1 //===-- RenderScriptRuntime.cpp -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "RenderScriptRuntime.h"
10 #include "RenderScriptScriptGroup.h"
11 
12 #include "lldb/Breakpoint/StoppointCallbackContext.h"
13 #include "lldb/Core/Debugger.h"
14 #include "lldb/Core/DumpDataExtractor.h"
15 #include "lldb/Core/PluginManager.h"
16 #include "lldb/Core/ValueObjectVariable.h"
17 #include "lldb/DataFormatters/DumpValueObjectOptions.h"
18 #include "lldb/Expression/UserExpression.h"
19 #include "lldb/Host/OptionParser.h"
20 #include "lldb/Interpreter/CommandInterpreter.h"
21 #include "lldb/Interpreter/CommandObjectMultiword.h"
22 #include "lldb/Interpreter/CommandReturnObject.h"
23 #include "lldb/Interpreter/Options.h"
24 #include "lldb/Symbol/Function.h"
25 #include "lldb/Symbol/Symbol.h"
26 #include "lldb/Symbol/Type.h"
27 #include "lldb/Symbol/VariableList.h"
28 #include "lldb/Target/Process.h"
29 #include "lldb/Target/RegisterContext.h"
30 #include "lldb/Target/SectionLoadList.h"
31 #include "lldb/Target/Target.h"
32 #include "lldb/Target/Thread.h"
33 #include "lldb/Utility/Args.h"
34 #include "lldb/Utility/ConstString.h"
35 #include "lldb/Utility/Log.h"
36 #include "lldb/Utility/RegisterValue.h"
37 #include "lldb/Utility/RegularExpression.h"
38 #include "lldb/Utility/Status.h"
39 
40 #include "llvm/ADT/StringSwitch.h"
41 
42 #include <memory>
43 
44 using namespace lldb;
45 using namespace lldb_private;
46 using namespace lldb_renderscript;
47 
48 LLDB_PLUGIN_DEFINE(RenderScriptRuntime)
49 
50 #define FMT_COORD "(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ")"
51 
52 char RenderScriptRuntime::ID = 0;
53 
54 namespace {
55 
56 // The empirical_type adds a basic level of validation to arbitrary data
57 // allowing us to track if data has been discovered and stored or not. An
58 // empirical_type will be marked as valid only if it has been explicitly
59 // assigned to.
60 template <typename type_t> class empirical_type {
61 public:
62   // Ctor. Contents is invalid when constructed.
63   empirical_type() = default;
64 
65   // Return true and copy contents to out if valid, else return false.
66   bool get(type_t &out) const {
67     if (valid)
68       out = data;
69     return valid;
70   }
71 
72   // Return a pointer to the contents or nullptr if it was not valid.
73   const type_t *get() const { return valid ? &data : nullptr; }
74 
75   // Assign data explicitly.
76   void set(const type_t in) {
77     data = in;
78     valid = true;
79   }
80 
81   // Mark contents as invalid.
82   void invalidate() { valid = false; }
83 
84   // Returns true if this type contains valid data.
85   bool isValid() const { return valid; }
86 
87   // Assignment operator.
88   empirical_type<type_t> &operator=(const type_t in) {
89     set(in);
90     return *this;
91   }
92 
93   // Dereference operator returns contents.
94   // Warning: Will assert if not valid so use only when you know data is valid.
95   const type_t &operator*() const {
96     assert(valid);
97     return data;
98   }
99 
100 protected:
101   bool valid = false;
102   type_t data;
103 };
104 
105 // ArgItem is used by the GetArgs() function when reading function arguments
106 // from the target.
107 struct ArgItem {
108   enum { ePointer, eInt32, eInt64, eLong, eBool } type;
109 
110   uint64_t value;
111 
112   explicit operator uint64_t() const { return value; }
113 };
114 
115 // Context structure to be passed into GetArgsXXX(), argument reading functions
116 // below.
117 struct GetArgsCtx {
118   RegisterContext *reg_ctx;
119   Process *process;
120 };
121 
122 bool GetArgsX86(const GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
123   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
124 
125   Status err;
126 
127   // get the current stack pointer
128   uint64_t sp = ctx.reg_ctx->GetSP();
129 
130   for (size_t i = 0; i < num_args; ++i) {
131     ArgItem &arg = arg_list[i];
132     // advance up the stack by one argument
133     sp += sizeof(uint32_t);
134     // get the argument type size
135     size_t arg_size = sizeof(uint32_t);
136     // read the argument from memory
137     arg.value = 0;
138     Status err;
139     size_t read =
140         ctx.process->ReadMemory(sp, &arg.value, sizeof(uint32_t), err);
141     if (read != arg_size || !err.Success()) {
142       LLDB_LOGF(log, "%s - error reading argument: %" PRIu64 " '%s'",
143                 __FUNCTION__, uint64_t(i), err.AsCString());
144       return false;
145     }
146   }
147   return true;
148 }
149 
150 bool GetArgsX86_64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
151   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
152 
153   // number of arguments passed in registers
154   static const uint32_t args_in_reg = 6;
155   // register passing order
156   static const std::array<const char *, args_in_reg> reg_names{
157       {"rdi", "rsi", "rdx", "rcx", "r8", "r9"}};
158   // argument type to size mapping
159   static const std::array<size_t, 5> arg_size{{
160       8, // ePointer,
161       4, // eInt32,
162       8, // eInt64,
163       8, // eLong,
164       4, // eBool,
165   }};
166 
167   Status err;
168 
169   // get the current stack pointer
170   uint64_t sp = ctx.reg_ctx->GetSP();
171   // step over the return address
172   sp += sizeof(uint64_t);
173 
174   // check the stack alignment was correct (16 byte aligned)
175   if ((sp & 0xf) != 0x0) {
176     LLDB_LOGF(log, "%s - stack misaligned", __FUNCTION__);
177     return false;
178   }
179 
180   // find the start of arguments on the stack
181   uint64_t sp_offset = 0;
182   for (uint32_t i = args_in_reg; i < num_args; ++i) {
183     sp_offset += arg_size[arg_list[i].type];
184   }
185   // round up to multiple of 16
186   sp_offset = (sp_offset + 0xf) & 0xf;
187   sp += sp_offset;
188 
189   for (size_t i = 0; i < num_args; ++i) {
190     bool success = false;
191     ArgItem &arg = arg_list[i];
192     // arguments passed in registers
193     if (i < args_in_reg) {
194       const RegisterInfo *reg =
195           ctx.reg_ctx->GetRegisterInfoByName(reg_names[i]);
196       RegisterValue reg_val;
197       if (ctx.reg_ctx->ReadRegister(reg, reg_val))
198         arg.value = reg_val.GetAsUInt64(0, &success);
199     }
200     // arguments passed on the stack
201     else {
202       // get the argument type size
203       const size_t size = arg_size[arg_list[i].type];
204       // read the argument from memory
205       arg.value = 0;
206       // note: due to little endian layout reading 4 or 8 bytes will give the
207       // correct value.
208       size_t read = ctx.process->ReadMemory(sp, &arg.value, size, err);
209       success = (err.Success() && read == size);
210       // advance past this argument
211       sp -= size;
212     }
213     // fail if we couldn't read this argument
214     if (!success) {
215       LLDB_LOGF(log, "%s - error reading argument: %" PRIu64 ", reason: %s",
216                 __FUNCTION__, uint64_t(i), err.AsCString("n/a"));
217       return false;
218     }
219   }
220   return true;
221 }
222 
223 bool GetArgsArm(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
224   // number of arguments passed in registers
225   static const uint32_t args_in_reg = 4;
226 
227   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
228 
229   Status err;
230 
231   // get the current stack pointer
232   uint64_t sp = ctx.reg_ctx->GetSP();
233 
234   for (size_t i = 0; i < num_args; ++i) {
235     bool success = false;
236     ArgItem &arg = arg_list[i];
237     // arguments passed in registers
238     if (i < args_in_reg) {
239       const RegisterInfo *reg = ctx.reg_ctx->GetRegisterInfoAtIndex(i);
240       RegisterValue reg_val;
241       if (ctx.reg_ctx->ReadRegister(reg, reg_val))
242         arg.value = reg_val.GetAsUInt32(0, &success);
243     }
244     // arguments passed on the stack
245     else {
246       // get the argument type size
247       const size_t arg_size = sizeof(uint32_t);
248       // clear all 64bits
249       arg.value = 0;
250       // read this argument from memory
251       size_t bytes_read =
252           ctx.process->ReadMemory(sp, &arg.value, arg_size, err);
253       success = (err.Success() && bytes_read == arg_size);
254       // advance the stack pointer
255       sp += sizeof(uint32_t);
256     }
257     // fail if we couldn't read this argument
258     if (!success) {
259       LLDB_LOGF(log, "%s - error reading argument: %" PRIu64 ", reason: %s",
260                 __FUNCTION__, uint64_t(i), err.AsCString("n/a"));
261       return false;
262     }
263   }
264   return true;
265 }
266 
267 bool GetArgsAarch64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
268   // number of arguments passed in registers
269   static const uint32_t args_in_reg = 8;
270 
271   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
272 
273   for (size_t i = 0; i < num_args; ++i) {
274     bool success = false;
275     ArgItem &arg = arg_list[i];
276     // arguments passed in registers
277     if (i < args_in_reg) {
278       const RegisterInfo *reg = ctx.reg_ctx->GetRegisterInfoAtIndex(i);
279       RegisterValue reg_val;
280       if (ctx.reg_ctx->ReadRegister(reg, reg_val))
281         arg.value = reg_val.GetAsUInt64(0, &success);
282     }
283     // arguments passed on the stack
284     else {
285       LLDB_LOGF(log, "%s - reading arguments spilled to stack not implemented",
286                 __FUNCTION__);
287     }
288     // fail if we couldn't read this argument
289     if (!success) {
290       LLDB_LOGF(log, "%s - error reading argument: %" PRIu64, __FUNCTION__,
291                 uint64_t(i));
292       return false;
293     }
294   }
295   return true;
296 }
297 
298 bool GetArgsMipsel(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
299   // number of arguments passed in registers
300   static const uint32_t args_in_reg = 4;
301   // register file offset to first argument
302   static const uint32_t reg_offset = 4;
303 
304   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
305 
306   Status err;
307 
308   // find offset to arguments on the stack (+16 to skip over a0-a3 shadow
309   // space)
310   uint64_t sp = ctx.reg_ctx->GetSP() + 16;
311 
312   for (size_t i = 0; i < num_args; ++i) {
313     bool success = false;
314     ArgItem &arg = arg_list[i];
315     // arguments passed in registers
316     if (i < args_in_reg) {
317       const RegisterInfo *reg =
318           ctx.reg_ctx->GetRegisterInfoAtIndex(i + reg_offset);
319       RegisterValue reg_val;
320       if (ctx.reg_ctx->ReadRegister(reg, reg_val))
321         arg.value = reg_val.GetAsUInt64(0, &success);
322     }
323     // arguments passed on the stack
324     else {
325       const size_t arg_size = sizeof(uint32_t);
326       arg.value = 0;
327       size_t bytes_read =
328           ctx.process->ReadMemory(sp, &arg.value, arg_size, err);
329       success = (err.Success() && bytes_read == arg_size);
330       // advance the stack pointer
331       sp += arg_size;
332     }
333     // fail if we couldn't read this argument
334     if (!success) {
335       LLDB_LOGF(log, "%s - error reading argument: %" PRIu64 ", reason: %s",
336                 __FUNCTION__, uint64_t(i), err.AsCString("n/a"));
337       return false;
338     }
339   }
340   return true;
341 }
342 
343 bool GetArgsMips64el(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
344   // number of arguments passed in registers
345   static const uint32_t args_in_reg = 8;
346   // register file offset to first argument
347   static const uint32_t reg_offset = 4;
348 
349   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
350 
351   Status err;
352 
353   // get the current stack pointer
354   uint64_t sp = ctx.reg_ctx->GetSP();
355 
356   for (size_t i = 0; i < num_args; ++i) {
357     bool success = false;
358     ArgItem &arg = arg_list[i];
359     // arguments passed in registers
360     if (i < args_in_reg) {
361       const RegisterInfo *reg =
362           ctx.reg_ctx->GetRegisterInfoAtIndex(i + reg_offset);
363       RegisterValue reg_val;
364       if (ctx.reg_ctx->ReadRegister(reg, reg_val))
365         arg.value = reg_val.GetAsUInt64(0, &success);
366     }
367     // arguments passed on the stack
368     else {
369       // get the argument type size
370       const size_t arg_size = sizeof(uint64_t);
371       // clear all 64bits
372       arg.value = 0;
373       // read this argument from memory
374       size_t bytes_read =
375           ctx.process->ReadMemory(sp, &arg.value, arg_size, err);
376       success = (err.Success() && bytes_read == arg_size);
377       // advance the stack pointer
378       sp += arg_size;
379     }
380     // fail if we couldn't read this argument
381     if (!success) {
382       LLDB_LOGF(log, "%s - error reading argument: %" PRIu64 ", reason: %s",
383                 __FUNCTION__, uint64_t(i), err.AsCString("n/a"));
384       return false;
385     }
386   }
387   return true;
388 }
389 
390 bool GetArgs(ExecutionContext &exe_ctx, ArgItem *arg_list, size_t num_args) {
391   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
392 
393   // verify that we have a target
394   if (!exe_ctx.GetTargetPtr()) {
395     LLDB_LOGF(log, "%s - invalid target", __FUNCTION__);
396     return false;
397   }
398 
399   GetArgsCtx ctx = {exe_ctx.GetRegisterContext(), exe_ctx.GetProcessPtr()};
400   assert(ctx.reg_ctx && ctx.process);
401 
402   // dispatch based on architecture
403   switch (exe_ctx.GetTargetPtr()->GetArchitecture().GetMachine()) {
404   case llvm::Triple::ArchType::x86:
405     return GetArgsX86(ctx, arg_list, num_args);
406 
407   case llvm::Triple::ArchType::x86_64:
408     return GetArgsX86_64(ctx, arg_list, num_args);
409 
410   case llvm::Triple::ArchType::arm:
411     return GetArgsArm(ctx, arg_list, num_args);
412 
413   case llvm::Triple::ArchType::aarch64:
414     return GetArgsAarch64(ctx, arg_list, num_args);
415 
416   case llvm::Triple::ArchType::mipsel:
417     return GetArgsMipsel(ctx, arg_list, num_args);
418 
419   case llvm::Triple::ArchType::mips64el:
420     return GetArgsMips64el(ctx, arg_list, num_args);
421 
422   default:
423     // unsupported architecture
424     if (log) {
425       LLDB_LOGF(log, "%s - architecture not supported: '%s'", __FUNCTION__,
426                 exe_ctx.GetTargetRef().GetArchitecture().GetArchitectureName());
427     }
428     return false;
429   }
430 }
431 
432 bool IsRenderScriptScriptModule(ModuleSP module) {
433   if (!module)
434     return false;
435   return module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"),
436                                                 eSymbolTypeData) != nullptr;
437 }
438 
439 bool ParseCoordinate(llvm::StringRef coord_s, RSCoordinate &coord) {
440   // takes an argument of the form 'num[,num][,num]'. Where 'coord_s' is a
441   // comma separated 1,2 or 3-dimensional coordinate with the whitespace
442   // trimmed. Missing coordinates are defaulted to zero. If parsing of any
443   // elements fails the contents of &coord are undefined and `false` is
444   // returned, `true` otherwise
445 
446   llvm::SmallVector<llvm::StringRef, 4> matches;
447 
448   if (!RegularExpression("^([0-9]+),([0-9]+),([0-9]+)$")
449            .Execute(coord_s, &matches) &&
450       !RegularExpression("^([0-9]+),([0-9]+)$").Execute(coord_s, &matches) &&
451       !RegularExpression("^([0-9]+)$").Execute(coord_s, &matches))
452     return false;
453 
454   auto get_index = [&](size_t idx, uint32_t &i) -> bool {
455     std::string group;
456     errno = 0;
457     if (idx + 1 < matches.size()) {
458       return !llvm::StringRef(matches[idx + 1]).getAsInteger<uint32_t>(10, i);
459     }
460     return true;
461   };
462 
463   return get_index(0, coord.x) && get_index(1, coord.y) &&
464          get_index(2, coord.z);
465 }
466 
467 bool SkipPrologue(lldb::ModuleSP &module, Address &addr) {
468   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
469   SymbolContext sc;
470   uint32_t resolved_flags =
471       module->ResolveSymbolContextForAddress(addr, eSymbolContextFunction, sc);
472   if (resolved_flags & eSymbolContextFunction) {
473     if (sc.function) {
474       const uint32_t offset = sc.function->GetPrologueByteSize();
475       ConstString name = sc.GetFunctionName();
476       if (offset)
477         addr.Slide(offset);
478       LLDB_LOGF(log, "%s: Prologue offset for %s is %" PRIu32, __FUNCTION__,
479                 name.AsCString(), offset);
480     }
481     return true;
482   } else
483     return false;
484 }
485 } // anonymous namespace
486 
487 // The ScriptDetails class collects data associated with a single script
488 // instance.
489 struct RenderScriptRuntime::ScriptDetails {
490   ~ScriptDetails() = default;
491 
492   enum ScriptType { eScript, eScriptC };
493 
494   // The derived type of the script.
495   empirical_type<ScriptType> type;
496   // The name of the original source file.
497   empirical_type<std::string> res_name;
498   // Path to script .so file on the device.
499   empirical_type<std::string> shared_lib;
500   // Directory where kernel objects are cached on device.
501   empirical_type<std::string> cache_dir;
502   // Pointer to the context which owns this script.
503   empirical_type<lldb::addr_t> context;
504   // Pointer to the script object itself.
505   empirical_type<lldb::addr_t> script;
506 };
507 
508 // This Element class represents the Element object in RS, defining the type
509 // associated with an Allocation.
510 struct RenderScriptRuntime::Element {
511   // Taken from rsDefines.h
512   enum DataKind {
513     RS_KIND_USER,
514     RS_KIND_PIXEL_L = 7,
515     RS_KIND_PIXEL_A,
516     RS_KIND_PIXEL_LA,
517     RS_KIND_PIXEL_RGB,
518     RS_KIND_PIXEL_RGBA,
519     RS_KIND_PIXEL_DEPTH,
520     RS_KIND_PIXEL_YUV,
521     RS_KIND_INVALID = 100
522   };
523 
524   // Taken from rsDefines.h
525   enum DataType {
526     RS_TYPE_NONE = 0,
527     RS_TYPE_FLOAT_16,
528     RS_TYPE_FLOAT_32,
529     RS_TYPE_FLOAT_64,
530     RS_TYPE_SIGNED_8,
531     RS_TYPE_SIGNED_16,
532     RS_TYPE_SIGNED_32,
533     RS_TYPE_SIGNED_64,
534     RS_TYPE_UNSIGNED_8,
535     RS_TYPE_UNSIGNED_16,
536     RS_TYPE_UNSIGNED_32,
537     RS_TYPE_UNSIGNED_64,
538     RS_TYPE_BOOLEAN,
539 
540     RS_TYPE_UNSIGNED_5_6_5,
541     RS_TYPE_UNSIGNED_5_5_5_1,
542     RS_TYPE_UNSIGNED_4_4_4_4,
543 
544     RS_TYPE_MATRIX_4X4,
545     RS_TYPE_MATRIX_3X3,
546     RS_TYPE_MATRIX_2X2,
547 
548     RS_TYPE_ELEMENT = 1000,
549     RS_TYPE_TYPE,
550     RS_TYPE_ALLOCATION,
551     RS_TYPE_SAMPLER,
552     RS_TYPE_SCRIPT,
553     RS_TYPE_MESH,
554     RS_TYPE_PROGRAM_FRAGMENT,
555     RS_TYPE_PROGRAM_VERTEX,
556     RS_TYPE_PROGRAM_RASTER,
557     RS_TYPE_PROGRAM_STORE,
558     RS_TYPE_FONT,
559 
560     RS_TYPE_INVALID = 10000
561   };
562 
563   std::vector<Element> children; // Child Element fields for structs
564   empirical_type<lldb::addr_t>
565       element_ptr; // Pointer to the RS Element of the Type
566   empirical_type<DataType>
567       type; // Type of each data pointer stored by the allocation
568   empirical_type<DataKind>
569       type_kind; // Defines pixel type if Allocation is created from an image
570   empirical_type<uint32_t>
571       type_vec_size; // Vector size of each data point, e.g '4' for uchar4
572   empirical_type<uint32_t> field_count; // Number of Subelements
573   empirical_type<uint32_t> datum_size;  // Size of a single Element with padding
574   empirical_type<uint32_t> padding;     // Number of padding bytes
575   empirical_type<uint32_t>
576       array_size;        // Number of items in array, only needed for structs
577   ConstString type_name; // Name of type, only needed for structs
578 
579   static ConstString
580   GetFallbackStructName(); // Print this as the type name of a struct Element
581                            // If we can't resolve the actual struct name
582 
583   bool ShouldRefresh() const {
584     const bool valid_ptr = element_ptr.isValid() && *element_ptr.get() != 0x0;
585     const bool valid_type =
586         type.isValid() && type_vec_size.isValid() && type_kind.isValid();
587     return !valid_ptr || !valid_type || !datum_size.isValid();
588   }
589 };
590 
591 // This AllocationDetails class collects data associated with a single
592 // allocation instance.
593 struct RenderScriptRuntime::AllocationDetails {
594   struct Dimension {
595     uint32_t dim_1;
596     uint32_t dim_2;
597     uint32_t dim_3;
598     uint32_t cube_map;
599 
600     Dimension() {
601       dim_1 = 0;
602       dim_2 = 0;
603       dim_3 = 0;
604       cube_map = 0;
605     }
606   };
607 
608   // The FileHeader struct specifies the header we use for writing allocations
609   // to a binary file. Our format begins with the ASCII characters "RSAD",
610   // identifying the file as an allocation dump. Member variables dims and
611   // hdr_size are then written consecutively, immediately followed by an
612   // instance of the ElementHeader struct. Because Elements can contain
613   // subelements, there may be more than one instance of the ElementHeader
614   // struct. With this first instance being the root element, and the other
615   // instances being the root's descendants. To identify which instances are an
616   // ElementHeader's children, each struct is immediately followed by a
617   // sequence of consecutive offsets to the start of its child structs. These
618   // offsets are
619   // 4 bytes in size, and the 0 offset signifies no more children.
620   struct FileHeader {
621     uint8_t ident[4];  // ASCII 'RSAD' identifying the file
622     uint32_t dims[3];  // Dimensions
623     uint16_t hdr_size; // Header size in bytes, including all element headers
624   };
625 
626   struct ElementHeader {
627     uint16_t type;         // DataType enum
628     uint32_t kind;         // DataKind enum
629     uint32_t element_size; // Size of a single element, including padding
630     uint16_t vector_size;  // Vector width
631     uint32_t array_size;   // Number of elements in array
632   };
633 
634   // Monotonically increasing from 1
635   static uint32_t ID;
636 
637   // Maps Allocation DataType enum and vector size to printable strings using
638   // mapping from RenderScript numerical types summary documentation
639   static const char *RsDataTypeToString[][4];
640 
641   // Maps Allocation DataKind enum to printable strings
642   static const char *RsDataKindToString[];
643 
644   // Maps allocation types to format sizes for printing.
645   static const uint32_t RSTypeToFormat[][3];
646 
647   // Give each allocation an ID as a way
648   // for commands to reference it.
649   const uint32_t id;
650 
651   // Allocation Element type
652   RenderScriptRuntime::Element element;
653   // Dimensions of the Allocation
654   empirical_type<Dimension> dimension;
655   // Pointer to address of the RS Allocation
656   empirical_type<lldb::addr_t> address;
657   // Pointer to the data held by the Allocation
658   empirical_type<lldb::addr_t> data_ptr;
659   // Pointer to the RS Type of the Allocation
660   empirical_type<lldb::addr_t> type_ptr;
661   // Pointer to the RS Context of the Allocation
662   empirical_type<lldb::addr_t> context;
663   // Size of the allocation
664   empirical_type<uint32_t> size;
665   // Stride between rows of the allocation
666   empirical_type<uint32_t> stride;
667 
668   // Give each allocation an id, so we can reference it in user commands.
