1 //===-- RenderScriptRuntime.cpp ---------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/ADT/StringSwitch.h"
10 
11 #include "RenderScriptRuntime.h"
12 #include "RenderScriptScriptGroup.h"
13 
14 #include "lldb/Breakpoint/StoppointCallbackContext.h"
15 #include "lldb/Core/Debugger.h"
16 #include "lldb/Core/DumpDataExtractor.h"
17 #include "lldb/Core/PluginManager.h"
18 #include "lldb/Core/ValueObjectVariable.h"
19 #include "lldb/DataFormatters/DumpValueObjectOptions.h"
20 #include "lldb/Expression/UserExpression.h"
21 #include "lldb/Host/OptionParser.h"
22 #include "lldb/Host/StringConvert.h"
23 #include "lldb/Interpreter/CommandInterpreter.h"
24 #include "lldb/Interpreter/CommandObjectMultiword.h"
25 #include "lldb/Interpreter/CommandReturnObject.h"
26 #include "lldb/Interpreter/Options.h"
27 #include "lldb/Symbol/Function.h"
28 #include "lldb/Symbol/Symbol.h"
29 #include "lldb/Symbol/Type.h"
30 #include "lldb/Symbol/VariableList.h"
31 #include "lldb/Target/Process.h"
32 #include "lldb/Target/RegisterContext.h"
33 #include "lldb/Target/SectionLoadList.h"
34 #include "lldb/Target/Target.h"
35 #include "lldb/Target/Thread.h"
36 #include "lldb/Utility/Args.h"
37 #include "lldb/Utility/ConstString.h"
38 #include "lldb/Utility/Log.h"
39 #include "lldb/Utility/RegisterValue.h"
40 #include "lldb/Utility/RegularExpression.h"
41 #include "lldb/Utility/Status.h"
42 
43 using namespace lldb;
44 using namespace lldb_private;
45 using namespace lldb_renderscript;
46 
47 #define FMT_COORD "(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ")"
48 
49 namespace {
50 
51 // The empirical_type adds a basic level of validation to arbitrary data
52 // allowing us to track if data has been discovered and stored or not. An
53 // empirical_type will be marked as valid only if it has been explicitly
54 // assigned to.
55 template <typename type_t> class empirical_type {
56 public:
57   // Ctor. Contents is invalid when constructed.
58   empirical_type() : valid(false) {}
59 
60   // Return true and copy contents to out if valid, else return false.
61   bool get(type_t &out) const {
62     if (valid)
63       out = data;
64     return valid;
65   }
66 
67   // Return a pointer to the contents or nullptr if it was not valid.
68   const type_t *get() const { return valid ? &data : nullptr; }
69 
70   // Assign data explicitly.
71   void set(const type_t in) {
72     data = in;
73     valid = true;
74   }
75 
76   // Mark contents as invalid.
77   void invalidate() { valid = false; }
78 
79   // Returns true if this type contains valid data.
80   bool isValid() const { return valid; }
81 
82   // Assignment operator.
83   empirical_type<type_t> &operator=(const type_t in) {
84     set(in);
85     return *this;
86   }
87 
88   // Dereference operator returns contents.
89   // Warning: Will assert if not valid so use only when you know data is valid.
90   const type_t &operator*() const {
91     assert(valid);
92     return data;
93   }
94 
95 protected:
96   bool valid;
97   type_t data;
98 };
99 
100 // ArgItem is used by the GetArgs() function when reading function arguments
101 // from the target.
102 struct ArgItem {
103   enum { ePointer, eInt32, eInt64, eLong, eBool } type;
104 
105   uint64_t value;
106 
107   explicit operator uint64_t() const { return value; }
108 };
109 
110 // Context structure to be passed into GetArgsXXX(), argument reading functions
111 // below.
112 struct GetArgsCtx {
113   RegisterContext *reg_ctx;
114   Process *process;
115 };
116 
117 bool GetArgsX86(const GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
118   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
119 
120   Status err;
121 
122   // get the current stack pointer
123   uint64_t sp = ctx.reg_ctx->GetSP();
124 
125   for (size_t i = 0; i < num_args; ++i) {
126     ArgItem &arg = arg_list[i];
127     // advance up the stack by one argument
128     sp += sizeof(uint32_t);
129     // get the argument type size
130     size_t arg_size = sizeof(uint32_t);
131     // read the argument from memory
132     arg.value = 0;
133     Status err;
134     size_t read =
135         ctx.process->ReadMemory(sp, &arg.value, sizeof(uint32_t), err);
136     if (read != arg_size || !err.Success()) {
137       if (log)
138         log->Printf("%s - error reading argument: %" PRIu64 " '%s'",
139                     __FUNCTION__, uint64_t(i), err.AsCString());
140       return false;
141     }
142   }
143   return true;
144 }
145 
146 bool GetArgsX86_64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
147   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
148 
149   // number of arguments passed in registers
150   static const uint32_t args_in_reg = 6;
151   // register passing order
152   static const std::array<const char *, args_in_reg> reg_names{
153       {"rdi", "rsi", "rdx", "rcx", "r8", "r9"}};
154   // argument type to size mapping
155   static const std::array<size_t, 5> arg_size{{
156       8, // ePointer,
157       4, // eInt32,
158       8, // eInt64,
159       8, // eLong,
160       4, // eBool,
161   }};
162 
163   Status err;
164 
165   // get the current stack pointer
166   uint64_t sp = ctx.reg_ctx->GetSP();
167   // step over the return address
168   sp += sizeof(uint64_t);
169 
170   // check the stack alignment was correct (16 byte aligned)
171   if ((sp & 0xf) != 0x0) {
172     if (log)
173       log->Printf("%s - stack misaligned", __FUNCTION__);
174     return false;
175   }
176 
177   // find the start of arguments on the stack
178   uint64_t sp_offset = 0;
179   for (uint32_t i = args_in_reg; i < num_args; ++i) {
180     sp_offset += arg_size[arg_list[i].type];
181   }
182   // round up to multiple of 16
183   sp_offset = (sp_offset + 0xf) & 0xf;
184   sp += sp_offset;
185 
186   for (size_t i = 0; i < num_args; ++i) {
187     bool success = false;
188     ArgItem &arg = arg_list[i];
189     // arguments passed in registers
190     if (i < args_in_reg) {
191       const RegisterInfo *reg =
192           ctx.reg_ctx->GetRegisterInfoByName(reg_names[i]);
193       RegisterValue reg_val;
194       if (ctx.reg_ctx->ReadRegister(reg, reg_val))
195         arg.value = reg_val.GetAsUInt64(0, &success);
196     }
197     // arguments passed on the stack
198     else {
199       // get the argument type size
200       const size_t size = arg_size[arg_list[i].type];
201       // read the argument from memory
202       arg.value = 0;
203       // note: due to little endian layout reading 4 or 8 bytes will give the
204       // correct value.
205       size_t read = ctx.process->ReadMemory(sp, &arg.value, size, err);
206       success = (err.Success() && read == size);
207       // advance past this argument
208       sp -= size;
209     }
210     // fail if we couldn't read this argument
211     if (!success) {
212       if (log)
213         log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s",
214                     __FUNCTION__, uint64_t(i), err.AsCString("n/a"));
215       return false;
216     }
217   }
218   return true;
219 }
220 
221 bool GetArgsArm(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
222   // number of arguments passed in registers
223   static const uint32_t args_in_reg = 4;
224 
225   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
226 
227   Status err;
228 
229   // get the current stack pointer
230   uint64_t sp = ctx.reg_ctx->GetSP();
231 
232   for (size_t i = 0; i < num_args; ++i) {
233     bool success = false;
234     ArgItem &arg = arg_list[i];
235     // arguments passed in registers
236     if (i < args_in_reg) {
237       const RegisterInfo *reg = ctx.reg_ctx->GetRegisterInfoAtIndex(i);
238       RegisterValue reg_val;
239       if (ctx.reg_ctx->ReadRegister(reg, reg_val))
240         arg.value = reg_val.GetAsUInt32(0, &success);
241     }
242     // arguments passed on the stack
243     else {
244       // get the argument type size
245       const size_t arg_size = sizeof(uint32_t);
246       // clear all 64bits
247       arg.value = 0;
248       // read this argument from memory
249       size_t bytes_read =
250           ctx.process->ReadMemory(sp, &arg.value, arg_size, err);
251       success = (err.Success() && bytes_read == arg_size);
252       // advance the stack pointer
253       sp += sizeof(uint32_t);
254     }
255     // fail if we couldn't read this argument
256     if (!success) {
257       if (log)
258         log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s",
259                     __FUNCTION__, uint64_t(i), err.AsCString("n/a"));
260       return false;
261     }
262   }
263   return true;
264 }
265 
266 bool GetArgsAarch64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
267   // number of arguments passed in registers
268   static const uint32_t args_in_reg = 8;
269 
270   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
271 
272   for (size_t i = 0; i < num_args; ++i) {
273     bool success = false;
274     ArgItem &arg = arg_list[i];
275     // arguments passed in registers
276     if (i < args_in_reg) {
277       const RegisterInfo *reg = ctx.reg_ctx->GetRegisterInfoAtIndex(i);
278       RegisterValue reg_val;
279       if (ctx.reg_ctx->ReadRegister(reg, reg_val))
280         arg.value = reg_val.GetAsUInt64(0, &success);
281     }
282     // arguments passed on the stack
283     else {
284       if (log)
285         log->Printf("%s - reading arguments spilled to stack not implemented",
286                     __FUNCTION__);
287     }
288     // fail if we couldn't read this argument
289     if (!success) {
290       if (log)
291         log->Printf("%s - error reading argument: %" PRIu64, __FUNCTION__,
292                     uint64_t(i));
293       return false;
294     }
295   }
296   return true;
297 }
298 
299 bool GetArgsMipsel(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
300   // number of arguments passed in registers
301   static const uint32_t args_in_reg = 4;
302   // register file offset to first argument
303   static const uint32_t reg_offset = 4;
304 
305   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
306 
307   Status err;
308 
309   // find offset to arguments on the stack (+16 to skip over a0-a3 shadow
310   // space)
311   uint64_t sp = ctx.reg_ctx->GetSP() + 16;
312 
313   for (size_t i = 0; i < num_args; ++i) {
314     bool success = false;
315     ArgItem &arg = arg_list[i];
