1 //===-- RenderScriptRuntime.cpp ---------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 // C Includes
11 // C++ Includes
12 // Other libraries and framework includes
13 #include "llvm/ADT/StringSwitch.h"
14 
15 // Project includes
16 #include "RenderScriptRuntime.h"
17 #include "RenderScriptScriptGroup.h"
18 
19 #include "lldb/Breakpoint/StoppointCallbackContext.h"
20 #include "lldb/Core/Debugger.h"
21 #include "lldb/Core/DumpDataExtractor.h"
22 #include "lldb/Core/PluginManager.h"
23 #include "lldb/Core/ValueObjectVariable.h"
24 #include "lldb/DataFormatters/DumpValueObjectOptions.h"
25 #include "lldb/Expression/UserExpression.h"
26 #include "lldb/Host/OptionParser.h"
27 #include "lldb/Host/StringConvert.h"
28 #include "lldb/Interpreter/CommandInterpreter.h"
29 #include "lldb/Interpreter/CommandObjectMultiword.h"
30 #include "lldb/Interpreter/CommandReturnObject.h"
31 #include "lldb/Interpreter/Options.h"
32 #include "lldb/Symbol/Function.h"
33 #include "lldb/Symbol/Symbol.h"
34 #include "lldb/Symbol/Type.h"
35 #include "lldb/Symbol/VariableList.h"
36 #include "lldb/Target/Process.h"
37 #include "lldb/Target/RegisterContext.h"
38 #include "lldb/Target/SectionLoadList.h"
39 #include "lldb/Target/Target.h"
40 #include "lldb/Target/Thread.h"
41 #include "lldb/Utility/Args.h"
42 #include "lldb/Utility/ConstString.h"
43 #include "lldb/Utility/DataBufferLLVM.h"
44 #include "lldb/Utility/Log.h"
45 #include "lldb/Utility/RegisterValue.h"
46 #include "lldb/Utility/RegularExpression.h"
47 #include "lldb/Utility/Status.h"
48 
49 using namespace lldb;
50 using namespace lldb_private;
51 using namespace lldb_renderscript;
52 
53 #define FMT_COORD "(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ")"
54 
55 namespace {
56 
57 // The empirical_type adds a basic level of validation to arbitrary data
58 // allowing us to track if data has been discovered and stored or not. An
59 // empirical_type will be marked as valid only if it has been explicitly
60 // assigned to.
61 template <typename type_t> class empirical_type {
62 public:
63   // Ctor. Contents is invalid when constructed.
64   empirical_type() : valid(false) {}
65 
66   // Return true and copy contents to out if valid, else return false.
67   bool get(type_t &out) const {
68     if (valid)
69       out = data;
70     return valid;
71   }
72 
73   // Return a pointer to the contents or nullptr if it was not valid.
74   const type_t *get() const { return valid ? &data : nullptr; }
75 
76   // Assign data explicitly.
77   void set(const type_t in) {
78     data = in;
79     valid = true;
80   }
81 
82   // Mark contents as invalid.
83   void invalidate() { valid = false; }
84 
85   // Returns true if this type contains valid data.
86   bool isValid() const { return valid; }
87 
88   // Assignment operator.
89   empirical_type<type_t> &operator=(const type_t in) {
90     set(in);
91     return *this;
92   }
93 
94   // Dereference operator returns contents.
95   // Warning: Will assert if not valid so use only when you know data is valid.
96   const type_t &operator*() const {
97     assert(valid);
98     return data;
99   }
100 
101 protected:
102   bool valid;
103   type_t data;
104 };
105 
106 // ArgItem is used by the GetArgs() function when reading function arguments
107 // from the target.
108 struct ArgItem {
109   enum { ePointer, eInt32, eInt64, eLong, eBool } type;
110 
111   uint64_t value;
112 
113   explicit operator uint64_t() const { return value; }
114 };
115 
116 // Context structure to be passed into GetArgsXXX(), argument reading functions
117 // below.
118 struct GetArgsCtx {
119   RegisterContext *reg_ctx;
120   Process *process;
121 };
122 
123 bool GetArgsX86(const GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
124   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
125 
126   Status err;
127 
128   // get the current stack pointer
129   uint64_t sp = ctx.reg_ctx->GetSP();
130 
131   for (size_t i = 0; i < num_args; ++i) {
132     ArgItem &arg = arg_list[i];
133     // advance up the stack by one argument
134     sp += sizeof(uint32_t);
135     // get the argument type size
136     size_t arg_size = sizeof(uint32_t);
137     // read the argument from memory
138     arg.value = 0;
139     Status err;
140     size_t read =
141         ctx.process->ReadMemory(sp, &arg.value, sizeof(uint32_t), err);
142     if (read != arg_size || !err.Success()) {
143       if (log)
144         log->Printf("%s - error reading argument: %" PRIu64 " '%s'",
145                     __FUNCTION__, uint64_t(i), err.AsCString());
146       return false;
147     }
148   }
149   return true;
150 }
151 
152 bool GetArgsX86_64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
153   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
154 
155   // number of arguments passed in registers
156   static const uint32_t args_in_reg = 6;
157   // register passing order
158   static const std::array<const char *, args_in_reg> reg_names{
159       {"rdi", "rsi", "rdx", "rcx", "r8", "r9"}};
160   // argument type to size mapping
161   static const std::array<size_t, 5> arg_size{{
162       8, // ePointer,
163       4, // eInt32,
164       8, // eInt64,
165       8, // eLong,
166       4, // eBool,
167   }};
168 
169   Status err;
170 
171   // get the current stack pointer
172   uint64_t sp = ctx.reg_ctx->GetSP();
173   // step over the return address
174   sp += sizeof(uint64_t);
175 
176   // check the stack alignment was correct (16 byte aligned)
177   if ((sp & 0xf) != 0x0) {
178     if (log)
179       log->Printf("%s - stack misaligned", __FUNCTION__);
180     return false;
181   }
182 
183   // find the start of arguments on the stack
184   uint64_t sp_offset = 0;
185   for (uint32_t i = args_in_reg; i < num_args; ++i) {
186     sp_offset += arg_size[arg_list[i].type];
187   }
188   // round up to multiple of 16
189   sp_offset = (sp_offset + 0xf) & 0xf;
190   sp += sp_offset;
191 
192   for (size_t i = 0; i < num_args; ++i) {
193     bool success = false;
194     ArgItem &arg = arg_list[i];
195     // arguments passed in registers
196     if (i < args_in_reg) {
197       const RegisterInfo *reg =
198           ctx.reg_ctx->GetRegisterInfoByName(reg_names[i]);
199       RegisterValue reg_val;
200       if (ctx.reg_ctx->ReadRegister(reg, reg_val))
201         arg.value = reg_val.GetAsUInt64(0, &success);
202     }
203     // arguments passed on the stack
204     else {
205       // get the argument type size
206       const size_t size = arg_size[arg_list[i].type];
207       // read the argument from memory
208       arg.value = 0;
209       // note: due to little endian layout reading 4 or 8 bytes will give the
210       // correct value.
211       size_t read = ctx.process->ReadMemory(sp, &arg.value, size, err);
212       success = (err.Success() && read == size);
213       // advance past this argument
214       sp -= size;
215     }
216     // fail if we couldn't read this argument
217     if (!success) {
218       if (log)
219         log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s",
220                     __FUNCTION__, uint64_t(i), err.AsCString("n/a"));
221       return false;
222     }
223   }
224   return true;
225 }
226 
227 bool GetArgsArm(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
228   // number of arguments passed in registers
229   static const uint32_t args_in_reg = 4;
230 
231   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
232 
233   Status err;
234 
235   // get the current stack pointer
236   uint64_t sp = ctx.reg_ctx->GetSP();
237 
238   for (size_t i = 0; i < num_args; ++i) {
239     bool success = false;
240     ArgItem &arg = arg_list[i];
241     // arguments passed in registers
242     if (i < args_in_reg) {
243       const RegisterInfo *reg = ctx.reg_ctx->GetRegisterInfoAtIndex(i);
244       RegisterValue reg_val;
245       if (ctx.reg_ctx->ReadRegister(reg, reg_val))
246         arg.value = reg_val.GetAsUInt32(0, &success);
247     }
248     // arguments passed on the stack
249     else {
250       // get the argument type size
251       const size_t arg_size = sizeof(uint32_t);
252       // clear all 64bits
253       arg.value = 0;
254       // read this argument from memory
255       size_t bytes_read =
256           ctx.process->ReadMemory(sp, &arg.value, arg_size, err);
257       success = (err.Success() && bytes_read == arg_size);
258       // advance the stack pointer
259       sp += sizeof(uint32_t);
260     }
261     // fail if we couldn't read this argument
262     if (!success) {
263       if (log)
264         log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s",
265                     __FUNCTION__, uint64_t(i), err.AsCString("n/a"));
266       return false;
267     }
268   }
269   return true;
270 }
271 
272 bool GetArgsAarch64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
273   // number of arguments passed in registers
274   static const uint32_t args_in_reg = 8;
275 
276   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
277 
278   for (size_t i = 0; i < num_args; ++i) {
279     bool success = false;
280     ArgItem &arg = arg_list[i];
281     // arguments passed in registers
282     if (i < args_in_reg) {
283       const RegisterInfo *reg = ctx.reg_ctx->GetRegisterInfoAtIndex(i);
284       RegisterValue reg_val;
285       if (ctx.reg_ctx->ReadRegister(reg, reg_val))
286         arg.value = reg_val.GetAsUInt64(0, &success);
287     }
288     // arguments passed on the stack
289     else {
290       if (log)
291         log->Printf("%s - reading arguments spilled to stack not implemented",
292                     __FUNCTION__);
293     }
294     // fail if we couldn't read this argument
295     if (!success) {
296       if (log)
297         log->Printf("%s - error reading argument: %" PRIu64, __FUNCTION__,
298                     uint64_t(i));
299       return false;
300     }
301   }
302   return true;
303 }
304 
305 bool GetArgsMipsel(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
306   // number of arguments passed in registers
307   static const uint32_t args_in_reg = 4;
308   // register file offset to first argument
309   static const uint32_t reg_offset = 4;
310 
311   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
312 
313   Status err;
314 
315   // find offset to arguments on the stack (+16 to skip over a0-a3 shadow
316   // space)
317   uint64_t sp = ctx.reg_ctx->GetSP() + 16;
318 
319   for (size_t i = 0; i < num_args; ++i) {
320     bool success = false;
321     ArgItem &arg = arg_list[i];
322     // arguments passed in registers
323     if (i < args_in_reg) {
324       const RegisterInfo *reg =
325           ctx.reg_ctx->GetRegisterInfoAtIndex(i + reg_offset);
326       RegisterValue reg_val;
327       if (ctx.reg_ctx->ReadRegister(reg, reg_val))
328         arg.value = reg_val.GetAsUInt64(0, &success);
329     }
330     // arguments passed on the stack
331     else {
332       const size_t arg_size = sizeof(uint32_t);
333       arg.value = 0;
334       size_t bytes_read =
335           ctx.process->ReadMemory(sp, &arg.value, arg_size, err);
336       success = (err.Success() && bytes_read == arg_size);
337       // advance the stack pointer
338       sp += arg_size;
339     }
340     // fail if we couldn't read this argument
341     if (!success) {
342       if (log)
343         log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s",
344                     __FUNCTION__, uint64_t(i), err.AsCString("n/a"));
345       return false;
346     }
347   }
348   return true;
349 }
350 
351 bool GetArgsMips64el(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
352   // number of arguments passed in registers
353   static const uint32_t args_in_reg = 8;
354   // register file offset to first argument
355   static const uint32_t reg_offset = 4;
356 
357   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
358 
359   Status err;
360 
361   // get the current stack pointer
362   uint64_t sp = ctx.reg_ctx->GetSP();
363 
364   for (size_t i = 0; i < num_args; ++i) {
365     bool success = false;
366     ArgItem &arg = arg_list[i];
367     // arguments passed in registers
368     if (i < args_in_reg) {
369       const RegisterInfo *reg =
370           ctx.reg_ctx->GetRegisterInfoAtIndex(i + reg_offset);
371       RegisterValue reg_val;
372       if (ctx.reg_ctx->ReadRegister(reg, reg_val))
373         arg.value = reg_val.GetAsUInt64(0, &success);
374     }
375     // arguments passed on the stack
376     else {
377       // get the argument type size
378       const size_t arg_size = sizeof(uint64_t);
379       // clear all 64bits
380       arg.value = 0;
381       // read this argument from memory
382       size_t bytes_read =
383           ctx.process->ReadMemory(sp, &arg.value, arg_size, err);
384       success = (err.Success() && bytes_read == arg_size);
385       // advance the stack pointer
386       sp += arg_size;
387     }
388     // fail if we couldn't read this argument
389     if (!success) {
390       if (log)
391         log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s",
392                     __FUNCTION__, uint64_t(i), err.AsCString("n/a"));
393       return false;
394     }
395   }
396   return true;
397 }
398 
399 bool GetArgs(ExecutionContext &exe_ctx, ArgItem *arg_list, size_t num_args) {
400   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
401 
402   // verify that we have a target
403   if (!exe_ctx.GetTargetPtr()) {
404     if (log)
405       log->Printf("%s - invalid target", __FUNCTION__);
406     return false;
407   }
408 
409   GetArgsCtx ctx = {exe_ctx.GetRegisterContext(), exe_ctx.GetProcessPtr()};
410   assert(ctx.reg_ctx && ctx.process);
411 
412   // dispatch based on architecture
413   switch (exe_ctx.GetTargetPtr()->GetArchitecture().GetMachine()) {
414   case llvm::Triple::ArchType::x86:
415     return GetArgsX86(ctx, arg_list, num_args);
416 
417   case llvm::Triple::ArchType::x86_64:
418     return GetArgsX86_64(ctx, arg_list, num_args);
419 
420   case llvm::Triple::ArchType::arm:
421     return GetArgsArm(ctx, arg_list, num_args);
422 
423   case llvm::Triple::ArchType::aarch64:
424     return GetArgsAarch64(ctx, arg_list, num_args);
425 
426   case llvm::Triple::ArchType::mipsel:
427     return GetArgsMipsel(ctx, arg_list, num_args);
428 
429   case llvm::Triple::ArchType::mips64el:
430     return GetArgsMips64el(ctx, arg_list, num_args);
431 
432   default:
433     // unsupported architecture
434     if (log) {
435       log->Printf(
436           "%s - architecture not supported: '%s'", __FUNCTION__,
437           exe_ctx.GetTargetRef().GetArchitecture().GetArchitectureName());
438     }
439     return false;
440   }
441 }
442 
443 bool IsRenderScriptScriptModule(ModuleSP module) {
444   if (!module)
445     return false;
446   return module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"),
447                                                 eSymbolTypeData) != nullptr;
448 }
449 
450 bool ParseCoordinate(llvm::StringRef coord_s, RSCoordinate &coord) {
451   // takes an argument of the form 'num[,num][,num]'. Where 'coord_s' is a
452   // comma separated 1,2 or 3-dimensional coordinate with the whitespace
453   // trimmed. Missing coordinates are defaulted to zero. If parsing of any
454   // elements fails the contents of &coord are undefined and `false` is
455   // returned, `true` otherwise
456 
457   RegularExpression regex;
458   RegularExpression::Match regex_match(3);
459 
460   bool matched = false;
461   if (regex.Compile(llvm::StringRef("^([0-9]+),([0-9]+),([0-9]+)$")) &&
462       regex.Execute(coord_s, &regex_match))
463     matched = true;
464   else if (regex.Compile(llvm::StringRef("^([0-9]+),([0-9]+)$")) &&
465            regex.Execute(coord_s, &regex_match))
466     matched = true;
467   else if (regex.Compile(llvm::StringRef("^([0-9]+)$")) &&
468            regex.Execute(coord_s, &regex_match))
469     matched = true;
470 
471   if (!matched)
472     return false;
473 
474   auto get_index = [&](int idx, uint32_t &i) -> bool {
475     std::string group;
476     errno = 0;
477     if (regex_match.GetMatchAtIndex(coord_s.str().c_str(), idx + 1, group))
478       return !llvm::StringRef(group).getAsInteger<uint32_t>(10, i);
479     return true;
480   };
481 
482   return get_index(0, coord.x) && get_index(1, coord.y) &&
483          get_index(2, coord.z);
484 }
485 
486 bool SkipPrologue(lldb::ModuleSP &module, Address &addr) {
487   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
488   SymbolContext sc;
489   uint32_t resolved_flags =
490       module->ResolveSymbolContextForAddress(addr, eSymbolContextFunction, sc);
491   if (resolved_flags & eSymbolContextFunction) {
492     if (sc.function) {
493       const uint32_t offset = sc.function->GetPrologueByteSize();
494       ConstString name = sc.GetFunctionName();
495       if (offset)
496         addr.Slide(offset);
497       if (log)
498         log->Printf("%s: Prologue offset for %s is %" PRIu32, __FUNCTION__,
499                     name.AsCString(), offset);
500     }
501     return true;
502   } else
503     return false;
504 }
505 } // anonymous namespace
506 
507 // The ScriptDetails class collects data associated with a single script
508 // instance.
509 struct RenderScriptRuntime::ScriptDetails {
510   ~ScriptDetails() = default;
511 
512   enum ScriptType { eScript, eScriptC };
513 
514   // The derived type of the script.
515   empirical_type<ScriptType> type;
516   // The name of the original source file.
517   empirical_type<std::string> res_name;
518   // Path to script .so file on the device.
519   empirical_type<std::string> shared_lib;
520   // Directory where kernel objects are cached on device.
521   empirical_type<std::string> cache_dir;
522   // Pointer to the context which owns this script.
523   empirical_type<lldb::addr_t> context;
524   // Pointer to the script object itself.
525   empirical_type<lldb::addr_t> script;
526 };
527 
528 // This Element class represents the Element object in RS, defining the type
529 // associated with an Allocation.
530 struct RenderScriptRuntime::Element {
531   // Taken from rsDefines.h
532   enum DataKind {
533     RS_KIND_USER,
534     RS_KIND_PIXEL_L = 7,
535     RS_KIND_PIXEL_A,
536     RS_KIND_PIXEL_LA,
537     RS_KIND_PIXEL_RGB,
538     RS_KIND_PIXEL_RGBA,
539     RS_KIND_PIXEL_DEPTH,
540     RS_KIND_PIXEL_YUV,
541     RS_KIND_INVALID = 100
542   };
543 
544   // Taken from rsDefines.h
545   enum DataType {
546     RS_TYPE_NONE = 0,
547     RS_TYPE_FLOAT_16,
548     RS_TYPE_FLOAT_32,
549     RS_TYPE_FLOAT_64,
550     RS_TYPE_SIGNED_8,
551     RS_TYPE_SIGNED_16,
552     RS_TYPE_SIGNED_32,
553     RS_TYPE_SIGNED_64,
554     RS_TYPE_UNSIGNED_8,
555     RS_TYPE_UNSIGNED_16,
556     RS_TYPE_UNSIGNED_32,
557     RS_TYPE_UNSIGNED_64,
558     RS_TYPE_BOOLEAN,
559 
560     RS_TYPE_UNSIGNED_5_6_5,
561     RS_TYPE_UNSIGNED_5_5_5_1,
562     RS_TYPE_UNSIGNED_4_4_4_4,
563 
564     RS_TYPE_MATRIX_4X4,
565     RS_TYPE_MATRIX_3X3,
566     RS_TYPE_MATRIX_2X2,
567 
568     RS_TYPE_ELEMENT = 1000,
569     RS_TYPE_TYPE,
570     RS_TYPE_ALLOCATION,
571     RS_TYPE_SAMPLER,
572     RS_TYPE_SCRIPT,
573     RS_TYPE_MESH,
574     RS_TYPE_PROGRAM_FRAGMENT,
575     RS_TYPE_PROGRAM_VERTEX,
576     RS_TYPE_PROGRAM_RASTER,
577     RS_TYPE_PROGRAM_STORE,
578     RS_TYPE_FONT,
579 
580     RS_TYPE_INVALID = 10000
581   };
582 
583   std::vector<Element> children; // Child Element fields for structs
584   empirical_type<lldb::addr_t>
585       element_ptr; // Pointer to the RS Element of the Type
586   empirical_type<DataType>
587       type; // Type of each data pointer stored by the allocation
588   empirical_type<DataKind>
589       type_kind; // Defines pixel type if Allocation is created from an image
590   empirical_type<uint32_t>
591       type_vec_size; // Vector size of each data point, e.g '4' for uchar4
592   empirical_type<uint32_t> field_count; // Number of Subelements
593   empirical_type<uint32_t> datum_size;  // Size of a single Element with padding
594   empirical_type<uint32_t> padding;     // Number of padding bytes
595   empirical_type<uint32_t>
596       array_size;        // Number of items in array, only needed for structs
597   ConstString type_name; // Name of type, only needed for structs
598 
599   static const ConstString &
600   GetFallbackStructName(); // Print this as the type name of a struct Element
601                            // If we can't resolve the actual struct name
602 
603   bool ShouldRefresh() const {
604     const bool valid_ptr = element_ptr.isValid() && *element_ptr.get() != 0x0;
605     const bool valid_type =
606         type.isValid() && type_vec_size.isValid() && type_kind.isValid();
607     return !valid_ptr || !valid_type || !datum_size.isValid();
608   }
609 };
610 
611 // This AllocationDetails class collects data associated with a single
612 // allocation instance.
613 struct RenderScriptRuntime::AllocationDetails {
614   struct Dimension {
615     uint32_t dim_1;
616     uint32_t dim_2;
617     uint32_t dim_3;
618     uint32_t cube_map;
619 
620     Dimension() {
621       dim_1 = 0;
622       dim_2 = 0;
623       dim_3 = 0;
624       cube_map = 0;
625     }
626   };
627 
628   // The FileHeader struct specifies the header we use for writing allocations
629   // to a binary file. Our format begins with the ASCII characters "RSAD",
630   // identifying the file as an allocation dump. Member variables dims and
631   // hdr_size are then written consecutively, immediately followed by an
632   // instance of the ElementHeader struct. Because Elements can contain
633   // subelements, there may be more than one instance of the ElementHeader
634   // struct. With this first instance being the root element, and the other
635   // instances being the root's descendants. To identify which instances are an
636   // ElementHeader's children, each struct is immediately followed by a
637   // sequence of consecutive offsets to the start of its child structs. These
638   // offsets are
639   // 4 bytes in size, and the 0 offset signifies no more children.
640   struct FileHeader {
641     uint8_t ident[4];  // ASCII 'RSAD' identifying the file
642     uint32_t dims[3];  // Dimensions
643     uint16_t hdr_size; // Header size in bytes, including all element headers
644   };
645 
646   struct ElementHeader {
647     uint16_t type;         // DataType enum
648     uint32_t kind;         // DataKind enum
649     uint32_t element_size; // Size of a single element, including padding
650     uint16_t vector_size;  // Vector width
651     uint32_t array_size;   // Number of elements in array
652   };
653 
654   // Monotonically increasing from 1
655   static uint32_t ID;
656 
657   // Maps Allocation DataType enum and vector size to printable strings using
658   // mapping from RenderScript numerical types summary documentation
659   static const char *RsDataTypeToString[][4];
660 
661   // Maps Allocation DataKind enum to printable strings
662   static const char *RsDataKindToString[];
663 
664   // Maps allocation types to format sizes for printing.
665   static const uint32_t RSTypeToFormat[][3];
666 
667   // Give each allocation an ID as a way
668   // for commands to reference it.
669   const uint32_t id;
670 
671   // Allocation Element type
672   RenderScriptRuntime::Element element;
673   // Dimensions of the Allocation
674   empirical_type<Dimension> dimension;
675   // Pointer to address of the RS Allocation
676   empirical_type<lldb::addr_t> address;
677   // Pointer to the data held by the Allocation
678   empirical_type<lldb::addr_t> data_ptr;
679   // Pointer to the RS Type of the Allocation
680   empirical_type<lldb::addr_t> type_ptr;
681   // Pointer to the RS Context of the Allocation
682   empirical_type<lldb::addr_t> context;
683   // Size of the allocation
684   empirical_type<uint32_t> size;
685   // Stride between rows of the allocation
686   empirical_type<uint32_t> stride;
687 
688   // Give each allocation an id, so we can reference it in user commands.
