1 //===-- RenderScriptRuntime.cpp ---------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 // C Includes 11 // C++ Includes 12 // Other libraries and framework includes 13 // Project includes 14 #include "RenderScriptRuntime.h" 15 16 #include "lldb/Breakpoint/StoppointCallbackContext.h" 17 #include "lldb/Core/ConstString.h" 18 #include "lldb/Core/Debugger.h" 19 #include "lldb/Core/Error.h" 20 #include "lldb/Core/Log.h" 21 #include "lldb/Core/PluginManager.h" 22 #include "lldb/Core/RegularExpression.h" 23 #include "lldb/Core/ValueObjectVariable.h" 24 #include "lldb/DataFormatters/DumpValueObjectOptions.h" 25 #include "lldb/Expression/UserExpression.h" 26 #include "lldb/Host/StringConvert.h" 27 #include "lldb/Interpreter/Args.h" 28 #include "lldb/Interpreter/CommandInterpreter.h" 29 #include "lldb/Interpreter/CommandObjectMultiword.h" 30 #include "lldb/Interpreter/CommandReturnObject.h" 31 #include "lldb/Interpreter/Options.h" 32 #include "lldb/Symbol/Symbol.h" 33 #include "lldb/Symbol/Type.h" 34 #include "lldb/Symbol/VariableList.h" 35 #include "lldb/Target/Process.h" 36 #include "lldb/Target/RegisterContext.h" 37 #include "lldb/Target/Target.h" 38 #include "lldb/Target/Thread.h" 39 40 using namespace lldb; 41 using namespace lldb_private; 42 using namespace lldb_renderscript; 43 44 namespace 45 { 46 47 // The empirical_type adds a basic level of validation to arbitrary data 48 // allowing us to track if data has been discovered and stored or not. 49 // An empirical_type will be marked as valid only if it has been explicitly assigned to. 50 template <typename type_t> class empirical_type 51 { 52 public: 53 // Ctor. Contents is invalid when constructed. 54 empirical_type() : valid(false) {} 55 56 // Return true and copy contents to out if valid, else return false. 57 bool 58 get(type_t &out) const 59 { 60 if (valid) 61 out = data; 62 return valid; 63 } 64 65 // Return a pointer to the contents or nullptr if it was not valid. 66 const type_t * 67 get() const 68 { 69 return valid ? &data : nullptr; 70 } 71 72 // Assign data explicitly. 73 void 74 set(const type_t in) 75 { 76 data = in; 77 valid = true; 78 } 79 80 // Mark contents as invalid. 81 void 82 invalidate() 83 { 84 valid = false; 85 } 86 87 // Returns true if this type contains valid data. 88 bool 89 isValid() const 90 { 91 return valid; 92 } 93 94 // Assignment operator. 95 empirical_type<type_t> & 96 operator=(const type_t in) 97 { 98 set(in); 99 return *this; 100 } 101 102 // Dereference operator returns contents. 103 // Warning: Will assert if not valid so use only when you know data is valid. 104 const type_t &operator*() const 105 { 106 assert(valid); 107 return data; 108 } 109 110 protected: 111 bool valid; 112 type_t data; 113 }; 114 115 // ArgItem is used by the GetArgs() function when reading function arguments from the target. 116 struct ArgItem 117 { 118 enum 119 { 120 ePointer, 121 eInt32, 122 eInt64, 123 eLong, 124 eBool 125 } type; 126 127 uint64_t value; 128 129 explicit operator uint64_t() const { return value; } 130 }; 131 132 // Context structure to be passed into GetArgsXXX(), argument reading functions below. 133 struct GetArgsCtx 134 { 135 RegisterContext *reg_ctx; 136 Process *process; 137 }; 138 139 bool 140 GetArgsX86(const GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) 141 { 142 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 143 144 // get the current stack pointer 145 uint64_t sp = ctx.reg_ctx->GetSP(); 146 147 for (size_t i = 0; i < num_args; ++i) 148 { 149 ArgItem &arg = arg_list[i]; 150 // advance up the stack by one argument 151 sp += sizeof(uint32_t); 152 // get the argument type size 153 size_t arg_size = sizeof(uint32_t); 154 // read the argument from memory 155 arg.value = 0; 156 Error error; 157 size_t read = ctx.process->ReadMemory(sp, &arg.value, sizeof(uint32_t), error); 158 if (read != arg_size || !error.Success()) 159 { 160 if (log) 161 log->Printf("%s - error reading argument: %" PRIu64 " '%s'", __FUNCTION__, uint64_t(i), 162 error.AsCString()); 163 return false; 164 } 165 } 166 return true; 167 } 168 169 bool 170 GetArgsX86_64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) 171 { 172 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 173 174 // number of arguments passed in registers 175 static const uint32_t c_args_in_reg = 6; 176 // register passing order 177 static const std::array<const char *, c_args_in_reg> c_reg_names{{"rdi", "rsi", "rdx", "rcx", "r8", "r9"}}; 178 // argument type to size mapping 179 static const std::array<size_t, 5> arg_size{{ 180 8, // ePointer, 181 4, // eInt32, 182 8, // eInt64, 183 8, // eLong, 184 4, // eBool, 185 }}; 186 187 // get the current stack pointer 188 uint64_t sp = ctx.reg_ctx->GetSP(); 189 // step over the return address 190 sp += sizeof(uint64_t); 191 192 // check the stack alignment was correct (16 byte aligned) 193 if ((sp & 0xf) != 0x0) 194 { 195 if (log) 196 log->Printf("%s - stack misaligned", __FUNCTION__); 197 return false; 198 } 199 200 // find the start of arguments on the stack 201 uint64_t sp_offset = 0; 202 for (uint32_t i = c_args_in_reg; i < num_args; ++i) 203 { 204 sp_offset += arg_size[arg_list[i].type]; 205 } 206 // round up to multiple of 16 207 sp_offset = (sp_offset + 0xf) & 0xf; 208 sp += sp_offset; 209 210 for (size_t i = 0; i < num_args; ++i) 211 { 212 bool success = false; 213 ArgItem &arg = arg_list[i]; 214 // arguments passed in registers 215 if (i < c_args_in_reg) 216 { 217 const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoByName(c_reg_names[i]); 218 RegisterValue rVal; 219 if (ctx.reg_ctx->ReadRegister(rArg, rVal)) 220 arg.value = rVal.GetAsUInt64(0, &success); 221 } 222 // arguments passed on the stack 223 else 224 { 225 // get the argument type size 226 const size_t size = arg_size[arg_list[i].type]; 227 // read the argument from memory 228 arg.value = 0; 229 // note: due to little endian layout reading 4 or 8 bytes will give the correct value. 230 Error error; 231 size_t read = ctx.process->ReadMemory(sp, &arg.value, size, error); 232 success = (error.Success() && read==size); 233 // advance past this argument 234 sp -= size; 235 } 236 // fail if we couldn't read this argument 237 if (!success) 238 { 239 if (log) 240 log->Printf("%s - error reading argument: %" PRIu64, __FUNCTION__, uint64_t(i)); 241 return false; 242 } 243 } 244 return true; 245 } 246 247 bool 248 GetArgsArm(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) 249 { 250 // number of arguments passed in registers 251 static const uint32_t c_args_in_reg = 4; 252 253 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 254 255 // get the current stack pointer 256 uint64_t sp = ctx.reg_ctx->GetSP(); 257 258 for (size_t i = 0; i < num_args; ++i) 259 { 260 bool success = false; 261 ArgItem &arg = arg_list[i]; 262 // arguments passed in registers 263 if (i < c_args_in_reg) 264 { 265 const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoAtIndex(i); 266 RegisterValue rVal; 267 if (ctx.reg_ctx->ReadRegister(rArg, rVal)) 268 arg.value = rVal.GetAsUInt32(0, &success); 269 } 270 // arguments passed on the stack 271 else 272 { 273 // get the argument type size 274 const size_t arg_size = sizeof(uint32_t); 275 // clear all 64bits 276 arg.value = 0; 277 // read this argument from memory 278 Error error; 279 size_t bytes_read = ctx.process->ReadMemory(sp, &arg.value, arg_size, error); 280 success = (error.Success() && bytes_read == arg_size); 281 // advance the stack pointer 282 sp += sizeof(uint32_t); 283 } 284 // fail if we couldn't read this argument 285 if (!success) 286 { 287 if (log) 288 log->Printf("%s - error reading argument: %" PRIu64, __FUNCTION__, uint64_t(i)); 289 return false; 290 } 291 } 292 return true; 293 } 294 295 bool 296 GetArgsAarch64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) 297 { 298 // number of arguments passed in registers 299 static const uint32_t c_args_in_reg = 8; 300 301 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 302 303 for (size_t i = 0; i < num_args; ++i) 304 { 305 bool success = false; 306 ArgItem &arg = arg_list[i]; 307 // arguments passed in registers 308 if (i < c_args_in_reg) 309 { 310 const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoAtIndex(i); 311 RegisterValue rVal; 312 if (ctx.reg_ctx->ReadRegister(rArg, rVal)) 313 arg.value = rVal.GetAsUInt64(0, &success); 314 } 315 // arguments passed on the stack 316 else 317 { 318 if (log) 319 log->Printf("%s - reading arguments spilled to stack not implemented", __FUNCTION__); 320 } 321 // fail if we couldn't read this argument 322 if (!success) 323 { 324 if (log) 325 log->Printf("%s - error reading argument: %" PRIu64, __FUNCTION__, 326 uint64_t(i)); 327 return false; 328 } 329 } 330 return true; 331 } 332 333 bool 334 GetArgsMipsel(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) 335 { 336 // number of arguments passed in registers 337 static const uint32_t c_args_in_reg = 4; 338 // register file offset to first argument 339 static const uint32_t c_reg_offset = 4; 340 341 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 342 343 for (size_t i = 0; i < num_args; ++i) 344 { 345 bool success = false; 346 ArgItem &arg = arg_list[i]; 347 // arguments passed in registers 348 if (i < c_args_in_reg) 349 { 350 const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoAtIndex(i + c_reg_offset); 351 RegisterValue rVal; 352 if (ctx.reg_ctx->ReadRegister(rArg, rVal)) 353 arg.value = rVal.GetAsUInt64(0, &success); 354 } 355 // arguments passed on the stack 356 else 357 { 358 if (log) 359 log->Printf("%s - reading arguments spilled to stack not implemented.", __FUNCTION__); 360 } 361 // fail if we couldn't read this argument 362 if (!success) 363 { 364 if (log) 365 log->Printf("%s - error reading argument: %" PRIu64, __FUNCTION__, uint64_t(i)); 366 return false; 367 } 368 } 369 return true; 370 } 371 372 bool 373 GetArgsMips64el(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) 374 { 375 // number of arguments passed in registers 376 static const uint32_t c_args_in_reg = 8; 377 // register file offset to first argument 378 static const uint32_t c_reg_offset = 4; 379 380 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 381 382 // get the current stack pointer 383 uint64_t sp = ctx.reg_ctx->GetSP(); 384 385 for (size_t i = 0; i < num_args; ++i) 386 { 387 bool success = false; 388 ArgItem &arg = arg_list[i]; 389 // arguments passed in registers 390 if (i < c_args_in_reg) 391 { 392 const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoAtIndex(i + c_reg_offset); 393 RegisterValue rVal; 394 if (ctx.reg_ctx->ReadRegister(rArg, rVal)) 395 arg.value = rVal.GetAsUInt64(0, &success); 396 } 397 // arguments passed on the stack 398 else 399 { 400 // get the argument type size 401 const size_t arg_size = sizeof(uint64_t); 402 // clear all 64bits 403 arg.value = 0; 404 // read this argument from memory 405 Error error; 406 size_t bytes_read = ctx.process->ReadMemory(sp, &arg.value, arg_size, error); 407 success = (error.Success() && bytes_read == arg_size); 408 // advance the stack pointer 409 sp += arg_size; 410 } 411 // fail if we couldn't read this argument 412 if (!success) 413 { 414 if (log) 415 log->Printf("%s - error reading argument: %" PRIu64, __FUNCTION__, uint64_t(i)); 416 return false; 417 } 418 } 419 return true; 420 } 421 422 bool 423 GetArgs(ExecutionContext &context, ArgItem *arg_list, size_t num_args) 424 { 425 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 426 427 // verify that we have a target 428 if (!context.GetTargetPtr()) 429 { 430 if (log) 431 log->Printf("%s - invalid target", __FUNCTION__); 432 return false; 433 } 434 435 GetArgsCtx ctx = {context.GetRegisterContext(), context.GetProcessPtr()}; 436 assert(ctx.reg_ctx && ctx.process); 437 438 // dispatch based on architecture 439 switch (context.GetTargetPtr()->GetArchitecture().GetMachine()) 440 { 441 case llvm::Triple::ArchType::x86: 442 return GetArgsX86(ctx, arg_list, num_args); 443 444 case llvm::Triple::ArchType::x86_64: 445 return GetArgsX86_64(ctx, arg_list, num_args); 446 447 case llvm::Triple::ArchType::arm: 448 return GetArgsArm(ctx, arg_list, num_args); 449 450 case llvm::Triple::ArchType::aarch64: 451 return GetArgsAarch64(ctx, arg_list, num_args); 452 453 case llvm::Triple::ArchType::mipsel: 454 return GetArgsMipsel(ctx, arg_list, num_args); 455 456 case llvm::Triple::ArchType::mips64el: 457 return GetArgsMips64el(ctx, arg_list, num_args); 458 459 default: 460 // unsupported architecture 461 if (log) 462 { 463 log->Printf("%s - architecture not supported: '%s'", __FUNCTION__, 464 context.GetTargetRef().GetArchitecture().GetArchitectureName()); 465 } 466 return false; 467 } 468 } 469 } // anonymous namespace 470 471 // The ScriptDetails class collects data associated with a single script instance. 472 struct RenderScriptRuntime::ScriptDetails 473 { 474 ~ScriptDetails() = default; 475 476 enum ScriptType 477 { 478 eScript, 479 eScriptC 480 }; 481 482 // The derived type of the script. 483 empirical_type<ScriptType> type; 484 // The name of the original source file. 485 empirical_type<std::string> resName; 486 // Path to script .so file on the device. 487 empirical_type<std::string> scriptDyLib; 488 // Directory where kernel objects are cached on device. 489 empirical_type<std::string> cacheDir; 490 // Pointer to the context which owns this script. 491 empirical_type<lldb::addr_t> context; 492 // Pointer to the script object itself. 493 empirical_type<lldb::addr_t> script; 494 }; 495 496 // This Element class represents the Element object in RS, 497 // defining the type associated with an Allocation. 498 struct RenderScriptRuntime::Element 499 { 500 // Taken from rsDefines.h 501 enum DataKind 502 { 503 RS_KIND_USER, 504 RS_KIND_PIXEL_L = 7, 505 RS_KIND_PIXEL_A, 506 RS_KIND_PIXEL_LA, 507 RS_KIND_PIXEL_RGB, 508 RS_KIND_PIXEL_RGBA, 509 RS_KIND_PIXEL_DEPTH, 510 RS_KIND_PIXEL_YUV, 511 RS_KIND_INVALID = 100 512 }; 513 514 // Taken from rsDefines.h 515 enum DataType 516 { 517 RS_TYPE_NONE = 0, 518 RS_TYPE_FLOAT_16, 519 RS_TYPE_FLOAT_32, 520 RS_TYPE_FLOAT_64, 521 RS_TYPE_SIGNED_8, 522 RS_TYPE_SIGNED_16, 523 RS_TYPE_SIGNED_32, 524 RS_TYPE_SIGNED_64, 525 RS_TYPE_UNSIGNED_8, 526 RS_TYPE_UNSIGNED_16, 527 RS_TYPE_UNSIGNED_32, 528 RS_TYPE_UNSIGNED_64, 529 RS_TYPE_BOOLEAN, 530 531 RS_TYPE_UNSIGNED_5_6_5, 532 RS_TYPE_UNSIGNED_5_5_5_1, 533 RS_TYPE_UNSIGNED_4_4_4_4, 534 535 RS_TYPE_MATRIX_4X4, 536 RS_TYPE_MATRIX_3X3, 537 RS_TYPE_MATRIX_2X2, 538 539 RS_TYPE_ELEMENT = 1000, 540 RS_TYPE_TYPE, 541 RS_TYPE_ALLOCATION, 542 RS_TYPE_SAMPLER, 543 RS_TYPE_SCRIPT, 544 RS_TYPE_MESH, 545 RS_TYPE_PROGRAM_FRAGMENT, 546 RS_TYPE_PROGRAM_VERTEX, 547 RS_TYPE_PROGRAM_RASTER, 548 RS_TYPE_PROGRAM_STORE, 549 RS_TYPE_FONT, 550 551 RS_TYPE_INVALID = 10000 552 }; 553 554 std::vector<Element> children; // Child Element fields for structs 555 empirical_type<lldb::addr_t> element_ptr; // Pointer to the RS Element of the Type 556 empirical_type<DataType> type; // Type of each data pointer stored by the allocation 557 empirical_type<DataKind> type_kind; // Defines pixel type if Allocation is created from an image 558 empirical_type<uint32_t> type_vec_size; // Vector size of each data point, e.g '4' for uchar4 559 empirical_type<uint32_t> field_count; // Number of Subelements 560 empirical_type<uint32_t> datum_size; // Size of a single Element with padding 561 empirical_type<uint32_t> padding; // Number of padding bytes 562 empirical_type<uint32_t> array_size; // Number of items in array, only needed for strucrs 563 ConstString type_name; // Name of type, only needed for structs 564 565 static const ConstString & 566 GetFallbackStructName(); // Print this as the type name of a struct Element 567 // If we can't resolve the actual struct name 568 569 bool 570 shouldRefresh() const 571 { 572 const bool valid_ptr = element_ptr.isValid() && *element_ptr.get() != 0x0; 573 const bool valid_type = type.isValid() && type_vec_size.isValid() && type_kind.isValid(); 574 return !valid_ptr || !valid_type || !datum_size.isValid(); 575 } 576 }; 577 578 // This AllocationDetails class collects data associated with a single 579 // allocation instance. 580 struct RenderScriptRuntime::AllocationDetails 581 { 582 struct Dimension 583 { 584 uint32_t dim_1; 585 uint32_t dim_2; 586 uint32_t dim_3; 587 uint32_t cubeMap; 588 589 Dimension() 590 { 591 dim_1 = 0; 592 dim_2 = 0; 593 dim_3 = 0; 594 cubeMap = 0; 595 } 596 }; 597 598 // The FileHeader struct specifies the header we use for writing allocations to a binary file. 599 // Our format begins with the ASCII characters "RSAD", identifying the file as an allocation dump. 600 // Member variables dims and hdr_size are then written consecutively, immediately followed by an instance of 601 // the ElementHeader struct. Because Elements can contain subelements, there may be more than one instance 602 // of the ElementHeader struct. With this first instance being the root element, and the other instances being 603 // the root's descendants. To identify which instances are an ElementHeader's children, each struct 604 // is immediately followed by a sequence of consecutive offsets to the start of its child structs. 605 // These offsets are 4 bytes in size, and the 0 offset signifies no more children. 606 struct FileHeader 607 { 608 uint8_t ident[4]; // ASCII 'RSAD' identifying the file 609 uint32_t dims[3]; // Dimensions 610 uint16_t hdr_size; // Header size in bytes, including all element headers 611 }; 612 613 struct ElementHeader 614 { 615 uint16_t type; // DataType enum 616 uint32_t kind; // DataKind enum 617 uint32_t element_size; // Size of a single element, including padding 618 uint16_t vector_size; // Vector width 619 uint32_t array_size; // Number of elements in array 620 }; 621 622 // Monotonically increasing from 1 623 static uint32_t ID; 624 625 // Maps Allocation DataType enum and vector size to printable strings 626 // using mapping from RenderScript numerical types summary documentation 627 static const char *RsDataTypeToString[][4]; 628 629 // Maps Allocation DataKind enum to printable strings 630 static const char *RsDataKindToString[]; 631 632 // Maps allocation types to format sizes for printing. 