1 //===-- RenderScriptRuntime.cpp ---------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 // C Includes 11 // C++ Includes 12 // Other libraries and framework includes 13 #include "llvm/ADT/StringSwitch.h" 14 15 // Project includes 16 #include "RenderScriptRuntime.h" 17 #include "RenderScriptScriptGroup.h" 18 19 #include "lldb/Breakpoint/StoppointCallbackContext.h" 20 #include "lldb/Core/Debugger.h" 21 #include "lldb/Core/DumpDataExtractor.h" 22 #include "lldb/Core/PluginManager.h" 23 #include "lldb/Core/RegisterValue.h" 24 #include "lldb/Core/ValueObjectVariable.h" 25 #include "lldb/DataFormatters/DumpValueObjectOptions.h" 26 #include "lldb/Expression/UserExpression.h" 27 #include "lldb/Host/OptionParser.h" 28 #include "lldb/Host/StringConvert.h" 29 #include "lldb/Interpreter/Args.h" 30 #include "lldb/Interpreter/CommandInterpreter.h" 31 #include "lldb/Interpreter/CommandObjectMultiword.h" 32 #include "lldb/Interpreter/CommandReturnObject.h" 33 #include "lldb/Interpreter/Options.h" 34 #include "lldb/Symbol/Function.h" 35 #include "lldb/Symbol/Symbol.h" 36 #include "lldb/Symbol/Type.h" 37 #include "lldb/Symbol/VariableList.h" 38 #include "lldb/Target/Process.h" 39 #include "lldb/Target/RegisterContext.h" 40 #include "lldb/Target/SectionLoadList.h" 41 #include "lldb/Target/Target.h" 42 #include "lldb/Target/Thread.h" 43 #include "lldb/Utility/ConstString.h" 44 #include "lldb/Utility/DataBufferLLVM.h" 45 #include "lldb/Utility/Error.h" 46 #include "lldb/Utility/Log.h" 47 #include "lldb/Utility/RegularExpression.h" 48 49 using namespace lldb; 50 using namespace lldb_private; 51 using namespace lldb_renderscript; 52 53 #define FMT_COORD "(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ")" 54 55 namespace { 56 57 // The empirical_type adds a basic level of validation to arbitrary data 58 // allowing us to track if data has been discovered and stored or not. An 59 // empirical_type will be marked as valid only if it has been explicitly 60 // assigned to. 61 template <typename type_t> class empirical_type { 62 public: 63 // Ctor. Contents is invalid when constructed. 64 empirical_type() : valid(false) {} 65 66 // Return true and copy contents to out if valid, else return false. 67 bool get(type_t &out) const { 68 if (valid) 69 out = data; 70 return valid; 71 } 72 73 // Return a pointer to the contents or nullptr if it was not valid. 74 const type_t *get() const { return valid ? &data : nullptr; } 75 76 // Assign data explicitly. 77 void set(const type_t in) { 78 data = in; 79 valid = true; 80 } 81 82 // Mark contents as invalid. 83 void invalidate() { valid = false; } 84 85 // Returns true if this type contains valid data. 86 bool isValid() const { return valid; } 87 88 // Assignment operator. 89 empirical_type<type_t> &operator=(const type_t in) { 90 set(in); 91 return *this; 92 } 93 94 // Dereference operator returns contents. 95 // Warning: Will assert if not valid so use only when you know data is valid. 96 const type_t &operator*() const { 97 assert(valid); 98 return data; 99 } 100 101 protected: 102 bool valid; 103 type_t data; 104 }; 105 106 // ArgItem is used by the GetArgs() function when reading function arguments 107 // from the target. 108 struct ArgItem { 109 enum { ePointer, eInt32, eInt64, eLong, eBool } type; 110 111 uint64_t value; 112 113 explicit operator uint64_t() const { return value; } 114 }; 115 116 // Context structure to be passed into GetArgsXXX(), argument reading functions 117 // below. 118 struct GetArgsCtx { 119 RegisterContext *reg_ctx; 120 Process *process; 121 }; 122 123 bool GetArgsX86(const GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 124 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 125 126 Error err; 127 128 // get the current stack pointer 129 uint64_t sp = ctx.reg_ctx->GetSP(); 130 131 for (size_t i = 0; i < num_args; ++i) { 132 ArgItem &arg = arg_list[i]; 133 // advance up the stack by one argument 134 sp += sizeof(uint32_t); 135 // get the argument type size 136 size_t arg_size = sizeof(uint32_t); 137 // read the argument from memory 138 arg.value = 0; 139 Error err; 140 size_t read = 141 ctx.process->ReadMemory(sp, &arg.value, sizeof(uint32_t), err); 142 if (read != arg_size || !err.Success()) { 143 if (log) 144 log->Printf("%s - error reading argument: %" PRIu64 " '%s'", 145 __FUNCTION__, uint64_t(i), err.AsCString()); 146 return false; 147 } 148 } 149 return true; 150 } 151 152 bool GetArgsX86_64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 153 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 154 155 // number of arguments passed in registers 156 static const uint32_t args_in_reg = 6; 157 // register passing order 158 static const std::array<const char *, args_in_reg> reg_names{ 159 {"rdi", "rsi", "rdx", "rcx", "r8", "r9"}}; 160 // argument type to size mapping 161 static const std::array<size_t, 5> arg_size{{ 162 8, // ePointer, 163 4, // eInt32, 164 8, // eInt64, 165 8, // eLong, 166 4, // eBool, 167 }}; 168 169 Error err; 170 171 // get the current stack pointer 172 uint64_t sp = ctx.reg_ctx->GetSP(); 173 // step over the return address 174 sp += sizeof(uint64_t); 175 176 // check the stack alignment was correct (16 byte aligned) 177 if ((sp & 0xf) != 0x0) { 178 if (log) 179 log->Printf("%s - stack misaligned", __FUNCTION__); 180 return false; 181 } 182 183 // find the start of arguments on the stack 184 uint64_t sp_offset = 0; 185 for (uint32_t i = args_in_reg; i < num_args; ++i) { 186 sp_offset += arg_size[arg_list[i].type]; 187 } 188 // round up to multiple of 16 189 sp_offset = (sp_offset + 0xf) & 0xf; 190 sp += sp_offset; 191 192 for (size_t i = 0; i < num_args; ++i) { 193 bool success = false; 194 ArgItem &arg = arg_list[i]; 195 // arguments passed in registers 196 if (i < args_in_reg) { 197 const RegisterInfo *reg = 198 ctx.reg_ctx->GetRegisterInfoByName(reg_names[i]); 199 RegisterValue reg_val; 200 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 201 arg.value = reg_val.GetAsUInt64(0, &success); 202 } 203 // arguments passed on the stack 204 else { 205 // get the argument type size 206 const size_t size = arg_size[arg_list[i].type]; 207 // read the argument from memory 208 arg.value = 0; 209 // note: due to little endian layout reading 4 or 8 bytes will give the 210 // correct value. 211 size_t read = ctx.process->ReadMemory(sp, &arg.value, size, err); 212 success = (err.Success() && read == size); 213 // advance past this argument 214 sp -= size; 215 } 216 // fail if we couldn't read this argument 217 if (!success) { 218 if (log) 219 log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s", 220 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 221 return false; 222 } 223 } 224 return true; 225 } 226 227 bool GetArgsArm(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 228 // number of arguments passed in registers 229 static const uint32_t args_in_reg = 4; 230 231 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 232 233 Error err; 234 235 // get the current stack pointer 236 uint64_t sp = ctx.reg_ctx->GetSP(); 237 238 for (size_t i = 0; i < num_args; ++i) { 239 bool success = false; 240 ArgItem &arg = arg_list[i]; 241 // arguments passed in registers 242 if (i < args_in_reg) { 243 const RegisterInfo *reg = ctx.reg_ctx->GetRegisterInfoAtIndex(i); 244 RegisterValue reg_val; 245 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 246 arg.value = reg_val.GetAsUInt32(0, &success); 247 } 248 // arguments passed on the stack 249 else { 250 // get the argument type size 251 const size_t arg_size = sizeof(uint32_t); 252 // clear all 64bits 253 arg.value = 0; 254 // read this argument from memory 255 size_t bytes_read = 256 ctx.process->ReadMemory(sp, &arg.value, arg_size, err); 257 success = (err.Success() && bytes_read == arg_size); 258 // advance the stack pointer 259 sp += sizeof(uint32_t); 260 } 261 // fail if we couldn't read this argument 262 if (!success) { 263 if (log) 264 log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s", 265 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 266 return false; 267 } 268 } 269 return true; 270 } 271 272 bool GetArgsAarch64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 273 // number of arguments passed in registers 274 static const uint32_t args_in_reg = 8; 275 276 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 277 278 for (size_t i = 0; i < num_args; ++i) { 279 bool success = false; 280 ArgItem &arg = arg_list[i]; 281 // arguments passed in registers 282 if (i < args_in_reg) { 283 const RegisterInfo *reg = ctx.reg_ctx->GetRegisterInfoAtIndex(i); 284 RegisterValue reg_val; 285 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 286 arg.value = reg_val.GetAsUInt64(0, &success); 287 } 288 // arguments passed on the stack 289 else { 290 if (log) 291 log->Printf("%s - reading arguments spilled to stack not implemented", 292 __FUNCTION__); 293 } 294 // fail if we couldn't read this argument 295 if (!success) { 296 if (log) 297 log->Printf("%s - error reading argument: %" PRIu64, __FUNCTION__, 298 uint64_t(i)); 299 return false; 300 } 301 } 302 return true; 303 } 304 305 bool GetArgsMipsel(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 306 // number of arguments passed in registers 307 static const uint32_t args_in_reg = 4; 308 // register file offset to first argument 309 static const uint32_t reg_offset = 4; 310 311 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 312 313 Error err; 314 315 // find offset to arguments on the stack (+16 to skip over a0-a3 shadow space) 316 uint64_t sp = ctx.reg_ctx->GetSP() + 16; 317 318 for (size_t i = 0; i < num_args; ++i) { 319 bool success = false; 320 ArgItem &arg = arg_list[i]; 321 // arguments passed in registers 322 if (i < args_in_reg) { 323 const RegisterInfo *reg = 324 ctx.reg_ctx->GetRegisterInfoAtIndex(i + reg_offset); 325 RegisterValue reg_val; 326 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 327 arg.value = reg_val.GetAsUInt64(0, &success); 328 } 329 // arguments passed on the stack 330 else { 331 const size_t arg_size = sizeof(uint32_t); 332 arg.value = 0; 333 size_t bytes_read = 334 ctx.process->ReadMemory(sp, &arg.value, arg_size, err); 335 success = (err.Success() && bytes_read == arg_size); 336 // advance the stack pointer 337 sp += arg_size; 338 } 339 // fail if we couldn't read this argument 340 if (!success) { 341 if (log) 342 log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s", 343 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 344 return false; 345 } 346 } 347 return true; 348 } 349 350 bool GetArgsMips64el(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 351 // number of arguments passed in registers 352 static const uint32_t args_in_reg = 8; 353 // register file offset to first argument 354 static const uint32_t reg_offset = 4; 355 356 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 357 358 Error err; 359 360 // get the current stack pointer 361 uint64_t sp = ctx.reg_ctx->GetSP(); 362 363 for (size_t i = 0; i < num_args; ++i) { 364 bool success = false; 365 ArgItem &arg = arg_list[i]; 366 // arguments passed in registers 367 if (i < args_in_reg) { 368 const RegisterInfo *reg = 369 ctx.reg_ctx->GetRegisterInfoAtIndex(i + reg_offset); 370 RegisterValue reg_val; 371 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 372 arg.value = reg_val.GetAsUInt64(0, &success); 373 } 374 // arguments passed on the stack 375 else { 376 // get the argument type size 377 const size_t arg_size = sizeof(uint64_t); 378 // clear all 64bits 379 arg.value = 0; 380 // read this argument from memory 381 size_t bytes_read = 382 ctx.process->ReadMemory(sp, &arg.value, arg_size, err); 383 success = (err.Success() && bytes_read == arg_size); 384 // advance the stack pointer 385 sp += arg_size; 386 } 387 // fail if we couldn't read this argument 388 if (!success) { 389 if (log) 390 log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s", 391 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 392 return false; 393 } 394 } 395 return true; 396 } 397 398 bool GetArgs(ExecutionContext &exe_ctx, ArgItem *arg_list, size_t num_args) { 399 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 400 401 // verify that we have a target 402 if (!exe_ctx.GetTargetPtr()) { 403 if (log) 404 log->Printf("%s - invalid target", __FUNCTION__); 405 return false; 406 } 407 408 GetArgsCtx ctx = {exe_ctx.GetRegisterContext(), exe_ctx.GetProcessPtr()}; 409 assert(ctx.reg_ctx && ctx.process); 410 411 // dispatch based on architecture 412 switch (exe_ctx.GetTargetPtr()->GetArchitecture().GetMachine()) { 413 case llvm::Triple::ArchType::x86: 414 return GetArgsX86(ctx, arg_list, num_args); 415 416 case llvm::Triple::ArchType::x86_64: 417 return GetArgsX86_64(ctx, arg_list, num_args); 418 419 case llvm::Triple::ArchType::arm: 420 return GetArgsArm(ctx, arg_list, num_args); 421 422 case llvm::Triple::ArchType::aarch64: 423 return GetArgsAarch64(ctx, arg_list, num_args); 424 425 case llvm::Triple::ArchType::mipsel: 426 return GetArgsMipsel(ctx, arg_list, num_args); 427 428 case llvm::Triple::ArchType::mips64el: 429 return GetArgsMips64el(ctx, arg_list, num_args); 430 431 default: 432 // unsupported architecture 433 if (log) { 434 log->Printf( 435 "%s - architecture not supported: '%s'", __FUNCTION__, 436 exe_ctx.GetTargetRef().GetArchitecture().GetArchitectureName()); 437 } 438 return false; 439 } 440 } 441 442 bool IsRenderScriptScriptModule(ModuleSP module) { 443 if (!module) 444 return false; 445 return module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), 446 eSymbolTypeData) != nullptr; 447 } 448 449 bool ParseCoordinate(llvm::StringRef coord_s, RSCoordinate &coord) { 450 // takes an argument of the form 'num[,num][,num]'. 451 // Where 'coord_s' is a comma separated 1,2 or 3-dimensional coordinate 452 // with the whitespace trimmed. 453 // Missing coordinates are defaulted to zero. 454 // If parsing of any elements fails the contents of &coord are undefined 455 // and `false` is returned, `true` otherwise 456 457 RegularExpression regex; 458 RegularExpression::Match regex_match(3); 459 460 bool matched = false; 461 if (regex.Compile(llvm::StringRef("^([0-9]+),([0-9]+),([0-9]+)$")) && 462 regex.Execute(coord_s, ®ex_match)) 463 matched = true; 464 else if (regex.Compile(llvm::StringRef("^([0-9]+),([0-9]+)$")) && 465 regex.Execute(coord_s, ®ex_match)) 466 matched = true; 467 else if (regex.Compile(llvm::StringRef("^([0-9]+)$")) && 468 regex.Execute(coord_s, ®ex_match)) 469 matched = true; 470 471 if (!matched) 472 return false; 473 474 auto get_index = [&](int idx, uint32_t &i) -> bool { 475 std::string group; 476 errno = 0; 477 if (regex_match.GetMatchAtIndex(coord_s.str().c_str(), idx + 1, group)) 478 return !llvm::StringRef(group).getAsInteger<uint32_t>(10, i); 479 return true; 480 }; 481 482 return get_index(0, coord.x) && get_index(1, coord.y) && 483 get_index(2, coord.z); 484 } 485 486 bool SkipPrologue(lldb::ModuleSP &module, Address &addr) { 487 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 488 SymbolContext sc; 489 uint32_t resolved_flags = 490 module->ResolveSymbolContextForAddress(addr, eSymbolContextFunction, sc); 491 if (resolved_flags & eSymbolContextFunction) { 492 if (sc.function) { 493 const uint32_t offset = sc.function->GetPrologueByteSize(); 494 ConstString name = sc.GetFunctionName(); 495 if (offset) 496 addr.Slide(offset); 497 if (log) 498 log->Printf("%s: Prologue offset for %s is %" PRIu32, __FUNCTION__, 499 name.AsCString(), offset); 500 } 501 return true; 502 } else 503 return false; 504 } 505 } // anonymous namespace 506 507 // The ScriptDetails class collects data associated with a single script 508 // instance. 509 struct RenderScriptRuntime::ScriptDetails { 510 ~ScriptDetails() = default; 511 512 enum ScriptType { eScript, eScriptC }; 513 514 // The derived type of the script. 515 empirical_type<ScriptType> type; 516 // The name of the original source file. 517 empirical_type<std::string> res_name; 518 // Path to script .so file on the device. 519 empirical_type<std::string> shared_lib; 520 // Directory where kernel objects are cached on device. 521 empirical_type<std::string> cache_dir; 522 // Pointer to the context which owns this script. 523 empirical_type<lldb::addr_t> context; 524 // Pointer to the script object itself. 525 empirical_type<lldb::addr_t> script; 526 }; 527 528 // This Element class represents the Element object in RS, defining the type 529 // associated with an Allocation. 530 struct RenderScriptRuntime::Element { 531 // Taken from rsDefines.h 532 enum DataKind { 533 RS_KIND_USER, 534 RS_KIND_PIXEL_L = 7, 535 RS_KIND_PIXEL_A, 536 RS_KIND_PIXEL_LA, 537 RS_KIND_PIXEL_RGB, 538 RS_KIND_PIXEL_RGBA, 539 RS_KIND_PIXEL_DEPTH, 540 RS_KIND_PIXEL_YUV, 541 RS_KIND_INVALID = 100 542 }; 543 544 // Taken from rsDefines.h 545 enum DataType { 546 RS_TYPE_NONE = 0, 547 RS_TYPE_FLOAT_16, 548 RS_TYPE_FLOAT_32, 549 RS_TYPE_FLOAT_64, 550 RS_TYPE_SIGNED_8, 551 RS_TYPE_SIGNED_16, 552 RS_TYPE_SIGNED_32, 553 RS_TYPE_SIGNED_64, 554 RS_TYPE_UNSIGNED_8, 555 RS_TYPE_UNSIGNED_16, 556 RS_TYPE_UNSIGNED_32, 557 RS_TYPE_UNSIGNED_64, 558 RS_TYPE_BOOLEAN, 559 560 RS_TYPE_UNSIGNED_5_6_5, 561 RS_TYPE_UNSIGNED_5_5_5_1, 562 RS_TYPE_UNSIGNED_4_4_4_4, 563 564 RS_TYPE_MATRIX_4X4, 565 RS_TYPE_MATRIX_3X3, 566 RS_TYPE_MATRIX_2X2, 567 568 RS_TYPE_ELEMENT = 1000, 569 RS_TYPE_TYPE, 570 RS_TYPE_ALLOCATION, 571 RS_TYPE_SAMPLER, 572 RS_TYPE_SCRIPT, 573 RS_TYPE_MESH, 574 RS_TYPE_PROGRAM_FRAGMENT, 575 RS_TYPE_PROGRAM_VERTEX, 576 RS_TYPE_PROGRAM_RASTER, 577 RS_TYPE_PROGRAM_STORE, 578 RS_TYPE_FONT, 579 580 RS_TYPE_INVALID = 10000 581 }; 582 583 std::vector<Element> children; // Child Element fields for structs 584 empirical_type<lldb::addr_t> 585 element_ptr; // Pointer to the RS Element of the Type 586 empirical_type<DataType> 587 type; // Type of each data pointer stored by the allocation 588 empirical_type<DataKind> 589 type_kind; // Defines pixel type if Allocation is created from an image 590 empirical_type<uint32_t> 591 type_vec_size; // Vector size of each data point, e.g '4' for uchar4 592 empirical_type<uint32_t> field_count; // Number of Subelements 593 empirical_type<uint32_t> datum_size; // Size of a single Element with padding 594 empirical_type<uint32_t> padding; // Number of padding bytes 595 empirical_type<uint32_t> 596 array_size; // Number of items in array, only needed for strucrs 597 ConstString type_name; // Name of type, only needed for structs 598 599 static const ConstString & 600 GetFallbackStructName(); // Print this as the type name of a struct Element 601 // If we can't resolve the actual struct name 602 603 bool ShouldRefresh() const { 604 const bool valid_ptr = element_ptr.isValid() && *element_ptr.get() != 0x0; 605 const bool valid_type = 606 type.isValid() && type_vec_size.isValid() && type_kind.isValid(); 607 return !valid_ptr || !valid_type || !datum_size.isValid(); 608 } 609 }; 610 611 // This AllocationDetails class collects data associated with a single 612 // allocation instance. 613 struct RenderScriptRuntime::AllocationDetails { 614 struct Dimension { 615 uint32_t dim_1; 616 uint32_t dim_2; 617 uint32_t dim_3; 618 uint32_t cube_map; 619 620 Dimension() { 621 dim_1 = 0; 622 dim_2 = 0; 623 dim_3 = 0; 624 cube_map = 0; 625 } 626 }; 627 628 // The FileHeader struct specifies the header we use for writing allocations 629 // to a binary file. Our format begins with the ASCII characters "RSAD", 630 // identifying the file as an allocation dump. Member variables dims and 631 // hdr_size are then written consecutively, immediately followed by an 632 // instance of the ElementHeader struct. Because Elements can contain 633 // subelements, there may be more than one instance of the ElementHeader 634 // struct. With this first instance being the root element, and the other 635 // instances being the root's descendants. To identify which instances are an 636 // ElementHeader's children, each struct is immediately followed by a sequence 637 // of consecutive offsets to the start of its child structs. These offsets are 638 // 4 bytes in size, and the 0 offset signifies no more children. 639 struct FileHeader { 640 uint8_t ident[4]; // ASCII 'RSAD' identifying the file 641 uint32_t dims[3]; // Dimensions 642 uint16_t hdr_size; // Header size in bytes, including all element headers 643 }; 644 645 struct ElementHeader { 646 uint16_t type; // DataType enum 647 uint32_t kind; // DataKind enum 648 uint32_t element_size; // Size of a single element, including padding 649 uint16_t vector_size; // Vector width 650 uint32_t array_size; // Number of elements in array 651 }; 652 653 // Monotonically increasing from 1 654 static uint32_t ID; 655 656 // Maps Allocation DataType enum and vector size to printable strings 657 // using mapping from RenderScript numerical types summary documentation 658 static const char *RsDataTypeToString[][4]; 659 660 // Maps Allocation DataKind enum to printable strings 661 static const char *RsDataKindToString[]; 662 663 // Maps allocation types to format sizes for printing. 664 static const uint32_t RSTypeToFormat[][3]; 665 666 // Give each allocation an ID as a way 667 // for commands to reference it. 668 const uint32_t id; 669 670 // Allocation Element type 671 RenderScriptRuntime::Element element; 672 // Dimensions of the Allocation 673 empirical_type<Dimension> dimension; 674 // Pointer to address of the RS Allocation 675 empirical_type<lldb::addr_t> address; 676 // Pointer to the data held by the Allocation 677 empirical_type<lldb::addr_t> data_ptr; 678 // Pointer to the RS Type of the Allocation 679 empirical_type<lldb::addr_t> type_ptr; 680 // Pointer to the RS Context of the Allocation 681 empirical_type<lldb::addr_t> context; 682 // Size of the allocation 683 empirical_type<uint32_t> size; 684 // Stride between rows of the allocation 685 empirical_type<uint32_t> stride; 686 687 // Give each allocation an id, so we can reference it in user commands. 