689   AllocationDetails() : id(ID++) {}
690 
691   bool ShouldRefresh() const {
692     bool valid_ptrs = data_ptr.isValid() && *data_ptr.get() != 0x0;
693     valid_ptrs = valid_ptrs && type_ptr.isValid() && *type_ptr.get() != 0x0;
694     return !valid_ptrs || !dimension.isValid() || !size.isValid() ||
695            element.ShouldRefresh();
696   }
697 };
698 
699 const ConstString &RenderScriptRuntime::Element::GetFallbackStructName() {
700   static const ConstString FallbackStructName("struct");
701   return FallbackStructName;
702 }
703 
704 uint32_t RenderScriptRuntime::AllocationDetails::ID = 1;
705 
706 const char *RenderScriptRuntime::AllocationDetails::RsDataKindToString[] = {
707     "User",       "Undefined",   "Undefined", "Undefined",
708     "Undefined",  "Undefined",   "Undefined", // Enum jumps from 0 to 7
709     "L Pixel",    "A Pixel",     "LA Pixel",  "RGB Pixel",
710     "RGBA Pixel", "Pixel Depth", "YUV Pixel"};
711 
712 const char *RenderScriptRuntime::AllocationDetails::RsDataTypeToString[][4] = {
713     {"None", "None", "None", "None"},
714     {"half", "half2", "half3", "half4"},
715     {"float", "float2", "float3", "float4"},
716     {"double", "double2", "double3", "double4"},
717     {"char", "char2", "char3", "char4"},
718     {"short", "short2", "short3", "short4"},
719     {"int", "int2", "int3", "int4"},
720     {"long", "long2", "long3", "long4"},
721     {"uchar", "uchar2", "uchar3", "uchar4"},
722     {"ushort", "ushort2", "ushort3", "ushort4"},
723     {"uint", "uint2", "uint3", "uint4"},
724     {"ulong", "ulong2", "ulong3", "ulong4"},
725     {"bool", "bool2", "bool3", "bool4"},
726     {"packed_565", "packed_565", "packed_565", "packed_565"},
727     {"packed_5551", "packed_5551", "packed_5551", "packed_5551"},
728     {"packed_4444", "packed_4444", "packed_4444", "packed_4444"},
729     {"rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4"},
730     {"rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3"},
731     {"rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2"},
732 
733     // Handlers
734     {"RS Element", "RS Element", "RS Element", "RS Element"},
735     {"RS Type", "RS Type", "RS Type", "RS Type"},
736     {"RS Allocation", "RS Allocation", "RS Allocation", "RS Allocation"},
737     {"RS Sampler", "RS Sampler", "RS Sampler", "RS Sampler"},
738     {"RS Script", "RS Script", "RS Script", "RS Script"},
739 
740     // Deprecated
741     {"RS Mesh", "RS Mesh", "RS Mesh", "RS Mesh"},
742     {"RS Program Fragment", "RS Program Fragment", "RS Program Fragment",
743      "RS Program Fragment"},
744     {"RS Program Vertex", "RS Program Vertex", "RS Program Vertex",
745      "RS Program Vertex"},
746     {"RS Program Raster", "RS Program Raster", "RS Program Raster",
747      "RS Program Raster"},
748     {"RS Program Store", "RS Program Store", "RS Program Store",
749      "RS Program Store"},
750     {"RS Font", "RS Font", "RS Font", "RS Font"}};
751 
752 // Used as an index into the RSTypeToFormat array elements
753 enum TypeToFormatIndex { eFormatSingle = 0, eFormatVector, eElementSize };
754 
755 // { format enum of single element, format enum of element vector, size of
756 // element}
757 const uint32_t RenderScriptRuntime::AllocationDetails::RSTypeToFormat[][3] = {
758     // RS_TYPE_NONE
759     {eFormatHex, eFormatHex, 1},
760     // RS_TYPE_FLOAT_16
761     {eFormatFloat, eFormatVectorOfFloat16, 2},
762     // RS_TYPE_FLOAT_32
763     {eFormatFloat, eFormatVectorOfFloat32, sizeof(float)},
764     // RS_TYPE_FLOAT_64
765     {eFormatFloat, eFormatVectorOfFloat64, sizeof(double)},
766     // RS_TYPE_SIGNED_8
767     {eFormatDecimal, eFormatVectorOfSInt8, sizeof(int8_t)},
768     // RS_TYPE_SIGNED_16
769     {eFormatDecimal, eFormatVectorOfSInt16, sizeof(int16_t)},
770     // RS_TYPE_SIGNED_32
771     {eFormatDecimal, eFormatVectorOfSInt32, sizeof(int32_t)},
772     // RS_TYPE_SIGNED_64
773     {eFormatDecimal, eFormatVectorOfSInt64, sizeof(int64_t)},
774     // RS_TYPE_UNSIGNED_8
775     {eFormatDecimal, eFormatVectorOfUInt8, sizeof(uint8_t)},
776     // RS_TYPE_UNSIGNED_16
777     {eFormatDecimal, eFormatVectorOfUInt16, sizeof(uint16_t)},
778     // RS_TYPE_UNSIGNED_32
779     {eFormatDecimal, eFormatVectorOfUInt32, sizeof(uint32_t)},
780     // RS_TYPE_UNSIGNED_64
781     {eFormatDecimal, eFormatVectorOfUInt64, sizeof(uint64_t)},
782     // RS_TYPE_BOOL
783     {eFormatBoolean, eFormatBoolean, 1},
784     // RS_TYPE_UNSIGNED_5_6_5
785     {eFormatHex, eFormatHex, sizeof(uint16_t)},
786     // RS_TYPE_UNSIGNED_5_5_5_1
787     {eFormatHex, eFormatHex, sizeof(uint16_t)},
788     // RS_TYPE_UNSIGNED_4_4_4_4
789     {eFormatHex, eFormatHex, sizeof(uint16_t)},
790     // RS_TYPE_MATRIX_4X4
791     {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 16},
792     // RS_TYPE_MATRIX_3X3
793     {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 9},
794     // RS_TYPE_MATRIX_2X2
795     {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 4}};
796 
797 //------------------------------------------------------------------
798 // Static Functions
799 //------------------------------------------------------------------
800 LanguageRuntime *
801 RenderScriptRuntime::CreateInstance(Process *process,
802                                     lldb::LanguageType language) {
803 
804   if (language == eLanguageTypeExtRenderScript)
805     return new RenderScriptRuntime(process);
806   else
807     return nullptr;
808 }
809 
810 // Callback with a module to search for matching symbols. We first check that
811 // the module contains RS kernels. Then look for a symbol which matches our
812 // kernel name. The breakpoint address is finally set using the address of this
813 // symbol.
814 Searcher::CallbackReturn
815 RSBreakpointResolver::SearchCallback(SearchFilter &filter,
816                                      SymbolContext &context, Address *, bool) {
817   ModuleSP module = context.module_sp;
818 
819   if (!module || !IsRenderScriptScriptModule(module))
820     return Searcher::eCallbackReturnContinue;
821 
822   // Attempt to set a breakpoint on the kernel name symbol within the module
823   // library. If it's not found, it's likely debug info is unavailable - try to
824   // set a breakpoint on <name>.expand.
825   const Symbol *kernel_sym =
826       module->FindFirstSymbolWithNameAndType(m_kernel_name, eSymbolTypeCode);
827   if (!kernel_sym) {
828     std::string kernel_name_expanded(m_kernel_name.AsCString());
829     kernel_name_expanded.append(".expand");
830     kernel_sym = module->FindFirstSymbolWithNameAndType(
831         ConstString(kernel_name_expanded.c_str()), eSymbolTypeCode);
832   }
833 
834   if (kernel_sym) {
835     Address bp_addr = kernel_sym->GetAddress();
836     if (filter.AddressPasses(bp_addr))
837       m_breakpoint->AddLocation(bp_addr);
838   }
839 
840   return Searcher::eCallbackReturnContinue;
841 }
842 
843 Searcher::CallbackReturn
844 RSReduceBreakpointResolver::SearchCallback(lldb_private::SearchFilter &filter,
845                                            lldb_private::SymbolContext &context,
846                                            Address *, bool) {
847   // We need to have access to the list of reductions currently parsed, as
848   // reduce names don't actually exist as symbols in a module. They are only
849   // identifiable by parsing the .rs.info packet, or finding the expand symbol.
850   // We therefore need access to the list of parsed rs modules to properly
851   // resolve reduction names.
852   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_BREAKPOINTS));
853   ModuleSP module = context.module_sp;
854 
855   if (!module || !IsRenderScriptScriptModule(module))
856     return Searcher::eCallbackReturnContinue;
857 
858   if (!m_rsmodules)
859     return Searcher::eCallbackReturnContinue;
860 
861   for (const auto &module_desc : *m_rsmodules) {
862     if (module_desc->m_module != module)
863       continue;
864 
865     for (const auto &reduction : module_desc->m_reductions) {
866       if (reduction.m_reduce_name != m_reduce_name)
867         continue;
868 
869       std::array<std::pair<ConstString, int>, 5> funcs{
870           {{reduction.m_init_name, eKernelTypeInit},
871            {reduction.m_accum_name, eKernelTypeAccum},
872            {reduction.m_comb_name, eKernelTypeComb},
873            {reduction.m_outc_name, eKernelTypeOutC},
874            {reduction.m_halter_name, eKernelTypeHalter}}};
875 
876       for (const auto &kernel : funcs) {
877         // Skip constituent functions that don't match our spec
878         if (!(m_kernel_types & kernel.second))
879           continue;
880 
881         const auto kernel_name = kernel.first;
882         const auto symbol = module->FindFirstSymbolWithNameAndType(
883             kernel_name, eSymbolTypeCode);
884         if (!symbol)
885           continue;
886 
887         auto address = symbol->GetAddress();
888         if (filter.AddressPasses(address)) {
889           bool new_bp;
890           if (!SkipPrologue(module, address)) {
891             if (log)
892               log->Printf("%s: Error trying to skip prologue", __FUNCTION__);
893           }
894           m_breakpoint->AddLocation(address, &new_bp);
895           if (log)
896             log->Printf("%s: %s reduction breakpoint on %s in %s", __FUNCTION__,
897                         new_bp ? "new" : "existing", kernel_name.GetCString(),
898                         address.GetModule()->GetFileSpec().GetCString());
899         }
900       }
901     }
902   }
903   return eCallbackReturnContinue;
904 }
905 
906 Searcher::CallbackReturn RSScriptGroupBreakpointResolver::SearchCallback(
907     SearchFilter &filter, SymbolContext &context, Address *addr,
908     bool containing) {
909 
910   if (!m_breakpoint)
911     return eCallbackReturnContinue;
912 
913   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_BREAKPOINTS));
914   ModuleSP &module = context.module_sp;
915 
916   if (!module || !IsRenderScriptScriptModule(module))
917     return Searcher::eCallbackReturnContinue;
918 
919   std::vector<std::string> names;
920   m_breakpoint->GetNames(names);
921   if (names.empty())
922     return eCallbackReturnContinue;
923 
924   for (auto &name : names) {
925     const RSScriptGroupDescriptorSP sg = FindScriptGroup(ConstString(name));
926     if (!sg) {
927       if (log)
928         log->Printf("%s: could not find script group for %s", __FUNCTION__,
929                     name.c_str());
930       continue;
931     }
932 
933     if (log)
934       log->Printf("%s: Found ScriptGroup for %s", __FUNCTION__, name.c_str());
935 
936     for (const RSScriptGroupDescriptor::Kernel &k : sg->m_kernels) {
937       if (log) {
938         log->Printf("%s: Adding breakpoint for %s", __FUNCTION__,
939                     k.m_name.AsCString());
940         log->Printf("%s: Kernel address 0x%" PRIx64, __FUNCTION__, k.m_addr);
941       }
942 
943       const lldb_private::Symbol *sym =
944           module->FindFirstSymbolWithNameAndType(k.m_name, eSymbolTypeCode);
945       if (!sym) {
946         if (log)
947           log->Printf("%s: Unable to find symbol for %s", __FUNCTION__,
948                       k.m_name.AsCString());
949         continue;
950       }
951 
952       if (log) {
953         log->Printf("%s: Found symbol name is %s", __FUNCTION__,
954                     sym->GetName().AsCString());
955       }
956 
957       auto address = sym->GetAddress();
958       if (!SkipPrologue(module, address)) {
959         if (log)
960           log->Printf("%s: Error trying to skip prologue", __FUNCTION__);
961       }
962 
963       bool new_bp;
964       m_breakpoint->AddLocation(address, &new_bp);
965 
966       if (log)
967         log->Printf("%s: Placed %sbreakpoint on %s", __FUNCTION__,
968                     new_bp ? "new " : "", k.m_name.AsCString());
969 
970       // exit after placing the first breakpoint if we do not intend to stop on
971       // all kernels making up this script group
972       if (!m_stop_on_all)
973         break;
974     }
975   }
976 
977   return eCallbackReturnContinue;
978 }
979 
980 void RenderScriptRuntime::Initialize() {
981   PluginManager::RegisterPlugin(GetPluginNameStatic(),
982                                 "RenderScript language support", CreateInstance,
983                                 GetCommandObject);
984 }
985 
986 void RenderScriptRuntime::Terminate() {
987   PluginManager::UnregisterPlugin(CreateInstance);
988 }
989 
990 lldb_private::ConstString RenderScriptRuntime::GetPluginNameStatic() {
991   static ConstString plugin_name("renderscript");
992   return plugin_name;
993 }
994 
995 RenderScriptRuntime::ModuleKind
996 RenderScriptRuntime::GetModuleKind(const lldb::ModuleSP &module_sp) {
997   if (module_sp) {
998     if (IsRenderScriptScriptModule(module_sp))
999       return eModuleKindKernelObj;
1000 
1001     // Is this the main RS runtime library
1002     const ConstString rs_lib("libRS.so");
1003     if (module_sp->GetFileSpec().GetFilename() == rs_lib) {
1004       return eModuleKindLibRS;
1005     }
1006 
1007     const ConstString rs_driverlib("libRSDriver.so");
1008     if (module_sp->GetFileSpec().GetFilename() == rs_driverlib) {
1009       return eModuleKindDriver;
1010     }
1011 
1012     const ConstString rs_cpureflib("libRSCpuRef.so");
1013     if (module_sp->GetFileSpec().GetFilename() == rs_cpureflib) {
1014       return eModuleKindImpl;
1015     }
1016   }
1017   return eModuleKindIgnored;
1018 }
1019 
1020 bool RenderScriptRuntime::IsRenderScriptModule(
1021     const lldb::ModuleSP &module_sp) {
1022   return GetModuleKind(module_sp) != eModuleKindIgnored;
1023 }
1024 
1025 void RenderScriptRuntime::ModulesDidLoad(const ModuleList &module_list) {
1026   std::lock_guard<std::recursive_mutex> guard(module_list.GetMutex());
1027 
1028   size_t num_modules = module_list.GetSize();
1029   for (size_t i = 0; i < num_modules; i++) {
1030     auto mod = module_list.GetModuleAtIndex(i);
1031     if (IsRenderScriptModule(mod)) {
1032       LoadModule(mod);
1033     }
1034   }
1035 }
1036 
1037 //------------------------------------------------------------------
1038 // PluginInterface protocol
1039 //------------------------------------------------------------------
1040 lldb_private::ConstString RenderScriptRuntime::GetPluginName() {
1041   return GetPluginNameStatic();
1042 }
1043 
1044 uint32_t RenderScriptRuntime::GetPluginVersion() { return 1; }
1045 
1046 bool RenderScriptRuntime::IsVTableName(const char *name) { return false; }
1047 
1048 bool RenderScriptRuntime::GetDynamicTypeAndAddress(
1049     ValueObject &in_value, lldb::DynamicValueType use_dynamic,
1050     TypeAndOrName &class_type_or_name, Address &address,
1051     Value::ValueType &value_type) {
1052   return false;
1053 }
1054 
1055 TypeAndOrName
1056 RenderScriptRuntime::FixUpDynamicType(const TypeAndOrName &type_and_or_name,
1057                                       ValueObject &static_value) {
1058   return type_and_or_name;
1059 }
1060 
1061 bool RenderScriptRuntime::CouldHaveDynamicValue(ValueObject &in_value) {
1062   return false;
1063 }
1064 
1065 lldb::BreakpointResolverSP
1066 RenderScriptRuntime::CreateExceptionResolver(Breakpoint *bp, bool catch_bp,
1067                                              bool throw_bp) {
1068   BreakpointResolverSP resolver_sp;
1069   return resolver_sp;
1070 }
1071 
1072 const RenderScriptRuntime::HookDefn RenderScriptRuntime::s_runtimeHookDefns[] =
1073     {
1074         // rsdScript
1075         {"rsdScriptInit", "_Z13rsdScriptInitPKN7android12renderscript7ContextEP"
1076                           "NS0_7ScriptCEPKcS7_PKhjj",
1077          "_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_"
1078          "7ScriptCEPKcS7_PKhmj",
1079          0, RenderScriptRuntime::eModuleKindDriver,
1080          &lldb_private::RenderScriptRuntime::CaptureScriptInit},
1081         {"rsdScriptInvokeForEachMulti",
1082          "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0"
1083          "_6ScriptEjPPKNS0_10AllocationEjPS6_PKvjPK12RsScriptCall",
1084          "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0"
1085          "_6ScriptEjPPKNS0_10AllocationEmPS6_PKvmPK12RsScriptCall",
1086          0, RenderScriptRuntime::eModuleKindDriver,
1087          &lldb_private::RenderScriptRuntime::CaptureScriptInvokeForEachMulti},
1088         {"rsdScriptSetGlobalVar", "_Z21rsdScriptSetGlobalVarPKN7android12render"
1089                                   "script7ContextEPKNS0_6ScriptEjPvj",
1090          "_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_"
1091          "6ScriptEjPvm",
1092          0, RenderScriptRuntime::eModuleKindDriver,
1093          &lldb_private::RenderScriptRuntime::CaptureSetGlobalVar},
1094 
1095         // rsdAllocation
1096         {"rsdAllocationInit", "_Z17rsdAllocationInitPKN7android12renderscript7C"
1097                               "ontextEPNS0_10AllocationEb",
1098          "_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_"
1099          "10AllocationEb",
1100          0, RenderScriptRuntime::eModuleKindDriver,
1101          &lldb_private::RenderScriptRuntime::CaptureAllocationInit},
1102         {"rsdAllocationRead2D",
1103          "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_"
1104          "10AllocationEjjj23RsAllocationCubemapFacejjPvjj",
1105          "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_"
1106          "10AllocationEjjj23RsAllocationCubemapFacejjPvmm",
1107          0, RenderScriptRuntime::eModuleKindDriver, nullptr},
1108         {"rsdAllocationDestroy", "_Z20rsdAllocationDestroyPKN7android12rendersc"
1109                                  "ript7ContextEPNS0_10AllocationE",
1110          "_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_"
1111          "10AllocationE",
1112          0, RenderScriptRuntime::eModuleKindDriver,
1113          &lldb_private::RenderScriptRuntime::CaptureAllocationDestroy},
1114 
1115         // renderscript script groups
1116         {"rsdDebugHintScriptGroup2", "_ZN7android12renderscript21debugHintScrip"
1117                                      "tGroup2EPKcjPKPFvPK24RsExpandKernelDriver"
1118                                      "InfojjjEj",
1119          "_ZN7android12renderscript21debugHintScriptGroup2EPKcjPKPFvPK24RsExpan"
1120          "dKernelDriverInfojjjEj",
1121          0, RenderScriptRuntime::eModuleKindImpl,
1122          &lldb_private::RenderScriptRuntime::CaptureDebugHintScriptGroup2}};
1123 
1124 const size_t RenderScriptRuntime::s_runtimeHookCount =
1125     sizeof(s_runtimeHookDefns) / sizeof(s_runtimeHookDefns[0]);
1126 
1127 bool RenderScriptRuntime::HookCallback(void *baton,
1128                                        StoppointCallbackContext *ctx,
1129                                        lldb::user_id_t break_id,
1130                                        lldb::user_id_t break_loc_id) {
1131   RuntimeHook *hook = (RuntimeHook *)baton;
1132   ExecutionContext exe_ctx(ctx->exe_ctx_ref);
1133 
1134   RenderScriptRuntime *lang_rt =
1135       (RenderScriptRuntime *)exe_ctx.GetProcessPtr()->GetLanguageRuntime(
1136           eLanguageTypeExtRenderScript);
1137 
1138   lang_rt->HookCallback(hook, exe_ctx);
1139 
1140   return false;
1141 }
1142 
1143 void RenderScriptRuntime::HookCallback(RuntimeHook *hook,
1144                                        ExecutionContext &exe_ctx) {
1145   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1146 
1147   if (log)
1148     log->Printf("%s - '%s'", __FUNCTION__, hook->defn->name);
1149 
1150   if (hook->defn->grabber) {
1151     (this->*(hook->defn->grabber))(hook, exe_ctx);
1152   }
1153 }
1154 
1155 void RenderScriptRuntime::CaptureDebugHintScriptGroup2(
1156     RuntimeHook *hook_info, ExecutionContext &context) {
1157   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1158 
1159   enum {
1160     eGroupName = 0,
1161     eGroupNameSize,
1162     eKernel,
1163     eKernelCount,
1164   };
1165 
1166   std::array<ArgItem, 4> args{{
1167       {ArgItem::ePointer, 0}, // const char         *groupName
1168       {ArgItem::eInt32, 0},   // const uint32_t      groupNameSize
1169       {ArgItem::ePointer, 0}, // const ExpandFuncTy *kernel
1170       {ArgItem::eInt32, 0},   // const uint32_t      kernelCount
1171   }};
1172 
1173   if (!GetArgs(context, args.data(), args.size())) {
1174     if (log)
1175       log->Printf("%s - Error while reading the function parameters",
1176                   __FUNCTION__);
1177     return;
1178   } else if (log) {
1179     log->Printf("%s - groupName    : 0x%" PRIx64, __FUNCTION__,
1180                 addr_t(args[eGroupName]));
1181     log->Printf("%s - groupNameSize: %" PRIu64, __FUNCTION__,
1182                 uint64_t(args[eGroupNameSize]));
1183     log->Printf("%s - kernel       : 0x%" PRIx64, __FUNCTION__,
1184                 addr_t(args[eKernel]));
1185     log->Printf("%s - kernelCount  : %" PRIu64, __FUNCTION__,
1186                 uint64_t(args[eKernelCount]));
1187   }
1188 
1189   // parse script group name
1190   ConstString group_name;
1191   {
1192     Status err;
1193     const uint64_t len = uint64_t(args[eGroupNameSize]);
1194     std::unique_ptr<char[]> buffer(new char[uint32_t(len + 1)]);
1195     m_process->ReadMemory(addr_t(args[eGroupName]), buffer.get(), len, err);
1196     buffer.get()[len] = '\0';
1197     if (!err.Success()) {
1198       if (log)
1199         log->Printf("Error reading scriptgroup name from target");
1200       return;
1201     } else {
1202       if (log)
1203         log->Printf("Extracted scriptgroup name %s", buffer.get());
1204     }
1205     // write back the script group name
1206     group_name.SetCString(buffer.get());
1207   }
1208 
1209   // create or access existing script group
1210   RSScriptGroupDescriptorSP group;
1211   {
1212     // search for existing script group
1213     for (auto sg : m_scriptGroups) {
1214       if (sg->m_name == group_name) {
1215         group = sg;
1216         break;
1217       }
1218     }
1219     if (!group) {
1220       group.reset(new RSScriptGroupDescriptor);
1221       group->m_name = group_name;
1222       m_scriptGroups.push_back(group);
1223     } else {
1224       // already have this script group
1225       if (log)
1226         log->Printf("Attempt to add duplicate script group %s",
1227                     group_name.AsCString());
1228       return;
1229     }
1230   }
1231   assert(group);
1232 
1233   const uint32_t target_ptr_size = m_process->GetAddressByteSize();
1234   std::vector<addr_t> kernels;
1235   // parse kernel addresses in script group
1236   for (uint64_t i = 0; i < uint64_t(args[eKernelCount]); ++i) {
1237     RSScriptGroupDescriptor::Kernel kernel;
1238     // extract script group kernel addresses from the target
1239     const addr_t ptr_addr = addr_t(args[eKernel]) + i * target_ptr_size;
1240     uint64_t kernel_addr = 0;
1241     Status err;
1242     size_t read =
1243         m_process->ReadMemory(ptr_addr, &kernel_addr, target_ptr_size, err);
1244     if (!err.Success() || read != target_ptr_size) {
1245       if (log)
1246         log->Printf("Error parsing kernel address %" PRIu64 " in script group",
1247                     i);
1248       return;
1249     }
1250     if (log)
1251       log->Printf("Extracted scriptgroup kernel address - 0x%" PRIx64,
1252                   kernel_addr);
1253     kernel.m_addr = kernel_addr;
1254 
1255     // try to resolve the associated kernel name
1256     if (!ResolveKernelName(kernel.m_addr, kernel.m_name)) {
1257       if (log)
1258         log->Printf("Parsed scriptgroup kernel %" PRIu64 " - 0x%" PRIx64, i,
1259                     kernel_addr);
1260       return;
1261     }
1262 
1263     // try to find the non '.expand' function
1264     {
1265       const llvm::StringRef expand(".expand");
1266       const llvm::StringRef name_ref = kernel.m_name.GetStringRef();
1267       if (name_ref.endswith(expand)) {
1268         const ConstString base_kernel(name_ref.drop_back(expand.size()));
1269         // verify this function is a valid kernel
1270         if (IsKnownKernel(base_kernel)) {
1271           kernel.m_name = base_kernel;
1272           if (log)
1273             log->Printf("%s - found non expand version '%s'", __FUNCTION__,
1274                         base_kernel.GetCString());
1275         }
1276       }
1277     }
1278     // add to a list of script group kernels we know about
1279     group->m_kernels.push_back(kernel);
1280   }
1281 
1282   // Resolve any pending scriptgroup breakpoints
1283   {
1284     Target &target = m_process->GetTarget();
1285     const BreakpointList &list = target.GetBreakpointList();
1286     const size_t num_breakpoints = list.GetSize();
1287     if (log)
1288       log->Printf("Resolving %zu breakpoints", num_breakpoints);
1289     for (size_t i = 0; i < num_breakpoints; ++i) {
1290       const BreakpointSP bp = list.GetBreakpointAtIndex(i);
1291       if (bp) {
1292         if (bp->MatchesName(group_name.AsCString())) {
1293           if (log)
1294             log->Printf("Found breakpoint with name %s",
1295                         group_name.AsCString());
1296           bp->ResolveBreakpoint();
1297         }
1298       }
1299     }
1300   }
1301 }
1302 
1303 void RenderScriptRuntime::CaptureScriptInvokeForEachMulti(
1304     RuntimeHook *hook, ExecutionContext &exe_ctx) {
1305   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1306 
1307   enum {
1308     eRsContext = 0,
1309     eRsScript,
1310     eRsSlot,
1311     eRsAIns,
1312     eRsInLen,
1313     eRsAOut,
1314     eRsUsr,
1315     eRsUsrLen,
1316     eRsSc,
1317   };
1318 
1319   std::array<ArgItem, 9> args{{
1320       ArgItem{ArgItem::ePointer, 0}, // const Context       *rsc
1321       ArgItem{ArgItem::ePointer, 0}, // Script              *s
1322       ArgItem{ArgItem::eInt32, 0},   // uint32_t             slot
1323       ArgItem{ArgItem::ePointer, 0}, // const Allocation   **aIns
1324       ArgItem{ArgItem::eInt32, 0},   // size_t               inLen
1325       ArgItem{ArgItem::ePointer, 0}, // Allocation          *aout
1326       ArgItem{ArgItem::ePointer, 0}, // const void          *usr
1327       ArgItem{ArgItem::eInt32, 0},   // size_t               usrLen
1328       ArgItem{ArgItem::ePointer, 0}, // const RsScriptCall  *sc
1329   }};
1330 
1331   bool success = GetArgs(exe_ctx, &args[0], args.size());
1332   if (!success) {
1333     if (log)
1334       log->Printf("%s - Error while reading the function parameters",
1335                   __FUNCTION__);
1336     return;
1337   }
1338 
1339   const uint32_t target_ptr_size = m_process->GetAddressByteSize();
1340   Status err;
1341   std::vector<uint64_t> allocs;
1342 
1343   // traverse allocation list
1344   for (uint64_t i = 0; i < uint64_t(args[eRsInLen]); ++i) {
1345     // calculate offest to allocation pointer
1346     const addr_t addr = addr_t(args[eRsAIns]) + i * target_ptr_size;
1347 
1348     // Note: due to little endian layout, reading 32bits or 64bits into res
1349     // will give the correct results.
