1 //===-- RenderScriptRuntime.cpp ---------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 // C Includes
11 // C++ Includes
12 // Other libraries and framework includes
13 // Project includes
14 #include "RenderScriptRuntime.h"
15 
16 #include "lldb/Breakpoint/StoppointCallbackContext.h"
17 #include "lldb/Core/ConstString.h"
18 #include "lldb/Core/Debugger.h"
19 #include "lldb/Core/Error.h"
20 #include "lldb/Core/Log.h"
21 #include "lldb/Core/PluginManager.h"
22 #include "lldb/Core/RegularExpression.h"
23 #include "lldb/Core/ValueObjectVariable.h"
24 #include "lldb/DataFormatters/DumpValueObjectOptions.h"
25 #include "lldb/Expression/UserExpression.h"
26 #include "lldb/Host/StringConvert.h"
27 #include "lldb/Interpreter/Args.h"
28 #include "lldb/Interpreter/CommandInterpreter.h"
29 #include "lldb/Interpreter/CommandObjectMultiword.h"
30 #include "lldb/Interpreter/CommandReturnObject.h"
31 #include "lldb/Interpreter/Options.h"
32 #include "lldb/Symbol/Symbol.h"
33 #include "lldb/Symbol/Type.h"
34 #include "lldb/Symbol/VariableList.h"
35 #include "lldb/Target/Process.h"
36 #include "lldb/Target/RegisterContext.h"
37 #include "lldb/Target/Target.h"
38 #include "lldb/Target/Thread.h"
39 
40 using namespace lldb;
41 using namespace lldb_private;
42 using namespace lldb_renderscript;
43 
44 namespace
45 {
46 
47 // The empirical_type adds a basic level of validation to arbitrary data
48 // allowing us to track if data has been discovered and stored or not.
49 // An empirical_type will be marked as valid only if it has been explicitly assigned to.
50 template <typename type_t> class empirical_type
51 {
52 public:
53     // Ctor. Contents is invalid when constructed.
54     empirical_type() : valid(false) {}
55 
56     // Return true and copy contents to out if valid, else return false.
57     bool
58     get(type_t &out) const
59     {
60         if (valid)
61             out = data;
62         return valid;
63     }
64 
65     // Return a pointer to the contents or nullptr if it was not valid.
66     const type_t *
67     get() const
68     {
69         return valid ? &data : nullptr;
70     }
71 
72     // Assign data explicitly.
73     void
74     set(const type_t in)
75     {
76         data = in;
77         valid = true;
78     }
79 
80     // Mark contents as invalid.
81     void
82     invalidate()
83     {
84         valid = false;
85     }
86 
87     // Returns true if this type contains valid data.
88     bool
89     isValid() const
90     {
91         return valid;
92     }
93 
94     // Assignment operator.
95     empirical_type<type_t> &
96     operator=(const type_t in)
97     {
98         set(in);
99         return *this;
100     }
101 
102     // Dereference operator returns contents.
103     // Warning: Will assert if not valid so use only when you know data is valid.
104     const type_t &operator*() const
105     {
106         assert(valid);
107         return data;
108     }
109 
110 protected:
111     bool valid;
112     type_t data;
113 };
114 
115 // ArgItem is used by the GetArgs() function when reading function arguments from the target.
116 struct ArgItem
117 {
118     enum
119     {
120         ePointer,
121         eInt32,
122         eInt64,
123         eLong,
124         eBool
125     } type;
126 
127     uint64_t value;
128 
129     explicit operator uint64_t() const { return value; }
130 };
131 
132 // Context structure to be passed into GetArgsXXX(), argument reading functions below.
133 struct GetArgsCtx
134 {
135     RegisterContext *reg_ctx;
136     Process *process;
137 };
138 
139 bool
140 GetArgsX86(const GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args)
141 {
142     Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
143 
144     Error error;
145 
146     // get the current stack pointer
147     uint64_t sp = ctx.reg_ctx->GetSP();
148 
149     for (size_t i = 0; i < num_args; ++i)
150     {
151         ArgItem &arg = arg_list[i];
152         // advance up the stack by one argument
153         sp += sizeof(uint32_t);
154         // get the argument type size
155         size_t arg_size = sizeof(uint32_t);
156         // read the argument from memory
157         arg.value = 0;
158         Error error;
159         size_t read = ctx.process->ReadMemory(sp, &arg.value, sizeof(uint32_t), error);
160         if (read != arg_size || !error.Success())
161         {
162             if (log)
163                 log->Printf("%s - error reading argument: %" PRIu64 " '%s'", __FUNCTION__, uint64_t(i),
164                             error.AsCString());
165             return false;
166         }
167     }
168     return true;
169 }
170 
171 bool
172 GetArgsX86_64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args)
173 {
174     Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
175 
176     // number of arguments passed in registers
177     static const uint32_t c_args_in_reg = 6;
178     // register passing order
179     static const std::array<const char *, c_args_in_reg> c_reg_names{{"rdi", "rsi", "rdx", "rcx", "r8", "r9"}};
180     // argument type to size mapping
181     static const std::array<size_t, 5> arg_size{{
182         8, // ePointer,
183         4, // eInt32,
184         8, // eInt64,
185         8, // eLong,
186         4, // eBool,
187     }};
188 
189     Error error;
190 
191     // get the current stack pointer
192     uint64_t sp = ctx.reg_ctx->GetSP();
193     // step over the return address
194     sp += sizeof(uint64_t);
195 
196     // check the stack alignment was correct (16 byte aligned)
197     if ((sp & 0xf) != 0x0)
198     {
199         if (log)
200             log->Printf("%s - stack misaligned", __FUNCTION__);
201         return false;
202     }
203 
204     // find the start of arguments on the stack
205     uint64_t sp_offset = 0;
206     for (uint32_t i = c_args_in_reg; i < num_args; ++i)
207     {
208         sp_offset += arg_size[arg_list[i].type];
209     }
210     // round up to multiple of 16
211     sp_offset = (sp_offset + 0xf) & 0xf;
212     sp += sp_offset;
213 
214     for (size_t i = 0; i < num_args; ++i)
215     {
216         bool success = false;
217         ArgItem &arg = arg_list[i];
218         // arguments passed in registers
219         if (i < c_args_in_reg)
220         {
221             const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoByName(c_reg_names[i]);
222             RegisterValue rVal;
223             if (ctx.reg_ctx->ReadRegister(rArg, rVal))
224                 arg.value = rVal.GetAsUInt64(0, &success);
225         }
226         // arguments passed on the stack
227         else
228         {
229             // get the argument type size
230             const size_t size = arg_size[arg_list[i].type];
231             // read the argument from memory
232             arg.value = 0;
233             // note: due to little endian layout reading 4 or 8 bytes will give the correct value.
234             size_t read = ctx.process->ReadMemory(sp, &arg.value, size, error);
235             success = (error.Success() && read==size);
236             // advance past this argument
237             sp -= size;
238         }
239         // fail if we couldn't read this argument
240         if (!success)
241         {
242             if (log)
243                 log->Printf("%s - error reading argument: %" PRIu64", reason: %s",
244                             __FUNCTION__, uint64_t(i), error.AsCString("n/a"));
245             return false;
246         }
247     }
248     return true;
249 }
250 
251 bool
252 GetArgsArm(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args)
253 {
254     // number of arguments passed in registers
255     static const uint32_t c_args_in_reg = 4;
256 
257     Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
258 
259     Error error;
260 
261     // get the current stack pointer
262     uint64_t sp = ctx.reg_ctx->GetSP();
263 
264     for (size_t i = 0; i < num_args; ++i)
265     {
266         bool success = false;
267         ArgItem &arg = arg_list[i];
268         // arguments passed in registers
269         if (i < c_args_in_reg)
270         {
271             const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoAtIndex(i);
272             RegisterValue rVal;
273             if (ctx.reg_ctx->ReadRegister(rArg, rVal))
274                 arg.value = rVal.GetAsUInt32(0, &success);
275         }
276         // arguments passed on the stack
277         else
278         {
279             // get the argument type size
280             const size_t arg_size = sizeof(uint32_t);
281             // clear all 64bits
282             arg.value = 0;
283             // read this argument from memory
284             size_t bytes_read = ctx.process->ReadMemory(sp, &arg.value, arg_size, error);
285             success = (error.Success() && bytes_read == arg_size);
286             // advance the stack pointer
287             sp += sizeof(uint32_t);
288         }
289         // fail if we couldn't read this argument
290         if (!success)
291         {
292             if (log)
293                 log->Printf("%s - error reading argument: %" PRIu64", reason: %s",
294                             __FUNCTION__, uint64_t(i), error.AsCString("n/a"));
295             return false;
296         }
297     }
298     return true;
299 }
300 
301 bool
302 GetArgsAarch64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args)
303 {
304     // number of arguments passed in registers
305     static const uint32_t c_args_in_reg = 8;
306 
307     Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
308 
309     for (size_t i = 0; i < num_args; ++i)
310     {
311         bool success = false;
312         ArgItem &arg = arg_list[i];
313         // arguments passed in registers
314         if (i < c_args_in_reg)
315         {
316             const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoAtIndex(i);
317             RegisterValue rVal;
318             if (ctx.reg_ctx->ReadRegister(rArg, rVal))
319                 arg.value = rVal.GetAsUInt64(0, &success);
320         }
321         // arguments passed on the stack
322         else
323         {
324             if (log)
325                 log->Printf("%s - reading arguments spilled to stack not implemented", __FUNCTION__);
326         }
327         // fail if we couldn't read this argument
328         if (!success)
329         {
330             if (log)
331                 log->Printf("%s - error reading argument: %" PRIu64, __FUNCTION__,
332                             uint64_t(i));
333             return false;
334         }
335     }
336     return true;
337 }
338 
339 bool
340 GetArgsMipsel(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args)
341 {
342     // number of arguments passed in registers
343     static const uint32_t c_args_in_reg = 4;
344     // register file offset to first argument
345     static const uint32_t c_reg_offset = 4;
346 
347     Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
348 
349     Error error;
350 
351     // find offset to arguments on the stack (+16 to skip over a0-a3 shadow space)
352     uint64_t sp = ctx.reg_ctx->GetSP() + 16;
353 
354     for (size_t i = 0; i < num_args; ++i)
355     {
356         bool success = false;
357         ArgItem &arg = arg_list[i];
358         // arguments passed in registers
359         if (i < c_args_in_reg)
360         {
361             const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoAtIndex(i + c_reg_offset);
362             RegisterValue rVal;
363             if (ctx.reg_ctx->ReadRegister(rArg, rVal))
364                 arg.value = rVal.GetAsUInt64(0, &success);
365         }
366         // arguments passed on the stack
367         else
368         {
369             const size_t arg_size = sizeof(uint32_t);
370             arg.value = 0;
371             size_t bytes_read = ctx.process->ReadMemory(sp, &arg.value, arg_size, error);
372             success = (error.Success() && bytes_read == arg_size);
373             // advance the stack pointer
374             sp += arg_size;
375         }
376         // fail if we couldn't read this argument
377         if (!success)
378         {
379             if (log)
380                 log->Printf("%s - error reading argument: %" PRIu64", reason: %s",
381                             __FUNCTION__, uint64_t(i), error.AsCString("n/a"));
382             return false;
383         }
384     }
385     return true;
386 }
387 
388 bool
389 GetArgsMips64el(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args)
390 {
391     // number of arguments passed in registers
392     static const uint32_t c_args_in_reg = 8;
393     // register file offset to first argument
394     static const uint32_t c_reg_offset = 4;
395 
396     Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
397 
398     Error error;
399 
400     // get the current stack pointer
401     uint64_t sp = ctx.reg_ctx->GetSP();
402 
403     for (size_t i = 0; i < num_args; ++i)
404     {
405         bool success = false;
406         ArgItem &arg = arg_list[i];
407         // arguments passed in registers
408         if (i < c_args_in_reg)
409         {
410             const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoAtIndex(i + c_reg_offset);
411             RegisterValue rVal;
412             if (ctx.reg_ctx->ReadRegister(rArg, rVal))
413                 arg.value = rVal.GetAsUInt64(0, &success);
414         }
415         // arguments passed on the stack
416         else
417         {
418             // get the argument type size
419             const size_t arg_size = sizeof(uint64_t);
420             // clear all 64bits
421             arg.value = 0;
422             // read this argument from memory
423             size_t bytes_read = ctx.process->ReadMemory(sp, &arg.value, arg_size, error);
424             success = (error.Success() && bytes_read == arg_size);
425             // advance the stack pointer
426             sp += arg_size;
427         }
428         // fail if we couldn't read this argument
429         if (!success)
430         {
431             if (log)
432                 log->Printf("%s - error reading argument: %" PRIu64", reason: %s",
433                             __FUNCTION__, uint64_t(i), error.AsCString("n/a"));
434             return false;
435         }
436     }
437     return true;
438 }
439 
440 bool
441 GetArgs(ExecutionContext &context, ArgItem *arg_list, size_t num_args)
442 {
443     Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
444 
445     // verify that we have a target
446     if (!context.GetTargetPtr())
447     {
448         if (log)
449             log->Printf("%s - invalid target", __FUNCTION__);
450         return false;
451     }
452 
453     GetArgsCtx ctx = {context.GetRegisterContext(), context.GetProcessPtr()};
454     assert(ctx.reg_ctx && ctx.process);
455 
456     // dispatch based on architecture
457     switch (context.GetTargetPtr()->GetArchitecture().GetMachine())
458     {
459         case llvm::Triple::ArchType::x86:
460             return GetArgsX86(ctx, arg_list, num_args);
461 
462         case llvm::Triple::ArchType::x86_64:
463             return GetArgsX86_64(ctx, arg_list, num_args);
464 
465         case llvm::Triple::ArchType::arm:
466             return GetArgsArm(ctx, arg_list, num_args);
467 
468         case llvm::Triple::ArchType::aarch64:
469             return GetArgsAarch64(ctx, arg_list, num_args);
470 
471         case llvm::Triple::ArchType::mipsel:
472             return GetArgsMipsel(ctx, arg_list, num_args);
473 
474         case llvm::Triple::ArchType::mips64el:
475             return GetArgsMips64el(ctx, arg_list, num_args);
476 
477         default:
478             // unsupported architecture
479             if (log)
480             {
481                 log->Printf("%s - architecture not supported: '%s'", __FUNCTION__,
482                             context.GetTargetRef().GetArchitecture().GetArchitectureName());
483             }
484             return false;
485     }
486 }
487 } // anonymous namespace
488 
489 // The ScriptDetails class collects data associated with a single script instance.
490 struct RenderScriptRuntime::ScriptDetails
491 {
492     ~ScriptDetails() = default;
493 
494     enum ScriptType
495     {
496         eScript,
497         eScriptC
498     };
499 
500     // The derived type of the script.
501     empirical_type<ScriptType> type;
502     // The name of the original source file.
503     empirical_type<std::string> resName;
504     // Path to script .so file on the device.
505     empirical_type<std::string> scriptDyLib;
506     // Directory where kernel objects are cached on device.
507     empirical_type<std::string> cacheDir;
508     // Pointer to the context which owns this script.
509     empirical_type<lldb::addr_t> context;
510     // Pointer to the script object itself.
511     empirical_type<lldb::addr_t> script;
512 };
513 
514 // This Element class represents the Element object in RS,
515 // defining the type associated with an Allocation.
516 struct RenderScriptRuntime::Element
517 {
518     // Taken from rsDefines.h
519     enum DataKind
520     {
521         RS_KIND_USER,
522         RS_KIND_PIXEL_L = 7,
523         RS_KIND_PIXEL_A,
524         RS_KIND_PIXEL_LA,
525         RS_KIND_PIXEL_RGB,
526         RS_KIND_PIXEL_RGBA,
527         RS_KIND_PIXEL_DEPTH,
528         RS_KIND_PIXEL_YUV,
529         RS_KIND_INVALID = 100
530     };
531 
532     // Taken from rsDefines.h
533     enum DataType
534     {
535         RS_TYPE_NONE = 0,
536         RS_TYPE_FLOAT_16,
537         RS_TYPE_FLOAT_32,
538         RS_TYPE_FLOAT_64,
539         RS_TYPE_SIGNED_8,
540         RS_TYPE_SIGNED_16,
541         RS_TYPE_SIGNED_32,
542         RS_TYPE_SIGNED_64,
543         RS_TYPE_UNSIGNED_8,
544         RS_TYPE_UNSIGNED_16,
545         RS_TYPE_UNSIGNED_32,
546         RS_TYPE_UNSIGNED_64,
547         RS_TYPE_BOOLEAN,
548 
549         RS_TYPE_UNSIGNED_5_6_5,
550         RS_TYPE_UNSIGNED_5_5_5_1,
551         RS_TYPE_UNSIGNED_4_4_4_4,
552 
553         RS_TYPE_MATRIX_4X4,
554         RS_TYPE_MATRIX_3X3,
555         RS_TYPE_MATRIX_2X2,
556 
557         RS_TYPE_ELEMENT = 1000,
558         RS_TYPE_TYPE,
559         RS_TYPE_ALLOCATION,
560         RS_TYPE_SAMPLER,
561         RS_TYPE_SCRIPT,
562         RS_TYPE_MESH,
563         RS_TYPE_PROGRAM_FRAGMENT,
564         RS_TYPE_PROGRAM_VERTEX,
565         RS_TYPE_PROGRAM_RASTER,
566         RS_TYPE_PROGRAM_STORE,
567         RS_TYPE_FONT,
568 
569         RS_TYPE_INVALID = 10000
570     };
571 
572     std::vector<Element> children;            // Child Element fields for structs
573     empirical_type<lldb::addr_t> element_ptr; // Pointer to the RS Element of the Type
574     empirical_type<DataType> type;            // Type of each data pointer stored by the allocation
575     empirical_type<DataKind> type_kind;       // Defines pixel type if Allocation is created from an image
576     empirical_type<uint32_t> type_vec_size;   // Vector size of each data point, e.g '4' for uchar4
577     empirical_type<uint32_t> field_count;     // Number of Subelements
578     empirical_type<uint32_t> datum_size;      // Size of a single Element with padding
579     empirical_type<uint32_t> padding;         // Number of padding bytes
580     empirical_type<uint32_t> array_size;      // Number of items in array, only needed for strucrs
581     ConstString type_name;                    // Name of type, only needed for structs
582 
583     static const ConstString &
584     GetFallbackStructName(); // Print this as the type name of a struct Element
585                              // If we can't resolve the actual struct name
586 
587     bool
588     shouldRefresh() const
589     {
590         const bool valid_ptr = element_ptr.isValid() && *element_ptr.get() != 0x0;
591         const bool valid_type = type.isValid() && type_vec_size.isValid() && type_kind.isValid();
592         return !valid_ptr || !valid_type || !datum_size.isValid();
593     }
594 };
595 
596 // This AllocationDetails class collects data associated with a single
597 // allocation instance.
598 struct RenderScriptRuntime::AllocationDetails
599 {
600     struct Dimension
601     {
602         uint32_t dim_1;
603         uint32_t dim_2;
604         uint32_t dim_3;
605         uint32_t cubeMap;
606 
607         Dimension()
608         {
609             dim_1 = 0;
610             dim_2 = 0;
611             dim_3 = 0;
612             cubeMap = 0;
613         }
614     };
615 
616     // The FileHeader struct specifies the header we use for writing allocations to a binary file.
617     // Our format begins with the ASCII characters "RSAD", identifying the file as an allocation dump.
618     // Member variables dims and hdr_size are then written consecutively, immediately followed by an instance of
619     // the ElementHeader struct. Because Elements can contain subelements, there may be more than one instance
620     // of the ElementHeader struct. With this first instance being the root element, and the other instances being
621     // the root's descendants. To identify which instances are an ElementHeader's children, each struct
622     // is immediately followed by a sequence of consecutive offsets to the start of its child structs.
623     // These offsets are 4 bytes in size, and the 0 offset signifies no more children.
624     struct FileHeader
625     {
626         uint8_t ident[4];  // ASCII 'RSAD' identifying the file
627         uint32_t dims[3];  // Dimensions
628         uint16_t hdr_size; // Header size in bytes, including all element headers
629     };
630 
631     struct ElementHeader
632     {
633         uint16_t type;         // DataType enum
634         uint32_t kind;         // DataKind enum
635         uint32_t element_size; // Size of a single element, including padding
636         uint16_t vector_size;  // Vector width
637         uint32_t array_size;   // Number of elements in array
638     };
639 
640     // Monotonically increasing from 1
641     static uint32_t ID;
642 
643     // Maps Allocation DataType enum and vector size to printable strings
644     // using mapping from RenderScript numerical types summary documentation
645     static const char *RsDataTypeToString[][4];
646 
647     // Maps Allocation DataKind enum to printable strings
648     static const char *RsDataKindToString[];
649 
650     // Maps allocation types to format sizes for printing.
