1 //===-- RenderScriptRuntime.cpp ---------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "RenderScriptRuntime.h" 10 #include "RenderScriptScriptGroup.h" 11 12 #include "lldb/Breakpoint/StoppointCallbackContext.h" 13 #include "lldb/Core/Debugger.h" 14 #include "lldb/Core/DumpDataExtractor.h" 15 #include "lldb/Core/PluginManager.h" 16 #include "lldb/Core/ValueObjectVariable.h" 17 #include "lldb/DataFormatters/DumpValueObjectOptions.h" 18 #include "lldb/Expression/UserExpression.h" 19 #include "lldb/Host/OptionParser.h" 20 #include "lldb/Host/StringConvert.h" 21 #include "lldb/Interpreter/CommandInterpreter.h" 22 #include "lldb/Interpreter/CommandObjectMultiword.h" 23 #include "lldb/Interpreter/CommandReturnObject.h" 24 #include "lldb/Interpreter/Options.h" 25 #include "lldb/Symbol/Function.h" 26 #include "lldb/Symbol/Symbol.h" 27 #include "lldb/Symbol/Type.h" 28 #include "lldb/Symbol/VariableList.h" 29 #include "lldb/Target/Process.h" 30 #include "lldb/Target/RegisterContext.h" 31 #include "lldb/Target/SectionLoadList.h" 32 #include "lldb/Target/Target.h" 33 #include "lldb/Target/Thread.h" 34 #include "lldb/Utility/Args.h" 35 #include "lldb/Utility/ConstString.h" 36 #include "lldb/Utility/Log.h" 37 #include "lldb/Utility/RegisterValue.h" 38 #include "lldb/Utility/RegularExpression.h" 39 #include "lldb/Utility/Status.h" 40 41 #include "llvm/ADT/StringSwitch.h" 42 43 #include <memory> 44 45 using namespace lldb; 46 using namespace lldb_private; 47 using namespace lldb_renderscript; 48 49 #define FMT_COORD "(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ")" 50 51 char RenderScriptRuntime::ID = 0; 52 53 namespace { 54 55 // The empirical_type adds a basic level of validation to arbitrary data 56 // allowing us to track if data has been discovered and stored or not. An 57 // empirical_type will be marked as valid only if it has been explicitly 58 // assigned to. 59 template <typename type_t> class empirical_type { 60 public: 61 // Ctor. Contents is invalid when constructed. 62 empirical_type() : valid(false) {} 63 64 // Return true and copy contents to out if valid, else return false. 65 bool get(type_t &out) const { 66 if (valid) 67 out = data; 68 return valid; 69 } 70 71 // Return a pointer to the contents or nullptr if it was not valid. 72 const type_t *get() const { return valid ? &data : nullptr; } 73 74 // Assign data explicitly. 75 void set(const type_t in) { 76 data = in; 77 valid = true; 78 } 79 80 // Mark contents as invalid. 81 void invalidate() { valid = false; } 82 83 // Returns true if this type contains valid data. 84 bool isValid() const { return valid; } 85 86 // Assignment operator. 87 empirical_type<type_t> &operator=(const type_t in) { 88 set(in); 89 return *this; 90 } 91 92 // Dereference operator returns contents. 93 // Warning: Will assert if not valid so use only when you know data is valid. 94 const type_t &operator*() const { 95 assert(valid); 96 return data; 97 } 98 99 protected: 100 bool valid; 101 type_t data; 102 }; 103 104 // ArgItem is used by the GetArgs() function when reading function arguments 105 // from the target. 106 struct ArgItem { 107 enum { ePointer, eInt32, eInt64, eLong, eBool } type; 108 109 uint64_t value; 110 111 explicit operator uint64_t() const { return value; } 112 }; 113 114 // Context structure to be passed into GetArgsXXX(), argument reading functions 115 // below. 116 struct GetArgsCtx { 117 RegisterContext *reg_ctx; 118 Process *process; 119 }; 120 121 bool GetArgsX86(const GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 122 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 123 124 Status err; 125 126 // get the current stack pointer 127 uint64_t sp = ctx.reg_ctx->GetSP(); 128 129 for (size_t i = 0; i < num_args; ++i) { 130 ArgItem &arg = arg_list[i]; 131 // advance up the stack by one argument 132 sp += sizeof(uint32_t); 133 // get the argument type size 134 size_t arg_size = sizeof(uint32_t); 135 // read the argument from memory 136 arg.value = 0; 137 Status err; 138 size_t read = 139 ctx.process->ReadMemory(sp, &arg.value, sizeof(uint32_t), err); 140 if (read != arg_size || !err.Success()) { 141 LLDB_LOGF(log, "%s - error reading argument: %" PRIu64 " '%s'", 142 __FUNCTION__, uint64_t(i), err.AsCString()); 143 return false; 144 } 145 } 146 return true; 147 } 148 149 bool GetArgsX86_64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 150 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 151 152 // number of arguments passed in registers 153 static const uint32_t args_in_reg = 6; 154 // register passing order 155 static const std::array<const char *, args_in_reg> reg_names{ 156 {"rdi", "rsi", "rdx", "rcx", "r8", "r9"}}; 157 // argument type to size mapping 158 static const std::array<size_t, 5> arg_size{{ 159 8, // ePointer, 160 4, // eInt32, 161 8, // eInt64, 162 8, // eLong, 163 4, // eBool, 164 }}; 165 166 Status err; 167 168 // get the current stack pointer 169 uint64_t sp = ctx.reg_ctx->GetSP(); 170 // step over the return address 171 sp += sizeof(uint64_t); 172 173 // check the stack alignment was correct (16 byte aligned) 174 if ((sp & 0xf) != 0x0) { 175 LLDB_LOGF(log, "%s - stack misaligned", __FUNCTION__); 176 return false; 177 } 178 179 // find the start of arguments on the stack 180 uint64_t sp_offset = 0; 181 for (uint32_t i = args_in_reg; i < num_args; ++i) { 182 sp_offset += arg_size[arg_list[i].type]; 183 } 184 // round up to multiple of 16 185 sp_offset = (sp_offset + 0xf) & 0xf; 186 sp += sp_offset; 187 188 for (size_t i = 0; i < num_args; ++i) { 189 bool success = false; 190 ArgItem &arg = arg_list[i]; 191 // arguments passed in registers 192 if (i < args_in_reg) { 193 const RegisterInfo *reg = 194 ctx.reg_ctx->GetRegisterInfoByName(reg_names[i]); 195 RegisterValue reg_val; 196 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 197 arg.value = reg_val.GetAsUInt64(0, &success); 198 } 199 // arguments passed on the stack 200 else { 201 // get the argument type size 202 const size_t size = arg_size[arg_list[i].type]; 203 // read the argument from memory 204 arg.value = 0; 205 // note: due to little endian layout reading 4 or 8 bytes will give the 206 // correct value. 207 size_t read = ctx.process->ReadMemory(sp, &arg.value, size, err); 208 success = (err.Success() && read == size); 209 // advance past this argument 210 sp -= size; 211 } 212 // fail if we couldn't read this argument 213 if (!success) { 214 LLDB_LOGF(log, "%s - error reading argument: %" PRIu64 ", reason: %s", 215 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 216 return false; 217 } 218 } 219 return true; 220 } 221 222 bool GetArgsArm(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 223 // number of arguments passed in registers 224 static const uint32_t args_in_reg = 4; 225 226 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 227 228 Status err; 229 230 // get the current stack pointer 231 uint64_t sp = ctx.reg_ctx->GetSP(); 232 233 for (size_t i = 0; i < num_args; ++i) { 234 bool success = false; 235 ArgItem &arg = arg_list[i]; 236 // arguments passed in registers 237 if (i < args_in_reg) { 238 const RegisterInfo *reg = ctx.reg_ctx->GetRegisterInfoAtIndex(i); 239 RegisterValue reg_val; 240 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 241 arg.value = reg_val.GetAsUInt32(0, &success); 242 } 243 // arguments passed on the stack 244 else { 245 // get the argument type size 246 const size_t arg_size = sizeof(uint32_t); 247 // clear all 64bits 248 arg.value = 0; 249 // read this argument from memory 250 size_t bytes_read = 251 ctx.process->ReadMemory(sp, &arg.value, arg_size, err); 252 success = (err.Success() && bytes_read == arg_size); 253 // advance the stack pointer 254 sp += sizeof(uint32_t); 255 } 256 // fail if we couldn't read this argument 257 if (!success) { 258 LLDB_LOGF(log, "%s - error reading argument: %" PRIu64 ", reason: %s", 259 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 260 return false; 261 } 262 } 263 return true; 264 } 265 266 bool GetArgsAarch64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 267 // number of arguments passed in registers 268 static const uint32_t args_in_reg = 8; 269 270 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 271 272 for (size_t i = 0; i < num_args; ++i) { 273 bool success = false; 274 ArgItem &arg = arg_list[i]; 275 // arguments passed in registers 276 if (i < args_in_reg) { 277 const RegisterInfo *reg = ctx.reg_ctx->GetRegisterInfoAtIndex(i); 278 RegisterValue reg_val; 279 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 280 arg.value = reg_val.GetAsUInt64(0, &success); 281 } 282 // arguments passed on the stack 283 else { 284 LLDB_LOGF(log, "%s - reading arguments spilled to stack not implemented", 285 __FUNCTION__); 286 } 287 // fail if we couldn't read this argument 288 if (!success) { 289 LLDB_LOGF(log, "%s - error reading argument: %" PRIu64, __FUNCTION__, 290 uint64_t(i)); 291 return false; 292 } 293 } 294 return true; 295 } 296 297 bool GetArgsMipsel(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 298 // number of arguments passed in registers 299 static const uint32_t args_in_reg = 4; 300 // register file offset to first argument 301 static const uint32_t reg_offset = 4; 302 303 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 304 305 Status err; 306 307 // find offset to arguments on the stack (+16 to skip over a0-a3 shadow 308 // space) 309 uint64_t sp = ctx.reg_ctx->GetSP() + 16; 310 311 for (size_t i = 0; i < num_args; ++i) { 312 bool success = false; 313 ArgItem &arg = arg_list[i]; 314 // arguments passed in registers 315 if (i < args_in_reg) { 316 const RegisterInfo *reg = 317 ctx.reg_ctx->GetRegisterInfoAtIndex(i + reg_offset); 318 RegisterValue reg_val; 319 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 320 arg.value = reg_val.GetAsUInt64(0, &success); 321 } 322 // arguments passed on the stack 323 else { 324 const size_t arg_size = sizeof(uint32_t); 325 arg.value = 0; 326 size_t bytes_read = 327 ctx.process->ReadMemory(sp, &arg.value, arg_size, err); 328 success = (err.Success() && bytes_read == arg_size); 329 // advance the stack pointer 330 sp += arg_size; 331 } 332 // fail if we couldn't read this argument 333 if (!success) { 334 LLDB_LOGF(log, "%s - error reading argument: %" PRIu64 ", reason: %s", 335 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 336 return false; 337 } 338 } 339 return true; 340 } 341 342 bool GetArgsMips64el(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 343 // number of arguments passed in registers 344 static const uint32_t args_in_reg = 8; 345 // register file offset to first argument 346 static const uint32_t reg_offset = 4; 347 348 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 349 350 Status err; 351 352 // get the current stack pointer 353 uint64_t sp = ctx.reg_ctx->GetSP(); 354 355 for (size_t i = 0; i < num_args; ++i) { 356 bool success = false; 357 ArgItem &arg = arg_list[i]; 358 // arguments passed in registers 359 if (i < args_in_reg) { 360 const RegisterInfo *reg = 361 ctx.reg_ctx->GetRegisterInfoAtIndex(i + reg_offset); 362 RegisterValue reg_val; 363 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 364 arg.value = reg_val.GetAsUInt64(0, &success); 365 } 366 // arguments passed on the stack 367 else { 368 // get the argument type size 369 const size_t arg_size = sizeof(uint64_t); 370 // clear all 64bits 371 arg.value = 0; 372 // read this argument from memory 373 size_t bytes_read = 374 ctx.process->ReadMemory(sp, &arg.value, arg_size, err); 375 success = (err.Success() && bytes_read == arg_size); 376 // advance the stack pointer 377 sp += arg_size; 378 } 379 // fail if we couldn't read this argument 380 if (!success) { 381 LLDB_LOGF(log, "%s - error reading argument: %" PRIu64 ", reason: %s", 382 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 383 return false; 384 } 385 } 386 return true; 387 } 388 389 bool GetArgs(ExecutionContext &exe_ctx, ArgItem *arg_list, size_t num_args) { 390 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 391 392 // verify that we have a target 393 if (!exe_ctx.GetTargetPtr()) { 394 LLDB_LOGF(log, "%s - invalid target", __FUNCTION__); 395 return false; 396 } 397 398 GetArgsCtx ctx = {exe_ctx.GetRegisterContext(), exe_ctx.GetProcessPtr()}; 399 assert(ctx.reg_ctx && ctx.process); 400 401 // dispatch based on architecture 402 switch (exe_ctx.GetTargetPtr()->GetArchitecture().GetMachine()) { 403 case llvm::Triple::ArchType::x86: 404 return GetArgsX86(ctx, arg_list, num_args); 405 406 case llvm::Triple::ArchType::x86_64: 407 return GetArgsX86_64(ctx, arg_list, num_args); 408 409 case llvm::Triple::ArchType::arm: 410 return GetArgsArm(ctx, arg_list, num_args); 411 412 case llvm::Triple::ArchType::aarch64: 413 return GetArgsAarch64(ctx, arg_list, num_args); 414 415 case llvm::Triple::ArchType::mipsel: 416 return GetArgsMipsel(ctx, arg_list, num_args); 417 418 case llvm::Triple::ArchType::mips64el: 419 return GetArgsMips64el(ctx, arg_list, num_args); 420 421 default: 422 // unsupported architecture 423 if (log) { 424 LLDB_LOGF(log, "%s - architecture not supported: '%s'", __FUNCTION__, 425 exe_ctx.GetTargetRef().GetArchitecture().GetArchitectureName()); 426 } 427 return false; 428 } 429 } 430 431 bool IsRenderScriptScriptModule(ModuleSP module) { 432 if (!module) 433 return false; 434 return module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), 435 eSymbolTypeData) != nullptr; 436 } 437 438 bool ParseCoordinate(llvm::StringRef coord_s, RSCoordinate &coord) { 439 // takes an argument of the form 'num[,num][,num]'. Where 'coord_s' is a 440 // comma separated 1,2 or 3-dimensional coordinate with the whitespace 441 // trimmed. Missing coordinates are defaulted to zero. If parsing of any 442 // elements fails the contents of &coord are undefined and `false` is 443 // returned, `true` otherwise 444 445 llvm::SmallVector<llvm::StringRef, 4> matches; 446 447 if (!RegularExpression("^([0-9]+),([0-9]+),([0-9]+)$") 448 .Execute(coord_s, &matches) && 449 !RegularExpression("^([0-9]+),([0-9]+)$").Execute(coord_s, &matches) && 450 !RegularExpression("^([0-9]+)$").Execute(coord_s, &matches)) 451 return false; 452 453 auto get_index = [&](size_t idx, uint32_t &i) -> bool { 454 std::string group; 455 errno = 0; 456 if (idx + 1 < matches.size()) { 457 return !llvm::StringRef(matches[idx + 1]).getAsInteger<uint32_t>(10, i); 458 } 459 return true; 460 }; 461 462 return get_index(0, coord.x) && get_index(1, coord.y) && 463 get_index(2, coord.z); 464 } 465 466 bool SkipPrologue(lldb::ModuleSP &module, Address &addr) { 467 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 468 SymbolContext sc; 469 uint32_t resolved_flags = 470 module->ResolveSymbolContextForAddress(addr, eSymbolContextFunction, sc); 471 if (resolved_flags & eSymbolContextFunction) { 472 if (sc.function) { 473 const uint32_t offset = sc.function->GetPrologueByteSize(); 474 ConstString name = sc.GetFunctionName(); 475 if (offset) 476 addr.Slide(offset); 477 LLDB_LOGF(log, "%s: Prologue offset for %s is %" PRIu32, __FUNCTION__, 478 name.AsCString(), offset); 479 } 480 return true; 481 } else 482 return false; 483 } 484 } // anonymous namespace 485 486 // The ScriptDetails class collects data associated with a single script 487 // instance. 488 struct RenderScriptRuntime::ScriptDetails { 489 ~ScriptDetails() = default; 490 491 enum ScriptType { eScript, eScriptC }; 492 493 // The derived type of the script. 494 empirical_type<ScriptType> type; 495 // The name of the original source file. 496 empirical_type<std::string> res_name; 497 // Path to script .so file on the device. 498 empirical_type<std::string> shared_lib; 499 // Directory where kernel objects are cached on device. 500 empirical_type<std::string> cache_dir; 501 // Pointer to the context which owns this script. 502 empirical_type<lldb::addr_t> context; 503 // Pointer to the script object itself. 504 empirical_type<lldb::addr_t> script; 505 }; 506 507 // This Element class represents the Element object in RS, defining the type 508 // associated with an Allocation. 509 struct RenderScriptRuntime::Element { 510 // Taken from rsDefines.h 511 enum DataKind { 512 RS_KIND_USER, 513 RS_KIND_PIXEL_L = 7, 514 RS_KIND_PIXEL_A, 515 RS_KIND_PIXEL_LA, 516 RS_KIND_PIXEL_RGB, 517 RS_KIND_PIXEL_RGBA, 518 RS_KIND_PIXEL_DEPTH, 519 RS_KIND_PIXEL_YUV, 520 RS_KIND_INVALID = 100 521 }; 522 523 // Taken from rsDefines.h 524 enum DataType { 525 RS_TYPE_NONE = 0, 526 RS_TYPE_FLOAT_16, 527 RS_TYPE_FLOAT_32, 528 RS_TYPE_FLOAT_64, 529 RS_TYPE_SIGNED_8, 530 RS_TYPE_SIGNED_16, 531 RS_TYPE_SIGNED_32, 532 RS_TYPE_SIGNED_64, 533 RS_TYPE_UNSIGNED_8, 534 RS_TYPE_UNSIGNED_16, 535 RS_TYPE_UNSIGNED_32, 536 RS_TYPE_UNSIGNED_64, 537 RS_TYPE_BOOLEAN, 538 539 RS_TYPE_UNSIGNED_5_6_5, 540 RS_TYPE_UNSIGNED_5_5_5_1, 541 RS_TYPE_UNSIGNED_4_4_4_4, 542 543 RS_TYPE_MATRIX_4X4, 544 RS_TYPE_MATRIX_3X3, 545 RS_TYPE_MATRIX_2X2, 546 547 RS_TYPE_ELEMENT = 1000, 548 RS_TYPE_TYPE, 549 RS_TYPE_ALLOCATION, 550 RS_TYPE_SAMPLER, 551 RS_TYPE_SCRIPT, 552 RS_TYPE_MESH, 553 RS_TYPE_PROGRAM_FRAGMENT, 554 RS_TYPE_PROGRAM_VERTEX, 555 RS_TYPE_PROGRAM_RASTER, 556 RS_TYPE_PROGRAM_STORE, 557 RS_TYPE_FONT, 558 559 RS_TYPE_INVALID = 10000 560 }; 561 562 std::vector<Element> children; // Child Element fields for structs 563 empirical_type<lldb::addr_t> 564 element_ptr; // Pointer to the RS Element of the Type 565 empirical_type<DataType> 566 type; // Type of each data pointer stored by the allocation 567 empirical_type<DataKind> 568 type_kind; // Defines pixel type if Allocation is created from an image 569 empirical_type<uint32_t> 570 type_vec_size; // Vector size of each data point, e.g '4' for uchar4 571 empirical_type<uint32_t> field_count; // Number of Subelements 572 empirical_type<uint32_t> datum_size; // Size of a single Element with padding 573 empirical_type<uint32_t> padding; // Number of padding bytes 574 empirical_type<uint32_t> 575 array_size; // Number of items in array, only needed for structs 576 ConstString type_name; // Name of type, only needed for structs 577 578 static ConstString 579 GetFallbackStructName(); // Print this as the type name of a struct Element 580 // If we can't resolve the actual struct name 581 582 bool ShouldRefresh() const { 583 const bool valid_ptr = element_ptr.isValid() && *element_ptr.get() != 0x0; 584 const bool valid_type = 585 type.isValid() && type_vec_size.isValid() && type_kind.isValid(); 586 return !valid_ptr || !valid_type || !datum_size.isValid(); 587 } 588 }; 589 590 // This AllocationDetails class collects data associated with a single 591 // allocation instance. 592 struct RenderScriptRuntime::AllocationDetails { 593 struct Dimension { 594 uint32_t dim_1; 595 uint32_t dim_2; 596 uint32_t dim_3; 597 uint32_t cube_map; 598 599 Dimension() { 600 dim_1 = 0; 601 dim_2 = 0; 602 dim_3 = 0; 603 cube_map = 0; 604 } 605 }; 606 607 // The FileHeader struct specifies the header we use for writing allocations 608 // to a binary file. Our format begins with the ASCII characters "RSAD", 609 // identifying the file as an allocation dump. Member variables dims and 610 // hdr_size are then written consecutively, immediately followed by an 611 // instance of the ElementHeader struct. Because Elements can contain 612 // subelements, there may be more than one instance of the ElementHeader 613 // struct. With this first instance being the root element, and the other 614 // instances being the root's descendants. To identify which instances are an 615 // ElementHeader's children, each struct is immediately followed by a 616 // sequence of consecutive offsets to the start of its child structs. These 617 // offsets are 618 // 4 bytes in size, and the 0 offset signifies no more children. 619 struct FileHeader { 620 uint8_t ident[4]; // ASCII 'RSAD' identifying the file 621 uint32_t dims[3]; // Dimensions 622 uint16_t hdr_size; // Header size in bytes, including all element headers 623 }; 624 625 struct ElementHeader { 626 uint16_t type; // DataType enum 627 uint32_t kind; // DataKind enum 628 uint32_t element_size; // Size of a single element, including padding 629 uint16_t vector_size; // Vector width 630 uint32_t array_size; // Number of elements in array 631 }; 632 633 // Monotonically increasing from 1 634 static uint32_t ID; 635 636 // Maps Allocation DataType enum and vector size to printable strings using 637 // mapping from RenderScript numerical types summary documentation 638 static const char *RsDataTypeToString[][4]; 639 640 // Maps Allocation DataKind enum to printable strings 641 static const char *RsDataKindToString[]; 642 643 // Maps allocation types to format sizes for printing. 644 static const uint32_t RSTypeToFormat[][3]; 645 646 // Give each allocation an ID as a way 647 // for commands to reference it. 648 const uint32_t id; 649 650 // Allocation Element type 651 RenderScriptRuntime::Element element; 652 // Dimensions of the Allocation 653 empirical_type<Dimension> dimension; 654 // Pointer to address of the RS Allocation 655 empirical_type<lldb::addr_t> address; 656 // Pointer to the data held by the Allocation 657 empirical_type<lldb::addr_t> data_ptr; 658 // Pointer to the RS Type of the Allocation 659 empirical_type<lldb::addr_t> type_ptr; 660 // Pointer to the RS Context of the Allocation 661 empirical_type<lldb::addr_t> context; 662 // Size of the allocation 663 empirical_type<uint32_t> size; 664 // Stride between rows of the allocation 665 empirical_type<uint32_t> stride; 666 667 // Give each allocation an id, so we can reference it in user commands. 