316     // arguments passed in registers
317     if (i < args_in_reg) {
318       const RegisterInfo *reg =
319           ctx.reg_ctx->GetRegisterInfoAtIndex(i + reg_offset);
320       RegisterValue reg_val;
321       if (ctx.reg_ctx->ReadRegister(reg, reg_val))
322         arg.value = reg_val.GetAsUInt64(0, &success);
323     }
324     // arguments passed on the stack
325     else {
326       const size_t arg_size = sizeof(uint32_t);
327       arg.value = 0;
328       size_t bytes_read =
329           ctx.process->ReadMemory(sp, &arg.value, arg_size, err);
330       success = (err.Success() && bytes_read == arg_size);
331       // advance the stack pointer
332       sp += arg_size;
333     }
334     // fail if we couldn't read this argument
335     if (!success) {
336       if (log)
337         log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s",
338                     __FUNCTION__, uint64_t(i), err.AsCString("n/a"));
339       return false;
340     }
341   }
342   return true;
343 }
344 
345 bool GetArgsMips64el(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
346   // number of arguments passed in registers
347   static const uint32_t args_in_reg = 8;
348   // register file offset to first argument
349   static const uint32_t reg_offset = 4;
350 
351   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
352 
353   Status err;
354 
355   // get the current stack pointer
356   uint64_t sp = ctx.reg_ctx->GetSP();
357 
358   for (size_t i = 0; i < num_args; ++i) {
359     bool success = false;
360     ArgItem &arg = arg_list[i];
361     // arguments passed in registers
362     if (i < args_in_reg) {
363       const RegisterInfo *reg =
364           ctx.reg_ctx->GetRegisterInfoAtIndex(i + reg_offset);
365       RegisterValue reg_val;
366       if (ctx.reg_ctx->ReadRegister(reg, reg_val))
367         arg.value = reg_val.GetAsUInt64(0, &success);
368     }
369     // arguments passed on the stack
370     else {
371       // get the argument type size
372       const size_t arg_size = sizeof(uint64_t);
373       // clear all 64bits
374       arg.value = 0;
375       // read this argument from memory
376       size_t bytes_read =
377           ctx.process->ReadMemory(sp, &arg.value, arg_size, err);
378       success = (err.Success() && bytes_read == arg_size);
379       // advance the stack pointer
380       sp += arg_size;
381     }
382     // fail if we couldn't read this argument
383     if (!success) {
384       if (log)
385         log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s",
386                     __FUNCTION__, uint64_t(i), err.AsCString("n/a"));
387       return false;
388     }
389   }
390   return true;
391 }
392 
393 bool GetArgs(ExecutionContext &exe_ctx, ArgItem *arg_list, size_t num_args) {
394   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
395 
396   // verify that we have a target
397   if (!exe_ctx.GetTargetPtr()) {
398     if (log)
399       log->Printf("%s - invalid target", __FUNCTION__);
400     return false;
401   }
402 
403   GetArgsCtx ctx = {exe_ctx.GetRegisterContext(), exe_ctx.GetProcessPtr()};
404   assert(ctx.reg_ctx && ctx.process);
405 
406   // dispatch based on architecture
407   switch (exe_ctx.GetTargetPtr()->GetArchitecture().GetMachine()) {
408   case llvm::Triple::ArchType::x86:
409     return GetArgsX86(ctx, arg_list, num_args);
410 
411   case llvm::Triple::ArchType::x86_64:
412     return GetArgsX86_64(ctx, arg_list, num_args);
413 
414   case llvm::Triple::ArchType::arm:
415     return GetArgsArm(ctx, arg_list, num_args);
416 
417   case llvm::Triple::ArchType::aarch64:
418     return GetArgsAarch64(ctx, arg_list, num_args);
419 
420   case llvm::Triple::ArchType::mipsel:
421     return GetArgsMipsel(ctx, arg_list, num_args);
422 
423   case llvm::Triple::ArchType::mips64el:
424     return GetArgsMips64el(ctx, arg_list, num_args);
425 
426   default:
427     // unsupported architecture
428     if (log) {
429       log->Printf(
430           "%s - architecture not supported: '%s'", __FUNCTION__,
431           exe_ctx.GetTargetRef().GetArchitecture().GetArchitectureName());
432     }
433     return false;
434   }
435 }
436 
437 bool IsRenderScriptScriptModule(ModuleSP module) {
438   if (!module)
439     return false;
440   return module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"),
441                                                 eSymbolTypeData) != nullptr;
442 }
443 
444 bool ParseCoordinate(llvm::StringRef coord_s, RSCoordinate &coord) {
445   // takes an argument of the form 'num[,num][,num]'. Where 'coord_s' is a
446   // comma separated 1,2 or 3-dimensional coordinate with the whitespace
447   // trimmed. Missing coordinates are defaulted to zero. If parsing of any
448   // elements fails the contents of &coord are undefined and `false` is
449   // returned, `true` otherwise
450 
451   RegularExpression regex;
452   RegularExpression::Match regex_match(3);
453 
454   bool matched = false;
455   if (regex.Compile(llvm::StringRef("^([0-9]+),([0-9]+),([0-9]+)$")) &&
456       regex.Execute(coord_s, &regex_match))
457     matched = true;
458   else if (regex.Compile(llvm::StringRef("^([0-9]+),([0-9]+)$")) &&
459            regex.Execute(coord_s, &regex_match))
460     matched = true;
461   else if (regex.Compile(llvm::StringRef("^([0-9]+)$")) &&
462            regex.Execute(coord_s, &regex_match))
463     matched = true;
464 
465   if (!matched)
466     return false;
467 
468   auto get_index = [&](int idx, uint32_t &i) -> bool {
469     std::string group;
470     errno = 0;
471     if (regex_match.GetMatchAtIndex(coord_s.str().c_str(), idx + 1, group))
472       return !llvm::StringRef(group).getAsInteger<uint32_t>(10, i);
473     return true;
474   };
475 
476   return get_index(0, coord.x) && get_index(1, coord.y) &&
477          get_index(2, coord.z);
478 }
479 
480 bool SkipPrologue(lldb::ModuleSP &module, Address &addr) {
481   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
482   SymbolContext sc;
483   uint32_t resolved_flags =
484       module->ResolveSymbolContextForAddress(addr, eSymbolContextFunction, sc);
485   if (resolved_flags & eSymbolContextFunction) {
486     if (sc.function) {
487       const uint32_t offset = sc.function->GetPrologueByteSize();
488       ConstString name = sc.GetFunctionName();
489       if (offset)
490         addr.Slide(offset);
491       if (log)
492         log->Printf("%s: Prologue offset for %s is %" PRIu32, __FUNCTION__,
493                     name.AsCString(), offset);
494     }
495     return true;
496   } else
497     return false;
498 }
499 } // anonymous namespace
500 
501 // The ScriptDetails class collects data associated with a single script
502 // instance.
503 struct RenderScriptRuntime::ScriptDetails {
504   ~ScriptDetails() = default;
505 
506   enum ScriptType { eScript, eScriptC };
507 
508   // The derived type of the script.
509   empirical_type<ScriptType> type;
510   // The name of the original source file.
511   empirical_type<std::string> res_name;
512   // Path to script .so file on the device.
513   empirical_type<std::string> shared_lib;
514   // Directory where kernel objects are cached on device.
515   empirical_type<std::string> cache_dir;
516   // Pointer to the context which owns this script.
517   empirical_type<lldb::addr_t> context;
518   // Pointer to the script object itself.
519   empirical_type<lldb::addr_t> script;
520 };
521 
522 // This Element class represents the Element object in RS, defining the type
523 // associated with an Allocation.
524 struct RenderScriptRuntime::Element {
525   // Taken from rsDefines.h
526   enum DataKind {
527     RS_KIND_USER,
528     RS_KIND_PIXEL_L = 7,
529     RS_KIND_PIXEL_A,
530     RS_KIND_PIXEL_LA,
531     RS_KIND_PIXEL_RGB,
532     RS_KIND_PIXEL_RGBA,
533     RS_KIND_PIXEL_DEPTH,
534     RS_KIND_PIXEL_YUV,
535     RS_KIND_INVALID = 100
536   };
537 
538   // Taken from rsDefines.h
539   enum DataType {
540     RS_TYPE_NONE = 0,
541     RS_TYPE_FLOAT_16,
542     RS_TYPE_FLOAT_32,
543     RS_TYPE_FLOAT_64,
544     RS_TYPE_SIGNED_8,
545     RS_TYPE_SIGNED_16,
546     RS_TYPE_SIGNED_32,
547     RS_TYPE_SIGNED_64,
548     RS_TYPE_UNSIGNED_8,
549     RS_TYPE_UNSIGNED_16,
550     RS_TYPE_UNSIGNED_32,
551     RS_TYPE_UNSIGNED_64,
552     RS_TYPE_BOOLEAN,
553 
554     RS_TYPE_UNSIGNED_5_6_5,
555     RS_TYPE_UNSIGNED_5_5_5_1,
556     RS_TYPE_UNSIGNED_4_4_4_4,
557 
558     RS_TYPE_MATRIX_4X4,
559     RS_TYPE_MATRIX_3X3,
560     RS_TYPE_MATRIX_2X2,
561 
562     RS_TYPE_ELEMENT = 1000,
563     RS_TYPE_TYPE,
564     RS_TYPE_ALLOCATION,
565     RS_TYPE_SAMPLER,
566     RS_TYPE_SCRIPT,
567     RS_TYPE_MESH,
568     RS_TYPE_PROGRAM_FRAGMENT,
569     RS_TYPE_PROGRAM_VERTEX,
570     RS_TYPE_PROGRAM_RASTER,
571     RS_TYPE_PROGRAM_STORE,
572     RS_TYPE_FONT,
573 
574     RS_TYPE_INVALID = 10000
575   };
576 
577   std::vector<Element> children; // Child Element fields for structs
578   empirical_type<lldb::addr_t>
579       element_ptr; // Pointer to the RS Element of the Type
580   empirical_type<DataType>
581       type; // Type of each data pointer stored by the allocation
582   empirical_type<DataKind>
583       type_kind; // Defines pixel type if Allocation is created from an image
584   empirical_type<uint32_t>
585       type_vec_size; // Vector size of each data point, e.g '4' for uchar4
586   empirical_type<uint32_t> field_count; // Number of Subelements
587   empirical_type<uint32_t> datum_size;  // Size of a single Element with padding
588   empirical_type<uint32_t> padding;     // Number of padding bytes
589   empirical_type<uint32_t>
590       array_size;        // Number of items in array, only needed for structs
591   ConstString type_name; // Name of type, only needed for structs
592 
593   static const ConstString &
594   GetFallbackStructName(); // Print this as the type name of a struct Element
595                            // If we can't resolve the actual struct name
596 
597   bool ShouldRefresh() const {
598     const bool valid_ptr = element_ptr.isValid() && *element_ptr.get() != 0x0;
599     const bool valid_type =
600         type.isValid() && type_vec_size.isValid() && type_kind.isValid();
601     return !valid_ptr || !valid_type || !datum_size.isValid();
602   }
603 };
604 
605 // This AllocationDetails class collects data associated with a single
606 // allocation instance.
