1 //===-- RenderScriptRuntime.cpp ---------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 // C Includes 11 // C++ Includes 12 // Other libraries and framework includes 13 // Project includes 14 #include "RenderScriptRuntime.h" 15 16 #include "lldb/Breakpoint/StoppointCallbackContext.h" 17 #include "lldb/Core/ConstString.h" 18 #include "lldb/Core/Debugger.h" 19 #include "lldb/Core/Error.h" 20 #include "lldb/Core/Log.h" 21 #include "lldb/Core/PluginManager.h" 22 #include "lldb/Core/RegularExpression.h" 23 #include "lldb/Core/ValueObjectVariable.h" 24 #include "lldb/DataFormatters/DumpValueObjectOptions.h" 25 #include "lldb/Expression/UserExpression.h" 26 #include "lldb/Host/StringConvert.h" 27 #include "lldb/Interpreter/Args.h" 28 #include "lldb/Interpreter/CommandInterpreter.h" 29 #include "lldb/Interpreter/CommandObjectMultiword.h" 30 #include "lldb/Interpreter/CommandReturnObject.h" 31 #include "lldb/Interpreter/Options.h" 32 #include "lldb/Symbol/Symbol.h" 33 #include "lldb/Symbol/Type.h" 34 #include "lldb/Symbol/VariableList.h" 35 #include "lldb/Target/Process.h" 36 #include "lldb/Target/RegisterContext.h" 37 #include "lldb/Target/Target.h" 38 #include "lldb/Target/Thread.h" 39 40 using namespace lldb; 41 using namespace lldb_private; 42 using namespace lldb_renderscript; 43 44 namespace 45 { 46 47 // The empirical_type adds a basic level of validation to arbitrary data 48 // allowing us to track if data has been discovered and stored or not. 49 // An empirical_type will be marked as valid only if it has been explicitly assigned to. 50 template <typename type_t> class empirical_type 51 { 52 public: 53 // Ctor. Contents is invalid when constructed. 54 empirical_type() : valid(false) {} 55 56 // Return true and copy contents to out if valid, else return false. 57 bool 58 get(type_t &out) const 59 { 60 if (valid) 61 out = data; 62 return valid; 63 } 64 65 // Return a pointer to the contents or nullptr if it was not valid. 66 const type_t * 67 get() const 68 { 69 return valid ? &data : nullptr; 70 } 71 72 // Assign data explicitly. 73 void 74 set(const type_t in) 75 { 76 data = in; 77 valid = true; 78 } 79 80 // Mark contents as invalid. 81 void 82 invalidate() 83 { 84 valid = false; 85 } 86 87 // Returns true if this type contains valid data. 88 bool 89 isValid() const 90 { 91 return valid; 92 } 93 94 // Assignment operator. 95 empirical_type<type_t> & 96 operator=(const type_t in) 97 { 98 set(in); 99 return *this; 100 } 101 102 // Dereference operator returns contents. 103 // Warning: Will assert if not valid so use only when you know data is valid. 104 const type_t &operator*() const 105 { 106 assert(valid); 107 return data; 108 } 109 110 protected: 111 bool valid; 112 type_t data; 113 }; 114 115 // ArgItem is used by the GetArgs() function when reading function arguments from the target. 116 struct ArgItem 117 { 118 enum 119 { 120 ePointer, 121 eInt32, 122 eInt64, 123 eLong, 124 eBool 125 } type; 126 127 uint64_t value; 128 129 explicit operator uint64_t() const { return value; } 130 }; 131 132 // Context structure to be passed into GetArgsXXX(), argument reading functions below. 133 struct GetArgsCtx 134 { 135 RegisterContext *reg_ctx; 136 Process *process; 137 }; 138 139 bool 140 GetArgsX86(const GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) 141 { 142 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 143 144 // get the current stack pointer 145 uint64_t sp = ctx.reg_ctx->GetSP(); 146 147 for (size_t i = 0; i < num_args; ++i) 148 { 149 ArgItem &arg = arg_list[i]; 150 // advance up the stack by one argument 151 sp += sizeof(uint32_t); 152 // get the argument type size 153 size_t arg_size = sizeof(uint32_t); 154 // read the argument from memory 155 arg.value = 0; 156 Error error; 157 size_t read = ctx.process->ReadMemory(sp, &arg.value, sizeof(uint32_t), error); 158 if (read != arg_size || !error.Success()) 159 { 160 if (log) 161 log->Printf("%s - error reading argument: %" PRIu64 " '%s'", __FUNCTION__, uint64_t(i), 162 error.AsCString()); 163 return false; 164 } 165 } 166 return true; 167 } 168 169 bool 170 GetArgsX86_64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) 171 { 172 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 173 174 // number of arguments passed in registers 175 static const uint32_t c_args_in_reg = 6; 176 // register passing order 177 static const std::array<const char *, c_args_in_reg> c_reg_names{{"rdi", "rsi", "rdx", "rcx", "r8", "r9"}}; 178 // argument type to size mapping 179 static const std::array<size_t, 5> arg_size{{ 180 8, // ePointer, 181 4, // eInt32, 182 8, // eInt64, 183 8, // eLong, 184 4, // eBool, 185 }}; 186 187 Error error; 188 189 // get the current stack pointer 190 uint64_t sp = ctx.reg_ctx->GetSP(); 191 // step over the return address 192 sp += sizeof(uint64_t); 193 194 // check the stack alignment was correct (16 byte aligned) 195 if ((sp & 0xf) != 0x0) 196 { 197 if (log) 198 log->Printf("%s - stack misaligned", __FUNCTION__); 199 return false; 200 } 201 202 // find the start of arguments on the stack 203 uint64_t sp_offset = 0; 204 for (uint32_t i = c_args_in_reg; i < num_args; ++i) 205 { 206 sp_offset += arg_size[arg_list[i].type]; 207 } 208 // round up to multiple of 16 209 sp_offset = (sp_offset + 0xf) & 0xf; 210 sp += sp_offset; 211 212 for (size_t i = 0; i < num_args; ++i) 213 { 214 bool success = false; 215 ArgItem &arg = arg_list[i]; 216 // arguments passed in registers 217 if (i < c_args_in_reg) 218 { 219 const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoByName(c_reg_names[i]); 220 RegisterValue rVal; 221 if (ctx.reg_ctx->ReadRegister(rArg, rVal)) 222 arg.value = rVal.GetAsUInt64(0, &success); 223 } 224 // arguments passed on the stack 225 else 226 { 227 // get the argument type size 228 const size_t size = arg_size[arg_list[i].type]; 229 // read the argument from memory 230 arg.value = 0; 231 // note: due to little endian layout reading 4 or 8 bytes will give the correct value. 232 size_t read = ctx.process->ReadMemory(sp, &arg.value, size, error); 233 success = (error.Success() && read==size); 234 // advance past this argument 235 sp -= size; 236 } 237 // fail if we couldn't read this argument 238 if (!success) 239 { 240 if (log) 241 log->Printf("%s - error reading argument: %" PRIu64", reason: %s", 242 __FUNCTION__, uint64_t(i), error.AsCString("n/a")); 243 return false; 244 } 245 } 246 return true; 247 } 248 249 bool 250 GetArgsArm(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) 251 { 252 // number of arguments passed in registers 253 static const uint32_t c_args_in_reg = 4; 254 255 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 256 257 Error error; 258 259 // get the current stack pointer 260 uint64_t sp = ctx.reg_ctx->GetSP(); 261 262 for (size_t i = 0; i < num_args; ++i) 263 { 264 bool success = false; 265 ArgItem &arg = arg_list[i]; 266 // arguments passed in registers 267 if (i < c_args_in_reg) 268 { 269 const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoAtIndex(i); 270 RegisterValue rVal; 271 if (ctx.reg_ctx->ReadRegister(rArg, rVal)) 272 arg.value = rVal.GetAsUInt32(0, &success); 273 } 274 // arguments passed on the stack 275 else 276 { 277 // get the argument type size 278 const size_t arg_size = sizeof(uint32_t); 279 // clear all 64bits 280 arg.value = 0; 281 // read this argument from memory 282 size_t bytes_read = ctx.process->ReadMemory(sp, &arg.value, arg_size, error); 283 success = (error.Success() && bytes_read == arg_size); 284 // advance the stack pointer 285 sp += sizeof(uint32_t); 286 } 287 // fail if we couldn't read this argument 288 if (!success) 289 { 290 if (log) 291 log->Printf("%s - error reading argument: %" PRIu64", reason: %s", 292 __FUNCTION__, uint64_t(i), error.AsCString("n/a")); 293 return false; 294 } 295 } 296 return true; 297 } 298 299 bool 300 GetArgsAarch64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) 301 { 302 // number of arguments passed in registers 303 static const uint32_t c_args_in_reg = 8; 304 305 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 306 307 for (size_t i = 0; i < num_args; ++i) 308 { 309 bool success = false; 310 ArgItem &arg = arg_list[i]; 311 // arguments passed in registers 312 if (i < c_args_in_reg) 313 { 314 const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoAtIndex(i); 315 RegisterValue rVal; 316 if (ctx.reg_ctx->ReadRegister(rArg, rVal)) 317 arg.value = rVal.GetAsUInt64(0, &success); 318 } 319 // arguments passed on the stack 320 else 321 { 322 if (log) 323 log->Printf("%s - reading arguments spilled to stack not implemented", __FUNCTION__); 324 } 325 // fail if we couldn't read this argument 326 if (!success) 327 { 328 if (log) 329 log->Printf("%s - error reading argument: %" PRIu64, __FUNCTION__, 330 uint64_t(i)); 331 return false; 332 } 333 } 334 return true; 335 } 336 337 bool 338 GetArgsMipsel(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) 339 { 340 // number of arguments passed in registers 341 static const uint32_t c_args_in_reg = 4; 342 // register file offset to first argument 343 static const uint32_t c_reg_offset = 4; 344 345 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 346 347 Error error; 348 349 // find offset to arguments on the stack (+16 to skip over a0-a3 shadow space) 350 uint64_t sp = ctx.reg_ctx->GetSP() + 16; 351 352 for (size_t i = 0; i < num_args; ++i) 353 { 354 bool success = false; 355 ArgItem &arg = arg_list[i]; 356 // arguments passed in registers 357 if (i < c_args_in_reg) 358 { 359 const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoAtIndex(i + c_reg_offset); 360 RegisterValue rVal; 361 if (ctx.reg_ctx->ReadRegister(rArg, rVal)) 362 arg.value = rVal.GetAsUInt64(0, &success); 363 } 364 // arguments passed on the stack 365 else 366 { 367 const size_t arg_size = sizeof(uint32_t); 368 uint64_t sp = ctx.reg_ctx->GetSP(); 369 uint32_t offset = i * arg_size; 370 arg.value = 0; 371 Error error; 372 size_t bytes_read = ctx.process->ReadMemory(sp + offset, &arg.value, arg_size, error); 373 success = (error.Success() && bytes_read == arg_size); 374 if (!success && log) 375 log->Printf ("RenderScriptRuntime::GetArgSimple - error reading Mips stack: %s.", error.AsCString()); 376 } 377 // fail if we couldn't read this argument 378 if (!success) 379 { 380 if (log) 381 log->Printf("%s - error reading argument: %" PRIu64, __FUNCTION__, uint64_t(i)); 382 return false; 383 } 384 } 385 return true; 386 } 387 388 bool 389 GetArgsMips64el(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) 390 { 391 // number of arguments passed in registers 392 static const uint32_t c_args_in_reg = 8; 393 // register file offset to first argument 394 static const uint32_t c_reg_offset = 4; 395 396 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 397 398 Error error; 399 400 // get the current stack pointer 401 uint64_t sp = ctx.reg_ctx->GetSP(); 402 403 for (size_t i = 0; i < num_args; ++i) 404 { 405 bool success = false; 406 ArgItem &arg = arg_list[i]; 407 // arguments passed in registers 408 if (i < c_args_in_reg) 409 { 410 const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoAtIndex(i + c_reg_offset); 411 RegisterValue rVal; 412 if (ctx.reg_ctx->ReadRegister(rArg, rVal)) 413 arg.value = rVal.GetAsUInt64(0, &success); 414 } 415 // arguments passed on the stack 416 else 417 { 418 // get the argument type size 419 const size_t arg_size = sizeof(uint64_t); 420 // clear all 64bits 421 arg.value = 0; 422 // read this argument from memory 423 size_t bytes_read = ctx.process->ReadMemory(sp, &arg.value, arg_size, error); 424 success = (error.Success() && bytes_read == arg_size); 425 // advance the stack pointer 426 sp += arg_size; 427 } 428 // fail if we couldn't read this argument 429 if (!success) 430 { 431 if (log) 432 log->Printf("%s - error reading argument: %" PRIu64", reason: %s", 433 __FUNCTION__, uint64_t(i), error.AsCString("n/a")); 434 return false; 435 } 436 } 437 return true; 438 } 439 440 bool 441 GetArgs(ExecutionContext &context, ArgItem *arg_list, size_t num_args) 442 { 443 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 444 445 // verify that we have a target 446 if (!context.GetTargetPtr()) 447 { 448 if (log) 449 log->Printf("%s - invalid target", __FUNCTION__); 450 return false; 451 } 452 453 GetArgsCtx ctx = {context.GetRegisterContext(), context.GetProcessPtr()}; 454 assert(ctx.reg_ctx && ctx.process); 455 456 // dispatch based on architecture 457 switch (context.GetTargetPtr()->GetArchitecture().GetMachine()) 458 { 459 case llvm::Triple::ArchType::x86: 460 return GetArgsX86(ctx, arg_list, num_args); 461 462 case llvm::Triple::ArchType::x86_64: 463 return GetArgsX86_64(ctx, arg_list, num_args); 464 465 case llvm::Triple::ArchType::arm: 466 return GetArgsArm(ctx, arg_list, num_args); 467 468 case llvm::Triple::ArchType::aarch64: 469 return GetArgsAarch64(ctx, arg_list, num_args); 470 471 case llvm::Triple::ArchType::mipsel: 472 return GetArgsMipsel(ctx, arg_list, num_args); 473 474 case llvm::Triple::ArchType::mips64el: 475 return GetArgsMips64el(ctx, arg_list, num_args); 476 477 default: 478 // unsupported architecture 479 if (log) 480 { 481 log->Printf("%s - architecture not supported: '%s'", __FUNCTION__, 482 context.GetTargetRef().GetArchitecture().GetArchitectureName()); 483 } 484 return false; 485 } 486 } 487 } // anonymous namespace 488 489 // The ScriptDetails class collects data associated with a single script instance. 490 struct RenderScriptRuntime::ScriptDetails 491 { 492 ~ScriptDetails() = default; 493 494 enum ScriptType 495 { 496 eScript, 497 eScriptC 498 }; 499 500 // The derived type of the script. 501 empirical_type<ScriptType> type; 502 // The name of the original source file. 503 empirical_type<std::string> resName; 504 // Path to script .so file on the device. 505 empirical_type<std::string> scriptDyLib; 506 // Directory where kernel objects are cached on device. 507 empirical_type<std::string> cacheDir; 508 // Pointer to the context which owns this script. 509 empirical_type<lldb::addr_t> context; 510 // Pointer to the script object itself. 511 empirical_type<lldb::addr_t> script; 512 }; 513 514 // This Element class represents the Element object in RS, 515 // defining the type associated with an Allocation. 516 struct RenderScriptRuntime::Element 517 { 518 // Taken from rsDefines.h 519 enum DataKind 520 { 521 RS_KIND_USER, 522 RS_KIND_PIXEL_L = 7, 523 RS_KIND_PIXEL_A, 524 RS_KIND_PIXEL_LA, 525 RS_KIND_PIXEL_RGB, 526 RS_KIND_PIXEL_RGBA, 527 RS_KIND_PIXEL_DEPTH, 528 RS_KIND_PIXEL_YUV, 529 RS_KIND_INVALID = 100 530 }; 531 532 // Taken from rsDefines.h 533 enum DataType 534 { 535 RS_TYPE_NONE = 0, 536 RS_TYPE_FLOAT_16, 537 RS_TYPE_FLOAT_32, 538 RS_TYPE_FLOAT_64, 539 RS_TYPE_SIGNED_8, 540 RS_TYPE_SIGNED_16, 541 RS_TYPE_SIGNED_32, 542 RS_TYPE_SIGNED_64, 543 RS_TYPE_UNSIGNED_8, 544 RS_TYPE_UNSIGNED_16, 545 RS_TYPE_UNSIGNED_32, 546 RS_TYPE_UNSIGNED_64, 547 RS_TYPE_BOOLEAN, 548 549 RS_TYPE_UNSIGNED_5_6_5, 550 RS_TYPE_UNSIGNED_5_5_5_1, 551 RS_TYPE_UNSIGNED_4_4_4_4, 552 553 RS_TYPE_MATRIX_4X4, 554 RS_TYPE_MATRIX_3X3, 555 RS_TYPE_MATRIX_2X2, 556 557 RS_TYPE_ELEMENT = 1000, 558 RS_TYPE_TYPE, 559 RS_TYPE_ALLOCATION, 560 RS_TYPE_SAMPLER, 561 RS_TYPE_SCRIPT, 562 RS_TYPE_MESH, 563 RS_TYPE_PROGRAM_FRAGMENT, 564 RS_TYPE_PROGRAM_VERTEX, 565 RS_TYPE_PROGRAM_RASTER, 566 RS_TYPE_PROGRAM_STORE, 567 RS_TYPE_FONT, 568 569 RS_TYPE_INVALID = 10000 570 }; 571 572 std::vector<Element> children; // Child Element fields for structs 573 empirical_type<lldb::addr_t> element_ptr; // Pointer to the RS Element of the Type 574 empirical_type<DataType> type; // Type of each data pointer stored by the allocation 575 empirical_type<DataKind> type_kind; // Defines pixel type if Allocation is created from an image 576 empirical_type<uint32_t> type_vec_size; // Vector size of each data point, e.g '4' for uchar4 577 empirical_type<uint32_t> field_count; // Number of Subelements 578 empirical_type<uint32_t> datum_size; // Size of a single Element with padding 579 empirical_type<uint32_t> padding; // Number of padding bytes 580 empirical_type<uint32_t> array_size; // Number of items in array, only needed for strucrs 581 ConstString type_name; // Name of type, only needed for structs 582 583 static const ConstString & 584 GetFallbackStructName(); // Print this as the type name of a struct Element 585 // If we can't resolve the actual struct name 586 587 bool 588 shouldRefresh() const 589 { 590 const bool valid_ptr = element_ptr.isValid() && *element_ptr.get() != 0x0; 591 const bool valid_type = type.isValid() && type_vec_size.isValid() && type_kind.isValid(); 592 return !valid_ptr || !valid_type || !datum_size.isValid(); 593 } 594 }; 595 596 // This AllocationDetails class collects data associated with a single 597 // allocation instance. 598 struct RenderScriptRuntime::AllocationDetails 599 { 600 struct Dimension 601 { 602 uint32_t dim_1; 603 uint32_t dim_2; 604 uint32_t dim_3; 605 uint32_t cubeMap; 606 607 Dimension() 608 { 609 dim_1 = 0; 610 dim_2 = 0; 611 dim_3 = 0; 612 cubeMap = 0; 613 } 614 }; 615 616 // The FileHeader struct specifies the header we use for writing allocations to a binary file. 617 // Our format begins with the ASCII characters "RSAD", identifying the file as an allocation dump. 618 // Member variables dims and hdr_size are then written consecutively, immediately followed by an instance of 619 // the ElementHeader struct. Because Elements can contain subelements, there may be more than one instance 620 // of the ElementHeader struct. With this first instance being the root element, and the other instances being 621 // the root's descendants. To identify which instances are an ElementHeader's children, each struct 622 // is immediately followed by a sequence of consecutive offsets to the start of its child structs. 623 // These offsets are 4 bytes in size, and the 0 offset signifies no more children. 