1 //===-- RenderScriptRuntime.cpp ---------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 // C Includes
11 // C++ Includes
12 // Other libraries and framework includes
13 // Project includes
14 #include "RenderScriptRuntime.h"
15 
16 #include "lldb/Core/ConstString.h"
17 #include "lldb/Core/Debugger.h"
18 #include "lldb/Core/Error.h"
19 #include "lldb/Core/Log.h"
20 #include "lldb/Core/PluginManager.h"
21 #include "lldb/Core/ValueObjectVariable.h"
22 #include "lldb/Core/RegularExpression.h"
23 #include "lldb/DataFormatters/DumpValueObjectOptions.h"
24 #include "lldb/Host/StringConvert.h"
25 #include "lldb/Symbol/Symbol.h"
26 #include "lldb/Symbol/Type.h"
27 #include "lldb/Target/Process.h"
28 #include "lldb/Target/Target.h"
29 #include "lldb/Target/Thread.h"
30 #include "lldb/Interpreter/Args.h"
31 #include "lldb/Interpreter/Options.h"
32 #include "lldb/Interpreter/CommandInterpreter.h"
33 #include "lldb/Interpreter/CommandReturnObject.h"
34 #include "lldb/Interpreter/CommandObjectMultiword.h"
35 #include "lldb/Breakpoint/StoppointCallbackContext.h"
36 #include "lldb/Target/RegisterContext.h"
37 #include "lldb/Expression/UserExpression.h"
38 #include "lldb/Symbol/VariableList.h"
39 
40 using namespace lldb;
41 using namespace lldb_private;
42 using namespace lldb_renderscript;
43 
44 namespace {
45 
46 // The empirical_type adds a basic level of validation to arbitrary data
47 // allowing us to track if data has been discovered and stored or not.
48 // An empirical_type will be marked as valid only if it has been explicitly assigned to.
49 template <typename type_t>
50 class empirical_type
51 {
52 public:
53     // Ctor. Contents is invalid when constructed.
54     empirical_type()
55         : valid(false)
56     {}
57 
58     // Return true and copy contents to out if valid, else return false.
59     bool get(type_t& out) const
60     {
61         if (valid)
62             out = data;
63         return valid;
64     }
65 
66     // Return a pointer to the contents or nullptr if it was not valid.
67     const type_t* get() const
68     {
69         return valid ? &data : nullptr;
70     }
71 
72     // Assign data explicitly.
73     void set(const type_t in)
74     {
75         data = in;
76         valid = true;
77     }
78 
79     // Mark contents as invalid.
80     void invalidate()
81     {
82         valid = false;
83     }
84 
85     // Returns true if this type contains valid data.
86     bool isValid() const
87     {
88         return valid;
89     }
90 
91     // Assignment operator.
92     empirical_type<type_t>& operator = (const type_t in)
93     {
94         set(in);
95         return *this;
96     }
97 
98     // Dereference operator returns contents.
99     // Warning: Will assert if not valid so use only when you know data is valid.
100     const type_t& operator * () const
101     {
102         assert(valid);
103         return data;
104     }
105 
106 protected:
107     bool valid;
108     type_t data;
109 };
110 
111 } // anonymous namespace
112 
113 // The ScriptDetails class collects data associated with a single script instance.
114 struct RenderScriptRuntime::ScriptDetails
115 {
116     ~ScriptDetails() = default;
117 
118     enum ScriptType
119     {
120         eScript,
121         eScriptC
122     };
123 
124     // The derived type of the script.
125     empirical_type<ScriptType> type;
126     // The name of the original source file.
127     empirical_type<std::string> resName;
128     // Path to script .so file on the device.
129     empirical_type<std::string> scriptDyLib;
130     // Directory where kernel objects are cached on device.
131     empirical_type<std::string> cacheDir;
132     // Pointer to the context which owns this script.
133     empirical_type<lldb::addr_t> context;
134     // Pointer to the script object itself.
135     empirical_type<lldb::addr_t> script;
136 };
137 
138 // This Element class represents the Element object in RS,
139 // defining the type associated with an Allocation.
140 struct RenderScriptRuntime::Element
141 {
142     // Taken from rsDefines.h
143     enum DataKind
144     {
145         RS_KIND_USER,
146         RS_KIND_PIXEL_L = 7,
147         RS_KIND_PIXEL_A,
148         RS_KIND_PIXEL_LA,
149         RS_KIND_PIXEL_RGB,
150         RS_KIND_PIXEL_RGBA,
151         RS_KIND_PIXEL_DEPTH,
152         RS_KIND_PIXEL_YUV,
153         RS_KIND_INVALID = 100
154     };
155 
156     // Taken from rsDefines.h
157     enum DataType
158     {
159         RS_TYPE_NONE = 0,
160         RS_TYPE_FLOAT_16,
161         RS_TYPE_FLOAT_32,
162         RS_TYPE_FLOAT_64,
163         RS_TYPE_SIGNED_8,
164         RS_TYPE_SIGNED_16,
165         RS_TYPE_SIGNED_32,
166         RS_TYPE_SIGNED_64,
167         RS_TYPE_UNSIGNED_8,
168         RS_TYPE_UNSIGNED_16,
169         RS_TYPE_UNSIGNED_32,
170         RS_TYPE_UNSIGNED_64,
171         RS_TYPE_BOOLEAN
172     };
173 
174     std::vector<Element> children;                       // Child Element fields for structs
175     empirical_type<lldb::addr_t> element_ptr;            // Pointer to the RS Element of the Type
176     empirical_type<DataType> type;                       // Type of each data pointer stored by the allocation
177     empirical_type<DataKind> type_kind;                  // Defines pixel type if Allocation is created from an image
178     empirical_type<uint32_t> type_vec_size;              // Vector size of each data point, e.g '4' for uchar4
179     empirical_type<uint32_t> field_count;                // Number of Subelements
180     empirical_type<uint32_t> datum_size;                 // Size of a single Element with padding
181     empirical_type<uint32_t> padding;                    // Number of padding bytes
182     empirical_type<uint32_t> array_size;                 // Number of items in array, only needed for strucrs
183     ConstString type_name;                               // Name of type, only needed for structs
184 
185     static const ConstString &GetFallbackStructName();   // Print this as the type name of a struct Element
186                                                          // If we can't resolve the actual struct name
187 };
188 
189 // This AllocationDetails class collects data associated with a single
190 // allocation instance.
191 struct RenderScriptRuntime::AllocationDetails
192 {
193     struct Dimension
194     {
195         uint32_t dim_1;
196         uint32_t dim_2;
197         uint32_t dim_3;
198         uint32_t cubeMap;
199 
200         Dimension()
201         {
202              dim_1 = 0;
203              dim_2 = 0;
204              dim_3 = 0;
205              cubeMap = 0;
206         }
207     };
208 
209     // Header for reading and writing allocation contents
210     // to a binary file.
211     struct FileHeader
212     {
213         uint8_t ident[4];      // ASCII 'RSAD' identifying the file
214         uint16_t hdr_size;     // Header size in bytes, for backwards compatability
215         uint16_t type;         // DataType enum
216         uint32_t kind;         // DataKind enum
217         uint32_t dims[3];      // Dimensions
218         uint32_t element_size; // Size of a single element, including padding
219     };
220 
221     // Monotonically increasing from 1
222     static unsigned int ID;
223 
224     // Maps Allocation DataType enum and vector size to printable strings
225     // using mapping from RenderScript numerical types summary documentation
226     static const char* RsDataTypeToString[][4];
227 
228     // Maps Allocation DataKind enum to printable strings
229     static const char* RsDataKindToString[];
230 
231     // Maps allocation types to format sizes for printing.
232     static const unsigned int RSTypeToFormat[][3];
233 
234     // Give each allocation an ID as a way
235     // for commands to reference it.
236     const unsigned int id;
237 
238     RenderScriptRuntime::Element element;     // Allocation Element type
239     empirical_type<Dimension> dimension;      // Dimensions of the Allocation
240     empirical_type<lldb::addr_t> address;     // Pointer to address of the RS Allocation
241     empirical_type<lldb::addr_t> data_ptr;    // Pointer to the data held by the Allocation
242     empirical_type<lldb::addr_t> type_ptr;    // Pointer to the RS Type of the Allocation
243     empirical_type<lldb::addr_t> context;     // Pointer to the RS Context of the Allocation
244     empirical_type<uint32_t> size;            // Size of the allocation
245     empirical_type<uint32_t> stride;          // Stride between rows of the allocation
246 
247     // Give each allocation an id, so we can reference it in user commands.
248     AllocationDetails(): id(ID++)
249     {
250     }
251 };
252 
253 
254 const ConstString &
255 RenderScriptRuntime::Element::GetFallbackStructName()
256 {
257     static const ConstString FallbackStructName("struct");
258     return FallbackStructName;
259 }
260 
261 unsigned int RenderScriptRuntime::AllocationDetails::ID = 1;
262 
263 const char* RenderScriptRuntime::AllocationDetails::RsDataKindToString[] =
264 {
265    "User",
266    "Undefined", "Undefined", "Undefined", // Enum jumps from 0 to 7
267    "Undefined", "Undefined", "Undefined",
268    "L Pixel",
269    "A Pixel",
270    "LA Pixel",
271    "RGB Pixel",
272    "RGBA Pixel",
273    "Pixel Depth",
274    "YUV Pixel"
275 };
276 
277 const char* RenderScriptRuntime::AllocationDetails::RsDataTypeToString[][4] =
278 {
279     {"None", "None", "None", "None"},
280     {"half", "half2", "half3", "half4"},
281     {"float", "float2", "float3", "float4"},
282     {"double", "double2", "double3", "double4"},
283     {"char", "char2", "char3", "char4"},
284     {"short", "short2", "short3", "short4"},
285     {"int", "int2", "int3", "int4"},
286     {"long", "long2", "long3", "long4"},
287     {"uchar", "uchar2", "uchar3", "uchar4"},
288     {"ushort", "ushort2", "ushort3", "ushort4"},
289     {"uint", "uint2", "uint3", "uint4"},
290     {"ulong", "ulong2", "ulong3", "ulong4"},
291     {"bool", "bool2", "bool3", "bool4"}
292 };
293 
294 // Used as an index into the RSTypeToFormat array elements
295 enum TypeToFormatIndex {
296    eFormatSingle = 0,
297    eFormatVector,
298    eElementSize
299 };
300 
301 // { format enum of single element, format enum of element vector, size of element}
302 const unsigned int RenderScriptRuntime::AllocationDetails::RSTypeToFormat[][3] =
303 {
304     {eFormatHex, eFormatHex, 1}, // RS_TYPE_NONE
305     {eFormatFloat, eFormatVectorOfFloat16, 2}, // RS_TYPE_FLOAT_16
306     {eFormatFloat, eFormatVectorOfFloat32, sizeof(float)}, // RS_TYPE_FLOAT_32
307     {eFormatFloat, eFormatVectorOfFloat64, sizeof(double)}, // RS_TYPE_FLOAT_64
308     {eFormatDecimal, eFormatVectorOfSInt8, sizeof(int8_t)}, // RS_TYPE_SIGNED_8
309     {eFormatDecimal, eFormatVectorOfSInt16, sizeof(int16_t)}, // RS_TYPE_SIGNED_16
310     {eFormatDecimal, eFormatVectorOfSInt32, sizeof(int32_t)}, // RS_TYPE_SIGNED_32
311     {eFormatDecimal, eFormatVectorOfSInt64, sizeof(int64_t)}, // RS_TYPE_SIGNED_64
312     {eFormatDecimal, eFormatVectorOfUInt8, sizeof(uint8_t)}, // RS_TYPE_UNSIGNED_8
313     {eFormatDecimal, eFormatVectorOfUInt16, sizeof(uint16_t)}, // RS_TYPE_UNSIGNED_16
314     {eFormatDecimal, eFormatVectorOfUInt32, sizeof(uint32_t)}, // RS_TYPE_UNSIGNED_32
315     {eFormatDecimal, eFormatVectorOfUInt64, sizeof(uint64_t)}, // RS_TYPE_UNSIGNED_64
316     {eFormatBoolean, eFormatBoolean, sizeof(bool)} // RS_TYPE_BOOL
317 };
318 
319 //------------------------------------------------------------------
320 // Static Functions
321 //------------------------------------------------------------------
322 LanguageRuntime *
323 RenderScriptRuntime::CreateInstance(Process *process, lldb::LanguageType language)
324 {
325 
326     if (language == eLanguageTypeExtRenderScript)
327         return new RenderScriptRuntime(process);
328     else
329         return NULL;
330 }
331 
332 // Callback with a module to search for matching symbols.
333 // We first check that the module contains RS kernels.
334 // Then look for a symbol which matches our kernel name.
335 // The breakpoint address is finally set using the address of this symbol.
336 Searcher::CallbackReturn
337 RSBreakpointResolver::SearchCallback(SearchFilter &filter,
338                                      SymbolContext &context,
339                                      Address*,
340                                      bool)
341 {
342     ModuleSP module = context.module_sp;
343 
344     if (!module)
345         return Searcher::eCallbackReturnContinue;
346 
347     // Is this a module containing renderscript kernels?
348     if (nullptr == module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), eSymbolTypeData))
349         return Searcher::eCallbackReturnContinue;
350 
351     // Attempt to set a breakpoint on the kernel name symbol within the module library.
352     // If it's not found, it's likely debug info is unavailable - try to set a
353     // breakpoint on <name>.expand.
354 
355     const Symbol* kernel_sym = module->FindFirstSymbolWithNameAndType(m_kernel_name, eSymbolTypeCode);
356     if (!kernel_sym)
357     {
358         std::string kernel_name_expanded(m_kernel_name.AsCString());
359         kernel_name_expanded.append(".expand");
360         kernel_sym = module->FindFirstSymbolWithNameAndType(ConstString(kernel_name_expanded.c_str()), eSymbolTypeCode);
361     }
362 
363     if (kernel_sym)
364     {
365         Address bp_addr = kernel_sym->GetAddress();
366         if (filter.AddressPasses(bp_addr))
367             m_breakpoint->AddLocation(bp_addr);
368     }
369 
370     return Searcher::eCallbackReturnContinue;
371 }
372 
373 void
374 RenderScriptRuntime::Initialize()
375 {
376     PluginManager::RegisterPlugin(GetPluginNameStatic(), "RenderScript language support", CreateInstance, GetCommandObject);
377 }
378 
379 void
380 RenderScriptRuntime::Terminate()
381 {
382     PluginManager::UnregisterPlugin(CreateInstance);
383 }
384 
385 lldb_private::ConstString
386 RenderScriptRuntime::GetPluginNameStatic()
387 {
388     static ConstString g_name("renderscript");
389     return g_name;
390 }
391 
392 RenderScriptRuntime::ModuleKind
393 RenderScriptRuntime::GetModuleKind(const lldb::ModuleSP &module_sp)
394 {
395     if (module_sp)
396     {
397         // Is this a module containing renderscript kernels?