1350     uint64_t result = 0;
1351     size_t read = m_process->ReadMemory(addr, &result, target_ptr_size, err);
1352     if (read != target_ptr_size || !err.Success()) {
1353       if (log)
1354         log->Printf(
1355             "%s - Error while reading allocation list argument %" PRIu64,
1356             __FUNCTION__, i);
1357     } else {
1358       allocs.push_back(result);
1359     }
1360   }
1361 
1362   // if there is an output allocation track it
1363   if (uint64_t alloc_out = uint64_t(args[eRsAOut])) {
1364     allocs.push_back(alloc_out);
1365   }
1366 
1367   // for all allocations we have found
1368   for (const uint64_t alloc_addr : allocs) {
1369     AllocationDetails *alloc = LookUpAllocation(alloc_addr);
1370     if (!alloc)
1371       alloc = CreateAllocation(alloc_addr);
1372 
1373     if (alloc) {
1374       // save the allocation address
1375       if (alloc->address.isValid()) {
1376         // check the allocation address we already have matches
1377         assert(*alloc->address.get() == alloc_addr);
1378       } else {
1379         alloc->address = alloc_addr;
1380       }
1381 
1382       // save the context
1383       if (log) {
1384         if (alloc->context.isValid() &&
1385             *alloc->context.get() != addr_t(args[eRsContext]))
1386           log->Printf("%s - Allocation used by multiple contexts",
1387                       __FUNCTION__);
1388       }
1389       alloc->context = addr_t(args[eRsContext]);
1390     }
1391   }
1392 
1393   // make sure we track this script object
1394   if (lldb_private::RenderScriptRuntime::ScriptDetails *script =
1395           LookUpScript(addr_t(args[eRsScript]), true)) {
1396     if (log) {
1397       if (script->context.isValid() &&
1398           *script->context.get() != addr_t(args[eRsContext]))
1399         log->Printf("%s - Script used by multiple contexts", __FUNCTION__);
1400     }
1401     script->context = addr_t(args[eRsContext]);
1402   }
1403 }
1404 
1405 void RenderScriptRuntime::CaptureSetGlobalVar(RuntimeHook *hook,
1406                                               ExecutionContext &context) {
1407   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1408 
1409   enum {
1410     eRsContext,
1411     eRsScript,
1412     eRsId,
1413     eRsData,
1414     eRsLength,
1415   };
1416 
1417   std::array<ArgItem, 5> args{{
1418       ArgItem{ArgItem::ePointer, 0}, // eRsContext
1419       ArgItem{ArgItem::ePointer, 0}, // eRsScript
1420       ArgItem{ArgItem::eInt32, 0},   // eRsId
1421       ArgItem{ArgItem::ePointer, 0}, // eRsData
1422       ArgItem{ArgItem::eInt32, 0},   // eRsLength
1423   }};
1424 
1425   bool success = GetArgs(context, &args[0], args.size());
1426   if (!success) {
1427     if (log)
1428       log->Printf("%s - error reading the function parameters.", __FUNCTION__);
1429     return;
1430   }
1431 
1432   if (log) {
1433     log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " slot %" PRIu64 " = 0x%" PRIx64
1434                 ":%" PRIu64 "bytes.",
1435                 __FUNCTION__, uint64_t(args[eRsContext]),
1436                 uint64_t(args[eRsScript]), uint64_t(args[eRsId]),
1437                 uint64_t(args[eRsData]), uint64_t(args[eRsLength]));
1438 
1439     addr_t script_addr = addr_t(args[eRsScript]);
1440     if (m_scriptMappings.find(script_addr) != m_scriptMappings.end()) {
1441       auto rsm = m_scriptMappings[script_addr];
1442       if (uint64_t(args[eRsId]) < rsm->m_globals.size()) {
1443         auto rsg = rsm->m_globals[uint64_t(args[eRsId])];
1444         log->Printf("%s - Setting of '%s' within '%s' inferred", __FUNCTION__,
1445                     rsg.m_name.AsCString(),
1446                     rsm->m_module->GetFileSpec().GetFilename().AsCString());
1447       }
1448     }
1449   }
1450 }
1451 
1452 void RenderScriptRuntime::CaptureAllocationInit(RuntimeHook *hook,
1453                                                 ExecutionContext &exe_ctx) {
1454   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1455 
1456   enum { eRsContext, eRsAlloc, eRsForceZero };
1457 
1458   std::array<ArgItem, 3> args{{
1459       ArgItem{ArgItem::ePointer, 0}, // eRsContext
1460       ArgItem{ArgItem::ePointer, 0}, // eRsAlloc
1461       ArgItem{ArgItem::eBool, 0},    // eRsForceZero
1462   }};
1463 
1464   bool success = GetArgs(exe_ctx, &args[0], args.size());
1465   if (!success) {
1466     if (log)
1467       log->Printf("%s - error while reading the function parameters",
1468                   __FUNCTION__);
1469     return;
1470   }
1471 
1472   if (log)
1473     log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 ",0x%" PRIx64 " .",
1474                 __FUNCTION__, uint64_t(args[eRsContext]),
1475                 uint64_t(args[eRsAlloc]), uint64_t(args[eRsForceZero]));
1476 
1477   AllocationDetails *alloc = CreateAllocation(uint64_t(args[eRsAlloc]));
1478   if (alloc)
1479     alloc->context = uint64_t(args[eRsContext]);
1480 }
1481 
1482 void RenderScriptRuntime::CaptureAllocationDestroy(RuntimeHook *hook,
1483                                                    ExecutionContext &exe_ctx) {
1484   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1485 
1486   enum {
1487     eRsContext,
1488     eRsAlloc,
1489   };
1490 
1491   std::array<ArgItem, 2> args{{
1492       ArgItem{ArgItem::ePointer, 0}, // eRsContext
1493       ArgItem{ArgItem::ePointer, 0}, // eRsAlloc
1494   }};
1495 
1496   bool success = GetArgs(exe_ctx, &args[0], args.size());
1497   if (!success) {
1498     if (log)
1499       log->Printf("%s - error while reading the function parameters.",
1500                   __FUNCTION__);
1501     return;
1502   }
1503 
1504   if (log)
1505     log->Printf("%s - 0x%" PRIx64 ", 0x%" PRIx64 ".", __FUNCTION__,
1506                 uint64_t(args[eRsContext]), uint64_t(args[eRsAlloc]));
1507 
1508   for (auto iter = m_allocations.begin(); iter != m_allocations.end(); ++iter) {
1509     auto &allocation_ap = *iter; // get the unique pointer
1510     if (allocation_ap->address.isValid() &&
1511         *allocation_ap->address.get() == addr_t(args[eRsAlloc])) {
1512       m_allocations.erase(iter);
1513       if (log)
1514         log->Printf("%s - deleted allocation entry.", __FUNCTION__);
1515       return;
1516     }
1517   }
1518 
1519   if (log)
1520     log->Printf("%s - couldn't find destroyed allocation.", __FUNCTION__);
1521 }
1522 
1523 void RenderScriptRuntime::CaptureScriptInit(RuntimeHook *hook,
1524                                             ExecutionContext &exe_ctx) {
1525   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1526 
1527   Status err;
1528   Process *process = exe_ctx.GetProcessPtr();
1529 
1530   enum { eRsContext, eRsScript, eRsResNamePtr, eRsCachedDirPtr };
1531 
1532   std::array<ArgItem, 4> args{
1533       {ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0},
1534        ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}}};
1535   bool success = GetArgs(exe_ctx, &args[0], args.size());
1536   if (!success) {
1537     if (log)
1538       log->Printf("%s - error while reading the function parameters.",
1539                   __FUNCTION__);
1540     return;
1541   }
1542 
1543   std::string res_name;
1544   process->ReadCStringFromMemory(addr_t(args[eRsResNamePtr]), res_name, err);
1545   if (err.Fail()) {
1546     if (log)
1547       log->Printf("%s - error reading res_name: %s.", __FUNCTION__,
1548                   err.AsCString());
1549   }
1550 
1551   std::string cache_dir;
1552   process->ReadCStringFromMemory(addr_t(args[eRsCachedDirPtr]), cache_dir, err);
1553   if (err.Fail()) {
1554     if (log)
1555       log->Printf("%s - error reading cache_dir: %s.", __FUNCTION__,
1556                   err.AsCString());
1557   }
1558 
1559   if (log)
1560     log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " => '%s' at '%s' .",
1561                 __FUNCTION__, uint64_t(args[eRsContext]),
1562                 uint64_t(args[eRsScript]), res_name.c_str(), cache_dir.c_str());
1563 
1564   if (res_name.size() > 0) {
1565     StreamString strm;
1566     strm.Printf("librs.%s.so", res_name.c_str());
1567 
1568     ScriptDetails *script = LookUpScript(addr_t(args[eRsScript]), true);
1569     if (script) {
1570       script->type = ScriptDetails::eScriptC;
1571       script->cache_dir = cache_dir;
1572       script->res_name = res_name;
1573       script->shared_lib = strm.GetString();
1574       script->context = addr_t(args[eRsContext]);
1575     }
1576 
1577     if (log)
1578       log->Printf("%s - '%s' tagged with context 0x%" PRIx64
1579                   " and script 0x%" PRIx64 ".",
1580                   __FUNCTION__, strm.GetData(), uint64_t(args[eRsContext]),
1581                   uint64_t(args[eRsScript]));
1582   } else if (log) {
1583     log->Printf("%s - resource name invalid, Script not tagged.", __FUNCTION__);
1584   }
1585 }
1586 
1587 void RenderScriptRuntime::LoadRuntimeHooks(lldb::ModuleSP module,
1588                                            ModuleKind kind) {
1589   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1590 
1591   if (!module) {
1592     return;
1593   }
1594 
1595   Target &target = GetProcess()->GetTarget();
1596   const llvm::Triple::ArchType machine = target.GetArchitecture().GetMachine();
1597 
1598   if (machine != llvm::Triple::ArchType::x86 &&
1599       machine != llvm::Triple::ArchType::arm &&
1600       machine != llvm::Triple::ArchType::aarch64 &&
1601       machine != llvm::Triple::ArchType::mipsel &&
1602       machine != llvm::Triple::ArchType::mips64el &&
1603       machine != llvm::Triple::ArchType::x86_64) {
1604     if (log)
1605       log->Printf("%s - unable to hook runtime functions.", __FUNCTION__);
1606     return;
1607   }
1608 
1609   const uint32_t target_ptr_size =
1610       target.GetArchitecture().GetAddressByteSize();
1611 
1612   std::array<bool, s_runtimeHookCount> hook_placed;
1613   hook_placed.fill(false);
1614 
1615   for (size_t idx = 0; idx < s_runtimeHookCount; idx++) {
1616     const HookDefn *hook_defn = &s_runtimeHookDefns[idx];
1617     if (hook_defn->kind != kind) {
1618       continue;
1619     }
1620 
1621     const char *symbol_name = (target_ptr_size == 4)
1622                                   ? hook_defn->symbol_name_m32
1623                                   : hook_defn->symbol_name_m64;
1624 
1625     const Symbol *sym = module->FindFirstSymbolWithNameAndType(
1626         ConstString(symbol_name), eSymbolTypeCode);
1627     if (!sym) {
1628       if (log) {
1629         log->Printf("%s - symbol '%s' related to the function %s not found",
1630                     __FUNCTION__, symbol_name, hook_defn->name);
1631       }
1632       continue;
1633     }
1634 
1635     addr_t addr = sym->GetLoadAddress(&target);
1636     if (addr == LLDB_INVALID_ADDRESS) {
1637       if (log)
1638         log->Printf("%s - unable to resolve the address of hook function '%s' "
1639                     "with symbol '%s'.",
1640                     __FUNCTION__, hook_defn->name, symbol_name);
1641       continue;
1642     } else {
1643       if (log)
1644         log->Printf("%s - function %s, address resolved at 0x%" PRIx64,
1645                     __FUNCTION__, hook_defn->name, addr);
1646     }
1647 
1648     RuntimeHookSP hook(new RuntimeHook());
1649     hook->address = addr;
1650     hook->defn = hook_defn;
1651     hook->bp_sp = target.CreateBreakpoint(addr, true, false);
1652     hook->bp_sp->SetCallback(HookCallback, hook.get(), true);
1653     m_runtimeHooks[addr] = hook;
1654     if (log) {
1655       log->Printf("%s - successfully hooked '%s' in '%s' version %" PRIu64
1656                   " at 0x%" PRIx64 ".",
1657                   __FUNCTION__, hook_defn->name,
1658                   module->GetFileSpec().GetFilename().AsCString(),
1659                   (uint64_t)hook_defn->version, (uint64_t)addr);
1660     }
1661     hook_placed[idx] = true;
1662   }
1663 
1664   // log any unhooked function
1665   if (log) {
1666     for (size_t i = 0; i < hook_placed.size(); ++i) {
1667       if (hook_placed[i])
1668         continue;
1669       const HookDefn &hook_defn = s_runtimeHookDefns[i];
1670       if (hook_defn.kind != kind)
1671         continue;
1672       log->Printf("%s - function %s was not hooked", __FUNCTION__,
1673                   hook_defn.name);
1674     }
1675   }
1676 }
1677 
1678 void RenderScriptRuntime::FixupScriptDetails(RSModuleDescriptorSP rsmodule_sp) {
1679   if (!rsmodule_sp)
1680     return;
1681 
1682   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1683 
1684   const ModuleSP module = rsmodule_sp->m_module;
1685   const FileSpec &file = module->GetPlatformFileSpec();
1686 
1687   // Iterate over all of the scripts that we currently know of. Note: We cant
1688   // push or pop to m_scripts here or it may invalidate rs_script.
1689   for (const auto &rs_script : m_scripts) {
1690     // Extract the expected .so file path for this script.
1691     std::string shared_lib;
1692     if (!rs_script->shared_lib.get(shared_lib))
1693       continue;
1694 
1695     // Only proceed if the module that has loaded corresponds to this script.
1696     if (file.GetFilename() != ConstString(shared_lib.c_str()))
1697       continue;
1698 
1699     // Obtain the script address which we use as a key.
1700     lldb::addr_t script;
1701     if (!rs_script->script.get(script))
1702       continue;
1703 
1704     // If we have a script mapping for the current script.
1705     if (m_scriptMappings.find(script) != m_scriptMappings.end()) {
1706       // if the module we have stored is different to the one we just received.
1707       if (m_scriptMappings[script] != rsmodule_sp) {
1708         if (log)
1709           log->Printf(
1710               "%s - script %" PRIx64 " wants reassigned to new rsmodule '%s'.",
1711               __FUNCTION__, (uint64_t)script,
1712               rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString());
1713       }
1714     }
1715     // We don't have a script mapping for the current script.
1716     else {
1717       // Obtain the script resource name.
1718       std::string res_name;
1719       if (rs_script->res_name.get(res_name))
1720         // Set the modules resource name.
1721         rsmodule_sp->m_resname = res_name;
1722       // Add Script/Module pair to map.
1723       m_scriptMappings[script] = rsmodule_sp;
1724       if (log)
1725         log->Printf(
1726             "%s - script %" PRIx64 " associated with rsmodule '%s'.",
1727             __FUNCTION__, (uint64_t)script,
1728             rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString());
1729     }
1730   }
1731 }
1732 
1733 // Uses the Target API to evaluate the expression passed as a parameter to the
1734 // function The result of that expression is returned an unsigned 64 bit int,
1735 // via the result* parameter. Function returns true on success, and false on
1736 // failure
1737 bool RenderScriptRuntime::EvalRSExpression(const char *expr,
1738                                            StackFrame *frame_ptr,
1739                                            uint64_t *result) {
1740   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1741   if (log)
1742     log->Printf("%s(%s)", __FUNCTION__, expr);
1743 
1744   ValueObjectSP expr_result;
1745   EvaluateExpressionOptions options;
1746   options.SetLanguage(lldb::eLanguageTypeC_plus_plus);
1747   // Perform the actual expression evaluation
1748   auto &target = GetProcess()->GetTarget();
1749   target.EvaluateExpression(expr, frame_ptr, expr_result, options);
1750 
1751   if (!expr_result) {
1752     if (log)
1753       log->Printf("%s: couldn't evaluate expression.", __FUNCTION__);
1754     return false;
1755   }
1756 
1757   // The result of the expression is invalid
1758   if (!expr_result->GetError().Success()) {
1759     Status err = expr_result->GetError();
1760     // Expression returned is void, so this is actually a success
1761     if (err.GetError() == UserExpression::kNoResult) {
1762       if (log)
1763         log->Printf("%s - expression returned void.", __FUNCTION__);
1764 
1765       result = nullptr;
1766       return true;
1767     }
1768 
1769     if (log)
1770       log->Printf("%s - error evaluating expression result: %s", __FUNCTION__,
1771                   err.AsCString());
1772     return false;
1773   }
1774 
1775   bool success = false;
1776   // We only read the result as an uint32_t.
1777   *result = expr_result->GetValueAsUnsigned(0, &success);
1778 
1779   if (!success) {
1780     if (log)
1781       log->Printf("%s - couldn't convert expression result to uint32_t",
1782                   __FUNCTION__);
1783     return false;
1784   }
1785 
1786   return true;
1787 }
1788 
1789 namespace {
1790 // Used to index expression format strings
1791 enum ExpressionStrings {
1792   eExprGetOffsetPtr = 0,
1793   eExprAllocGetType,
1794   eExprTypeDimX,
1795   eExprTypeDimY,
1796   eExprTypeDimZ,
1797   eExprTypeElemPtr,
1798   eExprElementType,
1799   eExprElementKind,
1800   eExprElementVec,
1801   eExprElementFieldCount,
1802   eExprSubelementsId,
1803   eExprSubelementsName,
1804   eExprSubelementsArrSize,
1805 
1806   _eExprLast // keep at the end, implicit size of the array runtime_expressions
1807 };
1808 
1809 // max length of an expanded expression
1810 const int jit_max_expr_size = 512;
1811 
1812 // Retrieve the string to JIT for the given expression
1813 #define JIT_TEMPLATE_CONTEXT "void* ctxt = (void*)rsDebugGetContextWrapper(0x%" PRIx64 "); "
1814 const char *JITTemplate(ExpressionStrings e) {
1815   // Format strings containing the expressions we may need to evaluate.
