1 //===-- RenderScriptRuntime.cpp ---------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 // C Includes
11 // C++ Includes
12 // Other libraries and framework includes
13 // Project includes
14 #include "RenderScriptRuntime.h"
15 
16 #include "lldb/Breakpoint/StoppointCallbackContext.h"
17 #include "lldb/Core/ConstString.h"
18 #include "lldb/Core/Debugger.h"
19 #include "lldb/Core/Error.h"
20 #include "lldb/Core/Log.h"
21 #include "lldb/Core/PluginManager.h"
22 #include "lldb/Core/RegularExpression.h"
23 #include "lldb/Core/ValueObjectVariable.h"
24 #include "lldb/DataFormatters/DumpValueObjectOptions.h"
25 #include "lldb/Expression/UserExpression.h"
26 #include "lldb/Host/StringConvert.h"
27 #include "lldb/Interpreter/Args.h"
28 #include "lldb/Interpreter/CommandInterpreter.h"
29 #include "lldb/Interpreter/CommandObjectMultiword.h"
30 #include "lldb/Interpreter/CommandReturnObject.h"
31 #include "lldb/Interpreter/Options.h"
32 #include "lldb/Symbol/Symbol.h"
33 #include "lldb/Symbol/Type.h"
34 #include "lldb/Symbol/VariableList.h"
35 #include "lldb/Target/Process.h"
36 #include "lldb/Target/RegisterContext.h"
37 #include "lldb/Target/Target.h"
38 #include "lldb/Target/Thread.h"
39 
40 using namespace lldb;
41 using namespace lldb_private;
42 using namespace lldb_renderscript;
43 
44 namespace
45 {
46 
47 // The empirical_type adds a basic level of validation to arbitrary data
48 // allowing us to track if data has been discovered and stored or not.
49 // An empirical_type will be marked as valid only if it has been explicitly assigned to.
50 template <typename type_t> class empirical_type
51 {
52 public:
53     // Ctor. Contents is invalid when constructed.
54     empirical_type() : valid(false) {}
55 
56     // Return true and copy contents to out if valid, else return false.
57     bool
58     get(type_t &out) const
59     {
60         if (valid)
61             out = data;
62         return valid;
63     }
64 
65     // Return a pointer to the contents or nullptr if it was not valid.
66     const type_t *
67     get() const
68     {
69         return valid ? &data : nullptr;
70     }
71 
72     // Assign data explicitly.
73     void
74     set(const type_t in)
75     {
76         data = in;
77         valid = true;
78     }
79 
80     // Mark contents as invalid.
81     void
82     invalidate()
83     {
84         valid = false;
85     }
86 
87     // Returns true if this type contains valid data.
88     bool
89     isValid() const
90     {
91         return valid;
92     }
93 
94     // Assignment operator.
95     empirical_type<type_t> &
96     operator=(const type_t in)
97     {
98         set(in);
99         return *this;
100     }
101 
102     // Dereference operator returns contents.
103     // Warning: Will assert if not valid so use only when you know data is valid.
104     const type_t &operator*() const
105     {
106         assert(valid);
107         return data;
108     }
109 
110 protected:
111     bool valid;
112     type_t data;
113 };
114 
115 // ArgItem is used by the GetArgs() function when reading function arguments from the target.
116 struct ArgItem
117 {
118     enum
119     {
120         ePointer,
121         eInt32,
122         eInt64,
123         eLong,
124         eBool
125     } type;
126 
127     uint64_t value;
128 
129     explicit operator uint64_t() const { return value; }
130 };
131 
132 // Context structure to be passed into GetArgsXXX(), argument reading functions below.
133 struct GetArgsCtx
134 {
135     RegisterContext *reg_ctx;
136     Process *process;
137 };
138 
139 bool
140 GetArgsX86(const GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args)
141 {
142     Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
143 
144     Error error;
145 
146     // get the current stack pointer
147     uint64_t sp = ctx.reg_ctx->GetSP();
148 
149     for (size_t i = 0; i < num_args; ++i)
150     {
151         ArgItem &arg = arg_list[i];
152         // advance up the stack by one argument
153         sp += sizeof(uint32_t);
154         // get the argument type size
155         size_t arg_size = sizeof(uint32_t);
156         // read the argument from memory
157         arg.value = 0;
158         Error error;
159         size_t read = ctx.process->ReadMemory(sp, &arg.value, sizeof(uint32_t), error);
160         if (read != arg_size || !error.Success())
161         {
162             if (log)
163                 log->Printf("%s - error reading argument: %" PRIu64 " '%s'", __FUNCTION__, uint64_t(i),
164                             error.AsCString());
165             return false;
166         }
167     }
168     return true;
169 }
170 
171 bool
172 GetArgsX86_64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args)
173 {
174     Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
175 
176     // number of arguments passed in registers
177     static const uint32_t c_args_in_reg = 6;
178     // register passing order
179     static const std::array<const char *, c_args_in_reg> c_reg_names{{"rdi", "rsi", "rdx", "rcx", "r8", "r9"}};
180     // argument type to size mapping
181     static const std::array<size_t, 5> arg_size{{
182         8, // ePointer,
183         4, // eInt32,
184         8, // eInt64,
185         8, // eLong,
186         4, // eBool,
187     }};
188 
189     Error error;
190 
191     // get the current stack pointer
192     uint64_t sp = ctx.reg_ctx->GetSP();
193     // step over the return address
194     sp += sizeof(uint64_t);
195 
196     // check the stack alignment was correct (16 byte aligned)
197     if ((sp & 0xf) != 0x0)
198     {
199         if (log)
200             log->Printf("%s - stack misaligned", __FUNCTION__);
201         return false;
202     }
203 
204     // find the start of arguments on the stack
205     uint64_t sp_offset = 0;
206     for (uint32_t i = c_args_in_reg; i < num_args; ++i)
207     {
208         sp_offset += arg_size[arg_list[i].type];
209     }
210     // round up to multiple of 16
211     sp_offset = (sp_offset + 0xf) & 0xf;
212     sp += sp_offset;
213 
214     for (size_t i = 0; i < num_args; ++i)
215     {
216         bool success = false;
217         ArgItem &arg = arg_list[i];
218         // arguments passed in registers
219         if (i < c_args_in_reg)
220         {
221             const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoByName(c_reg_names[i]);
222             RegisterValue rVal;
223             if (ctx.reg_ctx->ReadRegister(rArg, rVal))
224                 arg.value = rVal.GetAsUInt64(0, &success);
225         }
226         // arguments passed on the stack
227         else
228         {
229             // get the argument type size
230             const size_t size = arg_size[arg_list[i].type];
231             // read the argument from memory
232             arg.value = 0;
233             // note: due to little endian layout reading 4 or 8 bytes will give the correct value.
234             size_t read = ctx.process->ReadMemory(sp, &arg.value, size, error);
235             success = (error.Success() && read==size);
236             // advance past this argument
237             sp -= size;
238         }
239         // fail if we couldn't read this argument
240         if (!success)
241         {
242             if (log)
243                 log->Printf("%s - error reading argument: %" PRIu64", reason: %s",
244                             __FUNCTION__, uint64_t(i), error.AsCString("n/a"));
245             return false;
246         }
247     }
248     return true;
249 }
250 
251 bool
252 GetArgsArm(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args)
253 {
254     // number of arguments passed in registers
255     static const uint32_t c_args_in_reg = 4;
256 
257     Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
258 
259     Error error;
260 
261     // get the current stack pointer
262     uint64_t sp = ctx.reg_ctx->GetSP();
263 
264     for (size_t i = 0; i < num_args; ++i)
265     {
266         bool success = false;
267         ArgItem &arg = arg_list[i];
268         // arguments passed in registers
269         if (i < c_args_in_reg)
270         {
271             const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoAtIndex(i);
272             RegisterValue rVal;
273             if (ctx.reg_ctx->ReadRegister(rArg, rVal))
274                 arg.value = rVal.GetAsUInt32(0, &success);
275         }
276         // arguments passed on the stack
277         else
278         {
279             // get the argument type size
280             const size_t arg_size = sizeof(uint32_t);
281             // clear all 64bits
282             arg.value = 0;
283             // read this argument from memory
284             size_t bytes_read = ctx.process->ReadMemory(sp, &arg.value, arg_size, error);
285             success = (error.Success() && bytes_read == arg_size);
286             // advance the stack pointer
287             sp += sizeof(uint32_t);
288         }
289         // fail if we couldn't read this argument
290         if (!success)
291         {
292             if (log)
293                 log->Printf("%s - error reading argument: %" PRIu64", reason: %s",
294                             __FUNCTION__, uint64_t(i), error.AsCString("n/a"));
295             return false;
296         }
297     }
298     return true;
299 }
300 
301 bool
302 GetArgsAarch64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args)
303 {
304     // number of arguments passed in registers
305     static const uint32_t c_args_in_reg = 8;
306 
307     Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
308 
309     for (size_t i = 0; i < num_args; ++i)
310     {
311         bool success = false;
312         ArgItem &arg = arg_list[i];
313         // arguments passed in registers
314         if (i < c_args_in_reg)
315         {
316             const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoAtIndex(i);
317             RegisterValue rVal;
318             if (ctx.reg_ctx->ReadRegister(rArg, rVal))
319                 arg.value = rVal.GetAsUInt64(0, &success);
320         }
321         // arguments passed on the stack
322         else
323         {
324             if (log)
325                 log->Printf("%s - reading arguments spilled to stack not implemented", __FUNCTION__);
326         }
327         // fail if we couldn't read this argument
328         if (!success)
329         {
330             if (log)
331                 log->Printf("%s - error reading argument: %" PRIu64, __FUNCTION__,
332                             uint64_t(i));
333             return false;
334         }
335     }
336     return true;
337 }
338 
339 bool
340 GetArgsMipsel(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args)
341 {
342     // number of arguments passed in registers
343     static const uint32_t c_args_in_reg = 4;
344     // register file offset to first argument
345     static const uint32_t c_reg_offset = 4;
346 
347     Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
348 
349     Error error;
350 
351     // find offset to arguments on the stack (+16 to skip over a0-a3 shadow space)
352     uint64_t sp = ctx.reg_ctx->GetSP() + 16;
353 
354     for (size_t i = 0; i < num_args; ++i)
355     {
356         bool success = false;
357         ArgItem &arg = arg_list[i];
358         // arguments passed in registers
359         if (i < c_args_in_reg)
360         {
361             const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoAtIndex(i + c_reg_offset);
362             RegisterValue rVal;
363             if (ctx.reg_ctx->ReadRegister(rArg, rVal))
364                 arg.value = rVal.GetAsUInt64(0, &success);
365         }
366         // arguments passed on the stack
367         else
368         {
369             const size_t arg_size = sizeof(uint32_t);
370             arg.value = 0;
371             size_t bytes_read = ctx.process->ReadMemory(sp, &arg.value, arg_size, error);
372             success = (error.Success() && bytes_read == arg_size);
373             // advance the stack pointer
374             sp += arg_size;
375         }
376         // fail if we couldn't read this argument
377         if (!success)
378         {
379             if (log)
380                 log->Printf("%s - error reading argument: %" PRIu64", reason: %s",
381                             __FUNCTION__, uint64_t(i), error.AsCString("n/a"));
382             return false;
383         }
384     }
385     return true;
386 }
387 
388 bool
389 GetArgsMips64el(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args)
390 {
391     // number of arguments passed in registers
392     static const uint32_t c_args_in_reg = 8;
393     // register file offset to first argument
394     static const uint32_t c_reg_offset = 4;
395 
396     Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
397 
398     Error error;
399 
400     // get the current stack pointer
401     uint64_t sp = ctx.reg_ctx->GetSP();
402 
403     for (size_t i = 0; i < num_args; ++i)
404     {
405         bool success = false;
406         ArgItem &arg = arg_list[i];
407         // arguments passed in registers
408         if (i < c_args_in_reg)
409         {
410             const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoAtIndex(i + c_reg_offset);
411             RegisterValue rVal;
412             if (ctx.reg_ctx->ReadRegister(rArg, rVal))
413                 arg.value = rVal.GetAsUInt64(0, &success);
414         }
415         // arguments passed on the stack
416         else
417         {
418             // get the argument type size
419             const size_t arg_size = sizeof(uint64_t);
420             // clear all 64bits
421             arg.value = 0;
422             // read this argument from memory
423             size_t bytes_read = ctx.process->ReadMemory(sp, &arg.value, arg_size, error);
424             success = (error.Success() && bytes_read == arg_size);
425             // advance the stack pointer
426             sp += arg_size;
427         }
428         // fail if we couldn't read this argument
429         if (!success)
430         {
431             if (log)
432                 log->Printf("%s - error reading argument: %" PRIu64", reason: %s",
433                             __FUNCTION__, uint64_t(i), error.AsCString("n/a"));
434             return false;
435         }
436     }
437     return true;
438 }
439 
440 bool
441 GetArgs(ExecutionContext &context, ArgItem *arg_list, size_t num_args)
442 {
443     Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
444 
445     // verify that we have a target
446     if (!context.GetTargetPtr())
447     {
448         if (log)
449             log->Printf("%s - invalid target", __FUNCTION__);
450         return false;
451     }
452 
453     GetArgsCtx ctx = {context.GetRegisterContext(), context.GetProcessPtr()};
454     assert(ctx.reg_ctx && ctx.process);
455 
456     // dispatch based on architecture
457     switch (context.GetTargetPtr()->GetArchitecture().GetMachine())
458     {
459         case llvm::Triple::ArchType::x86:
460             return GetArgsX86(ctx, arg_list, num_args);
461 
462         case llvm::Triple::ArchType::x86_64:
463             return GetArgsX86_64(ctx, arg_list, num_args);
464 
465         case llvm::Triple::ArchType::arm:
466             return GetArgsArm(ctx, arg_list, num_args);
467 
468         case llvm::Triple::ArchType::aarch64:
469             return GetArgsAarch64(ctx, arg_list, num_args);
470 
471         case llvm::Triple::ArchType::mipsel:
472             return GetArgsMipsel(ctx, arg_list, num_args);
473 
474         case llvm::Triple::ArchType::mips64el:
475             return GetArgsMips64el(ctx, arg_list, num_args);
476 
477         default:
478             // unsupported architecture
479             if (log)
480             {
481                 log->Printf("%s - architecture not supported: '%s'", __FUNCTION__,
482                             context.GetTargetRef().GetArchitecture().GetArchitectureName());
483             }
484             return false;
485     }
486 }
487 } // anonymous namespace
488 
489 // The ScriptDetails class collects data associated with a single script instance.
490 struct RenderScriptRuntime::ScriptDetails
491 {
492     ~ScriptDetails() = default;
493 
494     enum ScriptType
495     {
496         eScript,
497         eScriptC
498     };
499 
500     // The derived type of the script.
501     empirical_type<ScriptType> type;
502     // The name of the original source file.
503     empirical_type<std::string> resName;
504     // Path to script .so file on the device.
505     empirical_type<std::string> scriptDyLib;
506     // Directory where kernel objects are cached on device.
507     empirical_type<std::string> cacheDir;
508     // Pointer to the context which owns this script.
509     empirical_type<lldb::addr_t> context;
510     // Pointer to the script object itself.
511     empirical_type<lldb::addr_t> script;
512 };
513 
514 // This Element class represents the Element object in RS,
515 // defining the type associated with an Allocation.
516 struct RenderScriptRuntime::Element
517 {
518     // Taken from rsDefines.h
519     enum DataKind
520     {
521         RS_KIND_USER,
522         RS_KIND_PIXEL_L = 7,
523         RS_KIND_PIXEL_A,
524         RS_KIND_PIXEL_LA,
525         RS_KIND_PIXEL_RGB,
526         RS_KIND_PIXEL_RGBA,
527         RS_KIND_PIXEL_DEPTH,
528         RS_KIND_PIXEL_YUV,
529         RS_KIND_INVALID = 100
530     };
531 
532     // Taken from rsDefines.h
533     enum DataType
534     {
535         RS_TYPE_NONE = 0,
536         RS_TYPE_FLOAT_16,
537         RS_TYPE_FLOAT_32,
538         RS_TYPE_FLOAT_64,
539         RS_TYPE_SIGNED_8,
540         RS_TYPE_SIGNED_16,
541         RS_TYPE_SIGNED_32,
542         RS_TYPE_SIGNED_64,
543         RS_TYPE_UNSIGNED_8,
544         RS_TYPE_UNSIGNED_16,
545         RS_TYPE_UNSIGNED_32,
546         RS_TYPE_UNSIGNED_64,
547         RS_TYPE_BOOLEAN,
548 
549         RS_TYPE_UNSIGNED_5_6_5,
550         RS_TYPE_UNSIGNED_5_5_5_1,
551         RS_TYPE_UNSIGNED_4_4_4_4,
552 
553         RS_TYPE_MATRIX_4X4,
554         RS_TYPE_MATRIX_3X3,
555         RS_TYPE_MATRIX_2X2,
556 
557         RS_TYPE_ELEMENT = 1000,
558         RS_TYPE_TYPE,
559         RS_TYPE_ALLOCATION,
560         RS_TYPE_SAMPLER,
561         RS_TYPE_SCRIPT,
562         RS_TYPE_MESH,
563         RS_TYPE_PROGRAM_FRAGMENT,
564         RS_TYPE_PROGRAM_VERTEX,
565         RS_TYPE_PROGRAM_RASTER,
566         RS_TYPE_PROGRAM_STORE,
567         RS_TYPE_FONT,
568 
569         RS_TYPE_INVALID = 10000
570     };
571 
572     std::vector<Element> children;            // Child Element fields for structs
573     empirical_type<lldb::addr_t> element_ptr; // Pointer to the RS Element of the Type
574     empirical_type<DataType> type;            // Type of each data pointer stored by the allocation
575     empirical_type<DataKind> type_kind;       // Defines pixel type if Allocation is created from an image
576     empirical_type<uint32_t> type_vec_size;   // Vector size of each data point, e.g '4' for uchar4
577     empirical_type<uint32_t> field_count;     // Number of Subelements
578     empirical_type<uint32_t> datum_size;      // Size of a single Element with padding
579     empirical_type<uint32_t> padding;         // Number of padding bytes
580     empirical_type<uint32_t> array_size;      // Number of items in array, only needed for strucrs
581     ConstString type_name;                    // Name of type, only needed for structs
582 
583     static const ConstString &
584     GetFallbackStructName(); // Print this as the type name of a struct Element
585                              // If we can't resolve the actual struct name
586 
587     bool
588     shouldRefresh() const
589     {
590         const bool valid_ptr = element_ptr.isValid() && *element_ptr.get() != 0x0;
591         const bool valid_type = type.isValid() && type_vec_size.isValid() && type_kind.isValid();
592         return !valid_ptr || !valid_type || !datum_size.isValid();
593     }
594 };
595 
596 // This AllocationDetails class collects data associated with a single
597 // allocation instance.
598 struct RenderScriptRuntime::AllocationDetails
599 {
600     struct Dimension
601     {
602         uint32_t dim_1;
603         uint32_t dim_2;
604         uint32_t dim_3;
605         uint32_t cubeMap;
606 
607         Dimension()
608         {
609             dim_1 = 0;
610             dim_2 = 0;
611             dim_3 = 0;
612             cubeMap = 0;
613         }
614     };
615 
616     // The FileHeader struct specifies the header we use for writing allocations to a binary file.
617     // Our format begins with the ASCII characters "RSAD", identifying the file as an allocation dump.
618     // Member variables dims and hdr_size are then written consecutively, immediately followed by an instance of
619     // the ElementHeader struct. Because Elements can contain subelements, there may be more than one instance
620     // of the ElementHeader struct. With this first instance being the root element, and the other instances being
621     // the root's descendants. To identify which instances are an ElementHeader's children, each struct
622     // is immediately followed by a sequence of consecutive offsets to the start of its child structs.
623     // These offsets are 4 bytes in size, and the 0 offset signifies no more children.
624     struct FileHeader
625     {
626         uint8_t ident[4];  // ASCII 'RSAD' identifying the file
627         uint32_t dims[3];  // Dimensions
628         uint16_t hdr_size; // Header size in bytes, including all element headers
629     };
630 
631     struct ElementHeader
632     {
633         uint16_t type;         // DataType enum
634         uint32_t kind;         // DataKind enum
635         uint32_t element_size; // Size of a single element, including padding
636         uint16_t vector_size;  // Vector width
637         uint32_t array_size;   // Number of elements in array
638     };
639 
640     // Monotonically increasing from 1
641     static uint32_t ID;
642 
643     // Maps Allocation DataType enum and vector size to printable strings
644     // using mapping from RenderScript numerical types summary documentation
645     static const char *RsDataTypeToString[][4];
646 
647     // Maps Allocation DataKind enum to printable strings
648     static const char *RsDataKindToString[];
649 
650     // Maps allocation types to format sizes for printing.
