1 //===-- RenderScriptRuntime.cpp ---------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/ADT/StringSwitch.h" 11 12 #include "RenderScriptRuntime.h" 13 #include "RenderScriptScriptGroup.h" 14 15 #include "lldb/Breakpoint/StoppointCallbackContext.h" 16 #include "lldb/Core/Debugger.h" 17 #include "lldb/Core/DumpDataExtractor.h" 18 #include "lldb/Core/PluginManager.h" 19 #include "lldb/Core/ValueObjectVariable.h" 20 #include "lldb/DataFormatters/DumpValueObjectOptions.h" 21 #include "lldb/Expression/UserExpression.h" 22 #include "lldb/Host/OptionParser.h" 23 #include "lldb/Host/StringConvert.h" 24 #include "lldb/Interpreter/CommandInterpreter.h" 25 #include "lldb/Interpreter/CommandObjectMultiword.h" 26 #include "lldb/Interpreter/CommandReturnObject.h" 27 #include "lldb/Interpreter/Options.h" 28 #include "lldb/Symbol/Function.h" 29 #include "lldb/Symbol/Symbol.h" 30 #include "lldb/Symbol/Type.h" 31 #include "lldb/Symbol/VariableList.h" 32 #include "lldb/Target/Process.h" 33 #include "lldb/Target/RegisterContext.h" 34 #include "lldb/Target/SectionLoadList.h" 35 #include "lldb/Target/Target.h" 36 #include "lldb/Target/Thread.h" 37 #include "lldb/Utility/Args.h" 38 #include "lldb/Utility/ConstString.h" 39 #include "lldb/Utility/DataBufferLLVM.h" 40 #include "lldb/Utility/Log.h" 41 #include "lldb/Utility/RegisterValue.h" 42 #include "lldb/Utility/RegularExpression.h" 43 #include "lldb/Utility/Status.h" 44 45 using namespace lldb; 46 using namespace lldb_private; 47 using namespace lldb_renderscript; 48 49 #define FMT_COORD "(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ")" 50 51 namespace { 52 53 // The empirical_type adds a basic level of validation to arbitrary data 54 // allowing us to track if data has been discovered and stored or not. An 55 // empirical_type will be marked as valid only if it has been explicitly 56 // assigned to. 57 template <typename type_t> class empirical_type { 58 public: 59 // Ctor. Contents is invalid when constructed. 60 empirical_type() : valid(false) {} 61 62 // Return true and copy contents to out if valid, else return false. 63 bool get(type_t &out) const { 64 if (valid) 65 out = data; 66 return valid; 67 } 68 69 // Return a pointer to the contents or nullptr if it was not valid. 70 const type_t *get() const { return valid ? &data : nullptr; } 71 72 // Assign data explicitly. 73 void set(const type_t in) { 74 data = in; 75 valid = true; 76 } 77 78 // Mark contents as invalid. 79 void invalidate() { valid = false; } 80 81 // Returns true if this type contains valid data. 82 bool isValid() const { return valid; } 83 84 // Assignment operator. 85 empirical_type<type_t> &operator=(const type_t in) { 86 set(in); 87 return *this; 88 } 89 90 // Dereference operator returns contents. 91 // Warning: Will assert if not valid so use only when you know data is valid. 92 const type_t &operator*() const { 93 assert(valid); 94 return data; 95 } 96 97 protected: 98 bool valid; 99 type_t data; 100 }; 101 102 // ArgItem is used by the GetArgs() function when reading function arguments 103 // from the target. 104 struct ArgItem { 105 enum { ePointer, eInt32, eInt64, eLong, eBool } type; 106 107 uint64_t value; 108 109 explicit operator uint64_t() const { return value; } 110 }; 111 112 // Context structure to be passed into GetArgsXXX(), argument reading functions 113 // below. 114 struct GetArgsCtx { 115 RegisterContext *reg_ctx; 116 Process *process; 117 }; 118 119 bool GetArgsX86(const GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 120 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 121 122 Status err; 123 124 // get the current stack pointer 125 uint64_t sp = ctx.reg_ctx->GetSP(); 126 127 for (size_t i = 0; i < num_args; ++i) { 128 ArgItem &arg = arg_list[i]; 129 // advance up the stack by one argument 130 sp += sizeof(uint32_t); 131 // get the argument type size 132 size_t arg_size = sizeof(uint32_t); 133 // read the argument from memory 134 arg.value = 0; 135 Status err; 136 size_t read = 137 ctx.process->ReadMemory(sp, &arg.value, sizeof(uint32_t), err); 138 if (read != arg_size || !err.Success()) { 139 if (log) 140 log->Printf("%s - error reading argument: %" PRIu64 " '%s'", 141 __FUNCTION__, uint64_t(i), err.AsCString()); 142 return false; 143 } 144 } 145 return true; 146 } 147 148 bool GetArgsX86_64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 149 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 150 151 // number of arguments passed in registers 152 static const uint32_t args_in_reg = 6; 153 // register passing order 154 static const std::array<const char *, args_in_reg> reg_names{ 155 {"rdi", "rsi", "rdx", "rcx", "r8", "r9"}}; 156 // argument type to size mapping 157 static const std::array<size_t, 5> arg_size{{ 158 8, // ePointer, 159 4, // eInt32, 160 8, // eInt64, 161 8, // eLong, 162 4, // eBool, 163 }}; 164 165 Status err; 166 167 // get the current stack pointer 168 uint64_t sp = ctx.reg_ctx->GetSP(); 169 // step over the return address 170 sp += sizeof(uint64_t); 171 172 // check the stack alignment was correct (16 byte aligned) 173 if ((sp & 0xf) != 0x0) { 174 if (log) 175 log->Printf("%s - stack misaligned", __FUNCTION__); 176 return false; 177 } 178 179 // find the start of arguments on the stack 180 uint64_t sp_offset = 0; 181 for (uint32_t i = args_in_reg; i < num_args; ++i) { 182 sp_offset += arg_size[arg_list[i].type]; 183 } 184 // round up to multiple of 16 185 sp_offset = (sp_offset + 0xf) & 0xf; 186 sp += sp_offset; 187 188 for (size_t i = 0; i < num_args; ++i) { 189 bool success = false; 190 ArgItem &arg = arg_list[i]; 191 // arguments passed in registers 192 if (i < args_in_reg) { 193 const RegisterInfo *reg = 194 ctx.reg_ctx->GetRegisterInfoByName(reg_names[i]); 195 RegisterValue reg_val; 196 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 197 arg.value = reg_val.GetAsUInt64(0, &success); 198 } 199 // arguments passed on the stack 200 else { 201 // get the argument type size 202 const size_t size = arg_size[arg_list[i].type]; 203 // read the argument from memory 204 arg.value = 0; 205 // note: due to little endian layout reading 4 or 8 bytes will give the 206 // correct value. 207 size_t read = ctx.process->ReadMemory(sp, &arg.value, size, err); 208 success = (err.Success() && read == size); 209 // advance past this argument 210 sp -= size; 211 } 212 // fail if we couldn't read this argument 213 if (!success) { 214 if (log) 215 log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s", 216 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 217 return false; 218 } 219 } 220 return true; 221 } 222 223 bool GetArgsArm(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 224 // number of arguments passed in registers 225 static const uint32_t args_in_reg = 4; 226 227 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 228 229 Status err; 230 231 // get the current stack pointer 232 uint64_t sp = ctx.reg_ctx->GetSP(); 233 234 for (size_t i = 0; i < num_args; ++i) { 235 bool success = false; 236 ArgItem &arg = arg_list[i]; 237 // arguments passed in registers 238 if (i < args_in_reg) { 239 const RegisterInfo *reg = ctx.reg_ctx->GetRegisterInfoAtIndex(i); 240 RegisterValue reg_val; 241 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 242 arg.value = reg_val.GetAsUInt32(0, &success); 243 } 244 // arguments passed on the stack 245 else { 246 // get the argument type size 247 const size_t arg_size = sizeof(uint32_t); 248 // clear all 64bits 249 arg.value = 0; 250 // read this argument from memory 251 size_t bytes_read = 252 ctx.process->ReadMemory(sp, &arg.value, arg_size, err); 253 success = (err.Success() && bytes_read == arg_size); 254 // advance the stack pointer 255 sp += sizeof(uint32_t); 256 } 257 // fail if we couldn't read this argument 258 if (!success) { 259 if (log) 260 log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s", 261 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 262 return false; 263 } 264 } 265 return true; 266 } 267 268 bool GetArgsAarch64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 269 // number of arguments passed in registers 270 static const uint32_t args_in_reg = 8; 271 272 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 273 274 for (size_t i = 0; i < num_args; ++i) { 275 bool success = false; 276 ArgItem &arg = arg_list[i]; 277 // arguments passed in registers 278 if (i < args_in_reg) { 279 const RegisterInfo *reg = ctx.reg_ctx->GetRegisterInfoAtIndex(i); 280 RegisterValue reg_val; 281 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 282 arg.value = reg_val.GetAsUInt64(0, &success); 283 } 284 // arguments passed on the stack 285 else { 286 if (log) 287 log->Printf("%s - reading arguments spilled to stack not implemented", 288 __FUNCTION__); 289 } 290 // fail if we couldn't read this argument 291 if (!success) { 292 if (log) 293 log->Printf("%s - error reading argument: %" PRIu64, __FUNCTION__, 294 uint64_t(i)); 295 return false; 296 } 297 } 298 return true; 299 } 300 301 bool GetArgsMipsel(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 302 // number of arguments passed in registers 303 static const uint32_t args_in_reg = 4; 304 // register file offset to first argument 305 static const uint32_t reg_offset = 4; 306 307 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 308 309 Status err; 310 311 // find offset to arguments on the stack (+16 to skip over a0-a3 shadow 312 // space) 313 uint64_t sp = ctx.reg_ctx->GetSP() + 16; 314 315 for (size_t i = 0; i < num_args; ++i) { 316 bool success = false; 317 ArgItem &arg = arg_list[i]; 318 // arguments passed in registers 319 if (i < args_in_reg) { 320 const RegisterInfo *reg = 321 ctx.reg_ctx->GetRegisterInfoAtIndex(i + reg_offset); 322 RegisterValue reg_val; 323 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 324 arg.value = reg_val.GetAsUInt64(0, &success); 325 } 326 // arguments passed on the stack 327 else { 328 const size_t arg_size = sizeof(uint32_t); 329 arg.value = 0; 330 size_t bytes_read = 331 ctx.process->ReadMemory(sp, &arg.value, arg_size, err); 332 success = (err.Success() && bytes_read == arg_size); 333 // advance the stack pointer 334 sp += arg_size; 335 } 336 // fail if we couldn't read this argument 337 if (!success) { 338 if (log) 339 log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s", 340 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 341 return false; 342 } 343 } 344 return true; 345 } 346 347 bool GetArgsMips64el(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 348 // number of arguments passed in registers 349 static const uint32_t args_in_reg = 8; 350 // register file offset to first argument 351 static const uint32_t reg_offset = 4; 352 353 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 354 355 Status err; 356 357 // get the current stack pointer 358 uint64_t sp = ctx.reg_ctx->GetSP(); 359 360 for (size_t i = 0; i < num_args; ++i) { 361 bool success = false; 362 ArgItem &arg = arg_list[i]; 363 // arguments passed in registers 364 if (i < args_in_reg) { 365 const RegisterInfo *reg = 366 ctx.reg_ctx->GetRegisterInfoAtIndex(i + reg_offset); 367 RegisterValue reg_val; 368 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 369 arg.value = reg_val.GetAsUInt64(0, &success); 370 } 371 // arguments passed on the stack 372 else { 373 // get the argument type size 374 const size_t arg_size = sizeof(uint64_t); 375 // clear all 64bits 376 arg.value = 0; 377 // read this argument from memory 378 size_t bytes_read = 379 ctx.process->ReadMemory(sp, &arg.value, arg_size, err); 380 success = (err.Success() && bytes_read == arg_size); 381 // advance the stack pointer 382 sp += arg_size; 383 } 384 // fail if we couldn't read this argument 385 if (!success) { 386 if (log) 387 log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s", 388 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 389 return false; 390 } 391 } 392 return true; 393 } 394 395 bool GetArgs(ExecutionContext &exe_ctx, ArgItem *arg_list, size_t num_args) { 396 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 397 398 // verify that we have a target 399 if (!exe_ctx.GetTargetPtr()) { 400 if (log) 401 log->Printf("%s - invalid target", __FUNCTION__); 402 return false; 403 } 404 405 GetArgsCtx ctx = {exe_ctx.GetRegisterContext(), exe_ctx.GetProcessPtr()}; 406 assert(ctx.reg_ctx && ctx.process); 407 408 // dispatch based on architecture 409 switch (exe_ctx.GetTargetPtr()->GetArchitecture().GetMachine()) { 410 case llvm::Triple::ArchType::x86: 411 return GetArgsX86(ctx, arg_list, num_args); 412 413 case llvm::Triple::ArchType::x86_64: 414 return GetArgsX86_64(ctx, arg_list, num_args); 415 416 case llvm::Triple::ArchType::arm: 417 return GetArgsArm(ctx, arg_list, num_args); 418 419 case llvm::Triple::ArchType::aarch64: 420 return GetArgsAarch64(ctx, arg_list, num_args); 421 422 case llvm::Triple::ArchType::mipsel: 423 return GetArgsMipsel(ctx, arg_list, num_args); 424 425 case llvm::Triple::ArchType::mips64el: 426 return GetArgsMips64el(ctx, arg_list, num_args); 427 428 default: 429 // unsupported architecture 430 if (log) { 431 log->Printf( 432 "%s - architecture not supported: '%s'", __FUNCTION__, 433 exe_ctx.GetTargetRef().GetArchitecture().GetArchitectureName()); 434 } 435 return false; 436 } 437 } 438 439 bool IsRenderScriptScriptModule(ModuleSP module) { 440 if (!module) 441 return false; 442 return module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), 443 eSymbolTypeData) != nullptr; 444 } 445 446 bool ParseCoordinate(llvm::StringRef coord_s, RSCoordinate &coord) { 447 // takes an argument of the form 'num[,num][,num]'. Where 'coord_s' is a 448 // comma separated 1,2 or 3-dimensional coordinate with the whitespace 449 // trimmed. Missing coordinates are defaulted to zero. If parsing of any 450 // elements fails the contents of &coord are undefined and `false` is 451 // returned, `true` otherwise 452 453 RegularExpression regex; 454 RegularExpression::Match regex_match(3); 455 456 bool matched = false; 457 if (regex.Compile(llvm::StringRef("^([0-9]+),([0-9]+),([0-9]+)$")) && 458 regex.Execute(coord_s, ®ex_match)) 459 matched = true; 460 else if (regex.Compile(llvm::StringRef("^([0-9]+),([0-9]+)$")) && 461 regex.Execute(coord_s, ®ex_match)) 462 matched = true; 463 else if (regex.Compile(llvm::StringRef("^([0-9]+)$")) && 464 regex.Execute(coord_s, ®ex_match)) 465 matched = true; 466 467 if (!matched) 468 return false; 469 470 auto get_index = [&](int idx, uint32_t &i) -> bool { 471 std::string group; 472 errno = 0; 473 if (regex_match.GetMatchAtIndex(coord_s.str().c_str(), idx + 1, group)) 474 return !llvm::StringRef(group).getAsInteger<uint32_t>(10, i); 475 return true; 476 }; 477 478 return get_index(0, coord.x) && get_index(1, coord.y) && 479 get_index(2, coord.z); 480 } 481 482 bool SkipPrologue(lldb::ModuleSP &module, Address &addr) { 483 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 484 SymbolContext sc; 485 uint32_t resolved_flags = 486 module->ResolveSymbolContextForAddress(addr, eSymbolContextFunction, sc); 487 if (resolved_flags & eSymbolContextFunction) { 488 if (sc.function) { 489 const uint32_t offset = sc.function->GetPrologueByteSize(); 490 ConstString name = sc.GetFunctionName(); 491 if (offset) 492 addr.Slide(offset); 493 if (log) 494 log->Printf("%s: Prologue offset for %s is %" PRIu32, __FUNCTION__, 495 name.AsCString(), offset); 496 } 497 return true; 498 } else 499 return false; 500 } 501 } // anonymous namespace 502 503 // The ScriptDetails class collects data associated with a single script 504 // instance. 505 struct RenderScriptRuntime::ScriptDetails { 506 ~ScriptDetails() = default; 507 508 enum ScriptType { eScript, eScriptC }; 509 510 // The derived type of the script. 511 empirical_type<ScriptType> type; 512 // The name of the original source file. 513 empirical_type<std::string> res_name; 514 // Path to script .so file on the device. 515 empirical_type<std::string> shared_lib; 516 // Directory where kernel objects are cached on device. 517 empirical_type<std::string> cache_dir; 518 // Pointer to the context which owns this script. 519 empirical_type<lldb::addr_t> context; 520 // Pointer to the script object itself. 521 empirical_type<lldb::addr_t> script; 522 }; 523 524 // This Element class represents the Element object in RS, defining the type 525 // associated with an Allocation. 526 struct RenderScriptRuntime::Element { 527 // Taken from rsDefines.h 528 enum DataKind { 529 RS_KIND_USER, 530 RS_KIND_PIXEL_L = 7, 531 RS_KIND_PIXEL_A, 532 RS_KIND_PIXEL_LA, 533 RS_KIND_PIXEL_RGB, 534 RS_KIND_PIXEL_RGBA, 535 RS_KIND_PIXEL_DEPTH, 536 RS_KIND_PIXEL_YUV, 537 RS_KIND_INVALID = 100 538 }; 539 540 // Taken from rsDefines.h 541 enum DataType { 542 RS_TYPE_NONE = 0, 543 RS_TYPE_FLOAT_16, 544 RS_TYPE_FLOAT_32, 545 RS_TYPE_FLOAT_64, 546 RS_TYPE_SIGNED_8, 547 RS_TYPE_SIGNED_16, 548 RS_TYPE_SIGNED_32, 549 RS_TYPE_SIGNED_64, 550 RS_TYPE_UNSIGNED_8, 551 RS_TYPE_UNSIGNED_16, 552 RS_TYPE_UNSIGNED_32, 553 RS_TYPE_UNSIGNED_64, 554 RS_TYPE_BOOLEAN, 555 556 RS_TYPE_UNSIGNED_5_6_5, 557 RS_TYPE_UNSIGNED_5_5_5_1, 558 RS_TYPE_UNSIGNED_4_4_4_4, 559 560 RS_TYPE_MATRIX_4X4, 561 RS_TYPE_MATRIX_3X3, 562 RS_TYPE_MATRIX_2X2, 563 564 RS_TYPE_ELEMENT = 1000, 565 RS_TYPE_TYPE, 566 RS_TYPE_ALLOCATION, 567 RS_TYPE_SAMPLER, 568 RS_TYPE_SCRIPT, 569 RS_TYPE_MESH, 570 RS_TYPE_PROGRAM_FRAGMENT, 571 RS_TYPE_PROGRAM_VERTEX, 572 RS_TYPE_PROGRAM_RASTER, 573 RS_TYPE_PROGRAM_STORE, 574 RS_TYPE_FONT, 575 576 RS_TYPE_INVALID = 10000 577 }; 578 579 std::vector<Element> children; // Child Element fields for structs 580 empirical_type<lldb::addr_t> 581 element_ptr; // Pointer to the RS Element of the Type 582 empirical_type<DataType> 583 type; // Type of each data pointer stored by the allocation 584 empirical_type<DataKind> 585 type_kind; // Defines pixel type if Allocation is created from an image 586 empirical_type<uint32_t> 587 type_vec_size; // Vector size of each data point, e.g '4' for uchar4 588 empirical_type<uint32_t> field_count; // Number of Subelements 589 empirical_type<uint32_t> datum_size; // Size of a single Element with padding 590 empirical_type<uint32_t> padding; // Number of padding bytes 591 empirical_type<uint32_t> 592 array_size; // Number of items in array, only needed for structs 593 ConstString type_name; // Name of type, only needed for structs 594 595 static const ConstString & 596 GetFallbackStructName(); // Print this as the type name of a struct Element 597 // If we can't resolve the actual struct name 598 599 bool ShouldRefresh() const { 600 const bool valid_ptr = element_ptr.isValid() && *element_ptr.get() != 0x0; 601 const bool valid_type = 602 type.isValid() && type_vec_size.isValid() && type_kind.isValid(); 603 return !valid_ptr || !valid_type || !datum_size.isValid(); 604 } 605 }; 606 607 // This AllocationDetails class collects data associated with a single 608 // allocation instance. 609 struct RenderScriptRuntime::AllocationDetails { 610 struct Dimension { 611 uint32_t dim_1; 612 uint32_t dim_2; 613 uint32_t dim_3; 614 uint32_t cube_map; 615 616 Dimension() { 617 dim_1 = 0; 618 dim_2 = 0; 619 dim_3 = 0; 620 cube_map = 0; 621 } 622 }; 623 624 // The FileHeader struct specifies the header we use for writing allocations 625 // to a binary file. Our format begins with the ASCII characters "RSAD", 626 // identifying the file as an allocation dump. Member variables dims and 627 // hdr_size are then written consecutively, immediately followed by an 628 // instance of the ElementHeader struct. Because Elements can contain 629 // subelements, there may be more than one instance of the ElementHeader 630 // struct. With this first instance being the root element, and the other 631 // instances being the root's descendants. To identify which instances are an 632 // ElementHeader's children, each struct is immediately followed by a 633 // sequence of consecutive offsets to the start of its child structs. These 634 // offsets are 635 // 4 bytes in size, and the 0 offset signifies no more children. 636 struct FileHeader { 637 uint8_t ident[4]; // ASCII 'RSAD' identifying the file 638 uint32_t dims[3]; // Dimensions 639 uint16_t hdr_size; // Header size in bytes, including all element headers 640 }; 641 642 struct ElementHeader { 643 uint16_t type; // DataType enum 644 uint32_t kind; // DataKind enum 645 uint32_t element_size; // Size of a single element, including padding 646 uint16_t vector_size; // Vector width 647 uint32_t array_size; // Number of elements in array 648 }; 649 650 // Monotonically increasing from 1 651 static uint32_t ID; 652 653 // Maps Allocation DataType enum and vector size to printable strings using 654 // mapping from RenderScript numerical types summary documentation 655 static const char *RsDataTypeToString[][4]; 656 657 // Maps Allocation DataKind enum to printable strings 658 static const char *RsDataKindToString[]; 659 660 // Maps allocation types to format sizes for printing. 661 static const uint32_t RSTypeToFormat[][3]; 662 663 // Give each allocation an ID as a way 664 // for commands to reference it. 665 const uint32_t id; 666 667 // Allocation Element type 668 RenderScriptRuntime::Element element; 669 // Dimensions of the Allocation 670 empirical_type<Dimension> dimension; 671 // Pointer to address of the RS Allocation 672 empirical_type<lldb::addr_t> address; 673 // Pointer to the data held by the Allocation 674 empirical_type<lldb::addr_t> data_ptr; 675 // Pointer to the RS Type of the Allocation 676 empirical_type<lldb::addr_t> type_ptr; 677 // Pointer to the RS Context of the Allocation 678 empirical_type<lldb::addr_t> context; 679 // Size of the allocation 680 empirical_type<uint32_t> size; 681 // Stride between rows of the allocation 682 empirical_type<uint32_t> stride; 683 684 // Give each allocation an id, so we can reference it in user commands. 