1816   static std::array<const char *, _eExprLast> runtime_expressions = {
1817       {// Mangled GetOffsetPointer(Allocation*, xoff, yoff, zoff, lod, cubemap)
1818        "(int*)_"
1819        "Z12GetOffsetPtrPKN7android12renderscript10AllocationEjjjj23RsAllocation"
1820        "CubemapFace"
1821        "(0x%" PRIx64 ", %" PRIu32 ", %" PRIu32 ", %" PRIu32 ", 0, 0)", // eExprGetOffsetPtr
1822 
1823        // Type* rsaAllocationGetType(Context*, Allocation*)
1824        JIT_TEMPLATE_CONTEXT "(void*)rsaAllocationGetType(ctxt, 0x%" PRIx64 ")", // eExprAllocGetType
1825 
1826        // rsaTypeGetNativeData(Context*, Type*, void* typeData, size) Pack the
1827        // data in the following way mHal.state.dimX; mHal.state.dimY;
1828        // mHal.state.dimZ; mHal.state.lodCount; mHal.state.faces; mElement;
1829        // into typeData Need to specify 32 or 64 bit for uint_t since this
1830        // differs between devices
1831        JIT_TEMPLATE_CONTEXT
1832        "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt"
1833        ", 0x%" PRIx64 ", data, 6); data[0]", // eExprTypeDimX
1834        JIT_TEMPLATE_CONTEXT
1835        "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt"
1836        ", 0x%" PRIx64 ", data, 6); data[1]", // eExprTypeDimY
1837        JIT_TEMPLATE_CONTEXT
1838        "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt"
1839        ", 0x%" PRIx64 ", data, 6); data[2]", // eExprTypeDimZ
1840        JIT_TEMPLATE_CONTEXT
1841        "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt"
1842        ", 0x%" PRIx64 ", data, 6); data[5]", // eExprTypeElemPtr
1843 
1844        // rsaElementGetNativeData(Context*, Element*, uint32_t* elemData,size)
1845        // Pack mType; mKind; mNormalized; mVectorSize; NumSubElements into
1846        // elemData
1847        JIT_TEMPLATE_CONTEXT
1848        "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt"
1849        ", 0x%" PRIx64 ", data, 5); data[0]", // eExprElementType
1850        JIT_TEMPLATE_CONTEXT
1851        "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt"
1852        ", 0x%" PRIx64 ", data, 5); data[1]", // eExprElementKind
1853        JIT_TEMPLATE_CONTEXT
1854        "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt"
1855        ", 0x%" PRIx64 ", data, 5); data[3]", // eExprElementVec
1856        JIT_TEMPLATE_CONTEXT
1857        "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt"
1858        ", 0x%" PRIx64 ", data, 5); data[4]", // eExprElementFieldCount
1859 
1860        // rsaElementGetSubElements(RsContext con, RsElement elem, uintptr_t
1861        // *ids, const char **names, size_t *arraySizes, uint32_t dataSize)
1862        // Needed for Allocations of structs to gather details about
1863        // fields/Subelements Element* of field
1864        JIT_TEMPLATE_CONTEXT "void* ids[%" PRIu32 "]; const char* names[%" PRIu32
1865        "]; size_t arr_size[%" PRIu32 "];"
1866        "(void*)rsaElementGetSubElements(ctxt, 0x%" PRIx64
1867        ", ids, names, arr_size, %" PRIu32 "); ids[%" PRIu32 "]", // eExprSubelementsId
1868 
1869        // Name of field
1870        JIT_TEMPLATE_CONTEXT "void* ids[%" PRIu32 "]; const char* names[%" PRIu32
1871        "]; size_t arr_size[%" PRIu32 "];"
1872        "(void*)rsaElementGetSubElements(ctxt, 0x%" PRIx64
1873        ", ids, names, arr_size, %" PRIu32 "); names[%" PRIu32 "]", // eExprSubelementsName
1874 
1875        // Array size of field
1876        JIT_TEMPLATE_CONTEXT "void* ids[%" PRIu32 "]; const char* names[%" PRIu32
1877        "]; size_t arr_size[%" PRIu32 "];"
1878        "(void*)rsaElementGetSubElements(ctxt, 0x%" PRIx64
1879        ", ids, names, arr_size, %" PRIu32 "); arr_size[%" PRIu32 "]"}}; // eExprSubelementsArrSize
1880 
1881   return runtime_expressions[e];
1882 }
1883 } // end of the anonymous namespace
1884 
1885 // JITs the RS runtime for the internal data pointer of an allocation. Is
1886 // passed x,y,z coordinates for the pointer to a specific element. Then sets
1887 // the data_ptr member in Allocation with the result. Returns true on success,
1888 // false otherwise
1889 bool RenderScriptRuntime::JITDataPointer(AllocationDetails *alloc,
1890                                          StackFrame *frame_ptr, uint32_t x,
1891                                          uint32_t y, uint32_t z) {
1892   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1893 
1894   if (!alloc->address.isValid()) {
1895     if (log)
1896       log->Printf("%s - failed to find allocation details.", __FUNCTION__);
1897     return false;
1898   }
1899 
1900   const char *fmt_str = JITTemplate(eExprGetOffsetPtr);
1901   char expr_buf[jit_max_expr_size];
1902 
1903   int written = snprintf(expr_buf, jit_max_expr_size, fmt_str,
1904                          *alloc->address.get(), x, y, z);
1905   if (written < 0) {
1906     if (log)
1907       log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
1908     return false;
1909   } else if (written >= jit_max_expr_size) {
1910     if (log)
1911       log->Printf("%s - expression too long.", __FUNCTION__);
1912     return false;
1913   }
1914 
1915   uint64_t result = 0;
1916   if (!EvalRSExpression(expr_buf, frame_ptr, &result))
1917     return false;
1918 
1919   addr_t data_ptr = static_cast<lldb::addr_t>(result);
1920   alloc->data_ptr = data_ptr;
1921 
1922   return true;
1923 }
1924 
1925 // JITs the RS runtime for the internal pointer to the RS Type of an allocation
1926 // Then sets the type_ptr member in Allocation with the result. Returns true on
1927 // success, false otherwise
1928 bool RenderScriptRuntime::JITTypePointer(AllocationDetails *alloc,
1929                                          StackFrame *frame_ptr) {
1930   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1931 
1932   if (!alloc->address.isValid() || !alloc->context.isValid()) {
1933     if (log)
1934       log->Printf("%s - failed to find allocation details.", __FUNCTION__);
1935     return false;
1936   }
1937 
1938   const char *fmt_str = JITTemplate(eExprAllocGetType);
1939   char expr_buf[jit_max_expr_size];
1940 
1941   int written = snprintf(expr_buf, jit_max_expr_size, fmt_str,
1942                          *alloc->context.get(), *alloc->address.get());
1943   if (written < 0) {
1944     if (log)
1945       log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
1946     return false;
1947   } else if (written >= jit_max_expr_size) {
1948     if (log)
1949       log->Printf("%s - expression too long.", __FUNCTION__);
1950     return false;
1951   }
1952 
1953   uint64_t result = 0;
1954   if (!EvalRSExpression(expr_buf, frame_ptr, &result))
1955     return false;
1956 
1957   addr_t type_ptr = static_cast<lldb::addr_t>(result);
1958   alloc->type_ptr = type_ptr;
1959 
1960   return true;
1961 }
1962 
1963 // JITs the RS runtime for information about the dimensions and type of an
1964 // allocation Then sets dimension and element_ptr members in Allocation with
1965 // the result. Returns true on success, false otherwise
1966 bool RenderScriptRuntime::JITTypePacked(AllocationDetails *alloc,
1967                                         StackFrame *frame_ptr) {
1968   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1969 
1970   if (!alloc->type_ptr.isValid() || !alloc->context.isValid()) {
1971     if (log)
1972       log->Printf("%s - Failed to find allocation details.", __FUNCTION__);
1973     return false;
1974   }
1975 
1976   // Expression is different depending on if device is 32 or 64 bit
1977   uint32_t target_ptr_size =
1978       GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
1979   const uint32_t bits = target_ptr_size == 4 ? 32 : 64;
1980 
1981   // We want 4 elements from packed data
1982   const uint32_t num_exprs = 4;
1983   assert(num_exprs == (eExprTypeElemPtr - eExprTypeDimX + 1) &&
1984          "Invalid number of expressions");
1985 
1986   char expr_bufs[num_exprs][jit_max_expr_size];
1987   uint64_t results[num_exprs];
1988 
1989   for (uint32_t i = 0; i < num_exprs; ++i) {
1990     const char *fmt_str = JITTemplate(ExpressionStrings(eExprTypeDimX + i));
1991     int written = snprintf(expr_bufs[i], jit_max_expr_size, fmt_str,
1992                            *alloc->context.get(), bits, *alloc->type_ptr.get());
1993     if (written < 0) {
1994       if (log)
1995         log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
1996       return false;
1997     } else if (written >= jit_max_expr_size) {
1998       if (log)
1999         log->Printf("%s - expression too long.", __FUNCTION__);
2000       return false;
2001     }
2002 
2003     // Perform expression evaluation
2004     if (!EvalRSExpression(expr_bufs[i], frame_ptr, &results[i]))
2005       return false;
2006   }
2007 
2008   // Assign results to allocation members
2009   AllocationDetails::Dimension dims;
2010   dims.dim_1 = static_cast<uint32_t>(results[0]);
2011   dims.dim_2 = static_cast<uint32_t>(results[1]);
2012   dims.dim_3 = static_cast<uint32_t>(results[2]);
2013   alloc->dimension = dims;
2014 
2015   addr_t element_ptr = static_cast<lldb::addr_t>(results[3]);
2016   alloc->element.element_ptr = element_ptr;
2017 
2018   if (log)
2019     log->Printf("%s - dims (%" PRIu32 ", %" PRIu32 ", %" PRIu32
2020                 ") Element*: 0x%" PRIx64 ".",
2021                 __FUNCTION__, dims.dim_1, dims.dim_2, dims.dim_3, element_ptr);
2022 
2023   return true;
2024 }
2025 
2026 // JITs the RS runtime for information about the Element of an allocation Then
2027 // sets type, type_vec_size, field_count and type_kind members in Element with
2028 // the result. Returns true on success, false otherwise
2029 bool RenderScriptRuntime::JITElementPacked(Element &elem,
2030                                            const lldb::addr_t context,
2031                                            StackFrame *frame_ptr) {
2032   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2033 
2034   if (!elem.element_ptr.isValid()) {
2035     if (log)
2036       log->Printf("%s - failed to find allocation details.", __FUNCTION__);
2037     return false;
2038   }
2039 
2040   // We want 4 elements from packed data
2041   const uint32_t num_exprs = 4;
2042   assert(num_exprs == (eExprElementFieldCount - eExprElementType + 1) &&
2043          "Invalid number of expressions");
2044 
2045   char expr_bufs[num_exprs][jit_max_expr_size];
2046   uint64_t results[num_exprs];
2047 
2048   for (uint32_t i = 0; i < num_exprs; i++) {
2049     const char *fmt_str = JITTemplate(ExpressionStrings(eExprElementType + i));
2050     int written = snprintf(expr_bufs[i], jit_max_expr_size, fmt_str, context,
2051                            *elem.element_ptr.get());
2052     if (written < 0) {
2053       if (log)
2054         log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
2055       return false;
2056     } else if (written >= jit_max_expr_size) {
2057       if (log)
2058         log->Printf("%s - expression too long.", __FUNCTION__);
2059       return false;
2060     }
2061 
2062     // Perform expression evaluation
2063     if (!EvalRSExpression(expr_bufs[i], frame_ptr, &results[i]))
2064       return false;
2065   }
2066 
2067   // Assign results to allocation members
2068   elem.type = static_cast<RenderScriptRuntime::Element::DataType>(results[0]);
2069   elem.type_kind =
2070       static_cast<RenderScriptRuntime::Element::DataKind>(results[1]);
2071   elem.type_vec_size = static_cast<uint32_t>(results[2]);
2072   elem.field_count = static_cast<uint32_t>(results[3]);
2073 
2074   if (log)
2075     log->Printf("%s - data type %" PRIu32 ", pixel type %" PRIu32
2076                 ", vector size %" PRIu32 ", field count %" PRIu32,
2077                 __FUNCTION__, *elem.type.get(), *elem.type_kind.get(),
2078                 *elem.type_vec_size.get(), *elem.field_count.get());
2079 
2080   // If this Element has subelements then JIT rsaElementGetSubElements() for
2081   // details about its fields
2082   if (*elem.field_count.get() > 0 && !JITSubelements(elem, context, frame_ptr))
2083     return false;
2084 
2085   return true;
2086 }
2087 
2088 // JITs the RS runtime for information about the subelements/fields of a struct
2089 // allocation This is necessary for infering the struct type so we can pretty
2090 // print the allocation's contents. Returns true on success, false otherwise
2091 bool RenderScriptRuntime::JITSubelements(Element &elem,
2092                                          const lldb::addr_t context,
2093                                          StackFrame *frame_ptr) {
2094   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2095 
2096   if (!elem.element_ptr.isValid() || !elem.field_count.isValid()) {
2097     if (log)
2098       log->Printf("%s - failed to find allocation details.", __FUNCTION__);
2099     return false;
2100   }
2101 
2102   const short num_exprs = 3;
2103   assert(num_exprs == (eExprSubelementsArrSize - eExprSubelementsId + 1) &&
2104          "Invalid number of expressions");
2105 
2106   char expr_buffer[jit_max_expr_size];
2107   uint64_t results;
2108 
2109   // Iterate over struct fields.
2110   const uint32_t field_count = *elem.field_count.get();
2111   for (uint32_t field_index = 0; field_index < field_count; ++field_index) {
2112     Element child;
2113     for (uint32_t expr_index = 0; expr_index < num_exprs; ++expr_index) {
2114       const char *fmt_str =
2115           JITTemplate(ExpressionStrings(eExprSubelementsId + expr_index));
2116       int written = snprintf(expr_buffer, jit_max_expr_size, fmt_str,
2117                              context, field_count, field_count, field_count,
2118                              *elem.element_ptr.get(), field_count, field_index);
2119       if (written < 0) {
2120         if (log)
2121           log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
2122         return false;
2123       } else if (written >= jit_max_expr_size) {
2124         if (log)
2125           log->Printf("%s - expression too long.", __FUNCTION__);
2126         return false;
2127       }
2128 
2129       // Perform expression evaluation
2130       if (!EvalRSExpression(expr_buffer, frame_ptr, &results))
2131         return false;
2132 
2133       if (log)
2134         log->Printf("%s - expr result 0x%" PRIx64 ".", __FUNCTION__, results);
2135 
2136       switch (expr_index) {
2137       case 0: // Element* of child
2138         child.element_ptr = static_cast<addr_t>(results);
2139         break;
2140       case 1: // Name of child
2141       {
2142         lldb::addr_t address = static_cast<addr_t>(results);
2143         Status err;
2144         std::string name;
2145         GetProcess()->ReadCStringFromMemory(address, name, err);
2146         if (!err.Fail())
2147           child.type_name = ConstString(name);
2148         else {
2149           if (log)
2150             log->Printf("%s - warning: Couldn't read field name.",
2151                         __FUNCTION__);
2152         }
2153         break;
2154       }
2155       case 2: // Array size of child
2156         child.array_size = static_cast<uint32_t>(results);
2157         break;
2158       }
2159     }
2160 
2161     // We need to recursively JIT each Element field of the struct since
2162     // structs can be nested inside structs.
2163     if (!JITElementPacked(child, context, frame_ptr))
2164       return false;
2165     elem.children.push_back(child);
2166   }
2167 
2168   // Try to infer the name of the struct type so we can pretty print the
2169   // allocation contents.
2170   FindStructTypeName(elem, frame_ptr);
2171 
2172   return true;
2173 }
2174 
2175 // JITs the RS runtime for the address of the last element in the allocation.
2176 // The `elem_size` parameter represents the size of a single element, including
2177 // padding. Which is needed as an offset from the last element pointer. Using
2178 // this offset minus the starting address we can calculate the size of the
2179 // allocation. Returns true on success, false otherwise
2180 bool RenderScriptRuntime::JITAllocationSize(AllocationDetails *alloc,
2181                                             StackFrame *frame_ptr) {
2182   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2183 
2184   if (!alloc->address.isValid() || !alloc->dimension.isValid() ||
2185       !alloc->data_ptr.isValid() || !alloc->element.datum_size.isValid()) {
2186     if (log)
2187       log->Printf("%s - failed to find allocation details.", __FUNCTION__);
2188     return false;
2189   }
2190 
2191   // Find dimensions
2192   uint32_t dim_x = alloc->dimension.get()->dim_1;
2193   uint32_t dim_y = alloc->dimension.get()->dim_2;
2194   uint32_t dim_z = alloc->dimension.get()->dim_3;
2195 
2196   // Our plan of jitting the last element address doesn't seem to work for
2197   // struct Allocations` Instead try to infer the size ourselves without any
2198   // inter element padding.
2199   if (alloc->element.children.size() > 0) {
2200     if (dim_x == 0)
2201       dim_x = 1;
2202     if (dim_y == 0)
2203       dim_y = 1;
2204     if (dim_z == 0)
2205       dim_z = 1;
2206 
2207     alloc->size = dim_x * dim_y * dim_z * *alloc->element.datum_size.get();
2208 
2209     if (log)
2210       log->Printf("%s - inferred size of struct allocation %" PRIu32 ".",
2211                   __FUNCTION__, *alloc->size.get());
2212     return true;
2213   }
2214 
2215   const char *fmt_str = JITTemplate(eExprGetOffsetPtr);
2216   char expr_buf[jit_max_expr_size];
2217 
2218   // Calculate last element
2219   dim_x = dim_x == 0 ? 0 : dim_x - 1;
2220   dim_y = dim_y == 0 ? 0 : dim_y - 1;
2221   dim_z = dim_z == 0 ? 0 : dim_z - 1;
2222 
2223   int written = snprintf(expr_buf, jit_max_expr_size, fmt_str,
2224                          *alloc->address.get(), dim_x, dim_y, dim_z);
2225   if (written < 0) {
2226     if (log)
2227       log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
2228     return false;
2229   } else if (written >= jit_max_expr_size) {
2230     if (log)
2231       log->Printf("%s - expression too long.", __FUNCTION__);
2232     return false;
2233   }
2234 
2235   uint64_t result = 0;
2236   if (!EvalRSExpression(expr_buf, frame_ptr, &result))
2237     return false;
2238 
2239   addr_t mem_ptr = static_cast<lldb::addr_t>(result);
2240   // Find pointer to last element and add on size of an element
2241   alloc->size = static_cast<uint32_t>(mem_ptr - *alloc->data_ptr.get()) +
2242                 *alloc->element.datum_size.get();
2243 
2244   return true;
2245 }
2246 
2247 // JITs the RS runtime for information about the stride between rows in the
2248 // allocation. This is done to detect padding, since allocated memory is
2249 // 16-byte aligned. Returns true on success, false otherwise
2250 bool RenderScriptRuntime::JITAllocationStride(AllocationDetails *alloc,
2251                                               StackFrame *frame_ptr) {
2252   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2253 
2254   if (!alloc->address.isValid() || !alloc->data_ptr.isValid()) {
2255     if (log)
2256       log->Printf("%s - failed to find allocation details.", __FUNCTION__);
2257     return false;
2258   }
2259 
2260   const char *fmt_str = JITTemplate(eExprGetOffsetPtr);
2261   char expr_buf[jit_max_expr_size];
2262 
2263   int written = snprintf(expr_buf, jit_max_expr_size, fmt_str,
2264                          *alloc->address.get(), 0, 1, 0);
2265   if (written < 0) {
2266     if (log)
2267       log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
2268     return false;
2269   } else if (written >= jit_max_expr_size) {
2270     if (log)
2271       log->Printf("%s - expression too long.", __FUNCTION__);
2272     return false;
2273   }
2274 
2275   uint64_t result = 0;
2276   if (!EvalRSExpression(expr_buf, frame_ptr, &result))
2277     return false;
2278 
2279   addr_t mem_ptr = static_cast<lldb::addr_t>(result);
2280   alloc->stride = static_cast<uint32_t>(mem_ptr - *alloc->data_ptr.get());
2281 
2282   return true;
2283 }
2284 
2285 // JIT all the current runtime info regarding an allocation
2286 bool RenderScriptRuntime::RefreshAllocation(AllocationDetails *alloc,
2287                                             StackFrame *frame_ptr) {
2288   // GetOffsetPointer()
2289   if (!JITDataPointer(alloc, frame_ptr))
2290     return false;
2291 
2292   // rsaAllocationGetType()
2293   if (!JITTypePointer(alloc, frame_ptr))
2294     return false;
2295 
2296   // rsaTypeGetNativeData()
2297   if (!JITTypePacked(alloc, frame_ptr))
2298     return false;
2299 
2300   // rsaElementGetNativeData()
2301   if (!JITElementPacked(alloc->element, *alloc->context.get(), frame_ptr))
2302     return false;
2303 
2304   // Sets the datum_size member in Element
2305   SetElementSize(alloc->element);
2306 
2307   // Use GetOffsetPointer() to infer size of the allocation
2308   if (!JITAllocationSize(alloc, frame_ptr))
2309     return false;
2310 
2311   return true;
2312 }
2313 
2314 // Function attempts to set the type_name member of the paramaterised Element
2315 // object. This string should be the name of the struct type the Element
2316 // represents. We need this string for pretty printing the Element to users.
2317 void RenderScriptRuntime::FindStructTypeName(Element &elem,
2318                                              StackFrame *frame_ptr) {
2319   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2320 
2321   if (!elem.type_name.IsEmpty()) // Name already set
2322     return;
2323   else
2324     elem.type_name = Element::GetFallbackStructName(); // Default type name if
2325                                                        // we don't succeed
2326 
2327   // Find all the global variables from the script rs modules
2328   VariableList var_list;
2329   for (auto module_sp : m_rsmodules)
2330     module_sp->m_module->FindGlobalVariables(
2331         RegularExpression(llvm::StringRef(".")), UINT32_MAX, var_list);
2332 
2333   // Iterate over all the global variables looking for one with a matching type
2334   // to the Element. We make the assumption a match exists since there needs to
2335   // be a global variable to reflect the struct type back into java host code.
2336   for (uint32_t i = 0; i < var_list.GetSize(); ++i) {
2337     const VariableSP var_sp(var_list.GetVariableAtIndex(i));
2338     if (!var_sp)
2339       continue;
2340 
2341     ValueObjectSP valobj_sp = ValueObjectVariable::Create(frame_ptr, var_sp);
2342     if (!valobj_sp)
2343       continue;
2344 
2345     // Find the number of variable fields.
2346     // If it has no fields, or more fields than our Element, then it can't be
2347     // the struct we're looking for. Don't check for equality since RS can add
2348     // extra struct members for padding.
2349     size_t num_children = valobj_sp->GetNumChildren();
2350     if (num_children > elem.children.size() || num_children == 0)
2351       continue;
2352 
2353     // Iterate over children looking for members with matching field names. If
2354     // all the field names match, this is likely the struct we want.
2355     //   TODO: This could be made more robust by also checking children data
2356     //   sizes, or array size
2357     bool found = true;
2358     for (size_t i = 0; i < num_children; ++i) {
2359       ValueObjectSP child = valobj_sp->GetChildAtIndex(i, true);
2360       if (!child || (child->GetName() != elem.children[i].type_name)) {
2361         found = false;
2362         break;
2363       }
2364     }
2365 
2366     // RS can add extra struct members for padding in the format
2367     // '#rs_padding_[0-9]+'
2368     if (found && num_children < elem.children.size()) {
2369       const uint32_t size_diff = elem.children.size() - num_children;
2370       if (log)
2371         log->Printf("%s - %" PRIu32 " padding struct entries", __FUNCTION__,
2372                     size_diff);
2373 
2374       for (uint32_t i = 0; i < size_diff; ++i) {
2375         const ConstString &name = elem.children[num_children + i].type_name;
2376         if (strcmp(name.AsCString(), "#rs_padding") < 0)
2377           found = false;
2378       }
2379     }
2380 
2381     // We've found a global variable with matching type
2382     if (found) {
2383       // Dereference since our Element type isn't a pointer.
2384       if (valobj_sp->IsPointerType()) {
2385         Status err;
2386         ValueObjectSP deref_valobj = valobj_sp->Dereference(err);
2387         if (!err.Fail())
2388           valobj_sp = deref_valobj;
2389       }
2390 
2391       // Save name of variable in Element.
2392       elem.type_name = valobj_sp->GetTypeName();
2393       if (log)
2394         log->Printf("%s - element name set to %s", __FUNCTION__,
2395                     elem.type_name.AsCString());
2396 
2397       return;
2398     }
2399   }
2400 }
2401 
2402 // Function sets the datum_size member of Element. Representing the size of a
2403 // single instance including padding. Assumes the relevant allocation
2404 // information has already been jitted.
2405 void RenderScriptRuntime::SetElementSize(Element &elem) {
2406   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2407   const Element::DataType type = *elem.type.get();
2408   assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT &&
2409          "Invalid allocation type");
2410 
2411   const uint32_t vec_size = *elem.type_vec_size.get();
2412   uint32_t data_size = 0;
2413   uint32_t padding = 0;
2414 
2415   // Element is of a struct type, calculate size recursively.
2416   if ((type == Element::RS_TYPE_NONE) && (elem.children.size() > 0)) {
2417     for (Element &child : elem.children) {
2418       SetElementSize(child);
2419       const uint32_t array_size =
2420           child.array_size.isValid() ? *child.array_size.get() : 1;
2421       data_size += *child.datum_size.get() * array_size;
2422     }
2423   }
2424   // These have been packed already
2425   else if (type == Element::RS_TYPE_UNSIGNED_5_6_5 ||
2426            type == Element::RS_TYPE_UNSIGNED_5_5_5_1 ||
2427            type == Element::RS_TYPE_UNSIGNED_4_4_4_4) {
2428     data_size = AllocationDetails::RSTypeToFormat[type][eElementSize];
2429   } else if (type < Element::RS_TYPE_ELEMENT) {
2430     data_size =
2431         vec_size * AllocationDetails::RSTypeToFormat[type][eElementSize];
2432     if (vec_size == 3)
2433       padding = AllocationDetails::RSTypeToFormat[type][eElementSize];
2434   } else
2435     data_size =
2436         GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
2437 
2438   elem.padding = padding;
2439   elem.datum_size = data_size + padding;
2440   if (log)
2441     log->Printf("%s - element size set to %" PRIu32, __FUNCTION__,
2442                 data_size + padding);
2443 }
2444 
2445 // Given an allocation, this function copies the allocation contents from
2446 // device into a buffer on the heap. Returning a shared pointer to the buffer
2447 // containing the data.
2448 std::shared_ptr<uint8_t>
2449 RenderScriptRuntime::GetAllocationData(AllocationDetails *alloc,
2450                                        StackFrame *frame_ptr) {
2451   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2452 
2453   // JIT all the allocation details
2454   if (alloc->ShouldRefresh()) {
2455     if (log)
2456       log->Printf("%s - allocation details not calculated yet, jitting info",
2457                   __FUNCTION__);
2458 
2459     if (!RefreshAllocation(alloc, frame_ptr)) {
2460       if (log)
2461         log->Printf("%s - couldn't JIT allocation details", __FUNCTION__);
2462       return nullptr;
2463     }
2464   }
2465 
2466   assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() &&
2467          alloc->element.type_vec_size.isValid() && alloc->size.isValid() &&
2468          "Allocation information not available");
2469 
2470   // Allocate a buffer to copy data into
2471   const uint32_t size = *alloc->size.get();
2472   std::shared_ptr<uint8_t> buffer(new uint8_t[size]);
2473   if (!buffer) {
2474     if (log)
2475       log->Printf("%s - couldn't allocate a %" PRIu32 " byte buffer",
2476                   __FUNCTION__, size);
2477     return nullptr;
2478   }
2479 
2480   // Read the inferior memory
2481   Status err;
2482   lldb::addr_t data_ptr = *alloc->data_ptr.get();
2483   GetProcess()->ReadMemory(data_ptr, buffer.get(), size, err);
2484   if (err.Fail()) {
2485     if (log)
2486       log->Printf("%s - '%s' Couldn't read %" PRIu32
2487                   " bytes of allocation data from 0x%" PRIx64,
2488                   __FUNCTION__, err.AsCString(), size, data_ptr);
2489     return nullptr;
2490   }
2491 
2492   return buffer;
2493 }
2494 
2495 // Function copies data from a binary file into an allocation. There is a
2496 // header at the start of the file, FileHeader, before the data content itself.