651     static const uint32_t RSTypeToFormat[][3];
652 
653     // Give each allocation an ID as a way
654     // for commands to reference it.
655     const uint32_t id;
656 
657     RenderScriptRuntime::Element element;  // Allocation Element type
658     empirical_type<Dimension> dimension;   // Dimensions of the Allocation
659     empirical_type<lldb::addr_t> address;  // Pointer to address of the RS Allocation
660     empirical_type<lldb::addr_t> data_ptr; // Pointer to the data held by the Allocation
661     empirical_type<lldb::addr_t> type_ptr; // Pointer to the RS Type of the Allocation
662     empirical_type<lldb::addr_t> context;  // Pointer to the RS Context of the Allocation
663     empirical_type<uint32_t> size;         // Size of the allocation
664     empirical_type<uint32_t> stride;       // Stride between rows of the allocation
665 
666     // Give each allocation an id, so we can reference it in user commands.
667     AllocationDetails() : id(ID++) {}
668 
669     bool
670     shouldRefresh() const
671     {
672         bool valid_ptrs = data_ptr.isValid() && *data_ptr.get() != 0x0;
673         valid_ptrs = valid_ptrs && type_ptr.isValid() && *type_ptr.get() != 0x0;
674         return !valid_ptrs || !dimension.isValid() || !size.isValid() || element.shouldRefresh();
675     }
676 };
677 
678 const ConstString &
679 RenderScriptRuntime::Element::GetFallbackStructName()
680 {
681     static const ConstString FallbackStructName("struct");
682     return FallbackStructName;
683 }
684 
685 uint32_t RenderScriptRuntime::AllocationDetails::ID = 1;
686 
687 const char *RenderScriptRuntime::AllocationDetails::RsDataKindToString[] = {
688     "User",
689     "Undefined",  "Undefined",   "Undefined", "Undefined", "Undefined",  "Undefined", // Enum jumps from 0 to 7
690     "L Pixel",    "A Pixel",     "LA Pixel",  "RGB Pixel",
691     "RGBA Pixel", "Pixel Depth", "YUV Pixel"};
692 
693 const char *RenderScriptRuntime::AllocationDetails::RsDataTypeToString[][4] = {
694     {"None", "None", "None", "None"},
695     {"half", "half2", "half3", "half4"},
696     {"float", "float2", "float3", "float4"},
697     {"double", "double2", "double3", "double4"},
698     {"char", "char2", "char3", "char4"},
699     {"short", "short2", "short3", "short4"},
700     {"int", "int2", "int3", "int4"},
701     {"long", "long2", "long3", "long4"},
702     {"uchar", "uchar2", "uchar3", "uchar4"},
703     {"ushort", "ushort2", "ushort3", "ushort4"},
704     {"uint", "uint2", "uint3", "uint4"},
705     {"ulong", "ulong2", "ulong3", "ulong4"},
706     {"bool", "bool2", "bool3", "bool4"},
707     {"packed_565", "packed_565", "packed_565", "packed_565"},
708     {"packed_5551", "packed_5551", "packed_5551", "packed_5551"},
709     {"packed_4444", "packed_4444", "packed_4444", "packed_4444"},
710     {"rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4"},
711     {"rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3"},
712     {"rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2"},
713 
714     // Handlers
715     {"RS Element", "RS Element", "RS Element", "RS Element"},
716     {"RS Type", "RS Type", "RS Type", "RS Type"},
717     {"RS Allocation", "RS Allocation", "RS Allocation", "RS Allocation"},
718     {"RS Sampler", "RS Sampler", "RS Sampler", "RS Sampler"},
719     {"RS Script", "RS Script", "RS Script", "RS Script"},
720 
721     // Deprecated
722     {"RS Mesh", "RS Mesh", "RS Mesh", "RS Mesh"},
723     {"RS Program Fragment", "RS Program Fragment", "RS Program Fragment", "RS Program Fragment"},
724     {"RS Program Vertex", "RS Program Vertex", "RS Program Vertex", "RS Program Vertex"},
725     {"RS Program Raster", "RS Program Raster", "RS Program Raster", "RS Program Raster"},
726     {"RS Program Store", "RS Program Store", "RS Program Store", "RS Program Store"},
727     {"RS Font", "RS Font", "RS Font", "RS Font"}};
728 
729 // Used as an index into the RSTypeToFormat array elements
730 enum TypeToFormatIndex
731 {
732     eFormatSingle = 0,
733     eFormatVector,
734     eElementSize
735 };
736 
737 // { format enum of single element, format enum of element vector, size of element}
738 const uint32_t RenderScriptRuntime::AllocationDetails::RSTypeToFormat[][3] = {
739     {eFormatHex, eFormatHex, 1},                                          // RS_TYPE_NONE
740     {eFormatFloat, eFormatVectorOfFloat16, 2},                            // RS_TYPE_FLOAT_16
741     {eFormatFloat, eFormatVectorOfFloat32, sizeof(float)},                // RS_TYPE_FLOAT_32
742     {eFormatFloat, eFormatVectorOfFloat64, sizeof(double)},               // RS_TYPE_FLOAT_64
743     {eFormatDecimal, eFormatVectorOfSInt8, sizeof(int8_t)},               // RS_TYPE_SIGNED_8
744     {eFormatDecimal, eFormatVectorOfSInt16, sizeof(int16_t)},             // RS_TYPE_SIGNED_16
745     {eFormatDecimal, eFormatVectorOfSInt32, sizeof(int32_t)},             // RS_TYPE_SIGNED_32
746     {eFormatDecimal, eFormatVectorOfSInt64, sizeof(int64_t)},             // RS_TYPE_SIGNED_64
747     {eFormatDecimal, eFormatVectorOfUInt8, sizeof(uint8_t)},              // RS_TYPE_UNSIGNED_8
748     {eFormatDecimal, eFormatVectorOfUInt16, sizeof(uint16_t)},            // RS_TYPE_UNSIGNED_16
749     {eFormatDecimal, eFormatVectorOfUInt32, sizeof(uint32_t)},            // RS_TYPE_UNSIGNED_32
750     {eFormatDecimal, eFormatVectorOfUInt64, sizeof(uint64_t)},            // RS_TYPE_UNSIGNED_64
751     {eFormatBoolean, eFormatBoolean, 1},                                  // RS_TYPE_BOOL
752     {eFormatHex, eFormatHex, sizeof(uint16_t)},                           // RS_TYPE_UNSIGNED_5_6_5
753     {eFormatHex, eFormatHex, sizeof(uint16_t)},                           // RS_TYPE_UNSIGNED_5_5_5_1
754     {eFormatHex, eFormatHex, sizeof(uint16_t)},                           // RS_TYPE_UNSIGNED_4_4_4_4
755     {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 16}, // RS_TYPE_MATRIX_4X4
756     {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 9},  // RS_TYPE_MATRIX_3X3
757     {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 4}   // RS_TYPE_MATRIX_2X2
758 };
759 
760 //------------------------------------------------------------------
761 // Static Functions
762 //------------------------------------------------------------------
763 LanguageRuntime *
764 RenderScriptRuntime::CreateInstance(Process *process, lldb::LanguageType language)
765 {
766 
767     if (language == eLanguageTypeExtRenderScript)
768         return new RenderScriptRuntime(process);
769     else
770         return nullptr;
771 }
772 
773 // Callback with a module to search for matching symbols.
774 // We first check that the module contains RS kernels.
775 // Then look for a symbol which matches our kernel name.
776 // The breakpoint address is finally set using the address of this symbol.
777 Searcher::CallbackReturn
778 RSBreakpointResolver::SearchCallback(SearchFilter &filter, SymbolContext &context, Address *, bool)
779 {
780     ModuleSP module = context.module_sp;
781 
782     if (!module)
783         return Searcher::eCallbackReturnContinue;
784 
785     // Is this a module containing renderscript kernels?
786     if (nullptr == module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), eSymbolTypeData))
787         return Searcher::eCallbackReturnContinue;
788 
789     // Attempt to set a breakpoint on the kernel name symbol within the module library.
790     // If it's not found, it's likely debug info is unavailable - try to set a
791     // breakpoint on <name>.expand.
792 
793     const Symbol *kernel_sym = module->FindFirstSymbolWithNameAndType(m_kernel_name, eSymbolTypeCode);
794     if (!kernel_sym)
795     {
796         std::string kernel_name_expanded(m_kernel_name.AsCString());
797         kernel_name_expanded.append(".expand");
798         kernel_sym = module->FindFirstSymbolWithNameAndType(ConstString(kernel_name_expanded.c_str()), eSymbolTypeCode);
799     }
800 
801     if (kernel_sym)
802     {
803         Address bp_addr = kernel_sym->GetAddress();
804         if (filter.AddressPasses(bp_addr))
805             m_breakpoint->AddLocation(bp_addr);
806     }
807 
808     return Searcher::eCallbackReturnContinue;
809 }
810 
811 void
812 RenderScriptRuntime::Initialize()
813 {
814     PluginManager::RegisterPlugin(GetPluginNameStatic(), "RenderScript language support", CreateInstance,
815                                   GetCommandObject);
816 }
817 
818 void
819 RenderScriptRuntime::Terminate()
820 {
821     PluginManager::UnregisterPlugin(CreateInstance);
822 }
823 
824 lldb_private::ConstString
825 RenderScriptRuntime::GetPluginNameStatic()
826 {
827     static ConstString g_name("renderscript");
828     return g_name;
829 }
830 
831 RenderScriptRuntime::ModuleKind
832 RenderScriptRuntime::GetModuleKind(const lldb::ModuleSP &module_sp)
833 {
834     if (module_sp)
835     {
836         // Is this a module containing renderscript kernels?
837         const Symbol *info_sym = module_sp->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), eSymbolTypeData);
838         if (info_sym)
839         {
840             return eModuleKindKernelObj;
841         }
842 
843         // Is this the main RS runtime library
844         const ConstString rs_lib("libRS.so");
845         if (module_sp->GetFileSpec().GetFilename() == rs_lib)
846         {
847             return eModuleKindLibRS;
848         }
849 
850         const ConstString rs_driverlib("libRSDriver.so");
851         if (module_sp->GetFileSpec().GetFilename() == rs_driverlib)
852         {
853             return eModuleKindDriver;
854         }
855 
856         const ConstString rs_cpureflib("libRSCpuRef.so");
857         if (module_sp->GetFileSpec().GetFilename() == rs_cpureflib)
858         {
859             return eModuleKindImpl;
860         }
861     }
862     return eModuleKindIgnored;
863 }
864 
865 bool
866 RenderScriptRuntime::IsRenderScriptModule(const lldb::ModuleSP &module_sp)
867 {
868     return GetModuleKind(module_sp) != eModuleKindIgnored;
869 }
870 
871 void
872 RenderScriptRuntime::ModulesDidLoad(const ModuleList &module_list)
873 {
874     Mutex::Locker locker(module_list.GetMutex());
875 
876     size_t num_modules = module_list.GetSize();
877     for (size_t i = 0; i < num_modules; i++)
878     {
879         auto mod = module_list.GetModuleAtIndex(i);
880         if (IsRenderScriptModule(mod))
881         {
882             LoadModule(mod);
883         }
884     }
885 }
886 
887 //------------------------------------------------------------------
888 // PluginInterface protocol
889 //------------------------------------------------------------------
890 lldb_private::ConstString
891 RenderScriptRuntime::GetPluginName()
892 {
893     return GetPluginNameStatic();
894 }
895 
896 uint32_t
897 RenderScriptRuntime::GetPluginVersion()
898 {
899     return 1;
900 }
901 
902 bool
903 RenderScriptRuntime::IsVTableName(const char *name)
904 {
905     return false;
906 }
907 
908 bool
909 RenderScriptRuntime::GetDynamicTypeAndAddress(ValueObject &in_value,
910                                               lldb::DynamicValueType use_dynamic,
911                                               TypeAndOrName &class_type_or_name,
912                                               Address &address,
913                                               Value::ValueType &value_type,
914                                               Error &error)
915 {
916     error.Clear();
917     return false;
918 }
919 
920 TypeAndOrName
921 RenderScriptRuntime::FixUpDynamicType(const TypeAndOrName &type_and_or_name, ValueObject &static_value)
922 {
923     return type_and_or_name;
924 }
925 
926 bool
927 RenderScriptRuntime::CouldHaveDynamicValue(ValueObject &in_value)
928 {
929     return false;
930 }
931 
932 lldb::BreakpointResolverSP
933 RenderScriptRuntime::CreateExceptionResolver(Breakpoint *bkpt, bool catch_bp, bool throw_bp)
934 {
935     BreakpointResolverSP resolver_sp;
936     return resolver_sp;
937 }
938 
939 const RenderScriptRuntime::HookDefn RenderScriptRuntime::s_runtimeHookDefns[] = {
940     // rsdScript
941     {
942         "rsdScriptInit",
943         "_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_7ScriptCEPKcS7_PKhjj",
944         "_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_7ScriptCEPKcS7_PKhmj",
945         0,
946         RenderScriptRuntime::eModuleKindDriver,
947         &lldb_private::RenderScriptRuntime::CaptureScriptInit
948     },
949     {
950         "rsdScriptInvokeForEachMulti",
951         "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0_6ScriptEjPPKNS0_10AllocationEjPS6_PKvjPK12RsScriptCall",
952         "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0_6ScriptEjPPKNS0_10AllocationEmPS6_PKvmPK12RsScriptCall",
953         0,
954         RenderScriptRuntime::eModuleKindDriver,
955         &lldb_private::RenderScriptRuntime::CaptureScriptInvokeForEachMulti
956     },
957     {
958         "rsdScriptSetGlobalVar",
959         "_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_6ScriptEjPvj",
960         "_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_6ScriptEjPvm",
961         0,
962         RenderScriptRuntime::eModuleKindDriver,
963         &lldb_private::RenderScriptRuntime::CaptureSetGlobalVar
964     },
965 
966     // rsdAllocation
967     {
968         "rsdAllocationInit",
969         "_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_10AllocationEb",
970         "_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_10AllocationEb",
971         0,
972         RenderScriptRuntime::eModuleKindDriver,
973         &lldb_private::RenderScriptRuntime::CaptureAllocationInit
974     },
975     {
976         "rsdAllocationRead2D",
977         "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_10AllocationEjjj23RsAllocationCubemapFacejjPvjj",
978         "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_10AllocationEjjj23RsAllocationCubemapFacejjPvmm",
979         0,
980         RenderScriptRuntime::eModuleKindDriver,
981         nullptr
982     },
983     {
984         "rsdAllocationDestroy",
985         "_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_10AllocationE",
986         "_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_10AllocationE",
987         0,
988         RenderScriptRuntime::eModuleKindDriver,
989         &lldb_private::RenderScriptRuntime::CaptureAllocationDestroy
990     },
991 };
992 
993 const size_t RenderScriptRuntime::s_runtimeHookCount = sizeof(s_runtimeHookDefns) / sizeof(s_runtimeHookDefns[0]);
994 
995 bool
996 RenderScriptRuntime::HookCallback(void *baton, StoppointCallbackContext *ctx, lldb::user_id_t break_id,
997                                   lldb::user_id_t break_loc_id)
998 {
999     RuntimeHook *hook_info = (RuntimeHook *)baton;
1000     ExecutionContext context(ctx->exe_ctx_ref);
1001 
1002     RenderScriptRuntime *lang_rt =
1003         (RenderScriptRuntime *)context.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
1004 
1005     lang_rt->HookCallback(hook_info, context);
1006 
1007     return false;
1008 }
1009 
1010 void
1011 RenderScriptRuntime::HookCallback(RuntimeHook *hook_info, ExecutionContext &context)
1012 {
1013     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1014 
1015     if (log)
1016         log->Printf("%s - '%s'", __FUNCTION__, hook_info->defn->name);
1017 
1018     if (hook_info->defn->grabber)
1019     {
1020         (this->*(hook_info->defn->grabber))(hook_info, context);
1021     }
1022 }
1023 
1024 void
1025 RenderScriptRuntime::CaptureScriptInvokeForEachMulti(RuntimeHook* hook_info,
1026                                                      ExecutionContext& context)
1027 {
1028     Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1029 
1030     enum
1031     {
1032         eRsContext = 0,
1033         eRsScript,
1034         eRsSlot,
1035         eRsAIns,
1036         eRsInLen,
1037         eRsAOut,
1038         eRsUsr,
1039         eRsUsrLen,
1040         eRsSc,
1041     };
1042 
1043     std::array<ArgItem, 9> args{{
1044         ArgItem{ArgItem::ePointer, 0}, // const Context       *rsc
1045         ArgItem{ArgItem::ePointer, 0}, // Script              *s
1046         ArgItem{ArgItem::eInt32, 0},   // uint32_t             slot
1047         ArgItem{ArgItem::ePointer, 0}, // const Allocation   **aIns
1048         ArgItem{ArgItem::eInt32, 0},   // size_t               inLen
1049         ArgItem{ArgItem::ePointer, 0}, // Allocation          *aout
1050         ArgItem{ArgItem::ePointer, 0}, // const void          *usr
1051         ArgItem{ArgItem::eInt32, 0},   // size_t               usrLen
1052         ArgItem{ArgItem::ePointer, 0}, // const RsScriptCall  *sc
1053     }};
1054 
1055     bool success = GetArgs(context, &args[0], args.size());
1056     if (!success)
1057     {
1058         if (log)
1059             log->Printf("%s - Error while reading the function parameters", __FUNCTION__);
1060         return;
1061     }
1062 
1063     const uint32_t target_ptr_size = m_process->GetAddressByteSize();
1064     Error error;
1065     std::vector<uint64_t> allocs;
1066 
1067     // traverse allocation list
1068     for (uint64_t i = 0; i < uint64_t(args[eRsInLen]); ++i)
1069     {
1070         // calculate offest to allocation pointer
1071         const addr_t addr = addr_t(args[eRsAIns]) + i * target_ptr_size;
1072 
1073         // Note: due to little endian layout, reading 32bits or 64bits into res64 will
1074         //       give the correct results.