688 AllocationDetails() : id(ID++) {} 689 690 bool ShouldRefresh() const { 691 bool valid_ptrs = data_ptr.isValid() && *data_ptr.get() != 0x0; 692 valid_ptrs = valid_ptrs && type_ptr.isValid() && *type_ptr.get() != 0x0; 693 return !valid_ptrs || !dimension.isValid() || !size.isValid() || 694 element.ShouldRefresh(); 695 } 696 }; 697 698 const ConstString &RenderScriptRuntime::Element::GetFallbackStructName() { 699 static const ConstString FallbackStructName("struct"); 700 return FallbackStructName; 701 } 702 703 uint32_t RenderScriptRuntime::AllocationDetails::ID = 1; 704 705 const char *RenderScriptRuntime::AllocationDetails::RsDataKindToString[] = { 706 "User", "Undefined", "Undefined", "Undefined", 707 "Undefined", "Undefined", "Undefined", // Enum jumps from 0 to 7 708 "L Pixel", "A Pixel", "LA Pixel", "RGB Pixel", 709 "RGBA Pixel", "Pixel Depth", "YUV Pixel"}; 710 711 const char *RenderScriptRuntime::AllocationDetails::RsDataTypeToString[][4] = { 712 {"None", "None", "None", "None"}, 713 {"half", "half2", "half3", "half4"}, 714 {"float", "float2", "float3", "float4"}, 715 {"double", "double2", "double3", "double4"}, 716 {"char", "char2", "char3", "char4"}, 717 {"short", "short2", "short3", "short4"}, 718 {"int", "int2", "int3", "int4"}, 719 {"long", "long2", "long3", "long4"}, 720 {"uchar", "uchar2", "uchar3", "uchar4"}, 721 {"ushort", "ushort2", "ushort3", "ushort4"}, 722 {"uint", "uint2", "uint3", "uint4"}, 723 {"ulong", "ulong2", "ulong3", "ulong4"}, 724 {"bool", "bool2", "bool3", "bool4"}, 725 {"packed_565", "packed_565", "packed_565", "packed_565"}, 726 {"packed_5551", "packed_5551", "packed_5551", "packed_5551"}, 727 {"packed_4444", "packed_4444", "packed_4444", "packed_4444"}, 728 {"rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4"}, 729 {"rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3"}, 730 {"rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2"}, 731 732 // Handlers 733 {"RS Element", "RS Element", "RS Element", "RS Element"}, 734 {"RS Type", "RS Type", "RS Type", "RS Type"}, 735 {"RS Allocation", "RS Allocation", "RS Allocation", "RS Allocation"}, 736 {"RS Sampler", "RS Sampler", "RS Sampler", "RS Sampler"}, 737 {"RS Script", "RS Script", "RS Script", "RS Script"}, 738 739 // Deprecated 740 {"RS Mesh", "RS Mesh", "RS Mesh", "RS Mesh"}, 741 {"RS Program Fragment", "RS Program Fragment", "RS Program Fragment", 742 "RS Program Fragment"}, 743 {"RS Program Vertex", "RS Program Vertex", "RS Program Vertex", 744 "RS Program Vertex"}, 745 {"RS Program Raster", "RS Program Raster", "RS Program Raster", 746 "RS Program Raster"}, 747 {"RS Program Store", "RS Program Store", "RS Program Store", 748 "RS Program Store"}, 749 {"RS Font", "RS Font", "RS Font", "RS Font"}}; 750 751 // Used as an index into the RSTypeToFormat array elements 752 enum TypeToFormatIndex { eFormatSingle = 0, eFormatVector, eElementSize }; 753 754 // { format enum of single element, format enum of element vector, size of 755 // element} 756 const uint32_t RenderScriptRuntime::AllocationDetails::RSTypeToFormat[][3] = { 757 // RS_TYPE_NONE 758 {eFormatHex, eFormatHex, 1}, 759 // RS_TYPE_FLOAT_16 760 {eFormatFloat, eFormatVectorOfFloat16, 2}, 761 // RS_TYPE_FLOAT_32 762 {eFormatFloat, eFormatVectorOfFloat32, sizeof(float)}, 763 // RS_TYPE_FLOAT_64 764 {eFormatFloat, eFormatVectorOfFloat64, sizeof(double)}, 765 // RS_TYPE_SIGNED_8 766 {eFormatDecimal, eFormatVectorOfSInt8, sizeof(int8_t)}, 767 // RS_TYPE_SIGNED_16 768 {eFormatDecimal, eFormatVectorOfSInt16, sizeof(int16_t)}, 769 // RS_TYPE_SIGNED_32 770 {eFormatDecimal, eFormatVectorOfSInt32, sizeof(int32_t)}, 771 // RS_TYPE_SIGNED_64 772 {eFormatDecimal, eFormatVectorOfSInt64, sizeof(int64_t)}, 773 // RS_TYPE_UNSIGNED_8 774 {eFormatDecimal, eFormatVectorOfUInt8, sizeof(uint8_t)}, 775 // RS_TYPE_UNSIGNED_16 776 {eFormatDecimal, eFormatVectorOfUInt16, sizeof(uint16_t)}, 777 // RS_TYPE_UNSIGNED_32 778 {eFormatDecimal, eFormatVectorOfUInt32, sizeof(uint32_t)}, 779 // RS_TYPE_UNSIGNED_64 780 {eFormatDecimal, eFormatVectorOfUInt64, sizeof(uint64_t)}, 781 // RS_TYPE_BOOL 782 {eFormatBoolean, eFormatBoolean, 1}, 783 // RS_TYPE_UNSIGNED_5_6_5 784 {eFormatHex, eFormatHex, sizeof(uint16_t)}, 785 // RS_TYPE_UNSIGNED_5_5_5_1 786 {eFormatHex, eFormatHex, sizeof(uint16_t)}, 787 // RS_TYPE_UNSIGNED_4_4_4_4 788 {eFormatHex, eFormatHex, sizeof(uint16_t)}, 789 // RS_TYPE_MATRIX_4X4 790 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 16}, 791 // RS_TYPE_MATRIX_3X3 792 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 9}, 793 // RS_TYPE_MATRIX_2X2 794 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 4}}; 795 796 //------------------------------------------------------------------ 797 // Static Functions 798 //------------------------------------------------------------------ 799 LanguageRuntime * 800 RenderScriptRuntime::CreateInstance(Process *process, 801 lldb::LanguageType language) { 802 803 if (language == eLanguageTypeExtRenderScript) 804 return new RenderScriptRuntime(process); 805 else 806 return nullptr; 807 } 808 809 // Callback with a module to search for matching symbols. We first check that 810 // the module contains RS kernels. Then look for a symbol which matches our 811 // kernel name. The breakpoint address is finally set using the address of this 812 // symbol. 813 Searcher::CallbackReturn 814 RSBreakpointResolver::SearchCallback(SearchFilter &filter, 815 SymbolContext &context, Address *, bool) { 816 ModuleSP module = context.module_sp; 817 818 if (!module || !IsRenderScriptScriptModule(module)) 819 return Searcher::eCallbackReturnContinue; 820 821 // Attempt to set a breakpoint on the kernel name symbol within the module 822 // library. If it's not found, it's likely debug info is unavailable - try to 823 // set a breakpoint on <name>.expand. 824 const Symbol *kernel_sym = 825 module->FindFirstSymbolWithNameAndType(m_kernel_name, eSymbolTypeCode); 826 if (!kernel_sym) { 827 std::string kernel_name_expanded(m_kernel_name.AsCString()); 828 kernel_name_expanded.append(".expand"); 829 kernel_sym = module->FindFirstSymbolWithNameAndType( 830 ConstString(kernel_name_expanded.c_str()), eSymbolTypeCode); 831 } 832 833 if (kernel_sym) { 834 Address bp_addr = kernel_sym->GetAddress(); 835 if (filter.AddressPasses(bp_addr)) 836 m_breakpoint->AddLocation(bp_addr); 837 } 838 839 return Searcher::eCallbackReturnContinue; 840 } 841 842 Searcher::CallbackReturn 843 RSReduceBreakpointResolver::SearchCallback(lldb_private::SearchFilter &filter, 844 lldb_private::SymbolContext &context, 845 Address *, bool) { 846 // We need to have access to the list of reductions currently parsed, as 847 // reduce names don't actually exist as 848 // symbols in a module. They are only identifiable by parsing the .rs.info 849 // packet, or finding the expand symbol. We 850 // therefore need access to the list of parsed rs modules to properly resolve 851 // reduction names. 852 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 853 ModuleSP module = context.module_sp; 854 855 if (!module || !IsRenderScriptScriptModule(module)) 856 return Searcher::eCallbackReturnContinue; 857 858 if (!m_rsmodules) 859 return Searcher::eCallbackReturnContinue; 860 861 for (const auto &module_desc : *m_rsmodules) { 862 if (module_desc->m_module != module) 863 continue; 864 865 for (const auto &reduction : module_desc->m_reductions) { 866 if (reduction.m_reduce_name != m_reduce_name) 867 continue; 868 869 std::array<std::pair<ConstString, int>, 5> funcs{ 870 {{reduction.m_init_name, eKernelTypeInit}, 871 {reduction.m_accum_name, eKernelTypeAccum}, 872 {reduction.m_comb_name, eKernelTypeComb}, 873 {reduction.m_outc_name, eKernelTypeOutC}, 874 {reduction.m_halter_name, eKernelTypeHalter}}}; 875 876 for (const auto &kernel : funcs) { 877 // Skip constituent functions that don't match our spec 878 if (!(m_kernel_types & kernel.second)) 879 continue; 880 881 const auto kernel_name = kernel.first; 882 const auto symbol = module->FindFirstSymbolWithNameAndType( 883 kernel_name, eSymbolTypeCode); 884 if (!symbol) 885 continue; 886 887 auto address = symbol->GetAddress(); 888 if (filter.AddressPasses(address)) { 889 bool new_bp; 890 if (!SkipPrologue(module, address)) { 891 if (log) 892 log->Printf("%s: Error trying to skip prologue", __FUNCTION__); 893 } 894 m_breakpoint->AddLocation(address, &new_bp); 895 if (log) 896 log->Printf("%s: %s reduction breakpoint on %s in %s", __FUNCTION__, 897 new_bp ? "new" : "existing", kernel_name.GetCString(), 898 address.GetModule()->GetFileSpec().GetCString()); 899 } 900 } 901 } 902 } 903 return eCallbackReturnContinue; 904 } 905 906 Searcher::CallbackReturn RSScriptGroupBreakpointResolver::SearchCallback( 907 SearchFilter &filter, SymbolContext &context, Address *addr, 908 bool containing) { 909 910 if (!m_breakpoint) 911 return eCallbackReturnContinue; 912 913 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 914 ModuleSP &module = context.module_sp; 915 916 if (!module || !IsRenderScriptScriptModule(module)) 917 return Searcher::eCallbackReturnContinue; 918 919 std::vector<std::string> names; 920 m_breakpoint->GetNames(names); 921 if (names.empty()) 922 return eCallbackReturnContinue; 923 924 for (auto &name : names) { 925 const RSScriptGroupDescriptorSP sg = FindScriptGroup(ConstString(name)); 926 if (!sg) { 927 if (log) 928 log->Printf("%s: could not find script group for %s", __FUNCTION__, 929 name.c_str()); 930 continue; 931 } 932 933 if (log) 934 log->Printf("%s: Found ScriptGroup for %s", __FUNCTION__, name.c_str()); 935 936 for (const RSScriptGroupDescriptor::Kernel &k : sg->m_kernels) { 937 if (log) { 938 log->Printf("%s: Adding breakpoint for %s", __FUNCTION__, 939 k.m_name.AsCString()); 940 log->Printf("%s: Kernel address 0x%" PRIx64, __FUNCTION__, k.m_addr); 941 } 942 943 const lldb_private::Symbol *sym = 944 module->FindFirstSymbolWithNameAndType(k.m_name, eSymbolTypeCode); 945 if (!sym) { 946 if (log) 947 log->Printf("%s: Unable to find symbol for %s", __FUNCTION__, 948 k.m_name.AsCString()); 949 continue; 950 } 951 952 if (log) { 953 log->Printf("%s: Found symbol name is %s", __FUNCTION__, 954 sym->GetName().AsCString()); 955 } 956 957 auto address = sym->GetAddress(); 958 if (!SkipPrologue(module, address)) { 959 if (log) 960 log->Printf("%s: Error trying to skip prologue", __FUNCTION__); 961 } 962 963 bool new_bp; 964 m_breakpoint->AddLocation(address, &new_bp); 965 966 if (log) 967 log->Printf("%s: Placed %sbreakpoint on %s", __FUNCTION__, 968 new_bp ? "new " : "", k.m_name.AsCString()); 969 970 // exit after placing the first breakpoint if we do not intend to stop 971 // on all kernels making up this script group 972 if (!m_stop_on_all) 973 break; 974 } 975 } 976 977 return eCallbackReturnContinue; 978 } 979 980 void RenderScriptRuntime::Initialize() { 981 PluginManager::RegisterPlugin(GetPluginNameStatic(), 982 "RenderScript language support", CreateInstance, 983 GetCommandObject); 984 } 985 986 void RenderScriptRuntime::Terminate() { 987 PluginManager::UnregisterPlugin(CreateInstance); 988 } 989 990 lldb_private::ConstString RenderScriptRuntime::GetPluginNameStatic() { 991 static ConstString plugin_name("renderscript"); 992 return plugin_name; 993 } 994 995 RenderScriptRuntime::ModuleKind 996 RenderScriptRuntime::GetModuleKind(const lldb::ModuleSP &module_sp) { 997 if (module_sp) { 998 if (IsRenderScriptScriptModule(module_sp)) 999 return eModuleKindKernelObj; 1000 1001 // Is this the main RS runtime library 1002 const ConstString rs_lib("libRS.so"); 1003 if (module_sp->GetFileSpec().GetFilename() == rs_lib) { 1004 return eModuleKindLibRS; 1005 } 1006 1007 const ConstString rs_driverlib("libRSDriver.so"); 1008 if (module_sp->GetFileSpec().GetFilename() == rs_driverlib) { 1009 return eModuleKindDriver; 1010 } 1011 1012 const ConstString rs_cpureflib("libRSCpuRef.so"); 1013 if (module_sp->GetFileSpec().GetFilename() == rs_cpureflib) { 1014 return eModuleKindImpl; 1015 } 1016 } 1017 return eModuleKindIgnored; 1018 } 1019 1020 bool RenderScriptRuntime::IsRenderScriptModule( 1021 const lldb::ModuleSP &module_sp) { 1022 return GetModuleKind(module_sp) != eModuleKindIgnored; 1023 } 1024 1025 void RenderScriptRuntime::ModulesDidLoad(const ModuleList &module_list) { 1026 std::lock_guard<std::recursive_mutex> guard(module_list.GetMutex()); 1027 1028 size_t num_modules = module_list.GetSize(); 1029 for (size_t i = 0; i < num_modules; i++) { 1030 auto mod = module_list.GetModuleAtIndex(i); 1031 if (IsRenderScriptModule(mod)) { 1032 LoadModule(mod); 1033 } 1034 } 1035 } 1036 1037 //------------------------------------------------------------------ 1038 // PluginInterface protocol 1039 //------------------------------------------------------------------ 1040 lldb_private::ConstString RenderScriptRuntime::GetPluginName() { 1041 return GetPluginNameStatic(); 1042 } 1043 1044 uint32_t RenderScriptRuntime::GetPluginVersion() { return 1; } 1045 1046 bool RenderScriptRuntime::IsVTableName(const char *name) { return false; } 1047 1048 bool RenderScriptRuntime::GetDynamicTypeAndAddress( 1049 ValueObject &in_value, lldb::DynamicValueType use_dynamic, 1050 TypeAndOrName &class_type_or_name, Address &address, 1051 Value::ValueType &value_type) { 1052 return false; 1053 } 1054 1055 TypeAndOrName 1056 RenderScriptRuntime::FixUpDynamicType(const TypeAndOrName &type_and_or_name, 1057 ValueObject &static_value) { 1058 return type_and_or_name; 1059 } 1060 1061 bool RenderScriptRuntime::CouldHaveDynamicValue(ValueObject &in_value) { 1062 return false; 1063 } 1064 1065 lldb::BreakpointResolverSP 1066 RenderScriptRuntime::CreateExceptionResolver(Breakpoint *bp, bool catch_bp, 1067 bool throw_bp) { 1068 BreakpointResolverSP resolver_sp; 1069 return resolver_sp; 1070 } 1071 1072 const RenderScriptRuntime::HookDefn RenderScriptRuntime::s_runtimeHookDefns[] = 1073 { 1074 // rsdScript 1075 {"rsdScriptInit", "_Z13rsdScriptInitPKN7android12renderscript7ContextEP" 1076 "NS0_7ScriptCEPKcS7_PKhjj", 1077 "_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_" 1078 "7ScriptCEPKcS7_PKhmj", 1079 0, RenderScriptRuntime::eModuleKindDriver, 1080 &lldb_private::RenderScriptRuntime::CaptureScriptInit}, 1081 {"rsdScriptInvokeForEachMulti", 1082 "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0" 1083 "_6ScriptEjPPKNS0_10AllocationEjPS6_PKvjPK12RsScriptCall", 1084 "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0" 1085 "_6ScriptEjPPKNS0_10AllocationEmPS6_PKvmPK12RsScriptCall", 1086 0, RenderScriptRuntime::eModuleKindDriver, 1087 &lldb_private::RenderScriptRuntime::CaptureScriptInvokeForEachMulti}, 1088 {"rsdScriptSetGlobalVar", "_Z21rsdScriptSetGlobalVarPKN7android12render" 1089 "script7ContextEPKNS0_6ScriptEjPvj", 1090 "_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_" 1091 "6ScriptEjPvm", 1092 0, RenderScriptRuntime::eModuleKindDriver, 1093 &lldb_private::RenderScriptRuntime::CaptureSetGlobalVar}, 1094 1095 // rsdAllocation 1096 {"rsdAllocationInit", "_Z17rsdAllocationInitPKN7android12renderscript7C" 1097 "ontextEPNS0_10AllocationEb", 1098 "_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_" 1099 "10AllocationEb", 1100 0, RenderScriptRuntime::eModuleKindDriver, 1101 &lldb_private::RenderScriptRuntime::CaptureAllocationInit}, 1102 {"rsdAllocationRead2D", 1103 "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_" 1104 "10AllocationEjjj23RsAllocationCubemapFacejjPvjj", 1105 "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_" 1106 "10AllocationEjjj23RsAllocationCubemapFacejjPvmm", 1107 0, RenderScriptRuntime::eModuleKindDriver, nullptr}, 1108 {"rsdAllocationDestroy", "_Z20rsdAllocationDestroyPKN7android12rendersc" 1109 "ript7ContextEPNS0_10AllocationE", 1110 "_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_" 1111 "10AllocationE", 1112 0, RenderScriptRuntime::eModuleKindDriver, 1113 &lldb_private::RenderScriptRuntime::CaptureAllocationDestroy}, 1114 1115 // renderscript script groups 1116 {"rsdDebugHintScriptGroup2", "_ZN7android12renderscript21debugHintScrip" 1117 "tGroup2EPKcjPKPFvPK24RsExpandKernelDriver" 1118 "InfojjjEj", 1119 "_ZN7android12renderscript21debugHintScriptGroup2EPKcjPKPFvPK24RsExpan" 1120 "dKernelDriverInfojjjEj", 1121 0, RenderScriptRuntime::eModuleKindImpl, 1122 &lldb_private::RenderScriptRuntime::CaptureDebugHintScriptGroup2}}; 1123 1124 const size_t RenderScriptRuntime::s_runtimeHookCount = 1125 sizeof(s_runtimeHookDefns) / sizeof(s_runtimeHookDefns[0]); 1126 1127 bool RenderScriptRuntime::HookCallback(void *baton, 1128 StoppointCallbackContext *ctx, 1129 lldb::user_id_t break_id, 1130 lldb::user_id_t break_loc_id) { 1131 RuntimeHook *hook = (RuntimeHook *)baton; 1132 ExecutionContext exe_ctx(ctx->exe_ctx_ref); 1133 1134 RenderScriptRuntime *lang_rt = 1135 (RenderScriptRuntime *)exe_ctx.GetProcessPtr()->GetLanguageRuntime( 1136 eLanguageTypeExtRenderScript); 1137 1138 lang_rt->HookCallback(hook, exe_ctx); 1139 1140 return false; 1141 } 1142 1143 void RenderScriptRuntime::HookCallback(RuntimeHook *hook, 1144 ExecutionContext &exe_ctx) { 1145 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1146 1147 if (log) 1148 log->Printf("%s - '%s'", __FUNCTION__, hook->defn->name); 1149 1150 if (hook->defn->grabber) { 1151 (this->*(hook->defn->grabber))(hook, exe_ctx); 1152 } 1153 } 1154 1155 void RenderScriptRuntime::CaptureDebugHintScriptGroup2( 1156 RuntimeHook *hook_info, ExecutionContext &context) { 1157 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1158 1159 enum { 1160 eGroupName = 0, 1161 eGroupNameSize, 1162 eKernel, 1163 eKernelCount, 1164 }; 1165 1166 std::array<ArgItem, 4> args{{ 1167 {ArgItem::ePointer, 0}, // const char *groupName 1168 {ArgItem::eInt32, 0}, // const uint32_t groupNameSize 1169 {ArgItem::ePointer, 0}, // const ExpandFuncTy *kernel 1170 {ArgItem::eInt32, 0}, // const uint32_t kernelCount 1171 }}; 1172 1173 if (!GetArgs(context, args.data(), args.size())) { 1174 if (log) 1175 log->Printf("%s - Error while reading the function parameters", 1176 __FUNCTION__); 1177 return; 1178 } else if (log) { 1179 log->Printf("%s - groupName : 0x%" PRIx64, __FUNCTION__, 1180 addr_t(args[eGroupName])); 1181 log->Printf("%s - groupNameSize: %" PRIu64, __FUNCTION__, 1182 uint64_t(args[eGroupNameSize])); 1183 log->Printf("%s - kernel : 0x%" PRIx64, __FUNCTION__, 1184 addr_t(args[eKernel])); 1185 log->Printf("%s - kernelCount : %" PRIu64, __FUNCTION__, 1186 uint64_t(args[eKernelCount])); 1187 } 1188 1189 // parse script group name 1190 ConstString group_name; 1191 { 1192 Error err; 1193 const uint64_t len = uint64_t(args[eGroupNameSize]); 1194 std::unique_ptr<char[]> buffer(new char[uint32_t(len + 1)]); 1195 m_process->ReadMemory(addr_t(args[eGroupName]), buffer.get(), len, err); 1196 buffer.get()[len] = '\0'; 1197 if (!err.Success()) { 1198 if (log) 1199 log->Printf("Error reading scriptgroup name from target"); 1200 return; 1201 } else { 1202 if (log) 1203 log->Printf("Extracted scriptgroup name %s", buffer.get()); 1204 } 1205 // write back the script group name 1206 group_name.SetCString(buffer.get()); 1207 } 1208 1209 // create or access existing script group 1210 RSScriptGroupDescriptorSP group; 1211 { 1212 // search for existing script group 1213 for (auto sg : m_scriptGroups) { 1214 if (sg->m_name == group_name) { 1215 group = sg; 1216 break; 1217 } 1218 } 1219 if (!group) { 1220 group.reset(new RSScriptGroupDescriptor); 1221 group->m_name = group_name; 1222 m_scriptGroups.push_back(group); 1223 } else { 1224 // already have this script group 1225 if (log) 1226 log->Printf("Attempt to add duplicate script group %s", 1227 group_name.AsCString()); 1228 return; 1229 } 1230 } 1231 assert(group); 1232 1233 const uint32_t target_ptr_size = m_process->GetAddressByteSize(); 1234 std::vector<addr_t> kernels; 1235 // parse kernel addresses in script group 1236 for (uint64_t i = 0; i < uint64_t(args[eKernelCount]); ++i) { 1237 RSScriptGroupDescriptor::Kernel kernel; 1238 // extract script group kernel addresses from the target 1239 const addr_t ptr_addr = addr_t(args[eKernel]) + i * target_ptr_size; 1240 uint64_t kernel_addr = 0; 1241 Error err; 1242 size_t read = 1243 m_process->ReadMemory(ptr_addr, &kernel_addr, target_ptr_size, err); 1244 if (!err.Success() || read != target_ptr_size) { 1245 if (log) 1246 log->Printf("Error parsing kernel address %" PRIu64 " in script group", 1247 i); 1248 return; 1249 } 1250 if (log) 1251 log->Printf("Extracted scriptgroup kernel address - 0x%" PRIx64, 1252 kernel_addr); 1253 kernel.m_addr = kernel_addr; 1254 1255 // try to resolve the associated kernel name 1256 if (!ResolveKernelName(kernel.m_addr, kernel.m_name)) { 1257 if (log) 1258 log->Printf("Parsed scriptgroup kernel %" PRIu64 " - 0x%" PRIx64, i, 1259 kernel_addr); 1260 return; 1261 } 1262 1263 // try to find the non '.expand' function 1264 { 1265 const llvm::StringRef expand(".expand"); 1266 const llvm::StringRef name_ref = kernel.m_name.GetStringRef(); 1267 if (name_ref.endswith(expand)) { 1268 const ConstString base_kernel(name_ref.drop_back(expand.size())); 1269 // verify this function is a valid kernel 1270 if (IsKnownKernel(base_kernel)) { 1271 kernel.m_name = base_kernel; 1272 if (log) 1273 log->Printf("%s - found non expand version '%s'", __FUNCTION__, 1274 base_kernel.GetCString()); 1275 } 1276 } 1277 } 1278 // add to a list of script group kernels we know about 1279 group->m_kernels.push_back(kernel); 1280 } 1281 1282 // Resolve any pending scriptgroup breakpoints 1283 { 1284 Target &target = m_process->GetTarget(); 1285 const BreakpointList &list = target.GetBreakpointList(); 1286 const size_t num_breakpoints = list.GetSize(); 1287 if (log) 1288 log->Printf("Resolving %zu breakpoints", num_breakpoints); 1289 for (size_t i = 0; i < num_breakpoints; ++i) { 1290 const BreakpointSP bp = list.GetBreakpointAtIndex(i); 1291 if (bp) { 1292 if (bp->MatchesName(group_name.AsCString())) { 1293 if (log) 1294 log->Printf("Found breakpoint with name %s", 1295 group_name.AsCString()); 1296 bp->ResolveBreakpoint(); 1297 } 1298 } 1299 } 1300 } 1301 } 1302 1303 void RenderScriptRuntime::CaptureScriptInvokeForEachMulti( 1304 RuntimeHook *hook, ExecutionContext &exe_ctx) { 1305 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1306 1307 enum { 1308 eRsContext = 0, 1309 eRsScript, 1310 eRsSlot, 1311 eRsAIns, 1312 eRsInLen, 1313 eRsAOut, 1314 eRsUsr, 1315 eRsUsrLen, 1316 eRsSc, 1317 }; 1318 1319 std::array<ArgItem, 9> args{{ 1320 ArgItem{ArgItem::ePointer, 0}, // const Context *rsc 1321 ArgItem{ArgItem::ePointer, 0}, // Script *s 1322 ArgItem{ArgItem::eInt32, 0}, // uint32_t slot 1323 ArgItem{ArgItem::ePointer, 0}, // const Allocation **aIns 1324 ArgItem{ArgItem::eInt32, 0}, // size_t inLen 1325 ArgItem{ArgItem::ePointer, 0}, // Allocation *aout 1326 ArgItem{ArgItem::ePointer, 0}, // const void *usr 1327 ArgItem{ArgItem::eInt32, 0}, // size_t usrLen 1328 ArgItem{ArgItem::ePointer, 0}, // const RsScriptCall *sc 1329 }}; 1330 1331 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1332 if (!success) { 1333 if (log) 1334 log->Printf("%s - Error while reading the function parameters", 1335 __FUNCTION__); 1336 return; 1337 } 1338 1339 const uint32_t target_ptr_size = m_process->GetAddressByteSize(); 1340 Error err; 1341 std::vector<uint64_t> allocs; 1342 1343 // traverse allocation list 1344 for (uint64_t i = 0; i < uint64_t(args[eRsInLen]); ++i) { 1345 // calculate offest to allocation pointer 1346 const addr_t addr = addr_t(args[eRsAIns]) + i * target_ptr_size; 1347 1348 // Note: due to little endian layout, reading 32bits or 64bits into res 1349 // will give the correct results. 