2497 // Information from this header is used to display warnings to the user about
2498 // incompatibilities
2499 bool RenderScriptRuntime::LoadAllocation(Stream &strm, const uint32_t alloc_id,
2500                                          const char *path,
2501                                          StackFrame *frame_ptr) {
2502   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2503 
2504   // Find allocation with the given id
2505   AllocationDetails *alloc = FindAllocByID(strm, alloc_id);
2506   if (!alloc)
2507     return false;
2508 
2509   if (log)
2510     log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__,
2511                 *alloc->address.get());
2512 
2513   // JIT all the allocation details
2514   if (alloc->ShouldRefresh()) {
2515     if (log)
2516       log->Printf("%s - allocation details not calculated yet, jitting info.",
2517                   __FUNCTION__);
2518 
2519     if (!RefreshAllocation(alloc, frame_ptr)) {
2520       if (log)
2521         log->Printf("%s - couldn't JIT allocation details", __FUNCTION__);
2522       return false;
2523     }
2524   }
2525 
2526   assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() &&
2527          alloc->element.type_vec_size.isValid() && alloc->size.isValid() &&
2528          alloc->element.datum_size.isValid() &&
2529          "Allocation information not available");
2530 
2531   // Check we can read from file
2532   FileSpec file(path);
2533   FileSystem::Instance().Resolve(file);
2534   if (!FileSystem::Instance().Exists(file)) {
2535     strm.Printf("Error: File %s does not exist", path);
2536     strm.EOL();
2537     return false;
2538   }
2539 
2540   if (!FileSystem::Instance().Readable(file)) {
2541     strm.Printf("Error: File %s does not have readable permissions", path);
2542     strm.EOL();
2543     return false;
2544   }
2545 
2546   // Read file into data buffer
2547   auto data_sp = DataBufferLLVM::CreateFromPath(file.GetPath());
2548 
2549   // Cast start of buffer to FileHeader and use pointer to read metadata
2550   void *file_buf = data_sp->GetBytes();
2551   if (file_buf == nullptr ||
2552       data_sp->GetByteSize() < (sizeof(AllocationDetails::FileHeader) +
2553                                 sizeof(AllocationDetails::ElementHeader))) {
2554     strm.Printf("Error: File %s does not contain enough data for header", path);
2555     strm.EOL();
2556     return false;
2557   }
2558   const AllocationDetails::FileHeader *file_header =
2559       static_cast<AllocationDetails::FileHeader *>(file_buf);
2560 
2561   // Check file starts with ascii characters "RSAD"
2562   if (memcmp(file_header->ident, "RSAD", 4)) {
2563     strm.Printf("Error: File doesn't contain identifier for an RS allocation "
2564                 "dump. Are you sure this is the correct file?");
2565     strm.EOL();
2566     return false;
2567   }
2568 
2569   // Look at the type of the root element in the header
2570   AllocationDetails::ElementHeader root_el_hdr;
2571   memcpy(&root_el_hdr, static_cast<uint8_t *>(file_buf) +
2572                            sizeof(AllocationDetails::FileHeader),
2573          sizeof(AllocationDetails::ElementHeader));
2574 
2575   if (log)
2576     log->Printf("%s - header type %" PRIu32 ", element size %" PRIu32,
2577                 __FUNCTION__, root_el_hdr.type, root_el_hdr.element_size);
2578 
2579   // Check if the target allocation and file both have the same number of bytes
2580   // for an Element
2581   if (*alloc->element.datum_size.get() != root_el_hdr.element_size) {
2582     strm.Printf("Warning: Mismatched Element sizes - file %" PRIu32
2583                 " bytes, allocation %" PRIu32 " bytes",
2584                 root_el_hdr.element_size, *alloc->element.datum_size.get());
2585     strm.EOL();
2586   }
2587 
2588   // Check if the target allocation and file both have the same type
2589   const uint32_t alloc_type = static_cast<uint32_t>(*alloc->element.type.get());
2590   const uint32_t file_type = root_el_hdr.type;
2591 
2592   if (file_type > Element::RS_TYPE_FONT) {
2593     strm.Printf("Warning: File has unknown allocation type");
2594     strm.EOL();
2595   } else if (alloc_type != file_type) {
2596     // Enum value isn't monotonous, so doesn't always index RsDataTypeToString
2597     // array
2598     uint32_t target_type_name_idx = alloc_type;
2599     uint32_t head_type_name_idx = file_type;
2600     if (alloc_type >= Element::RS_TYPE_ELEMENT &&
2601         alloc_type <= Element::RS_TYPE_FONT)
2602       target_type_name_idx = static_cast<Element::DataType>(
2603           (alloc_type - Element::RS_TYPE_ELEMENT) +
2604           Element::RS_TYPE_MATRIX_2X2 + 1);
2605 
2606     if (file_type >= Element::RS_TYPE_ELEMENT &&
2607         file_type <= Element::RS_TYPE_FONT)
2608       head_type_name_idx = static_cast<Element::DataType>(
2609           (file_type - Element::RS_TYPE_ELEMENT) + Element::RS_TYPE_MATRIX_2X2 +
2610           1);
2611 
2612     const char *head_type_name =
2613         AllocationDetails::RsDataTypeToString[head_type_name_idx][0];
2614     const char *target_type_name =
2615         AllocationDetails::RsDataTypeToString[target_type_name_idx][0];
2616 
2617     strm.Printf(
2618         "Warning: Mismatched Types - file '%s' type, allocation '%s' type",
2619         head_type_name, target_type_name);
2620     strm.EOL();
2621   }
2622 
2623   // Advance buffer past header
2624   file_buf = static_cast<uint8_t *>(file_buf) + file_header->hdr_size;
2625 
2626   // Calculate size of allocation data in file
2627   size_t size = data_sp->GetByteSize() - file_header->hdr_size;
2628 
2629   // Check if the target allocation and file both have the same total data
2630   // size.
2631   const uint32_t alloc_size = *alloc->size.get();
2632   if (alloc_size != size) {
2633     strm.Printf("Warning: Mismatched allocation sizes - file 0x%" PRIx64
2634                 " bytes, allocation 0x%" PRIx32 " bytes",
2635                 (uint64_t)size, alloc_size);
2636     strm.EOL();
2637     // Set length to copy to minimum
2638     size = alloc_size < size ? alloc_size : size;
2639   }
2640 
2641   // Copy file data from our buffer into the target allocation.
2642   lldb::addr_t alloc_data = *alloc->data_ptr.get();
2643   Status err;
2644   size_t written = GetProcess()->WriteMemory(alloc_data, file_buf, size, err);
2645   if (!err.Success() || written != size) {
2646     strm.Printf("Error: Couldn't write data to allocation %s", err.AsCString());
2647     strm.EOL();
2648     return false;
2649   }
2650 
2651   strm.Printf("Contents of file '%s' read into allocation %" PRIu32, path,
2652               alloc->id);
2653   strm.EOL();
2654 
2655   return true;
2656 }
2657 
2658 // Function takes as parameters a byte buffer, which will eventually be written
2659 // to file as the element header, an offset into that buffer, and an Element
2660 // that will be saved into the buffer at the parametrised offset. Return value
2661 // is the new offset after writing the element into the buffer. Elements are
2662 // saved to the file as the ElementHeader struct followed by offsets to the
2663 // structs of all the element's children.
2664 size_t RenderScriptRuntime::PopulateElementHeaders(
2665     const std::shared_ptr<uint8_t> header_buffer, size_t offset,
2666     const Element &elem) {
2667   // File struct for an element header with all the relevant details copied
2668   // from elem. We assume members are valid already.
2669   AllocationDetails::ElementHeader elem_header;
2670   elem_header.type = *elem.type.get();
2671   elem_header.kind = *elem.type_kind.get();
2672   elem_header.element_size = *elem.datum_size.get();
2673   elem_header.vector_size = *elem.type_vec_size.get();
2674   elem_header.array_size =
2675       elem.array_size.isValid() ? *elem.array_size.get() : 0;
2676   const size_t elem_header_size = sizeof(AllocationDetails::ElementHeader);
2677 
2678   // Copy struct into buffer and advance offset We assume that header_buffer
2679   // has been checked for nullptr before this method is called
2680   memcpy(header_buffer.get() + offset, &elem_header, elem_header_size);
2681   offset += elem_header_size;
2682 
2683   // Starting offset of child ElementHeader struct
2684   size_t child_offset =
2685       offset + ((elem.children.size() + 1) * sizeof(uint32_t));
2686   for (const RenderScriptRuntime::Element &child : elem.children) {
2687     // Recursively populate the buffer with the element header structs of
2688     // children. Then save the offsets where they were set after the parent
2689     // element header.
2690     memcpy(header_buffer.get() + offset, &child_offset, sizeof(uint32_t));
2691     offset += sizeof(uint32_t);
2692 
2693     child_offset = PopulateElementHeaders(header_buffer, child_offset, child);
2694   }
2695 
2696   // Zero indicates no more children
2697   memset(header_buffer.get() + offset, 0, sizeof(uint32_t));
2698 
2699   return child_offset;
2700 }
2701 
2702 // Given an Element object this function returns the total size needed in the
2703 // file header to store the element's details. Taking into account the size of
2704 // the element header struct, plus the offsets to all the element's children.
2705 // Function is recursive so that the size of all ancestors is taken into
2706 // account.
2707 size_t RenderScriptRuntime::CalculateElementHeaderSize(const Element &elem) {
2708   // Offsets to children plus zero terminator
2709   size_t size = (elem.children.size() + 1) * sizeof(uint32_t);
2710   // Size of header struct with type details
2711   size += sizeof(AllocationDetails::ElementHeader);
2712 
2713   // Calculate recursively for all descendants
2714   for (const Element &child : elem.children)
2715     size += CalculateElementHeaderSize(child);
2716 
2717   return size;
2718 }
2719 
2720 // Function copies allocation contents into a binary file. This file can then
2721 // be loaded later into a different allocation. There is a header, FileHeader,
2722 // before the allocation data containing meta-data.
2723 bool RenderScriptRuntime::SaveAllocation(Stream &strm, const uint32_t alloc_id,
2724                                          const char *path,
2725                                          StackFrame *frame_ptr) {
2726   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2727 
2728   // Find allocation with the given id
2729   AllocationDetails *alloc = FindAllocByID(strm, alloc_id);
2730   if (!alloc)
2731     return false;
2732 
2733   if (log)
2734     log->Printf("%s - found allocation 0x%" PRIx64 ".", __FUNCTION__,
2735                 *alloc->address.get());
2736 
2737   // JIT all the allocation details
2738   if (alloc->ShouldRefresh()) {
2739     if (log)
2740       log->Printf("%s - allocation details not calculated yet, jitting info.",
2741                   __FUNCTION__);
2742 
2743     if (!RefreshAllocation(alloc, frame_ptr)) {
2744       if (log)
2745         log->Printf("%s - couldn't JIT allocation details.", __FUNCTION__);
2746       return false;
2747     }
2748   }
2749 
2750   assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() &&
2751          alloc->element.type_vec_size.isValid() &&
2752          alloc->element.datum_size.get() &&
2753          alloc->element.type_kind.isValid() && alloc->dimension.isValid() &&
2754          "Allocation information not available");
2755 
2756   // Check we can create writable file
2757   FileSpec file_spec(path);
2758   FileSystem::Instance().Resolve(file_spec);
2759   File file(file_spec, File::eOpenOptionWrite | File::eOpenOptionCanCreate |
2760                            File::eOpenOptionTruncate);
2761   if (!file) {
2762     strm.Printf("Error: Failed to open '%s' for writing", path);
2763     strm.EOL();
2764     return false;
2765   }
2766 
2767   // Read allocation into buffer of heap memory
2768   const std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr);
2769   if (!buffer) {
2770     strm.Printf("Error: Couldn't read allocation data into buffer");
2771     strm.EOL();
2772     return false;
2773   }
2774 
2775   // Create the file header
2776   AllocationDetails::FileHeader head;
2777   memcpy(head.ident, "RSAD", 4);
2778   head.dims[0] = static_cast<uint32_t>(alloc->dimension.get()->dim_1);
2779   head.dims[1] = static_cast<uint32_t>(alloc->dimension.get()->dim_2);
2780   head.dims[2] = static_cast<uint32_t>(alloc->dimension.get()->dim_3);
2781 
2782   const size_t element_header_size = CalculateElementHeaderSize(alloc->element);
2783   assert((sizeof(AllocationDetails::FileHeader) + element_header_size) <
2784              UINT16_MAX &&
2785          "Element header too large");
2786   head.hdr_size = static_cast<uint16_t>(sizeof(AllocationDetails::FileHeader) +
2787                                         element_header_size);
2788 
2789   // Write the file header
2790   size_t num_bytes = sizeof(AllocationDetails::FileHeader);
2791   if (log)
2792     log->Printf("%s - writing File Header, 0x%" PRIx64 " bytes", __FUNCTION__,
2793                 (uint64_t)num_bytes);
2794 
2795   Status err = file.Write(&head, num_bytes);
2796   if (!err.Success()) {
2797     strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path);
2798     strm.EOL();
2799     return false;
2800   }
2801 
2802   // Create the headers describing the element type of the allocation.
2803   std::shared_ptr<uint8_t> element_header_buffer(
2804       new uint8_t[element_header_size]);
2805   if (element_header_buffer == nullptr) {
2806     strm.Printf("Internal Error: Couldn't allocate %" PRIu64
2807                 " bytes on the heap",
2808                 (uint64_t)element_header_size);
2809     strm.EOL();
2810     return false;
2811   }
2812 
2813   PopulateElementHeaders(element_header_buffer, 0, alloc->element);
2814 
2815   // Write headers for allocation element type to file
2816   num_bytes = element_header_size;
2817   if (log)
2818     log->Printf("%s - writing element headers, 0x%" PRIx64 " bytes.",
2819                 __FUNCTION__, (uint64_t)num_bytes);
2820 
2821   err = file.Write(element_header_buffer.get(), num_bytes);
2822   if (!err.Success()) {
2823     strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path);
2824     strm.EOL();
2825     return false;
2826   }
2827 
2828   // Write allocation data to file
2829   num_bytes = static_cast<size_t>(*alloc->size.get());
2830   if (log)
2831     log->Printf("%s - writing 0x%" PRIx64 " bytes", __FUNCTION__,
2832                 (uint64_t)num_bytes);
2833 
2834   err = file.Write(buffer.get(), num_bytes);
2835   if (!err.Success()) {
2836     strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path);
2837     strm.EOL();
2838     return false;
2839   }
2840 
2841   strm.Printf("Allocation written to file '%s'", path);
2842   strm.EOL();
2843   return true;
2844 }
2845 
2846 bool RenderScriptRuntime::LoadModule(const lldb::ModuleSP &module_sp) {
2847   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2848 
2849   if (module_sp) {
2850     for (const auto &rs_module : m_rsmodules) {
2851       if (rs_module->m_module == module_sp) {
2852         // Check if the user has enabled automatically breaking on all RS
2853         // kernels.
2854         if (m_breakAllKernels)
2855           BreakOnModuleKernels(rs_module);
2856 
2857         return false;
2858       }
2859     }
2860     bool module_loaded = false;
2861     switch (GetModuleKind(module_sp)) {
2862     case eModuleKindKernelObj: {
2863       RSModuleDescriptorSP module_desc;
2864       module_desc.reset(new RSModuleDescriptor(module_sp));
2865       if (module_desc->ParseRSInfo()) {
2866         m_rsmodules.push_back(module_desc);
2867         module_desc->WarnIfVersionMismatch(GetProcess()
2868                                                ->GetTarget()
2869                                                .GetDebugger()
2870                                                .GetAsyncOutputStream()
2871                                                .get());
2872         module_loaded = true;
2873       }
2874       if (module_loaded) {
2875         FixupScriptDetails(module_desc);
2876       }
2877       break;
2878     }
2879     case eModuleKindDriver: {
2880       if (!m_libRSDriver) {
2881         m_libRSDriver = module_sp;
2882         LoadRuntimeHooks(m_libRSDriver, RenderScriptRuntime::eModuleKindDriver);
2883       }
2884       break;
2885     }
2886     case eModuleKindImpl: {
2887       if (!m_libRSCpuRef) {
2888         m_libRSCpuRef = module_sp;
2889         LoadRuntimeHooks(m_libRSCpuRef, RenderScriptRuntime::eModuleKindImpl);
2890       }
2891       break;
2892     }
2893     case eModuleKindLibRS: {
2894       if (!m_libRS) {
2895         m_libRS = module_sp;
2896         static ConstString gDbgPresentStr("gDebuggerPresent");
2897         const Symbol *debug_present = m_libRS->FindFirstSymbolWithNameAndType(
2898             gDbgPresentStr, eSymbolTypeData);
2899         if (debug_present) {
2900           Status err;
2901           uint32_t flag = 0x00000001U;
2902           Target &target = GetProcess()->GetTarget();
2903           addr_t addr = debug_present->GetLoadAddress(&target);
2904           GetProcess()->WriteMemory(addr, &flag, sizeof(flag), err);
2905           if (err.Success()) {
2906             if (log)
2907               log->Printf("%s - debugger present flag set on debugee.",
2908                           __FUNCTION__);
2909 
2910             m_debuggerPresentFlagged = true;
2911           } else if (log) {
2912             log->Printf("%s - error writing debugger present flags '%s' ",
2913                         __FUNCTION__, err.AsCString());
2914           }
2915         } else if (log) {
2916           log->Printf(
2917               "%s - error writing debugger present flags - symbol not found",
2918               __FUNCTION__);
2919         }
2920       }
2921       break;
2922     }
2923     default:
2924       break;
2925     }
2926     if (module_loaded)
2927       Update();
2928     return module_loaded;
2929   }
2930   return false;
2931 }
2932 
2933 void RenderScriptRuntime::Update() {
2934   if (m_rsmodules.size() > 0) {
2935     if (!m_initiated) {
2936       Initiate();
2937     }
2938   }
2939 }
2940 
2941 void RSModuleDescriptor::WarnIfVersionMismatch(lldb_private::Stream *s) const {
2942   if (!s)
2943     return;
2944 
2945   if (m_slang_version.empty() || m_bcc_version.empty()) {
2946     s->PutCString("WARNING: Unknown bcc or slang (llvm-rs-cc) version; debug "
2947                   "experience may be unreliable");
2948     s->EOL();
2949   } else if (m_slang_version != m_bcc_version) {
2950     s->Printf("WARNING: The debug info emitted by the slang frontend "
2951               "(llvm-rs-cc) used to build this module (%s) does not match the "
2952               "version of bcc used to generate the debug information (%s). "
2953               "This is an unsupported configuration and may result in a poor "
2954               "debugging experience; proceed with caution",
2955               m_slang_version.c_str(), m_bcc_version.c_str());
2956     s->EOL();
2957   }
2958 }
2959 
2960 bool RSModuleDescriptor::ParsePragmaCount(llvm::StringRef *lines,
2961                                           size_t n_lines) {
2962   // Skip the pragma prototype line
2963   ++lines;
2964   for (; n_lines--; ++lines) {
2965     const auto kv_pair = lines->split(" - ");
2966     m_pragmas[kv_pair.first.trim().str()] = kv_pair.second.trim().str();
2967   }
2968   return true;
2969 }
2970 
2971 bool RSModuleDescriptor::ParseExportReduceCount(llvm::StringRef *lines,
2972                                                 size_t n_lines) {
2973   // The list of reduction kernels in the `.rs.info` symbol is of the form
2974   // "signature - accumulatordatasize - reduction_name - initializer_name -
2975   // accumulator_name - combiner_name - outconverter_name - halter_name" Where
2976   // a function is not explicitly named by the user, or is not generated by the
2977   // compiler, it is named "." so the dash separated list should always be 8
2978   // items long
2979   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
2980   // Skip the exportReduceCount line
2981   ++lines;
2982   for (; n_lines--; ++lines) {
2983     llvm::SmallVector<llvm::StringRef, 8> spec;
2984     lines->split(spec, " - ");
2985     if (spec.size() != 8) {
2986       if (spec.size() < 8) {
2987         if (log)
2988           log->Error("Error parsing RenderScript reduction spec. wrong number "
2989                      "of fields");
2990         return false;
2991       } else if (log)
2992         log->Warning("Extraneous members in reduction spec: '%s'",
2993                      lines->str().c_str());
2994     }
2995 
2996     const auto sig_s = spec[0];
2997     uint32_t sig;
2998     if (sig_s.getAsInteger(10, sig)) {
2999       if (log)
3000         log->Error("Error parsing Renderscript reduction spec: invalid kernel "
3001                    "signature: '%s'",
3002                    sig_s.str().c_str());
3003       return false;
3004     }
3005 
3006     const auto accum_data_size_s = spec[1];
3007     uint32_t accum_data_size;
3008     if (accum_data_size_s.getAsInteger(10, accum_data_size)) {
3009       if (log)
3010         log->Error("Error parsing Renderscript reduction spec: invalid "
3011                    "accumulator data size %s",
3012                    accum_data_size_s.str().c_str());
3013       return false;
3014     }
3015 
3016     if (log)
3017       log->Printf("Found RenderScript reduction '%s'", spec[2].str().c_str());
3018 
3019     m_reductions.push_back(RSReductionDescriptor(this, sig, accum_data_size,
3020                                                  spec[2], spec[3], spec[4],
3021                                                  spec[5], spec[6], spec[7]));
3022   }
3023   return true;
3024 }
3025 
3026 bool RSModuleDescriptor::ParseVersionInfo(llvm::StringRef *lines,
3027                                           size_t n_lines) {
3028   // Skip the versionInfo line
3029   ++lines;
3030   for (; n_lines--; ++lines) {
3031     // We're only interested in bcc and slang versions, and ignore all other
3032     // versionInfo lines
3033     const auto kv_pair = lines->split(" - ");
3034     if (kv_pair.first == "slang")
3035       m_slang_version = kv_pair.second.str();
3036     else if (kv_pair.first == "bcc")
3037       m_bcc_version = kv_pair.second.str();
3038   }
3039   return true;
3040 }
3041 
3042 bool RSModuleDescriptor::ParseExportForeachCount(llvm::StringRef *lines,
3043                                                  size_t n_lines) {
3044   // Skip the exportForeachCount line
3045   ++lines;
3046   for (; n_lines--; ++lines) {
3047     uint32_t slot;
3048     // `forEach` kernels are listed in the `.rs.info` packet as a "slot - name"
3049     // pair per line
3050     const auto kv_pair = lines->split(" - ");
3051     if (kv_pair.first.getAsInteger(10, slot))
3052       return false;
3053     m_kernels.push_back(RSKernelDescriptor(this, kv_pair.second, slot));
3054   }
3055   return true;
3056 }
3057 
3058 bool RSModuleDescriptor::ParseExportVarCount(llvm::StringRef *lines,
3059                                              size_t n_lines) {
3060   // Skip the ExportVarCount line
3061   ++lines;
3062   for (; n_lines--; ++lines)
3063     m_globals.push_back(RSGlobalDescriptor(this, *lines));
3064   return true;
3065 }
3066 
3067 // The .rs.info symbol in renderscript modules contains a string which needs to
3068 // be parsed. The string is basic and is parsed on a line by line basis.
