1 //===-- RenderScriptRuntime.cpp ---------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 // C Includes 11 // C++ Includes 12 // Other libraries and framework includes 13 // Project includes 14 #include "RenderScriptRuntime.h" 15 16 #include "lldb/Breakpoint/StoppointCallbackContext.h" 17 #include "lldb/Core/ConstString.h" 18 #include "lldb/Core/Debugger.h" 19 #include "lldb/Core/Error.h" 20 #include "lldb/Core/Log.h" 21 #include "lldb/Core/PluginManager.h" 22 #include "lldb/Core/RegularExpression.h" 23 #include "lldb/Core/ValueObjectVariable.h" 24 #include "lldb/DataFormatters/DumpValueObjectOptions.h" 25 #include "lldb/Expression/UserExpression.h" 26 #include "lldb/Host/StringConvert.h" 27 #include "lldb/Interpreter/Args.h" 28 #include "lldb/Interpreter/CommandInterpreter.h" 29 #include "lldb/Interpreter/CommandObjectMultiword.h" 30 #include "lldb/Interpreter/CommandReturnObject.h" 31 #include "lldb/Interpreter/Options.h" 32 #include "lldb/Symbol/Symbol.h" 33 #include "lldb/Symbol/Type.h" 34 #include "lldb/Symbol/VariableList.h" 35 #include "lldb/Target/Process.h" 36 #include "lldb/Target/RegisterContext.h" 37 #include "lldb/Target/Target.h" 38 #include "lldb/Target/Thread.h" 39 40 using namespace lldb; 41 using namespace lldb_private; 42 using namespace lldb_renderscript; 43 44 namespace 45 { 46 47 // The empirical_type adds a basic level of validation to arbitrary data 48 // allowing us to track if data has been discovered and stored or not. 49 // An empirical_type will be marked as valid only if it has been explicitly assigned to. 50 template <typename type_t> class empirical_type 51 { 52 public: 53 // Ctor. Contents is invalid when constructed. 54 empirical_type() : valid(false) {} 55 56 // Return true and copy contents to out if valid, else return false. 57 bool 58 get(type_t &out) const 59 { 60 if (valid) 61 out = data; 62 return valid; 63 } 64 65 // Return a pointer to the contents or nullptr if it was not valid. 66 const type_t * 67 get() const 68 { 69 return valid ? &data : nullptr; 70 } 71 72 // Assign data explicitly. 73 void 74 set(const type_t in) 75 { 76 data = in; 77 valid = true; 78 } 79 80 // Mark contents as invalid. 81 void 82 invalidate() 83 { 84 valid = false; 85 } 86 87 // Returns true if this type contains valid data. 88 bool 89 isValid() const 90 { 91 return valid; 92 } 93 94 // Assignment operator. 95 empirical_type<type_t> & 96 operator=(const type_t in) 97 { 98 set(in); 99 return *this; 100 } 101 102 // Dereference operator returns contents. 103 // Warning: Will assert if not valid so use only when you know data is valid. 104 const type_t &operator*() const 105 { 106 assert(valid); 107 return data; 108 } 109 110 protected: 111 bool valid; 112 type_t data; 113 }; 114 115 // ArgItem is used by the GetArgs() function when reading function arguments from the target. 116 struct ArgItem 117 { 118 enum 119 { 120 ePointer, 121 eInt32, 122 eInt64, 123 eLong, 124 eBool 125 } type; 126 127 uint64_t value; 128 129 explicit operator uint64_t() const { return value; } 130 }; 131 132 // Context structure to be passed into GetArgsXXX(), argument reading functions below. 133 struct GetArgsCtx 134 { 135 RegisterContext *reg_ctx; 136 Process *process; 137 }; 138 139 bool 140 GetArgsX86(const GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) 141 { 142 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 143 144 Error error; 145 146 // get the current stack pointer 147 uint64_t sp = ctx.reg_ctx->GetSP(); 148 149 for (size_t i = 0; i < num_args; ++i) 150 { 151 ArgItem &arg = arg_list[i]; 152 // advance up the stack by one argument 153 sp += sizeof(uint32_t); 154 // get the argument type size 155 size_t arg_size = sizeof(uint32_t); 156 // read the argument from memory 157 arg.value = 0; 158 Error error; 159 size_t read = ctx.process->ReadMemory(sp, &arg.value, sizeof(uint32_t), error); 160 if (read != arg_size || !error.Success()) 161 { 162 if (log) 163 log->Printf("%s - error reading argument: %" PRIu64 " '%s'", __FUNCTION__, uint64_t(i), 164 error.AsCString()); 165 return false; 166 } 167 } 168 return true; 169 } 170 171 bool 172 GetArgsX86_64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) 173 { 174 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 175 176 // number of arguments passed in registers 177 static const uint32_t c_args_in_reg = 6; 178 // register passing order 179 static const std::array<const char *, c_args_in_reg> c_reg_names{{"rdi", "rsi", "rdx", "rcx", "r8", "r9"}}; 180 // argument type to size mapping 181 static const std::array<size_t, 5> arg_size{{ 182 8, // ePointer, 183 4, // eInt32, 184 8, // eInt64, 185 8, // eLong, 186 4, // eBool, 187 }}; 188 189 Error error; 190 191 // get the current stack pointer 192 uint64_t sp = ctx.reg_ctx->GetSP(); 193 // step over the return address 194 sp += sizeof(uint64_t); 195 196 // check the stack alignment was correct (16 byte aligned) 197 if ((sp & 0xf) != 0x0) 198 { 199 if (log) 200 log->Printf("%s - stack misaligned", __FUNCTION__); 201 return false; 202 } 203 204 // find the start of arguments on the stack 205 uint64_t sp_offset = 0; 206 for (uint32_t i = c_args_in_reg; i < num_args; ++i) 207 { 208 sp_offset += arg_size[arg_list[i].type]; 209 } 210 // round up to multiple of 16 211 sp_offset = (sp_offset + 0xf) & 0xf; 212 sp += sp_offset; 213 214 for (size_t i = 0; i < num_args; ++i) 215 { 216 bool success = false; 217 ArgItem &arg = arg_list[i]; 218 // arguments passed in registers 219 if (i < c_args_in_reg) 220 { 221 const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoByName(c_reg_names[i]); 222 RegisterValue rVal; 223 if (ctx.reg_ctx->ReadRegister(rArg, rVal)) 224 arg.value = rVal.GetAsUInt64(0, &success); 225 } 226 // arguments passed on the stack 227 else 228 { 229 // get the argument type size 230 const size_t size = arg_size[arg_list[i].type]; 231 // read the argument from memory 232 arg.value = 0; 233 // note: due to little endian layout reading 4 or 8 bytes will give the correct value. 234 size_t read = ctx.process->ReadMemory(sp, &arg.value, size, error); 235 success = (error.Success() && read==size); 236 // advance past this argument 237 sp -= size; 238 } 239 // fail if we couldn't read this argument 240 if (!success) 241 { 242 if (log) 243 log->Printf("%s - error reading argument: %" PRIu64", reason: %s", 244 __FUNCTION__, uint64_t(i), error.AsCString("n/a")); 245 return false; 246 } 247 } 248 return true; 249 } 250 251 bool 252 GetArgsArm(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) 253 { 254 // number of arguments passed in registers 255 static const uint32_t c_args_in_reg = 4; 256 257 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 258 259 Error error; 260 261 // get the current stack pointer 262 uint64_t sp = ctx.reg_ctx->GetSP(); 263 264 for (size_t i = 0; i < num_args; ++i) 265 { 266 bool success = false; 267 ArgItem &arg = arg_list[i]; 268 // arguments passed in registers 269 if (i < c_args_in_reg) 270 { 271 const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoAtIndex(i); 272 RegisterValue rVal; 273 if (ctx.reg_ctx->ReadRegister(rArg, rVal)) 274 arg.value = rVal.GetAsUInt32(0, &success); 275 } 276 // arguments passed on the stack 277 else 278 { 279 // get the argument type size 280 const size_t arg_size = sizeof(uint32_t); 281 // clear all 64bits 282 arg.value = 0; 283 // read this argument from memory 284 size_t bytes_read = ctx.process->ReadMemory(sp, &arg.value, arg_size, error); 285 success = (error.Success() && bytes_read == arg_size); 286 // advance the stack pointer 287 sp += sizeof(uint32_t); 288 } 289 // fail if we couldn't read this argument 290 if (!success) 291 { 292 if (log) 293 log->Printf("%s - error reading argument: %" PRIu64", reason: %s", 294 __FUNCTION__, uint64_t(i), error.AsCString("n/a")); 295 return false; 296 } 297 } 298 return true; 299 } 300 301 bool 302 GetArgsAarch64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) 303 { 304 // number of arguments passed in registers 305 static const uint32_t c_args_in_reg = 8; 306 307 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 308 309 for (size_t i = 0; i < num_args; ++i) 310 { 311 bool success = false; 312 ArgItem &arg = arg_list[i]; 313 // arguments passed in registers 314 if (i < c_args_in_reg) 315 { 316 const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoAtIndex(i); 317 RegisterValue rVal; 318 if (ctx.reg_ctx->ReadRegister(rArg, rVal)) 319 arg.value = rVal.GetAsUInt64(0, &success); 320 } 321 // arguments passed on the stack 322 else 323 { 324 if (log) 325 log->Printf("%s - reading arguments spilled to stack not implemented", __FUNCTION__); 326 } 327 // fail if we couldn't read this argument 328 if (!success) 329 { 330 if (log) 331 log->Printf("%s - error reading argument: %" PRIu64, __FUNCTION__, 332 uint64_t(i)); 333 return false; 334 } 335 } 336 return true; 337 } 338 339 bool 340 GetArgsMipsel(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) 341 { 342 // number of arguments passed in registers 343 static const uint32_t c_args_in_reg = 4; 344 // register file offset to first argument 345 static const uint32_t c_reg_offset = 4; 346 347 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 348 349 Error error; 350 351 // find offset to arguments on the stack (+16 to skip over a0-a3 shadow space) 352 uint64_t sp = ctx.reg_ctx->GetSP() + 16; 353 354 for (size_t i = 0; i < num_args; ++i) 355 { 356 bool success = false; 357 ArgItem &arg = arg_list[i]; 358 // arguments passed in registers 359 if (i < c_args_in_reg) 360 { 361 const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoAtIndex(i + c_reg_offset); 362 RegisterValue rVal; 363 if (ctx.reg_ctx->ReadRegister(rArg, rVal)) 364 arg.value = rVal.GetAsUInt64(0, &success); 365 } 366 // arguments passed on the stack 367 else 368 { 369 const size_t arg_size = sizeof(uint32_t); 370 arg.value = 0; 371 size_t bytes_read = ctx.process->ReadMemory(sp, &arg.value, arg_size, error); 372 success = (error.Success() && bytes_read == arg_size); 373 // advance the stack pointer 374 sp += arg_size; 375 } 376 // fail if we couldn't read this argument 377 if (!success) 378 { 379 if (log) 380 log->Printf("%s - error reading argument: %" PRIu64", reason: %s", 381 __FUNCTION__, uint64_t(i), error.AsCString("n/a")); 382 return false; 383 } 384 } 385 return true; 386 } 387 388 bool 389 GetArgsMips64el(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) 390 { 391 // number of arguments passed in registers 392 static const uint32_t c_args_in_reg = 8; 393 // register file offset to first argument 394 static const uint32_t c_reg_offset = 4; 395 396 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 397 398 Error error; 399 400 // get the current stack pointer 401 uint64_t sp = ctx.reg_ctx->GetSP(); 402 403 for (size_t i = 0; i < num_args; ++i) 404 { 405 bool success = false; 406 ArgItem &arg = arg_list[i]; 407 // arguments passed in registers 408 if (i < c_args_in_reg) 409 { 410 const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoAtIndex(i + c_reg_offset); 411 RegisterValue rVal; 412 if (ctx.reg_ctx->ReadRegister(rArg, rVal)) 413 arg.value = rVal.GetAsUInt64(0, &success); 414 } 415 // arguments passed on the stack 416 else 417 { 418 // get the argument type size 419 const size_t arg_size = sizeof(uint64_t); 420 // clear all 64bits 421 arg.value = 0; 422 // read this argument from memory 423 size_t bytes_read = ctx.process->ReadMemory(sp, &arg.value, arg_size, error); 424 success = (error.Success() && bytes_read == arg_size); 425 // advance the stack pointer 426 sp += arg_size; 427 } 428 // fail if we couldn't read this argument 429 if (!success) 430 { 431 if (log) 432 log->Printf("%s - error reading argument: %" PRIu64", reason: %s", 433 __FUNCTION__, uint64_t(i), error.AsCString("n/a")); 434 return false; 435 } 436 } 437 return true; 438 } 439 440 bool 441 GetArgs(ExecutionContext &context, ArgItem *arg_list, size_t num_args) 442 { 443 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 444 445 // verify that we have a target 446 if (!context.GetTargetPtr()) 447 { 448 if (log) 449 log->Printf("%s - invalid target", __FUNCTION__); 450 return false; 451 } 452 453 GetArgsCtx ctx = {context.GetRegisterContext(), context.GetProcessPtr()}; 454 assert(ctx.reg_ctx && ctx.process); 455 456 // dispatch based on architecture 457 switch (context.GetTargetPtr()->GetArchitecture().GetMachine()) 458 { 459 case llvm::Triple::ArchType::x86: 460 return GetArgsX86(ctx, arg_list, num_args); 461 462 case llvm::Triple::ArchType::x86_64: 463 return GetArgsX86_64(ctx, arg_list, num_args); 464 465 case llvm::Triple::ArchType::arm: 466 return GetArgsArm(ctx, arg_list, num_args); 467 468 case llvm::Triple::ArchType::aarch64: 469 return GetArgsAarch64(ctx, arg_list, num_args); 470 471 case llvm::Triple::ArchType::mipsel: 472 return GetArgsMipsel(ctx, arg_list, num_args); 473 474 case llvm::Triple::ArchType::mips64el: 475 return GetArgsMips64el(ctx, arg_list, num_args); 476 477 default: 478 // unsupported architecture 479 if (log) 480 { 481 log->Printf("%s - architecture not supported: '%s'", __FUNCTION__, 482 context.GetTargetRef().GetArchitecture().GetArchitectureName()); 483 } 484 return false; 485 } 486 } 487 } // anonymous namespace 488 489 // The ScriptDetails class collects data associated with a single script instance. 490 struct RenderScriptRuntime::ScriptDetails 491 { 492 ~ScriptDetails() = default; 493 494 enum ScriptType 495 { 496 eScript, 497 eScriptC 498 }; 499 500 // The derived type of the script. 501 empirical_type<ScriptType> type; 502 // The name of the original source file. 503 empirical_type<std::string> resName; 504 // Path to script .so file on the device. 505 empirical_type<std::string> scriptDyLib; 506 // Directory where kernel objects are cached on device. 507 empirical_type<std::string> cacheDir; 508 // Pointer to the context which owns this script. 509 empirical_type<lldb::addr_t> context; 510 // Pointer to the script object itself. 511 empirical_type<lldb::addr_t> script; 512 }; 513 514 // This Element class represents the Element object in RS, 515 // defining the type associated with an Allocation. 516 struct RenderScriptRuntime::Element 517 { 518 // Taken from rsDefines.h 519 enum DataKind 520 { 521 RS_KIND_USER, 522 RS_KIND_PIXEL_L = 7, 523 RS_KIND_PIXEL_A, 524 RS_KIND_PIXEL_LA, 525 RS_KIND_PIXEL_RGB, 526 RS_KIND_PIXEL_RGBA, 527 RS_KIND_PIXEL_DEPTH, 528 RS_KIND_PIXEL_YUV, 529 RS_KIND_INVALID = 100 530 }; 531 532 // Taken from rsDefines.h 533 enum DataType 534 { 535 RS_TYPE_NONE = 0, 536 RS_TYPE_FLOAT_16, 537 RS_TYPE_FLOAT_32, 538 RS_TYPE_FLOAT_64, 539 RS_TYPE_SIGNED_8, 540 RS_TYPE_SIGNED_16, 541 RS_TYPE_SIGNED_32, 542 RS_TYPE_SIGNED_64, 543 RS_TYPE_UNSIGNED_8, 544 RS_TYPE_UNSIGNED_16, 545 RS_TYPE_UNSIGNED_32, 546 RS_TYPE_UNSIGNED_64, 547 RS_TYPE_BOOLEAN, 548 549 RS_TYPE_UNSIGNED_5_6_5, 550 RS_TYPE_UNSIGNED_5_5_5_1, 551 RS_TYPE_UNSIGNED_4_4_4_4, 552 553 RS_TYPE_MATRIX_4X4, 554 RS_TYPE_MATRIX_3X3, 555 RS_TYPE_MATRIX_2X2, 556 557 RS_TYPE_ELEMENT = 1000, 558 RS_TYPE_TYPE, 559 RS_TYPE_ALLOCATION, 560 RS_TYPE_SAMPLER, 561 RS_TYPE_SCRIPT, 562 RS_TYPE_MESH, 563 RS_TYPE_PROGRAM_FRAGMENT, 564 RS_TYPE_PROGRAM_VERTEX, 565 RS_TYPE_PROGRAM_RASTER, 566 RS_TYPE_PROGRAM_STORE, 567 RS_TYPE_FONT, 568 569 RS_TYPE_INVALID = 10000 570 }; 571 572 std::vector<Element> children; // Child Element fields for structs 573 empirical_type<lldb::addr_t> element_ptr; // Pointer to the RS Element of the Type 574 empirical_type<DataType> type; // Type of each data pointer stored by the allocation 575 empirical_type<DataKind> type_kind; // Defines pixel type if Allocation is created from an image 576 empirical_type<uint32_t> type_vec_size; // Vector size of each data point, e.g '4' for uchar4 577 empirical_type<uint32_t> field_count; // Number of Subelements 578 empirical_type<uint32_t> datum_size; // Size of a single Element with padding 579 empirical_type<uint32_t> padding; // Number of padding bytes 580 empirical_type<uint32_t> array_size; // Number of items in array, only needed for strucrs 581 ConstString type_name; // Name of type, only needed for structs 582 583 static const ConstString & 584 GetFallbackStructName(); // Print this as the type name of a struct Element 585 // If we can't resolve the actual struct name 586 587 bool 588 shouldRefresh() const 589 { 590 const bool valid_ptr = element_ptr.isValid() && *element_ptr.get() != 0x0; 591 const bool valid_type = type.isValid() && type_vec_size.isValid() && type_kind.isValid(); 592 return !valid_ptr || !valid_type || !datum_size.isValid(); 593 } 594 }; 595 596 // This AllocationDetails class collects data associated with a single 597 // allocation instance. 598 struct RenderScriptRuntime::AllocationDetails 599 { 600 struct Dimension 601 { 602 uint32_t dim_1; 603 uint32_t dim_2; 604 uint32_t dim_3; 605 uint32_t cubeMap; 606 607 Dimension() 608 { 609 dim_1 = 0; 610 dim_2 = 0; 611 dim_3 = 0; 612 cubeMap = 0; 613 } 614 }; 615 616 // The FileHeader struct specifies the header we use for writing allocations to a binary file. 617 // Our format begins with the ASCII characters "RSAD", identifying the file as an allocation dump. 618 // Member variables dims and hdr_size are then written consecutively, immediately followed by an instance of 619 // the ElementHeader struct. Because Elements can contain subelements, there may be more than one instance 620 // of the ElementHeader struct. With this first instance being the root element, and the other instances being 621 // the root's descendants. To identify which instances are an ElementHeader's children, each struct 622 // is immediately followed by a sequence of consecutive offsets to the start of its child structs. 623 // These offsets are 4 bytes in size, and the 0 offset signifies no more children. 624 struct FileHeader 625 { 626 uint8_t ident[4]; // ASCII 'RSAD' identifying the file 627 uint32_t dims[3]; // Dimensions 628 uint16_t hdr_size; // Header size in bytes, including all element headers 629 }; 630 631 struct ElementHeader 632 { 633 uint16_t type; // DataType enum 634 uint32_t kind; // DataKind enum 635 uint32_t element_size; // Size of a single element, including padding 636 uint16_t vector_size; // Vector width 637 uint32_t array_size; // Number of elements in array 638 }; 639 640 // Monotonically increasing from 1 641 static uint32_t ID; 642 643 // Maps Allocation DataType enum and vector size to printable strings 644 // using mapping from RenderScript numerical types summary documentation 645 static const char *RsDataTypeToString[][4]; 646 647 // Maps Allocation DataKind enum to printable strings 648 static const char *RsDataKindToString[]; 649 650 // Maps allocation types to format sizes for printing. 