624 struct FileHeader 625 { 626 uint8_t ident[4]; // ASCII 'RSAD' identifying the file 627 uint32_t dims[3]; // Dimensions 628 uint16_t hdr_size; // Header size in bytes, including all element headers 629 }; 630 631 struct ElementHeader 632 { 633 uint16_t type; // DataType enum 634 uint32_t kind; // DataKind enum 635 uint32_t element_size; // Size of a single element, including padding 636 uint16_t vector_size; // Vector width 637 uint32_t array_size; // Number of elements in array 638 }; 639 640 // Monotonically increasing from 1 641 static uint32_t ID; 642 643 // Maps Allocation DataType enum and vector size to printable strings 644 // using mapping from RenderScript numerical types summary documentation 645 static const char *RsDataTypeToString[][4]; 646 647 // Maps Allocation DataKind enum to printable strings 648 static const char *RsDataKindToString[]; 649 650 // Maps allocation types to format sizes for printing. 651 static const uint32_t RSTypeToFormat[][3]; 652 653 // Give each allocation an ID as a way 654 // for commands to reference it. 655 const uint32_t id; 656 657 RenderScriptRuntime::Element element; // Allocation Element type 658 empirical_type<Dimension> dimension; // Dimensions of the Allocation 659 empirical_type<lldb::addr_t> address; // Pointer to address of the RS Allocation 660 empirical_type<lldb::addr_t> data_ptr; // Pointer to the data held by the Allocation 661 empirical_type<lldb::addr_t> type_ptr; // Pointer to the RS Type of the Allocation 662 empirical_type<lldb::addr_t> context; // Pointer to the RS Context of the Allocation 663 empirical_type<uint32_t> size; // Size of the allocation 664 empirical_type<uint32_t> stride; // Stride between rows of the allocation 665 666 // Give each allocation an id, so we can reference it in user commands. 667 AllocationDetails() : id(ID++) {} 668 669 bool 670 shouldRefresh() const 671 { 672 bool valid_ptrs = data_ptr.isValid() && *data_ptr.get() != 0x0; 673 valid_ptrs = valid_ptrs && type_ptr.isValid() && *type_ptr.get() != 0x0; 674 return !valid_ptrs || !dimension.isValid() || !size.isValid() || element.shouldRefresh(); 675 } 676 }; 677 678 const ConstString & 679 RenderScriptRuntime::Element::GetFallbackStructName() 680 { 681 static const ConstString FallbackStructName("struct"); 682 return FallbackStructName; 683 } 684 685 uint32_t RenderScriptRuntime::AllocationDetails::ID = 1; 686 687 const char *RenderScriptRuntime::AllocationDetails::RsDataKindToString[] = { 688 "User", 689 "Undefined", "Undefined", "Undefined", "Undefined", "Undefined", "Undefined", // Enum jumps from 0 to 7 690 "L Pixel", "A Pixel", "LA Pixel", "RGB Pixel", 691 "RGBA Pixel", "Pixel Depth", "YUV Pixel"}; 692 693 const char *RenderScriptRuntime::AllocationDetails::RsDataTypeToString[][4] = { 694 {"None", "None", "None", "None"}, 695 {"half", "half2", "half3", "half4"}, 696 {"float", "float2", "float3", "float4"}, 697 {"double", "double2", "double3", "double4"}, 698 {"char", "char2", "char3", "char4"}, 699 {"short", "short2", "short3", "short4"}, 700 {"int", "int2", "int3", "int4"}, 701 {"long", "long2", "long3", "long4"}, 702 {"uchar", "uchar2", "uchar3", "uchar4"}, 703 {"ushort", "ushort2", "ushort3", "ushort4"}, 704 {"uint", "uint2", "uint3", "uint4"}, 705 {"ulong", "ulong2", "ulong3", "ulong4"}, 706 {"bool", "bool2", "bool3", "bool4"}, 707 {"packed_565", "packed_565", "packed_565", "packed_565"}, 708 {"packed_5551", "packed_5551", "packed_5551", "packed_5551"}, 709 {"packed_4444", "packed_4444", "packed_4444", "packed_4444"}, 710 {"rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4"}, 711 {"rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3"}, 712 {"rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2"}, 713 714 // Handlers 715 {"RS Element", "RS Element", "RS Element", "RS Element"}, 716 {"RS Type", "RS Type", "RS Type", "RS Type"}, 717 {"RS Allocation", "RS Allocation", "RS Allocation", "RS Allocation"}, 718 {"RS Sampler", "RS Sampler", "RS Sampler", "RS Sampler"}, 719 {"RS Script", "RS Script", "RS Script", "RS Script"}, 720 721 // Deprecated 722 {"RS Mesh", "RS Mesh", "RS Mesh", "RS Mesh"}, 723 {"RS Program Fragment", "RS Program Fragment", "RS Program Fragment", "RS Program Fragment"}, 724 {"RS Program Vertex", "RS Program Vertex", "RS Program Vertex", "RS Program Vertex"}, 725 {"RS Program Raster", "RS Program Raster", "RS Program Raster", "RS Program Raster"}, 726 {"RS Program Store", "RS Program Store", "RS Program Store", "RS Program Store"}, 727 {"RS Font", "RS Font", "RS Font", "RS Font"}}; 728 729 // Used as an index into the RSTypeToFormat array elements 730 enum TypeToFormatIndex 731 { 732 eFormatSingle = 0, 733 eFormatVector, 734 eElementSize 735 }; 736 737 // { format enum of single element, format enum of element vector, size of element} 738 const uint32_t RenderScriptRuntime::AllocationDetails::RSTypeToFormat[][3] = { 739 {eFormatHex, eFormatHex, 1}, // RS_TYPE_NONE 740 {eFormatFloat, eFormatVectorOfFloat16, 2}, // RS_TYPE_FLOAT_16 741 {eFormatFloat, eFormatVectorOfFloat32, sizeof(float)}, // RS_TYPE_FLOAT_32 742 {eFormatFloat, eFormatVectorOfFloat64, sizeof(double)}, // RS_TYPE_FLOAT_64 743 {eFormatDecimal, eFormatVectorOfSInt8, sizeof(int8_t)}, // RS_TYPE_SIGNED_8 744 {eFormatDecimal, eFormatVectorOfSInt16, sizeof(int16_t)}, // RS_TYPE_SIGNED_16 745 {eFormatDecimal, eFormatVectorOfSInt32, sizeof(int32_t)}, // RS_TYPE_SIGNED_32 746 {eFormatDecimal, eFormatVectorOfSInt64, sizeof(int64_t)}, // RS_TYPE_SIGNED_64 747 {eFormatDecimal, eFormatVectorOfUInt8, sizeof(uint8_t)}, // RS_TYPE_UNSIGNED_8 748 {eFormatDecimal, eFormatVectorOfUInt16, sizeof(uint16_t)}, // RS_TYPE_UNSIGNED_16 749 {eFormatDecimal, eFormatVectorOfUInt32, sizeof(uint32_t)}, // RS_TYPE_UNSIGNED_32 750 {eFormatDecimal, eFormatVectorOfUInt64, sizeof(uint64_t)}, // RS_TYPE_UNSIGNED_64 751 {eFormatBoolean, eFormatBoolean, 1}, // RS_TYPE_BOOL 752 {eFormatHex, eFormatHex, sizeof(uint16_t)}, // RS_TYPE_UNSIGNED_5_6_5 753 {eFormatHex, eFormatHex, sizeof(uint16_t)}, // RS_TYPE_UNSIGNED_5_5_5_1 754 {eFormatHex, eFormatHex, sizeof(uint16_t)}, // RS_TYPE_UNSIGNED_4_4_4_4 755 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 16}, // RS_TYPE_MATRIX_4X4 756 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 9}, // RS_TYPE_MATRIX_3X3 757 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 4} // RS_TYPE_MATRIX_2X2 758 }; 759 760 const std::string RenderScriptRuntime::s_runtimeExpandSuffix(".expand"); 761 const std::array<const char *, 3> RenderScriptRuntime::s_runtimeCoordVars{{"rsIndex", "p->current.y", "p->current.z"}}; 762 //------------------------------------------------------------------ 763 // Static Functions 764 //------------------------------------------------------------------ 765 LanguageRuntime * 766 RenderScriptRuntime::CreateInstance(Process *process, lldb::LanguageType language) 767 { 768 769 if (language == eLanguageTypeExtRenderScript) 770 return new RenderScriptRuntime(process); 771 else 772 return nullptr; 773 } 774 775 // Callback with a module to search for matching symbols. 776 // We first check that the module contains RS kernels. 777 // Then look for a symbol which matches our kernel name. 778 // The breakpoint address is finally set using the address of this symbol. 779 Searcher::CallbackReturn 780 RSBreakpointResolver::SearchCallback(SearchFilter &filter, SymbolContext &context, Address *, bool) 781 { 782 ModuleSP module = context.module_sp; 783 784 if (!module) 785 return Searcher::eCallbackReturnContinue; 786 787 // Is this a module containing renderscript kernels? 788 if (nullptr == module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), eSymbolTypeData)) 789 return Searcher::eCallbackReturnContinue; 790 791 // Attempt to set a breakpoint on the kernel name symbol within the module library. 792 // If it's not found, it's likely debug info is unavailable - try to set a 793 // breakpoint on <name>.expand. 794 795 const Symbol *kernel_sym = module->FindFirstSymbolWithNameAndType(m_kernel_name, eSymbolTypeCode); 796 if (!kernel_sym) 797 { 798 std::string kernel_name_expanded(m_kernel_name.AsCString()); 799 kernel_name_expanded.append(".expand"); 800 kernel_sym = module->FindFirstSymbolWithNameAndType(ConstString(kernel_name_expanded.c_str()), eSymbolTypeCode); 801 } 802 803 if (kernel_sym) 804 { 805 Address bp_addr = kernel_sym->GetAddress(); 806 if (filter.AddressPasses(bp_addr)) 807 m_breakpoint->AddLocation(bp_addr); 808 } 809 810 return Searcher::eCallbackReturnContinue; 811 } 812 813 void 814 RenderScriptRuntime::Initialize() 815 { 816 PluginManager::RegisterPlugin(GetPluginNameStatic(), "RenderScript language support", CreateInstance, 817 GetCommandObject); 818 } 819 820 void 821 RenderScriptRuntime::Terminate() 822 { 823 PluginManager::UnregisterPlugin(CreateInstance); 824 } 825 826 lldb_private::ConstString 827 RenderScriptRuntime::GetPluginNameStatic() 828 { 829 static ConstString g_name("renderscript"); 830 return g_name; 831 } 832 833 RenderScriptRuntime::ModuleKind 834 RenderScriptRuntime::GetModuleKind(const lldb::ModuleSP &module_sp) 835 { 836 if (module_sp) 837 { 838 // Is this a module containing renderscript kernels? 839 const Symbol *info_sym = module_sp->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), eSymbolTypeData); 840 if (info_sym) 841 { 842 return eModuleKindKernelObj; 843 } 844 845 // Is this the main RS runtime library 846 const ConstString rs_lib("libRS.so"); 847 if (module_sp->GetFileSpec().GetFilename() == rs_lib) 848 { 849 return eModuleKindLibRS; 850 } 851 852 const ConstString rs_driverlib("libRSDriver.so"); 853 if (module_sp->GetFileSpec().GetFilename() == rs_driverlib) 854 { 855 return eModuleKindDriver; 856 } 857 858 const ConstString rs_cpureflib("libRSCpuRef.so"); 859 if (module_sp->GetFileSpec().GetFilename() == rs_cpureflib) 860 { 861 return eModuleKindImpl; 862 } 863 } 864 return eModuleKindIgnored; 865 } 866 867 bool 868 RenderScriptRuntime::IsRenderScriptModule(const lldb::ModuleSP &module_sp) 869 { 870 return GetModuleKind(module_sp) != eModuleKindIgnored; 871 } 872 873 void 874 RenderScriptRuntime::ModulesDidLoad(const ModuleList &module_list) 875 { 876 Mutex::Locker locker(module_list.GetMutex()); 877 878 size_t num_modules = module_list.GetSize(); 879 for (size_t i = 0; i < num_modules; i++) 880 { 881 auto mod = module_list.GetModuleAtIndex(i); 882 if (IsRenderScriptModule(mod)) 883 { 884 LoadModule(mod); 885 } 886 } 887 } 888 889 //------------------------------------------------------------------ 890 // PluginInterface protocol 891 //------------------------------------------------------------------ 892 lldb_private::ConstString 893 RenderScriptRuntime::GetPluginName() 894 { 895 return GetPluginNameStatic(); 896 } 897 898 uint32_t 899 RenderScriptRuntime::GetPluginVersion() 900 { 901 return 1; 902 } 903 904 bool 905 RenderScriptRuntime::IsVTableName(const char *name) 906 { 907 return false; 908 } 909 910 bool 911 RenderScriptRuntime::GetDynamicTypeAndAddress(ValueObject &in_value, lldb::DynamicValueType use_dynamic, 912 TypeAndOrName &class_type_or_name, Address &address, 913 Value::ValueType &value_type) 914 { 915 return false; 916 } 917 918 TypeAndOrName 919 RenderScriptRuntime::FixUpDynamicType(const TypeAndOrName &type_and_or_name, ValueObject &static_value) 920 { 921 return type_and_or_name; 922 } 923 924 bool 925 RenderScriptRuntime::CouldHaveDynamicValue(ValueObject &in_value) 926 { 927 return false; 928 } 929 930 lldb::BreakpointResolverSP 931 RenderScriptRuntime::CreateExceptionResolver(Breakpoint *bkpt, bool catch_bp, bool throw_bp) 932 { 933 BreakpointResolverSP resolver_sp; 934 return resolver_sp; 935 } 936 937 const RenderScriptRuntime::HookDefn RenderScriptRuntime::s_runtimeHookDefns[] = { 938 // rsdScript 939 { 940 "rsdScriptInit", 941 "_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_7ScriptCEPKcS7_PKhjj", 942 "_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_7ScriptCEPKcS7_PKhmj", 943 0, 944 RenderScriptRuntime::eModuleKindDriver, 945 &lldb_private::RenderScriptRuntime::CaptureScriptInit 946 }, 947 { 948 "rsdScriptInvokeForEachMulti", 949 "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0_6ScriptEjPPKNS0_10AllocationEjPS6_PKvjPK12RsScriptCall", 950 "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0_6ScriptEjPPKNS0_10AllocationEmPS6_PKvmPK12RsScriptCall", 951 0, 952 RenderScriptRuntime::eModuleKindDriver, 953 &lldb_private::RenderScriptRuntime::CaptureScriptInvokeForEachMulti 954 }, 955 { 956 "rsdScriptSetGlobalVar", 957 "_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_6ScriptEjPvj", 958 "_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_6ScriptEjPvm", 959 0, 960 RenderScriptRuntime::eModuleKindDriver, 961 &lldb_private::RenderScriptRuntime::CaptureSetGlobalVar 962 }, 963 964 // rsdAllocation 965 { 966 "rsdAllocationInit", 967 "_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_10AllocationEb", 968 "_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_10AllocationEb", 969 0, 970 RenderScriptRuntime::eModuleKindDriver, 971 &lldb_private::RenderScriptRuntime::CaptureAllocationInit 972 }, 973 { 974 "rsdAllocationRead2D", 975 "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_10AllocationEjjj23RsAllocationCubemapFacejjPvjj", 976 "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_10AllocationEjjj23RsAllocationCubemapFacejjPvmm", 977 0, 978 RenderScriptRuntime::eModuleKindDriver, 979 nullptr 980 }, 981 { 982 "rsdAllocationDestroy", 983 "_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_10AllocationE", 984 "_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_10AllocationE", 985 0, 986 RenderScriptRuntime::eModuleKindDriver, 987 &lldb_private::RenderScriptRuntime::CaptureAllocationDestroy 988 }, 989 }; 990 991 const size_t RenderScriptRuntime::s_runtimeHookCount = sizeof(s_runtimeHookDefns) / sizeof(s_runtimeHookDefns[0]); 992 993 bool 994 RenderScriptRuntime::HookCallback(void *baton, StoppointCallbackContext *ctx, lldb::user_id_t break_id, 995 lldb::user_id_t break_loc_id) 996 { 997 RuntimeHook *hook_info = (RuntimeHook *)baton; 998 ExecutionContext context(ctx->exe_ctx_ref); 999 1000 RenderScriptRuntime *lang_rt = 1001 (RenderScriptRuntime *)context.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript); 1002 1003 lang_rt->HookCallback(hook_info, context); 1004 1005 return false; 1006 } 1007 1008 void 1009 RenderScriptRuntime::HookCallback(RuntimeHook *hook_info, ExecutionContext &context) 1010 { 1011 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1012 1013 if (log) 1014 log->Printf("%s - '%s'", __FUNCTION__, hook_info->defn->name); 1015 1016 if (hook_info->defn->grabber) 1017 { 1018 (this->*(hook_info->defn->grabber))(hook_info, context); 1019 } 1020 } 1021 1022 void 1023 RenderScriptRuntime::CaptureScriptInvokeForEachMulti(RuntimeHook* hook_info, 1024 ExecutionContext& context) 1025 { 1026 Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1027 1028 enum 1029 { 1030 eRsContext = 0, 1031 eRsScript, 1032 eRsSlot, 1033 eRsAIns, 1034 eRsInLen, 1035 eRsAOut, 1036 eRsUsr, 1037 eRsUsrLen, 1038 eRsSc, 1039 }; 1040 1041 std::array<ArgItem, 9> args{{ 1042 ArgItem{ArgItem::ePointer, 0}, // const Context *rsc 1043 ArgItem{ArgItem::ePointer, 0}, // Script *s 1044 ArgItem{ArgItem::eInt32, 0}, // uint32_t slot 1045 ArgItem{ArgItem::ePointer, 0}, // const Allocation **aIns 1046 ArgItem{ArgItem::eInt32, 0}, // size_t inLen 1047 ArgItem{ArgItem::ePointer, 0}, // Allocation *aout 1048 ArgItem{ArgItem::ePointer, 0}, // const void *usr 1049 ArgItem{ArgItem::eInt32, 0}, // size_t usrLen 1050 ArgItem{ArgItem::ePointer, 0}, // const RsScriptCall *sc 1051 }}; 1052 1053 bool success = GetArgs(context, &args[0], args.size()); 1054 if (!success) 1055 { 1056 if (log) 1057 log->Printf("%s - Error while reading the function parameters", __FUNCTION__); 1058 return; 1059 } 1060 1061 const uint32_t target_ptr_size = m_process->GetAddressByteSize(); 1062 Error error; 1063 std::vector<uint64_t> allocs; 1064 1065 // traverse allocation list 1066 for (uint64_t i = 0; i < uint64_t(args[eRsInLen]); ++i) 1067 { 1068 // calculate offest to allocation pointer 1069 const addr_t addr = addr_t(args[eRsAIns]) + i * target_ptr_size; 1070 1071 // Note: due to little endian layout, reading 32bits or 64bits into res64 will 1072 // give the correct results. 