1 //===-- RenderScriptRuntime.cpp ---------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 // C Includes 11 // C++ Includes 12 // Other libraries and framework includes 13 #include "llvm/ADT/StringMap.h" 14 15 // Project includes 16 #include "RenderScriptRuntime.h" 17 18 #include "lldb/Breakpoint/StoppointCallbackContext.h" 19 #include "lldb/Core/ConstString.h" 20 #include "lldb/Core/Debugger.h" 21 #include "lldb/Core/Error.h" 22 #include "lldb/Core/Log.h" 23 #include "lldb/Core/PluginManager.h" 24 #include "lldb/Core/RegularExpression.h" 25 #include "lldb/Core/ValueObjectVariable.h" 26 #include "lldb/DataFormatters/DumpValueObjectOptions.h" 27 #include "lldb/Expression/UserExpression.h" 28 #include "lldb/Host/StringConvert.h" 29 #include "lldb/Interpreter/Args.h" 30 #include "lldb/Interpreter/CommandInterpreter.h" 31 #include "lldb/Interpreter/CommandObjectMultiword.h" 32 #include "lldb/Interpreter/CommandReturnObject.h" 33 #include "lldb/Interpreter/Options.h" 34 #include "lldb/Symbol/Symbol.h" 35 #include "lldb/Symbol/Type.h" 36 #include "lldb/Symbol/VariableList.h" 37 #include "lldb/Target/Process.h" 38 #include "lldb/Target/RegisterContext.h" 39 #include "lldb/Target/Target.h" 40 #include "lldb/Target/Thread.h" 41 42 using namespace lldb; 43 using namespace lldb_private; 44 using namespace lldb_renderscript; 45 46 #define FMT_COORD "(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ")" 47 48 namespace { 49 50 // The empirical_type adds a basic level of validation to arbitrary data 51 // allowing us to track if data has been discovered and stored or not. An 52 // empirical_type will be marked as valid only if it has been explicitly 53 // assigned to. 54 template <typename type_t> class empirical_type { 55 public: 56 // Ctor. Contents is invalid when constructed. 57 empirical_type() : valid(false) {} 58 59 // Return true and copy contents to out if valid, else return false. 60 bool get(type_t &out) const { 61 if (valid) 62 out = data; 63 return valid; 64 } 65 66 // Return a pointer to the contents or nullptr if it was not valid. 67 const type_t *get() const { return valid ? &data : nullptr; } 68 69 // Assign data explicitly. 70 void set(const type_t in) { 71 data = in; 72 valid = true; 73 } 74 75 // Mark contents as invalid. 76 void invalidate() { valid = false; } 77 78 // Returns true if this type contains valid data. 79 bool isValid() const { return valid; } 80 81 // Assignment operator. 82 empirical_type<type_t> &operator=(const type_t in) { 83 set(in); 84 return *this; 85 } 86 87 // Dereference operator returns contents. 88 // Warning: Will assert if not valid so use only when you know data is valid. 89 const type_t &operator*() const { 90 assert(valid); 91 return data; 92 } 93 94 protected: 95 bool valid; 96 type_t data; 97 }; 98 99 // ArgItem is used by the GetArgs() function when reading function arguments 100 // from the target. 101 struct ArgItem { 102 enum { ePointer, eInt32, eInt64, eLong, eBool } type; 103 104 uint64_t value; 105 106 explicit operator uint64_t() const { return value; } 107 }; 108 109 // Context structure to be passed into GetArgsXXX(), argument reading functions 110 // below. 111 struct GetArgsCtx { 112 RegisterContext *reg_ctx; 113 Process *process; 114 }; 115 116 bool GetArgsX86(const GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 117 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 118 119 Error err; 120 121 // get the current stack pointer 122 uint64_t sp = ctx.reg_ctx->GetSP(); 123 124 for (size_t i = 0; i < num_args; ++i) { 125 ArgItem &arg = arg_list[i]; 126 // advance up the stack by one argument 127 sp += sizeof(uint32_t); 128 // get the argument type size 129 size_t arg_size = sizeof(uint32_t); 130 // read the argument from memory 131 arg.value = 0; 132 Error err; 133 size_t read = 134 ctx.process->ReadMemory(sp, &arg.value, sizeof(uint32_t), err); 135 if (read != arg_size || !err.Success()) { 136 if (log) 137 log->Printf("%s - error reading argument: %" PRIu64 " '%s'", 138 __FUNCTION__, uint64_t(i), err.AsCString()); 139 return false; 140 } 141 } 142 return true; 143 } 144 145 bool GetArgsX86_64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 146 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 147 148 // number of arguments passed in registers 149 static const uint32_t args_in_reg = 6; 150 // register passing order 151 static const std::array<const char *, args_in_reg> reg_names{ 152 {"rdi", "rsi", "rdx", "rcx", "r8", "r9"}}; 153 // argument type to size mapping 154 static const std::array<size_t, 5> arg_size{{ 155 8, // ePointer, 156 4, // eInt32, 157 8, // eInt64, 158 8, // eLong, 159 4, // eBool, 160 }}; 161 162 Error err; 163 164 // get the current stack pointer 165 uint64_t sp = ctx.reg_ctx->GetSP(); 166 // step over the return address 167 sp += sizeof(uint64_t); 168 169 // check the stack alignment was correct (16 byte aligned) 170 if ((sp & 0xf) != 0x0) { 171 if (log) 172 log->Printf("%s - stack misaligned", __FUNCTION__); 173 return false; 174 } 175 176 // find the start of arguments on the stack 177 uint64_t sp_offset = 0; 178 for (uint32_t i = args_in_reg; i < num_args; ++i) { 179 sp_offset += arg_size[arg_list[i].type]; 180 } 181 // round up to multiple of 16 182 sp_offset = (sp_offset + 0xf) & 0xf; 183 sp += sp_offset; 184 185 for (size_t i = 0; i < num_args; ++i) { 186 bool success = false; 187 ArgItem &arg = arg_list[i]; 188 // arguments passed in registers 189 if (i < args_in_reg) { 190 const RegisterInfo *reg = 191 ctx.reg_ctx->GetRegisterInfoByName(reg_names[i]); 192 RegisterValue reg_val; 193 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 194 arg.value = reg_val.GetAsUInt64(0, &success); 195 } 196 // arguments passed on the stack 197 else { 198 // get the argument type size 199 const size_t size = arg_size[arg_list[i].type]; 200 // read the argument from memory 201 arg.value = 0; 202 // note: due to little endian layout reading 4 or 8 bytes will give the 203 // correct value. 204 size_t read = ctx.process->ReadMemory(sp, &arg.value, size, err); 205 success = (err.Success() && read == size); 206 // advance past this argument 207 sp -= size; 208 } 209 // fail if we couldn't read this argument 210 if (!success) { 211 if (log) 212 log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s", 213 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 214 return false; 215 } 216 } 217 return true; 218 } 219 220 bool GetArgsArm(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 221 // number of arguments passed in registers 222 static const uint32_t args_in_reg = 4; 223 224 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 225 226 Error err; 227 228 // get the current stack pointer 229 uint64_t sp = ctx.reg_ctx->GetSP(); 230 231 for (size_t i = 0; i < num_args; ++i) { 232 bool success = false; 233 ArgItem &arg = arg_list[i]; 234 // arguments passed in registers 235 if (i < args_in_reg) { 236 const RegisterInfo *reg = ctx.reg_ctx->GetRegisterInfoAtIndex(i); 237 RegisterValue reg_val; 238 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 239 arg.value = reg_val.GetAsUInt32(0, &success); 240 } 241 // arguments passed on the stack 242 else { 243 // get the argument type size 244 const size_t arg_size = sizeof(uint32_t); 245 // clear all 64bits 246 arg.value = 0; 247 // read this argument from memory 248 size_t bytes_read = 249 ctx.process->ReadMemory(sp, &arg.value, arg_size, err); 250 success = (err.Success() && bytes_read == arg_size); 251 // advance the stack pointer 252 sp += sizeof(uint32_t); 253 } 254 // fail if we couldn't read this argument 255 if (!success) { 256 if (log) 257 log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s", 258 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 259 return false; 260 } 261 } 262 return true; 263 } 264 265 bool GetArgsAarch64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 266 // number of arguments passed in registers 267 static const uint32_t args_in_reg = 8; 268 269 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 270 271 for (size_t i = 0; i < num_args; ++i) { 272 bool success = false; 273 ArgItem &arg = arg_list[i]; 274 // arguments passed in registers 275 if (i < args_in_reg) { 276 const RegisterInfo *reg = ctx.reg_ctx->GetRegisterInfoAtIndex(i); 277 RegisterValue reg_val; 278 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 279 arg.value = reg_val.GetAsUInt64(0, &success); 280 } 281 // arguments passed on the stack 282 else { 283 if (log) 284 log->Printf("%s - reading arguments spilled to stack not implemented", 285 __FUNCTION__); 286 } 287 // fail if we couldn't read this argument 288 if (!success) { 289 if (log) 290 log->Printf("%s - error reading argument: %" PRIu64, __FUNCTION__, 291 uint64_t(i)); 292 return false; 293 } 294 } 295 return true; 296 } 297 298 bool GetArgsMipsel(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 299 // number of arguments passed in registers 300 static const uint32_t args_in_reg = 4; 301 // register file offset to first argument 302 static const uint32_t reg_offset = 4; 303 304 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 305 306 Error err; 307 308 // find offset to arguments on the stack (+16 to skip over a0-a3 shadow space) 309 uint64_t sp = ctx.reg_ctx->GetSP() + 16; 310 311 for (size_t i = 0; i < num_args; ++i) { 312 bool success = false; 313 ArgItem &arg = arg_list[i]; 314 // arguments passed in registers 315 if (i < args_in_reg) { 316 const RegisterInfo *reg = 317 ctx.reg_ctx->GetRegisterInfoAtIndex(i + reg_offset); 318 RegisterValue reg_val; 319 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 320 arg.value = reg_val.GetAsUInt64(0, &success); 321 } 322 // arguments passed on the stack 323 else { 324 const size_t arg_size = sizeof(uint32_t); 325 arg.value = 0; 326 size_t bytes_read = 327 ctx.process->ReadMemory(sp, &arg.value, arg_size, err); 328 success = (err.Success() && bytes_read == arg_size); 329 // advance the stack pointer 330 sp += arg_size; 331 } 332 // fail if we couldn't read this argument 333 if (!success) { 334 if (log) 335 log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s", 336 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 337 return false; 338 } 339 } 340 return true; 341 } 342 343 bool GetArgsMips64el(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 344 // number of arguments passed in registers 345 static const uint32_t args_in_reg = 8; 346 // register file offset to first argument 347 static const uint32_t reg_offset = 4; 348 349 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 350 351 Error err; 352 353 // get the current stack pointer 354 uint64_t sp = ctx.reg_ctx->GetSP(); 355 356 for (size_t i = 0; i < num_args; ++i) { 357 bool success = false; 358 ArgItem &arg = arg_list[i]; 359 // arguments passed in registers 360 if (i < args_in_reg) { 361 const RegisterInfo *reg = 362 ctx.reg_ctx->GetRegisterInfoAtIndex(i + reg_offset); 363 RegisterValue reg_val; 364 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 365 arg.value = reg_val.GetAsUInt64(0, &success); 366 } 367 // arguments passed on the stack 368 else { 369 // get the argument type size 370 const size_t arg_size = sizeof(uint64_t); 371 // clear all 64bits 372 arg.value = 0; 373 // read this argument from memory 374 size_t bytes_read = 375 ctx.process->ReadMemory(sp, &arg.value, arg_size, err); 376 success = (err.Success() && bytes_read == arg_size); 377 // advance the stack pointer 378 sp += arg_size; 379 } 380 // fail if we couldn't read this argument 381 if (!success) { 382 if (log) 383 log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s", 384 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 385 return false; 386 } 387 } 388 return true; 389 } 390 391 bool GetArgs(ExecutionContext &exe_ctx, ArgItem *arg_list, size_t num_args) { 392 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 393 394 // verify that we have a target 395 if (!exe_ctx.GetTargetPtr()) { 396 if (log) 397 log->Printf("%s - invalid target", __FUNCTION__); 398 return false; 399 } 400 401 GetArgsCtx ctx = {exe_ctx.GetRegisterContext(), exe_ctx.GetProcessPtr()}; 402 assert(ctx.reg_ctx && ctx.process); 403 404 // dispatch based on architecture 405 switch (exe_ctx.GetTargetPtr()->GetArchitecture().GetMachine()) { 406 case llvm::Triple::ArchType::x86: 407 return GetArgsX86(ctx, arg_list, num_args); 408 409 case llvm::Triple::ArchType::x86_64: 410 return GetArgsX86_64(ctx, arg_list, num_args); 411 412 case llvm::Triple::ArchType::arm: 413 return GetArgsArm(ctx, arg_list, num_args); 414 415 case llvm::Triple::ArchType::aarch64: 416 return GetArgsAarch64(ctx, arg_list, num_args); 417 418 case llvm::Triple::ArchType::mipsel: 419 return GetArgsMipsel(ctx, arg_list, num_args); 420 421 case llvm::Triple::ArchType::mips64el: 422 return GetArgsMips64el(ctx, arg_list, num_args); 423 424 default: 425 // unsupported architecture 426 if (log) { 427 log->Printf( 428 "%s - architecture not supported: '%s'", __FUNCTION__, 429 exe_ctx.GetTargetRef().GetArchitecture().GetArchitectureName()); 430 } 431 return false; 432 } 433 } 434 435 bool ParseCoordinate(llvm::StringRef coord_s, RSCoordinate &coord) { 436 // takes an argument of the form 'num[,num][,num]'. 437 // Where 'coord_s' is a comma separated 1,2 or 3-dimensional coordinate 438 // with the whitespace trimmed. 439 // Missing coordinates are defaulted to zero. 440 // If parsing of any elements fails the contents of &coord are undefined 441 // and `false` is returned, `true` otherwise 442 443 RegularExpression regex; 444 RegularExpression::Match regex_match(3); 445 446 bool matched = false; 447 if (regex.Compile(llvm::StringRef("^([0-9]+),([0-9]+),([0-9]+)$")) && 448 regex.Execute(coord_s, ®ex_match)) 449 matched = true; 450 else if (regex.Compile(llvm::StringRef("^([0-9]+),([0-9]+)$")) && 451 regex.Execute(coord_s, ®ex_match)) 452 matched = true; 453 else if (regex.Compile(llvm::StringRef("^([0-9]+)$")) && 454 regex.Execute(coord_s, ®ex_match)) 455 matched = true; 456 457 if (!matched) 458 return false; 459 460 auto get_index = [&](int idx, uint32_t &i) -> bool { 461 std::string group; 462 errno = 0; 463 if (regex_match.GetMatchAtIndex(coord_s.str().c_str(), idx + 1, group)) 464 return !llvm::StringRef(group).getAsInteger<uint32_t>(10, i); 465 return true; 466 }; 467 468 return get_index(0, coord.x) && get_index(1, coord.y) && 469 get_index(2, coord.z); 470 } 471 } // anonymous namespace 472 473 // The ScriptDetails class collects data associated with a single script 474 // instance. 475 struct RenderScriptRuntime::ScriptDetails { 476 ~ScriptDetails() = default; 477 478 enum ScriptType { eScript, eScriptC }; 479 480 // The derived type of the script. 481 empirical_type<ScriptType> type; 482 // The name of the original source file. 483 empirical_type<std::string> res_name; 484 // Path to script .so file on the device. 485 empirical_type<std::string> shared_lib; 486 // Directory where kernel objects are cached on device. 487 empirical_type<std::string> cache_dir; 488 // Pointer to the context which owns this script. 489 empirical_type<lldb::addr_t> context; 490 // Pointer to the script object itself. 491 empirical_type<lldb::addr_t> script; 492 }; 493 494 // This Element class represents the Element object in RS, defining the type 495 // associated with an Allocation. 496 struct RenderScriptRuntime::Element { 497 // Taken from rsDefines.h 498 enum DataKind { 499 RS_KIND_USER, 500 RS_KIND_PIXEL_L = 7, 501 RS_KIND_PIXEL_A, 502 RS_KIND_PIXEL_LA, 503 RS_KIND_PIXEL_RGB, 504 RS_KIND_PIXEL_RGBA, 505 RS_KIND_PIXEL_DEPTH, 506 RS_KIND_PIXEL_YUV, 507 RS_KIND_INVALID = 100 508 }; 509 510 // Taken from rsDefines.h 511 enum DataType { 512 RS_TYPE_NONE = 0, 513 RS_TYPE_FLOAT_16, 514 RS_TYPE_FLOAT_32, 515 RS_TYPE_FLOAT_64, 516 RS_TYPE_SIGNED_8, 517 RS_TYPE_SIGNED_16, 518 RS_TYPE_SIGNED_32, 519 RS_TYPE_SIGNED_64, 520 RS_TYPE_UNSIGNED_8, 521 RS_TYPE_UNSIGNED_16, 522 RS_TYPE_UNSIGNED_32, 523 RS_TYPE_UNSIGNED_64, 524 RS_TYPE_BOOLEAN, 525 526 RS_TYPE_UNSIGNED_5_6_5, 527 RS_TYPE_UNSIGNED_5_5_5_1, 528 RS_TYPE_UNSIGNED_4_4_4_4, 529 530 RS_TYPE_MATRIX_4X4, 531 RS_TYPE_MATRIX_3X3, 532 RS_TYPE_MATRIX_2X2, 533 534 RS_TYPE_ELEMENT = 1000, 535 RS_TYPE_TYPE, 536 RS_TYPE_ALLOCATION, 537 RS_TYPE_SAMPLER, 538 RS_TYPE_SCRIPT, 539 RS_TYPE_MESH, 540 RS_TYPE_PROGRAM_FRAGMENT, 541 RS_TYPE_PROGRAM_VERTEX, 542 RS_TYPE_PROGRAM_RASTER, 543 RS_TYPE_PROGRAM_STORE, 544 RS_TYPE_FONT, 545 546 RS_TYPE_INVALID = 10000 547 }; 548 549 std::vector<Element> children; // Child Element fields for structs 550 empirical_type<lldb::addr_t> 551 element_ptr; // Pointer to the RS Element of the Type 552 empirical_type<DataType> 553 type; // Type of each data pointer stored by the allocation 554 empirical_type<DataKind> 555 type_kind; // Defines pixel type if Allocation is created from an image 556 empirical_type<uint32_t> 557 type_vec_size; // Vector size of each data point, e.g '4' for uchar4 558 empirical_type<uint32_t> field_count; // Number of Subelements 559 empirical_type<uint32_t> datum_size; // Size of a single Element with padding 560 empirical_type<uint32_t> padding; // Number of padding bytes 561 empirical_type<uint32_t> 562 array_size; // Number of items in array, only needed for strucrs 563 ConstString type_name; // Name of type, only needed for structs 564 565 static const ConstString & 566 GetFallbackStructName(); // Print this as the type name of a struct Element 567 // If we can't resolve the actual struct name 568 569 bool ShouldRefresh() const { 570 const bool valid_ptr = element_ptr.isValid() && *element_ptr.get() != 0x0; 571 const bool valid_type = 572 type.isValid() && type_vec_size.isValid() && type_kind.isValid(); 573 return !valid_ptr || !valid_type || !datum_size.isValid(); 574 } 575 }; 576 577 // This AllocationDetails class collects data associated with a single 578 // allocation instance. 579 struct RenderScriptRuntime::AllocationDetails { 580 struct Dimension { 581 uint32_t dim_1; 582 uint32_t dim_2; 583 uint32_t dim_3; 584 uint32_t cube_map; 585 586 Dimension() { 587 dim_1 = 0; 588 dim_2 = 0; 589 dim_3 = 0; 590 cube_map = 0; 591 } 592 }; 593 594 // The FileHeader struct specifies the header we use for writing allocations 595 // to a binary file. Our format begins with the ASCII characters "RSAD", 596 // identifying the file as an allocation dump. Member variables dims and 597 // hdr_size are then written consecutively, immediately followed by an 598 // instance of the ElementHeader struct. Because Elements can contain 599 // subelements, there may be more than one instance of the ElementHeader 600 // struct. With this first instance being the root element, and the other 601 // instances being the root's descendants. To identify which instances are an 602 // ElementHeader's children, each struct is immediately followed by a sequence 603 // of consecutive offsets to the start of its child structs. These offsets are 604 // 4 bytes in size, and the 0 offset signifies no more children. 