1 //===-- RenderScriptRuntime.cpp ---------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 // C Includes
11 // C++ Includes
12 // Other libraries and framework includes
13 // Project includes
14 #include "RenderScriptRuntime.h"
15 
16 #include "lldb/Breakpoint/StoppointCallbackContext.h"
17 #include "lldb/Core/ConstString.h"
18 #include "lldb/Core/Debugger.h"
19 #include "lldb/Core/Error.h"
20 #include "lldb/Core/Log.h"
21 #include "lldb/Core/PluginManager.h"
22 #include "lldb/Core/RegularExpression.h"
23 #include "lldb/Core/ValueObjectVariable.h"
24 #include "lldb/DataFormatters/DumpValueObjectOptions.h"
25 #include "lldb/Expression/UserExpression.h"
26 #include "lldb/Host/StringConvert.h"
27 #include "lldb/Interpreter/Args.h"
28 #include "lldb/Interpreter/CommandInterpreter.h"
29 #include "lldb/Interpreter/CommandObjectMultiword.h"
30 #include "lldb/Interpreter/CommandReturnObject.h"
31 #include "lldb/Interpreter/Options.h"
32 #include "lldb/Symbol/Symbol.h"
33 #include "lldb/Symbol/Type.h"
34 #include "lldb/Symbol/VariableList.h"
35 #include "lldb/Target/Process.h"
36 #include "lldb/Target/RegisterContext.h"
37 #include "lldb/Target/Target.h"
38 #include "lldb/Target/Thread.h"
39 
40 using namespace lldb;
41 using namespace lldb_private;
42 using namespace lldb_renderscript;
43 
44 namespace
45 {
46 
47 // The empirical_type adds a basic level of validation to arbitrary data
48 // allowing us to track if data has been discovered and stored or not.
49 // An empirical_type will be marked as valid only if it has been explicitly assigned to.
50 template <typename type_t> class empirical_type
51 {
52 public:
53     // Ctor. Contents is invalid when constructed.
54     empirical_type() : valid(false) {}
55 
56     // Return true and copy contents to out if valid, else return false.
57     bool
58     get(type_t &out) const
59     {
60         if (valid)
61             out = data;
62         return valid;
63     }
64 
65     // Return a pointer to the contents or nullptr if it was not valid.
66     const type_t *
67     get() const
68     {
69         return valid ? &data : nullptr;
70     }
71 
72     // Assign data explicitly.
73     void
74     set(const type_t in)
75     {
76         data = in;
77         valid = true;
78     }
79 
80     // Mark contents as invalid.
81     void
82     invalidate()
83     {
84         valid = false;
85     }
86 
87     // Returns true if this type contains valid data.
88     bool
89     isValid() const
90     {
91         return valid;
92     }
93 
94     // Assignment operator.
95     empirical_type<type_t> &
96     operator=(const type_t in)
97     {
98         set(in);
99         return *this;
100     }
101 
102     // Dereference operator returns contents.
103     // Warning: Will assert if not valid so use only when you know data is valid.
104     const type_t &operator*() const
105     {
106         assert(valid);
107         return data;
108     }
109 
110 protected:
111     bool valid;
112     type_t data;
113 };
114 
115 // ArgItem is used by the GetArgs() function when reading function arguments from the target.
116 struct ArgItem
117 {
118     enum
119     {
120         ePointer,
121         eInt32,
122         eInt64,
123         eLong,
124         eBool
125     } type;
126 
127     uint64_t value;
128 
129     explicit operator uint64_t() const { return value; }
130 };
131 
132 // Context structure to be passed into GetArgsXXX(), argument reading functions below.
133 struct GetArgsCtx
134 {
135     RegisterContext *reg_ctx;
136     Process *process;
137 };
138 
139 bool
140 GetArgsX86(const GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args)
141 {
142     Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
143 
144     Error error;
145 
146     // get the current stack pointer
147     uint64_t sp = ctx.reg_ctx->GetSP();
148 
149     for (size_t i = 0; i < num_args; ++i)
150     {
151         ArgItem &arg = arg_list[i];
152         // advance up the stack by one argument
153         sp += sizeof(uint32_t);
154         // get the argument type size
155         size_t arg_size = sizeof(uint32_t);
156         // read the argument from memory
157         arg.value = 0;
158         Error error;
159         size_t read = ctx.process->ReadMemory(sp, &arg.value, sizeof(uint32_t), error);
160         if (read != arg_size || !error.Success())
161         {
162             if (log)
163                 log->Printf("%s - error reading argument: %" PRIu64 " '%s'", __FUNCTION__, uint64_t(i),
164                             error.AsCString());
165             return false;
166         }
167     }
168     return true;
169 }
170 
171 bool
172 GetArgsX86_64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args)
173 {
174     Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
175 
176     // number of arguments passed in registers
177     static const uint32_t c_args_in_reg = 6;
178     // register passing order
179     static const std::array<const char *, c_args_in_reg> c_reg_names{{"rdi", "rsi", "rdx", "rcx", "r8", "r9"}};
180     // argument type to size mapping
181     static const std::array<size_t, 5> arg_size{{
182         8, // ePointer,
183         4, // eInt32,
184         8, // eInt64,
185         8, // eLong,
186         4, // eBool,
187     }};
188 
189     Error error;
190 
191     // get the current stack pointer
192     uint64_t sp = ctx.reg_ctx->GetSP();
193     // step over the return address
194     sp += sizeof(uint64_t);
195 
196     // check the stack alignment was correct (16 byte aligned)
197     if ((sp & 0xf) != 0x0)
198     {
199         if (log)
200             log->Printf("%s - stack misaligned", __FUNCTION__);
201         return false;
202     }
203 
204     // find the start of arguments on the stack
205     uint64_t sp_offset = 0;
206     for (uint32_t i = c_args_in_reg; i < num_args; ++i)
207     {
208         sp_offset += arg_size[arg_list[i].type];
209     }
210     // round up to multiple of 16
211     sp_offset = (sp_offset + 0xf) & 0xf;
212     sp += sp_offset;
213 
214     for (size_t i = 0; i < num_args; ++i)
215     {
216         bool success = false;
217         ArgItem &arg = arg_list[i];
218         // arguments passed in registers
219         if (i < c_args_in_reg)
220         {
221             const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoByName(c_reg_names[i]);
222             RegisterValue rVal;
223             if (ctx.reg_ctx->ReadRegister(rArg, rVal))
224                 arg.value = rVal.GetAsUInt64(0, &success);
225         }
226         // arguments passed on the stack
227         else
228         {
229             // get the argument type size
230             const size_t size = arg_size[arg_list[i].type];
231             // read the argument from memory
232             arg.value = 0;
233             // note: due to little endian layout reading 4 or 8 bytes will give the correct value.
234             size_t read = ctx.process->ReadMemory(sp, &arg.value, size, error);
235             success = (error.Success() && read==size);
236             // advance past this argument
237             sp -= size;
238         }
239         // fail if we couldn't read this argument
240         if (!success)
241         {
242             if (log)
243                 log->Printf("%s - error reading argument: %" PRIu64", reason: %s",
244                             __FUNCTION__, uint64_t(i), error.AsCString("n/a"));
245             return false;
246         }
247     }
248     return true;
249 }
250 
251 bool
252 GetArgsArm(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args)
253 {
254     // number of arguments passed in registers
255     static const uint32_t c_args_in_reg = 4;
256 
257     Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
258 
259     Error error;
260 
261     // get the current stack pointer
262     uint64_t sp = ctx.reg_ctx->GetSP();
263 
264     for (size_t i = 0; i < num_args; ++i)
265     {
266         bool success = false;
267         ArgItem &arg = arg_list[i];
268         // arguments passed in registers
269         if (i < c_args_in_reg)
270         {
271             const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoAtIndex(i);
272             RegisterValue rVal;
273             if (ctx.reg_ctx->ReadRegister(rArg, rVal))
274                 arg.value = rVal.GetAsUInt32(0, &success);
275         }
276         // arguments passed on the stack
277         else
278         {
279             // get the argument type size
280             const size_t arg_size = sizeof(uint32_t);
281             // clear all 64bits
282             arg.value = 0;
283             // read this argument from memory
284             size_t bytes_read = ctx.process->ReadMemory(sp, &arg.value, arg_size, error);
285             success = (error.Success() && bytes_read == arg_size);
286             // advance the stack pointer
287             sp += sizeof(uint32_t);
288         }
289         // fail if we couldn't read this argument
290         if (!success)
291         {
292             if (log)
293                 log->Printf("%s - error reading argument: %" PRIu64", reason: %s",
294                             __FUNCTION__, uint64_t(i), error.AsCString("n/a"));
295             return false;
296         }
297     }
298     return true;
299 }
300 
301 bool
302 GetArgsAarch64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args)
303 {
304     // number of arguments passed in registers
305     static const uint32_t c_args_in_reg = 8;
306 
307     Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
308 
309     for (size_t i = 0; i < num_args; ++i)
310     {
311         bool success = false;
312         ArgItem &arg = arg_list[i];
313         // arguments passed in registers
314         if (i < c_args_in_reg)
315         {
316             const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoAtIndex(i);
317             RegisterValue rVal;
318             if (ctx.reg_ctx->ReadRegister(rArg, rVal))
319                 arg.value = rVal.GetAsUInt64(0, &success);
320         }
321         // arguments passed on the stack
322         else
323         {
324             if (log)
325                 log->Printf("%s - reading arguments spilled to stack not implemented", __FUNCTION__);
326         }
327         // fail if we couldn't read this argument
328         if (!success)
329         {
330             if (log)
331                 log->Printf("%s - error reading argument: %" PRIu64, __FUNCTION__,
332                             uint64_t(i));
333             return false;
334         }
335     }
336     return true;
337 }
338 
339 bool
340 GetArgsMipsel(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args)
341 {
342     // number of arguments passed in registers
343     static const uint32_t c_args_in_reg = 4;
344     // register file offset to first argument
345     static const uint32_t c_reg_offset = 4;
346 
347     Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
348 
349     Error error;
350 
351     // find offset to arguments on the stack (+16 to skip over a0-a3 shadow space)
352     uint64_t sp = ctx.reg_ctx->GetSP() + 16;
353 
354     for (size_t i = 0; i < num_args; ++i)
355     {
356         bool success = false;
357         ArgItem &arg = arg_list[i];
358         // arguments passed in registers
359         if (i < c_args_in_reg)
360         {
361             const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoAtIndex(i + c_reg_offset);
362             RegisterValue rVal;
363             if (ctx.reg_ctx->ReadRegister(rArg, rVal))
364                 arg.value = rVal.GetAsUInt64(0, &success);
365         }
366         // arguments passed on the stack
367         else
368         {
369             const size_t arg_size = sizeof(uint32_t);
370             arg.value = 0;
371             size_t bytes_read = ctx.process->ReadMemory(sp, &arg.value, arg_size, error);
372             success = (error.Success() && bytes_read == arg_size);
373             // advance the stack pointer
374             sp += arg_size;
375         }
376         // fail if we couldn't read this argument
377         if (!success)
378         {
379             if (log)
380                 log->Printf("%s - error reading argument: %" PRIu64", reason: %s",
381                             __FUNCTION__, uint64_t(i), error.AsCString("n/a"));
382             return false;
383         }
384     }
385     return true;
386 }
387 
388 bool
389 GetArgsMips64el(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args)
390 {
391     // number of arguments passed in registers
392     static const uint32_t c_args_in_reg = 8;
393     // register file offset to first argument
394     static const uint32_t c_reg_offset = 4;
395 
396     Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
397 
398     Error error;
399 
400     // get the current stack pointer
401     uint64_t sp = ctx.reg_ctx->GetSP();
402 
403     for (size_t i = 0; i < num_args; ++i)
404     {
405         bool success = false;
406         ArgItem &arg = arg_list[i];
407         // arguments passed in registers
408         if (i < c_args_in_reg)
409         {
410             const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoAtIndex(i + c_reg_offset);
411             RegisterValue rVal;
412             if (ctx.reg_ctx->ReadRegister(rArg, rVal))
413                 arg.value = rVal.GetAsUInt64(0, &success);
414         }
415         // arguments passed on the stack
416         else
417         {
418             // get the argument type size
419             const size_t arg_size = sizeof(uint64_t);
420             // clear all 64bits
421             arg.value = 0;
422             // read this argument from memory
423             size_t bytes_read = ctx.process->ReadMemory(sp, &arg.value, arg_size, error);
424             success = (error.Success() && bytes_read == arg_size);
425             // advance the stack pointer
426             sp += arg_size;
427         }
428         // fail if we couldn't read this argument
429         if (!success)
430         {
431             if (log)
432                 log->Printf("%s - error reading argument: %" PRIu64", reason: %s",
433                             __FUNCTION__, uint64_t(i), error.AsCString("n/a"));
434             return false;
435         }
436     }
437     return true;
438 }
439 
440 bool
441 GetArgs(ExecutionContext &context, ArgItem *arg_list, size_t num_args)
442 {
443     Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
444 
445     // verify that we have a target
446     if (!context.GetTargetPtr())
447     {
448         if (log)
449             log->Printf("%s - invalid target", __FUNCTION__);
450         return false;
451     }
452 
453     GetArgsCtx ctx = {context.GetRegisterContext(), context.GetProcessPtr()};
454     assert(ctx.reg_ctx && ctx.process);
455 
456     // dispatch based on architecture
457     switch (context.GetTargetPtr()->GetArchitecture().GetMachine())
458     {
459         case llvm::Triple::ArchType::x86:
460             return GetArgsX86(ctx, arg_list, num_args);
461 
462         case llvm::Triple::ArchType::x86_64:
463             return GetArgsX86_64(ctx, arg_list, num_args);
464 
465         case llvm::Triple::ArchType::arm:
466             return GetArgsArm(ctx, arg_list, num_args);
467 
468         case llvm::Triple::ArchType::aarch64:
469             return GetArgsAarch64(ctx, arg_list, num_args);
470 
471         case llvm::Triple::ArchType::mipsel:
472             return GetArgsMipsel(ctx, arg_list, num_args);
473 
474         case llvm::Triple::ArchType::mips64el:
475             return GetArgsMips64el(ctx, arg_list, num_args);
476 
477         default:
478             // unsupported architecture
479             if (log)
480             {
481                 log->Printf("%s - architecture not supported: '%s'", __FUNCTION__,
482                             context.GetTargetRef().GetArchitecture().GetArchitectureName());
483             }
484             return false;
485     }
486 }
487 } // anonymous namespace
488 
489 // The ScriptDetails class collects data associated with a single script instance.
490 struct RenderScriptRuntime::ScriptDetails
491 {
492     ~ScriptDetails() = default;
493 
494     enum ScriptType
495     {
496         eScript,
497         eScriptC
498     };
499 
500     // The derived type of the script.
501     empirical_type<ScriptType> type;
502     // The name of the original source file.
503     empirical_type<std::string> resName;
504     // Path to script .so file on the device.
505     empirical_type<std::string> scriptDyLib;
506     // Directory where kernel objects are cached on device.
507     empirical_type<std::string> cacheDir;
508     // Pointer to the context which owns this script.
509     empirical_type<lldb::addr_t> context;
510     // Pointer to the script object itself.
511     empirical_type<lldb::addr_t> script;
512 };
513 
514 // This Element class represents the Element object in RS,
515 // defining the type associated with an Allocation.
516 struct RenderScriptRuntime::Element
517 {
518     // Taken from rsDefines.h
519     enum DataKind
520     {
521         RS_KIND_USER,
522         RS_KIND_PIXEL_L = 7,
523         RS_KIND_PIXEL_A,
524         RS_KIND_PIXEL_LA,
525         RS_KIND_PIXEL_RGB,
526         RS_KIND_PIXEL_RGBA,
527         RS_KIND_PIXEL_DEPTH,
528         RS_KIND_PIXEL_YUV,
529         RS_KIND_INVALID = 100
530     };
531 
532     // Taken from rsDefines.h
533     enum DataType
534     {
535         RS_TYPE_NONE = 0,
536         RS_TYPE_FLOAT_16,
537         RS_TYPE_FLOAT_32,
538         RS_TYPE_FLOAT_64,
539         RS_TYPE_SIGNED_8,
540         RS_TYPE_SIGNED_16,
541         RS_TYPE_SIGNED_32,
542         RS_TYPE_SIGNED_64,
543         RS_TYPE_UNSIGNED_8,
544         RS_TYPE_UNSIGNED_16,
545         RS_TYPE_UNSIGNED_32,
546         RS_TYPE_UNSIGNED_64,
547         RS_TYPE_BOOLEAN,
548 
549         RS_TYPE_UNSIGNED_5_6_5,
550         RS_TYPE_UNSIGNED_5_5_5_1,
551         RS_TYPE_UNSIGNED_4_4_4_4,
552 
553         RS_TYPE_MATRIX_4X4,
554         RS_TYPE_MATRIX_3X3,
555         RS_TYPE_MATRIX_2X2,
556 
557         RS_TYPE_ELEMENT = 1000,
558         RS_TYPE_TYPE,
559         RS_TYPE_ALLOCATION,
560         RS_TYPE_SAMPLER,
561         RS_TYPE_SCRIPT,
562         RS_TYPE_MESH,
563         RS_TYPE_PROGRAM_FRAGMENT,
564         RS_TYPE_PROGRAM_VERTEX,
565         RS_TYPE_PROGRAM_RASTER,
566         RS_TYPE_PROGRAM_STORE,
567         RS_TYPE_FONT,
568 
569         RS_TYPE_INVALID = 10000
570     };
571 
572     std::vector<Element> children;            // Child Element fields for structs
573     empirical_type<lldb::addr_t> element_ptr; // Pointer to the RS Element of the Type
574     empirical_type<DataType> type;            // Type of each data pointer stored by the allocation
575     empirical_type<DataKind> type_kind;       // Defines pixel type if Allocation is created from an image
576     empirical_type<uint32_t> type_vec_size;   // Vector size of each data point, e.g '4' for uchar4
577     empirical_type<uint32_t> field_count;     // Number of Subelements
578     empirical_type<uint32_t> datum_size;      // Size of a single Element with padding
579     empirical_type<uint32_t> padding;         // Number of padding bytes
580     empirical_type<uint32_t> array_size;      // Number of items in array, only needed for strucrs
581     ConstString type_name;                    // Name of type, only needed for structs
582 
583     static const ConstString &
584     GetFallbackStructName(); // Print this as the type name of a struct Element
585                              // If we can't resolve the actual struct name
586 
587     bool
588     shouldRefresh() const
589     {
590         const bool valid_ptr = element_ptr.isValid() && *element_ptr.get() != 0x0;
591         const bool valid_type = type.isValid() && type_vec_size.isValid() && type_kind.isValid();
592         return !valid_ptr || !valid_type || !datum_size.isValid();
593     }
594 };
595 
596 // This AllocationDetails class collects data associated with a single
597 // allocation instance.
598 struct RenderScriptRuntime::AllocationDetails
599 {
600     struct Dimension
601     {
602         uint32_t dim_1;
603         uint32_t dim_2;
604         uint32_t dim_3;
605         uint32_t cubeMap;
606 
607         Dimension()
608         {
609             dim_1 = 0;
610             dim_2 = 0;
611             dim_3 = 0;
612             cubeMap = 0;
613         }
614     };
615 
616     // The FileHeader struct specifies the header we use for writing allocations to a binary file.
617     // Our format begins with the ASCII characters "RSAD", identifying the file as an allocation dump.
618     // Member variables dims and hdr_size are then written consecutively, immediately followed by an instance of
619     // the ElementHeader struct. Because Elements can contain subelements, there may be more than one instance
620     // of the ElementHeader struct. With this first instance being the root element, and the other instances being
621     // the root's descendants. To identify which instances are an ElementHeader's children, each struct
622     // is immediately followed by a sequence of consecutive offsets to the start of its child structs.
623     // These offsets are 4 bytes in size, and the 0 offset signifies no more children.
624     struct FileHeader
625     {
626         uint8_t ident[4];  // ASCII 'RSAD' identifying the file
627         uint32_t dims[3];  // Dimensions
628         uint16_t hdr_size; // Header size in bytes, including all element headers
629     };
630 
631     struct ElementHeader
632     {
633         uint16_t type;         // DataType enum
634         uint32_t kind;         // DataKind enum
635         uint32_t element_size; // Size of a single element, including padding
636         uint16_t vector_size;  // Vector width
637         uint32_t array_size;   // Number of elements in array
638     };
639 
640     // Monotonically increasing from 1
641     static uint32_t ID;
642 
643     // Maps Allocation DataType enum and vector size to printable strings
644     // using mapping from RenderScript numerical types summary documentation
645     static const char *RsDataTypeToString[][4];
646 
647     // Maps Allocation DataKind enum to printable strings
648     static const char *RsDataKindToString[];
649 
650     // Maps allocation types to format sizes for printing.