651     static const uint32_t RSTypeToFormat[][3];
652 
653     // Give each allocation an ID as a way
654     // for commands to reference it.
655     const uint32_t id;
656 
657     RenderScriptRuntime::Element element;  // Allocation Element type
658     empirical_type<Dimension> dimension;   // Dimensions of the Allocation
659     empirical_type<lldb::addr_t> address;  // Pointer to address of the RS Allocation
660     empirical_type<lldb::addr_t> data_ptr; // Pointer to the data held by the Allocation
661     empirical_type<lldb::addr_t> type_ptr; // Pointer to the RS Type of the Allocation
662     empirical_type<lldb::addr_t> context;  // Pointer to the RS Context of the Allocation
663     empirical_type<uint32_t> size;         // Size of the allocation
664     empirical_type<uint32_t> stride;       // Stride between rows of the allocation
665 
666     // Give each allocation an id, so we can reference it in user commands.
667     AllocationDetails() : id(ID++) {}
668 
669     bool
670     shouldRefresh() const
671     {
672         bool valid_ptrs = data_ptr.isValid() && *data_ptr.get() != 0x0;
673         valid_ptrs = valid_ptrs && type_ptr.isValid() && *type_ptr.get() != 0x0;
674         return !valid_ptrs || !dimension.isValid() || !size.isValid() || element.shouldRefresh();
675     }
676 };
677 
678 const ConstString &
679 RenderScriptRuntime::Element::GetFallbackStructName()
680 {
681     static const ConstString FallbackStructName("struct");
682     return FallbackStructName;
683 }
684 
685 uint32_t RenderScriptRuntime::AllocationDetails::ID = 1;
686 
687 const char *RenderScriptRuntime::AllocationDetails::RsDataKindToString[] = {
688     "User",
689     "Undefined",  "Undefined",   "Undefined", "Undefined", "Undefined",  "Undefined", // Enum jumps from 0 to 7
690     "L Pixel",    "A Pixel",     "LA Pixel",  "RGB Pixel",
691     "RGBA Pixel", "Pixel Depth", "YUV Pixel"};
692 
693 const char *RenderScriptRuntime::AllocationDetails::RsDataTypeToString[][4] = {
694     {"None", "None", "None", "None"},
695     {"half", "half2", "half3", "half4"},
696     {"float", "float2", "float3", "float4"},
697     {"double", "double2", "double3", "double4"},
698     {"char", "char2", "char3", "char4"},
699     {"short", "short2", "short3", "short4"},
700     {"int", "int2", "int3", "int4"},
701     {"long", "long2", "long3", "long4"},
702     {"uchar", "uchar2", "uchar3", "uchar4"},
703     {"ushort", "ushort2", "ushort3", "ushort4"},
704     {"uint", "uint2", "uint3", "uint4"},
705     {"ulong", "ulong2", "ulong3", "ulong4"},
706     {"bool", "bool2", "bool3", "bool4"},
707     {"packed_565", "packed_565", "packed_565", "packed_565"},
708     {"packed_5551", "packed_5551", "packed_5551", "packed_5551"},
709     {"packed_4444", "packed_4444", "packed_4444", "packed_4444"},
710     {"rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4"},
711     {"rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3"},
712     {"rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2"},
713 
714     // Handlers
715     {"RS Element", "RS Element", "RS Element", "RS Element"},
716     {"RS Type", "RS Type", "RS Type", "RS Type"},
717     {"RS Allocation", "RS Allocation", "RS Allocation", "RS Allocation"},
718     {"RS Sampler", "RS Sampler", "RS Sampler", "RS Sampler"},
719     {"RS Script", "RS Script", "RS Script", "RS Script"},
720 
721     // Deprecated
722     {"RS Mesh", "RS Mesh", "RS Mesh", "RS Mesh"},
723     {"RS Program Fragment", "RS Program Fragment", "RS Program Fragment", "RS Program Fragment"},
724     {"RS Program Vertex", "RS Program Vertex", "RS Program Vertex", "RS Program Vertex"},
725     {"RS Program Raster", "RS Program Raster", "RS Program Raster", "RS Program Raster"},
726     {"RS Program Store", "RS Program Store", "RS Program Store", "RS Program Store"},
727     {"RS Font", "RS Font", "RS Font", "RS Font"}};
728 
729 // Used as an index into the RSTypeToFormat array elements
730 enum TypeToFormatIndex
731 {
732     eFormatSingle = 0,
733     eFormatVector,
734     eElementSize
735 };
736 
737 // { format enum of single element, format enum of element vector, size of element}
738 const uint32_t RenderScriptRuntime::AllocationDetails::RSTypeToFormat[][3] = {
739     {eFormatHex, eFormatHex, 1},                                          // RS_TYPE_NONE
740     {eFormatFloat, eFormatVectorOfFloat16, 2},                            // RS_TYPE_FLOAT_16
741     {eFormatFloat, eFormatVectorOfFloat32, sizeof(float)},                // RS_TYPE_FLOAT_32
742     {eFormatFloat, eFormatVectorOfFloat64, sizeof(double)},               // RS_TYPE_FLOAT_64
743     {eFormatDecimal, eFormatVectorOfSInt8, sizeof(int8_t)},               // RS_TYPE_SIGNED_8
744     {eFormatDecimal, eFormatVectorOfSInt16, sizeof(int16_t)},             // RS_TYPE_SIGNED_16
745     {eFormatDecimal, eFormatVectorOfSInt32, sizeof(int32_t)},             // RS_TYPE_SIGNED_32
746     {eFormatDecimal, eFormatVectorOfSInt64, sizeof(int64_t)},             // RS_TYPE_SIGNED_64
747     {eFormatDecimal, eFormatVectorOfUInt8, sizeof(uint8_t)},              // RS_TYPE_UNSIGNED_8
748     {eFormatDecimal, eFormatVectorOfUInt16, sizeof(uint16_t)},            // RS_TYPE_UNSIGNED_16
749     {eFormatDecimal, eFormatVectorOfUInt32, sizeof(uint32_t)},            // RS_TYPE_UNSIGNED_32
750     {eFormatDecimal, eFormatVectorOfUInt64, sizeof(uint64_t)},            // RS_TYPE_UNSIGNED_64
751     {eFormatBoolean, eFormatBoolean, 1},                                  // RS_TYPE_BOOL
752     {eFormatHex, eFormatHex, sizeof(uint16_t)},                           // RS_TYPE_UNSIGNED_5_6_5
753     {eFormatHex, eFormatHex, sizeof(uint16_t)},                           // RS_TYPE_UNSIGNED_5_5_5_1
754     {eFormatHex, eFormatHex, sizeof(uint16_t)},                           // RS_TYPE_UNSIGNED_4_4_4_4
755     {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 16}, // RS_TYPE_MATRIX_4X4
756     {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 9},  // RS_TYPE_MATRIX_3X3
757     {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 4}   // RS_TYPE_MATRIX_2X2
758 };
759 
760 const std::string RenderScriptRuntime::s_runtimeExpandSuffix(".expand");
761 const std::array<const char *, 3> RenderScriptRuntime::s_runtimeCoordVars{{"rsIndex", "p->current.y", "p->current.z"}};
762 //------------------------------------------------------------------
763 // Static Functions
764 //------------------------------------------------------------------
765 LanguageRuntime *
766 RenderScriptRuntime::CreateInstance(Process *process, lldb::LanguageType language)
767 {
768 
769     if (language == eLanguageTypeExtRenderScript)
770         return new RenderScriptRuntime(process);
771     else
772         return nullptr;
773 }
774 
775 // Callback with a module to search for matching symbols.
776 // We first check that the module contains RS kernels.
777 // Then look for a symbol which matches our kernel name.
778 // The breakpoint address is finally set using the address of this symbol.
779 Searcher::CallbackReturn
780 RSBreakpointResolver::SearchCallback(SearchFilter &filter, SymbolContext &context, Address *, bool)
781 {
782     ModuleSP module = context.module_sp;
783 
784     if (!module)
785         return Searcher::eCallbackReturnContinue;
786 
787     // Is this a module containing renderscript kernels?
788     if (nullptr == module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), eSymbolTypeData))
789         return Searcher::eCallbackReturnContinue;
790 
791     // Attempt to set a breakpoint on the kernel name symbol within the module library.
792     // If it's not found, it's likely debug info is unavailable - try to set a
793     // breakpoint on <name>.expand.
794 
795     const Symbol *kernel_sym = module->FindFirstSymbolWithNameAndType(m_kernel_name, eSymbolTypeCode);
796     if (!kernel_sym)
797     {
798         std::string kernel_name_expanded(m_kernel_name.AsCString());
799         kernel_name_expanded.append(".expand");
800         kernel_sym = module->FindFirstSymbolWithNameAndType(ConstString(kernel_name_expanded.c_str()), eSymbolTypeCode);
801     }
802 
803     if (kernel_sym)
804     {
805         Address bp_addr = kernel_sym->GetAddress();
806         if (filter.AddressPasses(bp_addr))
807             m_breakpoint->AddLocation(bp_addr);
808     }
809 
810     return Searcher::eCallbackReturnContinue;
811 }
812 
813 void
814 RenderScriptRuntime::Initialize()
815 {
816     PluginManager::RegisterPlugin(GetPluginNameStatic(), "RenderScript language support", CreateInstance,
817                                   GetCommandObject);
818 }
819 
820 void
821 RenderScriptRuntime::Terminate()
822 {
823     PluginManager::UnregisterPlugin(CreateInstance);
824 }
825 
826 lldb_private::ConstString
827 RenderScriptRuntime::GetPluginNameStatic()
828 {
829     static ConstString g_name("renderscript");
830     return g_name;
831 }
832 
833 RenderScriptRuntime::ModuleKind
834 RenderScriptRuntime::GetModuleKind(const lldb::ModuleSP &module_sp)
835 {
836     if (module_sp)
837     {
838         // Is this a module containing renderscript kernels?
839         const Symbol *info_sym = module_sp->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), eSymbolTypeData);
840         if (info_sym)
841         {
842             return eModuleKindKernelObj;
843         }
844 
845         // Is this the main RS runtime library
846         const ConstString rs_lib("libRS.so");
847         if (module_sp->GetFileSpec().GetFilename() == rs_lib)
848         {
849             return eModuleKindLibRS;
850         }
851 
852         const ConstString rs_driverlib("libRSDriver.so");
853         if (module_sp->GetFileSpec().GetFilename() == rs_driverlib)
854         {
855             return eModuleKindDriver;
856         }
857 
858         const ConstString rs_cpureflib("libRSCpuRef.so");
859         if (module_sp->GetFileSpec().GetFilename() == rs_cpureflib)
860         {
861             return eModuleKindImpl;
862         }
863     }
864     return eModuleKindIgnored;
865 }
866 
867 bool
868 RenderScriptRuntime::IsRenderScriptModule(const lldb::ModuleSP &module_sp)
869 {
870     return GetModuleKind(module_sp) != eModuleKindIgnored;
871 }
872 
873 void
874 RenderScriptRuntime::ModulesDidLoad(const ModuleList &module_list)
875 {
876     Mutex::Locker locker(module_list.GetMutex());
877 
878     size_t num_modules = module_list.GetSize();
879     for (size_t i = 0; i < num_modules; i++)
880     {
881         auto mod = module_list.GetModuleAtIndex(i);
882         if (IsRenderScriptModule(mod))
883         {
884             LoadModule(mod);
885         }
886     }
887 }
888 
889 //------------------------------------------------------------------
890 // PluginInterface protocol
891 //------------------------------------------------------------------
892 lldb_private::ConstString
893 RenderScriptRuntime::GetPluginName()
894 {
895     return GetPluginNameStatic();
896 }
897 
898 uint32_t
899 RenderScriptRuntime::GetPluginVersion()
900 {
901     return 1;
902 }
903 
904 bool
905 RenderScriptRuntime::IsVTableName(const char *name)
906 {
907     return false;
908 }
909 
910 bool
911 RenderScriptRuntime::GetDynamicTypeAndAddress(ValueObject &in_value, lldb::DynamicValueType use_dynamic,
912                                               TypeAndOrName &class_type_or_name, Address &address,
913                                               Value::ValueType &value_type)
914 {
915     return false;
916 }
917 
918 TypeAndOrName
919 RenderScriptRuntime::FixUpDynamicType(const TypeAndOrName &type_and_or_name, ValueObject &static_value)
920 {
921     return type_and_or_name;
922 }
923 
924 bool
925 RenderScriptRuntime::CouldHaveDynamicValue(ValueObject &in_value)
926 {
927     return false;
928 }
929 
930 lldb::BreakpointResolverSP
931 RenderScriptRuntime::CreateExceptionResolver(Breakpoint *bkpt, bool catch_bp, bool throw_bp)
932 {
933     BreakpointResolverSP resolver_sp;
934     return resolver_sp;
935 }
936 
937 const RenderScriptRuntime::HookDefn RenderScriptRuntime::s_runtimeHookDefns[] = {
938     // rsdScript
939     {
940         "rsdScriptInit",
941         "_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_7ScriptCEPKcS7_PKhjj",
942         "_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_7ScriptCEPKcS7_PKhmj",
943         0,
944         RenderScriptRuntime::eModuleKindDriver,
945         &lldb_private::RenderScriptRuntime::CaptureScriptInit
946     },
947     {
948         "rsdScriptInvokeForEachMulti",
949         "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0_6ScriptEjPPKNS0_10AllocationEjPS6_PKvjPK12RsScriptCall",
950         "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0_6ScriptEjPPKNS0_10AllocationEmPS6_PKvmPK12RsScriptCall",
951         0,
952         RenderScriptRuntime::eModuleKindDriver,
953         &lldb_private::RenderScriptRuntime::CaptureScriptInvokeForEachMulti
954     },
955     {
956         "rsdScriptSetGlobalVar",
957         "_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_6ScriptEjPvj",
958         "_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_6ScriptEjPvm",
959         0,
960         RenderScriptRuntime::eModuleKindDriver,
961         &lldb_private::RenderScriptRuntime::CaptureSetGlobalVar
962     },
963 
964     // rsdAllocation
965     {
966         "rsdAllocationInit",
967         "_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_10AllocationEb",
968         "_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_10AllocationEb",
969         0,
970         RenderScriptRuntime::eModuleKindDriver,
971         &lldb_private::RenderScriptRuntime::CaptureAllocationInit
972     },
973     {
974         "rsdAllocationRead2D",
975         "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_10AllocationEjjj23RsAllocationCubemapFacejjPvjj",
976         "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_10AllocationEjjj23RsAllocationCubemapFacejjPvmm",
977         0,
978         RenderScriptRuntime::eModuleKindDriver,
979         nullptr
980     },
981     {
982         "rsdAllocationDestroy",
983         "_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_10AllocationE",
984         "_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_10AllocationE",
985         0,
986         RenderScriptRuntime::eModuleKindDriver,
987         &lldb_private::RenderScriptRuntime::CaptureAllocationDestroy
988     },
989 };
990 
991 const size_t RenderScriptRuntime::s_runtimeHookCount = sizeof(s_runtimeHookDefns) / sizeof(s_runtimeHookDefns[0]);
992 
993 bool
994 RenderScriptRuntime::HookCallback(void *baton, StoppointCallbackContext *ctx, lldb::user_id_t break_id,
995                                   lldb::user_id_t break_loc_id)
996 {
997     RuntimeHook *hook_info = (RuntimeHook *)baton;
998     ExecutionContext context(ctx->exe_ctx_ref);
999 
1000     RenderScriptRuntime *lang_rt =
1001         (RenderScriptRuntime *)context.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
1002 
1003     lang_rt->HookCallback(hook_info, context);
1004 
1005     return false;
1006 }
1007 
1008 void
1009 RenderScriptRuntime::HookCallback(RuntimeHook *hook_info, ExecutionContext &context)
1010 {
1011     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1012 
1013     if (log)
1014         log->Printf("%s - '%s'", __FUNCTION__, hook_info->defn->name);
1015 
1016     if (hook_info->defn->grabber)
1017     {
1018         (this->*(hook_info->defn->grabber))(hook_info, context);
1019     }
1020 }
1021 
1022 void
1023 RenderScriptRuntime::CaptureScriptInvokeForEachMulti(RuntimeHook* hook_info,
1024                                                      ExecutionContext& context)
1025 {
1026     Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1027 
1028     enum
1029     {
1030         eRsContext = 0,
1031         eRsScript,
1032         eRsSlot,
1033         eRsAIns,
1034         eRsInLen,
1035         eRsAOut,
1036         eRsUsr,
1037         eRsUsrLen,
1038         eRsSc,
1039     };
1040 
1041     std::array<ArgItem, 9> args{{
1042         ArgItem{ArgItem::ePointer, 0}, // const Context       *rsc
1043         ArgItem{ArgItem::ePointer, 0}, // Script              *s
1044         ArgItem{ArgItem::eInt32, 0},   // uint32_t             slot
1045         ArgItem{ArgItem::ePointer, 0}, // const Allocation   **aIns
1046         ArgItem{ArgItem::eInt32, 0},   // size_t               inLen
1047         ArgItem{ArgItem::ePointer, 0}, // Allocation          *aout
1048         ArgItem{ArgItem::ePointer, 0}, // const void          *usr
1049         ArgItem{ArgItem::eInt32, 0},   // size_t               usrLen
1050         ArgItem{ArgItem::ePointer, 0}, // const RsScriptCall  *sc
1051     }};
1052 
1053     bool success = GetArgs(context, &args[0], args.size());
1054     if (!success)
1055     {
1056         if (log)
1057             log->Printf("%s - Error while reading the function parameters", __FUNCTION__);
1058         return;
1059     }
1060 
1061     const uint32_t target_ptr_size = m_process->GetAddressByteSize();
1062     Error error;
1063     std::vector<uint64_t> allocs;
1064 
1065     // traverse allocation list
1066     for (uint64_t i = 0; i < uint64_t(args[eRsInLen]); ++i)
1067     {
1068         // calculate offest to allocation pointer
1069         const addr_t addr = addr_t(args[eRsAIns]) + i * target_ptr_size;
1070 
1071         // Note: due to little endian layout, reading 32bits or 64bits into res64 will
1072         //       give the correct results.