605 struct FileHeader { 606 uint8_t ident[4]; // ASCII 'RSAD' identifying the file 607 uint32_t dims[3]; // Dimensions 608 uint16_t hdr_size; // Header size in bytes, including all element headers 609 }; 610 611 struct ElementHeader { 612 uint16_t type; // DataType enum 613 uint32_t kind; // DataKind enum 614 uint32_t element_size; // Size of a single element, including padding 615 uint16_t vector_size; // Vector width 616 uint32_t array_size; // Number of elements in array 617 }; 618 619 // Monotonically increasing from 1 620 static uint32_t ID; 621 622 // Maps Allocation DataType enum and vector size to printable strings 623 // using mapping from RenderScript numerical types summary documentation 624 static const char *RsDataTypeToString[][4]; 625 626 // Maps Allocation DataKind enum to printable strings 627 static const char *RsDataKindToString[]; 628 629 // Maps allocation types to format sizes for printing. 630 static const uint32_t RSTypeToFormat[][3]; 631 632 // Give each allocation an ID as a way 633 // for commands to reference it. 634 const uint32_t id; 635 636 // Allocation Element type 637 RenderScriptRuntime::Element element; 638 // Dimensions of the Allocation 639 empirical_type<Dimension> dimension; 640 // Pointer to address of the RS Allocation 641 empirical_type<lldb::addr_t> address; 642 // Pointer to the data held by the Allocation 643 empirical_type<lldb::addr_t> data_ptr; 644 // Pointer to the RS Type of the Allocation 645 empirical_type<lldb::addr_t> type_ptr; 646 // Pointer to the RS Context of the Allocation 647 empirical_type<lldb::addr_t> context; 648 // Size of the allocation 649 empirical_type<uint32_t> size; 650 // Stride between rows of the allocation 651 empirical_type<uint32_t> stride; 652 653 // Give each allocation an id, so we can reference it in user commands. 654 AllocationDetails() : id(ID++) {} 655 656 bool ShouldRefresh() const { 657 bool valid_ptrs = data_ptr.isValid() && *data_ptr.get() != 0x0; 658 valid_ptrs = valid_ptrs && type_ptr.isValid() && *type_ptr.get() != 0x0; 659 return !valid_ptrs || !dimension.isValid() || !size.isValid() || 660 element.ShouldRefresh(); 661 } 662 }; 663 664 const ConstString &RenderScriptRuntime::Element::GetFallbackStructName() { 665 static const ConstString FallbackStructName("struct"); 666 return FallbackStructName; 667 } 668 669 uint32_t RenderScriptRuntime::AllocationDetails::ID = 1; 670 671 const char *RenderScriptRuntime::AllocationDetails::RsDataKindToString[] = { 672 "User", "Undefined", "Undefined", "Undefined", 673 "Undefined", "Undefined", "Undefined", // Enum jumps from 0 to 7 674 "L Pixel", "A Pixel", "LA Pixel", "RGB Pixel", 675 "RGBA Pixel", "Pixel Depth", "YUV Pixel"}; 676 677 const char *RenderScriptRuntime::AllocationDetails::RsDataTypeToString[][4] = { 678 {"None", "None", "None", "None"}, 679 {"half", "half2", "half3", "half4"}, 680 {"float", "float2", "float3", "float4"}, 681 {"double", "double2", "double3", "double4"}, 682 {"char", "char2", "char3", "char4"}, 683 {"short", "short2", "short3", "short4"}, 684 {"int", "int2", "int3", "int4"}, 685 {"long", "long2", "long3", "long4"}, 686 {"uchar", "uchar2", "uchar3", "uchar4"}, 687 {"ushort", "ushort2", "ushort3", "ushort4"}, 688 {"uint", "uint2", "uint3", "uint4"}, 689 {"ulong", "ulong2", "ulong3", "ulong4"}, 690 {"bool", "bool2", "bool3", "bool4"}, 691 {"packed_565", "packed_565", "packed_565", "packed_565"}, 692 {"packed_5551", "packed_5551", "packed_5551", "packed_5551"}, 693 {"packed_4444", "packed_4444", "packed_4444", "packed_4444"}, 694 {"rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4"}, 695 {"rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3"}, 696 {"rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2"}, 697 698 // Handlers 699 {"RS Element", "RS Element", "RS Element", "RS Element"}, 700 {"RS Type", "RS Type", "RS Type", "RS Type"}, 701 {"RS Allocation", "RS Allocation", "RS Allocation", "RS Allocation"}, 702 {"RS Sampler", "RS Sampler", "RS Sampler", "RS Sampler"}, 703 {"RS Script", "RS Script", "RS Script", "RS Script"}, 704 705 // Deprecated 706 {"RS Mesh", "RS Mesh", "RS Mesh", "RS Mesh"}, 707 {"RS Program Fragment", "RS Program Fragment", "RS Program Fragment", 708 "RS Program Fragment"}, 709 {"RS Program Vertex", "RS Program Vertex", "RS Program Vertex", 710 "RS Program Vertex"}, 711 {"RS Program Raster", "RS Program Raster", "RS Program Raster", 712 "RS Program Raster"}, 713 {"RS Program Store", "RS Program Store", "RS Program Store", 714 "RS Program Store"}, 715 {"RS Font", "RS Font", "RS Font", "RS Font"}}; 716 717 // Used as an index into the RSTypeToFormat array elements 718 enum TypeToFormatIndex { eFormatSingle = 0, eFormatVector, eElementSize }; 719 720 // { format enum of single element, format enum of element vector, size of 721 // element} 722 const uint32_t RenderScriptRuntime::AllocationDetails::RSTypeToFormat[][3] = { 723 // RS_TYPE_NONE 724 {eFormatHex, eFormatHex, 1}, 725 // RS_TYPE_FLOAT_16 726 {eFormatFloat, eFormatVectorOfFloat16, 2}, 727 // RS_TYPE_FLOAT_32 728 {eFormatFloat, eFormatVectorOfFloat32, sizeof(float)}, 729 // RS_TYPE_FLOAT_64 730 {eFormatFloat, eFormatVectorOfFloat64, sizeof(double)}, 731 // RS_TYPE_SIGNED_8 732 {eFormatDecimal, eFormatVectorOfSInt8, sizeof(int8_t)}, 733 // RS_TYPE_SIGNED_16 734 {eFormatDecimal, eFormatVectorOfSInt16, sizeof(int16_t)}, 735 // RS_TYPE_SIGNED_32 736 {eFormatDecimal, eFormatVectorOfSInt32, sizeof(int32_t)}, 737 // RS_TYPE_SIGNED_64 738 {eFormatDecimal, eFormatVectorOfSInt64, sizeof(int64_t)}, 739 // RS_TYPE_UNSIGNED_8 740 {eFormatDecimal, eFormatVectorOfUInt8, sizeof(uint8_t)}, 741 // RS_TYPE_UNSIGNED_16 742 {eFormatDecimal, eFormatVectorOfUInt16, sizeof(uint16_t)}, 743 // RS_TYPE_UNSIGNED_32 744 {eFormatDecimal, eFormatVectorOfUInt32, sizeof(uint32_t)}, 745 // RS_TYPE_UNSIGNED_64 746 {eFormatDecimal, eFormatVectorOfUInt64, sizeof(uint64_t)}, 747 // RS_TYPE_BOOL 748 {eFormatBoolean, eFormatBoolean, 1}, 749 // RS_TYPE_UNSIGNED_5_6_5 750 {eFormatHex, eFormatHex, sizeof(uint16_t)}, 751 // RS_TYPE_UNSIGNED_5_5_5_1 752 {eFormatHex, eFormatHex, sizeof(uint16_t)}, 753 // RS_TYPE_UNSIGNED_4_4_4_4 754 {eFormatHex, eFormatHex, sizeof(uint16_t)}, 755 // RS_TYPE_MATRIX_4X4 756 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 16}, 757 // RS_TYPE_MATRIX_3X3 758 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 9}, 759 // RS_TYPE_MATRIX_2X2 760 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 4}}; 761 762 //------------------------------------------------------------------ 763 // Static Functions 764 //------------------------------------------------------------------ 765 LanguageRuntime * 766 RenderScriptRuntime::CreateInstance(Process *process, 767 lldb::LanguageType language) { 768 769 if (language == eLanguageTypeExtRenderScript) 770 return new RenderScriptRuntime(process); 771 else 772 return nullptr; 773 } 774 775 // Callback with a module to search for matching symbols. We first check that 776 // the module contains RS kernels. Then look for a symbol which matches our 777 // kernel name. The breakpoint address is finally set using the address of this 778 // symbol. 779 Searcher::CallbackReturn 780 RSBreakpointResolver::SearchCallback(SearchFilter &filter, 781 SymbolContext &context, Address *, bool) { 782 ModuleSP module = context.module_sp; 783 784 if (!module) 785 return Searcher::eCallbackReturnContinue; 786 787 // Is this a module containing renderscript kernels? 788 if (nullptr == 789 module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), 790 eSymbolTypeData)) 791 return Searcher::eCallbackReturnContinue; 792 793 // Attempt to set a breakpoint on the kernel name symbol within the module 794 // library. If it's not found, it's likely debug info is unavailable - try to 795 // set a breakpoint on <name>.expand. 796 const Symbol *kernel_sym = 797 module->FindFirstSymbolWithNameAndType(m_kernel_name, eSymbolTypeCode); 798 if (!kernel_sym) { 799 std::string kernel_name_expanded(m_kernel_name.AsCString()); 800 kernel_name_expanded.append(".expand"); 801 kernel_sym = module->FindFirstSymbolWithNameAndType( 802 ConstString(kernel_name_expanded.c_str()), eSymbolTypeCode); 803 } 804 805 if (kernel_sym) { 806 Address bp_addr = kernel_sym->GetAddress(); 807 if (filter.AddressPasses(bp_addr)) 808 m_breakpoint->AddLocation(bp_addr); 809 } 810 811 return Searcher::eCallbackReturnContinue; 812 } 813 814 void RenderScriptRuntime::Initialize() { 815 PluginManager::RegisterPlugin(GetPluginNameStatic(), 816 "RenderScript language support", CreateInstance, 817 GetCommandObject); 818 } 819 820 void RenderScriptRuntime::Terminate() { 821 PluginManager::UnregisterPlugin(CreateInstance); 822 } 823 824 lldb_private::ConstString RenderScriptRuntime::GetPluginNameStatic() { 825 static ConstString plugin_name("renderscript"); 826 return plugin_name; 827 } 828 829 RenderScriptRuntime::ModuleKind 830 RenderScriptRuntime::GetModuleKind(const lldb::ModuleSP &module_sp) { 831 if (module_sp) { 832 // Is this a module containing renderscript kernels? 833 const Symbol *info_sym = module_sp->FindFirstSymbolWithNameAndType( 834 ConstString(".rs.info"), eSymbolTypeData); 835 if (info_sym) { 836 return eModuleKindKernelObj; 837 } 838 839 // Is this the main RS runtime library 840 const ConstString rs_lib("libRS.so"); 841 if (module_sp->GetFileSpec().GetFilename() == rs_lib) { 842 return eModuleKindLibRS; 843 } 844 845 const ConstString rs_driverlib("libRSDriver.so"); 846 if (module_sp->GetFileSpec().GetFilename() == rs_driverlib) { 847 return eModuleKindDriver; 848 } 849 850 const ConstString rs_cpureflib("libRSCpuRef.so"); 851 if (module_sp->GetFileSpec().GetFilename() == rs_cpureflib) { 852 return eModuleKindImpl; 853 } 854 } 855 return eModuleKindIgnored; 856 } 857 858 bool RenderScriptRuntime::IsRenderScriptModule( 859 const lldb::ModuleSP &module_sp) { 860 return GetModuleKind(module_sp) != eModuleKindIgnored; 861 } 862 863 void RenderScriptRuntime::ModulesDidLoad(const ModuleList &module_list) { 864 std::lock_guard<std::recursive_mutex> guard(module_list.GetMutex()); 865 866 size_t num_modules = module_list.GetSize(); 867 for (size_t i = 0; i < num_modules; i++) { 868 auto mod = module_list.GetModuleAtIndex(i); 869 if (IsRenderScriptModule(mod)) { 870 LoadModule(mod); 871 } 872 } 873 } 874 875 //------------------------------------------------------------------ 876 // PluginInterface protocol 877 //------------------------------------------------------------------ 878 lldb_private::ConstString RenderScriptRuntime::GetPluginName() { 879 return GetPluginNameStatic(); 880 } 881 882 uint32_t RenderScriptRuntime::GetPluginVersion() { return 1; } 883 884 bool RenderScriptRuntime::IsVTableName(const char *name) { return false; } 885 886 bool RenderScriptRuntime::GetDynamicTypeAndAddress( 887 ValueObject &in_value, lldb::DynamicValueType use_dynamic, 888 TypeAndOrName &class_type_or_name, Address &address, 889 Value::ValueType &value_type) { 890 return false; 891 } 892 893 TypeAndOrName 894 RenderScriptRuntime::FixUpDynamicType(const TypeAndOrName &type_and_or_name, 895 ValueObject &static_value) { 896 return type_and_or_name; 897 } 898 899 bool RenderScriptRuntime::CouldHaveDynamicValue(ValueObject &in_value) { 900 return false; 901 } 902 903 lldb::BreakpointResolverSP 904 RenderScriptRuntime::CreateExceptionResolver(Breakpoint *bp, bool catch_bp, 905 bool throw_bp) { 906 BreakpointResolverSP resolver_sp; 907 return resolver_sp; 908 } 909 910 const RenderScriptRuntime::HookDefn RenderScriptRuntime::s_runtimeHookDefns[] = 911 { 912 // rsdScript 913 {"rsdScriptInit", "_Z13rsdScriptInitPKN7android12renderscript7ContextEP" 914 "NS0_7ScriptCEPKcS7_PKhjj", 915 "_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_" 916 "7ScriptCEPKcS7_PKhmj", 917 0, RenderScriptRuntime::eModuleKindDriver, 918 &lldb_private::RenderScriptRuntime::CaptureScriptInit}, 919 {"rsdScriptInvokeForEachMulti", 920 "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0" 921 "_6ScriptEjPPKNS0_10AllocationEjPS6_PKvjPK12RsScriptCall", 922 "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0" 923 "_6ScriptEjPPKNS0_10AllocationEmPS6_PKvmPK12RsScriptCall", 924 0, RenderScriptRuntime::eModuleKindDriver, 925 &lldb_private::RenderScriptRuntime::CaptureScriptInvokeForEachMulti}, 926 {"rsdScriptSetGlobalVar", "_Z21rsdScriptSetGlobalVarPKN7android12render" 927 "script7ContextEPKNS0_6ScriptEjPvj", 928 "_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_" 929 "6ScriptEjPvm", 930 0, RenderScriptRuntime::eModuleKindDriver, 931 &lldb_private::RenderScriptRuntime::CaptureSetGlobalVar}, 932 933 // rsdAllocation 934 {"rsdAllocationInit", "_Z17rsdAllocationInitPKN7android12renderscript7C" 935 "ontextEPNS0_10AllocationEb", 936 "_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_" 937 "10AllocationEb", 938 0, RenderScriptRuntime::eModuleKindDriver, 939 &lldb_private::RenderScriptRuntime::CaptureAllocationInit}, 940 {"rsdAllocationRead2D", 941 "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_" 942 "10AllocationEjjj23RsAllocationCubemapFacejjPvjj", 943 "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_" 944 "10AllocationEjjj23RsAllocationCubemapFacejjPvmm", 945 0, RenderScriptRuntime::eModuleKindDriver, nullptr}, 946 {"rsdAllocationDestroy", "_Z20rsdAllocationDestroyPKN7android12rendersc" 947 "ript7ContextEPNS0_10AllocationE", 948 "_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_" 949 "10AllocationE", 950 0, RenderScriptRuntime::eModuleKindDriver, 951 &lldb_private::RenderScriptRuntime::CaptureAllocationDestroy}, 952 }; 953 954 const size_t RenderScriptRuntime::s_runtimeHookCount = 955 sizeof(s_runtimeHookDefns) / sizeof(s_runtimeHookDefns[0]); 956 957 bool RenderScriptRuntime::HookCallback(void *baton, 958 StoppointCallbackContext *ctx, 959 lldb::user_id_t break_id, 960 lldb::user_id_t break_loc_id) { 961 RuntimeHook *hook = (RuntimeHook *)baton; 962 ExecutionContext exe_ctx(ctx->exe_ctx_ref); 963 964 RenderScriptRuntime *lang_rt = 965 (RenderScriptRuntime *)exe_ctx.GetProcessPtr()->GetLanguageRuntime( 966 eLanguageTypeExtRenderScript); 967 968 lang_rt->HookCallback(hook, exe_ctx); 969 970 return false; 971 } 972 973 void RenderScriptRuntime::HookCallback(RuntimeHook *hook, 974 ExecutionContext &exe_ctx) { 975 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 976 977 if (log) 978 log->Printf("%s - '%s'", __FUNCTION__, hook->defn->name); 979 980 if (hook->defn->grabber) { 981 (this->*(hook->defn->grabber))(hook, exe_ctx); 982 } 983 } 984 985 void RenderScriptRuntime::CaptureScriptInvokeForEachMulti( 986 RuntimeHook *hook, ExecutionContext &exe_ctx) { 987 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 988 989 enum { 990 eRsContext = 0, 991 eRsScript, 992 eRsSlot, 993 eRsAIns, 994 eRsInLen, 995 eRsAOut, 996 eRsUsr, 997 eRsUsrLen, 998 eRsSc, 999 }; 1000 1001 std::array<ArgItem, 9> args{{ 1002 ArgItem{ArgItem::ePointer, 0}, // const Context *rsc 1003 ArgItem{ArgItem::ePointer, 0}, // Script *s 1004 ArgItem{ArgItem::eInt32, 0}, // uint32_t slot 1005 ArgItem{ArgItem::ePointer, 0}, // const Allocation **aIns 1006 ArgItem{ArgItem::eInt32, 0}, // size_t inLen 1007 ArgItem{ArgItem::ePointer, 0}, // Allocation *aout 1008 ArgItem{ArgItem::ePointer, 0}, // const void *usr 1009 ArgItem{ArgItem::eInt32, 0}, // size_t usrLen 1010 ArgItem{ArgItem::ePointer, 0}, // const RsScriptCall *sc 1011 }}; 1012 1013 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1014 if (!success) { 1015 if (log) 1016 log->Printf("%s - Error while reading the function parameters", 1017 __FUNCTION__); 1018 return; 1019 } 1020 1021 const uint32_t target_ptr_size = m_process->GetAddressByteSize(); 1022 Error err; 1023 std::vector<uint64_t> allocs; 1024 1025 // traverse allocation list 1026 for (uint64_t i = 0; i < uint64_t(args[eRsInLen]); ++i) { 1027 // calculate offest to allocation pointer 1028 const addr_t addr = addr_t(args[eRsAIns]) + i * target_ptr_size; 1029 1030 // Note: due to little endian layout, reading 32bits or 64bits into res 1031 // will give the correct results. 