651 static const uint32_t RSTypeToFormat[][3]; 652 653 // Give each allocation an ID as a way 654 // for commands to reference it. 655 const uint32_t id; 656 657 RenderScriptRuntime::Element element; // Allocation Element type 658 empirical_type<Dimension> dimension; // Dimensions of the Allocation 659 empirical_type<lldb::addr_t> address; // Pointer to address of the RS Allocation 660 empirical_type<lldb::addr_t> data_ptr; // Pointer to the data held by the Allocation 661 empirical_type<lldb::addr_t> type_ptr; // Pointer to the RS Type of the Allocation 662 empirical_type<lldb::addr_t> context; // Pointer to the RS Context of the Allocation 663 empirical_type<uint32_t> size; // Size of the allocation 664 empirical_type<uint32_t> stride; // Stride between rows of the allocation 665 666 // Give each allocation an id, so we can reference it in user commands. 667 AllocationDetails() : id(ID++) {} 668 669 bool 670 shouldRefresh() const 671 { 672 bool valid_ptrs = data_ptr.isValid() && *data_ptr.get() != 0x0; 673 valid_ptrs = valid_ptrs && type_ptr.isValid() && *type_ptr.get() != 0x0; 674 return !valid_ptrs || !dimension.isValid() || !size.isValid() || element.shouldRefresh(); 675 } 676 }; 677 678 const ConstString & 679 RenderScriptRuntime::Element::GetFallbackStructName() 680 { 681 static const ConstString FallbackStructName("struct"); 682 return FallbackStructName; 683 } 684 685 uint32_t RenderScriptRuntime::AllocationDetails::ID = 1; 686 687 const char *RenderScriptRuntime::AllocationDetails::RsDataKindToString[] = { 688 "User", 689 "Undefined", "Undefined", "Undefined", "Undefined", "Undefined", "Undefined", // Enum jumps from 0 to 7 690 "L Pixel", "A Pixel", "LA Pixel", "RGB Pixel", 691 "RGBA Pixel", "Pixel Depth", "YUV Pixel"}; 692 693 const char *RenderScriptRuntime::AllocationDetails::RsDataTypeToString[][4] = { 694 {"None", "None", "None", "None"}, 695 {"half", "half2", "half3", "half4"}, 696 {"float", "float2", "float3", "float4"}, 697 {"double", "double2", "double3", "double4"}, 698 {"char", "char2", "char3", "char4"}, 699 {"short", "short2", "short3", "short4"}, 700 {"int", "int2", "int3", "int4"}, 701 {"long", "long2", "long3", "long4"}, 702 {"uchar", "uchar2", "uchar3", "uchar4"}, 703 {"ushort", "ushort2", "ushort3", "ushort4"}, 704 {"uint", "uint2", "uint3", "uint4"}, 705 {"ulong", "ulong2", "ulong3", "ulong4"}, 706 {"bool", "bool2", "bool3", "bool4"}, 707 {"packed_565", "packed_565", "packed_565", "packed_565"}, 708 {"packed_5551", "packed_5551", "packed_5551", "packed_5551"}, 709 {"packed_4444", "packed_4444", "packed_4444", "packed_4444"}, 710 {"rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4"}, 711 {"rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3"}, 712 {"rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2"}, 713 714 // Handlers 715 {"RS Element", "RS Element", "RS Element", "RS Element"}, 716 {"RS Type", "RS Type", "RS Type", "RS Type"}, 717 {"RS Allocation", "RS Allocation", "RS Allocation", "RS Allocation"}, 718 {"RS Sampler", "RS Sampler", "RS Sampler", "RS Sampler"}, 719 {"RS Script", "RS Script", "RS Script", "RS Script"}, 720 721 // Deprecated 722 {"RS Mesh", "RS Mesh", "RS Mesh", "RS Mesh"}, 723 {"RS Program Fragment", "RS Program Fragment", "RS Program Fragment", "RS Program Fragment"}, 724 {"RS Program Vertex", "RS Program Vertex", "RS Program Vertex", "RS Program Vertex"}, 725 {"RS Program Raster", "RS Program Raster", "RS Program Raster", "RS Program Raster"}, 726 {"RS Program Store", "RS Program Store", "RS Program Store", "RS Program Store"}, 727 {"RS Font", "RS Font", "RS Font", "RS Font"}}; 728 729 // Used as an index into the RSTypeToFormat array elements 730 enum TypeToFormatIndex 731 { 732 eFormatSingle = 0, 733 eFormatVector, 734 eElementSize 735 }; 736 737 // { format enum of single element, format enum of element vector, size of element} 738 const uint32_t RenderScriptRuntime::AllocationDetails::RSTypeToFormat[][3] = { 739 {eFormatHex, eFormatHex, 1}, // RS_TYPE_NONE 740 {eFormatFloat, eFormatVectorOfFloat16, 2}, // RS_TYPE_FLOAT_16 741 {eFormatFloat, eFormatVectorOfFloat32, sizeof(float)}, // RS_TYPE_FLOAT_32 742 {eFormatFloat, eFormatVectorOfFloat64, sizeof(double)}, // RS_TYPE_FLOAT_64 743 {eFormatDecimal, eFormatVectorOfSInt8, sizeof(int8_t)}, // RS_TYPE_SIGNED_8 744 {eFormatDecimal, eFormatVectorOfSInt16, sizeof(int16_t)}, // RS_TYPE_SIGNED_16 745 {eFormatDecimal, eFormatVectorOfSInt32, sizeof(int32_t)}, // RS_TYPE_SIGNED_32 746 {eFormatDecimal, eFormatVectorOfSInt64, sizeof(int64_t)}, // RS_TYPE_SIGNED_64 747 {eFormatDecimal, eFormatVectorOfUInt8, sizeof(uint8_t)}, // RS_TYPE_UNSIGNED_8 748 {eFormatDecimal, eFormatVectorOfUInt16, sizeof(uint16_t)}, // RS_TYPE_UNSIGNED_16 749 {eFormatDecimal, eFormatVectorOfUInt32, sizeof(uint32_t)}, // RS_TYPE_UNSIGNED_32 750 {eFormatDecimal, eFormatVectorOfUInt64, sizeof(uint64_t)}, // RS_TYPE_UNSIGNED_64 751 {eFormatBoolean, eFormatBoolean, 1}, // RS_TYPE_BOOL 752 {eFormatHex, eFormatHex, sizeof(uint16_t)}, // RS_TYPE_UNSIGNED_5_6_5 753 {eFormatHex, eFormatHex, sizeof(uint16_t)}, // RS_TYPE_UNSIGNED_5_5_5_1 754 {eFormatHex, eFormatHex, sizeof(uint16_t)}, // RS_TYPE_UNSIGNED_4_4_4_4 755 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 16}, // RS_TYPE_MATRIX_4X4 756 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 9}, // RS_TYPE_MATRIX_3X3 757 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 4} // RS_TYPE_MATRIX_2X2 758 }; 759 760 //------------------------------------------------------------------ 761 // Static Functions 762 //------------------------------------------------------------------ 763 LanguageRuntime * 764 RenderScriptRuntime::CreateInstance(Process *process, lldb::LanguageType language) 765 { 766 767 if (language == eLanguageTypeExtRenderScript) 768 return new RenderScriptRuntime(process); 769 else 770 return nullptr; 771 } 772 773 // Callback with a module to search for matching symbols. 774 // We first check that the module contains RS kernels. 775 // Then look for a symbol which matches our kernel name. 776 // The breakpoint address is finally set using the address of this symbol. 777 Searcher::CallbackReturn 778 RSBreakpointResolver::SearchCallback(SearchFilter &filter, SymbolContext &context, Address *, bool) 779 { 780 ModuleSP module = context.module_sp; 781 782 if (!module) 783 return Searcher::eCallbackReturnContinue; 784 785 // Is this a module containing renderscript kernels? 786 if (nullptr == module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), eSymbolTypeData)) 787 return Searcher::eCallbackReturnContinue; 788 789 // Attempt to set a breakpoint on the kernel name symbol within the module library. 790 // If it's not found, it's likely debug info is unavailable - try to set a 791 // breakpoint on <name>.expand. 792 793 const Symbol *kernel_sym = module->FindFirstSymbolWithNameAndType(m_kernel_name, eSymbolTypeCode); 794 if (!kernel_sym) 795 { 796 std::string kernel_name_expanded(m_kernel_name.AsCString()); 797 kernel_name_expanded.append(".expand"); 798 kernel_sym = module->FindFirstSymbolWithNameAndType(ConstString(kernel_name_expanded.c_str()), eSymbolTypeCode); 799 } 800 801 if (kernel_sym) 802 { 803 Address bp_addr = kernel_sym->GetAddress(); 804 if (filter.AddressPasses(bp_addr)) 805 m_breakpoint->AddLocation(bp_addr); 806 } 807 808 return Searcher::eCallbackReturnContinue; 809 } 810 811 void 812 RenderScriptRuntime::Initialize() 813 { 814 PluginManager::RegisterPlugin(GetPluginNameStatic(), "RenderScript language support", CreateInstance, 815 GetCommandObject); 816 } 817 818 void 819 RenderScriptRuntime::Terminate() 820 { 821 PluginManager::UnregisterPlugin(CreateInstance); 822 } 823 824 lldb_private::ConstString 825 RenderScriptRuntime::GetPluginNameStatic() 826 { 827 static ConstString g_name("renderscript"); 828 return g_name; 829 } 830 831 RenderScriptRuntime::ModuleKind 832 RenderScriptRuntime::GetModuleKind(const lldb::ModuleSP &module_sp) 833 { 834 if (module_sp) 835 { 836 // Is this a module containing renderscript kernels? 837 const Symbol *info_sym = module_sp->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), eSymbolTypeData); 838 if (info_sym) 839 { 840 return eModuleKindKernelObj; 841 } 842 843 // Is this the main RS runtime library 844 const ConstString rs_lib("libRS.so"); 845 if (module_sp->GetFileSpec().GetFilename() == rs_lib) 846 { 847 return eModuleKindLibRS; 848 } 849 850 const ConstString rs_driverlib("libRSDriver.so"); 851 if (module_sp->GetFileSpec().GetFilename() == rs_driverlib) 852 { 853 return eModuleKindDriver; 854 } 855 856 const ConstString rs_cpureflib("libRSCpuRef.so"); 857 if (module_sp->GetFileSpec().GetFilename() == rs_cpureflib) 858 { 859 return eModuleKindImpl; 860 } 861 } 862 return eModuleKindIgnored; 863 } 864 865 bool 866 RenderScriptRuntime::IsRenderScriptModule(const lldb::ModuleSP &module_sp) 867 { 868 return GetModuleKind(module_sp) != eModuleKindIgnored; 869 } 870 871 void 872 RenderScriptRuntime::ModulesDidLoad(const ModuleList &module_list) 873 { 874 std::lock_guard<std::recursive_mutex> guard(module_list.GetMutex()); 875 876 size_t num_modules = module_list.GetSize(); 877 for (size_t i = 0; i < num_modules; i++) 878 { 879 auto mod = module_list.GetModuleAtIndex(i); 880 if (IsRenderScriptModule(mod)) 881 { 882 LoadModule(mod); 883 } 884 } 885 } 886 887 //------------------------------------------------------------------ 888 // PluginInterface protocol 889 //------------------------------------------------------------------ 890 lldb_private::ConstString 891 RenderScriptRuntime::GetPluginName() 892 { 893 return GetPluginNameStatic(); 894 } 895 896 uint32_t 897 RenderScriptRuntime::GetPluginVersion() 898 { 899 return 1; 900 } 901 902 bool 903 RenderScriptRuntime::IsVTableName(const char *name) 904 { 905 return false; 906 } 907 908 bool 909 RenderScriptRuntime::GetDynamicTypeAndAddress(ValueObject &in_value, lldb::DynamicValueType use_dynamic, 910 TypeAndOrName &class_type_or_name, Address &address, 911 Value::ValueType &value_type) 912 { 913 return false; 914 } 915 916 TypeAndOrName 917 RenderScriptRuntime::FixUpDynamicType(const TypeAndOrName &type_and_or_name, ValueObject &static_value) 918 { 919 return type_and_or_name; 920 } 921 922 bool 923 RenderScriptRuntime::CouldHaveDynamicValue(ValueObject &in_value) 924 { 925 return false; 926 } 927 928 lldb::BreakpointResolverSP 929 RenderScriptRuntime::CreateExceptionResolver(Breakpoint *bkpt, bool catch_bp, bool throw_bp) 930 { 931 BreakpointResolverSP resolver_sp; 932 return resolver_sp; 933 } 934 935 const RenderScriptRuntime::HookDefn RenderScriptRuntime::s_runtimeHookDefns[] = { 936 // rsdScript 937 { 938 "rsdScriptInit", 939 "_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_7ScriptCEPKcS7_PKhjj", 940 "_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_7ScriptCEPKcS7_PKhmj", 941 0, 942 RenderScriptRuntime::eModuleKindDriver, 943 &lldb_private::RenderScriptRuntime::CaptureScriptInit 944 }, 945 { 946 "rsdScriptInvokeForEachMulti", 947 "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0_6ScriptEjPPKNS0_10AllocationEjPS6_PKvjPK12RsScriptCall", 948 "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0_6ScriptEjPPKNS0_10AllocationEmPS6_PKvmPK12RsScriptCall", 949 0, 950 RenderScriptRuntime::eModuleKindDriver, 951 &lldb_private::RenderScriptRuntime::CaptureScriptInvokeForEachMulti 952 }, 953 { 954 "rsdScriptSetGlobalVar", 955 "_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_6ScriptEjPvj", 956 "_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_6ScriptEjPvm", 957 0, 958 RenderScriptRuntime::eModuleKindDriver, 959 &lldb_private::RenderScriptRuntime::CaptureSetGlobalVar 960 }, 961 962 // rsdAllocation 963 { 964 "rsdAllocationInit", 965 "_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_10AllocationEb", 966 "_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_10AllocationEb", 967 0, 968 RenderScriptRuntime::eModuleKindDriver, 969 &lldb_private::RenderScriptRuntime::CaptureAllocationInit 970 }, 971 { 972 "rsdAllocationRead2D", 973 "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_10AllocationEjjj23RsAllocationCubemapFacejjPvjj", 974 "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_10AllocationEjjj23RsAllocationCubemapFacejjPvmm", 975 0, 976 RenderScriptRuntime::eModuleKindDriver, 977 nullptr 978 }, 979 { 980 "rsdAllocationDestroy", 981 "_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_10AllocationE", 982 "_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_10AllocationE", 983 0, 984 RenderScriptRuntime::eModuleKindDriver, 985 &lldb_private::RenderScriptRuntime::CaptureAllocationDestroy 986 }, 987 }; 988 989 const size_t RenderScriptRuntime::s_runtimeHookCount = sizeof(s_runtimeHookDefns) / sizeof(s_runtimeHookDefns[0]); 990 991 bool 992 RenderScriptRuntime::HookCallback(void *baton, StoppointCallbackContext *ctx, lldb::user_id_t break_id, 993 lldb::user_id_t break_loc_id) 994 { 995 RuntimeHook *hook_info = (RuntimeHook *)baton; 996 ExecutionContext context(ctx->exe_ctx_ref); 997 998 RenderScriptRuntime *lang_rt = 999 (RenderScriptRuntime *)context.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript); 1000 1001 lang_rt->HookCallback(hook_info, context); 1002 1003 return false; 1004 } 1005 1006 void 1007 RenderScriptRuntime::HookCallback(RuntimeHook *hook_info, ExecutionContext &context) 1008 { 1009 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1010 1011 if (log) 1012 log->Printf("%s - '%s'", __FUNCTION__, hook_info->defn->name); 1013 1014 if (hook_info->defn->grabber) 1015 { 1016 (this->*(hook_info->defn->grabber))(hook_info, context); 1017 } 1018 } 1019 1020 void 1021 RenderScriptRuntime::CaptureScriptInvokeForEachMulti(RuntimeHook* hook_info, 1022 ExecutionContext& context) 1023 { 1024 Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1025 1026 enum 1027 { 1028 eRsContext = 0, 1029 eRsScript, 1030 eRsSlot, 1031 eRsAIns, 1032 eRsInLen, 1033 eRsAOut, 1034 eRsUsr, 1035 eRsUsrLen, 1036 eRsSc, 1037 }; 1038 1039 std::array<ArgItem, 9> args{{ 1040 ArgItem{ArgItem::ePointer, 0}, // const Context *rsc 1041 ArgItem{ArgItem::ePointer, 0}, // Script *s 1042 ArgItem{ArgItem::eInt32, 0}, // uint32_t slot 1043 ArgItem{ArgItem::ePointer, 0}, // const Allocation **aIns 1044 ArgItem{ArgItem::eInt32, 0}, // size_t inLen 1045 ArgItem{ArgItem::ePointer, 0}, // Allocation *aout 1046 ArgItem{ArgItem::ePointer, 0}, // const void *usr 1047 ArgItem{ArgItem::eInt32, 0}, // size_t usrLen 1048 ArgItem{ArgItem::ePointer, 0}, // const RsScriptCall *sc 1049 }}; 1050 1051 bool success = GetArgs(context, &args[0], args.size()); 1052 if (!success) 1053 { 1054 if (log) 1055 log->Printf("%s - Error while reading the function parameters", __FUNCTION__); 1056 return; 1057 } 1058 1059 const uint32_t target_ptr_size = m_process->GetAddressByteSize(); 1060 Error error; 1061 std::vector<uint64_t> allocs; 1062 1063 // traverse allocation list 1064 for (uint64_t i = 0; i < uint64_t(args[eRsInLen]); ++i) 1065 { 1066 // calculate offest to allocation pointer 1067 const addr_t addr = addr_t(args[eRsAIns]) + i * target_ptr_size; 1068 1069 // Note: due to little endian layout, reading 32bits or 64bits into res64 will 1070 // give the correct results. 