1 //===-- RenderScriptRuntime.cpp ---------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 // C Includes 11 // C++ Includes 12 // Other libraries and framework includes 13 #include "llvm/ADT/StringSwitch.h" 14 15 // Project includes 16 #include "RenderScriptRuntime.h" 17 #include "RenderScriptScriptGroup.h" 18 19 #include "lldb/Breakpoint/StoppointCallbackContext.h" 20 #include "lldb/Core/Debugger.h" 21 #include "lldb/Core/DumpDataExtractor.h" 22 #include "lldb/Core/PluginManager.h" 23 #include "lldb/Core/ValueObjectVariable.h" 24 #include "lldb/DataFormatters/DumpValueObjectOptions.h" 25 #include "lldb/Expression/UserExpression.h" 26 #include "lldb/Host/StringConvert.h" 27 #include "lldb/Interpreter/Args.h" 28 #include "lldb/Interpreter/CommandInterpreter.h" 29 #include "lldb/Interpreter/CommandObjectMultiword.h" 30 #include "lldb/Interpreter/CommandReturnObject.h" 31 #include "lldb/Interpreter/Options.h" 32 #include "lldb/Symbol/Function.h" 33 #include "lldb/Symbol/Symbol.h" 34 #include "lldb/Symbol/Type.h" 35 #include "lldb/Symbol/VariableList.h" 36 #include "lldb/Target/Process.h" 37 #include "lldb/Target/RegisterContext.h" 38 #include "lldb/Target/SectionLoadList.h" 39 #include "lldb/Target/Target.h" 40 #include "lldb/Target/Thread.h" 41 #include "lldb/Utility/ConstString.h" 42 #include "lldb/Utility/DataBufferLLVM.h" 43 #include "lldb/Utility/Error.h" 44 #include "lldb/Utility/Log.h" 45 #include "lldb/Utility/RegularExpression.h" 46 47 using namespace lldb; 48 using namespace lldb_private; 49 using namespace lldb_renderscript; 50 51 #define FMT_COORD "(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ")" 52 53 namespace { 54 55 // The empirical_type adds a basic level of validation to arbitrary data 56 // allowing us to track if data has been discovered and stored or not. An 57 // empirical_type will be marked as valid only if it has been explicitly 58 // assigned to. 59 template <typename type_t> class empirical_type { 60 public: 61 // Ctor. Contents is invalid when constructed. 62 empirical_type() : valid(false) {} 63 64 // Return true and copy contents to out if valid, else return false. 65 bool get(type_t &out) const { 66 if (valid) 67 out = data; 68 return valid; 69 } 70 71 // Return a pointer to the contents or nullptr if it was not valid. 72 const type_t *get() const { return valid ? &data : nullptr; } 73 74 // Assign data explicitly. 75 void set(const type_t in) { 76 data = in; 77 valid = true; 78 } 79 80 // Mark contents as invalid. 81 void invalidate() { valid = false; } 82 83 // Returns true if this type contains valid data. 84 bool isValid() const { return valid; } 85 86 // Assignment operator. 87 empirical_type<type_t> &operator=(const type_t in) { 88 set(in); 89 return *this; 90 } 91 92 // Dereference operator returns contents. 93 // Warning: Will assert if not valid so use only when you know data is valid. 94 const type_t &operator*() const { 95 assert(valid); 96 return data; 97 } 98 99 protected: 100 bool valid; 101 type_t data; 102 }; 103 104 // ArgItem is used by the GetArgs() function when reading function arguments 105 // from the target. 106 struct ArgItem { 107 enum { ePointer, eInt32, eInt64, eLong, eBool } type; 108 109 uint64_t value; 110 111 explicit operator uint64_t() const { return value; } 112 }; 113 114 // Context structure to be passed into GetArgsXXX(), argument reading functions 115 // below. 116 struct GetArgsCtx { 117 RegisterContext *reg_ctx; 118 Process *process; 119 }; 120 121 bool GetArgsX86(const GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 122 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 123 124 Error err; 125 126 // get the current stack pointer 127 uint64_t sp = ctx.reg_ctx->GetSP(); 128 129 for (size_t i = 0; i < num_args; ++i) { 130 ArgItem &arg = arg_list[i]; 131 // advance up the stack by one argument 132 sp += sizeof(uint32_t); 133 // get the argument type size 134 size_t arg_size = sizeof(uint32_t); 135 // read the argument from memory 136 arg.value = 0; 137 Error err; 138 size_t read = 139 ctx.process->ReadMemory(sp, &arg.value, sizeof(uint32_t), err); 140 if (read != arg_size || !err.Success()) { 141 if (log) 142 log->Printf("%s - error reading argument: %" PRIu64 " '%s'", 143 __FUNCTION__, uint64_t(i), err.AsCString()); 144 return false; 145 } 146 } 147 return true; 148 } 149 150 bool GetArgsX86_64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 151 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 152 153 // number of arguments passed in registers 154 static const uint32_t args_in_reg = 6; 155 // register passing order 156 static const std::array<const char *, args_in_reg> reg_names{ 157 {"rdi", "rsi", "rdx", "rcx", "r8", "r9"}}; 158 // argument type to size mapping 159 static const std::array<size_t, 5> arg_size{{ 160 8, // ePointer, 161 4, // eInt32, 162 8, // eInt64, 163 8, // eLong, 164 4, // eBool, 165 }}; 166 167 Error err; 168 169 // get the current stack pointer 170 uint64_t sp = ctx.reg_ctx->GetSP(); 171 // step over the return address 172 sp += sizeof(uint64_t); 173 174 // check the stack alignment was correct (16 byte aligned) 175 if ((sp & 0xf) != 0x0) { 176 if (log) 177 log->Printf("%s - stack misaligned", __FUNCTION__); 178 return false; 179 } 180 181 // find the start of arguments on the stack 182 uint64_t sp_offset = 0; 183 for (uint32_t i = args_in_reg; i < num_args; ++i) { 184 sp_offset += arg_size[arg_list[i].type]; 185 } 186 // round up to multiple of 16 187 sp_offset = (sp_offset + 0xf) & 0xf; 188 sp += sp_offset; 189 190 for (size_t i = 0; i < num_args; ++i) { 191 bool success = false; 192 ArgItem &arg = arg_list[i]; 193 // arguments passed in registers 194 if (i < args_in_reg) { 195 const RegisterInfo *reg = 196 ctx.reg_ctx->GetRegisterInfoByName(reg_names[i]); 197 RegisterValue reg_val; 198 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 199 arg.value = reg_val.GetAsUInt64(0, &success); 200 } 201 // arguments passed on the stack 202 else { 203 // get the argument type size 204 const size_t size = arg_size[arg_list[i].type]; 205 // read the argument from memory 206 arg.value = 0; 207 // note: due to little endian layout reading 4 or 8 bytes will give the 208 // correct value. 209 size_t read = ctx.process->ReadMemory(sp, &arg.value, size, err); 210 success = (err.Success() && read == size); 211 // advance past this argument 212 sp -= size; 213 } 214 // fail if we couldn't read this argument 215 if (!success) { 216 if (log) 217 log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s", 218 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 219 return false; 220 } 221 } 222 return true; 223 } 224 225 bool GetArgsArm(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 226 // number of arguments passed in registers 227 static const uint32_t args_in_reg = 4; 228 229 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 230 231 Error err; 232 233 // get the current stack pointer 234 uint64_t sp = ctx.reg_ctx->GetSP(); 235 236 for (size_t i = 0; i < num_args; ++i) { 237 bool success = false; 238 ArgItem &arg = arg_list[i]; 239 // arguments passed in registers 240 if (i < args_in_reg) { 241 const RegisterInfo *reg = ctx.reg_ctx->GetRegisterInfoAtIndex(i); 242 RegisterValue reg_val; 243 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 244 arg.value = reg_val.GetAsUInt32(0, &success); 245 } 246 // arguments passed on the stack 247 else { 248 // get the argument type size 249 const size_t arg_size = sizeof(uint32_t); 250 // clear all 64bits 251 arg.value = 0; 252 // read this argument from memory 253 size_t bytes_read = 254 ctx.process->ReadMemory(sp, &arg.value, arg_size, err); 255 success = (err.Success() && bytes_read == arg_size); 256 // advance the stack pointer 257 sp += sizeof(uint32_t); 258 } 259 // fail if we couldn't read this argument 260 if (!success) { 261 if (log) 262 log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s", 263 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 264 return false; 265 } 266 } 267 return true; 268 } 269 270 bool GetArgsAarch64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 271 // number of arguments passed in registers 272 static const uint32_t args_in_reg = 8; 273 274 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 275 276 for (size_t i = 0; i < num_args; ++i) { 277 bool success = false; 278 ArgItem &arg = arg_list[i]; 279 // arguments passed in registers 280 if (i < args_in_reg) { 281 const RegisterInfo *reg = ctx.reg_ctx->GetRegisterInfoAtIndex(i); 282 RegisterValue reg_val; 283 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 284 arg.value = reg_val.GetAsUInt64(0, &success); 285 } 286 // arguments passed on the stack 287 else { 288 if (log) 289 log->Printf("%s - reading arguments spilled to stack not implemented", 290 __FUNCTION__); 291 } 292 // fail if we couldn't read this argument 293 if (!success) { 294 if (log) 295 log->Printf("%s - error reading argument: %" PRIu64, __FUNCTION__, 296 uint64_t(i)); 297 return false; 298 } 299 } 300 return true; 301 } 302 303 bool GetArgsMipsel(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 304 // number of arguments passed in registers 305 static const uint32_t args_in_reg = 4; 306 // register file offset to first argument 307 static const uint32_t reg_offset = 4; 308 309 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 310 311 Error err; 312 313 // find offset to arguments on the stack (+16 to skip over a0-a3 shadow space) 314 uint64_t sp = ctx.reg_ctx->GetSP() + 16; 315 316 for (size_t i = 0; i < num_args; ++i) { 317 bool success = false; 318 ArgItem &arg = arg_list[i]; 319 // arguments passed in registers 320 if (i < args_in_reg) { 321 const RegisterInfo *reg = 322 ctx.reg_ctx->GetRegisterInfoAtIndex(i + reg_offset); 323 RegisterValue reg_val; 324 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 325 arg.value = reg_val.GetAsUInt64(0, &success); 326 } 327 // arguments passed on the stack 328 else { 329 const size_t arg_size = sizeof(uint32_t); 330 arg.value = 0; 331 size_t bytes_read = 332 ctx.process->ReadMemory(sp, &arg.value, arg_size, err); 333 success = (err.Success() && bytes_read == arg_size); 334 // advance the stack pointer 335 sp += arg_size; 336 } 337 // fail if we couldn't read this argument 338 if (!success) { 339 if (log) 340 log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s", 341 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 342 return false; 343 } 344 } 345 return true; 346 } 347 348 bool GetArgsMips64el(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 349 // number of arguments passed in registers 350 static const uint32_t args_in_reg = 8; 351 // register file offset to first argument 352 static const uint32_t reg_offset = 4; 353 354 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 355 356 Error err; 357 358 // get the current stack pointer 359 uint64_t sp = ctx.reg_ctx->GetSP(); 360 361 for (size_t i = 0; i < num_args; ++i) { 362 bool success = false; 363 ArgItem &arg = arg_list[i]; 364 // arguments passed in registers 365 if (i < args_in_reg) { 366 const RegisterInfo *reg = 367 ctx.reg_ctx->GetRegisterInfoAtIndex(i + reg_offset); 368 RegisterValue reg_val; 369 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 370 arg.value = reg_val.GetAsUInt64(0, &success); 371 } 372 // arguments passed on the stack 373 else { 374 // get the argument type size 375 const size_t arg_size = sizeof(uint64_t); 376 // clear all 64bits 377 arg.value = 0; 378 // read this argument from memory 379 size_t bytes_read = 380 ctx.process->ReadMemory(sp, &arg.value, arg_size, err); 381 success = (err.Success() && bytes_read == arg_size); 382 // advance the stack pointer 383 sp += arg_size; 384 } 385 // fail if we couldn't read this argument 386 if (!success) { 387 if (log) 388 log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s", 389 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 390 return false; 391 } 392 } 393 return true; 394 } 395 396 bool GetArgs(ExecutionContext &exe_ctx, ArgItem *arg_list, size_t num_args) { 397 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 398 399 // verify that we have a target 400 if (!exe_ctx.GetTargetPtr()) { 401 if (log) 402 log->Printf("%s - invalid target", __FUNCTION__); 403 return false; 404 } 405 406 GetArgsCtx ctx = {exe_ctx.GetRegisterContext(), exe_ctx.GetProcessPtr()}; 407 assert(ctx.reg_ctx && ctx.process); 408 409 // dispatch based on architecture 410 switch (exe_ctx.GetTargetPtr()->GetArchitecture().GetMachine()) { 411 case llvm::Triple::ArchType::x86: 412 return GetArgsX86(ctx, arg_list, num_args); 413 414 case llvm::Triple::ArchType::x86_64: 415 return GetArgsX86_64(ctx, arg_list, num_args); 416 417 case llvm::Triple::ArchType::arm: 418 return GetArgsArm(ctx, arg_list, num_args); 419 420 case llvm::Triple::ArchType::aarch64: 421 return GetArgsAarch64(ctx, arg_list, num_args); 422 423 case llvm::Triple::ArchType::mipsel: 424 return GetArgsMipsel(ctx, arg_list, num_args); 425 426 case llvm::Triple::ArchType::mips64el: 427 return GetArgsMips64el(ctx, arg_list, num_args); 428 429 default: 430 // unsupported architecture 431 if (log) { 432 log->Printf( 433 "%s - architecture not supported: '%s'", __FUNCTION__, 434 exe_ctx.GetTargetRef().GetArchitecture().GetArchitectureName()); 435 } 436 return false; 437 } 438 } 439 440 bool IsRenderScriptScriptModule(ModuleSP module) { 441 if (!module) 442 return false; 443 return module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), 444 eSymbolTypeData) != nullptr; 445 } 446 447 bool ParseCoordinate(llvm::StringRef coord_s, RSCoordinate &coord) { 448 // takes an argument of the form 'num[,num][,num]'. 449 // Where 'coord_s' is a comma separated 1,2 or 3-dimensional coordinate 450 // with the whitespace trimmed. 451 // Missing coordinates are defaulted to zero. 452 // If parsing of any elements fails the contents of &coord are undefined 453 // and `false` is returned, `true` otherwise 454 455 RegularExpression regex; 456 RegularExpression::Match regex_match(3); 457 458 bool matched = false; 459 if (regex.Compile(llvm::StringRef("^([0-9]+),([0-9]+),([0-9]+)$")) && 460 regex.Execute(coord_s, ®ex_match)) 461 matched = true; 462 else if (regex.Compile(llvm::StringRef("^([0-9]+),([0-9]+)$")) && 463 regex.Execute(coord_s, ®ex_match)) 464 matched = true; 465 else if (regex.Compile(llvm::StringRef("^([0-9]+)$")) && 466 regex.Execute(coord_s, ®ex_match)) 467 matched = true; 468 469 if (!matched) 470 return false; 471 472 auto get_index = [&](int idx, uint32_t &i) -> bool { 473 std::string group; 474 errno = 0; 475 if (regex_match.GetMatchAtIndex(coord_s.str().c_str(), idx + 1, group)) 476 return !llvm::StringRef(group).getAsInteger<uint32_t>(10, i); 477 return true; 478 }; 479 480 return get_index(0, coord.x) && get_index(1, coord.y) && 481 get_index(2, coord.z); 482 } 483 484 bool SkipPrologue(lldb::ModuleSP &module, Address &addr) { 485 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 486 SymbolContext sc; 487 uint32_t resolved_flags = 488 module->ResolveSymbolContextForAddress(addr, eSymbolContextFunction, sc); 489 if (resolved_flags & eSymbolContextFunction) { 490 if (sc.function) { 491 const uint32_t offset = sc.function->GetPrologueByteSize(); 492 ConstString name = sc.GetFunctionName(); 493 if (offset) 494 addr.Slide(offset); 495 if (log) 496 log->Printf("%s: Prologue offset for %s is %" PRIu32, __FUNCTION__, 497 name.AsCString(), offset); 498 } 499 return true; 500 } else 501 return false; 502 } 503 } // anonymous namespace 504 505 // The ScriptDetails class collects data associated with a single script 506 // instance. 507 struct RenderScriptRuntime::ScriptDetails { 508 ~ScriptDetails() = default; 509 510 enum ScriptType { eScript, eScriptC }; 511 512 // The derived type of the script. 513 empirical_type<ScriptType> type; 514 // The name of the original source file. 515 empirical_type<std::string> res_name; 516 // Path to script .so file on the device. 517 empirical_type<std::string> shared_lib; 518 // Directory where kernel objects are cached on device. 519 empirical_type<std::string> cache_dir; 520 // Pointer to the context which owns this script. 521 empirical_type<lldb::addr_t> context; 522 // Pointer to the script object itself. 523 empirical_type<lldb::addr_t> script; 524 }; 525 526 // This Element class represents the Element object in RS, defining the type 527 // associated with an Allocation. 528 struct RenderScriptRuntime::Element { 529 // Taken from rsDefines.h 530 enum DataKind { 531 RS_KIND_USER, 532 RS_KIND_PIXEL_L = 7, 533 RS_KIND_PIXEL_A, 534 RS_KIND_PIXEL_LA, 535 RS_KIND_PIXEL_RGB, 536 RS_KIND_PIXEL_RGBA, 537 RS_KIND_PIXEL_DEPTH, 538 RS_KIND_PIXEL_YUV, 539 RS_KIND_INVALID = 100 540 }; 541 542 // Taken from rsDefines.h 543 enum DataType { 544 RS_TYPE_NONE = 0, 545 RS_TYPE_FLOAT_16, 546 RS_TYPE_FLOAT_32, 547 RS_TYPE_FLOAT_64, 548 RS_TYPE_SIGNED_8, 549 RS_TYPE_SIGNED_16, 550 RS_TYPE_SIGNED_32, 551 RS_TYPE_SIGNED_64, 552 RS_TYPE_UNSIGNED_8, 553 RS_TYPE_UNSIGNED_16, 554 RS_TYPE_UNSIGNED_32, 555 RS_TYPE_UNSIGNED_64, 556 RS_TYPE_BOOLEAN, 557 558 RS_TYPE_UNSIGNED_5_6_5, 559 RS_TYPE_UNSIGNED_5_5_5_1, 560 RS_TYPE_UNSIGNED_4_4_4_4, 561 562 RS_TYPE_MATRIX_4X4, 563 RS_TYPE_MATRIX_3X3, 564 RS_TYPE_MATRIX_2X2, 565 566 RS_TYPE_ELEMENT = 1000, 567 RS_TYPE_TYPE, 568 RS_TYPE_ALLOCATION, 569 RS_TYPE_SAMPLER, 570 RS_TYPE_SCRIPT, 571 RS_TYPE_MESH, 572 RS_TYPE_PROGRAM_FRAGMENT, 573 RS_TYPE_PROGRAM_VERTEX, 574 RS_TYPE_PROGRAM_RASTER, 575 RS_TYPE_PROGRAM_STORE, 576 RS_TYPE_FONT, 577 578 RS_TYPE_INVALID = 10000 579 }; 580 581 std::vector<Element> children; // Child Element fields for structs 582 empirical_type<lldb::addr_t> 583 element_ptr; // Pointer to the RS Element of the Type 584 empirical_type<DataType> 585 type; // Type of each data pointer stored by the allocation 586 empirical_type<DataKind> 587 type_kind; // Defines pixel type if Allocation is created from an image 588 empirical_type<uint32_t> 589 type_vec_size; // Vector size of each data point, e.g '4' for uchar4 590 empirical_type<uint32_t> field_count; // Number of Subelements 591 empirical_type<uint32_t> datum_size; // Size of a single Element with padding 592 empirical_type<uint32_t> padding; // Number of padding bytes 593 empirical_type<uint32_t> 594 array_size; // Number of items in array, only needed for strucrs 595 ConstString type_name; // Name of type, only needed for structs 596 597 static const ConstString & 598 GetFallbackStructName(); // Print this as the type name of a struct Element 599 // If we can't resolve the actual struct name 600 601 bool ShouldRefresh() const { 602 const bool valid_ptr = element_ptr.isValid() && *element_ptr.get() != 0x0; 603 const bool valid_type = 604 type.isValid() && type_vec_size.isValid() && type_kind.isValid(); 605 return !valid_ptr || !valid_type || !datum_size.isValid(); 606 } 607 }; 608 609 // This AllocationDetails class collects data associated with a single 610 // allocation instance. 611 struct RenderScriptRuntime::AllocationDetails { 612 struct Dimension { 613 uint32_t dim_1; 614 uint32_t dim_2; 615 uint32_t dim_3; 616 uint32_t cube_map; 617 618 Dimension() { 619 dim_1 = 0; 620 dim_2 = 0; 621 dim_3 = 0; 622 cube_map = 0; 623 } 624 }; 625 626 // The FileHeader struct specifies the header we use for writing allocations 627 // to a binary file. Our format begins with the ASCII characters "RSAD", 628 // identifying the file as an allocation dump. Member variables dims and 629 // hdr_size are then written consecutively, immediately followed by an 630 // instance of the ElementHeader struct. Because Elements can contain 631 // subelements, there may be more than one instance of the ElementHeader 632 // struct. With this first instance being the root element, and the other 633 // instances being the root's descendants. To identify which instances are an 634 // ElementHeader's children, each struct is immediately followed by a sequence 635 // of consecutive offsets to the start of its child structs. These offsets are 636 // 4 bytes in size, and the 0 offset signifies no more children. 637 struct FileHeader { 638 uint8_t ident[4]; // ASCII 'RSAD' identifying the file 639 uint32_t dims[3]; // Dimensions 640 uint16_t hdr_size; // Header size in bytes, including all element headers 641 }; 642 643 struct ElementHeader { 644 uint16_t type; // DataType enum 645 uint32_t kind; // DataKind enum 646 uint32_t element_size; // Size of a single element, including padding 647 uint16_t vector_size; // Vector width 648 uint32_t array_size; // Number of elements in array 649 }; 650 651 // Monotonically increasing from 1 652 static uint32_t ID; 653 654 // Maps Allocation DataType enum and vector size to printable strings 655 // using mapping from RenderScript numerical types summary documentation 656 static const char *RsDataTypeToString[][4]; 657 658 // Maps Allocation DataKind enum to printable strings 659 static const char *RsDataKindToString[]; 660 661 // Maps allocation types to format sizes for printing. 662 static const uint32_t RSTypeToFormat[][3]; 663 664 // Give each allocation an ID as a way 665 // for commands to reference it. 666 const uint32_t id; 667 668 // Allocation Element type 669 RenderScriptRuntime::Element element; 670 // Dimensions of the Allocation 671 empirical_type<Dimension> dimension; 672 // Pointer to address of the RS Allocation 673 empirical_type<lldb::addr_t> address; 674 // Pointer to the data held by the Allocation 675 empirical_type<lldb::addr_t> data_ptr; 676 // Pointer to the RS Type of the Allocation 677 empirical_type<lldb::addr_t> type_ptr; 678 // Pointer to the RS Context of the Allocation 679 empirical_type<lldb::addr_t> context; 680 // Size of the allocation 681 empirical_type<uint32_t> size; 682 // Stride between rows of the allocation 683 empirical_type<uint32_t> stride; 684 685 // Give each allocation an id, so we can reference it in user commands. 