651     static const uint32_t RSTypeToFormat[][3];
652 
653     // Give each allocation an ID as a way
654     // for commands to reference it.
655     const uint32_t id;
656 
657     RenderScriptRuntime::Element element;  // Allocation Element type
658     empirical_type<Dimension> dimension;   // Dimensions of the Allocation
659     empirical_type<lldb::addr_t> address;  // Pointer to address of the RS Allocation
660     empirical_type<lldb::addr_t> data_ptr; // Pointer to the data held by the Allocation
661     empirical_type<lldb::addr_t> type_ptr; // Pointer to the RS Type of the Allocation
662     empirical_type<lldb::addr_t> context;  // Pointer to the RS Context of the Allocation
663     empirical_type<uint32_t> size;         // Size of the allocation
664     empirical_type<uint32_t> stride;       // Stride between rows of the allocation
665 
666     // Give each allocation an id, so we can reference it in user commands.
667     AllocationDetails() : id(ID++) {}
668 
669     bool
670     shouldRefresh() const
671     {
672         bool valid_ptrs = data_ptr.isValid() && *data_ptr.get() != 0x0;
673         valid_ptrs = valid_ptrs && type_ptr.isValid() && *type_ptr.get() != 0x0;
674         return !valid_ptrs || !dimension.isValid() || !size.isValid() || element.shouldRefresh();
675     }
676 };
677 
678 const ConstString &
679 RenderScriptRuntime::Element::GetFallbackStructName()
680 {
681     static const ConstString FallbackStructName("struct");
682     return FallbackStructName;
683 }
684 
685 uint32_t RenderScriptRuntime::AllocationDetails::ID = 1;
686 
687 const char *RenderScriptRuntime::AllocationDetails::RsDataKindToString[] = {
688     "User",
689     "Undefined",  "Undefined",   "Undefined", "Undefined", "Undefined",  "Undefined", // Enum jumps from 0 to 7
690     "L Pixel",    "A Pixel",     "LA Pixel",  "RGB Pixel",
691     "RGBA Pixel", "Pixel Depth", "YUV Pixel"};
692 
693 const char *RenderScriptRuntime::AllocationDetails::RsDataTypeToString[][4] = {
694     {"None", "None", "None", "None"},
695     {"half", "half2", "half3", "half4"},
696     {"float", "float2", "float3", "float4"},
697     {"double", "double2", "double3", "double4"},
698     {"char", "char2", "char3", "char4"},
699     {"short", "short2", "short3", "short4"},
700     {"int", "int2", "int3", "int4"},
701     {"long", "long2", "long3", "long4"},
702     {"uchar", "uchar2", "uchar3", "uchar4"},
703     {"ushort", "ushort2", "ushort3", "ushort4"},
704     {"uint", "uint2", "uint3", "uint4"},
705     {"ulong", "ulong2", "ulong3", "ulong4"},
706     {"bool", "bool2", "bool3", "bool4"},
707     {"packed_565", "packed_565", "packed_565", "packed_565"},
708     {"packed_5551", "packed_5551", "packed_5551", "packed_5551"},
709     {"packed_4444", "packed_4444", "packed_4444", "packed_4444"},
710     {"rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4"},
711     {"rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3"},
712     {"rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2"},
713 
714     // Handlers
715     {"RS Element", "RS Element", "RS Element", "RS Element"},
716     {"RS Type", "RS Type", "RS Type", "RS Type"},
717     {"RS Allocation", "RS Allocation", "RS Allocation", "RS Allocation"},
718     {"RS Sampler", "RS Sampler", "RS Sampler", "RS Sampler"},
719     {"RS Script", "RS Script", "RS Script", "RS Script"},
720 
721     // Deprecated
722     {"RS Mesh", "RS Mesh", "RS Mesh", "RS Mesh"},
723     {"RS Program Fragment", "RS Program Fragment", "RS Program Fragment", "RS Program Fragment"},
724     {"RS Program Vertex", "RS Program Vertex", "RS Program Vertex", "RS Program Vertex"},
725     {"RS Program Raster", "RS Program Raster", "RS Program Raster", "RS Program Raster"},
726     {"RS Program Store", "RS Program Store", "RS Program Store", "RS Program Store"},
727     {"RS Font", "RS Font", "RS Font", "RS Font"}};
728 
729 // Used as an index into the RSTypeToFormat array elements
730 enum TypeToFormatIndex
731 {
732     eFormatSingle = 0,
733     eFormatVector,
734     eElementSize
735 };
736 
737 // { format enum of single element, format enum of element vector, size of element}
738 const uint32_t RenderScriptRuntime::AllocationDetails::RSTypeToFormat[][3] = {
739     {eFormatHex, eFormatHex, 1},                                          // RS_TYPE_NONE
740     {eFormatFloat, eFormatVectorOfFloat16, 2},                            // RS_TYPE_FLOAT_16
741     {eFormatFloat, eFormatVectorOfFloat32, sizeof(float)},                // RS_TYPE_FLOAT_32
742     {eFormatFloat, eFormatVectorOfFloat64, sizeof(double)},               // RS_TYPE_FLOAT_64
743     {eFormatDecimal, eFormatVectorOfSInt8, sizeof(int8_t)},               // RS_TYPE_SIGNED_8
744     {eFormatDecimal, eFormatVectorOfSInt16, sizeof(int16_t)},             // RS_TYPE_SIGNED_16
745     {eFormatDecimal, eFormatVectorOfSInt32, sizeof(int32_t)},             // RS_TYPE_SIGNED_32
746     {eFormatDecimal, eFormatVectorOfSInt64, sizeof(int64_t)},             // RS_TYPE_SIGNED_64
747     {eFormatDecimal, eFormatVectorOfUInt8, sizeof(uint8_t)},              // RS_TYPE_UNSIGNED_8
748     {eFormatDecimal, eFormatVectorOfUInt16, sizeof(uint16_t)},            // RS_TYPE_UNSIGNED_16
749     {eFormatDecimal, eFormatVectorOfUInt32, sizeof(uint32_t)},            // RS_TYPE_UNSIGNED_32
750     {eFormatDecimal, eFormatVectorOfUInt64, sizeof(uint64_t)},            // RS_TYPE_UNSIGNED_64
751     {eFormatBoolean, eFormatBoolean, 1},                                  // RS_TYPE_BOOL
752     {eFormatHex, eFormatHex, sizeof(uint16_t)},                           // RS_TYPE_UNSIGNED_5_6_5
753     {eFormatHex, eFormatHex, sizeof(uint16_t)},                           // RS_TYPE_UNSIGNED_5_5_5_1
754     {eFormatHex, eFormatHex, sizeof(uint16_t)},                           // RS_TYPE_UNSIGNED_4_4_4_4
755     {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 16}, // RS_TYPE_MATRIX_4X4
756     {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 9},  // RS_TYPE_MATRIX_3X3
757     {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 4}   // RS_TYPE_MATRIX_2X2
758 };
759 
760 //------------------------------------------------------------------
761 // Static Functions
762 //------------------------------------------------------------------
763 LanguageRuntime *
764 RenderScriptRuntime::CreateInstance(Process *process, lldb::LanguageType language)
765 {
766 
767     if (language == eLanguageTypeExtRenderScript)
768         return new RenderScriptRuntime(process);
769     else
770         return nullptr;
771 }
772 
773 // Callback with a module to search for matching symbols.
774 // We first check that the module contains RS kernels.
775 // Then look for a symbol which matches our kernel name.
776 // The breakpoint address is finally set using the address of this symbol.
777 Searcher::CallbackReturn
778 RSBreakpointResolver::SearchCallback(SearchFilter &filter, SymbolContext &context, Address *, bool)
779 {
780     ModuleSP module = context.module_sp;
781 
782     if (!module)
783         return Searcher::eCallbackReturnContinue;
784 
785     // Is this a module containing renderscript kernels?
786     if (nullptr == module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), eSymbolTypeData))
787         return Searcher::eCallbackReturnContinue;
788 
789     // Attempt to set a breakpoint on the kernel name symbol within the module library.
790     // If it's not found, it's likely debug info is unavailable - try to set a
791     // breakpoint on <name>.expand.
792 
793     const Symbol *kernel_sym = module->FindFirstSymbolWithNameAndType(m_kernel_name, eSymbolTypeCode);
794     if (!kernel_sym)
795     {
796         std::string kernel_name_expanded(m_kernel_name.AsCString());
797         kernel_name_expanded.append(".expand");
798         kernel_sym = module->FindFirstSymbolWithNameAndType(ConstString(kernel_name_expanded.c_str()), eSymbolTypeCode);
799     }
800 
801     if (kernel_sym)
802     {
803         Address bp_addr = kernel_sym->GetAddress();
804         if (filter.AddressPasses(bp_addr))
805             m_breakpoint->AddLocation(bp_addr);
806     }
807 
808     return Searcher::eCallbackReturnContinue;
809 }
810 
811 void
812 RenderScriptRuntime::Initialize()
813 {
814     PluginManager::RegisterPlugin(GetPluginNameStatic(), "RenderScript language support", CreateInstance,
815                                   GetCommandObject);
816 }
817 
818 void
819 RenderScriptRuntime::Terminate()
820 {
821     PluginManager::UnregisterPlugin(CreateInstance);
822 }
823 
824 lldb_private::ConstString
825 RenderScriptRuntime::GetPluginNameStatic()
826 {
827     static ConstString g_name("renderscript");
828     return g_name;
829 }
830 
831 RenderScriptRuntime::ModuleKind
832 RenderScriptRuntime::GetModuleKind(const lldb::ModuleSP &module_sp)
833 {
834     if (module_sp)
835     {
836         // Is this a module containing renderscript kernels?
837         const Symbol *info_sym = module_sp->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), eSymbolTypeData);
838         if (info_sym)
839         {
840             return eModuleKindKernelObj;
841         }
842 
843         // Is this the main RS runtime library
844         const ConstString rs_lib("libRS.so");
845         if (module_sp->GetFileSpec().GetFilename() == rs_lib)
846         {
847             return eModuleKindLibRS;
848         }
849 
850         const ConstString rs_driverlib("libRSDriver.so");
851         if (module_sp->GetFileSpec().GetFilename() == rs_driverlib)
852         {
853             return eModuleKindDriver;
854         }
855 
856         const ConstString rs_cpureflib("libRSCpuRef.so");
857         if (module_sp->GetFileSpec().GetFilename() == rs_cpureflib)
858         {
859             return eModuleKindImpl;
860         }
861     }
862     return eModuleKindIgnored;
863 }
864 
865 bool
866 RenderScriptRuntime::IsRenderScriptModule(const lldb::ModuleSP &module_sp)
867 {
868     return GetModuleKind(module_sp) != eModuleKindIgnored;
869 }
870 
871 void
872 RenderScriptRuntime::ModulesDidLoad(const ModuleList &module_list)
873 {
874     std::lock_guard<std::recursive_mutex> guard(module_list.GetMutex());
875 
876     size_t num_modules = module_list.GetSize();
877     for (size_t i = 0; i < num_modules; i++)
878     {
879         auto mod = module_list.GetModuleAtIndex(i);
880         if (IsRenderScriptModule(mod))
881         {
882             LoadModule(mod);
883         }
884     }
885 }
886 
887 //------------------------------------------------------------------
888 // PluginInterface protocol
889 //------------------------------------------------------------------
890 lldb_private::ConstString
891 RenderScriptRuntime::GetPluginName()
892 {
893     return GetPluginNameStatic();
894 }
895 
896 uint32_t
897 RenderScriptRuntime::GetPluginVersion()
898 {
899     return 1;
900 }
901 
902 bool
903 RenderScriptRuntime::IsVTableName(const char *name)
904 {
905     return false;
906 }
907 
908 bool
909 RenderScriptRuntime::GetDynamicTypeAndAddress(ValueObject &in_value, lldb::DynamicValueType use_dynamic,
910                                               TypeAndOrName &class_type_or_name, Address &address,
911                                               Value::ValueType &value_type)
912 {
913     return false;
914 }
915 
916 TypeAndOrName
917 RenderScriptRuntime::FixUpDynamicType(const TypeAndOrName &type_and_or_name, ValueObject &static_value)
918 {
919     return type_and_or_name;
920 }
921 
922 bool
923 RenderScriptRuntime::CouldHaveDynamicValue(ValueObject &in_value)
924 {
925     return false;
926 }
927 
928 lldb::BreakpointResolverSP
929 RenderScriptRuntime::CreateExceptionResolver(Breakpoint *bkpt, bool catch_bp, bool throw_bp)
930 {
931     BreakpointResolverSP resolver_sp;
932     return resolver_sp;
933 }
934 
935 const RenderScriptRuntime::HookDefn RenderScriptRuntime::s_runtimeHookDefns[] = {
936     // rsdScript
937     {
938         "rsdScriptInit",
939         "_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_7ScriptCEPKcS7_PKhjj",
940         "_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_7ScriptCEPKcS7_PKhmj",
941         0,
942         RenderScriptRuntime::eModuleKindDriver,
943         &lldb_private::RenderScriptRuntime::CaptureScriptInit
944     },
945     {
946         "rsdScriptInvokeForEachMulti",
947         "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0_6ScriptEjPPKNS0_10AllocationEjPS6_PKvjPK12RsScriptCall",
948         "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0_6ScriptEjPPKNS0_10AllocationEmPS6_PKvmPK12RsScriptCall",
949         0,
950         RenderScriptRuntime::eModuleKindDriver,
951         &lldb_private::RenderScriptRuntime::CaptureScriptInvokeForEachMulti
952     },
953     {
954         "rsdScriptSetGlobalVar",
955         "_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_6ScriptEjPvj",
956         "_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_6ScriptEjPvm",
957         0,
958         RenderScriptRuntime::eModuleKindDriver,
959         &lldb_private::RenderScriptRuntime::CaptureSetGlobalVar
960     },
961 
962     // rsdAllocation
963     {
964         "rsdAllocationInit",
965         "_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_10AllocationEb",
966         "_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_10AllocationEb",
967         0,
968         RenderScriptRuntime::eModuleKindDriver,
969         &lldb_private::RenderScriptRuntime::CaptureAllocationInit
970     },
971     {
972         "rsdAllocationRead2D",
973         "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_10AllocationEjjj23RsAllocationCubemapFacejjPvjj",
974         "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_10AllocationEjjj23RsAllocationCubemapFacejjPvmm",
975         0,
976         RenderScriptRuntime::eModuleKindDriver,
977         nullptr
978     },
979     {
980         "rsdAllocationDestroy",
981         "_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_10AllocationE",
982         "_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_10AllocationE",
983         0,
984         RenderScriptRuntime::eModuleKindDriver,
985         &lldb_private::RenderScriptRuntime::CaptureAllocationDestroy
986     },
987 };
988 
989 const size_t RenderScriptRuntime::s_runtimeHookCount = sizeof(s_runtimeHookDefns) / sizeof(s_runtimeHookDefns[0]);
990 
991 bool
992 RenderScriptRuntime::HookCallback(void *baton, StoppointCallbackContext *ctx, lldb::user_id_t break_id,
993                                   lldb::user_id_t break_loc_id)
994 {
995     RuntimeHook *hook_info = (RuntimeHook *)baton;
996     ExecutionContext context(ctx->exe_ctx_ref);
997 
998     RenderScriptRuntime *lang_rt =
999         (RenderScriptRuntime *)context.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
1000 
1001     lang_rt->HookCallback(hook_info, context);
1002 
1003     return false;
1004 }
1005 
1006 void
1007 RenderScriptRuntime::HookCallback(RuntimeHook *hook_info, ExecutionContext &context)
1008 {
1009     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1010 
1011     if (log)
1012         log->Printf("%s - '%s'", __FUNCTION__, hook_info->defn->name);
1013 
1014     if (hook_info->defn->grabber)
1015     {
1016         (this->*(hook_info->defn->grabber))(hook_info, context);
1017     }
1018 }
1019 
1020 void
1021 RenderScriptRuntime::CaptureScriptInvokeForEachMulti(RuntimeHook* hook_info,
1022                                                      ExecutionContext& context)
1023 {
1024     Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1025 
1026     enum
1027     {
1028         eRsContext = 0,
1029         eRsScript,
1030         eRsSlot,
1031         eRsAIns,
1032         eRsInLen,
1033         eRsAOut,
1034         eRsUsr,
1035         eRsUsrLen,
1036         eRsSc,
1037     };
1038 
1039     std::array<ArgItem, 9> args{{
1040         ArgItem{ArgItem::ePointer, 0}, // const Context       *rsc
1041         ArgItem{ArgItem::ePointer, 0}, // Script              *s
1042         ArgItem{ArgItem::eInt32, 0},   // uint32_t             slot
1043         ArgItem{ArgItem::ePointer, 0}, // const Allocation   **aIns
1044         ArgItem{ArgItem::eInt32, 0},   // size_t               inLen
1045         ArgItem{ArgItem::ePointer, 0}, // Allocation          *aout
1046         ArgItem{ArgItem::ePointer, 0}, // const void          *usr
1047         ArgItem{ArgItem::eInt32, 0},   // size_t               usrLen
1048         ArgItem{ArgItem::ePointer, 0}, // const RsScriptCall  *sc
1049     }};
1050 
1051     bool success = GetArgs(context, &args[0], args.size());
1052     if (!success)
1053     {
1054         if (log)
1055             log->Printf("%s - Error while reading the function parameters", __FUNCTION__);
1056         return;
1057     }
1058 
1059     const uint32_t target_ptr_size = m_process->GetAddressByteSize();
1060     Error error;
1061     std::vector<uint64_t> allocs;
1062 
1063     // traverse allocation list
1064     for (uint64_t i = 0; i < uint64_t(args[eRsInLen]); ++i)
1065     {
1066         // calculate offest to allocation pointer
1067         const addr_t addr = addr_t(args[eRsAIns]) + i * target_ptr_size;
1068 
1069         // Note: due to little endian layout, reading 32bits or 64bits into res64 will
1070         //       give the correct results.