668 AllocationDetails() : id(ID++) {} 669 670 bool ShouldRefresh() const { 671 bool valid_ptrs = data_ptr.isValid() && *data_ptr.get() != 0x0; 672 valid_ptrs = valid_ptrs && type_ptr.isValid() && *type_ptr.get() != 0x0; 673 return !valid_ptrs || !dimension.isValid() || !size.isValid() || 674 element.ShouldRefresh(); 675 } 676 }; 677 678 ConstString RenderScriptRuntime::Element::GetFallbackStructName() { 679 static const ConstString FallbackStructName("struct"); 680 return FallbackStructName; 681 } 682 683 uint32_t RenderScriptRuntime::AllocationDetails::ID = 1; 684 685 const char *RenderScriptRuntime::AllocationDetails::RsDataKindToString[] = { 686 "User", "Undefined", "Undefined", "Undefined", 687 "Undefined", "Undefined", "Undefined", // Enum jumps from 0 to 7 688 "L Pixel", "A Pixel", "LA Pixel", "RGB Pixel", 689 "RGBA Pixel", "Pixel Depth", "YUV Pixel"}; 690 691 const char *RenderScriptRuntime::AllocationDetails::RsDataTypeToString[][4] = { 692 {"None", "None", "None", "None"}, 693 {"half", "half2", "half3", "half4"}, 694 {"float", "float2", "float3", "float4"}, 695 {"double", "double2", "double3", "double4"}, 696 {"char", "char2", "char3", "char4"}, 697 {"short", "short2", "short3", "short4"}, 698 {"int", "int2", "int3", "int4"}, 699 {"long", "long2", "long3", "long4"}, 700 {"uchar", "uchar2", "uchar3", "uchar4"}, 701 {"ushort", "ushort2", "ushort3", "ushort4"}, 702 {"uint", "uint2", "uint3", "uint4"}, 703 {"ulong", "ulong2", "ulong3", "ulong4"}, 704 {"bool", "bool2", "bool3", "bool4"}, 705 {"packed_565", "packed_565", "packed_565", "packed_565"}, 706 {"packed_5551", "packed_5551", "packed_5551", "packed_5551"}, 707 {"packed_4444", "packed_4444", "packed_4444", "packed_4444"}, 708 {"rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4"}, 709 {"rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3"}, 710 {"rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2"}, 711 712 // Handlers 713 {"RS Element", "RS Element", "RS Element", "RS Element"}, 714 {"RS Type", "RS Type", "RS Type", "RS Type"}, 715 {"RS Allocation", "RS Allocation", "RS Allocation", "RS Allocation"}, 716 {"RS Sampler", "RS Sampler", "RS Sampler", "RS Sampler"}, 717 {"RS Script", "RS Script", "RS Script", "RS Script"}, 718 719 // Deprecated 720 {"RS Mesh", "RS Mesh", "RS Mesh", "RS Mesh"}, 721 {"RS Program Fragment", "RS Program Fragment", "RS Program Fragment", 722 "RS Program Fragment"}, 723 {"RS Program Vertex", "RS Program Vertex", "RS Program Vertex", 724 "RS Program Vertex"}, 725 {"RS Program Raster", "RS Program Raster", "RS Program Raster", 726 "RS Program Raster"}, 727 {"RS Program Store", "RS Program Store", "RS Program Store", 728 "RS Program Store"}, 729 {"RS Font", "RS Font", "RS Font", "RS Font"}}; 730 731 // Used as an index into the RSTypeToFormat array elements 732 enum TypeToFormatIndex { eFormatSingle = 0, eFormatVector, eElementSize }; 733 734 // { format enum of single element, format enum of element vector, size of 735 // element} 736 const uint32_t RenderScriptRuntime::AllocationDetails::RSTypeToFormat[][3] = { 737 // RS_TYPE_NONE 738 {eFormatHex, eFormatHex, 1}, 739 // RS_TYPE_FLOAT_16 740 {eFormatFloat, eFormatVectorOfFloat16, 2}, 741 // RS_TYPE_FLOAT_32 742 {eFormatFloat, eFormatVectorOfFloat32, sizeof(float)}, 743 // RS_TYPE_FLOAT_64 744 {eFormatFloat, eFormatVectorOfFloat64, sizeof(double)}, 745 // RS_TYPE_SIGNED_8 746 {eFormatDecimal, eFormatVectorOfSInt8, sizeof(int8_t)}, 747 // RS_TYPE_SIGNED_16 748 {eFormatDecimal, eFormatVectorOfSInt16, sizeof(int16_t)}, 749 // RS_TYPE_SIGNED_32 750 {eFormatDecimal, eFormatVectorOfSInt32, sizeof(int32_t)}, 751 // RS_TYPE_SIGNED_64 752 {eFormatDecimal, eFormatVectorOfSInt64, sizeof(int64_t)}, 753 // RS_TYPE_UNSIGNED_8 754 {eFormatDecimal, eFormatVectorOfUInt8, sizeof(uint8_t)}, 755 // RS_TYPE_UNSIGNED_16 756 {eFormatDecimal, eFormatVectorOfUInt16, sizeof(uint16_t)}, 757 // RS_TYPE_UNSIGNED_32 758 {eFormatDecimal, eFormatVectorOfUInt32, sizeof(uint32_t)}, 759 // RS_TYPE_UNSIGNED_64 760 {eFormatDecimal, eFormatVectorOfUInt64, sizeof(uint64_t)}, 761 // RS_TYPE_BOOL 762 {eFormatBoolean, eFormatBoolean, 1}, 763 // RS_TYPE_UNSIGNED_5_6_5 764 {eFormatHex, eFormatHex, sizeof(uint16_t)}, 765 // RS_TYPE_UNSIGNED_5_5_5_1 766 {eFormatHex, eFormatHex, sizeof(uint16_t)}, 767 // RS_TYPE_UNSIGNED_4_4_4_4 768 {eFormatHex, eFormatHex, sizeof(uint16_t)}, 769 // RS_TYPE_MATRIX_4X4 770 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 16}, 771 // RS_TYPE_MATRIX_3X3 772 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 9}, 773 // RS_TYPE_MATRIX_2X2 774 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 4}}; 775 776 // Static Functions 777 LanguageRuntime * 778 RenderScriptRuntime::CreateInstance(Process *process, 779 lldb::LanguageType language) { 780 781 if (language == eLanguageTypeExtRenderScript) 782 return new RenderScriptRuntime(process); 783 else 784 return nullptr; 785 } 786 787 // Callback with a module to search for matching symbols. We first check that 788 // the module contains RS kernels. Then look for a symbol which matches our 789 // kernel name. The breakpoint address is finally set using the address of this 790 // symbol. 791 Searcher::CallbackReturn 792 RSBreakpointResolver::SearchCallback(SearchFilter &filter, 793 SymbolContext &context, Address *) { 794 ModuleSP module = context.module_sp; 795 796 if (!module || !IsRenderScriptScriptModule(module)) 797 return Searcher::eCallbackReturnContinue; 798 799 // Attempt to set a breakpoint on the kernel name symbol within the module 800 // library. If it's not found, it's likely debug info is unavailable - try to 801 // set a breakpoint on <name>.expand. 802 const Symbol *kernel_sym = 803 module->FindFirstSymbolWithNameAndType(m_kernel_name, eSymbolTypeCode); 804 if (!kernel_sym) { 805 std::string kernel_name_expanded(m_kernel_name.AsCString()); 806 kernel_name_expanded.append(".expand"); 807 kernel_sym = module->FindFirstSymbolWithNameAndType( 808 ConstString(kernel_name_expanded.c_str()), eSymbolTypeCode); 809 } 810 811 if (kernel_sym) { 812 Address bp_addr = kernel_sym->GetAddress(); 813 if (filter.AddressPasses(bp_addr)) 814 m_breakpoint->AddLocation(bp_addr); 815 } 816 817 return Searcher::eCallbackReturnContinue; 818 } 819 820 Searcher::CallbackReturn 821 RSReduceBreakpointResolver::SearchCallback(lldb_private::SearchFilter &filter, 822 lldb_private::SymbolContext &context, 823 Address *) { 824 // We need to have access to the list of reductions currently parsed, as 825 // reduce names don't actually exist as symbols in a module. They are only 826 // identifiable by parsing the .rs.info packet, or finding the expand symbol. 827 // We therefore need access to the list of parsed rs modules to properly 828 // resolve reduction names. 829 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 830 ModuleSP module = context.module_sp; 831 832 if (!module || !IsRenderScriptScriptModule(module)) 833 return Searcher::eCallbackReturnContinue; 834 835 if (!m_rsmodules) 836 return Searcher::eCallbackReturnContinue; 837 838 for (const auto &module_desc : *m_rsmodules) { 839 if (module_desc->m_module != module) 840 continue; 841 842 for (const auto &reduction : module_desc->m_reductions) { 843 if (reduction.m_reduce_name != m_reduce_name) 844 continue; 845 846 std::array<std::pair<ConstString, int>, 5> funcs{ 847 {{reduction.m_init_name, eKernelTypeInit}, 848 {reduction.m_accum_name, eKernelTypeAccum}, 849 {reduction.m_comb_name, eKernelTypeComb}, 850 {reduction.m_outc_name, eKernelTypeOutC}, 851 {reduction.m_halter_name, eKernelTypeHalter}}}; 852 853 for (const auto &kernel : funcs) { 854 // Skip constituent functions that don't match our spec 855 if (!(m_kernel_types & kernel.second)) 856 continue; 857 858 const auto kernel_name = kernel.first; 859 const auto symbol = module->FindFirstSymbolWithNameAndType( 860 kernel_name, eSymbolTypeCode); 861 if (!symbol) 862 continue; 863 864 auto address = symbol->GetAddress(); 865 if (filter.AddressPasses(address)) { 866 bool new_bp; 867 if (!SkipPrologue(module, address)) { 868 LLDB_LOGF(log, "%s: Error trying to skip prologue", __FUNCTION__); 869 } 870 m_breakpoint->AddLocation(address, &new_bp); 871 LLDB_LOGF(log, "%s: %s reduction breakpoint on %s in %s", 872 __FUNCTION__, new_bp ? "new" : "existing", 873 kernel_name.GetCString(), 874 address.GetModule()->GetFileSpec().GetCString()); 875 } 876 } 877 } 878 } 879 return eCallbackReturnContinue; 880 } 881 882 Searcher::CallbackReturn RSScriptGroupBreakpointResolver::SearchCallback( 883 SearchFilter &filter, SymbolContext &context, Address *addr) { 884 885 if (!m_breakpoint) 886 return eCallbackReturnContinue; 887 888 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 889 ModuleSP &module = context.module_sp; 890 891 if (!module || !IsRenderScriptScriptModule(module)) 892 return Searcher::eCallbackReturnContinue; 893 894 std::vector<std::string> names; 895 m_breakpoint->GetNames(names); 896 if (names.empty()) 897 return eCallbackReturnContinue; 898 899 for (auto &name : names) { 900 const RSScriptGroupDescriptorSP sg = FindScriptGroup(ConstString(name)); 901 if (!sg) { 902 LLDB_LOGF(log, "%s: could not find script group for %s", __FUNCTION__, 903 name.c_str()); 904 continue; 905 } 906 907 LLDB_LOGF(log, "%s: Found ScriptGroup for %s", __FUNCTION__, name.c_str()); 908 909 for (const RSScriptGroupDescriptor::Kernel &k : sg->m_kernels) { 910 if (log) { 911 LLDB_LOGF(log, "%s: Adding breakpoint for %s", __FUNCTION__, 912 k.m_name.AsCString()); 913 LLDB_LOGF(log, "%s: Kernel address 0x%" PRIx64, __FUNCTION__, k.m_addr); 914 } 915 916 const lldb_private::Symbol *sym = 917 module->FindFirstSymbolWithNameAndType(k.m_name, eSymbolTypeCode); 918 if (!sym) { 919 LLDB_LOGF(log, "%s: Unable to find symbol for %s", __FUNCTION__, 920 k.m_name.AsCString()); 921 continue; 922 } 923 924 if (log) { 925 LLDB_LOGF(log, "%s: Found symbol name is %s", __FUNCTION__, 926 sym->GetName().AsCString()); 927 } 928 929 auto address = sym->GetAddress(); 930 if (!SkipPrologue(module, address)) { 931 LLDB_LOGF(log, "%s: Error trying to skip prologue", __FUNCTION__); 932 } 933 934 bool new_bp; 935 m_breakpoint->AddLocation(address, &new_bp); 936 937 LLDB_LOGF(log, "%s: Placed %sbreakpoint on %s", __FUNCTION__, 938 new_bp ? "new " : "", k.m_name.AsCString()); 939 940 // exit after placing the first breakpoint if we do not intend to stop on 941 // all kernels making up this script group 942 if (!m_stop_on_all) 943 break; 944 } 945 } 946 947 return eCallbackReturnContinue; 948 } 949 950 void RenderScriptRuntime::Initialize() { 951 PluginManager::RegisterPlugin(GetPluginNameStatic(), 952 "RenderScript language support", CreateInstance, 953 GetCommandObject); 954 } 955 956 void RenderScriptRuntime::Terminate() { 957 PluginManager::UnregisterPlugin(CreateInstance); 958 } 959 960 lldb_private::ConstString RenderScriptRuntime::GetPluginNameStatic() { 961 static ConstString plugin_name("renderscript"); 962 return plugin_name; 963 } 964 965 RenderScriptRuntime::ModuleKind 966 RenderScriptRuntime::GetModuleKind(const lldb::ModuleSP &module_sp) { 967 if (module_sp) { 968 if (IsRenderScriptScriptModule(module_sp)) 969 return eModuleKindKernelObj; 970 971 // Is this the main RS runtime library 972 const ConstString rs_lib("libRS.so"); 973 if (module_sp->GetFileSpec().GetFilename() == rs_lib) { 974 return eModuleKindLibRS; 975 } 976 977 const ConstString rs_driverlib("libRSDriver.so"); 978 if (module_sp->GetFileSpec().GetFilename() == rs_driverlib) { 979 return eModuleKindDriver; 980 } 981 982 const ConstString rs_cpureflib("libRSCpuRef.so"); 983 if (module_sp->GetFileSpec().GetFilename() == rs_cpureflib) { 984 return eModuleKindImpl; 985 } 986 } 987 return eModuleKindIgnored; 988 } 989 990 bool RenderScriptRuntime::IsRenderScriptModule( 991 const lldb::ModuleSP &module_sp) { 992 return GetModuleKind(module_sp) != eModuleKindIgnored; 993 } 994 995 void RenderScriptRuntime::ModulesDidLoad(const ModuleList &module_list) { 996 std::lock_guard<std::recursive_mutex> guard(module_list.GetMutex()); 997 998 size_t num_modules = module_list.GetSize(); 999 for (size_t i = 0; i < num_modules; i++) { 1000 auto mod = module_list.GetModuleAtIndex(i); 1001 if (IsRenderScriptModule(mod)) { 1002 LoadModule(mod); 1003 } 1004 } 1005 } 1006 1007 // PluginInterface protocol 1008 lldb_private::ConstString RenderScriptRuntime::GetPluginName() { 1009 return GetPluginNameStatic(); 1010 } 1011 1012 uint32_t RenderScriptRuntime::GetPluginVersion() { return 1; } 1013 1014 bool RenderScriptRuntime::GetDynamicTypeAndAddress( 1015 ValueObject &in_value, lldb::DynamicValueType use_dynamic, 1016 TypeAndOrName &class_type_or_name, Address &address, 1017 Value::ValueType &value_type) { 1018 return false; 1019 } 1020 1021 TypeAndOrName 1022 RenderScriptRuntime::FixUpDynamicType(const TypeAndOrName &type_and_or_name, 1023 ValueObject &static_value) { 1024 return type_and_or_name; 1025 } 1026 1027 bool RenderScriptRuntime::CouldHaveDynamicValue(ValueObject &in_value) { 1028 return false; 1029 } 1030 1031 lldb::BreakpointResolverSP 1032 RenderScriptRuntime::CreateExceptionResolver(Breakpoint *bp, bool catch_bp, 1033 bool throw_bp) { 1034 BreakpointResolverSP resolver_sp; 1035 return resolver_sp; 1036 } 1037 1038 const RenderScriptRuntime::HookDefn RenderScriptRuntime::s_runtimeHookDefns[] = 1039 { 1040 // rsdScript 1041 {"rsdScriptInit", "_Z13rsdScriptInitPKN7android12renderscript7ContextEP" 1042 "NS0_7ScriptCEPKcS7_PKhjj", 1043 "_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_" 1044 "7ScriptCEPKcS7_PKhmj", 1045 0, RenderScriptRuntime::eModuleKindDriver, 1046 &lldb_private::RenderScriptRuntime::CaptureScriptInit}, 1047 {"rsdScriptInvokeForEachMulti", 1048 "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0" 1049 "_6ScriptEjPPKNS0_10AllocationEjPS6_PKvjPK12RsScriptCall", 1050 "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0" 1051 "_6ScriptEjPPKNS0_10AllocationEmPS6_PKvmPK12RsScriptCall", 1052 0, RenderScriptRuntime::eModuleKindDriver, 1053 &lldb_private::RenderScriptRuntime::CaptureScriptInvokeForEachMulti}, 1054 {"rsdScriptSetGlobalVar", "_Z21rsdScriptSetGlobalVarPKN7android12render" 1055 "script7ContextEPKNS0_6ScriptEjPvj", 1056 "_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_" 1057 "6ScriptEjPvm", 1058 0, RenderScriptRuntime::eModuleKindDriver, 1059 &lldb_private::RenderScriptRuntime::CaptureSetGlobalVar}, 1060 1061 // rsdAllocation 1062 {"rsdAllocationInit", "_Z17rsdAllocationInitPKN7android12renderscript7C" 1063 "ontextEPNS0_10AllocationEb", 1064 "_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_" 1065 "10AllocationEb", 1066 0, RenderScriptRuntime::eModuleKindDriver, 1067 &lldb_private::RenderScriptRuntime::CaptureAllocationInit}, 1068 {"rsdAllocationRead2D", 1069 "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_" 1070 "10AllocationEjjj23RsAllocationCubemapFacejjPvjj", 1071 "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_" 1072 "10AllocationEjjj23RsAllocationCubemapFacejjPvmm", 1073 0, RenderScriptRuntime::eModuleKindDriver, nullptr}, 1074 {"rsdAllocationDestroy", "_Z20rsdAllocationDestroyPKN7android12rendersc" 1075 "ript7ContextEPNS0_10AllocationE", 1076 "_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_" 1077 "10AllocationE", 1078 0, RenderScriptRuntime::eModuleKindDriver, 1079 &lldb_private::RenderScriptRuntime::CaptureAllocationDestroy}, 1080 1081 // renderscript script groups 1082 {"rsdDebugHintScriptGroup2", "_ZN7android12renderscript21debugHintScrip" 1083 "tGroup2EPKcjPKPFvPK24RsExpandKernelDriver" 1084 "InfojjjEj", 1085 "_ZN7android12renderscript21debugHintScriptGroup2EPKcjPKPFvPK24RsExpan" 1086 "dKernelDriverInfojjjEj", 1087 0, RenderScriptRuntime::eModuleKindImpl, 1088 &lldb_private::RenderScriptRuntime::CaptureDebugHintScriptGroup2}}; 1089 1090 const size_t RenderScriptRuntime::s_runtimeHookCount = 1091 sizeof(s_runtimeHookDefns) / sizeof(s_runtimeHookDefns[0]); 1092 1093 bool RenderScriptRuntime::HookCallback(void *baton, 1094 StoppointCallbackContext *ctx, 1095 lldb::user_id_t break_id, 1096 lldb::user_id_t break_loc_id) { 1097 RuntimeHook *hook = (RuntimeHook *)baton; 1098 ExecutionContext exe_ctx(ctx->exe_ctx_ref); 1099 1100 RenderScriptRuntime *lang_rt = llvm::cast<RenderScriptRuntime>( 1101 exe_ctx.GetProcessPtr()->GetLanguageRuntime( 1102 eLanguageTypeExtRenderScript)); 1103 1104 lang_rt->HookCallback(hook, exe_ctx); 1105 1106 return false; 1107 } 1108 1109 void RenderScriptRuntime::HookCallback(RuntimeHook *hook, 1110 ExecutionContext &exe_ctx) { 1111 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1112 1113 LLDB_LOGF(log, "%s - '%s'", __FUNCTION__, hook->defn->name); 1114 1115 if (hook->defn->grabber) { 1116 (this->*(hook->defn->grabber))(hook, exe_ctx); 1117 } 1118 } 1119 1120 void RenderScriptRuntime::CaptureDebugHintScriptGroup2( 1121 RuntimeHook *hook_info, ExecutionContext &context) { 1122 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1123 1124 enum { 1125 eGroupName = 0, 1126 eGroupNameSize, 1127 eKernel, 1128 eKernelCount, 1129 }; 1130 1131 std::array<ArgItem, 4> args{{ 1132 {ArgItem::ePointer, 0}, // const char *groupName 1133 {ArgItem::eInt32, 0}, // const uint32_t groupNameSize 1134 {ArgItem::ePointer, 0}, // const ExpandFuncTy *kernel 1135 {ArgItem::eInt32, 0}, // const uint32_t kernelCount 1136 }}; 1137 1138 if (!GetArgs(context, args.data(), args.size())) { 1139 LLDB_LOGF(log, "%s - Error while reading the function parameters", 1140 __FUNCTION__); 1141 return; 1142 } else if (log) { 1143 LLDB_LOGF(log, "%s - groupName : 0x%" PRIx64, __FUNCTION__, 1144 addr_t(args[eGroupName])); 1145 LLDB_LOGF(log, "%s - groupNameSize: %" PRIu64, __FUNCTION__, 1146 uint64_t(args[eGroupNameSize])); 1147 LLDB_LOGF(log, "%s - kernel : 0x%" PRIx64, __FUNCTION__, 1148 addr_t(args[eKernel])); 1149 LLDB_LOGF(log, "%s - kernelCount : %" PRIu64, __FUNCTION__, 1150 uint64_t(args[eKernelCount])); 1151 } 1152 1153 // parse script group name 1154 ConstString group_name; 1155 { 1156 Status err; 1157 const uint64_t len = uint64_t(args[eGroupNameSize]); 1158 std::unique_ptr<char[]> buffer(new char[uint32_t(len + 1)]); 1159 m_process->ReadMemory(addr_t(args[eGroupName]), buffer.get(), len, err); 1160 buffer.get()[len] = '\0'; 1161 if (!err.Success()) { 1162 LLDB_LOGF(log, "Error reading scriptgroup name from target"); 1163 return; 1164 } else { 1165 LLDB_LOGF(log, "Extracted scriptgroup name %s", buffer.get()); 1166 } 1167 // write back the script group name 1168 group_name.SetCString(buffer.get()); 1169 } 1170 1171 // create or access existing script group 1172 RSScriptGroupDescriptorSP group; 1173 { 1174 // search for existing script group 1175 for (auto sg : m_scriptGroups) { 1176 if (sg->m_name == group_name) { 1177 group = sg; 1178 break; 1179 } 1180 } 1181 if (!group) { 1182 group = std::make_shared<RSScriptGroupDescriptor>(); 1183 group->m_name = group_name; 1184 m_scriptGroups.push_back(group); 1185 } else { 1186 // already have this script group 1187 LLDB_LOGF(log, "Attempt to add duplicate script group %s", 1188 group_name.AsCString()); 1189 return; 1190 } 1191 } 1192 assert(group); 1193 1194 const uint32_t target_ptr_size = m_process->GetAddressByteSize(); 1195 std::vector<addr_t> kernels; 1196 // parse kernel addresses in script group 1197 for (uint64_t i = 0; i < uint64_t(args[eKernelCount]); ++i) { 1198 RSScriptGroupDescriptor::Kernel kernel; 1199 // extract script group kernel addresses from the target 1200 const addr_t ptr_addr = addr_t(args[eKernel]) + i * target_ptr_size; 1201 uint64_t kernel_addr = 0; 1202 Status err; 1203 size_t read = 1204 m_process->ReadMemory(ptr_addr, &kernel_addr, target_ptr_size, err); 1205 if (!err.Success() || read != target_ptr_size) { 1206 LLDB_LOGF(log, "Error parsing kernel address %" PRIu64 " in script group", 1207 i); 1208 return; 1209 } 1210 LLDB_LOGF(log, "Extracted scriptgroup kernel address - 0x%" PRIx64, 1211 kernel_addr); 1212 kernel.m_addr = kernel_addr; 1213 1214 // try to resolve the associated kernel name 1215 if (!ResolveKernelName(kernel.m_addr, kernel.m_name)) { 1216 LLDB_LOGF(log, "Parsed scriptgroup kernel %" PRIu64 " - 0x%" PRIx64, i, 1217 kernel_addr); 1218 return; 1219 } 1220 1221 // try to find the non '.expand' function 1222 { 1223 const llvm::StringRef expand(".expand"); 1224 const llvm::StringRef name_ref = kernel.m_name.GetStringRef(); 1225 if (name_ref.endswith(expand)) { 1226 const ConstString base_kernel(name_ref.drop_back(expand.size())); 1227 // verify this function is a valid kernel 1228 if (IsKnownKernel(base_kernel)) { 1229 kernel.m_name = base_kernel; 1230 LLDB_LOGF(log, "%s - found non expand version '%s'", __FUNCTION__, 1231 base_kernel.GetCString()); 1232 } 1233 } 1234 } 1235 // add to a list of script group kernels we know about 1236 group->m_kernels.push_back(kernel); 1237 } 1238 1239 // Resolve any pending scriptgroup breakpoints 1240 { 1241 Target &target = m_process->GetTarget(); 1242 const BreakpointList &list = target.GetBreakpointList(); 1243 const size_t num_breakpoints = list.GetSize(); 1244 LLDB_LOGF(log, "Resolving %zu breakpoints", num_breakpoints); 1245 for (size_t i = 0; i < num_breakpoints; ++i) { 1246 const BreakpointSP bp = list.GetBreakpointAtIndex(i); 1247 if (bp) { 1248 if (bp->MatchesName(group_name.AsCString())) { 1249 LLDB_LOGF(log, "Found breakpoint with name %s", 1250 group_name.AsCString()); 1251 bp->ResolveBreakpoint(); 1252 } 1253 } 1254 } 1255 } 1256 } 1257 1258 void RenderScriptRuntime::CaptureScriptInvokeForEachMulti( 1259 RuntimeHook *hook, ExecutionContext &exe_ctx) { 1260 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1261 1262 enum { 1263 eRsContext = 0, 1264 eRsScript, 1265 eRsSlot, 1266 eRsAIns, 1267 eRsInLen, 1268 eRsAOut, 1269 eRsUsr, 1270 eRsUsrLen, 1271 eRsSc, 1272 }; 1273 1274 std::array<ArgItem, 9> args{{ 1275 ArgItem{ArgItem::ePointer, 0}, // const Context *rsc 1276 ArgItem{ArgItem::ePointer, 0}, // Script *s 1277 ArgItem{ArgItem::eInt32, 0}, // uint32_t slot 1278 ArgItem{ArgItem::ePointer, 0}, // const Allocation **aIns 1279 ArgItem{ArgItem::eInt32, 0}, // size_t inLen 1280 ArgItem{ArgItem::ePointer, 0}, // Allocation *aout 1281 ArgItem{ArgItem::ePointer, 0}, // const void *usr 1282 ArgItem{ArgItem::eInt32, 0}, // size_t usrLen 1283 ArgItem{ArgItem::ePointer, 0}, // const RsScriptCall *sc 1284 }}; 1285 1286 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1287 if (!success) { 1288 LLDB_LOGF(log, "%s - Error while reading the function parameters", 1289 __FUNCTION__); 1290 return; 1291 } 1292 1293 const uint32_t target_ptr_size = m_process->GetAddressByteSize(); 1294 Status err; 1295 std::vector<uint64_t> allocs; 1296 1297 // traverse allocation list 1298 for (uint64_t i = 0; i < uint64_t(args[eRsInLen]); ++i) { 1299 // calculate offest to allocation pointer 1300 const addr_t addr = addr_t(args[eRsAIns]) + i * target_ptr_size; 1301 1302 // Note: due to little endian layout, reading 32bits or 64bits into res 1303 // will give the correct results. 