1032 uint64_t result = 0; 1033 size_t read = m_process->ReadMemory(addr, &result, target_ptr_size, err); 1034 if (read != target_ptr_size || !err.Success()) { 1035 if (log) 1036 log->Printf( 1037 "%s - Error while reading allocation list argument %" PRIu64, 1038 __FUNCTION__, i); 1039 } else { 1040 allocs.push_back(result); 1041 } 1042 } 1043 1044 // if there is an output allocation track it 1045 if (uint64_t alloc_out = uint64_t(args[eRsAOut])) { 1046 allocs.push_back(alloc_out); 1047 } 1048 1049 // for all allocations we have found 1050 for (const uint64_t alloc_addr : allocs) { 1051 AllocationDetails *alloc = LookUpAllocation(alloc_addr); 1052 if (!alloc) 1053 alloc = CreateAllocation(alloc_addr); 1054 1055 if (alloc) { 1056 // save the allocation address 1057 if (alloc->address.isValid()) { 1058 // check the allocation address we already have matches 1059 assert(*alloc->address.get() == alloc_addr); 1060 } else { 1061 alloc->address = alloc_addr; 1062 } 1063 1064 // save the context 1065 if (log) { 1066 if (alloc->context.isValid() && 1067 *alloc->context.get() != addr_t(args[eRsContext])) 1068 log->Printf("%s - Allocation used by multiple contexts", 1069 __FUNCTION__); 1070 } 1071 alloc->context = addr_t(args[eRsContext]); 1072 } 1073 } 1074 1075 // make sure we track this script object 1076 if (lldb_private::RenderScriptRuntime::ScriptDetails *script = 1077 LookUpScript(addr_t(args[eRsScript]), true)) { 1078 if (log) { 1079 if (script->context.isValid() && 1080 *script->context.get() != addr_t(args[eRsContext])) 1081 log->Printf("%s - Script used by multiple contexts", __FUNCTION__); 1082 } 1083 script->context = addr_t(args[eRsContext]); 1084 } 1085 } 1086 1087 void RenderScriptRuntime::CaptureSetGlobalVar(RuntimeHook *hook, 1088 ExecutionContext &context) { 1089 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1090 1091 enum { 1092 eRsContext, 1093 eRsScript, 1094 eRsId, 1095 eRsData, 1096 eRsLength, 1097 }; 1098 1099 std::array<ArgItem, 5> args{{ 1100 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1101 ArgItem{ArgItem::ePointer, 0}, // eRsScript 1102 ArgItem{ArgItem::eInt32, 0}, // eRsId 1103 ArgItem{ArgItem::ePointer, 0}, // eRsData 1104 ArgItem{ArgItem::eInt32, 0}, // eRsLength 1105 }}; 1106 1107 bool success = GetArgs(context, &args[0], args.size()); 1108 if (!success) { 1109 if (log) 1110 log->Printf("%s - error reading the function parameters.", __FUNCTION__); 1111 return; 1112 } 1113 1114 if (log) { 1115 log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " slot %" PRIu64 " = 0x%" PRIx64 1116 ":%" PRIu64 "bytes.", 1117 __FUNCTION__, uint64_t(args[eRsContext]), 1118 uint64_t(args[eRsScript]), uint64_t(args[eRsId]), 1119 uint64_t(args[eRsData]), uint64_t(args[eRsLength])); 1120 1121 addr_t script_addr = addr_t(args[eRsScript]); 1122 if (m_scriptMappings.find(script_addr) != m_scriptMappings.end()) { 1123 auto rsm = m_scriptMappings[script_addr]; 1124 if (uint64_t(args[eRsId]) < rsm->m_globals.size()) { 1125 auto rsg = rsm->m_globals[uint64_t(args[eRsId])]; 1126 log->Printf("%s - Setting of '%s' within '%s' inferred", __FUNCTION__, 1127 rsg.m_name.AsCString(), 1128 rsm->m_module->GetFileSpec().GetFilename().AsCString()); 1129 } 1130 } 1131 } 1132 } 1133 1134 void RenderScriptRuntime::CaptureAllocationInit(RuntimeHook *hook, 1135 ExecutionContext &exe_ctx) { 1136 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1137 1138 enum { eRsContext, eRsAlloc, eRsForceZero }; 1139 1140 std::array<ArgItem, 3> args{{ 1141 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1142 ArgItem{ArgItem::ePointer, 0}, // eRsAlloc 1143 ArgItem{ArgItem::eBool, 0}, // eRsForceZero 1144 }}; 1145 1146 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1147 if (!success) { 1148 if (log) 1149 log->Printf("%s - error while reading the function parameters", 1150 __FUNCTION__); 1151 return; 1152 } 1153 1154 if (log) 1155 log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 ",0x%" PRIx64 " .", 1156 __FUNCTION__, uint64_t(args[eRsContext]), 1157 uint64_t(args[eRsAlloc]), uint64_t(args[eRsForceZero])); 1158 1159 AllocationDetails *alloc = CreateAllocation(uint64_t(args[eRsAlloc])); 1160 if (alloc) 1161 alloc->context = uint64_t(args[eRsContext]); 1162 } 1163 1164 void RenderScriptRuntime::CaptureAllocationDestroy(RuntimeHook *hook, 1165 ExecutionContext &exe_ctx) { 1166 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1167 1168 enum { 1169 eRsContext, 1170 eRsAlloc, 1171 }; 1172 1173 std::array<ArgItem, 2> args{{ 1174 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1175 ArgItem{ArgItem::ePointer, 0}, // eRsAlloc 1176 }}; 1177 1178 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1179 if (!success) { 1180 if (log) 1181 log->Printf("%s - error while reading the function parameters.", 1182 __FUNCTION__); 1183 return; 1184 } 1185 1186 if (log) 1187 log->Printf("%s - 0x%" PRIx64 ", 0x%" PRIx64 ".", __FUNCTION__, 1188 uint64_t(args[eRsContext]), uint64_t(args[eRsAlloc])); 1189 1190 for (auto iter = m_allocations.begin(); iter != m_allocations.end(); ++iter) { 1191 auto &allocation_ap = *iter; // get the unique pointer 1192 if (allocation_ap->address.isValid() && 1193 *allocation_ap->address.get() == addr_t(args[eRsAlloc])) { 1194 m_allocations.erase(iter); 1195 if (log) 1196 log->Printf("%s - deleted allocation entry.", __FUNCTION__); 1197 return; 1198 } 1199 } 1200 1201 if (log) 1202 log->Printf("%s - couldn't find destroyed allocation.", __FUNCTION__); 1203 } 1204 1205 void RenderScriptRuntime::CaptureScriptInit(RuntimeHook *hook, 1206 ExecutionContext &exe_ctx) { 1207 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1208 1209 Error err; 1210 Process *process = exe_ctx.GetProcessPtr(); 1211 1212 enum { eRsContext, eRsScript, eRsResNamePtr, eRsCachedDirPtr }; 1213 1214 std::array<ArgItem, 4> args{ 1215 {ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}, 1216 ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}}}; 1217 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1218 if (!success) { 1219 if (log) 1220 log->Printf("%s - error while reading the function parameters.", 1221 __FUNCTION__); 1222 return; 1223 } 1224 1225 std::string res_name; 1226 process->ReadCStringFromMemory(addr_t(args[eRsResNamePtr]), res_name, err); 1227 if (err.Fail()) { 1228 if (log) 1229 log->Printf("%s - error reading res_name: %s.", __FUNCTION__, 1230 err.AsCString()); 1231 } 1232 1233 std::string cache_dir; 1234 process->ReadCStringFromMemory(addr_t(args[eRsCachedDirPtr]), cache_dir, err); 1235 if (err.Fail()) { 1236 if (log) 1237 log->Printf("%s - error reading cache_dir: %s.", __FUNCTION__, 1238 err.AsCString()); 1239 } 1240 1241 if (log) 1242 log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " => '%s' at '%s' .", 1243 __FUNCTION__, uint64_t(args[eRsContext]), 1244 uint64_t(args[eRsScript]), res_name.c_str(), cache_dir.c_str()); 1245 1246 if (res_name.size() > 0) { 1247 StreamString strm; 1248 strm.Printf("librs.%s.so", res_name.c_str()); 1249 1250 ScriptDetails *script = LookUpScript(addr_t(args[eRsScript]), true); 1251 if (script) { 1252 script->type = ScriptDetails::eScriptC; 1253 script->cache_dir = cache_dir; 1254 script->res_name = res_name; 1255 script->shared_lib = strm.GetData(); 1256 script->context = addr_t(args[eRsContext]); 1257 } 1258 1259 if (log) 1260 log->Printf("%s - '%s' tagged with context 0x%" PRIx64 1261 " and script 0x%" PRIx64 ".", 1262 __FUNCTION__, strm.GetData(), uint64_t(args[eRsContext]), 1263 uint64_t(args[eRsScript])); 1264 } else if (log) { 1265 log->Printf("%s - resource name invalid, Script not tagged.", __FUNCTION__); 1266 } 1267 } 1268 1269 void RenderScriptRuntime::LoadRuntimeHooks(lldb::ModuleSP module, 1270 ModuleKind kind) { 1271 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1272 1273 if (!module) { 1274 return; 1275 } 1276 1277 Target &target = GetProcess()->GetTarget(); 1278 llvm::Triple::ArchType machine = target.GetArchitecture().GetMachine(); 1279 1280 if (machine != llvm::Triple::ArchType::x86 && 1281 machine != llvm::Triple::ArchType::arm && 1282 machine != llvm::Triple::ArchType::aarch64 && 1283 machine != llvm::Triple::ArchType::mipsel && 1284 machine != llvm::Triple::ArchType::mips64el && 1285 machine != llvm::Triple::ArchType::x86_64) { 1286 if (log) 1287 log->Printf("%s - unable to hook runtime functions.", __FUNCTION__); 1288 return; 1289 } 1290 1291 uint32_t target_ptr_size = target.GetArchitecture().GetAddressByteSize(); 1292 1293 for (size_t idx = 0; idx < s_runtimeHookCount; idx++) { 1294 const HookDefn *hook_defn = &s_runtimeHookDefns[idx]; 1295 if (hook_defn->kind != kind) { 1296 continue; 1297 } 1298 1299 const char *symbol_name = (target_ptr_size == 4) 1300 ? hook_defn->symbol_name_m32 1301 : hook_defn->symbol_name_m64; 1302 1303 const Symbol *sym = module->FindFirstSymbolWithNameAndType( 1304 ConstString(symbol_name), eSymbolTypeCode); 1305 if (!sym) { 1306 if (log) { 1307 log->Printf("%s - symbol '%s' related to the function %s not found", 1308 __FUNCTION__, symbol_name, hook_defn->name); 1309 } 1310 continue; 1311 } 1312 1313 addr_t addr = sym->GetLoadAddress(&target); 1314 if (addr == LLDB_INVALID_ADDRESS) { 1315 if (log) 1316 log->Printf("%s - unable to resolve the address of hook function '%s' " 1317 "with symbol '%s'.", 1318 __FUNCTION__, hook_defn->name, symbol_name); 1319 continue; 1320 } else { 1321 if (log) 1322 log->Printf("%s - function %s, address resolved at 0x%" PRIx64, 1323 __FUNCTION__, hook_defn->name, addr); 1324 } 1325 1326 RuntimeHookSP hook(new RuntimeHook()); 1327 hook->address = addr; 1328 hook->defn = hook_defn; 1329 hook->bp_sp = target.CreateBreakpoint(addr, true, false); 1330 hook->bp_sp->SetCallback(HookCallback, hook.get(), true); 1331 m_runtimeHooks[addr] = hook; 1332 if (log) { 1333 log->Printf("%s - successfully hooked '%s' in '%s' version %" PRIu64 1334 " at 0x%" PRIx64 ".", 1335 __FUNCTION__, hook_defn->name, 1336 module->GetFileSpec().GetFilename().AsCString(), 1337 (uint64_t)hook_defn->version, (uint64_t)addr); 1338 } 1339 } 1340 } 1341 1342 void RenderScriptRuntime::FixupScriptDetails(RSModuleDescriptorSP rsmodule_sp) { 1343 if (!rsmodule_sp) 1344 return; 1345 1346 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1347 1348 const ModuleSP module = rsmodule_sp->m_module; 1349 const FileSpec &file = module->GetPlatformFileSpec(); 1350 1351 // Iterate over all of the scripts that we currently know of. 1352 // Note: We cant push or pop to m_scripts here or it may invalidate rs_script. 1353 for (const auto &rs_script : m_scripts) { 1354 // Extract the expected .so file path for this script. 1355 std::string shared_lib; 1356 if (!rs_script->shared_lib.get(shared_lib)) 1357 continue; 1358 1359 // Only proceed if the module that has loaded corresponds to this script. 1360 if (file.GetFilename() != ConstString(shared_lib.c_str())) 1361 continue; 1362 1363 // Obtain the script address which we use as a key. 1364 lldb::addr_t script; 1365 if (!rs_script->script.get(script)) 1366 continue; 1367 1368 // If we have a script mapping for the current script. 1369 if (m_scriptMappings.find(script) != m_scriptMappings.end()) { 1370 // if the module we have stored is different to the one we just received. 1371 if (m_scriptMappings[script] != rsmodule_sp) { 1372 if (log) 1373 log->Printf( 1374 "%s - script %" PRIx64 " wants reassigned to new rsmodule '%s'.", 1375 __FUNCTION__, (uint64_t)script, 1376 rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString()); 1377 } 1378 } 1379 // We don't have a script mapping for the current script. 1380 else { 1381 // Obtain the script resource name. 1382 std::string res_name; 1383 if (rs_script->res_name.get(res_name)) 1384 // Set the modules resource name. 1385 rsmodule_sp->m_resname = res_name; 1386 // Add Script/Module pair to map. 1387 m_scriptMappings[script] = rsmodule_sp; 1388 if (log) 1389 log->Printf( 1390 "%s - script %" PRIx64 " associated with rsmodule '%s'.", 1391 __FUNCTION__, (uint64_t)script, 1392 rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString()); 1393 } 1394 } 1395 } 1396 1397 // Uses the Target API to evaluate the expression passed as a parameter to the 1398 // function The result of that expression is returned an unsigned 64 bit int, 1399 // via the result* parameter. Function returns true on success, and false on 1400 // failure 1401 bool RenderScriptRuntime::EvalRSExpression(const char *expr, 1402 StackFrame *frame_ptr, 1403 uint64_t *result) { 1404 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1405 if (log) 1406 log->Printf("%s(%s)", __FUNCTION__, expr); 1407 1408 ValueObjectSP expr_result; 1409 EvaluateExpressionOptions options; 1410 options.SetLanguage(lldb::eLanguageTypeC_plus_plus); 1411 // Perform the actual expression evaluation 1412 auto &target = GetProcess()->GetTarget(); 1413 target.EvaluateExpression(expr, frame_ptr, expr_result, options); 1414 1415 if (!expr_result) { 1416 if (log) 1417 log->Printf("%s: couldn't evaluate expression.", __FUNCTION__); 1418 return false; 1419 } 1420 1421 // The result of the expression is invalid 1422 if (!expr_result->GetError().Success()) { 1423 Error err = expr_result->GetError(); 1424 // Expression returned is void, so this is actually a success 1425 if (err.GetError() == UserExpression::kNoResult) { 1426 if (log) 1427 log->Printf("%s - expression returned void.", __FUNCTION__); 1428 1429 result = nullptr; 1430 return true; 1431 } 1432 1433 if (log) 1434 log->Printf("%s - error evaluating expression result: %s", __FUNCTION__, 1435 err.AsCString()); 1436 return false; 1437 } 1438 1439 bool success = false; 1440 // We only read the result as an uint32_t. 1441 *result = expr_result->GetValueAsUnsigned(0, &success); 1442 1443 if (!success) { 1444 if (log) 1445 log->Printf("%s - couldn't convert expression result to uint32_t", 1446 __FUNCTION__); 1447 return false; 1448 } 1449 1450 return true; 1451 } 1452 1453 namespace { 1454 // Used to index expression format strings 1455 enum ExpressionStrings { 1456 eExprGetOffsetPtr = 0, 1457 eExprAllocGetType, 1458 eExprTypeDimX, 1459 eExprTypeDimY, 1460 eExprTypeDimZ, 1461 eExprTypeElemPtr, 1462 eExprElementType, 1463 eExprElementKind, 1464 eExprElementVec, 1465 eExprElementFieldCount, 1466 eExprSubelementsId, 1467 eExprSubelementsName, 1468 eExprSubelementsArrSize, 1469 1470 _eExprLast // keep at the end, implicit size of the array runtime_expressions 1471 }; 1472 1473 // max length of an expanded expression 1474 const int jit_max_expr_size = 512; 1475 1476 // Retrieve the string to JIT for the given expression 1477 const char *JITTemplate(ExpressionStrings e) { 1478 // Format strings containing the expressions we may need to evaluate. 1479 static std::array<const char *, _eExprLast> runtime_expressions = { 1480 {// Mangled GetOffsetPointer(Allocation*, xoff, yoff, zoff, lod, cubemap) 1481 "(int*)_" 1482 "Z12GetOffsetPtrPKN7android12renderscript10AllocationEjjjj23RsAllocation" 1483 "CubemapFace" 1484 "(0x%" PRIx64 ", %" PRIu32 ", %" PRIu32 ", %" PRIu32 ", 0, 0)", 1485 1486 // Type* rsaAllocationGetType(Context*, Allocation*) 1487 "(void*)rsaAllocationGetType(0x%" PRIx64 ", 0x%" PRIx64 ")", 1488 1489 // rsaTypeGetNativeData(Context*, Type*, void* typeData, size) Pack the 1490 // data in the following way mHal.state.dimX; mHal.state.dimY; 1491 // mHal.state.dimZ; mHal.state.lodCount; mHal.state.faces; mElement; into 1492 // typeData Need to specify 32 or 64 bit for uint_t since this differs 1493 // between devices 1494 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 1495 ", 0x%" PRIx64 ", data, 6); data[0]", // X dim 1496 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 1497 ", 0x%" PRIx64 ", data, 6); data[1]", // Y dim 1498 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 1499 ", 0x%" PRIx64 ", data, 6); data[2]", // Z dim 1500 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 1501 ", 0x%" PRIx64 ", data, 6); data[5]", // Element ptr 1502 1503 // rsaElementGetNativeData(Context*, Element*, uint32_t* elemData,size) 1504 // Pack mType; mKind; mNormalized; mVectorSize; NumSubElements into 1505 // elemData 1506 "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 1507 ", 0x%" PRIx64 ", data, 5); data[0]", // Type 1508 "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 1509 ", 0x%" PRIx64 ", data, 5); data[1]", // Kind 1510 "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 1511 ", 0x%" PRIx64 ", data, 5); data[3]", // Vector Size 1512 "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 1513 ", 0x%" PRIx64 ", data, 5); data[4]", // Field Count 1514 1515 // rsaElementGetSubElements(RsContext con, RsElement elem, uintptr_t 1516 // *ids, const char **names, size_t *arraySizes, uint32_t dataSize) 1517 // Needed for Allocations of structs to gather details about 1518 // fields/Subelements Element* of field 1519 "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 1520 "]; size_t arr_size[%" PRIu32 "];" 1521 "(void*)rsaElementGetSubElements(0x%" PRIx64 ", 0x%" PRIx64 1522 ", ids, names, arr_size, %" PRIu32 "); ids[%" PRIu32 "]", 1523 1524 // Name of field 1525 "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 1526 "]; size_t arr_size[%" PRIu32 "];" 1527 "(void*)rsaElementGetSubElements(0x%" PRIx64 ", 0x%" PRIx64 1528 ", ids, names, arr_size, %" PRIu32 "); names[%" PRIu32 "]", 1529 1530 // Array size of field 1531 "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 1532 "]; size_t arr_size[%" PRIu32 "];" 1533 "(void*)rsaElementGetSubElements(0x%" PRIx64 ", 0x%" PRIx64 1534 ", ids, names, arr_size, %" PRIu32 "); arr_size[%" PRIu32 "]"}}; 1535 1536 return runtime_expressions[e]; 1537 } 1538 } // end of the anonymous namespace 1539 1540 // JITs the RS runtime for the internal data pointer of an allocation. Is passed 1541 // x,y,z coordinates for the pointer to a specific element. Then sets the 1542 // data_ptr member in Allocation with the result. Returns true on success, false 1543 // otherwise 1544 bool RenderScriptRuntime::JITDataPointer(AllocationDetails *alloc, 1545 StackFrame *frame_ptr, uint32_t x, 1546 uint32_t y, uint32_t z) { 1547 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1548 1549 if (!alloc->address.isValid()) { 1550 if (log) 1551 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1552 return false; 1553 } 1554 1555 const char *fmt_str = JITTemplate(eExprGetOffsetPtr); 1556 char expr_buf[jit_max_expr_size]; 1557 1558 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 1559 *alloc->address.get(), x, y, z); 1560 if (written < 0) { 1561 if (log) 1562 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1563 return false; 1564 } else if (written >= jit_max_expr_size) { 1565 if (log) 1566 log->Printf("%s - expression too long.", __FUNCTION__); 1567 return false; 1568 } 1569 1570 uint64_t result = 0; 1571 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 1572 return false; 1573 1574 addr_t data_ptr = static_cast<lldb::addr_t>(result); 1575 alloc->data_ptr = data_ptr; 1576 1577 return true; 1578 } 1579 1580 // JITs the RS runtime for the internal pointer to the RS Type of an allocation 1581 // Then sets the type_ptr member in Allocation with the result. Returns true on 1582 // success, false otherwise 1583 bool RenderScriptRuntime::JITTypePointer(AllocationDetails *alloc, 1584 StackFrame *frame_ptr) { 1585 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1586 1587 if (!alloc->address.isValid() || !alloc->context.isValid()) { 1588 if (log) 1589 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1590 return false; 1591 } 1592 1593 const char *fmt_str = JITTemplate(eExprAllocGetType); 1594 char expr_buf[jit_max_expr_size]; 1595 1596 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 1597 *alloc->context.get(), *alloc->address.get()); 1598 if (written < 0) { 1599 if (log) 1600 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1601 return false; 1602 } else if (written >= jit_max_expr_size) { 1603 if (log) 1604 log->Printf("%s - expression too long.", __FUNCTION__); 1605 return false; 1606 } 1607 1608 uint64_t result = 0; 1609 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 1610 return false; 1611 1612 addr_t type_ptr = static_cast<lldb::addr_t>(result); 1613 alloc->type_ptr = type_ptr; 1614 1615 return true; 1616 } 1617 1618 // JITs the RS runtime for information about the dimensions and type of an 1619 // allocation Then sets dimension and element_ptr members in Allocation with the 1620 // result. Returns true on success, false otherwise 1621 bool RenderScriptRuntime::JITTypePacked(AllocationDetails *alloc, 1622 StackFrame *frame_ptr) { 1623 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1624 1625 if (!alloc->type_ptr.isValid() || !alloc->context.isValid()) { 1626 if (log) 1627 log->Printf("%s - Failed to find allocation details.", __FUNCTION__); 1628 return false; 1629 } 1630 1631 // Expression is different depending on if device is 32 or 64 bit 1632 uint32_t target_ptr_size = 1633 GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 1634 const uint32_t bits = target_ptr_size == 4 ? 