1075 
1076         uint64_t res64 = 0;
1077         size_t read = m_process->ReadMemory(addr, &res64, target_ptr_size, error);
1078         if (read != target_ptr_size || !error.Success())
1079         {
1080             if (log)
1081                 log->Printf("%s - Error while reading allocation list argument %" PRIu64, __FUNCTION__, i);
1082         }
1083         else
1084         {
1085             allocs.push_back(res64);
1086         }
1087     }
1088 
1089     // if there is an output allocation track it
1090     if (uint64_t aOut = uint64_t(args[eRsAOut]))
1091     {
1092         allocs.push_back(aOut);
1093     }
1094 
1095     // for all allocations we have found
1096     for (const uint64_t alloc_addr : allocs)
1097     {
1098         AllocationDetails* alloc = LookUpAllocation(alloc_addr, true);
1099         if (alloc)
1100         {
1101             // save the allocation address
1102             if (alloc->address.isValid())
1103             {
1104                 // check the allocation address we already have matches
1105                 assert(*alloc->address.get() == alloc_addr);
1106             }
1107             else
1108             {
1109                 alloc->address = alloc_addr;
1110             }
1111 
1112             // save the context
1113             if (log)
1114             {
1115                 if (alloc->context.isValid() && *alloc->context.get() != addr_t(args[eRsContext]))
1116                     log->Printf("%s - Allocation used by multiple contexts", __FUNCTION__);
1117             }
1118             alloc->context = addr_t(args[eRsContext]);
1119         }
1120     }
1121 
1122     // make sure we track this script object
1123     if (lldb_private::RenderScriptRuntime::ScriptDetails *script = LookUpScript(addr_t(args[eRsScript]), true))
1124     {
1125         if (log)
1126         {
1127             if (script->context.isValid() && *script->context.get() != addr_t(args[eRsContext]))
1128                 log->Printf("%s - Script used by multiple contexts", __FUNCTION__);
1129         }
1130         script->context = addr_t(args[eRsContext]);
1131     }
1132 }
1133 
1134 void
1135 RenderScriptRuntime::CaptureSetGlobalVar(RuntimeHook *hook_info, ExecutionContext &context)
1136 {
1137     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1138 
1139     enum
1140     {
1141         eRsContext,
1142         eRsScript,
1143         eRsId,
1144         eRsData,
1145         eRsLength,
1146     };
1147 
1148     std::array<ArgItem, 5> args{{
1149         ArgItem{ArgItem::ePointer, 0}, // eRsContext
1150         ArgItem{ArgItem::ePointer, 0}, // eRsScript
1151         ArgItem{ArgItem::eInt32, 0},   // eRsId
1152         ArgItem{ArgItem::ePointer, 0}, // eRsData
1153         ArgItem{ArgItem::eInt32, 0},   // eRsLength
1154     }};
1155 
1156     bool success = GetArgs(context, &args[0], args.size());
1157     if (!success)
1158     {
1159         if (log)
1160             log->Printf("%s - error reading the function parameters.", __FUNCTION__);
1161         return;
1162     }
1163 
1164     if (log)
1165     {
1166         log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " slot %" PRIu64 " = 0x%" PRIx64 ":%" PRIu64 "bytes.", __FUNCTION__,
1167                     uint64_t(args[eRsContext]), uint64_t(args[eRsScript]), uint64_t(args[eRsId]),
1168                     uint64_t(args[eRsData]), uint64_t(args[eRsLength]));
1169 
1170         addr_t script_addr = addr_t(args[eRsScript]);
1171         if (m_scriptMappings.find(script_addr) != m_scriptMappings.end())
1172         {
1173             auto rsm = m_scriptMappings[script_addr];
1174             if (uint64_t(args[eRsId]) < rsm->m_globals.size())
1175             {
1176                 auto rsg = rsm->m_globals[uint64_t(args[eRsId])];
1177                 log->Printf("%s - Setting of '%s' within '%s' inferred", __FUNCTION__, rsg.m_name.AsCString(),
1178                             rsm->m_module->GetFileSpec().GetFilename().AsCString());
1179             }
1180         }
1181     }
1182 }
1183 
1184 void
1185 RenderScriptRuntime::CaptureAllocationInit(RuntimeHook *hook_info, ExecutionContext &context)
1186 {
1187     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1188 
1189     enum
1190     {
1191         eRsContext,
1192         eRsAlloc,
1193         eRsForceZero
1194     };
1195 
1196     std::array<ArgItem, 3> args{{
1197         ArgItem{ArgItem::ePointer, 0}, // eRsContext
1198         ArgItem{ArgItem::ePointer, 0}, // eRsAlloc
1199         ArgItem{ArgItem::eBool, 0},    // eRsForceZero
1200     }};
1201 
1202     bool success = GetArgs(context, &args[0], args.size());
1203     if (!success) // error case
1204     {
1205         if (log)
1206             log->Printf("%s - error while reading the function parameters", __FUNCTION__);
1207         return; // abort
1208     }
1209 
1210     if (log)
1211         log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 ",0x%" PRIx64 " .", __FUNCTION__, uint64_t(args[eRsContext]),
1212                     uint64_t(args[eRsAlloc]), uint64_t(args[eRsForceZero]));
1213 
1214     AllocationDetails *alloc = LookUpAllocation(uint64_t(args[eRsAlloc]), true);
1215     if (alloc)
1216         alloc->context = uint64_t(args[eRsContext]);
1217 }
1218 
1219 void
1220 RenderScriptRuntime::CaptureAllocationDestroy(RuntimeHook *hook_info, ExecutionContext &context)
1221 {
1222     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1223 
1224     enum
1225     {
1226         eRsContext,
1227         eRsAlloc,
1228     };
1229 
1230     std::array<ArgItem, 2> args{{
1231         ArgItem{ArgItem::ePointer, 0}, // eRsContext
1232         ArgItem{ArgItem::ePointer, 0}, // eRsAlloc
1233     }};
1234 
1235     bool success = GetArgs(context, &args[0], args.size());
1236     if (!success)
1237     {
1238         if (log)
1239             log->Printf("%s - error while reading the function parameters.", __FUNCTION__);
1240         return;
1241     }
1242 
1243     if (log)
1244         log->Printf("%s - 0x%" PRIx64 ", 0x%" PRIx64 ".", __FUNCTION__, uint64_t(args[eRsContext]),
1245                     uint64_t(args[eRsAlloc]));
1246 
1247     for (auto iter = m_allocations.begin(); iter != m_allocations.end(); ++iter)
1248     {
1249         auto &allocation_ap = *iter; // get the unique pointer
1250         if (allocation_ap->address.isValid() && *allocation_ap->address.get() == addr_t(args[eRsAlloc]))
1251         {
1252             m_allocations.erase(iter);
1253             if (log)
1254                 log->Printf("%s - deleted allocation entry.", __FUNCTION__);
1255             return;
1256         }
1257     }
1258 
1259     if (log)
1260         log->Printf("%s - couldn't find destroyed allocation.", __FUNCTION__);
1261 }
1262 
1263 void
1264 RenderScriptRuntime::CaptureScriptInit(RuntimeHook *hook_info, ExecutionContext &context)
1265 {
1266     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1267 
1268     Error error;
1269     Process *process = context.GetProcessPtr();
1270 
1271     enum
1272     {
1273         eRsContext,
1274         eRsScript,
1275         eRsResNamePtr,
1276         eRsCachedDirPtr
1277     };
1278 
1279     std::array<ArgItem, 4> args{{ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0},
1280                                  ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}}};
1281     bool success = GetArgs(context, &args[0], args.size());
1282     if (!success)
1283     {
1284         if (log)
1285             log->Printf("%s - error while reading the function parameters.", __FUNCTION__);
1286         return;
1287     }
1288 
1289     std::string resname;
1290     process->ReadCStringFromMemory(addr_t(args[eRsResNamePtr]), resname, error);
1291     if (error.Fail())
1292     {
1293         if (log)
1294             log->Printf("%s - error reading resname: %s.", __FUNCTION__, error.AsCString());
1295     }
1296 
1297     std::string cachedir;
1298     process->ReadCStringFromMemory(addr_t(args[eRsCachedDirPtr]), cachedir, error);
1299     if (error.Fail())
1300     {
1301         if (log)
1302             log->Printf("%s - error reading cachedir: %s.", __FUNCTION__, error.AsCString());
1303     }
1304 
1305     if (log)
1306         log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " => '%s' at '%s' .", __FUNCTION__, uint64_t(args[eRsContext]),
1307                     uint64_t(args[eRsScript]), resname.c_str(), cachedir.c_str());
1308 
1309     if (resname.size() > 0)
1310     {
1311         StreamString strm;
1312         strm.Printf("librs.%s.so", resname.c_str());
1313 
1314         ScriptDetails *script = LookUpScript(addr_t(args[eRsScript]), true);
1315         if (script)
1316         {
1317             script->type = ScriptDetails::eScriptC;
1318             script->cacheDir = cachedir;
1319             script->resName = resname;
1320             script->scriptDyLib = strm.GetData();
1321             script->context = addr_t(args[eRsContext]);
1322         }
1323 
1324         if (log)
1325             log->Printf("%s - '%s' tagged with context 0x%" PRIx64 " and script 0x%" PRIx64 ".", __FUNCTION__,
1326                         strm.GetData(), uint64_t(args[eRsContext]), uint64_t(args[eRsScript]));
1327     }
1328     else if (log)
1329     {
1330         log->Printf("%s - resource name invalid, Script not tagged.", __FUNCTION__);
1331     }
1332 }
1333 
1334 void
1335 RenderScriptRuntime::LoadRuntimeHooks(lldb::ModuleSP module, ModuleKind kind)
1336 {
1337     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1338 
1339     if (!module)
1340     {
1341         return;
1342     }
1343 
1344     Target &target = GetProcess()->GetTarget();
1345     llvm::Triple::ArchType targetArchType = target.GetArchitecture().GetMachine();
1346 
1347     if (targetArchType != llvm::Triple::ArchType::x86 &&
1348         targetArchType != llvm::Triple::ArchType::arm &&
1349         targetArchType != llvm::Triple::ArchType::aarch64 &&
1350         targetArchType != llvm::Triple::ArchType::mipsel &&
1351         targetArchType != llvm::Triple::ArchType::mips64el &&
1352         targetArchType != llvm::Triple::ArchType::x86_64)
1353     {
1354         if (log)
1355             log->Printf("%s - unable to hook runtime functions.", __FUNCTION__);
1356         return;
1357     }
1358 
1359     uint32_t archByteSize = target.GetArchitecture().GetAddressByteSize();
1360 
1361     for (size_t idx = 0; idx < s_runtimeHookCount; idx++)
1362     {
1363         const HookDefn *hook_defn = &s_runtimeHookDefns[idx];
1364         if (hook_defn->kind != kind)
1365         {
1366             continue;
1367         }
1368 
1369         const char *symbol_name = (archByteSize == 4) ? hook_defn->symbol_name_m32 : hook_defn->symbol_name_m64;
1370 
1371         const Symbol *sym = module->FindFirstSymbolWithNameAndType(ConstString(symbol_name), eSymbolTypeCode);
1372         if (!sym)
1373         {
1374             if (log)
1375             {
1376                 log->Printf("%s - symbol '%s' related to the function %s not found",
1377                             __FUNCTION__, symbol_name, hook_defn->name);
1378             }
1379             continue;
1380         }
1381 
1382         addr_t addr = sym->GetLoadAddress(&target);
1383         if (addr == LLDB_INVALID_ADDRESS)
1384         {
1385             if (log)
1386                 log->Printf("%s - unable to resolve the address of hook function '%s' with symbol '%s'.",
1387                             __FUNCTION__, hook_defn->name, symbol_name);
1388             continue;
1389         }
1390         else
1391         {
1392             if (log)
1393                 log->Printf("%s - function %s, address resolved at 0x%" PRIx64,
1394                             __FUNCTION__, hook_defn->name, addr);
1395         }
1396 
1397         RuntimeHookSP hook(new RuntimeHook());
1398         hook->address = addr;
1399         hook->defn = hook_defn;
1400         hook->bp_sp = target.CreateBreakpoint(addr, true, false);
1401         hook->bp_sp->SetCallback(HookCallback, hook.get(), true);
1402         m_runtimeHooks[addr] = hook;
1403         if (log)
1404         {
1405             log->Printf("%s - successfully hooked '%s' in '%s' version %" PRIu64 " at 0x%" PRIx64 ".",
1406                         __FUNCTION__, hook_defn->name, module->GetFileSpec().GetFilename().AsCString(),
1407                         (uint64_t)hook_defn->version, (uint64_t)addr);
1408         }
1409     }
1410 }
1411 
1412 void
1413 RenderScriptRuntime::FixupScriptDetails(RSModuleDescriptorSP rsmodule_sp)
1414 {
1415     if (!rsmodule_sp)
1416         return;
1417 
1418     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1419 
1420     const ModuleSP module = rsmodule_sp->m_module;
1421     const FileSpec &file = module->GetPlatformFileSpec();
1422 
1423     // Iterate over all of the scripts that we currently know of.
1424     // Note: We cant push or pop to m_scripts here or it may invalidate rs_script.
1425     for (const auto &rs_script : m_scripts)
1426     {
1427         // Extract the expected .so file path for this script.
1428         std::string dylib;
1429         if (!rs_script->scriptDyLib.get(dylib))
1430             continue;
1431 
1432         // Only proceed if the module that has loaded corresponds to this script.
1433         if (file.GetFilename() != ConstString(dylib.c_str()))
1434             continue;
1435 
1436         // Obtain the script address which we use as a key.
1437         lldb::addr_t script;
1438         if (!rs_script->script.get(script))
1439             continue;
1440 
1441         // If we have a script mapping for the current script.
1442         if (m_scriptMappings.find(script) != m_scriptMappings.end())
1443         {
1444             // if the module we have stored is different to the one we just received.
1445             if (m_scriptMappings[script] != rsmodule_sp)
1446             {
1447                 if (log)
1448                     log->Printf("%s - script %" PRIx64 " wants reassigned to new rsmodule '%s'.", __FUNCTION__,
1449                                 (uint64_t)script, rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString());
1450             }
1451         }
1452         // We don't have a script mapping for the current script.
1453         else
1454         {
1455             // Obtain the script resource name.
1456             std::string resName;
1457             if (rs_script->resName.get(resName))
1458                 // Set the modules resource name.
1459                 rsmodule_sp->m_resname = resName;
1460             // Add Script/Module pair to map.
1461             m_scriptMappings[script] = rsmodule_sp;
1462             if (log)
1463                 log->Printf("%s - script %" PRIx64 " associated with rsmodule '%s'.", __FUNCTION__,
1464                             (uint64_t)script, rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString());
1465         }
1466     }
1467 }
1468 
1469 // Uses the Target API to evaluate the expression passed as a parameter to the function
1470 // The result of that expression is returned an unsigned 64 bit int, via the result* paramter.
1471 // Function returns true on success, and false on failure
1472 bool
1473 RenderScriptRuntime::EvalRSExpression(const char *expression, StackFrame *frame_ptr, uint64_t *result)
1474 {
1475     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1476     if (log)
1477         log->Printf("%s(%s)", __FUNCTION__, expression);
1478 
1479     ValueObjectSP expr_result;
1480     EvaluateExpressionOptions options;
1481     options.SetLanguage(lldb::eLanguageTypeC_plus_plus);
1482     // Perform the actual expression evaluation
1483     GetProcess()->GetTarget().EvaluateExpression(expression, frame_ptr, expr_result, options);
1484 
1485     if (!expr_result)
1486     {
1487         if (log)
1488             log->Printf("%s: couldn't evaluate expression.", __FUNCTION__);
1489         return false;
1490     }
1491 
1492     // The result of the expression is invalid
1493     if (!expr_result->GetError().Success())
1494     {
1495         Error err = expr_result->GetError();
1496         if (err.GetError() == UserExpression::kNoResult) // Expression returned void, so this is actually a success
1497         {
1498             if (log)
1499                 log->Printf("%s - expression returned void.", __FUNCTION__);
1500 
1501             result = nullptr;
1502             return true;
1503         }
1504 
1505         if (log)
1506             log->Printf("%s - error evaluating expression result: %s", __FUNCTION__,
1507                         err.AsCString());
1508         return false;
1509     }
1510 
1511     bool success = false;
1512     *result = expr_result->GetValueAsUnsigned(0, &success); // We only read the result as an uint32_t.
1513 
1514     if (!success)
1515     {
1516         if (log)
1517             log->Printf("%s - couldn't convert expression result to uint32_t", __FUNCTION__);
1518         return false;
1519     }
1520 
1521     return true;
1522 }
1523 
1524 namespace
1525 {
1526 // Used to index expression format strings
1527 enum ExpressionStrings
1528 {
1529    eExprGetOffsetPtr = 0,
1530    eExprAllocGetType,
1531    eExprTypeDimX,
1532    eExprTypeDimY,
1533    eExprTypeDimZ,
1534    eExprTypeElemPtr,
1535    eExprElementType,
1536    eExprElementKind,
1537    eExprElementVec,
1538    eExprElementFieldCount,
1539    eExprSubelementsId,
1540    eExprSubelementsName,
1541    eExprSubelementsArrSize,
1542 
1543    _eExprLast // keep at the end, implicit size of the array runtimeExpressions
1544 };
1545 
1546 // max length of an expanded expression
1547 const int jit_max_expr_size = 512;
1548 
1549 // Retrieve the string to JIT for the given expression
1550 const char*
1551 JITTemplate(ExpressionStrings e)
1552 {
1553     // Format strings containing the expressions we may need to evaluate.
1554     static std::array<const char*, _eExprLast> runtimeExpressions = {{
1555      // Mangled GetOffsetPointer(Allocation*, xoff, yoff, zoff, lod, cubemap)
1556      "(int*)_Z12GetOffsetPtrPKN7android12renderscript10AllocationEjjjj23RsAllocationCubemapFace"
1557      "(0x%" PRIx64 ", %" PRIu32 ", %" PRIu32 ", %" PRIu32 ", 0, 0)",
1558 
1559      // Type* rsaAllocationGetType(Context*, Allocation*)
1560      "(void*)rsaAllocationGetType(0x%" PRIx64 ", 0x%" PRIx64 ")",
1561 
1562      // rsaTypeGetNativeData(Context*, Type*, void* typeData, size)
1563      // Pack the data in the following way mHal.state.dimX; mHal.state.dimY; mHal.state.dimZ;
1564      // mHal.state.lodCount; mHal.state.faces; mElement; into typeData
1565      // Need to specify 32 or 64 bit for uint_t since this differs between devices
1566      "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 6); data[0]", // X dim
1567      "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 6); data[1]", // Y dim
1568      "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 6); data[2]", // Z dim
1569      "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 6); data[5]", // Element ptr
1570 
1571      // rsaElementGetNativeData(Context*, Element*, uint32_t* elemData,size)
1572      // Pack mType; mKind; mNormalized; mVectorSize; NumSubElements into elemData
1573      "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 5); data[0]", // Type
1574      "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 5); data[1]", // Kind
1575      "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 5); data[3]", // Vector Size
1576      "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 5); data[4]", // Field Count
1577 
1578      // rsaElementGetSubElements(RsContext con, RsElement elem, uintptr_t *ids, const char **names,
1579      // size_t *arraySizes, uint32_t dataSize)
1580      // Needed for Allocations of structs to gather details about fields/Subelements
1581      // Element* of field
1582      "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 "]; size_t arr_size[%" PRIu32 "];"
1583      "(void*)rsaElementGetSubElements(0x%" PRIx64 ", 0x%" PRIx64 ", ids, names, arr_size, %" PRIu32 "); ids[%" PRIu32 "]",
1584 
1585      // Name of field
1586      "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 "]; size_t arr_size[%" PRIu32 "];"
1587      "(void*)rsaElementGetSubElements(0x%" PRIx64 ", 0x%" PRIx64 ", ids, names, arr_size, %" PRIu32 "); names[%" PRIu32 "]",
1588 
1589      // Array size of field
1590      "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 "]; size_t arr_size[%" PRIu32 "];"
1591      "(void*)rsaElementGetSubElements(0x%" PRIx64 ", 0x%" PRIx64 ", ids, names, arr_size, %" PRIu32 "); arr_size[%" PRIu32 "]"
1592     }};
1593 
1594     return runtimeExpressions[e];
1595 }
1596 } // end of the anonymous namespace
1597 
1598 
1599 // JITs the RS runtime for the internal data pointer of an allocation.
1600 // Is passed x,y,z coordinates for the pointer to a specific element.
1601 // Then sets the data_ptr member in Allocation with the result.
1602 // Returns true on success, false otherwise
1603 bool
1604 RenderScriptRuntime::JITDataPointer(AllocationDetails *allocation, StackFrame *frame_ptr, uint32_t x,
1605                                     uint32_t y, uint32_t z)
1606 {
1607     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1608 
1609     if (!allocation->address.isValid())
1610     {
1611         if (log)
1612             log->Printf("%s - failed to find allocation details.", __FUNCTION__);
1613         return false;
1614     }
1615 
1616     const char *expr_cstr = JITTemplate(eExprGetOffsetPtr);
1617     char buffer[jit_max_expr_size];
1618 
1619     int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->address.get(), x, y, z);
1620     if (chars_written < 0)
1621     {
1622         if (log)
1623             log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
1624         return false;
1625     }
1626     else if (chars_written >= jit_max_expr_size)
1627     {
1628         if (log)
1629             log->Printf("%s - expression too long.", __FUNCTION__);
1630         return false;
1631     }
1632 
1633     uint64_t result = 0;
1634     if (!EvalRSExpression(buffer, frame_ptr, &result))
1635         return false;
1636 
1637     addr_t mem_ptr = static_cast<lldb::addr_t>(result);
1638     allocation->data_ptr = mem_ptr;
1639 
1640     return true;
1641 }
1642 
1643 // JITs the RS runtime for the internal pointer to the RS Type of an allocation
1644 // Then sets the type_ptr member in Allocation with the result.
1645 // Returns true on success, false otherwise
1646 bool
1647 RenderScriptRuntime::JITTypePointer(AllocationDetails *allocation, StackFrame *frame_ptr)
1648 {
1649     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1650 
1651     if (!allocation->address.isValid() || !allocation->context.isValid())
1652     {
1653         if (log)
1654             log->Printf("%s - failed to find allocation details.", __FUNCTION__);
1655         return false;
1656     }
1657 
1658     const char *expr_cstr = JITTemplate(eExprAllocGetType);
1659     char buffer[jit_max_expr_size];
1660 
1661     int chars_written =
1662         snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->context.get(), *allocation->address.get());
1663     if (chars_written < 0)
1664     {
1665         if (log)
1666             log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
1667         return false;
1668     }
1669     else if (chars_written >= jit_max_expr_size)
1670     {
1671         if (log)
1672             log->Printf("%s - expression too long.", __FUNCTION__);
1673         return false;
1674     }
1675 
1676     uint64_t result = 0;
1677     if (!EvalRSExpression(buffer, frame_ptr, &result))
1678         return false;
1679 
1680     addr_t type_ptr = static_cast<lldb::addr_t>(result);
1681     allocation->type_ptr = type_ptr;
1682 
1683     return true;
1684 }
1685 
1686 // JITs the RS runtime for information about the dimensions and type of an allocation
1687 // Then sets dimension and element_ptr members in Allocation with the result.
