1 //===-- RenderScriptRuntime.cpp ---------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 // C Includes 11 // C++ Includes 12 // Other libraries and framework includes 13 // Project includes 14 #include "RenderScriptRuntime.h" 15 16 #include "lldb/Breakpoint/StoppointCallbackContext.h" 17 #include "lldb/Core/ConstString.h" 18 #include "lldb/Core/Debugger.h" 19 #include "lldb/Core/Error.h" 20 #include "lldb/Core/Log.h" 21 #include "lldb/Core/PluginManager.h" 22 #include "lldb/Core/RegularExpression.h" 23 #include "lldb/Core/ValueObjectVariable.h" 24 #include "lldb/DataFormatters/DumpValueObjectOptions.h" 25 #include "lldb/Expression/UserExpression.h" 26 #include "lldb/Host/StringConvert.h" 27 #include "lldb/Interpreter/Args.h" 28 #include "lldb/Interpreter/CommandInterpreter.h" 29 #include "lldb/Interpreter/CommandObjectMultiword.h" 30 #include "lldb/Interpreter/CommandReturnObject.h" 31 #include "lldb/Interpreter/Options.h" 32 #include "lldb/Symbol/Symbol.h" 33 #include "lldb/Symbol/Type.h" 34 #include "lldb/Symbol/VariableList.h" 35 #include "lldb/Target/Process.h" 36 #include "lldb/Target/RegisterContext.h" 37 #include "lldb/Target/Target.h" 38 #include "lldb/Target/Thread.h" 39 40 using namespace lldb; 41 using namespace lldb_private; 42 using namespace lldb_renderscript; 43 44 namespace 45 { 46 47 // The empirical_type adds a basic level of validation to arbitrary data 48 // allowing us to track if data has been discovered and stored or not. 49 // An empirical_type will be marked as valid only if it has been explicitly assigned to. 50 template <typename type_t> class empirical_type 51 { 52 public: 53 // Ctor. Contents is invalid when constructed. 54 empirical_type() : valid(false) {} 55 56 // Return true and copy contents to out if valid, else return false. 57 bool 58 get(type_t &out) const 59 { 60 if (valid) 61 out = data; 62 return valid; 63 } 64 65 // Return a pointer to the contents or nullptr if it was not valid. 66 const type_t * 67 get() const 68 { 69 return valid ? &data : nullptr; 70 } 71 72 // Assign data explicitly. 73 void 74 set(const type_t in) 75 { 76 data = in; 77 valid = true; 78 } 79 80 // Mark contents as invalid. 81 void 82 invalidate() 83 { 84 valid = false; 85 } 86 87 // Returns true if this type contains valid data. 88 bool 89 isValid() const 90 { 91 return valid; 92 } 93 94 // Assignment operator. 95 empirical_type<type_t> & 96 operator=(const type_t in) 97 { 98 set(in); 99 return *this; 100 } 101 102 // Dereference operator returns contents. 103 // Warning: Will assert if not valid so use only when you know data is valid. 104 const type_t &operator*() const 105 { 106 assert(valid); 107 return data; 108 } 109 110 protected: 111 bool valid; 112 type_t data; 113 }; 114 115 // ArgItem is used by the GetArgs() function when reading function arguments from the target. 116 struct ArgItem 117 { 118 enum 119 { 120 ePointer, 121 eInt32, 122 eInt64, 123 eLong, 124 eBool 125 } type; 126 127 uint64_t value; 128 129 explicit operator uint64_t() const { return value; } 130 }; 131 132 // Context structure to be passed into GetArgsXXX(), argument reading functions below. 133 struct GetArgsCtx 134 { 135 RegisterContext *reg_ctx; 136 Process *process; 137 }; 138 139 bool 140 GetArgsX86(const GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) 141 { 142 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 143 144 // get the current stack pointer 145 uint64_t sp = ctx.reg_ctx->GetSP(); 146 147 for (size_t i = 0; i < num_args; ++i) 148 { 149 ArgItem &arg = arg_list[i]; 150 // advance up the stack by one argument 151 sp += sizeof(uint32_t); 152 // get the argument type size 153 size_t arg_size = sizeof(uint32_t); 154 // read the argument from memory 155 arg.value = 0; 156 Error error; 157 size_t read = ctx.process->ReadMemory(sp, &arg.value, sizeof(uint32_t), error); 158 if (read != arg_size || !error.Success()) 159 { 160 if (log) 161 log->Printf("%s - error reading argument: %" PRIu64 " '%s'", __FUNCTION__, uint64_t(i), 162 error.AsCString()); 163 return false; 164 } 165 } 166 return true; 167 } 168 169 bool 170 GetArgsX86_64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) 171 { 172 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 173 174 // number of arguments passed in registers 175 static const uint32_t c_args_in_reg = 6; 176 // register passing order 177 static const std::array<const char *, c_args_in_reg> c_reg_names{{"rdi", "rsi", "rdx", "rcx", "r8", "r9"}}; 178 // argument type to size mapping 179 static const std::array<size_t, 5> arg_size{{ 180 8, // ePointer, 181 4, // eInt32, 182 8, // eInt64, 183 8, // eLong, 184 4, // eBool, 185 }}; 186 187 // get the current stack pointer 188 uint64_t sp = ctx.reg_ctx->GetSP(); 189 // step over the return address 190 sp += sizeof(uint64_t); 191 192 // check the stack alignment was correct (16 byte aligned) 193 if ((sp & 0xf) != 0x0) 194 { 195 if (log) 196 log->Printf("%s - stack misaligned", __FUNCTION__); 197 return false; 198 } 199 200 // find the start of arguments on the stack 201 uint64_t sp_offset = 0; 202 for (uint32_t i = c_args_in_reg; i < num_args; ++i) 203 { 204 sp_offset += arg_size[arg_list[i].type]; 205 } 206 // round up to multiple of 16 207 sp_offset = (sp_offset + 0xf) & 0xf; 208 sp += sp_offset; 209 210 for (size_t i = 0; i < num_args; ++i) 211 { 212 bool success = false; 213 ArgItem &arg = arg_list[i]; 214 // arguments passed in registers 215 if (i < c_args_in_reg) 216 { 217 const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoByName(c_reg_names[i]); 218 RegisterValue rVal; 219 if (ctx.reg_ctx->ReadRegister(rArg, rVal)) 220 arg.value = rVal.GetAsUInt64(0, &success); 221 } 222 // arguments passed on the stack 223 else 224 { 225 // get the argument type size 226 const size_t size = arg_size[arg_list[i].type]; 227 // read the argument from memory 228 arg.value = 0; 229 // note: due to little endian layout reading 4 or 8 bytes will give the correct value. 230 Error error; 231 size_t read = ctx.process->ReadMemory(sp, &arg.value, size, error); 232 success = (error.Success() && read==size); 233 // advance past this argument 234 sp -= size; 235 } 236 // fail if we couldn't read this argument 237 if (!success) 238 { 239 if (log) 240 log->Printf("%s - error reading argument: %" PRIu64, __FUNCTION__, uint64_t(i)); 241 return false; 242 } 243 } 244 return true; 245 } 246 247 bool 248 GetArgsArm(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) 249 { 250 // number of arguments passed in registers 251 static const uint32_t c_args_in_reg = 4; 252 253 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 254 255 // get the current stack pointer 256 uint64_t sp = ctx.reg_ctx->GetSP(); 257 258 for (size_t i = 0; i < num_args; ++i) 259 { 260 bool success = false; 261 ArgItem &arg = arg_list[i]; 262 // arguments passed in registers 263 if (i < c_args_in_reg) 264 { 265 const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoAtIndex(i); 266 RegisterValue rVal; 267 if (ctx.reg_ctx->ReadRegister(rArg, rVal)) 268 arg.value = rVal.GetAsUInt32(0, &success); 269 } 270 // arguments passed on the stack 271 else 272 { 273 // get the argument type size 274 const size_t arg_size = sizeof(uint32_t); 275 // clear all 64bits 276 arg.value = 0; 277 // read this argument from memory 278 Error error; 279 size_t bytes_read = ctx.process->ReadMemory(sp, &arg.value, arg_size, error); 280 success = (error.Success() && bytes_read == arg_size); 281 // advance the stack pointer 282 sp += sizeof(uint32_t); 283 } 284 // fail if we couldn't read this argument 285 if (!success) 286 { 287 if (log) 288 log->Printf("%s - error reading argument: %" PRIu64, __FUNCTION__, uint64_t(i)); 289 return false; 290 } 291 } 292 return true; 293 } 294 295 bool 296 GetArgsAarch64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) 297 { 298 // number of arguments passed in registers 299 static const uint32_t c_args_in_reg = 8; 300 301 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 302 303 for (size_t i = 0; i < num_args; ++i) 304 { 305 bool success = false; 306 ArgItem &arg = arg_list[i]; 307 // arguments passed in registers 308 if (i < c_args_in_reg) 309 { 310 const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoAtIndex(i); 311 RegisterValue rVal; 312 if (ctx.reg_ctx->ReadRegister(rArg, rVal)) 313 arg.value = rVal.GetAsUInt64(0, &success); 314 } 315 // arguments passed on the stack 316 else 317 { 318 if (log) 319 log->Printf("%s - reading arguments spilled to stack not implemented", __FUNCTION__); 320 } 321 // fail if we couldn't read this argument 322 if (!success) 323 { 324 if (log) 325 log->Printf("%s - error reading argument: %" PRIu64, __FUNCTION__, 326 uint64_t(i)); 327 return false; 328 } 329 } 330 return true; 331 } 332 333 bool 334 GetArgsMipsel(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) 335 { 336 // number of arguments passed in registers 337 static const uint32_t c_args_in_reg = 4; 338 // register file offset to first argument 339 static const uint32_t c_reg_offset = 4; 340 341 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 342 343 for (size_t i = 0; i < num_args; ++i) 344 { 345 bool success = false; 346 ArgItem &arg = arg_list[i]; 347 // arguments passed in registers 348 if (i < c_args_in_reg) 349 { 350 const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoAtIndex(i + c_reg_offset); 351 RegisterValue rVal; 352 if (ctx.reg_ctx->ReadRegister(rArg, rVal)) 353 arg.value = rVal.GetAsUInt64(0, &success); 354 } 355 // arguments passed on the stack 356 else 357 { 358 if (log) 359 log->Printf("%s - reading arguments spilled to stack not implemented.", __FUNCTION__); 360 } 361 // fail if we couldn't read this argument 362 if (!success) 363 { 364 if (log) 365 log->Printf("%s - error reading argument: %" PRIu64, __FUNCTION__, uint64_t(i)); 366 return false; 367 } 368 } 369 return true; 370 } 371 372 bool 373 GetArgsMips64el(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) 374 { 375 // number of arguments passed in registers 376 static const uint32_t c_args_in_reg = 8; 377 // register file offset to first argument 378 static const uint32_t c_reg_offset = 4; 379 380 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 381 382 // get the current stack pointer 383 uint64_t sp = ctx.reg_ctx->GetSP(); 384 385 for (size_t i = 0; i < num_args; ++i) 386 { 387 bool success = false; 388 ArgItem &arg = arg_list[i]; 389 // arguments passed in registers 390 if (i < c_args_in_reg) 391 { 392 const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoAtIndex(i + c_reg_offset); 393 RegisterValue rVal; 394 if (ctx.reg_ctx->ReadRegister(rArg, rVal)) 395 arg.value = rVal.GetAsUInt64(0, &success); 396 } 397 // arguments passed on the stack 398 else 399 { 400 // get the argument type size 401 const size_t arg_size = sizeof(uint64_t); 402 // clear all 64bits 403 arg.value = 0; 404 // read this argument from memory 405 Error error; 406 size_t bytes_read = ctx.process->ReadMemory(sp, &arg.value, arg_size, error); 407 success = (error.Success() && bytes_read == arg_size); 408 // advance the stack pointer 409 sp += arg_size; 410 } 411 // fail if we couldn't read this argument 412 if (!success) 413 { 414 if (log) 415 log->Printf("%s - error reading argument: %" PRIu64, __FUNCTION__, uint64_t(i)); 416 return false; 417 } 418 } 419 return true; 420 } 421 422 bool 423 GetArgs(ExecutionContext &context, ArgItem *arg_list, size_t num_args) 424 { 425 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 426 427 // verify that we have a target 428 if (!context.GetTargetPtr()) 429 { 430 if (log) 431 log->Printf("%s - invalid target", __FUNCTION__); 432 return false; 433 } 434 435 GetArgsCtx ctx = {context.GetRegisterContext(), context.GetProcessPtr()}; 436 assert(ctx.reg_ctx && ctx.process); 437 438 // dispatch based on architecture 439 switch (context.GetTargetPtr()->GetArchitecture().GetMachine()) 440 { 441 case llvm::Triple::ArchType::x86: 442 return GetArgsX86(ctx, arg_list, num_args); 443 444 case llvm::Triple::ArchType::x86_64: 445 return GetArgsX86_64(ctx, arg_list, num_args); 446 447 case llvm::Triple::ArchType::arm: 448 return GetArgsArm(ctx, arg_list, num_args); 449 450 case llvm::Triple::ArchType::aarch64: 451 return GetArgsAarch64(ctx, arg_list, num_args); 452 453 case llvm::Triple::ArchType::mipsel: 454 return GetArgsMipsel(ctx, arg_list, num_args); 455 456 case llvm::Triple::ArchType::mips64el: 457 return GetArgsMips64el(ctx, arg_list, num_args); 458 459 default: 460 // unsupported architecture 461 if (log) 462 { 463 log->Printf("%s - architecture not supported: '%s'", __FUNCTION__, 464 context.GetTargetRef().GetArchitecture().GetArchitectureName()); 465 } 466 return false; 467 } 468 } 469 } // anonymous namespace 470 471 // The ScriptDetails class collects data associated with a single script instance. 472 struct RenderScriptRuntime::ScriptDetails 473 { 474 ~ScriptDetails() = default; 475 476 enum ScriptType 477 { 478 eScript, 479 eScriptC 480 }; 481 482 // The derived type of the script. 483 empirical_type<ScriptType> type; 484 // The name of the original source file. 485 empirical_type<std::string> resName; 486 // Path to script .so file on the device. 487 empirical_type<std::string> scriptDyLib; 488 // Directory where kernel objects are cached on device. 489 empirical_type<std::string> cacheDir; 490 // Pointer to the context which owns this script. 491 empirical_type<lldb::addr_t> context; 492 // Pointer to the script object itself. 493 empirical_type<lldb::addr_t> script; 494 }; 495 496 // This Element class represents the Element object in RS, 497 // defining the type associated with an Allocation. 498 struct RenderScriptRuntime::Element 499 { 500 // Taken from rsDefines.h 501 enum DataKind 502 { 503 RS_KIND_USER, 504 RS_KIND_PIXEL_L = 7, 505 RS_KIND_PIXEL_A, 506 RS_KIND_PIXEL_LA, 507 RS_KIND_PIXEL_RGB, 508 RS_KIND_PIXEL_RGBA, 509 RS_KIND_PIXEL_DEPTH, 510 RS_KIND_PIXEL_YUV, 511 RS_KIND_INVALID = 100 512 }; 513 514 // Taken from rsDefines.h 515 enum DataType 516 { 517 RS_TYPE_NONE = 0, 518 RS_TYPE_FLOAT_16, 519 RS_TYPE_FLOAT_32, 520 RS_TYPE_FLOAT_64, 521 RS_TYPE_SIGNED_8, 522 RS_TYPE_SIGNED_16, 523 RS_TYPE_SIGNED_32, 524 RS_TYPE_SIGNED_64, 525 RS_TYPE_UNSIGNED_8, 526 RS_TYPE_UNSIGNED_16, 527 RS_TYPE_UNSIGNED_32, 528 RS_TYPE_UNSIGNED_64, 529 RS_TYPE_BOOLEAN, 530 531 RS_TYPE_UNSIGNED_5_6_5, 532 RS_TYPE_UNSIGNED_5_5_5_1, 533 RS_TYPE_UNSIGNED_4_4_4_4, 534 535 RS_TYPE_MATRIX_4X4, 536 RS_TYPE_MATRIX_3X3, 537 RS_TYPE_MATRIX_2X2, 538 539 RS_TYPE_ELEMENT = 1000, 540 RS_TYPE_TYPE, 541 RS_TYPE_ALLOCATION, 542 RS_TYPE_SAMPLER, 543 RS_TYPE_SCRIPT, 544 RS_TYPE_MESH, 545 RS_TYPE_PROGRAM_FRAGMENT, 546 RS_TYPE_PROGRAM_VERTEX, 547 RS_TYPE_PROGRAM_RASTER, 548 RS_TYPE_PROGRAM_STORE, 549 RS_TYPE_FONT, 550 551 RS_TYPE_INVALID = 10000 552 }; 553 554 std::vector<Element> children; // Child Element fields for structs 555 empirical_type<lldb::addr_t> element_ptr; // Pointer to the RS Element of the Type 556 empirical_type<DataType> type; // Type of each data pointer stored by the allocation 557 empirical_type<DataKind> type_kind; // Defines pixel type if Allocation is created from an image 558 empirical_type<uint32_t> type_vec_size; // Vector size of each data point, e.g '4' for uchar4 559 empirical_type<uint32_t> field_count; // Number of Subelements 560 empirical_type<uint32_t> datum_size; // Size of a single Element with padding 561 empirical_type<uint32_t> padding; // Number of padding bytes 562 empirical_type<uint32_t> array_size; // Number of items in array, only needed for strucrs 563 ConstString type_name; // Name of type, only needed for structs 564 565 static const ConstString & 566 GetFallbackStructName(); // Print this as the type name of a struct Element 567 // If we can't resolve the actual struct name 568 569 bool 570 shouldRefresh() const 571 { 572 const bool valid_ptr = element_ptr.isValid() && *element_ptr.get() != 0x0; 573 const bool valid_type = type.isValid() && type_vec_size.isValid() && type_kind.isValid(); 574 return !valid_ptr || !valid_type || !datum_size.isValid(); 575 } 576 }; 577 578 // This AllocationDetails class collects data associated with a single 579 // allocation instance. 580 struct RenderScriptRuntime::AllocationDetails 581 { 582 struct Dimension 583 { 584 uint32_t dim_1; 585 uint32_t dim_2; 586 uint32_t dim_3; 587 uint32_t cubeMap; 588 589 Dimension() 590 { 591 dim_1 = 0; 592 dim_2 = 0; 593 dim_3 = 0; 594 cubeMap = 0; 595 } 596 }; 597 598 // The FileHeader struct specifies the header we use for writing allocations to a binary file. 599 // Our format begins with the ASCII characters "RSAD", identifying the file as an allocation dump. 600 // Member variables dims and hdr_size are then written consecutively, immediately followed by an instance of 601 // the ElementHeader struct. Because Elements can contain subelements, there may be more than one instance 602 // of the ElementHeader struct. With this first instance being the root element, and the other instances being 603 // the root's descendants. To identify which instances are an ElementHeader's children, each struct 604 // is immediately followed by a sequence of consecutive offsets to the start of its child structs. 605 // These offsets are 4 bytes in size, and the 0 offset signifies no more children. 606 struct FileHeader 607 { 608 uint8_t ident[4]; // ASCII 'RSAD' identifying the file 609 uint32_t dims[3]; // Dimensions 610 uint16_t hdr_size; // Header size in bytes, including all element headers 611 }; 612 613 struct ElementHeader 614 { 615 uint16_t type; // DataType enum 616 uint32_t kind; // DataKind enum 617 uint32_t element_size; // Size of a single element, including padding 618 uint16_t vector_size; // Vector width 619 uint32_t array_size; // Number of elements in array 620 }; 621 622 // Monotonically increasing from 1 623 static uint32_t ID; 624 625 // Maps Allocation DataType enum and vector size to printable strings 626 // using mapping from RenderScript numerical types summary documentation 627 static const char *RsDataTypeToString[][4]; 628 629 // Maps Allocation DataKind enum to printable strings 630 static const char *RsDataKindToString[]; 631 632 // Maps allocation types to format sizes for printing. 