3069 bool RSModuleDescriptor::ParseRSInfo() {
3070   assert(m_module);
3071   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
3072   const Symbol *info_sym = m_module->FindFirstSymbolWithNameAndType(
3073       ConstString(".rs.info"), eSymbolTypeData);
3074   if (!info_sym)
3075     return false;
3076 
3077   const addr_t addr = info_sym->GetAddressRef().GetFileAddress();
3078   if (addr == LLDB_INVALID_ADDRESS)
3079     return false;
3080 
3081   const addr_t size = info_sym->GetByteSize();
3082   const FileSpec fs = m_module->GetFileSpec();
3083 
3084   auto buffer = DataBufferLLVM::CreateSliceFromPath(fs.GetPath(), size, addr);
3085   if (!buffer)
3086     return false;
3087 
3088   // split rs.info. contents into lines
3089   llvm::SmallVector<llvm::StringRef, 128> info_lines;
3090   {
3091     const llvm::StringRef raw_rs_info((const char *)buffer->GetBytes());
3092     raw_rs_info.split(info_lines, '\n');
3093     if (log)
3094       log->Printf("'.rs.info symbol for '%s':\n%s",
3095                   m_module->GetFileSpec().GetCString(),
3096                   raw_rs_info.str().c_str());
3097   }
3098 
3099   enum {
3100     eExportVar,
3101     eExportForEach,
3102     eExportReduce,
3103     ePragma,
3104     eBuildChecksum,
3105     eObjectSlot,
3106     eVersionInfo,
3107   };
3108 
3109   const auto rs_info_handler = [](llvm::StringRef name) -> int {
3110     return llvm::StringSwitch<int>(name)
3111         // The number of visible global variables in the script
3112         .Case("exportVarCount", eExportVar)
3113         // The number of RenderScrip `forEach` kernels __attribute__((kernel))
3114         .Case("exportForEachCount", eExportForEach)
3115         // The number of generalreductions: This marked in the script by
3116         // `#pragma reduce()`
3117         .Case("exportReduceCount", eExportReduce)
3118         // Total count of all RenderScript specific `#pragmas` used in the
3119         // script
3120         .Case("pragmaCount", ePragma)
3121         .Case("objectSlotCount", eObjectSlot)
3122         .Case("versionInfo", eVersionInfo)
3123         .Default(-1);
3124   };
3125 
3126   // parse all text lines of .rs.info
3127   for (auto line = info_lines.begin(); line != info_lines.end(); ++line) {
3128     const auto kv_pair = line->split(": ");
3129     const auto key = kv_pair.first;
3130     const auto val = kv_pair.second.trim();
3131 
3132     const auto handler = rs_info_handler(key);
3133     if (handler == -1)
3134       continue;
3135     // getAsInteger returns `true` on an error condition - we're only
3136     // interested in numeric fields at the moment
3137     uint64_t n_lines;
3138     if (val.getAsInteger(10, n_lines)) {
3139       LLDB_LOGV(log, "Failed to parse non-numeric '.rs.info' section {0}",
3140                 line->str());
3141       continue;
3142     }
3143     if (info_lines.end() - (line + 1) < (ptrdiff_t)n_lines)
3144       return false;
3145 
3146     bool success = false;
3147     switch (handler) {
3148     case eExportVar:
3149       success = ParseExportVarCount(line, n_lines);
3150       break;
3151     case eExportForEach:
3152       success = ParseExportForeachCount(line, n_lines);
3153       break;
3154     case eExportReduce:
3155       success = ParseExportReduceCount(line, n_lines);
3156       break;
3157     case ePragma:
3158       success = ParsePragmaCount(line, n_lines);
3159       break;
3160     case eVersionInfo:
3161       success = ParseVersionInfo(line, n_lines);
3162       break;
3163     default: {
3164       if (log)
3165         log->Printf("%s - skipping .rs.info field '%s'", __FUNCTION__,
3166                     line->str().c_str());
3167       continue;
3168     }
3169     }
3170     if (!success)
3171       return false;
3172     line += n_lines;
3173   }
3174   return info_lines.size() > 0;
3175 }
3176 
3177 void RenderScriptRuntime::DumpStatus(Stream &strm) const {
3178   if (m_libRS) {
3179     strm.Printf("Runtime Library discovered.");
3180     strm.EOL();
3181   }
3182   if (m_libRSDriver) {
3183     strm.Printf("Runtime Driver discovered.");
3184     strm.EOL();
3185   }
3186   if (m_libRSCpuRef) {
3187     strm.Printf("CPU Reference Implementation discovered.");
3188     strm.EOL();
3189   }
3190 
3191   if (m_runtimeHooks.size()) {
3192     strm.Printf("Runtime functions hooked:");
3193     strm.EOL();
3194     for (auto b : m_runtimeHooks) {
3195       strm.Indent(b.second->defn->name);
3196       strm.EOL();
3197     }
3198   } else {
3199     strm.Printf("Runtime is not hooked.");
3200     strm.EOL();
3201   }
3202 }
3203 
3204 void RenderScriptRuntime::DumpContexts(Stream &strm) const {
3205   strm.Printf("Inferred RenderScript Contexts:");
3206   strm.EOL();
3207   strm.IndentMore();
3208 
3209   std::map<addr_t, uint64_t> contextReferences;
3210 
3211   // Iterate over all of the currently discovered scripts. Note: We cant push
3212   // or pop from m_scripts inside this loop or it may invalidate script.
3213   for (const auto &script : m_scripts) {
3214     if (!script->context.isValid())
3215       continue;
3216     lldb::addr_t context = *script->context;
3217 
3218     if (contextReferences.find(context) != contextReferences.end()) {
3219       contextReferences[context]++;
3220     } else {
3221       contextReferences[context] = 1;
3222     }
3223   }
3224 
3225   for (const auto &cRef : contextReferences) {
3226     strm.Printf("Context 0x%" PRIx64 ": %" PRIu64 " script instances",
3227                 cRef.first, cRef.second);
3228     strm.EOL();
3229   }
3230   strm.IndentLess();
3231 }
3232 
3233 void RenderScriptRuntime::DumpKernels(Stream &strm) const {
3234   strm.Printf("RenderScript Kernels:");
3235   strm.EOL();
3236   strm.IndentMore();
3237   for (const auto &module : m_rsmodules) {
3238     strm.Printf("Resource '%s':", module->m_resname.c_str());
3239     strm.EOL();
3240     for (const auto &kernel : module->m_kernels) {
3241       strm.Indent(kernel.m_name.AsCString());
3242       strm.EOL();
3243     }
3244   }
3245   strm.IndentLess();
3246 }
3247 
3248 RenderScriptRuntime::AllocationDetails *
3249 RenderScriptRuntime::FindAllocByID(Stream &strm, const uint32_t alloc_id) {
3250   AllocationDetails *alloc = nullptr;
3251 
3252   // See if we can find allocation using id as an index;
3253   if (alloc_id <= m_allocations.size() && alloc_id != 0 &&
3254       m_allocations[alloc_id - 1]->id == alloc_id) {
3255     alloc = m_allocations[alloc_id - 1].get();
3256     return alloc;
3257   }
3258 
3259   // Fallback to searching
3260   for (const auto &a : m_allocations) {
3261     if (a->id == alloc_id) {
3262       alloc = a.get();
3263       break;
3264     }
3265   }
3266 
3267   if (alloc == nullptr) {
3268     strm.Printf("Error: Couldn't find allocation with id matching %" PRIu32,
3269                 alloc_id);
3270     strm.EOL();
3271   }
3272 
3273   return alloc;
3274 }
3275 
3276 // Prints the contents of an allocation to the output stream, which may be a
3277 // file
3278 bool RenderScriptRuntime::DumpAllocation(Stream &strm, StackFrame *frame_ptr,
3279                                          const uint32_t id) {
3280   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
3281 
3282   // Check we can find the desired allocation
3283   AllocationDetails *alloc = FindAllocByID(strm, id);
3284   if (!alloc)
3285     return false; // FindAllocByID() will print error message for us here
3286 
3287   if (log)
3288     log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__,
3289                 *alloc->address.get());
3290 
3291   // Check we have information about the allocation, if not calculate it
3292   if (alloc->ShouldRefresh()) {
3293     if (log)
3294       log->Printf("%s - allocation details not calculated yet, jitting info.",
3295                   __FUNCTION__);
3296 
3297     // JIT all the allocation information
3298     if (!RefreshAllocation(alloc, frame_ptr)) {
3299       strm.Printf("Error: Couldn't JIT allocation details");
3300       strm.EOL();
3301       return false;
3302     }
3303   }
3304 
3305   // Establish format and size of each data element
3306   const uint32_t vec_size = *alloc->element.type_vec_size.get();
3307   const Element::DataType type = *alloc->element.type.get();
3308 
3309   assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT &&
3310          "Invalid allocation type");
3311 
3312   lldb::Format format;
3313   if (type >= Element::RS_TYPE_ELEMENT)
3314     format = eFormatHex;
3315   else
3316     format = vec_size == 1
3317                  ? static_cast<lldb::Format>(
3318                        AllocationDetails::RSTypeToFormat[type][eFormatSingle])
3319                  : static_cast<lldb::Format>(
3320                        AllocationDetails::RSTypeToFormat[type][eFormatVector]);
3321 
3322   const uint32_t data_size = *alloc->element.datum_size.get();
3323 
3324   if (log)
3325     log->Printf("%s - element size %" PRIu32 " bytes, including padding",
3326                 __FUNCTION__, data_size);
3327 
3328   // Allocate a buffer to copy data into
3329   std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr);
3330   if (!buffer) {
3331     strm.Printf("Error: Couldn't read allocation data");
3332     strm.EOL();
3333     return false;
3334   }
3335 
3336   // Calculate stride between rows as there may be padding at end of rows since
3337   // allocated memory is 16-byte aligned
3338   if (!alloc->stride.isValid()) {
3339     if (alloc->dimension.get()->dim_2 == 0) // We only have one dimension
3340       alloc->stride = 0;
3341     else if (!JITAllocationStride(alloc, frame_ptr)) {
3342       strm.Printf("Error: Couldn't calculate allocation row stride");
3343       strm.EOL();
3344       return false;
3345     }
3346   }
3347   const uint32_t stride = *alloc->stride.get();
3348   const uint32_t size = *alloc->size.get(); // Size of whole allocation
3349   const uint32_t padding =
3350       alloc->element.padding.isValid() ? *alloc->element.padding.get() : 0;
3351   if (log)
3352     log->Printf("%s - stride %" PRIu32 " bytes, size %" PRIu32
3353                 " bytes, padding %" PRIu32,
3354                 __FUNCTION__, stride, size, padding);
3355 
3356   // Find dimensions used to index loops, so need to be non-zero
3357   uint32_t dim_x = alloc->dimension.get()->dim_1;
3358   dim_x = dim_x == 0 ? 1 : dim_x;
3359 
3360   uint32_t dim_y = alloc->dimension.get()->dim_2;
3361   dim_y = dim_y == 0 ? 1 : dim_y;
3362 
3363   uint32_t dim_z = alloc->dimension.get()->dim_3;
3364   dim_z = dim_z == 0 ? 1 : dim_z;
3365 
3366   // Use data extractor to format output
3367   const uint32_t target_ptr_size =
3368       GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
3369   DataExtractor alloc_data(buffer.get(), size, GetProcess()->GetByteOrder(),
3370                            target_ptr_size);
3371 
3372   uint32_t offset = 0;   // Offset in buffer to next element to be printed
3373   uint32_t prev_row = 0; // Offset to the start of the previous row
3374 
3375   // Iterate over allocation dimensions, printing results to user
3376   strm.Printf("Data (X, Y, Z):");
3377   for (uint32_t z = 0; z < dim_z; ++z) {
3378     for (uint32_t y = 0; y < dim_y; ++y) {
3379       // Use stride to index start of next row.
3380       if (!(y == 0 && z == 0))
3381         offset = prev_row + stride;
3382       prev_row = offset;
3383 
3384       // Print each element in the row individually
3385       for (uint32_t x = 0; x < dim_x; ++x) {
3386         strm.Printf("\n(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ") = ", x, y, z);
3387         if ((type == Element::RS_TYPE_NONE) &&
3388             (alloc->element.children.size() > 0) &&
3389             (alloc->element.type_name != Element::GetFallbackStructName())) {
3390           // Here we are dumping an Element of struct type. This is done using
3391           // expression evaluation with the name of the struct type and pointer
3392           // to element. Don't print the name of the resulting expression,
3393           // since this will be '$[0-9]+'
3394           DumpValueObjectOptions expr_options;
3395           expr_options.SetHideName(true);
3396 
3397           // Setup expression as dereferencing a pointer cast to element
3398           // address.
3399           char expr_char_buffer[jit_max_expr_size];
3400           int written =
3401               snprintf(expr_char_buffer, jit_max_expr_size, "*(%s*) 0x%" PRIx64,
3402                        alloc->element.type_name.AsCString(),
3403                        *alloc->data_ptr.get() + offset);
3404 
3405           if (written < 0 || written >= jit_max_expr_size) {
3406             if (log)
3407               log->Printf("%s - error in snprintf().", __FUNCTION__);
3408             continue;
3409           }
3410 
3411           // Evaluate expression
3412           ValueObjectSP expr_result;
3413           GetProcess()->GetTarget().EvaluateExpression(expr_char_buffer,
3414                                                        frame_ptr, expr_result);
3415 
3416           // Print the results to our stream.
3417           expr_result->Dump(strm, expr_options);
3418         } else {
3419           DumpDataExtractor(alloc_data, &strm, offset, format,
3420                             data_size - padding, 1, 1, LLDB_INVALID_ADDRESS, 0,
3421                             0);
3422         }
3423         offset += data_size;
3424       }
3425     }
3426   }
3427   strm.EOL();
3428 
3429   return true;
3430 }
3431 
3432 // Function recalculates all our cached information about allocations by
3433 // jitting the RS runtime regarding each allocation we know about. Returns true
3434 // if all allocations could be recomputed, false otherwise.
3435 bool RenderScriptRuntime::RecomputeAllAllocations(Stream &strm,
3436                                                   StackFrame *frame_ptr) {
3437   bool success = true;
3438   for (auto &alloc : m_allocations) {
3439     // JIT current allocation information
3440     if (!RefreshAllocation(alloc.get(), frame_ptr)) {
3441       strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32
3442                   "\n",
3443                   alloc->id);
3444       success = false;
3445     }
3446   }
3447 
3448   if (success)
3449     strm.Printf("All allocations successfully recomputed");
3450   strm.EOL();
3451 
3452   return success;
3453 }
3454 
3455 // Prints information regarding currently loaded allocations. These details are
3456 // gathered by jitting the runtime, which has as latency. Index parameter
3457 // specifies a single allocation ID to print, or a zero value to print them all
3458 void RenderScriptRuntime::ListAllocations(Stream &strm, StackFrame *frame_ptr,
3459                                           const uint32_t index) {
3460   strm.Printf("RenderScript Allocations:");
3461   strm.EOL();
3462   strm.IndentMore();
3463 
3464   for (auto &alloc : m_allocations) {
3465     // index will only be zero if we want to print all allocations
3466     if (index != 0 && index != alloc->id)
3467       continue;
3468 
3469     // JIT current allocation information
3470     if (alloc->ShouldRefresh() && !RefreshAllocation(alloc.get(), frame_ptr)) {
3471       strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32,
3472                   alloc->id);
3473       strm.EOL();
3474       continue;
3475     }
3476 
3477     strm.Printf("%" PRIu32 ":", alloc->id);
3478     strm.EOL();
3479     strm.IndentMore();
3480 
3481     strm.Indent("Context: ");
3482     if (!alloc->context.isValid())
3483       strm.Printf("unknown\n");
3484     else
3485       strm.Printf("0x%" PRIx64 "\n", *alloc->context.get());
3486 
3487     strm.Indent("Address: ");
3488     if (!alloc->address.isValid())
3489       strm.Printf("unknown\n");
3490     else
3491       strm.Printf("0x%" PRIx64 "\n", *alloc->address.get());
3492 
3493     strm.Indent("Data pointer: ");
3494     if (!alloc->data_ptr.isValid())
3495       strm.Printf("unknown\n");
3496     else
3497       strm.Printf("0x%" PRIx64 "\n", *alloc->data_ptr.get());
3498 
3499     strm.Indent("Dimensions: ");
3500     if (!alloc->dimension.isValid())
3501       strm.Printf("unknown\n");
3502     else
3503       strm.Printf("(%" PRId32 ", %" PRId32 ", %" PRId32 ")\n",
3504                   alloc->dimension.get()->dim_1, alloc->dimension.get()->dim_2,
3505                   alloc->dimension.get()->dim_3);
3506 
3507     strm.Indent("Data Type: ");
3508     if (!alloc->element.type.isValid() ||
3509         !alloc->element.type_vec_size.isValid())
3510       strm.Printf("unknown\n");
3511     else {
3512       const int vector_size = *alloc->element.type_vec_size.get();
3513       Element::DataType type = *alloc->element.type.get();
3514 
3515       if (!alloc->element.type_name.IsEmpty())
3516         strm.Printf("%s\n", alloc->element.type_name.AsCString());
3517       else {
3518         // Enum value isn't monotonous, so doesn't always index
3519         // RsDataTypeToString array
3520         if (type >= Element::RS_TYPE_ELEMENT && type <= Element::RS_TYPE_FONT)
3521           type =
3522               static_cast<Element::DataType>((type - Element::RS_TYPE_ELEMENT) +
3523                                              Element::RS_TYPE_MATRIX_2X2 + 1);
3524 
3525         if (type >= (sizeof(AllocationDetails::RsDataTypeToString) /
3526                      sizeof(AllocationDetails::RsDataTypeToString[0])) ||
3527             vector_size > 4 || vector_size < 1)
3528           strm.Printf("invalid type\n");
3529         else
3530           strm.Printf(
3531               "%s\n",
3532               AllocationDetails::RsDataTypeToString[static_cast<uint32_t>(type)]
3533                                                    [vector_size - 1]);
3534       }
3535     }
3536 
3537     strm.Indent("Data Kind: ");
3538     if (!alloc->element.type_kind.isValid())
3539       strm.Printf("unknown\n");
3540     else {
3541       const Element::DataKind kind = *alloc->element.type_kind.get();
3542       if (kind < Element::RS_KIND_USER || kind > Element::RS_KIND_PIXEL_YUV)
3543         strm.Printf("invalid kind\n");
3544       else
3545         strm.Printf(
3546             "%s\n",
3547             AllocationDetails::RsDataKindToString[static_cast<uint32_t>(kind)]);
3548     }
3549 
3550     strm.EOL();
3551     strm.IndentLess();
3552   }
3553   strm.IndentLess();
3554 }
3555 
3556 // Set breakpoints on every kernel found in RS module
3557 void RenderScriptRuntime::BreakOnModuleKernels(
3558     const RSModuleDescriptorSP rsmodule_sp) {
3559   for (const auto &kernel : rsmodule_sp->m_kernels) {
3560     // Don't set breakpoint on 'root' kernel
3561     if (strcmp(kernel.m_name.AsCString(), "root") == 0)
3562       continue;
3563 
3564     CreateKernelBreakpoint(kernel.m_name);
3565   }
3566 }
3567 
3568 // Method is internally called by the 'kernel breakpoint all' command to enable
3569 // or disable breaking on all kernels. When do_break is true we want to enable
3570 // this functionality. When do_break is false we want to disable it.
3571 void RenderScriptRuntime::SetBreakAllKernels(bool do_break, TargetSP target) {
3572   Log *log(
3573       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
3574 
3575   InitSearchFilter(target);
3576 
3577   // Set breakpoints on all the kernels
3578   if (do_break && !m_breakAllKernels) {
3579     m_breakAllKernels = true;
3580 
3581     for (const auto &module : m_rsmodules)
3582       BreakOnModuleKernels(module);
3583 
3584     if (log)
3585       log->Printf("%s(True) - breakpoints set on all currently loaded kernels.",
3586                   __FUNCTION__);
3587   } else if (!do_break &&
3588              m_breakAllKernels) // Breakpoints won't be set on any new kernels.
3589   {
3590     m_breakAllKernels = false;
3591 
3592     if (log)
3593       log->Printf("%s(False) - breakpoints no longer automatically set.",
3594                   __FUNCTION__);
3595   }
3596 }
3597 
3598 // Given the name of a kernel this function creates a breakpoint using our own
3599 // breakpoint resolver, and returns the Breakpoint shared pointer.
3600 BreakpointSP
3601 RenderScriptRuntime::CreateKernelBreakpoint(const ConstString &name) {
3602   Log *log(
3603       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
3604 
3605   if (!m_filtersp) {
3606     if (log)
3607       log->Printf("%s - error, no breakpoint search filter set.", __FUNCTION__);
3608     return nullptr;
3609   }
3610 
3611   BreakpointResolverSP resolver_sp(new RSBreakpointResolver(nullptr, name));
3612   Target &target = GetProcess()->GetTarget();
3613   BreakpointSP bp = target.CreateBreakpoint(
3614       m_filtersp, resolver_sp, false, false, false);
3615 
3616   // Give RS breakpoints a specific name, so the user can manipulate them as a
3617   // group.
3618   Status err;
3619   target.AddNameToBreakpoint(bp, "RenderScriptKernel", err);
3620   if (err.Fail() && log)
3621     if (log)
3622       log->Printf("%s - error setting break name, '%s'.", __FUNCTION__,
3623                   err.AsCString());
3624 
3625   return bp;
3626 }
3627 
3628 BreakpointSP
3629 RenderScriptRuntime::CreateReductionBreakpoint(const ConstString &name,
3630                                                int kernel_types) {
3631   Log *log(
3632       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
3633 
3634   if (!m_filtersp) {
3635     if (log)
3636       log->Printf("%s - error, no breakpoint search filter set.", __FUNCTION__);
3637     return nullptr;
3638   }
3639 
3640   BreakpointResolverSP resolver_sp(new RSReduceBreakpointResolver(
3641       nullptr, name, &m_rsmodules, kernel_types));
3642   Target &target = GetProcess()->GetTarget();
3643   BreakpointSP bp = target.CreateBreakpoint(
3644       m_filtersp, resolver_sp, false, false, false);
3645 
3646   // Give RS breakpoints a specific name, so the user can manipulate them as a
3647   // group.
3648   Status err;
3649   target.AddNameToBreakpoint(bp, "RenderScriptReduction", err);
3650   if (err.Fail() && log)
3651       log->Printf("%s - error setting break name, '%s'.", __FUNCTION__,
3652                   err.AsCString());
3653 
3654   return bp;
3655 }
3656 
3657 // Given an expression for a variable this function tries to calculate the
3658 // variable's value. If this is possible it returns true and sets the uint64_t
3659 // parameter to the variables unsigned value. Otherwise function returns false.
3660 bool RenderScriptRuntime::GetFrameVarAsUnsigned(const StackFrameSP frame_sp,
3661                                                 const char *var_name,
3662                                                 uint64_t &val) {
3663   Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE));
3664   Status err;
3665   VariableSP var_sp;
3666 
3667   // Find variable in stack frame
3668   ValueObjectSP value_sp(frame_sp->GetValueForVariableExpressionPath(
3669       var_name, eNoDynamicValues,
3670       StackFrame::eExpressionPathOptionCheckPtrVsMember |
3671           StackFrame::eExpressionPathOptionsAllowDirectIVarAccess,
3672       var_sp, err));
3673   if (!err.Success()) {
3674     if (log)
3675       log->Printf("%s - error, couldn't find '%s' in frame", __FUNCTION__,
3676                   var_name);
3677     return false;
3678   }
3679 
3680   // Find the uint32_t value for the variable
3681   bool success = false;
3682   val = value_sp->GetValueAsUnsigned(0, &success);
3683   if (!success) {
3684     if (log)
3685       log->Printf("%s - error, couldn't parse '%s' as an uint32_t.",
3686                   __FUNCTION__, var_name);
3687     return false;
3688   }
3689 
3690   return true;
3691 }
3692 
3693 // Function attempts to find the current coordinate of a kernel invocation by
3694 // investigating the values of frame variables in the .expand function. These
3695 // coordinates are returned via the coord array reference parameter. Returns
3696 // true if the coordinates could be found, and false otherwise.
3697 bool RenderScriptRuntime::GetKernelCoordinate(RSCoordinate &coord,
3698                                               Thread *thread_ptr) {
3699   static const char *const x_expr = "rsIndex";
3700   static const char *const y_expr = "p->current.y";
3701   static const char *const z_expr = "p->current.z";
3702 
3703   Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE));
3704 
3705   if (!thread_ptr) {
3706     if (log)
3707       log->Printf("%s - Error, No thread pointer", __FUNCTION__);
3708 
3709     return false;
3710   }
3711 
3712   // Walk the call stack looking for a function whose name has the suffix
3713   // '.expand' and contains the variables we're looking for.
3714   for (uint32_t i = 0; i < thread_ptr->GetStackFrameCount(); ++i) {
3715     if (!thread_ptr->SetSelectedFrameByIndex(i))
3716       continue;
3717 
3718     StackFrameSP frame_sp = thread_ptr->GetSelectedFrame();
3719     if (!frame_sp)
3720       continue;
3721 
3722     // Find the function name
3723     const SymbolContext sym_ctx =
3724         frame_sp->GetSymbolContext(eSymbolContextFunction);
3725     const ConstString func_name = sym_ctx.GetFunctionName();
3726     if (!func_name)
3727       continue;
3728 
3729     if (log)
3730       log->Printf("%s - Inspecting function '%s'", __FUNCTION__,
3731                   func_name.GetCString());
3732 
3733     // Check if function name has .expand suffix
3734     if (!func_name.GetStringRef().endswith(".expand"))
3735       continue;
3736 
3737     if (log)
3738       log->Printf("%s - Found .expand function '%s'", __FUNCTION__,
3739                   func_name.GetCString());
3740 
3741     // Get values for variables in .expand frame that tell us the current
3742     // kernel invocation
3743     uint64_t x, y, z;
3744     bool found = GetFrameVarAsUnsigned(frame_sp, x_expr, x) &&
3745                  GetFrameVarAsUnsigned(frame_sp, y_expr, y) &&
3746                  GetFrameVarAsUnsigned(frame_sp, z_expr, z);
3747 
3748     if (found) {
3749       // The RenderScript runtime uses uint32_t for these vars. If they're not
3750       // within bounds, our frame parsing is garbage
3751       assert(x <= UINT32_MAX && y <= UINT32_MAX && z <= UINT32_MAX);
3752       coord.x = (uint32_t)x;
3753       coord.y = (uint32_t)y;
3754       coord.z = (uint32_t)z;
3755       return true;
3756     }
3757   }
3758   return false;
3759 }
3760 
3761 // Callback when a kernel breakpoint hits and we're looking for a specific
3762 // coordinate. Baton parameter contains a pointer to the target coordinate we
3763 // want to break on. Function then checks the .expand frame for the current
3764 // coordinate and breaks to user if it matches. Parameter 'break_id' is the id
3765 // of the Breakpoint which made the callback. Parameter 'break_loc_id' is the
3766 // id for the BreakpointLocation which was hit, a single logical breakpoint can
3767 // have multiple addresses.
