context, 2023 StackFrame *frame_ptr) { 2024 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2025 2026 if (!elem.element_ptr.isValid() || !elem.field_count.isValid()) { 2027 LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__); 2028 return false; 2029 } 2030 2031 const short num_exprs = 3; 2032 static_assert(num_exprs == (eExprSubelementsArrSize - eExprSubelementsId + 1), 2033 "Invalid number of expressions"); 2034 2035 char expr_buffer[jit_max_expr_size]; 2036 uint64_t results; 2037 2038 // Iterate over struct fields. 2039 const uint32_t field_count = *elem.field_count.get(); 2040 for (uint32_t field_index = 0; field_index < field_count; ++field_index) { 2041 Element child; 2042 for (uint32_t expr_index = 0; expr_index < num_exprs; ++expr_index) { 2043 const char *fmt_str = 2044 JITTemplate(ExpressionStrings(eExprSubelementsId + expr_index)); 2045 int written = snprintf(expr_buffer, jit_max_expr_size, fmt_str, 2046 context, field_count, field_count, field_count, 2047 *elem.element_ptr.get(), field_count, field_index); 2048 if (written < 0) { 2049 LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__); 2050 return false; 2051 } else if (written >= jit_max_expr_size) { 2052 LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__); 2053 return false; 2054 } 2055 2056 // Perform expression evaluation 2057 if (!EvalRSExpression(expr_buffer, frame_ptr, &results)) 2058 return false; 2059 2060 LLDB_LOGF(log, "%s - expr result 0x%" PRIx64 ".", __FUNCTION__, results); 2061 2062 switch (expr_index) { 2063 case 0: // Element* of child 2064 child.element_ptr = static_cast<addr_t>(results); 2065 break; 2066 case 1: // Name of child 2067 { 2068 lldb::addr_t address = static_cast<addr_t>(results); 2069 Status err; 2070 std::string name; 2071 GetProcess()->ReadCStringFromMemory(address, name, err); 2072 if (!err.Fail()) 2073 child.type_name = ConstString(name); 2074 else { 2075 LLDB_LOGF(log, "%s - warning: Couldn't read field name.", 2076 __FUNCTION__); 2077 } 2078 break; 2079 } 2080 case 2: // Array size of child 2081 child.array_size = static_cast<uint32_t>(results); 2082 break; 2083 } 2084 } 2085 2086 // We need to recursively JIT each Element field of the struct since 2087 // structs can be nested inside structs. 2088 if (!JITElementPacked(child, context, frame_ptr)) 2089 return false; 2090 elem.children.push_back(child); 2091 } 2092 2093 // Try to infer the name of the struct type so we can pretty print the 2094 // allocation contents. 2095 FindStructTypeName(elem, frame_ptr); 2096 2097 return true; 2098 } 2099 2100 // JITs the RS runtime for the address of the last element in the allocation. 2101 // The `elem_size` parameter represents the size of a single element, including 2102 // padding. Which is needed as an offset from the last element pointer. Using 2103 // this offset minus the starting address we can calculate the size of the 2104 // allocation. Returns true on success, false otherwise 2105 bool RenderScriptRuntime::JITAllocationSize(AllocationDetails *alloc, 2106 StackFrame *frame_ptr) { 2107 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2108 2109 if (!alloc->address.isValid() || !alloc->dimension.isValid() || 2110 !alloc->data_ptr.isValid() || !alloc->element.datum_size.isValid()) { 2111 LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__); 2112 return false; 2113 } 2114 2115 // Find dimensions 2116 uint32_t dim_x = alloc->dimension.get()->dim_1; 2117 uint32_t dim_y = alloc->dimension.get()->dim_2; 2118 uint32_t dim_z = alloc->dimension.get()->dim_3; 2119 2120 // Our plan of jitting the last element address doesn't seem to work for 2121 // struct Allocations` Instead try to infer the size ourselves without any 2122 // inter element padding. 2123 if (alloc->element.children.size() > 0) { 2124 if (dim_x == 0) 2125 dim_x = 1; 2126 if (dim_y == 0) 2127 dim_y = 1; 2128 if (dim_z == 0) 2129 dim_z = 1; 2130 2131 alloc->size = dim_x * dim_y * dim_z * *alloc->element.datum_size.get(); 2132 2133 LLDB_LOGF(log, "%s - inferred size of struct allocation %" PRIu32 ".", 2134 __FUNCTION__, *alloc->size.get()); 2135 return true; 2136 } 2137 2138 const char *fmt_str = JITTemplate(eExprGetOffsetPtr); 2139 char expr_buf[jit_max_expr_size]; 2140 2141 // Calculate last element 2142 dim_x = dim_x == 0 ? 0 : dim_x - 1; 2143 dim_y = dim_y == 0 ? 0 : dim_y - 1; 2144 dim_z = dim_z == 0 ? 0 : dim_z - 1; 2145 2146 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 2147 *alloc->address.get(), dim_x, dim_y, dim_z); 2148 if (written < 0) { 2149 LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__); 2150 return false; 2151 } else if (written >= jit_max_expr_size) { 2152 LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__); 2153 return false; 2154 } 2155 2156 uint64_t result = 0; 2157 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 2158 return false; 2159 2160 addr_t mem_ptr = static_cast<lldb::addr_t>(result); 2161 // Find pointer to last element and add on size of an element 2162 alloc->size = static_cast<uint32_t>(mem_ptr - *alloc->data_ptr.get()) + 2163 *alloc->element.datum_size.get(); 2164 2165 return true; 2166 } 2167 2168 // JITs the RS runtime for information about the stride between rows in the 2169 // allocation. This is done to detect padding, since allocated memory is 2170 // 16-byte aligned. Returns true on success, false otherwise 2171 bool RenderScriptRuntime::JITAllocationStride(AllocationDetails *alloc, 2172 StackFrame *frame_ptr) { 2173 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2174 2175 if (!alloc->address.isValid() || !alloc->data_ptr.isValid()) { 2176 LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__); 2177 return false; 2178 } 2179 2180 const char *fmt_str = JITTemplate(eExprGetOffsetPtr); 2181 char expr_buf[jit_max_expr_size]; 2182 2183 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 2184 *alloc->address.get(), 0, 1, 0); 2185 if (written < 0) { 2186 LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__); 2187 return false; 2188 } else if (written >= jit_max_expr_size) { 2189 LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__); 2190 return false; 2191 } 2192 2193 uint64_t result = 0; 2194 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 2195 return false; 2196 2197 addr_t mem_ptr = static_cast<lldb::addr_t>(result); 2198 alloc->stride = static_cast<uint32_t>(mem_ptr - *alloc->data_ptr.get()); 2199 2200 return true; 2201 } 2202 2203 // JIT all the current runtime info regarding an allocation 2204 bool RenderScriptRuntime::RefreshAllocation(AllocationDetails *alloc, 2205 StackFrame *frame_ptr) { 2206 // GetOffsetPointer() 2207 if (!JITDataPointer(alloc, frame_ptr)) 2208 return false; 2209 2210 // rsaAllocationGetType() 2211 if (!JITTypePointer(alloc, frame_ptr)) 2212 return false; 2213 2214 // rsaTypeGetNativeData() 2215 if (!JITTypePacked(alloc, frame_ptr)) 2216 return false; 2217 2218 // rsaElementGetNativeData() 2219 if (!JITElementPacked(alloc->element, *alloc->context.get(), frame_ptr)) 2220 return false; 2221 2222 // Sets the datum_size member in Element 2223 SetElementSize(alloc->element); 2224 2225 // Use GetOffsetPointer() to infer size of the allocation 2226 return JITAllocationSize(alloc, frame_ptr); 2227 } 2228 2229 // Function attempts to set the type_name member of the parameterised Element 2230 // object. This string should be the name of the struct type the Element 2231 // represents. We need this string for pretty printing the Element to users. 2232 void RenderScriptRuntime::FindStructTypeName(Element &elem, 2233 StackFrame *frame_ptr) { 2234 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2235 2236 if (!elem.type_name.IsEmpty()) // Name already set 2237 return; 2238 else 2239 elem.type_name = Element::GetFallbackStructName(); // Default type name if 2240 // we don't succeed 2241 2242 // Find all the global variables from the script rs modules 2243 VariableList var_list; 2244 for (auto module_sp : m_rsmodules) 2245 module_sp->m_module->FindGlobalVariables( 2246 RegularExpression(llvm::StringRef(".")), UINT32_MAX, var_list); 2247 2248 // Iterate over all the global variables looking for one with a matching type 2249 // to the Element. We make the assumption a match exists since there needs to 2250 // be a global variable to reflect the struct type back into java host code. 2251 for (const VariableSP &var_sp : var_list) { 2252 if (!var_sp) 2253 continue; 2254 2255 ValueObjectSP valobj_sp = ValueObjectVariable::Create(frame_ptr, var_sp); 2256 if (!valobj_sp) 2257 continue; 2258 2259 // Find the number of variable fields. 2260 // If it has no fields, or more fields than our Element, then it can't be 2261 // the struct we're looking for. Don't check for equality since RS can add 2262 // extra struct members for padding. 2263 size_t num_children = valobj_sp->GetNumChildren(); 2264 if (num_children > elem.children.size() || num_children == 0) 2265 continue; 2266 2267 // Iterate over children looking for members with matching field names. If 2268 // all the field names match, this is likely the struct we want. 2269 // TODO: This could be made more robust by also checking children data 2270 // sizes, or array size 2271 bool found = true; 2272 for (size_t i = 0; i < num_children; ++i) { 2273 ValueObjectSP child = valobj_sp->GetChildAtIndex(i, true); 2274 if (!child || (child->GetName() != elem.children[i].type_name)) { 2275 found = false; 2276 break; 2277 } 2278 } 2279 2280 // RS can add extra struct members for padding in the format 2281 // '#rs_padding_[0-9]+' 2282 if (found && num_children < elem.children.size()) { 2283 const uint32_t size_diff = elem.children.size() - num_children; 2284 LLDB_LOGF(log, "%s - %" PRIu32 " padding struct entries", __FUNCTION__, 2285 size_diff); 2286 2287 for (uint32_t i = 0; i < size_diff; ++i) { 2288 ConstString name = elem.children[num_children + i].type_name; 2289 if (strcmp(name.AsCString(), "#rs_padding") < 0) 2290 found = false; 2291 } 2292 } 2293 2294 // We've found a global variable with matching type 2295 if (found) { 2296 // Dereference since our Element type isn't a pointer. 2297 if (valobj_sp->IsPointerType()) { 2298 Status err; 2299 ValueObjectSP deref_valobj = valobj_sp->Dereference(err); 2300 if (!err.Fail()) 2301 valobj_sp = deref_valobj; 2302 } 2303 2304 // Save name of variable in Element. 2305 elem.type_name = valobj_sp->GetTypeName(); 2306 LLDB_LOGF(log, "%s - element name set to %s", __FUNCTION__, 2307 elem.type_name.AsCString()); 2308 2309 return; 2310 } 2311 } 2312 } 2313 2314 // Function sets the datum_size member of Element. Representing the size of a 2315 // single instance including padding. Assumes the relevant allocation 2316 // information has already been jitted. 2317 void RenderScriptRuntime::SetElementSize(Element &elem) { 2318 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2319 const Element::DataType type = *elem.type.get(); 2320 assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && 2321 "Invalid allocation type"); 2322 2323 const uint32_t vec_size = *elem.type_vec_size.get(); 2324 uint32_t data_size = 0; 2325 uint32_t padding = 0; 2326 2327 // Element is of a struct type, calculate size recursively. 2328 if ((type == Element::RS_TYPE_NONE) && (elem.children.size() > 0)) { 2329 for (Element &child : elem.children) { 2330 SetElementSize(child); 2331 const uint32_t array_size = 2332 child.array_size.isValid() ? *child.array_size.get() : 1; 2333 data_size += *child.datum_size.get() * array_size; 2334 } 2335 } 2336 // These have been packed already 2337 else if (type == Element::RS_TYPE_UNSIGNED_5_6_5 || 2338 type == Element::RS_TYPE_UNSIGNED_5_5_5_1 || 2339 type == Element::RS_TYPE_UNSIGNED_4_4_4_4) { 2340 data_size = AllocationDetails::RSTypeToFormat[type][eElementSize]; 2341 } else if (type < Element::RS_TYPE_ELEMENT) { 2342 data_size = 2343 vec_size * AllocationDetails::RSTypeToFormat[type][eElementSize]; 2344 if (vec_size == 3) 2345 padding = AllocationDetails::RSTypeToFormat[type][eElementSize]; 2346 } else 2347 data_size = 2348 GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 2349 2350 elem.padding = padding; 2351 elem.datum_size = data_size + padding; 2352 LLDB_LOGF(log, "%s - element size set to %" PRIu32, __FUNCTION__, 2353 data_size + padding); 2354 } 2355 2356 // Given an allocation, this function copies the allocation contents from 2357 // device into a buffer on the heap. Returning a shared pointer to the buffer 2358 // containing the data. 2359 std::shared_ptr<uint8_t> 2360 RenderScriptRuntime::GetAllocationData(AllocationDetails *alloc, 2361 StackFrame *frame_ptr) { 2362 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2363 2364 // JIT all the allocation details 2365 if (alloc->ShouldRefresh()) { 2366 LLDB_LOGF(log, "%s - allocation details not calculated yet, jitting info", 2367 __FUNCTION__); 2368 2369 if (!RefreshAllocation(alloc, frame_ptr)) { 2370 LLDB_LOGF(log, "%s - couldn't JIT allocation details", __FUNCTION__); 2371 return nullptr; 2372 } 2373 } 2374 2375 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && 2376 alloc->element.type_vec_size.isValid() && alloc->size.isValid() && 2377 "Allocation information not available"); 2378 2379 // Allocate a buffer to copy data into 2380 const uint32_t size = *alloc->size.get(); 2381 std::shared_ptr<uint8_t> buffer(new uint8_t[size]); 2382 if (!buffer) { 2383 LLDB_LOGF(log, "%s - couldn't allocate a %" PRIu32 " byte buffer", 2384 __FUNCTION__, size); 2385 return nullptr; 2386 } 2387 2388 // Read the inferior memory 2389 Status err; 2390 lldb::addr_t data_ptr = *alloc->data_ptr.get(); 2391 GetProcess()->ReadMemory(data_ptr, buffer.get(), size, err); 2392 if (err.Fail()) { 2393 LLDB_LOGF(log, 2394 "%s - '%s' Couldn't read %" PRIu32 2395 " bytes of allocation data from 0x%" PRIx64, 2396 __FUNCTION__, err.AsCString(), size, data_ptr); 2397 return nullptr; 2398 } 2399 2400 return buffer; 2401 } 2402 2403 // Function copies data from a binary file into an allocation. There is a 2404 // header at the start of the file, FileHeader, before the data content itself. 