669   AllocationDetails() : id(ID++) {}
670 
671   bool ShouldRefresh() const {
672     bool valid_ptrs = data_ptr.isValid() && *data_ptr.get() != 0x0;
673     valid_ptrs = valid_ptrs && type_ptr.isValid() && *type_ptr.get() != 0x0;
674     return !valid_ptrs || !dimension.isValid() || !size.isValid() ||
675            element.ShouldRefresh();
676   }
677 };
678 
679 ConstString RenderScriptRuntime::Element::GetFallbackStructName() {
680   static const ConstString FallbackStructName("struct");
681   return FallbackStructName;
682 }
683 
684 uint32_t RenderScriptRuntime::AllocationDetails::ID = 1;
685 
686 const char *RenderScriptRuntime::AllocationDetails::RsDataKindToString[] = {
687     "User",       "Undefined",   "Undefined", "Undefined",
688     "Undefined",  "Undefined",   "Undefined", // Enum jumps from 0 to 7
689     "L Pixel",    "A Pixel",     "LA Pixel",  "RGB Pixel",
690     "RGBA Pixel", "Pixel Depth", "YUV Pixel"};
691 
692 const char *RenderScriptRuntime::AllocationDetails::RsDataTypeToString[][4] = {
693     {"None", "None", "None", "None"},
694     {"half", "half2", "half3", "half4"},
695     {"float", "float2", "float3", "float4"},
696     {"double", "double2", "double3", "double4"},
697     {"char", "char2", "char3", "char4"},
698     {"short", "short2", "short3", "short4"},
699     {"int", "int2", "int3", "int4"},
700     {"long", "long2", "long3", "long4"},
701     {"uchar", "uchar2", "uchar3", "uchar4"},
702     {"ushort", "ushort2", "ushort3", "ushort4"},
703     {"uint", "uint2", "uint3", "uint4"},
704     {"ulong", "ulong2", "ulong3", "ulong4"},
705     {"bool", "bool2", "bool3", "bool4"},
706     {"packed_565", "packed_565", "packed_565", "packed_565"},
707     {"packed_5551", "packed_5551", "packed_5551", "packed_5551"},
708     {"packed_4444", "packed_4444", "packed_4444", "packed_4444"},
709     {"rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4"},
710     {"rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3"},
711     {"rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2"},
712 
713     // Handlers
714     {"RS Element", "RS Element", "RS Element", "RS Element"},
715     {"RS Type", "RS Type", "RS Type", "RS Type"},
716     {"RS Allocation", "RS Allocation", "RS Allocation", "RS Allocation"},
717     {"RS Sampler", "RS Sampler", "RS Sampler", "RS Sampler"},
718     {"RS Script", "RS Script", "RS Script", "RS Script"},
719 
720     // Deprecated
721     {"RS Mesh", "RS Mesh", "RS Mesh", "RS Mesh"},
722     {"RS Program Fragment", "RS Program Fragment", "RS Program Fragment",
723      "RS Program Fragment"},
724     {"RS Program Vertex", "RS Program Vertex", "RS Program Vertex",
725      "RS Program Vertex"},
726     {"RS Program Raster", "RS Program Raster", "RS Program Raster",
727      "RS Program Raster"},
728     {"RS Program Store", "RS Program Store", "RS Program Store",
729      "RS Program Store"},
730     {"RS Font", "RS Font", "RS Font", "RS Font"}};
731 
732 // Used as an index into the RSTypeToFormat array elements
733 enum TypeToFormatIndex { eFormatSingle = 0, eFormatVector, eElementSize };
734 
735 // { format enum of single element, format enum of element vector, size of
736 // element}
737 const uint32_t RenderScriptRuntime::AllocationDetails::RSTypeToFormat[][3] = {
738     // RS_TYPE_NONE
739     {eFormatHex, eFormatHex, 1},
740     // RS_TYPE_FLOAT_16
741     {eFormatFloat, eFormatVectorOfFloat16, 2},
742     // RS_TYPE_FLOAT_32
743     {eFormatFloat, eFormatVectorOfFloat32, sizeof(float)},
744     // RS_TYPE_FLOAT_64
745     {eFormatFloat, eFormatVectorOfFloat64, sizeof(double)},
746     // RS_TYPE_SIGNED_8
747     {eFormatDecimal, eFormatVectorOfSInt8, sizeof(int8_t)},
748     // RS_TYPE_SIGNED_16
749     {eFormatDecimal, eFormatVectorOfSInt16, sizeof(int16_t)},
750     // RS_TYPE_SIGNED_32
751     {eFormatDecimal, eFormatVectorOfSInt32, sizeof(int32_t)},
752     // RS_TYPE_SIGNED_64
753     {eFormatDecimal, eFormatVectorOfSInt64, sizeof(int64_t)},
754     // RS_TYPE_UNSIGNED_8
755     {eFormatDecimal, eFormatVectorOfUInt8, sizeof(uint8_t)},
756     // RS_TYPE_UNSIGNED_16
757     {eFormatDecimal, eFormatVectorOfUInt16, sizeof(uint16_t)},
758     // RS_TYPE_UNSIGNED_32
759     {eFormatDecimal, eFormatVectorOfUInt32, sizeof(uint32_t)},
760     // RS_TYPE_UNSIGNED_64
761     {eFormatDecimal, eFormatVectorOfUInt64, sizeof(uint64_t)},
762     // RS_TYPE_BOOL
763     {eFormatBoolean, eFormatBoolean, 1},
764     // RS_TYPE_UNSIGNED_5_6_5
765     {eFormatHex, eFormatHex, sizeof(uint16_t)},
766     // RS_TYPE_UNSIGNED_5_5_5_1
767     {eFormatHex, eFormatHex, sizeof(uint16_t)},
768     // RS_TYPE_UNSIGNED_4_4_4_4
769     {eFormatHex, eFormatHex, sizeof(uint16_t)},
770     // RS_TYPE_MATRIX_4X4
771     {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 16},
772     // RS_TYPE_MATRIX_3X3
773     {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 9},
774     // RS_TYPE_MATRIX_2X2
775     {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 4}};
776 
777 // Static Functions
778 LanguageRuntime *
779 RenderScriptRuntime::CreateInstance(Process *process,
780                                     lldb::LanguageType language) {
781 
782   if (language == eLanguageTypeExtRenderScript)
783     return new RenderScriptRuntime(process);
784   else
785     return nullptr;
786 }
787 
788 // Callback with a module to search for matching symbols. We first check that
789 // the module contains RS kernels. Then look for a symbol which matches our
790 // kernel name. The breakpoint address is finally set using the address of this
791 // symbol.
792 Searcher::CallbackReturn
793 RSBreakpointResolver::SearchCallback(SearchFilter &filter,
794                                      SymbolContext &context, Address *) {
795   BreakpointSP breakpoint_sp = GetBreakpoint();
796   assert(breakpoint_sp);
797 
798   ModuleSP module = context.module_sp;
799 
800   if (!module || !IsRenderScriptScriptModule(module))
801     return Searcher::eCallbackReturnContinue;
802 
803   // Attempt to set a breakpoint on the kernel name symbol within the module
804   // library. If it's not found, it's likely debug info is unavailable - try to
805   // set a breakpoint on <name>.expand.
806   const Symbol *kernel_sym =
807       module->FindFirstSymbolWithNameAndType(m_kernel_name, eSymbolTypeCode);
808   if (!kernel_sym) {
809     std::string kernel_name_expanded(m_kernel_name.AsCString());
810     kernel_name_expanded.append(".expand");
811     kernel_sym = module->FindFirstSymbolWithNameAndType(
812         ConstString(kernel_name_expanded.c_str()), eSymbolTypeCode);
813   }
814 
815   if (kernel_sym) {
816     Address bp_addr = kernel_sym->GetAddress();
817     if (filter.AddressPasses(bp_addr))
818       breakpoint_sp->AddLocation(bp_addr);
819   }
820 
821   return Searcher::eCallbackReturnContinue;
822 }
823 
824 Searcher::CallbackReturn
825 RSReduceBreakpointResolver::SearchCallback(lldb_private::SearchFilter &filter,
826                                            lldb_private::SymbolContext &context,
827                                            Address *) {
828   BreakpointSP breakpoint_sp = GetBreakpoint();
829   assert(breakpoint_sp);
830 
831   // We need to have access to the list of reductions currently parsed, as
832   // reduce names don't actually exist as symbols in a module. They are only
833   // identifiable by parsing the .rs.info packet, or finding the expand symbol.
834   // We therefore need access to the list of parsed rs modules to properly
835   // resolve reduction names.
836   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_BREAKPOINTS));
837   ModuleSP module = context.module_sp;
838 
839   if (!module || !IsRenderScriptScriptModule(module))
840     return Searcher::eCallbackReturnContinue;
841 
842   if (!m_rsmodules)
843     return Searcher::eCallbackReturnContinue;
844 
845   for (const auto &module_desc : *m_rsmodules) {
846     if (module_desc->m_module != module)
847       continue;
848 
849     for (const auto &reduction : module_desc->m_reductions) {
850       if (reduction.m_reduce_name != m_reduce_name)
851         continue;
852 
853       std::array<std::pair<ConstString, int>, 5> funcs{
854           {{reduction.m_init_name, eKernelTypeInit},
855            {reduction.m_accum_name, eKernelTypeAccum},
856            {reduction.m_comb_name, eKernelTypeComb},
857            {reduction.m_outc_name, eKernelTypeOutC},
858            {reduction.m_halter_name, eKernelTypeHalter}}};
859 
860       for (const auto &kernel : funcs) {
861         // Skip constituent functions that don't match our spec
862         if (!(m_kernel_types & kernel.second))
863           continue;
864 
865         const auto kernel_name = kernel.first;
866         const auto symbol = module->FindFirstSymbolWithNameAndType(
867             kernel_name, eSymbolTypeCode);
868         if (!symbol)
869           continue;
870 
871         auto address = symbol->GetAddress();
872         if (filter.AddressPasses(address)) {
873           bool new_bp;
874           if (!SkipPrologue(module, address)) {
875             LLDB_LOGF(log, "%s: Error trying to skip prologue", __FUNCTION__);
876           }
877           breakpoint_sp->AddLocation(address, &new_bp);
878           LLDB_LOGF(log, "%s: %s reduction breakpoint on %s in %s",
879                     __FUNCTION__, new_bp ? "new" : "existing",
880                     kernel_name.GetCString(),
881                     address.GetModule()->GetFileSpec().GetCString());
882         }
883       }
884     }
885   }
886   return eCallbackReturnContinue;
887 }
888 
889 Searcher::CallbackReturn RSScriptGroupBreakpointResolver::SearchCallback(
890     SearchFilter &filter, SymbolContext &context, Address *addr) {
891 
892   BreakpointSP breakpoint_sp = GetBreakpoint();
893   if (!breakpoint_sp)
894     return eCallbackReturnContinue;
895 
896   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_BREAKPOINTS));
897   ModuleSP &module = context.module_sp;
898 
899   if (!module || !IsRenderScriptScriptModule(module))
900     return Searcher::eCallbackReturnContinue;
901 
902   std::vector<std::string> names;
903   Breakpoint& breakpoint = *breakpoint_sp;
904   breakpoint.GetNames(names);
905   if (names.empty())
906     return eCallbackReturnContinue;
907 
908   for (auto &name : names) {
909     const RSScriptGroupDescriptorSP sg = FindScriptGroup(ConstString(name));
910     if (!sg) {
911       LLDB_LOGF(log, "%s: could not find script group for %s", __FUNCTION__,
912                 name.c_str());
913       continue;
914     }
915 
916     LLDB_LOGF(log, "%s: Found ScriptGroup for %s", __FUNCTION__, name.c_str());
917 
918     for (const RSScriptGroupDescriptor::Kernel &k : sg->m_kernels) {
919       if (log) {
920         LLDB_LOGF(log, "%s: Adding breakpoint for %s", __FUNCTION__,
921                   k.m_name.AsCString());
922         LLDB_LOGF(log, "%s: Kernel address 0x%" PRIx64, __FUNCTION__, k.m_addr);
923       }
924 
925       const lldb_private::Symbol *sym =
926           module->FindFirstSymbolWithNameAndType(k.m_name, eSymbolTypeCode);
927       if (!sym) {
928         LLDB_LOGF(log, "%s: Unable to find symbol for %s", __FUNCTION__,
929                   k.m_name.AsCString());
930         continue;
931       }
932 
933       if (log) {
934         LLDB_LOGF(log, "%s: Found symbol name is %s", __FUNCTION__,
935                   sym->GetName().AsCString());
936       }
937 
938       auto address = sym->GetAddress();
939       if (!SkipPrologue(module, address)) {
940         LLDB_LOGF(log, "%s: Error trying to skip prologue", __FUNCTION__);
941       }
942 
943       bool new_bp;
944       breakpoint.AddLocation(address, &new_bp);
945 
946       LLDB_LOGF(log, "%s: Placed %sbreakpoint on %s", __FUNCTION__,
947                 new_bp ? "new " : "", k.m_name.AsCString());
948 
949       // exit after placing the first breakpoint if we do not intend to stop on
950       // all kernels making up this script group
951       if (!m_stop_on_all)
952         break;
953     }
954   }
955 
956   return eCallbackReturnContinue;
957 }
958 
959 void RenderScriptRuntime::Initialize() {
960   PluginManager::RegisterPlugin(GetPluginNameStatic(),
961                                 "RenderScript language support", CreateInstance,
962                                 GetCommandObject);
963 }
964 
965 void RenderScriptRuntime::Terminate() {
966   PluginManager::UnregisterPlugin(CreateInstance);
967 }
968 
969 lldb_private::ConstString RenderScriptRuntime::GetPluginNameStatic() {
970   static ConstString plugin_name("renderscript");
971   return plugin_name;
972 }
973 
974 RenderScriptRuntime::ModuleKind
975 RenderScriptRuntime::GetModuleKind(const lldb::ModuleSP &module_sp) {
976   if (module_sp) {
977     if (IsRenderScriptScriptModule(module_sp))
978       return eModuleKindKernelObj;
979 
980     // Is this the main RS runtime library
981     const ConstString rs_lib("libRS.so");
982     if (module_sp->GetFileSpec().GetFilename() == rs_lib) {
983       return eModuleKindLibRS;
984     }
985 
986     const ConstString rs_driverlib("libRSDriver.so");
987     if (module_sp->GetFileSpec().GetFilename() == rs_driverlib) {
988       return eModuleKindDriver;
989     }
990 
991     const ConstString rs_cpureflib("libRSCpuRef.so");
992     if (module_sp->GetFileSpec().GetFilename() == rs_cpureflib) {
993       return eModuleKindImpl;
994     }
995   }
996   return eModuleKindIgnored;
997 }
998 
999 bool RenderScriptRuntime::IsRenderScriptModule(
1000     const lldb::ModuleSP &module_sp) {
1001   return GetModuleKind(module_sp) != eModuleKindIgnored;
1002 }
1003 
1004 void RenderScriptRuntime::ModulesDidLoad(const ModuleList &module_list) {
1005   std::lock_guard<std::recursive_mutex> guard(module_list.GetMutex());
1006 
1007   size_t num_modules = module_list.GetSize();
1008   for (size_t i = 0; i < num_modules; i++) {
1009     auto mod = module_list.GetModuleAtIndex(i);
1010     if (IsRenderScriptModule(mod)) {
1011       LoadModule(mod);
1012     }
1013   }
1014 }
1015 
1016 // PluginInterface protocol
1017 lldb_private::ConstString RenderScriptRuntime::GetPluginName() {
1018   return GetPluginNameStatic();
1019 }
1020 
1021 bool RenderScriptRuntime::GetDynamicTypeAndAddress(
1022     ValueObject &in_value, lldb::DynamicValueType use_dynamic,
1023     TypeAndOrName &class_type_or_name, Address &address,
1024     Value::ValueType &value_type) {
1025   return false;
1026 }
1027 
1028 TypeAndOrName
1029 RenderScriptRuntime::FixUpDynamicType(const TypeAndOrName &type_and_or_name,
1030                                       ValueObject &static_value) {
1031   return type_and_or_name;
1032 }
1033 
1034 bool RenderScriptRuntime::CouldHaveDynamicValue(ValueObject &in_value) {
1035   return false;
1036 }
1037 
1038 lldb::BreakpointResolverSP
1039 RenderScriptRuntime::CreateExceptionResolver(const lldb::BreakpointSP &bp,
1040                                              bool catch_bp, bool throw_bp) {
1041   BreakpointResolverSP resolver_sp;
1042   return resolver_sp;
1043 }
1044 
1045 const RenderScriptRuntime::HookDefn RenderScriptRuntime::s_runtimeHookDefns[] =
1046     {
1047         // rsdScript
1048         {"rsdScriptInit", "_Z13rsdScriptInitPKN7android12renderscript7ContextEP"
1049                           "NS0_7ScriptCEPKcS7_PKhjj",
1050          "_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_"
1051          "7ScriptCEPKcS7_PKhmj",
1052          0, RenderScriptRuntime::eModuleKindDriver,
1053          &lldb_private::RenderScriptRuntime::CaptureScriptInit},
1054         {"rsdScriptInvokeForEachMulti",
1055          "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0"
1056          "_6ScriptEjPPKNS0_10AllocationEjPS6_PKvjPK12RsScriptCall",
1057          "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0"
1058          "_6ScriptEjPPKNS0_10AllocationEmPS6_PKvmPK12RsScriptCall",
1059          0, RenderScriptRuntime::eModuleKindDriver,
1060          &lldb_private::RenderScriptRuntime::CaptureScriptInvokeForEachMulti},
1061         {"rsdScriptSetGlobalVar", "_Z21rsdScriptSetGlobalVarPKN7android12render"
1062                                   "script7ContextEPKNS0_6ScriptEjPvj",
1063          "_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_"
1064          "6ScriptEjPvm",
1065          0, RenderScriptRuntime::eModuleKindDriver,
1066          &lldb_private::RenderScriptRuntime::CaptureSetGlobalVar},
1067 
1068         // rsdAllocation
1069         {"rsdAllocationInit", "_Z17rsdAllocationInitPKN7android12renderscript7C"
1070                               "ontextEPNS0_10AllocationEb",
1071          "_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_"
1072          "10AllocationEb",
1073          0, RenderScriptRuntime::eModuleKindDriver,
1074          &lldb_private::RenderScriptRuntime::CaptureAllocationInit},
1075         {"rsdAllocationRead2D",
1076          "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_"
1077          "10AllocationEjjj23RsAllocationCubemapFacejjPvjj",
1078          "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_"
1079          "10AllocationEjjj23RsAllocationCubemapFacejjPvmm",
1080          0, RenderScriptRuntime::eModuleKindDriver, nullptr},
1081         {"rsdAllocationDestroy", "_Z20rsdAllocationDestroyPKN7android12rendersc"
1082                                  "ript7ContextEPNS0_10AllocationE",
1083          "_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_"
1084          "10AllocationE",
1085          0, RenderScriptRuntime::eModuleKindDriver,
1086          &lldb_private::RenderScriptRuntime::CaptureAllocationDestroy},
1087 
1088         // renderscript script groups
1089         {"rsdDebugHintScriptGroup2", "_ZN7android12renderscript21debugHintScrip"
1090                                      "tGroup2EPKcjPKPFvPK24RsExpandKernelDriver"
1091                                      "InfojjjEj",
1092          "_ZN7android12renderscript21debugHintScriptGroup2EPKcjPKPFvPK24RsExpan"
1093          "dKernelDriverInfojjjEj",
1094          0, RenderScriptRuntime::eModuleKindImpl,
1095          &lldb_private::RenderScriptRuntime::CaptureDebugHintScriptGroup2}};
1096 
1097 const size_t RenderScriptRuntime::s_runtimeHookCount =
1098     sizeof(s_runtimeHookDefns) / sizeof(s_runtimeHookDefns[0]);
1099 
1100 bool RenderScriptRuntime::HookCallback(void *baton,
1101                                        StoppointCallbackContext *ctx,
1102                                        lldb::user_id_t break_id,
1103                                        lldb::user_id_t break_loc_id) {
1104   RuntimeHook *hook = (RuntimeHook *)baton;
1105   ExecutionContext exe_ctx(ctx->exe_ctx_ref);
1106 
1107   RenderScriptRuntime *lang_rt = llvm::cast<RenderScriptRuntime>(
1108       exe_ctx.GetProcessPtr()->GetLanguageRuntime(
1109           eLanguageTypeExtRenderScript));
1110 
1111   lang_rt->HookCallback(hook, exe_ctx);
1112 
1113   return false;
1114 }
1115 
1116 void RenderScriptRuntime::HookCallback(RuntimeHook *hook,
1117                                        ExecutionContext &exe_ctx) {
1118   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1119 
1120   LLDB_LOGF(log, "%s - '%s'", __FUNCTION__, hook->defn->name);
1121 
1122   if (hook->defn->grabber) {
1123     (this->*(hook->defn->grabber))(hook, exe_ctx);
1124   }
1125 }
1126 
1127 void RenderScriptRuntime::CaptureDebugHintScriptGroup2(
1128     RuntimeHook *hook_info, ExecutionContext &context) {
1129   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1130 
1131   enum {
1132     eGroupName = 0,
1133     eGroupNameSize,
1134     eKernel,
1135     eKernelCount,
1136   };
1137 
1138   std::array<ArgItem, 4> args{{
1139       {ArgItem::ePointer, 0}, // const char         *groupName
1140       {ArgItem::eInt32, 0},   // const uint32_t      groupNameSize
1141       {ArgItem::ePointer, 0}, // const ExpandFuncTy *kernel
1142       {ArgItem::eInt32, 0},   // const uint32_t      kernelCount
1143   }};
1144 
1145   if (!GetArgs(context, args.data(), args.size())) {
1146     LLDB_LOGF(log, "%s - Error while reading the function parameters",
1147               __FUNCTION__);
1148     return;
1149   } else if (log) {
1150     LLDB_LOGF(log, "%s - groupName    : 0x%" PRIx64, __FUNCTION__,
1151               addr_t(args[eGroupName]));
1152     LLDB_LOGF(log, "%s - groupNameSize: %" PRIu64, __FUNCTION__,
1153               uint64_t(args[eGroupNameSize]));
1154     LLDB_LOGF(log, "%s - kernel       : 0x%" PRIx64, __FUNCTION__,
1155               addr_t(args[eKernel]));
1156     LLDB_LOGF(log, "%s - kernelCount  : %" PRIu64, __FUNCTION__,
1157               uint64_t(args[eKernelCount]));
1158   }
1159 
1160   // parse script group name
1161   ConstString group_name;
1162   {
1163     Status err;
1164     const uint64_t len = uint64_t(args[eGroupNameSize]);
1165     std::unique_ptr<char[]> buffer(new char[uint32_t(len + 1)]);
1166     m_process->ReadMemory(addr_t(args[eGroupName]), buffer.get(), len, err);
1167     buffer.get()[len] = '\0';
1168     if (!err.Success()) {
1169       LLDB_LOGF(log, "Error reading scriptgroup name from target");
1170       return;
1171     } else {
1172       LLDB_LOGF(log, "Extracted scriptgroup name %s", buffer.get());
1173     }
1174     // write back the script group name
1175     group_name.SetCString(buffer.get());
1176   }
1177 
1178   // create or access existing script group
1179   RSScriptGroupDescriptorSP group;
1180   {
1181     // search for existing script group
1182     for (auto sg : m_scriptGroups) {
1183       if (sg->m_name == group_name) {
1184         group = sg;
1185         break;
1186       }
1187     }
1188     if (!group) {
1189       group = std::make_shared<RSScriptGroupDescriptor>();
1190       group->m_name = group_name;
1191       m_scriptGroups.push_back(group);
1192     } else {
1193       // already have this script group
1194       LLDB_LOGF(log, "Attempt to add duplicate script group %s",
1195                 group_name.AsCString());
1196       return;
1197     }
1198   }
1199   assert(group);
1200 
1201   const uint32_t target_ptr_size = m_process->GetAddressByteSize();
1202   std::vector<addr_t> kernels;
1203   // parse kernel addresses in script group
1204   for (uint64_t i = 0; i < uint64_t(args[eKernelCount]); ++i) {
1205     RSScriptGroupDescriptor::Kernel kernel;
1206     // extract script group kernel addresses from the target
1207     const addr_t ptr_addr = addr_t(args[eKernel]) + i * target_ptr_size;
1208     uint64_t kernel_addr = 0;
1209     Status err;
1210     size_t read =
1211         m_process->ReadMemory(ptr_addr, &kernel_addr, target_ptr_size, err);
1212     if (!err.Success() || read != target_ptr_size) {
1213       LLDB_LOGF(log, "Error parsing kernel address %" PRIu64 " in script group",
1214                 i);
1215       return;
1216     }
1217     LLDB_LOGF(log, "Extracted scriptgroup kernel address - 0x%" PRIx64,
1218               kernel_addr);
1219     kernel.m_addr = kernel_addr;
1220 
1221     // try to resolve the associated kernel name
1222     if (!ResolveKernelName(kernel.m_addr, kernel.m_name)) {
1223       LLDB_LOGF(log, "Parsed scriptgroup kernel %" PRIu64 " - 0x%" PRIx64, i,
1224                 kernel_addr);
1225       return;
1226     }
1227 
1228     // try to find the non '.expand' function
1229     {
1230       const llvm::StringRef expand(".expand");
1231       const llvm::StringRef name_ref = kernel.m_name.GetStringRef();
1232       if (name_ref.endswith(expand)) {
1233         const ConstString base_kernel(name_ref.drop_back(expand.size()));
1234         // verify this function is a valid kernel
1235         if (IsKnownKernel(base_kernel)) {
1236           kernel.m_name = base_kernel;
1237           LLDB_LOGF(log, "%s - found non expand version '%s'", __FUNCTION__,
1238                     base_kernel.GetCString());
1239         }
1240       }
1241     }
1242     // add to a list of script group kernels we know about
1243     group->m_kernels.push_back(kernel);
1244   }
1245 
1246   // Resolve any pending scriptgroup breakpoints
1247   {
1248     Target &target = m_process->GetTarget();
1249     const BreakpointList &list = target.GetBreakpointList();
1250     const size_t num_breakpoints = list.GetSize();
1251     LLDB_LOGF(log, "Resolving %zu breakpoints", num_breakpoints);
1252     for (size_t i = 0; i < num_breakpoints; ++i) {
1253       const BreakpointSP bp = list.GetBreakpointAtIndex(i);
1254       if (bp) {
1255         if (bp->MatchesName(group_name.AsCString())) {
1256           LLDB_LOGF(log, "Found breakpoint with name %s",
1257                     group_name.AsCString());
1258           bp->ResolveBreakpoint();
1259         }
1260       }
1261     }
1262   }
1263 }
1264 
1265 void RenderScriptRuntime::CaptureScriptInvokeForEachMulti(
1266     RuntimeHook *hook, ExecutionContext &exe_ctx) {
1267   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1268 
1269   enum {
1270     eRsContext = 0,
1271     eRsScript,
1272     eRsSlot,
1273     eRsAIns,
1274     eRsInLen,
1275     eRsAOut,
1276     eRsUsr,
1277     eRsUsrLen,
1278     eRsSc,
1279   };
1280 
1281   std::array<ArgItem, 9> args{{
1282       ArgItem{ArgItem::ePointer, 0}, // const Context       *rsc
1283       ArgItem{ArgItem::ePointer, 0}, // Script              *s
1284       ArgItem{ArgItem::eInt32, 0},   // uint32_t             slot
1285       ArgItem{ArgItem::ePointer, 0}, // const Allocation   **aIns
1286       ArgItem{ArgItem::eInt32, 0},   // size_t               inLen
1287       ArgItem{ArgItem::ePointer, 0}, // Allocation          *aout
1288       ArgItem{ArgItem::ePointer, 0}, // const void          *usr
1289       ArgItem{ArgItem::eInt32, 0},   // size_t               usrLen
1290       ArgItem{ArgItem::ePointer, 0}, // const RsScriptCall  *sc
1291   }};
1292 
1293   bool success = GetArgs(exe_ctx, &args[0], args.size());
1294   if (!success) {
1295     LLDB_LOGF(log, "%s - Error while reading the function parameters",
1296               __FUNCTION__);
1297     return;
1298   }
1299 
1300   const uint32_t target_ptr_size = m_process->GetAddressByteSize();
1301   Status err;
1302   std::vector<uint64_t> allocs;
1303 
1304   // traverse allocation list
1305   for (uint64_t i = 0; i < uint64_t(args[eRsInLen]); ++i) {
1306     // calculate offest to allocation pointer
1307     const addr_t addr = addr_t(args[eRsAIns]) + i * target_ptr_size;
1308 
1309     // Note: due to little endian layout, reading 32bits or 64bits into res
1310     // will give the correct results.