1304 uint64_t result = 0; 1305 size_t read = m_process->ReadMemory(addr, &result, target_ptr_size, err); 1306 if (read != target_ptr_size || !err.Success()) { 1307 LLDB_LOGF(log, 1308 "%s - Error while reading allocation list argument %" PRIu64, 1309 __FUNCTION__, i); 1310 } else { 1311 allocs.push_back(result); 1312 } 1313 } 1314 1315 // if there is an output allocation track it 1316 if (uint64_t alloc_out = uint64_t(args[eRsAOut])) { 1317 allocs.push_back(alloc_out); 1318 } 1319 1320 // for all allocations we have found 1321 for (const uint64_t alloc_addr : allocs) { 1322 AllocationDetails *alloc = LookUpAllocation(alloc_addr); 1323 if (!alloc) 1324 alloc = CreateAllocation(alloc_addr); 1325 1326 if (alloc) { 1327 // save the allocation address 1328 if (alloc->address.isValid()) { 1329 // check the allocation address we already have matches 1330 assert(*alloc->address.get() == alloc_addr); 1331 } else { 1332 alloc->address = alloc_addr; 1333 } 1334 1335 // save the context 1336 if (log) { 1337 if (alloc->context.isValid() && 1338 *alloc->context.get() != addr_t(args[eRsContext])) 1339 LLDB_LOGF(log, "%s - Allocation used by multiple contexts", 1340 __FUNCTION__); 1341 } 1342 alloc->context = addr_t(args[eRsContext]); 1343 } 1344 } 1345 1346 // make sure we track this script object 1347 if (lldb_private::RenderScriptRuntime::ScriptDetails *script = 1348 LookUpScript(addr_t(args[eRsScript]), true)) { 1349 if (log) { 1350 if (script->context.isValid() && 1351 *script->context.get() != addr_t(args[eRsContext])) 1352 LLDB_LOGF(log, "%s - Script used by multiple contexts", __FUNCTION__); 1353 } 1354 script->context = addr_t(args[eRsContext]); 1355 } 1356 } 1357 1358 void RenderScriptRuntime::CaptureSetGlobalVar(RuntimeHook *hook, 1359 ExecutionContext &context) { 1360 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1361 1362 enum { 1363 eRsContext, 1364 eRsScript, 1365 eRsId, 1366 eRsData, 1367 eRsLength, 1368 }; 1369 1370 std::array<ArgItem, 5> args{{ 1371 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1372 ArgItem{ArgItem::ePointer, 0}, // eRsScript 1373 ArgItem{ArgItem::eInt32, 0}, // eRsId 1374 ArgItem{ArgItem::ePointer, 0}, // eRsData 1375 ArgItem{ArgItem::eInt32, 0}, // eRsLength 1376 }}; 1377 1378 bool success = GetArgs(context, &args[0], args.size()); 1379 if (!success) { 1380 LLDB_LOGF(log, "%s - error reading the function parameters.", __FUNCTION__); 1381 return; 1382 } 1383 1384 if (log) { 1385 LLDB_LOGF(log, 1386 "%s - 0x%" PRIx64 ",0x%" PRIx64 " slot %" PRIu64 " = 0x%" PRIx64 1387 ":%" PRIu64 "bytes.", 1388 __FUNCTION__, uint64_t(args[eRsContext]), 1389 uint64_t(args[eRsScript]), uint64_t(args[eRsId]), 1390 uint64_t(args[eRsData]), uint64_t(args[eRsLength])); 1391 1392 addr_t script_addr = addr_t(args[eRsScript]); 1393 if (m_scriptMappings.find(script_addr) != m_scriptMappings.end()) { 1394 auto rsm = m_scriptMappings[script_addr]; 1395 if (uint64_t(args[eRsId]) < rsm->m_globals.size()) { 1396 auto rsg = rsm->m_globals[uint64_t(args[eRsId])]; 1397 LLDB_LOGF(log, "%s - Setting of '%s' within '%s' inferred", 1398 __FUNCTION__, rsg.m_name.AsCString(), 1399 rsm->m_module->GetFileSpec().GetFilename().AsCString()); 1400 } 1401 } 1402 } 1403 } 1404 1405 void RenderScriptRuntime::CaptureAllocationInit(RuntimeHook *hook, 1406 ExecutionContext &exe_ctx) { 1407 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1408 1409 enum { eRsContext, eRsAlloc, eRsForceZero }; 1410 1411 std::array<ArgItem, 3> args{{ 1412 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1413 ArgItem{ArgItem::ePointer, 0}, // eRsAlloc 1414 ArgItem{ArgItem::eBool, 0}, // eRsForceZero 1415 }}; 1416 1417 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1418 if (!success) { 1419 LLDB_LOGF(log, "%s - error while reading the function parameters", 1420 __FUNCTION__); 1421 return; 1422 } 1423 1424 LLDB_LOGF(log, "%s - 0x%" PRIx64 ",0x%" PRIx64 ",0x%" PRIx64 " .", 1425 __FUNCTION__, uint64_t(args[eRsContext]), uint64_t(args[eRsAlloc]), 1426 uint64_t(args[eRsForceZero])); 1427 1428 AllocationDetails *alloc = CreateAllocation(uint64_t(args[eRsAlloc])); 1429 if (alloc) 1430 alloc->context = uint64_t(args[eRsContext]); 1431 } 1432 1433 void RenderScriptRuntime::CaptureAllocationDestroy(RuntimeHook *hook, 1434 ExecutionContext &exe_ctx) { 1435 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1436 1437 enum { 1438 eRsContext, 1439 eRsAlloc, 1440 }; 1441 1442 std::array<ArgItem, 2> args{{ 1443 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1444 ArgItem{ArgItem::ePointer, 0}, // eRsAlloc 1445 }}; 1446 1447 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1448 if (!success) { 1449 LLDB_LOGF(log, "%s - error while reading the function parameters.", 1450 __FUNCTION__); 1451 return; 1452 } 1453 1454 LLDB_LOGF(log, "%s - 0x%" PRIx64 ", 0x%" PRIx64 ".", __FUNCTION__, 1455 uint64_t(args[eRsContext]), uint64_t(args[eRsAlloc])); 1456 1457 for (auto iter = m_allocations.begin(); iter != m_allocations.end(); ++iter) { 1458 auto &allocation_up = *iter; // get the unique pointer 1459 if (allocation_up->address.isValid() && 1460 *allocation_up->address.get() == addr_t(args[eRsAlloc])) { 1461 m_allocations.erase(iter); 1462 LLDB_LOGF(log, "%s - deleted allocation entry.", __FUNCTION__); 1463 return; 1464 } 1465 } 1466 1467 LLDB_LOGF(log, "%s - couldn't find destroyed allocation.", __FUNCTION__); 1468 } 1469 1470 void RenderScriptRuntime::CaptureScriptInit(RuntimeHook *hook, 1471 ExecutionContext &exe_ctx) { 1472 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1473 1474 Status err; 1475 Process *process = exe_ctx.GetProcessPtr(); 1476 1477 enum { eRsContext, eRsScript, eRsResNamePtr, eRsCachedDirPtr }; 1478 1479 std::array<ArgItem, 4> args{ 1480 {ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}, 1481 ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}}}; 1482 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1483 if (!success) { 1484 LLDB_LOGF(log, "%s - error while reading the function parameters.", 1485 __FUNCTION__); 1486 return; 1487 } 1488 1489 std::string res_name; 1490 process->ReadCStringFromMemory(addr_t(args[eRsResNamePtr]), res_name, err); 1491 if (err.Fail()) { 1492 LLDB_LOGF(log, "%s - error reading res_name: %s.", __FUNCTION__, 1493 err.AsCString()); 1494 } 1495 1496 std::string cache_dir; 1497 process->ReadCStringFromMemory(addr_t(args[eRsCachedDirPtr]), cache_dir, err); 1498 if (err.Fail()) { 1499 LLDB_LOGF(log, "%s - error reading cache_dir: %s.", __FUNCTION__, 1500 err.AsCString()); 1501 } 1502 1503 LLDB_LOGF(log, "%s - 0x%" PRIx64 ",0x%" PRIx64 " => '%s' at '%s' .", 1504 __FUNCTION__, uint64_t(args[eRsContext]), uint64_t(args[eRsScript]), 1505 res_name.c_str(), cache_dir.c_str()); 1506 1507 if (res_name.size() > 0) { 1508 StreamString strm; 1509 strm.Printf("librs.%s.so", res_name.c_str()); 1510 1511 ScriptDetails *script = LookUpScript(addr_t(args[eRsScript]), true); 1512 if (script) { 1513 script->type = ScriptDetails::eScriptC; 1514 script->cache_dir = cache_dir; 1515 script->res_name = res_name; 1516 script->shared_lib = strm.GetString(); 1517 script->context = addr_t(args[eRsContext]); 1518 } 1519 1520 LLDB_LOGF(log, 1521 "%s - '%s' tagged with context 0x%" PRIx64 1522 " and script 0x%" PRIx64 ".", 1523 __FUNCTION__, strm.GetData(), uint64_t(args[eRsContext]), 1524 uint64_t(args[eRsScript])); 1525 } else if (log) { 1526 LLDB_LOGF(log, "%s - resource name invalid, Script not tagged.", 1527 __FUNCTION__); 1528 } 1529 } 1530 1531 void RenderScriptRuntime::LoadRuntimeHooks(lldb::ModuleSP module, 1532 ModuleKind kind) { 1533 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1534 1535 if (!module) { 1536 return; 1537 } 1538 1539 Target &target = GetProcess()->GetTarget(); 1540 const llvm::Triple::ArchType machine = target.GetArchitecture().GetMachine(); 1541 1542 if (machine != llvm::Triple::ArchType::x86 && 1543 machine != llvm::Triple::ArchType::arm && 1544 machine != llvm::Triple::ArchType::aarch64 && 1545 machine != llvm::Triple::ArchType::mipsel && 1546 machine != llvm::Triple::ArchType::mips64el && 1547 machine != llvm::Triple::ArchType::x86_64) { 1548 LLDB_LOGF(log, "%s - unable to hook runtime functions.", __FUNCTION__); 1549 return; 1550 } 1551 1552 const uint32_t target_ptr_size = 1553 target.GetArchitecture().GetAddressByteSize(); 1554 1555 std::array<bool, s_runtimeHookCount> hook_placed; 1556 hook_placed.fill(false); 1557 1558 for (size_t idx = 0; idx < s_runtimeHookCount; idx++) { 1559 const HookDefn *hook_defn = &s_runtimeHookDefns[idx]; 1560 if (hook_defn->kind != kind) { 1561 continue; 1562 } 1563 1564 const char *symbol_name = (target_ptr_size == 4) 1565 ? hook_defn->symbol_name_m32 1566 : hook_defn->symbol_name_m64; 1567 1568 const Symbol *sym = module->FindFirstSymbolWithNameAndType( 1569 ConstString(symbol_name), eSymbolTypeCode); 1570 if (!sym) { 1571 if (log) { 1572 LLDB_LOGF(log, "%s - symbol '%s' related to the function %s not found", 1573 __FUNCTION__, symbol_name, hook_defn->name); 1574 } 1575 continue; 1576 } 1577 1578 addr_t addr = sym->GetLoadAddress(&target); 1579 if (addr == LLDB_INVALID_ADDRESS) { 1580 LLDB_LOGF(log, 1581 "%s - unable to resolve the address of hook function '%s' " 1582 "with symbol '%s'.", 1583 __FUNCTION__, hook_defn->name, symbol_name); 1584 continue; 1585 } else { 1586 LLDB_LOGF(log, "%s - function %s, address resolved at 0x%" PRIx64, 1587 __FUNCTION__, hook_defn->name, addr); 1588 } 1589 1590 RuntimeHookSP hook(new RuntimeHook()); 1591 hook->address = addr; 1592 hook->defn = hook_defn; 1593 hook->bp_sp = target.CreateBreakpoint(addr, true, false); 1594 hook->bp_sp->SetCallback(HookCallback, hook.get(), true); 1595 m_runtimeHooks[addr] = hook; 1596 if (log) { 1597 LLDB_LOGF(log, 1598 "%s - successfully hooked '%s' in '%s' version %" PRIu64 1599 " at 0x%" PRIx64 ".", 1600 __FUNCTION__, hook_defn->name, 1601 module->GetFileSpec().GetFilename().AsCString(), 1602 (uint64_t)hook_defn->version, (uint64_t)addr); 1603 } 1604 hook_placed[idx] = true; 1605 } 1606 1607 // log any unhooked function 1608 if (log) { 1609 for (size_t i = 0; i < hook_placed.size(); ++i) { 1610 if (hook_placed[i]) 1611 continue; 1612 const HookDefn &hook_defn = s_runtimeHookDefns[i]; 1613 if (hook_defn.kind != kind) 1614 continue; 1615 LLDB_LOGF(log, "%s - function %s was not hooked", __FUNCTION__, 1616 hook_defn.name); 1617 } 1618 } 1619 } 1620 1621 void RenderScriptRuntime::FixupScriptDetails(RSModuleDescriptorSP rsmodule_sp) { 1622 if (!rsmodule_sp) 1623 return; 1624 1625 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1626 1627 const ModuleSP module = rsmodule_sp->m_module; 1628 const FileSpec &file = module->GetPlatformFileSpec(); 1629 1630 // Iterate over all of the scripts that we currently know of. Note: We cant 1631 // push or pop to m_scripts here or it may invalidate rs_script. 1632 for (const auto &rs_script : m_scripts) { 1633 // Extract the expected .so file path for this script. 1634 std::string shared_lib; 1635 if (!rs_script->shared_lib.get(shared_lib)) 1636 continue; 1637 1638 // Only proceed if the module that has loaded corresponds to this script. 1639 if (file.GetFilename() != ConstString(shared_lib.c_str())) 1640 continue; 1641 1642 // Obtain the script address which we use as a key. 1643 lldb::addr_t script; 1644 if (!rs_script->script.get(script)) 1645 continue; 1646 1647 // If we have a script mapping for the current script. 1648 if (m_scriptMappings.find(script) != m_scriptMappings.end()) { 1649 // if the module we have stored is different to the one we just received. 1650 if (m_scriptMappings[script] != rsmodule_sp) { 1651 LLDB_LOGF( 1652 log, 1653 "%s - script %" PRIx64 " wants reassigned to new rsmodule '%s'.", 1654 __FUNCTION__, (uint64_t)script, 1655 rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString()); 1656 } 1657 } 1658 // We don't have a script mapping for the current script. 1659 else { 1660 // Obtain the script resource name. 1661 std::string res_name; 1662 if (rs_script->res_name.get(res_name)) 1663 // Set the modules resource name. 1664 rsmodule_sp->m_resname = res_name; 1665 // Add Script/Module pair to map. 1666 m_scriptMappings[script] = rsmodule_sp; 1667 LLDB_LOGF(log, "%s - script %" PRIx64 " associated with rsmodule '%s'.", 1668 __FUNCTION__, (uint64_t)script, 1669 rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString()); 1670 } 1671 } 1672 } 1673 1674 // Uses the Target API to evaluate the expression passed as a parameter to the 1675 // function The result of that expression is returned an unsigned 64 bit int, 1676 // via the result* parameter. Function returns true on success, and false on 1677 // failure 1678 bool RenderScriptRuntime::EvalRSExpression(const char *expr, 1679 StackFrame *frame_ptr, 1680 uint64_t *result) { 1681 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1682 LLDB_LOGF(log, "%s(%s)", __FUNCTION__, expr); 1683 1684 ValueObjectSP expr_result; 1685 EvaluateExpressionOptions options; 1686 options.SetLanguage(lldb::eLanguageTypeC_plus_plus); 1687 // Perform the actual expression evaluation 1688 auto &target = GetProcess()->GetTarget(); 1689 target.EvaluateExpression(expr, frame_ptr, expr_result, options); 1690 1691 if (!expr_result) { 1692 LLDB_LOGF(log, "%s: couldn't evaluate expression.", __FUNCTION__); 1693 return false; 1694 } 1695 1696 // The result of the expression is invalid 1697 if (!expr_result->GetError().Success()) { 1698 Status err = expr_result->GetError(); 1699 // Expression returned is void, so this is actually a success 1700 if (err.GetError() == UserExpression::kNoResult) { 1701 LLDB_LOGF(log, "%s - expression returned void.", __FUNCTION__); 1702 1703 result = nullptr; 1704 return true; 1705 } 1706 1707 LLDB_LOGF(log, "%s - error evaluating expression result: %s", __FUNCTION__, 1708 err.AsCString()); 1709 return false; 1710 } 1711 1712 bool success = false; 1713 // We only read the result as an uint32_t. 1714 *result = expr_result->GetValueAsUnsigned(0, &success); 1715 1716 if (!success) { 1717 LLDB_LOGF(log, "%s - couldn't convert expression result to uint32_t", 1718 __FUNCTION__); 1719 return false; 1720 } 1721 1722 return true; 1723 } 1724 1725 namespace { 1726 // Used to index expression format strings 1727 enum ExpressionStrings { 1728 eExprGetOffsetPtr = 0, 1729 eExprAllocGetType, 1730 eExprTypeDimX, 1731 eExprTypeDimY, 1732 eExprTypeDimZ, 1733 eExprTypeElemPtr, 1734 eExprElementType, 1735 eExprElementKind, 1736 eExprElementVec, 1737 eExprElementFieldCount, 1738 eExprSubelementsId, 1739 eExprSubelementsName, 1740 eExprSubelementsArrSize, 1741 1742 _eExprLast // keep at the end, implicit size of the array runtime_expressions 1743 }; 1744 1745 // max length of an expanded expression 1746 const int jit_max_expr_size = 512; 1747 1748 // Retrieve the string to JIT for the given expression 1749 #define JIT_TEMPLATE_CONTEXT "void* ctxt = (void*)rsDebugGetContextWrapper(0x%" PRIx64 "); " 1750 const char *JITTemplate(ExpressionStrings e) { 1751 // Format strings containing the expressions we may need to evaluate. 1752 static std::array<const char *, _eExprLast> runtime_expressions = { 1753 {// Mangled GetOffsetPointer(Allocation*, xoff, yoff, zoff, lod, cubemap) 1754 "(int*)_" 1755 "Z12GetOffsetPtrPKN7android12renderscript10AllocationEjjjj23RsAllocation" 1756 "CubemapFace" 1757 "(0x%" PRIx64 ", %" PRIu32 ", %" PRIu32 ", %" PRIu32 ", 0, 0)", // eExprGetOffsetPtr 1758 1759 // Type* rsaAllocationGetType(Context*, Allocation*) 1760 JIT_TEMPLATE_CONTEXT "(void*)rsaAllocationGetType(ctxt, 0x%" PRIx64 ")", // eExprAllocGetType 1761 1762 // rsaTypeGetNativeData(Context*, Type*, void* typeData, size) Pack the 1763 // data in the following way mHal.state.dimX; mHal.state.dimY; 1764 // mHal.state.dimZ; mHal.state.lodCount; mHal.state.faces; mElement; 1765 // into typeData Need to specify 32 or 64 bit for uint_t since this 1766 // differs between devices 1767 JIT_TEMPLATE_CONTEXT 1768 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt" 1769 ", 0x%" PRIx64 ", data, 6); data[0]", // eExprTypeDimX 1770 JIT_TEMPLATE_CONTEXT 1771 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt" 1772 ", 0x%" PRIx64 ", data, 6); data[1]", // eExprTypeDimY 1773 JIT_TEMPLATE_CONTEXT 1774 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt" 1775 ", 0x%" PRIx64 ", data, 6); data[2]", // eExprTypeDimZ 1776 JIT_TEMPLATE_CONTEXT 1777 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt" 1778 ", 0x%" PRIx64 ", data, 6); data[5]", // eExprTypeElemPtr 1779 1780 // rsaElementGetNativeData(Context*, Element*, uint32_t* elemData,size) 1781 // Pack mType; mKind; mNormalized; mVectorSize; NumSubElements into 1782 // elemData 1783 JIT_TEMPLATE_CONTEXT 1784 "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt" 1785 ", 0x%" PRIx64 ", data, 5); data[0]", // eExprElementType 1786 JIT_TEMPLATE_CONTEXT 1787 "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt" 1788 ", 0x%" PRIx64 ", data, 5); data[1]", // eExprElementKind 1789 JIT_TEMPLATE_CONTEXT 1790 "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt" 1791 ", 0x%" PRIx64 ", data, 5); data[3]", // eExprElementVec 1792 JIT_TEMPLATE_CONTEXT 1793 "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt" 1794 ", 0x%" PRIx64 ", data, 5); data[4]", // eExprElementFieldCount 1795 1796 // rsaElementGetSubElements(RsContext con, RsElement elem, uintptr_t 1797 // *ids, const char **names, size_t *arraySizes, uint32_t dataSize) 1798 // Needed for Allocations of structs to gather details about 1799 // fields/Subelements Element* of field 1800 JIT_TEMPLATE_CONTEXT "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 1801 "]; size_t arr_size[%" PRIu32 "];" 1802 "(void*)rsaElementGetSubElements(ctxt, 0x%" PRIx64 1803 ", ids, names, arr_size, %" PRIu32 "); ids[%" PRIu32 "]", // eExprSubelementsId 1804 1805 // Name of field 1806 JIT_TEMPLATE_CONTEXT "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 1807 "]; size_t arr_size[%" PRIu32 "];" 1808 "(void*)rsaElementGetSubElements(ctxt, 0x%" PRIx64 1809 ", ids, names, arr_size, %" PRIu32 "); names[%" PRIu32 "]", // eExprSubelementsName 1810 1811 // Array size of field 1812 JIT_TEMPLATE_CONTEXT "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 1813 "]; size_t arr_size[%" PRIu32 "];" 1814 "(void*)rsaElementGetSubElements(ctxt, 0x%" PRIx64 1815 ", ids, names, arr_size, %" PRIu32 "); arr_size[%" PRIu32 "]"}}; // eExprSubelementsArrSize 1816 1817 return runtime_expressions[e]; 1818 } 1819 } // end of the anonymous namespace 1820 1821 // JITs the RS runtime for the internal data pointer of an allocation. Is 1822 // passed x,y,z coordinates for the pointer to a specific element. Then sets 1823 // the data_ptr member in Allocation with the result. Returns true on success, 1824 // false otherwise 1825 bool RenderScriptRuntime::JITDataPointer(AllocationDetails *alloc, 1826 StackFrame *frame_ptr, uint32_t x, 1827 uint32_t y, uint32_t z) { 1828 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1829 1830 if (!alloc->address.isValid()) { 1831 LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__); 1832 return false; 1833 } 1834 1835 const char *fmt_str = JITTemplate(eExprGetOffsetPtr); 1836 char expr_buf[jit_max_expr_size]; 1837 1838 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 1839 *alloc->address.get(), x, y, z); 1840 if (written < 0) { 1841 LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__); 1842 return false; 1843 } else if (written >= jit_max_expr_size) { 1844 LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__); 1845 return false; 1846 } 1847 1848 uint64_t result = 0; 1849 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 1850 return false; 1851 1852 addr_t data_ptr = static_cast<lldb::addr_t>(result); 1853 alloc->data_ptr = data_ptr; 1854 1855 return true; 1856 } 1857 1858 // JITs the RS runtime for the internal pointer to the RS Type of an allocation 1859 // Then sets the type_ptr member in Allocation with the result. Returns true on 1860 // success, false otherwise 1861 bool RenderScriptRuntime::JITTypePointer(AllocationDetails *alloc, 1862 StackFrame *frame_ptr) { 1863 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1864 1865 if (!alloc->address.isValid() || !alloc->context.isValid()) { 1866 LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__); 1867 return false; 1868 } 1869 1870 const char *fmt_str = JITTemplate(eExprAllocGetType); 1871 char expr_buf[jit_max_expr_size]; 1872 1873 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 1874 *alloc->context.get(), *alloc->address.get()); 1875 if (written < 0) { 1876 LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__); 1877 return false; 1878 } else if (written >= jit_max_expr_size) { 1879 LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__); 1880 return false; 1881 } 1882 1883 uint64_t result = 0; 1884 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 1885 return false; 1886 1887 addr_t type_ptr = static_cast<lldb::addr_t>(result); 1888 alloc->type_ptr = type_ptr; 1889 1890 return true; 1891 } 1892 1893 // JITs the RS runtime for information about the dimensions and type of an 1894 // allocation Then sets dimension and element_ptr members in Allocation with 1895 // the result. Returns true on success, false otherwise 1896 bool RenderScriptRuntime::JITTypePacked(AllocationDetails *alloc, 1897 StackFrame *frame_ptr) { 1898 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1899 1900 if (!alloc->type_ptr.isValid() || !alloc->context.isValid()) { 1901 LLDB_LOGF(log, "%s - Failed to find allocation details.", __FUNCTION__); 1902 return false; 1903 } 1904 1905 // Expression is different depending on if device is 32 or 64 bit 1906 uint32_t target_ptr_size = 1907 GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 1908 const uint32_t bits = target_ptr_size == 4 ? 