1073 1074 uint64_t res64 = 0; 1075 size_t read = m_process->ReadMemory(addr, &res64, target_ptr_size, error); 1076 if (read != target_ptr_size || !error.Success()) 1077 { 1078 if (log) 1079 log->Printf("%s - Error while reading allocation list argument %" PRIu64, __FUNCTION__, i); 1080 } 1081 else 1082 { 1083 allocs.push_back(res64); 1084 } 1085 } 1086 1087 // if there is an output allocation track it 1088 if (uint64_t aOut = uint64_t(args[eRsAOut])) 1089 { 1090 allocs.push_back(aOut); 1091 } 1092 1093 // for all allocations we have found 1094 for (const uint64_t alloc_addr : allocs) 1095 { 1096 AllocationDetails* alloc = LookUpAllocation(alloc_addr, true); 1097 if (alloc) 1098 { 1099 // save the allocation address 1100 if (alloc->address.isValid()) 1101 { 1102 // check the allocation address we already have matches 1103 assert(*alloc->address.get() == alloc_addr); 1104 } 1105 else 1106 { 1107 alloc->address = alloc_addr; 1108 } 1109 1110 // save the context 1111 if (log) 1112 { 1113 if (alloc->context.isValid() && *alloc->context.get() != addr_t(args[eRsContext])) 1114 log->Printf("%s - Allocation used by multiple contexts", __FUNCTION__); 1115 } 1116 alloc->context = addr_t(args[eRsContext]); 1117 } 1118 } 1119 1120 // make sure we track this script object 1121 if (lldb_private::RenderScriptRuntime::ScriptDetails *script = LookUpScript(addr_t(args[eRsScript]), true)) 1122 { 1123 if (log) 1124 { 1125 if (script->context.isValid() && *script->context.get() != addr_t(args[eRsContext])) 1126 log->Printf("%s - Script used by multiple contexts", __FUNCTION__); 1127 } 1128 script->context = addr_t(args[eRsContext]); 1129 } 1130 } 1131 1132 void 1133 RenderScriptRuntime::CaptureSetGlobalVar(RuntimeHook *hook_info, ExecutionContext &context) 1134 { 1135 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1136 1137 enum 1138 { 1139 eRsContext, 1140 eRsScript, 1141 eRsId, 1142 eRsData, 1143 eRsLength, 1144 }; 1145 1146 std::array<ArgItem, 5> args{{ 1147 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1148 ArgItem{ArgItem::ePointer, 0}, // eRsScript 1149 ArgItem{ArgItem::eInt32, 0}, // eRsId 1150 ArgItem{ArgItem::ePointer, 0}, // eRsData 1151 ArgItem{ArgItem::eInt32, 0}, // eRsLength 1152 }}; 1153 1154 bool success = GetArgs(context, &args[0], args.size()); 1155 if (!success) 1156 { 1157 if (log) 1158 log->Printf("%s - error reading the function parameters.", __FUNCTION__); 1159 return; 1160 } 1161 1162 if (log) 1163 { 1164 log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " slot %" PRIu64 " = 0x%" PRIx64 ":%" PRIu64 "bytes.", __FUNCTION__, 1165 uint64_t(args[eRsContext]), uint64_t(args[eRsScript]), uint64_t(args[eRsId]), 1166 uint64_t(args[eRsData]), uint64_t(args[eRsLength])); 1167 1168 addr_t script_addr = addr_t(args[eRsScript]); 1169 if (m_scriptMappings.find(script_addr) != m_scriptMappings.end()) 1170 { 1171 auto rsm = m_scriptMappings[script_addr]; 1172 if (uint64_t(args[eRsId]) < rsm->m_globals.size()) 1173 { 1174 auto rsg = rsm->m_globals[uint64_t(args[eRsId])]; 1175 log->Printf("%s - Setting of '%s' within '%s' inferred", __FUNCTION__, rsg.m_name.AsCString(), 1176 rsm->m_module->GetFileSpec().GetFilename().AsCString()); 1177 } 1178 } 1179 } 1180 } 1181 1182 void 1183 RenderScriptRuntime::CaptureAllocationInit(RuntimeHook *hook_info, ExecutionContext &context) 1184 { 1185 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1186 1187 enum 1188 { 1189 eRsContext, 1190 eRsAlloc, 1191 eRsForceZero 1192 }; 1193 1194 std::array<ArgItem, 3> args{{ 1195 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1196 ArgItem{ArgItem::ePointer, 0}, // eRsAlloc 1197 ArgItem{ArgItem::eBool, 0}, // eRsForceZero 1198 }}; 1199 1200 bool success = GetArgs(context, &args[0], args.size()); 1201 if (!success) // error case 1202 { 1203 if (log) 1204 log->Printf("%s - error while reading the function parameters", __FUNCTION__); 1205 return; // abort 1206 } 1207 1208 if (log) 1209 log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 ",0x%" PRIx64 " .", __FUNCTION__, uint64_t(args[eRsContext]), 1210 uint64_t(args[eRsAlloc]), uint64_t(args[eRsForceZero])); 1211 1212 AllocationDetails *alloc = LookUpAllocation(uint64_t(args[eRsAlloc]), true); 1213 if (alloc) 1214 alloc->context = uint64_t(args[eRsContext]); 1215 } 1216 1217 void 1218 RenderScriptRuntime::CaptureAllocationDestroy(RuntimeHook *hook_info, ExecutionContext &context) 1219 { 1220 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1221 1222 enum 1223 { 1224 eRsContext, 1225 eRsAlloc, 1226 }; 1227 1228 std::array<ArgItem, 2> args{{ 1229 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1230 ArgItem{ArgItem::ePointer, 0}, // eRsAlloc 1231 }}; 1232 1233 bool success = GetArgs(context, &args[0], args.size()); 1234 if (!success) 1235 { 1236 if (log) 1237 log->Printf("%s - error while reading the function parameters.", __FUNCTION__); 1238 return; 1239 } 1240 1241 if (log) 1242 log->Printf("%s - 0x%" PRIx64 ", 0x%" PRIx64 ".", __FUNCTION__, uint64_t(args[eRsContext]), 1243 uint64_t(args[eRsAlloc])); 1244 1245 for (auto iter = m_allocations.begin(); iter != m_allocations.end(); ++iter) 1246 { 1247 auto &allocation_ap = *iter; // get the unique pointer 1248 if (allocation_ap->address.isValid() && *allocation_ap->address.get() == addr_t(args[eRsAlloc])) 1249 { 1250 m_allocations.erase(iter); 1251 if (log) 1252 log->Printf("%s - deleted allocation entry.", __FUNCTION__); 1253 return; 1254 } 1255 } 1256 1257 if (log) 1258 log->Printf("%s - couldn't find destroyed allocation.", __FUNCTION__); 1259 } 1260 1261 void 1262 RenderScriptRuntime::CaptureScriptInit(RuntimeHook *hook_info, ExecutionContext &context) 1263 { 1264 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1265 1266 Error error; 1267 Process *process = context.GetProcessPtr(); 1268 1269 enum 1270 { 1271 eRsContext, 1272 eRsScript, 1273 eRsResNamePtr, 1274 eRsCachedDirPtr 1275 }; 1276 1277 std::array<ArgItem, 4> args{{ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}, 1278 ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}}}; 1279 bool success = GetArgs(context, &args[0], args.size()); 1280 if (!success) 1281 { 1282 if (log) 1283 log->Printf("%s - error while reading the function parameters.", __FUNCTION__); 1284 return; 1285 } 1286 1287 std::string resname; 1288 process->ReadCStringFromMemory(addr_t(args[eRsResNamePtr]), resname, error); 1289 if (error.Fail()) 1290 { 1291 if (log) 1292 log->Printf("%s - error reading resname: %s.", __FUNCTION__, error.AsCString()); 1293 } 1294 1295 std::string cachedir; 1296 process->ReadCStringFromMemory(addr_t(args[eRsCachedDirPtr]), cachedir, error); 1297 if (error.Fail()) 1298 { 1299 if (log) 1300 log->Printf("%s - error reading cachedir: %s.", __FUNCTION__, error.AsCString()); 1301 } 1302 1303 if (log) 1304 log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " => '%s' at '%s' .", __FUNCTION__, uint64_t(args[eRsContext]), 1305 uint64_t(args[eRsScript]), resname.c_str(), cachedir.c_str()); 1306 1307 if (resname.size() > 0) 1308 { 1309 StreamString strm; 1310 strm.Printf("librs.%s.so", resname.c_str()); 1311 1312 ScriptDetails *script = LookUpScript(addr_t(args[eRsScript]), true); 1313 if (script) 1314 { 1315 script->type = ScriptDetails::eScriptC; 1316 script->cacheDir = cachedir; 1317 script->resName = resname; 1318 script->scriptDyLib = strm.GetData(); 1319 script->context = addr_t(args[eRsContext]); 1320 } 1321 1322 if (log) 1323 log->Printf("%s - '%s' tagged with context 0x%" PRIx64 " and script 0x%" PRIx64 ".", __FUNCTION__, 1324 strm.GetData(), uint64_t(args[eRsContext]), uint64_t(args[eRsScript])); 1325 } 1326 else if (log) 1327 { 1328 log->Printf("%s - resource name invalid, Script not tagged.", __FUNCTION__); 1329 } 1330 } 1331 1332 void 1333 RenderScriptRuntime::LoadRuntimeHooks(lldb::ModuleSP module, ModuleKind kind) 1334 { 1335 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1336 1337 if (!module) 1338 { 1339 return; 1340 } 1341 1342 Target &target = GetProcess()->GetTarget(); 1343 llvm::Triple::ArchType targetArchType = target.GetArchitecture().GetMachine(); 1344 1345 if (targetArchType != llvm::Triple::ArchType::x86 && 1346 targetArchType != llvm::Triple::ArchType::arm && 1347 targetArchType != llvm::Triple::ArchType::aarch64 && 1348 targetArchType != llvm::Triple::ArchType::mipsel && 1349 targetArchType != llvm::Triple::ArchType::mips64el && 1350 targetArchType != llvm::Triple::ArchType::x86_64) 1351 { 1352 if (log) 1353 log->Printf("%s - unable to hook runtime functions.", __FUNCTION__); 1354 return; 1355 } 1356 1357 uint32_t archByteSize = target.GetArchitecture().GetAddressByteSize(); 1358 1359 for (size_t idx = 0; idx < s_runtimeHookCount; idx++) 1360 { 1361 const HookDefn *hook_defn = &s_runtimeHookDefns[idx]; 1362 if (hook_defn->kind != kind) 1363 { 1364 continue; 1365 } 1366 1367 const char *symbol_name = (archByteSize == 4) ? hook_defn->symbol_name_m32 : hook_defn->symbol_name_m64; 1368 1369 const Symbol *sym = module->FindFirstSymbolWithNameAndType(ConstString(symbol_name), eSymbolTypeCode); 1370 if (!sym) 1371 { 1372 if (log) 1373 { 1374 log->Printf("%s - symbol '%s' related to the function %s not found", 1375 __FUNCTION__, symbol_name, hook_defn->name); 1376 } 1377 continue; 1378 } 1379 1380 addr_t addr = sym->GetLoadAddress(&target); 1381 if (addr == LLDB_INVALID_ADDRESS) 1382 { 1383 if (log) 1384 log->Printf("%s - unable to resolve the address of hook function '%s' with symbol '%s'.", 1385 __FUNCTION__, hook_defn->name, symbol_name); 1386 continue; 1387 } 1388 else 1389 { 1390 if (log) 1391 log->Printf("%s - function %s, address resolved at 0x%" PRIx64, 1392 __FUNCTION__, hook_defn->name, addr); 1393 } 1394 1395 RuntimeHookSP hook(new RuntimeHook()); 1396 hook->address = addr; 1397 hook->defn = hook_defn; 1398 hook->bp_sp = target.CreateBreakpoint(addr, true, false); 1399 hook->bp_sp->SetCallback(HookCallback, hook.get(), true); 1400 m_runtimeHooks[addr] = hook; 1401 if (log) 1402 { 1403 log->Printf("%s - successfully hooked '%s' in '%s' version %" PRIu64 " at 0x%" PRIx64 ".", 1404 __FUNCTION__, hook_defn->name, module->GetFileSpec().GetFilename().AsCString(), 1405 (uint64_t)hook_defn->version, (uint64_t)addr); 1406 } 1407 } 1408 } 1409 1410 void 1411 RenderScriptRuntime::FixupScriptDetails(RSModuleDescriptorSP rsmodule_sp) 1412 { 1413 if (!rsmodule_sp) 1414 return; 1415 1416 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1417 1418 const ModuleSP module = rsmodule_sp->m_module; 1419 const FileSpec &file = module->GetPlatformFileSpec(); 1420 1421 // Iterate over all of the scripts that we currently know of. 1422 // Note: We cant push or pop to m_scripts here or it may invalidate rs_script. 1423 for (const auto &rs_script : m_scripts) 1424 { 1425 // Extract the expected .so file path for this script. 1426 std::string dylib; 1427 if (!rs_script->scriptDyLib.get(dylib)) 1428 continue; 1429 1430 // Only proceed if the module that has loaded corresponds to this script. 1431 if (file.GetFilename() != ConstString(dylib.c_str())) 1432 continue; 1433 1434 // Obtain the script address which we use as a key. 1435 lldb::addr_t script; 1436 if (!rs_script->script.get(script)) 1437 continue; 1438 1439 // If we have a script mapping for the current script. 1440 if (m_scriptMappings.find(script) != m_scriptMappings.end()) 1441 { 1442 // if the module we have stored is different to the one we just received. 1443 if (m_scriptMappings[script] != rsmodule_sp) 1444 { 1445 if (log) 1446 log->Printf("%s - script %" PRIx64 " wants reassigned to new rsmodule '%s'.", __FUNCTION__, 1447 (uint64_t)script, rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString()); 1448 } 1449 } 1450 // We don't have a script mapping for the current script. 1451 else 1452 { 1453 // Obtain the script resource name. 1454 std::string resName; 1455 if (rs_script->resName.get(resName)) 1456 // Set the modules resource name. 1457 rsmodule_sp->m_resname = resName; 1458 // Add Script/Module pair to map. 1459 m_scriptMappings[script] = rsmodule_sp; 1460 if (log) 1461 log->Printf("%s - script %" PRIx64 " associated with rsmodule '%s'.", __FUNCTION__, 1462 (uint64_t)script, rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString()); 1463 } 1464 } 1465 } 1466 1467 // Uses the Target API to evaluate the expression passed as a parameter to the function 1468 // The result of that expression is returned an unsigned 64 bit int, via the result* paramter. 1469 // Function returns true on success, and false on failure 1470 bool 1471 RenderScriptRuntime::EvalRSExpression(const char *expression, StackFrame *frame_ptr, uint64_t *result) 1472 { 1473 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1474 if (log) 1475 log->Printf("%s(%s)", __FUNCTION__, expression); 1476 1477 ValueObjectSP expr_result; 1478 EvaluateExpressionOptions options; 1479 options.SetLanguage(lldb::eLanguageTypeC_plus_plus); 1480 // Perform the actual expression evaluation 1481 GetProcess()->GetTarget().EvaluateExpression(expression, frame_ptr, expr_result, options); 1482 1483 if (!expr_result) 1484 { 1485 if (log) 1486 log->Printf("%s: couldn't evaluate expression.", __FUNCTION__); 1487 return false; 1488 } 1489 1490 // The result of the expression is invalid 1491 if (!expr_result->GetError().Success()) 1492 { 1493 Error err = expr_result->GetError(); 1494 if (err.GetError() == UserExpression::kNoResult) // Expression returned void, so this is actually a success 1495 { 1496 if (log) 1497 log->Printf("%s - expression returned void.", __FUNCTION__); 1498 1499 result = nullptr; 1500 return true; 1501 } 1502 1503 if (log) 1504 log->Printf("%s - error evaluating expression result: %s", __FUNCTION__, 1505 err.AsCString()); 1506 return false; 1507 } 1508 1509 bool success = false; 1510 *result = expr_result->GetValueAsUnsigned(0, &success); // We only read the result as an uint32_t. 1511 1512 if (!success) 1513 { 1514 if (log) 1515 log->Printf("%s - couldn't convert expression result to uint32_t", __FUNCTION__); 1516 return false; 1517 } 1518 1519 return true; 1520 } 1521 1522 namespace 1523 { 1524 // Used to index expression format strings 1525 enum ExpressionStrings 1526 { 1527 eExprGetOffsetPtr = 0, 1528 eExprAllocGetType, 1529 eExprTypeDimX, 1530 eExprTypeDimY, 1531 eExprTypeDimZ, 1532 eExprTypeElemPtr, 1533 eExprElementType, 1534 eExprElementKind, 1535 eExprElementVec, 1536 eExprElementFieldCount, 1537 eExprSubelementsId, 1538 eExprSubelementsName, 1539 eExprSubelementsArrSize, 1540 1541 _eExprLast // keep at the end, implicit size of the array runtimeExpressions 1542 }; 1543 1544 // max length of an expanded expression 1545 const int jit_max_expr_size = 512; 1546 1547 // Retrieve the string to JIT for the given expression 1548 const char* 1549 JITTemplate(ExpressionStrings e) 1550 { 1551 // Format strings containing the expressions we may need to evaluate. 1552 static std::array<const char*, _eExprLast> runtimeExpressions = {{ 1553 // Mangled GetOffsetPointer(Allocation*, xoff, yoff, zoff, lod, cubemap) 1554 "(int*)_Z12GetOffsetPtrPKN7android12renderscript10AllocationEjjjj23RsAllocationCubemapFace" 1555 "(0x%" PRIx64 ", %" PRIu32 ", %" PRIu32 ", %" PRIu32 ", 0, 0)", 1556 1557 // Type* rsaAllocationGetType(Context*, Allocation*) 1558 "(void*)rsaAllocationGetType(0x%" PRIx64 ", 0x%" PRIx64 ")", 1559 1560 // rsaTypeGetNativeData(Context*, Type*, void* typeData, size) 1561 // Pack the data in the following way mHal.state.dimX; mHal.state.dimY; mHal.state.dimZ; 1562 // mHal.state.lodCount; mHal.state.faces; mElement; into typeData 1563 // Need to specify 32 or 64 bit for uint_t since this differs between devices 1564 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 6); data[0]", // X dim 1565 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 6); data[1]", // Y dim 1566 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 6); data[2]", // Z dim 1567 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 6); data[5]", // Element ptr 1568 1569 // rsaElementGetNativeData(Context*, Element*, uint32_t* elemData,size) 1570 // Pack mType; mKind; mNormalized; mVectorSize; NumSubElements into elemData 1571 "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 5); data[0]", // Type 1572 "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 5); data[1]", // Kind 1573 "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 5); data[3]", // Vector Size 1574 "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 5); data[4]", // Field Count 1575 1576 // rsaElementGetSubElements(RsContext con, RsElement elem, uintptr_t *ids, const char **names, 1577 // size_t *arraySizes, uint32_t dataSize) 1578 // Needed for Allocations of structs to gather details about fields/Subelements 1579 // Element* of field 1580 "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 "]; size_t arr_size[%" PRIu32 "];" 1581 "(void*)rsaElementGetSubElements(0x%" PRIx64 ", 0x%" PRIx64 ", ids, names, arr_size, %" PRIu32 "); ids[%" PRIu32 "]", 1582 1583 // Name of field 1584 "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 "]; size_t arr_size[%" PRIu32 "];" 1585 "(void*)rsaElementGetSubElements(0x%" PRIx64 ", 0x%" PRIx64 ", ids, names, arr_size, %" PRIu32 "); names[%" PRIu32 "]", 1586 1587 // Array size of field 1588 "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 "]; size_t arr_size[%" PRIu32 "];" 1589 "(void*)rsaElementGetSubElements(0x%" PRIx64 ", 0x%" PRIx64 ", ids, names, arr_size, %" PRIu32 "); arr_size[%" PRIu32 "]" 1590 }}; 1591 1592 return runtimeExpressions[e]; 1593 } 1594 } // end of the anonymous namespace 1595 1596 1597 // JITs the RS runtime for the internal data pointer of an allocation. 1598 // Is passed x,y,z coordinates for the pointer to a specific element. 1599 // Then sets the data_ptr member in Allocation with the result. 1600 // Returns true on success, false otherwise 1601 bool 1602 RenderScriptRuntime::JITDataPointer(AllocationDetails *allocation, StackFrame *frame_ptr, uint32_t x, 1603 uint32_t y, uint32_t z) 1604 { 1605 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1606 1607 if (!allocation->address.isValid()) 1608 { 1609 if (log) 1610 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1611 return false; 1612 } 1613 1614 const char *expr_cstr = JITTemplate(eExprGetOffsetPtr); 1615 char buffer[jit_max_expr_size]; 1616 1617 int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->address.get(), x, y, z); 1618 if (chars_written < 0) 1619 { 1620 if (log) 1621 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1622 return false; 1623 } 1624 else if (chars_written >= jit_max_expr_size) 1625 { 1626 if (log) 1627 log->Printf("%s - expression too long.", __FUNCTION__); 1628 return false; 1629 } 1630 1631 uint64_t result = 0; 1632 if (!EvalRSExpression(buffer, frame_ptr, &result)) 1633 return false; 1634 1635 addr_t mem_ptr = static_cast<lldb::addr_t>(result); 1636 allocation->data_ptr = mem_ptr; 1637 1638 return true; 1639 } 1640 1641 // JITs the RS runtime for the internal pointer to the RS Type of an allocation 1642 // Then sets the type_ptr member in Allocation with the result. 1643 // Returns true on success, false otherwise 1644 bool 1645 RenderScriptRuntime::JITTypePointer(AllocationDetails *allocation, StackFrame *frame_ptr) 1646 { 1647 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1648 1649 if (!allocation->address.isValid() || !allocation->context.isValid()) 1650 { 1651 if (log) 1652 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1653 return false; 1654 } 1655 1656 const char *expr_cstr = JITTemplate(eExprAllocGetType); 1657 char buffer[jit_max_expr_size]; 1658 1659 int chars_written = 1660 snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->context.get(), *allocation->address.get()); 1661 if (chars_written < 0) 1662 { 1663 if (log) 1664 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1665 return false; 1666 } 1667 else if (chars_written >= jit_max_expr_size) 1668 { 1669 if (log) 1670 log->Printf("%s - expression too long.", __FUNCTION__); 1671 return false; 1672 } 1673 1674 uint64_t result = 0; 1675 if (!EvalRSExpression(buffer, frame_ptr, &result)) 1676 return false; 1677 1678 addr_t type_ptr = static_cast<lldb::addr_t>(result); 1679 allocation->type_ptr = type_ptr; 1680 1681 return true; 1682 } 1683 1684 // JITs the RS runtime for information about the dimensions and type of an allocation 1685 // Then sets dimension and element_ptr members in Allocation with the result. 