1073 
1074         uint64_t res64 = 0;
1075         size_t read = m_process->ReadMemory(addr, &res64, target_ptr_size, error);
1076         if (read != target_ptr_size || !error.Success())
1077         {
1078             if (log)
1079                 log->Printf("%s - Error while reading allocation list argument %" PRIu64, __FUNCTION__, i);
1080         }
1081         else
1082         {
1083             allocs.push_back(res64);
1084         }
1085     }
1086 
1087     // if there is an output allocation track it
1088     if (uint64_t aOut = uint64_t(args[eRsAOut]))
1089     {
1090         allocs.push_back(aOut);
1091     }
1092 
1093     // for all allocations we have found
1094     for (const uint64_t alloc_addr : allocs)
1095     {
1096         AllocationDetails* alloc = LookUpAllocation(alloc_addr, true);
1097         if (alloc)
1098         {
1099             // save the allocation address
1100             if (alloc->address.isValid())
1101             {
1102                 // check the allocation address we already have matches
1103                 assert(*alloc->address.get() == alloc_addr);
1104             }
1105             else
1106             {
1107                 alloc->address = alloc_addr;
1108             }
1109 
1110             // save the context
1111             if (log)
1112             {
1113                 if (alloc->context.isValid() && *alloc->context.get() != addr_t(args[eRsContext]))
1114                     log->Printf("%s - Allocation used by multiple contexts", __FUNCTION__);
1115             }
1116             alloc->context = addr_t(args[eRsContext]);
1117         }
1118     }
1119 
1120     // make sure we track this script object
1121     if (lldb_private::RenderScriptRuntime::ScriptDetails *script = LookUpScript(addr_t(args[eRsScript]), true))
1122     {
1123         if (log)
1124         {
1125             if (script->context.isValid() && *script->context.get() != addr_t(args[eRsContext]))
1126                 log->Printf("%s - Script used by multiple contexts", __FUNCTION__);
1127         }
1128         script->context = addr_t(args[eRsContext]);
1129     }
1130 }
1131 
1132 void
1133 RenderScriptRuntime::CaptureSetGlobalVar(RuntimeHook *hook_info, ExecutionContext &context)
1134 {
1135     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1136 
1137     enum
1138     {
1139         eRsContext,
1140         eRsScript,
1141         eRsId,
1142         eRsData,
1143         eRsLength,
1144     };
1145 
1146     std::array<ArgItem, 5> args{{
1147         ArgItem{ArgItem::ePointer, 0}, // eRsContext
1148         ArgItem{ArgItem::ePointer, 0}, // eRsScript
1149         ArgItem{ArgItem::eInt32, 0},   // eRsId
1150         ArgItem{ArgItem::ePointer, 0}, // eRsData
1151         ArgItem{ArgItem::eInt32, 0},   // eRsLength
1152     }};
1153 
1154     bool success = GetArgs(context, &args[0], args.size());
1155     if (!success)
1156     {
1157         if (log)
1158             log->Printf("%s - error reading the function parameters.", __FUNCTION__);
1159         return;
1160     }
1161 
1162     if (log)
1163     {
1164         log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " slot %" PRIu64 " = 0x%" PRIx64 ":%" PRIu64 "bytes.", __FUNCTION__,
1165                     uint64_t(args[eRsContext]), uint64_t(args[eRsScript]), uint64_t(args[eRsId]),
1166                     uint64_t(args[eRsData]), uint64_t(args[eRsLength]));
1167 
1168         addr_t script_addr = addr_t(args[eRsScript]);
1169         if (m_scriptMappings.find(script_addr) != m_scriptMappings.end())
1170         {
1171             auto rsm = m_scriptMappings[script_addr];
1172             if (uint64_t(args[eRsId]) < rsm->m_globals.size())
1173             {
1174                 auto rsg = rsm->m_globals[uint64_t(args[eRsId])];
1175                 log->Printf("%s - Setting of '%s' within '%s' inferred", __FUNCTION__, rsg.m_name.AsCString(),
1176                             rsm->m_module->GetFileSpec().GetFilename().AsCString());
1177             }
1178         }
1179     }
1180 }
1181 
1182 void
1183 RenderScriptRuntime::CaptureAllocationInit(RuntimeHook *hook_info, ExecutionContext &context)
1184 {
1185     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1186 
1187     enum
1188     {
1189         eRsContext,
1190         eRsAlloc,
1191         eRsForceZero
1192     };
1193 
1194     std::array<ArgItem, 3> args{{
1195         ArgItem{ArgItem::ePointer, 0}, // eRsContext
1196         ArgItem{ArgItem::ePointer, 0}, // eRsAlloc
1197         ArgItem{ArgItem::eBool, 0},    // eRsForceZero
1198     }};
1199 
1200     bool success = GetArgs(context, &args[0], args.size());
1201     if (!success) // error case
1202     {
1203         if (log)
1204             log->Printf("%s - error while reading the function parameters", __FUNCTION__);
1205         return; // abort
1206     }
1207 
1208     if (log)
1209         log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 ",0x%" PRIx64 " .", __FUNCTION__, uint64_t(args[eRsContext]),
1210                     uint64_t(args[eRsAlloc]), uint64_t(args[eRsForceZero]));
1211 
1212     AllocationDetails *alloc = LookUpAllocation(uint64_t(args[eRsAlloc]), true);
1213     if (alloc)
1214         alloc->context = uint64_t(args[eRsContext]);
1215 }
1216 
1217 void
1218 RenderScriptRuntime::CaptureAllocationDestroy(RuntimeHook *hook_info, ExecutionContext &context)
1219 {
1220     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1221 
1222     enum
1223     {
1224         eRsContext,
1225         eRsAlloc,
1226     };
1227 
1228     std::array<ArgItem, 2> args{{
1229         ArgItem{ArgItem::ePointer, 0}, // eRsContext
1230         ArgItem{ArgItem::ePointer, 0}, // eRsAlloc
1231     }};
1232 
1233     bool success = GetArgs(context, &args[0], args.size());
1234     if (!success)
1235     {
1236         if (log)
1237             log->Printf("%s - error while reading the function parameters.", __FUNCTION__);
1238         return;
1239     }
1240 
1241     if (log)
1242         log->Printf("%s - 0x%" PRIx64 ", 0x%" PRIx64 ".", __FUNCTION__, uint64_t(args[eRsContext]),
1243                     uint64_t(args[eRsAlloc]));
1244 
1245     for (auto iter = m_allocations.begin(); iter != m_allocations.end(); ++iter)
1246     {
1247         auto &allocation_ap = *iter; // get the unique pointer
1248         if (allocation_ap->address.isValid() && *allocation_ap->address.get() == addr_t(args[eRsAlloc]))
1249         {
1250             m_allocations.erase(iter);
1251             if (log)
1252                 log->Printf("%s - deleted allocation entry.", __FUNCTION__);
1253             return;
1254         }
1255     }
1256 
1257     if (log)
1258         log->Printf("%s - couldn't find destroyed allocation.", __FUNCTION__);
1259 }
1260 
1261 void
1262 RenderScriptRuntime::CaptureScriptInit(RuntimeHook *hook_info, ExecutionContext &context)
1263 {
1264     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1265 
1266     Error error;
1267     Process *process = context.GetProcessPtr();
1268 
1269     enum
1270     {
1271         eRsContext,
1272         eRsScript,
1273         eRsResNamePtr,
1274         eRsCachedDirPtr
1275     };
1276 
1277     std::array<ArgItem, 4> args{{ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0},
1278                                  ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}}};
1279     bool success = GetArgs(context, &args[0], args.size());
1280     if (!success)
1281     {
1282         if (log)
1283             log->Printf("%s - error while reading the function parameters.", __FUNCTION__);
1284         return;
1285     }
1286 
1287     std::string resname;
1288     process->ReadCStringFromMemory(addr_t(args[eRsResNamePtr]), resname, error);
1289     if (error.Fail())
1290     {
1291         if (log)
1292             log->Printf("%s - error reading resname: %s.", __FUNCTION__, error.AsCString());
1293     }
1294 
1295     std::string cachedir;
1296     process->ReadCStringFromMemory(addr_t(args[eRsCachedDirPtr]), cachedir, error);
1297     if (error.Fail())
1298     {
1299         if (log)
1300             log->Printf("%s - error reading cachedir: %s.", __FUNCTION__, error.AsCString());
1301     }
1302 
1303     if (log)
1304         log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " => '%s' at '%s' .", __FUNCTION__, uint64_t(args[eRsContext]),
1305                     uint64_t(args[eRsScript]), resname.c_str(), cachedir.c_str());
1306 
1307     if (resname.size() > 0)
1308     {
1309         StreamString strm;
1310         strm.Printf("librs.%s.so", resname.c_str());
1311 
1312         ScriptDetails *script = LookUpScript(addr_t(args[eRsScript]), true);
1313         if (script)
1314         {
1315             script->type = ScriptDetails::eScriptC;
1316             script->cacheDir = cachedir;
1317             script->resName = resname;
1318             script->scriptDyLib = strm.GetData();
1319             script->context = addr_t(args[eRsContext]);
1320         }
1321 
1322         if (log)
1323             log->Printf("%s - '%s' tagged with context 0x%" PRIx64 " and script 0x%" PRIx64 ".", __FUNCTION__,
1324                         strm.GetData(), uint64_t(args[eRsContext]), uint64_t(args[eRsScript]));
1325     }
1326     else if (log)
1327     {
1328         log->Printf("%s - resource name invalid, Script not tagged.", __FUNCTION__);
1329     }
1330 }
1331 
1332 void
1333 RenderScriptRuntime::LoadRuntimeHooks(lldb::ModuleSP module, ModuleKind kind)
1334 {
1335     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1336 
1337     if (!module)
1338     {
1339         return;
1340     }
1341 
1342     Target &target = GetProcess()->GetTarget();
1343     llvm::Triple::ArchType targetArchType = target.GetArchitecture().GetMachine();
1344 
1345     if (targetArchType != llvm::Triple::ArchType::x86 &&
1346         targetArchType != llvm::Triple::ArchType::arm &&
1347         targetArchType != llvm::Triple::ArchType::aarch64 &&
1348         targetArchType != llvm::Triple::ArchType::mipsel &&
1349         targetArchType != llvm::Triple::ArchType::mips64el &&
1350         targetArchType != llvm::Triple::ArchType::x86_64)
1351     {
1352         if (log)
1353             log->Printf("%s - unable to hook runtime functions.", __FUNCTION__);
1354         return;
1355     }
1356 
1357     uint32_t archByteSize = target.GetArchitecture().GetAddressByteSize();
1358 
1359     for (size_t idx = 0; idx < s_runtimeHookCount; idx++)
1360     {
1361         const HookDefn *hook_defn = &s_runtimeHookDefns[idx];
1362         if (hook_defn->kind != kind)
1363         {
1364             continue;
1365         }
1366 
1367         const char *symbol_name = (archByteSize == 4) ? hook_defn->symbol_name_m32 : hook_defn->symbol_name_m64;
1368 
1369         const Symbol *sym = module->FindFirstSymbolWithNameAndType(ConstString(symbol_name), eSymbolTypeCode);
1370         if (!sym)
1371         {
1372             if (log)
1373             {
1374                 log->Printf("%s - symbol '%s' related to the function %s not found",
1375                             __FUNCTION__, symbol_name, hook_defn->name);
1376             }
1377             continue;
1378         }
1379 
1380         addr_t addr = sym->GetLoadAddress(&target);
1381         if (addr == LLDB_INVALID_ADDRESS)
1382         {
1383             if (log)
1384                 log->Printf("%s - unable to resolve the address of hook function '%s' with symbol '%s'.",
1385                             __FUNCTION__, hook_defn->name, symbol_name);
1386             continue;
1387         }
1388         else
1389         {
1390             if (log)
1391                 log->Printf("%s - function %s, address resolved at 0x%" PRIx64,
1392                             __FUNCTION__, hook_defn->name, addr);
1393         }
1394 
1395         RuntimeHookSP hook(new RuntimeHook());
1396         hook->address = addr;
1397         hook->defn = hook_defn;
1398         hook->bp_sp = target.CreateBreakpoint(addr, true, false);
1399         hook->bp_sp->SetCallback(HookCallback, hook.get(), true);
1400         m_runtimeHooks[addr] = hook;
1401         if (log)
1402         {
1403             log->Printf("%s - successfully hooked '%s' in '%s' version %" PRIu64 " at 0x%" PRIx64 ".",
1404                         __FUNCTION__, hook_defn->name, module->GetFileSpec().GetFilename().AsCString(),
1405                         (uint64_t)hook_defn->version, (uint64_t)addr);
1406         }
1407     }
1408 }
1409 
1410 void
1411 RenderScriptRuntime::FixupScriptDetails(RSModuleDescriptorSP rsmodule_sp)
1412 {
1413     if (!rsmodule_sp)
1414         return;
1415 
1416     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1417 
1418     const ModuleSP module = rsmodule_sp->m_module;
1419     const FileSpec &file = module->GetPlatformFileSpec();
1420 
1421     // Iterate over all of the scripts that we currently know of.
1422     // Note: We cant push or pop to m_scripts here or it may invalidate rs_script.
1423     for (const auto &rs_script : m_scripts)
1424     {
1425         // Extract the expected .so file path for this script.
1426         std::string dylib;
1427         if (!rs_script->scriptDyLib.get(dylib))
1428             continue;
1429 
1430         // Only proceed if the module that has loaded corresponds to this script.
1431         if (file.GetFilename() != ConstString(dylib.c_str()))
1432             continue;
1433 
1434         // Obtain the script address which we use as a key.
1435         lldb::addr_t script;
1436         if (!rs_script->script.get(script))
1437             continue;
1438 
1439         // If we have a script mapping for the current script.
1440         if (m_scriptMappings.find(script) != m_scriptMappings.end())
1441         {
1442             // if the module we have stored is different to the one we just received.
1443             if (m_scriptMappings[script] != rsmodule_sp)
1444             {
1445                 if (log)
1446                     log->Printf("%s - script %" PRIx64 " wants reassigned to new rsmodule '%s'.", __FUNCTION__,
1447                                 (uint64_t)script, rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString());
1448             }
1449         }
1450         // We don't have a script mapping for the current script.
1451         else
1452         {
1453             // Obtain the script resource name.
1454             std::string resName;
1455             if (rs_script->resName.get(resName))
1456                 // Set the modules resource name.
1457                 rsmodule_sp->m_resname = resName;
1458             // Add Script/Module pair to map.
1459             m_scriptMappings[script] = rsmodule_sp;
1460             if (log)
1461                 log->Printf("%s - script %" PRIx64 " associated with rsmodule '%s'.", __FUNCTION__,
1462                             (uint64_t)script, rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString());
1463         }
1464     }
1465 }
1466 
1467 // Uses the Target API to evaluate the expression passed as a parameter to the function
1468 // The result of that expression is returned an unsigned 64 bit int, via the result* paramter.
1469 // Function returns true on success, and false on failure
1470 bool
1471 RenderScriptRuntime::EvalRSExpression(const char *expression, StackFrame *frame_ptr, uint64_t *result)
1472 {
1473     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1474     if (log)
1475         log->Printf("%s(%s)", __FUNCTION__, expression);
1476 
1477     ValueObjectSP expr_result;
1478     EvaluateExpressionOptions options;
1479     options.SetLanguage(lldb::eLanguageTypeC_plus_plus);
1480     // Perform the actual expression evaluation
1481     GetProcess()->GetTarget().EvaluateExpression(expression, frame_ptr, expr_result, options);
1482 
1483     if (!expr_result)
1484     {
1485         if (log)
1486             log->Printf("%s: couldn't evaluate expression.", __FUNCTION__);
1487         return false;
1488     }
1489 
1490     // The result of the expression is invalid
1491     if (!expr_result->GetError().Success())
1492     {
1493         Error err = expr_result->GetError();
1494         if (err.GetError() == UserExpression::kNoResult) // Expression returned void, so this is actually a success
1495         {
1496             if (log)
1497                 log->Printf("%s - expression returned void.", __FUNCTION__);
1498 
1499             result = nullptr;
1500             return true;
1501         }
1502 
1503         if (log)
1504             log->Printf("%s - error evaluating expression result: %s", __FUNCTION__,
1505                         err.AsCString());
1506         return false;
1507     }
1508 
1509     bool success = false;
1510     *result = expr_result->GetValueAsUnsigned(0, &success); // We only read the result as an uint32_t.
1511 
1512     if (!success)
1513     {
1514         if (log)
1515             log->Printf("%s - couldn't convert expression result to uint32_t", __FUNCTION__);
1516         return false;
1517     }
1518 
1519     return true;
1520 }
1521 
1522 namespace
1523 {
1524 // Used to index expression format strings
1525 enum ExpressionStrings
1526 {
1527    eExprGetOffsetPtr = 0,
1528    eExprAllocGetType,
1529    eExprTypeDimX,
1530    eExprTypeDimY,
1531    eExprTypeDimZ,
1532    eExprTypeElemPtr,
1533    eExprElementType,
1534    eExprElementKind,
1535    eExprElementVec,
1536    eExprElementFieldCount,
1537    eExprSubelementsId,
1538    eExprSubelementsName,
1539    eExprSubelementsArrSize,
1540 
1541    _eExprLast // keep at the end, implicit size of the array runtimeExpressions
1542 };
1543 
1544 // max length of an expanded expression
1545 const int jit_max_expr_size = 512;
1546 
1547 // Retrieve the string to JIT for the given expression
1548 const char*
1549 JITTemplate(ExpressionStrings e)
1550 {
1551     // Format strings containing the expressions we may need to evaluate.
1552     static std::array<const char*, _eExprLast> runtimeExpressions = {{
1553      // Mangled GetOffsetPointer(Allocation*, xoff, yoff, zoff, lod, cubemap)
1554      "(int*)_Z12GetOffsetPtrPKN7android12renderscript10AllocationEjjjj23RsAllocationCubemapFace"
1555      "(0x%" PRIx64 ", %" PRIu32 ", %" PRIu32 ", %" PRIu32 ", 0, 0)",
1556 
1557      // Type* rsaAllocationGetType(Context*, Allocation*)
1558      "(void*)rsaAllocationGetType(0x%" PRIx64 ", 0x%" PRIx64 ")",
1559 
1560      // rsaTypeGetNativeData(Context*, Type*, void* typeData, size)
1561      // Pack the data in the following way mHal.state.dimX; mHal.state.dimY; mHal.state.dimZ;
1562      // mHal.state.lodCount; mHal.state.faces; mElement; into typeData
1563      // Need to specify 32 or 64 bit for uint_t since this differs between devices
1564      "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 6); data[0]", // X dim
1565      "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 6); data[1]", // Y dim
1566      "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 6); data[2]", // Z dim
1567      "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 6); data[5]", // Element ptr
1568 
1569      // rsaElementGetNativeData(Context*, Element*, uint32_t* elemData,size)
1570      // Pack mType; mKind; mNormalized; mVectorSize; NumSubElements into elemData
1571      "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 5); data[0]", // Type
1572      "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 5); data[1]", // Kind
1573      "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 5); data[3]", // Vector Size
1574      "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 5); data[4]", // Field Count
1575 
1576      // rsaElementGetSubElements(RsContext con, RsElement elem, uintptr_t *ids, const char **names,
1577      // size_t *arraySizes, uint32_t dataSize)
1578      // Needed for Allocations of structs to gather details about fields/Subelements
1579      // Element* of field
1580      "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 "]; size_t arr_size[%" PRIu32 "];"
1581      "(void*)rsaElementGetSubElements(0x%" PRIx64 ", 0x%" PRIx64 ", ids, names, arr_size, %" PRIu32 "); ids[%" PRIu32 "]",
1582 
1583      // Name of field
1584      "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 "]; size_t arr_size[%" PRIu32 "];"
1585      "(void*)rsaElementGetSubElements(0x%" PRIx64 ", 0x%" PRIx64 ", ids, names, arr_size, %" PRIu32 "); names[%" PRIu32 "]",
1586 
1587      // Array size of field
1588      "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 "]; size_t arr_size[%" PRIu32 "];"
1589      "(void*)rsaElementGetSubElements(0x%" PRIx64 ", 0x%" PRIx64 ", ids, names, arr_size, %" PRIu32 "); arr_size[%" PRIu32 "]"
1590     }};
1591 
1592     return runtimeExpressions[e];
1593 }
1594 } // end of the anonymous namespace
1595 
1596 
1597 // JITs the RS runtime for the internal data pointer of an allocation.
1598 // Is passed x,y,z coordinates for the pointer to a specific element.
1599 // Then sets the data_ptr member in Allocation with the result.
1600 // Returns true on success, false otherwise
1601 bool
1602 RenderScriptRuntime::JITDataPointer(AllocationDetails *allocation, StackFrame *frame_ptr, uint32_t x,
1603                                     uint32_t y, uint32_t z)
1604 {
1605     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1606 
1607     if (!allocation->address.isValid())
1608     {
1609         if (log)
1610             log->Printf("%s - failed to find allocation details.", __FUNCTION__);
1611         return false;
1612     }
1613 
1614     const char *expr_cstr = JITTemplate(eExprGetOffsetPtr);
1615     char buffer[jit_max_expr_size];
1616 
1617     int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->address.get(), x, y, z);
1618     if (chars_written < 0)
1619     {
1620         if (log)
1621             log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
1622         return false;
1623     }
1624     else if (chars_written >= jit_max_expr_size)
1625     {
1626         if (log)
1627             log->Printf("%s - expression too long.", __FUNCTION__);
1628         return false;
1629     }
1630 
1631     uint64_t result = 0;
1632     if (!EvalRSExpression(buffer, frame_ptr, &result))
1633         return false;
1634 
1635     addr_t mem_ptr = static_cast<lldb::addr_t>(result);
1636     allocation->data_ptr = mem_ptr;
1637 
1638     return true;
1639 }
1640 
1641 // JITs the RS runtime for the internal pointer to the RS Type of an allocation
1642 // Then sets the type_ptr member in Allocation with the result.
1643 // Returns true on success, false otherwise
1644 bool
1645 RenderScriptRuntime::JITTypePointer(AllocationDetails *allocation, StackFrame *frame_ptr)
1646 {
1647     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1648 
1649     if (!allocation->address.isValid() || !allocation->context.isValid())
1650     {
1651         if (log)
1652             log->Printf("%s - failed to find allocation details.", __FUNCTION__);
1653         return false;
1654     }
1655 
1656     const char *expr_cstr = JITTemplate(eExprAllocGetType);
1657     char buffer[jit_max_expr_size];
1658 
1659     int chars_written =
1660         snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->context.get(), *allocation->address.get());
1661     if (chars_written < 0)
1662     {
1663         if (log)
1664             log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
1665         return false;
1666     }
1667     else if (chars_written >= jit_max_expr_size)
1668     {
1669         if (log)
1670             log->Printf("%s - expression too long.", __FUNCTION__);
1671         return false;
1672     }
1673 
1674     uint64_t result = 0;
1675     if (!EvalRSExpression(buffer, frame_ptr, &result))
1676         return false;
1677 
1678     addr_t type_ptr = static_cast<lldb::addr_t>(result);
1679     allocation->type_ptr = type_ptr;
1680 
1681     return true;
1682 }
1683 
1684 // JITs the RS runtime for information about the dimensions and type of an allocation
1685 // Then sets dimension and element_ptr members in Allocation with the result.