1071 1072 uint64_t res64 = 0; 1073 size_t read = m_process->ReadMemory(addr, &res64, target_ptr_size, error); 1074 if (read != target_ptr_size || !error.Success()) 1075 { 1076 if (log) 1077 log->Printf("%s - Error while reading allocation list argument %" PRIu64, __FUNCTION__, i); 1078 } 1079 else 1080 { 1081 allocs.push_back(res64); 1082 } 1083 } 1084 1085 // if there is an output allocation track it 1086 if (uint64_t aOut = uint64_t(args[eRsAOut])) 1087 { 1088 allocs.push_back(aOut); 1089 } 1090 1091 // for all allocations we have found 1092 for (const uint64_t alloc_addr : allocs) 1093 { 1094 AllocationDetails* alloc = LookUpAllocation(alloc_addr, true); 1095 if (alloc) 1096 { 1097 // save the allocation address 1098 if (alloc->address.isValid()) 1099 { 1100 // check the allocation address we already have matches 1101 assert(*alloc->address.get() == alloc_addr); 1102 } 1103 else 1104 { 1105 alloc->address = alloc_addr; 1106 } 1107 1108 // save the context 1109 if (log) 1110 { 1111 if (alloc->context.isValid() && *alloc->context.get() != addr_t(args[eRsContext])) 1112 log->Printf("%s - Allocation used by multiple contexts", __FUNCTION__); 1113 } 1114 alloc->context = addr_t(args[eRsContext]); 1115 } 1116 } 1117 1118 // make sure we track this script object 1119 if (lldb_private::RenderScriptRuntime::ScriptDetails *script = LookUpScript(addr_t(args[eRsScript]), true)) 1120 { 1121 if (log) 1122 { 1123 if (script->context.isValid() && *script->context.get() != addr_t(args[eRsContext])) 1124 log->Printf("%s - Script used by multiple contexts", __FUNCTION__); 1125 } 1126 script->context = addr_t(args[eRsContext]); 1127 } 1128 } 1129 1130 void 1131 RenderScriptRuntime::CaptureSetGlobalVar(RuntimeHook *hook_info, ExecutionContext &context) 1132 { 1133 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1134 1135 enum 1136 { 1137 eRsContext, 1138 eRsScript, 1139 eRsId, 1140 eRsData, 1141 eRsLength, 1142 }; 1143 1144 std::array<ArgItem, 5> args{{ 1145 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1146 ArgItem{ArgItem::ePointer, 0}, // eRsScript 1147 ArgItem{ArgItem::eInt32, 0}, // eRsId 1148 ArgItem{ArgItem::ePointer, 0}, // eRsData 1149 ArgItem{ArgItem::eInt32, 0}, // eRsLength 1150 }}; 1151 1152 bool success = GetArgs(context, &args[0], args.size()); 1153 if (!success) 1154 { 1155 if (log) 1156 log->Printf("%s - error reading the function parameters.", __FUNCTION__); 1157 return; 1158 } 1159 1160 if (log) 1161 { 1162 log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " slot %" PRIu64 " = 0x%" PRIx64 ":%" PRIu64 "bytes.", __FUNCTION__, 1163 uint64_t(args[eRsContext]), uint64_t(args[eRsScript]), uint64_t(args[eRsId]), 1164 uint64_t(args[eRsData]), uint64_t(args[eRsLength])); 1165 1166 addr_t script_addr = addr_t(args[eRsScript]); 1167 if (m_scriptMappings.find(script_addr) != m_scriptMappings.end()) 1168 { 1169 auto rsm = m_scriptMappings[script_addr]; 1170 if (uint64_t(args[eRsId]) < rsm->m_globals.size()) 1171 { 1172 auto rsg = rsm->m_globals[uint64_t(args[eRsId])]; 1173 log->Printf("%s - Setting of '%s' within '%s' inferred", __FUNCTION__, rsg.m_name.AsCString(), 1174 rsm->m_module->GetFileSpec().GetFilename().AsCString()); 1175 } 1176 } 1177 } 1178 } 1179 1180 void 1181 RenderScriptRuntime::CaptureAllocationInit(RuntimeHook *hook_info, ExecutionContext &context) 1182 { 1183 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1184 1185 enum 1186 { 1187 eRsContext, 1188 eRsAlloc, 1189 eRsForceZero 1190 }; 1191 1192 std::array<ArgItem, 3> args{{ 1193 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1194 ArgItem{ArgItem::ePointer, 0}, // eRsAlloc 1195 ArgItem{ArgItem::eBool, 0}, // eRsForceZero 1196 }}; 1197 1198 bool success = GetArgs(context, &args[0], args.size()); 1199 if (!success) // error case 1200 { 1201 if (log) 1202 log->Printf("%s - error while reading the function parameters", __FUNCTION__); 1203 return; // abort 1204 } 1205 1206 if (log) 1207 log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 ",0x%" PRIx64 " .", __FUNCTION__, uint64_t(args[eRsContext]), 1208 uint64_t(args[eRsAlloc]), uint64_t(args[eRsForceZero])); 1209 1210 AllocationDetails *alloc = LookUpAllocation(uint64_t(args[eRsAlloc]), true); 1211 if (alloc) 1212 alloc->context = uint64_t(args[eRsContext]); 1213 } 1214 1215 void 1216 RenderScriptRuntime::CaptureAllocationDestroy(RuntimeHook *hook_info, ExecutionContext &context) 1217 { 1218 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1219 1220 enum 1221 { 1222 eRsContext, 1223 eRsAlloc, 1224 }; 1225 1226 std::array<ArgItem, 2> args{{ 1227 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1228 ArgItem{ArgItem::ePointer, 0}, // eRsAlloc 1229 }}; 1230 1231 bool success = GetArgs(context, &args[0], args.size()); 1232 if (!success) 1233 { 1234 if (log) 1235 log->Printf("%s - error while reading the function parameters.", __FUNCTION__); 1236 return; 1237 } 1238 1239 if (log) 1240 log->Printf("%s - 0x%" PRIx64 ", 0x%" PRIx64 ".", __FUNCTION__, uint64_t(args[eRsContext]), 1241 uint64_t(args[eRsAlloc])); 1242 1243 for (auto iter = m_allocations.begin(); iter != m_allocations.end(); ++iter) 1244 { 1245 auto &allocation_ap = *iter; // get the unique pointer 1246 if (allocation_ap->address.isValid() && *allocation_ap->address.get() == addr_t(args[eRsAlloc])) 1247 { 1248 m_allocations.erase(iter); 1249 if (log) 1250 log->Printf("%s - deleted allocation entry.", __FUNCTION__); 1251 return; 1252 } 1253 } 1254 1255 if (log) 1256 log->Printf("%s - couldn't find destroyed allocation.", __FUNCTION__); 1257 } 1258 1259 void 1260 RenderScriptRuntime::CaptureScriptInit(RuntimeHook *hook_info, ExecutionContext &context) 1261 { 1262 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1263 1264 Error error; 1265 Process *process = context.GetProcessPtr(); 1266 1267 enum 1268 { 1269 eRsContext, 1270 eRsScript, 1271 eRsResNamePtr, 1272 eRsCachedDirPtr 1273 }; 1274 1275 std::array<ArgItem, 4> args{{ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}, 1276 ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}}}; 1277 bool success = GetArgs(context, &args[0], args.size()); 1278 if (!success) 1279 { 1280 if (log) 1281 log->Printf("%s - error while reading the function parameters.", __FUNCTION__); 1282 return; 1283 } 1284 1285 std::string resname; 1286 process->ReadCStringFromMemory(addr_t(args[eRsResNamePtr]), resname, error); 1287 if (error.Fail()) 1288 { 1289 if (log) 1290 log->Printf("%s - error reading resname: %s.", __FUNCTION__, error.AsCString()); 1291 } 1292 1293 std::string cachedir; 1294 process->ReadCStringFromMemory(addr_t(args[eRsCachedDirPtr]), cachedir, error); 1295 if (error.Fail()) 1296 { 1297 if (log) 1298 log->Printf("%s - error reading cachedir: %s.", __FUNCTION__, error.AsCString()); 1299 } 1300 1301 if (log) 1302 log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " => '%s' at '%s' .", __FUNCTION__, uint64_t(args[eRsContext]), 1303 uint64_t(args[eRsScript]), resname.c_str(), cachedir.c_str()); 1304 1305 if (resname.size() > 0) 1306 { 1307 StreamString strm; 1308 strm.Printf("librs.%s.so", resname.c_str()); 1309 1310 ScriptDetails *script = LookUpScript(addr_t(args[eRsScript]), true); 1311 if (script) 1312 { 1313 script->type = ScriptDetails::eScriptC; 1314 script->cacheDir = cachedir; 1315 script->resName = resname; 1316 script->scriptDyLib = strm.GetData(); 1317 script->context = addr_t(args[eRsContext]); 1318 } 1319 1320 if (log) 1321 log->Printf("%s - '%s' tagged with context 0x%" PRIx64 " and script 0x%" PRIx64 ".", __FUNCTION__, 1322 strm.GetData(), uint64_t(args[eRsContext]), uint64_t(args[eRsScript])); 1323 } 1324 else if (log) 1325 { 1326 log->Printf("%s - resource name invalid, Script not tagged.", __FUNCTION__); 1327 } 1328 } 1329 1330 void 1331 RenderScriptRuntime::LoadRuntimeHooks(lldb::ModuleSP module, ModuleKind kind) 1332 { 1333 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1334 1335 if (!module) 1336 { 1337 return; 1338 } 1339 1340 Target &target = GetProcess()->GetTarget(); 1341 llvm::Triple::ArchType targetArchType = target.GetArchitecture().GetMachine(); 1342 1343 if (targetArchType != llvm::Triple::ArchType::x86 && 1344 targetArchType != llvm::Triple::ArchType::arm && 1345 targetArchType != llvm::Triple::ArchType::aarch64 && 1346 targetArchType != llvm::Triple::ArchType::mipsel && 1347 targetArchType != llvm::Triple::ArchType::mips64el && 1348 targetArchType != llvm::Triple::ArchType::x86_64) 1349 { 1350 if (log) 1351 log->Printf("%s - unable to hook runtime functions.", __FUNCTION__); 1352 return; 1353 } 1354 1355 uint32_t archByteSize = target.GetArchitecture().GetAddressByteSize(); 1356 1357 for (size_t idx = 0; idx < s_runtimeHookCount; idx++) 1358 { 1359 const HookDefn *hook_defn = &s_runtimeHookDefns[idx]; 1360 if (hook_defn->kind != kind) 1361 { 1362 continue; 1363 } 1364 1365 const char *symbol_name = (archByteSize == 4) ? hook_defn->symbol_name_m32 : hook_defn->symbol_name_m64; 1366 1367 const Symbol *sym = module->FindFirstSymbolWithNameAndType(ConstString(symbol_name), eSymbolTypeCode); 1368 if (!sym) 1369 { 1370 if (log) 1371 { 1372 log->Printf("%s - symbol '%s' related to the function %s not found", 1373 __FUNCTION__, symbol_name, hook_defn->name); 1374 } 1375 continue; 1376 } 1377 1378 addr_t addr = sym->GetLoadAddress(&target); 1379 if (addr == LLDB_INVALID_ADDRESS) 1380 { 1381 if (log) 1382 log->Printf("%s - unable to resolve the address of hook function '%s' with symbol '%s'.", 1383 __FUNCTION__, hook_defn->name, symbol_name); 1384 continue; 1385 } 1386 else 1387 { 1388 if (log) 1389 log->Printf("%s - function %s, address resolved at 0x%" PRIx64, 1390 __FUNCTION__, hook_defn->name, addr); 1391 } 1392 1393 RuntimeHookSP hook(new RuntimeHook()); 1394 hook->address = addr; 1395 hook->defn = hook_defn; 1396 hook->bp_sp = target.CreateBreakpoint(addr, true, false); 1397 hook->bp_sp->SetCallback(HookCallback, hook.get(), true); 1398 m_runtimeHooks[addr] = hook; 1399 if (log) 1400 { 1401 log->Printf("%s - successfully hooked '%s' in '%s' version %" PRIu64 " at 0x%" PRIx64 ".", 1402 __FUNCTION__, hook_defn->name, module->GetFileSpec().GetFilename().AsCString(), 1403 (uint64_t)hook_defn->version, (uint64_t)addr); 1404 } 1405 } 1406 } 1407 1408 void 1409 RenderScriptRuntime::FixupScriptDetails(RSModuleDescriptorSP rsmodule_sp) 1410 { 1411 if (!rsmodule_sp) 1412 return; 1413 1414 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1415 1416 const ModuleSP module = rsmodule_sp->m_module; 1417 const FileSpec &file = module->GetPlatformFileSpec(); 1418 1419 // Iterate over all of the scripts that we currently know of. 1420 // Note: We cant push or pop to m_scripts here or it may invalidate rs_script. 1421 for (const auto &rs_script : m_scripts) 1422 { 1423 // Extract the expected .so file path for this script. 1424 std::string dylib; 1425 if (!rs_script->scriptDyLib.get(dylib)) 1426 continue; 1427 1428 // Only proceed if the module that has loaded corresponds to this script. 1429 if (file.GetFilename() != ConstString(dylib.c_str())) 1430 continue; 1431 1432 // Obtain the script address which we use as a key. 1433 lldb::addr_t script; 1434 if (!rs_script->script.get(script)) 1435 continue; 1436 1437 // If we have a script mapping for the current script. 1438 if (m_scriptMappings.find(script) != m_scriptMappings.end()) 1439 { 1440 // if the module we have stored is different to the one we just received. 1441 if (m_scriptMappings[script] != rsmodule_sp) 1442 { 1443 if (log) 1444 log->Printf("%s - script %" PRIx64 " wants reassigned to new rsmodule '%s'.", __FUNCTION__, 1445 (uint64_t)script, rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString()); 1446 } 1447 } 1448 // We don't have a script mapping for the current script. 1449 else 1450 { 1451 // Obtain the script resource name. 1452 std::string resName; 1453 if (rs_script->resName.get(resName)) 1454 // Set the modules resource name. 1455 rsmodule_sp->m_resname = resName; 1456 // Add Script/Module pair to map. 1457 m_scriptMappings[script] = rsmodule_sp; 1458 if (log) 1459 log->Printf("%s - script %" PRIx64 " associated with rsmodule '%s'.", __FUNCTION__, 1460 (uint64_t)script, rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString()); 1461 } 1462 } 1463 } 1464 1465 // Uses the Target API to evaluate the expression passed as a parameter to the function 1466 // The result of that expression is returned an unsigned 64 bit int, via the result* parameter. 1467 // Function returns true on success, and false on failure 1468 bool 1469 RenderScriptRuntime::EvalRSExpression(const char *expression, StackFrame *frame_ptr, uint64_t *result) 1470 { 1471 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1472 if (log) 1473 log->Printf("%s(%s)", __FUNCTION__, expression); 1474 1475 ValueObjectSP expr_result; 1476 EvaluateExpressionOptions options; 1477 options.SetLanguage(lldb::eLanguageTypeC_plus_plus); 1478 // Perform the actual expression evaluation 1479 GetProcess()->GetTarget().EvaluateExpression(expression, frame_ptr, expr_result, options); 1480 1481 if (!expr_result) 1482 { 1483 if (log) 1484 log->Printf("%s: couldn't evaluate expression.", __FUNCTION__); 1485 return false; 1486 } 1487 1488 // The result of the expression is invalid 1489 if (!expr_result->GetError().Success()) 1490 { 1491 Error err = expr_result->GetError(); 1492 if (err.GetError() == UserExpression::kNoResult) // Expression returned void, so this is actually a success 1493 { 1494 if (log) 1495 log->Printf("%s - expression returned void.", __FUNCTION__); 1496 1497 result = nullptr; 1498 return true; 1499 } 1500 1501 if (log) 1502 log->Printf("%s - error evaluating expression result: %s", __FUNCTION__, 1503 err.AsCString()); 1504 return false; 1505 } 1506 1507 bool success = false; 1508 *result = expr_result->GetValueAsUnsigned(0, &success); // We only read the result as an uint32_t. 1509 1510 if (!success) 1511 { 1512 if (log) 1513 log->Printf("%s - couldn't convert expression result to uint32_t", __FUNCTION__); 1514 return false; 1515 } 1516 1517 return true; 1518 } 1519 1520 namespace 1521 { 1522 // Used to index expression format strings 1523 enum ExpressionStrings 1524 { 1525 eExprGetOffsetPtr = 0, 1526 eExprAllocGetType, 1527 eExprTypeDimX, 1528 eExprTypeDimY, 1529 eExprTypeDimZ, 1530 eExprTypeElemPtr, 1531 eExprElementType, 1532 eExprElementKind, 1533 eExprElementVec, 1534 eExprElementFieldCount, 1535 eExprSubelementsId, 1536 eExprSubelementsName, 1537 eExprSubelementsArrSize, 1538 1539 _eExprLast // keep at the end, implicit size of the array runtimeExpressions 1540 }; 1541 1542 // max length of an expanded expression 1543 const int jit_max_expr_size = 512; 1544 1545 // Retrieve the string to JIT for the given expression 1546 const char* 1547 JITTemplate(ExpressionStrings e) 1548 { 1549 // Format strings containing the expressions we may need to evaluate. 1550 static std::array<const char*, _eExprLast> runtimeExpressions = {{ 1551 // Mangled GetOffsetPointer(Allocation*, xoff, yoff, zoff, lod, cubemap) 1552 "(int*)_Z12GetOffsetPtrPKN7android12renderscript10AllocationEjjjj23RsAllocationCubemapFace" 1553 "(0x%" PRIx64 ", %" PRIu32 ", %" PRIu32 ", %" PRIu32 ", 0, 0)", 1554 1555 // Type* rsaAllocationGetType(Context*, Allocation*) 1556 "(void*)rsaAllocationGetType(0x%" PRIx64 ", 0x%" PRIx64 ")", 1557 1558 // rsaTypeGetNativeData(Context*, Type*, void* typeData, size) 1559 // Pack the data in the following way mHal.state.dimX; mHal.state.dimY; mHal.state.dimZ; 1560 // mHal.state.lodCount; mHal.state.faces; mElement; into typeData 1561 // Need to specify 32 or 64 bit for uint_t since this differs between devices 1562 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 6); data[0]", // X dim 1563 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 6); data[1]", // Y dim 1564 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 6); data[2]", // Z dim 1565 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 6); data[5]", // Element ptr 1566 1567 // rsaElementGetNativeData(Context*, Element*, uint32_t* elemData,size) 1568 // Pack mType; mKind; mNormalized; mVectorSize; NumSubElements into elemData 1569 "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 5); data[0]", // Type 1570 "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 5); data[1]", // Kind 1571 "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 5); data[3]", // Vector Size 1572 "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 5); data[4]", // Field Count 1573 1574 // rsaElementGetSubElements(RsContext con, RsElement elem, uintptr_t *ids, const char **names, 1575 // size_t *arraySizes, uint32_t dataSize) 1576 // Needed for Allocations of structs to gather details about fields/Subelements 1577 // Element* of field 1578 "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 "]; size_t arr_size[%" PRIu32 "];" 1579 "(void*)rsaElementGetSubElements(0x%" PRIx64 ", 0x%" PRIx64 ", ids, names, arr_size, %" PRIu32 "); ids[%" PRIu32 "]", 1580 1581 // Name of field 1582 "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 "]; size_t arr_size[%" PRIu32 "];" 1583 "(void*)rsaElementGetSubElements(0x%" PRIx64 ", 0x%" PRIx64 ", ids, names, arr_size, %" PRIu32 "); names[%" PRIu32 "]", 1584 1585 // Array size of field 1586 "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 "]; size_t arr_size[%" PRIu32 "];" 1587 "(void*)rsaElementGetSubElements(0x%" PRIx64 ", 0x%" PRIx64 ", ids, names, arr_size, %" PRIu32 "); arr_size[%" PRIu32 "]" 1588 }}; 1589 1590 return runtimeExpressions[e]; 1591 } 1592 } // end of the anonymous namespace 1593 1594 1595 // JITs the RS runtime for the internal data pointer of an allocation. 1596 // Is passed x,y,z coordinates for the pointer to a specific element. 1597 // Then sets the data_ptr member in Allocation with the result. 1598 // Returns true on success, false otherwise 1599 bool 1600 RenderScriptRuntime::JITDataPointer(AllocationDetails *allocation, StackFrame *frame_ptr, uint32_t x, 1601 uint32_t y, uint32_t z) 1602 { 1603 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1604 1605 if (!allocation->address.isValid()) 1606 { 1607 if (log) 1608 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1609 return false; 1610 } 1611 1612 const char *expr_cstr = JITTemplate(eExprGetOffsetPtr); 1613 char buffer[jit_max_expr_size]; 1614 1615 int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->address.get(), x, y, z); 1616 if (chars_written < 0) 1617 { 1618 if (log) 1619 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1620 return false; 1621 } 1622 else if (chars_written >= jit_max_expr_size) 1623 { 1624 if (log) 1625 log->Printf("%s - expression too long.", __FUNCTION__); 1626 return false; 1627 } 1628 1629 uint64_t result = 0; 1630 if (!EvalRSExpression(buffer, frame_ptr, &result)) 1631 return false; 1632 1633 addr_t mem_ptr = static_cast<lldb::addr_t>(result); 1634 allocation->data_ptr = mem_ptr; 1635 1636 return true; 1637 } 1638 1639 // JITs the RS runtime for the internal pointer to the RS Type of an allocation 1640 // Then sets the type_ptr member in Allocation with the result. 1641 // Returns true on success, false otherwise 1642 bool 1643 RenderScriptRuntime::JITTypePointer(AllocationDetails *allocation, StackFrame *frame_ptr) 1644 { 1645 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1646 1647 if (!allocation->address.isValid() || !allocation->context.isValid()) 1648 { 1649 if (log) 1650 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1651 return false; 1652 } 1653 1654 const char *expr_cstr = JITTemplate(eExprAllocGetType); 1655 char buffer[jit_max_expr_size]; 1656 1657 int chars_written = 1658 snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->context.get(), *allocation->address.get()); 1659 if (chars_written < 0) 1660 { 1661 if (log) 1662 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1663 return false; 1664 } 1665 else if (chars_written >= jit_max_expr_size) 1666 { 1667 if (log) 1668 log->Printf("%s - expression too long.", __FUNCTION__); 1669 return false; 1670 } 1671 1672 uint64_t result = 0; 1673 if (!EvalRSExpression(buffer, frame_ptr, &result)) 1674 return false; 1675 1676 addr_t type_ptr = static_cast<lldb::addr_t>(result); 1677 allocation->type_ptr = type_ptr; 1678 1679 return true; 1680 } 1681 1682 // JITs the RS runtime for information about the dimensions and type of an allocation 1683 // Then sets dimension and element_ptr members in Allocation with the result. 1684 // Returns true on success, false otherwise 1685 bool 1686 RenderScriptRuntime::JITTypePacked(AllocationDetails *allocation, StackFrame *frame_ptr) 1687 { 1688 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1689 1690 if (!allocation->type_ptr.isValid() || !allocation->context.isValid()) 1691 { 1692 if (log) 1693 log->Printf("%s - Failed to find allocation details.", __FUNCTION__); 1694 return false; 1695 } 1696 1697 // Expression is different depending on if device is 32 or 64 bit 1698 uint32_t archByteSize = GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 1699 const uint32_t bits = archByteSize == 4 ? 