607 struct RenderScriptRuntime::AllocationDetails {
608   struct Dimension {
609     uint32_t dim_1;
610     uint32_t dim_2;
611     uint32_t dim_3;
612     uint32_t cube_map;
613 
614     Dimension() {
615       dim_1 = 0;
616       dim_2 = 0;
617       dim_3 = 0;
618       cube_map = 0;
619     }
620   };
621 
622   // The FileHeader struct specifies the header we use for writing allocations
623   // to a binary file. Our format begins with the ASCII characters "RSAD",
624   // identifying the file as an allocation dump. Member variables dims and
625   // hdr_size are then written consecutively, immediately followed by an
626   // instance of the ElementHeader struct. Because Elements can contain
627   // subelements, there may be more than one instance of the ElementHeader
628   // struct. With this first instance being the root element, and the other
629   // instances being the root's descendants. To identify which instances are an
630   // ElementHeader's children, each struct is immediately followed by a
631   // sequence of consecutive offsets to the start of its child structs. These
632   // offsets are
633   // 4 bytes in size, and the 0 offset signifies no more children.
634   struct FileHeader {
635     uint8_t ident[4];  // ASCII 'RSAD' identifying the file
636     uint32_t dims[3];  // Dimensions
637     uint16_t hdr_size; // Header size in bytes, including all element headers
638   };
639 
640   struct ElementHeader {
641     uint16_t type;         // DataType enum
642     uint32_t kind;         // DataKind enum
643     uint32_t element_size; // Size of a single element, including padding
644     uint16_t vector_size;  // Vector width
645     uint32_t array_size;   // Number of elements in array
646   };
647 
648   // Monotonically increasing from 1
649   static uint32_t ID;
650 
651   // Maps Allocation DataType enum and vector size to printable strings using
652   // mapping from RenderScript numerical types summary documentation
653   static const char *RsDataTypeToString[][4];
654 
655   // Maps Allocation DataKind enum to printable strings
656   static const char *RsDataKindToString[];
657 
658   // Maps allocation types to format sizes for printing.
659   static const uint32_t RSTypeToFormat[][3];
660 
661   // Give each allocation an ID as a way
662   // for commands to reference it.
663   const uint32_t id;
664 
665   // Allocation Element type
666   RenderScriptRuntime::Element element;
667   // Dimensions of the Allocation
668   empirical_type<Dimension> dimension;
669   // Pointer to address of the RS Allocation
670   empirical_type<lldb::addr_t> address;
671   // Pointer to the data held by the Allocation
672   empirical_type<lldb::addr_t> data_ptr;
673   // Pointer to the RS Type of the Allocation
674   empirical_type<lldb::addr_t> type_ptr;
675   // Pointer to the RS Context of the Allocation
676   empirical_type<lldb::addr_t> context;
677   // Size of the allocation
678   empirical_type<uint32_t> size;
679   // Stride between rows of the allocation
680   empirical_type<uint32_t> stride;
681 
682   // Give each allocation an id, so we can reference it in user commands.
683   AllocationDetails() : id(ID++) {}
684 
685   bool ShouldRefresh() const {
686     bool valid_ptrs = data_ptr.isValid() && *data_ptr.get() != 0x0;
687     valid_ptrs = valid_ptrs && type_ptr.isValid() && *type_ptr.get() != 0x0;
688     return !valid_ptrs || !dimension.isValid() || !size.isValid() ||
689            element.ShouldRefresh();
690   }
691 };
692 
693 const ConstString &RenderScriptRuntime::Element::GetFallbackStructName() {
694   static const ConstString FallbackStructName("struct");
695   return FallbackStructName;
696 }
697 
698 uint32_t RenderScriptRuntime::AllocationDetails::ID = 1;
699 
700 const char *RenderScriptRuntime::AllocationDetails::RsDataKindToString[] = {
701     "User",       "Undefined",   "Undefined", "Undefined",
702     "Undefined",  "Undefined",   "Undefined", // Enum jumps from 0 to 7
703     "L Pixel",    "A Pixel",     "LA Pixel",  "RGB Pixel",
704     "RGBA Pixel", "Pixel Depth", "YUV Pixel"};
705 
706 const char *RenderScriptRuntime::AllocationDetails::RsDataTypeToString[][4] = {
707     {"None", "None", "None", "None"},
708     {"half", "half2", "half3", "half4"},
709     {"float", "float2", "float3", "float4"},
710     {"double", "double2", "double3", "double4"},
711     {"char", "char2", "char3", "char4"},
712     {"short", "short2", "short3", "short4"},
713     {"int", "int2", "int3", "int4"},
714     {"long", "long2", "long3", "long4"},
715     {"uchar", "uchar2", "uchar3", "uchar4"},
716     {"ushort", "ushort2", "ushort3", "ushort4"},
717     {"uint", "uint2", "uint3", "uint4"},
718     {"ulong", "ulong2", "ulong3", "ulong4"},
719     {"bool", "bool2", "bool3", "bool4"},
720     {"packed_565", "packed_565", "packed_565", "packed_565"},
721     {"packed_5551", "packed_5551", "packed_5551", "packed_5551"},
722     {"packed_4444", "packed_4444", "packed_4444", "packed_4444"},
723     {"rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4"},
724     {"rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3"},
725     {"rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2"},
726 
727     // Handlers
728     {"RS Element", "RS Element", "RS Element", "RS Element"},
729     {"RS Type", "RS Type", "RS Type", "RS Type"},
730     {"RS Allocation", "RS Allocation", "RS Allocation", "RS Allocation"},
731     {"RS Sampler", "RS Sampler", "RS Sampler", "RS Sampler"},
732     {"RS Script", "RS Script", "RS Script", "RS Script"},
733 
734     // Deprecated
735     {"RS Mesh", "RS Mesh", "RS Mesh", "RS Mesh"},
736     {"RS Program Fragment", "RS Program Fragment", "RS Program Fragment",
737      "RS Program Fragment"},
738     {"RS Program Vertex", "RS Program Vertex", "RS Program Vertex",
739      "RS Program Vertex"},
740     {"RS Program Raster", "RS Program Raster", "RS Program Raster",
741      "RS Program Raster"},
742     {"RS Program Store", "RS Program Store", "RS Program Store",
743      "RS Program Store"},
744     {"RS Font", "RS Font", "RS Font", "RS Font"}};
745 
746 // Used as an index into the RSTypeToFormat array elements
747 enum TypeToFormatIndex { eFormatSingle = 0, eFormatVector, eElementSize };
748 
749 // { format enum of single element, format enum of element vector, size of
750 // element}
751 const uint32_t RenderScriptRuntime::AllocationDetails::RSTypeToFormat[][3] = {
752     // RS_TYPE_NONE
753     {eFormatHex, eFormatHex, 1},
754     // RS_TYPE_FLOAT_16
755     {eFormatFloat, eFormatVectorOfFloat16, 2},
756     // RS_TYPE_FLOAT_32
757     {eFormatFloat, eFormatVectorOfFloat32, sizeof(float)},
758     // RS_TYPE_FLOAT_64
759     {eFormatFloat, eFormatVectorOfFloat64, sizeof(double)},
760     // RS_TYPE_SIGNED_8
761     {eFormatDecimal, eFormatVectorOfSInt8, sizeof(int8_t)},
762     // RS_TYPE_SIGNED_16
763     {eFormatDecimal, eFormatVectorOfSInt16, sizeof(int16_t)},
764     // RS_TYPE_SIGNED_32
765     {eFormatDecimal, eFormatVectorOfSInt32, sizeof(int32_t)},
766     // RS_TYPE_SIGNED_64
767     {eFormatDecimal, eFormatVectorOfSInt64, sizeof(int64_t)},
768     // RS_TYPE_UNSIGNED_8
769     {eFormatDecimal, eFormatVectorOfUInt8, sizeof(uint8_t)},
770     // RS_TYPE_UNSIGNED_16
771     {eFormatDecimal, eFormatVectorOfUInt16, sizeof(uint16_t)},
772     // RS_TYPE_UNSIGNED_32
773     {eFormatDecimal, eFormatVectorOfUInt32, sizeof(uint32_t)},
774     // RS_TYPE_UNSIGNED_64
775     {eFormatDecimal, eFormatVectorOfUInt64, sizeof(uint64_t)},
776     // RS_TYPE_BOOL
777     {eFormatBoolean, eFormatBoolean, 1},
778     // RS_TYPE_UNSIGNED_5_6_5
779     {eFormatHex, eFormatHex, sizeof(uint16_t)},
780     // RS_TYPE_UNSIGNED_5_5_5_1
781     {eFormatHex, eFormatHex, sizeof(uint16_t)},
782     // RS_TYPE_UNSIGNED_4_4_4_4
783     {eFormatHex, eFormatHex, sizeof(uint16_t)},
784     // RS_TYPE_MATRIX_4X4
785     {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 16},
786     // RS_TYPE_MATRIX_3X3
787     {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 9},
788     // RS_TYPE_MATRIX_2X2
789     {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 4}};
790 
791 //------------------------------------------------------------------
792 // Static Functions
793 //------------------------------------------------------------------
794 LanguageRuntime *
795 RenderScriptRuntime::CreateInstance(Process *process,
796                                     lldb::LanguageType language) {
797 
798   if (language == eLanguageTypeExtRenderScript)
799     return new RenderScriptRuntime(process);
800   else
801     return nullptr;
802 }
803 
804 // Callback with a module to search for matching symbols. We first check that
805 // the module contains RS kernels. Then look for a symbol which matches our
806 // kernel name. The breakpoint address is finally set using the address of this
807 // symbol.
808 Searcher::CallbackReturn
809 RSBreakpointResolver::SearchCallback(SearchFilter &filter,
810                                      SymbolContext &context, Address *, bool) {
811   ModuleSP module = context.module_sp;
812 
813   if (!module || !IsRenderScriptScriptModule(module))
814     return Searcher::eCallbackReturnContinue;
815 
816   // Attempt to set a breakpoint on the kernel name symbol within the module
817   // library. If it's not found, it's likely debug info is unavailable - try to
818   // set a breakpoint on <name>.expand.
819   const Symbol *kernel_sym =
820       module->FindFirstSymbolWithNameAndType(m_kernel_name, eSymbolTypeCode);
821   if (!kernel_sym) {
822     std::string kernel_name_expanded(m_kernel_name.AsCString());
823     kernel_name_expanded.append(".expand");
824     kernel_sym = module->FindFirstSymbolWithNameAndType(
825         ConstString(kernel_name_expanded.c_str()), eSymbolTypeCode);
826   }
827 
828   if (kernel_sym) {
829     Address bp_addr = kernel_sym->GetAddress();
830     if (filter.AddressPasses(bp_addr))
831       m_breakpoint->AddLocation(bp_addr);
832   }
833 
834   return Searcher::eCallbackReturnContinue;
835 }
836 
837 Searcher::CallbackReturn
838 RSReduceBreakpointResolver::SearchCallback(lldb_private::SearchFilter &filter,
839                                            lldb_private::SymbolContext &context,
840                                            Address *, bool) {
841   // We need to have access to the list of reductions currently parsed, as
842   // reduce names don't actually exist as symbols in a module. They are only
843   // identifiable by parsing the .rs.info packet, or finding the expand symbol.
844   // We therefore need access to the list of parsed rs modules to properly
845   // resolve reduction names.