633 static const uint32_t RSTypeToFormat[][3]; 634 635 // Give each allocation an ID as a way 636 // for commands to reference it. 637 const uint32_t id; 638 639 RenderScriptRuntime::Element element; // Allocation Element type 640 empirical_type<Dimension> dimension; // Dimensions of the Allocation 641 empirical_type<lldb::addr_t> address; // Pointer to address of the RS Allocation 642 empirical_type<lldb::addr_t> data_ptr; // Pointer to the data held by the Allocation 643 empirical_type<lldb::addr_t> type_ptr; // Pointer to the RS Type of the Allocation 644 empirical_type<lldb::addr_t> context; // Pointer to the RS Context of the Allocation 645 empirical_type<uint32_t> size; // Size of the allocation 646 empirical_type<uint32_t> stride; // Stride between rows of the allocation 647 648 // Give each allocation an id, so we can reference it in user commands. 649 AllocationDetails() : id(ID++) {} 650 651 bool 652 shouldRefresh() const 653 { 654 bool valid_ptrs = data_ptr.isValid() && *data_ptr.get() != 0x0; 655 valid_ptrs = valid_ptrs && type_ptr.isValid() && *type_ptr.get() != 0x0; 656 return !valid_ptrs || !dimension.isValid() || !size.isValid() || element.shouldRefresh(); 657 } 658 }; 659 660 const ConstString & 661 RenderScriptRuntime::Element::GetFallbackStructName() 662 { 663 static const ConstString FallbackStructName("struct"); 664 return FallbackStructName; 665 } 666 667 uint32_t RenderScriptRuntime::AllocationDetails::ID = 1; 668 669 const char *RenderScriptRuntime::AllocationDetails::RsDataKindToString[] = { 670 "User", 671 "Undefined", "Undefined", "Undefined", "Undefined", "Undefined", "Undefined", // Enum jumps from 0 to 7 672 "L Pixel", "A Pixel", "LA Pixel", "RGB Pixel", 673 "RGBA Pixel", "Pixel Depth", "YUV Pixel"}; 674 675 const char *RenderScriptRuntime::AllocationDetails::RsDataTypeToString[][4] = { 676 {"None", "None", "None", "None"}, 677 {"half", "half2", "half3", "half4"}, 678 {"float", "float2", "float3", "float4"}, 679 {"double", "double2", "double3", "double4"}, 680 {"char", "char2", "char3", "char4"}, 681 {"short", "short2", "short3", "short4"}, 682 {"int", "int2", "int3", "int4"}, 683 {"long", "long2", "long3", "long4"}, 684 {"uchar", "uchar2", "uchar3", "uchar4"}, 685 {"ushort", "ushort2", "ushort3", "ushort4"}, 686 {"uint", "uint2", "uint3", "uint4"}, 687 {"ulong", "ulong2", "ulong3", "ulong4"}, 688 {"bool", "bool2", "bool3", "bool4"}, 689 {"packed_565", "packed_565", "packed_565", "packed_565"}, 690 {"packed_5551", "packed_5551", "packed_5551", "packed_5551"}, 691 {"packed_4444", "packed_4444", "packed_4444", "packed_4444"}, 692 {"rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4"}, 693 {"rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3"}, 694 {"rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2"}, 695 696 // Handlers 697 {"RS Element", "RS Element", "RS Element", "RS Element"}, 698 {"RS Type", "RS Type", "RS Type", "RS Type"}, 699 {"RS Allocation", "RS Allocation", "RS Allocation", "RS Allocation"}, 700 {"RS Sampler", "RS Sampler", "RS Sampler", "RS Sampler"}, 701 {"RS Script", "RS Script", "RS Script", "RS Script"}, 702 703 // Deprecated 704 {"RS Mesh", "RS Mesh", "RS Mesh", "RS Mesh"}, 705 {"RS Program Fragment", "RS Program Fragment", "RS Program Fragment", "RS Program Fragment"}, 706 {"RS Program Vertex", "RS Program Vertex", "RS Program Vertex", "RS Program Vertex"}, 707 {"RS Program Raster", "RS Program Raster", "RS Program Raster", "RS Program Raster"}, 708 {"RS Program Store", "RS Program Store", "RS Program Store", "RS Program Store"}, 709 {"RS Font", "RS Font", "RS Font", "RS Font"}}; 710 711 // Used as an index into the RSTypeToFormat array elements 712 enum TypeToFormatIndex 713 { 714 eFormatSingle = 0, 715 eFormatVector, 716 eElementSize 717 }; 718 719 // { format enum of single element, format enum of element vector, size of element} 720 const uint32_t RenderScriptRuntime::AllocationDetails::RSTypeToFormat[][3] = { 721 {eFormatHex, eFormatHex, 1}, // RS_TYPE_NONE 722 {eFormatFloat, eFormatVectorOfFloat16, 2}, // RS_TYPE_FLOAT_16 723 {eFormatFloat, eFormatVectorOfFloat32, sizeof(float)}, // RS_TYPE_FLOAT_32 724 {eFormatFloat, eFormatVectorOfFloat64, sizeof(double)}, // RS_TYPE_FLOAT_64 725 {eFormatDecimal, eFormatVectorOfSInt8, sizeof(int8_t)}, // RS_TYPE_SIGNED_8 726 {eFormatDecimal, eFormatVectorOfSInt16, sizeof(int16_t)}, // RS_TYPE_SIGNED_16 727 {eFormatDecimal, eFormatVectorOfSInt32, sizeof(int32_t)}, // RS_TYPE_SIGNED_32 728 {eFormatDecimal, eFormatVectorOfSInt64, sizeof(int64_t)}, // RS_TYPE_SIGNED_64 729 {eFormatDecimal, eFormatVectorOfUInt8, sizeof(uint8_t)}, // RS_TYPE_UNSIGNED_8 730 {eFormatDecimal, eFormatVectorOfUInt16, sizeof(uint16_t)}, // RS_TYPE_UNSIGNED_16 731 {eFormatDecimal, eFormatVectorOfUInt32, sizeof(uint32_t)}, // RS_TYPE_UNSIGNED_32 732 {eFormatDecimal, eFormatVectorOfUInt64, sizeof(uint64_t)}, // RS_TYPE_UNSIGNED_64 733 {eFormatBoolean, eFormatBoolean, 1}, // RS_TYPE_BOOL 734 {eFormatHex, eFormatHex, sizeof(uint16_t)}, // RS_TYPE_UNSIGNED_5_6_5 735 {eFormatHex, eFormatHex, sizeof(uint16_t)}, // RS_TYPE_UNSIGNED_5_5_5_1 736 {eFormatHex, eFormatHex, sizeof(uint16_t)}, // RS_TYPE_UNSIGNED_4_4_4_4 737 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 16}, // RS_TYPE_MATRIX_4X4 738 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 9}, // RS_TYPE_MATRIX_3X3 739 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 4} // RS_TYPE_MATRIX_2X2 740 }; 741 742 const std::string RenderScriptRuntime::s_runtimeExpandSuffix(".expand"); 743 const std::array<const char *, 3> RenderScriptRuntime::s_runtimeCoordVars{{"rsIndex", "p->current.y", "p->current.z"}}; 744 //------------------------------------------------------------------ 745 // Static Functions 746 //------------------------------------------------------------------ 747 LanguageRuntime * 748 RenderScriptRuntime::CreateInstance(Process *process, lldb::LanguageType language) 749 { 750 751 if (language == eLanguageTypeExtRenderScript) 752 return new RenderScriptRuntime(process); 753 else 754 return nullptr; 755 } 756 757 // Callback with a module to search for matching symbols. 758 // We first check that the module contains RS kernels. 759 // Then look for a symbol which matches our kernel name. 760 // The breakpoint address is finally set using the address of this symbol. 761 Searcher::CallbackReturn 762 RSBreakpointResolver::SearchCallback(SearchFilter &filter, SymbolContext &context, Address *, bool) 763 { 764 ModuleSP module = context.module_sp; 765 766 if (!module) 767 return Searcher::eCallbackReturnContinue; 768 769 // Is this a module containing renderscript kernels? 770 if (nullptr == module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), eSymbolTypeData)) 771 return Searcher::eCallbackReturnContinue; 772 773 // Attempt to set a breakpoint on the kernel name symbol within the module library. 774 // If it's not found, it's likely debug info is unavailable - try to set a 775 // breakpoint on <name>.expand. 776 777 const Symbol *kernel_sym = module->FindFirstSymbolWithNameAndType(m_kernel_name, eSymbolTypeCode); 778 if (!kernel_sym) 779 { 780 std::string kernel_name_expanded(m_kernel_name.AsCString()); 781 kernel_name_expanded.append(".expand"); 782 kernel_sym = module->FindFirstSymbolWithNameAndType(ConstString(kernel_name_expanded.c_str()), eSymbolTypeCode); 783 } 784 785 if (kernel_sym) 786 { 787 Address bp_addr = kernel_sym->GetAddress(); 788 if (filter.AddressPasses(bp_addr)) 789 m_breakpoint->AddLocation(bp_addr); 790 } 791 792 return Searcher::eCallbackReturnContinue; 793 } 794 795 void 796 RenderScriptRuntime::Initialize() 797 { 798 PluginManager::RegisterPlugin(GetPluginNameStatic(), "RenderScript language support", CreateInstance, 799 GetCommandObject); 800 } 801 802 void 803 RenderScriptRuntime::Terminate() 804 { 805 PluginManager::UnregisterPlugin(CreateInstance); 806 } 807 808 lldb_private::ConstString 809 RenderScriptRuntime::GetPluginNameStatic() 810 { 811 static ConstString g_name("renderscript"); 812 return g_name; 813 } 814 815 RenderScriptRuntime::ModuleKind 816 RenderScriptRuntime::GetModuleKind(const lldb::ModuleSP &module_sp) 817 { 818 if (module_sp) 819 { 820 // Is this a module containing renderscript kernels? 821 const Symbol *info_sym = module_sp->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), eSymbolTypeData); 822 if (info_sym) 823 { 824 return eModuleKindKernelObj; 825 } 826 827 // Is this the main RS runtime library 828 const ConstString rs_lib("libRS.so"); 829 if (module_sp->GetFileSpec().GetFilename() == rs_lib) 830 { 831 return eModuleKindLibRS; 832 } 833 834 const ConstString rs_driverlib("libRSDriver.so"); 835 if (module_sp->GetFileSpec().GetFilename() == rs_driverlib) 836 { 837 return eModuleKindDriver; 838 } 839 840 const ConstString rs_cpureflib("libRSCpuRef.so"); 841 if (module_sp->GetFileSpec().GetFilename() == rs_cpureflib) 842 { 843 return eModuleKindImpl; 844 } 845 } 846 return eModuleKindIgnored; 847 } 848 849 bool 850 RenderScriptRuntime::IsRenderScriptModule(const lldb::ModuleSP &module_sp) 851 { 852 return GetModuleKind(module_sp) != eModuleKindIgnored; 853 } 854 855 void 856 RenderScriptRuntime::ModulesDidLoad(const ModuleList &module_list) 857 { 858 Mutex::Locker locker(module_list.GetMutex()); 859 860 size_t num_modules = module_list.GetSize(); 861 for (size_t i = 0; i < num_modules; i++) 862 { 863 auto mod = module_list.GetModuleAtIndex(i); 864 if (IsRenderScriptModule(mod)) 865 { 866 LoadModule(mod); 867 } 868 } 869 } 870 871 //------------------------------------------------------------------ 872 // PluginInterface protocol 873 //------------------------------------------------------------------ 874 lldb_private::ConstString 875 RenderScriptRuntime::GetPluginName() 876 { 877 return GetPluginNameStatic(); 878 } 879 880 uint32_t 881 RenderScriptRuntime::GetPluginVersion() 882 { 883 return 1; 884 } 885 886 bool 887 RenderScriptRuntime::IsVTableName(const char *name) 888 { 889 return false; 890 } 891 892 bool 893 RenderScriptRuntime::GetDynamicTypeAndAddress(ValueObject &in_value, lldb::DynamicValueType use_dynamic, 894 TypeAndOrName &class_type_or_name, Address &address, 895 Value::ValueType &value_type) 896 { 897 return false; 898 } 899 900 TypeAndOrName 901 RenderScriptRuntime::FixUpDynamicType(const TypeAndOrName &type_and_or_name, ValueObject &static_value) 902 { 903 return type_and_or_name; 904 } 905 906 bool 907 RenderScriptRuntime::CouldHaveDynamicValue(ValueObject &in_value) 908 { 909 return false; 910 } 911 912 lldb::BreakpointResolverSP 913 RenderScriptRuntime::CreateExceptionResolver(Breakpoint *bkpt, bool catch_bp, bool throw_bp) 914 { 915 BreakpointResolverSP resolver_sp; 916 return resolver_sp; 917 } 918 919 const RenderScriptRuntime::HookDefn RenderScriptRuntime::s_runtimeHookDefns[] = { 920 // rsdScript 921 { 922 "rsdScriptInit", 923 "_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_7ScriptCEPKcS7_PKhjj", 924 "_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_7ScriptCEPKcS7_PKhmj", 925 0, 926 RenderScriptRuntime::eModuleKindDriver, 927 &lldb_private::RenderScriptRuntime::CaptureScriptInit 928 }, 929 { 930 "rsdScriptInvokeForEachMulti", 931 "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0_6ScriptEjPPKNS0_10AllocationEjPS6_PKvjPK12RsScriptCall", 932 "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0_6ScriptEjPPKNS0_10AllocationEmPS6_PKvmPK12RsScriptCall", 933 0, 934 RenderScriptRuntime::eModuleKindDriver, 935 &lldb_private::RenderScriptRuntime::CaptureScriptInvokeForEachMulti 936 }, 937 { 938 "rsdScriptSetGlobalVar", 939 "_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_6ScriptEjPvj", 940 "_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_6ScriptEjPvm", 941 0, 942 RenderScriptRuntime::eModuleKindDriver, 943 &lldb_private::RenderScriptRuntime::CaptureSetGlobalVar 944 }, 945 946 // rsdAllocation 947 { 948 "rsdAllocationInit", 949 "_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_10AllocationEb", 950 "_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_10AllocationEb", 951 0, 952 RenderScriptRuntime::eModuleKindDriver, 953 &lldb_private::RenderScriptRuntime::CaptureAllocationInit 954 }, 955 { 956 "rsdAllocationRead2D", 957 "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_10AllocationEjjj23RsAllocationCubemapFacejjPvjj", 958 "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_10AllocationEjjj23RsAllocationCubemapFacejjPvmm", 959 0, 960 RenderScriptRuntime::eModuleKindDriver, 961 nullptr 962 }, 963 { 964 "rsdAllocationDestroy", 965 "_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_10AllocationE", 966 "_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_10AllocationE", 967 0, 968 RenderScriptRuntime::eModuleKindDriver, 969 &lldb_private::RenderScriptRuntime::CaptureAllocationDestroy 970 }, 971 }; 972 973 const size_t RenderScriptRuntime::s_runtimeHookCount = sizeof(s_runtimeHookDefns) / sizeof(s_runtimeHookDefns[0]); 974 975 bool 976 RenderScriptRuntime::HookCallback(void *baton, StoppointCallbackContext *ctx, lldb::user_id_t break_id, 977 lldb::user_id_t break_loc_id) 978 { 979 RuntimeHook *hook_info = (RuntimeHook *)baton; 980 ExecutionContext context(ctx->exe_ctx_ref); 981 982 RenderScriptRuntime *lang_rt = 983 (RenderScriptRuntime *)context.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript); 984 985 lang_rt->HookCallback(hook_info, context); 986 987 return false; 988 } 989 990 void 991 RenderScriptRuntime::HookCallback(RuntimeHook *hook_info, ExecutionContext &context) 992 { 993 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 994 995 if (log) 996 log->Printf("%s - '%s'", __FUNCTION__, hook_info->defn->name); 997 998 if (hook_info->defn->grabber) 999 { 1000 (this->*(hook_info->defn->grabber))(hook_info, context); 1001 } 1002 } 1003 1004 void 1005 RenderScriptRuntime::CaptureScriptInvokeForEachMulti(RuntimeHook* hook_info, 1006 ExecutionContext& context) 1007 { 1008 Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1009 1010 enum 1011 { 1012 eRsContext = 0, 1013 eRsScript, 1014 eRsSlot, 1015 eRsAIns, 1016 eRsInLen, 1017 eRsAOut, 1018 eRsUsr, 1019 eRsUsrLen, 1020 eRsSc, 1021 }; 1022 1023 std::array<ArgItem, 9> args{{ 1024 ArgItem{ArgItem::ePointer, 0}, // const Context *rsc 1025 ArgItem{ArgItem::ePointer, 0}, // Script *s 1026 ArgItem{ArgItem::eInt32, 0}, // uint32_t slot 1027 ArgItem{ArgItem::ePointer, 0}, // const Allocation **aIns 1028 ArgItem{ArgItem::eInt32, 0}, // size_t inLen 1029 ArgItem{ArgItem::ePointer, 0}, // Allocation *aout 1030 ArgItem{ArgItem::ePointer, 0}, // const void *usr 1031 ArgItem{ArgItem::eInt32, 0}, // size_t usrLen 1032 ArgItem{ArgItem::ePointer, 0}, // const RsScriptCall *sc 1033 }}; 1034 1035 bool success = GetArgs(context, &args[0], args.size()); 1036 if (!success) 1037 { 1038 if (log) 1039 log->Printf("%s - Error while reading the function parameters", __FUNCTION__); 1040 return; 1041 } 1042 1043 const uint32_t target_ptr_size = m_process->GetAddressByteSize(); 1044 Error error; 1045 std::vector<uint64_t> allocs; 1046 1047 // traverse allocation list 1048 for (uint64_t i = 0; i < uint64_t(args[eRsInLen]); ++i) 1049 { 1050 // calculate offest to allocation pointer 1051 const addr_t addr = addr_t(args[eRsAIns]) + i * target_ptr_size; 1052 1053 // Note: due to little endian layout, reading 32bits or 64bits into res64 will 1054 // give the correct results. 1055 1056 uint64_t res64 = 0; 1057 size_t read = m_process->ReadMemory(addr, &res64, target_ptr_size, error); 1058 if (read != target_ptr_size || !error.Success()) 1059 { 1060 if (log) 1061 log->Printf("%s - Error while reading allocation list argument %" PRIu64, __FUNCTION__, i); 1062 } 1063 else 1064 { 1065 allocs.push_back(res64); 1066 } 1067 } 1068 1069 // if there is an output allocation track it 1070 if (uint64_t aOut = uint64_t(args[eRsAOut])) 1071 { 1072 allocs.push_back(aOut); 1073 } 1074 1075 // for all allocations we have found 1076 for (const uint64_t alloc_addr : allocs) 1077 { 1078 AllocationDetails* alloc = LookUpAllocation(alloc_addr, true); 1079 if (alloc) 1080 { 1081 // save the allocation address 1082 if (alloc->address.isValid()) 1083 { 1084 // check the allocation address we already have matches 1085 assert(*alloc->address.get() == alloc_addr); 1086 } 1087 else 1088 { 1089 alloc->address = alloc_addr; 1090 } 1091 1092 // save the context 1093 if (log) 1094 { 1095 if (alloc->context.isValid() && *alloc->context.get() != addr_t(args[eRsContext])) 1096 log->Printf("%s - Allocation used by multiple contexts", __FUNCTION__); 1097 } 1098 alloc->context = addr_t(args[eRsContext]); 1099 } 1100 } 1101 1102 // make sure we track this script object 1103 if (lldb_private::RenderScriptRuntime::ScriptDetails *script = LookUpScript(addr_t(args[eRsScript]), true)) 1104 { 1105 if (log) 1106 { 1107 if (script->context.isValid() && *script->context.get() != addr_t(args[eRsContext])) 1108 log->Printf("%s - Script used by multiple contexts", __FUNCTION__); 1109 } 1110 script->context = addr_t(args[eRsContext]); 1111 } 1112 } 1113 1114 void 1115 RenderScriptRuntime::CaptureSetGlobalVar(RuntimeHook *hook_info, ExecutionContext &context) 1116 { 1117 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1118 1119 enum 1120 { 1121 eRsContext, 1122 eRsScript, 1123 eRsId, 1124 eRsData, 1125 eRsLength, 1126 }; 1127 1128 std::array<ArgItem, 5> args{{ 1129 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1130 ArgItem{ArgItem::ePointer, 0}, // eRsScript 1131 ArgItem{ArgItem::eInt32, 0}, // eRsId 1132 ArgItem{ArgItem::ePointer, 0}, // eRsData 1133 ArgItem{ArgItem::eInt32, 0}, // eRsLength 1134 }}; 1135 1136 bool success = GetArgs(context, &args[0], args.size()); 1137 if (!success) 1138 { 1139 if (log) 1140 log->Printf("%s - error reading the function parameters.", __FUNCTION__); 1141 return; 1142 } 1143 1144 if (log) 1145 { 1146 log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " slot %" PRIu64 " = 0x%" PRIx64 ":%" PRIu64 "bytes.", __FUNCTION__, 1147 uint64_t(args[eRsContext]), uint64_t(args[eRsScript]), uint64_t(args[eRsId]), 1148 uint64_t(args[eRsData]), uint64_t(args[eRsLength])); 1149 1150 addr_t script_addr = addr_t(args[eRsScript]); 1151 if (m_scriptMappings.find(script_addr) != m_scriptMappings.end()) 