32 : 64; 1635 1636 // We want 4 elements from packed data 1637 const uint32_t num_exprs = 4; 1638 assert(num_exprs == (eExprTypeElemPtr - eExprTypeDimX + 1) && 1639 "Invalid number of expressions"); 1640 1641 char expr_bufs[num_exprs][jit_max_expr_size]; 1642 uint64_t results[num_exprs]; 1643 1644 for (uint32_t i = 0; i < num_exprs; ++i) { 1645 const char *fmt_str = JITTemplate(ExpressionStrings(eExprTypeDimX + i)); 1646 int written = snprintf(expr_bufs[i], jit_max_expr_size, fmt_str, bits, 1647 *alloc->context.get(), *alloc->type_ptr.get()); 1648 if (written < 0) { 1649 if (log) 1650 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1651 return false; 1652 } else if (written >= jit_max_expr_size) { 1653 if (log) 1654 log->Printf("%s - expression too long.", __FUNCTION__); 1655 return false; 1656 } 1657 1658 // Perform expression evaluation 1659 if (!EvalRSExpression(expr_bufs[i], frame_ptr, &results[i])) 1660 return false; 1661 } 1662 1663 // Assign results to allocation members 1664 AllocationDetails::Dimension dims; 1665 dims.dim_1 = static_cast<uint32_t>(results[0]); 1666 dims.dim_2 = static_cast<uint32_t>(results[1]); 1667 dims.dim_3 = static_cast<uint32_t>(results[2]); 1668 alloc->dimension = dims; 1669 1670 addr_t element_ptr = static_cast<lldb::addr_t>(results[3]); 1671 alloc->element.element_ptr = element_ptr; 1672 1673 if (log) 1674 log->Printf("%s - dims (%" PRIu32 ", %" PRIu32 ", %" PRIu32 1675 ") Element*: 0x%" PRIx64 ".", 1676 __FUNCTION__, dims.dim_1, dims.dim_2, dims.dim_3, element_ptr); 1677 1678 return true; 1679 } 1680 1681 // JITs the RS runtime for information about the Element of an allocation Then 1682 // sets type, type_vec_size, field_count and type_kind members in Element with 1683 // the result. Returns true on success, false otherwise 1684 bool RenderScriptRuntime::JITElementPacked(Element &elem, 1685 const lldb::addr_t context, 1686 StackFrame *frame_ptr) { 1687 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1688 1689 if (!elem.element_ptr.isValid()) { 1690 if (log) 1691 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1692 return false; 1693 } 1694 1695 // We want 4 elements from packed data 1696 const uint32_t num_exprs = 4; 1697 assert(num_exprs == (eExprElementFieldCount - eExprElementType + 1) && 1698 "Invalid number of expressions"); 1699 1700 char expr_bufs[num_exprs][jit_max_expr_size]; 1701 uint64_t results[num_exprs]; 1702 1703 for (uint32_t i = 0; i < num_exprs; i++) { 1704 const char *fmt_str = JITTemplate(ExpressionStrings(eExprElementType + i)); 1705 int written = snprintf(expr_bufs[i], jit_max_expr_size, fmt_str, context, 1706 *elem.element_ptr.get()); 1707 if (written < 0) { 1708 if (log) 1709 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1710 return false; 1711 } else if (written >= jit_max_expr_size) { 1712 if (log) 1713 log->Printf("%s - expression too long.", __FUNCTION__); 1714 return false; 1715 } 1716 1717 // Perform expression evaluation 1718 if (!EvalRSExpression(expr_bufs[i], frame_ptr, &results[i])) 1719 return false; 1720 } 1721 1722 // Assign results to allocation members 1723 elem.type = static_cast<RenderScriptRuntime::Element::DataType>(results[0]); 1724 elem.type_kind = 1725 static_cast<RenderScriptRuntime::Element::DataKind>(results[1]); 1726 elem.type_vec_size = static_cast<uint32_t>(results[2]); 1727 elem.field_count = static_cast<uint32_t>(results[3]); 1728 1729 if (log) 1730 log->Printf("%s - data type %" PRIu32 ", pixel type %" PRIu32 1731 ", vector size %" PRIu32 ", field count %" PRIu32, 1732 __FUNCTION__, *elem.type.get(), *elem.type_kind.get(), 1733 *elem.type_vec_size.get(), *elem.field_count.get()); 1734 1735 // If this Element has subelements then JIT rsaElementGetSubElements() for 1736 // details about its fields 1737 if (*elem.field_count.get() > 0 && !JITSubelements(elem, context, frame_ptr)) 1738 return false; 1739 1740 return true; 1741 } 1742 1743 // JITs the RS runtime for information about the subelements/fields of a struct 1744 // allocation This is necessary for infering the struct type so we can pretty 1745 // print the allocation's contents. Returns true on success, false otherwise 1746 bool RenderScriptRuntime::JITSubelements(Element &elem, 1747 const lldb::addr_t context, 1748 StackFrame *frame_ptr) { 1749 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1750 1751 if (!elem.element_ptr.isValid() || !elem.field_count.isValid()) { 1752 if (log) 1753 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1754 return false; 1755 } 1756 1757 const short num_exprs = 3; 1758 assert(num_exprs == (eExprSubelementsArrSize - eExprSubelementsId + 1) && 1759 "Invalid number of expressions"); 1760 1761 char expr_buffer[jit_max_expr_size]; 1762 uint64_t results; 1763 1764 // Iterate over struct fields. 1765 const uint32_t field_count = *elem.field_count.get(); 1766 for (uint32_t field_index = 0; field_index < field_count; ++field_index) { 1767 Element child; 1768 for (uint32_t expr_index = 0; expr_index < num_exprs; ++expr_index) { 1769 const char *fmt_str = 1770 JITTemplate(ExpressionStrings(eExprSubelementsId + expr_index)); 1771 int written = snprintf(expr_buffer, jit_max_expr_size, fmt_str, 1772 field_count, field_count, field_count, context, 1773 *elem.element_ptr.get(), field_count, field_index); 1774 if (written < 0) { 1775 if (log) 1776 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1777 return false; 1778 } else if (written >= jit_max_expr_size) { 1779 if (log) 1780 log->Printf("%s - expression too long.", __FUNCTION__); 1781 return false; 1782 } 1783 1784 // Perform expression evaluation 1785 if (!EvalRSExpression(expr_buffer, frame_ptr, &results)) 1786 return false; 1787 1788 if (log) 1789 log->Printf("%s - expr result 0x%" PRIx64 ".", __FUNCTION__, results); 1790 1791 switch (expr_index) { 1792 case 0: // Element* of child 1793 child.element_ptr = static_cast<addr_t>(results); 1794 break; 1795 case 1: // Name of child 1796 { 1797 lldb::addr_t address = static_cast<addr_t>(results); 1798 Error err; 1799 std::string name; 1800 GetProcess()->ReadCStringFromMemory(address, name, err); 1801 if (!err.Fail()) 1802 child.type_name = ConstString(name); 1803 else { 1804 if (log) 1805 log->Printf("%s - warning: Couldn't read field name.", 1806 __FUNCTION__); 1807 } 1808 break; 1809 } 1810 case 2: // Array size of child 1811 child.array_size = static_cast<uint32_t>(results); 1812 break; 1813 } 1814 } 1815 1816 // We need to recursively JIT each Element field of the struct since 1817 // structs can be nested inside structs. 1818 if (!JITElementPacked(child, context, frame_ptr)) 1819 return false; 1820 elem.children.push_back(child); 1821 } 1822 1823 // Try to infer the name of the struct type so we can pretty print the 1824 // allocation contents. 1825 FindStructTypeName(elem, frame_ptr); 1826 1827 return true; 1828 } 1829 1830 // JITs the RS runtime for the address of the last element in the allocation. 1831 // The `elem_size` parameter represents the size of a single element, including 1832 // padding. Which is needed as an offset from the last element pointer. Using 1833 // this offset minus the starting address we can calculate the size of the 1834 // allocation. Returns true on success, false otherwise 1835 bool RenderScriptRuntime::JITAllocationSize(AllocationDetails *alloc, 1836 StackFrame *frame_ptr) { 1837 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1838 1839 if (!alloc->address.isValid() || !alloc->dimension.isValid() || 1840 !alloc->data_ptr.isValid() || !alloc->element.datum_size.isValid()) { 1841 if (log) 1842 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1843 return false; 1844 } 1845 1846 // Find dimensions 1847 uint32_t dim_x = alloc->dimension.get()->dim_1; 1848 uint32_t dim_y = alloc->dimension.get()->dim_2; 1849 uint32_t dim_z = alloc->dimension.get()->dim_3; 1850 1851 // Our plan of jitting the last element address doesn't seem to work for 1852 // struct Allocations` Instead try to infer the size ourselves without any 1853 // inter element padding. 1854 if (alloc->element.children.size() > 0) { 1855 if (dim_x == 0) 1856 dim_x = 1; 1857 if (dim_y == 0) 1858 dim_y = 1; 1859 if (dim_z == 0) 1860 dim_z = 1; 1861 1862 alloc->size = dim_x * dim_y * dim_z * *alloc->element.datum_size.get(); 1863 1864 if (log) 1865 log->Printf("%s - inferred size of struct allocation %" PRIu32 ".", 1866 __FUNCTION__, *alloc->size.get()); 1867 return true; 1868 } 1869 1870 const char *fmt_str = JITTemplate(eExprGetOffsetPtr); 1871 char expr_buf[jit_max_expr_size]; 1872 1873 // Calculate last element 1874 dim_x = dim_x == 0 ? 0 : dim_x - 1; 1875 dim_y = dim_y == 0 ? 0 : dim_y - 1; 1876 dim_z = dim_z == 0 ? 0 : dim_z - 1; 1877 1878 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 1879 *alloc->address.get(), dim_x, dim_y, dim_z); 1880 if (written < 0) { 1881 if (log) 1882 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1883 return false; 1884 } else if (written >= jit_max_expr_size) { 1885 if (log) 1886 log->Printf("%s - expression too long.", __FUNCTION__); 1887 return false; 1888 } 1889 1890 uint64_t result = 0; 1891 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 1892 return false; 1893 1894 addr_t mem_ptr = static_cast<lldb::addr_t>(result); 1895 // Find pointer to last element and add on size of an element 1896 alloc->size = static_cast<uint32_t>(mem_ptr - *alloc->data_ptr.get()) + 1897 *alloc->element.datum_size.get(); 1898 1899 return true; 1900 } 1901 1902 // JITs the RS runtime for information about the stride between rows in the 1903 // allocation. This is done to detect padding, since allocated memory is 16-byte 1904 // aligned. 1905 // Returns true on success, false otherwise 1906 bool RenderScriptRuntime::JITAllocationStride(AllocationDetails *alloc, 1907 StackFrame *frame_ptr) { 1908 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1909 1910 if (!alloc->address.isValid() || !alloc->data_ptr.isValid()) { 1911 if (log) 1912 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1913 return false; 1914 } 1915 1916 const char *fmt_str = JITTemplate(eExprGetOffsetPtr); 1917 char expr_buf[jit_max_expr_size]; 1918 1919 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 1920 *alloc->address.get(), 0, 1, 0); 1921 if (written < 0) { 1922 if (log) 1923 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1924 return false; 1925 } else if (written >= jit_max_expr_size) { 1926 if (log) 1927 log->Printf("%s - expression too long.", __FUNCTION__); 1928 return false; 1929 } 1930 1931 uint64_t result = 0; 1932 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 1933 return false; 1934 1935 addr_t mem_ptr = static_cast<lldb::addr_t>(result); 1936 alloc->stride = static_cast<uint32_t>(mem_ptr - *alloc->data_ptr.get()); 1937 1938 return true; 1939 } 1940 1941 // JIT all the current runtime info regarding an allocation 1942 bool RenderScriptRuntime::RefreshAllocation(AllocationDetails *alloc, 1943 StackFrame *frame_ptr) { 1944 // GetOffsetPointer() 1945 if (!JITDataPointer(alloc, frame_ptr)) 1946 return false; 1947 1948 // rsaAllocationGetType() 1949 if (!JITTypePointer(alloc, frame_ptr)) 1950 return false; 1951 1952 // rsaTypeGetNativeData() 1953 if (!JITTypePacked(alloc, frame_ptr)) 1954 return false; 1955 1956 // rsaElementGetNativeData() 1957 if (!JITElementPacked(alloc->element, *alloc->context.get(), frame_ptr)) 1958 return false; 1959 1960 // Sets the datum_size member in Element 1961 SetElementSize(alloc->element); 1962 1963 // Use GetOffsetPointer() to infer size of the allocation 1964 if (!JITAllocationSize(alloc, frame_ptr)) 1965 return false; 1966 1967 return true; 1968 } 1969 1970 // Function attempts to set the type_name member of the paramaterised Element 1971 // object. 1972 // This string should be the name of the struct type the Element represents. 1973 // We need this string for pretty printing the Element to users. 1974 void RenderScriptRuntime::FindStructTypeName(Element &elem, 1975 StackFrame *frame_ptr) { 1976 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1977 1978 if (!elem.type_name.IsEmpty()) // Name already set 1979 return; 1980 else 1981 elem.type_name = Element::GetFallbackStructName(); // Default type name if 1982 // we don't succeed 1983 1984 // Find all the global variables from the script rs modules 1985 VariableList var_list; 1986 for (auto module_sp : m_rsmodules) 1987 module_sp->m_module->FindGlobalVariables( 1988 RegularExpression(llvm::StringRef(".")), true, UINT32_MAX, var_list); 1989 1990 // Iterate over all the global variables looking for one with a matching type 1991 // to the Element. 1992 // We make the assumption a match exists since there needs to be a global 1993 // variable to reflect the struct type back into java host code. 1994 for (uint32_t i = 0; i < var_list.GetSize(); ++i) { 1995 const VariableSP var_sp(var_list.GetVariableAtIndex(i)); 1996 if (!var_sp) 1997 continue; 1998 1999 ValueObjectSP valobj_sp = ValueObjectVariable::Create(frame_ptr, var_sp); 2000 if (!valobj_sp) 2001 continue; 2002 2003 // Find the number of variable fields. 2004 // If it has no fields, or more fields than our Element, then it can't be 2005 // the struct we're looking for. 2006 // Don't check for equality since RS can add extra struct members for 2007 // padding. 2008 size_t num_children = valobj_sp->GetNumChildren(); 2009 if (num_children > elem.children.size() || num_children == 0) 2010 continue; 2011 2012 // Iterate over children looking for members with matching field names. 2013 // If all the field names match, this is likely the struct we want. 2014 // TODO: This could be made more robust by also checking children data 2015 // sizes, or array size 2016 bool found = true; 2017 for (size_t i = 0; i < num_children; ++i) { 2018 ValueObjectSP child = valobj_sp->GetChildAtIndex(i, true); 2019 if (!child || (child->GetName() != elem.children[i].type_name)) { 2020 found = false; 2021 break; 2022 } 2023 } 2024 2025 // RS can add extra struct members for padding in the format 2026 // '#rs_padding_[0-9]+' 2027 if (found && num_children < elem.children.size()) { 2028 const uint32_t size_diff = elem.children.size() - num_children; 2029 if (log) 2030 log->Printf("%s - %" PRIu32 " padding struct entries", __FUNCTION__, 2031 size_diff); 2032 2033 for (uint32_t i = 0; i < size_diff; ++i) { 2034 const ConstString &name = elem.children[num_children + i].type_name; 2035 if (strcmp(name.AsCString(), "#rs_padding") < 0) 2036 found = false; 2037 } 2038 } 2039 2040 // We've found a global variable with matching type 2041 if (found) { 2042 // Dereference since our Element type isn't a pointer. 2043 if (valobj_sp->IsPointerType()) { 2044 Error err; 2045 ValueObjectSP deref_valobj = valobj_sp->Dereference(err); 2046 if (!err.Fail()) 2047 valobj_sp = deref_valobj; 2048 } 2049 2050 // Save name of variable in Element. 2051 elem.type_name = valobj_sp->GetTypeName(); 2052 if (log) 2053 log->Printf("%s - element name set to %s", __FUNCTION__, 2054 elem.type_name.AsCString()); 2055 2056 return; 2057 } 2058 } 2059 } 2060 2061 // Function sets the datum_size member of Element. Representing the size of a 2062 // single instance including padding. 2063 // Assumes the relevant allocation information has already been jitted. 2064 void RenderScriptRuntime::SetElementSize(Element &elem) { 2065 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2066 const Element::DataType type = *elem.type.get(); 2067 assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && 2068 "Invalid allocation type"); 2069 2070 const uint32_t vec_size = *elem.type_vec_size.get(); 2071 uint32_t data_size = 0; 2072 uint32_t padding = 0; 2073 2074 // Element is of a struct type, calculate size recursively. 2075 if ((type == Element::RS_TYPE_NONE) && (elem.children.size() > 0)) { 2076 for (Element &child : elem.children) { 2077 SetElementSize(child); 2078 const uint32_t array_size = 2079 child.array_size.isValid() ? *child.array_size.get() : 1; 2080 data_size += *child.datum_size.get() * array_size; 2081 } 2082 } 2083 // These have been packed already 2084 else if (type == Element::RS_TYPE_UNSIGNED_5_6_5 || 2085 type == Element::RS_TYPE_UNSIGNED_5_5_5_1 || 2086 type == Element::RS_TYPE_UNSIGNED_4_4_4_4) { 2087 data_size = AllocationDetails::RSTypeToFormat[type][eElementSize]; 2088 } else if (type < Element::RS_TYPE_ELEMENT) { 2089 data_size = 2090 vec_size * AllocationDetails::RSTypeToFormat[type][eElementSize]; 2091 if (vec_size == 3) 2092 padding = AllocationDetails::RSTypeToFormat[type][eElementSize]; 2093 } else 2094 data_size = 2095 GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 2096 2097 elem.padding = padding; 2098 elem.datum_size = data_size + padding; 2099 if (log) 2100 log->Printf("%s - element size set to %" PRIu32, __FUNCTION__, 2101 data_size + padding); 2102 } 2103 2104 // Given an allocation, this function copies the allocation contents from device 2105 // into a buffer on the heap. 2106 // Returning a shared pointer to the buffer containing the data. 2107 std::shared_ptr<uint8_t> 2108 RenderScriptRuntime::GetAllocationData(AllocationDetails *alloc, 2109 StackFrame *frame_ptr) { 2110 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2111 2112 // JIT all the allocation details 2113 if (alloc->ShouldRefresh()) { 2114 if (log) 2115 log->Printf("%s - allocation details not calculated yet, jitting info", 2116 __FUNCTION__); 2117 2118 if (!RefreshAllocation(alloc, frame_ptr)) { 2119 if (log) 2120 log->Printf("%s - couldn't JIT allocation details", __FUNCTION__); 2121 return nullptr; 2122 } 2123 } 2124 2125 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && 2126 alloc->element.type_vec_size.isValid() && alloc->size.isValid() && 2127 "Allocation information not available"); 2128 2129 // Allocate a buffer to copy data into 2130 const uint32_t size = *alloc->size.get(); 2131 std::shared_ptr<uint8_t> buffer(new uint8_t[size]); 2132 if (!buffer) { 2133 if (log) 2134 log->Printf("%s - couldn't allocate a %" PRIu32 " byte buffer", 2135 __FUNCTION__, size); 2136 return nullptr; 2137 } 2138 2139 // Read the inferior memory 2140 Error err; 2141 lldb::addr_t data_ptr = *alloc->data_ptr.get(); 2142 GetProcess()->ReadMemory(data_ptr, buffer.get(), size, err); 2143 if (err.Fail()) { 2144 if (log) 2145 log->Printf("%s - '%s' Couldn't read %" PRIu32 2146 " bytes of allocation data from 0x%" PRIx64, 2147 __FUNCTION__, err.AsCString(), size, data_ptr); 2148 return nullptr; 2149 } 2150 2151 return buffer; 2152 } 2153 2154 // Function copies data from a binary file into an allocation. 2155 // There is a header at the start of the file, FileHeader, before the data 2156 // content itself. 