1686 // Returns true on success, false otherwise 1687 bool 1688 RenderScriptRuntime::JITTypePacked(AllocationDetails *allocation, StackFrame *frame_ptr) 1689 { 1690 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1691 1692 if (!allocation->type_ptr.isValid() || !allocation->context.isValid()) 1693 { 1694 if (log) 1695 log->Printf("%s - Failed to find allocation details.", __FUNCTION__); 1696 return false; 1697 } 1698 1699 // Expression is different depending on if device is 32 or 64 bit 1700 uint32_t archByteSize = GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 1701 const uint32_t bits = archByteSize == 4 ? 32 : 64; 1702 1703 // We want 4 elements from packed data 1704 const uint32_t num_exprs = 4; 1705 assert(num_exprs == (eExprTypeElemPtr - eExprTypeDimX + 1) && "Invalid number of expressions"); 1706 1707 char buffer[num_exprs][jit_max_expr_size]; 1708 uint64_t results[num_exprs]; 1709 1710 for (uint32_t i = 0; i < num_exprs; ++i) 1711 { 1712 const char *expr_cstr = JITTemplate(ExpressionStrings(eExprTypeDimX + i)); 1713 int chars_written = snprintf(buffer[i], jit_max_expr_size, expr_cstr, bits, *allocation->context.get(), 1714 *allocation->type_ptr.get()); 1715 if (chars_written < 0) 1716 { 1717 if (log) 1718 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1719 return false; 1720 } 1721 else if (chars_written >= jit_max_expr_size) 1722 { 1723 if (log) 1724 log->Printf("%s - expression too long.", __FUNCTION__); 1725 return false; 1726 } 1727 1728 // Perform expression evaluation 1729 if (!EvalRSExpression(buffer[i], frame_ptr, &results[i])) 1730 return false; 1731 } 1732 1733 // Assign results to allocation members 1734 AllocationDetails::Dimension dims; 1735 dims.dim_1 = static_cast<uint32_t>(results[0]); 1736 dims.dim_2 = static_cast<uint32_t>(results[1]); 1737 dims.dim_3 = static_cast<uint32_t>(results[2]); 1738 allocation->dimension = dims; 1739 1740 addr_t elem_ptr = static_cast<lldb::addr_t>(results[3]); 1741 allocation->element.element_ptr = elem_ptr; 1742 1743 if (log) 1744 log->Printf("%s - dims (%" PRIu32 ", %" PRIu32 ", %" PRIu32 ") Element*: 0x%" PRIx64 ".", __FUNCTION__, 1745 dims.dim_1, dims.dim_2, dims.dim_3, elem_ptr); 1746 1747 return true; 1748 } 1749 1750 // JITs the RS runtime for information about the Element of an allocation 1751 // Then sets type, type_vec_size, field_count and type_kind members in Element with the result. 1752 // Returns true on success, false otherwise 1753 bool 1754 RenderScriptRuntime::JITElementPacked(Element &elem, const lldb::addr_t context, StackFrame *frame_ptr) 1755 { 1756 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1757 1758 if (!elem.element_ptr.isValid()) 1759 { 1760 if (log) 1761 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1762 return false; 1763 } 1764 1765 // We want 4 elements from packed data 1766 const uint32_t num_exprs = 4; 1767 assert(num_exprs == (eExprElementFieldCount - eExprElementType + 1) && "Invalid number of expressions"); 1768 1769 char buffer[num_exprs][jit_max_expr_size]; 1770 uint64_t results[num_exprs]; 1771 1772 for (uint32_t i = 0; i < num_exprs; i++) 1773 { 1774 const char *expr_cstr = JITTemplate(ExpressionStrings(eExprElementType + i)); 1775 int chars_written = snprintf(buffer[i], jit_max_expr_size, expr_cstr, context, *elem.element_ptr.get()); 1776 if (chars_written < 0) 1777 { 1778 if (log) 1779 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1780 return false; 1781 } 1782 else if (chars_written >= jit_max_expr_size) 1783 { 1784 if (log) 1785 log->Printf("%s - expression too long.", __FUNCTION__); 1786 return false; 1787 } 1788 1789 // Perform expression evaluation 1790 if (!EvalRSExpression(buffer[i], frame_ptr, &results[i])) 1791 return false; 1792 } 1793 1794 // Assign results to allocation members 1795 elem.type = static_cast<RenderScriptRuntime::Element::DataType>(results[0]); 1796 elem.type_kind = static_cast<RenderScriptRuntime::Element::DataKind>(results[1]); 1797 elem.type_vec_size = static_cast<uint32_t>(results[2]); 1798 elem.field_count = static_cast<uint32_t>(results[3]); 1799 1800 if (log) 1801 log->Printf("%s - data type %" PRIu32 ", pixel type %" PRIu32 ", vector size %" PRIu32 ", field count %" PRIu32, 1802 __FUNCTION__, *elem.type.get(), *elem.type_kind.get(), *elem.type_vec_size.get(), *elem.field_count.get()); 1803 1804 // If this Element has subelements then JIT rsaElementGetSubElements() for details about its fields 1805 if (*elem.field_count.get() > 0 && !JITSubelements(elem, context, frame_ptr)) 1806 return false; 1807 1808 return true; 1809 } 1810 1811 // JITs the RS runtime for information about the subelements/fields of a struct allocation 1812 // This is necessary for infering the struct type so we can pretty print the allocation's contents. 1813 // Returns true on success, false otherwise 1814 bool 1815 RenderScriptRuntime::JITSubelements(Element &elem, const lldb::addr_t context, StackFrame *frame_ptr) 1816 { 1817 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1818 1819 if (!elem.element_ptr.isValid() || !elem.field_count.isValid()) 1820 { 1821 if (log) 1822 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1823 return false; 1824 } 1825 1826 const short num_exprs = 3; 1827 assert(num_exprs == (eExprSubelementsArrSize - eExprSubelementsId + 1) && "Invalid number of expressions"); 1828 1829 char expr_buffer[jit_max_expr_size]; 1830 uint64_t results; 1831 1832 // Iterate over struct fields. 1833 const uint32_t field_count = *elem.field_count.get(); 1834 for (uint32_t field_index = 0; field_index < field_count; ++field_index) 1835 { 1836 Element child; 1837 for (uint32_t expr_index = 0; expr_index < num_exprs; ++expr_index) 1838 { 1839 const char *expr_cstr = JITTemplate(ExpressionStrings(eExprSubelementsId + expr_index)); 1840 int chars_written = snprintf(expr_buffer, jit_max_expr_size, expr_cstr, 1841 field_count, field_count, field_count, 1842 context, *elem.element_ptr.get(), field_count, field_index); 1843 if (chars_written < 0) 1844 { 1845 if (log) 1846 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1847 return false; 1848 } 1849 else if (chars_written >= jit_max_expr_size) 1850 { 1851 if (log) 1852 log->Printf("%s - expression too long.", __FUNCTION__); 1853 return false; 1854 } 1855 1856 // Perform expression evaluation 1857 if (!EvalRSExpression(expr_buffer, frame_ptr, &results)) 1858 return false; 1859 1860 if (log) 1861 log->Printf("%s - expr result 0x%" PRIx64 ".", __FUNCTION__, results); 1862 1863 switch (expr_index) 1864 { 1865 case 0: // Element* of child 1866 child.element_ptr = static_cast<addr_t>(results); 1867 break; 1868 case 1: // Name of child 1869 { 1870 lldb::addr_t address = static_cast<addr_t>(results); 1871 Error err; 1872 std::string name; 1873 GetProcess()->ReadCStringFromMemory(address, name, err); 1874 if (!err.Fail()) 1875 child.type_name = ConstString(name); 1876 else 1877 { 1878 if (log) 1879 log->Printf("%s - warning: Couldn't read field name.", __FUNCTION__); 1880 } 1881 break; 1882 } 1883 case 2: // Array size of child 1884 child.array_size = static_cast<uint32_t>(results); 1885 break; 1886 } 1887 } 1888 1889 // We need to recursively JIT each Element field of the struct since 1890 // structs can be nested inside structs. 1891 if (!JITElementPacked(child, context, frame_ptr)) 1892 return false; 1893 elem.children.push_back(child); 1894 } 1895 1896 // Try to infer the name of the struct type so we can pretty print the allocation contents. 1897 FindStructTypeName(elem, frame_ptr); 1898 1899 return true; 1900 } 1901 1902 // JITs the RS runtime for the address of the last element in the allocation. 1903 // The `elem_size` paramter represents the size of a single element, including padding. 1904 // Which is needed as an offset from the last element pointer. 1905 // Using this offset minus the starting address we can calculate the size of the allocation. 1906 // Returns true on success, false otherwise 1907 bool 1908 RenderScriptRuntime::JITAllocationSize(AllocationDetails *allocation, StackFrame *frame_ptr) 1909 { 1910 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1911 1912 if (!allocation->address.isValid() || !allocation->dimension.isValid() || !allocation->data_ptr.isValid() || 1913 !allocation->element.datum_size.isValid()) 1914 { 1915 if (log) 1916 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1917 return false; 1918 } 1919 1920 // Find dimensions 1921 uint32_t dim_x = allocation->dimension.get()->dim_1; 1922 uint32_t dim_y = allocation->dimension.get()->dim_2; 1923 uint32_t dim_z = allocation->dimension.get()->dim_3; 1924 1925 // Our plan of jitting the last element address doesn't seem to work for struct Allocations 1926 // Instead try to infer the size ourselves without any inter element padding. 1927 if (allocation->element.children.size() > 0) 1928 { 1929 if (dim_x == 0) dim_x = 1; 1930 if (dim_y == 0) dim_y = 1; 1931 if (dim_z == 0) dim_z = 1; 1932 1933 allocation->size = dim_x * dim_y * dim_z * *allocation->element.datum_size.get(); 1934 1935 if (log) 1936 log->Printf("%s - infered size of struct allocation %" PRIu32 ".", __FUNCTION__, 1937 *allocation->size.get()); 1938 return true; 1939 } 1940 1941 const char *expr_cstr = JITTemplate(eExprGetOffsetPtr); 1942 char buffer[jit_max_expr_size]; 1943 1944 // Calculate last element 1945 dim_x = dim_x == 0 ? 0 : dim_x - 1; 1946 dim_y = dim_y == 0 ? 0 : dim_y - 1; 1947 dim_z = dim_z == 0 ? 0 : dim_z - 1; 1948 1949 int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->address.get(), dim_x, dim_y, dim_z); 1950 if (chars_written < 0) 1951 { 1952 if (log) 1953 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1954 return false; 1955 } 1956 else if (chars_written >= jit_max_expr_size) 1957 { 1958 if (log) 1959 log->Printf("%s - expression too long.", __FUNCTION__); 1960 return false; 1961 } 1962 1963 uint64_t result = 0; 1964 if (!EvalRSExpression(buffer, frame_ptr, &result)) 1965 return false; 1966 1967 addr_t mem_ptr = static_cast<lldb::addr_t>(result); 1968 // Find pointer to last element and add on size of an element 1969 allocation->size = 1970 static_cast<uint32_t>(mem_ptr - *allocation->data_ptr.get()) + *allocation->element.datum_size.get(); 1971 1972 return true; 1973 } 1974 1975 // JITs the RS runtime for information about the stride between rows in the allocation. 1976 // This is done to detect padding, since allocated memory is 16-byte aligned. 1977 // Returns true on success, false otherwise 1978 bool 1979 RenderScriptRuntime::JITAllocationStride(AllocationDetails *allocation, StackFrame *frame_ptr) 1980 { 1981 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1982 1983 if (!allocation->address.isValid() || !allocation->data_ptr.isValid()) 1984 { 1985 if (log) 1986 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1987 return false; 1988 } 1989 1990 const char *expr_cstr = JITTemplate(eExprGetOffsetPtr); 1991 char buffer[jit_max_expr_size]; 1992 1993 int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->address.get(), 0, 1, 0); 1994 if (chars_written < 0) 1995 { 1996 if (log) 1997 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1998 return false; 1999 } 2000 else if (chars_written >= jit_max_expr_size) 2001 { 2002 if (log) 2003 log->Printf("%s - expression too long.", __FUNCTION__); 2004 return false; 2005 } 2006 2007 uint64_t result = 0; 2008 if (!EvalRSExpression(buffer, frame_ptr, &result)) 2009 return false; 2010 2011 addr_t mem_ptr = static_cast<lldb::addr_t>(result); 2012 allocation->stride = static_cast<uint32_t>(mem_ptr - *allocation->data_ptr.get()); 2013 2014 return true; 2015 } 2016 2017 // JIT all the current runtime info regarding an allocation 2018 bool 2019 RenderScriptRuntime::RefreshAllocation(AllocationDetails *allocation, StackFrame *frame_ptr) 2020 { 2021 // GetOffsetPointer() 2022 if (!JITDataPointer(allocation, frame_ptr)) 2023 return false; 2024 2025 // rsaAllocationGetType() 2026 if (!JITTypePointer(allocation, frame_ptr)) 2027 return false; 2028 2029 // rsaTypeGetNativeData() 2030 if (!JITTypePacked(allocation, frame_ptr)) 2031 return false; 2032 2033 // rsaElementGetNativeData() 2034 if (!JITElementPacked(allocation->element, *allocation->context.get(), frame_ptr)) 2035 return false; 2036 2037 // Sets the datum_size member in Element 2038 SetElementSize(allocation->element); 2039 2040 // Use GetOffsetPointer() to infer size of the allocation 2041 if (!JITAllocationSize(allocation, frame_ptr)) 2042 return false; 2043 2044 return true; 2045 } 2046 2047 // Function attempts to set the type_name member of the paramaterised Element object. 2048 // This string should be the name of the struct type the Element represents. 2049 // We need this string for pretty printing the Element to users. 2050 void 2051 RenderScriptRuntime::FindStructTypeName(Element &elem, StackFrame *frame_ptr) 2052 { 2053 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2054 2055 if (!elem.type_name.IsEmpty()) // Name already set 2056 return; 2057 else 2058 elem.type_name = Element::GetFallbackStructName(); // Default type name if we don't succeed 2059 2060 // Find all the global variables from the script rs modules 2061 VariableList variable_list; 2062 for (auto module_sp : m_rsmodules) 2063 module_sp->m_module->FindGlobalVariables(RegularExpression("."), true, UINT32_MAX, variable_list); 2064 2065 // Iterate over all the global variables looking for one with a matching type to the Element. 2066 // We make the assumption a match exists since there needs to be a global variable to reflect the 2067 // struct type back into java host code. 2068 for (uint32_t var_index = 0; var_index < variable_list.GetSize(); ++var_index) 2069 { 2070 const VariableSP var_sp(variable_list.GetVariableAtIndex(var_index)); 2071 if (!var_sp) 2072 continue; 2073 2074 ValueObjectSP valobj_sp = ValueObjectVariable::Create(frame_ptr, var_sp); 2075 if (!valobj_sp) 2076 continue; 2077 2078 // Find the number of variable fields. 2079 // If it has no fields, or more fields than our Element, then it can't be the struct we're looking for. 2080 // Don't check for equality since RS can add extra struct members for padding. 2081 size_t num_children = valobj_sp->GetNumChildren(); 2082 if (num_children > elem.children.size() || num_children == 0) 2083 continue; 2084 2085 // Iterate over children looking for members with matching field names. 2086 // If all the field names match, this is likely the struct we want. 2087 // 2088 // TODO: This could be made more robust by also checking children data sizes, or array size 2089 bool found = true; 2090 for (size_t child_index = 0; child_index < num_children; ++child_index) 2091 { 2092 ValueObjectSP child = valobj_sp->GetChildAtIndex(child_index, true); 2093 if (!child || (child->GetName() != elem.children[child_index].type_name)) 2094 { 2095 found = false; 2096 break; 2097 } 2098 } 2099 2100 // RS can add extra struct members for padding in the format '#rs_padding_[0-9]+' 2101 if (found && num_children < elem.children.size()) 2102 { 2103 const uint32_t size_diff = elem.children.size() - num_children; 2104 if (log) 2105 log->Printf("%s - %" PRIu32 " padding struct entries", __FUNCTION__, size_diff); 2106 2107 for (uint32_t padding_index = 0; padding_index < size_diff; ++padding_index) 2108 { 2109 const ConstString &name = elem.children[num_children + padding_index].type_name; 2110 if (strcmp(name.AsCString(), "#rs_padding") < 0) 2111 found = false; 2112 } 2113 } 2114 2115 // We've found a global var with matching type 2116 if (found) 2117 { 2118 // Dereference since our Element type isn't a pointer. 2119 if (valobj_sp->IsPointerType()) 2120 { 2121 Error err; 2122 ValueObjectSP deref_valobj = valobj_sp->Dereference(err); 2123 if (!err.Fail()) 2124 valobj_sp = deref_valobj; 2125 } 2126 2127 // Save name of variable in Element. 2128 elem.type_name = valobj_sp->GetTypeName(); 2129 if (log) 2130 log->Printf("%s - element name set to %s", __FUNCTION__, elem.type_name.AsCString()); 2131 2132 return; 2133 } 2134 } 2135 } 2136 2137 // Function sets the datum_size member of Element. Representing the size of a single instance including padding. 2138 // Assumes the relevant allocation information has already been jitted. 2139 void 2140 RenderScriptRuntime::SetElementSize(Element &elem) 2141 { 2142 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2143 const Element::DataType type = *elem.type.get(); 2144 assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && "Invalid allocation type"); 2145 2146 const uint32_t vec_size = *elem.type_vec_size.get(); 2147 uint32_t data_size = 0; 2148 uint32_t padding = 0; 2149 2150 // Element is of a struct type, calculate size recursively. 2151 if ((type == Element::RS_TYPE_NONE) && (elem.children.size() > 0)) 2152 { 2153 for (Element &child : elem.children) 2154 { 2155 SetElementSize(child); 2156 const uint32_t array_size = child.array_size.isValid() ? *child.array_size.get() : 1; 2157 data_size += *child.datum_size.get() * array_size; 2158 } 2159 } 2160 // These have been packed already 2161 else if (type == Element::RS_TYPE_UNSIGNED_5_6_5 || 2162 type == Element::RS_TYPE_UNSIGNED_5_5_5_1 || 2163 type == Element::RS_TYPE_UNSIGNED_4_4_4_4) 2164 { 2165 data_size = AllocationDetails::RSTypeToFormat[type][eElementSize]; 2166 } 2167 else if (type < Element::RS_TYPE_ELEMENT) 2168 { 2169 data_size = vec_size * AllocationDetails::RSTypeToFormat[type][eElementSize]; 2170 if (vec_size == 3) 2171 padding = AllocationDetails::RSTypeToFormat[type][eElementSize]; 2172 } 2173 else 2174 data_size = GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 2175 2176 elem.padding = padding; 2177 elem.datum_size = data_size + padding; 2178 if (log) 2179 log->Printf("%s - element size set to %" PRIu32, __FUNCTION__, data_size + padding); 2180 } 2181 2182 // Given an allocation, this function copies the allocation contents from device into a buffer on the heap. 2183 // Returning a shared pointer to the buffer containing the data. 2184 std::shared_ptr<uint8_t> 2185 RenderScriptRuntime::GetAllocationData(AllocationDetails *allocation, StackFrame *frame_ptr) 2186 { 2187 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2188 2189 // JIT all the allocation details 2190 if (allocation->shouldRefresh()) 2191 { 2192 if (log) 2193 log->Printf("%s - allocation details not calculated yet, jitting info", __FUNCTION__); 2194 2195 if (!RefreshAllocation(allocation, frame_ptr)) 2196 { 2197 if (log) 2198 log->Printf("%s - couldn't JIT allocation details", __FUNCTION__); 2199 return nullptr; 2200 } 2201 } 2202 2203 assert(allocation->data_ptr.isValid() && allocation->element.type.isValid() && 2204 allocation->element.type_vec_size.isValid() && allocation->size.isValid() && 2205 "Allocation information not available"); 2206 2207 // Allocate a buffer to copy data into 2208 const uint32_t size = *allocation->size.get(); 2209 std::shared_ptr<uint8_t> buffer(new uint8_t[size]); 2210 if (!buffer) 2211 { 2212 if (log) 2213 log->Printf("%s - couldn't allocate a %" PRIu32 " byte buffer", __FUNCTION__, size); 2214 return nullptr; 2215 } 2216 2217 // Read the inferior memory 2218 Error error; 2219 lldb::addr_t data_ptr = *allocation->data_ptr.get(); 2220 GetProcess()->ReadMemory(data_ptr, buffer.get(), size, error); 2221 if (error.Fail()) 2222 { 2223 if (log) 2224 log->Printf("%s - '%s' Couldn't read %" PRIu32 " bytes of allocation data from 0x%" PRIx64, 2225 __FUNCTION__, error.AsCString(), size, data_ptr); 2226 return nullptr; 2227 } 2228 2229 return buffer; 2230 } 2231 2232 // Function copies data from a binary file into an allocation. 