1152 { 1153 auto rsm = m_scriptMappings[script_addr]; 1154 if (uint64_t(args[eRsId]) < rsm->m_globals.size()) 1155 { 1156 auto rsg = rsm->m_globals[uint64_t(args[eRsId])]; 1157 log->Printf("%s - Setting of '%s' within '%s' inferred", __FUNCTION__, rsg.m_name.AsCString(), 1158 rsm->m_module->GetFileSpec().GetFilename().AsCString()); 1159 } 1160 } 1161 } 1162 } 1163 1164 void 1165 RenderScriptRuntime::CaptureAllocationInit(RuntimeHook *hook_info, ExecutionContext &context) 1166 { 1167 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1168 1169 enum 1170 { 1171 eRsContext, 1172 eRsAlloc, 1173 eRsForceZero 1174 }; 1175 1176 std::array<ArgItem, 3> args{{ 1177 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1178 ArgItem{ArgItem::ePointer, 0}, // eRsAlloc 1179 ArgItem{ArgItem::eBool, 0}, // eRsForceZero 1180 }}; 1181 1182 bool success = GetArgs(context, &args[0], args.size()); 1183 if (!success) // error case 1184 { 1185 if (log) 1186 log->Printf("%s - error while reading the function parameters", __FUNCTION__); 1187 return; // abort 1188 } 1189 1190 if (log) 1191 log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 ",0x%" PRIx64 " .", __FUNCTION__, uint64_t(args[eRsContext]), 1192 uint64_t(args[eRsAlloc]), uint64_t(args[eRsForceZero])); 1193 1194 AllocationDetails *alloc = LookUpAllocation(uint64_t(args[eRsAlloc]), true); 1195 if (alloc) 1196 alloc->context = uint64_t(args[eRsContext]); 1197 } 1198 1199 void 1200 RenderScriptRuntime::CaptureAllocationDestroy(RuntimeHook *hook_info, ExecutionContext &context) 1201 { 1202 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1203 1204 enum 1205 { 1206 eRsContext, 1207 eRsAlloc, 1208 }; 1209 1210 std::array<ArgItem, 2> args{{ 1211 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1212 ArgItem{ArgItem::ePointer, 0}, // eRsAlloc 1213 }}; 1214 1215 bool success = GetArgs(context, &args[0], args.size()); 1216 if (!success) 1217 { 1218 if (log) 1219 log->Printf("%s - error while reading the function parameters.", __FUNCTION__); 1220 return; 1221 } 1222 1223 if (log) 1224 log->Printf("%s - 0x%" PRIx64 ", 0x%" PRIx64 ".", __FUNCTION__, uint64_t(args[eRsContext]), 1225 uint64_t(args[eRsAlloc])); 1226 1227 for (auto iter = m_allocations.begin(); iter != m_allocations.end(); ++iter) 1228 { 1229 auto &allocation_ap = *iter; // get the unique pointer 1230 if (allocation_ap->address.isValid() && *allocation_ap->address.get() == addr_t(args[eRsAlloc])) 1231 { 1232 m_allocations.erase(iter); 1233 if (log) 1234 log->Printf("%s - deleted allocation entry.", __FUNCTION__); 1235 return; 1236 } 1237 } 1238 1239 if (log) 1240 log->Printf("%s - couldn't find destroyed allocation.", __FUNCTION__); 1241 } 1242 1243 void 1244 RenderScriptRuntime::CaptureScriptInit(RuntimeHook *hook_info, ExecutionContext &context) 1245 { 1246 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1247 1248 Error error; 1249 Process *process = context.GetProcessPtr(); 1250 1251 enum 1252 { 1253 eRsContext, 1254 eRsScript, 1255 eRsResNamePtr, 1256 eRsCachedDirPtr 1257 }; 1258 1259 std::array<ArgItem, 4> args{{ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}, 1260 ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}}}; 1261 bool success = GetArgs(context, &args[0], args.size()); 1262 if (!success) 1263 { 1264 if (log) 1265 log->Printf("%s - error while reading the function parameters.", __FUNCTION__); 1266 return; 1267 } 1268 1269 std::string resname; 1270 process->ReadCStringFromMemory(addr_t(args[eRsResNamePtr]), resname, error); 1271 if (error.Fail()) 1272 { 1273 if (log) 1274 log->Printf("%s - error reading resname: %s.", __FUNCTION__, error.AsCString()); 1275 } 1276 1277 std::string cachedir; 1278 process->ReadCStringFromMemory(addr_t(args[eRsCachedDirPtr]), cachedir, error); 1279 if (error.Fail()) 1280 { 1281 if (log) 1282 log->Printf("%s - error reading cachedir: %s.", __FUNCTION__, error.AsCString()); 1283 } 1284 1285 if (log) 1286 log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " => '%s' at '%s' .", __FUNCTION__, uint64_t(args[eRsContext]), 1287 uint64_t(args[eRsScript]), resname.c_str(), cachedir.c_str()); 1288 1289 if (resname.size() > 0) 1290 { 1291 StreamString strm; 1292 strm.Printf("librs.%s.so", resname.c_str()); 1293 1294 ScriptDetails *script = LookUpScript(addr_t(args[eRsScript]), true); 1295 if (script) 1296 { 1297 script->type = ScriptDetails::eScriptC; 1298 script->cacheDir = cachedir; 1299 script->resName = resname; 1300 script->scriptDyLib = strm.GetData(); 1301 script->context = addr_t(args[eRsContext]); 1302 } 1303 1304 if (log) 1305 log->Printf("%s - '%s' tagged with context 0x%" PRIx64 " and script 0x%" PRIx64 ".", __FUNCTION__, 1306 strm.GetData(), uint64_t(args[eRsContext]), uint64_t(args[eRsScript])); 1307 } 1308 else if (log) 1309 { 1310 log->Printf("%s - resource name invalid, Script not tagged.", __FUNCTION__); 1311 } 1312 } 1313 1314 void 1315 RenderScriptRuntime::LoadRuntimeHooks(lldb::ModuleSP module, ModuleKind kind) 1316 { 1317 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1318 1319 if (!module) 1320 { 1321 return; 1322 } 1323 1324 Target &target = GetProcess()->GetTarget(); 1325 llvm::Triple::ArchType targetArchType = target.GetArchitecture().GetMachine(); 1326 1327 if (targetArchType != llvm::Triple::ArchType::x86 && 1328 targetArchType != llvm::Triple::ArchType::arm && 1329 targetArchType != llvm::Triple::ArchType::aarch64 && 1330 targetArchType != llvm::Triple::ArchType::mipsel && 1331 targetArchType != llvm::Triple::ArchType::mips64el && 1332 targetArchType != llvm::Triple::ArchType::x86_64) 1333 { 1334 if (log) 1335 log->Printf("%s - unable to hook runtime functions.", __FUNCTION__); 1336 return; 1337 } 1338 1339 uint32_t archByteSize = target.GetArchitecture().GetAddressByteSize(); 1340 1341 for (size_t idx = 0; idx < s_runtimeHookCount; idx++) 1342 { 1343 const HookDefn *hook_defn = &s_runtimeHookDefns[idx]; 1344 if (hook_defn->kind != kind) 1345 { 1346 continue; 1347 } 1348 1349 const char *symbol_name = (archByteSize == 4) ? hook_defn->symbol_name_m32 : hook_defn->symbol_name_m64; 1350 1351 const Symbol *sym = module->FindFirstSymbolWithNameAndType(ConstString(symbol_name), eSymbolTypeCode); 1352 if (!sym) 1353 { 1354 if (log) 1355 { 1356 log->Printf("%s - symbol '%s' related to the function %s not found", 1357 __FUNCTION__, symbol_name, hook_defn->name); 1358 } 1359 continue; 1360 } 1361 1362 addr_t addr = sym->GetLoadAddress(&target); 1363 if (addr == LLDB_INVALID_ADDRESS) 1364 { 1365 if (log) 1366 log->Printf("%s - unable to resolve the address of hook function '%s' with symbol '%s'.", 1367 __FUNCTION__, hook_defn->name, symbol_name); 1368 continue; 1369 } 1370 else 1371 { 1372 if (log) 1373 log->Printf("%s - function %s, address resolved at 0x%" PRIx64, 1374 __FUNCTION__, hook_defn->name, addr); 1375 } 1376 1377 RuntimeHookSP hook(new RuntimeHook()); 1378 hook->address = addr; 1379 hook->defn = hook_defn; 1380 hook->bp_sp = target.CreateBreakpoint(addr, true, false); 1381 hook->bp_sp->SetCallback(HookCallback, hook.get(), true); 1382 m_runtimeHooks[addr] = hook; 1383 if (log) 1384 { 1385 log->Printf("%s - successfully hooked '%s' in '%s' version %" PRIu64 " at 0x%" PRIx64 ".", 1386 __FUNCTION__, hook_defn->name, module->GetFileSpec().GetFilename().AsCString(), 1387 (uint64_t)hook_defn->version, (uint64_t)addr); 1388 } 1389 } 1390 } 1391 1392 void 1393 RenderScriptRuntime::FixupScriptDetails(RSModuleDescriptorSP rsmodule_sp) 1394 { 1395 if (!rsmodule_sp) 1396 return; 1397 1398 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1399 1400 const ModuleSP module = rsmodule_sp->m_module; 1401 const FileSpec &file = module->GetPlatformFileSpec(); 1402 1403 // Iterate over all of the scripts that we currently know of. 1404 // Note: We cant push or pop to m_scripts here or it may invalidate rs_script. 1405 for (const auto &rs_script : m_scripts) 1406 { 1407 // Extract the expected .so file path for this script. 1408 std::string dylib; 1409 if (!rs_script->scriptDyLib.get(dylib)) 1410 continue; 1411 1412 // Only proceed if the module that has loaded corresponds to this script. 1413 if (file.GetFilename() != ConstString(dylib.c_str())) 1414 continue; 1415 1416 // Obtain the script address which we use as a key. 1417 lldb::addr_t script; 1418 if (!rs_script->script.get(script)) 1419 continue; 1420 1421 // If we have a script mapping for the current script. 1422 if (m_scriptMappings.find(script) != m_scriptMappings.end()) 1423 { 1424 // if the module we have stored is different to the one we just received. 1425 if (m_scriptMappings[script] != rsmodule_sp) 1426 { 1427 if (log) 1428 log->Printf("%s - script %" PRIx64 " wants reassigned to new rsmodule '%s'.", __FUNCTION__, 1429 (uint64_t)script, rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString()); 1430 } 1431 } 1432 // We don't have a script mapping for the current script. 1433 else 1434 { 1435 // Obtain the script resource name. 1436 std::string resName; 1437 if (rs_script->resName.get(resName)) 1438 // Set the modules resource name. 1439 rsmodule_sp->m_resname = resName; 1440 // Add Script/Module pair to map. 1441 m_scriptMappings[script] = rsmodule_sp; 1442 if (log) 1443 log->Printf("%s - script %" PRIx64 " associated with rsmodule '%s'.", __FUNCTION__, 1444 (uint64_t)script, rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString()); 1445 } 1446 } 1447 } 1448 1449 // Uses the Target API to evaluate the expression passed as a parameter to the function 1450 // The result of that expression is returned an unsigned 64 bit int, via the result* paramter. 1451 // Function returns true on success, and false on failure 1452 bool 1453 RenderScriptRuntime::EvalRSExpression(const char *expression, StackFrame *frame_ptr, uint64_t *result) 1454 { 1455 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1456 if (log) 1457 log->Printf("%s(%s)", __FUNCTION__, expression); 1458 1459 ValueObjectSP expr_result; 1460 EvaluateExpressionOptions options; 1461 options.SetLanguage(lldb::eLanguageTypeC_plus_plus); 1462 // Perform the actual expression evaluation 1463 GetProcess()->GetTarget().EvaluateExpression(expression, frame_ptr, expr_result, options); 1464 1465 if (!expr_result) 1466 { 1467 if (log) 1468 log->Printf("%s: couldn't evaluate expression.", __FUNCTION__); 1469 return false; 1470 } 1471 1472 // The result of the expression is invalid 1473 if (!expr_result->GetError().Success()) 1474 { 1475 Error err = expr_result->GetError(); 1476 if (err.GetError() == UserExpression::kNoResult) // Expression returned void, so this is actually a success 1477 { 1478 if (log) 1479 log->Printf("%s - expression returned void.", __FUNCTION__); 1480 1481 result = nullptr; 1482 return true; 1483 } 1484 1485 if (log) 1486 log->Printf("%s - error evaluating expression result: %s", __FUNCTION__, 1487 err.AsCString()); 1488 return false; 1489 } 1490 1491 bool success = false; 1492 *result = expr_result->GetValueAsUnsigned(0, &success); // We only read the result as an uint32_t. 1493 1494 if (!success) 1495 { 1496 if (log) 1497 log->Printf("%s - couldn't convert expression result to uint32_t", __FUNCTION__); 1498 return false; 1499 } 1500 1501 return true; 1502 } 1503 1504 namespace 1505 { 1506 // Used to index expression format strings 1507 enum ExpressionStrings 1508 { 1509 eExprGetOffsetPtr = 0, 1510 eExprAllocGetType, 1511 eExprTypeDimX, 1512 eExprTypeDimY, 1513 eExprTypeDimZ, 1514 eExprTypeElemPtr, 1515 eExprElementType, 1516 eExprElementKind, 1517 eExprElementVec, 1518 eExprElementFieldCount, 1519 eExprSubelementsId, 1520 eExprSubelementsName, 1521 eExprSubelementsArrSize, 1522 1523 _eExprLast // keep at the end, implicit size of the array runtimeExpressions 1524 }; 1525 1526 // max length of an expanded expression 1527 const int jit_max_expr_size = 512; 1528 1529 // Retrieve the string to JIT for the given expression 1530 const char* 1531 JITTemplate(ExpressionStrings e) 1532 { 1533 // Format strings containing the expressions we may need to evaluate. 1534 static std::array<const char*, _eExprLast> runtimeExpressions = {{ 1535 // Mangled GetOffsetPointer(Allocation*, xoff, yoff, zoff, lod, cubemap) 1536 "(int*)_Z12GetOffsetPtrPKN7android12renderscript10AllocationEjjjj23RsAllocationCubemapFace" 1537 "(0x%" PRIx64 ", %" PRIu32 ", %" PRIu32 ", %" PRIu32 ", 0, 0)", 1538 1539 // Type* rsaAllocationGetType(Context*, Allocation*) 1540 "(void*)rsaAllocationGetType(0x%" PRIx64 ", 0x%" PRIx64 ")", 1541 1542 // rsaTypeGetNativeData(Context*, Type*, void* typeData, size) 1543 // Pack the data in the following way mHal.state.dimX; mHal.state.dimY; mHal.state.dimZ; 1544 // mHal.state.lodCount; mHal.state.faces; mElement; into typeData 1545 // Need to specify 32 or 64 bit for uint_t since this differs between devices 1546 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 6); data[0]", // X dim 1547 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 6); data[1]", // Y dim 1548 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 6); data[2]", // Z dim 1549 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 6); data[5]", // Element ptr 1550 1551 // rsaElementGetNativeData(Context*, Element*, uint32_t* elemData,size) 1552 // Pack mType; mKind; mNormalized; mVectorSize; NumSubElements into elemData 1553 "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 5); data[0]", // Type 1554 "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 5); data[1]", // Kind 1555 "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 5); data[3]", // Vector Size 1556 "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 5); data[4]", // Field Count 1557 1558 // rsaElementGetSubElements(RsContext con, RsElement elem, uintptr_t *ids, const char **names, 1559 // size_t *arraySizes, uint32_t dataSize) 1560 // Needed for Allocations of structs to gather details about fields/Subelements 1561 // Element* of field 1562 "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 "]; size_t arr_size[%" PRIu32 "];" 1563 "(void*)rsaElementGetSubElements(0x%" PRIx64 ", 0x%" PRIx64 ", ids, names, arr_size, %" PRIu32 "); ids[%" PRIu32 "]", 1564 1565 // Name of field 1566 "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 "]; size_t arr_size[%" PRIu32 "];" 1567 "(void*)rsaElementGetSubElements(0x%" PRIx64 ", 0x%" PRIx64 ", ids, names, arr_size, %" PRIu32 "); names[%" PRIu32 "]", 1568 1569 // Array size of field 1570 "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 "]; size_t arr_size[%" PRIu32 "];" 1571 "(void*)rsaElementGetSubElements(0x%" PRIx64 ", 0x%" PRIx64 ", ids, names, arr_size, %" PRIu32 "); arr_size[%" PRIu32 "]" 1572 }}; 1573 1574 return runtimeExpressions[e]; 1575 } 1576 } // end of the anonymous namespace 1577 1578 1579 // JITs the RS runtime for the internal data pointer of an allocation. 1580 // Is passed x,y,z coordinates for the pointer to a specific element. 1581 // Then sets the data_ptr member in Allocation with the result. 1582 // Returns true on success, false otherwise 1583 bool 1584 RenderScriptRuntime::JITDataPointer(AllocationDetails *allocation, StackFrame *frame_ptr, uint32_t x, 1585 uint32_t y, uint32_t z) 1586 { 1587 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1588 1589 if (!allocation->address.isValid()) 1590 { 1591 if (log) 1592 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1593 return false; 1594 } 1595 1596 const char *expr_cstr = JITTemplate(eExprGetOffsetPtr); 1597 char buffer[jit_max_expr_size]; 1598 1599 int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->address.get(), x, y, z); 1600 if (chars_written < 0) 1601 { 1602 if (log) 1603 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1604 return false; 1605 } 1606 else if (chars_written >= jit_max_expr_size) 1607 { 1608 if (log) 1609 log->Printf("%s - expression too long.", __FUNCTION__); 1610 return false; 1611 } 1612 1613 uint64_t result = 0; 1614 if (!EvalRSExpression(buffer, frame_ptr, &result)) 1615 return false; 1616 1617 addr_t mem_ptr = static_cast<lldb::addr_t>(result); 1618 allocation->data_ptr = mem_ptr; 1619 1620 return true; 1621 } 1622 1623 // JITs the RS runtime for the internal pointer to the RS Type of an allocation 1624 // Then sets the type_ptr member in Allocation with the result. 1625 // Returns true on success, false otherwise 1626 bool 1627 RenderScriptRuntime::JITTypePointer(AllocationDetails *allocation, StackFrame *frame_ptr) 1628 { 1629 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1630 1631 if (!allocation->address.isValid() || !allocation->context.isValid()) 1632 { 1633 if (log) 1634 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1635 return false; 1636 } 1637 1638 const char *expr_cstr = JITTemplate(eExprAllocGetType); 1639 char buffer[jit_max_expr_size]; 1640 1641 int chars_written = 1642 snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->context.get(), *allocation->address.get()); 1643 if (chars_written < 0) 1644 { 1645 if (log) 1646 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1647 return false; 1648 } 1649 else if (chars_written >= jit_max_expr_size) 1650 { 1651 if (log) 1652 log->Printf("%s - expression too long.", __FUNCTION__); 1653 return false; 1654 } 1655 1656 uint64_t result = 0; 1657 if (!EvalRSExpression(buffer, frame_ptr, &result)) 1658 return false; 1659 1660 addr_t type_ptr = static_cast<lldb::addr_t>(result); 1661 allocation->type_ptr = type_ptr; 1662 1663 return true; 1664 } 1665 1666 // JITs the RS runtime for information about the dimensions and type of an allocation 1667 // Then sets dimension and element_ptr members in Allocation with the result. 1668 // Returns true on success, false otherwise 1669 bool 1670 RenderScriptRuntime::JITTypePacked(AllocationDetails *allocation, StackFrame *frame_ptr) 1671 { 1672 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1673 1674 if (!allocation->type_ptr.isValid() || !allocation->context.isValid()) 1675 { 1676 if (log) 1677 log->Printf("%s - Failed to find allocation details.", __FUNCTION__); 1678 return false; 1679 } 1680 1681 // Expression is different depending on if device is 32 or 64 bit 1682 uint32_t archByteSize = GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 1683 const uint32_t bits = archByteSize == 4 ? 