1071 
1072         uint64_t res64 = 0;
1073         size_t read = m_process->ReadMemory(addr, &res64, target_ptr_size, error);
1074         if (read != target_ptr_size || !error.Success())
1075         {
1076             if (log)
1077                 log->Printf("%s - Error while reading allocation list argument %" PRIu64, __FUNCTION__, i);
1078         }
1079         else
1080         {
1081             allocs.push_back(res64);
1082         }
1083     }
1084 
1085     // if there is an output allocation track it
1086     if (uint64_t aOut = uint64_t(args[eRsAOut]))
1087     {
1088         allocs.push_back(aOut);
1089     }
1090 
1091     // for all allocations we have found
1092     for (const uint64_t alloc_addr : allocs)
1093     {
1094         AllocationDetails *alloc = LookUpAllocation(alloc_addr);
1095         if (!alloc)
1096             alloc = CreateAllocation(alloc_addr);
1097 
1098         if (alloc)
1099         {
1100             // save the allocation address
1101             if (alloc->address.isValid())
1102             {
1103                 // check the allocation address we already have matches
1104                 assert(*alloc->address.get() == alloc_addr);
1105             }
1106             else
1107             {
1108                 alloc->address = alloc_addr;
1109             }
1110 
1111             // save the context
1112             if (log)
1113             {
1114                 if (alloc->context.isValid() && *alloc->context.get() != addr_t(args[eRsContext]))
1115                     log->Printf("%s - Allocation used by multiple contexts", __FUNCTION__);
1116             }
1117             alloc->context = addr_t(args[eRsContext]);
1118         }
1119     }
1120 
1121     // make sure we track this script object
1122     if (lldb_private::RenderScriptRuntime::ScriptDetails *script = LookUpScript(addr_t(args[eRsScript]), true))
1123     {
1124         if (log)
1125         {
1126             if (script->context.isValid() && *script->context.get() != addr_t(args[eRsContext]))
1127                 log->Printf("%s - Script used by multiple contexts", __FUNCTION__);
1128         }
1129         script->context = addr_t(args[eRsContext]);
1130     }
1131 }
1132 
1133 void
1134 RenderScriptRuntime::CaptureSetGlobalVar(RuntimeHook *hook_info, ExecutionContext &context)
1135 {
1136     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1137 
1138     enum
1139     {
1140         eRsContext,
1141         eRsScript,
1142         eRsId,
1143         eRsData,
1144         eRsLength,
1145     };
1146 
1147     std::array<ArgItem, 5> args{{
1148         ArgItem{ArgItem::ePointer, 0}, // eRsContext
1149         ArgItem{ArgItem::ePointer, 0}, // eRsScript
1150         ArgItem{ArgItem::eInt32, 0},   // eRsId
1151         ArgItem{ArgItem::ePointer, 0}, // eRsData
1152         ArgItem{ArgItem::eInt32, 0},   // eRsLength
1153     }};
1154 
1155     bool success = GetArgs(context, &args[0], args.size());
1156     if (!success)
1157     {
1158         if (log)
1159             log->Printf("%s - error reading the function parameters.", __FUNCTION__);
1160         return;
1161     }
1162 
1163     if (log)
1164     {
1165         log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " slot %" PRIu64 " = 0x%" PRIx64 ":%" PRIu64 "bytes.", __FUNCTION__,
1166                     uint64_t(args[eRsContext]), uint64_t(args[eRsScript]), uint64_t(args[eRsId]),
1167                     uint64_t(args[eRsData]), uint64_t(args[eRsLength]));
1168 
1169         addr_t script_addr = addr_t(args[eRsScript]);
1170         if (m_scriptMappings.find(script_addr) != m_scriptMappings.end())
1171         {
1172             auto rsm = m_scriptMappings[script_addr];
1173             if (uint64_t(args[eRsId]) < rsm->m_globals.size())
1174             {
1175                 auto rsg = rsm->m_globals[uint64_t(args[eRsId])];
1176                 log->Printf("%s - Setting of '%s' within '%s' inferred", __FUNCTION__, rsg.m_name.AsCString(),
1177                             rsm->m_module->GetFileSpec().GetFilename().AsCString());
1178             }
1179         }
1180     }
1181 }
1182 
1183 void
1184 RenderScriptRuntime::CaptureAllocationInit(RuntimeHook *hook_info, ExecutionContext &context)
1185 {
1186     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1187 
1188     enum
1189     {
1190         eRsContext,
1191         eRsAlloc,
1192         eRsForceZero
1193     };
1194 
1195     std::array<ArgItem, 3> args{{
1196         ArgItem{ArgItem::ePointer, 0}, // eRsContext
1197         ArgItem{ArgItem::ePointer, 0}, // eRsAlloc
1198         ArgItem{ArgItem::eBool, 0},    // eRsForceZero
1199     }};
1200 
1201     bool success = GetArgs(context, &args[0], args.size());
1202     if (!success) // error case
1203     {
1204         if (log)
1205             log->Printf("%s - error while reading the function parameters", __FUNCTION__);
1206         return; // abort
1207     }
1208 
1209     if (log)
1210         log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 ",0x%" PRIx64 " .", __FUNCTION__, uint64_t(args[eRsContext]),
1211                     uint64_t(args[eRsAlloc]), uint64_t(args[eRsForceZero]));
1212 
1213     AllocationDetails *alloc = CreateAllocation(uint64_t(args[eRsAlloc]));
1214     if (alloc)
1215         alloc->context = uint64_t(args[eRsContext]);
1216 }
1217 
1218 void
1219 RenderScriptRuntime::CaptureAllocationDestroy(RuntimeHook *hook_info, ExecutionContext &context)
1220 {
1221     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1222 
1223     enum
1224     {
1225         eRsContext,
1226         eRsAlloc,
1227     };
1228 
1229     std::array<ArgItem, 2> args{{
1230         ArgItem{ArgItem::ePointer, 0}, // eRsContext
1231         ArgItem{ArgItem::ePointer, 0}, // eRsAlloc
1232     }};
1233 
1234     bool success = GetArgs(context, &args[0], args.size());
1235     if (!success)
1236     {
1237         if (log)
1238             log->Printf("%s - error while reading the function parameters.", __FUNCTION__);
1239         return;
1240     }
1241 
1242     if (log)
1243         log->Printf("%s - 0x%" PRIx64 ", 0x%" PRIx64 ".", __FUNCTION__, uint64_t(args[eRsContext]),
1244                     uint64_t(args[eRsAlloc]));
1245 
1246     for (auto iter = m_allocations.begin(); iter != m_allocations.end(); ++iter)
1247     {
1248         auto &allocation_ap = *iter; // get the unique pointer
1249         if (allocation_ap->address.isValid() && *allocation_ap->address.get() == addr_t(args[eRsAlloc]))
1250         {
1251             m_allocations.erase(iter);
1252             if (log)
1253                 log->Printf("%s - deleted allocation entry.", __FUNCTION__);
1254             return;
1255         }
1256     }
1257 
1258     if (log)
1259         log->Printf("%s - couldn't find destroyed allocation.", __FUNCTION__);
1260 }
1261 
1262 void
1263 RenderScriptRuntime::CaptureScriptInit(RuntimeHook *hook_info, ExecutionContext &context)
1264 {
1265     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1266 
1267     Error error;
1268     Process *process = context.GetProcessPtr();
1269 
1270     enum
1271     {
1272         eRsContext,
1273         eRsScript,
1274         eRsResNamePtr,
1275         eRsCachedDirPtr
1276     };
1277 
1278     std::array<ArgItem, 4> args{{ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0},
1279                                  ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}}};
1280     bool success = GetArgs(context, &args[0], args.size());
1281     if (!success)
1282     {
1283         if (log)
1284             log->Printf("%s - error while reading the function parameters.", __FUNCTION__);
1285         return;
1286     }
1287 
1288     std::string resname;
1289     process->ReadCStringFromMemory(addr_t(args[eRsResNamePtr]), resname, error);
1290     if (error.Fail())
1291     {
1292         if (log)
1293             log->Printf("%s - error reading resname: %s.", __FUNCTION__, error.AsCString());
1294     }
1295 
1296     std::string cachedir;
1297     process->ReadCStringFromMemory(addr_t(args[eRsCachedDirPtr]), cachedir, error);
1298     if (error.Fail())
1299     {
1300         if (log)
1301             log->Printf("%s - error reading cachedir: %s.", __FUNCTION__, error.AsCString());
1302     }
1303 
1304     if (log)
1305         log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " => '%s' at '%s' .", __FUNCTION__, uint64_t(args[eRsContext]),
1306                     uint64_t(args[eRsScript]), resname.c_str(), cachedir.c_str());
1307 
1308     if (resname.size() > 0)
1309     {
1310         StreamString strm;
1311         strm.Printf("librs.%s.so", resname.c_str());
1312 
1313         ScriptDetails *script = LookUpScript(addr_t(args[eRsScript]), true);
1314         if (script)
1315         {
1316             script->type = ScriptDetails::eScriptC;
1317             script->cacheDir = cachedir;
1318             script->resName = resname;
1319             script->scriptDyLib = strm.GetData();
1320             script->context = addr_t(args[eRsContext]);
1321         }
1322 
1323         if (log)
1324             log->Printf("%s - '%s' tagged with context 0x%" PRIx64 " and script 0x%" PRIx64 ".", __FUNCTION__,
1325                         strm.GetData(), uint64_t(args[eRsContext]), uint64_t(args[eRsScript]));
1326     }
1327     else if (log)
1328     {
1329         log->Printf("%s - resource name invalid, Script not tagged.", __FUNCTION__);
1330     }
1331 }
1332 
1333 void
1334 RenderScriptRuntime::LoadRuntimeHooks(lldb::ModuleSP module, ModuleKind kind)
1335 {
1336     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1337 
1338     if (!module)
1339     {
1340         return;
1341     }
1342 
1343     Target &target = GetProcess()->GetTarget();
1344     llvm::Triple::ArchType targetArchType = target.GetArchitecture().GetMachine();
1345 
1346     if (targetArchType != llvm::Triple::ArchType::x86 &&
1347         targetArchType != llvm::Triple::ArchType::arm &&
1348         targetArchType != llvm::Triple::ArchType::aarch64 &&
1349         targetArchType != llvm::Triple::ArchType::mipsel &&
1350         targetArchType != llvm::Triple::ArchType::mips64el &&
1351         targetArchType != llvm::Triple::ArchType::x86_64)
1352     {
1353         if (log)
1354             log->Printf("%s - unable to hook runtime functions.", __FUNCTION__);
1355         return;
1356     }
1357 
1358     uint32_t archByteSize = target.GetArchitecture().GetAddressByteSize();
1359 
1360     for (size_t idx = 0; idx < s_runtimeHookCount; idx++)
1361     {
1362         const HookDefn *hook_defn = &s_runtimeHookDefns[idx];
1363         if (hook_defn->kind != kind)
1364         {
1365             continue;
1366         }
1367 
1368         const char *symbol_name = (archByteSize == 4) ? hook_defn->symbol_name_m32 : hook_defn->symbol_name_m64;
1369 
1370         const Symbol *sym = module->FindFirstSymbolWithNameAndType(ConstString(symbol_name), eSymbolTypeCode);
1371         if (!sym)
1372         {
1373             if (log)
1374             {
1375                 log->Printf("%s - symbol '%s' related to the function %s not found",
1376                             __FUNCTION__, symbol_name, hook_defn->name);
1377             }
1378             continue;
1379         }
1380 
1381         addr_t addr = sym->GetLoadAddress(&target);
1382         if (addr == LLDB_INVALID_ADDRESS)
1383         {
1384             if (log)
1385                 log->Printf("%s - unable to resolve the address of hook function '%s' with symbol '%s'.",
1386                             __FUNCTION__, hook_defn->name, symbol_name);
1387             continue;
1388         }
1389         else
1390         {
1391             if (log)
1392                 log->Printf("%s - function %s, address resolved at 0x%" PRIx64,
1393                             __FUNCTION__, hook_defn->name, addr);
1394         }
1395 
1396         RuntimeHookSP hook(new RuntimeHook());
1397         hook->address = addr;
1398         hook->defn = hook_defn;
1399         hook->bp_sp = target.CreateBreakpoint(addr, true, false);
1400         hook->bp_sp->SetCallback(HookCallback, hook.get(), true);
1401         m_runtimeHooks[addr] = hook;
1402         if (log)
1403         {
1404             log->Printf("%s - successfully hooked '%s' in '%s' version %" PRIu64 " at 0x%" PRIx64 ".",
1405                         __FUNCTION__, hook_defn->name, module->GetFileSpec().GetFilename().AsCString(),
1406                         (uint64_t)hook_defn->version, (uint64_t)addr);
1407         }
1408     }
1409 }
1410 
1411 void
1412 RenderScriptRuntime::FixupScriptDetails(RSModuleDescriptorSP rsmodule_sp)
1413 {
1414     if (!rsmodule_sp)
1415         return;
1416 
1417     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1418 
1419     const ModuleSP module = rsmodule_sp->m_module;
1420     const FileSpec &file = module->GetPlatformFileSpec();
1421 
1422     // Iterate over all of the scripts that we currently know of.
1423     // Note: We cant push or pop to m_scripts here or it may invalidate rs_script.
1424     for (const auto &rs_script : m_scripts)
1425     {
1426         // Extract the expected .so file path for this script.
1427         std::string dylib;
1428         if (!rs_script->scriptDyLib.get(dylib))
1429             continue;
1430 
1431         // Only proceed if the module that has loaded corresponds to this script.
1432         if (file.GetFilename() != ConstString(dylib.c_str()))
1433             continue;
1434 
1435         // Obtain the script address which we use as a key.
1436         lldb::addr_t script;
1437         if (!rs_script->script.get(script))
1438             continue;
1439 
1440         // If we have a script mapping for the current script.
1441         if (m_scriptMappings.find(script) != m_scriptMappings.end())
1442         {
1443             // if the module we have stored is different to the one we just received.
1444             if (m_scriptMappings[script] != rsmodule_sp)
1445             {
1446                 if (log)
1447                     log->Printf("%s - script %" PRIx64 " wants reassigned to new rsmodule '%s'.", __FUNCTION__,
1448                                 (uint64_t)script, rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString());
1449             }
1450         }
1451         // We don't have a script mapping for the current script.
1452         else
1453         {
1454             // Obtain the script resource name.
1455             std::string resName;
1456             if (rs_script->resName.get(resName))
1457                 // Set the modules resource name.
1458                 rsmodule_sp->m_resname = resName;
1459             // Add Script/Module pair to map.
1460             m_scriptMappings[script] = rsmodule_sp;
1461             if (log)
1462                 log->Printf("%s - script %" PRIx64 " associated with rsmodule '%s'.", __FUNCTION__,
1463                             (uint64_t)script, rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString());
1464         }
1465     }
1466 }
1467 
1468 // Uses the Target API to evaluate the expression passed as a parameter to the function
1469 // The result of that expression is returned an unsigned 64 bit int, via the result* parameter.
1470 // Function returns true on success, and false on failure
1471 bool
1472 RenderScriptRuntime::EvalRSExpression(const char *expression, StackFrame *frame_ptr, uint64_t *result)
1473 {
1474     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1475     if (log)
1476         log->Printf("%s(%s)", __FUNCTION__, expression);
1477 
1478     ValueObjectSP expr_result;
1479     EvaluateExpressionOptions options;
1480     options.SetLanguage(lldb::eLanguageTypeC_plus_plus);
1481     // Perform the actual expression evaluation
1482     GetProcess()->GetTarget().EvaluateExpression(expression, frame_ptr, expr_result, options);
1483 
1484     if (!expr_result)
1485     {
1486         if (log)
1487             log->Printf("%s: couldn't evaluate expression.", __FUNCTION__);
1488         return false;
1489     }
1490 
1491     // The result of the expression is invalid
1492     if (!expr_result->GetError().Success())
1493     {
1494         Error err = expr_result->GetError();
1495         if (err.GetError() == UserExpression::kNoResult) // Expression returned void, so this is actually a success
1496         {
1497             if (log)
1498                 log->Printf("%s - expression returned void.", __FUNCTION__);
1499 
1500             result = nullptr;
1501             return true;
1502         }
1503 
1504         if (log)
1505             log->Printf("%s - error evaluating expression result: %s", __FUNCTION__,
1506                         err.AsCString());
1507         return false;
1508     }
1509 
1510     bool success = false;
1511     *result = expr_result->GetValueAsUnsigned(0, &success); // We only read the result as an uint32_t.
1512 
1513     if (!success)
1514     {
1515         if (log)
1516             log->Printf("%s - couldn't convert expression result to uint32_t", __FUNCTION__);
1517         return false;
1518     }
1519 
1520     return true;
1521 }
1522 
1523 namespace
1524 {
1525 // Used to index expression format strings
1526 enum ExpressionStrings
1527 {
1528    eExprGetOffsetPtr = 0,
1529    eExprAllocGetType,
1530    eExprTypeDimX,
1531    eExprTypeDimY,
1532    eExprTypeDimZ,
1533    eExprTypeElemPtr,
1534    eExprElementType,
1535    eExprElementKind,
1536    eExprElementVec,
1537    eExprElementFieldCount,
1538    eExprSubelementsId,
1539    eExprSubelementsName,
1540    eExprSubelementsArrSize,
1541 
1542    _eExprLast // keep at the end, implicit size of the array runtimeExpressions
1543 };
1544 
1545 // max length of an expanded expression
1546 const int jit_max_expr_size = 512;
1547 
1548 // Retrieve the string to JIT for the given expression
1549 const char*
1550 JITTemplate(ExpressionStrings e)
1551 {
1552     // Format strings containing the expressions we may need to evaluate.
1553     static std::array<const char*, _eExprLast> runtimeExpressions = {{
1554      // Mangled GetOffsetPointer(Allocation*, xoff, yoff, zoff, lod, cubemap)
1555      "(int*)_Z12GetOffsetPtrPKN7android12renderscript10AllocationEjjjj23RsAllocationCubemapFace"
1556      "(0x%" PRIx64 ", %" PRIu32 ", %" PRIu32 ", %" PRIu32 ", 0, 0)",
1557 
1558      // Type* rsaAllocationGetType(Context*, Allocation*)
1559      "(void*)rsaAllocationGetType(0x%" PRIx64 ", 0x%" PRIx64 ")",
1560 
1561      // rsaTypeGetNativeData(Context*, Type*, void* typeData, size)
1562      // Pack the data in the following way mHal.state.dimX; mHal.state.dimY; mHal.state.dimZ;
1563      // mHal.state.lodCount; mHal.state.faces; mElement; into typeData
1564      // Need to specify 32 or 64 bit for uint_t since this differs between devices
1565      "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 6); data[0]", // X dim
1566      "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 6); data[1]", // Y dim
1567      "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 6); data[2]", // Z dim
1568      "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 6); data[5]", // Element ptr
1569 
1570      // rsaElementGetNativeData(Context*, Element*, uint32_t* elemData,size)
1571      // Pack mType; mKind; mNormalized; mVectorSize; NumSubElements into elemData
1572      "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 5); data[0]", // Type
1573      "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 5); data[1]", // Kind
1574      "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 5); data[3]", // Vector Size
1575      "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 5); data[4]", // Field Count
1576 
1577      // rsaElementGetSubElements(RsContext con, RsElement elem, uintptr_t *ids, const char **names,
1578      // size_t *arraySizes, uint32_t dataSize)
1579      // Needed for Allocations of structs to gather details about fields/Subelements
1580      // Element* of field
1581      "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 "]; size_t arr_size[%" PRIu32 "];"
1582      "(void*)rsaElementGetSubElements(0x%" PRIx64 ", 0x%" PRIx64 ", ids, names, arr_size, %" PRIu32 "); ids[%" PRIu32 "]",
1583 
1584      // Name of field
1585      "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 "]; size_t arr_size[%" PRIu32 "];"
1586      "(void*)rsaElementGetSubElements(0x%" PRIx64 ", 0x%" PRIx64 ", ids, names, arr_size, %" PRIu32 "); names[%" PRIu32 "]",
1587 
1588      // Array size of field
1589      "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 "]; size_t arr_size[%" PRIu32 "];"
1590      "(void*)rsaElementGetSubElements(0x%" PRIx64 ", 0x%" PRIx64 ", ids, names, arr_size, %" PRIu32 "); arr_size[%" PRIu32 "]"
1591     }};
1592 
1593     return runtimeExpressions[e];
1594 }
1595 } // end of the anonymous namespace
1596 
1597 
1598 // JITs the RS runtime for the internal data pointer of an allocation.
1599 // Is passed x,y,z coordinates for the pointer to a specific element.
1600 // Then sets the data_ptr member in Allocation with the result.
1601 // Returns true on success, false otherwise
1602 bool
1603 RenderScriptRuntime::JITDataPointer(AllocationDetails *allocation, StackFrame *frame_ptr, uint32_t x,
1604                                     uint32_t y, uint32_t z)
1605 {
1606     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1607 
1608     if (!allocation->address.isValid())
1609     {
1610         if (log)
1611             log->Printf("%s - failed to find allocation details.", __FUNCTION__);
1612         return false;
1613     }
1614 
1615     const char *expr_cstr = JITTemplate(eExprGetOffsetPtr);
1616     char buffer[jit_max_expr_size];
1617 
1618     int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->address.get(), x, y, z);
1619     if (chars_written < 0)
1620     {
1621         if (log)
1622             log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
1623         return false;
1624     }
1625     else if (chars_written >= jit_max_expr_size)
1626     {
1627         if (log)
1628             log->Printf("%s - expression too long.", __FUNCTION__);
1629         return false;
1630     }
1631 
1632     uint64_t result = 0;
1633     if (!EvalRSExpression(buffer, frame_ptr, &result))
1634         return false;
1635 
1636     addr_t mem_ptr = static_cast<lldb::addr_t>(result);
1637     allocation->data_ptr = mem_ptr;
1638 
1639     return true;
1640 }
1641 
1642 // JITs the RS runtime for the internal pointer to the RS Type of an allocation
1643 // Then sets the type_ptr member in Allocation with the result.
1644 // Returns true on success, false otherwise
1645 bool
1646 RenderScriptRuntime::JITTypePointer(AllocationDetails *allocation, StackFrame *frame_ptr)
1647 {
1648     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1649 
1650     if (!allocation->address.isValid() || !allocation->context.isValid())
1651     {
1652         if (log)
1653             log->Printf("%s - failed to find allocation details.", __FUNCTION__);
1654         return false;
1655     }
1656 
1657     const char *expr_cstr = JITTemplate(eExprAllocGetType);
1658     char buffer[jit_max_expr_size];
1659 
1660     int chars_written =
1661         snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->context.get(), *allocation->address.get());
1662     if (chars_written < 0)
1663     {
1664         if (log)
1665             log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
1666         return false;
1667     }
1668     else if (chars_written >= jit_max_expr_size)
1669     {
1670         if (log)
1671             log->Printf("%s - expression too long.", __FUNCTION__);
1672         return false;
1673     }
1674 
1675     uint64_t result = 0;
1676     if (!EvalRSExpression(buffer, frame_ptr, &result))
1677         return false;
1678 
1679     addr_t type_ptr = static_cast<lldb::addr_t>(result);
1680     allocation->type_ptr = type_ptr;
1681 
1682     return true;
1683 }
1684 
1685 // JITs the RS runtime for information about the dimensions and type of an allocation
1686 // Then sets dimension and element_ptr members in Allocation with the result.