32 : 64; 1700 1701 // We want 4 elements from packed data 1702 const uint32_t num_exprs = 4; 1703 assert(num_exprs == (eExprTypeElemPtr - eExprTypeDimX + 1) && "Invalid number of expressions"); 1704 1705 char buffer[num_exprs][jit_max_expr_size]; 1706 uint64_t results[num_exprs]; 1707 1708 for (uint32_t i = 0; i < num_exprs; ++i) 1709 { 1710 const char *expr_cstr = JITTemplate(ExpressionStrings(eExprTypeDimX + i)); 1711 int chars_written = snprintf(buffer[i], jit_max_expr_size, expr_cstr, bits, *allocation->context.get(), 1712 *allocation->type_ptr.get()); 1713 if (chars_written < 0) 1714 { 1715 if (log) 1716 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1717 return false; 1718 } 1719 else if (chars_written >= jit_max_expr_size) 1720 { 1721 if (log) 1722 log->Printf("%s - expression too long.", __FUNCTION__); 1723 return false; 1724 } 1725 1726 // Perform expression evaluation 1727 if (!EvalRSExpression(buffer[i], frame_ptr, &results[i])) 1728 return false; 1729 } 1730 1731 // Assign results to allocation members 1732 AllocationDetails::Dimension dims; 1733 dims.dim_1 = static_cast<uint32_t>(results[0]); 1734 dims.dim_2 = static_cast<uint32_t>(results[1]); 1735 dims.dim_3 = static_cast<uint32_t>(results[2]); 1736 allocation->dimension = dims; 1737 1738 addr_t elem_ptr = static_cast<lldb::addr_t>(results[3]); 1739 allocation->element.element_ptr = elem_ptr; 1740 1741 if (log) 1742 log->Printf("%s - dims (%" PRIu32 ", %" PRIu32 ", %" PRIu32 ") Element*: 0x%" PRIx64 ".", __FUNCTION__, 1743 dims.dim_1, dims.dim_2, dims.dim_3, elem_ptr); 1744 1745 return true; 1746 } 1747 1748 // JITs the RS runtime for information about the Element of an allocation 1749 // Then sets type, type_vec_size, field_count and type_kind members in Element with the result. 1750 // Returns true on success, false otherwise 1751 bool 1752 RenderScriptRuntime::JITElementPacked(Element &elem, const lldb::addr_t context, StackFrame *frame_ptr) 1753 { 1754 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1755 1756 if (!elem.element_ptr.isValid()) 1757 { 1758 if (log) 1759 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1760 return false; 1761 } 1762 1763 // We want 4 elements from packed data 1764 const uint32_t num_exprs = 4; 1765 assert(num_exprs == (eExprElementFieldCount - eExprElementType + 1) && "Invalid number of expressions"); 1766 1767 char buffer[num_exprs][jit_max_expr_size]; 1768 uint64_t results[num_exprs]; 1769 1770 for (uint32_t i = 0; i < num_exprs; i++) 1771 { 1772 const char *expr_cstr = JITTemplate(ExpressionStrings(eExprElementType + i)); 1773 int chars_written = snprintf(buffer[i], jit_max_expr_size, expr_cstr, context, *elem.element_ptr.get()); 1774 if (chars_written < 0) 1775 { 1776 if (log) 1777 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1778 return false; 1779 } 1780 else if (chars_written >= jit_max_expr_size) 1781 { 1782 if (log) 1783 log->Printf("%s - expression too long.", __FUNCTION__); 1784 return false; 1785 } 1786 1787 // Perform expression evaluation 1788 if (!EvalRSExpression(buffer[i], frame_ptr, &results[i])) 1789 return false; 1790 } 1791 1792 // Assign results to allocation members 1793 elem.type = static_cast<RenderScriptRuntime::Element::DataType>(results[0]); 1794 elem.type_kind = static_cast<RenderScriptRuntime::Element::DataKind>(results[1]); 1795 elem.type_vec_size = static_cast<uint32_t>(results[2]); 1796 elem.field_count = static_cast<uint32_t>(results[3]); 1797 1798 if (log) 1799 log->Printf("%s - data type %" PRIu32 ", pixel type %" PRIu32 ", vector size %" PRIu32 ", field count %" PRIu32, 1800 __FUNCTION__, *elem.type.get(), *elem.type_kind.get(), *elem.type_vec_size.get(), *elem.field_count.get()); 1801 1802 // If this Element has subelements then JIT rsaElementGetSubElements() for details about its fields 1803 if (*elem.field_count.get() > 0 && !JITSubelements(elem, context, frame_ptr)) 1804 return false; 1805 1806 return true; 1807 } 1808 1809 // JITs the RS runtime for information about the subelements/fields of a struct allocation 1810 // This is necessary for infering the struct type so we can pretty print the allocation's contents. 1811 // Returns true on success, false otherwise 1812 bool 1813 RenderScriptRuntime::JITSubelements(Element &elem, const lldb::addr_t context, StackFrame *frame_ptr) 1814 { 1815 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1816 1817 if (!elem.element_ptr.isValid() || !elem.field_count.isValid()) 1818 { 1819 if (log) 1820 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1821 return false; 1822 } 1823 1824 const short num_exprs = 3; 1825 assert(num_exprs == (eExprSubelementsArrSize - eExprSubelementsId + 1) && "Invalid number of expressions"); 1826 1827 char expr_buffer[jit_max_expr_size]; 1828 uint64_t results; 1829 1830 // Iterate over struct fields. 1831 const uint32_t field_count = *elem.field_count.get(); 1832 for (uint32_t field_index = 0; field_index < field_count; ++field_index) 1833 { 1834 Element child; 1835 for (uint32_t expr_index = 0; expr_index < num_exprs; ++expr_index) 1836 { 1837 const char *expr_cstr = JITTemplate(ExpressionStrings(eExprSubelementsId + expr_index)); 1838 int chars_written = snprintf(expr_buffer, jit_max_expr_size, expr_cstr, 1839 field_count, field_count, field_count, 1840 context, *elem.element_ptr.get(), field_count, field_index); 1841 if (chars_written < 0) 1842 { 1843 if (log) 1844 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1845 return false; 1846 } 1847 else if (chars_written >= jit_max_expr_size) 1848 { 1849 if (log) 1850 log->Printf("%s - expression too long.", __FUNCTION__); 1851 return false; 1852 } 1853 1854 // Perform expression evaluation 1855 if (!EvalRSExpression(expr_buffer, frame_ptr, &results)) 1856 return false; 1857 1858 if (log) 1859 log->Printf("%s - expr result 0x%" PRIx64 ".", __FUNCTION__, results); 1860 1861 switch (expr_index) 1862 { 1863 case 0: // Element* of child 1864 child.element_ptr = static_cast<addr_t>(results); 1865 break; 1866 case 1: // Name of child 1867 { 1868 lldb::addr_t address = static_cast<addr_t>(results); 1869 Error err; 1870 std::string name; 1871 GetProcess()->ReadCStringFromMemory(address, name, err); 1872 if (!err.Fail()) 1873 child.type_name = ConstString(name); 1874 else 1875 { 1876 if (log) 1877 log->Printf("%s - warning: Couldn't read field name.", __FUNCTION__); 1878 } 1879 break; 1880 } 1881 case 2: // Array size of child 1882 child.array_size = static_cast<uint32_t>(results); 1883 break; 1884 } 1885 } 1886 1887 // We need to recursively JIT each Element field of the struct since 1888 // structs can be nested inside structs. 1889 if (!JITElementPacked(child, context, frame_ptr)) 1890 return false; 1891 elem.children.push_back(child); 1892 } 1893 1894 // Try to infer the name of the struct type so we can pretty print the allocation contents. 1895 FindStructTypeName(elem, frame_ptr); 1896 1897 return true; 1898 } 1899 1900 // JITs the RS runtime for the address of the last element in the allocation. 1901 // The `elem_size` parameter represents the size of a single element, including padding. 1902 // Which is needed as an offset from the last element pointer. 1903 // Using this offset minus the starting address we can calculate the size of the allocation. 1904 // Returns true on success, false otherwise 1905 bool 1906 RenderScriptRuntime::JITAllocationSize(AllocationDetails *allocation, StackFrame *frame_ptr) 1907 { 1908 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1909 1910 if (!allocation->address.isValid() || !allocation->dimension.isValid() || !allocation->data_ptr.isValid() || 1911 !allocation->element.datum_size.isValid()) 1912 { 1913 if (log) 1914 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1915 return false; 1916 } 1917 1918 // Find dimensions 1919 uint32_t dim_x = allocation->dimension.get()->dim_1; 1920 uint32_t dim_y = allocation->dimension.get()->dim_2; 1921 uint32_t dim_z = allocation->dimension.get()->dim_3; 1922 1923 // Our plan of jitting the last element address doesn't seem to work for struct Allocations 1924 // Instead try to infer the size ourselves without any inter element padding. 1925 if (allocation->element.children.size() > 0) 1926 { 1927 if (dim_x == 0) dim_x = 1; 1928 if (dim_y == 0) dim_y = 1; 1929 if (dim_z == 0) dim_z = 1; 1930 1931 allocation->size = dim_x * dim_y * dim_z * *allocation->element.datum_size.get(); 1932 1933 if (log) 1934 log->Printf("%s - inferred size of struct allocation %" PRIu32 ".", __FUNCTION__, 1935 *allocation->size.get()); 1936 return true; 1937 } 1938 1939 const char *expr_cstr = JITTemplate(eExprGetOffsetPtr); 1940 char buffer[jit_max_expr_size]; 1941 1942 // Calculate last element 1943 dim_x = dim_x == 0 ? 0 : dim_x - 1; 1944 dim_y = dim_y == 0 ? 0 : dim_y - 1; 1945 dim_z = dim_z == 0 ? 0 : dim_z - 1; 1946 1947 int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->address.get(), dim_x, dim_y, dim_z); 1948 if (chars_written < 0) 1949 { 1950 if (log) 1951 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1952 return false; 1953 } 1954 else if (chars_written >= jit_max_expr_size) 1955 { 1956 if (log) 1957 log->Printf("%s - expression too long.", __FUNCTION__); 1958 return false; 1959 } 1960 1961 uint64_t result = 0; 1962 if (!EvalRSExpression(buffer, frame_ptr, &result)) 1963 return false; 1964 1965 addr_t mem_ptr = static_cast<lldb::addr_t>(result); 1966 // Find pointer to last element and add on size of an element 1967 allocation->size = 1968 static_cast<uint32_t>(mem_ptr - *allocation->data_ptr.get()) + *allocation->element.datum_size.get(); 1969 1970 return true; 1971 } 1972 1973 // JITs the RS runtime for information about the stride between rows in the allocation. 1974 // This is done to detect padding, since allocated memory is 16-byte aligned. 1975 // Returns true on success, false otherwise 1976 bool 1977 RenderScriptRuntime::JITAllocationStride(AllocationDetails *allocation, StackFrame *frame_ptr) 1978 { 1979 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1980 1981 if (!allocation->address.isValid() || !allocation->data_ptr.isValid()) 1982 { 1983 if (log) 1984 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1985 return false; 1986 } 1987 1988 const char *expr_cstr = JITTemplate(eExprGetOffsetPtr); 1989 char buffer[jit_max_expr_size]; 1990 1991 int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->address.get(), 0, 1, 0); 1992 if (chars_written < 0) 1993 { 1994 if (log) 1995 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1996 return false; 1997 } 1998 else if (chars_written >= jit_max_expr_size) 1999 { 2000 if (log) 2001 log->Printf("%s - expression too long.", __FUNCTION__); 2002 return false; 2003 } 2004 2005 uint64_t result = 0; 2006 if (!EvalRSExpression(buffer, frame_ptr, &result)) 2007 return false; 2008 2009 addr_t mem_ptr = static_cast<lldb::addr_t>(result); 2010 allocation->stride = static_cast<uint32_t>(mem_ptr - *allocation->data_ptr.get()); 2011 2012 return true; 2013 } 2014 2015 // JIT all the current runtime info regarding an allocation 2016 bool 2017 RenderScriptRuntime::RefreshAllocation(AllocationDetails *allocation, StackFrame *frame_ptr) 2018 { 2019 // GetOffsetPointer() 2020 if (!JITDataPointer(allocation, frame_ptr)) 2021 return false; 2022 2023 // rsaAllocationGetType() 2024 if (!JITTypePointer(allocation, frame_ptr)) 2025 return false; 2026 2027 // rsaTypeGetNativeData() 2028 if (!JITTypePacked(allocation, frame_ptr)) 2029 return false; 2030 2031 // rsaElementGetNativeData() 2032 if (!JITElementPacked(allocation->element, *allocation->context.get(), frame_ptr)) 2033 return false; 2034 2035 // Sets the datum_size member in Element 2036 SetElementSize(allocation->element); 2037 2038 // Use GetOffsetPointer() to infer size of the allocation 2039 if (!JITAllocationSize(allocation, frame_ptr)) 2040 return false; 2041 2042 return true; 2043 } 2044 2045 // Function attempts to set the type_name member of the paramaterised Element object. 2046 // This string should be the name of the struct type the Element represents. 2047 // We need this string for pretty printing the Element to users. 2048 void 2049 RenderScriptRuntime::FindStructTypeName(Element &elem, StackFrame *frame_ptr) 2050 { 2051 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2052 2053 if (!elem.type_name.IsEmpty()) // Name already set 2054 return; 2055 else 2056 elem.type_name = Element::GetFallbackStructName(); // Default type name if we don't succeed 2057 2058 // Find all the global variables from the script rs modules 2059 VariableList variable_list; 2060 for (auto module_sp : m_rsmodules) 2061 module_sp->m_module->FindGlobalVariables(RegularExpression("."), true, UINT32_MAX, variable_list); 2062 2063 // Iterate over all the global variables looking for one with a matching type to the Element. 2064 // We make the assumption a match exists since there needs to be a global variable to reflect the 2065 // struct type back into java host code. 2066 for (uint32_t var_index = 0; var_index < variable_list.GetSize(); ++var_index) 2067 { 2068 const VariableSP var_sp(variable_list.GetVariableAtIndex(var_index)); 2069 if (!var_sp) 2070 continue; 2071 2072 ValueObjectSP valobj_sp = ValueObjectVariable::Create(frame_ptr, var_sp); 2073 if (!valobj_sp) 2074 continue; 2075 2076 // Find the number of variable fields. 2077 // If it has no fields, or more fields than our Element, then it can't be the struct we're looking for. 2078 // Don't check for equality since RS can add extra struct members for padding. 2079 size_t num_children = valobj_sp->GetNumChildren(); 2080 if (num_children > elem.children.size() || num_children == 0) 2081 continue; 2082 2083 // Iterate over children looking for members with matching field names. 2084 // If all the field names match, this is likely the struct we want. 2085 // 2086 // TODO: This could be made more robust by also checking children data sizes, or array size 2087 bool found = true; 2088 for (size_t child_index = 0; child_index < num_children; ++child_index) 2089 { 2090 ValueObjectSP child = valobj_sp->GetChildAtIndex(child_index, true); 2091 if (!child || (child->GetName() != elem.children[child_index].type_name)) 2092 { 2093 found = false; 2094 break; 2095 } 2096 } 2097 2098 // RS can add extra struct members for padding in the format '#rs_padding_[0-9]+' 2099 if (found && num_children < elem.children.size()) 2100 { 2101 const uint32_t size_diff = elem.children.size() - num_children; 2102 if (log) 2103 log->Printf("%s - %" PRIu32 " padding struct entries", __FUNCTION__, size_diff); 2104 2105 for (uint32_t padding_index = 0; padding_index < size_diff; ++padding_index) 2106 { 2107 const ConstString &name = elem.children[num_children + padding_index].type_name; 2108 if (strcmp(name.AsCString(), "#rs_padding") < 0) 2109 found = false; 2110 } 2111 } 2112 2113 // We've found a global var with matching type 2114 if (found) 2115 { 2116 // Dereference since our Element type isn't a pointer. 2117 if (valobj_sp->IsPointerType()) 2118 { 2119 Error err; 2120 ValueObjectSP deref_valobj = valobj_sp->Dereference(err); 2121 if (!err.Fail()) 2122 valobj_sp = deref_valobj; 2123 } 2124 2125 // Save name of variable in Element. 2126 elem.type_name = valobj_sp->GetTypeName(); 2127 if (log) 2128 log->Printf("%s - element name set to %s", __FUNCTION__, elem.type_name.AsCString()); 2129 2130 return; 2131 } 2132 } 2133 } 2134 2135 // Function sets the datum_size member of Element. Representing the size of a single instance including padding. 2136 // Assumes the relevant allocation information has already been jitted. 2137 void 2138 RenderScriptRuntime::SetElementSize(Element &elem) 2139 { 2140 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2141 const Element::DataType type = *elem.type.get(); 2142 assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && "Invalid allocation type"); 2143 2144 const uint32_t vec_size = *elem.type_vec_size.get(); 2145 uint32_t data_size = 0; 2146 uint32_t padding = 0; 2147 2148 // Element is of a struct type, calculate size recursively. 2149 if ((type == Element::RS_TYPE_NONE) && (elem.children.size() > 0)) 2150 { 2151 for (Element &child : elem.children) 2152 { 2153 SetElementSize(child); 2154 const uint32_t array_size = child.array_size.isValid() ? *child.array_size.get() : 1; 2155 data_size += *child.datum_size.get() * array_size; 2156 } 2157 } 2158 // These have been packed already 2159 else if (type == Element::RS_TYPE_UNSIGNED_5_6_5 || 2160 type == Element::RS_TYPE_UNSIGNED_5_5_5_1 || 2161 type == Element::RS_TYPE_UNSIGNED_4_4_4_4) 2162 { 2163 data_size = AllocationDetails::RSTypeToFormat[type][eElementSize]; 2164 } 2165 else if (type < Element::RS_TYPE_ELEMENT) 2166 { 2167 data_size = vec_size * AllocationDetails::RSTypeToFormat[type][eElementSize]; 2168 if (vec_size == 3) 2169 padding = AllocationDetails::RSTypeToFormat[type][eElementSize]; 2170 } 2171 else 2172 data_size = GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 2173 2174 elem.padding = padding; 2175 elem.datum_size = data_size + padding; 2176 if (log) 2177 log->Printf("%s - element size set to %" PRIu32, __FUNCTION__, data_size + padding); 2178 } 2179 2180 // Given an allocation, this function copies the allocation contents from device into a buffer on the heap. 2181 // Returning a shared pointer to the buffer containing the data. 2182 std::shared_ptr<uint8_t> 2183 RenderScriptRuntime::GetAllocationData(AllocationDetails *allocation, StackFrame *frame_ptr) 2184 { 2185 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2186 2187 // JIT all the allocation details 2188 if (allocation->shouldRefresh()) 2189 { 2190 if (log) 2191 log->Printf("%s - allocation details not calculated yet, jitting info", __FUNCTION__); 2192 2193 if (!RefreshAllocation(allocation, frame_ptr)) 2194 { 2195 if (log) 2196 log->Printf("%s - couldn't JIT allocation details", __FUNCTION__); 2197 return nullptr; 2198 } 2199 } 2200 2201 assert(allocation->data_ptr.isValid() && allocation->element.type.isValid() && 2202 allocation->element.type_vec_size.isValid() && allocation->size.isValid() && 2203 "Allocation information not available"); 2204 2205 // Allocate a buffer to copy data into 2206 const uint32_t size = *allocation->size.get(); 2207 std::shared_ptr<uint8_t> buffer(new uint8_t[size]); 2208 if (!buffer) 2209 { 2210 if (log) 2211 log->Printf("%s - couldn't allocate a %" PRIu32 " byte buffer", __FUNCTION__, size); 2212 return nullptr; 2213 } 2214 2215 // Read the inferior memory 2216 Error error; 2217 lldb::addr_t data_ptr = *allocation->data_ptr.get(); 2218 GetProcess()->ReadMemory(data_ptr, buffer.get(), size, error); 2219 if (error.Fail()) 2220 { 2221 if (log) 2222 log->Printf("%s - '%s' Couldn't read %" PRIu32 " bytes of allocation data from 0x%" PRIx64, 2223 __FUNCTION__, error.AsCString(), size, data_ptr); 2224 return nullptr; 2225 } 2226 2227 return buffer; 2228 } 2229 2230 // Function copies data from a binary file into an allocation. 