2405 // Information from this header is used to display warnings to the user about 2406 // incompatibilities 2407 bool RenderScriptRuntime::LoadAllocation(Stream &strm, const uint32_t alloc_id, 2408 const char *path, 2409 StackFrame *frame_ptr) { 2410 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2411 2412 // Find allocation with the given id 2413 AllocationDetails *alloc = FindAllocByID(strm, alloc_id); 2414 if (!alloc) 2415 return false; 2416 2417 LLDB_LOGF(log, "%s - found allocation 0x%" PRIx64, __FUNCTION__, 2418 *alloc->address.get()); 2419 2420 // JIT all the allocation details 2421 if (alloc->ShouldRefresh()) { 2422 LLDB_LOGF(log, "%s - allocation details not calculated yet, jitting info.", 2423 __FUNCTION__); 2424 2425 if (!RefreshAllocation(alloc, frame_ptr)) { 2426 LLDB_LOGF(log, "%s - couldn't JIT allocation details", __FUNCTION__); 2427 return false; 2428 } 2429 } 2430 2431 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && 2432 alloc->element.type_vec_size.isValid() && alloc->size.isValid() && 2433 alloc->element.datum_size.isValid() && 2434 "Allocation information not available"); 2435 2436 // Check we can read from file 2437 FileSpec file(path); 2438 FileSystem::Instance().Resolve(file); 2439 if (!FileSystem::Instance().Exists(file)) { 2440 strm.Printf("Error: File %s does not exist", path); 2441 strm.EOL(); 2442 return false; 2443 } 2444 2445 if (!FileSystem::Instance().Readable(file)) { 2446 strm.Printf("Error: File %s does not have readable permissions", path); 2447 strm.EOL(); 2448 return false; 2449 } 2450 2451 // Read file into data buffer 2452 auto data_sp = FileSystem::Instance().CreateDataBuffer(file.GetPath()); 2453 2454 // Cast start of buffer to FileHeader and use pointer to read metadata 2455 void *file_buf = data_sp->GetBytes(); 2456 if (file_buf == nullptr || 2457 data_sp->GetByteSize() < (sizeof(AllocationDetails::FileHeader) + 2458 sizeof(AllocationDetails::ElementHeader))) { 2459 strm.Printf("Error: File %s does not contain enough data for header", path); 2460 strm.EOL(); 2461 return false; 2462 } 2463 const AllocationDetails::FileHeader *file_header = 2464 static_cast<AllocationDetails::FileHeader *>(file_buf); 2465 2466 // Check file starts with ascii characters "RSAD" 2467 if (memcmp(file_header->ident, "RSAD", 4)) { 2468 strm.Printf("Error: File doesn't contain identifier for an RS allocation " 2469 "dump. Are you sure this is the correct file?"); 2470 strm.EOL(); 2471 return false; 2472 } 2473 2474 // Look at the type of the root element in the header 2475 AllocationDetails::ElementHeader root_el_hdr; 2476 memcpy(&root_el_hdr, static_cast<uint8_t *>(file_buf) + 2477 sizeof(AllocationDetails::FileHeader), 2478 sizeof(AllocationDetails::ElementHeader)); 2479 2480 LLDB_LOGF(log, "%s - header type %" PRIu32 ", element size %" PRIu32, 2481 __FUNCTION__, root_el_hdr.type, root_el_hdr.element_size); 2482 2483 // Check if the target allocation and file both have the same number of bytes 2484 // for an Element 2485 if (*alloc->element.datum_size.get() != root_el_hdr.element_size) { 2486 strm.Printf("Warning: Mismatched Element sizes - file %" PRIu32 2487 " bytes, allocation %" PRIu32 " bytes", 2488 root_el_hdr.element_size, *alloc->element.datum_size.get()); 2489 strm.EOL(); 2490 } 2491 2492 // Check if the target allocation and file both have the same type 2493 const uint32_t alloc_type = static_cast<uint32_t>(*alloc->element.type.get()); 2494 const uint32_t file_type = root_el_hdr.type; 2495 2496 if (file_type > Element::RS_TYPE_FONT) { 2497 strm.Printf("Warning: File has unknown allocation type"); 2498 strm.EOL(); 2499 } else if (alloc_type != file_type) { 2500 // Enum value isn't monotonous, so doesn't always index RsDataTypeToString 2501 // array 2502 uint32_t target_type_name_idx = alloc_type; 2503 uint32_t head_type_name_idx = file_type; 2504 if (alloc_type >= Element::RS_TYPE_ELEMENT && 2505 alloc_type <= Element::RS_TYPE_FONT) 2506 target_type_name_idx = static_cast<Element::DataType>( 2507 (alloc_type - Element::RS_TYPE_ELEMENT) + 2508 Element::RS_TYPE_MATRIX_2X2 + 1); 2509 2510 if (file_type >= Element::RS_TYPE_ELEMENT && 2511 file_type <= Element::RS_TYPE_FONT) 2512 head_type_name_idx = static_cast<Element::DataType>( 2513 (file_type - Element::RS_TYPE_ELEMENT) + Element::RS_TYPE_MATRIX_2X2 + 2514 1); 2515 2516 const char *head_type_name = 2517 AllocationDetails::RsDataTypeToString[head_type_name_idx][0]; 2518 const char *target_type_name = 2519 AllocationDetails::RsDataTypeToString[target_type_name_idx][0]; 2520 2521 strm.Printf( 2522 "Warning: Mismatched Types - file '%s' type, allocation '%s' type", 2523 head_type_name, target_type_name); 2524 strm.EOL(); 2525 } 2526 2527 // Advance buffer past header 2528 file_buf = static_cast<uint8_t *>(file_buf) + file_header->hdr_size; 2529 2530 // Calculate size of allocation data in file 2531 size_t size = data_sp->GetByteSize() - file_header->hdr_size; 2532 2533 // Check if the target allocation and file both have the same total data 2534 // size. 2535 const uint32_t alloc_size = *alloc->size.get(); 2536 if (alloc_size != size) { 2537 strm.Printf("Warning: Mismatched allocation sizes - file 0x%" PRIx64 2538 " bytes, allocation 0x%" PRIx32 " bytes", 2539 (uint64_t)size, alloc_size); 2540 strm.EOL(); 2541 // Set length to copy to minimum 2542 size = alloc_size < size ? alloc_size : size; 2543 } 2544 2545 // Copy file data from our buffer into the target allocation. 2546 lldb::addr_t alloc_data = *alloc->data_ptr.get(); 2547 Status err; 2548 size_t written = GetProcess()->WriteMemory(alloc_data, file_buf, size, err); 2549 if (!err.Success() || written != size) { 2550 strm.Printf("Error: Couldn't write data to allocation %s", err.AsCString()); 2551 strm.EOL(); 2552 return false; 2553 } 2554 2555 strm.Printf("Contents of file '%s' read into allocation %" PRIu32, path, 2556 alloc->id); 2557 strm.EOL(); 2558 2559 return true; 2560 } 2561 2562 // Function takes as parameters a byte buffer, which will eventually be written 2563 // to file as the element header, an offset into that buffer, and an Element 2564 // that will be saved into the buffer at the parametrised offset. Return value 2565 // is the new offset after writing the element into the buffer. Elements are 2566 // saved to the file as the ElementHeader struct followed by offsets to the 2567 // structs of all the element's children. 2568 size_t RenderScriptRuntime::PopulateElementHeaders( 2569 const std::shared_ptr<uint8_t> header_buffer, size_t offset, 2570 const Element &elem) { 2571 // File struct for an element header with all the relevant details copied 2572 // from elem. We assume members are valid already. 2573 AllocationDetails::ElementHeader elem_header; 2574 elem_header.type = *elem.type.get(); 2575 elem_header.kind = *elem.type_kind.get(); 2576 elem_header.element_size = *elem.datum_size.get(); 2577 elem_header.vector_size = *elem.type_vec_size.get(); 2578 elem_header.array_size = 2579 elem.array_size.isValid() ? *elem.array_size.get() : 0; 2580 const size_t elem_header_size = sizeof(AllocationDetails::ElementHeader); 2581 2582 // Copy struct into buffer and advance offset We assume that header_buffer 2583 // has been checked for nullptr before this method is called 2584 memcpy(header_buffer.get() + offset, &elem_header, elem_header_size); 2585 offset += elem_header_size; 2586 2587 // Starting offset of child ElementHeader struct 2588 size_t child_offset = 2589 offset + ((elem.children.size() + 1) * sizeof(uint32_t)); 2590 for (const RenderScriptRuntime::Element &child : elem.children) { 2591 // Recursively populate the buffer with the element header structs of 2592 // children. Then save the offsets where they were set after the parent 2593 // element header. 2594 memcpy(header_buffer.get() + offset, &child_offset, sizeof(uint32_t)); 2595 offset += sizeof(uint32_t); 2596 2597 child_offset = PopulateElementHeaders(header_buffer, child_offset, child); 2598 } 2599 2600 // Zero indicates no more children 2601 memset(header_buffer.get() + offset, 0, sizeof(uint32_t)); 2602 2603 return child_offset; 2604 } 2605 2606 // Given an Element object this function returns the total size needed in the 2607 // file header to store the element's details. Taking into account the size of 2608 // the element header struct, plus the offsets to all the element's children. 2609 // Function is recursive so that the size of all ancestors is taken into 2610 // account. 2611 size_t RenderScriptRuntime::CalculateElementHeaderSize(const Element &elem) { 2612 // Offsets to children plus zero terminator 2613 size_t size = (elem.children.size() + 1) * sizeof(uint32_t); 2614 // Size of header struct with type details 2615 size += sizeof(AllocationDetails::ElementHeader); 2616 2617 // Calculate recursively for all descendants 2618 for (const Element &child : elem.children) 2619 size += CalculateElementHeaderSize(child); 2620 2621 return size; 2622 } 2623 2624 // Function copies allocation contents into a binary file. This file can then 2625 // be loaded later into a different allocation. There is a header, FileHeader, 2626 // before the allocation data containing meta-data. 2627 bool RenderScriptRuntime::SaveAllocation(Stream &strm, const uint32_t alloc_id, 2628 const char *path, 2629 StackFrame *frame_ptr) { 2630 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2631 2632 // Find allocation with the given id 2633 AllocationDetails *alloc = FindAllocByID(strm, alloc_id); 2634 if (!alloc) 2635 return false; 2636 2637 LLDB_LOGF(log, "%s - found allocation 0x%" PRIx64 ".", __FUNCTION__, 2638 *alloc->address.get()); 2639 2640 // JIT all the allocation details 2641 if (alloc->ShouldRefresh()) { 2642 LLDB_LOGF(log, "%s - allocation details not calculated yet, jitting info.", 2643 __FUNCTION__); 2644 2645 if (!RefreshAllocation(alloc, frame_ptr)) { 2646 LLDB_LOGF(log, "%s - couldn't JIT allocation details.", __FUNCTION__); 2647 return false; 2648 } 2649 } 2650 2651 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && 2652 alloc->element.type_vec_size.isValid() && 2653 alloc->element.datum_size.get() && 2654 alloc->element.type_kind.isValid() && alloc->dimension.isValid() && 2655 "Allocation information not available"); 2656 2657 // Check we can create writable file 2658 FileSpec file_spec(path); 2659 FileSystem::Instance().Resolve(file_spec); 2660 auto file = FileSystem::Instance().Open( 2661 file_spec, File::eOpenOptionWriteOnly | File::eOpenOptionCanCreate | 2662 File::eOpenOptionTruncate); 2663 2664 if (!file) { 2665 std::string error = llvm::toString(file.takeError()); 2666 strm.Printf("Error: Failed to open '%s' for writing: %s", path, 2667 error.c_str()); 2668 strm.EOL(); 2669 return false; 2670 } 2671 2672 // Read allocation into buffer of heap memory 2673 const std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr); 2674 if (!buffer) { 2675 strm.Printf("Error: Couldn't read allocation data into buffer"); 2676 strm.EOL(); 2677 return false; 2678 } 2679 2680 // Create the file header 2681 AllocationDetails::FileHeader head; 2682 memcpy(head.ident, "RSAD", 4); 2683 head.dims[0] = static_cast<uint32_t>(alloc->dimension.get()->dim_1); 2684 head.dims[1] = static_cast<uint32_t>(alloc->dimension.get()->dim_2); 2685 head.dims[2] = static_cast<uint32_t>(alloc->dimension.get()->dim_3); 2686 2687 const size_t element_header_size = CalculateElementHeaderSize(alloc->element); 2688 assert((sizeof(AllocationDetails::FileHeader) + element_header_size) < 2689 UINT16_MAX && 2690 "Element header too large"); 2691 head.hdr_size = static_cast<uint16_t>(sizeof(AllocationDetails::FileHeader) + 2692 element_header_size); 2693 2694 // Write the file header 2695 size_t num_bytes = sizeof(AllocationDetails::FileHeader); 2696 LLDB_LOGF(log, "%s - writing File Header, 0x%" PRIx64 " bytes", __FUNCTION__, 2697 (uint64_t)num_bytes); 2698 2699 Status err = file.get()->Write(&head, num_bytes); 2700 if (!err.Success()) { 2701 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path); 2702 strm.EOL(); 2703 return false; 2704 } 2705 2706 // Create the headers describing the element type of the allocation. 