32 : 64; 1909 1910 // We want 4 elements from packed data 1911 const uint32_t num_exprs = 4; 1912 static_assert(num_exprs == (eExprTypeElemPtr - eExprTypeDimX + 1), 1913 "Invalid number of expressions"); 1914 1915 char expr_bufs[num_exprs][jit_max_expr_size]; 1916 uint64_t results[num_exprs]; 1917 1918 for (uint32_t i = 0; i < num_exprs; ++i) { 1919 const char *fmt_str = JITTemplate(ExpressionStrings(eExprTypeDimX + i)); 1920 int written = snprintf(expr_bufs[i], jit_max_expr_size, fmt_str, 1921 *alloc->context.get(), bits, *alloc->type_ptr.get()); 1922 if (written < 0) { 1923 LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__); 1924 return false; 1925 } else if (written >= jit_max_expr_size) { 1926 LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__); 1927 return false; 1928 } 1929 1930 // Perform expression evaluation 1931 if (!EvalRSExpression(expr_bufs[i], frame_ptr, &results[i])) 1932 return false; 1933 } 1934 1935 // Assign results to allocation members 1936 AllocationDetails::Dimension dims; 1937 dims.dim_1 = static_cast<uint32_t>(results[0]); 1938 dims.dim_2 = static_cast<uint32_t>(results[1]); 1939 dims.dim_3 = static_cast<uint32_t>(results[2]); 1940 alloc->dimension = dims; 1941 1942 addr_t element_ptr = static_cast<lldb::addr_t>(results[3]); 1943 alloc->element.element_ptr = element_ptr; 1944 1945 LLDB_LOGF(log, 1946 "%s - dims (%" PRIu32 ", %" PRIu32 ", %" PRIu32 1947 ") Element*: 0x%" PRIx64 ".", 1948 __FUNCTION__, dims.dim_1, dims.dim_2, dims.dim_3, element_ptr); 1949 1950 return true; 1951 } 1952 1953 // JITs the RS runtime for information about the Element of an allocation Then 1954 // sets type, type_vec_size, field_count and type_kind members in Element with 1955 // the result. Returns true on success, false otherwise 1956 bool RenderScriptRuntime::JITElementPacked(Element &elem, 1957 const lldb::addr_t context, 1958 StackFrame *frame_ptr) { 1959 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1960 1961 if (!elem.element_ptr.isValid()) { 1962 LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__); 1963 return false; 1964 } 1965 1966 // We want 4 elements from packed data 1967 const uint32_t num_exprs = 4; 1968 static_assert(num_exprs == (eExprElementFieldCount - eExprElementType + 1), 1969 "Invalid number of expressions"); 1970 1971 char expr_bufs[num_exprs][jit_max_expr_size]; 1972 uint64_t results[num_exprs]; 1973 1974 for (uint32_t i = 0; i < num_exprs; i++) { 1975 const char *fmt_str = JITTemplate(ExpressionStrings(eExprElementType + i)); 1976 int written = snprintf(expr_bufs[i], jit_max_expr_size, fmt_str, context, 1977 *elem.element_ptr.get()); 1978 if (written < 0) { 1979 LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__); 1980 return false; 1981 } else if (written >= jit_max_expr_size) { 1982 LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__); 1983 return false; 1984 } 1985 1986 // Perform expression evaluation 1987 if (!EvalRSExpression(expr_bufs[i], frame_ptr, &results[i])) 1988 return false; 1989 } 1990 1991 // Assign results to allocation members 1992 elem.type = static_cast<RenderScriptRuntime::Element::DataType>(results[0]); 1993 elem.type_kind = 1994 static_cast<RenderScriptRuntime::Element::DataKind>(results[1]); 1995 elem.type_vec_size = static_cast<uint32_t>(results[2]); 1996 elem.field_count = static_cast<uint32_t>(results[3]); 1997 1998 LLDB_LOGF(log, 1999 "%s - data type %" PRIu32 ", pixel type %" PRIu32 2000 ", vector size %" PRIu32 ", field count %" PRIu32, 2001 __FUNCTION__, *elem.type.get(), *elem.type_kind.get(), 2002 *elem.type_vec_size.get(), *elem.field_count.get()); 2003 2004 // If this Element has subelements then JIT rsaElementGetSubElements() for 2005 // details about its fields 2006 return !(*elem.field_count.get() > 0 && 2007 !JITSubelements(elem, context, frame_ptr)); 2008 } 2009 2010 // JITs the RS runtime for information about the subelements/fields of a struct 2011 // allocation This is necessary for infering the struct type so we can pretty 2012 // print the allocation's contents. Returns true on success, false otherwise 2013 bool RenderScriptRuntime::JITSubelements(Element &elem, 2014 const lldb::addr_t context, 2015 StackFrame *frame_ptr) { 2016 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2017 2018 if (!elem.element_ptr.isValid() || !elem.field_count.isValid()) { 2019 LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__); 2020 return false; 2021 } 2022 2023 const short num_exprs = 3; 2024 static_assert(num_exprs == (eExprSubelementsArrSize - eExprSubelementsId + 1), 2025 "Invalid number of expressions"); 2026 2027 char expr_buffer[jit_max_expr_size]; 2028 uint64_t results; 2029 2030 // Iterate over struct fields. 2031 const uint32_t field_count = *elem.field_count.get(); 2032 for (uint32_t field_index = 0; field_index < field_count; ++field_index) { 2033 Element child; 2034 for (uint32_t expr_index = 0; expr_index < num_exprs; ++expr_index) { 2035 const char *fmt_str = 2036 JITTemplate(ExpressionStrings(eExprSubelementsId + expr_index)); 2037 int written = snprintf(expr_buffer, jit_max_expr_size, fmt_str, 2038 context, field_count, field_count, field_count, 2039 *elem.element_ptr.get(), field_count, field_index); 2040 if (written < 0) { 2041 LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__); 2042 return false; 2043 } else if (written >= jit_max_expr_size) { 2044 LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__); 2045 return false; 2046 } 2047 2048 // Perform expression evaluation 2049 if (!EvalRSExpression(expr_buffer, frame_ptr, &results)) 2050 return false; 2051 2052 LLDB_LOGF(log, "%s - expr result 0x%" PRIx64 ".", __FUNCTION__, results); 2053 2054 switch (expr_index) { 2055 case 0: // Element* of child 2056 child.element_ptr = static_cast<addr_t>(results); 2057 break; 2058 case 1: // Name of child 2059 { 2060 lldb::addr_t address = static_cast<addr_t>(results); 2061 Status err; 2062 std::string name; 2063 GetProcess()->ReadCStringFromMemory(address, name, err); 2064 if (!err.Fail()) 2065 child.type_name = ConstString(name); 2066 else { 2067 LLDB_LOGF(log, "%s - warning: Couldn't read field name.", 2068 __FUNCTION__); 2069 } 2070 break; 2071 } 2072 case 2: // Array size of child 2073 child.array_size = static_cast<uint32_t>(results); 2074 break; 2075 } 2076 } 2077 2078 // We need to recursively JIT each Element field of the struct since 2079 // structs can be nested inside structs. 2080 if (!JITElementPacked(child, context, frame_ptr)) 2081 return false; 2082 elem.children.push_back(child); 2083 } 2084 2085 // Try to infer the name of the struct type so we can pretty print the 2086 // allocation contents. 2087 FindStructTypeName(elem, frame_ptr); 2088 2089 return true; 2090 } 2091 2092 // JITs the RS runtime for the address of the last element in the allocation. 2093 // The `elem_size` parameter represents the size of a single element, including 2094 // padding. Which is needed as an offset from the last element pointer. Using 2095 // this offset minus the starting address we can calculate the size of the 2096 // allocation. Returns true on success, false otherwise 2097 bool RenderScriptRuntime::JITAllocationSize(AllocationDetails *alloc, 2098 StackFrame *frame_ptr) { 2099 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2100 2101 if (!alloc->address.isValid() || !alloc->dimension.isValid() || 2102 !alloc->data_ptr.isValid() || !alloc->element.datum_size.isValid()) { 2103 LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__); 2104 return false; 2105 } 2106 2107 // Find dimensions 2108 uint32_t dim_x = alloc->dimension.get()->dim_1; 2109 uint32_t dim_y = alloc->dimension.get()->dim_2; 2110 uint32_t dim_z = alloc->dimension.get()->dim_3; 2111 2112 // Our plan of jitting the last element address doesn't seem to work for 2113 // struct Allocations` Instead try to infer the size ourselves without any 2114 // inter element padding. 2115 if (alloc->element.children.size() > 0) { 2116 if (dim_x == 0) 2117 dim_x = 1; 2118 if (dim_y == 0) 2119 dim_y = 1; 2120 if (dim_z == 0) 2121 dim_z = 1; 2122 2123 alloc->size = dim_x * dim_y * dim_z * *alloc->element.datum_size.get(); 2124 2125 LLDB_LOGF(log, "%s - inferred size of struct allocation %" PRIu32 ".", 2126 __FUNCTION__, *alloc->size.get()); 2127 return true; 2128 } 2129 2130 const char *fmt_str = JITTemplate(eExprGetOffsetPtr); 2131 char expr_buf[jit_max_expr_size]; 2132 2133 // Calculate last element 2134 dim_x = dim_x == 0 ? 0 : dim_x - 1; 2135 dim_y = dim_y == 0 ? 0 : dim_y - 1; 2136 dim_z = dim_z == 0 ? 0 : dim_z - 1; 2137 2138 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 2139 *alloc->address.get(), dim_x, dim_y, dim_z); 2140 if (written < 0) { 2141 LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__); 2142 return false; 2143 } else if (written >= jit_max_expr_size) { 2144 LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__); 2145 return false; 2146 } 2147 2148 uint64_t result = 0; 2149 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 2150 return false; 2151 2152 addr_t mem_ptr = static_cast<lldb::addr_t>(result); 2153 // Find pointer to last element and add on size of an element 2154 alloc->size = static_cast<uint32_t>(mem_ptr - *alloc->data_ptr.get()) + 2155 *alloc->element.datum_size.get(); 2156 2157 return true; 2158 } 2159 2160 // JITs the RS runtime for information about the stride between rows in the 2161 // allocation. This is done to detect padding, since allocated memory is 2162 // 16-byte aligned. Returns true on success, false otherwise 2163 bool RenderScriptRuntime::JITAllocationStride(AllocationDetails *alloc, 2164 StackFrame *frame_ptr) { 2165 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2166 2167 if (!alloc->address.isValid() || !alloc->data_ptr.isValid()) { 2168 LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__); 2169 return false; 2170 } 2171 2172 const char *fmt_str = JITTemplate(eExprGetOffsetPtr); 2173 char expr_buf[jit_max_expr_size]; 2174 2175 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 2176 *alloc->address.get(), 0, 1, 0); 2177 if (written < 0) { 2178 LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__); 2179 return false; 2180 } else if (written >= jit_max_expr_size) { 2181 LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__); 2182 return false; 2183 } 2184 2185 uint64_t result = 0; 2186 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 2187 return false; 2188 2189 addr_t mem_ptr = static_cast<lldb::addr_t>(result); 2190 alloc->stride = static_cast<uint32_t>(mem_ptr - *alloc->data_ptr.get()); 2191 2192 return true; 2193 } 2194 2195 // JIT all the current runtime info regarding an allocation 2196 bool RenderScriptRuntime::RefreshAllocation(AllocationDetails *alloc, 2197 StackFrame *frame_ptr) { 2198 // GetOffsetPointer() 2199 if (!JITDataPointer(alloc, frame_ptr)) 2200 return false; 2201 2202 // rsaAllocationGetType() 2203 if (!JITTypePointer(alloc, frame_ptr)) 2204 return false; 2205 2206 // rsaTypeGetNativeData() 2207 if (!JITTypePacked(alloc, frame_ptr)) 2208 return false; 2209 2210 // rsaElementGetNativeData() 2211 if (!JITElementPacked(alloc->element, *alloc->context.get(), frame_ptr)) 2212 return false; 2213 2214 // Sets the datum_size member in Element 2215 SetElementSize(alloc->element); 2216 2217 // Use GetOffsetPointer() to infer size of the allocation 2218 return JITAllocationSize(alloc, frame_ptr); 2219 } 2220 2221 // Function attempts to set the type_name member of the paramaterised Element 2222 // object. This string should be the name of the struct type the Element 2223 // represents. We need this string for pretty printing the Element to users. 2224 void RenderScriptRuntime::FindStructTypeName(Element &elem, 2225 StackFrame *frame_ptr) { 2226 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2227 2228 if (!elem.type_name.IsEmpty()) // Name already set 2229 return; 2230 else 2231 elem.type_name = Element::GetFallbackStructName(); // Default type name if 2232 // we don't succeed 2233 2234 // Find all the global variables from the script rs modules 2235 VariableList var_list; 2236 for (auto module_sp : m_rsmodules) 2237 module_sp->m_module->FindGlobalVariables( 2238 RegularExpression(llvm::StringRef(".")), UINT32_MAX, var_list); 2239 2240 // Iterate over all the global variables looking for one with a matching type 2241 // to the Element. We make the assumption a match exists since there needs to 2242 // be a global variable to reflect the struct type back into java host code. 2243 for (uint32_t i = 0; i < var_list.GetSize(); ++i) { 2244 const VariableSP var_sp(var_list.GetVariableAtIndex(i)); 2245 if (!var_sp) 2246 continue; 2247 2248 ValueObjectSP valobj_sp = ValueObjectVariable::Create(frame_ptr, var_sp); 2249 if (!valobj_sp) 2250 continue; 2251 2252 // Find the number of variable fields. 2253 // If it has no fields, or more fields than our Element, then it can't be 2254 // the struct we're looking for. Don't check for equality since RS can add 2255 // extra struct members for padding. 2256 size_t num_children = valobj_sp->GetNumChildren(); 2257 if (num_children > elem.children.size() || num_children == 0) 2258 continue; 2259 2260 // Iterate over children looking for members with matching field names. If 2261 // all the field names match, this is likely the struct we want. 2262 // TODO: This could be made more robust by also checking children data 2263 // sizes, or array size 2264 bool found = true; 2265 for (size_t i = 0; i < num_children; ++i) { 2266 ValueObjectSP child = valobj_sp->GetChildAtIndex(i, true); 2267 if (!child || (child->GetName() != elem.children[i].type_name)) { 2268 found = false; 2269 break; 2270 } 2271 } 2272 2273 // RS can add extra struct members for padding in the format 2274 // '#rs_padding_[0-9]+' 2275 if (found && num_children < elem.children.size()) { 2276 const uint32_t size_diff = elem.children.size() - num_children; 2277 LLDB_LOGF(log, "%s - %" PRIu32 " padding struct entries", __FUNCTION__, 2278 size_diff); 2279 2280 for (uint32_t i = 0; i < size_diff; ++i) { 2281 ConstString name = elem.children[num_children + i].type_name; 2282 if (strcmp(name.AsCString(), "#rs_padding") < 0) 2283 found = false; 2284 } 2285 } 2286 2287 // We've found a global variable with matching type 2288 if (found) { 2289 // Dereference since our Element type isn't a pointer. 2290 if (valobj_sp->IsPointerType()) { 2291 Status err; 2292 ValueObjectSP deref_valobj = valobj_sp->Dereference(err); 2293 if (!err.Fail()) 2294 valobj_sp = deref_valobj; 2295 } 2296 2297 // Save name of variable in Element. 2298 elem.type_name = valobj_sp->GetTypeName(); 2299 LLDB_LOGF(log, "%s - element name set to %s", __FUNCTION__, 2300 elem.type_name.AsCString()); 2301 2302 return; 2303 } 2304 } 2305 } 2306 2307 // Function sets the datum_size member of Element. Representing the size of a 2308 // single instance including padding. Assumes the relevant allocation 2309 // information has already been jitted. 2310 void RenderScriptRuntime::SetElementSize(Element &elem) { 2311 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2312 const Element::DataType type = *elem.type.get(); 2313 assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && 2314 "Invalid allocation type"); 2315 2316 const uint32_t vec_size = *elem.type_vec_size.get(); 2317 uint32_t data_size = 0; 2318 uint32_t padding = 0; 2319 2320 // Element is of a struct type, calculate size recursively. 2321 if ((type == Element::RS_TYPE_NONE) && (elem.children.size() > 0)) { 2322 for (Element &child : elem.children) { 2323 SetElementSize(child); 2324 const uint32_t array_size = 2325 child.array_size.isValid() ? *child.array_size.get() : 1; 2326 data_size += *child.datum_size.get() * array_size; 2327 } 2328 } 2329 // These have been packed already 2330 else if (type == Element::RS_TYPE_UNSIGNED_5_6_5 || 2331 type == Element::RS_TYPE_UNSIGNED_5_5_5_1 || 2332 type == Element::RS_TYPE_UNSIGNED_4_4_4_4) { 2333 data_size = AllocationDetails::RSTypeToFormat[type][eElementSize]; 2334 } else if (type < Element::RS_TYPE_ELEMENT) { 2335 data_size = 2336 vec_size * AllocationDetails::RSTypeToFormat[type][eElementSize]; 2337 if (vec_size == 3) 2338 padding = AllocationDetails::RSTypeToFormat[type][eElementSize]; 2339 } else 2340 data_size = 2341 GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 2342 2343 elem.padding = padding; 2344 elem.datum_size = data_size + padding; 2345 LLDB_LOGF(log, "%s - element size set to %" PRIu32, __FUNCTION__, 2346 data_size + padding); 2347 } 2348 2349 // Given an allocation, this function copies the allocation contents from 2350 // device into a buffer on the heap. Returning a shared pointer to the buffer 2351 // containing the data. 2352 std::shared_ptr<uint8_t> 2353 RenderScriptRuntime::GetAllocationData(AllocationDetails *alloc, 2354 StackFrame *frame_ptr) { 2355 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2356 2357 // JIT all the allocation details 2358 if (alloc->ShouldRefresh()) { 2359 LLDB_LOGF(log, "%s - allocation details not calculated yet, jitting info", 2360 __FUNCTION__); 2361 2362 if (!RefreshAllocation(alloc, frame_ptr)) { 2363 LLDB_LOGF(log, "%s - couldn't JIT allocation details", __FUNCTION__); 2364 return nullptr; 2365 } 2366 } 2367 2368 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && 2369 alloc->element.type_vec_size.isValid() && alloc->size.isValid() && 2370 "Allocation information not available"); 2371 2372 // Allocate a buffer to copy data into 2373 const uint32_t size = *alloc->size.get(); 2374 std::shared_ptr<uint8_t> buffer(new uint8_t[size]); 2375 if (!buffer) { 2376 LLDB_LOGF(log, "%s - couldn't allocate a %" PRIu32 " byte buffer", 2377 __FUNCTION__, size); 2378 return nullptr; 2379 } 2380 2381 // Read the inferior memory 2382 Status err; 2383 lldb::addr_t data_ptr = *alloc->data_ptr.get(); 2384 GetProcess()->ReadMemory(data_ptr, buffer.get(), size, err); 2385 if (err.Fail()) { 2386 LLDB_LOGF(log, 2387 "%s - '%s' Couldn't read %" PRIu32 2388 " bytes of allocation data from 0x%" PRIx64, 2389 __FUNCTION__, err.AsCString(), size, data_ptr); 2390 return nullptr; 2391 } 2392 2393 return buffer; 2394 } 2395 2396 // Function copies data from a binary file into an allocation. There is a 2397 // header at the start of the file, FileHeader, before the data content itself. 