1687 // Returns true on success, false otherwise
1688 bool
1689 RenderScriptRuntime::JITTypePacked(AllocationDetails *allocation, StackFrame *frame_ptr)
1690 {
1691     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1692 
1693     if (!allocation->type_ptr.isValid() || !allocation->context.isValid())
1694     {
1695         if (log)
1696             log->Printf("%s - Failed to find allocation details.", __FUNCTION__);
1697         return false;
1698     }
1699 
1700     // Expression is different depending on if device is 32 or 64 bit
1701     uint32_t archByteSize = GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
1702     const uint32_t bits = archByteSize == 4 ? 32 : 64;
1703 
1704     // We want 4 elements from packed data
1705     const uint32_t num_exprs = 4;
1706     assert(num_exprs == (eExprTypeElemPtr - eExprTypeDimX + 1) && "Invalid number of expressions");
1707 
1708     char buffer[num_exprs][jit_max_expr_size];
1709     uint64_t results[num_exprs];
1710 
1711     for (uint32_t i = 0; i < num_exprs; ++i)
1712     {
1713         const char *expr_cstr = JITTemplate(ExpressionStrings(eExprTypeDimX + i));
1714         int chars_written = snprintf(buffer[i], jit_max_expr_size, expr_cstr, bits, *allocation->context.get(),
1715                                      *allocation->type_ptr.get());
1716         if (chars_written < 0)
1717         {
1718             if (log)
1719                 log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
1720             return false;
1721         }
1722         else if (chars_written >= jit_max_expr_size)
1723         {
1724             if (log)
1725                 log->Printf("%s - expression too long.", __FUNCTION__);
1726             return false;
1727         }
1728 
1729         // Perform expression evaluation
1730         if (!EvalRSExpression(buffer[i], frame_ptr, &results[i]))
1731             return false;
1732     }
1733 
1734     // Assign results to allocation members
1735     AllocationDetails::Dimension dims;
1736     dims.dim_1 = static_cast<uint32_t>(results[0]);
1737     dims.dim_2 = static_cast<uint32_t>(results[1]);
1738     dims.dim_3 = static_cast<uint32_t>(results[2]);
1739     allocation->dimension = dims;
1740 
1741     addr_t elem_ptr = static_cast<lldb::addr_t>(results[3]);
1742     allocation->element.element_ptr = elem_ptr;
1743 
1744     if (log)
1745         log->Printf("%s - dims (%" PRIu32 ", %" PRIu32 ", %" PRIu32 ") Element*: 0x%" PRIx64 ".", __FUNCTION__,
1746                     dims.dim_1, dims.dim_2, dims.dim_3, elem_ptr);
1747 
1748     return true;
1749 }
1750 
1751 // JITs the RS runtime for information about the Element of an allocation
1752 // Then sets type, type_vec_size, field_count and type_kind members in Element with the result.
1753 // Returns true on success, false otherwise
1754 bool
1755 RenderScriptRuntime::JITElementPacked(Element &elem, const lldb::addr_t context, StackFrame *frame_ptr)
1756 {
1757     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1758 
1759     if (!elem.element_ptr.isValid())
1760     {
1761         if (log)
1762             log->Printf("%s - failed to find allocation details.", __FUNCTION__);
1763         return false;
1764     }
1765 
1766     // We want 4 elements from packed data
1767     const uint32_t num_exprs = 4;
1768     assert(num_exprs == (eExprElementFieldCount - eExprElementType + 1) && "Invalid number of expressions");
1769 
1770     char buffer[num_exprs][jit_max_expr_size];
1771     uint64_t results[num_exprs];
1772 
1773     for (uint32_t i = 0; i < num_exprs; i++)
1774     {
1775         const char *expr_cstr = JITTemplate(ExpressionStrings(eExprElementType + i));
1776         int chars_written = snprintf(buffer[i], jit_max_expr_size, expr_cstr, context, *elem.element_ptr.get());
1777         if (chars_written < 0)
1778         {
1779             if (log)
1780                 log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
1781             return false;
1782         }
1783         else if (chars_written >= jit_max_expr_size)
1784         {
1785             if (log)
1786                 log->Printf("%s - expression too long.", __FUNCTION__);
1787             return false;
1788         }
1789 
1790         // Perform expression evaluation
1791         if (!EvalRSExpression(buffer[i], frame_ptr, &results[i]))
1792             return false;
1793     }
1794 
1795     // Assign results to allocation members
1796     elem.type = static_cast<RenderScriptRuntime::Element::DataType>(results[0]);
1797     elem.type_kind = static_cast<RenderScriptRuntime::Element::DataKind>(results[1]);
1798     elem.type_vec_size = static_cast<uint32_t>(results[2]);
1799     elem.field_count = static_cast<uint32_t>(results[3]);
1800 
1801     if (log)
1802         log->Printf("%s - data type %" PRIu32 ", pixel type %" PRIu32 ", vector size %" PRIu32 ", field count %" PRIu32,
1803                     __FUNCTION__, *elem.type.get(), *elem.type_kind.get(), *elem.type_vec_size.get(), *elem.field_count.get());
1804 
1805     // If this Element has subelements then JIT rsaElementGetSubElements() for details about its fields
1806     if (*elem.field_count.get() > 0 && !JITSubelements(elem, context, frame_ptr))
1807         return false;
1808 
1809     return true;
1810 }
1811 
1812 // JITs the RS runtime for information about the subelements/fields of a struct allocation
1813 // This is necessary for infering the struct type so we can pretty print the allocation's contents.
1814 // Returns true on success, false otherwise
1815 bool
1816 RenderScriptRuntime::JITSubelements(Element &elem, const lldb::addr_t context, StackFrame *frame_ptr)
1817 {
1818     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1819 
1820     if (!elem.element_ptr.isValid() || !elem.field_count.isValid())
1821     {
1822         if (log)
1823             log->Printf("%s - failed to find allocation details.", __FUNCTION__);
1824         return false;
1825     }
1826 
1827     const short num_exprs = 3;
1828     assert(num_exprs == (eExprSubelementsArrSize - eExprSubelementsId + 1) && "Invalid number of expressions");
1829 
1830     char expr_buffer[jit_max_expr_size];
1831     uint64_t results;
1832 
1833     // Iterate over struct fields.
1834     const uint32_t field_count = *elem.field_count.get();
1835     for (uint32_t field_index = 0; field_index < field_count; ++field_index)
1836     {
1837         Element child;
1838         for (uint32_t expr_index = 0; expr_index < num_exprs; ++expr_index)
1839         {
1840             const char *expr_cstr = JITTemplate(ExpressionStrings(eExprSubelementsId + expr_index));
1841             int chars_written = snprintf(expr_buffer, jit_max_expr_size, expr_cstr,
1842                                          field_count, field_count, field_count,
1843                                          context, *elem.element_ptr.get(), field_count, field_index);
1844             if (chars_written < 0)
1845             {
1846                 if (log)
1847                     log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
1848                 return false;
1849             }
1850             else if (chars_written >= jit_max_expr_size)
1851             {
1852                 if (log)
1853                     log->Printf("%s - expression too long.", __FUNCTION__);
1854                 return false;
1855             }
1856 
1857             // Perform expression evaluation
1858             if (!EvalRSExpression(expr_buffer, frame_ptr, &results))
1859                 return false;
1860 
1861             if (log)
1862                 log->Printf("%s - expr result 0x%" PRIx64 ".", __FUNCTION__, results);
1863 
1864             switch (expr_index)
1865             {
1866                 case 0: // Element* of child
1867                     child.element_ptr = static_cast<addr_t>(results);
1868                     break;
1869                 case 1: // Name of child
1870                 {
1871                     lldb::addr_t address = static_cast<addr_t>(results);
1872                     Error err;
1873                     std::string name;
1874                     GetProcess()->ReadCStringFromMemory(address, name, err);
1875                     if (!err.Fail())
1876                         child.type_name = ConstString(name);
1877                     else
1878                     {
1879                         if (log)
1880                             log->Printf("%s - warning: Couldn't read field name.", __FUNCTION__);
1881                     }
1882                     break;
1883                 }
1884                 case 2: // Array size of child
1885                     child.array_size = static_cast<uint32_t>(results);
1886                     break;
1887             }
1888         }
1889 
1890         // We need to recursively JIT each Element field of the struct since
1891         // structs can be nested inside structs.
1892         if (!JITElementPacked(child, context, frame_ptr))
1893             return false;
1894         elem.children.push_back(child);
1895     }
1896 
1897     // Try to infer the name of the struct type so we can pretty print the allocation contents.
1898     FindStructTypeName(elem, frame_ptr);
1899 
1900     return true;
1901 }
1902 
1903 // JITs the RS runtime for the address of the last element in the allocation.
1904 // The `elem_size` parameter represents the size of a single element, including padding.
1905 // Which is needed as an offset from the last element pointer.
1906 // Using this offset minus the starting address we can calculate the size of the allocation.
1907 // Returns true on success, false otherwise
1908 bool
1909 RenderScriptRuntime::JITAllocationSize(AllocationDetails *allocation, StackFrame *frame_ptr)
1910 {
1911     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1912 
1913     if (!allocation->address.isValid() || !allocation->dimension.isValid() || !allocation->data_ptr.isValid() ||
1914         !allocation->element.datum_size.isValid())
1915     {
1916         if (log)
1917             log->Printf("%s - failed to find allocation details.", __FUNCTION__);
1918         return false;
1919     }
1920 
1921     // Find dimensions
1922     uint32_t dim_x = allocation->dimension.get()->dim_1;
1923     uint32_t dim_y = allocation->dimension.get()->dim_2;
1924     uint32_t dim_z = allocation->dimension.get()->dim_3;
1925 
1926     // Our plan of jitting the last element address doesn't seem to work for struct Allocations
1927     // Instead try to infer the size ourselves without any inter element padding.
1928     if (allocation->element.children.size() > 0)
1929     {
1930         if (dim_x == 0) dim_x = 1;
1931         if (dim_y == 0) dim_y = 1;
1932         if (dim_z == 0) dim_z = 1;
1933 
1934         allocation->size = dim_x * dim_y * dim_z * *allocation->element.datum_size.get();
1935 
1936         if (log)
1937             log->Printf("%s - inferred size of struct allocation %" PRIu32 ".", __FUNCTION__,
1938                         *allocation->size.get());
1939         return true;
1940     }
1941 
1942     const char *expr_cstr = JITTemplate(eExprGetOffsetPtr);
1943     char buffer[jit_max_expr_size];
1944 
1945     // Calculate last element
1946     dim_x = dim_x == 0 ? 0 : dim_x - 1;
1947     dim_y = dim_y == 0 ? 0 : dim_y - 1;
1948     dim_z = dim_z == 0 ? 0 : dim_z - 1;
1949 
1950     int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->address.get(), dim_x, dim_y, dim_z);
1951     if (chars_written < 0)
1952     {
1953         if (log)
1954             log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
1955         return false;
1956     }
1957     else if (chars_written >= jit_max_expr_size)
1958     {
1959         if (log)
1960             log->Printf("%s - expression too long.", __FUNCTION__);
1961         return false;
1962     }
1963 
1964     uint64_t result = 0;
1965     if (!EvalRSExpression(buffer, frame_ptr, &result))
1966         return false;
1967 
1968     addr_t mem_ptr = static_cast<lldb::addr_t>(result);
1969     // Find pointer to last element and add on size of an element
1970     allocation->size =
1971         static_cast<uint32_t>(mem_ptr - *allocation->data_ptr.get()) + *allocation->element.datum_size.get();
1972 
1973     return true;
1974 }
1975 
1976 // JITs the RS runtime for information about the stride between rows in the allocation.
1977 // This is done to detect padding, since allocated memory is 16-byte aligned.
1978 // Returns true on success, false otherwise
1979 bool
1980 RenderScriptRuntime::JITAllocationStride(AllocationDetails *allocation, StackFrame *frame_ptr)
1981 {
1982     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1983 
1984     if (!allocation->address.isValid() || !allocation->data_ptr.isValid())
1985     {
1986         if (log)
1987             log->Printf("%s - failed to find allocation details.", __FUNCTION__);
1988         return false;
1989     }
1990 
1991     const char *expr_cstr = JITTemplate(eExprGetOffsetPtr);
1992     char buffer[jit_max_expr_size];
1993 
1994     int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->address.get(), 0, 1, 0);
1995     if (chars_written < 0)
1996     {
1997         if (log)
1998             log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
1999         return false;
2000     }
2001     else if (chars_written >= jit_max_expr_size)
2002     {
2003         if (log)
2004             log->Printf("%s - expression too long.", __FUNCTION__);
2005         return false;
2006     }
2007 
2008     uint64_t result = 0;
2009     if (!EvalRSExpression(buffer, frame_ptr, &result))
2010         return false;
2011 
2012     addr_t mem_ptr = static_cast<lldb::addr_t>(result);
2013     allocation->stride = static_cast<uint32_t>(mem_ptr - *allocation->data_ptr.get());
2014 
2015     return true;
2016 }
2017 
2018 // JIT all the current runtime info regarding an allocation
2019 bool
2020 RenderScriptRuntime::RefreshAllocation(AllocationDetails *allocation, StackFrame *frame_ptr)
2021 {
2022     // GetOffsetPointer()
2023     if (!JITDataPointer(allocation, frame_ptr))
2024         return false;
2025 
2026     // rsaAllocationGetType()
2027     if (!JITTypePointer(allocation, frame_ptr))
2028         return false;
2029 
2030     // rsaTypeGetNativeData()
2031     if (!JITTypePacked(allocation, frame_ptr))
2032         return false;
2033 
2034     // rsaElementGetNativeData()
2035     if (!JITElementPacked(allocation->element, *allocation->context.get(), frame_ptr))
2036         return false;
2037 
2038     // Sets the datum_size member in Element
2039     SetElementSize(allocation->element);
2040 
2041     // Use GetOffsetPointer() to infer size of the allocation
2042     if (!JITAllocationSize(allocation, frame_ptr))
2043         return false;
2044 
2045     return true;
2046 }
2047 
2048 // Function attempts to set the type_name member of the paramaterised Element object.
2049 // This string should be the name of the struct type the Element represents.
2050 // We need this string for pretty printing the Element to users.
2051 void
2052 RenderScriptRuntime::FindStructTypeName(Element &elem, StackFrame *frame_ptr)
2053 {
2054     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2055 
2056     if (!elem.type_name.IsEmpty()) // Name already set
2057         return;
2058     else
2059         elem.type_name = Element::GetFallbackStructName(); // Default type name if we don't succeed
2060 
2061     // Find all the global variables from the script rs modules
2062     VariableList variable_list;
2063     for (auto module_sp : m_rsmodules)
2064         module_sp->m_module->FindGlobalVariables(RegularExpression("."), true, UINT32_MAX, variable_list);
2065 
2066     // Iterate over all the global variables looking for one with a matching type to the Element.
2067     // We make the assumption a match exists since there needs to be a global variable to reflect the
2068     // struct type back into java host code.
2069     for (uint32_t var_index = 0; var_index < variable_list.GetSize(); ++var_index)
2070     {
2071         const VariableSP var_sp(variable_list.GetVariableAtIndex(var_index));
2072         if (!var_sp)
2073             continue;
2074 
2075         ValueObjectSP valobj_sp = ValueObjectVariable::Create(frame_ptr, var_sp);
2076         if (!valobj_sp)
2077             continue;
2078 
2079         // Find the number of variable fields.
2080         // If it has no fields, or more fields than our Element, then it can't be the struct we're looking for.
2081         // Don't check for equality since RS can add extra struct members for padding.
2082         size_t num_children = valobj_sp->GetNumChildren();
2083         if (num_children > elem.children.size() || num_children == 0)
2084             continue;
2085 
2086         // Iterate over children looking for members with matching field names.
2087         // If all the field names match, this is likely the struct we want.
2088         //
2089         //   TODO: This could be made more robust by also checking children data sizes, or array size
2090         bool found = true;
2091         for (size_t child_index = 0; child_index < num_children; ++child_index)
2092         {
2093             ValueObjectSP child = valobj_sp->GetChildAtIndex(child_index, true);
2094             if (!child || (child->GetName() != elem.children[child_index].type_name))
2095             {
2096                 found = false;
2097                 break;
2098             }
2099         }
2100 
2101         // RS can add extra struct members for padding in the format '#rs_padding_[0-9]+'
2102         if (found && num_children < elem.children.size())
2103         {
2104             const uint32_t size_diff = elem.children.size() - num_children;
2105             if (log)
2106                 log->Printf("%s - %" PRIu32 " padding struct entries", __FUNCTION__, size_diff);
2107 
2108             for (uint32_t padding_index = 0; padding_index < size_diff; ++padding_index)
2109             {
2110                 const ConstString &name = elem.children[num_children + padding_index].type_name;
2111                 if (strcmp(name.AsCString(), "#rs_padding") < 0)
2112                     found = false;
2113             }
2114         }
2115 
2116         // We've found a global var with matching type
2117         if (found)
2118         {
2119             // Dereference since our Element type isn't a pointer.
2120             if (valobj_sp->IsPointerType())
2121             {
2122                 Error err;
2123                 ValueObjectSP deref_valobj = valobj_sp->Dereference(err);
2124                 if (!err.Fail())
2125                     valobj_sp = deref_valobj;
2126             }
2127 
2128             // Save name of variable in Element.
2129             elem.type_name = valobj_sp->GetTypeName();
2130             if (log)
2131                 log->Printf("%s - element name set to %s", __FUNCTION__, elem.type_name.AsCString());
2132 
2133             return;
2134         }
2135     }
2136 }
2137 
2138 // Function sets the datum_size member of Element. Representing the size of a single instance including padding.
2139 // Assumes the relevant allocation information has already been jitted.
2140 void
2141 RenderScriptRuntime::SetElementSize(Element &elem)
2142 {
2143     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2144     const Element::DataType type = *elem.type.get();
2145     assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && "Invalid allocation type");
2146 
2147     const uint32_t vec_size = *elem.type_vec_size.get();
2148     uint32_t data_size = 0;
2149     uint32_t padding = 0;
2150 
2151     // Element is of a struct type, calculate size recursively.
2152     if ((type == Element::RS_TYPE_NONE) && (elem.children.size() > 0))
2153     {
2154         for (Element &child : elem.children)
2155         {
2156             SetElementSize(child);
2157             const uint32_t array_size = child.array_size.isValid() ? *child.array_size.get() : 1;
2158             data_size += *child.datum_size.get() * array_size;
2159         }
2160     }
2161     // These have been packed already
2162     else if (type == Element::RS_TYPE_UNSIGNED_5_6_5   ||
2163              type == Element::RS_TYPE_UNSIGNED_5_5_5_1 ||
2164              type == Element::RS_TYPE_UNSIGNED_4_4_4_4)
2165     {
2166         data_size = AllocationDetails::RSTypeToFormat[type][eElementSize];
2167     }
2168     else if (type < Element::RS_TYPE_ELEMENT)
2169     {
2170         data_size = vec_size * AllocationDetails::RSTypeToFormat[type][eElementSize];
2171         if (vec_size == 3)
2172             padding = AllocationDetails::RSTypeToFormat[type][eElementSize];
2173     }
2174     else
2175         data_size = GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
2176 
2177     elem.padding = padding;
2178     elem.datum_size = data_size + padding;
2179     if (log)
2180         log->Printf("%s - element size set to %" PRIu32, __FUNCTION__, data_size + padding);
2181 }
2182 
2183 // Given an allocation, this function copies the allocation contents from device into a buffer on the heap.
2184 // Returning a shared pointer to the buffer containing the data.
2185 std::shared_ptr<uint8_t>
2186 RenderScriptRuntime::GetAllocationData(AllocationDetails *allocation, StackFrame *frame_ptr)
2187 {
2188     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2189 
2190     // JIT all the allocation details
2191     if (allocation->shouldRefresh())
2192     {
2193         if (log)
2194             log->Printf("%s - allocation details not calculated yet, jitting info", __FUNCTION__);
2195 
2196         if (!RefreshAllocation(allocation, frame_ptr))
2197         {
2198             if (log)
2199                 log->Printf("%s - couldn't JIT allocation details", __FUNCTION__);
2200             return nullptr;
2201         }
2202     }
2203 
2204     assert(allocation->data_ptr.isValid() && allocation->element.type.isValid() &&
2205            allocation->element.type_vec_size.isValid() && allocation->size.isValid() &&
2206            "Allocation information not available");
2207 
2208     // Allocate a buffer to copy data into
2209     const uint32_t size = *allocation->size.get();
2210     std::shared_ptr<uint8_t> buffer(new uint8_t[size]);
2211     if (!buffer)
2212     {
2213         if (log)
2214             log->Printf("%s - couldn't allocate a %" PRIu32 " byte buffer", __FUNCTION__, size);
2215         return nullptr;
2216     }
2217 
2218     // Read the inferior memory
2219     Error error;
2220     lldb::addr_t data_ptr = *allocation->data_ptr.get();
2221     GetProcess()->ReadMemory(data_ptr, buffer.get(), size, error);
2222     if (error.Fail())
2223     {
2224         if (log)
2225             log->Printf("%s - '%s' Couldn't read %" PRIu32 " bytes of allocation data from 0x%" PRIx64,
2226                         __FUNCTION__, error.AsCString(), size, data_ptr);
2227         return nullptr;
2228     }
2229 
2230     return buffer;
2231 }
2232 
2233 // Function copies data from a binary file into an allocation.