1311     uint64_t result = 0;
1312     size_t read = m_process->ReadMemory(addr, &result, target_ptr_size, err);
1313     if (read != target_ptr_size || !err.Success()) {
1314       LLDB_LOGF(log,
1315                 "%s - Error while reading allocation list argument %" PRIu64,
1316                 __FUNCTION__, i);
1317     } else {
1318       allocs.push_back(result);
1319     }
1320   }
1321 
1322   // if there is an output allocation track it
1323   if (uint64_t alloc_out = uint64_t(args[eRsAOut])) {
1324     allocs.push_back(alloc_out);
1325   }
1326 
1327   // for all allocations we have found
1328   for (const uint64_t alloc_addr : allocs) {
1329     AllocationDetails *alloc = LookUpAllocation(alloc_addr);
1330     if (!alloc)
1331       alloc = CreateAllocation(alloc_addr);
1332 
1333     if (alloc) {
1334       // save the allocation address
1335       if (alloc->address.isValid()) {
1336         // check the allocation address we already have matches
1337         assert(*alloc->address.get() == alloc_addr);
1338       } else {
1339         alloc->address = alloc_addr;
1340       }
1341 
1342       // save the context
1343       if (log) {
1344         if (alloc->context.isValid() &&
1345             *alloc->context.get() != addr_t(args[eRsContext]))
1346           LLDB_LOGF(log, "%s - Allocation used by multiple contexts",
1347                     __FUNCTION__);
1348       }
1349       alloc->context = addr_t(args[eRsContext]);
1350     }
1351   }
1352 
1353   // make sure we track this script object
1354   if (lldb_private::RenderScriptRuntime::ScriptDetails *script =
1355           LookUpScript(addr_t(args[eRsScript]), true)) {
1356     if (log) {
1357       if (script->context.isValid() &&
1358           *script->context.get() != addr_t(args[eRsContext]))
1359         LLDB_LOGF(log, "%s - Script used by multiple contexts", __FUNCTION__);
1360     }
1361     script->context = addr_t(args[eRsContext]);
1362   }
1363 }
1364 
1365 void RenderScriptRuntime::CaptureSetGlobalVar(RuntimeHook *hook,
1366                                               ExecutionContext &context) {
1367   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1368 
1369   enum {
1370     eRsContext,
1371     eRsScript,
1372     eRsId,
1373     eRsData,
1374     eRsLength,
1375   };
1376 
1377   std::array<ArgItem, 5> args{{
1378       ArgItem{ArgItem::ePointer, 0}, // eRsContext
1379       ArgItem{ArgItem::ePointer, 0}, // eRsScript
1380       ArgItem{ArgItem::eInt32, 0},   // eRsId
1381       ArgItem{ArgItem::ePointer, 0}, // eRsData
1382       ArgItem{ArgItem::eInt32, 0},   // eRsLength
1383   }};
1384 
1385   bool success = GetArgs(context, &args[0], args.size());
1386   if (!success) {
1387     LLDB_LOGF(log, "%s - error reading the function parameters.", __FUNCTION__);
1388     return;
1389   }
1390 
1391   if (log) {
1392     LLDB_LOGF(log,
1393               "%s - 0x%" PRIx64 ",0x%" PRIx64 " slot %" PRIu64 " = 0x%" PRIx64
1394               ":%" PRIu64 "bytes.",
1395               __FUNCTION__, uint64_t(args[eRsContext]),
1396               uint64_t(args[eRsScript]), uint64_t(args[eRsId]),
1397               uint64_t(args[eRsData]), uint64_t(args[eRsLength]));
1398 
1399     addr_t script_addr = addr_t(args[eRsScript]);
1400     if (m_scriptMappings.find(script_addr) != m_scriptMappings.end()) {
1401       auto rsm = m_scriptMappings[script_addr];
1402       if (uint64_t(args[eRsId]) < rsm->m_globals.size()) {
1403         auto rsg = rsm->m_globals[uint64_t(args[eRsId])];
1404         LLDB_LOGF(log, "%s - Setting of '%s' within '%s' inferred",
1405                   __FUNCTION__, rsg.m_name.AsCString(),
1406                   rsm->m_module->GetFileSpec().GetFilename().AsCString());
1407       }
1408     }
1409   }
1410 }
1411 
1412 void RenderScriptRuntime::CaptureAllocationInit(RuntimeHook *hook,
1413                                                 ExecutionContext &exe_ctx) {
1414   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1415 
1416   enum { eRsContext, eRsAlloc, eRsForceZero };
1417 
1418   std::array<ArgItem, 3> args{{
1419       ArgItem{ArgItem::ePointer, 0}, // eRsContext
1420       ArgItem{ArgItem::ePointer, 0}, // eRsAlloc
1421       ArgItem{ArgItem::eBool, 0},    // eRsForceZero
1422   }};
1423 
1424   bool success = GetArgs(exe_ctx, &args[0], args.size());
1425   if (!success) {
1426     LLDB_LOGF(log, "%s - error while reading the function parameters",
1427               __FUNCTION__);
1428     return;
1429   }
1430 
1431   LLDB_LOGF(log, "%s - 0x%" PRIx64 ",0x%" PRIx64 ",0x%" PRIx64 " .",
1432             __FUNCTION__, uint64_t(args[eRsContext]), uint64_t(args[eRsAlloc]),
1433             uint64_t(args[eRsForceZero]));
1434 
1435   AllocationDetails *alloc = CreateAllocation(uint64_t(args[eRsAlloc]));
1436   if (alloc)
1437     alloc->context = uint64_t(args[eRsContext]);
1438 }
1439 
1440 void RenderScriptRuntime::CaptureAllocationDestroy(RuntimeHook *hook,
1441                                                    ExecutionContext &exe_ctx) {
1442   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1443 
1444   enum {
1445     eRsContext,
1446     eRsAlloc,
1447   };
1448 
1449   std::array<ArgItem, 2> args{{
1450       ArgItem{ArgItem::ePointer, 0}, // eRsContext
1451       ArgItem{ArgItem::ePointer, 0}, // eRsAlloc
1452   }};
1453 
1454   bool success = GetArgs(exe_ctx, &args[0], args.size());
1455   if (!success) {
1456     LLDB_LOGF(log, "%s - error while reading the function parameters.",
1457               __FUNCTION__);
1458     return;
1459   }
1460 
1461   LLDB_LOGF(log, "%s - 0x%" PRIx64 ", 0x%" PRIx64 ".", __FUNCTION__,
1462             uint64_t(args[eRsContext]), uint64_t(args[eRsAlloc]));
1463 
1464   for (auto iter = m_allocations.begin(); iter != m_allocations.end(); ++iter) {
1465     auto &allocation_up = *iter; // get the unique pointer
1466     if (allocation_up->address.isValid() &&
1467         *allocation_up->address.get() == addr_t(args[eRsAlloc])) {
1468       m_allocations.erase(iter);
1469       LLDB_LOGF(log, "%s - deleted allocation entry.", __FUNCTION__);
1470       return;
1471     }
1472   }
1473 
1474   LLDB_LOGF(log, "%s - couldn't find destroyed allocation.", __FUNCTION__);
1475 }
1476 
1477 void RenderScriptRuntime::CaptureScriptInit(RuntimeHook *hook,
1478                                             ExecutionContext &exe_ctx) {
1479   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1480 
1481   Status err;
1482   Process *process = exe_ctx.GetProcessPtr();
1483 
1484   enum { eRsContext, eRsScript, eRsResNamePtr, eRsCachedDirPtr };
1485 
1486   std::array<ArgItem, 4> args{
1487       {ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0},
1488        ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}}};
1489   bool success = GetArgs(exe_ctx, &args[0], args.size());
1490   if (!success) {
1491     LLDB_LOGF(log, "%s - error while reading the function parameters.",
1492               __FUNCTION__);
1493     return;
1494   }
1495 
1496   std::string res_name;
1497   process->ReadCStringFromMemory(addr_t(args[eRsResNamePtr]), res_name, err);
1498   if (err.Fail()) {
1499     LLDB_LOGF(log, "%s - error reading res_name: %s.", __FUNCTION__,
1500               err.AsCString());
1501   }
1502 
1503   std::string cache_dir;
1504   process->ReadCStringFromMemory(addr_t(args[eRsCachedDirPtr]), cache_dir, err);
1505   if (err.Fail()) {
1506     LLDB_LOGF(log, "%s - error reading cache_dir: %s.", __FUNCTION__,
1507               err.AsCString());
1508   }
1509 
1510   LLDB_LOGF(log, "%s - 0x%" PRIx64 ",0x%" PRIx64 " => '%s' at '%s' .",
1511             __FUNCTION__, uint64_t(args[eRsContext]), uint64_t(args[eRsScript]),
1512             res_name.c_str(), cache_dir.c_str());
1513 
1514   if (res_name.size() > 0) {
1515     StreamString strm;
1516     strm.Printf("librs.%s.so", res_name.c_str());
1517 
1518     ScriptDetails *script = LookUpScript(addr_t(args[eRsScript]), true);
1519     if (script) {
1520       script->type = ScriptDetails::eScriptC;
1521       script->cache_dir = cache_dir;
1522       script->res_name = res_name;
1523       script->shared_lib = std::string(strm.GetString());
1524       script->context = addr_t(args[eRsContext]);
1525     }
1526 
1527     LLDB_LOGF(log,
1528               "%s - '%s' tagged with context 0x%" PRIx64
1529               " and script 0x%" PRIx64 ".",
1530               __FUNCTION__, strm.GetData(), uint64_t(args[eRsContext]),
1531               uint64_t(args[eRsScript]));
1532   } else if (log) {
1533     LLDB_LOGF(log, "%s - resource name invalid, Script not tagged.",
1534               __FUNCTION__);
1535   }
1536 }
1537 
1538 void RenderScriptRuntime::LoadRuntimeHooks(lldb::ModuleSP module,
1539                                            ModuleKind kind) {
1540   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1541 
1542   if (!module) {
1543     return;
1544   }
1545 
1546   Target &target = GetProcess()->GetTarget();
1547   const llvm::Triple::ArchType machine = target.GetArchitecture().GetMachine();
1548 
1549   if (machine != llvm::Triple::ArchType::x86 &&
1550       machine != llvm::Triple::ArchType::arm &&
1551       machine != llvm::Triple::ArchType::aarch64 &&
1552       machine != llvm::Triple::ArchType::mipsel &&
1553       machine != llvm::Triple::ArchType::mips64el &&
1554       machine != llvm::Triple::ArchType::x86_64) {
1555     LLDB_LOGF(log, "%s - unable to hook runtime functions.", __FUNCTION__);
1556     return;
1557   }
1558 
1559   const uint32_t target_ptr_size =
1560       target.GetArchitecture().GetAddressByteSize();
1561 
1562   std::array<bool, s_runtimeHookCount> hook_placed;
1563   hook_placed.fill(false);
1564 
1565   for (size_t idx = 0; idx < s_runtimeHookCount; idx++) {
1566     const HookDefn *hook_defn = &s_runtimeHookDefns[idx];
1567     if (hook_defn->kind != kind) {
1568       continue;
1569     }
1570 
1571     const char *symbol_name = (target_ptr_size == 4)
1572                                   ? hook_defn->symbol_name_m32
1573                                   : hook_defn->symbol_name_m64;
1574 
1575     const Symbol *sym = module->FindFirstSymbolWithNameAndType(
1576         ConstString(symbol_name), eSymbolTypeCode);
1577     if (!sym) {
1578       if (log) {
1579         LLDB_LOGF(log, "%s - symbol '%s' related to the function %s not found",
1580                   __FUNCTION__, symbol_name, hook_defn->name);
1581       }
1582       continue;
1583     }
1584 
1585     addr_t addr = sym->GetLoadAddress(&target);
1586     if (addr == LLDB_INVALID_ADDRESS) {
1587       LLDB_LOGF(log,
1588                 "%s - unable to resolve the address of hook function '%s' "
1589                 "with symbol '%s'.",
1590                 __FUNCTION__, hook_defn->name, symbol_name);
1591       continue;
1592     } else {
1593       LLDB_LOGF(log, "%s - function %s, address resolved at 0x%" PRIx64,
1594                 __FUNCTION__, hook_defn->name, addr);
1595     }
1596 
1597     RuntimeHookSP hook(new RuntimeHook());
1598     hook->address = addr;
1599     hook->defn = hook_defn;
1600     hook->bp_sp = target.CreateBreakpoint(addr, true, false);
1601     hook->bp_sp->SetCallback(HookCallback, hook.get(), true);
1602     m_runtimeHooks[addr] = hook;
1603     if (log) {
1604       LLDB_LOGF(log,
1605                 "%s - successfully hooked '%s' in '%s' version %" PRIu64
1606                 " at 0x%" PRIx64 ".",
1607                 __FUNCTION__, hook_defn->name,
1608                 module->GetFileSpec().GetFilename().AsCString(),
1609                 (uint64_t)hook_defn->version, (uint64_t)addr);
1610     }
1611     hook_placed[idx] = true;
1612   }
1613 
1614   // log any unhooked function
1615   if (log) {
1616     for (size_t i = 0; i < hook_placed.size(); ++i) {
1617       if (hook_placed[i])
1618         continue;
1619       const HookDefn &hook_defn = s_runtimeHookDefns[i];
1620       if (hook_defn.kind != kind)
1621         continue;
1622       LLDB_LOGF(log, "%s - function %s was not hooked", __FUNCTION__,
1623                 hook_defn.name);
1624     }
1625   }
1626 }
1627 
1628 void RenderScriptRuntime::FixupScriptDetails(RSModuleDescriptorSP rsmodule_sp) {
1629   if (!rsmodule_sp)
1630     return;
1631 
1632   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1633 
1634   const ModuleSP module = rsmodule_sp->m_module;
1635   const FileSpec &file = module->GetPlatformFileSpec();
1636 
1637   // Iterate over all of the scripts that we currently know of. Note: We cant
1638   // push or pop to m_scripts here or it may invalidate rs_script.
1639   for (const auto &rs_script : m_scripts) {
1640     // Extract the expected .so file path for this script.
1641     std::string shared_lib;
1642     if (!rs_script->shared_lib.get(shared_lib))
1643       continue;
1644 
1645     // Only proceed if the module that has loaded corresponds to this script.
1646     if (file.GetFilename() != ConstString(shared_lib.c_str()))
1647       continue;
1648 
1649     // Obtain the script address which we use as a key.
1650     lldb::addr_t script;
1651     if (!rs_script->script.get(script))
1652       continue;
1653 
1654     // If we have a script mapping for the current script.
1655     if (m_scriptMappings.find(script) != m_scriptMappings.end()) {
1656       // if the module we have stored is different to the one we just received.
1657       if (m_scriptMappings[script] != rsmodule_sp) {
1658         LLDB_LOGF(
1659             log,
1660             "%s - script %" PRIx64 " wants reassigned to new rsmodule '%s'.",
1661             __FUNCTION__, (uint64_t)script,
1662             rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString());
1663       }
1664     }
1665     // We don't have a script mapping for the current script.
1666     else {
1667       // Obtain the script resource name.
1668       std::string res_name;
1669       if (rs_script->res_name.get(res_name))
1670         // Set the modules resource name.
1671         rsmodule_sp->m_resname = res_name;
1672       // Add Script/Module pair to map.
1673       m_scriptMappings[script] = rsmodule_sp;
1674       LLDB_LOGF(log, "%s - script %" PRIx64 " associated with rsmodule '%s'.",
1675                 __FUNCTION__, (uint64_t)script,
1676                 rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString());
1677     }
1678   }
1679 }
1680 
1681 // Uses the Target API to evaluate the expression passed as a parameter to the
1682 // function The result of that expression is returned an unsigned 64 bit int,
1683 // via the result* parameter. Function returns true on success, and false on
1684 // failure
1685 bool RenderScriptRuntime::EvalRSExpression(const char *expr,
1686                                            StackFrame *frame_ptr,
1687                                            uint64_t *result) {
1688   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1689   LLDB_LOGF(log, "%s(%s)", __FUNCTION__, expr);
1690 
1691   ValueObjectSP expr_result;
1692   EvaluateExpressionOptions options;
1693   options.SetLanguage(lldb::eLanguageTypeC_plus_plus);
1694   // Perform the actual expression evaluation
1695   auto &target = GetProcess()->GetTarget();
1696   target.EvaluateExpression(expr, frame_ptr, expr_result, options);
1697 
1698   if (!expr_result) {
1699     LLDB_LOGF(log, "%s: couldn't evaluate expression.", __FUNCTION__);
1700     return false;
1701   }
1702 
1703   // The result of the expression is invalid
1704   if (!expr_result->GetError().Success()) {
1705     Status err = expr_result->GetError();
1706     // Expression returned is void, so this is actually a success
1707     if (err.GetError() == UserExpression::kNoResult) {
1708       LLDB_LOGF(log, "%s - expression returned void.", __FUNCTION__);
1709 
1710       result = nullptr;
1711       return true;
1712     }
1713 
1714     LLDB_LOGF(log, "%s - error evaluating expression result: %s", __FUNCTION__,
1715               err.AsCString());
1716     return false;
1717   }
1718 
1719   bool success = false;
1720   // We only read the result as an uint32_t.
1721   *result = expr_result->GetValueAsUnsigned(0, &success);
1722 
1723   if (!success) {
1724     LLDB_LOGF(log, "%s - couldn't convert expression result to uint32_t",
1725               __FUNCTION__);
1726     return false;
1727   }
1728 
1729   return true;
1730 }
1731 
1732 namespace {
1733 // Used to index expression format strings
1734 enum ExpressionStrings {
1735   eExprGetOffsetPtr = 0,
1736   eExprAllocGetType,
1737   eExprTypeDimX,
1738   eExprTypeDimY,
1739   eExprTypeDimZ,
1740   eExprTypeElemPtr,
1741   eExprElementType,
1742   eExprElementKind,
1743   eExprElementVec,
1744   eExprElementFieldCount,
1745   eExprSubelementsId,
1746   eExprSubelementsName,
1747   eExprSubelementsArrSize,
1748 
1749   _eExprLast // keep at the end, implicit size of the array runtime_expressions
1750 };
1751 
1752 // max length of an expanded expression
1753 const int jit_max_expr_size = 512;
1754 
1755 // Retrieve the string to JIT for the given expression
1756 #define JIT_TEMPLATE_CONTEXT "void* ctxt = (void*)rsDebugGetContextWrapper(0x%" PRIx64 "); "
1757 const char *JITTemplate(ExpressionStrings e) {
1758   // Format strings containing the expressions we may need to evaluate.