2157 // Information from this header is used to display warnings to the user about 2158 // incompatibilities 2159 bool RenderScriptRuntime::LoadAllocation(Stream &strm, const uint32_t alloc_id, 2160 const char *path, 2161 StackFrame *frame_ptr) { 2162 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2163 2164 // Find allocation with the given id 2165 AllocationDetails *alloc = FindAllocByID(strm, alloc_id); 2166 if (!alloc) 2167 return false; 2168 2169 if (log) 2170 log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__, 2171 *alloc->address.get()); 2172 2173 // JIT all the allocation details 2174 if (alloc->ShouldRefresh()) { 2175 if (log) 2176 log->Printf("%s - allocation details not calculated yet, jitting info.", 2177 __FUNCTION__); 2178 2179 if (!RefreshAllocation(alloc, frame_ptr)) { 2180 if (log) 2181 log->Printf("%s - couldn't JIT allocation details", __FUNCTION__); 2182 return false; 2183 } 2184 } 2185 2186 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && 2187 alloc->element.type_vec_size.isValid() && alloc->size.isValid() && 2188 alloc->element.datum_size.isValid() && 2189 "Allocation information not available"); 2190 2191 // Check we can read from file 2192 FileSpec file(path, true); 2193 if (!file.Exists()) { 2194 strm.Printf("Error: File %s does not exist", path); 2195 strm.EOL(); 2196 return false; 2197 } 2198 2199 if (!file.Readable()) { 2200 strm.Printf("Error: File %s does not have readable permissions", path); 2201 strm.EOL(); 2202 return false; 2203 } 2204 2205 // Read file into data buffer 2206 DataBufferSP data_sp(file.ReadFileContents()); 2207 2208 // Cast start of buffer to FileHeader and use pointer to read metadata 2209 void *file_buf = data_sp->GetBytes(); 2210 if (file_buf == nullptr || 2211 data_sp->GetByteSize() < (sizeof(AllocationDetails::FileHeader) + 2212 sizeof(AllocationDetails::ElementHeader))) { 2213 strm.Printf("Error: File %s does not contain enough data for header", path); 2214 strm.EOL(); 2215 return false; 2216 } 2217 const AllocationDetails::FileHeader *file_header = 2218 static_cast<AllocationDetails::FileHeader *>(file_buf); 2219 2220 // Check file starts with ascii characters "RSAD" 2221 if (memcmp(file_header->ident, "RSAD", 4)) { 2222 strm.Printf("Error: File doesn't contain identifier for an RS allocation " 2223 "dump. Are you sure this is the correct file?"); 2224 strm.EOL(); 2225 return false; 2226 } 2227 2228 // Look at the type of the root element in the header 2229 AllocationDetails::ElementHeader root_el_hdr; 2230 memcpy(&root_el_hdr, static_cast<uint8_t *>(file_buf) + 2231 sizeof(AllocationDetails::FileHeader), 2232 sizeof(AllocationDetails::ElementHeader)); 2233 2234 if (log) 2235 log->Printf("%s - header type %" PRIu32 ", element size %" PRIu32, 2236 __FUNCTION__, root_el_hdr.type, root_el_hdr.element_size); 2237 2238 // Check if the target allocation and file both have the same number of bytes 2239 // for an Element 2240 if (*alloc->element.datum_size.get() != root_el_hdr.element_size) { 2241 strm.Printf("Warning: Mismatched Element sizes - file %" PRIu32 2242 " bytes, allocation %" PRIu32 " bytes", 2243 root_el_hdr.element_size, *alloc->element.datum_size.get()); 2244 strm.EOL(); 2245 } 2246 2247 // Check if the target allocation and file both have the same type 2248 const uint32_t alloc_type = static_cast<uint32_t>(*alloc->element.type.get()); 2249 const uint32_t file_type = root_el_hdr.type; 2250 2251 if (file_type > Element::RS_TYPE_FONT) { 2252 strm.Printf("Warning: File has unknown allocation type"); 2253 strm.EOL(); 2254 } else if (alloc_type != file_type) { 2255 // Enum value isn't monotonous, so doesn't always index RsDataTypeToString 2256 // array 2257 uint32_t target_type_name_idx = alloc_type; 2258 uint32_t head_type_name_idx = file_type; 2259 if (alloc_type >= Element::RS_TYPE_ELEMENT && 2260 alloc_type <= Element::RS_TYPE_FONT) 2261 target_type_name_idx = static_cast<Element::DataType>( 2262 (alloc_type - Element::RS_TYPE_ELEMENT) + 2263 Element::RS_TYPE_MATRIX_2X2 + 1); 2264 2265 if (file_type >= Element::RS_TYPE_ELEMENT && 2266 file_type <= Element::RS_TYPE_FONT) 2267 head_type_name_idx = static_cast<Element::DataType>( 2268 (file_type - Element::RS_TYPE_ELEMENT) + Element::RS_TYPE_MATRIX_2X2 + 2269 1); 2270 2271 const char *head_type_name = 2272 AllocationDetails::RsDataTypeToString[head_type_name_idx][0]; 2273 const char *target_type_name = 2274 AllocationDetails::RsDataTypeToString[target_type_name_idx][0]; 2275 2276 strm.Printf( 2277 "Warning: Mismatched Types - file '%s' type, allocation '%s' type", 2278 head_type_name, target_type_name); 2279 strm.EOL(); 2280 } 2281 2282 // Advance buffer past header 2283 file_buf = static_cast<uint8_t *>(file_buf) + file_header->hdr_size; 2284 2285 // Calculate size of allocation data in file 2286 size_t size = data_sp->GetByteSize() - file_header->hdr_size; 2287 2288 // Check if the target allocation and file both have the same total data size. 2289 const uint32_t alloc_size = *alloc->size.get(); 2290 if (alloc_size != size) { 2291 strm.Printf("Warning: Mismatched allocation sizes - file 0x%" PRIx64 2292 " bytes, allocation 0x%" PRIx32 " bytes", 2293 (uint64_t)size, alloc_size); 2294 strm.EOL(); 2295 // Set length to copy to minimum 2296 size = alloc_size < size ? alloc_size : size; 2297 } 2298 2299 // Copy file data from our buffer into the target allocation. 2300 lldb::addr_t alloc_data = *alloc->data_ptr.get(); 2301 Error err; 2302 size_t written = GetProcess()->WriteMemory(alloc_data, file_buf, size, err); 2303 if (!err.Success() || written != size) { 2304 strm.Printf("Error: Couldn't write data to allocation %s", err.AsCString()); 2305 strm.EOL(); 2306 return false; 2307 } 2308 2309 strm.Printf("Contents of file '%s' read into allocation %" PRIu32, path, 2310 alloc->id); 2311 strm.EOL(); 2312 2313 return true; 2314 } 2315 2316 // Function takes as parameters a byte buffer, which will eventually be written 2317 // to file as the element header, an offset into that buffer, and an Element 2318 // that will be saved into the buffer at the parametrised offset. 2319 // Return value is the new offset after writing the element into the buffer. 2320 // Elements are saved to the file as the ElementHeader struct followed by 2321 // offsets to the structs of all the element's children. 2322 size_t RenderScriptRuntime::PopulateElementHeaders( 2323 const std::shared_ptr<uint8_t> header_buffer, size_t offset, 2324 const Element &elem) { 2325 // File struct for an element header with all the relevant details copied from 2326 // elem. We assume members are valid already. 2327 AllocationDetails::ElementHeader elem_header; 2328 elem_header.type = *elem.type.get(); 2329 elem_header.kind = *elem.type_kind.get(); 2330 elem_header.element_size = *elem.datum_size.get(); 2331 elem_header.vector_size = *elem.type_vec_size.get(); 2332 elem_header.array_size = 2333 elem.array_size.isValid() ? *elem.array_size.get() : 0; 2334 const size_t elem_header_size = sizeof(AllocationDetails::ElementHeader); 2335 2336 // Copy struct into buffer and advance offset 2337 // We assume that header_buffer has been checked for nullptr before this 2338 // method is called 2339 memcpy(header_buffer.get() + offset, &elem_header, elem_header_size); 2340 offset += elem_header_size; 2341 2342 // Starting offset of child ElementHeader struct 2343 size_t child_offset = 2344 offset + ((elem.children.size() + 1) * sizeof(uint32_t)); 2345 for (const RenderScriptRuntime::Element &child : elem.children) { 2346 // Recursively populate the buffer with the element header structs of 2347 // children. Then save the offsets where they were set after the parent 2348 // element header. 2349 memcpy(header_buffer.get() + offset, &child_offset, sizeof(uint32_t)); 2350 offset += sizeof(uint32_t); 2351 2352 child_offset = PopulateElementHeaders(header_buffer, child_offset, child); 2353 } 2354 2355 // Zero indicates no more children 2356 memset(header_buffer.get() + offset, 0, sizeof(uint32_t)); 2357 2358 return child_offset; 2359 } 2360 2361 // Given an Element object this function returns the total size needed in the 2362 // file header to store the element's details. Taking into account the size of 2363 // the element header struct, plus the offsets to all the element's children. 2364 // Function is recursive so that the size of all ancestors is taken into 2365 // account. 2366 size_t RenderScriptRuntime::CalculateElementHeaderSize(const Element &elem) { 2367 // Offsets to children plus zero terminator 2368 size_t size = (elem.children.size() + 1) * sizeof(uint32_t); 2369 // Size of header struct with type details 2370 size += sizeof(AllocationDetails::ElementHeader); 2371 2372 // Calculate recursively for all descendants 2373 for (const Element &child : elem.children) 2374 size += CalculateElementHeaderSize(child); 2375 2376 return size; 2377 } 2378 2379 // Function copies allocation contents into a binary file. This file can then be 2380 // loaded later into a different allocation. There is a header, FileHeader, 2381 // before the allocation data containing meta-data. 2382 bool RenderScriptRuntime::SaveAllocation(Stream &strm, const uint32_t alloc_id, 2383 const char *path, 2384 StackFrame *frame_ptr) { 2385 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2386 2387 // Find allocation with the given id 2388 AllocationDetails *alloc = FindAllocByID(strm, alloc_id); 2389 if (!alloc) 2390 return false; 2391 2392 if (log) 2393 log->Printf("%s - found allocation 0x%" PRIx64 ".", __FUNCTION__, 2394 *alloc->address.get()); 2395 2396 // JIT all the allocation details 2397 if (alloc->ShouldRefresh()) { 2398 if (log) 2399 log->Printf("%s - allocation details not calculated yet, jitting info.", 2400 __FUNCTION__); 2401 2402 if (!RefreshAllocation(alloc, frame_ptr)) { 2403 if (log) 2404 log->Printf("%s - couldn't JIT allocation details.", __FUNCTION__); 2405 return false; 2406 } 2407 } 2408 2409 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && 2410 alloc->element.type_vec_size.isValid() && 2411 alloc->element.datum_size.get() && 2412 alloc->element.type_kind.isValid() && alloc->dimension.isValid() && 2413 "Allocation information not available"); 2414 2415 // Check we can create writable file 2416 FileSpec file_spec(path, true); 2417 File file(file_spec, File::eOpenOptionWrite | File::eOpenOptionCanCreate | 2418 File::eOpenOptionTruncate); 2419 if (!file) { 2420 strm.Printf("Error: Failed to open '%s' for writing", path); 2421 strm.EOL(); 2422 return false; 2423 } 2424 2425 // Read allocation into buffer of heap memory 2426 const std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr); 2427 if (!buffer) { 2428 strm.Printf("Error: Couldn't read allocation data into buffer"); 2429 strm.EOL(); 2430 return false; 2431 } 2432 2433 // Create the file header 2434 AllocationDetails::FileHeader head; 2435 memcpy(head.ident, "RSAD", 4); 2436 head.dims[0] = static_cast<uint32_t>(alloc->dimension.get()->dim_1); 2437 head.dims[1] = static_cast<uint32_t>(alloc->dimension.get()->dim_2); 2438 head.dims[2] = static_cast<uint32_t>(alloc->dimension.get()->dim_3); 2439 2440 const size_t element_header_size = CalculateElementHeaderSize(alloc->element); 2441 assert((sizeof(AllocationDetails::FileHeader) + element_header_size) < 2442 UINT16_MAX && 2443 "Element header too large"); 2444 head.hdr_size = static_cast<uint16_t>(sizeof(AllocationDetails::FileHeader) + 2445 element_header_size); 2446 2447 // Write the file header 2448 size_t num_bytes = sizeof(AllocationDetails::FileHeader); 2449 if (log) 2450 log->Printf("%s - writing File Header, 0x%" PRIx64 " bytes", __FUNCTION__, 2451 (uint64_t)num_bytes); 2452 2453 Error err = file.Write(&head, num_bytes); 2454 if (!err.Success()) { 2455 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path); 2456 strm.EOL(); 2457 return false; 2458 } 2459 2460 // Create the headers describing the element type of the allocation. 2461 std::shared_ptr<uint8_t> element_header_buffer( 2462 new uint8_t[element_header_size]); 2463 if (element_header_buffer == nullptr) { 2464 strm.Printf("Internal Error: Couldn't allocate %" PRIu64 2465 " bytes on the heap", 2466 (uint64_t)element_header_size); 2467 strm.EOL(); 2468 return false; 2469 } 2470 2471 PopulateElementHeaders(element_header_buffer, 0, alloc->element); 2472 2473 // Write headers for allocation element type to file 2474 num_bytes = element_header_size; 2475 if (log) 2476 log->Printf("%s - writing element headers, 0x%" PRIx64 " bytes.", 2477 __FUNCTION__, (uint64_t)num_bytes); 2478 2479 err = file.Write(element_header_buffer.get(), num_bytes); 2480 if (!err.Success()) { 2481 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path); 2482 strm.EOL(); 2483 return false; 2484 } 2485 2486 // Write allocation data to file 2487 num_bytes = static_cast<size_t>(*alloc->size.get()); 2488 if (log) 2489 log->Printf("%s - writing 0x%" PRIx64 " bytes", __FUNCTION__, 2490 (uint64_t)num_bytes); 2491 2492 err = file.Write(buffer.get(), num_bytes); 2493 if (!err.Success()) { 2494 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path); 2495 strm.EOL(); 2496 return false; 2497 } 2498 2499 strm.Printf("Allocation written to file '%s'", path); 2500 strm.EOL(); 2501 return true; 2502 } 2503 2504 bool RenderScriptRuntime::LoadModule(const lldb::ModuleSP &module_sp) { 2505 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2506 2507 if (module_sp) { 2508 for (const auto &rs_module : m_rsmodules) { 2509 if (rs_module->m_module == module_sp) { 2510 // Check if the user has enabled automatically breaking on 2511 // all RS kernels. 2512 if (m_breakAllKernels) 2513 BreakOnModuleKernels(rs_module); 2514 2515 return false; 2516 } 2517 } 2518 bool module_loaded = false; 2519 switch (GetModuleKind(module_sp)) { 2520 case eModuleKindKernelObj: { 2521 RSModuleDescriptorSP module_desc; 2522 module_desc.reset(new RSModuleDescriptor(module_sp)); 2523 if (module_desc->ParseRSInfo()) { 2524 m_rsmodules.push_back(module_desc); 2525 module_loaded = true; 2526 } 2527 if (module_loaded) { 2528 FixupScriptDetails(module_desc); 2529 } 2530 break; 2531 } 2532 case eModuleKindDriver: { 2533 if (!m_libRSDriver) { 2534 m_libRSDriver = module_sp; 2535 LoadRuntimeHooks(m_libRSDriver, RenderScriptRuntime::eModuleKindDriver); 2536 } 2537 break; 2538 } 2539 case eModuleKindImpl: { 2540 m_libRSCpuRef = module_sp; 2541 break; 2542 } 2543 case eModuleKindLibRS: { 2544 if (!m_libRS) { 2545 m_libRS = module_sp; 2546 static ConstString gDbgPresentStr("gDebuggerPresent"); 2547 const Symbol *debug_present = m_libRS->FindFirstSymbolWithNameAndType( 2548 gDbgPresentStr, eSymbolTypeData); 2549 if (debug_present) { 2550 Error err; 2551 uint32_t flag = 0x00000001U; 2552 Target &target = GetProcess()->GetTarget(); 2553 addr_t addr = debug_present->GetLoadAddress(&target); 2554 GetProcess()->WriteMemory(addr, &flag, sizeof(flag), err); 2555 if (err.Success()) { 2556 if (log) 2557 log->Printf("%s - debugger present flag set on debugee.", 2558 __FUNCTION__); 2559 2560 m_debuggerPresentFlagged = true; 2561 } else if (log) { 2562 log->Printf("%s - error writing debugger present flags '%s' ", 2563 __FUNCTION__, err.AsCString()); 2564 } 2565 } else if (log) { 2566 log->Printf( 2567 "%s - error writing debugger present flags - symbol not found", 2568 __FUNCTION__); 2569 } 2570 } 2571 break; 2572 } 2573 default: 2574 break; 2575 } 2576 if (module_loaded) 2577 Update(); 2578 return module_loaded; 2579 } 2580 return false; 2581 } 2582 2583 void RenderScriptRuntime::Update() { 2584 if (m_rsmodules.size() > 0) { 2585 if (!m_initiated) { 2586 Initiate(); 2587 } 2588 } 2589 } 2590 2591 bool RSModuleDescriptor::ParsePragmaCount(llvm::StringRef *lines, 2592 size_t n_lines) { 2593 // Skip the pragma prototype line 2594 ++lines; 2595 for (; n_lines--; ++lines) { 2596 const auto kv_pair = lines->split(" - "); 2597 m_pragmas[kv_pair.first.trim().str()] = kv_pair.second.trim().str(); 2598 } 2599 return true; 2600 } 2601 2602 bool RSModuleDescriptor::ParseExportReduceCount(llvm::StringRef *lines, 2603 size_t n_lines) { 2604 // The list of reduction kernels in the `.rs.info` symbol is of the form 2605 // "signature - accumulatordatasize - reduction_name - initializer_name - 2606 // accumulator_name - combiner_name - 2607 // outconverter_name - halter_name" 2608 // Where a function is not explicitly named by the user, or is not generated 2609 // by the compiler, it is named "." so the 2610 // dash separated list should always be 8 items long 2611 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 2612 // Skip the exportReduceCount line 2613 ++lines; 2614 for (; n_lines--; ++lines) { 2615 llvm::SmallVector<llvm::StringRef, 8> spec; 2616 lines->split(spec, " - "); 2617 if (spec.size() != 8) { 2618 if (spec.size() < 8) { 2619 if (log) 2620 log->Error("Error parsing RenderScript reduction spec. wrong number " 2621 "of fields"); 2622 return false; 2623 } else if (log) 2624 log->Warning("Extraneous members in reduction spec: '%s'", 2625 lines->str().c_str()); 2626 } 2627 2628 const auto sig_s = spec[0]; 2629 uint32_t sig; 2630 if (sig_s.getAsInteger(10, sig)) { 2631 if (log) 2632 log->Error("Error parsing Renderscript reduction spec: invalid kernel " 2633 "signature: '%s'", 2634 sig_s.str().c_str()); 2635 return false; 2636 } 2637 2638 const auto accum_data_size_s = spec[1]; 2639 uint32_t accum_data_size; 2640 if (accum_data_size_s.getAsInteger(10, accum_data_size)) { 2641 if (log) 2642 log->Error("Error parsing Renderscript reduction spec: invalid " 2643 "accumulator data size %s", 2644 accum_data_size_s.str().c_str()); 2645 return false; 2646 } 2647 2648 if (log) 2649 log->Printf("Found RenderScript reduction '%s'", spec[2].str().c_str()); 2650 2651 m_reductions.push_back(RSReductionDescriptor(this, sig, accum_data_size, 2652 spec[2], spec[3], spec[4], 2653 spec[5], spec[6], spec[7])); 2654 } 2655 return true; 2656 } 2657 2658 bool RSModuleDescriptor::ParseExportForeachCount(llvm::StringRef *lines, 2659 size_t n_lines) { 2660 // Skip the exportForeachCount line 2661 ++lines; 2662 for (; n_lines--; ++lines) { 2663 uint32_t slot; 2664 // `forEach` kernels are listed in the `.rs.info` packet as a "slot - name" 2665 // pair per line 2666 const auto kv_pair = lines->split(" - "); 2667 if (kv_pair.first.getAsInteger(10, slot)) 2668 return false; 2669 m_kernels.push_back(RSKernelDescriptor(this, kv_pair.second, slot)); 2670 } 2671 return true; 2672 } 2673 2674 bool RSModuleDescriptor::ParseExportVarCount(llvm::StringRef *lines, 2675 size_t n_lines) { 2676 // Skip the ExportVarCount line 2677 ++lines; 2678 for (; n_lines--; ++lines) 2679 m_globals.push_back(RSGlobalDescriptor(this, *lines)); 2680 return true; 2681 } 2682 2683 // The .rs.info symbol in renderscript modules contains a string which needs to 2684 // be parsed. 2685 // The string is basic and is parsed on a line by line basis. 