1350 uint64_t result = 0; 1351 size_t read = m_process->ReadMemory(addr, &result, target_ptr_size, err); 1352 if (read != target_ptr_size || !err.Success()) { 1353 if (log) 1354 log->Printf( 1355 "%s - Error while reading allocation list argument %" PRIu64, 1356 __FUNCTION__, i); 1357 } else { 1358 allocs.push_back(result); 1359 } 1360 } 1361 1362 // if there is an output allocation track it 1363 if (uint64_t alloc_out = uint64_t(args[eRsAOut])) { 1364 allocs.push_back(alloc_out); 1365 } 1366 1367 // for all allocations we have found 1368 for (const uint64_t alloc_addr : allocs) { 1369 AllocationDetails *alloc = LookUpAllocation(alloc_addr); 1370 if (!alloc) 1371 alloc = CreateAllocation(alloc_addr); 1372 1373 if (alloc) { 1374 // save the allocation address 1375 if (alloc->address.isValid()) { 1376 // check the allocation address we already have matches 1377 assert(*alloc->address.get() == alloc_addr); 1378 } else { 1379 alloc->address = alloc_addr; 1380 } 1381 1382 // save the context 1383 if (log) { 1384 if (alloc->context.isValid() && 1385 *alloc->context.get() != addr_t(args[eRsContext])) 1386 log->Printf("%s - Allocation used by multiple contexts", 1387 __FUNCTION__); 1388 } 1389 alloc->context = addr_t(args[eRsContext]); 1390 } 1391 } 1392 1393 // make sure we track this script object 1394 if (lldb_private::RenderScriptRuntime::ScriptDetails *script = 1395 LookUpScript(addr_t(args[eRsScript]), true)) { 1396 if (log) { 1397 if (script->context.isValid() && 1398 *script->context.get() != addr_t(args[eRsContext])) 1399 log->Printf("%s - Script used by multiple contexts", __FUNCTION__); 1400 } 1401 script->context = addr_t(args[eRsContext]); 1402 } 1403 } 1404 1405 void RenderScriptRuntime::CaptureSetGlobalVar(RuntimeHook *hook, 1406 ExecutionContext &context) { 1407 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1408 1409 enum { 1410 eRsContext, 1411 eRsScript, 1412 eRsId, 1413 eRsData, 1414 eRsLength, 1415 }; 1416 1417 std::array<ArgItem, 5> args{{ 1418 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1419 ArgItem{ArgItem::ePointer, 0}, // eRsScript 1420 ArgItem{ArgItem::eInt32, 0}, // eRsId 1421 ArgItem{ArgItem::ePointer, 0}, // eRsData 1422 ArgItem{ArgItem::eInt32, 0}, // eRsLength 1423 }}; 1424 1425 bool success = GetArgs(context, &args[0], args.size()); 1426 if (!success) { 1427 if (log) 1428 log->Printf("%s - error reading the function parameters.", __FUNCTION__); 1429 return; 1430 } 1431 1432 if (log) { 1433 log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " slot %" PRIu64 " = 0x%" PRIx64 1434 ":%" PRIu64 "bytes.", 1435 __FUNCTION__, uint64_t(args[eRsContext]), 1436 uint64_t(args[eRsScript]), uint64_t(args[eRsId]), 1437 uint64_t(args[eRsData]), uint64_t(args[eRsLength])); 1438 1439 addr_t script_addr = addr_t(args[eRsScript]); 1440 if (m_scriptMappings.find(script_addr) != m_scriptMappings.end()) { 1441 auto rsm = m_scriptMappings[script_addr]; 1442 if (uint64_t(args[eRsId]) < rsm->m_globals.size()) { 1443 auto rsg = rsm->m_globals[uint64_t(args[eRsId])]; 1444 log->Printf("%s - Setting of '%s' within '%s' inferred", __FUNCTION__, 1445 rsg.m_name.AsCString(), 1446 rsm->m_module->GetFileSpec().GetFilename().AsCString()); 1447 } 1448 } 1449 } 1450 } 1451 1452 void RenderScriptRuntime::CaptureAllocationInit(RuntimeHook *hook, 1453 ExecutionContext &exe_ctx) { 1454 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1455 1456 enum { eRsContext, eRsAlloc, eRsForceZero }; 1457 1458 std::array<ArgItem, 3> args{{ 1459 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1460 ArgItem{ArgItem::ePointer, 0}, // eRsAlloc 1461 ArgItem{ArgItem::eBool, 0}, // eRsForceZero 1462 }}; 1463 1464 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1465 if (!success) { 1466 if (log) 1467 log->Printf("%s - error while reading the function parameters", 1468 __FUNCTION__); 1469 return; 1470 } 1471 1472 if (log) 1473 log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 ",0x%" PRIx64 " .", 1474 __FUNCTION__, uint64_t(args[eRsContext]), 1475 uint64_t(args[eRsAlloc]), uint64_t(args[eRsForceZero])); 1476 1477 AllocationDetails *alloc = CreateAllocation(uint64_t(args[eRsAlloc])); 1478 if (alloc) 1479 alloc->context = uint64_t(args[eRsContext]); 1480 } 1481 1482 void RenderScriptRuntime::CaptureAllocationDestroy(RuntimeHook *hook, 1483 ExecutionContext &exe_ctx) { 1484 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1485 1486 enum { 1487 eRsContext, 1488 eRsAlloc, 1489 }; 1490 1491 std::array<ArgItem, 2> args{{ 1492 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1493 ArgItem{ArgItem::ePointer, 0}, // eRsAlloc 1494 }}; 1495 1496 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1497 if (!success) { 1498 if (log) 1499 log->Printf("%s - error while reading the function parameters.", 1500 __FUNCTION__); 1501 return; 1502 } 1503 1504 if (log) 1505 log->Printf("%s - 0x%" PRIx64 ", 0x%" PRIx64 ".", __FUNCTION__, 1506 uint64_t(args[eRsContext]), uint64_t(args[eRsAlloc])); 1507 1508 for (auto iter = m_allocations.begin(); iter != m_allocations.end(); ++iter) { 1509 auto &allocation_ap = *iter; // get the unique pointer 1510 if (allocation_ap->address.isValid() && 1511 *allocation_ap->address.get() == addr_t(args[eRsAlloc])) { 1512 m_allocations.erase(iter); 1513 if (log) 1514 log->Printf("%s - deleted allocation entry.", __FUNCTION__); 1515 return; 1516 } 1517 } 1518 1519 if (log) 1520 log->Printf("%s - couldn't find destroyed allocation.", __FUNCTION__); 1521 } 1522 1523 void RenderScriptRuntime::CaptureScriptInit(RuntimeHook *hook, 1524 ExecutionContext &exe_ctx) { 1525 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1526 1527 Error err; 1528 Process *process = exe_ctx.GetProcessPtr(); 1529 1530 enum { eRsContext, eRsScript, eRsResNamePtr, eRsCachedDirPtr }; 1531 1532 std::array<ArgItem, 4> args{ 1533 {ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}, 1534 ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}}}; 1535 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1536 if (!success) { 1537 if (log) 1538 log->Printf("%s - error while reading the function parameters.", 1539 __FUNCTION__); 1540 return; 1541 } 1542 1543 std::string res_name; 1544 process->ReadCStringFromMemory(addr_t(args[eRsResNamePtr]), res_name, err); 1545 if (err.Fail()) { 1546 if (log) 1547 log->Printf("%s - error reading res_name: %s.", __FUNCTION__, 1548 err.AsCString()); 1549 } 1550 1551 std::string cache_dir; 1552 process->ReadCStringFromMemory(addr_t(args[eRsCachedDirPtr]), cache_dir, err); 1553 if (err.Fail()) { 1554 if (log) 1555 log->Printf("%s - error reading cache_dir: %s.", __FUNCTION__, 1556 err.AsCString()); 1557 } 1558 1559 if (log) 1560 log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " => '%s' at '%s' .", 1561 __FUNCTION__, uint64_t(args[eRsContext]), 1562 uint64_t(args[eRsScript]), res_name.c_str(), cache_dir.c_str()); 1563 1564 if (res_name.size() > 0) { 1565 StreamString strm; 1566 strm.Printf("librs.%s.so", res_name.c_str()); 1567 1568 ScriptDetails *script = LookUpScript(addr_t(args[eRsScript]), true); 1569 if (script) { 1570 script->type = ScriptDetails::eScriptC; 1571 script->cache_dir = cache_dir; 1572 script->res_name = res_name; 1573 script->shared_lib = strm.GetString(); 1574 script->context = addr_t(args[eRsContext]); 1575 } 1576 1577 if (log) 1578 log->Printf("%s - '%s' tagged with context 0x%" PRIx64 1579 " and script 0x%" PRIx64 ".", 1580 __FUNCTION__, strm.GetData(), uint64_t(args[eRsContext]), 1581 uint64_t(args[eRsScript])); 1582 } else if (log) { 1583 log->Printf("%s - resource name invalid, Script not tagged.", __FUNCTION__); 1584 } 1585 } 1586 1587 void RenderScriptRuntime::LoadRuntimeHooks(lldb::ModuleSP module, 1588 ModuleKind kind) { 1589 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1590 1591 if (!module) { 1592 return; 1593 } 1594 1595 Target &target = GetProcess()->GetTarget(); 1596 const llvm::Triple::ArchType machine = target.GetArchitecture().GetMachine(); 1597 1598 if (machine != llvm::Triple::ArchType::x86 && 1599 machine != llvm::Triple::ArchType::arm && 1600 machine != llvm::Triple::ArchType::aarch64 && 1601 machine != llvm::Triple::ArchType::mipsel && 1602 machine != llvm::Triple::ArchType::mips64el && 1603 machine != llvm::Triple::ArchType::x86_64) { 1604 if (log) 1605 log->Printf("%s - unable to hook runtime functions.", __FUNCTION__); 1606 return; 1607 } 1608 1609 const uint32_t target_ptr_size = 1610 target.GetArchitecture().GetAddressByteSize(); 1611 1612 std::array<bool, s_runtimeHookCount> hook_placed; 1613 hook_placed.fill(false); 1614 1615 for (size_t idx = 0; idx < s_runtimeHookCount; idx++) { 1616 const HookDefn *hook_defn = &s_runtimeHookDefns[idx]; 1617 if (hook_defn->kind != kind) { 1618 continue; 1619 } 1620 1621 const char *symbol_name = (target_ptr_size == 4) 1622 ? hook_defn->symbol_name_m32 1623 : hook_defn->symbol_name_m64; 1624 1625 const Symbol *sym = module->FindFirstSymbolWithNameAndType( 1626 ConstString(symbol_name), eSymbolTypeCode); 1627 if (!sym) { 1628 if (log) { 1629 log->Printf("%s - symbol '%s' related to the function %s not found", 1630 __FUNCTION__, symbol_name, hook_defn->name); 1631 } 1632 continue; 1633 } 1634 1635 addr_t addr = sym->GetLoadAddress(&target); 1636 if (addr == LLDB_INVALID_ADDRESS) { 1637 if (log) 1638 log->Printf("%s - unable to resolve the address of hook function '%s' " 1639 "with symbol '%s'.", 1640 __FUNCTION__, hook_defn->name, symbol_name); 1641 continue; 1642 } else { 1643 if (log) 1644 log->Printf("%s - function %s, address resolved at 0x%" PRIx64, 1645 __FUNCTION__, hook_defn->name, addr); 1646 } 1647 1648 RuntimeHookSP hook(new RuntimeHook()); 1649 hook->address = addr; 1650 hook->defn = hook_defn; 1651 hook->bp_sp = target.CreateBreakpoint(addr, true, false); 1652 hook->bp_sp->SetCallback(HookCallback, hook.get(), true); 1653 m_runtimeHooks[addr] = hook; 1654 if (log) { 1655 log->Printf("%s - successfully hooked '%s' in '%s' version %" PRIu64 1656 " at 0x%" PRIx64 ".", 1657 __FUNCTION__, hook_defn->name, 1658 module->GetFileSpec().GetFilename().AsCString(), 1659 (uint64_t)hook_defn->version, (uint64_t)addr); 1660 } 1661 hook_placed[idx] = true; 1662 } 1663 1664 // log any unhooked function 1665 if (log) { 1666 for (size_t i = 0; i < hook_placed.size(); ++i) { 1667 if (hook_placed[i]) 1668 continue; 1669 const HookDefn &hook_defn = s_runtimeHookDefns[i]; 1670 if (hook_defn.kind != kind) 1671 continue; 1672 log->Printf("%s - function %s was not hooked", __FUNCTION__, 1673 hook_defn.name); 1674 } 1675 } 1676 } 1677 1678 void RenderScriptRuntime::FixupScriptDetails(RSModuleDescriptorSP rsmodule_sp) { 1679 if (!rsmodule_sp) 1680 return; 1681 1682 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1683 1684 const ModuleSP module = rsmodule_sp->m_module; 1685 const FileSpec &file = module->GetPlatformFileSpec(); 1686 1687 // Iterate over all of the scripts that we currently know of. 1688 // Note: We cant push or pop to m_scripts here or it may invalidate rs_script. 1689 for (const auto &rs_script : m_scripts) { 1690 // Extract the expected .so file path for this script. 1691 std::string shared_lib; 1692 if (!rs_script->shared_lib.get(shared_lib)) 1693 continue; 1694 1695 // Only proceed if the module that has loaded corresponds to this script. 1696 if (file.GetFilename() != ConstString(shared_lib.c_str())) 1697 continue; 1698 1699 // Obtain the script address which we use as a key. 1700 lldb::addr_t script; 1701 if (!rs_script->script.get(script)) 1702 continue; 1703 1704 // If we have a script mapping for the current script. 1705 if (m_scriptMappings.find(script) != m_scriptMappings.end()) { 1706 // if the module we have stored is different to the one we just received. 1707 if (m_scriptMappings[script] != rsmodule_sp) { 1708 if (log) 1709 log->Printf( 1710 "%s - script %" PRIx64 " wants reassigned to new rsmodule '%s'.", 1711 __FUNCTION__, (uint64_t)script, 1712 rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString()); 1713 } 1714 } 1715 // We don't have a script mapping for the current script. 1716 else { 1717 // Obtain the script resource name. 1718 std::string res_name; 1719 if (rs_script->res_name.get(res_name)) 1720 // Set the modules resource name. 1721 rsmodule_sp->m_resname = res_name; 1722 // Add Script/Module pair to map. 1723 m_scriptMappings[script] = rsmodule_sp; 1724 if (log) 1725 log->Printf( 1726 "%s - script %" PRIx64 " associated with rsmodule '%s'.", 1727 __FUNCTION__, (uint64_t)script, 1728 rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString()); 1729 } 1730 } 1731 } 1732 1733 // Uses the Target API to evaluate the expression passed as a parameter to the 1734 // function The result of that expression is returned an unsigned 64 bit int, 1735 // via the result* parameter. Function returns true on success, and false on 1736 // failure 1737 bool RenderScriptRuntime::EvalRSExpression(const char *expr, 1738 StackFrame *frame_ptr, 1739 uint64_t *result) { 1740 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1741 if (log) 1742 log->Printf("%s(%s)", __FUNCTION__, expr); 1743 1744 ValueObjectSP expr_result; 1745 EvaluateExpressionOptions options; 1746 options.SetLanguage(lldb::eLanguageTypeC_plus_plus); 1747 // Perform the actual expression evaluation 1748 auto &target = GetProcess()->GetTarget(); 1749 target.EvaluateExpression(expr, frame_ptr, expr_result, options); 1750 1751 if (!expr_result) { 1752 if (log) 1753 log->Printf("%s: couldn't evaluate expression.", __FUNCTION__); 1754 return false; 1755 } 1756 1757 // The result of the expression is invalid 1758 if (!expr_result->GetError().Success()) { 1759 Error err = expr_result->GetError(); 1760 // Expression returned is void, so this is actually a success 1761 if (err.GetError() == UserExpression::kNoResult) { 1762 if (log) 1763 log->Printf("%s - expression returned void.", __FUNCTION__); 1764 1765 result = nullptr; 1766 return true; 1767 } 1768 1769 if (log) 1770 log->Printf("%s - error evaluating expression result: %s", __FUNCTION__, 1771 err.AsCString()); 1772 return false; 1773 } 1774 1775 bool success = false; 1776 // We only read the result as an uint32_t. 1777 *result = expr_result->GetValueAsUnsigned(0, &success); 1778 1779 if (!success) { 1780 if (log) 1781 log->Printf("%s - couldn't convert expression result to uint32_t", 1782 __FUNCTION__); 1783 return false; 1784 } 1785 1786 return true; 1787 } 1788 1789 namespace { 1790 // Used to index expression format strings 1791 enum ExpressionStrings { 1792 eExprGetOffsetPtr = 0, 1793 eExprAllocGetType, 1794 eExprTypeDimX, 1795 eExprTypeDimY, 1796 eExprTypeDimZ, 1797 eExprTypeElemPtr, 1798 eExprElementType, 1799 eExprElementKind, 1800 eExprElementVec, 1801 eExprElementFieldCount, 1802 eExprSubelementsId, 1803 eExprSubelementsName, 1804 eExprSubelementsArrSize, 1805 1806 _eExprLast // keep at the end, implicit size of the array runtime_expressions 1807 }; 1808 1809 // max length of an expanded expression 1810 const int jit_max_expr_size = 512; 1811 1812 // Retrieve the string to JIT for the given expression 1813 const char *JITTemplate(ExpressionStrings e) { 1814 // Format strings containing the expressions we may need to evaluate. 1815 static std::array<const char *, _eExprLast> runtime_expressions = { 1816 {// Mangled GetOffsetPointer(Allocation*, xoff, yoff, zoff, lod, cubemap) 1817 "(int*)_" 1818 "Z12GetOffsetPtrPKN7android12renderscript10AllocationEjjjj23RsAllocation" 1819 "CubemapFace" 1820 "(0x%" PRIx64 ", %" PRIu32 ", %" PRIu32 ", %" PRIu32 ", 0, 0)", 1821 1822 // Type* rsaAllocationGetType(Context*, Allocation*) 1823 "(void*)rsaAllocationGetType(0x%" PRIx64 ", 0x%" PRIx64 ")", 1824 1825 // rsaTypeGetNativeData(Context*, Type*, void* typeData, size) Pack the 1826 // data in the following way mHal.state.dimX; mHal.state.dimY; 1827 // mHal.state.dimZ; mHal.state.lodCount; mHal.state.faces; mElement; into 1828 // typeData Need to specify 32 or 64 bit for uint_t since this differs 1829 // between devices 1830 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 1831 ", 0x%" PRIx64 ", data, 6); data[0]", // X dim 1832 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 1833 ", 0x%" PRIx64 ", data, 6); data[1]", // Y dim 1834 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 1835 ", 0x%" PRIx64 ", data, 6); data[2]", // Z dim 1836 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 1837 ", 0x%" PRIx64 ", data, 6); data[5]", // Element ptr 1838 1839 // rsaElementGetNativeData(Context*, Element*, uint32_t* elemData,size) 1840 // Pack mType; mKind; mNormalized; mVectorSize; NumSubElements into 1841 // elemData 1842 "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 1843 ", 0x%" PRIx64 ", data, 5); data[0]", // Type 1844 "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 1845 ", 0x%" PRIx64 ", data, 5); data[1]", // Kind 1846 "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 1847 ", 0x%" PRIx64 ", data, 5); data[3]", // Vector Size 1848 "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 1849 ", 0x%" PRIx64 ", data, 5); data[4]", // Field Count 1850 1851 // rsaElementGetSubElements(RsContext con, RsElement elem, uintptr_t 1852 // *ids, const char **names, size_t *arraySizes, uint32_t dataSize) 1853 // Needed for Allocations of structs to gather details about 1854 // fields/Subelements Element* of field 1855 "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 1856 "]; size_t arr_size[%" PRIu32 "];" 1857 "(void*)rsaElementGetSubElements(0x%" PRIx64 ", 0x%" PRIx64 1858 ", ids, names, arr_size, %" PRIu32 "); ids[%" PRIu32 "]", 1859 1860 // Name of field 1861 "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 1862 "]; size_t arr_size[%" PRIu32 "];" 1863 "(void*)rsaElementGetSubElements(0x%" PRIx64 ", 0x%" PRIx64 1864 ", ids, names, arr_size, %" PRIu32 "); names[%" PRIu32 "]", 1865 1866 // Array size of field 1867 "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 1868 "]; size_t arr_size[%" PRIu32 "];" 1869 "(void*)rsaElementGetSubElements(0x%" PRIx64 ", 0x%" PRIx64 1870 ", ids, names, arr_size, %" PRIu32 "); arr_size[%" PRIu32 "]"}}; 1871 1872 return runtime_expressions[e]; 1873 } 1874 } // end of the anonymous namespace 1875 1876 // JITs the RS runtime for the internal data pointer of an allocation. Is passed 1877 // x,y,z coordinates for the pointer to a specific element. Then sets the 1878 // data_ptr member in Allocation with the result. Returns true on success, false 1879 // otherwise 1880 bool RenderScriptRuntime::JITDataPointer(AllocationDetails *alloc, 1881 StackFrame *frame_ptr, uint32_t x, 1882 uint32_t y, uint32_t z) { 1883 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1884 1885 if (!alloc->address.isValid()) { 1886 if (log) 1887 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1888 return false; 1889 } 1890 1891 const char *fmt_str = JITTemplate(eExprGetOffsetPtr); 1892 char expr_buf[jit_max_expr_size]; 1893 1894 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 1895 *alloc->address.get(), x, y, z); 1896 if (written < 0) { 1897 if (log) 1898 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1899 return false; 1900 } else if (written >= jit_max_expr_size) { 1901 if (log) 1902 log->Printf("%s - expression too long.", __FUNCTION__); 1903 return false; 1904 } 1905 1906 uint64_t result = 0; 1907 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 1908 return false; 1909 1910 addr_t data_ptr = static_cast<lldb::addr_t>(result); 1911 alloc->data_ptr = data_ptr; 1912 1913 return true; 1914 } 1915 1916 // JITs the RS runtime for the internal pointer to the RS Type of an allocation 1917 // Then sets the type_ptr member in Allocation with the result. Returns true on 1918 // success, false otherwise 1919 bool RenderScriptRuntime::JITTypePointer(AllocationDetails *alloc, 1920 StackFrame *frame_ptr) { 1921 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1922 1923 if (!alloc->address.isValid() || !alloc->context.isValid()) { 1924 if (log) 1925 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1926 return false; 1927 } 1928 1929 const char *fmt_str = JITTemplate(eExprAllocGetType); 1930 char expr_buf[jit_max_expr_size]; 1931 1932 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 1933 *alloc->context.get(), *alloc->address.get()); 1934 if (written < 0) { 1935 if (log) 1936 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1937 return false; 1938 } else if (written >= jit_max_expr_size) { 1939 if (log) 1940 log->Printf("%s - expression too long.", __FUNCTION__); 1941 return false; 1942 } 1943 1944 uint64_t result = 0; 1945 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 1946 return false; 1947 1948 addr_t type_ptr = static_cast<lldb::addr_t>(result); 1949 alloc->type_ptr = type_ptr; 1950 1951 return true; 1952 } 1953 1954 // JITs the RS runtime for information about the dimensions and type of an 1955 // allocation Then sets dimension and element_ptr members in Allocation with the 1956 // result. Returns true on success, false otherwise 1957 bool RenderScriptRuntime::JITTypePacked(AllocationDetails *alloc, 1958 StackFrame *frame_ptr) { 1959 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1960 1961 if (!alloc->type_ptr.isValid() || !alloc->context.isValid()) { 1962 if (log) 1963 log->Printf("%s - Failed to find allocation details.", __FUNCTION__); 1964 return false; 1965 } 1966 1967 // Expression is different depending on if device is 32 or 64 bit 1968 uint32_t target_ptr_size = 1969 GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 1970 const uint32_t bits = target_ptr_size == 4 ? 