1 //===-- RenderScriptRuntime.cpp ---------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 // C Includes
11 // C++ Includes
12 // Other libraries and framework includes
13 // Project includes
14 #include "RenderScriptRuntime.h"
15 
16 #include "lldb/Core/ConstString.h"
17 #include "lldb/Core/Debugger.h"
18 #include "lldb/Core/Error.h"
19 #include "lldb/Core/Log.h"
20 #include "lldb/Core/PluginManager.h"
21 #include "lldb/Core/ValueObjectVariable.h"
22 #include "lldb/Core/RegularExpression.h"
23 #include "lldb/DataFormatters/DumpValueObjectOptions.h"
24 #include "lldb/Host/StringConvert.h"
25 #include "lldb/Symbol/Symbol.h"
26 #include "lldb/Symbol/Type.h"
27 #include "lldb/Target/Process.h"
28 #include "lldb/Target/Target.h"
29 #include "lldb/Target/Thread.h"
30 #include "lldb/Interpreter/Args.h"
31 #include "lldb/Interpreter/Options.h"
32 #include "lldb/Interpreter/CommandInterpreter.h"
33 #include "lldb/Interpreter/CommandReturnObject.h"
34 #include "lldb/Interpreter/CommandObjectMultiword.h"
35 #include "lldb/Breakpoint/StoppointCallbackContext.h"
36 #include "lldb/Target/RegisterContext.h"
37 #include "lldb/Expression/UserExpression.h"
38 #include "lldb/Symbol/VariableList.h"
39 
40 using namespace lldb;
41 using namespace lldb_private;
42 using namespace lldb_renderscript;
43 
44 namespace {
45 
46 // The empirical_type adds a basic level of validation to arbitrary data
47 // allowing us to track if data has been discovered and stored or not.
48 // An empirical_type will be marked as valid only if it has been explicitly assigned to.
49 template <typename type_t>
50 class empirical_type
51 {
52 public:
53     // Ctor. Contents is invalid when constructed.
54     empirical_type()
55         : valid(false)
56     {}
57 
58     // Return true and copy contents to out if valid, else return false.
59     bool get(type_t& out) const
60     {
61         if (valid)
62             out = data;
63         return valid;
64     }
65 
66     // Return a pointer to the contents or nullptr if it was not valid.
67     const type_t* get() const
68     {
69         return valid ? &data : nullptr;
70     }
71 
72     // Assign data explicitly.
73     void set(const type_t in)
74     {
75         data = in;
76         valid = true;
77     }
78 
79     // Mark contents as invalid.
80     void invalidate()
81     {
82         valid = false;
83     }
84 
85     // Returns true if this type contains valid data.
86     bool isValid() const
87     {
88         return valid;
89     }
90 
91     // Assignment operator.
92     empirical_type<type_t>& operator = (const type_t in)
93     {
94         set(in);
95         return *this;
96     }
97 
98     // Dereference operator returns contents.
99     // Warning: Will assert if not valid so use only when you know data is valid.
100     const type_t& operator * () const
101     {
102         assert(valid);
103         return data;
104     }
105 
106 protected:
107     bool valid;
108     type_t data;
109 };
110 
111 } // anonymous namespace
112 
113 // The ScriptDetails class collects data associated with a single script instance.
114 struct RenderScriptRuntime::ScriptDetails
115 {
116     ~ScriptDetails() = default;
117 
118     enum ScriptType
119     {
120         eScript,
121         eScriptC
122     };
123 
124     // The derived type of the script.
125     empirical_type<ScriptType> type;
126     // The name of the original source file.
127     empirical_type<std::string> resName;
128     // Path to script .so file on the device.
129     empirical_type<std::string> scriptDyLib;
130     // Directory where kernel objects are cached on device.
131     empirical_type<std::string> cacheDir;
132     // Pointer to the context which owns this script.
133     empirical_type<lldb::addr_t> context;
134     // Pointer to the script object itself.
135     empirical_type<lldb::addr_t> script;
136 };
137 
138 // This Element class represents the Element object in RS,
139 // defining the type associated with an Allocation.
140 struct RenderScriptRuntime::Element
141 {
142     // Taken from rsDefines.h
143     enum DataKind
144     {
145         RS_KIND_USER,
146         RS_KIND_PIXEL_L = 7,
147         RS_KIND_PIXEL_A,
148         RS_KIND_PIXEL_LA,
149         RS_KIND_PIXEL_RGB,
150         RS_KIND_PIXEL_RGBA,
151         RS_KIND_PIXEL_DEPTH,
152         RS_KIND_PIXEL_YUV,
153         RS_KIND_INVALID = 100
154     };
155 
156     // Taken from rsDefines.h
157     enum DataType
158     {
159         RS_TYPE_NONE = 0,
160         RS_TYPE_FLOAT_16,
161         RS_TYPE_FLOAT_32,
162         RS_TYPE_FLOAT_64,
163         RS_TYPE_SIGNED_8,
164         RS_TYPE_SIGNED_16,
165         RS_TYPE_SIGNED_32,
166         RS_TYPE_SIGNED_64,
167         RS_TYPE_UNSIGNED_8,
168         RS_TYPE_UNSIGNED_16,
169         RS_TYPE_UNSIGNED_32,
170         RS_TYPE_UNSIGNED_64,
171         RS_TYPE_BOOLEAN
172     };
173 
174     std::vector<Element> children;                       // Child Element fields for structs
175     empirical_type<lldb::addr_t> element_ptr;            // Pointer to the RS Element of the Type
176     empirical_type<DataType> type;                       // Type of each data pointer stored by the allocation
177     empirical_type<DataKind> type_kind;                  // Defines pixel type if Allocation is created from an image
178     empirical_type<uint32_t> type_vec_size;              // Vector size of each data point, e.g '4' for uchar4
179     empirical_type<uint32_t> field_count;                // Number of Subelements
180     empirical_type<uint32_t> datum_size;                 // Size of a single Element with padding
181     empirical_type<uint32_t> padding;                    // Number of padding bytes
182     empirical_type<uint32_t> array_size;                 // Number of items in array, only needed for strucrs
183     ConstString type_name;                               // Name of type, only needed for structs
184 
185     static const ConstString &GetFallbackStructName();   // Print this as the type name of a struct Element
186                                                          // If we can't resolve the actual struct name
187 
188     bool shouldRefresh() const
189     {
190         const bool valid_ptr = element_ptr.isValid() && *element_ptr.get() != 0x0;
191         const bool valid_type = type.isValid() && type_vec_size.isValid() && type_kind.isValid();
192         return !valid_ptr || !valid_type || !datum_size.isValid();
193     }
194 };
195 
196 // This AllocationDetails class collects data associated with a single
197 // allocation instance.
198 struct RenderScriptRuntime::AllocationDetails
199 {
200     struct Dimension
201     {
202         uint32_t dim_1;
203         uint32_t dim_2;
204         uint32_t dim_3;
205         uint32_t cubeMap;
206 
207         Dimension()
208         {
209              dim_1 = 0;
210              dim_2 = 0;
211              dim_3 = 0;
212              cubeMap = 0;
213         }
214     };
215 
216     // Header for reading and writing allocation contents
217     // to a binary file.
218     struct FileHeader
219     {
220         uint8_t ident[4];      // ASCII 'RSAD' identifying the file
221         uint16_t hdr_size;     // Header size in bytes, for backwards compatability
222         uint16_t type;         // DataType enum
223         uint32_t kind;         // DataKind enum
224         uint32_t dims[3];      // Dimensions
225         uint32_t element_size; // Size of a single element, including padding
226     };
227 
228     // Monotonically increasing from 1
229     static unsigned int ID;
230 
231     // Maps Allocation DataType enum and vector size to printable strings
232     // using mapping from RenderScript numerical types summary documentation
233     static const char* RsDataTypeToString[][4];
234 
235     // Maps Allocation DataKind enum to printable strings
236     static const char* RsDataKindToString[];
237 
238     // Maps allocation types to format sizes for printing.
239     static const unsigned int RSTypeToFormat[][3];
240 
241     // Give each allocation an ID as a way
242     // for commands to reference it.
243     const unsigned int id;
244 
245     RenderScriptRuntime::Element element;     // Allocation Element type
246     empirical_type<Dimension> dimension;      // Dimensions of the Allocation
247     empirical_type<lldb::addr_t> address;     // Pointer to address of the RS Allocation
248     empirical_type<lldb::addr_t> data_ptr;    // Pointer to the data held by the Allocation
249     empirical_type<lldb::addr_t> type_ptr;    // Pointer to the RS Type of the Allocation
250     empirical_type<lldb::addr_t> context;     // Pointer to the RS Context of the Allocation
251     empirical_type<uint32_t> size;            // Size of the allocation
252     empirical_type<uint32_t> stride;          // Stride between rows of the allocation
253 
254     // Give each allocation an id, so we can reference it in user commands.
255     AllocationDetails(): id(ID++)
256     {
257     }
258 
259     bool shouldRefresh() const
260     {
261         bool valid_ptrs = data_ptr.isValid() && *data_ptr.get() != 0x0;
262         valid_ptrs = valid_ptrs && type_ptr.isValid() && *type_ptr.get() != 0x0;
263         return !valid_ptrs || !dimension.isValid() || !size.isValid() || element.shouldRefresh();
264     }
265 };
266 
267 
268 const ConstString &
269 RenderScriptRuntime::Element::GetFallbackStructName()
270 {
271     static const ConstString FallbackStructName("struct");
272     return FallbackStructName;
273 }
274 
275 unsigned int RenderScriptRuntime::AllocationDetails::ID = 1;
276 
277 const char* RenderScriptRuntime::AllocationDetails::RsDataKindToString[] =
278 {
279    "User",
280    "Undefined", "Undefined", "Undefined", // Enum jumps from 0 to 7
281    "Undefined", "Undefined", "Undefined",
282    "L Pixel",
283    "A Pixel",
284    "LA Pixel",
285    "RGB Pixel",
286    "RGBA Pixel",
287    "Pixel Depth",
288    "YUV Pixel"
289 };
290 
291 const char* RenderScriptRuntime::AllocationDetails::RsDataTypeToString[][4] =
292 {
293     {"None", "None", "None", "None"},
294     {"half", "half2", "half3", "half4"},
295     {"float", "float2", "float3", "float4"},
296     {"double", "double2", "double3", "double4"},
297     {"char", "char2", "char3", "char4"},
298     {"short", "short2", "short3", "short4"},
299     {"int", "int2", "int3", "int4"},
300     {"long", "long2", "long3", "long4"},
301     {"uchar", "uchar2", "uchar3", "uchar4"},
302     {"ushort", "ushort2", "ushort3", "ushort4"},
303     {"uint", "uint2", "uint3", "uint4"},
304     {"ulong", "ulong2", "ulong3", "ulong4"},
305     {"bool", "bool2", "bool3", "bool4"}
306 };
307 
308 // Used as an index into the RSTypeToFormat array elements
309 enum TypeToFormatIndex {
310    eFormatSingle = 0,
311    eFormatVector,
312    eElementSize
313 };
314 
315 // { format enum of single element, format enum of element vector, size of element}
316 const unsigned int RenderScriptRuntime::AllocationDetails::RSTypeToFormat[][3] =
317 {
318     {eFormatHex, eFormatHex, 1}, // RS_TYPE_NONE
319     {eFormatFloat, eFormatVectorOfFloat16, 2}, // RS_TYPE_FLOAT_16
320     {eFormatFloat, eFormatVectorOfFloat32, sizeof(float)}, // RS_TYPE_FLOAT_32
321     {eFormatFloat, eFormatVectorOfFloat64, sizeof(double)}, // RS_TYPE_FLOAT_64
322     {eFormatDecimal, eFormatVectorOfSInt8, sizeof(int8_t)}, // RS_TYPE_SIGNED_8
323     {eFormatDecimal, eFormatVectorOfSInt16, sizeof(int16_t)}, // RS_TYPE_SIGNED_16
324     {eFormatDecimal, eFormatVectorOfSInt32, sizeof(int32_t)}, // RS_TYPE_SIGNED_32
325     {eFormatDecimal, eFormatVectorOfSInt64, sizeof(int64_t)}, // RS_TYPE_SIGNED_64
326     {eFormatDecimal, eFormatVectorOfUInt8, sizeof(uint8_t)}, // RS_TYPE_UNSIGNED_8
327     {eFormatDecimal, eFormatVectorOfUInt16, sizeof(uint16_t)}, // RS_TYPE_UNSIGNED_16
328     {eFormatDecimal, eFormatVectorOfUInt32, sizeof(uint32_t)}, // RS_TYPE_UNSIGNED_32
329     {eFormatDecimal, eFormatVectorOfUInt64, sizeof(uint64_t)}, // RS_TYPE_UNSIGNED_64
330     {eFormatBoolean, eFormatBoolean, sizeof(bool)} // RS_TYPE_BOOL
331 };
332 
333 //------------------------------------------------------------------
334 // Static Functions
335 //------------------------------------------------------------------
336 LanguageRuntime *
337 RenderScriptRuntime::CreateInstance(Process *process, lldb::LanguageType language)
338 {
339 
340     if (language == eLanguageTypeExtRenderScript)
341         return new RenderScriptRuntime(process);
342     else
343         return NULL;
344 }
345 
346 // Callback with a module to search for matching symbols.
347 // We first check that the module contains RS kernels.
348 // Then look for a symbol which matches our kernel name.
349 // The breakpoint address is finally set using the address of this symbol.
350 Searcher::CallbackReturn
351 RSBreakpointResolver::SearchCallback(SearchFilter &filter,
352                                      SymbolContext &context,
353                                      Address*,
354                                      bool)
355 {
356     ModuleSP module = context.module_sp;
357 
358     if (!module)
359         return Searcher::eCallbackReturnContinue;
360 
361     // Is this a module containing renderscript kernels?
362     if (nullptr == module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), eSymbolTypeData))
363         return Searcher::eCallbackReturnContinue;
364 
365     // Attempt to set a breakpoint on the kernel name symbol within the module library.
366     // If it's not found, it's likely debug info is unavailable - try to set a
367     // breakpoint on <name>.expand.
368 
369     const Symbol* kernel_sym = module->FindFirstSymbolWithNameAndType(m_kernel_name, eSymbolTypeCode);
370     if (!kernel_sym)
371     {
372         std::string kernel_name_expanded(m_kernel_name.AsCString());
373         kernel_name_expanded.append(".expand");
374         kernel_sym = module->FindFirstSymbolWithNameAndType(ConstString(kernel_name_expanded.c_str()), eSymbolTypeCode);
375     }
376 
377     if (kernel_sym)
378     {
379         Address bp_addr = kernel_sym->GetAddress();
380         if (filter.AddressPasses(bp_addr))
381             m_breakpoint->AddLocation(bp_addr);
382     }
383 
384     return Searcher::eCallbackReturnContinue;
385 }
386 
387 void
388 RenderScriptRuntime::Initialize()
389 {
390     PluginManager::RegisterPlugin(GetPluginNameStatic(), "RenderScript language support", CreateInstance, GetCommandObject);
391 }
392 
393 void
394 RenderScriptRuntime::Terminate()
395 {
396     PluginManager::UnregisterPlugin(CreateInstance);
397 }
398 
399 lldb_private::ConstString
400 RenderScriptRuntime::GetPluginNameStatic()
401 {
402     static ConstString g_name("renderscript");
403     return g_name;
404 }
405 
406 RenderScriptRuntime::ModuleKind
407 RenderScriptRuntime::GetModuleKind(const lldb::ModuleSP &module_sp)
408 {
409     if (module_sp)
410     {
411         // Is this a module containing renderscript kernels?