398         const Symbol *info_sym = module_sp->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), eSymbolTypeData);
399         if (info_sym)
400         {
401             return eModuleKindKernelObj;
402         }
403 
404         // Is this the main RS runtime library
405         const ConstString rs_lib("libRS.so");
406         if (module_sp->GetFileSpec().GetFilename() == rs_lib)
407         {
408             return eModuleKindLibRS;
409         }
410 
411         const ConstString rs_driverlib("libRSDriver.so");
412         if (module_sp->GetFileSpec().GetFilename() == rs_driverlib)
413         {
414             return eModuleKindDriver;
415         }
416 
417         const ConstString rs_cpureflib("libRSCpuRef.so");
418         if (module_sp->GetFileSpec().GetFilename() == rs_cpureflib)
419         {
420             return eModuleKindImpl;
421         }
422 
423     }
424     return eModuleKindIgnored;
425 }
426 
427 bool
428 RenderScriptRuntime::IsRenderScriptModule(const lldb::ModuleSP &module_sp)
429 {
430     return GetModuleKind(module_sp) != eModuleKindIgnored;
431 }
432 
433 void
434 RenderScriptRuntime::ModulesDidLoad(const ModuleList &module_list )
435 {
436     Mutex::Locker locker (module_list.GetMutex ());
437 
438     size_t num_modules = module_list.GetSize();
439     for (size_t i = 0; i < num_modules; i++)
440     {
441         auto mod = module_list.GetModuleAtIndex (i);
442         if (IsRenderScriptModule (mod))
443         {
444             LoadModule(mod);
445         }
446     }
447 }
448 
449 //------------------------------------------------------------------
450 // PluginInterface protocol
451 //------------------------------------------------------------------
452 lldb_private::ConstString
453 RenderScriptRuntime::GetPluginName()
454 {
455     return GetPluginNameStatic();
456 }
457 
458 uint32_t
459 RenderScriptRuntime::GetPluginVersion()
460 {
461     return 1;
462 }
463 
464 bool
465 RenderScriptRuntime::IsVTableName(const char *name)
466 {
467     return false;
468 }
469 
470 bool
471 RenderScriptRuntime::GetDynamicTypeAndAddress(ValueObject &in_value, lldb::DynamicValueType use_dynamic,
472                                               TypeAndOrName &class_type_or_name, Address &address,
473                                               Value::ValueType &value_type)
474 {
475     return false;
476 }
477 
478 TypeAndOrName
479 RenderScriptRuntime::FixUpDynamicType (const TypeAndOrName& type_and_or_name,
480                                        ValueObject& static_value)
481 {
482     return type_and_or_name;
483 }
484 
485 bool
486 RenderScriptRuntime::CouldHaveDynamicValue(ValueObject &in_value)
487 {
488     return false;
489 }
490 
491 lldb::BreakpointResolverSP
492 RenderScriptRuntime::CreateExceptionResolver(Breakpoint *bkpt, bool catch_bp, bool throw_bp)
493 {
494     BreakpointResolverSP resolver_sp;
495     return resolver_sp;
496 }
497 
498 const RenderScriptRuntime::HookDefn RenderScriptRuntime::s_runtimeHookDefns[] =
499 {
500     //rsdScript
501     {
502         "rsdScriptInit", //name
503         "_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_7ScriptCEPKcS7_PKhjj", // symbol name 32 bit
504         "_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_7ScriptCEPKcS7_PKhmj", // symbol name 64 bit
505         0, // version
506         RenderScriptRuntime::eModuleKindDriver, // type
507         &lldb_private::RenderScriptRuntime::CaptureScriptInit1 // handler
508     },
509     {
510         "rsdScriptInvokeForEach", // name
511         "_Z22rsdScriptInvokeForEachPKN7android12renderscript7ContextEPNS0_6ScriptEjPKNS0_10AllocationEPS6_PKvjPK12RsScriptCall", // symbol name 32bit
512         "_Z22rsdScriptInvokeForEachPKN7android12renderscript7ContextEPNS0_6ScriptEjPKNS0_10AllocationEPS6_PKvmPK12RsScriptCall", // symbol name 64bit
513         0, // version
514         RenderScriptRuntime::eModuleKindDriver, // type
515         nullptr // handler
516     },
517     {
518         "rsdScriptInvokeForEachMulti", // name
519         "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0_6ScriptEjPPKNS0_10AllocationEjPS6_PKvjPK12RsScriptCall", // symbol name 32bit
520         "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0_6ScriptEjPPKNS0_10AllocationEmPS6_PKvmPK12RsScriptCall", // symbol name 64bit
521         0, // version
522         RenderScriptRuntime::eModuleKindDriver, // type
523         nullptr // handler
524     },
525     {
526         "rsdScriptInvokeFunction", // name
527         "_Z23rsdScriptInvokeFunctionPKN7android12renderscript7ContextEPNS0_6ScriptEjPKvj", // symbol name 32bit
528         "_Z23rsdScriptInvokeFunctionPKN7android12renderscript7ContextEPNS0_6ScriptEjPKvm", // symbol name 64bit
529         0, // version
530         RenderScriptRuntime::eModuleKindDriver, // type
531         nullptr // handler
532     },
533     {
534         "rsdScriptSetGlobalVar", // name
535         "_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_6ScriptEjPvj", // symbol name 32bit
536         "_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_6ScriptEjPvm", // symbol name 64bit
537         0, // version
538         RenderScriptRuntime::eModuleKindDriver, // type
539         &lldb_private::RenderScriptRuntime::CaptureSetGlobalVar1 // handler
540     },
541 
542     //rsdAllocation
543     {
544         "rsdAllocationInit", // name
545         "_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_10AllocationEb", // symbol name 32bit
546         "_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_10AllocationEb", // symbol name 64bit
547         0, // version
548         RenderScriptRuntime::eModuleKindDriver, // type
549         &lldb_private::RenderScriptRuntime::CaptureAllocationInit1 // handler
550     },
551     {
552         "rsdAllocationRead2D", //name
553         "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_10AllocationEjjj23RsAllocationCubemapFacejjPvjj", // symbol name 32bit
554         "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_10AllocationEjjj23RsAllocationCubemapFacejjPvmm", // symbol name 64bit
555         0, // version
556         RenderScriptRuntime::eModuleKindDriver, // type
557         nullptr // handler
558     },
559 };
560 
561 const size_t RenderScriptRuntime::s_runtimeHookCount = sizeof(s_runtimeHookDefns)/sizeof(s_runtimeHookDefns[0]);
562 
563 bool
564 RenderScriptRuntime::HookCallback(void *baton, StoppointCallbackContext *ctx, lldb::user_id_t break_id, lldb::user_id_t break_loc_id)
565 {
566     RuntimeHook* hook_info = (RuntimeHook*)baton;
567     ExecutionContext context(ctx->exe_ctx_ref);
568 
569     RenderScriptRuntime *lang_rt = (RenderScriptRuntime *)context.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
570 
571     lang_rt->HookCallback(hook_info, context);
572 
573     return false;
574 }
575 
576 void
577 RenderScriptRuntime::HookCallback(RuntimeHook* hook_info, ExecutionContext& context)
578 {
579     Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
580 
581     if (log)
582         log->Printf ("RenderScriptRuntime::HookCallback - '%s' .", hook_info->defn->name);
583 
584     if (hook_info->defn->grabber)
585     {
586         (this->*(hook_info->defn->grabber))(hook_info, context);
587     }
588 }
589 
590 bool
591 RenderScriptRuntime::GetArgSimple(ExecutionContext &context, uint32_t arg, uint64_t *data)
592 {
593     if (!data)
594         return false;
595 
596     Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
597     Error error;
598     RegisterContext* reg_ctx = context.GetRegisterContext();
599     Process* process = context.GetProcessPtr();
600     bool success = false; // return value
601 
602     if (!context.GetTargetPtr())
603     {
604         if (log)
605             log->Printf("RenderScriptRuntime::GetArgSimple - Invalid target");
606 
607         return false;
608     }
609 
610     switch (context.GetTargetPtr()->GetArchitecture().GetMachine())
611     {
612         case llvm::Triple::ArchType::x86:
613         {
614             uint64_t sp = reg_ctx->GetSP();
615             uint32_t offset = (1 + arg) * sizeof(uint32_t);
616             uint32_t result = 0;
617             process->ReadMemory(sp + offset, &result, sizeof(uint32_t), error);
618             if (error.Fail())
619             {
620                 if (log)
621                     log->Printf ("RenderScriptRuntime:: GetArgSimple - error reading X86 stack: %s.", error.AsCString());
622             }
623             else
624             {
625                 *data = result;
626                 success = true;
627             }
628 
629             break;
630         }
631         case llvm::Triple::ArchType::arm:
632         {
633             // arm 32 bit
634             if (arg < 4)
635             {
636                 const RegisterInfo* rArg = reg_ctx->GetRegisterInfoAtIndex(arg);
637                 RegisterValue rVal;
638                 success = reg_ctx->ReadRegister(rArg, rVal);
639                 if (success)
640                 {
641                     (*data) = rVal.GetAsUInt32();
642                 }
643                 else
644                 {
645                     if (log)
646                         log->Printf ("RenderScriptRuntime:: GetArgSimple - error reading ARM register: %d.", arg);
647                 }
648             }
649             else
650             {
651                 uint64_t sp = reg_ctx->GetSP();
652                 uint32_t offset = (arg-4) * sizeof(uint32_t);
653                 process->ReadMemory(sp + offset, &data, sizeof(uint32_t), error);
654                 if (error.Fail())
655                 {
656                     if (log)
657                         log->Printf ("RenderScriptRuntime:: GetArgSimple - error reading ARM stack: %s.", error.AsCString());
658                 }
659                 else
660                 {
661                     success = true;
662                 }
663             }
664 
665             break;
666         }
667         case llvm::Triple::ArchType::aarch64:
668         {
669             // arm 64 bit
670             // first 8 arguments are in the registers
671             if (arg < 8)
672             {
673                 const RegisterInfo* rArg = reg_ctx->GetRegisterInfoAtIndex(arg);
674                 RegisterValue rVal;
675                 success = reg_ctx->ReadRegister(rArg, rVal);
676                 if (success)
677                 {
678                     *data = rVal.GetAsUInt64();
679                 }
680                 else
681                 {
682                     if (log)
683                         log->Printf("RenderScriptRuntime::GetArgSimple() - AARCH64 - Error while reading the argument #%d", arg);
684                 }
685             }
686             else
687             {
688                 // @TODO: need to find the argument in the stack
689                 if (log)
690                     log->Printf("RenderScriptRuntime::GetArgSimple - AARCH64 - FOR #ARG >= 8 NOT IMPLEMENTED YET. Argument number: %d", arg);
691             }
692             break;
693         }
694         case llvm::Triple::ArchType::mipsel:
695         {
696 
697             // read from the registers
698             if (arg < 4){
699                 const RegisterInfo* rArg = reg_ctx->GetRegisterInfoAtIndex(arg + 4);
700                 RegisterValue rVal;
701                 success = reg_ctx->ReadRegister(rArg, rVal);
702                 if (success)
703                 {
704                     *data = rVal.GetAsUInt64();
705                 }
706                 else
707                 {
708                     if (log)
709                         log->Printf("RenderScriptRuntime::GetArgSimple() - Mips - Error while reading the argument #%d", arg);
710                 }
711 
712             }
713 
714             // read from the stack
715             else
716             {
717                 uint64_t sp = reg_ctx->GetSP();
718                 uint32_t offset = arg * sizeof(uint32_t);
719                 process->ReadMemory(sp + offset, &data, sizeof(uint32_t), error);
720                 if (error.Fail())
721                 {
722                     if (log)
723                         log->Printf ("RenderScriptRuntime::GetArgSimple - error reading Mips stack: %s.", error.AsCString());
724                 }
725                 else
726                 {
727                     success = true;
728                 }
729             }
730 
731             break;
732         }
733         case llvm::Triple::ArchType::mips64el:
734         {
735             // read from the registers
736             if (arg < 8)
737             {
738                 const RegisterInfo* rArg = reg_ctx->GetRegisterInfoAtIndex(arg + 4);
739                 RegisterValue rVal;
740                 success = reg_ctx->ReadRegister(rArg, rVal);
741                 if (success)
742                 {
743                     (*data) = rVal.GetAsUInt64();
744                 }
745                 else
746                 {
747                     if (log)
748                         log->Printf("RenderScriptRuntime::GetArgSimple - Mips64 - Error reading the argument #%d", arg);
749                 }
750             }
751 
752             // read from the stack
753             else
754             {
755                 uint64_t sp = reg_ctx->GetSP();
756                 uint32_t offset = (arg - 8) * sizeof(uint64_t);
757                 process->ReadMemory(sp + offset, &data, sizeof(uint64_t), error);
758                 if (error.Fail())
759                 {
760                     if (log)
761                         log->Printf ("RenderScriptRuntime::GetArgSimple - Mips64 - Error reading Mips64 stack: %s.", error.AsCString());
762                 }
763                 else
764                 {
765                     success = true;
766                 }
767             }
768 
769             break;
770         }
771         default:
772         {
773             // invalid architecture
774             if (log)
775                 log->Printf("RenderScriptRuntime::GetArgSimple - Architecture not supported");
776 
777         }
778     }
779 
780     return success;
781 }
782 
783 void
784 RenderScriptRuntime::CaptureSetGlobalVar1(RuntimeHook* hook_info, ExecutionContext& context)
785 {
786     Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
787 
788     //Context, Script, int, data, length
789 
790     uint64_t rs_context_u64 = 0U;
791     uint64_t rs_script_u64 = 0U;
792     uint64_t rs_id_u64 = 0U;
793     uint64_t rs_data_u64 = 0U;
794     uint64_t rs_length_u64 = 0U;
795 
796     bool success =
797         GetArgSimple(context, 0, &rs_context_u64) &&
798         GetArgSimple(context, 1, &rs_script_u64) &&
799         GetArgSimple(context, 2, &rs_id_u64) &&
800         GetArgSimple(context, 3, &rs_data_u64) &&
801         GetArgSimple(context, 4, &rs_length_u64);
802 
803     if (!success)
804     {
805         if (log)
806             log->Printf("RenderScriptRuntime::CaptureSetGlobalVar1 - Error while reading the function parameters");
807         return;
808     }
809 
810     if (log)
811     {
812         log->Printf ("RenderScriptRuntime::CaptureSetGlobalVar1 - 0x%" PRIx64 ",0x%" PRIx64 " slot %" PRIu64 " = 0x%" PRIx64 ":%" PRIu64 "bytes.",
813                         rs_context_u64, rs_script_u64, rs_id_u64, rs_data_u64, rs_length_u64);
814 
815         addr_t script_addr =  (addr_t)rs_script_u64;
816         if (m_scriptMappings.find( script_addr ) != m_scriptMappings.end())
817         {
818             auto rsm = m_scriptMappings[script_addr];
819             if (rs_id_u64 < rsm->m_globals.size())
820             {
821                 auto rsg = rsm->m_globals[rs_id_u64];
822                 log->Printf ("RenderScriptRuntime::CaptureSetGlobalVar1 - Setting of '%s' within '%s' inferred", rsg.m_name.AsCString(),
823                                 rsm->m_module->GetFileSpec().GetFilename().AsCString());
824             }
825         }
826     }
827 }
828 
829 void
830 RenderScriptRuntime::CaptureAllocationInit1(RuntimeHook* hook_info, ExecutionContext& context)
831 {
832     Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
833 
834     //Context, Alloc, bool
835 
836     uint64_t rs_context_u64 = 0U;
837     uint64_t rs_alloc_u64 = 0U;
838     uint64_t rs_forceZero_u64 = 0U;
839 
840     bool success =
841         GetArgSimple(context, 0, &rs_context_u64) &&
842         GetArgSimple(context, 1, &rs_alloc_u64) &&
843         GetArgSimple(context, 2, &rs_forceZero_u64);
844     if (!success) // error case
845     {
846         if (log)
847             log->Printf("RenderScriptRuntime::CaptureAllocationInit1 - Error while reading the function parameters");
848         return; // abort
849     }
850 
851     if (log)
852         log->Printf ("RenderScriptRuntime::CaptureAllocationInit1 - 0x%" PRIx64 ",0x%" PRIx64 ",0x%" PRIx64 " .",
853                         rs_context_u64, rs_alloc_u64, rs_forceZero_u64);
854 
855     AllocationDetails* alloc = LookUpAllocation(rs_alloc_u64, true);
856     if (alloc)
857         alloc->context = rs_context_u64;
858 }
859 
860 void
861 RenderScriptRuntime::CaptureScriptInit1(RuntimeHook* hook_info, ExecutionContext& context)
862 {
863     Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
864 
865     //Context, Script, resname Str, cachedir Str
866     Error error;
867     Process* process = context.GetProcessPtr();
868 
869     uint64_t rs_context_u64 = 0U;
870     uint64_t rs_script_u64 = 0U;
871     uint64_t rs_resnameptr_u64 = 0U;
872     uint64_t rs_cachedirptr_u64 = 0U;
873 
874     std::string resname;
875     std::string cachedir;
876 
877     // read the function parameters
878     bool success =
879         GetArgSimple(context, 0, &rs_context_u64) &&
880         GetArgSimple(context, 1, &rs_script_u64) &&
881         GetArgSimple(context, 2, &rs_resnameptr_u64) &&
882         GetArgSimple(context, 3, &rs_cachedirptr_u64);
883 
884     if (!success)
885     {
886         if (log)
887             log->Printf("RenderScriptRuntime::CaptureScriptInit1 - Error while reading the function parameters");
888         return;
889     }
890 
891     process->ReadCStringFromMemory((lldb::addr_t)rs_resnameptr_u64, resname, error);
892     if (error.Fail())
893     {
894         if (log)
895             log->Printf ("RenderScriptRuntime::CaptureScriptInit1 - error reading resname: %s.", error.AsCString());
896 
897     }
898 
899     process->ReadCStringFromMemory((lldb::addr_t)rs_cachedirptr_u64, cachedir, error);
900     if (error.Fail())
901     {
902         if (log)
903             log->Printf ("RenderScriptRuntime::CaptureScriptInit1 - error reading cachedir: %s.", error.AsCString());
904     }
905 
906     if (log)
907         log->Printf ("RenderScriptRuntime::CaptureScriptInit1 - 0x%" PRIx64 ",0x%" PRIx64 " => '%s' at '%s' .",
908                      rs_context_u64, rs_script_u64, resname.c_str(), cachedir.c_str());
909 
910     if (resname.size() > 0)
911     {
912         StreamString strm;
913         strm.Printf("librs.%s.so", resname.c_str());
914 
915         ScriptDetails* script = LookUpScript(rs_script_u64, true);
916         if (script)
917         {
918             script->type = ScriptDetails::eScriptC;
919             script->cacheDir = cachedir;
920             script->resName = resname;
921             script->scriptDyLib = strm.GetData();
922             script->context = addr_t(rs_context_u64);
923         }
924 
925         if (log)
926             log->Printf ("RenderScriptRuntime::CaptureScriptInit1 - '%s' tagged with context 0x%" PRIx64 " and script 0x%" PRIx64 ".",
927                          strm.GetData(), rs_context_u64, rs_script_u64);
928     }
929     else if (log)
930     {
931         log->Printf ("RenderScriptRuntime::CaptureScriptInit1 - resource name invalid, Script not tagged");
932     }
933 }
934 
935 void
936 RenderScriptRuntime::LoadRuntimeHooks(lldb::ModuleSP module, ModuleKind kind)
937 {
938     Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
939 
940     if (!module)
941     {
942         return;
943     }
944 
945     Target &target = GetProcess()->GetTarget();
946     llvm::Triple::ArchType targetArchType = target.GetArchitecture().GetMachine();
947 
948     if (targetArchType != llvm::Triple::ArchType::x86
949         && targetArchType != llvm::Triple::ArchType::arm
950         && targetArchType != llvm::Triple::ArchType::aarch64
951         && targetArchType != llvm::Triple::ArchType::mipsel
952         && targetArchType != llvm::Triple::ArchType::mips64el
953     )
954     {
955         if (log)
956             log->Printf ("RenderScriptRuntime::LoadRuntimeHooks - Unable to hook runtime. Only X86, ARM, Mips supported currently.");
957 
958         return;
959     }
960 
961     uint32_t archByteSize = target.GetArchitecture().GetAddressByteSize();
962 
963     for (size_t idx = 0; idx < s_runtimeHookCount; idx++)
964     {
965         const HookDefn* hook_defn = &s_runtimeHookDefns[idx];
966         if (hook_defn->kind != kind) {
967             continue;
968         }
969 
970         const char* symbol_name = (archByteSize == 4) ? hook_defn->symbol_name_m32 : hook_defn->symbol_name_m64;
971 
972         const Symbol *sym = module->FindFirstSymbolWithNameAndType(ConstString(symbol_name), eSymbolTypeCode);
973         if (!sym){
974             if (log){
975                 log->Printf("RenderScriptRuntime::LoadRuntimeHooks - ERROR: Symbol '%s' related to the function %s not found", symbol_name, hook_defn->name);
976             }
977             continue;
978         }
979 
980         addr_t addr = sym->GetLoadAddress(&target);
981         if (addr == LLDB_INVALID_ADDRESS)
982         {
983             if (log)
984                 log->Printf ("RenderScriptRuntime::LoadRuntimeHooks - Unable to resolve the address of hook function '%s' with symbol '%s'.",
985                              hook_defn->name, symbol_name);
986             continue;
987         }
988         else
989         {
990             if (log)
991                 log->Printf("RenderScriptRuntime::LoadRuntimeHooks - Function %s, address resolved at 0x%" PRIx64, hook_defn->name, addr);
992         }
993 
994         RuntimeHookSP hook(new RuntimeHook());
995         hook->address = addr;
996         hook->defn = hook_defn;
997         hook->bp_sp = target.CreateBreakpoint(addr, true, false);
998         hook->bp_sp->SetCallback(HookCallback, hook.get(), true);
999         m_runtimeHooks[addr] = hook;
1000         if (log)
1001         {
1002             log->Printf ("RenderScriptRuntime::LoadRuntimeHooks - Successfully hooked '%s' in '%s' version %" PRIu64 " at 0x%" PRIx64 ".",
1003                 hook_defn->name, module->GetFileSpec().GetFilename().AsCString(), (uint64_t)hook_defn->version, (uint64_t)addr);
1004         }
1005     }
1006 }
1007 
1008 void
1009 RenderScriptRuntime::FixupScriptDetails(RSModuleDescriptorSP rsmodule_sp)
1010 {
1011     if (!rsmodule_sp)
1012         return;
1013 
1014     Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1015 
1016     const ModuleSP module = rsmodule_sp->m_module;
1017     const FileSpec& file = module->GetPlatformFileSpec();
1018 
1019     // Iterate over all of the scripts that we currently know of.