2707 std::shared_ptr<uint8_t> element_header_buffer( 2708 new uint8_t[element_header_size]); 2709 if (element_header_buffer == nullptr) { 2710 strm.Printf("Internal Error: Couldn't allocate %" PRIu64 2711 " bytes on the heap", 2712 (uint64_t)element_header_size); 2713 strm.EOL(); 2714 return false; 2715 } 2716 2717 PopulateElementHeaders(element_header_buffer, 0, alloc->element); 2718 2719 // Write headers for allocation element type to file 2720 num_bytes = element_header_size; 2721 LLDB_LOGF(log, "%s - writing element headers, 0x%" PRIx64 " bytes.", 2722 __FUNCTION__, (uint64_t)num_bytes); 2723 2724 err = file.get()->Write(element_header_buffer.get(), num_bytes); 2725 if (!err.Success()) { 2726 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path); 2727 strm.EOL(); 2728 return false; 2729 } 2730 2731 // Write allocation data to file 2732 num_bytes = static_cast<size_t>(*alloc->size.get()); 2733 LLDB_LOGF(log, "%s - writing 0x%" PRIx64 " bytes", __FUNCTION__, 2734 (uint64_t)num_bytes); 2735 2736 err = file.get()->Write(buffer.get(), num_bytes); 2737 if (!err.Success()) { 2738 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path); 2739 strm.EOL(); 2740 return false; 2741 } 2742 2743 strm.Printf("Allocation written to file '%s'", path); 2744 strm.EOL(); 2745 return true; 2746 } 2747 2748 bool RenderScriptRuntime::LoadModule(const lldb::ModuleSP &module_sp) { 2749 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2750 2751 if (module_sp) { 2752 for (const auto &rs_module : m_rsmodules) { 2753 if (rs_module->m_module == module_sp) { 2754 // Check if the user has enabled automatically breaking on all RS 2755 // kernels. 2756 if (m_breakAllKernels) 2757 BreakOnModuleKernels(rs_module); 2758 2759 return false; 2760 } 2761 } 2762 bool module_loaded = false; 2763 switch (GetModuleKind(module_sp)) { 2764 case eModuleKindKernelObj: { 2765 RSModuleDescriptorSP module_desc; 2766 module_desc = std::make_shared<RSModuleDescriptor>(module_sp); 2767 if (module_desc->ParseRSInfo()) { 2768 m_rsmodules.push_back(module_desc); 2769 module_desc->WarnIfVersionMismatch(GetProcess() 2770 ->GetTarget() 2771 .GetDebugger() 2772 .GetAsyncOutputStream() 2773 .get()); 2774 module_loaded = true; 2775 } 2776 if (module_loaded) { 2777 FixupScriptDetails(module_desc); 2778 } 2779 break; 2780 } 2781 case eModuleKindDriver: { 2782 if (!m_libRSDriver) { 2783 m_libRSDriver = module_sp; 2784 LoadRuntimeHooks(m_libRSDriver, RenderScriptRuntime::eModuleKindDriver); 2785 } 2786 break; 2787 } 2788 case eModuleKindImpl: { 2789 if (!m_libRSCpuRef) { 2790 m_libRSCpuRef = module_sp; 2791 LoadRuntimeHooks(m_libRSCpuRef, RenderScriptRuntime::eModuleKindImpl); 2792 } 2793 break; 2794 } 2795 case eModuleKindLibRS: { 2796 if (!m_libRS) { 2797 m_libRS = module_sp; 2798 static ConstString gDbgPresentStr("gDebuggerPresent"); 2799 const Symbol *debug_present = m_libRS->FindFirstSymbolWithNameAndType( 2800 gDbgPresentStr, eSymbolTypeData); 2801 if (debug_present) { 2802 Status err; 2803 uint32_t flag = 0x00000001U; 2804 Target &target = GetProcess()->GetTarget(); 2805 addr_t addr = debug_present->GetLoadAddress(&target); 2806 GetProcess()->WriteMemory(addr, &flag, sizeof(flag), err); 2807 if (err.Success()) { 2808 LLDB_LOGF(log, "%s - debugger present flag set on debugee.", 2809 __FUNCTION__); 2810 2811 m_debuggerPresentFlagged = true; 2812 } else if (log) { 2813 LLDB_LOGF(log, "%s - error writing debugger present flags '%s' ", 2814 __FUNCTION__, err.AsCString()); 2815 } 2816 } else if (log) { 2817 LLDB_LOGF( 2818 log, 2819 "%s - error writing debugger present flags - symbol not found", 2820 __FUNCTION__); 2821 } 2822 } 2823 break; 2824 } 2825 default: 2826 break; 2827 } 2828 if (module_loaded) 2829 Update(); 2830 return module_loaded; 2831 } 2832 return false; 2833 } 2834 2835 void RenderScriptRuntime::Update() { 2836 if (m_rsmodules.size() > 0) { 2837 if (!m_initiated) { 2838 Initiate(); 2839 } 2840 } 2841 } 2842 2843 void RSModuleDescriptor::WarnIfVersionMismatch(lldb_private::Stream *s) const { 2844 if (!s) 2845 return; 2846 2847 if (m_slang_version.empty() || m_bcc_version.empty()) { 2848 s->PutCString("WARNING: Unknown bcc or slang (llvm-rs-cc) version; debug " 2849 "experience may be unreliable"); 2850 s->EOL(); 2851 } else if (m_slang_version != m_bcc_version) { 2852 s->Printf("WARNING: The debug info emitted by the slang frontend " 2853 "(llvm-rs-cc) used to build this module (%s) does not match the " 2854 "version of bcc used to generate the debug information (%s). " 2855 "This is an unsupported configuration and may result in a poor " 2856 "debugging experience; proceed with caution", 2857 m_slang_version.c_str(), m_bcc_version.c_str()); 2858 s->EOL(); 2859 } 2860 } 2861 2862 bool RSModuleDescriptor::ParsePragmaCount(llvm::StringRef *lines, 2863 size_t n_lines) { 2864 // Skip the pragma prototype line 2865 ++lines; 2866 for (; n_lines--; ++lines) { 2867 const auto kv_pair = lines->split(" - "); 2868 m_pragmas[kv_pair.first.trim().str()] = kv_pair.second.trim().str(); 2869 } 2870 return true; 2871 } 2872 2873 bool RSModuleDescriptor::ParseExportReduceCount(llvm::StringRef *lines, 2874 size_t n_lines) { 2875 // The list of reduction kernels in the `.rs.info` symbol is of the form 2876 // "signature - accumulatordatasize - reduction_name - initializer_name - 2877 // accumulator_name - combiner_name - outconverter_name - halter_name" Where 2878 // a function is not explicitly named by the user, or is not generated by the 2879 // compiler, it is named "." so the dash separated list should always be 8 2880 // items long 2881 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 2882 // Skip the exportReduceCount line 2883 ++lines; 2884 for (; n_lines--; ++lines) { 2885 llvm::SmallVector<llvm::StringRef, 8> spec; 2886 lines->split(spec, " - "); 2887 if (spec.size() != 8) { 2888 if (spec.size() < 8) { 2889 if (log) 2890 log->Error("Error parsing RenderScript reduction spec. wrong number " 2891 "of fields"); 2892 return false; 2893 } else if (log) 2894 log->Warning("Extraneous members in reduction spec: '%s'", 2895 lines->str().c_str()); 2896 } 2897 2898 const auto sig_s = spec[0]; 2899 uint32_t sig; 2900 if (sig_s.getAsInteger(10, sig)) { 2901 if (log) 2902 log->Error("Error parsing Renderscript reduction spec: invalid kernel " 2903 "signature: '%s'", 2904 sig_s.str().c_str()); 2905 return false; 2906 } 2907 2908 const auto accum_data_size_s = spec[1]; 2909 uint32_t accum_data_size; 2910 if (accum_data_size_s.getAsInteger(10, accum_data_size)) { 2911 if (log) 2912 log->Error("Error parsing Renderscript reduction spec: invalid " 2913 "accumulator data size %s", 2914 accum_data_size_s.str().c_str()); 2915 return false; 2916 } 2917 2918 LLDB_LOGF(log, "Found RenderScript reduction '%s'", spec[2].str().c_str()); 2919 2920 m_reductions.push_back(RSReductionDescriptor(this, sig, accum_data_size, 2921 spec[2], spec[3], spec[4], 2922 spec[5], spec[6], spec[7])); 2923 } 2924 return true; 2925 } 2926 2927 bool RSModuleDescriptor::ParseVersionInfo(llvm::StringRef *lines, 2928 size_t n_lines) { 2929 // Skip the versionInfo line 2930 ++lines; 2931 for (; n_lines--; ++lines) { 2932 // We're only interested in bcc and slang versions, and ignore all other 2933 // versionInfo lines 2934 const auto kv_pair = lines->split(" - "); 2935 if (kv_pair.first == "slang") 2936 m_slang_version = kv_pair.second.str(); 2937 else if (kv_pair.first == "bcc") 2938 m_bcc_version = kv_pair.second.str(); 2939 } 2940 return true; 2941 } 2942 2943 bool RSModuleDescriptor::ParseExportForeachCount(llvm::StringRef *lines, 2944 size_t n_lines) { 2945 // Skip the exportForeachCount line 2946 ++lines; 2947 for (; n_lines--; ++lines) { 2948 uint32_t slot; 2949 // `forEach` kernels are listed in the `.rs.info` packet as a "slot - name" 2950 // pair per line 2951 const auto kv_pair = lines->split(" - "); 2952 if (kv_pair.first.getAsInteger(10, slot)) 2953 return false; 2954 m_kernels.push_back(RSKernelDescriptor(this, kv_pair.second, slot)); 2955 } 2956 return true; 2957 } 2958 2959 bool RSModuleDescriptor::ParseExportVarCount(llvm::StringRef *lines, 2960 size_t n_lines) { 2961 // Skip the ExportVarCount line 2962 ++lines; 2963 for (; n_lines--; ++lines) 2964 m_globals.push_back(RSGlobalDescriptor(this, *lines)); 2965 return true; 2966 } 2967 2968 // The .rs.info symbol in renderscript modules contains a string which needs to 2969 // be parsed. The string is basic and is parsed on a line by line basis. 2970 bool RSModuleDescriptor::ParseRSInfo() { 2971 assert(m_module); 2972 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2973 const Symbol *info_sym = m_module->FindFirstSymbolWithNameAndType( 2974 ConstString(".rs.info"), eSymbolTypeData); 2975 if (!info_sym) 2976 return false; 2977 2978 const addr_t addr = info_sym->GetAddressRef().GetFileAddress(); 2979 if (addr == LLDB_INVALID_ADDRESS) 2980 return false; 2981 2982 const addr_t size = info_sym->GetByteSize(); 2983 const FileSpec fs = m_module->GetFileSpec(); 2984 2985 auto buffer = 2986 FileSystem::Instance().CreateDataBuffer(fs.GetPath(), size, addr); 2987 if (!buffer) 2988 return false; 2989 2990 // split rs.info. contents into lines 2991 llvm::SmallVector<llvm::StringRef, 128> info_lines; 2992 { 2993 const llvm::StringRef raw_rs_info((const char *)buffer->GetBytes()); 2994 raw_rs_info.split(info_lines, '\n'); 2995 LLDB_LOGF(log, "'.rs.info symbol for '%s':\n%s", 2996 m_module->GetFileSpec().GetCString(), raw_rs_info.str().c_str()); 2997 } 2998 2999 enum { 3000 eExportVar, 3001 eExportForEach, 3002 eExportReduce, 3003 ePragma, 3004 eBuildChecksum, 3005 eObjectSlot, 3006 eVersionInfo, 3007 }; 3008 3009 const auto rs_info_handler = [](llvm::StringRef name) -> int { 3010 return llvm::StringSwitch<int>(name) 3011 // The number of visible global variables in the script 3012 .Case("exportVarCount", eExportVar) 3013 // The number of RenderScrip `forEach` kernels __attribute__((kernel)) 3014 .Case("exportForEachCount", eExportForEach) 3015 // The number of generalreductions: This marked in the script by 3016 // `#pragma reduce()` 3017 .Case("exportReduceCount", eExportReduce) 3018 // Total count of all RenderScript specific `#pragmas` used in the 3019 // script 3020 .Case("pragmaCount", ePragma) 3021 .Case("objectSlotCount", eObjectSlot) 3022 .Case("versionInfo", eVersionInfo) 3023 .Default(-1); 3024 }; 3025 3026 // parse all text lines of .rs.info 3027 for (auto line = info_lines.begin(); line != info_lines.end(); ++line) { 3028 const auto kv_pair = line->split(": "); 3029 const auto key = kv_pair.first; 3030 const auto val = kv_pair.second.trim(); 3031 3032 const auto handler = rs_info_handler(key); 3033 if (handler == -1) 3034 continue; 3035 // getAsInteger returns `true` on an error condition - we're only 3036 // interested in numeric fields at the moment 3037 uint64_t n_lines; 3038 if (val.getAsInteger(10, n_lines)) { 3039 LLDB_LOGV(log, "Failed to parse non-numeric '.rs.info' section {0}", 3040 line->str()); 3041 continue; 3042 } 3043 if (info_lines.end() - (line + 1) < (ptrdiff_t)n_lines) 3044 return false; 3045 3046 bool success = false; 3047 switch (handler) { 3048 case eExportVar: 3049 success = ParseExportVarCount(line, n_lines); 3050 break; 3051 case eExportForEach: 3052 success = ParseExportForeachCount(line, n_lines); 3053 break; 3054 case eExportReduce: 3055 success = ParseExportReduceCount(line, n_lines); 3056 break; 3057 case ePragma: 3058 success = ParsePragmaCount(line, n_lines); 3059 break; 3060 case eVersionInfo: 3061 success = ParseVersionInfo(line, n_lines); 3062 break; 3063 default: { 3064 LLDB_LOGF(log, "%s - skipping .rs.info field '%s'", __FUNCTION__, 3065 line->str().c_str()); 3066 continue; 3067 } 3068 } 3069 if (!success) 3070 return false; 3071 line += n_lines; 3072 } 3073 return info_lines.size() > 0; 3074 } 3075 3076 void RenderScriptRuntime::DumpStatus(Stream &strm) const { 3077 if (m_libRS) { 3078 strm.Printf("Runtime Library discovered."); 3079 strm.EOL(); 3080 } 3081 if (m_libRSDriver) { 3082 strm.Printf("Runtime Driver discovered."); 3083 strm.EOL(); 3084 } 3085 if (m_libRSCpuRef) { 3086 strm.Printf("CPU Reference Implementation discovered."); 3087 strm.EOL(); 3088 } 3089 3090 if (m_runtimeHooks.size()) { 3091 strm.Printf("Runtime functions hooked:"); 3092 strm.EOL(); 3093 for (auto b : m_runtimeHooks) { 3094 strm.Indent(b.second->defn->name); 3095 strm.EOL(); 3096 } 3097 } else { 3098 strm.Printf("Runtime is not hooked."); 3099 strm.EOL(); 3100 } 3101 } 3102 3103 void RenderScriptRuntime::DumpContexts(Stream &strm) const { 3104 strm.Printf("Inferred RenderScript Contexts:"); 3105 strm.EOL(); 3106 strm.IndentMore(); 3107 3108 std::map<addr_t, uint64_t> contextReferences; 3109 3110 // Iterate over all of the currently discovered scripts. Note: We cant push 3111 // or pop from m_scripts inside this loop or it may invalidate script. 