633 static const uint32_t RSTypeToFormat[][3]; 634 635 // Give each allocation an ID as a way 636 // for commands to reference it. 637 const uint32_t id; 638 639 RenderScriptRuntime::Element element; // Allocation Element type 640 empirical_type<Dimension> dimension; // Dimensions of the Allocation 641 empirical_type<lldb::addr_t> address; // Pointer to address of the RS Allocation 642 empirical_type<lldb::addr_t> data_ptr; // Pointer to the data held by the Allocation 643 empirical_type<lldb::addr_t> type_ptr; // Pointer to the RS Type of the Allocation 644 empirical_type<lldb::addr_t> context; // Pointer to the RS Context of the Allocation 645 empirical_type<uint32_t> size; // Size of the allocation 646 empirical_type<uint32_t> stride; // Stride between rows of the allocation 647 648 // Give each allocation an id, so we can reference it in user commands. 649 AllocationDetails() : id(ID++) {} 650 651 bool 652 shouldRefresh() const 653 { 654 bool valid_ptrs = data_ptr.isValid() && *data_ptr.get() != 0x0; 655 valid_ptrs = valid_ptrs && type_ptr.isValid() && *type_ptr.get() != 0x0; 656 return !valid_ptrs || !dimension.isValid() || !size.isValid() || element.shouldRefresh(); 657 } 658 }; 659 660 const ConstString & 661 RenderScriptRuntime::Element::GetFallbackStructName() 662 { 663 static const ConstString FallbackStructName("struct"); 664 return FallbackStructName; 665 } 666 667 uint32_t RenderScriptRuntime::AllocationDetails::ID = 1; 668 669 const char *RenderScriptRuntime::AllocationDetails::RsDataKindToString[] = { 670 "User", 671 "Undefined", "Undefined", "Undefined", "Undefined", "Undefined", "Undefined", // Enum jumps from 0 to 7 672 "L Pixel", "A Pixel", "LA Pixel", "RGB Pixel", 673 "RGBA Pixel", "Pixel Depth", "YUV Pixel"}; 674 675 const char *RenderScriptRuntime::AllocationDetails::RsDataTypeToString[][4] = { 676 {"None", "None", "None", "None"}, 677 {"half", "half2", "half3", "half4"}, 678 {"float", "float2", "float3", "float4"}, 679 {"double", "double2", "double3", "double4"}, 680 {"char", "char2", "char3", "char4"}, 681 {"short", "short2", "short3", "short4"}, 682 {"int", "int2", "int3", "int4"}, 683 {"long", "long2", "long3", "long4"}, 684 {"uchar", "uchar2", "uchar3", "uchar4"}, 685 {"ushort", "ushort2", "ushort3", "ushort4"}, 686 {"uint", "uint2", "uint3", "uint4"}, 687 {"ulong", "ulong2", "ulong3", "ulong4"}, 688 {"bool", "bool2", "bool3", "bool4"}, 689 {"packed_565", "packed_565", "packed_565", "packed_565"}, 690 {"packed_5551", "packed_5551", "packed_5551", "packed_5551"}, 691 {"packed_4444", "packed_4444", "packed_4444", "packed_4444"}, 692 {"rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4"}, 693 {"rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3"}, 694 {"rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2"}, 695 696 // Handlers 697 {"RS Element", "RS Element", "RS Element", "RS Element"}, 698 {"RS Type", "RS Type", "RS Type", "RS Type"}, 699 {"RS Allocation", "RS Allocation", "RS Allocation", "RS Allocation"}, 700 {"RS Sampler", "RS Sampler", "RS Sampler", "RS Sampler"}, 701 {"RS Script", "RS Script", "RS Script", "RS Script"}, 702 703 // Deprecated 704 {"RS Mesh", "RS Mesh", "RS Mesh", "RS Mesh"}, 705 {"RS Program Fragment", "RS Program Fragment", "RS Program Fragment", "RS Program Fragment"}, 706 {"RS Program Vertex", "RS Program Vertex", "RS Program Vertex", "RS Program Vertex"}, 707 {"RS Program Raster", "RS Program Raster", "RS Program Raster", "RS Program Raster"}, 708 {"RS Program Store", "RS Program Store", "RS Program Store", "RS Program Store"}, 709 {"RS Font", "RS Font", "RS Font", "RS Font"}}; 710 711 // Used as an index into the RSTypeToFormat array elements 712 enum TypeToFormatIndex 713 { 714 eFormatSingle = 0, 715 eFormatVector, 716 eElementSize 717 }; 718 719 // { format enum of single element, format enum of element vector, size of element} 720 const uint32_t RenderScriptRuntime::AllocationDetails::RSTypeToFormat[][3] = { 721 {eFormatHex, eFormatHex, 1}, // RS_TYPE_NONE 722 {eFormatFloat, eFormatVectorOfFloat16, 2}, // RS_TYPE_FLOAT_16 723 {eFormatFloat, eFormatVectorOfFloat32, sizeof(float)}, // RS_TYPE_FLOAT_32 724 {eFormatFloat, eFormatVectorOfFloat64, sizeof(double)}, // RS_TYPE_FLOAT_64 725 {eFormatDecimal, eFormatVectorOfSInt8, sizeof(int8_t)}, // RS_TYPE_SIGNED_8 726 {eFormatDecimal, eFormatVectorOfSInt16, sizeof(int16_t)}, // RS_TYPE_SIGNED_16 727 {eFormatDecimal, eFormatVectorOfSInt32, sizeof(int32_t)}, // RS_TYPE_SIGNED_32 728 {eFormatDecimal, eFormatVectorOfSInt64, sizeof(int64_t)}, // RS_TYPE_SIGNED_64 729 {eFormatDecimal, eFormatVectorOfUInt8, sizeof(uint8_t)}, // RS_TYPE_UNSIGNED_8 730 {eFormatDecimal, eFormatVectorOfUInt16, sizeof(uint16_t)}, // RS_TYPE_UNSIGNED_16 731 {eFormatDecimal, eFormatVectorOfUInt32, sizeof(uint32_t)}, // RS_TYPE_UNSIGNED_32 732 {eFormatDecimal, eFormatVectorOfUInt64, sizeof(uint64_t)}, // RS_TYPE_UNSIGNED_64 733 {eFormatBoolean, eFormatBoolean, 1}, // RS_TYPE_BOOL 734 {eFormatHex, eFormatHex, sizeof(uint16_t)}, // RS_TYPE_UNSIGNED_5_6_5 735 {eFormatHex, eFormatHex, sizeof(uint16_t)}, // RS_TYPE_UNSIGNED_5_5_5_1 736 {eFormatHex, eFormatHex, sizeof(uint16_t)}, // RS_TYPE_UNSIGNED_4_4_4_4 737 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 16}, // RS_TYPE_MATRIX_4X4 738 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 9}, // RS_TYPE_MATRIX_3X3 739 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 4} // RS_TYPE_MATRIX_2X2 740 }; 741 742 const std::string RenderScriptRuntime::s_runtimeExpandSuffix(".expand"); 743 const std::array<const char *, 3> RenderScriptRuntime::s_runtimeCoordVars{{"rsIndex", "p->current.y", "p->current.z"}}; 744 //------------------------------------------------------------------ 745 // Static Functions 746 //------------------------------------------------------------------ 747 LanguageRuntime * 748 RenderScriptRuntime::CreateInstance(Process *process, lldb::LanguageType language) 749 { 750 751 if (language == eLanguageTypeExtRenderScript) 752 return new RenderScriptRuntime(process); 753 else 754 return nullptr; 755 } 756 757 // Callback with a module to search for matching symbols. 758 // We first check that the module contains RS kernels. 759 // Then look for a symbol which matches our kernel name. 760 // The breakpoint address is finally set using the address of this symbol. 761 Searcher::CallbackReturn 762 RSBreakpointResolver::SearchCallback(SearchFilter &filter, SymbolContext &context, Address *, bool) 763 { 764 ModuleSP module = context.module_sp; 765 766 if (!module) 767 return Searcher::eCallbackReturnContinue; 768 769 // Is this a module containing renderscript kernels? 770 if (nullptr == module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), eSymbolTypeData)) 771 return Searcher::eCallbackReturnContinue; 772 773 // Attempt to set a breakpoint on the kernel name symbol within the module library. 774 // If it's not found, it's likely debug info is unavailable - try to set a 775 // breakpoint on <name>.expand. 776 777 const Symbol *kernel_sym = module->FindFirstSymbolWithNameAndType(m_kernel_name, eSymbolTypeCode); 778 if (!kernel_sym) 779 { 780 std::string kernel_name_expanded(m_kernel_name.AsCString()); 781 kernel_name_expanded.append(".expand"); 782 kernel_sym = module->FindFirstSymbolWithNameAndType(ConstString(kernel_name_expanded.c_str()), eSymbolTypeCode); 783 } 784 785 if (kernel_sym) 786 { 787 Address bp_addr = kernel_sym->GetAddress(); 788 if (filter.AddressPasses(bp_addr)) 789 m_breakpoint->AddLocation(bp_addr); 790 } 791 792 return Searcher::eCallbackReturnContinue; 793 } 794 795 void 796 RenderScriptRuntime::Initialize() 797 { 798 PluginManager::RegisterPlugin(GetPluginNameStatic(), "RenderScript language support", CreateInstance, 799 GetCommandObject); 800 } 801 802 void 803 RenderScriptRuntime::Terminate() 804 { 805 PluginManager::UnregisterPlugin(CreateInstance); 806 } 807 808 lldb_private::ConstString 809 RenderScriptRuntime::GetPluginNameStatic() 810 { 811 static ConstString g_name("renderscript"); 812 return g_name; 813 } 814 815 RenderScriptRuntime::ModuleKind 816 RenderScriptRuntime::GetModuleKind(const lldb::ModuleSP &module_sp) 817 { 818 if (module_sp) 819 { 820 // Is this a module containing renderscript kernels? 821 const Symbol *info_sym = module_sp->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), eSymbolTypeData); 822 if (info_sym) 823 { 824 return eModuleKindKernelObj; 825 } 826 827 // Is this the main RS runtime library 828 const ConstString rs_lib("libRS.so"); 829 if (module_sp->GetFileSpec().GetFilename() == rs_lib) 830 { 831 return eModuleKindLibRS; 832 } 833 834 const ConstString rs_driverlib("libRSDriver.so"); 835 if (module_sp->GetFileSpec().GetFilename() == rs_driverlib) 836 { 837 return eModuleKindDriver; 838 } 839 840 const ConstString rs_cpureflib("libRSCpuRef.so"); 841 if (module_sp->GetFileSpec().GetFilename() == rs_cpureflib) 842 { 843 return eModuleKindImpl; 844 } 845 } 846 return eModuleKindIgnored; 847 } 848 849 bool 850 RenderScriptRuntime::IsRenderScriptModule(const lldb::ModuleSP &module_sp) 851 { 852 return GetModuleKind(module_sp) != eModuleKindIgnored; 853 } 854 855 void 856 RenderScriptRuntime::ModulesDidLoad(const ModuleList &module_list) 857 { 858 Mutex::Locker locker(module_list.GetMutex()); 859 860 size_t num_modules = module_list.GetSize(); 861 for (size_t i = 0; i < num_modules; i++) 862 { 863 auto mod = module_list.GetModuleAtIndex(i); 864 if (IsRenderScriptModule(mod)) 865 { 866 LoadModule(mod); 867 } 868 } 869 } 870 871 //------------------------------------------------------------------ 872 // PluginInterface protocol 873 //------------------------------------------------------------------ 874 lldb_private::ConstString 875 RenderScriptRuntime::GetPluginName() 876 { 877 return GetPluginNameStatic(); 878 } 879 880 uint32_t 881 RenderScriptRuntime::GetPluginVersion() 882 { 883 return 1; 884 } 885 886 bool 887 RenderScriptRuntime::IsVTableName(const char *name) 888 { 889 return false; 890 } 891 892 bool 893 RenderScriptRuntime::GetDynamicTypeAndAddress(ValueObject &in_value, lldb::DynamicValueType use_dynamic, 894 TypeAndOrName &class_type_or_name, Address &address, 895 Value::ValueType &value_type) 896 { 897 return false; 898 } 899 900 TypeAndOrName 901 RenderScriptRuntime::FixUpDynamicType(const TypeAndOrName &type_and_or_name, ValueObject &static_value) 902 { 903 return type_and_or_name; 904 } 905 906 bool 907 RenderScriptRuntime::CouldHaveDynamicValue(ValueObject &in_value) 908 { 909 return false; 910 } 911 912 lldb::BreakpointResolverSP 913 RenderScriptRuntime::CreateExceptionResolver(Breakpoint *bkpt, bool catch_bp, bool throw_bp) 914 { 915 BreakpointResolverSP resolver_sp; 916 return resolver_sp; 917 } 918 919 const RenderScriptRuntime::HookDefn RenderScriptRuntime::s_runtimeHookDefns[] = { 920 // rsdScript 921 { 922 "rsdScriptInit", 923 "_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_7ScriptCEPKcS7_PKhjj", 924 "_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_7ScriptCEPKcS7_PKhmj", 925 0, 926 RenderScriptRuntime::eModuleKindDriver, 927 &lldb_private::RenderScriptRuntime::CaptureScriptInit 928 }, 929 { 930 "rsdScriptInvokeForEachMulti", 931 "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0_6ScriptEjPPKNS0_10AllocationEjPS6_PKvjPK12RsScriptCall", 932 "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0_6ScriptEjPPKNS0_10AllocationEmPS6_PKvmPK12RsScriptCall", 933 0, 934 RenderScriptRuntime::eModuleKindDriver, 935 &lldb_private::RenderScriptRuntime::CaptureScriptInvokeForEachMulti 936 }, 937 { 938 "rsdScriptSetGlobalVar", 939 "_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_6ScriptEjPvj", 940 "_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_6ScriptEjPvm", 941 0, 942 RenderScriptRuntime::eModuleKindDriver, 943 &lldb_private::RenderScriptRuntime::CaptureSetGlobalVar 944 }, 945 946 // rsdAllocation 947 { 948 "rsdAllocationInit", 949 "_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_10AllocationEb", 950 "_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_10AllocationEb", 951 0, 952 RenderScriptRuntime::eModuleKindDriver, 953 &lldb_private::RenderScriptRuntime::CaptureAllocationInit 954 }, 955 { 956 "rsdAllocationRead2D", 957 "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_10AllocationEjjj23RsAllocationCubemapFacejjPvjj", 958 "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_10AllocationEjjj23RsAllocationCubemapFacejjPvmm", 959 0, 960 RenderScriptRuntime::eModuleKindDriver, 961 nullptr 962 }, 963 { 964 "rsdAllocationDestroy", 965 "_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_10AllocationE", 966 "_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_10AllocationE", 967 0, 968 RenderScriptRuntime::eModuleKindDriver, 969 &lldb_private::RenderScriptRuntime::CaptureAllocationDestroy 970 }, 971 }; 972 973 const size_t RenderScriptRuntime::s_runtimeHookCount = sizeof(s_runtimeHookDefns) / sizeof(s_runtimeHookDefns[0]); 974 975 bool 976 RenderScriptRuntime::HookCallback(void *baton, StoppointCallbackContext *ctx, lldb::user_id_t break_id, 977 lldb::user_id_t break_loc_id) 978 { 979 RuntimeHook *hook_info = (RuntimeHook *)baton; 980 ExecutionContext context(ctx->exe_ctx_ref); 981 982 RenderScriptRuntime *lang_rt = 983 (RenderScriptRuntime *)context.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript); 984 985 lang_rt->HookCallback(hook_info, context); 986 987 return false; 988 } 989 990 void 991 RenderScriptRuntime::HookCallback(RuntimeHook *hook_info, ExecutionContext &context) 992 { 993 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 994 995 if (log) 996 log->Printf("%s - '%s'", __FUNCTION__, hook_info->defn->name); 997 998 if (hook_info->defn->grabber) 999 { 1000 (this->*(hook_info->defn->grabber))(hook_info, context); 1001 } 1002 } 1003 1004 void 1005 RenderScriptRuntime::CaptureScriptInvokeForEachMulti(RuntimeHook* hook_info, 1006 ExecutionContext& context) 1007 { 1008 Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1009 1010 enum 1011 { 1012 eRsContext = 0, 1013 eRsScript, 1014 eRsSlot, 1015 eRsAIns, 1016 eRsInLen, 1017 eRsAOut, 1018 eRsUsr, 1019 eRsUsrLen, 1020 eRsSc, 1021 }; 1022 1023 std::array<ArgItem, 9> args{{ 1024 ArgItem{ArgItem::ePointer, 0}, // const Context *rsc 1025 ArgItem{ArgItem::ePointer, 0}, // Script *s 1026 ArgItem{ArgItem::eInt32, 0}, // uint32_t slot 1027 ArgItem{ArgItem::ePointer, 0}, // const Allocation **aIns 1028 ArgItem{ArgItem::eInt32, 0}, // size_t inLen 1029 ArgItem{ArgItem::ePointer, 0}, // Allocation *aout 1030 ArgItem{ArgItem::ePointer, 0}, // const void *usr 1031 ArgItem{ArgItem::eInt32, 0}, // size_t usrLen 1032 ArgItem{ArgItem::ePointer, 0}, // const RsScriptCall *sc 1033 }}; 1034 1035 bool success = GetArgs(context, &args[0], args.size()); 1036 if (!success) 1037 { 1038 if (log) 1039 log->Printf("%s - Error while reading the function parameters", __FUNCTION__); 1040 return; 1041 } 1042 1043 const uint32_t target_ptr_size = m_process->GetAddressByteSize(); 1044 Error error; 1045 std::vector<uint64_t> allocs; 1046 1047 // traverse allocation list 1048 for (uint64_t i = 0; i < uint64_t(args[eRsInLen]); ++i) 1049 { 1050 // calculate offest to allocation pointer 1051 const addr_t addr = addr_t(args[eRsAIns]) + i * target_ptr_size; 1052 1053 // Note: due to little endian layout, reading 32bits or 64bits into res64 will 1054 // give the correct results. 1055 1056 uint64_t res64 = 0; 1057 size_t read = m_process->ReadMemory(addr, &res64, target_ptr_size, error); 1058 if (read != target_ptr_size || !error.Success()) 1059 { 1060 if (log) 1061 log->Printf("%s - Error while reading allocation list argument %" PRIu64, __FUNCTION__, i); 1062 } 1063 else 1064 { 1065 allocs.push_back(res64); 1066 } 1067 } 1068 1069 // if there is an output allocation track it 1070 if (uint64_t aOut = uint64_t(args[eRsAOut])) 1071 { 1072 allocs.push_back(aOut); 1073 } 1074 1075 // for all allocations we have found 1076 for (const uint64_t alloc_addr : allocs) 1077 { 1078 AllocationDetails* alloc = LookUpAllocation(alloc_addr, true); 1079 if (alloc) 1080 { 1081 // save the allocation address 1082 if (alloc->address.isValid()) 1083 { 1084 // check the allocation address we already have matches 1085 assert(*alloc->address.get() == alloc_addr); 1086 } 1087 else 1088 { 1089 alloc->address = alloc_addr; 1090 } 1091 1092 // save the context 1093 if (log) 1094 { 1095 if (alloc->context.isValid() && *alloc->context.get() != addr_t(args[eRsContext])) 1096 log->Printf("%s - Allocation used by multiple contexts", __FUNCTION__); 1097 } 1098 alloc->context = addr_t(args[eRsContext]); 1099 } 1100 } 1101 1102 // make sure we track this script object 1103 if (lldb_private::RenderScriptRuntime::ScriptDetails *script = LookUpScript(addr_t(args[eRsScript]), true)) 1104 { 1105 if (log) 1106 { 1107 if (script->context.isValid() && *script->context.get() != addr_t(args[eRsContext])) 1108 log->Printf("%s - Script used by multiple contexts", __FUNCTION__); 1109 } 1110 script->context = addr_t(args[eRsContext]); 1111 } 1112 } 1113 1114 void 1115 RenderScriptRuntime::CaptureSetGlobalVar(RuntimeHook *hook_info, ExecutionContext &context) 1116 { 1117 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1118 1119 enum 1120 { 1121 eRsContext, 1122 eRsScript, 1123 eRsId, 1124 eRsData, 1125 eRsLength, 1126 }; 1127 1128 std::array<ArgItem, 5> args{{ 1129 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1130 ArgItem{ArgItem::ePointer, 0}, // eRsScript 1131 ArgItem{ArgItem::eInt32, 0}, // eRsId 1132 ArgItem{ArgItem::ePointer, 0}, // eRsData 1133 ArgItem{ArgItem::eInt32, 0}, // eRsLength 1134 }}; 1135 1136 bool success = GetArgs(context, &args[0], args.size()); 1137 if (!success) 1138 { 1139 if (log) 1140 log->Printf("%s - error reading the function parameters.", __FUNCTION__); 1141 return; 1142 } 1143 1144 if (log) 1145 { 1146 log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " slot %" PRIu64 " = 0x%" PRIx64 ":%" PRIu64 "bytes.", __FUNCTION__, 1147 uint64_t(args[eRsContext]), uint64_t(args[eRsScript]), uint64_t(args[eRsId]), 1148 uint64_t(args[eRsData]), uint64_t(args[eRsLength])); 1149 1150 addr_t script_addr = addr_t(args[eRsScript]); 