1020     // Note: We cant push or pop to m_scripts here or it may invalidate rs_script.
1021     for (const auto & rs_script : m_scripts)
1022     {
1023         // Extract the expected .so file path for this script.
1024         std::string dylib;
1025         if (!rs_script->scriptDyLib.get(dylib))
1026             continue;
1027 
1028         // Only proceed if the module that has loaded corresponds to this script.
1029         if (file.GetFilename() != ConstString(dylib.c_str()))
1030             continue;
1031 
1032         // Obtain the script address which we use as a key.
1033         lldb::addr_t script;
1034         if (!rs_script->script.get(script))
1035             continue;
1036 
1037         // If we have a script mapping for the current script.
1038         if (m_scriptMappings.find(script) != m_scriptMappings.end())
1039         {
1040             // if the module we have stored is different to the one we just received.
1041             if (m_scriptMappings[script] != rsmodule_sp)
1042             {
1043                 if (log)
1044                     log->Printf ("RenderScriptRuntime::FixupScriptDetails - Error: script %" PRIx64 " wants reassigned to new rsmodule '%s'.",
1045                                     (uint64_t)script, rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString());
1046             }
1047         }
1048         // We don't have a script mapping for the current script.
1049         else
1050         {
1051             // Obtain the script resource name.
1052             std::string resName;
1053             if (rs_script->resName.get(resName))
1054                 // Set the modules resource name.
1055                 rsmodule_sp->m_resname = resName;
1056             // Add Script/Module pair to map.
1057             m_scriptMappings[script] = rsmodule_sp;
1058             if (log)
1059                 log->Printf ("RenderScriptRuntime::FixupScriptDetails - script %" PRIx64 " associated with rsmodule '%s'.",
1060                                 (uint64_t)script, rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString());
1061         }
1062     }
1063 }
1064 
1065 // Uses the Target API to evaluate the expression passed as a parameter to the function
1066 // The result of that expression is returned an unsigned 64 bit int, via the result* paramter.
1067 // Function returns true on success, and false on failure
1068 bool
1069 RenderScriptRuntime::EvalRSExpression(const char* expression, StackFrame* frame_ptr, uint64_t* result)
1070 {
1071     Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1072     if (log)
1073         log->Printf("RenderScriptRuntime::EvalRSExpression(%s)", expression);
1074 
1075     ValueObjectSP expr_result;
1076     // Perform the actual expression evaluation
1077     GetProcess()->GetTarget().EvaluateExpression(expression, frame_ptr, expr_result);
1078 
1079     if (!expr_result)
1080     {
1081        if (log)
1082            log->Printf("RenderScriptRuntime::EvalRSExpression -  Error: Couldn't evaluate expression");
1083        return false;
1084     }
1085 
1086     // The result of the expression is invalid
1087     if (!expr_result->GetError().Success())
1088     {
1089         Error err = expr_result->GetError();
1090         if (err.GetError() == UserExpression::kNoResult) // Expression returned void, so this is actually a success
1091         {
1092             if (log)
1093                 log->Printf("RenderScriptRuntime::EvalRSExpression - Expression returned void");
1094 
1095             result = nullptr;
1096             return true;
1097         }
1098 
1099         if (log)
1100             log->Printf("RenderScriptRuntime::EvalRSExpression - Error evaluating expression result: %s", err.AsCString());
1101         return false;
1102     }
1103 
1104     bool success = false;
1105     *result = expr_result->GetValueAsUnsigned(0, &success); // We only read the result as an unsigned int.
1106 
1107     if (!success)
1108     {
1109        if (log)
1110            log->Printf("RenderScriptRuntime::EvalRSExpression -  Error: Couldn't convert expression result to unsigned int");
1111        return false;
1112     }
1113 
1114     return true;
1115 }
1116 
1117 namespace // anonymous
1118 {
1119     // max length of an expanded expression
1120     const int jit_max_expr_size = 768;
1121 
1122     // Format strings containing the expressions we may need to evaluate.
1123     const char runtimeExpressions[][256] =
1124     {
1125      // Mangled GetOffsetPointer(Allocation*, xoff, yoff, zoff, lod, cubemap)
1126      "(int*)_Z12GetOffsetPtrPKN7android12renderscript10AllocationEjjjj23RsAllocationCubemapFace(0x%lx, %u, %u, %u, 0, 0)",
1127 
1128      // Type* rsaAllocationGetType(Context*, Allocation*)
1129      "(void*)rsaAllocationGetType(0x%lx, 0x%lx)",
1130 
1131      // rsaTypeGetNativeData(Context*, Type*, void* typeData, size)
1132      // Pack the data in the following way mHal.state.dimX; mHal.state.dimY; mHal.state.dimZ;
1133      // mHal.state.lodCount; mHal.state.faces; mElement; into typeData
1134      // Need to specify 32 or 64 bit for uint_t since this differs between devices
1135      "uint%u_t data[6]; (void*)rsaTypeGetNativeData(0x%lx, 0x%lx, data, 6); data[0]", // X dim
1136      "uint%u_t data[6]; (void*)rsaTypeGetNativeData(0x%lx, 0x%lx, data, 6); data[1]", // Y dim
1137      "uint%u_t data[6]; (void*)rsaTypeGetNativeData(0x%lx, 0x%lx, data, 6); data[2]", // Z dim
1138      "uint%u_t data[6]; (void*)rsaTypeGetNativeData(0x%lx, 0x%lx, data, 6); data[5]", // Element ptr
1139 
1140      // rsaElementGetNativeData(Context*, Element*, uint32_t* elemData,size)
1141      // Pack mType; mKind; mNormalized; mVectorSize; NumSubElements into elemData
1142      "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%lx, 0x%lx, data, 5); data[0]", // Type
1143      "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%lx, 0x%lx, data, 5); data[1]", // Kind
1144      "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%lx, 0x%lx, data, 5); data[3]", // Vector Size
1145      "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%lx, 0x%lx, data, 5); data[4]", // Field Count
1146 
1147       // rsaElementGetSubElements(RsContext con, RsElement elem, uintptr_t *ids, const char **names,
1148       // size_t *arraySizes, uint32_t dataSize)
1149       // Needed for Allocations of structs to gather details about fields/Subelements
1150      "void* ids[%u]; const char* names[%u]; size_t arr_size[%u];"
1151      "(void*)rsaElementGetSubElements(0x%lx, 0x%lx, ids, names, arr_size, %u); ids[%u]",     // Element* of field
1152 
1153      "void* ids[%u]; const char* names[%u]; size_t arr_size[%u];"
1154      "(void*)rsaElementGetSubElements(0x%lx, 0x%lx, ids, names, arr_size, %u); names[%u]",   // Name of field
1155 
1156      "void* ids[%u]; const char* names[%u]; size_t arr_size[%u];"
1157      "(void*)rsaElementGetSubElements(0x%lx, 0x%lx, ids, names, arr_size, %u); arr_size[%u]" // Array size of field
1158     };
1159 
1160 
1161     // Temporary workaround for MIPS, until the compiler emits the JAL instruction when invoking directly the function.
1162     // At the moment, when evaluating an expression involving a function call, the LLVM codegen for Mips  emits a JAL
1163     // instruction, which is able to jump in the range +/- 128MB with respect to the current program counter ($pc). If
1164     // the requested function happens to reside outside the above region, the function address will be truncated and the
1165     // function invocation will fail. This is a problem in the RS plugin as we rely on the RS API to probe the number and
1166     // the nature of allocations. A proper solution in the MIPS compiler is currently being investigated. As temporary
1167     // work around for this context, we'll invoke the RS API through function pointers, which cause the compiler to emit a
1168     // register based JALR instruction.
1169     const char runtimeExpressions_mips[][512] =
1170     {
1171     // Mangled GetOffsetPointer(Allocation*, xoff, yoff, zoff, lod, cubemap)
1172     "int* (*f) (void*, int, int, int, int, int) = (int* (*) (void*, int, int, int, int, int)) "
1173         "_Z12GetOffsetPtrPKN7android12renderscript10AllocationEjjjj23RsAllocationCubemapFace; "
1174         "(int*) f((void*) 0x%lx, %u, %u, %u, 0, 0)",
1175 
1176     // Type* rsaAllocationGetType(Context*, Allocation*)
1177     "void* (*f) (void*, void*) = (void* (*) (void*, void*)) rsaAllocationGetType; (void*) f((void*) 0x%lx, (void*) 0x%lx)",
1178 
1179     // rsaTypeGetNativeData(Context*, Type*, void* typeData, size)
1180     // Pack the data in the following way mHal.state.dimX; mHal.state.dimY; mHal.state.dimZ;
1181     // mHal.state.lodCount; mHal.state.faces; mElement; into typeData
1182     // Need to specify 32 or 64 bit for uint_t since this differs between devices
1183     "uint%u_t data[6]; void* (*f)(void*, void*, uintptr_t*, uint32_t) = (void* (*)(void*, void*, uintptr_t*, uint32_t)) "
1184         "rsaTypeGetNativeData; (void*) f((void*) 0x%lx, (void*) 0x%lx, data, 6); data[0]",
1185     "uint%u_t data[6]; void* (*f)(void*, void*, uintptr_t*, uint32_t) = (void* (*)(void*, void*, uintptr_t*, uint32_t)) "
1186         "rsaTypeGetNativeData; (void*) f((void*) 0x%lx, (void*) 0x%lx, data, 6); data[1]",
1187     "uint%u_t data[6]; void* (*f)(void*, void*, uintptr_t*, uint32_t) = (void* (*)(void*, void*, uintptr_t*, uint32_t)) "
1188         "rsaTypeGetNativeData; (void*) f((void*) 0x%lx, (void*) 0x%lx, data, 6); data[2]",
1189     "uint%u_t data[6]; void* (*f)(void*, void*, uintptr_t*, uint32_t) = (void* (*)(void*, void*, uintptr_t*, uint32_t)) "
1190         "rsaTypeGetNativeData; (void*) f((void*) 0x%lx, (void*) 0x%lx, data, 6); data[5]",
1191 
1192     // rsaElementGetNativeData(Context*, Element*, uint32_t* elemData,size)
1193     // Pack mType; mKind; mNormalized; mVectorSize; NumSubElements into elemData
1194     "uint32_t data[5]; void* (*f)(void*, void*, uint32_t*, uint32_t) = (void* (*)(void*, void*, uint32_t*, uint32_t)) "
1195         "rsaElementGetNativeData; (void*) f((void*) 0x%lx, (void*) 0x%lx, data, 5); data[0]", // Type
1196     "uint32_t data[5]; void* (*f)(void*, void*, uint32_t*, uint32_t) = (void* (*)(void*, void*, uint32_t*, uint32_t)) "
1197         "rsaElementGetNativeData; (void*) f((void*) 0x%lx, (void*) 0x%lx, data, 5); data[1]", // Kind
1198     "uint32_t data[5]; void* (*f)(void*, void*, uint32_t*, uint32_t) = (void* (*)(void*, void*, uint32_t*, uint32_t)) "
1199         "rsaElementGetNativeData; (void*) f((void*) 0x%lx, (void*) 0x%lx, data, 5); data[3]", // Vector size
1200     "uint32_t data[5]; void* (*f)(void*, void*, uint32_t*, uint32_t) = (void* (*)(void*, void*, uint32_t*, uint32_t)) "
1201         "rsaElementGetNativeData; (void*) f((void*) 0x%lx, (void*) 0x%lx, data, 5); data[4]", // Field count
1202 
1203     // rsaElementGetSubElements(RsContext con, RsElement elem, uintptr_t *ids, const char **names,
1204     // size_t *arraySizes, uint32_t dataSize)
1205     // Needed for Allocations of structs to gather details about fields/Subelements
1206    "void* ids[%u]; const char* names[%u]; size_t arr_size[%u];"
1207         "void* (*f) (void*, void*, uintptr_t*, const char**, size_t*, uint32_t) = "
1208         "(void* (*) (void*, void*, uintptr_t*, const char**, size_t*, uint32_t)) rsaElementGetSubElements;"
1209         "(void*) f((void*) 0x%lx, (void*) 0x%lx, (uintptr_t*) ids, names, arr_size, (uint32_t) %u);"
1210         "ids[%u]", // Element* of field
1211    "void* ids[%u]; const char* names[%u]; size_t arr_size[%u];"
1212         "void* (*f) (void*, void*, uintptr_t*, const char**, size_t*, uint32_t) = "
1213         "(void* (*) (void*, void*, uintptr_t*, const char**, size_t*, uint32_t)) rsaElementGetSubElements;"
1214         "(void*) f((void*) 0x%lx, (void*) 0x%lx, (uintptr_t*) ids, names, arr_size, (uint32_t) %u);"
1215         "names[%u]", // Name of field
1216    "void* ids[%u]; const char* names[%u]; size_t arr_size[%u];"
1217         "void* (*f) (void*, void*, uintptr_t*, const char**, size_t*, uint32_t) = "
1218         "(void* (*) (void*, void*, uintptr_t*, const char**, size_t*, uint32_t)) rsaElementGetSubElements;"
1219         "(void*) f((void*) 0x%lx, (void*) 0x%lx, (uintptr_t*) ids, names, arr_size, (uint32_t) %u);"
1220         "arr_size[%u]" // Array size of field
1221     };
1222 
1223 } // end of the anonymous namespace
1224 
1225 
1226 // Retrieve the string to JIT for the given expression
1227 const char*
1228 RenderScriptRuntime::JITTemplate(ExpressionStrings e)
1229 {
1230     // be nice to your Mips friend when adding new expression strings
1231     static_assert(sizeof(runtimeExpressions)/sizeof(runtimeExpressions[0]) ==
1232             sizeof(runtimeExpressions_mips)/sizeof(runtimeExpressions_mips[0]),
1233             "#runtimeExpressions != #runtimeExpressions_mips");
1234 
1235     assert((e >= eExprGetOffsetPtr && e <= eExprSubelementsArrSize) &&
1236            "Expression string out of bounds");
1237 
1238     llvm::Triple::ArchType arch = GetTargetRef().GetArchitecture().GetMachine();
1239 
1240     // mips JAL workaround
1241     if(arch == llvm::Triple::ArchType::mips64el || arch == llvm::Triple::ArchType::mipsel)
1242         return runtimeExpressions_mips[e];
1243     else
1244         return runtimeExpressions[e];
1245 }
1246 
1247 
1248 // JITs the RS runtime for the internal data pointer of an allocation.
1249 // Is passed x,y,z coordinates for the pointer to a specific element.
1250 // Then sets the data_ptr member in Allocation with the result.
1251 // Returns true on success, false otherwise
1252 bool
1253 RenderScriptRuntime::JITDataPointer(AllocationDetails* allocation, StackFrame* frame_ptr,
1254                                     unsigned int x, unsigned int y, unsigned int z)
1255 {
1256     Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1257 
1258     if (!allocation->address.isValid())
1259     {
1260         if (log)
1261             log->Printf("RenderScriptRuntime::JITDataPointer - Failed to find allocation details");
1262         return false;
1263     }
1264 
1265     const char* expr_cstr = JITTemplate(eExprGetOffsetPtr);
1266     char buffer[jit_max_expr_size];
1267 
1268     int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->address.get(), x, y, z);
1269     if (chars_written < 0)
1270     {
1271         if (log)
1272             log->Printf("RenderScriptRuntime::JITDataPointer - Encoding error in snprintf()");
1273         return false;
1274     }
1275     else if (chars_written >= jit_max_expr_size)
1276     {
1277         if (log)
1278             log->Printf("RenderScriptRuntime::JITDataPointer - Expression too long");
1279         return false;
1280     }
1281 
1282     uint64_t result = 0;
1283     if (!EvalRSExpression(buffer, frame_ptr, &result))
1284         return false;
1285 
1286     addr_t mem_ptr = static_cast<lldb::addr_t>(result);
1287     allocation->data_ptr = mem_ptr;
1288 
1289     return true;
1290 }
1291 
1292 // JITs the RS runtime for the internal pointer to the RS Type of an allocation
1293 // Then sets the type_ptr member in Allocation with the result.
1294 // Returns true on success, false otherwise
1295 bool
1296 RenderScriptRuntime::JITTypePointer(AllocationDetails* allocation, StackFrame* frame_ptr)
1297 {
1298     Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1299 
1300     if (!allocation->address.isValid() || !allocation->context.isValid())
1301     {
1302         if (log)
1303             log->Printf("RenderScriptRuntime::JITTypePointer - Failed to find allocation details");
1304         return false;
1305     }
1306 
1307     const char* expr_cstr = JITTemplate(eExprAllocGetType);
1308     char buffer[jit_max_expr_size];
1309 
1310     int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->context.get(), *allocation->address.get());
1311     if (chars_written < 0)
1312     {
1313         if (log)
1314             log->Printf("RenderScriptRuntime::JITDataPointer - Encoding error in snprintf()");
1315         return false;
1316     }
1317     else if (chars_written >= jit_max_expr_size)
1318     {
1319         if (log)
1320             log->Printf("RenderScriptRuntime::JITTypePointer - Expression too long");
1321         return false;
1322     }
1323 
1324     uint64_t result = 0;
1325     if (!EvalRSExpression(buffer, frame_ptr, &result))
1326         return false;
1327 
1328     addr_t type_ptr = static_cast<lldb::addr_t>(result);
1329     allocation->type_ptr = type_ptr;
1330 
1331     return true;
1332 }
1333 
1334 // JITs the RS runtime for information about the dimensions and type of an allocation
1335 // Then sets dimension and element_ptr members in Allocation with the result.