686 AllocationDetails() : id(ID++) {} 687 688 bool ShouldRefresh() const { 689 bool valid_ptrs = data_ptr.isValid() && *data_ptr.get() != 0x0; 690 valid_ptrs = valid_ptrs && type_ptr.isValid() && *type_ptr.get() != 0x0; 691 return !valid_ptrs || !dimension.isValid() || !size.isValid() || 692 element.ShouldRefresh(); 693 } 694 }; 695 696 const ConstString &RenderScriptRuntime::Element::GetFallbackStructName() { 697 static const ConstString FallbackStructName("struct"); 698 return FallbackStructName; 699 } 700 701 uint32_t RenderScriptRuntime::AllocationDetails::ID = 1; 702 703 const char *RenderScriptRuntime::AllocationDetails::RsDataKindToString[] = { 704 "User", "Undefined", "Undefined", "Undefined", 705 "Undefined", "Undefined", "Undefined", // Enum jumps from 0 to 7 706 "L Pixel", "A Pixel", "LA Pixel", "RGB Pixel", 707 "RGBA Pixel", "Pixel Depth", "YUV Pixel"}; 708 709 const char *RenderScriptRuntime::AllocationDetails::RsDataTypeToString[][4] = { 710 {"None", "None", "None", "None"}, 711 {"half", "half2", "half3", "half4"}, 712 {"float", "float2", "float3", "float4"}, 713 {"double", "double2", "double3", "double4"}, 714 {"char", "char2", "char3", "char4"}, 715 {"short", "short2", "short3", "short4"}, 716 {"int", "int2", "int3", "int4"}, 717 {"long", "long2", "long3", "long4"}, 718 {"uchar", "uchar2", "uchar3", "uchar4"}, 719 {"ushort", "ushort2", "ushort3", "ushort4"}, 720 {"uint", "uint2", "uint3", "uint4"}, 721 {"ulong", "ulong2", "ulong3", "ulong4"}, 722 {"bool", "bool2", "bool3", "bool4"}, 723 {"packed_565", "packed_565", "packed_565", "packed_565"}, 724 {"packed_5551", "packed_5551", "packed_5551", "packed_5551"}, 725 {"packed_4444", "packed_4444", "packed_4444", "packed_4444"}, 726 {"rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4"}, 727 {"rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3"}, 728 {"rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2"}, 729 730 // Handlers 731 {"RS Element", "RS Element", "RS Element", "RS Element"}, 732 {"RS Type", "RS Type", "RS Type", "RS Type"}, 733 {"RS Allocation", "RS Allocation", "RS Allocation", "RS Allocation"}, 734 {"RS Sampler", "RS Sampler", "RS Sampler", "RS Sampler"}, 735 {"RS Script", "RS Script", "RS Script", "RS Script"}, 736 737 // Deprecated 738 {"RS Mesh", "RS Mesh", "RS Mesh", "RS Mesh"}, 739 {"RS Program Fragment", "RS Program Fragment", "RS Program Fragment", 740 "RS Program Fragment"}, 741 {"RS Program Vertex", "RS Program Vertex", "RS Program Vertex", 742 "RS Program Vertex"}, 743 {"RS Program Raster", "RS Program Raster", "RS Program Raster", 744 "RS Program Raster"}, 745 {"RS Program Store", "RS Program Store", "RS Program Store", 746 "RS Program Store"}, 747 {"RS Font", "RS Font", "RS Font", "RS Font"}}; 748 749 // Used as an index into the RSTypeToFormat array elements 750 enum TypeToFormatIndex { eFormatSingle = 0, eFormatVector, eElementSize }; 751 752 // { format enum of single element, format enum of element vector, size of 753 // element} 754 const uint32_t RenderScriptRuntime::AllocationDetails::RSTypeToFormat[][3] = { 755 // RS_TYPE_NONE 756 {eFormatHex, eFormatHex, 1}, 757 // RS_TYPE_FLOAT_16 758 {eFormatFloat, eFormatVectorOfFloat16, 2}, 759 // RS_TYPE_FLOAT_32 760 {eFormatFloat, eFormatVectorOfFloat32, sizeof(float)}, 761 // RS_TYPE_FLOAT_64 762 {eFormatFloat, eFormatVectorOfFloat64, sizeof(double)}, 763 // RS_TYPE_SIGNED_8 764 {eFormatDecimal, eFormatVectorOfSInt8, sizeof(int8_t)}, 765 // RS_TYPE_SIGNED_16 766 {eFormatDecimal, eFormatVectorOfSInt16, sizeof(int16_t)}, 767 // RS_TYPE_SIGNED_32 768 {eFormatDecimal, eFormatVectorOfSInt32, sizeof(int32_t)}, 769 // RS_TYPE_SIGNED_64 770 {eFormatDecimal, eFormatVectorOfSInt64, sizeof(int64_t)}, 771 // RS_TYPE_UNSIGNED_8 772 {eFormatDecimal, eFormatVectorOfUInt8, sizeof(uint8_t)}, 773 // RS_TYPE_UNSIGNED_16 774 {eFormatDecimal, eFormatVectorOfUInt16, sizeof(uint16_t)}, 775 // RS_TYPE_UNSIGNED_32 776 {eFormatDecimal, eFormatVectorOfUInt32, sizeof(uint32_t)}, 777 // RS_TYPE_UNSIGNED_64 778 {eFormatDecimal, eFormatVectorOfUInt64, sizeof(uint64_t)}, 779 // RS_TYPE_BOOL 780 {eFormatBoolean, eFormatBoolean, 1}, 781 // RS_TYPE_UNSIGNED_5_6_5 782 {eFormatHex, eFormatHex, sizeof(uint16_t)}, 783 // RS_TYPE_UNSIGNED_5_5_5_1 784 {eFormatHex, eFormatHex, sizeof(uint16_t)}, 785 // RS_TYPE_UNSIGNED_4_4_4_4 786 {eFormatHex, eFormatHex, sizeof(uint16_t)}, 787 // RS_TYPE_MATRIX_4X4 788 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 16}, 789 // RS_TYPE_MATRIX_3X3 790 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 9}, 791 // RS_TYPE_MATRIX_2X2 792 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 4}}; 793 794 //------------------------------------------------------------------ 795 // Static Functions 796 //------------------------------------------------------------------ 797 LanguageRuntime * 798 RenderScriptRuntime::CreateInstance(Process *process, 799 lldb::LanguageType language) { 800 801 if (language == eLanguageTypeExtRenderScript) 802 return new RenderScriptRuntime(process); 803 else 804 return nullptr; 805 } 806 807 // Callback with a module to search for matching symbols. We first check that 808 // the module contains RS kernels. Then look for a symbol which matches our 809 // kernel name. The breakpoint address is finally set using the address of this 810 // symbol. 811 Searcher::CallbackReturn 812 RSBreakpointResolver::SearchCallback(SearchFilter &filter, 813 SymbolContext &context, Address *, bool) { 814 ModuleSP module = context.module_sp; 815 816 if (!module || !IsRenderScriptScriptModule(module)) 817 return Searcher::eCallbackReturnContinue; 818 819 // Attempt to set a breakpoint on the kernel name symbol within the module 820 // library. If it's not found, it's likely debug info is unavailable - try to 821 // set a breakpoint on <name>.expand. 822 const Symbol *kernel_sym = 823 module->FindFirstSymbolWithNameAndType(m_kernel_name, eSymbolTypeCode); 824 if (!kernel_sym) { 825 std::string kernel_name_expanded(m_kernel_name.AsCString()); 826 kernel_name_expanded.append(".expand"); 827 kernel_sym = module->FindFirstSymbolWithNameAndType( 828 ConstString(kernel_name_expanded.c_str()), eSymbolTypeCode); 829 } 830 831 if (kernel_sym) { 832 Address bp_addr = kernel_sym->GetAddress(); 833 if (filter.AddressPasses(bp_addr)) 834 m_breakpoint->AddLocation(bp_addr); 835 } 836 837 return Searcher::eCallbackReturnContinue; 838 } 839 840 Searcher::CallbackReturn 841 RSReduceBreakpointResolver::SearchCallback(lldb_private::SearchFilter &filter, 842 lldb_private::SymbolContext &context, 843 Address *, bool) { 844 // We need to have access to the list of reductions currently parsed, as 845 // reduce names don't actually exist as 846 // symbols in a module. They are only identifiable by parsing the .rs.info 847 // packet, or finding the expand symbol. We 848 // therefore need access to the list of parsed rs modules to properly resolve 849 // reduction names. 850 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 851 ModuleSP module = context.module_sp; 852 853 if (!module || !IsRenderScriptScriptModule(module)) 854 return Searcher::eCallbackReturnContinue; 855 856 if (!m_rsmodules) 857 return Searcher::eCallbackReturnContinue; 858 859 for (const auto &module_desc : *m_rsmodules) { 860 if (module_desc->m_module != module) 861 continue; 862 863 for (const auto &reduction : module_desc->m_reductions) { 864 if (reduction.m_reduce_name != m_reduce_name) 865 continue; 866 867 std::array<std::pair<ConstString, int>, 5> funcs{ 868 {{reduction.m_init_name, eKernelTypeInit}, 869 {reduction.m_accum_name, eKernelTypeAccum}, 870 {reduction.m_comb_name, eKernelTypeComb}, 871 {reduction.m_outc_name, eKernelTypeOutC}, 872 {reduction.m_halter_name, eKernelTypeHalter}}}; 873 874 for (const auto &kernel : funcs) { 875 // Skip constituent functions that don't match our spec 876 if (!(m_kernel_types & kernel.second)) 877 continue; 878 879 const auto kernel_name = kernel.first; 880 const auto symbol = module->FindFirstSymbolWithNameAndType( 881 kernel_name, eSymbolTypeCode); 882 if (!symbol) 883 continue; 884 885 auto address = symbol->GetAddress(); 886 if (filter.AddressPasses(address)) { 887 bool new_bp; 888 if (!SkipPrologue(module, address)) { 889 if (log) 890 log->Printf("%s: Error trying to skip prologue", __FUNCTION__); 891 } 892 m_breakpoint->AddLocation(address, &new_bp); 893 if (log) 894 log->Printf("%s: %s reduction breakpoint on %s in %s", __FUNCTION__, 895 new_bp ? "new" : "existing", kernel_name.GetCString(), 896 address.GetModule()->GetFileSpec().GetCString()); 897 } 898 } 899 } 900 } 901 return eCallbackReturnContinue; 902 } 903 904 Searcher::CallbackReturn RSScriptGroupBreakpointResolver::SearchCallback( 905 SearchFilter &filter, SymbolContext &context, Address *addr, 906 bool containing) { 907 908 if (!m_breakpoint) 909 return eCallbackReturnContinue; 910 911 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 912 ModuleSP &module = context.module_sp; 913 914 if (!module || !IsRenderScriptScriptModule(module)) 915 return Searcher::eCallbackReturnContinue; 916 917 std::vector<std::string> names; 918 m_breakpoint->GetNames(names); 919 if (names.empty()) 920 return eCallbackReturnContinue; 921 922 for (auto &name : names) { 923 const RSScriptGroupDescriptorSP sg = FindScriptGroup(ConstString(name)); 924 if (!sg) { 925 if (log) 926 log->Printf("%s: could not find script group for %s", __FUNCTION__, 927 name.c_str()); 928 continue; 929 } 930 931 if (log) 932 log->Printf("%s: Found ScriptGroup for %s", __FUNCTION__, name.c_str()); 933 934 for (const RSScriptGroupDescriptor::Kernel &k : sg->m_kernels) { 935 if (log) { 936 log->Printf("%s: Adding breakpoint for %s", __FUNCTION__, 937 k.m_name.AsCString()); 938 log->Printf("%s: Kernel address 0x%" PRIx64, __FUNCTION__, k.m_addr); 939 } 940 941 const lldb_private::Symbol *sym = 942 module->FindFirstSymbolWithNameAndType(k.m_name, eSymbolTypeCode); 943 if (!sym) { 944 if (log) 945 log->Printf("%s: Unable to find symbol for %s", __FUNCTION__, 946 k.m_name.AsCString()); 947 continue; 948 } 949 950 if (log) { 951 log->Printf("%s: Found symbol name is %s", __FUNCTION__, 952 sym->GetName().AsCString()); 953 } 954 955 auto address = sym->GetAddress(); 956 if (!SkipPrologue(module, address)) { 957 if (log) 958 log->Printf("%s: Error trying to skip prologue", __FUNCTION__); 959 } 960 961 bool new_bp; 962 m_breakpoint->AddLocation(address, &new_bp); 963 964 if (log) 965 log->Printf("%s: Placed %sbreakpoint on %s", __FUNCTION__, 966 new_bp ? "new " : "", k.m_name.AsCString()); 967 968 // exit after placing the first breakpoint if we do not intend to stop 969 // on all kernels making up this script group 970 if (!m_stop_on_all) 971 break; 972 } 973 } 974 975 return eCallbackReturnContinue; 976 } 977 978 void RenderScriptRuntime::Initialize() { 979 PluginManager::RegisterPlugin(GetPluginNameStatic(), 980 "RenderScript language support", CreateInstance, 981 GetCommandObject); 982 } 983 984 void RenderScriptRuntime::Terminate() { 985 PluginManager::UnregisterPlugin(CreateInstance); 986 } 987 988 lldb_private::ConstString RenderScriptRuntime::GetPluginNameStatic() { 989 static ConstString plugin_name("renderscript"); 990 return plugin_name; 991 } 992 993 RenderScriptRuntime::ModuleKind 994 RenderScriptRuntime::GetModuleKind(const lldb::ModuleSP &module_sp) { 995 if (module_sp) { 996 if (IsRenderScriptScriptModule(module_sp)) 997 return eModuleKindKernelObj; 998 999 // Is this the main RS runtime library 1000 const ConstString rs_lib("libRS.so"); 1001 if (module_sp->GetFileSpec().GetFilename() == rs_lib) { 1002 return eModuleKindLibRS; 1003 } 1004 1005 const ConstString rs_driverlib("libRSDriver.so"); 1006 if (module_sp->GetFileSpec().GetFilename() == rs_driverlib) { 1007 return eModuleKindDriver; 1008 } 1009 1010 const ConstString rs_cpureflib("libRSCpuRef.so"); 1011 if (module_sp->GetFileSpec().GetFilename() == rs_cpureflib) { 1012 return eModuleKindImpl; 1013 } 1014 } 1015 return eModuleKindIgnored; 1016 } 1017 1018 bool RenderScriptRuntime::IsRenderScriptModule( 1019 const lldb::ModuleSP &module_sp) { 1020 return GetModuleKind(module_sp) != eModuleKindIgnored; 1021 } 1022 1023 void RenderScriptRuntime::ModulesDidLoad(const ModuleList &module_list) { 1024 std::lock_guard<std::recursive_mutex> guard(module_list.GetMutex()); 1025 1026 size_t num_modules = module_list.GetSize(); 1027 for (size_t i = 0; i < num_modules; i++) { 1028 auto mod = module_list.GetModuleAtIndex(i); 1029 if (IsRenderScriptModule(mod)) { 1030 LoadModule(mod); 1031 } 1032 } 1033 } 1034 1035 //------------------------------------------------------------------ 1036 // PluginInterface protocol 1037 //------------------------------------------------------------------ 1038 lldb_private::ConstString RenderScriptRuntime::GetPluginName() { 1039 return GetPluginNameStatic(); 1040 } 1041 1042 uint32_t RenderScriptRuntime::GetPluginVersion() { return 1; } 1043 1044 bool RenderScriptRuntime::IsVTableName(const char *name) { return false; } 1045 1046 bool RenderScriptRuntime::GetDynamicTypeAndAddress( 1047 ValueObject &in_value, lldb::DynamicValueType use_dynamic, 1048 TypeAndOrName &class_type_or_name, Address &address, 1049 Value::ValueType &value_type) { 1050 return false; 1051 } 1052 1053 TypeAndOrName 1054 RenderScriptRuntime::FixUpDynamicType(const TypeAndOrName &type_and_or_name, 1055 ValueObject &static_value) { 1056 return type_and_or_name; 1057 } 1058 1059 bool RenderScriptRuntime::CouldHaveDynamicValue(ValueObject &in_value) { 1060 return false; 1061 } 1062 1063 lldb::BreakpointResolverSP 1064 RenderScriptRuntime::CreateExceptionResolver(Breakpoint *bp, bool catch_bp, 1065 bool throw_bp) { 1066 BreakpointResolverSP resolver_sp; 1067 return resolver_sp; 1068 } 1069 1070 const RenderScriptRuntime::HookDefn RenderScriptRuntime::s_runtimeHookDefns[] = 1071 { 1072 // rsdScript 1073 {"rsdScriptInit", "_Z13rsdScriptInitPKN7android12renderscript7ContextEP" 1074 "NS0_7ScriptCEPKcS7_PKhjj", 1075 "_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_" 1076 "7ScriptCEPKcS7_PKhmj", 1077 0, RenderScriptRuntime::eModuleKindDriver, 1078 &lldb_private::RenderScriptRuntime::CaptureScriptInit}, 1079 {"rsdScriptInvokeForEachMulti", 1080 "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0" 1081 "_6ScriptEjPPKNS0_10AllocationEjPS6_PKvjPK12RsScriptCall", 1082 "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0" 1083 "_6ScriptEjPPKNS0_10AllocationEmPS6_PKvmPK12RsScriptCall", 1084 0, RenderScriptRuntime::eModuleKindDriver, 1085 &lldb_private::RenderScriptRuntime::CaptureScriptInvokeForEachMulti}, 1086 {"rsdScriptSetGlobalVar", "_Z21rsdScriptSetGlobalVarPKN7android12render" 1087 "script7ContextEPKNS0_6ScriptEjPvj", 1088 "_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_" 1089 "6ScriptEjPvm", 1090 0, RenderScriptRuntime::eModuleKindDriver, 1091 &lldb_private::RenderScriptRuntime::CaptureSetGlobalVar}, 1092 1093 // rsdAllocation 1094 {"rsdAllocationInit", "_Z17rsdAllocationInitPKN7android12renderscript7C" 1095 "ontextEPNS0_10AllocationEb", 1096 "_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_" 1097 "10AllocationEb", 1098 0, RenderScriptRuntime::eModuleKindDriver, 1099 &lldb_private::RenderScriptRuntime::CaptureAllocationInit}, 1100 {"rsdAllocationRead2D", 1101 "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_" 1102 "10AllocationEjjj23RsAllocationCubemapFacejjPvjj", 1103 "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_" 1104 "10AllocationEjjj23RsAllocationCubemapFacejjPvmm", 1105 0, RenderScriptRuntime::eModuleKindDriver, nullptr}, 1106 {"rsdAllocationDestroy", "_Z20rsdAllocationDestroyPKN7android12rendersc" 1107 "ript7ContextEPNS0_10AllocationE", 1108 "_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_" 1109 "10AllocationE", 1110 0, RenderScriptRuntime::eModuleKindDriver, 1111 &lldb_private::RenderScriptRuntime::CaptureAllocationDestroy}, 1112 1113 // renderscript script groups 1114 {"rsdDebugHintScriptGroup2", "_ZN7android12renderscript21debugHintScrip" 1115 "tGroup2EPKcjPKPFvPK24RsExpandKernelDriver" 1116 "InfojjjEj", 1117 "_ZN7android12renderscript21debugHintScriptGroup2EPKcjPKPFvPK24RsExpan" 1118 "dKernelDriverInfojjjEj", 1119 0, RenderScriptRuntime::eModuleKindImpl, 1120 &lldb_private::RenderScriptRuntime::CaptureDebugHintScriptGroup2}}; 1121 1122 const size_t RenderScriptRuntime::s_runtimeHookCount = 1123 sizeof(s_runtimeHookDefns) / sizeof(s_runtimeHookDefns[0]); 1124 1125 bool RenderScriptRuntime::HookCallback(void *baton, 1126 StoppointCallbackContext *ctx, 1127 lldb::user_id_t break_id, 1128 lldb::user_id_t break_loc_id) { 1129 RuntimeHook *hook = (RuntimeHook *)baton; 1130 ExecutionContext exe_ctx(ctx->exe_ctx_ref); 1131 1132 RenderScriptRuntime *lang_rt = 1133 (RenderScriptRuntime *)exe_ctx.GetProcessPtr()->GetLanguageRuntime( 1134 eLanguageTypeExtRenderScript); 1135 1136 lang_rt->HookCallback(hook, exe_ctx); 1137 1138 return false; 1139 } 1140 1141 void RenderScriptRuntime::HookCallback(RuntimeHook *hook, 1142 ExecutionContext &exe_ctx) { 1143 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1144 1145 if (log) 1146 log->Printf("%s - '%s'", __FUNCTION__, hook->defn->name); 1147 1148 if (hook->defn->grabber) { 1149 (this->*(hook->defn->grabber))(hook, exe_ctx); 1150 } 1151 } 1152 1153 void RenderScriptRuntime::CaptureDebugHintScriptGroup2( 1154 RuntimeHook *hook_info, ExecutionContext &context) { 1155 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1156 1157 enum { 1158 eGroupName = 0, 1159 eGroupNameSize, 1160 eKernel, 1161 eKernelCount, 1162 }; 1163 1164 std::array<ArgItem, 4> args{{ 1165 {ArgItem::ePointer, 0}, // const char *groupName 1166 {ArgItem::eInt32, 0}, // const uint32_t groupNameSize 1167 {ArgItem::ePointer, 0}, // const ExpandFuncTy *kernel 1168 {ArgItem::eInt32, 0}, // const uint32_t kernelCount 1169 }}; 1170 1171 if (!GetArgs(context, args.data(), args.size())) { 1172 if (log) 1173 log->Printf("%s - Error while reading the function parameters", 1174 __FUNCTION__); 1175 return; 1176 } else if (log) { 1177 log->Printf("%s - groupName : 0x%" PRIx64, __FUNCTION__, 1178 addr_t(args[eGroupName])); 1179 log->Printf("%s - groupNameSize: %" PRIu64, __FUNCTION__, 1180 uint64_t(args[eGroupNameSize])); 1181 log->Printf("%s - kernel : 0x%" PRIx64, __FUNCTION__, 1182 addr_t(args[eKernel])); 1183 log->Printf("%s - kernelCount : %" PRIu64, __FUNCTION__, 1184 uint64_t(args[eKernelCount])); 1185 } 1186 1187 // parse script group name 1188 ConstString group_name; 1189 { 1190 Error err; 1191 const uint64_t len = uint64_t(args[eGroupNameSize]); 1192 std::unique_ptr<char[]> buffer(new char[uint32_t(len + 1)]); 1193 m_process->ReadMemory(addr_t(args[eGroupName]), buffer.get(), len, err); 1194 buffer.get()[len] = '\0'; 1195 if (!err.Success()) { 1196 if (log) 1197 log->Printf("Error reading scriptgroup name from target"); 1198 return; 1199 } else { 1200 if (log) 1201 log->Printf("Extracted scriptgroup name %s", buffer.get()); 1202 } 1203 // write back the script group name 1204 group_name.SetCString(buffer.get()); 1205 } 1206 1207 // create or access existing script group 1208 RSScriptGroupDescriptorSP group; 1209 { 1210 // search for existing script group 1211 for (auto sg : m_scriptGroups) { 1212 if (sg->m_name == group_name) { 1213 group = sg; 1214 break; 1215 } 1216 } 1217 if (!group) { 1218 group.reset(new RSScriptGroupDescriptor); 1219 group->m_name = group_name; 1220 m_scriptGroups.push_back(group); 1221 } else { 1222 // already have this script group 1223 if (log) 1224 log->Printf("Attempt to add duplicate script group %s", 1225 group_name.AsCString()); 1226 return; 1227 } 1228 } 1229 assert(group); 1230 1231 const uint32_t target_ptr_size = m_process->GetAddressByteSize(); 1232 std::vector<addr_t> kernels; 1233 // parse kernel addresses in script group 1234 for (uint64_t i = 0; i < uint64_t(args[eKernelCount]); ++i) { 1235 RSScriptGroupDescriptor::Kernel kernel; 1236 // extract script group kernel addresses from the target 1237 const addr_t ptr_addr = addr_t(args[eKernel]) + i * target_ptr_size; 1238 uint64_t kernel_addr = 0; 1239 Error err; 1240 size_t read = 1241 m_process->ReadMemory(ptr_addr, &kernel_addr, target_ptr_size, err); 1242 if (!err.Success() || read != target_ptr_size) { 1243 if (log) 1244 log->Printf("Error parsing kernel address %" PRIu64 " in script group", 1245 i); 1246 return; 1247 } 1248 if (log) 1249 log->Printf("Extracted scriptgroup kernel address - 0x%" PRIx64, 1250 kernel_addr); 1251 kernel.m_addr = kernel_addr; 1252 1253 // try to resolve the associated kernel name 1254 if (!ResolveKernelName(kernel.m_addr, kernel.m_name)) { 1255 if (log) 1256 log->Printf("Parsed scriptgroup kernel %" PRIu64 " - 0x%" PRIx64, i, 1257 kernel_addr); 1258 return; 1259 } 1260 1261 // try to find the non '.expand' function 1262 { 1263 const llvm::StringRef expand(".expand"); 1264 const llvm::StringRef name_ref = kernel.m_name.GetStringRef(); 1265 if (name_ref.endswith(expand)) { 1266 const ConstString base_kernel(name_ref.drop_back(expand.size())); 1267 // verify this function is a valid kernel 1268 if (IsKnownKernel(base_kernel)) { 1269 kernel.m_name = base_kernel; 1270 if (log) 1271 log->Printf("%s - found non expand version '%s'", __FUNCTION__, 1272 base_kernel.GetCString()); 1273 } 1274 } 1275 } 1276 // add to a list of script group kernels we know about 1277 group->m_kernels.push_back(kernel); 1278 } 1279 1280 // Resolve any pending scriptgroup breakpoints 1281 { 1282 Target &target = m_process->GetTarget(); 1283 const BreakpointList &list = target.GetBreakpointList(); 1284 const size_t num_breakpoints = list.GetSize(); 1285 if (log) 1286 log->Printf("Resolving %zu breakpoints", num_breakpoints); 1287 for (size_t i = 0; i < num_breakpoints; ++i) { 1288 const BreakpointSP bp = list.GetBreakpointAtIndex(i); 1289 if (bp) { 1290 if (bp->MatchesName(group_name.AsCString())) { 1291 if (log) 1292 log->Printf("Found breakpoint with name %s", 1293 group_name.AsCString()); 1294 bp->ResolveBreakpoint(); 1295 } 1296 } 1297 } 1298 } 1299 } 1300 1301 void RenderScriptRuntime::CaptureScriptInvokeForEachMulti( 1302 RuntimeHook *hook, ExecutionContext &exe_ctx) { 1303 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1304 1305 enum { 1306 eRsContext = 0, 1307 eRsScript, 1308 eRsSlot, 1309 eRsAIns, 1310 eRsInLen, 1311 eRsAOut, 1312 eRsUsr, 1313 eRsUsrLen, 1314 eRsSc, 1315 }; 1316 1317 std::array<ArgItem, 9> args{{ 1318 ArgItem{ArgItem::ePointer, 0}, // const Context *rsc 1319 ArgItem{ArgItem::ePointer, 0}, // Script *s 1320 ArgItem{ArgItem::eInt32, 0}, // uint32_t slot 1321 ArgItem{ArgItem::ePointer, 0}, // const Allocation **aIns 1322 ArgItem{ArgItem::eInt32, 0}, // size_t inLen 1323 ArgItem{ArgItem::ePointer, 0}, // Allocation *aout 1324 ArgItem{ArgItem::ePointer, 0}, // const void *usr 1325 ArgItem{ArgItem::eInt32, 0}, // size_t usrLen 1326 ArgItem{ArgItem::ePointer, 0}, // const RsScriptCall *sc 1327 }}; 1328 1329 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1330 if (!success) { 1331 if (log) 1332 log->Printf("%s - Error while reading the function parameters", 1333 __FUNCTION__); 1334 return; 1335 } 1336 1337 const uint32_t target_ptr_size = m_process->GetAddressByteSize(); 1338 Error err; 1339 std::vector<uint64_t> allocs; 1340 1341 // traverse allocation list 1342 for (uint64_t i = 0; i < uint64_t(args[eRsInLen]); ++i) { 1343 // calculate offest to allocation pointer 1344 const addr_t addr = addr_t(args[eRsAIns]) + i * target_ptr_size; 1345 1346 // Note: due to little endian layout, reading 32bits or 64bits into res 1347 // will give the correct results. 