846   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_BREAKPOINTS));
847   ModuleSP module = context.module_sp;
848 
849   if (!module || !IsRenderScriptScriptModule(module))
850     return Searcher::eCallbackReturnContinue;
851 
852   if (!m_rsmodules)
853     return Searcher::eCallbackReturnContinue;
854 
855   for (const auto &module_desc : *m_rsmodules) {
856     if (module_desc->m_module != module)
857       continue;
858 
859     for (const auto &reduction : module_desc->m_reductions) {
860       if (reduction.m_reduce_name != m_reduce_name)
861         continue;
862 
863       std::array<std::pair<ConstString, int>, 5> funcs{
864           {{reduction.m_init_name, eKernelTypeInit},
865            {reduction.m_accum_name, eKernelTypeAccum},
866            {reduction.m_comb_name, eKernelTypeComb},
867            {reduction.m_outc_name, eKernelTypeOutC},
868            {reduction.m_halter_name, eKernelTypeHalter}}};
869 
870       for (const auto &kernel : funcs) {
871         // Skip constituent functions that don't match our spec
872         if (!(m_kernel_types & kernel.second))
873           continue;
874 
875         const auto kernel_name = kernel.first;
876         const auto symbol = module->FindFirstSymbolWithNameAndType(
877             kernel_name, eSymbolTypeCode);
878         if (!symbol)
879           continue;
880 
881         auto address = symbol->GetAddress();
882         if (filter.AddressPasses(address)) {
883           bool new_bp;
884           if (!SkipPrologue(module, address)) {
885             if (log)
886               log->Printf("%s: Error trying to skip prologue", __FUNCTION__);
887           }
888           m_breakpoint->AddLocation(address, &new_bp);
889           if (log)
890             log->Printf("%s: %s reduction breakpoint on %s in %s", __FUNCTION__,
891                         new_bp ? "new" : "existing", kernel_name.GetCString(),
892                         address.GetModule()->GetFileSpec().GetCString());
893         }
894       }
895     }
896   }
897   return eCallbackReturnContinue;
898 }
899 
900 Searcher::CallbackReturn RSScriptGroupBreakpointResolver::SearchCallback(
901     SearchFilter &filter, SymbolContext &context, Address *addr,
902     bool containing) {
903 
904   if (!m_breakpoint)
905     return eCallbackReturnContinue;
906 
907   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_BREAKPOINTS));
908   ModuleSP &module = context.module_sp;
909 
910   if (!module || !IsRenderScriptScriptModule(module))
911     return Searcher::eCallbackReturnContinue;
912 
913   std::vector<std::string> names;
914   m_breakpoint->GetNames(names);
915   if (names.empty())
916     return eCallbackReturnContinue;
917 
918   for (auto &name : names) {
919     const RSScriptGroupDescriptorSP sg = FindScriptGroup(ConstString(name));
920     if (!sg) {
921       if (log)
922         log->Printf("%s: could not find script group for %s", __FUNCTION__,
923                     name.c_str());
924       continue;
925     }
926 
927     if (log)
928       log->Printf("%s: Found ScriptGroup for %s", __FUNCTION__, name.c_str());
929 
930     for (const RSScriptGroupDescriptor::Kernel &k : sg->m_kernels) {
931       if (log) {
932         log->Printf("%s: Adding breakpoint for %s", __FUNCTION__,
933                     k.m_name.AsCString());
934         log->Printf("%s: Kernel address 0x%" PRIx64, __FUNCTION__, k.m_addr);
935       }
936 
937       const lldb_private::Symbol *sym =
938           module->FindFirstSymbolWithNameAndType(k.m_name, eSymbolTypeCode);
939       if (!sym) {
940         if (log)
941           log->Printf("%s: Unable to find symbol for %s", __FUNCTION__,
942                       k.m_name.AsCString());
943         continue;
944       }
945 
946       if (log) {
947         log->Printf("%s: Found symbol name is %s", __FUNCTION__,
948                     sym->GetName().AsCString());
949       }
950 
951       auto address = sym->GetAddress();
952       if (!SkipPrologue(module, address)) {
953         if (log)
954           log->Printf("%s: Error trying to skip prologue", __FUNCTION__);
955       }
956 
957       bool new_bp;
958       m_breakpoint->AddLocation(address, &new_bp);
959 
960       if (log)
961         log->Printf("%s: Placed %sbreakpoint on %s", __FUNCTION__,
962                     new_bp ? "new " : "", k.m_name.AsCString());
963 
964       // exit after placing the first breakpoint if we do not intend to stop on
965       // all kernels making up this script group
966       if (!m_stop_on_all)
967         break;
968     }
969   }
970 
971   return eCallbackReturnContinue;
972 }
973 
974 void RenderScriptRuntime::Initialize() {
975   PluginManager::RegisterPlugin(GetPluginNameStatic(),
976                                 "RenderScript language support", CreateInstance,
977                                 GetCommandObject);
978 }
979 
980 void RenderScriptRuntime::Terminate() {
981   PluginManager::UnregisterPlugin(CreateInstance);
982 }
983 
984 lldb_private::ConstString RenderScriptRuntime::GetPluginNameStatic() {
985   static ConstString plugin_name("renderscript");
986   return plugin_name;
987 }
988 
989 RenderScriptRuntime::ModuleKind
990 RenderScriptRuntime::GetModuleKind(const lldb::ModuleSP &module_sp) {
991   if (module_sp) {
992     if (IsRenderScriptScriptModule(module_sp))
993       return eModuleKindKernelObj;
994 
995     // Is this the main RS runtime library
996     const ConstString rs_lib("libRS.so");
997     if (module_sp->GetFileSpec().GetFilename() == rs_lib) {
998       return eModuleKindLibRS;
999     }
1000 
1001     const ConstString rs_driverlib("libRSDriver.so");
1002     if (module_sp->GetFileSpec().GetFilename() == rs_driverlib) {
1003       return eModuleKindDriver;
1004     }
1005 
1006     const ConstString rs_cpureflib("libRSCpuRef.so");
1007     if (module_sp->GetFileSpec().GetFilename() == rs_cpureflib) {
1008       return eModuleKindImpl;
1009     }
1010   }
1011   return eModuleKindIgnored;
1012 }
1013 
1014 bool RenderScriptRuntime::IsRenderScriptModule(
1015     const lldb::ModuleSP &module_sp) {
1016   return GetModuleKind(module_sp) != eModuleKindIgnored;
1017 }
1018 
1019 void RenderScriptRuntime::ModulesDidLoad(const ModuleList &module_list) {
1020   std::lock_guard<std::recursive_mutex> guard(module_list.GetMutex());
1021 
1022   size_t num_modules = module_list.GetSize();
1023   for (size_t i = 0; i < num_modules; i++) {
1024     auto mod = module_list.GetModuleAtIndex(i);
1025     if (IsRenderScriptModule(mod)) {
1026       LoadModule(mod);
1027     }
1028   }
1029 }
1030 
1031 //------------------------------------------------------------------
1032 // PluginInterface protocol
1033 //------------------------------------------------------------------
1034 lldb_private::ConstString RenderScriptRuntime::GetPluginName() {
1035   return GetPluginNameStatic();
1036 }
1037 
1038 uint32_t RenderScriptRuntime::GetPluginVersion() { return 1; }
1039 
1040 bool RenderScriptRuntime::IsVTableName(const char *name) { return false; }
1041 
1042 bool RenderScriptRuntime::GetDynamicTypeAndAddress(
1043     ValueObject &in_value, lldb::DynamicValueType use_dynamic,
1044     TypeAndOrName &class_type_or_name, Address &address,
1045     Value::ValueType &value_type) {
1046   return false;
1047 }
1048 
1049 TypeAndOrName
1050 RenderScriptRuntime::FixUpDynamicType(const TypeAndOrName &type_and_or_name,
1051                                       ValueObject &static_value) {
1052   return type_and_or_name;
1053 }
1054 
1055 bool RenderScriptRuntime::CouldHaveDynamicValue(ValueObject &in_value) {
1056   return false;
1057 }
1058 
1059 lldb::BreakpointResolverSP
1060 RenderScriptRuntime::CreateExceptionResolver(Breakpoint *bp, bool catch_bp,
1061                                              bool throw_bp) {
1062   BreakpointResolverSP resolver_sp;
1063   return resolver_sp;
1064 }
1065 
1066 const RenderScriptRuntime::HookDefn RenderScriptRuntime::s_runtimeHookDefns[] =
1067     {
1068         // rsdScript
1069         {"rsdScriptInit", "_Z13rsdScriptInitPKN7android12renderscript7ContextEP"
1070                           "NS0_7ScriptCEPKcS7_PKhjj",
1071          "_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_"
1072          "7ScriptCEPKcS7_PKhmj",
1073          0, RenderScriptRuntime::eModuleKindDriver,
1074          &lldb_private::RenderScriptRuntime::CaptureScriptInit},
1075         {"rsdScriptInvokeForEachMulti",
1076          "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0"
1077          "_6ScriptEjPPKNS0_10AllocationEjPS6_PKvjPK12RsScriptCall",
1078          "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0"
1079          "_6ScriptEjPPKNS0_10AllocationEmPS6_PKvmPK12RsScriptCall",
1080          0, RenderScriptRuntime::eModuleKindDriver,
1081          &lldb_private::RenderScriptRuntime::CaptureScriptInvokeForEachMulti},
1082         {"rsdScriptSetGlobalVar", "_Z21rsdScriptSetGlobalVarPKN7android12render"
1083                                   "script7ContextEPKNS0_6ScriptEjPvj",
1084          "_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_"
1085          "6ScriptEjPvm",
1086          0, RenderScriptRuntime::eModuleKindDriver,
1087          &lldb_private::RenderScriptRuntime::CaptureSetGlobalVar},
1088 
1089         // rsdAllocation
1090         {"rsdAllocationInit", "_Z17rsdAllocationInitPKN7android12renderscript7C"
1091                               "ontextEPNS0_10AllocationEb",
1092          "_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_"
1093          "10AllocationEb",
1094          0, RenderScriptRuntime::eModuleKindDriver,
1095          &lldb_private::RenderScriptRuntime::CaptureAllocationInit},
1096         {"rsdAllocationRead2D",
1097          "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_"