1759   static std::array<const char *, _eExprLast> runtime_expressions = {
1760       {// Mangled GetOffsetPointer(Allocation*, xoff, yoff, zoff, lod, cubemap)
1761        "(int*)_"
1762        "Z12GetOffsetPtrPKN7android12renderscript10AllocationEjjjj23RsAllocation"
1763        "CubemapFace"
1764        "(0x%" PRIx64 ", %" PRIu32 ", %" PRIu32 ", %" PRIu32 ", 0, 0)", // eExprGetOffsetPtr
1765 
1766        // Type* rsaAllocationGetType(Context*, Allocation*)
1767        JIT_TEMPLATE_CONTEXT "(void*)rsaAllocationGetType(ctxt, 0x%" PRIx64 ")", // eExprAllocGetType
1768 
1769        // rsaTypeGetNativeData(Context*, Type*, void* typeData, size) Pack the
1770        // data in the following way mHal.state.dimX; mHal.state.dimY;
1771        // mHal.state.dimZ; mHal.state.lodCount; mHal.state.faces; mElement;
1772        // into typeData Need to specify 32 or 64 bit for uint_t since this
1773        // differs between devices
1774        JIT_TEMPLATE_CONTEXT
1775        "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt"
1776        ", 0x%" PRIx64 ", data, 6); data[0]", // eExprTypeDimX
1777        JIT_TEMPLATE_CONTEXT
1778        "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt"
1779        ", 0x%" PRIx64 ", data, 6); data[1]", // eExprTypeDimY
1780        JIT_TEMPLATE_CONTEXT
1781        "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt"
1782        ", 0x%" PRIx64 ", data, 6); data[2]", // eExprTypeDimZ
1783        JIT_TEMPLATE_CONTEXT
1784        "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt"
1785        ", 0x%" PRIx64 ", data, 6); data[5]", // eExprTypeElemPtr
1786 
1787        // rsaElementGetNativeData(Context*, Element*, uint32_t* elemData,size)
1788        // Pack mType; mKind; mNormalized; mVectorSize; NumSubElements into
1789        // elemData
1790        JIT_TEMPLATE_CONTEXT
1791        "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt"
1792        ", 0x%" PRIx64 ", data, 5); data[0]", // eExprElementType
1793        JIT_TEMPLATE_CONTEXT
1794        "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt"
1795        ", 0x%" PRIx64 ", data, 5); data[1]", // eExprElementKind
1796        JIT_TEMPLATE_CONTEXT
1797        "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt"
1798        ", 0x%" PRIx64 ", data, 5); data[3]", // eExprElementVec
1799        JIT_TEMPLATE_CONTEXT
1800        "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt"
1801        ", 0x%" PRIx64 ", data, 5); data[4]", // eExprElementFieldCount
1802 
1803        // rsaElementGetSubElements(RsContext con, RsElement elem, uintptr_t
1804        // *ids, const char **names, size_t *arraySizes, uint32_t dataSize)
1805        // Needed for Allocations of structs to gather details about
1806        // fields/Subelements Element* of field
1807        JIT_TEMPLATE_CONTEXT "void* ids[%" PRIu32 "]; const char* names[%" PRIu32
1808        "]; size_t arr_size[%" PRIu32 "];"
1809        "(void*)rsaElementGetSubElements(ctxt, 0x%" PRIx64
1810        ", ids, names, arr_size, %" PRIu32 "); ids[%" PRIu32 "]", // eExprSubelementsId
1811 
1812        // Name of field
1813        JIT_TEMPLATE_CONTEXT "void* ids[%" PRIu32 "]; const char* names[%" PRIu32
1814        "]; size_t arr_size[%" PRIu32 "];"
1815        "(void*)rsaElementGetSubElements(ctxt, 0x%" PRIx64
1816        ", ids, names, arr_size, %" PRIu32 "); names[%" PRIu32 "]", // eExprSubelementsName
1817 
1818        // Array size of field
1819        JIT_TEMPLATE_CONTEXT "void* ids[%" PRIu32 "]; const char* names[%" PRIu32
1820        "]; size_t arr_size[%" PRIu32 "];"
1821        "(void*)rsaElementGetSubElements(ctxt, 0x%" PRIx64
1822        ", ids, names, arr_size, %" PRIu32 "); arr_size[%" PRIu32 "]"}}; // eExprSubelementsArrSize
1823 
1824   return runtime_expressions[e];
1825 }
1826 } // end of the anonymous namespace
1827 
1828 // JITs the RS runtime for the internal data pointer of an allocation. Is
1829 // passed x,y,z coordinates for the pointer to a specific element. Then sets
1830 // the data_ptr member in Allocation with the result. Returns true on success,
1831 // false otherwise
1832 bool RenderScriptRuntime::JITDataPointer(AllocationDetails *alloc,
1833                                          StackFrame *frame_ptr, uint32_t x,
1834                                          uint32_t y, uint32_t z) {
1835   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1836 
1837   if (!alloc->address.isValid()) {
1838     LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__);
1839     return false;
1840   }
1841 
1842   const char *fmt_str = JITTemplate(eExprGetOffsetPtr);
1843   char expr_buf[jit_max_expr_size];
1844 
1845   int written = snprintf(expr_buf, jit_max_expr_size, fmt_str,
1846                          *alloc->address.get(), x, y, z);
1847   if (written < 0) {
1848     LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__);
1849     return false;
1850   } else if (written >= jit_max_expr_size) {
1851     LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__);
1852     return false;
1853   }
1854 
1855   uint64_t result = 0;
1856   if (!EvalRSExpression(expr_buf, frame_ptr, &result))
1857     return false;
1858 
1859   addr_t data_ptr = static_cast<lldb::addr_t>(result);
1860   alloc->data_ptr = data_ptr;
1861 
1862   return true;
1863 }
1864 
1865 // JITs the RS runtime for the internal pointer to the RS Type of an allocation
1866 // Then sets the type_ptr member in Allocation with the result. Returns true on
1867 // success, false otherwise
1868 bool RenderScriptRuntime::JITTypePointer(AllocationDetails *alloc,
1869                                          StackFrame *frame_ptr) {
1870   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1871 
1872   if (!alloc->address.isValid() || !alloc->context.isValid()) {
1873     LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__);
1874     return false;
1875   }
1876 
1877   const char *fmt_str = JITTemplate(eExprAllocGetType);
1878   char expr_buf[jit_max_expr_size];
1879 
1880   int written = snprintf(expr_buf, jit_max_expr_size, fmt_str,
1881                          *alloc->context.get(), *alloc->address.get());
1882   if (written < 0) {
1883     LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__);
1884     return false;
1885   } else if (written >= jit_max_expr_size) {
1886     LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__);
1887     return false;
1888   }
1889 
1890   uint64_t result = 0;
1891   if (!EvalRSExpression(expr_buf, frame_ptr, &result))
1892     return false;
1893 
1894   addr_t type_ptr = static_cast<lldb::addr_t>(result);
1895   alloc->type_ptr = type_ptr;
1896 
1897   return true;
1898 }
1899 
1900 // JITs the RS runtime for information about the dimensions and type of an
1901 // allocation Then sets dimension and element_ptr members in Allocation with
1902 // the result. Returns true on success, false otherwise
1903 bool RenderScriptRuntime::JITTypePacked(AllocationDetails *alloc,
1904                                         StackFrame *frame_ptr) {
1905   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1906 
1907   if (!alloc->type_ptr.isValid() || !alloc->context.isValid()) {
1908     LLDB_LOGF(log, "%s - Failed to find allocation details.", __FUNCTION__);
1909     return false;
1910   }
1911 
1912   // Expression is different depending on if device is 32 or 64 bit
1913   uint32_t target_ptr_size =
1914       GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
1915   const uint32_t bits = target_ptr_size == 4 ? 32 : 64;
1916 
1917   // We want 4 elements from packed data
1918   const uint32_t num_exprs = 4;
1919   static_assert(num_exprs == (eExprTypeElemPtr - eExprTypeDimX + 1),
1920                 "Invalid number of expressions");
1921 
1922   char expr_bufs[num_exprs][jit_max_expr_size];
1923   uint64_t results[num_exprs];
1924 
1925   for (uint32_t i = 0; i < num_exprs; ++i) {
1926     const char *fmt_str = JITTemplate(ExpressionStrings(eExprTypeDimX + i));
1927     int written = snprintf(expr_bufs[i], jit_max_expr_size, fmt_str,
1928                            *alloc->context.get(), bits, *alloc->type_ptr.get());
1929     if (written < 0) {
1930       LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__);
1931       return false;
1932     } else if (written >= jit_max_expr_size) {
1933       LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__);
1934       return false;
1935     }
1936 
1937     // Perform expression evaluation
1938     if (!EvalRSExpression(expr_bufs[i], frame_ptr, &results[i]))
1939       return false;
1940   }
1941 
1942   // Assign results to allocation members
1943   AllocationDetails::Dimension dims;
1944   dims.dim_1 = static_cast<uint32_t>(results[0]);
1945   dims.dim_2 = static_cast<uint32_t>(results[1]);
1946   dims.dim_3 = static_cast<uint32_t>(results[2]);
1947   alloc->dimension = dims;
1948 
1949   addr_t element_ptr = static_cast<lldb::addr_t>(results[3]);
1950   alloc->element.element_ptr = element_ptr;
1951 
1952   LLDB_LOGF(log,
1953             "%s - dims (%" PRIu32 ", %" PRIu32 ", %" PRIu32
1954             ") Element*: 0x%" PRIx64 ".",
1955             __FUNCTION__, dims.dim_1, dims.dim_2, dims.dim_3, element_ptr);
1956 
1957   return true;
1958 }
1959 
1960 // JITs the RS runtime for information about the Element of an allocation Then
1961 // sets type, type_vec_size, field_count and type_kind members in Element with
1962 // the result. Returns true on success, false otherwise
1963 bool RenderScriptRuntime::JITElementPacked(Element &elem,
1964                                            const lldb::addr_t context,
1965                                            StackFrame *frame_ptr) {
1966   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1967 
1968   if (!elem.element_ptr.isValid()) {
1969     LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__);
1970     return false;
1971   }
1972 
1973   // We want 4 elements from packed data
1974   const uint32_t num_exprs = 4;
1975   static_assert(num_exprs == (eExprElementFieldCount - eExprElementType + 1),
1976                 "Invalid number of expressions");
1977 
1978   char expr_bufs[num_exprs][jit_max_expr_size];
1979   uint64_t results[num_exprs];
1980 
1981   for (uint32_t i = 0; i < num_exprs; i++) {
1982     const char *fmt_str = JITTemplate(ExpressionStrings(eExprElementType + i));
1983     int written = snprintf(expr_bufs[i], jit_max_expr_size, fmt_str, context,
1984                            *elem.element_ptr.get());
1985     if (written < 0) {
1986       LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__);
1987       return false;
1988     } else if (written >= jit_max_expr_size) {
1989       LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__);
1990       return false;
1991     }
1992 
1993     // Perform expression evaluation
1994     if (!EvalRSExpression(expr_bufs[i], frame_ptr, &results[i]))
1995       return false;
1996   }
1997 
1998   // Assign results to allocation members
1999   elem.type = static_cast<RenderScriptRuntime::Element::DataType>(results[0]);
2000   elem.type_kind =
2001       static_cast<RenderScriptRuntime::Element::DataKind>(results[1]);
2002   elem.type_vec_size = static_cast<uint32_t>(results[2]);
2003   elem.field_count = static_cast<uint32_t>(results[3]);
2004 
2005   LLDB_LOGF(log,
2006             "%s - data type %" PRIu32 ", pixel type %" PRIu32
2007             ", vector size %" PRIu32 ", field count %" PRIu32,
2008             __FUNCTION__, *elem.type.get(), *elem.type_kind.get(),
2009             *elem.type_vec_size.get(), *elem.field_count.get());
2010 
2011   // If this Element has subelements then JIT rsaElementGetSubElements() for
2012   // details about its fields
2013   return !(*elem.field_count.get() > 0 &&
2014            !JITSubelements(elem, context, frame_ptr));
2015 }
2016 
2017 // JITs the RS runtime for information about the subelements/fields of a struct
2018 // allocation This is necessary for infering the struct type so we can pretty
2019 // print the allocation's contents. Returns true on success, false otherwise
2020 bool RenderScriptRuntime::JITSubelements(Element &elem,
2021                                          const lldb::addr_t context,
2022                                          StackFrame *frame_ptr) {
2023   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2024 
2025   if (!elem.element_ptr.isValid() || !elem.field_count.isValid()) {
2026     LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__);
2027     return false;
2028   }
2029 
2030   const short num_exprs = 3;
2031   static_assert(num_exprs == (eExprSubelementsArrSize - eExprSubelementsId + 1),
2032                 "Invalid number of expressions");
2033 
2034   char expr_buffer[jit_max_expr_size];
2035   uint64_t results;
2036 
2037   // Iterate over struct fields.
2038   const uint32_t field_count = *elem.field_count.get();
2039   for (uint32_t field_index = 0; field_index < field_count; ++field_index) {
2040     Element child;
2041     for (uint32_t expr_index = 0; expr_index < num_exprs; ++expr_index) {
2042       const char *fmt_str =
2043           JITTemplate(ExpressionStrings(eExprSubelementsId + expr_index));
2044       int written = snprintf(expr_buffer, jit_max_expr_size, fmt_str,
2045                              context, field_count, field_count, field_count,
2046                              *elem.element_ptr.get(), field_count, field_index);
2047       if (written < 0) {
2048         LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__);
2049         return false;
2050       } else if (written >= jit_max_expr_size) {
2051         LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__);
2052         return false;
2053       }
2054 
2055       // Perform expression evaluation
2056       if (!EvalRSExpression(expr_buffer, frame_ptr, &results))
2057         return false;
2058 
2059       LLDB_LOGF(log, "%s - expr result 0x%" PRIx64 ".", __FUNCTION__, results);
2060 
2061       switch (expr_index) {
2062       case 0: // Element* of child
2063         child.element_ptr = static_cast<addr_t>(results);
2064         break;
2065       case 1: // Name of child
2066       {
2067         lldb::addr_t address = static_cast<addr_t>(results);
2068         Status err;
2069         std::string name;
2070         GetProcess()->ReadCStringFromMemory(address, name, err);
2071         if (!err.Fail())
2072           child.type_name = ConstString(name);
2073         else {
2074           LLDB_LOGF(log, "%s - warning: Couldn't read field name.",
2075                     __FUNCTION__);
2076         }
2077         break;
2078       }
2079       case 2: // Array size of child
2080         child.array_size = static_cast<uint32_t>(results);
2081         break;
2082       }
2083     }
2084 
2085     // We need to recursively JIT each Element field of the struct since
2086     // structs can be nested inside structs.
2087     if (!JITElementPacked(child, context, frame_ptr))
2088       return false;
2089     elem.children.push_back(child);
2090   }
2091 
2092   // Try to infer the name of the struct type so we can pretty print the
2093   // allocation contents.
2094   FindStructTypeName(elem, frame_ptr);
2095 
2096   return true;
2097 }
2098 
2099 // JITs the RS runtime for the address of the last element in the allocation.
2100 // The `elem_size` parameter represents the size of a single element, including
2101 // padding. Which is needed as an offset from the last element pointer. Using
2102 // this offset minus the starting address we can calculate the size of the
2103 // allocation. Returns true on success, false otherwise
2104 bool RenderScriptRuntime::JITAllocationSize(AllocationDetails *alloc,
2105                                             StackFrame *frame_ptr) {
2106   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2107 
2108   if (!alloc->address.isValid() || !alloc->dimension.isValid() ||
2109       !alloc->data_ptr.isValid() || !alloc->element.datum_size.isValid()) {
2110     LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__);
2111     return false;
2112   }
2113 
2114   // Find dimensions
2115   uint32_t dim_x = alloc->dimension.get()->dim_1;
2116   uint32_t dim_y = alloc->dimension.get()->dim_2;
2117   uint32_t dim_z = alloc->dimension.get()->dim_3;
2118 
2119   // Our plan of jitting the last element address doesn't seem to work for
2120   // struct Allocations` Instead try to infer the size ourselves without any
2121   // inter element padding.
2122   if (alloc->element.children.size() > 0) {
2123     if (dim_x == 0)
2124       dim_x = 1;
2125     if (dim_y == 0)
2126       dim_y = 1;
2127     if (dim_z == 0)
2128       dim_z = 1;
2129 
2130     alloc->size = dim_x * dim_y * dim_z * *alloc->element.datum_size.get();
2131 
2132     LLDB_LOGF(log, "%s - inferred size of struct allocation %" PRIu32 ".",
2133               __FUNCTION__, *alloc->size.get());
2134     return true;
2135   }
2136 
2137   const char *fmt_str = JITTemplate(eExprGetOffsetPtr);
2138   char expr_buf[jit_max_expr_size];
2139 
2140   // Calculate last element
2141   dim_x = dim_x == 0 ? 0 : dim_x - 1;
2142   dim_y = dim_y == 0 ? 0 : dim_y - 1;
2143   dim_z = dim_z == 0 ? 0 : dim_z - 1;
2144 
2145   int written = snprintf(expr_buf, jit_max_expr_size, fmt_str,
2146                          *alloc->address.get(), dim_x, dim_y, dim_z);
2147   if (written < 0) {
2148     LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__);
2149     return false;
2150   } else if (written >= jit_max_expr_size) {
2151     LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__);
2152     return false;
2153   }
2154 
2155   uint64_t result = 0;
2156   if (!EvalRSExpression(expr_buf, frame_ptr, &result))
2157     return false;
2158 
2159   addr_t mem_ptr = static_cast<lldb::addr_t>(result);
2160   // Find pointer to last element and add on size of an element
2161   alloc->size = static_cast<uint32_t>(mem_ptr - *alloc->data_ptr.get()) +
2162                 *alloc->element.datum_size.get();
2163 
2164   return true;
2165 }
2166 
2167 // JITs the RS runtime for information about the stride between rows in the
2168 // allocation. This is done to detect padding, since allocated memory is
2169 // 16-byte aligned. Returns true on success, false otherwise
2170 bool RenderScriptRuntime::JITAllocationStride(AllocationDetails *alloc,
2171                                               StackFrame *frame_ptr) {
2172   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2173 
2174   if (!alloc->address.isValid() || !alloc->data_ptr.isValid()) {
2175     LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__);
2176     return false;
2177   }
2178 
2179   const char *fmt_str = JITTemplate(eExprGetOffsetPtr);
2180   char expr_buf[jit_max_expr_size];
2181 
2182   int written = snprintf(expr_buf, jit_max_expr_size, fmt_str,
2183                          *alloc->address.get(), 0, 1, 0);
2184   if (written < 0) {
2185     LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__);
2186     return false;
2187   } else if (written >= jit_max_expr_size) {
2188     LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__);
2189     return false;
2190   }
2191 
2192   uint64_t result = 0;
2193   if (!EvalRSExpression(expr_buf, frame_ptr, &result))
2194     return false;
2195 
2196   addr_t mem_ptr = static_cast<lldb::addr_t>(result);
2197   alloc->stride = static_cast<uint32_t>(mem_ptr - *alloc->data_ptr.get());
2198 
2199   return true;
2200 }
2201 
2202 // JIT all the current runtime info regarding an allocation
2203 bool RenderScriptRuntime::RefreshAllocation(AllocationDetails *alloc,
2204                                             StackFrame *frame_ptr) {
2205   // GetOffsetPointer()
2206   if (!JITDataPointer(alloc, frame_ptr))
2207     return false;
2208 
2209   // rsaAllocationGetType()
2210   if (!JITTypePointer(alloc, frame_ptr))
2211     return false;
2212 
2213   // rsaTypeGetNativeData()
2214   if (!JITTypePacked(alloc, frame_ptr))
2215     return false;
2216 
2217   // rsaElementGetNativeData()
2218   if (!JITElementPacked(alloc->element, *alloc->context.get(), frame_ptr))
2219     return false;
2220 
2221   // Sets the datum_size member in Element
2222   SetElementSize(alloc->element);
2223 
2224   // Use GetOffsetPointer() to infer size of the allocation
2225   return JITAllocationSize(alloc, frame_ptr);
2226 }
2227 
2228 // Function attempts to set the type_name member of the parameterised Element
2229 // object. This string should be the name of the struct type the Element
2230 // represents. We need this string for pretty printing the Element to users.
2231 void RenderScriptRuntime::FindStructTypeName(Element &elem,
2232                                              StackFrame *frame_ptr) {
2233   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2234 
2235   if (!elem.type_name.IsEmpty()) // Name already set
2236     return;
2237   else
2238     elem.type_name = Element::GetFallbackStructName(); // Default type name if
2239                                                        // we don't succeed
2240 
2241   // Find all the global variables from the script rs modules
2242   VariableList var_list;
2243   for (auto module_sp : m_rsmodules)
2244     module_sp->m_module->FindGlobalVariables(
2245         RegularExpression(llvm::StringRef(".")), UINT32_MAX, var_list);
2246 
2247   // Iterate over all the global variables looking for one with a matching type
2248   // to the Element. We make the assumption a match exists since there needs to
2249   // be a global variable to reflect the struct type back into java host code.
2250   for (const VariableSP &var_sp : var_list) {
2251     if (!var_sp)
2252       continue;
2253 
2254     ValueObjectSP valobj_sp = ValueObjectVariable::Create(frame_ptr, var_sp);
2255     if (!valobj_sp)
2256       continue;
2257 
2258     // Find the number of variable fields.
2259     // If it has no fields, or more fields than our Element, then it can't be
2260     // the struct we're looking for. Don't check for equality since RS can add
2261     // extra struct members for padding.
2262     size_t num_children = valobj_sp->GetNumChildren();
2263     if (num_children > elem.children.size() || num_children == 0)
2264       continue;
2265 
2266     // Iterate over children looking for members with matching field names. If
2267     // all the field names match, this is likely the struct we want.
2268     //   TODO: This could be made more robust by also checking children data
2269     //   sizes, or array size
2270     bool found = true;
2271     for (size_t i = 0; i < num_children; ++i) {
2272       ValueObjectSP child = valobj_sp->GetChildAtIndex(i, true);
2273       if (!child || (child->GetName() != elem.children[i].type_name)) {
2274         found = false;
2275         break;
2276       }
2277     }
2278 
2279     // RS can add extra struct members for padding in the format
2280     // '#rs_padding_[0-9]+'
2281     if (found && num_children < elem.children.size()) {
2282       const uint32_t size_diff = elem.children.size() - num_children;
2283       LLDB_LOGF(log, "%s - %" PRIu32 " padding struct entries", __FUNCTION__,
2284                 size_diff);
2285 
2286       for (uint32_t i = 0; i < size_diff; ++i) {
2287         ConstString name = elem.children[num_children + i].type_name;
2288         if (strcmp(name.AsCString(), "#rs_padding") < 0)
2289           found = false;
2290       }
2291     }
2292 
2293     // We've found a global variable with matching type
2294     if (found) {
2295       // Dereference since our Element type isn't a pointer.
2296       if (valobj_sp->IsPointerType()) {
2297         Status err;
2298         ValueObjectSP deref_valobj = valobj_sp->Dereference(err);
2299         if (!err.Fail())
2300           valobj_sp = deref_valobj;
2301       }
2302 
2303       // Save name of variable in Element.
2304       elem.type_name = valobj_sp->GetTypeName();
2305       LLDB_LOGF(log, "%s - element name set to %s", __FUNCTION__,
2306                 elem.type_name.AsCString());
2307 
2308       return;
2309     }
2310   }
2311 }
2312 
2313 // Function sets the datum_size member of Element. Representing the size of a
2314 // single instance including padding. Assumes the relevant allocation
2315 // information has already been jitted.
2316 void RenderScriptRuntime::SetElementSize(Element &elem) {
2317   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2318   const Element::DataType type = *elem.type.get();
2319   assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT &&
2320          "Invalid allocation type");
2321 
2322   const uint32_t vec_size = *elem.type_vec_size.get();
2323   uint32_t data_size = 0;
2324   uint32_t padding = 0;
2325 
2326   // Element is of a struct type, calculate size recursively.
2327   if ((type == Element::RS_TYPE_NONE) && (elem.children.size() > 0)) {
2328     for (Element &child : elem.children) {
2329       SetElementSize(child);
2330       const uint32_t array_size =
2331           child.array_size.isValid() ? *child.array_size.get() : 1;
2332       data_size += *child.datum_size.get() * array_size;
2333     }
2334   }
2335   // These have been packed already
2336   else if (type == Element::RS_TYPE_UNSIGNED_5_6_5 ||
2337            type == Element::RS_TYPE_UNSIGNED_5_5_5_1 ||
2338            type == Element::RS_TYPE_UNSIGNED_4_4_4_4) {
2339     data_size = AllocationDetails::RSTypeToFormat[type][eElementSize];
2340   } else if (type < Element::RS_TYPE_ELEMENT) {
2341     data_size =
2342         vec_size * AllocationDetails::RSTypeToFormat[type][eElementSize];
2343     if (vec_size == 3)
2344       padding = AllocationDetails::RSTypeToFormat[type][eElementSize];
2345   } else
2346     data_size =
2347         GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
2348 
2349   elem.padding = padding;
2350   elem.datum_size = data_size + padding;
2351   LLDB_LOGF(log, "%s - element size set to %" PRIu32, __FUNCTION__,
2352             data_size + padding);
2353 }
2354 
2355 // Given an allocation, this function copies the allocation contents from
2356 // device into a buffer on the heap. Returning a shared pointer to the buffer
2357 // containing the data.
2358 std::shared_ptr<uint8_t>
2359 RenderScriptRuntime::GetAllocationData(AllocationDetails *alloc,
2360                                        StackFrame *frame_ptr) {
2361   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2362 
2363   // JIT all the allocation details
2364   if (alloc->ShouldRefresh()) {
2365     LLDB_LOGF(log, "%s - allocation details not calculated yet, jitting info",
2366               __FUNCTION__);
2367 
2368     if (!RefreshAllocation(alloc, frame_ptr)) {
2369       LLDB_LOGF(log, "%s - couldn't JIT allocation details", __FUNCTION__);
2370       return nullptr;
2371     }
2372   }
2373 
2374   assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() &&
2375          alloc->element.type_vec_size.isValid() && alloc->size.isValid() &&
2376          "Allocation information not available");
2377 
2378   // Allocate a buffer to copy data into
2379   const uint32_t size = *alloc->size.get();
2380   std::shared_ptr<uint8_t> buffer(new uint8_t[size]);
2381   if (!buffer) {
2382     LLDB_LOGF(log, "%s - couldn't allocate a %" PRIu32 " byte buffer",
2383               __FUNCTION__, size);
2384     return nullptr;
2385   }
2386 
2387   // Read the inferior memory
2388   Status err;
2389   lldb::addr_t data_ptr = *alloc->data_ptr.get();
2390   GetProcess()->ReadMemory(data_ptr, buffer.get(), size, err);
2391   if (err.Fail()) {
2392     LLDB_LOGF(log,
2393               "%s - '%s' Couldn't read %" PRIu32
2394               " bytes of allocation data from 0x%" PRIx64,
2395               __FUNCTION__, err.AsCString(), size, data_ptr);
2396     return nullptr;
2397   }
2398 
2399   return buffer;
2400 }
2401 
2402 // Function copies data from a binary file into an allocation. There is a
2403 // header at the start of the file, FileHeader, before the data content itself.