1348 uint64_t result = 0; 1349 size_t read = m_process->ReadMemory(addr, &result, target_ptr_size, err); 1350 if (read != target_ptr_size || !err.Success()) { 1351 if (log) 1352 log->Printf( 1353 "%s - Error while reading allocation list argument %" PRIu64, 1354 __FUNCTION__, i); 1355 } else { 1356 allocs.push_back(result); 1357 } 1358 } 1359 1360 // if there is an output allocation track it 1361 if (uint64_t alloc_out = uint64_t(args[eRsAOut])) { 1362 allocs.push_back(alloc_out); 1363 } 1364 1365 // for all allocations we have found 1366 for (const uint64_t alloc_addr : allocs) { 1367 AllocationDetails *alloc = LookUpAllocation(alloc_addr); 1368 if (!alloc) 1369 alloc = CreateAllocation(alloc_addr); 1370 1371 if (alloc) { 1372 // save the allocation address 1373 if (alloc->address.isValid()) { 1374 // check the allocation address we already have matches 1375 assert(*alloc->address.get() == alloc_addr); 1376 } else { 1377 alloc->address = alloc_addr; 1378 } 1379 1380 // save the context 1381 if (log) { 1382 if (alloc->context.isValid() && 1383 *alloc->context.get() != addr_t(args[eRsContext])) 1384 log->Printf("%s - Allocation used by multiple contexts", 1385 __FUNCTION__); 1386 } 1387 alloc->context = addr_t(args[eRsContext]); 1388 } 1389 } 1390 1391 // make sure we track this script object 1392 if (lldb_private::RenderScriptRuntime::ScriptDetails *script = 1393 LookUpScript(addr_t(args[eRsScript]), true)) { 1394 if (log) { 1395 if (script->context.isValid() && 1396 *script->context.get() != addr_t(args[eRsContext])) 1397 log->Printf("%s - Script used by multiple contexts", __FUNCTION__); 1398 } 1399 script->context = addr_t(args[eRsContext]); 1400 } 1401 } 1402 1403 void RenderScriptRuntime::CaptureSetGlobalVar(RuntimeHook *hook, 1404 ExecutionContext &context) { 1405 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1406 1407 enum { 1408 eRsContext, 1409 eRsScript, 1410 eRsId, 1411 eRsData, 1412 eRsLength, 1413 }; 1414 1415 std::array<ArgItem, 5> args{{ 1416 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1417 ArgItem{ArgItem::ePointer, 0}, // eRsScript 1418 ArgItem{ArgItem::eInt32, 0}, // eRsId 1419 ArgItem{ArgItem::ePointer, 0}, // eRsData 1420 ArgItem{ArgItem::eInt32, 0}, // eRsLength 1421 }}; 1422 1423 bool success = GetArgs(context, &args[0], args.size()); 1424 if (!success) { 1425 if (log) 1426 log->Printf("%s - error reading the function parameters.", __FUNCTION__); 1427 return; 1428 } 1429 1430 if (log) { 1431 log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " slot %" PRIu64 " = 0x%" PRIx64 1432 ":%" PRIu64 "bytes.", 1433 __FUNCTION__, uint64_t(args[eRsContext]), 1434 uint64_t(args[eRsScript]), uint64_t(args[eRsId]), 1435 uint64_t(args[eRsData]), uint64_t(args[eRsLength])); 1436 1437 addr_t script_addr = addr_t(args[eRsScript]); 1438 if (m_scriptMappings.find(script_addr) != m_scriptMappings.end()) { 1439 auto rsm = m_scriptMappings[script_addr]; 1440 if (uint64_t(args[eRsId]) < rsm->m_globals.size()) { 1441 auto rsg = rsm->m_globals[uint64_t(args[eRsId])]; 1442 log->Printf("%s - Setting of '%s' within '%s' inferred", __FUNCTION__, 1443 rsg.m_name.AsCString(), 1444 rsm->m_module->GetFileSpec().GetFilename().AsCString()); 1445 } 1446 } 1447 } 1448 } 1449 1450 void RenderScriptRuntime::CaptureAllocationInit(RuntimeHook *hook, 1451 ExecutionContext &exe_ctx) { 1452 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1453 1454 enum { eRsContext, eRsAlloc, eRsForceZero }; 1455 1456 std::array<ArgItem, 3> args{{ 1457 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1458 ArgItem{ArgItem::ePointer, 0}, // eRsAlloc 1459 ArgItem{ArgItem::eBool, 0}, // eRsForceZero 1460 }}; 1461 1462 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1463 if (!success) { 1464 if (log) 1465 log->Printf("%s - error while reading the function parameters", 1466 __FUNCTION__); 1467 return; 1468 } 1469 1470 if (log) 1471 log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 ",0x%" PRIx64 " .", 1472 __FUNCTION__, uint64_t(args[eRsContext]), 1473 uint64_t(args[eRsAlloc]), uint64_t(args[eRsForceZero])); 1474 1475 AllocationDetails *alloc = CreateAllocation(uint64_t(args[eRsAlloc])); 1476 if (alloc) 1477 alloc->context = uint64_t(args[eRsContext]); 1478 } 1479 1480 void RenderScriptRuntime::CaptureAllocationDestroy(RuntimeHook *hook, 1481 ExecutionContext &exe_ctx) { 1482 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1483 1484 enum { 1485 eRsContext, 1486 eRsAlloc, 1487 }; 1488 1489 std::array<ArgItem, 2> args{{ 1490 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1491 ArgItem{ArgItem::ePointer, 0}, // eRsAlloc 1492 }}; 1493 1494 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1495 if (!success) { 1496 if (log) 1497 log->Printf("%s - error while reading the function parameters.", 1498 __FUNCTION__); 1499 return; 1500 } 1501 1502 if (log) 1503 log->Printf("%s - 0x%" PRIx64 ", 0x%" PRIx64 ".", __FUNCTION__, 1504 uint64_t(args[eRsContext]), uint64_t(args[eRsAlloc])); 1505 1506 for (auto iter = m_allocations.begin(); iter != m_allocations.end(); ++iter) { 1507 auto &allocation_ap = *iter; // get the unique pointer 1508 if (allocation_ap->address.isValid() && 1509 *allocation_ap->address.get() == addr_t(args[eRsAlloc])) { 1510 m_allocations.erase(iter); 1511 if (log) 1512 log->Printf("%s - deleted allocation entry.", __FUNCTION__); 1513 return; 1514 } 1515 } 1516 1517 if (log) 1518 log->Printf("%s - couldn't find destroyed allocation.", __FUNCTION__); 1519 } 1520 1521 void RenderScriptRuntime::CaptureScriptInit(RuntimeHook *hook, 1522 ExecutionContext &exe_ctx) { 1523 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1524 1525 Error err; 1526 Process *process = exe_ctx.GetProcessPtr(); 1527 1528 enum { eRsContext, eRsScript, eRsResNamePtr, eRsCachedDirPtr }; 1529 1530 std::array<ArgItem, 4> args{ 1531 {ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}, 1532 ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}}}; 1533 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1534 if (!success) { 1535 if (log) 1536 log->Printf("%s - error while reading the function parameters.", 1537 __FUNCTION__); 1538 return; 1539 } 1540 1541 std::string res_name; 1542 process->ReadCStringFromMemory(addr_t(args[eRsResNamePtr]), res_name, err); 1543 if (err.Fail()) { 1544 if (log) 1545 log->Printf("%s - error reading res_name: %s.", __FUNCTION__, 1546 err.AsCString()); 1547 } 1548 1549 std::string cache_dir; 1550 process->ReadCStringFromMemory(addr_t(args[eRsCachedDirPtr]), cache_dir, err); 1551 if (err.Fail()) { 1552 if (log) 1553 log->Printf("%s - error reading cache_dir: %s.", __FUNCTION__, 1554 err.AsCString()); 1555 } 1556 1557 if (log) 1558 log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " => '%s' at '%s' .", 1559 __FUNCTION__, uint64_t(args[eRsContext]), 1560 uint64_t(args[eRsScript]), res_name.c_str(), cache_dir.c_str()); 1561 1562 if (res_name.size() > 0) { 1563 StreamString strm; 1564 strm.Printf("librs.%s.so", res_name.c_str()); 1565 1566 ScriptDetails *script = LookUpScript(addr_t(args[eRsScript]), true); 1567 if (script) { 1568 script->type = ScriptDetails::eScriptC; 1569 script->cache_dir = cache_dir; 1570 script->res_name = res_name; 1571 script->shared_lib = strm.GetString(); 1572 script->context = addr_t(args[eRsContext]); 1573 } 1574 1575 if (log) 1576 log->Printf("%s - '%s' tagged with context 0x%" PRIx64 1577 " and script 0x%" PRIx64 ".", 1578 __FUNCTION__, strm.GetData(), uint64_t(args[eRsContext]), 1579 uint64_t(args[eRsScript])); 1580 } else if (log) { 1581 log->Printf("%s - resource name invalid, Script not tagged.", __FUNCTION__); 1582 } 1583 } 1584 1585 void RenderScriptRuntime::LoadRuntimeHooks(lldb::ModuleSP module, 1586 ModuleKind kind) { 1587 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1588 1589 if (!module) { 1590 return; 1591 } 1592 1593 Target &target = GetProcess()->GetTarget(); 1594 const llvm::Triple::ArchType machine = target.GetArchitecture().GetMachine(); 1595 1596 if (machine != llvm::Triple::ArchType::x86 && 1597 machine != llvm::Triple::ArchType::arm && 1598 machine != llvm::Triple::ArchType::aarch64 && 1599 machine != llvm::Triple::ArchType::mipsel && 1600 machine != llvm::Triple::ArchType::mips64el && 1601 machine != llvm::Triple::ArchType::x86_64) { 1602 if (log) 1603 log->Printf("%s - unable to hook runtime functions.", __FUNCTION__); 1604 return; 1605 } 1606 1607 const uint32_t target_ptr_size = 1608 target.GetArchitecture().GetAddressByteSize(); 1609 1610 std::array<bool, s_runtimeHookCount> hook_placed; 1611 hook_placed.fill(false); 1612 1613 for (size_t idx = 0; idx < s_runtimeHookCount; idx++) { 1614 const HookDefn *hook_defn = &s_runtimeHookDefns[idx]; 1615 if (hook_defn->kind != kind) { 1616 continue; 1617 } 1618 1619 const char *symbol_name = (target_ptr_size == 4) 1620 ? hook_defn->symbol_name_m32 1621 : hook_defn->symbol_name_m64; 1622 1623 const Symbol *sym = module->FindFirstSymbolWithNameAndType( 1624 ConstString(symbol_name), eSymbolTypeCode); 1625 if (!sym) { 1626 if (log) { 1627 log->Printf("%s - symbol '%s' related to the function %s not found", 1628 __FUNCTION__, symbol_name, hook_defn->name); 1629 } 1630 continue; 1631 } 1632 1633 addr_t addr = sym->GetLoadAddress(&target); 1634 if (addr == LLDB_INVALID_ADDRESS) { 1635 if (log) 1636 log->Printf("%s - unable to resolve the address of hook function '%s' " 1637 "with symbol '%s'.", 1638 __FUNCTION__, hook_defn->name, symbol_name); 1639 continue; 1640 } else { 1641 if (log) 1642 log->Printf("%s - function %s, address resolved at 0x%" PRIx64, 1643 __FUNCTION__, hook_defn->name, addr); 1644 } 1645 1646 RuntimeHookSP hook(new RuntimeHook()); 1647 hook->address = addr; 1648 hook->defn = hook_defn; 1649 hook->bp_sp = target.CreateBreakpoint(addr, true, false); 1650 hook->bp_sp->SetCallback(HookCallback, hook.get(), true); 1651 m_runtimeHooks[addr] = hook; 1652 if (log) { 1653 log->Printf("%s - successfully hooked '%s' in '%s' version %" PRIu64 1654 " at 0x%" PRIx64 ".", 1655 __FUNCTION__, hook_defn->name, 1656 module->GetFileSpec().GetFilename().AsCString(), 1657 (uint64_t)hook_defn->version, (uint64_t)addr); 1658 } 1659 hook_placed[idx] = true; 1660 } 1661 1662 // log any unhooked function 1663 if (log) { 1664 for (size_t i = 0; i < hook_placed.size(); ++i) { 1665 if (hook_placed[i]) 1666 continue; 1667 const HookDefn &hook_defn = s_runtimeHookDefns[i]; 1668 if (hook_defn.kind != kind) 1669 continue; 1670 log->Printf("%s - function %s was not hooked", __FUNCTION__, 1671 hook_defn.name); 1672 } 1673 } 1674 } 1675 1676 void RenderScriptRuntime::FixupScriptDetails(RSModuleDescriptorSP rsmodule_sp) { 1677 if (!rsmodule_sp) 1678 return; 1679 1680 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1681 1682 const ModuleSP module = rsmodule_sp->m_module; 1683 const FileSpec &file = module->GetPlatformFileSpec(); 1684 1685 // Iterate over all of the scripts that we currently know of. 1686 // Note: We cant push or pop to m_scripts here or it may invalidate rs_script. 1687 for (const auto &rs_script : m_scripts) { 1688 // Extract the expected .so file path for this script. 1689 std::string shared_lib; 1690 if (!rs_script->shared_lib.get(shared_lib)) 1691 continue; 1692 1693 // Only proceed if the module that has loaded corresponds to this script. 1694 if (file.GetFilename() != ConstString(shared_lib.c_str())) 1695 continue; 1696 1697 // Obtain the script address which we use as a key. 1698 lldb::addr_t script; 1699 if (!rs_script->script.get(script)) 1700 continue; 1701 1702 // If we have a script mapping for the current script. 1703 if (m_scriptMappings.find(script) != m_scriptMappings.end()) { 1704 // if the module we have stored is different to the one we just received. 1705 if (m_scriptMappings[script] != rsmodule_sp) { 1706 if (log) 1707 log->Printf( 1708 "%s - script %" PRIx64 " wants reassigned to new rsmodule '%s'.", 1709 __FUNCTION__, (uint64_t)script, 1710 rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString()); 1711 } 1712 } 1713 // We don't have a script mapping for the current script. 1714 else { 1715 // Obtain the script resource name. 1716 std::string res_name; 1717 if (rs_script->res_name.get(res_name)) 1718 // Set the modules resource name. 1719 rsmodule_sp->m_resname = res_name; 1720 // Add Script/Module pair to map. 1721 m_scriptMappings[script] = rsmodule_sp; 1722 if (log) 1723 log->Printf( 1724 "%s - script %" PRIx64 " associated with rsmodule '%s'.", 1725 __FUNCTION__, (uint64_t)script, 1726 rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString()); 1727 } 1728 } 1729 } 1730 1731 // Uses the Target API to evaluate the expression passed as a parameter to the 1732 // function The result of that expression is returned an unsigned 64 bit int, 1733 // via the result* parameter. Function returns true on success, and false on 1734 // failure 1735 bool RenderScriptRuntime::EvalRSExpression(const char *expr, 1736 StackFrame *frame_ptr, 1737 uint64_t *result) { 1738 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1739 if (log) 1740 log->Printf("%s(%s)", __FUNCTION__, expr); 1741 1742 ValueObjectSP expr_result; 1743 EvaluateExpressionOptions options; 1744 options.SetLanguage(lldb::eLanguageTypeC_plus_plus); 1745 // Perform the actual expression evaluation 1746 auto &target = GetProcess()->GetTarget(); 1747 target.EvaluateExpression(expr, frame_ptr, expr_result, options); 1748 1749 if (!expr_result) { 1750 if (log) 1751 log->Printf("%s: couldn't evaluate expression.", __FUNCTION__); 1752 return false; 1753 } 1754 1755 // The result of the expression is invalid 1756 if (!expr_result->GetError().Success()) { 1757 Error err = expr_result->GetError(); 1758 // Expression returned is void, so this is actually a success 1759 if (err.GetError() == UserExpression::kNoResult) { 1760 if (log) 1761 log->Printf("%s - expression returned void.", __FUNCTION__); 1762 1763 result = nullptr; 1764 return true; 1765 } 1766 1767 if (log) 1768 log->Printf("%s - error evaluating expression result: %s", __FUNCTION__, 1769 err.AsCString()); 1770 return false; 1771 } 1772 1773 bool success = false; 1774 // We only read the result as an uint32_t. 1775 *result = expr_result->GetValueAsUnsigned(0, &success); 1776 1777 if (!success) { 1778 if (log) 1779 log->Printf("%s - couldn't convert expression result to uint32_t", 1780 __FUNCTION__); 1781 return false; 1782 } 1783 1784 return true; 1785 } 1786 1787 namespace { 1788 // Used to index expression format strings 1789 enum ExpressionStrings { 1790 eExprGetOffsetPtr = 0, 1791 eExprAllocGetType, 1792 eExprTypeDimX, 1793 eExprTypeDimY, 1794 eExprTypeDimZ, 1795 eExprTypeElemPtr, 1796 eExprElementType, 1797 eExprElementKind, 1798 eExprElementVec, 1799 eExprElementFieldCount, 1800 eExprSubelementsId, 1801 eExprSubelementsName, 1802 eExprSubelementsArrSize, 1803 1804 _eExprLast // keep at the end, implicit size of the array runtime_expressions 1805 }; 1806 1807 // max length of an expanded expression 1808 const int jit_max_expr_size = 512; 1809 1810 // Retrieve the string to JIT for the given expression 1811 const char *JITTemplate(ExpressionStrings e) { 1812 // Format strings containing the expressions we may need to evaluate. 1813 static std::array<const char *, _eExprLast> runtime_expressions = { 1814 {// Mangled GetOffsetPointer(Allocation*, xoff, yoff, zoff, lod, cubemap) 1815 "(int*)_" 1816 "Z12GetOffsetPtrPKN7android12renderscript10AllocationEjjjj23RsAllocation" 1817 "CubemapFace" 1818 "(0x%" PRIx64 ", %" PRIu32 ", %" PRIu32 ", %" PRIu32 ", 0, 0)", 1819 1820 // Type* rsaAllocationGetType(Context*, Allocation*) 1821 "(void*)rsaAllocationGetType(0x%" PRIx64 ", 0x%" PRIx64 ")", 1822 1823 // rsaTypeGetNativeData(Context*, Type*, void* typeData, size) Pack the 1824 // data in the following way mHal.state.dimX; mHal.state.dimY; 1825 // mHal.state.dimZ; mHal.state.lodCount; mHal.state.faces; mElement; into 1826 // typeData Need to specify 32 or 64 bit for uint_t since this differs 1827 // between devices 1828 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 1829 ", 0x%" PRIx64 ", data, 6); data[0]", // X dim 1830 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 1831 ", 0x%" PRIx64 ", data, 6); data[1]", // Y dim 1832 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 1833 ", 0x%" PRIx64 ", data, 6); data[2]", // Z dim 1834 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 1835 ", 0x%" PRIx64 ", data, 6); data[5]", // Element ptr 1836 1837 // rsaElementGetNativeData(Context*, Element*, uint32_t* elemData,size) 1838 // Pack mType; mKind; mNormalized; mVectorSize; NumSubElements into 1839 // elemData 1840 "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 1841 ", 0x%" PRIx64 ", data, 5); data[0]", // Type 1842 "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 1843 ", 0x%" PRIx64 ", data, 5); data[1]", // Kind 1844 "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 1845 ", 0x%" PRIx64 ", data, 5); data[3]", // Vector Size 1846 "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 1847 ", 0x%" PRIx64 ", data, 5); data[4]", // Field Count 1848 1849 // rsaElementGetSubElements(RsContext con, RsElement elem, uintptr_t 1850 // *ids, const char **names, size_t *arraySizes, uint32_t dataSize) 1851 // Needed for Allocations of structs to gather details about 1852 // fields/Subelements Element* of field 1853 "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 1854 "]; size_t arr_size[%" PRIu32 "];" 1855 "(void*)rsaElementGetSubElements(0x%" PRIx64 ", 0x%" PRIx64 1856 ", ids, names, arr_size, %" PRIu32 "); ids[%" PRIu32 "]", 1857 1858 // Name of field 1859 "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 1860 "]; size_t arr_size[%" PRIu32 "];" 1861 "(void*)rsaElementGetSubElements(0x%" PRIx64 ", 0x%" PRIx64 1862 ", ids, names, arr_size, %" PRIu32 "); names[%" PRIu32 "]", 1863 1864 // Array size of field 1865 "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 1866 "]; size_t arr_size[%" PRIu32 "];" 1867 "(void*)rsaElementGetSubElements(0x%" PRIx64 ", 0x%" PRIx64 1868 ", ids, names, arr_size, %" PRIu32 "); arr_size[%" PRIu32 "]"}}; 1869 1870 return runtime_expressions[e]; 1871 } 1872 } // end of the anonymous namespace 1873 1874 // JITs the RS runtime for the internal data pointer of an allocation. Is passed 1875 // x,y,z coordinates for the pointer to a specific element. Then sets the 1876 // data_ptr member in Allocation with the result. Returns true on success, false 1877 // otherwise 1878 bool RenderScriptRuntime::JITDataPointer(AllocationDetails *alloc, 1879 StackFrame *frame_ptr, uint32_t x, 1880 uint32_t y, uint32_t z) { 1881 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1882 1883 if (!alloc->address.isValid()) { 1884 if (log) 1885 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1886 return false; 1887 } 1888 1889 const char *fmt_str = JITTemplate(eExprGetOffsetPtr); 1890 char expr_buf[jit_max_expr_size]; 1891 1892 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 1893 *alloc->address.get(), x, y, z); 1894 if (written < 0) { 1895 if (log) 1896 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1897 return false; 1898 } else if (written >= jit_max_expr_size) { 1899 if (log) 1900 log->Printf("%s - expression too long.", __FUNCTION__); 1901 return false; 1902 } 1903 1904 uint64_t result = 0; 1905 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 1906 return false; 1907 1908 addr_t data_ptr = static_cast<lldb::addr_t>(result); 1909 alloc->data_ptr = data_ptr; 1910 1911 return true; 1912 } 1913 1914 // JITs the RS runtime for the internal pointer to the RS Type of an allocation 1915 // Then sets the type_ptr member in Allocation with the result. Returns true on 1916 // success, false otherwise 1917 bool RenderScriptRuntime::JITTypePointer(AllocationDetails *alloc, 1918 StackFrame *frame_ptr) { 1919 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1920 1921 if (!alloc->address.isValid() || !alloc->context.isValid()) { 1922 if (log) 1923 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1924 return false; 1925 } 1926 1927 const char *fmt_str = JITTemplate(eExprAllocGetType); 1928 char expr_buf[jit_max_expr_size]; 1929 1930 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 1931 *alloc->context.get(), *alloc->address.get()); 1932 if (written < 0) { 1933 if (log) 1934 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1935 return false; 1936 } else if (written >= jit_max_expr_size) { 1937 if (log) 1938 log->Printf("%s - expression too long.", __FUNCTION__); 1939 return false; 1940 } 1941 1942 uint64_t result = 0; 1943 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 1944 return false; 1945 1946 addr_t type_ptr = static_cast<lldb::addr_t>(result); 1947 alloc->type_ptr = type_ptr; 1948 1949 return true; 1950 } 1951 1952 // JITs the RS runtime for information about the dimensions and type of an 1953 // allocation Then sets dimension and element_ptr members in Allocation with the 1954 // result. Returns true on success, false otherwise 1955 bool RenderScriptRuntime::JITTypePacked(AllocationDetails *alloc, 1956 StackFrame *frame_ptr) { 1957 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1958 1959 if (!alloc->type_ptr.isValid() || !alloc->context.isValid()) { 1960 if (log) 1961 log->Printf("%s - Failed to find allocation details.", __FUNCTION__); 1962 return false; 1963 } 1964 1965 // Expression is different depending on if device is 32 or 64 bit 1966 uint32_t target_ptr_size = 1967 GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 1968 const uint32_t bits = target_ptr_size == 4 ? 