3768 bool RenderScriptRuntime::KernelBreakpointHit(void *baton,
3769                                               StoppointCallbackContext *ctx,
3770                                               user_id_t break_id,
3771                                               user_id_t break_loc_id) {
3772   Log *log(
3773       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
3774 
3775   assert(baton &&
3776          "Error: null baton in conditional kernel breakpoint callback");
3777 
3778   // Coordinate we want to stop on
3779   RSCoordinate target_coord = *static_cast<RSCoordinate *>(baton);
3780 
3781   if (log)
3782     log->Printf("%s - Break ID %" PRIu64 ", " FMT_COORD, __FUNCTION__, break_id,
3783                 target_coord.x, target_coord.y, target_coord.z);
3784 
3785   // Select current thread
3786   ExecutionContext context(ctx->exe_ctx_ref);
3787   Thread *thread_ptr = context.GetThreadPtr();
3788   assert(thread_ptr && "Null thread pointer");
3789 
3790   // Find current kernel invocation from .expand frame variables
3791   RSCoordinate current_coord{};
3792   if (!GetKernelCoordinate(current_coord, thread_ptr)) {
3793     if (log)
3794       log->Printf("%s - Error, couldn't select .expand stack frame",
3795                   __FUNCTION__);
3796     return false;
3797   }
3798 
3799   if (log)
3800     log->Printf("%s - " FMT_COORD, __FUNCTION__, current_coord.x,
3801                 current_coord.y, current_coord.z);
3802 
3803   // Check if the current kernel invocation coordinate matches our target
3804   // coordinate
3805   if (target_coord == current_coord) {
3806     if (log)
3807       log->Printf("%s, BREAKING " FMT_COORD, __FUNCTION__, current_coord.x,
3808                   current_coord.y, current_coord.z);
3809 
3810     BreakpointSP breakpoint_sp =
3811         context.GetTargetPtr()->GetBreakpointByID(break_id);
3812     assert(breakpoint_sp != nullptr &&
3813            "Error: Couldn't find breakpoint matching break id for callback");
3814     breakpoint_sp->SetEnabled(false); // Optimise since conditional breakpoint
3815                                       // should only be hit once.
3816     return true;
3817   }
3818 
3819   // No match on coordinate
3820   return false;
3821 }
3822 
3823 void RenderScriptRuntime::SetConditional(BreakpointSP bp, Stream &messages,
3824                                          const RSCoordinate &coord) {
3825   messages.Printf("Conditional kernel breakpoint on coordinate " FMT_COORD,
3826                   coord.x, coord.y, coord.z);
3827   messages.EOL();
3828 
3829   // Allocate memory for the baton, and copy over coordinate
3830   RSCoordinate *baton = new RSCoordinate(coord);
3831 
3832   // Create a callback that will be invoked every time the breakpoint is hit.
3833   // The baton object passed to the handler is the target coordinate we want to
3834   // break on.
3835   bp->SetCallback(KernelBreakpointHit, baton, true);
3836 
3837   // Store a shared pointer to the baton, so the memory will eventually be
3838   // cleaned up after destruction
3839   m_conditional_breaks[bp->GetID()] = std::unique_ptr<RSCoordinate>(baton);
3840 }
3841 
3842 // Tries to set a breakpoint on the start of a kernel, resolved using the
3843 // kernel name. Argument 'coords', represents a three dimensional coordinate
3844 // which can be used to specify a single kernel instance to break on. If this
3845 // is set then we add a callback to the breakpoint.
3846 bool RenderScriptRuntime::PlaceBreakpointOnKernel(TargetSP target,
3847                                                   Stream &messages,
3848                                                   const char *name,
3849                                                   const RSCoordinate *coord) {
3850   if (!name)
3851     return false;
3852 
3853   InitSearchFilter(target);
3854 
3855   ConstString kernel_name(name);
3856   BreakpointSP bp = CreateKernelBreakpoint(kernel_name);
3857   if (!bp)
3858     return false;
3859 
3860   // We have a conditional breakpoint on a specific coordinate
3861   if (coord)
3862     SetConditional(bp, messages, *coord);
3863 
3864   bp->GetDescription(&messages, lldb::eDescriptionLevelInitial, false);
3865 
3866   return true;
3867 }
3868 
3869 BreakpointSP
3870 RenderScriptRuntime::CreateScriptGroupBreakpoint(const ConstString &name,
3871                                                  bool stop_on_all) {
3872   Log *log(
3873       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
3874 
3875   if (!m_filtersp) {
3876     if (log)
3877       log->Printf("%s - error, no breakpoint search filter set.", __FUNCTION__);
3878     return nullptr;
3879   }
3880 
3881   BreakpointResolverSP resolver_sp(new RSScriptGroupBreakpointResolver(
3882       nullptr, name, m_scriptGroups, stop_on_all));
3883   Target &target = GetProcess()->GetTarget();
3884   BreakpointSP bp = target.CreateBreakpoint(
3885       m_filtersp, resolver_sp, false, false, false);
3886   // Give RS breakpoints a specific name, so the user can manipulate them as a
3887   // group.
3888   Status err;
3889   target.AddNameToBreakpoint(bp, name.GetCString(), err);
3890   if (err.Fail() && log)
3891     log->Printf("%s - error setting break name, '%s'.", __FUNCTION__,
3892                 err.AsCString());
3893   // ask the breakpoint to resolve itself
3894   bp->ResolveBreakpoint();
3895   return bp;
3896 }
3897 
3898 bool RenderScriptRuntime::PlaceBreakpointOnScriptGroup(TargetSP target,
3899                                                        Stream &strm,
3900                                                        const ConstString &name,
3901                                                        bool multi) {
3902   InitSearchFilter(target);
3903   BreakpointSP bp = CreateScriptGroupBreakpoint(name, multi);
3904   if (bp)
3905     bp->GetDescription(&strm, lldb::eDescriptionLevelInitial, false);
3906   return bool(bp);
3907 }
3908 
3909 bool RenderScriptRuntime::PlaceBreakpointOnReduction(TargetSP target,
3910                                                      Stream &messages,
3911                                                      const char *reduce_name,
3912                                                      const RSCoordinate *coord,
3913                                                      int kernel_types) {
3914   if (!reduce_name)
3915     return false;
3916 
3917   InitSearchFilter(target);
3918   BreakpointSP bp =
3919       CreateReductionBreakpoint(ConstString(reduce_name), kernel_types);
3920   if (!bp)
3921     return false;
3922 
3923   if (coord)
3924     SetConditional(bp, messages, *coord);
3925 
3926   bp->GetDescription(&messages, lldb::eDescriptionLevelInitial, false);
3927 
3928   return true;
3929 }
3930 
3931 void RenderScriptRuntime::DumpModules(Stream &strm) const {
3932   strm.Printf("RenderScript Modules:");
3933   strm.EOL();
3934   strm.IndentMore();
3935   for (const auto &module : m_rsmodules) {
3936     module->Dump(strm);
3937   }
3938   strm.IndentLess();
3939 }
3940 
3941 RenderScriptRuntime::ScriptDetails *
3942 RenderScriptRuntime::LookUpScript(addr_t address, bool create) {
3943   for (const auto &s : m_scripts) {
3944     if (s->script.isValid())
3945       if (*s->script == address)
3946         return s.get();
3947   }
3948   if (create) {
3949     std::unique_ptr<ScriptDetails> s(new ScriptDetails);
3950     s->script = address;
3951     m_scripts.push_back(std::move(s));
3952     return m_scripts.back().get();
3953   }
3954   return nullptr;
3955 }
3956 
3957 RenderScriptRuntime::AllocationDetails *
3958 RenderScriptRuntime::LookUpAllocation(addr_t address) {
3959   for (const auto &a : m_allocations) {
3960     if (a->address.isValid())
3961       if (*a->address == address)
3962         return a.get();
3963   }
3964   return nullptr;
3965 }
3966 
3967 RenderScriptRuntime::AllocationDetails *
3968 RenderScriptRuntime::CreateAllocation(addr_t address) {
3969   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
3970 
3971   // Remove any previous allocation which contains the same address
3972   auto it = m_allocations.begin();
3973   while (it != m_allocations.end()) {
3974     if (*((*it)->address) == address) {
3975       if (log)
3976         log->Printf("%s - Removing allocation id: %d, address: 0x%" PRIx64,
3977                     __FUNCTION__, (*it)->id, address);
3978 
3979       it = m_allocations.erase(it);
3980     } else {
3981       it++;
3982     }
3983   }
3984 
3985   std::unique_ptr<AllocationDetails> a(new AllocationDetails);
3986   a->address = address;
3987   m_allocations.push_back(std::move(a));
3988   return m_allocations.back().get();
3989 }
3990 
3991 bool RenderScriptRuntime::ResolveKernelName(lldb::addr_t kernel_addr,
3992                                             ConstString &name) {
3993   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS);
3994 
3995   Target &target = GetProcess()->GetTarget();
3996   Address resolved;
3997   // RenderScript module
3998   if (!target.GetSectionLoadList().ResolveLoadAddress(kernel_addr, resolved)) {
3999     if (log)
4000       log->Printf("%s: unable to resolve 0x%" PRIx64 " to a loaded symbol",
4001                   __FUNCTION__, kernel_addr);
4002     return false;
4003   }
4004 
4005   Symbol *sym = resolved.CalculateSymbolContextSymbol();
4006   if (!sym)
4007     return false;
4008 
4009   name = sym->GetName();
4010   assert(IsRenderScriptModule(resolved.CalculateSymbolContextModule()));
4011   if (log)
4012     log->Printf("%s: 0x%" PRIx64 " resolved to the symbol '%s'", __FUNCTION__,
4013                 kernel_addr, name.GetCString());
4014   return true;
4015 }
4016 
4017 void RSModuleDescriptor::Dump(Stream &strm) const {
4018   int indent = strm.GetIndentLevel();
4019 
4020   strm.Indent();
4021   m_module->GetFileSpec().Dump(&strm);
4022   strm.Indent(m_module->GetNumCompileUnits() ? "Debug info loaded."
4023                                              : "Debug info does not exist.");
4024   strm.EOL();
4025   strm.IndentMore();
4026 
4027   strm.Indent();
4028   strm.Printf("Globals: %" PRIu64, static_cast<uint64_t>(m_globals.size()));
4029   strm.EOL();
4030   strm.IndentMore();
4031   for (const auto &global : m_globals) {
4032     global.Dump(strm);
4033   }
4034   strm.IndentLess();
4035 
4036   strm.Indent();
4037   strm.Printf("Kernels: %" PRIu64, static_cast<uint64_t>(m_kernels.size()));
4038   strm.EOL();
4039   strm.IndentMore();
4040   for (const auto &kernel : m_kernels) {
4041     kernel.Dump(strm);
4042   }
4043   strm.IndentLess();
4044 
4045   strm.Indent();
4046   strm.Printf("Pragmas: %" PRIu64, static_cast<uint64_t>(m_pragmas.size()));
4047   strm.EOL();
4048   strm.IndentMore();
4049   for (const auto &key_val : m_pragmas) {
4050     strm.Indent();
4051     strm.Printf("%s: %s", key_val.first.c_str(), key_val.second.c_str());
4052     strm.EOL();
4053   }
4054   strm.IndentLess();
4055 
4056   strm.Indent();
4057   strm.Printf("Reductions: %" PRIu64,
4058               static_cast<uint64_t>(m_reductions.size()));
4059   strm.EOL();
4060   strm.IndentMore();
4061   for (const auto &reduction : m_reductions) {
4062     reduction.Dump(strm);
4063   }
4064 
4065   strm.SetIndentLevel(indent);
4066 }
4067 
4068 void RSGlobalDescriptor::Dump(Stream &strm) const {
4069   strm.Indent(m_name.AsCString());
4070   VariableList var_list;
4071   m_module->m_module->FindGlobalVariables(m_name, nullptr, 1U, var_list);
4072   if (var_list.GetSize() == 1) {
4073     auto var = var_list.GetVariableAtIndex(0);
4074     auto type = var->GetType();
4075     if (type) {
4076       strm.Printf(" - ");
4077       type->DumpTypeName(&strm);
4078     } else {
4079       strm.Printf(" - Unknown Type");
4080     }
4081   } else {
4082     strm.Printf(" - variable identified, but not found in binary");
4083     const Symbol *s = m_module->m_module->FindFirstSymbolWithNameAndType(
4084         m_name, eSymbolTypeData);
4085     if (s) {
4086       strm.Printf(" (symbol exists) ");
4087     }
4088   }
4089 
4090   strm.EOL();
4091 }
4092 
4093 void RSKernelDescriptor::Dump(Stream &strm) const {
4094   strm.Indent(m_name.AsCString());
4095   strm.EOL();
4096 }
4097 
4098 void RSReductionDescriptor::Dump(lldb_private::Stream &stream) const {
4099   stream.Indent(m_reduce_name.AsCString());
4100   stream.IndentMore();
4101   stream.EOL();
4102   stream.Indent();
4103   stream.Printf("accumulator: %s", m_accum_name.AsCString());
4104   stream.EOL();
4105   stream.Indent();
4106   stream.Printf("initializer: %s", m_init_name.AsCString());
4107   stream.EOL();
4108   stream.Indent();
4109   stream.Printf("combiner: %s", m_comb_name.AsCString());
4110   stream.EOL();
4111   stream.Indent();
4112   stream.Printf("outconverter: %s", m_outc_name.AsCString());
4113   stream.EOL();
4114   // XXX This is currently unspecified by RenderScript, and unused
4115   // stream.Indent();
4116   // stream.Printf("halter: '%s'", m_init_name.AsCString());
4117   // stream.EOL();
4118   stream.IndentLess();
4119 }
4120 
4121 class CommandObjectRenderScriptRuntimeModuleDump : public CommandObjectParsed {
4122 public:
4123   CommandObjectRenderScriptRuntimeModuleDump(CommandInterpreter &interpreter)
4124       : CommandObjectParsed(
4125             interpreter, "renderscript module dump",
4126             "Dumps renderscript specific information for all modules.",
4127             "renderscript module dump",
4128             eCommandRequiresProcess | eCommandProcessMustBeLaunched) {}
4129 
4130   ~CommandObjectRenderScriptRuntimeModuleDump() override = default;
4131 
4132   bool DoExecute(Args &command, CommandReturnObject &result) override {
4133     RenderScriptRuntime *runtime =
4134         (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4135             eLanguageTypeExtRenderScript);
4136     runtime->DumpModules(result.GetOutputStream());
4137     result.SetStatus(eReturnStatusSuccessFinishResult);
4138     return true;
4139   }
4140 };
4141 
4142 class CommandObjectRenderScriptRuntimeModule : public CommandObjectMultiword {
4143 public:
4144   CommandObjectRenderScriptRuntimeModule(CommandInterpreter &interpreter)
4145       : CommandObjectMultiword(interpreter, "renderscript module",
4146                                "Commands that deal with RenderScript modules.",
4147                                nullptr) {
4148     LoadSubCommand(
4149         "dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeModuleDump(
4150                     interpreter)));
4151   }
4152 
4153   ~CommandObjectRenderScriptRuntimeModule() override = default;
4154 };
4155 
4156 class CommandObjectRenderScriptRuntimeKernelList : public CommandObjectParsed {
4157 public:
4158   CommandObjectRenderScriptRuntimeKernelList(CommandInterpreter &interpreter)
4159       : CommandObjectParsed(
4160             interpreter, "renderscript kernel list",
4161             "Lists renderscript kernel names and associated script resources.",
4162             "renderscript kernel list",
4163             eCommandRequiresProcess | eCommandProcessMustBeLaunched) {}
4164 
4165   ~CommandObjectRenderScriptRuntimeKernelList() override = default;
4166 
4167   bool DoExecute(Args &command, CommandReturnObject &result) override {
4168     RenderScriptRuntime *runtime =
4169         (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4170             eLanguageTypeExtRenderScript);
4171     runtime->DumpKernels(result.GetOutputStream());
4172     result.SetStatus(eReturnStatusSuccessFinishResult);
4173     return true;
4174   }
4175 };
4176 
4177 static constexpr OptionDefinition g_renderscript_reduction_bp_set_options[] = {
4178     {LLDB_OPT_SET_1, false, "function-role", 't',
4179      OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeOneLiner,
4180      "Break on a comma separated set of reduction kernel types "
4181      "(accumulator,outcoverter,combiner,initializer"},
4182     {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument,
4183      nullptr, {}, 0, eArgTypeValue,
4184      "Set a breakpoint on a single invocation of the kernel with specified "
4185      "coordinate.\n"
4186      "Coordinate takes the form 'x[,y][,z] where x,y,z are positive "
4187      "integers representing kernel dimensions. "
4188      "Any unset dimensions will be defaulted to zero."}};
4189 
4190 class CommandObjectRenderScriptRuntimeReductionBreakpointSet
4191     : public CommandObjectParsed {
4192 public:
4193   CommandObjectRenderScriptRuntimeReductionBreakpointSet(
4194       CommandInterpreter &interpreter)
4195       : CommandObjectParsed(
4196             interpreter, "renderscript reduction breakpoint set",
4197             "Set a breakpoint on named RenderScript general reductions",
4198             "renderscript reduction breakpoint set  <kernel_name> [-t "
4199             "<reduction_kernel_type,...>]",
4200             eCommandRequiresProcess | eCommandProcessMustBeLaunched |
4201                 eCommandProcessMustBePaused),
4202         m_options(){};
4203 
4204   class CommandOptions : public Options {
4205   public:
4206     CommandOptions()
4207         : Options(),
4208           m_kernel_types(RSReduceBreakpointResolver::eKernelTypeAll) {}
4209 
4210     ~CommandOptions() override = default;
4211 
4212     Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg,
4213                           ExecutionContext *exe_ctx) override {
4214       Status err;
4215       StreamString err_str;
4216       const int short_option = m_getopt_table[option_idx].val;
4217       switch (short_option) {
4218       case 't':
4219         if (!ParseReductionTypes(option_arg, err_str))
4220           err.SetErrorStringWithFormat(
4221               "Unable to deduce reduction types for %s: %s",
4222               option_arg.str().c_str(), err_str.GetData());
4223         break;
4224       case 'c': {
4225         auto coord = RSCoordinate{};
4226         if (!ParseCoordinate(option_arg, coord))
4227           err.SetErrorStringWithFormat("unable to parse coordinate for %s",
4228                                        option_arg.str().c_str());
4229         else {
4230           m_have_coord = true;
4231           m_coord = coord;
4232         }
4233         break;
4234       }
4235       default:
4236         err.SetErrorStringWithFormat("Invalid option '-%c'", short_option);
4237       }
4238       return err;
4239     }
4240 
4241     void OptionParsingStarting(ExecutionContext *exe_ctx) override {
4242       m_have_coord = false;
4243     }
4244 
4245     llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
4246       return llvm::makeArrayRef(g_renderscript_reduction_bp_set_options);
4247     }
4248 
4249     bool ParseReductionTypes(llvm::StringRef option_val,
4250                              StreamString &err_str) {
4251       m_kernel_types = RSReduceBreakpointResolver::eKernelTypeNone;
4252       const auto reduce_name_to_type = [](llvm::StringRef name) -> int {
4253         return llvm::StringSwitch<int>(name)
4254             .Case("accumulator", RSReduceBreakpointResolver::eKernelTypeAccum)
4255             .Case("initializer", RSReduceBreakpointResolver::eKernelTypeInit)
4256             .Case("outconverter", RSReduceBreakpointResolver::eKernelTypeOutC)
4257             .Case("combiner", RSReduceBreakpointResolver::eKernelTypeComb)
4258             .Case("all", RSReduceBreakpointResolver::eKernelTypeAll)
4259             // Currently not exposed by the runtime
4260             // .Case("halter", RSReduceBreakpointResolver::eKernelTypeHalter)
4261             .Default(0);
4262       };
4263 
4264       // Matching a comma separated list of known words is fairly
4265       // straightforward with PCRE, but we're using ERE, so we end up with a
4266       // little ugliness...