32 : 64; 1971 1972 // We want 4 elements from packed data 1973 const uint32_t num_exprs = 4; 1974 assert(num_exprs == (eExprTypeElemPtr - eExprTypeDimX + 1) && 1975 "Invalid number of expressions"); 1976 1977 char expr_bufs[num_exprs][jit_max_expr_size]; 1978 uint64_t results[num_exprs]; 1979 1980 for (uint32_t i = 0; i < num_exprs; ++i) { 1981 const char *fmt_str = JITTemplate(ExpressionStrings(eExprTypeDimX + i)); 1982 int written = snprintf(expr_bufs[i], jit_max_expr_size, fmt_str, bits, 1983 *alloc->context.get(), *alloc->type_ptr.get()); 1984 if (written < 0) { 1985 if (log) 1986 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1987 return false; 1988 } else if (written >= jit_max_expr_size) { 1989 if (log) 1990 log->Printf("%s - expression too long.", __FUNCTION__); 1991 return false; 1992 } 1993 1994 // Perform expression evaluation 1995 if (!EvalRSExpression(expr_bufs[i], frame_ptr, &results[i])) 1996 return false; 1997 } 1998 1999 // Assign results to allocation members 2000 AllocationDetails::Dimension dims; 2001 dims.dim_1 = static_cast<uint32_t>(results[0]); 2002 dims.dim_2 = static_cast<uint32_t>(results[1]); 2003 dims.dim_3 = static_cast<uint32_t>(results[2]); 2004 alloc->dimension = dims; 2005 2006 addr_t element_ptr = static_cast<lldb::addr_t>(results[3]); 2007 alloc->element.element_ptr = element_ptr; 2008 2009 if (log) 2010 log->Printf("%s - dims (%" PRIu32 ", %" PRIu32 ", %" PRIu32 2011 ") Element*: 0x%" PRIx64 ".", 2012 __FUNCTION__, dims.dim_1, dims.dim_2, dims.dim_3, element_ptr); 2013 2014 return true; 2015 } 2016 2017 // JITs the RS runtime for information about the Element of an allocation Then 2018 // sets type, type_vec_size, field_count and type_kind members in Element with 2019 // the result. Returns true on success, false otherwise 2020 bool RenderScriptRuntime::JITElementPacked(Element &elem, 2021 const lldb::addr_t context, 2022 StackFrame *frame_ptr) { 2023 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2024 2025 if (!elem.element_ptr.isValid()) { 2026 if (log) 2027 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 2028 return false; 2029 } 2030 2031 // We want 4 elements from packed data 2032 const uint32_t num_exprs = 4; 2033 assert(num_exprs == (eExprElementFieldCount - eExprElementType + 1) && 2034 "Invalid number of expressions"); 2035 2036 char expr_bufs[num_exprs][jit_max_expr_size]; 2037 uint64_t results[num_exprs]; 2038 2039 for (uint32_t i = 0; i < num_exprs; i++) { 2040 const char *fmt_str = JITTemplate(ExpressionStrings(eExprElementType + i)); 2041 int written = snprintf(expr_bufs[i], jit_max_expr_size, fmt_str, context, 2042 *elem.element_ptr.get()); 2043 if (written < 0) { 2044 if (log) 2045 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 2046 return false; 2047 } else if (written >= jit_max_expr_size) { 2048 if (log) 2049 log->Printf("%s - expression too long.", __FUNCTION__); 2050 return false; 2051 } 2052 2053 // Perform expression evaluation 2054 if (!EvalRSExpression(expr_bufs[i], frame_ptr, &results[i])) 2055 return false; 2056 } 2057 2058 // Assign results to allocation members 2059 elem.type = static_cast<RenderScriptRuntime::Element::DataType>(results[0]); 2060 elem.type_kind = 2061 static_cast<RenderScriptRuntime::Element::DataKind>(results[1]); 2062 elem.type_vec_size = static_cast<uint32_t>(results[2]); 2063 elem.field_count = static_cast<uint32_t>(results[3]); 2064 2065 if (log) 2066 log->Printf("%s - data type %" PRIu32 ", pixel type %" PRIu32 2067 ", vector size %" PRIu32 ", field count %" PRIu32, 2068 __FUNCTION__, *elem.type.get(), *elem.type_kind.get(), 2069 *elem.type_vec_size.get(), *elem.field_count.get()); 2070 2071 // If this Element has subelements then JIT rsaElementGetSubElements() for 2072 // details about its fields 2073 if (*elem.field_count.get() > 0 && !JITSubelements(elem, context, frame_ptr)) 2074 return false; 2075 2076 return true; 2077 } 2078 2079 // JITs the RS runtime for information about the subelements/fields of a struct 2080 // allocation This is necessary for infering the struct type so we can pretty 2081 // print the allocation's contents. Returns true on success, false otherwise 2082 bool RenderScriptRuntime::JITSubelements(Element &elem, 2083 const lldb::addr_t context, 2084 StackFrame *frame_ptr) { 2085 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2086 2087 if (!elem.element_ptr.isValid() || !elem.field_count.isValid()) { 2088 if (log) 2089 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 2090 return false; 2091 } 2092 2093 const short num_exprs = 3; 2094 assert(num_exprs == (eExprSubelementsArrSize - eExprSubelementsId + 1) && 2095 "Invalid number of expressions"); 2096 2097 char expr_buffer[jit_max_expr_size]; 2098 uint64_t results; 2099 2100 // Iterate over struct fields. 2101 const uint32_t field_count = *elem.field_count.get(); 2102 for (uint32_t field_index = 0; field_index < field_count; ++field_index) { 2103 Element child; 2104 for (uint32_t expr_index = 0; expr_index < num_exprs; ++expr_index) { 2105 const char *fmt_str = 2106 JITTemplate(ExpressionStrings(eExprSubelementsId + expr_index)); 2107 int written = snprintf(expr_buffer, jit_max_expr_size, fmt_str, 2108 field_count, field_count, field_count, context, 2109 *elem.element_ptr.get(), field_count, field_index); 2110 if (written < 0) { 2111 if (log) 2112 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 2113 return false; 2114 } else if (written >= jit_max_expr_size) { 2115 if (log) 2116 log->Printf("%s - expression too long.", __FUNCTION__); 2117 return false; 2118 } 2119 2120 // Perform expression evaluation 2121 if (!EvalRSExpression(expr_buffer, frame_ptr, &results)) 2122 return false; 2123 2124 if (log) 2125 log->Printf("%s - expr result 0x%" PRIx64 ".", __FUNCTION__, results); 2126 2127 switch (expr_index) { 2128 case 0: // Element* of child 2129 child.element_ptr = static_cast<addr_t>(results); 2130 break; 2131 case 1: // Name of child 2132 { 2133 lldb::addr_t address = static_cast<addr_t>(results); 2134 Error err; 2135 std::string name; 2136 GetProcess()->ReadCStringFromMemory(address, name, err); 2137 if (!err.Fail()) 2138 child.type_name = ConstString(name); 2139 else { 2140 if (log) 2141 log->Printf("%s - warning: Couldn't read field name.", 2142 __FUNCTION__); 2143 } 2144 break; 2145 } 2146 case 2: // Array size of child 2147 child.array_size = static_cast<uint32_t>(results); 2148 break; 2149 } 2150 } 2151 2152 // We need to recursively JIT each Element field of the struct since 2153 // structs can be nested inside structs. 2154 if (!JITElementPacked(child, context, frame_ptr)) 2155 return false; 2156 elem.children.push_back(child); 2157 } 2158 2159 // Try to infer the name of the struct type so we can pretty print the 2160 // allocation contents. 2161 FindStructTypeName(elem, frame_ptr); 2162 2163 return true; 2164 } 2165 2166 // JITs the RS runtime for the address of the last element in the allocation. 2167 // The `elem_size` parameter represents the size of a single element, including 2168 // padding. Which is needed as an offset from the last element pointer. Using 2169 // this offset minus the starting address we can calculate the size of the 2170 // allocation. Returns true on success, false otherwise 2171 bool RenderScriptRuntime::JITAllocationSize(AllocationDetails *alloc, 2172 StackFrame *frame_ptr) { 2173 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2174 2175 if (!alloc->address.isValid() || !alloc->dimension.isValid() || 2176 !alloc->data_ptr.isValid() || !alloc->element.datum_size.isValid()) { 2177 if (log) 2178 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 2179 return false; 2180 } 2181 2182 // Find dimensions 2183 uint32_t dim_x = alloc->dimension.get()->dim_1; 2184 uint32_t dim_y = alloc->dimension.get()->dim_2; 2185 uint32_t dim_z = alloc->dimension.get()->dim_3; 2186 2187 // Our plan of jitting the last element address doesn't seem to work for 2188 // struct Allocations` Instead try to infer the size ourselves without any 2189 // inter element padding. 2190 if (alloc->element.children.size() > 0) { 2191 if (dim_x == 0) 2192 dim_x = 1; 2193 if (dim_y == 0) 2194 dim_y = 1; 2195 if (dim_z == 0) 2196 dim_z = 1; 2197 2198 alloc->size = dim_x * dim_y * dim_z * *alloc->element.datum_size.get(); 2199 2200 if (log) 2201 log->Printf("%s - inferred size of struct allocation %" PRIu32 ".", 2202 __FUNCTION__, *alloc->size.get()); 2203 return true; 2204 } 2205 2206 const char *fmt_str = JITTemplate(eExprGetOffsetPtr); 2207 char expr_buf[jit_max_expr_size]; 2208 2209 // Calculate last element 2210 dim_x = dim_x == 0 ? 0 : dim_x - 1; 2211 dim_y = dim_y == 0 ? 0 : dim_y - 1; 2212 dim_z = dim_z == 0 ? 0 : dim_z - 1; 2213 2214 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 2215 *alloc->address.get(), dim_x, dim_y, dim_z); 2216 if (written < 0) { 2217 if (log) 2218 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 2219 return false; 2220 } else if (written >= jit_max_expr_size) { 2221 if (log) 2222 log->Printf("%s - expression too long.", __FUNCTION__); 2223 return false; 2224 } 2225 2226 uint64_t result = 0; 2227 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 2228 return false; 2229 2230 addr_t mem_ptr = static_cast<lldb::addr_t>(result); 2231 // Find pointer to last element and add on size of an element 2232 alloc->size = static_cast<uint32_t>(mem_ptr - *alloc->data_ptr.get()) + 2233 *alloc->element.datum_size.get(); 2234 2235 return true; 2236 } 2237 2238 // JITs the RS runtime for information about the stride between rows in the 2239 // allocation. This is done to detect padding, since allocated memory is 16-byte 2240 // aligned. 2241 // Returns true on success, false otherwise 2242 bool RenderScriptRuntime::JITAllocationStride(AllocationDetails *alloc, 2243 StackFrame *frame_ptr) { 2244 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2245 2246 if (!alloc->address.isValid() || !alloc->data_ptr.isValid()) { 2247 if (log) 2248 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 2249 return false; 2250 } 2251 2252 const char *fmt_str = JITTemplate(eExprGetOffsetPtr); 2253 char expr_buf[jit_max_expr_size]; 2254 2255 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 2256 *alloc->address.get(), 0, 1, 0); 2257 if (written < 0) { 2258 if (log) 2259 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 2260 return false; 2261 } else if (written >= jit_max_expr_size) { 2262 if (log) 2263 log->Printf("%s - expression too long.", __FUNCTION__); 2264 return false; 2265 } 2266 2267 uint64_t result = 0; 2268 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 2269 return false; 2270 2271 addr_t mem_ptr = static_cast<lldb::addr_t>(result); 2272 alloc->stride = static_cast<uint32_t>(mem_ptr - *alloc->data_ptr.get()); 2273 2274 return true; 2275 } 2276 2277 // JIT all the current runtime info regarding an allocation 2278 bool RenderScriptRuntime::RefreshAllocation(AllocationDetails *alloc, 2279 StackFrame *frame_ptr) { 2280 // GetOffsetPointer() 2281 if (!JITDataPointer(alloc, frame_ptr)) 2282 return false; 2283 2284 // rsaAllocationGetType() 2285 if (!JITTypePointer(alloc, frame_ptr)) 2286 return false; 2287 2288 // rsaTypeGetNativeData() 2289 if (!JITTypePacked(alloc, frame_ptr)) 2290 return false; 2291 2292 // rsaElementGetNativeData() 2293 if (!JITElementPacked(alloc->element, *alloc->context.get(), frame_ptr)) 2294 return false; 2295 2296 // Sets the datum_size member in Element 2297 SetElementSize(alloc->element); 2298 2299 // Use GetOffsetPointer() to infer size of the allocation 2300 if (!JITAllocationSize(alloc, frame_ptr)) 2301 return false; 2302 2303 return true; 2304 } 2305 2306 // Function attempts to set the type_name member of the paramaterised Element 2307 // object. 2308 // This string should be the name of the struct type the Element represents. 2309 // We need this string for pretty printing the Element to users. 2310 void RenderScriptRuntime::FindStructTypeName(Element &elem, 2311 StackFrame *frame_ptr) { 2312 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2313 2314 if (!elem.type_name.IsEmpty()) // Name already set 2315 return; 2316 else 2317 elem.type_name = Element::GetFallbackStructName(); // Default type name if 2318 // we don't succeed 2319 2320 // Find all the global variables from the script rs modules 2321 VariableList var_list; 2322 for (auto module_sp : m_rsmodules) 2323 module_sp->m_module->FindGlobalVariables( 2324 RegularExpression(llvm::StringRef(".")), true, UINT32_MAX, var_list); 2325 2326 // Iterate over all the global variables looking for one with a matching type 2327 // to the Element. 2328 // We make the assumption a match exists since there needs to be a global 2329 // variable to reflect the struct type back into java host code. 2330 for (uint32_t i = 0; i < var_list.GetSize(); ++i) { 2331 const VariableSP var_sp(var_list.GetVariableAtIndex(i)); 2332 if (!var_sp) 2333 continue; 2334 2335 ValueObjectSP valobj_sp = ValueObjectVariable::Create(frame_ptr, var_sp); 2336 if (!valobj_sp) 2337 continue; 2338 2339 // Find the number of variable fields. 2340 // If it has no fields, or more fields than our Element, then it can't be 2341 // the struct we're looking for. 2342 // Don't check for equality since RS can add extra struct members for 2343 // padding. 2344 size_t num_children = valobj_sp->GetNumChildren(); 2345 if (num_children > elem.children.size() || num_children == 0) 2346 continue; 2347 2348 // Iterate over children looking for members with matching field names. 2349 // If all the field names match, this is likely the struct we want. 2350 // TODO: This could be made more robust by also checking children data 2351 // sizes, or array size 2352 bool found = true; 2353 for (size_t i = 0; i < num_children; ++i) { 2354 ValueObjectSP child = valobj_sp->GetChildAtIndex(i, true); 2355 if (!child || (child->GetName() != elem.children[i].type_name)) { 2356 found = false; 2357 break; 2358 } 2359 } 2360 2361 // RS can add extra struct members for padding in the format 2362 // '#rs_padding_[0-9]+' 2363 if (found && num_children < elem.children.size()) { 2364 const uint32_t size_diff = elem.children.size() - num_children; 2365 if (log) 2366 log->Printf("%s - %" PRIu32 " padding struct entries", __FUNCTION__, 2367 size_diff); 2368 2369 for (uint32_t i = 0; i < size_diff; ++i) { 2370 const ConstString &name = elem.children[num_children + i].type_name; 2371 if (strcmp(name.AsCString(), "#rs_padding") < 0) 2372 found = false; 2373 } 2374 } 2375 2376 // We've found a global variable with matching type 2377 if (found) { 2378 // Dereference since our Element type isn't a pointer. 2379 if (valobj_sp->IsPointerType()) { 2380 Error err; 2381 ValueObjectSP deref_valobj = valobj_sp->Dereference(err); 2382 if (!err.Fail()) 2383 valobj_sp = deref_valobj; 2384 } 2385 2386 // Save name of variable in Element. 2387 elem.type_name = valobj_sp->GetTypeName(); 2388 if (log) 2389 log->Printf("%s - element name set to %s", __FUNCTION__, 2390 elem.type_name.AsCString()); 2391 2392 return; 2393 } 2394 } 2395 } 2396 2397 // Function sets the datum_size member of Element. Representing the size of a 2398 // single instance including padding. 2399 // Assumes the relevant allocation information has already been jitted. 2400 void RenderScriptRuntime::SetElementSize(Element &elem) { 2401 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2402 const Element::DataType type = *elem.type.get(); 2403 assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && 2404 "Invalid allocation type"); 2405 2406 const uint32_t vec_size = *elem.type_vec_size.get(); 2407 uint32_t data_size = 0; 2408 uint32_t padding = 0; 2409 2410 // Element is of a struct type, calculate size recursively. 2411 if ((type == Element::RS_TYPE_NONE) && (elem.children.size() > 0)) { 2412 for (Element &child : elem.children) { 2413 SetElementSize(child); 2414 const uint32_t array_size = 2415 child.array_size.isValid() ? *child.array_size.get() : 1; 2416 data_size += *child.datum_size.get() * array_size; 2417 } 2418 } 2419 // These have been packed already 2420 else if (type == Element::RS_TYPE_UNSIGNED_5_6_5 || 2421 type == Element::RS_TYPE_UNSIGNED_5_5_5_1 || 2422 type == Element::RS_TYPE_UNSIGNED_4_4_4_4) { 2423 data_size = AllocationDetails::RSTypeToFormat[type][eElementSize]; 2424 } else if (type < Element::RS_TYPE_ELEMENT) { 2425 data_size = 2426 vec_size * AllocationDetails::RSTypeToFormat[type][eElementSize]; 2427 if (vec_size == 3) 2428 padding = AllocationDetails::RSTypeToFormat[type][eElementSize]; 2429 } else 2430 data_size = 2431 GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 2432 2433 elem.padding = padding; 2434 elem.datum_size = data_size + padding; 2435 if (log) 2436 log->Printf("%s - element size set to %" PRIu32, __FUNCTION__, 2437 data_size + padding); 2438 } 2439 2440 // Given an allocation, this function copies the allocation contents from device 2441 // into a buffer on the heap. 2442 // Returning a shared pointer to the buffer containing the data. 2443 std::shared_ptr<uint8_t> 2444 RenderScriptRuntime::GetAllocationData(AllocationDetails *alloc, 2445 StackFrame *frame_ptr) { 2446 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2447 2448 // JIT all the allocation details 2449 if (alloc->ShouldRefresh()) { 2450 if (log) 2451 log->Printf("%s - allocation details not calculated yet, jitting info", 2452 __FUNCTION__); 2453 2454 if (!RefreshAllocation(alloc, frame_ptr)) { 2455 if (log) 2456 log->Printf("%s - couldn't JIT allocation details", __FUNCTION__); 2457 return nullptr; 2458 } 2459 } 2460 2461 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && 2462 alloc->element.type_vec_size.isValid() && alloc->size.isValid() && 2463 "Allocation information not available"); 2464 2465 // Allocate a buffer to copy data into 2466 const uint32_t size = *alloc->size.get(); 2467 std::shared_ptr<uint8_t> buffer(new uint8_t[size]); 2468 if (!buffer) { 2469 if (log) 2470 log->Printf("%s - couldn't allocate a %" PRIu32 " byte buffer", 2471 __FUNCTION__, size); 2472 return nullptr; 2473 } 2474 2475 // Read the inferior memory 2476 Error err; 2477 lldb::addr_t data_ptr = *alloc->data_ptr.get(); 2478 GetProcess()->ReadMemory(data_ptr, buffer.get(), size, err); 2479 if (err.Fail()) { 2480 if (log) 2481 log->Printf("%s - '%s' Couldn't read %" PRIu32 2482 " bytes of allocation data from 0x%" PRIx64, 2483 __FUNCTION__, err.AsCString(), size, data_ptr); 2484 return nullptr; 2485 } 2486 2487 return buffer; 2488 } 2489 2490 // Function copies data from a binary file into an allocation. 2491 // There is a header at the start of the file, FileHeader, before the data 2492 // content itself. 