1151 if (m_scriptMappings.find(script_addr) != m_scriptMappings.end()) 1152 { 1153 auto rsm = m_scriptMappings[script_addr]; 1154 if (uint64_t(args[eRsId]) < rsm->m_globals.size()) 1155 { 1156 auto rsg = rsm->m_globals[uint64_t(args[eRsId])]; 1157 log->Printf("%s - Setting of '%s' within '%s' inferred", __FUNCTION__, rsg.m_name.AsCString(), 1158 rsm->m_module->GetFileSpec().GetFilename().AsCString()); 1159 } 1160 } 1161 } 1162 } 1163 1164 void 1165 RenderScriptRuntime::CaptureAllocationInit(RuntimeHook *hook_info, ExecutionContext &context) 1166 { 1167 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1168 1169 enum 1170 { 1171 eRsContext, 1172 eRsAlloc, 1173 eRsForceZero 1174 }; 1175 1176 std::array<ArgItem, 3> args{{ 1177 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1178 ArgItem{ArgItem::ePointer, 0}, // eRsAlloc 1179 ArgItem{ArgItem::eBool, 0}, // eRsForceZero 1180 }}; 1181 1182 bool success = GetArgs(context, &args[0], args.size()); 1183 if (!success) // error case 1184 { 1185 if (log) 1186 log->Printf("%s - error while reading the function parameters", __FUNCTION__); 1187 return; // abort 1188 } 1189 1190 if (log) 1191 log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 ",0x%" PRIx64 " .", __FUNCTION__, uint64_t(args[eRsContext]), 1192 uint64_t(args[eRsAlloc]), uint64_t(args[eRsForceZero])); 1193 1194 AllocationDetails *alloc = LookUpAllocation(uint64_t(args[eRsAlloc]), true); 1195 if (alloc) 1196 alloc->context = uint64_t(args[eRsContext]); 1197 } 1198 1199 void 1200 RenderScriptRuntime::CaptureAllocationDestroy(RuntimeHook *hook_info, ExecutionContext &context) 1201 { 1202 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1203 1204 enum 1205 { 1206 eRsContext, 1207 eRsAlloc, 1208 }; 1209 1210 std::array<ArgItem, 2> args{{ 1211 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1212 ArgItem{ArgItem::ePointer, 0}, // eRsAlloc 1213 }}; 1214 1215 bool success = GetArgs(context, &args[0], args.size()); 1216 if (!success) 1217 { 1218 if (log) 1219 log->Printf("%s - error while reading the function parameters.", __FUNCTION__); 1220 return; 1221 } 1222 1223 if (log) 1224 log->Printf("%s - 0x%" PRIx64 ", 0x%" PRIx64 ".", __FUNCTION__, uint64_t(args[eRsContext]), 1225 uint64_t(args[eRsAlloc])); 1226 1227 for (auto iter = m_allocations.begin(); iter != m_allocations.end(); ++iter) 1228 { 1229 auto &allocation_ap = *iter; // get the unique pointer 1230 if (allocation_ap->address.isValid() && *allocation_ap->address.get() == addr_t(args[eRsAlloc])) 1231 { 1232 m_allocations.erase(iter); 1233 if (log) 1234 log->Printf("%s - deleted allocation entry.", __FUNCTION__); 1235 return; 1236 } 1237 } 1238 1239 if (log) 1240 log->Printf("%s - couldn't find destroyed allocation.", __FUNCTION__); 1241 } 1242 1243 void 1244 RenderScriptRuntime::CaptureScriptInit(RuntimeHook *hook_info, ExecutionContext &context) 1245 { 1246 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1247 1248 Error error; 1249 Process *process = context.GetProcessPtr(); 1250 1251 enum 1252 { 1253 eRsContext, 1254 eRsScript, 1255 eRsResNamePtr, 1256 eRsCachedDirPtr 1257 }; 1258 1259 std::array<ArgItem, 4> args{{ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}, 1260 ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}}}; 1261 bool success = GetArgs(context, &args[0], args.size()); 1262 if (!success) 1263 { 1264 if (log) 1265 log->Printf("%s - error while reading the function parameters.", __FUNCTION__); 1266 return; 1267 } 1268 1269 std::string resname; 1270 process->ReadCStringFromMemory(addr_t(args[eRsResNamePtr]), resname, error); 1271 if (error.Fail()) 1272 { 1273 if (log) 1274 log->Printf("%s - error reading resname: %s.", __FUNCTION__, error.AsCString()); 1275 } 1276 1277 std::string cachedir; 1278 process->ReadCStringFromMemory(addr_t(args[eRsCachedDirPtr]), cachedir, error); 1279 if (error.Fail()) 1280 { 1281 if (log) 1282 log->Printf("%s - error reading cachedir: %s.", __FUNCTION__, error.AsCString()); 1283 } 1284 1285 if (log) 1286 log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " => '%s' at '%s' .", __FUNCTION__, uint64_t(args[eRsContext]), 1287 uint64_t(args[eRsScript]), resname.c_str(), cachedir.c_str()); 1288 1289 if (resname.size() > 0) 1290 { 1291 StreamString strm; 1292 strm.Printf("librs.%s.so", resname.c_str()); 1293 1294 ScriptDetails *script = LookUpScript(addr_t(args[eRsScript]), true); 1295 if (script) 1296 { 1297 script->type = ScriptDetails::eScriptC; 1298 script->cacheDir = cachedir; 1299 script->resName = resname; 1300 script->scriptDyLib = strm.GetData(); 1301 script->context = addr_t(args[eRsContext]); 1302 } 1303 1304 if (log) 1305 log->Printf("%s - '%s' tagged with context 0x%" PRIx64 " and script 0x%" PRIx64 ".", __FUNCTION__, 1306 strm.GetData(), uint64_t(args[eRsContext]), uint64_t(args[eRsScript])); 1307 } 1308 else if (log) 1309 { 1310 log->Printf("%s - resource name invalid, Script not tagged.", __FUNCTION__); 1311 } 1312 } 1313 1314 void 1315 RenderScriptRuntime::LoadRuntimeHooks(lldb::ModuleSP module, ModuleKind kind) 1316 { 1317 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1318 1319 if (!module) 1320 { 1321 return; 1322 } 1323 1324 Target &target = GetProcess()->GetTarget(); 1325 llvm::Triple::ArchType targetArchType = target.GetArchitecture().GetMachine(); 1326 1327 if (targetArchType != llvm::Triple::ArchType::x86 && 1328 targetArchType != llvm::Triple::ArchType::arm && 1329 targetArchType != llvm::Triple::ArchType::aarch64 && 1330 targetArchType != llvm::Triple::ArchType::mipsel && 1331 targetArchType != llvm::Triple::ArchType::mips64el && 1332 targetArchType != llvm::Triple::ArchType::x86_64) 1333 { 1334 if (log) 1335 log->Printf("%s - unable to hook runtime functions.", __FUNCTION__); 1336 return; 1337 } 1338 1339 uint32_t archByteSize = target.GetArchitecture().GetAddressByteSize(); 1340 1341 for (size_t idx = 0; idx < s_runtimeHookCount; idx++) 1342 { 1343 const HookDefn *hook_defn = &s_runtimeHookDefns[idx]; 1344 if (hook_defn->kind != kind) 1345 { 1346 continue; 1347 } 1348 1349 const char *symbol_name = (archByteSize == 4) ? hook_defn->symbol_name_m32 : hook_defn->symbol_name_m64; 1350 1351 const Symbol *sym = module->FindFirstSymbolWithNameAndType(ConstString(symbol_name), eSymbolTypeCode); 1352 if (!sym) 1353 { 1354 if (log) 1355 { 1356 log->Printf("%s - symbol '%s' related to the function %s not found", 1357 __FUNCTION__, symbol_name, hook_defn->name); 1358 } 1359 continue; 1360 } 1361 1362 addr_t addr = sym->GetLoadAddress(&target); 1363 if (addr == LLDB_INVALID_ADDRESS) 1364 { 1365 if (log) 1366 log->Printf("%s - unable to resolve the address of hook function '%s' with symbol '%s'.", 1367 __FUNCTION__, hook_defn->name, symbol_name); 1368 continue; 1369 } 1370 else 1371 { 1372 if (log) 1373 log->Printf("%s - function %s, address resolved at 0x%" PRIx64, 1374 __FUNCTION__, hook_defn->name, addr); 1375 } 1376 1377 RuntimeHookSP hook(new RuntimeHook()); 1378 hook->address = addr; 1379 hook->defn = hook_defn; 1380 hook->bp_sp = target.CreateBreakpoint(addr, true, false); 1381 hook->bp_sp->SetCallback(HookCallback, hook.get(), true); 1382 m_runtimeHooks[addr] = hook; 1383 if (log) 1384 { 1385 log->Printf("%s - successfully hooked '%s' in '%s' version %" PRIu64 " at 0x%" PRIx64 ".", 1386 __FUNCTION__, hook_defn->name, module->GetFileSpec().GetFilename().AsCString(), 1387 (uint64_t)hook_defn->version, (uint64_t)addr); 1388 } 1389 } 1390 } 1391 1392 void 1393 RenderScriptRuntime::FixupScriptDetails(RSModuleDescriptorSP rsmodule_sp) 1394 { 1395 if (!rsmodule_sp) 1396 return; 1397 1398 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1399 1400 const ModuleSP module = rsmodule_sp->m_module; 1401 const FileSpec &file = module->GetPlatformFileSpec(); 1402 1403 // Iterate over all of the scripts that we currently know of. 1404 // Note: We cant push or pop to m_scripts here or it may invalidate rs_script. 1405 for (const auto &rs_script : m_scripts) 1406 { 1407 // Extract the expected .so file path for this script. 1408 std::string dylib; 1409 if (!rs_script->scriptDyLib.get(dylib)) 1410 continue; 1411 1412 // Only proceed if the module that has loaded corresponds to this script. 1413 if (file.GetFilename() != ConstString(dylib.c_str())) 1414 continue; 1415 1416 // Obtain the script address which we use as a key. 1417 lldb::addr_t script; 1418 if (!rs_script->script.get(script)) 1419 continue; 1420 1421 // If we have a script mapping for the current script. 1422 if (m_scriptMappings.find(script) != m_scriptMappings.end()) 1423 { 1424 // if the module we have stored is different to the one we just received. 1425 if (m_scriptMappings[script] != rsmodule_sp) 1426 { 1427 if (log) 1428 log->Printf("%s - script %" PRIx64 " wants reassigned to new rsmodule '%s'.", __FUNCTION__, 1429 (uint64_t)script, rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString()); 1430 } 1431 } 1432 // We don't have a script mapping for the current script. 1433 else 1434 { 1435 // Obtain the script resource name. 1436 std::string resName; 1437 if (rs_script->resName.get(resName)) 1438 // Set the modules resource name. 1439 rsmodule_sp->m_resname = resName; 1440 // Add Script/Module pair to map. 1441 m_scriptMappings[script] = rsmodule_sp; 1442 if (log) 1443 log->Printf("%s - script %" PRIx64 " associated with rsmodule '%s'.", __FUNCTION__, 1444 (uint64_t)script, rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString()); 1445 } 1446 } 1447 } 1448 1449 // Uses the Target API to evaluate the expression passed as a parameter to the function 1450 // The result of that expression is returned an unsigned 64 bit int, via the result* paramter. 1451 // Function returns true on success, and false on failure 1452 bool 1453 RenderScriptRuntime::EvalRSExpression(const char *expression, StackFrame *frame_ptr, uint64_t *result) 1454 { 1455 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1456 if (log) 1457 log->Printf("%s(%s)", __FUNCTION__, expression); 1458 1459 ValueObjectSP expr_result; 1460 // Perform the actual expression evaluation 1461 GetProcess()->GetTarget().EvaluateExpression(expression, frame_ptr, expr_result); 1462 1463 if (!expr_result) 1464 { 1465 if (log) 1466 log->Printf("%s: couldn't evaluate expression.", __FUNCTION__); 1467 return false; 1468 } 1469 1470 // The result of the expression is invalid 1471 if (!expr_result->GetError().Success()) 1472 { 1473 Error err = expr_result->GetError(); 1474 if (err.GetError() == UserExpression::kNoResult) // Expression returned void, so this is actually a success 1475 { 1476 if (log) 1477 log->Printf("%s - expression returned void.", __FUNCTION__); 1478 1479 result = nullptr; 1480 return true; 1481 } 1482 1483 if (log) 1484 log->Printf("%s - error evaluating expression result: %s", __FUNCTION__, 1485 err.AsCString()); 1486 return false; 1487 } 1488 1489 bool success = false; 1490 *result = expr_result->GetValueAsUnsigned(0, &success); // We only read the result as an uint32_t. 1491 1492 if (!success) 1493 { 1494 if (log) 1495 log->Printf("%s - couldn't convert expression result to uint32_t", __FUNCTION__); 1496 return false; 1497 } 1498 1499 return true; 1500 } 1501 1502 namespace 1503 { 1504 // Used to index expression format strings 1505 enum ExpressionStrings 1506 { 1507 eExprGetOffsetPtr = 0, 1508 eExprAllocGetType, 1509 eExprTypeDimX, 1510 eExprTypeDimY, 1511 eExprTypeDimZ, 1512 eExprTypeElemPtr, 1513 eExprElementType, 1514 eExprElementKind, 1515 eExprElementVec, 1516 eExprElementFieldCount, 1517 eExprSubelementsId, 1518 eExprSubelementsName, 1519 eExprSubelementsArrSize, 1520 1521 _eExprLast // keep at the end, implicit size of the array runtimeExpressions 1522 }; 1523 1524 // max length of an expanded expression 1525 const int jit_max_expr_size = 512; 1526 1527 // Retrieve the string to JIT for the given expression 1528 const char* 1529 JITTemplate(ExpressionStrings e) 1530 { 1531 // Format strings containing the expressions we may need to evaluate. 1532 static std::array<const char*, _eExprLast> runtimeExpressions = {{ 1533 // Mangled GetOffsetPointer(Allocation*, xoff, yoff, zoff, lod, cubemap) 1534 "(int*)_Z12GetOffsetPtrPKN7android12renderscript10AllocationEjjjj23RsAllocationCubemapFace(0x%lx, %u, %u, %u, 0, 0)", 1535 1536 // Type* rsaAllocationGetType(Context*, Allocation*) 1537 "(void*)rsaAllocationGetType(0x%lx, 0x%lx)", 1538 1539 // rsaTypeGetNativeData(Context*, Type*, void* typeData, size) 1540 // Pack the data in the following way mHal.state.dimX; mHal.state.dimY; mHal.state.dimZ; 1541 // mHal.state.lodCount; mHal.state.faces; mElement; into typeData 1542 // Need to specify 32 or 64 bit for uint_t since this differs between devices 1543 "uint%u_t data[6]; (void*)rsaTypeGetNativeData(0x%lx, 0x%lx, data, 6); data[0]", // X dim 1544 "uint%u_t data[6]; (void*)rsaTypeGetNativeData(0x%lx, 0x%lx, data, 6); data[1]", // Y dim 1545 "uint%u_t data[6]; (void*)rsaTypeGetNativeData(0x%lx, 0x%lx, data, 6); data[2]", // Z dim 1546 "uint%u_t data[6]; (void*)rsaTypeGetNativeData(0x%lx, 0x%lx, data, 6); data[5]", // Element ptr 1547 1548 // rsaElementGetNativeData(Context*, Element*, uint32_t* elemData,size) 1549 // Pack mType; mKind; mNormalized; mVectorSize; NumSubElements into elemData 1550 "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%lx, 0x%lx, data, 5); data[0]", // Type 1551 "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%lx, 0x%lx, data, 5); data[1]", // Kind 1552 "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%lx, 0x%lx, data, 5); data[3]", // Vector Size 1553 "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%lx, 0x%lx, data, 5); data[4]", // Field Count 1554 1555 // rsaElementGetSubElements(RsContext con, RsElement elem, uintptr_t *ids, const char **names, 1556 // size_t *arraySizes, uint32_t dataSize) 1557 // Needed for Allocations of structs to gather details about fields/Subelements 1558 "void *ids[%u]; const char *names[%u]; size_t arr_size[%u];" 1559 "(void*)rsaElementGetSubElements(0x%lx, 0x%lx, ids, names, arr_size, %u); ids[%u]", // Element* of field 1560 1561 "void *ids[%u]; const char *names[%u]; size_t arr_size[%u];" 1562 "(void*)rsaElementGetSubElements(0x%lx, 0x%lx, ids, names, arr_size, %u); names[%u]", // Name of field 1563 1564 "void *ids[%u]; const char *names[%u]; size_t arr_size[%u];" 1565 "(void*)rsaElementGetSubElements(0x%lx, 0x%lx, ids, names, arr_size, %u); arr_size[%u]" // Array size of field 1566 }}; 1567 1568 return runtimeExpressions[e]; 1569 } 1570 } // end of the anonymous namespace 1571 1572 1573 // JITs the RS runtime for the internal data pointer of an allocation. 1574 // Is passed x,y,z coordinates for the pointer to a specific element. 1575 // Then sets the data_ptr member in Allocation with the result. 1576 // Returns true on success, false otherwise 1577 bool 1578 RenderScriptRuntime::JITDataPointer(AllocationDetails *allocation, StackFrame *frame_ptr, uint32_t x, 1579 uint32_t y, uint32_t z) 1580 { 1581 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1582 1583 if (!allocation->address.isValid()) 1584 { 1585 if (log) 1586 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1587 return false; 1588 } 1589 1590 const char *expr_cstr = JITTemplate(eExprGetOffsetPtr); 1591 char buffer[jit_max_expr_size]; 1592 1593 int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->address.get(), x, y, z); 1594 if (chars_written < 0) 1595 { 1596 if (log) 1597 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1598 return false; 1599 } 1600 else if (chars_written >= jit_max_expr_size) 1601 { 1602 if (log) 1603 log->Printf("%s - expression too long.", __FUNCTION__); 1604 return false; 1605 } 1606 1607 uint64_t result = 0; 1608 if (!EvalRSExpression(buffer, frame_ptr, &result)) 1609 return false; 1610 1611 addr_t mem_ptr = static_cast<lldb::addr_t>(result); 1612 allocation->data_ptr = mem_ptr; 1613 1614 return true; 1615 } 1616 1617 // JITs the RS runtime for the internal pointer to the RS Type of an allocation 1618 // Then sets the type_ptr member in Allocation with the result. 1619 // Returns true on success, false otherwise 1620 bool 1621 RenderScriptRuntime::JITTypePointer(AllocationDetails *allocation, StackFrame *frame_ptr) 1622 { 1623 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1624 1625 if (!allocation->address.isValid() || !allocation->context.isValid()) 1626 { 1627 if (log) 1628 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1629 return false; 1630 } 1631 1632 const char *expr_cstr = JITTemplate(eExprAllocGetType); 1633 char buffer[jit_max_expr_size]; 1634 1635 int chars_written = 1636 snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->context.get(), *allocation->address.get()); 1637 if (chars_written < 0) 1638 { 1639 if (log) 1640 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1641 return false; 1642 } 1643 else if (chars_written >= jit_max_expr_size) 1644 { 1645 if (log) 1646 log->Printf("%s - expression too long.", __FUNCTION__); 1647 return false; 1648 } 1649 1650 uint64_t result = 0; 1651 if (!EvalRSExpression(buffer, frame_ptr, &result)) 1652 return false; 1653 1654 addr_t type_ptr = static_cast<lldb::addr_t>(result); 1655 allocation->type_ptr = type_ptr; 1656 1657 return true; 1658 } 1659 1660 // JITs the RS runtime for information about the dimensions and type of an allocation 1661 // Then sets dimension and element_ptr members in Allocation with the result. 1662 // Returns true on success, false otherwise 1663 bool 1664 RenderScriptRuntime::JITTypePacked(AllocationDetails *allocation, StackFrame *frame_ptr) 1665 { 1666 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1667 1668 if (!allocation->type_ptr.isValid() || !allocation->context.isValid()) 1669 { 1670 if (log) 1671 log->Printf("%s - Failed to find allocation details.", __FUNCTION__); 1672 return false; 1673 } 1674 1675 // Expression is different depending on if device is 32 or 64 bit 1676 uint32_t archByteSize = GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 1677 const uint32_t bits = archByteSize == 4 ? 