1688 // Returns true on success, false otherwise
1689 bool
1690 RenderScriptRuntime::JITTypePacked(AllocationDetails *allocation, StackFrame *frame_ptr)
1691 {
1692     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1693 
1694     if (!allocation->type_ptr.isValid() || !allocation->context.isValid())
1695     {
1696         if (log)
1697             log->Printf("%s - Failed to find allocation details.", __FUNCTION__);
1698         return false;
1699     }
1700 
1701     // Expression is different depending on if device is 32 or 64 bit
1702     uint32_t archByteSize = GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
1703     const uint32_t bits = archByteSize == 4 ? 32 : 64;
1704 
1705     // We want 4 elements from packed data
1706     const uint32_t num_exprs = 4;
1707     assert(num_exprs == (eExprTypeElemPtr - eExprTypeDimX + 1) && "Invalid number of expressions");
1708 
1709     char buffer[num_exprs][jit_max_expr_size];
1710     uint64_t results[num_exprs];
1711 
1712     for (uint32_t i = 0; i < num_exprs; ++i)
1713     {
1714         const char *expr_cstr = JITTemplate(ExpressionStrings(eExprTypeDimX + i));
1715         int chars_written = snprintf(buffer[i], jit_max_expr_size, expr_cstr, bits, *allocation->context.get(),
1716                                      *allocation->type_ptr.get());
1717         if (chars_written < 0)
1718         {
1719             if (log)
1720                 log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
1721             return false;
1722         }
1723         else if (chars_written >= jit_max_expr_size)
1724         {
1725             if (log)
1726                 log->Printf("%s - expression too long.", __FUNCTION__);
1727             return false;
1728         }
1729 
1730         // Perform expression evaluation
1731         if (!EvalRSExpression(buffer[i], frame_ptr, &results[i]))
1732             return false;
1733     }
1734 
1735     // Assign results to allocation members
1736     AllocationDetails::Dimension dims;
1737     dims.dim_1 = static_cast<uint32_t>(results[0]);
1738     dims.dim_2 = static_cast<uint32_t>(results[1]);
1739     dims.dim_3 = static_cast<uint32_t>(results[2]);
1740     allocation->dimension = dims;
1741 
1742     addr_t elem_ptr = static_cast<lldb::addr_t>(results[3]);
1743     allocation->element.element_ptr = elem_ptr;
1744 
1745     if (log)
1746         log->Printf("%s - dims (%" PRIu32 ", %" PRIu32 ", %" PRIu32 ") Element*: 0x%" PRIx64 ".", __FUNCTION__,
1747                     dims.dim_1, dims.dim_2, dims.dim_3, elem_ptr);
1748 
1749     return true;
1750 }
1751 
1752 // JITs the RS runtime for information about the Element of an allocation
1753 // Then sets type, type_vec_size, field_count and type_kind members in Element with the result.
1754 // Returns true on success, false otherwise
1755 bool
1756 RenderScriptRuntime::JITElementPacked(Element &elem, const lldb::addr_t context, StackFrame *frame_ptr)
1757 {
1758     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1759 
1760     if (!elem.element_ptr.isValid())
1761     {
1762         if (log)
1763             log->Printf("%s - failed to find allocation details.", __FUNCTION__);
1764         return false;
1765     }
1766 
1767     // We want 4 elements from packed data
1768     const uint32_t num_exprs = 4;
1769     assert(num_exprs == (eExprElementFieldCount - eExprElementType + 1) && "Invalid number of expressions");
1770 
1771     char buffer[num_exprs][jit_max_expr_size];
1772     uint64_t results[num_exprs];
1773 
1774     for (uint32_t i = 0; i < num_exprs; i++)
1775     {
1776         const char *expr_cstr = JITTemplate(ExpressionStrings(eExprElementType + i));
1777         int chars_written = snprintf(buffer[i], jit_max_expr_size, expr_cstr, context, *elem.element_ptr.get());
1778         if (chars_written < 0)
1779         {
1780             if (log)
1781                 log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
1782             return false;
1783         }
1784         else if (chars_written >= jit_max_expr_size)
1785         {
1786             if (log)
1787                 log->Printf("%s - expression too long.", __FUNCTION__);
1788             return false;
1789         }
1790 
1791         // Perform expression evaluation
1792         if (!EvalRSExpression(buffer[i], frame_ptr, &results[i]))
1793             return false;
1794     }
1795 
1796     // Assign results to allocation members
1797     elem.type = static_cast<RenderScriptRuntime::Element::DataType>(results[0]);
1798     elem.type_kind = static_cast<RenderScriptRuntime::Element::DataKind>(results[1]);
1799     elem.type_vec_size = static_cast<uint32_t>(results[2]);
1800     elem.field_count = static_cast<uint32_t>(results[3]);
1801 
1802     if (log)
1803         log->Printf("%s - data type %" PRIu32 ", pixel type %" PRIu32 ", vector size %" PRIu32 ", field count %" PRIu32,
1804                     __FUNCTION__, *elem.type.get(), *elem.type_kind.get(), *elem.type_vec_size.get(), *elem.field_count.get());
1805 
1806     // If this Element has subelements then JIT rsaElementGetSubElements() for details about its fields
1807     if (*elem.field_count.get() > 0 && !JITSubelements(elem, context, frame_ptr))
1808         return false;
1809 
1810     return true;
1811 }
1812 
1813 // JITs the RS runtime for information about the subelements/fields of a struct allocation
1814 // This is necessary for infering the struct type so we can pretty print the allocation's contents.
1815 // Returns true on success, false otherwise
1816 bool
1817 RenderScriptRuntime::JITSubelements(Element &elem, const lldb::addr_t context, StackFrame *frame_ptr)
1818 {
1819     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1820 
1821     if (!elem.element_ptr.isValid() || !elem.field_count.isValid())
1822     {
1823         if (log)
1824             log->Printf("%s - failed to find allocation details.", __FUNCTION__);
1825         return false;
1826     }
1827 
1828     const short num_exprs = 3;
1829     assert(num_exprs == (eExprSubelementsArrSize - eExprSubelementsId + 1) && "Invalid number of expressions");
1830 
1831     char expr_buffer[jit_max_expr_size];
1832     uint64_t results;
1833 
1834     // Iterate over struct fields.
1835     const uint32_t field_count = *elem.field_count.get();
1836     for (uint32_t field_index = 0; field_index < field_count; ++field_index)
1837     {
1838         Element child;
1839         for (uint32_t expr_index = 0; expr_index < num_exprs; ++expr_index)
1840         {
1841             const char *expr_cstr = JITTemplate(ExpressionStrings(eExprSubelementsId + expr_index));
1842             int chars_written = snprintf(expr_buffer, jit_max_expr_size, expr_cstr,
1843                                          field_count, field_count, field_count,
1844                                          context, *elem.element_ptr.get(), field_count, field_index);
1845             if (chars_written < 0)
1846             {
1847                 if (log)
1848                     log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
1849                 return false;
1850             }
1851             else if (chars_written >= jit_max_expr_size)
1852             {
1853                 if (log)
1854                     log->Printf("%s - expression too long.", __FUNCTION__);
1855                 return false;
1856             }
1857 
1858             // Perform expression evaluation
1859             if (!EvalRSExpression(expr_buffer, frame_ptr, &results))
1860                 return false;
1861 
1862             if (log)
1863                 log->Printf("%s - expr result 0x%" PRIx64 ".", __FUNCTION__, results);
1864 
1865             switch (expr_index)
1866             {
1867                 case 0: // Element* of child
1868                     child.element_ptr = static_cast<addr_t>(results);
1869                     break;
1870                 case 1: // Name of child
1871                 {
1872                     lldb::addr_t address = static_cast<addr_t>(results);
1873                     Error err;
1874                     std::string name;
1875                     GetProcess()->ReadCStringFromMemory(address, name, err);
1876                     if (!err.Fail())
1877                         child.type_name = ConstString(name);
1878                     else
1879                     {
1880                         if (log)
1881                             log->Printf("%s - warning: Couldn't read field name.", __FUNCTION__);
1882                     }
1883                     break;
1884                 }
1885                 case 2: // Array size of child
1886                     child.array_size = static_cast<uint32_t>(results);
1887                     break;
1888             }
1889         }
1890 
1891         // We need to recursively JIT each Element field of the struct since
1892         // structs can be nested inside structs.
1893         if (!JITElementPacked(child, context, frame_ptr))
1894             return false;
1895         elem.children.push_back(child);
1896     }
1897 
1898     // Try to infer the name of the struct type so we can pretty print the allocation contents.
1899     FindStructTypeName(elem, frame_ptr);
1900 
1901     return true;
1902 }
1903 
1904 // JITs the RS runtime for the address of the last element in the allocation.
1905 // The `elem_size` paramter represents the size of a single element, including padding.
1906 // Which is needed as an offset from the last element pointer.
1907 // Using this offset minus the starting address we can calculate the size of the allocation.
1908 // Returns true on success, false otherwise
1909 bool
1910 RenderScriptRuntime::JITAllocationSize(AllocationDetails *allocation, StackFrame *frame_ptr)
1911 {
1912     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1913 
1914     if (!allocation->address.isValid() || !allocation->dimension.isValid() || !allocation->data_ptr.isValid() ||
1915         !allocation->element.datum_size.isValid())
1916     {
1917         if (log)
1918             log->Printf("%s - failed to find allocation details.", __FUNCTION__);
1919         return false;
1920     }
1921 
1922     // Find dimensions
1923     uint32_t dim_x = allocation->dimension.get()->dim_1;
1924     uint32_t dim_y = allocation->dimension.get()->dim_2;
1925     uint32_t dim_z = allocation->dimension.get()->dim_3;
1926 
1927     // Our plan of jitting the last element address doesn't seem to work for struct Allocations
1928     // Instead try to infer the size ourselves without any inter element padding.
1929     if (allocation->element.children.size() > 0)
1930     {
1931         if (dim_x == 0) dim_x = 1;
1932         if (dim_y == 0) dim_y = 1;
1933         if (dim_z == 0) dim_z = 1;
1934 
1935         allocation->size = dim_x * dim_y * dim_z * *allocation->element.datum_size.get();
1936 
1937         if (log)
1938             log->Printf("%s - infered size of struct allocation %" PRIu32 ".", __FUNCTION__,
1939                         *allocation->size.get());
1940         return true;
1941     }
1942 
1943     const char *expr_cstr = JITTemplate(eExprGetOffsetPtr);
1944     char buffer[jit_max_expr_size];
1945 
1946     // Calculate last element
1947     dim_x = dim_x == 0 ? 0 : dim_x - 1;
1948     dim_y = dim_y == 0 ? 0 : dim_y - 1;
1949     dim_z = dim_z == 0 ? 0 : dim_z - 1;
1950 
1951     int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->address.get(), dim_x, dim_y, dim_z);
1952     if (chars_written < 0)
1953     {
1954         if (log)
1955             log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
1956         return false;
1957     }
1958     else if (chars_written >= jit_max_expr_size)
1959     {
1960         if (log)
1961             log->Printf("%s - expression too long.", __FUNCTION__);
1962         return false;
1963     }
1964 
1965     uint64_t result = 0;
1966     if (!EvalRSExpression(buffer, frame_ptr, &result))
1967         return false;
1968 
1969     addr_t mem_ptr = static_cast<lldb::addr_t>(result);
1970     // Find pointer to last element and add on size of an element
1971     allocation->size =
1972         static_cast<uint32_t>(mem_ptr - *allocation->data_ptr.get()) + *allocation->element.datum_size.get();
1973 
1974     return true;
1975 }
1976 
1977 // JITs the RS runtime for information about the stride between rows in the allocation.
1978 // This is done to detect padding, since allocated memory is 16-byte aligned.
1979 // Returns true on success, false otherwise
1980 bool
1981 RenderScriptRuntime::JITAllocationStride(AllocationDetails *allocation, StackFrame *frame_ptr)
1982 {
1983     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1984 
1985     if (!allocation->address.isValid() || !allocation->data_ptr.isValid())
1986     {
1987         if (log)
1988             log->Printf("%s - failed to find allocation details.", __FUNCTION__);
1989         return false;
1990     }
1991 
1992     const char *expr_cstr = JITTemplate(eExprGetOffsetPtr);
1993     char buffer[jit_max_expr_size];
1994 
1995     int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->address.get(), 0, 1, 0);
1996     if (chars_written < 0)
1997     {
1998         if (log)
1999             log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
2000         return false;
2001     }
2002     else if (chars_written >= jit_max_expr_size)
2003     {
2004         if (log)
2005             log->Printf("%s - expression too long.", __FUNCTION__);
2006         return false;
2007     }
2008 
2009     uint64_t result = 0;
2010     if (!EvalRSExpression(buffer, frame_ptr, &result))
2011         return false;
2012 
2013     addr_t mem_ptr = static_cast<lldb::addr_t>(result);
2014     allocation->stride = static_cast<uint32_t>(mem_ptr - *allocation->data_ptr.get());
2015 
2016     return true;
2017 }
2018 
2019 // JIT all the current runtime info regarding an allocation
2020 bool
2021 RenderScriptRuntime::RefreshAllocation(AllocationDetails *allocation, StackFrame *frame_ptr)
2022 {
2023     // GetOffsetPointer()
2024     if (!JITDataPointer(allocation, frame_ptr))
2025         return false;
2026 
2027     // rsaAllocationGetType()
2028     if (!JITTypePointer(allocation, frame_ptr))
2029         return false;
2030 
2031     // rsaTypeGetNativeData()
2032     if (!JITTypePacked(allocation, frame_ptr))
2033         return false;
2034 
2035     // rsaElementGetNativeData()
2036     if (!JITElementPacked(allocation->element, *allocation->context.get(), frame_ptr))
2037         return false;
2038 
2039     // Sets the datum_size member in Element
2040     SetElementSize(allocation->element);
2041 
2042     // Use GetOffsetPointer() to infer size of the allocation
2043     if (!JITAllocationSize(allocation, frame_ptr))
2044         return false;
2045 
2046     return true;
2047 }
2048 
2049 // Function attempts to set the type_name member of the paramaterised Element object.
2050 // This string should be the name of the struct type the Element represents.
2051 // We need this string for pretty printing the Element to users.
2052 void
2053 RenderScriptRuntime::FindStructTypeName(Element &elem, StackFrame *frame_ptr)
2054 {
2055     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2056 
2057     if (!elem.type_name.IsEmpty()) // Name already set
2058         return;
2059     else
2060         elem.type_name = Element::GetFallbackStructName(); // Default type name if we don't succeed
2061 
2062     // Find all the global variables from the script rs modules
2063     VariableList variable_list;
2064     for (auto module_sp : m_rsmodules)
2065         module_sp->m_module->FindGlobalVariables(RegularExpression("."), true, UINT32_MAX, variable_list);
2066 
2067     // Iterate over all the global variables looking for one with a matching type to the Element.
2068     // We make the assumption a match exists since there needs to be a global variable to reflect the
2069     // struct type back into java host code.
2070     for (uint32_t var_index = 0; var_index < variable_list.GetSize(); ++var_index)
2071     {
2072         const VariableSP var_sp(variable_list.GetVariableAtIndex(var_index));
2073         if (!var_sp)
2074             continue;
2075 
2076         ValueObjectSP valobj_sp = ValueObjectVariable::Create(frame_ptr, var_sp);
2077         if (!valobj_sp)
2078             continue;
2079 
2080         // Find the number of variable fields.
2081         // If it has no fields, or more fields than our Element, then it can't be the struct we're looking for.
2082         // Don't check for equality since RS can add extra struct members for padding.
2083         size_t num_children = valobj_sp->GetNumChildren();
2084         if (num_children > elem.children.size() || num_children == 0)
2085             continue;
2086 
2087         // Iterate over children looking for members with matching field names.
2088         // If all the field names match, this is likely the struct we want.
2089         //
2090         //   TODO: This could be made more robust by also checking children data sizes, or array size
2091         bool found = true;
2092         for (size_t child_index = 0; child_index < num_children; ++child_index)
2093         {
2094             ValueObjectSP child = valobj_sp->GetChildAtIndex(child_index, true);
2095             if (!child || (child->GetName() != elem.children[child_index].type_name))
2096             {
2097                 found = false;
2098                 break;
2099             }
2100         }
2101 
2102         // RS can add extra struct members for padding in the format '#rs_padding_[0-9]+'
2103         if (found && num_children < elem.children.size())
2104         {
2105             const uint32_t size_diff = elem.children.size() - num_children;
2106             if (log)
2107                 log->Printf("%s - %" PRIu32 " padding struct entries", __FUNCTION__, size_diff);
2108 
2109             for (uint32_t padding_index = 0; padding_index < size_diff; ++padding_index)
2110             {
2111                 const ConstString &name = elem.children[num_children + padding_index].type_name;
2112                 if (strcmp(name.AsCString(), "#rs_padding") < 0)
2113                     found = false;
2114             }
2115         }
2116 
2117         // We've found a global var with matching type
2118         if (found)
2119         {
2120             // Dereference since our Element type isn't a pointer.
2121             if (valobj_sp->IsPointerType())
2122             {
2123                 Error err;
2124                 ValueObjectSP deref_valobj = valobj_sp->Dereference(err);
2125                 if (!err.Fail())
2126                     valobj_sp = deref_valobj;
2127             }
2128 
2129             // Save name of variable in Element.
2130             elem.type_name = valobj_sp->GetTypeName();
2131             if (log)
2132                 log->Printf("%s - element name set to %s", __FUNCTION__, elem.type_name.AsCString());
2133 
2134             return;
2135         }
2136     }
2137 }
2138 
2139 // Function sets the datum_size member of Element. Representing the size of a single instance including padding.
2140 // Assumes the relevant allocation information has already been jitted.
2141 void
2142 RenderScriptRuntime::SetElementSize(Element &elem)
2143 {
2144     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2145     const Element::DataType type = *elem.type.get();
2146     assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && "Invalid allocation type");
2147 
2148     const uint32_t vec_size = *elem.type_vec_size.get();
2149     uint32_t data_size = 0;
2150     uint32_t padding = 0;
2151 
2152     // Element is of a struct type, calculate size recursively.
2153     if ((type == Element::RS_TYPE_NONE) && (elem.children.size() > 0))
2154     {
2155         for (Element &child : elem.children)
2156         {
2157             SetElementSize(child);
2158             const uint32_t array_size = child.array_size.isValid() ? *child.array_size.get() : 1;
2159             data_size += *child.datum_size.get() * array_size;
2160         }
2161     }
2162     // These have been packed already
2163     else if (type == Element::RS_TYPE_UNSIGNED_5_6_5   ||
2164              type == Element::RS_TYPE_UNSIGNED_5_5_5_1 ||
2165              type == Element::RS_TYPE_UNSIGNED_4_4_4_4)
2166     {
2167         data_size = AllocationDetails::RSTypeToFormat[type][eElementSize];
2168     }
2169     else if (type < Element::RS_TYPE_ELEMENT)
2170     {
2171         data_size = vec_size * AllocationDetails::RSTypeToFormat[type][eElementSize];
2172         if (vec_size == 3)
2173             padding = AllocationDetails::RSTypeToFormat[type][eElementSize];
2174     }
2175     else
2176         data_size = GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
2177 
2178     elem.padding = padding;
2179     elem.datum_size = data_size + padding;
2180     if (log)
2181         log->Printf("%s - element size set to %" PRIu32, __FUNCTION__, data_size + padding);
2182 }
2183 
2184 // Given an allocation, this function copies the allocation contents from device into a buffer on the heap.
2185 // Returning a shared pointer to the buffer containing the data.