3112 for (const auto &script : m_scripts) { 3113 if (!script->context.isValid()) 3114 continue; 3115 lldb::addr_t context = *script->context; 3116 3117 if (contextReferences.find(context) != contextReferences.end()) { 3118 contextReferences[context]++; 3119 } else { 3120 contextReferences[context] = 1; 3121 } 3122 } 3123 3124 for (const auto &cRef : contextReferences) { 3125 strm.Printf("Context 0x%" PRIx64 ": %" PRIu64 " script instances", 3126 cRef.first, cRef.second); 3127 strm.EOL(); 3128 } 3129 strm.IndentLess(); 3130 } 3131 3132 void RenderScriptRuntime::DumpKernels(Stream &strm) const { 3133 strm.Printf("RenderScript Kernels:"); 3134 strm.EOL(); 3135 strm.IndentMore(); 3136 for (const auto &module : m_rsmodules) { 3137 strm.Printf("Resource '%s':", module->m_resname.c_str()); 3138 strm.EOL(); 3139 for (const auto &kernel : module->m_kernels) { 3140 strm.Indent(kernel.m_name.GetStringRef()); 3141 strm.EOL(); 3142 } 3143 } 3144 strm.IndentLess(); 3145 } 3146 3147 RenderScriptRuntime::AllocationDetails * 3148 RenderScriptRuntime::FindAllocByID(Stream &strm, const uint32_t alloc_id) { 3149 AllocationDetails *alloc = nullptr; 3150 3151 // See if we can find allocation using id as an index; 3152 if (alloc_id <= m_allocations.size() && alloc_id != 0 && 3153 m_allocations[alloc_id - 1]->id == alloc_id) { 3154 alloc = m_allocations[alloc_id - 1].get(); 3155 return alloc; 3156 } 3157 3158 // Fallback to searching 3159 for (const auto &a : m_allocations) { 3160 if (a->id == alloc_id) { 3161 alloc = a.get(); 3162 break; 3163 } 3164 } 3165 3166 if (alloc == nullptr) { 3167 strm.Printf("Error: Couldn't find allocation with id matching %" PRIu32, 3168 alloc_id); 3169 strm.EOL(); 3170 } 3171 3172 return alloc; 3173 } 3174 3175 // Prints the contents of an allocation to the output stream, which may be a 3176 // file 3177 bool RenderScriptRuntime::DumpAllocation(Stream &strm, StackFrame *frame_ptr, 3178 const uint32_t id) { 3179 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3180 3181 // Check we can find the desired allocation 3182 AllocationDetails *alloc = FindAllocByID(strm, id); 3183 if (!alloc) 3184 return false; // FindAllocByID() will print error message for us here 3185 3186 LLDB_LOGF(log, "%s - found allocation 0x%" PRIx64, __FUNCTION__, 3187 *alloc->address.get()); 3188 3189 // Check we have information about the allocation, if not calculate it 3190 if (alloc->ShouldRefresh()) { 3191 LLDB_LOGF(log, "%s - allocation details not calculated yet, jitting info.", 3192 __FUNCTION__); 3193 3194 // JIT all the allocation information 3195 if (!RefreshAllocation(alloc, frame_ptr)) { 3196 strm.Printf("Error: Couldn't JIT allocation details"); 3197 strm.EOL(); 3198 return false; 3199 } 3200 } 3201 3202 // Establish format and size of each data element 3203 const uint32_t vec_size = *alloc->element.type_vec_size.get(); 3204 const Element::DataType type = *alloc->element.type.get(); 3205 3206 assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && 3207 "Invalid allocation type"); 3208 3209 lldb::Format format; 3210 if (type >= Element::RS_TYPE_ELEMENT) 3211 format = eFormatHex; 3212 else 3213 format = vec_size == 1 3214 ? static_cast<lldb::Format>( 3215 AllocationDetails::RSTypeToFormat[type][eFormatSingle]) 3216 : static_cast<lldb::Format>( 3217 AllocationDetails::RSTypeToFormat[type][eFormatVector]); 3218 3219 const uint32_t data_size = *alloc->element.datum_size.get(); 3220 3221 LLDB_LOGF(log, "%s - element size %" PRIu32 " bytes, including padding", 3222 __FUNCTION__, data_size); 3223 3224 // Allocate a buffer to copy data into 3225 std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr); 3226 if (!buffer) { 3227 strm.Printf("Error: Couldn't read allocation data"); 3228 strm.EOL(); 3229 return false; 3230 } 3231 3232 // Calculate stride between rows as there may be padding at end of rows since 3233 // allocated memory is 16-byte aligned 3234 if (!alloc->stride.isValid()) { 3235 if (alloc->dimension.get()->dim_2 == 0) // We only have one dimension 3236 alloc->stride = 0; 3237 else if (!JITAllocationStride(alloc, frame_ptr)) { 3238 strm.Printf("Error: Couldn't calculate allocation row stride"); 3239 strm.EOL(); 3240 return false; 3241 } 3242 } 3243 const uint32_t stride = *alloc->stride.get(); 3244 const uint32_t size = *alloc->size.get(); // Size of whole allocation 3245 const uint32_t padding = 3246 alloc->element.padding.isValid() ? *alloc->element.padding.get() : 0; 3247 LLDB_LOGF(log, 3248 "%s - stride %" PRIu32 " bytes, size %" PRIu32 3249 " bytes, padding %" PRIu32, 3250 __FUNCTION__, stride, size, padding); 3251 3252 // Find dimensions used to index loops, so need to be non-zero 3253 uint32_t dim_x = alloc->dimension.get()->dim_1; 3254 dim_x = dim_x == 0 ? 1 : dim_x; 3255 3256 uint32_t dim_y = alloc->dimension.get()->dim_2; 3257 dim_y = dim_y == 0 ? 1 : dim_y; 3258 3259 uint32_t dim_z = alloc->dimension.get()->dim_3; 3260 dim_z = dim_z == 0 ? 1 : dim_z; 3261 3262 // Use data extractor to format output 3263 const uint32_t target_ptr_size = 3264 GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 3265 DataExtractor alloc_data(buffer.get(), size, GetProcess()->GetByteOrder(), 3266 target_ptr_size); 3267 3268 uint32_t offset = 0; // Offset in buffer to next element to be printed 3269 uint32_t prev_row = 0; // Offset to the start of the previous row 3270 3271 // Iterate over allocation dimensions, printing results to user 3272 strm.Printf("Data (X, Y, Z):"); 3273 for (uint32_t z = 0; z < dim_z; ++z) { 3274 for (uint32_t y = 0; y < dim_y; ++y) { 3275 // Use stride to index start of next row. 3276 if (!(y == 0 && z == 0)) 3277 offset = prev_row + stride; 3278 prev_row = offset; 3279 3280 // Print each element in the row individually 3281 for (uint32_t x = 0; x < dim_x; ++x) { 3282 strm.Printf("\n(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ") = ", x, y, z); 3283 if ((type == Element::RS_TYPE_NONE) && 3284 (alloc->element.children.size() > 0) && 3285 (alloc->element.type_name != Element::GetFallbackStructName())) { 3286 // Here we are dumping an Element of struct type. This is done using 3287 // expression evaluation with the name of the struct type and pointer 3288 // to element. Don't print the name of the resulting expression, 3289 // since this will be '$[0-9]+' 3290 DumpValueObjectOptions expr_options; 3291 expr_options.SetHideName(true); 3292 3293 // Setup expression as dereferencing a pointer cast to element 3294 // address. 3295 char expr_char_buffer[jit_max_expr_size]; 3296 int written = 3297 snprintf(expr_char_buffer, jit_max_expr_size, "*(%s*) 0x%" PRIx64, 3298 alloc->element.type_name.AsCString(), 3299 *alloc->data_ptr.get() + offset); 3300 3301 if (written < 0 || written >= jit_max_expr_size) { 3302 LLDB_LOGF(log, "%s - error in snprintf().", __FUNCTION__); 3303 continue; 3304 } 3305 3306 // Evaluate expression 3307 ValueObjectSP expr_result; 3308 GetProcess()->GetTarget().EvaluateExpression(expr_char_buffer, 3309 frame_ptr, expr_result); 3310 3311 // Print the results to our stream. 3312 expr_result->Dump(strm, expr_options); 3313 } else { 3314 DumpDataExtractor(alloc_data, &strm, offset, format, 3315 data_size - padding, 1, 1, LLDB_INVALID_ADDRESS, 0, 3316 0); 3317 } 3318 offset += data_size; 3319 } 3320 } 3321 } 3322 strm.EOL(); 3323 3324 return true; 3325 } 3326 3327 // Function recalculates all our cached information about allocations by 3328 // jitting the RS runtime regarding each allocation we know about. Returns true 3329 // if all allocations could be recomputed, false otherwise. 3330 bool RenderScriptRuntime::RecomputeAllAllocations(Stream &strm, 3331 StackFrame *frame_ptr) { 3332 bool success = true; 3333 for (auto &alloc : m_allocations) { 3334 // JIT current allocation information 3335 if (!RefreshAllocation(alloc.get(), frame_ptr)) { 3336 strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32 3337 "\n", 3338 alloc->id); 3339 success = false; 3340 } 3341 } 3342 3343 if (success) 3344 strm.Printf("All allocations successfully recomputed"); 3345 strm.EOL(); 3346 3347 return success; 3348 } 3349 3350 // Prints information regarding currently loaded allocations. These details are 3351 // gathered by jitting the runtime, which has as latency. Index parameter 3352 // specifies a single allocation ID to print, or a zero value to print them all 3353 void RenderScriptRuntime::ListAllocations(Stream &strm, StackFrame *frame_ptr, 3354 const uint32_t index) { 3355 strm.Printf("RenderScript Allocations:"); 3356 strm.EOL(); 3357 strm.IndentMore(); 3358 3359 for (auto &alloc : m_allocations) { 3360 // index will only be zero if we want to print all allocations 3361 if (index != 0 && index != alloc->id) 3362 continue; 3363 3364 // JIT current allocation information 3365 if (alloc->ShouldRefresh() && !RefreshAllocation(alloc.get(), frame_ptr)) { 3366 strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32, 3367 alloc->id); 3368 strm.EOL(); 3369 continue; 3370 } 3371 3372 strm.Printf("%" PRIu32 ":", alloc->id); 3373 strm.EOL(); 3374 strm.IndentMore(); 3375 3376 strm.Indent("Context: "); 3377 if (!alloc->context.isValid()) 3378 strm.Printf("unknown\n"); 3379 else 3380 strm.Printf("0x%" PRIx64 "\n", *alloc->context.get()); 3381 3382 strm.Indent("Address: "); 3383 if (!alloc->address.isValid()) 3384 strm.Printf("unknown\n"); 3385 else 3386 strm.Printf("0x%" PRIx64 "\n", *alloc->address.get()); 3387 3388 strm.Indent("Data pointer: "); 3389 if (!alloc->data_ptr.isValid()) 3390 strm.Printf("unknown\n"); 3391 else 3392 strm.Printf("0x%" PRIx64 "\n", *alloc->data_ptr.get()); 3393 3394 strm.Indent("Dimensions: "); 3395 if (!alloc->dimension.isValid()) 3396 strm.Printf("unknown\n"); 3397 else 3398 strm.Printf("(%" PRId32 ", %" PRId32 ", %" PRId32 ")\n", 3399 alloc->dimension.get()->dim_1, alloc->dimension.get()->dim_2, 3400 alloc->dimension.get()->dim_3); 3401 3402 strm.Indent("Data Type: "); 3403 if (!alloc->element.type.isValid() || 3404 !alloc->element.type_vec_size.isValid()) 3405 strm.Printf("unknown\n"); 3406 else { 3407 const int vector_size = *alloc->element.type_vec_size.get(); 3408 Element::DataType type = *alloc->element.type.get(); 3409 3410 if (!alloc->element.type_name.IsEmpty()) 3411 strm.Printf("%s\n", alloc->element.type_name.AsCString()); 3412 else { 3413 // Enum value isn't monotonous, so doesn't always index 3414 // RsDataTypeToString array 3415 if (type >= Element::RS_TYPE_ELEMENT && type <= Element::RS_TYPE_FONT) 3416 type = 3417 static_cast<Element::DataType>((type - Element::RS_TYPE_ELEMENT) + 3418 Element::RS_TYPE_MATRIX_2X2 + 1); 3419 3420 if (type >= (sizeof(AllocationDetails::RsDataTypeToString) / 3421 sizeof(AllocationDetails::RsDataTypeToString[0])) || 3422 vector_size > 4 || vector_size < 1) 3423 strm.Printf("invalid type\n"); 3424 else 3425 strm.Printf( 3426 "%s\n", 3427 AllocationDetails::RsDataTypeToString[static_cast<uint32_t>(type)] 3428 [vector_size - 1]); 3429 } 3430 } 3431 3432 strm.Indent("Data Kind: "); 3433 if (!alloc->element.type_kind.isValid()) 3434 strm.Printf("unknown\n"); 3435 else { 3436 const Element::DataKind kind = *alloc->element.type_kind.get(); 3437 if (kind < Element::RS_KIND_USER || kind > Element::RS_KIND_PIXEL_YUV) 3438 strm.Printf("invalid kind\n"); 3439 else 3440 strm.Printf( 3441 "%s\n", 3442 AllocationDetails::RsDataKindToString[static_cast<uint32_t>(kind)]); 3443 } 3444 3445 strm.EOL(); 3446 strm.IndentLess(); 3447 } 3448 strm.IndentLess(); 3449 } 3450 3451 // Set breakpoints on every kernel found in RS module 3452 void RenderScriptRuntime::BreakOnModuleKernels( 3453 const RSModuleDescriptorSP rsmodule_sp) { 3454 for (const auto &kernel : rsmodule_sp->m_kernels) { 3455 // Don't set breakpoint on 'root' kernel 3456 if (strcmp(kernel.m_name.AsCString(), "root") == 0) 3457 continue; 3458 3459 CreateKernelBreakpoint(kernel.m_name); 3460 } 3461 } 3462 3463 // Method is internally called by the 'kernel breakpoint all' command to enable 3464 // or disable breaking on all kernels. When do_break is true we want to enable 3465 // this functionality. When do_break is false we want to disable it. 3466 void RenderScriptRuntime::SetBreakAllKernels(bool do_break, TargetSP target) { 3467 Log *log( 3468 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3469 3470 InitSearchFilter(target); 3471 3472 // Set breakpoints on all the kernels 3473 if (do_break && !m_breakAllKernels) { 3474 m_breakAllKernels = true; 3475 3476 for (const auto &module : m_rsmodules) 3477 BreakOnModuleKernels(module); 3478 3479 LLDB_LOGF(log, 3480 "%s(True) - breakpoints set on all currently loaded kernels.", 3481 __FUNCTION__); 3482 } else if (!do_break && 3483 m_breakAllKernels) // Breakpoints won't be set on any new kernels. 