2233 // There is a header at the start of the file, FileHeader, before the data content itself. 2234 // Information from this header is used to display warnings to the user about incompatabilities 2235 bool 2236 RenderScriptRuntime::LoadAllocation(Stream &strm, const uint32_t alloc_id, const char *filename, StackFrame *frame_ptr) 2237 { 2238 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2239 2240 // Find allocation with the given id 2241 AllocationDetails *alloc = FindAllocByID(strm, alloc_id); 2242 if (!alloc) 2243 return false; 2244 2245 if (log) 2246 log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__, *alloc->address.get()); 2247 2248 // JIT all the allocation details 2249 if (alloc->shouldRefresh()) 2250 { 2251 if (log) 2252 log->Printf("%s - allocation details not calculated yet, jitting info.", __FUNCTION__); 2253 2254 if (!RefreshAllocation(alloc, frame_ptr)) 2255 { 2256 if (log) 2257 log->Printf("%s - couldn't JIT allocation details", __FUNCTION__); 2258 return false; 2259 } 2260 } 2261 2262 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && alloc->element.type_vec_size.isValid() && 2263 alloc->size.isValid() && alloc->element.datum_size.isValid() && "Allocation information not available"); 2264 2265 // Check we can read from file 2266 FileSpec file(filename, true); 2267 if (!file.Exists()) 2268 { 2269 strm.Printf("Error: File %s does not exist", filename); 2270 strm.EOL(); 2271 return false; 2272 } 2273 2274 if (!file.Readable()) 2275 { 2276 strm.Printf("Error: File %s does not have readable permissions", filename); 2277 strm.EOL(); 2278 return false; 2279 } 2280 2281 // Read file into data buffer 2282 DataBufferSP data_sp(file.ReadFileContents()); 2283 2284 // Cast start of buffer to FileHeader and use pointer to read metadata 2285 void *file_buffer = data_sp->GetBytes(); 2286 if (file_buffer == nullptr || 2287 data_sp->GetByteSize() < (sizeof(AllocationDetails::FileHeader) + sizeof(AllocationDetails::ElementHeader))) 2288 { 2289 strm.Printf("Error: File %s does not contain enough data for header", filename); 2290 strm.EOL(); 2291 return false; 2292 } 2293 const AllocationDetails::FileHeader *file_header = static_cast<AllocationDetails::FileHeader *>(file_buffer); 2294 2295 // Check file starts with ascii characters "RSAD" 2296 if (memcmp(file_header->ident, "RSAD", 4)) 2297 { 2298 strm.Printf("Error: File doesn't contain identifier for an RS allocation dump. Are you sure this is the correct file?"); 2299 strm.EOL(); 2300 return false; 2301 } 2302 2303 // Look at the type of the root element in the header 2304 AllocationDetails::ElementHeader root_element_header; 2305 memcpy(&root_element_header, static_cast<uint8_t *>(file_buffer) + sizeof(AllocationDetails::FileHeader), 2306 sizeof(AllocationDetails::ElementHeader)); 2307 2308 if (log) 2309 log->Printf("%s - header type %" PRIu32 ", element size %" PRIu32, __FUNCTION__, 2310 root_element_header.type, root_element_header.element_size); 2311 2312 // Check if the target allocation and file both have the same number of bytes for an Element 2313 if (*alloc->element.datum_size.get() != root_element_header.element_size) 2314 { 2315 strm.Printf("Warning: Mismatched Element sizes - file %" PRIu32 " bytes, allocation %" PRIu32 " bytes", 2316 root_element_header.element_size, *alloc->element.datum_size.get()); 2317 strm.EOL(); 2318 } 2319 2320 // Check if the target allocation and file both have the same type 2321 const uint32_t alloc_type = static_cast<uint32_t>(*alloc->element.type.get()); 2322 const uint32_t file_type = root_element_header.type; 2323 2324 if (file_type > Element::RS_TYPE_FONT) 2325 { 2326 strm.Printf("Warning: File has unknown allocation type"); 2327 strm.EOL(); 2328 } 2329 else if (alloc_type != file_type) 2330 { 2331 // Enum value isn't monotonous, so doesn't always index RsDataTypeToString array 2332 uint32_t printable_target_type_index = alloc_type; 2333 uint32_t printable_head_type_index = file_type; 2334 if (alloc_type >= Element::RS_TYPE_ELEMENT && alloc_type <= Element::RS_TYPE_FONT) 2335 printable_target_type_index = static_cast<Element::DataType>((alloc_type - Element::RS_TYPE_ELEMENT) + 2336 Element::RS_TYPE_MATRIX_2X2 + 1); 2337 2338 if (file_type >= Element::RS_TYPE_ELEMENT && file_type <= Element::RS_TYPE_FONT) 2339 printable_head_type_index = static_cast<Element::DataType>((file_type - Element::RS_TYPE_ELEMENT) + 2340 Element::RS_TYPE_MATRIX_2X2 + 1); 2341 2342 const char *file_type_cstr = AllocationDetails::RsDataTypeToString[printable_head_type_index][0]; 2343 const char *target_type_cstr = AllocationDetails::RsDataTypeToString[printable_target_type_index][0]; 2344 2345 strm.Printf("Warning: Mismatched Types - file '%s' type, allocation '%s' type", file_type_cstr, 2346 target_type_cstr); 2347 strm.EOL(); 2348 } 2349 2350 // Advance buffer past header 2351 file_buffer = static_cast<uint8_t *>(file_buffer) + file_header->hdr_size; 2352 2353 // Calculate size of allocation data in file 2354 size_t length = data_sp->GetByteSize() - file_header->hdr_size; 2355 2356 // Check if the target allocation and file both have the same total data size. 2357 const uint32_t alloc_size = *alloc->size.get(); 2358 if (alloc_size != length) 2359 { 2360 strm.Printf("Warning: Mismatched allocation sizes - file 0x%" PRIx64 " bytes, allocation 0x%" PRIx32 " bytes", 2361 (uint64_t)length, alloc_size); 2362 strm.EOL(); 2363 length = alloc_size < length ? alloc_size : length; // Set length to copy to minimum 2364 } 2365 2366 // Copy file data from our buffer into the target allocation. 2367 lldb::addr_t alloc_data = *alloc->data_ptr.get(); 2368 Error error; 2369 size_t bytes_written = GetProcess()->WriteMemory(alloc_data, file_buffer, length, error); 2370 if (!error.Success() || bytes_written != length) 2371 { 2372 strm.Printf("Error: Couldn't write data to allocation %s", error.AsCString()); 2373 strm.EOL(); 2374 return false; 2375 } 2376 2377 strm.Printf("Contents of file '%s' read into allocation %" PRIu32, filename, alloc->id); 2378 strm.EOL(); 2379 2380 return true; 2381 } 2382 2383 // Function takes as parameters a byte buffer, which will eventually be written to file as the element header, 2384 // an offset into that buffer, and an Element that will be saved into the buffer at the parametrised offset. 2385 // Return value is the new offset after writing the element into the buffer. 2386 // Elements are saved to the file as the ElementHeader struct followed by offsets to the structs of all the element's 2387 // children. 2388 size_t 2389 RenderScriptRuntime::PopulateElementHeaders(const std::shared_ptr<uint8_t> header_buffer, size_t offset, 2390 const Element &elem) 2391 { 2392 // File struct for an element header with all the relevant details copied from elem. 2393 // We assume members are valid already. 2394 AllocationDetails::ElementHeader elem_header; 2395 elem_header.type = *elem.type.get(); 2396 elem_header.kind = *elem.type_kind.get(); 2397 elem_header.element_size = *elem.datum_size.get(); 2398 elem_header.vector_size = *elem.type_vec_size.get(); 2399 elem_header.array_size = elem.array_size.isValid() ? *elem.array_size.get() : 0; 2400 const size_t elem_header_size = sizeof(AllocationDetails::ElementHeader); 2401 2402 // Copy struct into buffer and advance offset 2403 // We assume that header_buffer has been checked for nullptr before this method is called 2404 memcpy(header_buffer.get() + offset, &elem_header, elem_header_size); 2405 offset += elem_header_size; 2406 2407 // Starting offset of child ElementHeader struct 2408 size_t child_offset = offset + ((elem.children.size() + 1) * sizeof(uint32_t)); 2409 for (const RenderScriptRuntime::Element &child : elem.children) 2410 { 2411 // Recursively populate the buffer with the element header structs of children. 2412 // Then save the offsets where they were set after the parent element header. 2413 memcpy(header_buffer.get() + offset, &child_offset, sizeof(uint32_t)); 2414 offset += sizeof(uint32_t); 2415 2416 child_offset = PopulateElementHeaders(header_buffer, child_offset, child); 2417 } 2418 2419 // Zero indicates no more children 2420 memset(header_buffer.get() + offset, 0, sizeof(uint32_t)); 2421 2422 return child_offset; 2423 } 2424 2425 // Given an Element object this function returns the total size needed in the file header to store the element's 2426 // details. 2427 // Taking into account the size of the element header struct, plus the offsets to all the element's children. 2428 // Function is recursive so that the size of all ancestors is taken into account. 2429 size_t 2430 RenderScriptRuntime::CalculateElementHeaderSize(const Element &elem) 2431 { 2432 size_t size = (elem.children.size() + 1) * sizeof(uint32_t); // Offsets to children plus zero terminator 2433 size += sizeof(AllocationDetails::ElementHeader); // Size of header struct with type details 2434 2435 // Calculate recursively for all descendants 2436 for (const Element &child : elem.children) 2437 size += CalculateElementHeaderSize(child); 2438 2439 return size; 2440 } 2441 2442 // Function copies allocation contents into a binary file. 2443 // This file can then be loaded later into a different allocation. 2444 // There is a header, FileHeader, before the allocation data containing meta-data. 2445 bool 2446 RenderScriptRuntime::SaveAllocation(Stream &strm, const uint32_t alloc_id, const char *filename, StackFrame *frame_ptr) 2447 { 2448 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2449 2450 // Find allocation with the given id 2451 AllocationDetails *alloc = FindAllocByID(strm, alloc_id); 2452 if (!alloc) 2453 return false; 2454 2455 if (log) 2456 log->Printf("%s - found allocation 0x%" PRIx64 ".", __FUNCTION__, *alloc->address.get()); 2457 2458 // JIT all the allocation details 2459 if (alloc->shouldRefresh()) 2460 { 2461 if (log) 2462 log->Printf("%s - allocation details not calculated yet, jitting info.", __FUNCTION__); 2463 2464 if (!RefreshAllocation(alloc, frame_ptr)) 2465 { 2466 if (log) 2467 log->Printf("%s - couldn't JIT allocation details.", __FUNCTION__); 2468 return false; 2469 } 2470 } 2471 2472 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && alloc->element.type_vec_size.isValid() && 2473 alloc->element.datum_size.get() && alloc->element.type_kind.isValid() && alloc->dimension.isValid() && 2474 "Allocation information not available"); 2475 2476 // Check we can create writable file 2477 FileSpec file_spec(filename, true); 2478 File file(file_spec, File::eOpenOptionWrite | File::eOpenOptionCanCreate | File::eOpenOptionTruncate); 2479 if (!file) 2480 { 2481 strm.Printf("Error: Failed to open '%s' for writing", filename); 2482 strm.EOL(); 2483 return false; 2484 } 2485 2486 // Read allocation into buffer of heap memory 2487 const std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr); 2488 if (!buffer) 2489 { 2490 strm.Printf("Error: Couldn't read allocation data into buffer"); 2491 strm.EOL(); 2492 return false; 2493 } 2494 2495 // Create the file header 2496 AllocationDetails::FileHeader head; 2497 memcpy(head.ident, "RSAD", 4); 2498 head.dims[0] = static_cast<uint32_t>(alloc->dimension.get()->dim_1); 2499 head.dims[1] = static_cast<uint32_t>(alloc->dimension.get()->dim_2); 2500 head.dims[2] = static_cast<uint32_t>(alloc->dimension.get()->dim_3); 2501 2502 const size_t element_header_size = CalculateElementHeaderSize(alloc->element); 2503 assert((sizeof(AllocationDetails::FileHeader) + element_header_size) < UINT16_MAX && "Element header too large"); 2504 head.hdr_size = static_cast<uint16_t>(sizeof(AllocationDetails::FileHeader) + element_header_size); 2505 2506 // Write the file header 2507 size_t num_bytes = sizeof(AllocationDetails::FileHeader); 2508 if (log) 2509 log->Printf("%s - writing File Header, 0x%" PRIx64 " bytes", __FUNCTION__, (uint64_t)num_bytes); 2510 2511 Error err = file.Write(&head, num_bytes); 2512 if (!err.Success()) 2513 { 2514 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), filename); 2515 strm.EOL(); 2516 return false; 2517 } 2518 2519 // Create the headers describing the element type of the allocation. 2520 std::shared_ptr<uint8_t> element_header_buffer(new uint8_t[element_header_size]); 2521 if (element_header_buffer == nullptr) 2522 { 2523 strm.Printf("Internal Error: Couldn't allocate %" PRIu64 " bytes on the heap", (uint64_t)element_header_size); 2524 strm.EOL(); 2525 return false; 2526 } 2527 2528 PopulateElementHeaders(element_header_buffer, 0, alloc->element); 2529 2530 // Write headers for allocation element type to file 2531 num_bytes = element_header_size; 2532 if (log) 2533 log->Printf("%s - writing element headers, 0x%" PRIx64 " bytes.", __FUNCTION__, (uint64_t)num_bytes); 2534 2535 err = file.Write(element_header_buffer.get(), num_bytes); 2536 if (!err.Success()) 2537 { 2538 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), filename); 2539 strm.EOL(); 2540 return false; 2541 } 2542 2543 // Write allocation data to file 2544 num_bytes = static_cast<size_t>(*alloc->size.get()); 2545 if (log) 2546 log->Printf("%s - writing 0x%" PRIx64 " bytes", __FUNCTION__, (uint64_t)num_bytes); 2547 2548 err = file.Write(buffer.get(), num_bytes); 2549 if (!err.Success()) 2550 { 2551 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), filename); 2552 strm.EOL(); 2553 return false; 2554 } 2555 2556 strm.Printf("Allocation written to file '%s'", filename); 2557 strm.EOL(); 2558 return true; 2559 } 2560 2561 bool 2562 RenderScriptRuntime::LoadModule(const lldb::ModuleSP &module_sp) 2563 { 2564 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2565 2566 if (module_sp) 2567 { 2568 for (const auto &rs_module : m_rsmodules) 2569 { 2570 if (rs_module->m_module == module_sp) 2571 { 2572 // Check if the user has enabled automatically breaking on 2573 // all RS kernels. 2574 if (m_breakAllKernels) 2575 BreakOnModuleKernels(rs_module); 2576 2577 return false; 2578 } 2579 } 2580 bool module_loaded = false; 2581 switch (GetModuleKind(module_sp)) 2582 { 2583 case eModuleKindKernelObj: 2584 { 2585 RSModuleDescriptorSP module_desc; 2586 module_desc.reset(new RSModuleDescriptor(module_sp)); 2587 if (module_desc->ParseRSInfo()) 2588 { 2589 m_rsmodules.push_back(module_desc); 2590 module_loaded = true; 2591 } 2592 if (module_loaded) 2593 { 2594 FixupScriptDetails(module_desc); 2595 } 2596 break; 2597 } 2598 case eModuleKindDriver: 2599 { 2600 if (!m_libRSDriver) 2601 { 2602 m_libRSDriver = module_sp; 2603 LoadRuntimeHooks(m_libRSDriver, RenderScriptRuntime::eModuleKindDriver); 2604 } 2605 break; 2606 } 2607 case eModuleKindImpl: 2608 { 2609 m_libRSCpuRef = module_sp; 2610 break; 2611 } 2612 case eModuleKindLibRS: 2613 { 2614 if (!m_libRS) 2615 { 2616 m_libRS = module_sp; 2617 static ConstString gDbgPresentStr("gDebuggerPresent"); 2618 const Symbol *debug_present = 2619 m_libRS->FindFirstSymbolWithNameAndType(gDbgPresentStr, eSymbolTypeData); 2620 if (debug_present) 2621 { 2622 Error error; 2623 uint32_t flag = 0x00000001U; 2624 Target &target = GetProcess()->GetTarget(); 2625 addr_t addr = debug_present->GetLoadAddress(&target); 2626 GetProcess()->WriteMemory(addr, &flag, sizeof(flag), error); 2627 if (error.Success()) 2628 { 2629 if (log) 2630 log->Printf("%s - debugger present flag set on debugee.", __FUNCTION__); 2631 2632 m_debuggerPresentFlagged = true; 2633 } 2634 else if (log) 2635 { 2636 log->Printf("%s - error writing debugger present flags '%s' ", __FUNCTION__, 2637 error.AsCString()); 2638 } 2639 } 2640 else if (log) 2641 { 2642 log->Printf("%s - error writing debugger present flags - symbol not found", __FUNCTION__); 2643 } 2644 } 2645 break; 2646 } 2647 default: 2648 break; 2649 } 2650 if (module_loaded) 2651 Update(); 2652 return module_loaded; 2653 } 2654 return false; 2655 } 2656 2657 void 2658 RenderScriptRuntime::Update() 2659 { 2660 if (m_rsmodules.size() > 0) 2661 { 2662 if (!m_initiated) 2663 { 2664 Initiate(); 2665 } 2666 } 2667 } 2668 2669 // The maximum line length of an .rs.info packet 2670 #define MAXLINE 500 2671 #define STRINGIFY(x) #x 2672 #define MAXLINESTR_(x) "%" STRINGIFY(x) "s" 2673 #define MAXLINESTR MAXLINESTR_(MAXLINE) 2674 2675 // The .rs.info symbol in renderscript modules contains a string which needs to be parsed. 2676 // The string is basic and is parsed on a line by line basis. 