2186 std::shared_ptr<uint8_t>
2187 RenderScriptRuntime::GetAllocationData(AllocationDetails *allocation, StackFrame *frame_ptr)
2188 {
2189     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2190 
2191     // JIT all the allocation details
2192     if (allocation->shouldRefresh())
2193     {
2194         if (log)
2195             log->Printf("%s - allocation details not calculated yet, jitting info", __FUNCTION__);
2196 
2197         if (!RefreshAllocation(allocation, frame_ptr))
2198         {
2199             if (log)
2200                 log->Printf("%s - couldn't JIT allocation details", __FUNCTION__);
2201             return nullptr;
2202         }
2203     }
2204 
2205     assert(allocation->data_ptr.isValid() && allocation->element.type.isValid() &&
2206            allocation->element.type_vec_size.isValid() && allocation->size.isValid() &&
2207            "Allocation information not available");
2208 
2209     // Allocate a buffer to copy data into
2210     const uint32_t size = *allocation->size.get();
2211     std::shared_ptr<uint8_t> buffer(new uint8_t[size]);
2212     if (!buffer)
2213     {
2214         if (log)
2215             log->Printf("%s - couldn't allocate a %" PRIu32 " byte buffer", __FUNCTION__, size);
2216         return nullptr;
2217     }
2218 
2219     // Read the inferior memory
2220     Error error;
2221     lldb::addr_t data_ptr = *allocation->data_ptr.get();
2222     GetProcess()->ReadMemory(data_ptr, buffer.get(), size, error);
2223     if (error.Fail())
2224     {
2225         if (log)
2226             log->Printf("%s - '%s' Couldn't read %" PRIu32 " bytes of allocation data from 0x%" PRIx64,
2227                         __FUNCTION__, error.AsCString(), size, data_ptr);
2228         return nullptr;
2229     }
2230 
2231     return buffer;
2232 }
2233 
2234 // Function copies data from a binary file into an allocation.
2235 // There is a header at the start of the file, FileHeader, before the data content itself.
2236 // Information from this header is used to display warnings to the user about incompatabilities
2237 bool
2238 RenderScriptRuntime::LoadAllocation(Stream &strm, const uint32_t alloc_id, const char *filename, StackFrame *frame_ptr)
2239 {
2240     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2241 
2242     // Find allocation with the given id
2243     AllocationDetails *alloc = FindAllocByID(strm, alloc_id);
2244     if (!alloc)
2245         return false;
2246 
2247     if (log)
2248         log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__, *alloc->address.get());
2249 
2250     // JIT all the allocation details
2251     if (alloc->shouldRefresh())
2252     {
2253         if (log)
2254             log->Printf("%s - allocation details not calculated yet, jitting info.", __FUNCTION__);
2255 
2256         if (!RefreshAllocation(alloc, frame_ptr))
2257         {
2258             if (log)
2259                 log->Printf("%s - couldn't JIT allocation details", __FUNCTION__);
2260             return false;
2261         }
2262     }
2263 
2264     assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && alloc->element.type_vec_size.isValid() &&
2265            alloc->size.isValid() && alloc->element.datum_size.isValid() && "Allocation information not available");
2266 
2267     // Check we can read from file
2268     FileSpec file(filename, true);
2269     if (!file.Exists())
2270     {
2271         strm.Printf("Error: File %s does not exist", filename);
2272         strm.EOL();
2273         return false;
2274     }
2275 
2276     if (!file.Readable())
2277     {
2278         strm.Printf("Error: File %s does not have readable permissions", filename);
2279         strm.EOL();
2280         return false;
2281     }
2282 
2283     // Read file into data buffer
2284     DataBufferSP data_sp(file.ReadFileContents());
2285 
2286     // Cast start of buffer to FileHeader and use pointer to read metadata
2287     void *file_buffer = data_sp->GetBytes();
2288     if (file_buffer == nullptr ||
2289         data_sp->GetByteSize() < (sizeof(AllocationDetails::FileHeader) + sizeof(AllocationDetails::ElementHeader)))
2290     {
2291         strm.Printf("Error: File %s does not contain enough data for header", filename);
2292         strm.EOL();
2293         return false;
2294     }
2295     const AllocationDetails::FileHeader *file_header = static_cast<AllocationDetails::FileHeader *>(file_buffer);
2296 
2297     // Check file starts with ascii characters "RSAD"
2298     if (memcmp(file_header->ident, "RSAD", 4))
2299     {
2300         strm.Printf("Error: File doesn't contain identifier for an RS allocation dump. Are you sure this is the correct file?");
2301         strm.EOL();
2302         return false;
2303     }
2304 
2305     // Look at the type of the root element in the header
2306     AllocationDetails::ElementHeader root_element_header;
2307     memcpy(&root_element_header, static_cast<uint8_t *>(file_buffer) + sizeof(AllocationDetails::FileHeader),
2308            sizeof(AllocationDetails::ElementHeader));
2309 
2310     if (log)
2311         log->Printf("%s - header type %" PRIu32 ", element size %" PRIu32, __FUNCTION__,
2312                     root_element_header.type, root_element_header.element_size);
2313 
2314     // Check if the target allocation and file both have the same number of bytes for an Element
2315     if (*alloc->element.datum_size.get() != root_element_header.element_size)
2316     {
2317         strm.Printf("Warning: Mismatched Element sizes - file %" PRIu32 " bytes, allocation %" PRIu32 " bytes",
2318                     root_element_header.element_size, *alloc->element.datum_size.get());
2319         strm.EOL();
2320     }
2321 
2322     // Check if the target allocation and file both have the same type
2323     const uint32_t alloc_type = static_cast<uint32_t>(*alloc->element.type.get());
2324     const uint32_t file_type = root_element_header.type;
2325 
2326     if (file_type > Element::RS_TYPE_FONT)
2327     {
2328         strm.Printf("Warning: File has unknown allocation type");
2329         strm.EOL();
2330     }
2331     else if (alloc_type != file_type)
2332     {
2333         // Enum value isn't monotonous, so doesn't always index RsDataTypeToString array
2334         uint32_t printable_target_type_index = alloc_type;
2335         uint32_t printable_head_type_index = file_type;
2336         if (alloc_type >= Element::RS_TYPE_ELEMENT && alloc_type <= Element::RS_TYPE_FONT)
2337             printable_target_type_index = static_cast<Element::DataType>((alloc_type - Element::RS_TYPE_ELEMENT) +
2338                                                                          Element::RS_TYPE_MATRIX_2X2 + 1);
2339 
2340         if (file_type >= Element::RS_TYPE_ELEMENT && file_type <= Element::RS_TYPE_FONT)
2341             printable_head_type_index = static_cast<Element::DataType>((file_type - Element::RS_TYPE_ELEMENT) +
2342                                                                        Element::RS_TYPE_MATRIX_2X2 + 1);
2343 
2344         const char *file_type_cstr = AllocationDetails::RsDataTypeToString[printable_head_type_index][0];
2345         const char *target_type_cstr = AllocationDetails::RsDataTypeToString[printable_target_type_index][0];
2346 
2347         strm.Printf("Warning: Mismatched Types - file '%s' type, allocation '%s' type", file_type_cstr,
2348                     target_type_cstr);
2349         strm.EOL();
2350     }
2351 
2352     // Advance buffer past header
2353     file_buffer = static_cast<uint8_t *>(file_buffer) + file_header->hdr_size;
2354 
2355     // Calculate size of allocation data in file
2356     size_t length = data_sp->GetByteSize() - file_header->hdr_size;
2357 
2358     // Check if the target allocation and file both have the same total data size.
2359     const uint32_t alloc_size = *alloc->size.get();
2360     if (alloc_size != length)
2361     {
2362         strm.Printf("Warning: Mismatched allocation sizes - file 0x%" PRIx64 " bytes, allocation 0x%" PRIx32 " bytes",
2363                     (uint64_t)length, alloc_size);
2364         strm.EOL();
2365         length = alloc_size < length ? alloc_size : length; // Set length to copy to minimum
2366     }
2367 
2368     // Copy file data from our buffer into the target allocation.
2369     lldb::addr_t alloc_data = *alloc->data_ptr.get();
2370     Error error;
2371     size_t bytes_written = GetProcess()->WriteMemory(alloc_data, file_buffer, length, error);
2372     if (!error.Success() || bytes_written != length)
2373     {
2374         strm.Printf("Error: Couldn't write data to allocation %s", error.AsCString());
2375         strm.EOL();
2376         return false;
2377     }
2378 
2379     strm.Printf("Contents of file '%s' read into allocation %" PRIu32, filename, alloc->id);
2380     strm.EOL();
2381 
2382     return true;
2383 }
2384 
2385 // Function takes as parameters a byte buffer, which will eventually be written to file as the element header,
2386 // an offset into that buffer, and an Element that will be saved into the buffer at the parametrised offset.
2387 // Return value is the new offset after writing the element into the buffer.
2388 // Elements are saved to the file as the ElementHeader struct followed by offsets to the structs of all the element's
2389 // children.
2390 size_t
2391 RenderScriptRuntime::PopulateElementHeaders(const std::shared_ptr<uint8_t> header_buffer, size_t offset,
2392                                             const Element &elem)
2393 {
2394     // File struct for an element header with all the relevant details copied from elem.
2395     // We assume members are valid already.
2396     AllocationDetails::ElementHeader elem_header;
2397     elem_header.type = *elem.type.get();
2398     elem_header.kind = *elem.type_kind.get();
2399     elem_header.element_size = *elem.datum_size.get();
2400     elem_header.vector_size = *elem.type_vec_size.get();
2401     elem_header.array_size = elem.array_size.isValid() ? *elem.array_size.get() : 0;
2402     const size_t elem_header_size = sizeof(AllocationDetails::ElementHeader);
2403 
2404     // Copy struct into buffer and advance offset
2405     // We assume that header_buffer has been checked for nullptr before this method is called
2406     memcpy(header_buffer.get() + offset, &elem_header, elem_header_size);
2407     offset += elem_header_size;
2408 
2409     // Starting offset of child ElementHeader struct
2410     size_t child_offset = offset + ((elem.children.size() + 1) * sizeof(uint32_t));
2411     for (const RenderScriptRuntime::Element &child : elem.children)
2412     {
2413         // Recursively populate the buffer with the element header structs of children.
2414         // Then save the offsets where they were set after the parent element header.
2415         memcpy(header_buffer.get() + offset, &child_offset, sizeof(uint32_t));
2416         offset += sizeof(uint32_t);
2417 
2418         child_offset = PopulateElementHeaders(header_buffer, child_offset, child);
2419     }
2420 
2421     // Zero indicates no more children
2422     memset(header_buffer.get() + offset, 0, sizeof(uint32_t));
2423 
2424     return child_offset;
2425 }
2426 
2427 // Given an Element object this function returns the total size needed in the file header to store the element's
2428 // details.
2429 // Taking into account the size of the element header struct, plus the offsets to all the element's children.
2430 // Function is recursive so that the size of all ancestors is taken into account.
2431 size_t
2432 RenderScriptRuntime::CalculateElementHeaderSize(const Element &elem)
2433 {
2434     size_t size = (elem.children.size() + 1) * sizeof(uint32_t); // Offsets to children plus zero terminator
2435     size += sizeof(AllocationDetails::ElementHeader);            // Size of header struct with type details
2436 
2437     // Calculate recursively for all descendants
2438     for (const Element &child : elem.children)
2439         size += CalculateElementHeaderSize(child);
2440 
2441     return size;
2442 }
2443 
2444 // Function copies allocation contents into a binary file.
2445 // This file can then be loaded later into a different allocation.
2446 // There is a header, FileHeader, before the allocation data containing meta-data.
2447 bool
2448 RenderScriptRuntime::SaveAllocation(Stream &strm, const uint32_t alloc_id, const char *filename, StackFrame *frame_ptr)
2449 {
2450     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2451 
2452     // Find allocation with the given id
2453     AllocationDetails *alloc = FindAllocByID(strm, alloc_id);
2454     if (!alloc)
2455         return false;
2456 
2457     if (log)
2458         log->Printf("%s - found allocation 0x%" PRIx64 ".", __FUNCTION__, *alloc->address.get());
2459 
2460     // JIT all the allocation details
2461     if (alloc->shouldRefresh())
2462     {
2463         if (log)
2464             log->Printf("%s - allocation details not calculated yet, jitting info.", __FUNCTION__);
2465 
2466         if (!RefreshAllocation(alloc, frame_ptr))
2467         {
2468             if (log)
2469                 log->Printf("%s - couldn't JIT allocation details.", __FUNCTION__);
2470             return false;
2471         }
2472     }
2473 
2474     assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && alloc->element.type_vec_size.isValid() &&
2475            alloc->element.datum_size.get() && alloc->element.type_kind.isValid() && alloc->dimension.isValid() &&
2476            "Allocation information not available");
2477 
2478     // Check we can create writable file
2479     FileSpec file_spec(filename, true);
2480     File file(file_spec, File::eOpenOptionWrite | File::eOpenOptionCanCreate | File::eOpenOptionTruncate);
2481     if (!file)
2482     {
2483         strm.Printf("Error: Failed to open '%s' for writing", filename);
2484         strm.EOL();
2485         return false;
2486     }
2487 
2488     // Read allocation into buffer of heap memory
2489     const std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr);
2490     if (!buffer)
2491     {
2492         strm.Printf("Error: Couldn't read allocation data into buffer");
2493         strm.EOL();
2494         return false;
2495     }
2496 
2497     // Create the file header
2498     AllocationDetails::FileHeader head;
2499     memcpy(head.ident, "RSAD", 4);
2500     head.dims[0] = static_cast<uint32_t>(alloc->dimension.get()->dim_1);
2501     head.dims[1] = static_cast<uint32_t>(alloc->dimension.get()->dim_2);
2502     head.dims[2] = static_cast<uint32_t>(alloc->dimension.get()->dim_3);
2503 
2504     const size_t element_header_size = CalculateElementHeaderSize(alloc->element);
2505     assert((sizeof(AllocationDetails::FileHeader) + element_header_size) < UINT16_MAX && "Element header too large");
2506     head.hdr_size = static_cast<uint16_t>(sizeof(AllocationDetails::FileHeader) + element_header_size);
2507 
2508     // Write the file header
2509     size_t num_bytes = sizeof(AllocationDetails::FileHeader);
2510     if (log)
2511         log->Printf("%s - writing File Header, 0x%" PRIx64 " bytes", __FUNCTION__, (uint64_t)num_bytes);
2512 
2513     Error err = file.Write(&head, num_bytes);
2514     if (!err.Success())
2515     {
2516         strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), filename);
2517         strm.EOL();
2518         return false;
2519     }
2520 
2521     // Create the headers describing the element type of the allocation.
2522     std::shared_ptr<uint8_t> element_header_buffer(new uint8_t[element_header_size]);
2523     if (element_header_buffer == nullptr)
2524     {
2525         strm.Printf("Internal Error: Couldn't allocate %" PRIu64 " bytes on the heap", (uint64_t)element_header_size);
2526         strm.EOL();
2527         return false;
2528     }
2529 
2530     PopulateElementHeaders(element_header_buffer, 0, alloc->element);
2531 
2532     // Write headers for allocation element type to file
2533     num_bytes = element_header_size;
2534     if (log)
2535         log->Printf("%s - writing element headers, 0x%" PRIx64 " bytes.", __FUNCTION__, (uint64_t)num_bytes);
2536 
2537     err = file.Write(element_header_buffer.get(), num_bytes);
2538     if (!err.Success())
2539     {
2540         strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), filename);
2541         strm.EOL();
2542         return false;
2543     }
2544 
2545     // Write allocation data to file
2546     num_bytes = static_cast<size_t>(*alloc->size.get());
2547     if (log)
2548         log->Printf("%s - writing 0x%" PRIx64 " bytes", __FUNCTION__, (uint64_t)num_bytes);
2549 
2550     err = file.Write(buffer.get(), num_bytes);
2551     if (!err.Success())
2552     {
2553         strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), filename);
2554         strm.EOL();
2555         return false;
2556     }
2557 
2558     strm.Printf("Allocation written to file '%s'", filename);
2559     strm.EOL();
2560     return true;
2561 }
2562 
2563 bool
2564 RenderScriptRuntime::LoadModule(const lldb::ModuleSP &module_sp)
2565 {
2566     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2567 
2568     if (module_sp)
2569     {
2570         for (const auto &rs_module : m_rsmodules)
2571         {
2572             if (rs_module->m_module == module_sp)
2573             {
2574                 // Check if the user has enabled automatically breaking on
2575                 // all RS kernels.
2576                 if (m_breakAllKernels)
2577                     BreakOnModuleKernels(rs_module);
2578 
2579                 return false;
2580             }
2581         }
2582         bool module_loaded = false;
2583         switch (GetModuleKind(module_sp))
2584         {
2585             case eModuleKindKernelObj:
2586             {
2587                 RSModuleDescriptorSP module_desc;
2588                 module_desc.reset(new RSModuleDescriptor(module_sp));
2589                 if (module_desc->ParseRSInfo())
2590                 {
2591                     m_rsmodules.push_back(module_desc);
2592                     module_loaded = true;
2593                 }
2594                 if (module_loaded)
2595                 {
2596                     FixupScriptDetails(module_desc);
2597                 }
2598                 break;
2599             }
2600             case eModuleKindDriver:
2601             {
2602                 if (!m_libRSDriver)
2603                 {
2604                     m_libRSDriver = module_sp;
2605                     LoadRuntimeHooks(m_libRSDriver, RenderScriptRuntime::eModuleKindDriver);
2606                 }
2607                 break;
2608             }
2609             case eModuleKindImpl:
2610             {
2611                 m_libRSCpuRef = module_sp;
2612                 break;
2613             }
2614             case eModuleKindLibRS:
2615             {
2616                 if (!m_libRS)
2617                 {
2618                     m_libRS = module_sp;
2619                     static ConstString gDbgPresentStr("gDebuggerPresent");
2620                     const Symbol *debug_present =
2621                         m_libRS->FindFirstSymbolWithNameAndType(gDbgPresentStr, eSymbolTypeData);
2622                     if (debug_present)
2623                     {
2624                         Error error;
2625                         uint32_t flag = 0x00000001U;
2626                         Target &target = GetProcess()->GetTarget();
2627                         addr_t addr = debug_present->GetLoadAddress(&target);
2628                         GetProcess()->WriteMemory(addr, &flag, sizeof(flag), error);
2629                         if (error.Success())
2630                         {
2631                             if (log)
2632                                 log->Printf("%s - debugger present flag set on debugee.", __FUNCTION__);
2633 
2634                             m_debuggerPresentFlagged = true;
2635                         }
2636                         else if (log)
2637                         {
2638                             log->Printf("%s - error writing debugger present flags '%s' ", __FUNCTION__,
2639                                         error.AsCString());
2640                         }
2641                     }
2642                     else if (log)
2643                     {
2644                         log->Printf("%s - error writing debugger present flags - symbol not found", __FUNCTION__);
2645                     }
2646                 }
2647                 break;
2648             }
2649             default:
2650                 break;
2651         }
2652         if (module_loaded)
2653             Update();
2654         return module_loaded;
2655     }
2656     return false;
2657 }
2658 
2659 void
2660 RenderScriptRuntime::Update()
2661 {
2662     if (m_rsmodules.size() > 0)
2663     {
2664         if (!m_initiated)
2665         {
2666             Initiate();
2667         }
2668     }
2669 }
2670 
2671 // The maximum line length of an .rs.info packet
2672 #define MAXLINE 500
2673 #define STRINGIFY(x) #x
2674 #define MAXLINESTR_(x) "%" STRINGIFY(x) "s"
2675 #define MAXLINESTR MAXLINESTR_(MAXLINE)
2676 
2677 // The .rs.info symbol in renderscript modules contains a string which needs to be parsed.
2678 // The string is basic and is parsed on a line by line basis.