412         const Symbol *info_sym = module_sp->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), eSymbolTypeData);
413         if (info_sym)
414         {
415             return eModuleKindKernelObj;
416         }
417 
418         // Is this the main RS runtime library
419         const ConstString rs_lib("libRS.so");
420         if (module_sp->GetFileSpec().GetFilename() == rs_lib)
421         {
422             return eModuleKindLibRS;
423         }
424 
425         const ConstString rs_driverlib("libRSDriver.so");
426         if (module_sp->GetFileSpec().GetFilename() == rs_driverlib)
427         {
428             return eModuleKindDriver;
429         }
430 
431         const ConstString rs_cpureflib("libRSCpuRef.so");
432         if (module_sp->GetFileSpec().GetFilename() == rs_cpureflib)
433         {
434             return eModuleKindImpl;
435         }
436 
437     }
438     return eModuleKindIgnored;
439 }
440 
441 bool
442 RenderScriptRuntime::IsRenderScriptModule(const lldb::ModuleSP &module_sp)
443 {
444     return GetModuleKind(module_sp) != eModuleKindIgnored;
445 }
446 
447 void
448 RenderScriptRuntime::ModulesDidLoad(const ModuleList &module_list )
449 {
450     Mutex::Locker locker (module_list.GetMutex ());
451 
452     size_t num_modules = module_list.GetSize();
453     for (size_t i = 0; i < num_modules; i++)
454     {
455         auto mod = module_list.GetModuleAtIndex (i);
456         if (IsRenderScriptModule (mod))
457         {
458             LoadModule(mod);
459         }
460     }
461 }
462 
463 //------------------------------------------------------------------
464 // PluginInterface protocol
465 //------------------------------------------------------------------
466 lldb_private::ConstString
467 RenderScriptRuntime::GetPluginName()
468 {
469     return GetPluginNameStatic();
470 }
471 
472 uint32_t
473 RenderScriptRuntime::GetPluginVersion()
474 {
475     return 1;
476 }
477 
478 bool
479 RenderScriptRuntime::IsVTableName(const char *name)
480 {
481     return false;
482 }
483 
484 bool
485 RenderScriptRuntime::GetDynamicTypeAndAddress(ValueObject &in_value, lldb::DynamicValueType use_dynamic,
486                                               TypeAndOrName &class_type_or_name, Address &address,
487                                               Value::ValueType &value_type)
488 {
489     return false;
490 }
491 
492 TypeAndOrName
493 RenderScriptRuntime::FixUpDynamicType (const TypeAndOrName& type_and_or_name,
494                                        ValueObject& static_value)
495 {
496     return type_and_or_name;
497 }
498 
499 bool
500 RenderScriptRuntime::CouldHaveDynamicValue(ValueObject &in_value)
501 {
502     return false;
503 }
504 
505 lldb::BreakpointResolverSP
506 RenderScriptRuntime::CreateExceptionResolver(Breakpoint *bkpt, bool catch_bp, bool throw_bp)
507 {
508     BreakpointResolverSP resolver_sp;
509     return resolver_sp;
510 }
511 
512 const RenderScriptRuntime::HookDefn RenderScriptRuntime::s_runtimeHookDefns[] =
513 {
514     //rsdScript
515     {
516         "rsdScriptInit", //name
517         "_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_7ScriptCEPKcS7_PKhjj", // symbol name 32 bit
518         "_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_7ScriptCEPKcS7_PKhmj", // symbol name 64 bit
519         0, // version
520         RenderScriptRuntime::eModuleKindDriver, // type
521         &lldb_private::RenderScriptRuntime::CaptureScriptInit1 // handler
522     },
523     {
524         "rsdScriptInvokeForEach", // name
525         "_Z22rsdScriptInvokeForEachPKN7android12renderscript7ContextEPNS0_6ScriptEjPKNS0_10AllocationEPS6_PKvjPK12RsScriptCall", // symbol name 32bit
526         "_Z22rsdScriptInvokeForEachPKN7android12renderscript7ContextEPNS0_6ScriptEjPKNS0_10AllocationEPS6_PKvmPK12RsScriptCall", // symbol name 64bit
527         0, // version
528         RenderScriptRuntime::eModuleKindDriver, // type
529         nullptr // handler
530     },
531     {
532         "rsdScriptInvokeForEachMulti", // name
533         "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0_6ScriptEjPPKNS0_10AllocationEjPS6_PKvjPK12RsScriptCall", // symbol name 32bit
534         "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0_6ScriptEjPPKNS0_10AllocationEmPS6_PKvmPK12RsScriptCall", // symbol name 64bit
535         0, // version
536         RenderScriptRuntime::eModuleKindDriver, // type
537         nullptr // handler
538     },
539     {
540         "rsdScriptInvokeFunction", // name
541         "_Z23rsdScriptInvokeFunctionPKN7android12renderscript7ContextEPNS0_6ScriptEjPKvj", // symbol name 32bit
542         "_Z23rsdScriptInvokeFunctionPKN7android12renderscript7ContextEPNS0_6ScriptEjPKvm", // symbol name 64bit
543         0, // version
544         RenderScriptRuntime::eModuleKindDriver, // type
545         nullptr // handler
546     },
547     {
548         "rsdScriptSetGlobalVar", // name
549         "_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_6ScriptEjPvj", // symbol name 32bit
550         "_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_6ScriptEjPvm", // symbol name 64bit
551         0, // version
552         RenderScriptRuntime::eModuleKindDriver, // type
553         &lldb_private::RenderScriptRuntime::CaptureSetGlobalVar1 // handler
554     },
555 
556     //rsdAllocation
557     {
558         "rsdAllocationInit", // name
559         "_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_10AllocationEb", // symbol name 32bit
560         "_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_10AllocationEb", // symbol name 64bit
561         0, // version
562         RenderScriptRuntime::eModuleKindDriver, // type
563         &lldb_private::RenderScriptRuntime::CaptureAllocationInit1 // handler
564     },
565     {
566         "rsdAllocationRead2D", //name
567         "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_10AllocationEjjj23RsAllocationCubemapFacejjPvjj", // symbol name 32bit
568         "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_10AllocationEjjj23RsAllocationCubemapFacejjPvmm", // symbol name 64bit
569         0, // version
570         RenderScriptRuntime::eModuleKindDriver, // type
571         nullptr // handler
572     },
573     {
574         "rsdAllocationDestroy", // name
575         "_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_10AllocationE", // symbol name 32bit
576         "_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_10AllocationE", // symbol name 64bit
577         0, // version
578         RenderScriptRuntime::eModuleKindDriver, // type
579         &lldb_private::RenderScriptRuntime::CaptureAllocationDestroy // handler
580     },
581 };
582 
583 const size_t RenderScriptRuntime::s_runtimeHookCount = sizeof(s_runtimeHookDefns)/sizeof(s_runtimeHookDefns[0]);
584 
585 bool
586 RenderScriptRuntime::HookCallback(void *baton, StoppointCallbackContext *ctx, lldb::user_id_t break_id, lldb::user_id_t break_loc_id)
587 {
588     RuntimeHook* hook_info = (RuntimeHook*)baton;
589     ExecutionContext context(ctx->exe_ctx_ref);
590 
591     RenderScriptRuntime *lang_rt = (RenderScriptRuntime *)context.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
592 
593     lang_rt->HookCallback(hook_info, context);
594 
595     return false;
596 }
597 
598 void
599 RenderScriptRuntime::HookCallback(RuntimeHook* hook_info, ExecutionContext& context)
600 {
601     Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
602 
603     if (log)
604         log->Printf ("RenderScriptRuntime::HookCallback - '%s' .", hook_info->defn->name);
605 
606     if (hook_info->defn->grabber)
607     {
608         (this->*(hook_info->defn->grabber))(hook_info, context);
609     }
610 }
611 
612 bool
613 RenderScriptRuntime::GetArgSimple(ExecutionContext &context, uint32_t arg, uint64_t *data)
614 {
615     if (!data)
616         return false;
617 
618     Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
619     Error error;
620     RegisterContext* reg_ctx = context.GetRegisterContext();
621     Process* process = context.GetProcessPtr();
622     bool success = false; // return value
623 
624     if (!context.GetTargetPtr())
625     {
626         if (log)
627             log->Printf("RenderScriptRuntime::GetArgSimple - Invalid target");
628 
629         return false;
630     }
631 
632     switch (context.GetTargetPtr()->GetArchitecture().GetMachine())
633     {
634         case llvm::Triple::ArchType::x86:
635         {
636             uint64_t sp = reg_ctx->GetSP();
637             uint32_t offset = (1 + arg) * sizeof(uint32_t);
638             uint32_t result = 0;
639             process->ReadMemory(sp + offset, &result, sizeof(uint32_t), error);
640             if (error.Fail())
641             {
642                 if (log)
643                     log->Printf ("RenderScriptRuntime:: GetArgSimple - error reading X86 stack: %s.", error.AsCString());
644             }
645             else
646             {
647                 *data = result;
648                 success = true;
649             }
650 
651             break;
652         }
653         case llvm::Triple::ArchType::arm:
654         {
655             // arm 32 bit
656             if (arg < 4)
657             {
658                 const RegisterInfo* rArg = reg_ctx->GetRegisterInfoAtIndex(arg);
659                 RegisterValue rVal;
660                 success = reg_ctx->ReadRegister(rArg, rVal);
661                 if (success)
662                 {
663                     (*data) = rVal.GetAsUInt32();
664                 }
665                 else
666                 {
667                     if (log)
668                         log->Printf ("RenderScriptRuntime:: GetArgSimple - error reading ARM register: %d.", arg);
669                 }
670             }
671             else
672             {
673                 uint64_t sp = reg_ctx->GetSP();
674                 uint32_t offset = (arg-4) * sizeof(uint32_t);
675                 process->ReadMemory(sp + offset, &data, sizeof(uint32_t), error);
676                 if (error.Fail())
677                 {
678                     if (log)
679                         log->Printf ("RenderScriptRuntime:: GetArgSimple - error reading ARM stack: %s.", error.AsCString());
680                 }
681                 else
682                 {
683                     success = true;
684                 }
685             }
686 
687             break;
688         }
689         case llvm::Triple::ArchType::aarch64:
690         {
691             // arm 64 bit
692             // first 8 arguments are in the registers
693             if (arg < 8)
694             {
695                 const RegisterInfo* rArg = reg_ctx->GetRegisterInfoAtIndex(arg);
696                 RegisterValue rVal;
697                 success = reg_ctx->ReadRegister(rArg, rVal);
698                 if (success)
699                 {
700                     *data = rVal.GetAsUInt64();
701                 }
702                 else
703                 {
704                     if (log)
705                         log->Printf("RenderScriptRuntime::GetArgSimple() - AARCH64 - Error while reading the argument #%d", arg);
706                 }
707             }
708             else
709             {
710                 // @TODO: need to find the argument in the stack
711                 if (log)
712                     log->Printf("RenderScriptRuntime::GetArgSimple - AARCH64 - FOR #ARG >= 8 NOT IMPLEMENTED YET. Argument number: %d", arg);
713             }
714             break;
715         }
716         case llvm::Triple::ArchType::mipsel:
717         {
718 
719             // read from the registers
720             if (arg < 4){
721                 const RegisterInfo* rArg = reg_ctx->GetRegisterInfoAtIndex(arg + 4);
722                 RegisterValue rVal;
723                 success = reg_ctx->ReadRegister(rArg, rVal);
724                 if (success)
725                 {
726                     *data = rVal.GetAsUInt64();
727                 }
728                 else
729                 {
730                     if (log)
731                         log->Printf("RenderScriptRuntime::GetArgSimple() - Mips - Error while reading the argument #%d", arg);
732                 }
733 
734             }
735 
736             // read from the stack
737             else
738             {
739                 uint64_t sp = reg_ctx->GetSP();
740                 uint32_t offset = arg * sizeof(uint32_t);
741                 process->ReadMemory(sp + offset, &data, sizeof(uint32_t), error);
742                 if (error.Fail())
743                 {
744                     if (log)
745                         log->Printf ("RenderScriptRuntime::GetArgSimple - error reading Mips stack: %s.", error.AsCString());
746                 }
747                 else
748                 {
749                     success = true;
750                 }
751             }
752 
753             break;
754         }
755         case llvm::Triple::ArchType::mips64el:
756         {
757             // read from the registers
758             if (arg < 8)
759             {
760                 const RegisterInfo* rArg = reg_ctx->GetRegisterInfoAtIndex(arg + 4);
761                 RegisterValue rVal;
762                 success = reg_ctx->ReadRegister(rArg, rVal);
763                 if (success)
764                 {
765                     (*data) = rVal.GetAsUInt64();
766                 }
767                 else
768                 {
769                     if (log)
770                         log->Printf("RenderScriptRuntime::GetArgSimple - Mips64 - Error reading the argument #%d", arg);
771                 }
772             }
773 
774             // read from the stack
775             else
776             {
777                 uint64_t sp = reg_ctx->GetSP();
778                 uint32_t offset = (arg - 8) * sizeof(uint64_t);
779                 process->ReadMemory(sp + offset, &data, sizeof(uint64_t), error);
780                 if (error.Fail())
781                 {
782                     if (log)
783                         log->Printf ("RenderScriptRuntime::GetArgSimple - Mips64 - Error reading Mips64 stack: %s.", error.AsCString());
784                 }
785                 else
786                 {
787                     success = true;
788                 }
789             }
790 
791             break;
792         }
793         default:
794         {
795             // invalid architecture
796             if (log)
797                 log->Printf("RenderScriptRuntime::GetArgSimple - Architecture not supported");
798 
799         }
800     }
801 
802     return success;
803 }
804 
805 void
806 RenderScriptRuntime::CaptureSetGlobalVar1(RuntimeHook* hook_info, ExecutionContext& context)
807 {
808     Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
809 
810     //Context, Script, int, data, length
811 
812     uint64_t rs_context_u64 = 0U;
813     uint64_t rs_script_u64 = 0U;
814     uint64_t rs_id_u64 = 0U;
815     uint64_t rs_data_u64 = 0U;
816     uint64_t rs_length_u64 = 0U;
817 
818     bool success =
819         GetArgSimple(context, 0, &rs_context_u64) &&
820         GetArgSimple(context, 1, &rs_script_u64) &&
821         GetArgSimple(context, 2, &rs_id_u64) &&
822         GetArgSimple(context, 3, &rs_data_u64) &&
823         GetArgSimple(context, 4, &rs_length_u64);
824 
825     if (!success)
826     {
827         if (log)
828             log->Printf("RenderScriptRuntime::CaptureSetGlobalVar1 - Error while reading the function parameters");
829         return;
830     }
831 
832     if (log)
833     {
834         log->Printf ("RenderScriptRuntime::CaptureSetGlobalVar1 - 0x%" PRIx64 ",0x%" PRIx64 " slot %" PRIu64 " = 0x%" PRIx64 ":%" PRIu64 "bytes.",
835                         rs_context_u64, rs_script_u64, rs_id_u64, rs_data_u64, rs_length_u64);
836 
837         addr_t script_addr =  (addr_t)rs_script_u64;
838         if (m_scriptMappings.find( script_addr ) != m_scriptMappings.end())
839         {
840             auto rsm = m_scriptMappings[script_addr];
841             if (rs_id_u64 < rsm->m_globals.size())
842             {
843                 auto rsg = rsm->m_globals[rs_id_u64];
844                 log->Printf ("RenderScriptRuntime::CaptureSetGlobalVar1 - Setting of '%s' within '%s' inferred", rsg.m_name.AsCString(),
845                                 rsm->m_module->GetFileSpec().GetFilename().AsCString());
846             }
847         }
848     }
849 }
850 
851 void
852 RenderScriptRuntime::CaptureAllocationInit1(RuntimeHook* hook_info, ExecutionContext& context)
853 {
854     Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
855 
856     //Context, Alloc, bool
857 
858     uint64_t rs_context_u64 = 0U;
859     uint64_t rs_alloc_u64 = 0U;
860     uint64_t rs_forceZero_u64 = 0U;
861 
862     bool success =
863         GetArgSimple(context, 0, &rs_context_u64) &&
864         GetArgSimple(context, 1, &rs_alloc_u64) &&
865         GetArgSimple(context, 2, &rs_forceZero_u64);
866     if (!success) // error case
867     {
868         if (log)
869             log->Printf("RenderScriptRuntime::CaptureAllocationInit1 - Error while reading the function parameters");
870         return; // abort
871     }
872 
873     if (log)
874         log->Printf ("RenderScriptRuntime::CaptureAllocationInit1 - 0x%" PRIx64 ",0x%" PRIx64 ",0x%" PRIx64 " .",
875                         rs_context_u64, rs_alloc_u64, rs_forceZero_u64);
876 
877     AllocationDetails* alloc = LookUpAllocation(rs_alloc_u64, true);
878     if (alloc)
879         alloc->context = rs_context_u64;
880 }
881 
882 void
883 RenderScriptRuntime::CaptureAllocationDestroy(RuntimeHook* hook_info, ExecutionContext& context)
884 {
885     Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
886 
887     // Context, Alloc
888     uint64_t rs_context_u64 = 0U;
889     uint64_t rs_alloc_u64 = 0U;
890 
891     bool success = GetArgSimple(context, 0, &rs_context_u64) && GetArgSimple(context, 1, &rs_alloc_u64);
892     if (!success) // error case
893     {
894         if (log)
895             log->Printf("RenderScriptRuntime::CaptureAllocationDestroy - Error while reading the function parameters");
896         return; // abort
897     }
898 
899     if (log)
900         log->Printf("RenderScriptRuntime::CaptureAllocationDestroy - 0x%" PRIx64 ", 0x%" PRIx64 ".",
901                     rs_context_u64, rs_alloc_u64);
902 
903     for (auto iter = m_allocations.begin(); iter != m_allocations.end(); ++iter)
904     {
905         auto& allocation_ap = *iter; // get the unique pointer
906         if (allocation_ap->address.isValid() && *allocation_ap->address.get() == rs_alloc_u64)
907         {
908             m_allocations.erase(iter);
909             if (log)
910                 log->Printf("RenderScriptRuntime::CaptureAllocationDestroy - Deleted allocation entry");
911             return;
912         }
913     }
914 
915     if (log)
916         log->Printf("RenderScriptRuntime::CaptureAllocationDestroy - Couldn't find destroyed allocation");
917 }
918 
919 void
920 RenderScriptRuntime::CaptureScriptInit1(RuntimeHook* hook_info, ExecutionContext& context)
921 {
922     Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
923 
924     //Context, Script, resname Str, cachedir Str
925     Error error;
926     Process* process = context.GetProcessPtr();
927 
928     uint64_t rs_context_u64 = 0U;
929     uint64_t rs_script_u64 = 0U;
930     uint64_t rs_resnameptr_u64 = 0U;
931     uint64_t rs_cachedirptr_u64 = 0U;
932 
933     std::string resname;
934     std::string cachedir;
935 
936     // read the function parameters
937     bool success =
938         GetArgSimple(context, 0, &rs_context_u64) &&
939         GetArgSimple(context, 1, &rs_script_u64) &&
940         GetArgSimple(context, 2, &rs_resnameptr_u64) &&
941         GetArgSimple(context, 3, &rs_cachedirptr_u64);
942 
943     if (!success)
944     {
945         if (log)
946             log->Printf("RenderScriptRuntime::CaptureScriptInit1 - Error while reading the function parameters");
947         return;
948     }
949 
950     process->ReadCStringFromMemory((lldb::addr_t)rs_resnameptr_u64, resname, error);
951     if (error.Fail())
952     {
953         if (log)
954             log->Printf ("RenderScriptRuntime::CaptureScriptInit1 - error reading resname: %s.", error.AsCString());
955 
956     }
957 
958     process->ReadCStringFromMemory((lldb::addr_t)rs_cachedirptr_u64, cachedir, error);
959     if (error.Fail())
960     {
961         if (log)
962             log->Printf ("RenderScriptRuntime::CaptureScriptInit1 - error reading cachedir: %s.", error.AsCString());
963     }
964 
965     if (log)
966         log->Printf ("RenderScriptRuntime::CaptureScriptInit1 - 0x%" PRIx64 ",0x%" PRIx64 " => '%s' at '%s' .",
967                      rs_context_u64, rs_script_u64, resname.c_str(), cachedir.c_str());
968 
969     if (resname.size() > 0)
970     {
971         StreamString strm;
972         strm.Printf("librs.%s.so", resname.c_str());
973 
974         ScriptDetails* script = LookUpScript(rs_script_u64, true);
975         if (script)
976         {
977             script->type = ScriptDetails::eScriptC;
978             script->cacheDir = cachedir;
979             script->resName = resname;
980             script->scriptDyLib = strm.GetData();
981             script->context = addr_t(rs_context_u64);
982         }
983 
984         if (log)
985             log->Printf ("RenderScriptRuntime::CaptureScriptInit1 - '%s' tagged with context 0x%" PRIx64 " and script 0x%" PRIx64 ".",
986                          strm.GetData(), rs_context_u64, rs_script_u64);
987     }
988     else if (log)
989     {
990         log->Printf ("RenderScriptRuntime::CaptureScriptInit1 - resource name invalid, Script not tagged");
991     }
992 }
993 
994 void
995 RenderScriptRuntime::LoadRuntimeHooks(lldb::ModuleSP module, ModuleKind kind)
996 {
997     Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
998 
999     if (!module)
1000     {
1001         return;
1002     }
1003 
1004     Target &target = GetProcess()->GetTarget();
1005     llvm::Triple::ArchType targetArchType = target.GetArchitecture().GetMachine();
1006 
1007     if (targetArchType != llvm::Triple::ArchType::x86
1008         && targetArchType != llvm::Triple::ArchType::arm
1009         && targetArchType != llvm::Triple::ArchType::aarch64
1010         && targetArchType != llvm::Triple::ArchType::mipsel
1011         && targetArchType != llvm::Triple::ArchType::mips64el
1012     )
1013     {
1014         if (log)
1015             log->Printf ("RenderScriptRuntime::LoadRuntimeHooks - Unable to hook runtime. Only X86, ARM, Mips supported currently.");
1016 
1017         return;
1018     }
1019 
1020     uint32_t archByteSize = target.GetArchitecture().GetAddressByteSize();
1021 
1022     for (size_t idx = 0; idx < s_runtimeHookCount; idx++)
1023     {
1024         const HookDefn* hook_defn = &s_runtimeHookDefns[idx];
1025         if (hook_defn->kind != kind) {
1026             continue;
1027         }
1028 
1029         const char* symbol_name = (archByteSize == 4) ? hook_defn->symbol_name_m32 : hook_defn->symbol_name_m64;
1030 
1031         const Symbol *sym = module->FindFirstSymbolWithNameAndType(ConstString(symbol_name), eSymbolTypeCode);
1032         if (!sym){
1033             if (log){
1034                 log->Printf("RenderScriptRuntime::LoadRuntimeHooks - ERROR: Symbol '%s' related to the function %s not found", symbol_name, hook_defn->name);
1035             }
1036             continue;
1037         }
1038 
1039         addr_t addr = sym->GetLoadAddress(&target);
1040         if (addr == LLDB_INVALID_ADDRESS)
1041         {
1042             if (log)
1043                 log->Printf ("RenderScriptRuntime::LoadRuntimeHooks - Unable to resolve the address of hook function '%s' with symbol '%s'.",
1044                              hook_defn->name, symbol_name);
1045             continue;
1046         }
1047         else
1048         {
1049             if (log)
1050                 log->Printf("RenderScriptRuntime::LoadRuntimeHooks - Function %s, address resolved at 0x%" PRIx64, hook_defn->name, addr);
1051         }
1052 
1053         RuntimeHookSP hook(new RuntimeHook());
1054         hook->address = addr;
1055         hook->defn = hook_defn;
1056         hook->bp_sp = target.CreateBreakpoint(addr, true, false);
1057         hook->bp_sp->SetCallback(HookCallback, hook.get(), true);
1058         m_runtimeHooks[addr] = hook;
1059         if (log)
1060         {
1061             log->Printf ("RenderScriptRuntime::LoadRuntimeHooks - Successfully hooked '%s' in '%s' version %" PRIu64 " at 0x%" PRIx64 ".",
1062                 hook_defn->name, module->GetFileSpec().GetFilename().AsCString(), (uint64_t)hook_defn->version, (uint64_t)addr);
1063         }
1064     }
1065 }
1066 
1067 void
1068 RenderScriptRuntime::FixupScriptDetails(RSModuleDescriptorSP rsmodule_sp)
1069 {
1070     if (!rsmodule_sp)
1071         return;
1072 
1073     Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1074 
1075     const ModuleSP module = rsmodule_sp->m_module;
1076     const FileSpec& file = module->GetPlatformFileSpec();
1077 
1078     // Iterate over all of the scripts that we currently know of.