685 AllocationDetails() : id(ID++) {} 686 687 bool ShouldRefresh() const { 688 bool valid_ptrs = data_ptr.isValid() && *data_ptr.get() != 0x0; 689 valid_ptrs = valid_ptrs && type_ptr.isValid() && *type_ptr.get() != 0x0; 690 return !valid_ptrs || !dimension.isValid() || !size.isValid() || 691 element.ShouldRefresh(); 692 } 693 }; 694 695 const ConstString &RenderScriptRuntime::Element::GetFallbackStructName() { 696 static const ConstString FallbackStructName("struct"); 697 return FallbackStructName; 698 } 699 700 uint32_t RenderScriptRuntime::AllocationDetails::ID = 1; 701 702 const char *RenderScriptRuntime::AllocationDetails::RsDataKindToString[] = { 703 "User", "Undefined", "Undefined", "Undefined", 704 "Undefined", "Undefined", "Undefined", // Enum jumps from 0 to 7 705 "L Pixel", "A Pixel", "LA Pixel", "RGB Pixel", 706 "RGBA Pixel", "Pixel Depth", "YUV Pixel"}; 707 708 const char *RenderScriptRuntime::AllocationDetails::RsDataTypeToString[][4] = { 709 {"None", "None", "None", "None"}, 710 {"half", "half2", "half3", "half4"}, 711 {"float", "float2", "float3", "float4"}, 712 {"double", "double2", "double3", "double4"}, 713 {"char", "char2", "char3", "char4"}, 714 {"short", "short2", "short3", "short4"}, 715 {"int", "int2", "int3", "int4"}, 716 {"long", "long2", "long3", "long4"}, 717 {"uchar", "uchar2", "uchar3", "uchar4"}, 718 {"ushort", "ushort2", "ushort3", "ushort4"}, 719 {"uint", "uint2", "uint3", "uint4"}, 720 {"ulong", "ulong2", "ulong3", "ulong4"}, 721 {"bool", "bool2", "bool3", "bool4"}, 722 {"packed_565", "packed_565", "packed_565", "packed_565"}, 723 {"packed_5551", "packed_5551", "packed_5551", "packed_5551"}, 724 {"packed_4444", "packed_4444", "packed_4444", "packed_4444"}, 725 {"rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4"}, 726 {"rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3"}, 727 {"rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2"}, 728 729 // Handlers 730 {"RS Element", "RS Element", "RS Element", "RS Element"}, 731 {"RS Type", "RS Type", "RS Type", "RS Type"}, 732 {"RS Allocation", "RS Allocation", "RS Allocation", "RS Allocation"}, 733 {"RS Sampler", "RS Sampler", "RS Sampler", "RS Sampler"}, 734 {"RS Script", "RS Script", "RS Script", "RS Script"}, 735 736 // Deprecated 737 {"RS Mesh", "RS Mesh", "RS Mesh", "RS Mesh"}, 738 {"RS Program Fragment", "RS Program Fragment", "RS Program Fragment", 739 "RS Program Fragment"}, 740 {"RS Program Vertex", "RS Program Vertex", "RS Program Vertex", 741 "RS Program Vertex"}, 742 {"RS Program Raster", "RS Program Raster", "RS Program Raster", 743 "RS Program Raster"}, 744 {"RS Program Store", "RS Program Store", "RS Program Store", 745 "RS Program Store"}, 746 {"RS Font", "RS Font", "RS Font", "RS Font"}}; 747 748 // Used as an index into the RSTypeToFormat array elements 749 enum TypeToFormatIndex { eFormatSingle = 0, eFormatVector, eElementSize }; 750 751 // { format enum of single element, format enum of element vector, size of 752 // element} 753 const uint32_t RenderScriptRuntime::AllocationDetails::RSTypeToFormat[][3] = { 754 // RS_TYPE_NONE 755 {eFormatHex, eFormatHex, 1}, 756 // RS_TYPE_FLOAT_16 757 {eFormatFloat, eFormatVectorOfFloat16, 2}, 758 // RS_TYPE_FLOAT_32 759 {eFormatFloat, eFormatVectorOfFloat32, sizeof(float)}, 760 // RS_TYPE_FLOAT_64 761 {eFormatFloat, eFormatVectorOfFloat64, sizeof(double)}, 762 // RS_TYPE_SIGNED_8 763 {eFormatDecimal, eFormatVectorOfSInt8, sizeof(int8_t)}, 764 // RS_TYPE_SIGNED_16 765 {eFormatDecimal, eFormatVectorOfSInt16, sizeof(int16_t)}, 766 // RS_TYPE_SIGNED_32 767 {eFormatDecimal, eFormatVectorOfSInt32, sizeof(int32_t)}, 768 // RS_TYPE_SIGNED_64 769 {eFormatDecimal, eFormatVectorOfSInt64, sizeof(int64_t)}, 770 // RS_TYPE_UNSIGNED_8 771 {eFormatDecimal, eFormatVectorOfUInt8, sizeof(uint8_t)}, 772 // RS_TYPE_UNSIGNED_16 773 {eFormatDecimal, eFormatVectorOfUInt16, sizeof(uint16_t)}, 774 // RS_TYPE_UNSIGNED_32 775 {eFormatDecimal, eFormatVectorOfUInt32, sizeof(uint32_t)}, 776 // RS_TYPE_UNSIGNED_64 777 {eFormatDecimal, eFormatVectorOfUInt64, sizeof(uint64_t)}, 778 // RS_TYPE_BOOL 779 {eFormatBoolean, eFormatBoolean, 1}, 780 // RS_TYPE_UNSIGNED_5_6_5 781 {eFormatHex, eFormatHex, sizeof(uint16_t)}, 782 // RS_TYPE_UNSIGNED_5_5_5_1 783 {eFormatHex, eFormatHex, sizeof(uint16_t)}, 784 // RS_TYPE_UNSIGNED_4_4_4_4 785 {eFormatHex, eFormatHex, sizeof(uint16_t)}, 786 // RS_TYPE_MATRIX_4X4 787 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 16}, 788 // RS_TYPE_MATRIX_3X3 789 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 9}, 790 // RS_TYPE_MATRIX_2X2 791 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 4}}; 792 793 //------------------------------------------------------------------ 794 // Static Functions 795 //------------------------------------------------------------------ 796 LanguageRuntime * 797 RenderScriptRuntime::CreateInstance(Process *process, 798 lldb::LanguageType language) { 799 800 if (language == eLanguageTypeExtRenderScript) 801 return new RenderScriptRuntime(process); 802 else 803 return nullptr; 804 } 805 806 // Callback with a module to search for matching symbols. We first check that 807 // the module contains RS kernels. Then look for a symbol which matches our 808 // kernel name. The breakpoint address is finally set using the address of this 809 // symbol. 810 Searcher::CallbackReturn 811 RSBreakpointResolver::SearchCallback(SearchFilter &filter, 812 SymbolContext &context, Address *, bool) { 813 ModuleSP module = context.module_sp; 814 815 if (!module || !IsRenderScriptScriptModule(module)) 816 return Searcher::eCallbackReturnContinue; 817 818 // Attempt to set a breakpoint on the kernel name symbol within the module 819 // library. If it's not found, it's likely debug info is unavailable - try to 820 // set a breakpoint on <name>.expand. 821 const Symbol *kernel_sym = 822 module->FindFirstSymbolWithNameAndType(m_kernel_name, eSymbolTypeCode); 823 if (!kernel_sym) { 824 std::string kernel_name_expanded(m_kernel_name.AsCString()); 825 kernel_name_expanded.append(".expand"); 826 kernel_sym = module->FindFirstSymbolWithNameAndType( 827 ConstString(kernel_name_expanded.c_str()), eSymbolTypeCode); 828 } 829 830 if (kernel_sym) { 831 Address bp_addr = kernel_sym->GetAddress(); 832 if (filter.AddressPasses(bp_addr)) 833 m_breakpoint->AddLocation(bp_addr); 834 } 835 836 return Searcher::eCallbackReturnContinue; 837 } 838 839 Searcher::CallbackReturn 840 RSReduceBreakpointResolver::SearchCallback(lldb_private::SearchFilter &filter, 841 lldb_private::SymbolContext &context, 842 Address *, bool) { 843 // We need to have access to the list of reductions currently parsed, as 844 // reduce names don't actually exist as symbols in a module. They are only 845 // identifiable by parsing the .rs.info packet, or finding the expand symbol. 846 // We therefore need access to the list of parsed rs modules to properly 847 // resolve reduction names. 848 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 849 ModuleSP module = context.module_sp; 850 851 if (!module || !IsRenderScriptScriptModule(module)) 852 return Searcher::eCallbackReturnContinue; 853 854 if (!m_rsmodules) 855 return Searcher::eCallbackReturnContinue; 856 857 for (const auto &module_desc : *m_rsmodules) { 858 if (module_desc->m_module != module) 859 continue; 860 861 for (const auto &reduction : module_desc->m_reductions) { 862 if (reduction.m_reduce_name != m_reduce_name) 863 continue; 864 865 std::array<std::pair<ConstString, int>, 5> funcs{ 866 {{reduction.m_init_name, eKernelTypeInit}, 867 {reduction.m_accum_name, eKernelTypeAccum}, 868 {reduction.m_comb_name, eKernelTypeComb}, 869 {reduction.m_outc_name, eKernelTypeOutC}, 870 {reduction.m_halter_name, eKernelTypeHalter}}}; 871 872 for (const auto &kernel : funcs) { 873 // Skip constituent functions that don't match our spec 874 if (!(m_kernel_types & kernel.second)) 875 continue; 876 877 const auto kernel_name = kernel.first; 878 const auto symbol = module->FindFirstSymbolWithNameAndType( 879 kernel_name, eSymbolTypeCode); 880 if (!symbol) 881 continue; 882 883 auto address = symbol->GetAddress(); 884 if (filter.AddressPasses(address)) { 885 bool new_bp; 886 if (!SkipPrologue(module, address)) { 887 if (log) 888 log->Printf("%s: Error trying to skip prologue", __FUNCTION__); 889 } 890 m_breakpoint->AddLocation(address, &new_bp); 891 if (log) 892 log->Printf("%s: %s reduction breakpoint on %s in %s", __FUNCTION__, 893 new_bp ? "new" : "existing", kernel_name.GetCString(), 894 address.GetModule()->GetFileSpec().GetCString()); 895 } 896 } 897 } 898 } 899 return eCallbackReturnContinue; 900 } 901 902 Searcher::CallbackReturn RSScriptGroupBreakpointResolver::SearchCallback( 903 SearchFilter &filter, SymbolContext &context, Address *addr, 904 bool containing) { 905 906 if (!m_breakpoint) 907 return eCallbackReturnContinue; 908 909 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 910 ModuleSP &module = context.module_sp; 911 912 if (!module || !IsRenderScriptScriptModule(module)) 913 return Searcher::eCallbackReturnContinue; 914 915 std::vector<std::string> names; 916 m_breakpoint->GetNames(names); 917 if (names.empty()) 918 return eCallbackReturnContinue; 919 920 for (auto &name : names) { 921 const RSScriptGroupDescriptorSP sg = FindScriptGroup(ConstString(name)); 922 if (!sg) { 923 if (log) 924 log->Printf("%s: could not find script group for %s", __FUNCTION__, 925 name.c_str()); 926 continue; 927 } 928 929 if (log) 930 log->Printf("%s: Found ScriptGroup for %s", __FUNCTION__, name.c_str()); 931 932 for (const RSScriptGroupDescriptor::Kernel &k : sg->m_kernels) { 933 if (log) { 934 log->Printf("%s: Adding breakpoint for %s", __FUNCTION__, 935 k.m_name.AsCString()); 936 log->Printf("%s: Kernel address 0x%" PRIx64, __FUNCTION__, k.m_addr); 937 } 938 939 const lldb_private::Symbol *sym = 940 module->FindFirstSymbolWithNameAndType(k.m_name, eSymbolTypeCode); 941 if (!sym) { 942 if (log) 943 log->Printf("%s: Unable to find symbol for %s", __FUNCTION__, 944 k.m_name.AsCString()); 945 continue; 946 } 947 948 if (log) { 949 log->Printf("%s: Found symbol name is %s", __FUNCTION__, 950 sym->GetName().AsCString()); 951 } 952 953 auto address = sym->GetAddress(); 954 if (!SkipPrologue(module, address)) { 955 if (log) 956 log->Printf("%s: Error trying to skip prologue", __FUNCTION__); 957 } 958 959 bool new_bp; 960 m_breakpoint->AddLocation(address, &new_bp); 961 962 if (log) 963 log->Printf("%s: Placed %sbreakpoint on %s", __FUNCTION__, 964 new_bp ? "new " : "", k.m_name.AsCString()); 965 966 // exit after placing the first breakpoint if we do not intend to stop on 967 // all kernels making up this script group 968 if (!m_stop_on_all) 969 break; 970 } 971 } 972 973 return eCallbackReturnContinue; 974 } 975 976 void RenderScriptRuntime::Initialize() { 977 PluginManager::RegisterPlugin(GetPluginNameStatic(), 978 "RenderScript language support", CreateInstance, 979 GetCommandObject); 980 } 981 982 void RenderScriptRuntime::Terminate() { 983 PluginManager::UnregisterPlugin(CreateInstance); 984 } 985 986 lldb_private::ConstString RenderScriptRuntime::GetPluginNameStatic() { 987 static ConstString plugin_name("renderscript"); 988 return plugin_name; 989 } 990 991 RenderScriptRuntime::ModuleKind 992 RenderScriptRuntime::GetModuleKind(const lldb::ModuleSP &module_sp) { 993 if (module_sp) { 994 if (IsRenderScriptScriptModule(module_sp)) 995 return eModuleKindKernelObj; 996 997 // Is this the main RS runtime library 998 const ConstString rs_lib("libRS.so"); 999 if (module_sp->GetFileSpec().GetFilename() == rs_lib) { 1000 return eModuleKindLibRS; 1001 } 1002 1003 const ConstString rs_driverlib("libRSDriver.so"); 1004 if (module_sp->GetFileSpec().GetFilename() == rs_driverlib) { 1005 return eModuleKindDriver; 1006 } 1007 1008 const ConstString rs_cpureflib("libRSCpuRef.so"); 1009 if (module_sp->GetFileSpec().GetFilename() == rs_cpureflib) { 1010 return eModuleKindImpl; 1011 } 1012 } 1013 return eModuleKindIgnored; 1014 } 1015 1016 bool RenderScriptRuntime::IsRenderScriptModule( 1017 const lldb::ModuleSP &module_sp) { 1018 return GetModuleKind(module_sp) != eModuleKindIgnored; 1019 } 1020 1021 void RenderScriptRuntime::ModulesDidLoad(const ModuleList &module_list) { 1022 std::lock_guard<std::recursive_mutex> guard(module_list.GetMutex()); 1023 1024 size_t num_modules = module_list.GetSize(); 1025 for (size_t i = 0; i < num_modules; i++) { 1026 auto mod = module_list.GetModuleAtIndex(i); 1027 if (IsRenderScriptModule(mod)) { 1028 LoadModule(mod); 1029 } 1030 } 1031 } 1032 1033 //------------------------------------------------------------------ 1034 // PluginInterface protocol 1035 //------------------------------------------------------------------ 1036 lldb_private::ConstString RenderScriptRuntime::GetPluginName() { 1037 return GetPluginNameStatic(); 1038 } 1039 1040 uint32_t RenderScriptRuntime::GetPluginVersion() { return 1; } 1041 1042 bool RenderScriptRuntime::IsVTableName(const char *name) { return false; } 1043 1044 bool RenderScriptRuntime::GetDynamicTypeAndAddress( 1045 ValueObject &in_value, lldb::DynamicValueType use_dynamic, 1046 TypeAndOrName &class_type_or_name, Address &address, 1047 Value::ValueType &value_type) { 1048 return false; 1049 } 1050 1051 TypeAndOrName 1052 RenderScriptRuntime::FixUpDynamicType(const TypeAndOrName &type_and_or_name, 1053 ValueObject &static_value) { 1054 return type_and_or_name; 1055 } 1056 1057 bool RenderScriptRuntime::CouldHaveDynamicValue(ValueObject &in_value) { 1058 return false; 1059 } 1060 1061 lldb::BreakpointResolverSP 1062 RenderScriptRuntime::CreateExceptionResolver(Breakpoint *bp, bool catch_bp, 1063 bool throw_bp) { 1064 BreakpointResolverSP resolver_sp; 1065 return resolver_sp; 1066 } 1067 1068 const RenderScriptRuntime::HookDefn RenderScriptRuntime::s_runtimeHookDefns[] = 1069 { 1070 // rsdScript 1071 {"rsdScriptInit", "_Z13rsdScriptInitPKN7android12renderscript7ContextEP" 1072 "NS0_7ScriptCEPKcS7_PKhjj", 1073 "_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_" 1074 "7ScriptCEPKcS7_PKhmj", 1075 0, RenderScriptRuntime::eModuleKindDriver, 1076 &lldb_private::RenderScriptRuntime::CaptureScriptInit}, 1077 {"rsdScriptInvokeForEachMulti", 1078 "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0" 1079 "_6ScriptEjPPKNS0_10AllocationEjPS6_PKvjPK12RsScriptCall", 1080 "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0" 1081 "_6ScriptEjPPKNS0_10AllocationEmPS6_PKvmPK12RsScriptCall", 1082 0, RenderScriptRuntime::eModuleKindDriver, 1083 &lldb_private::RenderScriptRuntime::CaptureScriptInvokeForEachMulti}, 1084 {"rsdScriptSetGlobalVar", "_Z21rsdScriptSetGlobalVarPKN7android12render" 1085 "script7ContextEPKNS0_6ScriptEjPvj", 1086 "_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_" 1087 "6ScriptEjPvm", 1088 0, RenderScriptRuntime::eModuleKindDriver, 1089 &lldb_private::RenderScriptRuntime::CaptureSetGlobalVar}, 1090 1091 // rsdAllocation 1092 {"rsdAllocationInit", "_Z17rsdAllocationInitPKN7android12renderscript7C" 1093 "ontextEPNS0_10AllocationEb", 1094 "_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_" 1095 "10AllocationEb", 1096 0, RenderScriptRuntime::eModuleKindDriver, 1097 &lldb_private::RenderScriptRuntime::CaptureAllocationInit}, 1098 {"rsdAllocationRead2D", 1099 "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_" 1100 "10AllocationEjjj23RsAllocationCubemapFacejjPvjj", 1101 "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_" 1102 "10AllocationEjjj23RsAllocationCubemapFacejjPvmm", 1103 0, RenderScriptRuntime::eModuleKindDriver, nullptr}, 1104 {"rsdAllocationDestroy", "_Z20rsdAllocationDestroyPKN7android12rendersc" 1105 "ript7ContextEPNS0_10AllocationE", 1106 "_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_" 1107 "10AllocationE", 1108 0, RenderScriptRuntime::eModuleKindDriver, 1109 &lldb_private::RenderScriptRuntime::CaptureAllocationDestroy}, 1110 1111 // renderscript script groups 1112 {"rsdDebugHintScriptGroup2", "_ZN7android12renderscript21debugHintScrip" 1113 "tGroup2EPKcjPKPFvPK24RsExpandKernelDriver" 1114 "InfojjjEj", 1115 "_ZN7android12renderscript21debugHintScriptGroup2EPKcjPKPFvPK24RsExpan" 1116 "dKernelDriverInfojjjEj", 1117 0, RenderScriptRuntime::eModuleKindImpl, 1118 &lldb_private::RenderScriptRuntime::CaptureDebugHintScriptGroup2}}; 1119 1120 const size_t RenderScriptRuntime::s_runtimeHookCount = 1121 sizeof(s_runtimeHookDefns) / sizeof(s_runtimeHookDefns[0]); 1122 1123 bool RenderScriptRuntime::HookCallback(void *baton, 1124 StoppointCallbackContext *ctx, 1125 lldb::user_id_t break_id, 1126 lldb::user_id_t break_loc_id) { 1127 RuntimeHook *hook = (RuntimeHook *)baton; 1128 ExecutionContext exe_ctx(ctx->exe_ctx_ref); 1129 1130 RenderScriptRuntime *lang_rt = 1131 (RenderScriptRuntime *)exe_ctx.GetProcessPtr()->GetLanguageRuntime( 1132 eLanguageTypeExtRenderScript); 1133 1134 lang_rt->HookCallback(hook, exe_ctx); 1135 1136 return false; 1137 } 1138 1139 void RenderScriptRuntime::HookCallback(RuntimeHook *hook, 1140 ExecutionContext &exe_ctx) { 1141 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1142 1143 if (log) 1144 log->Printf("%s - '%s'", __FUNCTION__, hook->defn->name); 1145 1146 if (hook->defn->grabber) { 1147 (this->*(hook->defn->grabber))(hook, exe_ctx); 1148 } 1149 } 1150 1151 void RenderScriptRuntime::CaptureDebugHintScriptGroup2( 1152 RuntimeHook *hook_info, ExecutionContext &context) { 1153 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1154 1155 enum { 1156 eGroupName = 0, 1157 eGroupNameSize, 1158 eKernel, 1159 eKernelCount, 1160 }; 1161 1162 std::array<ArgItem, 4> args{{ 1163 {ArgItem::ePointer, 0}, // const char *groupName 1164 {ArgItem::eInt32, 0}, // const uint32_t groupNameSize 1165 {ArgItem::ePointer, 0}, // const ExpandFuncTy *kernel 1166 {ArgItem::eInt32, 0}, // const uint32_t kernelCount 1167 }}; 1168 1169 if (!GetArgs(context, args.data(), args.size())) { 1170 if (log) 1171 log->Printf("%s - Error while reading the function parameters", 1172 __FUNCTION__); 1173 return; 1174 } else if (log) { 1175 log->Printf("%s - groupName : 0x%" PRIx64, __FUNCTION__, 1176 addr_t(args[eGroupName])); 1177 log->Printf("%s - groupNameSize: %" PRIu64, __FUNCTION__, 1178 uint64_t(args[eGroupNameSize])); 1179 log->Printf("%s - kernel : 0x%" PRIx64, __FUNCTION__, 1180 addr_t(args[eKernel])); 1181 log->Printf("%s - kernelCount : %" PRIu64, __FUNCTION__, 1182 uint64_t(args[eKernelCount])); 1183 } 1184 1185 // parse script group name 1186 ConstString group_name; 1187 { 1188 Status err; 1189 const uint64_t len = uint64_t(args[eGroupNameSize]); 1190 std::unique_ptr<char[]> buffer(new char[uint32_t(len + 1)]); 1191 m_process->ReadMemory(addr_t(args[eGroupName]), buffer.get(), len, err); 1192 buffer.get()[len] = '\0'; 1193 if (!err.Success()) { 1194 if (log) 1195 log->Printf("Error reading scriptgroup name from target"); 1196 return; 1197 } else { 1198 if (log) 1199 log->Printf("Extracted scriptgroup name %s", buffer.get()); 1200 } 1201 // write back the script group name 1202 group_name.SetCString(buffer.get()); 1203 } 1204 1205 // create or access existing script group 1206 RSScriptGroupDescriptorSP group; 1207 { 1208 // search for existing script group 1209 for (auto sg : m_scriptGroups) { 1210 if (sg->m_name == group_name) { 1211 group = sg; 1212 break; 1213 } 1214 } 1215 if (!group) { 1216 group.reset(new RSScriptGroupDescriptor); 1217 group->m_name = group_name; 1218 m_scriptGroups.push_back(group); 1219 } else { 1220 // already have this script group 1221 if (log) 1222 log->Printf("Attempt to add duplicate script group %s", 1223 group_name.AsCString()); 1224 return; 1225 } 1226 } 1227 assert(group); 1228 1229 const uint32_t target_ptr_size = m_process->GetAddressByteSize(); 1230 std::vector<addr_t> kernels; 1231 // parse kernel addresses in script group 1232 for (uint64_t i = 0; i < uint64_t(args[eKernelCount]); ++i) { 1233 RSScriptGroupDescriptor::Kernel kernel; 1234 // extract script group kernel addresses from the target 1235 const addr_t ptr_addr = addr_t(args[eKernel]) + i * target_ptr_size; 1236 uint64_t kernel_addr = 0; 1237 Status err; 1238 size_t read = 1239 m_process->ReadMemory(ptr_addr, &kernel_addr, target_ptr_size, err); 1240 if (!err.Success() || read != target_ptr_size) { 1241 if (log) 1242 log->Printf("Error parsing kernel address %" PRIu64 " in script group", 1243 i); 1244 return; 1245 } 1246 if (log) 1247 log->Printf("Extracted scriptgroup kernel address - 0x%" PRIx64, 1248 kernel_addr); 1249 kernel.m_addr = kernel_addr; 1250 1251 // try to resolve the associated kernel name 1252 if (!ResolveKernelName(kernel.m_addr, kernel.m_name)) { 1253 if (log) 1254 log->Printf("Parsed scriptgroup kernel %" PRIu64 " - 0x%" PRIx64, i, 1255 kernel_addr); 1256 return; 1257 } 1258 1259 // try to find the non '.expand' function 1260 { 1261 const llvm::StringRef expand(".expand"); 1262 const llvm::StringRef name_ref = kernel.m_name.GetStringRef(); 1263 if (name_ref.endswith(expand)) { 1264 const ConstString base_kernel(name_ref.drop_back(expand.size())); 1265 // verify this function is a valid kernel 1266 if (IsKnownKernel(base_kernel)) { 1267 kernel.m_name = base_kernel; 1268 if (log) 1269 log->Printf("%s - found non expand version '%s'", __FUNCTION__, 1270 base_kernel.GetCString()); 1271 } 1272 } 1273 } 1274 // add to a list of script group kernels we know about 1275 group->m_kernels.push_back(kernel); 1276 } 1277 1278 // Resolve any pending scriptgroup breakpoints 1279 { 1280 Target &target = m_process->GetTarget(); 1281 const BreakpointList &list = target.GetBreakpointList(); 1282 const size_t num_breakpoints = list.GetSize(); 1283 if (log) 1284 log->Printf("Resolving %zu breakpoints", num_breakpoints); 1285 for (size_t i = 0; i < num_breakpoints; ++i) { 1286 const BreakpointSP bp = list.GetBreakpointAtIndex(i); 1287 if (bp) { 1288 if (bp->MatchesName(group_name.AsCString())) { 1289 if (log) 1290 log->Printf("Found breakpoint with name %s", 1291 group_name.AsCString()); 1292 bp->ResolveBreakpoint(); 1293 } 1294 } 1295 } 1296 } 1297 } 1298 1299 void RenderScriptRuntime::CaptureScriptInvokeForEachMulti( 1300 RuntimeHook *hook, ExecutionContext &exe_ctx) { 1301 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1302 1303 enum { 1304 eRsContext = 0, 1305 eRsScript, 1306 eRsSlot, 1307 eRsAIns, 1308 eRsInLen, 1309 eRsAOut, 1310 eRsUsr, 1311 eRsUsrLen, 1312 eRsSc, 1313 }; 1314 1315 std::array<ArgItem, 9> args{{ 1316 ArgItem{ArgItem::ePointer, 0}, // const Context *rsc 1317 ArgItem{ArgItem::ePointer, 0}, // Script *s 1318 ArgItem{ArgItem::eInt32, 0}, // uint32_t slot 1319 ArgItem{ArgItem::ePointer, 0}, // const Allocation **aIns 1320 ArgItem{ArgItem::eInt32, 0}, // size_t inLen 1321 ArgItem{ArgItem::ePointer, 0}, // Allocation *aout 1322 ArgItem{ArgItem::ePointer, 0}, // const void *usr 1323 ArgItem{ArgItem::eInt32, 0}, // size_t usrLen 1324 ArgItem{ArgItem::ePointer, 0}, // const RsScriptCall *sc 1325 }}; 1326 1327 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1328 if (!success) { 1329 if (log) 1330 log->Printf("%s - Error while reading the function parameters", 1331 __FUNCTION__); 1332 return; 1333 } 1334 1335 const uint32_t target_ptr_size = m_process->GetAddressByteSize(); 1336 Status err; 1337 std::vector<uint64_t> allocs; 1338 1339 // traverse allocation list 1340 for (uint64_t i = 0; i < uint64_t(args[eRsInLen]); ++i) { 1341 // calculate offest to allocation pointer 1342 const addr_t addr = addr_t(args[eRsAIns]) + i * target_ptr_size; 1343 1344 // Note: due to little endian layout, reading 32bits or 64bits into res 1345 // will give the correct results. 