2677 bool 2678 RSModuleDescriptor::ParseRSInfo() 2679 { 2680 assert(m_module); 2681 const Symbol *info_sym = m_module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), eSymbolTypeData); 2682 if (!info_sym) 2683 return false; 2684 2685 const addr_t addr = info_sym->GetAddressRef().GetFileAddress(); 2686 if (addr == LLDB_INVALID_ADDRESS) 2687 return false; 2688 2689 const addr_t size = info_sym->GetByteSize(); 2690 const FileSpec fs = m_module->GetFileSpec(); 2691 2692 const DataBufferSP buffer = fs.ReadFileContents(addr, size); 2693 if (!buffer) 2694 return false; 2695 2696 // split rs.info. contents into lines 2697 std::vector<std::string> info_lines; 2698 { 2699 const std::string info((const char *)buffer->GetBytes()); 2700 for (size_t tail = 0; tail < info.size();) 2701 { 2702 // find next new line or end of string 2703 size_t head = info.find('\n', tail); 2704 head = (head == std::string::npos) ? info.size() : head; 2705 std::string line = info.substr(tail, head - tail); 2706 // add to line list 2707 info_lines.push_back(line); 2708 tail = head + 1; 2709 } 2710 } 2711 2712 std::array<char, MAXLINE> name{{'\0'}}; 2713 std::array<char, MAXLINE> value{{'\0'}}; 2714 2715 // parse all text lines of .rs.info 2716 for (auto line = info_lines.begin(); line != info_lines.end(); ++line) 2717 { 2718 uint32_t numDefns = 0; 2719 if (sscanf(line->c_str(), "exportVarCount: %" PRIu32 "", &numDefns) == 1) 2720 { 2721 while (numDefns--) 2722 m_globals.push_back(RSGlobalDescriptor(this, (++line)->c_str())); 2723 } 2724 else if (sscanf(line->c_str(), "exportForEachCount: %" PRIu32 "", &numDefns) == 1) 2725 { 2726 while (numDefns--) 2727 { 2728 uint32_t slot = 0; 2729 name[0] = '\0'; 2730 static const char *fmt_s = "%" PRIu32 " - " MAXLINESTR; 2731 if (sscanf((++line)->c_str(), fmt_s, &slot, name.data()) == 2) 2732 { 2733 if (name[0] != '\0') 2734 m_kernels.push_back(RSKernelDescriptor(this, name.data(), slot)); 2735 } 2736 } 2737 } 2738 else if (sscanf(line->c_str(), "pragmaCount: %" PRIu32 "", &numDefns) == 1) 2739 { 2740 while (numDefns--) 2741 { 2742 name[0] = value[0] = '\0'; 2743 static const char *fmt_s = MAXLINESTR " - " MAXLINESTR; 2744 if (sscanf((++line)->c_str(), fmt_s, name.data(), value.data()) != 0) 2745 { 2746 if (name[0] != '\0') 2747 m_pragmas[std::string(name.data())] = value.data(); 2748 } 2749 } 2750 } 2751 else 2752 { 2753 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2754 if (log) 2755 { 2756 log->Printf("%s - skipping .rs.info field '%s'", __FUNCTION__, line->c_str()); 2757 } 2758 } 2759 } 2760 2761 // 'root' kernel should always be present 2762 return m_kernels.size() > 0; 2763 } 2764 2765 void 2766 RenderScriptRuntime::Status(Stream &strm) const 2767 { 2768 if (m_libRS) 2769 { 2770 strm.Printf("Runtime Library discovered."); 2771 strm.EOL(); 2772 } 2773 if (m_libRSDriver) 2774 { 2775 strm.Printf("Runtime Driver discovered."); 2776 strm.EOL(); 2777 } 2778 if (m_libRSCpuRef) 2779 { 2780 strm.Printf("CPU Reference Implementation discovered."); 2781 strm.EOL(); 2782 } 2783 2784 if (m_runtimeHooks.size()) 2785 { 2786 strm.Printf("Runtime functions hooked:"); 2787 strm.EOL(); 2788 for (auto b : m_runtimeHooks) 2789 { 2790 strm.Indent(b.second->defn->name); 2791 strm.EOL(); 2792 } 2793 } 2794 else 2795 { 2796 strm.Printf("Runtime is not hooked."); 2797 strm.EOL(); 2798 } 2799 } 2800 2801 void 2802 RenderScriptRuntime::DumpContexts(Stream &strm) const 2803 { 2804 strm.Printf("Inferred RenderScript Contexts:"); 2805 strm.EOL(); 2806 strm.IndentMore(); 2807 2808 std::map<addr_t, uint64_t> contextReferences; 2809 2810 // Iterate over all of the currently discovered scripts. 2811 // Note: We cant push or pop from m_scripts inside this loop or it may invalidate script. 2812 for (const auto &script : m_scripts) 2813 { 2814 if (!script->context.isValid()) 2815 continue; 2816 lldb::addr_t context = *script->context; 2817 2818 if (contextReferences.find(context) != contextReferences.end()) 2819 { 2820 contextReferences[context]++; 2821 } 2822 else 2823 { 2824 contextReferences[context] = 1; 2825 } 2826 } 2827 2828 for (const auto &cRef : contextReferences) 2829 { 2830 strm.Printf("Context 0x%" PRIx64 ": %" PRIu64 " script instances", cRef.first, cRef.second); 2831 strm.EOL(); 2832 } 2833 strm.IndentLess(); 2834 } 2835 2836 void 2837 RenderScriptRuntime::DumpKernels(Stream &strm) const 2838 { 2839 strm.Printf("RenderScript Kernels:"); 2840 strm.EOL(); 2841 strm.IndentMore(); 2842 for (const auto &module : m_rsmodules) 2843 { 2844 strm.Printf("Resource '%s':", module->m_resname.c_str()); 2845 strm.EOL(); 2846 for (const auto &kernel : module->m_kernels) 2847 { 2848 strm.Indent(kernel.m_name.AsCString()); 2849 strm.EOL(); 2850 } 2851 } 2852 strm.IndentLess(); 2853 } 2854 2855 RenderScriptRuntime::AllocationDetails * 2856 RenderScriptRuntime::FindAllocByID(Stream &strm, const uint32_t alloc_id) 2857 { 2858 AllocationDetails *alloc = nullptr; 2859 2860 // See if we can find allocation using id as an index; 2861 if (alloc_id <= m_allocations.size() && alloc_id != 0 && m_allocations[alloc_id - 1]->id == alloc_id) 2862 { 2863 alloc = m_allocations[alloc_id - 1].get(); 2864 return alloc; 2865 } 2866 2867 // Fallback to searching 2868 for (const auto &a : m_allocations) 2869 { 2870 if (a->id == alloc_id) 2871 { 2872 alloc = a.get(); 2873 break; 2874 } 2875 } 2876 2877 if (alloc == nullptr) 2878 { 2879 strm.Printf("Error: Couldn't find allocation with id matching %" PRIu32, alloc_id); 2880 strm.EOL(); 2881 } 2882 2883 return alloc; 2884 } 2885 2886 // Prints the contents of an allocation to the output stream, which may be a file 2887 bool 2888 RenderScriptRuntime::DumpAllocation(Stream &strm, StackFrame *frame_ptr, const uint32_t id) 2889 { 2890 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2891 2892 // Check we can find the desired allocation 2893 AllocationDetails *alloc = FindAllocByID(strm, id); 2894 if (!alloc) 2895 return false; // FindAllocByID() will print error message for us here 2896 2897 if (log) 2898 log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__, *alloc->address.get()); 2899 2900 // Check we have information about the allocation, if not calculate it 2901 if (alloc->shouldRefresh()) 2902 { 2903 if (log) 2904 log->Printf("%s - allocation details not calculated yet, jitting info.", __FUNCTION__); 2905 2906 // JIT all the allocation information 2907 if (!RefreshAllocation(alloc, frame_ptr)) 2908 { 2909 strm.Printf("Error: Couldn't JIT allocation details"); 2910 strm.EOL(); 2911 return false; 2912 } 2913 } 2914 2915 // Establish format and size of each data element 2916 const uint32_t vec_size = *alloc->element.type_vec_size.get(); 2917 const Element::DataType type = *alloc->element.type.get(); 2918 2919 assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && "Invalid allocation type"); 2920 2921 lldb::Format format; 2922 if (type >= Element::RS_TYPE_ELEMENT) 2923 format = eFormatHex; 2924 else 2925 format = vec_size == 1 ? static_cast<lldb::Format>(AllocationDetails::RSTypeToFormat[type][eFormatSingle]) 2926 : static_cast<lldb::Format>(AllocationDetails::RSTypeToFormat[type][eFormatVector]); 2927 2928 const uint32_t data_size = *alloc->element.datum_size.get(); 2929 2930 if (log) 2931 log->Printf("%s - element size %" PRIu32 " bytes, including padding", __FUNCTION__, data_size); 2932 2933 // Allocate a buffer to copy data into 2934 std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr); 2935 if (!buffer) 2936 { 2937 strm.Printf("Error: Couldn't read allocation data"); 2938 strm.EOL(); 2939 return false; 2940 } 2941 2942 // Calculate stride between rows as there may be padding at end of rows since 2943 // allocated memory is 16-byte aligned 2944 if (!alloc->stride.isValid()) 2945 { 2946 if (alloc->dimension.get()->dim_2 == 0) // We only have one dimension 2947 alloc->stride = 0; 2948 else if (!JITAllocationStride(alloc, frame_ptr)) 2949 { 2950 strm.Printf("Error: Couldn't calculate allocation row stride"); 2951 strm.EOL(); 2952 return false; 2953 } 2954 } 2955 const uint32_t stride = *alloc->stride.get(); 2956 const uint32_t size = *alloc->size.get(); // Size of whole allocation 2957 const uint32_t padding = alloc->element.padding.isValid() ? *alloc->element.padding.get() : 0; 2958 if (log) 2959 log->Printf("%s - stride %" PRIu32 " bytes, size %" PRIu32 " bytes, padding %" PRIu32, 2960 __FUNCTION__, stride, size, padding); 2961 2962 // Find dimensions used to index loops, so need to be non-zero 2963 uint32_t dim_x = alloc->dimension.get()->dim_1; 2964 dim_x = dim_x == 0 ? 1 : dim_x; 2965 2966 uint32_t dim_y = alloc->dimension.get()->dim_2; 2967 dim_y = dim_y == 0 ? 1 : dim_y; 2968 2969 uint32_t dim_z = alloc->dimension.get()->dim_3; 2970 dim_z = dim_z == 0 ? 1 : dim_z; 2971 2972 // Use data extractor to format output 2973 const uint32_t archByteSize = GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 2974 DataExtractor alloc_data(buffer.get(), size, GetProcess()->GetByteOrder(), archByteSize); 2975 2976 uint32_t offset = 0; // Offset in buffer to next element to be printed 2977 uint32_t prev_row = 0; // Offset to the start of the previous row 2978 2979 // Iterate over allocation dimensions, printing results to user 2980 strm.Printf("Data (X, Y, Z):"); 2981 for (uint32_t z = 0; z < dim_z; ++z) 2982 { 2983 for (uint32_t y = 0; y < dim_y; ++y) 2984 { 2985 // Use stride to index start of next row. 2986 if (!(y == 0 && z == 0)) 2987 offset = prev_row + stride; 2988 prev_row = offset; 2989 2990 // Print each element in the row individually 2991 for (uint32_t x = 0; x < dim_x; ++x) 2992 { 2993 strm.Printf("\n(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ") = ", x, y, z); 2994 if ((type == Element::RS_TYPE_NONE) && (alloc->element.children.size() > 0) && 2995 (alloc->element.type_name != Element::GetFallbackStructName())) 2996 { 2997 // Here we are dumping an Element of struct type. 2998 // This is done using expression evaluation with the name of the struct type and pointer to element. 2999 3000 // Don't print the name of the resulting expression, since this will be '$[0-9]+' 3001 DumpValueObjectOptions expr_options; 3002 expr_options.SetHideName(true); 3003 3004 // Setup expression as derefrencing a pointer cast to element address. 3005 char expr_char_buffer[jit_max_expr_size]; 3006 int chars_written = snprintf(expr_char_buffer, jit_max_expr_size, "*(%s*) 0x%" PRIx64, 3007 alloc->element.type_name.AsCString(), *alloc->data_ptr.get() + offset); 3008 3009 if (chars_written < 0 || chars_written >= jit_max_expr_size) 3010 { 3011 if (log) 3012 log->Printf("%s - error in snprintf().", __FUNCTION__); 3013 continue; 3014 } 3015 3016 // Evaluate expression 3017 ValueObjectSP expr_result; 3018 GetProcess()->GetTarget().EvaluateExpression(expr_char_buffer, frame_ptr, expr_result); 3019 3020 // Print the results to our stream. 3021 expr_result->Dump(strm, expr_options); 3022 } 3023 else 3024 { 3025 alloc_data.Dump(&strm, offset, format, data_size - padding, 1, 1, LLDB_INVALID_ADDRESS, 0, 0); 3026 } 3027 offset += data_size; 3028 } 3029 } 3030 } 3031 strm.EOL(); 3032 3033 return true; 3034 } 3035 3036 // Function recalculates all our cached information about allocations by jitting the 3037 // RS runtime regarding each allocation we know about. 3038 // Returns true if all allocations could be recomputed, false otherwise. 3039 bool 3040 RenderScriptRuntime::RecomputeAllAllocations(Stream &strm, StackFrame *frame_ptr) 3041 { 3042 bool success = true; 3043 for (auto &alloc : m_allocations) 3044 { 3045 // JIT current allocation information 3046 if (!RefreshAllocation(alloc.get(), frame_ptr)) 3047 { 3048 strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32 "\n", alloc->id); 3049 success = false; 3050 } 3051 } 3052 3053 if (success) 3054 strm.Printf("All allocations successfully recomputed"); 3055 strm.EOL(); 3056 3057 return success; 3058 } 3059 3060 // Prints information regarding currently loaded allocations. 3061 // These details are gathered by jitting the runtime, which has as latency. 3062 // Index parameter specifies a single allocation ID to print, or a zero value to print them all 3063 void 3064 RenderScriptRuntime::ListAllocations(Stream &strm, StackFrame *frame_ptr, const uint32_t index) 3065 { 3066 strm.Printf("RenderScript Allocations:"); 3067 strm.EOL(); 3068 strm.IndentMore(); 3069 3070 for (auto &alloc : m_allocations) 3071 { 3072 // index will only be zero if we want to print all allocations 3073 if (index != 0 && index != alloc->id) 3074 continue; 3075 3076 // JIT current allocation information 3077 if (alloc->shouldRefresh() && !RefreshAllocation(alloc.get(), frame_ptr)) 3078 { 3079 strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32, alloc->id); 3080 strm.EOL(); 3081 continue; 3082 } 3083 3084 strm.Printf("%" PRIu32 ":", alloc->id); 3085 strm.EOL(); 3086 strm.IndentMore(); 3087 3088 strm.Indent("Context: "); 3089 if (!alloc->context.isValid()) 3090 strm.Printf("unknown\n"); 3091 else 3092 strm.Printf("0x%" PRIx64 "\n", *alloc->context.get()); 3093 3094 strm.Indent("Address: "); 3095 if (!alloc->address.isValid()) 3096 strm.Printf("unknown\n"); 3097 else 3098 strm.Printf("0x%" PRIx64 "\n", *alloc->address.get()); 3099 3100 strm.Indent("Data pointer: "); 3101 if (!alloc->data_ptr.isValid()) 3102 strm.Printf("unknown\n"); 3103 else 3104 strm.Printf("0x%" PRIx64 "\n", *alloc->data_ptr.get()); 3105 3106 strm.Indent("Dimensions: "); 3107 if (!alloc->dimension.isValid()) 3108 strm.Printf("unknown\n"); 3109 else 3110 strm.Printf("(%" PRId32 ", %" PRId32 ", %" PRId32 ")\n", 3111 alloc->dimension.get()->dim_1, alloc->dimension.get()->dim_2, alloc->dimension.get()->dim_3); 3112 3113 strm.Indent("Data Type: "); 3114 if (!alloc->element.type.isValid() || !alloc->element.type_vec_size.isValid()) 3115 strm.Printf("unknown\n"); 3116 else 3117 { 3118 const int vector_size = *alloc->element.type_vec_size.get(); 3119 Element::DataType type = *alloc->element.type.get(); 3120 3121 if (!alloc->element.type_name.IsEmpty()) 3122 strm.Printf("%s\n", alloc->element.type_name.AsCString()); 3123 else 3124 { 3125 // Enum value isn't monotonous, so doesn't always index RsDataTypeToString array 3126 if (type >= Element::RS_TYPE_ELEMENT && type <= Element::RS_TYPE_FONT) 3127 type = static_cast<Element::DataType>((type - Element::RS_TYPE_ELEMENT) + 3128 Element::RS_TYPE_MATRIX_2X2 + 1); 3129 3130 if (type >= (sizeof(AllocationDetails::RsDataTypeToString) / 3131 sizeof(AllocationDetails::RsDataTypeToString[0])) || 3132 vector_size > 4 || vector_size < 1) 3133 strm.Printf("invalid type\n"); 3134 else 3135 strm.Printf("%s\n", AllocationDetails::RsDataTypeToString[static_cast<uint32_t>(type)] 3136 [vector_size - 1]); 3137 } 3138 } 3139 3140 strm.Indent("Data Kind: "); 3141 if (!alloc->element.type_kind.isValid()) 3142 strm.Printf("unknown\n"); 3143 else 3144 { 3145 const Element::DataKind kind = *alloc->element.type_kind.get(); 3146 if (kind < Element::RS_KIND_USER || kind > Element::RS_KIND_PIXEL_YUV) 3147 strm.Printf("invalid kind\n"); 3148 else 3149 strm.Printf("%s\n", AllocationDetails::RsDataKindToString[static_cast<uint32_t>(kind)]); 3150 } 3151 3152 strm.EOL(); 3153 strm.IndentLess(); 3154 } 3155 strm.IndentLess(); 3156 } 3157 3158 // Set breakpoints on every kernel found in RS module 3159 void 3160 RenderScriptRuntime::BreakOnModuleKernels(const RSModuleDescriptorSP rsmodule_sp) 3161 { 3162 for (const auto &kernel : rsmodule_sp->m_kernels) 3163 { 3164 // Don't set breakpoint on 'root' kernel 3165 if (strcmp(kernel.m_name.AsCString(), "root") == 0) 3166 continue; 3167 3168 CreateKernelBreakpoint(kernel.m_name); 3169 } 3170 } 3171 3172 // Method is internally called by the 'kernel breakpoint all' command to 3173 // enable or disable breaking on all kernels. 3174 // 3175 // When do_break is true we want to enable this functionality. 3176 // When do_break is false we want to disable it. 3177 void 3178 RenderScriptRuntime::SetBreakAllKernels(bool do_break, TargetSP target) 3179 { 3180 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3181 3182 InitSearchFilter(target); 3183 3184 // Set breakpoints on all the kernels 3185 if (do_break && !m_breakAllKernels) 3186 { 3187 m_breakAllKernels = true; 3188 3189 for (const auto &module : m_rsmodules) 3190 BreakOnModuleKernels(module); 3191 3192 if (log) 3193 log->Printf("%s(True) - breakpoints set on all currently loaded kernels.", __FUNCTION__); 3194 } 3195 else if (!do_break && m_breakAllKernels) // Breakpoints won't be set on any new kernels. 3196 { 3197 m_breakAllKernels = false; 3198 3199 if (log) 3200 log->Printf("%s(False) - breakpoints no longer automatically set.", __FUNCTION__); 3201 } 3202 } 3203 3204 // Given the name of a kernel this function creates a breakpoint using our 3205 // own breakpoint resolver, and returns the Breakpoint shared pointer. 3206 BreakpointSP 3207 RenderScriptRuntime::CreateKernelBreakpoint(const ConstString &name) 3208 { 3209 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3210 3211 if (!m_filtersp) 3212 { 3213 if (log) 3214 log->Printf("%s - error, no breakpoint search filter set.", __FUNCTION__); 3215 return nullptr; 3216 } 3217 3218 BreakpointResolverSP resolver_sp(new RSBreakpointResolver(nullptr, name)); 3219 BreakpointSP bp = GetProcess()->GetTarget().CreateBreakpoint(m_filtersp, resolver_sp, false, false, false); 3220 3221 // Give RS breakpoints a specific name, so the user can manipulate them as a group. 3222 Error err; 3223 if (!bp->AddName("RenderScriptKernel", err) && log) 3224 log->Printf("%s - error setting break name, '%s'.", __FUNCTION__, err.AsCString()); 3225 3226 return bp; 3227 } 3228 3229 // Given an expression for a variable this function tries to calculate the variable's value. 3230 // If this is possible it returns true and sets the uint64_t parameter to the variables unsigned value. 3231 // Otherwise function returns false. 3232 bool 3233 RenderScriptRuntime::GetFrameVarAsUnsigned(const StackFrameSP frame_sp, const char *var_name, uint64_t &val) 3234 { 3235 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3236 Error error; 3237 VariableSP var_sp; 3238 3239 // Find variable in stack frame 3240 ValueObjectSP value_sp(frame_sp->GetValueForVariableExpressionPath( 3241 var_name, eNoDynamicValues, 3242 StackFrame::eExpressionPathOptionCheckPtrVsMember | StackFrame::eExpressionPathOptionsAllowDirectIVarAccess, 3243 var_sp, error)); 3244 if (!error.Success()) 3245 { 3246 if (log) 3247 log->Printf("%s - error, couldn't find '%s' in frame", __FUNCTION__, var_name); 3248 return false; 3249 } 3250 3251 // Find the uint32_t value for the variable 3252 bool success = false; 3253 val = value_sp->GetValueAsUnsigned(0, &success); 3254 if (!success) 3255 { 3256 if (log) 3257 log->Printf("%s - error, couldn't parse '%s' as an uint32_t.", __FUNCTION__, var_name); 3258 return false; 3259 } 3260 3261 return true; 3262 } 3263 3264 // Function attempts to find the current coordinate of a kernel invocation by investigating the 3265 // values of frame variables in the .expand function. These coordinates are returned via the coord 3266 // array reference parameter. Returns true if the coordinates could be found, and false otherwise. 