32 : 64; 1684 1685 // We want 4 elements from packed data 1686 const uint32_t num_exprs = 4; 1687 assert(num_exprs == (eExprTypeElemPtr - eExprTypeDimX + 1) && "Invalid number of expressions"); 1688 1689 char buffer[num_exprs][jit_max_expr_size]; 1690 uint64_t results[num_exprs]; 1691 1692 for (uint32_t i = 0; i < num_exprs; ++i) 1693 { 1694 const char *expr_cstr = JITTemplate(ExpressionStrings(eExprTypeDimX + i)); 1695 int chars_written = snprintf(buffer[i], jit_max_expr_size, expr_cstr, bits, *allocation->context.get(), 1696 *allocation->type_ptr.get()); 1697 if (chars_written < 0) 1698 { 1699 if (log) 1700 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1701 return false; 1702 } 1703 else if (chars_written >= jit_max_expr_size) 1704 { 1705 if (log) 1706 log->Printf("%s - expression too long.", __FUNCTION__); 1707 return false; 1708 } 1709 1710 // Perform expression evaluation 1711 if (!EvalRSExpression(buffer[i], frame_ptr, &results[i])) 1712 return false; 1713 } 1714 1715 // Assign results to allocation members 1716 AllocationDetails::Dimension dims; 1717 dims.dim_1 = static_cast<uint32_t>(results[0]); 1718 dims.dim_2 = static_cast<uint32_t>(results[1]); 1719 dims.dim_3 = static_cast<uint32_t>(results[2]); 1720 allocation->dimension = dims; 1721 1722 addr_t elem_ptr = static_cast<lldb::addr_t>(results[3]); 1723 allocation->element.element_ptr = elem_ptr; 1724 1725 if (log) 1726 log->Printf("%s - dims (%" PRIu32 ", %" PRIu32 ", %" PRIu32 ") Element*: 0x%" PRIx64 ".", __FUNCTION__, 1727 dims.dim_1, dims.dim_2, dims.dim_3, elem_ptr); 1728 1729 return true; 1730 } 1731 1732 // JITs the RS runtime for information about the Element of an allocation 1733 // Then sets type, type_vec_size, field_count and type_kind members in Element with the result. 1734 // Returns true on success, false otherwise 1735 bool 1736 RenderScriptRuntime::JITElementPacked(Element &elem, const lldb::addr_t context, StackFrame *frame_ptr) 1737 { 1738 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1739 1740 if (!elem.element_ptr.isValid()) 1741 { 1742 if (log) 1743 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1744 return false; 1745 } 1746 1747 // We want 4 elements from packed data 1748 const uint32_t num_exprs = 4; 1749 assert(num_exprs == (eExprElementFieldCount - eExprElementType + 1) && "Invalid number of expressions"); 1750 1751 char buffer[num_exprs][jit_max_expr_size]; 1752 uint64_t results[num_exprs]; 1753 1754 for (uint32_t i = 0; i < num_exprs; i++) 1755 { 1756 const char *expr_cstr = JITTemplate(ExpressionStrings(eExprElementType + i)); 1757 int chars_written = snprintf(buffer[i], jit_max_expr_size, expr_cstr, context, *elem.element_ptr.get()); 1758 if (chars_written < 0) 1759 { 1760 if (log) 1761 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1762 return false; 1763 } 1764 else if (chars_written >= jit_max_expr_size) 1765 { 1766 if (log) 1767 log->Printf("%s - expression too long.", __FUNCTION__); 1768 return false; 1769 } 1770 1771 // Perform expression evaluation 1772 if (!EvalRSExpression(buffer[i], frame_ptr, &results[i])) 1773 return false; 1774 } 1775 1776 // Assign results to allocation members 1777 elem.type = static_cast<RenderScriptRuntime::Element::DataType>(results[0]); 1778 elem.type_kind = static_cast<RenderScriptRuntime::Element::DataKind>(results[1]); 1779 elem.type_vec_size = static_cast<uint32_t>(results[2]); 1780 elem.field_count = static_cast<uint32_t>(results[3]); 1781 1782 if (log) 1783 log->Printf("%s - data type %" PRIu32 ", pixel type %" PRIu32 ", vector size %" PRIu32 ", field count %" PRIu32, 1784 __FUNCTION__, *elem.type.get(), *elem.type_kind.get(), *elem.type_vec_size.get(), *elem.field_count.get()); 1785 1786 // If this Element has subelements then JIT rsaElementGetSubElements() for details about its fields 1787 if (*elem.field_count.get() > 0 && !JITSubelements(elem, context, frame_ptr)) 1788 return false; 1789 1790 return true; 1791 } 1792 1793 // JITs the RS runtime for information about the subelements/fields of a struct allocation 1794 // This is necessary for infering the struct type so we can pretty print the allocation's contents. 1795 // Returns true on success, false otherwise 1796 bool 1797 RenderScriptRuntime::JITSubelements(Element &elem, const lldb::addr_t context, StackFrame *frame_ptr) 1798 { 1799 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1800 1801 if (!elem.element_ptr.isValid() || !elem.field_count.isValid()) 1802 { 1803 if (log) 1804 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1805 return false; 1806 } 1807 1808 const short num_exprs = 3; 1809 assert(num_exprs == (eExprSubelementsArrSize - eExprSubelementsId + 1) && "Invalid number of expressions"); 1810 1811 char expr_buffer[jit_max_expr_size]; 1812 uint64_t results; 1813 1814 // Iterate over struct fields. 1815 const uint32_t field_count = *elem.field_count.get(); 1816 for (uint32_t field_index = 0; field_index < field_count; ++field_index) 1817 { 1818 Element child; 1819 for (uint32_t expr_index = 0; expr_index < num_exprs; ++expr_index) 1820 { 1821 const char *expr_cstr = JITTemplate(ExpressionStrings(eExprSubelementsId + expr_index)); 1822 int chars_written = snprintf(expr_buffer, jit_max_expr_size, expr_cstr, 1823 field_count, field_count, field_count, 1824 context, *elem.element_ptr.get(), field_count, field_index); 1825 if (chars_written < 0) 1826 { 1827 if (log) 1828 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1829 return false; 1830 } 1831 else if (chars_written >= jit_max_expr_size) 1832 { 1833 if (log) 1834 log->Printf("%s - expression too long.", __FUNCTION__); 1835 return false; 1836 } 1837 1838 // Perform expression evaluation 1839 if (!EvalRSExpression(expr_buffer, frame_ptr, &results)) 1840 return false; 1841 1842 if (log) 1843 log->Printf("%s - expr result 0x%" PRIx64 ".", __FUNCTION__, results); 1844 1845 switch (expr_index) 1846 { 1847 case 0: // Element* of child 1848 child.element_ptr = static_cast<addr_t>(results); 1849 break; 1850 case 1: // Name of child 1851 { 1852 lldb::addr_t address = static_cast<addr_t>(results); 1853 Error err; 1854 std::string name; 1855 GetProcess()->ReadCStringFromMemory(address, name, err); 1856 if (!err.Fail()) 1857 child.type_name = ConstString(name); 1858 else 1859 { 1860 if (log) 1861 log->Printf("%s - warning: Couldn't read field name.", __FUNCTION__); 1862 } 1863 break; 1864 } 1865 case 2: // Array size of child 1866 child.array_size = static_cast<uint32_t>(results); 1867 break; 1868 } 1869 } 1870 1871 // We need to recursively JIT each Element field of the struct since 1872 // structs can be nested inside structs. 1873 if (!JITElementPacked(child, context, frame_ptr)) 1874 return false; 1875 elem.children.push_back(child); 1876 } 1877 1878 // Try to infer the name of the struct type so we can pretty print the allocation contents. 1879 FindStructTypeName(elem, frame_ptr); 1880 1881 return true; 1882 } 1883 1884 // JITs the RS runtime for the address of the last element in the allocation. 1885 // The `elem_size` paramter represents the size of a single element, including padding. 1886 // Which is needed as an offset from the last element pointer. 1887 // Using this offset minus the starting address we can calculate the size of the allocation. 1888 // Returns true on success, false otherwise 1889 bool 1890 RenderScriptRuntime::JITAllocationSize(AllocationDetails *allocation, StackFrame *frame_ptr) 1891 { 1892 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1893 1894 if (!allocation->address.isValid() || !allocation->dimension.isValid() || !allocation->data_ptr.isValid() || 1895 !allocation->element.datum_size.isValid()) 1896 { 1897 if (log) 1898 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1899 return false; 1900 } 1901 1902 // Find dimensions 1903 uint32_t dim_x = allocation->dimension.get()->dim_1; 1904 uint32_t dim_y = allocation->dimension.get()->dim_2; 1905 uint32_t dim_z = allocation->dimension.get()->dim_3; 1906 1907 // Our plan of jitting the last element address doesn't seem to work for struct Allocations 1908 // Instead try to infer the size ourselves without any inter element padding. 1909 if (allocation->element.children.size() > 0) 1910 { 1911 if (dim_x == 0) dim_x = 1; 1912 if (dim_y == 0) dim_y = 1; 1913 if (dim_z == 0) dim_z = 1; 1914 1915 allocation->size = dim_x * dim_y * dim_z * *allocation->element.datum_size.get(); 1916 1917 if (log) 1918 log->Printf("%s - infered size of struct allocation %" PRIu32 ".", __FUNCTION__, 1919 *allocation->size.get()); 1920 return true; 1921 } 1922 1923 const char *expr_cstr = JITTemplate(eExprGetOffsetPtr); 1924 char buffer[jit_max_expr_size]; 1925 1926 // Calculate last element 1927 dim_x = dim_x == 0 ? 0 : dim_x - 1; 1928 dim_y = dim_y == 0 ? 0 : dim_y - 1; 1929 dim_z = dim_z == 0 ? 0 : dim_z - 1; 1930 1931 int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->address.get(), dim_x, dim_y, dim_z); 1932 if (chars_written < 0) 1933 { 1934 if (log) 1935 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1936 return false; 1937 } 1938 else if (chars_written >= jit_max_expr_size) 1939 { 1940 if (log) 1941 log->Printf("%s - expression too long.", __FUNCTION__); 1942 return false; 1943 } 1944 1945 uint64_t result = 0; 1946 if (!EvalRSExpression(buffer, frame_ptr, &result)) 1947 return false; 1948 1949 addr_t mem_ptr = static_cast<lldb::addr_t>(result); 1950 // Find pointer to last element and add on size of an element 1951 allocation->size = 1952 static_cast<uint32_t>(mem_ptr - *allocation->data_ptr.get()) + *allocation->element.datum_size.get(); 1953 1954 return true; 1955 } 1956 1957 // JITs the RS runtime for information about the stride between rows in the allocation. 1958 // This is done to detect padding, since allocated memory is 16-byte aligned. 1959 // Returns true on success, false otherwise 1960 bool 1961 RenderScriptRuntime::JITAllocationStride(AllocationDetails *allocation, StackFrame *frame_ptr) 1962 { 1963 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1964 1965 if (!allocation->address.isValid() || !allocation->data_ptr.isValid()) 1966 { 1967 if (log) 1968 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1969 return false; 1970 } 1971 1972 const char *expr_cstr = JITTemplate(eExprGetOffsetPtr); 1973 char buffer[jit_max_expr_size]; 1974 1975 int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->address.get(), 0, 1, 0); 1976 if (chars_written < 0) 1977 { 1978 if (log) 1979 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1980 return false; 1981 } 1982 else if (chars_written >= jit_max_expr_size) 1983 { 1984 if (log) 1985 log->Printf("%s - expression too long.", __FUNCTION__); 1986 return false; 1987 } 1988 1989 uint64_t result = 0; 1990 if (!EvalRSExpression(buffer, frame_ptr, &result)) 1991 return false; 1992 1993 addr_t mem_ptr = static_cast<lldb::addr_t>(result); 1994 allocation->stride = static_cast<uint32_t>(mem_ptr - *allocation->data_ptr.get()); 1995 1996 return true; 1997 } 1998 1999 // JIT all the current runtime info regarding an allocation 2000 bool 2001 RenderScriptRuntime::RefreshAllocation(AllocationDetails *allocation, StackFrame *frame_ptr) 2002 { 2003 // GetOffsetPointer() 2004 if (!JITDataPointer(allocation, frame_ptr)) 2005 return false; 2006 2007 // rsaAllocationGetType() 2008 if (!JITTypePointer(allocation, frame_ptr)) 2009 return false; 2010 2011 // rsaTypeGetNativeData() 2012 if (!JITTypePacked(allocation, frame_ptr)) 2013 return false; 2014 2015 // rsaElementGetNativeData() 2016 if (!JITElementPacked(allocation->element, *allocation->context.get(), frame_ptr)) 2017 return false; 2018 2019 // Sets the datum_size member in Element 2020 SetElementSize(allocation->element); 2021 2022 // Use GetOffsetPointer() to infer size of the allocation 2023 if (!JITAllocationSize(allocation, frame_ptr)) 2024 return false; 2025 2026 return true; 2027 } 2028 2029 // Function attempts to set the type_name member of the paramaterised Element object. 2030 // This string should be the name of the struct type the Element represents. 2031 // We need this string for pretty printing the Element to users. 2032 void 2033 RenderScriptRuntime::FindStructTypeName(Element &elem, StackFrame *frame_ptr) 2034 { 2035 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2036 2037 if (!elem.type_name.IsEmpty()) // Name already set 2038 return; 2039 else 2040 elem.type_name = Element::GetFallbackStructName(); // Default type name if we don't succeed 2041 2042 // Find all the global variables from the script rs modules 2043 VariableList variable_list; 2044 for (auto module_sp : m_rsmodules) 2045 module_sp->m_module->FindGlobalVariables(RegularExpression("."), true, UINT32_MAX, variable_list); 2046 2047 // Iterate over all the global variables looking for one with a matching type to the Element. 2048 // We make the assumption a match exists since there needs to be a global variable to reflect the 2049 // struct type back into java host code. 2050 for (uint32_t var_index = 0; var_index < variable_list.GetSize(); ++var_index) 2051 { 2052 const VariableSP var_sp(variable_list.GetVariableAtIndex(var_index)); 2053 if (!var_sp) 2054 continue; 2055 2056 ValueObjectSP valobj_sp = ValueObjectVariable::Create(frame_ptr, var_sp); 2057 if (!valobj_sp) 2058 continue; 2059 2060 // Find the number of variable fields. 2061 // If it has no fields, or more fields than our Element, then it can't be the struct we're looking for. 2062 // Don't check for equality since RS can add extra struct members for padding. 2063 size_t num_children = valobj_sp->GetNumChildren(); 2064 if (num_children > elem.children.size() || num_children == 0) 2065 continue; 2066 2067 // Iterate over children looking for members with matching field names. 2068 // If all the field names match, this is likely the struct we want. 2069 // 2070 // TODO: This could be made more robust by also checking children data sizes, or array size 2071 bool found = true; 2072 for (size_t child_index = 0; child_index < num_children; ++child_index) 2073 { 2074 ValueObjectSP child = valobj_sp->GetChildAtIndex(child_index, true); 2075 if (!child || (child->GetName() != elem.children[child_index].type_name)) 2076 { 2077 found = false; 2078 break; 2079 } 2080 } 2081 2082 // RS can add extra struct members for padding in the format '#rs_padding_[0-9]+' 2083 if (found && num_children < elem.children.size()) 2084 { 2085 const uint32_t size_diff = elem.children.size() - num_children; 2086 if (log) 2087 log->Printf("%s - %" PRIu32 " padding struct entries", __FUNCTION__, size_diff); 2088 2089 for (uint32_t padding_index = 0; padding_index < size_diff; ++padding_index) 2090 { 2091 const ConstString &name = elem.children[num_children + padding_index].type_name; 2092 if (strcmp(name.AsCString(), "#rs_padding") < 0) 2093 found = false; 2094 } 2095 } 2096 2097 // We've found a global var with matching type 2098 if (found) 2099 { 2100 // Dereference since our Element type isn't a pointer. 2101 if (valobj_sp->IsPointerType()) 2102 { 2103 Error err; 2104 ValueObjectSP deref_valobj = valobj_sp->Dereference(err); 2105 if (!err.Fail()) 2106 valobj_sp = deref_valobj; 2107 } 2108 2109 // Save name of variable in Element. 2110 elem.type_name = valobj_sp->GetTypeName(); 2111 if (log) 2112 log->Printf("%s - element name set to %s", __FUNCTION__, elem.type_name.AsCString()); 2113 2114 return; 2115 } 2116 } 2117 } 2118 2119 // Function sets the datum_size member of Element. Representing the size of a single instance including padding. 2120 // Assumes the relevant allocation information has already been jitted. 2121 void 2122 RenderScriptRuntime::SetElementSize(Element &elem) 2123 { 2124 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2125 const Element::DataType type = *elem.type.get(); 2126 assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && "Invalid allocation type"); 2127 2128 const uint32_t vec_size = *elem.type_vec_size.get(); 2129 uint32_t data_size = 0; 2130 uint32_t padding = 0; 2131 2132 // Element is of a struct type, calculate size recursively. 2133 if ((type == Element::RS_TYPE_NONE) && (elem.children.size() > 0)) 2134 { 2135 for (Element &child : elem.children) 2136 { 2137 SetElementSize(child); 2138 const uint32_t array_size = child.array_size.isValid() ? *child.array_size.get() : 1; 2139 data_size += *child.datum_size.get() * array_size; 2140 } 2141 } 2142 // These have been packed already 2143 else if (type == Element::RS_TYPE_UNSIGNED_5_6_5 || 2144 type == Element::RS_TYPE_UNSIGNED_5_5_5_1 || 2145 type == Element::RS_TYPE_UNSIGNED_4_4_4_4) 2146 { 2147 data_size = AllocationDetails::RSTypeToFormat[type][eElementSize]; 2148 } 2149 else if (type < Element::RS_TYPE_ELEMENT) 2150 { 2151 data_size = vec_size * AllocationDetails::RSTypeToFormat[type][eElementSize]; 2152 if (vec_size == 3) 2153 padding = AllocationDetails::RSTypeToFormat[type][eElementSize]; 2154 } 2155 else 2156 data_size = GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 2157 2158 elem.padding = padding; 2159 elem.datum_size = data_size + padding; 2160 if (log) 2161 log->Printf("%s - element size set to %" PRIu32, __FUNCTION__, data_size + padding); 2162 } 2163 2164 // Given an allocation, this function copies the allocation contents from device into a buffer on the heap. 2165 // Returning a shared pointer to the buffer containing the data. 2166 std::shared_ptr<uint8_t> 2167 RenderScriptRuntime::GetAllocationData(AllocationDetails *allocation, StackFrame *frame_ptr) 2168 { 2169 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2170 2171 // JIT all the allocation details 2172 if (allocation->shouldRefresh()) 2173 { 2174 if (log) 2175 log->Printf("%s - allocation details not calculated yet, jitting info", __FUNCTION__); 2176 2177 if (!RefreshAllocation(allocation, frame_ptr)) 2178 { 2179 if (log) 2180 log->Printf("%s - couldn't JIT allocation details", __FUNCTION__); 2181 return nullptr; 2182 } 2183 } 2184 2185 assert(allocation->data_ptr.isValid() && allocation->element.type.isValid() && 2186 allocation->element.type_vec_size.isValid() && allocation->size.isValid() && 2187 "Allocation information not available"); 2188 2189 // Allocate a buffer to copy data into 2190 const uint32_t size = *allocation->size.get(); 2191 std::shared_ptr<uint8_t> buffer(new uint8_t[size]); 2192 if (!buffer) 2193 { 2194 if (log) 2195 log->Printf("%s - couldn't allocate a %" PRIu32 " byte buffer", __FUNCTION__, size); 2196 return nullptr; 2197 } 2198 2199 // Read the inferior memory 2200 Error error; 2201 lldb::addr_t data_ptr = *allocation->data_ptr.get(); 2202 GetProcess()->ReadMemory(data_ptr, buffer.get(), size, error); 2203 if (error.Fail()) 2204 { 2205 if (log) 2206 log->Printf("%s - '%s' Couldn't read %" PRIu32 " bytes of allocation data from 0x%" PRIx64, 2207 __FUNCTION__, error.AsCString(), size, data_ptr); 2208 return nullptr; 2209 } 2210 2211 return buffer; 2212 } 2213 2214 // Function copies data from a binary file into an allocation. 