2234 // There is a header at the start of the file, FileHeader, before the data content itself.
2235 // Information from this header is used to display warnings to the user about incompatibilities
2236 bool
2237 RenderScriptRuntime::LoadAllocation(Stream &strm, const uint32_t alloc_id, const char *filename, StackFrame *frame_ptr)
2238 {
2239     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2240 
2241     // Find allocation with the given id
2242     AllocationDetails *alloc = FindAllocByID(strm, alloc_id);
2243     if (!alloc)
2244         return false;
2245 
2246     if (log)
2247         log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__, *alloc->address.get());
2248 
2249     // JIT all the allocation details
2250     if (alloc->shouldRefresh())
2251     {
2252         if (log)
2253             log->Printf("%s - allocation details not calculated yet, jitting info.", __FUNCTION__);
2254 
2255         if (!RefreshAllocation(alloc, frame_ptr))
2256         {
2257             if (log)
2258                 log->Printf("%s - couldn't JIT allocation details", __FUNCTION__);
2259             return false;
2260         }
2261     }
2262 
2263     assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && alloc->element.type_vec_size.isValid() &&
2264            alloc->size.isValid() && alloc->element.datum_size.isValid() && "Allocation information not available");
2265 
2266     // Check we can read from file
2267     FileSpec file(filename, true);
2268     if (!file.Exists())
2269     {
2270         strm.Printf("Error: File %s does not exist", filename);
2271         strm.EOL();
2272         return false;
2273     }
2274 
2275     if (!file.Readable())
2276     {
2277         strm.Printf("Error: File %s does not have readable permissions", filename);
2278         strm.EOL();
2279         return false;
2280     }
2281 
2282     // Read file into data buffer
2283     DataBufferSP data_sp(file.ReadFileContents());
2284 
2285     // Cast start of buffer to FileHeader and use pointer to read metadata
2286     void *file_buffer = data_sp->GetBytes();
2287     if (file_buffer == nullptr ||
2288         data_sp->GetByteSize() < (sizeof(AllocationDetails::FileHeader) + sizeof(AllocationDetails::ElementHeader)))
2289     {
2290         strm.Printf("Error: File %s does not contain enough data for header", filename);
2291         strm.EOL();
2292         return false;
2293     }
2294     const AllocationDetails::FileHeader *file_header = static_cast<AllocationDetails::FileHeader *>(file_buffer);
2295 
2296     // Check file starts with ascii characters "RSAD"
2297     if (memcmp(file_header->ident, "RSAD", 4))
2298     {
2299         strm.Printf("Error: File doesn't contain identifier for an RS allocation dump. Are you sure this is the correct file?");
2300         strm.EOL();
2301         return false;
2302     }
2303 
2304     // Look at the type of the root element in the header
2305     AllocationDetails::ElementHeader root_element_header;
2306     memcpy(&root_element_header, static_cast<uint8_t *>(file_buffer) + sizeof(AllocationDetails::FileHeader),
2307            sizeof(AllocationDetails::ElementHeader));
2308 
2309     if (log)
2310         log->Printf("%s - header type %" PRIu32 ", element size %" PRIu32, __FUNCTION__,
2311                     root_element_header.type, root_element_header.element_size);
2312 
2313     // Check if the target allocation and file both have the same number of bytes for an Element
2314     if (*alloc->element.datum_size.get() != root_element_header.element_size)
2315     {
2316         strm.Printf("Warning: Mismatched Element sizes - file %" PRIu32 " bytes, allocation %" PRIu32 " bytes",
2317                     root_element_header.element_size, *alloc->element.datum_size.get());
2318         strm.EOL();
2319     }
2320 
2321     // Check if the target allocation and file both have the same type
2322     const uint32_t alloc_type = static_cast<uint32_t>(*alloc->element.type.get());
2323     const uint32_t file_type = root_element_header.type;
2324 
2325     if (file_type > Element::RS_TYPE_FONT)
2326     {
2327         strm.Printf("Warning: File has unknown allocation type");
2328         strm.EOL();
2329     }
2330     else if (alloc_type != file_type)
2331     {
2332         // Enum value isn't monotonous, so doesn't always index RsDataTypeToString array
2333         uint32_t printable_target_type_index = alloc_type;
2334         uint32_t printable_head_type_index = file_type;
2335         if (alloc_type >= Element::RS_TYPE_ELEMENT && alloc_type <= Element::RS_TYPE_FONT)
2336             printable_target_type_index = static_cast<Element::DataType>((alloc_type - Element::RS_TYPE_ELEMENT) +
2337                                                                          Element::RS_TYPE_MATRIX_2X2 + 1);
2338 
2339         if (file_type >= Element::RS_TYPE_ELEMENT && file_type <= Element::RS_TYPE_FONT)
2340             printable_head_type_index = static_cast<Element::DataType>((file_type - Element::RS_TYPE_ELEMENT) +
2341                                                                        Element::RS_TYPE_MATRIX_2X2 + 1);
2342 
2343         const char *file_type_cstr = AllocationDetails::RsDataTypeToString[printable_head_type_index][0];
2344         const char *target_type_cstr = AllocationDetails::RsDataTypeToString[printable_target_type_index][0];
2345 
2346         strm.Printf("Warning: Mismatched Types - file '%s' type, allocation '%s' type", file_type_cstr,
2347                     target_type_cstr);
2348         strm.EOL();
2349     }
2350 
2351     // Advance buffer past header
2352     file_buffer = static_cast<uint8_t *>(file_buffer) + file_header->hdr_size;
2353 
2354     // Calculate size of allocation data in file
2355     size_t length = data_sp->GetByteSize() - file_header->hdr_size;
2356 
2357     // Check if the target allocation and file both have the same total data size.
2358     const uint32_t alloc_size = *alloc->size.get();
2359     if (alloc_size != length)
2360     {
2361         strm.Printf("Warning: Mismatched allocation sizes - file 0x%" PRIx64 " bytes, allocation 0x%" PRIx32 " bytes",
2362                     (uint64_t)length, alloc_size);
2363         strm.EOL();
2364         length = alloc_size < length ? alloc_size : length; // Set length to copy to minimum
2365     }
2366 
2367     // Copy file data from our buffer into the target allocation.
2368     lldb::addr_t alloc_data = *alloc->data_ptr.get();
2369     Error error;
2370     size_t bytes_written = GetProcess()->WriteMemory(alloc_data, file_buffer, length, error);
2371     if (!error.Success() || bytes_written != length)
2372     {
2373         strm.Printf("Error: Couldn't write data to allocation %s", error.AsCString());
2374         strm.EOL();
2375         return false;
2376     }
2377 
2378     strm.Printf("Contents of file '%s' read into allocation %" PRIu32, filename, alloc->id);
2379     strm.EOL();
2380 
2381     return true;
2382 }
2383 
2384 // Function takes as parameters a byte buffer, which will eventually be written to file as the element header,
2385 // an offset into that buffer, and an Element that will be saved into the buffer at the parametrised offset.
2386 // Return value is the new offset after writing the element into the buffer.
2387 // Elements are saved to the file as the ElementHeader struct followed by offsets to the structs of all the element's
2388 // children.
2389 size_t
2390 RenderScriptRuntime::PopulateElementHeaders(const std::shared_ptr<uint8_t> header_buffer, size_t offset,
2391                                             const Element &elem)
2392 {
2393     // File struct for an element header with all the relevant details copied from elem.
2394     // We assume members are valid already.
2395     AllocationDetails::ElementHeader elem_header;
2396     elem_header.type = *elem.type.get();
2397     elem_header.kind = *elem.type_kind.get();
2398     elem_header.element_size = *elem.datum_size.get();
2399     elem_header.vector_size = *elem.type_vec_size.get();
2400     elem_header.array_size = elem.array_size.isValid() ? *elem.array_size.get() : 0;
2401     const size_t elem_header_size = sizeof(AllocationDetails::ElementHeader);
2402 
2403     // Copy struct into buffer and advance offset
2404     // We assume that header_buffer has been checked for nullptr before this method is called
2405     memcpy(header_buffer.get() + offset, &elem_header, elem_header_size);
2406     offset += elem_header_size;
2407 
2408     // Starting offset of child ElementHeader struct
2409     size_t child_offset = offset + ((elem.children.size() + 1) * sizeof(uint32_t));
2410     for (const RenderScriptRuntime::Element &child : elem.children)
2411     {
2412         // Recursively populate the buffer with the element header structs of children.
2413         // Then save the offsets where they were set after the parent element header.
2414         memcpy(header_buffer.get() + offset, &child_offset, sizeof(uint32_t));
2415         offset += sizeof(uint32_t);
2416 
2417         child_offset = PopulateElementHeaders(header_buffer, child_offset, child);
2418     }
2419 
2420     // Zero indicates no more children
2421     memset(header_buffer.get() + offset, 0, sizeof(uint32_t));
2422 
2423     return child_offset;
2424 }
2425 
2426 // Given an Element object this function returns the total size needed in the file header to store the element's
2427 // details.
2428 // Taking into account the size of the element header struct, plus the offsets to all the element's children.
2429 // Function is recursive so that the size of all ancestors is taken into account.
2430 size_t
2431 RenderScriptRuntime::CalculateElementHeaderSize(const Element &elem)
2432 {
2433     size_t size = (elem.children.size() + 1) * sizeof(uint32_t); // Offsets to children plus zero terminator
2434     size += sizeof(AllocationDetails::ElementHeader);            // Size of header struct with type details
2435 
2436     // Calculate recursively for all descendants
2437     for (const Element &child : elem.children)
2438         size += CalculateElementHeaderSize(child);
2439 
2440     return size;
2441 }
2442 
2443 // Function copies allocation contents into a binary file.
2444 // This file can then be loaded later into a different allocation.
2445 // There is a header, FileHeader, before the allocation data containing meta-data.
2446 bool
2447 RenderScriptRuntime::SaveAllocation(Stream &strm, const uint32_t alloc_id, const char *filename, StackFrame *frame_ptr)
2448 {
2449     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2450 
2451     // Find allocation with the given id
2452     AllocationDetails *alloc = FindAllocByID(strm, alloc_id);
2453     if (!alloc)
2454         return false;
2455 
2456     if (log)
2457         log->Printf("%s - found allocation 0x%" PRIx64 ".", __FUNCTION__, *alloc->address.get());
2458 
2459     // JIT all the allocation details
2460     if (alloc->shouldRefresh())
2461     {
2462         if (log)
2463             log->Printf("%s - allocation details not calculated yet, jitting info.", __FUNCTION__);
2464 
2465         if (!RefreshAllocation(alloc, frame_ptr))
2466         {
2467             if (log)
2468                 log->Printf("%s - couldn't JIT allocation details.", __FUNCTION__);
2469             return false;
2470         }
2471     }
2472 
2473     assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && alloc->element.type_vec_size.isValid() &&
2474            alloc->element.datum_size.get() && alloc->element.type_kind.isValid() && alloc->dimension.isValid() &&
2475            "Allocation information not available");
2476 
2477     // Check we can create writable file
2478     FileSpec file_spec(filename, true);
2479     File file(file_spec, File::eOpenOptionWrite | File::eOpenOptionCanCreate | File::eOpenOptionTruncate);
2480     if (!file)
2481     {
2482         strm.Printf("Error: Failed to open '%s' for writing", filename);
2483         strm.EOL();
2484         return false;
2485     }
2486 
2487     // Read allocation into buffer of heap memory
2488     const std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr);
2489     if (!buffer)
2490     {
2491         strm.Printf("Error: Couldn't read allocation data into buffer");
2492         strm.EOL();
2493         return false;
2494     }
2495 
2496     // Create the file header
2497     AllocationDetails::FileHeader head;
2498     memcpy(head.ident, "RSAD", 4);
2499     head.dims[0] = static_cast<uint32_t>(alloc->dimension.get()->dim_1);
2500     head.dims[1] = static_cast<uint32_t>(alloc->dimension.get()->dim_2);
2501     head.dims[2] = static_cast<uint32_t>(alloc->dimension.get()->dim_3);
2502 
2503     const size_t element_header_size = CalculateElementHeaderSize(alloc->element);
2504     assert((sizeof(AllocationDetails::FileHeader) + element_header_size) < UINT16_MAX && "Element header too large");
2505     head.hdr_size = static_cast<uint16_t>(sizeof(AllocationDetails::FileHeader) + element_header_size);
2506 
2507     // Write the file header
2508     size_t num_bytes = sizeof(AllocationDetails::FileHeader);
2509     if (log)
2510         log->Printf("%s - writing File Header, 0x%" PRIx64 " bytes", __FUNCTION__, (uint64_t)num_bytes);
2511 
2512     Error err = file.Write(&head, num_bytes);
2513     if (!err.Success())
2514     {
2515         strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), filename);
2516         strm.EOL();
2517         return false;
2518     }
2519 
2520     // Create the headers describing the element type of the allocation.
2521     std::shared_ptr<uint8_t> element_header_buffer(new uint8_t[element_header_size]);
2522     if (element_header_buffer == nullptr)
2523     {
2524         strm.Printf("Internal Error: Couldn't allocate %" PRIu64 " bytes on the heap", (uint64_t)element_header_size);
2525         strm.EOL();
2526         return false;
2527     }
2528 
2529     PopulateElementHeaders(element_header_buffer, 0, alloc->element);
2530 
2531     // Write headers for allocation element type to file
2532     num_bytes = element_header_size;
2533     if (log)
2534         log->Printf("%s - writing element headers, 0x%" PRIx64 " bytes.", __FUNCTION__, (uint64_t)num_bytes);
2535 
2536     err = file.Write(element_header_buffer.get(), num_bytes);
2537     if (!err.Success())
2538     {
2539         strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), filename);
2540         strm.EOL();
2541         return false;
2542     }
2543 
2544     // Write allocation data to file
2545     num_bytes = static_cast<size_t>(*alloc->size.get());
2546     if (log)
2547         log->Printf("%s - writing 0x%" PRIx64 " bytes", __FUNCTION__, (uint64_t)num_bytes);
2548 
2549     err = file.Write(buffer.get(), num_bytes);
2550     if (!err.Success())
2551     {
2552         strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), filename);
2553         strm.EOL();
2554         return false;
2555     }
2556 
2557     strm.Printf("Allocation written to file '%s'", filename);
2558     strm.EOL();
2559     return true;
2560 }
2561 
2562 bool
2563 RenderScriptRuntime::LoadModule(const lldb::ModuleSP &module_sp)
2564 {
2565     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2566 
2567     if (module_sp)
2568     {
2569         for (const auto &rs_module : m_rsmodules)
2570         {
2571             if (rs_module->m_module == module_sp)
2572             {
2573                 // Check if the user has enabled automatically breaking on
2574                 // all RS kernels.
2575                 if (m_breakAllKernels)
2576                     BreakOnModuleKernels(rs_module);
2577 
2578                 return false;
2579             }
2580         }
2581         bool module_loaded = false;
2582         switch (GetModuleKind(module_sp))
2583         {
2584             case eModuleKindKernelObj:
2585             {
2586                 RSModuleDescriptorSP module_desc;
2587                 module_desc.reset(new RSModuleDescriptor(module_sp));
2588                 if (module_desc->ParseRSInfo())
2589                 {
2590                     m_rsmodules.push_back(module_desc);
2591                     module_loaded = true;
2592                 }
2593                 if (module_loaded)
2594                 {
2595                     FixupScriptDetails(module_desc);
2596                 }
2597                 break;
2598             }
2599             case eModuleKindDriver:
2600             {
2601                 if (!m_libRSDriver)
2602                 {
2603                     m_libRSDriver = module_sp;
2604                     LoadRuntimeHooks(m_libRSDriver, RenderScriptRuntime::eModuleKindDriver);
2605                 }
2606                 break;
2607             }
2608             case eModuleKindImpl:
2609             {
2610                 m_libRSCpuRef = module_sp;
2611                 break;
2612             }
2613             case eModuleKindLibRS:
2614             {
2615                 if (!m_libRS)
2616                 {
2617                     m_libRS = module_sp;
2618                     static ConstString gDbgPresentStr("gDebuggerPresent");
2619                     const Symbol *debug_present =
2620                         m_libRS->FindFirstSymbolWithNameAndType(gDbgPresentStr, eSymbolTypeData);
2621                     if (debug_present)
2622                     {
2623                         Error error;
2624                         uint32_t flag = 0x00000001U;
2625                         Target &target = GetProcess()->GetTarget();
2626                         addr_t addr = debug_present->GetLoadAddress(&target);
2627                         GetProcess()->WriteMemory(addr, &flag, sizeof(flag), error);
2628                         if (error.Success())
2629                         {
2630                             if (log)
2631                                 log->Printf("%s - debugger present flag set on debugee.", __FUNCTION__);
2632 
2633                             m_debuggerPresentFlagged = true;
2634                         }
2635                         else if (log)
2636                         {
2637                             log->Printf("%s - error writing debugger present flags '%s' ", __FUNCTION__,
2638                                         error.AsCString());
2639                         }
2640                     }
2641                     else if (log)
2642                     {
2643                         log->Printf("%s - error writing debugger present flags - symbol not found", __FUNCTION__);
2644                     }
2645                 }
2646                 break;
2647             }
2648             default:
2649                 break;
2650         }
2651         if (module_loaded)
2652             Update();
2653         return module_loaded;
2654     }
2655     return false;
2656 }
2657 
2658 void
2659 RenderScriptRuntime::Update()
2660 {
2661     if (m_rsmodules.size() > 0)
2662     {
2663         if (!m_initiated)
2664         {
2665             Initiate();
2666         }
2667     }
2668 }
2669 
2670 // The maximum line length of an .rs.info packet
2671 #define MAXLINE 500
2672 #define STRINGIFY(x) #x
2673 #define MAXLINESTR_(x) "%" STRINGIFY(x) "s"
2674 #define MAXLINESTR MAXLINESTR_(MAXLINE)
2675 
2676 // The .rs.info symbol in renderscript modules contains a string which needs to be parsed.
2677 // The string is basic and is parsed on a line by line basis.