3484 { 3485 m_breakAllKernels = false; 3486 3487 LLDB_LOGF(log, "%s(False) - breakpoints no longer automatically set.", 3488 __FUNCTION__); 3489 } 3490 } 3491 3492 // Given the name of a kernel this function creates a breakpoint using our own 3493 // breakpoint resolver, and returns the Breakpoint shared pointer. 3494 BreakpointSP 3495 RenderScriptRuntime::CreateKernelBreakpoint(ConstString name) { 3496 Log *log( 3497 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3498 3499 if (!m_filtersp) { 3500 LLDB_LOGF(log, "%s - error, no breakpoint search filter set.", 3501 __FUNCTION__); 3502 return nullptr; 3503 } 3504 3505 BreakpointResolverSP resolver_sp(new RSBreakpointResolver(nullptr, name)); 3506 Target &target = GetProcess()->GetTarget(); 3507 BreakpointSP bp = target.CreateBreakpoint( 3508 m_filtersp, resolver_sp, false, false, false); 3509 3510 // Give RS breakpoints a specific name, so the user can manipulate them as a 3511 // group. 3512 Status err; 3513 target.AddNameToBreakpoint(bp, "RenderScriptKernel", err); 3514 if (err.Fail() && log) 3515 LLDB_LOGF(log, "%s - error setting break name, '%s'.", __FUNCTION__, 3516 err.AsCString()); 3517 3518 return bp; 3519 } 3520 3521 BreakpointSP 3522 RenderScriptRuntime::CreateReductionBreakpoint(ConstString name, 3523 int kernel_types) { 3524 Log *log( 3525 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3526 3527 if (!m_filtersp) { 3528 LLDB_LOGF(log, "%s - error, no breakpoint search filter set.", 3529 __FUNCTION__); 3530 return nullptr; 3531 } 3532 3533 BreakpointResolverSP resolver_sp(new RSReduceBreakpointResolver( 3534 nullptr, name, &m_rsmodules, kernel_types)); 3535 Target &target = GetProcess()->GetTarget(); 3536 BreakpointSP bp = target.CreateBreakpoint( 3537 m_filtersp, resolver_sp, false, false, false); 3538 3539 // Give RS breakpoints a specific name, so the user can manipulate them as a 3540 // group. 3541 Status err; 3542 target.AddNameToBreakpoint(bp, "RenderScriptReduction", err); 3543 if (err.Fail() && log) 3544 LLDB_LOGF(log, "%s - error setting break name, '%s'.", __FUNCTION__, 3545 err.AsCString()); 3546 3547 return bp; 3548 } 3549 3550 // Given an expression for a variable this function tries to calculate the 3551 // variable's value. If this is possible it returns true and sets the uint64_t 3552 // parameter to the variables unsigned value. Otherwise function returns false. 3553 bool RenderScriptRuntime::GetFrameVarAsUnsigned(const StackFrameSP frame_sp, 3554 const char *var_name, 3555 uint64_t &val) { 3556 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3557 Status err; 3558 VariableSP var_sp; 3559 3560 // Find variable in stack frame 3561 ValueObjectSP value_sp(frame_sp->GetValueForVariableExpressionPath( 3562 var_name, eNoDynamicValues, 3563 StackFrame::eExpressionPathOptionCheckPtrVsMember | 3564 StackFrame::eExpressionPathOptionsAllowDirectIVarAccess, 3565 var_sp, err)); 3566 if (!err.Success()) { 3567 LLDB_LOGF(log, "%s - error, couldn't find '%s' in frame", __FUNCTION__, 3568 var_name); 3569 return false; 3570 } 3571 3572 // Find the uint32_t value for the variable 3573 bool success = false; 3574 val = value_sp->GetValueAsUnsigned(0, &success); 3575 if (!success) { 3576 LLDB_LOGF(log, "%s - error, couldn't parse '%s' as an uint32_t.", 3577 __FUNCTION__, var_name); 3578 return false; 3579 } 3580 3581 return true; 3582 } 3583 3584 // Function attempts to find the current coordinate of a kernel invocation by 3585 // investigating the values of frame variables in the .expand function. These 3586 // coordinates are returned via the coord array reference parameter. Returns 3587 // true if the coordinates could be found, and false otherwise. 3588 bool RenderScriptRuntime::GetKernelCoordinate(RSCoordinate &coord, 3589 Thread *thread_ptr) { 3590 static const char *const x_expr = "rsIndex"; 3591 static const char *const y_expr = "p->current.y"; 3592 static const char *const z_expr = "p->current.z"; 3593 3594 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3595 3596 if (!thread_ptr) { 3597 LLDB_LOGF(log, "%s - Error, No thread pointer", __FUNCTION__); 3598 3599 return false; 3600 } 3601 3602 // Walk the call stack looking for a function whose name has the suffix 3603 // '.expand' and contains the variables we're looking for. 3604 for (uint32_t i = 0; i < thread_ptr->GetStackFrameCount(); ++i) { 3605 if (!thread_ptr->SetSelectedFrameByIndex(i)) 3606 continue; 3607 3608 StackFrameSP frame_sp = thread_ptr->GetSelectedFrame(); 3609 if (!frame_sp) 3610 continue; 3611 3612 // Find the function name 3613 const SymbolContext sym_ctx = 3614 frame_sp->GetSymbolContext(eSymbolContextFunction); 3615 const ConstString func_name = sym_ctx.GetFunctionName(); 3616 if (!func_name) 3617 continue; 3618 3619 LLDB_LOGF(log, "%s - Inspecting function '%s'", __FUNCTION__, 3620 func_name.GetCString()); 3621 3622 // Check if function name has .expand suffix 3623 if (!func_name.GetStringRef().endswith(".expand")) 3624 continue; 3625 3626 LLDB_LOGF(log, "%s - Found .expand function '%s'", __FUNCTION__, 3627 func_name.GetCString()); 3628 3629 // Get values for variables in .expand frame that tell us the current 3630 // kernel invocation 3631 uint64_t x, y, z; 3632 bool found = GetFrameVarAsUnsigned(frame_sp, x_expr, x) && 3633 GetFrameVarAsUnsigned(frame_sp, y_expr, y) && 3634 GetFrameVarAsUnsigned(frame_sp, z_expr, z); 3635 3636 if (found) { 3637 // The RenderScript runtime uses uint32_t for these vars. If they're not 3638 // within bounds, our frame parsing is garbage 3639 assert(x <= UINT32_MAX && y <= UINT32_MAX && z <= UINT32_MAX); 3640 coord.x = (uint32_t)x; 3641 coord.y = (uint32_t)y; 3642 coord.z = (uint32_t)z; 3643 return true; 3644 } 3645 } 3646 return false; 3647 } 3648 3649 // Callback when a kernel breakpoint hits and we're looking for a specific 3650 // coordinate. Baton parameter contains a pointer to the target coordinate we 3651 // want to break on. Function then checks the .expand frame for the current 3652 // coordinate and breaks to user if it matches. Parameter 'break_id' is the id 3653 // of the Breakpoint which made the callback. Parameter 'break_loc_id' is the 3654 // id for the BreakpointLocation which was hit, a single logical breakpoint can 3655 // have multiple addresses. 3656 bool RenderScriptRuntime::KernelBreakpointHit(void *baton, 3657 StoppointCallbackContext *ctx, 3658 user_id_t break_id, 3659 user_id_t break_loc_id) { 3660 Log *log( 3661 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3662 3663 assert(baton && 3664 "Error: null baton in conditional kernel breakpoint callback"); 3665 3666 // Coordinate we want to stop on 3667 RSCoordinate target_coord = *static_cast<RSCoordinate *>(baton); 3668 3669 LLDB_LOGF(log, "%s - Break ID %" PRIu64 ", " FMT_COORD, __FUNCTION__, 3670 break_id, target_coord.x, target_coord.y, target_coord.z); 3671 3672 // Select current thread 3673 ExecutionContext context(ctx->exe_ctx_ref); 3674 Thread *thread_ptr = context.GetThreadPtr(); 3675 assert(thread_ptr && "Null thread pointer"); 3676 3677 // Find current kernel invocation from .expand frame variables 3678 RSCoordinate current_coord{}; 3679 if (!GetKernelCoordinate(current_coord, thread_ptr)) { 3680 LLDB_LOGF(log, "%s - Error, couldn't select .expand stack frame", 3681 __FUNCTION__); 3682 return false; 3683 } 3684 3685 LLDB_LOGF(log, "%s - " FMT_COORD, __FUNCTION__, current_coord.x, 3686 current_coord.y, current_coord.z); 3687 3688 // Check if the current kernel invocation coordinate matches our target 3689 // coordinate 3690 if (target_coord == current_coord) { 3691 LLDB_LOGF(log, "%s, BREAKING " FMT_COORD, __FUNCTION__, current_coord.x, 3692 current_coord.y, current_coord.z); 3693 3694 BreakpointSP breakpoint_sp = 3695 context.GetTargetPtr()->GetBreakpointByID(break_id); 3696 assert(breakpoint_sp != nullptr && 3697 "Error: Couldn't find breakpoint matching break id for callback"); 3698 breakpoint_sp->SetEnabled(false); // Optimise since conditional breakpoint 3699 // should only be hit once. 3700 return true; 3701 } 3702 3703 // No match on coordinate 3704 return false; 3705 } 3706 3707 void RenderScriptRuntime::SetConditional(BreakpointSP bp, Stream &messages, 3708 const RSCoordinate &coord) { 3709 messages.Printf("Conditional kernel breakpoint on coordinate " FMT_COORD, 3710 coord.x, coord.y, coord.z); 3711 messages.EOL(); 3712 3713 // Allocate memory for the baton, and copy over coordinate 3714 RSCoordinate *baton = new RSCoordinate(coord); 3715 3716 // Create a callback that will be invoked every time the breakpoint is hit. 3717 // The baton object passed to the handler is the target coordinate we want to 3718 // break on. 3719 bp->SetCallback(KernelBreakpointHit, baton, true); 3720 3721 // Store a shared pointer to the baton, so the memory will eventually be 3722 // cleaned up after destruction 3723 m_conditional_breaks[bp->GetID()] = std::unique_ptr<RSCoordinate>(baton); 3724 } 3725 3726 // Tries to set a breakpoint on the start of a kernel, resolved using the 3727 // kernel name. Argument 'coords', represents a three dimensional coordinate 3728 // which can be used to specify a single kernel instance to break on. If this 3729 // is set then we add a callback to the breakpoint. 3730 bool RenderScriptRuntime::PlaceBreakpointOnKernel(TargetSP target, 3731 Stream &messages, 3732 const char *name, 3733 const RSCoordinate *coord) { 3734 if (!name) 3735 return false; 3736 3737 InitSearchFilter(target); 3738 3739 ConstString kernel_name(name); 3740 BreakpointSP bp = CreateKernelBreakpoint(kernel_name); 3741 if (!bp) 3742 return false; 3743 3744 // We have a conditional breakpoint on a specific coordinate 3745 if (coord) 3746 SetConditional(bp, messages, *coord); 3747 3748 bp->GetDescription(&messages, lldb::eDescriptionLevelInitial, false); 3749 3750 return true; 3751 } 3752 3753 BreakpointSP 3754 RenderScriptRuntime::CreateScriptGroupBreakpoint(ConstString name, 3755 bool stop_on_all) { 3756 Log *log( 3757 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3758 3759 if (!m_filtersp) { 3760 LLDB_LOGF(log, "%s - error, no breakpoint search filter set.", 3761 __FUNCTION__); 3762 return nullptr; 3763 } 3764 3765 BreakpointResolverSP resolver_sp(new RSScriptGroupBreakpointResolver( 3766 nullptr, name, m_scriptGroups, stop_on_all)); 3767 Target &target = GetProcess()->GetTarget(); 3768 BreakpointSP bp = target.CreateBreakpoint( 3769 m_filtersp, resolver_sp, false, false, false); 3770 // Give RS breakpoints a specific name, so the user can manipulate them as a 3771 // group. 