1079     // Note: We cant push or pop to m_scripts here or it may invalidate rs_script.
1080     for (const auto & rs_script : m_scripts)
1081     {
1082         // Extract the expected .so file path for this script.
1083         std::string dylib;
1084         if (!rs_script->scriptDyLib.get(dylib))
1085             continue;
1086 
1087         // Only proceed if the module that has loaded corresponds to this script.
1088         if (file.GetFilename() != ConstString(dylib.c_str()))
1089             continue;
1090 
1091         // Obtain the script address which we use as a key.
1092         lldb::addr_t script;
1093         if (!rs_script->script.get(script))
1094             continue;
1095 
1096         // If we have a script mapping for the current script.
1097         if (m_scriptMappings.find(script) != m_scriptMappings.end())
1098         {
1099             // if the module we have stored is different to the one we just received.
1100             if (m_scriptMappings[script] != rsmodule_sp)
1101             {
1102                 if (log)
1103                     log->Printf ("RenderScriptRuntime::FixupScriptDetails - Error: script %" PRIx64 " wants reassigned to new rsmodule '%s'.",
1104                                     (uint64_t)script, rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString());
1105             }
1106         }
1107         // We don't have a script mapping for the current script.
1108         else
1109         {
1110             // Obtain the script resource name.
1111             std::string resName;
1112             if (rs_script->resName.get(resName))
1113                 // Set the modules resource name.
1114                 rsmodule_sp->m_resname = resName;
1115             // Add Script/Module pair to map.
1116             m_scriptMappings[script] = rsmodule_sp;
1117             if (log)
1118                 log->Printf ("RenderScriptRuntime::FixupScriptDetails - script %" PRIx64 " associated with rsmodule '%s'.",
1119                                 (uint64_t)script, rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString());
1120         }
1121     }
1122 }
1123 
1124 // Uses the Target API to evaluate the expression passed as a parameter to the function
1125 // The result of that expression is returned an unsigned 64 bit int, via the result* paramter.
1126 // Function returns true on success, and false on failure
1127 bool
1128 RenderScriptRuntime::EvalRSExpression(const char* expression, StackFrame* frame_ptr, uint64_t* result)
1129 {
1130     Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1131     if (log)
1132         log->Printf("RenderScriptRuntime::EvalRSExpression(%s)", expression);
1133 
1134     ValueObjectSP expr_result;
1135     // Perform the actual expression evaluation
1136     GetProcess()->GetTarget().EvaluateExpression(expression, frame_ptr, expr_result);
1137 
1138     if (!expr_result)
1139     {
1140        if (log)
1141            log->Printf("RenderScriptRuntime::EvalRSExpression -  Error: Couldn't evaluate expression");
1142        return false;
1143     }
1144 
1145     // The result of the expression is invalid
1146     if (!expr_result->GetError().Success())
1147     {
1148         Error err = expr_result->GetError();
1149         if (err.GetError() == UserExpression::kNoResult) // Expression returned void, so this is actually a success
1150         {
1151             if (log)
1152                 log->Printf("RenderScriptRuntime::EvalRSExpression - Expression returned void");
1153 
1154             result = nullptr;
1155             return true;
1156         }
1157 
1158         if (log)
1159             log->Printf("RenderScriptRuntime::EvalRSExpression - Error evaluating expression result: %s", err.AsCString());
1160         return false;
1161     }
1162 
1163     bool success = false;
1164     *result = expr_result->GetValueAsUnsigned(0, &success); // We only read the result as an unsigned int.
1165 
1166     if (!success)
1167     {
1168        if (log)
1169            log->Printf("RenderScriptRuntime::EvalRSExpression -  Error: Couldn't convert expression result to unsigned int");
1170        return false;
1171     }
1172 
1173     return true;
1174 }
1175 
1176 namespace // anonymous
1177 {
1178     // max length of an expanded expression
1179     const int jit_max_expr_size = 768;
1180 
1181     // Format strings containing the expressions we may need to evaluate.
1182     const char runtimeExpressions[][256] =
1183     {
1184      // Mangled GetOffsetPointer(Allocation*, xoff, yoff, zoff, lod, cubemap)
1185      "(int*)_Z12GetOffsetPtrPKN7android12renderscript10AllocationEjjjj23RsAllocationCubemapFace(0x%lx, %u, %u, %u, 0, 0)",
1186 
1187      // Type* rsaAllocationGetType(Context*, Allocation*)
1188      "(void*)rsaAllocationGetType(0x%lx, 0x%lx)",
1189 
1190      // rsaTypeGetNativeData(Context*, Type*, void* typeData, size)
1191      // Pack the data in the following way mHal.state.dimX; mHal.state.dimY; mHal.state.dimZ;
1192      // mHal.state.lodCount; mHal.state.faces; mElement; into typeData
1193      // Need to specify 32 or 64 bit for uint_t since this differs between devices
1194      "uint%u_t data[6]; (void*)rsaTypeGetNativeData(0x%lx, 0x%lx, data, 6); data[0]", // X dim
1195      "uint%u_t data[6]; (void*)rsaTypeGetNativeData(0x%lx, 0x%lx, data, 6); data[1]", // Y dim
1196      "uint%u_t data[6]; (void*)rsaTypeGetNativeData(0x%lx, 0x%lx, data, 6); data[2]", // Z dim
1197      "uint%u_t data[6]; (void*)rsaTypeGetNativeData(0x%lx, 0x%lx, data, 6); data[5]", // Element ptr
1198 
1199      // rsaElementGetNativeData(Context*, Element*, uint32_t* elemData,size)
1200      // Pack mType; mKind; mNormalized; mVectorSize; NumSubElements into elemData
1201      "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%lx, 0x%lx, data, 5); data[0]", // Type
1202      "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%lx, 0x%lx, data, 5); data[1]", // Kind
1203      "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%lx, 0x%lx, data, 5); data[3]", // Vector Size
1204      "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%lx, 0x%lx, data, 5); data[4]", // Field Count
1205 
1206       // rsaElementGetSubElements(RsContext con, RsElement elem, uintptr_t *ids, const char **names,
1207       // size_t *arraySizes, uint32_t dataSize)
1208       // Needed for Allocations of structs to gather details about fields/Subelements
1209      "void* ids[%u]; const char* names[%u]; size_t arr_size[%u];"
1210      "(void*)rsaElementGetSubElements(0x%lx, 0x%lx, ids, names, arr_size, %u); ids[%u]",     // Element* of field
1211 
1212      "void* ids[%u]; const char* names[%u]; size_t arr_size[%u];"
1213      "(void*)rsaElementGetSubElements(0x%lx, 0x%lx, ids, names, arr_size, %u); names[%u]",   // Name of field
1214 
1215      "void* ids[%u]; const char* names[%u]; size_t arr_size[%u];"
1216      "(void*)rsaElementGetSubElements(0x%lx, 0x%lx, ids, names, arr_size, %u); arr_size[%u]" // Array size of field
1217     };
1218 
1219 
1220     // Temporary workaround for MIPS, until the compiler emits the JAL instruction when invoking directly the function.
1221     // At the moment, when evaluating an expression involving a function call, the LLVM codegen for Mips  emits a JAL
1222     // instruction, which is able to jump in the range +/- 128MB with respect to the current program counter ($pc). If
1223     // the requested function happens to reside outside the above region, the function address will be truncated and the
1224     // function invocation will fail. This is a problem in the RS plugin as we rely on the RS API to probe the number and
1225     // the nature of allocations. A proper solution in the MIPS compiler is currently being investigated. As temporary
1226     // work around for this context, we'll invoke the RS API through function pointers, which cause the compiler to emit a
1227     // register based JALR instruction.
1228     const char runtimeExpressions_mips[][512] =
1229     {
1230     // Mangled GetOffsetPointer(Allocation*, xoff, yoff, zoff, lod, cubemap)
1231     "int* (*f) (void*, int, int, int, int, int) = (int* (*) (void*, int, int, int, int, int)) "
1232         "_Z12GetOffsetPtrPKN7android12renderscript10AllocationEjjjj23RsAllocationCubemapFace; "
1233         "(int*) f((void*) 0x%lx, %u, %u, %u, 0, 0)",
1234 
1235     // Type* rsaAllocationGetType(Context*, Allocation*)
1236     "void* (*f) (void*, void*) = (void* (*) (void*, void*)) rsaAllocationGetType; (void*) f((void*) 0x%lx, (void*) 0x%lx)",
1237 
1238     // rsaTypeGetNativeData(Context*, Type*, void* typeData, size)
1239     // Pack the data in the following way mHal.state.dimX; mHal.state.dimY; mHal.state.dimZ;
1240     // mHal.state.lodCount; mHal.state.faces; mElement; into typeData
1241     // Need to specify 32 or 64 bit for uint_t since this differs between devices
1242     "uint%u_t data[6]; void* (*f)(void*, void*, uintptr_t*, uint32_t) = (void* (*)(void*, void*, uintptr_t*, uint32_t)) "
1243         "rsaTypeGetNativeData; (void*) f((void*) 0x%lx, (void*) 0x%lx, data, 6); data[0]",
1244     "uint%u_t data[6]; void* (*f)(void*, void*, uintptr_t*, uint32_t) = (void* (*)(void*, void*, uintptr_t*, uint32_t)) "
1245         "rsaTypeGetNativeData; (void*) f((void*) 0x%lx, (void*) 0x%lx, data, 6); data[1]",
1246     "uint%u_t data[6]; void* (*f)(void*, void*, uintptr_t*, uint32_t) = (void* (*)(void*, void*, uintptr_t*, uint32_t)) "
1247         "rsaTypeGetNativeData; (void*) f((void*) 0x%lx, (void*) 0x%lx, data, 6); data[2]",
1248     "uint%u_t data[6]; void* (*f)(void*, void*, uintptr_t*, uint32_t) = (void* (*)(void*, void*, uintptr_t*, uint32_t)) "
1249         "rsaTypeGetNativeData; (void*) f((void*) 0x%lx, (void*) 0x%lx, data, 6); data[5]",
1250 
1251     // rsaElementGetNativeData(Context*, Element*, uint32_t* elemData,size)
1252     // Pack mType; mKind; mNormalized; mVectorSize; NumSubElements into elemData
1253     "uint32_t data[5]; void* (*f)(void*, void*, uint32_t*, uint32_t) = (void* (*)(void*, void*, uint32_t*, uint32_t)) "
1254         "rsaElementGetNativeData; (void*) f((void*) 0x%lx, (void*) 0x%lx, data, 5); data[0]", // Type
1255     "uint32_t data[5]; void* (*f)(void*, void*, uint32_t*, uint32_t) = (void* (*)(void*, void*, uint32_t*, uint32_t)) "
1256         "rsaElementGetNativeData; (void*) f((void*) 0x%lx, (void*) 0x%lx, data, 5); data[1]", // Kind
1257     "uint32_t data[5]; void* (*f)(void*, void*, uint32_t*, uint32_t) = (void* (*)(void*, void*, uint32_t*, uint32_t)) "
1258         "rsaElementGetNativeData; (void*) f((void*) 0x%lx, (void*) 0x%lx, data, 5); data[3]", // Vector size
1259     "uint32_t data[5]; void* (*f)(void*, void*, uint32_t*, uint32_t) = (void* (*)(void*, void*, uint32_t*, uint32_t)) "
1260         "rsaElementGetNativeData; (void*) f((void*) 0x%lx, (void*) 0x%lx, data, 5); data[4]", // Field count
1261 
1262     // rsaElementGetSubElements(RsContext con, RsElement elem, uintptr_t *ids, const char **names,
1263     // size_t *arraySizes, uint32_t dataSize)
1264     // Needed for Allocations of structs to gather details about fields/Subelements
1265    "void* ids[%u]; const char* names[%u]; size_t arr_size[%u];"
1266         "void* (*f) (void*, void*, uintptr_t*, const char**, size_t*, uint32_t) = "
1267         "(void* (*) (void*, void*, uintptr_t*, const char**, size_t*, uint32_t)) rsaElementGetSubElements;"
1268         "(void*) f((void*) 0x%lx, (void*) 0x%lx, (uintptr_t*) ids, names, arr_size, (uint32_t) %u);"
1269         "ids[%u]", // Element* of field
1270    "void* ids[%u]; const char* names[%u]; size_t arr_size[%u];"
1271         "void* (*f) (void*, void*, uintptr_t*, const char**, size_t*, uint32_t) = "
1272         "(void* (*) (void*, void*, uintptr_t*, const char**, size_t*, uint32_t)) rsaElementGetSubElements;"
1273         "(void*) f((void*) 0x%lx, (void*) 0x%lx, (uintptr_t*) ids, names, arr_size, (uint32_t) %u);"
1274         "names[%u]", // Name of field
1275    "void* ids[%u]; const char* names[%u]; size_t arr_size[%u];"
1276         "void* (*f) (void*, void*, uintptr_t*, const char**, size_t*, uint32_t) = "
1277         "(void* (*) (void*, void*, uintptr_t*, const char**, size_t*, uint32_t)) rsaElementGetSubElements;"
1278         "(void*) f((void*) 0x%lx, (void*) 0x%lx, (uintptr_t*) ids, names, arr_size, (uint32_t) %u);"
1279         "arr_size[%u]" // Array size of field
1280     };
1281 
1282 } // end of the anonymous namespace
1283 
1284 
1285 // Retrieve the string to JIT for the given expression
1286 const char*
1287 RenderScriptRuntime::JITTemplate(ExpressionStrings e)
1288 {
1289     // be nice to your Mips friend when adding new expression strings
1290     static_assert(sizeof(runtimeExpressions)/sizeof(runtimeExpressions[0]) ==
1291             sizeof(runtimeExpressions_mips)/sizeof(runtimeExpressions_mips[0]),
1292             "#runtimeExpressions != #runtimeExpressions_mips");
1293 
1294     assert((e >= eExprGetOffsetPtr && e <= eExprSubelementsArrSize) &&
1295            "Expression string out of bounds");
1296 
1297     llvm::Triple::ArchType arch = GetTargetRef().GetArchitecture().GetMachine();
1298 
1299     // mips JAL workaround
1300     if(arch == llvm::Triple::ArchType::mips64el || arch == llvm::Triple::ArchType::mipsel)
1301         return runtimeExpressions_mips[e];
1302     else
1303         return runtimeExpressions[e];
1304 }
1305 
1306 
1307 // JITs the RS runtime for the internal data pointer of an allocation.
1308 // Is passed x,y,z coordinates for the pointer to a specific element.
1309 // Then sets the data_ptr member in Allocation with the result.
1310 // Returns true on success, false otherwise
1311 bool
1312 RenderScriptRuntime::JITDataPointer(AllocationDetails* allocation, StackFrame* frame_ptr,
1313                                     unsigned int x, unsigned int y, unsigned int z)
1314 {
1315     Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1316 
1317     if (!allocation->address.isValid())
1318     {
1319         if (log)
1320             log->Printf("RenderScriptRuntime::JITDataPointer - Failed to find allocation details");
1321         return false;
1322     }
1323 
1324     const char* expr_cstr = JITTemplate(eExprGetOffsetPtr);
1325     char buffer[jit_max_expr_size];
1326 
1327     int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->address.get(), x, y, z);
1328     if (chars_written < 0)
1329     {
1330         if (log)
1331             log->Printf("RenderScriptRuntime::JITDataPointer - Encoding error in snprintf()");
1332         return false;
1333     }
1334     else if (chars_written >= jit_max_expr_size)
1335     {
1336         if (log)
1337             log->Printf("RenderScriptRuntime::JITDataPointer - Expression too long");
1338         return false;
1339     }
1340 
1341     uint64_t result = 0;
1342     if (!EvalRSExpression(buffer, frame_ptr, &result))
1343         return false;
1344 
1345     addr_t mem_ptr = static_cast<lldb::addr_t>(result);
1346     allocation->data_ptr = mem_ptr;
1347 
1348     return true;
1349 }
1350 
1351 // JITs the RS runtime for the internal pointer to the RS Type of an allocation
1352 // Then sets the type_ptr member in Allocation with the result.