1346 uint64_t result = 0; 1347 size_t read = m_process->ReadMemory(addr, &result, target_ptr_size, err); 1348 if (read != target_ptr_size || !err.Success()) { 1349 if (log) 1350 log->Printf( 1351 "%s - Error while reading allocation list argument %" PRIu64, 1352 __FUNCTION__, i); 1353 } else { 1354 allocs.push_back(result); 1355 } 1356 } 1357 1358 // if there is an output allocation track it 1359 if (uint64_t alloc_out = uint64_t(args[eRsAOut])) { 1360 allocs.push_back(alloc_out); 1361 } 1362 1363 // for all allocations we have found 1364 for (const uint64_t alloc_addr : allocs) { 1365 AllocationDetails *alloc = LookUpAllocation(alloc_addr); 1366 if (!alloc) 1367 alloc = CreateAllocation(alloc_addr); 1368 1369 if (alloc) { 1370 // save the allocation address 1371 if (alloc->address.isValid()) { 1372 // check the allocation address we already have matches 1373 assert(*alloc->address.get() == alloc_addr); 1374 } else { 1375 alloc->address = alloc_addr; 1376 } 1377 1378 // save the context 1379 if (log) { 1380 if (alloc->context.isValid() && 1381 *alloc->context.get() != addr_t(args[eRsContext])) 1382 log->Printf("%s - Allocation used by multiple contexts", 1383 __FUNCTION__); 1384 } 1385 alloc->context = addr_t(args[eRsContext]); 1386 } 1387 } 1388 1389 // make sure we track this script object 1390 if (lldb_private::RenderScriptRuntime::ScriptDetails *script = 1391 LookUpScript(addr_t(args[eRsScript]), true)) { 1392 if (log) { 1393 if (script->context.isValid() && 1394 *script->context.get() != addr_t(args[eRsContext])) 1395 log->Printf("%s - Script used by multiple contexts", __FUNCTION__); 1396 } 1397 script->context = addr_t(args[eRsContext]); 1398 } 1399 } 1400 1401 void RenderScriptRuntime::CaptureSetGlobalVar(RuntimeHook *hook, 1402 ExecutionContext &context) { 1403 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1404 1405 enum { 1406 eRsContext, 1407 eRsScript, 1408 eRsId, 1409 eRsData, 1410 eRsLength, 1411 }; 1412 1413 std::array<ArgItem, 5> args{{ 1414 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1415 ArgItem{ArgItem::ePointer, 0}, // eRsScript 1416 ArgItem{ArgItem::eInt32, 0}, // eRsId 1417 ArgItem{ArgItem::ePointer, 0}, // eRsData 1418 ArgItem{ArgItem::eInt32, 0}, // eRsLength 1419 }}; 1420 1421 bool success = GetArgs(context, &args[0], args.size()); 1422 if (!success) { 1423 if (log) 1424 log->Printf("%s - error reading the function parameters.", __FUNCTION__); 1425 return; 1426 } 1427 1428 if (log) { 1429 log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " slot %" PRIu64 " = 0x%" PRIx64 1430 ":%" PRIu64 "bytes.", 1431 __FUNCTION__, uint64_t(args[eRsContext]), 1432 uint64_t(args[eRsScript]), uint64_t(args[eRsId]), 1433 uint64_t(args[eRsData]), uint64_t(args[eRsLength])); 1434 1435 addr_t script_addr = addr_t(args[eRsScript]); 1436 if (m_scriptMappings.find(script_addr) != m_scriptMappings.end()) { 1437 auto rsm = m_scriptMappings[script_addr]; 1438 if (uint64_t(args[eRsId]) < rsm->m_globals.size()) { 1439 auto rsg = rsm->m_globals[uint64_t(args[eRsId])]; 1440 log->Printf("%s - Setting of '%s' within '%s' inferred", __FUNCTION__, 1441 rsg.m_name.AsCString(), 1442 rsm->m_module->GetFileSpec().GetFilename().AsCString()); 1443 } 1444 } 1445 } 1446 } 1447 1448 void RenderScriptRuntime::CaptureAllocationInit(RuntimeHook *hook, 1449 ExecutionContext &exe_ctx) { 1450 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1451 1452 enum { eRsContext, eRsAlloc, eRsForceZero }; 1453 1454 std::array<ArgItem, 3> args{{ 1455 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1456 ArgItem{ArgItem::ePointer, 0}, // eRsAlloc 1457 ArgItem{ArgItem::eBool, 0}, // eRsForceZero 1458 }}; 1459 1460 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1461 if (!success) { 1462 if (log) 1463 log->Printf("%s - error while reading the function parameters", 1464 __FUNCTION__); 1465 return; 1466 } 1467 1468 if (log) 1469 log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 ",0x%" PRIx64 " .", 1470 __FUNCTION__, uint64_t(args[eRsContext]), 1471 uint64_t(args[eRsAlloc]), uint64_t(args[eRsForceZero])); 1472 1473 AllocationDetails *alloc = CreateAllocation(uint64_t(args[eRsAlloc])); 1474 if (alloc) 1475 alloc->context = uint64_t(args[eRsContext]); 1476 } 1477 1478 void RenderScriptRuntime::CaptureAllocationDestroy(RuntimeHook *hook, 1479 ExecutionContext &exe_ctx) { 1480 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1481 1482 enum { 1483 eRsContext, 1484 eRsAlloc, 1485 }; 1486 1487 std::array<ArgItem, 2> args{{ 1488 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1489 ArgItem{ArgItem::ePointer, 0}, // eRsAlloc 1490 }}; 1491 1492 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1493 if (!success) { 1494 if (log) 1495 log->Printf("%s - error while reading the function parameters.", 1496 __FUNCTION__); 1497 return; 1498 } 1499 1500 if (log) 1501 log->Printf("%s - 0x%" PRIx64 ", 0x%" PRIx64 ".", __FUNCTION__, 1502 uint64_t(args[eRsContext]), uint64_t(args[eRsAlloc])); 1503 1504 for (auto iter = m_allocations.begin(); iter != m_allocations.end(); ++iter) { 1505 auto &allocation_ap = *iter; // get the unique pointer 1506 if (allocation_ap->address.isValid() && 1507 *allocation_ap->address.get() == addr_t(args[eRsAlloc])) { 1508 m_allocations.erase(iter); 1509 if (log) 1510 log->Printf("%s - deleted allocation entry.", __FUNCTION__); 1511 return; 1512 } 1513 } 1514 1515 if (log) 1516 log->Printf("%s - couldn't find destroyed allocation.", __FUNCTION__); 1517 } 1518 1519 void RenderScriptRuntime::CaptureScriptInit(RuntimeHook *hook, 1520 ExecutionContext &exe_ctx) { 1521 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1522 1523 Status err; 1524 Process *process = exe_ctx.GetProcessPtr(); 1525 1526 enum { eRsContext, eRsScript, eRsResNamePtr, eRsCachedDirPtr }; 1527 1528 std::array<ArgItem, 4> args{ 1529 {ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}, 1530 ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}}}; 1531 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1532 if (!success) { 1533 if (log) 1534 log->Printf("%s - error while reading the function parameters.", 1535 __FUNCTION__); 1536 return; 1537 } 1538 1539 std::string res_name; 1540 process->ReadCStringFromMemory(addr_t(args[eRsResNamePtr]), res_name, err); 1541 if (err.Fail()) { 1542 if (log) 1543 log->Printf("%s - error reading res_name: %s.", __FUNCTION__, 1544 err.AsCString()); 1545 } 1546 1547 std::string cache_dir; 1548 process->ReadCStringFromMemory(addr_t(args[eRsCachedDirPtr]), cache_dir, err); 1549 if (err.Fail()) { 1550 if (log) 1551 log->Printf("%s - error reading cache_dir: %s.", __FUNCTION__, 1552 err.AsCString()); 1553 } 1554 1555 if (log) 1556 log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " => '%s' at '%s' .", 1557 __FUNCTION__, uint64_t(args[eRsContext]), 1558 uint64_t(args[eRsScript]), res_name.c_str(), cache_dir.c_str()); 1559 1560 if (res_name.size() > 0) { 1561 StreamString strm; 1562 strm.Printf("librs.%s.so", res_name.c_str()); 1563 1564 ScriptDetails *script = LookUpScript(addr_t(args[eRsScript]), true); 1565 if (script) { 1566 script->type = ScriptDetails::eScriptC; 1567 script->cache_dir = cache_dir; 1568 script->res_name = res_name; 1569 script->shared_lib = strm.GetString(); 1570 script->context = addr_t(args[eRsContext]); 1571 } 1572 1573 if (log) 1574 log->Printf("%s - '%s' tagged with context 0x%" PRIx64 1575 " and script 0x%" PRIx64 ".", 1576 __FUNCTION__, strm.GetData(), uint64_t(args[eRsContext]), 1577 uint64_t(args[eRsScript])); 1578 } else if (log) { 1579 log->Printf("%s - resource name invalid, Script not tagged.", __FUNCTION__); 1580 } 1581 } 1582 1583 void RenderScriptRuntime::LoadRuntimeHooks(lldb::ModuleSP module, 1584 ModuleKind kind) { 1585 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1586 1587 if (!module) { 1588 return; 1589 } 1590 1591 Target &target = GetProcess()->GetTarget(); 1592 const llvm::Triple::ArchType machine = target.GetArchitecture().GetMachine(); 1593 1594 if (machine != llvm::Triple::ArchType::x86 && 1595 machine != llvm::Triple::ArchType::arm && 1596 machine != llvm::Triple::ArchType::aarch64 && 1597 machine != llvm::Triple::ArchType::mipsel && 1598 machine != llvm::Triple::ArchType::mips64el && 1599 machine != llvm::Triple::ArchType::x86_64) { 1600 if (log) 1601 log->Printf("%s - unable to hook runtime functions.", __FUNCTION__); 1602 return; 1603 } 1604 1605 const uint32_t target_ptr_size = 1606 target.GetArchitecture().GetAddressByteSize(); 1607 1608 std::array<bool, s_runtimeHookCount> hook_placed; 1609 hook_placed.fill(false); 1610 1611 for (size_t idx = 0; idx < s_runtimeHookCount; idx++) { 1612 const HookDefn *hook_defn = &s_runtimeHookDefns[idx]; 1613 if (hook_defn->kind != kind) { 1614 continue; 1615 } 1616 1617 const char *symbol_name = (target_ptr_size == 4) 1618 ? hook_defn->symbol_name_m32 1619 : hook_defn->symbol_name_m64; 1620 1621 const Symbol *sym = module->FindFirstSymbolWithNameAndType( 1622 ConstString(symbol_name), eSymbolTypeCode); 1623 if (!sym) { 1624 if (log) { 1625 log->Printf("%s - symbol '%s' related to the function %s not found", 1626 __FUNCTION__, symbol_name, hook_defn->name); 1627 } 1628 continue; 1629 } 1630 1631 addr_t addr = sym->GetLoadAddress(&target); 1632 if (addr == LLDB_INVALID_ADDRESS) { 1633 if (log) 1634 log->Printf("%s - unable to resolve the address of hook function '%s' " 1635 "with symbol '%s'.", 1636 __FUNCTION__, hook_defn->name, symbol_name); 1637 continue; 1638 } else { 1639 if (log) 1640 log->Printf("%s - function %s, address resolved at 0x%" PRIx64, 1641 __FUNCTION__, hook_defn->name, addr); 1642 } 1643 1644 RuntimeHookSP hook(new RuntimeHook()); 1645 hook->address = addr; 1646 hook->defn = hook_defn; 1647 hook->bp_sp = target.CreateBreakpoint(addr, true, false); 1648 hook->bp_sp->SetCallback(HookCallback, hook.get(), true); 1649 m_runtimeHooks[addr] = hook; 1650 if (log) { 1651 log->Printf("%s - successfully hooked '%s' in '%s' version %" PRIu64 1652 " at 0x%" PRIx64 ".", 1653 __FUNCTION__, hook_defn->name, 1654 module->GetFileSpec().GetFilename().AsCString(), 1655 (uint64_t)hook_defn->version, (uint64_t)addr); 1656 } 1657 hook_placed[idx] = true; 1658 } 1659 1660 // log any unhooked function 1661 if (log) { 1662 for (size_t i = 0; i < hook_placed.size(); ++i) { 1663 if (hook_placed[i]) 1664 continue; 1665 const HookDefn &hook_defn = s_runtimeHookDefns[i]; 1666 if (hook_defn.kind != kind) 1667 continue; 1668 log->Printf("%s - function %s was not hooked", __FUNCTION__, 1669 hook_defn.name); 1670 } 1671 } 1672 } 1673 1674 void RenderScriptRuntime::FixupScriptDetails(RSModuleDescriptorSP rsmodule_sp) { 1675 if (!rsmodule_sp) 1676 return; 1677 1678 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1679 1680 const ModuleSP module = rsmodule_sp->m_module; 1681 const FileSpec &file = module->GetPlatformFileSpec(); 1682 1683 // Iterate over all of the scripts that we currently know of. Note: We cant 1684 // push or pop to m_scripts here or it may invalidate rs_script. 1685 for (const auto &rs_script : m_scripts) { 1686 // Extract the expected .so file path for this script. 1687 std::string shared_lib; 1688 if (!rs_script->shared_lib.get(shared_lib)) 1689 continue; 1690 1691 // Only proceed if the module that has loaded corresponds to this script. 1692 if (file.GetFilename() != ConstString(shared_lib.c_str())) 1693 continue; 1694 1695 // Obtain the script address which we use as a key. 1696 lldb::addr_t script; 1697 if (!rs_script->script.get(script)) 1698 continue; 1699 1700 // If we have a script mapping for the current script. 1701 if (m_scriptMappings.find(script) != m_scriptMappings.end()) { 1702 // if the module we have stored is different to the one we just received. 1703 if (m_scriptMappings[script] != rsmodule_sp) { 1704 if (log) 1705 log->Printf( 1706 "%s - script %" PRIx64 " wants reassigned to new rsmodule '%s'.", 1707 __FUNCTION__, (uint64_t)script, 1708 rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString()); 1709 } 1710 } 1711 // We don't have a script mapping for the current script. 1712 else { 1713 // Obtain the script resource name. 1714 std::string res_name; 1715 if (rs_script->res_name.get(res_name)) 1716 // Set the modules resource name. 1717 rsmodule_sp->m_resname = res_name; 1718 // Add Script/Module pair to map. 1719 m_scriptMappings[script] = rsmodule_sp; 1720 if (log) 1721 log->Printf( 1722 "%s - script %" PRIx64 " associated with rsmodule '%s'.", 1723 __FUNCTION__, (uint64_t)script, 1724 rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString()); 1725 } 1726 } 1727 } 1728 1729 // Uses the Target API to evaluate the expression passed as a parameter to the 1730 // function The result of that expression is returned an unsigned 64 bit int, 1731 // via the result* parameter. Function returns true on success, and false on 1732 // failure 1733 bool RenderScriptRuntime::EvalRSExpression(const char *expr, 1734 StackFrame *frame_ptr, 1735 uint64_t *result) { 1736 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1737 if (log) 1738 log->Printf("%s(%s)", __FUNCTION__, expr); 1739 1740 ValueObjectSP expr_result; 1741 EvaluateExpressionOptions options; 1742 options.SetLanguage(lldb::eLanguageTypeC_plus_plus); 1743 // Perform the actual expression evaluation 1744 auto &target = GetProcess()->GetTarget(); 1745 target.EvaluateExpression(expr, frame_ptr, expr_result, options); 1746 1747 if (!expr_result) { 1748 if (log) 1749 log->Printf("%s: couldn't evaluate expression.", __FUNCTION__); 1750 return false; 1751 } 1752 1753 // The result of the expression is invalid 1754 if (!expr_result->GetError().Success()) { 1755 Status err = expr_result->GetError(); 1756 // Expression returned is void, so this is actually a success 1757 if (err.GetError() == UserExpression::kNoResult) { 1758 if (log) 1759 log->Printf("%s - expression returned void.", __FUNCTION__); 1760 1761 result = nullptr; 1762 return true; 1763 } 1764 1765 if (log) 1766 log->Printf("%s - error evaluating expression result: %s", __FUNCTION__, 1767 err.AsCString()); 1768 return false; 1769 } 1770 1771 bool success = false; 1772 // We only read the result as an uint32_t. 1773 *result = expr_result->GetValueAsUnsigned(0, &success); 1774 1775 if (!success) { 1776 if (log) 1777 log->Printf("%s - couldn't convert expression result to uint32_t", 1778 __FUNCTION__); 1779 return false; 1780 } 1781 1782 return true; 1783 } 1784 1785 namespace { 1786 // Used to index expression format strings 1787 enum ExpressionStrings { 1788 eExprGetOffsetPtr = 0, 1789 eExprAllocGetType, 1790 eExprTypeDimX, 1791 eExprTypeDimY, 1792 eExprTypeDimZ, 1793 eExprTypeElemPtr, 1794 eExprElementType, 1795 eExprElementKind, 1796 eExprElementVec, 1797 eExprElementFieldCount, 1798 eExprSubelementsId, 1799 eExprSubelementsName, 1800 eExprSubelementsArrSize, 1801 1802 _eExprLast // keep at the end, implicit size of the array runtime_expressions 1803 }; 1804 1805 // max length of an expanded expression 1806 const int jit_max_expr_size = 512; 1807 1808 // Retrieve the string to JIT for the given expression 1809 #define JIT_TEMPLATE_CONTEXT "void* ctxt = (void*)rsDebugGetContextWrapper(0x%" PRIx64 "); " 1810 const char *JITTemplate(ExpressionStrings e) { 1811 // Format strings containing the expressions we may need to evaluate. 1812 static std::array<const char *, _eExprLast> runtime_expressions = { 1813 {// Mangled GetOffsetPointer(Allocation*, xoff, yoff, zoff, lod, cubemap) 1814 "(int*)_" 1815 "Z12GetOffsetPtrPKN7android12renderscript10AllocationEjjjj23RsAllocation" 1816 "CubemapFace" 1817 "(0x%" PRIx64 ", %" PRIu32 ", %" PRIu32 ", %" PRIu32 ", 0, 0)", // eExprGetOffsetPtr 1818 1819 // Type* rsaAllocationGetType(Context*, Allocation*) 1820 JIT_TEMPLATE_CONTEXT "(void*)rsaAllocationGetType(ctxt, 0x%" PRIx64 ")", // eExprAllocGetType 1821 1822 // rsaTypeGetNativeData(Context*, Type*, void* typeData, size) Pack the 1823 // data in the following way mHal.state.dimX; mHal.state.dimY; 1824 // mHal.state.dimZ; mHal.state.lodCount; mHal.state.faces; mElement; 1825 // into typeData Need to specify 32 or 64 bit for uint_t since this 1826 // differs between devices 1827 JIT_TEMPLATE_CONTEXT 1828 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt" 1829 ", 0x%" PRIx64 ", data, 6); data[0]", // eExprTypeDimX 1830 JIT_TEMPLATE_CONTEXT 1831 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt" 1832 ", 0x%" PRIx64 ", data, 6); data[1]", // eExprTypeDimY 1833 JIT_TEMPLATE_CONTEXT 1834 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt" 1835 ", 0x%" PRIx64 ", data, 6); data[2]", // eExprTypeDimZ 1836 JIT_TEMPLATE_CONTEXT 1837 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt" 1838 ", 0x%" PRIx64 ", data, 6); data[5]", // eExprTypeElemPtr 1839 1840 // rsaElementGetNativeData(Context*, Element*, uint32_t* elemData,size) 1841 // Pack mType; mKind; mNormalized; mVectorSize; NumSubElements into 1842 // elemData 1843 JIT_TEMPLATE_CONTEXT 1844 "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt" 1845 ", 0x%" PRIx64 ", data, 5); data[0]", // eExprElementType 1846 JIT_TEMPLATE_CONTEXT 1847 "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt" 1848 ", 0x%" PRIx64 ", data, 5); data[1]", // eExprElementKind 1849 JIT_TEMPLATE_CONTEXT 1850 "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt" 1851 ", 0x%" PRIx64 ", data, 5); data[3]", // eExprElementVec 1852 JIT_TEMPLATE_CONTEXT 1853 "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt" 1854 ", 0x%" PRIx64 ", data, 5); data[4]", // eExprElementFieldCount 1855 1856 // rsaElementGetSubElements(RsContext con, RsElement elem, uintptr_t 1857 // *ids, const char **names, size_t *arraySizes, uint32_t dataSize) 1858 // Needed for Allocations of structs to gather details about 1859 // fields/Subelements Element* of field 1860 JIT_TEMPLATE_CONTEXT "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 1861 "]; size_t arr_size[%" PRIu32 "];" 1862 "(void*)rsaElementGetSubElements(ctxt, 0x%" PRIx64 1863 ", ids, names, arr_size, %" PRIu32 "); ids[%" PRIu32 "]", // eExprSubelementsId 1864 1865 // Name of field 1866 JIT_TEMPLATE_CONTEXT "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 1867 "]; size_t arr_size[%" PRIu32 "];" 1868 "(void*)rsaElementGetSubElements(ctxt, 0x%" PRIx64 1869 ", ids, names, arr_size, %" PRIu32 "); names[%" PRIu32 "]", // eExprSubelementsName 1870 1871 // Array size of field 1872 JIT_TEMPLATE_CONTEXT "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 1873 "]; size_t arr_size[%" PRIu32 "];" 1874 "(void*)rsaElementGetSubElements(ctxt, 0x%" PRIx64 1875 ", ids, names, arr_size, %" PRIu32 "); arr_size[%" PRIu32 "]"}}; // eExprSubelementsArrSize 1876 1877 return runtime_expressions[e]; 1878 } 1879 } // end of the anonymous namespace 1880 1881 // JITs the RS runtime for the internal data pointer of an allocation. Is 1882 // passed x,y,z coordinates for the pointer to a specific element. Then sets 1883 // the data_ptr member in Allocation with the result. Returns true on success, 1884 // false otherwise 1885 bool RenderScriptRuntime::JITDataPointer(AllocationDetails *alloc, 1886 StackFrame *frame_ptr, uint32_t x, 1887 uint32_t y, uint32_t z) { 1888 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1889 1890 if (!alloc->address.isValid()) { 1891 if (log) 1892 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1893 return false; 1894 } 1895 1896 const char *fmt_str = JITTemplate(eExprGetOffsetPtr); 1897 char expr_buf[jit_max_expr_size]; 1898 1899 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 1900 *alloc->address.get(), x, y, z); 1901 if (written < 0) { 1902 if (log) 1903 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1904 return false; 1905 } else if (written >= jit_max_expr_size) { 1906 if (log) 1907 log->Printf("%s - expression too long.", __FUNCTION__); 1908 return false; 1909 } 1910 1911 uint64_t result = 0; 1912 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 1913 return false; 1914 1915 addr_t data_ptr = static_cast<lldb::addr_t>(result); 1916 alloc->data_ptr = data_ptr; 1917 1918 return true; 1919 } 1920 1921 // JITs the RS runtime for the internal pointer to the RS Type of an allocation 1922 // Then sets the type_ptr member in Allocation with the result. Returns true on 1923 // success, false otherwise 1924 bool RenderScriptRuntime::JITTypePointer(AllocationDetails *alloc, 1925 StackFrame *frame_ptr) { 1926 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1927 1928 if (!alloc->address.isValid() || !alloc->context.isValid()) { 1929 if (log) 1930 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1931 return false; 1932 } 1933 1934 const char *fmt_str = JITTemplate(eExprAllocGetType); 1935 char expr_buf[jit_max_expr_size]; 1936 1937 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 1938 *alloc->context.get(), *alloc->address.get()); 1939 if (written < 0) { 1940 if (log) 1941 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1942 return false; 1943 } else if (written >= jit_max_expr_size) { 1944 if (log) 1945 log->Printf("%s - expression too long.", __FUNCTION__); 1946 return false; 1947 } 1948 1949 uint64_t result = 0; 1950 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 1951 return false; 1952 1953 addr_t type_ptr = static_cast<lldb::addr_t>(result); 1954 alloc->type_ptr = type_ptr; 1955 1956 return true; 1957 } 1958 1959 // JITs the RS runtime for information about the dimensions and type of an 1960 // allocation Then sets dimension and element_ptr members in Allocation with 1961 // the result. Returns true on success, false otherwise 1962 bool RenderScriptRuntime::JITTypePacked(AllocationDetails *alloc, 1963 StackFrame *frame_ptr) { 1964 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1965 1966 if (!alloc->type_ptr.isValid() || !alloc->context.isValid()) { 1967 if (log) 1968 log->Printf("%s - Failed to find allocation details.", __FUNCTION__); 1969 return false; 1970 } 1971 1972 // Expression is different depending on if device is 32 or 64 bit 1973 uint32_t target_ptr_size = 1974 GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 1975 const uint32_t bits = target_ptr_size == 4 ? 