2404 // Information from this header is used to display warnings to the user about
2405 // incompatibilities
2406 bool RenderScriptRuntime::LoadAllocation(Stream &strm, const uint32_t alloc_id,
2407                                          const char *path,
2408                                          StackFrame *frame_ptr) {
2409   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2410 
2411   // Find allocation with the given id
2412   AllocationDetails *alloc = FindAllocByID(strm, alloc_id);
2413   if (!alloc)
2414     return false;
2415 
2416   LLDB_LOGF(log, "%s - found allocation 0x%" PRIx64, __FUNCTION__,
2417             *alloc->address.get());
2418 
2419   // JIT all the allocation details
2420   if (alloc->ShouldRefresh()) {
2421     LLDB_LOGF(log, "%s - allocation details not calculated yet, jitting info.",
2422               __FUNCTION__);
2423 
2424     if (!RefreshAllocation(alloc, frame_ptr)) {
2425       LLDB_LOGF(log, "%s - couldn't JIT allocation details", __FUNCTION__);
2426       return false;
2427     }
2428   }
2429 
2430   assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() &&
2431          alloc->element.type_vec_size.isValid() && alloc->size.isValid() &&
2432          alloc->element.datum_size.isValid() &&
2433          "Allocation information not available");
2434 
2435   // Check we can read from file
2436   FileSpec file(path);
2437   FileSystem::Instance().Resolve(file);
2438   if (!FileSystem::Instance().Exists(file)) {
2439     strm.Printf("Error: File %s does not exist", path);
2440     strm.EOL();
2441     return false;
2442   }
2443 
2444   if (!FileSystem::Instance().Readable(file)) {
2445     strm.Printf("Error: File %s does not have readable permissions", path);
2446     strm.EOL();
2447     return false;
2448   }
2449 
2450   // Read file into data buffer
2451   auto data_sp = FileSystem::Instance().CreateDataBuffer(file.GetPath());
2452 
2453   // Cast start of buffer to FileHeader and use pointer to read metadata
2454   void *file_buf = data_sp->GetBytes();
2455   if (file_buf == nullptr ||
2456       data_sp->GetByteSize() < (sizeof(AllocationDetails::FileHeader) +
2457                                 sizeof(AllocationDetails::ElementHeader))) {
2458     strm.Printf("Error: File %s does not contain enough data for header", path);
2459     strm.EOL();
2460     return false;
2461   }
2462   const AllocationDetails::FileHeader *file_header =
2463       static_cast<AllocationDetails::FileHeader *>(file_buf);
2464 
2465   // Check file starts with ascii characters "RSAD"
2466   if (memcmp(file_header->ident, "RSAD", 4)) {
2467     strm.Printf("Error: File doesn't contain identifier for an RS allocation "
2468                 "dump. Are you sure this is the correct file?");
2469     strm.EOL();
2470     return false;
2471   }
2472 
2473   // Look at the type of the root element in the header
2474   AllocationDetails::ElementHeader root_el_hdr;
2475   memcpy(&root_el_hdr, static_cast<uint8_t *>(file_buf) +
2476                            sizeof(AllocationDetails::FileHeader),
2477          sizeof(AllocationDetails::ElementHeader));
2478 
2479   LLDB_LOGF(log, "%s - header type %" PRIu32 ", element size %" PRIu32,
2480             __FUNCTION__, root_el_hdr.type, root_el_hdr.element_size);
2481 
2482   // Check if the target allocation and file both have the same number of bytes
2483   // for an Element
2484   if (*alloc->element.datum_size.get() != root_el_hdr.element_size) {
2485     strm.Printf("Warning: Mismatched Element sizes - file %" PRIu32
2486                 " bytes, allocation %" PRIu32 " bytes",
2487                 root_el_hdr.element_size, *alloc->element.datum_size.get());
2488     strm.EOL();
2489   }
2490 
2491   // Check if the target allocation and file both have the same type
2492   const uint32_t alloc_type = static_cast<uint32_t>(*alloc->element.type.get());
2493   const uint32_t file_type = root_el_hdr.type;
2494 
2495   if (file_type > Element::RS_TYPE_FONT) {
2496     strm.Printf("Warning: File has unknown allocation type");
2497     strm.EOL();
2498   } else if (alloc_type != file_type) {
2499     // Enum value isn't monotonous, so doesn't always index RsDataTypeToString
2500     // array
2501     uint32_t target_type_name_idx = alloc_type;
2502     uint32_t head_type_name_idx = file_type;
2503     if (alloc_type >= Element::RS_TYPE_ELEMENT &&
2504         alloc_type <= Element::RS_TYPE_FONT)
2505       target_type_name_idx = static_cast<Element::DataType>(
2506           (alloc_type - Element::RS_TYPE_ELEMENT) +
2507           Element::RS_TYPE_MATRIX_2X2 + 1);
2508 
2509     if (file_type >= Element::RS_TYPE_ELEMENT &&
2510         file_type <= Element::RS_TYPE_FONT)
2511       head_type_name_idx = static_cast<Element::DataType>(
2512           (file_type - Element::RS_TYPE_ELEMENT) + Element::RS_TYPE_MATRIX_2X2 +
2513           1);
2514 
2515     const char *head_type_name =
2516         AllocationDetails::RsDataTypeToString[head_type_name_idx][0];
2517     const char *target_type_name =
2518         AllocationDetails::RsDataTypeToString[target_type_name_idx][0];
2519 
2520     strm.Printf(
2521         "Warning: Mismatched Types - file '%s' type, allocation '%s' type",
2522         head_type_name, target_type_name);
2523     strm.EOL();
2524   }
2525 
2526   // Advance buffer past header
2527   file_buf = static_cast<uint8_t *>(file_buf) + file_header->hdr_size;
2528 
2529   // Calculate size of allocation data in file
2530   size_t size = data_sp->GetByteSize() - file_header->hdr_size;
2531 
2532   // Check if the target allocation and file both have the same total data
2533   // size.
2534   const uint32_t alloc_size = *alloc->size.get();
2535   if (alloc_size != size) {
2536     strm.Printf("Warning: Mismatched allocation sizes - file 0x%" PRIx64
2537                 " bytes, allocation 0x%" PRIx32 " bytes",
2538                 (uint64_t)size, alloc_size);
2539     strm.EOL();
2540     // Set length to copy to minimum
2541     size = alloc_size < size ? alloc_size : size;
2542   }
2543 
2544   // Copy file data from our buffer into the target allocation.
2545   lldb::addr_t alloc_data = *alloc->data_ptr.get();
2546   Status err;
2547   size_t written = GetProcess()->WriteMemory(alloc_data, file_buf, size, err);
2548   if (!err.Success() || written != size) {
2549     strm.Printf("Error: Couldn't write data to allocation %s", err.AsCString());
2550     strm.EOL();
2551     return false;
2552   }
2553 
2554   strm.Printf("Contents of file '%s' read into allocation %" PRIu32, path,
2555               alloc->id);
2556   strm.EOL();
2557 
2558   return true;
2559 }
2560 
2561 // Function takes as parameters a byte buffer, which will eventually be written
2562 // to file as the element header, an offset into that buffer, and an Element
2563 // that will be saved into the buffer at the parametrised offset. Return value
2564 // is the new offset after writing the element into the buffer. Elements are
2565 // saved to the file as the ElementHeader struct followed by offsets to the
2566 // structs of all the element's children.
2567 size_t RenderScriptRuntime::PopulateElementHeaders(
2568     const std::shared_ptr<uint8_t> header_buffer, size_t offset,
2569     const Element &elem) {
2570   // File struct for an element header with all the relevant details copied
2571   // from elem. We assume members are valid already.
2572   AllocationDetails::ElementHeader elem_header;
2573   elem_header.type = *elem.type.get();
2574   elem_header.kind = *elem.type_kind.get();
2575   elem_header.element_size = *elem.datum_size.get();
2576   elem_header.vector_size = *elem.type_vec_size.get();
2577   elem_header.array_size =
2578       elem.array_size.isValid() ? *elem.array_size.get() : 0;
2579   const size_t elem_header_size = sizeof(AllocationDetails::ElementHeader);
2580 
2581   // Copy struct into buffer and advance offset We assume that header_buffer
2582   // has been checked for nullptr before this method is called
2583   memcpy(header_buffer.get() + offset, &elem_header, elem_header_size);
2584   offset += elem_header_size;
2585 
2586   // Starting offset of child ElementHeader struct
2587   size_t child_offset =
2588       offset + ((elem.children.size() + 1) * sizeof(uint32_t));
2589   for (const RenderScriptRuntime::Element &child : elem.children) {
2590     // Recursively populate the buffer with the element header structs of
2591     // children. Then save the offsets where they were set after the parent
2592     // element header.
2593     memcpy(header_buffer.get() + offset, &child_offset, sizeof(uint32_t));
2594     offset += sizeof(uint32_t);
2595 
2596     child_offset = PopulateElementHeaders(header_buffer, child_offset, child);
2597   }
2598 
2599   // Zero indicates no more children
2600   memset(header_buffer.get() + offset, 0, sizeof(uint32_t));
2601 
2602   return child_offset;
2603 }
2604 
2605 // Given an Element object this function returns the total size needed in the
2606 // file header to store the element's details. Taking into account the size of
2607 // the element header struct, plus the offsets to all the element's children.
2608 // Function is recursive so that the size of all ancestors is taken into
2609 // account.
2610 size_t RenderScriptRuntime::CalculateElementHeaderSize(const Element &elem) {
2611   // Offsets to children plus zero terminator
2612   size_t size = (elem.children.size() + 1) * sizeof(uint32_t);
2613   // Size of header struct with type details
2614   size += sizeof(AllocationDetails::ElementHeader);
2615 
2616   // Calculate recursively for all descendants
2617   for (const Element &child : elem.children)
2618     size += CalculateElementHeaderSize(child);
2619 
2620   return size;
2621 }
2622 
2623 // Function copies allocation contents into a binary file. This file can then
2624 // be loaded later into a different allocation. There is a header, FileHeader,
2625 // before the allocation data containing meta-data.
2626 bool RenderScriptRuntime::SaveAllocation(Stream &strm, const uint32_t alloc_id,
2627                                          const char *path,
2628                                          StackFrame *frame_ptr) {
2629   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2630 
2631   // Find allocation with the given id
2632   AllocationDetails *alloc = FindAllocByID(strm, alloc_id);
2633   if (!alloc)
2634     return false;
2635 
2636   LLDB_LOGF(log, "%s - found allocation 0x%" PRIx64 ".", __FUNCTION__,
2637             *alloc->address.get());
2638 
2639   // JIT all the allocation details
2640   if (alloc->ShouldRefresh()) {
2641     LLDB_LOGF(log, "%s - allocation details not calculated yet, jitting info.",
2642               __FUNCTION__);
2643 
2644     if (!RefreshAllocation(alloc, frame_ptr)) {
2645       LLDB_LOGF(log, "%s - couldn't JIT allocation details.", __FUNCTION__);
2646       return false;
2647     }
2648   }
2649 
2650   assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() &&
2651          alloc->element.type_vec_size.isValid() &&
2652          alloc->element.datum_size.get() &&
2653          alloc->element.type_kind.isValid() && alloc->dimension.isValid() &&
2654          "Allocation information not available");
2655 
2656   // Check we can create writable file
2657   FileSpec file_spec(path);
2658   FileSystem::Instance().Resolve(file_spec);
2659   auto file = FileSystem::Instance().Open(
2660       file_spec, File::eOpenOptionWriteOnly | File::eOpenOptionCanCreate |
2661                      File::eOpenOptionTruncate);
2662 
2663   if (!file) {
2664     std::string error = llvm::toString(file.takeError());
2665     strm.Printf("Error: Failed to open '%s' for writing: %s", path,
2666                 error.c_str());
2667     strm.EOL();
2668     return false;
2669   }
2670 
2671   // Read allocation into buffer of heap memory
2672   const std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr);
2673   if (!buffer) {
2674     strm.Printf("Error: Couldn't read allocation data into buffer");
2675     strm.EOL();
2676     return false;
2677   }
2678 
2679   // Create the file header
2680   AllocationDetails::FileHeader head;
2681   memcpy(head.ident, "RSAD", 4);
2682   head.dims[0] = static_cast<uint32_t>(alloc->dimension.get()->dim_1);
2683   head.dims[1] = static_cast<uint32_t>(alloc->dimension.get()->dim_2);
2684   head.dims[2] = static_cast<uint32_t>(alloc->dimension.get()->dim_3);
2685 
2686   const size_t element_header_size = CalculateElementHeaderSize(alloc->element);
2687   assert((sizeof(AllocationDetails::FileHeader) + element_header_size) <
2688              UINT16_MAX &&
2689          "Element header too large");
2690   head.hdr_size = static_cast<uint16_t>(sizeof(AllocationDetails::FileHeader) +
2691                                         element_header_size);
2692 
2693   // Write the file header
2694   size_t num_bytes = sizeof(AllocationDetails::FileHeader);
2695   LLDB_LOGF(log, "%s - writing File Header, 0x%" PRIx64 " bytes", __FUNCTION__,
2696             (uint64_t)num_bytes);
2697 
2698   Status err = file.get()->Write(&head, num_bytes);
2699   if (!err.Success()) {
2700     strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path);
2701     strm.EOL();
2702     return false;
2703   }
2704 
2705   // Create the headers describing the element type of the allocation.
2706   std::shared_ptr<uint8_t> element_header_buffer(
2707       new uint8_t[element_header_size]);
2708   if (element_header_buffer == nullptr) {
2709     strm.Printf("Internal Error: Couldn't allocate %" PRIu64
2710                 " bytes on the heap",
2711                 (uint64_t)element_header_size);
2712     strm.EOL();
2713     return false;
2714   }
2715 
2716   PopulateElementHeaders(element_header_buffer, 0, alloc->element);
2717 
2718   // Write headers for allocation element type to file
2719   num_bytes = element_header_size;
2720   LLDB_LOGF(log, "%s - writing element headers, 0x%" PRIx64 " bytes.",
2721             __FUNCTION__, (uint64_t)num_bytes);
2722 
2723   err = file.get()->Write(element_header_buffer.get(), num_bytes);
2724   if (!err.Success()) {
2725     strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path);
2726     strm.EOL();
2727     return false;
2728   }
2729 
2730   // Write allocation data to file
2731   num_bytes = static_cast<size_t>(*alloc->size.get());
2732   LLDB_LOGF(log, "%s - writing 0x%" PRIx64 " bytes", __FUNCTION__,
2733             (uint64_t)num_bytes);
2734 
2735   err = file.get()->Write(buffer.get(), num_bytes);
2736   if (!err.Success()) {
2737     strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path);
2738     strm.EOL();
2739     return false;
2740   }
2741 
2742   strm.Printf("Allocation written to file '%s'", path);
2743   strm.EOL();
2744   return true;
2745 }
2746 
2747 bool RenderScriptRuntime::LoadModule(const lldb::ModuleSP &module_sp) {
2748   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2749 
2750   if (module_sp) {
2751     for (const auto &rs_module : m_rsmodules) {
2752       if (rs_module->m_module == module_sp) {
2753         // Check if the user has enabled automatically breaking on all RS
2754         // kernels.
2755         if (m_breakAllKernels)
2756           BreakOnModuleKernels(rs_module);
2757 
2758         return false;
2759       }
2760     }
2761     bool module_loaded = false;
2762     switch (GetModuleKind(module_sp)) {
2763     case eModuleKindKernelObj: {
2764       RSModuleDescriptorSP module_desc;
2765       module_desc = std::make_shared<RSModuleDescriptor>(module_sp);
2766       if (module_desc->ParseRSInfo()) {
2767         m_rsmodules.push_back(module_desc);
2768         module_desc->WarnIfVersionMismatch(GetProcess()
2769                                                ->GetTarget()
2770                                                .GetDebugger()
2771                                                .GetAsyncOutputStream()
2772                                                .get());
2773         module_loaded = true;
2774       }
2775       if (module_loaded) {
2776         FixupScriptDetails(module_desc);
2777       }
2778       break;
2779     }
2780     case eModuleKindDriver: {
2781       if (!m_libRSDriver) {
2782         m_libRSDriver = module_sp;
2783         LoadRuntimeHooks(m_libRSDriver, RenderScriptRuntime::eModuleKindDriver);
2784       }
2785       break;
2786     }
2787     case eModuleKindImpl: {
2788       if (!m_libRSCpuRef) {
2789         m_libRSCpuRef = module_sp;
2790         LoadRuntimeHooks(m_libRSCpuRef, RenderScriptRuntime::eModuleKindImpl);
2791       }
2792       break;
2793     }
2794     case eModuleKindLibRS: {
2795       if (!m_libRS) {
2796         m_libRS = module_sp;
2797         static ConstString gDbgPresentStr("gDebuggerPresent");
2798         const Symbol *debug_present = m_libRS->FindFirstSymbolWithNameAndType(
2799             gDbgPresentStr, eSymbolTypeData);
2800         if (debug_present) {
2801           Status err;
2802           uint32_t flag = 0x00000001U;
2803           Target &target = GetProcess()->GetTarget();
2804           addr_t addr = debug_present->GetLoadAddress(&target);
2805           GetProcess()->WriteMemory(addr, &flag, sizeof(flag), err);
2806           if (err.Success()) {
2807             LLDB_LOGF(log, "%s - debugger present flag set on debugee.",
2808                       __FUNCTION__);
2809 
2810             m_debuggerPresentFlagged = true;
2811           } else if (log) {
2812             LLDB_LOGF(log, "%s - error writing debugger present flags '%s' ",
2813                       __FUNCTION__, err.AsCString());
2814           }
2815         } else if (log) {
2816           LLDB_LOGF(
2817               log,
2818               "%s - error writing debugger present flags - symbol not found",
2819               __FUNCTION__);
2820         }
2821       }
2822       break;
2823     }
2824     default:
2825       break;
2826     }
2827     if (module_loaded)
2828       Update();
2829     return module_loaded;
2830   }
2831   return false;
2832 }
2833 
2834 void RenderScriptRuntime::Update() {
2835   if (m_rsmodules.size() > 0) {
2836     if (!m_initiated) {
2837       Initiate();
2838     }
2839   }
2840 }
2841 
2842 void RSModuleDescriptor::WarnIfVersionMismatch(lldb_private::Stream *s) const {
2843   if (!s)
2844     return;
2845 
2846   if (m_slang_version.empty() || m_bcc_version.empty()) {
2847     s->PutCString("WARNING: Unknown bcc or slang (llvm-rs-cc) version; debug "
2848                   "experience may be unreliable");
2849     s->EOL();
2850   } else if (m_slang_version != m_bcc_version) {
2851     s->Printf("WARNING: The debug info emitted by the slang frontend "
2852               "(llvm-rs-cc) used to build this module (%s) does not match the "
2853               "version of bcc used to generate the debug information (%s). "
2854               "This is an unsupported configuration and may result in a poor "
2855               "debugging experience; proceed with caution",
2856               m_slang_version.c_str(), m_bcc_version.c_str());
2857     s->EOL();
2858   }
2859 }
2860 
2861 bool RSModuleDescriptor::ParsePragmaCount(llvm::StringRef *lines,
2862                                           size_t n_lines) {
2863   // Skip the pragma prototype line
2864   ++lines;
2865   for (; n_lines--; ++lines) {
2866     const auto kv_pair = lines->split(" - ");
2867     m_pragmas[kv_pair.first.trim().str()] = kv_pair.second.trim().str();
2868   }
2869   return true;
2870 }
2871 
2872 bool RSModuleDescriptor::ParseExportReduceCount(llvm::StringRef *lines,
2873                                                 size_t n_lines) {
2874   // The list of reduction kernels in the `.rs.info` symbol is of the form
2875   // "signature - accumulatordatasize - reduction_name - initializer_name -
2876   // accumulator_name - combiner_name - outconverter_name - halter_name" Where
2877   // a function is not explicitly named by the user, or is not generated by the
2878   // compiler, it is named "." so the dash separated list should always be 8
2879   // items long
2880   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
2881   // Skip the exportReduceCount line
2882   ++lines;
2883   for (; n_lines--; ++lines) {
2884     llvm::SmallVector<llvm::StringRef, 8> spec;
2885     lines->split(spec, " - ");
2886     if (spec.size() != 8) {
2887       if (spec.size() < 8) {
2888         if (log)
2889           log->Error("Error parsing RenderScript reduction spec. wrong number "
2890                      "of fields");
2891         return false;
2892       } else if (log)
2893         log->Warning("Extraneous members in reduction spec: '%s'",
2894                      lines->str().c_str());
2895     }
2896 
2897     const auto sig_s = spec[0];
2898     uint32_t sig;
2899     if (sig_s.getAsInteger(10, sig)) {
2900       if (log)
2901         log->Error("Error parsing Renderscript reduction spec: invalid kernel "
2902                    "signature: '%s'",
2903                    sig_s.str().c_str());
2904       return false;
2905     }
2906 
2907     const auto accum_data_size_s = spec[1];
2908     uint32_t accum_data_size;
2909     if (accum_data_size_s.getAsInteger(10, accum_data_size)) {
2910       if (log)
2911         log->Error("Error parsing Renderscript reduction spec: invalid "
2912                    "accumulator data size %s",
2913                    accum_data_size_s.str().c_str());
2914       return false;
2915     }
2916 
2917     LLDB_LOGF(log, "Found RenderScript reduction '%s'", spec[2].str().c_str());
2918 
2919     m_reductions.push_back(RSReductionDescriptor(this, sig, accum_data_size,
2920                                                  spec[2], spec[3], spec[4],
2921                                                  spec[5], spec[6], spec[7]));
2922   }
2923   return true;
2924 }
2925 
2926 bool RSModuleDescriptor::ParseVersionInfo(llvm::StringRef *lines,
2927                                           size_t n_lines) {
2928   // Skip the versionInfo line
2929   ++lines;
2930   for (; n_lines--; ++lines) {
2931     // We're only interested in bcc and slang versions, and ignore all other
2932     // versionInfo lines
2933     const auto kv_pair = lines->split(" - ");
2934     if (kv_pair.first == "slang")
2935       m_slang_version = kv_pair.second.str();
2936     else if (kv_pair.first == "bcc")
2937       m_bcc_version = kv_pair.second.str();
2938   }
2939   return true;
2940 }
2941 
2942 bool RSModuleDescriptor::ParseExportForeachCount(llvm::StringRef *lines,
2943                                                  size_t n_lines) {
2944   // Skip the exportForeachCount line
2945   ++lines;
2946   for (; n_lines--; ++lines) {
2947     uint32_t slot;
2948     // `forEach` kernels are listed in the `.rs.info` packet as a "slot - name"
2949     // pair per line
2950     const auto kv_pair = lines->split(" - ");
2951     if (kv_pair.first.getAsInteger(10, slot))
2952       return false;
2953     m_kernels.push_back(RSKernelDescriptor(this, kv_pair.second, slot));
2954   }
2955   return true;
2956 }
2957 
2958 bool RSModuleDescriptor::ParseExportVarCount(llvm::StringRef *lines,
2959                                              size_t n_lines) {
2960   // Skip the ExportVarCount line
2961   ++lines;
2962   for (; n_lines--; ++lines)
2963     m_globals.push_back(RSGlobalDescriptor(this, *lines));
2964   return true;
2965 }
2966 
2967 // The .rs.info symbol in renderscript modules contains a string which needs to
2968 // be parsed. The string is basic and is parsed on a line by line basis.
2969 bool RSModuleDescriptor::ParseRSInfo() {
2970   assert(m_module);
2971   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2972   const Symbol *info_sym = m_module->FindFirstSymbolWithNameAndType(
2973       ConstString(".rs.info"), eSymbolTypeData);
2974   if (!info_sym)
2975     return false;
2976 
2977   const addr_t addr = info_sym->GetAddressRef().GetFileAddress();
2978   if (addr == LLDB_INVALID_ADDRESS)
2979     return false;
2980 
2981   const addr_t size = info_sym->GetByteSize();
2982   const FileSpec fs = m_module->GetFileSpec();
2983 
2984   auto buffer =
2985       FileSystem::Instance().CreateDataBuffer(fs.GetPath(), size, addr);
2986   if (!buffer)
2987     return false;
2988 
2989   // split rs.info. contents into lines
2990   llvm::SmallVector<llvm::StringRef, 128> info_lines;
2991   {
2992     const llvm::StringRef raw_rs_info((const char *)buffer->GetBytes());
2993     raw_rs_info.split(info_lines, '\n');
2994     LLDB_LOGF(log, "'.rs.info symbol for '%s':\n%s",
2995               m_module->GetFileSpec().GetCString(), raw_rs_info.str().c_str());
2996   }
2997 
2998   enum {
2999     eExportVar,
3000     eExportForEach,
3001     eExportReduce,
3002     ePragma,
3003     eBuildChecksum,
3004     eObjectSlot,
3005     eVersionInfo,
3006   };
3007 
3008   const auto rs_info_handler = [](llvm::StringRef name) -> int {
3009     return llvm::StringSwitch<int>(name)
3010         // The number of visible global variables in the script
3011         .Case("exportVarCount", eExportVar)
3012         // The number of RenderScrip `forEach` kernels __attribute__((kernel))
3013         .Case("exportForEachCount", eExportForEach)
3014         // The number of generalreductions: This marked in the script by
3015         // `#pragma reduce()`
3016         .Case("exportReduceCount", eExportReduce)
3017         // Total count of all RenderScript specific `#pragmas` used in the
3018         // script
3019         .Case("pragmaCount", ePragma)
3020         .Case("objectSlotCount", eObjectSlot)
3021         .Case("versionInfo", eVersionInfo)
3022         .Default(-1);
3023   };
3024 
3025   // parse all text lines of .rs.info
3026   for (auto line = info_lines.begin(); line != info_lines.end(); ++line) {
3027     const auto kv_pair = line->split(": ");
3028     const auto key = kv_pair.first;
3029     const auto val = kv_pair.second.trim();
3030 
3031     const auto handler = rs_info_handler(key);
3032     if (handler == -1)
3033       continue;
3034     // getAsInteger returns `true` on an error condition - we're only
3035     // interested in numeric fields at the moment
3036     uint64_t n_lines;
3037     if (val.getAsInteger(10, n_lines)) {
3038       LLDB_LOGV(log, "Failed to parse non-numeric '.rs.info' section {0}",
3039                 line->str());
3040       continue;
3041     }
3042     if (info_lines.end() - (line + 1) < (ptrdiff_t)n_lines)
3043       return false;
3044 
3045     bool success = false;
3046     switch (handler) {
3047     case eExportVar:
3048       success = ParseExportVarCount(line, n_lines);
3049       break;
3050     case eExportForEach:
3051       success = ParseExportForeachCount(line, n_lines);
3052       break;
3053     case eExportReduce:
3054       success = ParseExportReduceCount(line, n_lines);
3055       break;
3056     case ePragma:
3057       success = ParsePragmaCount(line, n_lines);
3058       break;
3059     case eVersionInfo:
3060       success = ParseVersionInfo(line, n_lines);
3061       break;
3062     default: {
3063       LLDB_LOGF(log, "%s - skipping .rs.info field '%s'", __FUNCTION__,
3064                 line->str().c_str());
3065       continue;
3066     }
3067     }
3068     if (!success)
3069       return false;
3070     line += n_lines;
3071   }
3072   return info_lines.size() > 0;
3073 }
3074 
3075 void RenderScriptRuntime::DumpStatus(Stream &strm) const {
3076   if (m_libRS) {
3077     strm.Printf("Runtime Library discovered.");
3078     strm.EOL();
3079   }
3080   if (m_libRSDriver) {
3081     strm.Printf("Runtime Driver discovered.");
3082     strm.EOL();
3083   }
3084   if (m_libRSCpuRef) {
3085     strm.Printf("CPU Reference Implementation discovered.");
3086     strm.EOL();
3087   }
3088 
3089   if (m_runtimeHooks.size()) {
3090     strm.Printf("Runtime functions hooked:");
3091     strm.EOL();
3092     for (auto b : m_runtimeHooks) {
3093       strm.Indent(b.second->defn->name);
3094       strm.EOL();
3095     }
3096   } else {
3097     strm.Printf("Runtime is not hooked.");
3098     strm.EOL();
3099   }
3100 }
3101 
3102 void RenderScriptRuntime::DumpContexts(Stream &strm) const {
3103   strm.Printf("Inferred RenderScript Contexts:");
3104   strm.EOL();
3105   strm.IndentMore();
3106 
3107   std::map<addr_t, uint64_t> contextReferences;
3108 
3109   // Iterate over all of the currently discovered scripts. Note: We cant push
3110   // or pop from m_scripts inside this loop or it may invalidate script.