4267       RegularExpression::Match match(/* max_matches */ 5);
4268       RegularExpression match_type_list(
4269           llvm::StringRef("^([[:alpha:]]+)(,[[:alpha:]]+){0,4}$"));
4270 
4271       assert(match_type_list.IsValid());
4272 
4273       if (!match_type_list.Execute(option_val, &match)) {
4274         err_str.PutCString(
4275             "a comma-separated list of kernel types is required");
4276         return false;
4277       }
4278 
4279       // splitting on commas is much easier with llvm::StringRef than regex
4280       llvm::SmallVector<llvm::StringRef, 5> type_names;
4281       llvm::StringRef(option_val).split(type_names, ',');
4282 
4283       for (const auto &name : type_names) {
4284         const int type = reduce_name_to_type(name);
4285         if (!type) {
4286           err_str.Printf("unknown kernel type name %s", name.str().c_str());
4287           return false;
4288         }
4289         m_kernel_types |= type;
4290       }
4291 
4292       return true;
4293     }
4294 
4295     int m_kernel_types;
4296     llvm::StringRef m_reduce_name;
4297     RSCoordinate m_coord;
4298     bool m_have_coord;
4299   };
4300 
4301   Options *GetOptions() override { return &m_options; }
4302 
4303   bool DoExecute(Args &command, CommandReturnObject &result) override {
4304     const size_t argc = command.GetArgumentCount();
4305     if (argc < 1) {
4306       result.AppendErrorWithFormat("'%s' takes 1 argument of reduction name, "
4307                                    "and an optional kernel type list",
4308                                    m_cmd_name.c_str());
4309       result.SetStatus(eReturnStatusFailed);
4310       return false;
4311     }
4312 
4313     RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4314         m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4315             eLanguageTypeExtRenderScript));
4316 
4317     auto &outstream = result.GetOutputStream();
4318     auto name = command.GetArgumentAtIndex(0);
4319     auto &target = m_exe_ctx.GetTargetSP();
4320     auto coord = m_options.m_have_coord ? &m_options.m_coord : nullptr;
4321     if (!runtime->PlaceBreakpointOnReduction(target, outstream, name, coord,
4322                                              m_options.m_kernel_types)) {
4323       result.SetStatus(eReturnStatusFailed);
4324       result.AppendError("Error: unable to place breakpoint on reduction");
4325       return false;
4326     }
4327     result.AppendMessage("Breakpoint(s) created");
4328     result.SetStatus(eReturnStatusSuccessFinishResult);
4329     return true;
4330   }
4331 
4332 private:
4333   CommandOptions m_options;
4334 };
4335 
4336 static constexpr OptionDefinition g_renderscript_kernel_bp_set_options[] = {
4337     {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument,
4338      nullptr, {}, 0, eArgTypeValue,
4339      "Set a breakpoint on a single invocation of the kernel with specified "
4340      "coordinate.\n"
4341      "Coordinate takes the form 'x[,y][,z] where x,y,z are positive "
4342      "integers representing kernel dimensions. "
4343      "Any unset dimensions will be defaulted to zero."}};
4344 
4345 class CommandObjectRenderScriptRuntimeKernelBreakpointSet
4346     : public CommandObjectParsed {
4347 public:
4348   CommandObjectRenderScriptRuntimeKernelBreakpointSet(
4349       CommandInterpreter &interpreter)
4350       : CommandObjectParsed(
4351             interpreter, "renderscript kernel breakpoint set",
4352             "Sets a breakpoint on a renderscript kernel.",
4353             "renderscript kernel breakpoint set <kernel_name> [-c x,y,z]",
4354             eCommandRequiresProcess | eCommandProcessMustBeLaunched |
4355                 eCommandProcessMustBePaused),
4356         m_options() {}
4357 
4358   ~CommandObjectRenderScriptRuntimeKernelBreakpointSet() override = default;
4359 
4360   Options *GetOptions() override { return &m_options; }
4361 
4362   class CommandOptions : public Options {
4363   public:
4364     CommandOptions() : Options() {}
4365 
4366     ~CommandOptions() override = default;
4367 
4368     Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg,
4369                           ExecutionContext *exe_ctx) override {
4370       Status err;
4371       const int short_option = m_getopt_table[option_idx].val;
4372 
4373       switch (short_option) {
4374       case 'c': {
4375         auto coord = RSCoordinate{};
4376         if (!ParseCoordinate(option_arg, coord))
4377           err.SetErrorStringWithFormat(
4378               "Couldn't parse coordinate '%s', should be in format 'x,y,z'.",
4379               option_arg.str().c_str());
4380         else {
4381           m_have_coord = true;
4382           m_coord = coord;
4383         }
4384         break;
4385       }
4386       default:
4387         err.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
4388         break;
4389       }
4390       return err;
4391     }
4392 
4393     void OptionParsingStarting(ExecutionContext *exe_ctx) override {
4394       m_have_coord = false;
4395     }
4396 
4397     llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
4398       return llvm::makeArrayRef(g_renderscript_kernel_bp_set_options);
4399     }
4400 
4401     RSCoordinate m_coord;
4402     bool m_have_coord;
4403   };
4404 
4405   bool DoExecute(Args &command, CommandReturnObject &result) override {
4406     const size_t argc = command.GetArgumentCount();
4407     if (argc < 1) {
4408       result.AppendErrorWithFormat(
4409           "'%s' takes 1 argument of kernel name, and an optional coordinate.",
4410           m_cmd_name.c_str());
4411       result.SetStatus(eReturnStatusFailed);
4412       return false;
4413     }
4414 
4415     RenderScriptRuntime *runtime =
4416         (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4417             eLanguageTypeExtRenderScript);
4418 
4419     auto &outstream = result.GetOutputStream();
4420     auto &target = m_exe_ctx.GetTargetSP();
4421     auto name = command.GetArgumentAtIndex(0);
4422     auto coord = m_options.m_have_coord ? &m_options.m_coord : nullptr;
4423     if (!runtime->PlaceBreakpointOnKernel(target, outstream, name, coord)) {
4424       result.SetStatus(eReturnStatusFailed);
4425       result.AppendErrorWithFormat(
4426           "Error: unable to set breakpoint on kernel '%s'", name);
4427       return false;
4428     }
4429 
4430     result.AppendMessage("Breakpoint(s) created");
4431     result.SetStatus(eReturnStatusSuccessFinishResult);
4432     return true;
4433   }
4434 
4435 private:
4436   CommandOptions m_options;
4437 };
4438 
4439 class CommandObjectRenderScriptRuntimeKernelBreakpointAll
4440     : public CommandObjectParsed {
4441 public:
4442   CommandObjectRenderScriptRuntimeKernelBreakpointAll(
4443       CommandInterpreter &interpreter)
4444       : CommandObjectParsed(
4445             interpreter, "renderscript kernel breakpoint all",
4446             "Automatically sets a breakpoint on all renderscript kernels that "
4447             "are or will be loaded.\n"
4448             "Disabling option means breakpoints will no longer be set on any "
4449             "kernels loaded in the future, "
4450             "but does not remove currently set breakpoints.",
4451             "renderscript kernel breakpoint all <enable/disable>",
4452             eCommandRequiresProcess | eCommandProcessMustBeLaunched |
4453                 eCommandProcessMustBePaused) {}
4454 
4455   ~CommandObjectRenderScriptRuntimeKernelBreakpointAll() override = default;
4456 
4457   bool DoExecute(Args &command, CommandReturnObject &result) override {
4458     const size_t argc = command.GetArgumentCount();
4459     if (argc != 1) {
4460       result.AppendErrorWithFormat(
4461           "'%s' takes 1 argument of 'enable' or 'disable'", m_cmd_name.c_str());
4462       result.SetStatus(eReturnStatusFailed);
4463       return false;
4464     }
4465 
4466     RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4467         m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4468             eLanguageTypeExtRenderScript));
4469 
4470     bool do_break = false;
4471     const char *argument = command.GetArgumentAtIndex(0);
4472     if (strcmp(argument, "enable") == 0) {
4473       do_break = true;
4474       result.AppendMessage("Breakpoints will be set on all kernels.");
4475     } else if (strcmp(argument, "disable") == 0) {
4476       do_break = false;
4477       result.AppendMessage("Breakpoints will not be set on any new kernels.");
4478     } else {
4479       result.AppendErrorWithFormat(
4480           "Argument must be either 'enable' or 'disable'");
4481       result.SetStatus(eReturnStatusFailed);
4482       return false;
4483     }
4484 
4485     runtime->SetBreakAllKernels(do_break, m_exe_ctx.GetTargetSP());
4486 
4487     result.SetStatus(eReturnStatusSuccessFinishResult);
4488     return true;
4489   }
4490 };
4491 
4492 class CommandObjectRenderScriptRuntimeReductionBreakpoint
4493     : public CommandObjectMultiword {
4494 public:
4495   CommandObjectRenderScriptRuntimeReductionBreakpoint(
4496       CommandInterpreter &interpreter)
4497       : CommandObjectMultiword(interpreter, "renderscript reduction breakpoint",
4498                                "Commands that manipulate breakpoints on "
4499                                "renderscript general reductions.",
4500                                nullptr) {
4501     LoadSubCommand(
4502         "set", CommandObjectSP(
4503                    new CommandObjectRenderScriptRuntimeReductionBreakpointSet(
4504                        interpreter)));
4505   }
4506 
4507   ~CommandObjectRenderScriptRuntimeReductionBreakpoint() override = default;
4508 };
4509 
4510 class CommandObjectRenderScriptRuntimeKernelCoordinate
4511     : public CommandObjectParsed {
4512 public:
4513   CommandObjectRenderScriptRuntimeKernelCoordinate(
4514       CommandInterpreter &interpreter)
4515       : CommandObjectParsed(
4516             interpreter, "renderscript kernel coordinate",
4517             "Shows the (x,y,z) coordinate of the current kernel invocation.",
4518             "renderscript kernel coordinate",
4519             eCommandRequiresProcess | eCommandProcessMustBeLaunched |
4520                 eCommandProcessMustBePaused) {}
4521 
4522   ~CommandObjectRenderScriptRuntimeKernelCoordinate() override = default;
4523 
4524   bool DoExecute(Args &command, CommandReturnObject &result) override {
4525     RSCoordinate coord{};
4526     bool success = RenderScriptRuntime::GetKernelCoordinate(
4527         coord, m_exe_ctx.GetThreadPtr());
4528     Stream &stream = result.GetOutputStream();
4529 
4530     if (success) {
4531       stream.Printf("Coordinate: " FMT_COORD, coord.x, coord.y, coord.z);
4532       stream.EOL();
4533       result.SetStatus(eReturnStatusSuccessFinishResult);
4534     } else {
4535       stream.Printf("Error: Coordinate could not be found.");
4536       stream.EOL();
4537       result.SetStatus(eReturnStatusFailed);
4538     }
4539     return true;
4540   }
4541 };
4542 
4543 class CommandObjectRenderScriptRuntimeKernelBreakpoint
4544     : public CommandObjectMultiword {
4545 public:
4546   CommandObjectRenderScriptRuntimeKernelBreakpoint(
4547       CommandInterpreter &interpreter)
4548       : CommandObjectMultiword(
4549             interpreter, "renderscript kernel",
4550             "Commands that generate breakpoints on renderscript kernels.",
4551             nullptr) {
4552     LoadSubCommand(
4553         "set",
4554         CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointSet(
4555             interpreter)));
4556     LoadSubCommand(
4557         "all",
4558         CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointAll(
4559             interpreter)));
4560   }
4561 
4562   ~CommandObjectRenderScriptRuntimeKernelBreakpoint() override = default;
4563 };
4564 
4565 class CommandObjectRenderScriptRuntimeKernel : public CommandObjectMultiword {
4566 public:
4567   CommandObjectRenderScriptRuntimeKernel(CommandInterpreter &interpreter)
4568       : CommandObjectMultiword(interpreter, "renderscript kernel",
4569                                "Commands that deal with RenderScript kernels.",
4570                                nullptr) {
4571     LoadSubCommand(
4572         "list", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelList(
4573                     interpreter)));
4574     LoadSubCommand(
4575         "coordinate",
4576         CommandObjectSP(
4577             new CommandObjectRenderScriptRuntimeKernelCoordinate(interpreter)));
4578     LoadSubCommand(
4579         "breakpoint",
4580         CommandObjectSP(
4581             new CommandObjectRenderScriptRuntimeKernelBreakpoint(interpreter)));
4582   }
4583 
4584   ~CommandObjectRenderScriptRuntimeKernel() override = default;
4585 };
4586 
4587 class CommandObjectRenderScriptRuntimeContextDump : public CommandObjectParsed {
4588 public:
4589   CommandObjectRenderScriptRuntimeContextDump(CommandInterpreter &interpreter)
4590       : CommandObjectParsed(interpreter, "renderscript context dump",
4591                             "Dumps renderscript context information.",
4592                             "renderscript context dump",
4593                             eCommandRequiresProcess |
4594                                 eCommandProcessMustBeLaunched) {}
4595 
4596   ~CommandObjectRenderScriptRuntimeContextDump() override = default;
4597 
4598   bool DoExecute(Args &command, CommandReturnObject &result) override {
4599     RenderScriptRuntime *runtime =
4600         (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4601             eLanguageTypeExtRenderScript);
4602     runtime->DumpContexts(result.GetOutputStream());
4603     result.SetStatus(eReturnStatusSuccessFinishResult);
4604     return true;
4605   }
4606 };
4607 
4608 static constexpr OptionDefinition g_renderscript_runtime_alloc_dump_options[] = {
4609     {LLDB_OPT_SET_1, false, "file", 'f', OptionParser::eRequiredArgument,
4610      nullptr, {}, 0, eArgTypeFilename,
4611      "Print results to specified file instead of command line."}};
4612 
4613 class CommandObjectRenderScriptRuntimeContext : public CommandObjectMultiword {
4614 public:
4615   CommandObjectRenderScriptRuntimeContext(CommandInterpreter &interpreter)
4616       : CommandObjectMultiword(interpreter, "renderscript context",
4617                                "Commands that deal with RenderScript contexts.",
4618                                nullptr) {
4619     LoadSubCommand(
4620         "dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeContextDump(
4621                     interpreter)));
4622   }
4623 
4624   ~CommandObjectRenderScriptRuntimeContext() override = default;
4625 };
4626 
4627 class CommandObjectRenderScriptRuntimeAllocationDump
4628     : public CommandObjectParsed {
4629 public:
4630   CommandObjectRenderScriptRuntimeAllocationDump(
4631       CommandInterpreter &interpreter)
4632       : CommandObjectParsed(interpreter, "renderscript allocation dump",
4633                             "Displays the contents of a particular allocation",
4634                             "renderscript allocation dump <ID>",
4635                             eCommandRequiresProcess |
4636                                 eCommandProcessMustBeLaunched),
4637         m_options() {}
4638 
4639   ~CommandObjectRenderScriptRuntimeAllocationDump() override = default;
4640 
4641   Options *GetOptions() override { return &m_options; }
4642 
4643   class CommandOptions : public Options {
4644   public:
4645     CommandOptions() : Options() {}
4646 
4647     ~CommandOptions() override = default;
4648 
4649     Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg,
4650                           ExecutionContext *exe_ctx) override {
4651       Status err;
4652       const int short_option = m_getopt_table[option_idx].val;
4653 
4654       switch (short_option) {
4655       case 'f':
4656         m_outfile.SetFile(option_arg, FileSpec::Style::native);
4657         FileSystem::Instance().Resolve(m_outfile);
4658         if (FileSystem::Instance().Exists(m_outfile)) {
4659           m_outfile.Clear();
4660           err.SetErrorStringWithFormat("file already exists: '%s'",
4661                                        option_arg.str().c_str());
4662         }
4663         break;
4664       default:
4665         err.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
4666         break;
4667       }
4668       return err;
4669     }
4670 
4671     void OptionParsingStarting(ExecutionContext *exe_ctx) override {
4672       m_outfile.Clear();
4673     }
4674 
4675     llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
4676       return llvm::makeArrayRef(g_renderscript_runtime_alloc_dump_options);
4677     }
4678 
4679     FileSpec m_outfile;
4680   };
4681 
4682   bool DoExecute(Args &command, CommandReturnObject &result) override {
4683     const size_t argc = command.GetArgumentCount();
4684     if (argc < 1) {
4685       result.AppendErrorWithFormat("'%s' takes 1 argument, an allocation ID. "
4686                                    "As well as an optional -f argument",
4687                                    m_cmd_name.c_str());
4688       result.SetStatus(eReturnStatusFailed);
4689       return false;
4690     }
4691 
4692     RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4693         m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4694             eLanguageTypeExtRenderScript));
4695 
4696     const char *id_cstr = command.GetArgumentAtIndex(0);
4697     bool success = false;
4698     const uint32_t id =
4699         StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success);
4700     if (!success) {
4701       result.AppendErrorWithFormat("invalid allocation id argument '%s'",
4702                                    id_cstr);
4703       result.SetStatus(eReturnStatusFailed);
4704       return false;
4705     }
4706 
4707     Stream *output_strm = nullptr;
4708     StreamFile outfile_stream;
4709     const FileSpec &outfile_spec =
4710         m_options.m_outfile; // Dump allocation to file instead
4711     if (outfile_spec) {
4712       // Open output file
4713       char path[256];
4714       outfile_spec.GetPath(path, sizeof(path));
4715       if (outfile_stream.GetFile()
4716               .Open(path, File::eOpenOptionWrite | File::eOpenOptionCanCreate)
4717               .Success()) {
4718         output_strm = &outfile_stream;
4719         result.GetOutputStream().Printf("Results written to '%s'", path);
4720         result.GetOutputStream().EOL();
4721       } else {
4722         result.AppendErrorWithFormat("Couldn't open file '%s'", path);
4723         result.SetStatus(eReturnStatusFailed);
4724         return false;
4725       }
4726     } else
4727       output_strm = &result.GetOutputStream();
4728 
4729     assert(output_strm != nullptr);
4730     bool dumped =
4731         runtime->DumpAllocation(*output_strm, m_exe_ctx.GetFramePtr(), id);
4732 
4733     if (dumped)
4734       result.SetStatus(eReturnStatusSuccessFinishResult);
4735     else
4736       result.SetStatus(eReturnStatusFailed);
4737 
4738     return true;
4739   }
4740 
4741 private:
4742   CommandOptions m_options;
4743 };
4744 
4745 static constexpr OptionDefinition g_renderscript_runtime_alloc_list_options[] = {
4746     {LLDB_OPT_SET_1, false, "id", 'i', OptionParser::eRequiredArgument, nullptr,
4747      {}, 0, eArgTypeIndex,
4748      "Only show details of a single allocation with specified id."}};
4749 
4750 class CommandObjectRenderScriptRuntimeAllocationList
4751     : public CommandObjectParsed {
4752 public:
4753   CommandObjectRenderScriptRuntimeAllocationList(
4754       CommandInterpreter &interpreter)
4755       : CommandObjectParsed(
4756             interpreter, "renderscript allocation list",
4757             "List renderscript allocations and their information.",
4758             "renderscript allocation list",
4759             eCommandRequiresProcess | eCommandProcessMustBeLaunched),
4760         m_options() {}
4761 
4762   ~CommandObjectRenderScriptRuntimeAllocationList() override = default;
4763 
4764   Options *GetOptions() override { return &m_options; }
4765 
4766   class CommandOptions : public Options {
4767   public:
4768     CommandOptions() : Options(), m_id(0) {}
4769 
4770     ~CommandOptions() override = default;
4771 
4772     Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg,
4773                           ExecutionContext *exe_ctx) override {
4774       Status err;
4775       const int short_option = m_getopt_table[option_idx].val;
4776 
4777       switch (short_option) {
4778       case 'i':
4779         if (option_arg.getAsInteger(0, m_id))
4780           err.SetErrorStringWithFormat("invalid integer value for option '%c'",
4781                                        short_option);
4782         break;
4783       default:
4784         err.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
4785         break;
4786       }
4787       return err;
4788     }
4789 
4790     void OptionParsingStarting(ExecutionContext *exe_ctx) override { m_id = 0; }
4791 
4792     llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
4793       return llvm::makeArrayRef(g_renderscript_runtime_alloc_list_options);
4794     }
4795 
4796     uint32_t m_id;
4797   };
4798 
4799   bool DoExecute(Args &command, CommandReturnObject &result) override {
4800     RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4801         m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4802             eLanguageTypeExtRenderScript));
4803     runtime->ListAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr(),
4804                              m_options.m_id);
4805     result.SetStatus(eReturnStatusSuccessFinishResult);
4806     return true;
4807   }
4808 
4809 private:
4810   CommandOptions m_options;
4811 };
4812 
4813 class CommandObjectRenderScriptRuntimeAllocationLoad
4814     : public CommandObjectParsed {
4815 public:
4816   CommandObjectRenderScriptRuntimeAllocationLoad(
4817       CommandInterpreter &interpreter)
4818       : CommandObjectParsed(
4819             interpreter, "renderscript allocation load",
4820             "Loads renderscript allocation contents from a file.",
4821             "renderscript allocation load <ID> <filename>",
4822             eCommandRequiresProcess | eCommandProcessMustBeLaunched) {}
4823 
4824   ~CommandObjectRenderScriptRuntimeAllocationLoad() override = default;
4825 
4826   bool DoExecute(Args &command, CommandReturnObject &result) override {
4827     const size_t argc = command.GetArgumentCount();
4828     if (argc != 2) {
4829       result.AppendErrorWithFormat(
4830           "'%s' takes 2 arguments, an allocation ID and filename to read from.",
4831           m_cmd_name.c_str());
4832       result.SetStatus(eReturnStatusFailed);
4833       return false;
4834     }
4835 
4836     RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4837         m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4838             eLanguageTypeExtRenderScript));
4839 
4840     const char *id_cstr = command.GetArgumentAtIndex(0);
4841     bool success = false;
4842     const uint32_t id =
4843         StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success);
4844     if (!success) {
4845       result.AppendErrorWithFormat("invalid allocation id argument '%s'",
4846                                    id_cstr);
4847       result.SetStatus(eReturnStatusFailed);
4848       return false;
4849     }
4850 
4851     const char *path = command.GetArgumentAtIndex(1);
4852     bool loaded = runtime->LoadAllocation(result.GetOutputStream(), id, path,
4853                                           m_exe_ctx.GetFramePtr());
4854 
4855     if (loaded)
4856       result.SetStatus(eReturnStatusSuccessFinishResult);
4857     else
4858       result.SetStatus(eReturnStatusFailed);
4859 
4860     return true;
4861   }
4862 };
4863 
4864 class CommandObjectRenderScriptRuntimeAllocationSave
4865     : public CommandObjectParsed {
4866 public:
4867   CommandObjectRenderScriptRuntimeAllocationSave(
4868       CommandInterpreter &interpreter)
4869       : CommandObjectParsed(interpreter, "renderscript allocation save",
4870                             "Write renderscript allocation contents to a file.",
4871                             "renderscript allocation save <ID> <filename>",
4872                             eCommandRequiresProcess |
4873                                 eCommandProcessMustBeLaunched) {}
4874 
4875   ~CommandObjectRenderScriptRuntimeAllocationSave() override = default;
4876 
4877   bool DoExecute(Args &command, CommandReturnObject &result) override {
4878     const size_t argc = command.GetArgumentCount();
4879     if (argc != 2) {
4880       result.AppendErrorWithFormat(
4881           "'%s' takes 2 arguments, an allocation ID and filename to read from.",
4882           m_cmd_name.c_str());
4883       result.SetStatus(eReturnStatusFailed);
4884       return false;
4885     }
4886 
4887     RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4888         m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4889             eLanguageTypeExtRenderScript));
4890 
4891     const char *id_cstr = command.GetArgumentAtIndex(0);
4892     bool success = false;
4893     const uint32_t id =
4894         StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success);
4895     if (!success) {
4896       result.AppendErrorWithFormat("invalid allocation id argument '%s'",
4897                                    id_cstr);
4898       result.SetStatus(eReturnStatusFailed);
4899       return false;
4900     }
4901 
4902     const char *path = command.GetArgumentAtIndex(1);
4903     bool saved = runtime->SaveAllocation(result.GetOutputStream(), id, path,
4904                                          m_exe_ctx.GetFramePtr());
4905 
4906     if (saved)
4907       result.SetStatus(eReturnStatusSuccessFinishResult);
4908     else
4909       result.SetStatus(eReturnStatusFailed);
4910 
4911     return true;
4912   }
4913 };
4914 
4915 class CommandObjectRenderScriptRuntimeAllocationRefresh
4916     : public CommandObjectParsed {
4917 public:
4918   CommandObjectRenderScriptRuntimeAllocationRefresh(
4919       CommandInterpreter &interpreter)
4920       : CommandObjectParsed(interpreter, "renderscript allocation refresh",
4921                             "Recomputes the details of all allocations.",
4922                             "renderscript allocation refresh",
4923                             eCommandRequiresProcess |
4924                                 eCommandProcessMustBeLaunched) {}
4925 
4926   ~CommandObjectRenderScriptRuntimeAllocationRefresh() override = default;
4927 
4928   bool DoExecute(Args &command, CommandReturnObject &result) override {
4929     RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4930         m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4931             eLanguageTypeExtRenderScript));
4932 
4933     bool success = runtime->RecomputeAllAllocations(result.GetOutputStream(),
4934                                                     m_exe_ctx.GetFramePtr());
4935 
4936     if (success) {
4937       result.SetStatus(eReturnStatusSuccessFinishResult);
4938       return true;
4939     } else {
4940       result.SetStatus(eReturnStatusFailed);
4941       return false;
4942     }
4943   }
4944 };
4945 
4946 class CommandObjectRenderScriptRuntimeAllocation
4947     : public CommandObjectMultiword {
4948 public:
4949   CommandObjectRenderScriptRuntimeAllocation(CommandInterpreter &interpreter)
4950       : CommandObjectMultiword(
4951             interpreter, "renderscript allocation",
4952             "Commands that deal with RenderScript allocations.", nullptr) {
4953     LoadSubCommand(
4954         "list",
4955         CommandObjectSP(
4956             new CommandObjectRenderScriptRuntimeAllocationList(interpreter)));
4957     LoadSubCommand(
4958         "dump",
4959         CommandObjectSP(
4960             new CommandObjectRenderScriptRuntimeAllocationDump(interpreter)));
4961     LoadSubCommand(
4962         "save",
4963         CommandObjectSP(
4964             new CommandObjectRenderScriptRuntimeAllocationSave(interpreter)));
4965     LoadSubCommand(
4966         "load",
4967         CommandObjectSP(
4968             new CommandObjectRenderScriptRuntimeAllocationLoad(interpreter)));
4969     LoadSubCommand(
4970         "refresh",
4971         CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationRefresh(
4972             interpreter)));
4973   }
4974 
4975   ~CommandObjectRenderScriptRuntimeAllocation() override = default;
4976 };
4977 
4978 class CommandObjectRenderScriptRuntimeStatus : public CommandObjectParsed {
4979 public:
4980   CommandObjectRenderScriptRuntimeStatus(CommandInterpreter &interpreter)
4981       : CommandObjectParsed(interpreter, "renderscript status",
4982                             "Displays current RenderScript runtime status.",
4983                             "renderscript status",
4984                             eCommandRequiresProcess |
4985                                 eCommandProcessMustBeLaunched) {}
4986 
4987   ~CommandObjectRenderScriptRuntimeStatus() override = default;
4988 
4989   bool DoExecute(Args &command, CommandReturnObject &result) override {
4990     RenderScriptRuntime *runtime =
4991         (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4992             eLanguageTypeExtRenderScript);
4993     runtime->DumpStatus(result.GetOutputStream());
4994     result.SetStatus(eReturnStatusSuccessFinishResult);
4995     return true;
4996   }
4997 };
4998 
4999 class CommandObjectRenderScriptRuntimeReduction
5000     : public CommandObjectMultiword {
5001 public:
5002   CommandObjectRenderScriptRuntimeReduction(CommandInterpreter &interpreter)
5003       : CommandObjectMultiword(interpreter, "renderscript reduction",
5004                                "Commands that handle general reduction kernels",
5005                                nullptr) {
5006     LoadSubCommand(
5007         "breakpoint",
5008         CommandObjectSP(new CommandObjectRenderScriptRuntimeReductionBreakpoint(
5009             interpreter)));
5010   }
5011   ~CommandObjectRenderScriptRuntimeReduction() override = default;
5012 };
5013 
5014 class CommandObjectRenderScriptRuntime : public CommandObjectMultiword {
5015 public:
5016   CommandObjectRenderScriptRuntime(CommandInterpreter &interpreter)
5017       : CommandObjectMultiword(
5018             interpreter, "renderscript",
5019             "Commands for operating on the RenderScript runtime.",
5020             "renderscript <subcommand> [<subcommand-options>]") {
5021     LoadSubCommand(
5022         "module", CommandObjectSP(
5023                       new CommandObjectRenderScriptRuntimeModule(interpreter)));
5024     LoadSubCommand(
5025         "status", CommandObjectSP(
5026                       new CommandObjectRenderScriptRuntimeStatus(interpreter)));
5027     LoadSubCommand(
5028         "kernel", CommandObjectSP(
5029                       new CommandObjectRenderScriptRuntimeKernel(interpreter)));
5030     LoadSubCommand("context",
5031                    CommandObjectSP(new CommandObjectRenderScriptRuntimeContext(
5032                        interpreter)));
5033     LoadSubCommand(
5034         "allocation",
5035         CommandObjectSP(
5036             new CommandObjectRenderScriptRuntimeAllocation(interpreter)));
5037     LoadSubCommand("scriptgroup",
5038                    NewCommandObjectRenderScriptScriptGroup(interpreter));
5039     LoadSubCommand(
5040         "reduction",
5041         CommandObjectSP(
5042             new CommandObjectRenderScriptRuntimeReduction(interpreter)));
5043   }
5044 
5045   ~CommandObjectRenderScriptRuntime() override = default;
5046 };
5047 
5048 void RenderScriptRuntime::Initiate() { assert(!m_initiated); }
5049 
5050 RenderScriptRuntime::RenderScriptRuntime(Process *process)
5051     : lldb_private::CPPLanguageRuntime(process), m_initiated(false),
5052       m_debuggerPresentFlagged(false), m_breakAllKernels(false),
5053       m_ir_passes(nullptr) {
5054   ModulesDidLoad(process->GetTarget().GetImages());
5055 }
5056 
5057 lldb::CommandObjectSP RenderScriptRuntime::GetCommandObject(
5058     lldb_private::CommandInterpreter &interpreter) {
5059   return CommandObjectSP(new CommandObjectRenderScriptRuntime(interpreter));
5060 }
5061 
5062 RenderScriptRuntime::~RenderScriptRuntime() = default;
5063