1336 // Returns true on success, false otherwise
1337 bool
1338 RenderScriptRuntime::JITTypePacked(AllocationDetails* allocation, StackFrame* frame_ptr)
1339 {
1340     Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1341 
1342     if (!allocation->type_ptr.isValid() || !allocation->context.isValid())
1343     {
1344         if (log)
1345             log->Printf("RenderScriptRuntime::JITTypePacked - Failed to find allocation details");
1346         return false;
1347     }
1348 
1349     // Expression is different depending on if device is 32 or 64 bit
1350     uint32_t archByteSize = GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
1351     const unsigned int bits = archByteSize == 4 ? 32 : 64;
1352 
1353     // We want 4 elements from packed data
1354     const unsigned int num_exprs = 4;
1355     assert(num_exprs == (eExprTypeElemPtr - eExprTypeDimX + 1) && "Invalid number of expressions");
1356 
1357     char buffer[num_exprs][jit_max_expr_size];
1358     uint64_t results[num_exprs];
1359 
1360     for (unsigned int i = 0; i < num_exprs; ++i)
1361     {
1362         const char* expr_cstr = JITTemplate((ExpressionStrings) (eExprTypeDimX + i));
1363         int chars_written = snprintf(buffer[i], jit_max_expr_size, expr_cstr, bits,
1364                                      *allocation->context.get(), *allocation->type_ptr.get());
1365         if (chars_written < 0)
1366         {
1367             if (log)
1368                 log->Printf("RenderScriptRuntime::JITDataPointer - Encoding error in snprintf()");
1369             return false;
1370         }
1371         else if (chars_written >= jit_max_expr_size)
1372         {
1373             if (log)
1374                 log->Printf("RenderScriptRuntime::JITTypePacked - Expression too long");
1375             return false;
1376         }
1377 
1378         // Perform expression evaluation
1379         if (!EvalRSExpression(buffer[i], frame_ptr, &results[i]))
1380             return false;
1381     }
1382 
1383     // Assign results to allocation members
1384     AllocationDetails::Dimension dims;
1385     dims.dim_1 = static_cast<uint32_t>(results[0]);
1386     dims.dim_2 = static_cast<uint32_t>(results[1]);
1387     dims.dim_3 = static_cast<uint32_t>(results[2]);
1388     allocation->dimension = dims;
1389 
1390     addr_t elem_ptr = static_cast<lldb::addr_t>(results[3]);
1391     allocation->element.element_ptr = elem_ptr;
1392 
1393     if (log)
1394         log->Printf("RenderScriptRuntime::JITTypePacked - dims (%u, %u, %u) Element*: 0x%" PRIx64,
1395                     dims.dim_1, dims.dim_2, dims.dim_3, elem_ptr);
1396 
1397     return true;
1398 }
1399 
1400 // JITs the RS runtime for information about the Element of an allocation
1401 // Then sets type, type_vec_size, field_count and type_kind members in Element with the result.
1402 // Returns true on success, false otherwise
1403 bool
1404 RenderScriptRuntime::JITElementPacked(Element& elem, const lldb::addr_t context, StackFrame* frame_ptr)
1405 {
1406     Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1407 
1408     if (!elem.element_ptr.isValid())
1409     {
1410         if (log)
1411             log->Printf("RenderScriptRuntime::JITElementPacked - Failed to find allocation details");
1412         return false;
1413     }
1414 
1415     // We want 4 elements from packed data
1416     const unsigned int num_exprs = 4;
1417     assert(num_exprs == (eExprElementFieldCount - eExprElementType + 1) && "Invalid number of expressions");
1418 
1419     char buffer[num_exprs][jit_max_expr_size];
1420     uint64_t results[num_exprs];
1421 
1422     for (unsigned int i = 0; i < num_exprs; i++)
1423     {
1424         const char* expr_cstr = JITTemplate((ExpressionStrings) (eExprElementType + i));
1425         int chars_written = snprintf(buffer[i], jit_max_expr_size, expr_cstr, context, *elem.element_ptr.get());
1426         if (chars_written < 0)
1427         {
1428             if (log)
1429                 log->Printf("RenderScriptRuntime::JITElementPacked - Encoding error in snprintf()");
1430             return false;
1431         }
1432         else if (chars_written >= jit_max_expr_size)
1433         {
1434             if (log)
1435                 log->Printf("RenderScriptRuntime::JITElementPacked - Expression too long");
1436             return false;
1437         }
1438 
1439         // Perform expression evaluation
1440         if (!EvalRSExpression(buffer[i], frame_ptr, &results[i]))
1441             return false;
1442     }
1443 
1444     // Assign results to allocation members
1445     elem.type = static_cast<RenderScriptRuntime::Element::DataType>(results[0]);
1446     elem.type_kind = static_cast<RenderScriptRuntime::Element::DataKind>(results[1]);
1447     elem.type_vec_size = static_cast<uint32_t>(results[2]);
1448     elem.field_count = static_cast<uint32_t>(results[3]);
1449 
1450     if (log)
1451         log->Printf("RenderScriptRuntime::JITElementPacked - data type %u, pixel type %u, vector size %u, field count %u",
1452                     *elem.type.get(), *elem.type_kind.get(), *elem.type_vec_size.get(), *elem.field_count.get());
1453 
1454     // If this Element has subelements then JIT rsaElementGetSubElements() for details about its fields
1455     if (*elem.field_count.get() > 0 && !JITSubelements(elem, context, frame_ptr))
1456         return false;
1457 
1458     return true;
1459 }
1460 
1461 // JITs the RS runtime for information about the subelements/fields of a struct allocation
1462 // This is necessary for infering the struct type so we can pretty print the allocation's contents.
1463 // Returns true on success, false otherwise
1464 bool
1465 RenderScriptRuntime::JITSubelements(Element& elem, const lldb::addr_t context, StackFrame* frame_ptr)
1466 {
1467     Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1468 
1469     if (!elem.element_ptr.isValid() || !elem.field_count.isValid())
1470     {
1471         if (log)
1472             log->Printf("RenderScriptRuntime::JITSubelements - Failed to find allocation details");
1473         return false;
1474     }
1475 
1476     const short num_exprs = 3;
1477     assert(num_exprs == (eExprSubelementsArrSize - eExprSubelementsId + 1) && "Invalid number of expressions");
1478 
1479     char expr_buffer[jit_max_expr_size];
1480     uint64_t results;
1481 
1482     // Iterate over struct fields.
1483     const uint32_t field_count = *elem.field_count.get();
1484     for (unsigned int field_index = 0; field_index < field_count; ++field_index)
1485     {
1486         Element child;
1487         for (unsigned int expr_index = 0; expr_index < num_exprs; ++expr_index)
1488         {
1489             const char* expr_cstr = JITTemplate((ExpressionStrings) (eExprSubelementsId + expr_index));
1490             int chars_written = snprintf(expr_buffer, jit_max_expr_size, expr_cstr,
1491                                          field_count, field_count, field_count,
1492                                          context, *elem.element_ptr.get(), field_count, field_index);
1493             if (chars_written < 0)
1494             {
1495                 if (log)
1496                     log->Printf("RenderScriptRuntime::JITSubelements - Encoding error in snprintf()");
1497                 return false;
1498             }
1499             else if (chars_written >= jit_max_expr_size)
1500             {
1501                 if (log)
1502                     log->Printf("RenderScriptRuntime::JITSubelements - Expression too long");
1503                 return false;
1504             }
1505 
1506             // Perform expression evaluation
1507             if (!EvalRSExpression(expr_buffer, frame_ptr, &results))
1508                 return false;
1509 
1510             if (log)
1511                 log->Printf("RenderScriptRuntime::JITSubelements - Expr result 0x%" PRIx64, results);
1512 
1513             switch(expr_index)
1514             {
1515                 case 0: // Element* of child
1516                     child.element_ptr = static_cast<addr_t>(results);
1517                     break;
1518                 case 1: // Name of child
1519                 {
1520                     lldb::addr_t address = static_cast<addr_t>(results);
1521                     Error err;
1522                     std::string name;
1523                     GetProcess()->ReadCStringFromMemory(address, name, err);
1524                     if (!err.Fail())
1525                         child.type_name = ConstString(name);
1526                     else
1527                     {
1528                         if (log)
1529                             log->Printf("RenderScriptRuntime::JITSubelements - Warning: Couldn't read field name");
1530                     }
1531                     break;
1532                 }
1533                 case 2: // Array size of child
1534                     child.array_size = static_cast<uint32_t>(results);
1535                     break;
1536             }
1537         }
1538 
1539         // We need to recursively JIT each Element field of the struct since
1540         // structs can be nested inside structs.
1541         if (!JITElementPacked(child, context, frame_ptr))
1542             return false;
1543         elem.children.push_back(child);
1544     }
1545 
1546     // Try to infer the name of the struct type so we can pretty print the allocation contents.
1547     FindStructTypeName(elem, frame_ptr);
1548 
1549     return true;
1550 }
1551 
1552 // JITs the RS runtime for the address of the last element in the allocation.
1553 // The `elem_size` paramter represents the size of a single element, including padding.
1554 // Which is needed as an offset from the last element pointer.
1555 // Using this offset minus the starting address we can calculate the size of the allocation.
1556 // Returns true on success, false otherwise
1557 bool
1558 RenderScriptRuntime::JITAllocationSize(AllocationDetails* allocation, StackFrame* frame_ptr)
1559 {
1560     Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1561 
1562     if (!allocation->address.isValid() || !allocation->dimension.isValid()
1563         || !allocation->data_ptr.isValid() || !allocation->element.datum_size.isValid())
1564     {
1565         if (log)
1566             log->Printf("RenderScriptRuntime::JITAllocationSize - Failed to find allocation details");
1567         return false;
1568     }
1569 
1570     // Find dimensions
1571     unsigned int dim_x = allocation->dimension.get()->dim_1;
1572     unsigned int dim_y = allocation->dimension.get()->dim_2;
1573     unsigned int dim_z = allocation->dimension.get()->dim_3;
1574 
1575     // Our plan of jitting the last element address doesn't seem to work for struct Allocations
1576     // Instead try to infer the size ourselves without any inter element padding.
1577     if (allocation->element.children.size() > 0)
1578     {
1579         if (dim_x == 0) dim_x = 1;
1580         if (dim_y == 0) dim_y = 1;
1581         if (dim_z == 0) dim_z = 1;
1582 
1583         allocation->size = dim_x * dim_y * dim_z * *allocation->element.datum_size.get();
1584 
1585         if (log)
1586             log->Printf("RenderScriptRuntime::JITAllocationSize - Infered size of struct allocation %u", *allocation->size.get());
1587 
1588         return true;
1589     }
1590 
1591     const char* expr_cstr = JITTemplate(eExprGetOffsetPtr);
1592     char buffer[jit_max_expr_size];
1593 
1594     // Calculate last element
1595     dim_x = dim_x == 0 ? 0 : dim_x - 1;
1596     dim_y = dim_y == 0 ? 0 : dim_y - 1;
1597     dim_z = dim_z == 0 ? 0 : dim_z - 1;
1598 
1599     int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->address.get(),
1600                                  dim_x, dim_y, dim_z);
1601     if (chars_written < 0)
1602     {
1603         if (log)
1604             log->Printf("RenderScriptRuntime::JITAllocationSize - Encoding error in snprintf()");
1605         return false;
1606     }
1607     else if (chars_written >= jit_max_expr_size)
1608     {
1609         if (log)
1610             log->Printf("RenderScriptRuntime::JITAllocationSize - Expression too long");
1611         return false;
1612     }
1613 
1614     uint64_t result = 0;
1615     if (!EvalRSExpression(buffer, frame_ptr, &result))
1616         return false;
1617 
1618     addr_t mem_ptr = static_cast<lldb::addr_t>(result);
1619     // Find pointer to last element and add on size of an element
1620     allocation->size = static_cast<uint32_t>(mem_ptr - *allocation->data_ptr.get()) + *allocation->element.datum_size.get();
1621 
1622     return true;
1623 }
1624 
1625 // JITs the RS runtime for information about the stride between rows in the allocation.
1626 // This is done to detect padding, since allocated memory is 16-byte aligned.
1627 // Returns true on success, false otherwise
1628 bool
1629 RenderScriptRuntime::JITAllocationStride(AllocationDetails* allocation, StackFrame* frame_ptr)
1630 {
1631     Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1632 
1633     if (!allocation->address.isValid() || !allocation->data_ptr.isValid())
1634     {
1635         if (log)
1636             log->Printf("RenderScriptRuntime::JITAllocationStride - Failed to find allocation details");
1637         return false;
1638     }
1639 
1640     const char* expr_cstr = JITTemplate(eExprGetOffsetPtr);
1641     char buffer[jit_max_expr_size];
1642 
1643     int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->address.get(),
1644                                  0, 1, 0);
1645     if (chars_written < 0)
1646     {
1647         if (log)
1648             log->Printf("RenderScriptRuntime::JITAllocationStride - Encoding error in snprintf()");
1649         return false;
1650     }
1651     else if (chars_written >= jit_max_expr_size)
1652     {
1653         if (log)
1654             log->Printf("RenderScriptRuntime::JITAllocationStride - Expression too long");
1655         return false;
1656     }
1657 
1658     uint64_t result = 0;
1659     if (!EvalRSExpression(buffer, frame_ptr, &result))
1660         return false;
1661 
1662     addr_t mem_ptr = static_cast<lldb::addr_t>(result);
1663     allocation->stride = static_cast<uint32_t>(mem_ptr - *allocation->data_ptr.get());
1664 
1665     return true;
1666 }
1667 
1668 // JIT all the current runtime info regarding an allocation
1669 bool
1670 RenderScriptRuntime::RefreshAllocation(AllocationDetails* allocation, StackFrame* frame_ptr)
1671 {
1672     // GetOffsetPointer()
1673     if (!JITDataPointer(allocation, frame_ptr))
1674         return false;
1675 
1676     // rsaAllocationGetType()
1677     if (!JITTypePointer(allocation, frame_ptr))
1678         return false;
1679 
1680     // rsaTypeGetNativeData()
1681     if (!JITTypePacked(allocation, frame_ptr))
1682         return false;
1683 
1684     // rsaElementGetNativeData()
1685     if (!JITElementPacked(allocation->element, *allocation->context.get(), frame_ptr))
1686         return false;
1687 
1688     // Sets the datum_size member in Element
1689     SetElementSize(allocation->element);
1690 
1691     // Use GetOffsetPointer() to infer size of the allocation
1692     if (!JITAllocationSize(allocation, frame_ptr))
1693         return false;
1694 
1695     return true;
1696 }
1697 
1698 // Function attempts to set the type_name member of the paramaterised Element object.
1699 // This string should be the name of the struct type the Element represents.
1700 // We need this string for pretty printing the Element to users.
1701 void
1702 RenderScriptRuntime::FindStructTypeName(Element& elem, StackFrame* frame_ptr)
1703 {
1704     Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1705 
1706     if (!elem.type_name.IsEmpty()) // Name already set
1707         return;
1708     else
1709         elem.type_name = Element::GetFallbackStructName(); // Default type name if we don't succeed
1710 
1711     // Find all the global variables from the script rs modules
1712     VariableList variable_list;
1713     for (auto module_sp : m_rsmodules)
1714         module_sp->m_module->FindGlobalVariables(RegularExpression("."), true, UINT32_MAX, variable_list);
1715 
1716     // Iterate over all the global variables looking for one with a matching type to the Element.
1717     // We make the assumption a match exists since there needs to be a global variable to reflect the
1718     // struct type back into java host code.
1719     for (uint32_t var_index = 0; var_index < variable_list.GetSize(); ++var_index)
1720     {
1721         const VariableSP var_sp(variable_list.GetVariableAtIndex(var_index));
1722         if (!var_sp)
1723            continue;
1724 
1725         ValueObjectSP valobj_sp = ValueObjectVariable::Create(frame_ptr, var_sp);
1726         if (!valobj_sp)
1727             continue;
1728 
1729         // Find the number of variable fields.
1730         // If it has no fields, or more fields than our Element, then it can't be the struct we're looking for.
1731         // Don't check for equality since RS can add extra struct members for padding.
1732         size_t num_children = valobj_sp->GetNumChildren();
1733         if (num_children > elem.children.size() || num_children == 0)
1734             continue;
1735 
1736         // Iterate over children looking for members with matching field names.
1737         // If all the field names match, this is likely the struct we want.
1738         //
1739         //   TODO: This could be made more robust by also checking children data sizes, or array size
1740         bool found = true;
1741         for (size_t child_index = 0; child_index < num_children; ++child_index)
1742         {
1743             ValueObjectSP child = valobj_sp->GetChildAtIndex(child_index, true);
1744             if (!child || (child->GetName() != elem.children[child_index].type_name))
1745             {
1746                 found = false;
1747                 break;
1748             }
1749         }
1750 
1751         // RS can add extra struct members for padding in the format '#rs_padding_[0-9]+'
1752         if (found && num_children < elem.children.size())
1753         {
1754             const unsigned int size_diff = elem.children.size() - num_children;
1755             if (log)
1756                 log->Printf("RenderScriptRuntime::FindStructTypeName - %u padding struct entries", size_diff);
1757 
1758             for (unsigned int padding_index = 0; padding_index < size_diff; ++padding_index)
1759             {
1760                 const ConstString& name = elem.children[num_children + padding_index].type_name;
1761                 if (strcmp(name.AsCString(), "#rs_padding") < 0)
1762                     found = false;
1763             }
1764         }
1765 
1766         // We've found a global var with matching type
1767         if (found)
1768         {
1769             // Dereference since our Element type isn't a pointer.
1770             if (valobj_sp->IsPointerType())
1771             {
1772                 Error err;
1773                 ValueObjectSP deref_valobj = valobj_sp->Dereference(err);
1774                 if (!err.Fail())
1775                     valobj_sp = deref_valobj;
1776             }
1777 
1778             // Save name of variable in Element.
1779             elem.type_name = valobj_sp->GetTypeName();
1780             if (log)
1781                 log->Printf("RenderScriptRuntime::FindStructTypeName - Element name set to %s", elem.type_name.AsCString());
1782 
1783             return;
1784         }
1785     }
1786 }
1787 
1788 // Function sets the datum_size member of Element. Representing the size of a single instance including padding.
1789 // Assumes the relevant allocation information has already been jitted.
1790 void
1791 RenderScriptRuntime::SetElementSize(Element& elem)
1792 {
1793     Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1794     const Element::DataType type = *elem.type.get();
1795     assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_BOOLEAN
1796                                                    && "Invalid allocation type");
1797 
1798     const unsigned int vec_size = *elem.type_vec_size.get();
1799     unsigned int data_size = 0;
1800     const unsigned int padding = vec_size == 3 ? AllocationDetails::RSTypeToFormat[type][eElementSize] : 0;
1801 
1802     // Element is of a struct type, calculate size recursively.
1803     if ((type == Element::RS_TYPE_NONE) && (elem.children.size() > 0))
1804     {
1805         for (Element& child : elem.children)
1806         {
1807             SetElementSize(child);
1808             const unsigned int array_size = child.array_size.isValid() ? *child.array_size.get() : 1;
1809             data_size += *child.datum_size.get() * array_size;
1810         }
1811     }
1812     else
1813         data_size = vec_size * AllocationDetails::RSTypeToFormat[type][eElementSize];
1814 
1815     elem.padding = padding;
1816     elem.datum_size = data_size + padding;
1817     if (log)
1818         log->Printf("RenderScriptRuntime::SetElementSize - element size set to %u", data_size + padding);
1819 }
1820 
1821 // Given an allocation, this function copies the allocation contents from device into a buffer on the heap.