2686 bool RSModuleDescriptor::ParseRSInfo() { 2687 assert(m_module); 2688 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2689 const Symbol *info_sym = m_module->FindFirstSymbolWithNameAndType( 2690 ConstString(".rs.info"), eSymbolTypeData); 2691 if (!info_sym) 2692 return false; 2693 2694 const addr_t addr = info_sym->GetAddressRef().GetFileAddress(); 2695 if (addr == LLDB_INVALID_ADDRESS) 2696 return false; 2697 2698 const addr_t size = info_sym->GetByteSize(); 2699 const FileSpec fs = m_module->GetFileSpec(); 2700 2701 const DataBufferSP buffer = fs.ReadFileContents(addr, size); 2702 if (!buffer) 2703 return false; 2704 2705 // split rs.info. contents into lines 2706 llvm::SmallVector<llvm::StringRef, 128> info_lines; 2707 { 2708 const llvm::StringRef raw_rs_info((const char *)buffer->GetBytes()); 2709 raw_rs_info.split(info_lines, '\n'); 2710 if (log) 2711 log->Printf("'.rs.info symbol for '%s':\n%s", 2712 m_module->GetFileSpec().GetCString(), 2713 raw_rs_info.str().c_str()); 2714 } 2715 2716 enum { 2717 eExportVar, 2718 eExportForEach, 2719 eExportReduce, 2720 ePragma, 2721 eBuildChecksum, 2722 eObjectSlot 2723 }; 2724 2725 static const llvm::StringMap<int> rs_info_handlers{ 2726 {// The number of visible global variables in the script 2727 {"exportVarCount", eExportVar}, 2728 // The number of RenderScrip `forEach` kernels __attribute__((kernel)) 2729 {"exportForEachCount", eExportForEach}, 2730 // The number of generalreductions: This marked in the script by `#pragma 2731 // reduce()` 2732 {"exportReduceCount", eExportReduce}, 2733 // Total count of all RenderScript specific `#pragmas` used in the script 2734 {"pragmaCount", ePragma}, 2735 {"objectSlotCount", eObjectSlot}}}; 2736 2737 // parse all text lines of .rs.info 2738 for (auto line = info_lines.begin(); line != info_lines.end(); ++line) { 2739 const auto kv_pair = line->split(": "); 2740 const auto key = kv_pair.first; 2741 const auto val = kv_pair.second.trim(); 2742 2743 const auto handler = rs_info_handlers.find(key); 2744 if (handler == rs_info_handlers.end()) 2745 continue; 2746 // getAsInteger returns `true` on an error condition - we're only interested 2747 // in 2748 // numeric fields at the moment 2749 uint64_t n_lines; 2750 if (val.getAsInteger(10, n_lines)) { 2751 if (log) 2752 log->Debug("Failed to parse non-numeric '.rs.info' section %s", 2753 line->str().c_str()); 2754 continue; 2755 } 2756 if (info_lines.end() - (line + 1) < (ptrdiff_t)n_lines) 2757 return false; 2758 2759 bool success = false; 2760 switch (handler->getValue()) { 2761 case eExportVar: 2762 success = ParseExportVarCount(line, n_lines); 2763 break; 2764 case eExportForEach: 2765 success = ParseExportForeachCount(line, n_lines); 2766 break; 2767 case eExportReduce: 2768 success = ParseExportReduceCount(line, n_lines); 2769 break; 2770 case ePragma: 2771 success = ParsePragmaCount(line, n_lines); 2772 break; 2773 default: { 2774 if (log) 2775 log->Printf("%s - skipping .rs.info field '%s'", __FUNCTION__, 2776 line->str().c_str()); 2777 continue; 2778 } 2779 } 2780 if (!success) 2781 return false; 2782 line += n_lines; 2783 } 2784 return info_lines.size() > 0; 2785 } 2786 2787 void RenderScriptRuntime::Status(Stream &strm) const { 2788 if (m_libRS) { 2789 strm.Printf("Runtime Library discovered."); 2790 strm.EOL(); 2791 } 2792 if (m_libRSDriver) { 2793 strm.Printf("Runtime Driver discovered."); 2794 strm.EOL(); 2795 } 2796 if (m_libRSCpuRef) { 2797 strm.Printf("CPU Reference Implementation discovered."); 2798 strm.EOL(); 2799 } 2800 2801 if (m_runtimeHooks.size()) { 2802 strm.Printf("Runtime functions hooked:"); 2803 strm.EOL(); 2804 for (auto b : m_runtimeHooks) { 2805 strm.Indent(b.second->defn->name); 2806 strm.EOL(); 2807 } 2808 } else { 2809 strm.Printf("Runtime is not hooked."); 2810 strm.EOL(); 2811 } 2812 } 2813 2814 void RenderScriptRuntime::DumpContexts(Stream &strm) const { 2815 strm.Printf("Inferred RenderScript Contexts:"); 2816 strm.EOL(); 2817 strm.IndentMore(); 2818 2819 std::map<addr_t, uint64_t> contextReferences; 2820 2821 // Iterate over all of the currently discovered scripts. 2822 // Note: We cant push or pop from m_scripts inside this loop or it may 2823 // invalidate script. 2824 for (const auto &script : m_scripts) { 2825 if (!script->context.isValid()) 2826 continue; 2827 lldb::addr_t context = *script->context; 2828 2829 if (contextReferences.find(context) != contextReferences.end()) { 2830 contextReferences[context]++; 2831 } else { 2832 contextReferences[context] = 1; 2833 } 2834 } 2835 2836 for (const auto &cRef : contextReferences) { 2837 strm.Printf("Context 0x%" PRIx64 ": %" PRIu64 " script instances", 2838 cRef.first, cRef.second); 2839 strm.EOL(); 2840 } 2841 strm.IndentLess(); 2842 } 2843 2844 void RenderScriptRuntime::DumpKernels(Stream &strm) const { 2845 strm.Printf("RenderScript Kernels:"); 2846 strm.EOL(); 2847 strm.IndentMore(); 2848 for (const auto &module : m_rsmodules) { 2849 strm.Printf("Resource '%s':", module->m_resname.c_str()); 2850 strm.EOL(); 2851 for (const auto &kernel : module->m_kernels) { 2852 strm.Indent(kernel.m_name.AsCString()); 2853 strm.EOL(); 2854 } 2855 } 2856 strm.IndentLess(); 2857 } 2858 2859 RenderScriptRuntime::AllocationDetails * 2860 RenderScriptRuntime::FindAllocByID(Stream &strm, const uint32_t alloc_id) { 2861 AllocationDetails *alloc = nullptr; 2862 2863 // See if we can find allocation using id as an index; 2864 if (alloc_id <= m_allocations.size() && alloc_id != 0 && 2865 m_allocations[alloc_id - 1]->id == alloc_id) { 2866 alloc = m_allocations[alloc_id - 1].get(); 2867 return alloc; 2868 } 2869 2870 // Fallback to searching 2871 for (const auto &a : m_allocations) { 2872 if (a->id == alloc_id) { 2873 alloc = a.get(); 2874 break; 2875 } 2876 } 2877 2878 if (alloc == nullptr) { 2879 strm.Printf("Error: Couldn't find allocation with id matching %" PRIu32, 2880 alloc_id); 2881 strm.EOL(); 2882 } 2883 2884 return alloc; 2885 } 2886 2887 // Prints the contents of an allocation to the output stream, which may be a 2888 // file 2889 bool RenderScriptRuntime::DumpAllocation(Stream &strm, StackFrame *frame_ptr, 2890 const uint32_t id) { 2891 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2892 2893 // Check we can find the desired allocation 2894 AllocationDetails *alloc = FindAllocByID(strm, id); 2895 if (!alloc) 2896 return false; // FindAllocByID() will print error message for us here 2897 2898 if (log) 2899 log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__, 2900 *alloc->address.get()); 2901 2902 // Check we have information about the allocation, if not calculate it 2903 if (alloc->ShouldRefresh()) { 2904 if (log) 2905 log->Printf("%s - allocation details not calculated yet, jitting info.", 2906 __FUNCTION__); 2907 2908 // JIT all the allocation information 2909 if (!RefreshAllocation(alloc, frame_ptr)) { 2910 strm.Printf("Error: Couldn't JIT allocation details"); 2911 strm.EOL(); 2912 return false; 2913 } 2914 } 2915 2916 // Establish format and size of each data element 2917 const uint32_t vec_size = *alloc->element.type_vec_size.get(); 2918 const Element::DataType type = *alloc->element.type.get(); 2919 2920 assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && 2921 "Invalid allocation type"); 2922 2923 lldb::Format format; 2924 if (type >= Element::RS_TYPE_ELEMENT) 2925 format = eFormatHex; 2926 else 2927 format = vec_size == 1 2928 ? static_cast<lldb::Format>( 2929 AllocationDetails::RSTypeToFormat[type][eFormatSingle]) 2930 : static_cast<lldb::Format>( 2931 AllocationDetails::RSTypeToFormat[type][eFormatVector]); 2932 2933 const uint32_t data_size = *alloc->element.datum_size.get(); 2934 2935 if (log) 2936 log->Printf("%s - element size %" PRIu32 " bytes, including padding", 2937 __FUNCTION__, data_size); 2938 2939 // Allocate a buffer to copy data into 2940 std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr); 2941 if (!buffer) { 2942 strm.Printf("Error: Couldn't read allocation data"); 2943 strm.EOL(); 2944 return false; 2945 } 2946 2947 // Calculate stride between rows as there may be padding at end of rows since 2948 // allocated memory is 16-byte aligned 2949 if (!alloc->stride.isValid()) { 2950 if (alloc->dimension.get()->dim_2 == 0) // We only have one dimension 2951 alloc->stride = 0; 2952 else if (!JITAllocationStride(alloc, frame_ptr)) { 2953 strm.Printf("Error: Couldn't calculate allocation row stride"); 2954 strm.EOL(); 2955 return false; 2956 } 2957 } 2958 const uint32_t stride = *alloc->stride.get(); 2959 const uint32_t size = *alloc->size.get(); // Size of whole allocation 2960 const uint32_t padding = 2961 alloc->element.padding.isValid() ? *alloc->element.padding.get() : 0; 2962 if (log) 2963 log->Printf("%s - stride %" PRIu32 " bytes, size %" PRIu32 2964 " bytes, padding %" PRIu32, 2965 __FUNCTION__, stride, size, padding); 2966 2967 // Find dimensions used to index loops, so need to be non-zero 2968 uint32_t dim_x = alloc->dimension.get()->dim_1; 2969 dim_x = dim_x == 0 ? 1 : dim_x; 2970 2971 uint32_t dim_y = alloc->dimension.get()->dim_2; 2972 dim_y = dim_y == 0 ? 1 : dim_y; 2973 2974 uint32_t dim_z = alloc->dimension.get()->dim_3; 2975 dim_z = dim_z == 0 ? 1 : dim_z; 2976 2977 // Use data extractor to format output 2978 const uint32_t target_ptr_size = 2979 GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 2980 DataExtractor alloc_data(buffer.get(), size, GetProcess()->GetByteOrder(), 2981 target_ptr_size); 2982 2983 uint32_t offset = 0; // Offset in buffer to next element to be printed 2984 uint32_t prev_row = 0; // Offset to the start of the previous row 2985 2986 // Iterate over allocation dimensions, printing results to user 2987 strm.Printf("Data (X, Y, Z):"); 2988 for (uint32_t z = 0; z < dim_z; ++z) { 2989 for (uint32_t y = 0; y < dim_y; ++y) { 2990 // Use stride to index start of next row. 2991 if (!(y == 0 && z == 0)) 2992 offset = prev_row + stride; 2993 prev_row = offset; 2994 2995 // Print each element in the row individually 2996 for (uint32_t x = 0; x < dim_x; ++x) { 2997 strm.Printf("\n(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ") = ", x, y, z); 2998 if ((type == Element::RS_TYPE_NONE) && 2999 (alloc->element.children.size() > 0) && 3000 (alloc->element.type_name != Element::GetFallbackStructName())) { 3001 // Here we are dumping an Element of struct type. 3002 // This is done using expression evaluation with the name of the 3003 // struct type and pointer to element. 3004 // Don't print the name of the resulting expression, since this will 3005 // be '$[0-9]+' 3006 DumpValueObjectOptions expr_options; 3007 expr_options.SetHideName(true); 3008 3009 // Setup expression as derefrencing a pointer cast to element address. 3010 char expr_char_buffer[jit_max_expr_size]; 3011 int written = 3012 snprintf(expr_char_buffer, jit_max_expr_size, "*(%s*) 0x%" PRIx64, 3013 alloc->element.type_name.AsCString(), 3014 *alloc->data_ptr.get() + offset); 3015 3016 if (written < 0 || written >= jit_max_expr_size) { 3017 if (log) 3018 log->Printf("%s - error in snprintf().", __FUNCTION__); 3019 continue; 3020 } 3021 3022 // Evaluate expression 3023 ValueObjectSP expr_result; 3024 GetProcess()->GetTarget().EvaluateExpression(expr_char_buffer, 3025 frame_ptr, expr_result); 3026 3027 // Print the results to our stream. 3028 expr_result->Dump(strm, expr_options); 3029 } else { 3030 alloc_data.Dump(&strm, offset, format, data_size - padding, 1, 1, 3031 LLDB_INVALID_ADDRESS, 0, 0); 3032 } 3033 offset += data_size; 3034 } 3035 } 3036 } 3037 strm.EOL(); 3038 3039 return true; 3040 } 3041 3042 // Function recalculates all our cached information about allocations by jitting 3043 // the RS runtime regarding each allocation we know about. Returns true if all 3044 // allocations could be recomputed, false otherwise. 3045 bool RenderScriptRuntime::RecomputeAllAllocations(Stream &strm, 3046 StackFrame *frame_ptr) { 3047 bool success = true; 3048 for (auto &alloc : m_allocations) { 3049 // JIT current allocation information 3050 if (!RefreshAllocation(alloc.get(), frame_ptr)) { 3051 strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32 3052 "\n", 3053 alloc->id); 3054 success = false; 3055 } 3056 } 3057 3058 if (success) 3059 strm.Printf("All allocations successfully recomputed"); 3060 strm.EOL(); 3061 3062 return success; 3063 } 3064 3065 // Prints information regarding currently loaded allocations. These details are 3066 // gathered by jitting the runtime, which has as latency. Index parameter 3067 // specifies a single allocation ID to print, or a zero value to print them all 3068 void RenderScriptRuntime::ListAllocations(Stream &strm, StackFrame *frame_ptr, 3069 const uint32_t index) { 3070 strm.Printf("RenderScript Allocations:"); 3071 strm.EOL(); 3072 strm.IndentMore(); 3073 3074 for (auto &alloc : m_allocations) { 3075 // index will only be zero if we want to print all allocations 3076 if (index != 0 && index != alloc->id) 3077 continue; 3078 3079 // JIT current allocation information 3080 if (alloc->ShouldRefresh() && !RefreshAllocation(alloc.get(), frame_ptr)) { 3081 strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32, 3082 alloc->id); 3083 strm.EOL(); 3084 continue; 3085 } 3086 3087 strm.Printf("%" PRIu32 ":", alloc->id); 3088 strm.EOL(); 3089 strm.IndentMore(); 3090 3091 strm.Indent("Context: "); 3092 if (!alloc->context.isValid()) 3093 strm.Printf("unknown\n"); 3094 else 3095 strm.Printf("0x%" PRIx64 "\n", *alloc->context.get()); 3096 3097 strm.Indent("Address: "); 3098 if (!alloc->address.isValid()) 3099 strm.Printf("unknown\n"); 3100 else 3101 strm.Printf("0x%" PRIx64 "\n", *alloc->address.get()); 3102 3103 strm.Indent("Data pointer: "); 3104 if (!alloc->data_ptr.isValid()) 3105 strm.Printf("unknown\n"); 3106 else 3107 strm.Printf("0x%" PRIx64 "\n", *alloc->data_ptr.get()); 3108 3109 strm.Indent("Dimensions: "); 3110 if (!alloc->dimension.isValid()) 3111 strm.Printf("unknown\n"); 3112 else 3113 strm.Printf("(%" PRId32 ", %" PRId32 ", %" PRId32 ")\n", 3114 alloc->dimension.get()->dim_1, alloc->dimension.get()->dim_2, 3115 alloc->dimension.get()->dim_3); 3116 3117 strm.Indent("Data Type: "); 3118 if (!alloc->element.type.isValid() || 3119 !alloc->element.type_vec_size.isValid()) 3120 strm.Printf("unknown\n"); 3121 else { 3122 const int vector_size = *alloc->element.type_vec_size.get(); 3123 Element::DataType type = *alloc->element.type.get(); 3124 3125 if (!alloc->element.type_name.IsEmpty()) 3126 strm.Printf("%s\n", alloc->element.type_name.AsCString()); 3127 else { 3128 // Enum value isn't monotonous, so doesn't always index 3129 // RsDataTypeToString array 3130 if (type >= Element::RS_TYPE_ELEMENT && type <= Element::RS_TYPE_FONT) 3131 type = 3132 static_cast<Element::DataType>((type - Element::RS_TYPE_ELEMENT) + 3133 Element::RS_TYPE_MATRIX_2X2 + 1); 3134 3135 if (type >= (sizeof(AllocationDetails::RsDataTypeToString) / 3136 sizeof(AllocationDetails::RsDataTypeToString[0])) || 3137 vector_size > 4 || vector_size < 1) 3138 strm.Printf("invalid type\n"); 3139 else 3140 strm.Printf( 3141 "%s\n", 3142 AllocationDetails::RsDataTypeToString[static_cast<uint32_t>(type)] 3143 [vector_size - 1]); 3144 } 3145 } 3146 3147 strm.Indent("Data Kind: "); 3148 if (!alloc->element.type_kind.isValid()) 3149 strm.Printf("unknown\n"); 3150 else { 3151 const Element::DataKind kind = *alloc->element.type_kind.get(); 3152 if (kind < Element::RS_KIND_USER || kind > Element::RS_KIND_PIXEL_YUV) 3153 strm.Printf("invalid kind\n"); 3154 else 3155 strm.Printf( 3156 "%s\n", 3157 AllocationDetails::RsDataKindToString[static_cast<uint32_t>(kind)]); 3158 } 3159 3160 strm.EOL(); 3161 strm.IndentLess(); 3162 } 3163 strm.IndentLess(); 3164 } 3165 3166 // Set breakpoints on every kernel found in RS module 3167 void RenderScriptRuntime::BreakOnModuleKernels( 3168 const RSModuleDescriptorSP rsmodule_sp) { 3169 for (const auto &kernel : rsmodule_sp->m_kernels) { 3170 // Don't set breakpoint on 'root' kernel 3171 if (strcmp(kernel.m_name.AsCString(), "root") == 0) 3172 continue; 3173 3174 CreateKernelBreakpoint(kernel.m_name); 3175 } 3176 } 3177 3178 // Method is internally called by the 'kernel breakpoint all' command to enable 3179 // or disable breaking on all kernels. When do_break is true we want to enable 3180 // this functionality. When do_break is false we want to disable it. 3181 void RenderScriptRuntime::SetBreakAllKernels(bool do_break, TargetSP target) { 3182 Log *log( 3183 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3184 3185 InitSearchFilter(target); 3186 3187 // Set breakpoints on all the kernels 3188 if (do_break && !m_breakAllKernels) { 3189 m_breakAllKernels = true; 3190 3191 for (const auto &module : m_rsmodules) 3192 BreakOnModuleKernels(module); 3193 3194 if (log) 3195 log->Printf("%s(True) - breakpoints set on all currently loaded kernels.", 3196 __FUNCTION__); 3197 } else if (!do_break && 3198 m_breakAllKernels) // Breakpoints won't be set on any new kernels. 3199 { 3200 m_breakAllKernels = false; 3201 3202 if (log) 3203 log->Printf("%s(False) - breakpoints no longer automatically set.", 3204 __FUNCTION__); 3205 } 3206 } 3207 3208 // Given the name of a kernel this function creates a breakpoint using our 3209 // own breakpoint resolver, and returns the Breakpoint shared pointer. 3210 BreakpointSP 3211 RenderScriptRuntime::CreateKernelBreakpoint(const ConstString &name) { 3212 Log *log( 3213 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3214 3215 if (!m_filtersp) { 3216 if (log) 3217 log->Printf("%s - error, no breakpoint search filter set.", __FUNCTION__); 3218 return nullptr; 3219 } 3220 3221 BreakpointResolverSP resolver_sp(new RSBreakpointResolver(nullptr, name)); 3222 BreakpointSP bp = GetProcess()->GetTarget().CreateBreakpoint( 3223 m_filtersp, resolver_sp, false, false, false); 3224 3225 // Give RS breakpoints a specific name, so the user can manipulate them as a 3226 // group. 3227 Error err; 3228 if (!bp->AddName("RenderScriptKernel", err) && log) 3229 log->Printf("%s - error setting break name, '%s'.", __FUNCTION__, 3230 err.AsCString()); 3231 3232 return bp; 3233 } 3234 3235 // Given an expression for a variable this function tries to calculate the 3236 // variable's value. If this is possible it returns true and sets the uint64_t 3237 // parameter to the variables unsigned value. Otherwise function returns false. 3238 bool RenderScriptRuntime::GetFrameVarAsUnsigned(const StackFrameSP frame_sp, 3239 const char *var_name, 3240 uint64_t &val) { 3241 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3242 Error err; 3243 VariableSP var_sp; 3244 3245 // Find variable in stack frame 3246 ValueObjectSP value_sp(frame_sp->GetValueForVariableExpressionPath( 3247 var_name, eNoDynamicValues, 3248 StackFrame::eExpressionPathOptionCheckPtrVsMember | 3249 StackFrame::eExpressionPathOptionsAllowDirectIVarAccess, 3250 var_sp, err)); 3251 if (!err.Success()) { 3252 if (log) 3253 log->Printf("%s - error, couldn't find '%s' in frame", __FUNCTION__, 3254 var_name); 3255 return false; 3256 } 3257 3258 // Find the uint32_t value for the variable 3259 bool success = false; 3260 val = value_sp->GetValueAsUnsigned(0, &success); 3261 if (!success) { 3262 if (log) 3263 log->Printf("%s - error, couldn't parse '%s' as an uint32_t.", 3264 __FUNCTION__, var_name); 3265 return false; 3266 } 3267 3268 return true; 3269 } 3270 3271 // Function attempts to find the current coordinate of a kernel invocation by 3272 // investigating the values of frame variables in the .expand function. These 3273 // coordinates are returned via the coord array reference parameter. Returns 3274 // true if the coordinates could be found, and false otherwise. 