2215 // There is a header at the start of the file, FileHeader, before the data content itself. 2216 // Information from this header is used to display warnings to the user about incompatabilities 2217 bool 2218 RenderScriptRuntime::LoadAllocation(Stream &strm, const uint32_t alloc_id, const char *filename, StackFrame *frame_ptr) 2219 { 2220 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2221 2222 // Find allocation with the given id 2223 AllocationDetails *alloc = FindAllocByID(strm, alloc_id); 2224 if (!alloc) 2225 return false; 2226 2227 if (log) 2228 log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__, *alloc->address.get()); 2229 2230 // JIT all the allocation details 2231 if (alloc->shouldRefresh()) 2232 { 2233 if (log) 2234 log->Printf("%s - allocation details not calculated yet, jitting info.", __FUNCTION__); 2235 2236 if (!RefreshAllocation(alloc, frame_ptr)) 2237 { 2238 if (log) 2239 log->Printf("%s - couldn't JIT allocation details", __FUNCTION__); 2240 return false; 2241 } 2242 } 2243 2244 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && alloc->element.type_vec_size.isValid() && 2245 alloc->size.isValid() && alloc->element.datum_size.isValid() && "Allocation information not available"); 2246 2247 // Check we can read from file 2248 FileSpec file(filename, true); 2249 if (!file.Exists()) 2250 { 2251 strm.Printf("Error: File %s does not exist", filename); 2252 strm.EOL(); 2253 return false; 2254 } 2255 2256 if (!file.Readable()) 2257 { 2258 strm.Printf("Error: File %s does not have readable permissions", filename); 2259 strm.EOL(); 2260 return false; 2261 } 2262 2263 // Read file into data buffer 2264 DataBufferSP data_sp(file.ReadFileContents()); 2265 2266 // Cast start of buffer to FileHeader and use pointer to read metadata 2267 void *file_buffer = data_sp->GetBytes(); 2268 if (file_buffer == nullptr || 2269 data_sp->GetByteSize() < (sizeof(AllocationDetails::FileHeader) + sizeof(AllocationDetails::ElementHeader))) 2270 { 2271 strm.Printf("Error: File %s does not contain enough data for header", filename); 2272 strm.EOL(); 2273 return false; 2274 } 2275 const AllocationDetails::FileHeader *file_header = static_cast<AllocationDetails::FileHeader *>(file_buffer); 2276 2277 // Check file starts with ascii characters "RSAD" 2278 if (memcmp(file_header->ident, "RSAD", 4)) 2279 { 2280 strm.Printf("Error: File doesn't contain identifier for an RS allocation dump. Are you sure this is the correct file?"); 2281 strm.EOL(); 2282 return false; 2283 } 2284 2285 // Look at the type of the root element in the header 2286 AllocationDetails::ElementHeader root_element_header; 2287 memcpy(&root_element_header, static_cast<uint8_t *>(file_buffer) + sizeof(AllocationDetails::FileHeader), 2288 sizeof(AllocationDetails::ElementHeader)); 2289 2290 if (log) 2291 log->Printf("%s - header type %" PRIu32 ", element size %" PRIu32, __FUNCTION__, 2292 root_element_header.type, root_element_header.element_size); 2293 2294 // Check if the target allocation and file both have the same number of bytes for an Element 2295 if (*alloc->element.datum_size.get() != root_element_header.element_size) 2296 { 2297 strm.Printf("Warning: Mismatched Element sizes - file %" PRIu32 " bytes, allocation %" PRIu32 " bytes", 2298 root_element_header.element_size, *alloc->element.datum_size.get()); 2299 strm.EOL(); 2300 } 2301 2302 // Check if the target allocation and file both have the same type 2303 const uint32_t alloc_type = static_cast<uint32_t>(*alloc->element.type.get()); 2304 const uint32_t file_type = root_element_header.type; 2305 2306 if (file_type > Element::RS_TYPE_FONT) 2307 { 2308 strm.Printf("Warning: File has unknown allocation type"); 2309 strm.EOL(); 2310 } 2311 else if (alloc_type != file_type) 2312 { 2313 // Enum value isn't monotonous, so doesn't always index RsDataTypeToString array 2314 uint32_t printable_target_type_index = alloc_type; 2315 uint32_t printable_head_type_index = file_type; 2316 if (alloc_type >= Element::RS_TYPE_ELEMENT && alloc_type <= Element::RS_TYPE_FONT) 2317 printable_target_type_index = static_cast<Element::DataType>((alloc_type - Element::RS_TYPE_ELEMENT) + 2318 Element::RS_TYPE_MATRIX_2X2 + 1); 2319 2320 if (file_type >= Element::RS_TYPE_ELEMENT && file_type <= Element::RS_TYPE_FONT) 2321 printable_head_type_index = static_cast<Element::DataType>((file_type - Element::RS_TYPE_ELEMENT) + 2322 Element::RS_TYPE_MATRIX_2X2 + 1); 2323 2324 const char *file_type_cstr = AllocationDetails::RsDataTypeToString[printable_head_type_index][0]; 2325 const char *target_type_cstr = AllocationDetails::RsDataTypeToString[printable_target_type_index][0]; 2326 2327 strm.Printf("Warning: Mismatched Types - file '%s' type, allocation '%s' type", file_type_cstr, 2328 target_type_cstr); 2329 strm.EOL(); 2330 } 2331 2332 // Advance buffer past header 2333 file_buffer = static_cast<uint8_t *>(file_buffer) + file_header->hdr_size; 2334 2335 // Calculate size of allocation data in file 2336 size_t length = data_sp->GetByteSize() - file_header->hdr_size; 2337 2338 // Check if the target allocation and file both have the same total data size. 2339 const uint32_t alloc_size = *alloc->size.get(); 2340 if (alloc_size != length) 2341 { 2342 strm.Printf("Warning: Mismatched allocation sizes - file 0x%" PRIx64 " bytes, allocation 0x%" PRIx32 " bytes", 2343 (uint64_t)length, alloc_size); 2344 strm.EOL(); 2345 length = alloc_size < length ? alloc_size : length; // Set length to copy to minimum 2346 } 2347 2348 // Copy file data from our buffer into the target allocation. 2349 lldb::addr_t alloc_data = *alloc->data_ptr.get(); 2350 Error error; 2351 size_t bytes_written = GetProcess()->WriteMemory(alloc_data, file_buffer, length, error); 2352 if (!error.Success() || bytes_written != length) 2353 { 2354 strm.Printf("Error: Couldn't write data to allocation %s", error.AsCString()); 2355 strm.EOL(); 2356 return false; 2357 } 2358 2359 strm.Printf("Contents of file '%s' read into allocation %" PRIu32, filename, alloc->id); 2360 strm.EOL(); 2361 2362 return true; 2363 } 2364 2365 // Function takes as parameters a byte buffer, which will eventually be written to file as the element header, 2366 // an offset into that buffer, and an Element that will be saved into the buffer at the parametrised offset. 2367 // Return value is the new offset after writing the element into the buffer. 2368 // Elements are saved to the file as the ElementHeader struct followed by offsets to the structs of all the element's 2369 // children. 2370 size_t 2371 RenderScriptRuntime::PopulateElementHeaders(const std::shared_ptr<uint8_t> header_buffer, size_t offset, 2372 const Element &elem) 2373 { 2374 // File struct for an element header with all the relevant details copied from elem. 2375 // We assume members are valid already. 2376 AllocationDetails::ElementHeader elem_header; 2377 elem_header.type = *elem.type.get(); 2378 elem_header.kind = *elem.type_kind.get(); 2379 elem_header.element_size = *elem.datum_size.get(); 2380 elem_header.vector_size = *elem.type_vec_size.get(); 2381 elem_header.array_size = elem.array_size.isValid() ? *elem.array_size.get() : 0; 2382 const size_t elem_header_size = sizeof(AllocationDetails::ElementHeader); 2383 2384 // Copy struct into buffer and advance offset 2385 // We assume that header_buffer has been checked for nullptr before this method is called 2386 memcpy(header_buffer.get() + offset, &elem_header, elem_header_size); 2387 offset += elem_header_size; 2388 2389 // Starting offset of child ElementHeader struct 2390 size_t child_offset = offset + ((elem.children.size() + 1) * sizeof(uint32_t)); 2391 for (const RenderScriptRuntime::Element &child : elem.children) 2392 { 2393 // Recursively populate the buffer with the element header structs of children. 2394 // Then save the offsets where they were set after the parent element header. 2395 memcpy(header_buffer.get() + offset, &child_offset, sizeof(uint32_t)); 2396 offset += sizeof(uint32_t); 2397 2398 child_offset = PopulateElementHeaders(header_buffer, child_offset, child); 2399 } 2400 2401 // Zero indicates no more children 2402 memset(header_buffer.get() + offset, 0, sizeof(uint32_t)); 2403 2404 return child_offset; 2405 } 2406 2407 // Given an Element object this function returns the total size needed in the file header to store the element's 2408 // details. 2409 // Taking into account the size of the element header struct, plus the offsets to all the element's children. 2410 // Function is recursive so that the size of all ancestors is taken into account. 2411 size_t 2412 RenderScriptRuntime::CalculateElementHeaderSize(const Element &elem) 2413 { 2414 size_t size = (elem.children.size() + 1) * sizeof(uint32_t); // Offsets to children plus zero terminator 2415 size += sizeof(AllocationDetails::ElementHeader); // Size of header struct with type details 2416 2417 // Calculate recursively for all descendants 2418 for (const Element &child : elem.children) 2419 size += CalculateElementHeaderSize(child); 2420 2421 return size; 2422 } 2423 2424 // Function copies allocation contents into a binary file. 2425 // This file can then be loaded later into a different allocation. 2426 // There is a header, FileHeader, before the allocation data containing meta-data. 2427 bool 2428 RenderScriptRuntime::SaveAllocation(Stream &strm, const uint32_t alloc_id, const char *filename, StackFrame *frame_ptr) 2429 { 2430 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2431 2432 // Find allocation with the given id 2433 AllocationDetails *alloc = FindAllocByID(strm, alloc_id); 2434 if (!alloc) 2435 return false; 2436 2437 if (log) 2438 log->Printf("%s - found allocation 0x%" PRIx64 ".", __FUNCTION__, *alloc->address.get()); 2439 2440 // JIT all the allocation details 2441 if (alloc->shouldRefresh()) 2442 { 2443 if (log) 2444 log->Printf("%s - allocation details not calculated yet, jitting info.", __FUNCTION__); 2445 2446 if (!RefreshAllocation(alloc, frame_ptr)) 2447 { 2448 if (log) 2449 log->Printf("%s - couldn't JIT allocation details.", __FUNCTION__); 2450 return false; 2451 } 2452 } 2453 2454 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && alloc->element.type_vec_size.isValid() && 2455 alloc->element.datum_size.get() && alloc->element.type_kind.isValid() && alloc->dimension.isValid() && 2456 "Allocation information not available"); 2457 2458 // Check we can create writable file 2459 FileSpec file_spec(filename, true); 2460 File file(file_spec, File::eOpenOptionWrite | File::eOpenOptionCanCreate | File::eOpenOptionTruncate); 2461 if (!file) 2462 { 2463 strm.Printf("Error: Failed to open '%s' for writing", filename); 2464 strm.EOL(); 2465 return false; 2466 } 2467 2468 // Read allocation into buffer of heap memory 2469 const std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr); 2470 if (!buffer) 2471 { 2472 strm.Printf("Error: Couldn't read allocation data into buffer"); 2473 strm.EOL(); 2474 return false; 2475 } 2476 2477 // Create the file header 2478 AllocationDetails::FileHeader head; 2479 memcpy(head.ident, "RSAD", 4); 2480 head.dims[0] = static_cast<uint32_t>(alloc->dimension.get()->dim_1); 2481 head.dims[1] = static_cast<uint32_t>(alloc->dimension.get()->dim_2); 2482 head.dims[2] = static_cast<uint32_t>(alloc->dimension.get()->dim_3); 2483 2484 const size_t element_header_size = CalculateElementHeaderSize(alloc->element); 2485 assert((sizeof(AllocationDetails::FileHeader) + element_header_size) < UINT16_MAX && "Element header too large"); 2486 head.hdr_size = static_cast<uint16_t>(sizeof(AllocationDetails::FileHeader) + element_header_size); 2487 2488 // Write the file header 2489 size_t num_bytes = sizeof(AllocationDetails::FileHeader); 2490 if (log) 2491 log->Printf("%s - writing File Header, 0x%" PRIx64 " bytes", __FUNCTION__, (uint64_t)num_bytes); 2492 2493 Error err = file.Write(&head, num_bytes); 2494 if (!err.Success()) 2495 { 2496 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), filename); 2497 strm.EOL(); 2498 return false; 2499 } 2500 2501 // Create the headers describing the element type of the allocation. 2502 std::shared_ptr<uint8_t> element_header_buffer(new uint8_t[element_header_size]); 2503 if (element_header_buffer == nullptr) 2504 { 2505 strm.Printf("Internal Error: Couldn't allocate %" PRIu64 " bytes on the heap", (uint64_t)element_header_size); 2506 strm.EOL(); 2507 return false; 2508 } 2509 2510 PopulateElementHeaders(element_header_buffer, 0, alloc->element); 2511 2512 // Write headers for allocation element type to file 2513 num_bytes = element_header_size; 2514 if (log) 2515 log->Printf("%s - writing element headers, 0x%" PRIx64 " bytes.", __FUNCTION__, (uint64_t)num_bytes); 2516 2517 err = file.Write(element_header_buffer.get(), num_bytes); 2518 if (!err.Success()) 2519 { 2520 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), filename); 2521 strm.EOL(); 2522 return false; 2523 } 2524 2525 // Write allocation data to file 2526 num_bytes = static_cast<size_t>(*alloc->size.get()); 2527 if (log) 2528 log->Printf("%s - writing 0x%" PRIx64 " bytes", __FUNCTION__, (uint64_t)num_bytes); 2529 2530 err = file.Write(buffer.get(), num_bytes); 2531 if (!err.Success()) 2532 { 2533 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), filename); 2534 strm.EOL(); 2535 return false; 2536 } 2537 2538 strm.Printf("Allocation written to file '%s'", filename); 2539 strm.EOL(); 2540 return true; 2541 } 2542 2543 bool 2544 RenderScriptRuntime::LoadModule(const lldb::ModuleSP &module_sp) 2545 { 2546 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2547 2548 if (module_sp) 2549 { 2550 for (const auto &rs_module : m_rsmodules) 2551 { 2552 if (rs_module->m_module == module_sp) 2553 { 2554 // Check if the user has enabled automatically breaking on 2555 // all RS kernels. 2556 if (m_breakAllKernels) 2557 BreakOnModuleKernels(rs_module); 2558 2559 return false; 2560 } 2561 } 2562 bool module_loaded = false; 2563 switch (GetModuleKind(module_sp)) 2564 { 2565 case eModuleKindKernelObj: 2566 { 2567 RSModuleDescriptorSP module_desc; 2568 module_desc.reset(new RSModuleDescriptor(module_sp)); 2569 if (module_desc->ParseRSInfo()) 2570 { 2571 m_rsmodules.push_back(module_desc); 2572 module_loaded = true; 2573 } 2574 if (module_loaded) 2575 { 2576 FixupScriptDetails(module_desc); 2577 } 2578 break; 2579 } 2580 case eModuleKindDriver: 2581 { 2582 if (!m_libRSDriver) 2583 { 2584 m_libRSDriver = module_sp; 2585 LoadRuntimeHooks(m_libRSDriver, RenderScriptRuntime::eModuleKindDriver); 2586 } 2587 break; 2588 } 2589 case eModuleKindImpl: 2590 { 2591 m_libRSCpuRef = module_sp; 2592 break; 2593 } 2594 case eModuleKindLibRS: 2595 { 2596 if (!m_libRS) 2597 { 2598 m_libRS = module_sp; 2599 static ConstString gDbgPresentStr("gDebuggerPresent"); 2600 const Symbol *debug_present = 2601 m_libRS->FindFirstSymbolWithNameAndType(gDbgPresentStr, eSymbolTypeData); 2602 if (debug_present) 2603 { 2604 Error error; 2605 uint32_t flag = 0x00000001U; 2606 Target &target = GetProcess()->GetTarget(); 2607 addr_t addr = debug_present->GetLoadAddress(&target); 2608 GetProcess()->WriteMemory(addr, &flag, sizeof(flag), error); 2609 if (error.Success()) 2610 { 2611 if (log) 2612 log->Printf("%s - debugger present flag set on debugee.", __FUNCTION__); 2613 2614 m_debuggerPresentFlagged = true; 2615 } 2616 else if (log) 2617 { 2618 log->Printf("%s - error writing debugger present flags '%s' ", __FUNCTION__, 2619 error.AsCString()); 2620 } 2621 } 2622 else if (log) 2623 { 2624 log->Printf("%s - error writing debugger present flags - symbol not found", __FUNCTION__); 2625 } 2626 } 2627 break; 2628 } 2629 default: 2630 break; 2631 } 2632 if (module_loaded) 2633 Update(); 2634 return module_loaded; 2635 } 2636 return false; 2637 } 2638 2639 void 2640 RenderScriptRuntime::Update() 2641 { 2642 if (m_rsmodules.size() > 0) 2643 { 2644 if (!m_initiated) 2645 { 2646 Initiate(); 2647 } 2648 } 2649 } 2650 2651 // The maximum line length of an .rs.info packet 2652 #define MAXLINE 500 2653 #define STRINGIFY(x) #x 2654 #define MAXLINESTR_(x) "%" STRINGIFY(x) "s" 2655 #define MAXLINESTR MAXLINESTR_(MAXLINE) 2656 2657 // The .rs.info symbol in renderscript modules contains a string which needs to be parsed. 2658 // The string is basic and is parsed on a line by line basis. 