3772 Status err; 3773 target.AddNameToBreakpoint(bp, name.GetCString(), err); 3774 if (err.Fail() && log) 3775 LLDB_LOGF(log, "%s - error setting break name, '%s'.", __FUNCTION__, 3776 err.AsCString()); 3777 // ask the breakpoint to resolve itself 3778 bp->ResolveBreakpoint(); 3779 return bp; 3780 } 3781 3782 bool RenderScriptRuntime::PlaceBreakpointOnScriptGroup(TargetSP target, 3783 Stream &strm, 3784 ConstString name, 3785 bool multi) { 3786 InitSearchFilter(target); 3787 BreakpointSP bp = CreateScriptGroupBreakpoint(name, multi); 3788 if (bp) 3789 bp->GetDescription(&strm, lldb::eDescriptionLevelInitial, false); 3790 return bool(bp); 3791 } 3792 3793 bool RenderScriptRuntime::PlaceBreakpointOnReduction(TargetSP target, 3794 Stream &messages, 3795 const char *reduce_name, 3796 const RSCoordinate *coord, 3797 int kernel_types) { 3798 if (!reduce_name) 3799 return false; 3800 3801 InitSearchFilter(target); 3802 BreakpointSP bp = 3803 CreateReductionBreakpoint(ConstString(reduce_name), kernel_types); 3804 if (!bp) 3805 return false; 3806 3807 if (coord) 3808 SetConditional(bp, messages, *coord); 3809 3810 bp->GetDescription(&messages, lldb::eDescriptionLevelInitial, false); 3811 3812 return true; 3813 } 3814 3815 void RenderScriptRuntime::DumpModules(Stream &strm) const { 3816 strm.Printf("RenderScript Modules:"); 3817 strm.EOL(); 3818 strm.IndentMore(); 3819 for (const auto &module : m_rsmodules) { 3820 module->Dump(strm); 3821 } 3822 strm.IndentLess(); 3823 } 3824 3825 RenderScriptRuntime::ScriptDetails * 3826 RenderScriptRuntime::LookUpScript(addr_t address, bool create) { 3827 for (const auto &s : m_scripts) { 3828 if (s->script.isValid()) 3829 if (*s->script == address) 3830 return s.get(); 3831 } 3832 if (create) { 3833 std::unique_ptr<ScriptDetails> s(new ScriptDetails); 3834 s->script = address; 3835 m_scripts.push_back(std::move(s)); 3836 return m_scripts.back().get(); 3837 } 3838 return nullptr; 3839 } 3840 3841 RenderScriptRuntime::AllocationDetails * 3842 RenderScriptRuntime::LookUpAllocation(addr_t address) { 3843 for (const auto &a : m_allocations) { 3844 if (a->address.isValid()) 3845 if (*a->address == address) 3846 return a.get(); 3847 } 3848 return nullptr; 3849 } 3850 3851 RenderScriptRuntime::AllocationDetails * 3852 RenderScriptRuntime::CreateAllocation(addr_t address) { 3853 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 3854 3855 // Remove any previous allocation which contains the same address 3856 auto it = m_allocations.begin(); 3857 while (it != m_allocations.end()) { 3858 if (*((*it)->address) == address) { 3859 LLDB_LOGF(log, "%s - Removing allocation id: %d, address: 0x%" PRIx64, 3860 __FUNCTION__, (*it)->id, address); 3861 3862 it = m_allocations.erase(it); 3863 } else { 3864 it++; 3865 } 3866 } 3867 3868 std::unique_ptr<AllocationDetails> a(new AllocationDetails); 3869 a->address = address; 3870 m_allocations.push_back(std::move(a)); 3871 return m_allocations.back().get(); 3872 } 3873 3874 bool RenderScriptRuntime::ResolveKernelName(lldb::addr_t kernel_addr, 3875 ConstString &name) { 3876 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS); 3877 3878 Target &target = GetProcess()->GetTarget(); 3879 Address resolved; 3880 // RenderScript module 3881 if (!target.GetSectionLoadList().ResolveLoadAddress(kernel_addr, resolved)) { 3882 LLDB_LOGF(log, "%s: unable to resolve 0x%" PRIx64 " to a loaded symbol", 3883 __FUNCTION__, kernel_addr); 3884 return false; 3885 } 3886 3887 Symbol *sym = resolved.CalculateSymbolContextSymbol(); 3888 if (!sym) 3889 return false; 3890 3891 name = sym->GetName(); 3892 assert(IsRenderScriptModule(resolved.CalculateSymbolContextModule())); 3893 LLDB_LOGF(log, "%s: 0x%" PRIx64 " resolved to the symbol '%s'", __FUNCTION__, 3894 kernel_addr, name.GetCString()); 3895 return true; 3896 } 3897 3898 void RSModuleDescriptor::Dump(Stream &strm) const { 3899 int indent = strm.GetIndentLevel(); 3900 3901 strm.Indent(); 3902 m_module->GetFileSpec().Dump(strm.AsRawOstream()); 3903 strm.Indent(m_module->GetNumCompileUnits() ? "Debug info loaded." 3904 : "Debug info does not exist."); 3905 strm.EOL(); 3906 strm.IndentMore(); 3907 3908 strm.Indent(); 3909 strm.Printf("Globals: %" PRIu64, static_cast<uint64_t>(m_globals.size())); 3910 strm.EOL(); 3911 strm.IndentMore(); 3912 for (const auto &global : m_globals) { 3913 global.Dump(strm); 3914 } 3915 strm.IndentLess(); 3916 3917 strm.Indent(); 3918 strm.Printf("Kernels: %" PRIu64, static_cast<uint64_t>(m_kernels.size())); 3919 strm.EOL(); 3920 strm.IndentMore(); 3921 for (const auto &kernel : m_kernels) { 3922 kernel.Dump(strm); 3923 } 3924 strm.IndentLess(); 3925 3926 strm.Indent(); 3927 strm.Printf("Pragmas: %" PRIu64, static_cast<uint64_t>(m_pragmas.size())); 3928 strm.EOL(); 3929 strm.IndentMore(); 3930 for (const auto &key_val : m_pragmas) { 3931 strm.Indent(); 3932 strm.Printf("%s: %s", key_val.first.c_str(), key_val.second.c_str()); 3933 strm.EOL(); 3934 } 3935 strm.IndentLess(); 3936 3937 strm.Indent(); 3938 strm.Printf("Reductions: %" PRIu64, 3939 static_cast<uint64_t>(m_reductions.size())); 3940 strm.EOL(); 3941 strm.IndentMore(); 3942 for (const auto &reduction : m_reductions) { 3943 reduction.Dump(strm); 3944 } 3945 3946 strm.SetIndentLevel(indent); 3947 } 3948 3949 void RSGlobalDescriptor::Dump(Stream &strm) const { 3950 strm.Indent(m_name.GetStringRef()); 3951 VariableList var_list; 3952 m_module->m_module->FindGlobalVariables(m_name, CompilerDeclContext(), 1U, 3953 var_list); 3954 if (var_list.GetSize() == 1) { 3955 auto var = var_list.GetVariableAtIndex(0); 3956 auto type = var->GetType(); 3957 if (type) { 3958 strm.Printf(" - "); 3959 type->DumpTypeName(&strm); 3960 } else { 3961 strm.Printf(" - Unknown Type"); 3962 } 3963 } else { 3964 strm.Printf(" - variable identified, but not found in binary"); 3965 const Symbol *s = m_module->m_module->FindFirstSymbolWithNameAndType( 3966 m_name, eSymbolTypeData); 3967 if (s) { 3968 strm.Printf(" (symbol exists) "); 3969 } 3970 } 3971 3972 strm.EOL(); 3973 } 3974 3975 void RSKernelDescriptor::Dump(Stream &strm) const { 3976 strm.Indent(m_name.GetStringRef()); 3977 strm.EOL(); 3978 } 3979 3980 void RSReductionDescriptor::Dump(lldb_private::Stream &stream) const { 3981 stream.Indent(m_reduce_name.GetStringRef()); 3982 stream.IndentMore(); 3983 stream.EOL(); 3984 stream.Indent(); 3985 stream.Printf("accumulator: %s", m_accum_name.AsCString()); 3986 stream.EOL(); 3987 stream.Indent(); 3988 stream.Printf("initializer: %s", m_init_name.AsCString()); 3989 stream.EOL(); 3990 stream.Indent(); 3991 stream.Printf("combiner: %s", m_comb_name.AsCString()); 3992 stream.EOL(); 3993 stream.Indent(); 3994 stream.Printf("outconverter: %s", m_outc_name.AsCString()); 3995 stream.EOL(); 3996 // XXX This is currently unspecified by RenderScript, and unused 3997 // stream.Indent(); 3998 // stream.Printf("halter: '%s'", m_init_name.AsCString()); 3999 // stream.EOL(); 4000 stream.IndentLess(); 4001 } 4002 4003 class CommandObjectRenderScriptRuntimeModuleDump : public CommandObjectParsed { 4004 public: 4005 CommandObjectRenderScriptRuntimeModuleDump(CommandInterpreter &interpreter) 4006 : CommandObjectParsed( 4007 interpreter, "renderscript module dump", 4008 "Dumps renderscript specific information for all modules.", 4009 "renderscript module dump", 4010 eCommandRequiresProcess | eCommandProcessMustBeLaunched) {} 4011 4012 ~CommandObjectRenderScriptRuntimeModuleDump() override = default; 4013 4014 bool DoExecute(Args &command, CommandReturnObject &result) override { 4015 RenderScriptRuntime *runtime = llvm::cast<RenderScriptRuntime>( 4016 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4017 eLanguageTypeExtRenderScript)); 4018 runtime->DumpModules(result.GetOutputStream()); 4019 result.SetStatus(eReturnStatusSuccessFinishResult); 4020 return true; 4021 } 4022 }; 4023 4024 class CommandObjectRenderScriptRuntimeModule : public CommandObjectMultiword { 4025 public: 4026 CommandObjectRenderScriptRuntimeModule(CommandInterpreter &interpreter) 4027 : CommandObjectMultiword(interpreter, "renderscript module", 4028 "Commands that deal with RenderScript modules.", 4029 nullptr) { 4030 LoadSubCommand( 4031 "dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeModuleDump( 4032 interpreter))); 4033 } 4034 4035 ~CommandObjectRenderScriptRuntimeModule() override = default; 4036 }; 4037 4038 class CommandObjectRenderScriptRuntimeKernelList : public CommandObjectParsed { 4039 public: 4040 CommandObjectRenderScriptRuntimeKernelList(CommandInterpreter &interpreter) 4041 : CommandObjectParsed( 4042 interpreter, "renderscript kernel list", 4043 "Lists renderscript kernel names and associated script resources.", 4044 "renderscript kernel list", 4045 eCommandRequiresProcess | eCommandProcessMustBeLaunched) {} 4046 4047 ~CommandObjectRenderScriptRuntimeKernelList() override = default; 4048 4049 bool DoExecute(Args &command, CommandReturnObject &result) override { 4050 RenderScriptRuntime *runtime = llvm::cast<RenderScriptRuntime>( 4051 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4052 eLanguageTypeExtRenderScript)); 4053 runtime->DumpKernels(result.GetOutputStream()); 4054 result.SetStatus(eReturnStatusSuccessFinishResult); 4055 return true; 4056 } 4057 }; 4058 4059 static constexpr OptionDefinition g_renderscript_reduction_bp_set_options[] = { 4060 {LLDB_OPT_SET_1, false, "function-role", 't', 4061 OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeOneLiner, 4062 "Break on a comma separated set of reduction kernel types " 4063 "(accumulator,outcoverter,combiner,initializer"}, 4064 {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument, 4065 nullptr, {}, 0, eArgTypeValue, 4066 "Set a breakpoint on a single invocation of the kernel with specified " 4067 "coordinate.\n" 4068 "Coordinate takes the form 'x[,y][,z] where x,y,z are positive " 4069 "integers representing kernel dimensions. " 4070 "Any unset dimensions will be defaulted to zero."}}; 4071 4072 class CommandObjectRenderScriptRuntimeReductionBreakpointSet 4073 : public CommandObjectParsed { 4074 public: 4075 CommandObjectRenderScriptRuntimeReductionBreakpointSet( 4076 CommandInterpreter &interpreter) 4077 : CommandObjectParsed( 4078 interpreter, "renderscript reduction breakpoint set", 4079 "Set a breakpoint on named RenderScript general reductions", 4080 "renderscript reduction breakpoint set <kernel_name> [-t " 4081 "<reduction_kernel_type,...>]", 4082 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4083 eCommandProcessMustBePaused), 4084 m_options(){}; 4085 4086 class CommandOptions : public Options { 4087 public: 4088 CommandOptions() : Options() {} 4089 4090 ~CommandOptions() override = default; 4091 4092 Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg, 4093 ExecutionContext *exe_ctx) override { 4094 Status err; 4095 StreamString err_str; 4096 const int short_option = m_getopt_table[option_idx].val; 4097 switch (short_option) { 4098 case 't': 4099 if (!ParseReductionTypes(option_arg, err_str)) 4100 err.SetErrorStringWithFormat( 4101 "Unable to deduce reduction types for %s: %s", 4102 option_arg.str().c_str(), err_str.GetData()); 4103 break; 4104 case 'c': { 4105 auto coord = RSCoordinate{}; 4106 if (!ParseCoordinate(option_arg, coord)) 4107 err.SetErrorStringWithFormat("unable to parse coordinate for %s", 4108 option_arg.str().c_str()); 4109 else { 4110 m_have_coord = true; 4111 m_coord = coord; 4112 } 4113 break; 4114 } 4115 default: 4116 err.SetErrorStringWithFormat("Invalid option '-%c'", short_option); 4117 } 4118 return err; 4119 } 4120 4121 void OptionParsingStarting(ExecutionContext *exe_ctx) override { 4122 m_have_coord = false; 4123 } 4124 4125 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4126 return llvm::makeArrayRef(g_renderscript_reduction_bp_set_options); 4127 } 4128 4129 bool ParseReductionTypes(llvm::StringRef option_val, 4130 StreamString &err_str) { 4131 m_kernel_types = RSReduceBreakpointResolver::eKernelTypeNone; 4132 const auto reduce_name_to_type = [](llvm::StringRef name) -> int { 4133 return llvm::StringSwitch<int>(name) 4134 .Case("accumulator", RSReduceBreakpointResolver::eKernelTypeAccum) 4135 .Case("initializer", RSReduceBreakpointResolver::eKernelTypeInit) 4136 .Case("outconverter", RSReduceBreakpointResolver::eKernelTypeOutC) 4137 .Case("combiner", RSReduceBreakpointResolver::eKernelTypeComb) 4138 .Case("all", RSReduceBreakpointResolver::eKernelTypeAll) 4139 // Currently not exposed by the runtime 4140 // .Case("halter", RSReduceBreakpointResolver::eKernelTypeHalter) 4141 .Default(0); 4142 }; 4143 4144 // Matching a comma separated list of known words is fairly 4145 // straightforward with PCRE, but we're using ERE, so we end up with a 4146 // little ugliness... 4147 RegularExpression match_type_list( 4148 llvm::StringRef("^([[:alpha:]]+)(,[[:alpha:]]+){0,4}$")); 4149 4150 assert(match_type_list.IsValid()); 4151 4152 if (!match_type_list.Execute(option_val)) { 4153 err_str.PutCString( 4154 "a comma-separated list of kernel types is required"); 4155 return false; 4156 } 4157 4158 // splitting on commas is much easier with llvm::StringRef than regex 4159 llvm::SmallVector<llvm::StringRef, 5> type_names; 4160 llvm::StringRef(option_val).split(type_names, ','); 4161 4162 for (const auto &name : type_names) { 4163 const int type = reduce_name_to_type(name); 4164 if (!type) { 4165 err_str.Printf("unknown kernel type name %s", name.str().c_str()); 4166 return false; 4167 } 4168 m_kernel_types |= type; 4169 } 4170 4171 return true; 4172 } 4173 4174 int m_kernel_types = RSReduceBreakpointResolver::eKernelTypeAll; 4175 llvm::StringRef m_reduce_name; 4176 RSCoordinate m_coord; 4177 bool m_have_coord; 4178 }; 4179 4180 Options *GetOptions() override { return &m_options; } 4181 4182 bool DoExecute(Args &command, CommandReturnObject &result) override { 4183 const size_t argc = command.GetArgumentCount(); 4184 if (argc < 1) { 4185 result.AppendErrorWithFormat("'%s' takes 1 argument of reduction name, " 4186 "and an optional kernel type list", 4187 m_cmd_name.c_str()); 4188 return false; 4189 } 4190 4191 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4192 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4193 eLanguageTypeExtRenderScript)); 4194 4195 auto &outstream = result.GetOutputStream(); 4196 auto name = command.GetArgumentAtIndex(0); 4197 auto &target = m_exe_ctx.GetTargetSP(); 4198 auto coord = m_options.m_have_coord ? &m_options.m_coord : nullptr; 4199 if (!runtime->PlaceBreakpointOnReduction(target, outstream, name, coord, 4200 m_options.m_kernel_types)) { 4201 result.AppendError("Error: unable to place breakpoint on reduction"); 4202 return false; 4203 } 4204 result.AppendMessage("Breakpoint(s) created"); 4205 result.SetStatus(eReturnStatusSuccessFinishResult); 4206 return true; 4207 } 4208 4209 private: 4210 CommandOptions m_options; 4211 }; 4212 4213 static constexpr OptionDefinition g_renderscript_kernel_bp_set_options[] = { 4214 {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument, 4215 nullptr, {}, 0, eArgTypeValue, 4216 "Set a breakpoint on a single invocation of the kernel with specified " 4217 "coordinate.