2231 // There is a header at the start of the file, FileHeader, before the data content itself. 2232 // Information from this header is used to display warnings to the user about incompatibilities 2233 bool 2234 RenderScriptRuntime::LoadAllocation(Stream &strm, const uint32_t alloc_id, const char *filename, StackFrame *frame_ptr) 2235 { 2236 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2237 2238 // Find allocation with the given id 2239 AllocationDetails *alloc = FindAllocByID(strm, alloc_id); 2240 if (!alloc) 2241 return false; 2242 2243 if (log) 2244 log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__, *alloc->address.get()); 2245 2246 // JIT all the allocation details 2247 if (alloc->shouldRefresh()) 2248 { 2249 if (log) 2250 log->Printf("%s - allocation details not calculated yet, jitting info.", __FUNCTION__); 2251 2252 if (!RefreshAllocation(alloc, frame_ptr)) 2253 { 2254 if (log) 2255 log->Printf("%s - couldn't JIT allocation details", __FUNCTION__); 2256 return false; 2257 } 2258 } 2259 2260 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && alloc->element.type_vec_size.isValid() && 2261 alloc->size.isValid() && alloc->element.datum_size.isValid() && "Allocation information not available"); 2262 2263 // Check we can read from file 2264 FileSpec file(filename, true); 2265 if (!file.Exists()) 2266 { 2267 strm.Printf("Error: File %s does not exist", filename); 2268 strm.EOL(); 2269 return false; 2270 } 2271 2272 if (!file.Readable()) 2273 { 2274 strm.Printf("Error: File %s does not have readable permissions", filename); 2275 strm.EOL(); 2276 return false; 2277 } 2278 2279 // Read file into data buffer 2280 DataBufferSP data_sp(file.ReadFileContents()); 2281 2282 // Cast start of buffer to FileHeader and use pointer to read metadata 2283 void *file_buffer = data_sp->GetBytes(); 2284 if (file_buffer == nullptr || 2285 data_sp->GetByteSize() < (sizeof(AllocationDetails::FileHeader) + sizeof(AllocationDetails::ElementHeader))) 2286 { 2287 strm.Printf("Error: File %s does not contain enough data for header", filename); 2288 strm.EOL(); 2289 return false; 2290 } 2291 const AllocationDetails::FileHeader *file_header = static_cast<AllocationDetails::FileHeader *>(file_buffer); 2292 2293 // Check file starts with ascii characters "RSAD" 2294 if (memcmp(file_header->ident, "RSAD", 4)) 2295 { 2296 strm.Printf("Error: File doesn't contain identifier for an RS allocation dump. Are you sure this is the correct file?"); 2297 strm.EOL(); 2298 return false; 2299 } 2300 2301 // Look at the type of the root element in the header 2302 AllocationDetails::ElementHeader root_element_header; 2303 memcpy(&root_element_header, static_cast<uint8_t *>(file_buffer) + sizeof(AllocationDetails::FileHeader), 2304 sizeof(AllocationDetails::ElementHeader)); 2305 2306 if (log) 2307 log->Printf("%s - header type %" PRIu32 ", element size %" PRIu32, __FUNCTION__, 2308 root_element_header.type, root_element_header.element_size); 2309 2310 // Check if the target allocation and file both have the same number of bytes for an Element 2311 if (*alloc->element.datum_size.get() != root_element_header.element_size) 2312 { 2313 strm.Printf("Warning: Mismatched Element sizes - file %" PRIu32 " bytes, allocation %" PRIu32 " bytes", 2314 root_element_header.element_size, *alloc->element.datum_size.get()); 2315 strm.EOL(); 2316 } 2317 2318 // Check if the target allocation and file both have the same type 2319 const uint32_t alloc_type = static_cast<uint32_t>(*alloc->element.type.get()); 2320 const uint32_t file_type = root_element_header.type; 2321 2322 if (file_type > Element::RS_TYPE_FONT) 2323 { 2324 strm.Printf("Warning: File has unknown allocation type"); 2325 strm.EOL(); 2326 } 2327 else if (alloc_type != file_type) 2328 { 2329 // Enum value isn't monotonous, so doesn't always index RsDataTypeToString array 2330 uint32_t printable_target_type_index = alloc_type; 2331 uint32_t printable_head_type_index = file_type; 2332 if (alloc_type >= Element::RS_TYPE_ELEMENT && alloc_type <= Element::RS_TYPE_FONT) 2333 printable_target_type_index = static_cast<Element::DataType>((alloc_type - Element::RS_TYPE_ELEMENT) + 2334 Element::RS_TYPE_MATRIX_2X2 + 1); 2335 2336 if (file_type >= Element::RS_TYPE_ELEMENT && file_type <= Element::RS_TYPE_FONT) 2337 printable_head_type_index = static_cast<Element::DataType>((file_type - Element::RS_TYPE_ELEMENT) + 2338 Element::RS_TYPE_MATRIX_2X2 + 1); 2339 2340 const char *file_type_cstr = AllocationDetails::RsDataTypeToString[printable_head_type_index][0]; 2341 const char *target_type_cstr = AllocationDetails::RsDataTypeToString[printable_target_type_index][0]; 2342 2343 strm.Printf("Warning: Mismatched Types - file '%s' type, allocation '%s' type", file_type_cstr, 2344 target_type_cstr); 2345 strm.EOL(); 2346 } 2347 2348 // Advance buffer past header 2349 file_buffer = static_cast<uint8_t *>(file_buffer) + file_header->hdr_size; 2350 2351 // Calculate size of allocation data in file 2352 size_t length = data_sp->GetByteSize() - file_header->hdr_size; 2353 2354 // Check if the target allocation and file both have the same total data size. 2355 const uint32_t alloc_size = *alloc->size.get(); 2356 if (alloc_size != length) 2357 { 2358 strm.Printf("Warning: Mismatched allocation sizes - file 0x%" PRIx64 " bytes, allocation 0x%" PRIx32 " bytes", 2359 (uint64_t)length, alloc_size); 2360 strm.EOL(); 2361 length = alloc_size < length ? alloc_size : length; // Set length to copy to minimum 2362 } 2363 2364 // Copy file data from our buffer into the target allocation. 2365 lldb::addr_t alloc_data = *alloc->data_ptr.get(); 2366 Error error; 2367 size_t bytes_written = GetProcess()->WriteMemory(alloc_data, file_buffer, length, error); 2368 if (!error.Success() || bytes_written != length) 2369 { 2370 strm.Printf("Error: Couldn't write data to allocation %s", error.AsCString()); 2371 strm.EOL(); 2372 return false; 2373 } 2374 2375 strm.Printf("Contents of file '%s' read into allocation %" PRIu32, filename, alloc->id); 2376 strm.EOL(); 2377 2378 return true; 2379 } 2380 2381 // Function takes as parameters a byte buffer, which will eventually be written to file as the element header, 2382 // an offset into that buffer, and an Element that will be saved into the buffer at the parametrised offset. 2383 // Return value is the new offset after writing the element into the buffer. 2384 // Elements are saved to the file as the ElementHeader struct followed by offsets to the structs of all the element's 2385 // children. 2386 size_t 2387 RenderScriptRuntime::PopulateElementHeaders(const std::shared_ptr<uint8_t> header_buffer, size_t offset, 2388 const Element &elem) 2389 { 2390 // File struct for an element header with all the relevant details copied from elem. 2391 // We assume members are valid already. 2392 AllocationDetails::ElementHeader elem_header; 2393 elem_header.type = *elem.type.get(); 2394 elem_header.kind = *elem.type_kind.get(); 2395 elem_header.element_size = *elem.datum_size.get(); 2396 elem_header.vector_size = *elem.type_vec_size.get(); 2397 elem_header.array_size = elem.array_size.isValid() ? *elem.array_size.get() : 0; 2398 const size_t elem_header_size = sizeof(AllocationDetails::ElementHeader); 2399 2400 // Copy struct into buffer and advance offset 2401 // We assume that header_buffer has been checked for nullptr before this method is called 2402 memcpy(header_buffer.get() + offset, &elem_header, elem_header_size); 2403 offset += elem_header_size; 2404 2405 // Starting offset of child ElementHeader struct 2406 size_t child_offset = offset + ((elem.children.size() + 1) * sizeof(uint32_t)); 2407 for (const RenderScriptRuntime::Element &child : elem.children) 2408 { 2409 // Recursively populate the buffer with the element header structs of children. 2410 // Then save the offsets where they were set after the parent element header. 2411 memcpy(header_buffer.get() + offset, &child_offset, sizeof(uint32_t)); 2412 offset += sizeof(uint32_t); 2413 2414 child_offset = PopulateElementHeaders(header_buffer, child_offset, child); 2415 } 2416 2417 // Zero indicates no more children 2418 memset(header_buffer.get() + offset, 0, sizeof(uint32_t)); 2419 2420 return child_offset; 2421 } 2422 2423 // Given an Element object this function returns the total size needed in the file header to store the element's 2424 // details. 2425 // Taking into account the size of the element header struct, plus the offsets to all the element's children. 2426 // Function is recursive so that the size of all ancestors is taken into account. 2427 size_t 2428 RenderScriptRuntime::CalculateElementHeaderSize(const Element &elem) 2429 { 2430 size_t size = (elem.children.size() + 1) * sizeof(uint32_t); // Offsets to children plus zero terminator 2431 size += sizeof(AllocationDetails::ElementHeader); // Size of header struct with type details 2432 2433 // Calculate recursively for all descendants 2434 for (const Element &child : elem.children) 2435 size += CalculateElementHeaderSize(child); 2436 2437 return size; 2438 } 2439 2440 // Function copies allocation contents into a binary file. 2441 // This file can then be loaded later into a different allocation. 2442 // There is a header, FileHeader, before the allocation data containing meta-data. 2443 bool 2444 RenderScriptRuntime::SaveAllocation(Stream &strm, const uint32_t alloc_id, const char *filename, StackFrame *frame_ptr) 2445 { 2446 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2447 2448 // Find allocation with the given id 2449 AllocationDetails *alloc = FindAllocByID(strm, alloc_id); 2450 if (!alloc) 2451 return false; 2452 2453 if (log) 2454 log->Printf("%s - found allocation 0x%" PRIx64 ".", __FUNCTION__, *alloc->address.get()); 2455 2456 // JIT all the allocation details 2457 if (alloc->shouldRefresh()) 2458 { 2459 if (log) 2460 log->Printf("%s - allocation details not calculated yet, jitting info.", __FUNCTION__); 2461 2462 if (!RefreshAllocation(alloc, frame_ptr)) 2463 { 2464 if (log) 2465 log->Printf("%s - couldn't JIT allocation details.", __FUNCTION__); 2466 return false; 2467 } 2468 } 2469 2470 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && alloc->element.type_vec_size.isValid() && 2471 alloc->element.datum_size.get() && alloc->element.type_kind.isValid() && alloc->dimension.isValid() && 2472 "Allocation information not available"); 2473 2474 // Check we can create writable file 2475 FileSpec file_spec(filename, true); 2476 File file(file_spec, File::eOpenOptionWrite | File::eOpenOptionCanCreate | File::eOpenOptionTruncate); 2477 if (!file) 2478 { 2479 strm.Printf("Error: Failed to open '%s' for writing", filename); 2480 strm.EOL(); 2481 return false; 2482 } 2483 2484 // Read allocation into buffer of heap memory 2485 const std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr); 2486 if (!buffer) 2487 { 2488 strm.Printf("Error: Couldn't read allocation data into buffer"); 2489 strm.EOL(); 2490 return false; 2491 } 2492 2493 // Create the file header 2494 AllocationDetails::FileHeader head; 2495 memcpy(head.ident, "RSAD", 4); 2496 head.dims[0] = static_cast<uint32_t>(alloc->dimension.get()->dim_1); 2497 head.dims[1] = static_cast<uint32_t>(alloc->dimension.get()->dim_2); 2498 head.dims[2] = static_cast<uint32_t>(alloc->dimension.get()->dim_3); 2499 2500 const size_t element_header_size = CalculateElementHeaderSize(alloc->element); 2501 assert((sizeof(AllocationDetails::FileHeader) + element_header_size) < UINT16_MAX && "Element header too large"); 2502 head.hdr_size = static_cast<uint16_t>(sizeof(AllocationDetails::FileHeader) + element_header_size); 2503 2504 // Write the file header 2505 size_t num_bytes = sizeof(AllocationDetails::FileHeader); 2506 if (log) 2507 log->Printf("%s - writing File Header, 0x%" PRIx64 " bytes", __FUNCTION__, (uint64_t)num_bytes); 2508 2509 Error err = file.Write(&head, num_bytes); 2510 if (!err.Success()) 2511 { 2512 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), filename); 2513 strm.EOL(); 2514 return false; 2515 } 2516 2517 // Create the headers describing the element type of the allocation. 2518 std::shared_ptr<uint8_t> element_header_buffer(new uint8_t[element_header_size]); 2519 if (element_header_buffer == nullptr) 2520 { 2521 strm.Printf("Internal Error: Couldn't allocate %" PRIu64 " bytes on the heap", (uint64_t)element_header_size); 2522 strm.EOL(); 2523 return false; 2524 } 2525 2526 PopulateElementHeaders(element_header_buffer, 0, alloc->element); 2527 2528 // Write headers for allocation element type to file 2529 num_bytes = element_header_size; 2530 if (log) 2531 log->Printf("%s - writing element headers, 0x%" PRIx64 " bytes.", __FUNCTION__, (uint64_t)num_bytes); 2532 2533 err = file.Write(element_header_buffer.get(), num_bytes); 2534 if (!err.Success()) 2535 { 2536 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), filename); 2537 strm.EOL(); 2538 return false; 2539 } 2540 2541 // Write allocation data to file 2542 num_bytes = static_cast<size_t>(*alloc->size.get()); 2543 if (log) 2544 log->Printf("%s - writing 0x%" PRIx64 " bytes", __FUNCTION__, (uint64_t)num_bytes); 2545 2546 err = file.Write(buffer.get(), num_bytes); 2547 if (!err.Success()) 2548 { 2549 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), filename); 2550 strm.EOL(); 2551 return false; 2552 } 2553 2554 strm.Printf("Allocation written to file '%s'", filename); 2555 strm.EOL(); 2556 return true; 2557 } 2558 2559 bool 2560 RenderScriptRuntime::LoadModule(const lldb::ModuleSP &module_sp) 2561 { 2562 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2563 2564 if (module_sp) 2565 { 2566 for (const auto &rs_module : m_rsmodules) 2567 { 2568 if (rs_module->m_module == module_sp) 2569 { 2570 // Check if the user has enabled automatically breaking on 2571 // all RS kernels. 2572 if (m_breakAllKernels) 2573 BreakOnModuleKernels(rs_module); 2574 2575 return false; 2576 } 2577 } 2578 bool module_loaded = false; 2579 switch (GetModuleKind(module_sp)) 2580 { 2581 case eModuleKindKernelObj: 2582 { 2583 RSModuleDescriptorSP module_desc; 2584 module_desc.reset(new RSModuleDescriptor(module_sp)); 2585 if (module_desc->ParseRSInfo()) 2586 { 2587 m_rsmodules.push_back(module_desc); 2588 module_loaded = true; 2589 } 2590 if (module_loaded) 2591 { 2592 FixupScriptDetails(module_desc); 2593 } 2594 break; 2595 } 2596 case eModuleKindDriver: 2597 { 2598 if (!m_libRSDriver) 2599 { 2600 m_libRSDriver = module_sp; 2601 LoadRuntimeHooks(m_libRSDriver, RenderScriptRuntime::eModuleKindDriver); 2602 } 2603 break; 2604 } 2605 case eModuleKindImpl: 2606 { 2607 m_libRSCpuRef = module_sp; 2608 break; 2609 } 2610 case eModuleKindLibRS: 2611 { 2612 if (!m_libRS) 2613 { 2614 m_libRS = module_sp; 2615 static ConstString gDbgPresentStr("gDebuggerPresent"); 2616 const Symbol *debug_present = 2617 m_libRS->FindFirstSymbolWithNameAndType(gDbgPresentStr, eSymbolTypeData); 2618 if (debug_present) 2619 { 2620 Error error; 2621 uint32_t flag = 0x00000001U; 2622 Target &target = GetProcess()->GetTarget(); 2623 addr_t addr = debug_present->GetLoadAddress(&target); 2624 GetProcess()->WriteMemory(addr, &flag, sizeof(flag), error); 2625 if (error.Success()) 2626 { 2627 if (log) 2628 log->Printf("%s - debugger present flag set on debugee.", __FUNCTION__); 2629 2630 m_debuggerPresentFlagged = true; 2631 } 2632 else if (log) 2633 { 2634 log->Printf("%s - error writing debugger present flags '%s' ", __FUNCTION__, 2635 error.AsCString()); 2636 } 2637 } 2638 else if (log) 2639 { 2640 log->Printf("%s - error writing debugger present flags - symbol not found", __FUNCTION__); 2641 } 2642 } 2643 break; 2644 } 2645 default: 2646 break; 2647 } 2648 if (module_loaded) 2649 Update(); 2650 return module_loaded; 2651 } 2652 return false; 2653 } 2654 2655 void 2656 RenderScriptRuntime::Update() 2657 { 2658 if (m_rsmodules.size() > 0) 2659 { 2660 if (!m_initiated) 2661 { 2662 Initiate(); 2663 } 2664 } 2665 } 2666 2667 // The maximum line length of an .rs.info packet 2668 #define MAXLINE 500 2669 #define STRINGIFY(x) #x 2670 #define MAXLINESTR_(x) "%" STRINGIFY(x) "s" 2671 #define MAXLINESTR MAXLINESTR_(MAXLINE) 2672 2673 // The .rs.info symbol in renderscript modules contains a string which needs to be parsed. 2674 // The string is basic and is parsed on a line by line basis. 