2678 bool
2679 RSModuleDescriptor::ParseRSInfo()
2680 {
2681     assert(m_module);
2682     const Symbol *info_sym = m_module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), eSymbolTypeData);
2683     if (!info_sym)
2684         return false;
2685 
2686     const addr_t addr = info_sym->GetAddressRef().GetFileAddress();
2687     if (addr == LLDB_INVALID_ADDRESS)
2688         return false;
2689 
2690     const addr_t size = info_sym->GetByteSize();
2691     const FileSpec fs = m_module->GetFileSpec();
2692 
2693     const DataBufferSP buffer = fs.ReadFileContents(addr, size);
2694     if (!buffer)
2695         return false;
2696 
2697     // split rs.info. contents into lines
2698     std::vector<std::string> info_lines;
2699     {
2700         const std::string info((const char *)buffer->GetBytes());
2701         for (size_t tail = 0; tail < info.size();)
2702         {
2703             // find next new line or end of string
2704             size_t head = info.find('\n', tail);
2705             head = (head == std::string::npos) ? info.size() : head;
2706             std::string line = info.substr(tail, head - tail);
2707             // add to line list
2708             info_lines.push_back(line);
2709             tail = head + 1;
2710         }
2711     }
2712 
2713     std::array<char, MAXLINE> name{{'\0'}};
2714     std::array<char, MAXLINE> value{{'\0'}};
2715 
2716     // parse all text lines of .rs.info
2717     for (auto line = info_lines.begin(); line != info_lines.end(); ++line)
2718     {
2719         uint32_t numDefns = 0;
2720         if (sscanf(line->c_str(), "exportVarCount: %" PRIu32 "", &numDefns) == 1)
2721         {
2722             while (numDefns--)
2723                 m_globals.push_back(RSGlobalDescriptor(this, (++line)->c_str()));
2724         }
2725         else if (sscanf(line->c_str(), "exportForEachCount: %" PRIu32 "", &numDefns) == 1)
2726         {
2727             while (numDefns--)
2728             {
2729                 uint32_t slot = 0;
2730                 name[0] = '\0';
2731                 static const char *fmt_s = "%" PRIu32 " - " MAXLINESTR;
2732                 if (sscanf((++line)->c_str(), fmt_s, &slot, name.data()) == 2)
2733                 {
2734                     if (name[0] != '\0')
2735                         m_kernels.push_back(RSKernelDescriptor(this, name.data(), slot));
2736                 }
2737             }
2738         }
2739         else if (sscanf(line->c_str(), "pragmaCount: %" PRIu32 "", &numDefns) == 1)
2740         {
2741             while (numDefns--)
2742             {
2743                 name[0] = value[0] = '\0';
2744                 static const char *fmt_s = MAXLINESTR " - " MAXLINESTR;
2745                 if (sscanf((++line)->c_str(), fmt_s, name.data(), value.data()) != 0)
2746                 {
2747                     if (name[0] != '\0')
2748                         m_pragmas[std::string(name.data())] = value.data();
2749                 }
2750             }
2751         }
2752         else
2753         {
2754             Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2755             if (log)
2756             {
2757                 log->Printf("%s - skipping .rs.info field '%s'", __FUNCTION__, line->c_str());
2758             }
2759         }
2760     }
2761 
2762     // 'root' kernel should always be present
2763     return m_kernels.size() > 0;
2764 }
2765 
2766 void
2767 RenderScriptRuntime::Status(Stream &strm) const
2768 {
2769     if (m_libRS)
2770     {
2771         strm.Printf("Runtime Library discovered.");
2772         strm.EOL();
2773     }
2774     if (m_libRSDriver)
2775     {
2776         strm.Printf("Runtime Driver discovered.");
2777         strm.EOL();
2778     }
2779     if (m_libRSCpuRef)
2780     {
2781         strm.Printf("CPU Reference Implementation discovered.");
2782         strm.EOL();
2783     }
2784 
2785     if (m_runtimeHooks.size())
2786     {
2787         strm.Printf("Runtime functions hooked:");
2788         strm.EOL();
2789         for (auto b : m_runtimeHooks)
2790         {
2791             strm.Indent(b.second->defn->name);
2792             strm.EOL();
2793         }
2794     }
2795     else
2796     {
2797         strm.Printf("Runtime is not hooked.");
2798         strm.EOL();
2799     }
2800 }
2801 
2802 void
2803 RenderScriptRuntime::DumpContexts(Stream &strm) const
2804 {
2805     strm.Printf("Inferred RenderScript Contexts:");
2806     strm.EOL();
2807     strm.IndentMore();
2808 
2809     std::map<addr_t, uint64_t> contextReferences;
2810 
2811     // Iterate over all of the currently discovered scripts.
2812     // Note: We cant push or pop from m_scripts inside this loop or it may invalidate script.
2813     for (const auto &script : m_scripts)
2814     {
2815         if (!script->context.isValid())
2816             continue;
2817         lldb::addr_t context = *script->context;
2818 
2819         if (contextReferences.find(context) != contextReferences.end())
2820         {
2821             contextReferences[context]++;
2822         }
2823         else
2824         {
2825             contextReferences[context] = 1;
2826         }
2827     }
2828 
2829     for (const auto &cRef : contextReferences)
2830     {
2831         strm.Printf("Context 0x%" PRIx64 ": %" PRIu64 " script instances", cRef.first, cRef.second);
2832         strm.EOL();
2833     }
2834     strm.IndentLess();
2835 }
2836 
2837 void
2838 RenderScriptRuntime::DumpKernels(Stream &strm) const
2839 {
2840     strm.Printf("RenderScript Kernels:");
2841     strm.EOL();
2842     strm.IndentMore();
2843     for (const auto &module : m_rsmodules)
2844     {
2845         strm.Printf("Resource '%s':", module->m_resname.c_str());
2846         strm.EOL();
2847         for (const auto &kernel : module->m_kernels)
2848         {
2849             strm.Indent(kernel.m_name.AsCString());
2850             strm.EOL();
2851         }
2852     }
2853     strm.IndentLess();
2854 }
2855 
2856 RenderScriptRuntime::AllocationDetails *
2857 RenderScriptRuntime::FindAllocByID(Stream &strm, const uint32_t alloc_id)
2858 {
2859     AllocationDetails *alloc = nullptr;
2860 
2861     // See if we can find allocation using id as an index;
2862     if (alloc_id <= m_allocations.size() && alloc_id != 0 && m_allocations[alloc_id - 1]->id == alloc_id)
2863     {
2864         alloc = m_allocations[alloc_id - 1].get();
2865         return alloc;
2866     }
2867 
2868     // Fallback to searching
2869     for (const auto &a : m_allocations)
2870     {
2871         if (a->id == alloc_id)
2872         {
2873             alloc = a.get();
2874             break;
2875         }
2876     }
2877 
2878     if (alloc == nullptr)
2879     {
2880         strm.Printf("Error: Couldn't find allocation with id matching %" PRIu32, alloc_id);
2881         strm.EOL();
2882     }
2883 
2884     return alloc;
2885 }
2886 
2887 // Prints the contents of an allocation to the output stream, which may be a file
2888 bool
2889 RenderScriptRuntime::DumpAllocation(Stream &strm, StackFrame *frame_ptr, const uint32_t id)
2890 {
2891     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2892 
2893     // Check we can find the desired allocation
2894     AllocationDetails *alloc = FindAllocByID(strm, id);
2895     if (!alloc)
2896         return false; // FindAllocByID() will print error message for us here
2897 
2898     if (log)
2899         log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__, *alloc->address.get());
2900 
2901     // Check we have information about the allocation, if not calculate it
2902     if (alloc->shouldRefresh())
2903     {
2904         if (log)
2905             log->Printf("%s - allocation details not calculated yet, jitting info.", __FUNCTION__);
2906 
2907         // JIT all the allocation information
2908         if (!RefreshAllocation(alloc, frame_ptr))
2909         {
2910             strm.Printf("Error: Couldn't JIT allocation details");
2911             strm.EOL();
2912             return false;
2913         }
2914     }
2915 
2916     // Establish format and size of each data element
2917     const uint32_t vec_size = *alloc->element.type_vec_size.get();
2918     const Element::DataType type = *alloc->element.type.get();
2919 
2920     assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && "Invalid allocation type");
2921 
2922     lldb::Format format;
2923     if (type >= Element::RS_TYPE_ELEMENT)
2924         format = eFormatHex;
2925     else
2926         format = vec_size == 1 ? static_cast<lldb::Format>(AllocationDetails::RSTypeToFormat[type][eFormatSingle])
2927                                : static_cast<lldb::Format>(AllocationDetails::RSTypeToFormat[type][eFormatVector]);
2928 
2929     const uint32_t data_size = *alloc->element.datum_size.get();
2930 
2931     if (log)
2932         log->Printf("%s - element size %" PRIu32 " bytes, including padding", __FUNCTION__, data_size);
2933 
2934     // Allocate a buffer to copy data into
2935     std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr);
2936     if (!buffer)
2937     {
2938         strm.Printf("Error: Couldn't read allocation data");
2939         strm.EOL();
2940         return false;
2941     }
2942 
2943     // Calculate stride between rows as there may be padding at end of rows since
2944     // allocated memory is 16-byte aligned
2945     if (!alloc->stride.isValid())
2946     {
2947         if (alloc->dimension.get()->dim_2 == 0) // We only have one dimension
2948             alloc->stride = 0;
2949         else if (!JITAllocationStride(alloc, frame_ptr))
2950         {
2951             strm.Printf("Error: Couldn't calculate allocation row stride");
2952             strm.EOL();
2953             return false;
2954         }
2955     }
2956     const uint32_t stride = *alloc->stride.get();
2957     const uint32_t size = *alloc->size.get(); // Size of whole allocation
2958     const uint32_t padding = alloc->element.padding.isValid() ? *alloc->element.padding.get() : 0;
2959     if (log)
2960         log->Printf("%s - stride %" PRIu32 " bytes, size %" PRIu32 " bytes, padding %" PRIu32,
2961                     __FUNCTION__, stride, size, padding);
2962 
2963     // Find dimensions used to index loops, so need to be non-zero
2964     uint32_t dim_x = alloc->dimension.get()->dim_1;
2965     dim_x = dim_x == 0 ? 1 : dim_x;
2966 
2967     uint32_t dim_y = alloc->dimension.get()->dim_2;
2968     dim_y = dim_y == 0 ? 1 : dim_y;
2969 
2970     uint32_t dim_z = alloc->dimension.get()->dim_3;
2971     dim_z = dim_z == 0 ? 1 : dim_z;
2972 
2973     // Use data extractor to format output
2974     const uint32_t archByteSize = GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
2975     DataExtractor alloc_data(buffer.get(), size, GetProcess()->GetByteOrder(), archByteSize);
2976 
2977     uint32_t offset = 0;   // Offset in buffer to next element to be printed
2978     uint32_t prev_row = 0; // Offset to the start of the previous row
2979 
2980     // Iterate over allocation dimensions, printing results to user
2981     strm.Printf("Data (X, Y, Z):");
2982     for (uint32_t z = 0; z < dim_z; ++z)
2983     {
2984         for (uint32_t y = 0; y < dim_y; ++y)
2985         {
2986             // Use stride to index start of next row.
2987             if (!(y == 0 && z == 0))
2988                 offset = prev_row + stride;
2989             prev_row = offset;
2990 
2991             // Print each element in the row individually
2992             for (uint32_t x = 0; x < dim_x; ++x)
2993             {
2994                 strm.Printf("\n(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ") = ", x, y, z);
2995                 if ((type == Element::RS_TYPE_NONE) && (alloc->element.children.size() > 0) &&
2996                     (alloc->element.type_name != Element::GetFallbackStructName()))
2997                 {
2998                     // Here we are dumping an Element of struct type.
2999                     // This is done using expression evaluation with the name of the struct type and pointer to element.
3000 
3001                     // Don't print the name of the resulting expression, since this will be '$[0-9]+'
3002                     DumpValueObjectOptions expr_options;
3003                     expr_options.SetHideName(true);
3004 
3005                     // Setup expression as derefrencing a pointer cast to element address.
3006                     char expr_char_buffer[jit_max_expr_size];
3007                     int chars_written = snprintf(expr_char_buffer, jit_max_expr_size, "*(%s*) 0x%" PRIx64,
3008                                                  alloc->element.type_name.AsCString(), *alloc->data_ptr.get() + offset);
3009 
3010                     if (chars_written < 0 || chars_written >= jit_max_expr_size)
3011                     {
3012                         if (log)
3013                             log->Printf("%s - error in snprintf().", __FUNCTION__);
3014                         continue;
3015                     }
3016 
3017                     // Evaluate expression
3018                     ValueObjectSP expr_result;
3019                     GetProcess()->GetTarget().EvaluateExpression(expr_char_buffer, frame_ptr, expr_result);
3020 
3021                     // Print the results to our stream.
3022                     expr_result->Dump(strm, expr_options);
3023                 }
3024                 else
3025                 {
3026                     alloc_data.Dump(&strm, offset, format, data_size - padding, 1, 1, LLDB_INVALID_ADDRESS, 0, 0);
3027                 }
3028                 offset += data_size;
3029             }
3030         }
3031     }
3032     strm.EOL();
3033 
3034     return true;
3035 }
3036 
3037 // Function recalculates all our cached information about allocations by jitting the
3038 // RS runtime regarding each allocation we know about.
3039 // Returns true if all allocations could be recomputed, false otherwise.
3040 bool
3041 RenderScriptRuntime::RecomputeAllAllocations(Stream &strm, StackFrame *frame_ptr)
3042 {
3043     bool success = true;
3044     for (auto &alloc : m_allocations)
3045     {
3046         // JIT current allocation information
3047         if (!RefreshAllocation(alloc.get(), frame_ptr))
3048         {
3049             strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32 "\n", alloc->id);
3050             success = false;
3051         }
3052     }
3053 
3054     if (success)
3055         strm.Printf("All allocations successfully recomputed");
3056     strm.EOL();
3057 
3058     return success;
3059 }
3060 
3061 // Prints information regarding currently loaded allocations.
3062 // These details are gathered by jitting the runtime, which has as latency.
3063 // Index parameter specifies a single allocation ID to print, or a zero value to print them all
3064 void
3065 RenderScriptRuntime::ListAllocations(Stream &strm, StackFrame *frame_ptr, const uint32_t index)
3066 {
3067     strm.Printf("RenderScript Allocations:");
3068     strm.EOL();
3069     strm.IndentMore();
3070 
3071     for (auto &alloc : m_allocations)
3072     {
3073         // index will only be zero if we want to print all allocations
3074         if (index != 0 && index != alloc->id)
3075             continue;
3076 
3077         // JIT current allocation information
3078         if (alloc->shouldRefresh() && !RefreshAllocation(alloc.get(), frame_ptr))
3079         {
3080             strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32, alloc->id);
3081             strm.EOL();
3082             continue;
3083         }
3084 
3085         strm.Printf("%" PRIu32 ":", alloc->id);
3086         strm.EOL();
3087         strm.IndentMore();
3088 
3089         strm.Indent("Context: ");
3090         if (!alloc->context.isValid())
3091             strm.Printf("unknown\n");
3092         else
3093             strm.Printf("0x%" PRIx64 "\n", *alloc->context.get());
3094 
3095         strm.Indent("Address: ");
3096         if (!alloc->address.isValid())
3097             strm.Printf("unknown\n");
3098         else
3099             strm.Printf("0x%" PRIx64 "\n", *alloc->address.get());
3100 
3101         strm.Indent("Data pointer: ");
3102         if (!alloc->data_ptr.isValid())
3103             strm.Printf("unknown\n");
3104         else
3105             strm.Printf("0x%" PRIx64 "\n", *alloc->data_ptr.get());
3106 
3107         strm.Indent("Dimensions: ");
3108         if (!alloc->dimension.isValid())
3109             strm.Printf("unknown\n");
3110         else
3111             strm.Printf("(%" PRId32 ", %" PRId32 ", %" PRId32 ")\n",
3112                         alloc->dimension.get()->dim_1, alloc->dimension.get()->dim_2, alloc->dimension.get()->dim_3);
3113 
3114         strm.Indent("Data Type: ");
3115         if (!alloc->element.type.isValid() || !alloc->element.type_vec_size.isValid())
3116             strm.Printf("unknown\n");
3117         else
3118         {
3119             const int vector_size = *alloc->element.type_vec_size.get();
3120             Element::DataType type = *alloc->element.type.get();
3121 
3122             if (!alloc->element.type_name.IsEmpty())
3123                 strm.Printf("%s\n", alloc->element.type_name.AsCString());
3124             else
3125             {
3126                 // Enum value isn't monotonous, so doesn't always index RsDataTypeToString array
3127                 if (type >= Element::RS_TYPE_ELEMENT && type <= Element::RS_TYPE_FONT)
3128                     type = static_cast<Element::DataType>((type - Element::RS_TYPE_ELEMENT) +
3129                                                           Element::RS_TYPE_MATRIX_2X2 + 1);
3130 
3131                 if (type >= (sizeof(AllocationDetails::RsDataTypeToString) /
3132                              sizeof(AllocationDetails::RsDataTypeToString[0])) ||
3133                     vector_size > 4 || vector_size < 1)
3134                     strm.Printf("invalid type\n");
3135                 else
3136                     strm.Printf("%s\n", AllocationDetails::RsDataTypeToString[static_cast<uint32_t>(type)]
3137                                                                              [vector_size - 1]);
3138             }
3139         }
3140 
3141         strm.Indent("Data Kind: ");
3142         if (!alloc->element.type_kind.isValid())
3143             strm.Printf("unknown\n");
3144         else
3145         {
3146             const Element::DataKind kind = *alloc->element.type_kind.get();
3147             if (kind < Element::RS_KIND_USER || kind > Element::RS_KIND_PIXEL_YUV)
3148                 strm.Printf("invalid kind\n");
3149             else
3150                 strm.Printf("%s\n", AllocationDetails::RsDataKindToString[static_cast<uint32_t>(kind)]);
3151         }
3152 
3153         strm.EOL();
3154         strm.IndentLess();
3155     }
3156     strm.IndentLess();
3157 }
3158 
3159 // Set breakpoints on every kernel found in RS module
3160 void
3161 RenderScriptRuntime::BreakOnModuleKernels(const RSModuleDescriptorSP rsmodule_sp)
3162 {
3163     for (const auto &kernel : rsmodule_sp->m_kernels)
3164     {
3165         // Don't set breakpoint on 'root' kernel
3166         if (strcmp(kernel.m_name.AsCString(), "root") == 0)
3167             continue;
3168 
3169         CreateKernelBreakpoint(kernel.m_name);
3170     }
3171 }
3172 
3173 // Method is internally called by the 'kernel breakpoint all' command to
3174 // enable or disable breaking on all kernels.
3175 //
3176 // When do_break is true we want to enable this functionality.
3177 // When do_break is false we want to disable it.
3178 void
3179 RenderScriptRuntime::SetBreakAllKernels(bool do_break, TargetSP target)
3180 {
3181     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
3182 
3183     InitSearchFilter(target);
3184 
3185     // Set breakpoints on all the kernels
3186     if (do_break && !m_breakAllKernels)
3187     {
3188         m_breakAllKernels = true;
3189 
3190         for (const auto &module : m_rsmodules)
3191             BreakOnModuleKernels(module);
3192 
3193         if (log)
3194             log->Printf("%s(True) - breakpoints set on all currently loaded kernels.", __FUNCTION__);
3195     }
3196     else if (!do_break && m_breakAllKernels) // Breakpoints won't be set on any new kernels.
3197     {
3198         m_breakAllKernels = false;
3199 
3200         if (log)
3201             log->Printf("%s(False) - breakpoints no longer automatically set.", __FUNCTION__);
3202     }
3203 }
3204 
3205 // Given the name of a kernel this function creates a breakpoint using our
3206 // own breakpoint resolver, and returns the Breakpoint shared pointer.
3207 BreakpointSP
3208 RenderScriptRuntime::CreateKernelBreakpoint(const ConstString &name)
3209 {
3210     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
3211 
3212     if (!m_filtersp)
3213     {
3214         if (log)
3215             log->Printf("%s - error, no breakpoint search filter set.", __FUNCTION__);
3216         return nullptr;
3217     }
3218 
3219     BreakpointResolverSP resolver_sp(new RSBreakpointResolver(nullptr, name));
3220     BreakpointSP bp = GetProcess()->GetTarget().CreateBreakpoint(m_filtersp, resolver_sp, false, false, false);
3221 
3222     // Give RS breakpoints a specific name, so the user can manipulate them as a group.
3223     Error err;
3224     if (!bp->AddName("RenderScriptKernel", err) && log)
3225         log->Printf("%s - error setting break name, '%s'.", __FUNCTION__, err.AsCString());
3226 
3227     return bp;
3228 }
3229 
3230 // Given an expression for a variable this function tries to calculate the variable's value.
3231 // If this is possible it returns true and sets the uint64_t parameter to the variables unsigned value.
3232 // Otherwise function returns false.
3233 bool
3234 RenderScriptRuntime::GetFrameVarAsUnsigned(const StackFrameSP frame_sp, const char *var_name, uint64_t &val)
3235 {
3236     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE));
3237     Error error;
3238     VariableSP var_sp;
3239 
3240     // Find variable in stack frame
3241     ValueObjectSP value_sp(frame_sp->GetValueForVariableExpressionPath(
3242         var_name, eNoDynamicValues,
3243         StackFrame::eExpressionPathOptionCheckPtrVsMember | StackFrame::eExpressionPathOptionsAllowDirectIVarAccess,
3244         var_sp, error));
3245     if (!error.Success())
3246     {
3247         if (log)
3248             log->Printf("%s - error, couldn't find '%s' in frame", __FUNCTION__, var_name);
3249         return false;
3250     }
3251 
3252     // Find the uint32_t value for the variable
3253     bool success = false;
3254     val = value_sp->GetValueAsUnsigned(0, &success);
3255     if (!success)
3256     {
3257         if (log)
3258             log->Printf("%s - error, couldn't parse '%s' as an uint32_t.", __FUNCTION__, var_name);
3259         return false;
3260     }
3261 
3262     return true;
3263 }
3264 
3265 // Function attempts to find the current coordinate of a kernel invocation by investigating the
3266 // values of frame variables in the .expand function. These coordinates are returned via the coord
3267 // array reference parameter. Returns true if the coordinates could be found, and false otherwise.
3268 bool
3269 RenderScriptRuntime::GetKernelCoordinate(RSCoordinate &coord, Thread *thread_ptr)
3270 {
3271     static const std::string s_runtimeExpandSuffix(".expand");
3272     static const std::array<const char *, 3> s_runtimeCoordVars{{"rsIndex", "p->current.y", "p->current.z"}};
3273 
3274     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE));
3275 
3276     if (!thread_ptr)
3277     {
3278         if (log)
3279             log->Printf("%s - Error, No thread pointer", __FUNCTION__);
3280 
3281         return false;
3282     }
3283 
3284     // Walk the call stack looking for a function whose name has the suffix '.expand'
3285     // and contains the variables we're looking for.