3275 bool RenderScriptRuntime::GetKernelCoordinate(RSCoordinate &coord, 3276 Thread *thread_ptr) { 3277 static const char *const x_expr = "rsIndex"; 3278 static const char *const y_expr = "p->current.y"; 3279 static const char *const z_expr = "p->current.z"; 3280 3281 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3282 3283 if (!thread_ptr) { 3284 if (log) 3285 log->Printf("%s - Error, No thread pointer", __FUNCTION__); 3286 3287 return false; 3288 } 3289 3290 // Walk the call stack looking for a function whose name has the suffix 3291 // '.expand' and contains the variables we're looking for. 3292 for (uint32_t i = 0; i < thread_ptr->GetStackFrameCount(); ++i) { 3293 if (!thread_ptr->SetSelectedFrameByIndex(i)) 3294 continue; 3295 3296 StackFrameSP frame_sp = thread_ptr->GetSelectedFrame(); 3297 if (!frame_sp) 3298 continue; 3299 3300 // Find the function name 3301 const SymbolContext sym_ctx = frame_sp->GetSymbolContext(false); 3302 const ConstString func_name = sym_ctx.GetFunctionName(); 3303 if (!func_name) 3304 continue; 3305 3306 if (log) 3307 log->Printf("%s - Inspecting function '%s'", __FUNCTION__, 3308 func_name.GetCString()); 3309 3310 // Check if function name has .expand suffix 3311 if (!func_name.GetStringRef().endswith(".expand")) 3312 continue; 3313 3314 if (log) 3315 log->Printf("%s - Found .expand function '%s'", __FUNCTION__, 3316 func_name.GetCString()); 3317 3318 // Get values for variables in .expand frame that tell us the current kernel 3319 // invocation 3320 uint64_t x, y, z; 3321 bool found = GetFrameVarAsUnsigned(frame_sp, x_expr, x) && 3322 GetFrameVarAsUnsigned(frame_sp, y_expr, y) && 3323 GetFrameVarAsUnsigned(frame_sp, z_expr, z); 3324 3325 if (found) { 3326 // The RenderScript runtime uses uint32_t for these vars. If they're not 3327 // within bounds, our frame parsing is garbage 3328 assert(x <= UINT32_MAX && y <= UINT32_MAX && z <= UINT32_MAX); 3329 coord.x = (uint32_t)x; 3330 coord.y = (uint32_t)y; 3331 coord.z = (uint32_t)z; 3332 return true; 3333 } 3334 } 3335 return false; 3336 } 3337 3338 // Callback when a kernel breakpoint hits and we're looking for a specific 3339 // coordinate. Baton parameter contains a pointer to the target coordinate we 3340 // want to break on. 3341 // Function then checks the .expand frame for the current coordinate and breaks 3342 // to user if it matches. 3343 // Parameter 'break_id' is the id of the Breakpoint which made the callback. 3344 // Parameter 'break_loc_id' is the id for the BreakpointLocation which was hit, 3345 // a single logical breakpoint can have multiple addresses. 3346 bool RenderScriptRuntime::KernelBreakpointHit(void *baton, 3347 StoppointCallbackContext *ctx, 3348 user_id_t break_id, 3349 user_id_t break_loc_id) { 3350 Log *log( 3351 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3352 3353 assert(baton && 3354 "Error: null baton in conditional kernel breakpoint callback"); 3355 3356 // Coordinate we want to stop on 3357 RSCoordinate target_coord = *static_cast<RSCoordinate *>(baton); 3358 3359 if (log) 3360 log->Printf("%s - Break ID %" PRIu64 ", " FMT_COORD, __FUNCTION__, break_id, 3361 target_coord.x, target_coord.y, target_coord.z); 3362 3363 // Select current thread 3364 ExecutionContext context(ctx->exe_ctx_ref); 3365 Thread *thread_ptr = context.GetThreadPtr(); 3366 assert(thread_ptr && "Null thread pointer"); 3367 3368 // Find current kernel invocation from .expand frame variables 3369 RSCoordinate current_coord{}; 3370 if (!GetKernelCoordinate(current_coord, thread_ptr)) { 3371 if (log) 3372 log->Printf("%s - Error, couldn't select .expand stack frame", 3373 __FUNCTION__); 3374 return false; 3375 } 3376 3377 if (log) 3378 log->Printf("%s - " FMT_COORD, __FUNCTION__, current_coord.x, 3379 current_coord.y, current_coord.z); 3380 3381 // Check if the current kernel invocation coordinate matches our target 3382 // coordinate 3383 if (target_coord == current_coord) { 3384 if (log) 3385 log->Printf("%s, BREAKING " FMT_COORD, __FUNCTION__, current_coord.x, 3386 current_coord.y, current_coord.z); 3387 3388 BreakpointSP breakpoint_sp = 3389 context.GetTargetPtr()->GetBreakpointByID(break_id); 3390 assert(breakpoint_sp != nullptr && 3391 "Error: Couldn't find breakpoint matching break id for callback"); 3392 breakpoint_sp->SetEnabled(false); // Optimise since conditional breakpoint 3393 // should only be hit once. 3394 return true; 3395 } 3396 3397 // No match on coordinate 3398 return false; 3399 } 3400 3401 void RenderScriptRuntime::SetConditional(BreakpointSP bp, Stream &messages, 3402 const RSCoordinate &coord) { 3403 messages.Printf("Conditional kernel breakpoint on coordinate " FMT_COORD, 3404 coord.x, coord.y, coord.z); 3405 messages.EOL(); 3406 3407 // Allocate memory for the baton, and copy over coordinate 3408 RSCoordinate *baton = new RSCoordinate(coord); 3409 3410 // Create a callback that will be invoked every time the breakpoint is hit. 3411 // The baton object passed to the handler is the target coordinate we want to 3412 // break on. 3413 bp->SetCallback(KernelBreakpointHit, baton, true); 3414 3415 // Store a shared pointer to the baton, so the memory will eventually be 3416 // cleaned up after destruction 3417 m_conditional_breaks[bp->GetID()] = std::unique_ptr<RSCoordinate>(baton); 3418 } 3419 3420 // Tries to set a breakpoint on the start of a kernel, resolved using the kernel 3421 // name. Argument 'coords', represents a three dimensional coordinate which can 3422 // be 3423 // used to specify a single kernel instance to break on. If this is set then we 3424 // add a callback 3425 // to the breakpoint. 3426 bool RenderScriptRuntime::PlaceBreakpointOnKernel(TargetSP target, 3427 Stream &messages, 3428 const char *name, 3429 const RSCoordinate *coord) { 3430 if (!name) 3431 return false; 3432 3433 InitSearchFilter(target); 3434 3435 ConstString kernel_name(name); 3436 BreakpointSP bp = CreateKernelBreakpoint(kernel_name); 3437 if (!bp) 3438 return false; 3439 3440 // We have a conditional breakpoint on a specific coordinate 3441 if (coord) 3442 SetConditional(bp, messages, *coord); 3443 3444 bp->GetDescription(&messages, lldb::eDescriptionLevelInitial, false); 3445 3446 return true; 3447 } 3448 3449 void RenderScriptRuntime::DumpModules(Stream &strm) const { 3450 strm.Printf("RenderScript Modules:"); 3451 strm.EOL(); 3452 strm.IndentMore(); 3453 for (const auto &module : m_rsmodules) { 3454 module->Dump(strm); 3455 } 3456 strm.IndentLess(); 3457 } 3458 3459 RenderScriptRuntime::ScriptDetails * 3460 RenderScriptRuntime::LookUpScript(addr_t address, bool create) { 3461 for (const auto &s : m_scripts) { 3462 if (s->script.isValid()) 3463 if (*s->script == address) 3464 return s.get(); 3465 } 3466 if (create) { 3467 std::unique_ptr<ScriptDetails> s(new ScriptDetails); 3468 s->script = address; 3469 m_scripts.push_back(std::move(s)); 3470 return m_scripts.back().get(); 3471 } 3472 return nullptr; 3473 } 3474 3475 RenderScriptRuntime::AllocationDetails * 3476 RenderScriptRuntime::LookUpAllocation(addr_t address) { 3477 for (const auto &a : m_allocations) { 3478 if (a->address.isValid()) 3479 if (*a->address == address) 3480 return a.get(); 3481 } 3482 return nullptr; 3483 } 3484 3485 RenderScriptRuntime::AllocationDetails * 3486 RenderScriptRuntime::CreateAllocation(addr_t address) { 3487 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 3488 3489 // Remove any previous allocation which contains the same address 3490 auto it = m_allocations.begin(); 3491 while (it != m_allocations.end()) { 3492 if (*((*it)->address) == address) { 3493 if (log) 3494 log->Printf("%s - Removing allocation id: %d, address: 0x%" PRIx64, 3495 __FUNCTION__, (*it)->id, address); 3496 3497 it = m_allocations.erase(it); 3498 } else { 3499 it++; 3500 } 3501 } 3502 3503 std::unique_ptr<AllocationDetails> a(new AllocationDetails); 3504 a->address = address; 3505 m_allocations.push_back(std::move(a)); 3506 return m_allocations.back().get(); 3507 } 3508 3509 void RSModuleDescriptor::Dump(Stream &strm) const { 3510 int indent = strm.GetIndentLevel(); 3511 3512 strm.Indent(); 3513 m_module->GetFileSpec().Dump(&strm); 3514 strm.Indent(m_module->GetNumCompileUnits() ? "Debug info loaded." 3515 : "Debug info does not exist."); 3516 strm.EOL(); 3517 strm.IndentMore(); 3518 3519 strm.Indent(); 3520 strm.Printf("Globals: %" PRIu64, static_cast<uint64_t>(m_globals.size())); 3521 strm.EOL(); 3522 strm.IndentMore(); 3523 for (const auto &global : m_globals) { 3524 global.Dump(strm); 3525 } 3526 strm.IndentLess(); 3527 3528 strm.Indent(); 3529 strm.Printf("Kernels: %" PRIu64, static_cast<uint64_t>(m_kernels.size())); 3530 strm.EOL(); 3531 strm.IndentMore(); 3532 for (const auto &kernel : m_kernels) { 3533 kernel.Dump(strm); 3534 } 3535 strm.IndentLess(); 3536 3537 strm.Indent(); 3538 strm.Printf("Pragmas: %" PRIu64, static_cast<uint64_t>(m_pragmas.size())); 3539 strm.EOL(); 3540 strm.IndentMore(); 3541 for (const auto &key_val : m_pragmas) { 3542 strm.Indent(); 3543 strm.Printf("%s: %s", key_val.first.c_str(), key_val.second.c_str()); 3544 strm.EOL(); 3545 } 3546 strm.IndentLess(); 3547 3548 strm.Indent(); 3549 strm.Printf("Reductions: %" PRIu64, 3550 static_cast<uint64_t>(m_reductions.size())); 3551 strm.EOL(); 3552 strm.IndentMore(); 3553 for (const auto &reduction : m_reductions) { 3554 reduction.Dump(strm); 3555 } 3556 3557 strm.SetIndentLevel(indent); 3558 } 3559 3560 void RSGlobalDescriptor::Dump(Stream &strm) const { 3561 strm.Indent(m_name.AsCString()); 3562 VariableList var_list; 3563 m_module->m_module->FindGlobalVariables(m_name, nullptr, true, 1U, var_list); 3564 if (var_list.GetSize() == 1) { 3565 auto var = var_list.GetVariableAtIndex(0); 3566 auto type = var->GetType(); 3567 if (type) { 3568 strm.Printf(" - "); 3569 type->DumpTypeName(&strm); 3570 } else { 3571 strm.Printf(" - Unknown Type"); 3572 } 3573 } else { 3574 strm.Printf(" - variable identified, but not found in binary"); 3575 const Symbol *s = m_module->m_module->FindFirstSymbolWithNameAndType( 3576 m_name, eSymbolTypeData); 3577 if (s) { 3578 strm.Printf(" (symbol exists) "); 3579 } 3580 } 3581 3582 strm.EOL(); 3583 } 3584 3585 void RSKernelDescriptor::Dump(Stream &strm) const { 3586 strm.Indent(m_name.AsCString()); 3587 strm.EOL(); 3588 } 3589 3590 void RSReductionDescriptor::Dump(lldb_private::Stream &stream) const { 3591 stream.Indent(m_reduce_name.AsCString()); 3592 stream.IndentMore(); 3593 stream.EOL(); 3594 stream.Indent(); 3595 stream.Printf("accumulator: %s", m_accum_name.AsCString()); 3596 stream.EOL(); 3597 stream.Indent(); 3598 stream.Printf("initializer: %s", m_init_name.AsCString()); 3599 stream.EOL(); 3600 stream.Indent(); 3601 stream.Printf("combiner: %s", m_comb_name.AsCString()); 3602 stream.EOL(); 3603 stream.Indent(); 3604 stream.Printf("outconverter: %s", m_outc_name.AsCString()); 3605 stream.EOL(); 3606 // XXX This is currently unspecified by RenderScript, and unused 3607 // stream.Indent(); 3608 // stream.Printf("halter: '%s'", m_init_name.AsCString()); 3609 // stream.EOL(); 3610 stream.IndentLess(); 3611 } 3612 3613 class CommandObjectRenderScriptRuntimeModuleDump : public CommandObjectParsed { 3614 public: 3615 CommandObjectRenderScriptRuntimeModuleDump(CommandInterpreter &interpreter) 3616 : CommandObjectParsed( 3617 interpreter, "renderscript module dump", 3618 "Dumps renderscript specific information for all modules.", 3619 "renderscript module dump", 3620 eCommandRequiresProcess | eCommandProcessMustBeLaunched) {} 3621 3622 ~CommandObjectRenderScriptRuntimeModuleDump() override = default; 3623 3624 bool DoExecute(Args &command, CommandReturnObject &result) override { 3625 RenderScriptRuntime *runtime = 3626 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 3627 eLanguageTypeExtRenderScript); 3628 runtime->DumpModules(result.GetOutputStream()); 3629 result.SetStatus(eReturnStatusSuccessFinishResult); 3630 return true; 3631 } 3632 }; 3633 3634 class CommandObjectRenderScriptRuntimeModule : public CommandObjectMultiword { 3635 public: 3636 CommandObjectRenderScriptRuntimeModule(CommandInterpreter &interpreter) 3637 : CommandObjectMultiword(interpreter, "renderscript module", 3638 "Commands that deal with RenderScript modules.", 3639 nullptr) { 3640 LoadSubCommand( 3641 "dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeModuleDump( 3642 interpreter))); 3643 } 3644 3645 ~CommandObjectRenderScriptRuntimeModule() override = default; 3646 }; 3647 3648 class CommandObjectRenderScriptRuntimeKernelList : public CommandObjectParsed { 3649 public: 3650 CommandObjectRenderScriptRuntimeKernelList(CommandInterpreter &interpreter) 3651 : CommandObjectParsed( 3652 interpreter, "renderscript kernel list", 3653 "Lists renderscript kernel names and associated script resources.", 3654 "renderscript kernel list", 3655 eCommandRequiresProcess | eCommandProcessMustBeLaunched) {} 3656 3657 ~CommandObjectRenderScriptRuntimeKernelList() override = default; 3658 3659 bool DoExecute(Args &command, CommandReturnObject &result) override { 3660 RenderScriptRuntime *runtime = 3661 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 3662 eLanguageTypeExtRenderScript); 3663 runtime->DumpKernels(result.GetOutputStream()); 3664 result.SetStatus(eReturnStatusSuccessFinishResult); 3665 return true; 3666 } 3667 }; 3668 3669 static OptionDefinition g_renderscript_kernel_bp_set_options[] = { 3670 {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument, 3671 nullptr, nullptr, 0, eArgTypeValue, 3672 "Set a breakpoint on a single invocation of the kernel with specified " 3673 "coordinate.\n" 3674 "Coordinate takes the form 'x[,y][,z] where x,y,z are positive " 3675 "integers representing kernel dimensions. " 3676 "Any unset dimensions will be defaulted to zero."}}; 3677 3678 class CommandObjectRenderScriptRuntimeKernelBreakpointSet 3679 : public CommandObjectParsed { 3680 public: 3681 CommandObjectRenderScriptRuntimeKernelBreakpointSet( 3682 CommandInterpreter &interpreter) 3683 : CommandObjectParsed( 3684 interpreter, "renderscript kernel breakpoint set", 3685 "Sets a breakpoint on a renderscript kernel.", 3686 "renderscript kernel breakpoint set <kernel_name> [-c x,y,z]", 3687 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 3688 eCommandProcessMustBePaused), 3689 m_options() {} 3690 3691 ~CommandObjectRenderScriptRuntimeKernelBreakpointSet() override = default; 3692 3693 Options *GetOptions() override { return &m_options; } 3694 3695 class CommandOptions : public Options { 3696 public: 3697 CommandOptions() : Options() {} 3698 3699 ~CommandOptions() override = default; 3700 3701 Error SetOptionValue(uint32_t option_idx, const char *option_arg, 3702 ExecutionContext *execution_context) override { 3703 Error err; 3704 const int short_option = m_getopt_table[option_idx].val; 3705 3706 switch (short_option) { 3707 case 'c': { 3708 auto coord = RSCoordinate{}; 3709 if (!ParseCoordinate(option_arg, coord)) 3710 err.SetErrorStringWithFormat( 3711 "Couldn't parse coordinate '%s', should be in format 'x,y,z'.", 3712 option_arg); 3713 else { 3714 m_have_coord = true; 3715 m_coord = coord; 3716 } 3717 break; 3718 } 3719 default: 3720 err.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 3721 break; 3722 } 3723 return err; 3724 } 3725 3726 void OptionParsingStarting(ExecutionContext *execution_context) override { 3727 m_have_coord = false; 3728 } 3729 3730 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 3731 return llvm::makeArrayRef(g_renderscript_kernel_bp_set_options); 3732 } 3733 3734 RSCoordinate m_coord; 3735 bool m_have_coord; 3736 }; 3737 3738 bool DoExecute(Args &command, CommandReturnObject &result) override { 3739 const size_t argc = command.GetArgumentCount(); 3740 if (argc < 1) { 3741 result.AppendErrorWithFormat( 3742 "'%s' takes 1 argument of kernel name, and an optional coordinate.", 3743 m_cmd_name.c_str()); 3744 result.SetStatus(eReturnStatusFailed); 3745 return false; 3746 } 3747 3748 RenderScriptRuntime *runtime = 3749 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 3750 eLanguageTypeExtRenderScript); 3751 3752 auto &outstream = result.GetOutputStream(); 3753 auto &target = m_exe_ctx.GetTargetSP(); 3754 auto name = command.GetArgumentAtIndex(0); 3755 auto coord = m_options.m_have_coord ? &m_options.m_coord : nullptr; 3756 if (!runtime->PlaceBreakpointOnKernel(target, outstream, name, coord)) { 3757 result.SetStatus(eReturnStatusFailed); 3758 result.AppendErrorWithFormat( 3759 "Error: unable to set breakpoint on kernel '%s'", name); 3760 return false; 3761 } 3762 3763 result.AppendMessage("Breakpoint(s) created"); 3764 result.SetStatus(eReturnStatusSuccessFinishResult); 3765 return true; 3766 } 3767 3768 private: 3769 CommandOptions m_options; 3770 }; 3771 3772 class CommandObjectRenderScriptRuntimeKernelBreakpointAll 3773 : public CommandObjectParsed { 3774 public: 3775 CommandObjectRenderScriptRuntimeKernelBreakpointAll( 3776 CommandInterpreter &interpreter) 3777 : CommandObjectParsed( 3778 interpreter, "renderscript kernel breakpoint all", 3779 "Automatically sets a breakpoint on all renderscript kernels that " 3780 "are or will be loaded.