2659 bool 2660 RSModuleDescriptor::ParseRSInfo() 2661 { 2662 assert(m_module); 2663 const Symbol *info_sym = m_module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), eSymbolTypeData); 2664 if (!info_sym) 2665 return false; 2666 2667 const addr_t addr = info_sym->GetAddressRef().GetFileAddress(); 2668 if (addr == LLDB_INVALID_ADDRESS) 2669 return false; 2670 2671 const addr_t size = info_sym->GetByteSize(); 2672 const FileSpec fs = m_module->GetFileSpec(); 2673 2674 const DataBufferSP buffer = fs.ReadFileContents(addr, size); 2675 if (!buffer) 2676 return false; 2677 2678 // split rs.info. contents into lines 2679 std::vector<std::string> info_lines; 2680 { 2681 const std::string info((const char *)buffer->GetBytes()); 2682 for (size_t tail = 0; tail < info.size();) 2683 { 2684 // find next new line or end of string 2685 size_t head = info.find('\n', tail); 2686 head = (head == std::string::npos) ? info.size() : head; 2687 std::string line = info.substr(tail, head - tail); 2688 // add to line list 2689 info_lines.push_back(line); 2690 tail = head + 1; 2691 } 2692 } 2693 2694 std::array<char, MAXLINE> name{{'\0'}}; 2695 std::array<char, MAXLINE> value{{'\0'}}; 2696 2697 // parse all text lines of .rs.info 2698 for (auto line = info_lines.begin(); line != info_lines.end(); ++line) 2699 { 2700 uint32_t numDefns = 0; 2701 if (sscanf(line->c_str(), "exportVarCount: %" PRIu32 "", &numDefns) == 1) 2702 { 2703 while (numDefns--) 2704 m_globals.push_back(RSGlobalDescriptor(this, (++line)->c_str())); 2705 } 2706 else if (sscanf(line->c_str(), "exportForEachCount: %" PRIu32 "", &numDefns) == 1) 2707 { 2708 while (numDefns--) 2709 { 2710 uint32_t slot = 0; 2711 name[0] = '\0'; 2712 static const char *fmt_s = "%" PRIu32 " - " MAXLINESTR; 2713 if (sscanf((++line)->c_str(), fmt_s, &slot, name.data()) == 2) 2714 { 2715 if (name[0] != '\0') 2716 m_kernels.push_back(RSKernelDescriptor(this, name.data(), slot)); 2717 } 2718 } 2719 } 2720 else if (sscanf(line->c_str(), "pragmaCount: %" PRIu32 "", &numDefns) == 1) 2721 { 2722 while (numDefns--) 2723 { 2724 name[0] = value[0] = '\0'; 2725 static const char *fmt_s = MAXLINESTR " - " MAXLINESTR; 2726 if (sscanf((++line)->c_str(), fmt_s, name.data(), value.data()) != 0) 2727 { 2728 if (name[0] != '\0') 2729 m_pragmas[std::string(name.data())] = value.data(); 2730 } 2731 } 2732 } 2733 else 2734 { 2735 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2736 if (log) 2737 { 2738 log->Printf("%s - skipping .rs.info field '%s'", __FUNCTION__, line->c_str()); 2739 } 2740 } 2741 } 2742 2743 // 'root' kernel should always be present 2744 return m_kernels.size() > 0; 2745 } 2746 2747 void 2748 RenderScriptRuntime::Status(Stream &strm) const 2749 { 2750 if (m_libRS) 2751 { 2752 strm.Printf("Runtime Library discovered."); 2753 strm.EOL(); 2754 } 2755 if (m_libRSDriver) 2756 { 2757 strm.Printf("Runtime Driver discovered."); 2758 strm.EOL(); 2759 } 2760 if (m_libRSCpuRef) 2761 { 2762 strm.Printf("CPU Reference Implementation discovered."); 2763 strm.EOL(); 2764 } 2765 2766 if (m_runtimeHooks.size()) 2767 { 2768 strm.Printf("Runtime functions hooked:"); 2769 strm.EOL(); 2770 for (auto b : m_runtimeHooks) 2771 { 2772 strm.Indent(b.second->defn->name); 2773 strm.EOL(); 2774 } 2775 } 2776 else 2777 { 2778 strm.Printf("Runtime is not hooked."); 2779 strm.EOL(); 2780 } 2781 } 2782 2783 void 2784 RenderScriptRuntime::DumpContexts(Stream &strm) const 2785 { 2786 strm.Printf("Inferred RenderScript Contexts:"); 2787 strm.EOL(); 2788 strm.IndentMore(); 2789 2790 std::map<addr_t, uint64_t> contextReferences; 2791 2792 // Iterate over all of the currently discovered scripts. 2793 // Note: We cant push or pop from m_scripts inside this loop or it may invalidate script. 2794 for (const auto &script : m_scripts) 2795 { 2796 if (!script->context.isValid()) 2797 continue; 2798 lldb::addr_t context = *script->context; 2799 2800 if (contextReferences.find(context) != contextReferences.end()) 2801 { 2802 contextReferences[context]++; 2803 } 2804 else 2805 { 2806 contextReferences[context] = 1; 2807 } 2808 } 2809 2810 for (const auto &cRef : contextReferences) 2811 { 2812 strm.Printf("Context 0x%" PRIx64 ": %" PRIu64 " script instances", cRef.first, cRef.second); 2813 strm.EOL(); 2814 } 2815 strm.IndentLess(); 2816 } 2817 2818 void 2819 RenderScriptRuntime::DumpKernels(Stream &strm) const 2820 { 2821 strm.Printf("RenderScript Kernels:"); 2822 strm.EOL(); 2823 strm.IndentMore(); 2824 for (const auto &module : m_rsmodules) 2825 { 2826 strm.Printf("Resource '%s':", module->m_resname.c_str()); 2827 strm.EOL(); 2828 for (const auto &kernel : module->m_kernels) 2829 { 2830 strm.Indent(kernel.m_name.AsCString()); 2831 strm.EOL(); 2832 } 2833 } 2834 strm.IndentLess(); 2835 } 2836 2837 RenderScriptRuntime::AllocationDetails * 2838 RenderScriptRuntime::FindAllocByID(Stream &strm, const uint32_t alloc_id) 2839 { 2840 AllocationDetails *alloc = nullptr; 2841 2842 // See if we can find allocation using id as an index; 2843 if (alloc_id <= m_allocations.size() && alloc_id != 0 && m_allocations[alloc_id - 1]->id == alloc_id) 2844 { 2845 alloc = m_allocations[alloc_id - 1].get(); 2846 return alloc; 2847 } 2848 2849 // Fallback to searching 2850 for (const auto &a : m_allocations) 2851 { 2852 if (a->id == alloc_id) 2853 { 2854 alloc = a.get(); 2855 break; 2856 } 2857 } 2858 2859 if (alloc == nullptr) 2860 { 2861 strm.Printf("Error: Couldn't find allocation with id matching %" PRIu32, alloc_id); 2862 strm.EOL(); 2863 } 2864 2865 return alloc; 2866 } 2867 2868 // Prints the contents of an allocation to the output stream, which may be a file 2869 bool 2870 RenderScriptRuntime::DumpAllocation(Stream &strm, StackFrame *frame_ptr, const uint32_t id) 2871 { 2872 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2873 2874 // Check we can find the desired allocation 2875 AllocationDetails *alloc = FindAllocByID(strm, id); 2876 if (!alloc) 2877 return false; // FindAllocByID() will print error message for us here 2878 2879 if (log) 2880 log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__, *alloc->address.get()); 2881 2882 // Check we have information about the allocation, if not calculate it 2883 if (alloc->shouldRefresh()) 2884 { 2885 if (log) 2886 log->Printf("%s - allocation details not calculated yet, jitting info.", __FUNCTION__); 2887 2888 // JIT all the allocation information 2889 if (!RefreshAllocation(alloc, frame_ptr)) 2890 { 2891 strm.Printf("Error: Couldn't JIT allocation details"); 2892 strm.EOL(); 2893 return false; 2894 } 2895 } 2896 2897 // Establish format and size of each data element 2898 const uint32_t vec_size = *alloc->element.type_vec_size.get(); 2899 const Element::DataType type = *alloc->element.type.get(); 2900 2901 assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && "Invalid allocation type"); 2902 2903 lldb::Format format; 2904 if (type >= Element::RS_TYPE_ELEMENT) 2905 format = eFormatHex; 2906 else 2907 format = vec_size == 1 ? static_cast<lldb::Format>(AllocationDetails::RSTypeToFormat[type][eFormatSingle]) 2908 : static_cast<lldb::Format>(AllocationDetails::RSTypeToFormat[type][eFormatVector]); 2909 2910 const uint32_t data_size = *alloc->element.datum_size.get(); 2911 2912 if (log) 2913 log->Printf("%s - element size %" PRIu32 " bytes, including padding", __FUNCTION__, data_size); 2914 2915 // Allocate a buffer to copy data into 2916 std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr); 2917 if (!buffer) 2918 { 2919 strm.Printf("Error: Couldn't read allocation data"); 2920 strm.EOL(); 2921 return false; 2922 } 2923 2924 // Calculate stride between rows as there may be padding at end of rows since 2925 // allocated memory is 16-byte aligned 2926 if (!alloc->stride.isValid()) 2927 { 2928 if (alloc->dimension.get()->dim_2 == 0) // We only have one dimension 2929 alloc->stride = 0; 2930 else if (!JITAllocationStride(alloc, frame_ptr)) 2931 { 2932 strm.Printf("Error: Couldn't calculate allocation row stride"); 2933 strm.EOL(); 2934 return false; 2935 } 2936 } 2937 const uint32_t stride = *alloc->stride.get(); 2938 const uint32_t size = *alloc->size.get(); // Size of whole allocation 2939 const uint32_t padding = alloc->element.padding.isValid() ? *alloc->element.padding.get() : 0; 2940 if (log) 2941 log->Printf("%s - stride %" PRIu32 " bytes, size %" PRIu32 " bytes, padding %" PRIu32, 2942 __FUNCTION__, stride, size, padding); 2943 2944 // Find dimensions used to index loops, so need to be non-zero 2945 uint32_t dim_x = alloc->dimension.get()->dim_1; 2946 dim_x = dim_x == 0 ? 1 : dim_x; 2947 2948 uint32_t dim_y = alloc->dimension.get()->dim_2; 2949 dim_y = dim_y == 0 ? 1 : dim_y; 2950 2951 uint32_t dim_z = alloc->dimension.get()->dim_3; 2952 dim_z = dim_z == 0 ? 1 : dim_z; 2953 2954 // Use data extractor to format output 2955 const uint32_t archByteSize = GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 2956 DataExtractor alloc_data(buffer.get(), size, GetProcess()->GetByteOrder(), archByteSize); 2957 2958 uint32_t offset = 0; // Offset in buffer to next element to be printed 2959 uint32_t prev_row = 0; // Offset to the start of the previous row 2960 2961 // Iterate over allocation dimensions, printing results to user 2962 strm.Printf("Data (X, Y, Z):"); 2963 for (uint32_t z = 0; z < dim_z; ++z) 2964 { 2965 for (uint32_t y = 0; y < dim_y; ++y) 2966 { 2967 // Use stride to index start of next row. 2968 if (!(y == 0 && z == 0)) 2969 offset = prev_row + stride; 2970 prev_row = offset; 2971 2972 // Print each element in the row individually 2973 for (uint32_t x = 0; x < dim_x; ++x) 2974 { 2975 strm.Printf("\n(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ") = ", x, y, z); 2976 if ((type == Element::RS_TYPE_NONE) && (alloc->element.children.size() > 0) && 2977 (alloc->element.type_name != Element::GetFallbackStructName())) 2978 { 2979 // Here we are dumping an Element of struct type. 2980 // This is done using expression evaluation with the name of the struct type and pointer to element. 2981 2982 // Don't print the name of the resulting expression, since this will be '$[0-9]+' 2983 DumpValueObjectOptions expr_options; 2984 expr_options.SetHideName(true); 2985 2986 // Setup expression as derefrencing a pointer cast to element address. 2987 char expr_char_buffer[jit_max_expr_size]; 2988 int chars_written = snprintf(expr_char_buffer, jit_max_expr_size, "*(%s*) 0x%" PRIx64, 2989 alloc->element.type_name.AsCString(), *alloc->data_ptr.get() + offset); 2990 2991 if (chars_written < 0 || chars_written >= jit_max_expr_size) 2992 { 2993 if (log) 2994 log->Printf("%s - error in snprintf().", __FUNCTION__); 2995 continue; 2996 } 2997 2998 // Evaluate expression 2999 ValueObjectSP expr_result; 3000 GetProcess()->GetTarget().EvaluateExpression(expr_char_buffer, frame_ptr, expr_result); 3001 3002 // Print the results to our stream. 3003 expr_result->Dump(strm, expr_options); 3004 } 3005 else 3006 { 3007 alloc_data.Dump(&strm, offset, format, data_size - padding, 1, 1, LLDB_INVALID_ADDRESS, 0, 0); 3008 } 3009 offset += data_size; 3010 } 3011 } 3012 } 3013 strm.EOL(); 3014 3015 return true; 3016 } 3017 3018 // Function recalculates all our cached information about allocations by jitting the 3019 // RS runtime regarding each allocation we know about. 3020 // Returns true if all allocations could be recomputed, false otherwise. 3021 bool 3022 RenderScriptRuntime::RecomputeAllAllocations(Stream &strm, StackFrame *frame_ptr) 3023 { 3024 bool success = true; 3025 for (auto &alloc : m_allocations) 3026 { 3027 // JIT current allocation information 3028 if (!RefreshAllocation(alloc.get(), frame_ptr)) 3029 { 3030 strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32 "\n", alloc->id); 3031 success = false; 3032 } 3033 } 3034 3035 if (success) 3036 strm.Printf("All allocations successfully recomputed"); 3037 strm.EOL(); 3038 3039 return success; 3040 } 3041 3042 // Prints information regarding currently loaded allocations. 3043 // These details are gathered by jitting the runtime, which has as latency. 3044 // Index parameter specifies a single allocation ID to print, or a zero value to print them all 3045 void 3046 RenderScriptRuntime::ListAllocations(Stream &strm, StackFrame *frame_ptr, const uint32_t index) 3047 { 3048 strm.Printf("RenderScript Allocations:"); 3049 strm.EOL(); 3050 strm.IndentMore(); 3051 3052 for (auto &alloc : m_allocations) 3053 { 3054 // index will only be zero if we want to print all allocations 3055 if (index != 0 && index != alloc->id) 3056 continue; 3057 3058 // JIT current allocation information 3059 if (alloc->shouldRefresh() && !RefreshAllocation(alloc.get(), frame_ptr)) 3060 { 3061 strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32, alloc->id); 3062 strm.EOL(); 3063 continue; 3064 } 3065 3066 strm.Printf("%" PRIu32 ":", alloc->id); 3067 strm.EOL(); 3068 strm.IndentMore(); 3069 3070 strm.Indent("Context: "); 3071 if (!alloc->context.isValid()) 3072 strm.Printf("unknown\n"); 3073 else 3074 strm.Printf("0x%" PRIx64 "\n", *alloc->context.get()); 3075 3076 strm.Indent("Address: "); 3077 if (!alloc->address.isValid()) 3078 strm.Printf("unknown\n"); 3079 else 3080 strm.Printf("0x%" PRIx64 "\n", *alloc->address.get()); 3081 3082 strm.Indent("Data pointer: "); 3083 if (!alloc->data_ptr.isValid()) 3084 strm.Printf("unknown\n"); 3085 else 3086 strm.Printf("0x%" PRIx64 "\n", *alloc->data_ptr.get()); 3087 3088 strm.Indent("Dimensions: "); 3089 if (!alloc->dimension.isValid()) 3090 strm.Printf("unknown\n"); 3091 else 3092 strm.Printf("(%" PRId32 ", %" PRId32 ", %" PRId32 ")\n", 3093 alloc->dimension.get()->dim_1, alloc->dimension.get()->dim_2, alloc->dimension.get()->dim_3); 3094 3095 strm.Indent("Data Type: "); 3096 if (!alloc->element.type.isValid() || !alloc->element.type_vec_size.isValid()) 3097 strm.Printf("unknown\n"); 3098 else 3099 { 3100 const int vector_size = *alloc->element.type_vec_size.get(); 3101 Element::DataType type = *alloc->element.type.get(); 3102 3103 if (!alloc->element.type_name.IsEmpty()) 3104 strm.Printf("%s\n", alloc->element.type_name.AsCString()); 3105 else 3106 { 3107 // Enum value isn't monotonous, so doesn't always index RsDataTypeToString array 3108 if (type >= Element::RS_TYPE_ELEMENT && type <= Element::RS_TYPE_FONT) 3109 type = static_cast<Element::DataType>((type - Element::RS_TYPE_ELEMENT) + 3110 Element::RS_TYPE_MATRIX_2X2 + 1); 3111 3112 if (type >= (sizeof(AllocationDetails::RsDataTypeToString) / 3113 sizeof(AllocationDetails::RsDataTypeToString[0])) || 3114 vector_size > 4 || vector_size < 1) 3115 strm.Printf("invalid type\n"); 3116 else 3117 strm.Printf("%s\n", AllocationDetails::RsDataTypeToString[static_cast<uint32_t>(type)] 3118 [vector_size - 1]); 3119 } 3120 } 3121 3122 strm.Indent("Data Kind: "); 3123 if (!alloc->element.type_kind.isValid()) 3124 strm.Printf("unknown\n"); 3125 else 3126 { 3127 const Element::DataKind kind = *alloc->element.type_kind.get(); 3128 if (kind < Element::RS_KIND_USER || kind > Element::RS_KIND_PIXEL_YUV) 3129 strm.Printf("invalid kind\n"); 3130 else 3131 strm.Printf("%s\n", AllocationDetails::RsDataKindToString[static_cast<uint32_t>(kind)]); 3132 } 3133 3134 strm.EOL(); 3135 strm.IndentLess(); 3136 } 3137 strm.IndentLess(); 3138 } 3139 3140 // Set breakpoints on every kernel found in RS module 3141 void 3142 RenderScriptRuntime::BreakOnModuleKernels(const RSModuleDescriptorSP rsmodule_sp) 3143 { 3144 for (const auto &kernel : rsmodule_sp->m_kernels) 3145 { 3146 // Don't set breakpoint on 'root' kernel 3147 if (strcmp(kernel.m_name.AsCString(), "root") == 0) 3148 continue; 3149 3150 CreateKernelBreakpoint(kernel.m_name); 3151 } 3152 } 3153 3154 // Method is internally called by the 'kernel breakpoint all' command to 3155 // enable or disable breaking on all kernels. 3156 // 3157 // When do_break is true we want to enable this functionality. 3158 // When do_break is false we want to disable it. 3159 void 3160 RenderScriptRuntime::SetBreakAllKernels(bool do_break, TargetSP target) 3161 { 3162 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3163 3164 InitSearchFilter(target); 3165 3166 // Set breakpoints on all the kernels 3167 if (do_break && !m_breakAllKernels) 3168 { 3169 m_breakAllKernels = true; 3170 3171 for (const auto &module : m_rsmodules) 3172 BreakOnModuleKernels(module); 3173 3174 if (log) 3175 log->Printf("%s(True) - breakpoints set on all currently loaded kernels.", __FUNCTION__); 3176 } 3177 else if (!do_break && m_breakAllKernels) // Breakpoints won't be set on any new kernels. 3178 { 3179 m_breakAllKernels = false; 3180 3181 if (log) 3182 log->Printf("%s(False) - breakpoints no longer automatically set.", __FUNCTION__); 3183 } 3184 } 3185 3186 // Given the name of a kernel this function creates a breakpoint using our 3187 // own breakpoint resolver, and returns the Breakpoint shared pointer. 3188 BreakpointSP 3189 RenderScriptRuntime::CreateKernelBreakpoint(const ConstString &name) 3190 { 3191 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3192 3193 if (!m_filtersp) 3194 { 3195 if (log) 3196 log->Printf("%s - error, no breakpoint search filter set.", __FUNCTION__); 3197 return nullptr; 3198 } 3199 3200 BreakpointResolverSP resolver_sp(new RSBreakpointResolver(nullptr, name)); 3201 BreakpointSP bp = GetProcess()->GetTarget().CreateBreakpoint(m_filtersp, resolver_sp, false, false, false); 3202 3203 // Give RS breakpoints a specific name, so the user can manipulate them as a group. 3204 Error err; 3205 if (!bp->AddName("RenderScriptKernel", err) && log) 3206 log->Printf("%s - error setting break name, '%s'.", __FUNCTION__, err.AsCString()); 3207 3208 return bp; 3209 } 3210 3211 // Given an expression for a variable this function tries to calculate the variable's value. 3212 // If this is possible it returns true and sets the uint64_t parameter to the variables unsigned value. 3213 // Otherwise function returns false. 3214 bool 3215 RenderScriptRuntime::GetFrameVarAsUnsigned(const StackFrameSP frame_sp, const char *var_name, uint64_t &val) 3216 { 3217 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3218 Error error; 3219 VariableSP var_sp; 3220 3221 // Find variable in stack frame 3222 ValueObjectSP value_sp(frame_sp->GetValueForVariableExpressionPath( 3223 var_name, eNoDynamicValues, 3224 StackFrame::eExpressionPathOptionCheckPtrVsMember | StackFrame::eExpressionPathOptionsAllowDirectIVarAccess, 3225 var_sp, error)); 3226 if (!error.Success()) 3227 { 3228 if (log) 3229 log->Printf("%s - error, couldn't find '%s' in frame", __FUNCTION__, var_name); 3230 return false; 3231 } 3232 3233 // Find the uint32_t value for the variable 3234 bool success = false; 3235 val = value_sp->GetValueAsUnsigned(0, &success); 3236 if (!success) 3237 { 3238 if (log) 3239 log->Printf("%s - error, couldn't parse '%s' as an uint32_t.", __FUNCTION__, var_name); 3240 return false; 3241 } 3242 3243 return true; 3244 } 3245 3246 // Function attempts to find the current coordinate of a kernel invocation by investigating the 3247 // values of frame variables in the .expand function. These coordinates are returned via the coord 3248 // array reference parameter. Returns true if the coordinates could be found, and false otherwise. 