2493 // Information from this header is used to display warnings to the user about 2494 // incompatibilities 2495 bool RenderScriptRuntime::LoadAllocation(Stream &strm, const uint32_t alloc_id, 2496 const char *path, 2497 StackFrame *frame_ptr) { 2498 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2499 2500 // Find allocation with the given id 2501 AllocationDetails *alloc = FindAllocByID(strm, alloc_id); 2502 if (!alloc) 2503 return false; 2504 2505 if (log) 2506 log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__, 2507 *alloc->address.get()); 2508 2509 // JIT all the allocation details 2510 if (alloc->ShouldRefresh()) { 2511 if (log) 2512 log->Printf("%s - allocation details not calculated yet, jitting info.", 2513 __FUNCTION__); 2514 2515 if (!RefreshAllocation(alloc, frame_ptr)) { 2516 if (log) 2517 log->Printf("%s - couldn't JIT allocation details", __FUNCTION__); 2518 return false; 2519 } 2520 } 2521 2522 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && 2523 alloc->element.type_vec_size.isValid() && alloc->size.isValid() && 2524 alloc->element.datum_size.isValid() && 2525 "Allocation information not available"); 2526 2527 // Check we can read from file 2528 FileSpec file(path, true); 2529 if (!file.Exists()) { 2530 strm.Printf("Error: File %s does not exist", path); 2531 strm.EOL(); 2532 return false; 2533 } 2534 2535 if (!file.Readable()) { 2536 strm.Printf("Error: File %s does not have readable permissions", path); 2537 strm.EOL(); 2538 return false; 2539 } 2540 2541 // Read file into data buffer 2542 auto data_sp = DataBufferLLVM::CreateFromPath(file.GetPath()); 2543 2544 // Cast start of buffer to FileHeader and use pointer to read metadata 2545 void *file_buf = data_sp->GetBytes(); 2546 if (file_buf == nullptr || 2547 data_sp->GetByteSize() < (sizeof(AllocationDetails::FileHeader) + 2548 sizeof(AllocationDetails::ElementHeader))) { 2549 strm.Printf("Error: File %s does not contain enough data for header", path); 2550 strm.EOL(); 2551 return false; 2552 } 2553 const AllocationDetails::FileHeader *file_header = 2554 static_cast<AllocationDetails::FileHeader *>(file_buf); 2555 2556 // Check file starts with ascii characters "RSAD" 2557 if (memcmp(file_header->ident, "RSAD", 4)) { 2558 strm.Printf("Error: File doesn't contain identifier for an RS allocation " 2559 "dump. Are you sure this is the correct file?"); 2560 strm.EOL(); 2561 return false; 2562 } 2563 2564 // Look at the type of the root element in the header 2565 AllocationDetails::ElementHeader root_el_hdr; 2566 memcpy(&root_el_hdr, static_cast<uint8_t *>(file_buf) + 2567 sizeof(AllocationDetails::FileHeader), 2568 sizeof(AllocationDetails::ElementHeader)); 2569 2570 if (log) 2571 log->Printf("%s - header type %" PRIu32 ", element size %" PRIu32, 2572 __FUNCTION__, root_el_hdr.type, root_el_hdr.element_size); 2573 2574 // Check if the target allocation and file both have the same number of bytes 2575 // for an Element 2576 if (*alloc->element.datum_size.get() != root_el_hdr.element_size) { 2577 strm.Printf("Warning: Mismatched Element sizes - file %" PRIu32 2578 " bytes, allocation %" PRIu32 " bytes", 2579 root_el_hdr.element_size, *alloc->element.datum_size.get()); 2580 strm.EOL(); 2581 } 2582 2583 // Check if the target allocation and file both have the same type 2584 const uint32_t alloc_type = static_cast<uint32_t>(*alloc->element.type.get()); 2585 const uint32_t file_type = root_el_hdr.type; 2586 2587 if (file_type > Element::RS_TYPE_FONT) { 2588 strm.Printf("Warning: File has unknown allocation type"); 2589 strm.EOL(); 2590 } else if (alloc_type != file_type) { 2591 // Enum value isn't monotonous, so doesn't always index RsDataTypeToString 2592 // array 2593 uint32_t target_type_name_idx = alloc_type; 2594 uint32_t head_type_name_idx = file_type; 2595 if (alloc_type >= Element::RS_TYPE_ELEMENT && 2596 alloc_type <= Element::RS_TYPE_FONT) 2597 target_type_name_idx = static_cast<Element::DataType>( 2598 (alloc_type - Element::RS_TYPE_ELEMENT) + 2599 Element::RS_TYPE_MATRIX_2X2 + 1); 2600 2601 if (file_type >= Element::RS_TYPE_ELEMENT && 2602 file_type <= Element::RS_TYPE_FONT) 2603 head_type_name_idx = static_cast<Element::DataType>( 2604 (file_type - Element::RS_TYPE_ELEMENT) + Element::RS_TYPE_MATRIX_2X2 + 2605 1); 2606 2607 const char *head_type_name = 2608 AllocationDetails::RsDataTypeToString[head_type_name_idx][0]; 2609 const char *target_type_name = 2610 AllocationDetails::RsDataTypeToString[target_type_name_idx][0]; 2611 2612 strm.Printf( 2613 "Warning: Mismatched Types - file '%s' type, allocation '%s' type", 2614 head_type_name, target_type_name); 2615 strm.EOL(); 2616 } 2617 2618 // Advance buffer past header 2619 file_buf = static_cast<uint8_t *>(file_buf) + file_header->hdr_size; 2620 2621 // Calculate size of allocation data in file 2622 size_t size = data_sp->GetByteSize() - file_header->hdr_size; 2623 2624 // Check if the target allocation and file both have the same total data size. 2625 const uint32_t alloc_size = *alloc->size.get(); 2626 if (alloc_size != size) { 2627 strm.Printf("Warning: Mismatched allocation sizes - file 0x%" PRIx64 2628 " bytes, allocation 0x%" PRIx32 " bytes", 2629 (uint64_t)size, alloc_size); 2630 strm.EOL(); 2631 // Set length to copy to minimum 2632 size = alloc_size < size ? alloc_size : size; 2633 } 2634 2635 // Copy file data from our buffer into the target allocation. 2636 lldb::addr_t alloc_data = *alloc->data_ptr.get(); 2637 Error err; 2638 size_t written = GetProcess()->WriteMemory(alloc_data, file_buf, size, err); 2639 if (!err.Success() || written != size) { 2640 strm.Printf("Error: Couldn't write data to allocation %s", err.AsCString()); 2641 strm.EOL(); 2642 return false; 2643 } 2644 2645 strm.Printf("Contents of file '%s' read into allocation %" PRIu32, path, 2646 alloc->id); 2647 strm.EOL(); 2648 2649 return true; 2650 } 2651 2652 // Function takes as parameters a byte buffer, which will eventually be written 2653 // to file as the element header, an offset into that buffer, and an Element 2654 // that will be saved into the buffer at the parametrised offset. 2655 // Return value is the new offset after writing the element into the buffer. 2656 // Elements are saved to the file as the ElementHeader struct followed by 2657 // offsets to the structs of all the element's children. 2658 size_t RenderScriptRuntime::PopulateElementHeaders( 2659 const std::shared_ptr<uint8_t> header_buffer, size_t offset, 2660 const Element &elem) { 2661 // File struct for an element header with all the relevant details copied from 2662 // elem. We assume members are valid already. 2663 AllocationDetails::ElementHeader elem_header; 2664 elem_header.type = *elem.type.get(); 2665 elem_header.kind = *elem.type_kind.get(); 2666 elem_header.element_size = *elem.datum_size.get(); 2667 elem_header.vector_size = *elem.type_vec_size.get(); 2668 elem_header.array_size = 2669 elem.array_size.isValid() ? *elem.array_size.get() : 0; 2670 const size_t elem_header_size = sizeof(AllocationDetails::ElementHeader); 2671 2672 // Copy struct into buffer and advance offset 2673 // We assume that header_buffer has been checked for nullptr before this 2674 // method is called 2675 memcpy(header_buffer.get() + offset, &elem_header, elem_header_size); 2676 offset += elem_header_size; 2677 2678 // Starting offset of child ElementHeader struct 2679 size_t child_offset = 2680 offset + ((elem.children.size() + 1) * sizeof(uint32_t)); 2681 for (const RenderScriptRuntime::Element &child : elem.children) { 2682 // Recursively populate the buffer with the element header structs of 2683 // children. Then save the offsets where they were set after the parent 2684 // element header. 2685 memcpy(header_buffer.get() + offset, &child_offset, sizeof(uint32_t)); 2686 offset += sizeof(uint32_t); 2687 2688 child_offset = PopulateElementHeaders(header_buffer, child_offset, child); 2689 } 2690 2691 // Zero indicates no more children 2692 memset(header_buffer.get() + offset, 0, sizeof(uint32_t)); 2693 2694 return child_offset; 2695 } 2696 2697 // Given an Element object this function returns the total size needed in the 2698 // file header to store the element's details. Taking into account the size of 2699 // the element header struct, plus the offsets to all the element's children. 2700 // Function is recursive so that the size of all ancestors is taken into 2701 // account. 2702 size_t RenderScriptRuntime::CalculateElementHeaderSize(const Element &elem) { 2703 // Offsets to children plus zero terminator 2704 size_t size = (elem.children.size() + 1) * sizeof(uint32_t); 2705 // Size of header struct with type details 2706 size += sizeof(AllocationDetails::ElementHeader); 2707 2708 // Calculate recursively for all descendants 2709 for (const Element &child : elem.children) 2710 size += CalculateElementHeaderSize(child); 2711 2712 return size; 2713 } 2714 2715 // Function copies allocation contents into a binary file. This file can then be 2716 // loaded later into a different allocation. There is a header, FileHeader, 2717 // before the allocation data containing meta-data. 2718 bool RenderScriptRuntime::SaveAllocation(Stream &strm, const uint32_t alloc_id, 2719 const char *path, 2720 StackFrame *frame_ptr) { 2721 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2722 2723 // Find allocation with the given id 2724 AllocationDetails *alloc = FindAllocByID(strm, alloc_id); 2725 if (!alloc) 2726 return false; 2727 2728 if (log) 2729 log->Printf("%s - found allocation 0x%" PRIx64 ".", __FUNCTION__, 2730 *alloc->address.get()); 2731 2732 // JIT all the allocation details 2733 if (alloc->ShouldRefresh()) { 2734 if (log) 2735 log->Printf("%s - allocation details not calculated yet, jitting info.", 2736 __FUNCTION__); 2737 2738 if (!RefreshAllocation(alloc, frame_ptr)) { 2739 if (log) 2740 log->Printf("%s - couldn't JIT allocation details.", __FUNCTION__); 2741 return false; 2742 } 2743 } 2744 2745 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && 2746 alloc->element.type_vec_size.isValid() && 2747 alloc->element.datum_size.get() && 2748 alloc->element.type_kind.isValid() && alloc->dimension.isValid() && 2749 "Allocation information not available"); 2750 2751 // Check we can create writable file 2752 FileSpec file_spec(path, true); 2753 File file(file_spec, File::eOpenOptionWrite | File::eOpenOptionCanCreate | 2754 File::eOpenOptionTruncate); 2755 if (!file) { 2756 strm.Printf("Error: Failed to open '%s' for writing", path); 2757 strm.EOL(); 2758 return false; 2759 } 2760 2761 // Read allocation into buffer of heap memory 2762 const std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr); 2763 if (!buffer) { 2764 strm.Printf("Error: Couldn't read allocation data into buffer"); 2765 strm.EOL(); 2766 return false; 2767 } 2768 2769 // Create the file header 2770 AllocationDetails::FileHeader head; 2771 memcpy(head.ident, "RSAD", 4); 2772 head.dims[0] = static_cast<uint32_t>(alloc->dimension.get()->dim_1); 2773 head.dims[1] = static_cast<uint32_t>(alloc->dimension.get()->dim_2); 2774 head.dims[2] = static_cast<uint32_t>(alloc->dimension.get()->dim_3); 2775 2776 const size_t element_header_size = CalculateElementHeaderSize(alloc->element); 2777 assert((sizeof(AllocationDetails::FileHeader) + element_header_size) < 2778 UINT16_MAX && 2779 "Element header too large"); 2780 head.hdr_size = static_cast<uint16_t>(sizeof(AllocationDetails::FileHeader) + 2781 element_header_size); 2782 2783 // Write the file header 2784 size_t num_bytes = sizeof(AllocationDetails::FileHeader); 2785 if (log) 2786 log->Printf("%s - writing File Header, 0x%" PRIx64 " bytes", __FUNCTION__, 2787 (uint64_t)num_bytes); 2788 2789 Error err = file.Write(&head, num_bytes); 2790 if (!err.Success()) { 2791 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path); 2792 strm.EOL(); 2793 return false; 2794 } 2795 2796 // Create the headers describing the element type of the allocation. 2797 std::shared_ptr<uint8_t> element_header_buffer( 2798 new uint8_t[element_header_size]); 2799 if (element_header_buffer == nullptr) { 2800 strm.Printf("Internal Error: Couldn't allocate %" PRIu64 2801 " bytes on the heap", 2802 (uint64_t)element_header_size); 2803 strm.EOL(); 2804 return false; 2805 } 2806 2807 PopulateElementHeaders(element_header_buffer, 0, alloc->element); 2808 2809 // Write headers for allocation element type to file 2810 num_bytes = element_header_size; 2811 if (log) 2812 log->Printf("%s - writing element headers, 0x%" PRIx64 " bytes.", 2813 __FUNCTION__, (uint64_t)num_bytes); 2814 2815 err = file.Write(element_header_buffer.get(), num_bytes); 2816 if (!err.Success()) { 2817 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path); 2818 strm.EOL(); 2819 return false; 2820 } 2821 2822 // Write allocation data to file 2823 num_bytes = static_cast<size_t>(*alloc->size.get()); 2824 if (log) 2825 log->Printf("%s - writing 0x%" PRIx64 " bytes", __FUNCTION__, 2826 (uint64_t)num_bytes); 2827 2828 err = file.Write(buffer.get(), num_bytes); 2829 if (!err.Success()) { 2830 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path); 2831 strm.EOL(); 2832 return false; 2833 } 2834 2835 strm.Printf("Allocation written to file '%s'", path); 2836 strm.EOL(); 2837 return true; 2838 } 2839 2840 bool RenderScriptRuntime::LoadModule(const lldb::ModuleSP &module_sp) { 2841 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2842 2843 if (module_sp) { 2844 for (const auto &rs_module : m_rsmodules) { 2845 if (rs_module->m_module == module_sp) { 2846 // Check if the user has enabled automatically breaking on 2847 // all RS kernels. 2848 if (m_breakAllKernels) 2849 BreakOnModuleKernels(rs_module); 2850 2851 return false; 2852 } 2853 } 2854 bool module_loaded = false; 2855 switch (GetModuleKind(module_sp)) { 2856 case eModuleKindKernelObj: { 2857 RSModuleDescriptorSP module_desc; 2858 module_desc.reset(new RSModuleDescriptor(module_sp)); 2859 if (module_desc->ParseRSInfo()) { 2860 m_rsmodules.push_back(module_desc); 2861 module_desc->WarnIfVersionMismatch(GetProcess() 2862 ->GetTarget() 2863 .GetDebugger() 2864 .GetAsyncOutputStream() 2865 .get()); 2866 module_loaded = true; 2867 } 2868 if (module_loaded) { 2869 FixupScriptDetails(module_desc); 2870 } 2871 break; 2872 } 2873 case eModuleKindDriver: { 2874 if (!m_libRSDriver) { 2875 m_libRSDriver = module_sp; 2876 LoadRuntimeHooks(m_libRSDriver, RenderScriptRuntime::eModuleKindDriver); 2877 } 2878 break; 2879 } 2880 case eModuleKindImpl: { 2881 if (!m_libRSCpuRef) { 2882 m_libRSCpuRef = module_sp; 2883 LoadRuntimeHooks(m_libRSCpuRef, RenderScriptRuntime::eModuleKindImpl); 2884 } 2885 break; 2886 } 2887 case eModuleKindLibRS: { 2888 if (!m_libRS) { 2889 m_libRS = module_sp; 2890 static ConstString gDbgPresentStr("gDebuggerPresent"); 2891 const Symbol *debug_present = m_libRS->FindFirstSymbolWithNameAndType( 2892 gDbgPresentStr, eSymbolTypeData); 2893 if (debug_present) { 2894 Error err; 2895 uint32_t flag = 0x00000001U; 2896 Target &target = GetProcess()->GetTarget(); 2897 addr_t addr = debug_present->GetLoadAddress(&target); 2898 GetProcess()->WriteMemory(addr, &flag, sizeof(flag), err); 2899 if (err.Success()) { 2900 if (log) 2901 log->Printf("%s - debugger present flag set on debugee.", 2902 __FUNCTION__); 2903 2904 m_debuggerPresentFlagged = true; 2905 } else if (log) { 2906 log->Printf("%s - error writing debugger present flags '%s' ", 2907 __FUNCTION__, err.AsCString()); 2908 } 2909 } else if (log) { 2910 log->Printf( 2911 "%s - error writing debugger present flags - symbol not found", 2912 __FUNCTION__); 2913 } 2914 } 2915 break; 2916 } 2917 default: 2918 break; 2919 } 2920 if (module_loaded) 2921 Update(); 2922 return module_loaded; 2923 } 2924 return false; 2925 } 2926 2927 void RenderScriptRuntime::Update() { 2928 if (m_rsmodules.size() > 0) { 2929 if (!m_initiated) { 2930 Initiate(); 2931 } 2932 } 2933 } 2934 2935 void RSModuleDescriptor::WarnIfVersionMismatch(lldb_private::Stream *s) const { 2936 if (!s) 2937 return; 2938 2939 if (m_slang_version.empty() || m_bcc_version.empty()) { 2940 s->PutCString("WARNING: Unknown bcc or slang (llvm-rs-cc) version; debug " 2941 "experience may be unreliable"); 2942 s->EOL(); 2943 } else if (m_slang_version != m_bcc_version) { 2944 s->Printf("WARNING: The debug info emitted by the slang frontend " 2945 "(llvm-rs-cc) used to build this module (%s) does not match the " 2946 "version of bcc used to generate the debug information (%s). " 2947 "This is an unsupported configuration and may result in a poor " 2948 "debugging experience; proceed with caution", 2949 m_slang_version.c_str(), m_bcc_version.c_str()); 2950 s->EOL(); 2951 } 2952 } 2953 2954 bool RSModuleDescriptor::ParsePragmaCount(llvm::StringRef *lines, 2955 size_t n_lines) { 2956 // Skip the pragma prototype line 2957 ++lines; 2958 for (; n_lines--; ++lines) { 2959 const auto kv_pair = lines->split(" - "); 2960 m_pragmas[kv_pair.first.trim().str()] = kv_pair.second.trim().str(); 2961 } 2962 return true; 2963 } 2964 2965 bool RSModuleDescriptor::ParseExportReduceCount(llvm::StringRef *lines, 2966 size_t n_lines) { 2967 // The list of reduction kernels in the `.rs.info` symbol is of the form 2968 // "signature - accumulatordatasize - reduction_name - initializer_name - 2969 // accumulator_name - combiner_name - 2970 // outconverter_name - halter_name" 2971 // Where a function is not explicitly named by the user, or is not generated 2972 // by the compiler, it is named "." so the 2973 // dash separated list should always be 8 items long 2974 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 2975 // Skip the exportReduceCount line 2976 ++lines; 2977 for (; n_lines--; ++lines) { 2978 llvm::SmallVector<llvm::StringRef, 8> spec; 2979 lines->split(spec, " - "); 2980 if (spec.size() != 8) { 2981 if (spec.size() < 8) { 2982 if (log) 2983 log->Error("Error parsing RenderScript reduction spec. wrong number " 2984 "of fields"); 2985 return false; 2986 } else if (log) 2987 log->Warning("Extraneous members in reduction spec: '%s'", 2988 lines->str().c_str()); 2989 } 2990 2991 const auto sig_s = spec[0]; 2992 uint32_t sig; 2993 if (sig_s.getAsInteger(10, sig)) { 2994 if (log) 2995 log->Error("Error parsing Renderscript reduction spec: invalid kernel " 2996 "signature: '%s'", 2997 sig_s.str().c_str()); 2998 return false; 2999 } 3000 3001 const auto accum_data_size_s = spec[1]; 3002 uint32_t accum_data_size; 3003 if (accum_data_size_s.getAsInteger(10, accum_data_size)) { 3004 if (log) 3005 log->Error("Error parsing Renderscript reduction spec: invalid " 3006 "accumulator data size %s", 3007 accum_data_size_s.str().c_str()); 3008 return false; 3009 } 3010 3011 if (log) 3012 log->Printf("Found RenderScript reduction '%s'", spec[2].str().c_str()); 3013 3014 m_reductions.push_back(RSReductionDescriptor(this, sig, accum_data_size, 3015 spec[2], spec[3], spec[4], 3016 spec[5], spec[6], spec[7])); 3017 } 3018 return true; 3019 } 3020 3021 bool RSModuleDescriptor::ParseVersionInfo(llvm::StringRef *lines, 3022 size_t n_lines) { 3023 // Skip the versionInfo line 3024 ++lines; 3025 for (; n_lines--; ++lines) { 3026 // We're only interested in bcc and slang versions, and ignore all other 3027 // versionInfo lines 3028 const auto kv_pair = lines->split(" - "); 3029 if (kv_pair.first == "slang") 3030 m_slang_version = kv_pair.second.str(); 3031 else if (kv_pair.first == "bcc") 3032 m_bcc_version = kv_pair.second.str(); 3033 } 3034 return true; 3035 } 3036 3037 bool RSModuleDescriptor::ParseExportForeachCount(llvm::StringRef *lines, 3038 size_t n_lines) { 3039 // Skip the exportForeachCount line 3040 ++lines; 3041 for (; n_lines--; ++lines) { 3042 uint32_t slot; 3043 // `forEach` kernels are listed in the `.rs.info` packet as a "slot - name" 3044 // pair per line 3045 const auto kv_pair = lines->split(" - "); 3046 if (kv_pair.first.getAsInteger(10, slot)) 3047 return false; 3048 m_kernels.push_back(RSKernelDescriptor(this, kv_pair.second, slot)); 3049 } 3050 return true; 3051 } 3052 3053 bool RSModuleDescriptor::ParseExportVarCount(llvm::StringRef *lines, 3054 size_t n_lines) { 3055 // Skip the ExportVarCount line 3056 ++lines; 3057 for (; n_lines--; ++lines) 3058 m_globals.push_back(RSGlobalDescriptor(this, *lines)); 3059 return true; 3060 } 3061 3062 // The .rs.info symbol in renderscript modules contains a string which needs to 3063 // be parsed. 3064 // The string is basic and is parsed on a line by line basis. 3065 bool RSModuleDescriptor::ParseRSInfo() { 3066 assert(m_module); 3067 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3068 const Symbol *info_sym = m_module->FindFirstSymbolWithNameAndType( 3069 ConstString(".rs.info"), eSymbolTypeData); 3070 if (!info_sym) 3071 return false; 3072 3073 const addr_t addr = info_sym->GetAddressRef().GetFileAddress(); 3074 if (addr == LLDB_INVALID_ADDRESS) 3075 return false; 3076 3077 const addr_t size = info_sym->GetByteSize(); 3078 const FileSpec fs = m_module->GetFileSpec(); 3079 3080 auto buffer = DataBufferLLVM::CreateSliceFromPath(fs.GetPath(), size, addr); 3081 if (!buffer) 3082 return false; 3083 3084 // split rs.info. contents into lines 3085 llvm::SmallVector<llvm::StringRef, 128> info_lines; 3086 { 3087 const llvm::StringRef raw_rs_info((const char *)buffer->GetBytes()); 3088 raw_rs_info.split(info_lines, '\n'); 3089 if (log) 3090 log->Printf("'.rs.info symbol for '%s':\n%s", 3091 m_module->GetFileSpec().GetCString(), 3092 raw_rs_info.str().c_str()); 3093 } 3094 3095 enum { 3096 eExportVar, 3097 eExportForEach, 3098 eExportReduce, 3099 ePragma, 3100 eBuildChecksum, 3101 eObjectSlot, 3102 eVersionInfo, 3103 }; 3104 3105 const auto rs_info_handler = [](llvm::StringRef name) -> int { 3106 return llvm::StringSwitch<int>(name) 3107 // The number of visible global variables in the script 3108 .Case("exportVarCount", eExportVar) 3109 // The number of RenderScrip `forEach` kernels __attribute__((kernel)) 3110 .Case("exportForEachCount", eExportForEach) 3111 // The number of generalreductions: This marked in the script by 3112 // `#pragma reduce()` 3113 .Case("exportReduceCount", eExportReduce) 3114 // Total count of all RenderScript specific `#pragmas` used in the 3115 // script 3116 .Case("pragmaCount", ePragma) 3117 .Case("objectSlotCount", eObjectSlot) 3118 .Case("versionInfo", eVersionInfo) 3119 .Default(-1); 3120 }; 3121 3122 // parse all text lines of .rs.info 3123 for (auto line = info_lines.begin(); line != info_lines.end(); ++line) { 3124 const auto kv_pair = line->split(": "); 3125 const auto key = kv_pair.first; 3126 const auto val = kv_pair.second.trim(); 3127 3128 const auto handler = rs_info_handler(key); 3129 if (handler == -1) 3130 continue; 3131 // getAsInteger returns `true` on an error condition - we're only interested 3132 // in numeric fields at the moment 3133 uint64_t n_lines; 3134 if (val.getAsInteger(10, n_lines)) { 3135 LLDB_LOGV(log, "Failed to parse non-numeric '.rs.info' section {0}", 3136 line->str()); 3137 continue; 3138 } 3139 if (info_lines.end() - (line + 1) < (ptrdiff_t)n_lines) 3140 return false; 3141 3142 bool success = false; 3143 switch (handler) { 3144 case eExportVar: 3145 success = ParseExportVarCount(line, n_lines); 3146 break; 3147 case eExportForEach: 3148 success = ParseExportForeachCount(line, n_lines); 3149 break; 3150 case eExportReduce: 3151 success = ParseExportReduceCount(line, n_lines); 3152 break; 3153 case ePragma: 3154 success = ParsePragmaCount(line, n_lines); 3155 break; 3156 case eVersionInfo: 3157 success = ParseVersionInfo(line, n_lines); 3158 break; 3159 default: { 3160 if (log) 3161 log->Printf("%s - skipping .rs.info field '%s'", __FUNCTION__, 3162 line->str().c_str()); 3163 continue; 3164 } 3165 } 3166 if (!success) 3167 return false; 3168 line += n_lines; 3169 } 3170 return info_lines.size() > 0; 3171 } 3172 3173 void RenderScriptRuntime::Status(Stream &strm) const { 3174 if (m_libRS) { 3175 strm.Printf("Runtime Library discovered."); 3176 strm.EOL(); 3177 } 3178 if (m_libRSDriver) { 3179 strm.Printf("Runtime Driver discovered."); 3180 strm.EOL(); 3181 } 3182 if (m_libRSCpuRef) { 3183 strm.Printf("CPU Reference Implementation discovered."); 3184 strm.EOL(); 3185 } 3186 3187 if (m_runtimeHooks.size()) { 3188 strm.Printf("Runtime functions hooked:"); 3189 strm.EOL(); 3190 for (auto b : m_runtimeHooks) { 3191 strm.Indent(b.second->defn->name); 3192 strm.EOL(); 3193 } 3194 } else { 3195 strm.Printf("Runtime is not hooked."); 3196 strm.EOL(); 3197 } 3198 } 3199 3200 void RenderScriptRuntime::DumpContexts(Stream &strm) const { 3201 strm.Printf("Inferred RenderScript Contexts:"); 3202 strm.EOL(); 3203 strm.IndentMore(); 3204 3205 std::map<addr_t, uint64_t> contextReferences; 3206 3207 // Iterate over all of the currently discovered scripts. 