2675 bool 2676 RSModuleDescriptor::ParseRSInfo() 2677 { 2678 assert(m_module); 2679 const Symbol *info_sym = m_module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), eSymbolTypeData); 2680 if (!info_sym) 2681 return false; 2682 2683 const addr_t addr = info_sym->GetAddressRef().GetFileAddress(); 2684 if (addr == LLDB_INVALID_ADDRESS) 2685 return false; 2686 2687 const addr_t size = info_sym->GetByteSize(); 2688 const FileSpec fs = m_module->GetFileSpec(); 2689 2690 const DataBufferSP buffer = fs.ReadFileContents(addr, size); 2691 if (!buffer) 2692 return false; 2693 2694 // split rs.info. contents into lines 2695 std::vector<std::string> info_lines; 2696 { 2697 const std::string info((const char *)buffer->GetBytes()); 2698 for (size_t tail = 0; tail < info.size();) 2699 { 2700 // find next new line or end of string 2701 size_t head = info.find('\n', tail); 2702 head = (head == std::string::npos) ? info.size() : head; 2703 std::string line = info.substr(tail, head - tail); 2704 // add to line list 2705 info_lines.push_back(line); 2706 tail = head + 1; 2707 } 2708 } 2709 2710 std::array<char, MAXLINE> name{{'\0'}}; 2711 std::array<char, MAXLINE> value{{'\0'}}; 2712 2713 // parse all text lines of .rs.info 2714 for (auto line = info_lines.begin(); line != info_lines.end(); ++line) 2715 { 2716 uint32_t numDefns = 0; 2717 if (sscanf(line->c_str(), "exportVarCount: %" PRIu32 "", &numDefns) == 1) 2718 { 2719 while (numDefns--) 2720 m_globals.push_back(RSGlobalDescriptor(this, (++line)->c_str())); 2721 } 2722 else if (sscanf(line->c_str(), "exportForEachCount: %" PRIu32 "", &numDefns) == 1) 2723 { 2724 while (numDefns--) 2725 { 2726 uint32_t slot = 0; 2727 name[0] = '\0'; 2728 static const char *fmt_s = "%" PRIu32 " - " MAXLINESTR; 2729 if (sscanf((++line)->c_str(), fmt_s, &slot, name.data()) == 2) 2730 { 2731 if (name[0] != '\0') 2732 m_kernels.push_back(RSKernelDescriptor(this, name.data(), slot)); 2733 } 2734 } 2735 } 2736 else if (sscanf(line->c_str(), "pragmaCount: %" PRIu32 "", &numDefns) == 1) 2737 { 2738 while (numDefns--) 2739 { 2740 name[0] = value[0] = '\0'; 2741 static const char *fmt_s = MAXLINESTR " - " MAXLINESTR; 2742 if (sscanf((++line)->c_str(), fmt_s, name.data(), value.data()) != 0) 2743 { 2744 if (name[0] != '\0') 2745 m_pragmas[std::string(name.data())] = value.data(); 2746 } 2747 } 2748 } 2749 else 2750 { 2751 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2752 if (log) 2753 { 2754 log->Printf("%s - skipping .rs.info field '%s'", __FUNCTION__, line->c_str()); 2755 } 2756 } 2757 } 2758 2759 // 'root' kernel should always be present 2760 return m_kernels.size() > 0; 2761 } 2762 2763 void 2764 RenderScriptRuntime::Status(Stream &strm) const 2765 { 2766 if (m_libRS) 2767 { 2768 strm.Printf("Runtime Library discovered."); 2769 strm.EOL(); 2770 } 2771 if (m_libRSDriver) 2772 { 2773 strm.Printf("Runtime Driver discovered."); 2774 strm.EOL(); 2775 } 2776 if (m_libRSCpuRef) 2777 { 2778 strm.Printf("CPU Reference Implementation discovered."); 2779 strm.EOL(); 2780 } 2781 2782 if (m_runtimeHooks.size()) 2783 { 2784 strm.Printf("Runtime functions hooked:"); 2785 strm.EOL(); 2786 for (auto b : m_runtimeHooks) 2787 { 2788 strm.Indent(b.second->defn->name); 2789 strm.EOL(); 2790 } 2791 } 2792 else 2793 { 2794 strm.Printf("Runtime is not hooked."); 2795 strm.EOL(); 2796 } 2797 } 2798 2799 void 2800 RenderScriptRuntime::DumpContexts(Stream &strm) const 2801 { 2802 strm.Printf("Inferred RenderScript Contexts:"); 2803 strm.EOL(); 2804 strm.IndentMore(); 2805 2806 std::map<addr_t, uint64_t> contextReferences; 2807 2808 // Iterate over all of the currently discovered scripts. 2809 // Note: We cant push or pop from m_scripts inside this loop or it may invalidate script. 2810 for (const auto &script : m_scripts) 2811 { 2812 if (!script->context.isValid()) 2813 continue; 2814 lldb::addr_t context = *script->context; 2815 2816 if (contextReferences.find(context) != contextReferences.end()) 2817 { 2818 contextReferences[context]++; 2819 } 2820 else 2821 { 2822 contextReferences[context] = 1; 2823 } 2824 } 2825 2826 for (const auto &cRef : contextReferences) 2827 { 2828 strm.Printf("Context 0x%" PRIx64 ": %" PRIu64 " script instances", cRef.first, cRef.second); 2829 strm.EOL(); 2830 } 2831 strm.IndentLess(); 2832 } 2833 2834 void 2835 RenderScriptRuntime::DumpKernels(Stream &strm) const 2836 { 2837 strm.Printf("RenderScript Kernels:"); 2838 strm.EOL(); 2839 strm.IndentMore(); 2840 for (const auto &module : m_rsmodules) 2841 { 2842 strm.Printf("Resource '%s':", module->m_resname.c_str()); 2843 strm.EOL(); 2844 for (const auto &kernel : module->m_kernels) 2845 { 2846 strm.Indent(kernel.m_name.AsCString()); 2847 strm.EOL(); 2848 } 2849 } 2850 strm.IndentLess(); 2851 } 2852 2853 RenderScriptRuntime::AllocationDetails * 2854 RenderScriptRuntime::FindAllocByID(Stream &strm, const uint32_t alloc_id) 2855 { 2856 AllocationDetails *alloc = nullptr; 2857 2858 // See if we can find allocation using id as an index; 2859 if (alloc_id <= m_allocations.size() && alloc_id != 0 && m_allocations[alloc_id - 1]->id == alloc_id) 2860 { 2861 alloc = m_allocations[alloc_id - 1].get(); 2862 return alloc; 2863 } 2864 2865 // Fallback to searching 2866 for (const auto &a : m_allocations) 2867 { 2868 if (a->id == alloc_id) 2869 { 2870 alloc = a.get(); 2871 break; 2872 } 2873 } 2874 2875 if (alloc == nullptr) 2876 { 2877 strm.Printf("Error: Couldn't find allocation with id matching %" PRIu32, alloc_id); 2878 strm.EOL(); 2879 } 2880 2881 return alloc; 2882 } 2883 2884 // Prints the contents of an allocation to the output stream, which may be a file 2885 bool 2886 RenderScriptRuntime::DumpAllocation(Stream &strm, StackFrame *frame_ptr, const uint32_t id) 2887 { 2888 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2889 2890 // Check we can find the desired allocation 2891 AllocationDetails *alloc = FindAllocByID(strm, id); 2892 if (!alloc) 2893 return false; // FindAllocByID() will print error message for us here 2894 2895 if (log) 2896 log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__, *alloc->address.get()); 2897 2898 // Check we have information about the allocation, if not calculate it 2899 if (alloc->shouldRefresh()) 2900 { 2901 if (log) 2902 log->Printf("%s - allocation details not calculated yet, jitting info.", __FUNCTION__); 2903 2904 // JIT all the allocation information 2905 if (!RefreshAllocation(alloc, frame_ptr)) 2906 { 2907 strm.Printf("Error: Couldn't JIT allocation details"); 2908 strm.EOL(); 2909 return false; 2910 } 2911 } 2912 2913 // Establish format and size of each data element 2914 const uint32_t vec_size = *alloc->element.type_vec_size.get(); 2915 const Element::DataType type = *alloc->element.type.get(); 2916 2917 assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && "Invalid allocation type"); 2918 2919 lldb::Format format; 2920 if (type >= Element::RS_TYPE_ELEMENT) 2921 format = eFormatHex; 2922 else 2923 format = vec_size == 1 ? static_cast<lldb::Format>(AllocationDetails::RSTypeToFormat[type][eFormatSingle]) 2924 : static_cast<lldb::Format>(AllocationDetails::RSTypeToFormat[type][eFormatVector]); 2925 2926 const uint32_t data_size = *alloc->element.datum_size.get(); 2927 2928 if (log) 2929 log->Printf("%s - element size %" PRIu32 " bytes, including padding", __FUNCTION__, data_size); 2930 2931 // Allocate a buffer to copy data into 2932 std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr); 2933 if (!buffer) 2934 { 2935 strm.Printf("Error: Couldn't read allocation data"); 2936 strm.EOL(); 2937 return false; 2938 } 2939 2940 // Calculate stride between rows as there may be padding at end of rows since 2941 // allocated memory is 16-byte aligned 2942 if (!alloc->stride.isValid()) 2943 { 2944 if (alloc->dimension.get()->dim_2 == 0) // We only have one dimension 2945 alloc->stride = 0; 2946 else if (!JITAllocationStride(alloc, frame_ptr)) 2947 { 2948 strm.Printf("Error: Couldn't calculate allocation row stride"); 2949 strm.EOL(); 2950 return false; 2951 } 2952 } 2953 const uint32_t stride = *alloc->stride.get(); 2954 const uint32_t size = *alloc->size.get(); // Size of whole allocation 2955 const uint32_t padding = alloc->element.padding.isValid() ? *alloc->element.padding.get() : 0; 2956 if (log) 2957 log->Printf("%s - stride %" PRIu32 " bytes, size %" PRIu32 " bytes, padding %" PRIu32, 2958 __FUNCTION__, stride, size, padding); 2959 2960 // Find dimensions used to index loops, so need to be non-zero 2961 uint32_t dim_x = alloc->dimension.get()->dim_1; 2962 dim_x = dim_x == 0 ? 1 : dim_x; 2963 2964 uint32_t dim_y = alloc->dimension.get()->dim_2; 2965 dim_y = dim_y == 0 ? 1 : dim_y; 2966 2967 uint32_t dim_z = alloc->dimension.get()->dim_3; 2968 dim_z = dim_z == 0 ? 1 : dim_z; 2969 2970 // Use data extractor to format output 2971 const uint32_t archByteSize = GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 2972 DataExtractor alloc_data(buffer.get(), size, GetProcess()->GetByteOrder(), archByteSize); 2973 2974 uint32_t offset = 0; // Offset in buffer to next element to be printed 2975 uint32_t prev_row = 0; // Offset to the start of the previous row 2976 2977 // Iterate over allocation dimensions, printing results to user 2978 strm.Printf("Data (X, Y, Z):"); 2979 for (uint32_t z = 0; z < dim_z; ++z) 2980 { 2981 for (uint32_t y = 0; y < dim_y; ++y) 2982 { 2983 // Use stride to index start of next row. 2984 if (!(y == 0 && z == 0)) 2985 offset = prev_row + stride; 2986 prev_row = offset; 2987 2988 // Print each element in the row individually 2989 for (uint32_t x = 0; x < dim_x; ++x) 2990 { 2991 strm.Printf("\n(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ") = ", x, y, z); 2992 if ((type == Element::RS_TYPE_NONE) && (alloc->element.children.size() > 0) && 2993 (alloc->element.type_name != Element::GetFallbackStructName())) 2994 { 2995 // Here we are dumping an Element of struct type. 2996 // This is done using expression evaluation with the name of the struct type and pointer to element. 2997 2998 // Don't print the name of the resulting expression, since this will be '$[0-9]+' 2999 DumpValueObjectOptions expr_options; 3000 expr_options.SetHideName(true); 3001 3002 // Setup expression as derefrencing a pointer cast to element address. 3003 char expr_char_buffer[jit_max_expr_size]; 3004 int chars_written = snprintf(expr_char_buffer, jit_max_expr_size, "*(%s*) 0x%" PRIx64, 3005 alloc->element.type_name.AsCString(), *alloc->data_ptr.get() + offset); 3006 3007 if (chars_written < 0 || chars_written >= jit_max_expr_size) 3008 { 3009 if (log) 3010 log->Printf("%s - error in snprintf().", __FUNCTION__); 3011 continue; 3012 } 3013 3014 // Evaluate expression 3015 ValueObjectSP expr_result; 3016 GetProcess()->GetTarget().EvaluateExpression(expr_char_buffer, frame_ptr, expr_result); 3017 3018 // Print the results to our stream. 3019 expr_result->Dump(strm, expr_options); 3020 } 3021 else 3022 { 3023 alloc_data.Dump(&strm, offset, format, data_size - padding, 1, 1, LLDB_INVALID_ADDRESS, 0, 0); 3024 } 3025 offset += data_size; 3026 } 3027 } 3028 } 3029 strm.EOL(); 3030 3031 return true; 3032 } 3033 3034 // Function recalculates all our cached information about allocations by jitting the 3035 // RS runtime regarding each allocation we know about. 3036 // Returns true if all allocations could be recomputed, false otherwise. 3037 bool 3038 RenderScriptRuntime::RecomputeAllAllocations(Stream &strm, StackFrame *frame_ptr) 3039 { 3040 bool success = true; 3041 for (auto &alloc : m_allocations) 3042 { 3043 // JIT current allocation information 3044 if (!RefreshAllocation(alloc.get(), frame_ptr)) 3045 { 3046 strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32 "\n", alloc->id); 3047 success = false; 3048 } 3049 } 3050 3051 if (success) 3052 strm.Printf("All allocations successfully recomputed"); 3053 strm.EOL(); 3054 3055 return success; 3056 } 3057 3058 // Prints information regarding currently loaded allocations. 3059 // These details are gathered by jitting the runtime, which has as latency. 3060 // Index parameter specifies a single allocation ID to print, or a zero value to print them all 3061 void 3062 RenderScriptRuntime::ListAllocations(Stream &strm, StackFrame *frame_ptr, const uint32_t index) 3063 { 3064 strm.Printf("RenderScript Allocations:"); 3065 strm.EOL(); 3066 strm.IndentMore(); 3067 3068 for (auto &alloc : m_allocations) 3069 { 3070 // index will only be zero if we want to print all allocations 3071 if (index != 0 && index != alloc->id) 3072 continue; 3073 3074 // JIT current allocation information 3075 if (alloc->shouldRefresh() && !RefreshAllocation(alloc.get(), frame_ptr)) 3076 { 3077 strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32, alloc->id); 3078 strm.EOL(); 3079 continue; 3080 } 3081 3082 strm.Printf("%" PRIu32 ":", alloc->id); 3083 strm.EOL(); 3084 strm.IndentMore(); 3085 3086 strm.Indent("Context: "); 3087 if (!alloc->context.isValid()) 3088 strm.Printf("unknown\n"); 3089 else 3090 strm.Printf("0x%" PRIx64 "\n", *alloc->context.get()); 3091 3092 strm.Indent("Address: "); 3093 if (!alloc->address.isValid()) 3094 strm.Printf("unknown\n"); 3095 else 3096 strm.Printf("0x%" PRIx64 "\n", *alloc->address.get()); 3097 3098 strm.Indent("Data pointer: "); 3099 if (!alloc->data_ptr.isValid()) 3100 strm.Printf("unknown\n"); 3101 else 3102 strm.Printf("0x%" PRIx64 "\n", *alloc->data_ptr.get()); 3103 3104 strm.Indent("Dimensions: "); 3105 if (!alloc->dimension.isValid()) 3106 strm.Printf("unknown\n"); 3107 else 3108 strm.Printf("(%" PRId32 ", %" PRId32 ", %" PRId32 ")\n", 3109 alloc->dimension.get()->dim_1, alloc->dimension.get()->dim_2, alloc->dimension.get()->dim_3); 3110 3111 strm.Indent("Data Type: "); 3112 if (!alloc->element.type.isValid() || !alloc->element.type_vec_size.isValid()) 3113 strm.Printf("unknown\n"); 3114 else 3115 { 3116 const int vector_size = *alloc->element.type_vec_size.get(); 3117 Element::DataType type = *alloc->element.type.get(); 3118 3119 if (!alloc->element.type_name.IsEmpty()) 3120 strm.Printf("%s\n", alloc->element.type_name.AsCString()); 3121 else 3122 { 3123 // Enum value isn't monotonous, so doesn't always index RsDataTypeToString array 3124 if (type >= Element::RS_TYPE_ELEMENT && type <= Element::RS_TYPE_FONT) 3125 type = static_cast<Element::DataType>((type - Element::RS_TYPE_ELEMENT) + 3126 Element::RS_TYPE_MATRIX_2X2 + 1); 3127 3128 if (type >= (sizeof(AllocationDetails::RsDataTypeToString) / 3129 sizeof(AllocationDetails::RsDataTypeToString[0])) || 3130 vector_size > 4 || vector_size < 1) 3131 strm.Printf("invalid type\n"); 3132 else 3133 strm.Printf("%s\n", AllocationDetails::RsDataTypeToString[static_cast<uint32_t>(type)] 3134 [vector_size - 1]); 3135 } 3136 } 3137 3138 strm.Indent("Data Kind: "); 3139 if (!alloc->element.type_kind.isValid()) 3140 strm.Printf("unknown\n"); 3141 else 3142 { 3143 const Element::DataKind kind = *alloc->element.type_kind.get(); 3144 if (kind < Element::RS_KIND_USER || kind > Element::RS_KIND_PIXEL_YUV) 3145 strm.Printf("invalid kind\n"); 3146 else 3147 strm.Printf("%s\n", AllocationDetails::RsDataKindToString[static_cast<uint32_t>(kind)]); 3148 } 3149 3150 strm.EOL(); 3151 strm.IndentLess(); 3152 } 3153 strm.IndentLess(); 3154 } 3155 3156 // Set breakpoints on every kernel found in RS module 3157 void 3158 RenderScriptRuntime::BreakOnModuleKernels(const RSModuleDescriptorSP rsmodule_sp) 3159 { 3160 for (const auto &kernel : rsmodule_sp->m_kernels) 3161 { 3162 // Don't set breakpoint on 'root' kernel 3163 if (strcmp(kernel.m_name.AsCString(), "root") == 0) 3164 continue; 3165 3166 CreateKernelBreakpoint(kernel.m_name); 3167 } 3168 } 3169 3170 // Method is internally called by the 'kernel breakpoint all' command to 3171 // enable or disable breaking on all kernels. 3172 // 3173 // When do_break is true we want to enable this functionality. 3174 // When do_break is false we want to disable it. 3175 void 3176 RenderScriptRuntime::SetBreakAllKernels(bool do_break, TargetSP target) 3177 { 3178 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3179 3180 InitSearchFilter(target); 3181 3182 // Set breakpoints on all the kernels 3183 if (do_break && !m_breakAllKernels) 3184 { 3185 m_breakAllKernels = true; 3186 3187 for (const auto &module : m_rsmodules) 3188 BreakOnModuleKernels(module); 3189 3190 if (log) 3191 log->Printf("%s(True) - breakpoints set on all currently loaded kernels.", __FUNCTION__); 3192 } 3193 else if (!do_break && m_breakAllKernels) // Breakpoints won't be set on any new kernels. 3194 { 3195 m_breakAllKernels = false; 3196 3197 if (log) 3198 log->Printf("%s(False) - breakpoints no longer automatically set.", __FUNCTION__); 3199 } 3200 } 3201 3202 // Given the name of a kernel this function creates a breakpoint using our 3203 // own breakpoint resolver, and returns the Breakpoint shared pointer. 3204 BreakpointSP 3205 RenderScriptRuntime::CreateKernelBreakpoint(const ConstString &name) 3206 { 3207 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3208 3209 if (!m_filtersp) 3210 { 3211 if (log) 3212 log->Printf("%s - error, no breakpoint search filter set.", __FUNCTION__); 3213 return nullptr; 3214 } 3215 3216 BreakpointResolverSP resolver_sp(new RSBreakpointResolver(nullptr, name)); 3217 BreakpointSP bp = GetProcess()->GetTarget().CreateBreakpoint(m_filtersp, resolver_sp, false, false, false); 3218 3219 // Give RS breakpoints a specific name, so the user can manipulate them as a group. 3220 Error err; 3221 if (!bp->AddName("RenderScriptKernel", err) && log) 3222 log->Printf("%s - error setting break name, '%s'.", __FUNCTION__, err.AsCString()); 3223 3224 return bp; 3225 } 3226 3227 // Given an expression for a variable this function tries to calculate the variable's value. 3228 // If this is possible it returns true and sets the uint64_t parameter to the variables unsigned value. 3229 // Otherwise function returns false. 3230 bool 3231 RenderScriptRuntime::GetFrameVarAsUnsigned(const StackFrameSP frame_sp, const char *var_name, uint64_t &val) 3232 { 3233 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3234 Error error; 3235 VariableSP var_sp; 3236 3237 // Find variable in stack frame 3238 ValueObjectSP value_sp(frame_sp->GetValueForVariableExpressionPath( 3239 var_name, eNoDynamicValues, 3240 StackFrame::eExpressionPathOptionCheckPtrVsMember | StackFrame::eExpressionPathOptionsAllowDirectIVarAccess, 3241 var_sp, error)); 3242 if (!error.Success()) 3243 { 3244 if (log) 3245 log->Printf("%s - error, couldn't find '%s' in frame", __FUNCTION__, var_name); 3246 return false; 3247 } 3248 3249 // Find the uint32_t value for the variable 3250 bool success = false; 3251 val = value_sp->GetValueAsUnsigned(0, &success); 3252 if (!success) 3253 { 3254 if (log) 3255 log->Printf("%s - error, couldn't parse '%s' as an uint32_t.", __FUNCTION__, var_name); 3256 return false; 3257 } 3258 3259 return true; 3260 } 3261 3262 // Function attempts to find the current coordinate of a kernel invocation by investigating the 3263 // values of frame variables in the .expand function. These coordinates are returned via the coord 3264 // array reference parameter. Returns true if the coordinates could be found, and false otherwise. 