1098          "10AllocationEjjj23RsAllocationCubemapFacejjPvjj",
1099          "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_"
1100          "10AllocationEjjj23RsAllocationCubemapFacejjPvmm",
1101          0, RenderScriptRuntime::eModuleKindDriver, nullptr},
1102         {"rsdAllocationDestroy", "_Z20rsdAllocationDestroyPKN7android12rendersc"
1103                                  "ript7ContextEPNS0_10AllocationE",
1104          "_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_"
1105          "10AllocationE",
1106          0, RenderScriptRuntime::eModuleKindDriver,
1107          &lldb_private::RenderScriptRuntime::CaptureAllocationDestroy},
1108 
1109         // renderscript script groups
1110         {"rsdDebugHintScriptGroup2", "_ZN7android12renderscript21debugHintScrip"
1111                                      "tGroup2EPKcjPKPFvPK24RsExpandKernelDriver"
1112                                      "InfojjjEj",
1113          "_ZN7android12renderscript21debugHintScriptGroup2EPKcjPKPFvPK24RsExpan"
1114          "dKernelDriverInfojjjEj",
1115          0, RenderScriptRuntime::eModuleKindImpl,
1116          &lldb_private::RenderScriptRuntime::CaptureDebugHintScriptGroup2}};
1117 
1118 const size_t RenderScriptRuntime::s_runtimeHookCount =
1119     sizeof(s_runtimeHookDefns) / sizeof(s_runtimeHookDefns[0]);
1120 
1121 bool RenderScriptRuntime::HookCallback(void *baton,
1122                                        StoppointCallbackContext *ctx,
1123                                        lldb::user_id_t break_id,
1124                                        lldb::user_id_t break_loc_id) {
1125   RuntimeHook *hook = (RuntimeHook *)baton;
1126   ExecutionContext exe_ctx(ctx->exe_ctx_ref);
1127 
1128   RenderScriptRuntime *lang_rt =
1129       (RenderScriptRuntime *)exe_ctx.GetProcessPtr()->GetLanguageRuntime(
1130           eLanguageTypeExtRenderScript);
1131 
1132   lang_rt->HookCallback(hook, exe_ctx);
1133 
1134   return false;
1135 }
1136 
1137 void RenderScriptRuntime::HookCallback(RuntimeHook *hook,
1138                                        ExecutionContext &exe_ctx) {
1139   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1140 
1141   if (log)
1142     log->Printf("%s - '%s'", __FUNCTION__, hook->defn->name);
1143 
1144   if (hook->defn->grabber) {
1145     (this->*(hook->defn->grabber))(hook, exe_ctx);
1146   }
1147 }
1148 
1149 void RenderScriptRuntime::CaptureDebugHintScriptGroup2(
1150     RuntimeHook *hook_info, ExecutionContext &context) {
1151   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1152 
1153   enum {
1154     eGroupName = 0,
1155     eGroupNameSize,
1156     eKernel,
1157     eKernelCount,
1158   };
1159 
1160   std::array<ArgItem, 4> args{{
1161       {ArgItem::ePointer, 0}, // const char         *groupName
1162       {ArgItem::eInt32, 0},   // const uint32_t      groupNameSize
1163       {ArgItem::ePointer, 0}, // const ExpandFuncTy *kernel
1164       {ArgItem::eInt32, 0},   // const uint32_t      kernelCount
1165   }};
1166 
1167   if (!GetArgs(context, args.data(), args.size())) {
1168     if (log)
1169       log->Printf("%s - Error while reading the function parameters",
1170                   __FUNCTION__);
1171     return;
1172   } else if (log) {
1173     log->Printf("%s - groupName    : 0x%" PRIx64, __FUNCTION__,
1174                 addr_t(args[eGroupName]));
1175     log->Printf("%s - groupNameSize: %" PRIu64, __FUNCTION__,
1176                 uint64_t(args[eGroupNameSize]));
1177     log->Printf("%s - kernel       : 0x%" PRIx64, __FUNCTION__,
1178                 addr_t(args[eKernel]));
1179     log->Printf("%s - kernelCount  : %" PRIu64, __FUNCTION__,
1180                 uint64_t(args[eKernelCount]));
1181   }
1182 
1183   // parse script group name
1184   ConstString group_name;
1185   {
1186     Status err;
1187     const uint64_t len = uint64_t(args[eGroupNameSize]);
1188     std::unique_ptr<char[]> buffer(new char[uint32_t(len + 1)]);
1189     m_process->ReadMemory(addr_t(args[eGroupName]), buffer.get(), len, err);
1190     buffer.get()[len] = '\0';
1191     if (!err.Success()) {
1192       if (log)
1193         log->Printf("Error reading scriptgroup name from target");
1194       return;
1195     } else {
1196       if (log)
1197         log->Printf("Extracted scriptgroup name %s", buffer.get());
1198     }
1199     // write back the script group name
1200     group_name.SetCString(buffer.get());
1201   }
1202 
1203   // create or access existing script group
1204   RSScriptGroupDescriptorSP group;
1205   {
1206     // search for existing script group
1207     for (auto sg : m_scriptGroups) {
1208       if (sg->m_name == group_name) {
1209         group = sg;
1210         break;
1211       }
1212     }
1213     if (!group) {
1214       group.reset(new RSScriptGroupDescriptor);
1215       group->m_name = group_name;
1216       m_scriptGroups.push_back(group);
1217     } else {
1218       // already have this script group
1219       if (log)
1220         log->Printf("Attempt to add duplicate script group %s",
1221                     group_name.AsCString());
1222       return;
1223     }
1224   }
1225   assert(group);
1226 
1227   const uint32_t target_ptr_size = m_process->GetAddressByteSize();
1228   std::vector<addr_t> kernels;
1229   // parse kernel addresses in script group
1230   for (uint64_t i = 0; i < uint64_t(args[eKernelCount]); ++i) {
1231     RSScriptGroupDescriptor::Kernel kernel;
1232     // extract script group kernel addresses from the target
1233     const addr_t ptr_addr = addr_t(args[eKernel]) + i * target_ptr_size;
1234     uint64_t kernel_addr = 0;
1235     Status err;
1236     size_t read =
1237         m_process->ReadMemory(ptr_addr, &kernel_addr, target_ptr_size, err);
1238     if (!err.Success() || read != target_ptr_size) {
1239       if (log)
1240         log->Printf("Error parsing kernel address %" PRIu64 " in script group",
1241                     i);
1242       return;
1243     }
1244     if (log)
1245       log->Printf("Extracted scriptgroup kernel address - 0x%" PRIx64,
1246                   kernel_addr);
1247     kernel.m_addr = kernel_addr;
1248 
1249     // try to resolve the associated kernel name
1250     if (!ResolveKernelName(kernel.m_addr, kernel.m_name)) {
1251       if (log)
1252         log->Printf("Parsed scriptgroup kernel %" PRIu64 " - 0x%" PRIx64, i,
1253                     kernel_addr);
1254       return;
1255     }
1256 
1257     // try to find the non '.expand' function
1258     {
1259       const llvm::StringRef expand(".expand");
1260       const llvm::StringRef name_ref = kernel.m_name.GetStringRef();
1261       if (name_ref.endswith(expand)) {
1262         const ConstString base_kernel(name_ref.drop_back(expand.size()));
1263         // verify this function is a valid kernel
1264         if (IsKnownKernel(base_kernel)) {
1265           kernel.m_name = base_kernel;
1266           if (log)
1267             log->Printf("%s - found non expand version '%s'", __FUNCTION__,
1268                         base_kernel.GetCString());
1269         }
1270       }
1271     }
1272     // add to a list of script group kernels we know about
1273     group->m_kernels.push_back(kernel);
1274   }
1275 
1276   // Resolve any pending scriptgroup breakpoints
1277   {
1278     Target &target = m_process->GetTarget();
1279     const BreakpointList &list = target.GetBreakpointList();
1280     const size_t num_breakpoints = list.GetSize();
1281     if (log)
1282       log->Printf("Resolving %zu breakpoints", num_breakpoints);
1283     for (size_t i = 0; i < num_breakpoints; ++i) {
1284       const BreakpointSP bp = list.GetBreakpointAtIndex(i);
1285       if (bp) {
1286         if (bp->MatchesName(group_name.AsCString())) {
1287           if (log)
1288             log->Printf("Found breakpoint with name %s",
1289                         group_name.AsCString());
1290           bp->ResolveBreakpoint();
1291         }
1292       }
1293     }
1294   }
1295 }
1296 
1297 void RenderScriptRuntime::CaptureScriptInvokeForEachMulti(
1298     RuntimeHook *hook, ExecutionContext &exe_ctx) {
1299   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1300 
1301   enum {
1302     eRsContext = 0,
1303     eRsScript,
1304     eRsSlot,
1305     eRsAIns,
1306     eRsInLen,
1307     eRsAOut,
1308     eRsUsr,
1309     eRsUsrLen,
1310     eRsSc,
1311   };
1312 
1313   std::array<ArgItem, 9> args{{
1314       ArgItem{ArgItem::ePointer, 0}, // const Context       *rsc
1315       ArgItem{ArgItem::ePointer, 0}, // Script              *s
1316       ArgItem{ArgItem::eInt32, 0},   // uint32_t             slot
1317       ArgItem{ArgItem::ePointer, 0}, // const Allocation   **aIns
1318       ArgItem{ArgItem::eInt32, 0},   // size_t               inLen
1319       ArgItem{ArgItem::ePointer, 0}, // Allocation          *aout
1320       ArgItem{ArgItem::ePointer, 0}, // const void          *usr
1321       ArgItem{ArgItem::eInt32, 0},   // size_t               usrLen
1322       ArgItem{ArgItem::ePointer, 0}, // const RsScriptCall  *sc
1323   }};
1324 
1325   bool success = GetArgs(exe_ctx, &args[0], args.size());
1326   if (!success) {
1327     if (log)
1328       log->Printf("%s - Error while reading the function parameters",
1329                   __FUNCTION__);
1330     return;
1331   }
1332 
1333   const uint32_t target_ptr_size = m_process->GetAddressByteSize();
1334   Status err;
1335   std::vector<uint64_t> allocs;
1336 
1337   // traverse allocation list
1338   for (uint64_t i = 0; i < uint64_t(args[eRsInLen]); ++i) {
1339     // calculate offest to allocation pointer
1340     const addr_t addr = addr_t(args[eRsAIns]) + i * target_ptr_size;
1341 
1342     // Note: due to little endian layout, reading 32bits or 64bits into res
1343     // will give the correct results.