3249 bool 3250 RenderScriptRuntime::GetKernelCoordinate(RSCoordinate &coord, Thread *thread_ptr) 3251 { 3252 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3253 3254 if (!thread_ptr) 3255 { 3256 if (log) 3257 log->Printf("%s - Error, No thread pointer", __FUNCTION__); 3258 3259 return false; 3260 } 3261 3262 // Walk the call stack looking for a function whose name has the suffix '.expand' 3263 // and contains the variables we're looking for. 3264 for (uint32_t i = 0; i < thread_ptr->GetStackFrameCount(); ++i) 3265 { 3266 if (!thread_ptr->SetSelectedFrameByIndex(i)) 3267 continue; 3268 3269 StackFrameSP frame_sp = thread_ptr->GetSelectedFrame(); 3270 if (!frame_sp) 3271 continue; 3272 3273 // Find the function name 3274 const SymbolContext sym_ctx = frame_sp->GetSymbolContext(false); 3275 const char *func_name_cstr = sym_ctx.GetFunctionName().AsCString(); 3276 if (!func_name_cstr) 3277 continue; 3278 3279 if (log) 3280 log->Printf("%s - Inspecting function '%s'", __FUNCTION__, func_name_cstr); 3281 3282 // Check if function name has .expand suffix 3283 std::string func_name(func_name_cstr); 3284 const int length_difference = func_name.length() - RenderScriptRuntime::s_runtimeExpandSuffix.length(); 3285 if (length_difference <= 0) 3286 continue; 3287 3288 const int32_t has_expand_suffix = func_name.compare(length_difference, 3289 RenderScriptRuntime::s_runtimeExpandSuffix.length(), 3290 RenderScriptRuntime::s_runtimeExpandSuffix); 3291 3292 if (has_expand_suffix != 0) 3293 continue; 3294 3295 if (log) 3296 log->Printf("%s - Found .expand function '%s'", __FUNCTION__, func_name_cstr); 3297 3298 // Get values for variables in .expand frame that tell us the current kernel invocation 3299 bool found_coord_variables = true; 3300 assert(RenderScriptRuntime::s_runtimeCoordVars.size() == coord.size()); 3301 3302 for (uint32_t i = 0; i < coord.size(); ++i) 3303 { 3304 uint64_t value = 0; 3305 if (!GetFrameVarAsUnsigned(frame_sp, RenderScriptRuntime::s_runtimeCoordVars[i], value)) 3306 { 3307 found_coord_variables = false; 3308 break; 3309 } 3310 coord[i] = value; 3311 } 3312 3313 if (found_coord_variables) 3314 return true; 3315 } 3316 return false; 3317 } 3318 3319 // Callback when a kernel breakpoint hits and we're looking for a specific coordinate. 3320 // Baton parameter contains a pointer to the target coordinate we want to break on. 3321 // Function then checks the .expand frame for the current coordinate and breaks to user if it matches. 3322 // Parameter 'break_id' is the id of the Breakpoint which made the callback. 3323 // Parameter 'break_loc_id' is the id for the BreakpointLocation which was hit, 3324 // a single logical breakpoint can have multiple addresses. 3325 bool 3326 RenderScriptRuntime::KernelBreakpointHit(void *baton, StoppointCallbackContext *ctx, user_id_t break_id, 3327 user_id_t break_loc_id) 3328 { 3329 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3330 3331 assert(baton && "Error: null baton in conditional kernel breakpoint callback"); 3332 3333 // Coordinate we want to stop on 3334 const uint32_t *target_coord = static_cast<const uint32_t *>(baton); 3335 3336 if (log) 3337 log->Printf("%s - Break ID %" PRIu64 ", (%" PRIu32 ", %" PRIu32 ", %" PRIu32 ")", __FUNCTION__, break_id, 3338 target_coord[0], target_coord[1], target_coord[2]); 3339 3340 // Select current thread 3341 ExecutionContext context(ctx->exe_ctx_ref); 3342 Thread *thread_ptr = context.GetThreadPtr(); 3343 assert(thread_ptr && "Null thread pointer"); 3344 3345 // Find current kernel invocation from .expand frame variables 3346 RSCoordinate current_coord{}; // Zero initialise array 3347 if (!GetKernelCoordinate(current_coord, thread_ptr)) 3348 { 3349 if (log) 3350 log->Printf("%s - Error, couldn't select .expand stack frame", __FUNCTION__); 3351 return false; 3352 } 3353 3354 if (log) 3355 log->Printf("%s - (%" PRIu32 ",%" PRIu32 ",%" PRIu32 ")", __FUNCTION__, current_coord[0], current_coord[1], 3356 current_coord[2]); 3357 3358 // Check if the current kernel invocation coordinate matches our target coordinate 3359 if (current_coord[0] == target_coord[0] && 3360 current_coord[1] == target_coord[1] && 3361 current_coord[2] == target_coord[2]) 3362 { 3363 if (log) 3364 log->Printf("%s, BREAKING (%" PRIu32 ",%" PRIu32 ",%" PRIu32 ")", __FUNCTION__, current_coord[0], 3365 current_coord[1], current_coord[2]); 3366 3367 BreakpointSP breakpoint_sp = context.GetTargetPtr()->GetBreakpointByID(break_id); 3368 assert(breakpoint_sp != nullptr && "Error: Couldn't find breakpoint matching break id for callback"); 3369 breakpoint_sp->SetEnabled(false); // Optimise since conditional breakpoint should only be hit once. 3370 return true; 3371 } 3372 3373 // No match on coordinate 3374 return false; 3375 } 3376 3377 // Tries to set a breakpoint on the start of a kernel, resolved using the kernel name. 3378 // Argument 'coords', represents a three dimensional coordinate which can be used to specify 3379 // a single kernel instance to break on. If this is set then we add a callback to the breakpoint. 3380 void 3381 RenderScriptRuntime::PlaceBreakpointOnKernel(Stream &strm, const char *name, const std::array<int, 3> coords, 3382 Error &error, TargetSP target) 3383 { 3384 if (!name) 3385 { 3386 error.SetErrorString("invalid kernel name"); 3387 return; 3388 } 3389 3390 InitSearchFilter(target); 3391 3392 ConstString kernel_name(name); 3393 BreakpointSP bp = CreateKernelBreakpoint(kernel_name); 3394 3395 // We have a conditional breakpoint on a specific coordinate 3396 if (coords[0] != -1) 3397 { 3398 strm.Printf("Conditional kernel breakpoint on coordinate %" PRId32 ", %" PRId32 ", %" PRId32, 3399 coords[0], coords[1], coords[2]); 3400 strm.EOL(); 3401 3402 // Allocate memory for the baton, and copy over coordinate 3403 uint32_t *baton = new uint32_t[coords.size()]; 3404 baton[0] = coords[0]; baton[1] = coords[1]; baton[2] = coords[2]; 3405 3406 // Create a callback that will be invoked everytime the breakpoint is hit. 3407 // The baton object passed to the handler is the target coordinate we want to break on. 3408 bp->SetCallback(KernelBreakpointHit, baton, true); 3409 3410 // Store a shared pointer to the baton, so the memory will eventually be cleaned up after destruction 3411 m_conditional_breaks[bp->GetID()] = std::shared_ptr<uint32_t>(baton); 3412 } 3413 3414 if (bp) 3415 bp->GetDescription(&strm, lldb::eDescriptionLevelInitial, false); 3416 } 3417 3418 void 3419 RenderScriptRuntime::DumpModules(Stream &strm) const 3420 { 3421 strm.Printf("RenderScript Modules:"); 3422 strm.EOL(); 3423 strm.IndentMore(); 3424 for (const auto &module : m_rsmodules) 3425 { 3426 module->Dump(strm); 3427 } 3428 strm.IndentLess(); 3429 } 3430 3431 RenderScriptRuntime::ScriptDetails * 3432 RenderScriptRuntime::LookUpScript(addr_t address, bool create) 3433 { 3434 for (const auto &s : m_scripts) 3435 { 3436 if (s->script.isValid()) 3437 if (*s->script == address) 3438 return s.get(); 3439 } 3440 if (create) 3441 { 3442 std::unique_ptr<ScriptDetails> s(new ScriptDetails); 3443 s->script = address; 3444 m_scripts.push_back(std::move(s)); 3445 return m_scripts.back().get(); 3446 } 3447 return nullptr; 3448 } 3449 3450 RenderScriptRuntime::AllocationDetails * 3451 RenderScriptRuntime::LookUpAllocation(addr_t address, bool create) 3452 { 3453 for (const auto &a : m_allocations) 3454 { 3455 if (a->address.isValid()) 3456 if (*a->address == address) 3457 return a.get(); 3458 } 3459 if (create) 3460 { 3461 std::unique_ptr<AllocationDetails> a(new AllocationDetails); 3462 a->address = address; 3463 m_allocations.push_back(std::move(a)); 3464 return m_allocations.back().get(); 3465 } 3466 return nullptr; 3467 } 3468 3469 void 3470 RSModuleDescriptor::Dump(Stream &strm) const 3471 { 3472 strm.Indent(); 3473 m_module->GetFileSpec().Dump(&strm); 3474 if (m_module->GetNumCompileUnits()) 3475 { 3476 strm.Indent("Debug info loaded."); 3477 } 3478 else 3479 { 3480 strm.Indent("Debug info does not exist."); 3481 } 3482 strm.EOL(); 3483 strm.IndentMore(); 3484 strm.Indent(); 3485 strm.Printf("Globals: %" PRIu64, static_cast<uint64_t>(m_globals.size())); 3486 strm.EOL(); 3487 strm.IndentMore(); 3488 for (const auto &global : m_globals) 3489 { 3490 global.Dump(strm); 3491 } 3492 strm.IndentLess(); 3493 strm.Indent(); 3494 strm.Printf("Kernels: %" PRIu64, static_cast<uint64_t>(m_kernels.size())); 3495 strm.EOL(); 3496 strm.IndentMore(); 3497 for (const auto &kernel : m_kernels) 3498 { 3499 kernel.Dump(strm); 3500 } 3501 strm.Printf("Pragmas: %" PRIu64, static_cast<uint64_t>(m_pragmas.size())); 3502 strm.EOL(); 3503 strm.IndentMore(); 3504 for (const auto &key_val : m_pragmas) 3505 { 3506 strm.Printf("%s: %s", key_val.first.c_str(), key_val.second.c_str()); 3507 strm.EOL(); 3508 } 3509 strm.IndentLess(4); 3510 } 3511 3512 void 3513 RSGlobalDescriptor::Dump(Stream &strm) const 3514 { 3515 strm.Indent(m_name.AsCString()); 3516 VariableList var_list; 3517 m_module->m_module->FindGlobalVariables(m_name, nullptr, true, 1U, var_list); 3518 if (var_list.GetSize() == 1) 3519 { 3520 auto var = var_list.GetVariableAtIndex(0); 3521 auto type = var->GetType(); 3522 if (type) 3523 { 3524 strm.Printf(" - "); 3525 type->DumpTypeName(&strm); 3526 } 3527 else 3528 { 3529 strm.Printf(" - Unknown Type"); 3530 } 3531 } 3532 else 3533 { 3534 strm.Printf(" - variable identified, but not found in binary"); 3535 const Symbol *s = m_module->m_module->FindFirstSymbolWithNameAndType(m_name, eSymbolTypeData); 3536 if (s) 3537 { 3538 strm.Printf(" (symbol exists) "); 3539 } 3540 } 3541 3542 strm.EOL(); 3543 } 3544 3545 void 3546 RSKernelDescriptor::Dump(Stream &strm) const 3547 { 3548 strm.Indent(m_name.AsCString()); 3549 strm.EOL(); 3550 } 3551 3552 class CommandObjectRenderScriptRuntimeModuleDump : public CommandObjectParsed 3553 { 3554 public: 3555 CommandObjectRenderScriptRuntimeModuleDump(CommandInterpreter &interpreter) 3556 : CommandObjectParsed(interpreter, "renderscript module dump", 3557 "Dumps renderscript specific information for all modules.", "renderscript module dump", 3558 eCommandRequiresProcess | eCommandProcessMustBeLaunched) 3559 { 3560 } 3561 3562 ~CommandObjectRenderScriptRuntimeModuleDump() override = default; 3563 3564 bool 3565 DoExecute(Args &command, CommandReturnObject &result) override 3566 { 3567 RenderScriptRuntime *runtime = 3568 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript); 3569 runtime->DumpModules(result.GetOutputStream()); 3570 result.SetStatus(eReturnStatusSuccessFinishResult); 3571 return true; 3572 } 3573 }; 3574 3575 class CommandObjectRenderScriptRuntimeModule : public CommandObjectMultiword 3576 { 3577 public: 3578 CommandObjectRenderScriptRuntimeModule(CommandInterpreter &interpreter) 3579 : CommandObjectMultiword(interpreter, "renderscript module", "Commands that deal with renderscript modules.", 3580 nullptr) 3581 { 3582 LoadSubCommand("dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeModuleDump(interpreter))); 3583 } 3584 3585 ~CommandObjectRenderScriptRuntimeModule() override = default; 3586 }; 3587 3588 class CommandObjectRenderScriptRuntimeKernelList : public CommandObjectParsed 3589 { 3590 public: 3591 CommandObjectRenderScriptRuntimeKernelList(CommandInterpreter &interpreter) 3592 : CommandObjectParsed(interpreter, "renderscript kernel list", 3593 "Lists renderscript kernel names and associated script resources.", 3594 "renderscript kernel list", eCommandRequiresProcess | eCommandProcessMustBeLaunched) 3595 { 3596 } 3597 3598 ~CommandObjectRenderScriptRuntimeKernelList() override = default; 3599 3600 bool 3601 DoExecute(Args &command, CommandReturnObject &result) override 3602 { 3603 RenderScriptRuntime *runtime = 3604 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript); 3605 runtime->DumpKernels(result.GetOutputStream()); 3606 result.SetStatus(eReturnStatusSuccessFinishResult); 3607 return true; 3608 } 3609 }; 3610 3611 class CommandObjectRenderScriptRuntimeKernelBreakpointSet : public CommandObjectParsed 3612 { 3613 public: 3614 CommandObjectRenderScriptRuntimeKernelBreakpointSet(CommandInterpreter &interpreter) 3615 : CommandObjectParsed(interpreter, "renderscript kernel breakpoint set", 3616 "Sets a breakpoint on a renderscript kernel.", 3617 "renderscript kernel breakpoint set <kernel_name> [-c x,y,z]", 3618 eCommandRequiresProcess | eCommandProcessMustBeLaunched | eCommandProcessMustBePaused), 3619 m_options(interpreter) 3620 { 3621 } 3622 3623 ~CommandObjectRenderScriptRuntimeKernelBreakpointSet() override = default; 3624 3625 Options * 3626 GetOptions() override 3627 { 3628 return &m_options; 3629 } 3630 3631 class CommandOptions : public Options 3632 { 3633 public: 3634 CommandOptions(CommandInterpreter &interpreter) : Options(interpreter) {} 3635 3636 ~CommandOptions() override = default; 3637 3638 Error 3639 SetOptionValue(uint32_t option_idx, const char *option_arg) override 3640 { 3641 Error error; 3642 const int short_option = m_getopt_table[option_idx].val; 3643 3644 switch (short_option) 3645 { 3646 case 'c': 3647 if (!ParseCoordinate(option_arg)) 3648 error.SetErrorStringWithFormat("Couldn't parse coordinate '%s', should be in format 'x,y,z'.", 3649 option_arg); 3650 break; 3651 default: 3652 error.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 3653 break; 3654 } 3655 return error; 3656 } 3657 3658 // -c takes an argument of the form 'num[,num][,num]'. 3659 // Where 'id_cstr' is this argument with the whitespace trimmed. 3660 // Missing coordinates are defaulted to zero. 3661 bool 3662 ParseCoordinate(const char *id_cstr) 3663 { 3664 RegularExpression regex; 3665 RegularExpression::Match regex_match(3); 3666 3667 bool matched = false; 3668 if (regex.Compile("^([0-9]+),([0-9]+),([0-9]+)$") && regex.Execute(id_cstr, ®ex_match)) 3669 matched = true; 3670 else if (regex.Compile("^([0-9]+),([0-9]+)$") && regex.Execute(id_cstr, ®ex_match)) 3671 matched = true; 3672 else if (regex.Compile("^([0-9]+)$") && regex.Execute(id_cstr, ®ex_match)) 3673 matched = true; 3674 for (uint32_t i = 0; i < 3; i++) 3675 { 3676 std::string group; 3677 if (regex_match.GetMatchAtIndex(id_cstr, i + 1, group)) 3678 m_coord[i] = (uint32_t)strtoul(group.c_str(), nullptr, 0); 3679 else 3680 m_coord[i] = 0; 3681 } 3682 return matched; 3683 } 3684 3685 void 3686 OptionParsingStarting() override 3687 { 3688 // -1 means the -c option hasn't been set 3689 m_coord[0] = -1; 3690 m_coord[1] = -1; 3691 m_coord[2] = -1; 3692 } 3693 3694 const OptionDefinition * 3695 GetDefinitions() override 3696 { 3697 return g_option_table; 3698 } 3699 3700 static OptionDefinition g_option_table[]; 3701 std::array<int, 3> m_coord; 3702 }; 3703 3704 bool 3705 DoExecute(Args &command, CommandReturnObject &result) override 3706 { 3707 const size_t argc = command.GetArgumentCount(); 3708 if (argc < 1) 3709 { 3710 result.AppendErrorWithFormat("'%s' takes 1 argument of kernel name, and an optional coordinate.", 3711 m_cmd_name.c_str()); 3712 result.SetStatus(eReturnStatusFailed); 3713 return false; 3714 } 3715 3716 RenderScriptRuntime *runtime = 3717 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript); 3718 3719 Error error; 3720 runtime->PlaceBreakpointOnKernel(result.GetOutputStream(), command.GetArgumentAtIndex(0), m_options.m_coord, 3721 error, m_exe_ctx.GetTargetSP()); 3722 3723 if (error.Success()) 3724 { 3725 result.AppendMessage("Breakpoint(s) created"); 3726 result.SetStatus(eReturnStatusSuccessFinishResult); 3727 return true; 3728 } 3729 result.SetStatus(eReturnStatusFailed); 3730 result.AppendErrorWithFormat("Error: %s", error.AsCString()); 3731 return false; 3732 } 3733 3734 private: 3735 CommandOptions m_options; 3736 }; 3737 3738 OptionDefinition CommandObjectRenderScriptRuntimeKernelBreakpointSet::CommandOptions::g_option_table[] = { 3739 {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeValue, 3740 "Set a breakpoint on a single invocation of the kernel with specified coordinate.\n" 3741 "Coordinate takes the form 'x[,y][,z] where x,y,z are positive integers representing kernel dimensions. " 3742 "Any unset dimensions will be defaulted to zero."}, 3743 {0, false, nullptr, 0, 0, nullptr, nullptr, 0, eArgTypeNone, nullptr}}; 3744 3745 class CommandObjectRenderScriptRuntimeKernelBreakpointAll : public CommandObjectParsed 3746 { 3747 public: 3748 CommandObjectRenderScriptRuntimeKernelBreakpointAll(CommandInterpreter &interpreter) 3749 : CommandObjectParsed( 3750 interpreter, "renderscript kernel breakpoint all", 3751 "Automatically sets a breakpoint on all renderscript kernels that are or will be loaded.