32 : 64; 1976 1977 // We want 4 elements from packed data 1978 const uint32_t num_exprs = 4; 1979 assert(num_exprs == (eExprTypeElemPtr - eExprTypeDimX + 1) && 1980 "Invalid number of expressions"); 1981 1982 char expr_bufs[num_exprs][jit_max_expr_size]; 1983 uint64_t results[num_exprs]; 1984 1985 for (uint32_t i = 0; i < num_exprs; ++i) { 1986 const char *fmt_str = JITTemplate(ExpressionStrings(eExprTypeDimX + i)); 1987 int written = snprintf(expr_bufs[i], jit_max_expr_size, fmt_str, 1988 *alloc->context.get(), bits, *alloc->type_ptr.get()); 1989 if (written < 0) { 1990 if (log) 1991 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1992 return false; 1993 } else if (written >= jit_max_expr_size) { 1994 if (log) 1995 log->Printf("%s - expression too long.", __FUNCTION__); 1996 return false; 1997 } 1998 1999 // Perform expression evaluation 2000 if (!EvalRSExpression(expr_bufs[i], frame_ptr, &results[i])) 2001 return false; 2002 } 2003 2004 // Assign results to allocation members 2005 AllocationDetails::Dimension dims; 2006 dims.dim_1 = static_cast<uint32_t>(results[0]); 2007 dims.dim_2 = static_cast<uint32_t>(results[1]); 2008 dims.dim_3 = static_cast<uint32_t>(results[2]); 2009 alloc->dimension = dims; 2010 2011 addr_t element_ptr = static_cast<lldb::addr_t>(results[3]); 2012 alloc->element.element_ptr = element_ptr; 2013 2014 if (log) 2015 log->Printf("%s - dims (%" PRIu32 ", %" PRIu32 ", %" PRIu32 2016 ") Element*: 0x%" PRIx64 ".", 2017 __FUNCTION__, dims.dim_1, dims.dim_2, dims.dim_3, element_ptr); 2018 2019 return true; 2020 } 2021 2022 // JITs the RS runtime for information about the Element of an allocation Then 2023 // sets type, type_vec_size, field_count and type_kind members in Element with 2024 // the result. Returns true on success, false otherwise 2025 bool RenderScriptRuntime::JITElementPacked(Element &elem, 2026 const lldb::addr_t context, 2027 StackFrame *frame_ptr) { 2028 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2029 2030 if (!elem.element_ptr.isValid()) { 2031 if (log) 2032 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 2033 return false; 2034 } 2035 2036 // We want 4 elements from packed data 2037 const uint32_t num_exprs = 4; 2038 assert(num_exprs == (eExprElementFieldCount - eExprElementType + 1) && 2039 "Invalid number of expressions"); 2040 2041 char expr_bufs[num_exprs][jit_max_expr_size]; 2042 uint64_t results[num_exprs]; 2043 2044 for (uint32_t i = 0; i < num_exprs; i++) { 2045 const char *fmt_str = JITTemplate(ExpressionStrings(eExprElementType + i)); 2046 int written = snprintf(expr_bufs[i], jit_max_expr_size, fmt_str, context, 2047 *elem.element_ptr.get()); 2048 if (written < 0) { 2049 if (log) 2050 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 2051 return false; 2052 } else if (written >= jit_max_expr_size) { 2053 if (log) 2054 log->Printf("%s - expression too long.", __FUNCTION__); 2055 return false; 2056 } 2057 2058 // Perform expression evaluation 2059 if (!EvalRSExpression(expr_bufs[i], frame_ptr, &results[i])) 2060 return false; 2061 } 2062 2063 // Assign results to allocation members 2064 elem.type = static_cast<RenderScriptRuntime::Element::DataType>(results[0]); 2065 elem.type_kind = 2066 static_cast<RenderScriptRuntime::Element::DataKind>(results[1]); 2067 elem.type_vec_size = static_cast<uint32_t>(results[2]); 2068 elem.field_count = static_cast<uint32_t>(results[3]); 2069 2070 if (log) 2071 log->Printf("%s - data type %" PRIu32 ", pixel type %" PRIu32 2072 ", vector size %" PRIu32 ", field count %" PRIu32, 2073 __FUNCTION__, *elem.type.get(), *elem.type_kind.get(), 2074 *elem.type_vec_size.get(), *elem.field_count.get()); 2075 2076 // If this Element has subelements then JIT rsaElementGetSubElements() for 2077 // details about its fields 2078 if (*elem.field_count.get() > 0 && !JITSubelements(elem, context, frame_ptr)) 2079 return false; 2080 2081 return true; 2082 } 2083 2084 // JITs the RS runtime for information about the subelements/fields of a struct 2085 // allocation This is necessary for infering the struct type so we can pretty 2086 // print the allocation's contents. Returns true on success, false otherwise 2087 bool RenderScriptRuntime::JITSubelements(Element &elem, 2088 const lldb::addr_t context, 2089 StackFrame *frame_ptr) { 2090 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2091 2092 if (!elem.element_ptr.isValid() || !elem.field_count.isValid()) { 2093 if (log) 2094 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 2095 return false; 2096 } 2097 2098 const short num_exprs = 3; 2099 assert(num_exprs == (eExprSubelementsArrSize - eExprSubelementsId + 1) && 2100 "Invalid number of expressions"); 2101 2102 char expr_buffer[jit_max_expr_size]; 2103 uint64_t results; 2104 2105 // Iterate over struct fields. 2106 const uint32_t field_count = *elem.field_count.get(); 2107 for (uint32_t field_index = 0; field_index < field_count; ++field_index) { 2108 Element child; 2109 for (uint32_t expr_index = 0; expr_index < num_exprs; ++expr_index) { 2110 const char *fmt_str = 2111 JITTemplate(ExpressionStrings(eExprSubelementsId + expr_index)); 2112 int written = snprintf(expr_buffer, jit_max_expr_size, fmt_str, 2113 context, field_count, field_count, field_count, 2114 *elem.element_ptr.get(), field_count, field_index); 2115 if (written < 0) { 2116 if (log) 2117 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 2118 return false; 2119 } else if (written >= jit_max_expr_size) { 2120 if (log) 2121 log->Printf("%s - expression too long.", __FUNCTION__); 2122 return false; 2123 } 2124 2125 // Perform expression evaluation 2126 if (!EvalRSExpression(expr_buffer, frame_ptr, &results)) 2127 return false; 2128 2129 if (log) 2130 log->Printf("%s - expr result 0x%" PRIx64 ".", __FUNCTION__, results); 2131 2132 switch (expr_index) { 2133 case 0: // Element* of child 2134 child.element_ptr = static_cast<addr_t>(results); 2135 break; 2136 case 1: // Name of child 2137 { 2138 lldb::addr_t address = static_cast<addr_t>(results); 2139 Status err; 2140 std::string name; 2141 GetProcess()->ReadCStringFromMemory(address, name, err); 2142 if (!err.Fail()) 2143 child.type_name = ConstString(name); 2144 else { 2145 if (log) 2146 log->Printf("%s - warning: Couldn't read field name.", 2147 __FUNCTION__); 2148 } 2149 break; 2150 } 2151 case 2: // Array size of child 2152 child.array_size = static_cast<uint32_t>(results); 2153 break; 2154 } 2155 } 2156 2157 // We need to recursively JIT each Element field of the struct since 2158 // structs can be nested inside structs. 2159 if (!JITElementPacked(child, context, frame_ptr)) 2160 return false; 2161 elem.children.push_back(child); 2162 } 2163 2164 // Try to infer the name of the struct type so we can pretty print the 2165 // allocation contents. 2166 FindStructTypeName(elem, frame_ptr); 2167 2168 return true; 2169 } 2170 2171 // JITs the RS runtime for the address of the last element in the allocation. 2172 // The `elem_size` parameter represents the size of a single element, including 2173 // padding. Which is needed as an offset from the last element pointer. Using 2174 // this offset minus the starting address we can calculate the size of the 2175 // allocation. Returns true on success, false otherwise 2176 bool RenderScriptRuntime::JITAllocationSize(AllocationDetails *alloc, 2177 StackFrame *frame_ptr) { 2178 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2179 2180 if (!alloc->address.isValid() || !alloc->dimension.isValid() || 2181 !alloc->data_ptr.isValid() || !alloc->element.datum_size.isValid()) { 2182 if (log) 2183 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 2184 return false; 2185 } 2186 2187 // Find dimensions 2188 uint32_t dim_x = alloc->dimension.get()->dim_1; 2189 uint32_t dim_y = alloc->dimension.get()->dim_2; 2190 uint32_t dim_z = alloc->dimension.get()->dim_3; 2191 2192 // Our plan of jitting the last element address doesn't seem to work for 2193 // struct Allocations` Instead try to infer the size ourselves without any 2194 // inter element padding. 2195 if (alloc->element.children.size() > 0) { 2196 if (dim_x == 0) 2197 dim_x = 1; 2198 if (dim_y == 0) 2199 dim_y = 1; 2200 if (dim_z == 0) 2201 dim_z = 1; 2202 2203 alloc->size = dim_x * dim_y * dim_z * *alloc->element.datum_size.get(); 2204 2205 if (log) 2206 log->Printf("%s - inferred size of struct allocation %" PRIu32 ".", 2207 __FUNCTION__, *alloc->size.get()); 2208 return true; 2209 } 2210 2211 const char *fmt_str = JITTemplate(eExprGetOffsetPtr); 2212 char expr_buf[jit_max_expr_size]; 2213 2214 // Calculate last element 2215 dim_x = dim_x == 0 ? 0 : dim_x - 1; 2216 dim_y = dim_y == 0 ? 0 : dim_y - 1; 2217 dim_z = dim_z == 0 ? 0 : dim_z - 1; 2218 2219 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 2220 *alloc->address.get(), dim_x, dim_y, dim_z); 2221 if (written < 0) { 2222 if (log) 2223 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 2224 return false; 2225 } else if (written >= jit_max_expr_size) { 2226 if (log) 2227 log->Printf("%s - expression too long.", __FUNCTION__); 2228 return false; 2229 } 2230 2231 uint64_t result = 0; 2232 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 2233 return false; 2234 2235 addr_t mem_ptr = static_cast<lldb::addr_t>(result); 2236 // Find pointer to last element and add on size of an element 2237 alloc->size = static_cast<uint32_t>(mem_ptr - *alloc->data_ptr.get()) + 2238 *alloc->element.datum_size.get(); 2239 2240 return true; 2241 } 2242 2243 // JITs the RS runtime for information about the stride between rows in the 2244 // allocation. This is done to detect padding, since allocated memory is 2245 // 16-byte aligned. Returns true on success, false otherwise 2246 bool RenderScriptRuntime::JITAllocationStride(AllocationDetails *alloc, 2247 StackFrame *frame_ptr) { 2248 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2249 2250 if (!alloc->address.isValid() || !alloc->data_ptr.isValid()) { 2251 if (log) 2252 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 2253 return false; 2254 } 2255 2256 const char *fmt_str = JITTemplate(eExprGetOffsetPtr); 2257 char expr_buf[jit_max_expr_size]; 2258 2259 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 2260 *alloc->address.get(), 0, 1, 0); 2261 if (written < 0) { 2262 if (log) 2263 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 2264 return false; 2265 } else if (written >= jit_max_expr_size) { 2266 if (log) 2267 log->Printf("%s - expression too long.", __FUNCTION__); 2268 return false; 2269 } 2270 2271 uint64_t result = 0; 2272 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 2273 return false; 2274 2275 addr_t mem_ptr = static_cast<lldb::addr_t>(result); 2276 alloc->stride = static_cast<uint32_t>(mem_ptr - *alloc->data_ptr.get()); 2277 2278 return true; 2279 } 2280 2281 // JIT all the current runtime info regarding an allocation 2282 bool RenderScriptRuntime::RefreshAllocation(AllocationDetails *alloc, 2283 StackFrame *frame_ptr) { 2284 // GetOffsetPointer() 2285 if (!JITDataPointer(alloc, frame_ptr)) 2286 return false; 2287 2288 // rsaAllocationGetType() 2289 if (!JITTypePointer(alloc, frame_ptr)) 2290 return false; 2291 2292 // rsaTypeGetNativeData() 2293 if (!JITTypePacked(alloc, frame_ptr)) 2294 return false; 2295 2296 // rsaElementGetNativeData() 2297 if (!JITElementPacked(alloc->element, *alloc->context.get(), frame_ptr)) 2298 return false; 2299 2300 // Sets the datum_size member in Element 2301 SetElementSize(alloc->element); 2302 2303 // Use GetOffsetPointer() to infer size of the allocation 2304 if (!JITAllocationSize(alloc, frame_ptr)) 2305 return false; 2306 2307 return true; 2308 } 2309 2310 // Function attempts to set the type_name member of the paramaterised Element 2311 // object. This string should be the name of the struct type the Element 2312 // represents. We need this string for pretty printing the Element to users. 2313 void RenderScriptRuntime::FindStructTypeName(Element &elem, 2314 StackFrame *frame_ptr) { 2315 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2316 2317 if (!elem.type_name.IsEmpty()) // Name already set 2318 return; 2319 else 2320 elem.type_name = Element::GetFallbackStructName(); // Default type name if 2321 // we don't succeed 2322 2323 // Find all the global variables from the script rs modules 2324 VariableList var_list; 2325 for (auto module_sp : m_rsmodules) 2326 module_sp->m_module->FindGlobalVariables( 2327 RegularExpression(llvm::StringRef(".")), UINT32_MAX, var_list); 2328 2329 // Iterate over all the global variables looking for one with a matching type 2330 // to the Element. We make the assumption a match exists since there needs to 2331 // be a global variable to reflect the struct type back into java host code. 2332 for (uint32_t i = 0; i < var_list.GetSize(); ++i) { 2333 const VariableSP var_sp(var_list.GetVariableAtIndex(i)); 2334 if (!var_sp) 2335 continue; 2336 2337 ValueObjectSP valobj_sp = ValueObjectVariable::Create(frame_ptr, var_sp); 2338 if (!valobj_sp) 2339 continue; 2340 2341 // Find the number of variable fields. 2342 // If it has no fields, or more fields than our Element, then it can't be 2343 // the struct we're looking for. Don't check for equality since RS can add 2344 // extra struct members for padding. 2345 size_t num_children = valobj_sp->GetNumChildren(); 2346 if (num_children > elem.children.size() || num_children == 0) 2347 continue; 2348 2349 // Iterate over children looking for members with matching field names. If 2350 // all the field names match, this is likely the struct we want. 2351 // TODO: This could be made more robust by also checking children data 2352 // sizes, or array size 2353 bool found = true; 2354 for (size_t i = 0; i < num_children; ++i) { 2355 ValueObjectSP child = valobj_sp->GetChildAtIndex(i, true); 2356 if (!child || (child->GetName() != elem.children[i].type_name)) { 2357 found = false; 2358 break; 2359 } 2360 } 2361 2362 // RS can add extra struct members for padding in the format 2363 // '#rs_padding_[0-9]+' 2364 if (found && num_children < elem.children.size()) { 2365 const uint32_t size_diff = elem.children.size() - num_children; 2366 if (log) 2367 log->Printf("%s - %" PRIu32 " padding struct entries", __FUNCTION__, 2368 size_diff); 2369 2370 for (uint32_t i = 0; i < size_diff; ++i) { 2371 const ConstString &name = elem.children[num_children + i].type_name; 2372 if (strcmp(name.AsCString(), "#rs_padding") < 0) 2373 found = false; 2374 } 2375 } 2376 2377 // We've found a global variable with matching type 2378 if (found) { 2379 // Dereference since our Element type isn't a pointer. 2380 if (valobj_sp->IsPointerType()) { 2381 Status err; 2382 ValueObjectSP deref_valobj = valobj_sp->Dereference(err); 2383 if (!err.Fail()) 2384 valobj_sp = deref_valobj; 2385 } 2386 2387 // Save name of variable in Element. 2388 elem.type_name = valobj_sp->GetTypeName(); 2389 if (log) 2390 log->Printf("%s - element name set to %s", __FUNCTION__, 2391 elem.type_name.AsCString()); 2392 2393 return; 2394 } 2395 } 2396 } 2397 2398 // Function sets the datum_size member of Element. Representing the size of a 2399 // single instance including padding. Assumes the relevant allocation 2400 // information has already been jitted. 2401 void RenderScriptRuntime::SetElementSize(Element &elem) { 2402 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2403 const Element::DataType type = *elem.type.get(); 2404 assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && 2405 "Invalid allocation type"); 2406 2407 const uint32_t vec_size = *elem.type_vec_size.get(); 2408 uint32_t data_size = 0; 2409 uint32_t padding = 0; 2410 2411 // Element is of a struct type, calculate size recursively. 2412 if ((type == Element::RS_TYPE_NONE) && (elem.children.size() > 0)) { 2413 for (Element &child : elem.children) { 2414 SetElementSize(child); 2415 const uint32_t array_size = 2416 child.array_size.isValid() ? *child.array_size.get() : 1; 2417 data_size += *child.datum_size.get() * array_size; 2418 } 2419 } 2420 // These have been packed already 2421 else if (type == Element::RS_TYPE_UNSIGNED_5_6_5 || 2422 type == Element::RS_TYPE_UNSIGNED_5_5_5_1 || 2423 type == Element::RS_TYPE_UNSIGNED_4_4_4_4) { 2424 data_size = AllocationDetails::RSTypeToFormat[type][eElementSize]; 2425 } else if (type < Element::RS_TYPE_ELEMENT) { 2426 data_size = 2427 vec_size * AllocationDetails::RSTypeToFormat[type][eElementSize]; 2428 if (vec_size == 3) 2429 padding = AllocationDetails::RSTypeToFormat[type][eElementSize]; 2430 } else 2431 data_size = 2432 GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 2433 2434 elem.padding = padding; 2435 elem.datum_size = data_size + padding; 2436 if (log) 2437 log->Printf("%s - element size set to %" PRIu32, __FUNCTION__, 2438 data_size + padding); 2439 } 2440 2441 // Given an allocation, this function copies the allocation contents from 2442 // device into a buffer on the heap. Returning a shared pointer to the buffer 2443 // containing the data. 2444 std::shared_ptr<uint8_t> 2445 RenderScriptRuntime::GetAllocationData(AllocationDetails *alloc, 2446 StackFrame *frame_ptr) { 2447 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2448 2449 // JIT all the allocation details 2450 if (alloc->ShouldRefresh()) { 2451 if (log) 2452 log->Printf("%s - allocation details not calculated yet, jitting info", 2453 __FUNCTION__); 2454 2455 if (!RefreshAllocation(alloc, frame_ptr)) { 2456 if (log) 2457 log->Printf("%s - couldn't JIT allocation details", __FUNCTION__); 2458 return nullptr; 2459 } 2460 } 2461 2462 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && 2463 alloc->element.type_vec_size.isValid() && alloc->size.isValid() && 2464 "Allocation information not available"); 2465 2466 // Allocate a buffer to copy data into 2467 const uint32_t size = *alloc->size.get(); 2468 std::shared_ptr<uint8_t> buffer(new uint8_t[size]); 2469 if (!buffer) { 2470 if (log) 2471 log->Printf("%s - couldn't allocate a %" PRIu32 " byte buffer", 2472 __FUNCTION__, size); 2473 return nullptr; 2474 } 2475 2476 // Read the inferior memory 2477 Status err; 2478 lldb::addr_t data_ptr = *alloc->data_ptr.get(); 2479 GetProcess()->ReadMemory(data_ptr, buffer.get(), size, err); 2480 if (err.Fail()) { 2481 if (log) 2482 log->Printf("%s - '%s' Couldn't read %" PRIu32 2483 " bytes of allocation data from 0x%" PRIx64, 2484 __FUNCTION__, err.AsCString(), size, data_ptr); 2485 return nullptr; 2486 } 2487 2488 return buffer; 2489 } 2490 2491 // Function copies data from a binary file into an allocation. There is a 2492 // header at the start of the file, FileHeader, before the data content itself. 