1344     uint64_t result = 0;
1345     size_t read = m_process->ReadMemory(addr, &result, target_ptr_size, err);
1346     if (read != target_ptr_size || !err.Success()) {
1347       if (log)
1348         log->Printf(
1349             "%s - Error while reading allocation list argument %" PRIu64,
1350             __FUNCTION__, i);
1351     } else {
1352       allocs.push_back(result);
1353     }
1354   }
1355 
1356   // if there is an output allocation track it
1357   if (uint64_t alloc_out = uint64_t(args[eRsAOut])) {
1358     allocs.push_back(alloc_out);
1359   }
1360 
1361   // for all allocations we have found
1362   for (const uint64_t alloc_addr : allocs) {
1363     AllocationDetails *alloc = LookUpAllocation(alloc_addr);
1364     if (!alloc)
1365       alloc = CreateAllocation(alloc_addr);
1366 
1367     if (alloc) {
1368       // save the allocation address
1369       if (alloc->address.isValid()) {
1370         // check the allocation address we already have matches
1371         assert(*alloc->address.get() == alloc_addr);
1372       } else {
1373         alloc->address = alloc_addr;
1374       }
1375 
1376       // save the context
1377       if (log) {
1378         if (alloc->context.isValid() &&
1379             *alloc->context.get() != addr_t(args[eRsContext]))
1380           log->Printf("%s - Allocation used by multiple contexts",
1381                       __FUNCTION__);
1382       }
1383       alloc->context = addr_t(args[eRsContext]);
1384     }
1385   }
1386 
1387   // make sure we track this script object
1388   if (lldb_private::RenderScriptRuntime::ScriptDetails *script =
1389           LookUpScript(addr_t(args[eRsScript]), true)) {
1390     if (log) {
1391       if (script->context.isValid() &&
1392           *script->context.get() != addr_t(args[eRsContext]))
1393         log->Printf("%s - Script used by multiple contexts", __FUNCTION__);
1394     }
1395     script->context = addr_t(args[eRsContext]);
1396   }
1397 }
1398 
1399 void RenderScriptRuntime::CaptureSetGlobalVar(RuntimeHook *hook,
1400                                               ExecutionContext &context) {
1401   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1402 
1403   enum {
1404     eRsContext,
1405     eRsScript,
1406     eRsId,
1407     eRsData,
1408     eRsLength,
1409   };
1410 
1411   std::array<ArgItem, 5> args{{
1412       ArgItem{ArgItem::ePointer, 0}, // eRsContext
1413       ArgItem{ArgItem::ePointer, 0}, // eRsScript
1414       ArgItem{ArgItem::eInt32, 0},   // eRsId
1415       ArgItem{ArgItem::ePointer, 0}, // eRsData
1416       ArgItem{ArgItem::eInt32, 0},   // eRsLength
1417   }};
1418 
1419   bool success = GetArgs(context, &args[0], args.size());
1420   if (!success) {
1421     if (log)
1422       log->Printf("%s - error reading the function parameters.", __FUNCTION__);
1423     return;
1424   }
1425 
1426   if (log) {
1427     log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " slot %" PRIu64 " = 0x%" PRIx64
1428                 ":%" PRIu64 "bytes.",
1429                 __FUNCTION__, uint64_t(args[eRsContext]),
1430                 uint64_t(args[eRsScript]), uint64_t(args[eRsId]),
1431                 uint64_t(args[eRsData]), uint64_t(args[eRsLength]));
1432 
1433     addr_t script_addr = addr_t(args[eRsScript]);
1434     if (m_scriptMappings.find(script_addr) != m_scriptMappings.end()) {
1435       auto rsm = m_scriptMappings[script_addr];
1436       if (uint64_t(args[eRsId]) < rsm->m_globals.size()) {
1437         auto rsg = rsm->m_globals[uint64_t(args[eRsId])];
1438         log->Printf("%s - Setting of '%s' within '%s' inferred", __FUNCTION__,
1439                     rsg.m_name.AsCString(),
1440                     rsm->m_module->GetFileSpec().GetFilename().AsCString());
1441       }
1442     }
1443   }
1444 }
1445 
1446 void RenderScriptRuntime::CaptureAllocationInit(RuntimeHook *hook,
1447                                                 ExecutionContext &exe_ctx) {
1448   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1449 
1450   enum { eRsContext, eRsAlloc, eRsForceZero };
1451 
1452   std::array<ArgItem, 3> args{{
1453       ArgItem{ArgItem::ePointer, 0}, // eRsContext
1454       ArgItem{ArgItem::ePointer, 0}, // eRsAlloc
1455       ArgItem{ArgItem::eBool, 0},    // eRsForceZero
1456   }};
1457 
1458   bool success = GetArgs(exe_ctx, &args[0], args.size());
1459   if (!success) {
1460     if (log)
1461       log->Printf("%s - error while reading the function parameters",
1462                   __FUNCTION__);
1463     return;
1464   }
1465 
1466   if (log)
1467     log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 ",0x%" PRIx64 " .",
1468                 __FUNCTION__, uint64_t(args[eRsContext]),
1469                 uint64_t(args[eRsAlloc]), uint64_t(args[eRsForceZero]));
1470 
1471   AllocationDetails *alloc = CreateAllocation(uint64_t(args[eRsAlloc]));
1472   if (alloc)
1473     alloc->context = uint64_t(args[eRsContext]);
1474 }
1475 
1476 void RenderScriptRuntime::CaptureAllocationDestroy(RuntimeHook *hook,
1477                                                    ExecutionContext &exe_ctx) {
1478   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1479 
1480   enum {
1481     eRsContext,
1482     eRsAlloc,
1483   };
1484 
1485   std::array<ArgItem, 2> args{{
1486       ArgItem{ArgItem::ePointer, 0}, // eRsContext
1487       ArgItem{ArgItem::ePointer, 0}, // eRsAlloc
1488   }};
1489 
1490   bool success = GetArgs(exe_ctx, &args[0], args.size());
1491   if (!success) {
1492     if (log)
1493       log->Printf("%s - error while reading the function parameters.",
1494                   __FUNCTION__);
1495     return;
1496   }
1497 
1498   if (log)
1499     log->Printf("%s - 0x%" PRIx64 ", 0x%" PRIx64 ".", __FUNCTION__,
1500                 uint64_t(args[eRsContext]), uint64_t(args[eRsAlloc]));
1501 
1502   for (auto iter = m_allocations.begin(); iter != m_allocations.end(); ++iter) {
1503     auto &allocation_ap = *iter; // get the unique pointer
1504     if (allocation_ap->address.isValid() &&
1505         *allocation_ap->address.get() == addr_t(args[eRsAlloc])) {
1506       m_allocations.erase(iter);
1507       if (log)
1508         log->Printf("%s - deleted allocation entry.", __FUNCTION__);
1509       return;
1510     }
1511   }
1512 
1513   if (log)
1514     log->Printf("%s - couldn't find destroyed allocation.", __FUNCTION__);
1515 }
1516 
1517 void RenderScriptRuntime::CaptureScriptInit(RuntimeHook *hook,
1518                                             ExecutionContext &exe_ctx) {
1519   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1520 
1521   Status err;
1522   Process *process = exe_ctx.GetProcessPtr();
1523 
1524   enum { eRsContext, eRsScript, eRsResNamePtr, eRsCachedDirPtr };
1525 
1526   std::array<ArgItem, 4> args{
1527       {ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0},
1528        ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}}};
1529   bool success = GetArgs(exe_ctx, &args[0], args.size());
1530   if (!success) {
1531     if (log)
1532       log->Printf("%s - error while reading the function parameters.",
1533                   __FUNCTION__);
1534     return;
1535   }
1536 
1537   std::string res_name;
1538   process->ReadCStringFromMemory(addr_t(args[eRsResNamePtr]), res_name, err);
1539   if (err.Fail()) {
1540     if (log)
1541       log->Printf("%s - error reading res_name: %s.", __FUNCTION__,
1542                   err.AsCString());
1543   }
1544 
1545   std::string cache_dir;
1546   process->ReadCStringFromMemory(addr_t(args[eRsCachedDirPtr]), cache_dir, err);
1547   if (err.Fail()) {
1548     if (log)
1549       log->Printf("%s - error reading cache_dir: %s.", __FUNCTION__,
1550                   err.AsCString());
1551   }
1552 
1553   if (log)
1554     log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " => '%s' at '%s' .",
1555                 __FUNCTION__, uint64_t(args[eRsContext]),
1556                 uint64_t(args[eRsScript]), res_name.c_str(), cache_dir.c_str());
1557 
1558   if (res_name.size() > 0) {
1559     StreamString strm;
1560     strm.Printf("librs.%s.so", res_name.c_str());
1561 
1562     ScriptDetails *script = LookUpScript(addr_t(args[eRsScript]), true);
1563     if (script) {
1564       script->type = ScriptDetails::eScriptC;
1565       script->cache_dir = cache_dir;
1566       script->res_name = res_name;
1567       script->shared_lib = strm.GetString();
1568       script->context = addr_t(args[eRsContext]);
1569     }
1570 
1571     if (log)
1572       log->Printf("%s - '%s' tagged with context 0x%" PRIx64
1573                   " and script 0x%" PRIx64 ".",
1574                   __FUNCTION__, strm.GetData(), uint64_t(args[eRsContext]),
1575                   uint64_t(args[eRsScript]));
1576   } else if (log) {
1577     log->Printf("%s - resource name invalid, Script not tagged.", __FUNCTION__);
1578   }
1579 }
1580 
1581 void RenderScriptRuntime::LoadRuntimeHooks(lldb::ModuleSP module,
1582                                            ModuleKind kind) {
1583   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1584 
1585   if (!module) {
1586     return;
1587   }
1588 
1589   Target &target = GetProcess()->GetTarget();
1590   const llvm::Triple::ArchType machine = target.GetArchitecture().GetMachine();
1591 
1592   if (machine != llvm::Triple::ArchType::x86 &&
1593       machine != llvm::Triple::ArchType::arm &&
1594       machine != llvm::Triple::ArchType::aarch64 &&
1595       machine != llvm::Triple::ArchType::mipsel &&
1596       machine != llvm::Triple::ArchType::mips64el &&
1597       machine != llvm::Triple::ArchType::x86_64) {
1598     if (log)
1599       log->Printf("%s - unable to hook runtime functions.", __FUNCTION__);
1600     return;
1601   }
1602 
1603   const uint32_t target_ptr_size =
1604       target.GetArchitecture().GetAddressByteSize();
1605 
1606   std::array<bool, s_runtimeHookCount> hook_placed;
1607   hook_placed.fill(false);
1608 
1609   for (size_t idx = 0; idx < s_runtimeHookCount; idx++) {
1610     const HookDefn *hook_defn = &s_runtimeHookDefns[idx];
1611     if (hook_defn->kind != kind) {
1612       continue;
1613     }
1614 
1615     const char *symbol_name = (target_ptr_size == 4)
1616                                   ? hook_defn->symbol_name_m32
1617                                   : hook_defn->symbol_name_m64;
1618 
1619     const Symbol *sym = module->FindFirstSymbolWithNameAndType(
1620         ConstString(symbol_name), eSymbolTypeCode);
1621     if (!sym) {
1622       if (log) {
1623         log->Printf("%s - symbol '%s' related to the function %s not found",
1624                     __FUNCTION__, symbol_name, hook_defn->name);
1625       }
1626       continue;
1627     }
1628 
1629     addr_t addr = sym->GetLoadAddress(&target);
1630     if (addr == LLDB_INVALID_ADDRESS) {
1631       if (log)
1632         log->Printf("%s - unable to resolve the address of hook function '%s' "
1633                     "with symbol '%s'.",
1634                     __FUNCTION__, hook_defn->name, symbol_name);
1635       continue;
1636     } else {
1637       if (log)
1638         log->Printf("%s - function %s, address resolved at 0x%" PRIx64,
1639                     __FUNCTION__, hook_defn->name, addr);
1640     }
1641 
1642     RuntimeHookSP hook(new RuntimeHook());
1643     hook->address = addr;
1644     hook->defn = hook_defn;
1645     hook->bp_sp = target.CreateBreakpoint(addr, true, false);
1646     hook->bp_sp->SetCallback(HookCallback, hook.get(), true);
1647     m_runtimeHooks[addr] = hook;
1648     if (log) {
1649       log->Printf("%s - successfully hooked '%s' in '%s' version %" PRIu64
1650                   " at 0x%" PRIx64 ".",
1651                   __FUNCTION__, hook_defn->name,
1652                   module->GetFileSpec().GetFilename().AsCString(),
1653                   (uint64_t)hook_defn->version, (uint64_t)addr);
1654     }
1655     hook_placed[idx] = true;
1656   }
1657 
1658   // log any unhooked function
1659   if (log) {
1660     for (size_t i = 0; i < hook_placed.size(); ++i) {
1661       if (hook_placed[i])
1662         continue;
1663       const HookDefn &hook_defn = s_runtimeHookDefns[i];
1664       if (hook_defn.kind != kind)
1665         continue;
1666       log->Printf("%s - function %s was not hooked", __FUNCTION__,
1667                   hook_defn.name);
1668     }
1669   }
1670 }
1671 
1672 void RenderScriptRuntime::FixupScriptDetails(RSModuleDescriptorSP rsmodule_sp) {
1673   if (!rsmodule_sp)
1674     return;
1675 
1676   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1677 
1678   const ModuleSP module = rsmodule_sp->m_module;
1679   const FileSpec &file = module->GetPlatformFileSpec();
1680 
1681   // Iterate over all of the scripts that we currently know of. Note: We cant
1682   // push or pop to m_scripts here or it may invalidate rs_script.