3111   for (const auto &script : m_scripts) {
3112     if (!script->context.isValid())
3113       continue;
3114     lldb::addr_t context = *script->context;
3115 
3116     if (contextReferences.find(context) != contextReferences.end()) {
3117       contextReferences[context]++;
3118     } else {
3119       contextReferences[context] = 1;
3120     }
3121   }
3122 
3123   for (const auto &cRef : contextReferences) {
3124     strm.Printf("Context 0x%" PRIx64 ": %" PRIu64 " script instances",
3125                 cRef.first, cRef.second);
3126     strm.EOL();
3127   }
3128   strm.IndentLess();
3129 }
3130 
3131 void RenderScriptRuntime::DumpKernels(Stream &strm) const {
3132   strm.Printf("RenderScript Kernels:");
3133   strm.EOL();
3134   strm.IndentMore();
3135   for (const auto &module : m_rsmodules) {
3136     strm.Printf("Resource '%s':", module->m_resname.c_str());
3137     strm.EOL();
3138     for (const auto &kernel : module->m_kernels) {
3139       strm.Indent(kernel.m_name.GetStringRef());
3140       strm.EOL();
3141     }
3142   }
3143   strm.IndentLess();
3144 }
3145 
3146 RenderScriptRuntime::AllocationDetails *
3147 RenderScriptRuntime::FindAllocByID(Stream &strm, const uint32_t alloc_id) {
3148   AllocationDetails *alloc = nullptr;
3149 
3150   // See if we can find allocation using id as an index;
3151   if (alloc_id <= m_allocations.size() && alloc_id != 0 &&
3152       m_allocations[alloc_id - 1]->id == alloc_id) {
3153     alloc = m_allocations[alloc_id - 1].get();
3154     return alloc;
3155   }
3156 
3157   // Fallback to searching
3158   for (const auto &a : m_allocations) {
3159     if (a->id == alloc_id) {
3160       alloc = a.get();
3161       break;
3162     }
3163   }
3164 
3165   if (alloc == nullptr) {
3166     strm.Printf("Error: Couldn't find allocation with id matching %" PRIu32,
3167                 alloc_id);
3168     strm.EOL();
3169   }
3170 
3171   return alloc;
3172 }
3173 
3174 // Prints the contents of an allocation to the output stream, which may be a
3175 // file
3176 bool RenderScriptRuntime::DumpAllocation(Stream &strm, StackFrame *frame_ptr,
3177                                          const uint32_t id) {
3178   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
3179 
3180   // Check we can find the desired allocation
3181   AllocationDetails *alloc = FindAllocByID(strm, id);
3182   if (!alloc)
3183     return false; // FindAllocByID() will print error message for us here
3184 
3185   LLDB_LOGF(log, "%s - found allocation 0x%" PRIx64, __FUNCTION__,
3186             *alloc->address.get());
3187 
3188   // Check we have information about the allocation, if not calculate it
3189   if (alloc->ShouldRefresh()) {
3190     LLDB_LOGF(log, "%s - allocation details not calculated yet, jitting info.",
3191               __FUNCTION__);
3192 
3193     // JIT all the allocation information
3194     if (!RefreshAllocation(alloc, frame_ptr)) {
3195       strm.Printf("Error: Couldn't JIT allocation details");
3196       strm.EOL();
3197       return false;
3198     }
3199   }
3200 
3201   // Establish format and size of each data element
3202   const uint32_t vec_size = *alloc->element.type_vec_size.get();
3203   const Element::DataType type = *alloc->element.type.get();
3204 
3205   assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT &&
3206          "Invalid allocation type");
3207 
3208   lldb::Format format;
3209   if (type >= Element::RS_TYPE_ELEMENT)
3210     format = eFormatHex;
3211   else
3212     format = vec_size == 1
3213                  ? static_cast<lldb::Format>(
3214                        AllocationDetails::RSTypeToFormat[type][eFormatSingle])
3215                  : static_cast<lldb::Format>(
3216                        AllocationDetails::RSTypeToFormat[type][eFormatVector]);
3217 
3218   const uint32_t data_size = *alloc->element.datum_size.get();
3219 
3220   LLDB_LOGF(log, "%s - element size %" PRIu32 " bytes, including padding",
3221             __FUNCTION__, data_size);
3222 
3223   // Allocate a buffer to copy data into
3224   std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr);
3225   if (!buffer) {
3226     strm.Printf("Error: Couldn't read allocation data");
3227     strm.EOL();
3228     return false;
3229   }
3230 
3231   // Calculate stride between rows as there may be padding at end of rows since
3232   // allocated memory is 16-byte aligned
3233   if (!alloc->stride.isValid()) {
3234     if (alloc->dimension.get()->dim_2 == 0) // We only have one dimension
3235       alloc->stride = 0;
3236     else if (!JITAllocationStride(alloc, frame_ptr)) {
3237       strm.Printf("Error: Couldn't calculate allocation row stride");
3238       strm.EOL();
3239       return false;
3240     }
3241   }
3242   const uint32_t stride = *alloc->stride.get();
3243   const uint32_t size = *alloc->size.get(); // Size of whole allocation
3244   const uint32_t padding =
3245       alloc->element.padding.isValid() ? *alloc->element.padding.get() : 0;
3246   LLDB_LOGF(log,
3247             "%s - stride %" PRIu32 " bytes, size %" PRIu32
3248             " bytes, padding %" PRIu32,
3249             __FUNCTION__, stride, size, padding);
3250 
3251   // Find dimensions used to index loops, so need to be non-zero
3252   uint32_t dim_x = alloc->dimension.get()->dim_1;
3253   dim_x = dim_x == 0 ? 1 : dim_x;
3254 
3255   uint32_t dim_y = alloc->dimension.get()->dim_2;
3256   dim_y = dim_y == 0 ? 1 : dim_y;
3257 
3258   uint32_t dim_z = alloc->dimension.get()->dim_3;
3259   dim_z = dim_z == 0 ? 1 : dim_z;
3260 
3261   // Use data extractor to format output
3262   const uint32_t target_ptr_size =
3263       GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
3264   DataExtractor alloc_data(buffer.get(), size, GetProcess()->GetByteOrder(),
3265                            target_ptr_size);
3266 
3267   uint32_t offset = 0;   // Offset in buffer to next element to be printed
3268   uint32_t prev_row = 0; // Offset to the start of the previous row
3269 
3270   // Iterate over allocation dimensions, printing results to user
3271   strm.Printf("Data (X, Y, Z):");
3272   for (uint32_t z = 0; z < dim_z; ++z) {
3273     for (uint32_t y = 0; y < dim_y; ++y) {
3274       // Use stride to index start of next row.
3275       if (!(y == 0 && z == 0))
3276         offset = prev_row + stride;
3277       prev_row = offset;
3278 
3279       // Print each element in the row individually
3280       for (uint32_t x = 0; x < dim_x; ++x) {
3281         strm.Printf("\n(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ") = ", x, y, z);
3282         if ((type == Element::RS_TYPE_NONE) &&
3283             (alloc->element.children.size() > 0) &&
3284             (alloc->element.type_name != Element::GetFallbackStructName())) {
3285           // Here we are dumping an Element of struct type. This is done using
3286           // expression evaluation with the name of the struct type and pointer
3287           // to element. Don't print the name of the resulting expression,
3288           // since this will be '$[0-9]+'
3289           DumpValueObjectOptions expr_options;
3290           expr_options.SetHideName(true);
3291 
3292           // Setup expression as dereferencing a pointer cast to element
3293           // address.
3294           char expr_char_buffer[jit_max_expr_size];
3295           int written =
3296               snprintf(expr_char_buffer, jit_max_expr_size, "*(%s*) 0x%" PRIx64,
3297                        alloc->element.type_name.AsCString(),
3298                        *alloc->data_ptr.get() + offset);
3299 
3300           if (written < 0 || written >= jit_max_expr_size) {
3301             LLDB_LOGF(log, "%s - error in snprintf().", __FUNCTION__);
3302             continue;
3303           }
3304 
3305           // Evaluate expression
3306           ValueObjectSP expr_result;
3307           GetProcess()->GetTarget().EvaluateExpression(expr_char_buffer,
3308                                                        frame_ptr, expr_result);
3309 
3310           // Print the results to our stream.
3311           expr_result->Dump(strm, expr_options);
3312         } else {
3313           DumpDataExtractor(alloc_data, &strm, offset, format,
3314                             data_size - padding, 1, 1, LLDB_INVALID_ADDRESS, 0,
3315                             0);
3316         }
3317         offset += data_size;
3318       }
3319     }
3320   }
3321   strm.EOL();
3322 
3323   return true;
3324 }
3325 
3326 // Function recalculates all our cached information about allocations by
3327 // jitting the RS runtime regarding each allocation we know about. Returns true
3328 // if all allocations could be recomputed, false otherwise.
3329 bool RenderScriptRuntime::RecomputeAllAllocations(Stream &strm,
3330                                                   StackFrame *frame_ptr) {
3331   bool success = true;
3332   for (auto &alloc : m_allocations) {
3333     // JIT current allocation information
3334     if (!RefreshAllocation(alloc.get(), frame_ptr)) {
3335       strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32
3336                   "\n",
3337                   alloc->id);
3338       success = false;
3339     }
3340   }
3341 
3342   if (success)
3343     strm.Printf("All allocations successfully recomputed");
3344   strm.EOL();
3345 
3346   return success;
3347 }
3348 
3349 // Prints information regarding currently loaded allocations. These details are
3350 // gathered by jitting the runtime, which has as latency. Index parameter
3351 // specifies a single allocation ID to print, or a zero value to print them all
3352 void RenderScriptRuntime::ListAllocations(Stream &strm, StackFrame *frame_ptr,
3353                                           const uint32_t index) {
3354   strm.Printf("RenderScript Allocations:");
3355   strm.EOL();
3356   strm.IndentMore();
3357 
3358   for (auto &alloc : m_allocations) {
3359     // index will only be zero if we want to print all allocations
3360     if (index != 0 && index != alloc->id)
3361       continue;
3362 
3363     // JIT current allocation information
3364     if (alloc->ShouldRefresh() && !RefreshAllocation(alloc.get(), frame_ptr)) {
3365       strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32,
3366                   alloc->id);
3367       strm.EOL();
3368       continue;
3369     }
3370 
3371     strm.Printf("%" PRIu32 ":", alloc->id);
3372     strm.EOL();
3373     strm.IndentMore();
3374 
3375     strm.Indent("Context: ");
3376     if (!alloc->context.isValid())
3377       strm.Printf("unknown\n");
3378     else
3379       strm.Printf("0x%" PRIx64 "\n", *alloc->context.get());
3380 
3381     strm.Indent("Address: ");
3382     if (!alloc->address.isValid())
3383       strm.Printf("unknown\n");
3384     else
3385       strm.Printf("0x%" PRIx64 "\n", *alloc->address.get());
3386 
3387     strm.Indent("Data pointer: ");
3388     if (!alloc->data_ptr.isValid())
3389       strm.Printf("unknown\n");
3390     else
3391       strm.Printf("0x%" PRIx64 "\n", *alloc->data_ptr.get());
3392 
3393     strm.Indent("Dimensions: ");
3394     if (!alloc->dimension.isValid())
3395       strm.Printf("unknown\n");
3396     else
3397       strm.Printf("(%" PRId32 ", %" PRId32 ", %" PRId32 ")\n",
3398                   alloc->dimension.get()->dim_1, alloc->dimension.get()->dim_2,
3399                   alloc->dimension.get()->dim_3);
3400 
3401     strm.Indent("Data Type: ");
3402     if (!alloc->element.type.isValid() ||
3403         !alloc->element.type_vec_size.isValid())
3404       strm.Printf("unknown\n");
3405     else {
3406       const int vector_size = *alloc->element.type_vec_size.get();
3407       Element::DataType type = *alloc->element.type.get();
3408 
3409       if (!alloc->element.type_name.IsEmpty())
3410         strm.Printf("%s\n", alloc->element.type_name.AsCString());
3411       else {
3412         // Enum value isn't monotonous, so doesn't always index
3413         // RsDataTypeToString array
3414         if (type >= Element::RS_TYPE_ELEMENT && type <= Element::RS_TYPE_FONT)
3415           type =
3416               static_cast<Element::DataType>((type - Element::RS_TYPE_ELEMENT) +
3417                                              Element::RS_TYPE_MATRIX_2X2 + 1);
3418 
3419         if (type >= (sizeof(AllocationDetails::RsDataTypeToString) /
3420                      sizeof(AllocationDetails::RsDataTypeToString[0])) ||
3421             vector_size > 4 || vector_size < 1)
3422           strm.Printf("invalid type\n");
3423         else
3424           strm.Printf(
3425               "%s\n",
3426               AllocationDetails::RsDataTypeToString[static_cast<uint32_t>(type)]
3427                                                    [vector_size - 1]);
3428       }
3429     }
3430 
3431     strm.Indent("Data Kind: ");
3432     if (!alloc->element.type_kind.isValid())
3433       strm.Printf("unknown\n");
3434     else {
3435       const Element::DataKind kind = *alloc->element.type_kind.get();
3436       if (kind < Element::RS_KIND_USER || kind > Element::RS_KIND_PIXEL_YUV)
3437         strm.Printf("invalid kind\n");
3438       else
3439         strm.Printf(
3440             "%s\n",
3441             AllocationDetails::RsDataKindToString[static_cast<uint32_t>(kind)]);
3442     }
3443 
3444     strm.EOL();
3445     strm.IndentLess();
3446   }
3447   strm.IndentLess();
3448 }
3449 
3450 // Set breakpoints on every kernel found in RS module
3451 void RenderScriptRuntime::BreakOnModuleKernels(
3452     const RSModuleDescriptorSP rsmodule_sp) {
3453   for (const auto &kernel : rsmodule_sp->m_kernels) {
3454     // Don't set breakpoint on 'root' kernel
3455     if (strcmp(kernel.m_name.AsCString(), "root") == 0)
3456       continue;
3457 
3458     CreateKernelBreakpoint(kernel.m_name);
3459   }
3460 }
3461 
3462 // Method is internally called by the 'kernel breakpoint all' command to enable
3463 // or disable breaking on all kernels. When do_break is true we want to enable
3464 // this functionality. When do_break is false we want to disable it.
3465 void RenderScriptRuntime::SetBreakAllKernels(bool do_break, TargetSP target) {
3466   Log *log(
3467       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
3468 
3469   InitSearchFilter(target);
3470 
3471   // Set breakpoints on all the kernels
3472   if (do_break && !m_breakAllKernels) {
3473     m_breakAllKernels = true;
3474 
3475     for (const auto &module : m_rsmodules)
3476       BreakOnModuleKernels(module);
3477 
3478     LLDB_LOGF(log,
3479               "%s(True) - breakpoints set on all currently loaded kernels.",
3480               __FUNCTION__);
3481   } else if (!do_break &&
3482              m_breakAllKernels) // Breakpoints won't be set on any new kernels.
3483   {
3484     m_breakAllKernels = false;
3485 
3486     LLDB_LOGF(log, "%s(False) - breakpoints no longer automatically set.",
3487               __FUNCTION__);
3488   }
3489 }
3490 
3491 // Given the name of a kernel this function creates a breakpoint using our own
3492 // breakpoint resolver, and returns the Breakpoint shared pointer.
3493 BreakpointSP
3494 RenderScriptRuntime::CreateKernelBreakpoint(ConstString name) {
3495   Log *log(
3496       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
3497 
3498   if (!m_filtersp) {
3499     LLDB_LOGF(log, "%s - error, no breakpoint search filter set.",
3500               __FUNCTION__);
3501     return nullptr;
3502   }
3503 
3504   BreakpointResolverSP resolver_sp(new RSBreakpointResolver(nullptr, name));
3505   Target &target = GetProcess()->GetTarget();
3506   BreakpointSP bp = target.CreateBreakpoint(
3507       m_filtersp, resolver_sp, false, false, false);
3508 
3509   // Give RS breakpoints a specific name, so the user can manipulate them as a
3510   // group.
3511   Status err;
3512   target.AddNameToBreakpoint(bp, "RenderScriptKernel", err);
3513   if (err.Fail() && log)
3514     LLDB_LOGF(log, "%s - error setting break name, '%s'.", __FUNCTION__,
3515               err.AsCString());
3516 
3517   return bp;
3518 }
3519 
3520 BreakpointSP
3521 RenderScriptRuntime::CreateReductionBreakpoint(ConstString name,
3522                                                int kernel_types) {
3523   Log *log(
3524       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
3525 
3526   if (!m_filtersp) {
3527     LLDB_LOGF(log, "%s - error, no breakpoint search filter set.",
3528               __FUNCTION__);
3529     return nullptr;
3530   }
3531 
3532   BreakpointResolverSP resolver_sp(new RSReduceBreakpointResolver(
3533       nullptr, name, &m_rsmodules, kernel_types));
3534   Target &target = GetProcess()->GetTarget();
3535   BreakpointSP bp = target.CreateBreakpoint(
3536       m_filtersp, resolver_sp, false, false, false);
3537 
3538   // Give RS breakpoints a specific name, so the user can manipulate them as a
3539   // group.
3540   Status err;
3541   target.AddNameToBreakpoint(bp, "RenderScriptReduction", err);
3542   if (err.Fail() && log)
3543     LLDB_LOGF(log, "%s - error setting break name, '%s'.", __FUNCTION__,
3544               err.AsCString());
3545 
3546   return bp;
3547 }
3548 
3549 // Given an expression for a variable this function tries to calculate the
3550 // variable's value. If this is possible it returns true and sets the uint64_t
3551 // parameter to the variables unsigned value. Otherwise function returns false.
3552 bool RenderScriptRuntime::GetFrameVarAsUnsigned(const StackFrameSP frame_sp,
3553                                                 const char *var_name,
3554                                                 uint64_t &val) {
3555   Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE));
3556   Status err;
3557   VariableSP var_sp;
3558 
3559   // Find variable in stack frame
3560   ValueObjectSP value_sp(frame_sp->GetValueForVariableExpressionPath(
3561       var_name, eNoDynamicValues,
3562       StackFrame::eExpressionPathOptionCheckPtrVsMember |
3563           StackFrame::eExpressionPathOptionsAllowDirectIVarAccess,
3564       var_sp, err));
3565   if (!err.Success()) {
3566     LLDB_LOGF(log, "%s - error, couldn't find '%s' in frame", __FUNCTION__,
3567               var_name);
3568     return false;
3569   }
3570 
3571   // Find the uint32_t value for the variable
3572   bool success = false;
3573   val = value_sp->GetValueAsUnsigned(0, &success);
3574   if (!success) {
3575     LLDB_LOGF(log, "%s - error, couldn't parse '%s' as an uint32_t.",
3576               __FUNCTION__, var_name);
3577     return false;
3578   }
3579 
3580   return true;
3581 }
3582 
3583 // Function attempts to find the current coordinate of a kernel invocation by
3584 // investigating the values of frame variables in the .expand function. These
3585 // coordinates are returned via the coord array reference parameter. Returns
3586 // true if the coordinates could be found, and false otherwise.
3587 bool RenderScriptRuntime::GetKernelCoordinate(RSCoordinate &coord,
3588                                               Thread *thread_ptr) {
3589   static const char *const x_expr = "rsIndex";
3590   static const char *const y_expr = "p->current.y";
3591   static const char *const z_expr = "p->current.z";
3592 
3593   Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE));
3594 
3595   if (!thread_ptr) {
3596     LLDB_LOGF(log, "%s - Error, No thread pointer", __FUNCTION__);
3597 
3598     return false;
3599   }
3600 
3601   // Walk the call stack looking for a function whose name has the suffix
3602   // '.expand' and contains the variables we're looking for.
3603   for (uint32_t i = 0; i < thread_ptr->GetStackFrameCount(); ++i) {
3604     if (!thread_ptr->SetSelectedFrameByIndex(i))
3605       continue;
3606 
3607     StackFrameSP frame_sp = thread_ptr->GetSelectedFrame();
3608     if (!frame_sp)
3609       continue;
3610 
3611     // Find the function name
3612     const SymbolContext sym_ctx =
3613         frame_sp->GetSymbolContext(eSymbolContextFunction);
3614     const ConstString func_name = sym_ctx.GetFunctionName();
3615     if (!func_name)
3616       continue;
3617 
3618     LLDB_LOGF(log, "%s - Inspecting function '%s'", __FUNCTION__,
3619               func_name.GetCString());
3620 
3621     // Check if function name has .expand suffix
3622     if (!func_name.GetStringRef().endswith(".expand"))
3623       continue;
3624 
3625     LLDB_LOGF(log, "%s - Found .expand function '%s'", __FUNCTION__,
3626               func_name.GetCString());
3627 
3628     // Get values for variables in .expand frame that tell us the current
3629     // kernel invocation
3630     uint64_t x, y, z;
3631     bool found = GetFrameVarAsUnsigned(frame_sp, x_expr, x) &&
3632                  GetFrameVarAsUnsigned(frame_sp, y_expr, y) &&
3633                  GetFrameVarAsUnsigned(frame_sp, z_expr, z);
3634 
3635     if (found) {
3636       // The RenderScript runtime uses uint32_t for these vars. If they're not
3637       // within bounds, our frame parsing is garbage
3638       assert(x <= UINT32_MAX && y <= UINT32_MAX && z <= UINT32_MAX);
3639       coord.x = (uint32_t)x;
3640       coord.y = (uint32_t)y;
3641       coord.z = (uint32_t)z;
3642       return true;
3643     }
3644   }
3645   return false;
3646 }
3647 
3648 // Callback when a kernel breakpoint hits and we're looking for a specific
3649 // coordinate. Baton parameter contains a pointer to the target coordinate we
3650 // want to break on. Function then checks the .expand frame for the current
3651 // coordinate and breaks to user if it matches. Parameter 'break_id' is the id
3652 // of the Breakpoint which made the callback. Parameter 'break_loc_id' is the
3653 // id for the BreakpointLocation which was hit, a single logical breakpoint can
3654 // have multiple addresses.
