1 //===-- RenderScriptRuntime.cpp ---------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 // C Includes 11 // C++ Includes 12 // Other libraries and framework includes 13 // Project includes 14 #include "RenderScriptRuntime.h" 15 16 #include "lldb/Breakpoint/StoppointCallbackContext.h" 17 #include "lldb/Core/ConstString.h" 18 #include "lldb/Core/Debugger.h" 19 #include "lldb/Core/Error.h" 20 #include "lldb/Core/Log.h" 21 #include "lldb/Core/PluginManager.h" 22 #include "lldb/Core/RegularExpression.h" 23 #include "lldb/Core/ValueObjectVariable.h" 24 #include "lldb/DataFormatters/DumpValueObjectOptions.h" 25 #include "lldb/Expression/UserExpression.h" 26 #include "lldb/Host/StringConvert.h" 27 #include "lldb/Interpreter/Args.h" 28 #include "lldb/Interpreter/CommandInterpreter.h" 29 #include "lldb/Interpreter/CommandObjectMultiword.h" 30 #include "lldb/Interpreter/CommandReturnObject.h" 31 #include "lldb/Interpreter/Options.h" 32 #include "lldb/Symbol/Symbol.h" 33 #include "lldb/Symbol/Type.h" 34 #include "lldb/Symbol/VariableList.h" 35 #include "lldb/Target/Process.h" 36 #include "lldb/Target/RegisterContext.h" 37 #include "lldb/Target/Target.h" 38 #include "lldb/Target/Thread.h" 39 40 using namespace lldb; 41 using namespace lldb_private; 42 using namespace lldb_renderscript; 43 44 namespace 45 { 46 47 // The empirical_type adds a basic level of validation to arbitrary data 48 // allowing us to track if data has been discovered and stored or not. 49 // An empirical_type will be marked as valid only if it has been explicitly assigned to. 50 template <typename type_t> class empirical_type 51 { 52 public: 53 // Ctor. Contents is invalid when constructed. 54 empirical_type() : valid(false) {} 55 56 // Return true and copy contents to out if valid, else return false. 57 bool 58 get(type_t &out) const 59 { 60 if (valid) 61 out = data; 62 return valid; 63 } 64 65 // Return a pointer to the contents or nullptr if it was not valid. 66 const type_t * 67 get() const 68 { 69 return valid ? &data : nullptr; 70 } 71 72 // Assign data explicitly. 73 void 74 set(const type_t in) 75 { 76 data = in; 77 valid = true; 78 } 79 80 // Mark contents as invalid. 81 void 82 invalidate() 83 { 84 valid = false; 85 } 86 87 // Returns true if this type contains valid data. 88 bool 89 isValid() const 90 { 91 return valid; 92 } 93 94 // Assignment operator. 95 empirical_type<type_t> & 96 operator=(const type_t in) 97 { 98 set(in); 99 return *this; 100 } 101 102 // Dereference operator returns contents. 103 // Warning: Will assert if not valid so use only when you know data is valid. 104 const type_t &operator*() const 105 { 106 assert(valid); 107 return data; 108 } 109 110 protected: 111 bool valid; 112 type_t data; 113 }; 114 115 // ArgItem is used by the GetArgs() function when reading function arguments from the target. 116 struct ArgItem 117 { 118 enum 119 { 120 ePointer, 121 eInt32, 122 eInt64, 123 eLong, 124 eBool 125 } type; 126 127 uint64_t value; 128 129 explicit operator uint64_t() const { return value; } 130 }; 131 132 // Context structure to be passed into GetArgsXXX(), argument reading functions below. 133 struct GetArgsCtx 134 { 135 RegisterContext *reg_ctx; 136 Process *process; 137 }; 138 139 bool 140 GetArgsX86(const GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) 141 { 142 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 143 144 Error error; 145 146 // get the current stack pointer 147 uint64_t sp = ctx.reg_ctx->GetSP(); 148 149 for (size_t i = 0; i < num_args; ++i) 150 { 151 ArgItem &arg = arg_list[i]; 152 // advance up the stack by one argument 153 sp += sizeof(uint32_t); 154 // get the argument type size 155 size_t arg_size = sizeof(uint32_t); 156 // read the argument from memory 157 arg.value = 0; 158 Error error; 159 size_t read = ctx.process->ReadMemory(sp, &arg.value, sizeof(uint32_t), error); 160 if (read != arg_size || !error.Success()) 161 { 162 if (log) 163 log->Printf("%s - error reading argument: %" PRIu64 " '%s'", __FUNCTION__, uint64_t(i), 164 error.AsCString()); 165 return false; 166 } 167 } 168 return true; 169 } 170 171 bool 172 GetArgsX86_64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) 173 { 174 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 175 176 // number of arguments passed in registers 177 static const uint32_t c_args_in_reg = 6; 178 // register passing order 179 static const std::array<const char *, c_args_in_reg> c_reg_names{{"rdi", "rsi", "rdx", "rcx", "r8", "r9"}}; 180 // argument type to size mapping 181 static const std::array<size_t, 5> arg_size{{ 182 8, // ePointer, 183 4, // eInt32, 184 8, // eInt64, 185 8, // eLong, 186 4, // eBool, 187 }}; 188 189 Error error; 190 191 // get the current stack pointer 192 uint64_t sp = ctx.reg_ctx->GetSP(); 193 // step over the return address 194 sp += sizeof(uint64_t); 195 196 // check the stack alignment was correct (16 byte aligned) 197 if ((sp & 0xf) != 0x0) 198 { 199 if (log) 200 log->Printf("%s - stack misaligned", __FUNCTION__); 201 return false; 202 } 203 204 // find the start of arguments on the stack 205 uint64_t sp_offset = 0; 206 for (uint32_t i = c_args_in_reg; i < num_args; ++i) 207 { 208 sp_offset += arg_size[arg_list[i].type]; 209 } 210 // round up to multiple of 16 211 sp_offset = (sp_offset + 0xf) & 0xf; 212 sp += sp_offset; 213 214 for (size_t i = 0; i < num_args; ++i) 215 { 216 bool success = false; 217 ArgItem &arg = arg_list[i]; 218 // arguments passed in registers 219 if (i < c_args_in_reg) 220 { 221 const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoByName(c_reg_names[i]); 222 RegisterValue rVal; 223 if (ctx.reg_ctx->ReadRegister(rArg, rVal)) 224 arg.value = rVal.GetAsUInt64(0, &success); 225 } 226 // arguments passed on the stack 227 else 228 { 229 // get the argument type size 230 const size_t size = arg_size[arg_list[i].type]; 231 // read the argument from memory 232 arg.value = 0; 233 // note: due to little endian layout reading 4 or 8 bytes will give the correct value. 234 size_t read = ctx.process->ReadMemory(sp, &arg.value, size, error); 235 success = (error.Success() && read==size); 236 // advance past this argument 237 sp -= size; 238 } 239 // fail if we couldn't read this argument 240 if (!success) 241 { 242 if (log) 243 log->Printf("%s - error reading argument: %" PRIu64", reason: %s", 244 __FUNCTION__, uint64_t(i), error.AsCString("n/a")); 245 return false; 246 } 247 } 248 return true; 249 } 250 251 bool 252 GetArgsArm(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) 253 { 254 // number of arguments passed in registers 255 static const uint32_t c_args_in_reg = 4; 256 257 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 258 259 Error error; 260 261 // get the current stack pointer 262 uint64_t sp = ctx.reg_ctx->GetSP(); 263 264 for (size_t i = 0; i < num_args; ++i) 265 { 266 bool success = false; 267 ArgItem &arg = arg_list[i]; 268 // arguments passed in registers 269 if (i < c_args_in_reg) 270 { 271 const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoAtIndex(i); 272 RegisterValue rVal; 273 if (ctx.reg_ctx->ReadRegister(rArg, rVal)) 274 arg.value = rVal.GetAsUInt32(0, &success); 275 } 276 // arguments passed on the stack 277 else 278 { 279 // get the argument type size 280 const size_t arg_size = sizeof(uint32_t); 281 // clear all 64bits 282 arg.value = 0; 283 // read this argument from memory 284 size_t bytes_read = ctx.process->ReadMemory(sp, &arg.value, arg_size, error); 285 success = (error.Success() && bytes_read == arg_size); 286 // advance the stack pointer 287 sp += sizeof(uint32_t); 288 } 289 // fail if we couldn't read this argument 290 if (!success) 291 { 292 if (log) 293 log->Printf("%s - error reading argument: %" PRIu64", reason: %s", 294 __FUNCTION__, uint64_t(i), error.AsCString("n/a")); 295 return false; 296 } 297 } 298 return true; 299 } 300 301 bool 302 GetArgsAarch64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) 303 { 304 // number of arguments passed in registers 305 static const uint32_t c_args_in_reg = 8; 306 307 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 308 309 for (size_t i = 0; i < num_args; ++i) 310 { 311 bool success = false; 312 ArgItem &arg = arg_list[i]; 313 // arguments passed in registers 314 if (i < c_args_in_reg) 315 { 316 const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoAtIndex(i); 317 RegisterValue rVal; 318 if (ctx.reg_ctx->ReadRegister(rArg, rVal)) 319 arg.value = rVal.GetAsUInt64(0, &success); 320 } 321 // arguments passed on the stack 322 else 323 { 324 if (log) 325 log->Printf("%s - reading arguments spilled to stack not implemented", __FUNCTION__); 326 } 327 // fail if we couldn't read this argument 328 if (!success) 329 { 330 if (log) 331 log->Printf("%s - error reading argument: %" PRIu64, __FUNCTION__, 332 uint64_t(i)); 333 return false; 334 } 335 } 336 return true; 337 } 338 339 bool 340 GetArgsMipsel(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) 341 { 342 // number of arguments passed in registers 343 static const uint32_t c_args_in_reg = 4; 344 // register file offset to first argument 345 static const uint32_t c_reg_offset = 4; 346 347 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 348 349 Error error; 350 351 // find offset to arguments on the stack (+16 to skip over a0-a3 shadow space) 352 uint64_t sp = ctx.reg_ctx->GetSP() + 16; 353 354 for (size_t i = 0; i < num_args; ++i) 355 { 356 bool success = false; 357 ArgItem &arg = arg_list[i]; 358 // arguments passed in registers 359 if (i < c_args_in_reg) 360 { 361 const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoAtIndex(i + c_reg_offset); 362 RegisterValue rVal; 363 if (ctx.reg_ctx->ReadRegister(rArg, rVal)) 364 arg.value = rVal.GetAsUInt64(0, &success); 365 } 366 // arguments passed on the stack 367 else 368 { 369 const size_t arg_size = sizeof(uint32_t); 370 arg.value = 0; 371 size_t bytes_read = ctx.process->ReadMemory(sp, &arg.value, arg_size, error); 372 success = (error.Success() && bytes_read == arg_size); 373 // advance the stack pointer 374 sp += arg_size; 375 } 376 // fail if we couldn't read this argument 377 if (!success) 378 { 379 if (log) 380 log->Printf("%s - error reading argument: %" PRIu64", reason: %s", 381 __FUNCTION__, uint64_t(i), error.AsCString("n/a")); 382 return false; 383 } 384 } 385 return true; 386 } 387 388 bool 389 GetArgsMips64el(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) 390 { 391 // number of arguments passed in registers 392 static const uint32_t c_args_in_reg = 8; 393 // register file offset to first argument 394 static const uint32_t c_reg_offset = 4; 395 396 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 397 398 Error error; 399 400 // get the current stack pointer 401 uint64_t sp = ctx.reg_ctx->GetSP(); 402 403 for (size_t i = 0; i < num_args; ++i) 404 { 405 bool success = false; 406 ArgItem &arg = arg_list[i]; 407 // arguments passed in registers 408 if (i < c_args_in_reg) 409 { 410 const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoAtIndex(i + c_reg_offset); 411 RegisterValue rVal; 412 if (ctx.reg_ctx->ReadRegister(rArg, rVal)) 413 arg.value = rVal.GetAsUInt64(0, &success); 414 } 415 // arguments passed on the stack 416 else 417 { 418 // get the argument type size 419 const size_t arg_size = sizeof(uint64_t); 420 // clear all 64bits 421 arg.value = 0; 422 // read this argument from memory 423 size_t bytes_read = ctx.process->ReadMemory(sp, &arg.value, arg_size, error); 424 success = (error.Success() && bytes_read == arg_size); 425 // advance the stack pointer 426 sp += arg_size; 427 } 428 // fail if we couldn't read this argument 429 if (!success) 430 { 431 if (log) 432 log->Printf("%s - error reading argument: %" PRIu64", reason: %s", 433 __FUNCTION__, uint64_t(i), error.AsCString("n/a")); 434 return false; 435 } 436 } 437 return true; 438 } 439 440 bool 441 GetArgs(ExecutionContext &context, ArgItem *arg_list, size_t num_args) 442 { 443 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 444 445 // verify that we have a target 446 if (!context.GetTargetPtr()) 447 { 448 if (log) 449 log->Printf("%s - invalid target", __FUNCTION__); 450 return false; 451 } 452 453 GetArgsCtx ctx = {context.GetRegisterContext(), context.GetProcessPtr()}; 454 assert(ctx.reg_ctx && ctx.process); 455 456 // dispatch based on architecture 457 switch (context.GetTargetPtr()->GetArchitecture().GetMachine()) 458 { 459 case llvm::Triple::ArchType::x86: 460 return GetArgsX86(ctx, arg_list, num_args); 461 462 case llvm::Triple::ArchType::x86_64: 463 return GetArgsX86_64(ctx, arg_list, num_args); 464 465 case llvm::Triple::ArchType::arm: 466 return GetArgsArm(ctx, arg_list, num_args); 467 468 case llvm::Triple::ArchType::aarch64: 469 return GetArgsAarch64(ctx, arg_list, num_args); 470 471 case llvm::Triple::ArchType::mipsel: 472 return GetArgsMipsel(ctx, arg_list, num_args); 473 474 case llvm::Triple::ArchType::mips64el: 475 return GetArgsMips64el(ctx, arg_list, num_args); 476 477 default: 478 // unsupported architecture 479 if (log) 480 { 481 log->Printf("%s - architecture not supported: '%s'", __FUNCTION__, 482 context.GetTargetRef().GetArchitecture().GetArchitectureName()); 483 } 484 return false; 485 } 486 } 487 } // anonymous namespace 488 489 // The ScriptDetails class collects data associated with a single script instance. 490 struct RenderScriptRuntime::ScriptDetails 491 { 492 ~ScriptDetails() = default; 493 494 enum ScriptType 495 { 496 eScript, 497 eScriptC 498 }; 499 500 // The derived type of the script. 501 empirical_type<ScriptType> type; 502 // The name of the original source file. 503 empirical_type<std::string> resName; 504 // Path to script .so file on the device. 505 empirical_type<std::string> scriptDyLib; 506 // Directory where kernel objects are cached on device. 507 empirical_type<std::string> cacheDir; 508 // Pointer to the context which owns this script. 509 empirical_type<lldb::addr_t> context; 510 // Pointer to the script object itself. 511 empirical_type<lldb::addr_t> script; 512 }; 513 514 // This Element class represents the Element object in RS, 515 // defining the type associated with an Allocation. 516 struct RenderScriptRuntime::Element 517 { 518 // Taken from rsDefines.h 519 enum DataKind 520 { 521 RS_KIND_USER, 522 RS_KIND_PIXEL_L = 7, 523 RS_KIND_PIXEL_A, 524 RS_KIND_PIXEL_LA, 525 RS_KIND_PIXEL_RGB, 526 RS_KIND_PIXEL_RGBA, 527 RS_KIND_PIXEL_DEPTH, 528 RS_KIND_PIXEL_YUV, 529 RS_KIND_INVALID = 100 530 }; 531 532 // Taken from rsDefines.h 533 enum DataType 534 { 535 RS_TYPE_NONE = 0, 536 RS_TYPE_FLOAT_16, 537 RS_TYPE_FLOAT_32, 538 RS_TYPE_FLOAT_64, 539 RS_TYPE_SIGNED_8, 540 RS_TYPE_SIGNED_16, 541 RS_TYPE_SIGNED_32, 542 RS_TYPE_SIGNED_64, 543 RS_TYPE_UNSIGNED_8, 544 RS_TYPE_UNSIGNED_16, 545 RS_TYPE_UNSIGNED_32, 546 RS_TYPE_UNSIGNED_64, 547 RS_TYPE_BOOLEAN, 548 549 RS_TYPE_UNSIGNED_5_6_5, 550 RS_TYPE_UNSIGNED_5_5_5_1, 551 RS_TYPE_UNSIGNED_4_4_4_4, 552 553 RS_TYPE_MATRIX_4X4, 554 RS_TYPE_MATRIX_3X3, 555 RS_TYPE_MATRIX_2X2, 556 557 RS_TYPE_ELEMENT = 1000, 558 RS_TYPE_TYPE, 559 RS_TYPE_ALLOCATION, 560 RS_TYPE_SAMPLER, 561 RS_TYPE_SCRIPT, 562 RS_TYPE_MESH, 563 RS_TYPE_PROGRAM_FRAGMENT, 564 RS_TYPE_PROGRAM_VERTEX, 565 RS_TYPE_PROGRAM_RASTER, 566 RS_TYPE_PROGRAM_STORE, 567 RS_TYPE_FONT, 568 569 RS_TYPE_INVALID = 10000 570 }; 571 572 std::vector<Element> children; // Child Element fields for structs 573 empirical_type<lldb::addr_t> element_ptr; // Pointer to the RS Element of the Type 574 empirical_type<DataType> type; // Type of each data pointer stored by the allocation 575 empirical_type<DataKind> type_kind; // Defines pixel type if Allocation is created from an image 576 empirical_type<uint32_t> type_vec_size; // Vector size of each data point, e.g '4' for uchar4 577 empirical_type<uint32_t> field_count; // Number of Subelements 578 empirical_type<uint32_t> datum_size; // Size of a single Element with padding 579 empirical_type<uint32_t> padding; // Number of padding bytes 580 empirical_type<uint32_t> array_size; // Number of items in array, only needed for strucrs 581 ConstString type_name; // Name of type, only needed for structs 582 583 static const ConstString & 584 GetFallbackStructName(); // Print this as the type name of a struct Element 585 // If we can't resolve the actual struct name 586 587 bool 588 shouldRefresh() const 589 { 590 const bool valid_ptr = element_ptr.isValid() && *element_ptr.get() != 0x0; 591 const bool valid_type = type.isValid() && type_vec_size.isValid() && type_kind.isValid(); 592 return !valid_ptr || !valid_type || !datum_size.isValid(); 593 } 594 }; 595 596 // This AllocationDetails class collects data associated with a single 597 // allocation instance. 598 struct RenderScriptRuntime::AllocationDetails 599 { 600 struct Dimension 601 { 602 uint32_t dim_1; 603 uint32_t dim_2; 604 uint32_t dim_3; 605 uint32_t cubeMap; 606 607 Dimension() 608 { 609 dim_1 = 0; 610 dim_2 = 0; 611 dim_3 = 0; 612 cubeMap = 0; 613 } 614 }; 615 616 // The FileHeader struct specifies the header we use for writing allocations to a binary file. 617 // Our format begins with the ASCII characters "RSAD", identifying the file as an allocation dump. 618 // Member variables dims and hdr_size are then written consecutively, immediately followed by an instance of 619 // the ElementHeader struct. Because Elements can contain subelements, there may be more than one instance 620 // of the ElementHeader struct. With this first instance being the root element, and the other instances being 621 // the root's descendants. To identify which instances are an ElementHeader's children, each struct 622 // is immediately followed by a sequence of consecutive offsets to the start of its child structs. 623 // These offsets are 4 bytes in size, and the 0 offset signifies no more children. 624 struct FileHeader 625 { 626 uint8_t ident[4]; // ASCII 'RSAD' identifying the file 627 uint32_t dims[3]; // Dimensions 628 uint16_t hdr_size; // Header size in bytes, including all element headers 629 }; 630 631 struct ElementHeader 632 { 633 uint16_t type; // DataType enum 634 uint32_t kind; // DataKind enum 635 uint32_t element_size; // Size of a single element, including padding 636 uint16_t vector_size; // Vector width 637 uint32_t array_size; // Number of elements in array 638 }; 639 640 // Monotonically increasing from 1 641 static uint32_t ID; 642 643 // Maps Allocation DataType enum and vector size to printable strings 644 // using mapping from RenderScript numerical types summary documentation 645 static const char *RsDataTypeToString[][4]; 646 647 // Maps Allocation DataKind enum to printable strings 648 static const char *RsDataKindToString[]; 649 650 // Maps allocation types to format sizes for printing. 