3286     for (uint32_t i = 0; i < thread_ptr->GetStackFrameCount(); ++i)
3287     {
3288         if (!thread_ptr->SetSelectedFrameByIndex(i))
3289             continue;
3290 
3291         StackFrameSP frame_sp = thread_ptr->GetSelectedFrame();
3292         if (!frame_sp)
3293             continue;
3294 
3295         // Find the function name
3296         const SymbolContext sym_ctx = frame_sp->GetSymbolContext(false);
3297         const char *func_name_cstr = sym_ctx.GetFunctionName().AsCString();
3298         if (!func_name_cstr)
3299             continue;
3300 
3301         if (log)
3302             log->Printf("%s - Inspecting function '%s'", __FUNCTION__, func_name_cstr);
3303 
3304         // Check if function name has .expand suffix
3305         std::string func_name(func_name_cstr);
3306         const int length_difference = func_name.length() - s_runtimeExpandSuffix.length();
3307         if (length_difference <= 0)
3308             continue;
3309 
3310         const int32_t has_expand_suffix = func_name.compare(length_difference,
3311                                                             s_runtimeExpandSuffix.length(),
3312                                                             s_runtimeExpandSuffix);
3313 
3314         if (has_expand_suffix != 0)
3315             continue;
3316 
3317         if (log)
3318             log->Printf("%s - Found .expand function '%s'", __FUNCTION__, func_name_cstr);
3319 
3320         // Get values for variables in .expand frame that tell us the current kernel invocation
3321         bool found_coord_variables = true;
3322         assert(s_runtimeCoordVars.size() == coord.size());
3323 
3324         for (uint32_t i = 0; i < coord.size(); ++i)
3325         {
3326             uint64_t value = 0;
3327             if (!GetFrameVarAsUnsigned(frame_sp, s_runtimeCoordVars[i], value))
3328             {
3329                 found_coord_variables = false;
3330                 break;
3331             }
3332             coord[i] = value;
3333         }
3334 
3335         if (found_coord_variables)
3336             return true;
3337     }
3338     return false;
3339 }
3340 
3341 // Callback when a kernel breakpoint hits and we're looking for a specific coordinate.
3342 // Baton parameter contains a pointer to the target coordinate we want to break on.
3343 // Function then checks the .expand frame for the current coordinate and breaks to user if it matches.
3344 // Parameter 'break_id' is the id of the Breakpoint which made the callback.
3345 // Parameter 'break_loc_id' is the id for the BreakpointLocation which was hit,
3346 // a single logical breakpoint can have multiple addresses.
3347 bool
3348 RenderScriptRuntime::KernelBreakpointHit(void *baton, StoppointCallbackContext *ctx, user_id_t break_id,
3349                                          user_id_t break_loc_id)
3350 {
3351     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
3352 
3353     assert(baton && "Error: null baton in conditional kernel breakpoint callback");
3354 
3355     // Coordinate we want to stop on
3356     const uint32_t *target_coord = static_cast<const uint32_t *>(baton);
3357 
3358     if (log)
3359         log->Printf("%s - Break ID %" PRIu64 ", (%" PRIu32 ", %" PRIu32 ", %" PRIu32 ")", __FUNCTION__, break_id,
3360                     target_coord[0], target_coord[1], target_coord[2]);
3361 
3362     // Select current thread
3363     ExecutionContext context(ctx->exe_ctx_ref);
3364     Thread *thread_ptr = context.GetThreadPtr();
3365     assert(thread_ptr && "Null thread pointer");
3366 
3367     // Find current kernel invocation from .expand frame variables
3368     RSCoordinate current_coord{}; // Zero initialise array
3369     if (!GetKernelCoordinate(current_coord, thread_ptr))
3370     {
3371         if (log)
3372             log->Printf("%s - Error, couldn't select .expand stack frame", __FUNCTION__);
3373         return false;
3374     }
3375 
3376     if (log)
3377         log->Printf("%s - (%" PRIu32 ",%" PRIu32 ",%" PRIu32 ")", __FUNCTION__, current_coord[0], current_coord[1],
3378                     current_coord[2]);
3379 
3380     // Check if the current kernel invocation coordinate matches our target coordinate
3381     if (current_coord[0] == target_coord[0] &&
3382         current_coord[1] == target_coord[1] &&
3383         current_coord[2] == target_coord[2])
3384     {
3385         if (log)
3386             log->Printf("%s, BREAKING (%" PRIu32 ",%" PRIu32 ",%" PRIu32 ")", __FUNCTION__, current_coord[0],
3387                         current_coord[1], current_coord[2]);
3388 
3389         BreakpointSP breakpoint_sp = context.GetTargetPtr()->GetBreakpointByID(break_id);
3390         assert(breakpoint_sp != nullptr && "Error: Couldn't find breakpoint matching break id for callback");
3391         breakpoint_sp->SetEnabled(false); // Optimise since conditional breakpoint should only be hit once.
3392         return true;
3393     }
3394 
3395     // No match on coordinate
3396     return false;
3397 }
3398 
3399 // Tries to set a breakpoint on the start of a kernel, resolved using the kernel name.
3400 // Argument 'coords', represents a three dimensional coordinate which can be used to specify
3401 // a single kernel instance to break on. If this is set then we add a callback to the breakpoint.
3402 void
3403 RenderScriptRuntime::PlaceBreakpointOnKernel(Stream &strm, const char *name, const std::array<int, 3> coords,
3404                                              Error &error, TargetSP target)
3405 {
3406     if (!name)
3407     {
3408         error.SetErrorString("invalid kernel name");
3409         return;
3410     }
3411 
3412     InitSearchFilter(target);
3413 
3414     ConstString kernel_name(name);
3415     BreakpointSP bp = CreateKernelBreakpoint(kernel_name);
3416 
3417     // We have a conditional breakpoint on a specific coordinate
3418     if (coords[0] != -1)
3419     {
3420         strm.Printf("Conditional kernel breakpoint on coordinate %" PRId32 ", %" PRId32 ", %" PRId32,
3421                     coords[0], coords[1], coords[2]);
3422         strm.EOL();
3423 
3424         // Allocate memory for the baton, and copy over coordinate
3425         uint32_t *baton = new uint32_t[coords.size()];
3426         baton[0] = coords[0]; baton[1] = coords[1]; baton[2] = coords[2];
3427 
3428         // Create a callback that will be invoked every time the breakpoint is hit.
3429         // The baton object passed to the handler is the target coordinate we want to break on.
3430         bp->SetCallback(KernelBreakpointHit, baton, true);
3431 
3432         // Store a shared pointer to the baton, so the memory will eventually be cleaned up after destruction
3433         m_conditional_breaks[bp->GetID()] = std::shared_ptr<uint32_t>(baton);
3434     }
3435 
3436     if (bp)
3437         bp->GetDescription(&strm, lldb::eDescriptionLevelInitial, false);
3438 }
3439 
3440 void
3441 RenderScriptRuntime::DumpModules(Stream &strm) const
3442 {
3443     strm.Printf("RenderScript Modules:");
3444     strm.EOL();
3445     strm.IndentMore();
3446     for (const auto &module : m_rsmodules)
3447     {
3448         module->Dump(strm);
3449     }
3450     strm.IndentLess();
3451 }
3452 
3453 RenderScriptRuntime::ScriptDetails *
3454 RenderScriptRuntime::LookUpScript(addr_t address, bool create)
3455 {
3456     for (const auto &s : m_scripts)
3457     {
3458         if (s->script.isValid())
3459             if (*s->script == address)
3460                 return s.get();
3461     }
3462     if (create)
3463     {
3464         std::unique_ptr<ScriptDetails> s(new ScriptDetails);
3465         s->script = address;
3466         m_scripts.push_back(std::move(s));
3467         return m_scripts.back().get();
3468     }
3469     return nullptr;
3470 }
3471 
3472 RenderScriptRuntime::AllocationDetails *
3473 RenderScriptRuntime::LookUpAllocation(addr_t address)
3474 {
3475     for (const auto &a : m_allocations)
3476     {
3477         if (a->address.isValid())
3478             if (*a->address == address)
3479                 return a.get();
3480     }
3481     return nullptr;
3482 }
3483 
3484 RenderScriptRuntime::AllocationDetails *
3485 RenderScriptRuntime::CreateAllocation(addr_t address)
3486 {
3487     Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
3488 
3489     // Remove any previous allocation which contains the same address
3490     auto it = m_allocations.begin();
3491     while (it != m_allocations.end())
3492     {
3493         if (*((*it)->address) == address)
3494         {
3495             if (log)
3496                 log->Printf("%s - Removing allocation id: %d, address: 0x%" PRIx64, __FUNCTION__, (*it)->id, address);
3497 
3498             it = m_allocations.erase(it);
3499         }
3500         else
3501         {
3502             it++;
3503         }
3504     }
3505 
3506     std::unique_ptr<AllocationDetails> a(new AllocationDetails);
3507     a->address = address;
3508     m_allocations.push_back(std::move(a));
3509     return m_allocations.back().get();
3510 }
3511 
3512 void
3513 RSModuleDescriptor::Dump(Stream &strm) const
3514 {
3515     strm.Indent();
3516     m_module->GetFileSpec().Dump(&strm);
3517     if (m_module->GetNumCompileUnits())
3518     {
3519         strm.Indent("Debug info loaded.");
3520     }
3521     else
3522     {
3523         strm.Indent("Debug info does not exist.");
3524     }
3525     strm.EOL();
3526     strm.IndentMore();
3527     strm.Indent();
3528     strm.Printf("Globals: %" PRIu64, static_cast<uint64_t>(m_globals.size()));
3529     strm.EOL();
3530     strm.IndentMore();
3531     for (const auto &global : m_globals)
3532     {
3533         global.Dump(strm);
3534     }
3535     strm.IndentLess();
3536     strm.Indent();
3537     strm.Printf("Kernels: %" PRIu64, static_cast<uint64_t>(m_kernels.size()));
3538     strm.EOL();
3539     strm.IndentMore();
3540     for (const auto &kernel : m_kernels)
3541     {
3542         kernel.Dump(strm);
3543     }
3544     strm.Printf("Pragmas: %" PRIu64, static_cast<uint64_t>(m_pragmas.size()));
3545     strm.EOL();
3546     strm.IndentMore();
3547     for (const auto &key_val : m_pragmas)
3548     {
3549         strm.Printf("%s: %s", key_val.first.c_str(), key_val.second.c_str());
3550         strm.EOL();
3551     }
3552     strm.IndentLess(4);
3553 }
3554 
3555 void
3556 RSGlobalDescriptor::Dump(Stream &strm) const
3557 {
3558     strm.Indent(m_name.AsCString());
3559     VariableList var_list;
3560     m_module->m_module->FindGlobalVariables(m_name, nullptr, true, 1U, var_list);
3561     if (var_list.GetSize() == 1)
3562     {
3563         auto var = var_list.GetVariableAtIndex(0);
3564         auto type = var->GetType();
3565         if (type)
3566         {
3567             strm.Printf(" - ");
3568             type->DumpTypeName(&strm);
3569         }
3570         else
3571         {
3572             strm.Printf(" - Unknown Type");
3573         }
3574     }
3575     else
3576     {
3577         strm.Printf(" - variable identified, but not found in binary");
3578         const Symbol *s = m_module->m_module->FindFirstSymbolWithNameAndType(m_name, eSymbolTypeData);
3579         if (s)
3580         {
3581             strm.Printf(" (symbol exists) ");
3582         }
3583     }
3584 
3585     strm.EOL();
3586 }
3587 
3588 void
3589 RSKernelDescriptor::Dump(Stream &strm) const
3590 {
3591     strm.Indent(m_name.AsCString());
3592     strm.EOL();
3593 }
3594 
3595 class CommandObjectRenderScriptRuntimeModuleDump : public CommandObjectParsed
3596 {
3597 public:
3598     CommandObjectRenderScriptRuntimeModuleDump(CommandInterpreter &interpreter)
3599         : CommandObjectParsed(interpreter, "renderscript module dump",
3600                               "Dumps renderscript specific information for all modules.", "renderscript module dump",
3601                               eCommandRequiresProcess | eCommandProcessMustBeLaunched)
3602     {
3603     }
3604 
3605     ~CommandObjectRenderScriptRuntimeModuleDump() override = default;
3606 
3607     bool
3608     DoExecute(Args &command, CommandReturnObject &result) override
3609     {
3610         RenderScriptRuntime *runtime =
3611             (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
3612         runtime->DumpModules(result.GetOutputStream());
3613         result.SetStatus(eReturnStatusSuccessFinishResult);
3614         return true;
3615     }
3616 };
3617 
3618 class CommandObjectRenderScriptRuntimeModule : public CommandObjectMultiword
3619 {
3620 public:
3621     CommandObjectRenderScriptRuntimeModule(CommandInterpreter &interpreter)
3622         : CommandObjectMultiword(interpreter, "renderscript module", "Commands that deal with RenderScript modules.",
3623                                  nullptr)
3624     {
3625         LoadSubCommand("dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeModuleDump(interpreter)));
3626     }
3627 
3628     ~CommandObjectRenderScriptRuntimeModule() override = default;
3629 };
3630 
3631 class CommandObjectRenderScriptRuntimeKernelList : public CommandObjectParsed
3632 {
3633 public:
3634     CommandObjectRenderScriptRuntimeKernelList(CommandInterpreter &interpreter)
3635         : CommandObjectParsed(interpreter, "renderscript kernel list",
3636                               "Lists renderscript kernel names and associated script resources.",
3637                               "renderscript kernel list", eCommandRequiresProcess | eCommandProcessMustBeLaunched)
3638     {
3639     }
3640 
3641     ~CommandObjectRenderScriptRuntimeKernelList() override = default;
3642 
3643     bool
3644     DoExecute(Args &command, CommandReturnObject &result) override
3645     {
3646         RenderScriptRuntime *runtime =
3647             (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
3648         runtime->DumpKernels(result.GetOutputStream());
3649         result.SetStatus(eReturnStatusSuccessFinishResult);
3650         return true;
3651     }
3652 };
3653 
3654 class CommandObjectRenderScriptRuntimeKernelBreakpointSet : public CommandObjectParsed
3655 {
3656 public:
3657     CommandObjectRenderScriptRuntimeKernelBreakpointSet(CommandInterpreter &interpreter)
3658         : CommandObjectParsed(interpreter, "renderscript kernel breakpoint set",
3659                               "Sets a breakpoint on a renderscript kernel.",
3660                               "renderscript kernel breakpoint set <kernel_name> [-c x,y,z]",
3661                               eCommandRequiresProcess | eCommandProcessMustBeLaunched | eCommandProcessMustBePaused),
3662           m_options(interpreter)
3663     {
3664     }
3665 
3666     ~CommandObjectRenderScriptRuntimeKernelBreakpointSet() override = default;
3667 
3668     Options *
3669     GetOptions() override
3670     {
3671         return &m_options;
3672     }
3673 
3674     class CommandOptions : public Options
3675     {
3676     public:
3677         CommandOptions(CommandInterpreter &interpreter) : Options(interpreter) {}
3678 
3679         ~CommandOptions() override = default;
3680 
3681         Error
3682         SetOptionValue(uint32_t option_idx, const char *option_arg) override
3683         {
3684             Error error;
3685             const int short_option = m_getopt_table[option_idx].val;
3686 
3687             switch (short_option)
3688             {
3689                 case 'c':
3690                     if (!ParseCoordinate(option_arg))
3691                         error.SetErrorStringWithFormat("Couldn't parse coordinate '%s', should be in format 'x,y,z'.",
3692                                                        option_arg);
3693                     break;
3694                 default:
3695                     error.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
3696                     break;
3697             }
3698             return error;
3699         }
3700 
3701         // -c takes an argument of the form 'num[,num][,num]'.
3702         // Where 'id_cstr' is this argument with the whitespace trimmed.
3703         // Missing coordinates are defaulted to zero.