32 : 64; 1678 1679 // We want 4 elements from packed data 1680 const uint32_t num_exprs = 4; 1681 assert(num_exprs == (eExprTypeElemPtr - eExprTypeDimX + 1) && "Invalid number of expressions"); 1682 1683 char buffer[num_exprs][jit_max_expr_size]; 1684 uint64_t results[num_exprs]; 1685 1686 for (uint32_t i = 0; i < num_exprs; ++i) 1687 { 1688 const char *expr_cstr = JITTemplate(ExpressionStrings(eExprTypeDimX + i)); 1689 int chars_written = snprintf(buffer[i], jit_max_expr_size, expr_cstr, bits, *allocation->context.get(), 1690 *allocation->type_ptr.get()); 1691 if (chars_written < 0) 1692 { 1693 if (log) 1694 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1695 return false; 1696 } 1697 else if (chars_written >= jit_max_expr_size) 1698 { 1699 if (log) 1700 log->Printf("%s - expression too long.", __FUNCTION__); 1701 return false; 1702 } 1703 1704 // Perform expression evaluation 1705 if (!EvalRSExpression(buffer[i], frame_ptr, &results[i])) 1706 return false; 1707 } 1708 1709 // Assign results to allocation members 1710 AllocationDetails::Dimension dims; 1711 dims.dim_1 = static_cast<uint32_t>(results[0]); 1712 dims.dim_2 = static_cast<uint32_t>(results[1]); 1713 dims.dim_3 = static_cast<uint32_t>(results[2]); 1714 allocation->dimension = dims; 1715 1716 addr_t elem_ptr = static_cast<lldb::addr_t>(results[3]); 1717 allocation->element.element_ptr = elem_ptr; 1718 1719 if (log) 1720 log->Printf("%s - dims (%" PRIu32 ", %" PRIu32 ", %" PRIu32 ") Element*: 0x%" PRIx64 ".", __FUNCTION__, 1721 dims.dim_1, dims.dim_2, dims.dim_3, elem_ptr); 1722 1723 return true; 1724 } 1725 1726 // JITs the RS runtime for information about the Element of an allocation 1727 // Then sets type, type_vec_size, field_count and type_kind members in Element with the result. 1728 // Returns true on success, false otherwise 1729 bool 1730 RenderScriptRuntime::JITElementPacked(Element &elem, const lldb::addr_t context, StackFrame *frame_ptr) 1731 { 1732 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1733 1734 if (!elem.element_ptr.isValid()) 1735 { 1736 if (log) 1737 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1738 return false; 1739 } 1740 1741 // We want 4 elements from packed data 1742 const uint32_t num_exprs = 4; 1743 assert(num_exprs == (eExprElementFieldCount - eExprElementType + 1) && "Invalid number of expressions"); 1744 1745 char buffer[num_exprs][jit_max_expr_size]; 1746 uint64_t results[num_exprs]; 1747 1748 for (uint32_t i = 0; i < num_exprs; i++) 1749 { 1750 const char *expr_cstr = JITTemplate(ExpressionStrings(eExprElementType + i)); 1751 int chars_written = snprintf(buffer[i], jit_max_expr_size, expr_cstr, context, *elem.element_ptr.get()); 1752 if (chars_written < 0) 1753 { 1754 if (log) 1755 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1756 return false; 1757 } 1758 else if (chars_written >= jit_max_expr_size) 1759 { 1760 if (log) 1761 log->Printf("%s - expression too long.", __FUNCTION__); 1762 return false; 1763 } 1764 1765 // Perform expression evaluation 1766 if (!EvalRSExpression(buffer[i], frame_ptr, &results[i])) 1767 return false; 1768 } 1769 1770 // Assign results to allocation members 1771 elem.type = static_cast<RenderScriptRuntime::Element::DataType>(results[0]); 1772 elem.type_kind = static_cast<RenderScriptRuntime::Element::DataKind>(results[1]); 1773 elem.type_vec_size = static_cast<uint32_t>(results[2]); 1774 elem.field_count = static_cast<uint32_t>(results[3]); 1775 1776 if (log) 1777 log->Printf("%s - data type %" PRIu32 ", pixel type %" PRIu32 ", vector size %" PRIu32 ", field count %" PRIu32, 1778 __FUNCTION__, *elem.type.get(), *elem.type_kind.get(), *elem.type_vec_size.get(), *elem.field_count.get()); 1779 1780 // If this Element has subelements then JIT rsaElementGetSubElements() for details about its fields 1781 if (*elem.field_count.get() > 0 && !JITSubelements(elem, context, frame_ptr)) 1782 return false; 1783 1784 return true; 1785 } 1786 1787 // JITs the RS runtime for information about the subelements/fields of a struct allocation 1788 // This is necessary for infering the struct type so we can pretty print the allocation's contents. 1789 // Returns true on success, false otherwise 1790 bool 1791 RenderScriptRuntime::JITSubelements(Element &elem, const lldb::addr_t context, StackFrame *frame_ptr) 1792 { 1793 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1794 1795 if (!elem.element_ptr.isValid() || !elem.field_count.isValid()) 1796 { 1797 if (log) 1798 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1799 return false; 1800 } 1801 1802 const short num_exprs = 3; 1803 assert(num_exprs == (eExprSubelementsArrSize - eExprSubelementsId + 1) && "Invalid number of expressions"); 1804 1805 char expr_buffer[jit_max_expr_size]; 1806 uint64_t results; 1807 1808 // Iterate over struct fields. 1809 const uint32_t field_count = *elem.field_count.get(); 1810 for (uint32_t field_index = 0; field_index < field_count; ++field_index) 1811 { 1812 Element child; 1813 for (uint32_t expr_index = 0; expr_index < num_exprs; ++expr_index) 1814 { 1815 const char *expr_cstr = JITTemplate(ExpressionStrings(eExprSubelementsId + expr_index)); 1816 int chars_written = snprintf(expr_buffer, jit_max_expr_size, expr_cstr, 1817 field_count, field_count, field_count, 1818 context, *elem.element_ptr.get(), field_count, field_index); 1819 if (chars_written < 0) 1820 { 1821 if (log) 1822 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1823 return false; 1824 } 1825 else if (chars_written >= jit_max_expr_size) 1826 { 1827 if (log) 1828 log->Printf("%s - expression too long.", __FUNCTION__); 1829 return false; 1830 } 1831 1832 // Perform expression evaluation 1833 if (!EvalRSExpression(expr_buffer, frame_ptr, &results)) 1834 return false; 1835 1836 if (log) 1837 log->Printf("%s - expr result 0x%" PRIx64 ".", __FUNCTION__, results); 1838 1839 switch (expr_index) 1840 { 1841 case 0: // Element* of child 1842 child.element_ptr = static_cast<addr_t>(results); 1843 break; 1844 case 1: // Name of child 1845 { 1846 lldb::addr_t address = static_cast<addr_t>(results); 1847 Error err; 1848 std::string name; 1849 GetProcess()->ReadCStringFromMemory(address, name, err); 1850 if (!err.Fail()) 1851 child.type_name = ConstString(name); 1852 else 1853 { 1854 if (log) 1855 log->Printf("%s - warning: Couldn't read field name.", __FUNCTION__); 1856 } 1857 break; 1858 } 1859 case 2: // Array size of child 1860 child.array_size = static_cast<uint32_t>(results); 1861 break; 1862 } 1863 } 1864 1865 // We need to recursively JIT each Element field of the struct since 1866 // structs can be nested inside structs. 1867 if (!JITElementPacked(child, context, frame_ptr)) 1868 return false; 1869 elem.children.push_back(child); 1870 } 1871 1872 // Try to infer the name of the struct type so we can pretty print the allocation contents. 1873 FindStructTypeName(elem, frame_ptr); 1874 1875 return true; 1876 } 1877 1878 // JITs the RS runtime for the address of the last element in the allocation. 1879 // The `elem_size` paramter represents the size of a single element, including padding. 1880 // Which is needed as an offset from the last element pointer. 1881 // Using this offset minus the starting address we can calculate the size of the allocation. 1882 // Returns true on success, false otherwise 1883 bool 1884 RenderScriptRuntime::JITAllocationSize(AllocationDetails *allocation, StackFrame *frame_ptr) 1885 { 1886 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1887 1888 if (!allocation->address.isValid() || !allocation->dimension.isValid() || !allocation->data_ptr.isValid() || 1889 !allocation->element.datum_size.isValid()) 1890 { 1891 if (log) 1892 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1893 return false; 1894 } 1895 1896 // Find dimensions 1897 uint32_t dim_x = allocation->dimension.get()->dim_1; 1898 uint32_t dim_y = allocation->dimension.get()->dim_2; 1899 uint32_t dim_z = allocation->dimension.get()->dim_3; 1900 1901 // Our plan of jitting the last element address doesn't seem to work for struct Allocations 1902 // Instead try to infer the size ourselves without any inter element padding. 1903 if (allocation->element.children.size() > 0) 1904 { 1905 if (dim_x == 0) dim_x = 1; 1906 if (dim_y == 0) dim_y = 1; 1907 if (dim_z == 0) dim_z = 1; 1908 1909 allocation->size = dim_x * dim_y * dim_z * *allocation->element.datum_size.get(); 1910 1911 if (log) 1912 log->Printf("%s - infered size of struct allocation %" PRIu32 ".", __FUNCTION__, 1913 *allocation->size.get()); 1914 return true; 1915 } 1916 1917 const char *expr_cstr = JITTemplate(eExprGetOffsetPtr); 1918 char buffer[jit_max_expr_size]; 1919 1920 // Calculate last element 1921 dim_x = dim_x == 0 ? 0 : dim_x - 1; 1922 dim_y = dim_y == 0 ? 0 : dim_y - 1; 1923 dim_z = dim_z == 0 ? 0 : dim_z - 1; 1924 1925 int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->address.get(), dim_x, dim_y, dim_z); 1926 if (chars_written < 0) 1927 { 1928 if (log) 1929 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1930 return false; 1931 } 1932 else if (chars_written >= jit_max_expr_size) 1933 { 1934 if (log) 1935 log->Printf("%s - expression too long.", __FUNCTION__); 1936 return false; 1937 } 1938 1939 uint64_t result = 0; 1940 if (!EvalRSExpression(buffer, frame_ptr, &result)) 1941 return false; 1942 1943 addr_t mem_ptr = static_cast<lldb::addr_t>(result); 1944 // Find pointer to last element and add on size of an element 1945 allocation->size = 1946 static_cast<uint32_t>(mem_ptr - *allocation->data_ptr.get()) + *allocation->element.datum_size.get(); 1947 1948 return true; 1949 } 1950 1951 // JITs the RS runtime for information about the stride between rows in the allocation. 1952 // This is done to detect padding, since allocated memory is 16-byte aligned. 1953 // Returns true on success, false otherwise 1954 bool 1955 RenderScriptRuntime::JITAllocationStride(AllocationDetails *allocation, StackFrame *frame_ptr) 1956 { 1957 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1958 1959 if (!allocation->address.isValid() || !allocation->data_ptr.isValid()) 1960 { 1961 if (log) 1962 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1963 return false; 1964 } 1965 1966 const char *expr_cstr = JITTemplate(eExprGetOffsetPtr); 1967 char buffer[jit_max_expr_size]; 1968 1969 int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->address.get(), 0, 1, 0); 1970 if (chars_written < 0) 1971 { 1972 if (log) 1973 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1974 return false; 1975 } 1976 else if (chars_written >= jit_max_expr_size) 1977 { 1978 if (log) 1979 log->Printf("%s - expression too long.", __FUNCTION__); 1980 return false; 1981 } 1982 1983 uint64_t result = 0; 1984 if (!EvalRSExpression(buffer, frame_ptr, &result)) 1985 return false; 1986 1987 addr_t mem_ptr = static_cast<lldb::addr_t>(result); 1988 allocation->stride = static_cast<uint32_t>(mem_ptr - *allocation->data_ptr.get()); 1989 1990 return true; 1991 } 1992 1993 // JIT all the current runtime info regarding an allocation 1994 bool 1995 RenderScriptRuntime::RefreshAllocation(AllocationDetails *allocation, StackFrame *frame_ptr) 1996 { 1997 // GetOffsetPointer() 1998 if (!JITDataPointer(allocation, frame_ptr)) 1999 return false; 2000 2001 // rsaAllocationGetType() 2002 if (!JITTypePointer(allocation, frame_ptr)) 2003 return false; 2004 2005 // rsaTypeGetNativeData() 2006 if (!JITTypePacked(allocation, frame_ptr)) 2007 return false; 2008 2009 // rsaElementGetNativeData() 2010 if (!JITElementPacked(allocation->element, *allocation->context.get(), frame_ptr)) 2011 return false; 2012 2013 // Sets the datum_size member in Element 2014 SetElementSize(allocation->element); 2015 2016 // Use GetOffsetPointer() to infer size of the allocation 2017 if (!JITAllocationSize(allocation, frame_ptr)) 2018 return false; 2019 2020 return true; 2021 } 2022 2023 // Function attempts to set the type_name member of the paramaterised Element object. 2024 // This string should be the name of the struct type the Element represents. 2025 // We need this string for pretty printing the Element to users. 2026 void 2027 RenderScriptRuntime::FindStructTypeName(Element &elem, StackFrame *frame_ptr) 2028 { 2029 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2030 2031 if (!elem.type_name.IsEmpty()) // Name already set 2032 return; 2033 else 2034 elem.type_name = Element::GetFallbackStructName(); // Default type name if we don't succeed 2035 2036 // Find all the global variables from the script rs modules 2037 VariableList variable_list; 2038 for (auto module_sp : m_rsmodules) 2039 module_sp->m_module->FindGlobalVariables(RegularExpression("."), true, UINT32_MAX, variable_list); 2040 2041 // Iterate over all the global variables looking for one with a matching type to the Element. 2042 // We make the assumption a match exists since there needs to be a global variable to reflect the 2043 // struct type back into java host code. 2044 for (uint32_t var_index = 0; var_index < variable_list.GetSize(); ++var_index) 2045 { 2046 const VariableSP var_sp(variable_list.GetVariableAtIndex(var_index)); 2047 if (!var_sp) 2048 continue; 2049 2050 ValueObjectSP valobj_sp = ValueObjectVariable::Create(frame_ptr, var_sp); 2051 if (!valobj_sp) 2052 continue; 2053 2054 // Find the number of variable fields. 2055 // If it has no fields, or more fields than our Element, then it can't be the struct we're looking for. 2056 // Don't check for equality since RS can add extra struct members for padding. 2057 size_t num_children = valobj_sp->GetNumChildren(); 2058 if (num_children > elem.children.size() || num_children == 0) 2059 continue; 2060 2061 // Iterate over children looking for members with matching field names. 2062 // If all the field names match, this is likely the struct we want. 2063 // 2064 // TODO: This could be made more robust by also checking children data sizes, or array size 2065 bool found = true; 2066 for (size_t child_index = 0; child_index < num_children; ++child_index) 2067 { 2068 ValueObjectSP child = valobj_sp->GetChildAtIndex(child_index, true); 2069 if (!child || (child->GetName() != elem.children[child_index].type_name)) 2070 { 2071 found = false; 2072 break; 2073 } 2074 } 2075 2076 // RS can add extra struct members for padding in the format '#rs_padding_[0-9]+' 2077 if (found && num_children < elem.children.size()) 2078 { 2079 const uint32_t size_diff = elem.children.size() - num_children; 2080 if (log) 2081 log->Printf("%s - %" PRIu32 " padding struct entries", __FUNCTION__, size_diff); 2082 2083 for (uint32_t padding_index = 0; padding_index < size_diff; ++padding_index) 2084 { 2085 const ConstString &name = elem.children[num_children + padding_index].type_name; 2086 if (strcmp(name.AsCString(), "#rs_padding") < 0) 2087 found = false; 2088 } 2089 } 2090 2091 // We've found a global var with matching type 2092 if (found) 2093 { 2094 // Dereference since our Element type isn't a pointer. 2095 if (valobj_sp->IsPointerType()) 2096 { 2097 Error err; 2098 ValueObjectSP deref_valobj = valobj_sp->Dereference(err); 2099 if (!err.Fail()) 2100 valobj_sp = deref_valobj; 2101 } 2102 2103 // Save name of variable in Element. 2104 elem.type_name = valobj_sp->GetTypeName(); 2105 if (log) 2106 log->Printf("%s - element name set to %s", __FUNCTION__, elem.type_name.AsCString()); 2107 2108 return; 2109 } 2110 } 2111 } 2112 2113 // Function sets the datum_size member of Element. Representing the size of a single instance including padding. 2114 // Assumes the relevant allocation information has already been jitted. 2115 void 2116 RenderScriptRuntime::SetElementSize(Element &elem) 2117 { 2118 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2119 const Element::DataType type = *elem.type.get(); 2120 assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && "Invalid allocation type"); 2121 2122 const uint32_t vec_size = *elem.type_vec_size.get(); 2123 uint32_t data_size = 0; 2124 uint32_t padding = 0; 2125 2126 // Element is of a struct type, calculate size recursively. 2127 if ((type == Element::RS_TYPE_NONE) && (elem.children.size() > 0)) 2128 { 2129 for (Element &child : elem.children) 2130 { 2131 SetElementSize(child); 2132 const uint32_t array_size = child.array_size.isValid() ? *child.array_size.get() : 1; 2133 data_size += *child.datum_size.get() * array_size; 2134 } 2135 } 2136 // These have been packed already 2137 else if (type == Element::RS_TYPE_UNSIGNED_5_6_5 || 2138 type == Element::RS_TYPE_UNSIGNED_5_5_5_1 || 2139 type == Element::RS_TYPE_UNSIGNED_4_4_4_4) 2140 { 2141 data_size = AllocationDetails::RSTypeToFormat[type][eElementSize]; 2142 } 2143 else if (type < Element::RS_TYPE_ELEMENT) 2144 { 2145 data_size = vec_size * AllocationDetails::RSTypeToFormat[type][eElementSize]; 2146 if (vec_size == 3) 2147 padding = AllocationDetails::RSTypeToFormat[type][eElementSize]; 2148 } 2149 else 2150 data_size = GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 2151 2152 elem.padding = padding; 2153 elem.datum_size = data_size + padding; 2154 if (log) 2155 log->Printf("%s - element size set to %" PRIu32, __FUNCTION__, data_size + padding); 2156 } 2157 2158 // Given an allocation, this function copies the allocation contents from device into a buffer on the heap. 2159 // Returning a shared pointer to the buffer containing the data. 2160 std::shared_ptr<uint8_t> 2161 RenderScriptRuntime::GetAllocationData(AllocationDetails *allocation, StackFrame *frame_ptr) 2162 { 2163 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2164 2165 // JIT all the allocation details 2166 if (allocation->shouldRefresh()) 2167 { 2168 if (log) 2169 log->Printf("%s - allocation details not calculated yet, jitting info", __FUNCTION__); 2170 2171 if (!RefreshAllocation(allocation, frame_ptr)) 2172 { 2173 if (log) 2174 log->Printf("%s - couldn't JIT allocation details", __FUNCTION__); 2175 return nullptr; 2176 } 2177 } 2178 2179 assert(allocation->data_ptr.isValid() && allocation->element.type.isValid() && 2180 allocation->element.type_vec_size.isValid() && allocation->size.isValid() && 2181 "Allocation information not available"); 2182 2183 // Allocate a buffer to copy data into 2184 const uint32_t size = *allocation->size.get(); 2185 std::shared_ptr<uint8_t> buffer(new uint8_t[size]); 2186 if (!buffer) 2187 { 2188 if (log) 2189 log->Printf("%s - couldn't allocate a %" PRIu32 " byte buffer", __FUNCTION__, size); 2190 return nullptr; 2191 } 2192 2193 // Read the inferior memory 2194 Error error; 2195 lldb::addr_t data_ptr = *allocation->data_ptr.get(); 2196 GetProcess()->ReadMemory(data_ptr, buffer.get(), size, error); 2197 if (error.Fail()) 2198 { 2199 if (log) 2200 log->Printf("%s - '%s' Couldn't read %" PRIu32 " bytes of allocation data from 0x%" PRIx64, 2201 __FUNCTION__, error.AsCString(), size, data_ptr); 2202 return nullptr; 2203 } 2204 2205 return buffer; 2206 } 2207 2208 // Function copies data from a binary file into an allocation. 