651 static const uint32_t RSTypeToFormat[][3]; 652 653 // Give each allocation an ID as a way 654 // for commands to reference it. 655 const uint32_t id; 656 657 RenderScriptRuntime::Element element; // Allocation Element type 658 empirical_type<Dimension> dimension; // Dimensions of the Allocation 659 empirical_type<lldb::addr_t> address; // Pointer to address of the RS Allocation 660 empirical_type<lldb::addr_t> data_ptr; // Pointer to the data held by the Allocation 661 empirical_type<lldb::addr_t> type_ptr; // Pointer to the RS Type of the Allocation 662 empirical_type<lldb::addr_t> context; // Pointer to the RS Context of the Allocation 663 empirical_type<uint32_t> size; // Size of the allocation 664 empirical_type<uint32_t> stride; // Stride between rows of the allocation 665 666 // Give each allocation an id, so we can reference it in user commands. 667 AllocationDetails() : id(ID++) {} 668 669 bool 670 shouldRefresh() const 671 { 672 bool valid_ptrs = data_ptr.isValid() && *data_ptr.get() != 0x0; 673 valid_ptrs = valid_ptrs && type_ptr.isValid() && *type_ptr.get() != 0x0; 674 return !valid_ptrs || !dimension.isValid() || !size.isValid() || element.shouldRefresh(); 675 } 676 }; 677 678 const ConstString & 679 RenderScriptRuntime::Element::GetFallbackStructName() 680 { 681 static const ConstString FallbackStructName("struct"); 682 return FallbackStructName; 683 } 684 685 uint32_t RenderScriptRuntime::AllocationDetails::ID = 1; 686 687 const char *RenderScriptRuntime::AllocationDetails::RsDataKindToString[] = { 688 "User", 689 "Undefined", "Undefined", "Undefined", "Undefined", "Undefined", "Undefined", // Enum jumps from 0 to 7 690 "L Pixel", "A Pixel", "LA Pixel", "RGB Pixel", 691 "RGBA Pixel", "Pixel Depth", "YUV Pixel"}; 692 693 const char *RenderScriptRuntime::AllocationDetails::RsDataTypeToString[][4] = { 694 {"None", "None", "None", "None"}, 695 {"half", "half2", "half3", "half4"}, 696 {"float", "float2", "float3", "float4"}, 697 {"double", "double2", "double3", "double4"}, 698 {"char", "char2", "char3", "char4"}, 699 {"short", "short2", "short3", "short4"}, 700 {"int", "int2", "int3", "int4"}, 701 {"long", "long2", "long3", "long4"}, 702 {"uchar", "uchar2", "uchar3", "uchar4"}, 703 {"ushort", "ushort2", "ushort3", "ushort4"}, 704 {"uint", "uint2", "uint3", "uint4"}, 705 {"ulong", "ulong2", "ulong3", "ulong4"}, 706 {"bool", "bool2", "bool3", "bool4"}, 707 {"packed_565", "packed_565", "packed_565", "packed_565"}, 708 {"packed_5551", "packed_5551", "packed_5551", "packed_5551"}, 709 {"packed_4444", "packed_4444", "packed_4444", "packed_4444"}, 710 {"rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4"}, 711 {"rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3"}, 712 {"rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2"}, 713 714 // Handlers 715 {"RS Element", "RS Element", "RS Element", "RS Element"}, 716 {"RS Type", "RS Type", "RS Type", "RS Type"}, 717 {"RS Allocation", "RS Allocation", "RS Allocation", "RS Allocation"}, 718 {"RS Sampler", "RS Sampler", "RS Sampler", "RS Sampler"}, 719 {"RS Script", "RS Script", "RS Script", "RS Script"}, 720 721 // Deprecated 722 {"RS Mesh", "RS Mesh", "RS Mesh", "RS Mesh"}, 723 {"RS Program Fragment", "RS Program Fragment", "RS Program Fragment", "RS Program Fragment"}, 724 {"RS Program Vertex", "RS Program Vertex", "RS Program Vertex", "RS Program Vertex"}, 725 {"RS Program Raster", "RS Program Raster", "RS Program Raster", "RS Program Raster"}, 726 {"RS Program Store", "RS Program Store", "RS Program Store", "RS Program Store"}, 727 {"RS Font", "RS Font", "RS Font", "RS Font"}}; 728 729 // Used as an index into the RSTypeToFormat array elements 730 enum TypeToFormatIndex 731 { 732 eFormatSingle = 0, 733 eFormatVector, 734 eElementSize 735 }; 736 737 // { format enum of single element, format enum of element vector, size of element} 738 const uint32_t RenderScriptRuntime::AllocationDetails::RSTypeToFormat[][3] = { 739 {eFormatHex, eFormatHex, 1}, // RS_TYPE_NONE 740 {eFormatFloat, eFormatVectorOfFloat16, 2}, // RS_TYPE_FLOAT_16 741 {eFormatFloat, eFormatVectorOfFloat32, sizeof(float)}, // RS_TYPE_FLOAT_32 742 {eFormatFloat, eFormatVectorOfFloat64, sizeof(double)}, // RS_TYPE_FLOAT_64 743 {eFormatDecimal, eFormatVectorOfSInt8, sizeof(int8_t)}, // RS_TYPE_SIGNED_8 744 {eFormatDecimal, eFormatVectorOfSInt16, sizeof(int16_t)}, // RS_TYPE_SIGNED_16 745 {eFormatDecimal, eFormatVectorOfSInt32, sizeof(int32_t)}, // RS_TYPE_SIGNED_32 746 {eFormatDecimal, eFormatVectorOfSInt64, sizeof(int64_t)}, // RS_TYPE_SIGNED_64 747 {eFormatDecimal, eFormatVectorOfUInt8, sizeof(uint8_t)}, // RS_TYPE_UNSIGNED_8 748 {eFormatDecimal, eFormatVectorOfUInt16, sizeof(uint16_t)}, // RS_TYPE_UNSIGNED_16 749 {eFormatDecimal, eFormatVectorOfUInt32, sizeof(uint32_t)}, // RS_TYPE_UNSIGNED_32 750 {eFormatDecimal, eFormatVectorOfUInt64, sizeof(uint64_t)}, // RS_TYPE_UNSIGNED_64 751 {eFormatBoolean, eFormatBoolean, 1}, // RS_TYPE_BOOL 752 {eFormatHex, eFormatHex, sizeof(uint16_t)}, // RS_TYPE_UNSIGNED_5_6_5 753 {eFormatHex, eFormatHex, sizeof(uint16_t)}, // RS_TYPE_UNSIGNED_5_5_5_1 754 {eFormatHex, eFormatHex, sizeof(uint16_t)}, // RS_TYPE_UNSIGNED_4_4_4_4 755 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 16}, // RS_TYPE_MATRIX_4X4 756 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 9}, // RS_TYPE_MATRIX_3X3 757 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 4} // RS_TYPE_MATRIX_2X2 758 }; 759 760 //------------------------------------------------------------------ 761 // Static Functions 762 //------------------------------------------------------------------ 763 LanguageRuntime * 764 RenderScriptRuntime::CreateInstance(Process *process, lldb::LanguageType language) 765 { 766 767 if (language == eLanguageTypeExtRenderScript) 768 return new RenderScriptRuntime(process); 769 else 770 return nullptr; 771 } 772 773 // Callback with a module to search for matching symbols. 774 // We first check that the module contains RS kernels. 775 // Then look for a symbol which matches our kernel name. 776 // The breakpoint address is finally set using the address of this symbol. 777 Searcher::CallbackReturn 778 RSBreakpointResolver::SearchCallback(SearchFilter &filter, SymbolContext &context, Address *, bool) 779 { 780 ModuleSP module = context.module_sp; 781 782 if (!module) 783 return Searcher::eCallbackReturnContinue; 784 785 // Is this a module containing renderscript kernels? 786 if (nullptr == module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), eSymbolTypeData)) 787 return Searcher::eCallbackReturnContinue; 788 789 // Attempt to set a breakpoint on the kernel name symbol within the module library. 790 // If it's not found, it's likely debug info is unavailable - try to set a 791 // breakpoint on <name>.expand. 792 793 const Symbol *kernel_sym = module->FindFirstSymbolWithNameAndType(m_kernel_name, eSymbolTypeCode); 794 if (!kernel_sym) 795 { 796 std::string kernel_name_expanded(m_kernel_name.AsCString()); 797 kernel_name_expanded.append(".expand"); 798 kernel_sym = module->FindFirstSymbolWithNameAndType(ConstString(kernel_name_expanded.c_str()), eSymbolTypeCode); 799 } 800 801 if (kernel_sym) 802 { 803 Address bp_addr = kernel_sym->GetAddress(); 804 if (filter.AddressPasses(bp_addr)) 805 m_breakpoint->AddLocation(bp_addr); 806 } 807 808 return Searcher::eCallbackReturnContinue; 809 } 810 811 void 812 RenderScriptRuntime::Initialize() 813 { 814 PluginManager::RegisterPlugin(GetPluginNameStatic(), "RenderScript language support", CreateInstance, 815 GetCommandObject); 816 } 817 818 void 819 RenderScriptRuntime::Terminate() 820 { 821 PluginManager::UnregisterPlugin(CreateInstance); 822 } 823 824 lldb_private::ConstString 825 RenderScriptRuntime::GetPluginNameStatic() 826 { 827 static ConstString g_name("renderscript"); 828 return g_name; 829 } 830 831 RenderScriptRuntime::ModuleKind 832 RenderScriptRuntime::GetModuleKind(const lldb::ModuleSP &module_sp) 833 { 834 if (module_sp) 835 { 836 // Is this a module containing renderscript kernels? 837 const Symbol *info_sym = module_sp->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), eSymbolTypeData); 838 if (info_sym) 839 { 840 return eModuleKindKernelObj; 841 } 842 843 // Is this the main RS runtime library 844 const ConstString rs_lib("libRS.so"); 845 if (module_sp->GetFileSpec().GetFilename() == rs_lib) 846 { 847 return eModuleKindLibRS; 848 } 849 850 const ConstString rs_driverlib("libRSDriver.so"); 851 if (module_sp->GetFileSpec().GetFilename() == rs_driverlib) 852 { 853 return eModuleKindDriver; 854 } 855 856 const ConstString rs_cpureflib("libRSCpuRef.so"); 857 if (module_sp->GetFileSpec().GetFilename() == rs_cpureflib) 858 { 859 return eModuleKindImpl; 860 } 861 } 862 return eModuleKindIgnored; 863 } 864 865 bool 866 RenderScriptRuntime::IsRenderScriptModule(const lldb::ModuleSP &module_sp) 867 { 868 return GetModuleKind(module_sp) != eModuleKindIgnored; 869 } 870 871 void 872 RenderScriptRuntime::ModulesDidLoad(const ModuleList &module_list) 873 { 874 std::lock_guard<std::recursive_mutex> guard(module_list.GetMutex()); 875 876 size_t num_modules = module_list.GetSize(); 877 for (size_t i = 0; i < num_modules; i++) 878 { 879 auto mod = module_list.GetModuleAtIndex(i); 880 if (IsRenderScriptModule(mod)) 881 { 882 LoadModule(mod); 883 } 884 } 885 } 886 887 //------------------------------------------------------------------ 888 // PluginInterface protocol 889 //------------------------------------------------------------------ 890 lldb_private::ConstString 891 RenderScriptRuntime::GetPluginName() 892 { 893 return GetPluginNameStatic(); 894 } 895 896 uint32_t 897 RenderScriptRuntime::GetPluginVersion() 898 { 899 return 1; 900 } 901 902 bool 903 RenderScriptRuntime::IsVTableName(const char *name) 904 { 905 return false; 906 } 907 908 bool 909 RenderScriptRuntime::GetDynamicTypeAndAddress(ValueObject &in_value, lldb::DynamicValueType use_dynamic, 910 TypeAndOrName &class_type_or_name, Address &address, 911 Value::ValueType &value_type) 912 { 913 return false; 914 } 915 916 TypeAndOrName 917 RenderScriptRuntime::FixUpDynamicType(const TypeAndOrName &type_and_or_name, ValueObject &static_value) 918 { 919 return type_and_or_name; 920 } 921 922 bool 923 RenderScriptRuntime::CouldHaveDynamicValue(ValueObject &in_value) 924 { 925 return false; 926 } 927 928 lldb::BreakpointResolverSP 929 RenderScriptRuntime::CreateExceptionResolver(Breakpoint *bkpt, bool catch_bp, bool throw_bp) 930 { 931 BreakpointResolverSP resolver_sp; 932 return resolver_sp; 933 } 934 935 const RenderScriptRuntime::HookDefn RenderScriptRuntime::s_runtimeHookDefns[] = { 936 // rsdScript 937 { 938 "rsdScriptInit", 939 "_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_7ScriptCEPKcS7_PKhjj", 940 "_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_7ScriptCEPKcS7_PKhmj", 941 0, 942 RenderScriptRuntime::eModuleKindDriver, 943 &lldb_private::RenderScriptRuntime::CaptureScriptInit 944 }, 945 { 946 "rsdScriptInvokeForEachMulti", 947 "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0_6ScriptEjPPKNS0_10AllocationEjPS6_PKvjPK12RsScriptCall", 948 "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0_6ScriptEjPPKNS0_10AllocationEmPS6_PKvmPK12RsScriptCall", 949 0, 950 RenderScriptRuntime::eModuleKindDriver, 951 &lldb_private::RenderScriptRuntime::CaptureScriptInvokeForEachMulti 952 }, 953 { 954 "rsdScriptSetGlobalVar", 955 "_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_6ScriptEjPvj", 956 "_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_6ScriptEjPvm", 957 0, 958 RenderScriptRuntime::eModuleKindDriver, 959 &lldb_private::RenderScriptRuntime::CaptureSetGlobalVar 960 }, 961 962 // rsdAllocation 963 { 964 "rsdAllocationInit", 965 "_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_10AllocationEb", 966 "_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_10AllocationEb", 967 0, 968 RenderScriptRuntime::eModuleKindDriver, 969 &lldb_private::RenderScriptRuntime::CaptureAllocationInit 970 }, 971 { 972 "rsdAllocationRead2D", 973 "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_10AllocationEjjj23RsAllocationCubemapFacejjPvjj", 974 "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_10AllocationEjjj23RsAllocationCubemapFacejjPvmm", 975 0, 976 RenderScriptRuntime::eModuleKindDriver, 977 nullptr 978 }, 979 { 980 "rsdAllocationDestroy", 981 "_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_10AllocationE", 982 "_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_10AllocationE", 983 0, 984 RenderScriptRuntime::eModuleKindDriver, 985 &lldb_private::RenderScriptRuntime::CaptureAllocationDestroy 986 }, 987 }; 988 989 const size_t RenderScriptRuntime::s_runtimeHookCount = sizeof(s_runtimeHookDefns) / sizeof(s_runtimeHookDefns[0]); 990 991 bool 992 RenderScriptRuntime::HookCallback(void *baton, StoppointCallbackContext *ctx, lldb::user_id_t break_id, 993 lldb::user_id_t break_loc_id) 994 { 995 RuntimeHook *hook_info = (RuntimeHook *)baton; 996 ExecutionContext context(ctx->exe_ctx_ref); 997 998 RenderScriptRuntime *lang_rt = 999 (RenderScriptRuntime *)context.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript); 1000 1001 lang_rt->HookCallback(hook_info, context); 1002 1003 return false; 1004 } 1005 1006 void 1007 RenderScriptRuntime::HookCallback(RuntimeHook *hook_info, ExecutionContext &context) 1008 { 1009 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1010 1011 if (log) 1012 log->Printf("%s - '%s'", __FUNCTION__, hook_info->defn->name); 1013 1014 if (hook_info->defn->grabber) 1015 { 1016 (this->*(hook_info->defn->grabber))(hook_info, context); 1017 } 1018 } 1019 1020 void 1021 RenderScriptRuntime::CaptureScriptInvokeForEachMulti(RuntimeHook* hook_info, 1022 ExecutionContext& context) 1023 { 1024 Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1025 1026 enum 1027 { 1028 eRsContext = 0, 1029 eRsScript, 1030 eRsSlot, 1031 eRsAIns, 1032 eRsInLen, 1033 eRsAOut, 1034 eRsUsr, 1035 eRsUsrLen, 1036 eRsSc, 1037 }; 1038 1039 std::array<ArgItem, 9> args{{ 1040 ArgItem{ArgItem::ePointer, 0}, // const Context *rsc 1041 ArgItem{ArgItem::ePointer, 0}, // Script *s 1042 ArgItem{ArgItem::eInt32, 0}, // uint32_t slot 1043 ArgItem{ArgItem::ePointer, 0}, // const Allocation **aIns 1044 ArgItem{ArgItem::eInt32, 0}, // size_t inLen 1045 ArgItem{ArgItem::ePointer, 0}, // Allocation *aout 1046 ArgItem{ArgItem::ePointer, 0}, // const void *usr 1047 ArgItem{ArgItem::eInt32, 0}, // size_t usrLen 1048 ArgItem{ArgItem::ePointer, 0}, // const RsScriptCall *sc 1049 }}; 1050 1051 bool success = GetArgs(context, &args[0], args.size()); 1052 if (!success) 1053 { 1054 if (log) 1055 log->Printf("%s - Error while reading the function parameters", __FUNCTION__); 1056 return; 1057 } 1058 1059 const uint32_t target_ptr_size = m_process->GetAddressByteSize(); 1060 Error error; 1061 std::vector<uint64_t> allocs; 1062 1063 // traverse allocation list 1064 for (uint64_t i = 0; i < uint64_t(args[eRsInLen]); ++i) 1065 { 1066 // calculate offest to allocation pointer 1067 const addr_t addr = addr_t(args[eRsAIns]) + i * target_ptr_size; 1068 1069 // Note: due to little endian layout, reading 32bits or 64bits into res64 will 1070 // give the correct results. 1071 1072 uint64_t res64 = 0; 1073 size_t read = m_process->ReadMemory(addr, &res64, target_ptr_size, error); 1074 if (read != target_ptr_size || !error.Success()) 1075 { 1076 if (log) 1077 log->Printf("%s - Error while reading allocation list argument %" PRIu64, __FUNCTION__, i); 1078 } 1079 else 1080 { 1081 allocs.push_back(res64); 1082 } 1083 } 1084 1085 // if there is an output allocation track it 1086 if (uint64_t aOut = uint64_t(args[eRsAOut])) 1087 { 1088 allocs.push_back(aOut); 1089 } 1090 1091 // for all allocations we have found 1092 for (const uint64_t alloc_addr : allocs) 1093 { 1094 AllocationDetails *alloc = LookUpAllocation(alloc_addr); 1095 if (!alloc) 1096 alloc = CreateAllocation(alloc_addr); 1097 1098 if (alloc) 1099 { 1100 // save the allocation address 1101 if (alloc->address.isValid()) 1102 { 1103 // check the allocation address we already have matches 1104 assert(*alloc->address.get() == alloc_addr); 1105 } 1106 else 1107 { 1108 alloc->address = alloc_addr; 1109 } 1110 1111 // save the context 1112 if (log) 1113 { 1114 if (alloc->context.isValid() && *alloc->context.get() != addr_t(args[eRsContext])) 1115 log->Printf("%s - Allocation used by multiple contexts", __FUNCTION__); 1116 } 1117 alloc->context = addr_t(args[eRsContext]); 1118 } 1119 } 1120 1121 // make sure we track this script object 1122 if (lldb_private::RenderScriptRuntime::ScriptDetails *script = LookUpScript(addr_t(args[eRsScript]), true)) 1123 { 1124 if (log) 1125 { 1126 if (script->context.isValid() && *script->context.get() != addr_t(args[eRsContext])) 1127 log->Printf("%s - Script used by multiple contexts", __FUNCTION__); 1128 } 1129 script->context = addr_t(args[eRsContext]); 1130 } 1131 } 1132 1133 void 1134 RenderScriptRuntime::CaptureSetGlobalVar(RuntimeHook *hook_info, ExecutionContext &context) 1135 { 1136 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1137 1138 enum 1139 { 1140 eRsContext, 1141 eRsScript, 1142 eRsId, 1143 eRsData, 1144 eRsLength, 1145 }; 1146 1147 std::array<ArgItem, 5> args{{ 1148 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1149 ArgItem{ArgItem::ePointer, 0}, // eRsScript 1150 ArgItem{ArgItem::eInt32, 0}, // eRsId 1151 ArgItem{ArgItem::ePointer, 0}, // eRsData 1152 ArgItem{ArgItem::eInt32, 0}, // eRsLength 1153 }}; 1154 1155 bool success = GetArgs(context, &args[0], args.size()); 1156 if (!success) 1157 { 1158 if (log) 1159 log->Printf("%s - error reading the function parameters.", __FUNCTION__); 1160 return; 1161 } 1162 1163 if (log) 1164 { 1165 log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " slot %" PRIu64 " = 0x%" PRIx64 ":%" PRIu64 "bytes.", __FUNCTION__, 1166 uint64_t(args[eRsContext]), uint64_t(args[eRsScript]), uint64_t(args[eRsId]), 1167 uint64_t(args[eRsData]), uint64_t(args[eRsLength])); 