1686 // Returns true on success, false otherwise
1687 bool
1688 RenderScriptRuntime::JITTypePacked(AllocationDetails *allocation, StackFrame *frame_ptr)
1689 {
1690     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1691 
1692     if (!allocation->type_ptr.isValid() || !allocation->context.isValid())
1693     {
1694         if (log)
1695             log->Printf("%s - Failed to find allocation details.", __FUNCTION__);
1696         return false;
1697     }
1698 
1699     // Expression is different depending on if device is 32 or 64 bit
1700     uint32_t archByteSize = GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
1701     const uint32_t bits = archByteSize == 4 ? 32 : 64;
1702 
1703     // We want 4 elements from packed data
1704     const uint32_t num_exprs = 4;
1705     assert(num_exprs == (eExprTypeElemPtr - eExprTypeDimX + 1) && "Invalid number of expressions");
1706 
1707     char buffer[num_exprs][jit_max_expr_size];
1708     uint64_t results[num_exprs];
1709 
1710     for (uint32_t i = 0; i < num_exprs; ++i)
1711     {
1712         const char *expr_cstr = JITTemplate(ExpressionStrings(eExprTypeDimX + i));
1713         int chars_written = snprintf(buffer[i], jit_max_expr_size, expr_cstr, bits, *allocation->context.get(),
1714                                      *allocation->type_ptr.get());
1715         if (chars_written < 0)
1716         {
1717             if (log)
1718                 log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
1719             return false;
1720         }
1721         else if (chars_written >= jit_max_expr_size)
1722         {
1723             if (log)
1724                 log->Printf("%s - expression too long.", __FUNCTION__);
1725             return false;
1726         }
1727 
1728         // Perform expression evaluation
1729         if (!EvalRSExpression(buffer[i], frame_ptr, &results[i]))
1730             return false;
1731     }
1732 
1733     // Assign results to allocation members
1734     AllocationDetails::Dimension dims;
1735     dims.dim_1 = static_cast<uint32_t>(results[0]);
1736     dims.dim_2 = static_cast<uint32_t>(results[1]);
1737     dims.dim_3 = static_cast<uint32_t>(results[2]);
1738     allocation->dimension = dims;
1739 
1740     addr_t elem_ptr = static_cast<lldb::addr_t>(results[3]);
1741     allocation->element.element_ptr = elem_ptr;
1742 
1743     if (log)
1744         log->Printf("%s - dims (%" PRIu32 ", %" PRIu32 ", %" PRIu32 ") Element*: 0x%" PRIx64 ".", __FUNCTION__,
1745                     dims.dim_1, dims.dim_2, dims.dim_3, elem_ptr);
1746 
1747     return true;
1748 }
1749 
1750 // JITs the RS runtime for information about the Element of an allocation
1751 // Then sets type, type_vec_size, field_count and type_kind members in Element with the result.
1752 // Returns true on success, false otherwise
1753 bool
1754 RenderScriptRuntime::JITElementPacked(Element &elem, const lldb::addr_t context, StackFrame *frame_ptr)
1755 {
1756     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1757 
1758     if (!elem.element_ptr.isValid())
1759     {
1760         if (log)
1761             log->Printf("%s - failed to find allocation details.", __FUNCTION__);
1762         return false;
1763     }
1764 
1765     // We want 4 elements from packed data
1766     const uint32_t num_exprs = 4;
1767     assert(num_exprs == (eExprElementFieldCount - eExprElementType + 1) && "Invalid number of expressions");
1768 
1769     char buffer[num_exprs][jit_max_expr_size];
1770     uint64_t results[num_exprs];
1771 
1772     for (uint32_t i = 0; i < num_exprs; i++)
1773     {
1774         const char *expr_cstr = JITTemplate(ExpressionStrings(eExprElementType + i));
1775         int chars_written = snprintf(buffer[i], jit_max_expr_size, expr_cstr, context, *elem.element_ptr.get());
1776         if (chars_written < 0)
1777         {
1778             if (log)
1779                 log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
1780             return false;
1781         }
1782         else if (chars_written >= jit_max_expr_size)
1783         {
1784             if (log)
1785                 log->Printf("%s - expression too long.", __FUNCTION__);
1786             return false;
1787         }
1788 
1789         // Perform expression evaluation
1790         if (!EvalRSExpression(buffer[i], frame_ptr, &results[i]))
1791             return false;
1792     }
1793 
1794     // Assign results to allocation members
1795     elem.type = static_cast<RenderScriptRuntime::Element::DataType>(results[0]);
1796     elem.type_kind = static_cast<RenderScriptRuntime::Element::DataKind>(results[1]);
1797     elem.type_vec_size = static_cast<uint32_t>(results[2]);
1798     elem.field_count = static_cast<uint32_t>(results[3]);
1799 
1800     if (log)
1801         log->Printf("%s - data type %" PRIu32 ", pixel type %" PRIu32 ", vector size %" PRIu32 ", field count %" PRIu32,
1802                     __FUNCTION__, *elem.type.get(), *elem.type_kind.get(), *elem.type_vec_size.get(), *elem.field_count.get());
1803 
1804     // If this Element has subelements then JIT rsaElementGetSubElements() for details about its fields
1805     if (*elem.field_count.get() > 0 && !JITSubelements(elem, context, frame_ptr))
1806         return false;
1807 
1808     return true;
1809 }
1810 
1811 // JITs the RS runtime for information about the subelements/fields of a struct allocation
1812 // This is necessary for infering the struct type so we can pretty print the allocation's contents.
1813 // Returns true on success, false otherwise
1814 bool
1815 RenderScriptRuntime::JITSubelements(Element &elem, const lldb::addr_t context, StackFrame *frame_ptr)
1816 {
1817     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1818 
1819     if (!elem.element_ptr.isValid() || !elem.field_count.isValid())
1820     {
1821         if (log)
1822             log->Printf("%s - failed to find allocation details.", __FUNCTION__);
1823         return false;
1824     }
1825 
1826     const short num_exprs = 3;
1827     assert(num_exprs == (eExprSubelementsArrSize - eExprSubelementsId + 1) && "Invalid number of expressions");
1828 
1829     char expr_buffer[jit_max_expr_size];
1830     uint64_t results;
1831 
1832     // Iterate over struct fields.
1833     const uint32_t field_count = *elem.field_count.get();
1834     for (uint32_t field_index = 0; field_index < field_count; ++field_index)
1835     {
1836         Element child;
1837         for (uint32_t expr_index = 0; expr_index < num_exprs; ++expr_index)
1838         {
1839             const char *expr_cstr = JITTemplate(ExpressionStrings(eExprSubelementsId + expr_index));
1840             int chars_written = snprintf(expr_buffer, jit_max_expr_size, expr_cstr,
1841                                          field_count, field_count, field_count,
1842                                          context, *elem.element_ptr.get(), field_count, field_index);
1843             if (chars_written < 0)
1844             {
1845                 if (log)
1846                     log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
1847                 return false;
1848             }
1849             else if (chars_written >= jit_max_expr_size)
1850             {
1851                 if (log)
1852                     log->Printf("%s - expression too long.", __FUNCTION__);
1853                 return false;
1854             }
1855 
1856             // Perform expression evaluation
1857             if (!EvalRSExpression(expr_buffer, frame_ptr, &results))
1858                 return false;
1859 
1860             if (log)
1861                 log->Printf("%s - expr result 0x%" PRIx64 ".", __FUNCTION__, results);
1862 
1863             switch (expr_index)
1864             {
1865                 case 0: // Element* of child
1866                     child.element_ptr = static_cast<addr_t>(results);
1867                     break;
1868                 case 1: // Name of child
1869                 {
1870                     lldb::addr_t address = static_cast<addr_t>(results);
1871                     Error err;
1872                     std::string name;
1873                     GetProcess()->ReadCStringFromMemory(address, name, err);
1874                     if (!err.Fail())
1875                         child.type_name = ConstString(name);
1876                     else
1877                     {
1878                         if (log)
1879                             log->Printf("%s - warning: Couldn't read field name.", __FUNCTION__);
1880                     }
1881                     break;
1882                 }
1883                 case 2: // Array size of child
1884                     child.array_size = static_cast<uint32_t>(results);
1885                     break;
1886             }
1887         }
1888 
1889         // We need to recursively JIT each Element field of the struct since
1890         // structs can be nested inside structs.
1891         if (!JITElementPacked(child, context, frame_ptr))
1892             return false;
1893         elem.children.push_back(child);
1894     }
1895 
1896     // Try to infer the name of the struct type so we can pretty print the allocation contents.
1897     FindStructTypeName(elem, frame_ptr);
1898 
1899     return true;
1900 }
1901 
1902 // JITs the RS runtime for the address of the last element in the allocation.
1903 // The `elem_size` paramter represents the size of a single element, including padding.
1904 // Which is needed as an offset from the last element pointer.
1905 // Using this offset minus the starting address we can calculate the size of the allocation.
1906 // Returns true on success, false otherwise
1907 bool
1908 RenderScriptRuntime::JITAllocationSize(AllocationDetails *allocation, StackFrame *frame_ptr)
1909 {
1910     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1911 
1912     if (!allocation->address.isValid() || !allocation->dimension.isValid() || !allocation->data_ptr.isValid() ||
1913         !allocation->element.datum_size.isValid())
1914     {
1915         if (log)
1916             log->Printf("%s - failed to find allocation details.", __FUNCTION__);
1917         return false;
1918     }
1919 
1920     // Find dimensions
1921     uint32_t dim_x = allocation->dimension.get()->dim_1;
1922     uint32_t dim_y = allocation->dimension.get()->dim_2;
1923     uint32_t dim_z = allocation->dimension.get()->dim_3;
1924 
1925     // Our plan of jitting the last element address doesn't seem to work for struct Allocations
1926     // Instead try to infer the size ourselves without any inter element padding.
1927     if (allocation->element.children.size() > 0)
1928     {
1929         if (dim_x == 0) dim_x = 1;
1930         if (dim_y == 0) dim_y = 1;
1931         if (dim_z == 0) dim_z = 1;
1932 
1933         allocation->size = dim_x * dim_y * dim_z * *allocation->element.datum_size.get();
1934 
1935         if (log)
1936             log->Printf("%s - infered size of struct allocation %" PRIu32 ".", __FUNCTION__,
1937                         *allocation->size.get());
1938         return true;
1939     }
1940 
1941     const char *expr_cstr = JITTemplate(eExprGetOffsetPtr);
1942     char buffer[jit_max_expr_size];
1943 
1944     // Calculate last element
1945     dim_x = dim_x == 0 ? 0 : dim_x - 1;
1946     dim_y = dim_y == 0 ? 0 : dim_y - 1;
1947     dim_z = dim_z == 0 ? 0 : dim_z - 1;
1948 
1949     int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->address.get(), dim_x, dim_y, dim_z);
1950     if (chars_written < 0)
1951     {
1952         if (log)
1953             log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
1954         return false;
1955     }
1956     else if (chars_written >= jit_max_expr_size)
1957     {
1958         if (log)
1959             log->Printf("%s - expression too long.", __FUNCTION__);
1960         return false;
1961     }
1962 
1963     uint64_t result = 0;
1964     if (!EvalRSExpression(buffer, frame_ptr, &result))
1965         return false;
1966 
1967     addr_t mem_ptr = static_cast<lldb::addr_t>(result);
1968     // Find pointer to last element and add on size of an element
1969     allocation->size =
1970         static_cast<uint32_t>(mem_ptr - *allocation->data_ptr.get()) + *allocation->element.datum_size.get();
1971 
1972     return true;
1973 }
1974 
1975 // JITs the RS runtime for information about the stride between rows in the allocation.
1976 // This is done to detect padding, since allocated memory is 16-byte aligned.
1977 // Returns true on success, false otherwise
1978 bool
1979 RenderScriptRuntime::JITAllocationStride(AllocationDetails *allocation, StackFrame *frame_ptr)
1980 {
1981     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1982 
1983     if (!allocation->address.isValid() || !allocation->data_ptr.isValid())
1984     {
1985         if (log)
1986             log->Printf("%s - failed to find allocation details.", __FUNCTION__);
1987         return false;
1988     }
1989 
1990     const char *expr_cstr = JITTemplate(eExprGetOffsetPtr);
1991     char buffer[jit_max_expr_size];
1992 
1993     int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->address.get(), 0, 1, 0);
1994     if (chars_written < 0)
1995     {
1996         if (log)
1997             log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
1998         return false;
1999     }
2000     else if (chars_written >= jit_max_expr_size)
2001     {
2002         if (log)
2003             log->Printf("%s - expression too long.", __FUNCTION__);
2004         return false;
2005     }
2006 
2007     uint64_t result = 0;
2008     if (!EvalRSExpression(buffer, frame_ptr, &result))
2009         return false;
2010 
2011     addr_t mem_ptr = static_cast<lldb::addr_t>(result);
2012     allocation->stride = static_cast<uint32_t>(mem_ptr - *allocation->data_ptr.get());
2013 
2014     return true;
2015 }
2016 
2017 // JIT all the current runtime info regarding an allocation
2018 bool
2019 RenderScriptRuntime::RefreshAllocation(AllocationDetails *allocation, StackFrame *frame_ptr)
2020 {
2021     // GetOffsetPointer()
2022     if (!JITDataPointer(allocation, frame_ptr))
2023         return false;
2024 
2025     // rsaAllocationGetType()
2026     if (!JITTypePointer(allocation, frame_ptr))
2027         return false;
2028 
2029     // rsaTypeGetNativeData()
2030     if (!JITTypePacked(allocation, frame_ptr))
2031         return false;
2032 
2033     // rsaElementGetNativeData()
2034     if (!JITElementPacked(allocation->element, *allocation->context.get(), frame_ptr))
2035         return false;
2036 
2037     // Sets the datum_size member in Element
2038     SetElementSize(allocation->element);
2039 
2040     // Use GetOffsetPointer() to infer size of the allocation
2041     if (!JITAllocationSize(allocation, frame_ptr))
2042         return false;
2043 
2044     return true;
2045 }
2046 
2047 // Function attempts to set the type_name member of the paramaterised Element object.
2048 // This string should be the name of the struct type the Element represents.
2049 // We need this string for pretty printing the Element to users.
2050 void
2051 RenderScriptRuntime::FindStructTypeName(Element &elem, StackFrame *frame_ptr)
2052 {
2053     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2054 
2055     if (!elem.type_name.IsEmpty()) // Name already set
2056         return;
2057     else
2058         elem.type_name = Element::GetFallbackStructName(); // Default type name if we don't succeed
2059 
2060     // Find all the global variables from the script rs modules
2061     VariableList variable_list;
2062     for (auto module_sp : m_rsmodules)
2063         module_sp->m_module->FindGlobalVariables(RegularExpression("."), true, UINT32_MAX, variable_list);
2064 
2065     // Iterate over all the global variables looking for one with a matching type to the Element.
2066     // We make the assumption a match exists since there needs to be a global variable to reflect the
2067     // struct type back into java host code.
2068     for (uint32_t var_index = 0; var_index < variable_list.GetSize(); ++var_index)
2069     {
2070         const VariableSP var_sp(variable_list.GetVariableAtIndex(var_index));
2071         if (!var_sp)
2072             continue;
2073 
2074         ValueObjectSP valobj_sp = ValueObjectVariable::Create(frame_ptr, var_sp);
2075         if (!valobj_sp)
2076             continue;
2077 
2078         // Find the number of variable fields.
2079         // If it has no fields, or more fields than our Element, then it can't be the struct we're looking for.
2080         // Don't check for equality since RS can add extra struct members for padding.
2081         size_t num_children = valobj_sp->GetNumChildren();
2082         if (num_children > elem.children.size() || num_children == 0)
2083             continue;
2084 
2085         // Iterate over children looking for members with matching field names.
2086         // If all the field names match, this is likely the struct we want.
2087         //
2088         //   TODO: This could be made more robust by also checking children data sizes, or array size
2089         bool found = true;
2090         for (size_t child_index = 0; child_index < num_children; ++child_index)
2091         {
2092             ValueObjectSP child = valobj_sp->GetChildAtIndex(child_index, true);
2093             if (!child || (child->GetName() != elem.children[child_index].type_name))
2094             {
2095                 found = false;
2096                 break;
2097             }
2098         }
2099 
2100         // RS can add extra struct members for padding in the format '#rs_padding_[0-9]+'
2101         if (found && num_children < elem.children.size())
2102         {
2103             const uint32_t size_diff = elem.children.size() - num_children;
2104             if (log)
2105                 log->Printf("%s - %" PRIu32 " padding struct entries", __FUNCTION__, size_diff);
2106 
2107             for (uint32_t padding_index = 0; padding_index < size_diff; ++padding_index)
2108             {
2109                 const ConstString &name = elem.children[num_children + padding_index].type_name;
2110                 if (strcmp(name.AsCString(), "#rs_padding") < 0)
2111                     found = false;
2112             }
2113         }
2114 
2115         // We've found a global var with matching type
2116         if (found)
2117         {
2118             // Dereference since our Element type isn't a pointer.
2119             if (valobj_sp->IsPointerType())
2120             {
2121                 Error err;
2122                 ValueObjectSP deref_valobj = valobj_sp->Dereference(err);
2123                 if (!err.Fail())
2124                     valobj_sp = deref_valobj;
2125             }
2126 
2127             // Save name of variable in Element.
2128             elem.type_name = valobj_sp->GetTypeName();
2129             if (log)
2130                 log->Printf("%s - element name set to %s", __FUNCTION__, elem.type_name.AsCString());
2131 
2132             return;
2133         }
2134     }
2135 }
2136 
2137 // Function sets the datum_size member of Element. Representing the size of a single instance including padding.
2138 // Assumes the relevant allocation information has already been jitted.
2139 void
2140 RenderScriptRuntime::SetElementSize(Element &elem)
2141 {
2142     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2143     const Element::DataType type = *elem.type.get();
2144     assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && "Invalid allocation type");
2145 
2146     const uint32_t vec_size = *elem.type_vec_size.get();
2147     uint32_t data_size = 0;
2148     uint32_t padding = 0;
2149 
2150     // Element is of a struct type, calculate size recursively.
2151     if ((type == Element::RS_TYPE_NONE) && (elem.children.size() > 0))
2152     {
2153         for (Element &child : elem.children)
2154         {
2155             SetElementSize(child);
2156             const uint32_t array_size = child.array_size.isValid() ? *child.array_size.get() : 1;
2157             data_size += *child.datum_size.get() * array_size;
2158         }
2159     }
2160     // These have been packed already
2161     else if (type == Element::RS_TYPE_UNSIGNED_5_6_5   ||
2162              type == Element::RS_TYPE_UNSIGNED_5_5_5_1 ||
2163              type == Element::RS_TYPE_UNSIGNED_4_4_4_4)
2164     {
2165         data_size = AllocationDetails::RSTypeToFormat[type][eElementSize];
2166     }
2167     else if (type < Element::RS_TYPE_ELEMENT)
2168     {
2169         data_size = vec_size * AllocationDetails::RSTypeToFormat[type][eElementSize];
2170         if (vec_size == 3)
2171             padding = AllocationDetails::RSTypeToFormat[type][eElementSize];
2172     }
2173     else
2174         data_size = GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
2175 
2176     elem.padding = padding;
2177     elem.datum_size = data_size + padding;
2178     if (log)
2179         log->Printf("%s - element size set to %" PRIu32, __FUNCTION__, data_size + padding);
2180 }
2181 
2182 // Given an allocation, this function copies the allocation contents from device into a buffer on the heap.
2183 // Returning a shared pointer to the buffer containing the data.