2398 // Information from this header is used to display warnings to the user about 2399 // incompatibilities 2400 bool RenderScriptRuntime::LoadAllocation(Stream &strm, const uint32_t alloc_id, 2401 const char *path, 2402 StackFrame *frame_ptr) { 2403 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2404 2405 // Find allocation with the given id 2406 AllocationDetails *alloc = FindAllocByID(strm, alloc_id); 2407 if (!alloc) 2408 return false; 2409 2410 LLDB_LOGF(log, "%s - found allocation 0x%" PRIx64, __FUNCTION__, 2411 *alloc->address.get()); 2412 2413 // JIT all the allocation details 2414 if (alloc->ShouldRefresh()) { 2415 LLDB_LOGF(log, "%s - allocation details not calculated yet, jitting info.", 2416 __FUNCTION__); 2417 2418 if (!RefreshAllocation(alloc, frame_ptr)) { 2419 LLDB_LOGF(log, "%s - couldn't JIT allocation details", __FUNCTION__); 2420 return false; 2421 } 2422 } 2423 2424 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && 2425 alloc->element.type_vec_size.isValid() && alloc->size.isValid() && 2426 alloc->element.datum_size.isValid() && 2427 "Allocation information not available"); 2428 2429 // Check we can read from file 2430 FileSpec file(path); 2431 FileSystem::Instance().Resolve(file); 2432 if (!FileSystem::Instance().Exists(file)) { 2433 strm.Printf("Error: File %s does not exist", path); 2434 strm.EOL(); 2435 return false; 2436 } 2437 2438 if (!FileSystem::Instance().Readable(file)) { 2439 strm.Printf("Error: File %s does not have readable permissions", path); 2440 strm.EOL(); 2441 return false; 2442 } 2443 2444 // Read file into data buffer 2445 auto data_sp = FileSystem::Instance().CreateDataBuffer(file.GetPath()); 2446 2447 // Cast start of buffer to FileHeader and use pointer to read metadata 2448 void *file_buf = data_sp->GetBytes(); 2449 if (file_buf == nullptr || 2450 data_sp->GetByteSize() < (sizeof(AllocationDetails::FileHeader) + 2451 sizeof(AllocationDetails::ElementHeader))) { 2452 strm.Printf("Error: File %s does not contain enough data for header", path); 2453 strm.EOL(); 2454 return false; 2455 } 2456 const AllocationDetails::FileHeader *file_header = 2457 static_cast<AllocationDetails::FileHeader *>(file_buf); 2458 2459 // Check file starts with ascii characters "RSAD" 2460 if (memcmp(file_header->ident, "RSAD", 4)) { 2461 strm.Printf("Error: File doesn't contain identifier for an RS allocation " 2462 "dump. Are you sure this is the correct file?"); 2463 strm.EOL(); 2464 return false; 2465 } 2466 2467 // Look at the type of the root element in the header 2468 AllocationDetails::ElementHeader root_el_hdr; 2469 memcpy(&root_el_hdr, static_cast<uint8_t *>(file_buf) + 2470 sizeof(AllocationDetails::FileHeader), 2471 sizeof(AllocationDetails::ElementHeader)); 2472 2473 LLDB_LOGF(log, "%s - header type %" PRIu32 ", element size %" PRIu32, 2474 __FUNCTION__, root_el_hdr.type, root_el_hdr.element_size); 2475 2476 // Check if the target allocation and file both have the same number of bytes 2477 // for an Element 2478 if (*alloc->element.datum_size.get() != root_el_hdr.element_size) { 2479 strm.Printf("Warning: Mismatched Element sizes - file %" PRIu32 2480 " bytes, allocation %" PRIu32 " bytes", 2481 root_el_hdr.element_size, *alloc->element.datum_size.get()); 2482 strm.EOL(); 2483 } 2484 2485 // Check if the target allocation and file both have the same type 2486 const uint32_t alloc_type = static_cast<uint32_t>(*alloc->element.type.get()); 2487 const uint32_t file_type = root_el_hdr.type; 2488 2489 if (file_type > Element::RS_TYPE_FONT) { 2490 strm.Printf("Warning: File has unknown allocation type"); 2491 strm.EOL(); 2492 } else if (alloc_type != file_type) { 2493 // Enum value isn't monotonous, so doesn't always index RsDataTypeToString 2494 // array 2495 uint32_t target_type_name_idx = alloc_type; 2496 uint32_t head_type_name_idx = file_type; 2497 if (alloc_type >= Element::RS_TYPE_ELEMENT && 2498 alloc_type <= Element::RS_TYPE_FONT) 2499 target_type_name_idx = static_cast<Element::DataType>( 2500 (alloc_type - Element::RS_TYPE_ELEMENT) + 2501 Element::RS_TYPE_MATRIX_2X2 + 1); 2502 2503 if (file_type >= Element::RS_TYPE_ELEMENT && 2504 file_type <= Element::RS_TYPE_FONT) 2505 head_type_name_idx = static_cast<Element::DataType>( 2506 (file_type - Element::RS_TYPE_ELEMENT) + Element::RS_TYPE_MATRIX_2X2 + 2507 1); 2508 2509 const char *head_type_name = 2510 AllocationDetails::RsDataTypeToString[head_type_name_idx][0]; 2511 const char *target_type_name = 2512 AllocationDetails::RsDataTypeToString[target_type_name_idx][0]; 2513 2514 strm.Printf( 2515 "Warning: Mismatched Types - file '%s' type, allocation '%s' type", 2516 head_type_name, target_type_name); 2517 strm.EOL(); 2518 } 2519 2520 // Advance buffer past header 2521 file_buf = static_cast<uint8_t *>(file_buf) + file_header->hdr_size; 2522 2523 // Calculate size of allocation data in file 2524 size_t size = data_sp->GetByteSize() - file_header->hdr_size; 2525 2526 // Check if the target allocation and file both have the same total data 2527 // size. 2528 const uint32_t alloc_size = *alloc->size.get(); 2529 if (alloc_size != size) { 2530 strm.Printf("Warning: Mismatched allocation sizes - file 0x%" PRIx64 2531 " bytes, allocation 0x%" PRIx32 " bytes", 2532 (uint64_t)size, alloc_size); 2533 strm.EOL(); 2534 // Set length to copy to minimum 2535 size = alloc_size < size ? alloc_size : size; 2536 } 2537 2538 // Copy file data from our buffer into the target allocation. 2539 lldb::addr_t alloc_data = *alloc->data_ptr.get(); 2540 Status err; 2541 size_t written = GetProcess()->WriteMemory(alloc_data, file_buf, size, err); 2542 if (!err.Success() || written != size) { 2543 strm.Printf("Error: Couldn't write data to allocation %s", err.AsCString()); 2544 strm.EOL(); 2545 return false; 2546 } 2547 2548 strm.Printf("Contents of file '%s' read into allocation %" PRIu32, path, 2549 alloc->id); 2550 strm.EOL(); 2551 2552 return true; 2553 } 2554 2555 // Function takes as parameters a byte buffer, which will eventually be written 2556 // to file as the element header, an offset into that buffer, and an Element 2557 // that will be saved into the buffer at the parametrised offset. Return value 2558 // is the new offset after writing the element into the buffer. Elements are 2559 // saved to the file as the ElementHeader struct followed by offsets to the 2560 // structs of all the element's children. 2561 size_t RenderScriptRuntime::PopulateElementHeaders( 2562 const std::shared_ptr<uint8_t> header_buffer, size_t offset, 2563 const Element &elem) { 2564 // File struct for an element header with all the relevant details copied 2565 // from elem. We assume members are valid already. 2566 AllocationDetails::ElementHeader elem_header; 2567 elem_header.type = *elem.type.get(); 2568 elem_header.kind = *elem.type_kind.get(); 2569 elem_header.element_size = *elem.datum_size.get(); 2570 elem_header.vector_size = *elem.type_vec_size.get(); 2571 elem_header.array_size = 2572 elem.array_size.isValid() ? *elem.array_size.get() : 0; 2573 const size_t elem_header_size = sizeof(AllocationDetails::ElementHeader); 2574 2575 // Copy struct into buffer and advance offset We assume that header_buffer 2576 // has been checked for nullptr before this method is called 2577 memcpy(header_buffer.get() + offset, &elem_header, elem_header_size); 2578 offset += elem_header_size; 2579 2580 // Starting offset of child ElementHeader struct 2581 size_t child_offset = 2582 offset + ((elem.children.size() + 1) * sizeof(uint32_t)); 2583 for (const RenderScriptRuntime::Element &child : elem.children) { 2584 // Recursively populate the buffer with the element header structs of 2585 // children. Then save the offsets where they were set after the parent 2586 // element header. 2587 memcpy(header_buffer.get() + offset, &child_offset, sizeof(uint32_t)); 2588 offset += sizeof(uint32_t); 2589 2590 child_offset = PopulateElementHeaders(header_buffer, child_offset, child); 2591 } 2592 2593 // Zero indicates no more children 2594 memset(header_buffer.get() + offset, 0, sizeof(uint32_t)); 2595 2596 return child_offset; 2597 } 2598 2599 // Given an Element object this function returns the total size needed in the 2600 // file header to store the element's details. Taking into account the size of 2601 // the element header struct, plus the offsets to all the element's children. 2602 // Function is recursive so that the size of all ancestors is taken into 2603 // account. 2604 size_t RenderScriptRuntime::CalculateElementHeaderSize(const Element &elem) { 2605 // Offsets to children plus zero terminator 2606 size_t size = (elem.children.size() + 1) * sizeof(uint32_t); 2607 // Size of header struct with type details 2608 size += sizeof(AllocationDetails::ElementHeader); 2609 2610 // Calculate recursively for all descendants 2611 for (const Element &child : elem.children) 2612 size += CalculateElementHeaderSize(child); 2613 2614 return size; 2615 } 2616 2617 // Function copies allocation contents into a binary file. This file can then 2618 // be loaded later into a different allocation. There is a header, FileHeader, 2619 // before the allocation data containing meta-data. 2620 bool RenderScriptRuntime::SaveAllocation(Stream &strm, const uint32_t alloc_id, 2621 const char *path, 2622 StackFrame *frame_ptr) { 2623 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2624 2625 // Find allocation with the given id 2626 AllocationDetails *alloc = FindAllocByID(strm, alloc_id); 2627 if (!alloc) 2628 return false; 2629 2630 LLDB_LOGF(log, "%s - found allocation 0x%" PRIx64 ".", __FUNCTION__, 2631 *alloc->address.get()); 2632 2633 // JIT all the allocation details 2634 if (alloc->ShouldRefresh()) { 2635 LLDB_LOGF(log, "%s - allocation details not calculated yet, jitting info.", 2636 __FUNCTION__); 2637 2638 if (!RefreshAllocation(alloc, frame_ptr)) { 2639 LLDB_LOGF(log, "%s - couldn't JIT allocation details.", __FUNCTION__); 2640 return false; 2641 } 2642 } 2643 2644 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && 2645 alloc->element.type_vec_size.isValid() && 2646 alloc->element.datum_size.get() && 2647 alloc->element.type_kind.isValid() && alloc->dimension.isValid() && 2648 "Allocation information not available"); 2649 2650 // Check we can create writable file 2651 FileSpec file_spec(path); 2652 FileSystem::Instance().Resolve(file_spec); 2653 auto file = FileSystem::Instance().Open( 2654 file_spec, File::eOpenOptionWrite | File::eOpenOptionCanCreate | 2655 File::eOpenOptionTruncate); 2656 2657 if (!file) { 2658 std::string error = llvm::toString(file.takeError()); 2659 strm.Printf("Error: Failed to open '%s' for writing: %s", path, 2660 error.c_str()); 2661 strm.EOL(); 2662 return false; 2663 } 2664 2665 // Read allocation into buffer of heap memory 2666 const std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr); 2667 if (!buffer) { 2668 strm.Printf("Error: Couldn't read allocation data into buffer"); 2669 strm.EOL(); 2670 return false; 2671 } 2672 2673 // Create the file header 2674 AllocationDetails::FileHeader head; 2675 memcpy(head.ident, "RSAD", 4); 2676 head.dims[0] = static_cast<uint32_t>(alloc->dimension.get()->dim_1); 2677 head.dims[1] = static_cast<uint32_t>(alloc->dimension.get()->dim_2); 2678 head.dims[2] = static_cast<uint32_t>(alloc->dimension.get()->dim_3); 2679 2680 const size_t element_header_size = CalculateElementHeaderSize(alloc->element); 2681 assert((sizeof(AllocationDetails::FileHeader) + element_header_size) < 2682 UINT16_MAX && 2683 "Element header too large"); 2684 head.hdr_size = static_cast<uint16_t>(sizeof(AllocationDetails::FileHeader) + 2685 element_header_size); 2686 2687 // Write the file header 2688 size_t num_bytes = sizeof(AllocationDetails::FileHeader); 2689 LLDB_LOGF(log, "%s - writing File Header, 0x%" PRIx64 " bytes", __FUNCTION__, 2690 (uint64_t)num_bytes); 2691 2692 Status err = file.get()->Write(&head, num_bytes); 2693 if (!err.Success()) { 2694 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path); 2695 strm.EOL(); 2696 return false; 2697 } 2698 2699 // Create the headers describing the element type of the allocation. 2700 std::shared_ptr<uint8_t> element_header_buffer( 2701 new uint8_t[element_header_size]); 2702 if (element_header_buffer == nullptr) { 2703 strm.Printf("Internal Error: Couldn't allocate %" PRIu64 2704 " bytes on the heap", 2705 (uint64_t)element_header_size); 2706 strm.EOL(); 2707 return false; 2708 } 2709 2710 PopulateElementHeaders(element_header_buffer, 0, alloc->element); 2711 2712 // Write headers for allocation element type to file 2713 num_bytes = element_header_size; 2714 LLDB_LOGF(log, "%s - writing element headers, 0x%" PRIx64 " bytes.", 2715 __FUNCTION__, (uint64_t)num_bytes); 2716 2717 err = file.get()->Write(element_header_buffer.get(), num_bytes); 2718 if (!err.Success()) { 2719 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path); 2720 strm.EOL(); 2721 return false; 2722 } 2723 2724 // Write allocation data to file 2725 num_bytes = static_cast<size_t>(*alloc->size.get()); 2726 LLDB_LOGF(log, "%s - writing 0x%" PRIx64 " bytes", __FUNCTION__, 2727 (uint64_t)num_bytes); 2728 2729 err = file.get()->Write(buffer.get(), num_bytes); 2730 if (!err.Success()) { 2731 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path); 2732 strm.EOL(); 2733 return false; 2734 } 2735 2736 strm.Printf("Allocation written to file '%s'", path); 2737 strm.EOL(); 2738 return true; 2739 } 2740 2741 bool RenderScriptRuntime::LoadModule(const lldb::ModuleSP &module_sp) { 2742 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2743 2744 if (module_sp) { 2745 for (const auto &rs_module : m_rsmodules) { 2746 if (rs_module->m_module == module_sp) { 2747 // Check if the user has enabled automatically breaking on all RS 2748 // kernels. 2749 if (m_breakAllKernels) 2750 BreakOnModuleKernels(rs_module); 2751 2752 return false; 2753 } 2754 } 2755 bool module_loaded = false; 2756 switch (GetModuleKind(module_sp)) { 2757 case eModuleKindKernelObj: { 2758 RSModuleDescriptorSP module_desc; 2759 module_desc = std::make_shared<RSModuleDescriptor>(module_sp); 2760 if (module_desc->ParseRSInfo()) { 2761 m_rsmodules.push_back(module_desc); 2762 module_desc->WarnIfVersionMismatch(GetProcess() 2763 ->GetTarget() 2764 .GetDebugger() 2765 .GetAsyncOutputStream() 2766 .get()); 2767 module_loaded = true; 2768 } 2769 if (module_loaded) { 2770 FixupScriptDetails(module_desc); 2771 } 2772 break; 2773 } 2774 case eModuleKindDriver: { 2775 if (!m_libRSDriver) { 2776 m_libRSDriver = module_sp; 2777 LoadRuntimeHooks(m_libRSDriver, RenderScriptRuntime::eModuleKindDriver); 2778 } 2779 break; 2780 } 2781 case eModuleKindImpl: { 2782 if (!m_libRSCpuRef) { 2783 m_libRSCpuRef = module_sp; 2784 LoadRuntimeHooks(m_libRSCpuRef, RenderScriptRuntime::eModuleKindImpl); 2785 } 2786 break; 2787 } 2788 case eModuleKindLibRS: { 2789 if (!m_libRS) { 2790 m_libRS = module_sp; 2791 static ConstString gDbgPresentStr("gDebuggerPresent"); 2792 const Symbol *debug_present = m_libRS->FindFirstSymbolWithNameAndType( 2793 gDbgPresentStr, eSymbolTypeData); 2794 if (debug_present) { 2795 Status err; 2796 uint32_t flag = 0x00000001U; 2797 Target &target = GetProcess()->GetTarget(); 2798 addr_t addr = debug_present->GetLoadAddress(&target); 2799 GetProcess()->WriteMemory(addr, &flag, sizeof(flag), err); 2800 if (err.Success()) { 2801 LLDB_LOGF(log, "%s - debugger present flag set on debugee.", 2802 __FUNCTION__); 2803 2804 m_debuggerPresentFlagged = true; 2805 } else if (log) { 2806 LLDB_LOGF(log, "%s - error writing debugger present flags '%s' ", 2807 __FUNCTION__, err.AsCString()); 2808 } 2809 } else if (log) { 2810 LLDB_LOGF( 2811 log, 2812 "%s - error writing debugger present flags - symbol not found", 2813 __FUNCTION__); 2814 } 2815 } 2816 break; 2817 } 2818 default: 2819 break; 2820 } 2821 if (module_loaded) 2822 Update(); 2823 return module_loaded; 2824 } 2825 return false; 2826 } 2827 2828 void RenderScriptRuntime::Update() { 2829 if (m_rsmodules.size() > 0) { 2830 if (!m_initiated) { 2831 Initiate(); 2832 } 2833 } 2834 } 2835 2836 void RSModuleDescriptor::WarnIfVersionMismatch(lldb_private::Stream *s) const { 2837 if (!s) 2838 return; 2839 2840 if (m_slang_version.empty() || m_bcc_version.empty()) { 2841 s->PutCString("WARNING: Unknown bcc or slang (llvm-rs-cc) version; debug " 2842 "experience may be unreliable"); 2843 s->EOL(); 2844 } else if (m_slang_version != m_bcc_version) { 2845 s->Printf("WARNING: The debug info emitted by the slang frontend " 2846 "(llvm-rs-cc) used to build this module (%s) does not match the " 2847 "version of bcc used to generate the debug information (%s). " 2848 "This is an unsupported configuration and may result in a poor " 2849 "debugging experience; proceed with caution", 2850 m_slang_version.c_str(), m_bcc_version.c_str()); 2851 s->EOL(); 2852 } 2853 } 2854 2855 bool RSModuleDescriptor::ParsePragmaCount(llvm::StringRef *lines, 2856 size_t n_lines) { 2857 // Skip the pragma prototype line 2858 ++lines; 2859 for (; n_lines--; ++lines) { 2860 const auto kv_pair = lines->split(" - "); 2861 m_pragmas[kv_pair.first.trim().str()] = kv_pair.second.trim().str(); 2862 } 2863 return true; 2864 } 2865 2866 bool RSModuleDescriptor::ParseExportReduceCount(llvm::StringRef *lines, 2867 size_t n_lines) { 2868 // The list of reduction kernels in the `.rs.info` symbol is of the form 2869 // "signature - accumulatordatasize - reduction_name - initializer_name - 2870 // accumulator_name - combiner_name - outconverter_name - halter_name" Where 2871 // a function is not explicitly named by the user, or is not generated by the 2872 // compiler, it is named "." so the dash separated list should always be 8 2873 // items long 2874 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 2875 // Skip the exportReduceCount line 2876 ++lines; 2877 for (; n_lines--; ++lines) { 2878 llvm::SmallVector<llvm::StringRef, 8> spec; 2879 lines->split(spec, " - "); 2880 if (spec.size() != 8) { 2881 if (spec.size() < 8) { 2882 if (log) 2883 log->Error("Error parsing RenderScript reduction spec. wrong number " 2884 "of fields"); 2885 return false; 2886 } else if (log) 2887 log->Warning("Extraneous members in reduction spec: '%s'", 2888 lines->str().c_str()); 2889 } 2890 2891 const auto sig_s = spec[0]; 2892 uint32_t sig; 2893 if (sig_s.getAsInteger(10, sig)) { 2894 if (log) 2895 log->Error("Error parsing Renderscript reduction spec: invalid kernel " 2896 "signature: '%s'", 2897 sig_s.str().c_str()); 2898 return false; 2899 } 2900 2901 const auto accum_data_size_s = spec[1]; 2902 uint32_t accum_data_size; 2903 if (accum_data_size_s.getAsInteger(10, accum_data_size)) { 2904 if (log) 2905 log->Error("Error parsing Renderscript reduction spec: invalid " 2906 "accumulator data size %s", 2907 accum_data_size_s.str().c_str()); 2908 return false; 2909 } 2910 2911 LLDB_LOGF(log, "Found RenderScript reduction '%s'", spec[2].str().c_str()); 2912 2913 m_reductions.push_back(RSReductionDescriptor(this, sig, accum_data_size, 2914 spec[2], spec[3], spec[4], 2915 spec[5], spec[6], spec[7])); 2916 } 2917 return true; 2918 } 2919 2920 bool RSModuleDescriptor::ParseVersionInfo(llvm::StringRef *lines, 2921 size_t n_lines) { 2922 // Skip the versionInfo line 2923 ++lines; 2924 for (; n_lines--; ++lines) { 2925 // We're only interested in bcc and slang versions, and ignore all other 2926 // versionInfo lines 2927 const auto kv_pair = lines->split(" - "); 2928 if (kv_pair.first == "slang") 2929 m_slang_version = kv_pair.second.str(); 2930 else if (kv_pair.first == "bcc") 2931 m_bcc_version = kv_pair.second.str(); 2932 } 2933 return true; 2934 } 2935 2936 bool RSModuleDescriptor::ParseExportForeachCount(llvm::StringRef *lines, 2937 size_t n_lines) { 2938 // Skip the exportForeachCount line 2939 ++lines; 2940 for (; n_lines--; ++lines) { 2941 uint32_t slot; 2942 // `forEach` kernels are listed in the `.rs.info` packet as a "slot - name" 2943 // pair per line 2944 const auto kv_pair = lines->split(" - "); 2945 if (kv_pair.first.getAsInteger(10, slot)) 2946 return false; 2947 m_kernels.push_back(RSKernelDescriptor(this, kv_pair.second, slot)); 2948 } 2949 return true; 2950 } 2951 2952 bool RSModuleDescriptor::ParseExportVarCount(llvm::StringRef *lines, 2953 size_t n_lines) { 2954 // Skip the ExportVarCount line 2955 ++lines; 2956 for (; n_lines--; ++lines) 2957 m_globals.push_back(RSGlobalDescriptor(this, *lines)); 2958 return true; 2959 } 2960 2961 // The .rs.info symbol in renderscript modules contains a string which needs to 2962 // be parsed. The string is basic and is parsed on a line by line basis. 2963 bool RSModuleDescriptor::ParseRSInfo() { 2964 assert(m_module); 2965 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2966 const Symbol *info_sym = m_module->FindFirstSymbolWithNameAndType( 2967 ConstString(".rs.info"), eSymbolTypeData); 2968 if (!info_sym) 2969 return false; 2970 2971 const addr_t addr = info_sym->GetAddressRef().GetFileAddress(); 2972 if (addr == LLDB_INVALID_ADDRESS) 2973 return false; 2974 2975 const addr_t size = info_sym->GetByteSize(); 2976 const FileSpec fs = m_module->GetFileSpec(); 2977 2978 auto buffer = 2979 FileSystem::Instance().CreateDataBuffer(fs.GetPath(), size, addr); 2980 if (!buffer) 2981 return false; 2982 2983 // split rs.info. contents into lines 2984 llvm::SmallVector<llvm::StringRef, 128> info_lines; 2985 { 2986 const llvm::StringRef raw_rs_info((const char *)buffer->GetBytes()); 2987 raw_rs_info.split(info_lines, '\n'); 2988 LLDB_LOGF(log, "'.rs.info symbol for '%s':\n%s", 2989 m_module->GetFileSpec().GetCString(), raw_rs_info.str().c_str()); 2990 } 2991 2992 enum { 2993 eExportVar, 2994 eExportForEach, 2995 eExportReduce, 2996 ePragma, 2997 eBuildChecksum, 2998 eObjectSlot, 2999 eVersionInfo, 3000 }; 3001 3002 const auto rs_info_handler = [](llvm::StringRef name) -> int { 3003 return llvm::StringSwitch<int>(name) 3004 // The number of visible global variables in the script 3005 .Case("exportVarCount", eExportVar) 3006 // The number of RenderScrip `forEach` kernels __attribute__((kernel)) 3007 .Case("exportForEachCount", eExportForEach) 3008 // The number of generalreductions: This marked in the script by 3009 // `#pragma reduce()` 3010 .Case("exportReduceCount", eExportReduce) 3011 // Total count of all RenderScript specific `#pragmas` used in the 3012 // script 3013 .Case("pragmaCount", ePragma) 3014 .Case("objectSlotCount", eObjectSlot) 3015 .Case("versionInfo", eVersionInfo) 3016 .Default(-1); 3017 }; 3018 3019 // parse all text lines of .rs.info 3020 for (auto line = info_lines.begin(); line != info_lines.end(); ++line) { 3021 const auto kv_pair = line->split(": "); 3022 const auto key = kv_pair.first; 3023 const auto val = kv_pair.second.trim(); 3024 3025 const auto handler = rs_info_handler(key); 3026 if (handler == -1) 3027 continue; 3028 // getAsInteger returns `true` on an error condition - we're only 3029 // interested in numeric fields at the moment 3030 uint64_t n_lines; 3031 if (val.getAsInteger(10, n_lines)) { 3032 LLDB_LOGV(log, "Failed to parse non-numeric '.rs.info' section {0}", 3033 line->str()); 3034 continue; 3035 } 3036 if (info_lines.end() - (line + 1) < (ptrdiff_t)n_lines) 3037 return false; 3038 3039 bool success = false; 3040 switch (handler) { 3041 case eExportVar: 3042 success = ParseExportVarCount(line, n_lines); 3043 break; 3044 case eExportForEach: 3045 success = ParseExportForeachCount(line, n_lines); 3046 break; 3047 case eExportReduce: 3048 success = ParseExportReduceCount(line, n_lines); 3049 break; 3050 case ePragma: 3051 success = ParsePragmaCount(line, n_lines); 3052 break; 3053 case eVersionInfo: 3054 success = ParseVersionInfo(line, n_lines); 3055 break; 3056 default: { 3057 LLDB_LOGF(log, "%s - skipping .rs.info field '%s'", __FUNCTION__, 3058 line->str().c_str()); 3059 continue; 3060 } 3061 } 3062 if (!success) 3063 return false; 3064 line += n_lines; 3065 } 3066 return info_lines.size() > 0; 3067 } 3068 3069 void RenderScriptRuntime::DumpStatus(Stream &strm) const { 3070 if (m_libRS) { 3071 strm.Printf("Runtime Library discovered."); 3072 strm.EOL(); 3073 } 3074 if (m_libRSDriver) { 3075 strm.Printf("Runtime Driver discovered."); 3076 strm.EOL(); 3077 } 3078 if (m_libRSCpuRef) { 3079 strm.Printf("CPU Reference Implementation discovered."); 3080 strm.EOL(); 3081 } 3082 3083 if (m_runtimeHooks.size()) { 3084 strm.Printf("Runtime functions hooked:"); 3085 strm.EOL(); 3086 for (auto b : m_runtimeHooks) { 3087 strm.Indent(b.second->defn->name); 3088 strm.EOL(); 3089 } 3090 } else { 3091 strm.Printf("Runtime is not hooked."); 3092 strm.EOL(); 3093 } 3094 } 3095 3096 void RenderScriptRuntime::DumpContexts(Stream &strm) const { 3097 strm.Printf("Inferred RenderScript Contexts:"); 3098 strm.EOL(); 3099 strm.IndentMore(); 3100 3101 std::map<addr_t, uint64_t> contextReferences; 3102 3103 // Iterate over all of the currently discovered scripts. Note: We cant push 3104 // or pop from m_scripts inside this loop or it may invalidate script. 