2209 // There is a header at the start of the file, FileHeader, before the data content itself. 2210 // Information from this header is used to display warnings to the user about incompatabilities 2211 bool 2212 RenderScriptRuntime::LoadAllocation(Stream &strm, const uint32_t alloc_id, const char *filename, StackFrame *frame_ptr) 2213 { 2214 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2215 2216 // Find allocation with the given id 2217 AllocationDetails *alloc = FindAllocByID(strm, alloc_id); 2218 if (!alloc) 2219 return false; 2220 2221 if (log) 2222 log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__, *alloc->address.get()); 2223 2224 // JIT all the allocation details 2225 if (alloc->shouldRefresh()) 2226 { 2227 if (log) 2228 log->Printf("%s - allocation details not calculated yet, jitting info.", __FUNCTION__); 2229 2230 if (!RefreshAllocation(alloc, frame_ptr)) 2231 { 2232 if (log) 2233 log->Printf("%s - couldn't JIT allocation details", __FUNCTION__); 2234 return false; 2235 } 2236 } 2237 2238 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && alloc->element.type_vec_size.isValid() && 2239 alloc->size.isValid() && alloc->element.datum_size.isValid() && "Allocation information not available"); 2240 2241 // Check we can read from file 2242 FileSpec file(filename, true); 2243 if (!file.Exists()) 2244 { 2245 strm.Printf("Error: File %s does not exist", filename); 2246 strm.EOL(); 2247 return false; 2248 } 2249 2250 if (!file.Readable()) 2251 { 2252 strm.Printf("Error: File %s does not have readable permissions", filename); 2253 strm.EOL(); 2254 return false; 2255 } 2256 2257 // Read file into data buffer 2258 DataBufferSP data_sp(file.ReadFileContents()); 2259 2260 // Cast start of buffer to FileHeader and use pointer to read metadata 2261 void *file_buffer = data_sp->GetBytes(); 2262 if (file_buffer == nullptr || 2263 data_sp->GetByteSize() < (sizeof(AllocationDetails::FileHeader) + sizeof(AllocationDetails::ElementHeader))) 2264 { 2265 strm.Printf("Error: File %s does not contain enough data for header", filename); 2266 strm.EOL(); 2267 return false; 2268 } 2269 const AllocationDetails::FileHeader *file_header = static_cast<AllocationDetails::FileHeader *>(file_buffer); 2270 2271 // Check file starts with ascii characters "RSAD" 2272 if (memcmp(file_header->ident, "RSAD", 4)) 2273 { 2274 strm.Printf("Error: File doesn't contain identifier for an RS allocation dump. Are you sure this is the correct file?"); 2275 strm.EOL(); 2276 return false; 2277 } 2278 2279 // Look at the type of the root element in the header 2280 AllocationDetails::ElementHeader root_element_header; 2281 memcpy(&root_element_header, static_cast<uint8_t *>(file_buffer) + sizeof(AllocationDetails::FileHeader), 2282 sizeof(AllocationDetails::ElementHeader)); 2283 2284 if (log) 2285 log->Printf("%s - header type %" PRIu32 ", element size %" PRIu32, __FUNCTION__, 2286 root_element_header.type, root_element_header.element_size); 2287 2288 // Check if the target allocation and file both have the same number of bytes for an Element 2289 if (*alloc->element.datum_size.get() != root_element_header.element_size) 2290 { 2291 strm.Printf("Warning: Mismatched Element sizes - file %" PRIu32 " bytes, allocation %" PRIu32 " bytes", 2292 root_element_header.element_size, *alloc->element.datum_size.get()); 2293 strm.EOL(); 2294 } 2295 2296 // Check if the target allocation and file both have the same type 2297 const uint32_t alloc_type = static_cast<uint32_t>(*alloc->element.type.get()); 2298 const uint32_t file_type = root_element_header.type; 2299 2300 if (file_type > Element::RS_TYPE_FONT) 2301 { 2302 strm.Printf("Warning: File has unknown allocation type"); 2303 strm.EOL(); 2304 } 2305 else if (alloc_type != file_type) 2306 { 2307 // Enum value isn't monotonous, so doesn't always index RsDataTypeToString array 2308 uint32_t printable_target_type_index = alloc_type; 2309 uint32_t printable_head_type_index = file_type; 2310 if (alloc_type >= Element::RS_TYPE_ELEMENT && alloc_type <= Element::RS_TYPE_FONT) 2311 printable_target_type_index = static_cast<Element::DataType>((alloc_type - Element::RS_TYPE_ELEMENT) + 2312 Element::RS_TYPE_MATRIX_2X2 + 1); 2313 2314 if (file_type >= Element::RS_TYPE_ELEMENT && file_type <= Element::RS_TYPE_FONT) 2315 printable_head_type_index = static_cast<Element::DataType>((file_type - Element::RS_TYPE_ELEMENT) + 2316 Element::RS_TYPE_MATRIX_2X2 + 1); 2317 2318 const char *file_type_cstr = AllocationDetails::RsDataTypeToString[printable_head_type_index][0]; 2319 const char *target_type_cstr = AllocationDetails::RsDataTypeToString[printable_target_type_index][0]; 2320 2321 strm.Printf("Warning: Mismatched Types - file '%s' type, allocation '%s' type", file_type_cstr, 2322 target_type_cstr); 2323 strm.EOL(); 2324 } 2325 2326 // Advance buffer past header 2327 file_buffer = static_cast<uint8_t *>(file_buffer) + file_header->hdr_size; 2328 2329 // Calculate size of allocation data in file 2330 size_t length = data_sp->GetByteSize() - file_header->hdr_size; 2331 2332 // Check if the target allocation and file both have the same total data size. 2333 const uint32_t alloc_size = *alloc->size.get(); 2334 if (alloc_size != length) 2335 { 2336 strm.Printf("Warning: Mismatched allocation sizes - file 0x%" PRIx64 " bytes, allocation 0x%" PRIx32 " bytes", 2337 (uint64_t)length, alloc_size); 2338 strm.EOL(); 2339 length = alloc_size < length ? alloc_size : length; // Set length to copy to minimum 2340 } 2341 2342 // Copy file data from our buffer into the target allocation. 2343 lldb::addr_t alloc_data = *alloc->data_ptr.get(); 2344 Error error; 2345 size_t bytes_written = GetProcess()->WriteMemory(alloc_data, file_buffer, length, error); 2346 if (!error.Success() || bytes_written != length) 2347 { 2348 strm.Printf("Error: Couldn't write data to allocation %s", error.AsCString()); 2349 strm.EOL(); 2350 return false; 2351 } 2352 2353 strm.Printf("Contents of file '%s' read into allocation %" PRIu32, filename, alloc->id); 2354 strm.EOL(); 2355 2356 return true; 2357 } 2358 2359 // Function takes as parameters a byte buffer, which will eventually be written to file as the element header, 2360 // an offset into that buffer, and an Element that will be saved into the buffer at the parametrised offset. 2361 // Return value is the new offset after writing the element into the buffer. 2362 // Elements are saved to the file as the ElementHeader struct followed by offsets to the structs of all the element's 2363 // children. 2364 size_t 2365 RenderScriptRuntime::PopulateElementHeaders(const std::shared_ptr<uint8_t> header_buffer, size_t offset, 2366 const Element &elem) 2367 { 2368 // File struct for an element header with all the relevant details copied from elem. 2369 // We assume members are valid already. 2370 AllocationDetails::ElementHeader elem_header; 2371 elem_header.type = *elem.type.get(); 2372 elem_header.kind = *elem.type_kind.get(); 2373 elem_header.element_size = *elem.datum_size.get(); 2374 elem_header.vector_size = *elem.type_vec_size.get(); 2375 elem_header.array_size = elem.array_size.isValid() ? *elem.array_size.get() : 0; 2376 const size_t elem_header_size = sizeof(AllocationDetails::ElementHeader); 2377 2378 // Copy struct into buffer and advance offset 2379 // We assume that header_buffer has been checked for nullptr before this method is called 2380 memcpy(header_buffer.get() + offset, &elem_header, elem_header_size); 2381 offset += elem_header_size; 2382 2383 // Starting offset of child ElementHeader struct 2384 size_t child_offset = offset + ((elem.children.size() + 1) * sizeof(uint32_t)); 2385 for (const RenderScriptRuntime::Element &child : elem.children) 2386 { 2387 // Recursively populate the buffer with the element header structs of children. 2388 // Then save the offsets where they were set after the parent element header. 2389 memcpy(header_buffer.get() + offset, &child_offset, sizeof(uint32_t)); 2390 offset += sizeof(uint32_t); 2391 2392 child_offset = PopulateElementHeaders(header_buffer, child_offset, child); 2393 } 2394 2395 // Zero indicates no more children 2396 memset(header_buffer.get() + offset, 0, sizeof(uint32_t)); 2397 2398 return child_offset; 2399 } 2400 2401 // Given an Element object this function returns the total size needed in the file header to store the element's 2402 // details. 2403 // Taking into account the size of the element header struct, plus the offsets to all the element's children. 2404 // Function is recursive so that the size of all ancestors is taken into account. 2405 size_t 2406 RenderScriptRuntime::CalculateElementHeaderSize(const Element &elem) 2407 { 2408 size_t size = (elem.children.size() + 1) * sizeof(uint32_t); // Offsets to children plus zero terminator 2409 size += sizeof(AllocationDetails::ElementHeader); // Size of header struct with type details 2410 2411 // Calculate recursively for all descendants 2412 for (const Element &child : elem.children) 2413 size += CalculateElementHeaderSize(child); 2414 2415 return size; 2416 } 2417 2418 // Function copies allocation contents into a binary file. 2419 // This file can then be loaded later into a different allocation. 2420 // There is a header, FileHeader, before the allocation data containing meta-data. 2421 bool 2422 RenderScriptRuntime::SaveAllocation(Stream &strm, const uint32_t alloc_id, const char *filename, StackFrame *frame_ptr) 2423 { 2424 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2425 2426 // Find allocation with the given id 2427 AllocationDetails *alloc = FindAllocByID(strm, alloc_id); 2428 if (!alloc) 2429 return false; 2430 2431 if (log) 2432 log->Printf("%s - found allocation 0x%" PRIx64 ".", __FUNCTION__, *alloc->address.get()); 2433 2434 // JIT all the allocation details 2435 if (alloc->shouldRefresh()) 2436 { 2437 if (log) 2438 log->Printf("%s - allocation details not calculated yet, jitting info.", __FUNCTION__); 2439 2440 if (!RefreshAllocation(alloc, frame_ptr)) 2441 { 2442 if (log) 2443 log->Printf("%s - couldn't JIT allocation details.", __FUNCTION__); 2444 return false; 2445 } 2446 } 2447 2448 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && alloc->element.type_vec_size.isValid() && 2449 alloc->element.datum_size.get() && alloc->element.type_kind.isValid() && alloc->dimension.isValid() && 2450 "Allocation information not available"); 2451 2452 // Check we can create writable file 2453 FileSpec file_spec(filename, true); 2454 File file(file_spec, File::eOpenOptionWrite | File::eOpenOptionCanCreate | File::eOpenOptionTruncate); 2455 if (!file) 2456 { 2457 strm.Printf("Error: Failed to open '%s' for writing", filename); 2458 strm.EOL(); 2459 return false; 2460 } 2461 2462 // Read allocation into buffer of heap memory 2463 const std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr); 2464 if (!buffer) 2465 { 2466 strm.Printf("Error: Couldn't read allocation data into buffer"); 2467 strm.EOL(); 2468 return false; 2469 } 2470 2471 // Create the file header 2472 AllocationDetails::FileHeader head; 2473 memcpy(head.ident, "RSAD", 4); 2474 head.dims[0] = static_cast<uint32_t>(alloc->dimension.get()->dim_1); 2475 head.dims[1] = static_cast<uint32_t>(alloc->dimension.get()->dim_2); 2476 head.dims[2] = static_cast<uint32_t>(alloc->dimension.get()->dim_3); 2477 2478 const size_t element_header_size = CalculateElementHeaderSize(alloc->element); 2479 assert((sizeof(AllocationDetails::FileHeader) + element_header_size) < UINT16_MAX && "Element header too large"); 2480 head.hdr_size = static_cast<uint16_t>(sizeof(AllocationDetails::FileHeader) + element_header_size); 2481 2482 // Write the file header 2483 size_t num_bytes = sizeof(AllocationDetails::FileHeader); 2484 if (log) 2485 log->Printf("%s - writing File Header, 0x%" PRIx64 " bytes", __FUNCTION__, num_bytes); 2486 2487 Error err = file.Write(&head, num_bytes); 2488 if (!err.Success()) 2489 { 2490 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), filename); 2491 strm.EOL(); 2492 return false; 2493 } 2494 2495 // Create the headers describing the element type of the allocation. 2496 std::shared_ptr<uint8_t> element_header_buffer(new uint8_t[element_header_size]); 2497 if (element_header_buffer == nullptr) 2498 { 2499 strm.Printf("Internal Error: Couldn't allocate %" PRIu64 " bytes on the heap", element_header_size); 2500 strm.EOL(); 2501 return false; 2502 } 2503 2504 PopulateElementHeaders(element_header_buffer, 0, alloc->element); 2505 2506 // Write headers for allocation element type to file 2507 num_bytes = element_header_size; 2508 if (log) 2509 log->Printf("%s - writing element headers, 0x%" PRIx64 " bytes.", __FUNCTION__, num_bytes); 2510 2511 err = file.Write(element_header_buffer.get(), num_bytes); 2512 if (!err.Success()) 2513 { 2514 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), filename); 2515 strm.EOL(); 2516 return false; 2517 } 2518 2519 // Write allocation data to file 2520 num_bytes = static_cast<size_t>(*alloc->size.get()); 2521 if (log) 2522 log->Printf("%s - writing 0x%" PRIx64 " bytes", __FUNCTION__, num_bytes); 2523 2524 err = file.Write(buffer.get(), num_bytes); 2525 if (!err.Success()) 2526 { 2527 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), filename); 2528 strm.EOL(); 2529 return false; 2530 } 2531 2532 strm.Printf("Allocation written to file '%s'", filename); 2533 strm.EOL(); 2534 return true; 2535 } 2536 2537 bool 2538 RenderScriptRuntime::LoadModule(const lldb::ModuleSP &module_sp) 2539 { 2540 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2541 2542 if (module_sp) 2543 { 2544 for (const auto &rs_module : m_rsmodules) 2545 { 2546 if (rs_module->m_module == module_sp) 2547 { 2548 // Check if the user has enabled automatically breaking on 2549 // all RS kernels. 2550 if (m_breakAllKernels) 2551 BreakOnModuleKernels(rs_module); 2552 2553 return false; 2554 } 2555 } 2556 bool module_loaded = false; 2557 switch (GetModuleKind(module_sp)) 2558 { 2559 case eModuleKindKernelObj: 2560 { 2561 RSModuleDescriptorSP module_desc; 2562 module_desc.reset(new RSModuleDescriptor(module_sp)); 2563 if (module_desc->ParseRSInfo()) 2564 { 2565 m_rsmodules.push_back(module_desc); 2566 module_loaded = true; 2567 } 2568 if (module_loaded) 2569 { 2570 FixupScriptDetails(module_desc); 2571 } 2572 break; 2573 } 2574 case eModuleKindDriver: 2575 { 2576 if (!m_libRSDriver) 2577 { 2578 m_libRSDriver = module_sp; 2579 LoadRuntimeHooks(m_libRSDriver, RenderScriptRuntime::eModuleKindDriver); 2580 } 2581 break; 2582 } 2583 case eModuleKindImpl: 2584 { 2585 m_libRSCpuRef = module_sp; 2586 break; 2587 } 2588 case eModuleKindLibRS: 2589 { 2590 if (!m_libRS) 2591 { 2592 m_libRS = module_sp; 2593 static ConstString gDbgPresentStr("gDebuggerPresent"); 2594 const Symbol *debug_present = 2595 m_libRS->FindFirstSymbolWithNameAndType(gDbgPresentStr, eSymbolTypeData); 2596 if (debug_present) 2597 { 2598 Error error; 2599 uint32_t flag = 0x00000001U; 2600 Target &target = GetProcess()->GetTarget(); 2601 addr_t addr = debug_present->GetLoadAddress(&target); 2602 GetProcess()->WriteMemory(addr, &flag, sizeof(flag), error); 2603 if (error.Success()) 2604 { 2605 if (log) 2606 log->Printf("%s - debugger present flag set on debugee.", __FUNCTION__); 2607 2608 m_debuggerPresentFlagged = true; 2609 } 2610 else if (log) 2611 { 2612 log->Printf("%s - error writing debugger present flags '%s' ", __FUNCTION__, 2613 error.AsCString()); 2614 } 2615 } 2616 else if (log) 2617 { 2618 log->Printf("%s - error writing debugger present flags - symbol not found", __FUNCTION__); 2619 } 2620 } 2621 break; 2622 } 2623 default: 2624 break; 2625 } 2626 if (module_loaded) 2627 Update(); 2628 return module_loaded; 2629 } 2630 return false; 2631 } 2632 2633 void 2634 RenderScriptRuntime::Update() 2635 { 2636 if (m_rsmodules.size() > 0) 2637 { 2638 if (!m_initiated) 2639 { 2640 Initiate(); 2641 } 2642 } 2643 } 2644 2645 // The maximum line length of an .rs.info packet 2646 #define MAXLINE 500 2647 #define STRINGIFY(x) #x 2648 #define MAXLINESTR_(x) "%" STRINGIFY(x) "s" 2649 #define MAXLINESTR MAXLINESTR_(MAXLINE) 2650 2651 // The .rs.info symbol in renderscript modules contains a string which needs to be parsed. 2652 // The string is basic and is parsed on a line by line basis. 