2184 std::shared_ptr<uint8_t>
2185 RenderScriptRuntime::GetAllocationData(AllocationDetails *allocation, StackFrame *frame_ptr)
2186 {
2187     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2188 
2189     // JIT all the allocation details
2190     if (allocation->shouldRefresh())
2191     {
2192         if (log)
2193             log->Printf("%s - allocation details not calculated yet, jitting info", __FUNCTION__);
2194 
2195         if (!RefreshAllocation(allocation, frame_ptr))
2196         {
2197             if (log)
2198                 log->Printf("%s - couldn't JIT allocation details", __FUNCTION__);
2199             return nullptr;
2200         }
2201     }
2202 
2203     assert(allocation->data_ptr.isValid() && allocation->element.type.isValid() &&
2204            allocation->element.type_vec_size.isValid() && allocation->size.isValid() &&
2205            "Allocation information not available");
2206 
2207     // Allocate a buffer to copy data into
2208     const uint32_t size = *allocation->size.get();
2209     std::shared_ptr<uint8_t> buffer(new uint8_t[size]);
2210     if (!buffer)
2211     {
2212         if (log)
2213             log->Printf("%s - couldn't allocate a %" PRIu32 " byte buffer", __FUNCTION__, size);
2214         return nullptr;
2215     }
2216 
2217     // Read the inferior memory
2218     Error error;
2219     lldb::addr_t data_ptr = *allocation->data_ptr.get();
2220     GetProcess()->ReadMemory(data_ptr, buffer.get(), size, error);
2221     if (error.Fail())
2222     {
2223         if (log)
2224             log->Printf("%s - '%s' Couldn't read %" PRIu32 " bytes of allocation data from 0x%" PRIx64,
2225                         __FUNCTION__, error.AsCString(), size, data_ptr);
2226         return nullptr;
2227     }
2228 
2229     return buffer;
2230 }
2231 
2232 // Function copies data from a binary file into an allocation.
2233 // There is a header at the start of the file, FileHeader, before the data content itself.
2234 // Information from this header is used to display warnings to the user about incompatabilities
2235 bool
2236 RenderScriptRuntime::LoadAllocation(Stream &strm, const uint32_t alloc_id, const char *filename, StackFrame *frame_ptr)
2237 {
2238     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2239 
2240     // Find allocation with the given id
2241     AllocationDetails *alloc = FindAllocByID(strm, alloc_id);
2242     if (!alloc)
2243         return false;
2244 
2245     if (log)
2246         log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__, *alloc->address.get());
2247 
2248     // JIT all the allocation details
2249     if (alloc->shouldRefresh())
2250     {
2251         if (log)
2252             log->Printf("%s - allocation details not calculated yet, jitting info.", __FUNCTION__);
2253 
2254         if (!RefreshAllocation(alloc, frame_ptr))
2255         {
2256             if (log)
2257                 log->Printf("%s - couldn't JIT allocation details", __FUNCTION__);
2258             return false;
2259         }
2260     }
2261 
2262     assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && alloc->element.type_vec_size.isValid() &&
2263            alloc->size.isValid() && alloc->element.datum_size.isValid() && "Allocation information not available");
2264 
2265     // Check we can read from file
2266     FileSpec file(filename, true);
2267     if (!file.Exists())
2268     {
2269         strm.Printf("Error: File %s does not exist", filename);
2270         strm.EOL();
2271         return false;
2272     }
2273 
2274     if (!file.Readable())
2275     {
2276         strm.Printf("Error: File %s does not have readable permissions", filename);
2277         strm.EOL();
2278         return false;
2279     }
2280 
2281     // Read file into data buffer
2282     DataBufferSP data_sp(file.ReadFileContents());
2283 
2284     // Cast start of buffer to FileHeader and use pointer to read metadata
2285     void *file_buffer = data_sp->GetBytes();
2286     if (file_buffer == nullptr ||
2287         data_sp->GetByteSize() < (sizeof(AllocationDetails::FileHeader) + sizeof(AllocationDetails::ElementHeader)))
2288     {
2289         strm.Printf("Error: File %s does not contain enough data for header", filename);
2290         strm.EOL();
2291         return false;
2292     }
2293     const AllocationDetails::FileHeader *file_header = static_cast<AllocationDetails::FileHeader *>(file_buffer);
2294 
2295     // Check file starts with ascii characters "RSAD"
2296     if (memcmp(file_header->ident, "RSAD", 4))
2297     {
2298         strm.Printf("Error: File doesn't contain identifier for an RS allocation dump. Are you sure this is the correct file?");
2299         strm.EOL();
2300         return false;
2301     }
2302 
2303     // Look at the type of the root element in the header
2304     AllocationDetails::ElementHeader root_element_header;
2305     memcpy(&root_element_header, static_cast<uint8_t *>(file_buffer) + sizeof(AllocationDetails::FileHeader),
2306            sizeof(AllocationDetails::ElementHeader));
2307 
2308     if (log)
2309         log->Printf("%s - header type %" PRIu32 ", element size %" PRIu32, __FUNCTION__,
2310                     root_element_header.type, root_element_header.element_size);
2311 
2312     // Check if the target allocation and file both have the same number of bytes for an Element
2313     if (*alloc->element.datum_size.get() != root_element_header.element_size)
2314     {
2315         strm.Printf("Warning: Mismatched Element sizes - file %" PRIu32 " bytes, allocation %" PRIu32 " bytes",
2316                     root_element_header.element_size, *alloc->element.datum_size.get());
2317         strm.EOL();
2318     }
2319 
2320     // Check if the target allocation and file both have the same type
2321     const uint32_t alloc_type = static_cast<uint32_t>(*alloc->element.type.get());
2322     const uint32_t file_type = root_element_header.type;
2323 
2324     if (file_type > Element::RS_TYPE_FONT)
2325     {
2326         strm.Printf("Warning: File has unknown allocation type");
2327         strm.EOL();
2328     }
2329     else if (alloc_type != file_type)
2330     {
2331         // Enum value isn't monotonous, so doesn't always index RsDataTypeToString array
2332         uint32_t printable_target_type_index = alloc_type;
2333         uint32_t printable_head_type_index = file_type;
2334         if (alloc_type >= Element::RS_TYPE_ELEMENT && alloc_type <= Element::RS_TYPE_FONT)
2335             printable_target_type_index = static_cast<Element::DataType>((alloc_type - Element::RS_TYPE_ELEMENT) +
2336                                                                          Element::RS_TYPE_MATRIX_2X2 + 1);
2337 
2338         if (file_type >= Element::RS_TYPE_ELEMENT && file_type <= Element::RS_TYPE_FONT)
2339             printable_head_type_index = static_cast<Element::DataType>((file_type - Element::RS_TYPE_ELEMENT) +
2340                                                                        Element::RS_TYPE_MATRIX_2X2 + 1);
2341 
2342         const char *file_type_cstr = AllocationDetails::RsDataTypeToString[printable_head_type_index][0];
2343         const char *target_type_cstr = AllocationDetails::RsDataTypeToString[printable_target_type_index][0];
2344 
2345         strm.Printf("Warning: Mismatched Types - file '%s' type, allocation '%s' type", file_type_cstr,
2346                     target_type_cstr);
2347         strm.EOL();
2348     }
2349 
2350     // Advance buffer past header
2351     file_buffer = static_cast<uint8_t *>(file_buffer) + file_header->hdr_size;
2352 
2353     // Calculate size of allocation data in file
2354     size_t length = data_sp->GetByteSize() - file_header->hdr_size;
2355 
2356     // Check if the target allocation and file both have the same total data size.
2357     const uint32_t alloc_size = *alloc->size.get();
2358     if (alloc_size != length)
2359     {
2360         strm.Printf("Warning: Mismatched allocation sizes - file 0x%" PRIx64 " bytes, allocation 0x%" PRIx32 " bytes",
2361                     (uint64_t)length, alloc_size);
2362         strm.EOL();
2363         length = alloc_size < length ? alloc_size : length; // Set length to copy to minimum
2364     }
2365 
2366     // Copy file data from our buffer into the target allocation.
2367     lldb::addr_t alloc_data = *alloc->data_ptr.get();
2368     Error error;
2369     size_t bytes_written = GetProcess()->WriteMemory(alloc_data, file_buffer, length, error);
2370     if (!error.Success() || bytes_written != length)
2371     {
2372         strm.Printf("Error: Couldn't write data to allocation %s", error.AsCString());
2373         strm.EOL();
2374         return false;
2375     }
2376 
2377     strm.Printf("Contents of file '%s' read into allocation %" PRIu32, filename, alloc->id);
2378     strm.EOL();
2379 
2380     return true;
2381 }
2382 
2383 // Function takes as parameters a byte buffer, which will eventually be written to file as the element header,
2384 // an offset into that buffer, and an Element that will be saved into the buffer at the parametrised offset.
2385 // Return value is the new offset after writing the element into the buffer.
2386 // Elements are saved to the file as the ElementHeader struct followed by offsets to the structs of all the element's
2387 // children.
2388 size_t
2389 RenderScriptRuntime::PopulateElementHeaders(const std::shared_ptr<uint8_t> header_buffer, size_t offset,
2390                                             const Element &elem)
2391 {
2392     // File struct for an element header with all the relevant details copied from elem.
2393     // We assume members are valid already.
2394     AllocationDetails::ElementHeader elem_header;
2395     elem_header.type = *elem.type.get();
2396     elem_header.kind = *elem.type_kind.get();
2397     elem_header.element_size = *elem.datum_size.get();
2398     elem_header.vector_size = *elem.type_vec_size.get();
2399     elem_header.array_size = elem.array_size.isValid() ? *elem.array_size.get() : 0;
2400     const size_t elem_header_size = sizeof(AllocationDetails::ElementHeader);
2401 
2402     // Copy struct into buffer and advance offset
2403     // We assume that header_buffer has been checked for nullptr before this method is called
2404     memcpy(header_buffer.get() + offset, &elem_header, elem_header_size);
2405     offset += elem_header_size;
2406 
2407     // Starting offset of child ElementHeader struct
2408     size_t child_offset = offset + ((elem.children.size() + 1) * sizeof(uint32_t));
2409     for (const RenderScriptRuntime::Element &child : elem.children)
2410     {
2411         // Recursively populate the buffer with the element header structs of children.
2412         // Then save the offsets where they were set after the parent element header.
2413         memcpy(header_buffer.get() + offset, &child_offset, sizeof(uint32_t));
2414         offset += sizeof(uint32_t);
2415 
2416         child_offset = PopulateElementHeaders(header_buffer, child_offset, child);
2417     }
2418 
2419     // Zero indicates no more children
2420     memset(header_buffer.get() + offset, 0, sizeof(uint32_t));
2421 
2422     return child_offset;
2423 }
2424 
2425 // Given an Element object this function returns the total size needed in the file header to store the element's
2426 // details.
2427 // Taking into account the size of the element header struct, plus the offsets to all the element's children.
2428 // Function is recursive so that the size of all ancestors is taken into account.
2429 size_t
2430 RenderScriptRuntime::CalculateElementHeaderSize(const Element &elem)
2431 {
2432     size_t size = (elem.children.size() + 1) * sizeof(uint32_t); // Offsets to children plus zero terminator
2433     size += sizeof(AllocationDetails::ElementHeader);            // Size of header struct with type details
2434 
2435     // Calculate recursively for all descendants
2436     for (const Element &child : elem.children)
2437         size += CalculateElementHeaderSize(child);
2438 
2439     return size;
2440 }
2441 
2442 // Function copies allocation contents into a binary file.
2443 // This file can then be loaded later into a different allocation.
2444 // There is a header, FileHeader, before the allocation data containing meta-data.
2445 bool
2446 RenderScriptRuntime::SaveAllocation(Stream &strm, const uint32_t alloc_id, const char *filename, StackFrame *frame_ptr)
2447 {
2448     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2449 
2450     // Find allocation with the given id
2451     AllocationDetails *alloc = FindAllocByID(strm, alloc_id);
2452     if (!alloc)
2453         return false;
2454 
2455     if (log)
2456         log->Printf("%s - found allocation 0x%" PRIx64 ".", __FUNCTION__, *alloc->address.get());
2457 
2458     // JIT all the allocation details
2459     if (alloc->shouldRefresh())
2460     {
2461         if (log)
2462             log->Printf("%s - allocation details not calculated yet, jitting info.", __FUNCTION__);
2463 
2464         if (!RefreshAllocation(alloc, frame_ptr))
2465         {
2466             if (log)
2467                 log->Printf("%s - couldn't JIT allocation details.", __FUNCTION__);
2468             return false;
2469         }
2470     }
2471 
2472     assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && alloc->element.type_vec_size.isValid() &&
2473            alloc->element.datum_size.get() && alloc->element.type_kind.isValid() && alloc->dimension.isValid() &&
2474            "Allocation information not available");
2475 
2476     // Check we can create writable file
2477     FileSpec file_spec(filename, true);
2478     File file(file_spec, File::eOpenOptionWrite | File::eOpenOptionCanCreate | File::eOpenOptionTruncate);
2479     if (!file)
2480     {
2481         strm.Printf("Error: Failed to open '%s' for writing", filename);
2482         strm.EOL();
2483         return false;
2484     }
2485 
2486     // Read allocation into buffer of heap memory
2487     const std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr);
2488     if (!buffer)
2489     {
2490         strm.Printf("Error: Couldn't read allocation data into buffer");
2491         strm.EOL();
2492         return false;
2493     }
2494 
2495     // Create the file header
2496     AllocationDetails::FileHeader head;
2497     memcpy(head.ident, "RSAD", 4);
2498     head.dims[0] = static_cast<uint32_t>(alloc->dimension.get()->dim_1);
2499     head.dims[1] = static_cast<uint32_t>(alloc->dimension.get()->dim_2);
2500     head.dims[2] = static_cast<uint32_t>(alloc->dimension.get()->dim_3);
2501 
2502     const size_t element_header_size = CalculateElementHeaderSize(alloc->element);
2503     assert((sizeof(AllocationDetails::FileHeader) + element_header_size) < UINT16_MAX && "Element header too large");
2504     head.hdr_size = static_cast<uint16_t>(sizeof(AllocationDetails::FileHeader) + element_header_size);
2505 
2506     // Write the file header
2507     size_t num_bytes = sizeof(AllocationDetails::FileHeader);
2508     if (log)
2509         log->Printf("%s - writing File Header, 0x%" PRIx64 " bytes", __FUNCTION__, (uint64_t)num_bytes);
2510 
2511     Error err = file.Write(&head, num_bytes);
2512     if (!err.Success())
2513     {
2514         strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), filename);
2515         strm.EOL();
2516         return false;
2517     }
2518 
2519     // Create the headers describing the element type of the allocation.
2520     std::shared_ptr<uint8_t> element_header_buffer(new uint8_t[element_header_size]);
2521     if (element_header_buffer == nullptr)
2522     {
2523         strm.Printf("Internal Error: Couldn't allocate %" PRIu64 " bytes on the heap", (uint64_t)element_header_size);
2524         strm.EOL();
2525         return false;
2526     }
2527 
2528     PopulateElementHeaders(element_header_buffer, 0, alloc->element);
2529 
2530     // Write headers for allocation element type to file
2531     num_bytes = element_header_size;
2532     if (log)
2533         log->Printf("%s - writing element headers, 0x%" PRIx64 " bytes.", __FUNCTION__, (uint64_t)num_bytes);
2534 
2535     err = file.Write(element_header_buffer.get(), num_bytes);
2536     if (!err.Success())
2537     {
2538         strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), filename);
2539         strm.EOL();
2540         return false;
2541     }
2542 
2543     // Write allocation data to file
2544     num_bytes = static_cast<size_t>(*alloc->size.get());
2545     if (log)
2546         log->Printf("%s - writing 0x%" PRIx64 " bytes", __FUNCTION__, (uint64_t)num_bytes);
2547 
2548     err = file.Write(buffer.get(), num_bytes);
2549     if (!err.Success())
2550     {
2551         strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), filename);
2552         strm.EOL();
2553         return false;
2554     }
2555 
2556     strm.Printf("Allocation written to file '%s'", filename);
2557     strm.EOL();
2558     return true;
2559 }
2560 
2561 bool
2562 RenderScriptRuntime::LoadModule(const lldb::ModuleSP &module_sp)
2563 {
2564     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2565 
2566     if (module_sp)
2567     {
2568         for (const auto &rs_module : m_rsmodules)
2569         {
2570             if (rs_module->m_module == module_sp)
2571             {
2572                 // Check if the user has enabled automatically breaking on
2573                 // all RS kernels.
2574                 if (m_breakAllKernels)
2575                     BreakOnModuleKernels(rs_module);
2576 
2577                 return false;
2578             }
2579         }
2580         bool module_loaded = false;
2581         switch (GetModuleKind(module_sp))
2582         {
2583             case eModuleKindKernelObj:
2584             {
2585                 RSModuleDescriptorSP module_desc;
2586                 module_desc.reset(new RSModuleDescriptor(module_sp));
2587                 if (module_desc->ParseRSInfo())
2588                 {
2589                     m_rsmodules.push_back(module_desc);
2590                     module_loaded = true;
2591                 }
2592                 if (module_loaded)
2593                 {
2594                     FixupScriptDetails(module_desc);
2595                 }
2596                 break;
2597             }
2598             case eModuleKindDriver:
2599             {
2600                 if (!m_libRSDriver)
2601                 {
2602                     m_libRSDriver = module_sp;
2603                     LoadRuntimeHooks(m_libRSDriver, RenderScriptRuntime::eModuleKindDriver);
2604                 }
2605                 break;
2606             }
2607             case eModuleKindImpl:
2608             {
2609                 m_libRSCpuRef = module_sp;
2610                 break;
2611             }
2612             case eModuleKindLibRS:
2613             {
2614                 if (!m_libRS)
2615                 {
2616                     m_libRS = module_sp;
2617                     static ConstString gDbgPresentStr("gDebuggerPresent");
2618                     const Symbol *debug_present =
2619                         m_libRS->FindFirstSymbolWithNameAndType(gDbgPresentStr, eSymbolTypeData);
2620                     if (debug_present)
2621                     {
2622                         Error error;
2623                         uint32_t flag = 0x00000001U;
2624                         Target &target = GetProcess()->GetTarget();
2625                         addr_t addr = debug_present->GetLoadAddress(&target);
2626                         GetProcess()->WriteMemory(addr, &flag, sizeof(flag), error);
2627                         if (error.Success())
2628                         {
2629                             if (log)
2630                                 log->Printf("%s - debugger present flag set on debugee.", __FUNCTION__);
2631 
2632                             m_debuggerPresentFlagged = true;
2633                         }
2634                         else if (log)
2635                         {
2636                             log->Printf("%s - error writing debugger present flags '%s' ", __FUNCTION__,
2637                                         error.AsCString());
2638                         }
2639                     }
2640                     else if (log)
2641                     {
2642                         log->Printf("%s - error writing debugger present flags - symbol not found", __FUNCTION__);
2643                     }
2644                 }
2645                 break;
2646             }
2647             default:
2648                 break;
2649         }
2650         if (module_loaded)
2651             Update();
2652         return module_loaded;
2653     }
2654     return false;
2655 }
2656 
2657 void
2658 RenderScriptRuntime::Update()
2659 {
2660     if (m_rsmodules.size() > 0)
2661     {
2662         if (!m_initiated)
2663         {
2664             Initiate();
2665         }
2666     }
2667 }
2668 
2669 // The maximum line length of an .rs.info packet
2670 #define MAXLINE 500
2671 #define STRINGIFY(x) #x
2672 #define MAXLINESTR_(x) "%" STRINGIFY(x) "s"
2673 #define MAXLINESTR MAXLINESTR_(MAXLINE)
2674 
2675 // The .rs.info symbol in renderscript modules contains a string which needs to be parsed.
2676 // The string is basic and is parsed on a line by line basis.