3265 bool 3266 RenderScriptRuntime::GetKernelCoordinate(RSCoordinate &coord, Thread *thread_ptr) 3267 { 3268 static const std::string s_runtimeExpandSuffix(".expand"); 3269 static const std::array<const char *, 3> s_runtimeCoordVars{{"rsIndex", "p->current.y", "p->current.z"}}; 3270 3271 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3272 3273 if (!thread_ptr) 3274 { 3275 if (log) 3276 log->Printf("%s - Error, No thread pointer", __FUNCTION__); 3277 3278 return false; 3279 } 3280 3281 // Walk the call stack looking for a function whose name has the suffix '.expand' 3282 // and contains the variables we're looking for. 3283 for (uint32_t i = 0; i < thread_ptr->GetStackFrameCount(); ++i) 3284 { 3285 if (!thread_ptr->SetSelectedFrameByIndex(i)) 3286 continue; 3287 3288 StackFrameSP frame_sp = thread_ptr->GetSelectedFrame(); 3289 if (!frame_sp) 3290 continue; 3291 3292 // Find the function name 3293 const SymbolContext sym_ctx = frame_sp->GetSymbolContext(false); 3294 const char *func_name_cstr = sym_ctx.GetFunctionName().AsCString(); 3295 if (!func_name_cstr) 3296 continue; 3297 3298 if (log) 3299 log->Printf("%s - Inspecting function '%s'", __FUNCTION__, func_name_cstr); 3300 3301 // Check if function name has .expand suffix 3302 std::string func_name(func_name_cstr); 3303 const int length_difference = func_name.length() - s_runtimeExpandSuffix.length(); 3304 if (length_difference <= 0) 3305 continue; 3306 3307 const int32_t has_expand_suffix = func_name.compare(length_difference, 3308 s_runtimeExpandSuffix.length(), 3309 s_runtimeExpandSuffix); 3310 3311 if (has_expand_suffix != 0) 3312 continue; 3313 3314 if (log) 3315 log->Printf("%s - Found .expand function '%s'", __FUNCTION__, func_name_cstr); 3316 3317 // Get values for variables in .expand frame that tell us the current kernel invocation 3318 bool found_coord_variables = true; 3319 assert(s_runtimeCoordVars.size() == coord.size()); 3320 3321 for (uint32_t i = 0; i < coord.size(); ++i) 3322 { 3323 uint64_t value = 0; 3324 if (!GetFrameVarAsUnsigned(frame_sp, s_runtimeCoordVars[i], value)) 3325 { 3326 found_coord_variables = false; 3327 break; 3328 } 3329 coord[i] = value; 3330 } 3331 3332 if (found_coord_variables) 3333 return true; 3334 } 3335 return false; 3336 } 3337 3338 // Callback when a kernel breakpoint hits and we're looking for a specific coordinate. 3339 // Baton parameter contains a pointer to the target coordinate we want to break on. 3340 // Function then checks the .expand frame for the current coordinate and breaks to user if it matches. 3341 // Parameter 'break_id' is the id of the Breakpoint which made the callback. 3342 // Parameter 'break_loc_id' is the id for the BreakpointLocation which was hit, 3343 // a single logical breakpoint can have multiple addresses. 3344 bool 3345 RenderScriptRuntime::KernelBreakpointHit(void *baton, StoppointCallbackContext *ctx, user_id_t break_id, 3346 user_id_t break_loc_id) 3347 { 3348 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3349 3350 assert(baton && "Error: null baton in conditional kernel breakpoint callback"); 3351 3352 // Coordinate we want to stop on 3353 const uint32_t *target_coord = static_cast<const uint32_t *>(baton); 3354 3355 if (log) 3356 log->Printf("%s - Break ID %" PRIu64 ", (%" PRIu32 ", %" PRIu32 ", %" PRIu32 ")", __FUNCTION__, break_id, 3357 target_coord[0], target_coord[1], target_coord[2]); 3358 3359 // Select current thread 3360 ExecutionContext context(ctx->exe_ctx_ref); 3361 Thread *thread_ptr = context.GetThreadPtr(); 3362 assert(thread_ptr && "Null thread pointer"); 3363 3364 // Find current kernel invocation from .expand frame variables 3365 RSCoordinate current_coord{}; // Zero initialise array 3366 if (!GetKernelCoordinate(current_coord, thread_ptr)) 3367 { 3368 if (log) 3369 log->Printf("%s - Error, couldn't select .expand stack frame", __FUNCTION__); 3370 return false; 3371 } 3372 3373 if (log) 3374 log->Printf("%s - (%" PRIu32 ",%" PRIu32 ",%" PRIu32 ")", __FUNCTION__, current_coord[0], current_coord[1], 3375 current_coord[2]); 3376 3377 // Check if the current kernel invocation coordinate matches our target coordinate 3378 if (current_coord[0] == target_coord[0] && 3379 current_coord[1] == target_coord[1] && 3380 current_coord[2] == target_coord[2]) 3381 { 3382 if (log) 3383 log->Printf("%s, BREAKING (%" PRIu32 ",%" PRIu32 ",%" PRIu32 ")", __FUNCTION__, current_coord[0], 3384 current_coord[1], current_coord[2]); 3385 3386 BreakpointSP breakpoint_sp = context.GetTargetPtr()->GetBreakpointByID(break_id); 3387 assert(breakpoint_sp != nullptr && "Error: Couldn't find breakpoint matching break id for callback"); 3388 breakpoint_sp->SetEnabled(false); // Optimise since conditional breakpoint should only be hit once. 3389 return true; 3390 } 3391 3392 // No match on coordinate 3393 return false; 3394 } 3395 3396 // Tries to set a breakpoint on the start of a kernel, resolved using the kernel name. 3397 // Argument 'coords', represents a three dimensional coordinate which can be used to specify 3398 // a single kernel instance to break on. If this is set then we add a callback to the breakpoint. 3399 void 3400 RenderScriptRuntime::PlaceBreakpointOnKernel(Stream &strm, const char *name, const std::array<int, 3> coords, 3401 Error &error, TargetSP target) 3402 { 3403 if (!name) 3404 { 3405 error.SetErrorString("invalid kernel name"); 3406 return; 3407 } 3408 3409 InitSearchFilter(target); 3410 3411 ConstString kernel_name(name); 3412 BreakpointSP bp = CreateKernelBreakpoint(kernel_name); 3413 3414 // We have a conditional breakpoint on a specific coordinate 3415 if (coords[0] != -1) 3416 { 3417 strm.Printf("Conditional kernel breakpoint on coordinate %" PRId32 ", %" PRId32 ", %" PRId32, 3418 coords[0], coords[1], coords[2]); 3419 strm.EOL(); 3420 3421 // Allocate memory for the baton, and copy over coordinate 3422 uint32_t *baton = new uint32_t[coords.size()]; 3423 baton[0] = coords[0]; baton[1] = coords[1]; baton[2] = coords[2]; 3424 3425 // Create a callback that will be invoked every time the breakpoint is hit. 3426 // The baton object passed to the handler is the target coordinate we want to break on. 3427 bp->SetCallback(KernelBreakpointHit, baton, true); 3428 3429 // Store a shared pointer to the baton, so the memory will eventually be cleaned up after destruction 3430 m_conditional_breaks[bp->GetID()] = std::shared_ptr<uint32_t>(baton); 3431 } 3432 3433 if (bp) 3434 bp->GetDescription(&strm, lldb::eDescriptionLevelInitial, false); 3435 } 3436 3437 void 3438 RenderScriptRuntime::DumpModules(Stream &strm) const 3439 { 3440 strm.Printf("RenderScript Modules:"); 3441 strm.EOL(); 3442 strm.IndentMore(); 3443 for (const auto &module : m_rsmodules) 3444 { 3445 module->Dump(strm); 3446 } 3447 strm.IndentLess(); 3448 } 3449 3450 RenderScriptRuntime::ScriptDetails * 3451 RenderScriptRuntime::LookUpScript(addr_t address, bool create) 3452 { 3453 for (const auto &s : m_scripts) 3454 { 3455 if (s->script.isValid()) 3456 if (*s->script == address) 3457 return s.get(); 3458 } 3459 if (create) 3460 { 3461 std::unique_ptr<ScriptDetails> s(new ScriptDetails); 3462 s->script = address; 3463 m_scripts.push_back(std::move(s)); 3464 return m_scripts.back().get(); 3465 } 3466 return nullptr; 3467 } 3468 3469 RenderScriptRuntime::AllocationDetails * 3470 RenderScriptRuntime::LookUpAllocation(addr_t address, bool create) 3471 { 3472 for (const auto &a : m_allocations) 3473 { 3474 if (a->address.isValid()) 3475 if (*a->address == address) 3476 return a.get(); 3477 } 3478 if (create) 3479 { 3480 std::unique_ptr<AllocationDetails> a(new AllocationDetails); 3481 a->address = address; 3482 m_allocations.push_back(std::move(a)); 3483 return m_allocations.back().get(); 3484 } 3485 return nullptr; 3486 } 3487 3488 void 3489 RSModuleDescriptor::Dump(Stream &strm) const 3490 { 3491 strm.Indent(); 3492 m_module->GetFileSpec().Dump(&strm); 3493 if (m_module->GetNumCompileUnits()) 3494 { 3495 strm.Indent("Debug info loaded."); 3496 } 3497 else 3498 { 3499 strm.Indent("Debug info does not exist."); 3500 } 3501 strm.EOL(); 3502 strm.IndentMore(); 3503 strm.Indent(); 3504 strm.Printf("Globals: %" PRIu64, static_cast<uint64_t>(m_globals.size())); 3505 strm.EOL(); 3506 strm.IndentMore(); 3507 for (const auto &global : m_globals) 3508 { 3509 global.Dump(strm); 3510 } 3511 strm.IndentLess(); 3512 strm.Indent(); 3513 strm.Printf("Kernels: %" PRIu64, static_cast<uint64_t>(m_kernels.size())); 3514 strm.EOL(); 3515 strm.IndentMore(); 3516 for (const auto &kernel : m_kernels) 3517 { 3518 kernel.Dump(strm); 3519 } 3520 strm.Printf("Pragmas: %" PRIu64, static_cast<uint64_t>(m_pragmas.size())); 3521 strm.EOL(); 3522 strm.IndentMore(); 3523 for (const auto &key_val : m_pragmas) 3524 { 3525 strm.Printf("%s: %s", key_val.first.c_str(), key_val.second.c_str()); 3526 strm.EOL(); 3527 } 3528 strm.IndentLess(4); 3529 } 3530 3531 void 3532 RSGlobalDescriptor::Dump(Stream &strm) const 3533 { 3534 strm.Indent(m_name.AsCString()); 3535 VariableList var_list; 3536 m_module->m_module->FindGlobalVariables(m_name, nullptr, true, 1U, var_list); 3537 if (var_list.GetSize() == 1) 3538 { 3539 auto var = var_list.GetVariableAtIndex(0); 3540 auto type = var->GetType(); 3541 if (type) 3542 { 3543 strm.Printf(" - "); 3544 type->DumpTypeName(&strm); 3545 } 3546 else 3547 { 3548 strm.Printf(" - Unknown Type"); 3549 } 3550 } 3551 else 3552 { 3553 strm.Printf(" - variable identified, but not found in binary"); 3554 const Symbol *s = m_module->m_module->FindFirstSymbolWithNameAndType(m_name, eSymbolTypeData); 3555 if (s) 3556 { 3557 strm.Printf(" (symbol exists) "); 3558 } 3559 } 3560 3561 strm.EOL(); 3562 } 3563 3564 void 3565 RSKernelDescriptor::Dump(Stream &strm) const 3566 { 3567 strm.Indent(m_name.AsCString()); 3568 strm.EOL(); 3569 } 3570 3571 class CommandObjectRenderScriptRuntimeModuleDump : public CommandObjectParsed 3572 { 3573 public: 3574 CommandObjectRenderScriptRuntimeModuleDump(CommandInterpreter &interpreter) 3575 : CommandObjectParsed(interpreter, "renderscript module dump", 3576 "Dumps renderscript specific information for all modules.", "renderscript module dump", 3577 eCommandRequiresProcess | eCommandProcessMustBeLaunched) 3578 { 3579 } 3580 3581 ~CommandObjectRenderScriptRuntimeModuleDump() override = default; 3582 3583 bool 3584 DoExecute(Args &command, CommandReturnObject &result) override 3585 { 3586 RenderScriptRuntime *runtime = 3587 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript); 3588 runtime->DumpModules(result.GetOutputStream()); 3589 result.SetStatus(eReturnStatusSuccessFinishResult); 3590 return true; 3591 } 3592 }; 3593 3594 class CommandObjectRenderScriptRuntimeModule : public CommandObjectMultiword 3595 { 3596 public: 3597 CommandObjectRenderScriptRuntimeModule(CommandInterpreter &interpreter) 3598 : CommandObjectMultiword(interpreter, "renderscript module", "Commands that deal with RenderScript modules.", 3599 nullptr) 3600 { 3601 LoadSubCommand("dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeModuleDump(interpreter))); 3602 } 3603 3604 ~CommandObjectRenderScriptRuntimeModule() override = default; 3605 }; 3606 3607 class CommandObjectRenderScriptRuntimeKernelList : public CommandObjectParsed 3608 { 3609 public: 3610 CommandObjectRenderScriptRuntimeKernelList(CommandInterpreter &interpreter) 3611 : CommandObjectParsed(interpreter, "renderscript kernel list", 3612 "Lists renderscript kernel names and associated script resources.", 3613 "renderscript kernel list", eCommandRequiresProcess | eCommandProcessMustBeLaunched) 3614 { 3615 } 3616 3617 ~CommandObjectRenderScriptRuntimeKernelList() override = default; 3618 3619 bool 3620 DoExecute(Args &command, CommandReturnObject &result) override 3621 { 3622 RenderScriptRuntime *runtime = 3623 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript); 3624 runtime->DumpKernels(result.GetOutputStream()); 3625 result.SetStatus(eReturnStatusSuccessFinishResult); 3626 return true; 3627 } 3628 }; 3629 3630 class CommandObjectRenderScriptRuntimeKernelBreakpointSet : public CommandObjectParsed 3631 { 3632 public: 3633 CommandObjectRenderScriptRuntimeKernelBreakpointSet(CommandInterpreter &interpreter) 3634 : CommandObjectParsed(interpreter, "renderscript kernel breakpoint set", 3635 "Sets a breakpoint on a renderscript kernel.", 3636 "renderscript kernel breakpoint set <kernel_name> [-c x,y,z]", 3637 eCommandRequiresProcess | eCommandProcessMustBeLaunched | eCommandProcessMustBePaused), 3638 m_options(interpreter) 3639 { 3640 } 3641 3642 ~CommandObjectRenderScriptRuntimeKernelBreakpointSet() override = default; 3643 3644 Options * 3645 GetOptions() override 3646 { 3647 return &m_options; 3648 } 3649 3650 class CommandOptions : public Options 3651 { 3652 public: 3653 CommandOptions(CommandInterpreter &interpreter) : Options(interpreter) {} 3654 3655 ~CommandOptions() override = default; 3656 3657 Error 3658 SetOptionValue(uint32_t option_idx, const char *option_arg) override 3659 { 3660 Error error; 3661 const int short_option = m_getopt_table[option_idx].val; 3662 3663 switch (short_option) 3664 { 3665 case 'c': 3666 if (!ParseCoordinate(option_arg)) 3667 error.SetErrorStringWithFormat("Couldn't parse coordinate '%s', should be in format 'x,y,z'.", 3668 option_arg); 3669 break; 3670 default: 3671 error.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 3672 break; 3673 } 3674 return error; 3675 } 3676 3677 // -c takes an argument of the form 'num[,num][,num]'. 3678 // Where 'id_cstr' is this argument with the whitespace trimmed. 3679 // Missing coordinates are defaulted to zero. 3680 bool 3681 ParseCoordinate(const char *id_cstr) 3682 { 3683 RegularExpression regex; 3684 RegularExpression::Match regex_match(3); 3685 3686 bool matched = false; 3687 if (regex.Compile("^([0-9]+),([0-9]+),([0-9]+)$") && regex.Execute(id_cstr, ®ex_match)) 3688 matched = true; 3689 else if (regex.Compile("^([0-9]+),([0-9]+)$") && regex.Execute(id_cstr, ®ex_match)) 3690 matched = true; 3691 else if (regex.Compile("^([0-9]+)$") && regex.Execute(id_cstr, ®ex_match)) 3692 matched = true; 3693 for (uint32_t i = 0; i < 3; i++) 3694 { 3695 std::string group; 3696 if (regex_match.GetMatchAtIndex(id_cstr, i + 1, group)) 3697 m_coord[i] = (uint32_t)strtoul(group.c_str(), nullptr, 0); 3698 else 3699 m_coord[i] = 0; 3700 } 3701 return matched; 3702 } 3703 3704 void 3705 OptionParsingStarting() override 3706 { 3707 // -1 means the -c option hasn't been set 3708 m_coord[0] = -1; 3709 m_coord[1] = -1; 3710 m_coord[2] = -1; 3711 } 3712 3713 const OptionDefinition * 3714 GetDefinitions() override 3715 { 3716 return g_option_table; 3717 } 3718 3719 static OptionDefinition g_option_table[]; 3720 std::array<int, 3> m_coord; 3721 }; 3722 3723 bool 3724 DoExecute(Args &command, CommandReturnObject &result) override 3725 { 3726 const size_t argc = command.GetArgumentCount(); 3727 if (argc < 1) 3728 { 3729 result.AppendErrorWithFormat("'%s' takes 1 argument of kernel name, and an optional coordinate.", 3730 m_cmd_name.c_str()); 3731 result.SetStatus(eReturnStatusFailed); 3732 return false; 3733 } 3734 3735 RenderScriptRuntime *runtime = 3736 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript); 3737 3738 Error error; 3739 runtime->PlaceBreakpointOnKernel(result.GetOutputStream(), command.GetArgumentAtIndex(0), m_options.m_coord, 3740 error, m_exe_ctx.GetTargetSP()); 3741 3742 if (error.Success()) 3743 { 3744 result.AppendMessage("Breakpoint(s) created"); 3745 result.SetStatus(eReturnStatusSuccessFinishResult); 3746 return true; 3747 } 3748 result.SetStatus(eReturnStatusFailed); 3749 result.AppendErrorWithFormat("Error: %s", error.AsCString()); 3750 return false; 3751 } 3752 3753 private: 3754 CommandOptions m_options; 3755 }; 3756 3757 OptionDefinition CommandObjectRenderScriptRuntimeKernelBreakpointSet::CommandOptions::g_option_table[] = { 3758 {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeValue, 3759 "Set a breakpoint on a single invocation of the kernel with specified coordinate.\n" 3760 "Coordinate takes the form 'x[,y][,z] where x,y,z are positive integers representing kernel dimensions. " 3761 "Any unset dimensions will be defaulted to zero."}, 3762 {0, false, nullptr, 0, 0, nullptr, nullptr, 0, eArgTypeNone, nullptr}}; 3763 3764 class CommandObjectRenderScriptRuntimeKernelBreakpointAll : public CommandObjectParsed 3765 { 3766 public: 3767 CommandObjectRenderScriptRuntimeKernelBreakpointAll(CommandInterpreter &interpreter) 3768 : CommandObjectParsed( 3769 interpreter, "renderscript kernel breakpoint all", 3770 "Automatically sets a breakpoint on all renderscript kernels that are or will be loaded.