1683   for (const auto &rs_script : m_scripts) {
1684     // Extract the expected .so file path for this script.
1685     std::string shared_lib;
1686     if (!rs_script->shared_lib.get(shared_lib))
1687       continue;
1688 
1689     // Only proceed if the module that has loaded corresponds to this script.
1690     if (file.GetFilename() != ConstString(shared_lib.c_str()))
1691       continue;
1692 
1693     // Obtain the script address which we use as a key.
1694     lldb::addr_t script;
1695     if (!rs_script->script.get(script))
1696       continue;
1697 
1698     // If we have a script mapping for the current script.
1699     if (m_scriptMappings.find(script) != m_scriptMappings.end()) {
1700       // if the module we have stored is different to the one we just received.
1701       if (m_scriptMappings[script] != rsmodule_sp) {
1702         if (log)
1703           log->Printf(
1704               "%s - script %" PRIx64 " wants reassigned to new rsmodule '%s'.",
1705               __FUNCTION__, (uint64_t)script,
1706               rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString());
1707       }
1708     }
1709     // We don't have a script mapping for the current script.
1710     else {
1711       // Obtain the script resource name.
1712       std::string res_name;
1713       if (rs_script->res_name.get(res_name))
1714         // Set the modules resource name.
1715         rsmodule_sp->m_resname = res_name;
1716       // Add Script/Module pair to map.
1717       m_scriptMappings[script] = rsmodule_sp;
1718       if (log)
1719         log->Printf(
1720             "%s - script %" PRIx64 " associated with rsmodule '%s'.",
1721             __FUNCTION__, (uint64_t)script,
1722             rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString());
1723     }
1724   }
1725 }
1726 
1727 // Uses the Target API to evaluate the expression passed as a parameter to the
1728 // function The result of that expression is returned an unsigned 64 bit int,
1729 // via the result* parameter. Function returns true on success, and false on
1730 // failure
1731 bool RenderScriptRuntime::EvalRSExpression(const char *expr,
1732                                            StackFrame *frame_ptr,
1733                                            uint64_t *result) {
1734   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1735   if (log)
1736     log->Printf("%s(%s)", __FUNCTION__, expr);
1737 
1738   ValueObjectSP expr_result;
1739   EvaluateExpressionOptions options;
1740   options.SetLanguage(lldb::eLanguageTypeC_plus_plus);
1741   // Perform the actual expression evaluation
1742   auto &target = GetProcess()->GetTarget();
1743   target.EvaluateExpression(expr, frame_ptr, expr_result, options);
1744 
1745   if (!expr_result) {
1746     if (log)
1747       log->Printf("%s: couldn't evaluate expression.", __FUNCTION__);
1748     return false;
1749   }
1750 
1751   // The result of the expression is invalid
1752   if (!expr_result->GetError().Success()) {
1753     Status err = expr_result->GetError();
1754     // Expression returned is void, so this is actually a success
1755     if (err.GetError() == UserExpression::kNoResult) {
1756       if (log)
1757         log->Printf("%s - expression returned void.", __FUNCTION__);
1758 
1759       result = nullptr;
1760       return true;
1761     }
1762 
1763     if (log)
1764       log->Printf("%s - error evaluating expression result: %s", __FUNCTION__,
1765                   err.AsCString());
1766     return false;
1767   }
1768 
1769   bool success = false;
1770   // We only read the result as an uint32_t.
1771   *result = expr_result->GetValueAsUnsigned(0, &success);
1772 
1773   if (!success) {
1774     if (log)
1775       log->Printf("%s - couldn't convert expression result to uint32_t",
1776                   __FUNCTION__);
1777     return false;
1778   }
1779 
1780   return true;
1781 }
1782 
1783 namespace {
1784 // Used to index expression format strings
1785 enum ExpressionStrings {
1786   eExprGetOffsetPtr = 0,
1787   eExprAllocGetType,
1788   eExprTypeDimX,
1789   eExprTypeDimY,
1790   eExprTypeDimZ,
1791   eExprTypeElemPtr,
1792   eExprElementType,
1793   eExprElementKind,
1794   eExprElementVec,
1795   eExprElementFieldCount,
1796   eExprSubelementsId,
1797   eExprSubelementsName,
1798   eExprSubelementsArrSize,
1799 
1800   _eExprLast // keep at the end, implicit size of the array runtime_expressions
1801 };
1802 
1803 // max length of an expanded expression
1804 const int jit_max_expr_size = 512;
1805 
1806 // Retrieve the string to JIT for the given expression
1807 #define JIT_TEMPLATE_CONTEXT "void* ctxt = (void*)rsDebugGetContextWrapper(0x%" PRIx64 "); "
1808 const char *JITTemplate(ExpressionStrings e) {
1809   // Format strings containing the expressions we may need to evaluate.
1810   static std::array<const char *, _eExprLast> runtime_expressions = {
1811       {// Mangled GetOffsetPointer(Allocation*, xoff, yoff, zoff, lod, cubemap)
1812        "(int*)_"
1813        "Z12GetOffsetPtrPKN7android12renderscript10AllocationEjjjj23RsAllocation"
1814        "CubemapFace"
1815        "(0x%" PRIx64 ", %" PRIu32 ", %" PRIu32 ", %" PRIu32 ", 0, 0)", // eExprGetOffsetPtr
1816 
1817        // Type* rsaAllocationGetType(Context*, Allocation*)
1818        JIT_TEMPLATE_CONTEXT "(void*)rsaAllocationGetType(ctxt, 0x%" PRIx64 ")", // eExprAllocGetType
1819 
1820        // rsaTypeGetNativeData(Context*, Type*, void* typeData, size) Pack the
1821        // data in the following way mHal.state.dimX; mHal.state.dimY;
1822        // mHal.state.dimZ; mHal.state.lodCount; mHal.state.faces; mElement;
1823        // into typeData Need to specify 32 or 64 bit for uint_t since this
1824        // differs between devices
1825        JIT_TEMPLATE_CONTEXT
1826        "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt"
1827        ", 0x%" PRIx64 ", data, 6); data[0]", // eExprTypeDimX
1828        JIT_TEMPLATE_CONTEXT
1829        "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt"
1830        ", 0x%" PRIx64 ", data, 6); data[1]", // eExprTypeDimY
1831        JIT_TEMPLATE_CONTEXT
1832        "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt"
1833        ", 0x%" PRIx64 ", data, 6); data[2]", // eExprTypeDimZ
1834        JIT_TEMPLATE_CONTEXT
1835        "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt"
1836        ", 0x%" PRIx64 ", data, 6); data[5]", // eExprTypeElemPtr
1837 
1838        // rsaElementGetNativeData(Context*, Element*, uint32_t* elemData,size)
1839        // Pack mType; mKind; mNormalized; mVectorSize; NumSubElements into
1840        // elemData
1841        JIT_TEMPLATE_CONTEXT
1842        "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt"
1843        ", 0x%" PRIx64 ", data, 5); data[0]", // eExprElementType
1844        JIT_TEMPLATE_CONTEXT
1845        "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt"
1846        ", 0x%" PRIx64 ", data, 5); data[1]", // eExprElementKind
1847        JIT_TEMPLATE_CONTEXT
1848        "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt"
1849        ", 0x%" PRIx64 ", data, 5); data[3]", // eExprElementVec
1850        JIT_TEMPLATE_CONTEXT
1851        "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt"
1852        ", 0x%" PRIx64 ", data, 5); data[4]", // eExprElementFieldCount
1853 
1854        // rsaElementGetSubElements(RsContext con, RsElement elem, uintptr_t
1855        // *ids, const char **names, size_t *arraySizes, uint32_t dataSize)
1856        // Needed for Allocations of structs to gather details about
1857        // fields/Subelements Element* of field
1858        JIT_TEMPLATE_CONTEXT "void* ids[%" PRIu32 "]; const char* names[%" PRIu32
1859        "]; size_t arr_size[%" PRIu32 "];"
1860        "(void*)rsaElementGetSubElements(ctxt, 0x%" PRIx64
1861        ", ids, names, arr_size, %" PRIu32 "); ids[%" PRIu32 "]", // eExprSubelementsId
1862 
1863        // Name of field
1864        JIT_TEMPLATE_CONTEXT "void* ids[%" PRIu32 "]; const char* names[%" PRIu32
1865        "]; size_t arr_size[%" PRIu32 "];"
1866        "(void*)rsaElementGetSubElements(ctxt, 0x%" PRIx64
1867        ", ids, names, arr_size, %" PRIu32 "); names[%" PRIu32 "]", // eExprSubelementsName
1868 
1869        // Array size of field
1870        JIT_TEMPLATE_CONTEXT "void* ids[%" PRIu32 "]; const char* names[%" PRIu32
1871        "]; size_t arr_size[%" PRIu32 "];"
1872        "(void*)rsaElementGetSubElements(ctxt, 0x%" PRIx64
1873        ", ids, names, arr_size, %" PRIu32 "); arr_size[%" PRIu32 "]"}}; // eExprSubelementsArrSize
1874 
1875   return runtime_expressions[e];
1876 }
1877 } // end of the anonymous namespace
1878 
1879 // JITs the RS runtime for the internal data pointer of an allocation. Is
1880 // passed x,y,z coordinates for the pointer to a specific element. Then sets
1881 // the data_ptr member in Allocation with the result. Returns true on success,
1882 // false otherwise
1883 bool RenderScriptRuntime::JITDataPointer(AllocationDetails *alloc,
1884                                          StackFrame *frame_ptr, uint32_t x,
1885                                          uint32_t y, uint32_t z) {
1886   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1887 
1888   if (!alloc->address.isValid()) {
1889     if (log)
1890       log->Printf("%s - failed to find allocation details.", __FUNCTION__);
1891     return false;
1892   }
1893 
1894   const char *fmt_str = JITTemplate(eExprGetOffsetPtr);
1895   char expr_buf[jit_max_expr_size];
1896 
1897   int written = snprintf(expr_buf, jit_max_expr_size, fmt_str,
1898                          *alloc->address.get(), x, y, z);
1899   if (written < 0) {
1900     if (log)
1901       log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
1902     return false;
1903   } else if (written >= jit_max_expr_size) {
1904     if (log)
1905       log->Printf("%s - expression too long.", __FUNCTION__);
1906     return false;
1907   }
1908 
1909   uint64_t result = 0;
1910   if (!EvalRSExpression(expr_buf, frame_ptr, &result))