2677 bool
2678 RSModuleDescriptor::ParseRSInfo()
2679 {
2680     assert(m_module);
2681     const Symbol *info_sym = m_module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), eSymbolTypeData);
2682     if (!info_sym)
2683         return false;
2684 
2685     const addr_t addr = info_sym->GetAddressRef().GetFileAddress();
2686     if (addr == LLDB_INVALID_ADDRESS)
2687         return false;
2688 
2689     const addr_t size = info_sym->GetByteSize();
2690     const FileSpec fs = m_module->GetFileSpec();
2691 
2692     const DataBufferSP buffer = fs.ReadFileContents(addr, size);
2693     if (!buffer)
2694         return false;
2695 
2696     // split rs.info. contents into lines
2697     std::vector<std::string> info_lines;
2698     {
2699         const std::string info((const char *)buffer->GetBytes());
2700         for (size_t tail = 0; tail < info.size();)
2701         {
2702             // find next new line or end of string
2703             size_t head = info.find('\n', tail);
2704             head = (head == std::string::npos) ? info.size() : head;
2705             std::string line = info.substr(tail, head - tail);
2706             // add to line list
2707             info_lines.push_back(line);
2708             tail = head + 1;
2709         }
2710     }
2711 
2712     std::array<char, MAXLINE> name{{'\0'}};
2713     std::array<char, MAXLINE> value{{'\0'}};
2714 
2715     // parse all text lines of .rs.info
2716     for (auto line = info_lines.begin(); line != info_lines.end(); ++line)
2717     {
2718         uint32_t numDefns = 0;
2719         if (sscanf(line->c_str(), "exportVarCount: %" PRIu32 "", &numDefns) == 1)
2720         {
2721             while (numDefns--)
2722                 m_globals.push_back(RSGlobalDescriptor(this, (++line)->c_str()));
2723         }
2724         else if (sscanf(line->c_str(), "exportForEachCount: %" PRIu32 "", &numDefns) == 1)
2725         {
2726             while (numDefns--)
2727             {
2728                 uint32_t slot = 0;
2729                 name[0] = '\0';
2730                 static const char *fmt_s = "%" PRIu32 " - " MAXLINESTR;
2731                 if (sscanf((++line)->c_str(), fmt_s, &slot, name.data()) == 2)
2732                 {
2733                     if (name[0] != '\0')
2734                         m_kernels.push_back(RSKernelDescriptor(this, name.data(), slot));
2735                 }
2736             }
2737         }
2738         else if (sscanf(line->c_str(), "pragmaCount: %" PRIu32 "", &numDefns) == 1)
2739         {
2740             while (numDefns--)
2741             {
2742                 name[0] = value[0] = '\0';
2743                 static const char *fmt_s = MAXLINESTR " - " MAXLINESTR;
2744                 if (sscanf((++line)->c_str(), fmt_s, name.data(), value.data()) != 0)
2745                 {
2746                     if (name[0] != '\0')
2747                         m_pragmas[std::string(name.data())] = value.data();
2748                 }
2749             }
2750         }
2751         else
2752         {
2753             Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2754             if (log)
2755             {
2756                 log->Printf("%s - skipping .rs.info field '%s'", __FUNCTION__, line->c_str());
2757             }
2758         }
2759     }
2760 
2761     // 'root' kernel should always be present
2762     return m_kernels.size() > 0;
2763 }
2764 
2765 void
2766 RenderScriptRuntime::Status(Stream &strm) const
2767 {
2768     if (m_libRS)
2769     {
2770         strm.Printf("Runtime Library discovered.");
2771         strm.EOL();
2772     }
2773     if (m_libRSDriver)
2774     {
2775         strm.Printf("Runtime Driver discovered.");
2776         strm.EOL();
2777     }
2778     if (m_libRSCpuRef)
2779     {
2780         strm.Printf("CPU Reference Implementation discovered.");
2781         strm.EOL();
2782     }
2783 
2784     if (m_runtimeHooks.size())
2785     {
2786         strm.Printf("Runtime functions hooked:");
2787         strm.EOL();
2788         for (auto b : m_runtimeHooks)
2789         {
2790             strm.Indent(b.second->defn->name);
2791             strm.EOL();
2792         }
2793     }
2794     else
2795     {
2796         strm.Printf("Runtime is not hooked.");
2797         strm.EOL();
2798     }
2799 }
2800 
2801 void
2802 RenderScriptRuntime::DumpContexts(Stream &strm) const
2803 {
2804     strm.Printf("Inferred RenderScript Contexts:");
2805     strm.EOL();
2806     strm.IndentMore();
2807 
2808     std::map<addr_t, uint64_t> contextReferences;
2809 
2810     // Iterate over all of the currently discovered scripts.
2811     // Note: We cant push or pop from m_scripts inside this loop or it may invalidate script.
2812     for (const auto &script : m_scripts)
2813     {
2814         if (!script->context.isValid())
2815             continue;
2816         lldb::addr_t context = *script->context;
2817 
2818         if (contextReferences.find(context) != contextReferences.end())
2819         {
2820             contextReferences[context]++;
2821         }
2822         else
2823         {
2824             contextReferences[context] = 1;
2825         }
2826     }
2827 
2828     for (const auto &cRef : contextReferences)
2829     {
2830         strm.Printf("Context 0x%" PRIx64 ": %" PRIu64 " script instances", cRef.first, cRef.second);
2831         strm.EOL();
2832     }
2833     strm.IndentLess();
2834 }
2835 
2836 void
2837 RenderScriptRuntime::DumpKernels(Stream &strm) const
2838 {
2839     strm.Printf("RenderScript Kernels:");
2840     strm.EOL();
2841     strm.IndentMore();
2842     for (const auto &module : m_rsmodules)
2843     {
2844         strm.Printf("Resource '%s':", module->m_resname.c_str());
2845         strm.EOL();
2846         for (const auto &kernel : module->m_kernels)
2847         {
2848             strm.Indent(kernel.m_name.AsCString());
2849             strm.EOL();
2850         }
2851     }
2852     strm.IndentLess();
2853 }
2854 
2855 RenderScriptRuntime::AllocationDetails *
2856 RenderScriptRuntime::FindAllocByID(Stream &strm, const uint32_t alloc_id)
2857 {
2858     AllocationDetails *alloc = nullptr;
2859 
2860     // See if we can find allocation using id as an index;
2861     if (alloc_id <= m_allocations.size() && alloc_id != 0 && m_allocations[alloc_id - 1]->id == alloc_id)
2862     {
2863         alloc = m_allocations[alloc_id - 1].get();
2864         return alloc;
2865     }
2866 
2867     // Fallback to searching
2868     for (const auto &a : m_allocations)
2869     {
2870         if (a->id == alloc_id)
2871         {
2872             alloc = a.get();
2873             break;
2874         }
2875     }
2876 
2877     if (alloc == nullptr)
2878     {
2879         strm.Printf("Error: Couldn't find allocation with id matching %" PRIu32, alloc_id);
2880         strm.EOL();
2881     }
2882 
2883     return alloc;
2884 }
2885 
2886 // Prints the contents of an allocation to the output stream, which may be a file
2887 bool
2888 RenderScriptRuntime::DumpAllocation(Stream &strm, StackFrame *frame_ptr, const uint32_t id)
2889 {
2890     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2891 
2892     // Check we can find the desired allocation
2893     AllocationDetails *alloc = FindAllocByID(strm, id);
2894     if (!alloc)
2895         return false; // FindAllocByID() will print error message for us here
2896 
2897     if (log)
2898         log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__, *alloc->address.get());
2899 
2900     // Check we have information about the allocation, if not calculate it
2901     if (alloc->shouldRefresh())
2902     {
2903         if (log)
2904             log->Printf("%s - allocation details not calculated yet, jitting info.", __FUNCTION__);
2905 
2906         // JIT all the allocation information
2907         if (!RefreshAllocation(alloc, frame_ptr))
2908         {
2909             strm.Printf("Error: Couldn't JIT allocation details");
2910             strm.EOL();
2911             return false;
2912         }
2913     }
2914 
2915     // Establish format and size of each data element
2916     const uint32_t vec_size = *alloc->element.type_vec_size.get();
2917     const Element::DataType type = *alloc->element.type.get();
2918 
2919     assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && "Invalid allocation type");
2920 
2921     lldb::Format format;
2922     if (type >= Element::RS_TYPE_ELEMENT)
2923         format = eFormatHex;
2924     else
2925         format = vec_size == 1 ? static_cast<lldb::Format>(AllocationDetails::RSTypeToFormat[type][eFormatSingle])
2926                                : static_cast<lldb::Format>(AllocationDetails::RSTypeToFormat[type][eFormatVector]);
2927 
2928     const uint32_t data_size = *alloc->element.datum_size.get();
2929 
2930     if (log)
2931         log->Printf("%s - element size %" PRIu32 " bytes, including padding", __FUNCTION__, data_size);
2932 
2933     // Allocate a buffer to copy data into
2934     std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr);
2935     if (!buffer)
2936     {
2937         strm.Printf("Error: Couldn't read allocation data");
2938         strm.EOL();
2939         return false;
2940     }
2941 
2942     // Calculate stride between rows as there may be padding at end of rows since
2943     // allocated memory is 16-byte aligned
2944     if (!alloc->stride.isValid())
2945     {
2946         if (alloc->dimension.get()->dim_2 == 0) // We only have one dimension
2947             alloc->stride = 0;
2948         else if (!JITAllocationStride(alloc, frame_ptr))
2949         {
2950             strm.Printf("Error: Couldn't calculate allocation row stride");
2951             strm.EOL();
2952             return false;
2953         }
2954     }
2955     const uint32_t stride = *alloc->stride.get();
2956     const uint32_t size = *alloc->size.get(); // Size of whole allocation
2957     const uint32_t padding = alloc->element.padding.isValid() ? *alloc->element.padding.get() : 0;
2958     if (log)
2959         log->Printf("%s - stride %" PRIu32 " bytes, size %" PRIu32 " bytes, padding %" PRIu32,
2960                     __FUNCTION__, stride, size, padding);
2961 
2962     // Find dimensions used to index loops, so need to be non-zero
2963     uint32_t dim_x = alloc->dimension.get()->dim_1;
2964     dim_x = dim_x == 0 ? 1 : dim_x;
2965 
2966     uint32_t dim_y = alloc->dimension.get()->dim_2;
2967     dim_y = dim_y == 0 ? 1 : dim_y;
2968 
2969     uint32_t dim_z = alloc->dimension.get()->dim_3;
2970     dim_z = dim_z == 0 ? 1 : dim_z;
2971 
2972     // Use data extractor to format output
2973     const uint32_t archByteSize = GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
2974     DataExtractor alloc_data(buffer.get(), size, GetProcess()->GetByteOrder(), archByteSize);
2975 
2976     uint32_t offset = 0;   // Offset in buffer to next element to be printed
2977     uint32_t prev_row = 0; // Offset to the start of the previous row
2978 
2979     // Iterate over allocation dimensions, printing results to user
2980     strm.Printf("Data (X, Y, Z):");
2981     for (uint32_t z = 0; z < dim_z; ++z)
2982     {
2983         for (uint32_t y = 0; y < dim_y; ++y)
2984         {
2985             // Use stride to index start of next row.
2986             if (!(y == 0 && z == 0))
2987                 offset = prev_row + stride;
2988             prev_row = offset;
2989 
2990             // Print each element in the row individually
2991             for (uint32_t x = 0; x < dim_x; ++x)
2992             {
2993                 strm.Printf("\n(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ") = ", x, y, z);
2994                 if ((type == Element::RS_TYPE_NONE) && (alloc->element.children.size() > 0) &&
2995                     (alloc->element.type_name != Element::GetFallbackStructName()))
2996                 {
2997                     // Here we are dumping an Element of struct type.
2998                     // This is done using expression evaluation with the name of the struct type and pointer to element.
2999 
3000                     // Don't print the name of the resulting expression, since this will be '$[0-9]+'
3001                     DumpValueObjectOptions expr_options;
3002                     expr_options.SetHideName(true);
3003 
3004                     // Setup expression as derefrencing a pointer cast to element address.
3005                     char expr_char_buffer[jit_max_expr_size];
3006                     int chars_written = snprintf(expr_char_buffer, jit_max_expr_size, "*(%s*) 0x%" PRIx64,
3007                                                  alloc->element.type_name.AsCString(), *alloc->data_ptr.get() + offset);
3008 
3009                     if (chars_written < 0 || chars_written >= jit_max_expr_size)
3010                     {
3011                         if (log)
3012                             log->Printf("%s - error in snprintf().", __FUNCTION__);
3013                         continue;
3014                     }
3015 
3016                     // Evaluate expression
3017                     ValueObjectSP expr_result;
3018                     GetProcess()->GetTarget().EvaluateExpression(expr_char_buffer, frame_ptr, expr_result);
3019 
3020                     // Print the results to our stream.
3021                     expr_result->Dump(strm, expr_options);
3022                 }
3023                 else
3024                 {
3025                     alloc_data.Dump(&strm, offset, format, data_size - padding, 1, 1, LLDB_INVALID_ADDRESS, 0, 0);
3026                 }
3027                 offset += data_size;
3028             }
3029         }
3030     }
3031     strm.EOL();
3032 
3033     return true;
3034 }
3035 
3036 // Function recalculates all our cached information about allocations by jitting the
3037 // RS runtime regarding each allocation we know about.
3038 // Returns true if all allocations could be recomputed, false otherwise.
3039 bool
3040 RenderScriptRuntime::RecomputeAllAllocations(Stream &strm, StackFrame *frame_ptr)
3041 {
3042     bool success = true;
3043     for (auto &alloc : m_allocations)
3044     {
3045         // JIT current allocation information
3046         if (!RefreshAllocation(alloc.get(), frame_ptr))
3047         {
3048             strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32 "\n", alloc->id);
3049             success = false;
3050         }
3051     }
3052 
3053     if (success)
3054         strm.Printf("All allocations successfully recomputed");
3055     strm.EOL();
3056 
3057     return success;
3058 }
3059 
3060 // Prints information regarding currently loaded allocations.
3061 // These details are gathered by jitting the runtime, which has as latency.
3062 // Index parameter specifies a single allocation ID to print, or a zero value to print them all
3063 void
3064 RenderScriptRuntime::ListAllocations(Stream &strm, StackFrame *frame_ptr, const uint32_t index)
3065 {
3066     strm.Printf("RenderScript Allocations:");
3067     strm.EOL();
3068     strm.IndentMore();
3069 
3070     for (auto &alloc : m_allocations)
3071     {
3072         // index will only be zero if we want to print all allocations
3073         if (index != 0 && index != alloc->id)
3074             continue;
3075 
3076         // JIT current allocation information
3077         if (alloc->shouldRefresh() && !RefreshAllocation(alloc.get(), frame_ptr))
3078         {
3079             strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32, alloc->id);
3080             strm.EOL();
3081             continue;
3082         }
3083 
3084         strm.Printf("%" PRIu32 ":", alloc->id);
3085         strm.EOL();
3086         strm.IndentMore();
3087 
3088         strm.Indent("Context: ");
3089         if (!alloc->context.isValid())
3090             strm.Printf("unknown\n");
3091         else
3092             strm.Printf("0x%" PRIx64 "\n", *alloc->context.get());
3093 
3094         strm.Indent("Address: ");
3095         if (!alloc->address.isValid())
3096             strm.Printf("unknown\n");
3097         else
3098             strm.Printf("0x%" PRIx64 "\n", *alloc->address.get());
3099 
3100         strm.Indent("Data pointer: ");
3101         if (!alloc->data_ptr.isValid())
3102             strm.Printf("unknown\n");
3103         else
3104             strm.Printf("0x%" PRIx64 "\n", *alloc->data_ptr.get());
3105 
3106         strm.Indent("Dimensions: ");
3107         if (!alloc->dimension.isValid())
3108             strm.Printf("unknown\n");
3109         else
3110             strm.Printf("(%" PRId32 ", %" PRId32 ", %" PRId32 ")\n",
3111                         alloc->dimension.get()->dim_1, alloc->dimension.get()->dim_2, alloc->dimension.get()->dim_3);
3112 
3113         strm.Indent("Data Type: ");
3114         if (!alloc->element.type.isValid() || !alloc->element.type_vec_size.isValid())
3115             strm.Printf("unknown\n");
3116         else
3117         {
3118             const int vector_size = *alloc->element.type_vec_size.get();
3119             Element::DataType type = *alloc->element.type.get();
3120 
3121             if (!alloc->element.type_name.IsEmpty())
3122                 strm.Printf("%s\n", alloc->element.type_name.AsCString());
3123             else
3124             {
3125                 // Enum value isn't monotonous, so doesn't always index RsDataTypeToString array
3126                 if (type >= Element::RS_TYPE_ELEMENT && type <= Element::RS_TYPE_FONT)
3127                     type = static_cast<Element::DataType>((type - Element::RS_TYPE_ELEMENT) +
3128                                                           Element::RS_TYPE_MATRIX_2X2 + 1);
3129 
3130                 if (type >= (sizeof(AllocationDetails::RsDataTypeToString) /
3131                              sizeof(AllocationDetails::RsDataTypeToString[0])) ||
3132                     vector_size > 4 || vector_size < 1)
3133                     strm.Printf("invalid type\n");
3134                 else
3135                     strm.Printf("%s\n", AllocationDetails::RsDataTypeToString[static_cast<uint32_t>(type)]
3136                                                                              [vector_size - 1]);
3137             }
3138         }
3139 
3140         strm.Indent("Data Kind: ");
3141         if (!alloc->element.type_kind.isValid())
3142             strm.Printf("unknown\n");
3143         else
3144         {
3145             const Element::DataKind kind = *alloc->element.type_kind.get();
3146             if (kind < Element::RS_KIND_USER || kind > Element::RS_KIND_PIXEL_YUV)
3147                 strm.Printf("invalid kind\n");
3148             else
3149                 strm.Printf("%s\n", AllocationDetails::RsDataKindToString[static_cast<uint32_t>(kind)]);
3150         }
3151 
3152         strm.EOL();
3153         strm.IndentLess();
3154     }
3155     strm.IndentLess();
3156 }
3157 
3158 // Set breakpoints on every kernel found in RS module
3159 void
3160 RenderScriptRuntime::BreakOnModuleKernels(const RSModuleDescriptorSP rsmodule_sp)
3161 {
3162     for (const auto &kernel : rsmodule_sp->m_kernels)
3163     {
3164         // Don't set breakpoint on 'root' kernel
3165         if (strcmp(kernel.m_name.AsCString(), "root") == 0)
3166             continue;
3167 
3168         CreateKernelBreakpoint(kernel.m_name);
3169     }
3170 }
3171 
3172 // Method is internally called by the 'kernel breakpoint all' command to
3173 // enable or disable breaking on all kernels.
3174 //
3175 // When do_break is true we want to enable this functionality.
3176 // When do_break is false we want to disable it.
3177 void
3178 RenderScriptRuntime::SetBreakAllKernels(bool do_break, TargetSP target)
3179 {
3180     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
3181 
3182     InitSearchFilter(target);
3183 
3184     // Set breakpoints on all the kernels
3185     if (do_break && !m_breakAllKernels)
3186     {
3187         m_breakAllKernels = true;
3188 
3189         for (const auto &module : m_rsmodules)
3190             BreakOnModuleKernels(module);
3191 
3192         if (log)
3193             log->Printf("%s(True) - breakpoints set on all currently loaded kernels.", __FUNCTION__);
3194     }
3195     else if (!do_break && m_breakAllKernels) // Breakpoints won't be set on any new kernels.
3196     {
3197         m_breakAllKernels = false;
3198 
3199         if (log)
3200             log->Printf("%s(False) - breakpoints no longer automatically set.", __FUNCTION__);
3201     }
3202 }
3203 
3204 // Given the name of a kernel this function creates a breakpoint using our
3205 // own breakpoint resolver, and returns the Breakpoint shared pointer.
3206 BreakpointSP
3207 RenderScriptRuntime::CreateKernelBreakpoint(const ConstString &name)
3208 {
3209     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
3210 
3211     if (!m_filtersp)
3212     {
3213         if (log)
3214             log->Printf("%s - error, no breakpoint search filter set.", __FUNCTION__);
3215         return nullptr;
3216     }
3217 
3218     BreakpointResolverSP resolver_sp(new RSBreakpointResolver(nullptr, name));
3219     BreakpointSP bp = GetProcess()->GetTarget().CreateBreakpoint(m_filtersp, resolver_sp, false, false, false);
3220 
3221     // Give RS breakpoints a specific name, so the user can manipulate them as a group.
3222     Error err;
3223     if (!bp->AddName("RenderScriptKernel", err) && log)
3224         log->Printf("%s - error setting break name, '%s'.", __FUNCTION__, err.AsCString());
3225 
3226     return bp;
3227 }
3228 
3229 // Given an expression for a variable this function tries to calculate the variable's value.
3230 // If this is possible it returns true and sets the uint64_t parameter to the variables unsigned value.
3231 // Otherwise function returns false.
3232 bool
3233 RenderScriptRuntime::GetFrameVarAsUnsigned(const StackFrameSP frame_sp, const char *var_name, uint64_t &val)
3234 {
3235     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE));
3236     Error error;
3237     VariableSP var_sp;
3238 
3239     // Find variable in stack frame
3240     ValueObjectSP value_sp(frame_sp->GetValueForVariableExpressionPath(
3241         var_name, eNoDynamicValues,
3242         StackFrame::eExpressionPathOptionCheckPtrVsMember | StackFrame::eExpressionPathOptionsAllowDirectIVarAccess,
3243         var_sp, error));
3244     if (!error.Success())
3245     {
3246         if (log)
3247             log->Printf("%s - error, couldn't find '%s' in frame", __FUNCTION__, var_name);
3248         return false;
3249     }
3250 
3251     // Find the uint32_t value for the variable
3252     bool success = false;
3253     val = value_sp->GetValueAsUnsigned(0, &success);
3254     if (!success)
3255     {
3256         if (log)
3257             log->Printf("%s - error, couldn't parse '%s' as an uint32_t.", __FUNCTION__, var_name);
3258         return false;
3259     }
3260 
3261     return true;
3262 }
3263 
3264 // Function attempts to find the current coordinate of a kernel invocation by investigating the
3265 // values of frame variables in the .expand function. These coordinates are returned via the coord
3266 // array reference parameter. Returns true if the coordinates could be found, and false otherwise.