1822 // Returning a shared pointer to the buffer containing the data.
1823 std::shared_ptr<uint8_t>
1824 RenderScriptRuntime::GetAllocationData(AllocationDetails* allocation, StackFrame* frame_ptr)
1825 {
1826     Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1827 
1828     // JIT all the allocation details
1829     if (!allocation->data_ptr.isValid() || !allocation->element.type.isValid()
1830         || !allocation->element.type_vec_size.isValid() || !allocation->size.isValid())
1831     {
1832         if (log)
1833             log->Printf("RenderScriptRuntime::GetAllocationData - Allocation details not calculated yet, jitting info");
1834 
1835         if (!RefreshAllocation(allocation, frame_ptr))
1836         {
1837             if (log)
1838                 log->Printf("RenderScriptRuntime::GetAllocationData - Couldn't JIT allocation details");
1839             return nullptr;
1840         }
1841     }
1842 
1843     assert(allocation->data_ptr.isValid() && allocation->element.type.isValid() && allocation->element.type_vec_size.isValid()
1844            && allocation->size.isValid() && "Allocation information not available");
1845 
1846     // Allocate a buffer to copy data into
1847     const unsigned int size = *allocation->size.get();
1848     std::shared_ptr<uint8_t> buffer(new uint8_t[size]);
1849     if (!buffer)
1850     {
1851         if (log)
1852             log->Printf("RenderScriptRuntime::GetAllocationData - Couldn't allocate a %u byte buffer", size);
1853         return nullptr;
1854     }
1855 
1856     // Read the inferior memory
1857     Error error;
1858     lldb::addr_t data_ptr = *allocation->data_ptr.get();
1859     GetProcess()->ReadMemory(data_ptr, buffer.get(), size, error);
1860     if (error.Fail())
1861     {
1862         if (log)
1863             log->Printf("RenderScriptRuntime::GetAllocationData - '%s' Couldn't read %u bytes of allocation data from 0x%" PRIx64,
1864                         error.AsCString(), size, data_ptr);
1865         return nullptr;
1866     }
1867 
1868     return buffer;
1869 }
1870 
1871 // Function copies data from a binary file into an allocation.
1872 // There is a header at the start of the file, FileHeader, before the data content itself.
1873 // Information from this header is used to display warnings to the user about incompatabilities
1874 bool
1875 RenderScriptRuntime::LoadAllocation(Stream &strm, const uint32_t alloc_id, const char* filename, StackFrame* frame_ptr)
1876 {
1877     Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1878 
1879     // Find allocation with the given id
1880     AllocationDetails* alloc = FindAllocByID(strm, alloc_id);
1881     if (!alloc)
1882         return false;
1883 
1884     if (log)
1885         log->Printf("RenderScriptRuntime::LoadAllocation - Found allocation 0x%" PRIx64, *alloc->address.get());
1886 
1887     // JIT all the allocation details
1888     if (!alloc->data_ptr.isValid() || !alloc->element.type.isValid() || !alloc->element.datum_size.isValid()
1889         || !alloc->element.type_vec_size.isValid() || !alloc->size.isValid())
1890     {
1891         if (log)
1892             log->Printf("RenderScriptRuntime::LoadAllocation - Allocation details not calculated yet, jitting info");
1893 
1894         if (!RefreshAllocation(alloc, frame_ptr))
1895         {
1896             if (log)
1897                 log->Printf("RenderScriptRuntime::LoadAllocation - Couldn't JIT allocation details");
1898             return false;
1899         }
1900     }
1901 
1902     assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && alloc->element.type_vec_size.isValid()
1903            && alloc->size.isValid() && alloc->element.datum_size.isValid() && "Allocation information not available");
1904 
1905     // Check we can read from file
1906     FileSpec file(filename, true);
1907     if (!file.Exists())
1908     {
1909         strm.Printf("Error: File %s does not exist", filename);
1910         strm.EOL();
1911         return false;
1912     }
1913 
1914     if (!file.Readable())
1915     {
1916         strm.Printf("Error: File %s does not have readable permissions", filename);
1917         strm.EOL();
1918         return false;
1919     }
1920 
1921     // Read file into data buffer
1922     DataBufferSP data_sp(file.ReadFileContents());
1923 
1924     // Cast start of buffer to FileHeader and use pointer to read metadata
1925     void* file_buffer = data_sp->GetBytes();
1926     const AllocationDetails::FileHeader* head = static_cast<AllocationDetails::FileHeader*>(file_buffer);
1927 
1928     // Advance buffer past header
1929     file_buffer = static_cast<uint8_t*>(file_buffer) + head->hdr_size;
1930 
1931     if (log)
1932         log->Printf("RenderScriptRuntime::LoadAllocation - header type %u, element size %u",
1933                     head->type, head->element_size);
1934 
1935     // Check if the target allocation and file both have the same number of bytes for an Element
1936     if (*alloc->element.datum_size.get() != head->element_size)
1937     {
1938         strm.Printf("Warning: Mismatched Element sizes - file %u bytes, allocation %u bytes",
1939                     head->element_size, *alloc->element.datum_size.get());
1940         strm.EOL();
1941     }
1942 
1943     // Check if the target allocation and file both have the same integral type
1944     const unsigned int type = static_cast<unsigned int>(*alloc->element.type.get());
1945     if (type != head->type)
1946     {
1947         const char* file_type_cstr = AllocationDetails::RsDataTypeToString[head->type][0];
1948         const char* alloc_type_cstr = AllocationDetails::RsDataTypeToString[type][0];
1949 
1950         strm.Printf("Warning: Mismatched Types - file '%s' type, allocation '%s' type",
1951                     file_type_cstr, alloc_type_cstr);
1952         strm.EOL();
1953     }
1954 
1955     // Calculate size of allocation data in file
1956     size_t length = data_sp->GetByteSize() - head->hdr_size;
1957 
1958     // Check if the target allocation and file both have the same total data size.
1959     const unsigned int alloc_size = *alloc->size.get();
1960     if (alloc_size != length)
1961     {
1962         strm.Printf("Warning: Mismatched allocation sizes - file 0x%" PRIx64 " bytes, allocation 0x%x bytes",
1963                     (uint64_t) length, alloc_size);
1964         strm.EOL();
1965         length = alloc_size < length ? alloc_size : length; // Set length to copy to minimum
1966     }
1967 
1968     // Copy file data from our buffer into the target allocation.
1969     lldb::addr_t alloc_data = *alloc->data_ptr.get();
1970     Error error;
1971     size_t bytes_written = GetProcess()->WriteMemory(alloc_data, file_buffer, length, error);
1972     if (!error.Success() || bytes_written != length)
1973     {
1974         strm.Printf("Error: Couldn't write data to allocation %s", error.AsCString());
1975         strm.EOL();
1976         return false;
1977     }
1978 
1979     strm.Printf("Contents of file '%s' read into allocation %u", filename, alloc->id);
1980     strm.EOL();
1981 
1982     return true;
1983 }
1984 
1985 // Function copies allocation contents into a binary file.
1986 // This file can then be loaded later into a different allocation.
1987 // There is a header, FileHeader, before the allocation data containing meta-data.
1988 bool
1989 RenderScriptRuntime::SaveAllocation(Stream &strm, const uint32_t alloc_id, const char* filename, StackFrame* frame_ptr)
1990 {
1991     Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1992 
1993     // Find allocation with the given id
1994     AllocationDetails* alloc = FindAllocByID(strm, alloc_id);
1995     if (!alloc)
1996         return false;
1997 
1998     if (log)
1999         log->Printf("RenderScriptRuntime::SaveAllocation - Found allocation 0x%" PRIx64, *alloc->address.get());
2000 
2001      // JIT all the allocation details
2002     if (!alloc->data_ptr.isValid() || !alloc->element.type.isValid() || !alloc->element.type_vec_size.isValid()
2003         || !alloc->element.type_kind.isValid() || !alloc->dimension.isValid())
2004     {
2005         if (log)
2006             log->Printf("RenderScriptRuntime::SaveAllocation - Allocation details not calculated yet, jitting info");
2007 
2008         if (!RefreshAllocation(alloc, frame_ptr))
2009         {
2010             if (log)
2011                 log->Printf("RenderScriptRuntime::SaveAllocation - Couldn't JIT allocation details");
2012             return false;
2013         }
2014     }
2015 
2016     assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && alloc->element.type_vec_size.isValid() && alloc->element.datum_size.get()
2017            && alloc->element.type_kind.isValid() && alloc->dimension.isValid() && "Allocation information not available");
2018 
2019     // Check we can create writable file
2020     FileSpec file_spec(filename, true);
2021     File file(file_spec, File::eOpenOptionWrite | File::eOpenOptionCanCreate | File::eOpenOptionTruncate);
2022     if (!file)
2023     {
2024         strm.Printf("Error: Failed to open '%s' for writing", filename);
2025         strm.EOL();
2026         return false;
2027     }
2028 
2029     // Read allocation into buffer of heap memory
2030     const std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr);
2031     if (!buffer)
2032     {
2033         strm.Printf("Error: Couldn't read allocation data into buffer");
2034         strm.EOL();
2035         return false;
2036     }
2037 
2038     // Create the file header
2039     AllocationDetails::FileHeader head;
2040     head.ident[0] = 'R'; head.ident[1] = 'S'; head.ident[2] = 'A'; head.ident[3] = 'D';
2041     head.hdr_size = static_cast<uint16_t>(sizeof(AllocationDetails::FileHeader));
2042     head.type = static_cast<uint16_t>(*alloc->element.type.get());
2043     head.kind = static_cast<uint32_t>(*alloc->element.type_kind.get());
2044     head.dims[0] = static_cast<uint32_t>(alloc->dimension.get()->dim_1);
2045     head.dims[1] = static_cast<uint32_t>(alloc->dimension.get()->dim_2);
2046     head.dims[2] = static_cast<uint32_t>(alloc->dimension.get()->dim_3);
2047     head.element_size = static_cast<uint32_t>(*alloc->element.datum_size.get());
2048 
2049     // Write the file header
2050     size_t num_bytes = sizeof(AllocationDetails::FileHeader);
2051     Error err = file.Write(static_cast<const void*>(&head), num_bytes);
2052     if (!err.Success())
2053     {
2054         strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), filename);
2055         strm.EOL();
2056         return false;
2057     }
2058 
2059     // Write allocation data to file
2060     num_bytes = static_cast<size_t>(*alloc->size.get());
2061     if (log)
2062         log->Printf("RenderScriptRuntime::SaveAllocation - Writing 0x%" PRIx64 " bytes from %p", (uint64_t) num_bytes, buffer.get());
2063 
2064     err = file.Write(buffer.get(), num_bytes);
2065     if (!err.Success())
2066     {
2067         strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), filename);
2068         strm.EOL();
2069         return false;
2070     }
2071 
2072     strm.Printf("Allocation written to file '%s'", filename);
2073     strm.EOL();
2074     return true;
2075 }
2076 
2077 bool
2078 RenderScriptRuntime::LoadModule(const lldb::ModuleSP &module_sp)
2079 {
2080     Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2081 
2082     if (module_sp)
2083     {
2084         for (const auto &rs_module : m_rsmodules)
2085         {
2086             if (rs_module->m_module == module_sp)
2087             {
2088                 // Check if the user has enabled automatically breaking on
2089                 // all RS kernels.
2090                 if (m_breakAllKernels)
2091                     BreakOnModuleKernels(rs_module);
2092 
2093                 return false;
2094             }
2095         }
2096         bool module_loaded = false;
2097         switch (GetModuleKind(module_sp))
2098         {
2099             case eModuleKindKernelObj:
2100             {
2101                 RSModuleDescriptorSP module_desc;
2102                 module_desc.reset(new RSModuleDescriptor(module_sp));
2103                 if (module_desc->ParseRSInfo())
2104                 {
2105                     m_rsmodules.push_back(module_desc);
2106                     module_loaded = true;
2107                 }
2108                 if (module_loaded)
2109                 {
2110                     FixupScriptDetails(module_desc);
2111                 }
2112                 break;
2113             }
2114             case eModuleKindDriver:
2115             {
2116                 if (!m_libRSDriver)
2117                 {
2118                     m_libRSDriver = module_sp;
2119                     LoadRuntimeHooks(m_libRSDriver, RenderScriptRuntime::eModuleKindDriver);
2120                 }
2121                 break;
2122             }
2123             case eModuleKindImpl:
2124             {
2125                 m_libRSCpuRef = module_sp;
2126                 break;
2127             }
2128             case eModuleKindLibRS:
2129             {
2130                 if (!m_libRS)
2131                 {
2132                     m_libRS = module_sp;
2133                     static ConstString gDbgPresentStr("gDebuggerPresent");
2134                     const Symbol* debug_present = m_libRS->FindFirstSymbolWithNameAndType(gDbgPresentStr, eSymbolTypeData);
2135                     if (debug_present)
2136                     {
2137                         Error error;
2138                         uint32_t flag = 0x00000001U;
2139                         Target &target = GetProcess()->GetTarget();
2140                         addr_t addr = debug_present->GetLoadAddress(&target);
2141                         GetProcess()->WriteMemory(addr, &flag, sizeof(flag), error);
2142                         if(error.Success())
2143                         {
2144                             if (log)
2145                                 log->Printf ("RenderScriptRuntime::LoadModule - Debugger present flag set on debugee");
2146 
2147                             m_debuggerPresentFlagged = true;
2148                         }
2149                         else if (log)
2150                         {
2151                             log->Printf ("RenderScriptRuntime::LoadModule - Error writing debugger present flags '%s' ", error.AsCString());
2152                         }
2153                     }
2154                     else if (log)
2155                     {
2156                         log->Printf ("RenderScriptRuntime::LoadModule - Error writing debugger present flags - symbol not found");
2157                     }
2158                 }
2159                 break;
2160             }
2161             default:
2162                 break;
2163         }
2164         if (module_loaded)
2165             Update();
2166         return module_loaded;
2167     }
2168     return false;
2169 }
2170 
2171 void
2172 RenderScriptRuntime::Update()
2173 {
2174     if (m_rsmodules.size() > 0)
2175     {
2176         if (!m_initiated)
2177         {
2178             Initiate();
2179         }
2180     }
2181 }
2182 
2183 // The maximum line length of an .rs.info packet
2184 #define MAXLINE 500
2185 
2186 // The .rs.info symbol in renderscript modules contains a string which needs to be parsed.
2187 // The string is basic and is parsed on a line by line basis.
2188 bool
2189 RSModuleDescriptor::ParseRSInfo()
2190 {
2191     const Symbol *info_sym = m_module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), eSymbolTypeData);
2192     if (info_sym)
2193     {
2194         const addr_t addr = info_sym->GetAddressRef().GetFileAddress();
2195         const addr_t size = info_sym->GetByteSize();
2196         const FileSpec fs = m_module->GetFileSpec();
2197 
2198         DataBufferSP buffer = fs.ReadFileContents(addr, size);
2199 
2200         if (!buffer)
2201             return false;
2202 
2203         std::string info((const char *)buffer->GetBytes());
2204 
2205         std::vector<std::string> info_lines;
2206         size_t lpos = info.find('\n');
2207         while (lpos != std::string::npos)
2208         {
2209             info_lines.push_back(info.substr(0, lpos));
2210             info = info.substr(lpos + 1);
2211             lpos = info.find('\n');
2212         }
2213         size_t offset = 0;
2214         while (offset < info_lines.size())
2215         {
2216             std::string line = info_lines[offset];
2217             // Parse directives
2218             uint32_t numDefns = 0;
2219             if (sscanf(line.c_str(), "exportVarCount: %u", &numDefns) == 1)
2220             {
2221                 while (numDefns--)
2222                     m_globals.push_back(RSGlobalDescriptor(this, info_lines[++offset].c_str()));
2223             }
2224             else if (sscanf(line.c_str(), "exportFuncCount: %u", &numDefns) == 1)
2225             {
2226             }
2227             else if (sscanf(line.c_str(), "exportForEachCount: %u", &numDefns) == 1)
2228             {
2229                 char name[MAXLINE];
2230                 while (numDefns--)
2231                 {
2232                     uint32_t slot = 0;
2233                     name[0] = '\0';
2234                     if (sscanf(info_lines[++offset].c_str(), "%u - %s", &slot, &name[0]) == 2)
2235                     {
2236                         m_kernels.push_back(RSKernelDescriptor(this, name, slot));
2237                     }
2238                 }
2239             }
2240             else if (sscanf(line.c_str(), "pragmaCount: %u", &numDefns) == 1)
2241             {
2242                 char name[MAXLINE];
2243                 char value[MAXLINE];
2244                 while (numDefns--)
2245                 {
2246                     name[0] = '\0';
2247                     value[0] = '\0';
2248                     if (sscanf(info_lines[++offset].c_str(), "%s - %s", &name[0], &value[0]) != 0
2249                         && (name[0] != '\0'))
2250                     {
2251                         m_pragmas[std::string(name)] = value;
2252                     }
2253                 }
2254             }
2255             else if (sscanf(line.c_str(), "objectSlotCount: %u", &numDefns) == 1)
2256             {
2257             }
2258 
2259             offset++;
2260         }
2261         return m_kernels.size() > 0;
2262     }
2263     return false;
2264 }
2265 
2266 bool
2267 RenderScriptRuntime::ProbeModules(const ModuleList module_list)
2268 {
2269     bool rs_found = false;
2270     size_t num_modules = module_list.GetSize();
2271     for (size_t i = 0; i < num_modules; i++)
2272     {
2273         auto module = module_list.GetModuleAtIndex(i);
2274         rs_found |= LoadModule(module);
2275     }
2276     return rs_found;
2277 }
2278 
2279 void
2280 RenderScriptRuntime::Status(Stream &strm) const
2281 {
2282     if (m_libRS)
2283     {
2284         strm.Printf("Runtime Library discovered.");
2285         strm.EOL();
2286     }
2287     if (m_libRSDriver)
2288     {
2289         strm.Printf("Runtime Driver discovered.");
2290         strm.EOL();
2291     }
2292     if (m_libRSCpuRef)
2293     {
2294         strm.Printf("CPU Reference Implementation discovered.");
2295         strm.EOL();
2296     }
2297 
2298     if (m_runtimeHooks.size())
2299     {
2300         strm.Printf("Runtime functions hooked:");
2301         strm.EOL();
2302         for (auto b : m_runtimeHooks)
2303         {
2304             strm.Indent(b.second->defn->name);
2305             strm.EOL();
2306         }
2307         strm.EOL();
2308     }
2309     else
2310     {
2311         strm.Printf("Runtime is not hooked.");
2312         strm.EOL();
2313     }
2314 }
2315 
2316 void
2317 RenderScriptRuntime::DumpContexts(Stream &strm) const
2318 {
2319     strm.Printf("Inferred RenderScript Contexts:");
2320     strm.EOL();
2321     strm.IndentMore();
2322 
2323     std::map<addr_t, uint64_t> contextReferences;
2324 
2325     // Iterate over all of the currently discovered scripts.