1168 1169 addr_t script_addr = addr_t(args[eRsScript]); 1170 if (m_scriptMappings.find(script_addr) != m_scriptMappings.end()) 1171 { 1172 auto rsm = m_scriptMappings[script_addr]; 1173 if (uint64_t(args[eRsId]) < rsm->m_globals.size()) 1174 { 1175 auto rsg = rsm->m_globals[uint64_t(args[eRsId])]; 1176 log->Printf("%s - Setting of '%s' within '%s' inferred", __FUNCTION__, rsg.m_name.AsCString(), 1177 rsm->m_module->GetFileSpec().GetFilename().AsCString()); 1178 } 1179 } 1180 } 1181 } 1182 1183 void 1184 RenderScriptRuntime::CaptureAllocationInit(RuntimeHook *hook_info, ExecutionContext &context) 1185 { 1186 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1187 1188 enum 1189 { 1190 eRsContext, 1191 eRsAlloc, 1192 eRsForceZero 1193 }; 1194 1195 std::array<ArgItem, 3> args{{ 1196 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1197 ArgItem{ArgItem::ePointer, 0}, // eRsAlloc 1198 ArgItem{ArgItem::eBool, 0}, // eRsForceZero 1199 }}; 1200 1201 bool success = GetArgs(context, &args[0], args.size()); 1202 if (!success) // error case 1203 { 1204 if (log) 1205 log->Printf("%s - error while reading the function parameters", __FUNCTION__); 1206 return; // abort 1207 } 1208 1209 if (log) 1210 log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 ",0x%" PRIx64 " .", __FUNCTION__, uint64_t(args[eRsContext]), 1211 uint64_t(args[eRsAlloc]), uint64_t(args[eRsForceZero])); 1212 1213 AllocationDetails *alloc = CreateAllocation(uint64_t(args[eRsAlloc])); 1214 if (alloc) 1215 alloc->context = uint64_t(args[eRsContext]); 1216 } 1217 1218 void 1219 RenderScriptRuntime::CaptureAllocationDestroy(RuntimeHook *hook_info, ExecutionContext &context) 1220 { 1221 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1222 1223 enum 1224 { 1225 eRsContext, 1226 eRsAlloc, 1227 }; 1228 1229 std::array<ArgItem, 2> args{{ 1230 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1231 ArgItem{ArgItem::ePointer, 0}, // eRsAlloc 1232 }}; 1233 1234 bool success = GetArgs(context, &args[0], args.size()); 1235 if (!success) 1236 { 1237 if (log) 1238 log->Printf("%s - error while reading the function parameters.", __FUNCTION__); 1239 return; 1240 } 1241 1242 if (log) 1243 log->Printf("%s - 0x%" PRIx64 ", 0x%" PRIx64 ".", __FUNCTION__, uint64_t(args[eRsContext]), 1244 uint64_t(args[eRsAlloc])); 1245 1246 for (auto iter = m_allocations.begin(); iter != m_allocations.end(); ++iter) 1247 { 1248 auto &allocation_ap = *iter; // get the unique pointer 1249 if (allocation_ap->address.isValid() && *allocation_ap->address.get() == addr_t(args[eRsAlloc])) 1250 { 1251 m_allocations.erase(iter); 1252 if (log) 1253 log->Printf("%s - deleted allocation entry.", __FUNCTION__); 1254 return; 1255 } 1256 } 1257 1258 if (log) 1259 log->Printf("%s - couldn't find destroyed allocation.", __FUNCTION__); 1260 } 1261 1262 void 1263 RenderScriptRuntime::CaptureScriptInit(RuntimeHook *hook_info, ExecutionContext &context) 1264 { 1265 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1266 1267 Error error; 1268 Process *process = context.GetProcessPtr(); 1269 1270 enum 1271 { 1272 eRsContext, 1273 eRsScript, 1274 eRsResNamePtr, 1275 eRsCachedDirPtr 1276 }; 1277 1278 std::array<ArgItem, 4> args{{ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}, 1279 ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}}}; 1280 bool success = GetArgs(context, &args[0], args.size()); 1281 if (!success) 1282 { 1283 if (log) 1284 log->Printf("%s - error while reading the function parameters.", __FUNCTION__); 1285 return; 1286 } 1287 1288 std::string resname; 1289 process->ReadCStringFromMemory(addr_t(args[eRsResNamePtr]), resname, error); 1290 if (error.Fail()) 1291 { 1292 if (log) 1293 log->Printf("%s - error reading resname: %s.", __FUNCTION__, error.AsCString()); 1294 } 1295 1296 std::string cachedir; 1297 process->ReadCStringFromMemory(addr_t(args[eRsCachedDirPtr]), cachedir, error); 1298 if (error.Fail()) 1299 { 1300 if (log) 1301 log->Printf("%s - error reading cachedir: %s.", __FUNCTION__, error.AsCString()); 1302 } 1303 1304 if (log) 1305 log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " => '%s' at '%s' .", __FUNCTION__, uint64_t(args[eRsContext]), 1306 uint64_t(args[eRsScript]), resname.c_str(), cachedir.c_str()); 1307 1308 if (resname.size() > 0) 1309 { 1310 StreamString strm; 1311 strm.Printf("librs.%s.so", resname.c_str()); 1312 1313 ScriptDetails *script = LookUpScript(addr_t(args[eRsScript]), true); 1314 if (script) 1315 { 1316 script->type = ScriptDetails::eScriptC; 1317 script->cacheDir = cachedir; 1318 script->resName = resname; 1319 script->scriptDyLib = strm.GetData(); 1320 script->context = addr_t(args[eRsContext]); 1321 } 1322 1323 if (log) 1324 log->Printf("%s - '%s' tagged with context 0x%" PRIx64 " and script 0x%" PRIx64 ".", __FUNCTION__, 1325 strm.GetData(), uint64_t(args[eRsContext]), uint64_t(args[eRsScript])); 1326 } 1327 else if (log) 1328 { 1329 log->Printf("%s - resource name invalid, Script not tagged.", __FUNCTION__); 1330 } 1331 } 1332 1333 void 1334 RenderScriptRuntime::LoadRuntimeHooks(lldb::ModuleSP module, ModuleKind kind) 1335 { 1336 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1337 1338 if (!module) 1339 { 1340 return; 1341 } 1342 1343 Target &target = GetProcess()->GetTarget(); 1344 llvm::Triple::ArchType targetArchType = target.GetArchitecture().GetMachine(); 1345 1346 if (targetArchType != llvm::Triple::ArchType::x86 && 1347 targetArchType != llvm::Triple::ArchType::arm && 1348 targetArchType != llvm::Triple::ArchType::aarch64 && 1349 targetArchType != llvm::Triple::ArchType::mipsel && 1350 targetArchType != llvm::Triple::ArchType::mips64el && 1351 targetArchType != llvm::Triple::ArchType::x86_64) 1352 { 1353 if (log) 1354 log->Printf("%s - unable to hook runtime functions.", __FUNCTION__); 1355 return; 1356 } 1357 1358 uint32_t archByteSize = target.GetArchitecture().GetAddressByteSize(); 1359 1360 for (size_t idx = 0; idx < s_runtimeHookCount; idx++) 1361 { 1362 const HookDefn *hook_defn = &s_runtimeHookDefns[idx]; 1363 if (hook_defn->kind != kind) 1364 { 1365 continue; 1366 } 1367 1368 const char *symbol_name = (archByteSize == 4) ? hook_defn->symbol_name_m32 : hook_defn->symbol_name_m64; 1369 1370 const Symbol *sym = module->FindFirstSymbolWithNameAndType(ConstString(symbol_name), eSymbolTypeCode); 1371 if (!sym) 1372 { 1373 if (log) 1374 { 1375 log->Printf("%s - symbol '%s' related to the function %s not found", 1376 __FUNCTION__, symbol_name, hook_defn->name); 1377 } 1378 continue; 1379 } 1380 1381 addr_t addr = sym->GetLoadAddress(&target); 1382 if (addr == LLDB_INVALID_ADDRESS) 1383 { 1384 if (log) 1385 log->Printf("%s - unable to resolve the address of hook function '%s' with symbol '%s'.", 1386 __FUNCTION__, hook_defn->name, symbol_name); 1387 continue; 1388 } 1389 else 1390 { 1391 if (log) 1392 log->Printf("%s - function %s, address resolved at 0x%" PRIx64, 1393 __FUNCTION__, hook_defn->name, addr); 1394 } 1395 1396 RuntimeHookSP hook(new RuntimeHook()); 1397 hook->address = addr; 1398 hook->defn = hook_defn; 1399 hook->bp_sp = target.CreateBreakpoint(addr, true, false); 1400 hook->bp_sp->SetCallback(HookCallback, hook.get(), true); 1401 m_runtimeHooks[addr] = hook; 1402 if (log) 1403 { 1404 log->Printf("%s - successfully hooked '%s' in '%s' version %" PRIu64 " at 0x%" PRIx64 ".", 1405 __FUNCTION__, hook_defn->name, module->GetFileSpec().GetFilename().AsCString(), 1406 (uint64_t)hook_defn->version, (uint64_t)addr); 1407 } 1408 } 1409 } 1410 1411 void 1412 RenderScriptRuntime::FixupScriptDetails(RSModuleDescriptorSP rsmodule_sp) 1413 { 1414 if (!rsmodule_sp) 1415 return; 1416 1417 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1418 1419 const ModuleSP module = rsmodule_sp->m_module; 1420 const FileSpec &file = module->GetPlatformFileSpec(); 1421 1422 // Iterate over all of the scripts that we currently know of. 1423 // Note: We cant push or pop to m_scripts here or it may invalidate rs_script. 1424 for (const auto &rs_script : m_scripts) 1425 { 1426 // Extract the expected .so file path for this script. 1427 std::string dylib; 1428 if (!rs_script->scriptDyLib.get(dylib)) 1429 continue; 1430 1431 // Only proceed if the module that has loaded corresponds to this script. 1432 if (file.GetFilename() != ConstString(dylib.c_str())) 1433 continue; 1434 1435 // Obtain the script address which we use as a key. 1436 lldb::addr_t script; 1437 if (!rs_script->script.get(script)) 1438 continue; 1439 1440 // If we have a script mapping for the current script. 1441 if (m_scriptMappings.find(script) != m_scriptMappings.end()) 1442 { 1443 // if the module we have stored is different to the one we just received. 1444 if (m_scriptMappings[script] != rsmodule_sp) 1445 { 1446 if (log) 1447 log->Printf("%s - script %" PRIx64 " wants reassigned to new rsmodule '%s'.", __FUNCTION__, 1448 (uint64_t)script, rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString()); 1449 } 1450 } 1451 // We don't have a script mapping for the current script. 1452 else 1453 { 1454 // Obtain the script resource name. 1455 std::string resName; 1456 if (rs_script->resName.get(resName)) 1457 // Set the modules resource name. 1458 rsmodule_sp->m_resname = resName; 1459 // Add Script/Module pair to map. 1460 m_scriptMappings[script] = rsmodule_sp; 1461 if (log) 1462 log->Printf("%s - script %" PRIx64 " associated with rsmodule '%s'.", __FUNCTION__, 1463 (uint64_t)script, rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString()); 1464 } 1465 } 1466 } 1467 1468 // Uses the Target API to evaluate the expression passed as a parameter to the function 1469 // The result of that expression is returned an unsigned 64 bit int, via the result* parameter. 1470 // Function returns true on success, and false on failure 1471 bool 1472 RenderScriptRuntime::EvalRSExpression(const char *expression, StackFrame *frame_ptr, uint64_t *result) 1473 { 1474 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1475 if (log) 1476 log->Printf("%s(%s)", __FUNCTION__, expression); 1477 1478 ValueObjectSP expr_result; 1479 EvaluateExpressionOptions options; 1480 options.SetLanguage(lldb::eLanguageTypeC_plus_plus); 1481 // Perform the actual expression evaluation 1482 GetProcess()->GetTarget().EvaluateExpression(expression, frame_ptr, expr_result, options); 1483 1484 if (!expr_result) 1485 { 1486 if (log) 1487 log->Printf("%s: couldn't evaluate expression.", __FUNCTION__); 1488 return false; 1489 } 1490 1491 // The result of the expression is invalid 1492 if (!expr_result->GetError().Success()) 1493 { 1494 Error err = expr_result->GetError(); 1495 if (err.GetError() == UserExpression::kNoResult) // Expression returned void, so this is actually a success 1496 { 1497 if (log) 1498 log->Printf("%s - expression returned void.", __FUNCTION__); 1499 1500 result = nullptr; 1501 return true; 1502 } 1503 1504 if (log) 1505 log->Printf("%s - error evaluating expression result: %s", __FUNCTION__, 1506 err.AsCString()); 1507 return false; 1508 } 1509 1510 bool success = false; 1511 *result = expr_result->GetValueAsUnsigned(0, &success); // We only read the result as an uint32_t. 1512 1513 if (!success) 1514 { 1515 if (log) 1516 log->Printf("%s - couldn't convert expression result to uint32_t", __FUNCTION__); 1517 return false; 1518 } 1519 1520 return true; 1521 } 1522 1523 namespace 1524 { 1525 // Used to index expression format strings 1526 enum ExpressionStrings 1527 { 1528 eExprGetOffsetPtr = 0, 1529 eExprAllocGetType, 1530 eExprTypeDimX, 1531 eExprTypeDimY, 1532 eExprTypeDimZ, 1533 eExprTypeElemPtr, 1534 eExprElementType, 1535 eExprElementKind, 1536 eExprElementVec, 1537 eExprElementFieldCount, 1538 eExprSubelementsId, 1539 eExprSubelementsName, 1540 eExprSubelementsArrSize, 1541 1542 _eExprLast // keep at the end, implicit size of the array runtimeExpressions 1543 }; 1544 1545 // max length of an expanded expression 1546 const int jit_max_expr_size = 512; 1547 1548 // Retrieve the string to JIT for the given expression 1549 const char* 1550 JITTemplate(ExpressionStrings e) 1551 { 1552 // Format strings containing the expressions we may need to evaluate. 1553 static std::array<const char*, _eExprLast> runtimeExpressions = {{ 1554 // Mangled GetOffsetPointer(Allocation*, xoff, yoff, zoff, lod, cubemap) 1555 "(int*)_Z12GetOffsetPtrPKN7android12renderscript10AllocationEjjjj23RsAllocationCubemapFace" 1556 "(0x%" PRIx64 ", %" PRIu32 ", %" PRIu32 ", %" PRIu32 ", 0, 0)", 1557 1558 // Type* rsaAllocationGetType(Context*, Allocation*) 1559 "(void*)rsaAllocationGetType(0x%" PRIx64 ", 0x%" PRIx64 ")", 1560 1561 // rsaTypeGetNativeData(Context*, Type*, void* typeData, size) 1562 // Pack the data in the following way mHal.state.dimX; mHal.state.dimY; mHal.state.dimZ; 1563 // mHal.state.lodCount; mHal.state.faces; mElement; into typeData 1564 // Need to specify 32 or 64 bit for uint_t since this differs between devices 1565 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 6); data[0]", // X dim 1566 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 6); data[1]", // Y dim 1567 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 6); data[2]", // Z dim 1568 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 6); data[5]", // Element ptr 1569 1570 // rsaElementGetNativeData(Context*, Element*, uint32_t* elemData,size) 1571 // Pack mType; mKind; mNormalized; mVectorSize; NumSubElements into elemData 1572 "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 5); data[0]", // Type 1573 "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 5); data[1]", // Kind 1574 "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 5); data[3]", // Vector Size 1575 "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 ", 0x%" PRIx64 ", data, 5); data[4]", // Field Count 1576 1577 // rsaElementGetSubElements(RsContext con, RsElement elem, uintptr_t *ids, const char **names, 1578 // size_t *arraySizes, uint32_t dataSize) 1579 // Needed for Allocations of structs to gather details about fields/Subelements 1580 // Element* of field 1581 "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 "]; size_t arr_size[%" PRIu32 "];" 1582 "(void*)rsaElementGetSubElements(0x%" PRIx64 ", 0x%" PRIx64 ", ids, names, arr_size, %" PRIu32 "); ids[%" PRIu32 "]", 1583 1584 // Name of field 1585 "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 "]; size_t arr_size[%" PRIu32 "];" 1586 "(void*)rsaElementGetSubElements(0x%" PRIx64 ", 0x%" PRIx64 ", ids, names, arr_size, %" PRIu32 "); names[%" PRIu32 "]", 1587 1588 // Array size of field 1589 "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 "]; size_t arr_size[%" PRIu32 "];" 1590 "(void*)rsaElementGetSubElements(0x%" PRIx64 ", 0x%" PRIx64 ", ids, names, arr_size, %" PRIu32 "); arr_size[%" PRIu32 "]" 1591 }}; 1592 1593 return runtimeExpressions[e]; 1594 } 1595 } // end of the anonymous namespace 1596 1597 1598 // JITs the RS runtime for the internal data pointer of an allocation. 1599 // Is passed x,y,z coordinates for the pointer to a specific element. 1600 // Then sets the data_ptr member in Allocation with the result. 1601 // Returns true on success, false otherwise 1602 bool 1603 RenderScriptRuntime::JITDataPointer(AllocationDetails *allocation, StackFrame *frame_ptr, uint32_t x, 1604 uint32_t y, uint32_t z) 1605 { 1606 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1607 1608 if (!allocation->address.isValid()) 1609 { 1610 if (log) 1611 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1612 return false; 1613 } 1614 1615 const char *expr_cstr = JITTemplate(eExprGetOffsetPtr); 1616 char buffer[jit_max_expr_size]; 1617 1618 int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->address.get(), x, y, z); 1619 if (chars_written < 0) 1620 { 1621 if (log) 1622 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1623 return false; 1624 } 1625 else if (chars_written >= jit_max_expr_size) 1626 { 1627 if (log) 1628 log->Printf("%s - expression too long.", __FUNCTION__); 1629 return false; 1630 } 1631 1632 uint64_t result = 0; 1633 if (!EvalRSExpression(buffer, frame_ptr, &result)) 1634 return false; 1635 1636 addr_t mem_ptr = static_cast<lldb::addr_t>(result); 1637 allocation->data_ptr = mem_ptr; 1638 1639 return true; 1640 } 1641 1642 // JITs the RS runtime for the internal pointer to the RS Type of an allocation 1643 // Then sets the type_ptr member in Allocation with the result. 1644 // Returns true on success, false otherwise 1645 bool 1646 RenderScriptRuntime::JITTypePointer(AllocationDetails *allocation, StackFrame *frame_ptr) 1647 { 1648 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1649 1650 if (!allocation->address.isValid() || !allocation->context.isValid()) 1651 { 1652 if (log) 1653 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1654 return false; 1655 } 1656 1657 const char *expr_cstr = JITTemplate(eExprAllocGetType); 1658 char buffer[jit_max_expr_size]; 1659 1660 int chars_written = 1661 snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->context.get(), *allocation->address.get()); 1662 if (chars_written < 0) 1663 { 1664 if (log) 1665 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1666 return false; 1667 } 1668 else if (chars_written >= jit_max_expr_size) 1669 { 1670 if (log) 1671 log->Printf("%s - expression too long.", __FUNCTION__); 1672 return false; 1673 } 1674 1675 uint64_t result = 0; 1676 if (!EvalRSExpression(buffer, frame_ptr, &result)) 1677 return false; 1678 1679 addr_t type_ptr = static_cast<lldb::addr_t>(result); 1680 allocation->type_ptr = type_ptr; 1681 1682 return true; 1683 } 1684 1685 // JITs the RS runtime for information about the dimensions and type of an allocation 1686 // Then sets dimension and element_ptr members in Allocation with the result. 1687 // Returns true on success, false otherwise 1688 bool 1689 RenderScriptRuntime::JITTypePacked(AllocationDetails *allocation, StackFrame *frame_ptr) 1690 { 1691 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1692 1693 if (!allocation->type_ptr.isValid() || !allocation->context.isValid()) 1694 { 1695 if (log) 1696 log->Printf("%s - Failed to find allocation details.", __FUNCTION__); 1697 return false; 1698 } 1699 1700 // Expression is different depending on if device is 32 or 64 bit 1701 uint32_t archByteSize = GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 1702 const uint32_t bits = archByteSize == 4 ? 