1353 // Returns true on success, false otherwise
1354 bool
1355 RenderScriptRuntime::JITTypePointer(AllocationDetails* allocation, StackFrame* frame_ptr)
1356 {
1357     Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1358 
1359     if (!allocation->address.isValid() || !allocation->context.isValid())
1360     {
1361         if (log)
1362             log->Printf("RenderScriptRuntime::JITTypePointer - Failed to find allocation details");
1363         return false;
1364     }
1365 
1366     const char* expr_cstr = JITTemplate(eExprAllocGetType);
1367     char buffer[jit_max_expr_size];
1368 
1369     int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->context.get(), *allocation->address.get());
1370     if (chars_written < 0)
1371     {
1372         if (log)
1373             log->Printf("RenderScriptRuntime::JITDataPointer - Encoding error in snprintf()");
1374         return false;
1375     }
1376     else if (chars_written >= jit_max_expr_size)
1377     {
1378         if (log)
1379             log->Printf("RenderScriptRuntime::JITTypePointer - Expression too long");
1380         return false;
1381     }
1382 
1383     uint64_t result = 0;
1384     if (!EvalRSExpression(buffer, frame_ptr, &result))
1385         return false;
1386 
1387     addr_t type_ptr = static_cast<lldb::addr_t>(result);
1388     allocation->type_ptr = type_ptr;
1389 
1390     return true;
1391 }
1392 
1393 // JITs the RS runtime for information about the dimensions and type of an allocation
1394 // Then sets dimension and element_ptr members in Allocation with the result.
1395 // Returns true on success, false otherwise
1396 bool
1397 RenderScriptRuntime::JITTypePacked(AllocationDetails* allocation, StackFrame* frame_ptr)
1398 {
1399     Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1400 
1401     if (!allocation->type_ptr.isValid() || !allocation->context.isValid())
1402     {
1403         if (log)
1404             log->Printf("RenderScriptRuntime::JITTypePacked - Failed to find allocation details");
1405         return false;
1406     }
1407 
1408     // Expression is different depending on if device is 32 or 64 bit
1409     uint32_t archByteSize = GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
1410     const unsigned int bits = archByteSize == 4 ? 32 : 64;
1411 
1412     // We want 4 elements from packed data
1413     const unsigned int num_exprs = 4;
1414     assert(num_exprs == (eExprTypeElemPtr - eExprTypeDimX + 1) && "Invalid number of expressions");
1415 
1416     char buffer[num_exprs][jit_max_expr_size];
1417     uint64_t results[num_exprs];
1418 
1419     for (unsigned int i = 0; i < num_exprs; ++i)
1420     {
1421         const char* expr_cstr = JITTemplate((ExpressionStrings) (eExprTypeDimX + i));
1422         int chars_written = snprintf(buffer[i], jit_max_expr_size, expr_cstr, bits,
1423                                      *allocation->context.get(), *allocation->type_ptr.get());
1424         if (chars_written < 0)
1425         {
1426             if (log)
1427                 log->Printf("RenderScriptRuntime::JITDataPointer - Encoding error in snprintf()");
1428             return false;
1429         }
1430         else if (chars_written >= jit_max_expr_size)
1431         {
1432             if (log)
1433                 log->Printf("RenderScriptRuntime::JITTypePacked - Expression too long");
1434             return false;
1435         }
1436 
1437         // Perform expression evaluation
1438         if (!EvalRSExpression(buffer[i], frame_ptr, &results[i]))
1439             return false;
1440     }
1441 
1442     // Assign results to allocation members
1443     AllocationDetails::Dimension dims;
1444     dims.dim_1 = static_cast<uint32_t>(results[0]);
1445     dims.dim_2 = static_cast<uint32_t>(results[1]);
1446     dims.dim_3 = static_cast<uint32_t>(results[2]);
1447     allocation->dimension = dims;
1448 
1449     addr_t elem_ptr = static_cast<lldb::addr_t>(results[3]);
1450     allocation->element.element_ptr = elem_ptr;
1451 
1452     if (log)
1453         log->Printf("RenderScriptRuntime::JITTypePacked - dims (%u, %u, %u) Element*: 0x%" PRIx64,
1454                     dims.dim_1, dims.dim_2, dims.dim_3, elem_ptr);
1455 
1456     return true;
1457 }
1458 
1459 // JITs the RS runtime for information about the Element of an allocation
1460 // Then sets type, type_vec_size, field_count and type_kind members in Element with the result.
1461 // Returns true on success, false otherwise
1462 bool
1463 RenderScriptRuntime::JITElementPacked(Element& elem, const lldb::addr_t context, StackFrame* frame_ptr)
1464 {
1465     Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1466 
1467     if (!elem.element_ptr.isValid())
1468     {
1469         if (log)
1470             log->Printf("RenderScriptRuntime::JITElementPacked - Failed to find allocation details");
1471         return false;
1472     }
1473 
1474     // We want 4 elements from packed data
1475     const unsigned int num_exprs = 4;
1476     assert(num_exprs == (eExprElementFieldCount - eExprElementType + 1) && "Invalid number of expressions");
1477 
1478     char buffer[num_exprs][jit_max_expr_size];
1479     uint64_t results[num_exprs];
1480 
1481     for (unsigned int i = 0; i < num_exprs; i++)
1482     {
1483         const char* expr_cstr = JITTemplate((ExpressionStrings) (eExprElementType + i));
1484         int chars_written = snprintf(buffer[i], jit_max_expr_size, expr_cstr, context, *elem.element_ptr.get());
1485         if (chars_written < 0)
1486         {
1487             if (log)
1488                 log->Printf("RenderScriptRuntime::JITElementPacked - Encoding error in snprintf()");
1489             return false;
1490         }
1491         else if (chars_written >= jit_max_expr_size)
1492         {
1493             if (log)
1494                 log->Printf("RenderScriptRuntime::JITElementPacked - Expression too long");
1495             return false;
1496         }
1497 
1498         // Perform expression evaluation
1499         if (!EvalRSExpression(buffer[i], frame_ptr, &results[i]))
1500             return false;
1501     }
1502 
1503     // Assign results to allocation members
1504     elem.type = static_cast<RenderScriptRuntime::Element::DataType>(results[0]);
1505     elem.type_kind = static_cast<RenderScriptRuntime::Element::DataKind>(results[1]);
1506     elem.type_vec_size = static_cast<uint32_t>(results[2]);
1507     elem.field_count = static_cast<uint32_t>(results[3]);
1508 
1509     if (log)
1510         log->Printf("RenderScriptRuntime::JITElementPacked - data type %u, pixel type %u, vector size %u, field count %u",
1511                     *elem.type.get(), *elem.type_kind.get(), *elem.type_vec_size.get(), *elem.field_count.get());
1512 
1513     // If this Element has subelements then JIT rsaElementGetSubElements() for details about its fields
1514     if (*elem.field_count.get() > 0 && !JITSubelements(elem, context, frame_ptr))
1515         return false;
1516 
1517     return true;
1518 }
1519 
1520 // JITs the RS runtime for information about the subelements/fields of a struct allocation
1521 // This is necessary for infering the struct type so we can pretty print the allocation's contents.
1522 // Returns true on success, false otherwise
1523 bool
1524 RenderScriptRuntime::JITSubelements(Element& elem, const lldb::addr_t context, StackFrame* frame_ptr)
1525 {
1526     Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1527 
1528     if (!elem.element_ptr.isValid() || !elem.field_count.isValid())
1529     {
1530         if (log)
1531             log->Printf("RenderScriptRuntime::JITSubelements - Failed to find allocation details");
1532         return false;
1533     }
1534 
1535     const short num_exprs = 3;
1536     assert(num_exprs == (eExprSubelementsArrSize - eExprSubelementsId + 1) && "Invalid number of expressions");
1537 
1538     char expr_buffer[jit_max_expr_size];
1539     uint64_t results;
1540 
1541     // Iterate over struct fields.
1542     const uint32_t field_count = *elem.field_count.get();
1543     for (unsigned int field_index = 0; field_index < field_count; ++field_index)
1544     {
1545         Element child;
1546         for (unsigned int expr_index = 0; expr_index < num_exprs; ++expr_index)
1547         {
1548             const char* expr_cstr = JITTemplate((ExpressionStrings) (eExprSubelementsId + expr_index));
1549             int chars_written = snprintf(expr_buffer, jit_max_expr_size, expr_cstr,
1550                                          field_count, field_count, field_count,
1551                                          context, *elem.element_ptr.get(), field_count, field_index);
1552             if (chars_written < 0)
1553             {
1554                 if (log)
1555                     log->Printf("RenderScriptRuntime::JITSubelements - Encoding error in snprintf()");
1556                 return false;
1557             }
1558             else if (chars_written >= jit_max_expr_size)
1559             {
1560                 if (log)
1561                     log->Printf("RenderScriptRuntime::JITSubelements - Expression too long");
1562                 return false;
1563             }
1564 
1565             // Perform expression evaluation
1566             if (!EvalRSExpression(expr_buffer, frame_ptr, &results))
1567                 return false;
1568 
1569             if (log)
1570                 log->Printf("RenderScriptRuntime::JITSubelements - Expr result 0x%" PRIx64, results);
1571 
1572             switch(expr_index)
1573             {
1574                 case 0: // Element* of child
1575                     child.element_ptr = static_cast<addr_t>(results);
1576                     break;
1577                 case 1: // Name of child
1578                 {
1579                     lldb::addr_t address = static_cast<addr_t>(results);
1580                     Error err;
1581                     std::string name;
1582                     GetProcess()->ReadCStringFromMemory(address, name, err);
1583                     if (!err.Fail())
1584                         child.type_name = ConstString(name);
1585                     else
1586                     {
1587                         if (log)
1588                             log->Printf("RenderScriptRuntime::JITSubelements - Warning: Couldn't read field name");
1589                     }
1590                     break;
1591                 }
1592                 case 2: // Array size of child
1593                     child.array_size = static_cast<uint32_t>(results);
1594                     break;
1595             }
1596         }
1597 
1598         // We need to recursively JIT each Element field of the struct since
1599         // structs can be nested inside structs.
1600         if (!JITElementPacked(child, context, frame_ptr))
1601             return false;
1602         elem.children.push_back(child);
1603     }
1604 
1605     // Try to infer the name of the struct type so we can pretty print the allocation contents.
1606     FindStructTypeName(elem, frame_ptr);
1607 
1608     return true;
1609 }
1610 
1611 // JITs the RS runtime for the address of the last element in the allocation.
1612 // The `elem_size` paramter represents the size of a single element, including padding.
1613 // Which is needed as an offset from the last element pointer.
1614 // Using this offset minus the starting address we can calculate the size of the allocation.
1615 // Returns true on success, false otherwise
1616 bool
1617 RenderScriptRuntime::JITAllocationSize(AllocationDetails* allocation, StackFrame* frame_ptr)
1618 {
1619     Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1620 
1621     if (!allocation->address.isValid() || !allocation->dimension.isValid()
1622         || !allocation->data_ptr.isValid() || !allocation->element.datum_size.isValid())
1623     {
1624         if (log)
1625             log->Printf("RenderScriptRuntime::JITAllocationSize - Failed to find allocation details");
1626         return false;
1627     }
1628 
1629     // Find dimensions
1630     unsigned int dim_x = allocation->dimension.get()->dim_1;
1631     unsigned int dim_y = allocation->dimension.get()->dim_2;
1632     unsigned int dim_z = allocation->dimension.get()->dim_3;
1633 
1634     // Our plan of jitting the last element address doesn't seem to work for struct Allocations
1635     // Instead try to infer the size ourselves without any inter element padding.
1636     if (allocation->element.children.size() > 0)
1637     {
1638         if (dim_x == 0) dim_x = 1;
1639         if (dim_y == 0) dim_y = 1;
1640         if (dim_z == 0) dim_z = 1;
1641 
1642         allocation->size = dim_x * dim_y * dim_z * *allocation->element.datum_size.get();
1643 
1644         if (log)
1645             log->Printf("RenderScriptRuntime::JITAllocationSize - Infered size of struct allocation %u", *allocation->size.get());
1646 
1647         return true;
1648     }
1649 
1650     const char* expr_cstr = JITTemplate(eExprGetOffsetPtr);
1651     char buffer[jit_max_expr_size];
1652 
1653     // Calculate last element
1654     dim_x = dim_x == 0 ? 0 : dim_x - 1;
1655     dim_y = dim_y == 0 ? 0 : dim_y - 1;
1656     dim_z = dim_z == 0 ? 0 : dim_z - 1;
1657 
1658     int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->address.get(),
1659                                  dim_x, dim_y, dim_z);
1660     if (chars_written < 0)
1661     {
1662         if (log)
1663             log->Printf("RenderScriptRuntime::JITAllocationSize - Encoding error in snprintf()");
1664         return false;
1665     }
1666     else if (chars_written >= jit_max_expr_size)
1667     {
1668         if (log)
1669             log->Printf("RenderScriptRuntime::JITAllocationSize - Expression too long");
1670         return false;
1671     }
1672 
1673     uint64_t result = 0;
1674     if (!EvalRSExpression(buffer, frame_ptr, &result))
1675         return false;
1676 
1677     addr_t mem_ptr = static_cast<lldb::addr_t>(result);
1678     // Find pointer to last element and add on size of an element
1679     allocation->size = static_cast<uint32_t>(mem_ptr - *allocation->data_ptr.get()) + *allocation->element.datum_size.get();
1680 
1681     return true;
1682 }
1683 
1684 // JITs the RS runtime for information about the stride between rows in the allocation.
1685 // This is done to detect padding, since allocated memory is 16-byte aligned.
1686 // Returns true on success, false otherwise
1687 bool
1688 RenderScriptRuntime::JITAllocationStride(AllocationDetails* allocation, StackFrame* frame_ptr)
1689 {
1690     Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1691 
1692     if (!allocation->address.isValid() || !allocation->data_ptr.isValid())
1693     {
1694         if (log)
1695             log->Printf("RenderScriptRuntime::JITAllocationStride - Failed to find allocation details");
1696         return false;
1697     }
1698 
1699     const char* expr_cstr = JITTemplate(eExprGetOffsetPtr);
1700     char buffer[jit_max_expr_size];
1701 
1702     int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->address.get(),
1703                                  0, 1, 0);
1704     if (chars_written < 0)
1705     {
1706         if (log)
1707             log->Printf("RenderScriptRuntime::JITAllocationStride - Encoding error in snprintf()");
1708         return false;
1709     }
1710     else if (chars_written >= jit_max_expr_size)
1711     {
1712         if (log)
1713             log->Printf("RenderScriptRuntime::JITAllocationStride - Expression too long");
1714         return false;
1715     }
1716 
1717     uint64_t result = 0;
1718     if (!EvalRSExpression(buffer, frame_ptr, &result))
1719         return false;
1720 
1721     addr_t mem_ptr = static_cast<lldb::addr_t>(result);
1722     allocation->stride = static_cast<uint32_t>(mem_ptr - *allocation->data_ptr.get());
1723 
1724     return true;
1725 }
1726 
1727 // JIT all the current runtime info regarding an allocation
1728 bool
1729 RenderScriptRuntime::RefreshAllocation(AllocationDetails* allocation, StackFrame* frame_ptr)
1730 {
1731     // GetOffsetPointer()
1732     if (!JITDataPointer(allocation, frame_ptr))
1733         return false;
1734 
1735     // rsaAllocationGetType()
1736     if (!JITTypePointer(allocation, frame_ptr))
1737         return false;
1738 
1739     // rsaTypeGetNativeData()
1740     if (!JITTypePacked(allocation, frame_ptr))
1741         return false;
1742 
1743     // rsaElementGetNativeData()
1744     if (!JITElementPacked(allocation->element, *allocation->context.get(), frame_ptr))
1745         return false;
1746 
1747     // Sets the datum_size member in Element
1748     SetElementSize(allocation->element);
1749 
1750     // Use GetOffsetPointer() to infer size of the allocation
1751     if (!JITAllocationSize(allocation, frame_ptr))
1752         return false;
1753 
1754     return true;
1755 }
1756 
1757 // Function attempts to set the type_name member of the paramaterised Element object.
1758 // This string should be the name of the struct type the Element represents.
1759 // We need this string for pretty printing the Element to users.
1760 void
1761 RenderScriptRuntime::FindStructTypeName(Element& elem, StackFrame* frame_ptr)
1762 {
1763     Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1764 
1765     if (!elem.type_name.IsEmpty()) // Name already set
1766         return;
1767     else
1768         elem.type_name = Element::GetFallbackStructName(); // Default type name if we don't succeed
1769 
1770     // Find all the global variables from the script rs modules
1771     VariableList variable_list;
1772     for (auto module_sp : m_rsmodules)
1773         module_sp->m_module->FindGlobalVariables(RegularExpression("."), true, UINT32_MAX, variable_list);
1774 
1775     // Iterate over all the global variables looking for one with a matching type to the Element.
1776     // We make the assumption a match exists since there needs to be a global variable to reflect the
1777     // struct type back into java host code.
1778     for (uint32_t var_index = 0; var_index < variable_list.GetSize(); ++var_index)
1779     {
1780         const VariableSP var_sp(variable_list.GetVariableAtIndex(var_index));
1781         if (!var_sp)
1782            continue;
1783 
1784         ValueObjectSP valobj_sp = ValueObjectVariable::Create(frame_ptr, var_sp);
1785         if (!valobj_sp)
1786             continue;
1787 
1788         // Find the number of variable fields.
1789         // If it has no fields, or more fields than our Element, then it can't be the struct we're looking for.
1790         // Don't check for equality since RS can add extra struct members for padding.
1791         size_t num_children = valobj_sp->GetNumChildren();
1792         if (num_children > elem.children.size() || num_children == 0)
1793             continue;
1794 
1795         // Iterate over children looking for members with matching field names.
1796         // If all the field names match, this is likely the struct we want.
1797         //
1798         //   TODO: This could be made more robust by also checking children data sizes, or array size
1799         bool found = true;
1800         for (size_t child_index = 0; child_index < num_children; ++child_index)
1801         {
1802             ValueObjectSP child = valobj_sp->GetChildAtIndex(child_index, true);
1803             if (!child || (child->GetName() != elem.children[child_index].type_name))
1804             {
1805                 found = false;
1806                 break;
1807             }
1808         }
1809 
1810         // RS can add extra struct members for padding in the format '#rs_padding_[0-9]+'
1811         if (found && num_children < elem.children.size())
1812         {
1813             const unsigned int size_diff = elem.children.size() - num_children;
1814             if (log)
1815                 log->Printf("RenderScriptRuntime::FindStructTypeName - %u padding struct entries", size_diff);
1816 
1817             for (unsigned int padding_index = 0; padding_index < size_diff; ++padding_index)
1818             {
1819                 const ConstString& name = elem.children[num_children + padding_index].type_name;
1820                 if (strcmp(name.AsCString(), "#rs_padding") < 0)
1821                     found = false;
1822             }
1823         }
1824 
1825         // We've found a global var with matching type
1826         if (found)
1827         {
1828             // Dereference since our Element type isn't a pointer.