2326     // Note: We cant push or pop from m_scripts inside this loop or it may invalidate script.
2327     for (const auto & script : m_scripts)
2328     {
2329         if (!script->context.isValid())
2330             continue;
2331         lldb::addr_t context = *script->context;
2332 
2333         if (contextReferences.find(context) != contextReferences.end())
2334         {
2335             contextReferences[context]++;
2336         }
2337         else
2338         {
2339             contextReferences[context] = 1;
2340         }
2341     }
2342 
2343     for (const auto& cRef : contextReferences)
2344     {
2345         strm.Printf("Context 0x%" PRIx64 ": %" PRIu64 " script instances", cRef.first, cRef.second);
2346         strm.EOL();
2347     }
2348     strm.IndentLess();
2349 }
2350 
2351 void
2352 RenderScriptRuntime::DumpKernels(Stream &strm) const
2353 {
2354     strm.Printf("RenderScript Kernels:");
2355     strm.EOL();
2356     strm.IndentMore();
2357     for (const auto &module : m_rsmodules)
2358     {
2359         strm.Printf("Resource '%s':",module->m_resname.c_str());
2360         strm.EOL();
2361         for (const auto &kernel : module->m_kernels)
2362         {
2363             strm.Indent(kernel.m_name.AsCString());
2364             strm.EOL();
2365         }
2366     }
2367     strm.IndentLess();
2368 }
2369 
2370 RenderScriptRuntime::AllocationDetails*
2371 RenderScriptRuntime::FindAllocByID(Stream &strm, const uint32_t alloc_id)
2372 {
2373     AllocationDetails* alloc = nullptr;
2374 
2375     // See if we can find allocation using id as an index;
2376     if (alloc_id <= m_allocations.size() && alloc_id != 0
2377         && m_allocations[alloc_id-1]->id == alloc_id)
2378     {
2379         alloc = m_allocations[alloc_id-1].get();
2380         return alloc;
2381     }
2382 
2383     // Fallback to searching
2384     for (const auto & a : m_allocations)
2385     {
2386        if (a->id == alloc_id)
2387        {
2388            alloc = a.get();
2389            break;
2390        }
2391     }
2392 
2393     if (alloc == nullptr)
2394     {
2395         strm.Printf("Error: Couldn't find allocation with id matching %u", alloc_id);
2396         strm.EOL();
2397     }
2398 
2399     return alloc;
2400 }
2401 
2402 // Prints the contents of an allocation to the output stream, which may be a file
2403 bool
2404 RenderScriptRuntime::DumpAllocation(Stream &strm, StackFrame* frame_ptr, const uint32_t id)
2405 {
2406     Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2407 
2408     // Check we can find the desired allocation
2409     AllocationDetails* alloc = FindAllocByID(strm, id);
2410     if (!alloc)
2411         return false; // FindAllocByID() will print error message for us here
2412 
2413     if (log)
2414         log->Printf("RenderScriptRuntime::DumpAllocation - Found allocation 0x%" PRIx64, *alloc->address.get());
2415 
2416     // Check we have information about the allocation, if not calculate it
2417     if (!alloc->data_ptr.isValid() || !alloc->element.type.isValid() ||
2418         !alloc->element.type_vec_size.isValid() || !alloc->dimension.isValid() || !alloc->element.datum_size.isValid())
2419     {
2420         if (log)
2421             log->Printf("RenderScriptRuntime::DumpAllocation - Allocation details not calculated yet, jitting info");
2422 
2423         // JIT all the allocation information
2424         if (!RefreshAllocation(alloc, frame_ptr))
2425         {
2426             strm.Printf("Error: Couldn't JIT allocation details");
2427             strm.EOL();
2428             return false;
2429         }
2430     }
2431 
2432     // Establish format and size of each data element
2433     const unsigned int vec_size = *alloc->element.type_vec_size.get();
2434     const Element::DataType type = *alloc->element.type.get();
2435 
2436     assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_BOOLEAN
2437                                                    && "Invalid allocation type");
2438 
2439     lldb::Format format = vec_size == 1 ? static_cast<lldb::Format>(AllocationDetails::RSTypeToFormat[type][eFormatSingle])
2440                                         : static_cast<lldb::Format>(AllocationDetails::RSTypeToFormat[type][eFormatVector]);
2441 
2442     const unsigned int data_size = *alloc->element.datum_size.get();
2443 
2444     if (log)
2445         log->Printf("RenderScriptRuntime::DumpAllocation - Element size %u bytes, including padding", data_size);
2446 
2447     // Allocate a buffer to copy data into
2448     std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr);
2449     if (!buffer)
2450     {
2451         strm.Printf("Error: Couldn't allocate a read allocation data into memory");
2452         strm.EOL();
2453         return false;
2454     }
2455 
2456     // Calculate stride between rows as there may be padding at end of rows since
2457     // allocated memory is 16-byte aligned
2458     if (!alloc->stride.isValid())
2459     {
2460         if (alloc->dimension.get()->dim_2 == 0) // We only have one dimension
2461             alloc->stride = 0;
2462         else if (!JITAllocationStride(alloc, frame_ptr))
2463         {
2464             strm.Printf("Error: Couldn't calculate allocation row stride");
2465             strm.EOL();
2466             return false;
2467         }
2468     }
2469     const unsigned int stride = *alloc->stride.get();
2470     const unsigned int size = *alloc->size.get(); // Size of whole allocation
2471     const unsigned int padding = alloc->element.padding.isValid() ? *alloc->element.padding.get() : 0;
2472     if (log)
2473         log->Printf("RenderScriptRuntime::DumpAllocation - stride %u bytes, size %u bytes, padding %u", stride, size, padding);
2474 
2475     // Find dimensions used to index loops, so need to be non-zero
2476     unsigned int dim_x = alloc->dimension.get()->dim_1;
2477     dim_x = dim_x == 0 ? 1 : dim_x;
2478 
2479     unsigned int dim_y = alloc->dimension.get()->dim_2;
2480     dim_y = dim_y == 0 ? 1 : dim_y;
2481 
2482     unsigned int dim_z = alloc->dimension.get()->dim_3;
2483     dim_z = dim_z == 0 ? 1 : dim_z;
2484 
2485     // Use data extractor to format output
2486     const uint32_t archByteSize = GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
2487     DataExtractor alloc_data(buffer.get(), size, GetProcess()->GetByteOrder(), archByteSize);
2488 
2489     unsigned int offset = 0;   // Offset in buffer to next element to be printed
2490     unsigned int prev_row = 0; // Offset to the start of the previous row
2491 
2492     // Iterate over allocation dimensions, printing results to user
2493     strm.Printf("Data (X, Y, Z):");
2494     for (unsigned int z = 0; z < dim_z; ++z)
2495     {
2496         for (unsigned int y = 0; y < dim_y; ++y)
2497         {
2498             // Use stride to index start of next row.
2499             if (!(y==0 && z==0))
2500                 offset = prev_row + stride;
2501             prev_row = offset;
2502 
2503             // Print each element in the row individually
2504             for (unsigned int x = 0; x < dim_x; ++x)
2505             {
2506                 strm.Printf("\n(%u, %u, %u) = ", x, y, z);
2507                 if ((type == Element::RS_TYPE_NONE) && (alloc->element.children.size() > 0) &&
2508                     (alloc->element.type_name != Element::GetFallbackStructName()))
2509                 {
2510                     // Here we are dumping an Element of struct type.
2511                     // This is done using expression evaluation with the name of the struct type and pointer to element.
2512 
2513                     // Don't print the name of the resulting expression, since this will be '$[0-9]+'
2514                     DumpValueObjectOptions expr_options;
2515                     expr_options.SetHideName(true);
2516 
2517                     // Setup expression as derefrencing a pointer cast to element address.
2518                     char expr_char_buffer[jit_max_expr_size];
2519                     int chars_written = snprintf(expr_char_buffer, jit_max_expr_size, "*(%s*) 0x%" PRIx64,
2520                                         alloc->element.type_name.AsCString(), *alloc->data_ptr.get() + offset);
2521 
2522                     if (chars_written < 0 || chars_written >= jit_max_expr_size)
2523                     {
2524                         if (log)
2525                             log->Printf("RenderScriptRuntime::DumpAllocation- Error in snprintf()");
2526                         continue;
2527                     }
2528 
2529                     // Evaluate expression
2530                     ValueObjectSP expr_result;
2531                     GetProcess()->GetTarget().EvaluateExpression(expr_char_buffer, frame_ptr, expr_result);
2532 
2533                     // Print the results to our stream.
2534                     expr_result->Dump(strm, expr_options);
2535                 }
2536                 else
2537                 {
2538                     alloc_data.Dump(&strm, offset, format, data_size - padding, 1, 1, LLDB_INVALID_ADDRESS, 0, 0);
2539                 }
2540                 offset += data_size;
2541             }
2542         }
2543     }
2544     strm.EOL();
2545 
2546     return true;
2547 }
2548 
2549 // Prints infomation regarding all the currently loaded allocations.
2550 // These details are gathered by jitting the runtime, which has as latency.
2551 void
2552 RenderScriptRuntime::ListAllocations(Stream &strm, StackFrame* frame_ptr, bool recompute)
2553 {
2554     strm.Printf("RenderScript Allocations:");
2555     strm.EOL();
2556     strm.IndentMore();
2557 
2558     for (auto &alloc : m_allocations)
2559     {
2560         // JIT the allocation info if we haven't done it, or the user forces us to.
2561         bool do_refresh = !alloc->data_ptr.isValid() || recompute;
2562 
2563         // JIT current allocation information
2564         if (do_refresh && !RefreshAllocation(alloc.get(), frame_ptr))
2565         {
2566             strm.Printf("Error: Couldn't evaluate details for allocation %u\n", alloc->id);
2567             continue;
2568         }
2569 
2570         strm.Printf("%u:\n",alloc->id);
2571         strm.IndentMore();
2572 
2573         strm.Indent("Context: ");
2574         if (!alloc->context.isValid())
2575             strm.Printf("unknown\n");
2576         else
2577             strm.Printf("0x%" PRIx64 "\n", *alloc->context.get());
2578 
2579         strm.Indent("Address: ");
2580         if (!alloc->address.isValid())
2581             strm.Printf("unknown\n");
2582         else
2583             strm.Printf("0x%" PRIx64 "\n", *alloc->address.get());
2584 
2585         strm.Indent("Data pointer: ");
2586         if (!alloc->data_ptr.isValid())
2587             strm.Printf("unknown\n");
2588         else
2589             strm.Printf("0x%" PRIx64 "\n", *alloc->data_ptr.get());
2590 
2591         strm.Indent("Dimensions: ");
2592         if (!alloc->dimension.isValid())
2593             strm.Printf("unknown\n");
2594         else
2595             strm.Printf("(%d, %d, %d)\n", alloc->dimension.get()->dim_1,
2596                                           alloc->dimension.get()->dim_2,
2597                                           alloc->dimension.get()->dim_3);
2598 
2599         strm.Indent("Data Type: ");
2600         if (!alloc->element.type.isValid() || !alloc->element.type_vec_size.isValid())
2601             strm.Printf("unknown\n");
2602         else
2603         {
2604             const int vector_size = *alloc->element.type_vec_size.get();
2605             const Element::DataType type = *alloc->element.type.get();
2606 
2607             if (!alloc->element.type_name.IsEmpty())
2608                 strm.Printf("%s\n", alloc->element.type_name.AsCString());
2609             else if (vector_size > 4 || vector_size < 1 ||
2610                 type < Element::RS_TYPE_NONE || type > Element::RS_TYPE_BOOLEAN)
2611                 strm.Printf("invalid type\n");
2612             else
2613                 strm.Printf("%s\n", AllocationDetails::RsDataTypeToString[static_cast<unsigned int>(type)][vector_size-1]);
2614         }
2615 
2616         strm.Indent("Data Kind: ");
2617         if (!alloc->element.type_kind.isValid())
2618             strm.Printf("unknown\n");
2619         else
2620         {
2621             const Element::DataKind kind = *alloc->element.type_kind.get();
2622             if (kind < Element::RS_KIND_USER || kind > Element::RS_KIND_PIXEL_YUV)
2623                 strm.Printf("invalid kind\n");
2624             else
2625                 strm.Printf("%s\n", AllocationDetails::RsDataKindToString[static_cast<unsigned int>(kind)]);
2626         }
2627 
2628         strm.EOL();
2629         strm.IndentLess();
2630     }
2631     strm.IndentLess();
2632 }
2633 
2634 // Set breakpoints on every kernel found in RS module
2635 void
2636 RenderScriptRuntime::BreakOnModuleKernels(const RSModuleDescriptorSP rsmodule_sp)
2637 {
2638     for (const auto &kernel : rsmodule_sp->m_kernels)
2639     {
2640         // Don't set breakpoint on 'root' kernel
2641         if (strcmp(kernel.m_name.AsCString(), "root") == 0)
2642             continue;
2643 
2644         CreateKernelBreakpoint(kernel.m_name);
2645     }
2646 }
2647 
2648 // Method is internally called by the 'kernel breakpoint all' command to
2649 // enable or disable breaking on all kernels.
2650 //
2651 // When do_break is true we want to enable this functionality.
2652 // When do_break is false we want to disable it.
2653 void
2654 RenderScriptRuntime::SetBreakAllKernels(bool do_break, TargetSP target)
2655 {
2656     Log* log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
2657 
2658     InitSearchFilter(target);
2659 
2660     // Set breakpoints on all the kernels
2661     if (do_break && !m_breakAllKernels)
2662     {
2663         m_breakAllKernels = true;
2664 
2665         for (const auto &module : m_rsmodules)
2666             BreakOnModuleKernels(module);
2667 
2668         if (log)
2669             log->Printf("RenderScriptRuntime::SetBreakAllKernels(True)"
2670                         "- breakpoints set on all currently loaded kernels");
2671     }
2672     else if (!do_break && m_breakAllKernels) // Breakpoints won't be set on any new kernels.
2673     {
2674         m_breakAllKernels = false;
2675 
2676         if (log)
2677             log->Printf("RenderScriptRuntime::SetBreakAllKernels(False) - breakpoints no longer automatically set");
2678     }
2679 }
2680 
2681 // Given the name of a kernel this function creates a breakpoint using our
2682 // own breakpoint resolver, and returns the Breakpoint shared pointer.
2683 BreakpointSP
2684 RenderScriptRuntime::CreateKernelBreakpoint(const ConstString& name)
2685 {
2686     Log* log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
2687 
2688     if (!m_filtersp)
2689     {
2690         if (log)
2691             log->Printf("RenderScriptRuntime::CreateKernelBreakpoint - Error: No breakpoint search filter set");
2692         return nullptr;
2693     }
2694 
2695     BreakpointResolverSP resolver_sp(new RSBreakpointResolver(nullptr, name));
2696     BreakpointSP bp = GetProcess()->GetTarget().CreateBreakpoint(m_filtersp, resolver_sp, false, false, false);
2697 
2698     // Give RS breakpoints a specific name, so the user can manipulate them as a group.
2699     Error err;
2700     if (!bp->AddName("RenderScriptKernel", err) && log)
2701         log->Printf("RenderScriptRuntime::CreateKernelBreakpoint: Error setting break name, %s", err.AsCString());
2702 
2703     return bp;
2704 }
2705 
2706 // Given an expression for a variable this function tries to calculate the variable's value.
2707 // If this is possible it returns true and sets the uint64_t parameter to the variables unsigned value.
2708 // Otherwise function returns false.
2709 bool
2710 RenderScriptRuntime::GetFrameVarAsUnsigned(const StackFrameSP frame_sp, const char* var_name, uint64_t& val)
2711 {
2712     Log* log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2713     Error error;
2714     VariableSP var_sp;
2715 
2716     // Find variable in stack frame
2717     ValueObjectSP value_sp(frame_sp->GetValueForVariableExpressionPath(var_name,
2718                                                                        eNoDynamicValues,
2719                                                                        StackFrame::eExpressionPathOptionCheckPtrVsMember |
2720                                                                        StackFrame::eExpressionPathOptionsAllowDirectIVarAccess,
2721                                                                        var_sp,
2722                                                                        error));
2723     if (!error.Success())
2724     {
2725         if (log)
2726             log->Printf("RenderScriptRuntime::GetFrameVarAsUnsigned - Error, couldn't find '%s' in frame", var_name);
2727 
2728         return false;
2729     }
2730 
2731     // Find the unsigned int value for the variable
2732     bool success = false;
2733     val = value_sp->GetValueAsUnsigned(0, &success);
2734     if (!success)
2735     {
2736         if (log)
2737             log->Printf("RenderScriptRuntime::GetFrameVarAsUnsigned - Error, couldn't parse '%s' as an unsigned int", var_name);
2738 
2739         return false;
2740     }
2741 
2742     return true;
2743 }
2744 
2745 // Callback when a kernel breakpoint hits and we're looking for a specific coordinate.
2746 // Baton parameter contains a pointer to the target coordinate we want to break on.
2747 // Function then checks the .expand frame for the current coordinate and breaks to user if it matches.
2748 // Parameter 'break_id' is the id of the Breakpoint which made the callback.
2749 // Parameter 'break_loc_id' is the id for the BreakpointLocation which was hit,
2750 // a single logical breakpoint can have multiple addresses.