2679 bool
2680 RSModuleDescriptor::ParseRSInfo()
2681 {
2682     assert(m_module);
2683     const Symbol *info_sym = m_module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), eSymbolTypeData);
2684     if (!info_sym)
2685         return false;
2686 
2687     const addr_t addr = info_sym->GetAddressRef().GetFileAddress();
2688     if (addr == LLDB_INVALID_ADDRESS)
2689         return false;
2690 
2691     const addr_t size = info_sym->GetByteSize();
2692     const FileSpec fs = m_module->GetFileSpec();
2693 
2694     const DataBufferSP buffer = fs.ReadFileContents(addr, size);
2695     if (!buffer)
2696         return false;
2697 
2698     // split rs.info. contents into lines
2699     std::vector<std::string> info_lines;
2700     {
2701         const std::string info((const char *)buffer->GetBytes());
2702         for (size_t tail = 0; tail < info.size();)
2703         {
2704             // find next new line or end of string
2705             size_t head = info.find('\n', tail);
2706             head = (head == std::string::npos) ? info.size() : head;
2707             std::string line = info.substr(tail, head - tail);
2708             // add to line list
2709             info_lines.push_back(line);
2710             tail = head + 1;
2711         }
2712     }
2713 
2714     std::array<char, MAXLINE> name{{'\0'}};
2715     std::array<char, MAXLINE> value{{'\0'}};
2716 
2717     // parse all text lines of .rs.info
2718     for (auto line = info_lines.begin(); line != info_lines.end(); ++line)
2719     {
2720         uint32_t numDefns = 0;
2721         if (sscanf(line->c_str(), "exportVarCount: %" PRIu32 "", &numDefns) == 1)
2722         {
2723             while (numDefns--)
2724                 m_globals.push_back(RSGlobalDescriptor(this, (++line)->c_str()));
2725         }
2726         else if (sscanf(line->c_str(), "exportForEachCount: %" PRIu32 "", &numDefns) == 1)
2727         {
2728             while (numDefns--)
2729             {
2730                 uint32_t slot = 0;
2731                 name[0] = '\0';
2732                 static const char *fmt_s = "%" PRIu32 " - " MAXLINESTR;
2733                 if (sscanf((++line)->c_str(), fmt_s, &slot, name.data()) == 2)
2734                 {
2735                     if (name[0] != '\0')
2736                         m_kernels.push_back(RSKernelDescriptor(this, name.data(), slot));
2737                 }
2738             }
2739         }
2740         else if (sscanf(line->c_str(), "pragmaCount: %" PRIu32 "", &numDefns) == 1)
2741         {
2742             while (numDefns--)
2743             {
2744                 name[0] = value[0] = '\0';
2745                 static const char *fmt_s = MAXLINESTR " - " MAXLINESTR;
2746                 if (sscanf((++line)->c_str(), fmt_s, name.data(), value.data()) != 0)
2747                 {
2748                     if (name[0] != '\0')
2749                         m_pragmas[std::string(name.data())] = value.data();
2750                 }
2751             }
2752         }
2753         else
2754         {
2755             Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2756             if (log)
2757             {
2758                 log->Printf("%s - skipping .rs.info field '%s'", __FUNCTION__, line->c_str());
2759             }
2760         }
2761     }
2762 
2763     // 'root' kernel should always be present
2764     return m_kernels.size() > 0;
2765 }
2766 
2767 void
2768 RenderScriptRuntime::Status(Stream &strm) const
2769 {
2770     if (m_libRS)
2771     {
2772         strm.Printf("Runtime Library discovered.");
2773         strm.EOL();
2774     }
2775     if (m_libRSDriver)
2776     {
2777         strm.Printf("Runtime Driver discovered.");
2778         strm.EOL();
2779     }
2780     if (m_libRSCpuRef)
2781     {
2782         strm.Printf("CPU Reference Implementation discovered.");
2783         strm.EOL();
2784     }
2785 
2786     if (m_runtimeHooks.size())
2787     {
2788         strm.Printf("Runtime functions hooked:");
2789         strm.EOL();
2790         for (auto b : m_runtimeHooks)
2791         {
2792             strm.Indent(b.second->defn->name);
2793             strm.EOL();
2794         }
2795     }
2796     else
2797     {
2798         strm.Printf("Runtime is not hooked.");
2799         strm.EOL();
2800     }
2801 }
2802 
2803 void
2804 RenderScriptRuntime::DumpContexts(Stream &strm) const
2805 {
2806     strm.Printf("Inferred RenderScript Contexts:");
2807     strm.EOL();
2808     strm.IndentMore();
2809 
2810     std::map<addr_t, uint64_t> contextReferences;
2811 
2812     // Iterate over all of the currently discovered scripts.
2813     // Note: We cant push or pop from m_scripts inside this loop or it may invalidate script.
2814     for (const auto &script : m_scripts)
2815     {
2816         if (!script->context.isValid())
2817             continue;
2818         lldb::addr_t context = *script->context;
2819 
2820         if (contextReferences.find(context) != contextReferences.end())
2821         {
2822             contextReferences[context]++;
2823         }
2824         else
2825         {
2826             contextReferences[context] = 1;
2827         }
2828     }
2829 
2830     for (const auto &cRef : contextReferences)
2831     {
2832         strm.Printf("Context 0x%" PRIx64 ": %" PRIu64 " script instances", cRef.first, cRef.second);
2833         strm.EOL();
2834     }
2835     strm.IndentLess();
2836 }
2837 
2838 void
2839 RenderScriptRuntime::DumpKernels(Stream &strm) const
2840 {
2841     strm.Printf("RenderScript Kernels:");
2842     strm.EOL();
2843     strm.IndentMore();
2844     for (const auto &module : m_rsmodules)
2845     {
2846         strm.Printf("Resource '%s':", module->m_resname.c_str());
2847         strm.EOL();
2848         for (const auto &kernel : module->m_kernels)
2849         {
2850             strm.Indent(kernel.m_name.AsCString());
2851             strm.EOL();
2852         }
2853     }
2854     strm.IndentLess();
2855 }
2856 
2857 RenderScriptRuntime::AllocationDetails *
2858 RenderScriptRuntime::FindAllocByID(Stream &strm, const uint32_t alloc_id)
2859 {
2860     AllocationDetails *alloc = nullptr;
2861 
2862     // See if we can find allocation using id as an index;
2863     if (alloc_id <= m_allocations.size() && alloc_id != 0 && m_allocations[alloc_id - 1]->id == alloc_id)
2864     {
2865         alloc = m_allocations[alloc_id - 1].get();
2866         return alloc;
2867     }
2868 
2869     // Fallback to searching
2870     for (const auto &a : m_allocations)
2871     {
2872         if (a->id == alloc_id)
2873         {
2874             alloc = a.get();
2875             break;
2876         }
2877     }
2878 
2879     if (alloc == nullptr)
2880     {
2881         strm.Printf("Error: Couldn't find allocation with id matching %" PRIu32, alloc_id);
2882         strm.EOL();
2883     }
2884 
2885     return alloc;
2886 }
2887 
2888 // Prints the contents of an allocation to the output stream, which may be a file
2889 bool
2890 RenderScriptRuntime::DumpAllocation(Stream &strm, StackFrame *frame_ptr, const uint32_t id)
2891 {
2892     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2893 
2894     // Check we can find the desired allocation
2895     AllocationDetails *alloc = FindAllocByID(strm, id);
2896     if (!alloc)
2897         return false; // FindAllocByID() will print error message for us here
2898 
2899     if (log)
2900         log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__, *alloc->address.get());
2901 
2902     // Check we have information about the allocation, if not calculate it
2903     if (alloc->shouldRefresh())
2904     {
2905         if (log)
2906             log->Printf("%s - allocation details not calculated yet, jitting info.", __FUNCTION__);
2907 
2908         // JIT all the allocation information
2909         if (!RefreshAllocation(alloc, frame_ptr))
2910         {
2911             strm.Printf("Error: Couldn't JIT allocation details");
2912             strm.EOL();
2913             return false;
2914         }
2915     }
2916 
2917     // Establish format and size of each data element
2918     const uint32_t vec_size = *alloc->element.type_vec_size.get();
2919     const Element::DataType type = *alloc->element.type.get();
2920 
2921     assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && "Invalid allocation type");
2922 
2923     lldb::Format format;
2924     if (type >= Element::RS_TYPE_ELEMENT)
2925         format = eFormatHex;
2926     else
2927         format = vec_size == 1 ? static_cast<lldb::Format>(AllocationDetails::RSTypeToFormat[type][eFormatSingle])
2928                                : static_cast<lldb::Format>(AllocationDetails::RSTypeToFormat[type][eFormatVector]);
2929 
2930     const uint32_t data_size = *alloc->element.datum_size.get();
2931 
2932     if (log)
2933         log->Printf("%s - element size %" PRIu32 " bytes, including padding", __FUNCTION__, data_size);
2934 
2935     // Allocate a buffer to copy data into
2936     std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr);
2937     if (!buffer)
2938     {
2939         strm.Printf("Error: Couldn't read allocation data");
2940         strm.EOL();
2941         return false;
2942     }
2943 
2944     // Calculate stride between rows as there may be padding at end of rows since
2945     // allocated memory is 16-byte aligned
2946     if (!alloc->stride.isValid())
2947     {
2948         if (alloc->dimension.get()->dim_2 == 0) // We only have one dimension
2949             alloc->stride = 0;
2950         else if (!JITAllocationStride(alloc, frame_ptr))
2951         {
2952             strm.Printf("Error: Couldn't calculate allocation row stride");
2953             strm.EOL();
2954             return false;
2955         }
2956     }
2957     const uint32_t stride = *alloc->stride.get();
2958     const uint32_t size = *alloc->size.get(); // Size of whole allocation
2959     const uint32_t padding = alloc->element.padding.isValid() ? *alloc->element.padding.get() : 0;
2960     if (log)
2961         log->Printf("%s - stride %" PRIu32 " bytes, size %" PRIu32 " bytes, padding %" PRIu32,
2962                     __FUNCTION__, stride, size, padding);
2963 
2964     // Find dimensions used to index loops, so need to be non-zero
2965     uint32_t dim_x = alloc->dimension.get()->dim_1;
2966     dim_x = dim_x == 0 ? 1 : dim_x;
2967 
2968     uint32_t dim_y = alloc->dimension.get()->dim_2;
2969     dim_y = dim_y == 0 ? 1 : dim_y;
2970 
2971     uint32_t dim_z = alloc->dimension.get()->dim_3;
2972     dim_z = dim_z == 0 ? 1 : dim_z;
2973 
2974     // Use data extractor to format output
2975     const uint32_t archByteSize = GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
2976     DataExtractor alloc_data(buffer.get(), size, GetProcess()->GetByteOrder(), archByteSize);
2977 
2978     uint32_t offset = 0;   // Offset in buffer to next element to be printed
2979     uint32_t prev_row = 0; // Offset to the start of the previous row
2980 
2981     // Iterate over allocation dimensions, printing results to user
2982     strm.Printf("Data (X, Y, Z):");
2983     for (uint32_t z = 0; z < dim_z; ++z)
2984     {
2985         for (uint32_t y = 0; y < dim_y; ++y)
2986         {
2987             // Use stride to index start of next row.
2988             if (!(y == 0 && z == 0))
2989                 offset = prev_row + stride;
2990             prev_row = offset;
2991 
2992             // Print each element in the row individually
2993             for (uint32_t x = 0; x < dim_x; ++x)
2994             {
2995                 strm.Printf("\n(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ") = ", x, y, z);
2996                 if ((type == Element::RS_TYPE_NONE) && (alloc->element.children.size() > 0) &&
2997                     (alloc->element.type_name != Element::GetFallbackStructName()))
2998                 {
2999                     // Here we are dumping an Element of struct type.
3000                     // This is done using expression evaluation with the name of the struct type and pointer to element.
3001 
3002                     // Don't print the name of the resulting expression, since this will be '$[0-9]+'
3003                     DumpValueObjectOptions expr_options;
3004                     expr_options.SetHideName(true);
3005 
3006                     // Setup expression as derefrencing a pointer cast to element address.
3007                     char expr_char_buffer[jit_max_expr_size];
3008                     int chars_written = snprintf(expr_char_buffer, jit_max_expr_size, "*(%s*) 0x%" PRIx64,
3009                                                  alloc->element.type_name.AsCString(), *alloc->data_ptr.get() + offset);
3010 
3011                     if (chars_written < 0 || chars_written >= jit_max_expr_size)
3012                     {
3013                         if (log)
3014                             log->Printf("%s - error in snprintf().", __FUNCTION__);
3015                         continue;
3016                     }
3017 
3018                     // Evaluate expression
3019                     ValueObjectSP expr_result;
3020                     GetProcess()->GetTarget().EvaluateExpression(expr_char_buffer, frame_ptr, expr_result);
3021 
3022                     // Print the results to our stream.
3023                     expr_result->Dump(strm, expr_options);
3024                 }
3025                 else
3026                 {
3027                     alloc_data.Dump(&strm, offset, format, data_size - padding, 1, 1, LLDB_INVALID_ADDRESS, 0, 0);
3028                 }
3029                 offset += data_size;
3030             }
3031         }
3032     }
3033     strm.EOL();
3034 
3035     return true;
3036 }
3037 
3038 // Function recalculates all our cached information about allocations by jitting the
3039 // RS runtime regarding each allocation we know about.
3040 // Returns true if all allocations could be recomputed, false otherwise.
3041 bool
3042 RenderScriptRuntime::RecomputeAllAllocations(Stream &strm, StackFrame *frame_ptr)
3043 {
3044     bool success = true;
3045     for (auto &alloc : m_allocations)
3046     {
3047         // JIT current allocation information
3048         if (!RefreshAllocation(alloc.get(), frame_ptr))
3049         {
3050             strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32 "\n", alloc->id);
3051             success = false;
3052         }
3053     }
3054 
3055     if (success)
3056         strm.Printf("All allocations successfully recomputed");
3057     strm.EOL();
3058 
3059     return success;
3060 }
3061 
3062 // Prints information regarding currently loaded allocations.
3063 // These details are gathered by jitting the runtime, which has as latency.
3064 // Index parameter specifies a single allocation ID to print, or a zero value to print them all
3065 void
3066 RenderScriptRuntime::ListAllocations(Stream &strm, StackFrame *frame_ptr, const uint32_t index)
3067 {
3068     strm.Printf("RenderScript Allocations:");
3069     strm.EOL();
3070     strm.IndentMore();
3071 
3072     for (auto &alloc : m_allocations)
3073     {
3074         // index will only be zero if we want to print all allocations
3075         if (index != 0 && index != alloc->id)
3076             continue;
3077 
3078         // JIT current allocation information
3079         if (alloc->shouldRefresh() && !RefreshAllocation(alloc.get(), frame_ptr))
3080         {
3081             strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32, alloc->id);
3082             strm.EOL();
3083             continue;
3084         }
3085 
3086         strm.Printf("%" PRIu32 ":", alloc->id);
3087         strm.EOL();
3088         strm.IndentMore();
3089 
3090         strm.Indent("Context: ");
3091         if (!alloc->context.isValid())
3092             strm.Printf("unknown\n");
3093         else
3094             strm.Printf("0x%" PRIx64 "\n", *alloc->context.get());
3095 
3096         strm.Indent("Address: ");
3097         if (!alloc->address.isValid())
3098             strm.Printf("unknown\n");
3099         else
3100             strm.Printf("0x%" PRIx64 "\n", *alloc->address.get());
3101 
3102         strm.Indent("Data pointer: ");
3103         if (!alloc->data_ptr.isValid())
3104             strm.Printf("unknown\n");
3105         else
3106             strm.Printf("0x%" PRIx64 "\n", *alloc->data_ptr.get());
3107 
3108         strm.Indent("Dimensions: ");
3109         if (!alloc->dimension.isValid())
3110             strm.Printf("unknown\n");
3111         else
3112             strm.Printf("(%" PRId32 ", %" PRId32 ", %" PRId32 ")\n",
3113                         alloc->dimension.get()->dim_1, alloc->dimension.get()->dim_2, alloc->dimension.get()->dim_3);
3114 
3115         strm.Indent("Data Type: ");
3116         if (!alloc->element.type.isValid() || !alloc->element.type_vec_size.isValid())
3117             strm.Printf("unknown\n");
3118         else
3119         {
3120             const int vector_size = *alloc->element.type_vec_size.get();
3121             Element::DataType type = *alloc->element.type.get();
3122 
3123             if (!alloc->element.type_name.IsEmpty())
3124                 strm.Printf("%s\n", alloc->element.type_name.AsCString());
3125             else
3126             {
3127                 // Enum value isn't monotonous, so doesn't always index RsDataTypeToString array
3128                 if (type >= Element::RS_TYPE_ELEMENT && type <= Element::RS_TYPE_FONT)
3129                     type = static_cast<Element::DataType>((type - Element::RS_TYPE_ELEMENT) +
3130                                                           Element::RS_TYPE_MATRIX_2X2 + 1);
3131 
3132                 if (type >= (sizeof(AllocationDetails::RsDataTypeToString) /
3133                              sizeof(AllocationDetails::RsDataTypeToString[0])) ||
3134                     vector_size > 4 || vector_size < 1)
3135                     strm.Printf("invalid type\n");
3136                 else
3137                     strm.Printf("%s\n", AllocationDetails::RsDataTypeToString[static_cast<uint32_t>(type)]
3138                                                                              [vector_size - 1]);
3139             }
3140         }
3141 
3142         strm.Indent("Data Kind: ");
3143         if (!alloc->element.type_kind.isValid())
3144             strm.Printf("unknown\n");
3145         else
3146         {
3147             const Element::DataKind kind = *alloc->element.type_kind.get();
3148             if (kind < Element::RS_KIND_USER || kind > Element::RS_KIND_PIXEL_YUV)
3149                 strm.Printf("invalid kind\n");
3150             else
3151                 strm.Printf("%s\n", AllocationDetails::RsDataKindToString[static_cast<uint32_t>(kind)]);
3152         }
3153 
3154         strm.EOL();
3155         strm.IndentLess();
3156     }
3157     strm.IndentLess();
3158 }
3159 
3160 // Set breakpoints on every kernel found in RS module
3161 void
3162 RenderScriptRuntime::BreakOnModuleKernels(const RSModuleDescriptorSP rsmodule_sp)
3163 {
3164     for (const auto &kernel : rsmodule_sp->m_kernels)
3165     {
3166         // Don't set breakpoint on 'root' kernel
3167         if (strcmp(kernel.m_name.AsCString(), "root") == 0)
3168             continue;
3169 
3170         CreateKernelBreakpoint(kernel.m_name);
3171     }
3172 }
3173 
3174 // Method is internally called by the 'kernel breakpoint all' command to
3175 // enable or disable breaking on all kernels.
3176 //
3177 // When do_break is true we want to enable this functionality.
3178 // When do_break is false we want to disable it.
3179 void
3180 RenderScriptRuntime::SetBreakAllKernels(bool do_break, TargetSP target)
3181 {
3182     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
3183 
3184     InitSearchFilter(target);
3185 
3186     // Set breakpoints on all the kernels
3187     if (do_break && !m_breakAllKernels)
3188     {
3189         m_breakAllKernels = true;
3190 
3191         for (const auto &module : m_rsmodules)
3192             BreakOnModuleKernels(module);
3193 
3194         if (log)
3195             log->Printf("%s(True) - breakpoints set on all currently loaded kernels.", __FUNCTION__);
3196     }
3197     else if (!do_break && m_breakAllKernels) // Breakpoints won't be set on any new kernels.
3198     {
3199         m_breakAllKernels = false;
3200 
3201         if (log)
3202             log->Printf("%s(False) - breakpoints no longer automatically set.", __FUNCTION__);
3203     }
3204 }
3205 
3206 // Given the name of a kernel this function creates a breakpoint using our
3207 // own breakpoint resolver, and returns the Breakpoint shared pointer.
3208 BreakpointSP
3209 RenderScriptRuntime::CreateKernelBreakpoint(const ConstString &name)
3210 {
3211     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
3212 
3213     if (!m_filtersp)
3214     {
3215         if (log)
3216             log->Printf("%s - error, no breakpoint search filter set.", __FUNCTION__);
3217         return nullptr;
3218     }
3219 
3220     BreakpointResolverSP resolver_sp(new RSBreakpointResolver(nullptr, name));
3221     BreakpointSP bp = GetProcess()->GetTarget().CreateBreakpoint(m_filtersp, resolver_sp, false, false, false);
3222 
3223     // Give RS breakpoints a specific name, so the user can manipulate them as a group.
3224     Error err;
3225     if (!bp->AddName("RenderScriptKernel", err) && log)
3226         log->Printf("%s - error setting break name, '%s'.", __FUNCTION__, err.AsCString());
3227 
3228     return bp;
3229 }
3230 
3231 // Given an expression for a variable this function tries to calculate the variable's value.
3232 // If this is possible it returns true and sets the uint64_t parameter to the variables unsigned value.
3233 // Otherwise function returns false.
3234 bool
3235 RenderScriptRuntime::GetFrameVarAsUnsigned(const StackFrameSP frame_sp, const char *var_name, uint64_t &val)
3236 {
3237     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE));
3238     Error error;
3239     VariableSP var_sp;
3240 
3241     // Find variable in stack frame
3242     ValueObjectSP value_sp(frame_sp->GetValueForVariableExpressionPath(
3243         var_name, eNoDynamicValues,
3244         StackFrame::eExpressionPathOptionCheckPtrVsMember | StackFrame::eExpressionPathOptionsAllowDirectIVarAccess,
3245         var_sp, error));
3246     if (!error.Success())
3247     {
3248         if (log)
3249             log->Printf("%s - error, couldn't find '%s' in frame", __FUNCTION__, var_name);
3250         return false;
3251     }
3252 
3253     // Find the uint32_t value for the variable
3254     bool success = false;
3255     val = value_sp->GetValueAsUnsigned(0, &success);
3256     if (!success)
3257     {
3258         if (log)
3259             log->Printf("%s - error, couldn't parse '%s' as an uint32_t.", __FUNCTION__, var_name);
3260         return false;
3261     }
3262 
3263     return true;
3264 }
3265 
3266 // Function attempts to find the current coordinate of a kernel invocation by investigating the
3267 // values of frame variables in the .expand function. These coordinates are returned via the coord
3268 // array reference parameter. Returns true if the coordinates could be found, and false otherwise.