1829             if (valobj_sp->IsPointerType())
1830             {
1831                 Error err;
1832                 ValueObjectSP deref_valobj = valobj_sp->Dereference(err);
1833                 if (!err.Fail())
1834                     valobj_sp = deref_valobj;
1835             }
1836 
1837             // Save name of variable in Element.
1838             elem.type_name = valobj_sp->GetTypeName();
1839             if (log)
1840                 log->Printf("RenderScriptRuntime::FindStructTypeName - Element name set to %s", elem.type_name.AsCString());
1841 
1842             return;
1843         }
1844     }
1845 }
1846 
1847 // Function sets the datum_size member of Element. Representing the size of a single instance including padding.
1848 // Assumes the relevant allocation information has already been jitted.
1849 void
1850 RenderScriptRuntime::SetElementSize(Element& elem)
1851 {
1852     Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1853     const Element::DataType type = *elem.type.get();
1854     assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_BOOLEAN
1855                                                    && "Invalid allocation type");
1856 
1857     const unsigned int vec_size = *elem.type_vec_size.get();
1858     unsigned int data_size = 0;
1859     const unsigned int padding = vec_size == 3 ? AllocationDetails::RSTypeToFormat[type][eElementSize] : 0;
1860 
1861     // Element is of a struct type, calculate size recursively.
1862     if ((type == Element::RS_TYPE_NONE) && (elem.children.size() > 0))
1863     {
1864         for (Element& child : elem.children)
1865         {
1866             SetElementSize(child);
1867             const unsigned int array_size = child.array_size.isValid() ? *child.array_size.get() : 1;
1868             data_size += *child.datum_size.get() * array_size;
1869         }
1870     }
1871     else
1872         data_size = vec_size * AllocationDetails::RSTypeToFormat[type][eElementSize];
1873 
1874     elem.padding = padding;
1875     elem.datum_size = data_size + padding;
1876     if (log)
1877         log->Printf("RenderScriptRuntime::SetElementSize - element size set to %u", data_size + padding);
1878 }
1879 
1880 // Given an allocation, this function copies the allocation contents from device into a buffer on the heap.
1881 // Returning a shared pointer to the buffer containing the data.
1882 std::shared_ptr<uint8_t>
1883 RenderScriptRuntime::GetAllocationData(AllocationDetails* allocation, StackFrame* frame_ptr)
1884 {
1885     Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1886 
1887     // JIT all the allocation details
1888     if (allocation->shouldRefresh())
1889     {
1890         if (log)
1891             log->Printf("RenderScriptRuntime::GetAllocationData - Allocation details not calculated yet, jitting info");
1892 
1893         if (!RefreshAllocation(allocation, frame_ptr))
1894         {
1895             if (log)
1896                 log->Printf("RenderScriptRuntime::GetAllocationData - Couldn't JIT allocation details");
1897             return nullptr;
1898         }
1899     }
1900 
1901     assert(allocation->data_ptr.isValid() && allocation->element.type.isValid() && allocation->element.type_vec_size.isValid()
1902            && allocation->size.isValid() && "Allocation information not available");
1903 
1904     // Allocate a buffer to copy data into
1905     const unsigned int size = *allocation->size.get();
1906     std::shared_ptr<uint8_t> buffer(new uint8_t[size]);
1907     if (!buffer)
1908     {
1909         if (log)
1910             log->Printf("RenderScriptRuntime::GetAllocationData - Couldn't allocate a %u byte buffer", size);
1911         return nullptr;
1912     }
1913 
1914     // Read the inferior memory
1915     Error error;
1916     lldb::addr_t data_ptr = *allocation->data_ptr.get();
1917     GetProcess()->ReadMemory(data_ptr, buffer.get(), size, error);
1918     if (error.Fail())
1919     {
1920         if (log)
1921             log->Printf("RenderScriptRuntime::GetAllocationData - '%s' Couldn't read %u bytes of allocation data from 0x%" PRIx64,
1922                         error.AsCString(), size, data_ptr);
1923         return nullptr;
1924     }
1925 
1926     return buffer;
1927 }
1928 
1929 // Function copies data from a binary file into an allocation.
1930 // There is a header at the start of the file, FileHeader, before the data content itself.
1931 // Information from this header is used to display warnings to the user about incompatabilities
1932 bool
1933 RenderScriptRuntime::LoadAllocation(Stream &strm, const uint32_t alloc_id, const char* filename, StackFrame* frame_ptr)
1934 {
1935     Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1936 
1937     // Find allocation with the given id
1938     AllocationDetails* alloc = FindAllocByID(strm, alloc_id);
1939     if (!alloc)
1940         return false;
1941 
1942     if (log)
1943         log->Printf("RenderScriptRuntime::LoadAllocation - Found allocation 0x%" PRIx64, *alloc->address.get());
1944 
1945     // JIT all the allocation details
1946     if (alloc->shouldRefresh())
1947     {
1948         if (log)
1949             log->Printf("RenderScriptRuntime::LoadAllocation - Allocation details not calculated yet, jitting info");
1950 
1951         if (!RefreshAllocation(alloc, frame_ptr))
1952         {
1953             if (log)
1954                 log->Printf("RenderScriptRuntime::LoadAllocation - Couldn't JIT allocation details");
1955             return false;
1956         }
1957     }
1958 
1959     assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && alloc->element.type_vec_size.isValid()
1960            && alloc->size.isValid() && alloc->element.datum_size.isValid() && "Allocation information not available");
1961 
1962     // Check we can read from file
1963     FileSpec file(filename, true);
1964     if (!file.Exists())
1965     {
1966         strm.Printf("Error: File %s does not exist", filename);
1967         strm.EOL();
1968         return false;
1969     }
1970 
1971     if (!file.Readable())
1972     {
1973         strm.Printf("Error: File %s does not have readable permissions", filename);
1974         strm.EOL();
1975         return false;
1976     }
1977 
1978     // Read file into data buffer
1979     DataBufferSP data_sp(file.ReadFileContents());
1980 
1981     // Cast start of buffer to FileHeader and use pointer to read metadata
1982     void* file_buffer = data_sp->GetBytes();
1983     const AllocationDetails::FileHeader* head = static_cast<AllocationDetails::FileHeader*>(file_buffer);
1984 
1985     // Advance buffer past header
1986     file_buffer = static_cast<uint8_t*>(file_buffer) + head->hdr_size;
1987 
1988     if (log)
1989         log->Printf("RenderScriptRuntime::LoadAllocation - header type %u, element size %u",
1990                     head->type, head->element_size);
1991 
1992     // Check if the target allocation and file both have the same number of bytes for an Element
1993     if (*alloc->element.datum_size.get() != head->element_size)
1994     {
1995         strm.Printf("Warning: Mismatched Element sizes - file %u bytes, allocation %u bytes",
1996                     head->element_size, *alloc->element.datum_size.get());
1997         strm.EOL();
1998     }
1999 
2000     // Check if the target allocation and file both have the same integral type
2001     const unsigned int type = static_cast<unsigned int>(*alloc->element.type.get());
2002     if (type != head->type)
2003     {
2004         const char* file_type_cstr = AllocationDetails::RsDataTypeToString[head->type][0];
2005         const char* alloc_type_cstr = AllocationDetails::RsDataTypeToString[type][0];
2006 
2007         strm.Printf("Warning: Mismatched Types - file '%s' type, allocation '%s' type",
2008                     file_type_cstr, alloc_type_cstr);
2009         strm.EOL();
2010     }
2011 
2012     // Calculate size of allocation data in file
2013     size_t length = data_sp->GetByteSize() - head->hdr_size;
2014 
2015     // Check if the target allocation and file both have the same total data size.
2016     const unsigned int alloc_size = *alloc->size.get();
2017     if (alloc_size != length)
2018     {
2019         strm.Printf("Warning: Mismatched allocation sizes - file 0x%" PRIx64 " bytes, allocation 0x%x bytes",
2020                     (uint64_t) length, alloc_size);
2021         strm.EOL();
2022         length = alloc_size < length ? alloc_size : length; // Set length to copy to minimum
2023     }
2024 
2025     // Copy file data from our buffer into the target allocation.
2026     lldb::addr_t alloc_data = *alloc->data_ptr.get();
2027     Error error;
2028     size_t bytes_written = GetProcess()->WriteMemory(alloc_data, file_buffer, length, error);
2029     if (!error.Success() || bytes_written != length)
2030     {
2031         strm.Printf("Error: Couldn't write data to allocation %s", error.AsCString());
2032         strm.EOL();
2033         return false;
2034     }
2035 
2036     strm.Printf("Contents of file '%s' read into allocation %u", filename, alloc->id);
2037     strm.EOL();
2038 
2039     return true;
2040 }
2041 
2042 // Function copies allocation contents into a binary file.
2043 // This file can then be loaded later into a different allocation.
2044 // There is a header, FileHeader, before the allocation data containing meta-data.
2045 bool
2046 RenderScriptRuntime::SaveAllocation(Stream &strm, const uint32_t alloc_id, const char* filename, StackFrame* frame_ptr)
2047 {
2048     Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2049 
2050     // Find allocation with the given id
2051     AllocationDetails* alloc = FindAllocByID(strm, alloc_id);
2052     if (!alloc)
2053         return false;
2054 
2055     if (log)
2056         log->Printf("RenderScriptRuntime::SaveAllocation - Found allocation 0x%" PRIx64, *alloc->address.get());
2057 
2058      // JIT all the allocation details
2059     if (alloc->shouldRefresh())
2060     {
2061         if (log)
2062             log->Printf("RenderScriptRuntime::SaveAllocation - Allocation details not calculated yet, jitting info");
2063 
2064         if (!RefreshAllocation(alloc, frame_ptr))
2065         {
2066             if (log)
2067                 log->Printf("RenderScriptRuntime::SaveAllocation - Couldn't JIT allocation details");
2068             return false;
2069         }
2070     }
2071 
2072     assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && alloc->element.type_vec_size.isValid() && alloc->element.datum_size.get()
2073            && alloc->element.type_kind.isValid() && alloc->dimension.isValid() && "Allocation information not available");
2074 
2075     // Check we can create writable file
2076     FileSpec file_spec(filename, true);
2077     File file(file_spec, File::eOpenOptionWrite | File::eOpenOptionCanCreate | File::eOpenOptionTruncate);
2078     if (!file)
2079     {
2080         strm.Printf("Error: Failed to open '%s' for writing", filename);
2081         strm.EOL();
2082         return false;
2083     }
2084 
2085     // Read allocation into buffer of heap memory
2086     const std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr);
2087     if (!buffer)
2088     {
2089         strm.Printf("Error: Couldn't read allocation data into buffer");
2090         strm.EOL();
2091         return false;
2092     }
2093 
2094     // Create the file header
2095     AllocationDetails::FileHeader head;
2096     head.ident[0] = 'R'; head.ident[1] = 'S'; head.ident[2] = 'A'; head.ident[3] = 'D';
2097     head.hdr_size = static_cast<uint16_t>(sizeof(AllocationDetails::FileHeader));
2098     head.type = static_cast<uint16_t>(*alloc->element.type.get());
2099     head.kind = static_cast<uint32_t>(*alloc->element.type_kind.get());
2100     head.dims[0] = static_cast<uint32_t>(alloc->dimension.get()->dim_1);
2101     head.dims[1] = static_cast<uint32_t>(alloc->dimension.get()->dim_2);
2102     head.dims[2] = static_cast<uint32_t>(alloc->dimension.get()->dim_3);
2103     head.element_size = static_cast<uint32_t>(*alloc->element.datum_size.get());
2104 
2105     // Write the file header
2106     size_t num_bytes = sizeof(AllocationDetails::FileHeader);
2107     Error err = file.Write(static_cast<const void*>(&head), num_bytes);
2108     if (!err.Success())
2109     {
2110         strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), filename);
2111         strm.EOL();
2112         return false;
2113     }
2114 
2115     // Write allocation data to file
2116     num_bytes = static_cast<size_t>(*alloc->size.get());
2117     if (log)
2118         log->Printf("RenderScriptRuntime::SaveAllocation - Writing 0x%" PRIx64 " bytes from %p", (uint64_t) num_bytes, buffer.get());
2119 
2120     err = file.Write(buffer.get(), num_bytes);
2121     if (!err.Success())
2122     {
2123         strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), filename);
2124         strm.EOL();
2125         return false;
2126     }
2127 
2128     strm.Printf("Allocation written to file '%s'", filename);
2129     strm.EOL();
2130     return true;
2131 }
2132 
2133 bool
2134 RenderScriptRuntime::LoadModule(const lldb::ModuleSP &module_sp)
2135 {
2136     Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2137 
2138     if (module_sp)
2139     {
2140         for (const auto &rs_module : m_rsmodules)
2141         {
2142             if (rs_module->m_module == module_sp)
2143             {
2144                 // Check if the user has enabled automatically breaking on
2145                 // all RS kernels.
2146                 if (m_breakAllKernels)
2147                     BreakOnModuleKernels(rs_module);
2148 
2149                 return false;
2150             }
2151         }
2152         bool module_loaded = false;
2153         switch (GetModuleKind(module_sp))
2154         {
2155             case eModuleKindKernelObj:
2156             {
2157                 RSModuleDescriptorSP module_desc;
2158                 module_desc.reset(new RSModuleDescriptor(module_sp));
2159                 if (module_desc->ParseRSInfo())
2160                 {
2161                     m_rsmodules.push_back(module_desc);
2162                     module_loaded = true;
2163                 }
2164                 if (module_loaded)
2165                 {
2166                     FixupScriptDetails(module_desc);
2167                 }
2168                 break;
2169             }
2170             case eModuleKindDriver:
2171             {
2172                 if (!m_libRSDriver)
2173                 {
2174                     m_libRSDriver = module_sp;
2175                     LoadRuntimeHooks(m_libRSDriver, RenderScriptRuntime::eModuleKindDriver);
2176                 }
2177                 break;
2178             }
2179             case eModuleKindImpl:
2180             {
2181                 m_libRSCpuRef = module_sp;
2182                 break;
2183             }
2184             case eModuleKindLibRS:
2185             {
2186                 if (!m_libRS)
2187                 {
2188                     m_libRS = module_sp;
2189                     static ConstString gDbgPresentStr("gDebuggerPresent");
2190                     const Symbol* debug_present = m_libRS->FindFirstSymbolWithNameAndType(gDbgPresentStr, eSymbolTypeData);
2191                     if (debug_present)
2192                     {
2193                         Error error;
2194                         uint32_t flag = 0x00000001U;
2195                         Target &target = GetProcess()->GetTarget();
2196                         addr_t addr = debug_present->GetLoadAddress(&target);
2197                         GetProcess()->WriteMemory(addr, &flag, sizeof(flag), error);
2198                         if(error.Success())
2199                         {
2200                             if (log)
2201                                 log->Printf ("RenderScriptRuntime::LoadModule - Debugger present flag set on debugee");
2202 
2203                             m_debuggerPresentFlagged = true;
2204                         }
2205                         else if (log)
2206                         {
2207                             log->Printf ("RenderScriptRuntime::LoadModule - Error writing debugger present flags '%s' ", error.AsCString());
2208                         }
2209                     }
2210                     else if (log)
2211                     {
2212                         log->Printf ("RenderScriptRuntime::LoadModule - Error writing debugger present flags - symbol not found");
2213                     }
2214                 }
2215                 break;
2216             }
2217             default:
2218                 break;
2219         }
2220         if (module_loaded)
2221             Update();
2222         return module_loaded;
2223     }
2224     return false;
2225 }
2226 
2227 void
2228 RenderScriptRuntime::Update()
2229 {
2230     if (m_rsmodules.size() > 0)
2231     {
2232         if (!m_initiated)
2233         {
2234             Initiate();
2235         }
2236     }
2237 }
2238 
2239 // The maximum line length of an .rs.info packet
2240 #define MAXLINE 500
2241 
2242 // The .rs.info symbol in renderscript modules contains a string which needs to be parsed.
2243 // The string is basic and is parsed on a line by line basis.
2244 bool
2245 RSModuleDescriptor::ParseRSInfo()
2246 {
2247     const Symbol *info_sym = m_module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), eSymbolTypeData);
2248     if (info_sym)
2249     {
2250         const addr_t addr = info_sym->GetAddressRef().GetFileAddress();
2251         const addr_t size = info_sym->GetByteSize();
2252         const FileSpec fs = m_module->GetFileSpec();
2253 
2254         DataBufferSP buffer = fs.ReadFileContents(addr, size);
2255 
2256         if (!buffer)
2257             return false;
2258 
2259         std::string info((const char *)buffer->GetBytes());
2260 
2261         std::vector<std::string> info_lines;
2262         size_t lpos = info.find('\n');
2263         while (lpos != std::string::npos)
2264         {
2265             info_lines.push_back(info.substr(0, lpos));
2266             info = info.substr(lpos + 1);
2267             lpos = info.find('\n');
2268         }
2269         size_t offset = 0;
2270         while (offset < info_lines.size())
2271         {
2272             std::string line = info_lines[offset];
2273             // Parse directives
2274             uint32_t numDefns = 0;
2275             if (sscanf(line.c_str(), "exportVarCount: %u", &numDefns) == 1)
2276             {
2277                 while (numDefns--)
2278                     m_globals.push_back(RSGlobalDescriptor(this, info_lines[++offset].c_str()));
2279             }
2280             else if (sscanf(line.c_str(), "exportFuncCount: %u", &numDefns) == 1)
2281             {
2282             }
2283             else if (sscanf(line.c_str(), "exportForEachCount: %u", &numDefns) == 1)
2284             {
2285                 char name[MAXLINE];
2286                 while (numDefns--)
2287                 {
2288                     uint32_t slot = 0;
2289                     name[0] = '\0';
2290                     if (sscanf(info_lines[++offset].c_str(), "%u - %s", &slot, &name[0]) == 2)
2291                     {
2292                         m_kernels.push_back(RSKernelDescriptor(this, name, slot));
2293                     }
2294                 }
2295             }
2296             else if (sscanf(line.c_str(), "pragmaCount: %u", &numDefns) == 1)
2297             {
2298                 char name[MAXLINE];
2299                 char value[MAXLINE];
2300                 while (numDefns--)
2301                 {
2302                     name[0] = '\0';
2303                     value[0] = '\0';
2304                     if (sscanf(info_lines[++offset].c_str(), "%s - %s", &name[0], &value[0]) != 0
2305                         && (name[0] != '\0'))
2306                     {
2307                         m_pragmas[std::string(name)] = value;
2308                     }
2309                 }
2310             }
2311             else if (sscanf(line.c_str(), "objectSlotCount: %u", &numDefns) == 1)
2312             {
2313             }
2314 
2315             offset++;
2316         }
2317         return m_kernels.size() > 0;
2318     }
2319     return false;
2320 }
2321 
2322 bool
2323 RenderScriptRuntime::ProbeModules(const ModuleList module_list)
2324 {
2325     bool rs_found = false;
2326     size_t num_modules = module_list.GetSize();
2327     for (size_t i = 0; i < num_modules; i++)
2328     {
2329         auto module = module_list.GetModuleAtIndex(i);
2330         rs_found |= LoadModule(module);
2331     }
2332     return rs_found;
2333 }
2334 
2335 void
2336 RenderScriptRuntime::Status(Stream &strm) const
2337 {
2338     if (m_libRS)
2339     {
2340         strm.Printf("Runtime Library discovered.");
2341         strm.EOL();
2342     }
2343     if (m_libRSDriver)
2344     {
2345         strm.Printf("Runtime Driver discovered.");
2346         strm.EOL();
2347     }
2348     if (m_libRSCpuRef)
2349     {
2350         strm.Printf("CPU Reference Implementation discovered.");
2351         strm.EOL();
2352     }
2353 
2354     if (m_runtimeHooks.size())
2355     {
2356         strm.Printf("Runtime functions hooked:");
2357         strm.EOL();
2358         for (auto b : m_runtimeHooks)
2359         {
2360             strm.Indent(b.second->defn->name);
2361             strm.EOL();
2362         }
2363     }
2364     else
2365     {
2366         strm.Printf("Runtime is not hooked.");
2367         strm.EOL();
2368     }
2369 }
2370 
2371 void
2372 RenderScriptRuntime::DumpContexts(Stream &strm) const
2373 {
2374     strm.Printf("Inferred RenderScript Contexts:");
2375     strm.EOL();
2376     strm.IndentMore();
2377 
2378     std::map<addr_t, uint64_t> contextReferences;
2379 
2380     // Iterate over all of the currently discovered scripts.