3208 // Note: We cant push or pop from m_scripts inside this loop or it may 3209 // invalidate script. 3210 for (const auto &script : m_scripts) { 3211 if (!script->context.isValid()) 3212 continue; 3213 lldb::addr_t context = *script->context; 3214 3215 if (contextReferences.find(context) != contextReferences.end()) { 3216 contextReferences[context]++; 3217 } else { 3218 contextReferences[context] = 1; 3219 } 3220 } 3221 3222 for (const auto &cRef : contextReferences) { 3223 strm.Printf("Context 0x%" PRIx64 ": %" PRIu64 " script instances", 3224 cRef.first, cRef.second); 3225 strm.EOL(); 3226 } 3227 strm.IndentLess(); 3228 } 3229 3230 void RenderScriptRuntime::DumpKernels(Stream &strm) const { 3231 strm.Printf("RenderScript Kernels:"); 3232 strm.EOL(); 3233 strm.IndentMore(); 3234 for (const auto &module : m_rsmodules) { 3235 strm.Printf("Resource '%s':", module->m_resname.c_str()); 3236 strm.EOL(); 3237 for (const auto &kernel : module->m_kernels) { 3238 strm.Indent(kernel.m_name.AsCString()); 3239 strm.EOL(); 3240 } 3241 } 3242 strm.IndentLess(); 3243 } 3244 3245 RenderScriptRuntime::AllocationDetails * 3246 RenderScriptRuntime::FindAllocByID(Stream &strm, const uint32_t alloc_id) { 3247 AllocationDetails *alloc = nullptr; 3248 3249 // See if we can find allocation using id as an index; 3250 if (alloc_id <= m_allocations.size() && alloc_id != 0 && 3251 m_allocations[alloc_id - 1]->id == alloc_id) { 3252 alloc = m_allocations[alloc_id - 1].get(); 3253 return alloc; 3254 } 3255 3256 // Fallback to searching 3257 for (const auto &a : m_allocations) { 3258 if (a->id == alloc_id) { 3259 alloc = a.get(); 3260 break; 3261 } 3262 } 3263 3264 if (alloc == nullptr) { 3265 strm.Printf("Error: Couldn't find allocation with id matching %" PRIu32, 3266 alloc_id); 3267 strm.EOL(); 3268 } 3269 3270 return alloc; 3271 } 3272 3273 // Prints the contents of an allocation to the output stream, which may be a 3274 // file 3275 bool RenderScriptRuntime::DumpAllocation(Stream &strm, StackFrame *frame_ptr, 3276 const uint32_t id) { 3277 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3278 3279 // Check we can find the desired allocation 3280 AllocationDetails *alloc = FindAllocByID(strm, id); 3281 if (!alloc) 3282 return false; // FindAllocByID() will print error message for us here 3283 3284 if (log) 3285 log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__, 3286 *alloc->address.get()); 3287 3288 // Check we have information about the allocation, if not calculate it 3289 if (alloc->ShouldRefresh()) { 3290 if (log) 3291 log->Printf("%s - allocation details not calculated yet, jitting info.", 3292 __FUNCTION__); 3293 3294 // JIT all the allocation information 3295 if (!RefreshAllocation(alloc, frame_ptr)) { 3296 strm.Printf("Error: Couldn't JIT allocation details"); 3297 strm.EOL(); 3298 return false; 3299 } 3300 } 3301 3302 // Establish format and size of each data element 3303 const uint32_t vec_size = *alloc->element.type_vec_size.get(); 3304 const Element::DataType type = *alloc->element.type.get(); 3305 3306 assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && 3307 "Invalid allocation type"); 3308 3309 lldb::Format format; 3310 if (type >= Element::RS_TYPE_ELEMENT) 3311 format = eFormatHex; 3312 else 3313 format = vec_size == 1 3314 ? static_cast<lldb::Format>( 3315 AllocationDetails::RSTypeToFormat[type][eFormatSingle]) 3316 : static_cast<lldb::Format>( 3317 AllocationDetails::RSTypeToFormat[type][eFormatVector]); 3318 3319 const uint32_t data_size = *alloc->element.datum_size.get(); 3320 3321 if (log) 3322 log->Printf("%s - element size %" PRIu32 " bytes, including padding", 3323 __FUNCTION__, data_size); 3324 3325 // Allocate a buffer to copy data into 3326 std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr); 3327 if (!buffer) { 3328 strm.Printf("Error: Couldn't read allocation data"); 3329 strm.EOL(); 3330 return false; 3331 } 3332 3333 // Calculate stride between rows as there may be padding at end of rows since 3334 // allocated memory is 16-byte aligned 3335 if (!alloc->stride.isValid()) { 3336 if (alloc->dimension.get()->dim_2 == 0) // We only have one dimension 3337 alloc->stride = 0; 3338 else if (!JITAllocationStride(alloc, frame_ptr)) { 3339 strm.Printf("Error: Couldn't calculate allocation row stride"); 3340 strm.EOL(); 3341 return false; 3342 } 3343 } 3344 const uint32_t stride = *alloc->stride.get(); 3345 const uint32_t size = *alloc->size.get(); // Size of whole allocation 3346 const uint32_t padding = 3347 alloc->element.padding.isValid() ? *alloc->element.padding.get() : 0; 3348 if (log) 3349 log->Printf("%s - stride %" PRIu32 " bytes, size %" PRIu32 3350 " bytes, padding %" PRIu32, 3351 __FUNCTION__, stride, size, padding); 3352 3353 // Find dimensions used to index loops, so need to be non-zero 3354 uint32_t dim_x = alloc->dimension.get()->dim_1; 3355 dim_x = dim_x == 0 ? 1 : dim_x; 3356 3357 uint32_t dim_y = alloc->dimension.get()->dim_2; 3358 dim_y = dim_y == 0 ? 1 : dim_y; 3359 3360 uint32_t dim_z = alloc->dimension.get()->dim_3; 3361 dim_z = dim_z == 0 ? 1 : dim_z; 3362 3363 // Use data extractor to format output 3364 const uint32_t target_ptr_size = 3365 GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 3366 DataExtractor alloc_data(buffer.get(), size, GetProcess()->GetByteOrder(), 3367 target_ptr_size); 3368 3369 uint32_t offset = 0; // Offset in buffer to next element to be printed 3370 uint32_t prev_row = 0; // Offset to the start of the previous row 3371 3372 // Iterate over allocation dimensions, printing results to user 3373 strm.Printf("Data (X, Y, Z):"); 3374 for (uint32_t z = 0; z < dim_z; ++z) { 3375 for (uint32_t y = 0; y < dim_y; ++y) { 3376 // Use stride to index start of next row. 3377 if (!(y == 0 && z == 0)) 3378 offset = prev_row + stride; 3379 prev_row = offset; 3380 3381 // Print each element in the row individually 3382 for (uint32_t x = 0; x < dim_x; ++x) { 3383 strm.Printf("\n(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ") = ", x, y, z); 3384 if ((type == Element::RS_TYPE_NONE) && 3385 (alloc->element.children.size() > 0) && 3386 (alloc->element.type_name != Element::GetFallbackStructName())) { 3387 // Here we are dumping an Element of struct type. 3388 // This is done using expression evaluation with the name of the 3389 // struct type and pointer to element. 3390 // Don't print the name of the resulting expression, since this will 3391 // be '$[0-9]+' 3392 DumpValueObjectOptions expr_options; 3393 expr_options.SetHideName(true); 3394 3395 // Setup expression as derefrencing a pointer cast to element address. 3396 char expr_char_buffer[jit_max_expr_size]; 3397 int written = 3398 snprintf(expr_char_buffer, jit_max_expr_size, "*(%s*) 0x%" PRIx64, 3399 alloc->element.type_name.AsCString(), 3400 *alloc->data_ptr.get() + offset); 3401 3402 if (written < 0 || written >= jit_max_expr_size) { 3403 if (log) 3404 log->Printf("%s - error in snprintf().", __FUNCTION__); 3405 continue; 3406 } 3407 3408 // Evaluate expression 3409 ValueObjectSP expr_result; 3410 GetProcess()->GetTarget().EvaluateExpression(expr_char_buffer, 3411 frame_ptr, expr_result); 3412 3413 // Print the results to our stream. 3414 expr_result->Dump(strm, expr_options); 3415 } else { 3416 DumpDataExtractor(alloc_data, &strm, offset, format, 3417 data_size - padding, 1, 1, LLDB_INVALID_ADDRESS, 0, 3418 0); 3419 } 3420 offset += data_size; 3421 } 3422 } 3423 } 3424 strm.EOL(); 3425 3426 return true; 3427 } 3428 3429 // Function recalculates all our cached information about allocations by jitting 3430 // the RS runtime regarding each allocation we know about. Returns true if all 3431 // allocations could be recomputed, false otherwise. 3432 bool RenderScriptRuntime::RecomputeAllAllocations(Stream &strm, 3433 StackFrame *frame_ptr) { 3434 bool success = true; 3435 for (auto &alloc : m_allocations) { 3436 // JIT current allocation information 3437 if (!RefreshAllocation(alloc.get(), frame_ptr)) { 3438 strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32 3439 "\n", 3440 alloc->id); 3441 success = false; 3442 } 3443 } 3444 3445 if (success) 3446 strm.Printf("All allocations successfully recomputed"); 3447 strm.EOL(); 3448 3449 return success; 3450 } 3451 3452 // Prints information regarding currently loaded allocations. These details are 3453 // gathered by jitting the runtime, which has as latency. Index parameter 3454 // specifies a single allocation ID to print, or a zero value to print them all 3455 void RenderScriptRuntime::ListAllocations(Stream &strm, StackFrame *frame_ptr, 3456 const uint32_t index) { 3457 strm.Printf("RenderScript Allocations:"); 3458 strm.EOL(); 3459 strm.IndentMore(); 3460 3461 for (auto &alloc : m_allocations) { 3462 // index will only be zero if we want to print all allocations 3463 if (index != 0 && index != alloc->id) 3464 continue; 3465 3466 // JIT current allocation information 3467 if (alloc->ShouldRefresh() && !RefreshAllocation(alloc.get(), frame_ptr)) { 3468 strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32, 3469 alloc->id); 3470 strm.EOL(); 3471 continue; 3472 } 3473 3474 strm.Printf("%" PRIu32 ":", alloc->id); 3475 strm.EOL(); 3476 strm.IndentMore(); 3477 3478 strm.Indent("Context: "); 3479 if (!alloc->context.isValid()) 3480 strm.Printf("unknown\n"); 3481 else 3482 strm.Printf("0x%" PRIx64 "\n", *alloc->context.get()); 3483 3484 strm.Indent("Address: "); 3485 if (!alloc->address.isValid()) 3486 strm.Printf("unknown\n"); 3487 else 3488 strm.Printf("0x%" PRIx64 "\n", *alloc->address.get()); 3489 3490 strm.Indent("Data pointer: "); 3491 if (!alloc->data_ptr.isValid()) 3492 strm.Printf("unknown\n"); 3493 else 3494 strm.Printf("0x%" PRIx64 "\n", *alloc->data_ptr.get()); 3495 3496 strm.Indent("Dimensions: "); 3497 if (!alloc->dimension.isValid()) 3498 strm.Printf("unknown\n"); 3499 else 3500 strm.Printf("(%" PRId32 ", %" PRId32 ", %" PRId32 ")\n", 3501 alloc->dimension.get()->dim_1, alloc->dimension.get()->dim_2, 3502 alloc->dimension.get()->dim_3); 3503 3504 strm.Indent("Data Type: "); 3505 if (!alloc->element.type.isValid() || 3506 !alloc->element.type_vec_size.isValid()) 3507 strm.Printf("unknown\n"); 3508 else { 3509 const int vector_size = *alloc->element.type_vec_size.get(); 3510 Element::DataType type = *alloc->element.type.get(); 3511 3512 if (!alloc->element.type_name.IsEmpty()) 3513 strm.Printf("%s\n", alloc->element.type_name.AsCString()); 3514 else { 3515 // Enum value isn't monotonous, so doesn't always index 3516 // RsDataTypeToString array 3517 if (type >= Element::RS_TYPE_ELEMENT && type <= Element::RS_TYPE_FONT) 3518 type = 3519 static_cast<Element::DataType>((type - Element::RS_TYPE_ELEMENT) + 3520 Element::RS_TYPE_MATRIX_2X2 + 1); 3521 3522 if (type >= (sizeof(AllocationDetails::RsDataTypeToString) / 3523 sizeof(AllocationDetails::RsDataTypeToString[0])) || 3524 vector_size > 4 || vector_size < 1) 3525 strm.Printf("invalid type\n"); 3526 else 3527 strm.Printf( 3528 "%s\n", 3529 AllocationDetails::RsDataTypeToString[static_cast<uint32_t>(type)] 3530 [vector_size - 1]); 3531 } 3532 } 3533 3534 strm.Indent("Data Kind: "); 3535 if (!alloc->element.type_kind.isValid()) 3536 strm.Printf("unknown\n"); 3537 else { 3538 const Element::DataKind kind = *alloc->element.type_kind.get(); 3539 if (kind < Element::RS_KIND_USER || kind > Element::RS_KIND_PIXEL_YUV) 3540 strm.Printf("invalid kind\n"); 3541 else 3542 strm.Printf( 3543 "%s\n", 3544 AllocationDetails::RsDataKindToString[static_cast<uint32_t>(kind)]); 3545 } 3546 3547 strm.EOL(); 3548 strm.IndentLess(); 3549 } 3550 strm.IndentLess(); 3551 } 3552 3553 // Set breakpoints on every kernel found in RS module 3554 void RenderScriptRuntime::BreakOnModuleKernels( 3555 const RSModuleDescriptorSP rsmodule_sp) { 3556 for (const auto &kernel : rsmodule_sp->m_kernels) { 3557 // Don't set breakpoint on 'root' kernel 3558 if (strcmp(kernel.m_name.AsCString(), "root") == 0) 3559 continue; 3560 3561 CreateKernelBreakpoint(kernel.m_name); 3562 } 3563 } 3564 3565 // Method is internally called by the 'kernel breakpoint all' command to enable 3566 // or disable breaking on all kernels. When do_break is true we want to enable 3567 // this functionality. When do_break is false we want to disable it. 3568 void RenderScriptRuntime::SetBreakAllKernels(bool do_break, TargetSP target) { 3569 Log *log( 3570 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3571 3572 InitSearchFilter(target); 3573 3574 // Set breakpoints on all the kernels 3575 if (do_break && !m_breakAllKernels) { 3576 m_breakAllKernels = true; 3577 3578 for (const auto &module : m_rsmodules) 3579 BreakOnModuleKernels(module); 3580 3581 if (log) 3582 log->Printf("%s(True) - breakpoints set on all currently loaded kernels.", 3583 __FUNCTION__); 3584 } else if (!do_break && 3585 m_breakAllKernels) // Breakpoints won't be set on any new kernels. 3586 { 3587 m_breakAllKernels = false; 3588 3589 if (log) 3590 log->Printf("%s(False) - breakpoints no longer automatically set.", 3591 __FUNCTION__); 3592 } 3593 } 3594 3595 // Given the name of a kernel this function creates a breakpoint using our 3596 // own breakpoint resolver, and returns the Breakpoint shared pointer. 3597 BreakpointSP 3598 RenderScriptRuntime::CreateKernelBreakpoint(const ConstString &name) { 3599 Log *log( 3600 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3601 3602 if (!m_filtersp) { 3603 if (log) 3604 log->Printf("%s - error, no breakpoint search filter set.", __FUNCTION__); 3605 return nullptr; 3606 } 3607 3608 BreakpointResolverSP resolver_sp(new RSBreakpointResolver(nullptr, name)); 3609 BreakpointSP bp = GetProcess()->GetTarget().CreateBreakpoint( 3610 m_filtersp, resolver_sp, false, false, false); 3611 3612 // Give RS breakpoints a specific name, so the user can manipulate them as a 3613 // group. 3614 Error err; 3615 if (!bp->AddName("RenderScriptKernel", err)) 3616 if (log) 3617 log->Printf("%s - error setting break name, '%s'.", __FUNCTION__, 3618 err.AsCString()); 3619 3620 return bp; 3621 } 3622 3623 BreakpointSP 3624 RenderScriptRuntime::CreateReductionBreakpoint(const ConstString &name, 3625 int kernel_types) { 3626 Log *log( 3627 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3628 3629 if (!m_filtersp) { 3630 if (log) 3631 log->Printf("%s - error, no breakpoint search filter set.", __FUNCTION__); 3632 return nullptr; 3633 } 3634 3635 BreakpointResolverSP resolver_sp(new RSReduceBreakpointResolver( 3636 nullptr, name, &m_rsmodules, kernel_types)); 3637 BreakpointSP bp = GetProcess()->GetTarget().CreateBreakpoint( 3638 m_filtersp, resolver_sp, false, false, false); 3639 3640 // Give RS breakpoints a specific name, so the user can manipulate them as a 3641 // group. 3642 Error err; 3643 if (!bp->AddName("RenderScriptReduction", err)) 3644 if (log) 3645 log->Printf("%s - error setting break name, '%s'.", __FUNCTION__, 3646 err.AsCString()); 3647 3648 return bp; 3649 } 3650 3651 // Given an expression for a variable this function tries to calculate the 3652 // variable's value. If this is possible it returns true and sets the uint64_t 3653 // parameter to the variables unsigned value. Otherwise function returns false. 3654 bool RenderScriptRuntime::GetFrameVarAsUnsigned(const StackFrameSP frame_sp, 3655 const char *var_name, 3656 uint64_t &val) { 3657 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3658 Error err; 3659 VariableSP var_sp; 3660 3661 // Find variable in stack frame 3662 ValueObjectSP value_sp(frame_sp->GetValueForVariableExpressionPath( 3663 var_name, eNoDynamicValues, 3664 StackFrame::eExpressionPathOptionCheckPtrVsMember | 3665 StackFrame::eExpressionPathOptionsAllowDirectIVarAccess, 3666 var_sp, err)); 3667 if (!err.Success()) { 3668 if (log) 3669 log->Printf("%s - error, couldn't find '%s' in frame", __FUNCTION__, 3670 var_name); 3671 return false; 3672 } 3673 3674 // Find the uint32_t value for the variable 3675 bool success = false; 3676 val = value_sp->GetValueAsUnsigned(0, &success); 3677 if (!success) { 3678 if (log) 3679 log->Printf("%s - error, couldn't parse '%s' as an uint32_t.", 3680 __FUNCTION__, var_name); 3681 return false; 3682 } 3683 3684 return true; 3685 } 3686 3687 // Function attempts to find the current coordinate of a kernel invocation by 3688 // investigating the values of frame variables in the .expand function. These 3689 // coordinates are returned via the coord array reference parameter. Returns 3690 // true if the coordinates could be found, and false otherwise. 3691 bool RenderScriptRuntime::GetKernelCoordinate(RSCoordinate &coord, 3692 Thread *thread_ptr) { 3693 static const char *const x_expr = "rsIndex"; 3694 static const char *const y_expr = "p->current.y"; 3695 static const char *const z_expr = "p->current.z"; 3696 3697 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3698 3699 if (!thread_ptr) { 3700 if (log) 3701 log->Printf("%s - Error, No thread pointer", __FUNCTION__); 3702 3703 return false; 3704 } 3705 3706 // Walk the call stack looking for a function whose name has the suffix 3707 // '.expand' and contains the variables we're looking for. 3708 for (uint32_t i = 0; i < thread_ptr->GetStackFrameCount(); ++i) { 3709 if (!thread_ptr->SetSelectedFrameByIndex(i)) 3710 continue; 3711 3712 StackFrameSP frame_sp = thread_ptr->GetSelectedFrame(); 3713 if (!frame_sp) 3714 continue; 3715 3716 // Find the function name 3717 const SymbolContext sym_ctx = frame_sp->GetSymbolContext(false); 3718 const ConstString func_name = sym_ctx.GetFunctionName(); 3719 if (!func_name) 3720 continue; 3721 3722 if (log) 3723 log->Printf("%s - Inspecting function '%s'", __FUNCTION__, 3724 func_name.GetCString()); 3725 3726 // Check if function name has .expand suffix 3727 if (!func_name.GetStringRef().endswith(".expand")) 3728 continue; 3729 3730 if (log) 3731 log->Printf("%s - Found .expand function '%s'", __FUNCTION__, 3732 func_name.GetCString()); 3733 3734 // Get values for variables in .expand frame that tell us the current kernel 3735 // invocation 3736 uint64_t x, y, z; 3737 bool found = GetFrameVarAsUnsigned(frame_sp, x_expr, x) && 3738 GetFrameVarAsUnsigned(frame_sp, y_expr, y) && 3739 GetFrameVarAsUnsigned(frame_sp, z_expr, z); 3740 3741 if (found) { 3742 // The RenderScript runtime uses uint32_t for these vars. If they're not 3743 // within bounds, our frame parsing is garbage 3744 assert(x <= UINT32_MAX && y <= UINT32_MAX && z <= UINT32_MAX); 3745 coord.x = (uint32_t)x; 3746 coord.y = (uint32_t)y; 3747 coord.z = (uint32_t)z; 3748 return true; 3749 } 3750 } 3751 return false; 3752 } 3753 3754 // Callback when a kernel breakpoint hits and we're looking for a specific 3755 // coordinate. Baton parameter contains a pointer to the target coordinate we 3756 // want to break on. 3757 // Function then checks the .expand frame for the current coordinate and breaks 3758 // to user if it matches. 3759 // Parameter 'break_id' is the id of the Breakpoint which made the callback. 3760 // Parameter 'break_loc_id' is the id for the BreakpointLocation which was hit, 3761 // a single logical breakpoint can have multiple addresses. 