2493 // Information from this header is used to display warnings to the user about 2494 // incompatibilities 2495 bool RenderScriptRuntime::LoadAllocation(Stream &strm, const uint32_t alloc_id, 2496 const char *path, 2497 StackFrame *frame_ptr) { 2498 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2499 2500 // Find allocation with the given id 2501 AllocationDetails *alloc = FindAllocByID(strm, alloc_id); 2502 if (!alloc) 2503 return false; 2504 2505 if (log) 2506 log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__, 2507 *alloc->address.get()); 2508 2509 // JIT all the allocation details 2510 if (alloc->ShouldRefresh()) { 2511 if (log) 2512 log->Printf("%s - allocation details not calculated yet, jitting info.", 2513 __FUNCTION__); 2514 2515 if (!RefreshAllocation(alloc, frame_ptr)) { 2516 if (log) 2517 log->Printf("%s - couldn't JIT allocation details", __FUNCTION__); 2518 return false; 2519 } 2520 } 2521 2522 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && 2523 alloc->element.type_vec_size.isValid() && alloc->size.isValid() && 2524 alloc->element.datum_size.isValid() && 2525 "Allocation information not available"); 2526 2527 // Check we can read from file 2528 FileSpec file(path); 2529 FileSystem::Instance().Resolve(file); 2530 if (!FileSystem::Instance().Exists(file)) { 2531 strm.Printf("Error: File %s does not exist", path); 2532 strm.EOL(); 2533 return false; 2534 } 2535 2536 if (!FileSystem::Instance().Readable(file)) { 2537 strm.Printf("Error: File %s does not have readable permissions", path); 2538 strm.EOL(); 2539 return false; 2540 } 2541 2542 // Read file into data buffer 2543 auto data_sp = DataBufferLLVM::CreateFromPath(file.GetPath()); 2544 2545 // Cast start of buffer to FileHeader and use pointer to read metadata 2546 void *file_buf = data_sp->GetBytes(); 2547 if (file_buf == nullptr || 2548 data_sp->GetByteSize() < (sizeof(AllocationDetails::FileHeader) + 2549 sizeof(AllocationDetails::ElementHeader))) { 2550 strm.Printf("Error: File %s does not contain enough data for header", path); 2551 strm.EOL(); 2552 return false; 2553 } 2554 const AllocationDetails::FileHeader *file_header = 2555 static_cast<AllocationDetails::FileHeader *>(file_buf); 2556 2557 // Check file starts with ascii characters "RSAD" 2558 if (memcmp(file_header->ident, "RSAD", 4)) { 2559 strm.Printf("Error: File doesn't contain identifier for an RS allocation " 2560 "dump. Are you sure this is the correct file?"); 2561 strm.EOL(); 2562 return false; 2563 } 2564 2565 // Look at the type of the root element in the header 2566 AllocationDetails::ElementHeader root_el_hdr; 2567 memcpy(&root_el_hdr, static_cast<uint8_t *>(file_buf) + 2568 sizeof(AllocationDetails::FileHeader), 2569 sizeof(AllocationDetails::ElementHeader)); 2570 2571 if (log) 2572 log->Printf("%s - header type %" PRIu32 ", element size %" PRIu32, 2573 __FUNCTION__, root_el_hdr.type, root_el_hdr.element_size); 2574 2575 // Check if the target allocation and file both have the same number of bytes 2576 // for an Element 2577 if (*alloc->element.datum_size.get() != root_el_hdr.element_size) { 2578 strm.Printf("Warning: Mismatched Element sizes - file %" PRIu32 2579 " bytes, allocation %" PRIu32 " bytes", 2580 root_el_hdr.element_size, *alloc->element.datum_size.get()); 2581 strm.EOL(); 2582 } 2583 2584 // Check if the target allocation and file both have the same type 2585 const uint32_t alloc_type = static_cast<uint32_t>(*alloc->element.type.get()); 2586 const uint32_t file_type = root_el_hdr.type; 2587 2588 if (file_type > Element::RS_TYPE_FONT) { 2589 strm.Printf("Warning: File has unknown allocation type"); 2590 strm.EOL(); 2591 } else if (alloc_type != file_type) { 2592 // Enum value isn't monotonous, so doesn't always index RsDataTypeToString 2593 // array 2594 uint32_t target_type_name_idx = alloc_type; 2595 uint32_t head_type_name_idx = file_type; 2596 if (alloc_type >= Element::RS_TYPE_ELEMENT && 2597 alloc_type <= Element::RS_TYPE_FONT) 2598 target_type_name_idx = static_cast<Element::DataType>( 2599 (alloc_type - Element::RS_TYPE_ELEMENT) + 2600 Element::RS_TYPE_MATRIX_2X2 + 1); 2601 2602 if (file_type >= Element::RS_TYPE_ELEMENT && 2603 file_type <= Element::RS_TYPE_FONT) 2604 head_type_name_idx = static_cast<Element::DataType>( 2605 (file_type - Element::RS_TYPE_ELEMENT) + Element::RS_TYPE_MATRIX_2X2 + 2606 1); 2607 2608 const char *head_type_name = 2609 AllocationDetails::RsDataTypeToString[head_type_name_idx][0]; 2610 const char *target_type_name = 2611 AllocationDetails::RsDataTypeToString[target_type_name_idx][0]; 2612 2613 strm.Printf( 2614 "Warning: Mismatched Types - file '%s' type, allocation '%s' type", 2615 head_type_name, target_type_name); 2616 strm.EOL(); 2617 } 2618 2619 // Advance buffer past header 2620 file_buf = static_cast<uint8_t *>(file_buf) + file_header->hdr_size; 2621 2622 // Calculate size of allocation data in file 2623 size_t size = data_sp->GetByteSize() - file_header->hdr_size; 2624 2625 // Check if the target allocation and file both have the same total data 2626 // size. 2627 const uint32_t alloc_size = *alloc->size.get(); 2628 if (alloc_size != size) { 2629 strm.Printf("Warning: Mismatched allocation sizes - file 0x%" PRIx64 2630 " bytes, allocation 0x%" PRIx32 " bytes", 2631 (uint64_t)size, alloc_size); 2632 strm.EOL(); 2633 // Set length to copy to minimum 2634 size = alloc_size < size ? alloc_size : size; 2635 } 2636 2637 // Copy file data from our buffer into the target allocation. 2638 lldb::addr_t alloc_data = *alloc->data_ptr.get(); 2639 Status err; 2640 size_t written = GetProcess()->WriteMemory(alloc_data, file_buf, size, err); 2641 if (!err.Success() || written != size) { 2642 strm.Printf("Error: Couldn't write data to allocation %s", err.AsCString()); 2643 strm.EOL(); 2644 return false; 2645 } 2646 2647 strm.Printf("Contents of file '%s' read into allocation %" PRIu32, path, 2648 alloc->id); 2649 strm.EOL(); 2650 2651 return true; 2652 } 2653 2654 // Function takes as parameters a byte buffer, which will eventually be written 2655 // to file as the element header, an offset into that buffer, and an Element 2656 // that will be saved into the buffer at the parametrised offset. Return value 2657 // is the new offset after writing the element into the buffer. Elements are 2658 // saved to the file as the ElementHeader struct followed by offsets to the 2659 // structs of all the element's children. 2660 size_t RenderScriptRuntime::PopulateElementHeaders( 2661 const std::shared_ptr<uint8_t> header_buffer, size_t offset, 2662 const Element &elem) { 2663 // File struct for an element header with all the relevant details copied 2664 // from elem. We assume members are valid already. 2665 AllocationDetails::ElementHeader elem_header; 2666 elem_header.type = *elem.type.get(); 2667 elem_header.kind = *elem.type_kind.get(); 2668 elem_header.element_size = *elem.datum_size.get(); 2669 elem_header.vector_size = *elem.type_vec_size.get(); 2670 elem_header.array_size = 2671 elem.array_size.isValid() ? *elem.array_size.get() : 0; 2672 const size_t elem_header_size = sizeof(AllocationDetails::ElementHeader); 2673 2674 // Copy struct into buffer and advance offset We assume that header_buffer 2675 // has been checked for nullptr before this method is called 2676 memcpy(header_buffer.get() + offset, &elem_header, elem_header_size); 2677 offset += elem_header_size; 2678 2679 // Starting offset of child ElementHeader struct 2680 size_t child_offset = 2681 offset + ((elem.children.size() + 1) * sizeof(uint32_t)); 2682 for (const RenderScriptRuntime::Element &child : elem.children) { 2683 // Recursively populate the buffer with the element header structs of 2684 // children. Then save the offsets where they were set after the parent 2685 // element header. 2686 memcpy(header_buffer.get() + offset, &child_offset, sizeof(uint32_t)); 2687 offset += sizeof(uint32_t); 2688 2689 child_offset = PopulateElementHeaders(header_buffer, child_offset, child); 2690 } 2691 2692 // Zero indicates no more children 2693 memset(header_buffer.get() + offset, 0, sizeof(uint32_t)); 2694 2695 return child_offset; 2696 } 2697 2698 // Given an Element object this function returns the total size needed in the 2699 // file header to store the element's details. Taking into account the size of 2700 // the element header struct, plus the offsets to all the element's children. 2701 // Function is recursive so that the size of all ancestors is taken into 2702 // account. 2703 size_t RenderScriptRuntime::CalculateElementHeaderSize(const Element &elem) { 2704 // Offsets to children plus zero terminator 2705 size_t size = (elem.children.size() + 1) * sizeof(uint32_t); 2706 // Size of header struct with type details 2707 size += sizeof(AllocationDetails::ElementHeader); 2708 2709 // Calculate recursively for all descendants 2710 for (const Element &child : elem.children) 2711 size += CalculateElementHeaderSize(child); 2712 2713 return size; 2714 } 2715 2716 // Function copies allocation contents into a binary file. This file can then 2717 // be loaded later into a different allocation. There is a header, FileHeader, 2718 // before the allocation data containing meta-data. 2719 bool RenderScriptRuntime::SaveAllocation(Stream &strm, const uint32_t alloc_id, 2720 const char *path, 2721 StackFrame *frame_ptr) { 2722 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2723 2724 // Find allocation with the given id 2725 AllocationDetails *alloc = FindAllocByID(strm, alloc_id); 2726 if (!alloc) 2727 return false; 2728 2729 if (log) 2730 log->Printf("%s - found allocation 0x%" PRIx64 ".", __FUNCTION__, 2731 *alloc->address.get()); 2732 2733 // JIT all the allocation details 2734 if (alloc->ShouldRefresh()) { 2735 if (log) 2736 log->Printf("%s - allocation details not calculated yet, jitting info.", 2737 __FUNCTION__); 2738 2739 if (!RefreshAllocation(alloc, frame_ptr)) { 2740 if (log) 2741 log->Printf("%s - couldn't JIT allocation details.", __FUNCTION__); 2742 return false; 2743 } 2744 } 2745 2746 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && 2747 alloc->element.type_vec_size.isValid() && 2748 alloc->element.datum_size.get() && 2749 alloc->element.type_kind.isValid() && alloc->dimension.isValid() && 2750 "Allocation information not available"); 2751 2752 // Check we can create writable file 2753 FileSpec file_spec(path); 2754 FileSystem::Instance().Resolve(file_spec); 2755 File file; 2756 FileSystem::Instance().Open(file, file_spec, 2757 File::eOpenOptionWrite | 2758 File::eOpenOptionCanCreate | 2759 File::eOpenOptionTruncate); 2760 2761 if (!file) { 2762 strm.Printf("Error: Failed to open '%s' for writing", path); 2763 strm.EOL(); 2764 return false; 2765 } 2766 2767 // Read allocation into buffer of heap memory 2768 const std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr); 2769 if (!buffer) { 2770 strm.Printf("Error: Couldn't read allocation data into buffer"); 2771 strm.EOL(); 2772 return false; 2773 } 2774 2775 // Create the file header 2776 AllocationDetails::FileHeader head; 2777 memcpy(head.ident, "RSAD", 4); 2778 head.dims[0] = static_cast<uint32_t>(alloc->dimension.get()->dim_1); 2779 head.dims[1] = static_cast<uint32_t>(alloc->dimension.get()->dim_2); 2780 head.dims[2] = static_cast<uint32_t>(alloc->dimension.get()->dim_3); 2781 2782 const size_t element_header_size = CalculateElementHeaderSize(alloc->element); 2783 assert((sizeof(AllocationDetails::FileHeader) + element_header_size) < 2784 UINT16_MAX && 2785 "Element header too large"); 2786 head.hdr_size = static_cast<uint16_t>(sizeof(AllocationDetails::FileHeader) + 2787 element_header_size); 2788 2789 // Write the file header 2790 size_t num_bytes = sizeof(AllocationDetails::FileHeader); 2791 if (log) 2792 log->Printf("%s - writing File Header, 0x%" PRIx64 " bytes", __FUNCTION__, 2793 (uint64_t)num_bytes); 2794 2795 Status err = file.Write(&head, num_bytes); 2796 if (!err.Success()) { 2797 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path); 2798 strm.EOL(); 2799 return false; 2800 } 2801 2802 // Create the headers describing the element type of the allocation. 2803 std::shared_ptr<uint8_t> element_header_buffer( 2804 new uint8_t[element_header_size]); 2805 if (element_header_buffer == nullptr) { 2806 strm.Printf("Internal Error: Couldn't allocate %" PRIu64 2807 " bytes on the heap", 2808 (uint64_t)element_header_size); 2809 strm.EOL(); 2810 return false; 2811 } 2812 2813 PopulateElementHeaders(element_header_buffer, 0, alloc->element); 2814 2815 // Write headers for allocation element type to file 2816 num_bytes = element_header_size; 2817 if (log) 2818 log->Printf("%s - writing element headers, 0x%" PRIx64 " bytes.", 2819 __FUNCTION__, (uint64_t)num_bytes); 2820 2821 err = file.Write(element_header_buffer.get(), num_bytes); 2822 if (!err.Success()) { 2823 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path); 2824 strm.EOL(); 2825 return false; 2826 } 2827 2828 // Write allocation data to file 2829 num_bytes = static_cast<size_t>(*alloc->size.get()); 2830 if (log) 2831 log->Printf("%s - writing 0x%" PRIx64 " bytes", __FUNCTION__, 2832 (uint64_t)num_bytes); 2833 2834 err = file.Write(buffer.get(), num_bytes); 2835 if (!err.Success()) { 2836 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path); 2837 strm.EOL(); 2838 return false; 2839 } 2840 2841 strm.Printf("Allocation written to file '%s'", path); 2842 strm.EOL(); 2843 return true; 2844 } 2845 2846 bool RenderScriptRuntime::LoadModule(const lldb::ModuleSP &module_sp) { 2847 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2848 2849 if (module_sp) { 2850 for (const auto &rs_module : m_rsmodules) { 2851 if (rs_module->m_module == module_sp) { 2852 // Check if the user has enabled automatically breaking on all RS 2853 // kernels. 2854 if (m_breakAllKernels) 2855 BreakOnModuleKernels(rs_module); 2856 2857 return false; 2858 } 2859 } 2860 bool module_loaded = false; 2861 switch (GetModuleKind(module_sp)) { 2862 case eModuleKindKernelObj: { 2863 RSModuleDescriptorSP module_desc; 2864 module_desc.reset(new RSModuleDescriptor(module_sp)); 2865 if (module_desc->ParseRSInfo()) { 2866 m_rsmodules.push_back(module_desc); 2867 module_desc->WarnIfVersionMismatch(GetProcess() 2868 ->GetTarget() 2869 .GetDebugger() 2870 .GetAsyncOutputStream() 2871 .get()); 2872 module_loaded = true; 2873 } 2874 if (module_loaded) { 2875 FixupScriptDetails(module_desc); 2876 } 2877 break; 2878 } 2879 case eModuleKindDriver: { 2880 if (!m_libRSDriver) { 2881 m_libRSDriver = module_sp; 2882 LoadRuntimeHooks(m_libRSDriver, RenderScriptRuntime::eModuleKindDriver); 2883 } 2884 break; 2885 } 2886 case eModuleKindImpl: { 2887 if (!m_libRSCpuRef) { 2888 m_libRSCpuRef = module_sp; 2889 LoadRuntimeHooks(m_libRSCpuRef, RenderScriptRuntime::eModuleKindImpl); 2890 } 2891 break; 2892 } 2893 case eModuleKindLibRS: { 2894 if (!m_libRS) { 2895 m_libRS = module_sp; 2896 static ConstString gDbgPresentStr("gDebuggerPresent"); 2897 const Symbol *debug_present = m_libRS->FindFirstSymbolWithNameAndType( 2898 gDbgPresentStr, eSymbolTypeData); 2899 if (debug_present) { 2900 Status err; 2901 uint32_t flag = 0x00000001U; 2902 Target &target = GetProcess()->GetTarget(); 2903 addr_t addr = debug_present->GetLoadAddress(&target); 2904 GetProcess()->WriteMemory(addr, &flag, sizeof(flag), err); 2905 if (err.Success()) { 2906 if (log) 2907 log->Printf("%s - debugger present flag set on debugee.", 2908 __FUNCTION__); 2909 2910 m_debuggerPresentFlagged = true; 2911 } else if (log) { 2912 log->Printf("%s - error writing debugger present flags '%s' ", 2913 __FUNCTION__, err.AsCString()); 2914 } 2915 } else if (log) { 2916 log->Printf( 2917 "%s - error writing debugger present flags - symbol not found", 2918 __FUNCTION__); 2919 } 2920 } 2921 break; 2922 } 2923 default: 2924 break; 2925 } 2926 if (module_loaded) 2927 Update(); 2928 return module_loaded; 2929 } 2930 return false; 2931 } 2932 2933 void RenderScriptRuntime::Update() { 2934 if (m_rsmodules.size() > 0) { 2935 if (!m_initiated) { 2936 Initiate(); 2937 } 2938 } 2939 } 2940 2941 void RSModuleDescriptor::WarnIfVersionMismatch(lldb_private::Stream *s) const { 2942 if (!s) 2943 return; 2944 2945 if (m_slang_version.empty() || m_bcc_version.empty()) { 2946 s->PutCString("WARNING: Unknown bcc or slang (llvm-rs-cc) version; debug " 2947 "experience may be unreliable"); 2948 s->EOL(); 2949 } else if (m_slang_version != m_bcc_version) { 2950 s->Printf("WARNING: The debug info emitted by the slang frontend " 2951 "(llvm-rs-cc) used to build this module (%s) does not match the " 2952 "version of bcc used to generate the debug information (%s). " 2953 "This is an unsupported configuration and may result in a poor " 2954 "debugging experience; proceed with caution", 2955 m_slang_version.c_str(), m_bcc_version.c_str()); 2956 s->EOL(); 2957 } 2958 } 2959 2960 bool RSModuleDescriptor::ParsePragmaCount(llvm::StringRef *lines, 2961 size_t n_lines) { 2962 // Skip the pragma prototype line 2963 ++lines; 2964 for (; n_lines--; ++lines) { 2965 const auto kv_pair = lines->split(" - "); 2966 m_pragmas[kv_pair.first.trim().str()] = kv_pair.second.trim().str(); 2967 } 2968 return true; 2969 } 2970 2971 bool RSModuleDescriptor::ParseExportReduceCount(llvm::StringRef *lines, 2972 size_t n_lines) { 2973 // The list of reduction kernels in the `.rs.info` symbol is of the form 2974 // "signature - accumulatordatasize - reduction_name - initializer_name - 2975 // accumulator_name - combiner_name - outconverter_name - halter_name" Where 2976 // a function is not explicitly named by the user, or is not generated by the 2977 // compiler, it is named "." so the dash separated list should always be 8 2978 // items long 2979 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 2980 // Skip the exportReduceCount line 2981 ++lines; 2982 for (; n_lines--; ++lines) { 2983 llvm::SmallVector<llvm::StringRef, 8> spec; 2984 lines->split(spec, " - "); 2985 if (spec.size() != 8) { 2986 if (spec.size() < 8) { 2987 if (log) 2988 log->Error("Error parsing RenderScript reduction spec. wrong number " 2989 "of fields"); 2990 return false; 2991 } else if (log) 2992 log->Warning("Extraneous members in reduction spec: '%s'", 2993 lines->str().c_str()); 2994 } 2995 2996 const auto sig_s = spec[0]; 2997 uint32_t sig; 2998 if (sig_s.getAsInteger(10, sig)) { 2999 if (log) 3000 log->Error("Error parsing Renderscript reduction spec: invalid kernel " 3001 "signature: '%s'", 3002 sig_s.str().c_str()); 3003 return false; 3004 } 3005 3006 const auto accum_data_size_s = spec[1]; 3007 uint32_t accum_data_size; 3008 if (accum_data_size_s.getAsInteger(10, accum_data_size)) { 3009 if (log) 3010 log->Error("Error parsing Renderscript reduction spec: invalid " 3011 "accumulator data size %s", 3012 accum_data_size_s.str().c_str()); 3013 return false; 3014 } 3015 3016 if (log) 3017 log->Printf("Found RenderScript reduction '%s'", spec[2].str().c_str()); 3018 3019 m_reductions.push_back(RSReductionDescriptor(this, sig, accum_data_size, 3020 spec[2], spec[3], spec[4], 3021 spec[5], spec[6], spec[7])); 3022 } 3023 return true; 3024 } 3025 3026 bool RSModuleDescriptor::ParseVersionInfo(llvm::StringRef *lines, 3027 size_t n_lines) { 3028 // Skip the versionInfo line 3029 ++lines; 3030 for (; n_lines--; ++lines) { 3031 // We're only interested in bcc and slang versions, and ignore all other 3032 // versionInfo lines 3033 const auto kv_pair = lines->split(" - "); 3034 if (kv_pair.first == "slang") 3035 m_slang_version = kv_pair.second.str(); 3036 else if (kv_pair.first == "bcc") 3037 m_bcc_version = kv_pair.second.str(); 3038 } 3039 return true; 3040 } 3041 3042 bool RSModuleDescriptor::ParseExportForeachCount(llvm::StringRef *lines, 3043 size_t n_lines) { 3044 // Skip the exportForeachCount line 3045 ++lines; 3046 for (; n_lines--; ++lines) { 3047 uint32_t slot; 3048 // `forEach` kernels are listed in the `.rs.info` packet as a "slot - name" 3049 // pair per line 3050 const auto kv_pair = lines->split(" - "); 3051 if (kv_pair.first.getAsInteger(10, slot)) 3052 return false; 3053 m_kernels.push_back(RSKernelDescriptor(this, kv_pair.second, slot)); 3054 } 3055 return true; 3056 } 3057 3058 bool RSModuleDescriptor::ParseExportVarCount(llvm::StringRef *lines, 3059 size_t n_lines) { 3060 // Skip the ExportVarCount line 3061 ++lines; 3062 for (; n_lines--; ++lines) 3063 m_globals.push_back(RSGlobalDescriptor(this, *lines)); 3064 return true; 3065 } 3066 3067 // The .rs.info symbol in renderscript modules contains a string which needs to 3068 // be parsed. The string is basic and is parsed on a line by line basis. 3069 bool RSModuleDescriptor::ParseRSInfo() { 3070 assert(m_module); 3071 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3072 const Symbol *info_sym = m_module->FindFirstSymbolWithNameAndType( 3073 ConstString(".rs.info"), eSymbolTypeData); 3074 if (!info_sym) 3075 return false; 3076 3077 const addr_t addr = info_sym->GetAddressRef().GetFileAddress(); 3078 if (addr == LLDB_INVALID_ADDRESS) 3079 return false; 3080 3081 const addr_t size = info_sym->GetByteSize(); 3082 const FileSpec fs = m_module->GetFileSpec(); 3083 3084 auto buffer = DataBufferLLVM::CreateSliceFromPath(fs.GetPath(), size, addr); 3085 if (!buffer) 3086 return false; 3087 3088 // split rs.info. contents into lines 3089 llvm::SmallVector<llvm::StringRef, 128> info_lines; 3090 { 3091 const llvm::StringRef raw_rs_info((const char *)buffer->GetBytes()); 3092 raw_rs_info.split(info_lines, '\n'); 3093 if (log) 3094 log->Printf("'.rs.info symbol for '%s':\n%s", 3095 m_module->GetFileSpec().GetCString(), 3096 raw_rs_info.str().c_str()); 3097 } 3098 3099 enum { 3100 eExportVar, 3101 eExportForEach, 3102 eExportReduce, 3103 ePragma, 3104 eBuildChecksum, 3105 eObjectSlot, 3106 eVersionInfo, 3107 }; 3108 3109 const auto rs_info_handler = [](llvm::StringRef name) -> int { 3110 return llvm::StringSwitch<int>(name) 3111 // The number of visible global variables in the script 3112 .Case("exportVarCount", eExportVar) 3113 // The number of RenderScrip `forEach` kernels __attribute__((kernel)) 3114 .Case("exportForEachCount", eExportForEach) 3115 // The number of generalreductions: This marked in the script by 3116 // `#pragma reduce()` 3117 .Case("exportReduceCount", eExportReduce) 3118 // Total count of all RenderScript specific `#pragmas` used in the 3119 // script 3120 .Case("pragmaCount", ePragma) 3121 .Case("objectSlotCount", eObjectSlot) 3122 .Case("versionInfo", eVersionInfo) 3123 .Default(-1); 3124 }; 3125 3126 // parse all text lines of .rs.info 3127 for (auto line = info_lines.begin(); line != info_lines.end(); ++line) { 3128 const auto kv_pair = line->split(": "); 3129 const auto key = kv_pair.first; 3130 const auto val = kv_pair.second.trim(); 3131 3132 const auto handler = rs_info_handler(key); 3133 if (handler == -1) 3134 continue; 3135 // getAsInteger returns `true` on an error condition - we're only 3136 // interested in numeric fields at the moment 3137 uint64_t n_lines; 3138 if (val.getAsInteger(10, n_lines)) { 3139 LLDB_LOGV(log, "Failed to parse non-numeric '.rs.info' section {0}", 3140 line->str()); 3141 continue; 3142 } 3143 if (info_lines.end() - (line + 1) < (ptrdiff_t)n_lines) 3144 return false; 3145 3146 bool success = false; 3147 switch (handler) { 3148 case eExportVar: 3149 success = ParseExportVarCount(line, n_lines); 3150 break; 3151 case eExportForEach: 3152 success = ParseExportForeachCount(line, n_lines); 3153 break; 3154 case eExportReduce: 3155 success = ParseExportReduceCount(line, n_lines); 3156 break; 3157 case ePragma: 3158 success = ParsePragmaCount(line, n_lines); 3159 break; 3160 case eVersionInfo: 3161 success = ParseVersionInfo(line, n_lines); 3162 break; 3163 default: { 3164 if (log) 3165 log->Printf("%s - skipping .rs.info field '%s'", __FUNCTION__, 3166 line->str().c_str()); 3167 continue; 3168 } 3169 } 3170 if (!success) 3171 return false; 3172 line += n_lines; 3173 } 3174 return info_lines.size() > 0; 3175 } 3176 3177 void RenderScriptRuntime::DumpStatus(Stream &strm) const { 3178 if (m_libRS) { 3179 strm.Printf("Runtime Library discovered."); 3180 strm.EOL(); 3181 } 3182 if (m_libRSDriver) { 3183 strm.Printf("Runtime Driver discovered."); 3184 strm.EOL(); 3185 } 3186 if (m_libRSCpuRef) { 3187 strm.Printf("CPU Reference Implementation discovered."); 3188 strm.EOL(); 3189 } 3190 3191 if (m_runtimeHooks.size()) { 3192 strm.Printf("Runtime functions hooked:"); 3193 strm.EOL(); 3194 for (auto b : m_runtimeHooks) { 3195 strm.Indent(b.second->defn->name); 3196 strm.EOL(); 3197 } 3198 } else { 3199 strm.Printf("Runtime is not hooked."); 3200 strm.EOL(); 3201 } 3202 } 3203 3204 void RenderScriptRuntime::DumpContexts(Stream &strm) const { 3205 strm.Printf("Inferred RenderScript Contexts:"); 3206 strm.EOL(); 3207 strm.IndentMore(); 3208 3209 std::map<addr_t, uint64_t> contextReferences; 3210 3211 // Iterate over all of the currently discovered scripts. Note: We cant push 3212 // or pop from m_scripts inside this loop or it may invalidate script. 