2381     // Note: We cant push or pop from m_scripts inside this loop or it may invalidate script.
2382     for (const auto & script : m_scripts)
2383     {
2384         if (!script->context.isValid())
2385             continue;
2386         lldb::addr_t context = *script->context;
2387 
2388         if (contextReferences.find(context) != contextReferences.end())
2389         {
2390             contextReferences[context]++;
2391         }
2392         else
2393         {
2394             contextReferences[context] = 1;
2395         }
2396     }
2397 
2398     for (const auto& cRef : contextReferences)
2399     {
2400         strm.Printf("Context 0x%" PRIx64 ": %" PRIu64 " script instances", cRef.first, cRef.second);
2401         strm.EOL();
2402     }
2403     strm.IndentLess();
2404 }
2405 
2406 void
2407 RenderScriptRuntime::DumpKernels(Stream &strm) const
2408 {
2409     strm.Printf("RenderScript Kernels:");
2410     strm.EOL();
2411     strm.IndentMore();
2412     for (const auto &module : m_rsmodules)
2413     {
2414         strm.Printf("Resource '%s':",module->m_resname.c_str());
2415         strm.EOL();
2416         for (const auto &kernel : module->m_kernels)
2417         {
2418             strm.Indent(kernel.m_name.AsCString());
2419             strm.EOL();
2420         }
2421     }
2422     strm.IndentLess();
2423 }
2424 
2425 RenderScriptRuntime::AllocationDetails*
2426 RenderScriptRuntime::FindAllocByID(Stream &strm, const uint32_t alloc_id)
2427 {
2428     AllocationDetails* alloc = nullptr;
2429 
2430     // See if we can find allocation using id as an index;
2431     if (alloc_id <= m_allocations.size() && alloc_id != 0
2432         && m_allocations[alloc_id-1]->id == alloc_id)
2433     {
2434         alloc = m_allocations[alloc_id-1].get();
2435         return alloc;
2436     }
2437 
2438     // Fallback to searching
2439     for (const auto & a : m_allocations)
2440     {
2441        if (a->id == alloc_id)
2442        {
2443            alloc = a.get();
2444            break;
2445        }
2446     }
2447 
2448     if (alloc == nullptr)
2449     {
2450         strm.Printf("Error: Couldn't find allocation with id matching %u", alloc_id);
2451         strm.EOL();
2452     }
2453 
2454     return alloc;
2455 }
2456 
2457 // Prints the contents of an allocation to the output stream, which may be a file
2458 bool
2459 RenderScriptRuntime::DumpAllocation(Stream &strm, StackFrame* frame_ptr, const uint32_t id)
2460 {
2461     Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2462 
2463     // Check we can find the desired allocation
2464     AllocationDetails* alloc = FindAllocByID(strm, id);
2465     if (!alloc)
2466         return false; // FindAllocByID() will print error message for us here
2467 
2468     if (log)
2469         log->Printf("RenderScriptRuntime::DumpAllocation - Found allocation 0x%" PRIx64, *alloc->address.get());
2470 
2471     // Check we have information about the allocation, if not calculate it
2472     if (alloc->shouldRefresh())
2473     {
2474         if (log)
2475             log->Printf("RenderScriptRuntime::DumpAllocation - Allocation details not calculated yet, jitting info");
2476 
2477         // JIT all the allocation information
2478         if (!RefreshAllocation(alloc, frame_ptr))
2479         {
2480             strm.Printf("Error: Couldn't JIT allocation details");
2481             strm.EOL();
2482             return false;
2483         }
2484     }
2485 
2486     // Establish format and size of each data element
2487     const unsigned int vec_size = *alloc->element.type_vec_size.get();
2488     const Element::DataType type = *alloc->element.type.get();
2489 
2490     assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_BOOLEAN
2491                                                    && "Invalid allocation type");
2492 
2493     lldb::Format format = vec_size == 1 ? static_cast<lldb::Format>(AllocationDetails::RSTypeToFormat[type][eFormatSingle])
2494                                         : static_cast<lldb::Format>(AllocationDetails::RSTypeToFormat[type][eFormatVector]);
2495 
2496     const unsigned int data_size = *alloc->element.datum_size.get();
2497 
2498     if (log)
2499         log->Printf("RenderScriptRuntime::DumpAllocation - Element size %u bytes, including padding", data_size);
2500 
2501     // Allocate a buffer to copy data into
2502     std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr);
2503     if (!buffer)
2504     {
2505         strm.Printf("Error: Couldn't allocate a read allocation data into memory");
2506         strm.EOL();
2507         return false;
2508     }
2509 
2510     // Calculate stride between rows as there may be padding at end of rows since
2511     // allocated memory is 16-byte aligned
2512     if (!alloc->stride.isValid())
2513     {
2514         if (alloc->dimension.get()->dim_2 == 0) // We only have one dimension
2515             alloc->stride = 0;
2516         else if (!JITAllocationStride(alloc, frame_ptr))
2517         {
2518             strm.Printf("Error: Couldn't calculate allocation row stride");
2519             strm.EOL();
2520             return false;
2521         }
2522     }
2523     const unsigned int stride = *alloc->stride.get();
2524     const unsigned int size = *alloc->size.get(); // Size of whole allocation
2525     const unsigned int padding = alloc->element.padding.isValid() ? *alloc->element.padding.get() : 0;
2526     if (log)
2527         log->Printf("RenderScriptRuntime::DumpAllocation - stride %u bytes, size %u bytes, padding %u", stride, size, padding);
2528 
2529     // Find dimensions used to index loops, so need to be non-zero
2530     unsigned int dim_x = alloc->dimension.get()->dim_1;
2531     dim_x = dim_x == 0 ? 1 : dim_x;
2532 
2533     unsigned int dim_y = alloc->dimension.get()->dim_2;
2534     dim_y = dim_y == 0 ? 1 : dim_y;
2535 
2536     unsigned int dim_z = alloc->dimension.get()->dim_3;
2537     dim_z = dim_z == 0 ? 1 : dim_z;
2538 
2539     // Use data extractor to format output
2540     const uint32_t archByteSize = GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
2541     DataExtractor alloc_data(buffer.get(), size, GetProcess()->GetByteOrder(), archByteSize);
2542 
2543     unsigned int offset = 0;   // Offset in buffer to next element to be printed
2544     unsigned int prev_row = 0; // Offset to the start of the previous row
2545 
2546     // Iterate over allocation dimensions, printing results to user
2547     strm.Printf("Data (X, Y, Z):");
2548     for (unsigned int z = 0; z < dim_z; ++z)
2549     {
2550         for (unsigned int y = 0; y < dim_y; ++y)
2551         {
2552             // Use stride to index start of next row.
2553             if (!(y==0 && z==0))
2554                 offset = prev_row + stride;
2555             prev_row = offset;
2556 
2557             // Print each element in the row individually
2558             for (unsigned int x = 0; x < dim_x; ++x)
2559             {
2560                 strm.Printf("\n(%u, %u, %u) = ", x, y, z);
2561                 if ((type == Element::RS_TYPE_NONE) && (alloc->element.children.size() > 0) &&
2562                     (alloc->element.type_name != Element::GetFallbackStructName()))
2563                 {
2564                     // Here we are dumping an Element of struct type.
2565                     // This is done using expression evaluation with the name of the struct type and pointer to element.
2566 
2567                     // Don't print the name of the resulting expression, since this will be '$[0-9]+'
2568                     DumpValueObjectOptions expr_options;
2569                     expr_options.SetHideName(true);
2570 
2571                     // Setup expression as derefrencing a pointer cast to element address.
2572                     char expr_char_buffer[jit_max_expr_size];
2573                     int chars_written = snprintf(expr_char_buffer, jit_max_expr_size, "*(%s*) 0x%" PRIx64,
2574                                         alloc->element.type_name.AsCString(), *alloc->data_ptr.get() + offset);
2575 
2576                     if (chars_written < 0 || chars_written >= jit_max_expr_size)
2577                     {
2578                         if (log)
2579                             log->Printf("RenderScriptRuntime::DumpAllocation- Error in snprintf()");
2580                         continue;
2581                     }
2582 
2583                     // Evaluate expression
2584                     ValueObjectSP expr_result;
2585                     GetProcess()->GetTarget().EvaluateExpression(expr_char_buffer, frame_ptr, expr_result);
2586 
2587                     // Print the results to our stream.
2588                     expr_result->Dump(strm, expr_options);
2589                 }
2590                 else
2591                 {
2592                     alloc_data.Dump(&strm, offset, format, data_size - padding, 1, 1, LLDB_INVALID_ADDRESS, 0, 0);
2593                 }
2594                 offset += data_size;
2595             }
2596         }
2597     }
2598     strm.EOL();
2599 
2600     return true;
2601 }
2602 
2603 // Prints infomation regarding all the currently loaded allocations.
2604 // These details are gathered by jitting the runtime, which has as latency.
2605 void
2606 RenderScriptRuntime::ListAllocations(Stream &strm, StackFrame* frame_ptr, bool recompute)
2607 {
2608     strm.Printf("RenderScript Allocations:");
2609     strm.EOL();
2610     strm.IndentMore();
2611 
2612     for (auto &alloc : m_allocations)
2613     {
2614         // JIT the allocation info if we haven't done it, or the user forces us to.
2615         bool do_refresh = alloc->shouldRefresh() || recompute;
2616 
2617         // JIT current allocation information
2618         if (do_refresh && !RefreshAllocation(alloc.get(), frame_ptr))
2619         {
2620             strm.Printf("Error: Couldn't evaluate details for allocation %u\n", alloc->id);
2621             continue;
2622         }
2623 
2624         strm.Printf("%u:\n",alloc->id);
2625         strm.IndentMore();
2626 
2627         strm.Indent("Context: ");
2628         if (!alloc->context.isValid())
2629             strm.Printf("unknown\n");
2630         else
2631             strm.Printf("0x%" PRIx64 "\n", *alloc->context.get());
2632 
2633         strm.Indent("Address: ");
2634         if (!alloc->address.isValid())
2635             strm.Printf("unknown\n");
2636         else
2637             strm.Printf("0x%" PRIx64 "\n", *alloc->address.get());
2638 
2639         strm.Indent("Data pointer: ");
2640         if (!alloc->data_ptr.isValid())
2641             strm.Printf("unknown\n");
2642         else
2643             strm.Printf("0x%" PRIx64 "\n", *alloc->data_ptr.get());
2644 
2645         strm.Indent("Dimensions: ");
2646         if (!alloc->dimension.isValid())
2647             strm.Printf("unknown\n");
2648         else
2649             strm.Printf("(%d, %d, %d)\n", alloc->dimension.get()->dim_1,
2650                                           alloc->dimension.get()->dim_2,
2651                                           alloc->dimension.get()->dim_3);
2652 
2653         strm.Indent("Data Type: ");
2654         if (!alloc->element.type.isValid() || !alloc->element.type_vec_size.isValid())
2655             strm.Printf("unknown\n");
2656         else
2657         {
2658             const int vector_size = *alloc->element.type_vec_size.get();
2659             const Element::DataType type = *alloc->element.type.get();
2660 
2661             if (!alloc->element.type_name.IsEmpty())
2662                 strm.Printf("%s\n", alloc->element.type_name.AsCString());
2663             else if (vector_size > 4 || vector_size < 1 ||
2664                 type < Element::RS_TYPE_NONE || type > Element::RS_TYPE_BOOLEAN)
2665                 strm.Printf("invalid type\n");
2666             else
2667                 strm.Printf("%s\n", AllocationDetails::RsDataTypeToString[static_cast<unsigned int>(type)][vector_size-1]);
2668         }
2669 
2670         strm.Indent("Data Kind: ");
2671         if (!alloc->element.type_kind.isValid())
2672             strm.Printf("unknown\n");
2673         else
2674         {
2675             const Element::DataKind kind = *alloc->element.type_kind.get();
2676             if (kind < Element::RS_KIND_USER || kind > Element::RS_KIND_PIXEL_YUV)
2677                 strm.Printf("invalid kind\n");
2678             else
2679                 strm.Printf("%s\n", AllocationDetails::RsDataKindToString[static_cast<unsigned int>(kind)]);
2680         }
2681 
2682         strm.EOL();
2683         strm.IndentLess();
2684     }
2685     strm.IndentLess();
2686 }
2687 
2688 // Set breakpoints on every kernel found in RS module
2689 void
2690 RenderScriptRuntime::BreakOnModuleKernels(const RSModuleDescriptorSP rsmodule_sp)
2691 {
2692     for (const auto &kernel : rsmodule_sp->m_kernels)
2693     {
2694         // Don't set breakpoint on 'root' kernel
2695         if (strcmp(kernel.m_name.AsCString(), "root") == 0)
2696             continue;
2697 
2698         CreateKernelBreakpoint(kernel.m_name);
2699     }
2700 }
2701 
2702 // Method is internally called by the 'kernel breakpoint all' command to
2703 // enable or disable breaking on all kernels.
2704 //
2705 // When do_break is true we want to enable this functionality.
2706 // When do_break is false we want to disable it.
2707 void
2708 RenderScriptRuntime::SetBreakAllKernels(bool do_break, TargetSP target)
2709 {
2710     Log* log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
2711 
2712     InitSearchFilter(target);
2713 
2714     // Set breakpoints on all the kernels
2715     if (do_break && !m_breakAllKernels)
2716     {
2717         m_breakAllKernels = true;
2718 
2719         for (const auto &module : m_rsmodules)
2720             BreakOnModuleKernels(module);
2721 
2722         if (log)
2723             log->Printf("RenderScriptRuntime::SetBreakAllKernels(True)"
2724                         "- breakpoints set on all currently loaded kernels");
2725     }
2726     else if (!do_break && m_breakAllKernels) // Breakpoints won't be set on any new kernels.
2727     {
2728         m_breakAllKernels = false;
2729 
2730         if (log)
2731             log->Printf("RenderScriptRuntime::SetBreakAllKernels(False) - breakpoints no longer automatically set");
2732     }
2733 }
2734 
2735 // Given the name of a kernel this function creates a breakpoint using our
2736 // own breakpoint resolver, and returns the Breakpoint shared pointer.
2737 BreakpointSP
2738 RenderScriptRuntime::CreateKernelBreakpoint(const ConstString& name)
2739 {
2740     Log* log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
2741 
2742     if (!m_filtersp)
2743     {
2744         if (log)
2745             log->Printf("RenderScriptRuntime::CreateKernelBreakpoint - Error: No breakpoint search filter set");
2746         return nullptr;
2747     }
2748 
2749     BreakpointResolverSP resolver_sp(new RSBreakpointResolver(nullptr, name));
2750     BreakpointSP bp = GetProcess()->GetTarget().CreateBreakpoint(m_filtersp, resolver_sp, false, false, false);
2751 
2752     // Give RS breakpoints a specific name, so the user can manipulate them as a group.
2753     Error err;
2754     if (!bp->AddName("RenderScriptKernel", err) && log)
2755         log->Printf("RenderScriptRuntime::CreateKernelBreakpoint: Error setting break name, %s", err.AsCString());
2756 
2757     return bp;
2758 }
2759 
2760 // Given an expression for a variable this function tries to calculate the variable's value.
2761 // If this is possible it returns true and sets the uint64_t parameter to the variables unsigned value.
2762 // Otherwise function returns false.
2763 bool
2764 RenderScriptRuntime::GetFrameVarAsUnsigned(const StackFrameSP frame_sp, const char* var_name, uint64_t& val)
2765 {
2766     Log* log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2767     Error error;
2768     VariableSP var_sp;
2769 
2770     // Find variable in stack frame
2771     ValueObjectSP value_sp(frame_sp->GetValueForVariableExpressionPath(var_name,
2772                                                                        eNoDynamicValues,
2773                                                                        StackFrame::eExpressionPathOptionCheckPtrVsMember |
2774                                                                        StackFrame::eExpressionPathOptionsAllowDirectIVarAccess,
2775                                                                        var_sp,
2776                                                                        error));
2777     if (!error.Success())
2778     {
2779         if (log)
2780             log->Printf("RenderScriptRuntime::GetFrameVarAsUnsigned - Error, couldn't find '%s' in frame", var_name);
2781 
2782         return false;
2783     }
2784 
2785     // Find the unsigned int value for the variable
2786     bool success = false;
2787     val = value_sp->GetValueAsUnsigned(0, &success);
2788     if (!success)
2789     {
2790         if (log)
2791             log->Printf("RenderScriptRuntime::GetFrameVarAsUnsigned - Error, couldn't parse '%s' as an unsigned int", var_name);
2792 
2793         return false;
2794     }
2795 
2796     return true;
2797 }
2798 
2799 // Callback when a kernel breakpoint hits and we're looking for a specific coordinate.
2800 // Baton parameter contains a pointer to the target coordinate we want to break on.
2801 // Function then checks the .expand frame for the current coordinate and breaks to user if it matches.
2802 // Parameter 'break_id' is the id of the Breakpoint which made the callback.
2803 // Parameter 'break_loc_id' is the id for the BreakpointLocation which was hit,
2804 // a single logical breakpoint can have multiple addresses.