\n" 3771 "Disabling option means breakpoints will no longer be set on any kernels loaded in the future, " 3772 "but does not remove currently set breakpoints.", 3773 "renderscript kernel breakpoint all <enable/disable>", 3774 eCommandRequiresProcess | eCommandProcessMustBeLaunched | eCommandProcessMustBePaused) 3775 { 3776 } 3777 3778 ~CommandObjectRenderScriptRuntimeKernelBreakpointAll() override = default; 3779 3780 bool 3781 DoExecute(Args &command, CommandReturnObject &result) override 3782 { 3783 const size_t argc = command.GetArgumentCount(); 3784 if (argc != 1) 3785 { 3786 result.AppendErrorWithFormat("'%s' takes 1 argument of 'enable' or 'disable'", m_cmd_name.c_str()); 3787 result.SetStatus(eReturnStatusFailed); 3788 return false; 3789 } 3790 3791 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 3792 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript)); 3793 3794 bool do_break = false; 3795 const char *argument = command.GetArgumentAtIndex(0); 3796 if (strcmp(argument, "enable") == 0) 3797 { 3798 do_break = true; 3799 result.AppendMessage("Breakpoints will be set on all kernels."); 3800 } 3801 else if (strcmp(argument, "disable") == 0) 3802 { 3803 do_break = false; 3804 result.AppendMessage("Breakpoints will not be set on any new kernels."); 3805 } 3806 else 3807 { 3808 result.AppendErrorWithFormat("Argument must be either 'enable' or 'disable'"); 3809 result.SetStatus(eReturnStatusFailed); 3810 return false; 3811 } 3812 3813 runtime->SetBreakAllKernels(do_break, m_exe_ctx.GetTargetSP()); 3814 3815 result.SetStatus(eReturnStatusSuccessFinishResult); 3816 return true; 3817 } 3818 }; 3819 3820 class CommandObjectRenderScriptRuntimeKernelCoordinate : public CommandObjectParsed 3821 { 3822 public: 3823 CommandObjectRenderScriptRuntimeKernelCoordinate(CommandInterpreter &interpreter) 3824 : CommandObjectParsed(interpreter, "renderscript kernel coordinate", 3825 "Shows the (x,y,z) coordinate of the current kernel invocation.", 3826 "renderscript kernel coordinate", 3827 eCommandRequiresProcess | eCommandProcessMustBeLaunched | eCommandProcessMustBePaused) 3828 { 3829 } 3830 3831 ~CommandObjectRenderScriptRuntimeKernelCoordinate() override = default; 3832 3833 bool 3834 DoExecute(Args &command, CommandReturnObject &result) override 3835 { 3836 RSCoordinate coord{}; // Zero initialize array 3837 bool success = RenderScriptRuntime::GetKernelCoordinate(coord, m_exe_ctx.GetThreadPtr()); 3838 Stream &stream = result.GetOutputStream(); 3839 3840 if (success) 3841 { 3842 stream.Printf("Coordinate: (%" PRIu32 ", %" PRIu32 ", %" PRIu32 ")", coord[0], coord[1], coord[2]); 3843 stream.EOL(); 3844 result.SetStatus(eReturnStatusSuccessFinishResult); 3845 } 3846 else 3847 { 3848 stream.Printf("Error: Coordinate could not be found."); 3849 stream.EOL(); 3850 result.SetStatus(eReturnStatusFailed); 3851 } 3852 return true; 3853 } 3854 }; 3855 3856 class CommandObjectRenderScriptRuntimeKernelBreakpoint : public CommandObjectMultiword 3857 { 3858 public: 3859 CommandObjectRenderScriptRuntimeKernelBreakpoint(CommandInterpreter &interpreter) 3860 : CommandObjectMultiword(interpreter, "renderscript kernel", 3861 "Commands that generate breakpoints on renderscript kernels.", nullptr) 3862 { 3863 LoadSubCommand("set", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointSet(interpreter))); 3864 LoadSubCommand("all", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointAll(interpreter))); 3865 } 3866 3867 ~CommandObjectRenderScriptRuntimeKernelBreakpoint() override = default; 3868 }; 3869 3870 class CommandObjectRenderScriptRuntimeKernel : public CommandObjectMultiword 3871 { 3872 public: 3873 CommandObjectRenderScriptRuntimeKernel(CommandInterpreter &interpreter) 3874 : CommandObjectMultiword(interpreter, "renderscript kernel", "Commands that deal with RenderScript kernels.", 3875 nullptr) 3876 { 3877 LoadSubCommand("list", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelList(interpreter))); 3878 LoadSubCommand("coordinate", 3879 CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelCoordinate(interpreter))); 3880 LoadSubCommand("breakpoint", 3881 CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpoint(interpreter))); 3882 } 3883 3884 ~CommandObjectRenderScriptRuntimeKernel() override = default; 3885 }; 3886 3887 class CommandObjectRenderScriptRuntimeContextDump : public CommandObjectParsed 3888 { 3889 public: 3890 CommandObjectRenderScriptRuntimeContextDump(CommandInterpreter &interpreter) 3891 : CommandObjectParsed(interpreter, "renderscript context dump", "Dumps renderscript context information.", 3892 "renderscript context dump", eCommandRequiresProcess | eCommandProcessMustBeLaunched) 3893 { 3894 } 3895 3896 ~CommandObjectRenderScriptRuntimeContextDump() override = default; 3897 3898 bool 3899 DoExecute(Args &command, CommandReturnObject &result) override 3900 { 3901 RenderScriptRuntime *runtime = 3902 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript); 3903 runtime->DumpContexts(result.GetOutputStream()); 3904 result.SetStatus(eReturnStatusSuccessFinishResult); 3905 return true; 3906 } 3907 }; 3908 3909 class CommandObjectRenderScriptRuntimeContext : public CommandObjectMultiword 3910 { 3911 public: 3912 CommandObjectRenderScriptRuntimeContext(CommandInterpreter &interpreter) 3913 : CommandObjectMultiword(interpreter, "renderscript context", "Commands that deal with RenderScript contexts.", 3914 nullptr) 3915 { 3916 LoadSubCommand("dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeContextDump(interpreter))); 3917 } 3918 3919 ~CommandObjectRenderScriptRuntimeContext() override = default; 3920 }; 3921 3922 class CommandObjectRenderScriptRuntimeAllocationDump : public CommandObjectParsed 3923 { 3924 public: 3925 CommandObjectRenderScriptRuntimeAllocationDump(CommandInterpreter &interpreter) 3926 : CommandObjectParsed(interpreter, "renderscript allocation dump", 3927 "Displays the contents of a particular allocation", "renderscript allocation dump <ID>", 3928 eCommandRequiresProcess | eCommandProcessMustBeLaunched), 3929 m_options(interpreter) 3930 { 3931 } 3932 3933 ~CommandObjectRenderScriptRuntimeAllocationDump() override = default; 3934 3935 Options * 3936 GetOptions() override 3937 { 3938 return &m_options; 3939 } 3940 3941 class CommandOptions : public Options 3942 { 3943 public: 3944 CommandOptions(CommandInterpreter &interpreter) : Options(interpreter) {} 3945 3946 ~CommandOptions() override = default; 3947 3948 Error 3949 SetOptionValue(uint32_t option_idx, const char *option_arg) override 3950 { 3951 Error error; 3952 const int short_option = m_getopt_table[option_idx].val; 3953 3954 switch (short_option) 3955 { 3956 case 'f': 3957 m_outfile.SetFile(option_arg, true); 3958 if (m_outfile.Exists()) 3959 { 3960 m_outfile.Clear(); 3961 error.SetErrorStringWithFormat("file already exists: '%s'", option_arg); 3962 } 3963 break; 3964 default: 3965 error.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 3966 break; 3967 } 3968 return error; 3969 } 3970 3971 void 3972 OptionParsingStarting() override 3973 { 3974 m_outfile.Clear(); 3975 } 3976 3977 const OptionDefinition * 3978 GetDefinitions() override 3979 { 3980 return g_option_table; 3981 } 3982 3983 static OptionDefinition g_option_table[]; 3984 FileSpec m_outfile; 3985 }; 3986 3987 bool 3988 DoExecute(Args &command, CommandReturnObject &result) override 3989 { 3990 const size_t argc = command.GetArgumentCount(); 3991 if (argc < 1) 3992 { 3993 result.AppendErrorWithFormat("'%s' takes 1 argument, an allocation ID. As well as an optional -f argument", 3994 m_cmd_name.c_str()); 3995 result.SetStatus(eReturnStatusFailed); 3996 return false; 3997 } 3998 3999 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4000 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript)); 4001 4002 const char *id_cstr = command.GetArgumentAtIndex(0); 4003 bool convert_complete = false; 4004 const uint32_t id = StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete); 4005 if (!convert_complete) 4006 { 4007 result.AppendErrorWithFormat("invalid allocation id argument '%s'", id_cstr); 4008 result.SetStatus(eReturnStatusFailed); 4009 return false; 4010 } 4011 4012 Stream *output_strm = nullptr; 4013 StreamFile outfile_stream; 4014 const FileSpec &outfile_spec = m_options.m_outfile; // Dump allocation to file instead 4015 if (outfile_spec) 4016 { 4017 // Open output file 4018 char path[256]; 4019 outfile_spec.GetPath(path, sizeof(path)); 4020 if (outfile_stream.GetFile().Open(path, File::eOpenOptionWrite | File::eOpenOptionCanCreate).Success()) 4021 { 4022 output_strm = &outfile_stream; 4023 result.GetOutputStream().Printf("Results written to '%s'", path); 4024 result.GetOutputStream().EOL(); 4025 } 4026 else 4027 { 4028 result.AppendErrorWithFormat("Couldn't open file '%s'", path); 4029 result.SetStatus(eReturnStatusFailed); 4030 return false; 4031 } 4032 } 4033 else 4034 output_strm = &result.GetOutputStream(); 4035 4036 assert(output_strm != nullptr); 4037 bool success = runtime->DumpAllocation(*output_strm, m_exe_ctx.GetFramePtr(), id); 4038 4039 if (success) 4040 result.SetStatus(eReturnStatusSuccessFinishResult); 4041 else 4042 result.SetStatus(eReturnStatusFailed); 4043 4044 return true; 4045 } 4046 4047 private: 4048 CommandOptions m_options; 4049 }; 4050 4051 OptionDefinition CommandObjectRenderScriptRuntimeAllocationDump::CommandOptions::g_option_table[] = { 4052 {LLDB_OPT_SET_1, false, "file", 'f', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeFilename, 4053 "Print results to specified file instead of command line."}, 4054 {0, false, nullptr, 0, 0, nullptr, nullptr, 0, eArgTypeNone, nullptr}}; 4055 4056 class CommandObjectRenderScriptRuntimeAllocationList : public CommandObjectParsed 4057 { 4058 public: 4059 CommandObjectRenderScriptRuntimeAllocationList(CommandInterpreter &interpreter) 4060 : CommandObjectParsed(interpreter, "renderscript allocation list", 4061 "List renderscript allocations and their information.", "renderscript allocation list", 4062 eCommandRequiresProcess | eCommandProcessMustBeLaunched), 4063 m_options(interpreter) 4064 { 4065 } 4066 4067 ~CommandObjectRenderScriptRuntimeAllocationList() override = default; 4068 4069 Options * 4070 GetOptions() override 4071 { 4072 return &m_options; 4073 } 4074 4075 class CommandOptions : public Options 4076 { 4077 public: 4078 CommandOptions(CommandInterpreter &interpreter) : Options(interpreter), m_id(0) {} 4079 4080 ~CommandOptions() override = default; 4081 4082 Error 4083 SetOptionValue(uint32_t option_idx, const char *option_arg) override 4084 { 4085 Error error; 4086 const int short_option = m_getopt_table[option_idx].val; 4087 4088 switch (short_option) 4089 { 4090 case 'i': 4091 bool success; 4092 m_id = StringConvert::ToUInt32(option_arg, 0, 0, &success); 4093 if (!success) 4094 error.SetErrorStringWithFormat("invalid integer value for option '%c'", short_option); 4095 break; 4096 default: 4097 error.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 4098 break; 4099 } 4100 return error; 4101 } 4102 4103 void 4104 OptionParsingStarting() override 4105 { 4106 m_id = 0; 4107 } 4108 4109 const OptionDefinition * 4110 GetDefinitions() override 4111 { 4112 return g_option_table; 4113 } 4114 4115 static OptionDefinition g_option_table[]; 4116 uint32_t m_id; 4117 }; 4118 4119 bool 4120 DoExecute(Args &command, CommandReturnObject &result) override 4121 { 4122 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4123 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript)); 4124 runtime->ListAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr(), m_options.m_id); 4125 result.SetStatus(eReturnStatusSuccessFinishResult); 4126 return true; 4127 } 4128 4129 private: 4130 CommandOptions m_options; 4131 }; 4132 4133 OptionDefinition CommandObjectRenderScriptRuntimeAllocationList::CommandOptions::g_option_table[] = { 4134 {LLDB_OPT_SET_1, false, "id", 'i', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeIndex, 4135 "Only show details of a single allocation with specified id."}, 4136 {0, false, nullptr, 0, 0, nullptr, nullptr, 0, eArgTypeNone, nullptr}}; 4137 4138 class CommandObjectRenderScriptRuntimeAllocationLoad : public CommandObjectParsed 4139 { 4140 public: 4141 CommandObjectRenderScriptRuntimeAllocationLoad(CommandInterpreter &interpreter) 4142 : CommandObjectParsed( 4143 interpreter, "renderscript allocation load", "Loads renderscript allocation contents from a file.", 4144 "renderscript allocation load <ID> <filename>", eCommandRequiresProcess | eCommandProcessMustBeLaunched) 4145 { 4146 } 4147 4148 ~CommandObjectRenderScriptRuntimeAllocationLoad() override = default; 4149 4150 bool 4151 DoExecute(Args &command, CommandReturnObject &result) override 4152 { 4153 const size_t argc = command.GetArgumentCount(); 4154 if (argc != 2) 4155 { 4156 result.AppendErrorWithFormat("'%s' takes 2 arguments, an allocation ID and filename to read from.", 4157 m_cmd_name.c_str()); 4158 result.SetStatus(eReturnStatusFailed); 4159 return false; 4160 } 4161 4162 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4163 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript)); 4164 4165 const char *id_cstr = command.GetArgumentAtIndex(0); 4166 bool convert_complete = false; 4167 const uint32_t id = StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete); 4168 if (!convert_complete) 4169 { 4170 result.AppendErrorWithFormat("invalid allocation id argument '%s'", id_cstr); 4171 result.SetStatus(eReturnStatusFailed); 4172 return false; 4173 } 4174 4175 const char *filename = command.GetArgumentAtIndex(1); 4176 bool success = runtime->LoadAllocation(result.GetOutputStream(), id, filename, m_exe_ctx.GetFramePtr()); 4177 4178 if (success) 4179 result.SetStatus(eReturnStatusSuccessFinishResult); 4180 else 4181 result.SetStatus(eReturnStatusFailed); 4182 4183 return true; 4184 } 4185 }; 4186 4187 class CommandObjectRenderScriptRuntimeAllocationSave : public CommandObjectParsed 4188 { 4189 public: 4190 CommandObjectRenderScriptRuntimeAllocationSave(CommandInterpreter &interpreter) 4191 : CommandObjectParsed( 4192 interpreter, "renderscript allocation save", "Write renderscript allocation contents to a file.", 4193 "renderscript allocation save <ID> <filename>", eCommandRequiresProcess | eCommandProcessMustBeLaunched) 4194 { 4195 } 4196 4197 ~CommandObjectRenderScriptRuntimeAllocationSave() override = default; 4198 4199 bool 4200 DoExecute(Args &command, CommandReturnObject &result) override 4201 { 4202 const size_t argc = command.GetArgumentCount(); 4203 if (argc != 2) 4204 { 4205 result.AppendErrorWithFormat("'%s' takes 2 arguments, an allocation ID and filename to read from.", 4206 m_cmd_name.c_str()); 4207 result.SetStatus(eReturnStatusFailed); 4208 return false; 4209 } 4210 4211 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4212 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript)); 4213 4214 const char *id_cstr = command.GetArgumentAtIndex(0); 4215 bool convert_complete = false; 4216 const uint32_t id = StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete); 4217 if (!convert_complete) 4218 { 4219 result.AppendErrorWithFormat("invalid allocation id argument '%s'", id_cstr); 4220 result.SetStatus(eReturnStatusFailed); 4221 return false; 4222 } 4223 4224 const char *filename = command.GetArgumentAtIndex(1); 4225 bool success = runtime->SaveAllocation(result.GetOutputStream(), id, filename, m_exe_ctx.GetFramePtr()); 4226 4227 if (success) 4228 result.SetStatus(eReturnStatusSuccessFinishResult); 4229 else 4230 result.SetStatus(eReturnStatusFailed); 4231 4232 return true; 4233 } 4234 }; 4235 4236 class CommandObjectRenderScriptRuntimeAllocationRefresh : public CommandObjectParsed 4237 { 4238 public: 4239 CommandObjectRenderScriptRuntimeAllocationRefresh(CommandInterpreter &interpreter) 4240 : CommandObjectParsed(interpreter, "renderscript allocation refresh", 4241 "Recomputes the details of all allocations.", "renderscript allocation refresh", 4242 eCommandRequiresProcess | eCommandProcessMustBeLaunched) 4243 { 4244 } 4245 4246 ~CommandObjectRenderScriptRuntimeAllocationRefresh() override = default; 4247 4248 bool 4249 DoExecute(Args &command, CommandReturnObject &result) override 4250 { 4251 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4252 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript)); 4253 4254 bool success = runtime->RecomputeAllAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr()); 4255 4256 if (success) 4257 { 4258 result.SetStatus(eReturnStatusSuccessFinishResult); 4259 return true; 4260 } 4261 else 4262 { 4263 result.SetStatus(eReturnStatusFailed); 4264 return false; 4265 } 4266 } 4267 }; 4268 4269 class CommandObjectRenderScriptRuntimeAllocation : public CommandObjectMultiword 4270 { 4271 public: 4272 CommandObjectRenderScriptRuntimeAllocation(CommandInterpreter &interpreter) 4273 : CommandObjectMultiword(interpreter, "renderscript allocation", 4274 "Commands that deal with RenderScript allocations.", nullptr) 4275 { 4276 LoadSubCommand("list", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationList(interpreter))); 4277 LoadSubCommand("dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationDump(interpreter))); 4278 LoadSubCommand("save", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationSave(interpreter))); 4279 LoadSubCommand("load", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationLoad(interpreter))); 4280 LoadSubCommand("refresh", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationRefresh(interpreter))); 4281 } 4282 4283 ~CommandObjectRenderScriptRuntimeAllocation() override = default; 4284 }; 4285 4286 class CommandObjectRenderScriptRuntimeStatus : public CommandObjectParsed 4287 { 4288 public: 4289 CommandObjectRenderScriptRuntimeStatus(CommandInterpreter &interpreter) 4290 : CommandObjectParsed(interpreter, "renderscript status", "Displays current RenderScript runtime status.", 4291 "renderscript status", eCommandRequiresProcess | eCommandProcessMustBeLaunched) 4292 { 4293 } 4294 4295 ~CommandObjectRenderScriptRuntimeStatus() override = default; 4296 4297 bool 4298 DoExecute(Args &command, CommandReturnObject &result) override 4299 { 4300 RenderScriptRuntime *runtime = 4301 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript); 4302 runtime->Status(result.GetOutputStream()); 4303 result.SetStatus(eReturnStatusSuccessFinishResult); 4304 return true; 4305 } 4306 }; 4307 4308 class CommandObjectRenderScriptRuntime : public CommandObjectMultiword 4309 { 4310 public: 4311 CommandObjectRenderScriptRuntime(CommandInterpreter &interpreter) 4312 : CommandObjectMultiword(interpreter, "renderscript", "Commands for operating on the RenderScript runtime.", 4313 "renderscript <subcommand> [<subcommand-options>]") 4314 { 4315 LoadSubCommand("module", CommandObjectSP(new CommandObjectRenderScriptRuntimeModule(interpreter))); 4316 LoadSubCommand("status", CommandObjectSP(new CommandObjectRenderScriptRuntimeStatus(interpreter))); 4317 LoadSubCommand("kernel", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernel(interpreter))); 4318 LoadSubCommand("context", CommandObjectSP(new CommandObjectRenderScriptRuntimeContext(interpreter))); 4319 LoadSubCommand("allocation", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocation(interpreter))); 4320 } 4321 4322 ~CommandObjectRenderScriptRuntime() override = default; 4323 }; 4324 4325 void 4326 RenderScriptRuntime::Initiate() 4327 { 4328 assert(!m_initiated); 4329 } 4330 4331 RenderScriptRuntime::RenderScriptRuntime(Process *process) 4332 : lldb_private::CPPLanguageRuntime(process), 4333 m_initiated(false), 4334 m_debuggerPresentFlagged(false), 4335 m_breakAllKernels(false) 4336 { 4337 ModulesDidLoad(process->GetTarget().GetImages()); 4338 } 4339 4340 lldb::CommandObjectSP 4341 RenderScriptRuntime::GetCommandObject(lldb_private::CommandInterpreter &interpreter) 4342 { 4343 return CommandObjectSP(new CommandObjectRenderScriptRuntime(interpreter)); 4344 } 4345 4346 RenderScriptRuntime::~RenderScriptRuntime() = default; 4347