3213 for (const auto &script : m_scripts) { 3214 if (!script->context.isValid()) 3215 continue; 3216 lldb::addr_t context = *script->context; 3217 3218 if (contextReferences.find(context) != contextReferences.end()) { 3219 contextReferences[context]++; 3220 } else { 3221 contextReferences[context] = 1; 3222 } 3223 } 3224 3225 for (const auto &cRef : contextReferences) { 3226 strm.Printf("Context 0x%" PRIx64 ": %" PRIu64 " script instances", 3227 cRef.first, cRef.second); 3228 strm.EOL(); 3229 } 3230 strm.IndentLess(); 3231 } 3232 3233 void RenderScriptRuntime::DumpKernels(Stream &strm) const { 3234 strm.Printf("RenderScript Kernels:"); 3235 strm.EOL(); 3236 strm.IndentMore(); 3237 for (const auto &module : m_rsmodules) { 3238 strm.Printf("Resource '%s':", module->m_resname.c_str()); 3239 strm.EOL(); 3240 for (const auto &kernel : module->m_kernels) { 3241 strm.Indent(kernel.m_name.AsCString()); 3242 strm.EOL(); 3243 } 3244 } 3245 strm.IndentLess(); 3246 } 3247 3248 RenderScriptRuntime::AllocationDetails * 3249 RenderScriptRuntime::FindAllocByID(Stream &strm, const uint32_t alloc_id) { 3250 AllocationDetails *alloc = nullptr; 3251 3252 // See if we can find allocation using id as an index; 3253 if (alloc_id <= m_allocations.size() && alloc_id != 0 && 3254 m_allocations[alloc_id - 1]->id == alloc_id) { 3255 alloc = m_allocations[alloc_id - 1].get(); 3256 return alloc; 3257 } 3258 3259 // Fallback to searching 3260 for (const auto &a : m_allocations) { 3261 if (a->id == alloc_id) { 3262 alloc = a.get(); 3263 break; 3264 } 3265 } 3266 3267 if (alloc == nullptr) { 3268 strm.Printf("Error: Couldn't find allocation with id matching %" PRIu32, 3269 alloc_id); 3270 strm.EOL(); 3271 } 3272 3273 return alloc; 3274 } 3275 3276 // Prints the contents of an allocation to the output stream, which may be a 3277 // file 3278 bool RenderScriptRuntime::DumpAllocation(Stream &strm, StackFrame *frame_ptr, 3279 const uint32_t id) { 3280 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3281 3282 // Check we can find the desired allocation 3283 AllocationDetails *alloc = FindAllocByID(strm, id); 3284 if (!alloc) 3285 return false; // FindAllocByID() will print error message for us here 3286 3287 if (log) 3288 log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__, 3289 *alloc->address.get()); 3290 3291 // Check we have information about the allocation, if not calculate it 3292 if (alloc->ShouldRefresh()) { 3293 if (log) 3294 log->Printf("%s - allocation details not calculated yet, jitting info.", 3295 __FUNCTION__); 3296 3297 // JIT all the allocation information 3298 if (!RefreshAllocation(alloc, frame_ptr)) { 3299 strm.Printf("Error: Couldn't JIT allocation details"); 3300 strm.EOL(); 3301 return false; 3302 } 3303 } 3304 3305 // Establish format and size of each data element 3306 const uint32_t vec_size = *alloc->element.type_vec_size.get(); 3307 const Element::DataType type = *alloc->element.type.get(); 3308 3309 assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && 3310 "Invalid allocation type"); 3311 3312 lldb::Format format; 3313 if (type >= Element::RS_TYPE_ELEMENT) 3314 format = eFormatHex; 3315 else 3316 format = vec_size == 1 3317 ? static_cast<lldb::Format>( 3318 AllocationDetails::RSTypeToFormat[type][eFormatSingle]) 3319 : static_cast<lldb::Format>( 3320 AllocationDetails::RSTypeToFormat[type][eFormatVector]); 3321 3322 const uint32_t data_size = *alloc->element.datum_size.get(); 3323 3324 if (log) 3325 log->Printf("%s - element size %" PRIu32 " bytes, including padding", 3326 __FUNCTION__, data_size); 3327 3328 // Allocate a buffer to copy data into 3329 std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr); 3330 if (!buffer) { 3331 strm.Printf("Error: Couldn't read allocation data"); 3332 strm.EOL(); 3333 return false; 3334 } 3335 3336 // Calculate stride between rows as there may be padding at end of rows since 3337 // allocated memory is 16-byte aligned 3338 if (!alloc->stride.isValid()) { 3339 if (alloc->dimension.get()->dim_2 == 0) // We only have one dimension 3340 alloc->stride = 0; 3341 else if (!JITAllocationStride(alloc, frame_ptr)) { 3342 strm.Printf("Error: Couldn't calculate allocation row stride"); 3343 strm.EOL(); 3344 return false; 3345 } 3346 } 3347 const uint32_t stride = *alloc->stride.get(); 3348 const uint32_t size = *alloc->size.get(); // Size of whole allocation 3349 const uint32_t padding = 3350 alloc->element.padding.isValid() ? *alloc->element.padding.get() : 0; 3351 if (log) 3352 log->Printf("%s - stride %" PRIu32 " bytes, size %" PRIu32 3353 " bytes, padding %" PRIu32, 3354 __FUNCTION__, stride, size, padding); 3355 3356 // Find dimensions used to index loops, so need to be non-zero 3357 uint32_t dim_x = alloc->dimension.get()->dim_1; 3358 dim_x = dim_x == 0 ? 1 : dim_x; 3359 3360 uint32_t dim_y = alloc->dimension.get()->dim_2; 3361 dim_y = dim_y == 0 ? 1 : dim_y; 3362 3363 uint32_t dim_z = alloc->dimension.get()->dim_3; 3364 dim_z = dim_z == 0 ? 1 : dim_z; 3365 3366 // Use data extractor to format output 3367 const uint32_t target_ptr_size = 3368 GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 3369 DataExtractor alloc_data(buffer.get(), size, GetProcess()->GetByteOrder(), 3370 target_ptr_size); 3371 3372 uint32_t offset = 0; // Offset in buffer to next element to be printed 3373 uint32_t prev_row = 0; // Offset to the start of the previous row 3374 3375 // Iterate over allocation dimensions, printing results to user 3376 strm.Printf("Data (X, Y, Z):"); 3377 for (uint32_t z = 0; z < dim_z; ++z) { 3378 for (uint32_t y = 0; y < dim_y; ++y) { 3379 // Use stride to index start of next row. 3380 if (!(y == 0 && z == 0)) 3381 offset = prev_row + stride; 3382 prev_row = offset; 3383 3384 // Print each element in the row individually 3385 for (uint32_t x = 0; x < dim_x; ++x) { 3386 strm.Printf("\n(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ") = ", x, y, z); 3387 if ((type == Element::RS_TYPE_NONE) && 3388 (alloc->element.children.size() > 0) && 3389 (alloc->element.type_name != Element::GetFallbackStructName())) { 3390 // Here we are dumping an Element of struct type. This is done using 3391 // expression evaluation with the name of the struct type and pointer 3392 // to element. Don't print the name of the resulting expression, 3393 // since this will be '$[0-9]+' 3394 DumpValueObjectOptions expr_options; 3395 expr_options.SetHideName(true); 3396 3397 // Setup expression as dereferencing a pointer cast to element 3398 // address. 3399 char expr_char_buffer[jit_max_expr_size]; 3400 int written = 3401 snprintf(expr_char_buffer, jit_max_expr_size, "*(%s*) 0x%" PRIx64, 3402 alloc->element.type_name.AsCString(), 3403 *alloc->data_ptr.get() + offset); 3404 3405 if (written < 0 || written >= jit_max_expr_size) { 3406 if (log) 3407 log->Printf("%s - error in snprintf().", __FUNCTION__); 3408 continue; 3409 } 3410 3411 // Evaluate expression 3412 ValueObjectSP expr_result; 3413 GetProcess()->GetTarget().EvaluateExpression(expr_char_buffer, 3414 frame_ptr, expr_result); 3415 3416 // Print the results to our stream. 3417 expr_result->Dump(strm, expr_options); 3418 } else { 3419 DumpDataExtractor(alloc_data, &strm, offset, format, 3420 data_size - padding, 1, 1, LLDB_INVALID_ADDRESS, 0, 3421 0); 3422 } 3423 offset += data_size; 3424 } 3425 } 3426 } 3427 strm.EOL(); 3428 3429 return true; 3430 } 3431 3432 // Function recalculates all our cached information about allocations by 3433 // jitting the RS runtime regarding each allocation we know about. Returns true 3434 // if all allocations could be recomputed, false otherwise. 3435 bool RenderScriptRuntime::RecomputeAllAllocations(Stream &strm, 3436 StackFrame *frame_ptr) { 3437 bool success = true; 3438 for (auto &alloc : m_allocations) { 3439 // JIT current allocation information 3440 if (!RefreshAllocation(alloc.get(), frame_ptr)) { 3441 strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32 3442 "\n", 3443 alloc->id); 3444 success = false; 3445 } 3446 } 3447 3448 if (success) 3449 strm.Printf("All allocations successfully recomputed"); 3450 strm.EOL(); 3451 3452 return success; 3453 } 3454 3455 // Prints information regarding currently loaded allocations. These details are 3456 // gathered by jitting the runtime, which has as latency. Index parameter 3457 // specifies a single allocation ID to print, or a zero value to print them all 3458 void RenderScriptRuntime::ListAllocations(Stream &strm, StackFrame *frame_ptr, 3459 const uint32_t index) { 3460 strm.Printf("RenderScript Allocations:"); 3461 strm.EOL(); 3462 strm.IndentMore(); 3463 3464 for (auto &alloc : m_allocations) { 3465 // index will only be zero if we want to print all allocations 3466 if (index != 0 && index != alloc->id) 3467 continue; 3468 3469 // JIT current allocation information 3470 if (alloc->ShouldRefresh() && !RefreshAllocation(alloc.get(), frame_ptr)) { 3471 strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32, 3472 alloc->id); 3473 strm.EOL(); 3474 continue; 3475 } 3476 3477 strm.Printf("%" PRIu32 ":", alloc->id); 3478 strm.EOL(); 3479 strm.IndentMore(); 3480 3481 strm.Indent("Context: "); 3482 if (!alloc->context.isValid()) 3483 strm.Printf("unknown\n"); 3484 else 3485 strm.Printf("0x%" PRIx64 "\n", *alloc->context.get()); 3486 3487 strm.Indent("Address: "); 3488 if (!alloc->address.isValid()) 3489 strm.Printf("unknown\n"); 3490 else 3491 strm.Printf("0x%" PRIx64 "\n", *alloc->address.get()); 3492 3493 strm.Indent("Data pointer: "); 3494 if (!alloc->data_ptr.isValid()) 3495 strm.Printf("unknown\n"); 3496 else 3497 strm.Printf("0x%" PRIx64 "\n", *alloc->data_ptr.get()); 3498 3499 strm.Indent("Dimensions: "); 3500 if (!alloc->dimension.isValid()) 3501 strm.Printf("unknown\n"); 3502 else 3503 strm.Printf("(%" PRId32 ", %" PRId32 ", %" PRId32 ")\n", 3504 alloc->dimension.get()->dim_1, alloc->dimension.get()->dim_2, 3505 alloc->dimension.get()->dim_3); 3506 3507 strm.Indent("Data Type: "); 3508 if (!alloc->element.type.isValid() || 3509 !alloc->element.type_vec_size.isValid()) 3510 strm.Printf("unknown\n"); 3511 else { 3512 const int vector_size = *alloc->element.type_vec_size.get(); 3513 Element::DataType type = *alloc->element.type.get(); 3514 3515 if (!alloc->element.type_name.IsEmpty()) 3516 strm.Printf("%s\n", alloc->element.type_name.AsCString()); 3517 else { 3518 // Enum value isn't monotonous, so doesn't always index 3519 // RsDataTypeToString array 3520 if (type >= Element::RS_TYPE_ELEMENT && type <= Element::RS_TYPE_FONT) 3521 type = 3522 static_cast<Element::DataType>((type - Element::RS_TYPE_ELEMENT) + 3523 Element::RS_TYPE_MATRIX_2X2 + 1); 3524 3525 if (type >= (sizeof(AllocationDetails::RsDataTypeToString) / 3526 sizeof(AllocationDetails::RsDataTypeToString[0])) || 3527 vector_size > 4 || vector_size < 1) 3528 strm.Printf("invalid type\n"); 3529 else 3530 strm.Printf( 3531 "%s\n", 3532 AllocationDetails::RsDataTypeToString[static_cast<uint32_t>(type)] 3533 [vector_size - 1]); 3534 } 3535 } 3536 3537 strm.Indent("Data Kind: "); 3538 if (!alloc->element.type_kind.isValid()) 3539 strm.Printf("unknown\n"); 3540 else { 3541 const Element::DataKind kind = *alloc->element.type_kind.get(); 3542 if (kind < Element::RS_KIND_USER || kind > Element::RS_KIND_PIXEL_YUV) 3543 strm.Printf("invalid kind\n"); 3544 else 3545 strm.Printf( 3546 "%s\n", 3547 AllocationDetails::RsDataKindToString[static_cast<uint32_t>(kind)]); 3548 } 3549 3550 strm.EOL(); 3551 strm.IndentLess(); 3552 } 3553 strm.IndentLess(); 3554 } 3555 3556 // Set breakpoints on every kernel found in RS module 3557 void RenderScriptRuntime::BreakOnModuleKernels( 3558 const RSModuleDescriptorSP rsmodule_sp) { 3559 for (const auto &kernel : rsmodule_sp->m_kernels) { 3560 // Don't set breakpoint on 'root' kernel 3561 if (strcmp(kernel.m_name.AsCString(), "root") == 0) 3562 continue; 3563 3564 CreateKernelBreakpoint(kernel.m_name); 3565 } 3566 } 3567 3568 // Method is internally called by the 'kernel breakpoint all' command to enable 3569 // or disable breaking on all kernels. When do_break is true we want to enable 3570 // this functionality. When do_break is false we want to disable it. 3571 void RenderScriptRuntime::SetBreakAllKernels(bool do_break, TargetSP target) { 3572 Log *log( 3573 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3574 3575 InitSearchFilter(target); 3576 3577 // Set breakpoints on all the kernels 3578 if (do_break && !m_breakAllKernels) { 3579 m_breakAllKernels = true; 3580 3581 for (const auto &module : m_rsmodules) 3582 BreakOnModuleKernels(module); 3583 3584 if (log) 3585 log->Printf("%s(True) - breakpoints set on all currently loaded kernels.", 3586 __FUNCTION__); 3587 } else if (!do_break && 3588 m_breakAllKernels) // Breakpoints won't be set on any new kernels. 3589 { 3590 m_breakAllKernels = false; 3591 3592 if (log) 3593 log->Printf("%s(False) - breakpoints no longer automatically set.", 3594 __FUNCTION__); 3595 } 3596 } 3597 3598 // Given the name of a kernel this function creates a breakpoint using our own 3599 // breakpoint resolver, and returns the Breakpoint shared pointer. 3600 BreakpointSP 3601 RenderScriptRuntime::CreateKernelBreakpoint(const ConstString &name) { 3602 Log *log( 3603 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3604 3605 if (!m_filtersp) { 3606 if (log) 3607 log->Printf("%s - error, no breakpoint search filter set.", __FUNCTION__); 3608 return nullptr; 3609 } 3610 3611 BreakpointResolverSP resolver_sp(new RSBreakpointResolver(nullptr, name)); 3612 Target &target = GetProcess()->GetTarget(); 3613 BreakpointSP bp = target.CreateBreakpoint( 3614 m_filtersp, resolver_sp, false, false, false); 3615 3616 // Give RS breakpoints a specific name, so the user can manipulate them as a 3617 // group. 3618 Status err; 3619 target.AddNameToBreakpoint(bp, "RenderScriptKernel", err); 3620 if (err.Fail() && log) 3621 if (log) 3622 log->Printf("%s - error setting break name, '%s'.", __FUNCTION__, 3623 err.AsCString()); 3624 3625 return bp; 3626 } 3627 3628 BreakpointSP 3629 RenderScriptRuntime::CreateReductionBreakpoint(const ConstString &name, 3630 int kernel_types) { 3631 Log *log( 3632 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3633 3634 if (!m_filtersp) { 3635 if (log) 3636 log->Printf("%s - error, no breakpoint search filter set.", __FUNCTION__); 3637 return nullptr; 3638 } 3639 3640 BreakpointResolverSP resolver_sp(new RSReduceBreakpointResolver( 3641 nullptr, name, &m_rsmodules, kernel_types)); 3642 Target &target = GetProcess()->GetTarget(); 3643 BreakpointSP bp = target.CreateBreakpoint( 3644 m_filtersp, resolver_sp, false, false, false); 3645 3646 // Give RS breakpoints a specific name, so the user can manipulate them as a 3647 // group. 3648 Status err; 3649 target.AddNameToBreakpoint(bp, "RenderScriptReduction", err); 3650 if (err.Fail() && log) 3651 log->Printf("%s - error setting break name, '%s'.", __FUNCTION__, 3652 err.AsCString()); 3653 3654 return bp; 3655 } 3656 3657 // Given an expression for a variable this function tries to calculate the 3658 // variable's value. If this is possible it returns true and sets the uint64_t 3659 // parameter to the variables unsigned value. Otherwise function returns false. 3660 bool RenderScriptRuntime::GetFrameVarAsUnsigned(const StackFrameSP frame_sp, 3661 const char *var_name, 3662 uint64_t &val) { 3663 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3664 Status err; 3665 VariableSP var_sp; 3666 3667 // Find variable in stack frame 3668 ValueObjectSP value_sp(frame_sp->GetValueForVariableExpressionPath( 3669 var_name, eNoDynamicValues, 3670 StackFrame::eExpressionPathOptionCheckPtrVsMember | 3671 StackFrame::eExpressionPathOptionsAllowDirectIVarAccess, 3672 var_sp, err)); 3673 if (!err.Success()) { 3674 if (log) 3675 log->Printf("%s - error, couldn't find '%s' in frame", __FUNCTION__, 3676 var_name); 3677 return false; 3678 } 3679 3680 // Find the uint32_t value for the variable 3681 bool success = false; 3682 val = value_sp->GetValueAsUnsigned(0, &success); 3683 if (!success) { 3684 if (log) 3685 log->Printf("%s - error, couldn't parse '%s' as an uint32_t.", 3686 __FUNCTION__, var_name); 3687 return false; 3688 } 3689 3690 return true; 3691 } 3692 3693 // Function attempts to find the current coordinate of a kernel invocation by 3694 // investigating the values of frame variables in the .expand function. These 3695 // coordinates are returned via the coord array reference parameter. Returns 3696 // true if the coordinates could be found, and false otherwise. 3697 bool RenderScriptRuntime::GetKernelCoordinate(RSCoordinate &coord, 3698 Thread *thread_ptr) { 3699 static const char *const x_expr = "rsIndex"; 3700 static const char *const y_expr = "p->current.y"; 3701 static const char *const z_expr = "p->current.z"; 3702 3703 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3704 3705 if (!thread_ptr) { 3706 if (log) 3707 log->Printf("%s - Error, No thread pointer", __FUNCTION__); 3708 3709 return false; 3710 } 3711 3712 // Walk the call stack looking for a function whose name has the suffix 3713 // '.expand' and contains the variables we're looking for. 3714 for (uint32_t i = 0; i < thread_ptr->GetStackFrameCount(); ++i) { 3715 if (!thread_ptr->SetSelectedFrameByIndex(i)) 3716 continue; 3717 3718 StackFrameSP frame_sp = thread_ptr->GetSelectedFrame(); 3719 if (!frame_sp) 3720 continue; 3721 3722 // Find the function name 3723 const SymbolContext sym_ctx = 3724 frame_sp->GetSymbolContext(eSymbolContextFunction); 3725 const ConstString func_name = sym_ctx.GetFunctionName(); 3726 if (!func_name) 3727 continue; 3728 3729 if (log) 3730 log->Printf("%s - Inspecting function '%s'", __FUNCTION__, 3731 func_name.GetCString()); 3732 3733 // Check if function name has .expand suffix 3734 if (!func_name.GetStringRef().endswith(".expand")) 3735 continue; 3736 3737 if (log) 3738 log->Printf("%s - Found .expand function '%s'", __FUNCTION__, 3739 func_name.GetCString()); 3740 3741 // Get values for variables in .expand frame that tell us the current 3742 // kernel invocation 3743 uint64_t x, y, z; 3744 bool found = GetFrameVarAsUnsigned(frame_sp, x_expr, x) && 3745 GetFrameVarAsUnsigned(frame_sp, y_expr, y) && 3746 GetFrameVarAsUnsigned(frame_sp, z_expr, z); 3747 3748 if (found) { 3749 // The RenderScript runtime uses uint32_t for these vars. If they're not 3750 // within bounds, our frame parsing is garbage 3751 assert(x <= UINT32_MAX && y <= UINT32_MAX && z <= UINT32_MAX); 3752 coord.x = (uint32_t)x; 3753 coord.y = (uint32_t)y; 3754 coord.z = (uint32_t)z; 3755 return true; 3756 } 3757 } 3758 return false; 3759 } 3760 3761 // Callback when a kernel breakpoint hits and we're looking for a specific 3762 // coordinate. Baton parameter contains a pointer to the target coordinate we 3763 // want to break on. Function then checks the .expand frame for the current 3764 // coordinate and breaks to user if it matches. Parameter 'break_id' is the id 3765 // of the Breakpoint which made the callback. Parameter 'break_loc_id' is the 3766 // id for the BreakpointLocation which was hit, a single logical breakpoint can 3767 // have multiple addresses. 