2805 bool
2806 RenderScriptRuntime::KernelBreakpointHit(void *baton, StoppointCallbackContext *ctx,
2807                                          user_id_t break_id, user_id_t break_loc_id)
2808 {
2809     Log* log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
2810 
2811     assert(baton && "Error: null baton in conditional kernel breakpoint callback");
2812 
2813     // Coordinate we want to stop on
2814     const int* target_coord = static_cast<const int*>(baton);
2815 
2816     if (log)
2817         log->Printf("RenderScriptRuntime::KernelBreakpointHit - Break ID %" PRIu64 ", target coord (%d, %d, %d)",
2818                     break_id, target_coord[0], target_coord[1], target_coord[2]);
2819 
2820     // Go up one stack frame to .expand kernel
2821     ExecutionContext context(ctx->exe_ctx_ref);
2822     ThreadSP thread_sp = context.GetThreadSP();
2823     if (!thread_sp->SetSelectedFrameByIndex(1))
2824     {
2825         if (log)
2826             log->Printf("RenderScriptRuntime::KernelBreakpointHit - Error, couldn't go up stack frame");
2827 
2828        return false;
2829     }
2830 
2831     StackFrameSP frame_sp = thread_sp->GetSelectedFrame();
2832     if (!frame_sp)
2833     {
2834         if (log)
2835             log->Printf("RenderScriptRuntime::KernelBreakpointHit - Error, couldn't select .expand stack frame");
2836 
2837         return false;
2838     }
2839 
2840     // Get values for variables in .expand frame that tell us the current kernel invocation
2841     const char* coord_expressions[] = {"rsIndex", "p->current.y", "p->current.z"};
2842     uint64_t current_coord[3] = {0, 0, 0};
2843 
2844     for(int i = 0; i < 3; ++i)
2845     {
2846         if (!GetFrameVarAsUnsigned(frame_sp, coord_expressions[i], current_coord[i]))
2847             return false;
2848 
2849         if (log)
2850             log->Printf("RenderScriptRuntime::KernelBreakpointHit, %s = %" PRIu64, coord_expressions[i], current_coord[i]);
2851     }
2852 
2853     // Check if the current kernel invocation coordinate matches our target coordinate
2854     if (current_coord[0] == static_cast<uint64_t>(target_coord[0]) &&
2855         current_coord[1] == static_cast<uint64_t>(target_coord[1]) &&
2856         current_coord[2] == static_cast<uint64_t>(target_coord[2]))
2857     {
2858         if (log)
2859              log->Printf("RenderScriptRuntime::KernelBreakpointHit, BREAKING %" PRIu64 ", %" PRIu64 ", %" PRIu64,
2860                          current_coord[0], current_coord[1], current_coord[2]);
2861 
2862         BreakpointSP breakpoint_sp = context.GetTargetPtr()->GetBreakpointByID(break_id);
2863         assert(breakpoint_sp != nullptr && "Error: Couldn't find breakpoint matching break id for callback");
2864         breakpoint_sp->SetEnabled(false); // Optimise since conditional breakpoint should only be hit once.
2865         return true;
2866     }
2867 
2868     // No match on coordinate
2869     return false;
2870 }
2871 
2872 // Tries to set a breakpoint on the start of a kernel, resolved using the kernel name.
2873 // Argument 'coords', represents a three dimensional coordinate which can be used to specify
2874 // a single kernel instance to break on. If this is set then we add a callback to the breakpoint.
2875 void
2876 RenderScriptRuntime::PlaceBreakpointOnKernel(Stream &strm, const char* name, const std::array<int,3> coords,
2877                                              Error& error, TargetSP target)
2878 {
2879     if (!name)
2880     {
2881         error.SetErrorString("invalid kernel name");
2882         return;
2883     }
2884 
2885     InitSearchFilter(target);
2886 
2887     ConstString kernel_name(name);
2888     BreakpointSP bp = CreateKernelBreakpoint(kernel_name);
2889 
2890     // We have a conditional breakpoint on a specific coordinate
2891     if (coords[0] != -1)
2892     {
2893         strm.Printf("Conditional kernel breakpoint on coordinate %d, %d, %d", coords[0], coords[1], coords[2]);
2894         strm.EOL();
2895 
2896         // Allocate memory for the baton, and copy over coordinate
2897         int* baton = new int[3];
2898         baton[0] = coords[0]; baton[1] = coords[1]; baton[2] = coords[2];
2899 
2900         // Create a callback that will be invoked everytime the breakpoint is hit.
2901         // The baton object passed to the handler is the target coordinate we want to break on.
2902         bp->SetCallback(KernelBreakpointHit, baton, true);
2903 
2904         // Store a shared pointer to the baton, so the memory will eventually be cleaned up after destruction
2905         m_conditional_breaks[bp->GetID()] = std::shared_ptr<int>(baton);
2906     }
2907 
2908     if (bp)
2909         bp->GetDescription(&strm, lldb::eDescriptionLevelInitial, false);
2910 }
2911 
2912 void
2913 RenderScriptRuntime::DumpModules(Stream &strm) const
2914 {
2915     strm.Printf("RenderScript Modules:");
2916     strm.EOL();
2917     strm.IndentMore();
2918     for (const auto &module : m_rsmodules)
2919     {
2920         module->Dump(strm);
2921     }
2922     strm.IndentLess();
2923 }
2924 
2925 RenderScriptRuntime::ScriptDetails*
2926 RenderScriptRuntime::LookUpScript(addr_t address, bool create)
2927 {
2928     for (const auto & s : m_scripts)
2929     {
2930         if (s->script.isValid())
2931             if (*s->script == address)
2932                 return s.get();
2933     }
2934     if (create)
2935     {
2936         std::unique_ptr<ScriptDetails> s(new ScriptDetails);
2937         s->script = address;
2938         m_scripts.push_back(std::move(s));
2939         return m_scripts.back().get();
2940     }
2941     return nullptr;
2942 }
2943 
2944 RenderScriptRuntime::AllocationDetails*
2945 RenderScriptRuntime::LookUpAllocation(addr_t address, bool create)
2946 {
2947     for (const auto & a : m_allocations)
2948     {
2949         if (a->address.isValid())
2950             if (*a->address == address)
2951                 return a.get();
2952     }
2953     if (create)
2954     {
2955         std::unique_ptr<AllocationDetails> a(new AllocationDetails);
2956         a->address = address;
2957         m_allocations.push_back(std::move(a));
2958         return m_allocations.back().get();
2959     }
2960     return nullptr;
2961 }
2962 
2963 void
2964 RSModuleDescriptor::Dump(Stream &strm) const
2965 {
2966     strm.Indent();
2967     m_module->GetFileSpec().Dump(&strm);
2968     if(m_module->GetNumCompileUnits())
2969     {
2970         strm.Indent("Debug info loaded.");
2971     }
2972     else
2973     {
2974         strm.Indent("Debug info does not exist.");
2975     }
2976     strm.EOL();
2977     strm.IndentMore();
2978     strm.Indent();
2979     strm.Printf("Globals: %" PRIu64, static_cast<uint64_t>(m_globals.size()));
2980     strm.EOL();
2981     strm.IndentMore();
2982     for (const auto &global : m_globals)
2983     {
2984         global.Dump(strm);
2985     }
2986     strm.IndentLess();
2987     strm.Indent();
2988     strm.Printf("Kernels: %" PRIu64, static_cast<uint64_t>(m_kernels.size()));
2989     strm.EOL();
2990     strm.IndentMore();
2991     for (const auto &kernel : m_kernels)
2992     {
2993         kernel.Dump(strm);
2994     }
2995     strm.Printf("Pragmas: %"  PRIu64 , static_cast<uint64_t>(m_pragmas.size()));
2996     strm.EOL();
2997     strm.IndentMore();
2998     for (const auto &key_val : m_pragmas)
2999     {
3000         strm.Printf("%s: %s", key_val.first.c_str(), key_val.second.c_str());
3001         strm.EOL();
3002     }
3003     strm.IndentLess(4);
3004 }
3005 
3006 void
3007 RSGlobalDescriptor::Dump(Stream &strm) const
3008 {
3009     strm.Indent(m_name.AsCString());
3010     VariableList var_list;
3011     m_module->m_module->FindGlobalVariables(m_name, nullptr, true, 1U, var_list);
3012     if (var_list.GetSize() == 1)
3013     {
3014         auto var = var_list.GetVariableAtIndex(0);
3015         auto type = var->GetType();
3016         if(type)
3017         {
3018             strm.Printf(" - ");
3019             type->DumpTypeName(&strm);
3020         }
3021         else
3022         {
3023             strm.Printf(" - Unknown Type");
3024         }
3025     }
3026     else
3027     {
3028         strm.Printf(" - variable identified, but not found in binary");
3029         const Symbol* s = m_module->m_module->FindFirstSymbolWithNameAndType(m_name, eSymbolTypeData);
3030         if (s)
3031         {
3032             strm.Printf(" (symbol exists) ");
3033         }
3034     }
3035 
3036     strm.EOL();
3037 }
3038 
3039 void
3040 RSKernelDescriptor::Dump(Stream &strm) const
3041 {
3042     strm.Indent(m_name.AsCString());
3043     strm.EOL();
3044 }
3045 
3046 class CommandObjectRenderScriptRuntimeModuleProbe : public CommandObjectParsed
3047 {
3048 public:
3049     CommandObjectRenderScriptRuntimeModuleProbe(CommandInterpreter &interpreter)
3050         : CommandObjectParsed(interpreter, "renderscript module probe",
3051                               "Initiates a Probe of all loaded modules for kernels and other renderscript objects.",
3052                               "renderscript module probe",
3053                               eCommandRequiresTarget | eCommandRequiresProcess | eCommandProcessMustBeLaunched)
3054     {
3055     }
3056 
3057     ~CommandObjectRenderScriptRuntimeModuleProbe() override = default;
3058 
3059     bool
3060     DoExecute(Args &command, CommandReturnObject &result) override
3061     {
3062         const size_t argc = command.GetArgumentCount();
3063         if (argc == 0)
3064         {
3065             Target *target = m_exe_ctx.GetTargetPtr();
3066             RenderScriptRuntime *runtime =
3067                 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
3068             auto module_list = target->GetImages();
3069             bool new_rs_details = runtime->ProbeModules(module_list);
3070             if (new_rs_details)
3071             {
3072                 result.AppendMessage("New renderscript modules added to runtime model.");
3073             }
3074             result.SetStatus(eReturnStatusSuccessFinishResult);
3075             return true;
3076         }
3077 
3078         result.AppendErrorWithFormat("'%s' takes no arguments", m_cmd_name.c_str());
3079         result.SetStatus(eReturnStatusFailed);
3080         return false;
3081     }
3082 };
3083 
3084 class CommandObjectRenderScriptRuntimeModuleDump : public CommandObjectParsed
3085 {
3086 public:
3087     CommandObjectRenderScriptRuntimeModuleDump(CommandInterpreter &interpreter)
3088         : CommandObjectParsed(interpreter, "renderscript module dump",
3089                               "Dumps renderscript specific information for all modules.", "renderscript module dump",
3090                               eCommandRequiresProcess | eCommandProcessMustBeLaunched)
3091     {
3092     }
3093 
3094     ~CommandObjectRenderScriptRuntimeModuleDump() override = default;
3095 
3096     bool
3097     DoExecute(Args &command, CommandReturnObject &result) override
3098     {
3099         RenderScriptRuntime *runtime =
3100             (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
3101         runtime->DumpModules(result.GetOutputStream());
3102         result.SetStatus(eReturnStatusSuccessFinishResult);
3103         return true;
3104     }
3105 };
3106 
3107 class CommandObjectRenderScriptRuntimeModule : public CommandObjectMultiword
3108 {
3109 public:
3110     CommandObjectRenderScriptRuntimeModule(CommandInterpreter &interpreter)
3111         : CommandObjectMultiword(interpreter, "renderscript module", "Commands that deal with renderscript modules.",
3112                                  NULL)
3113     {
3114         LoadSubCommand("probe", CommandObjectSP(new CommandObjectRenderScriptRuntimeModuleProbe(interpreter)));
3115         LoadSubCommand("dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeModuleDump(interpreter)));
3116     }
3117 
3118     ~CommandObjectRenderScriptRuntimeModule() override = default;
3119 };
3120 
3121 class CommandObjectRenderScriptRuntimeKernelList : public CommandObjectParsed
3122 {
3123 public:
3124     CommandObjectRenderScriptRuntimeKernelList(CommandInterpreter &interpreter)
3125         : CommandObjectParsed(interpreter, "renderscript kernel list",
3126                               "Lists renderscript kernel names and associated script resources.", "renderscript kernel list",
3127                               eCommandRequiresProcess | eCommandProcessMustBeLaunched)
3128     {
3129     }
3130 
3131     ~CommandObjectRenderScriptRuntimeKernelList() override = default;
3132 
3133     bool
3134     DoExecute(Args &command, CommandReturnObject &result) override
3135     {
3136         RenderScriptRuntime *runtime =
3137             (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
3138         runtime->DumpKernels(result.GetOutputStream());
3139         result.SetStatus(eReturnStatusSuccessFinishResult);
3140         return true;
3141     }
3142 };
3143 
3144 class CommandObjectRenderScriptRuntimeKernelBreakpointSet : public CommandObjectParsed
3145 {
3146 public:
3147     CommandObjectRenderScriptRuntimeKernelBreakpointSet(CommandInterpreter &interpreter)
3148         : CommandObjectParsed(interpreter, "renderscript kernel breakpoint set",
3149                               "Sets a breakpoint on a renderscript kernel.", "renderscript kernel breakpoint set <kernel_name> [-c x,y,z]",
3150                               eCommandRequiresProcess | eCommandProcessMustBeLaunched | eCommandProcessMustBePaused), m_options(interpreter)
3151     {
3152     }
3153 
3154     ~CommandObjectRenderScriptRuntimeKernelBreakpointSet() override = default;
3155 
3156     Options*
3157     GetOptions() override
3158     {
3159         return &m_options;
3160     }
3161 
3162     class CommandOptions : public Options
3163     {
3164     public:
3165         CommandOptions(CommandInterpreter &interpreter) : Options(interpreter)
3166         {
3167         }
3168 
3169         ~CommandOptions() override = default;
3170 
3171         Error
3172         SetOptionValue(uint32_t option_idx, const char *option_arg) override
3173         {
3174             Error error;
3175             const int short_option = m_getopt_table[option_idx].val;
3176 
3177             switch (short_option)
3178             {
3179                 case 'c':
3180                     if (!ParseCoordinate(option_arg))
3181                         error.SetErrorStringWithFormat("Couldn't parse coordinate '%s', should be in format 'x,y,z'.", option_arg);
3182                     break;
3183                 default:
3184                     error.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
3185                     break;
3186             }
3187             return error;
3188         }
3189 
3190         // -c takes an argument of the form 'num[,num][,num]'.
3191         // Where 'id_cstr' is this argument with the whitespace trimmed.
3192         // Missing coordinates are defaulted to zero.