32 : 64; 1969 1970 // We want 4 elements from packed data 1971 const uint32_t num_exprs = 4; 1972 assert(num_exprs == (eExprTypeElemPtr - eExprTypeDimX + 1) && 1973 "Invalid number of expressions"); 1974 1975 char expr_bufs[num_exprs][jit_max_expr_size]; 1976 uint64_t results[num_exprs]; 1977 1978 for (uint32_t i = 0; i < num_exprs; ++i) { 1979 const char *fmt_str = JITTemplate(ExpressionStrings(eExprTypeDimX + i)); 1980 int written = snprintf(expr_bufs[i], jit_max_expr_size, fmt_str, bits, 1981 *alloc->context.get(), *alloc->type_ptr.get()); 1982 if (written < 0) { 1983 if (log) 1984 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1985 return false; 1986 } else if (written >= jit_max_expr_size) { 1987 if (log) 1988 log->Printf("%s - expression too long.", __FUNCTION__); 1989 return false; 1990 } 1991 1992 // Perform expression evaluation 1993 if (!EvalRSExpression(expr_bufs[i], frame_ptr, &results[i])) 1994 return false; 1995 } 1996 1997 // Assign results to allocation members 1998 AllocationDetails::Dimension dims; 1999 dims.dim_1 = static_cast<uint32_t>(results[0]); 2000 dims.dim_2 = static_cast<uint32_t>(results[1]); 2001 dims.dim_3 = static_cast<uint32_t>(results[2]); 2002 alloc->dimension = dims; 2003 2004 addr_t element_ptr = static_cast<lldb::addr_t>(results[3]); 2005 alloc->element.element_ptr = element_ptr; 2006 2007 if (log) 2008 log->Printf("%s - dims (%" PRIu32 ", %" PRIu32 ", %" PRIu32 2009 ") Element*: 0x%" PRIx64 ".", 2010 __FUNCTION__, dims.dim_1, dims.dim_2, dims.dim_3, element_ptr); 2011 2012 return true; 2013 } 2014 2015 // JITs the RS runtime for information about the Element of an allocation Then 2016 // sets type, type_vec_size, field_count and type_kind members in Element with 2017 // the result. Returns true on success, false otherwise 2018 bool RenderScriptRuntime::JITElementPacked(Element &elem, 2019 const lldb::addr_t context, 2020 StackFrame *frame_ptr) { 2021 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2022 2023 if (!elem.element_ptr.isValid()) { 2024 if (log) 2025 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 2026 return false; 2027 } 2028 2029 // We want 4 elements from packed data 2030 const uint32_t num_exprs = 4; 2031 assert(num_exprs == (eExprElementFieldCount - eExprElementType + 1) && 2032 "Invalid number of expressions"); 2033 2034 char expr_bufs[num_exprs][jit_max_expr_size]; 2035 uint64_t results[num_exprs]; 2036 2037 for (uint32_t i = 0; i < num_exprs; i++) { 2038 const char *fmt_str = JITTemplate(ExpressionStrings(eExprElementType + i)); 2039 int written = snprintf(expr_bufs[i], jit_max_expr_size, fmt_str, context, 2040 *elem.element_ptr.get()); 2041 if (written < 0) { 2042 if (log) 2043 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 2044 return false; 2045 } else if (written >= jit_max_expr_size) { 2046 if (log) 2047 log->Printf("%s - expression too long.", __FUNCTION__); 2048 return false; 2049 } 2050 2051 // Perform expression evaluation 2052 if (!EvalRSExpression(expr_bufs[i], frame_ptr, &results[i])) 2053 return false; 2054 } 2055 2056 // Assign results to allocation members 2057 elem.type = static_cast<RenderScriptRuntime::Element::DataType>(results[0]); 2058 elem.type_kind = 2059 static_cast<RenderScriptRuntime::Element::DataKind>(results[1]); 2060 elem.type_vec_size = static_cast<uint32_t>(results[2]); 2061 elem.field_count = static_cast<uint32_t>(results[3]); 2062 2063 if (log) 2064 log->Printf("%s - data type %" PRIu32 ", pixel type %" PRIu32 2065 ", vector size %" PRIu32 ", field count %" PRIu32, 2066 __FUNCTION__, *elem.type.get(), *elem.type_kind.get(), 2067 *elem.type_vec_size.get(), *elem.field_count.get()); 2068 2069 // If this Element has subelements then JIT rsaElementGetSubElements() for 2070 // details about its fields 2071 if (*elem.field_count.get() > 0 && !JITSubelements(elem, context, frame_ptr)) 2072 return false; 2073 2074 return true; 2075 } 2076 2077 // JITs the RS runtime for information about the subelements/fields of a struct 2078 // allocation This is necessary for infering the struct type so we can pretty 2079 // print the allocation's contents. Returns true on success, false otherwise 2080 bool RenderScriptRuntime::JITSubelements(Element &elem, 2081 const lldb::addr_t context, 2082 StackFrame *frame_ptr) { 2083 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2084 2085 if (!elem.element_ptr.isValid() || !elem.field_count.isValid()) { 2086 if (log) 2087 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 2088 return false; 2089 } 2090 2091 const short num_exprs = 3; 2092 assert(num_exprs == (eExprSubelementsArrSize - eExprSubelementsId + 1) && 2093 "Invalid number of expressions"); 2094 2095 char expr_buffer[jit_max_expr_size]; 2096 uint64_t results; 2097 2098 // Iterate over struct fields. 2099 const uint32_t field_count = *elem.field_count.get(); 2100 for (uint32_t field_index = 0; field_index < field_count; ++field_index) { 2101 Element child; 2102 for (uint32_t expr_index = 0; expr_index < num_exprs; ++expr_index) { 2103 const char *fmt_str = 2104 JITTemplate(ExpressionStrings(eExprSubelementsId + expr_index)); 2105 int written = snprintf(expr_buffer, jit_max_expr_size, fmt_str, 2106 field_count, field_count, field_count, context, 2107 *elem.element_ptr.get(), field_count, field_index); 2108 if (written < 0) { 2109 if (log) 2110 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 2111 return false; 2112 } else if (written >= jit_max_expr_size) { 2113 if (log) 2114 log->Printf("%s - expression too long.", __FUNCTION__); 2115 return false; 2116 } 2117 2118 // Perform expression evaluation 2119 if (!EvalRSExpression(expr_buffer, frame_ptr, &results)) 2120 return false; 2121 2122 if (log) 2123 log->Printf("%s - expr result 0x%" PRIx64 ".", __FUNCTION__, results); 2124 2125 switch (expr_index) { 2126 case 0: // Element* of child 2127 child.element_ptr = static_cast<addr_t>(results); 2128 break; 2129 case 1: // Name of child 2130 { 2131 lldb::addr_t address = static_cast<addr_t>(results); 2132 Error err; 2133 std::string name; 2134 GetProcess()->ReadCStringFromMemory(address, name, err); 2135 if (!err.Fail()) 2136 child.type_name = ConstString(name); 2137 else { 2138 if (log) 2139 log->Printf("%s - warning: Couldn't read field name.", 2140 __FUNCTION__); 2141 } 2142 break; 2143 } 2144 case 2: // Array size of child 2145 child.array_size = static_cast<uint32_t>(results); 2146 break; 2147 } 2148 } 2149 2150 // We need to recursively JIT each Element field of the struct since 2151 // structs can be nested inside structs. 2152 if (!JITElementPacked(child, context, frame_ptr)) 2153 return false; 2154 elem.children.push_back(child); 2155 } 2156 2157 // Try to infer the name of the struct type so we can pretty print the 2158 // allocation contents. 2159 FindStructTypeName(elem, frame_ptr); 2160 2161 return true; 2162 } 2163 2164 // JITs the RS runtime for the address of the last element in the allocation. 2165 // The `elem_size` parameter represents the size of a single element, including 2166 // padding. Which is needed as an offset from the last element pointer. Using 2167 // this offset minus the starting address we can calculate the size of the 2168 // allocation. Returns true on success, false otherwise 2169 bool RenderScriptRuntime::JITAllocationSize(AllocationDetails *alloc, 2170 StackFrame *frame_ptr) { 2171 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2172 2173 if (!alloc->address.isValid() || !alloc->dimension.isValid() || 2174 !alloc->data_ptr.isValid() || !alloc->element.datum_size.isValid()) { 2175 if (log) 2176 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 2177 return false; 2178 } 2179 2180 // Find dimensions 2181 uint32_t dim_x = alloc->dimension.get()->dim_1; 2182 uint32_t dim_y = alloc->dimension.get()->dim_2; 2183 uint32_t dim_z = alloc->dimension.get()->dim_3; 2184 2185 // Our plan of jitting the last element address doesn't seem to work for 2186 // struct Allocations` Instead try to infer the size ourselves without any 2187 // inter element padding. 2188 if (alloc->element.children.size() > 0) { 2189 if (dim_x == 0) 2190 dim_x = 1; 2191 if (dim_y == 0) 2192 dim_y = 1; 2193 if (dim_z == 0) 2194 dim_z = 1; 2195 2196 alloc->size = dim_x * dim_y * dim_z * *alloc->element.datum_size.get(); 2197 2198 if (log) 2199 log->Printf("%s - inferred size of struct allocation %" PRIu32 ".", 2200 __FUNCTION__, *alloc->size.get()); 2201 return true; 2202 } 2203 2204 const char *fmt_str = JITTemplate(eExprGetOffsetPtr); 2205 char expr_buf[jit_max_expr_size]; 2206 2207 // Calculate last element 2208 dim_x = dim_x == 0 ? 0 : dim_x - 1; 2209 dim_y = dim_y == 0 ? 0 : dim_y - 1; 2210 dim_z = dim_z == 0 ? 0 : dim_z - 1; 2211 2212 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 2213 *alloc->address.get(), dim_x, dim_y, dim_z); 2214 if (written < 0) { 2215 if (log) 2216 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 2217 return false; 2218 } else if (written >= jit_max_expr_size) { 2219 if (log) 2220 log->Printf("%s - expression too long.", __FUNCTION__); 2221 return false; 2222 } 2223 2224 uint64_t result = 0; 2225 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 2226 return false; 2227 2228 addr_t mem_ptr = static_cast<lldb::addr_t>(result); 2229 // Find pointer to last element and add on size of an element 2230 alloc->size = static_cast<uint32_t>(mem_ptr - *alloc->data_ptr.get()) + 2231 *alloc->element.datum_size.get(); 2232 2233 return true; 2234 } 2235 2236 // JITs the RS runtime for information about the stride between rows in the 2237 // allocation. This is done to detect padding, since allocated memory is 16-byte 2238 // aligned. 2239 // Returns true on success, false otherwise 2240 bool RenderScriptRuntime::JITAllocationStride(AllocationDetails *alloc, 2241 StackFrame *frame_ptr) { 2242 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2243 2244 if (!alloc->address.isValid() || !alloc->data_ptr.isValid()) { 2245 if (log) 2246 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 2247 return false; 2248 } 2249 2250 const char *fmt_str = JITTemplate(eExprGetOffsetPtr); 2251 char expr_buf[jit_max_expr_size]; 2252 2253 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 2254 *alloc->address.get(), 0, 1, 0); 2255 if (written < 0) { 2256 if (log) 2257 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 2258 return false; 2259 } else if (written >= jit_max_expr_size) { 2260 if (log) 2261 log->Printf("%s - expression too long.", __FUNCTION__); 2262 return false; 2263 } 2264 2265 uint64_t result = 0; 2266 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 2267 return false; 2268 2269 addr_t mem_ptr = static_cast<lldb::addr_t>(result); 2270 alloc->stride = static_cast<uint32_t>(mem_ptr - *alloc->data_ptr.get()); 2271 2272 return true; 2273 } 2274 2275 // JIT all the current runtime info regarding an allocation 2276 bool RenderScriptRuntime::RefreshAllocation(AllocationDetails *alloc, 2277 StackFrame *frame_ptr) { 2278 // GetOffsetPointer() 2279 if (!JITDataPointer(alloc, frame_ptr)) 2280 return false; 2281 2282 // rsaAllocationGetType() 2283 if (!JITTypePointer(alloc, frame_ptr)) 2284 return false; 2285 2286 // rsaTypeGetNativeData() 2287 if (!JITTypePacked(alloc, frame_ptr)) 2288 return false; 2289 2290 // rsaElementGetNativeData() 2291 if (!JITElementPacked(alloc->element, *alloc->context.get(), frame_ptr)) 2292 return false; 2293 2294 // Sets the datum_size member in Element 2295 SetElementSize(alloc->element); 2296 2297 // Use GetOffsetPointer() to infer size of the allocation 2298 if (!JITAllocationSize(alloc, frame_ptr)) 2299 return false; 2300 2301 return true; 2302 } 2303 2304 // Function attempts to set the type_name member of the paramaterised Element 2305 // object. 2306 // This string should be the name of the struct type the Element represents. 2307 // We need this string for pretty printing the Element to users. 2308 void RenderScriptRuntime::FindStructTypeName(Element &elem, 2309 StackFrame *frame_ptr) { 2310 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2311 2312 if (!elem.type_name.IsEmpty()) // Name already set 2313 return; 2314 else 2315 elem.type_name = Element::GetFallbackStructName(); // Default type name if 2316 // we don't succeed 2317 2318 // Find all the global variables from the script rs modules 2319 VariableList var_list; 2320 for (auto module_sp : m_rsmodules) 2321 module_sp->m_module->FindGlobalVariables( 2322 RegularExpression(llvm::StringRef(".")), true, UINT32_MAX, var_list); 2323 2324 // Iterate over all the global variables looking for one with a matching type 2325 // to the Element. 2326 // We make the assumption a match exists since there needs to be a global 2327 // variable to reflect the struct type back into java host code. 2328 for (uint32_t i = 0; i < var_list.GetSize(); ++i) { 2329 const VariableSP var_sp(var_list.GetVariableAtIndex(i)); 2330 if (!var_sp) 2331 continue; 2332 2333 ValueObjectSP valobj_sp = ValueObjectVariable::Create(frame_ptr, var_sp); 2334 if (!valobj_sp) 2335 continue; 2336 2337 // Find the number of variable fields. 2338 // If it has no fields, or more fields than our Element, then it can't be 2339 // the struct we're looking for. 2340 // Don't check for equality since RS can add extra struct members for 2341 // padding. 2342 size_t num_children = valobj_sp->GetNumChildren(); 2343 if (num_children > elem.children.size() || num_children == 0) 2344 continue; 2345 2346 // Iterate over children looking for members with matching field names. 2347 // If all the field names match, this is likely the struct we want. 2348 // TODO: This could be made more robust by also checking children data 2349 // sizes, or array size 2350 bool found = true; 2351 for (size_t i = 0; i < num_children; ++i) { 2352 ValueObjectSP child = valobj_sp->GetChildAtIndex(i, true); 2353 if (!child || (child->GetName() != elem.children[i].type_name)) { 2354 found = false; 2355 break; 2356 } 2357 } 2358 2359 // RS can add extra struct members for padding in the format 2360 // '#rs_padding_[0-9]+' 2361 if (found && num_children < elem.children.size()) { 2362 const uint32_t size_diff = elem.children.size() - num_children; 2363 if (log) 2364 log->Printf("%s - %" PRIu32 " padding struct entries", __FUNCTION__, 2365 size_diff); 2366 2367 for (uint32_t i = 0; i < size_diff; ++i) { 2368 const ConstString &name = elem.children[num_children + i].type_name; 2369 if (strcmp(name.AsCString(), "#rs_padding") < 0) 2370 found = false; 2371 } 2372 } 2373 2374 // We've found a global variable with matching type 2375 if (found) { 2376 // Dereference since our Element type isn't a pointer. 2377 if (valobj_sp->IsPointerType()) { 2378 Error err; 2379 ValueObjectSP deref_valobj = valobj_sp->Dereference(err); 2380 if (!err.Fail()) 2381 valobj_sp = deref_valobj; 2382 } 2383 2384 // Save name of variable in Element. 2385 elem.type_name = valobj_sp->GetTypeName(); 2386 if (log) 2387 log->Printf("%s - element name set to %s", __FUNCTION__, 2388 elem.type_name.AsCString()); 2389 2390 return; 2391 } 2392 } 2393 } 2394 2395 // Function sets the datum_size member of Element. Representing the size of a 2396 // single instance including padding. 2397 // Assumes the relevant allocation information has already been jitted. 2398 void RenderScriptRuntime::SetElementSize(Element &elem) { 2399 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2400 const Element::DataType type = *elem.type.get(); 2401 assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && 2402 "Invalid allocation type"); 2403 2404 const uint32_t vec_size = *elem.type_vec_size.get(); 2405 uint32_t data_size = 0; 2406 uint32_t padding = 0; 2407 2408 // Element is of a struct type, calculate size recursively. 2409 if ((type == Element::RS_TYPE_NONE) && (elem.children.size() > 0)) { 2410 for (Element &child : elem.children) { 2411 SetElementSize(child); 2412 const uint32_t array_size = 2413 child.array_size.isValid() ? *child.array_size.get() : 1; 2414 data_size += *child.datum_size.get() * array_size; 2415 } 2416 } 2417 // These have been packed already 2418 else if (type == Element::RS_TYPE_UNSIGNED_5_6_5 || 2419 type == Element::RS_TYPE_UNSIGNED_5_5_5_1 || 2420 type == Element::RS_TYPE_UNSIGNED_4_4_4_4) { 2421 data_size = AllocationDetails::RSTypeToFormat[type][eElementSize]; 2422 } else if (type < Element::RS_TYPE_ELEMENT) { 2423 data_size = 2424 vec_size * AllocationDetails::RSTypeToFormat[type][eElementSize]; 2425 if (vec_size == 3) 2426 padding = AllocationDetails::RSTypeToFormat[type][eElementSize]; 2427 } else 2428 data_size = 2429 GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 2430 2431 elem.padding = padding; 2432 elem.datum_size = data_size + padding; 2433 if (log) 2434 log->Printf("%s - element size set to %" PRIu32, __FUNCTION__, 2435 data_size + padding); 2436 } 2437 2438 // Given an allocation, this function copies the allocation contents from device 2439 // into a buffer on the heap. 2440 // Returning a shared pointer to the buffer containing the data. 2441 std::shared_ptr<uint8_t> 2442 RenderScriptRuntime::GetAllocationData(AllocationDetails *alloc, 2443 StackFrame *frame_ptr) { 2444 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2445 2446 // JIT all the allocation details 2447 if (alloc->ShouldRefresh()) { 2448 if (log) 2449 log->Printf("%s - allocation details not calculated yet, jitting info", 2450 __FUNCTION__); 2451 2452 if (!RefreshAllocation(alloc, frame_ptr)) { 2453 if (log) 2454 log->Printf("%s - couldn't JIT allocation details", __FUNCTION__); 2455 return nullptr; 2456 } 2457 } 2458 2459 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && 2460 alloc->element.type_vec_size.isValid() && alloc->size.isValid() && 2461 "Allocation information not available"); 2462 2463 // Allocate a buffer to copy data into 2464 const uint32_t size = *alloc->size.get(); 2465 std::shared_ptr<uint8_t> buffer(new uint8_t[size]); 2466 if (!buffer) { 2467 if (log) 2468 log->Printf("%s - couldn't allocate a %" PRIu32 " byte buffer", 2469 __FUNCTION__, size); 2470 return nullptr; 2471 } 2472 2473 // Read the inferior memory 2474 Error err; 2475 lldb::addr_t data_ptr = *alloc->data_ptr.get(); 2476 GetProcess()->ReadMemory(data_ptr, buffer.get(), size, err); 2477 if (err.Fail()) { 2478 if (log) 2479 log->Printf("%s - '%s' Couldn't read %" PRIu32 2480 " bytes of allocation data from 0x%" PRIx64, 2481 __FUNCTION__, err.AsCString(), size, data_ptr); 2482 return nullptr; 2483 } 2484 2485 return buffer; 2486 } 2487 2488 // Function copies data from a binary file into an allocation. 2489 // There is a header at the start of the file, FileHeader, before the data 2490 // content itself. 