32 : 64; 1703 1704 // We want 4 elements from packed data 1705 const uint32_t num_exprs = 4; 1706 assert(num_exprs == (eExprTypeElemPtr - eExprTypeDimX + 1) && "Invalid number of expressions"); 1707 1708 char buffer[num_exprs][jit_max_expr_size]; 1709 uint64_t results[num_exprs]; 1710 1711 for (uint32_t i = 0; i < num_exprs; ++i) 1712 { 1713 const char *expr_cstr = JITTemplate(ExpressionStrings(eExprTypeDimX + i)); 1714 int chars_written = snprintf(buffer[i], jit_max_expr_size, expr_cstr, bits, *allocation->context.get(), 1715 *allocation->type_ptr.get()); 1716 if (chars_written < 0) 1717 { 1718 if (log) 1719 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1720 return false; 1721 } 1722 else if (chars_written >= jit_max_expr_size) 1723 { 1724 if (log) 1725 log->Printf("%s - expression too long.", __FUNCTION__); 1726 return false; 1727 } 1728 1729 // Perform expression evaluation 1730 if (!EvalRSExpression(buffer[i], frame_ptr, &results[i])) 1731 return false; 1732 } 1733 1734 // Assign results to allocation members 1735 AllocationDetails::Dimension dims; 1736 dims.dim_1 = static_cast<uint32_t>(results[0]); 1737 dims.dim_2 = static_cast<uint32_t>(results[1]); 1738 dims.dim_3 = static_cast<uint32_t>(results[2]); 1739 allocation->dimension = dims; 1740 1741 addr_t elem_ptr = static_cast<lldb::addr_t>(results[3]); 1742 allocation->element.element_ptr = elem_ptr; 1743 1744 if (log) 1745 log->Printf("%s - dims (%" PRIu32 ", %" PRIu32 ", %" PRIu32 ") Element*: 0x%" PRIx64 ".", __FUNCTION__, 1746 dims.dim_1, dims.dim_2, dims.dim_3, elem_ptr); 1747 1748 return true; 1749 } 1750 1751 // JITs the RS runtime for information about the Element of an allocation 1752 // Then sets type, type_vec_size, field_count and type_kind members in Element with the result. 1753 // Returns true on success, false otherwise 1754 bool 1755 RenderScriptRuntime::JITElementPacked(Element &elem, const lldb::addr_t context, StackFrame *frame_ptr) 1756 { 1757 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1758 1759 if (!elem.element_ptr.isValid()) 1760 { 1761 if (log) 1762 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1763 return false; 1764 } 1765 1766 // We want 4 elements from packed data 1767 const uint32_t num_exprs = 4; 1768 assert(num_exprs == (eExprElementFieldCount - eExprElementType + 1) && "Invalid number of expressions"); 1769 1770 char buffer[num_exprs][jit_max_expr_size]; 1771 uint64_t results[num_exprs]; 1772 1773 for (uint32_t i = 0; i < num_exprs; i++) 1774 { 1775 const char *expr_cstr = JITTemplate(ExpressionStrings(eExprElementType + i)); 1776 int chars_written = snprintf(buffer[i], jit_max_expr_size, expr_cstr, context, *elem.element_ptr.get()); 1777 if (chars_written < 0) 1778 { 1779 if (log) 1780 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1781 return false; 1782 } 1783 else if (chars_written >= jit_max_expr_size) 1784 { 1785 if (log) 1786 log->Printf("%s - expression too long.", __FUNCTION__); 1787 return false; 1788 } 1789 1790 // Perform expression evaluation 1791 if (!EvalRSExpression(buffer[i], frame_ptr, &results[i])) 1792 return false; 1793 } 1794 1795 // Assign results to allocation members 1796 elem.type = static_cast<RenderScriptRuntime::Element::DataType>(results[0]); 1797 elem.type_kind = static_cast<RenderScriptRuntime::Element::DataKind>(results[1]); 1798 elem.type_vec_size = static_cast<uint32_t>(results[2]); 1799 elem.field_count = static_cast<uint32_t>(results[3]); 1800 1801 if (log) 1802 log->Printf("%s - data type %" PRIu32 ", pixel type %" PRIu32 ", vector size %" PRIu32 ", field count %" PRIu32, 1803 __FUNCTION__, *elem.type.get(), *elem.type_kind.get(), *elem.type_vec_size.get(), *elem.field_count.get()); 1804 1805 // If this Element has subelements then JIT rsaElementGetSubElements() for details about its fields 1806 if (*elem.field_count.get() > 0 && !JITSubelements(elem, context, frame_ptr)) 1807 return false; 1808 1809 return true; 1810 } 1811 1812 // JITs the RS runtime for information about the subelements/fields of a struct allocation 1813 // This is necessary for infering the struct type so we can pretty print the allocation's contents. 1814 // Returns true on success, false otherwise 1815 bool 1816 RenderScriptRuntime::JITSubelements(Element &elem, const lldb::addr_t context, StackFrame *frame_ptr) 1817 { 1818 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1819 1820 if (!elem.element_ptr.isValid() || !elem.field_count.isValid()) 1821 { 1822 if (log) 1823 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1824 return false; 1825 } 1826 1827 const short num_exprs = 3; 1828 assert(num_exprs == (eExprSubelementsArrSize - eExprSubelementsId + 1) && "Invalid number of expressions"); 1829 1830 char expr_buffer[jit_max_expr_size]; 1831 uint64_t results; 1832 1833 // Iterate over struct fields. 1834 const uint32_t field_count = *elem.field_count.get(); 1835 for (uint32_t field_index = 0; field_index < field_count; ++field_index) 1836 { 1837 Element child; 1838 for (uint32_t expr_index = 0; expr_index < num_exprs; ++expr_index) 1839 { 1840 const char *expr_cstr = JITTemplate(ExpressionStrings(eExprSubelementsId + expr_index)); 1841 int chars_written = snprintf(expr_buffer, jit_max_expr_size, expr_cstr, 1842 field_count, field_count, field_count, 1843 context, *elem.element_ptr.get(), field_count, field_index); 1844 if (chars_written < 0) 1845 { 1846 if (log) 1847 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1848 return false; 1849 } 1850 else if (chars_written >= jit_max_expr_size) 1851 { 1852 if (log) 1853 log->Printf("%s - expression too long.", __FUNCTION__); 1854 return false; 1855 } 1856 1857 // Perform expression evaluation 1858 if (!EvalRSExpression(expr_buffer, frame_ptr, &results)) 1859 return false; 1860 1861 if (log) 1862 log->Printf("%s - expr result 0x%" PRIx64 ".", __FUNCTION__, results); 1863 1864 switch (expr_index) 1865 { 1866 case 0: // Element* of child 1867 child.element_ptr = static_cast<addr_t>(results); 1868 break; 1869 case 1: // Name of child 1870 { 1871 lldb::addr_t address = static_cast<addr_t>(results); 1872 Error err; 1873 std::string name; 1874 GetProcess()->ReadCStringFromMemory(address, name, err); 1875 if (!err.Fail()) 1876 child.type_name = ConstString(name); 1877 else 1878 { 1879 if (log) 1880 log->Printf("%s - warning: Couldn't read field name.", __FUNCTION__); 1881 } 1882 break; 1883 } 1884 case 2: // Array size of child 1885 child.array_size = static_cast<uint32_t>(results); 1886 break; 1887 } 1888 } 1889 1890 // We need to recursively JIT each Element field of the struct since 1891 // structs can be nested inside structs. 1892 if (!JITElementPacked(child, context, frame_ptr)) 1893 return false; 1894 elem.children.push_back(child); 1895 } 1896 1897 // Try to infer the name of the struct type so we can pretty print the allocation contents. 1898 FindStructTypeName(elem, frame_ptr); 1899 1900 return true; 1901 } 1902 1903 // JITs the RS runtime for the address of the last element in the allocation. 1904 // The `elem_size` parameter represents the size of a single element, including padding. 1905 // Which is needed as an offset from the last element pointer. 1906 // Using this offset minus the starting address we can calculate the size of the allocation. 1907 // Returns true on success, false otherwise 1908 bool 1909 RenderScriptRuntime::JITAllocationSize(AllocationDetails *allocation, StackFrame *frame_ptr) 1910 { 1911 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1912 1913 if (!allocation->address.isValid() || !allocation->dimension.isValid() || !allocation->data_ptr.isValid() || 1914 !allocation->element.datum_size.isValid()) 1915 { 1916 if (log) 1917 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1918 return false; 1919 } 1920 1921 // Find dimensions 1922 uint32_t dim_x = allocation->dimension.get()->dim_1; 1923 uint32_t dim_y = allocation->dimension.get()->dim_2; 1924 uint32_t dim_z = allocation->dimension.get()->dim_3; 1925 1926 // Our plan of jitting the last element address doesn't seem to work for struct Allocations 1927 // Instead try to infer the size ourselves without any inter element padding. 1928 if (allocation->element.children.size() > 0) 1929 { 1930 if (dim_x == 0) dim_x = 1; 1931 if (dim_y == 0) dim_y = 1; 1932 if (dim_z == 0) dim_z = 1; 1933 1934 allocation->size = dim_x * dim_y * dim_z * *allocation->element.datum_size.get(); 1935 1936 if (log) 1937 log->Printf("%s - inferred size of struct allocation %" PRIu32 ".", __FUNCTION__, 1938 *allocation->size.get()); 1939 return true; 1940 } 1941 1942 const char *expr_cstr = JITTemplate(eExprGetOffsetPtr); 1943 char buffer[jit_max_expr_size]; 1944 1945 // Calculate last element 1946 dim_x = dim_x == 0 ? 0 : dim_x - 1; 1947 dim_y = dim_y == 0 ? 0 : dim_y - 1; 1948 dim_z = dim_z == 0 ? 0 : dim_z - 1; 1949 1950 int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->address.get(), dim_x, dim_y, dim_z); 1951 if (chars_written < 0) 1952 { 1953 if (log) 1954 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1955 return false; 1956 } 1957 else if (chars_written >= jit_max_expr_size) 1958 { 1959 if (log) 1960 log->Printf("%s - expression too long.", __FUNCTION__); 1961 return false; 1962 } 1963 1964 uint64_t result = 0; 1965 if (!EvalRSExpression(buffer, frame_ptr, &result)) 1966 return false; 1967 1968 addr_t mem_ptr = static_cast<lldb::addr_t>(result); 1969 // Find pointer to last element and add on size of an element 1970 allocation->size = 1971 static_cast<uint32_t>(mem_ptr - *allocation->data_ptr.get()) + *allocation->element.datum_size.get(); 1972 1973 return true; 1974 } 1975 1976 // JITs the RS runtime for information about the stride between rows in the allocation. 1977 // This is done to detect padding, since allocated memory is 16-byte aligned. 1978 // Returns true on success, false otherwise 1979 bool 1980 RenderScriptRuntime::JITAllocationStride(AllocationDetails *allocation, StackFrame *frame_ptr) 1981 { 1982 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1983 1984 if (!allocation->address.isValid() || !allocation->data_ptr.isValid()) 1985 { 1986 if (log) 1987 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1988 return false; 1989 } 1990 1991 const char *expr_cstr = JITTemplate(eExprGetOffsetPtr); 1992 char buffer[jit_max_expr_size]; 1993 1994 int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->address.get(), 0, 1, 0); 1995 if (chars_written < 0) 1996 { 1997 if (log) 1998 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1999 return false; 2000 } 2001 else if (chars_written >= jit_max_expr_size) 2002 { 2003 if (log) 2004 log->Printf("%s - expression too long.", __FUNCTION__); 2005 return false; 2006 } 2007 2008 uint64_t result = 0; 2009 if (!EvalRSExpression(buffer, frame_ptr, &result)) 2010 return false; 2011 2012 addr_t mem_ptr = static_cast<lldb::addr_t>(result); 2013 allocation->stride = static_cast<uint32_t>(mem_ptr - *allocation->data_ptr.get()); 2014 2015 return true; 2016 } 2017 2018 // JIT all the current runtime info regarding an allocation 2019 bool 2020 RenderScriptRuntime::RefreshAllocation(AllocationDetails *allocation, StackFrame *frame_ptr) 2021 { 2022 // GetOffsetPointer() 2023 if (!JITDataPointer(allocation, frame_ptr)) 2024 return false; 2025 2026 // rsaAllocationGetType() 2027 if (!JITTypePointer(allocation, frame_ptr)) 2028 return false; 2029 2030 // rsaTypeGetNativeData() 2031 if (!JITTypePacked(allocation, frame_ptr)) 2032 return false; 2033 2034 // rsaElementGetNativeData() 2035 if (!JITElementPacked(allocation->element, *allocation->context.get(), frame_ptr)) 2036 return false; 2037 2038 // Sets the datum_size member in Element 2039 SetElementSize(allocation->element); 2040 2041 // Use GetOffsetPointer() to infer size of the allocation 2042 if (!JITAllocationSize(allocation, frame_ptr)) 2043 return false; 2044 2045 return true; 2046 } 2047 2048 // Function attempts to set the type_name member of the paramaterised Element object. 2049 // This string should be the name of the struct type the Element represents. 2050 // We need this string for pretty printing the Element to users. 2051 void 2052 RenderScriptRuntime::FindStructTypeName(Element &elem, StackFrame *frame_ptr) 2053 { 2054 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2055 2056 if (!elem.type_name.IsEmpty()) // Name already set 2057 return; 2058 else 2059 elem.type_name = Element::GetFallbackStructName(); // Default type name if we don't succeed 2060 2061 // Find all the global variables from the script rs modules 2062 VariableList variable_list; 2063 for (auto module_sp : m_rsmodules) 2064 module_sp->m_module->FindGlobalVariables(RegularExpression("."), true, UINT32_MAX, variable_list); 2065 2066 // Iterate over all the global variables looking for one with a matching type to the Element. 2067 // We make the assumption a match exists since there needs to be a global variable to reflect the 2068 // struct type back into java host code. 2069 for (uint32_t var_index = 0; var_index < variable_list.GetSize(); ++var_index) 2070 { 2071 const VariableSP var_sp(variable_list.GetVariableAtIndex(var_index)); 2072 if (!var_sp) 2073 continue; 2074 2075 ValueObjectSP valobj_sp = ValueObjectVariable::Create(frame_ptr, var_sp); 2076 if (!valobj_sp) 2077 continue; 2078 2079 // Find the number of variable fields. 2080 // If it has no fields, or more fields than our Element, then it can't be the struct we're looking for. 2081 // Don't check for equality since RS can add extra struct members for padding. 2082 size_t num_children = valobj_sp->GetNumChildren(); 2083 if (num_children > elem.children.size() || num_children == 0) 2084 continue; 2085 2086 // Iterate over children looking for members with matching field names. 2087 // If all the field names match, this is likely the struct we want. 2088 // 2089 // TODO: This could be made more robust by also checking children data sizes, or array size 2090 bool found = true; 2091 for (size_t child_index = 0; child_index < num_children; ++child_index) 2092 { 2093 ValueObjectSP child = valobj_sp->GetChildAtIndex(child_index, true); 2094 if (!child || (child->GetName() != elem.children[child_index].type_name)) 2095 { 2096 found = false; 2097 break; 2098 } 2099 } 2100 2101 // RS can add extra struct members for padding in the format '#rs_padding_[0-9]+' 2102 if (found && num_children < elem.children.size()) 2103 { 2104 const uint32_t size_diff = elem.children.size() - num_children; 2105 if (log) 2106 log->Printf("%s - %" PRIu32 " padding struct entries", __FUNCTION__, size_diff); 2107 2108 for (uint32_t padding_index = 0; padding_index < size_diff; ++padding_index) 2109 { 2110 const ConstString &name = elem.children[num_children + padding_index].type_name; 2111 if (strcmp(name.AsCString(), "#rs_padding") < 0) 2112 found = false; 2113 } 2114 } 2115 2116 // We've found a global var with matching type 2117 if (found) 2118 { 2119 // Dereference since our Element type isn't a pointer. 2120 if (valobj_sp->IsPointerType()) 2121 { 2122 Error err; 2123 ValueObjectSP deref_valobj = valobj_sp->Dereference(err); 2124 if (!err.Fail()) 2125 valobj_sp = deref_valobj; 2126 } 2127 2128 // Save name of variable in Element. 2129 elem.type_name = valobj_sp->GetTypeName(); 2130 if (log) 2131 log->Printf("%s - element name set to %s", __FUNCTION__, elem.type_name.AsCString()); 2132 2133 return; 2134 } 2135 } 2136 } 2137 2138 // Function sets the datum_size member of Element. Representing the size of a single instance including padding. 2139 // Assumes the relevant allocation information has already been jitted. 2140 void 2141 RenderScriptRuntime::SetElementSize(Element &elem) 2142 { 2143 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2144 const Element::DataType type = *elem.type.get(); 2145 assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && "Invalid allocation type"); 2146 2147 const uint32_t vec_size = *elem.type_vec_size.get(); 2148 uint32_t data_size = 0; 2149 uint32_t padding = 0; 2150 2151 // Element is of a struct type, calculate size recursively. 2152 if ((type == Element::RS_TYPE_NONE) && (elem.children.size() > 0)) 2153 { 2154 for (Element &child : elem.children) 2155 { 2156 SetElementSize(child); 2157 const uint32_t array_size = child.array_size.isValid() ? *child.array_size.get() : 1; 2158 data_size += *child.datum_size.get() * array_size; 2159 } 2160 } 2161 // These have been packed already 2162 else if (type == Element::RS_TYPE_UNSIGNED_5_6_5 || 2163 type == Element::RS_TYPE_UNSIGNED_5_5_5_1 || 2164 type == Element::RS_TYPE_UNSIGNED_4_4_4_4) 2165 { 2166 data_size = AllocationDetails::RSTypeToFormat[type][eElementSize]; 2167 } 2168 else if (type < Element::RS_TYPE_ELEMENT) 2169 { 2170 data_size = vec_size * AllocationDetails::RSTypeToFormat[type][eElementSize]; 2171 if (vec_size == 3) 2172 padding = AllocationDetails::RSTypeToFormat[type][eElementSize]; 2173 } 2174 else 2175 data_size = GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 2176 2177 elem.padding = padding; 2178 elem.datum_size = data_size + padding; 2179 if (log) 2180 log->Printf("%s - element size set to %" PRIu32, __FUNCTION__, data_size + padding); 2181 } 2182 2183 // Given an allocation, this function copies the allocation contents from device into a buffer on the heap. 2184 // Returning a shared pointer to the buffer containing the data. 2185 std::shared_ptr<uint8_t> 2186 RenderScriptRuntime::GetAllocationData(AllocationDetails *allocation, StackFrame *frame_ptr) 2187 { 2188 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2189 2190 // JIT all the allocation details 2191 if (allocation->shouldRefresh()) 2192 { 2193 if (log) 2194 log->Printf("%s - allocation details not calculated yet, jitting info", __FUNCTION__); 2195 2196 if (!RefreshAllocation(allocation, frame_ptr)) 2197 { 2198 if (log) 2199 log->Printf("%s - couldn't JIT allocation details", __FUNCTION__); 2200 return nullptr; 2201 } 2202 } 2203 2204 assert(allocation->data_ptr.isValid() && allocation->element.type.isValid() && 2205 allocation->element.type_vec_size.isValid() && allocation->size.isValid() && 2206 "Allocation information not available"); 2207 2208 // Allocate a buffer to copy data into 2209 const uint32_t size = *allocation->size.get(); 2210 std::shared_ptr<uint8_t> buffer(new uint8_t[size]); 2211 if (!buffer) 2212 { 2213 if (log) 2214 log->Printf("%s - couldn't allocate a %" PRIu32 " byte buffer", __FUNCTION__, size); 2215 return nullptr; 2216 } 2217 2218 // Read the inferior memory 2219 Error error; 2220 lldb::addr_t data_ptr = *allocation->data_ptr.get(); 2221 GetProcess()->ReadMemory(data_ptr, buffer.get(), size, error); 2222 if (error.Fail()) 2223 { 2224 if (log) 2225 log->Printf("%s - '%s' Couldn't read %" PRIu32 " bytes of allocation data from 0x%" PRIx64, 2226 __FUNCTION__, error.AsCString(), size, data_ptr); 2227 return nullptr; 2228 } 2229 2230 return buffer; 2231 } 2232 2233 // Function copies data from a binary file into an allocation. 