3105 for (const auto &script : m_scripts) { 3106 if (!script->context.isValid()) 3107 continue; 3108 lldb::addr_t context = *script->context; 3109 3110 if (contextReferences.find(context) != contextReferences.end()) { 3111 contextReferences[context]++; 3112 } else { 3113 contextReferences[context] = 1; 3114 } 3115 } 3116 3117 for (const auto &cRef : contextReferences) { 3118 strm.Printf("Context 0x%" PRIx64 ": %" PRIu64 " script instances", 3119 cRef.first, cRef.second); 3120 strm.EOL(); 3121 } 3122 strm.IndentLess(); 3123 } 3124 3125 void RenderScriptRuntime::DumpKernels(Stream &strm) const { 3126 strm.Printf("RenderScript Kernels:"); 3127 strm.EOL(); 3128 strm.IndentMore(); 3129 for (const auto &module : m_rsmodules) { 3130 strm.Printf("Resource '%s':", module->m_resname.c_str()); 3131 strm.EOL(); 3132 for (const auto &kernel : module->m_kernels) { 3133 strm.Indent(kernel.m_name.AsCString()); 3134 strm.EOL(); 3135 } 3136 } 3137 strm.IndentLess(); 3138 } 3139 3140 RenderScriptRuntime::AllocationDetails * 3141 RenderScriptRuntime::FindAllocByID(Stream &strm, const uint32_t alloc_id) { 3142 AllocationDetails *alloc = nullptr; 3143 3144 // See if we can find allocation using id as an index; 3145 if (alloc_id <= m_allocations.size() && alloc_id != 0 && 3146 m_allocations[alloc_id - 1]->id == alloc_id) { 3147 alloc = m_allocations[alloc_id - 1].get(); 3148 return alloc; 3149 } 3150 3151 // Fallback to searching 3152 for (const auto &a : m_allocations) { 3153 if (a->id == alloc_id) { 3154 alloc = a.get(); 3155 break; 3156 } 3157 } 3158 3159 if (alloc == nullptr) { 3160 strm.Printf("Error: Couldn't find allocation with id matching %" PRIu32, 3161 alloc_id); 3162 strm.EOL(); 3163 } 3164 3165 return alloc; 3166 } 3167 3168 // Prints the contents of an allocation to the output stream, which may be a 3169 // file 3170 bool RenderScriptRuntime::DumpAllocation(Stream &strm, StackFrame *frame_ptr, 3171 const uint32_t id) { 3172 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3173 3174 // Check we can find the desired allocation 3175 AllocationDetails *alloc = FindAllocByID(strm, id); 3176 if (!alloc) 3177 return false; // FindAllocByID() will print error message for us here 3178 3179 LLDB_LOGF(log, "%s - found allocation 0x%" PRIx64, __FUNCTION__, 3180 *alloc->address.get()); 3181 3182 // Check we have information about the allocation, if not calculate it 3183 if (alloc->ShouldRefresh()) { 3184 LLDB_LOGF(log, "%s - allocation details not calculated yet, jitting info.", 3185 __FUNCTION__); 3186 3187 // JIT all the allocation information 3188 if (!RefreshAllocation(alloc, frame_ptr)) { 3189 strm.Printf("Error: Couldn't JIT allocation details"); 3190 strm.EOL(); 3191 return false; 3192 } 3193 } 3194 3195 // Establish format and size of each data element 3196 const uint32_t vec_size = *alloc->element.type_vec_size.get(); 3197 const Element::DataType type = *alloc->element.type.get(); 3198 3199 assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && 3200 "Invalid allocation type"); 3201 3202 lldb::Format format; 3203 if (type >= Element::RS_TYPE_ELEMENT) 3204 format = eFormatHex; 3205 else 3206 format = vec_size == 1 3207 ? static_cast<lldb::Format>( 3208 AllocationDetails::RSTypeToFormat[type][eFormatSingle]) 3209 : static_cast<lldb::Format>( 3210 AllocationDetails::RSTypeToFormat[type][eFormatVector]); 3211 3212 const uint32_t data_size = *alloc->element.datum_size.get(); 3213 3214 LLDB_LOGF(log, "%s - element size %" PRIu32 " bytes, including padding", 3215 __FUNCTION__, data_size); 3216 3217 // Allocate a buffer to copy data into 3218 std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr); 3219 if (!buffer) { 3220 strm.Printf("Error: Couldn't read allocation data"); 3221 strm.EOL(); 3222 return false; 3223 } 3224 3225 // Calculate stride between rows as there may be padding at end of rows since 3226 // allocated memory is 16-byte aligned 3227 if (!alloc->stride.isValid()) { 3228 if (alloc->dimension.get()->dim_2 == 0) // We only have one dimension 3229 alloc->stride = 0; 3230 else if (!JITAllocationStride(alloc, frame_ptr)) { 3231 strm.Printf("Error: Couldn't calculate allocation row stride"); 3232 strm.EOL(); 3233 return false; 3234 } 3235 } 3236 const uint32_t stride = *alloc->stride.get(); 3237 const uint32_t size = *alloc->size.get(); // Size of whole allocation 3238 const uint32_t padding = 3239 alloc->element.padding.isValid() ? *alloc->element.padding.get() : 0; 3240 LLDB_LOGF(log, 3241 "%s - stride %" PRIu32 " bytes, size %" PRIu32 3242 " bytes, padding %" PRIu32, 3243 __FUNCTION__, stride, size, padding); 3244 3245 // Find dimensions used to index loops, so need to be non-zero 3246 uint32_t dim_x = alloc->dimension.get()->dim_1; 3247 dim_x = dim_x == 0 ? 1 : dim_x; 3248 3249 uint32_t dim_y = alloc->dimension.get()->dim_2; 3250 dim_y = dim_y == 0 ? 1 : dim_y; 3251 3252 uint32_t dim_z = alloc->dimension.get()->dim_3; 3253 dim_z = dim_z == 0 ? 1 : dim_z; 3254 3255 // Use data extractor to format output 3256 const uint32_t target_ptr_size = 3257 GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 3258 DataExtractor alloc_data(buffer.get(), size, GetProcess()->GetByteOrder(), 3259 target_ptr_size); 3260 3261 uint32_t offset = 0; // Offset in buffer to next element to be printed 3262 uint32_t prev_row = 0; // Offset to the start of the previous row 3263 3264 // Iterate over allocation dimensions, printing results to user 3265 strm.Printf("Data (X, Y, Z):"); 3266 for (uint32_t z = 0; z < dim_z; ++z) { 3267 for (uint32_t y = 0; y < dim_y; ++y) { 3268 // Use stride to index start of next row. 3269 if (!(y == 0 && z == 0)) 3270 offset = prev_row + stride; 3271 prev_row = offset; 3272 3273 // Print each element in the row individually 3274 for (uint32_t x = 0; x < dim_x; ++x) { 3275 strm.Printf("\n(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ") = ", x, y, z); 3276 if ((type == Element::RS_TYPE_NONE) && 3277 (alloc->element.children.size() > 0) && 3278 (alloc->element.type_name != Element::GetFallbackStructName())) { 3279 // Here we are dumping an Element of struct type. This is done using 3280 // expression evaluation with the name of the struct type and pointer 3281 // to element. Don't print the name of the resulting expression, 3282 // since this will be '$[0-9]+' 3283 DumpValueObjectOptions expr_options; 3284 expr_options.SetHideName(true); 3285 3286 // Setup expression as dereferencing a pointer cast to element 3287 // address. 3288 char expr_char_buffer[jit_max_expr_size]; 3289 int written = 3290 snprintf(expr_char_buffer, jit_max_expr_size, "*(%s*) 0x%" PRIx64, 3291 alloc->element.type_name.AsCString(), 3292 *alloc->data_ptr.get() + offset); 3293 3294 if (written < 0 || written >= jit_max_expr_size) { 3295 LLDB_LOGF(log, "%s - error in snprintf().", __FUNCTION__); 3296 continue; 3297 } 3298 3299 // Evaluate expression 3300 ValueObjectSP expr_result; 3301 GetProcess()->GetTarget().EvaluateExpression(expr_char_buffer, 3302 frame_ptr, expr_result); 3303 3304 // Print the results to our stream. 3305 expr_result->Dump(strm, expr_options); 3306 } else { 3307 DumpDataExtractor(alloc_data, &strm, offset, format, 3308 data_size - padding, 1, 1, LLDB_INVALID_ADDRESS, 0, 3309 0); 3310 } 3311 offset += data_size; 3312 } 3313 } 3314 } 3315 strm.EOL(); 3316 3317 return true; 3318 } 3319 3320 // Function recalculates all our cached information about allocations by 3321 // jitting the RS runtime regarding each allocation we know about. Returns true 3322 // if all allocations could be recomputed, false otherwise. 3323 bool RenderScriptRuntime::RecomputeAllAllocations(Stream &strm, 3324 StackFrame *frame_ptr) { 3325 bool success = true; 3326 for (auto &alloc : m_allocations) { 3327 // JIT current allocation information 3328 if (!RefreshAllocation(alloc.get(), frame_ptr)) { 3329 strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32 3330 "\n", 3331 alloc->id); 3332 success = false; 3333 } 3334 } 3335 3336 if (success) 3337 strm.Printf("All allocations successfully recomputed"); 3338 strm.EOL(); 3339 3340 return success; 3341 } 3342 3343 // Prints information regarding currently loaded allocations. These details are 3344 // gathered by jitting the runtime, which has as latency. Index parameter 3345 // specifies a single allocation ID to print, or a zero value to print them all 3346 void RenderScriptRuntime::ListAllocations(Stream &strm, StackFrame *frame_ptr, 3347 const uint32_t index) { 3348 strm.Printf("RenderScript Allocations:"); 3349 strm.EOL(); 3350 strm.IndentMore(); 3351 3352 for (auto &alloc : m_allocations) { 3353 // index will only be zero if we want to print all allocations 3354 if (index != 0 && index != alloc->id) 3355 continue; 3356 3357 // JIT current allocation information 3358 if (alloc->ShouldRefresh() && !RefreshAllocation(alloc.get(), frame_ptr)) { 3359 strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32, 3360 alloc->id); 3361 strm.EOL(); 3362 continue; 3363 } 3364 3365 strm.Printf("%" PRIu32 ":", alloc->id); 3366 strm.EOL(); 3367 strm.IndentMore(); 3368 3369 strm.Indent("Context: "); 3370 if (!alloc->context.isValid()) 3371 strm.Printf("unknown\n"); 3372 else 3373 strm.Printf("0x%" PRIx64 "\n", *alloc->context.get()); 3374 3375 strm.Indent("Address: "); 3376 if (!alloc->address.isValid()) 3377 strm.Printf("unknown\n"); 3378 else 3379 strm.Printf("0x%" PRIx64 "\n", *alloc->address.get()); 3380 3381 strm.Indent("Data pointer: "); 3382 if (!alloc->data_ptr.isValid()) 3383 strm.Printf("unknown\n"); 3384 else 3385 strm.Printf("0x%" PRIx64 "\n", *alloc->data_ptr.get()); 3386 3387 strm.Indent("Dimensions: "); 3388 if (!alloc->dimension.isValid()) 3389 strm.Printf("unknown\n"); 3390 else 3391 strm.Printf("(%" PRId32 ", %" PRId32 ", %" PRId32 ")\n", 3392 alloc->dimension.get()->dim_1, alloc->dimension.get()->dim_2, 3393 alloc->dimension.get()->dim_3); 3394 3395 strm.Indent("Data Type: "); 3396 if (!alloc->element.type.isValid() || 3397 !alloc->element.type_vec_size.isValid()) 3398 strm.Printf("unknown\n"); 3399 else { 3400 const int vector_size = *alloc->element.type_vec_size.get(); 3401 Element::DataType type = *alloc->element.type.get(); 3402 3403 if (!alloc->element.type_name.IsEmpty()) 3404 strm.Printf("%s\n", alloc->element.type_name.AsCString()); 3405 else { 3406 // Enum value isn't monotonous, so doesn't always index 3407 // RsDataTypeToString array 3408 if (type >= Element::RS_TYPE_ELEMENT && type <= Element::RS_TYPE_FONT) 3409 type = 3410 static_cast<Element::DataType>((type - Element::RS_TYPE_ELEMENT) + 3411 Element::RS_TYPE_MATRIX_2X2 + 1); 3412 3413 if (type >= (sizeof(AllocationDetails::RsDataTypeToString) / 3414 sizeof(AllocationDetails::RsDataTypeToString[0])) || 3415 vector_size > 4 || vector_size < 1) 3416 strm.Printf("invalid type\n"); 3417 else 3418 strm.Printf( 3419 "%s\n", 3420 AllocationDetails::RsDataTypeToString[static_cast<uint32_t>(type)] 3421 [vector_size - 1]); 3422 } 3423 } 3424 3425 strm.Indent("Data Kind: "); 3426 if (!alloc->element.type_kind.isValid()) 3427 strm.Printf("unknown\n"); 3428 else { 3429 const Element::DataKind kind = *alloc->element.type_kind.get(); 3430 if (kind < Element::RS_KIND_USER || kind > Element::RS_KIND_PIXEL_YUV) 3431 strm.Printf("invalid kind\n"); 3432 else 3433 strm.Printf( 3434 "%s\n", 3435 AllocationDetails::RsDataKindToString[static_cast<uint32_t>(kind)]); 3436 } 3437 3438 strm.EOL(); 3439 strm.IndentLess(); 3440 } 3441 strm.IndentLess(); 3442 } 3443 3444 // Set breakpoints on every kernel found in RS module 3445 void RenderScriptRuntime::BreakOnModuleKernels( 3446 const RSModuleDescriptorSP rsmodule_sp) { 3447 for (const auto &kernel : rsmodule_sp->m_kernels) { 3448 // Don't set breakpoint on 'root' kernel 3449 if (strcmp(kernel.m_name.AsCString(), "root") == 0) 3450 continue; 3451 3452 CreateKernelBreakpoint(kernel.m_name); 3453 } 3454 } 3455 3456 // Method is internally called by the 'kernel breakpoint all' command to enable 3457 // or disable breaking on all kernels. When do_break is true we want to enable 3458 // this functionality. When do_break is false we want to disable it. 3459 void RenderScriptRuntime::SetBreakAllKernels(bool do_break, TargetSP target) { 3460 Log *log( 3461 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3462 3463 InitSearchFilter(target); 3464 3465 // Set breakpoints on all the kernels 3466 if (do_break && !m_breakAllKernels) { 3467 m_breakAllKernels = true; 3468 3469 for (const auto &module : m_rsmodules) 3470 BreakOnModuleKernels(module); 3471 3472 LLDB_LOGF(log, 3473 "%s(True) - breakpoints set on all currently loaded kernels.", 3474 __FUNCTION__); 3475 } else if (!do_break && 3476 m_breakAllKernels) // Breakpoints won't be set on any new kernels. 3477 { 3478 m_breakAllKernels = false; 3479 3480 LLDB_LOGF(log, "%s(False) - breakpoints no longer automatically set.", 3481 __FUNCTION__); 3482 } 3483 } 3484 3485 // Given the name of a kernel this function creates a breakpoint using our own 3486 // breakpoint resolver, and returns the Breakpoint shared pointer. 3487 BreakpointSP 3488 RenderScriptRuntime::CreateKernelBreakpoint(ConstString name) { 3489 Log *log( 3490 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3491 3492 if (!m_filtersp) { 3493 LLDB_LOGF(log, "%s - error, no breakpoint search filter set.", 3494 __FUNCTION__); 3495 return nullptr; 3496 } 3497 3498 BreakpointResolverSP resolver_sp(new RSBreakpointResolver(nullptr, name)); 3499 Target &target = GetProcess()->GetTarget(); 3500 BreakpointSP bp = target.CreateBreakpoint( 3501 m_filtersp, resolver_sp, false, false, false); 3502 3503 // Give RS breakpoints a specific name, so the user can manipulate them as a 3504 // group. 3505 Status err; 3506 target.AddNameToBreakpoint(bp, "RenderScriptKernel", err); 3507 if (err.Fail() && log) 3508 LLDB_LOGF(log, "%s - error setting break name, '%s'.", __FUNCTION__, 3509 err.AsCString()); 3510 3511 return bp; 3512 } 3513 3514 BreakpointSP 3515 RenderScriptRuntime::CreateReductionBreakpoint(ConstString name, 3516 int kernel_types) { 3517 Log *log( 3518 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3519 3520 if (!m_filtersp) { 3521 LLDB_LOGF(log, "%s - error, no breakpoint search filter set.", 3522 __FUNCTION__); 3523 return nullptr; 3524 } 3525 3526 BreakpointResolverSP resolver_sp(new RSReduceBreakpointResolver( 3527 nullptr, name, &m_rsmodules, kernel_types)); 3528 Target &target = GetProcess()->GetTarget(); 3529 BreakpointSP bp = target.CreateBreakpoint( 3530 m_filtersp, resolver_sp, false, false, false); 3531 3532 // Give RS breakpoints a specific name, so the user can manipulate them as a 3533 // group. 3534 Status err; 3535 target.AddNameToBreakpoint(bp, "RenderScriptReduction", err); 3536 if (err.Fail() && log) 3537 LLDB_LOGF(log, "%s - error setting break name, '%s'.", __FUNCTION__, 3538 err.AsCString()); 3539 3540 return bp; 3541 } 3542 3543 // Given an expression for a variable this function tries to calculate the 3544 // variable's value. If this is possible it returns true and sets the uint64_t 3545 // parameter to the variables unsigned value. Otherwise function returns false. 3546 bool RenderScriptRuntime::GetFrameVarAsUnsigned(const StackFrameSP frame_sp, 3547 const char *var_name, 3548 uint64_t &val) { 3549 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3550 Status err; 3551 VariableSP var_sp; 3552 3553 // Find variable in stack frame 3554 ValueObjectSP value_sp(frame_sp->GetValueForVariableExpressionPath( 3555 var_name, eNoDynamicValues, 3556 StackFrame::eExpressionPathOptionCheckPtrVsMember | 3557 StackFrame::eExpressionPathOptionsAllowDirectIVarAccess, 3558 var_sp, err)); 3559 if (!err.Success()) { 3560 LLDB_LOGF(log, "%s - error, couldn't find '%s' in frame", __FUNCTION__, 3561 var_name); 3562 return false; 3563 } 3564 3565 // Find the uint32_t value for the variable 3566 bool success = false; 3567 val = value_sp->GetValueAsUnsigned(0, &success); 3568 if (!success) { 3569 LLDB_LOGF(log, "%s - error, couldn't parse '%s' as an uint32_t.", 3570 __FUNCTION__, var_name); 3571 return false; 3572 } 3573 3574 return true; 3575 } 3576 3577 // Function attempts to find the current coordinate of a kernel invocation by 3578 // investigating the values of frame variables in the .expand function. These 3579 // coordinates are returned via the coord array reference parameter. Returns 3580 // true if the coordinates could be found, and false otherwise. 3581 bool RenderScriptRuntime::GetKernelCoordinate(RSCoordinate &coord, 3582 Thread *thread_ptr) { 3583 static const char *const x_expr = "rsIndex"; 3584 static const char *const y_expr = "p->current.y"; 3585 static const char *const z_expr = "p->current.z"; 3586 3587 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3588 3589 if (!thread_ptr) { 3590 LLDB_LOGF(log, "%s - Error, No thread pointer", __FUNCTION__); 3591 3592 return false; 3593 } 3594 3595 // Walk the call stack looking for a function whose name has the suffix 3596 // '.expand' and contains the variables we're looking for. 3597 for (uint32_t i = 0; i < thread_ptr->GetStackFrameCount(); ++i) { 3598 if (!thread_ptr->SetSelectedFrameByIndex(i)) 3599 continue; 3600 3601 StackFrameSP frame_sp = thread_ptr->GetSelectedFrame(); 3602 if (!frame_sp) 3603 continue; 3604 3605 // Find the function name 3606 const SymbolContext sym_ctx = 3607 frame_sp->GetSymbolContext(eSymbolContextFunction); 3608 const ConstString func_name = sym_ctx.GetFunctionName(); 3609 if (!func_name) 3610 continue; 3611 3612 LLDB_LOGF(log, "%s - Inspecting function '%s'", __FUNCTION__, 3613 func_name.GetCString()); 3614 3615 // Check if function name has .expand suffix 3616 if (!func_name.GetStringRef().endswith(".expand")) 3617 continue; 3618 3619 LLDB_LOGF(log, "%s - Found .expand function '%s'", __FUNCTION__, 3620 func_name.GetCString()); 3621 3622 // Get values for variables in .expand frame that tell us the current 3623 // kernel invocation 3624 uint64_t x, y, z; 3625 bool found = GetFrameVarAsUnsigned(frame_sp, x_expr, x) && 3626 GetFrameVarAsUnsigned(frame_sp, y_expr, y) && 3627 GetFrameVarAsUnsigned(frame_sp, z_expr, z); 3628 3629 if (found) { 3630 // The RenderScript runtime uses uint32_t for these vars. If they're not 3631 // within bounds, our frame parsing is garbage 3632 assert(x <= UINT32_MAX && y <= UINT32_MAX && z <= UINT32_MAX); 3633 coord.x = (uint32_t)x; 3634 coord.y = (uint32_t)y; 3635 coord.z = (uint32_t)z; 3636 return true; 3637 } 3638 } 3639 return false; 3640 } 3641 3642 // Callback when a kernel breakpoint hits and we're looking for a specific 3643 // coordinate. Baton parameter contains a pointer to the target coordinate we 3644 // want to break on. Function then checks the .expand frame for the current 3645 // coordinate and breaks to user if it matches. Parameter 'break_id' is the id 3646 // of the Breakpoint which made the callback. Parameter 'break_loc_id' is the 3647 // id for the BreakpointLocation which was hit, a single logical breakpoint can 3648 // have multiple addresses. 3649 bool RenderScriptRuntime::KernelBreakpointHit(void *baton, 3650 StoppointCallbackContext *ctx, 3651 user_id_t break_id, 3652 user_id_t break_loc_id) { 3653 Log *log( 3654 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3655 3656 assert(baton && 3657 "Error: null baton in conditional kernel breakpoint callback"); 3658 3659 // Coordinate we want to stop on 3660 RSCoordinate target_coord = *static_cast<RSCoordinate *>(baton); 3661 3662 LLDB_LOGF(log, "%s - Break ID %" PRIu64 ", " FMT_COORD, __FUNCTION__, 3663 break_id, target_coord.x, target_coord.y, target_coord.z); 3664 3665 // Select current thread 3666 ExecutionContext context(ctx->exe_ctx_ref); 3667 Thread *thread_ptr = context.GetThreadPtr(); 3668 assert(thread_ptr && "Null thread pointer"); 3669 3670 // Find current kernel invocation from .expand frame variables 3671 RSCoordinate current_coord{}; 3672 if (!GetKernelCoordinate(current_coord, thread_ptr)) { 3673 LLDB_LOGF(log, "%s - Error, couldn't select .expand stack frame", 3674 __FUNCTION__); 3675 return false; 3676 } 3677 3678 LLDB_LOGF(log, "%s - " FMT_COORD, __FUNCTION__, current_coord.x, 3679 current_coord.y, current_coord.z); 3680 3681 // Check if the current kernel invocation coordinate matches our target 3682 // coordinate 3683 if (target_coord == current_coord) { 3684 LLDB_LOGF(log, "%s, BREAKING " FMT_COORD, __FUNCTION__, current_coord.x, 3685 current_coord.y, current_coord.z); 3686 3687 BreakpointSP breakpoint_sp = 3688 context.GetTargetPtr()->GetBreakpointByID(break_id); 3689 assert(breakpoint_sp != nullptr && 3690 "Error: Couldn't find breakpoint matching break id for callback"); 3691 breakpoint_sp->SetEnabled(false); // Optimise since conditional breakpoint 3692 // should only be hit once. 3693 return true; 3694 } 3695 3696 // No match on coordinate 3697 return false; 3698 } 3699 3700 void RenderScriptRuntime::SetConditional(BreakpointSP bp, Stream &messages, 3701 const RSCoordinate &coord) { 3702 messages.Printf("Conditional kernel breakpoint on coordinate " FMT_COORD, 3703 coord.x, coord.y, coord.z); 3704 messages.EOL(); 3705 3706 // Allocate memory for the baton, and copy over coordinate 3707 RSCoordinate *baton = new RSCoordinate(coord); 3708 3709 // Create a callback that will be invoked every time the breakpoint is hit. 3710 // The baton object passed to the handler is the target coordinate we want to 3711 // break on. 3712 bp->SetCallback(KernelBreakpointHit, baton, true); 3713 3714 // Store a shared pointer to the baton, so the memory will eventually be 3715 // cleaned up after destruction 3716 m_conditional_breaks[bp->GetID()] = std::unique_ptr<RSCoordinate>(baton); 3717 } 3718 3719 // Tries to set a breakpoint on the start of a kernel, resolved using the 3720 // kernel name. Argument 'coords', represents a three dimensional coordinate 3721 // which can be used to specify a single kernel instance to break on. If this 3722 // is set then we add a callback to the breakpoint. 