\n" 3781 "Disabling option means breakpoints will no longer be set on any " 3782 "kernels loaded in the future, " 3783 "but does not remove currently set breakpoints.", 3784 "renderscript kernel breakpoint all <enable/disable>", 3785 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 3786 eCommandProcessMustBePaused) {} 3787 3788 ~CommandObjectRenderScriptRuntimeKernelBreakpointAll() override = default; 3789 3790 bool DoExecute(Args &command, CommandReturnObject &result) override { 3791 const size_t argc = command.GetArgumentCount(); 3792 if (argc != 1) { 3793 result.AppendErrorWithFormat( 3794 "'%s' takes 1 argument of 'enable' or 'disable'", m_cmd_name.c_str()); 3795 result.SetStatus(eReturnStatusFailed); 3796 return false; 3797 } 3798 3799 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 3800 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 3801 eLanguageTypeExtRenderScript)); 3802 3803 bool do_break = false; 3804 const char *argument = command.GetArgumentAtIndex(0); 3805 if (strcmp(argument, "enable") == 0) { 3806 do_break = true; 3807 result.AppendMessage("Breakpoints will be set on all kernels."); 3808 } else if (strcmp(argument, "disable") == 0) { 3809 do_break = false; 3810 result.AppendMessage("Breakpoints will not be set on any new kernels."); 3811 } else { 3812 result.AppendErrorWithFormat( 3813 "Argument must be either 'enable' or 'disable'"); 3814 result.SetStatus(eReturnStatusFailed); 3815 return false; 3816 } 3817 3818 runtime->SetBreakAllKernels(do_break, m_exe_ctx.GetTargetSP()); 3819 3820 result.SetStatus(eReturnStatusSuccessFinishResult); 3821 return true; 3822 } 3823 }; 3824 3825 class CommandObjectRenderScriptRuntimeKernelCoordinate 3826 : public CommandObjectParsed { 3827 public: 3828 CommandObjectRenderScriptRuntimeKernelCoordinate( 3829 CommandInterpreter &interpreter) 3830 : CommandObjectParsed( 3831 interpreter, "renderscript kernel coordinate", 3832 "Shows the (x,y,z) coordinate of the current kernel invocation.", 3833 "renderscript kernel coordinate", 3834 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 3835 eCommandProcessMustBePaused) {} 3836 3837 ~CommandObjectRenderScriptRuntimeKernelCoordinate() override = default; 3838 3839 bool DoExecute(Args &command, CommandReturnObject &result) override { 3840 RSCoordinate coord{}; 3841 bool success = RenderScriptRuntime::GetKernelCoordinate( 3842 coord, m_exe_ctx.GetThreadPtr()); 3843 Stream &stream = result.GetOutputStream(); 3844 3845 if (success) { 3846 stream.Printf("Coordinate: " FMT_COORD, coord.x, coord.y, coord.z); 3847 stream.EOL(); 3848 result.SetStatus(eReturnStatusSuccessFinishResult); 3849 } else { 3850 stream.Printf("Error: Coordinate could not be found."); 3851 stream.EOL(); 3852 result.SetStatus(eReturnStatusFailed); 3853 } 3854 return true; 3855 } 3856 }; 3857 3858 class CommandObjectRenderScriptRuntimeKernelBreakpoint 3859 : public CommandObjectMultiword { 3860 public: 3861 CommandObjectRenderScriptRuntimeKernelBreakpoint( 3862 CommandInterpreter &interpreter) 3863 : CommandObjectMultiword( 3864 interpreter, "renderscript kernel", 3865 "Commands that generate breakpoints on renderscript kernels.", 3866 nullptr) { 3867 LoadSubCommand( 3868 "set", 3869 CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointSet( 3870 interpreter))); 3871 LoadSubCommand( 3872 "all", 3873 CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointAll( 3874 interpreter))); 3875 } 3876 3877 ~CommandObjectRenderScriptRuntimeKernelBreakpoint() override = default; 3878 }; 3879 3880 class CommandObjectRenderScriptRuntimeKernel : public CommandObjectMultiword { 3881 public: 3882 CommandObjectRenderScriptRuntimeKernel(CommandInterpreter &interpreter) 3883 : CommandObjectMultiword(interpreter, "renderscript kernel", 3884 "Commands that deal with RenderScript kernels.", 3885 nullptr) { 3886 LoadSubCommand( 3887 "list", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelList( 3888 interpreter))); 3889 LoadSubCommand( 3890 "coordinate", 3891 CommandObjectSP( 3892 new CommandObjectRenderScriptRuntimeKernelCoordinate(interpreter))); 3893 LoadSubCommand( 3894 "breakpoint", 3895 CommandObjectSP( 3896 new CommandObjectRenderScriptRuntimeKernelBreakpoint(interpreter))); 3897 } 3898 3899 ~CommandObjectRenderScriptRuntimeKernel() override = default; 3900 }; 3901 3902 class CommandObjectRenderScriptRuntimeContextDump : public CommandObjectParsed { 3903 public: 3904 CommandObjectRenderScriptRuntimeContextDump(CommandInterpreter &interpreter) 3905 : CommandObjectParsed(interpreter, "renderscript context dump", 3906 "Dumps renderscript context information.", 3907 "renderscript context dump", 3908 eCommandRequiresProcess | 3909 eCommandProcessMustBeLaunched) {} 3910 3911 ~CommandObjectRenderScriptRuntimeContextDump() override = default; 3912 3913 bool DoExecute(Args &command, CommandReturnObject &result) override { 3914 RenderScriptRuntime *runtime = 3915 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 3916 eLanguageTypeExtRenderScript); 3917 runtime->DumpContexts(result.GetOutputStream()); 3918 result.SetStatus(eReturnStatusSuccessFinishResult); 3919 return true; 3920 } 3921 }; 3922 3923 static OptionDefinition g_renderscript_runtime_alloc_dump_options[] = { 3924 {LLDB_OPT_SET_1, false, "file", 'f', OptionParser::eRequiredArgument, 3925 nullptr, nullptr, 0, eArgTypeFilename, 3926 "Print results to specified file instead of command line."}}; 3927 3928 class CommandObjectRenderScriptRuntimeContext : public CommandObjectMultiword { 3929 public: 3930 CommandObjectRenderScriptRuntimeContext(CommandInterpreter &interpreter) 3931 : CommandObjectMultiword(interpreter, "renderscript context", 3932 "Commands that deal with RenderScript contexts.", 3933 nullptr) { 3934 LoadSubCommand( 3935 "dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeContextDump( 3936 interpreter))); 3937 } 3938 3939 ~CommandObjectRenderScriptRuntimeContext() override = default; 3940 }; 3941 3942 class CommandObjectRenderScriptRuntimeAllocationDump 3943 : public CommandObjectParsed { 3944 public: 3945 CommandObjectRenderScriptRuntimeAllocationDump( 3946 CommandInterpreter &interpreter) 3947 : CommandObjectParsed(interpreter, "renderscript allocation dump", 3948 "Displays the contents of a particular allocation", 3949 "renderscript allocation dump <ID>", 3950 eCommandRequiresProcess | 3951 eCommandProcessMustBeLaunched), 3952 m_options() {} 3953 3954 ~CommandObjectRenderScriptRuntimeAllocationDump() override = default; 3955 3956 Options *GetOptions() override { return &m_options; } 3957 3958 class CommandOptions : public Options { 3959 public: 3960 CommandOptions() : Options() {} 3961 3962 ~CommandOptions() override = default; 3963 3964 Error SetOptionValue(uint32_t option_idx, const char *option_arg, 3965 ExecutionContext *execution_context) override { 3966 Error err; 3967 const int short_option = m_getopt_table[option_idx].val; 3968 3969 switch (short_option) { 3970 case 'f': 3971 m_outfile.SetFile(option_arg, true); 3972 if (m_outfile.Exists()) { 3973 m_outfile.Clear(); 3974 err.SetErrorStringWithFormat("file already exists: '%s'", option_arg); 3975 } 3976 break; 3977 default: 3978 err.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 3979 break; 3980 } 3981 return err; 3982 } 3983 3984 void OptionParsingStarting(ExecutionContext *execution_context) override { 3985 m_outfile.Clear(); 3986 } 3987 3988 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 3989 return llvm::makeArrayRef(g_renderscript_runtime_alloc_dump_options); 3990 } 3991 3992 FileSpec m_outfile; 3993 }; 3994 3995 bool DoExecute(Args &command, CommandReturnObject &result) override { 3996 const size_t argc = command.GetArgumentCount(); 3997 if (argc < 1) { 3998 result.AppendErrorWithFormat("'%s' takes 1 argument, an allocation ID. " 3999 "As well as an optional -f argument", 4000 m_cmd_name.c_str()); 4001 result.SetStatus(eReturnStatusFailed); 4002 return false; 4003 } 4004 4005 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4006 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4007 eLanguageTypeExtRenderScript)); 4008 4009 const char *id_cstr = command.GetArgumentAtIndex(0); 4010 bool success = false; 4011 const uint32_t id = 4012 StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success); 4013 if (!success) { 4014 result.AppendErrorWithFormat("invalid allocation id argument '%s'", 4015 id_cstr); 4016 result.SetStatus(eReturnStatusFailed); 4017 return false; 4018 } 4019 4020 Stream *output_strm = nullptr; 4021 StreamFile outfile_stream; 4022 const FileSpec &outfile_spec = 4023 m_options.m_outfile; // Dump allocation to file instead 4024 if (outfile_spec) { 4025 // Open output file 4026 char path[256]; 4027 outfile_spec.GetPath(path, sizeof(path)); 4028 if (outfile_stream.GetFile() 4029 .Open(path, File::eOpenOptionWrite | File::eOpenOptionCanCreate) 4030 .Success()) { 4031 output_strm = &outfile_stream; 4032 result.GetOutputStream().Printf("Results written to '%s'", path); 4033 result.GetOutputStream().EOL(); 4034 } else { 4035 result.AppendErrorWithFormat("Couldn't open file '%s'", path); 4036 result.SetStatus(eReturnStatusFailed); 4037 return false; 4038 } 4039 } else 4040 output_strm = &result.GetOutputStream(); 4041 4042 assert(output_strm != nullptr); 4043 bool dumped = 4044 runtime->DumpAllocation(*output_strm, m_exe_ctx.GetFramePtr(), id); 4045 4046 if (dumped) 4047 result.SetStatus(eReturnStatusSuccessFinishResult); 4048 else 4049 result.SetStatus(eReturnStatusFailed); 4050 4051 return true; 4052 } 4053 4054 private: 4055 CommandOptions m_options; 4056 }; 4057 4058 static OptionDefinition g_renderscript_runtime_alloc_list_options[] = { 4059 {LLDB_OPT_SET_1, false, "id", 'i', OptionParser::eRequiredArgument, nullptr, 4060 nullptr, 0, eArgTypeIndex, 4061 "Only show details of a single allocation with specified id."}}; 4062 4063 class CommandObjectRenderScriptRuntimeAllocationList 4064 : public CommandObjectParsed { 4065 public: 4066 CommandObjectRenderScriptRuntimeAllocationList( 4067 CommandInterpreter &interpreter) 4068 : CommandObjectParsed( 4069 interpreter, "renderscript allocation list", 4070 "List renderscript allocations and their information.", 4071 "renderscript allocation list", 4072 eCommandRequiresProcess | eCommandProcessMustBeLaunched), 4073 m_options() {} 4074 4075 ~CommandObjectRenderScriptRuntimeAllocationList() override = default; 4076 4077 Options *GetOptions() override { return &m_options; } 4078 4079 class CommandOptions : public Options { 4080 public: 4081 CommandOptions() : Options(), m_id(0) {} 4082 4083 ~CommandOptions() override = default; 4084 4085 Error SetOptionValue(uint32_t option_idx, const char *option_arg, 4086 ExecutionContext *execution_context) override { 4087 Error err; 4088 const int short_option = m_getopt_table[option_idx].val; 4089 4090 switch (short_option) { 4091 case 'i': 4092 bool success; 4093 m_id = StringConvert::ToUInt32(option_arg, 0, 0, &success); 4094 if (!success) 4095 err.SetErrorStringWithFormat("invalid integer value for option '%c'", 4096 short_option); 4097 break; 4098 default: 4099 err.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 4100 break; 4101 } 4102 return err; 4103 } 4104 4105 void OptionParsingStarting(ExecutionContext *execution_context) override { 4106 m_id = 0; 4107 } 4108 4109 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4110 return llvm::makeArrayRef(g_renderscript_runtime_alloc_list_options); 4111 } 4112 4113 uint32_t m_id; 4114 }; 4115 4116 bool DoExecute(Args &command, CommandReturnObject &result) override { 4117 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4118 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4119 eLanguageTypeExtRenderScript)); 4120 runtime->ListAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr(), 4121 m_options.m_id); 4122 result.SetStatus(eReturnStatusSuccessFinishResult); 4123 return true; 4124 } 4125 4126 private: 4127 CommandOptions m_options; 4128 }; 4129 4130 class CommandObjectRenderScriptRuntimeAllocationLoad 4131 : public CommandObjectParsed { 4132 public: 4133 CommandObjectRenderScriptRuntimeAllocationLoad( 4134 CommandInterpreter &interpreter) 4135 : CommandObjectParsed( 4136 interpreter, "renderscript allocation load", 4137 "Loads renderscript allocation contents from a file.", 4138 "renderscript allocation load <ID> <filename>", 4139 eCommandRequiresProcess | eCommandProcessMustBeLaunched) {} 4140 4141 ~CommandObjectRenderScriptRuntimeAllocationLoad() override = default; 4142 4143 bool DoExecute(Args &command, CommandReturnObject &result) override { 4144 const size_t argc = command.GetArgumentCount(); 4145 if (argc != 2) { 4146 result.AppendErrorWithFormat( 4147 "'%s' takes 2 arguments, an allocation ID and filename to read from.", 4148 m_cmd_name.c_str()); 4149 result.SetStatus(eReturnStatusFailed); 4150 return false; 4151 } 4152 4153 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4154 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4155 eLanguageTypeExtRenderScript)); 4156 4157 const char *id_cstr = command.GetArgumentAtIndex(0); 4158 bool success = false; 4159 const uint32_t id = 4160 StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success); 4161 if (!success) { 4162 result.AppendErrorWithFormat("invalid allocation id argument '%s'", 4163 id_cstr); 4164 result.SetStatus(eReturnStatusFailed); 4165 return false; 4166 } 4167 4168 const char *path = command.GetArgumentAtIndex(1); 4169 bool loaded = runtime->LoadAllocation(result.GetOutputStream(), id, path, 4170 m_exe_ctx.GetFramePtr()); 4171 4172 if (loaded) 4173 result.SetStatus(eReturnStatusSuccessFinishResult); 4174 else 4175 result.SetStatus(eReturnStatusFailed); 4176 4177 return true; 4178 } 4179 }; 4180 4181 class CommandObjectRenderScriptRuntimeAllocationSave 4182 : public CommandObjectParsed { 4183 public: 4184 CommandObjectRenderScriptRuntimeAllocationSave( 4185 CommandInterpreter &interpreter) 4186 : CommandObjectParsed(interpreter, "renderscript allocation save", 4187 "Write renderscript allocation contents to a file.", 4188 "renderscript allocation save <ID> <filename>", 4189 eCommandRequiresProcess | 4190 eCommandProcessMustBeLaunched) {} 4191 4192 ~CommandObjectRenderScriptRuntimeAllocationSave() override = default; 4193 4194 bool DoExecute(Args &command, CommandReturnObject &result) override { 4195 const size_t argc = command.GetArgumentCount(); 4196 if (argc != 2) { 4197 result.AppendErrorWithFormat( 4198 "'%s' takes 2 arguments, an allocation ID and filename to read from.", 4199 m_cmd_name.c_str()); 4200 result.SetStatus(eReturnStatusFailed); 4201 return false; 4202 } 4203 4204 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4205 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4206 eLanguageTypeExtRenderScript)); 4207 4208 const char *id_cstr = command.GetArgumentAtIndex(0); 4209 bool success = false; 4210 const uint32_t id = 4211 StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success); 4212 if (!success) { 4213 result.AppendErrorWithFormat("invalid allocation id argument '%s'", 4214 id_cstr); 4215 result.SetStatus(eReturnStatusFailed); 4216 return false; 4217 } 4218 4219 const char *path = command.GetArgumentAtIndex(1); 4220 bool saved = runtime->SaveAllocation(result.GetOutputStream(), id, path, 4221 m_exe_ctx.GetFramePtr()); 4222 4223 if (saved) 4224 result.SetStatus(eReturnStatusSuccessFinishResult); 4225 else 4226 result.SetStatus(eReturnStatusFailed); 4227 4228 return true; 4229 } 4230 }; 4231 4232 class CommandObjectRenderScriptRuntimeAllocationRefresh 4233 : public CommandObjectParsed { 4234 public: 4235 CommandObjectRenderScriptRuntimeAllocationRefresh( 4236 CommandInterpreter &interpreter) 4237 : CommandObjectParsed(interpreter, "renderscript allocation refresh", 4238 "Recomputes the details of all allocations.", 4239 "renderscript allocation refresh", 4240 eCommandRequiresProcess | 4241 eCommandProcessMustBeLaunched) {} 4242 4243 ~CommandObjectRenderScriptRuntimeAllocationRefresh() override = default; 4244 4245 bool DoExecute(Args &command, CommandReturnObject &result) override { 4246 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4247 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4248 eLanguageTypeExtRenderScript)); 4249 4250 bool success = runtime->RecomputeAllAllocations(result.GetOutputStream(), 4251 m_exe_ctx.GetFramePtr()); 4252 4253 if (success) { 4254 result.SetStatus(eReturnStatusSuccessFinishResult); 4255 return true; 4256 } else { 4257 result.SetStatus(eReturnStatusFailed); 4258 return false; 4259 } 4260 } 4261 }; 4262 4263 class CommandObjectRenderScriptRuntimeAllocation 4264 : public CommandObjectMultiword { 4265 public: 4266 CommandObjectRenderScriptRuntimeAllocation(CommandInterpreter &interpreter) 4267 : CommandObjectMultiword( 4268 interpreter, "renderscript allocation", 4269 "Commands that deal with RenderScript allocations.", nullptr) { 4270 LoadSubCommand( 4271 "list", 4272 CommandObjectSP( 4273 new CommandObjectRenderScriptRuntimeAllocationList(interpreter))); 4274 LoadSubCommand( 4275 "dump", 4276 CommandObjectSP( 4277 new CommandObjectRenderScriptRuntimeAllocationDump(interpreter))); 4278 LoadSubCommand( 4279 "save", 4280 CommandObjectSP( 4281 new CommandObjectRenderScriptRuntimeAllocationSave(interpreter))); 4282 LoadSubCommand( 4283 "load", 4284 CommandObjectSP( 4285 new CommandObjectRenderScriptRuntimeAllocationLoad(interpreter))); 4286 LoadSubCommand( 4287 "refresh", 4288 CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationRefresh( 4289 interpreter))); 4290 } 4291 4292 ~CommandObjectRenderScriptRuntimeAllocation() override = default; 4293 }; 4294 4295 class CommandObjectRenderScriptRuntimeStatus : public CommandObjectParsed { 4296 public: 4297 CommandObjectRenderScriptRuntimeStatus(CommandInterpreter &interpreter) 4298 : CommandObjectParsed(interpreter, "renderscript status", 4299 "Displays current RenderScript runtime status.", 4300 "renderscript status", 4301 eCommandRequiresProcess | 4302 eCommandProcessMustBeLaunched) {} 4303 4304 ~CommandObjectRenderScriptRuntimeStatus() override = default; 4305 4306 bool DoExecute(Args &command, CommandReturnObject &result) override { 4307 RenderScriptRuntime *runtime = 4308 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4309 eLanguageTypeExtRenderScript); 4310 runtime->Status(result.GetOutputStream()); 4311 result.SetStatus(eReturnStatusSuccessFinishResult); 4312 return true; 4313 } 4314 }; 4315 4316 class CommandObjectRenderScriptRuntime : public CommandObjectMultiword { 4317 public: 4318 CommandObjectRenderScriptRuntime(CommandInterpreter &interpreter) 4319 : CommandObjectMultiword( 4320 interpreter, "renderscript", 4321 "Commands for operating on the RenderScript runtime.", 4322 "renderscript <subcommand> [<subcommand-options>]") { 4323 LoadSubCommand( 4324 "module", CommandObjectSP( 4325 new CommandObjectRenderScriptRuntimeModule(interpreter))); 4326 LoadSubCommand( 4327 "status", CommandObjectSP( 4328 new CommandObjectRenderScriptRuntimeStatus(interpreter))); 4329 LoadSubCommand( 4330 "kernel", CommandObjectSP( 4331 new CommandObjectRenderScriptRuntimeKernel(interpreter))); 4332 LoadSubCommand("context", 4333 CommandObjectSP(new CommandObjectRenderScriptRuntimeContext( 4334 interpreter))); 4335 LoadSubCommand( 4336 "allocation", 4337 CommandObjectSP( 4338 new CommandObjectRenderScriptRuntimeAllocation(interpreter))); 4339 } 4340 4341 ~CommandObjectRenderScriptRuntime() override = default; 4342 }; 4343 4344 void RenderScriptRuntime::Initiate() { assert(!m_initiated); } 4345 4346 RenderScriptRuntime::RenderScriptRuntime(Process *process) 4347 : lldb_private::CPPLanguageRuntime(process), m_initiated(false), 4348 m_debuggerPresentFlagged(false), m_breakAllKernels(false), 4349 m_ir_passes(nullptr) { 4350 ModulesDidLoad(process->GetTarget().GetImages()); 4351 } 4352 4353 lldb::CommandObjectSP RenderScriptRuntime::GetCommandObject( 4354 lldb_private::CommandInterpreter &interpreter) { 4355 return CommandObjectSP(new CommandObjectRenderScriptRuntime(interpreter)); 4356 } 4357 4358 RenderScriptRuntime::~RenderScriptRuntime() = default; 4359