3267 bool 3268 RenderScriptRuntime::GetKernelCoordinate(RSCoordinate &coord, Thread *thread_ptr) 3269 { 3270 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3271 3272 if (!thread_ptr) 3273 { 3274 if (log) 3275 log->Printf("%s - Error, No thread pointer", __FUNCTION__); 3276 3277 return false; 3278 } 3279 3280 // Walk the call stack looking for a function whose name has the suffix '.expand' 3281 // and contains the variables we're looking for. 3282 for (uint32_t i = 0; i < thread_ptr->GetStackFrameCount(); ++i) 3283 { 3284 if (!thread_ptr->SetSelectedFrameByIndex(i)) 3285 continue; 3286 3287 StackFrameSP frame_sp = thread_ptr->GetSelectedFrame(); 3288 if (!frame_sp) 3289 continue; 3290 3291 // Find the function name 3292 const SymbolContext sym_ctx = frame_sp->GetSymbolContext(false); 3293 const char *func_name_cstr = sym_ctx.GetFunctionName().AsCString(); 3294 if (!func_name_cstr) 3295 continue; 3296 3297 if (log) 3298 log->Printf("%s - Inspecting function '%s'", __FUNCTION__, func_name_cstr); 3299 3300 // Check if function name has .expand suffix 3301 std::string func_name(func_name_cstr); 3302 const int length_difference = func_name.length() - RenderScriptRuntime::s_runtimeExpandSuffix.length(); 3303 if (length_difference <= 0) 3304 continue; 3305 3306 const int32_t has_expand_suffix = func_name.compare(length_difference, 3307 RenderScriptRuntime::s_runtimeExpandSuffix.length(), 3308 RenderScriptRuntime::s_runtimeExpandSuffix); 3309 3310 if (has_expand_suffix != 0) 3311 continue; 3312 3313 if (log) 3314 log->Printf("%s - Found .expand function '%s'", __FUNCTION__, func_name_cstr); 3315 3316 // Get values for variables in .expand frame that tell us the current kernel invocation 3317 bool found_coord_variables = true; 3318 assert(RenderScriptRuntime::s_runtimeCoordVars.size() == coord.size()); 3319 3320 for (uint32_t i = 0; i < coord.size(); ++i) 3321 { 3322 uint64_t value = 0; 3323 if (!GetFrameVarAsUnsigned(frame_sp, RenderScriptRuntime::s_runtimeCoordVars[i], value)) 3324 { 3325 found_coord_variables = false; 3326 break; 3327 } 3328 coord[i] = value; 3329 } 3330 3331 if (found_coord_variables) 3332 return true; 3333 } 3334 return false; 3335 } 3336 3337 // Callback when a kernel breakpoint hits and we're looking for a specific coordinate. 3338 // Baton parameter contains a pointer to the target coordinate we want to break on. 3339 // Function then checks the .expand frame for the current coordinate and breaks to user if it matches. 3340 // Parameter 'break_id' is the id of the Breakpoint which made the callback. 3341 // Parameter 'break_loc_id' is the id for the BreakpointLocation which was hit, 3342 // a single logical breakpoint can have multiple addresses. 3343 bool 3344 RenderScriptRuntime::KernelBreakpointHit(void *baton, StoppointCallbackContext *ctx, user_id_t break_id, 3345 user_id_t break_loc_id) 3346 { 3347 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3348 3349 assert(baton && "Error: null baton in conditional kernel breakpoint callback"); 3350 3351 // Coordinate we want to stop on 3352 const uint32_t *target_coord = static_cast<const uint32_t *>(baton); 3353 3354 if (log) 3355 log->Printf("%s - Break ID %" PRIu64 ", (%" PRIu32 ", %" PRIu32 ", %" PRIu32 ")", __FUNCTION__, break_id, 3356 target_coord[0], target_coord[1], target_coord[2]); 3357 3358 // Select current thread 3359 ExecutionContext context(ctx->exe_ctx_ref); 3360 Thread *thread_ptr = context.GetThreadPtr(); 3361 assert(thread_ptr && "Null thread pointer"); 3362 3363 // Find current kernel invocation from .expand frame variables 3364 RSCoordinate current_coord{}; // Zero initialise array 3365 if (!GetKernelCoordinate(current_coord, thread_ptr)) 3366 { 3367 if (log) 3368 log->Printf("%s - Error, couldn't select .expand stack frame", __FUNCTION__); 3369 return false; 3370 } 3371 3372 if (log) 3373 log->Printf("%s - (%" PRIu32 ",%" PRIu32 ",%" PRIu32 ")", __FUNCTION__, current_coord[0], current_coord[1], 3374 current_coord[2]); 3375 3376 // Check if the current kernel invocation coordinate matches our target coordinate 3377 if (current_coord[0] == target_coord[0] && 3378 current_coord[1] == target_coord[1] && 3379 current_coord[2] == target_coord[2]) 3380 { 3381 if (log) 3382 log->Printf("%s, BREAKING (%" PRIu32 ",%" PRIu32 ",%" PRIu32 ")", __FUNCTION__, current_coord[0], 3383 current_coord[1], current_coord[2]); 3384 3385 BreakpointSP breakpoint_sp = context.GetTargetPtr()->GetBreakpointByID(break_id); 3386 assert(breakpoint_sp != nullptr && "Error: Couldn't find breakpoint matching break id for callback"); 3387 breakpoint_sp->SetEnabled(false); // Optimise since conditional breakpoint should only be hit once. 3388 return true; 3389 } 3390 3391 // No match on coordinate 3392 return false; 3393 } 3394 3395 // Tries to set a breakpoint on the start of a kernel, resolved using the kernel name. 3396 // Argument 'coords', represents a three dimensional coordinate which can be used to specify 3397 // a single kernel instance to break on. If this is set then we add a callback to the breakpoint. 3398 void 3399 RenderScriptRuntime::PlaceBreakpointOnKernel(Stream &strm, const char *name, const std::array<int, 3> coords, 3400 Error &error, TargetSP target) 3401 { 3402 if (!name) 3403 { 3404 error.SetErrorString("invalid kernel name"); 3405 return; 3406 } 3407 3408 InitSearchFilter(target); 3409 3410 ConstString kernel_name(name); 3411 BreakpointSP bp = CreateKernelBreakpoint(kernel_name); 3412 3413 // We have a conditional breakpoint on a specific coordinate 3414 if (coords[0] != -1) 3415 { 3416 strm.Printf("Conditional kernel breakpoint on coordinate %" PRId32 ", %" PRId32 ", %" PRId32, 3417 coords[0], coords[1], coords[2]); 3418 strm.EOL(); 3419 3420 // Allocate memory for the baton, and copy over coordinate 3421 uint32_t *baton = new uint32_t[coords.size()]; 3422 baton[0] = coords[0]; baton[1] = coords[1]; baton[2] = coords[2]; 3423 3424 // Create a callback that will be invoked everytime the breakpoint is hit. 3425 // The baton object passed to the handler is the target coordinate we want to break on. 3426 bp->SetCallback(KernelBreakpointHit, baton, true); 3427 3428 // Store a shared pointer to the baton, so the memory will eventually be cleaned up after destruction 3429 m_conditional_breaks[bp->GetID()] = std::shared_ptr<uint32_t>(baton); 3430 } 3431 3432 if (bp) 3433 bp->GetDescription(&strm, lldb::eDescriptionLevelInitial, false); 3434 } 3435 3436 void 3437 RenderScriptRuntime::DumpModules(Stream &strm) const 3438 { 3439 strm.Printf("RenderScript Modules:"); 3440 strm.EOL(); 3441 strm.IndentMore(); 3442 for (const auto &module : m_rsmodules) 3443 { 3444 module->Dump(strm); 3445 } 3446 strm.IndentLess(); 3447 } 3448 3449 RenderScriptRuntime::ScriptDetails * 3450 RenderScriptRuntime::LookUpScript(addr_t address, bool create) 3451 { 3452 for (const auto &s : m_scripts) 3453 { 3454 if (s->script.isValid()) 3455 if (*s->script == address) 3456 return s.get(); 3457 } 3458 if (create) 3459 { 3460 std::unique_ptr<ScriptDetails> s(new ScriptDetails); 3461 s->script = address; 3462 m_scripts.push_back(std::move(s)); 3463 return m_scripts.back().get(); 3464 } 3465 return nullptr; 3466 } 3467 3468 RenderScriptRuntime::AllocationDetails * 3469 RenderScriptRuntime::LookUpAllocation(addr_t address, bool create) 3470 { 3471 for (const auto &a : m_allocations) 3472 { 3473 if (a->address.isValid()) 3474 if (*a->address == address) 3475 return a.get(); 3476 } 3477 if (create) 3478 { 3479 std::unique_ptr<AllocationDetails> a(new AllocationDetails); 3480 a->address = address; 3481 m_allocations.push_back(std::move(a)); 3482 return m_allocations.back().get(); 3483 } 3484 return nullptr; 3485 } 3486 3487 void 3488 RSModuleDescriptor::Dump(Stream &strm) const 3489 { 3490 strm.Indent(); 3491 m_module->GetFileSpec().Dump(&strm); 3492 if (m_module->GetNumCompileUnits()) 3493 { 3494 strm.Indent("Debug info loaded."); 3495 } 3496 else 3497 { 3498 strm.Indent("Debug info does not exist."); 3499 } 3500 strm.EOL(); 3501 strm.IndentMore(); 3502 strm.Indent(); 3503 strm.Printf("Globals: %" PRIu64, static_cast<uint64_t>(m_globals.size())); 3504 strm.EOL(); 3505 strm.IndentMore(); 3506 for (const auto &global : m_globals) 3507 { 3508 global.Dump(strm); 3509 } 3510 strm.IndentLess(); 3511 strm.Indent(); 3512 strm.Printf("Kernels: %" PRIu64, static_cast<uint64_t>(m_kernels.size())); 3513 strm.EOL(); 3514 strm.IndentMore(); 3515 for (const auto &kernel : m_kernels) 3516 { 3517 kernel.Dump(strm); 3518 } 3519 strm.Printf("Pragmas: %" PRIu64, static_cast<uint64_t>(m_pragmas.size())); 3520 strm.EOL(); 3521 strm.IndentMore(); 3522 for (const auto &key_val : m_pragmas) 3523 { 3524 strm.Printf("%s: %s", key_val.first.c_str(), key_val.second.c_str()); 3525 strm.EOL(); 3526 } 3527 strm.IndentLess(4); 3528 } 3529 3530 void 3531 RSGlobalDescriptor::Dump(Stream &strm) const 3532 { 3533 strm.Indent(m_name.AsCString()); 3534 VariableList var_list; 3535 m_module->m_module->FindGlobalVariables(m_name, nullptr, true, 1U, var_list); 3536 if (var_list.GetSize() == 1) 3537 { 3538 auto var = var_list.GetVariableAtIndex(0); 3539 auto type = var->GetType(); 3540 if (type) 3541 { 3542 strm.Printf(" - "); 3543 type->DumpTypeName(&strm); 3544 } 3545 else 3546 { 3547 strm.Printf(" - Unknown Type"); 3548 } 3549 } 3550 else 3551 { 3552 strm.Printf(" - variable identified, but not found in binary"); 3553 const Symbol *s = m_module->m_module->FindFirstSymbolWithNameAndType(m_name, eSymbolTypeData); 3554 if (s) 3555 { 3556 strm.Printf(" (symbol exists) "); 3557 } 3558 } 3559 3560 strm.EOL(); 3561 } 3562 3563 void 3564 RSKernelDescriptor::Dump(Stream &strm) const 3565 { 3566 strm.Indent(m_name.AsCString()); 3567 strm.EOL(); 3568 } 3569 3570 class CommandObjectRenderScriptRuntimeModuleDump : public CommandObjectParsed 3571 { 3572 public: 3573 CommandObjectRenderScriptRuntimeModuleDump(CommandInterpreter &interpreter) 3574 : CommandObjectParsed(interpreter, "renderscript module dump", 3575 "Dumps renderscript specific information for all modules.", "renderscript module dump", 3576 eCommandRequiresProcess | eCommandProcessMustBeLaunched) 3577 { 3578 } 3579 3580 ~CommandObjectRenderScriptRuntimeModuleDump() override = default; 3581 3582 bool 3583 DoExecute(Args &command, CommandReturnObject &result) override 3584 { 3585 RenderScriptRuntime *runtime = 3586 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript); 3587 runtime->DumpModules(result.GetOutputStream()); 3588 result.SetStatus(eReturnStatusSuccessFinishResult); 3589 return true; 3590 } 3591 }; 3592 3593 class CommandObjectRenderScriptRuntimeModule : public CommandObjectMultiword 3594 { 3595 public: 3596 CommandObjectRenderScriptRuntimeModule(CommandInterpreter &interpreter) 3597 : CommandObjectMultiword(interpreter, "renderscript module", "Commands that deal with renderscript modules.", 3598 nullptr) 3599 { 3600 LoadSubCommand("dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeModuleDump(interpreter))); 3601 } 3602 3603 ~CommandObjectRenderScriptRuntimeModule() override = default; 3604 }; 3605 3606 class CommandObjectRenderScriptRuntimeKernelList : public CommandObjectParsed 3607 { 3608 public: 3609 CommandObjectRenderScriptRuntimeKernelList(CommandInterpreter &interpreter) 3610 : CommandObjectParsed(interpreter, "renderscript kernel list", 3611 "Lists renderscript kernel names and associated script resources.", 3612 "renderscript kernel list", eCommandRequiresProcess | eCommandProcessMustBeLaunched) 3613 { 3614 } 3615 3616 ~CommandObjectRenderScriptRuntimeKernelList() override = default; 3617 3618 bool 3619 DoExecute(Args &command, CommandReturnObject &result) override 3620 { 3621 RenderScriptRuntime *runtime = 3622 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript); 3623 runtime->DumpKernels(result.GetOutputStream()); 3624 result.SetStatus(eReturnStatusSuccessFinishResult); 3625 return true; 3626 } 3627 }; 3628 3629 class CommandObjectRenderScriptRuntimeKernelBreakpointSet : public CommandObjectParsed 3630 { 3631 public: 3632 CommandObjectRenderScriptRuntimeKernelBreakpointSet(CommandInterpreter &interpreter) 3633 : CommandObjectParsed(interpreter, "renderscript kernel breakpoint set", 3634 "Sets a breakpoint on a renderscript kernel.", 3635 "renderscript kernel breakpoint set <kernel_name> [-c x,y,z]", 3636 eCommandRequiresProcess | eCommandProcessMustBeLaunched | eCommandProcessMustBePaused), 3637 m_options(interpreter) 3638 { 3639 } 3640 3641 ~CommandObjectRenderScriptRuntimeKernelBreakpointSet() override = default; 3642 3643 Options * 3644 GetOptions() override 3645 { 3646 return &m_options; 3647 } 3648 3649 class CommandOptions : public Options 3650 { 3651 public: 3652 CommandOptions(CommandInterpreter &interpreter) : Options(interpreter) {} 3653 3654 ~CommandOptions() override = default; 3655 3656 Error 3657 SetOptionValue(uint32_t option_idx, const char *option_arg) override 3658 { 3659 Error error; 3660 const int short_option = m_getopt_table[option_idx].val; 3661 3662 switch (short_option) 3663 { 3664 case 'c': 3665 if (!ParseCoordinate(option_arg)) 3666 error.SetErrorStringWithFormat("Couldn't parse coordinate '%s', should be in format 'x,y,z'.", 3667 option_arg); 3668 break; 3669 default: 3670 error.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 3671 break; 3672 } 3673 return error; 3674 } 3675 3676 // -c takes an argument of the form 'num[,num][,num]'. 3677 // Where 'id_cstr' is this argument with the whitespace trimmed. 3678 // Missing coordinates are defaulted to zero. 3679 bool 3680 ParseCoordinate(const char *id_cstr) 3681 { 3682 RegularExpression regex; 3683 RegularExpression::Match regex_match(3); 3684 3685 bool matched = false; 3686 if (regex.Compile("^([0-9]+),([0-9]+),([0-9]+)$") && regex.Execute(id_cstr, ®ex_match)) 3687 matched = true; 3688 else if (regex.Compile("^([0-9]+),([0-9]+)$") && regex.Execute(id_cstr, ®ex_match)) 3689 matched = true; 3690 else if (regex.Compile("^([0-9]+)$") && regex.Execute(id_cstr, ®ex_match)) 3691 matched = true; 3692 for (uint32_t i = 0; i < 3; i++) 3693 { 3694 std::string group; 3695 if (regex_match.GetMatchAtIndex(id_cstr, i + 1, group)) 3696 m_coord[i] = (uint32_t)strtoul(group.c_str(), nullptr, 0); 3697 else 3698 m_coord[i] = 0; 3699 } 3700 return matched; 3701 } 3702 3703 void 3704 OptionParsingStarting() override 3705 { 3706 // -1 means the -c option hasn't been set 3707 m_coord[0] = -1; 3708 m_coord[1] = -1; 3709 m_coord[2] = -1; 3710 } 3711 3712 const OptionDefinition * 3713 GetDefinitions() override 3714 { 3715 return g_option_table; 3716 } 3717 3718 static OptionDefinition g_option_table[]; 3719 std::array<int, 3> m_coord; 3720 }; 3721 3722 bool 3723 DoExecute(Args &command, CommandReturnObject &result) override 3724 { 3725 const size_t argc = command.GetArgumentCount(); 3726 if (argc < 1) 3727 { 3728 result.AppendErrorWithFormat("'%s' takes 1 argument of kernel name, and an optional coordinate.", 3729 m_cmd_name.c_str()); 3730 result.SetStatus(eReturnStatusFailed); 3731 return false; 3732 } 3733 3734 RenderScriptRuntime *runtime = 3735 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript); 3736 3737 Error error; 3738 runtime->PlaceBreakpointOnKernel(result.GetOutputStream(), command.GetArgumentAtIndex(0), m_options.m_coord, 3739 error, m_exe_ctx.GetTargetSP()); 3740 3741 if (error.Success()) 3742 { 3743 result.AppendMessage("Breakpoint(s) created"); 3744 result.SetStatus(eReturnStatusSuccessFinishResult); 3745 return true; 3746 } 3747 result.SetStatus(eReturnStatusFailed); 3748 result.AppendErrorWithFormat("Error: %s", error.AsCString()); 3749 return false; 3750 } 3751 3752 private: 3753 CommandOptions m_options; 3754 }; 3755 3756 OptionDefinition CommandObjectRenderScriptRuntimeKernelBreakpointSet::CommandOptions::g_option_table[] = { 3757 {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeValue, 3758 "Set a breakpoint on a single invocation of the kernel with specified coordinate.\n" 3759 "Coordinate takes the form 'x[,y][,z] where x,y,z are positive integers representing kernel dimensions. " 3760 "Any unset dimensions will be defaulted to zero."}, 3761 {0, false, nullptr, 0, 0, nullptr, nullptr, 0, eArgTypeNone, nullptr}}; 3762 3763 class CommandObjectRenderScriptRuntimeKernelBreakpointAll : public CommandObjectParsed 3764 { 3765 public: 3766 CommandObjectRenderScriptRuntimeKernelBreakpointAll(CommandInterpreter &interpreter) 3767 : CommandObjectParsed( 3768 interpreter, "renderscript kernel breakpoint all", 3769 "Automatically sets a breakpoint on all renderscript kernels that are or will be loaded.