2751 bool
2752 RenderScriptRuntime::KernelBreakpointHit(void *baton, StoppointCallbackContext *ctx,
2753                                          user_id_t break_id, user_id_t break_loc_id)
2754 {
2755     Log* log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
2756 
2757     assert(baton && "Error: null baton in conditional kernel breakpoint callback");
2758 
2759     // Coordinate we want to stop on
2760     const int* target_coord = static_cast<const int*>(baton);
2761 
2762     if (log)
2763         log->Printf("RenderScriptRuntime::KernelBreakpointHit - Break ID %" PRIu64 ", target coord (%d, %d, %d)",
2764                     break_id, target_coord[0], target_coord[1], target_coord[2]);
2765 
2766     // Go up one stack frame to .expand kernel
2767     ExecutionContext context(ctx->exe_ctx_ref);
2768     ThreadSP thread_sp = context.GetThreadSP();
2769     if (!thread_sp->SetSelectedFrameByIndex(1))
2770     {
2771         if (log)
2772             log->Printf("RenderScriptRuntime::KernelBreakpointHit - Error, couldn't go up stack frame");
2773 
2774        return false;
2775     }
2776 
2777     StackFrameSP frame_sp = thread_sp->GetSelectedFrame();
2778     if (!frame_sp)
2779     {
2780         if (log)
2781             log->Printf("RenderScriptRuntime::KernelBreakpointHit - Error, couldn't select .expand stack frame");
2782 
2783         return false;
2784     }
2785 
2786     // Get values for variables in .expand frame that tell us the current kernel invocation
2787     const char* coord_expressions[] = {"rsIndex", "p->current.y", "p->current.z"};
2788     uint64_t current_coord[3] = {0, 0, 0};
2789 
2790     for(int i = 0; i < 3; ++i)
2791     {
2792         if (!GetFrameVarAsUnsigned(frame_sp, coord_expressions[i], current_coord[i]))
2793             return false;
2794 
2795         if (log)
2796             log->Printf("RenderScriptRuntime::KernelBreakpointHit, %s = %" PRIu64, coord_expressions[i], current_coord[i]);
2797     }
2798 
2799     // Check if the current kernel invocation coordinate matches our target coordinate
2800     if (current_coord[0] == static_cast<uint64_t>(target_coord[0]) &&
2801         current_coord[1] == static_cast<uint64_t>(target_coord[1]) &&
2802         current_coord[2] == static_cast<uint64_t>(target_coord[2]))
2803     {
2804         if (log)
2805              log->Printf("RenderScriptRuntime::KernelBreakpointHit, BREAKING %" PRIu64 ", %" PRIu64 ", %" PRIu64,
2806                          current_coord[0], current_coord[1], current_coord[2]);
2807 
2808         BreakpointSP breakpoint_sp = context.GetTargetPtr()->GetBreakpointByID(break_id);
2809         assert(breakpoint_sp != nullptr && "Error: Couldn't find breakpoint matching break id for callback");
2810         breakpoint_sp->SetEnabled(false); // Optimise since conditional breakpoint should only be hit once.
2811         return true;
2812     }
2813 
2814     // No match on coordinate
2815     return false;
2816 }
2817 
2818 // Tries to set a breakpoint on the start of a kernel, resolved using the kernel name.
2819 // Argument 'coords', represents a three dimensional coordinate which can be used to specify
2820 // a single kernel instance to break on. If this is set then we add a callback to the breakpoint.
2821 void
2822 RenderScriptRuntime::PlaceBreakpointOnKernel(Stream &strm, const char* name, const std::array<int,3> coords,
2823                                              Error& error, TargetSP target)
2824 {
2825     if (!name)
2826     {
2827         error.SetErrorString("invalid kernel name");
2828         return;
2829     }
2830 
2831     InitSearchFilter(target);
2832 
2833     ConstString kernel_name(name);
2834     BreakpointSP bp = CreateKernelBreakpoint(kernel_name);
2835 
2836     // We have a conditional breakpoint on a specific coordinate
2837     if (coords[0] != -1)
2838     {
2839         strm.Printf("Conditional kernel breakpoint on coordinate %d, %d, %d", coords[0], coords[1], coords[2]);
2840         strm.EOL();
2841 
2842         // Allocate memory for the baton, and copy over coordinate
2843         int* baton = new int[3];
2844         baton[0] = coords[0]; baton[1] = coords[1]; baton[2] = coords[2];
2845 
2846         // Create a callback that will be invoked everytime the breakpoint is hit.
2847         // The baton object passed to the handler is the target coordinate we want to break on.
2848         bp->SetCallback(KernelBreakpointHit, baton, true);
2849 
2850         // Store a shared pointer to the baton, so the memory will eventually be cleaned up after destruction
2851         m_conditional_breaks[bp->GetID()] = std::shared_ptr<int>(baton);
2852     }
2853 
2854     if (bp)
2855         bp->GetDescription(&strm, lldb::eDescriptionLevelInitial, false);
2856 }
2857 
2858 void
2859 RenderScriptRuntime::DumpModules(Stream &strm) const
2860 {
2861     strm.Printf("RenderScript Modules:");
2862     strm.EOL();
2863     strm.IndentMore();
2864     for (const auto &module : m_rsmodules)
2865     {
2866         module->Dump(strm);
2867     }
2868     strm.IndentLess();
2869 }
2870 
2871 RenderScriptRuntime::ScriptDetails*
2872 RenderScriptRuntime::LookUpScript(addr_t address, bool create)
2873 {
2874     for (const auto & s : m_scripts)
2875     {
2876         if (s->script.isValid())
2877             if (*s->script == address)
2878                 return s.get();
2879     }
2880     if (create)
2881     {
2882         std::unique_ptr<ScriptDetails> s(new ScriptDetails);
2883         s->script = address;
2884         m_scripts.push_back(std::move(s));
2885         return m_scripts.back().get();
2886     }
2887     return nullptr;
2888 }
2889 
2890 RenderScriptRuntime::AllocationDetails*
2891 RenderScriptRuntime::LookUpAllocation(addr_t address, bool create)
2892 {
2893     for (const auto & a : m_allocations)
2894     {
2895         if (a->address.isValid())
2896             if (*a->address == address)
2897                 return a.get();
2898     }
2899     if (create)
2900     {
2901         std::unique_ptr<AllocationDetails> a(new AllocationDetails);
2902         a->address = address;
2903         m_allocations.push_back(std::move(a));
2904         return m_allocations.back().get();
2905     }
2906     return nullptr;
2907 }
2908 
2909 void
2910 RSModuleDescriptor::Dump(Stream &strm) const
2911 {
2912     strm.Indent();
2913     m_module->GetFileSpec().Dump(&strm);
2914     if(m_module->GetNumCompileUnits())
2915     {
2916         strm.Indent("Debug info loaded.");
2917     }
2918     else
2919     {
2920         strm.Indent("Debug info does not exist.");
2921     }
2922     strm.EOL();
2923     strm.IndentMore();
2924     strm.Indent();
2925     strm.Printf("Globals: %" PRIu64, static_cast<uint64_t>(m_globals.size()));
2926     strm.EOL();
2927     strm.IndentMore();
2928     for (const auto &global : m_globals)
2929     {
2930         global.Dump(strm);
2931     }
2932     strm.IndentLess();
2933     strm.Indent();
2934     strm.Printf("Kernels: %" PRIu64, static_cast<uint64_t>(m_kernels.size()));
2935     strm.EOL();
2936     strm.IndentMore();
2937     for (const auto &kernel : m_kernels)
2938     {
2939         kernel.Dump(strm);
2940     }
2941     strm.Printf("Pragmas: %"  PRIu64 , static_cast<uint64_t>(m_pragmas.size()));
2942     strm.EOL();
2943     strm.IndentMore();
2944     for (const auto &key_val : m_pragmas)
2945     {
2946         strm.Printf("%s: %s", key_val.first.c_str(), key_val.second.c_str());
2947         strm.EOL();
2948     }
2949     strm.IndentLess(4);
2950 }
2951 
2952 void
2953 RSGlobalDescriptor::Dump(Stream &strm) const
2954 {
2955     strm.Indent(m_name.AsCString());
2956     VariableList var_list;
2957     m_module->m_module->FindGlobalVariables(m_name, nullptr, true, 1U, var_list);
2958     if (var_list.GetSize() == 1)
2959     {
2960         auto var = var_list.GetVariableAtIndex(0);
2961         auto type = var->GetType();
2962         if(type)
2963         {
2964             strm.Printf(" - ");
2965             type->DumpTypeName(&strm);
2966         }
2967         else
2968         {
2969             strm.Printf(" - Unknown Type");
2970         }
2971     }
2972     else
2973     {
2974         strm.Printf(" - variable identified, but not found in binary");
2975         const Symbol* s = m_module->m_module->FindFirstSymbolWithNameAndType(m_name, eSymbolTypeData);
2976         if (s)
2977         {
2978             strm.Printf(" (symbol exists) ");
2979         }
2980     }
2981 
2982     strm.EOL();
2983 }
2984 
2985 void
2986 RSKernelDescriptor::Dump(Stream &strm) const
2987 {
2988     strm.Indent(m_name.AsCString());
2989     strm.EOL();
2990 }
2991 
2992 class CommandObjectRenderScriptRuntimeModuleProbe : public CommandObjectParsed
2993 {
2994 public:
2995     CommandObjectRenderScriptRuntimeModuleProbe(CommandInterpreter &interpreter)
2996         : CommandObjectParsed(interpreter, "renderscript module probe",
2997                               "Initiates a Probe of all loaded modules for kernels and other renderscript objects.",
2998                               "renderscript module probe",
2999                               eCommandRequiresTarget | eCommandRequiresProcess | eCommandProcessMustBeLaunched)
3000     {
3001     }
3002 
3003     ~CommandObjectRenderScriptRuntimeModuleProbe() override = default;
3004 
3005     bool
3006     DoExecute(Args &command, CommandReturnObject &result) override
3007     {
3008         const size_t argc = command.GetArgumentCount();
3009         if (argc == 0)
3010         {
3011             Target *target = m_exe_ctx.GetTargetPtr();
3012             RenderScriptRuntime *runtime =
3013                 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
3014             auto module_list = target->GetImages();
3015             bool new_rs_details = runtime->ProbeModules(module_list);
3016             if (new_rs_details)
3017             {
3018                 result.AppendMessage("New renderscript modules added to runtime model.");
3019             }
3020             result.SetStatus(eReturnStatusSuccessFinishResult);
3021             return true;
3022         }
3023 
3024         result.AppendErrorWithFormat("'%s' takes no arguments", m_cmd_name.c_str());
3025         result.SetStatus(eReturnStatusFailed);
3026         return false;
3027     }
3028 };
3029 
3030 class CommandObjectRenderScriptRuntimeModuleDump : public CommandObjectParsed
3031 {
3032 public:
3033     CommandObjectRenderScriptRuntimeModuleDump(CommandInterpreter &interpreter)
3034         : CommandObjectParsed(interpreter, "renderscript module dump",
3035                               "Dumps renderscript specific information for all modules.", "renderscript module dump",
3036                               eCommandRequiresProcess | eCommandProcessMustBeLaunched)
3037     {
3038     }
3039 
3040     ~CommandObjectRenderScriptRuntimeModuleDump() override = default;
3041 
3042     bool
3043     DoExecute(Args &command, CommandReturnObject &result) override
3044     {
3045         RenderScriptRuntime *runtime =
3046             (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
3047         runtime->DumpModules(result.GetOutputStream());
3048         result.SetStatus(eReturnStatusSuccessFinishResult);
3049         return true;
3050     }
3051 };
3052 
3053 class CommandObjectRenderScriptRuntimeModule : public CommandObjectMultiword
3054 {
3055 public:
3056     CommandObjectRenderScriptRuntimeModule(CommandInterpreter &interpreter)
3057         : CommandObjectMultiword(interpreter, "renderscript module", "Commands that deal with renderscript modules.",
3058                                  NULL)
3059     {
3060         LoadSubCommand("probe", CommandObjectSP(new CommandObjectRenderScriptRuntimeModuleProbe(interpreter)));
3061         LoadSubCommand("dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeModuleDump(interpreter)));
3062     }
3063 
3064     ~CommandObjectRenderScriptRuntimeModule() override = default;
3065 };
3066 
3067 class CommandObjectRenderScriptRuntimeKernelList : public CommandObjectParsed
3068 {
3069 public:
3070     CommandObjectRenderScriptRuntimeKernelList(CommandInterpreter &interpreter)
3071         : CommandObjectParsed(interpreter, "renderscript kernel list",
3072                               "Lists renderscript kernel names and associated script resources.", "renderscript kernel list",
3073                               eCommandRequiresProcess | eCommandProcessMustBeLaunched)
3074     {
3075     }
3076 
3077     ~CommandObjectRenderScriptRuntimeKernelList() override = default;
3078 
3079     bool
3080     DoExecute(Args &command, CommandReturnObject &result) override
3081     {
3082         RenderScriptRuntime *runtime =
3083             (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
3084         runtime->DumpKernels(result.GetOutputStream());
3085         result.SetStatus(eReturnStatusSuccessFinishResult);
3086         return true;
3087     }
3088 };
3089 
3090 class CommandObjectRenderScriptRuntimeKernelBreakpointSet : public CommandObjectParsed
3091 {
3092 public:
3093     CommandObjectRenderScriptRuntimeKernelBreakpointSet(CommandInterpreter &interpreter)
3094         : CommandObjectParsed(interpreter, "renderscript kernel breakpoint set",
3095                               "Sets a breakpoint on a renderscript kernel.", "renderscript kernel breakpoint set <kernel_name> [-c x,y,z]",
3096                               eCommandRequiresProcess | eCommandProcessMustBeLaunched | eCommandProcessMustBePaused), m_options(interpreter)
3097     {
3098     }
3099 
3100     ~CommandObjectRenderScriptRuntimeKernelBreakpointSet() override = default;
3101 
3102     Options*
3103     GetOptions() override
3104     {
3105         return &m_options;
3106     }
3107 
3108     class CommandOptions : public Options
3109     {
3110     public:
3111         CommandOptions(CommandInterpreter &interpreter) : Options(interpreter)
3112         {
3113         }
3114 
3115         ~CommandOptions() override = default;
3116 
3117         Error
3118         SetOptionValue(uint32_t option_idx, const char *option_arg) override
3119         {
3120             Error error;
3121             const int short_option = m_getopt_table[option_idx].val;
3122 
3123             switch (short_option)
3124             {
3125                 case 'c':
3126                     if (!ParseCoordinate(option_arg))
3127                         error.SetErrorStringWithFormat("Couldn't parse coordinate '%s', should be in format 'x,y,z'.", option_arg);
3128                     break;
3129                 default:
3130                     error.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
3131                     break;
3132             }
3133             return error;
3134         }
3135 
3136         // -c takes an argument of the form 'num[,num][,num]'.
3137         // Where 'id_cstr' is this argument with the whitespace trimmed.
3138         // Missing coordinates are defaulted to zero.