\n" 3752 "Disabling option means breakpoints will no longer be set on any kernels loaded in the future, " 3753 "but does not remove currently set breakpoints.", 3754 "renderscript kernel breakpoint all <enable/disable>", 3755 eCommandRequiresProcess | eCommandProcessMustBeLaunched | eCommandProcessMustBePaused) 3756 { 3757 } 3758 3759 ~CommandObjectRenderScriptRuntimeKernelBreakpointAll() override = default; 3760 3761 bool 3762 DoExecute(Args &command, CommandReturnObject &result) override 3763 { 3764 const size_t argc = command.GetArgumentCount(); 3765 if (argc != 1) 3766 { 3767 result.AppendErrorWithFormat("'%s' takes 1 argument of 'enable' or 'disable'", m_cmd_name.c_str()); 3768 result.SetStatus(eReturnStatusFailed); 3769 return false; 3770 } 3771 3772 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 3773 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript)); 3774 3775 bool do_break = false; 3776 const char *argument = command.GetArgumentAtIndex(0); 3777 if (strcmp(argument, "enable") == 0) 3778 { 3779 do_break = true; 3780 result.AppendMessage("Breakpoints will be set on all kernels."); 3781 } 3782 else if (strcmp(argument, "disable") == 0) 3783 { 3784 do_break = false; 3785 result.AppendMessage("Breakpoints will not be set on any new kernels."); 3786 } 3787 else 3788 { 3789 result.AppendErrorWithFormat("Argument must be either 'enable' or 'disable'"); 3790 result.SetStatus(eReturnStatusFailed); 3791 return false; 3792 } 3793 3794 runtime->SetBreakAllKernels(do_break, m_exe_ctx.GetTargetSP()); 3795 3796 result.SetStatus(eReturnStatusSuccessFinishResult); 3797 return true; 3798 } 3799 }; 3800 3801 class CommandObjectRenderScriptRuntimeKernelCoordinate : public CommandObjectParsed 3802 { 3803 public: 3804 CommandObjectRenderScriptRuntimeKernelCoordinate(CommandInterpreter &interpreter) 3805 : CommandObjectParsed(interpreter, "renderscript kernel coordinate", 3806 "Shows the (x,y,z) coordinate of the current kernel invocation.", 3807 "renderscript kernel coordinate", 3808 eCommandRequiresProcess | eCommandProcessMustBeLaunched | eCommandProcessMustBePaused) 3809 { 3810 } 3811 3812 ~CommandObjectRenderScriptRuntimeKernelCoordinate() override = default; 3813 3814 bool 3815 DoExecute(Args &command, CommandReturnObject &result) override 3816 { 3817 RSCoordinate coord{}; // Zero initialize array 3818 bool success = RenderScriptRuntime::GetKernelCoordinate(coord, m_exe_ctx.GetThreadPtr()); 3819 Stream &stream = result.GetOutputStream(); 3820 3821 if (success) 3822 { 3823 stream.Printf("Coordinate: (%" PRIu32 ", %" PRIu32 ", %" PRIu32 ")", coord[0], coord[1], coord[2]); 3824 stream.EOL(); 3825 result.SetStatus(eReturnStatusSuccessFinishResult); 3826 } 3827 else 3828 { 3829 stream.Printf("Error: Coordinate could not be found."); 3830 stream.EOL(); 3831 result.SetStatus(eReturnStatusFailed); 3832 } 3833 return true; 3834 } 3835 }; 3836 3837 class CommandObjectRenderScriptRuntimeKernelBreakpoint : public CommandObjectMultiword 3838 { 3839 public: 3840 CommandObjectRenderScriptRuntimeKernelBreakpoint(CommandInterpreter &interpreter) 3841 : CommandObjectMultiword(interpreter, "renderscript kernel", 3842 "Commands that generate breakpoints on renderscript kernels.", nullptr) 3843 { 3844 LoadSubCommand("set", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointSet(interpreter))); 3845 LoadSubCommand("all", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointAll(interpreter))); 3846 } 3847 3848 ~CommandObjectRenderScriptRuntimeKernelBreakpoint() override = default; 3849 }; 3850 3851 class CommandObjectRenderScriptRuntimeKernel : public CommandObjectMultiword 3852 { 3853 public: 3854 CommandObjectRenderScriptRuntimeKernel(CommandInterpreter &interpreter) 3855 : CommandObjectMultiword(interpreter, "renderscript kernel", "Commands that deal with renderscript kernels.", 3856 nullptr) 3857 { 3858 LoadSubCommand("list", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelList(interpreter))); 3859 LoadSubCommand("coordinate", 3860 CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelCoordinate(interpreter))); 3861 LoadSubCommand("breakpoint", 3862 CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpoint(interpreter))); 3863 } 3864 3865 ~CommandObjectRenderScriptRuntimeKernel() override = default; 3866 }; 3867 3868 class CommandObjectRenderScriptRuntimeContextDump : public CommandObjectParsed 3869 { 3870 public: 3871 CommandObjectRenderScriptRuntimeContextDump(CommandInterpreter &interpreter) 3872 : CommandObjectParsed(interpreter, "renderscript context dump", "Dumps renderscript context information.", 3873 "renderscript context dump", eCommandRequiresProcess | eCommandProcessMustBeLaunched) 3874 { 3875 } 3876 3877 ~CommandObjectRenderScriptRuntimeContextDump() override = default; 3878 3879 bool 3880 DoExecute(Args &command, CommandReturnObject &result) override 3881 { 3882 RenderScriptRuntime *runtime = 3883 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript); 3884 runtime->DumpContexts(result.GetOutputStream()); 3885 result.SetStatus(eReturnStatusSuccessFinishResult); 3886 return true; 3887 } 3888 }; 3889 3890 class CommandObjectRenderScriptRuntimeContext : public CommandObjectMultiword 3891 { 3892 public: 3893 CommandObjectRenderScriptRuntimeContext(CommandInterpreter &interpreter) 3894 : CommandObjectMultiword(interpreter, "renderscript context", "Commands that deal with renderscript contexts.", 3895 nullptr) 3896 { 3897 LoadSubCommand("dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeContextDump(interpreter))); 3898 } 3899 3900 ~CommandObjectRenderScriptRuntimeContext() override = default; 3901 }; 3902 3903 class CommandObjectRenderScriptRuntimeAllocationDump : public CommandObjectParsed 3904 { 3905 public: 3906 CommandObjectRenderScriptRuntimeAllocationDump(CommandInterpreter &interpreter) 3907 : CommandObjectParsed(interpreter, "renderscript allocation dump", 3908 "Displays the contents of a particular allocation", "renderscript allocation dump <ID>", 3909 eCommandRequiresProcess | eCommandProcessMustBeLaunched), 3910 m_options(interpreter) 3911 { 3912 } 3913 3914 ~CommandObjectRenderScriptRuntimeAllocationDump() override = default; 3915 3916 Options * 3917 GetOptions() override 3918 { 3919 return &m_options; 3920 } 3921 3922 class CommandOptions : public Options 3923 { 3924 public: 3925 CommandOptions(CommandInterpreter &interpreter) : Options(interpreter) {} 3926 3927 ~CommandOptions() override = default; 3928 3929 Error 3930 SetOptionValue(uint32_t option_idx, const char *option_arg) override 3931 { 3932 Error error; 3933 const int short_option = m_getopt_table[option_idx].val; 3934 3935 switch (short_option) 3936 { 3937 case 'f': 3938 m_outfile.SetFile(option_arg, true); 3939 if (m_outfile.Exists()) 3940 { 3941 m_outfile.Clear(); 3942 error.SetErrorStringWithFormat("file already exists: '%s'", option_arg); 3943 } 3944 break; 3945 default: 3946 error.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 3947 break; 3948 } 3949 return error; 3950 } 3951 3952 void 3953 OptionParsingStarting() override 3954 { 3955 m_outfile.Clear(); 3956 } 3957 3958 const OptionDefinition * 3959 GetDefinitions() override 3960 { 3961 return g_option_table; 3962 } 3963 3964 static OptionDefinition g_option_table[]; 3965 FileSpec m_outfile; 3966 }; 3967 3968 bool 3969 DoExecute(Args &command, CommandReturnObject &result) override 3970 { 3971 const size_t argc = command.GetArgumentCount(); 3972 if (argc < 1) 3973 { 3974 result.AppendErrorWithFormat("'%s' takes 1 argument, an allocation ID. As well as an optional -f argument", 3975 m_cmd_name.c_str()); 3976 result.SetStatus(eReturnStatusFailed); 3977 return false; 3978 } 3979 3980 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 3981 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript)); 3982 3983 const char *id_cstr = command.GetArgumentAtIndex(0); 3984 bool convert_complete = false; 3985 const uint32_t id = StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete); 3986 if (!convert_complete) 3987 { 3988 result.AppendErrorWithFormat("invalid allocation id argument '%s'", id_cstr); 3989 result.SetStatus(eReturnStatusFailed); 3990 return false; 3991 } 3992 3993 Stream *output_strm = nullptr; 3994 StreamFile outfile_stream; 3995 const FileSpec &outfile_spec = m_options.m_outfile; // Dump allocation to file instead 3996 if (outfile_spec) 3997 { 3998 // Open output file 3999 char path[256]; 4000 outfile_spec.GetPath(path, sizeof(path)); 4001 if (outfile_stream.GetFile().Open(path, File::eOpenOptionWrite | File::eOpenOptionCanCreate).Success()) 4002 { 4003 output_strm = &outfile_stream; 4004 result.GetOutputStream().Printf("Results written to '%s'", path); 4005 result.GetOutputStream().EOL(); 4006 } 4007 else 4008 { 4009 result.AppendErrorWithFormat("Couldn't open file '%s'", path); 4010 result.SetStatus(eReturnStatusFailed); 4011 return false; 4012 } 4013 } 4014 else 4015 output_strm = &result.GetOutputStream(); 4016 4017 assert(output_strm != nullptr); 4018 bool success = runtime->DumpAllocation(*output_strm, m_exe_ctx.GetFramePtr(), id); 4019 4020 if (success) 4021 result.SetStatus(eReturnStatusSuccessFinishResult); 4022 else 4023 result.SetStatus(eReturnStatusFailed); 4024 4025 return true; 4026 } 4027 4028 private: 4029 CommandOptions m_options; 4030 }; 4031 4032 OptionDefinition CommandObjectRenderScriptRuntimeAllocationDump::CommandOptions::g_option_table[] = { 4033 {LLDB_OPT_SET_1, false, "file", 'f', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeFilename, 4034 "Print results to specified file instead of command line."}, 4035 {0, false, nullptr, 0, 0, nullptr, nullptr, 0, eArgTypeNone, nullptr}}; 4036 4037 class CommandObjectRenderScriptRuntimeAllocationList : public CommandObjectParsed 4038 { 4039 public: 4040 CommandObjectRenderScriptRuntimeAllocationList(CommandInterpreter &interpreter) 4041 : CommandObjectParsed(interpreter, "renderscript allocation list", 4042 "List renderscript allocations and their information.", "renderscript allocation list", 4043 eCommandRequiresProcess | eCommandProcessMustBeLaunched), 4044 m_options(interpreter) 4045 { 4046 } 4047 4048 ~CommandObjectRenderScriptRuntimeAllocationList() override = default; 4049 4050 Options * 4051 GetOptions() override 4052 { 4053 return &m_options; 4054 } 4055 4056 class CommandOptions : public Options 4057 { 4058 public: 4059 CommandOptions(CommandInterpreter &interpreter) : Options(interpreter), m_id(0) {} 4060 4061 ~CommandOptions() override = default; 4062 4063 Error 4064 SetOptionValue(uint32_t option_idx, const char *option_arg) override 4065 { 4066 Error error; 4067 const int short_option = m_getopt_table[option_idx].val; 4068 4069 switch (short_option) 4070 { 4071 case 'i': 4072 bool success; 4073 m_id = StringConvert::ToUInt32(option_arg, 0, 0, &success); 4074 if (!success) 4075 error.SetErrorStringWithFormat("invalid integer value for option '%c'", short_option); 4076 break; 4077 default: 4078 error.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 4079 break; 4080 } 4081 return error; 4082 } 4083 4084 void 4085 OptionParsingStarting() override 4086 { 4087 m_id = 0; 4088 } 4089 4090 const OptionDefinition * 4091 GetDefinitions() override 4092 { 4093 return g_option_table; 4094 } 4095 4096 static OptionDefinition g_option_table[]; 4097 uint32_t m_id; 4098 }; 4099 4100 bool 4101 DoExecute(Args &command, CommandReturnObject &result) override 4102 { 4103 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4104 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript)); 4105 runtime->ListAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr(), m_options.m_id); 4106 result.SetStatus(eReturnStatusSuccessFinishResult); 4107 return true; 4108 } 4109 4110 private: 4111 CommandOptions m_options; 4112 }; 4113 4114 OptionDefinition CommandObjectRenderScriptRuntimeAllocationList::CommandOptions::g_option_table[] = { 4115 {LLDB_OPT_SET_1, false, "id", 'i', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeIndex, 4116 "Only show details of a single allocation with specified id."}, 4117 {0, false, nullptr, 0, 0, nullptr, nullptr, 0, eArgTypeNone, nullptr}}; 4118 4119 class CommandObjectRenderScriptRuntimeAllocationLoad : public CommandObjectParsed 4120 { 4121 public: 4122 CommandObjectRenderScriptRuntimeAllocationLoad(CommandInterpreter &interpreter) 4123 : CommandObjectParsed( 4124 interpreter, "renderscript allocation load", "Loads renderscript allocation contents from a file.", 4125 "renderscript allocation load <ID> <filename>", eCommandRequiresProcess | eCommandProcessMustBeLaunched) 4126 { 4127 } 4128 4129 ~CommandObjectRenderScriptRuntimeAllocationLoad() override = default; 4130 4131 bool 4132 DoExecute(Args &command, CommandReturnObject &result) override 4133 { 4134 const size_t argc = command.GetArgumentCount(); 4135 if (argc != 2) 4136 { 4137 result.AppendErrorWithFormat("'%s' takes 2 arguments, an allocation ID and filename to read from.", 4138 m_cmd_name.c_str()); 4139 result.SetStatus(eReturnStatusFailed); 4140 return false; 4141 } 4142 4143 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4144 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript)); 4145 4146 const char *id_cstr = command.GetArgumentAtIndex(0); 4147 bool convert_complete = false; 4148 const uint32_t id = StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete); 4149 if (!convert_complete) 4150 { 4151 result.AppendErrorWithFormat("invalid allocation id argument '%s'", id_cstr); 4152 result.SetStatus(eReturnStatusFailed); 4153 return false; 4154 } 4155 4156 const char *filename = command.GetArgumentAtIndex(1); 4157 bool success = runtime->LoadAllocation(result.GetOutputStream(), id, filename, m_exe_ctx.GetFramePtr()); 4158 4159 if (success) 4160 result.SetStatus(eReturnStatusSuccessFinishResult); 4161 else 4162 result.SetStatus(eReturnStatusFailed); 4163 4164 return true; 4165 } 4166 }; 4167 4168 class CommandObjectRenderScriptRuntimeAllocationSave : public CommandObjectParsed 4169 { 4170 public: 4171 CommandObjectRenderScriptRuntimeAllocationSave(CommandInterpreter &interpreter) 4172 : CommandObjectParsed( 4173 interpreter, "renderscript allocation save", "Write renderscript allocation contents to a file.", 4174 "renderscript allocation save <ID> <filename>", eCommandRequiresProcess | eCommandProcessMustBeLaunched) 4175 { 4176 } 4177 4178 ~CommandObjectRenderScriptRuntimeAllocationSave() override = default; 4179 4180 bool 4181 DoExecute(Args &command, CommandReturnObject &result) override 4182 { 4183 const size_t argc = command.GetArgumentCount(); 4184 if (argc != 2) 4185 { 4186 result.AppendErrorWithFormat("'%s' takes 2 arguments, an allocation ID and filename to read from.", 4187 m_cmd_name.c_str()); 4188 result.SetStatus(eReturnStatusFailed); 4189 return false; 4190 } 4191 4192 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4193 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript)); 4194 4195 const char *id_cstr = command.GetArgumentAtIndex(0); 4196 bool convert_complete = false; 4197 const uint32_t id = StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete); 4198 if (!convert_complete) 4199 { 4200 result.AppendErrorWithFormat("invalid allocation id argument '%s'", id_cstr); 4201 result.SetStatus(eReturnStatusFailed); 4202 return false; 4203 } 4204 4205 const char *filename = command.GetArgumentAtIndex(1); 4206 bool success = runtime->SaveAllocation(result.GetOutputStream(), id, filename, m_exe_ctx.GetFramePtr()); 4207 4208 if (success) 4209 result.SetStatus(eReturnStatusSuccessFinishResult); 4210 else 4211 result.SetStatus(eReturnStatusFailed); 4212 4213 return true; 4214 } 4215 }; 4216 4217 class CommandObjectRenderScriptRuntimeAllocationRefresh : public CommandObjectParsed 4218 { 4219 public: 4220 CommandObjectRenderScriptRuntimeAllocationRefresh(CommandInterpreter &interpreter) 4221 : CommandObjectParsed(interpreter, "renderscript allocation refresh", 4222 "Recomputes the details of all allocations.", "renderscript allocation refresh", 4223 eCommandRequiresProcess | eCommandProcessMustBeLaunched) 4224 { 4225 } 4226 4227 ~CommandObjectRenderScriptRuntimeAllocationRefresh() override = default; 4228 4229 bool 4230 DoExecute(Args &command, CommandReturnObject &result) override 4231 { 4232 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4233 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript)); 4234 4235 bool success = runtime->RecomputeAllAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr()); 4236 4237 if (success) 4238 { 4239 result.SetStatus(eReturnStatusSuccessFinishResult); 4240 return true; 4241 } 4242 else 4243 { 4244 result.SetStatus(eReturnStatusFailed); 4245 return false; 4246 } 4247 } 4248 }; 4249 4250 class CommandObjectRenderScriptRuntimeAllocation : public CommandObjectMultiword 4251 { 4252 public: 4253 CommandObjectRenderScriptRuntimeAllocation(CommandInterpreter &interpreter) 4254 : CommandObjectMultiword(interpreter, "renderscript allocation", 4255 "Commands that deal with renderscript allocations.", nullptr) 4256 { 4257 LoadSubCommand("list", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationList(interpreter))); 4258 LoadSubCommand("dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationDump(interpreter))); 4259 LoadSubCommand("save", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationSave(interpreter))); 4260 LoadSubCommand("load", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationLoad(interpreter))); 4261 LoadSubCommand("refresh", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationRefresh(interpreter))); 4262 } 4263 4264 ~CommandObjectRenderScriptRuntimeAllocation() override = default; 4265 }; 4266 4267 class CommandObjectRenderScriptRuntimeStatus : public CommandObjectParsed 4268 { 4269 public: 4270 CommandObjectRenderScriptRuntimeStatus(CommandInterpreter &interpreter) 4271 : CommandObjectParsed(interpreter, "renderscript status", "Displays current renderscript runtime status.", 4272 "renderscript status", eCommandRequiresProcess | eCommandProcessMustBeLaunched) 4273 { 4274 } 4275 4276 ~CommandObjectRenderScriptRuntimeStatus() override = default; 4277 4278 bool 4279 DoExecute(Args &command, CommandReturnObject &result) override 4280 { 4281 RenderScriptRuntime *runtime = 4282 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript); 4283 runtime->Status(result.GetOutputStream()); 4284 result.SetStatus(eReturnStatusSuccessFinishResult); 4285 return true; 4286 } 4287 }; 4288 4289 class CommandObjectRenderScriptRuntime : public CommandObjectMultiword 4290 { 4291 public: 4292 CommandObjectRenderScriptRuntime(CommandInterpreter &interpreter) 4293 : CommandObjectMultiword(interpreter, "renderscript", "A set of commands for operating on renderscript.", 4294 "renderscript <subcommand> [<subcommand-options>]") 4295 { 4296 LoadSubCommand("module", CommandObjectSP(new CommandObjectRenderScriptRuntimeModule(interpreter))); 4297 LoadSubCommand("status", CommandObjectSP(new CommandObjectRenderScriptRuntimeStatus(interpreter))); 4298 LoadSubCommand("kernel", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernel(interpreter))); 4299 LoadSubCommand("context", CommandObjectSP(new CommandObjectRenderScriptRuntimeContext(interpreter))); 4300 LoadSubCommand("allocation", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocation(interpreter))); 4301 } 4302 4303 ~CommandObjectRenderScriptRuntime() override = default; 4304 }; 4305 4306 void 4307 RenderScriptRuntime::Initiate() 4308 { 4309 assert(!m_initiated); 4310 } 4311 4312 RenderScriptRuntime::RenderScriptRuntime(Process *process) 4313 : lldb_private::CPPLanguageRuntime(process), 4314 m_initiated(false), 4315 m_debuggerPresentFlagged(false), 4316 m_breakAllKernels(false) 4317 { 4318 ModulesDidLoad(process->GetTarget().GetImages()); 4319 } 4320 4321 lldb::CommandObjectSP 4322 RenderScriptRuntime::GetCommandObject(lldb_private::CommandInterpreter &interpreter) 4323 { 4324 return CommandObjectSP(new CommandObjectRenderScriptRuntime(interpreter)); 4325 } 4326 4327 RenderScriptRuntime::~RenderScriptRuntime() = default; 4328