2234 // There is a header at the start of the file, FileHeader, before the data content itself. 2235 // Information from this header is used to display warnings to the user about incompatibilities 2236 bool 2237 RenderScriptRuntime::LoadAllocation(Stream &strm, const uint32_t alloc_id, const char *filename, StackFrame *frame_ptr) 2238 { 2239 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2240 2241 // Find allocation with the given id 2242 AllocationDetails *alloc = FindAllocByID(strm, alloc_id); 2243 if (!alloc) 2244 return false; 2245 2246 if (log) 2247 log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__, *alloc->address.get()); 2248 2249 // JIT all the allocation details 2250 if (alloc->shouldRefresh()) 2251 { 2252 if (log) 2253 log->Printf("%s - allocation details not calculated yet, jitting info.", __FUNCTION__); 2254 2255 if (!RefreshAllocation(alloc, frame_ptr)) 2256 { 2257 if (log) 2258 log->Printf("%s - couldn't JIT allocation details", __FUNCTION__); 2259 return false; 2260 } 2261 } 2262 2263 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && alloc->element.type_vec_size.isValid() && 2264 alloc->size.isValid() && alloc->element.datum_size.isValid() && "Allocation information not available"); 2265 2266 // Check we can read from file 2267 FileSpec file(filename, true); 2268 if (!file.Exists()) 2269 { 2270 strm.Printf("Error: File %s does not exist", filename); 2271 strm.EOL(); 2272 return false; 2273 } 2274 2275 if (!file.Readable()) 2276 { 2277 strm.Printf("Error: File %s does not have readable permissions", filename); 2278 strm.EOL(); 2279 return false; 2280 } 2281 2282 // Read file into data buffer 2283 DataBufferSP data_sp(file.ReadFileContents()); 2284 2285 // Cast start of buffer to FileHeader and use pointer to read metadata 2286 void *file_buffer = data_sp->GetBytes(); 2287 if (file_buffer == nullptr || 2288 data_sp->GetByteSize() < (sizeof(AllocationDetails::FileHeader) + sizeof(AllocationDetails::ElementHeader))) 2289 { 2290 strm.Printf("Error: File %s does not contain enough data for header", filename); 2291 strm.EOL(); 2292 return false; 2293 } 2294 const AllocationDetails::FileHeader *file_header = static_cast<AllocationDetails::FileHeader *>(file_buffer); 2295 2296 // Check file starts with ascii characters "RSAD" 2297 if (memcmp(file_header->ident, "RSAD", 4)) 2298 { 2299 strm.Printf("Error: File doesn't contain identifier for an RS allocation dump. Are you sure this is the correct file?"); 2300 strm.EOL(); 2301 return false; 2302 } 2303 2304 // Look at the type of the root element in the header 2305 AllocationDetails::ElementHeader root_element_header; 2306 memcpy(&root_element_header, static_cast<uint8_t *>(file_buffer) + sizeof(AllocationDetails::FileHeader), 2307 sizeof(AllocationDetails::ElementHeader)); 2308 2309 if (log) 2310 log->Printf("%s - header type %" PRIu32 ", element size %" PRIu32, __FUNCTION__, 2311 root_element_header.type, root_element_header.element_size); 2312 2313 // Check if the target allocation and file both have the same number of bytes for an Element 2314 if (*alloc->element.datum_size.get() != root_element_header.element_size) 2315 { 2316 strm.Printf("Warning: Mismatched Element sizes - file %" PRIu32 " bytes, allocation %" PRIu32 " bytes", 2317 root_element_header.element_size, *alloc->element.datum_size.get()); 2318 strm.EOL(); 2319 } 2320 2321 // Check if the target allocation and file both have the same type 2322 const uint32_t alloc_type = static_cast<uint32_t>(*alloc->element.type.get()); 2323 const uint32_t file_type = root_element_header.type; 2324 2325 if (file_type > Element::RS_TYPE_FONT) 2326 { 2327 strm.Printf("Warning: File has unknown allocation type"); 2328 strm.EOL(); 2329 } 2330 else if (alloc_type != file_type) 2331 { 2332 // Enum value isn't monotonous, so doesn't always index RsDataTypeToString array 2333 uint32_t printable_target_type_index = alloc_type; 2334 uint32_t printable_head_type_index = file_type; 2335 if (alloc_type >= Element::RS_TYPE_ELEMENT && alloc_type <= Element::RS_TYPE_FONT) 2336 printable_target_type_index = static_cast<Element::DataType>((alloc_type - Element::RS_TYPE_ELEMENT) + 2337 Element::RS_TYPE_MATRIX_2X2 + 1); 2338 2339 if (file_type >= Element::RS_TYPE_ELEMENT && file_type <= Element::RS_TYPE_FONT) 2340 printable_head_type_index = static_cast<Element::DataType>((file_type - Element::RS_TYPE_ELEMENT) + 2341 Element::RS_TYPE_MATRIX_2X2 + 1); 2342 2343 const char *file_type_cstr = AllocationDetails::RsDataTypeToString[printable_head_type_index][0]; 2344 const char *target_type_cstr = AllocationDetails::RsDataTypeToString[printable_target_type_index][0]; 2345 2346 strm.Printf("Warning: Mismatched Types - file '%s' type, allocation '%s' type", file_type_cstr, 2347 target_type_cstr); 2348 strm.EOL(); 2349 } 2350 2351 // Advance buffer past header 2352 file_buffer = static_cast<uint8_t *>(file_buffer) + file_header->hdr_size; 2353 2354 // Calculate size of allocation data in file 2355 size_t length = data_sp->GetByteSize() - file_header->hdr_size; 2356 2357 // Check if the target allocation and file both have the same total data size. 2358 const uint32_t alloc_size = *alloc->size.get(); 2359 if (alloc_size != length) 2360 { 2361 strm.Printf("Warning: Mismatched allocation sizes - file 0x%" PRIx64 " bytes, allocation 0x%" PRIx32 " bytes", 2362 (uint64_t)length, alloc_size); 2363 strm.EOL(); 2364 length = alloc_size < length ? alloc_size : length; // Set length to copy to minimum 2365 } 2366 2367 // Copy file data from our buffer into the target allocation. 2368 lldb::addr_t alloc_data = *alloc->data_ptr.get(); 2369 Error error; 2370 size_t bytes_written = GetProcess()->WriteMemory(alloc_data, file_buffer, length, error); 2371 if (!error.Success() || bytes_written != length) 2372 { 2373 strm.Printf("Error: Couldn't write data to allocation %s", error.AsCString()); 2374 strm.EOL(); 2375 return false; 2376 } 2377 2378 strm.Printf("Contents of file '%s' read into allocation %" PRIu32, filename, alloc->id); 2379 strm.EOL(); 2380 2381 return true; 2382 } 2383 2384 // Function takes as parameters a byte buffer, which will eventually be written to file as the element header, 2385 // an offset into that buffer, and an Element that will be saved into the buffer at the parametrised offset. 2386 // Return value is the new offset after writing the element into the buffer. 2387 // Elements are saved to the file as the ElementHeader struct followed by offsets to the structs of all the element's 2388 // children. 2389 size_t 2390 RenderScriptRuntime::PopulateElementHeaders(const std::shared_ptr<uint8_t> header_buffer, size_t offset, 2391 const Element &elem) 2392 { 2393 // File struct for an element header with all the relevant details copied from elem. 2394 // We assume members are valid already. 2395 AllocationDetails::ElementHeader elem_header; 2396 elem_header.type = *elem.type.get(); 2397 elem_header.kind = *elem.type_kind.get(); 2398 elem_header.element_size = *elem.datum_size.get(); 2399 elem_header.vector_size = *elem.type_vec_size.get(); 2400 elem_header.array_size = elem.array_size.isValid() ? *elem.array_size.get() : 0; 2401 const size_t elem_header_size = sizeof(AllocationDetails::ElementHeader); 2402 2403 // Copy struct into buffer and advance offset 2404 // We assume that header_buffer has been checked for nullptr before this method is called 2405 memcpy(header_buffer.get() + offset, &elem_header, elem_header_size); 2406 offset += elem_header_size; 2407 2408 // Starting offset of child ElementHeader struct 2409 size_t child_offset = offset + ((elem.children.size() + 1) * sizeof(uint32_t)); 2410 for (const RenderScriptRuntime::Element &child : elem.children) 2411 { 2412 // Recursively populate the buffer with the element header structs of children. 2413 // Then save the offsets where they were set after the parent element header. 2414 memcpy(header_buffer.get() + offset, &child_offset, sizeof(uint32_t)); 2415 offset += sizeof(uint32_t); 2416 2417 child_offset = PopulateElementHeaders(header_buffer, child_offset, child); 2418 } 2419 2420 // Zero indicates no more children 2421 memset(header_buffer.get() + offset, 0, sizeof(uint32_t)); 2422 2423 return child_offset; 2424 } 2425 2426 // Given an Element object this function returns the total size needed in the file header to store the element's 2427 // details. 2428 // Taking into account the size of the element header struct, plus the offsets to all the element's children. 2429 // Function is recursive so that the size of all ancestors is taken into account. 2430 size_t 2431 RenderScriptRuntime::CalculateElementHeaderSize(const Element &elem) 2432 { 2433 size_t size = (elem.children.size() + 1) * sizeof(uint32_t); // Offsets to children plus zero terminator 2434 size += sizeof(AllocationDetails::ElementHeader); // Size of header struct with type details 2435 2436 // Calculate recursively for all descendants 2437 for (const Element &child : elem.children) 2438 size += CalculateElementHeaderSize(child); 2439 2440 return size; 2441 } 2442 2443 // Function copies allocation contents into a binary file. 2444 // This file can then be loaded later into a different allocation. 2445 // There is a header, FileHeader, before the allocation data containing meta-data. 2446 bool 2447 RenderScriptRuntime::SaveAllocation(Stream &strm, const uint32_t alloc_id, const char *filename, StackFrame *frame_ptr) 2448 { 2449 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2450 2451 // Find allocation with the given id 2452 AllocationDetails *alloc = FindAllocByID(strm, alloc_id); 2453 if (!alloc) 2454 return false; 2455 2456 if (log) 2457 log->Printf("%s - found allocation 0x%" PRIx64 ".", __FUNCTION__, *alloc->address.get()); 2458 2459 // JIT all the allocation details 2460 if (alloc->shouldRefresh()) 2461 { 2462 if (log) 2463 log->Printf("%s - allocation details not calculated yet, jitting info.", __FUNCTION__); 2464 2465 if (!RefreshAllocation(alloc, frame_ptr)) 2466 { 2467 if (log) 2468 log->Printf("%s - couldn't JIT allocation details.", __FUNCTION__); 2469 return false; 2470 } 2471 } 2472 2473 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && alloc->element.type_vec_size.isValid() && 2474 alloc->element.datum_size.get() && alloc->element.type_kind.isValid() && alloc->dimension.isValid() && 2475 "Allocation information not available"); 2476 2477 // Check we can create writable file 2478 FileSpec file_spec(filename, true); 2479 File file(file_spec, File::eOpenOptionWrite | File::eOpenOptionCanCreate | File::eOpenOptionTruncate); 2480 if (!file) 2481 { 2482 strm.Printf("Error: Failed to open '%s' for writing", filename); 2483 strm.EOL(); 2484 return false; 2485 } 2486 2487 // Read allocation into buffer of heap memory 2488 const std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr); 2489 if (!buffer) 2490 { 2491 strm.Printf("Error: Couldn't read allocation data into buffer"); 2492 strm.EOL(); 2493 return false; 2494 } 2495 2496 // Create the file header 2497 AllocationDetails::FileHeader head; 2498 memcpy(head.ident, "RSAD", 4); 2499 head.dims[0] = static_cast<uint32_t>(alloc->dimension.get()->dim_1); 2500 head.dims[1] = static_cast<uint32_t>(alloc->dimension.get()->dim_2); 2501 head.dims[2] = static_cast<uint32_t>(alloc->dimension.get()->dim_3); 2502 2503 const size_t element_header_size = CalculateElementHeaderSize(alloc->element); 2504 assert((sizeof(AllocationDetails::FileHeader) + element_header_size) < UINT16_MAX && "Element header too large"); 2505 head.hdr_size = static_cast<uint16_t>(sizeof(AllocationDetails::FileHeader) + element_header_size); 2506 2507 // Write the file header 2508 size_t num_bytes = sizeof(AllocationDetails::FileHeader); 2509 if (log) 2510 log->Printf("%s - writing File Header, 0x%" PRIx64 " bytes", __FUNCTION__, (uint64_t)num_bytes); 2511 2512 Error err = file.Write(&head, num_bytes); 2513 if (!err.Success()) 2514 { 2515 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), filename); 2516 strm.EOL(); 2517 return false; 2518 } 2519 2520 // Create the headers describing the element type of the allocation. 2521 std::shared_ptr<uint8_t> element_header_buffer(new uint8_t[element_header_size]); 2522 if (element_header_buffer == nullptr) 2523 { 2524 strm.Printf("Internal Error: Couldn't allocate %" PRIu64 " bytes on the heap", (uint64_t)element_header_size); 2525 strm.EOL(); 2526 return false; 2527 } 2528 2529 PopulateElementHeaders(element_header_buffer, 0, alloc->element); 2530 2531 // Write headers for allocation element type to file 2532 num_bytes = element_header_size; 2533 if (log) 2534 log->Printf("%s - writing element headers, 0x%" PRIx64 " bytes.", __FUNCTION__, (uint64_t)num_bytes); 2535 2536 err = file.Write(element_header_buffer.get(), num_bytes); 2537 if (!err.Success()) 2538 { 2539 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), filename); 2540 strm.EOL(); 2541 return false; 2542 } 2543 2544 // Write allocation data to file 2545 num_bytes = static_cast<size_t>(*alloc->size.get()); 2546 if (log) 2547 log->Printf("%s - writing 0x%" PRIx64 " bytes", __FUNCTION__, (uint64_t)num_bytes); 2548 2549 err = file.Write(buffer.get(), num_bytes); 2550 if (!err.Success()) 2551 { 2552 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), filename); 2553 strm.EOL(); 2554 return false; 2555 } 2556 2557 strm.Printf("Allocation written to file '%s'", filename); 2558 strm.EOL(); 2559 return true; 2560 } 2561 2562 bool 2563 RenderScriptRuntime::LoadModule(const lldb::ModuleSP &module_sp) 2564 { 2565 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2566 2567 if (module_sp) 2568 { 2569 for (const auto &rs_module : m_rsmodules) 2570 { 2571 if (rs_module->m_module == module_sp) 2572 { 2573 // Check if the user has enabled automatically breaking on 2574 // all RS kernels. 2575 if (m_breakAllKernels) 2576 BreakOnModuleKernels(rs_module); 2577 2578 return false; 2579 } 2580 } 2581 bool module_loaded = false; 2582 switch (GetModuleKind(module_sp)) 2583 { 2584 case eModuleKindKernelObj: 2585 { 2586 RSModuleDescriptorSP module_desc; 2587 module_desc.reset(new RSModuleDescriptor(module_sp)); 2588 if (module_desc->ParseRSInfo()) 2589 { 2590 m_rsmodules.push_back(module_desc); 2591 module_loaded = true; 2592 } 2593 if (module_loaded) 2594 { 2595 FixupScriptDetails(module_desc); 2596 } 2597 break; 2598 } 2599 case eModuleKindDriver: 2600 { 2601 if (!m_libRSDriver) 2602 { 2603 m_libRSDriver = module_sp; 2604 LoadRuntimeHooks(m_libRSDriver, RenderScriptRuntime::eModuleKindDriver); 2605 } 2606 break; 2607 } 2608 case eModuleKindImpl: 2609 { 2610 m_libRSCpuRef = module_sp; 2611 break; 2612 } 2613 case eModuleKindLibRS: 2614 { 2615 if (!m_libRS) 2616 { 2617 m_libRS = module_sp; 2618 static ConstString gDbgPresentStr("gDebuggerPresent"); 2619 const Symbol *debug_present = 2620 m_libRS->FindFirstSymbolWithNameAndType(gDbgPresentStr, eSymbolTypeData); 2621 if (debug_present) 2622 { 2623 Error error; 2624 uint32_t flag = 0x00000001U; 2625 Target &target = GetProcess()->GetTarget(); 2626 addr_t addr = debug_present->GetLoadAddress(&target); 2627 GetProcess()->WriteMemory(addr, &flag, sizeof(flag), error); 2628 if (error.Success()) 2629 { 2630 if (log) 2631 log->Printf("%s - debugger present flag set on debugee.", __FUNCTION__); 2632 2633 m_debuggerPresentFlagged = true; 2634 } 2635 else if (log) 2636 { 2637 log->Printf("%s - error writing debugger present flags '%s' ", __FUNCTION__, 2638 error.AsCString()); 2639 } 2640 } 2641 else if (log) 2642 { 2643 log->Printf("%s - error writing debugger present flags - symbol not found", __FUNCTION__); 2644 } 2645 } 2646 break; 2647 } 2648 default: 2649 break; 2650 } 2651 if (module_loaded) 2652 Update(); 2653 return module_loaded; 2654 } 2655 return false; 2656 } 2657 2658 void 2659 RenderScriptRuntime::Update() 2660 { 2661 if (m_rsmodules.size() > 0) 2662 { 2663 if (!m_initiated) 2664 { 2665 Initiate(); 2666 } 2667 } 2668 } 2669 2670 // The maximum line length of an .rs.info packet 2671 #define MAXLINE 500 2672 #define STRINGIFY(x) #x 2673 #define MAXLINESTR_(x) "%" STRINGIFY(x) "s" 2674 #define MAXLINESTR MAXLINESTR_(MAXLINE) 2675 2676 // The .rs.info symbol in renderscript modules contains a string which needs to be parsed. 2677 // The string is basic and is parsed on a line by line basis. 