3768 bool RenderScriptRuntime::KernelBreakpointHit(void *baton, 3769 StoppointCallbackContext *ctx, 3770 user_id_t break_id, 3771 user_id_t break_loc_id) { 3772 Log *log( 3773 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3774 3775 assert(baton && 3776 "Error: null baton in conditional kernel breakpoint callback"); 3777 3778 // Coordinate we want to stop on 3779 RSCoordinate target_coord = *static_cast<RSCoordinate *>(baton); 3780 3781 if (log) 3782 log->Printf("%s - Break ID %" PRIu64 ", " FMT_COORD, __FUNCTION__, break_id, 3783 target_coord.x, target_coord.y, target_coord.z); 3784 3785 // Select current thread 3786 ExecutionContext context(ctx->exe_ctx_ref); 3787 Thread *thread_ptr = context.GetThreadPtr(); 3788 assert(thread_ptr && "Null thread pointer"); 3789 3790 // Find current kernel invocation from .expand frame variables 3791 RSCoordinate current_coord{}; 3792 if (!GetKernelCoordinate(current_coord, thread_ptr)) { 3793 if (log) 3794 log->Printf("%s - Error, couldn't select .expand stack frame", 3795 __FUNCTION__); 3796 return false; 3797 } 3798 3799 if (log) 3800 log->Printf("%s - " FMT_COORD, __FUNCTION__, current_coord.x, 3801 current_coord.y, current_coord.z); 3802 3803 // Check if the current kernel invocation coordinate matches our target 3804 // coordinate 3805 if (target_coord == current_coord) { 3806 if (log) 3807 log->Printf("%s, BREAKING " FMT_COORD, __FUNCTION__, current_coord.x, 3808 current_coord.y, current_coord.z); 3809 3810 BreakpointSP breakpoint_sp = 3811 context.GetTargetPtr()->GetBreakpointByID(break_id); 3812 assert(breakpoint_sp != nullptr && 3813 "Error: Couldn't find breakpoint matching break id for callback"); 3814 breakpoint_sp->SetEnabled(false); // Optimise since conditional breakpoint 3815 // should only be hit once. 3816 return true; 3817 } 3818 3819 // No match on coordinate 3820 return false; 3821 } 3822 3823 void RenderScriptRuntime::SetConditional(BreakpointSP bp, Stream &messages, 3824 const RSCoordinate &coord) { 3825 messages.Printf("Conditional kernel breakpoint on coordinate " FMT_COORD, 3826 coord.x, coord.y, coord.z); 3827 messages.EOL(); 3828 3829 // Allocate memory for the baton, and copy over coordinate 3830 RSCoordinate *baton = new RSCoordinate(coord); 3831 3832 // Create a callback that will be invoked every time the breakpoint is hit. 3833 // The baton object passed to the handler is the target coordinate we want to 3834 // break on. 3835 bp->SetCallback(KernelBreakpointHit, baton, true); 3836 3837 // Store a shared pointer to the baton, so the memory will eventually be 3838 // cleaned up after destruction 3839 m_conditional_breaks[bp->GetID()] = std::unique_ptr<RSCoordinate>(baton); 3840 } 3841 3842 // Tries to set a breakpoint on the start of a kernel, resolved using the 3843 // kernel name. Argument 'coords', represents a three dimensional coordinate 3844 // which can be used to specify a single kernel instance to break on. If this 3845 // is set then we add a callback to the breakpoint. 3846 bool RenderScriptRuntime::PlaceBreakpointOnKernel(TargetSP target, 3847 Stream &messages, 3848 const char *name, 3849 const RSCoordinate *coord) { 3850 if (!name) 3851 return false; 3852 3853 InitSearchFilter(target); 3854 3855 ConstString kernel_name(name); 3856 BreakpointSP bp = CreateKernelBreakpoint(kernel_name); 3857 if (!bp) 3858 return false; 3859 3860 // We have a conditional breakpoint on a specific coordinate 3861 if (coord) 3862 SetConditional(bp, messages, *coord); 3863 3864 bp->GetDescription(&messages, lldb::eDescriptionLevelInitial, false); 3865 3866 return true; 3867 } 3868 3869 BreakpointSP 3870 RenderScriptRuntime::CreateScriptGroupBreakpoint(const ConstString &name, 3871 bool stop_on_all) { 3872 Log *log( 3873 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3874 3875 if (!m_filtersp) { 3876 if (log) 3877 log->Printf("%s - error, no breakpoint search filter set.", __FUNCTION__); 3878 return nullptr; 3879 } 3880 3881 BreakpointResolverSP resolver_sp(new RSScriptGroupBreakpointResolver( 3882 nullptr, name, m_scriptGroups, stop_on_all)); 3883 Target &target = GetProcess()->GetTarget(); 3884 BreakpointSP bp = target.CreateBreakpoint( 3885 m_filtersp, resolver_sp, false, false, false); 3886 // Give RS breakpoints a specific name, so the user can manipulate them as a 3887 // group. 3888 Status err; 3889 target.AddNameToBreakpoint(bp, name.GetCString(), err); 3890 if (err.Fail() && log) 3891 log->Printf("%s - error setting break name, '%s'.", __FUNCTION__, 3892 err.AsCString()); 3893 // ask the breakpoint to resolve itself 3894 bp->ResolveBreakpoint(); 3895 return bp; 3896 } 3897 3898 bool RenderScriptRuntime::PlaceBreakpointOnScriptGroup(TargetSP target, 3899 Stream &strm, 3900 const ConstString &name, 3901 bool multi) { 3902 InitSearchFilter(target); 3903 BreakpointSP bp = CreateScriptGroupBreakpoint(name, multi); 3904 if (bp) 3905 bp->GetDescription(&strm, lldb::eDescriptionLevelInitial, false); 3906 return bool(bp); 3907 } 3908 3909 bool RenderScriptRuntime::PlaceBreakpointOnReduction(TargetSP target, 3910 Stream &messages, 3911 const char *reduce_name, 3912 const RSCoordinate *coord, 3913 int kernel_types) { 3914 if (!reduce_name) 3915 return false; 3916 3917 InitSearchFilter(target); 3918 BreakpointSP bp = 3919 CreateReductionBreakpoint(ConstString(reduce_name), kernel_types); 3920 if (!bp) 3921 return false; 3922 3923 if (coord) 3924 SetConditional(bp, messages, *coord); 3925 3926 bp->GetDescription(&messages, lldb::eDescriptionLevelInitial, false); 3927 3928 return true; 3929 } 3930 3931 void RenderScriptRuntime::DumpModules(Stream &strm) const { 3932 strm.Printf("RenderScript Modules:"); 3933 strm.EOL(); 3934 strm.IndentMore(); 3935 for (const auto &module : m_rsmodules) { 3936 module->Dump(strm); 3937 } 3938 strm.IndentLess(); 3939 } 3940 3941 RenderScriptRuntime::ScriptDetails * 3942 RenderScriptRuntime::LookUpScript(addr_t address, bool create) { 3943 for (const auto &s : m_scripts) { 3944 if (s->script.isValid()) 3945 if (*s->script == address) 3946 return s.get(); 3947 } 3948 if (create) { 3949 std::unique_ptr<ScriptDetails> s(new ScriptDetails); 3950 s->script = address; 3951 m_scripts.push_back(std::move(s)); 3952 return m_scripts.back().get(); 3953 } 3954 return nullptr; 3955 } 3956 3957 RenderScriptRuntime::AllocationDetails * 3958 RenderScriptRuntime::LookUpAllocation(addr_t address) { 3959 for (const auto &a : m_allocations) { 3960 if (a->address.isValid()) 3961 if (*a->address == address) 3962 return a.get(); 3963 } 3964 return nullptr; 3965 } 3966 3967 RenderScriptRuntime::AllocationDetails * 3968 RenderScriptRuntime::CreateAllocation(addr_t address) { 3969 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 3970 3971 // Remove any previous allocation which contains the same address 3972 auto it = m_allocations.begin(); 3973 while (it != m_allocations.end()) { 3974 if (*((*it)->address) == address) { 3975 if (log) 3976 log->Printf("%s - Removing allocation id: %d, address: 0x%" PRIx64, 3977 __FUNCTION__, (*it)->id, address); 3978 3979 it = m_allocations.erase(it); 3980 } else { 3981 it++; 3982 } 3983 } 3984 3985 std::unique_ptr<AllocationDetails> a(new AllocationDetails); 3986 a->address = address; 3987 m_allocations.push_back(std::move(a)); 3988 return m_allocations.back().get(); 3989 } 3990 3991 bool RenderScriptRuntime::ResolveKernelName(lldb::addr_t kernel_addr, 3992 ConstString &name) { 3993 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS); 3994 3995 Target &target = GetProcess()->GetTarget(); 3996 Address resolved; 3997 // RenderScript module 3998 if (!target.GetSectionLoadList().ResolveLoadAddress(kernel_addr, resolved)) { 3999 if (log) 4000 log->Printf("%s: unable to resolve 0x%" PRIx64 " to a loaded symbol", 4001 __FUNCTION__, kernel_addr); 4002 return false; 4003 } 4004 4005 Symbol *sym = resolved.CalculateSymbolContextSymbol(); 4006 if (!sym) 4007 return false; 4008 4009 name = sym->GetName(); 4010 assert(IsRenderScriptModule(resolved.CalculateSymbolContextModule())); 4011 if (log) 4012 log->Printf("%s: 0x%" PRIx64 " resolved to the symbol '%s'", __FUNCTION__, 4013 kernel_addr, name.GetCString()); 4014 return true; 4015 } 4016 4017 void RSModuleDescriptor::Dump(Stream &strm) const { 4018 int indent = strm.GetIndentLevel(); 4019 4020 strm.Indent(); 4021 m_module->GetFileSpec().Dump(&strm); 4022 strm.Indent(m_module->GetNumCompileUnits() ? "Debug info loaded." 4023 : "Debug info does not exist."); 4024 strm.EOL(); 4025 strm.IndentMore(); 4026 4027 strm.Indent(); 4028 strm.Printf("Globals: %" PRIu64, static_cast<uint64_t>(m_globals.size())); 4029 strm.EOL(); 4030 strm.IndentMore(); 4031 for (const auto &global : m_globals) { 4032 global.Dump(strm); 4033 } 4034 strm.IndentLess(); 4035 4036 strm.Indent(); 4037 strm.Printf("Kernels: %" PRIu64, static_cast<uint64_t>(m_kernels.size())); 4038 strm.EOL(); 4039 strm.IndentMore(); 4040 for (const auto &kernel : m_kernels) { 4041 kernel.Dump(strm); 4042 } 4043 strm.IndentLess(); 4044 4045 strm.Indent(); 4046 strm.Printf("Pragmas: %" PRIu64, static_cast<uint64_t>(m_pragmas.size())); 4047 strm.EOL(); 4048 strm.IndentMore(); 4049 for (const auto &key_val : m_pragmas) { 4050 strm.Indent(); 4051 strm.Printf("%s: %s", key_val.first.c_str(), key_val.second.c_str()); 4052 strm.EOL(); 4053 } 4054 strm.IndentLess(); 4055 4056 strm.Indent(); 4057 strm.Printf("Reductions: %" PRIu64, 4058 static_cast<uint64_t>(m_reductions.size())); 4059 strm.EOL(); 4060 strm.IndentMore(); 4061 for (const auto &reduction : m_reductions) { 4062 reduction.Dump(strm); 4063 } 4064 4065 strm.SetIndentLevel(indent); 4066 } 4067 4068 void RSGlobalDescriptor::Dump(Stream &strm) const { 4069 strm.Indent(m_name.AsCString()); 4070 VariableList var_list; 4071 m_module->m_module->FindGlobalVariables(m_name, nullptr, 1U, var_list); 4072 if (var_list.GetSize() == 1) { 4073 auto var = var_list.GetVariableAtIndex(0); 4074 auto type = var->GetType(); 4075 if (type) { 4076 strm.Printf(" - "); 4077 type->DumpTypeName(&strm); 4078 } else { 4079 strm.Printf(" - Unknown Type"); 4080 } 4081 } else { 4082 strm.Printf(" - variable identified, but not found in binary"); 4083 const Symbol *s = m_module->m_module->FindFirstSymbolWithNameAndType( 4084 m_name, eSymbolTypeData); 4085 if (s) { 4086 strm.Printf(" (symbol exists) "); 4087 } 4088 } 4089 4090 strm.EOL(); 4091 } 4092 4093 void RSKernelDescriptor::Dump(Stream &strm) const { 4094 strm.Indent(m_name.AsCString()); 4095 strm.EOL(); 4096 } 4097 4098 void RSReductionDescriptor::Dump(lldb_private::Stream &stream) const { 4099 stream.Indent(m_reduce_name.AsCString()); 4100 stream.IndentMore(); 4101 stream.EOL(); 4102 stream.Indent(); 4103 stream.Printf("accumulator: %s", m_accum_name.AsCString()); 4104 stream.EOL(); 4105 stream.Indent(); 4106 stream.Printf("initializer: %s", m_init_name.AsCString()); 4107 stream.EOL(); 4108 stream.Indent(); 4109 stream.Printf("combiner: %s", m_comb_name.AsCString()); 4110 stream.EOL(); 4111 stream.Indent(); 4112 stream.Printf("outconverter: %s", m_outc_name.AsCString()); 4113 stream.EOL(); 4114 // XXX This is currently unspecified by RenderScript, and unused 4115 // stream.Indent(); 4116 // stream.Printf("halter: '%s'", m_init_name.AsCString()); 4117 // stream.EOL(); 4118 stream.IndentLess(); 4119 } 4120 4121 class CommandObjectRenderScriptRuntimeModuleDump : public CommandObjectParsed { 4122 public: 4123 CommandObjectRenderScriptRuntimeModuleDump(CommandInterpreter &interpreter) 4124 : CommandObjectParsed( 4125 interpreter, "renderscript module dump", 4126 "Dumps renderscript specific information for all modules.", 4127 "renderscript module dump", 4128 eCommandRequiresProcess | eCommandProcessMustBeLaunched) {} 4129 4130 ~CommandObjectRenderScriptRuntimeModuleDump() override = default; 4131 4132 bool DoExecute(Args &command, CommandReturnObject &result) override { 4133 RenderScriptRuntime *runtime = 4134 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4135 eLanguageTypeExtRenderScript); 4136 runtime->DumpModules(result.GetOutputStream()); 4137 result.SetStatus(eReturnStatusSuccessFinishResult); 4138 return true; 4139 } 4140 }; 4141 4142 class CommandObjectRenderScriptRuntimeModule : public CommandObjectMultiword { 4143 public: 4144 CommandObjectRenderScriptRuntimeModule(CommandInterpreter &interpreter) 4145 : CommandObjectMultiword(interpreter, "renderscript module", 4146 "Commands that deal with RenderScript modules.", 4147 nullptr) { 4148 LoadSubCommand( 4149 "dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeModuleDump( 4150 interpreter))); 4151 } 4152 4153 ~CommandObjectRenderScriptRuntimeModule() override = default; 4154 }; 4155 4156 class CommandObjectRenderScriptRuntimeKernelList : public CommandObjectParsed { 4157 public: 4158 CommandObjectRenderScriptRuntimeKernelList(CommandInterpreter &interpreter) 4159 : CommandObjectParsed( 4160 interpreter, "renderscript kernel list", 4161 "Lists renderscript kernel names and associated script resources.", 4162 "renderscript kernel list", 4163 eCommandRequiresProcess | eCommandProcessMustBeLaunched) {} 4164 4165 ~CommandObjectRenderScriptRuntimeKernelList() override = default; 4166 4167 bool DoExecute(Args &command, CommandReturnObject &result) override { 4168 RenderScriptRuntime *runtime = 4169 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4170 eLanguageTypeExtRenderScript); 4171 runtime->DumpKernels(result.GetOutputStream()); 4172 result.SetStatus(eReturnStatusSuccessFinishResult); 4173 return true; 4174 } 4175 }; 4176 4177 static constexpr OptionDefinition g_renderscript_reduction_bp_set_options[] = { 4178 {LLDB_OPT_SET_1, false, "function-role", 't', 4179 OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeOneLiner, 4180 "Break on a comma separated set of reduction kernel types " 4181 "(accumulator,outcoverter,combiner,initializer"}, 4182 {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument, 4183 nullptr, {}, 0, eArgTypeValue, 4184 "Set a breakpoint on a single invocation of the kernel with specified " 4185 "coordinate.\n" 4186 "Coordinate takes the form 'x[,y][,z] where x,y,z are positive " 4187 "integers representing kernel dimensions. " 4188 "Any unset dimensions will be defaulted to zero."}}; 4189 4190 class CommandObjectRenderScriptRuntimeReductionBreakpointSet 4191 : public CommandObjectParsed { 4192 public: 4193 CommandObjectRenderScriptRuntimeReductionBreakpointSet( 4194 CommandInterpreter &interpreter) 4195 : CommandObjectParsed( 4196 interpreter, "renderscript reduction breakpoint set", 4197 "Set a breakpoint on named RenderScript general reductions", 4198 "renderscript reduction breakpoint set <kernel_name> [-t " 4199 "<reduction_kernel_type,...>]", 4200 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4201 eCommandProcessMustBePaused), 4202 m_options(){}; 4203 4204 class CommandOptions : public Options { 4205 public: 4206 CommandOptions() 4207 : Options(), 4208 m_kernel_types(RSReduceBreakpointResolver::eKernelTypeAll) {} 4209 4210 ~CommandOptions() override = default; 4211 4212 Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg, 4213 ExecutionContext *exe_ctx) override { 4214 Status err; 4215 StreamString err_str; 4216 const int short_option = m_getopt_table[option_idx].val; 4217 switch (short_option) { 4218 case 't': 4219 if (!ParseReductionTypes(option_arg, err_str)) 4220 err.SetErrorStringWithFormat( 4221 "Unable to deduce reduction types for %s: %s", 4222 option_arg.str().c_str(), err_str.GetData()); 4223 break; 4224 case 'c': { 4225 auto coord = RSCoordinate{}; 4226 if (!ParseCoordinate(option_arg, coord)) 4227 err.SetErrorStringWithFormat("unable to parse coordinate for %s", 4228 option_arg.str().c_str()); 4229 else { 4230 m_have_coord = true; 4231 m_coord = coord; 4232 } 4233 break; 4234 } 4235 default: 4236 err.SetErrorStringWithFormat("Invalid option '-%c'", short_option); 4237 } 4238 return err; 4239 } 4240 4241 void OptionParsingStarting(ExecutionContext *exe_ctx) override { 4242 m_have_coord = false; 4243 } 4244 4245 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4246 return llvm::makeArrayRef(g_renderscript_reduction_bp_set_options); 4247 } 4248 4249 bool ParseReductionTypes(llvm::StringRef option_val, 4250 StreamString &err_str) { 4251 m_kernel_types = RSReduceBreakpointResolver::eKernelTypeNone; 4252 const auto reduce_name_to_type = [](llvm::StringRef name) -> int { 4253 return llvm::StringSwitch<int>(name) 4254 .Case("accumulator", RSReduceBreakpointResolver::eKernelTypeAccum) 4255 .Case("initializer", RSReduceBreakpointResolver::eKernelTypeInit) 4256 .Case("outconverter", RSReduceBreakpointResolver::eKernelTypeOutC) 4257 .Case("combiner", RSReduceBreakpointResolver::eKernelTypeComb) 4258 .Case("all", RSReduceBreakpointResolver::eKernelTypeAll) 4259 // Currently not exposed by the runtime 4260 // .Case("halter", RSReduceBreakpointResolver::eKernelTypeHalter) 4261 .Default(0); 4262 }; 4263 4264 // Matching a comma separated list of known words is fairly 4265 // straightforward with PCRE, but we're using ERE, so we end up with a 4266 // little ugliness... 4267 RegularExpression::Match match(/* max_matches */ 5); 4268 RegularExpression match_type_list( 4269 llvm::StringRef("^([[:alpha:]]+)(,[[:alpha:]]+){0,4}$")); 4270 4271 assert(match_type_list.IsValid()); 4272 4273 if (!match_type_list.Execute(option_val, &match)) { 4274 err_str.PutCString( 4275 "a comma-separated list of kernel types is required"); 4276 return false; 4277 } 4278 4279 // splitting on commas is much easier with llvm::StringRef than regex 4280 llvm::SmallVector<llvm::StringRef, 5> type_names; 4281 llvm::StringRef(option_val).split(type_names, ','); 4282 4283 for (const auto &name : type_names) { 4284 const int type = reduce_name_to_type(name); 4285 if (!type) { 4286 err_str.Printf("unknown kernel type name %s", name.str().c_str()); 4287 return false; 4288 } 4289 m_kernel_types |= type; 4290 } 4291 4292 return true; 4293 } 4294 4295 int m_kernel_types; 4296 llvm::StringRef m_reduce_name; 4297 RSCoordinate m_coord; 4298 bool m_have_coord; 4299 }; 4300 4301 Options *GetOptions() override { return &m_options; } 4302 4303 bool DoExecute(Args &command, CommandReturnObject &result) override { 4304 const size_t argc = command.GetArgumentCount(); 4305 if (argc < 1) { 4306 result.AppendErrorWithFormat("'%s' takes 1 argument of reduction name, " 4307 "and an optional kernel type list", 4308 m_cmd_name.c_str()); 4309 result.SetStatus(eReturnStatusFailed); 4310 return false; 4311 } 4312 4313 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4314 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4315 eLanguageTypeExtRenderScript)); 4316 4317 auto &outstream = result.GetOutputStream(); 4318 auto name = command.GetArgumentAtIndex(0); 4319 auto &target = m_exe_ctx.GetTargetSP(); 4320 auto coord = m_options.m_have_coord ? &m_options.m_coord : nullptr; 4321 if (!runtime->PlaceBreakpointOnReduction(target, outstream, name, coord, 4322 m_options.m_kernel_types)) { 4323 result.SetStatus(eReturnStatusFailed); 4324 result.AppendError("Error: unable to place breakpoint on reduction"); 4325 return false; 4326 } 4327 result.AppendMessage("Breakpoint(s) created"); 4328 result.SetStatus(eReturnStatusSuccessFinishResult); 4329 return true; 4330 } 4331 4332 private: 4333 CommandOptions m_options; 4334 }; 4335 4336 static constexpr OptionDefinition g_renderscript_kernel_bp_set_options[] = { 4337 {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument, 4338 nullptr, {}, 0, eArgTypeValue, 4339 "Set a breakpoint on a single invocation of the kernel with specified " 4340 "coordinate.\n" 4341 "Coordinate takes the form 'x[,y][,z] where x,y,z are positive " 4342 "integers representing kernel dimensions. " 4343 "Any unset dimensions will be defaulted to zero."}}; 4344 4345 class CommandObjectRenderScriptRuntimeKernelBreakpointSet 4346 : public CommandObjectParsed { 4347 public: 4348 CommandObjectRenderScriptRuntimeKernelBreakpointSet( 4349 CommandInterpreter &interpreter) 4350 : CommandObjectParsed( 4351 interpreter, "renderscript kernel breakpoint set", 4352 "Sets a breakpoint on a renderscript kernel.", 4353 "renderscript kernel breakpoint set <kernel_name> [-c x,y,z]", 4354 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4355 eCommandProcessMustBePaused), 4356 m_options() {} 4357 4358 ~CommandObjectRenderScriptRuntimeKernelBreakpointSet() override = default; 4359 4360 Options *GetOptions() override { return &m_options; } 4361 4362 class CommandOptions : public Options { 4363 public: 4364 CommandOptions() : Options() {} 4365 4366 ~CommandOptions() override = default; 4367 4368 Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg, 4369 ExecutionContext *exe_ctx) override { 4370 Status err; 4371 const int short_option = m_getopt_table[option_idx].val; 4372 4373 switch (short_option) { 4374 case 'c': { 4375 auto coord = RSCoordinate{}; 4376 if (!ParseCoordinate(option_arg, coord)) 4377 err.SetErrorStringWithFormat( 4378 "Couldn't parse coordinate '%s', should be in format 'x,y,z'.", 4379 option_arg.str().c_str()); 4380 else { 4381 m_have_coord = true; 4382 m_coord = coord; 4383 } 4384 break; 4385 } 4386 default: 4387 err.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 4388 break; 4389 } 4390 return err; 4391 } 4392 4393 void OptionParsingStarting(ExecutionContext *exe_ctx) override { 4394 m_have_coord = false; 4395 } 4396 4397 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4398 return llvm::makeArrayRef(g_renderscript_kernel_bp_set_options); 4399 } 4400 4401 RSCoordinate m_coord; 4402 bool m_have_coord; 4403 }; 4404 4405 bool DoExecute(Args &command, CommandReturnObject &result) override { 4406 const size_t argc = command.GetArgumentCount(); 4407 if (argc < 1) { 4408 result.AppendErrorWithFormat( 4409 "'%s' takes 1 argument of kernel name, and an optional coordinate.", 4410 m_cmd_name.c_str()); 4411 result.SetStatus(eReturnStatusFailed); 4412 return false; 4413 } 4414 4415 RenderScriptRuntime *runtime = 4416 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4417 eLanguageTypeExtRenderScript); 4418 4419 auto &outstream = result.GetOutputStream(); 4420 auto &target = m_exe_ctx.GetTargetSP(); 4421 auto name = command.GetArgumentAtIndex(0); 4422 auto coord = m_options.m_have_coord ? &m_options.m_coord : nullptr; 4423 if (!runtime->PlaceBreakpointOnKernel(target, outstream, name, coord)) { 4424 result.SetStatus(eReturnStatusFailed); 4425 result.AppendErrorWithFormat( 4426 "Error: unable to set breakpoint on kernel '%s'", name); 4427 return false; 4428 } 4429 4430 result.AppendMessage("Breakpoint(s) created"); 4431 result.SetStatus(eReturnStatusSuccessFinishResult); 4432 return true; 4433 } 4434 4435 private: 4436 CommandOptions m_options; 4437 }; 4438 4439 class CommandObjectRenderScriptRuntimeKernelBreakpointAll 4440 : public CommandObjectParsed { 4441 public: 4442 CommandObjectRenderScriptRuntimeKernelBreakpointAll( 4443 CommandInterpreter &interpreter) 4444 : CommandObjectParsed( 4445 interpreter, "renderscript kernel breakpoint all", 4446 "Automatically sets a breakpoint on all renderscript kernels that " 4447 "are or will be loaded.