3704         bool
3705         ParseCoordinate(const char *id_cstr)
3706         {
3707             RegularExpression regex;
3708             RegularExpression::Match regex_match(3);
3709 
3710             bool matched = false;
3711             if (regex.Compile("^([0-9]+),([0-9]+),([0-9]+)$") && regex.Execute(id_cstr, &regex_match))
3712                 matched = true;
3713             else if (regex.Compile("^([0-9]+),([0-9]+)$") && regex.Execute(id_cstr, &regex_match))
3714                 matched = true;
3715             else if (regex.Compile("^([0-9]+)$") && regex.Execute(id_cstr, &regex_match))
3716                 matched = true;
3717             for (uint32_t i = 0; i < 3; i++)
3718             {
3719                 std::string group;
3720                 if (regex_match.GetMatchAtIndex(id_cstr, i + 1, group))
3721                     m_coord[i] = (uint32_t)strtoul(group.c_str(), nullptr, 0);
3722                 else
3723                     m_coord[i] = 0;
3724             }
3725             return matched;
3726         }
3727 
3728         void
3729         OptionParsingStarting() override
3730         {
3731             // -1 means the -c option hasn't been set
3732             m_coord[0] = -1;
3733             m_coord[1] = -1;
3734             m_coord[2] = -1;
3735         }
3736 
3737         const OptionDefinition *
3738         GetDefinitions() override
3739         {
3740             return g_option_table;
3741         }
3742 
3743         static OptionDefinition g_option_table[];
3744         std::array<int, 3> m_coord;
3745     };
3746 
3747     bool
3748     DoExecute(Args &command, CommandReturnObject &result) override
3749     {
3750         const size_t argc = command.GetArgumentCount();
3751         if (argc < 1)
3752         {
3753             result.AppendErrorWithFormat("'%s' takes 1 argument of kernel name, and an optional coordinate.",
3754                                          m_cmd_name.c_str());
3755             result.SetStatus(eReturnStatusFailed);
3756             return false;
3757         }
3758 
3759         RenderScriptRuntime *runtime =
3760             (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
3761 
3762         Error error;
3763         runtime->PlaceBreakpointOnKernel(result.GetOutputStream(), command.GetArgumentAtIndex(0), m_options.m_coord,
3764                                          error, m_exe_ctx.GetTargetSP());
3765 
3766         if (error.Success())
3767         {
3768             result.AppendMessage("Breakpoint(s) created");
3769             result.SetStatus(eReturnStatusSuccessFinishResult);
3770             return true;
3771         }
3772         result.SetStatus(eReturnStatusFailed);
3773         result.AppendErrorWithFormat("Error: %s", error.AsCString());
3774         return false;
3775     }
3776 
3777 private:
3778     CommandOptions m_options;
3779 };
3780 
3781 OptionDefinition CommandObjectRenderScriptRuntimeKernelBreakpointSet::CommandOptions::g_option_table[] = {
3782     {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeValue,
3783      "Set a breakpoint on a single invocation of the kernel with specified coordinate.\n"
3784      "Coordinate takes the form 'x[,y][,z] where x,y,z are positive integers representing kernel dimensions. "
3785      "Any unset dimensions will be defaulted to zero."},
3786     {0, false, nullptr, 0, 0, nullptr, nullptr, 0, eArgTypeNone, nullptr}};
3787 
3788 class CommandObjectRenderScriptRuntimeKernelBreakpointAll : public CommandObjectParsed
3789 {
3790 public:
3791     CommandObjectRenderScriptRuntimeKernelBreakpointAll(CommandInterpreter &interpreter)
3792         : CommandObjectParsed(
3793               interpreter, "renderscript kernel breakpoint all",
3794               "Automatically sets a breakpoint on all renderscript kernels that are or will be loaded.\n"
3795               "Disabling option means breakpoints will no longer be set on any kernels loaded in the future, "
3796               "but does not remove currently set breakpoints.",
3797               "renderscript kernel breakpoint all <enable/disable>",
3798               eCommandRequiresProcess | eCommandProcessMustBeLaunched | eCommandProcessMustBePaused)
3799     {
3800     }
3801 
3802     ~CommandObjectRenderScriptRuntimeKernelBreakpointAll() override = default;
3803 
3804     bool
3805     DoExecute(Args &command, CommandReturnObject &result) override
3806     {
3807         const size_t argc = command.GetArgumentCount();
3808         if (argc != 1)
3809         {
3810             result.AppendErrorWithFormat("'%s' takes 1 argument of 'enable' or 'disable'", m_cmd_name.c_str());
3811             result.SetStatus(eReturnStatusFailed);
3812             return false;
3813         }
3814 
3815         RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
3816             m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
3817 
3818         bool do_break = false;
3819         const char *argument = command.GetArgumentAtIndex(0);
3820         if (strcmp(argument, "enable") == 0)
3821         {
3822             do_break = true;
3823             result.AppendMessage("Breakpoints will be set on all kernels.");
3824         }
3825         else if (strcmp(argument, "disable") == 0)
3826         {
3827             do_break = false;
3828             result.AppendMessage("Breakpoints will not be set on any new kernels.");
3829         }
3830         else
3831         {
3832             result.AppendErrorWithFormat("Argument must be either 'enable' or 'disable'");
3833             result.SetStatus(eReturnStatusFailed);
3834             return false;
3835         }
3836 
3837         runtime->SetBreakAllKernels(do_break, m_exe_ctx.GetTargetSP());
3838 
3839         result.SetStatus(eReturnStatusSuccessFinishResult);
3840         return true;
3841     }
3842 };
3843 
3844 class CommandObjectRenderScriptRuntimeKernelCoordinate : public CommandObjectParsed
3845 {
3846 public:
3847     CommandObjectRenderScriptRuntimeKernelCoordinate(CommandInterpreter &interpreter)
3848         : CommandObjectParsed(interpreter, "renderscript kernel coordinate",
3849                               "Shows the (x,y,z) coordinate of the current kernel invocation.",
3850                               "renderscript kernel coordinate",
3851                               eCommandRequiresProcess | eCommandProcessMustBeLaunched | eCommandProcessMustBePaused)
3852     {
3853     }
3854 
3855     ~CommandObjectRenderScriptRuntimeKernelCoordinate() override = default;
3856 
3857     bool
3858     DoExecute(Args &command, CommandReturnObject &result) override
3859     {
3860         RSCoordinate coord{}; // Zero initialize array
3861         bool success = RenderScriptRuntime::GetKernelCoordinate(coord, m_exe_ctx.GetThreadPtr());
3862         Stream &stream = result.GetOutputStream();
3863 
3864         if (success)
3865         {
3866             stream.Printf("Coordinate: (%" PRIu32 ", %" PRIu32 ", %" PRIu32 ")", coord[0], coord[1], coord[2]);
3867             stream.EOL();
3868             result.SetStatus(eReturnStatusSuccessFinishResult);
3869         }
3870         else
3871         {
3872             stream.Printf("Error: Coordinate could not be found.");
3873             stream.EOL();
3874             result.SetStatus(eReturnStatusFailed);
3875         }
3876         return true;
3877     }
3878 };
3879 
3880 class CommandObjectRenderScriptRuntimeKernelBreakpoint : public CommandObjectMultiword
3881 {
3882 public:
3883     CommandObjectRenderScriptRuntimeKernelBreakpoint(CommandInterpreter &interpreter)
3884         : CommandObjectMultiword(interpreter, "renderscript kernel",
3885                                  "Commands that generate breakpoints on renderscript kernels.", nullptr)
3886     {
3887         LoadSubCommand("set", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointSet(interpreter)));
3888         LoadSubCommand("all", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointAll(interpreter)));
3889     }
3890 
3891     ~CommandObjectRenderScriptRuntimeKernelBreakpoint() override = default;
3892 };
3893 
3894 class CommandObjectRenderScriptRuntimeKernel : public CommandObjectMultiword
3895 {
3896 public:
3897     CommandObjectRenderScriptRuntimeKernel(CommandInterpreter &interpreter)
3898         : CommandObjectMultiword(interpreter, "renderscript kernel", "Commands that deal with RenderScript kernels.",
3899                                  nullptr)
3900     {
3901         LoadSubCommand("list", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelList(interpreter)));
3902         LoadSubCommand("coordinate",
3903                        CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelCoordinate(interpreter)));
3904         LoadSubCommand("breakpoint",
3905                        CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpoint(interpreter)));
3906     }
3907 
3908     ~CommandObjectRenderScriptRuntimeKernel() override = default;
3909 };
3910 
3911 class CommandObjectRenderScriptRuntimeContextDump : public CommandObjectParsed
3912 {
3913 public:
3914     CommandObjectRenderScriptRuntimeContextDump(CommandInterpreter &interpreter)
3915         : CommandObjectParsed(interpreter, "renderscript context dump", "Dumps renderscript context information.",
3916                               "renderscript context dump", eCommandRequiresProcess | eCommandProcessMustBeLaunched)
3917     {
3918     }
3919 
3920     ~CommandObjectRenderScriptRuntimeContextDump() override = default;
3921 
3922     bool
3923     DoExecute(Args &command, CommandReturnObject &result) override
3924     {
3925         RenderScriptRuntime *runtime =
3926             (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
3927         runtime->DumpContexts(result.GetOutputStream());
3928         result.SetStatus(eReturnStatusSuccessFinishResult);
3929         return true;
3930     }
3931 };
3932 
3933 class CommandObjectRenderScriptRuntimeContext : public CommandObjectMultiword
3934 {
3935 public:
3936     CommandObjectRenderScriptRuntimeContext(CommandInterpreter &interpreter)
3937         : CommandObjectMultiword(interpreter, "renderscript context", "Commands that deal with RenderScript contexts.",
3938                                  nullptr)
3939     {
3940         LoadSubCommand("dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeContextDump(interpreter)));
3941     }
3942 
3943     ~CommandObjectRenderScriptRuntimeContext() override = default;
3944 };
3945 
3946 class CommandObjectRenderScriptRuntimeAllocationDump : public CommandObjectParsed
3947 {
3948 public:
3949     CommandObjectRenderScriptRuntimeAllocationDump(CommandInterpreter &interpreter)
3950         : CommandObjectParsed(interpreter, "renderscript allocation dump",
3951                               "Displays the contents of a particular allocation", "renderscript allocation dump <ID>",
3952                               eCommandRequiresProcess | eCommandProcessMustBeLaunched),
3953           m_options(interpreter)
3954     {
3955     }
3956 
3957     ~CommandObjectRenderScriptRuntimeAllocationDump() override = default;
3958 
3959     Options *
3960     GetOptions() override
3961     {
3962         return &m_options;
3963     }
3964 
3965     class CommandOptions : public Options
3966     {
3967     public:
3968         CommandOptions(CommandInterpreter &interpreter) : Options(interpreter) {}
3969 
3970         ~CommandOptions() override = default;
3971 
3972         Error
3973         SetOptionValue(uint32_t option_idx, const char *option_arg) override
3974         {
3975             Error error;
3976             const int short_option = m_getopt_table[option_idx].val;
3977 
3978             switch (short_option)
3979             {
3980                 case 'f':
3981                     m_outfile.SetFile(option_arg, true);
3982                     if (m_outfile.Exists())
3983                     {
3984                         m_outfile.Clear();
3985                         error.SetErrorStringWithFormat("file already exists: '%s'", option_arg);
3986                     }
3987                     break;
3988                 default:
3989                     error.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
3990                     break;
3991             }
3992             return error;
3993         }
3994 
3995         void
3996         OptionParsingStarting() override
3997         {
3998             m_outfile.Clear();
3999         }
4000 
4001         const OptionDefinition *
4002         GetDefinitions() override
4003         {
4004             return g_option_table;
4005         }
4006 
4007         static OptionDefinition g_option_table[];
4008         FileSpec m_outfile;
4009     };
4010 
4011     bool
4012     DoExecute(Args &command, CommandReturnObject &result) override
4013     {
4014         const size_t argc = command.GetArgumentCount();
4015         if (argc < 1)
4016         {
4017             result.AppendErrorWithFormat("'%s' takes 1 argument, an allocation ID. As well as an optional -f argument",
4018                                          m_cmd_name.c_str());
4019             result.SetStatus(eReturnStatusFailed);
4020             return false;
4021         }
4022 
4023         RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4024             m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
4025 
4026         const char *id_cstr = command.GetArgumentAtIndex(0);
4027         bool convert_complete = false;
4028         const uint32_t id = StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete);
4029         if (!convert_complete)
4030         {
4031             result.AppendErrorWithFormat("invalid allocation id argument '%s'", id_cstr);
4032             result.SetStatus(eReturnStatusFailed);
4033             return false;
4034         }
4035 
4036         Stream *output_strm = nullptr;
4037         StreamFile outfile_stream;
4038         const FileSpec &outfile_spec = m_options.m_outfile; // Dump allocation to file instead
4039         if (outfile_spec)
4040         {
4041             // Open output file
4042             char path[256];
4043             outfile_spec.GetPath(path, sizeof(path));
4044             if (outfile_stream.GetFile().Open(path, File::eOpenOptionWrite | File::eOpenOptionCanCreate).Success())
4045             {
4046                 output_strm = &outfile_stream;
4047                 result.GetOutputStream().Printf("Results written to '%s'", path);
4048                 result.GetOutputStream().EOL();
4049             }
4050             else
4051             {
4052                 result.AppendErrorWithFormat("Couldn't open file '%s'", path);
4053                 result.SetStatus(eReturnStatusFailed);
4054                 return false;
4055             }
4056         }
4057         else
4058             output_strm = &result.GetOutputStream();
4059 
4060         assert(output_strm != nullptr);
4061         bool success = runtime->DumpAllocation(*output_strm, m_exe_ctx.GetFramePtr(), id);
4062 
4063         if (success)
4064             result.SetStatus(eReturnStatusSuccessFinishResult);
4065         else
4066             result.SetStatus(eReturnStatusFailed);
4067 
4068         return true;
4069     }
4070 
4071 private:
4072     CommandOptions m_options;
4073 };
4074 
4075 OptionDefinition CommandObjectRenderScriptRuntimeAllocationDump::CommandOptions::g_option_table[] = {
4076     {LLDB_OPT_SET_1, false, "file", 'f', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeFilename,
4077      "Print results to specified file instead of command line."},
4078     {0, false, nullptr, 0, 0, nullptr, nullptr, 0, eArgTypeNone, nullptr}};
4079 
4080 class CommandObjectRenderScriptRuntimeAllocationList : public CommandObjectParsed
4081 {
4082 public:
4083     CommandObjectRenderScriptRuntimeAllocationList(CommandInterpreter &interpreter)
4084         : CommandObjectParsed(interpreter, "renderscript allocation list",
4085                               "List renderscript allocations and their information.", "renderscript allocation list",
4086                               eCommandRequiresProcess | eCommandProcessMustBeLaunched),
4087           m_options(interpreter)
4088     {
4089     }
4090 
4091     ~CommandObjectRenderScriptRuntimeAllocationList() override = default;
4092 
4093     Options *
4094     GetOptions() override
4095     {
4096         return &m_options;
4097     }
4098 
4099     class CommandOptions : public Options
4100     {
4101     public:
4102         CommandOptions(CommandInterpreter &interpreter) : Options(interpreter), m_id(0) {}
4103 
4104         ~CommandOptions() override = default;
4105 
4106         Error
4107         SetOptionValue(uint32_t option_idx, const char *option_arg) override
4108         {
4109             Error error;
4110             const int short_option = m_getopt_table[option_idx].val;
4111 
4112             switch (short_option)
4113             {
4114                 case 'i':
4115                     bool success;
4116                     m_id = StringConvert::ToUInt32(option_arg, 0, 0, &success);
4117                     if (!success)
4118                         error.SetErrorStringWithFormat("invalid integer value for option '%c'", short_option);
4119                     break;
4120                 default:
4121                     error.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
4122                     break;
4123             }
4124             return error;
4125         }
4126 
4127         void
4128         OptionParsingStarting() override
4129         {
4130             m_id = 0;
4131         }
4132 
4133         const OptionDefinition *
4134         GetDefinitions() override
4135         {
4136             return g_option_table;
4137         }
4138 
4139         static OptionDefinition g_option_table[];
4140         uint32_t m_id;
4141     };
4142 
4143     bool
4144     DoExecute(Args &command, CommandReturnObject &result) override
4145     {
4146         RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4147             m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
4148         runtime->ListAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr(), m_options.m_id);
4149         result.SetStatus(eReturnStatusSuccessFinishResult);
4150         return true;
4151     }
4152 
4153 private:
4154     CommandOptions m_options;
4155 };
4156 
4157 OptionDefinition CommandObjectRenderScriptRuntimeAllocationList::CommandOptions::g_option_table[] = {
4158     {LLDB_OPT_SET_1, false, "id", 'i', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeIndex,
4159      "Only show details of a single allocation with specified id."},
4160     {0, false, nullptr, 0, 0, nullptr, nullptr, 0, eArgTypeNone, nullptr}};
4161 
4162 class CommandObjectRenderScriptRuntimeAllocationLoad : public CommandObjectParsed
4163 {
4164 public:
4165     CommandObjectRenderScriptRuntimeAllocationLoad(CommandInterpreter &interpreter)
4166         : CommandObjectParsed(
4167               interpreter, "renderscript allocation load", "Loads renderscript allocation contents from a file.",
4168               "renderscript allocation load <ID> <filename>", eCommandRequiresProcess | eCommandProcessMustBeLaunched)
4169     {
4170     }
4171 
4172     ~CommandObjectRenderScriptRuntimeAllocationLoad() override = default;
4173 
4174     bool
4175     DoExecute(Args &command, CommandReturnObject &result) override
4176     {
4177         const size_t argc = command.GetArgumentCount();
4178         if (argc != 2)
4179         {
4180             result.AppendErrorWithFormat("'%s' takes 2 arguments, an allocation ID and filename to read from.",
4181                                          m_cmd_name.c_str());
4182             result.SetStatus(eReturnStatusFailed);
4183             return false;
4184         }
4185 
4186         RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4187             m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
4188 
4189         const char *id_cstr = command.GetArgumentAtIndex(0);
4190         bool convert_complete = false;
4191         const uint32_t id = StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete);
4192         if (!convert_complete)
4193         {
4194             result.AppendErrorWithFormat("invalid allocation id argument '%s'", id_cstr);
4195             result.SetStatus(eReturnStatusFailed);
4196             return false;
4197         }
4198 
4199         const char *filename = command.GetArgumentAtIndex(1);
4200         bool success = runtime->LoadAllocation(result.GetOutputStream(), id, filename, m_exe_ctx.GetFramePtr());
4201 
4202         if (success)
4203             result.SetStatus(eReturnStatusSuccessFinishResult);
4204         else
4205             result.SetStatus(eReturnStatusFailed);
4206 
4207         return true;
4208     }
4209 };
4210 
4211 class CommandObjectRenderScriptRuntimeAllocationSave : public CommandObjectParsed
4212 {
4213 public:
4214     CommandObjectRenderScriptRuntimeAllocationSave(CommandInterpreter &interpreter)
4215         : CommandObjectParsed(
4216               interpreter, "renderscript allocation save", "Write renderscript allocation contents to a file.",
4217               "renderscript allocation save <ID> <filename>", eCommandRequiresProcess | eCommandProcessMustBeLaunched)
4218     {
4219     }
4220 
4221     ~CommandObjectRenderScriptRuntimeAllocationSave() override = default;
4222 
4223     bool
4224     DoExecute(Args &command, CommandReturnObject &result) override
4225     {
4226         const size_t argc = command.GetArgumentCount();
4227         if (argc != 2)
4228         {
4229             result.AppendErrorWithFormat("'%s' takes 2 arguments, an allocation ID and filename to read from.",
4230                                          m_cmd_name.c_str());
4231             result.SetStatus(eReturnStatusFailed);
4232             return false;
4233         }
4234 
4235         RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4236             m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
4237 
4238         const char *id_cstr = command.GetArgumentAtIndex(0);
4239         bool convert_complete = false;
4240         const uint32_t id = StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete);
4241         if (!convert_complete)
4242         {
4243             result.AppendErrorWithFormat("invalid allocation id argument '%s'", id_cstr);
4244             result.SetStatus(eReturnStatusFailed);
4245             return false;
4246         }
4247 
4248         const char *filename = command.GetArgumentAtIndex(1);
4249         bool success = runtime->SaveAllocation(result.GetOutputStream(), id, filename, m_exe_ctx.GetFramePtr());
4250 
4251         if (success)
4252             result.SetStatus(eReturnStatusSuccessFinishResult);
4253         else
4254             result.SetStatus(eReturnStatusFailed);
4255 
4256         return true;
4257     }
4258 };
4259 
4260 class CommandObjectRenderScriptRuntimeAllocationRefresh : public CommandObjectParsed
4261 {
4262 public:
4263     CommandObjectRenderScriptRuntimeAllocationRefresh(CommandInterpreter &interpreter)
4264         : CommandObjectParsed(interpreter, "renderscript allocation refresh",
4265                               "Recomputes the details of all allocations.", "renderscript allocation refresh",
4266                               eCommandRequiresProcess | eCommandProcessMustBeLaunched)
4267     {
4268     }
4269 
4270     ~CommandObjectRenderScriptRuntimeAllocationRefresh() override = default;
4271 
4272     bool
4273     DoExecute(Args &command, CommandReturnObject &result) override
4274     {
4275         RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4276             m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
4277 
4278         bool success = runtime->RecomputeAllAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr());
4279 
4280         if (success)
4281         {
4282             result.SetStatus(eReturnStatusSuccessFinishResult);
4283             return true;
4284         }
4285         else
4286         {
4287             result.SetStatus(eReturnStatusFailed);
4288             return false;
4289         }
4290     }
4291 };
4292 
4293 class CommandObjectRenderScriptRuntimeAllocation : public CommandObjectMultiword
4294 {
4295 public:
4296     CommandObjectRenderScriptRuntimeAllocation(CommandInterpreter &interpreter)
4297         : CommandObjectMultiword(interpreter, "renderscript allocation",
4298                                  "Commands that deal with RenderScript allocations.", nullptr)
4299     {
4300         LoadSubCommand("list", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationList(interpreter)));
4301         LoadSubCommand("dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationDump(interpreter)));
4302         LoadSubCommand("save", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationSave(interpreter)));
4303         LoadSubCommand("load", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationLoad(interpreter)));
4304         LoadSubCommand("refresh", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationRefresh(interpreter)));
4305     }
4306 
4307     ~CommandObjectRenderScriptRuntimeAllocation() override = default;
4308 };
4309 
4310 class CommandObjectRenderScriptRuntimeStatus : public CommandObjectParsed
4311 {
4312 public:
4313     CommandObjectRenderScriptRuntimeStatus(CommandInterpreter &interpreter)
4314         : CommandObjectParsed(interpreter, "renderscript status", "Displays current RenderScript runtime status.",
4315                               "renderscript status", eCommandRequiresProcess | eCommandProcessMustBeLaunched)
4316     {
4317     }
4318 
4319     ~CommandObjectRenderScriptRuntimeStatus() override = default;
4320 
4321     bool
4322     DoExecute(Args &command, CommandReturnObject &result) override
4323     {
4324         RenderScriptRuntime *runtime =
4325             (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
4326         runtime->Status(result.GetOutputStream());
4327         result.SetStatus(eReturnStatusSuccessFinishResult);
4328         return true;
4329     }
4330 };
4331 
4332 class CommandObjectRenderScriptRuntime : public CommandObjectMultiword
4333 {
4334 public:
4335     CommandObjectRenderScriptRuntime(CommandInterpreter &interpreter)
4336         : CommandObjectMultiword(interpreter, "renderscript", "Commands for operating on the RenderScript runtime.",
4337                                  "renderscript <subcommand> [<subcommand-options>]")
4338     {
4339         LoadSubCommand("module", CommandObjectSP(new CommandObjectRenderScriptRuntimeModule(interpreter)));
4340         LoadSubCommand("status", CommandObjectSP(new CommandObjectRenderScriptRuntimeStatus(interpreter)));
4341         LoadSubCommand("kernel", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernel(interpreter)));
4342         LoadSubCommand("context", CommandObjectSP(new CommandObjectRenderScriptRuntimeContext(interpreter)));
4343         LoadSubCommand("allocation", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocation(interpreter)));
4344     }
4345 
4346     ~CommandObjectRenderScriptRuntime() override = default;
4347 };
4348 
4349 void
4350 RenderScriptRuntime::Initiate()
4351 {
4352     assert(!m_initiated);
4353 }
4354 
4355 RenderScriptRuntime::RenderScriptRuntime(Process *process)
4356     : lldb_private::CPPLanguageRuntime(process),
4357       m_initiated(false),
4358       m_debuggerPresentFlagged(false),
4359       m_breakAllKernels(false),
4360       m_ir_passes(nullptr)
4361 {
4362     ModulesDidLoad(process->GetTarget().GetImages());
4363 }
4364 
4365 lldb::CommandObjectSP
4366 RenderScriptRuntime::GetCommandObject(lldb_private::CommandInterpreter &interpreter)
4367 {
4368     return CommandObjectSP(new CommandObjectRenderScriptRuntime(interpreter));
4369 }
4370 
4371 RenderScriptRuntime::~RenderScriptRuntime() = default;
4372