3655 bool RenderScriptRuntime::KernelBreakpointHit(void *baton,
3656                                               StoppointCallbackContext *ctx,
3657                                               user_id_t break_id,
3658                                               user_id_t break_loc_id) {
3659   Log *log(
3660       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
3661 
3662   assert(baton &&
3663          "Error: null baton in conditional kernel breakpoint callback");
3664 
3665   // Coordinate we want to stop on
3666   RSCoordinate target_coord = *static_cast<RSCoordinate *>(baton);
3667 
3668   LLDB_LOGF(log, "%s - Break ID %" PRIu64 ", " FMT_COORD, __FUNCTION__,
3669             break_id, target_coord.x, target_coord.y, target_coord.z);
3670 
3671   // Select current thread
3672   ExecutionContext context(ctx->exe_ctx_ref);
3673   Thread *thread_ptr = context.GetThreadPtr();
3674   assert(thread_ptr && "Null thread pointer");
3675 
3676   // Find current kernel invocation from .expand frame variables
3677   RSCoordinate current_coord{};
3678   if (!GetKernelCoordinate(current_coord, thread_ptr)) {
3679     LLDB_LOGF(log, "%s - Error, couldn't select .expand stack frame",
3680               __FUNCTION__);
3681     return false;
3682   }
3683 
3684   LLDB_LOGF(log, "%s - " FMT_COORD, __FUNCTION__, current_coord.x,
3685             current_coord.y, current_coord.z);
3686 
3687   // Check if the current kernel invocation coordinate matches our target
3688   // coordinate
3689   if (target_coord == current_coord) {
3690     LLDB_LOGF(log, "%s, BREAKING " FMT_COORD, __FUNCTION__, current_coord.x,
3691               current_coord.y, current_coord.z);
3692 
3693     BreakpointSP breakpoint_sp =
3694         context.GetTargetPtr()->GetBreakpointByID(break_id);
3695     assert(breakpoint_sp != nullptr &&
3696            "Error: Couldn't find breakpoint matching break id for callback");
3697     breakpoint_sp->SetEnabled(false); // Optimise since conditional breakpoint
3698                                       // should only be hit once.
3699     return true;
3700   }
3701 
3702   // No match on coordinate
3703   return false;
3704 }
3705 
3706 void RenderScriptRuntime::SetConditional(BreakpointSP bp, Stream &messages,
3707                                          const RSCoordinate &coord) {
3708   messages.Printf("Conditional kernel breakpoint on coordinate " FMT_COORD,
3709                   coord.x, coord.y, coord.z);
3710   messages.EOL();
3711 
3712   // Allocate memory for the baton, and copy over coordinate
3713   RSCoordinate *baton = new RSCoordinate(coord);
3714 
3715   // Create a callback that will be invoked every time the breakpoint is hit.
3716   // The baton object passed to the handler is the target coordinate we want to
3717   // break on.
3718   bp->SetCallback(KernelBreakpointHit, baton, true);
3719 
3720   // Store a shared pointer to the baton, so the memory will eventually be
3721   // cleaned up after destruction
3722   m_conditional_breaks[bp->GetID()] = std::unique_ptr<RSCoordinate>(baton);
3723 }
3724 
3725 // Tries to set a breakpoint on the start of a kernel, resolved using the
3726 // kernel name. Argument 'coords', represents a three dimensional coordinate
3727 // which can be used to specify a single kernel instance to break on. If this
3728 // is set then we add a callback to the breakpoint.
3729 bool RenderScriptRuntime::PlaceBreakpointOnKernel(TargetSP target,
3730                                                   Stream &messages,
3731                                                   const char *name,
3732                                                   const RSCoordinate *coord) {
3733   if (!name)
3734     return false;
3735 
3736   InitSearchFilter(target);
3737 
3738   ConstString kernel_name(name);
3739   BreakpointSP bp = CreateKernelBreakpoint(kernel_name);
3740   if (!bp)
3741     return false;
3742 
3743   // We have a conditional breakpoint on a specific coordinate
3744   if (coord)
3745     SetConditional(bp, messages, *coord);
3746 
3747   bp->GetDescription(&messages, lldb::eDescriptionLevelInitial, false);
3748 
3749   return true;
3750 }
3751 
3752 BreakpointSP
3753 RenderScriptRuntime::CreateScriptGroupBreakpoint(ConstString name,
3754                                                  bool stop_on_all) {
3755   Log *log(
3756       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
3757 
3758   if (!m_filtersp) {
3759     LLDB_LOGF(log, "%s - error, no breakpoint search filter set.",
3760               __FUNCTION__);
3761     return nullptr;
3762   }
3763 
3764   BreakpointResolverSP resolver_sp(new RSScriptGroupBreakpointResolver(
3765       nullptr, name, m_scriptGroups, stop_on_all));
3766   Target &target = GetProcess()->GetTarget();
3767   BreakpointSP bp = target.CreateBreakpoint(
3768       m_filtersp, resolver_sp, false, false, false);
3769   // Give RS breakpoints a specific name, so the user can manipulate them as a
3770   // group.
3771   Status err;
3772   target.AddNameToBreakpoint(bp, name.GetCString(), err);
3773   if (err.Fail() && log)
3774     LLDB_LOGF(log, "%s - error setting break name, '%s'.", __FUNCTION__,
3775               err.AsCString());
3776   // ask the breakpoint to resolve itself
3777   bp->ResolveBreakpoint();
3778   return bp;
3779 }
3780 
3781 bool RenderScriptRuntime::PlaceBreakpointOnScriptGroup(TargetSP target,
3782                                                        Stream &strm,
3783                                                        ConstString name,
3784                                                        bool multi) {
3785   InitSearchFilter(target);
3786   BreakpointSP bp = CreateScriptGroupBreakpoint(name, multi);
3787   if (bp)
3788     bp->GetDescription(&strm, lldb::eDescriptionLevelInitial, false);
3789   return bool(bp);
3790 }
3791 
3792 bool RenderScriptRuntime::PlaceBreakpointOnReduction(TargetSP target,
3793                                                      Stream &messages,
3794                                                      const char *reduce_name,
3795                                                      const RSCoordinate *coord,
3796                                                      int kernel_types) {
3797   if (!reduce_name)
3798     return false;
3799 
3800   InitSearchFilter(target);
3801   BreakpointSP bp =
3802       CreateReductionBreakpoint(ConstString(reduce_name), kernel_types);
3803   if (!bp)
3804     return false;
3805 
3806   if (coord)
3807     SetConditional(bp, messages, *coord);
3808 
3809   bp->GetDescription(&messages, lldb::eDescriptionLevelInitial, false);
3810 
3811   return true;
3812 }
3813 
3814 void RenderScriptRuntime::DumpModules(Stream &strm) const {
3815   strm.Printf("RenderScript Modules:");
3816   strm.EOL();
3817   strm.IndentMore();
3818   for (const auto &module : m_rsmodules) {
3819     module->Dump(strm);
3820   }
3821   strm.IndentLess();
3822 }
3823 
3824 RenderScriptRuntime::ScriptDetails *
3825 RenderScriptRuntime::LookUpScript(addr_t address, bool create) {
3826   for (const auto &s : m_scripts) {
3827     if (s->script.isValid())
3828       if (*s->script == address)
3829         return s.get();
3830   }
3831   if (create) {
3832     std::unique_ptr<ScriptDetails> s(new ScriptDetails);
3833     s->script = address;
3834     m_scripts.push_back(std::move(s));
3835     return m_scripts.back().get();
3836   }
3837   return nullptr;
3838 }
3839 
3840 RenderScriptRuntime::AllocationDetails *
3841 RenderScriptRuntime::LookUpAllocation(addr_t address) {
3842   for (const auto &a : m_allocations) {
3843     if (a->address.isValid())
3844       if (*a->address == address)
3845         return a.get();
3846   }
3847   return nullptr;
3848 }
3849 
3850 RenderScriptRuntime::AllocationDetails *
3851 RenderScriptRuntime::CreateAllocation(addr_t address) {
3852   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
3853 
3854   // Remove any previous allocation which contains the same address
3855   auto it = m_allocations.begin();
3856   while (it != m_allocations.end()) {
3857     if (*((*it)->address) == address) {
3858       LLDB_LOGF(log, "%s - Removing allocation id: %d, address: 0x%" PRIx64,
3859                 __FUNCTION__, (*it)->id, address);
3860 
3861       it = m_allocations.erase(it);
3862     } else {
3863       it++;
3864     }
3865   }
3866 
3867   std::unique_ptr<AllocationDetails> a(new AllocationDetails);
3868   a->address = address;
3869   m_allocations.push_back(std::move(a));
3870   return m_allocations.back().get();
3871 }
3872 
3873 bool RenderScriptRuntime::ResolveKernelName(lldb::addr_t kernel_addr,
3874                                             ConstString &name) {
3875   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS);
3876 
3877   Target &target = GetProcess()->GetTarget();
3878   Address resolved;
3879   // RenderScript module
3880   if (!target.GetSectionLoadList().ResolveLoadAddress(kernel_addr, resolved)) {
3881     LLDB_LOGF(log, "%s: unable to resolve 0x%" PRIx64 " to a loaded symbol",
3882               __FUNCTION__, kernel_addr);
3883     return false;
3884   }
3885 
3886   Symbol *sym = resolved.CalculateSymbolContextSymbol();
3887   if (!sym)
3888     return false;
3889 
3890   name = sym->GetName();
3891   assert(IsRenderScriptModule(resolved.CalculateSymbolContextModule()));
3892   LLDB_LOGF(log, "%s: 0x%" PRIx64 " resolved to the symbol '%s'", __FUNCTION__,
3893             kernel_addr, name.GetCString());
3894   return true;
3895 }
3896 
3897 void RSModuleDescriptor::Dump(Stream &strm) const {
3898   int indent = strm.GetIndentLevel();
3899 
3900   strm.Indent();
3901   m_module->GetFileSpec().Dump(strm.AsRawOstream());
3902   strm.Indent(m_module->GetNumCompileUnits() ? "Debug info loaded."
3903                                              : "Debug info does not exist.");
3904   strm.EOL();
3905   strm.IndentMore();
3906 
3907   strm.Indent();
3908   strm.Printf("Globals: %" PRIu64, static_cast<uint64_t>(m_globals.size()));
3909   strm.EOL();
3910   strm.IndentMore();
3911   for (const auto &global : m_globals) {
3912     global.Dump(strm);
3913   }
3914   strm.IndentLess();
3915 
3916   strm.Indent();
3917   strm.Printf("Kernels: %" PRIu64, static_cast<uint64_t>(m_kernels.size()));
3918   strm.EOL();
3919   strm.IndentMore();
3920   for (const auto &kernel : m_kernels) {
3921     kernel.Dump(strm);
3922   }
3923   strm.IndentLess();
3924 
3925   strm.Indent();
3926   strm.Printf("Pragmas: %" PRIu64, static_cast<uint64_t>(m_pragmas.size()));
3927   strm.EOL();
3928   strm.IndentMore();
3929   for (const auto &key_val : m_pragmas) {
3930     strm.Indent();
3931     strm.Printf("%s: %s", key_val.first.c_str(), key_val.second.c_str());
3932     strm.EOL();
3933   }
3934   strm.IndentLess();
3935 
3936   strm.Indent();
3937   strm.Printf("Reductions: %" PRIu64,
3938               static_cast<uint64_t>(m_reductions.size()));
3939   strm.EOL();
3940   strm.IndentMore();
3941   for (const auto &reduction : m_reductions) {
3942     reduction.Dump(strm);
3943   }
3944 
3945   strm.SetIndentLevel(indent);
3946 }
3947 
3948 void RSGlobalDescriptor::Dump(Stream &strm) const {
3949   strm.Indent(m_name.GetStringRef());
3950   VariableList var_list;
3951   m_module->m_module->FindGlobalVariables(m_name, CompilerDeclContext(), 1U,
3952                                           var_list);
3953   if (var_list.GetSize() == 1) {
3954     auto var = var_list.GetVariableAtIndex(0);
3955     auto type = var->GetType();
3956     if (type) {
3957       strm.Printf(" - ");
3958       type->DumpTypeName(&strm);
3959     } else {
3960       strm.Printf(" - Unknown Type");
3961     }
3962   } else {
3963     strm.Printf(" - variable identified, but not found in binary");
3964     const Symbol *s = m_module->m_module->FindFirstSymbolWithNameAndType(
3965         m_name, eSymbolTypeData);
3966     if (s) {
3967       strm.Printf(" (symbol exists) ");
3968     }
3969   }
3970 
3971   strm.EOL();
3972 }
3973 
3974 void RSKernelDescriptor::Dump(Stream &strm) const {
3975   strm.Indent(m_name.GetStringRef());
3976   strm.EOL();
3977 }
3978 
3979 void RSReductionDescriptor::Dump(lldb_private::Stream &stream) const {
3980   stream.Indent(m_reduce_name.GetStringRef());
3981   stream.IndentMore();
3982   stream.EOL();
3983   stream.Indent();
3984   stream.Printf("accumulator: %s", m_accum_name.AsCString());
3985   stream.EOL();
3986   stream.Indent();
3987   stream.Printf("initializer: %s", m_init_name.AsCString());
3988   stream.EOL();
3989   stream.Indent();
3990   stream.Printf("combiner: %s", m_comb_name.AsCString());
3991   stream.EOL();
3992   stream.Indent();
3993   stream.Printf("outconverter: %s", m_outc_name.AsCString());
3994   stream.EOL();
3995   // XXX This is currently unspecified by RenderScript, and unused
3996   // stream.Indent();
3997   // stream.Printf("halter: '%s'", m_init_name.AsCString());
3998   // stream.EOL();
3999   stream.IndentLess();
4000 }
4001 
4002 class CommandObjectRenderScriptRuntimeModuleDump : public CommandObjectParsed {
4003 public:
4004   CommandObjectRenderScriptRuntimeModuleDump(CommandInterpreter &interpreter)
4005       : CommandObjectParsed(
4006             interpreter, "renderscript module dump",
4007             "Dumps renderscript specific information for all modules.",
4008             "renderscript module dump",
4009             eCommandRequiresProcess | eCommandProcessMustBeLaunched) {}
4010 
4011   ~CommandObjectRenderScriptRuntimeModuleDump() override = default;
4012 
4013   bool DoExecute(Args &command, CommandReturnObject &result) override {
4014     RenderScriptRuntime *runtime = llvm::cast<RenderScriptRuntime>(
4015         m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4016             eLanguageTypeExtRenderScript));
4017     runtime->DumpModules(result.GetOutputStream());
4018     result.SetStatus(eReturnStatusSuccessFinishResult);
4019     return true;
4020   }
4021 };
4022 
4023 class CommandObjectRenderScriptRuntimeModule : public CommandObjectMultiword {
4024 public:
4025   CommandObjectRenderScriptRuntimeModule(CommandInterpreter &interpreter)
4026       : CommandObjectMultiword(interpreter, "renderscript module",
4027                                "Commands that deal with RenderScript modules.",
4028                                nullptr) {
4029     LoadSubCommand(
4030         "dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeModuleDump(
4031                     interpreter)));
4032   }
4033 
4034   ~CommandObjectRenderScriptRuntimeModule() override = default;
4035 };
4036 
4037 class CommandObjectRenderScriptRuntimeKernelList : public CommandObjectParsed {
4038 public:
4039   CommandObjectRenderScriptRuntimeKernelList(CommandInterpreter &interpreter)
4040       : CommandObjectParsed(
4041             interpreter, "renderscript kernel list",
4042             "Lists renderscript kernel names and associated script resources.",
4043             "renderscript kernel list",
4044             eCommandRequiresProcess | eCommandProcessMustBeLaunched) {}
4045 
4046   ~CommandObjectRenderScriptRuntimeKernelList() override = default;
4047 
4048   bool DoExecute(Args &command, CommandReturnObject &result) override {
4049     RenderScriptRuntime *runtime = llvm::cast<RenderScriptRuntime>(
4050         m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4051             eLanguageTypeExtRenderScript));
4052     runtime->DumpKernels(result.GetOutputStream());
4053     result.SetStatus(eReturnStatusSuccessFinishResult);
4054     return true;
4055   }
4056 };
4057 
4058 static constexpr OptionDefinition g_renderscript_reduction_bp_set_options[] = {
4059     {LLDB_OPT_SET_1, false, "function-role", 't',
4060      OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeOneLiner,
4061      "Break on a comma separated set of reduction kernel types "
4062      "(accumulator,outcoverter,combiner,initializer"},
4063     {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument,
4064      nullptr, {}, 0, eArgTypeValue,
4065      "Set a breakpoint on a single invocation of the kernel with specified "
4066      "coordinate.\n"
4067      "Coordinate takes the form 'x[,y][,z] where x,y,z are positive "
4068      "integers representing kernel dimensions. "
4069      "Any unset dimensions will be defaulted to zero."}};
4070 
4071 class CommandObjectRenderScriptRuntimeReductionBreakpointSet
4072     : public CommandObjectParsed {
4073 public:
4074   CommandObjectRenderScriptRuntimeReductionBreakpointSet(
4075       CommandInterpreter &interpreter)
4076       : CommandObjectParsed(
4077             interpreter, "renderscript reduction breakpoint set",
4078             "Set a breakpoint on named RenderScript general reductions",
4079             "renderscript reduction breakpoint set  <kernel_name> [-t "
4080             "<reduction_kernel_type,...>]",
4081             eCommandRequiresProcess | eCommandProcessMustBeLaunched |
4082                 eCommandProcessMustBePaused),
4083         m_options(){};
4084 
4085   class CommandOptions : public Options {
4086   public:
4087     CommandOptions() : Options() {}
4088 
4089     ~CommandOptions() override = default;
4090 
4091     Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg,
4092                           ExecutionContext *exe_ctx) override {
4093       Status err;
4094       StreamString err_str;
4095       const int short_option = m_getopt_table[option_idx].val;
4096       switch (short_option) {
4097       case 't':
4098         if (!ParseReductionTypes(option_arg, err_str))
4099           err.SetErrorStringWithFormat(
4100               "Unable to deduce reduction types for %s: %s",
4101               option_arg.str().c_str(), err_str.GetData());
4102         break;
4103       case 'c': {
4104         auto coord = RSCoordinate{};
4105         if (!ParseCoordinate(option_arg, coord))
4106           err.SetErrorStringWithFormat("unable to parse coordinate for %s",
4107                                        option_arg.str().c_str());
4108         else {
4109           m_have_coord = true;
4110           m_coord = coord;
4111         }
4112         break;
4113       }
4114       default:
4115         err.SetErrorStringWithFormat("Invalid option '-%c'", short_option);
4116       }
4117       return err;
4118     }
4119 
4120     void OptionParsingStarting(ExecutionContext *exe_ctx) override {
4121       m_have_coord = false;
4122     }
4123 
4124     llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
4125       return llvm::makeArrayRef(g_renderscript_reduction_bp_set_options);
4126     }
4127 
4128     bool ParseReductionTypes(llvm::StringRef option_val,
4129                              StreamString &err_str) {
4130       m_kernel_types = RSReduceBreakpointResolver::eKernelTypeNone;
4131       const auto reduce_name_to_type = [](llvm::StringRef name) -> int {
4132         return llvm::StringSwitch<int>(name)
4133             .Case("accumulator", RSReduceBreakpointResolver::eKernelTypeAccum)
4134             .Case("initializer", RSReduceBreakpointResolver::eKernelTypeInit)
4135             .Case("outconverter", RSReduceBreakpointResolver::eKernelTypeOutC)
4136             .Case("combiner", RSReduceBreakpointResolver::eKernelTypeComb)
4137             .Case("all", RSReduceBreakpointResolver::eKernelTypeAll)
4138             // Currently not exposed by the runtime
4139             // .Case("halter", RSReduceBreakpointResolver::eKernelTypeHalter)
4140             .Default(0);
4141       };
4142 
4143       // Matching a comma separated list of known words is fairly
4144       // straightforward with PCRE, but we're using ERE, so we end up with a
4145       // little ugliness...