3267 bool
3268 RenderScriptRuntime::GetKernelCoordinate(RSCoordinate &coord, Thread *thread_ptr)
3269 {
3270     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE));
3271 
3272     if (!thread_ptr)
3273     {
3274         if (log)
3275             log->Printf("%s - Error, No thread pointer", __FUNCTION__);
3276 
3277         return false;
3278     }
3279 
3280     // Walk the call stack looking for a function whose name has the suffix '.expand'
3281     // and contains the variables we're looking for.
3282     for (uint32_t i = 0; i < thread_ptr->GetStackFrameCount(); ++i)
3283     {
3284         if (!thread_ptr->SetSelectedFrameByIndex(i))
3285             continue;
3286 
3287         StackFrameSP frame_sp = thread_ptr->GetSelectedFrame();
3288         if (!frame_sp)
3289             continue;
3290 
3291         // Find the function name
3292         const SymbolContext sym_ctx = frame_sp->GetSymbolContext(false);
3293         const char *func_name_cstr = sym_ctx.GetFunctionName().AsCString();
3294         if (!func_name_cstr)
3295             continue;
3296 
3297         if (log)
3298             log->Printf("%s - Inspecting function '%s'", __FUNCTION__, func_name_cstr);
3299 
3300         // Check if function name has .expand suffix
3301         std::string func_name(func_name_cstr);
3302         const int length_difference = func_name.length() - RenderScriptRuntime::s_runtimeExpandSuffix.length();
3303         if (length_difference <= 0)
3304             continue;
3305 
3306         const int32_t has_expand_suffix = func_name.compare(length_difference,
3307                                                             RenderScriptRuntime::s_runtimeExpandSuffix.length(),
3308                                                             RenderScriptRuntime::s_runtimeExpandSuffix);
3309 
3310         if (has_expand_suffix != 0)
3311             continue;
3312 
3313         if (log)
3314             log->Printf("%s - Found .expand function '%s'", __FUNCTION__, func_name_cstr);
3315 
3316         // Get values for variables in .expand frame that tell us the current kernel invocation
3317         bool found_coord_variables = true;
3318         assert(RenderScriptRuntime::s_runtimeCoordVars.size() == coord.size());
3319 
3320         for (uint32_t i = 0; i < coord.size(); ++i)
3321         {
3322             uint64_t value = 0;
3323             if (!GetFrameVarAsUnsigned(frame_sp, RenderScriptRuntime::s_runtimeCoordVars[i], value))
3324             {
3325                 found_coord_variables = false;
3326                 break;
3327             }
3328             coord[i] = value;
3329         }
3330 
3331         if (found_coord_variables)
3332             return true;
3333     }
3334     return false;
3335 }
3336 
3337 // Callback when a kernel breakpoint hits and we're looking for a specific coordinate.
3338 // Baton parameter contains a pointer to the target coordinate we want to break on.
3339 // Function then checks the .expand frame for the current coordinate and breaks to user if it matches.
3340 // Parameter 'break_id' is the id of the Breakpoint which made the callback.
3341 // Parameter 'break_loc_id' is the id for the BreakpointLocation which was hit,
3342 // a single logical breakpoint can have multiple addresses.
3343 bool
3344 RenderScriptRuntime::KernelBreakpointHit(void *baton, StoppointCallbackContext *ctx, user_id_t break_id,
3345                                          user_id_t break_loc_id)
3346 {
3347     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
3348 
3349     assert(baton && "Error: null baton in conditional kernel breakpoint callback");
3350 
3351     // Coordinate we want to stop on
3352     const uint32_t *target_coord = static_cast<const uint32_t *>(baton);
3353 
3354     if (log)
3355         log->Printf("%s - Break ID %" PRIu64 ", (%" PRIu32 ", %" PRIu32 ", %" PRIu32 ")", __FUNCTION__, break_id,
3356                     target_coord[0], target_coord[1], target_coord[2]);
3357 
3358     // Select current thread
3359     ExecutionContext context(ctx->exe_ctx_ref);
3360     Thread *thread_ptr = context.GetThreadPtr();
3361     assert(thread_ptr && "Null thread pointer");
3362 
3363     // Find current kernel invocation from .expand frame variables
3364     RSCoordinate current_coord{}; // Zero initialise array
3365     if (!GetKernelCoordinate(current_coord, thread_ptr))
3366     {
3367         if (log)
3368             log->Printf("%s - Error, couldn't select .expand stack frame", __FUNCTION__);
3369         return false;
3370     }
3371 
3372     if (log)
3373         log->Printf("%s - (%" PRIu32 ",%" PRIu32 ",%" PRIu32 ")", __FUNCTION__, current_coord[0], current_coord[1],
3374                     current_coord[2]);
3375 
3376     // Check if the current kernel invocation coordinate matches our target coordinate
3377     if (current_coord[0] == target_coord[0] &&
3378         current_coord[1] == target_coord[1] &&
3379         current_coord[2] == target_coord[2])
3380     {
3381         if (log)
3382             log->Printf("%s, BREAKING (%" PRIu32 ",%" PRIu32 ",%" PRIu32 ")", __FUNCTION__, current_coord[0],
3383                         current_coord[1], current_coord[2]);
3384 
3385         BreakpointSP breakpoint_sp = context.GetTargetPtr()->GetBreakpointByID(break_id);
3386         assert(breakpoint_sp != nullptr && "Error: Couldn't find breakpoint matching break id for callback");
3387         breakpoint_sp->SetEnabled(false); // Optimise since conditional breakpoint should only be hit once.
3388         return true;
3389     }
3390 
3391     // No match on coordinate
3392     return false;
3393 }
3394 
3395 // Tries to set a breakpoint on the start of a kernel, resolved using the kernel name.
3396 // Argument 'coords', represents a three dimensional coordinate which can be used to specify
3397 // a single kernel instance to break on. If this is set then we add a callback to the breakpoint.
3398 void
3399 RenderScriptRuntime::PlaceBreakpointOnKernel(Stream &strm, const char *name, const std::array<int, 3> coords,
3400                                              Error &error, TargetSP target)
3401 {
3402     if (!name)
3403     {
3404         error.SetErrorString("invalid kernel name");
3405         return;
3406     }
3407 
3408     InitSearchFilter(target);
3409 
3410     ConstString kernel_name(name);
3411     BreakpointSP bp = CreateKernelBreakpoint(kernel_name);
3412 
3413     // We have a conditional breakpoint on a specific coordinate
3414     if (coords[0] != -1)
3415     {
3416         strm.Printf("Conditional kernel breakpoint on coordinate %" PRId32 ", %" PRId32 ", %" PRId32,
3417                     coords[0], coords[1], coords[2]);
3418         strm.EOL();
3419 
3420         // Allocate memory for the baton, and copy over coordinate
3421         uint32_t *baton = new uint32_t[coords.size()];
3422         baton[0] = coords[0]; baton[1] = coords[1]; baton[2] = coords[2];
3423 
3424         // Create a callback that will be invoked everytime the breakpoint is hit.
3425         // The baton object passed to the handler is the target coordinate we want to break on.
3426         bp->SetCallback(KernelBreakpointHit, baton, true);
3427 
3428         // Store a shared pointer to the baton, so the memory will eventually be cleaned up after destruction
3429         m_conditional_breaks[bp->GetID()] = std::shared_ptr<uint32_t>(baton);
3430     }
3431 
3432     if (bp)
3433         bp->GetDescription(&strm, lldb::eDescriptionLevelInitial, false);
3434 }
3435 
3436 void
3437 RenderScriptRuntime::DumpModules(Stream &strm) const
3438 {
3439     strm.Printf("RenderScript Modules:");
3440     strm.EOL();
3441     strm.IndentMore();
3442     for (const auto &module : m_rsmodules)
3443     {
3444         module->Dump(strm);
3445     }
3446     strm.IndentLess();
3447 }
3448 
3449 RenderScriptRuntime::ScriptDetails *
3450 RenderScriptRuntime::LookUpScript(addr_t address, bool create)
3451 {
3452     for (const auto &s : m_scripts)
3453     {
3454         if (s->script.isValid())
3455             if (*s->script == address)
3456                 return s.get();
3457     }
3458     if (create)
3459     {
3460         std::unique_ptr<ScriptDetails> s(new ScriptDetails);
3461         s->script = address;
3462         m_scripts.push_back(std::move(s));
3463         return m_scripts.back().get();
3464     }
3465     return nullptr;
3466 }
3467 
3468 RenderScriptRuntime::AllocationDetails *
3469 RenderScriptRuntime::LookUpAllocation(addr_t address, bool create)
3470 {
3471     for (const auto &a : m_allocations)
3472     {
3473         if (a->address.isValid())
3474             if (*a->address == address)
3475                 return a.get();
3476     }
3477     if (create)
3478     {
3479         std::unique_ptr<AllocationDetails> a(new AllocationDetails);
3480         a->address = address;
3481         m_allocations.push_back(std::move(a));
3482         return m_allocations.back().get();
3483     }
3484     return nullptr;
3485 }
3486 
3487 void
3488 RSModuleDescriptor::Dump(Stream &strm) const
3489 {
3490     strm.Indent();
3491     m_module->GetFileSpec().Dump(&strm);
3492     if (m_module->GetNumCompileUnits())
3493     {
3494         strm.Indent("Debug info loaded.");
3495     }
3496     else
3497     {
3498         strm.Indent("Debug info does not exist.");
3499     }
3500     strm.EOL();
3501     strm.IndentMore();
3502     strm.Indent();
3503     strm.Printf("Globals: %" PRIu64, static_cast<uint64_t>(m_globals.size()));
3504     strm.EOL();
3505     strm.IndentMore();
3506     for (const auto &global : m_globals)
3507     {
3508         global.Dump(strm);
3509     }
3510     strm.IndentLess();
3511     strm.Indent();
3512     strm.Printf("Kernels: %" PRIu64, static_cast<uint64_t>(m_kernels.size()));
3513     strm.EOL();
3514     strm.IndentMore();
3515     for (const auto &kernel : m_kernels)
3516     {
3517         kernel.Dump(strm);
3518     }
3519     strm.Printf("Pragmas: %" PRIu64, static_cast<uint64_t>(m_pragmas.size()));
3520     strm.EOL();
3521     strm.IndentMore();
3522     for (const auto &key_val : m_pragmas)
3523     {
3524         strm.Printf("%s: %s", key_val.first.c_str(), key_val.second.c_str());
3525         strm.EOL();
3526     }
3527     strm.IndentLess(4);
3528 }
3529 
3530 void
3531 RSGlobalDescriptor::Dump(Stream &strm) const
3532 {
3533     strm.Indent(m_name.AsCString());
3534     VariableList var_list;
3535     m_module->m_module->FindGlobalVariables(m_name, nullptr, true, 1U, var_list);
3536     if (var_list.GetSize() == 1)
3537     {
3538         auto var = var_list.GetVariableAtIndex(0);
3539         auto type = var->GetType();
3540         if (type)
3541         {
3542             strm.Printf(" - ");
3543             type->DumpTypeName(&strm);
3544         }
3545         else
3546         {
3547             strm.Printf(" - Unknown Type");
3548         }
3549     }
3550     else
3551     {
3552         strm.Printf(" - variable identified, but not found in binary");
3553         const Symbol *s = m_module->m_module->FindFirstSymbolWithNameAndType(m_name, eSymbolTypeData);
3554         if (s)
3555         {
3556             strm.Printf(" (symbol exists) ");
3557         }
3558     }
3559 
3560     strm.EOL();
3561 }
3562 
3563 void
3564 RSKernelDescriptor::Dump(Stream &strm) const
3565 {
3566     strm.Indent(m_name.AsCString());
3567     strm.EOL();
3568 }
3569 
3570 class CommandObjectRenderScriptRuntimeModuleDump : public CommandObjectParsed
3571 {
3572 public:
3573     CommandObjectRenderScriptRuntimeModuleDump(CommandInterpreter &interpreter)
3574         : CommandObjectParsed(interpreter, "renderscript module dump",
3575                               "Dumps renderscript specific information for all modules.", "renderscript module dump",
3576                               eCommandRequiresProcess | eCommandProcessMustBeLaunched)
3577     {
3578     }
3579 
3580     ~CommandObjectRenderScriptRuntimeModuleDump() override = default;
3581 
3582     bool
3583     DoExecute(Args &command, CommandReturnObject &result) override
3584     {
3585         RenderScriptRuntime *runtime =
3586             (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
3587         runtime->DumpModules(result.GetOutputStream());
3588         result.SetStatus(eReturnStatusSuccessFinishResult);
3589         return true;
3590     }
3591 };
3592 
3593 class CommandObjectRenderScriptRuntimeModule : public CommandObjectMultiword
3594 {
3595 public:
3596     CommandObjectRenderScriptRuntimeModule(CommandInterpreter &interpreter)
3597         : CommandObjectMultiword(interpreter, "renderscript module", "Commands that deal with renderscript modules.",
3598                                  nullptr)
3599     {
3600         LoadSubCommand("dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeModuleDump(interpreter)));
3601     }
3602 
3603     ~CommandObjectRenderScriptRuntimeModule() override = default;
3604 };
3605 
3606 class CommandObjectRenderScriptRuntimeKernelList : public CommandObjectParsed
3607 {
3608 public:
3609     CommandObjectRenderScriptRuntimeKernelList(CommandInterpreter &interpreter)
3610         : CommandObjectParsed(interpreter, "renderscript kernel list",
3611                               "Lists renderscript kernel names and associated script resources.",
3612                               "renderscript kernel list", eCommandRequiresProcess | eCommandProcessMustBeLaunched)
3613     {
3614     }
3615 
3616     ~CommandObjectRenderScriptRuntimeKernelList() override = default;
3617 
3618     bool
3619     DoExecute(Args &command, CommandReturnObject &result) override
3620     {
3621         RenderScriptRuntime *runtime =
3622             (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
3623         runtime->DumpKernels(result.GetOutputStream());
3624         result.SetStatus(eReturnStatusSuccessFinishResult);
3625         return true;
3626     }
3627 };
3628 
3629 class CommandObjectRenderScriptRuntimeKernelBreakpointSet : public CommandObjectParsed
3630 {
3631 public:
3632     CommandObjectRenderScriptRuntimeKernelBreakpointSet(CommandInterpreter &interpreter)
3633         : CommandObjectParsed(interpreter, "renderscript kernel breakpoint set",
3634                               "Sets a breakpoint on a renderscript kernel.",
3635                               "renderscript kernel breakpoint set <kernel_name> [-c x,y,z]",
3636                               eCommandRequiresProcess | eCommandProcessMustBeLaunched | eCommandProcessMustBePaused),
3637           m_options(interpreter)
3638     {
3639     }
3640 
3641     ~CommandObjectRenderScriptRuntimeKernelBreakpointSet() override = default;
3642 
3643     Options *
3644     GetOptions() override
3645     {
3646         return &m_options;
3647     }
3648 
3649     class CommandOptions : public Options
3650     {
3651     public:
3652         CommandOptions(CommandInterpreter &interpreter) : Options(interpreter) {}
3653 
3654         ~CommandOptions() override = default;
3655 
3656         Error
3657         SetOptionValue(uint32_t option_idx, const char *option_arg) override
3658         {
3659             Error error;
3660             const int short_option = m_getopt_table[option_idx].val;
3661 
3662             switch (short_option)
3663             {
3664                 case 'c':
3665                     if (!ParseCoordinate(option_arg))
3666                         error.SetErrorStringWithFormat("Couldn't parse coordinate '%s', should be in format 'x,y,z'.",
3667                                                        option_arg);
3668                     break;
3669                 default:
3670                     error.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
3671                     break;
3672             }
3673             return error;
3674         }
3675 
3676         // -c takes an argument of the form 'num[,num][,num]'.
3677         // Where 'id_cstr' is this argument with the whitespace trimmed.
3678         // Missing coordinates are defaulted to zero.