\n" 3770 "Disabling option means breakpoints will no longer be set on any kernels loaded in the future, " 3771 "but does not remove currently set breakpoints.", 3772 "renderscript kernel breakpoint all <enable/disable>", 3773 eCommandRequiresProcess | eCommandProcessMustBeLaunched | eCommandProcessMustBePaused) 3774 { 3775 } 3776 3777 ~CommandObjectRenderScriptRuntimeKernelBreakpointAll() override = default; 3778 3779 bool 3780 DoExecute(Args &command, CommandReturnObject &result) override 3781 { 3782 const size_t argc = command.GetArgumentCount(); 3783 if (argc != 1) 3784 { 3785 result.AppendErrorWithFormat("'%s' takes 1 argument of 'enable' or 'disable'", m_cmd_name.c_str()); 3786 result.SetStatus(eReturnStatusFailed); 3787 return false; 3788 } 3789 3790 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 3791 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript)); 3792 3793 bool do_break = false; 3794 const char *argument = command.GetArgumentAtIndex(0); 3795 if (strcmp(argument, "enable") == 0) 3796 { 3797 do_break = true; 3798 result.AppendMessage("Breakpoints will be set on all kernels."); 3799 } 3800 else if (strcmp(argument, "disable") == 0) 3801 { 3802 do_break = false; 3803 result.AppendMessage("Breakpoints will not be set on any new kernels."); 3804 } 3805 else 3806 { 3807 result.AppendErrorWithFormat("Argument must be either 'enable' or 'disable'"); 3808 result.SetStatus(eReturnStatusFailed); 3809 return false; 3810 } 3811 3812 runtime->SetBreakAllKernels(do_break, m_exe_ctx.GetTargetSP()); 3813 3814 result.SetStatus(eReturnStatusSuccessFinishResult); 3815 return true; 3816 } 3817 }; 3818 3819 class CommandObjectRenderScriptRuntimeKernelCoordinate : public CommandObjectParsed 3820 { 3821 public: 3822 CommandObjectRenderScriptRuntimeKernelCoordinate(CommandInterpreter &interpreter) 3823 : CommandObjectParsed(interpreter, "renderscript kernel coordinate", 3824 "Shows the (x,y,z) coordinate of the current kernel invocation.", 3825 "renderscript kernel coordinate", 3826 eCommandRequiresProcess | eCommandProcessMustBeLaunched | eCommandProcessMustBePaused) 3827 { 3828 } 3829 3830 ~CommandObjectRenderScriptRuntimeKernelCoordinate() override = default; 3831 3832 bool 3833 DoExecute(Args &command, CommandReturnObject &result) override 3834 { 3835 RSCoordinate coord{}; // Zero initialize array 3836 bool success = RenderScriptRuntime::GetKernelCoordinate(coord, m_exe_ctx.GetThreadPtr()); 3837 Stream &stream = result.GetOutputStream(); 3838 3839 if (success) 3840 { 3841 stream.Printf("Coordinate: (%" PRIu32 ", %" PRIu32 ", %" PRIu32 ")", coord[0], coord[1], coord[2]); 3842 stream.EOL(); 3843 result.SetStatus(eReturnStatusSuccessFinishResult); 3844 } 3845 else 3846 { 3847 stream.Printf("Error: Coordinate could not be found."); 3848 stream.EOL(); 3849 result.SetStatus(eReturnStatusFailed); 3850 } 3851 return true; 3852 } 3853 }; 3854 3855 class CommandObjectRenderScriptRuntimeKernelBreakpoint : public CommandObjectMultiword 3856 { 3857 public: 3858 CommandObjectRenderScriptRuntimeKernelBreakpoint(CommandInterpreter &interpreter) 3859 : CommandObjectMultiword(interpreter, "renderscript kernel", 3860 "Commands that generate breakpoints on renderscript kernels.", nullptr) 3861 { 3862 LoadSubCommand("set", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointSet(interpreter))); 3863 LoadSubCommand("all", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointAll(interpreter))); 3864 } 3865 3866 ~CommandObjectRenderScriptRuntimeKernelBreakpoint() override = default; 3867 }; 3868 3869 class CommandObjectRenderScriptRuntimeKernel : public CommandObjectMultiword 3870 { 3871 public: 3872 CommandObjectRenderScriptRuntimeKernel(CommandInterpreter &interpreter) 3873 : CommandObjectMultiword(interpreter, "renderscript kernel", "Commands that deal with renderscript kernels.", 3874 nullptr) 3875 { 3876 LoadSubCommand("list", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelList(interpreter))); 3877 LoadSubCommand("coordinate", 3878 CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelCoordinate(interpreter))); 3879 LoadSubCommand("breakpoint", 3880 CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpoint(interpreter))); 3881 } 3882 3883 ~CommandObjectRenderScriptRuntimeKernel() override = default; 3884 }; 3885 3886 class CommandObjectRenderScriptRuntimeContextDump : public CommandObjectParsed 3887 { 3888 public: 3889 CommandObjectRenderScriptRuntimeContextDump(CommandInterpreter &interpreter) 3890 : CommandObjectParsed(interpreter, "renderscript context dump", "Dumps renderscript context information.", 3891 "renderscript context dump", eCommandRequiresProcess | eCommandProcessMustBeLaunched) 3892 { 3893 } 3894 3895 ~CommandObjectRenderScriptRuntimeContextDump() override = default; 3896 3897 bool 3898 DoExecute(Args &command, CommandReturnObject &result) override 3899 { 3900 RenderScriptRuntime *runtime = 3901 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript); 3902 runtime->DumpContexts(result.GetOutputStream()); 3903 result.SetStatus(eReturnStatusSuccessFinishResult); 3904 return true; 3905 } 3906 }; 3907 3908 class CommandObjectRenderScriptRuntimeContext : public CommandObjectMultiword 3909 { 3910 public: 3911 CommandObjectRenderScriptRuntimeContext(CommandInterpreter &interpreter) 3912 : CommandObjectMultiword(interpreter, "renderscript context", "Commands that deal with renderscript contexts.", 3913 nullptr) 3914 { 3915 LoadSubCommand("dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeContextDump(interpreter))); 3916 } 3917 3918 ~CommandObjectRenderScriptRuntimeContext() override = default; 3919 }; 3920 3921 class CommandObjectRenderScriptRuntimeAllocationDump : public CommandObjectParsed 3922 { 3923 public: 3924 CommandObjectRenderScriptRuntimeAllocationDump(CommandInterpreter &interpreter) 3925 : CommandObjectParsed(interpreter, "renderscript allocation dump", 3926 "Displays the contents of a particular allocation", "renderscript allocation dump <ID>", 3927 eCommandRequiresProcess | eCommandProcessMustBeLaunched), 3928 m_options(interpreter) 3929 { 3930 } 3931 3932 ~CommandObjectRenderScriptRuntimeAllocationDump() override = default; 3933 3934 Options * 3935 GetOptions() override 3936 { 3937 return &m_options; 3938 } 3939 3940 class CommandOptions : public Options 3941 { 3942 public: 3943 CommandOptions(CommandInterpreter &interpreter) : Options(interpreter) {} 3944 3945 ~CommandOptions() override = default; 3946 3947 Error 3948 SetOptionValue(uint32_t option_idx, const char *option_arg) override 3949 { 3950 Error error; 3951 const int short_option = m_getopt_table[option_idx].val; 3952 3953 switch (short_option) 3954 { 3955 case 'f': 3956 m_outfile.SetFile(option_arg, true); 3957 if (m_outfile.Exists()) 3958 { 3959 m_outfile.Clear(); 3960 error.SetErrorStringWithFormat("file already exists: '%s'", option_arg); 3961 } 3962 break; 3963 default: 3964 error.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 3965 break; 3966 } 3967 return error; 3968 } 3969 3970 void 3971 OptionParsingStarting() override 3972 { 3973 m_outfile.Clear(); 3974 } 3975 3976 const OptionDefinition * 3977 GetDefinitions() override 3978 { 3979 return g_option_table; 3980 } 3981 3982 static OptionDefinition g_option_table[]; 3983 FileSpec m_outfile; 3984 }; 3985 3986 bool 3987 DoExecute(Args &command, CommandReturnObject &result) override 3988 { 3989 const size_t argc = command.GetArgumentCount(); 3990 if (argc < 1) 3991 { 3992 result.AppendErrorWithFormat("'%s' takes 1 argument, an allocation ID. As well as an optional -f argument", 3993 m_cmd_name.c_str()); 3994 result.SetStatus(eReturnStatusFailed); 3995 return false; 3996 } 3997 3998 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 3999 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript)); 4000 4001 const char *id_cstr = command.GetArgumentAtIndex(0); 4002 bool convert_complete = false; 4003 const uint32_t id = StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete); 4004 if (!convert_complete) 4005 { 4006 result.AppendErrorWithFormat("invalid allocation id argument '%s'", id_cstr); 4007 result.SetStatus(eReturnStatusFailed); 4008 return false; 4009 } 4010 4011 Stream *output_strm = nullptr; 4012 StreamFile outfile_stream; 4013 const FileSpec &outfile_spec = m_options.m_outfile; // Dump allocation to file instead 4014 if (outfile_spec) 4015 { 4016 // Open output file 4017 char path[256]; 4018 outfile_spec.GetPath(path, sizeof(path)); 4019 if (outfile_stream.GetFile().Open(path, File::eOpenOptionWrite | File::eOpenOptionCanCreate).Success()) 4020 { 4021 output_strm = &outfile_stream; 4022 result.GetOutputStream().Printf("Results written to '%s'", path); 4023 result.GetOutputStream().EOL(); 4024 } 4025 else 4026 { 4027 result.AppendErrorWithFormat("Couldn't open file '%s'", path); 4028 result.SetStatus(eReturnStatusFailed); 4029 return false; 4030 } 4031 } 4032 else 4033 output_strm = &result.GetOutputStream(); 4034 4035 assert(output_strm != nullptr); 4036 bool success = runtime->DumpAllocation(*output_strm, m_exe_ctx.GetFramePtr(), id); 4037 4038 if (success) 4039 result.SetStatus(eReturnStatusSuccessFinishResult); 4040 else 4041 result.SetStatus(eReturnStatusFailed); 4042 4043 return true; 4044 } 4045 4046 private: 4047 CommandOptions m_options; 4048 }; 4049 4050 OptionDefinition CommandObjectRenderScriptRuntimeAllocationDump::CommandOptions::g_option_table[] = { 4051 {LLDB_OPT_SET_1, false, "file", 'f', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeFilename, 4052 "Print results to specified file instead of command line."}, 4053 {0, false, nullptr, 0, 0, nullptr, nullptr, 0, eArgTypeNone, nullptr}}; 4054 4055 class CommandObjectRenderScriptRuntimeAllocationList : public CommandObjectParsed 4056 { 4057 public: 4058 CommandObjectRenderScriptRuntimeAllocationList(CommandInterpreter &interpreter) 4059 : CommandObjectParsed(interpreter, "renderscript allocation list", 4060 "List renderscript allocations and their information.", "renderscript allocation list", 4061 eCommandRequiresProcess | eCommandProcessMustBeLaunched), 4062 m_options(interpreter) 4063 { 4064 } 4065 4066 ~CommandObjectRenderScriptRuntimeAllocationList() override = default; 4067 4068 Options * 4069 GetOptions() override 4070 { 4071 return &m_options; 4072 } 4073 4074 class CommandOptions : public Options 4075 { 4076 public: 4077 CommandOptions(CommandInterpreter &interpreter) : Options(interpreter), m_id(0) {} 4078 4079 ~CommandOptions() override = default; 4080 4081 Error 4082 SetOptionValue(uint32_t option_idx, const char *option_arg) override 4083 { 4084 Error error; 4085 const int short_option = m_getopt_table[option_idx].val; 4086 4087 switch (short_option) 4088 { 4089 case 'i': 4090 bool success; 4091 m_id = StringConvert::ToUInt32(option_arg, 0, 0, &success); 4092 if (!success) 4093 error.SetErrorStringWithFormat("invalid integer value for option '%c'", short_option); 4094 break; 4095 default: 4096 error.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 4097 break; 4098 } 4099 return error; 4100 } 4101 4102 void 4103 OptionParsingStarting() override 4104 { 4105 m_id = 0; 4106 } 4107 4108 const OptionDefinition * 4109 GetDefinitions() override 4110 { 4111 return g_option_table; 4112 } 4113 4114 static OptionDefinition g_option_table[]; 4115 uint32_t m_id; 4116 }; 4117 4118 bool 4119 DoExecute(Args &command, CommandReturnObject &result) override 4120 { 4121 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4122 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript)); 4123 runtime->ListAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr(), m_options.m_id); 4124 result.SetStatus(eReturnStatusSuccessFinishResult); 4125 return true; 4126 } 4127 4128 private: 4129 CommandOptions m_options; 4130 }; 4131 4132 OptionDefinition CommandObjectRenderScriptRuntimeAllocationList::CommandOptions::g_option_table[] = { 4133 {LLDB_OPT_SET_1, false, "id", 'i', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeIndex, 4134 "Only show details of a single allocation with specified id."}, 4135 {0, false, nullptr, 0, 0, nullptr, nullptr, 0, eArgTypeNone, nullptr}}; 4136 4137 class CommandObjectRenderScriptRuntimeAllocationLoad : public CommandObjectParsed 4138 { 4139 public: 4140 CommandObjectRenderScriptRuntimeAllocationLoad(CommandInterpreter &interpreter) 4141 : CommandObjectParsed( 4142 interpreter, "renderscript allocation load", "Loads renderscript allocation contents from a file.", 4143 "renderscript allocation load <ID> <filename>", eCommandRequiresProcess | eCommandProcessMustBeLaunched) 4144 { 4145 } 4146 4147 ~CommandObjectRenderScriptRuntimeAllocationLoad() override = default; 4148 4149 bool 4150 DoExecute(Args &command, CommandReturnObject &result) override 4151 { 4152 const size_t argc = command.GetArgumentCount(); 4153 if (argc != 2) 4154 { 4155 result.AppendErrorWithFormat("'%s' takes 2 arguments, an allocation ID and filename to read from.", 4156 m_cmd_name.c_str()); 4157 result.SetStatus(eReturnStatusFailed); 4158 return false; 4159 } 4160 4161 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4162 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript)); 4163 4164 const char *id_cstr = command.GetArgumentAtIndex(0); 4165 bool convert_complete = false; 4166 const uint32_t id = StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete); 4167 if (!convert_complete) 4168 { 4169 result.AppendErrorWithFormat("invalid allocation id argument '%s'", id_cstr); 4170 result.SetStatus(eReturnStatusFailed); 4171 return false; 4172 } 4173 4174 const char *filename = command.GetArgumentAtIndex(1); 4175 bool success = runtime->LoadAllocation(result.GetOutputStream(), id, filename, m_exe_ctx.GetFramePtr()); 4176 4177 if (success) 4178 result.SetStatus(eReturnStatusSuccessFinishResult); 4179 else 4180 result.SetStatus(eReturnStatusFailed); 4181 4182 return true; 4183 } 4184 }; 4185 4186 class CommandObjectRenderScriptRuntimeAllocationSave : public CommandObjectParsed 4187 { 4188 public: 4189 CommandObjectRenderScriptRuntimeAllocationSave(CommandInterpreter &interpreter) 4190 : CommandObjectParsed( 4191 interpreter, "renderscript allocation save", "Write renderscript allocation contents to a file.", 4192 "renderscript allocation save <ID> <filename>", eCommandRequiresProcess | eCommandProcessMustBeLaunched) 4193 { 4194 } 4195 4196 ~CommandObjectRenderScriptRuntimeAllocationSave() override = default; 4197 4198 bool 4199 DoExecute(Args &command, CommandReturnObject &result) override 4200 { 4201 const size_t argc = command.GetArgumentCount(); 4202 if (argc != 2) 4203 { 4204 result.AppendErrorWithFormat("'%s' takes 2 arguments, an allocation ID and filename to read from.", 4205 m_cmd_name.c_str()); 4206 result.SetStatus(eReturnStatusFailed); 4207 return false; 4208 } 4209 4210 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4211 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript)); 4212 4213 const char *id_cstr = command.GetArgumentAtIndex(0); 4214 bool convert_complete = false; 4215 const uint32_t id = StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete); 4216 if (!convert_complete) 4217 { 4218 result.AppendErrorWithFormat("invalid allocation id argument '%s'", id_cstr); 4219 result.SetStatus(eReturnStatusFailed); 4220 return false; 4221 } 4222 4223 const char *filename = command.GetArgumentAtIndex(1); 4224 bool success = runtime->SaveAllocation(result.GetOutputStream(), id, filename, m_exe_ctx.GetFramePtr()); 4225 4226 if (success) 4227 result.SetStatus(eReturnStatusSuccessFinishResult); 4228 else 4229 result.SetStatus(eReturnStatusFailed); 4230 4231 return true; 4232 } 4233 }; 4234 4235 class CommandObjectRenderScriptRuntimeAllocationRefresh : public CommandObjectParsed 4236 { 4237 public: 4238 CommandObjectRenderScriptRuntimeAllocationRefresh(CommandInterpreter &interpreter) 4239 : CommandObjectParsed(interpreter, "renderscript allocation refresh", 4240 "Recomputes the details of all allocations.", "renderscript allocation refresh", 4241 eCommandRequiresProcess | eCommandProcessMustBeLaunched) 4242 { 4243 } 4244 4245 ~CommandObjectRenderScriptRuntimeAllocationRefresh() override = default; 4246 4247 bool 4248 DoExecute(Args &command, CommandReturnObject &result) override 4249 { 4250 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4251 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript)); 4252 4253 bool success = runtime->RecomputeAllAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr()); 4254 4255 if (success) 4256 { 4257 result.SetStatus(eReturnStatusSuccessFinishResult); 4258 return true; 4259 } 4260 else 4261 { 4262 result.SetStatus(eReturnStatusFailed); 4263 return false; 4264 } 4265 } 4266 }; 4267 4268 class CommandObjectRenderScriptRuntimeAllocation : public CommandObjectMultiword 4269 { 4270 public: 4271 CommandObjectRenderScriptRuntimeAllocation(CommandInterpreter &interpreter) 4272 : CommandObjectMultiword(interpreter, "renderscript allocation", 4273 "Commands that deal with renderscript allocations.", nullptr) 4274 { 4275 LoadSubCommand("list", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationList(interpreter))); 4276 LoadSubCommand("dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationDump(interpreter))); 4277 LoadSubCommand("save", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationSave(interpreter))); 4278 LoadSubCommand("load", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationLoad(interpreter))); 4279 LoadSubCommand("refresh", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationRefresh(interpreter))); 4280 } 4281 4282 ~CommandObjectRenderScriptRuntimeAllocation() override = default; 4283 }; 4284 4285 class CommandObjectRenderScriptRuntimeStatus : public CommandObjectParsed 4286 { 4287 public: 4288 CommandObjectRenderScriptRuntimeStatus(CommandInterpreter &interpreter) 4289 : CommandObjectParsed(interpreter, "renderscript status", "Displays current renderscript runtime status.", 4290 "renderscript status", eCommandRequiresProcess | eCommandProcessMustBeLaunched) 4291 { 4292 } 4293 4294 ~CommandObjectRenderScriptRuntimeStatus() override = default; 4295 4296 bool 4297 DoExecute(Args &command, CommandReturnObject &result) override 4298 { 4299 RenderScriptRuntime *runtime = 4300 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript); 4301 runtime->Status(result.GetOutputStream()); 4302 result.SetStatus(eReturnStatusSuccessFinishResult); 4303 return true; 4304 } 4305 }; 4306 4307 class CommandObjectRenderScriptRuntime : public CommandObjectMultiword 4308 { 4309 public: 4310 CommandObjectRenderScriptRuntime(CommandInterpreter &interpreter) 4311 : CommandObjectMultiword(interpreter, "renderscript", "A set of commands for operating on renderscript.", 4312 "renderscript <subcommand> [<subcommand-options>]") 4313 { 4314 LoadSubCommand("module", CommandObjectSP(new CommandObjectRenderScriptRuntimeModule(interpreter))); 4315 LoadSubCommand("status", CommandObjectSP(new CommandObjectRenderScriptRuntimeStatus(interpreter))); 4316 LoadSubCommand("kernel", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernel(interpreter))); 4317 LoadSubCommand("context", CommandObjectSP(new CommandObjectRenderScriptRuntimeContext(interpreter))); 4318 LoadSubCommand("allocation", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocation(interpreter))); 4319 } 4320 4321 ~CommandObjectRenderScriptRuntime() override = default; 4322 }; 4323 4324 void 4325 RenderScriptRuntime::Initiate() 4326 { 4327 assert(!m_initiated); 4328 } 4329 4330 RenderScriptRuntime::RenderScriptRuntime(Process *process) 4331 : lldb_private::CPPLanguageRuntime(process), 4332 m_initiated(false), 4333 m_debuggerPresentFlagged(false), 4334 m_breakAllKernels(false) 4335 { 4336 ModulesDidLoad(process->GetTarget().GetImages()); 4337 } 4338 4339 lldb::CommandObjectSP 4340 RenderScriptRuntime::GetCommandObject(lldb_private::CommandInterpreter &interpreter) 4341 { 4342 return CommandObjectSP(new CommandObjectRenderScriptRuntime(interpreter)); 4343 } 4344 4345 RenderScriptRuntime::~RenderScriptRuntime() = default; 4346