\n" 4218 "Coordinate takes the form 'x[,y][,z] where x,y,z are positive " 4219 "integers representing kernel dimensions. " 4220 "Any unset dimensions will be defaulted to zero."}}; 4221 4222 class CommandObjectRenderScriptRuntimeKernelBreakpointSet 4223 : public CommandObjectParsed { 4224 public: 4225 CommandObjectRenderScriptRuntimeKernelBreakpointSet( 4226 CommandInterpreter &interpreter) 4227 : CommandObjectParsed( 4228 interpreter, "renderscript kernel breakpoint set", 4229 "Sets a breakpoint on a renderscript kernel.", 4230 "renderscript kernel breakpoint set <kernel_name> [-c x,y,z]", 4231 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4232 eCommandProcessMustBePaused), 4233 m_options() {} 4234 4235 ~CommandObjectRenderScriptRuntimeKernelBreakpointSet() override = default; 4236 4237 Options *GetOptions() override { return &m_options; } 4238 4239 class CommandOptions : public Options { 4240 public: 4241 CommandOptions() : Options() {} 4242 4243 ~CommandOptions() override = default; 4244 4245 Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg, 4246 ExecutionContext *exe_ctx) override { 4247 Status err; 4248 const int short_option = m_getopt_table[option_idx].val; 4249 4250 switch (short_option) { 4251 case 'c': { 4252 auto coord = RSCoordinate{}; 4253 if (!ParseCoordinate(option_arg, coord)) 4254 err.SetErrorStringWithFormat( 4255 "Couldn't parse coordinate '%s', should be in format 'x,y,z'.", 4256 option_arg.str().c_str()); 4257 else { 4258 m_have_coord = true; 4259 m_coord = coord; 4260 } 4261 break; 4262 } 4263 default: 4264 err.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 4265 break; 4266 } 4267 return err; 4268 } 4269 4270 void OptionParsingStarting(ExecutionContext *exe_ctx) override { 4271 m_have_coord = false; 4272 } 4273 4274 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4275 return llvm::makeArrayRef(g_renderscript_kernel_bp_set_options); 4276 } 4277 4278 RSCoordinate m_coord; 4279 bool m_have_coord; 4280 }; 4281 4282 bool DoExecute(Args &command, CommandReturnObject &result) override { 4283 const size_t argc = command.GetArgumentCount(); 4284 if (argc < 1) { 4285 result.AppendErrorWithFormat( 4286 "'%s' takes 1 argument of kernel name, and an optional coordinate.", 4287 m_cmd_name.c_str()); 4288 return false; 4289 } 4290 4291 RenderScriptRuntime *runtime = llvm::cast<RenderScriptRuntime>( 4292 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4293 eLanguageTypeExtRenderScript)); 4294 4295 auto &outstream = result.GetOutputStream(); 4296 auto &target = m_exe_ctx.GetTargetSP(); 4297 auto name = command.GetArgumentAtIndex(0); 4298 auto coord = m_options.m_have_coord ? &m_options.m_coord : nullptr; 4299 if (!runtime->PlaceBreakpointOnKernel(target, outstream, name, coord)) { 4300 result.AppendErrorWithFormat( 4301 "Error: unable to set breakpoint on kernel '%s'", name); 4302 return false; 4303 } 4304 4305 result.AppendMessage("Breakpoint(s) created"); 4306 result.SetStatus(eReturnStatusSuccessFinishResult); 4307 return true; 4308 } 4309 4310 private: 4311 CommandOptions m_options; 4312 }; 4313 4314 class CommandObjectRenderScriptRuntimeKernelBreakpointAll 4315 : public CommandObjectParsed { 4316 public: 4317 CommandObjectRenderScriptRuntimeKernelBreakpointAll( 4318 CommandInterpreter &interpreter) 4319 : CommandObjectParsed( 4320 interpreter, "renderscript kernel breakpoint all", 4321 "Automatically sets a breakpoint on all renderscript kernels that " 4322 "are or will be loaded.\n" 4323 "Disabling option means breakpoints will no longer be set on any " 4324 "kernels loaded in the future, " 4325 "but does not remove currently set breakpoints.", 4326 "renderscript kernel breakpoint all <enable/disable>", 4327 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4328 eCommandProcessMustBePaused) {} 4329 4330 ~CommandObjectRenderScriptRuntimeKernelBreakpointAll() override = default; 4331 4332 bool DoExecute(Args &command, CommandReturnObject &result) override { 4333 const size_t argc = command.GetArgumentCount(); 4334 if (argc != 1) { 4335 result.AppendErrorWithFormat( 4336 "'%s' takes 1 argument of 'enable' or 'disable'", m_cmd_name.c_str()); 4337 return false; 4338 } 4339 4340 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4341 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4342 eLanguageTypeExtRenderScript)); 4343 4344 bool do_break = false; 4345 const char *argument = command.GetArgumentAtIndex(0); 4346 if (strcmp(argument, "enable") == 0) { 4347 do_break = true; 4348 result.AppendMessage("Breakpoints will be set on all kernels."); 4349 } else if (strcmp(argument, "disable") == 0) { 4350 do_break = false; 4351 result.AppendMessage("Breakpoints will not be set on any new kernels."); 4352 } else { 4353 result.AppendErrorWithFormat( 4354 "Argument must be either 'enable' or 'disable'"); 4355 return false; 4356 } 4357 4358 runtime->SetBreakAllKernels(do_break, m_exe_ctx.GetTargetSP()); 4359 4360 result.SetStatus(eReturnStatusSuccessFinishResult); 4361 return true; 4362 } 4363 }; 4364 4365 class CommandObjectRenderScriptRuntimeReductionBreakpoint 4366 : public CommandObjectMultiword { 4367 public: 4368 CommandObjectRenderScriptRuntimeReductionBreakpoint( 4369 CommandInterpreter &interpreter) 4370 : CommandObjectMultiword(interpreter, "renderscript reduction breakpoint", 4371 "Commands that manipulate breakpoints on " 4372 "renderscript general reductions.", 4373 nullptr) { 4374 LoadSubCommand( 4375 "set", CommandObjectSP( 4376 new CommandObjectRenderScriptRuntimeReductionBreakpointSet( 4377 interpreter))); 4378 } 4379 4380 ~CommandObjectRenderScriptRuntimeReductionBreakpoint() override = default; 4381 }; 4382 4383 class CommandObjectRenderScriptRuntimeKernelCoordinate 4384 : public CommandObjectParsed { 4385 public: 4386 CommandObjectRenderScriptRuntimeKernelCoordinate( 4387 CommandInterpreter &interpreter) 4388 : CommandObjectParsed( 4389 interpreter, "renderscript kernel coordinate", 4390 "Shows the (x,y,z) coordinate of the current kernel invocation.", 4391 "renderscript kernel coordinate", 4392 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4393 eCommandProcessMustBePaused) {} 4394 4395 ~CommandObjectRenderScriptRuntimeKernelCoordinate() override = default; 4396 4397 bool DoExecute(Args &command, CommandReturnObject &result) override { 4398 RSCoordinate coord{}; 4399 bool success = RenderScriptRuntime::GetKernelCoordinate( 4400 coord, m_exe_ctx.GetThreadPtr()); 4401 Stream &stream = result.GetOutputStream(); 4402 4403 if (success) { 4404 stream.Printf("Coordinate: " FMT_COORD, coord.x, coord.y, coord.z); 4405 stream.EOL(); 4406 result.SetStatus(eReturnStatusSuccessFinishResult); 4407 } else { 4408 stream.Printf("Error: Coordinate could not be found."); 4409 stream.EOL(); 4410 result.SetStatus(eReturnStatusFailed); 4411 } 4412 return true; 4413 } 4414 }; 4415 4416 class CommandObjectRenderScriptRuntimeKernelBreakpoint 4417 : public CommandObjectMultiword { 4418 public: 4419 CommandObjectRenderScriptRuntimeKernelBreakpoint( 4420 CommandInterpreter &interpreter) 4421 : CommandObjectMultiword( 4422 interpreter, "renderscript kernel", 4423 "Commands that generate breakpoints on renderscript kernels.", 4424 nullptr) { 4425 LoadSubCommand( 4426 "set", 4427 CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointSet( 4428 interpreter))); 4429 LoadSubCommand( 4430 "all", 4431 CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointAll( 4432 interpreter))); 4433 } 4434 4435 ~CommandObjectRenderScriptRuntimeKernelBreakpoint() override = default; 4436 }; 4437 4438 class CommandObjectRenderScriptRuntimeKernel : public CommandObjectMultiword { 4439 public: 4440 CommandObjectRenderScriptRuntimeKernel(CommandInterpreter &interpreter) 4441 : CommandObjectMultiword(interpreter, "renderscript kernel", 4442 "Commands that deal with RenderScript kernels.", 4443 nullptr) { 4444 LoadSubCommand( 4445 "list", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelList( 4446 interpreter))); 4447 LoadSubCommand( 4448 "coordinate", 4449 CommandObjectSP( 4450 new CommandObjectRenderScriptRuntimeKernelCoordinate(interpreter))); 4451 LoadSubCommand( 4452 "breakpoint", 4453 CommandObjectSP( 4454 new CommandObjectRenderScriptRuntimeKernelBreakpoint(interpreter))); 4455 } 4456 4457 ~CommandObjectRenderScriptRuntimeKernel() override = default; 4458 }; 4459 4460 class CommandObjectRenderScriptRuntimeContextDump : public CommandObjectParsed { 4461 public: 4462 CommandObjectRenderScriptRuntimeContextDump(CommandInterpreter &interpreter) 4463 : CommandObjectParsed(interpreter, "renderscript context dump", 4464 "Dumps renderscript context information.", 4465 "renderscript context dump", 4466 eCommandRequiresProcess | 4467 eCommandProcessMustBeLaunched) {} 4468 4469 ~CommandObjectRenderScriptRuntimeContextDump() override = default; 4470 4471 bool DoExecute(Args &command, CommandReturnObject &result) override { 4472 RenderScriptRuntime *runtime = llvm::cast<RenderScriptRuntime>( 4473 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4474 eLanguageTypeExtRenderScript)); 4475 runtime->DumpContexts(result.GetOutputStream()); 4476 result.SetStatus(eReturnStatusSuccessFinishResult); 4477 return true; 4478 } 4479 }; 4480 4481 static constexpr OptionDefinition g_renderscript_runtime_alloc_dump_options[] = { 4482 {LLDB_OPT_SET_1, false, "file", 'f', OptionParser::eRequiredArgument, 4483 nullptr, {}, 0, eArgTypeFilename, 4484 "Print results to specified file instead of command line."}}; 4485 4486 class CommandObjectRenderScriptRuntimeContext : public CommandObjectMultiword { 4487 public: 4488 CommandObjectRenderScriptRuntimeContext(CommandInterpreter &interpreter) 4489 : CommandObjectMultiword(interpreter, "renderscript context", 4490 "Commands that deal with RenderScript contexts.", 4491 nullptr) { 4492 LoadSubCommand( 4493 "dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeContextDump( 4494 interpreter))); 4495 } 4496 4497 ~CommandObjectRenderScriptRuntimeContext() override = default; 4498 }; 4499 4500 class CommandObjectRenderScriptRuntimeAllocationDump 4501 : public CommandObjectParsed { 4502 public: 4503 CommandObjectRenderScriptRuntimeAllocationDump( 4504 CommandInterpreter &interpreter) 4505 : CommandObjectParsed(interpreter, "renderscript allocation dump", 4506 "Displays the contents of a particular allocation", 4507 "renderscript allocation dump <ID>", 4508 eCommandRequiresProcess | 4509 eCommandProcessMustBeLaunched), 4510 m_options() {} 4511 4512 ~CommandObjectRenderScriptRuntimeAllocationDump() override = default; 4513 4514 Options *GetOptions() override { return &m_options; } 4515 4516 class CommandOptions : public Options { 4517 public: 4518 CommandOptions() : Options() {} 4519 4520 ~CommandOptions() override = default; 4521 4522 Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg, 4523 ExecutionContext *exe_ctx) override { 4524 Status err; 4525 const int short_option = m_getopt_table[option_idx].val; 4526 4527 switch (short_option) { 4528 case 'f': 4529 m_outfile.SetFile(option_arg, FileSpec::Style::native); 4530 FileSystem::Instance().Resolve(m_outfile); 4531 if (FileSystem::Instance().Exists(m_outfile)) { 4532 m_outfile.Clear(); 4533 err.SetErrorStringWithFormat("file already exists: '%s'", 4534 option_arg.str().c_str()); 4535 } 4536 break; 4537 default: 4538 err.