3269 bool
3270 RenderScriptRuntime::GetKernelCoordinate(RSCoordinate &coord, Thread *thread_ptr)
3271 {
3272     static const std::string s_runtimeExpandSuffix(".expand");
3273     static const std::array<const char *, 3> s_runtimeCoordVars{{"rsIndex", "p->current.y", "p->current.z"}};
3274 
3275     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE));
3276 
3277     if (!thread_ptr)
3278     {
3279         if (log)
3280             log->Printf("%s - Error, No thread pointer", __FUNCTION__);
3281 
3282         return false;
3283     }
3284 
3285     // Walk the call stack looking for a function whose name has the suffix '.expand'
3286     // and contains the variables we're looking for.
3287     for (uint32_t i = 0; i < thread_ptr->GetStackFrameCount(); ++i)
3288     {
3289         if (!thread_ptr->SetSelectedFrameByIndex(i))
3290             continue;
3291 
3292         StackFrameSP frame_sp = thread_ptr->GetSelectedFrame();
3293         if (!frame_sp)
3294             continue;
3295 
3296         // Find the function name
3297         const SymbolContext sym_ctx = frame_sp->GetSymbolContext(false);
3298         const char *func_name_cstr = sym_ctx.GetFunctionName().AsCString();
3299         if (!func_name_cstr)
3300             continue;
3301 
3302         if (log)
3303             log->Printf("%s - Inspecting function '%s'", __FUNCTION__, func_name_cstr);
3304 
3305         // Check if function name has .expand suffix
3306         std::string func_name(func_name_cstr);
3307         const int length_difference = func_name.length() - s_runtimeExpandSuffix.length();
3308         if (length_difference <= 0)
3309             continue;
3310 
3311         const int32_t has_expand_suffix = func_name.compare(length_difference,
3312                                                             s_runtimeExpandSuffix.length(),
3313                                                             s_runtimeExpandSuffix);
3314 
3315         if (has_expand_suffix != 0)
3316             continue;
3317 
3318         if (log)
3319             log->Printf("%s - Found .expand function '%s'", __FUNCTION__, func_name_cstr);
3320 
3321         // Get values for variables in .expand frame that tell us the current kernel invocation
3322         bool found_coord_variables = true;
3323         assert(s_runtimeCoordVars.size() == coord.size());
3324 
3325         for (uint32_t i = 0; i < coord.size(); ++i)
3326         {
3327             uint64_t value = 0;
3328             if (!GetFrameVarAsUnsigned(frame_sp, s_runtimeCoordVars[i], value))
3329             {
3330                 found_coord_variables = false;
3331                 break;
3332             }
3333             coord[i] = value;
3334         }
3335 
3336         if (found_coord_variables)
3337             return true;
3338     }
3339     return false;
3340 }
3341 
3342 // Callback when a kernel breakpoint hits and we're looking for a specific coordinate.
3343 // Baton parameter contains a pointer to the target coordinate we want to break on.
3344 // Function then checks the .expand frame for the current coordinate and breaks to user if it matches.
3345 // Parameter 'break_id' is the id of the Breakpoint which made the callback.
3346 // Parameter 'break_loc_id' is the id for the BreakpointLocation which was hit,
3347 // a single logical breakpoint can have multiple addresses.
3348 bool
3349 RenderScriptRuntime::KernelBreakpointHit(void *baton, StoppointCallbackContext *ctx, user_id_t break_id,
3350                                          user_id_t break_loc_id)
3351 {
3352     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
3353 
3354     assert(baton && "Error: null baton in conditional kernel breakpoint callback");
3355 
3356     // Coordinate we want to stop on
3357     const uint32_t *target_coord = static_cast<const uint32_t *>(baton);
3358 
3359     if (log)
3360         log->Printf("%s - Break ID %" PRIu64 ", (%" PRIu32 ", %" PRIu32 ", %" PRIu32 ")", __FUNCTION__, break_id,
3361                     target_coord[0], target_coord[1], target_coord[2]);
3362 
3363     // Select current thread
3364     ExecutionContext context(ctx->exe_ctx_ref);
3365     Thread *thread_ptr = context.GetThreadPtr();
3366     assert(thread_ptr && "Null thread pointer");
3367 
3368     // Find current kernel invocation from .expand frame variables
3369     RSCoordinate current_coord{}; // Zero initialise array
3370     if (!GetKernelCoordinate(current_coord, thread_ptr))
3371     {
3372         if (log)
3373             log->Printf("%s - Error, couldn't select .expand stack frame", __FUNCTION__);
3374         return false;
3375     }
3376 
3377     if (log)
3378         log->Printf("%s - (%" PRIu32 ",%" PRIu32 ",%" PRIu32 ")", __FUNCTION__, current_coord[0], current_coord[1],
3379                     current_coord[2]);
3380 
3381     // Check if the current kernel invocation coordinate matches our target coordinate
3382     if (current_coord[0] == target_coord[0] &&
3383         current_coord[1] == target_coord[1] &&
3384         current_coord[2] == target_coord[2])
3385     {
3386         if (log)
3387             log->Printf("%s, BREAKING (%" PRIu32 ",%" PRIu32 ",%" PRIu32 ")", __FUNCTION__, current_coord[0],
3388                         current_coord[1], current_coord[2]);
3389 
3390         BreakpointSP breakpoint_sp = context.GetTargetPtr()->GetBreakpointByID(break_id);
3391         assert(breakpoint_sp != nullptr && "Error: Couldn't find breakpoint matching break id for callback");
3392         breakpoint_sp->SetEnabled(false); // Optimise since conditional breakpoint should only be hit once.
3393         return true;
3394     }
3395 
3396     // No match on coordinate
3397     return false;
3398 }
3399 
3400 // Tries to set a breakpoint on the start of a kernel, resolved using the kernel name.
3401 // Argument 'coords', represents a three dimensional coordinate which can be used to specify
3402 // a single kernel instance to break on. If this is set then we add a callback to the breakpoint.
3403 void
3404 RenderScriptRuntime::PlaceBreakpointOnKernel(Stream &strm, const char *name, const std::array<int, 3> coords,
3405                                              Error &error, TargetSP target)
3406 {
3407     if (!name)
3408     {
3409         error.SetErrorString("invalid kernel name");
3410         return;
3411     }
3412 
3413     InitSearchFilter(target);
3414 
3415     ConstString kernel_name(name);
3416     BreakpointSP bp = CreateKernelBreakpoint(kernel_name);
3417 
3418     // We have a conditional breakpoint on a specific coordinate
3419     if (coords[0] != -1)
3420     {
3421         strm.Printf("Conditional kernel breakpoint on coordinate %" PRId32 ", %" PRId32 ", %" PRId32,
3422                     coords[0], coords[1], coords[2]);
3423         strm.EOL();
3424 
3425         // Allocate memory for the baton, and copy over coordinate
3426         uint32_t *baton = new uint32_t[coords.size()];
3427         baton[0] = coords[0]; baton[1] = coords[1]; baton[2] = coords[2];
3428 
3429         // Create a callback that will be invoked everytime the breakpoint is hit.
3430         // The baton object passed to the handler is the target coordinate we want to break on.
3431         bp->SetCallback(KernelBreakpointHit, baton, true);
3432 
3433         // Store a shared pointer to the baton, so the memory will eventually be cleaned up after destruction
3434         m_conditional_breaks[bp->GetID()] = std::shared_ptr<uint32_t>(baton);
3435     }
3436 
3437     if (bp)
3438         bp->GetDescription(&strm, lldb::eDescriptionLevelInitial, false);
3439 }
3440 
3441 void
3442 RenderScriptRuntime::DumpModules(Stream &strm) const
3443 {
3444     strm.Printf("RenderScript Modules:");
3445     strm.EOL();
3446     strm.IndentMore();
3447     for (const auto &module : m_rsmodules)
3448     {
3449         module->Dump(strm);
3450     }
3451     strm.IndentLess();
3452 }
3453 
3454 RenderScriptRuntime::ScriptDetails *
3455 RenderScriptRuntime::LookUpScript(addr_t address, bool create)
3456 {
3457     for (const auto &s : m_scripts)
3458     {
3459         if (s->script.isValid())
3460             if (*s->script == address)
3461                 return s.get();
3462     }
3463     if (create)
3464     {
3465         std::unique_ptr<ScriptDetails> s(new ScriptDetails);
3466         s->script = address;
3467         m_scripts.push_back(std::move(s));
3468         return m_scripts.back().get();
3469     }
3470     return nullptr;
3471 }
3472 
3473 RenderScriptRuntime::AllocationDetails *
3474 RenderScriptRuntime::LookUpAllocation(addr_t address, bool create)
3475 {
3476     for (const auto &a : m_allocations)
3477     {
3478         if (a->address.isValid())
3479             if (*a->address == address)
3480                 return a.get();
3481     }
3482     if (create)
3483     {
3484         std::unique_ptr<AllocationDetails> a(new AllocationDetails);
3485         a->address = address;
3486         m_allocations.push_back(std::move(a));
3487         return m_allocations.back().get();
3488     }
3489     return nullptr;
3490 }
3491 
3492 void
3493 RSModuleDescriptor::Dump(Stream &strm) const
3494 {
3495     strm.Indent();
3496     m_module->GetFileSpec().Dump(&strm);
3497     if (m_module->GetNumCompileUnits())
3498     {
3499         strm.Indent("Debug info loaded.");
3500     }
3501     else
3502     {
3503         strm.Indent("Debug info does not exist.");
3504     }
3505     strm.EOL();
3506     strm.IndentMore();
3507     strm.Indent();
3508     strm.Printf("Globals: %" PRIu64, static_cast<uint64_t>(m_globals.size()));
3509     strm.EOL();
3510     strm.IndentMore();
3511     for (const auto &global : m_globals)
3512     {
3513         global.Dump(strm);
3514     }
3515     strm.IndentLess();
3516     strm.Indent();
3517     strm.Printf("Kernels: %" PRIu64, static_cast<uint64_t>(m_kernels.size()));
3518     strm.EOL();
3519     strm.IndentMore();
3520     for (const auto &kernel : m_kernels)
3521     {
3522         kernel.Dump(strm);
3523     }
3524     strm.Printf("Pragmas: %" PRIu64, static_cast<uint64_t>(m_pragmas.size()));
3525     strm.EOL();
3526     strm.IndentMore();
3527     for (const auto &key_val : m_pragmas)
3528     {
3529         strm.Printf("%s: %s", key_val.first.c_str(), key_val.second.c_str());
3530         strm.EOL();
3531     }
3532     strm.IndentLess(4);
3533 }
3534 
3535 void
3536 RSGlobalDescriptor::Dump(Stream &strm) const
3537 {
3538     strm.Indent(m_name.AsCString());
3539     VariableList var_list;
3540     m_module->m_module->FindGlobalVariables(m_name, nullptr, true, 1U, var_list);
3541     if (var_list.GetSize() == 1)
3542     {
3543         auto var = var_list.GetVariableAtIndex(0);
3544         auto type = var->GetType();
3545         if (type)
3546         {
3547             strm.Printf(" - ");
3548             type->DumpTypeName(&strm);
3549         }
3550         else
3551         {
3552             strm.Printf(" - Unknown Type");
3553         }
3554     }
3555     else
3556     {
3557         strm.Printf(" - variable identified, but not found in binary");
3558         const Symbol *s = m_module->m_module->FindFirstSymbolWithNameAndType(m_name, eSymbolTypeData);
3559         if (s)
3560         {
3561             strm.Printf(" (symbol exists) ");
3562         }
3563     }
3564 
3565     strm.EOL();
3566 }
3567 
3568 void
3569 RSKernelDescriptor::Dump(Stream &strm) const
3570 {
3571     strm.Indent(m_name.AsCString());
3572     strm.EOL();
3573 }
3574 
3575 class CommandObjectRenderScriptRuntimeModuleDump : public CommandObjectParsed
3576 {
3577 public:
3578     CommandObjectRenderScriptRuntimeModuleDump(CommandInterpreter &interpreter)
3579         : CommandObjectParsed(interpreter, "renderscript module dump",
3580                               "Dumps renderscript specific information for all modules.", "renderscript module dump",
3581                               eCommandRequiresProcess | eCommandProcessMustBeLaunched)
3582     {
3583     }
3584 
3585     ~CommandObjectRenderScriptRuntimeModuleDump() override = default;
3586 
3587     bool
3588     DoExecute(Args &command, CommandReturnObject &result) override
3589     {
3590         RenderScriptRuntime *runtime =
3591             (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
3592         runtime->DumpModules(result.GetOutputStream());
3593         result.SetStatus(eReturnStatusSuccessFinishResult);
3594         return true;
3595     }
3596 };
3597 
3598 class CommandObjectRenderScriptRuntimeModule : public CommandObjectMultiword
3599 {
3600 public:
3601     CommandObjectRenderScriptRuntimeModule(CommandInterpreter &interpreter)
3602         : CommandObjectMultiword(interpreter, "renderscript module", "Commands that deal with renderscript modules.",
3603                                  nullptr)
3604     {
3605         LoadSubCommand("dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeModuleDump(interpreter)));
3606     }
3607 
3608     ~CommandObjectRenderScriptRuntimeModule() override = default;
3609 };
3610 
3611 class CommandObjectRenderScriptRuntimeKernelList : public CommandObjectParsed
3612 {
3613 public:
3614     CommandObjectRenderScriptRuntimeKernelList(CommandInterpreter &interpreter)
3615         : CommandObjectParsed(interpreter, "renderscript kernel list",
3616                               "Lists renderscript kernel names and associated script resources.",
3617                               "renderscript kernel list", eCommandRequiresProcess | eCommandProcessMustBeLaunched)
3618     {
3619     }
3620 
3621     ~CommandObjectRenderScriptRuntimeKernelList() override = default;
3622 
3623     bool
3624     DoExecute(Args &command, CommandReturnObject &result) override
3625     {
3626         RenderScriptRuntime *runtime =
3627             (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
3628         runtime->DumpKernels(result.GetOutputStream());
3629         result.SetStatus(eReturnStatusSuccessFinishResult);
3630         return true;
3631     }
3632 };
3633 
3634 class CommandObjectRenderScriptRuntimeKernelBreakpointSet : public CommandObjectParsed
3635 {
3636 public:
3637     CommandObjectRenderScriptRuntimeKernelBreakpointSet(CommandInterpreter &interpreter)
3638         : CommandObjectParsed(interpreter, "renderscript kernel breakpoint set",
3639                               "Sets a breakpoint on a renderscript kernel.",
3640                               "renderscript kernel breakpoint set <kernel_name> [-c x,y,z]",
3641                               eCommandRequiresProcess | eCommandProcessMustBeLaunched | eCommandProcessMustBePaused),
3642           m_options(interpreter)
3643     {
3644     }
3645 
3646     ~CommandObjectRenderScriptRuntimeKernelBreakpointSet() override = default;
3647 
3648     Options *
3649     GetOptions() override
3650     {
3651         return &m_options;
3652     }
3653 
3654     class CommandOptions : public Options
3655     {
3656     public:
3657         CommandOptions(CommandInterpreter &interpreter) : Options(interpreter) {}
3658 
3659         ~CommandOptions() override = default;
3660 
3661         Error
3662         SetOptionValue(uint32_t option_idx, const char *option_arg) override
3663         {
3664             Error error;
3665             const int short_option = m_getopt_table[option_idx].val;
3666 
3667             switch (short_option)
3668             {
3669                 case 'c':
3670                     if (!ParseCoordinate(option_arg))
3671                         error.SetErrorStringWithFormat("Couldn't parse coordinate '%s', should be in format 'x,y,z'.",
3672                                                        option_arg);
3673                     break;
3674                 default:
3675                     error.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
3676                     break;
3677             }
3678             return error;
3679         }
3680 
3681         // -c takes an argument of the form 'num[,num][,num]'.
3682         // Where 'id_cstr' is this argument with the whitespace trimmed.
3683         // Missing coordinates are defaulted to zero.