2491 // Information from this header is used to display warnings to the user about 2492 // incompatibilities 2493 bool RenderScriptRuntime::LoadAllocation(Stream &strm, const uint32_t alloc_id, 2494 const char *path, 2495 StackFrame *frame_ptr) { 2496 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2497 2498 // Find allocation with the given id 2499 AllocationDetails *alloc = FindAllocByID(strm, alloc_id); 2500 if (!alloc) 2501 return false; 2502 2503 if (log) 2504 log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__, 2505 *alloc->address.get()); 2506 2507 // JIT all the allocation details 2508 if (alloc->ShouldRefresh()) { 2509 if (log) 2510 log->Printf("%s - allocation details not calculated yet, jitting info.", 2511 __FUNCTION__); 2512 2513 if (!RefreshAllocation(alloc, frame_ptr)) { 2514 if (log) 2515 log->Printf("%s - couldn't JIT allocation details", __FUNCTION__); 2516 return false; 2517 } 2518 } 2519 2520 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && 2521 alloc->element.type_vec_size.isValid() && alloc->size.isValid() && 2522 alloc->element.datum_size.isValid() && 2523 "Allocation information not available"); 2524 2525 // Check we can read from file 2526 FileSpec file(path, true); 2527 if (!file.Exists()) { 2528 strm.Printf("Error: File %s does not exist", path); 2529 strm.EOL(); 2530 return false; 2531 } 2532 2533 if (!file.Readable()) { 2534 strm.Printf("Error: File %s does not have readable permissions", path); 2535 strm.EOL(); 2536 return false; 2537 } 2538 2539 // Read file into data buffer 2540 auto data_sp = DataBufferLLVM::CreateFromPath(file.GetPath()); 2541 2542 // Cast start of buffer to FileHeader and use pointer to read metadata 2543 void *file_buf = data_sp->GetBytes(); 2544 if (file_buf == nullptr || 2545 data_sp->GetByteSize() < (sizeof(AllocationDetails::FileHeader) + 2546 sizeof(AllocationDetails::ElementHeader))) { 2547 strm.Printf("Error: File %s does not contain enough data for header", path); 2548 strm.EOL(); 2549 return false; 2550 } 2551 const AllocationDetails::FileHeader *file_header = 2552 static_cast<AllocationDetails::FileHeader *>(file_buf); 2553 2554 // Check file starts with ascii characters "RSAD" 2555 if (memcmp(file_header->ident, "RSAD", 4)) { 2556 strm.Printf("Error: File doesn't contain identifier for an RS allocation " 2557 "dump. Are you sure this is the correct file?"); 2558 strm.EOL(); 2559 return false; 2560 } 2561 2562 // Look at the type of the root element in the header 2563 AllocationDetails::ElementHeader root_el_hdr; 2564 memcpy(&root_el_hdr, static_cast<uint8_t *>(file_buf) + 2565 sizeof(AllocationDetails::FileHeader), 2566 sizeof(AllocationDetails::ElementHeader)); 2567 2568 if (log) 2569 log->Printf("%s - header type %" PRIu32 ", element size %" PRIu32, 2570 __FUNCTION__, root_el_hdr.type, root_el_hdr.element_size); 2571 2572 // Check if the target allocation and file both have the same number of bytes 2573 // for an Element 2574 if (*alloc->element.datum_size.get() != root_el_hdr.element_size) { 2575 strm.Printf("Warning: Mismatched Element sizes - file %" PRIu32 2576 " bytes, allocation %" PRIu32 " bytes", 2577 root_el_hdr.element_size, *alloc->element.datum_size.get()); 2578 strm.EOL(); 2579 } 2580 2581 // Check if the target allocation and file both have the same type 2582 const uint32_t alloc_type = static_cast<uint32_t>(*alloc->element.type.get()); 2583 const uint32_t file_type = root_el_hdr.type; 2584 2585 if (file_type > Element::RS_TYPE_FONT) { 2586 strm.Printf("Warning: File has unknown allocation type"); 2587 strm.EOL(); 2588 } else if (alloc_type != file_type) { 2589 // Enum value isn't monotonous, so doesn't always index RsDataTypeToString 2590 // array 2591 uint32_t target_type_name_idx = alloc_type; 2592 uint32_t head_type_name_idx = file_type; 2593 if (alloc_type >= Element::RS_TYPE_ELEMENT && 2594 alloc_type <= Element::RS_TYPE_FONT) 2595 target_type_name_idx = static_cast<Element::DataType>( 2596 (alloc_type - Element::RS_TYPE_ELEMENT) + 2597 Element::RS_TYPE_MATRIX_2X2 + 1); 2598 2599 if (file_type >= Element::RS_TYPE_ELEMENT && 2600 file_type <= Element::RS_TYPE_FONT) 2601 head_type_name_idx = static_cast<Element::DataType>( 2602 (file_type - Element::RS_TYPE_ELEMENT) + Element::RS_TYPE_MATRIX_2X2 + 2603 1); 2604 2605 const char *head_type_name = 2606 AllocationDetails::RsDataTypeToString[head_type_name_idx][0]; 2607 const char *target_type_name = 2608 AllocationDetails::RsDataTypeToString[target_type_name_idx][0]; 2609 2610 strm.Printf( 2611 "Warning: Mismatched Types - file '%s' type, allocation '%s' type", 2612 head_type_name, target_type_name); 2613 strm.EOL(); 2614 } 2615 2616 // Advance buffer past header 2617 file_buf = static_cast<uint8_t *>(file_buf) + file_header->hdr_size; 2618 2619 // Calculate size of allocation data in file 2620 size_t size = data_sp->GetByteSize() - file_header->hdr_size; 2621 2622 // Check if the target allocation and file both have the same total data size. 2623 const uint32_t alloc_size = *alloc->size.get(); 2624 if (alloc_size != size) { 2625 strm.Printf("Warning: Mismatched allocation sizes - file 0x%" PRIx64 2626 " bytes, allocation 0x%" PRIx32 " bytes", 2627 (uint64_t)size, alloc_size); 2628 strm.EOL(); 2629 // Set length to copy to minimum 2630 size = alloc_size < size ? alloc_size : size; 2631 } 2632 2633 // Copy file data from our buffer into the target allocation. 2634 lldb::addr_t alloc_data = *alloc->data_ptr.get(); 2635 Error err; 2636 size_t written = GetProcess()->WriteMemory(alloc_data, file_buf, size, err); 2637 if (!err.Success() || written != size) { 2638 strm.Printf("Error: Couldn't write data to allocation %s", err.AsCString()); 2639 strm.EOL(); 2640 return false; 2641 } 2642 2643 strm.Printf("Contents of file '%s' read into allocation %" PRIu32, path, 2644 alloc->id); 2645 strm.EOL(); 2646 2647 return true; 2648 } 2649 2650 // Function takes as parameters a byte buffer, which will eventually be written 2651 // to file as the element header, an offset into that buffer, and an Element 2652 // that will be saved into the buffer at the parametrised offset. 2653 // Return value is the new offset after writing the element into the buffer. 2654 // Elements are saved to the file as the ElementHeader struct followed by 2655 // offsets to the structs of all the element's children. 2656 size_t RenderScriptRuntime::PopulateElementHeaders( 2657 const std::shared_ptr<uint8_t> header_buffer, size_t offset, 2658 const Element &elem) { 2659 // File struct for an element header with all the relevant details copied from 2660 // elem. We assume members are valid already. 2661 AllocationDetails::ElementHeader elem_header; 2662 elem_header.type = *elem.type.get(); 2663 elem_header.kind = *elem.type_kind.get(); 2664 elem_header.element_size = *elem.datum_size.get(); 2665 elem_header.vector_size = *elem.type_vec_size.get(); 2666 elem_header.array_size = 2667 elem.array_size.isValid() ? *elem.array_size.get() : 0; 2668 const size_t elem_header_size = sizeof(AllocationDetails::ElementHeader); 2669 2670 // Copy struct into buffer and advance offset 2671 // We assume that header_buffer has been checked for nullptr before this 2672 // method is called 2673 memcpy(header_buffer.get() + offset, &elem_header, elem_header_size); 2674 offset += elem_header_size; 2675 2676 // Starting offset of child ElementHeader struct 2677 size_t child_offset = 2678 offset + ((elem.children.size() + 1) * sizeof(uint32_t)); 2679 for (const RenderScriptRuntime::Element &child : elem.children) { 2680 // Recursively populate the buffer with the element header structs of 2681 // children. Then save the offsets where they were set after the parent 2682 // element header. 2683 memcpy(header_buffer.get() + offset, &child_offset, sizeof(uint32_t)); 2684 offset += sizeof(uint32_t); 2685 2686 child_offset = PopulateElementHeaders(header_buffer, child_offset, child); 2687 } 2688 2689 // Zero indicates no more children 2690 memset(header_buffer.get() + offset, 0, sizeof(uint32_t)); 2691 2692 return child_offset; 2693 } 2694 2695 // Given an Element object this function returns the total size needed in the 2696 // file header to store the element's details. Taking into account the size of 2697 // the element header struct, plus the offsets to all the element's children. 2698 // Function is recursive so that the size of all ancestors is taken into 2699 // account. 2700 size_t RenderScriptRuntime::CalculateElementHeaderSize(const Element &elem) { 2701 // Offsets to children plus zero terminator 2702 size_t size = (elem.children.size() + 1) * sizeof(uint32_t); 2703 // Size of header struct with type details 2704 size += sizeof(AllocationDetails::ElementHeader); 2705 2706 // Calculate recursively for all descendants 2707 for (const Element &child : elem.children) 2708 size += CalculateElementHeaderSize(child); 2709 2710 return size; 2711 } 2712 2713 // Function copies allocation contents into a binary file. This file can then be 2714 // loaded later into a different allocation. There is a header, FileHeader, 2715 // before the allocation data containing meta-data. 2716 bool RenderScriptRuntime::SaveAllocation(Stream &strm, const uint32_t alloc_id, 2717 const char *path, 2718 StackFrame *frame_ptr) { 2719 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2720 2721 // Find allocation with the given id 2722 AllocationDetails *alloc = FindAllocByID(strm, alloc_id); 2723 if (!alloc) 2724 return false; 2725 2726 if (log) 2727 log->Printf("%s - found allocation 0x%" PRIx64 ".", __FUNCTION__, 2728 *alloc->address.get()); 2729 2730 // JIT all the allocation details 2731 if (alloc->ShouldRefresh()) { 2732 if (log) 2733 log->Printf("%s - allocation details not calculated yet, jitting info.", 2734 __FUNCTION__); 2735 2736 if (!RefreshAllocation(alloc, frame_ptr)) { 2737 if (log) 2738 log->Printf("%s - couldn't JIT allocation details.", __FUNCTION__); 2739 return false; 2740 } 2741 } 2742 2743 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && 2744 alloc->element.type_vec_size.isValid() && 2745 alloc->element.datum_size.get() && 2746 alloc->element.type_kind.isValid() && alloc->dimension.isValid() && 2747 "Allocation information not available"); 2748 2749 // Check we can create writable file 2750 FileSpec file_spec(path, true); 2751 File file(file_spec, File::eOpenOptionWrite | File::eOpenOptionCanCreate | 2752 File::eOpenOptionTruncate); 2753 if (!file) { 2754 strm.Printf("Error: Failed to open '%s' for writing", path); 2755 strm.EOL(); 2756 return false; 2757 } 2758 2759 // Read allocation into buffer of heap memory 2760 const std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr); 2761 if (!buffer) { 2762 strm.Printf("Error: Couldn't read allocation data into buffer"); 2763 strm.EOL(); 2764 return false; 2765 } 2766 2767 // Create the file header 2768 AllocationDetails::FileHeader head; 2769 memcpy(head.ident, "RSAD", 4); 2770 head.dims[0] = static_cast<uint32_t>(alloc->dimension.get()->dim_1); 2771 head.dims[1] = static_cast<uint32_t>(alloc->dimension.get()->dim_2); 2772 head.dims[2] = static_cast<uint32_t>(alloc->dimension.get()->dim_3); 2773 2774 const size_t element_header_size = CalculateElementHeaderSize(alloc->element); 2775 assert((sizeof(AllocationDetails::FileHeader) + element_header_size) < 2776 UINT16_MAX && 2777 "Element header too large"); 2778 head.hdr_size = static_cast<uint16_t>(sizeof(AllocationDetails::FileHeader) + 2779 element_header_size); 2780 2781 // Write the file header 2782 size_t num_bytes = sizeof(AllocationDetails::FileHeader); 2783 if (log) 2784 log->Printf("%s - writing File Header, 0x%" PRIx64 " bytes", __FUNCTION__, 2785 (uint64_t)num_bytes); 2786 2787 Error err = file.Write(&head, num_bytes); 2788 if (!err.Success()) { 2789 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path); 2790 strm.EOL(); 2791 return false; 2792 } 2793 2794 // Create the headers describing the element type of the allocation. 2795 std::shared_ptr<uint8_t> element_header_buffer( 2796 new uint8_t[element_header_size]); 2797 if (element_header_buffer == nullptr) { 2798 strm.Printf("Internal Error: Couldn't allocate %" PRIu64 2799 " bytes on the heap", 2800 (uint64_t)element_header_size); 2801 strm.EOL(); 2802 return false; 2803 } 2804 2805 PopulateElementHeaders(element_header_buffer, 0, alloc->element); 2806 2807 // Write headers for allocation element type to file 2808 num_bytes = element_header_size; 2809 if (log) 2810 log->Printf("%s - writing element headers, 0x%" PRIx64 " bytes.", 2811 __FUNCTION__, (uint64_t)num_bytes); 2812 2813 err = file.Write(element_header_buffer.get(), num_bytes); 2814 if (!err.Success()) { 2815 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path); 2816 strm.EOL(); 2817 return false; 2818 } 2819 2820 // Write allocation data to file 2821 num_bytes = static_cast<size_t>(*alloc->size.get()); 2822 if (log) 2823 log->Printf("%s - writing 0x%" PRIx64 " bytes", __FUNCTION__, 2824 (uint64_t)num_bytes); 2825 2826 err = file.Write(buffer.get(), num_bytes); 2827 if (!err.Success()) { 2828 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path); 2829 strm.EOL(); 2830 return false; 2831 } 2832 2833 strm.Printf("Allocation written to file '%s'", path); 2834 strm.EOL(); 2835 return true; 2836 } 2837 2838 bool RenderScriptRuntime::LoadModule(const lldb::ModuleSP &module_sp) { 2839 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2840 2841 if (module_sp) { 2842 for (const auto &rs_module : m_rsmodules) { 2843 if (rs_module->m_module == module_sp) { 2844 // Check if the user has enabled automatically breaking on 2845 // all RS kernels. 2846 if (m_breakAllKernels) 2847 BreakOnModuleKernels(rs_module); 2848 2849 return false; 2850 } 2851 } 2852 bool module_loaded = false; 2853 switch (GetModuleKind(module_sp)) { 2854 case eModuleKindKernelObj: { 2855 RSModuleDescriptorSP module_desc; 2856 module_desc.reset(new RSModuleDescriptor(module_sp)); 2857 if (module_desc->ParseRSInfo()) { 2858 m_rsmodules.push_back(module_desc); 2859 module_desc->WarnIfVersionMismatch(GetProcess() 2860 ->GetTarget() 2861 .GetDebugger() 2862 .GetAsyncOutputStream() 2863 .get()); 2864 module_loaded = true; 2865 } 2866 if (module_loaded) { 2867 FixupScriptDetails(module_desc); 2868 } 2869 break; 2870 } 2871 case eModuleKindDriver: { 2872 if (!m_libRSDriver) { 2873 m_libRSDriver = module_sp; 2874 LoadRuntimeHooks(m_libRSDriver, RenderScriptRuntime::eModuleKindDriver); 2875 } 2876 break; 2877 } 2878 case eModuleKindImpl: { 2879 if (!m_libRSCpuRef) { 2880 m_libRSCpuRef = module_sp; 2881 LoadRuntimeHooks(m_libRSCpuRef, RenderScriptRuntime::eModuleKindImpl); 2882 } 2883 break; 2884 } 2885 case eModuleKindLibRS: { 2886 if (!m_libRS) { 2887 m_libRS = module_sp; 2888 static ConstString gDbgPresentStr("gDebuggerPresent"); 2889 const Symbol *debug_present = m_libRS->FindFirstSymbolWithNameAndType( 2890 gDbgPresentStr, eSymbolTypeData); 2891 if (debug_present) { 2892 Error err; 2893 uint32_t flag = 0x00000001U; 2894 Target &target = GetProcess()->GetTarget(); 2895 addr_t addr = debug_present->GetLoadAddress(&target); 2896 GetProcess()->WriteMemory(addr, &flag, sizeof(flag), err); 2897 if (err.Success()) { 2898 if (log) 2899 log->Printf("%s - debugger present flag set on debugee.", 2900 __FUNCTION__); 2901 2902 m_debuggerPresentFlagged = true; 2903 } else if (log) { 2904 log->Printf("%s - error writing debugger present flags '%s' ", 2905 __FUNCTION__, err.AsCString()); 2906 } 2907 } else if (log) { 2908 log->Printf( 2909 "%s - error writing debugger present flags - symbol not found", 2910 __FUNCTION__); 2911 } 2912 } 2913 break; 2914 } 2915 default: 2916 break; 2917 } 2918 if (module_loaded) 2919 Update(); 2920 return module_loaded; 2921 } 2922 return false; 2923 } 2924 2925 void RenderScriptRuntime::Update() { 2926 if (m_rsmodules.size() > 0) { 2927 if (!m_initiated) { 2928 Initiate(); 2929 } 2930 } 2931 } 2932 2933 void RSModuleDescriptor::WarnIfVersionMismatch(lldb_private::Stream *s) const { 2934 if (!s) 2935 return; 2936 2937 if (m_slang_version.empty() || m_bcc_version.empty()) { 2938 s->PutCString("WARNING: Unknown bcc or slang (llvm-rs-cc) version; debug " 2939 "experience may be unreliable"); 2940 s->EOL(); 2941 } else if (m_slang_version != m_bcc_version) { 2942 s->Printf("WARNING: The debug info emitted by the slang frontend " 2943 "(llvm-rs-cc) used to build this module (%s) does not match the " 2944 "version of bcc used to generate the debug information (%s). " 2945 "This is an unsupported configuration and may result in a poor " 2946 "debugging experience; proceed with caution", 2947 m_slang_version.c_str(), m_bcc_version.c_str()); 2948 s->EOL(); 2949 } 2950 } 2951 2952 bool RSModuleDescriptor::ParsePragmaCount(llvm::StringRef *lines, 2953 size_t n_lines) { 2954 // Skip the pragma prototype line 2955 ++lines; 2956 for (; n_lines--; ++lines) { 2957 const auto kv_pair = lines->split(" - "); 2958 m_pragmas[kv_pair.first.trim().str()] = kv_pair.second.trim().str(); 2959 } 2960 return true; 2961 } 2962 2963 bool RSModuleDescriptor::ParseExportReduceCount(llvm::StringRef *lines, 2964 size_t n_lines) { 2965 // The list of reduction kernels in the `.rs.info` symbol is of the form 2966 // "signature - accumulatordatasize - reduction_name - initializer_name - 2967 // accumulator_name - combiner_name - 2968 // outconverter_name - halter_name" 2969 // Where a function is not explicitly named by the user, or is not generated 2970 // by the compiler, it is named "." so the 2971 // dash separated list should always be 8 items long 2972 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 2973 // Skip the exportReduceCount line 2974 ++lines; 2975 for (; n_lines--; ++lines) { 2976 llvm::SmallVector<llvm::StringRef, 8> spec; 2977 lines->split(spec, " - "); 2978 if (spec.size() != 8) { 2979 if (spec.size() < 8) { 2980 if (log) 2981 log->Error("Error parsing RenderScript reduction spec. wrong number " 2982 "of fields"); 2983 return false; 2984 } else if (log) 2985 log->Warning("Extraneous members in reduction spec: '%s'", 2986 lines->str().c_str()); 2987 } 2988 2989 const auto sig_s = spec[0]; 2990 uint32_t sig; 2991 if (sig_s.getAsInteger(10, sig)) { 2992 if (log) 2993 log->Error("Error parsing Renderscript reduction spec: invalid kernel " 2994 "signature: '%s'", 2995 sig_s.str().c_str()); 2996 return false; 2997 } 2998 2999 const auto accum_data_size_s = spec[1]; 3000 uint32_t accum_data_size; 3001 if (accum_data_size_s.getAsInteger(10, accum_data_size)) { 3002 if (log) 3003 log->Error("Error parsing Renderscript reduction spec: invalid " 3004 "accumulator data size %s", 3005 accum_data_size_s.str().c_str()); 3006 return false; 3007 } 3008 3009 if (log) 3010 log->Printf("Found RenderScript reduction '%s'", spec[2].str().c_str()); 3011 3012 m_reductions.push_back(RSReductionDescriptor(this, sig, accum_data_size, 3013 spec[2], spec[3], spec[4], 3014 spec[5], spec[6], spec[7])); 3015 } 3016 return true; 3017 } 3018 3019 bool RSModuleDescriptor::ParseVersionInfo(llvm::StringRef *lines, 3020 size_t n_lines) { 3021 // Skip the versionInfo line 3022 ++lines; 3023 for (; n_lines--; ++lines) { 3024 // We're only interested in bcc and slang versions, and ignore all other 3025 // versionInfo lines 3026 const auto kv_pair = lines->split(" - "); 3027 if (kv_pair.first == "slang") 3028 m_slang_version = kv_pair.second.str(); 3029 else if (kv_pair.first == "bcc") 3030 m_bcc_version = kv_pair.second.str(); 3031 } 3032 return true; 3033 } 3034 3035 bool RSModuleDescriptor::ParseExportForeachCount(llvm::StringRef *lines, 3036 size_t n_lines) { 3037 // Skip the exportForeachCount line 3038 ++lines; 3039 for (; n_lines--; ++lines) { 3040 uint32_t slot; 3041 // `forEach` kernels are listed in the `.rs.info` packet as a "slot - name" 3042 // pair per line 3043 const auto kv_pair = lines->split(" - "); 3044 if (kv_pair.first.getAsInteger(10, slot)) 3045 return false; 3046 m_kernels.push_back(RSKernelDescriptor(this, kv_pair.second, slot)); 3047 } 3048 return true; 3049 } 3050 3051 bool RSModuleDescriptor::ParseExportVarCount(llvm::StringRef *lines, 3052 size_t n_lines) { 3053 // Skip the ExportVarCount line 3054 ++lines; 3055 for (; n_lines--; ++lines) 3056 m_globals.push_back(RSGlobalDescriptor(this, *lines)); 3057 return true; 3058 } 3059 3060 // The .rs.info symbol in renderscript modules contains a string which needs to 3061 // be parsed. 3062 // The string is basic and is parsed on a line by line basis. 3063 bool RSModuleDescriptor::ParseRSInfo() { 3064 assert(m_module); 3065 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3066 const Symbol *info_sym = m_module->FindFirstSymbolWithNameAndType( 3067 ConstString(".rs.info"), eSymbolTypeData); 3068 if (!info_sym) 3069 return false; 3070 3071 const addr_t addr = info_sym->GetAddressRef().GetFileAddress(); 3072 if (addr == LLDB_INVALID_ADDRESS) 3073 return false; 3074 3075 const addr_t size = info_sym->GetByteSize(); 3076 const FileSpec fs = m_module->GetFileSpec(); 3077 3078 auto buffer = DataBufferLLVM::CreateSliceFromPath(fs.GetPath(), size, addr); 3079 if (!buffer) 3080 return false; 3081 3082 // split rs.info. contents into lines 3083 llvm::SmallVector<llvm::StringRef, 128> info_lines; 3084 { 3085 const llvm::StringRef raw_rs_info((const char *)buffer->GetBytes()); 3086 raw_rs_info.split(info_lines, '\n'); 3087 if (log) 3088 log->Printf("'.rs.info symbol for '%s':\n%s", 3089 m_module->GetFileSpec().GetCString(), 3090 raw_rs_info.str().c_str()); 3091 } 3092 3093 enum { 3094 eExportVar, 3095 eExportForEach, 3096 eExportReduce, 3097 ePragma, 3098 eBuildChecksum, 3099 eObjectSlot, 3100 eVersionInfo, 3101 }; 3102 3103 const auto rs_info_handler = [](llvm::StringRef name) -> int { 3104 return llvm::StringSwitch<int>(name) 3105 // The number of visible global variables in the script 3106 .Case("exportVarCount", eExportVar) 3107 // The number of RenderScrip `forEach` kernels __attribute__((kernel)) 3108 .Case("exportForEachCount", eExportForEach) 3109 // The number of generalreductions: This marked in the script by 3110 // `#pragma reduce()` 3111 .Case("exportReduceCount", eExportReduce) 3112 // Total count of all RenderScript specific `#pragmas` used in the 3113 // script 3114 .Case("pragmaCount", ePragma) 3115 .Case("objectSlotCount", eObjectSlot) 3116 .Case("versionInfo", eVersionInfo) 3117 .Default(-1); 3118 }; 3119 3120 // parse all text lines of .rs.info 3121 for (auto line = info_lines.begin(); line != info_lines.end(); ++line) { 3122 const auto kv_pair = line->split(": "); 3123 const auto key = kv_pair.first; 3124 const auto val = kv_pair.second.trim(); 3125 3126 const auto handler = rs_info_handler(key); 3127 if (handler == -1) 3128 continue; 3129 // getAsInteger returns `true` on an error condition - we're only interested 3130 // in numeric fields at the moment 3131 uint64_t n_lines; 3132 if (val.getAsInteger(10, n_lines)) { 3133 LLDB_LOGV(log, "Failed to parse non-numeric '.rs.info' section {0}", 3134 line->str()); 3135 continue; 3136 } 3137 if (info_lines.end() - (line + 1) < (ptrdiff_t)n_lines) 3138 return false; 3139 3140 bool success = false; 3141 switch (handler) { 3142 case eExportVar: 3143 success = ParseExportVarCount(line, n_lines); 3144 break; 3145 case eExportForEach: 3146 success = ParseExportForeachCount(line, n_lines); 3147 break; 3148 case eExportReduce: 3149 success = ParseExportReduceCount(line, n_lines); 3150 break; 3151 case ePragma: 3152 success = ParsePragmaCount(line, n_lines); 3153 break; 3154 case eVersionInfo: 3155 success = ParseVersionInfo(line, n_lines); 3156 break; 3157 default: { 3158 if (log) 3159 log->Printf("%s - skipping .rs.info field '%s'", __FUNCTION__, 3160 line->str().c_str()); 3161 continue; 3162 } 3163 } 3164 if (!success) 3165 return false; 3166 line += n_lines; 3167 } 3168 return info_lines.size() > 0; 3169 } 3170 3171 void RenderScriptRuntime::Status(Stream &strm) const { 3172 if (m_libRS) { 3173 strm.Printf("Runtime Library discovered."); 3174 strm.EOL(); 3175 } 3176 if (m_libRSDriver) { 3177 strm.Printf("Runtime Driver discovered."); 3178 strm.EOL(); 3179 } 3180 if (m_libRSCpuRef) { 3181 strm.Printf("CPU Reference Implementation discovered."); 3182 strm.EOL(); 3183 } 3184 3185 if (m_runtimeHooks.size()) { 3186 strm.Printf("Runtime functions hooked:"); 3187 strm.EOL(); 3188 for (auto b : m_runtimeHooks) { 3189 strm.Indent(b.second->defn->name); 3190 strm.EOL(); 3191 } 3192 } else { 3193 strm.Printf("Runtime is not hooked."); 3194 strm.EOL(); 3195 } 3196 } 3197 3198 void RenderScriptRuntime::DumpContexts(Stream &strm) const { 3199 strm.Printf("Inferred RenderScript Contexts:"); 3200 strm.EOL(); 3201 strm.IndentMore(); 3202 3203 std::map<addr_t, uint64_t> contextReferences; 3204 3205 // Iterate over all of the currently discovered scripts. 