2653 bool 2654 RSModuleDescriptor::ParseRSInfo() 2655 { 2656 assert(m_module); 2657 const Symbol *info_sym = m_module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), eSymbolTypeData); 2658 if (!info_sym) 2659 return false; 2660 2661 const addr_t addr = info_sym->GetAddressRef().GetFileAddress(); 2662 if (addr == LLDB_INVALID_ADDRESS) 2663 return false; 2664 2665 const addr_t size = info_sym->GetByteSize(); 2666 const FileSpec fs = m_module->GetFileSpec(); 2667 2668 const DataBufferSP buffer = fs.ReadFileContents(addr, size); 2669 if (!buffer) 2670 return false; 2671 2672 // split rs.info. contents into lines 2673 std::vector<std::string> info_lines; 2674 { 2675 const std::string info((const char *)buffer->GetBytes()); 2676 for (size_t tail = 0; tail < info.size();) 2677 { 2678 // find next new line or end of string 2679 size_t head = info.find('\n', tail); 2680 head = (head == std::string::npos) ? info.size() : head; 2681 std::string line = info.substr(tail, head - tail); 2682 // add to line list 2683 info_lines.push_back(line); 2684 tail = head + 1; 2685 } 2686 } 2687 2688 std::array<char, MAXLINE> name = {'\0'}; 2689 std::array<char, MAXLINE> value = {'\0'}; 2690 2691 // parse all text lines of .rs.info 2692 for (auto line = info_lines.begin(); line != info_lines.end(); ++line) 2693 { 2694 uint32_t numDefns = 0; 2695 if (sscanf(line->c_str(), "exportVarCount: %" PRIu32 "", &numDefns) == 1) 2696 { 2697 while (numDefns--) 2698 m_globals.push_back(RSGlobalDescriptor(this, (++line)->c_str())); 2699 } 2700 else if (sscanf(line->c_str(), "exportForEachCount: %" PRIu32 "", &numDefns) == 1) 2701 { 2702 while (numDefns--) 2703 { 2704 uint32_t slot = 0; 2705 name[0] = '\0'; 2706 static const char *fmt_s = "%" PRIu32 " - " MAXLINESTR; 2707 if (sscanf((++line)->c_str(), fmt_s, &slot, name.data()) == 2) 2708 { 2709 if (name[0] != '\0') 2710 m_kernels.push_back(RSKernelDescriptor(this, name.data(), slot)); 2711 } 2712 } 2713 } 2714 else if (sscanf(line->c_str(), "pragmaCount: %" PRIu32 "", &numDefns) == 1) 2715 { 2716 while (numDefns--) 2717 { 2718 name[0] = value[0] = '\0'; 2719 static const char *fmt_s = MAXLINESTR " - " MAXLINESTR; 2720 if (sscanf((++line)->c_str(), fmt_s, name.data(), value.data()) != 0) 2721 { 2722 if (name[0] != '\0') 2723 m_pragmas[std::string(name.data())] = value.data(); 2724 } 2725 } 2726 } 2727 else 2728 { 2729 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2730 if (log) 2731 { 2732 log->Printf("%s - skipping .rs.info field '%s'", __FUNCTION__, line->c_str()); 2733 } 2734 } 2735 } 2736 2737 // 'root' kernel should always be present 2738 return m_kernels.size() > 0; 2739 } 2740 2741 void 2742 RenderScriptRuntime::Status(Stream &strm) const 2743 { 2744 if (m_libRS) 2745 { 2746 strm.Printf("Runtime Library discovered."); 2747 strm.EOL(); 2748 } 2749 if (m_libRSDriver) 2750 { 2751 strm.Printf("Runtime Driver discovered."); 2752 strm.EOL(); 2753 } 2754 if (m_libRSCpuRef) 2755 { 2756 strm.Printf("CPU Reference Implementation discovered."); 2757 strm.EOL(); 2758 } 2759 2760 if (m_runtimeHooks.size()) 2761 { 2762 strm.Printf("Runtime functions hooked:"); 2763 strm.EOL(); 2764 for (auto b : m_runtimeHooks) 2765 { 2766 strm.Indent(b.second->defn->name); 2767 strm.EOL(); 2768 } 2769 } 2770 else 2771 { 2772 strm.Printf("Runtime is not hooked."); 2773 strm.EOL(); 2774 } 2775 } 2776 2777 void 2778 RenderScriptRuntime::DumpContexts(Stream &strm) const 2779 { 2780 strm.Printf("Inferred RenderScript Contexts:"); 2781 strm.EOL(); 2782 strm.IndentMore(); 2783 2784 std::map<addr_t, uint64_t> contextReferences; 2785 2786 // Iterate over all of the currently discovered scripts. 2787 // Note: We cant push or pop from m_scripts inside this loop or it may invalidate script. 2788 for (const auto &script : m_scripts) 2789 { 2790 if (!script->context.isValid()) 2791 continue; 2792 lldb::addr_t context = *script->context; 2793 2794 if (contextReferences.find(context) != contextReferences.end()) 2795 { 2796 contextReferences[context]++; 2797 } 2798 else 2799 { 2800 contextReferences[context] = 1; 2801 } 2802 } 2803 2804 for (const auto &cRef : contextReferences) 2805 { 2806 strm.Printf("Context 0x%" PRIx64 ": %" PRIu64 " script instances", cRef.first, cRef.second); 2807 strm.EOL(); 2808 } 2809 strm.IndentLess(); 2810 } 2811 2812 void 2813 RenderScriptRuntime::DumpKernels(Stream &strm) const 2814 { 2815 strm.Printf("RenderScript Kernels:"); 2816 strm.EOL(); 2817 strm.IndentMore(); 2818 for (const auto &module : m_rsmodules) 2819 { 2820 strm.Printf("Resource '%s':", module->m_resname.c_str()); 2821 strm.EOL(); 2822 for (const auto &kernel : module->m_kernels) 2823 { 2824 strm.Indent(kernel.m_name.AsCString()); 2825 strm.EOL(); 2826 } 2827 } 2828 strm.IndentLess(); 2829 } 2830 2831 RenderScriptRuntime::AllocationDetails * 2832 RenderScriptRuntime::FindAllocByID(Stream &strm, const uint32_t alloc_id) 2833 { 2834 AllocationDetails *alloc = nullptr; 2835 2836 // See if we can find allocation using id as an index; 2837 if (alloc_id <= m_allocations.size() && alloc_id != 0 && m_allocations[alloc_id - 1]->id == alloc_id) 2838 { 2839 alloc = m_allocations[alloc_id - 1].get(); 2840 return alloc; 2841 } 2842 2843 // Fallback to searching 2844 for (const auto &a : m_allocations) 2845 { 2846 if (a->id == alloc_id) 2847 { 2848 alloc = a.get(); 2849 break; 2850 } 2851 } 2852 2853 if (alloc == nullptr) 2854 { 2855 strm.Printf("Error: Couldn't find allocation with id matching %" PRIu32, alloc_id); 2856 strm.EOL(); 2857 } 2858 2859 return alloc; 2860 } 2861 2862 // Prints the contents of an allocation to the output stream, which may be a file 2863 bool 2864 RenderScriptRuntime::DumpAllocation(Stream &strm, StackFrame *frame_ptr, const uint32_t id) 2865 { 2866 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2867 2868 // Check we can find the desired allocation 2869 AllocationDetails *alloc = FindAllocByID(strm, id); 2870 if (!alloc) 2871 return false; // FindAllocByID() will print error message for us here 2872 2873 if (log) 2874 log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__, *alloc->address.get()); 2875 2876 // Check we have information about the allocation, if not calculate it 2877 if (alloc->shouldRefresh()) 2878 { 2879 if (log) 2880 log->Printf("%s - allocation details not calculated yet, jitting info.", __FUNCTION__); 2881 2882 // JIT all the allocation information 2883 if (!RefreshAllocation(alloc, frame_ptr)) 2884 { 2885 strm.Printf("Error: Couldn't JIT allocation details"); 2886 strm.EOL(); 2887 return false; 2888 } 2889 } 2890 2891 // Establish format and size of each data element 2892 const uint32_t vec_size = *alloc->element.type_vec_size.get(); 2893 const Element::DataType type = *alloc->element.type.get(); 2894 2895 assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && "Invalid allocation type"); 2896 2897 lldb::Format format; 2898 if (type >= Element::RS_TYPE_ELEMENT) 2899 format = eFormatHex; 2900 else 2901 format = vec_size == 1 ? static_cast<lldb::Format>(AllocationDetails::RSTypeToFormat[type][eFormatSingle]) 2902 : static_cast<lldb::Format>(AllocationDetails::RSTypeToFormat[type][eFormatVector]); 2903 2904 const uint32_t data_size = *alloc->element.datum_size.get(); 2905 2906 if (log) 2907 log->Printf("%s - element size %" PRIu32 " bytes, including padding", __FUNCTION__, data_size); 2908 2909 // Allocate a buffer to copy data into 2910 std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr); 2911 if (!buffer) 2912 { 2913 strm.Printf("Error: Couldn't read allocation data"); 2914 strm.EOL(); 2915 return false; 2916 } 2917 2918 // Calculate stride between rows as there may be padding at end of rows since 2919 // allocated memory is 16-byte aligned 2920 if (!alloc->stride.isValid()) 2921 { 2922 if (alloc->dimension.get()->dim_2 == 0) // We only have one dimension 2923 alloc->stride = 0; 2924 else if (!JITAllocationStride(alloc, frame_ptr)) 2925 { 2926 strm.Printf("Error: Couldn't calculate allocation row stride"); 2927 strm.EOL(); 2928 return false; 2929 } 2930 } 2931 const uint32_t stride = *alloc->stride.get(); 2932 const uint32_t size = *alloc->size.get(); // Size of whole allocation 2933 const uint32_t padding = alloc->element.padding.isValid() ? *alloc->element.padding.get() : 0; 2934 if (log) 2935 log->Printf("%s - stride %" PRIu32 " bytes, size %" PRIu32 " bytes, padding %" PRIu32, 2936 __FUNCTION__, stride, size, padding); 2937 2938 // Find dimensions used to index loops, so need to be non-zero 2939 uint32_t dim_x = alloc->dimension.get()->dim_1; 2940 dim_x = dim_x == 0 ? 1 : dim_x; 2941 2942 uint32_t dim_y = alloc->dimension.get()->dim_2; 2943 dim_y = dim_y == 0 ? 1 : dim_y; 2944 2945 uint32_t dim_z = alloc->dimension.get()->dim_3; 2946 dim_z = dim_z == 0 ? 1 : dim_z; 2947 2948 // Use data extractor to format output 2949 const uint32_t archByteSize = GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 2950 DataExtractor alloc_data(buffer.get(), size, GetProcess()->GetByteOrder(), archByteSize); 2951 2952 uint32_t offset = 0; // Offset in buffer to next element to be printed 2953 uint32_t prev_row = 0; // Offset to the start of the previous row 2954 2955 // Iterate over allocation dimensions, printing results to user 2956 strm.Printf("Data (X, Y, Z):"); 2957 for (uint32_t z = 0; z < dim_z; ++z) 2958 { 2959 for (uint32_t y = 0; y < dim_y; ++y) 2960 { 2961 // Use stride to index start of next row. 2962 if (!(y == 0 && z == 0)) 2963 offset = prev_row + stride; 2964 prev_row = offset; 2965 2966 // Print each element in the row individually 2967 for (uint32_t x = 0; x < dim_x; ++x) 2968 { 2969 strm.Printf("\n(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ") = ", x, y, z); 2970 if ((type == Element::RS_TYPE_NONE) && (alloc->element.children.size() > 0) && 2971 (alloc->element.type_name != Element::GetFallbackStructName())) 2972 { 2973 // Here we are dumping an Element of struct type. 2974 // This is done using expression evaluation with the name of the struct type and pointer to element. 2975 2976 // Don't print the name of the resulting expression, since this will be '$[0-9]+' 2977 DumpValueObjectOptions expr_options; 2978 expr_options.SetHideName(true); 2979 2980 // Setup expression as derefrencing a pointer cast to element address. 2981 char expr_char_buffer[jit_max_expr_size]; 2982 int chars_written = snprintf(expr_char_buffer, jit_max_expr_size, "*(%s*) 0x%" PRIx64, 2983 alloc->element.type_name.AsCString(), *alloc->data_ptr.get() + offset); 2984 2985 if (chars_written < 0 || chars_written >= jit_max_expr_size) 2986 { 2987 if (log) 2988 log->Printf("%s - error in snprintf().", __FUNCTION__); 2989 continue; 2990 } 2991 2992 // Evaluate expression 2993 ValueObjectSP expr_result; 2994 GetProcess()->GetTarget().EvaluateExpression(expr_char_buffer, frame_ptr, expr_result); 2995 2996 // Print the results to our stream. 2997 expr_result->Dump(strm, expr_options); 2998 } 2999 else 3000 { 3001 alloc_data.Dump(&strm, offset, format, data_size - padding, 1, 1, LLDB_INVALID_ADDRESS, 0, 0); 3002 } 3003 offset += data_size; 3004 } 3005 } 3006 } 3007 strm.EOL(); 3008 3009 return true; 3010 } 3011 3012 // Function recalculates all our cached information about allocations by jitting the 3013 // RS runtime regarding each allocation we know about. 3014 // Returns true if all allocations could be recomputed, false otherwise. 3015 bool 3016 RenderScriptRuntime::RecomputeAllAllocations(Stream &strm, StackFrame *frame_ptr) 3017 { 3018 bool success = true; 3019 for (auto &alloc : m_allocations) 3020 { 3021 // JIT current allocation information 3022 if (!RefreshAllocation(alloc.get(), frame_ptr)) 3023 { 3024 strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32 "\n", alloc->id); 3025 success = false; 3026 } 3027 } 3028 3029 if (success) 3030 strm.Printf("All allocations successfully recomputed"); 3031 strm.EOL(); 3032 3033 return success; 3034 } 3035 3036 // Prints information regarding currently loaded allocations. 3037 // These details are gathered by jitting the runtime, which has as latency. 3038 // Index parameter specifies a single allocation ID to print, or a zero value to print them all 3039 void 3040 RenderScriptRuntime::ListAllocations(Stream &strm, StackFrame *frame_ptr, const uint32_t index) 3041 { 3042 strm.Printf("RenderScript Allocations:"); 3043 strm.EOL(); 3044 strm.IndentMore(); 3045 3046 for (auto &alloc : m_allocations) 3047 { 3048 // index will only be zero if we want to print all allocations 3049 if (index != 0 && index != alloc->id) 3050 continue; 3051 3052 // JIT current allocation information 3053 if (alloc->shouldRefresh() && !RefreshAllocation(alloc.get(), frame_ptr)) 3054 { 3055 strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32, alloc->id); 3056 strm.EOL(); 3057 continue; 3058 } 3059 3060 strm.Printf("%" PRIu32 ":", alloc->id); 3061 strm.EOL(); 3062 strm.IndentMore(); 3063 3064 strm.Indent("Context: "); 3065 if (!alloc->context.isValid()) 3066 strm.Printf("unknown\n"); 3067 else 3068 strm.Printf("0x%" PRIx64 "\n", *alloc->context.get()); 3069 3070 strm.Indent("Address: "); 3071 if (!alloc->address.isValid()) 3072 strm.Printf("unknown\n"); 3073 else 3074 strm.Printf("0x%" PRIx64 "\n", *alloc->address.get()); 3075 3076 strm.Indent("Data pointer: "); 3077 if (!alloc->data_ptr.isValid()) 3078 strm.Printf("unknown\n"); 3079 else 3080 strm.Printf("0x%" PRIx64 "\n", *alloc->data_ptr.get()); 3081 3082 strm.Indent("Dimensions: "); 3083 if (!alloc->dimension.isValid()) 3084 strm.Printf("unknown\n"); 3085 else 3086 strm.Printf("(%" PRId32 ", %" PRId32 ", %" PRId32 ")\n", 3087 alloc->dimension.get()->dim_1, alloc->dimension.get()->dim_2, alloc->dimension.get()->dim_3); 3088 3089 strm.Indent("Data Type: "); 3090 if (!alloc->element.type.isValid() || !alloc->element.type_vec_size.isValid()) 3091 strm.Printf("unknown\n"); 3092 else 3093 { 3094 const int vector_size = *alloc->element.type_vec_size.get(); 3095 Element::DataType type = *alloc->element.type.get(); 3096 3097 if (!alloc->element.type_name.IsEmpty()) 3098 strm.Printf("%s\n", alloc->element.type_name.AsCString()); 3099 else 3100 { 3101 // Enum value isn't monotonous, so doesn't always index RsDataTypeToString array 3102 if (type >= Element::RS_TYPE_ELEMENT && type <= Element::RS_TYPE_FONT) 3103 type = static_cast<Element::DataType>((type - Element::RS_TYPE_ELEMENT) + 3104 Element::RS_TYPE_MATRIX_2X2 + 1); 3105 3106 if (type >= (sizeof(AllocationDetails::RsDataTypeToString) / 3107 sizeof(AllocationDetails::RsDataTypeToString[0])) || 3108 vector_size > 4 || vector_size < 1) 3109 strm.Printf("invalid type\n"); 3110 else 3111 strm.Printf("%s\n", AllocationDetails::RsDataTypeToString[static_cast<uint32_t>(type)] 3112 [vector_size - 1]); 3113 } 3114 } 3115 3116 strm.Indent("Data Kind: "); 3117 if (!alloc->element.type_kind.isValid()) 3118 strm.Printf("unknown\n"); 3119 else 3120 { 3121 const Element::DataKind kind = *alloc->element.type_kind.get(); 3122 if (kind < Element::RS_KIND_USER || kind > Element::RS_KIND_PIXEL_YUV) 3123 strm.Printf("invalid kind\n"); 3124 else 3125 strm.Printf("%s\n", AllocationDetails::RsDataKindToString[static_cast<uint32_t>(kind)]); 3126 } 3127 3128 strm.EOL(); 3129 strm.IndentLess(); 3130 } 3131 strm.IndentLess(); 3132 } 3133 3134 // Set breakpoints on every kernel found in RS module 3135 void 3136 RenderScriptRuntime::BreakOnModuleKernels(const RSModuleDescriptorSP rsmodule_sp) 3137 { 3138 for (const auto &kernel : rsmodule_sp->m_kernels) 3139 { 3140 // Don't set breakpoint on 'root' kernel 3141 if (strcmp(kernel.m_name.AsCString(), "root") == 0) 3142 continue; 3143 3144 CreateKernelBreakpoint(kernel.m_name); 3145 } 3146 } 3147 3148 // Method is internally called by the 'kernel breakpoint all' command to 3149 // enable or disable breaking on all kernels. 3150 // 3151 // When do_break is true we want to enable this functionality. 3152 // When do_break is false we want to disable it. 3153 void 3154 RenderScriptRuntime::SetBreakAllKernels(bool do_break, TargetSP target) 3155 { 3156 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3157 3158 InitSearchFilter(target); 3159 3160 // Set breakpoints on all the kernels 3161 if (do_break && !m_breakAllKernels) 3162 { 3163 m_breakAllKernels = true; 3164 3165 for (const auto &module : m_rsmodules) 3166 BreakOnModuleKernels(module); 3167 3168 if (log) 3169 log->Printf("%s(True) - breakpoints set on all currently loaded kernels.", __FUNCTION__); 3170 } 3171 else if (!do_break && m_breakAllKernels) // Breakpoints won't be set on any new kernels. 3172 { 3173 m_breakAllKernels = false; 3174 3175 if (log) 3176 log->Printf("%s(False) - breakpoints no longer automatically set.", __FUNCTION__); 3177 } 3178 } 3179 3180 // Given the name of a kernel this function creates a breakpoint using our 3181 // own breakpoint resolver, and returns the Breakpoint shared pointer. 3182 BreakpointSP 3183 RenderScriptRuntime::CreateKernelBreakpoint(const ConstString &name) 3184 { 3185 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3186 3187 if (!m_filtersp) 3188 { 3189 if (log) 3190 log->Printf("%s - error, no breakpoint search filter set.", __FUNCTION__); 3191 return nullptr; 3192 } 3193 3194 BreakpointResolverSP resolver_sp(new RSBreakpointResolver(nullptr, name)); 3195 BreakpointSP bp = GetProcess()->GetTarget().CreateBreakpoint(m_filtersp, resolver_sp, false, false, false); 3196 3197 // Give RS breakpoints a specific name, so the user can manipulate them as a group. 3198 Error err; 3199 if (!bp->AddName("RenderScriptKernel", err) && log) 3200 log->Printf("%s - error setting break name, '%s'.", __FUNCTION__, err.AsCString()); 3201 3202 return bp; 3203 } 3204 3205 // Given an expression for a variable this function tries to calculate the variable's value. 3206 // If this is possible it returns true and sets the uint64_t parameter to the variables unsigned value. 3207 // Otherwise function returns false. 3208 bool 3209 RenderScriptRuntime::GetFrameVarAsUnsigned(const StackFrameSP frame_sp, const char *var_name, uint64_t &val) 3210 { 3211 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3212 Error error; 3213 VariableSP var_sp; 3214 3215 // Find variable in stack frame 3216 ValueObjectSP value_sp(frame_sp->GetValueForVariableExpressionPath( 3217 var_name, eNoDynamicValues, 3218 StackFrame::eExpressionPathOptionCheckPtrVsMember | StackFrame::eExpressionPathOptionsAllowDirectIVarAccess, 3219 var_sp, error)); 3220 if (!error.Success()) 3221 { 3222 if (log) 3223 log->Printf("%s - error, couldn't find '%s' in frame", __FUNCTION__, var_name); 3224 return false; 3225 } 3226 3227 // Find the uint32_t value for the variable 3228 bool success = false; 3229 val = value_sp->GetValueAsUnsigned(0, &success); 3230 if (!success) 3231 { 3232 if (log) 3233 log->Printf("%s - error, couldn't parse '%s' as an uint32_t.", __FUNCTION__, var_name); 3234 return false; 3235 } 3236 3237 return true; 3238 } 3239 3240 // Function attempts to find the current coordinate of a kernel invocation by investigating the 3241 // values of frame variables in the .expand function. These coordinates are returned via the coord 3242 // array reference parameter. Returns true if the coordinates could be found, and false otherwise. 