3684         bool
3685         ParseCoordinate(const char *id_cstr)
3686         {
3687             RegularExpression regex;
3688             RegularExpression::Match regex_match(3);
3689 
3690             bool matched = false;
3691             if (regex.Compile("^([0-9]+),([0-9]+),([0-9]+)$") && regex.Execute(id_cstr, &regex_match))
3692                 matched = true;
3693             else if (regex.Compile("^([0-9]+),([0-9]+)$") && regex.Execute(id_cstr, &regex_match))
3694                 matched = true;
3695             else if (regex.Compile("^([0-9]+)$") && regex.Execute(id_cstr, &regex_match))
3696                 matched = true;
3697             for (uint32_t i = 0; i < 3; i++)
3698             {
3699                 std::string group;
3700                 if (regex_match.GetMatchAtIndex(id_cstr, i + 1, group))
3701                     m_coord[i] = (uint32_t)strtoul(group.c_str(), nullptr, 0);
3702                 else
3703                     m_coord[i] = 0;
3704             }
3705             return matched;
3706         }
3707 
3708         void
3709         OptionParsingStarting() override
3710         {
3711             // -1 means the -c option hasn't been set
3712             m_coord[0] = -1;
3713             m_coord[1] = -1;
3714             m_coord[2] = -1;
3715         }
3716 
3717         const OptionDefinition *
3718         GetDefinitions() override
3719         {
3720             return g_option_table;
3721         }
3722 
3723         static OptionDefinition g_option_table[];
3724         std::array<int, 3> m_coord;
3725     };
3726 
3727     bool
3728     DoExecute(Args &command, CommandReturnObject &result) override
3729     {
3730         const size_t argc = command.GetArgumentCount();
3731         if (argc < 1)
3732         {
3733             result.AppendErrorWithFormat("'%s' takes 1 argument of kernel name, and an optional coordinate.",
3734                                          m_cmd_name.c_str());
3735             result.SetStatus(eReturnStatusFailed);
3736             return false;
3737         }
3738 
3739         RenderScriptRuntime *runtime =
3740             (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
3741 
3742         Error error;
3743         runtime->PlaceBreakpointOnKernel(result.GetOutputStream(), command.GetArgumentAtIndex(0), m_options.m_coord,
3744                                          error, m_exe_ctx.GetTargetSP());
3745 
3746         if (error.Success())
3747         {
3748             result.AppendMessage("Breakpoint(s) created");
3749             result.SetStatus(eReturnStatusSuccessFinishResult);
3750             return true;
3751         }
3752         result.SetStatus(eReturnStatusFailed);
3753         result.AppendErrorWithFormat("Error: %s", error.AsCString());
3754         return false;
3755     }
3756 
3757 private:
3758     CommandOptions m_options;
3759 };
3760 
3761 OptionDefinition CommandObjectRenderScriptRuntimeKernelBreakpointSet::CommandOptions::g_option_table[] = {
3762     {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeValue,
3763      "Set a breakpoint on a single invocation of the kernel with specified coordinate.\n"
3764      "Coordinate takes the form 'x[,y][,z] where x,y,z are positive integers representing kernel dimensions. "
3765      "Any unset dimensions will be defaulted to zero."},
3766     {0, false, nullptr, 0, 0, nullptr, nullptr, 0, eArgTypeNone, nullptr}};
3767 
3768 class CommandObjectRenderScriptRuntimeKernelBreakpointAll : public CommandObjectParsed
3769 {
3770 public:
3771     CommandObjectRenderScriptRuntimeKernelBreakpointAll(CommandInterpreter &interpreter)
3772         : CommandObjectParsed(
3773               interpreter, "renderscript kernel breakpoint all",
3774               "Automatically sets a breakpoint on all renderscript kernels that are or will be loaded.\n"
3775               "Disabling option means breakpoints will no longer be set on any kernels loaded in the future, "
3776               "but does not remove currently set breakpoints.",
3777               "renderscript kernel breakpoint all <enable/disable>",
3778               eCommandRequiresProcess | eCommandProcessMustBeLaunched | eCommandProcessMustBePaused)
3779     {
3780     }
3781 
3782     ~CommandObjectRenderScriptRuntimeKernelBreakpointAll() override = default;
3783 
3784     bool
3785     DoExecute(Args &command, CommandReturnObject &result) override
3786     {
3787         const size_t argc = command.GetArgumentCount();
3788         if (argc != 1)
3789         {
3790             result.AppendErrorWithFormat("'%s' takes 1 argument of 'enable' or 'disable'", m_cmd_name.c_str());
3791             result.SetStatus(eReturnStatusFailed);
3792             return false;
3793         }
3794 
3795         RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
3796             m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
3797 
3798         bool do_break = false;
3799         const char *argument = command.GetArgumentAtIndex(0);
3800         if (strcmp(argument, "enable") == 0)
3801         {
3802             do_break = true;
3803             result.AppendMessage("Breakpoints will be set on all kernels.");
3804         }
3805         else if (strcmp(argument, "disable") == 0)
3806         {
3807             do_break = false;
3808             result.AppendMessage("Breakpoints will not be set on any new kernels.");
3809         }
3810         else
3811         {
3812             result.AppendErrorWithFormat("Argument must be either 'enable' or 'disable'");
3813             result.SetStatus(eReturnStatusFailed);
3814             return false;
3815         }
3816 
3817         runtime->SetBreakAllKernels(do_break, m_exe_ctx.GetTargetSP());
3818 
3819         result.SetStatus(eReturnStatusSuccessFinishResult);
3820         return true;
3821     }
3822 };
3823 
3824 class CommandObjectRenderScriptRuntimeKernelCoordinate : public CommandObjectParsed
3825 {
3826 public:
3827     CommandObjectRenderScriptRuntimeKernelCoordinate(CommandInterpreter &interpreter)
3828         : CommandObjectParsed(interpreter, "renderscript kernel coordinate",
3829                               "Shows the (x,y,z) coordinate of the current kernel invocation.",
3830                               "renderscript kernel coordinate",
3831                               eCommandRequiresProcess | eCommandProcessMustBeLaunched | eCommandProcessMustBePaused)
3832     {
3833     }
3834 
3835     ~CommandObjectRenderScriptRuntimeKernelCoordinate() override = default;
3836 
3837     bool
3838     DoExecute(Args &command, CommandReturnObject &result) override
3839     {
3840         RSCoordinate coord{}; // Zero initialize array
3841         bool success = RenderScriptRuntime::GetKernelCoordinate(coord, m_exe_ctx.GetThreadPtr());
3842         Stream &stream = result.GetOutputStream();
3843 
3844         if (success)
3845         {
3846             stream.Printf("Coordinate: (%" PRIu32 ", %" PRIu32 ", %" PRIu32 ")", coord[0], coord[1], coord[2]);
3847             stream.EOL();
3848             result.SetStatus(eReturnStatusSuccessFinishResult);
3849         }
3850         else
3851         {
3852             stream.Printf("Error: Coordinate could not be found.");
3853             stream.EOL();
3854             result.SetStatus(eReturnStatusFailed);
3855         }
3856         return true;
3857     }
3858 };
3859 
3860 class CommandObjectRenderScriptRuntimeKernelBreakpoint : public CommandObjectMultiword
3861 {
3862 public:
3863     CommandObjectRenderScriptRuntimeKernelBreakpoint(CommandInterpreter &interpreter)
3864         : CommandObjectMultiword(interpreter, "renderscript kernel",
3865                                  "Commands that generate breakpoints on renderscript kernels.", nullptr)
3866     {
3867         LoadSubCommand("set", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointSet(interpreter)));
3868         LoadSubCommand("all", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointAll(interpreter)));
3869     }
3870 
3871     ~CommandObjectRenderScriptRuntimeKernelBreakpoint() override = default;
3872 };
3873 
3874 class CommandObjectRenderScriptRuntimeKernel : public CommandObjectMultiword
3875 {
3876 public:
3877     CommandObjectRenderScriptRuntimeKernel(CommandInterpreter &interpreter)
3878         : CommandObjectMultiword(interpreter, "renderscript kernel", "Commands that deal with renderscript kernels.",
3879                                  nullptr)
3880     {
3881         LoadSubCommand("list", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelList(interpreter)));
3882         LoadSubCommand("coordinate",
3883                        CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelCoordinate(interpreter)));
3884         LoadSubCommand("breakpoint",
3885                        CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpoint(interpreter)));
3886     }
3887 
3888     ~CommandObjectRenderScriptRuntimeKernel() override = default;
3889 };
3890 
3891 class CommandObjectRenderScriptRuntimeContextDump : public CommandObjectParsed
3892 {
3893 public:
3894     CommandObjectRenderScriptRuntimeContextDump(CommandInterpreter &interpreter)
3895         : CommandObjectParsed(interpreter, "renderscript context dump", "Dumps renderscript context information.",
3896                               "renderscript context dump", eCommandRequiresProcess | eCommandProcessMustBeLaunched)
3897     {
3898     }
3899 
3900     ~CommandObjectRenderScriptRuntimeContextDump() override = default;
3901 
3902     bool
3903     DoExecute(Args &command, CommandReturnObject &result) override
3904     {
3905         RenderScriptRuntime *runtime =
3906             (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
3907         runtime->DumpContexts(result.GetOutputStream());
3908         result.SetStatus(eReturnStatusSuccessFinishResult);
3909         return true;
3910     }
3911 };
3912 
3913 class CommandObjectRenderScriptRuntimeContext : public CommandObjectMultiword
3914 {
3915 public:
3916     CommandObjectRenderScriptRuntimeContext(CommandInterpreter &interpreter)
3917         : CommandObjectMultiword(interpreter, "renderscript context", "Commands that deal with renderscript contexts.",
3918                                  nullptr)
3919     {
3920         LoadSubCommand("dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeContextDump(interpreter)));
3921     }
3922 
3923     ~CommandObjectRenderScriptRuntimeContext() override = default;
3924 };
3925 
3926 class CommandObjectRenderScriptRuntimeAllocationDump : public CommandObjectParsed
3927 {
3928 public:
3929     CommandObjectRenderScriptRuntimeAllocationDump(CommandInterpreter &interpreter)
3930         : CommandObjectParsed(interpreter, "renderscript allocation dump",
3931                               "Displays the contents of a particular allocation", "renderscript allocation dump <ID>",
3932                               eCommandRequiresProcess | eCommandProcessMustBeLaunched),
3933           m_options(interpreter)
3934     {
3935     }
3936 
3937     ~CommandObjectRenderScriptRuntimeAllocationDump() override = default;
3938 
3939     Options *
3940     GetOptions() override
3941     {
3942         return &m_options;
3943     }
3944 
3945     class CommandOptions : public Options
3946     {
3947     public:
3948         CommandOptions(CommandInterpreter &interpreter) : Options(interpreter) {}
3949 
3950         ~CommandOptions() override = default;
3951 
3952         Error
3953         SetOptionValue(uint32_t option_idx, const char *option_arg) override
3954         {
3955             Error error;
3956             const int short_option = m_getopt_table[option_idx].val;
3957 
3958             switch (short_option)
3959             {
3960                 case 'f':
3961                     m_outfile.SetFile(option_arg, true);
3962                     if (m_outfile.Exists())
3963                     {
3964                         m_outfile.Clear();
3965                         error.SetErrorStringWithFormat("file already exists: '%s'", option_arg);
3966                     }
3967                     break;
3968                 default:
3969                     error.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
3970                     break;
3971             }
3972             return error;
3973         }
3974 
3975         void
3976         OptionParsingStarting() override
3977         {
3978             m_outfile.Clear();
3979         }
3980 
3981         const OptionDefinition *
3982         GetDefinitions() override
3983         {
3984             return g_option_table;
3985         }
3986 
3987         static OptionDefinition g_option_table[];
3988         FileSpec m_outfile;
3989     };
3990 
3991     bool
3992     DoExecute(Args &command, CommandReturnObject &result) override
3993     {
3994         const size_t argc = command.GetArgumentCount();
3995         if (argc < 1)
3996         {
3997             result.AppendErrorWithFormat("'%s' takes 1 argument, an allocation ID. As well as an optional -f argument",
3998                                          m_cmd_name.c_str());
3999             result.SetStatus(eReturnStatusFailed);
4000             return false;
4001         }
4002 
4003         RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4004             m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
4005 
4006         const char *id_cstr = command.GetArgumentAtIndex(0);
4007         bool convert_complete = false;
4008         const uint32_t id = StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete);
4009         if (!convert_complete)
4010         {
4011             result.AppendErrorWithFormat("invalid allocation id argument '%s'", id_cstr);
4012             result.SetStatus(eReturnStatusFailed);
4013             return false;
4014         }
4015 
4016         Stream *output_strm = nullptr;
4017         StreamFile outfile_stream;
4018         const FileSpec &outfile_spec = m_options.m_outfile; // Dump allocation to file instead
4019         if (outfile_spec)
4020         {
4021             // Open output file
4022             char path[256];
4023             outfile_spec.GetPath(path, sizeof(path));
4024             if (outfile_stream.GetFile().Open(path, File::eOpenOptionWrite | File::eOpenOptionCanCreate).Success())
4025             {
4026                 output_strm = &outfile_stream;
4027                 result.GetOutputStream().Printf("Results written to '%s'", path);
4028                 result.GetOutputStream().EOL();
4029             }
4030             else
4031             {
4032                 result.AppendErrorWithFormat("Couldn't open file '%s'", path);
4033                 result.SetStatus(eReturnStatusFailed);
4034                 return false;
4035             }
4036         }
4037         else
4038             output_strm = &result.GetOutputStream();
4039 
4040         assert(output_strm != nullptr);
4041         bool success = runtime->DumpAllocation(*output_strm, m_exe_ctx.GetFramePtr(), id);
4042 
4043         if (success)
4044             result.SetStatus(eReturnStatusSuccessFinishResult);
4045         else
4046             result.SetStatus(eReturnStatusFailed);
4047 
4048         return true;
4049     }
4050 
4051 private:
4052     CommandOptions m_options;
4053 };
4054 
4055 OptionDefinition CommandObjectRenderScriptRuntimeAllocationDump::CommandOptions::g_option_table[] = {
4056     {LLDB_OPT_SET_1, false, "file", 'f', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeFilename,
4057      "Print results to specified file instead of command line."},
4058     {0, false, nullptr, 0, 0, nullptr, nullptr, 0, eArgTypeNone, nullptr}};
4059 
4060 class CommandObjectRenderScriptRuntimeAllocationList : public CommandObjectParsed
4061 {
4062 public:
4063     CommandObjectRenderScriptRuntimeAllocationList(CommandInterpreter &interpreter)
4064         : CommandObjectParsed(interpreter, "renderscript allocation list",
4065                               "List renderscript allocations and their information.", "renderscript allocation list",
4066                               eCommandRequiresProcess | eCommandProcessMustBeLaunched),
4067           m_options(interpreter)
4068     {
4069     }
4070 
4071     ~CommandObjectRenderScriptRuntimeAllocationList() override = default;
4072 
4073     Options *
4074     GetOptions() override
4075     {
4076         return &m_options;
4077     }
4078 
4079     class CommandOptions : public Options
4080     {
4081     public:
4082         CommandOptions(CommandInterpreter &interpreter) : Options(interpreter), m_id(0) {}
4083 
4084         ~CommandOptions() override = default;
4085 
4086         Error
4087         SetOptionValue(uint32_t option_idx, const char *option_arg) override
4088         {
4089             Error error;
4090             const int short_option = m_getopt_table[option_idx].val;
4091 
4092             switch (short_option)
4093             {
4094                 case 'i':
4095                     bool success;
4096                     m_id = StringConvert::ToUInt32(option_arg, 0, 0, &success);
4097                     if (!success)
4098                         error.SetErrorStringWithFormat("invalid integer value for option '%c'", short_option);
4099                     break;
4100                 default:
4101                     error.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
4102                     break;
4103             }
4104             return error;
4105         }
4106 
4107         void
4108         OptionParsingStarting() override
4109         {
4110             m_id = 0;
4111         }
4112 
4113         const OptionDefinition *
4114         GetDefinitions() override
4115         {
4116             return g_option_table;
4117         }
4118 
4119         static OptionDefinition g_option_table[];
4120         uint32_t m_id;
4121     };
4122 
4123     bool
4124     DoExecute(Args &command, CommandReturnObject &result) override
4125     {
4126         RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4127             m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
4128         runtime->ListAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr(), m_options.m_id);
4129         result.SetStatus(eReturnStatusSuccessFinishResult);
4130         return true;
4131     }
4132 
4133 private:
4134     CommandOptions m_options;
4135 };
4136 
4137 OptionDefinition CommandObjectRenderScriptRuntimeAllocationList::CommandOptions::g_option_table[] = {
4138     {LLDB_OPT_SET_1, false, "id", 'i', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeIndex,
4139      "Only show details of a single allocation with specified id."},
4140     {0, false, nullptr, 0, 0, nullptr, nullptr, 0, eArgTypeNone, nullptr}};
4141 
4142 class CommandObjectRenderScriptRuntimeAllocationLoad : public CommandObjectParsed
4143 {
4144 public:
4145     CommandObjectRenderScriptRuntimeAllocationLoad(CommandInterpreter &interpreter)
4146         : CommandObjectParsed(
4147               interpreter, "renderscript allocation load", "Loads renderscript allocation contents from a file.",
4148               "renderscript allocation load <ID> <filename>", eCommandRequiresProcess | eCommandProcessMustBeLaunched)
4149     {
4150     }
4151 
4152     ~CommandObjectRenderScriptRuntimeAllocationLoad() override = default;
4153 
4154     bool
4155     DoExecute(Args &command, CommandReturnObject &result) override
4156     {
4157         const size_t argc = command.GetArgumentCount();
4158         if (argc != 2)
4159         {
4160             result.AppendErrorWithFormat("'%s' takes 2 arguments, an allocation ID and filename to read from.",
4161                                          m_cmd_name.c_str());
4162             result.SetStatus(eReturnStatusFailed);
4163             return false;
4164         }
4165 
4166         RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4167             m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
4168 
4169         const char *id_cstr = command.GetArgumentAtIndex(0);
4170         bool convert_complete = false;
4171         const uint32_t id = StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete);
4172         if (!convert_complete)
4173         {
4174             result.AppendErrorWithFormat("invalid allocation id argument '%s'", id_cstr);
4175             result.SetStatus(eReturnStatusFailed);
4176             return false;
4177         }
4178 
4179         const char *filename = command.GetArgumentAtIndex(1);
4180         bool success = runtime->LoadAllocation(result.GetOutputStream(), id, filename, m_exe_ctx.GetFramePtr());
4181 
4182         if (success)
4183             result.SetStatus(eReturnStatusSuccessFinishResult);
4184         else
4185             result.SetStatus(eReturnStatusFailed);
4186 
4187         return true;
4188     }
4189 };
4190 
4191 class CommandObjectRenderScriptRuntimeAllocationSave : public CommandObjectParsed
4192 {
4193 public:
4194     CommandObjectRenderScriptRuntimeAllocationSave(CommandInterpreter &interpreter)
4195         : CommandObjectParsed(
4196               interpreter, "renderscript allocation save", "Write renderscript allocation contents to a file.",
4197               "renderscript allocation save <ID> <filename>", eCommandRequiresProcess | eCommandProcessMustBeLaunched)
4198     {
4199     }
4200 
4201     ~CommandObjectRenderScriptRuntimeAllocationSave() override = default;
4202 
4203     bool
4204     DoExecute(Args &command, CommandReturnObject &result) override
4205     {
4206         const size_t argc = command.GetArgumentCount();
4207         if (argc != 2)
4208         {
4209             result.AppendErrorWithFormat("'%s' takes 2 arguments, an allocation ID and filename to read from.",
4210                                          m_cmd_name.c_str());
4211             result.SetStatus(eReturnStatusFailed);
4212             return false;
4213         }
4214 
4215         RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4216             m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
4217 
4218         const char *id_cstr = command.GetArgumentAtIndex(0);
4219         bool convert_complete = false;
4220         const uint32_t id = StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete);
4221         if (!convert_complete)
4222         {
4223             result.AppendErrorWithFormat("invalid allocation id argument '%s'", id_cstr);
4224             result.SetStatus(eReturnStatusFailed);
4225             return false;
4226         }
4227 
4228         const char *filename = command.GetArgumentAtIndex(1);
4229         bool success = runtime->SaveAllocation(result.GetOutputStream(), id, filename, m_exe_ctx.GetFramePtr());
4230 
4231         if (success)
4232             result.SetStatus(eReturnStatusSuccessFinishResult);
4233         else
4234             result.SetStatus(eReturnStatusFailed);
4235 
4236         return true;
4237     }
4238 };
4239 
4240 class CommandObjectRenderScriptRuntimeAllocationRefresh : public CommandObjectParsed
4241 {
4242 public:
4243     CommandObjectRenderScriptRuntimeAllocationRefresh(CommandInterpreter &interpreter)
4244         : CommandObjectParsed(interpreter, "renderscript allocation refresh",
4245                               "Recomputes the details of all allocations.", "renderscript allocation refresh",
4246                               eCommandRequiresProcess | eCommandProcessMustBeLaunched)
4247     {
4248     }
4249 
4250     ~CommandObjectRenderScriptRuntimeAllocationRefresh() override = default;
4251 
4252     bool
4253     DoExecute(Args &command, CommandReturnObject &result) override
4254     {
4255         RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4256             m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
4257 
4258         bool success = runtime->RecomputeAllAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr());
4259 
4260         if (success)
4261         {
4262             result.SetStatus(eReturnStatusSuccessFinishResult);
4263             return true;
4264         }
4265         else
4266         {
4267             result.SetStatus(eReturnStatusFailed);
4268             return false;
4269         }
4270     }
4271 };
4272 
4273 class CommandObjectRenderScriptRuntimeAllocation : public CommandObjectMultiword
4274 {
4275 public:
4276     CommandObjectRenderScriptRuntimeAllocation(CommandInterpreter &interpreter)
4277         : CommandObjectMultiword(interpreter, "renderscript allocation",
4278                                  "Commands that deal with renderscript allocations.", nullptr)
4279     {
4280         LoadSubCommand("list", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationList(interpreter)));
4281         LoadSubCommand("dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationDump(interpreter)));
4282         LoadSubCommand("save", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationSave(interpreter)));
4283         LoadSubCommand("load", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationLoad(interpreter)));
4284         LoadSubCommand("refresh", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationRefresh(interpreter)));
4285     }
4286 
4287     ~CommandObjectRenderScriptRuntimeAllocation() override = default;
4288 };
4289 
4290 class CommandObjectRenderScriptRuntimeStatus : public CommandObjectParsed
4291 {
4292 public:
4293     CommandObjectRenderScriptRuntimeStatus(CommandInterpreter &interpreter)
4294         : CommandObjectParsed(interpreter, "renderscript status", "Displays current renderscript runtime status.",
4295                               "renderscript status", eCommandRequiresProcess | eCommandProcessMustBeLaunched)
4296     {
4297     }
4298 
4299     ~CommandObjectRenderScriptRuntimeStatus() override = default;
4300 
4301     bool
4302     DoExecute(Args &command, CommandReturnObject &result) override
4303     {
4304         RenderScriptRuntime *runtime =
4305             (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
4306         runtime->Status(result.GetOutputStream());
4307         result.SetStatus(eReturnStatusSuccessFinishResult);
4308         return true;
4309     }
4310 };
4311 
4312 class CommandObjectRenderScriptRuntime : public CommandObjectMultiword
4313 {
4314 public:
4315     CommandObjectRenderScriptRuntime(CommandInterpreter &interpreter)
4316         : CommandObjectMultiword(interpreter, "renderscript", "A set of commands for operating on renderscript.",
4317                                  "renderscript <subcommand> [<subcommand-options>]")
4318     {
4319         LoadSubCommand("module", CommandObjectSP(new CommandObjectRenderScriptRuntimeModule(interpreter)));
4320         LoadSubCommand("status", CommandObjectSP(new CommandObjectRenderScriptRuntimeStatus(interpreter)));
4321         LoadSubCommand("kernel", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernel(interpreter)));
4322         LoadSubCommand("context", CommandObjectSP(new CommandObjectRenderScriptRuntimeContext(interpreter)));
4323         LoadSubCommand("allocation", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocation(interpreter)));
4324     }
4325 
4326     ~CommandObjectRenderScriptRuntime() override = default;
4327 };
4328 
4329 void
4330 RenderScriptRuntime::Initiate()
4331 {
4332     assert(!m_initiated);
4333 }
4334 
4335 RenderScriptRuntime::RenderScriptRuntime(Process *process)
4336     : lldb_private::CPPLanguageRuntime(process),
4337       m_initiated(false),
4338       m_debuggerPresentFlagged(false),
4339       m_breakAllKernels(false)
4340 {
4341     ModulesDidLoad(process->GetTarget().GetImages());
4342 }
4343 
4344 lldb::CommandObjectSP
4345 RenderScriptRuntime::GetCommandObject(lldb_private::CommandInterpreter &interpreter)
4346 {
4347     return CommandObjectSP(new CommandObjectRenderScriptRuntime(interpreter));
4348 }
4349 
4350 RenderScriptRuntime::~RenderScriptRuntime() = default;
4351