3723 bool RenderScriptRuntime::PlaceBreakpointOnKernel(TargetSP target, 3724 Stream &messages, 3725 const char *name, 3726 const RSCoordinate *coord) { 3727 if (!name) 3728 return false; 3729 3730 InitSearchFilter(target); 3731 3732 ConstString kernel_name(name); 3733 BreakpointSP bp = CreateKernelBreakpoint(kernel_name); 3734 if (!bp) 3735 return false; 3736 3737 // We have a conditional breakpoint on a specific coordinate 3738 if (coord) 3739 SetConditional(bp, messages, *coord); 3740 3741 bp->GetDescription(&messages, lldb::eDescriptionLevelInitial, false); 3742 3743 return true; 3744 } 3745 3746 BreakpointSP 3747 RenderScriptRuntime::CreateScriptGroupBreakpoint(ConstString name, 3748 bool stop_on_all) { 3749 Log *log( 3750 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3751 3752 if (!m_filtersp) { 3753 LLDB_LOGF(log, "%s - error, no breakpoint search filter set.", 3754 __FUNCTION__); 3755 return nullptr; 3756 } 3757 3758 BreakpointResolverSP resolver_sp(new RSScriptGroupBreakpointResolver( 3759 nullptr, name, m_scriptGroups, stop_on_all)); 3760 Target &target = GetProcess()->GetTarget(); 3761 BreakpointSP bp = target.CreateBreakpoint( 3762 m_filtersp, resolver_sp, false, false, false); 3763 // Give RS breakpoints a specific name, so the user can manipulate them as a 3764 // group. 3765 Status err; 3766 target.AddNameToBreakpoint(bp, name.GetCString(), err); 3767 if (err.Fail() && log) 3768 LLDB_LOGF(log, "%s - error setting break name, '%s'.", __FUNCTION__, 3769 err.AsCString()); 3770 // ask the breakpoint to resolve itself 3771 bp->ResolveBreakpoint(); 3772 return bp; 3773 } 3774 3775 bool RenderScriptRuntime::PlaceBreakpointOnScriptGroup(TargetSP target, 3776 Stream &strm, 3777 ConstString name, 3778 bool multi) { 3779 InitSearchFilter(target); 3780 BreakpointSP bp = CreateScriptGroupBreakpoint(name, multi); 3781 if (bp) 3782 bp->GetDescription(&strm, lldb::eDescriptionLevelInitial, false); 3783 return bool(bp); 3784 } 3785 3786 bool RenderScriptRuntime::PlaceBreakpointOnReduction(TargetSP target, 3787 Stream &messages, 3788 const char *reduce_name, 3789 const RSCoordinate *coord, 3790 int kernel_types) { 3791 if (!reduce_name) 3792 return false; 3793 3794 InitSearchFilter(target); 3795 BreakpointSP bp = 3796 CreateReductionBreakpoint(ConstString(reduce_name), kernel_types); 3797 if (!bp) 3798 return false; 3799 3800 if (coord) 3801 SetConditional(bp, messages, *coord); 3802 3803 bp->GetDescription(&messages, lldb::eDescriptionLevelInitial, false); 3804 3805 return true; 3806 } 3807 3808 void RenderScriptRuntime::DumpModules(Stream &strm) const { 3809 strm.Printf("RenderScript Modules:"); 3810 strm.EOL(); 3811 strm.IndentMore(); 3812 for (const auto &module : m_rsmodules) { 3813 module->Dump(strm); 3814 } 3815 strm.IndentLess(); 3816 } 3817 3818 RenderScriptRuntime::ScriptDetails * 3819 RenderScriptRuntime::LookUpScript(addr_t address, bool create) { 3820 for (const auto &s : m_scripts) { 3821 if (s->script.isValid()) 3822 if (*s->script == address) 3823 return s.get(); 3824 } 3825 if (create) { 3826 std::unique_ptr<ScriptDetails> s(new ScriptDetails); 3827 s->script = address; 3828 m_scripts.push_back(std::move(s)); 3829 return m_scripts.back().get(); 3830 } 3831 return nullptr; 3832 } 3833 3834 RenderScriptRuntime::AllocationDetails * 3835 RenderScriptRuntime::LookUpAllocation(addr_t address) { 3836 for (const auto &a : m_allocations) { 3837 if (a->address.isValid()) 3838 if (*a->address == address) 3839 return a.get(); 3840 } 3841 return nullptr; 3842 } 3843 3844 RenderScriptRuntime::AllocationDetails * 3845 RenderScriptRuntime::CreateAllocation(addr_t address) { 3846 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 3847 3848 // Remove any previous allocation which contains the same address 3849 auto it = m_allocations.begin(); 3850 while (it != m_allocations.end()) { 3851 if (*((*it)->address) == address) { 3852 LLDB_LOGF(log, "%s - Removing allocation id: %d, address: 0x%" PRIx64, 3853 __FUNCTION__, (*it)->id, address); 3854 3855 it = m_allocations.erase(it); 3856 } else { 3857 it++; 3858 } 3859 } 3860 3861 std::unique_ptr<AllocationDetails> a(new AllocationDetails); 3862 a->address = address; 3863 m_allocations.push_back(std::move(a)); 3864 return m_allocations.back().get(); 3865 } 3866 3867 bool RenderScriptRuntime::ResolveKernelName(lldb::addr_t kernel_addr, 3868 ConstString &name) { 3869 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS); 3870 3871 Target &target = GetProcess()->GetTarget(); 3872 Address resolved; 3873 // RenderScript module 3874 if (!target.GetSectionLoadList().ResolveLoadAddress(kernel_addr, resolved)) { 3875 LLDB_LOGF(log, "%s: unable to resolve 0x%" PRIx64 " to a loaded symbol", 3876 __FUNCTION__, kernel_addr); 3877 return false; 3878 } 3879 3880 Symbol *sym = resolved.CalculateSymbolContextSymbol(); 3881 if (!sym) 3882 return false; 3883 3884 name = sym->GetName(); 3885 assert(IsRenderScriptModule(resolved.CalculateSymbolContextModule())); 3886 LLDB_LOGF(log, "%s: 0x%" PRIx64 " resolved to the symbol '%s'", __FUNCTION__, 3887 kernel_addr, name.GetCString()); 3888 return true; 3889 } 3890 3891 void RSModuleDescriptor::Dump(Stream &strm) const { 3892 int indent = strm.GetIndentLevel(); 3893 3894 strm.Indent(); 3895 m_module->GetFileSpec().Dump(&strm); 3896 strm.Indent(m_module->GetNumCompileUnits() ? "Debug info loaded." 3897 : "Debug info does not exist."); 3898 strm.EOL(); 3899 strm.IndentMore(); 3900 3901 strm.Indent(); 3902 strm.Printf("Globals: %" PRIu64, static_cast<uint64_t>(m_globals.size())); 3903 strm.EOL(); 3904 strm.IndentMore(); 3905 for (const auto &global : m_globals) { 3906 global.Dump(strm); 3907 } 3908 strm.IndentLess(); 3909 3910 strm.Indent(); 3911 strm.Printf("Kernels: %" PRIu64, static_cast<uint64_t>(m_kernels.size())); 3912 strm.EOL(); 3913 strm.IndentMore(); 3914 for (const auto &kernel : m_kernels) { 3915 kernel.Dump(strm); 3916 } 3917 strm.IndentLess(); 3918 3919 strm.Indent(); 3920 strm.Printf("Pragmas: %" PRIu64, static_cast<uint64_t>(m_pragmas.size())); 3921 strm.EOL(); 3922 strm.IndentMore(); 3923 for (const auto &key_val : m_pragmas) { 3924 strm.Indent(); 3925 strm.Printf("%s: %s", key_val.first.c_str(), key_val.second.c_str()); 3926 strm.EOL(); 3927 } 3928 strm.IndentLess(); 3929 3930 strm.Indent(); 3931 strm.Printf("Reductions: %" PRIu64, 3932 static_cast<uint64_t>(m_reductions.size())); 3933 strm.EOL(); 3934 strm.IndentMore(); 3935 for (const auto &reduction : m_reductions) { 3936 reduction.Dump(strm); 3937 } 3938 3939 strm.SetIndentLevel(indent); 3940 } 3941 3942 void RSGlobalDescriptor::Dump(Stream &strm) const { 3943 strm.Indent(m_name.AsCString()); 3944 VariableList var_list; 3945 m_module->m_module->FindGlobalVariables(m_name, nullptr, 1U, var_list); 3946 if (var_list.GetSize() == 1) { 3947 auto var = var_list.GetVariableAtIndex(0); 3948 auto type = var->GetType(); 3949 if (type) { 3950 strm.Printf(" - "); 3951 type->DumpTypeName(&strm); 3952 } else { 3953 strm.Printf(" - Unknown Type"); 3954 } 3955 } else { 3956 strm.Printf(" - variable identified, but not found in binary"); 3957 const Symbol *s = m_module->m_module->FindFirstSymbolWithNameAndType( 3958 m_name, eSymbolTypeData); 3959 if (s) { 3960 strm.Printf(" (symbol exists) "); 3961 } 3962 } 3963 3964 strm.EOL(); 3965 } 3966 3967 void RSKernelDescriptor::Dump(Stream &strm) const { 3968 strm.Indent(m_name.AsCString()); 3969 strm.EOL(); 3970 } 3971 3972 void RSReductionDescriptor::Dump(lldb_private::Stream &stream) const { 3973 stream.Indent(m_reduce_name.AsCString()); 3974 stream.IndentMore(); 3975 stream.EOL(); 3976 stream.Indent(); 3977 stream.Printf("accumulator: %s", m_accum_name.AsCString()); 3978 stream.EOL(); 3979 stream.Indent(); 3980 stream.Printf("initializer: %s", m_init_name.AsCString()); 3981 stream.EOL(); 3982 stream.Indent(); 3983 stream.Printf("combiner: %s", m_comb_name.AsCString()); 3984 stream.EOL(); 3985 stream.Indent(); 3986 stream.Printf("outconverter: %s", m_outc_name.AsCString()); 3987 stream.EOL(); 3988 // XXX This is currently unspecified by RenderScript, and unused 3989 // stream.Indent(); 3990 // stream.Printf("halter: '%s'", m_init_name.AsCString()); 3991 // stream.EOL(); 3992 stream.IndentLess(); 3993 } 3994 3995 class CommandObjectRenderScriptRuntimeModuleDump : public CommandObjectParsed { 3996 public: 3997 CommandObjectRenderScriptRuntimeModuleDump(CommandInterpreter &interpreter) 3998 : CommandObjectParsed( 3999 interpreter, "renderscript module dump", 4000 "Dumps renderscript specific information for all modules.", 4001 "renderscript module dump", 4002 eCommandRequiresProcess | eCommandProcessMustBeLaunched) {} 4003 4004 ~CommandObjectRenderScriptRuntimeModuleDump() override = default; 4005 4006 bool DoExecute(Args &command, CommandReturnObject &result) override { 4007 RenderScriptRuntime *runtime = llvm::cast<RenderScriptRuntime>( 4008 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4009 eLanguageTypeExtRenderScript)); 4010 runtime->DumpModules(result.GetOutputStream()); 4011 result.SetStatus(eReturnStatusSuccessFinishResult); 4012 return true; 4013 } 4014 }; 4015 4016 class CommandObjectRenderScriptRuntimeModule : public CommandObjectMultiword { 4017 public: 4018 CommandObjectRenderScriptRuntimeModule(CommandInterpreter &interpreter) 4019 : CommandObjectMultiword(interpreter, "renderscript module", 4020 "Commands that deal with RenderScript modules.", 4021 nullptr) { 4022 LoadSubCommand( 4023 "dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeModuleDump( 4024 interpreter))); 4025 } 4026 4027 ~CommandObjectRenderScriptRuntimeModule() override = default; 4028 }; 4029 4030 class CommandObjectRenderScriptRuntimeKernelList : public CommandObjectParsed { 4031 public: 4032 CommandObjectRenderScriptRuntimeKernelList(CommandInterpreter &interpreter) 4033 : CommandObjectParsed( 4034 interpreter, "renderscript kernel list", 4035 "Lists renderscript kernel names and associated script resources.", 4036 "renderscript kernel list", 4037 eCommandRequiresProcess | eCommandProcessMustBeLaunched) {} 4038 4039 ~CommandObjectRenderScriptRuntimeKernelList() override = default; 4040 4041 bool DoExecute(Args &command, CommandReturnObject &result) override { 4042 RenderScriptRuntime *runtime = llvm::cast<RenderScriptRuntime>( 4043 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4044 eLanguageTypeExtRenderScript)); 4045 runtime->DumpKernels(result.GetOutputStream()); 4046 result.SetStatus(eReturnStatusSuccessFinishResult); 4047 return true; 4048 } 4049 }; 4050 4051 static constexpr OptionDefinition g_renderscript_reduction_bp_set_options[] = { 4052 {LLDB_OPT_SET_1, false, "function-role", 't', 4053 OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeOneLiner, 4054 "Break on a comma separated set of reduction kernel types " 4055 "(accumulator,outcoverter,combiner,initializer"}, 4056 {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument, 4057 nullptr, {}, 0, eArgTypeValue, 4058 "Set a breakpoint on a single invocation of the kernel with specified " 4059 "coordinate.\n" 4060 "Coordinate takes the form 'x[,y][,z] where x,y,z are positive " 4061 "integers representing kernel dimensions. " 4062 "Any unset dimensions will be defaulted to zero."}}; 4063 4064 class CommandObjectRenderScriptRuntimeReductionBreakpointSet 4065 : public CommandObjectParsed { 4066 public: 4067 CommandObjectRenderScriptRuntimeReductionBreakpointSet( 4068 CommandInterpreter &interpreter) 4069 : CommandObjectParsed( 4070 interpreter, "renderscript reduction breakpoint set", 4071 "Set a breakpoint on named RenderScript general reductions", 4072 "renderscript reduction breakpoint set <kernel_name> [-t " 4073 "<reduction_kernel_type,...>]", 4074 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4075 eCommandProcessMustBePaused), 4076 m_options(){}; 4077 4078 class CommandOptions : public Options { 4079 public: 4080 CommandOptions() 4081 : Options(), 4082 m_kernel_types(RSReduceBreakpointResolver::eKernelTypeAll) {} 4083 4084 ~CommandOptions() override = default; 4085 4086 Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg, 4087 ExecutionContext *exe_ctx) override { 4088 Status err; 4089 StreamString err_str; 4090 const int short_option = m_getopt_table[option_idx].val; 4091 switch (short_option) { 4092 case 't': 4093 if (!ParseReductionTypes(option_arg, err_str)) 4094 err.SetErrorStringWithFormat( 4095 "Unable to deduce reduction types for %s: %s", 4096 option_arg.str().c_str(), err_str.GetData()); 4097 break; 4098 case 'c': { 4099 auto coord = RSCoordinate{}; 4100 if (!ParseCoordinate(option_arg, coord)) 4101 err.SetErrorStringWithFormat("unable to parse coordinate for %s", 4102 option_arg.str().c_str()); 4103 else { 4104 m_have_coord = true; 4105 m_coord = coord; 4106 } 4107 break; 4108 } 4109 default: 4110 err.SetErrorStringWithFormat("Invalid option '-%c'", short_option); 4111 } 4112 return err; 4113 } 4114 4115 void OptionParsingStarting(ExecutionContext *exe_ctx) override { 4116 m_have_coord = false; 4117 } 4118 4119 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4120 return llvm::makeArrayRef(g_renderscript_reduction_bp_set_options); 4121 } 4122 4123 bool ParseReductionTypes(llvm::StringRef option_val, 4124 StreamString &err_str) { 4125 m_kernel_types = RSReduceBreakpointResolver::eKernelTypeNone; 4126 const auto reduce_name_to_type = [](llvm::StringRef name) -> int { 4127 return llvm::StringSwitch<int>(name) 4128 .Case("accumulator", RSReduceBreakpointResolver::eKernelTypeAccum) 4129 .Case("initializer", RSReduceBreakpointResolver::eKernelTypeInit) 4130 .Case("outconverter", RSReduceBreakpointResolver::eKernelTypeOutC) 4131 .Case("combiner", RSReduceBreakpointResolver::eKernelTypeComb) 4132 .Case("all", RSReduceBreakpointResolver::eKernelTypeAll) 4133 // Currently not exposed by the runtime 4134 // .Case("halter", RSReduceBreakpointResolver::eKernelTypeHalter) 4135 .Default(0); 4136 }; 4137 4138 // Matching a comma separated list of known words is fairly 4139 // straightforward with PCRE, but we're using ERE, so we end up with a 4140 // little ugliness... 4141 RegularExpression match_type_list( 4142 llvm::StringRef("^([[:alpha:]]+)(,[[:alpha:]]+){0,4}$")); 4143 4144 assert(match_type_list.IsValid()); 4145 4146 if (!match_type_list.Execute(option_val)) { 4147 err_str.PutCString( 4148 "a comma-separated list of kernel types is required"); 4149 return false; 4150 } 4151 4152 // splitting on commas is much easier with llvm::StringRef than regex 4153 llvm::SmallVector<llvm::StringRef, 5> type_names; 4154 llvm::StringRef(option_val).split(type_names, ','); 4155 4156 for (const auto &name : type_names) { 4157 const int type = reduce_name_to_type(name); 4158 if (!type) { 4159 err_str.Printf("unknown kernel type name %s", name.str().c_str()); 4160 return false; 4161 } 4162 m_kernel_types |= type; 4163 } 4164 4165 return true; 4166 } 4167 4168 int m_kernel_types; 4169 llvm::StringRef m_reduce_name; 4170 RSCoordinate m_coord; 4171 bool m_have_coord; 4172 }; 4173 4174 Options *GetOptions() override { return &m_options; } 4175 4176 bool DoExecute(Args &command, CommandReturnObject &result) override { 4177 const size_t argc = command.GetArgumentCount(); 4178 if (argc < 1) { 4179 result.AppendErrorWithFormat("'%s' takes 1 argument of reduction name, " 4180 "and an optional kernel type list", 4181 m_cmd_name.c_str()); 4182 result.SetStatus(eReturnStatusFailed); 4183 return false; 4184 } 4185 4186 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4187 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4188 eLanguageTypeExtRenderScript)); 4189 4190 auto &outstream = result.GetOutputStream(); 4191 auto name = command.GetArgumentAtIndex(0); 4192 auto &target = m_exe_ctx.GetTargetSP(); 4193 auto coord = m_options.m_have_coord ? &m_options.m_coord : nullptr; 4194 if (!runtime->PlaceBreakpointOnReduction(target, outstream, name, coord, 4195 m_options.m_kernel_types)) { 4196 result.SetStatus(eReturnStatusFailed); 4197 result.AppendError("Error: unable to place breakpoint on reduction"); 4198 return false; 4199 } 4200 result.AppendMessage("Breakpoint(s) created"); 4201 result.SetStatus(eReturnStatusSuccessFinishResult); 4202 return true; 4203 } 4204 4205 private: 4206 CommandOptions m_options; 4207 }; 4208 4209 static constexpr OptionDefinition g_renderscript_kernel_bp_set_options[] = { 4210 {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument, 4211 nullptr, {}, 0, eArgTypeValue, 4212 "Set a breakpoint on a single invocation of the kernel with specified " 4213 "coordinate.\n" 4214 "Coordinate takes the form 'x[,y][,z] where x,y,z are positive " 4215 "integers representing kernel dimensions. " 4216 "Any unset dimensions will be defaulted to zero."}}; 4217 4218 class CommandObjectRenderScriptRuntimeKernelBreakpointSet 4219 : public CommandObjectParsed { 4220 public: 4221 CommandObjectRenderScriptRuntimeKernelBreakpointSet( 4222 CommandInterpreter &interpreter) 4223 : CommandObjectParsed( 4224 interpreter, "renderscript kernel breakpoint set", 4225 "Sets a breakpoint on a renderscript kernel.", 4226 "renderscript kernel breakpoint set <kernel_name> [-c x,y,z]", 4227 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4228 eCommandProcessMustBePaused), 4229 m_options() {} 4230 4231 ~CommandObjectRenderScriptRuntimeKernelBreakpointSet() override = default; 4232 4233 Options *GetOptions() override { return &m_options; } 4234 4235 class CommandOptions : public Options { 4236 public: 4237 CommandOptions() : Options() {} 4238 4239 ~CommandOptions() override = default; 4240 4241 Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg, 4242 ExecutionContext *exe_ctx) override { 4243 Status err; 4244 const int short_option = m_getopt_table[option_idx].val; 4245 4246 switch (short_option) { 4247 case 'c': { 4248 auto coord = RSCoordinate{}; 4249 if (!ParseCoordinate(option_arg, coord)) 4250 err.SetErrorStringWithFormat( 4251 "Couldn't parse coordinate '%s', should be in format 'x,y,z'.", 4252 option_arg.str().c_str()); 4253 else { 4254 m_have_coord = true; 4255 m_coord = coord; 4256 } 4257 break; 4258 } 4259 default: 4260 err.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 4261 break; 4262 } 4263 return err; 4264 } 4265 4266 void OptionParsingStarting(ExecutionContext *exe_ctx) override { 4267 m_have_coord = false; 4268 } 4269 4270 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4271 return llvm::makeArrayRef(g_renderscript_kernel_bp_set_options); 4272 } 4273 4274 RSCoordinate m_coord; 4275 bool m_have_coord; 4276 }; 4277 4278 bool DoExecute(Args &command, CommandReturnObject &result) override { 4279 const size_t argc = command.GetArgumentCount(); 4280 if (argc < 1) { 4281 result.AppendErrorWithFormat( 4282 "'%s' takes 1 argument of kernel name, and an optional coordinate.", 4283 m_cmd_name.c_str()); 4284 result.SetStatus(eReturnStatusFailed); 4285 return false; 4286 } 4287 4288 RenderScriptRuntime *runtime = llvm::cast<RenderScriptRuntime>( 4289 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4290 eLanguageTypeExtRenderScript)); 4291 4292 auto &outstream = result.GetOutputStream(); 4293 auto &target = m_exe_ctx.GetTargetSP(); 4294 auto name = command.GetArgumentAtIndex(0); 4295 auto coord = m_options.m_have_coord ? &m_options.m_coord : nullptr; 4296 if (!runtime->PlaceBreakpointOnKernel(target, outstream, name, coord)) { 4297 result.SetStatus(eReturnStatusFailed); 4298 result.AppendErrorWithFormat( 4299 "Error: unable to set breakpoint on kernel '%s'", name); 4300 return false; 4301 } 4302 4303 result.AppendMessage("Breakpoint(s) created"); 4304 result.SetStatus(eReturnStatusSuccessFinishResult); 4305 return true; 4306 } 4307 4308 private: 4309 CommandOptions m_options; 4310 }; 4311 4312 class CommandObjectRenderScriptRuntimeKernelBreakpointAll 4313 : public CommandObjectParsed { 4314 public: 4315 CommandObjectRenderScriptRuntimeKernelBreakpointAll( 4316 CommandInterpreter &interpreter) 4317 : CommandObjectParsed( 4318 interpreter, "renderscript kernel breakpoint all", 4319 "Automatically sets a breakpoint on all renderscript kernels that " 4320 "are or will be loaded.