3762 bool RenderScriptRuntime::KernelBreakpointHit(void *baton, 3763 StoppointCallbackContext *ctx, 3764 user_id_t break_id, 3765 user_id_t break_loc_id) { 3766 Log *log( 3767 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3768 3769 assert(baton && 3770 "Error: null baton in conditional kernel breakpoint callback"); 3771 3772 // Coordinate we want to stop on 3773 RSCoordinate target_coord = *static_cast<RSCoordinate *>(baton); 3774 3775 if (log) 3776 log->Printf("%s - Break ID %" PRIu64 ", " FMT_COORD, __FUNCTION__, break_id, 3777 target_coord.x, target_coord.y, target_coord.z); 3778 3779 // Select current thread 3780 ExecutionContext context(ctx->exe_ctx_ref); 3781 Thread *thread_ptr = context.GetThreadPtr(); 3782 assert(thread_ptr && "Null thread pointer"); 3783 3784 // Find current kernel invocation from .expand frame variables 3785 RSCoordinate current_coord{}; 3786 if (!GetKernelCoordinate(current_coord, thread_ptr)) { 3787 if (log) 3788 log->Printf("%s - Error, couldn't select .expand stack frame", 3789 __FUNCTION__); 3790 return false; 3791 } 3792 3793 if (log) 3794 log->Printf("%s - " FMT_COORD, __FUNCTION__, current_coord.x, 3795 current_coord.y, current_coord.z); 3796 3797 // Check if the current kernel invocation coordinate matches our target 3798 // coordinate 3799 if (target_coord == current_coord) { 3800 if (log) 3801 log->Printf("%s, BREAKING " FMT_COORD, __FUNCTION__, current_coord.x, 3802 current_coord.y, current_coord.z); 3803 3804 BreakpointSP breakpoint_sp = 3805 context.GetTargetPtr()->GetBreakpointByID(break_id); 3806 assert(breakpoint_sp != nullptr && 3807 "Error: Couldn't find breakpoint matching break id for callback"); 3808 breakpoint_sp->SetEnabled(false); // Optimise since conditional breakpoint 3809 // should only be hit once. 3810 return true; 3811 } 3812 3813 // No match on coordinate 3814 return false; 3815 } 3816 3817 void RenderScriptRuntime::SetConditional(BreakpointSP bp, Stream &messages, 3818 const RSCoordinate &coord) { 3819 messages.Printf("Conditional kernel breakpoint on coordinate " FMT_COORD, 3820 coord.x, coord.y, coord.z); 3821 messages.EOL(); 3822 3823 // Allocate memory for the baton, and copy over coordinate 3824 RSCoordinate *baton = new RSCoordinate(coord); 3825 3826 // Create a callback that will be invoked every time the breakpoint is hit. 3827 // The baton object passed to the handler is the target coordinate we want to 3828 // break on. 3829 bp->SetCallback(KernelBreakpointHit, baton, true); 3830 3831 // Store a shared pointer to the baton, so the memory will eventually be 3832 // cleaned up after destruction 3833 m_conditional_breaks[bp->GetID()] = std::unique_ptr<RSCoordinate>(baton); 3834 } 3835 3836 // Tries to set a breakpoint on the start of a kernel, resolved using the kernel 3837 // name. Argument 'coords', represents a three dimensional coordinate which can 3838 // be 3839 // used to specify a single kernel instance to break on. If this is set then we 3840 // add a callback 3841 // to the breakpoint. 3842 bool RenderScriptRuntime::PlaceBreakpointOnKernel(TargetSP target, 3843 Stream &messages, 3844 const char *name, 3845 const RSCoordinate *coord) { 3846 if (!name) 3847 return false; 3848 3849 InitSearchFilter(target); 3850 3851 ConstString kernel_name(name); 3852 BreakpointSP bp = CreateKernelBreakpoint(kernel_name); 3853 if (!bp) 3854 return false; 3855 3856 // We have a conditional breakpoint on a specific coordinate 3857 if (coord) 3858 SetConditional(bp, messages, *coord); 3859 3860 bp->GetDescription(&messages, lldb::eDescriptionLevelInitial, false); 3861 3862 return true; 3863 } 3864 3865 BreakpointSP 3866 RenderScriptRuntime::CreateScriptGroupBreakpoint(const ConstString &name, 3867 bool stop_on_all) { 3868 Log *log( 3869 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3870 3871 if (!m_filtersp) { 3872 if (log) 3873 log->Printf("%s - error, no breakpoint search filter set.", __FUNCTION__); 3874 return nullptr; 3875 } 3876 3877 BreakpointResolverSP resolver_sp(new RSScriptGroupBreakpointResolver( 3878 nullptr, name, m_scriptGroups, stop_on_all)); 3879 BreakpointSP bp = GetProcess()->GetTarget().CreateBreakpoint( 3880 m_filtersp, resolver_sp, false, false, false); 3881 // Give RS breakpoints a specific name, so the user can manipulate them as a 3882 // group. 3883 Error err; 3884 if (!bp->AddName(name.AsCString(), err)) 3885 if (log) 3886 log->Printf("%s - error setting break name, '%s'.", __FUNCTION__, 3887 err.AsCString()); 3888 // ask the breakpoint to resolve itself 3889 bp->ResolveBreakpoint(); 3890 return bp; 3891 } 3892 3893 bool RenderScriptRuntime::PlaceBreakpointOnScriptGroup(TargetSP target, 3894 Stream &strm, 3895 const ConstString &name, 3896 bool multi) { 3897 InitSearchFilter(target); 3898 BreakpointSP bp = CreateScriptGroupBreakpoint(name, multi); 3899 if (bp) 3900 bp->GetDescription(&strm, lldb::eDescriptionLevelInitial, false); 3901 return bool(bp); 3902 } 3903 3904 bool RenderScriptRuntime::PlaceBreakpointOnReduction(TargetSP target, 3905 Stream &messages, 3906 const char *reduce_name, 3907 const RSCoordinate *coord, 3908 int kernel_types) { 3909 if (!reduce_name) 3910 return false; 3911 3912 InitSearchFilter(target); 3913 BreakpointSP bp = 3914 CreateReductionBreakpoint(ConstString(reduce_name), kernel_types); 3915 if (!bp) 3916 return false; 3917 3918 if (coord) 3919 SetConditional(bp, messages, *coord); 3920 3921 bp->GetDescription(&messages, lldb::eDescriptionLevelInitial, false); 3922 3923 return true; 3924 } 3925 3926 void RenderScriptRuntime::DumpModules(Stream &strm) const { 3927 strm.Printf("RenderScript Modules:"); 3928 strm.EOL(); 3929 strm.IndentMore(); 3930 for (const auto &module : m_rsmodules) { 3931 module->Dump(strm); 3932 } 3933 strm.IndentLess(); 3934 } 3935 3936 RenderScriptRuntime::ScriptDetails * 3937 RenderScriptRuntime::LookUpScript(addr_t address, bool create) { 3938 for (const auto &s : m_scripts) { 3939 if (s->script.isValid()) 3940 if (*s->script == address) 3941 return s.get(); 3942 } 3943 if (create) { 3944 std::unique_ptr<ScriptDetails> s(new ScriptDetails); 3945 s->script = address; 3946 m_scripts.push_back(std::move(s)); 3947 return m_scripts.back().get(); 3948 } 3949 return nullptr; 3950 } 3951 3952 RenderScriptRuntime::AllocationDetails * 3953 RenderScriptRuntime::LookUpAllocation(addr_t address) { 3954 for (const auto &a : m_allocations) { 3955 if (a->address.isValid()) 3956 if (*a->address == address) 3957 return a.get(); 3958 } 3959 return nullptr; 3960 } 3961 3962 RenderScriptRuntime::AllocationDetails * 3963 RenderScriptRuntime::CreateAllocation(addr_t address) { 3964 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 3965 3966 // Remove any previous allocation which contains the same address 3967 auto it = m_allocations.begin(); 3968 while (it != m_allocations.end()) { 3969 if (*((*it)->address) == address) { 3970 if (log) 3971 log->Printf("%s - Removing allocation id: %d, address: 0x%" PRIx64, 3972 __FUNCTION__, (*it)->id, address); 3973 3974 it = m_allocations.erase(it); 3975 } else { 3976 it++; 3977 } 3978 } 3979 3980 std::unique_ptr<AllocationDetails> a(new AllocationDetails); 3981 a->address = address; 3982 m_allocations.push_back(std::move(a)); 3983 return m_allocations.back().get(); 3984 } 3985 3986 bool RenderScriptRuntime::ResolveKernelName(lldb::addr_t kernel_addr, 3987 ConstString &name) { 3988 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS); 3989 3990 Target &target = GetProcess()->GetTarget(); 3991 Address resolved; 3992 // RenderScript module 3993 if (!target.GetSectionLoadList().ResolveLoadAddress(kernel_addr, resolved)) { 3994 if (log) 3995 log->Printf("%s: unable to resolve 0x%" PRIx64 " to a loaded symbol", 3996 __FUNCTION__, kernel_addr); 3997 return false; 3998 } 3999 4000 Symbol *sym = resolved.CalculateSymbolContextSymbol(); 4001 if (!sym) 4002 return false; 4003 4004 name = sym->GetName(); 4005 assert(IsRenderScriptModule(resolved.CalculateSymbolContextModule())); 4006 if (log) 4007 log->Printf("%s: 0x%" PRIx64 " resolved to the symbol '%s'", __FUNCTION__, 4008 kernel_addr, name.GetCString()); 4009 return true; 4010 } 4011 4012 void RSModuleDescriptor::Dump(Stream &strm) const { 4013 int indent = strm.GetIndentLevel(); 4014 4015 strm.Indent(); 4016 m_module->GetFileSpec().Dump(&strm); 4017 strm.Indent(m_module->GetNumCompileUnits() ? "Debug info loaded." 4018 : "Debug info does not exist."); 4019 strm.EOL(); 4020 strm.IndentMore(); 4021 4022 strm.Indent(); 4023 strm.Printf("Globals: %" PRIu64, static_cast<uint64_t>(m_globals.size())); 4024 strm.EOL(); 4025 strm.IndentMore(); 4026 for (const auto &global : m_globals) { 4027 global.Dump(strm); 4028 } 4029 strm.IndentLess(); 4030 4031 strm.Indent(); 4032 strm.Printf("Kernels: %" PRIu64, static_cast<uint64_t>(m_kernels.size())); 4033 strm.EOL(); 4034 strm.IndentMore(); 4035 for (const auto &kernel : m_kernels) { 4036 kernel.Dump(strm); 4037 } 4038 strm.IndentLess(); 4039 4040 strm.Indent(); 4041 strm.Printf("Pragmas: %" PRIu64, static_cast<uint64_t>(m_pragmas.size())); 4042 strm.EOL(); 4043 strm.IndentMore(); 4044 for (const auto &key_val : m_pragmas) { 4045 strm.Indent(); 4046 strm.Printf("%s: %s", key_val.first.c_str(), key_val.second.c_str()); 4047 strm.EOL(); 4048 } 4049 strm.IndentLess(); 4050 4051 strm.Indent(); 4052 strm.Printf("Reductions: %" PRIu64, 4053 static_cast<uint64_t>(m_reductions.size())); 4054 strm.EOL(); 4055 strm.IndentMore(); 4056 for (const auto &reduction : m_reductions) { 4057 reduction.Dump(strm); 4058 } 4059 4060 strm.SetIndentLevel(indent); 4061 } 4062 4063 void RSGlobalDescriptor::Dump(Stream &strm) const { 4064 strm.Indent(m_name.AsCString()); 4065 VariableList var_list; 4066 m_module->m_module->FindGlobalVariables(m_name, nullptr, true, 1U, var_list); 4067 if (var_list.GetSize() == 1) { 4068 auto var = var_list.GetVariableAtIndex(0); 4069 auto type = var->GetType(); 4070 if (type) { 4071 strm.Printf(" - "); 4072 type->DumpTypeName(&strm); 4073 } else { 4074 strm.Printf(" - Unknown Type"); 4075 } 4076 } else { 4077 strm.Printf(" - variable identified, but not found in binary"); 4078 const Symbol *s = m_module->m_module->FindFirstSymbolWithNameAndType( 4079 m_name, eSymbolTypeData); 4080 if (s) { 4081 strm.Printf(" (symbol exists) "); 4082 } 4083 } 4084 4085 strm.EOL(); 4086 } 4087 4088 void RSKernelDescriptor::Dump(Stream &strm) const { 4089 strm.Indent(m_name.AsCString()); 4090 strm.EOL(); 4091 } 4092 4093 void RSReductionDescriptor::Dump(lldb_private::Stream &stream) const { 4094 stream.Indent(m_reduce_name.AsCString()); 4095 stream.IndentMore(); 4096 stream.EOL(); 4097 stream.Indent(); 4098 stream.Printf("accumulator: %s", m_accum_name.AsCString()); 4099 stream.EOL(); 4100 stream.Indent(); 4101 stream.Printf("initializer: %s", m_init_name.AsCString()); 4102 stream.EOL(); 4103 stream.Indent(); 4104 stream.Printf("combiner: %s", m_comb_name.AsCString()); 4105 stream.EOL(); 4106 stream.Indent(); 4107 stream.Printf("outconverter: %s", m_outc_name.AsCString()); 4108 stream.EOL(); 4109 // XXX This is currently unspecified by RenderScript, and unused 4110 // stream.Indent(); 4111 // stream.Printf("halter: '%s'", m_init_name.AsCString()); 4112 // stream.EOL(); 4113 stream.IndentLess(); 4114 } 4115 4116 class CommandObjectRenderScriptRuntimeModuleDump : public CommandObjectParsed { 4117 public: 4118 CommandObjectRenderScriptRuntimeModuleDump(CommandInterpreter &interpreter) 4119 : CommandObjectParsed( 4120 interpreter, "renderscript module dump", 4121 "Dumps renderscript specific information for all modules.", 4122 "renderscript module dump", 4123 eCommandRequiresProcess | eCommandProcessMustBeLaunched) {} 4124 4125 ~CommandObjectRenderScriptRuntimeModuleDump() override = default; 4126 4127 bool DoExecute(Args &command, CommandReturnObject &result) override { 4128 RenderScriptRuntime *runtime = 4129 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4130 eLanguageTypeExtRenderScript); 4131 runtime->DumpModules(result.GetOutputStream()); 4132 result.SetStatus(eReturnStatusSuccessFinishResult); 4133 return true; 4134 } 4135 }; 4136 4137 class CommandObjectRenderScriptRuntimeModule : public CommandObjectMultiword { 4138 public: 4139 CommandObjectRenderScriptRuntimeModule(CommandInterpreter &interpreter) 4140 : CommandObjectMultiword(interpreter, "renderscript module", 4141 "Commands that deal with RenderScript modules.", 4142 nullptr) { 4143 LoadSubCommand( 4144 "dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeModuleDump( 4145 interpreter))); 4146 } 4147 4148 ~CommandObjectRenderScriptRuntimeModule() override = default; 4149 }; 4150 4151 class CommandObjectRenderScriptRuntimeKernelList : public CommandObjectParsed { 4152 public: 4153 CommandObjectRenderScriptRuntimeKernelList(CommandInterpreter &interpreter) 4154 : CommandObjectParsed( 4155 interpreter, "renderscript kernel list", 4156 "Lists renderscript kernel names and associated script resources.", 4157 "renderscript kernel list", 4158 eCommandRequiresProcess | eCommandProcessMustBeLaunched) {} 4159 4160 ~CommandObjectRenderScriptRuntimeKernelList() override = default; 4161 4162 bool DoExecute(Args &command, CommandReturnObject &result) override { 4163 RenderScriptRuntime *runtime = 4164 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4165 eLanguageTypeExtRenderScript); 4166 runtime->DumpKernels(result.GetOutputStream()); 4167 result.SetStatus(eReturnStatusSuccessFinishResult); 4168 return true; 4169 } 4170 }; 4171 4172 static OptionDefinition g_renderscript_reduction_bp_set_options[] = { 4173 {LLDB_OPT_SET_1, false, "function-role", 't', 4174 OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeOneLiner, 4175 "Break on a comma separated set of reduction kernel types " 4176 "(accumulator,outcoverter,combiner,initializer"}, 4177 {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument, 4178 nullptr, nullptr, 0, eArgTypeValue, 4179 "Set a breakpoint on a single invocation of the kernel with specified " 4180 "coordinate.\n" 4181 "Coordinate takes the form 'x[,y][,z] where x,y,z are positive " 4182 "integers representing kernel dimensions. " 4183 "Any unset dimensions will be defaulted to zero."}}; 4184 4185 class CommandObjectRenderScriptRuntimeReductionBreakpointSet 4186 : public CommandObjectParsed { 4187 public: 4188 CommandObjectRenderScriptRuntimeReductionBreakpointSet( 4189 CommandInterpreter &interpreter) 4190 : CommandObjectParsed( 4191 interpreter, "renderscript reduction breakpoint set", 4192 "Set a breakpoint on named RenderScript general reductions", 4193 "renderscript reduction breakpoint set <kernel_name> [-t " 4194 "<reduction_kernel_type,...>]", 4195 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4196 eCommandProcessMustBePaused), 4197 m_options(){}; 4198 4199 class CommandOptions : public Options { 4200 public: 4201 CommandOptions() 4202 : Options(), 4203 m_kernel_types(RSReduceBreakpointResolver::eKernelTypeAll) {} 4204 4205 ~CommandOptions() override = default; 4206 4207 Error SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg, 4208 ExecutionContext *exe_ctx) override { 4209 Error err; 4210 StreamString err_str; 4211 const int short_option = m_getopt_table[option_idx].val; 4212 switch (short_option) { 4213 case 't': 4214 if (!ParseReductionTypes(option_arg, err_str)) 4215 err.SetErrorStringWithFormat( 4216 "Unable to deduce reduction types for %s: %s", 4217 option_arg.str().c_str(), err_str.GetData()); 4218 break; 4219 case 'c': { 4220 auto coord = RSCoordinate{}; 4221 if (!ParseCoordinate(option_arg, coord)) 4222 err.SetErrorStringWithFormat("unable to parse coordinate for %s", 4223 option_arg.str().c_str()); 4224 else { 4225 m_have_coord = true; 4226 m_coord = coord; 4227 } 4228 break; 4229 } 4230 default: 4231 err.SetErrorStringWithFormat("Invalid option '-%c'", short_option); 4232 } 4233 return err; 4234 } 4235 4236 void OptionParsingStarting(ExecutionContext *exe_ctx) override { 4237 m_have_coord = false; 4238 } 4239 4240 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4241 return llvm::makeArrayRef(g_renderscript_reduction_bp_set_options); 4242 } 4243 4244 bool ParseReductionTypes(llvm::StringRef option_val, 4245 StreamString &err_str) { 4246 m_kernel_types = RSReduceBreakpointResolver::eKernelTypeNone; 4247 const auto reduce_name_to_type = [](llvm::StringRef name) -> int { 4248 return llvm::StringSwitch<int>(name) 4249 .Case("accumulator", RSReduceBreakpointResolver::eKernelTypeAccum) 4250 .Case("initializer", RSReduceBreakpointResolver::eKernelTypeInit) 4251 .Case("outconverter", RSReduceBreakpointResolver::eKernelTypeOutC) 4252 .Case("combiner", RSReduceBreakpointResolver::eKernelTypeComb) 4253 .Case("all", RSReduceBreakpointResolver::eKernelTypeAll) 4254 // Currently not exposed by the runtime 4255 // .Case("halter", RSReduceBreakpointResolver::eKernelTypeHalter) 4256 .Default(0); 4257 }; 4258 4259 // Matching a comma separated list of known words is fairly 4260 // straightforward with PCRE, but we're 4261 // using ERE, so we end up with a little ugliness... 4262 RegularExpression::Match match(/* max_matches */ 5); 4263 RegularExpression match_type_list( 4264 llvm::StringRef("^([[:alpha:]]+)(,[[:alpha:]]+){0,4}$")); 4265 4266 assert(match_type_list.IsValid()); 4267 4268 if (!match_type_list.Execute(option_val, &match)) { 4269 err_str.PutCString( 4270 "a comma-separated list of kernel types is required"); 4271 return false; 4272 } 4273 4274 // splitting on commas is much easier with llvm::StringRef than regex 4275 llvm::SmallVector<llvm::StringRef, 5> type_names; 4276 llvm::StringRef(option_val).split(type_names, ','); 4277 4278 for (const auto &name : type_names) { 4279 const int type = reduce_name_to_type(name); 4280 if (!type) { 4281 err_str.Printf("unknown kernel type name %s", name.str().c_str()); 4282 return false; 4283 } 4284 m_kernel_types |= type; 4285 } 4286 4287 return true; 4288 } 4289 4290 int m_kernel_types; 4291 llvm::StringRef m_reduce_name; 4292 RSCoordinate m_coord; 4293 bool m_have_coord; 4294 }; 4295 4296 Options *GetOptions() override { return &m_options; } 4297 4298 bool DoExecute(Args &command, CommandReturnObject &result) override { 4299 const size_t argc = command.GetArgumentCount(); 4300 if (argc < 1) { 4301 result.AppendErrorWithFormat("'%s' takes 1 argument of reduction name, " 4302 "and an optional kernel type list", 4303 m_cmd_name.c_str()); 4304 result.SetStatus(eReturnStatusFailed); 4305 return false; 4306 } 4307 4308 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4309 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4310 eLanguageTypeExtRenderScript)); 4311 4312 auto &outstream = result.GetOutputStream(); 4313 auto name = command.GetArgumentAtIndex(0); 4314 auto &target = m_exe_ctx.GetTargetSP(); 4315 auto coord = m_options.m_have_coord ? &m_options.m_coord : nullptr; 4316 if (!runtime->PlaceBreakpointOnReduction(target, outstream, name, coord, 4317 m_options.m_kernel_types)) { 4318 result.SetStatus(eReturnStatusFailed); 4319 result.AppendError("Error: unable to place breakpoint on reduction"); 4320 return false; 4321 } 4322 result.AppendMessage("Breakpoint(s) created"); 4323 result.SetStatus(eReturnStatusSuccessFinishResult); 4324 return true; 4325 } 4326 4327 private: 4328 CommandOptions m_options; 4329 }; 4330 4331 static OptionDefinition g_renderscript_kernel_bp_set_options[] = { 4332 {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument, 4333 nullptr, nullptr, 0, eArgTypeValue, 4334 "Set a breakpoint on a single invocation of the kernel with specified " 4335 "coordinate.\n" 4336 "Coordinate takes the form 'x[,y][,z] where x,y,z are positive " 4337 "integers representing kernel dimensions. " 4338 "Any unset dimensions will be defaulted to zero."}}; 4339 4340 class CommandObjectRenderScriptRuntimeKernelBreakpointSet 4341 : public CommandObjectParsed { 4342 public: 4343 CommandObjectRenderScriptRuntimeKernelBreakpointSet( 4344 CommandInterpreter &interpreter) 4345 : CommandObjectParsed( 4346 interpreter, "renderscript kernel breakpoint set", 4347 "Sets a breakpoint on a renderscript kernel.", 4348 "renderscript kernel breakpoint set <kernel_name> [-c x,y,z]", 4349 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4350 eCommandProcessMustBePaused), 4351 m_options() {} 4352 4353 ~CommandObjectRenderScriptRuntimeKernelBreakpointSet() override = default; 4354 4355 Options *GetOptions() override { return &m_options; } 4356 4357 class CommandOptions : public Options { 4358 public: 4359 CommandOptions() : Options() {} 4360 4361 ~CommandOptions() override = default; 4362 4363 Error SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg, 4364 ExecutionContext *exe_ctx) override { 4365 Error err; 4366 const int short_option = m_getopt_table[option_idx].val; 4367 4368 switch (short_option) { 4369 case 'c': { 4370 auto coord = RSCoordinate{}; 4371 if (!ParseCoordinate(option_arg, coord)) 4372 err.SetErrorStringWithFormat( 4373 "Couldn't parse coordinate '%s', should be in format 'x,y,z'.", 4374 option_arg.str().c_str()); 4375 else { 4376 m_have_coord = true; 4377 m_coord = coord; 4378 } 4379 break; 4380 } 4381 default: 4382 err.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 4383 break; 4384 } 4385 return err; 4386 } 4387 4388 void OptionParsingStarting(ExecutionContext *exe_ctx) override { 4389 m_have_coord = false; 4390 } 4391 4392 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4393 return llvm::makeArrayRef(g_renderscript_kernel_bp_set_options); 4394 } 4395 4396 RSCoordinate m_coord; 4397 bool m_have_coord; 4398 }; 4399 4400 bool DoExecute(Args &command, CommandReturnObject &result) override { 4401 const size_t argc = command.GetArgumentCount(); 4402 if (argc < 1) { 4403 result.AppendErrorWithFormat( 4404 "'%s' takes 1 argument of kernel name, and an optional coordinate.", 4405 m_cmd_name.c_str()); 4406 result.SetStatus(eReturnStatusFailed); 4407 return false; 4408 } 4409 4410 RenderScriptRuntime *runtime = 4411 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4412 eLanguageTypeExtRenderScript); 4413 4414 auto &outstream = result.GetOutputStream(); 4415 auto &target = m_exe_ctx.GetTargetSP(); 4416 auto name = command.GetArgumentAtIndex(0); 4417 auto coord = m_options.m_have_coord ? &m_options.m_coord : nullptr; 4418 if (!runtime->PlaceBreakpointOnKernel(target, outstream, name, coord)) { 4419 result.SetStatus(eReturnStatusFailed); 4420 result.AppendErrorWithFormat( 4421 "Error: unable to set breakpoint on kernel '%s'", name); 4422 return false; 4423 } 4424 4425 result.AppendMessage("Breakpoint(s) created"); 4426 result.SetStatus(eReturnStatusSuccessFinishResult); 4427 return true; 4428 } 4429 4430 private: 4431 CommandOptions m_options; 4432 }; 4433 4434 class CommandObjectRenderScriptRuntimeKernelBreakpointAll 4435 : public CommandObjectParsed { 4436 public: 4437 CommandObjectRenderScriptRuntimeKernelBreakpointAll( 4438 CommandInterpreter &interpreter) 4439 : CommandObjectParsed( 4440 interpreter, "renderscript kernel breakpoint all", 4441 "Automatically sets a breakpoint on all renderscript kernels that " 4442 "are or will be loaded.