3243 bool 3244 RenderScriptRuntime::GetKernelCoordinate(RSCoordinate &coord, Thread *thread_ptr) 3245 { 3246 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3247 3248 if (!thread_ptr) 3249 { 3250 if (log) 3251 log->Printf("%s - Error, No thread pointer", __FUNCTION__); 3252 3253 return false; 3254 } 3255 3256 // Walk the call stack looking for a function whose name has the suffix '.expand' 3257 // and contains the variables we're looking for. 3258 for (uint32_t i = 0; i < thread_ptr->GetStackFrameCount(); ++i) 3259 { 3260 if (!thread_ptr->SetSelectedFrameByIndex(i)) 3261 continue; 3262 3263 StackFrameSP frame_sp = thread_ptr->GetSelectedFrame(); 3264 if (!frame_sp) 3265 continue; 3266 3267 // Find the function name 3268 const SymbolContext sym_ctx = frame_sp->GetSymbolContext(false); 3269 const char *func_name_cstr = sym_ctx.GetFunctionName().AsCString(); 3270 if (!func_name_cstr) 3271 continue; 3272 3273 if (log) 3274 log->Printf("%s - Inspecting function '%s'", __FUNCTION__, func_name_cstr); 3275 3276 // Check if function name has .expand suffix 3277 std::string func_name(func_name_cstr); 3278 const int length_difference = func_name.length() - RenderScriptRuntime::s_runtimeExpandSuffix.length(); 3279 if (length_difference <= 0) 3280 continue; 3281 3282 const int32_t has_expand_suffix = func_name.compare(length_difference, 3283 RenderScriptRuntime::s_runtimeExpandSuffix.length(), 3284 RenderScriptRuntime::s_runtimeExpandSuffix); 3285 3286 if (has_expand_suffix != 0) 3287 continue; 3288 3289 if (log) 3290 log->Printf("%s - Found .expand function '%s'", __FUNCTION__, func_name_cstr); 3291 3292 // Get values for variables in .expand frame that tell us the current kernel invocation 3293 bool found_coord_variables = true; 3294 assert(RenderScriptRuntime::s_runtimeCoordVars.size() == coord.size()); 3295 3296 for (uint32_t i = 0; i < coord.size(); ++i) 3297 { 3298 uint64_t value = 0; 3299 if (!GetFrameVarAsUnsigned(frame_sp, RenderScriptRuntime::s_runtimeCoordVars[i], value)) 3300 { 3301 found_coord_variables = false; 3302 break; 3303 } 3304 coord[i] = value; 3305 } 3306 3307 if (found_coord_variables) 3308 return true; 3309 } 3310 return false; 3311 } 3312 3313 // Callback when a kernel breakpoint hits and we're looking for a specific coordinate. 3314 // Baton parameter contains a pointer to the target coordinate we want to break on. 3315 // Function then checks the .expand frame for the current coordinate and breaks to user if it matches. 3316 // Parameter 'break_id' is the id of the Breakpoint which made the callback. 3317 // Parameter 'break_loc_id' is the id for the BreakpointLocation which was hit, 3318 // a single logical breakpoint can have multiple addresses. 3319 bool 3320 RenderScriptRuntime::KernelBreakpointHit(void *baton, StoppointCallbackContext *ctx, user_id_t break_id, 3321 user_id_t break_loc_id) 3322 { 3323 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3324 3325 assert(baton && "Error: null baton in conditional kernel breakpoint callback"); 3326 3327 // Coordinate we want to stop on 3328 const uint32_t *target_coord = static_cast<const uint32_t *>(baton); 3329 3330 if (log) 3331 log->Printf("%s - Break ID %" PRIu64 ", (%" PRIu32 ", %" PRIu32 ", %" PRIu32 ")", __FUNCTION__, break_id, 3332 target_coord[0], target_coord[1], target_coord[2]); 3333 3334 // Select current thread 3335 ExecutionContext context(ctx->exe_ctx_ref); 3336 Thread *thread_ptr = context.GetThreadPtr(); 3337 assert(thread_ptr && "Null thread pointer"); 3338 3339 // Find current kernel invocation from .expand frame variables 3340 RSCoordinate current_coord{}; // Zero initialise array 3341 if (!GetKernelCoordinate(current_coord, thread_ptr)) 3342 { 3343 if (log) 3344 log->Printf("%s - Error, couldn't select .expand stack frame", __FUNCTION__); 3345 return false; 3346 } 3347 3348 if (log) 3349 log->Printf("%s - (%" PRIu32 ",%" PRIu32 ",%" PRIu32 ")", __FUNCTION__, current_coord[0], current_coord[1], 3350 current_coord[2]); 3351 3352 // Check if the current kernel invocation coordinate matches our target coordinate 3353 if (current_coord[0] == target_coord[0] && 3354 current_coord[1] == target_coord[1] && 3355 current_coord[2] == target_coord[2]) 3356 { 3357 if (log) 3358 log->Printf("%s, BREAKING (%" PRIu32 ",%" PRIu32 ",%" PRIu32 ")", __FUNCTION__, current_coord[0], 3359 current_coord[1], current_coord[2]); 3360 3361 BreakpointSP breakpoint_sp = context.GetTargetPtr()->GetBreakpointByID(break_id); 3362 assert(breakpoint_sp != nullptr && "Error: Couldn't find breakpoint matching break id for callback"); 3363 breakpoint_sp->SetEnabled(false); // Optimise since conditional breakpoint should only be hit once. 3364 return true; 3365 } 3366 3367 // No match on coordinate 3368 return false; 3369 } 3370 3371 // Tries to set a breakpoint on the start of a kernel, resolved using the kernel name. 3372 // Argument 'coords', represents a three dimensional coordinate which can be used to specify 3373 // a single kernel instance to break on. If this is set then we add a callback to the breakpoint. 3374 void 3375 RenderScriptRuntime::PlaceBreakpointOnKernel(Stream &strm, const char *name, const std::array<int, 3> coords, 3376 Error &error, TargetSP target) 3377 { 3378 if (!name) 3379 { 3380 error.SetErrorString("invalid kernel name"); 3381 return; 3382 } 3383 3384 InitSearchFilter(target); 3385 3386 ConstString kernel_name(name); 3387 BreakpointSP bp = CreateKernelBreakpoint(kernel_name); 3388 3389 // We have a conditional breakpoint on a specific coordinate 3390 if (coords[0] != -1) 3391 { 3392 strm.Printf("Conditional kernel breakpoint on coordinate %" PRId32 ", %" PRId32 ", %" PRId32, 3393 coords[0], coords[1], coords[2]); 3394 strm.EOL(); 3395 3396 // Allocate memory for the baton, and copy over coordinate 3397 uint32_t *baton = new uint32_t[coords.size()]; 3398 baton[0] = coords[0]; baton[1] = coords[1]; baton[2] = coords[2]; 3399 3400 // Create a callback that will be invoked everytime the breakpoint is hit. 3401 // The baton object passed to the handler is the target coordinate we want to break on. 3402 bp->SetCallback(KernelBreakpointHit, baton, true); 3403 3404 // Store a shared pointer to the baton, so the memory will eventually be cleaned up after destruction 3405 m_conditional_breaks[bp->GetID()] = std::shared_ptr<uint32_t>(baton); 3406 } 3407 3408 if (bp) 3409 bp->GetDescription(&strm, lldb::eDescriptionLevelInitial, false); 3410 } 3411 3412 void 3413 RenderScriptRuntime::DumpModules(Stream &strm) const 3414 { 3415 strm.Printf("RenderScript Modules:"); 3416 strm.EOL(); 3417 strm.IndentMore(); 3418 for (const auto &module : m_rsmodules) 3419 { 3420 module->Dump(strm); 3421 } 3422 strm.IndentLess(); 3423 } 3424 3425 RenderScriptRuntime::ScriptDetails * 3426 RenderScriptRuntime::LookUpScript(addr_t address, bool create) 3427 { 3428 for (const auto &s : m_scripts) 3429 { 3430 if (s->script.isValid()) 3431 if (*s->script == address) 3432 return s.get(); 3433 } 3434 if (create) 3435 { 3436 std::unique_ptr<ScriptDetails> s(new ScriptDetails); 3437 s->script = address; 3438 m_scripts.push_back(std::move(s)); 3439 return m_scripts.back().get(); 3440 } 3441 return nullptr; 3442 } 3443 3444 RenderScriptRuntime::AllocationDetails * 3445 RenderScriptRuntime::LookUpAllocation(addr_t address, bool create) 3446 { 3447 for (const auto &a : m_allocations) 3448 { 3449 if (a->address.isValid()) 3450 if (*a->address == address) 3451 return a.get(); 3452 } 3453 if (create) 3454 { 3455 std::unique_ptr<AllocationDetails> a(new AllocationDetails); 3456 a->address = address; 3457 m_allocations.push_back(std::move(a)); 3458 return m_allocations.back().get(); 3459 } 3460 return nullptr; 3461 } 3462 3463 void 3464 RSModuleDescriptor::Dump(Stream &strm) const 3465 { 3466 strm.Indent(); 3467 m_module->GetFileSpec().Dump(&strm); 3468 if (m_module->GetNumCompileUnits()) 3469 { 3470 strm.Indent("Debug info loaded."); 3471 } 3472 else 3473 { 3474 strm.Indent("Debug info does not exist."); 3475 } 3476 strm.EOL(); 3477 strm.IndentMore(); 3478 strm.Indent(); 3479 strm.Printf("Globals: %" PRIu64, static_cast<uint64_t>(m_globals.size())); 3480 strm.EOL(); 3481 strm.IndentMore(); 3482 for (const auto &global : m_globals) 3483 { 3484 global.Dump(strm); 3485 } 3486 strm.IndentLess(); 3487 strm.Indent(); 3488 strm.Printf("Kernels: %" PRIu64, static_cast<uint64_t>(m_kernels.size())); 3489 strm.EOL(); 3490 strm.IndentMore(); 3491 for (const auto &kernel : m_kernels) 3492 { 3493 kernel.Dump(strm); 3494 } 3495 strm.Printf("Pragmas: %" PRIu64, static_cast<uint64_t>(m_pragmas.size())); 3496 strm.EOL(); 3497 strm.IndentMore(); 3498 for (const auto &key_val : m_pragmas) 3499 { 3500 strm.Printf("%s: %s", key_val.first.c_str(), key_val.second.c_str()); 3501 strm.EOL(); 3502 } 3503 strm.IndentLess(4); 3504 } 3505 3506 void 3507 RSGlobalDescriptor::Dump(Stream &strm) const 3508 { 3509 strm.Indent(m_name.AsCString()); 3510 VariableList var_list; 3511 m_module->m_module->FindGlobalVariables(m_name, nullptr, true, 1U, var_list); 3512 if (var_list.GetSize() == 1) 3513 { 3514 auto var = var_list.GetVariableAtIndex(0); 3515 auto type = var->GetType(); 3516 if (type) 3517 { 3518 strm.Printf(" - "); 3519 type->DumpTypeName(&strm); 3520 } 3521 else 3522 { 3523 strm.Printf(" - Unknown Type"); 3524 } 3525 } 3526 else 3527 { 3528 strm.Printf(" - variable identified, but not found in binary"); 3529 const Symbol *s = m_module->m_module->FindFirstSymbolWithNameAndType(m_name, eSymbolTypeData); 3530 if (s) 3531 { 3532 strm.Printf(" (symbol exists) "); 3533 } 3534 } 3535 3536 strm.EOL(); 3537 } 3538 3539 void 3540 RSKernelDescriptor::Dump(Stream &strm) const 3541 { 3542 strm.Indent(m_name.AsCString()); 3543 strm.EOL(); 3544 } 3545 3546 class CommandObjectRenderScriptRuntimeModuleDump : public CommandObjectParsed 3547 { 3548 public: 3549 CommandObjectRenderScriptRuntimeModuleDump(CommandInterpreter &interpreter) 3550 : CommandObjectParsed(interpreter, "renderscript module dump", 3551 "Dumps renderscript specific information for all modules.", "renderscript module dump", 3552 eCommandRequiresProcess | eCommandProcessMustBeLaunched) 3553 { 3554 } 3555 3556 ~CommandObjectRenderScriptRuntimeModuleDump() override = default; 3557 3558 bool 3559 DoExecute(Args &command, CommandReturnObject &result) override 3560 { 3561 RenderScriptRuntime *runtime = 3562 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript); 3563 runtime->DumpModules(result.GetOutputStream()); 3564 result.SetStatus(eReturnStatusSuccessFinishResult); 3565 return true; 3566 } 3567 }; 3568 3569 class CommandObjectRenderScriptRuntimeModule : public CommandObjectMultiword 3570 { 3571 public: 3572 CommandObjectRenderScriptRuntimeModule(CommandInterpreter &interpreter) 3573 : CommandObjectMultiword(interpreter, "renderscript module", "Commands that deal with renderscript modules.", 3574 nullptr) 3575 { 3576 LoadSubCommand("dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeModuleDump(interpreter))); 3577 } 3578 3579 ~CommandObjectRenderScriptRuntimeModule() override = default; 3580 }; 3581 3582 class CommandObjectRenderScriptRuntimeKernelList : public CommandObjectParsed 3583 { 3584 public: 3585 CommandObjectRenderScriptRuntimeKernelList(CommandInterpreter &interpreter) 3586 : CommandObjectParsed(interpreter, "renderscript kernel list", 3587 "Lists renderscript kernel names and associated script resources.", 3588 "renderscript kernel list", eCommandRequiresProcess | eCommandProcessMustBeLaunched) 3589 { 3590 } 3591 3592 ~CommandObjectRenderScriptRuntimeKernelList() override = default; 3593 3594 bool 3595 DoExecute(Args &command, CommandReturnObject &result) override 3596 { 3597 RenderScriptRuntime *runtime = 3598 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript); 3599 runtime->DumpKernels(result.GetOutputStream()); 3600 result.SetStatus(eReturnStatusSuccessFinishResult); 3601 return true; 3602 } 3603 }; 3604 3605 class CommandObjectRenderScriptRuntimeKernelBreakpointSet : public CommandObjectParsed 3606 { 3607 public: 3608 CommandObjectRenderScriptRuntimeKernelBreakpointSet(CommandInterpreter &interpreter) 3609 : CommandObjectParsed(interpreter, "renderscript kernel breakpoint set", 3610 "Sets a breakpoint on a renderscript kernel.", 3611 "renderscript kernel breakpoint set <kernel_name> [-c x,y,z]", 3612 eCommandRequiresProcess | eCommandProcessMustBeLaunched | eCommandProcessMustBePaused), 3613 m_options(interpreter) 3614 { 3615 } 3616 3617 ~CommandObjectRenderScriptRuntimeKernelBreakpointSet() override = default; 3618 3619 Options * 3620 GetOptions() override 3621 { 3622 return &m_options; 3623 } 3624 3625 class CommandOptions : public Options 3626 { 3627 public: 3628 CommandOptions(CommandInterpreter &interpreter) : Options(interpreter) {} 3629 3630 ~CommandOptions() override = default; 3631 3632 Error 3633 SetOptionValue(uint32_t option_idx, const char *option_arg) override 3634 { 3635 Error error; 3636 const int short_option = m_getopt_table[option_idx].val; 3637 3638 switch (short_option) 3639 { 3640 case 'c': 3641 if (!ParseCoordinate(option_arg)) 3642 error.SetErrorStringWithFormat("Couldn't parse coordinate '%s', should be in format 'x,y,z'.", 3643 option_arg); 3644 break; 3645 default: 3646 error.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 3647 break; 3648 } 3649 return error; 3650 } 3651 3652 // -c takes an argument of the form 'num[,num][,num]'. 3653 // Where 'id_cstr' is this argument with the whitespace trimmed. 3654 // Missing coordinates are defaulted to zero. 3655 bool 3656 ParseCoordinate(const char *id_cstr) 3657 { 3658 RegularExpression regex; 3659 RegularExpression::Match regex_match(3); 3660 3661 bool matched = false; 3662 if (regex.Compile("^([0-9]+),([0-9]+),([0-9]+)$") && regex.Execute(id_cstr, ®ex_match)) 3663 matched = true; 3664 else if (regex.Compile("^([0-9]+),([0-9]+)$") && regex.Execute(id_cstr, ®ex_match)) 3665 matched = true; 3666 else if (regex.Compile("^([0-9]+)$") && regex.Execute(id_cstr, ®ex_match)) 3667 matched = true; 3668 for (uint32_t i = 0; i < 3; i++) 3669 { 3670 std::string group; 3671 if (regex_match.GetMatchAtIndex(id_cstr, i + 1, group)) 3672 m_coord[i] = (uint32_t)strtoul(group.c_str(), nullptr, 0); 3673 else 3674 m_coord[i] = 0; 3675 } 3676 return matched; 3677 } 3678 3679 void 3680 OptionParsingStarting() override 3681 { 3682 // -1 means the -c option hasn't been set 3683 m_coord[0] = -1; 3684 m_coord[1] = -1; 3685 m_coord[2] = -1; 3686 } 3687 3688 const OptionDefinition * 3689 GetDefinitions() override 3690 { 3691 return g_option_table; 3692 } 3693 3694 static OptionDefinition g_option_table[]; 3695 std::array<int, 3> m_coord; 3696 }; 3697 3698 bool 3699 DoExecute(Args &command, CommandReturnObject &result) override 3700 { 3701 const size_t argc = command.GetArgumentCount(); 3702 if (argc < 1) 3703 { 3704 result.AppendErrorWithFormat("'%s' takes 1 argument of kernel name, and an optional coordinate.", 3705 m_cmd_name.c_str()); 3706 result.SetStatus(eReturnStatusFailed); 3707 return false; 3708 } 3709 3710 RenderScriptRuntime *runtime = 3711 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript); 3712 3713 Error error; 3714 runtime->PlaceBreakpointOnKernel(result.GetOutputStream(), command.GetArgumentAtIndex(0), m_options.m_coord, 3715 error, m_exe_ctx.GetTargetSP()); 3716 3717 if (error.Success()) 3718 { 3719 result.AppendMessage("Breakpoint(s) created"); 3720 result.SetStatus(eReturnStatusSuccessFinishResult); 3721 return true; 3722 } 3723 result.SetStatus(eReturnStatusFailed); 3724 result.AppendErrorWithFormat("Error: %s", error.AsCString()); 3725 return false; 3726 } 3727 3728 private: 3729 CommandOptions m_options; 3730 }; 3731 3732 OptionDefinition CommandObjectRenderScriptRuntimeKernelBreakpointSet::CommandOptions::g_option_table[] = { 3733 {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeValue, 3734 "Set a breakpoint on a single invocation of the kernel with specified coordinate.\n" 3735 "Coordinate takes the form 'x[,y][,z] where x,y,z are positive integers representing kernel dimensions. " 3736 "Any unset dimensions will be defaulted to zero."}, 3737 {0, false, nullptr, 0, 0, nullptr, nullptr, 0, eArgTypeNone, nullptr}}; 3738 3739 class CommandObjectRenderScriptRuntimeKernelBreakpointAll : public CommandObjectParsed 3740 { 3741 public: 3742 CommandObjectRenderScriptRuntimeKernelBreakpointAll(CommandInterpreter &interpreter) 3743 : CommandObjectParsed( 3744 interpreter, "renderscript kernel breakpoint all", 3745 "Automatically sets a breakpoint on all renderscript kernels that are or will be loaded.