3206 // Note: We cant push or pop from m_scripts inside this loop or it may 3207 // invalidate script. 3208 for (const auto &script : m_scripts) { 3209 if (!script->context.isValid()) 3210 continue; 3211 lldb::addr_t context = *script->context; 3212 3213 if (contextReferences.find(context) != contextReferences.end()) { 3214 contextReferences[context]++; 3215 } else { 3216 contextReferences[context] = 1; 3217 } 3218 } 3219 3220 for (const auto &cRef : contextReferences) { 3221 strm.Printf("Context 0x%" PRIx64 ": %" PRIu64 " script instances", 3222 cRef.first, cRef.second); 3223 strm.EOL(); 3224 } 3225 strm.IndentLess(); 3226 } 3227 3228 void RenderScriptRuntime::DumpKernels(Stream &strm) const { 3229 strm.Printf("RenderScript Kernels:"); 3230 strm.EOL(); 3231 strm.IndentMore(); 3232 for (const auto &module : m_rsmodules) { 3233 strm.Printf("Resource '%s':", module->m_resname.c_str()); 3234 strm.EOL(); 3235 for (const auto &kernel : module->m_kernels) { 3236 strm.Indent(kernel.m_name.AsCString()); 3237 strm.EOL(); 3238 } 3239 } 3240 strm.IndentLess(); 3241 } 3242 3243 RenderScriptRuntime::AllocationDetails * 3244 RenderScriptRuntime::FindAllocByID(Stream &strm, const uint32_t alloc_id) { 3245 AllocationDetails *alloc = nullptr; 3246 3247 // See if we can find allocation using id as an index; 3248 if (alloc_id <= m_allocations.size() && alloc_id != 0 && 3249 m_allocations[alloc_id - 1]->id == alloc_id) { 3250 alloc = m_allocations[alloc_id - 1].get(); 3251 return alloc; 3252 } 3253 3254 // Fallback to searching 3255 for (const auto &a : m_allocations) { 3256 if (a->id == alloc_id) { 3257 alloc = a.get(); 3258 break; 3259 } 3260 } 3261 3262 if (alloc == nullptr) { 3263 strm.Printf("Error: Couldn't find allocation with id matching %" PRIu32, 3264 alloc_id); 3265 strm.EOL(); 3266 } 3267 3268 return alloc; 3269 } 3270 3271 // Prints the contents of an allocation to the output stream, which may be a 3272 // file 3273 bool RenderScriptRuntime::DumpAllocation(Stream &strm, StackFrame *frame_ptr, 3274 const uint32_t id) { 3275 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3276 3277 // Check we can find the desired allocation 3278 AllocationDetails *alloc = FindAllocByID(strm, id); 3279 if (!alloc) 3280 return false; // FindAllocByID() will print error message for us here 3281 3282 if (log) 3283 log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__, 3284 *alloc->address.get()); 3285 3286 // Check we have information about the allocation, if not calculate it 3287 if (alloc->ShouldRefresh()) { 3288 if (log) 3289 log->Printf("%s - allocation details not calculated yet, jitting info.", 3290 __FUNCTION__); 3291 3292 // JIT all the allocation information 3293 if (!RefreshAllocation(alloc, frame_ptr)) { 3294 strm.Printf("Error: Couldn't JIT allocation details"); 3295 strm.EOL(); 3296 return false; 3297 } 3298 } 3299 3300 // Establish format and size of each data element 3301 const uint32_t vec_size = *alloc->element.type_vec_size.get(); 3302 const Element::DataType type = *alloc->element.type.get(); 3303 3304 assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && 3305 "Invalid allocation type"); 3306 3307 lldb::Format format; 3308 if (type >= Element::RS_TYPE_ELEMENT) 3309 format = eFormatHex; 3310 else 3311 format = vec_size == 1 3312 ? static_cast<lldb::Format>( 3313 AllocationDetails::RSTypeToFormat[type][eFormatSingle]) 3314 : static_cast<lldb::Format>( 3315 AllocationDetails::RSTypeToFormat[type][eFormatVector]); 3316 3317 const uint32_t data_size = *alloc->element.datum_size.get(); 3318 3319 if (log) 3320 log->Printf("%s - element size %" PRIu32 " bytes, including padding", 3321 __FUNCTION__, data_size); 3322 3323 // Allocate a buffer to copy data into 3324 std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr); 3325 if (!buffer) { 3326 strm.Printf("Error: Couldn't read allocation data"); 3327 strm.EOL(); 3328 return false; 3329 } 3330 3331 // Calculate stride between rows as there may be padding at end of rows since 3332 // allocated memory is 16-byte aligned 3333 if (!alloc->stride.isValid()) { 3334 if (alloc->dimension.get()->dim_2 == 0) // We only have one dimension 3335 alloc->stride = 0; 3336 else if (!JITAllocationStride(alloc, frame_ptr)) { 3337 strm.Printf("Error: Couldn't calculate allocation row stride"); 3338 strm.EOL(); 3339 return false; 3340 } 3341 } 3342 const uint32_t stride = *alloc->stride.get(); 3343 const uint32_t size = *alloc->size.get(); // Size of whole allocation 3344 const uint32_t padding = 3345 alloc->element.padding.isValid() ? *alloc->element.padding.get() : 0; 3346 if (log) 3347 log->Printf("%s - stride %" PRIu32 " bytes, size %" PRIu32 3348 " bytes, padding %" PRIu32, 3349 __FUNCTION__, stride, size, padding); 3350 3351 // Find dimensions used to index loops, so need to be non-zero 3352 uint32_t dim_x = alloc->dimension.get()->dim_1; 3353 dim_x = dim_x == 0 ? 1 : dim_x; 3354 3355 uint32_t dim_y = alloc->dimension.get()->dim_2; 3356 dim_y = dim_y == 0 ? 1 : dim_y; 3357 3358 uint32_t dim_z = alloc->dimension.get()->dim_3; 3359 dim_z = dim_z == 0 ? 1 : dim_z; 3360 3361 // Use data extractor to format output 3362 const uint32_t target_ptr_size = 3363 GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 3364 DataExtractor alloc_data(buffer.get(), size, GetProcess()->GetByteOrder(), 3365 target_ptr_size); 3366 3367 uint32_t offset = 0; // Offset in buffer to next element to be printed 3368 uint32_t prev_row = 0; // Offset to the start of the previous row 3369 3370 // Iterate over allocation dimensions, printing results to user 3371 strm.Printf("Data (X, Y, Z):"); 3372 for (uint32_t z = 0; z < dim_z; ++z) { 3373 for (uint32_t y = 0; y < dim_y; ++y) { 3374 // Use stride to index start of next row. 3375 if (!(y == 0 && z == 0)) 3376 offset = prev_row + stride; 3377 prev_row = offset; 3378 3379 // Print each element in the row individually 3380 for (uint32_t x = 0; x < dim_x; ++x) { 3381 strm.Printf("\n(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ") = ", x, y, z); 3382 if ((type == Element::RS_TYPE_NONE) && 3383 (alloc->element.children.size() > 0) && 3384 (alloc->element.type_name != Element::GetFallbackStructName())) { 3385 // Here we are dumping an Element of struct type. 3386 // This is done using expression evaluation with the name of the 3387 // struct type and pointer to element. 3388 // Don't print the name of the resulting expression, since this will 3389 // be '$[0-9]+' 3390 DumpValueObjectOptions expr_options; 3391 expr_options.SetHideName(true); 3392 3393 // Setup expression as derefrencing a pointer cast to element address. 3394 char expr_char_buffer[jit_max_expr_size]; 3395 int written = 3396 snprintf(expr_char_buffer, jit_max_expr_size, "*(%s*) 0x%" PRIx64, 3397 alloc->element.type_name.AsCString(), 3398 *alloc->data_ptr.get() + offset); 3399 3400 if (written < 0 || written >= jit_max_expr_size) { 3401 if (log) 3402 log->Printf("%s - error in snprintf().", __FUNCTION__); 3403 continue; 3404 } 3405 3406 // Evaluate expression 3407 ValueObjectSP expr_result; 3408 GetProcess()->GetTarget().EvaluateExpression(expr_char_buffer, 3409 frame_ptr, expr_result); 3410 3411 // Print the results to our stream. 3412 expr_result->Dump(strm, expr_options); 3413 } else { 3414 DumpDataExtractor(alloc_data, &strm, offset, format, 3415 data_size - padding, 1, 1, LLDB_INVALID_ADDRESS, 0, 3416 0); 3417 } 3418 offset += data_size; 3419 } 3420 } 3421 } 3422 strm.EOL(); 3423 3424 return true; 3425 } 3426 3427 // Function recalculates all our cached information about allocations by jitting 3428 // the RS runtime regarding each allocation we know about. Returns true if all 3429 // allocations could be recomputed, false otherwise. 3430 bool RenderScriptRuntime::RecomputeAllAllocations(Stream &strm, 3431 StackFrame *frame_ptr) { 3432 bool success = true; 3433 for (auto &alloc : m_allocations) { 3434 // JIT current allocation information 3435 if (!RefreshAllocation(alloc.get(), frame_ptr)) { 3436 strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32 3437 "\n", 3438 alloc->id); 3439 success = false; 3440 } 3441 } 3442 3443 if (success) 3444 strm.Printf("All allocations successfully recomputed"); 3445 strm.EOL(); 3446 3447 return success; 3448 } 3449 3450 // Prints information regarding currently loaded allocations. These details are 3451 // gathered by jitting the runtime, which has as latency. Index parameter 3452 // specifies a single allocation ID to print, or a zero value to print them all 3453 void RenderScriptRuntime::ListAllocations(Stream &strm, StackFrame *frame_ptr, 3454 const uint32_t index) { 3455 strm.Printf("RenderScript Allocations:"); 3456 strm.EOL(); 3457 strm.IndentMore(); 3458 3459 for (auto &alloc : m_allocations) { 3460 // index will only be zero if we want to print all allocations 3461 if (index != 0 && index != alloc->id) 3462 continue; 3463 3464 // JIT current allocation information 3465 if (alloc->ShouldRefresh() && !RefreshAllocation(alloc.get(), frame_ptr)) { 3466 strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32, 3467 alloc->id); 3468 strm.EOL(); 3469 continue; 3470 } 3471 3472 strm.Printf("%" PRIu32 ":", alloc->id); 3473 strm.EOL(); 3474 strm.IndentMore(); 3475 3476 strm.Indent("Context: "); 3477 if (!alloc->context.isValid()) 3478 strm.Printf("unknown\n"); 3479 else 3480 strm.Printf("0x%" PRIx64 "\n", *alloc->context.get()); 3481 3482 strm.Indent("Address: "); 3483 if (!alloc->address.isValid()) 3484 strm.Printf("unknown\n"); 3485 else 3486 strm.Printf("0x%" PRIx64 "\n", *alloc->address.get()); 3487 3488 strm.Indent("Data pointer: "); 3489 if (!alloc->data_ptr.isValid()) 3490 strm.Printf("unknown\n"); 3491 else 3492 strm.Printf("0x%" PRIx64 "\n", *alloc->data_ptr.get()); 3493 3494 strm.Indent("Dimensions: "); 3495 if (!alloc->dimension.isValid()) 3496 strm.Printf("unknown\n"); 3497 else 3498 strm.Printf("(%" PRId32 ", %" PRId32 ", %" PRId32 ")\n", 3499 alloc->dimension.get()->dim_1, alloc->dimension.get()->dim_2, 3500 alloc->dimension.get()->dim_3); 3501 3502 strm.Indent("Data Type: "); 3503 if (!alloc->element.type.isValid() || 3504 !alloc->element.type_vec_size.isValid()) 3505 strm.Printf("unknown\n"); 3506 else { 3507 const int vector_size = *alloc->element.type_vec_size.get(); 3508 Element::DataType type = *alloc->element.type.get(); 3509 3510 if (!alloc->element.type_name.IsEmpty()) 3511 strm.Printf("%s\n", alloc->element.type_name.AsCString()); 3512 else { 3513 // Enum value isn't monotonous, so doesn't always index 3514 // RsDataTypeToString array 3515 if (type >= Element::RS_TYPE_ELEMENT && type <= Element::RS_TYPE_FONT) 3516 type = 3517 static_cast<Element::DataType>((type - Element::RS_TYPE_ELEMENT) + 3518 Element::RS_TYPE_MATRIX_2X2 + 1); 3519 3520 if (type >= (sizeof(AllocationDetails::RsDataTypeToString) / 3521 sizeof(AllocationDetails::RsDataTypeToString[0])) || 3522 vector_size > 4 || vector_size < 1) 3523 strm.Printf("invalid type\n"); 3524 else 3525 strm.Printf( 3526 "%s\n", 3527 AllocationDetails::RsDataTypeToString[static_cast<uint32_t>(type)] 3528 [vector_size - 1]); 3529 } 3530 } 3531 3532 strm.Indent("Data Kind: "); 3533 if (!alloc->element.type_kind.isValid()) 3534 strm.Printf("unknown\n"); 3535 else { 3536 const Element::DataKind kind = *alloc->element.type_kind.get(); 3537 if (kind < Element::RS_KIND_USER || kind > Element::RS_KIND_PIXEL_YUV) 3538 strm.Printf("invalid kind\n"); 3539 else 3540 strm.Printf( 3541 "%s\n", 3542 AllocationDetails::RsDataKindToString[static_cast<uint32_t>(kind)]); 3543 } 3544 3545 strm.EOL(); 3546 strm.IndentLess(); 3547 } 3548 strm.IndentLess(); 3549 } 3550 3551 // Set breakpoints on every kernel found in RS module 3552 void RenderScriptRuntime::BreakOnModuleKernels( 3553 const RSModuleDescriptorSP rsmodule_sp) { 3554 for (const auto &kernel : rsmodule_sp->m_kernels) { 3555 // Don't set breakpoint on 'root' kernel 3556 if (strcmp(kernel.m_name.AsCString(), "root") == 0) 3557 continue; 3558 3559 CreateKernelBreakpoint(kernel.m_name); 3560 } 3561 } 3562 3563 // Method is internally called by the 'kernel breakpoint all' command to enable 3564 // or disable breaking on all kernels. When do_break is true we want to enable 3565 // this functionality. When do_break is false we want to disable it. 3566 void RenderScriptRuntime::SetBreakAllKernels(bool do_break, TargetSP target) { 3567 Log *log( 3568 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3569 3570 InitSearchFilter(target); 3571 3572 // Set breakpoints on all the kernels 3573 if (do_break && !m_breakAllKernels) { 3574 m_breakAllKernels = true; 3575 3576 for (const auto &module : m_rsmodules) 3577 BreakOnModuleKernels(module); 3578 3579 if (log) 3580 log->Printf("%s(True) - breakpoints set on all currently loaded kernels.", 3581 __FUNCTION__); 3582 } else if (!do_break && 3583 m_breakAllKernels) // Breakpoints won't be set on any new kernels. 3584 { 3585 m_breakAllKernels = false; 3586 3587 if (log) 3588 log->Printf("%s(False) - breakpoints no longer automatically set.", 3589 __FUNCTION__); 3590 } 3591 } 3592 3593 // Given the name of a kernel this function creates a breakpoint using our 3594 // own breakpoint resolver, and returns the Breakpoint shared pointer. 3595 BreakpointSP 3596 RenderScriptRuntime::CreateKernelBreakpoint(const ConstString &name) { 3597 Log *log( 3598 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3599 3600 if (!m_filtersp) { 3601 if (log) 3602 log->Printf("%s - error, no breakpoint search filter set.", __FUNCTION__); 3603 return nullptr; 3604 } 3605 3606 BreakpointResolverSP resolver_sp(new RSBreakpointResolver(nullptr, name)); 3607 BreakpointSP bp = GetProcess()->GetTarget().CreateBreakpoint( 3608 m_filtersp, resolver_sp, false, false, false); 3609 3610 // Give RS breakpoints a specific name, so the user can manipulate them as a 3611 // group. 3612 Error err; 3613 if (!bp->AddName("RenderScriptKernel", err)) 3614 if (log) 3615 log->Printf("%s - error setting break name, '%s'.", __FUNCTION__, 3616 err.AsCString()); 3617 3618 return bp; 3619 } 3620 3621 BreakpointSP 3622 RenderScriptRuntime::CreateReductionBreakpoint(const ConstString &name, 3623 int kernel_types) { 3624 Log *log( 3625 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3626 3627 if (!m_filtersp) { 3628 if (log) 3629 log->Printf("%s - error, no breakpoint search filter set.", __FUNCTION__); 3630 return nullptr; 3631 } 3632 3633 BreakpointResolverSP resolver_sp(new RSReduceBreakpointResolver( 3634 nullptr, name, &m_rsmodules, kernel_types)); 3635 BreakpointSP bp = GetProcess()->GetTarget().CreateBreakpoint( 3636 m_filtersp, resolver_sp, false, false, false); 3637 3638 // Give RS breakpoints a specific name, so the user can manipulate them as a 3639 // group. 3640 Error err; 3641 if (!bp->AddName("RenderScriptReduction", err)) 3642 if (log) 3643 log->Printf("%s - error setting break name, '%s'.", __FUNCTION__, 3644 err.AsCString()); 3645 3646 return bp; 3647 } 3648 3649 // Given an expression for a variable this function tries to calculate the 3650 // variable's value. If this is possible it returns true and sets the uint64_t 3651 // parameter to the variables unsigned value. Otherwise function returns false. 3652 bool RenderScriptRuntime::GetFrameVarAsUnsigned(const StackFrameSP frame_sp, 3653 const char *var_name, 3654 uint64_t &val) { 3655 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3656 Error err; 3657 VariableSP var_sp; 3658 3659 // Find variable in stack frame 3660 ValueObjectSP value_sp(frame_sp->GetValueForVariableExpressionPath( 3661 var_name, eNoDynamicValues, 3662 StackFrame::eExpressionPathOptionCheckPtrVsMember | 3663 StackFrame::eExpressionPathOptionsAllowDirectIVarAccess, 3664 var_sp, err)); 3665 if (!err.Success()) { 3666 if (log) 3667 log->Printf("%s - error, couldn't find '%s' in frame", __FUNCTION__, 3668 var_name); 3669 return false; 3670 } 3671 3672 // Find the uint32_t value for the variable 3673 bool success = false; 3674 val = value_sp->GetValueAsUnsigned(0, &success); 3675 if (!success) { 3676 if (log) 3677 log->Printf("%s - error, couldn't parse '%s' as an uint32_t.", 3678 __FUNCTION__, var_name); 3679 return false; 3680 } 3681 3682 return true; 3683 } 3684 3685 // Function attempts to find the current coordinate of a kernel invocation by 3686 // investigating the values of frame variables in the .expand function. These 3687 // coordinates are returned via the coord array reference parameter. Returns 3688 // true if the coordinates could be found, and false otherwise. 3689 bool RenderScriptRuntime::GetKernelCoordinate(RSCoordinate &coord, 3690 Thread *thread_ptr) { 3691 static const char *const x_expr = "rsIndex"; 3692 static const char *const y_expr = "p->current.y"; 3693 static const char *const z_expr = "p->current.z"; 3694 3695 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3696 3697 if (!thread_ptr) { 3698 if (log) 3699 log->Printf("%s - Error, No thread pointer", __FUNCTION__); 3700 3701 return false; 3702 } 3703 3704 // Walk the call stack looking for a function whose name has the suffix 3705 // '.expand' and contains the variables we're looking for. 3706 for (uint32_t i = 0; i < thread_ptr->GetStackFrameCount(); ++i) { 3707 if (!thread_ptr->SetSelectedFrameByIndex(i)) 3708 continue; 3709 3710 StackFrameSP frame_sp = thread_ptr->GetSelectedFrame(); 3711 if (!frame_sp) 3712 continue; 3713 3714 // Find the function name 3715 const SymbolContext sym_ctx = frame_sp->GetSymbolContext(false); 3716 const ConstString func_name = sym_ctx.GetFunctionName(); 3717 if (!func_name) 3718 continue; 3719 3720 if (log) 3721 log->Printf("%s - Inspecting function '%s'", __FUNCTION__, 3722 func_name.GetCString()); 3723 3724 // Check if function name has .expand suffix 3725 if (!func_name.GetStringRef().endswith(".expand")) 3726 continue; 3727 3728 if (log) 3729 log->Printf("%s - Found .expand function '%s'", __FUNCTION__, 3730 func_name.GetCString()); 3731 3732 // Get values for variables in .expand frame that tell us the current kernel 3733 // invocation 3734 uint64_t x, y, z; 3735 bool found = GetFrameVarAsUnsigned(frame_sp, x_expr, x) && 3736 GetFrameVarAsUnsigned(frame_sp, y_expr, y) && 3737 GetFrameVarAsUnsigned(frame_sp, z_expr, z); 3738 3739 if (found) { 3740 // The RenderScript runtime uses uint32_t for these vars. If they're not 3741 // within bounds, our frame parsing is garbage 3742 assert(x <= UINT32_MAX && y <= UINT32_MAX && z <= UINT32_MAX); 3743 coord.x = (uint32_t)x; 3744 coord.y = (uint32_t)y; 3745 coord.z = (uint32_t)z; 3746 return true; 3747 } 3748 } 3749 return false; 3750 } 3751 3752 // Callback when a kernel breakpoint hits and we're looking for a specific 3753 // coordinate. Baton parameter contains a pointer to the target coordinate we 3754 // want to break on. 3755 // Function then checks the .expand frame for the current coordinate and breaks 3756 // to user if it matches. 3757 // Parameter 'break_id' is the id of the Breakpoint which made the callback. 3758 // Parameter 'break_loc_id' is the id for the BreakpointLocation which was hit, 3759 // a single logical breakpoint can have multiple addresses. 