4146       RegularExpression match_type_list(
4147           llvm::StringRef("^([[:alpha:]]+)(,[[:alpha:]]+){0,4}$"));
4148 
4149       assert(match_type_list.IsValid());
4150 
4151       if (!match_type_list.Execute(option_val)) {
4152         err_str.PutCString(
4153             "a comma-separated list of kernel types is required");
4154         return false;
4155       }
4156 
4157       // splitting on commas is much easier with llvm::StringRef than regex
4158       llvm::SmallVector<llvm::StringRef, 5> type_names;
4159       llvm::StringRef(option_val).split(type_names, ',');
4160 
4161       for (const auto &name : type_names) {
4162         const int type = reduce_name_to_type(name);
4163         if (!type) {
4164           err_str.Printf("unknown kernel type name %s", name.str().c_str());
4165           return false;
4166         }
4167         m_kernel_types |= type;
4168       }
4169 
4170       return true;
4171     }
4172 
4173     int m_kernel_types = RSReduceBreakpointResolver::eKernelTypeAll;
4174     llvm::StringRef m_reduce_name;
4175     RSCoordinate m_coord;
4176     bool m_have_coord;
4177   };
4178 
4179   Options *GetOptions() override { return &m_options; }
4180 
4181   bool DoExecute(Args &command, CommandReturnObject &result) override {
4182     const size_t argc = command.GetArgumentCount();
4183     if (argc < 1) {
4184       result.AppendErrorWithFormat("'%s' takes 1 argument of reduction name, "
4185                                    "and an optional kernel type list",
4186                                    m_cmd_name.c_str());
4187       return false;
4188     }
4189 
4190     RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4191         m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4192             eLanguageTypeExtRenderScript));
4193 
4194     auto &outstream = result.GetOutputStream();
4195     auto name = command.GetArgumentAtIndex(0);
4196     auto &target = m_exe_ctx.GetTargetSP();
4197     auto coord = m_options.m_have_coord ? &m_options.m_coord : nullptr;
4198     if (!runtime->PlaceBreakpointOnReduction(target, outstream, name, coord,
4199                                              m_options.m_kernel_types)) {
4200       result.AppendError("Error: unable to place breakpoint on reduction");
4201       return false;
4202     }
4203     result.AppendMessage("Breakpoint(s) created");
4204     result.SetStatus(eReturnStatusSuccessFinishResult);
4205     return true;
4206   }
4207 
4208 private:
4209   CommandOptions m_options;
4210 };
4211 
4212 static constexpr OptionDefinition g_renderscript_kernel_bp_set_options[] = {
4213     {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument,
4214      nullptr, {}, 0, eArgTypeValue,
4215      "Set a breakpoint on a single invocation of the kernel with specified "
4216      "coordinate.\n"
4217      "Coordinate takes the form 'x[,y][,z] where x,y,z are positive "
4218      "integers representing kernel dimensions. "
4219      "Any unset dimensions will be defaulted to zero."}};
4220 
4221 class CommandObjectRenderScriptRuntimeKernelBreakpointSet
4222     : public CommandObjectParsed {
4223 public:
4224   CommandObjectRenderScriptRuntimeKernelBreakpointSet(
4225       CommandInterpreter &interpreter)
4226       : CommandObjectParsed(
4227             interpreter, "renderscript kernel breakpoint set",
4228             "Sets a breakpoint on a renderscript kernel.",
4229             "renderscript kernel breakpoint set <kernel_name> [-c x,y,z]",
4230             eCommandRequiresProcess | eCommandProcessMustBeLaunched |
4231                 eCommandProcessMustBePaused),
4232         m_options() {}
4233 
4234   ~CommandObjectRenderScriptRuntimeKernelBreakpointSet() override = default;
4235 
4236   Options *GetOptions() override { return &m_options; }
4237 
4238   class CommandOptions : public Options {
4239   public:
4240     CommandOptions() : Options() {}
4241 
4242     ~CommandOptions() override = default;
4243 
4244     Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg,
4245                           ExecutionContext *exe_ctx) override {
4246       Status err;
4247       const int short_option = m_getopt_table[option_idx].val;
4248 
4249       switch (short_option) {
4250       case 'c': {
4251         auto coord = RSCoordinate{};
4252         if (!ParseCoordinate(option_arg, coord))
4253           err.SetErrorStringWithFormat(
4254               "Couldn't parse coordinate '%s', should be in format 'x,y,z'.",
4255               option_arg.str().c_str());
4256         else {
4257           m_have_coord = true;
4258           m_coord = coord;
4259         }
4260         break;
4261       }
4262       default:
4263         err.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
4264         break;
4265       }
4266       return err;
4267     }
4268 
4269     void OptionParsingStarting(ExecutionContext *exe_ctx) override {
4270       m_have_coord = false;
4271     }
4272 
4273     llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
4274       return llvm::makeArrayRef(g_renderscript_kernel_bp_set_options);
4275     }
4276 
4277     RSCoordinate m_coord;
4278     bool m_have_coord;
4279   };
4280 
4281   bool DoExecute(Args &command, CommandReturnObject &result) override {
4282     const size_t argc = command.GetArgumentCount();
4283     if (argc < 1) {
4284       result.AppendErrorWithFormat(
4285           "'%s' takes 1 argument of kernel name, and an optional coordinate.",
4286           m_cmd_name.c_str());
4287       return false;
4288     }
4289 
4290     RenderScriptRuntime *runtime = llvm::cast<RenderScriptRuntime>(
4291         m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4292             eLanguageTypeExtRenderScript));
4293 
4294     auto &outstream = result.GetOutputStream();
4295     auto &target = m_exe_ctx.GetTargetSP();
4296     auto name = command.GetArgumentAtIndex(0);
4297     auto coord = m_options.m_have_coord ? &m_options.m_coord : nullptr;
4298     if (!runtime->PlaceBreakpointOnKernel(target, outstream, name, coord)) {
4299       result.AppendErrorWithFormat(
4300           "Error: unable to set breakpoint on kernel '%s'", name);
4301       return false;
4302     }
4303 
4304     result.AppendMessage("Breakpoint(s) created");
4305     result.SetStatus(eReturnStatusSuccessFinishResult);
4306     return true;
4307   }
4308 
4309 private:
4310   CommandOptions m_options;
4311 };
4312 
4313 class CommandObjectRenderScriptRuntimeKernelBreakpointAll
4314     : public CommandObjectParsed {
4315 public:
4316   CommandObjectRenderScriptRuntimeKernelBreakpointAll(
4317       CommandInterpreter &interpreter)
4318       : CommandObjectParsed(
4319             interpreter, "renderscript kernel breakpoint all",
4320             "Automatically sets a breakpoint on all renderscript kernels that "
4321             "are or will be loaded.\n"
4322             "Disabling option means breakpoints will no longer be set on any "
4323             "kernels loaded in the future, "
4324             "but does not remove currently set breakpoints.",
4325             "renderscript kernel breakpoint all <enable/disable>",
4326             eCommandRequiresProcess | eCommandProcessMustBeLaunched |
4327                 eCommandProcessMustBePaused) {}
4328 
4329   ~CommandObjectRenderScriptRuntimeKernelBreakpointAll() override = default;
4330 
4331   bool DoExecute(Args &command, CommandReturnObject &result) override {
4332     const size_t argc = command.GetArgumentCount();
4333     if (argc != 1) {
4334       result.AppendErrorWithFormat(
4335           "'%s' takes 1 argument of 'enable' or 'disable'", m_cmd_name.c_str());
4336       return false;
4337     }
4338 
4339     RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4340         m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4341             eLanguageTypeExtRenderScript));
4342 
4343     bool do_break = false;
4344     const char *argument = command.GetArgumentAtIndex(0);
4345     if (strcmp(argument, "enable") == 0) {
4346       do_break = true;
4347       result.AppendMessage("Breakpoints will be set on all kernels.");
4348     } else if (strcmp(argument, "disable") == 0) {
4349       do_break = false;
4350       result.AppendMessage("Breakpoints will not be set on any new kernels.");
4351     } else {
4352       result.AppendErrorWithFormat(
4353           "Argument must be either 'enable' or 'disable'");
4354       return false;
4355     }
4356 
4357     runtime->SetBreakAllKernels(do_break, m_exe_ctx.GetTargetSP());
4358 
4359     result.SetStatus(eReturnStatusSuccessFinishResult);
4360     return true;
4361   }
4362 };
4363 
4364 class CommandObjectRenderScriptRuntimeReductionBreakpoint
4365     : public CommandObjectMultiword {
4366 public:
4367   CommandObjectRenderScriptRuntimeReductionBreakpoint(
4368       CommandInterpreter &interpreter)
4369       : CommandObjectMultiword(interpreter, "renderscript reduction breakpoint",
4370                                "Commands that manipulate breakpoints on "
4371                                "renderscript general reductions.",
4372                                nullptr) {
4373     LoadSubCommand(
4374         "set", CommandObjectSP(
4375                    new CommandObjectRenderScriptRuntimeReductionBreakpointSet(
4376                        interpreter)));
4377   }
4378 
4379   ~CommandObjectRenderScriptRuntimeReductionBreakpoint() override = default;
4380 };
4381 
4382 class CommandObjectRenderScriptRuntimeKernelCoordinate
4383     : public CommandObjectParsed {
4384 public:
4385   CommandObjectRenderScriptRuntimeKernelCoordinate(
4386       CommandInterpreter &interpreter)
4387       : CommandObjectParsed(
4388             interpreter, "renderscript kernel coordinate",
4389             "Shows the (x,y,z) coordinate of the current kernel invocation.",
4390             "renderscript kernel coordinate",
4391             eCommandRequiresProcess | eCommandProcessMustBeLaunched |
4392                 eCommandProcessMustBePaused) {}
4393 
4394   ~CommandObjectRenderScriptRuntimeKernelCoordinate() override = default;
4395 
4396   bool DoExecute(Args &command, CommandReturnObject &result) override {
4397     RSCoordinate coord{};
4398     bool success = RenderScriptRuntime::GetKernelCoordinate(
4399         coord, m_exe_ctx.GetThreadPtr());
4400     Stream &stream = result.GetOutputStream();
4401 
4402     if (success) {
4403       stream.Printf("Coordinate: " FMT_COORD, coord.x, coord.y, coord.z);
4404       stream.EOL();
4405       result.SetStatus(eReturnStatusSuccessFinishResult);
4406     } else {
4407       stream.Printf("Error: Coordinate could not be found.");
4408       stream.EOL();
4409       result.SetStatus(eReturnStatusFailed);
4410     }
4411     return true;
4412   }
4413 };
4414 
4415 class CommandObjectRenderScriptRuntimeKernelBreakpoint
4416     : public CommandObjectMultiword {
4417 public:
4418   CommandObjectRenderScriptRuntimeKernelBreakpoint(
4419       CommandInterpreter &interpreter)
4420       : CommandObjectMultiword(
4421             interpreter, "renderscript kernel",
4422             "Commands that generate breakpoints on renderscript kernels.",
4423             nullptr) {
4424     LoadSubCommand(
4425         "set",
4426         CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointSet(
4427             interpreter)));
4428     LoadSubCommand(
4429         "all",
4430         CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointAll(
4431             interpreter)));
4432   }
4433 
4434   ~CommandObjectRenderScriptRuntimeKernelBreakpoint() override = default;
4435 };
4436 
4437 class CommandObjectRenderScriptRuntimeKernel : public CommandObjectMultiword {
4438 public:
4439   CommandObjectRenderScriptRuntimeKernel(CommandInterpreter &interpreter)
4440       : CommandObjectMultiword(interpreter, "renderscript kernel",
4441                                "Commands that deal with RenderScript kernels.",
4442                                nullptr) {
4443     LoadSubCommand(
4444         "list", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelList(
4445                     interpreter)));
4446     LoadSubCommand(
4447         "coordinate",
4448         CommandObjectSP(
4449             new CommandObjectRenderScriptRuntimeKernelCoordinate(interpreter)));
4450     LoadSubCommand(
4451         "breakpoint",
4452         CommandObjectSP(
4453             new CommandObjectRenderScriptRuntimeKernelBreakpoint(interpreter)));
4454   }
4455 
4456   ~CommandObjectRenderScriptRuntimeKernel() override = default;
4457 };
4458 
4459 class CommandObjectRenderScriptRuntimeContextDump : public CommandObjectParsed {
4460 public:
4461   CommandObjectRenderScriptRuntimeContextDump(CommandInterpreter &interpreter)
4462       : CommandObjectParsed(interpreter, "renderscript context dump",
4463                             "Dumps renderscript context information.",
4464                             "renderscript context dump",
4465                             eCommandRequiresProcess |
4466                                 eCommandProcessMustBeLaunched) {}
4467 
4468   ~CommandObjectRenderScriptRuntimeContextDump() override = default;
4469 
4470   bool DoExecute(Args &command, CommandReturnObject &result) override {
4471     RenderScriptRuntime *runtime = llvm::cast<RenderScriptRuntime>(
4472         m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4473             eLanguageTypeExtRenderScript));
4474     runtime->DumpContexts(result.GetOutputStream());
4475     result.SetStatus(eReturnStatusSuccessFinishResult);
4476     return true;
4477   }
4478 };
4479 
4480 static constexpr OptionDefinition g_renderscript_runtime_alloc_dump_options[] = {
4481     {LLDB_OPT_SET_1, false, "file", 'f', OptionParser::eRequiredArgument,
4482      nullptr, {}, 0, eArgTypeFilename,
4483      "Print results to specified file instead of command line."}};
4484 
4485 class CommandObjectRenderScriptRuntimeContext : public CommandObjectMultiword {
4486 public:
4487   CommandObjectRenderScriptRuntimeContext(CommandInterpreter &interpreter)
4488       : CommandObjectMultiword(interpreter, "renderscript context",
4489                                "Commands that deal with RenderScript contexts.",
4490                                nullptr) {
4491     LoadSubCommand(
4492         "dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeContextDump(
4493                     interpreter)));
4494   }
4495 
4496   ~CommandObjectRenderScriptRuntimeContext() override = default;
4497 };
4498 
4499 class CommandObjectRenderScriptRuntimeAllocationDump
4500     : public CommandObjectParsed {
4501 public:
4502   CommandObjectRenderScriptRuntimeAllocationDump(
4503       CommandInterpreter &interpreter)
4504       : CommandObjectParsed(interpreter, "renderscript allocation dump",
4505                             "Displays the contents of a particular allocation",
4506                             "renderscript allocation dump <ID>",
4507                             eCommandRequiresProcess |
4508                                 eCommandProcessMustBeLaunched),
4509         m_options() {}
4510 
4511   ~CommandObjectRenderScriptRuntimeAllocationDump() override = default;
4512 
4513   Options *GetOptions() override { return &m_options; }
4514 
4515   class CommandOptions : public Options {
4516   public:
4517     CommandOptions() : Options() {}
4518 
4519     ~CommandOptions() override = default;
4520 
4521     Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg,
4522                           ExecutionContext *exe_ctx) override {
4523       Status err;
4524       const int short_option = m_getopt_table[option_idx].val;
4525 
4526       switch (short_option) {
4527       case 'f':
4528         m_outfile.SetFile(option_arg, FileSpec::Style::native);
4529         FileSystem::Instance().Resolve(m_outfile);
4530         if (FileSystem::Instance().Exists(m_outfile)) {
4531           m_outfile.Clear();
4532           err.SetErrorStringWithFormat("file already exists: '%s'",
4533                                        option_arg.str().c_str());
4534         }
4535         break;
4536       default:
4537         err.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
4538         break;
4539       }
4540       return err;
4541     }
4542 
4543     void OptionParsingStarting(ExecutionContext *exe_ctx) override {
4544       m_outfile.Clear();
4545     }
4546 
4547     llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
4548       return llvm::makeArrayRef(g_renderscript_runtime_alloc_dump_options);
4549     }
4550 
4551     FileSpec m_outfile;
4552   };
4553 
4554   bool DoExecute(Args &command, CommandReturnObject &result) override {
4555     const size_t argc = command.GetArgumentCount();
4556     if (argc < 1) {
4557       result.AppendErrorWithFormat("'%s' takes 1 argument, an allocation ID. "
4558                                    "As well as an optional -f argument",
4559                                    m_cmd_name.c_str());
4560       return false;
4561     }
4562 
4563     RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4564         m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4565             eLanguageTypeExtRenderScript));
4566 
4567     const char *id_cstr = command.GetArgumentAtIndex(0);
4568     uint32_t id;
4569     if (!llvm::to_integer(id_cstr, id)) {
4570       result.AppendErrorWithFormat("invalid allocation id argument '%s'",
4571                                    id_cstr);
4572       return false;
4573     }
4574 
4575     Stream *output_stream_p = nullptr;
4576     std::unique_ptr<Stream> output_stream_storage;
4577 
4578     const FileSpec &outfile_spec =
4579         m_options.m_outfile; // Dump allocation to file instead
4580     if (outfile_spec) {
4581       // Open output file
4582       std::string path = outfile_spec.GetPath();
4583       auto file = FileSystem::Instance().Open(outfile_spec,
4584                                               File::eOpenOptionWriteOnly |
4585                                                   File::eOpenOptionCanCreate);
4586       if (file) {
4587         output_stream_storage =
4588             std::make_unique<StreamFile>(std::move(file.get()));
4589         output_stream_p = output_stream_storage.get();
4590         result.GetOutputStream().Printf("Results written to '%s'",
4591                                         path.c_str());
4592         result.GetOutputStream().EOL();
4593       } else {
4594         std::string error = llvm::toString(file.takeError());
4595         result.AppendErrorWithFormat("Couldn't open file '%s': %s",
4596                                      path.c_str(), error.c_str());
4597         return false;
4598       }
4599     } else
4600       output_stream_p = &result.GetOutputStream();
4601 
4602     assert(output_stream_p != nullptr);
4603     bool dumped =
4604         runtime->DumpAllocation(*output_stream_p, m_exe_ctx.GetFramePtr(), id);
4605 
4606     if (dumped)
4607       result.SetStatus(eReturnStatusSuccessFinishResult);
4608     else
4609       result.SetStatus(eReturnStatusFailed);
4610 
4611     return true;
4612   }
4613 
4614 private:
4615   CommandOptions m_options;
4616 };
4617 
4618 static constexpr OptionDefinition g_renderscript_runtime_alloc_list_options[] = {
4619     {LLDB_OPT_SET_1, false, "id", 'i', OptionParser::eRequiredArgument, nullptr,
4620      {}, 0, eArgTypeIndex,
4621      "Only show details of a single allocation with specified id."}};
4622 
4623 class CommandObjectRenderScriptRuntimeAllocationList
4624     : public CommandObjectParsed {
4625 public:
4626   CommandObjectRenderScriptRuntimeAllocationList(
4627       CommandInterpreter &interpreter)
4628       : CommandObjectParsed(
4629             interpreter, "renderscript allocation list",
4630             "List renderscript allocations and their information.",
4631             "renderscript allocation list",
4632             eCommandRequiresProcess | eCommandProcessMustBeLaunched),
4633         m_options() {}
4634 
4635   ~CommandObjectRenderScriptRuntimeAllocationList() override = default;
4636 
4637   Options *GetOptions() override { return &m_options; }
4638 
4639   class CommandOptions : public Options {
4640   public:
4641     CommandOptions() : Options() {}
4642 
4643     ~CommandOptions() override = default;
4644 
4645     Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg,
4646                           ExecutionContext *exe_ctx) override {
4647       Status err;
4648       const int short_option = m_getopt_table[option_idx].val;
4649 
4650       switch (short_option) {
4651       case 'i':
4652         if (option_arg.getAsInteger(0, m_id))
4653           err.SetErrorStringWithFormat("invalid integer value for option '%c'",
4654                                        short_option);
4655         break;
4656       default:
4657         err.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
4658         break;
4659       }
4660       return err;
4661     }
4662 
4663     void OptionParsingStarting(ExecutionContext *exe_ctx) override { m_id = 0; }
4664 
4665     llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
4666       return llvm::makeArrayRef(g_renderscript_runtime_alloc_list_options);
4667     }
4668 
4669     uint32_t m_id = 0;
4670   };
4671 
4672   bool DoExecute(Args &command, CommandReturnObject &result) override {
4673     RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4674         m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4675             eLanguageTypeExtRenderScript));
4676     runtime->ListAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr(),
4677                              m_options.m_id);
4678     result.SetStatus(eReturnStatusSuccessFinishResult);
4679     return true;
4680   }
4681 
4682 private:
4683   CommandOptions m_options;
4684 };
4685 
4686 class CommandObjectRenderScriptRuntimeAllocationLoad
4687     : public CommandObjectParsed {
4688 public:
4689   CommandObjectRenderScriptRuntimeAllocationLoad(
4690       CommandInterpreter &interpreter)
4691       : CommandObjectParsed(
4692             interpreter, "renderscript allocation load",
4693             "Loads renderscript allocation contents from a file.",
4694             "renderscript allocation load <ID> <filename>",
4695             eCommandRequiresProcess | eCommandProcessMustBeLaunched) {}
4696 
4697   ~CommandObjectRenderScriptRuntimeAllocationLoad() override = default;
4698 
4699   bool DoExecute(Args &command, CommandReturnObject &result) override {
4700     const size_t argc = command.GetArgumentCount();
4701     if (argc != 2) {
4702       result.AppendErrorWithFormat(
4703           "'%s' takes 2 arguments, an allocation ID and filename to read from.",
4704           m_cmd_name.c_str());
4705       return false;
4706     }
4707 
4708     RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4709         m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4710             eLanguageTypeExtRenderScript));
4711 
4712     const char *id_cstr = command.GetArgumentAtIndex(0);
4713     uint32_t id;
4714     if (!llvm::to_integer(id_cstr, id)) {
4715       result.AppendErrorWithFormat("invalid allocation id argument '%s'",
4716                                    id_cstr);
4717       return false;
4718     }
4719 
4720     const char *path = command.GetArgumentAtIndex(1);
4721     bool loaded = runtime->LoadAllocation(result.GetOutputStream(), id, path,
4722                                           m_exe_ctx.GetFramePtr());
4723 
4724     if (loaded)
4725       result.SetStatus(eReturnStatusSuccessFinishResult);
4726     else
4727       result.SetStatus(eReturnStatusFailed);
4728 
4729     return true;
4730   }
4731 };
4732 
4733 class CommandObjectRenderScriptRuntimeAllocationSave
4734     : public CommandObjectParsed {
4735 public:
4736   CommandObjectRenderScriptRuntimeAllocationSave(
4737       CommandInterpreter &interpreter)
4738       : CommandObjectParsed(interpreter, "renderscript allocation save",
4739                             "Write renderscript allocation contents to a file.",
4740                             "renderscript allocation save <ID> <filename>",
4741                             eCommandRequiresProcess |
4742                                 eCommandProcessMustBeLaunched) {}
4743 
4744   ~CommandObjectRenderScriptRuntimeAllocationSave() override = default;
4745 
4746   bool DoExecute(Args &command, CommandReturnObject &result) override {
4747     const size_t argc = command.GetArgumentCount();
4748     if (argc != 2) {
4749       result.AppendErrorWithFormat(
4750           "'%s' takes 2 arguments, an allocation ID and filename to read from.",
4751           m_cmd_name.c_str());
4752       return false;
4753     }
4754 
4755     RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4756         m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4757             eLanguageTypeExtRenderScript));
4758 
4759     const char *id_cstr = command.GetArgumentAtIndex(0);
4760     uint32_t id;
4761     if (!llvm::to_integer(id_cstr, id)) {
4762       result.AppendErrorWithFormat("invalid allocation id argument '%s'",
4763                                    id_cstr);
4764       return false;
4765     }
4766 
4767     const char *path = command.GetArgumentAtIndex(1);
4768     bool saved = runtime->SaveAllocation(result.GetOutputStream(), id, path,
4769                                          m_exe_ctx.GetFramePtr());
4770 
4771     if (saved)
4772       result.SetStatus(eReturnStatusSuccessFinishResult);
4773     else
4774       result.SetStatus(eReturnStatusFailed);
4775 
4776     return true;
4777   }
4778 };
4779 
4780 class CommandObjectRenderScriptRuntimeAllocationRefresh
4781     : public CommandObjectParsed {
4782 public:
4783   CommandObjectRenderScriptRuntimeAllocationRefresh(
4784       CommandInterpreter &interpreter)
4785       : CommandObjectParsed(interpreter, "renderscript allocation refresh",
4786                             "Recomputes the details of all allocations.",
4787                             "renderscript allocation refresh",
4788                             eCommandRequiresProcess |
4789                                 eCommandProcessMustBeLaunched) {}
4790 
4791   ~CommandObjectRenderScriptRuntimeAllocationRefresh() override = default;
4792 
4793   bool DoExecute(Args &command, CommandReturnObject &result) override {
4794     RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4795         m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4796             eLanguageTypeExtRenderScript));
4797 
4798     bool success = runtime->RecomputeAllAllocations(result.GetOutputStream(),
4799                                                     m_exe_ctx.GetFramePtr());
4800 
4801     if (success) {
4802       result.SetStatus(eReturnStatusSuccessFinishResult);
4803       return true;
4804     } else {
4805       result.SetStatus(eReturnStatusFailed);
4806       return false;
4807     }
4808   }
4809 };
4810 
4811 class CommandObjectRenderScriptRuntimeAllocation
4812     : public CommandObjectMultiword {
4813 public:
4814   CommandObjectRenderScriptRuntimeAllocation(CommandInterpreter &interpreter)
4815       : CommandObjectMultiword(
4816             interpreter, "renderscript allocation",
4817             "Commands that deal with RenderScript allocations.", nullptr) {
4818     LoadSubCommand(
4819         "list",
4820         CommandObjectSP(
4821             new CommandObjectRenderScriptRuntimeAllocationList(interpreter)));
4822     LoadSubCommand(
4823         "dump",
4824         CommandObjectSP(
4825             new CommandObjectRenderScriptRuntimeAllocationDump(interpreter)));
4826     LoadSubCommand(
4827         "save",
4828         CommandObjectSP(
4829             new CommandObjectRenderScriptRuntimeAllocationSave(interpreter)));
4830     LoadSubCommand(
4831         "load",
4832         CommandObjectSP(
4833             new CommandObjectRenderScriptRuntimeAllocationLoad(interpreter)));
4834     LoadSubCommand(
4835         "refresh",
4836         CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationRefresh(
4837             interpreter)));
4838   }
4839 
4840   ~CommandObjectRenderScriptRuntimeAllocation() override = default;
4841 };
4842 
4843 class CommandObjectRenderScriptRuntimeStatus : public CommandObjectParsed {
4844 public:
4845   CommandObjectRenderScriptRuntimeStatus(CommandInterpreter &interpreter)
4846       : CommandObjectParsed(interpreter, "renderscript status",
4847                             "Displays current RenderScript runtime status.",
4848                             "renderscript status",
4849                             eCommandRequiresProcess |
4850                                 eCommandProcessMustBeLaunched) {}
4851 
4852   ~CommandObjectRenderScriptRuntimeStatus() override = default;
4853 
4854   bool DoExecute(Args &command, CommandReturnObject &result) override {
4855     RenderScriptRuntime *runtime = llvm::cast<RenderScriptRuntime>(
4856         m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4857             eLanguageTypeExtRenderScript));
4858     runtime->DumpStatus(result.GetOutputStream());
4859     result.SetStatus(eReturnStatusSuccessFinishResult);
4860     return true;
4861   }
4862 };
4863 
4864 class CommandObjectRenderScriptRuntimeReduction
4865     : public CommandObjectMultiword {
4866 public:
4867   CommandObjectRenderScriptRuntimeReduction(CommandInterpreter &interpreter)
4868       : CommandObjectMultiword(interpreter, "renderscript reduction",
4869                                "Commands that handle general reduction kernels",
4870                                nullptr) {
4871     LoadSubCommand(
4872         "breakpoint",
4873         CommandObjectSP(new CommandObjectRenderScriptRuntimeReductionBreakpoint(
4874             interpreter)));
4875   }
4876   ~CommandObjectRenderScriptRuntimeReduction() override = default;
4877 };
4878 
4879 class CommandObjectRenderScriptRuntime : public CommandObjectMultiword {
4880 public:
4881   CommandObjectRenderScriptRuntime(CommandInterpreter &interpreter)
4882       : CommandObjectMultiword(
4883             interpreter, "renderscript",
4884             "Commands for operating on the RenderScript runtime.",
4885             "renderscript <subcommand> [<subcommand-options>]") {
4886     LoadSubCommand(
4887         "module", CommandObjectSP(
4888                       new CommandObjectRenderScriptRuntimeModule(interpreter)));
4889     LoadSubCommand(
4890         "status", CommandObjectSP(
4891                       new CommandObjectRenderScriptRuntimeStatus(interpreter)));
4892     LoadSubCommand(
4893         "kernel", CommandObjectSP(
4894                       new CommandObjectRenderScriptRuntimeKernel(interpreter)));
4895     LoadSubCommand("context",
4896                    CommandObjectSP(new CommandObjectRenderScriptRuntimeContext(
4897                        interpreter)));
4898     LoadSubCommand(
4899         "allocation",
4900         CommandObjectSP(
4901             new CommandObjectRenderScriptRuntimeAllocation(interpreter)));
4902     LoadSubCommand("scriptgroup",
4903                    NewCommandObjectRenderScriptScriptGroup(interpreter));
4904     LoadSubCommand(
4905         "reduction",
4906         CommandObjectSP(
4907             new CommandObjectRenderScriptRuntimeReduction(interpreter)));
4908   }
4909 
4910   ~CommandObjectRenderScriptRuntime() override = default;
4911 };
4912 
4913 void RenderScriptRuntime::Initiate() { assert(!m_initiated); }
4914 
4915 RenderScriptRuntime::RenderScriptRuntime(Process *process)
4916     : lldb_private::CPPLanguageRuntime(process), m_initiated(false),
4917       m_debuggerPresentFlagged(false), m_breakAllKernels(false),
4918       m_ir_passes(nullptr) {
4919   ModulesDidLoad(process->GetTarget().GetImages());
4920 }
4921 
4922 lldb::CommandObjectSP RenderScriptRuntime::GetCommandObject(
4923     lldb_private::CommandInterpreter &interpreter) {
4924   return CommandObjectSP(new CommandObjectRenderScriptRuntime(interpreter));
4925 }
4926 
4927 RenderScriptRuntime::~RenderScriptRuntime() = default;
4928