\n" 3746 "Disabling option means breakpoints will no longer be set on any kernels loaded in the future, " 3747 "but does not remove currently set breakpoints.", 3748 "renderscript kernel breakpoint all <enable/disable>", 3749 eCommandRequiresProcess | eCommandProcessMustBeLaunched | eCommandProcessMustBePaused) 3750 { 3751 } 3752 3753 ~CommandObjectRenderScriptRuntimeKernelBreakpointAll() override = default; 3754 3755 bool 3756 DoExecute(Args &command, CommandReturnObject &result) override 3757 { 3758 const size_t argc = command.GetArgumentCount(); 3759 if (argc != 1) 3760 { 3761 result.AppendErrorWithFormat("'%s' takes 1 argument of 'enable' or 'disable'", m_cmd_name.c_str()); 3762 result.SetStatus(eReturnStatusFailed); 3763 return false; 3764 } 3765 3766 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 3767 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript)); 3768 3769 bool do_break = false; 3770 const char *argument = command.GetArgumentAtIndex(0); 3771 if (strcmp(argument, "enable") == 0) 3772 { 3773 do_break = true; 3774 result.AppendMessage("Breakpoints will be set on all kernels."); 3775 } 3776 else if (strcmp(argument, "disable") == 0) 3777 { 3778 do_break = false; 3779 result.AppendMessage("Breakpoints will not be set on any new kernels."); 3780 } 3781 else 3782 { 3783 result.AppendErrorWithFormat("Argument must be either 'enable' or 'disable'"); 3784 result.SetStatus(eReturnStatusFailed); 3785 return false; 3786 } 3787 3788 runtime->SetBreakAllKernels(do_break, m_exe_ctx.GetTargetSP()); 3789 3790 result.SetStatus(eReturnStatusSuccessFinishResult); 3791 return true; 3792 } 3793 }; 3794 3795 class CommandObjectRenderScriptRuntimeKernelCoordinate : public CommandObjectParsed 3796 { 3797 public: 3798 CommandObjectRenderScriptRuntimeKernelCoordinate(CommandInterpreter &interpreter) 3799 : CommandObjectParsed(interpreter, "renderscript kernel coordinate", 3800 "Shows the (x,y,z) coordinate of the current kernel invocation.", 3801 "renderscript kernel coordinate", 3802 eCommandRequiresProcess | eCommandProcessMustBeLaunched | eCommandProcessMustBePaused) 3803 { 3804 } 3805 3806 ~CommandObjectRenderScriptRuntimeKernelCoordinate() override = default; 3807 3808 bool 3809 DoExecute(Args &command, CommandReturnObject &result) override 3810 { 3811 RSCoordinate coord{}; // Zero initialize array 3812 bool success = RenderScriptRuntime::GetKernelCoordinate(coord, m_exe_ctx.GetThreadPtr()); 3813 Stream &stream = result.GetOutputStream(); 3814 3815 if (success) 3816 { 3817 stream.Printf("Coordinate: (%" PRIu32 ", %" PRIu32 ", %" PRIu32 ")", coord[0], coord[1], coord[2]); 3818 stream.EOL(); 3819 result.SetStatus(eReturnStatusSuccessFinishResult); 3820 } 3821 else 3822 { 3823 stream.Printf("Error: Coordinate could not be found."); 3824 stream.EOL(); 3825 result.SetStatus(eReturnStatusFailed); 3826 } 3827 return true; 3828 } 3829 }; 3830 3831 class CommandObjectRenderScriptRuntimeKernelBreakpoint : public CommandObjectMultiword 3832 { 3833 public: 3834 CommandObjectRenderScriptRuntimeKernelBreakpoint(CommandInterpreter &interpreter) 3835 : CommandObjectMultiword(interpreter, "renderscript kernel", 3836 "Commands that generate breakpoints on renderscript kernels.", nullptr) 3837 { 3838 LoadSubCommand("set", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointSet(interpreter))); 3839 LoadSubCommand("all", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointAll(interpreter))); 3840 } 3841 3842 ~CommandObjectRenderScriptRuntimeKernelBreakpoint() override = default; 3843 }; 3844 3845 class CommandObjectRenderScriptRuntimeKernel : public CommandObjectMultiword 3846 { 3847 public: 3848 CommandObjectRenderScriptRuntimeKernel(CommandInterpreter &interpreter) 3849 : CommandObjectMultiword(interpreter, "renderscript kernel", "Commands that deal with renderscript kernels.", 3850 nullptr) 3851 { 3852 LoadSubCommand("list", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelList(interpreter))); 3853 LoadSubCommand("coordinate", 3854 CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelCoordinate(interpreter))); 3855 LoadSubCommand("breakpoint", 3856 CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpoint(interpreter))); 3857 } 3858 3859 ~CommandObjectRenderScriptRuntimeKernel() override = default; 3860 }; 3861 3862 class CommandObjectRenderScriptRuntimeContextDump : public CommandObjectParsed 3863 { 3864 public: 3865 CommandObjectRenderScriptRuntimeContextDump(CommandInterpreter &interpreter) 3866 : CommandObjectParsed(interpreter, "renderscript context dump", "Dumps renderscript context information.", 3867 "renderscript context dump", eCommandRequiresProcess | eCommandProcessMustBeLaunched) 3868 { 3869 } 3870 3871 ~CommandObjectRenderScriptRuntimeContextDump() override = default; 3872 3873 bool 3874 DoExecute(Args &command, CommandReturnObject &result) override 3875 { 3876 RenderScriptRuntime *runtime = 3877 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript); 3878 runtime->DumpContexts(result.GetOutputStream()); 3879 result.SetStatus(eReturnStatusSuccessFinishResult); 3880 return true; 3881 } 3882 }; 3883 3884 class CommandObjectRenderScriptRuntimeContext : public CommandObjectMultiword 3885 { 3886 public: 3887 CommandObjectRenderScriptRuntimeContext(CommandInterpreter &interpreter) 3888 : CommandObjectMultiword(interpreter, "renderscript context", "Commands that deal with renderscript contexts.", 3889 nullptr) 3890 { 3891 LoadSubCommand("dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeContextDump(interpreter))); 3892 } 3893 3894 ~CommandObjectRenderScriptRuntimeContext() override = default; 3895 }; 3896 3897 class CommandObjectRenderScriptRuntimeAllocationDump : public CommandObjectParsed 3898 { 3899 public: 3900 CommandObjectRenderScriptRuntimeAllocationDump(CommandInterpreter &interpreter) 3901 : CommandObjectParsed(interpreter, "renderscript allocation dump", 3902 "Displays the contents of a particular allocation", "renderscript allocation dump <ID>", 3903 eCommandRequiresProcess | eCommandProcessMustBeLaunched), 3904 m_options(interpreter) 3905 { 3906 } 3907 3908 ~CommandObjectRenderScriptRuntimeAllocationDump() override = default; 3909 3910 Options * 3911 GetOptions() override 3912 { 3913 return &m_options; 3914 } 3915 3916 class CommandOptions : public Options 3917 { 3918 public: 3919 CommandOptions(CommandInterpreter &interpreter) : Options(interpreter) {} 3920 3921 ~CommandOptions() override = default; 3922 3923 Error 3924 SetOptionValue(uint32_t option_idx, const char *option_arg) override 3925 { 3926 Error error; 3927 const int short_option = m_getopt_table[option_idx].val; 3928 3929 switch (short_option) 3930 { 3931 case 'f': 3932 m_outfile.SetFile(option_arg, true); 3933 if (m_outfile.Exists()) 3934 { 3935 m_outfile.Clear(); 3936 error.SetErrorStringWithFormat("file already exists: '%s'", option_arg); 3937 } 3938 break; 3939 default: 3940 error.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 3941 break; 3942 } 3943 return error; 3944 } 3945 3946 void 3947 OptionParsingStarting() override 3948 { 3949 m_outfile.Clear(); 3950 } 3951 3952 const OptionDefinition * 3953 GetDefinitions() override 3954 { 3955 return g_option_table; 3956 } 3957 3958 static OptionDefinition g_option_table[]; 3959 FileSpec m_outfile; 3960 }; 3961 3962 bool 3963 DoExecute(Args &command, CommandReturnObject &result) override 3964 { 3965 const size_t argc = command.GetArgumentCount(); 3966 if (argc < 1) 3967 { 3968 result.AppendErrorWithFormat("'%s' takes 1 argument, an allocation ID. As well as an optional -f argument", 3969 m_cmd_name.c_str()); 3970 result.SetStatus(eReturnStatusFailed); 3971 return false; 3972 } 3973 3974 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 3975 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript)); 3976 3977 const char *id_cstr = command.GetArgumentAtIndex(0); 3978 bool convert_complete = false; 3979 const uint32_t id = StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete); 3980 if (!convert_complete) 3981 { 3982 result.AppendErrorWithFormat("invalid allocation id argument '%s'", id_cstr); 3983 result.SetStatus(eReturnStatusFailed); 3984 return false; 3985 } 3986 3987 Stream *output_strm = nullptr; 3988 StreamFile outfile_stream; 3989 const FileSpec &outfile_spec = m_options.m_outfile; // Dump allocation to file instead 3990 if (outfile_spec) 3991 { 3992 // Open output file 3993 char path[256]; 3994 outfile_spec.GetPath(path, sizeof(path)); 3995 if (outfile_stream.GetFile().Open(path, File::eOpenOptionWrite | File::eOpenOptionCanCreate).Success()) 3996 { 3997 output_strm = &outfile_stream; 3998 result.GetOutputStream().Printf("Results written to '%s'", path); 3999 result.GetOutputStream().EOL(); 4000 } 4001 else 4002 { 4003 result.AppendErrorWithFormat("Couldn't open file '%s'", path); 4004 result.SetStatus(eReturnStatusFailed); 4005 return false; 4006 } 4007 } 4008 else 4009 output_strm = &result.GetOutputStream(); 4010 4011 assert(output_strm != nullptr); 4012 bool success = runtime->DumpAllocation(*output_strm, m_exe_ctx.GetFramePtr(), id); 4013 4014 if (success) 4015 result.SetStatus(eReturnStatusSuccessFinishResult); 4016 else 4017 result.SetStatus(eReturnStatusFailed); 4018 4019 return true; 4020 } 4021 4022 private: 4023 CommandOptions m_options; 4024 }; 4025 4026 OptionDefinition CommandObjectRenderScriptRuntimeAllocationDump::CommandOptions::g_option_table[] = { 4027 {LLDB_OPT_SET_1, false, "file", 'f', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeFilename, 4028 "Print results to specified file instead of command line."}, 4029 {0, false, nullptr, 0, 0, nullptr, nullptr, 0, eArgTypeNone, nullptr}}; 4030 4031 class CommandObjectRenderScriptRuntimeAllocationList : public CommandObjectParsed 4032 { 4033 public: 4034 CommandObjectRenderScriptRuntimeAllocationList(CommandInterpreter &interpreter) 4035 : CommandObjectParsed(interpreter, "renderscript allocation list", 4036 "List renderscript allocations and their information.", "renderscript allocation list", 4037 eCommandRequiresProcess | eCommandProcessMustBeLaunched), 4038 m_options(interpreter) 4039 { 4040 } 4041 4042 ~CommandObjectRenderScriptRuntimeAllocationList() override = default; 4043 4044 Options * 4045 GetOptions() override 4046 { 4047 return &m_options; 4048 } 4049 4050 class CommandOptions : public Options 4051 { 4052 public: 4053 CommandOptions(CommandInterpreter &interpreter) : Options(interpreter), m_id(0) {} 4054 4055 ~CommandOptions() override = default; 4056 4057 Error 4058 SetOptionValue(uint32_t option_idx, const char *option_arg) override 4059 { 4060 Error error; 4061 const int short_option = m_getopt_table[option_idx].val; 4062 4063 switch (short_option) 4064 { 4065 case 'i': 4066 bool success; 4067 m_id = StringConvert::ToUInt32(option_arg, 0, 0, &success); 4068 if (!success) 4069 error.SetErrorStringWithFormat("invalid integer value for option '%c'", short_option); 4070 break; 4071 default: 4072 error.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 4073 break; 4074 } 4075 return error; 4076 } 4077 4078 void 4079 OptionParsingStarting() override 4080 { 4081 m_id = 0; 4082 } 4083 4084 const OptionDefinition * 4085 GetDefinitions() override 4086 { 4087 return g_option_table; 4088 } 4089 4090 static OptionDefinition g_option_table[]; 4091 uint32_t m_id; 4092 }; 4093 4094 bool 4095 DoExecute(Args &command, CommandReturnObject &result) override 4096 { 4097 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4098 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript)); 4099 runtime->ListAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr(), m_options.m_id); 4100 result.SetStatus(eReturnStatusSuccessFinishResult); 4101 return true; 4102 } 4103 4104 private: 4105 CommandOptions m_options; 4106 }; 4107 4108 OptionDefinition CommandObjectRenderScriptRuntimeAllocationList::CommandOptions::g_option_table[] = { 4109 {LLDB_OPT_SET_1, false, "id", 'i', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeIndex, 4110 "Only show details of a single allocation with specified id."}, 4111 {0, false, nullptr, 0, 0, nullptr, nullptr, 0, eArgTypeNone, nullptr}}; 4112 4113 class CommandObjectRenderScriptRuntimeAllocationLoad : public CommandObjectParsed 4114 { 4115 public: 4116 CommandObjectRenderScriptRuntimeAllocationLoad(CommandInterpreter &interpreter) 4117 : CommandObjectParsed( 4118 interpreter, "renderscript allocation load", "Loads renderscript allocation contents from a file.", 4119 "renderscript allocation load <ID> <filename>", eCommandRequiresProcess | eCommandProcessMustBeLaunched) 4120 { 4121 } 4122 4123 ~CommandObjectRenderScriptRuntimeAllocationLoad() override = default; 4124 4125 bool 4126 DoExecute(Args &command, CommandReturnObject &result) override 4127 { 4128 const size_t argc = command.GetArgumentCount(); 4129 if (argc != 2) 4130 { 4131 result.AppendErrorWithFormat("'%s' takes 2 arguments, an allocation ID and filename to read from.", 4132 m_cmd_name.c_str()); 4133 result.SetStatus(eReturnStatusFailed); 4134 return false; 4135 } 4136 4137 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4138 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript)); 4139 4140 const char *id_cstr = command.GetArgumentAtIndex(0); 4141 bool convert_complete = false; 4142 const uint32_t id = StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete); 4143 if (!convert_complete) 4144 { 4145 result.AppendErrorWithFormat("invalid allocation id argument '%s'", id_cstr); 4146 result.SetStatus(eReturnStatusFailed); 4147 return false; 4148 } 4149 4150 const char *filename = command.GetArgumentAtIndex(1); 4151 bool success = runtime->LoadAllocation(result.GetOutputStream(), id, filename, m_exe_ctx.GetFramePtr()); 4152 4153 if (success) 4154 result.SetStatus(eReturnStatusSuccessFinishResult); 4155 else 4156 result.SetStatus(eReturnStatusFailed); 4157 4158 return true; 4159 } 4160 }; 4161 4162 class CommandObjectRenderScriptRuntimeAllocationSave : public CommandObjectParsed 4163 { 4164 public: 4165 CommandObjectRenderScriptRuntimeAllocationSave(CommandInterpreter &interpreter) 4166 : CommandObjectParsed( 4167 interpreter, "renderscript allocation save", "Write renderscript allocation contents to a file.", 4168 "renderscript allocation save <ID> <filename>", eCommandRequiresProcess | eCommandProcessMustBeLaunched) 4169 { 4170 } 4171 4172 ~CommandObjectRenderScriptRuntimeAllocationSave() override = default; 4173 4174 bool 4175 DoExecute(Args &command, CommandReturnObject &result) override 4176 { 4177 const size_t argc = command.GetArgumentCount(); 4178 if (argc != 2) 4179 { 4180 result.AppendErrorWithFormat("'%s' takes 2 arguments, an allocation ID and filename to read from.", 4181 m_cmd_name.c_str()); 4182 result.SetStatus(eReturnStatusFailed); 4183 return false; 4184 } 4185 4186 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4187 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript)); 4188 4189 const char *id_cstr = command.GetArgumentAtIndex(0); 4190 bool convert_complete = false; 4191 const uint32_t id = StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete); 4192 if (!convert_complete) 4193 { 4194 result.AppendErrorWithFormat("invalid allocation id argument '%s'", id_cstr); 4195 result.SetStatus(eReturnStatusFailed); 4196 return false; 4197 } 4198 4199 const char *filename = command.GetArgumentAtIndex(1); 4200 bool success = runtime->SaveAllocation(result.GetOutputStream(), id, filename, m_exe_ctx.GetFramePtr()); 4201 4202 if (success) 4203 result.SetStatus(eReturnStatusSuccessFinishResult); 4204 else 4205 result.SetStatus(eReturnStatusFailed); 4206 4207 return true; 4208 } 4209 }; 4210 4211 class CommandObjectRenderScriptRuntimeAllocationRefresh : public CommandObjectParsed 4212 { 4213 public: 4214 CommandObjectRenderScriptRuntimeAllocationRefresh(CommandInterpreter &interpreter) 4215 : CommandObjectParsed(interpreter, "renderscript allocation refresh", 4216 "Recomputes the details of all allocations.", "renderscript allocation refresh", 4217 eCommandRequiresProcess | eCommandProcessMustBeLaunched) 4218 { 4219 } 4220 4221 ~CommandObjectRenderScriptRuntimeAllocationRefresh() override = default; 4222 4223 bool 4224 DoExecute(Args &command, CommandReturnObject &result) override 4225 { 4226 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4227 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript)); 4228 4229 bool success = runtime->RecomputeAllAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr()); 4230 4231 if (success) 4232 { 4233 result.SetStatus(eReturnStatusSuccessFinishResult); 4234 return true; 4235 } 4236 else 4237 { 4238 result.SetStatus(eReturnStatusFailed); 4239 return false; 4240 } 4241 } 4242 }; 4243 4244 class CommandObjectRenderScriptRuntimeAllocation : public CommandObjectMultiword 4245 { 4246 public: 4247 CommandObjectRenderScriptRuntimeAllocation(CommandInterpreter &interpreter) 4248 : CommandObjectMultiword(interpreter, "renderscript allocation", 4249 "Commands that deal with renderscript allocations.", nullptr) 4250 { 4251 LoadSubCommand("list", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationList(interpreter))); 4252 LoadSubCommand("dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationDump(interpreter))); 4253 LoadSubCommand("save", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationSave(interpreter))); 4254 LoadSubCommand("load", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationLoad(interpreter))); 4255 LoadSubCommand("refresh", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationRefresh(interpreter))); 4256 } 4257 4258 ~CommandObjectRenderScriptRuntimeAllocation() override = default; 4259 }; 4260 4261 class CommandObjectRenderScriptRuntimeStatus : public CommandObjectParsed 4262 { 4263 public: 4264 CommandObjectRenderScriptRuntimeStatus(CommandInterpreter &interpreter) 4265 : CommandObjectParsed(interpreter, "renderscript status", "Displays current renderscript runtime status.", 4266 "renderscript status", eCommandRequiresProcess | eCommandProcessMustBeLaunched) 4267 { 4268 } 4269 4270 ~CommandObjectRenderScriptRuntimeStatus() override = default; 4271 4272 bool 4273 DoExecute(Args &command, CommandReturnObject &result) override 4274 { 4275 RenderScriptRuntime *runtime = 4276 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript); 4277 runtime->Status(result.GetOutputStream()); 4278 result.SetStatus(eReturnStatusSuccessFinishResult); 4279 return true; 4280 } 4281 }; 4282 4283 class CommandObjectRenderScriptRuntime : public CommandObjectMultiword 4284 { 4285 public: 4286 CommandObjectRenderScriptRuntime(CommandInterpreter &interpreter) 4287 : CommandObjectMultiword(interpreter, "renderscript", "A set of commands for operating on renderscript.", 4288 "renderscript <subcommand> [<subcommand-options>]") 4289 { 4290 LoadSubCommand("module", CommandObjectSP(new CommandObjectRenderScriptRuntimeModule(interpreter))); 4291 LoadSubCommand("status", CommandObjectSP(new CommandObjectRenderScriptRuntimeStatus(interpreter))); 4292 LoadSubCommand("kernel", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernel(interpreter))); 4293 LoadSubCommand("context", CommandObjectSP(new CommandObjectRenderScriptRuntimeContext(interpreter))); 4294 LoadSubCommand("allocation", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocation(interpreter))); 4295 } 4296 4297 ~CommandObjectRenderScriptRuntime() override = default; 4298 }; 4299 4300 void 4301 RenderScriptRuntime::Initiate() 4302 { 4303 assert(!m_initiated); 4304 } 4305 4306 RenderScriptRuntime::RenderScriptRuntime(Process *process) 4307 : lldb_private::CPPLanguageRuntime(process), 4308 m_initiated(false), 4309 m_debuggerPresentFlagged(false), 4310 m_breakAllKernels(false) 4311 { 4312 ModulesDidLoad(process->GetTarget().GetImages()); 4313 } 4314 4315 lldb::CommandObjectSP 4316 RenderScriptRuntime::GetCommandObject(lldb_private::CommandInterpreter &interpreter) 4317 { 4318 return CommandObjectSP(new CommandObjectRenderScriptRuntime(interpreter)); 4319 } 4320 4321 RenderScriptRuntime::~RenderScriptRuntime() = default; 4322