3760 bool RenderScriptRuntime::KernelBreakpointHit(void *baton, 3761 StoppointCallbackContext *ctx, 3762 user_id_t break_id, 3763 user_id_t break_loc_id) { 3764 Log *log( 3765 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3766 3767 assert(baton && 3768 "Error: null baton in conditional kernel breakpoint callback"); 3769 3770 // Coordinate we want to stop on 3771 RSCoordinate target_coord = *static_cast<RSCoordinate *>(baton); 3772 3773 if (log) 3774 log->Printf("%s - Break ID %" PRIu64 ", " FMT_COORD, __FUNCTION__, break_id, 3775 target_coord.x, target_coord.y, target_coord.z); 3776 3777 // Select current thread 3778 ExecutionContext context(ctx->exe_ctx_ref); 3779 Thread *thread_ptr = context.GetThreadPtr(); 3780 assert(thread_ptr && "Null thread pointer"); 3781 3782 // Find current kernel invocation from .expand frame variables 3783 RSCoordinate current_coord{}; 3784 if (!GetKernelCoordinate(current_coord, thread_ptr)) { 3785 if (log) 3786 log->Printf("%s - Error, couldn't select .expand stack frame", 3787 __FUNCTION__); 3788 return false; 3789 } 3790 3791 if (log) 3792 log->Printf("%s - " FMT_COORD, __FUNCTION__, current_coord.x, 3793 current_coord.y, current_coord.z); 3794 3795 // Check if the current kernel invocation coordinate matches our target 3796 // coordinate 3797 if (target_coord == current_coord) { 3798 if (log) 3799 log->Printf("%s, BREAKING " FMT_COORD, __FUNCTION__, current_coord.x, 3800 current_coord.y, current_coord.z); 3801 3802 BreakpointSP breakpoint_sp = 3803 context.GetTargetPtr()->GetBreakpointByID(break_id); 3804 assert(breakpoint_sp != nullptr && 3805 "Error: Couldn't find breakpoint matching break id for callback"); 3806 breakpoint_sp->SetEnabled(false); // Optimise since conditional breakpoint 3807 // should only be hit once. 3808 return true; 3809 } 3810 3811 // No match on coordinate 3812 return false; 3813 } 3814 3815 void RenderScriptRuntime::SetConditional(BreakpointSP bp, Stream &messages, 3816 const RSCoordinate &coord) { 3817 messages.Printf("Conditional kernel breakpoint on coordinate " FMT_COORD, 3818 coord.x, coord.y, coord.z); 3819 messages.EOL(); 3820 3821 // Allocate memory for the baton, and copy over coordinate 3822 RSCoordinate *baton = new RSCoordinate(coord); 3823 3824 // Create a callback that will be invoked every time the breakpoint is hit. 3825 // The baton object passed to the handler is the target coordinate we want to 3826 // break on. 3827 bp->SetCallback(KernelBreakpointHit, baton, true); 3828 3829 // Store a shared pointer to the baton, so the memory will eventually be 3830 // cleaned up after destruction 3831 m_conditional_breaks[bp->GetID()] = std::unique_ptr<RSCoordinate>(baton); 3832 } 3833 3834 // Tries to set a breakpoint on the start of a kernel, resolved using the kernel 3835 // name. Argument 'coords', represents a three dimensional coordinate which can 3836 // be 3837 // used to specify a single kernel instance to break on. If this is set then we 3838 // add a callback 3839 // to the breakpoint. 3840 bool RenderScriptRuntime::PlaceBreakpointOnKernel(TargetSP target, 3841 Stream &messages, 3842 const char *name, 3843 const RSCoordinate *coord) { 3844 if (!name) 3845 return false; 3846 3847 InitSearchFilter(target); 3848 3849 ConstString kernel_name(name); 3850 BreakpointSP bp = CreateKernelBreakpoint(kernel_name); 3851 if (!bp) 3852 return false; 3853 3854 // We have a conditional breakpoint on a specific coordinate 3855 if (coord) 3856 SetConditional(bp, messages, *coord); 3857 3858 bp->GetDescription(&messages, lldb::eDescriptionLevelInitial, false); 3859 3860 return true; 3861 } 3862 3863 BreakpointSP 3864 RenderScriptRuntime::CreateScriptGroupBreakpoint(const ConstString &name, 3865 bool stop_on_all) { 3866 Log *log( 3867 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3868 3869 if (!m_filtersp) { 3870 if (log) 3871 log->Printf("%s - error, no breakpoint search filter set.", __FUNCTION__); 3872 return nullptr; 3873 } 3874 3875 BreakpointResolverSP resolver_sp(new RSScriptGroupBreakpointResolver( 3876 nullptr, name, m_scriptGroups, stop_on_all)); 3877 BreakpointSP bp = GetProcess()->GetTarget().CreateBreakpoint( 3878 m_filtersp, resolver_sp, false, false, false); 3879 // Give RS breakpoints a specific name, so the user can manipulate them as a 3880 // group. 3881 Error err; 3882 if (!bp->AddName(name.AsCString(), err)) 3883 if (log) 3884 log->Printf("%s - error setting break name, '%s'.", __FUNCTION__, 3885 err.AsCString()); 3886 // ask the breakpoint to resolve itself 3887 bp->ResolveBreakpoint(); 3888 return bp; 3889 } 3890 3891 bool RenderScriptRuntime::PlaceBreakpointOnScriptGroup(TargetSP target, 3892 Stream &strm, 3893 const ConstString &name, 3894 bool multi) { 3895 InitSearchFilter(target); 3896 BreakpointSP bp = CreateScriptGroupBreakpoint(name, multi); 3897 if (bp) 3898 bp->GetDescription(&strm, lldb::eDescriptionLevelInitial, false); 3899 return bool(bp); 3900 } 3901 3902 bool RenderScriptRuntime::PlaceBreakpointOnReduction(TargetSP target, 3903 Stream &messages, 3904 const char *reduce_name, 3905 const RSCoordinate *coord, 3906 int kernel_types) { 3907 if (!reduce_name) 3908 return false; 3909 3910 InitSearchFilter(target); 3911 BreakpointSP bp = 3912 CreateReductionBreakpoint(ConstString(reduce_name), kernel_types); 3913 if (!bp) 3914 return false; 3915 3916 if (coord) 3917 SetConditional(bp, messages, *coord); 3918 3919 bp->GetDescription(&messages, lldb::eDescriptionLevelInitial, false); 3920 3921 return true; 3922 } 3923 3924 void RenderScriptRuntime::DumpModules(Stream &strm) const { 3925 strm.Printf("RenderScript Modules:"); 3926 strm.EOL(); 3927 strm.IndentMore(); 3928 for (const auto &module : m_rsmodules) { 3929 module->Dump(strm); 3930 } 3931 strm.IndentLess(); 3932 } 3933 3934 RenderScriptRuntime::ScriptDetails * 3935 RenderScriptRuntime::LookUpScript(addr_t address, bool create) { 3936 for (const auto &s : m_scripts) { 3937 if (s->script.isValid()) 3938 if (*s->script == address) 3939 return s.get(); 3940 } 3941 if (create) { 3942 std::unique_ptr<ScriptDetails> s(new ScriptDetails); 3943 s->script = address; 3944 m_scripts.push_back(std::move(s)); 3945 return m_scripts.back().get(); 3946 } 3947 return nullptr; 3948 } 3949 3950 RenderScriptRuntime::AllocationDetails * 3951 RenderScriptRuntime::LookUpAllocation(addr_t address) { 3952 for (const auto &a : m_allocations) { 3953 if (a->address.isValid()) 3954 if (*a->address == address) 3955 return a.get(); 3956 } 3957 return nullptr; 3958 } 3959 3960 RenderScriptRuntime::AllocationDetails * 3961 RenderScriptRuntime::CreateAllocation(addr_t address) { 3962 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 3963 3964 // Remove any previous allocation which contains the same address 3965 auto it = m_allocations.begin(); 3966 while (it != m_allocations.end()) { 3967 if (*((*it)->address) == address) { 3968 if (log) 3969 log->Printf("%s - Removing allocation id: %d, address: 0x%" PRIx64, 3970 __FUNCTION__, (*it)->id, address); 3971 3972 it = m_allocations.erase(it); 3973 } else { 3974 it++; 3975 } 3976 } 3977 3978 std::unique_ptr<AllocationDetails> a(new AllocationDetails); 3979 a->address = address; 3980 m_allocations.push_back(std::move(a)); 3981 return m_allocations.back().get(); 3982 } 3983 3984 bool RenderScriptRuntime::ResolveKernelName(lldb::addr_t kernel_addr, 3985 ConstString &name) { 3986 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS); 3987 3988 Target &target = GetProcess()->GetTarget(); 3989 Address resolved; 3990 // RenderScript module 3991 if (!target.GetSectionLoadList().ResolveLoadAddress(kernel_addr, resolved)) { 3992 if (log) 3993 log->Printf("%s: unable to resolve 0x%" PRIx64 " to a loaded symbol", 3994 __FUNCTION__, kernel_addr); 3995 return false; 3996 } 3997 3998 Symbol *sym = resolved.CalculateSymbolContextSymbol(); 3999 if (!sym) 4000 return false; 4001 4002 name = sym->GetName(); 4003 assert(IsRenderScriptModule(resolved.CalculateSymbolContextModule())); 4004 if (log) 4005 log->Printf("%s: 0x%" PRIx64 " resolved to the symbol '%s'", __FUNCTION__, 4006 kernel_addr, name.GetCString()); 4007 return true; 4008 } 4009 4010 void RSModuleDescriptor::Dump(Stream &strm) const { 4011 int indent = strm.GetIndentLevel(); 4012 4013 strm.Indent(); 4014 m_module->GetFileSpec().Dump(&strm); 4015 strm.Indent(m_module->GetNumCompileUnits() ? "Debug info loaded." 4016 : "Debug info does not exist."); 4017 strm.EOL(); 4018 strm.IndentMore(); 4019 4020 strm.Indent(); 4021 strm.Printf("Globals: %" PRIu64, static_cast<uint64_t>(m_globals.size())); 4022 strm.EOL(); 4023 strm.IndentMore(); 4024 for (const auto &global : m_globals) { 4025 global.Dump(strm); 4026 } 4027 strm.IndentLess(); 4028 4029 strm.Indent(); 4030 strm.Printf("Kernels: %" PRIu64, static_cast<uint64_t>(m_kernels.size())); 4031 strm.EOL(); 4032 strm.IndentMore(); 4033 for (const auto &kernel : m_kernels) { 4034 kernel.Dump(strm); 4035 } 4036 strm.IndentLess(); 4037 4038 strm.Indent(); 4039 strm.Printf("Pragmas: %" PRIu64, static_cast<uint64_t>(m_pragmas.size())); 4040 strm.EOL(); 4041 strm.IndentMore(); 4042 for (const auto &key_val : m_pragmas) { 4043 strm.Indent(); 4044 strm.Printf("%s: %s", key_val.first.c_str(), key_val.second.c_str()); 4045 strm.EOL(); 4046 } 4047 strm.IndentLess(); 4048 4049 strm.Indent(); 4050 strm.Printf("Reductions: %" PRIu64, 4051 static_cast<uint64_t>(m_reductions.size())); 4052 strm.EOL(); 4053 strm.IndentMore(); 4054 for (const auto &reduction : m_reductions) { 4055 reduction.Dump(strm); 4056 } 4057 4058 strm.SetIndentLevel(indent); 4059 } 4060 4061 void RSGlobalDescriptor::Dump(Stream &strm) const { 4062 strm.Indent(m_name.AsCString()); 4063 VariableList var_list; 4064 m_module->m_module->FindGlobalVariables(m_name, nullptr, true, 1U, var_list); 4065 if (var_list.GetSize() == 1) { 4066 auto var = var_list.GetVariableAtIndex(0); 4067 auto type = var->GetType(); 4068 if (type) { 4069 strm.Printf(" - "); 4070 type->DumpTypeName(&strm); 4071 } else { 4072 strm.Printf(" - Unknown Type"); 4073 } 4074 } else { 4075 strm.Printf(" - variable identified, but not found in binary"); 4076 const Symbol *s = m_module->m_module->FindFirstSymbolWithNameAndType( 4077 m_name, eSymbolTypeData); 4078 if (s) { 4079 strm.Printf(" (symbol exists) "); 4080 } 4081 } 4082 4083 strm.EOL(); 4084 } 4085 4086 void RSKernelDescriptor::Dump(Stream &strm) const { 4087 strm.Indent(m_name.AsCString()); 4088 strm.EOL(); 4089 } 4090 4091 void RSReductionDescriptor::Dump(lldb_private::Stream &stream) const { 4092 stream.Indent(m_reduce_name.AsCString()); 4093 stream.IndentMore(); 4094 stream.EOL(); 4095 stream.Indent(); 4096 stream.Printf("accumulator: %s", m_accum_name.AsCString()); 4097 stream.EOL(); 4098 stream.Indent(); 4099 stream.Printf("initializer: %s", m_init_name.AsCString()); 4100 stream.EOL(); 4101 stream.Indent(); 4102 stream.Printf("combiner: %s", m_comb_name.AsCString()); 4103 stream.EOL(); 4104 stream.Indent(); 4105 stream.Printf("outconverter: %s", m_outc_name.AsCString()); 4106 stream.EOL(); 4107 // XXX This is currently unspecified by RenderScript, and unused 4108 // stream.Indent(); 4109 // stream.Printf("halter: '%s'", m_init_name.AsCString()); 4110 // stream.EOL(); 4111 stream.IndentLess(); 4112 } 4113 4114 class CommandObjectRenderScriptRuntimeModuleDump : public CommandObjectParsed { 4115 public: 4116 CommandObjectRenderScriptRuntimeModuleDump(CommandInterpreter &interpreter) 4117 : CommandObjectParsed( 4118 interpreter, "renderscript module dump", 4119 "Dumps renderscript specific information for all modules.", 4120 "renderscript module dump", 4121 eCommandRequiresProcess | eCommandProcessMustBeLaunched) {} 4122 4123 ~CommandObjectRenderScriptRuntimeModuleDump() override = default; 4124 4125 bool DoExecute(Args &command, CommandReturnObject &result) override { 4126 RenderScriptRuntime *runtime = 4127 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4128 eLanguageTypeExtRenderScript); 4129 runtime->DumpModules(result.GetOutputStream()); 4130 result.SetStatus(eReturnStatusSuccessFinishResult); 4131 return true; 4132 } 4133 }; 4134 4135 class CommandObjectRenderScriptRuntimeModule : public CommandObjectMultiword { 4136 public: 4137 CommandObjectRenderScriptRuntimeModule(CommandInterpreter &interpreter) 4138 : CommandObjectMultiword(interpreter, "renderscript module", 4139 "Commands that deal with RenderScript modules.", 4140 nullptr) { 4141 LoadSubCommand( 4142 "dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeModuleDump( 4143 interpreter))); 4144 } 4145 4146 ~CommandObjectRenderScriptRuntimeModule() override = default; 4147 }; 4148 4149 class CommandObjectRenderScriptRuntimeKernelList : public CommandObjectParsed { 4150 public: 4151 CommandObjectRenderScriptRuntimeKernelList(CommandInterpreter &interpreter) 4152 : CommandObjectParsed( 4153 interpreter, "renderscript kernel list", 4154 "Lists renderscript kernel names and associated script resources.", 4155 "renderscript kernel list", 4156 eCommandRequiresProcess | eCommandProcessMustBeLaunched) {} 4157 4158 ~CommandObjectRenderScriptRuntimeKernelList() override = default; 4159 4160 bool DoExecute(Args &command, CommandReturnObject &result) override { 4161 RenderScriptRuntime *runtime = 4162 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4163 eLanguageTypeExtRenderScript); 4164 runtime->DumpKernels(result.GetOutputStream()); 4165 result.SetStatus(eReturnStatusSuccessFinishResult); 4166 return true; 4167 } 4168 }; 4169 4170 static OptionDefinition g_renderscript_reduction_bp_set_options[] = { 4171 {LLDB_OPT_SET_1, false, "function-role", 't', 4172 OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeOneLiner, 4173 "Break on a comma separated set of reduction kernel types " 4174 "(accumulator,outcoverter,combiner,initializer"}, 4175 {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument, 4176 nullptr, nullptr, 0, eArgTypeValue, 4177 "Set a breakpoint on a single invocation of the kernel with specified " 4178 "coordinate.\n" 4179 "Coordinate takes the form 'x[,y][,z] where x,y,z are positive " 4180 "integers representing kernel dimensions. " 4181 "Any unset dimensions will be defaulted to zero."}}; 4182 4183 class CommandObjectRenderScriptRuntimeReductionBreakpointSet 4184 : public CommandObjectParsed { 4185 public: 4186 CommandObjectRenderScriptRuntimeReductionBreakpointSet( 4187 CommandInterpreter &interpreter) 4188 : CommandObjectParsed( 4189 interpreter, "renderscript reduction breakpoint set", 4190 "Set a breakpoint on named RenderScript general reductions", 4191 "renderscript reduction breakpoint set <kernel_name> [-t " 4192 "<reduction_kernel_type,...>]", 4193 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4194 eCommandProcessMustBePaused), 4195 m_options(){}; 4196 4197 class CommandOptions : public Options { 4198 public: 4199 CommandOptions() 4200 : Options(), 4201 m_kernel_types(RSReduceBreakpointResolver::eKernelTypeAll) {} 4202 4203 ~CommandOptions() override = default; 4204 4205 Error SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg, 4206 ExecutionContext *exe_ctx) override { 4207 Error err; 4208 StreamString err_str; 4209 const int short_option = m_getopt_table[option_idx].val; 4210 switch (short_option) { 4211 case 't': 4212 if (!ParseReductionTypes(option_arg, err_str)) 4213 err.SetErrorStringWithFormat( 4214 "Unable to deduce reduction types for %s: %s", 4215 option_arg.str().c_str(), err_str.GetData()); 4216 break; 4217 case 'c': { 4218 auto coord = RSCoordinate{}; 4219 if (!ParseCoordinate(option_arg, coord)) 4220 err.SetErrorStringWithFormat("unable to parse coordinate for %s", 4221 option_arg.str().c_str()); 4222 else { 4223 m_have_coord = true; 4224 m_coord = coord; 4225 } 4226 break; 4227 } 4228 default: 4229 err.SetErrorStringWithFormat("Invalid option '-%c'", short_option); 4230 } 4231 return err; 4232 } 4233 4234 void OptionParsingStarting(ExecutionContext *exe_ctx) override { 4235 m_have_coord = false; 4236 } 4237 4238 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4239 return llvm::makeArrayRef(g_renderscript_reduction_bp_set_options); 4240 } 4241 4242 bool ParseReductionTypes(llvm::StringRef option_val, 4243 StreamString &err_str) { 4244 m_kernel_types = RSReduceBreakpointResolver::eKernelTypeNone; 4245 const auto reduce_name_to_type = [](llvm::StringRef name) -> int { 4246 return llvm::StringSwitch<int>(name) 4247 .Case("accumulator", RSReduceBreakpointResolver::eKernelTypeAccum) 4248 .Case("initializer", RSReduceBreakpointResolver::eKernelTypeInit) 4249 .Case("outconverter", RSReduceBreakpointResolver::eKernelTypeOutC) 4250 .Case("combiner", RSReduceBreakpointResolver::eKernelTypeComb) 4251 .Case("all", RSReduceBreakpointResolver::eKernelTypeAll) 4252 // Currently not exposed by the runtime 4253 // .Case("halter", RSReduceBreakpointResolver::eKernelTypeHalter) 4254 .Default(0); 4255 }; 4256 4257 // Matching a comma separated list of known words is fairly 4258 // straightforward with PCRE, but we're 4259 // using ERE, so we end up with a little ugliness... 4260 RegularExpression::Match match(/* max_matches */ 5); 4261 RegularExpression match_type_list( 4262 llvm::StringRef("^([[:alpha:]]+)(,[[:alpha:]]+){0,4}$")); 4263 4264 assert(match_type_list.IsValid()); 4265 4266 if (!match_type_list.Execute(option_val, &match)) { 4267 err_str.PutCString( 4268 "a comma-separated list of kernel types is required"); 4269 return false; 4270 } 4271 4272 // splitting on commas is much easier with llvm::StringRef than regex 4273 llvm::SmallVector<llvm::StringRef, 5> type_names; 4274 llvm::StringRef(option_val).split(type_names, ','); 4275 4276 for (const auto &name : type_names) { 4277 const int type = reduce_name_to_type(name); 4278 if (!type) { 4279 err_str.Printf("unknown kernel type name %s", name.str().c_str()); 4280 return false; 4281 } 4282 m_kernel_types |= type; 4283 } 4284 4285 return true; 4286 } 4287 4288 int m_kernel_types; 4289 llvm::StringRef m_reduce_name; 4290 RSCoordinate m_coord; 4291 bool m_have_coord; 4292 }; 4293 4294 Options *GetOptions() override { return &m_options; } 4295 4296 bool DoExecute(Args &command, CommandReturnObject &result) override { 4297 const size_t argc = command.GetArgumentCount(); 4298 if (argc < 1) { 4299 result.AppendErrorWithFormat("'%s' takes 1 argument of reduction name, " 4300 "and an optional kernel type list", 4301 m_cmd_name.c_str()); 4302 result.SetStatus(eReturnStatusFailed); 4303 return false; 4304 } 4305 4306 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4307 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4308 eLanguageTypeExtRenderScript)); 4309 4310 auto &outstream = result.GetOutputStream(); 4311 auto name = command.GetArgumentAtIndex(0); 4312 auto &target = m_exe_ctx.GetTargetSP(); 4313 auto coord = m_options.m_have_coord ? &m_options.m_coord : nullptr; 4314 if (!runtime->PlaceBreakpointOnReduction(target, outstream, name, coord, 4315 m_options.m_kernel_types)) { 4316 result.SetStatus(eReturnStatusFailed); 4317 result.AppendError("Error: unable to place breakpoint on reduction"); 4318 return false; 4319 } 4320 result.AppendMessage("Breakpoint(s) created"); 4321 result.SetStatus(eReturnStatusSuccessFinishResult); 4322 return true; 4323 } 4324 4325 private: 4326 CommandOptions m_options; 4327 }; 4328 4329 static OptionDefinition g_renderscript_kernel_bp_set_options[] = { 4330 {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument, 4331 nullptr, nullptr, 0, eArgTypeValue, 4332 "Set a breakpoint on a single invocation of the kernel with specified " 4333 "coordinate.\n" 4334 "Coordinate takes the form 'x[,y][,z] where x,y,z are positive " 4335 "integers representing kernel dimensions. " 4336 "Any unset dimensions will be defaulted to zero."}}; 4337 4338 class CommandObjectRenderScriptRuntimeKernelBreakpointSet 4339 : public CommandObjectParsed { 4340 public: 4341 CommandObjectRenderScriptRuntimeKernelBreakpointSet( 4342 CommandInterpreter &interpreter) 4343 : CommandObjectParsed( 4344 interpreter, "renderscript kernel breakpoint set", 4345 "Sets a breakpoint on a renderscript kernel.", 4346 "renderscript kernel breakpoint set <kernel_name> [-c x,y,z]", 4347 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4348 eCommandProcessMustBePaused), 4349 m_options() {} 4350 4351 ~CommandObjectRenderScriptRuntimeKernelBreakpointSet() override = default; 4352 4353 Options *GetOptions() override { return &m_options; } 4354 4355 class CommandOptions : public Options { 4356 public: 4357 CommandOptions() : Options() {} 4358 4359 ~CommandOptions() override = default; 4360 4361 Error SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg, 4362 ExecutionContext *exe_ctx) override { 4363 Error err; 4364 const int short_option = m_getopt_table[option_idx].val; 4365 4366 switch (short_option) { 4367 case 'c': { 4368 auto coord = RSCoordinate{}; 4369 if (!ParseCoordinate(option_arg, coord)) 4370 err.SetErrorStringWithFormat( 4371 "Couldn't parse coordinate '%s', should be in format 'x,y,z'.", 4372 option_arg.str().c_str()); 4373 else { 4374 m_have_coord = true; 4375 m_coord = coord; 4376 } 4377 break; 4378 } 4379 default: 4380 err.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 4381 break; 4382 } 4383 return err; 4384 } 4385 4386 void OptionParsingStarting(ExecutionContext *exe_ctx) override { 4387 m_have_coord = false; 4388 } 4389 4390 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4391 return llvm::makeArrayRef(g_renderscript_kernel_bp_set_options); 4392 } 4393 4394 RSCoordinate m_coord; 4395 bool m_have_coord; 4396 }; 4397 4398 bool DoExecute(Args &command, CommandReturnObject &result) override { 4399 const size_t argc = command.GetArgumentCount(); 4400 if (argc < 1) { 4401 result.AppendErrorWithFormat( 4402 "'%s' takes 1 argument of kernel name, and an optional coordinate.", 4403 m_cmd_name.c_str()); 4404 result.SetStatus(eReturnStatusFailed); 4405 return false; 4406 } 4407 4408 RenderScriptRuntime *runtime = 4409 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4410 eLanguageTypeExtRenderScript); 4411 4412 auto &outstream = result.GetOutputStream(); 4413 auto &target = m_exe_ctx.GetTargetSP(); 4414 auto name = command.GetArgumentAtIndex(0); 4415 auto coord = m_options.m_have_coord ? &m_options.m_coord : nullptr; 4416 if (!runtime->PlaceBreakpointOnKernel(target, outstream, name, coord)) { 4417 result.SetStatus(eReturnStatusFailed); 4418 result.AppendErrorWithFormat( 4419 "Error: unable to set breakpoint on kernel '%s'", name); 4420 return false; 4421 } 4422 4423 result.AppendMessage("Breakpoint(s) created"); 4424 result.SetStatus(eReturnStatusSuccessFinishResult); 4425 return true; 4426 } 4427 4428 private: 4429 CommandOptions m_options; 4430 }; 4431 4432 class CommandObjectRenderScriptRuntimeKernelBreakpointAll 4433 : public CommandObjectParsed { 4434 public: 4435 CommandObjectRenderScriptRuntimeKernelBreakpointAll( 4436 CommandInterpreter &interpreter) 4437 : CommandObjectParsed( 4438 interpreter, "renderscript kernel breakpoint all", 4439 "Automatically sets a breakpoint on all renderscript kernels that " 4440 "are or will be loaded.