2678 bool 2679 RSModuleDescriptor::ParseRSInfo() 2680 { 2681 assert(m_module); 2682 const Symbol *info_sym = m_module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), eSymbolTypeData); 2683 if (!info_sym) 2684 return false; 2685 2686 const addr_t addr = info_sym->GetAddressRef().GetFileAddress(); 2687 if (addr == LLDB_INVALID_ADDRESS) 2688 return false; 2689 2690 const addr_t size = info_sym->GetByteSize(); 2691 const FileSpec fs = m_module->GetFileSpec(); 2692 2693 const DataBufferSP buffer = fs.ReadFileContents(addr, size); 2694 if (!buffer) 2695 return false; 2696 2697 // split rs.info. contents into lines 2698 std::vector<std::string> info_lines; 2699 { 2700 const std::string info((const char *)buffer->GetBytes()); 2701 for (size_t tail = 0; tail < info.size();) 2702 { 2703 // find next new line or end of string 2704 size_t head = info.find('\n', tail); 2705 head = (head == std::string::npos) ? info.size() : head; 2706 std::string line = info.substr(tail, head - tail); 2707 // add to line list 2708 info_lines.push_back(line); 2709 tail = head + 1; 2710 } 2711 } 2712 2713 std::array<char, MAXLINE> name{{'\0'}}; 2714 std::array<char, MAXLINE> value{{'\0'}}; 2715 2716 // parse all text lines of .rs.info 2717 for (auto line = info_lines.begin(); line != info_lines.end(); ++line) 2718 { 2719 uint32_t numDefns = 0; 2720 if (sscanf(line->c_str(), "exportVarCount: %" PRIu32 "", &numDefns) == 1) 2721 { 2722 while (numDefns--) 2723 m_globals.push_back(RSGlobalDescriptor(this, (++line)->c_str())); 2724 } 2725 else if (sscanf(line->c_str(), "exportForEachCount: %" PRIu32 "", &numDefns) == 1) 2726 { 2727 while (numDefns--) 2728 { 2729 uint32_t slot = 0; 2730 name[0] = '\0'; 2731 static const char *fmt_s = "%" PRIu32 " - " MAXLINESTR; 2732 if (sscanf((++line)->c_str(), fmt_s, &slot, name.data()) == 2) 2733 { 2734 if (name[0] != '\0') 2735 m_kernels.push_back(RSKernelDescriptor(this, name.data(), slot)); 2736 } 2737 } 2738 } 2739 else if (sscanf(line->c_str(), "pragmaCount: %" PRIu32 "", &numDefns) == 1) 2740 { 2741 while (numDefns--) 2742 { 2743 name[0] = value[0] = '\0'; 2744 static const char *fmt_s = MAXLINESTR " - " MAXLINESTR; 2745 if (sscanf((++line)->c_str(), fmt_s, name.data(), value.data()) != 0) 2746 { 2747 if (name[0] != '\0') 2748 m_pragmas[std::string(name.data())] = value.data(); 2749 } 2750 } 2751 } 2752 else 2753 { 2754 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2755 if (log) 2756 { 2757 log->Printf("%s - skipping .rs.info field '%s'", __FUNCTION__, line->c_str()); 2758 } 2759 } 2760 } 2761 2762 // 'root' kernel should always be present 2763 return m_kernels.size() > 0; 2764 } 2765 2766 void 2767 RenderScriptRuntime::Status(Stream &strm) const 2768 { 2769 if (m_libRS) 2770 { 2771 strm.Printf("Runtime Library discovered."); 2772 strm.EOL(); 2773 } 2774 if (m_libRSDriver) 2775 { 2776 strm.Printf("Runtime Driver discovered."); 2777 strm.EOL(); 2778 } 2779 if (m_libRSCpuRef) 2780 { 2781 strm.Printf("CPU Reference Implementation discovered."); 2782 strm.EOL(); 2783 } 2784 2785 if (m_runtimeHooks.size()) 2786 { 2787 strm.Printf("Runtime functions hooked:"); 2788 strm.EOL(); 2789 for (auto b : m_runtimeHooks) 2790 { 2791 strm.Indent(b.second->defn->name); 2792 strm.EOL(); 2793 } 2794 } 2795 else 2796 { 2797 strm.Printf("Runtime is not hooked."); 2798 strm.EOL(); 2799 } 2800 } 2801 2802 void 2803 RenderScriptRuntime::DumpContexts(Stream &strm) const 2804 { 2805 strm.Printf("Inferred RenderScript Contexts:"); 2806 strm.EOL(); 2807 strm.IndentMore(); 2808 2809 std::map<addr_t, uint64_t> contextReferences; 2810 2811 // Iterate over all of the currently discovered scripts. 2812 // Note: We cant push or pop from m_scripts inside this loop or it may invalidate script. 2813 for (const auto &script : m_scripts) 2814 { 2815 if (!script->context.isValid()) 2816 continue; 2817 lldb::addr_t context = *script->context; 2818 2819 if (contextReferences.find(context) != contextReferences.end()) 2820 { 2821 contextReferences[context]++; 2822 } 2823 else 2824 { 2825 contextReferences[context] = 1; 2826 } 2827 } 2828 2829 for (const auto &cRef : contextReferences) 2830 { 2831 strm.Printf("Context 0x%" PRIx64 ": %" PRIu64 " script instances", cRef.first, cRef.second); 2832 strm.EOL(); 2833 } 2834 strm.IndentLess(); 2835 } 2836 2837 void 2838 RenderScriptRuntime::DumpKernels(Stream &strm) const 2839 { 2840 strm.Printf("RenderScript Kernels:"); 2841 strm.EOL(); 2842 strm.IndentMore(); 2843 for (const auto &module : m_rsmodules) 2844 { 2845 strm.Printf("Resource '%s':", module->m_resname.c_str()); 2846 strm.EOL(); 2847 for (const auto &kernel : module->m_kernels) 2848 { 2849 strm.Indent(kernel.m_name.AsCString()); 2850 strm.EOL(); 2851 } 2852 } 2853 strm.IndentLess(); 2854 } 2855 2856 RenderScriptRuntime::AllocationDetails * 2857 RenderScriptRuntime::FindAllocByID(Stream &strm, const uint32_t alloc_id) 2858 { 2859 AllocationDetails *alloc = nullptr; 2860 2861 // See if we can find allocation using id as an index; 2862 if (alloc_id <= m_allocations.size() && alloc_id != 0 && m_allocations[alloc_id - 1]->id == alloc_id) 2863 { 2864 alloc = m_allocations[alloc_id - 1].get(); 2865 return alloc; 2866 } 2867 2868 // Fallback to searching 2869 for (const auto &a : m_allocations) 2870 { 2871 if (a->id == alloc_id) 2872 { 2873 alloc = a.get(); 2874 break; 2875 } 2876 } 2877 2878 if (alloc == nullptr) 2879 { 2880 strm.Printf("Error: Couldn't find allocation with id matching %" PRIu32, alloc_id); 2881 strm.EOL(); 2882 } 2883 2884 return alloc; 2885 } 2886 2887 // Prints the contents of an allocation to the output stream, which may be a file 2888 bool 2889 RenderScriptRuntime::DumpAllocation(Stream &strm, StackFrame *frame_ptr, const uint32_t id) 2890 { 2891 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2892 2893 // Check we can find the desired allocation 2894 AllocationDetails *alloc = FindAllocByID(strm, id); 2895 if (!alloc) 2896 return false; // FindAllocByID() will print error message for us here 2897 2898 if (log) 2899 log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__, *alloc->address.get()); 2900 2901 // Check we have information about the allocation, if not calculate it 2902 if (alloc->shouldRefresh()) 2903 { 2904 if (log) 2905 log->Printf("%s - allocation details not calculated yet, jitting info.", __FUNCTION__); 2906 2907 // JIT all the allocation information 2908 if (!RefreshAllocation(alloc, frame_ptr)) 2909 { 2910 strm.Printf("Error: Couldn't JIT allocation details"); 2911 strm.EOL(); 2912 return false; 2913 } 2914 } 2915 2916 // Establish format and size of each data element 2917 const uint32_t vec_size = *alloc->element.type_vec_size.get(); 2918 const Element::DataType type = *alloc->element.type.get(); 2919 2920 assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && "Invalid allocation type"); 2921 2922 lldb::Format format; 2923 if (type >= Element::RS_TYPE_ELEMENT) 2924 format = eFormatHex; 2925 else 2926 format = vec_size == 1 ? static_cast<lldb::Format>(AllocationDetails::RSTypeToFormat[type][eFormatSingle]) 2927 : static_cast<lldb::Format>(AllocationDetails::RSTypeToFormat[type][eFormatVector]); 2928 2929 const uint32_t data_size = *alloc->element.datum_size.get(); 2930 2931 if (log) 2932 log->Printf("%s - element size %" PRIu32 " bytes, including padding", __FUNCTION__, data_size); 2933 2934 // Allocate a buffer to copy data into 2935 std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr); 2936 if (!buffer) 2937 { 2938 strm.Printf("Error: Couldn't read allocation data"); 2939 strm.EOL(); 2940 return false; 2941 } 2942 2943 // Calculate stride between rows as there may be padding at end of rows since 2944 // allocated memory is 16-byte aligned 2945 if (!alloc->stride.isValid()) 2946 { 2947 if (alloc->dimension.get()->dim_2 == 0) // We only have one dimension 2948 alloc->stride = 0; 2949 else if (!JITAllocationStride(alloc, frame_ptr)) 2950 { 2951 strm.Printf("Error: Couldn't calculate allocation row stride"); 2952 strm.EOL(); 2953 return false; 2954 } 2955 } 2956 const uint32_t stride = *alloc->stride.get(); 2957 const uint32_t size = *alloc->size.get(); // Size of whole allocation 2958 const uint32_t padding = alloc->element.padding.isValid() ? *alloc->element.padding.get() : 0; 2959 if (log) 2960 log->Printf("%s - stride %" PRIu32 " bytes, size %" PRIu32 " bytes, padding %" PRIu32, 2961 __FUNCTION__, stride, size, padding); 2962 2963 // Find dimensions used to index loops, so need to be non-zero 2964 uint32_t dim_x = alloc->dimension.get()->dim_1; 2965 dim_x = dim_x == 0 ? 1 : dim_x; 2966 2967 uint32_t dim_y = alloc->dimension.get()->dim_2; 2968 dim_y = dim_y == 0 ? 1 : dim_y; 2969 2970 uint32_t dim_z = alloc->dimension.get()->dim_3; 2971 dim_z = dim_z == 0 ? 1 : dim_z; 2972 2973 // Use data extractor to format output 2974 const uint32_t archByteSize = GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 2975 DataExtractor alloc_data(buffer.get(), size, GetProcess()->GetByteOrder(), archByteSize); 2976 2977 uint32_t offset = 0; // Offset in buffer to next element to be printed 2978 uint32_t prev_row = 0; // Offset to the start of the previous row 2979 2980 // Iterate over allocation dimensions, printing results to user 2981 strm.Printf("Data (X, Y, Z):"); 2982 for (uint32_t z = 0; z < dim_z; ++z) 2983 { 2984 for (uint32_t y = 0; y < dim_y; ++y) 2985 { 2986 // Use stride to index start of next row. 2987 if (!(y == 0 && z == 0)) 2988 offset = prev_row + stride; 2989 prev_row = offset; 2990 2991 // Print each element in the row individually 2992 for (uint32_t x = 0; x < dim_x; ++x) 2993 { 2994 strm.Printf("\n(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ") = ", x, y, z); 2995 if ((type == Element::RS_TYPE_NONE) && (alloc->element.children.size() > 0) && 2996 (alloc->element.type_name != Element::GetFallbackStructName())) 2997 { 2998 // Here we are dumping an Element of struct type. 2999 // This is done using expression evaluation with the name of the struct type and pointer to element. 3000 3001 // Don't print the name of the resulting expression, since this will be '$[0-9]+' 3002 DumpValueObjectOptions expr_options; 3003 expr_options.SetHideName(true); 3004 3005 // Setup expression as derefrencing a pointer cast to element address. 3006 char expr_char_buffer[jit_max_expr_size]; 3007 int chars_written = snprintf(expr_char_buffer, jit_max_expr_size, "*(%s*) 0x%" PRIx64, 3008 alloc->element.type_name.AsCString(), *alloc->data_ptr.get() + offset); 3009 3010 if (chars_written < 0 || chars_written >= jit_max_expr_size) 3011 { 3012 if (log) 3013 log->Printf("%s - error in snprintf().", __FUNCTION__); 3014 continue; 3015 } 3016 3017 // Evaluate expression 3018 ValueObjectSP expr_result; 3019 GetProcess()->GetTarget().EvaluateExpression(expr_char_buffer, frame_ptr, expr_result); 3020 3021 // Print the results to our stream. 3022 expr_result->Dump(strm, expr_options); 3023 } 3024 else 3025 { 3026 alloc_data.Dump(&strm, offset, format, data_size - padding, 1, 1, LLDB_INVALID_ADDRESS, 0, 0); 3027 } 3028 offset += data_size; 3029 } 3030 } 3031 } 3032 strm.EOL(); 3033 3034 return true; 3035 } 3036 3037 // Function recalculates all our cached information about allocations by jitting the 3038 // RS runtime regarding each allocation we know about. 3039 // Returns true if all allocations could be recomputed, false otherwise. 3040 bool 3041 RenderScriptRuntime::RecomputeAllAllocations(Stream &strm, StackFrame *frame_ptr) 3042 { 3043 bool success = true; 3044 for (auto &alloc : m_allocations) 3045 { 3046 // JIT current allocation information 3047 if (!RefreshAllocation(alloc.get(), frame_ptr)) 3048 { 3049 strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32 "\n", alloc->id); 3050 success = false; 3051 } 3052 } 3053 3054 if (success) 3055 strm.Printf("All allocations successfully recomputed"); 3056 strm.EOL(); 3057 3058 return success; 3059 } 3060 3061 // Prints information regarding currently loaded allocations. 3062 // These details are gathered by jitting the runtime, which has as latency. 3063 // Index parameter specifies a single allocation ID to print, or a zero value to print them all 3064 void 3065 RenderScriptRuntime::ListAllocations(Stream &strm, StackFrame *frame_ptr, const uint32_t index) 3066 { 3067 strm.Printf("RenderScript Allocations:"); 3068 strm.EOL(); 3069 strm.IndentMore(); 3070 3071 for (auto &alloc : m_allocations) 3072 { 3073 // index will only be zero if we want to print all allocations 3074 if (index != 0 && index != alloc->id) 3075 continue; 3076 3077 // JIT current allocation information 3078 if (alloc->shouldRefresh() && !RefreshAllocation(alloc.get(), frame_ptr)) 3079 { 3080 strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32, alloc->id); 3081 strm.EOL(); 3082 continue; 3083 } 3084 3085 strm.Printf("%" PRIu32 ":", alloc->id); 3086 strm.EOL(); 3087 strm.IndentMore(); 3088 3089 strm.Indent("Context: "); 3090 if (!alloc->context.isValid()) 3091 strm.Printf("unknown\n"); 3092 else 3093 strm.Printf("0x%" PRIx64 "\n", *alloc->context.get()); 3094 3095 strm.Indent("Address: "); 3096 if (!alloc->address.isValid()) 3097 strm.Printf("unknown\n"); 3098 else 3099 strm.Printf("0x%" PRIx64 "\n", *alloc->address.get()); 3100 3101 strm.Indent("Data pointer: "); 3102 if (!alloc->data_ptr.isValid()) 3103 strm.Printf("unknown\n"); 3104 else 3105 strm.Printf("0x%" PRIx64 "\n", *alloc->data_ptr.get()); 3106 3107 strm.Indent("Dimensions: "); 3108 if (!alloc->dimension.isValid()) 3109 strm.Printf("unknown\n"); 3110 else 3111 strm.Printf("(%" PRId32 ", %" PRId32 ", %" PRId32 ")\n", 3112 alloc->dimension.get()->dim_1, alloc->dimension.get()->dim_2, alloc->dimension.get()->dim_3); 3113 3114 strm.Indent("Data Type: "); 3115 if (!alloc->element.type.isValid() || !alloc->element.type_vec_size.isValid()) 3116 strm.Printf("unknown\n"); 3117 else 3118 { 3119 const int vector_size = *alloc->element.type_vec_size.get(); 3120 Element::DataType type = *alloc->element.type.get(); 3121 3122 if (!alloc->element.type_name.IsEmpty()) 3123 strm.Printf("%s\n", alloc->element.type_name.AsCString()); 3124 else 3125 { 3126 // Enum value isn't monotonous, so doesn't always index RsDataTypeToString array 3127 if (type >= Element::RS_TYPE_ELEMENT && type <= Element::RS_TYPE_FONT) 3128 type = static_cast<Element::DataType>((type - Element::RS_TYPE_ELEMENT) + 3129 Element::RS_TYPE_MATRIX_2X2 + 1); 3130 3131 if (type >= (sizeof(AllocationDetails::RsDataTypeToString) / 3132 sizeof(AllocationDetails::RsDataTypeToString[0])) || 3133 vector_size > 4 || vector_size < 1) 3134 strm.Printf("invalid type\n"); 3135 else 3136 strm.Printf("%s\n", AllocationDetails::RsDataTypeToString[static_cast<uint32_t>(type)] 3137 [vector_size - 1]); 3138 } 3139 } 3140 3141 strm.Indent("Data Kind: "); 3142 if (!alloc->element.type_kind.isValid()) 3143 strm.Printf("unknown\n"); 3144 else 3145 { 3146 const Element::DataKind kind = *alloc->element.type_kind.get(); 3147 if (kind < Element::RS_KIND_USER || kind > Element::RS_KIND_PIXEL_YUV) 3148 strm.Printf("invalid kind\n"); 3149 else 3150 strm.Printf("%s\n", AllocationDetails::RsDataKindToString[static_cast<uint32_t>(kind)]); 3151 } 3152 3153 strm.EOL(); 3154 strm.IndentLess(); 3155 } 3156 strm.IndentLess(); 3157 } 3158 3159 // Set breakpoints on every kernel found in RS module 3160 void 3161 RenderScriptRuntime::BreakOnModuleKernels(const RSModuleDescriptorSP rsmodule_sp) 3162 { 3163 for (const auto &kernel : rsmodule_sp->m_kernels) 3164 { 3165 // Don't set breakpoint on 'root' kernel 3166 if (strcmp(kernel.m_name.AsCString(), "root") == 0) 3167 continue; 3168 3169 CreateKernelBreakpoint(kernel.m_name); 3170 } 3171 } 3172 3173 // Method is internally called by the 'kernel breakpoint all' command to 3174 // enable or disable breaking on all kernels. 3175 // 3176 // When do_break is true we want to enable this functionality. 3177 // When do_break is false we want to disable it. 3178 void 3179 RenderScriptRuntime::SetBreakAllKernels(bool do_break, TargetSP target) 3180 { 3181 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3182 3183 InitSearchFilter(target); 3184 3185 // Set breakpoints on all the kernels 3186 if (do_break && !m_breakAllKernels) 3187 { 3188 m_breakAllKernels = true; 3189 3190 for (const auto &module : m_rsmodules) 3191 BreakOnModuleKernels(module); 3192 3193 if (log) 3194 log->Printf("%s(True) - breakpoints set on all currently loaded kernels.", __FUNCTION__); 3195 } 3196 else if (!do_break && m_breakAllKernels) // Breakpoints won't be set on any new kernels. 3197 { 3198 m_breakAllKernels = false; 3199 3200 if (log) 3201 log->Printf("%s(False) - breakpoints no longer automatically set.", __FUNCTION__); 3202 } 3203 } 3204 3205 // Given the name of a kernel this function creates a breakpoint using our 3206 // own breakpoint resolver, and returns the Breakpoint shared pointer. 3207 BreakpointSP 3208 RenderScriptRuntime::CreateKernelBreakpoint(const ConstString &name) 3209 { 3210 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3211 3212 if (!m_filtersp) 3213 { 3214 if (log) 3215 log->Printf("%s - error, no breakpoint search filter set.", __FUNCTION__); 3216 return nullptr; 3217 } 3218 3219 BreakpointResolverSP resolver_sp(new RSBreakpointResolver(nullptr, name)); 3220 BreakpointSP bp = GetProcess()->GetTarget().CreateBreakpoint(m_filtersp, resolver_sp, false, false, false); 3221 3222 // Give RS breakpoints a specific name, so the user can manipulate them as a group. 3223 Error err; 3224 if (!bp->AddName("RenderScriptKernel", err) && log) 3225 log->Printf("%s - error setting break name, '%s'.", __FUNCTION__, err.AsCString()); 3226 3227 return bp; 3228 } 3229 3230 // Given an expression for a variable this function tries to calculate the variable's value. 3231 // If this is possible it returns true and sets the uint64_t parameter to the variables unsigned value. 3232 // Otherwise function returns false. 3233 bool 3234 RenderScriptRuntime::GetFrameVarAsUnsigned(const StackFrameSP frame_sp, const char *var_name, uint64_t &val) 3235 { 3236 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3237 Error error; 3238 VariableSP var_sp; 3239 3240 // Find variable in stack frame 3241 ValueObjectSP value_sp(frame_sp->GetValueForVariableExpressionPath( 3242 var_name, eNoDynamicValues, 3243 StackFrame::eExpressionPathOptionCheckPtrVsMember | StackFrame::eExpressionPathOptionsAllowDirectIVarAccess, 3244 var_sp, error)); 3245 if (!error.Success()) 3246 { 3247 if (log) 3248 log->Printf("%s - error, couldn't find '%s' in frame", __FUNCTION__, var_name); 3249 return false; 3250 } 3251 3252 // Find the uint32_t value for the variable 3253 bool success = false; 3254 val = value_sp->GetValueAsUnsigned(0, &success); 3255 if (!success) 3256 { 3257 if (log) 3258 log->Printf("%s - error, couldn't parse '%s' as an uint32_t.", __FUNCTION__, var_name); 3259 return false; 3260 } 3261 3262 return true; 3263 } 3264 3265 // Function attempts to find the current coordinate of a kernel invocation by investigating the 3266 // values of frame variables in the .expand function. These coordinates are returned via the coord 3267 // array reference parameter. Returns true if the coordinates could be found, and false otherwise. 