\n" 4448 "Disabling option means breakpoints will no longer be set on any " 4449 "kernels loaded in the future, " 4450 "but does not remove currently set breakpoints.", 4451 "renderscript kernel breakpoint all <enable/disable>", 4452 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4453 eCommandProcessMustBePaused) {} 4454 4455 ~CommandObjectRenderScriptRuntimeKernelBreakpointAll() override = default; 4456 4457 bool DoExecute(Args &command, CommandReturnObject &result) override { 4458 const size_t argc = command.GetArgumentCount(); 4459 if (argc != 1) { 4460 result.AppendErrorWithFormat( 4461 "'%s' takes 1 argument of 'enable' or 'disable'", m_cmd_name.c_str()); 4462 result.SetStatus(eReturnStatusFailed); 4463 return false; 4464 } 4465 4466 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4467 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4468 eLanguageTypeExtRenderScript)); 4469 4470 bool do_break = false; 4471 const char *argument = command.GetArgumentAtIndex(0); 4472 if (strcmp(argument, "enable") == 0) { 4473 do_break = true; 4474 result.AppendMessage("Breakpoints will be set on all kernels."); 4475 } else if (strcmp(argument, "disable") == 0) { 4476 do_break = false; 4477 result.AppendMessage("Breakpoints will not be set on any new kernels."); 4478 } else { 4479 result.AppendErrorWithFormat( 4480 "Argument must be either 'enable' or 'disable'"); 4481 result.SetStatus(eReturnStatusFailed); 4482 return false; 4483 } 4484 4485 runtime->SetBreakAllKernels(do_break, m_exe_ctx.GetTargetSP()); 4486 4487 result.SetStatus(eReturnStatusSuccessFinishResult); 4488 return true; 4489 } 4490 }; 4491 4492 class CommandObjectRenderScriptRuntimeReductionBreakpoint 4493 : public CommandObjectMultiword { 4494 public: 4495 CommandObjectRenderScriptRuntimeReductionBreakpoint( 4496 CommandInterpreter &interpreter) 4497 : CommandObjectMultiword(interpreter, "renderscript reduction breakpoint", 4498 "Commands that manipulate breakpoints on " 4499 "renderscript general reductions.", 4500 nullptr) { 4501 LoadSubCommand( 4502 "set", CommandObjectSP( 4503 new CommandObjectRenderScriptRuntimeReductionBreakpointSet( 4504 interpreter))); 4505 } 4506 4507 ~CommandObjectRenderScriptRuntimeReductionBreakpoint() override = default; 4508 }; 4509 4510 class CommandObjectRenderScriptRuntimeKernelCoordinate 4511 : public CommandObjectParsed { 4512 public: 4513 CommandObjectRenderScriptRuntimeKernelCoordinate( 4514 CommandInterpreter &interpreter) 4515 : CommandObjectParsed( 4516 interpreter, "renderscript kernel coordinate", 4517 "Shows the (x,y,z) coordinate of the current kernel invocation.", 4518 "renderscript kernel coordinate", 4519 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4520 eCommandProcessMustBePaused) {} 4521 4522 ~CommandObjectRenderScriptRuntimeKernelCoordinate() override = default; 4523 4524 bool DoExecute(Args &command, CommandReturnObject &result) override { 4525 RSCoordinate coord{}; 4526 bool success = RenderScriptRuntime::GetKernelCoordinate( 4527 coord, m_exe_ctx.GetThreadPtr()); 4528 Stream &stream = result.GetOutputStream(); 4529 4530 if (success) { 4531 stream.Printf("Coordinate: " FMT_COORD, coord.x, coord.y, coord.z); 4532 stream.EOL(); 4533 result.SetStatus(eReturnStatusSuccessFinishResult); 4534 } else { 4535 stream.Printf("Error: Coordinate could not be found."); 4536 stream.EOL(); 4537 result.SetStatus(eReturnStatusFailed); 4538 } 4539 return true; 4540 } 4541 }; 4542 4543 class CommandObjectRenderScriptRuntimeKernelBreakpoint 4544 : public CommandObjectMultiword { 4545 public: 4546 CommandObjectRenderScriptRuntimeKernelBreakpoint( 4547 CommandInterpreter &interpreter) 4548 : CommandObjectMultiword( 4549 interpreter, "renderscript kernel", 4550 "Commands that generate breakpoints on renderscript kernels.", 4551 nullptr) { 4552 LoadSubCommand( 4553 "set", 4554 CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointSet( 4555 interpreter))); 4556 LoadSubCommand( 4557 "all", 4558 CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointAll( 4559 interpreter))); 4560 } 4561 4562 ~CommandObjectRenderScriptRuntimeKernelBreakpoint() override = default; 4563 }; 4564 4565 class CommandObjectRenderScriptRuntimeKernel : public CommandObjectMultiword { 4566 public: 4567 CommandObjectRenderScriptRuntimeKernel(CommandInterpreter &interpreter) 4568 : CommandObjectMultiword(interpreter, "renderscript kernel", 4569 "Commands that deal with RenderScript kernels.", 4570 nullptr) { 4571 LoadSubCommand( 4572 "list", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelList( 4573 interpreter))); 4574 LoadSubCommand( 4575 "coordinate", 4576 CommandObjectSP( 4577 new CommandObjectRenderScriptRuntimeKernelCoordinate(interpreter))); 4578 LoadSubCommand( 4579 "breakpoint", 4580 CommandObjectSP( 4581 new CommandObjectRenderScriptRuntimeKernelBreakpoint(interpreter))); 4582 } 4583 4584 ~CommandObjectRenderScriptRuntimeKernel() override = default; 4585 }; 4586 4587 class CommandObjectRenderScriptRuntimeContextDump : public CommandObjectParsed { 4588 public: 4589 CommandObjectRenderScriptRuntimeContextDump(CommandInterpreter &interpreter) 4590 : CommandObjectParsed(interpreter, "renderscript context dump", 4591 "Dumps renderscript context information.", 4592 "renderscript context dump", 4593 eCommandRequiresProcess | 4594 eCommandProcessMustBeLaunched) {} 4595 4596 ~CommandObjectRenderScriptRuntimeContextDump() override = default; 4597 4598 bool DoExecute(Args &command, CommandReturnObject &result) override { 4599 RenderScriptRuntime *runtime = 4600 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4601 eLanguageTypeExtRenderScript); 4602 runtime->DumpContexts(result.GetOutputStream()); 4603 result.SetStatus(eReturnStatusSuccessFinishResult); 4604 return true; 4605 } 4606 }; 4607 4608 static constexpr OptionDefinition g_renderscript_runtime_alloc_dump_options[] = { 4609 {LLDB_OPT_SET_1, false, "file", 'f', OptionParser::eRequiredArgument, 4610 nullptr, {}, 0, eArgTypeFilename, 4611 "Print results to specified file instead of command line."}}; 4612 4613 class CommandObjectRenderScriptRuntimeContext : public CommandObjectMultiword { 4614 public: 4615 CommandObjectRenderScriptRuntimeContext(CommandInterpreter &interpreter) 4616 : CommandObjectMultiword(interpreter, "renderscript context", 4617 "Commands that deal with RenderScript contexts.", 4618 nullptr) { 4619 LoadSubCommand( 4620 "dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeContextDump( 4621 interpreter))); 4622 } 4623 4624 ~CommandObjectRenderScriptRuntimeContext() override = default; 4625 }; 4626 4627 class CommandObjectRenderScriptRuntimeAllocationDump 4628 : public CommandObjectParsed { 4629 public: 4630 CommandObjectRenderScriptRuntimeAllocationDump( 4631 CommandInterpreter &interpreter) 4632 : CommandObjectParsed(interpreter, "renderscript allocation dump", 4633 "Displays the contents of a particular allocation", 4634 "renderscript allocation dump <ID>", 4635 eCommandRequiresProcess | 4636 eCommandProcessMustBeLaunched), 4637 m_options() {} 4638 4639 ~CommandObjectRenderScriptRuntimeAllocationDump() override = default; 4640 4641 Options *GetOptions() override { return &m_options; } 4642 4643 class CommandOptions : public Options { 4644 public: 4645 CommandOptions() : Options() {} 4646 4647 ~CommandOptions() override = default; 4648 4649 Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg, 4650 ExecutionContext *exe_ctx) override { 4651 Status err; 4652 const int short_option = m_getopt_table[option_idx].val; 4653 4654 switch (short_option) { 4655 case 'f': 4656 m_outfile.SetFile(option_arg, FileSpec::Style::native); 4657 FileSystem::Instance().Resolve(m_outfile); 4658 if (FileSystem::Instance().Exists(m_outfile)) { 4659 m_outfile.Clear(); 4660 err.SetErrorStringWithFormat("file already exists: '%s'", 4661 option_arg.str().c_str()); 4662 } 4663 break; 4664 default: 4665 err.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 4666 break; 4667 } 4668 return err; 4669 } 4670 4671 void OptionParsingStarting(ExecutionContext *exe_ctx) override { 4672 m_outfile.Clear(); 4673 } 4674 4675 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4676 return llvm::makeArrayRef(g_renderscript_runtime_alloc_dump_options); 4677 } 4678 4679 FileSpec m_outfile; 4680 }; 4681 4682 bool DoExecute(Args &command, CommandReturnObject &result) override { 4683 const size_t argc = command.GetArgumentCount(); 4684 if (argc < 1) { 4685 result.AppendErrorWithFormat("'%s' takes 1 argument, an allocation ID. " 4686 "As well as an optional -f argument", 4687 m_cmd_name.c_str()); 4688 result.SetStatus(eReturnStatusFailed); 4689 return false; 4690 } 4691 4692 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4693 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4694 eLanguageTypeExtRenderScript)); 4695 4696 const char *id_cstr = command.GetArgumentAtIndex(0); 4697 bool success = false; 4698 const uint32_t id = 4699 StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success); 4700 if (!success) { 4701 result.AppendErrorWithFormat("invalid allocation id argument '%s'", 4702 id_cstr); 4703 result.SetStatus(eReturnStatusFailed); 4704 return false; 4705 } 4706 4707 Stream *output_strm = nullptr; 4708 StreamFile outfile_stream; 4709 const FileSpec &outfile_spec = 4710 m_options.m_outfile; // Dump allocation to file instead 4711 if (outfile_spec) { 4712 // Open output file 4713 std::string path = outfile_spec.GetPath(); 4714 auto error = FileSystem::Instance().Open( 4715 outfile_stream.GetFile(), outfile_spec, 4716 File::eOpenOptionWrite | File::eOpenOptionCanCreate); 4717 if (error.Success()) { 4718 output_strm = &outfile_stream; 4719 result.GetOutputStream().Printf("Results written to '%s'", 4720 path.c_str()); 4721 result.GetOutputStream().EOL(); 4722 } else { 4723 result.AppendErrorWithFormat("Couldn't open file '%s'", path.c_str()); 4724 result.SetStatus(eReturnStatusFailed); 4725 return false; 4726 } 4727 } else 4728 output_strm = &result.GetOutputStream(); 4729 4730 assert(output_strm != nullptr); 4731 bool dumped = 4732 runtime->DumpAllocation(*output_strm, m_exe_ctx.GetFramePtr(), id); 4733 4734 if (dumped) 4735 result.SetStatus(eReturnStatusSuccessFinishResult); 4736 else 4737 result.SetStatus(eReturnStatusFailed); 4738 4739 return true; 4740 } 4741 4742 private: 4743 CommandOptions m_options; 4744 }; 4745 4746 static constexpr OptionDefinition g_renderscript_runtime_alloc_list_options[] = { 4747 {LLDB_OPT_SET_1, false, "id", 'i', OptionParser::eRequiredArgument, nullptr, 4748 {}, 0, eArgTypeIndex, 4749 "Only show details of a single allocation with specified id."}}; 4750 4751 class CommandObjectRenderScriptRuntimeAllocationList 4752 : public CommandObjectParsed { 4753 public: 4754 CommandObjectRenderScriptRuntimeAllocationList( 4755 CommandInterpreter &interpreter) 4756 : CommandObjectParsed( 4757 interpreter, "renderscript allocation list", 4758 "List renderscript allocations and their information.", 4759 "renderscript allocation list", 4760 eCommandRequiresProcess | eCommandProcessMustBeLaunched), 4761 m_options() {} 4762 4763 ~CommandObjectRenderScriptRuntimeAllocationList() override = default; 4764 4765 Options *GetOptions() override { return &m_options; } 4766 4767 class CommandOptions : public Options { 4768 public: 4769 CommandOptions() : Options(), m_id(0) {} 4770 4771 ~CommandOptions() override = default; 4772 4773 Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg, 4774 ExecutionContext *exe_ctx) override { 4775 Status err; 4776 const int short_option = m_getopt_table[option_idx].val; 4777 4778 switch (short_option) { 4779 case 'i': 4780 if (option_arg.getAsInteger(0, m_id)) 4781 err.SetErrorStringWithFormat("invalid integer value for option '%c'", 4782 short_option); 4783 break; 4784 default: 4785 err.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 4786 break; 4787 } 4788 return err; 4789 } 4790 4791 void OptionParsingStarting(ExecutionContext *exe_ctx) override { m_id = 0; } 4792 4793 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4794 return llvm::makeArrayRef(g_renderscript_runtime_alloc_list_options); 4795 } 4796 4797 uint32_t m_id; 4798 }; 4799 4800 bool DoExecute(Args &command, CommandReturnObject &result) override { 4801 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4802 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4803 eLanguageTypeExtRenderScript)); 4804 runtime->ListAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr(), 4805 m_options.m_id); 4806 result.SetStatus(eReturnStatusSuccessFinishResult); 4807 return true; 4808 } 4809 4810 private: 4811 CommandOptions m_options; 4812 }; 4813 4814 class CommandObjectRenderScriptRuntimeAllocationLoad 4815 : public CommandObjectParsed { 4816 public: 4817 CommandObjectRenderScriptRuntimeAllocationLoad( 4818 CommandInterpreter &interpreter) 4819 : CommandObjectParsed( 4820 interpreter, "renderscript allocation load", 4821 "Loads renderscript allocation contents from a file.", 4822 "renderscript allocation load <ID> <filename>", 4823 eCommandRequiresProcess | eCommandProcessMustBeLaunched) {} 4824 4825 ~CommandObjectRenderScriptRuntimeAllocationLoad() override = default; 4826 4827 bool DoExecute(Args &command, CommandReturnObject &result) override { 4828 const size_t argc = command.GetArgumentCount(); 4829 if (argc != 2) { 4830 result.AppendErrorWithFormat( 4831 "'%s' takes 2 arguments, an allocation ID and filename to read from.", 4832 m_cmd_name.c_str()); 4833 result.SetStatus(eReturnStatusFailed); 4834 return false; 4835 } 4836 4837 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4838 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4839 eLanguageTypeExtRenderScript)); 4840 4841 const char *id_cstr = command.GetArgumentAtIndex(0); 4842 bool success = false; 4843 const uint32_t id = 4844 StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success); 4845 if (!success) { 4846 result.AppendErrorWithFormat("invalid allocation id argument '%s'", 4847 id_cstr); 4848 result.SetStatus(eReturnStatusFailed); 4849 return false; 4850 } 4851 4852 const char *path = command.GetArgumentAtIndex(1); 4853 bool loaded = runtime->LoadAllocation(result.GetOutputStream(), id, path, 4854 m_exe_ctx.GetFramePtr()); 4855 4856 if (loaded) 4857 result.SetStatus(eReturnStatusSuccessFinishResult); 4858 else 4859 result.SetStatus(eReturnStatusFailed); 4860 4861 return true; 4862 } 4863 }; 4864 4865 class CommandObjectRenderScriptRuntimeAllocationSave 4866 : public CommandObjectParsed { 4867 public: 4868 CommandObjectRenderScriptRuntimeAllocationSave( 4869 CommandInterpreter &interpreter) 4870 : CommandObjectParsed(interpreter, "renderscript allocation save", 4871 "Write renderscript allocation contents to a file.", 4872 "renderscript allocation save <ID> <filename>", 4873 eCommandRequiresProcess | 4874 eCommandProcessMustBeLaunched) {} 4875 4876 ~CommandObjectRenderScriptRuntimeAllocationSave() override = default; 4877 4878 bool DoExecute(Args &command, CommandReturnObject &result) override { 4879 const size_t argc = command.GetArgumentCount(); 4880 if (argc != 2) { 4881 result.AppendErrorWithFormat( 4882 "'%s' takes 2 arguments, an allocation ID and filename to read from.", 4883 m_cmd_name.c_str()); 4884 result.SetStatus(eReturnStatusFailed); 4885 return false; 4886 } 4887 4888 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4889 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4890 eLanguageTypeExtRenderScript)); 4891 4892 const char *id_cstr = command.GetArgumentAtIndex(0); 4893 bool success = false; 4894 const uint32_t id = 4895 StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success); 4896 if (!success) { 4897 result.AppendErrorWithFormat("invalid allocation id argument '%s'", 4898 id_cstr); 4899 result.SetStatus(eReturnStatusFailed); 4900 return false; 4901 } 4902 4903 const char *path = command.GetArgumentAtIndex(1); 4904 bool saved = runtime->SaveAllocation(result.GetOutputStream(), id, path, 4905 m_exe_ctx.GetFramePtr()); 4906 4907 if (saved) 4908 result.SetStatus(eReturnStatusSuccessFinishResult); 4909 else 4910 result.SetStatus(eReturnStatusFailed); 4911 4912 return true; 4913 } 4914 }; 4915 4916 class CommandObjectRenderScriptRuntimeAllocationRefresh 4917 : public CommandObjectParsed { 4918 public: 4919 CommandObjectRenderScriptRuntimeAllocationRefresh( 4920 CommandInterpreter &interpreter) 4921 : CommandObjectParsed(interpreter, "renderscript allocation refresh", 4922 "Recomputes the details of all allocations.", 4923 "renderscript allocation refresh", 4924 eCommandRequiresProcess | 4925 eCommandProcessMustBeLaunched) {} 4926 4927 ~CommandObjectRenderScriptRuntimeAllocationRefresh() override = default; 4928 4929 bool DoExecute(Args &command, CommandReturnObject &result) override { 4930 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4931 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4932 eLanguageTypeExtRenderScript)); 4933 4934 bool success = runtime->RecomputeAllAllocations(result.GetOutputStream(), 4935 m_exe_ctx.GetFramePtr()); 4936 4937 if (success) { 4938 result.SetStatus(eReturnStatusSuccessFinishResult); 4939 return true; 4940 } else { 4941 result.SetStatus(eReturnStatusFailed); 4942 return false; 4943 } 4944 } 4945 }; 4946 4947 class CommandObjectRenderScriptRuntimeAllocation 4948 : public CommandObjectMultiword { 4949 public: 4950 CommandObjectRenderScriptRuntimeAllocation(CommandInterpreter &interpreter) 4951 : CommandObjectMultiword( 4952 interpreter, "renderscript allocation", 4953 "Commands that deal with RenderScript allocations.", nullptr) { 4954 LoadSubCommand( 4955 "list", 4956 CommandObjectSP( 4957 new CommandObjectRenderScriptRuntimeAllocationList(interpreter))); 4958 LoadSubCommand( 4959 "dump", 4960 CommandObjectSP( 4961 new CommandObjectRenderScriptRuntimeAllocationDump(interpreter))); 4962 LoadSubCommand( 4963 "save", 4964 CommandObjectSP( 4965 new CommandObjectRenderScriptRuntimeAllocationSave(interpreter))); 4966 LoadSubCommand( 4967 "load", 4968 CommandObjectSP( 4969 new CommandObjectRenderScriptRuntimeAllocationLoad(interpreter))); 4970 LoadSubCommand( 4971 "refresh", 4972 CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationRefresh( 4973 interpreter))); 4974 } 4975 4976 ~CommandObjectRenderScriptRuntimeAllocation() override = default; 4977 }; 4978 4979 class CommandObjectRenderScriptRuntimeStatus : public CommandObjectParsed { 4980 public: 4981 CommandObjectRenderScriptRuntimeStatus(CommandInterpreter &interpreter) 4982 : CommandObjectParsed(interpreter, "renderscript status", 4983 "Displays current RenderScript runtime status.", 4984 "renderscript status", 4985 eCommandRequiresProcess | 4986 eCommandProcessMustBeLaunched) {} 4987 4988 ~CommandObjectRenderScriptRuntimeStatus() override = default; 4989 4990 bool DoExecute(Args &command, CommandReturnObject &result) override { 4991 RenderScriptRuntime *runtime = 4992 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4993 eLanguageTypeExtRenderScript); 4994 runtime->DumpStatus(result.GetOutputStream()); 4995 result.SetStatus(eReturnStatusSuccessFinishResult); 4996 return true; 4997 } 4998 }; 4999 5000 class CommandObjectRenderScriptRuntimeReduction 5001 : public CommandObjectMultiword { 5002 public: 5003 CommandObjectRenderScriptRuntimeReduction(CommandInterpreter &interpreter) 5004 : CommandObjectMultiword(interpreter, "renderscript reduction", 5005 "Commands that handle general reduction kernels", 5006 nullptr) { 5007 LoadSubCommand( 5008 "breakpoint", 5009 CommandObjectSP(new CommandObjectRenderScriptRuntimeReductionBreakpoint( 5010 interpreter))); 5011 } 5012 ~CommandObjectRenderScriptRuntimeReduction() override = default; 5013 }; 5014 5015 class CommandObjectRenderScriptRuntime : public CommandObjectMultiword { 5016 public: 5017 CommandObjectRenderScriptRuntime(CommandInterpreter &interpreter) 5018 : CommandObjectMultiword( 5019 interpreter, "renderscript", 5020 "Commands for operating on the RenderScript runtime.", 5021 "renderscript <subcommand> [<subcommand-options>]") { 5022 LoadSubCommand( 5023 "module", CommandObjectSP( 5024 new CommandObjectRenderScriptRuntimeModule(interpreter))); 5025 LoadSubCommand( 5026 "status", CommandObjectSP( 5027 new CommandObjectRenderScriptRuntimeStatus(interpreter))); 5028 LoadSubCommand( 5029 "kernel", CommandObjectSP( 5030 new CommandObjectRenderScriptRuntimeKernel(interpreter))); 5031 LoadSubCommand("context", 5032 CommandObjectSP(new CommandObjectRenderScriptRuntimeContext( 5033 interpreter))); 5034 LoadSubCommand( 5035 "allocation", 5036 CommandObjectSP( 5037 new CommandObjectRenderScriptRuntimeAllocation(interpreter))); 5038 LoadSubCommand("scriptgroup", 5039 NewCommandObjectRenderScriptScriptGroup(interpreter)); 5040 LoadSubCommand( 5041 "reduction", 5042 CommandObjectSP( 5043 new CommandObjectRenderScriptRuntimeReduction(interpreter))); 5044 } 5045 5046 ~CommandObjectRenderScriptRuntime() override = default; 5047 }; 5048 5049 void RenderScriptRuntime::Initiate() { assert(!m_initiated); } 5050 5051 RenderScriptRuntime::RenderScriptRuntime(Process *process) 5052 : lldb_private::CPPLanguageRuntime(process), m_initiated(false), 5053 m_debuggerPresentFlagged(false), m_breakAllKernels(false), 5054 m_ir_passes(nullptr) { 5055 ModulesDidLoad(process->GetTarget().GetImages()); 5056 } 5057 5058 lldb::CommandObjectSP RenderScriptRuntime::GetCommandObject( 5059 lldb_private::CommandInterpreter &interpreter) { 5060 return CommandObjectSP(new CommandObjectRenderScriptRuntime(interpreter)); 5061 } 5062 5063 RenderScriptRuntime::~RenderScriptRuntime() = default; 5064