\n" 4443 "Disabling option means breakpoints will no longer be set on any " 4444 "kernels loaded in the future, " 4445 "but does not remove currently set breakpoints.", 4446 "renderscript kernel breakpoint all <enable/disable>", 4447 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4448 eCommandProcessMustBePaused) {} 4449 4450 ~CommandObjectRenderScriptRuntimeKernelBreakpointAll() override = default; 4451 4452 bool DoExecute(Args &command, CommandReturnObject &result) override { 4453 const size_t argc = command.GetArgumentCount(); 4454 if (argc != 1) { 4455 result.AppendErrorWithFormat( 4456 "'%s' takes 1 argument of 'enable' or 'disable'", m_cmd_name.c_str()); 4457 result.SetStatus(eReturnStatusFailed); 4458 return false; 4459 } 4460 4461 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4462 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4463 eLanguageTypeExtRenderScript)); 4464 4465 bool do_break = false; 4466 const char *argument = command.GetArgumentAtIndex(0); 4467 if (strcmp(argument, "enable") == 0) { 4468 do_break = true; 4469 result.AppendMessage("Breakpoints will be set on all kernels."); 4470 } else if (strcmp(argument, "disable") == 0) { 4471 do_break = false; 4472 result.AppendMessage("Breakpoints will not be set on any new kernels."); 4473 } else { 4474 result.AppendErrorWithFormat( 4475 "Argument must be either 'enable' or 'disable'"); 4476 result.SetStatus(eReturnStatusFailed); 4477 return false; 4478 } 4479 4480 runtime->SetBreakAllKernels(do_break, m_exe_ctx.GetTargetSP()); 4481 4482 result.SetStatus(eReturnStatusSuccessFinishResult); 4483 return true; 4484 } 4485 }; 4486 4487 class CommandObjectRenderScriptRuntimeReductionBreakpoint 4488 : public CommandObjectMultiword { 4489 public: 4490 CommandObjectRenderScriptRuntimeReductionBreakpoint( 4491 CommandInterpreter &interpreter) 4492 : CommandObjectMultiword(interpreter, "renderscript reduction breakpoint", 4493 "Commands that manipulate breakpoints on " 4494 "renderscript general reductions.", 4495 nullptr) { 4496 LoadSubCommand( 4497 "set", CommandObjectSP( 4498 new CommandObjectRenderScriptRuntimeReductionBreakpointSet( 4499 interpreter))); 4500 } 4501 4502 ~CommandObjectRenderScriptRuntimeReductionBreakpoint() override = default; 4503 }; 4504 4505 class CommandObjectRenderScriptRuntimeKernelCoordinate 4506 : public CommandObjectParsed { 4507 public: 4508 CommandObjectRenderScriptRuntimeKernelCoordinate( 4509 CommandInterpreter &interpreter) 4510 : CommandObjectParsed( 4511 interpreter, "renderscript kernel coordinate", 4512 "Shows the (x,y,z) coordinate of the current kernel invocation.", 4513 "renderscript kernel coordinate", 4514 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4515 eCommandProcessMustBePaused) {} 4516 4517 ~CommandObjectRenderScriptRuntimeKernelCoordinate() override = default; 4518 4519 bool DoExecute(Args &command, CommandReturnObject &result) override { 4520 RSCoordinate coord{}; 4521 bool success = RenderScriptRuntime::GetKernelCoordinate( 4522 coord, m_exe_ctx.GetThreadPtr()); 4523 Stream &stream = result.GetOutputStream(); 4524 4525 if (success) { 4526 stream.Printf("Coordinate: " FMT_COORD, coord.x, coord.y, coord.z); 4527 stream.EOL(); 4528 result.SetStatus(eReturnStatusSuccessFinishResult); 4529 } else { 4530 stream.Printf("Error: Coordinate could not be found."); 4531 stream.EOL(); 4532 result.SetStatus(eReturnStatusFailed); 4533 } 4534 return true; 4535 } 4536 }; 4537 4538 class CommandObjectRenderScriptRuntimeKernelBreakpoint 4539 : public CommandObjectMultiword { 4540 public: 4541 CommandObjectRenderScriptRuntimeKernelBreakpoint( 4542 CommandInterpreter &interpreter) 4543 : CommandObjectMultiword( 4544 interpreter, "renderscript kernel", 4545 "Commands that generate breakpoints on renderscript kernels.", 4546 nullptr) { 4547 LoadSubCommand( 4548 "set", 4549 CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointSet( 4550 interpreter))); 4551 LoadSubCommand( 4552 "all", 4553 CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointAll( 4554 interpreter))); 4555 } 4556 4557 ~CommandObjectRenderScriptRuntimeKernelBreakpoint() override = default; 4558 }; 4559 4560 class CommandObjectRenderScriptRuntimeKernel : public CommandObjectMultiword { 4561 public: 4562 CommandObjectRenderScriptRuntimeKernel(CommandInterpreter &interpreter) 4563 : CommandObjectMultiword(interpreter, "renderscript kernel", 4564 "Commands that deal with RenderScript kernels.", 4565 nullptr) { 4566 LoadSubCommand( 4567 "list", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelList( 4568 interpreter))); 4569 LoadSubCommand( 4570 "coordinate", 4571 CommandObjectSP( 4572 new CommandObjectRenderScriptRuntimeKernelCoordinate(interpreter))); 4573 LoadSubCommand( 4574 "breakpoint", 4575 CommandObjectSP( 4576 new CommandObjectRenderScriptRuntimeKernelBreakpoint(interpreter))); 4577 } 4578 4579 ~CommandObjectRenderScriptRuntimeKernel() override = default; 4580 }; 4581 4582 class CommandObjectRenderScriptRuntimeContextDump : public CommandObjectParsed { 4583 public: 4584 CommandObjectRenderScriptRuntimeContextDump(CommandInterpreter &interpreter) 4585 : CommandObjectParsed(interpreter, "renderscript context dump", 4586 "Dumps renderscript context information.", 4587 "renderscript context dump", 4588 eCommandRequiresProcess | 4589 eCommandProcessMustBeLaunched) {} 4590 4591 ~CommandObjectRenderScriptRuntimeContextDump() override = default; 4592 4593 bool DoExecute(Args &command, CommandReturnObject &result) override { 4594 RenderScriptRuntime *runtime = 4595 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4596 eLanguageTypeExtRenderScript); 4597 runtime->DumpContexts(result.GetOutputStream()); 4598 result.SetStatus(eReturnStatusSuccessFinishResult); 4599 return true; 4600 } 4601 }; 4602 4603 static OptionDefinition g_renderscript_runtime_alloc_dump_options[] = { 4604 {LLDB_OPT_SET_1, false, "file", 'f', OptionParser::eRequiredArgument, 4605 nullptr, nullptr, 0, eArgTypeFilename, 4606 "Print results to specified file instead of command line."}}; 4607 4608 class CommandObjectRenderScriptRuntimeContext : public CommandObjectMultiword { 4609 public: 4610 CommandObjectRenderScriptRuntimeContext(CommandInterpreter &interpreter) 4611 : CommandObjectMultiword(interpreter, "renderscript context", 4612 "Commands that deal with RenderScript contexts.", 4613 nullptr) { 4614 LoadSubCommand( 4615 "dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeContextDump( 4616 interpreter))); 4617 } 4618 4619 ~CommandObjectRenderScriptRuntimeContext() override = default; 4620 }; 4621 4622 class CommandObjectRenderScriptRuntimeAllocationDump 4623 : public CommandObjectParsed { 4624 public: 4625 CommandObjectRenderScriptRuntimeAllocationDump( 4626 CommandInterpreter &interpreter) 4627 : CommandObjectParsed(interpreter, "renderscript allocation dump", 4628 "Displays the contents of a particular allocation", 4629 "renderscript allocation dump <ID>", 4630 eCommandRequiresProcess | 4631 eCommandProcessMustBeLaunched), 4632 m_options() {} 4633 4634 ~CommandObjectRenderScriptRuntimeAllocationDump() override = default; 4635 4636 Options *GetOptions() override { return &m_options; } 4637 4638 class CommandOptions : public Options { 4639 public: 4640 CommandOptions() : Options() {} 4641 4642 ~CommandOptions() override = default; 4643 4644 Error SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg, 4645 ExecutionContext *exe_ctx) override { 4646 Error err; 4647 const int short_option = m_getopt_table[option_idx].val; 4648 4649 switch (short_option) { 4650 case 'f': 4651 m_outfile.SetFile(option_arg, true); 4652 if (m_outfile.Exists()) { 4653 m_outfile.Clear(); 4654 err.SetErrorStringWithFormat("file already exists: '%s'", 4655 option_arg.str().c_str()); 4656 } 4657 break; 4658 default: 4659 err.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 4660 break; 4661 } 4662 return err; 4663 } 4664 4665 void OptionParsingStarting(ExecutionContext *exe_ctx) override { 4666 m_outfile.Clear(); 4667 } 4668 4669 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4670 return llvm::makeArrayRef(g_renderscript_runtime_alloc_dump_options); 4671 } 4672 4673 FileSpec m_outfile; 4674 }; 4675 4676 bool DoExecute(Args &command, CommandReturnObject &result) override { 4677 const size_t argc = command.GetArgumentCount(); 4678 if (argc < 1) { 4679 result.AppendErrorWithFormat("'%s' takes 1 argument, an allocation ID. " 4680 "As well as an optional -f argument", 4681 m_cmd_name.c_str()); 4682 result.SetStatus(eReturnStatusFailed); 4683 return false; 4684 } 4685 4686 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4687 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4688 eLanguageTypeExtRenderScript)); 4689 4690 const char *id_cstr = command.GetArgumentAtIndex(0); 4691 bool success = false; 4692 const uint32_t id = 4693 StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success); 4694 if (!success) { 4695 result.AppendErrorWithFormat("invalid allocation id argument '%s'", 4696 id_cstr); 4697 result.SetStatus(eReturnStatusFailed); 4698 return false; 4699 } 4700 4701 Stream *output_strm = nullptr; 4702 StreamFile outfile_stream; 4703 const FileSpec &outfile_spec = 4704 m_options.m_outfile; // Dump allocation to file instead 4705 if (outfile_spec) { 4706 // Open output file 4707 char path[256]; 4708 outfile_spec.GetPath(path, sizeof(path)); 4709 if (outfile_stream.GetFile() 4710 .Open(path, File::eOpenOptionWrite | File::eOpenOptionCanCreate) 4711 .Success()) { 4712 output_strm = &outfile_stream; 4713 result.GetOutputStream().Printf("Results written to '%s'", path); 4714 result.GetOutputStream().EOL(); 4715 } else { 4716 result.AppendErrorWithFormat("Couldn't open file '%s'", path); 4717 result.SetStatus(eReturnStatusFailed); 4718 return false; 4719 } 4720 } else 4721 output_strm = &result.GetOutputStream(); 4722 4723 assert(output_strm != nullptr); 4724 bool dumped = 4725 runtime->DumpAllocation(*output_strm, m_exe_ctx.GetFramePtr(), id); 4726 4727 if (dumped) 4728 result.SetStatus(eReturnStatusSuccessFinishResult); 4729 else 4730 result.SetStatus(eReturnStatusFailed); 4731 4732 return true; 4733 } 4734 4735 private: 4736 CommandOptions m_options; 4737 }; 4738 4739 static OptionDefinition g_renderscript_runtime_alloc_list_options[] = { 4740 {LLDB_OPT_SET_1, false, "id", 'i', OptionParser::eRequiredArgument, nullptr, 4741 nullptr, 0, eArgTypeIndex, 4742 "Only show details of a single allocation with specified id."}}; 4743 4744 class CommandObjectRenderScriptRuntimeAllocationList 4745 : public CommandObjectParsed { 4746 public: 4747 CommandObjectRenderScriptRuntimeAllocationList( 4748 CommandInterpreter &interpreter) 4749 : CommandObjectParsed( 4750 interpreter, "renderscript allocation list", 4751 "List renderscript allocations and their information.", 4752 "renderscript allocation list", 4753 eCommandRequiresProcess | eCommandProcessMustBeLaunched), 4754 m_options() {} 4755 4756 ~CommandObjectRenderScriptRuntimeAllocationList() override = default; 4757 4758 Options *GetOptions() override { return &m_options; } 4759 4760 class CommandOptions : public Options { 4761 public: 4762 CommandOptions() : Options(), m_id(0) {} 4763 4764 ~CommandOptions() override = default; 4765 4766 Error SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg, 4767 ExecutionContext *exe_ctx) override { 4768 Error err; 4769 const int short_option = m_getopt_table[option_idx].val; 4770 4771 switch (short_option) { 4772 case 'i': 4773 if (option_arg.getAsInteger(0, m_id)) 4774 err.SetErrorStringWithFormat("invalid integer value for option '%c'", 4775 short_option); 4776 break; 4777 default: 4778 err.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 4779 break; 4780 } 4781 return err; 4782 } 4783 4784 void OptionParsingStarting(ExecutionContext *exe_ctx) override { m_id = 0; } 4785 4786 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4787 return llvm::makeArrayRef(g_renderscript_runtime_alloc_list_options); 4788 } 4789 4790 uint32_t m_id; 4791 }; 4792 4793 bool DoExecute(Args &command, CommandReturnObject &result) override { 4794 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4795 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4796 eLanguageTypeExtRenderScript)); 4797 runtime->ListAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr(), 4798 m_options.m_id); 4799 result.SetStatus(eReturnStatusSuccessFinishResult); 4800 return true; 4801 } 4802 4803 private: 4804 CommandOptions m_options; 4805 }; 4806 4807 class CommandObjectRenderScriptRuntimeAllocationLoad 4808 : public CommandObjectParsed { 4809 public: 4810 CommandObjectRenderScriptRuntimeAllocationLoad( 4811 CommandInterpreter &interpreter) 4812 : CommandObjectParsed( 4813 interpreter, "renderscript allocation load", 4814 "Loads renderscript allocation contents from a file.", 4815 "renderscript allocation load <ID> <filename>", 4816 eCommandRequiresProcess | eCommandProcessMustBeLaunched) {} 4817 4818 ~CommandObjectRenderScriptRuntimeAllocationLoad() override = default; 4819 4820 bool DoExecute(Args &command, CommandReturnObject &result) override { 4821 const size_t argc = command.GetArgumentCount(); 4822 if (argc != 2) { 4823 result.AppendErrorWithFormat( 4824 "'%s' takes 2 arguments, an allocation ID and filename to read from.", 4825 m_cmd_name.c_str()); 4826 result.SetStatus(eReturnStatusFailed); 4827 return false; 4828 } 4829 4830 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4831 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4832 eLanguageTypeExtRenderScript)); 4833 4834 const char *id_cstr = command.GetArgumentAtIndex(0); 4835 bool success = false; 4836 const uint32_t id = 4837 StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success); 4838 if (!success) { 4839 result.AppendErrorWithFormat("invalid allocation id argument '%s'", 4840 id_cstr); 4841 result.SetStatus(eReturnStatusFailed); 4842 return false; 4843 } 4844 4845 const char *path = command.GetArgumentAtIndex(1); 4846 bool loaded = runtime->LoadAllocation(result.GetOutputStream(), id, path, 4847 m_exe_ctx.GetFramePtr()); 4848 4849 if (loaded) 4850 result.SetStatus(eReturnStatusSuccessFinishResult); 4851 else 4852 result.SetStatus(eReturnStatusFailed); 4853 4854 return true; 4855 } 4856 }; 4857 4858 class CommandObjectRenderScriptRuntimeAllocationSave 4859 : public CommandObjectParsed { 4860 public: 4861 CommandObjectRenderScriptRuntimeAllocationSave( 4862 CommandInterpreter &interpreter) 4863 : CommandObjectParsed(interpreter, "renderscript allocation save", 4864 "Write renderscript allocation contents to a file.", 4865 "renderscript allocation save <ID> <filename>", 4866 eCommandRequiresProcess | 4867 eCommandProcessMustBeLaunched) {} 4868 4869 ~CommandObjectRenderScriptRuntimeAllocationSave() override = default; 4870 4871 bool DoExecute(Args &command, CommandReturnObject &result) override { 4872 const size_t argc = command.GetArgumentCount(); 4873 if (argc != 2) { 4874 result.AppendErrorWithFormat( 4875 "'%s' takes 2 arguments, an allocation ID and filename to read from.", 4876 m_cmd_name.c_str()); 4877 result.SetStatus(eReturnStatusFailed); 4878 return false; 4879 } 4880 4881 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4882 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4883 eLanguageTypeExtRenderScript)); 4884 4885 const char *id_cstr = command.GetArgumentAtIndex(0); 4886 bool success = false; 4887 const uint32_t id = 4888 StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success); 4889 if (!success) { 4890 result.AppendErrorWithFormat("invalid allocation id argument '%s'", 4891 id_cstr); 4892 result.SetStatus(eReturnStatusFailed); 4893 return false; 4894 } 4895 4896 const char *path = command.GetArgumentAtIndex(1); 4897 bool saved = runtime->SaveAllocation(result.GetOutputStream(), id, path, 4898 m_exe_ctx.GetFramePtr()); 4899 4900 if (saved) 4901 result.SetStatus(eReturnStatusSuccessFinishResult); 4902 else 4903 result.SetStatus(eReturnStatusFailed); 4904 4905 return true; 4906 } 4907 }; 4908 4909 class CommandObjectRenderScriptRuntimeAllocationRefresh 4910 : public CommandObjectParsed { 4911 public: 4912 CommandObjectRenderScriptRuntimeAllocationRefresh( 4913 CommandInterpreter &interpreter) 4914 : CommandObjectParsed(interpreter, "renderscript allocation refresh", 4915 "Recomputes the details of all allocations.", 4916 "renderscript allocation refresh", 4917 eCommandRequiresProcess | 4918 eCommandProcessMustBeLaunched) {} 4919 4920 ~CommandObjectRenderScriptRuntimeAllocationRefresh() override = default; 4921 4922 bool DoExecute(Args &command, CommandReturnObject &result) override { 4923 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4924 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4925 eLanguageTypeExtRenderScript)); 4926 4927 bool success = runtime->RecomputeAllAllocations(result.GetOutputStream(), 4928 m_exe_ctx.GetFramePtr()); 4929 4930 if (success) { 4931 result.SetStatus(eReturnStatusSuccessFinishResult); 4932 return true; 4933 } else { 4934 result.SetStatus(eReturnStatusFailed); 4935 return false; 4936 } 4937 } 4938 }; 4939 4940 class CommandObjectRenderScriptRuntimeAllocation 4941 : public CommandObjectMultiword { 4942 public: 4943 CommandObjectRenderScriptRuntimeAllocation(CommandInterpreter &interpreter) 4944 : CommandObjectMultiword( 4945 interpreter, "renderscript allocation", 4946 "Commands that deal with RenderScript allocations.", nullptr) { 4947 LoadSubCommand( 4948 "list", 4949 CommandObjectSP( 4950 new CommandObjectRenderScriptRuntimeAllocationList(interpreter))); 4951 LoadSubCommand( 4952 "dump", 4953 CommandObjectSP( 4954 new CommandObjectRenderScriptRuntimeAllocationDump(interpreter))); 4955 LoadSubCommand( 4956 "save", 4957 CommandObjectSP( 4958 new CommandObjectRenderScriptRuntimeAllocationSave(interpreter))); 4959 LoadSubCommand( 4960 "load", 4961 CommandObjectSP( 4962 new CommandObjectRenderScriptRuntimeAllocationLoad(interpreter))); 4963 LoadSubCommand( 4964 "refresh", 4965 CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationRefresh( 4966 interpreter))); 4967 } 4968 4969 ~CommandObjectRenderScriptRuntimeAllocation() override = default; 4970 }; 4971 4972 class CommandObjectRenderScriptRuntimeStatus : public CommandObjectParsed { 4973 public: 4974 CommandObjectRenderScriptRuntimeStatus(CommandInterpreter &interpreter) 4975 : CommandObjectParsed(interpreter, "renderscript status", 4976 "Displays current RenderScript runtime status.", 4977 "renderscript status", 4978 eCommandRequiresProcess | 4979 eCommandProcessMustBeLaunched) {} 4980 4981 ~CommandObjectRenderScriptRuntimeStatus() override = default; 4982 4983 bool DoExecute(Args &command, CommandReturnObject &result) override { 4984 RenderScriptRuntime *runtime = 4985 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4986 eLanguageTypeExtRenderScript); 4987 runtime->Status(result.GetOutputStream()); 4988 result.SetStatus(eReturnStatusSuccessFinishResult); 4989 return true; 4990 } 4991 }; 4992 4993 class CommandObjectRenderScriptRuntimeReduction 4994 : public CommandObjectMultiword { 4995 public: 4996 CommandObjectRenderScriptRuntimeReduction(CommandInterpreter &interpreter) 4997 : CommandObjectMultiword(interpreter, "renderscript reduction", 4998 "Commands that handle general reduction kernels", 4999 nullptr) { 5000 LoadSubCommand( 5001 "breakpoint", 5002 CommandObjectSP(new CommandObjectRenderScriptRuntimeReductionBreakpoint( 5003 interpreter))); 5004 } 5005 ~CommandObjectRenderScriptRuntimeReduction() override = default; 5006 }; 5007 5008 class CommandObjectRenderScriptRuntime : public CommandObjectMultiword { 5009 public: 5010 CommandObjectRenderScriptRuntime(CommandInterpreter &interpreter) 5011 : CommandObjectMultiword( 5012 interpreter, "renderscript", 5013 "Commands for operating on the RenderScript runtime.", 5014 "renderscript <subcommand> [<subcommand-options>]") { 5015 LoadSubCommand( 5016 "module", CommandObjectSP( 5017 new CommandObjectRenderScriptRuntimeModule(interpreter))); 5018 LoadSubCommand( 5019 "status", CommandObjectSP( 5020 new CommandObjectRenderScriptRuntimeStatus(interpreter))); 5021 LoadSubCommand( 5022 "kernel", CommandObjectSP( 5023 new CommandObjectRenderScriptRuntimeKernel(interpreter))); 5024 LoadSubCommand("context", 5025 CommandObjectSP(new CommandObjectRenderScriptRuntimeContext( 5026 interpreter))); 5027 LoadSubCommand( 5028 "allocation", 5029 CommandObjectSP( 5030 new CommandObjectRenderScriptRuntimeAllocation(interpreter))); 5031 LoadSubCommand("scriptgroup", 5032 NewCommandObjectRenderScriptScriptGroup(interpreter)); 5033 LoadSubCommand( 5034 "reduction", 5035 CommandObjectSP( 5036 new CommandObjectRenderScriptRuntimeReduction(interpreter))); 5037 } 5038 5039 ~CommandObjectRenderScriptRuntime() override = default; 5040 }; 5041 5042 void RenderScriptRuntime::Initiate() { assert(!m_initiated); } 5043 5044 RenderScriptRuntime::RenderScriptRuntime(Process *process) 5045 : lldb_private::CPPLanguageRuntime(process), m_initiated(false), 5046 m_debuggerPresentFlagged(false), m_breakAllKernels(false), 5047 m_ir_passes(nullptr) { 5048 ModulesDidLoad(process->GetTarget().GetImages()); 5049 } 5050 5051 lldb::CommandObjectSP RenderScriptRuntime::GetCommandObject( 5052 lldb_private::CommandInterpreter &interpreter) { 5053 return CommandObjectSP(new CommandObjectRenderScriptRuntime(interpreter)); 5054 } 5055 5056 RenderScriptRuntime::~RenderScriptRuntime() = default; 5057