3268 bool 3269 RenderScriptRuntime::GetKernelCoordinate(RSCoordinate &coord, Thread *thread_ptr) 3270 { 3271 static const std::string s_runtimeExpandSuffix(".expand"); 3272 static const std::array<const char *, 3> s_runtimeCoordVars{{"rsIndex", "p->current.y", "p->current.z"}}; 3273 3274 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3275 3276 if (!thread_ptr) 3277 { 3278 if (log) 3279 log->Printf("%s - Error, No thread pointer", __FUNCTION__); 3280 3281 return false; 3282 } 3283 3284 // Walk the call stack looking for a function whose name has the suffix '.expand' 3285 // and contains the variables we're looking for. 3286 for (uint32_t i = 0; i < thread_ptr->GetStackFrameCount(); ++i) 3287 { 3288 if (!thread_ptr->SetSelectedFrameByIndex(i)) 3289 continue; 3290 3291 StackFrameSP frame_sp = thread_ptr->GetSelectedFrame(); 3292 if (!frame_sp) 3293 continue; 3294 3295 // Find the function name 3296 const SymbolContext sym_ctx = frame_sp->GetSymbolContext(false); 3297 const char *func_name_cstr = sym_ctx.GetFunctionName().AsCString(); 3298 if (!func_name_cstr) 3299 continue; 3300 3301 if (log) 3302 log->Printf("%s - Inspecting function '%s'", __FUNCTION__, func_name_cstr); 3303 3304 // Check if function name has .expand suffix 3305 std::string func_name(func_name_cstr); 3306 const int length_difference = func_name.length() - s_runtimeExpandSuffix.length(); 3307 if (length_difference <= 0) 3308 continue; 3309 3310 const int32_t has_expand_suffix = func_name.compare(length_difference, 3311 s_runtimeExpandSuffix.length(), 3312 s_runtimeExpandSuffix); 3313 3314 if (has_expand_suffix != 0) 3315 continue; 3316 3317 if (log) 3318 log->Printf("%s - Found .expand function '%s'", __FUNCTION__, func_name_cstr); 3319 3320 // Get values for variables in .expand frame that tell us the current kernel invocation 3321 bool found_coord_variables = true; 3322 assert(s_runtimeCoordVars.size() == coord.size()); 3323 3324 for (uint32_t i = 0; i < coord.size(); ++i) 3325 { 3326 uint64_t value = 0; 3327 if (!GetFrameVarAsUnsigned(frame_sp, s_runtimeCoordVars[i], value)) 3328 { 3329 found_coord_variables = false; 3330 break; 3331 } 3332 coord[i] = value; 3333 } 3334 3335 if (found_coord_variables) 3336 return true; 3337 } 3338 return false; 3339 } 3340 3341 // Callback when a kernel breakpoint hits and we're looking for a specific coordinate. 3342 // Baton parameter contains a pointer to the target coordinate we want to break on. 3343 // Function then checks the .expand frame for the current coordinate and breaks to user if it matches. 3344 // Parameter 'break_id' is the id of the Breakpoint which made the callback. 3345 // Parameter 'break_loc_id' is the id for the BreakpointLocation which was hit, 3346 // a single logical breakpoint can have multiple addresses. 3347 bool 3348 RenderScriptRuntime::KernelBreakpointHit(void *baton, StoppointCallbackContext *ctx, user_id_t break_id, 3349 user_id_t break_loc_id) 3350 { 3351 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3352 3353 assert(baton && "Error: null baton in conditional kernel breakpoint callback"); 3354 3355 // Coordinate we want to stop on 3356 const uint32_t *target_coord = static_cast<const uint32_t *>(baton); 3357 3358 if (log) 3359 log->Printf("%s - Break ID %" PRIu64 ", (%" PRIu32 ", %" PRIu32 ", %" PRIu32 ")", __FUNCTION__, break_id, 3360 target_coord[0], target_coord[1], target_coord[2]); 3361 3362 // Select current thread 3363 ExecutionContext context(ctx->exe_ctx_ref); 3364 Thread *thread_ptr = context.GetThreadPtr(); 3365 assert(thread_ptr && "Null thread pointer"); 3366 3367 // Find current kernel invocation from .expand frame variables 3368 RSCoordinate current_coord{}; // Zero initialise array 3369 if (!GetKernelCoordinate(current_coord, thread_ptr)) 3370 { 3371 if (log) 3372 log->Printf("%s - Error, couldn't select .expand stack frame", __FUNCTION__); 3373 return false; 3374 } 3375 3376 if (log) 3377 log->Printf("%s - (%" PRIu32 ",%" PRIu32 ",%" PRIu32 ")", __FUNCTION__, current_coord[0], current_coord[1], 3378 current_coord[2]); 3379 3380 // Check if the current kernel invocation coordinate matches our target coordinate 3381 if (current_coord[0] == target_coord[0] && 3382 current_coord[1] == target_coord[1] && 3383 current_coord[2] == target_coord[2]) 3384 { 3385 if (log) 3386 log->Printf("%s, BREAKING (%" PRIu32 ",%" PRIu32 ",%" PRIu32 ")", __FUNCTION__, current_coord[0], 3387 current_coord[1], current_coord[2]); 3388 3389 BreakpointSP breakpoint_sp = context.GetTargetPtr()->GetBreakpointByID(break_id); 3390 assert(breakpoint_sp != nullptr && "Error: Couldn't find breakpoint matching break id for callback"); 3391 breakpoint_sp->SetEnabled(false); // Optimise since conditional breakpoint should only be hit once. 3392 return true; 3393 } 3394 3395 // No match on coordinate 3396 return false; 3397 } 3398 3399 // Tries to set a breakpoint on the start of a kernel, resolved using the kernel name. 3400 // Argument 'coords', represents a three dimensional coordinate which can be used to specify 3401 // a single kernel instance to break on. If this is set then we add a callback to the breakpoint. 3402 void 3403 RenderScriptRuntime::PlaceBreakpointOnKernel(Stream &strm, const char *name, const std::array<int, 3> coords, 3404 Error &error, TargetSP target) 3405 { 3406 if (!name) 3407 { 3408 error.SetErrorString("invalid kernel name"); 3409 return; 3410 } 3411 3412 InitSearchFilter(target); 3413 3414 ConstString kernel_name(name); 3415 BreakpointSP bp = CreateKernelBreakpoint(kernel_name); 3416 3417 // We have a conditional breakpoint on a specific coordinate 3418 if (coords[0] != -1) 3419 { 3420 strm.Printf("Conditional kernel breakpoint on coordinate %" PRId32 ", %" PRId32 ", %" PRId32, 3421 coords[0], coords[1], coords[2]); 3422 strm.EOL(); 3423 3424 // Allocate memory for the baton, and copy over coordinate 3425 uint32_t *baton = new uint32_t[coords.size()]; 3426 baton[0] = coords[0]; baton[1] = coords[1]; baton[2] = coords[2]; 3427 3428 // Create a callback that will be invoked every time the breakpoint is hit. 3429 // The baton object passed to the handler is the target coordinate we want to break on. 3430 bp->SetCallback(KernelBreakpointHit, baton, true); 3431 3432 // Store a shared pointer to the baton, so the memory will eventually be cleaned up after destruction 3433 m_conditional_breaks[bp->GetID()] = std::shared_ptr<uint32_t>(baton); 3434 } 3435 3436 if (bp) 3437 bp->GetDescription(&strm, lldb::eDescriptionLevelInitial, false); 3438 } 3439 3440 void 3441 RenderScriptRuntime::DumpModules(Stream &strm) const 3442 { 3443 strm.Printf("RenderScript Modules:"); 3444 strm.EOL(); 3445 strm.IndentMore(); 3446 for (const auto &module : m_rsmodules) 3447 { 3448 module->Dump(strm); 3449 } 3450 strm.IndentLess(); 3451 } 3452 3453 RenderScriptRuntime::ScriptDetails * 3454 RenderScriptRuntime::LookUpScript(addr_t address, bool create) 3455 { 3456 for (const auto &s : m_scripts) 3457 { 3458 if (s->script.isValid()) 3459 if (*s->script == address) 3460 return s.get(); 3461 } 3462 if (create) 3463 { 3464 std::unique_ptr<ScriptDetails> s(new ScriptDetails); 3465 s->script = address; 3466 m_scripts.push_back(std::move(s)); 3467 return m_scripts.back().get(); 3468 } 3469 return nullptr; 3470 } 3471 3472 RenderScriptRuntime::AllocationDetails * 3473 RenderScriptRuntime::LookUpAllocation(addr_t address) 3474 { 3475 for (const auto &a : m_allocations) 3476 { 3477 if (a->address.isValid()) 3478 if (*a->address == address) 3479 return a.get(); 3480 } 3481 return nullptr; 3482 } 3483 3484 RenderScriptRuntime::AllocationDetails * 3485 RenderScriptRuntime::CreateAllocation(addr_t address) 3486 { 3487 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 3488 3489 // Remove any previous allocation which contains the same address 3490 auto it = m_allocations.begin(); 3491 while (it != m_allocations.end()) 3492 { 3493 if (*((*it)->address) == address) 3494 { 3495 if (log) 3496 log->Printf("%s - Removing allocation id: %d, address: 0x%" PRIx64, __FUNCTION__, (*it)->id, address); 3497 3498 it = m_allocations.erase(it); 3499 } 3500 else 3501 { 3502 it++; 3503 } 3504 } 3505 3506 std::unique_ptr<AllocationDetails> a(new AllocationDetails); 3507 a->address = address; 3508 m_allocations.push_back(std::move(a)); 3509 return m_allocations.back().get(); 3510 } 3511 3512 void 3513 RSModuleDescriptor::Dump(Stream &strm) const 3514 { 3515 strm.Indent(); 3516 m_module->GetFileSpec().Dump(&strm); 3517 if (m_module->GetNumCompileUnits()) 3518 { 3519 strm.Indent("Debug info loaded."); 3520 } 3521 else 3522 { 3523 strm.Indent("Debug info does not exist."); 3524 } 3525 strm.EOL(); 3526 strm.IndentMore(); 3527 strm.Indent(); 3528 strm.Printf("Globals: %" PRIu64, static_cast<uint64_t>(m_globals.size())); 3529 strm.EOL(); 3530 strm.IndentMore(); 3531 for (const auto &global : m_globals) 3532 { 3533 global.Dump(strm); 3534 } 3535 strm.IndentLess(); 3536 strm.Indent(); 3537 strm.Printf("Kernels: %" PRIu64, static_cast<uint64_t>(m_kernels.size())); 3538 strm.EOL(); 3539 strm.IndentMore(); 3540 for (const auto &kernel : m_kernels) 3541 { 3542 kernel.Dump(strm); 3543 } 3544 strm.Printf("Pragmas: %" PRIu64, static_cast<uint64_t>(m_pragmas.size())); 3545 strm.EOL(); 3546 strm.IndentMore(); 3547 for (const auto &key_val : m_pragmas) 3548 { 3549 strm.Printf("%s: %s", key_val.first.c_str(), key_val.second.c_str()); 3550 strm.EOL(); 3551 } 3552 strm.IndentLess(4); 3553 } 3554 3555 void 3556 RSGlobalDescriptor::Dump(Stream &strm) const 3557 { 3558 strm.Indent(m_name.AsCString()); 3559 VariableList var_list; 3560 m_module->m_module->FindGlobalVariables(m_name, nullptr, true, 1U, var_list); 3561 if (var_list.GetSize() == 1) 3562 { 3563 auto var = var_list.GetVariableAtIndex(0); 3564 auto type = var->GetType(); 3565 if (type) 3566 { 3567 strm.Printf(" - "); 3568 type->DumpTypeName(&strm); 3569 } 3570 else 3571 { 3572 strm.Printf(" - Unknown Type"); 3573 } 3574 } 3575 else 3576 { 3577 strm.Printf(" - variable identified, but not found in binary"); 3578 const Symbol *s = m_module->m_module->FindFirstSymbolWithNameAndType(m_name, eSymbolTypeData); 3579 if (s) 3580 { 3581 strm.Printf(" (symbol exists) "); 3582 } 3583 } 3584 3585 strm.EOL(); 3586 } 3587 3588 void 3589 RSKernelDescriptor::Dump(Stream &strm) const 3590 { 3591 strm.Indent(m_name.AsCString()); 3592 strm.EOL(); 3593 } 3594 3595 class CommandObjectRenderScriptRuntimeModuleDump : public CommandObjectParsed 3596 { 3597 public: 3598 CommandObjectRenderScriptRuntimeModuleDump(CommandInterpreter &interpreter) 3599 : CommandObjectParsed(interpreter, "renderscript module dump", 3600 "Dumps renderscript specific information for all modules.", "renderscript module dump", 3601 eCommandRequiresProcess | eCommandProcessMustBeLaunched) 3602 { 3603 } 3604 3605 ~CommandObjectRenderScriptRuntimeModuleDump() override = default; 3606 3607 bool 3608 DoExecute(Args &command, CommandReturnObject &result) override 3609 { 3610 RenderScriptRuntime *runtime = 3611 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript); 3612 runtime->DumpModules(result.GetOutputStream()); 3613 result.SetStatus(eReturnStatusSuccessFinishResult); 3614 return true; 3615 } 3616 }; 3617 3618 class CommandObjectRenderScriptRuntimeModule : public CommandObjectMultiword 3619 { 3620 public: 3621 CommandObjectRenderScriptRuntimeModule(CommandInterpreter &interpreter) 3622 : CommandObjectMultiword(interpreter, "renderscript module", "Commands that deal with RenderScript modules.", 3623 nullptr) 3624 { 3625 LoadSubCommand("dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeModuleDump(interpreter))); 3626 } 3627 3628 ~CommandObjectRenderScriptRuntimeModule() override = default; 3629 }; 3630 3631 class CommandObjectRenderScriptRuntimeKernelList : public CommandObjectParsed 3632 { 3633 public: 3634 CommandObjectRenderScriptRuntimeKernelList(CommandInterpreter &interpreter) 3635 : CommandObjectParsed(interpreter, "renderscript kernel list", 3636 "Lists renderscript kernel names and associated script resources.", 3637 "renderscript kernel list", eCommandRequiresProcess | eCommandProcessMustBeLaunched) 3638 { 3639 } 3640 3641 ~CommandObjectRenderScriptRuntimeKernelList() override = default; 3642 3643 bool 3644 DoExecute(Args &command, CommandReturnObject &result) override 3645 { 3646 RenderScriptRuntime *runtime = 3647 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript); 3648 runtime->DumpKernels(result.GetOutputStream()); 3649 result.SetStatus(eReturnStatusSuccessFinishResult); 3650 return true; 3651 } 3652 }; 3653 3654 class CommandObjectRenderScriptRuntimeKernelBreakpointSet : public CommandObjectParsed 3655 { 3656 public: 3657 CommandObjectRenderScriptRuntimeKernelBreakpointSet(CommandInterpreter &interpreter) 3658 : CommandObjectParsed(interpreter, "renderscript kernel breakpoint set", 3659 "Sets a breakpoint on a renderscript kernel.", 3660 "renderscript kernel breakpoint set <kernel_name> [-c x,y,z]", 3661 eCommandRequiresProcess | eCommandProcessMustBeLaunched | eCommandProcessMustBePaused), 3662 m_options(interpreter) 3663 { 3664 } 3665 3666 ~CommandObjectRenderScriptRuntimeKernelBreakpointSet() override = default; 3667 3668 Options * 3669 GetOptions() override 3670 { 3671 return &m_options; 3672 } 3673 3674 class CommandOptions : public Options 3675 { 3676 public: 3677 CommandOptions(CommandInterpreter &interpreter) : Options(interpreter) {} 3678 3679 ~CommandOptions() override = default; 3680 3681 Error 3682 SetOptionValue(uint32_t option_idx, const char *option_arg) override 3683 { 3684 Error error; 3685 const int short_option = m_getopt_table[option_idx].val; 3686 3687 switch (short_option) 3688 { 3689 case 'c': 3690 if (!ParseCoordinate(option_arg)) 3691 error.SetErrorStringWithFormat("Couldn't parse coordinate '%s', should be in format 'x,y,z'.", 3692 option_arg); 3693 break; 3694 default: 3695 error.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 3696 break; 3697 } 3698 return error; 3699 } 3700 3701 // -c takes an argument of the form 'num[,num][,num]'. 3702 // Where 'id_cstr' is this argument with the whitespace trimmed. 3703 // Missing coordinates are defaulted to zero. 3704 bool 3705 ParseCoordinate(const char *id_cstr) 3706 { 3707 RegularExpression regex; 3708 RegularExpression::Match regex_match(3); 3709 3710 bool matched = false; 3711 if (regex.Compile("^([0-9]+),([0-9]+),([0-9]+)$") && regex.Execute(id_cstr, ®ex_match)) 3712 matched = true; 3713 else if (regex.Compile("^([0-9]+),([0-9]+)$") && regex.Execute(id_cstr, ®ex_match)) 3714 matched = true; 3715 else if (regex.Compile("^([0-9]+)$") && regex.Execute(id_cstr, ®ex_match)) 3716 matched = true; 3717 for (uint32_t i = 0; i < 3; i++) 3718 { 3719 std::string group; 3720 if (regex_match.GetMatchAtIndex(id_cstr, i + 1, group)) 3721 m_coord[i] = (uint32_t)strtoul(group.c_str(), nullptr, 0); 3722 else 3723 m_coord[i] = 0; 3724 } 3725 return matched; 3726 } 3727 3728 void 3729 OptionParsingStarting() override 3730 { 3731 // -1 means the -c option hasn't been set 3732 m_coord[0] = -1; 3733 m_coord[1] = -1; 3734 m_coord[2] = -1; 3735 } 3736 3737 const OptionDefinition * 3738 GetDefinitions() override 3739 { 3740 return g_option_table; 3741 } 3742 3743 static OptionDefinition g_option_table[]; 3744 std::array<int, 3> m_coord; 3745 }; 3746 3747 bool 3748 DoExecute(Args &command, CommandReturnObject &result) override 3749 { 3750 const size_t argc = command.GetArgumentCount(); 3751 if (argc < 1) 3752 { 3753 result.AppendErrorWithFormat("'%s' takes 1 argument of kernel name, and an optional coordinate.", 3754 m_cmd_name.c_str()); 3755 result.SetStatus(eReturnStatusFailed); 3756 return false; 3757 } 3758 3759 RenderScriptRuntime *runtime = 3760 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript); 3761 3762 Error error; 3763 runtime->PlaceBreakpointOnKernel(result.GetOutputStream(), command.GetArgumentAtIndex(0), m_options.m_coord, 3764 error, m_exe_ctx.GetTargetSP()); 3765 3766 if (error.Success()) 3767 { 3768 result.AppendMessage("Breakpoint(s) created"); 3769 result.SetStatus(eReturnStatusSuccessFinishResult); 3770 return true; 3771 } 3772 result.SetStatus(eReturnStatusFailed); 3773 result.AppendErrorWithFormat("Error: %s", error.AsCString()); 3774 return false; 3775 } 3776 3777 private: 3778 CommandOptions m_options; 3779 }; 3780 3781 OptionDefinition CommandObjectRenderScriptRuntimeKernelBreakpointSet::CommandOptions::g_option_table[] = { 3782 {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeValue, 3783 "Set a breakpoint on a single invocation of the kernel with specified coordinate.\n" 3784 "Coordinate takes the form 'x[,y][,z] where x,y,z are positive integers representing kernel dimensions. " 3785 "Any unset dimensions will be defaulted to zero."}, 3786 {0, false, nullptr, 0, 0, nullptr, nullptr, 0, eArgTypeNone, nullptr}}; 3787 3788 class CommandObjectRenderScriptRuntimeKernelBreakpointAll : public CommandObjectParsed 3789 { 3790 public: 3791 CommandObjectRenderScriptRuntimeKernelBreakpointAll(CommandInterpreter &interpreter) 3792 : CommandObjectParsed( 3793 interpreter, "renderscript kernel breakpoint all", 3794 "Automatically sets a breakpoint on all renderscript kernels that are or will be loaded.