\n" 4321 "Disabling option means breakpoints will no longer be set on any " 4322 "kernels loaded in the future, " 4323 "but does not remove currently set breakpoints.", 4324 "renderscript kernel breakpoint all <enable/disable>", 4325 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4326 eCommandProcessMustBePaused) {} 4327 4328 ~CommandObjectRenderScriptRuntimeKernelBreakpointAll() override = default; 4329 4330 bool DoExecute(Args &command, CommandReturnObject &result) override { 4331 const size_t argc = command.GetArgumentCount(); 4332 if (argc != 1) { 4333 result.AppendErrorWithFormat( 4334 "'%s' takes 1 argument of 'enable' or 'disable'", m_cmd_name.c_str()); 4335 result.SetStatus(eReturnStatusFailed); 4336 return false; 4337 } 4338 4339 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4340 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4341 eLanguageTypeExtRenderScript)); 4342 4343 bool do_break = false; 4344 const char *argument = command.GetArgumentAtIndex(0); 4345 if (strcmp(argument, "enable") == 0) { 4346 do_break = true; 4347 result.AppendMessage("Breakpoints will be set on all kernels."); 4348 } else if (strcmp(argument, "disable") == 0) { 4349 do_break = false; 4350 result.AppendMessage("Breakpoints will not be set on any new kernels."); 4351 } else { 4352 result.AppendErrorWithFormat( 4353 "Argument must be either 'enable' or 'disable'"); 4354 result.SetStatus(eReturnStatusFailed); 4355 return false; 4356 } 4357 4358 runtime->SetBreakAllKernels(do_break, m_exe_ctx.GetTargetSP()); 4359 4360 result.SetStatus(eReturnStatusSuccessFinishResult); 4361 return true; 4362 } 4363 }; 4364 4365 class CommandObjectRenderScriptRuntimeReductionBreakpoint 4366 : public CommandObjectMultiword { 4367 public: 4368 CommandObjectRenderScriptRuntimeReductionBreakpoint( 4369 CommandInterpreter &interpreter) 4370 : CommandObjectMultiword(interpreter, "renderscript reduction breakpoint", 4371 "Commands that manipulate breakpoints on " 4372 "renderscript general reductions.", 4373 nullptr) { 4374 LoadSubCommand( 4375 "set", CommandObjectSP( 4376 new CommandObjectRenderScriptRuntimeReductionBreakpointSet( 4377 interpreter))); 4378 } 4379 4380 ~CommandObjectRenderScriptRuntimeReductionBreakpoint() override = default; 4381 }; 4382 4383 class CommandObjectRenderScriptRuntimeKernelCoordinate 4384 : public CommandObjectParsed { 4385 public: 4386 CommandObjectRenderScriptRuntimeKernelCoordinate( 4387 CommandInterpreter &interpreter) 4388 : CommandObjectParsed( 4389 interpreter, "renderscript kernel coordinate", 4390 "Shows the (x,y,z) coordinate of the current kernel invocation.", 4391 "renderscript kernel coordinate", 4392 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4393 eCommandProcessMustBePaused) {} 4394 4395 ~CommandObjectRenderScriptRuntimeKernelCoordinate() override = default; 4396 4397 bool DoExecute(Args &command, CommandReturnObject &result) override { 4398 RSCoordinate coord{}; 4399 bool success = RenderScriptRuntime::GetKernelCoordinate( 4400 coord, m_exe_ctx.GetThreadPtr()); 4401 Stream &stream = result.GetOutputStream(); 4402 4403 if (success) { 4404 stream.Printf("Coordinate: " FMT_COORD, coord.x, coord.y, coord.z); 4405 stream.EOL(); 4406 result.SetStatus(eReturnStatusSuccessFinishResult); 4407 } else { 4408 stream.Printf("Error: Coordinate could not be found."); 4409 stream.EOL(); 4410 result.SetStatus(eReturnStatusFailed); 4411 } 4412 return true; 4413 } 4414 }; 4415 4416 class CommandObjectRenderScriptRuntimeKernelBreakpoint 4417 : public CommandObjectMultiword { 4418 public: 4419 CommandObjectRenderScriptRuntimeKernelBreakpoint( 4420 CommandInterpreter &interpreter) 4421 : CommandObjectMultiword( 4422 interpreter, "renderscript kernel", 4423 "Commands that generate breakpoints on renderscript kernels.", 4424 nullptr) { 4425 LoadSubCommand( 4426 "set", 4427 CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointSet( 4428 interpreter))); 4429 LoadSubCommand( 4430 "all", 4431 CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointAll( 4432 interpreter))); 4433 } 4434 4435 ~CommandObjectRenderScriptRuntimeKernelBreakpoint() override = default; 4436 }; 4437 4438 class CommandObjectRenderScriptRuntimeKernel : public CommandObjectMultiword { 4439 public: 4440 CommandObjectRenderScriptRuntimeKernel(CommandInterpreter &interpreter) 4441 : CommandObjectMultiword(interpreter, "renderscript kernel", 4442 "Commands that deal with RenderScript kernels.", 4443 nullptr) { 4444 LoadSubCommand( 4445 "list", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelList( 4446 interpreter))); 4447 LoadSubCommand( 4448 "coordinate", 4449 CommandObjectSP( 4450 new CommandObjectRenderScriptRuntimeKernelCoordinate(interpreter))); 4451 LoadSubCommand( 4452 "breakpoint", 4453 CommandObjectSP( 4454 new CommandObjectRenderScriptRuntimeKernelBreakpoint(interpreter))); 4455 } 4456 4457 ~CommandObjectRenderScriptRuntimeKernel() override = default; 4458 }; 4459 4460 class CommandObjectRenderScriptRuntimeContextDump : public CommandObjectParsed { 4461 public: 4462 CommandObjectRenderScriptRuntimeContextDump(CommandInterpreter &interpreter) 4463 : CommandObjectParsed(interpreter, "renderscript context dump", 4464 "Dumps renderscript context information.", 4465 "renderscript context dump", 4466 eCommandRequiresProcess | 4467 eCommandProcessMustBeLaunched) {} 4468 4469 ~CommandObjectRenderScriptRuntimeContextDump() override = default; 4470 4471 bool DoExecute(Args &command, CommandReturnObject &result) override { 4472 RenderScriptRuntime *runtime = llvm::cast<RenderScriptRuntime>( 4473 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4474 eLanguageTypeExtRenderScript)); 4475 runtime->DumpContexts(result.GetOutputStream()); 4476 result.SetStatus(eReturnStatusSuccessFinishResult); 4477 return true; 4478 } 4479 }; 4480 4481 static constexpr OptionDefinition g_renderscript_runtime_alloc_dump_options[] = { 4482 {LLDB_OPT_SET_1, false, "file", 'f', OptionParser::eRequiredArgument, 4483 nullptr, {}, 0, eArgTypeFilename, 4484 "Print results to specified file instead of command line."}}; 4485 4486 class CommandObjectRenderScriptRuntimeContext : public CommandObjectMultiword { 4487 public: 4488 CommandObjectRenderScriptRuntimeContext(CommandInterpreter &interpreter) 4489 : CommandObjectMultiword(interpreter, "renderscript context", 4490 "Commands that deal with RenderScript contexts.", 4491 nullptr) { 4492 LoadSubCommand( 4493 "dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeContextDump( 4494 interpreter))); 4495 } 4496 4497 ~CommandObjectRenderScriptRuntimeContext() override = default; 4498 }; 4499 4500 class CommandObjectRenderScriptRuntimeAllocationDump 4501 : public CommandObjectParsed { 4502 public: 4503 CommandObjectRenderScriptRuntimeAllocationDump( 4504 CommandInterpreter &interpreter) 4505 : CommandObjectParsed(interpreter, "renderscript allocation dump", 4506 "Displays the contents of a particular allocation", 4507 "renderscript allocation dump <ID>", 4508 eCommandRequiresProcess | 4509 eCommandProcessMustBeLaunched), 4510 m_options() {} 4511 4512 ~CommandObjectRenderScriptRuntimeAllocationDump() override = default; 4513 4514 Options *GetOptions() override { return &m_options; } 4515 4516 class CommandOptions : public Options { 4517 public: 4518 CommandOptions() : Options() {} 4519 4520 ~CommandOptions() override = default; 4521 4522 Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg, 4523 ExecutionContext *exe_ctx) override { 4524 Status err; 4525 const int short_option = m_getopt_table[option_idx].val; 4526 4527 switch (short_option) { 4528 case 'f': 4529 m_outfile.SetFile(option_arg, FileSpec::Style::native); 4530 FileSystem::Instance().Resolve(m_outfile); 4531 if (FileSystem::Instance().Exists(m_outfile)) { 4532 m_outfile.Clear(); 4533 err.SetErrorStringWithFormat("file already exists: '%s'", 4534 option_arg.str().c_str()); 4535 } 4536 break; 4537 default: 4538 err.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 4539 break; 4540 } 4541 return err; 4542 } 4543 4544 void OptionParsingStarting(ExecutionContext *exe_ctx) override { 4545 m_outfile.Clear(); 4546 } 4547 4548 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4549 return llvm::makeArrayRef(g_renderscript_runtime_alloc_dump_options); 4550 } 4551 4552 FileSpec m_outfile; 4553 }; 4554 4555 bool DoExecute(Args &command, CommandReturnObject &result) override { 4556 const size_t argc = command.GetArgumentCount(); 4557 if (argc < 1) { 4558 result.AppendErrorWithFormat("'%s' takes 1 argument, an allocation ID. " 4559 "As well as an optional -f argument", 4560 m_cmd_name.c_str()); 4561 result.SetStatus(eReturnStatusFailed); 4562 return false; 4563 } 4564 4565 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4566 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4567 eLanguageTypeExtRenderScript)); 4568 4569 const char *id_cstr = command.GetArgumentAtIndex(0); 4570 bool success = false; 4571 const uint32_t id = 4572 StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success); 4573 if (!success) { 4574 result.AppendErrorWithFormat("invalid allocation id argument '%s'", 4575 id_cstr); 4576 result.SetStatus(eReturnStatusFailed); 4577 return false; 4578 } 4579 4580 Stream *output_stream_p = nullptr; 4581 std::unique_ptr<Stream> output_stream_storage; 4582 4583 const FileSpec &outfile_spec = 4584 m_options.m_outfile; // Dump allocation to file instead 4585 if (outfile_spec) { 4586 // Open output file 4587 std::string path = outfile_spec.GetPath(); 4588 auto file = FileSystem::Instance().Open( 4589 outfile_spec, File::eOpenOptionWrite | File::eOpenOptionCanCreate); 4590 if (file) { 4591 output_stream_storage = 4592 std::make_unique<StreamFile>(std::move(file.get())); 4593 output_stream_p = output_stream_storage.get(); 4594 result.GetOutputStream().Printf("Results written to '%s'", 4595 path.c_str()); 4596 result.GetOutputStream().EOL(); 4597 } else { 4598 std::string error = llvm::toString(file.takeError()); 4599 result.AppendErrorWithFormat("Couldn't open file '%s': %s", 4600 path.c_str(), error.c_str()); 4601 result.SetStatus(eReturnStatusFailed); 4602 return false; 4603 } 4604 } else 4605 output_stream_p = &result.GetOutputStream(); 4606 4607 assert(output_stream_p != nullptr); 4608 bool dumped = 4609 runtime->DumpAllocation(*output_stream_p, m_exe_ctx.GetFramePtr(), id); 4610 4611 if (dumped) 4612 result.SetStatus(eReturnStatusSuccessFinishResult); 4613 else 4614 result.SetStatus(eReturnStatusFailed); 4615 4616 return true; 4617 } 4618 4619 private: 4620 CommandOptions m_options; 4621 }; 4622 4623 static constexpr OptionDefinition g_renderscript_runtime_alloc_list_options[] = { 4624 {LLDB_OPT_SET_1, false, "id", 'i', OptionParser::eRequiredArgument, nullptr, 4625 {}, 0, eArgTypeIndex, 4626 "Only show details of a single allocation with specified id."}}; 4627 4628 class CommandObjectRenderScriptRuntimeAllocationList 4629 : public CommandObjectParsed { 4630 public: 4631 CommandObjectRenderScriptRuntimeAllocationList( 4632 CommandInterpreter &interpreter) 4633 : CommandObjectParsed( 4634 interpreter, "renderscript allocation list", 4635 "List renderscript allocations and their information.", 4636 "renderscript allocation list", 4637 eCommandRequiresProcess | eCommandProcessMustBeLaunched), 4638 m_options() {} 4639 4640 ~CommandObjectRenderScriptRuntimeAllocationList() override = default; 4641 4642 Options *GetOptions() override { return &m_options; } 4643 4644 class CommandOptions : public Options { 4645 public: 4646 CommandOptions() : Options(), m_id(0) {} 4647 4648 ~CommandOptions() override = default; 4649 4650 Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg, 4651 ExecutionContext *exe_ctx) override { 4652 Status err; 4653 const int short_option = m_getopt_table[option_idx].val; 4654 4655 switch (short_option) { 4656 case 'i': 4657 if (option_arg.getAsInteger(0, m_id)) 4658 err.SetErrorStringWithFormat("invalid integer value for option '%c'", 4659 short_option); 4660 break; 4661 default: 4662 err.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 4663 break; 4664 } 4665 return err; 4666 } 4667 4668 void OptionParsingStarting(ExecutionContext *exe_ctx) override { m_id = 0; } 4669 4670 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4671 return llvm::makeArrayRef(g_renderscript_runtime_alloc_list_options); 4672 } 4673 4674 uint32_t m_id; 4675 }; 4676 4677 bool DoExecute(Args &command, CommandReturnObject &result) override { 4678 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4679 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4680 eLanguageTypeExtRenderScript)); 4681 runtime->ListAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr(), 4682 m_options.m_id); 4683 result.SetStatus(eReturnStatusSuccessFinishResult); 4684 return true; 4685 } 4686 4687 private: 4688 CommandOptions m_options; 4689 }; 4690 4691 class CommandObjectRenderScriptRuntimeAllocationLoad 4692 : public CommandObjectParsed { 4693 public: 4694 CommandObjectRenderScriptRuntimeAllocationLoad( 4695 CommandInterpreter &interpreter) 4696 : CommandObjectParsed( 4697 interpreter, "renderscript allocation load", 4698 "Loads renderscript allocation contents from a file.", 4699 "renderscript allocation load <ID> <filename>", 4700 eCommandRequiresProcess | eCommandProcessMustBeLaunched) {} 4701 4702 ~CommandObjectRenderScriptRuntimeAllocationLoad() override = default; 4703 4704 bool DoExecute(Args &command, CommandReturnObject &result) override { 4705 const size_t argc = command.GetArgumentCount(); 4706 if (argc != 2) { 4707 result.AppendErrorWithFormat( 4708 "'%s' takes 2 arguments, an allocation ID and filename to read from.", 4709 m_cmd_name.c_str()); 4710 result.SetStatus(eReturnStatusFailed); 4711 return false; 4712 } 4713 4714 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4715 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4716 eLanguageTypeExtRenderScript)); 4717 4718 const char *id_cstr = command.GetArgumentAtIndex(0); 4719 bool success = false; 4720 const uint32_t id = 4721 StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success); 4722 if (!success) { 4723 result.AppendErrorWithFormat("invalid allocation id argument '%s'", 4724 id_cstr); 4725 result.SetStatus(eReturnStatusFailed); 4726 return false; 4727 } 4728 4729 const char *path = command.GetArgumentAtIndex(1); 4730 bool loaded = runtime->LoadAllocation(result.GetOutputStream(), id, path, 4731 m_exe_ctx.GetFramePtr()); 4732 4733 if (loaded) 4734 result.SetStatus(eReturnStatusSuccessFinishResult); 4735 else 4736 result.SetStatus(eReturnStatusFailed); 4737 4738 return true; 4739 } 4740 }; 4741 4742 class CommandObjectRenderScriptRuntimeAllocationSave 4743 : public CommandObjectParsed { 4744 public: 4745 CommandObjectRenderScriptRuntimeAllocationSave( 4746 CommandInterpreter &interpreter) 4747 : CommandObjectParsed(interpreter, "renderscript allocation save", 4748 "Write renderscript allocation contents to a file.", 4749 "renderscript allocation save <ID> <filename>", 4750 eCommandRequiresProcess | 4751 eCommandProcessMustBeLaunched) {} 4752 4753 ~CommandObjectRenderScriptRuntimeAllocationSave() override = default; 4754 4755 bool DoExecute(Args &command, CommandReturnObject &result) override { 4756 const size_t argc = command.GetArgumentCount(); 4757 if (argc != 2) { 4758 result.AppendErrorWithFormat( 4759 "'%s' takes 2 arguments, an allocation ID and filename to read from.", 4760 m_cmd_name.c_str()); 4761 result.SetStatus(eReturnStatusFailed); 4762 return false; 4763 } 4764 4765 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4766 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4767 eLanguageTypeExtRenderScript)); 4768 4769 const char *id_cstr = command.GetArgumentAtIndex(0); 4770 bool success = false; 4771 const uint32_t id = 4772 StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success); 4773 if (!success) { 4774 result.AppendErrorWithFormat("invalid allocation id argument '%s'", 4775 id_cstr); 4776 result.SetStatus(eReturnStatusFailed); 4777 return false; 4778 } 4779 4780 const char *path = command.GetArgumentAtIndex(1); 4781 bool saved = runtime->SaveAllocation(result.GetOutputStream(), id, path, 4782 m_exe_ctx.GetFramePtr()); 4783 4784 if (saved) 4785 result.SetStatus(eReturnStatusSuccessFinishResult); 4786 else 4787 result.SetStatus(eReturnStatusFailed); 4788 4789 return true; 4790 } 4791 }; 4792 4793 class CommandObjectRenderScriptRuntimeAllocationRefresh 4794 : public CommandObjectParsed { 4795 public: 4796 CommandObjectRenderScriptRuntimeAllocationRefresh( 4797 CommandInterpreter &interpreter) 4798 : CommandObjectParsed(interpreter, "renderscript allocation refresh", 4799 "Recomputes the details of all allocations.", 4800 "renderscript allocation refresh", 4801 eCommandRequiresProcess | 4802 eCommandProcessMustBeLaunched) {} 4803 4804 ~CommandObjectRenderScriptRuntimeAllocationRefresh() override = default; 4805 4806 bool DoExecute(Args &command, CommandReturnObject &result) override { 4807 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4808 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4809 eLanguageTypeExtRenderScript)); 4810 4811 bool success = runtime->RecomputeAllAllocations(result.GetOutputStream(), 4812 m_exe_ctx.GetFramePtr()); 4813 4814 if (success) { 4815 result.SetStatus(eReturnStatusSuccessFinishResult); 4816 return true; 4817 } else { 4818 result.SetStatus(eReturnStatusFailed); 4819 return false; 4820 } 4821 } 4822 }; 4823 4824 class CommandObjectRenderScriptRuntimeAllocation 4825 : public CommandObjectMultiword { 4826 public: 4827 CommandObjectRenderScriptRuntimeAllocation(CommandInterpreter &interpreter) 4828 : CommandObjectMultiword( 4829 interpreter, "renderscript allocation", 4830 "Commands that deal with RenderScript allocations.", nullptr) { 4831 LoadSubCommand( 4832 "list", 4833 CommandObjectSP( 4834 new CommandObjectRenderScriptRuntimeAllocationList(interpreter))); 4835 LoadSubCommand( 4836 "dump", 4837 CommandObjectSP( 4838 new CommandObjectRenderScriptRuntimeAllocationDump(interpreter))); 4839 LoadSubCommand( 4840 "save", 4841 CommandObjectSP( 4842 new CommandObjectRenderScriptRuntimeAllocationSave(interpreter))); 4843 LoadSubCommand( 4844 "load", 4845 CommandObjectSP( 4846 new CommandObjectRenderScriptRuntimeAllocationLoad(interpreter))); 4847 LoadSubCommand( 4848 "refresh", 4849 CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationRefresh( 4850 interpreter))); 4851 } 4852 4853 ~CommandObjectRenderScriptRuntimeAllocation() override = default; 4854 }; 4855 4856 class CommandObjectRenderScriptRuntimeStatus : public CommandObjectParsed { 4857 public: 4858 CommandObjectRenderScriptRuntimeStatus(CommandInterpreter &interpreter) 4859 : CommandObjectParsed(interpreter, "renderscript status", 4860 "Displays current RenderScript runtime status.", 4861 "renderscript status", 4862 eCommandRequiresProcess | 4863 eCommandProcessMustBeLaunched) {} 4864 4865 ~CommandObjectRenderScriptRuntimeStatus() override = default; 4866 4867 bool DoExecute(Args &command, CommandReturnObject &result) override { 4868 RenderScriptRuntime *runtime = llvm::cast<RenderScriptRuntime>( 4869 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4870 eLanguageTypeExtRenderScript)); 4871 runtime->DumpStatus(result.GetOutputStream()); 4872 result.SetStatus(eReturnStatusSuccessFinishResult); 4873 return true; 4874 } 4875 }; 4876 4877 class CommandObjectRenderScriptRuntimeReduction 4878 : public CommandObjectMultiword { 4879 public: 4880 CommandObjectRenderScriptRuntimeReduction(CommandInterpreter &interpreter) 4881 : CommandObjectMultiword(interpreter, "renderscript reduction", 4882 "Commands that handle general reduction kernels", 4883 nullptr) { 4884 LoadSubCommand( 4885 "breakpoint", 4886 CommandObjectSP(new CommandObjectRenderScriptRuntimeReductionBreakpoint( 4887 interpreter))); 4888 } 4889 ~CommandObjectRenderScriptRuntimeReduction() override = default; 4890 }; 4891 4892 class CommandObjectRenderScriptRuntime : public CommandObjectMultiword { 4893 public: 4894 CommandObjectRenderScriptRuntime(CommandInterpreter &interpreter) 4895 : CommandObjectMultiword( 4896 interpreter, "renderscript", 4897 "Commands for operating on the RenderScript runtime.", 4898 "renderscript <subcommand> [<subcommand-options>]") { 4899 LoadSubCommand( 4900 "module", CommandObjectSP( 4901 new CommandObjectRenderScriptRuntimeModule(interpreter))); 4902 LoadSubCommand( 4903 "status", CommandObjectSP( 4904 new CommandObjectRenderScriptRuntimeStatus(interpreter))); 4905 LoadSubCommand( 4906 "kernel", CommandObjectSP( 4907 new CommandObjectRenderScriptRuntimeKernel(interpreter))); 4908 LoadSubCommand("context", 4909 CommandObjectSP(new CommandObjectRenderScriptRuntimeContext( 4910 interpreter))); 4911 LoadSubCommand( 4912 "allocation", 4913 CommandObjectSP( 4914 new CommandObjectRenderScriptRuntimeAllocation(interpreter))); 4915 LoadSubCommand("scriptgroup", 4916 NewCommandObjectRenderScriptScriptGroup(interpreter)); 4917 LoadSubCommand( 4918 "reduction", 4919 CommandObjectSP( 4920 new CommandObjectRenderScriptRuntimeReduction(interpreter))); 4921 } 4922 4923 ~CommandObjectRenderScriptRuntime() override = default; 4924 }; 4925 4926 void RenderScriptRuntime::Initiate() { assert(!m_initiated); } 4927 4928 RenderScriptRuntime::RenderScriptRuntime(Process *process) 4929 : lldb_private::CPPLanguageRuntime(process), m_initiated(false), 4930 m_debuggerPresentFlagged(false), m_breakAllKernels(false), 4931 m_ir_passes(nullptr) { 4932 ModulesDidLoad(process->GetTarget().GetImages()); 4933 } 4934 4935 lldb::CommandObjectSP RenderScriptRuntime::GetCommandObject( 4936 lldb_private::CommandInterpreter &interpreter) { 4937 return CommandObjectSP(new CommandObjectRenderScriptRuntime(interpreter)); 4938 } 4939 4940 RenderScriptRuntime::~RenderScriptRuntime() = default; 4941