\n" 4441 "Disabling option means breakpoints will no longer be set on any " 4442 "kernels loaded in the future, " 4443 "but does not remove currently set breakpoints.", 4444 "renderscript kernel breakpoint all <enable/disable>", 4445 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4446 eCommandProcessMustBePaused) {} 4447 4448 ~CommandObjectRenderScriptRuntimeKernelBreakpointAll() override = default; 4449 4450 bool DoExecute(Args &command, CommandReturnObject &result) override { 4451 const size_t argc = command.GetArgumentCount(); 4452 if (argc != 1) { 4453 result.AppendErrorWithFormat( 4454 "'%s' takes 1 argument of 'enable' or 'disable'", m_cmd_name.c_str()); 4455 result.SetStatus(eReturnStatusFailed); 4456 return false; 4457 } 4458 4459 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4460 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4461 eLanguageTypeExtRenderScript)); 4462 4463 bool do_break = false; 4464 const char *argument = command.GetArgumentAtIndex(0); 4465 if (strcmp(argument, "enable") == 0) { 4466 do_break = true; 4467 result.AppendMessage("Breakpoints will be set on all kernels."); 4468 } else if (strcmp(argument, "disable") == 0) { 4469 do_break = false; 4470 result.AppendMessage("Breakpoints will not be set on any new kernels."); 4471 } else { 4472 result.AppendErrorWithFormat( 4473 "Argument must be either 'enable' or 'disable'"); 4474 result.SetStatus(eReturnStatusFailed); 4475 return false; 4476 } 4477 4478 runtime->SetBreakAllKernels(do_break, m_exe_ctx.GetTargetSP()); 4479 4480 result.SetStatus(eReturnStatusSuccessFinishResult); 4481 return true; 4482 } 4483 }; 4484 4485 class CommandObjectRenderScriptRuntimeReductionBreakpoint 4486 : public CommandObjectMultiword { 4487 public: 4488 CommandObjectRenderScriptRuntimeReductionBreakpoint( 4489 CommandInterpreter &interpreter) 4490 : CommandObjectMultiword(interpreter, "renderscript reduction breakpoint", 4491 "Commands that manipulate breakpoints on " 4492 "renderscript general reductions.", 4493 nullptr) { 4494 LoadSubCommand( 4495 "set", CommandObjectSP( 4496 new CommandObjectRenderScriptRuntimeReductionBreakpointSet( 4497 interpreter))); 4498 } 4499 4500 ~CommandObjectRenderScriptRuntimeReductionBreakpoint() override = default; 4501 }; 4502 4503 class CommandObjectRenderScriptRuntimeKernelCoordinate 4504 : public CommandObjectParsed { 4505 public: 4506 CommandObjectRenderScriptRuntimeKernelCoordinate( 4507 CommandInterpreter &interpreter) 4508 : CommandObjectParsed( 4509 interpreter, "renderscript kernel coordinate", 4510 "Shows the (x,y,z) coordinate of the current kernel invocation.", 4511 "renderscript kernel coordinate", 4512 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4513 eCommandProcessMustBePaused) {} 4514 4515 ~CommandObjectRenderScriptRuntimeKernelCoordinate() override = default; 4516 4517 bool DoExecute(Args &command, CommandReturnObject &result) override { 4518 RSCoordinate coord{}; 4519 bool success = RenderScriptRuntime::GetKernelCoordinate( 4520 coord, m_exe_ctx.GetThreadPtr()); 4521 Stream &stream = result.GetOutputStream(); 4522 4523 if (success) { 4524 stream.Printf("Coordinate: " FMT_COORD, coord.x, coord.y, coord.z); 4525 stream.EOL(); 4526 result.SetStatus(eReturnStatusSuccessFinishResult); 4527 } else { 4528 stream.Printf("Error: Coordinate could not be found."); 4529 stream.EOL(); 4530 result.SetStatus(eReturnStatusFailed); 4531 } 4532 return true; 4533 } 4534 }; 4535 4536 class CommandObjectRenderScriptRuntimeKernelBreakpoint 4537 : public CommandObjectMultiword { 4538 public: 4539 CommandObjectRenderScriptRuntimeKernelBreakpoint( 4540 CommandInterpreter &interpreter) 4541 : CommandObjectMultiword( 4542 interpreter, "renderscript kernel", 4543 "Commands that generate breakpoints on renderscript kernels.", 4544 nullptr) { 4545 LoadSubCommand( 4546 "set", 4547 CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointSet( 4548 interpreter))); 4549 LoadSubCommand( 4550 "all", 4551 CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointAll( 4552 interpreter))); 4553 } 4554 4555 ~CommandObjectRenderScriptRuntimeKernelBreakpoint() override = default; 4556 }; 4557 4558 class CommandObjectRenderScriptRuntimeKernel : public CommandObjectMultiword { 4559 public: 4560 CommandObjectRenderScriptRuntimeKernel(CommandInterpreter &interpreter) 4561 : CommandObjectMultiword(interpreter, "renderscript kernel", 4562 "Commands that deal with RenderScript kernels.", 4563 nullptr) { 4564 LoadSubCommand( 4565 "list", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelList( 4566 interpreter))); 4567 LoadSubCommand( 4568 "coordinate", 4569 CommandObjectSP( 4570 new CommandObjectRenderScriptRuntimeKernelCoordinate(interpreter))); 4571 LoadSubCommand( 4572 "breakpoint", 4573 CommandObjectSP( 4574 new CommandObjectRenderScriptRuntimeKernelBreakpoint(interpreter))); 4575 } 4576 4577 ~CommandObjectRenderScriptRuntimeKernel() override = default; 4578 }; 4579 4580 class CommandObjectRenderScriptRuntimeContextDump : public CommandObjectParsed { 4581 public: 4582 CommandObjectRenderScriptRuntimeContextDump(CommandInterpreter &interpreter) 4583 : CommandObjectParsed(interpreter, "renderscript context dump", 4584 "Dumps renderscript context information.", 4585 "renderscript context dump", 4586 eCommandRequiresProcess | 4587 eCommandProcessMustBeLaunched) {} 4588 4589 ~CommandObjectRenderScriptRuntimeContextDump() override = default; 4590 4591 bool DoExecute(Args &command, CommandReturnObject &result) override { 4592 RenderScriptRuntime *runtime = 4593 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4594 eLanguageTypeExtRenderScript); 4595 runtime->DumpContexts(result.GetOutputStream()); 4596 result.SetStatus(eReturnStatusSuccessFinishResult); 4597 return true; 4598 } 4599 }; 4600 4601 static OptionDefinition g_renderscript_runtime_alloc_dump_options[] = { 4602 {LLDB_OPT_SET_1, false, "file", 'f', OptionParser::eRequiredArgument, 4603 nullptr, nullptr, 0, eArgTypeFilename, 4604 "Print results to specified file instead of command line."}}; 4605 4606 class CommandObjectRenderScriptRuntimeContext : public CommandObjectMultiword { 4607 public: 4608 CommandObjectRenderScriptRuntimeContext(CommandInterpreter &interpreter) 4609 : CommandObjectMultiword(interpreter, "renderscript context", 4610 "Commands that deal with RenderScript contexts.", 4611 nullptr) { 4612 LoadSubCommand( 4613 "dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeContextDump( 4614 interpreter))); 4615 } 4616 4617 ~CommandObjectRenderScriptRuntimeContext() override = default; 4618 }; 4619 4620 class CommandObjectRenderScriptRuntimeAllocationDump 4621 : public CommandObjectParsed { 4622 public: 4623 CommandObjectRenderScriptRuntimeAllocationDump( 4624 CommandInterpreter &interpreter) 4625 : CommandObjectParsed(interpreter, "renderscript allocation dump", 4626 "Displays the contents of a particular allocation", 4627 "renderscript allocation dump <ID>", 4628 eCommandRequiresProcess | 4629 eCommandProcessMustBeLaunched), 4630 m_options() {} 4631 4632 ~CommandObjectRenderScriptRuntimeAllocationDump() override = default; 4633 4634 Options *GetOptions() override { return &m_options; } 4635 4636 class CommandOptions : public Options { 4637 public: 4638 CommandOptions() : Options() {} 4639 4640 ~CommandOptions() override = default; 4641 4642 Error SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg, 4643 ExecutionContext *exe_ctx) override { 4644 Error err; 4645 const int short_option = m_getopt_table[option_idx].val; 4646 4647 switch (short_option) { 4648 case 'f': 4649 m_outfile.SetFile(option_arg, true); 4650 if (m_outfile.Exists()) { 4651 m_outfile.Clear(); 4652 err.SetErrorStringWithFormat("file already exists: '%s'", 4653 option_arg.str().c_str()); 4654 } 4655 break; 4656 default: 4657 err.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 4658 break; 4659 } 4660 return err; 4661 } 4662 4663 void OptionParsingStarting(ExecutionContext *exe_ctx) override { 4664 m_outfile.Clear(); 4665 } 4666 4667 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4668 return llvm::makeArrayRef(g_renderscript_runtime_alloc_dump_options); 4669 } 4670 4671 FileSpec m_outfile; 4672 }; 4673 4674 bool DoExecute(Args &command, CommandReturnObject &result) override { 4675 const size_t argc = command.GetArgumentCount(); 4676 if (argc < 1) { 4677 result.AppendErrorWithFormat("'%s' takes 1 argument, an allocation ID. " 4678 "As well as an optional -f argument", 4679 m_cmd_name.c_str()); 4680 result.SetStatus(eReturnStatusFailed); 4681 return false; 4682 } 4683 4684 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4685 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4686 eLanguageTypeExtRenderScript)); 4687 4688 const char *id_cstr = command.GetArgumentAtIndex(0); 4689 bool success = false; 4690 const uint32_t id = 4691 StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success); 4692 if (!success) { 4693 result.AppendErrorWithFormat("invalid allocation id argument '%s'", 4694 id_cstr); 4695 result.SetStatus(eReturnStatusFailed); 4696 return false; 4697 } 4698 4699 Stream *output_strm = nullptr; 4700 StreamFile outfile_stream; 4701 const FileSpec &outfile_spec = 4702 m_options.m_outfile; // Dump allocation to file instead 4703 if (outfile_spec) { 4704 // Open output file 4705 char path[256]; 4706 outfile_spec.GetPath(path, sizeof(path)); 4707 if (outfile_stream.GetFile() 4708 .Open(path, File::eOpenOptionWrite | File::eOpenOptionCanCreate) 4709 .Success()) { 4710 output_strm = &outfile_stream; 4711 result.GetOutputStream().Printf("Results written to '%s'", path); 4712 result.GetOutputStream().EOL(); 4713 } else { 4714 result.AppendErrorWithFormat("Couldn't open file '%s'", path); 4715 result.SetStatus(eReturnStatusFailed); 4716 return false; 4717 } 4718 } else 4719 output_strm = &result.GetOutputStream(); 4720 4721 assert(output_strm != nullptr); 4722 bool dumped = 4723 runtime->DumpAllocation(*output_strm, m_exe_ctx.GetFramePtr(), id); 4724 4725 if (dumped) 4726 result.SetStatus(eReturnStatusSuccessFinishResult); 4727 else 4728 result.SetStatus(eReturnStatusFailed); 4729 4730 return true; 4731 } 4732 4733 private: 4734 CommandOptions m_options; 4735 }; 4736 4737 static OptionDefinition g_renderscript_runtime_alloc_list_options[] = { 4738 {LLDB_OPT_SET_1, false, "id", 'i', OptionParser::eRequiredArgument, nullptr, 4739 nullptr, 0, eArgTypeIndex, 4740 "Only show details of a single allocation with specified id."}}; 4741 4742 class CommandObjectRenderScriptRuntimeAllocationList 4743 : public CommandObjectParsed { 4744 public: 4745 CommandObjectRenderScriptRuntimeAllocationList( 4746 CommandInterpreter &interpreter) 4747 : CommandObjectParsed( 4748 interpreter, "renderscript allocation list", 4749 "List renderscript allocations and their information.", 4750 "renderscript allocation list", 4751 eCommandRequiresProcess | eCommandProcessMustBeLaunched), 4752 m_options() {} 4753 4754 ~CommandObjectRenderScriptRuntimeAllocationList() override = default; 4755 4756 Options *GetOptions() override { return &m_options; } 4757 4758 class CommandOptions : public Options { 4759 public: 4760 CommandOptions() : Options(), m_id(0) {} 4761 4762 ~CommandOptions() override = default; 4763 4764 Error SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg, 4765 ExecutionContext *exe_ctx) override { 4766 Error err; 4767 const int short_option = m_getopt_table[option_idx].val; 4768 4769 switch (short_option) { 4770 case 'i': 4771 if (option_arg.getAsInteger(0, m_id)) 4772 err.SetErrorStringWithFormat("invalid integer value for option '%c'", 4773 short_option); 4774 break; 4775 default: 4776 err.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 4777 break; 4778 } 4779 return err; 4780 } 4781 4782 void OptionParsingStarting(ExecutionContext *exe_ctx) override { m_id = 0; } 4783 4784 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4785 return llvm::makeArrayRef(g_renderscript_runtime_alloc_list_options); 4786 } 4787 4788 uint32_t m_id; 4789 }; 4790 4791 bool DoExecute(Args &command, CommandReturnObject &result) override { 4792 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4793 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4794 eLanguageTypeExtRenderScript)); 4795 runtime->ListAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr(), 4796 m_options.m_id); 4797 result.SetStatus(eReturnStatusSuccessFinishResult); 4798 return true; 4799 } 4800 4801 private: 4802 CommandOptions m_options; 4803 }; 4804 4805 class CommandObjectRenderScriptRuntimeAllocationLoad 4806 : public CommandObjectParsed { 4807 public: 4808 CommandObjectRenderScriptRuntimeAllocationLoad( 4809 CommandInterpreter &interpreter) 4810 : CommandObjectParsed( 4811 interpreter, "renderscript allocation load", 4812 "Loads renderscript allocation contents from a file.", 4813 "renderscript allocation load <ID> <filename>", 4814 eCommandRequiresProcess | eCommandProcessMustBeLaunched) {} 4815 4816 ~CommandObjectRenderScriptRuntimeAllocationLoad() override = default; 4817 4818 bool DoExecute(Args &command, CommandReturnObject &result) override { 4819 const size_t argc = command.GetArgumentCount(); 4820 if (argc != 2) { 4821 result.AppendErrorWithFormat( 4822 "'%s' takes 2 arguments, an allocation ID and filename to read from.", 4823 m_cmd_name.c_str()); 4824 result.SetStatus(eReturnStatusFailed); 4825 return false; 4826 } 4827 4828 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4829 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4830 eLanguageTypeExtRenderScript)); 4831 4832 const char *id_cstr = command.GetArgumentAtIndex(0); 4833 bool success = false; 4834 const uint32_t id = 4835 StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success); 4836 if (!success) { 4837 result.AppendErrorWithFormat("invalid allocation id argument '%s'", 4838 id_cstr); 4839 result.SetStatus(eReturnStatusFailed); 4840 return false; 4841 } 4842 4843 const char *path = command.GetArgumentAtIndex(1); 4844 bool loaded = runtime->LoadAllocation(result.GetOutputStream(), id, path, 4845 m_exe_ctx.GetFramePtr()); 4846 4847 if (loaded) 4848 result.SetStatus(eReturnStatusSuccessFinishResult); 4849 else 4850 result.SetStatus(eReturnStatusFailed); 4851 4852 return true; 4853 } 4854 }; 4855 4856 class CommandObjectRenderScriptRuntimeAllocationSave 4857 : public CommandObjectParsed { 4858 public: 4859 CommandObjectRenderScriptRuntimeAllocationSave( 4860 CommandInterpreter &interpreter) 4861 : CommandObjectParsed(interpreter, "renderscript allocation save", 4862 "Write renderscript allocation contents to a file.", 4863 "renderscript allocation save <ID> <filename>", 4864 eCommandRequiresProcess | 4865 eCommandProcessMustBeLaunched) {} 4866 4867 ~CommandObjectRenderScriptRuntimeAllocationSave() override = default; 4868 4869 bool DoExecute(Args &command, CommandReturnObject &result) override { 4870 const size_t argc = command.GetArgumentCount(); 4871 if (argc != 2) { 4872 result.AppendErrorWithFormat( 4873 "'%s' takes 2 arguments, an allocation ID and filename to read from.", 4874 m_cmd_name.c_str()); 4875 result.SetStatus(eReturnStatusFailed); 4876 return false; 4877 } 4878 4879 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4880 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4881 eLanguageTypeExtRenderScript)); 4882 4883 const char *id_cstr = command.GetArgumentAtIndex(0); 4884 bool success = false; 4885 const uint32_t id = 4886 StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success); 4887 if (!success) { 4888 result.AppendErrorWithFormat("invalid allocation id argument '%s'", 4889 id_cstr); 4890 result.SetStatus(eReturnStatusFailed); 4891 return false; 4892 } 4893 4894 const char *path = command.GetArgumentAtIndex(1); 4895 bool saved = runtime->SaveAllocation(result.GetOutputStream(), id, path, 4896 m_exe_ctx.GetFramePtr()); 4897 4898 if (saved) 4899 result.SetStatus(eReturnStatusSuccessFinishResult); 4900 else 4901 result.SetStatus(eReturnStatusFailed); 4902 4903 return true; 4904 } 4905 }; 4906 4907 class CommandObjectRenderScriptRuntimeAllocationRefresh 4908 : public CommandObjectParsed { 4909 public: 4910 CommandObjectRenderScriptRuntimeAllocationRefresh( 4911 CommandInterpreter &interpreter) 4912 : CommandObjectParsed(interpreter, "renderscript allocation refresh", 4913 "Recomputes the details of all allocations.", 4914 "renderscript allocation refresh", 4915 eCommandRequiresProcess | 4916 eCommandProcessMustBeLaunched) {} 4917 4918 ~CommandObjectRenderScriptRuntimeAllocationRefresh() override = default; 4919 4920 bool DoExecute(Args &command, CommandReturnObject &result) override { 4921 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4922 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4923 eLanguageTypeExtRenderScript)); 4924 4925 bool success = runtime->RecomputeAllAllocations(result.GetOutputStream(), 4926 m_exe_ctx.GetFramePtr()); 4927 4928 if (success) { 4929 result.SetStatus(eReturnStatusSuccessFinishResult); 4930 return true; 4931 } else { 4932 result.SetStatus(eReturnStatusFailed); 4933 return false; 4934 } 4935 } 4936 }; 4937 4938 class CommandObjectRenderScriptRuntimeAllocation 4939 : public CommandObjectMultiword { 4940 public: 4941 CommandObjectRenderScriptRuntimeAllocation(CommandInterpreter &interpreter) 4942 : CommandObjectMultiword( 4943 interpreter, "renderscript allocation", 4944 "Commands that deal with RenderScript allocations.", nullptr) { 4945 LoadSubCommand( 4946 "list", 4947 CommandObjectSP( 4948 new CommandObjectRenderScriptRuntimeAllocationList(interpreter))); 4949 LoadSubCommand( 4950 "dump", 4951 CommandObjectSP( 4952 new CommandObjectRenderScriptRuntimeAllocationDump(interpreter))); 4953 LoadSubCommand( 4954 "save", 4955 CommandObjectSP( 4956 new CommandObjectRenderScriptRuntimeAllocationSave(interpreter))); 4957 LoadSubCommand( 4958 "load", 4959 CommandObjectSP( 4960 new CommandObjectRenderScriptRuntimeAllocationLoad(interpreter))); 4961 LoadSubCommand( 4962 "refresh", 4963 CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationRefresh( 4964 interpreter))); 4965 } 4966 4967 ~CommandObjectRenderScriptRuntimeAllocation() override = default; 4968 }; 4969 4970 class CommandObjectRenderScriptRuntimeStatus : public CommandObjectParsed { 4971 public: 4972 CommandObjectRenderScriptRuntimeStatus(CommandInterpreter &interpreter) 4973 : CommandObjectParsed(interpreter, "renderscript status", 4974 "Displays current RenderScript runtime status.", 4975 "renderscript status", 4976 eCommandRequiresProcess | 4977 eCommandProcessMustBeLaunched) {} 4978 4979 ~CommandObjectRenderScriptRuntimeStatus() override = default; 4980 4981 bool DoExecute(Args &command, CommandReturnObject &result) override { 4982 RenderScriptRuntime *runtime = 4983 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4984 eLanguageTypeExtRenderScript); 4985 runtime->Status(result.GetOutputStream()); 4986 result.SetStatus(eReturnStatusSuccessFinishResult); 4987 return true; 4988 } 4989 }; 4990 4991 class CommandObjectRenderScriptRuntimeReduction 4992 : public CommandObjectMultiword { 4993 public: 4994 CommandObjectRenderScriptRuntimeReduction(CommandInterpreter &interpreter) 4995 : CommandObjectMultiword(interpreter, "renderscript reduction", 4996 "Commands that handle general reduction kernels", 4997 nullptr) { 4998 LoadSubCommand( 4999 "breakpoint", 5000 CommandObjectSP(new CommandObjectRenderScriptRuntimeReductionBreakpoint( 5001 interpreter))); 5002 } 5003 ~CommandObjectRenderScriptRuntimeReduction() override = default; 5004 }; 5005 5006 class CommandObjectRenderScriptRuntime : public CommandObjectMultiword { 5007 public: 5008 CommandObjectRenderScriptRuntime(CommandInterpreter &interpreter) 5009 : CommandObjectMultiword( 5010 interpreter, "renderscript", 5011 "Commands for operating on the RenderScript runtime.", 5012 "renderscript <subcommand> [<subcommand-options>]") { 5013 LoadSubCommand( 5014 "module", CommandObjectSP( 5015 new CommandObjectRenderScriptRuntimeModule(interpreter))); 5016 LoadSubCommand( 5017 "status", CommandObjectSP( 5018 new CommandObjectRenderScriptRuntimeStatus(interpreter))); 5019 LoadSubCommand( 5020 "kernel", CommandObjectSP( 5021 new CommandObjectRenderScriptRuntimeKernel(interpreter))); 5022 LoadSubCommand("context", 5023 CommandObjectSP(new CommandObjectRenderScriptRuntimeContext( 5024 interpreter))); 5025 LoadSubCommand( 5026 "allocation", 5027 CommandObjectSP( 5028 new CommandObjectRenderScriptRuntimeAllocation(interpreter))); 5029 LoadSubCommand("scriptgroup", 5030 NewCommandObjectRenderScriptScriptGroup(interpreter)); 5031 LoadSubCommand( 5032 "reduction", 5033 CommandObjectSP( 5034 new CommandObjectRenderScriptRuntimeReduction(interpreter))); 5035 } 5036 5037 ~CommandObjectRenderScriptRuntime() override = default; 5038 }; 5039 5040 void RenderScriptRuntime::Initiate() { assert(!m_initiated); } 5041 5042 RenderScriptRuntime::RenderScriptRuntime(Process *process) 5043 : lldb_private::CPPLanguageRuntime(process), m_initiated(false), 5044 m_debuggerPresentFlagged(false), m_breakAllKernels(false), 5045 m_ir_passes(nullptr) { 5046 ModulesDidLoad(process->GetTarget().GetImages()); 5047 } 5048 5049 lldb::CommandObjectSP RenderScriptRuntime::GetCommandObject( 5050 lldb_private::CommandInterpreter &interpreter) { 5051 return CommandObjectSP(new CommandObjectRenderScriptRuntime(interpreter)); 5052 } 5053 5054 RenderScriptRuntime::~RenderScriptRuntime() = default; 5055