3139         bool
3140         ParseCoordinate(const char* id_cstr)
3141         {
3142             RegularExpression regex;
3143             RegularExpression::Match regex_match(3);
3144 
3145             bool matched = false;
3146             if(regex.Compile("^([0-9]+),([0-9]+),([0-9]+)$") && regex.Execute(id_cstr, &regex_match))
3147                 matched = true;
3148             else if(regex.Compile("^([0-9]+),([0-9]+)$") && regex.Execute(id_cstr, &regex_match))
3149                 matched = true;
3150             else if(regex.Compile("^([0-9]+)$") && regex.Execute(id_cstr, &regex_match))
3151                 matched = true;
3152             for(uint32_t i = 0; i < 3; i++)
3153             {
3154                 std::string group;
3155                 if(regex_match.GetMatchAtIndex(id_cstr, i + 1, group))
3156                     m_coord[i] = (uint32_t)strtoul(group.c_str(), NULL, 0);
3157                 else
3158                     m_coord[i] = 0;
3159             }
3160             return matched;
3161         }
3162 
3163         void
3164         OptionParsingStarting() override
3165         {
3166             // -1 means the -c option hasn't been set
3167             m_coord[0] = -1;
3168             m_coord[1] = -1;
3169             m_coord[2] = -1;
3170         }
3171 
3172         const OptionDefinition*
3173         GetDefinitions() override
3174         {
3175             return g_option_table;
3176         }
3177 
3178         static OptionDefinition g_option_table[];
3179         std::array<int,3> m_coord;
3180     };
3181 
3182     bool
3183     DoExecute(Args &command, CommandReturnObject &result) override
3184     {
3185         const size_t argc = command.GetArgumentCount();
3186         if (argc < 1)
3187         {
3188             result.AppendErrorWithFormat("'%s' takes 1 argument of kernel name, and an optional coordinate.", m_cmd_name.c_str());
3189             result.SetStatus(eReturnStatusFailed);
3190             return false;
3191         }
3192 
3193         RenderScriptRuntime *runtime =
3194                 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
3195 
3196         Error error;
3197         runtime->PlaceBreakpointOnKernel(result.GetOutputStream(), command.GetArgumentAtIndex(0), m_options.m_coord,
3198                                          error, m_exe_ctx.GetTargetSP());
3199 
3200         if (error.Success())
3201         {
3202             result.AppendMessage("Breakpoint(s) created");
3203             result.SetStatus(eReturnStatusSuccessFinishResult);
3204             return true;
3205         }
3206         result.SetStatus(eReturnStatusFailed);
3207         result.AppendErrorWithFormat("Error: %s", error.AsCString());
3208         return false;
3209     }
3210 
3211 private:
3212     CommandOptions m_options;
3213 };
3214 
3215 OptionDefinition
3216 CommandObjectRenderScriptRuntimeKernelBreakpointSet::CommandOptions::g_option_table[] =
3217 {
3218     { LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument, NULL, NULL, 0, eArgTypeValue,
3219       "Set a breakpoint on a single invocation of the kernel with specified coordinate.\n"
3220       "Coordinate takes the form 'x[,y][,z] where x,y,z are positive integers representing kernel dimensions. "
3221       "Any unset dimensions will be defaulted to zero."},
3222     { 0, false, NULL, 0, 0, NULL, NULL, 0, eArgTypeNone, NULL }
3223 };
3224 
3225 class CommandObjectRenderScriptRuntimeKernelBreakpointAll : public CommandObjectParsed
3226 {
3227 public:
3228     CommandObjectRenderScriptRuntimeKernelBreakpointAll(CommandInterpreter &interpreter)
3229         : CommandObjectParsed(interpreter, "renderscript kernel breakpoint all",
3230                               "Automatically sets a breakpoint on all renderscript kernels that are or will be loaded.\n"
3231                               "Disabling option means breakpoints will no longer be set on any kernels loaded in the future, "
3232                               "but does not remove currently set breakpoints.",
3233                               "renderscript kernel breakpoint all <enable/disable>",
3234                               eCommandRequiresProcess | eCommandProcessMustBeLaunched | eCommandProcessMustBePaused)
3235     {
3236     }
3237 
3238     ~CommandObjectRenderScriptRuntimeKernelBreakpointAll() override = default;
3239 
3240     bool
3241     DoExecute(Args &command, CommandReturnObject &result) override
3242     {
3243         const size_t argc = command.GetArgumentCount();
3244         if (argc != 1)
3245         {
3246             result.AppendErrorWithFormat("'%s' takes 1 argument of 'enable' or 'disable'", m_cmd_name.c_str());
3247             result.SetStatus(eReturnStatusFailed);
3248             return false;
3249         }
3250 
3251         RenderScriptRuntime *runtime =
3252           static_cast<RenderScriptRuntime *>(m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
3253 
3254         bool do_break = false;
3255         const char* argument = command.GetArgumentAtIndex(0);
3256         if (strcmp(argument, "enable") == 0)
3257         {
3258             do_break = true;
3259             result.AppendMessage("Breakpoints will be set on all kernels.");
3260         }
3261         else if (strcmp(argument, "disable") == 0)
3262         {
3263             do_break = false;
3264             result.AppendMessage("Breakpoints will not be set on any new kernels.");
3265         }
3266         else
3267         {
3268             result.AppendErrorWithFormat("Argument must be either 'enable' or 'disable'");
3269             result.SetStatus(eReturnStatusFailed);
3270             return false;
3271         }
3272 
3273         runtime->SetBreakAllKernels(do_break, m_exe_ctx.GetTargetSP());
3274 
3275         result.SetStatus(eReturnStatusSuccessFinishResult);
3276         return true;
3277     }
3278 };
3279 
3280 class CommandObjectRenderScriptRuntimeKernelBreakpoint : public CommandObjectMultiword
3281 {
3282 public:
3283     CommandObjectRenderScriptRuntimeKernelBreakpoint(CommandInterpreter &interpreter)
3284         : CommandObjectMultiword(interpreter, "renderscript kernel", "Commands that generate breakpoints on renderscript kernels.",
3285                                  nullptr)
3286     {
3287         LoadSubCommand("set", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointSet(interpreter)));
3288         LoadSubCommand("all", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointAll(interpreter)));
3289     }
3290 
3291     ~CommandObjectRenderScriptRuntimeKernelBreakpoint() override = default;
3292 };
3293 
3294 class CommandObjectRenderScriptRuntimeKernel : public CommandObjectMultiword
3295 {
3296 public:
3297     CommandObjectRenderScriptRuntimeKernel(CommandInterpreter &interpreter)
3298         : CommandObjectMultiword(interpreter, "renderscript kernel", "Commands that deal with renderscript kernels.",
3299                                  NULL)
3300     {
3301         LoadSubCommand("list", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelList(interpreter)));
3302         LoadSubCommand("breakpoint", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpoint(interpreter)));
3303     }
3304 
3305     ~CommandObjectRenderScriptRuntimeKernel() override = default;
3306 };
3307 
3308 class CommandObjectRenderScriptRuntimeContextDump : public CommandObjectParsed
3309 {
3310 public:
3311     CommandObjectRenderScriptRuntimeContextDump(CommandInterpreter &interpreter)
3312         : CommandObjectParsed(interpreter, "renderscript context dump",
3313                               "Dumps renderscript context information.", "renderscript context dump",
3314                               eCommandRequiresProcess | eCommandProcessMustBeLaunched)
3315     {
3316     }
3317 
3318     ~CommandObjectRenderScriptRuntimeContextDump() override = default;
3319 
3320     bool
3321     DoExecute(Args &command, CommandReturnObject &result) override
3322     {
3323         RenderScriptRuntime *runtime =
3324             (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
3325         runtime->DumpContexts(result.GetOutputStream());
3326         result.SetStatus(eReturnStatusSuccessFinishResult);
3327         return true;
3328     }
3329 };
3330 
3331 class CommandObjectRenderScriptRuntimeContext : public CommandObjectMultiword
3332 {
3333 public:
3334     CommandObjectRenderScriptRuntimeContext(CommandInterpreter &interpreter)
3335         : CommandObjectMultiword(interpreter, "renderscript context", "Commands that deal with renderscript contexts.",
3336                                  NULL)
3337     {
3338         LoadSubCommand("dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeContextDump(interpreter)));
3339     }
3340 
3341     ~CommandObjectRenderScriptRuntimeContext() override = default;
3342 };
3343 
3344 class CommandObjectRenderScriptRuntimeAllocationDump : public CommandObjectParsed
3345 {
3346 public:
3347     CommandObjectRenderScriptRuntimeAllocationDump(CommandInterpreter &interpreter)
3348         : CommandObjectParsed(interpreter, "renderscript allocation dump",
3349                               "Displays the contents of a particular allocation", "renderscript allocation dump <ID>",
3350                               eCommandRequiresProcess | eCommandProcessMustBeLaunched), m_options(interpreter)
3351     {
3352     }
3353 
3354     ~CommandObjectRenderScriptRuntimeAllocationDump() override = default;
3355 
3356     Options*
3357     GetOptions() override
3358     {
3359         return &m_options;
3360     }
3361 
3362     class CommandOptions : public Options
3363     {
3364     public:
3365         CommandOptions(CommandInterpreter &interpreter) : Options(interpreter)
3366         {
3367         }
3368 
3369         ~CommandOptions() override = default;
3370 
3371         Error
3372         SetOptionValue(uint32_t option_idx, const char *option_arg) override
3373         {
3374             Error error;
3375             const int short_option = m_getopt_table[option_idx].val;
3376 
3377             switch (short_option)
3378             {
3379                 case 'f':
3380                     m_outfile.SetFile(option_arg, true);
3381                     if (m_outfile.Exists())
3382                     {
3383                         m_outfile.Clear();
3384                         error.SetErrorStringWithFormat("file already exists: '%s'", option_arg);
3385                     }
3386                     break;
3387                 default:
3388                     error.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
3389                     break;
3390             }
3391             return error;
3392         }
3393 
3394         void
3395         OptionParsingStarting() override
3396         {
3397             m_outfile.Clear();
3398         }
3399 
3400         const OptionDefinition*
3401         GetDefinitions() override
3402         {
3403             return g_option_table;
3404         }
3405 
3406         static OptionDefinition g_option_table[];
3407         FileSpec m_outfile;
3408     };
3409 
3410     bool
3411     DoExecute(Args &command, CommandReturnObject &result) override
3412     {
3413         const size_t argc = command.GetArgumentCount();
3414         if (argc < 1)
3415         {
3416             result.AppendErrorWithFormat("'%s' takes 1 argument, an allocation ID. As well as an optional -f argument",
3417                                          m_cmd_name.c_str());
3418             result.SetStatus(eReturnStatusFailed);
3419             return false;
3420         }
3421 
3422         RenderScriptRuntime *runtime =
3423           static_cast<RenderScriptRuntime *>(m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
3424 
3425         const char* id_cstr = command.GetArgumentAtIndex(0);
3426         bool convert_complete = false;
3427         const uint32_t id = StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete);
3428         if (!convert_complete)
3429         {
3430             result.AppendErrorWithFormat("invalid allocation id argument '%s'", id_cstr);
3431             result.SetStatus(eReturnStatusFailed);
3432             return false;
3433         }
3434 
3435         Stream* output_strm = nullptr;
3436         StreamFile outfile_stream;
3437         const FileSpec &outfile_spec = m_options.m_outfile; // Dump allocation to file instead
3438         if (outfile_spec)
3439         {
3440             // Open output file
3441             char path[256];
3442             outfile_spec.GetPath(path, sizeof(path));
3443             if (outfile_stream.GetFile().Open(path, File::eOpenOptionWrite | File::eOpenOptionCanCreate).Success())
3444             {
3445                 output_strm = &outfile_stream;
3446                 result.GetOutputStream().Printf("Results written to '%s'", path);
3447                 result.GetOutputStream().EOL();
3448             }
3449             else
3450             {
3451                 result.AppendErrorWithFormat("Couldn't open file '%s'", path);
3452                 result.SetStatus(eReturnStatusFailed);
3453                 return false;
3454             }
3455         }
3456         else
3457             output_strm = &result.GetOutputStream();
3458 
3459         assert(output_strm != nullptr);
3460         bool success = runtime->DumpAllocation(*output_strm, m_exe_ctx.GetFramePtr(), id);
3461 
3462         if (success)
3463             result.SetStatus(eReturnStatusSuccessFinishResult);
3464         else
3465             result.SetStatus(eReturnStatusFailed);
3466 
3467         return true;
3468     }
3469 
3470 private:
3471     CommandOptions m_options;
3472 };
3473 
3474 OptionDefinition
3475 CommandObjectRenderScriptRuntimeAllocationDump::CommandOptions::g_option_table[] =
3476 {
3477     { LLDB_OPT_SET_1, false, "file", 'f', OptionParser::eRequiredArgument, NULL, NULL, 0, eArgTypeFilename,
3478       "Print results to specified file instead of command line."},
3479     { 0, false, NULL, 0, 0, NULL, NULL, 0, eArgTypeNone, NULL }
3480 };
3481 
3482 class CommandObjectRenderScriptRuntimeAllocationList : public CommandObjectParsed
3483 {
3484 public:
3485     CommandObjectRenderScriptRuntimeAllocationList(CommandInterpreter &interpreter)
3486         : CommandObjectParsed(interpreter, "renderscript allocation list",
3487                               "List renderscript allocations and their information.", "renderscript allocation list",
3488                               eCommandRequiresProcess | eCommandProcessMustBeLaunched), m_options(interpreter)
3489     {
3490     }
3491 
3492     ~CommandObjectRenderScriptRuntimeAllocationList() override = default;
3493 
3494     Options*
3495     GetOptions() override
3496     {
3497         return &m_options;
3498     }
3499 
3500     class CommandOptions : public Options
3501     {
3502     public:
3503         CommandOptions(CommandInterpreter &interpreter) : Options(interpreter), m_refresh(false)
3504         {
3505         }
3506 
3507         ~CommandOptions() override = default;
3508 
3509         Error
3510         SetOptionValue(uint32_t option_idx, const char *option_arg) override
3511         {
3512             Error error;
3513             const int short_option = m_getopt_table[option_idx].val;
3514 
3515             switch (short_option)
3516             {
3517                 case 'r':
3518                     m_refresh = true;
3519                     break;
3520                 default:
3521                     error.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
3522                     break;
3523             }
3524             return error;
3525         }
3526 
3527         void
3528         OptionParsingStarting() override
3529         {
3530             m_refresh = false;
3531         }
3532 
3533         const OptionDefinition*
3534         GetDefinitions() override
3535         {
3536             return g_option_table;
3537         }
3538 
3539         static OptionDefinition g_option_table[];
3540         bool m_refresh;
3541     };
3542 
3543     bool
3544     DoExecute(Args &command, CommandReturnObject &result) override
3545     {
3546         RenderScriptRuntime *runtime =
3547           static_cast<RenderScriptRuntime *>(m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
3548         runtime->ListAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr(), m_options.m_refresh);
3549         result.SetStatus(eReturnStatusSuccessFinishResult);
3550         return true;
3551     }
3552 
3553 private:
3554     CommandOptions m_options;
3555 };
3556 
3557 OptionDefinition
3558 CommandObjectRenderScriptRuntimeAllocationList::CommandOptions::g_option_table[] =
3559 {
3560     { LLDB_OPT_SET_1, false, "refresh", 'r', OptionParser::eNoArgument, NULL, NULL, 0, eArgTypeNone,
3561       "Recompute allocation details."},
3562     { 0, false, NULL, 0, 0, NULL, NULL, 0, eArgTypeNone, NULL }
3563 };
3564 
3565 class CommandObjectRenderScriptRuntimeAllocationLoad : public CommandObjectParsed
3566 {
3567 public:
3568     CommandObjectRenderScriptRuntimeAllocationLoad(CommandInterpreter &interpreter)
3569         : CommandObjectParsed(interpreter, "renderscript allocation load",
3570                               "Loads renderscript allocation contents from a file.", "renderscript allocation load <ID> <filename>",
3571                               eCommandRequiresProcess | eCommandProcessMustBeLaunched)
3572     {
3573     }
3574 
3575     ~CommandObjectRenderScriptRuntimeAllocationLoad() override = default;
3576 
3577     bool
3578     DoExecute(Args &command, CommandReturnObject &result) override
3579     {
3580         const size_t argc = command.GetArgumentCount();
3581         if (argc != 2)
3582         {
3583             result.AppendErrorWithFormat("'%s' takes 2 arguments, an allocation ID and filename to read from.", m_cmd_name.c_str());
3584             result.SetStatus(eReturnStatusFailed);
3585             return false;
3586         }
3587 
3588         RenderScriptRuntime *runtime =
3589           static_cast<RenderScriptRuntime *>(m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
3590 
3591         const char* id_cstr = command.GetArgumentAtIndex(0);
3592         bool convert_complete = false;
3593         const uint32_t id = StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete);
3594         if (!convert_complete)
3595         {
3596             result.AppendErrorWithFormat ("invalid allocation id argument '%s'", id_cstr);
3597             result.SetStatus (eReturnStatusFailed);
3598             return false;
3599         }
3600 
3601         const char* filename = command.GetArgumentAtIndex(1);
3602         bool success = runtime->LoadAllocation(result.GetOutputStream(), id, filename, m_exe_ctx.GetFramePtr());
3603 
3604         if (success)
3605             result.SetStatus(eReturnStatusSuccessFinishResult);
3606         else
3607             result.SetStatus(eReturnStatusFailed);
3608 
3609         return true;
3610     }
3611 };
3612 
3613 class CommandObjectRenderScriptRuntimeAllocationSave : public CommandObjectParsed
3614 {
3615 public:
3616     CommandObjectRenderScriptRuntimeAllocationSave(CommandInterpreter &interpreter)
3617         : CommandObjectParsed(interpreter, "renderscript allocation save",
3618                               "Write renderscript allocation contents to a file.", "renderscript allocation save <ID> <filename>",
3619                               eCommandRequiresProcess | eCommandProcessMustBeLaunched)
3620     {
3621     }
3622 
3623     ~CommandObjectRenderScriptRuntimeAllocationSave() override = default;
3624 
3625     bool
3626     DoExecute(Args &command, CommandReturnObject &result) override
3627     {
3628         const size_t argc = command.GetArgumentCount();
3629         if (argc != 2)
3630         {
3631             result.AppendErrorWithFormat("'%s' takes 2 arguments, an allocation ID and filename to read from.", m_cmd_name.c_str());
3632             result.SetStatus(eReturnStatusFailed);
3633             return false;
3634         }
3635 
3636         RenderScriptRuntime *runtime =
3637           static_cast<RenderScriptRuntime *>(m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
3638 
3639         const char* id_cstr = command.GetArgumentAtIndex(0);
3640         bool convert_complete = false;
3641         const uint32_t id = StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete);
3642         if (!convert_complete)
3643         {
3644             result.AppendErrorWithFormat ("invalid allocation id argument '%s'", id_cstr);
3645             result.SetStatus (eReturnStatusFailed);
3646             return false;
3647         }
3648 
3649         const char* filename = command.GetArgumentAtIndex(1);
3650         bool success = runtime->SaveAllocation(result.GetOutputStream(), id, filename, m_exe_ctx.GetFramePtr());
3651 
3652         if (success)
3653             result.SetStatus(eReturnStatusSuccessFinishResult);
3654         else
3655             result.SetStatus(eReturnStatusFailed);
3656 
3657         return true;
3658     }
3659 };
3660 
3661 class CommandObjectRenderScriptRuntimeAllocation : public CommandObjectMultiword
3662 {
3663 public:
3664     CommandObjectRenderScriptRuntimeAllocation(CommandInterpreter &interpreter)
3665         : CommandObjectMultiword(interpreter, "renderscript allocation", "Commands that deal with renderscript allocations.",
3666                                  NULL)
3667     {
3668         LoadSubCommand("list", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationList(interpreter)));
3669         LoadSubCommand("dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationDump(interpreter)));
3670         LoadSubCommand("save", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationSave(interpreter)));
3671         LoadSubCommand("load", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationLoad(interpreter)));
3672     }
3673 
3674     ~CommandObjectRenderScriptRuntimeAllocation() override = default;
3675 };
3676 
3677 class CommandObjectRenderScriptRuntimeStatus : public CommandObjectParsed
3678 {
3679 public:
3680     CommandObjectRenderScriptRuntimeStatus(CommandInterpreter &interpreter)
3681         : CommandObjectParsed(interpreter, "renderscript status",
3682                               "Displays current renderscript runtime status.", "renderscript status",
3683                               eCommandRequiresProcess | eCommandProcessMustBeLaunched)
3684     {
3685     }
3686 
3687     ~CommandObjectRenderScriptRuntimeStatus() override = default;
3688 
3689     bool
3690     DoExecute(Args &command, CommandReturnObject &result) override
3691     {
3692         RenderScriptRuntime *runtime =
3693             (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
3694         runtime->Status(result.GetOutputStream());
3695         result.SetStatus(eReturnStatusSuccessFinishResult);
3696         return true;
3697     }
3698 };
3699 
3700 class CommandObjectRenderScriptRuntime : public CommandObjectMultiword
3701 {
3702 public:
3703     CommandObjectRenderScriptRuntime(CommandInterpreter &interpreter)
3704         : CommandObjectMultiword(interpreter, "renderscript", "A set of commands for operating on renderscript.",
3705                                  "renderscript <subcommand> [<subcommand-options>]")
3706     {
3707         LoadSubCommand("module", CommandObjectSP(new CommandObjectRenderScriptRuntimeModule(interpreter)));
3708         LoadSubCommand("status", CommandObjectSP(new CommandObjectRenderScriptRuntimeStatus(interpreter)));
3709         LoadSubCommand("kernel", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernel(interpreter)));
3710         LoadSubCommand("context", CommandObjectSP(new CommandObjectRenderScriptRuntimeContext(interpreter)));
3711         LoadSubCommand("allocation", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocation(interpreter)));
3712     }
3713 
3714     ~CommandObjectRenderScriptRuntime() override = default;
3715 };
3716 
3717 void
3718 RenderScriptRuntime::Initiate()
3719 {
3720     assert(!m_initiated);
3721 }
3722 
3723 RenderScriptRuntime::RenderScriptRuntime(Process *process)
3724     : lldb_private::CPPLanguageRuntime(process), m_initiated(false), m_debuggerPresentFlagged(false),
3725       m_breakAllKernels(false)
3726 {
3727     ModulesDidLoad(process->GetTarget().GetImages());
3728 }
3729 
3730 lldb::CommandObjectSP
3731 RenderScriptRuntime::GetCommandObject(lldb_private::CommandInterpreter& interpreter)
3732 {
3733     static CommandObjectSP command_object;
3734     if(!command_object)
3735     {
3736         command_object.reset(new CommandObjectRenderScriptRuntime(interpreter));
3737     }
3738     return command_object;
3739 }
3740 
3741 RenderScriptRuntime::~RenderScriptRuntime() = default;
3742