\n" 3795 "Disabling option means breakpoints will no longer be set on any kernels loaded in the future, " 3796 "but does not remove currently set breakpoints.", 3797 "renderscript kernel breakpoint all <enable/disable>", 3798 eCommandRequiresProcess | eCommandProcessMustBeLaunched | eCommandProcessMustBePaused) 3799 { 3800 } 3801 3802 ~CommandObjectRenderScriptRuntimeKernelBreakpointAll() override = default; 3803 3804 bool 3805 DoExecute(Args &command, CommandReturnObject &result) override 3806 { 3807 const size_t argc = command.GetArgumentCount(); 3808 if (argc != 1) 3809 { 3810 result.AppendErrorWithFormat("'%s' takes 1 argument of 'enable' or 'disable'", m_cmd_name.c_str()); 3811 result.SetStatus(eReturnStatusFailed); 3812 return false; 3813 } 3814 3815 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 3816 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript)); 3817 3818 bool do_break = false; 3819 const char *argument = command.GetArgumentAtIndex(0); 3820 if (strcmp(argument, "enable") == 0) 3821 { 3822 do_break = true; 3823 result.AppendMessage("Breakpoints will be set on all kernels."); 3824 } 3825 else if (strcmp(argument, "disable") == 0) 3826 { 3827 do_break = false; 3828 result.AppendMessage("Breakpoints will not be set on any new kernels."); 3829 } 3830 else 3831 { 3832 result.AppendErrorWithFormat("Argument must be either 'enable' or 'disable'"); 3833 result.SetStatus(eReturnStatusFailed); 3834 return false; 3835 } 3836 3837 runtime->SetBreakAllKernels(do_break, m_exe_ctx.GetTargetSP()); 3838 3839 result.SetStatus(eReturnStatusSuccessFinishResult); 3840 return true; 3841 } 3842 }; 3843 3844 class CommandObjectRenderScriptRuntimeKernelCoordinate : public CommandObjectParsed 3845 { 3846 public: 3847 CommandObjectRenderScriptRuntimeKernelCoordinate(CommandInterpreter &interpreter) 3848 : CommandObjectParsed(interpreter, "renderscript kernel coordinate", 3849 "Shows the (x,y,z) coordinate of the current kernel invocation.", 3850 "renderscript kernel coordinate", 3851 eCommandRequiresProcess | eCommandProcessMustBeLaunched | eCommandProcessMustBePaused) 3852 { 3853 } 3854 3855 ~CommandObjectRenderScriptRuntimeKernelCoordinate() override = default; 3856 3857 bool 3858 DoExecute(Args &command, CommandReturnObject &result) override 3859 { 3860 RSCoordinate coord{}; // Zero initialize array 3861 bool success = RenderScriptRuntime::GetKernelCoordinate(coord, m_exe_ctx.GetThreadPtr()); 3862 Stream &stream = result.GetOutputStream(); 3863 3864 if (success) 3865 { 3866 stream.Printf("Coordinate: (%" PRIu32 ", %" PRIu32 ", %" PRIu32 ")", coord[0], coord[1], coord[2]); 3867 stream.EOL(); 3868 result.SetStatus(eReturnStatusSuccessFinishResult); 3869 } 3870 else 3871 { 3872 stream.Printf("Error: Coordinate could not be found."); 3873 stream.EOL(); 3874 result.SetStatus(eReturnStatusFailed); 3875 } 3876 return true; 3877 } 3878 }; 3879 3880 class CommandObjectRenderScriptRuntimeKernelBreakpoint : public CommandObjectMultiword 3881 { 3882 public: 3883 CommandObjectRenderScriptRuntimeKernelBreakpoint(CommandInterpreter &interpreter) 3884 : CommandObjectMultiword(interpreter, "renderscript kernel", 3885 "Commands that generate breakpoints on renderscript kernels.", nullptr) 3886 { 3887 LoadSubCommand("set", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointSet(interpreter))); 3888 LoadSubCommand("all", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointAll(interpreter))); 3889 } 3890 3891 ~CommandObjectRenderScriptRuntimeKernelBreakpoint() override = default; 3892 }; 3893 3894 class CommandObjectRenderScriptRuntimeKernel : public CommandObjectMultiword 3895 { 3896 public: 3897 CommandObjectRenderScriptRuntimeKernel(CommandInterpreter &interpreter) 3898 : CommandObjectMultiword(interpreter, "renderscript kernel", "Commands that deal with RenderScript kernels.", 3899 nullptr) 3900 { 3901 LoadSubCommand("list", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelList(interpreter))); 3902 LoadSubCommand("coordinate", 3903 CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelCoordinate(interpreter))); 3904 LoadSubCommand("breakpoint", 3905 CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpoint(interpreter))); 3906 } 3907 3908 ~CommandObjectRenderScriptRuntimeKernel() override = default; 3909 }; 3910 3911 class CommandObjectRenderScriptRuntimeContextDump : public CommandObjectParsed 3912 { 3913 public: 3914 CommandObjectRenderScriptRuntimeContextDump(CommandInterpreter &interpreter) 3915 : CommandObjectParsed(interpreter, "renderscript context dump", "Dumps renderscript context information.", 3916 "renderscript context dump", eCommandRequiresProcess | eCommandProcessMustBeLaunched) 3917 { 3918 } 3919 3920 ~CommandObjectRenderScriptRuntimeContextDump() override = default; 3921 3922 bool 3923 DoExecute(Args &command, CommandReturnObject &result) override 3924 { 3925 RenderScriptRuntime *runtime = 3926 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript); 3927 runtime->DumpContexts(result.GetOutputStream()); 3928 result.SetStatus(eReturnStatusSuccessFinishResult); 3929 return true; 3930 } 3931 }; 3932 3933 class CommandObjectRenderScriptRuntimeContext : public CommandObjectMultiword 3934 { 3935 public: 3936 CommandObjectRenderScriptRuntimeContext(CommandInterpreter &interpreter) 3937 : CommandObjectMultiword(interpreter, "renderscript context", "Commands that deal with RenderScript contexts.", 3938 nullptr) 3939 { 3940 LoadSubCommand("dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeContextDump(interpreter))); 3941 } 3942 3943 ~CommandObjectRenderScriptRuntimeContext() override = default; 3944 }; 3945 3946 class CommandObjectRenderScriptRuntimeAllocationDump : public CommandObjectParsed 3947 { 3948 public: 3949 CommandObjectRenderScriptRuntimeAllocationDump(CommandInterpreter &interpreter) 3950 : CommandObjectParsed(interpreter, "renderscript allocation dump", 3951 "Displays the contents of a particular allocation", "renderscript allocation dump <ID>", 3952 eCommandRequiresProcess | eCommandProcessMustBeLaunched), 3953 m_options(interpreter) 3954 { 3955 } 3956 3957 ~CommandObjectRenderScriptRuntimeAllocationDump() override = default; 3958 3959 Options * 3960 GetOptions() override 3961 { 3962 return &m_options; 3963 } 3964 3965 class CommandOptions : public Options 3966 { 3967 public: 3968 CommandOptions(CommandInterpreter &interpreter) : Options(interpreter) {} 3969 3970 ~CommandOptions() override = default; 3971 3972 Error 3973 SetOptionValue(uint32_t option_idx, const char *option_arg) override 3974 { 3975 Error error; 3976 const int short_option = m_getopt_table[option_idx].val; 3977 3978 switch (short_option) 3979 { 3980 case 'f': 3981 m_outfile.SetFile(option_arg, true); 3982 if (m_outfile.Exists()) 3983 { 3984 m_outfile.Clear(); 3985 error.SetErrorStringWithFormat("file already exists: '%s'", option_arg); 3986 } 3987 break; 3988 default: 3989 error.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 3990 break; 3991 } 3992 return error; 3993 } 3994 3995 void 3996 OptionParsingStarting() override 3997 { 3998 m_outfile.Clear(); 3999 } 4000 4001 const OptionDefinition * 4002 GetDefinitions() override 4003 { 4004 return g_option_table; 4005 } 4006 4007 static OptionDefinition g_option_table[]; 4008 FileSpec m_outfile; 4009 }; 4010 4011 bool 4012 DoExecute(Args &command, CommandReturnObject &result) override 4013 { 4014 const size_t argc = command.GetArgumentCount(); 4015 if (argc < 1) 4016 { 4017 result.AppendErrorWithFormat("'%s' takes 1 argument, an allocation ID. As well as an optional -f argument", 4018 m_cmd_name.c_str()); 4019 result.SetStatus(eReturnStatusFailed); 4020 return false; 4021 } 4022 4023 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4024 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript)); 4025 4026 const char *id_cstr = command.GetArgumentAtIndex(0); 4027 bool convert_complete = false; 4028 const uint32_t id = StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete); 4029 if (!convert_complete) 4030 { 4031 result.AppendErrorWithFormat("invalid allocation id argument '%s'", id_cstr); 4032 result.SetStatus(eReturnStatusFailed); 4033 return false; 4034 } 4035 4036 Stream *output_strm = nullptr; 4037 StreamFile outfile_stream; 4038 const FileSpec &outfile_spec = m_options.m_outfile; // Dump allocation to file instead 4039 if (outfile_spec) 4040 { 4041 // Open output file 4042 char path[256]; 4043 outfile_spec.GetPath(path, sizeof(path)); 4044 if (outfile_stream.GetFile().Open(path, File::eOpenOptionWrite | File::eOpenOptionCanCreate).Success()) 4045 { 4046 output_strm = &outfile_stream; 4047 result.GetOutputStream().Printf("Results written to '%s'", path); 4048 result.GetOutputStream().EOL(); 4049 } 4050 else 4051 { 4052 result.AppendErrorWithFormat("Couldn't open file '%s'", path); 4053 result.SetStatus(eReturnStatusFailed); 4054 return false; 4055 } 4056 } 4057 else 4058 output_strm = &result.GetOutputStream(); 4059 4060 assert(output_strm != nullptr); 4061 bool success = runtime->DumpAllocation(*output_strm, m_exe_ctx.GetFramePtr(), id); 4062 4063 if (success) 4064 result.SetStatus(eReturnStatusSuccessFinishResult); 4065 else 4066 result.SetStatus(eReturnStatusFailed); 4067 4068 return true; 4069 } 4070 4071 private: 4072 CommandOptions m_options; 4073 }; 4074 4075 OptionDefinition CommandObjectRenderScriptRuntimeAllocationDump::CommandOptions::g_option_table[] = { 4076 {LLDB_OPT_SET_1, false, "file", 'f', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeFilename, 4077 "Print results to specified file instead of command line."}, 4078 {0, false, nullptr, 0, 0, nullptr, nullptr, 0, eArgTypeNone, nullptr}}; 4079 4080 class CommandObjectRenderScriptRuntimeAllocationList : public CommandObjectParsed 4081 { 4082 public: 4083 CommandObjectRenderScriptRuntimeAllocationList(CommandInterpreter &interpreter) 4084 : CommandObjectParsed(interpreter, "renderscript allocation list", 4085 "List renderscript allocations and their information.", "renderscript allocation list", 4086 eCommandRequiresProcess | eCommandProcessMustBeLaunched), 4087 m_options(interpreter) 4088 { 4089 } 4090 4091 ~CommandObjectRenderScriptRuntimeAllocationList() override = default; 4092 4093 Options * 4094 GetOptions() override 4095 { 4096 return &m_options; 4097 } 4098 4099 class CommandOptions : public Options 4100 { 4101 public: 4102 CommandOptions(CommandInterpreter &interpreter) : Options(interpreter), m_id(0) {} 4103 4104 ~CommandOptions() override = default; 4105 4106 Error 4107 SetOptionValue(uint32_t option_idx, const char *option_arg) override 4108 { 4109 Error error; 4110 const int short_option = m_getopt_table[option_idx].val; 4111 4112 switch (short_option) 4113 { 4114 case 'i': 4115 bool success; 4116 m_id = StringConvert::ToUInt32(option_arg, 0, 0, &success); 4117 if (!success) 4118 error.SetErrorStringWithFormat("invalid integer value for option '%c'", short_option); 4119 break; 4120 default: 4121 error.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 4122 break; 4123 } 4124 return error; 4125 } 4126 4127 void 4128 OptionParsingStarting() override 4129 { 4130 m_id = 0; 4131 } 4132 4133 const OptionDefinition * 4134 GetDefinitions() override 4135 { 4136 return g_option_table; 4137 } 4138 4139 static OptionDefinition g_option_table[]; 4140 uint32_t m_id; 4141 }; 4142 4143 bool 4144 DoExecute(Args &command, CommandReturnObject &result) override 4145 { 4146 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4147 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript)); 4148 runtime->ListAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr(), m_options.m_id); 4149 result.SetStatus(eReturnStatusSuccessFinishResult); 4150 return true; 4151 } 4152 4153 private: 4154 CommandOptions m_options; 4155 }; 4156 4157 OptionDefinition CommandObjectRenderScriptRuntimeAllocationList::CommandOptions::g_option_table[] = { 4158 {LLDB_OPT_SET_1, false, "id", 'i', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeIndex, 4159 "Only show details of a single allocation with specified id."}, 4160 {0, false, nullptr, 0, 0, nullptr, nullptr, 0, eArgTypeNone, nullptr}}; 4161 4162 class CommandObjectRenderScriptRuntimeAllocationLoad : public CommandObjectParsed 4163 { 4164 public: 4165 CommandObjectRenderScriptRuntimeAllocationLoad(CommandInterpreter &interpreter) 4166 : CommandObjectParsed( 4167 interpreter, "renderscript allocation load", "Loads renderscript allocation contents from a file.", 4168 "renderscript allocation load <ID> <filename>", eCommandRequiresProcess | eCommandProcessMustBeLaunched) 4169 { 4170 } 4171 4172 ~CommandObjectRenderScriptRuntimeAllocationLoad() override = default; 4173 4174 bool 4175 DoExecute(Args &command, CommandReturnObject &result) override 4176 { 4177 const size_t argc = command.GetArgumentCount(); 4178 if (argc != 2) 4179 { 4180 result.AppendErrorWithFormat("'%s' takes 2 arguments, an allocation ID and filename to read from.", 4181 m_cmd_name.c_str()); 4182 result.SetStatus(eReturnStatusFailed); 4183 return false; 4184 } 4185 4186 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4187 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript)); 4188 4189 const char *id_cstr = command.GetArgumentAtIndex(0); 4190 bool convert_complete = false; 4191 const uint32_t id = StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete); 4192 if (!convert_complete) 4193 { 4194 result.AppendErrorWithFormat("invalid allocation id argument '%s'", id_cstr); 4195 result.SetStatus(eReturnStatusFailed); 4196 return false; 4197 } 4198 4199 const char *filename = command.GetArgumentAtIndex(1); 4200 bool success = runtime->LoadAllocation(result.GetOutputStream(), id, filename, m_exe_ctx.GetFramePtr()); 4201 4202 if (success) 4203 result.SetStatus(eReturnStatusSuccessFinishResult); 4204 else 4205 result.SetStatus(eReturnStatusFailed); 4206 4207 return true; 4208 } 4209 }; 4210 4211 class CommandObjectRenderScriptRuntimeAllocationSave : public CommandObjectParsed 4212 { 4213 public: 4214 CommandObjectRenderScriptRuntimeAllocationSave(CommandInterpreter &interpreter) 4215 : CommandObjectParsed( 4216 interpreter, "renderscript allocation save", "Write renderscript allocation contents to a file.", 4217 "renderscript allocation save <ID> <filename>", eCommandRequiresProcess | eCommandProcessMustBeLaunched) 4218 { 4219 } 4220 4221 ~CommandObjectRenderScriptRuntimeAllocationSave() override = default; 4222 4223 bool 4224 DoExecute(Args &command, CommandReturnObject &result) override 4225 { 4226 const size_t argc = command.GetArgumentCount(); 4227 if (argc != 2) 4228 { 4229 result.AppendErrorWithFormat("'%s' takes 2 arguments, an allocation ID and filename to read from.", 4230 m_cmd_name.c_str()); 4231 result.SetStatus(eReturnStatusFailed); 4232 return false; 4233 } 4234 4235 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4236 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript)); 4237 4238 const char *id_cstr = command.GetArgumentAtIndex(0); 4239 bool convert_complete = false; 4240 const uint32_t id = StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete); 4241 if (!convert_complete) 4242 { 4243 result.AppendErrorWithFormat("invalid allocation id argument '%s'", id_cstr); 4244 result.SetStatus(eReturnStatusFailed); 4245 return false; 4246 } 4247 4248 const char *filename = command.GetArgumentAtIndex(1); 4249 bool success = runtime->SaveAllocation(result.GetOutputStream(), id, filename, m_exe_ctx.GetFramePtr()); 4250 4251 if (success) 4252 result.SetStatus(eReturnStatusSuccessFinishResult); 4253 else 4254 result.SetStatus(eReturnStatusFailed); 4255 4256 return true; 4257 } 4258 }; 4259 4260 class CommandObjectRenderScriptRuntimeAllocationRefresh : public CommandObjectParsed 4261 { 4262 public: 4263 CommandObjectRenderScriptRuntimeAllocationRefresh(CommandInterpreter &interpreter) 4264 : CommandObjectParsed(interpreter, "renderscript allocation refresh", 4265 "Recomputes the details of all allocations.", "renderscript allocation refresh", 4266 eCommandRequiresProcess | eCommandProcessMustBeLaunched) 4267 { 4268 } 4269 4270 ~CommandObjectRenderScriptRuntimeAllocationRefresh() override = default; 4271 4272 bool 4273 DoExecute(Args &command, CommandReturnObject &result) override 4274 { 4275 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4276 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript)); 4277 4278 bool success = runtime->RecomputeAllAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr()); 4279 4280 if (success) 4281 { 4282 result.SetStatus(eReturnStatusSuccessFinishResult); 4283 return true; 4284 } 4285 else 4286 { 4287 result.SetStatus(eReturnStatusFailed); 4288 return false; 4289 } 4290 } 4291 }; 4292 4293 class CommandObjectRenderScriptRuntimeAllocation : public CommandObjectMultiword 4294 { 4295 public: 4296 CommandObjectRenderScriptRuntimeAllocation(CommandInterpreter &interpreter) 4297 : CommandObjectMultiword(interpreter, "renderscript allocation", 4298 "Commands that deal with RenderScript allocations.", nullptr) 4299 { 4300 LoadSubCommand("list", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationList(interpreter))); 4301 LoadSubCommand("dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationDump(interpreter))); 4302 LoadSubCommand("save", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationSave(interpreter))); 4303 LoadSubCommand("load", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationLoad(interpreter))); 4304 LoadSubCommand("refresh", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationRefresh(interpreter))); 4305 } 4306 4307 ~CommandObjectRenderScriptRuntimeAllocation() override = default; 4308 }; 4309 4310 class CommandObjectRenderScriptRuntimeStatus : public CommandObjectParsed 4311 { 4312 public: 4313 CommandObjectRenderScriptRuntimeStatus(CommandInterpreter &interpreter) 4314 : CommandObjectParsed(interpreter, "renderscript status", "Displays current RenderScript runtime status.", 4315 "renderscript status", eCommandRequiresProcess | eCommandProcessMustBeLaunched) 4316 { 4317 } 4318 4319 ~CommandObjectRenderScriptRuntimeStatus() override = default; 4320 4321 bool 4322 DoExecute(Args &command, CommandReturnObject &result) override 4323 { 4324 RenderScriptRuntime *runtime = 4325 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript); 4326 runtime->Status(result.GetOutputStream()); 4327 result.SetStatus(eReturnStatusSuccessFinishResult); 4328 return true; 4329 } 4330 }; 4331 4332 class CommandObjectRenderScriptRuntime : public CommandObjectMultiword 4333 { 4334 public: 4335 CommandObjectRenderScriptRuntime(CommandInterpreter &interpreter) 4336 : CommandObjectMultiword(interpreter, "renderscript", "Commands for operating on the RenderScript runtime.", 4337 "renderscript <subcommand> [<subcommand-options>]") 4338 { 4339 LoadSubCommand("module", CommandObjectSP(new CommandObjectRenderScriptRuntimeModule(interpreter))); 4340 LoadSubCommand("status", CommandObjectSP(new CommandObjectRenderScriptRuntimeStatus(interpreter))); 4341 LoadSubCommand("kernel", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernel(interpreter))); 4342 LoadSubCommand("context", CommandObjectSP(new CommandObjectRenderScriptRuntimeContext(interpreter))); 4343 LoadSubCommand("allocation", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocation(interpreter))); 4344 } 4345 4346 ~CommandObjectRenderScriptRuntime() override = default; 4347 }; 4348 4349 void 4350 RenderScriptRuntime::Initiate() 4351 { 4352 assert(!m_initiated); 4353 } 4354 4355 RenderScriptRuntime::RenderScriptRuntime(Process *process) 4356 : lldb_private::CPPLanguageRuntime(process), 4357 m_initiated(false), 4358 m_debuggerPresentFlagged(false), 4359 m_breakAllKernels(false), 4360 m_ir_passes(nullptr) 4361 { 4362 ModulesDidLoad(process->GetTarget().GetImages()); 4363 } 4364 4365 lldb::CommandObjectSP 4366 RenderScriptRuntime::GetCommandObject(lldb_private::CommandInterpreter &interpreter) 4367 { 4368 return CommandObjectSP(new CommandObjectRenderScriptRuntime(interpreter)); 4369 } 4370 4371 RenderScriptRuntime::~RenderScriptRuntime() = default; 4372