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 4539 break; 4540 } 4541 return err; 4542 } 4543 4544 void OptionParsingStarting(ExecutionContext *exe_ctx) override { 4545 m_outfile.Clear(); 4546 } 4547 4548 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4549 return llvm::makeArrayRef(g_renderscript_runtime_alloc_dump_options); 4550 } 4551 4552 FileSpec m_outfile; 4553 }; 4554 4555 bool DoExecute(Args &command, CommandReturnObject &result) override { 4556 const size_t argc = command.GetArgumentCount(); 4557 if (argc < 1) { 4558 result.AppendErrorWithFormat("'%s' takes 1 argument, an allocation ID. " 4559 "As well as an optional -f argument", 4560 m_cmd_name.c_str()); 4561 return false; 4562 } 4563 4564 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4565 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4566 eLanguageTypeExtRenderScript)); 4567 4568 const char *id_cstr = command.GetArgumentAtIndex(0); 4569 bool success = false; 4570 const uint32_t id = 4571 StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success); 4572 if (!success) { 4573 result.AppendErrorWithFormat("invalid allocation id argument '%s'", 4574 id_cstr); 4575 return false; 4576 } 4577 4578 Stream *output_stream_p = nullptr; 4579 std::unique_ptr<Stream> output_stream_storage; 4580 4581 const FileSpec &outfile_spec = 4582 m_options.m_outfile; // Dump allocation to file instead 4583 if (outfile_spec) { 4584 // Open output file 4585 std::string path = outfile_spec.GetPath(); 4586 auto file = FileSystem::Instance().Open(outfile_spec, 4587 File::eOpenOptionWriteOnly | 4588 File::eOpenOptionCanCreate); 4589 if (file) { 4590 output_stream_storage = 4591 std::make_unique<StreamFile>(std::move(file.get())); 4592 output_stream_p = output_stream_storage.get(); 4593 result.GetOutputStream().Printf("Results written to '%s'", 4594 path.c_str()); 4595 result.GetOutputStream().EOL(); 4596 } else { 4597 std::string error = llvm::toString(file.takeError()); 4598 result.AppendErrorWithFormat("Couldn't open file '%s': %s", 4599 path.c_str(), error.c_str()); 4600 return false; 4601 } 4602 } else 4603 output_stream_p = &result.GetOutputStream(); 4604 4605 assert(output_stream_p != nullptr); 4606 bool dumped = 4607 runtime->DumpAllocation(*output_stream_p, m_exe_ctx.GetFramePtr(), id); 4608 4609 if (dumped) 4610 result.SetStatus(eReturnStatusSuccessFinishResult); 4611 else 4612 result.SetStatus(eReturnStatusFailed); 4613 4614 return true; 4615 } 4616 4617 private: 4618 CommandOptions m_options; 4619 }; 4620 4621 static constexpr OptionDefinition g_renderscript_runtime_alloc_list_options[] = { 4622 {LLDB_OPT_SET_1, false, "id", 'i', OptionParser::eRequiredArgument, nullptr, 4623 {}, 0, eArgTypeIndex, 4624 "Only show details of a single allocation with specified id."}}; 4625 4626 class CommandObjectRenderScriptRuntimeAllocationList 4627 : public CommandObjectParsed { 4628 public: 4629 CommandObjectRenderScriptRuntimeAllocationList( 4630 CommandInterpreter &interpreter) 4631 : CommandObjectParsed( 4632 interpreter, "renderscript allocation list", 4633 "List renderscript allocations and their information.", 4634 "renderscript allocation list", 4635 eCommandRequiresProcess | eCommandProcessMustBeLaunched), 4636 m_options() {} 4637 4638 ~CommandObjectRenderScriptRuntimeAllocationList() override = default; 4639 4640 Options *GetOptions() override { return &m_options; } 4641 4642 class CommandOptions : public Options { 4643 public: 4644 CommandOptions() : Options() {} 4645 4646 ~CommandOptions() override = default; 4647 4648 Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg, 4649 ExecutionContext *exe_ctx) override { 4650 Status err; 4651 const int short_option = m_getopt_table[option_idx].val; 4652 4653 switch (short_option) { 4654 case 'i': 4655 if (option_arg.getAsInteger(0, m_id)) 4656 err.SetErrorStringWithFormat("invalid integer value for option '%c'", 4657 short_option); 4658 break; 4659 default: 4660 err.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 4661 break; 4662 } 4663 return err; 4664 } 4665 4666 void OptionParsingStarting(ExecutionContext *exe_ctx) override { m_id = 0; } 4667 4668 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4669 return llvm::makeArrayRef(g_renderscript_runtime_alloc_list_options); 4670 } 4671 4672 uint32_t m_id = 0; 4673 }; 4674 4675 bool DoExecute(Args &command, CommandReturnObject &result) override { 4676 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4677 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4678 eLanguageTypeExtRenderScript)); 4679 runtime->ListAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr(), 4680 m_options.m_id); 4681 result.SetStatus(eReturnStatusSuccessFinishResult); 4682 return true; 4683 } 4684 4685 private: 4686 CommandOptions m_options; 4687 }; 4688 4689 class CommandObjectRenderScriptRuntimeAllocationLoad 4690 : public CommandObjectParsed { 4691 public: 4692 CommandObjectRenderScriptRuntimeAllocationLoad( 4693 CommandInterpreter &interpreter) 4694 : CommandObjectParsed( 4695 interpreter, "renderscript allocation load", 4696 "Loads renderscript allocation contents from a file.", 4697 "renderscript allocation load <ID> <filename>", 4698 eCommandRequiresProcess | eCommandProcessMustBeLaunched) {} 4699 4700 ~CommandObjectRenderScriptRuntimeAllocationLoad() override = default; 4701 4702 bool DoExecute(Args &command, CommandReturnObject &result) override { 4703 const size_t argc = command.GetArgumentCount(); 4704 if (argc != 2) { 4705 result.AppendErrorWithFormat( 4706 "'%s' takes 2 arguments, an allocation ID and filename to read from.", 4707 m_cmd_name.c_str()); 4708 return false; 4709 } 4710 4711 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4712 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4713 eLanguageTypeExtRenderScript)); 4714 4715 const char *id_cstr = command.GetArgumentAtIndex(0); 4716 bool success = false; 4717 const uint32_t id = 4718 StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success); 4719 if (!success) { 4720 result.AppendErrorWithFormat("invalid allocation id argument '%s'", 4721 id_cstr); 4722 return false; 4723 } 4724 4725 const char *path = command.GetArgumentAtIndex(1); 4726 bool loaded = runtime->LoadAllocation(result.GetOutputStream(), id, path, 4727 m_exe_ctx.GetFramePtr()); 4728 4729 if (loaded) 4730 result.SetStatus(eReturnStatusSuccessFinishResult); 4731 else 4732 result.SetStatus(eReturnStatusFailed); 4733 4734 return true; 4735 } 4736 }; 4737 4738 class CommandObjectRenderScriptRuntimeAllocationSave 4739 : public CommandObjectParsed { 4740 public: 4741 CommandObjectRenderScriptRuntimeAllocationSave( 4742 CommandInterpreter &interpreter) 4743 : CommandObjectParsed(interpreter, "renderscript allocation save", 4744 "Write renderscript allocation contents to a file.", 4745 "renderscript allocation save <ID> <filename>", 4746 eCommandRequiresProcess | 4747 eCommandProcessMustBeLaunched) {} 4748 4749 ~CommandObjectRenderScriptRuntimeAllocationSave() override = default; 4750 4751 bool DoExecute(Args &command, CommandReturnObject &result) override { 4752 const size_t argc = command.GetArgumentCount(); 4753 if (argc != 2) { 4754 result.AppendErrorWithFormat( 4755 "'%s' takes 2 arguments, an allocation ID and filename to read from.", 4756 m_cmd_name.c_str()); 4757 return false; 4758 } 4759 4760 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4761 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4762 eLanguageTypeExtRenderScript)); 4763 4764 const char *id_cstr = command.GetArgumentAtIndex(0); 4765 bool success = false; 4766 const uint32_t id = 4767 StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success); 4768 if (!success) { 4769 result.AppendErrorWithFormat("invalid allocation id argument '%s'", 4770 id_cstr); 4771 return false; 4772 } 4773 4774 const char *path = command.GetArgumentAtIndex(1); 4775 bool saved = runtime->SaveAllocation(result.GetOutputStream(), id, path, 4776 m_exe_ctx.GetFramePtr()); 4777 4778 if (saved) 4779 result.SetStatus(eReturnStatusSuccessFinishResult); 4780 else 4781 result.SetStatus(eReturnStatusFailed); 4782 4783 return true; 4784 } 4785 }; 4786 4787 class CommandObjectRenderScriptRuntimeAllocationRefresh 4788 : public CommandObjectParsed { 4789 public: 4790 CommandObjectRenderScriptRuntimeAllocationRefresh( 4791 CommandInterpreter &interpreter) 4792 : CommandObjectParsed(interpreter, "renderscript allocation refresh", 4793 "Recomputes the details of all allocations.", 4794 "renderscript allocation refresh", 4795 eCommandRequiresProcess | 4796 eCommandProcessMustBeLaunched) {} 4797 4798 ~CommandObjectRenderScriptRuntimeAllocationRefresh() override = default; 4799 4800 bool DoExecute(Args &command, CommandReturnObject &result) override { 4801 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4802 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4803 eLanguageTypeExtRenderScript)); 4804 4805 bool success = runtime->RecomputeAllAllocations(result.GetOutputStream(), 4806 m_exe_ctx.GetFramePtr()); 4807 4808 if (success) { 4809 result.SetStatus(eReturnStatusSuccessFinishResult); 4810 return true; 4811 } else { 4812 result.SetStatus(eReturnStatusFailed); 4813 return false; 4814 } 4815 } 4816 }; 4817 4818 class CommandObjectRenderScriptRuntimeAllocation 4819 : public CommandObjectMultiword { 4820 public: 4821 CommandObjectRenderScriptRuntimeAllocation(CommandInterpreter &interpreter) 4822 : CommandObjectMultiword( 4823 interpreter, "renderscript allocation", 4824 "Commands that deal with RenderScript allocations.", nullptr) { 4825 LoadSubCommand( 4826 "list", 4827 CommandObjectSP( 4828 new CommandObjectRenderScriptRuntimeAllocationList(interpreter))); 4829 LoadSubCommand( 4830 "dump", 4831 CommandObjectSP( 4832 new CommandObjectRenderScriptRuntimeAllocationDump(interpreter))); 4833 LoadSubCommand( 4834 "save", 4835 CommandObjectSP( 4836 new CommandObjectRenderScriptRuntimeAllocationSave(interpreter))); 4837 LoadSubCommand( 4838 "load", 4839 CommandObjectSP( 4840 new CommandObjectRenderScriptRuntimeAllocationLoad(interpreter))); 4841 LoadSubCommand( 4842 "refresh", 4843 CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationRefresh( 4844 interpreter))); 4845 } 4846 4847 ~CommandObjectRenderScriptRuntimeAllocation() override = default; 4848 }; 4849 4850 class CommandObjectRenderScriptRuntimeStatus : public CommandObjectParsed { 4851 public: 4852 CommandObjectRenderScriptRuntimeStatus(CommandInterpreter &interpreter) 4853 : CommandObjectParsed(interpreter, "renderscript status", 4854 "Displays current RenderScript runtime status.", 4855 "renderscript status", 4856 eCommandRequiresProcess | 4857 eCommandProcessMustBeLaunched) {} 4858 4859 ~CommandObjectRenderScriptRuntimeStatus() override = default; 4860 4861 bool DoExecute(Args &command, CommandReturnObject &result) override { 4862 RenderScriptRuntime *runtime = llvm::cast<RenderScriptRuntime>( 4863 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4864 eLanguageTypeExtRenderScript)); 4865 runtime->DumpStatus(result.GetOutputStream()); 4866 result.SetStatus(eReturnStatusSuccessFinishResult); 4867 return true; 4868 } 4869 }; 4870 4871 class CommandObjectRenderScriptRuntimeReduction 4872 : public CommandObjectMultiword { 4873 public: 4874 CommandObjectRenderScriptRuntimeReduction(CommandInterpreter &interpreter) 4875 : CommandObjectMultiword(interpreter, "renderscript reduction", 4876 "Commands that handle general reduction kernels", 4877 nullptr) { 4878 LoadSubCommand( 4879 "breakpoint", 4880 CommandObjectSP(new CommandObjectRenderScriptRuntimeReductionBreakpoint( 4881 interpreter))); 4882 } 4883 ~CommandObjectRenderScriptRuntimeReduction() override = default; 4884 }; 4885 4886 class CommandObjectRenderScriptRuntime : public CommandObjectMultiword { 4887 public: 4888 CommandObjectRenderScriptRuntime(CommandInterpreter &interpreter) 4889 : CommandObjectMultiword( 4890 interpreter, "renderscript", 4891 "Commands for operating on the RenderScript runtime.", 4892 "renderscript <subcommand> [<subcommand-options>]") { 4893 LoadSubCommand( 4894 "module", CommandObjectSP( 4895 new CommandObjectRenderScriptRuntimeModule(interpreter))); 4896 LoadSubCommand( 4897 "status", CommandObjectSP( 4898 new CommandObjectRenderScriptRuntimeStatus(interpreter))); 4899 LoadSubCommand( 4900 "kernel", CommandObjectSP( 4901 new CommandObjectRenderScriptRuntimeKernel(interpreter))); 4902 LoadSubCommand("context", 4903 CommandObjectSP(new CommandObjectRenderScriptRuntimeContext( 4904 interpreter))); 4905 LoadSubCommand( 4906 "allocation", 4907 CommandObjectSP( 4908 new CommandObjectRenderScriptRuntimeAllocation(interpreter))); 4909 LoadSubCommand("scriptgroup", 4910 NewCommandObjectRenderScriptScriptGroup(interpreter)); 4911 LoadSubCommand( 4912 "reduction", 4913 CommandObjectSP( 4914 new CommandObjectRenderScriptRuntimeReduction(interpreter))); 4915 } 4916 4917 ~CommandObjectRenderScriptRuntime() override = default; 4918 }; 4919 4920 void RenderScriptRuntime::Initiate() { assert(!m_initiated); } 4921 4922 RenderScriptRuntime::RenderScriptRuntime(Process *process) 4923 : lldb_private::CPPLanguageRuntime(process), m_initiated(false), 4924 m_debuggerPresentFlagged(false), m_breakAllKernels(false), 4925 m_ir_passes(nullptr) { 4926 ModulesDidLoad(process->GetTarget().GetImages()); 4927 } 4928 4929 lldb::CommandObjectSP RenderScriptRuntime::GetCommandObject( 4930 lldb_private::CommandInterpreter &interpreter) { 4931 return CommandObjectSP(new CommandObjectRenderScriptRuntime(interpreter)); 4932 } 4933 4934 RenderScriptRuntime::~RenderScriptRuntime() = default; 4935