3679         bool
3680         ParseCoordinate(const char *id_cstr)
3681         {
3682             RegularExpression regex;
3683             RegularExpression::Match regex_match(3);
3684 
3685             bool matched = false;
3686             if (regex.Compile("^([0-9]+),([0-9]+),([0-9]+)$") && regex.Execute(id_cstr, &regex_match))
3687                 matched = true;
3688             else if (regex.Compile("^([0-9]+),([0-9]+)$") && regex.Execute(id_cstr, &regex_match))
3689                 matched = true;
3690             else if (regex.Compile("^([0-9]+)$") && regex.Execute(id_cstr, &regex_match))
3691                 matched = true;
3692             for (uint32_t i = 0; i < 3; i++)
3693             {
3694                 std::string group;
3695                 if (regex_match.GetMatchAtIndex(id_cstr, i + 1, group))
3696                     m_coord[i] = (uint32_t)strtoul(group.c_str(), nullptr, 0);
3697                 else
3698                     m_coord[i] = 0;
3699             }
3700             return matched;
3701         }
3702 
3703         void
3704         OptionParsingStarting() override
3705         {
3706             // -1 means the -c option hasn't been set
3707             m_coord[0] = -1;
3708             m_coord[1] = -1;
3709             m_coord[2] = -1;
3710         }
3711 
3712         const OptionDefinition *
3713         GetDefinitions() override
3714         {
3715             return g_option_table;
3716         }
3717 
3718         static OptionDefinition g_option_table[];
3719         std::array<int, 3> m_coord;
3720     };
3721 
3722     bool
3723     DoExecute(Args &command, CommandReturnObject &result) override
3724     {
3725         const size_t argc = command.GetArgumentCount();
3726         if (argc < 1)
3727         {
3728             result.AppendErrorWithFormat("'%s' takes 1 argument of kernel name, and an optional coordinate.",
3729                                          m_cmd_name.c_str());
3730             result.SetStatus(eReturnStatusFailed);
3731             return false;
3732         }
3733 
3734         RenderScriptRuntime *runtime =
3735             (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
3736 
3737         Error error;
3738         runtime->PlaceBreakpointOnKernel(result.GetOutputStream(), command.GetArgumentAtIndex(0), m_options.m_coord,
3739                                          error, m_exe_ctx.GetTargetSP());
3740 
3741         if (error.Success())
3742         {
3743             result.AppendMessage("Breakpoint(s) created");
3744             result.SetStatus(eReturnStatusSuccessFinishResult);
3745             return true;
3746         }
3747         result.SetStatus(eReturnStatusFailed);
3748         result.AppendErrorWithFormat("Error: %s", error.AsCString());
3749         return false;
3750     }
3751 
3752 private:
3753     CommandOptions m_options;
3754 };
3755 
3756 OptionDefinition CommandObjectRenderScriptRuntimeKernelBreakpointSet::CommandOptions::g_option_table[] = {
3757     {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeValue,
3758      "Set a breakpoint on a single invocation of the kernel with specified coordinate.\n"
3759      "Coordinate takes the form 'x[,y][,z] where x,y,z are positive integers representing kernel dimensions. "
3760      "Any unset dimensions will be defaulted to zero."},
3761     {0, false, nullptr, 0, 0, nullptr, nullptr, 0, eArgTypeNone, nullptr}};
3762 
3763 class CommandObjectRenderScriptRuntimeKernelBreakpointAll : public CommandObjectParsed
3764 {
3765 public:
3766     CommandObjectRenderScriptRuntimeKernelBreakpointAll(CommandInterpreter &interpreter)
3767         : CommandObjectParsed(
3768               interpreter, "renderscript kernel breakpoint all",
3769               "Automatically sets a breakpoint on all renderscript kernels that are or will be loaded.\n"
3770               "Disabling option means breakpoints will no longer be set on any kernels loaded in the future, "
3771               "but does not remove currently set breakpoints.",
3772               "renderscript kernel breakpoint all <enable/disable>",
3773               eCommandRequiresProcess | eCommandProcessMustBeLaunched | eCommandProcessMustBePaused)
3774     {
3775     }
3776 
3777     ~CommandObjectRenderScriptRuntimeKernelBreakpointAll() override = default;
3778 
3779     bool
3780     DoExecute(Args &command, CommandReturnObject &result) override
3781     {
3782         const size_t argc = command.GetArgumentCount();
3783         if (argc != 1)
3784         {
3785             result.AppendErrorWithFormat("'%s' takes 1 argument of 'enable' or 'disable'", m_cmd_name.c_str());
3786             result.SetStatus(eReturnStatusFailed);
3787             return false;
3788         }
3789 
3790         RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
3791             m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
3792 
3793         bool do_break = false;
3794         const char *argument = command.GetArgumentAtIndex(0);
3795         if (strcmp(argument, "enable") == 0)
3796         {
3797             do_break = true;
3798             result.AppendMessage("Breakpoints will be set on all kernels.");
3799         }
3800         else if (strcmp(argument, "disable") == 0)
3801         {
3802             do_break = false;
3803             result.AppendMessage("Breakpoints will not be set on any new kernels.");
3804         }
3805         else
3806         {
3807             result.AppendErrorWithFormat("Argument must be either 'enable' or 'disable'");
3808             result.SetStatus(eReturnStatusFailed);
3809             return false;
3810         }
3811 
3812         runtime->SetBreakAllKernels(do_break, m_exe_ctx.GetTargetSP());
3813 
3814         result.SetStatus(eReturnStatusSuccessFinishResult);
3815         return true;
3816     }
3817 };
3818 
3819 class CommandObjectRenderScriptRuntimeKernelCoordinate : public CommandObjectParsed
3820 {
3821 public:
3822     CommandObjectRenderScriptRuntimeKernelCoordinate(CommandInterpreter &interpreter)
3823         : CommandObjectParsed(interpreter, "renderscript kernel coordinate",
3824                               "Shows the (x,y,z) coordinate of the current kernel invocation.",
3825                               "renderscript kernel coordinate",
3826                               eCommandRequiresProcess | eCommandProcessMustBeLaunched | eCommandProcessMustBePaused)
3827     {
3828     }
3829 
3830     ~CommandObjectRenderScriptRuntimeKernelCoordinate() override = default;
3831 
3832     bool
3833     DoExecute(Args &command, CommandReturnObject &result) override
3834     {
3835         RSCoordinate coord{}; // Zero initialize array
3836         bool success = RenderScriptRuntime::GetKernelCoordinate(coord, m_exe_ctx.GetThreadPtr());
3837         Stream &stream = result.GetOutputStream();
3838 
3839         if (success)
3840         {
3841             stream.Printf("Coordinate: (%" PRIu32 ", %" PRIu32 ", %" PRIu32 ")", coord[0], coord[1], coord[2]);
3842             stream.EOL();
3843             result.SetStatus(eReturnStatusSuccessFinishResult);
3844         }
3845         else
3846         {
3847             stream.Printf("Error: Coordinate could not be found.");
3848             stream.EOL();
3849             result.SetStatus(eReturnStatusFailed);
3850         }
3851         return true;
3852     }
3853 };
3854 
3855 class CommandObjectRenderScriptRuntimeKernelBreakpoint : public CommandObjectMultiword
3856 {
3857 public:
3858     CommandObjectRenderScriptRuntimeKernelBreakpoint(CommandInterpreter &interpreter)
3859         : CommandObjectMultiword(interpreter, "renderscript kernel",
3860                                  "Commands that generate breakpoints on renderscript kernels.", nullptr)
3861     {
3862         LoadSubCommand("set", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointSet(interpreter)));
3863         LoadSubCommand("all", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointAll(interpreter)));
3864     }
3865 
3866     ~CommandObjectRenderScriptRuntimeKernelBreakpoint() override = default;
3867 };
3868 
3869 class CommandObjectRenderScriptRuntimeKernel : public CommandObjectMultiword
3870 {
3871 public:
3872     CommandObjectRenderScriptRuntimeKernel(CommandInterpreter &interpreter)
3873         : CommandObjectMultiword(interpreter, "renderscript kernel", "Commands that deal with renderscript kernels.",
3874                                  nullptr)
3875     {
3876         LoadSubCommand("list", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelList(interpreter)));
3877         LoadSubCommand("coordinate",
3878                        CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelCoordinate(interpreter)));
3879         LoadSubCommand("breakpoint",
3880                        CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpoint(interpreter)));
3881     }
3882 
3883     ~CommandObjectRenderScriptRuntimeKernel() override = default;
3884 };
3885 
3886 class CommandObjectRenderScriptRuntimeContextDump : public CommandObjectParsed
3887 {
3888 public:
3889     CommandObjectRenderScriptRuntimeContextDump(CommandInterpreter &interpreter)
3890         : CommandObjectParsed(interpreter, "renderscript context dump", "Dumps renderscript context information.",
3891                               "renderscript context dump", eCommandRequiresProcess | eCommandProcessMustBeLaunched)
3892     {
3893     }
3894 
3895     ~CommandObjectRenderScriptRuntimeContextDump() override = default;
3896 
3897     bool
3898     DoExecute(Args &command, CommandReturnObject &result) override
3899     {
3900         RenderScriptRuntime *runtime =
3901             (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
3902         runtime->DumpContexts(result.GetOutputStream());
3903         result.SetStatus(eReturnStatusSuccessFinishResult);
3904         return true;
3905     }
3906 };
3907 
3908 class CommandObjectRenderScriptRuntimeContext : public CommandObjectMultiword
3909 {
3910 public:
3911     CommandObjectRenderScriptRuntimeContext(CommandInterpreter &interpreter)
3912         : CommandObjectMultiword(interpreter, "renderscript context", "Commands that deal with renderscript contexts.",
3913                                  nullptr)
3914     {
3915         LoadSubCommand("dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeContextDump(interpreter)));
3916     }
3917 
3918     ~CommandObjectRenderScriptRuntimeContext() override = default;
3919 };
3920 
3921 class CommandObjectRenderScriptRuntimeAllocationDump : public CommandObjectParsed
3922 {
3923 public:
3924     CommandObjectRenderScriptRuntimeAllocationDump(CommandInterpreter &interpreter)
3925         : CommandObjectParsed(interpreter, "renderscript allocation dump",
3926                               "Displays the contents of a particular allocation", "renderscript allocation dump <ID>",
3927                               eCommandRequiresProcess | eCommandProcessMustBeLaunched),
3928           m_options(interpreter)
3929     {
3930     }
3931 
3932     ~CommandObjectRenderScriptRuntimeAllocationDump() override = default;
3933 
3934     Options *
3935     GetOptions() override
3936     {
3937         return &m_options;
3938     }
3939 
3940     class CommandOptions : public Options
3941     {
3942     public:
3943         CommandOptions(CommandInterpreter &interpreter) : Options(interpreter) {}
3944 
3945         ~CommandOptions() override = default;
3946 
3947         Error
3948         SetOptionValue(uint32_t option_idx, const char *option_arg) override
3949         {
3950             Error error;
3951             const int short_option = m_getopt_table[option_idx].val;
3952 
3953             switch (short_option)
3954             {
3955                 case 'f':
3956                     m_outfile.SetFile(option_arg, true);
3957                     if (m_outfile.Exists())
3958                     {
3959                         m_outfile.Clear();
3960                         error.SetErrorStringWithFormat("file already exists: '%s'", option_arg);
3961                     }
3962                     break;
3963                 default:
3964                     error.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
3965                     break;
3966             }
3967             return error;
3968         }
3969 
3970         void
3971         OptionParsingStarting() override
3972         {
3973             m_outfile.Clear();
3974         }
3975 
3976         const OptionDefinition *
3977         GetDefinitions() override
3978         {
3979             return g_option_table;
3980         }
3981 
3982         static OptionDefinition g_option_table[];
3983         FileSpec m_outfile;
3984     };
3985 
3986     bool
3987     DoExecute(Args &command, CommandReturnObject &result) override
3988     {
3989         const size_t argc = command.GetArgumentCount();
3990         if (argc < 1)
3991         {
3992             result.AppendErrorWithFormat("'%s' takes 1 argument, an allocation ID. As well as an optional -f argument",
3993                                          m_cmd_name.c_str());
3994             result.SetStatus(eReturnStatusFailed);
3995             return false;
3996         }
3997 
3998         RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
3999             m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
4000 
4001         const char *id_cstr = command.GetArgumentAtIndex(0);
4002         bool convert_complete = false;
4003         const uint32_t id = StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete);
4004         if (!convert_complete)
4005         {
4006             result.AppendErrorWithFormat("invalid allocation id argument '%s'", id_cstr);
4007             result.SetStatus(eReturnStatusFailed);
4008             return false;
4009         }
4010 
4011         Stream *output_strm = nullptr;
4012         StreamFile outfile_stream;
4013         const FileSpec &outfile_spec = m_options.m_outfile; // Dump allocation to file instead
4014         if (outfile_spec)
4015         {
4016             // Open output file
4017             char path[256];
4018             outfile_spec.GetPath(path, sizeof(path));
4019             if (outfile_stream.GetFile().Open(path, File::eOpenOptionWrite | File::eOpenOptionCanCreate).Success())
4020             {
4021                 output_strm = &outfile_stream;
4022                 result.GetOutputStream().Printf("Results written to '%s'", path);
4023                 result.GetOutputStream().EOL();
4024             }
4025             else
4026             {
4027                 result.AppendErrorWithFormat("Couldn't open file '%s'", path);
4028                 result.SetStatus(eReturnStatusFailed);
4029                 return false;
4030             }
4031         }
4032         else
4033             output_strm = &result.GetOutputStream();
4034 
4035         assert(output_strm != nullptr);
4036         bool success = runtime->DumpAllocation(*output_strm, m_exe_ctx.GetFramePtr(), id);
4037 
4038         if (success)
4039             result.SetStatus(eReturnStatusSuccessFinishResult);
4040         else
4041             result.SetStatus(eReturnStatusFailed);
4042 
4043         return true;
4044     }
4045 
4046 private:
4047     CommandOptions m_options;
4048 };
4049 
4050 OptionDefinition CommandObjectRenderScriptRuntimeAllocationDump::CommandOptions::g_option_table[] = {
4051     {LLDB_OPT_SET_1, false, "file", 'f', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeFilename,
4052      "Print results to specified file instead of command line."},
4053     {0, false, nullptr, 0, 0, nullptr, nullptr, 0, eArgTypeNone, nullptr}};
4054 
4055 class CommandObjectRenderScriptRuntimeAllocationList : public CommandObjectParsed
4056 {
4057 public:
4058     CommandObjectRenderScriptRuntimeAllocationList(CommandInterpreter &interpreter)
4059         : CommandObjectParsed(interpreter, "renderscript allocation list",
4060                               "List renderscript allocations and their information.", "renderscript allocation list",
4061                               eCommandRequiresProcess | eCommandProcessMustBeLaunched),
4062           m_options(interpreter)
4063     {
4064     }
4065 
4066     ~CommandObjectRenderScriptRuntimeAllocationList() override = default;
4067 
4068     Options *
4069     GetOptions() override
4070     {
4071         return &m_options;
4072     }
4073 
4074     class CommandOptions : public Options
4075     {
4076     public:
4077         CommandOptions(CommandInterpreter &interpreter) : Options(interpreter), m_id(0) {}
4078 
4079         ~CommandOptions() override = default;
4080 
4081         Error
4082         SetOptionValue(uint32_t option_idx, const char *option_arg) override
4083         {
4084             Error error;
4085             const int short_option = m_getopt_table[option_idx].val;
4086 
4087             switch (short_option)
4088             {
4089                 case 'i':
4090                     bool success;
4091                     m_id = StringConvert::ToUInt32(option_arg, 0, 0, &success);
4092                     if (!success)
4093                         error.SetErrorStringWithFormat("invalid integer value for option '%c'", short_option);
4094                     break;
4095                 default:
4096                     error.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
4097                     break;
4098             }
4099             return error;
4100         }
4101 
4102         void
4103         OptionParsingStarting() override
4104         {
4105             m_id = 0;
4106         }
4107 
4108         const OptionDefinition *
4109         GetDefinitions() override
4110         {
4111             return g_option_table;
4112         }
4113 
4114         static OptionDefinition g_option_table[];
4115         uint32_t m_id;
4116     };
4117 
4118     bool
4119     DoExecute(Args &command, CommandReturnObject &result) override
4120     {
4121         RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4122             m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
4123         runtime->ListAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr(), m_options.m_id);
4124         result.SetStatus(eReturnStatusSuccessFinishResult);
4125         return true;
4126     }
4127 
4128 private:
4129     CommandOptions m_options;
4130 };
4131 
4132 OptionDefinition CommandObjectRenderScriptRuntimeAllocationList::CommandOptions::g_option_table[] = {
4133     {LLDB_OPT_SET_1, false, "id", 'i', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeIndex,
4134      "Only show details of a single allocation with specified id."},
4135     {0, false, nullptr, 0, 0, nullptr, nullptr, 0, eArgTypeNone, nullptr}};
4136 
4137 class CommandObjectRenderScriptRuntimeAllocationLoad : public CommandObjectParsed
4138 {
4139 public:
4140     CommandObjectRenderScriptRuntimeAllocationLoad(CommandInterpreter &interpreter)
4141         : CommandObjectParsed(
4142               interpreter, "renderscript allocation load", "Loads renderscript allocation contents from a file.",
4143               "renderscript allocation load <ID> <filename>", eCommandRequiresProcess | eCommandProcessMustBeLaunched)
4144     {
4145     }
4146 
4147     ~CommandObjectRenderScriptRuntimeAllocationLoad() override = default;
4148 
4149     bool
4150     DoExecute(Args &command, CommandReturnObject &result) override
4151     {
4152         const size_t argc = command.GetArgumentCount();
4153         if (argc != 2)
4154         {
4155             result.AppendErrorWithFormat("'%s' takes 2 arguments, an allocation ID and filename to read from.",
4156                                          m_cmd_name.c_str());
4157             result.SetStatus(eReturnStatusFailed);
4158             return false;
4159         }
4160 
4161         RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4162             m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
4163 
4164         const char *id_cstr = command.GetArgumentAtIndex(0);
4165         bool convert_complete = false;
4166         const uint32_t id = StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete);
4167         if (!convert_complete)
4168         {
4169             result.AppendErrorWithFormat("invalid allocation id argument '%s'", id_cstr);
4170             result.SetStatus(eReturnStatusFailed);
4171             return false;
4172         }
4173 
4174         const char *filename = command.GetArgumentAtIndex(1);
4175         bool success = runtime->LoadAllocation(result.GetOutputStream(), id, filename, m_exe_ctx.GetFramePtr());
4176 
4177         if (success)
4178             result.SetStatus(eReturnStatusSuccessFinishResult);
4179         else
4180             result.SetStatus(eReturnStatusFailed);
4181 
4182         return true;
4183     }
4184 };
4185 
4186 class CommandObjectRenderScriptRuntimeAllocationSave : public CommandObjectParsed
4187 {
4188 public:
4189     CommandObjectRenderScriptRuntimeAllocationSave(CommandInterpreter &interpreter)
4190         : CommandObjectParsed(
4191               interpreter, "renderscript allocation save", "Write renderscript allocation contents to a file.",
4192               "renderscript allocation save <ID> <filename>", eCommandRequiresProcess | eCommandProcessMustBeLaunched)
4193     {
4194     }
4195 
4196     ~CommandObjectRenderScriptRuntimeAllocationSave() override = default;
4197 
4198     bool
4199     DoExecute(Args &command, CommandReturnObject &result) override
4200     {
4201         const size_t argc = command.GetArgumentCount();
4202         if (argc != 2)
4203         {
4204             result.AppendErrorWithFormat("'%s' takes 2 arguments, an allocation ID and filename to read from.",
4205                                          m_cmd_name.c_str());
4206             result.SetStatus(eReturnStatusFailed);
4207             return false;
4208         }
4209 
4210         RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4211             m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
4212 
4213         const char *id_cstr = command.GetArgumentAtIndex(0);
4214         bool convert_complete = false;
4215         const uint32_t id = StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete);
4216         if (!convert_complete)
4217         {
4218             result.AppendErrorWithFormat("invalid allocation id argument '%s'", id_cstr);
4219             result.SetStatus(eReturnStatusFailed);
4220             return false;
4221         }
4222 
4223         const char *filename = command.GetArgumentAtIndex(1);
4224         bool success = runtime->SaveAllocation(result.GetOutputStream(), id, filename, m_exe_ctx.GetFramePtr());
4225 
4226         if (success)
4227             result.SetStatus(eReturnStatusSuccessFinishResult);
4228         else
4229             result.SetStatus(eReturnStatusFailed);
4230 
4231         return true;
4232     }
4233 };
4234 
4235 class CommandObjectRenderScriptRuntimeAllocationRefresh : public CommandObjectParsed
4236 {
4237 public:
4238     CommandObjectRenderScriptRuntimeAllocationRefresh(CommandInterpreter &interpreter)
4239         : CommandObjectParsed(interpreter, "renderscript allocation refresh",
4240                               "Recomputes the details of all allocations.", "renderscript allocation refresh",
4241                               eCommandRequiresProcess | eCommandProcessMustBeLaunched)
4242     {
4243     }
4244 
4245     ~CommandObjectRenderScriptRuntimeAllocationRefresh() override = default;
4246 
4247     bool
4248     DoExecute(Args &command, CommandReturnObject &result) override
4249     {
4250         RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4251             m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
4252 
4253         bool success = runtime->RecomputeAllAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr());
4254 
4255         if (success)
4256         {
4257             result.SetStatus(eReturnStatusSuccessFinishResult);
4258             return true;
4259         }
4260         else
4261         {
4262             result.SetStatus(eReturnStatusFailed);
4263             return false;
4264         }
4265     }
4266 };
4267 
4268 class CommandObjectRenderScriptRuntimeAllocation : public CommandObjectMultiword
4269 {
4270 public:
4271     CommandObjectRenderScriptRuntimeAllocation(CommandInterpreter &interpreter)
4272         : CommandObjectMultiword(interpreter, "renderscript allocation",
4273                                  "Commands that deal with renderscript allocations.", nullptr)
4274     {
4275         LoadSubCommand("list", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationList(interpreter)));
4276         LoadSubCommand("dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationDump(interpreter)));
4277         LoadSubCommand("save", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationSave(interpreter)));
4278         LoadSubCommand("load", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationLoad(interpreter)));
4279         LoadSubCommand("refresh", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationRefresh(interpreter)));
4280     }
4281 
4282     ~CommandObjectRenderScriptRuntimeAllocation() override = default;
4283 };
4284 
4285 class CommandObjectRenderScriptRuntimeStatus : public CommandObjectParsed
4286 {
4287 public:
4288     CommandObjectRenderScriptRuntimeStatus(CommandInterpreter &interpreter)
4289         : CommandObjectParsed(interpreter, "renderscript status", "Displays current renderscript runtime status.",
4290                               "renderscript status", eCommandRequiresProcess | eCommandProcessMustBeLaunched)
4291     {
4292     }
4293 
4294     ~CommandObjectRenderScriptRuntimeStatus() override = default;
4295 
4296     bool
4297     DoExecute(Args &command, CommandReturnObject &result) override
4298     {
4299         RenderScriptRuntime *runtime =
4300             (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
4301         runtime->Status(result.GetOutputStream());
4302         result.SetStatus(eReturnStatusSuccessFinishResult);
4303         return true;
4304     }
4305 };
4306 
4307 class CommandObjectRenderScriptRuntime : public CommandObjectMultiword
4308 {
4309 public:
4310     CommandObjectRenderScriptRuntime(CommandInterpreter &interpreter)
4311         : CommandObjectMultiword(interpreter, "renderscript", "A set of commands for operating on renderscript.",
4312                                  "renderscript <subcommand> [<subcommand-options>]")
4313     {
4314         LoadSubCommand("module", CommandObjectSP(new CommandObjectRenderScriptRuntimeModule(interpreter)));
4315         LoadSubCommand("status", CommandObjectSP(new CommandObjectRenderScriptRuntimeStatus(interpreter)));
4316         LoadSubCommand("kernel", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernel(interpreter)));
4317         LoadSubCommand("context", CommandObjectSP(new CommandObjectRenderScriptRuntimeContext(interpreter)));
4318         LoadSubCommand("allocation", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocation(interpreter)));
4319     }
4320 
4321     ~CommandObjectRenderScriptRuntime() override = default;
4322 };
4323 
4324 void
4325 RenderScriptRuntime::Initiate()
4326 {
4327     assert(!m_initiated);
4328 }
4329 
4330 RenderScriptRuntime::RenderScriptRuntime(Process *process)
4331     : lldb_private::CPPLanguageRuntime(process),
4332       m_initiated(false),
4333       m_debuggerPresentFlagged(false),
4334       m_breakAllKernels(false)
4335 {
4336     ModulesDidLoad(process->GetTarget().GetImages());
4337 }
4338 
4339 lldb::CommandObjectSP
4340 RenderScriptRuntime::GetCommandObject(lldb_private::CommandInterpreter &interpreter)
4341 {
4342     return CommandObjectSP(new CommandObjectRenderScriptRuntime(interpreter));
4343 }
4344 
4345 RenderScriptRuntime::~RenderScriptRuntime() = default;
4346