3193         bool
3194         ParseCoordinate(const char* id_cstr)
3195         {
3196             RegularExpression regex;
3197             RegularExpression::Match regex_match(3);
3198 
3199             bool matched = false;
3200             if(regex.Compile("^([0-9]+),([0-9]+),([0-9]+)$") && regex.Execute(id_cstr, &regex_match))
3201                 matched = true;
3202             else if(regex.Compile("^([0-9]+),([0-9]+)$") && regex.Execute(id_cstr, &regex_match))
3203                 matched = true;
3204             else if(regex.Compile("^([0-9]+)$") && regex.Execute(id_cstr, &regex_match))
3205                 matched = true;
3206             for(uint32_t i = 0; i < 3; i++)
3207             {
3208                 std::string group;
3209                 if(regex_match.GetMatchAtIndex(id_cstr, i + 1, group))
3210                     m_coord[i] = (uint32_t)strtoul(group.c_str(), NULL, 0);
3211                 else
3212                     m_coord[i] = 0;
3213             }
3214             return matched;
3215         }
3216 
3217         void
3218         OptionParsingStarting() override
3219         {
3220             // -1 means the -c option hasn't been set
3221             m_coord[0] = -1;
3222             m_coord[1] = -1;
3223             m_coord[2] = -1;
3224         }
3225 
3226         const OptionDefinition*
3227         GetDefinitions() override
3228         {
3229             return g_option_table;
3230         }
3231 
3232         static OptionDefinition g_option_table[];
3233         std::array<int,3> m_coord;
3234     };
3235 
3236     bool
3237     DoExecute(Args &command, CommandReturnObject &result) override
3238     {
3239         const size_t argc = command.GetArgumentCount();
3240         if (argc < 1)
3241         {
3242             result.AppendErrorWithFormat("'%s' takes 1 argument of kernel name, and an optional coordinate.", m_cmd_name.c_str());
3243             result.SetStatus(eReturnStatusFailed);
3244             return false;
3245         }
3246 
3247         RenderScriptRuntime *runtime =
3248                 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
3249 
3250         Error error;
3251         runtime->PlaceBreakpointOnKernel(result.GetOutputStream(), command.GetArgumentAtIndex(0), m_options.m_coord,
3252                                          error, m_exe_ctx.GetTargetSP());
3253 
3254         if (error.Success())
3255         {
3256             result.AppendMessage("Breakpoint(s) created");
3257             result.SetStatus(eReturnStatusSuccessFinishResult);
3258             return true;
3259         }
3260         result.SetStatus(eReturnStatusFailed);
3261         result.AppendErrorWithFormat("Error: %s", error.AsCString());
3262         return false;
3263     }
3264 
3265 private:
3266     CommandOptions m_options;
3267 };
3268 
3269 OptionDefinition
3270 CommandObjectRenderScriptRuntimeKernelBreakpointSet::CommandOptions::g_option_table[] =
3271 {
3272     { LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument, NULL, NULL, 0, eArgTypeValue,
3273       "Set a breakpoint on a single invocation of the kernel with specified coordinate.\n"
3274       "Coordinate takes the form 'x[,y][,z] where x,y,z are positive integers representing kernel dimensions. "
3275       "Any unset dimensions will be defaulted to zero."},
3276     { 0, false, NULL, 0, 0, NULL, NULL, 0, eArgTypeNone, NULL }
3277 };
3278 
3279 class CommandObjectRenderScriptRuntimeKernelBreakpointAll : public CommandObjectParsed
3280 {
3281 public:
3282     CommandObjectRenderScriptRuntimeKernelBreakpointAll(CommandInterpreter &interpreter)
3283         : CommandObjectParsed(interpreter, "renderscript kernel breakpoint all",
3284                               "Automatically sets a breakpoint on all renderscript kernels that are or will be loaded.\n"
3285                               "Disabling option means breakpoints will no longer be set on any kernels loaded in the future, "
3286                               "but does not remove currently set breakpoints.",
3287                               "renderscript kernel breakpoint all <enable/disable>",
3288                               eCommandRequiresProcess | eCommandProcessMustBeLaunched | eCommandProcessMustBePaused)
3289     {
3290     }
3291 
3292     ~CommandObjectRenderScriptRuntimeKernelBreakpointAll() override = default;
3293 
3294     bool
3295     DoExecute(Args &command, CommandReturnObject &result) override
3296     {
3297         const size_t argc = command.GetArgumentCount();
3298         if (argc != 1)
3299         {
3300             result.AppendErrorWithFormat("'%s' takes 1 argument of 'enable' or 'disable'", m_cmd_name.c_str());
3301             result.SetStatus(eReturnStatusFailed);
3302             return false;
3303         }
3304 
3305         RenderScriptRuntime *runtime =
3306           static_cast<RenderScriptRuntime *>(m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
3307 
3308         bool do_break = false;
3309         const char* argument = command.GetArgumentAtIndex(0);
3310         if (strcmp(argument, "enable") == 0)
3311         {
3312             do_break = true;
3313             result.AppendMessage("Breakpoints will be set on all kernels.");
3314         }
3315         else if (strcmp(argument, "disable") == 0)
3316         {
3317             do_break = false;
3318             result.AppendMessage("Breakpoints will not be set on any new kernels.");
3319         }
3320         else
3321         {
3322             result.AppendErrorWithFormat("Argument must be either 'enable' or 'disable'");
3323             result.SetStatus(eReturnStatusFailed);
3324             return false;
3325         }
3326 
3327         runtime->SetBreakAllKernels(do_break, m_exe_ctx.GetTargetSP());
3328 
3329         result.SetStatus(eReturnStatusSuccessFinishResult);
3330         return true;
3331     }
3332 };
3333 
3334 class CommandObjectRenderScriptRuntimeKernelBreakpoint : public CommandObjectMultiword
3335 {
3336 public:
3337     CommandObjectRenderScriptRuntimeKernelBreakpoint(CommandInterpreter &interpreter)
3338         : CommandObjectMultiword(interpreter, "renderscript kernel", "Commands that generate breakpoints on renderscript kernels.",
3339                                  nullptr)
3340     {
3341         LoadSubCommand("set", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointSet(interpreter)));
3342         LoadSubCommand("all", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointAll(interpreter)));
3343     }
3344 
3345     ~CommandObjectRenderScriptRuntimeKernelBreakpoint() override = default;
3346 };
3347 
3348 class CommandObjectRenderScriptRuntimeKernel : public CommandObjectMultiword
3349 {
3350 public:
3351     CommandObjectRenderScriptRuntimeKernel(CommandInterpreter &interpreter)
3352         : CommandObjectMultiword(interpreter, "renderscript kernel", "Commands that deal with renderscript kernels.",
3353                                  NULL)
3354     {
3355         LoadSubCommand("list", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelList(interpreter)));
3356         LoadSubCommand("breakpoint", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpoint(interpreter)));
3357     }
3358 
3359     ~CommandObjectRenderScriptRuntimeKernel() override = default;
3360 };
3361 
3362 class CommandObjectRenderScriptRuntimeContextDump : public CommandObjectParsed
3363 {
3364 public:
3365     CommandObjectRenderScriptRuntimeContextDump(CommandInterpreter &interpreter)
3366         : CommandObjectParsed(interpreter, "renderscript context dump",
3367                               "Dumps renderscript context information.", "renderscript context dump",
3368                               eCommandRequiresProcess | eCommandProcessMustBeLaunched)
3369     {
3370     }
3371 
3372     ~CommandObjectRenderScriptRuntimeContextDump() override = default;
3373 
3374     bool
3375     DoExecute(Args &command, CommandReturnObject &result) override
3376     {
3377         RenderScriptRuntime *runtime =
3378             (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
3379         runtime->DumpContexts(result.GetOutputStream());
3380         result.SetStatus(eReturnStatusSuccessFinishResult);
3381         return true;
3382     }
3383 };
3384 
3385 class CommandObjectRenderScriptRuntimeContext : public CommandObjectMultiword
3386 {
3387 public:
3388     CommandObjectRenderScriptRuntimeContext(CommandInterpreter &interpreter)
3389         : CommandObjectMultiword(interpreter, "renderscript context", "Commands that deal with renderscript contexts.",
3390                                  NULL)
3391     {
3392         LoadSubCommand("dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeContextDump(interpreter)));
3393     }
3394 
3395     ~CommandObjectRenderScriptRuntimeContext() override = default;
3396 };
3397 
3398 class CommandObjectRenderScriptRuntimeAllocationDump : public CommandObjectParsed
3399 {
3400 public:
3401     CommandObjectRenderScriptRuntimeAllocationDump(CommandInterpreter &interpreter)
3402         : CommandObjectParsed(interpreter, "renderscript allocation dump",
3403                               "Displays the contents of a particular allocation", "renderscript allocation dump <ID>",
3404                               eCommandRequiresProcess | eCommandProcessMustBeLaunched), m_options(interpreter)
3405     {
3406     }
3407 
3408     ~CommandObjectRenderScriptRuntimeAllocationDump() override = default;
3409 
3410     Options*
3411     GetOptions() override
3412     {
3413         return &m_options;
3414     }
3415 
3416     class CommandOptions : public Options
3417     {
3418     public:
3419         CommandOptions(CommandInterpreter &interpreter) : Options(interpreter)
3420         {
3421         }
3422 
3423         ~CommandOptions() override = default;
3424 
3425         Error
3426         SetOptionValue(uint32_t option_idx, const char *option_arg) override
3427         {
3428             Error error;
3429             const int short_option = m_getopt_table[option_idx].val;
3430 
3431             switch (short_option)
3432             {
3433                 case 'f':
3434                     m_outfile.SetFile(option_arg, true);
3435                     if (m_outfile.Exists())
3436                     {
3437                         m_outfile.Clear();
3438                         error.SetErrorStringWithFormat("file already exists: '%s'", option_arg);
3439                     }
3440                     break;
3441                 default:
3442                     error.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
3443                     break;
3444             }
3445             return error;
3446         }
3447 
3448         void
3449         OptionParsingStarting() override
3450         {
3451             m_outfile.Clear();
3452         }
3453 
3454         const OptionDefinition*
3455         GetDefinitions() override
3456         {
3457             return g_option_table;
3458         }
3459 
3460         static OptionDefinition g_option_table[];
3461         FileSpec m_outfile;
3462     };
3463 
3464     bool
3465     DoExecute(Args &command, CommandReturnObject &result) override
3466     {
3467         const size_t argc = command.GetArgumentCount();
3468         if (argc < 1)
3469         {
3470             result.AppendErrorWithFormat("'%s' takes 1 argument, an allocation ID. As well as an optional -f argument",
3471                                          m_cmd_name.c_str());
3472             result.SetStatus(eReturnStatusFailed);
3473             return false;
3474         }
3475 
3476         RenderScriptRuntime *runtime =
3477           static_cast<RenderScriptRuntime *>(m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
3478 
3479         const char* id_cstr = command.GetArgumentAtIndex(0);
3480         bool convert_complete = false;
3481         const uint32_t id = StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete);
3482         if (!convert_complete)
3483         {
3484             result.AppendErrorWithFormat("invalid allocation id argument '%s'", id_cstr);
3485             result.SetStatus(eReturnStatusFailed);
3486             return false;
3487         }
3488 
3489         Stream* output_strm = nullptr;
3490         StreamFile outfile_stream;
3491         const FileSpec &outfile_spec = m_options.m_outfile; // Dump allocation to file instead
3492         if (outfile_spec)
3493         {
3494             // Open output file
3495             char path[256];
3496             outfile_spec.GetPath(path, sizeof(path));
3497             if (outfile_stream.GetFile().Open(path, File::eOpenOptionWrite | File::eOpenOptionCanCreate).Success())
3498             {
3499                 output_strm = &outfile_stream;
3500                 result.GetOutputStream().Printf("Results written to '%s'", path);
3501                 result.GetOutputStream().EOL();
3502             }
3503             else
3504             {
3505                 result.AppendErrorWithFormat("Couldn't open file '%s'", path);
3506                 result.SetStatus(eReturnStatusFailed);
3507                 return false;
3508             }
3509         }
3510         else
3511             output_strm = &result.GetOutputStream();
3512 
3513         assert(output_strm != nullptr);
3514         bool success = runtime->DumpAllocation(*output_strm, m_exe_ctx.GetFramePtr(), id);
3515 
3516         if (success)
3517             result.SetStatus(eReturnStatusSuccessFinishResult);
3518         else
3519             result.SetStatus(eReturnStatusFailed);
3520 
3521         return true;
3522     }
3523 
3524 private:
3525     CommandOptions m_options;
3526 };
3527 
3528 OptionDefinition
3529 CommandObjectRenderScriptRuntimeAllocationDump::CommandOptions::g_option_table[] =
3530 {
3531     { LLDB_OPT_SET_1, false, "file", 'f', OptionParser::eRequiredArgument, NULL, NULL, 0, eArgTypeFilename,
3532       "Print results to specified file instead of command line."},
3533     { 0, false, NULL, 0, 0, NULL, NULL, 0, eArgTypeNone, NULL }
3534 };
3535 
3536 class CommandObjectRenderScriptRuntimeAllocationList : public CommandObjectParsed
3537 {
3538 public:
3539     CommandObjectRenderScriptRuntimeAllocationList(CommandInterpreter &interpreter)
3540         : CommandObjectParsed(interpreter, "renderscript allocation list",
3541                               "List renderscript allocations and their information.", "renderscript allocation list",
3542                               eCommandRequiresProcess | eCommandProcessMustBeLaunched), m_options(interpreter)
3543     {
3544     }
3545 
3546     ~CommandObjectRenderScriptRuntimeAllocationList() override = default;
3547 
3548     Options*
3549     GetOptions() override
3550     {
3551         return &m_options;
3552     }
3553 
3554     class CommandOptions : public Options
3555     {
3556     public:
3557         CommandOptions(CommandInterpreter &interpreter) : Options(interpreter), m_refresh(false)
3558         {
3559         }
3560 
3561         ~CommandOptions() override = default;
3562 
3563         Error
3564         SetOptionValue(uint32_t option_idx, const char *option_arg) override
3565         {
3566             Error error;
3567             const int short_option = m_getopt_table[option_idx].val;
3568 
3569             switch (short_option)
3570             {
3571                 case 'r':
3572                     m_refresh = true;
3573                     break;
3574                 default:
3575                     error.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
3576                     break;
3577             }
3578             return error;
3579         }
3580 
3581         void
3582         OptionParsingStarting() override
3583         {
3584             m_refresh = false;
3585         }
3586 
3587         const OptionDefinition*
3588         GetDefinitions() override
3589         {
3590             return g_option_table;
3591         }
3592 
3593         static OptionDefinition g_option_table[];
3594         bool m_refresh;
3595     };
3596 
3597     bool
3598     DoExecute(Args &command, CommandReturnObject &result) override
3599     {
3600         RenderScriptRuntime *runtime =
3601           static_cast<RenderScriptRuntime *>(m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
3602         runtime->ListAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr(), m_options.m_refresh);
3603         result.SetStatus(eReturnStatusSuccessFinishResult);
3604         return true;
3605     }
3606 
3607 private:
3608     CommandOptions m_options;
3609 };
3610 
3611 OptionDefinition
3612 CommandObjectRenderScriptRuntimeAllocationList::CommandOptions::g_option_table[] =
3613 {
3614     { LLDB_OPT_SET_1, false, "refresh", 'r', OptionParser::eNoArgument, NULL, NULL, 0, eArgTypeNone,
3615       "Recompute allocation details."},
3616     { 0, false, NULL, 0, 0, NULL, NULL, 0, eArgTypeNone, NULL }
3617 };
3618 
3619 class CommandObjectRenderScriptRuntimeAllocationLoad : public CommandObjectParsed
3620 {
3621 public:
3622     CommandObjectRenderScriptRuntimeAllocationLoad(CommandInterpreter &interpreter)
3623         : CommandObjectParsed(interpreter, "renderscript allocation load",
3624                               "Loads renderscript allocation contents from a file.", "renderscript allocation load <ID> <filename>",
3625                               eCommandRequiresProcess | eCommandProcessMustBeLaunched)
3626     {
3627     }
3628 
3629     ~CommandObjectRenderScriptRuntimeAllocationLoad() override = default;
3630 
3631     bool
3632     DoExecute(Args &command, CommandReturnObject &result) override
3633     {
3634         const size_t argc = command.GetArgumentCount();
3635         if (argc != 2)
3636         {
3637             result.AppendErrorWithFormat("'%s' takes 2 arguments, an allocation ID and filename to read from.", m_cmd_name.c_str());
3638             result.SetStatus(eReturnStatusFailed);
3639             return false;
3640         }
3641 
3642         RenderScriptRuntime *runtime =
3643           static_cast<RenderScriptRuntime *>(m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
3644 
3645         const char* id_cstr = command.GetArgumentAtIndex(0);
3646         bool convert_complete = false;
3647         const uint32_t id = StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete);
3648         if (!convert_complete)
3649         {
3650             result.AppendErrorWithFormat ("invalid allocation id argument '%s'", id_cstr);
3651             result.SetStatus (eReturnStatusFailed);
3652             return false;
3653         }
3654 
3655         const char* filename = command.GetArgumentAtIndex(1);
3656         bool success = runtime->LoadAllocation(result.GetOutputStream(), id, filename, m_exe_ctx.GetFramePtr());
3657 
3658         if (success)
3659             result.SetStatus(eReturnStatusSuccessFinishResult);
3660         else
3661             result.SetStatus(eReturnStatusFailed);
3662 
3663         return true;
3664     }
3665 };
3666 
3667 class CommandObjectRenderScriptRuntimeAllocationSave : public CommandObjectParsed
3668 {
3669 public:
3670     CommandObjectRenderScriptRuntimeAllocationSave(CommandInterpreter &interpreter)
3671         : CommandObjectParsed(interpreter, "renderscript allocation save",
3672                               "Write renderscript allocation contents to a file.", "renderscript allocation save <ID> <filename>",
3673                               eCommandRequiresProcess | eCommandProcessMustBeLaunched)
3674     {
3675     }
3676 
3677     ~CommandObjectRenderScriptRuntimeAllocationSave() override = default;
3678 
3679     bool
3680     DoExecute(Args &command, CommandReturnObject &result) override
3681     {
3682         const size_t argc = command.GetArgumentCount();
3683         if (argc != 2)
3684         {
3685             result.AppendErrorWithFormat("'%s' takes 2 arguments, an allocation ID and filename to read from.", m_cmd_name.c_str());
3686             result.SetStatus(eReturnStatusFailed);
3687             return false;
3688         }
3689 
3690         RenderScriptRuntime *runtime =
3691           static_cast<RenderScriptRuntime *>(m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
3692 
3693         const char* id_cstr = command.GetArgumentAtIndex(0);
3694         bool convert_complete = false;
3695         const uint32_t id = StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete);
3696         if (!convert_complete)
3697         {
3698             result.AppendErrorWithFormat ("invalid allocation id argument '%s'", id_cstr);
3699             result.SetStatus (eReturnStatusFailed);
3700             return false;
3701         }
3702 
3703         const char* filename = command.GetArgumentAtIndex(1);
3704         bool success = runtime->SaveAllocation(result.GetOutputStream(), id, filename, m_exe_ctx.GetFramePtr());
3705 
3706         if (success)
3707             result.SetStatus(eReturnStatusSuccessFinishResult);
3708         else
3709             result.SetStatus(eReturnStatusFailed);
3710 
3711         return true;
3712     }
3713 };
3714 
3715 class CommandObjectRenderScriptRuntimeAllocation : public CommandObjectMultiword
3716 {
3717 public:
3718     CommandObjectRenderScriptRuntimeAllocation(CommandInterpreter &interpreter)
3719         : CommandObjectMultiword(interpreter, "renderscript allocation", "Commands that deal with renderscript allocations.",
3720                                  NULL)
3721     {
3722         LoadSubCommand("list", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationList(interpreter)));
3723         LoadSubCommand("dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationDump(interpreter)));
3724         LoadSubCommand("save", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationSave(interpreter)));
3725         LoadSubCommand("load", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationLoad(interpreter)));
3726     }
3727 
3728     ~CommandObjectRenderScriptRuntimeAllocation() override = default;
3729 };
3730 
3731 class CommandObjectRenderScriptRuntimeStatus : public CommandObjectParsed
3732 {
3733 public:
3734     CommandObjectRenderScriptRuntimeStatus(CommandInterpreter &interpreter)
3735         : CommandObjectParsed(interpreter, "renderscript status",
3736                               "Displays current renderscript runtime status.", "renderscript status",
3737                               eCommandRequiresProcess | eCommandProcessMustBeLaunched)
3738     {
3739     }
3740 
3741     ~CommandObjectRenderScriptRuntimeStatus() override = default;
3742 
3743     bool
3744     DoExecute(Args &command, CommandReturnObject &result) override
3745     {
3746         RenderScriptRuntime *runtime =
3747             (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
3748         runtime->Status(result.GetOutputStream());
3749         result.SetStatus(eReturnStatusSuccessFinishResult);
3750         return true;
3751     }
3752 };
3753 
3754 class CommandObjectRenderScriptRuntime : public CommandObjectMultiword
3755 {
3756 public:
3757     CommandObjectRenderScriptRuntime(CommandInterpreter &interpreter)
3758         : CommandObjectMultiword(interpreter, "renderscript", "A set of commands for operating on renderscript.",
3759                                  "renderscript <subcommand> [<subcommand-options>]")
3760     {
3761         LoadSubCommand("module", CommandObjectSP(new CommandObjectRenderScriptRuntimeModule(interpreter)));
3762         LoadSubCommand("status", CommandObjectSP(new CommandObjectRenderScriptRuntimeStatus(interpreter)));
3763         LoadSubCommand("kernel", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernel(interpreter)));
3764         LoadSubCommand("context", CommandObjectSP(new CommandObjectRenderScriptRuntimeContext(interpreter)));
3765         LoadSubCommand("allocation", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocation(interpreter)));
3766     }
3767 
3768     ~CommandObjectRenderScriptRuntime() override = default;
3769 };
3770 
3771 void
3772 RenderScriptRuntime::Initiate()
3773 {
3774     assert(!m_initiated);
3775 }
3776 
3777 RenderScriptRuntime::RenderScriptRuntime(Process *process)
3778     : lldb_private::CPPLanguageRuntime(process), m_initiated(false), m_debuggerPresentFlagged(false),
3779       m_breakAllKernels(false)
3780 {
3781     ModulesDidLoad(process->GetTarget().GetImages());
3782 }
3783 
3784 lldb::CommandObjectSP
3785 RenderScriptRuntime::GetCommandObject(lldb_private::CommandInterpreter& interpreter)
3786 {
3787     static CommandObjectSP command_object;
3788     if(!command_object)
3789     {
3790         command_object.reset(new CommandObjectRenderScriptRuntime(interpreter));
3791     }
3792     return command_object;
3793 }
3794 
3795 RenderScriptRuntime::~RenderScriptRuntime() = default;
3796