1911     return false;
1912 
1913   addr_t data_ptr = static_cast<lldb::addr_t>(result);
1914   alloc->data_ptr = data_ptr;
1915 
1916   return true;
1917 }
1918 
1919 // JITs the RS runtime for the internal pointer to the RS Type of an allocation
1920 // Then sets the type_ptr member in Allocation with the result. Returns true on
1921 // success, false otherwise
1922 bool RenderScriptRuntime::JITTypePointer(AllocationDetails *alloc,
1923                                          StackFrame *frame_ptr) {
1924   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1925 
1926   if (!alloc->address.isValid() || !alloc->context.isValid()) {
1927     if (log)
1928       log->Printf("%s - failed to find allocation details.", __FUNCTION__);
1929     return false;
1930   }
1931 
1932   const char *fmt_str = JITTemplate(eExprAllocGetType);
1933   char expr_buf[jit_max_expr_size];
1934 
1935   int written = snprintf(expr_buf, jit_max_expr_size, fmt_str,
1936                          *alloc->context.get(), *alloc->address.get());
1937   if (written < 0) {
1938     if (log)
1939       log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
1940     return false;
1941   } else if (written >= jit_max_expr_size) {
1942     if (log)
1943       log->Printf("%s - expression too long.", __FUNCTION__);
1944     return false;
1945   }
1946 
1947   uint64_t result = 0;
1948   if (!EvalRSExpression(expr_buf, frame_ptr, &result))
1949     return false;
1950 
1951   addr_t type_ptr = static_cast<lldb::addr_t>(result);
1952   alloc->type_ptr = type_ptr;
1953 
1954   return true;
1955 }
1956 
1957 // JITs the RS runtime for information about the dimensions and type of an
1958 // allocation Then sets dimension and element_ptr members in Allocation with
1959 // the result. Returns true on success, false otherwise
1960 bool RenderScriptRuntime::JITTypePacked(AllocationDetails *alloc,
1961                                         StackFrame *frame_ptr) {
1962   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1963 
1964   if (!alloc->type_ptr.isValid() || !alloc->context.isValid()) {
1965     if (log)
1966       log->Printf("%s - Failed to find allocation details.", __FUNCTION__);
1967     return false;
1968   }
1969 
1970   // Expression is different depending on if device is 32 or 64 bit
1971   uint32_t target_ptr_size =
1972       GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
1973   const uint32_t bits = target_ptr_size == 4 ? 32 : 64;
1974 
1975   // We want 4 elements from packed data
1976   const uint32_t num_exprs = 4;
1977   assert(num_exprs == (eExprTypeElemPtr - eExprTypeDimX + 1) &&
1978          "Invalid number of expressions");
1979 
1980   char expr_bufs[num_exprs][jit_max_expr_size];
1981   uint64_t results[num_exprs];
1982 
1983   for (uint32_t i = 0; i < num_exprs; ++i) {
1984     const char *fmt_str = JITTemplate(ExpressionStrings(eExprTypeDimX + i));
1985     int written = snprintf(expr_bufs[i], jit_max_expr_size, fmt_str,
1986                            *alloc->context.get(), bits, *alloc->type_ptr.get());
1987     if (written < 0) {
1988       if (log)
1989         log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
1990       return false;
1991     } else if (written >= jit_max_expr_size) {
1992       if (log)
1993         log->Printf("%s - expression too long.", __FUNCTION__);
1994       return false;
1995     }
1996 
1997     // Perform expression evaluation
1998     if (!EvalRSExpression(expr_bufs[i], frame_ptr, &results[i]))
1999       return false;
2000   }
2001 
2002   // Assign results to allocation members
2003   AllocationDetails::Dimension dims;
2004   dims.dim_1 = static_cast<uint32_t>(results[0]);
2005   dims.dim_2 = static_cast<uint32_t>(results[1]);
2006   dims.dim_3 = static_cast<uint32_t>(results[2]);
2007   alloc->dimension = dims;
2008 
2009   addr_t element_ptr = static_cast<lldb::addr_t>(results[3]);
2010   alloc->element.element_ptr = element_ptr;
2011 
2012   if (log)
2013     log->Printf("%s - dims (%" PRIu32 ", %" PRIu32 ", %" PRIu32
2014                 ") Element*: 0x%" PRIx64 ".",
2015                 __FUNCTION__, dims.dim_1, dims.dim_2, dims.dim_3, element_ptr);
2016 
2017   return true;
2018 }
2019 
2020 // JITs the RS runtime for information about the Element of an allocation Then
2021 // sets type, type_vec_size, field_count and type_kind members in Element with
2022 // the result. Returns true on success, false otherwise
2023 bool RenderScriptRuntime::JITElementPacked(Element &elem,
2024                                            const lldb::addr_t context,
2025                                            StackFrame *frame_ptr) {
2026   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2027 
2028   if (!elem.element_ptr.isValid()) {
2029     if (log)
2030       log->Printf("%s - failed to find allocation details.", __FUNCTION__);
2031     return false;
2032   }
2033 
2034   // We want 4 elements from packed data
2035   const uint32_t num_exprs = 4;
2036   assert(num_exprs == (eExprElementFieldCount - eExprElementType + 1) &&
2037          "Invalid number of expressions");
2038 
2039   char expr_bufs[num_exprs][jit_max_expr_size];
2040   uint64_t results[num_exprs];
2041 
2042   for (uint32_t i = 0; i < num_exprs; i++) {
2043     const char *fmt_str = JITTemplate(ExpressionStrings(eExprElementType + i));
2044     int written = snprintf(expr_bufs[i], jit_max_expr_size, fmt_str, context,
2045                            *elem.element_ptr.get());
2046     if (written < 0) {
2047       if (log)
2048         log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
2049       return false;
2050     } else if (written >= jit_max_expr_size) {
2051       if (log)
2052         log->Printf("%s - expression too long.", __FUNCTION__);
2053       return false;
2054     }
2055 
2056     // Perform expression evaluation
2057     if (!EvalRSExpression(expr_bufs[i], frame_ptr, &results[i]))
2058       return false;
2059   }
2060 
2061   // Assign results to allocation members
2062   elem.type = static_cast<RenderScriptRuntime::Element::DataType>(results[0]);
2063   elem.type_kind =
2064       static_cast<RenderScriptRuntime::Element::DataKind>(results[1]);
2065   elem.type_vec_size = static_cast<uint32_t>(results[2]);
2066   elem.field_count = static_cast<uint32_t>(results[3]);
2067 
2068   if (log)
2069     log->Printf("%s - data type %" PRIu32 ", pixel type %" PRIu32
2070                 ", vector size %" PRIu32 ", field count %" PRIu32,
2071                 __FUNCTION__, *elem.type.get(), *elem.type_kind.get(),
2072                 *elem.type_vec_size.get(), *elem.field_count.get());
2073 
2074   // If this Element has subelements then JIT rsaElementGetSubElements() for
2075   // details about its fields
2076   return !(*elem.field_count.get() > 0 &&
2077            !JITSubelements(elem, context, frame_ptr));
2078 }
2079 
2080 // JITs the RS runtime for information about the subelements/fields of a struct
2081 // allocation This is necessary for infering the struct type so we can pretty
2082 // print the allocation's contents. Returns true on success, false otherwise
2083 bool RenderScriptRuntime::JITSubelements(Element &elem,
2084                                          const lldb::addr_t context,
2085                                          StackFrame *frame_ptr) {
2086   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2087 
2088   if (!elem.element_ptr.isValid() || !elem.field_count.isValid()) {
2089     if (log)
2090       log->Printf("%s - failed to find allocation details.", __FUNCTION__);
2091     return false;
2092   }
2093 
2094   const short num_exprs = 3;
2095   assert(num_exprs == (eExprSubelementsArrSize - eExprSubelementsId + 1) &&
2096          "Invalid number of expressions");
2097 
2098   char expr_buffer[jit_max_expr_size];
2099   uint64_t results;
2100 
2101   // Iterate over struct fields.
2102   const uint32_t field_count = *elem.field_count.get();
2103   for (uint32_t field_index = 0; field_index < field_count; ++field_index) {
2104     Element child;
2105     for (uint32_t expr_index = 0; expr_index < num_exprs; ++expr_index) {
2106       const char *fmt_str =
2107           JITTemplate(ExpressionStrings(eExprSubelementsId + expr_index));
2108       int written = snprintf(expr_buffer, jit_max_expr_size, fmt_str,
2109                              context, field_count, field_count, field_count,
2110                              *elem.element_ptr.get(), field_count, field_index);
2111       if (written < 0) {
2112         if (log)
2113           log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
2114         return false;
2115       } else if (written >= jit_max_expr_size) {
2116         if (log)
2117           log->Printf("%s - expression too long.", __FUNCTION__);
2118         return false;
2119       }
2120 
2121       // Perform expression evaluation
2122       if (!EvalRSExpression(expr_buffer, frame_ptr, &results))
2123         return false;
2124 
2125       if (log)
2126         log->Printf("%s - expr result 0x%" PRIx64 ".", __FUNCTION__, results);
2127 
2128       switch (expr_index) {
2129       case 0: // Element* of child
2130         child.element_ptr = static_cast<addr_t>(results);
2131         break;
2132       case 1: // Name of child
2133       {
2134         lldb::addr_t address = static_cast<addr_t>(results);
2135         Status err;
2136         std::string name;
2137         GetProcess()->ReadCStringFromMemory(address, name, err);
2138         if (!err.Fail())
2139           child.type_name = ConstString(name);
2140         else {
2141           if (log)
2142             log->Printf("%s - warning: Couldn't read field name.",
2143                         __FUNCTION__);
2144         }
2145         break;
2146       }
2147       case 2: // Array size of child
2148         child.array_size = static_cast<uint32_t>(results);
2149         break;
2150       }
2151     }
2152 
2153     // We need to recursively JIT each Element field of the struct since
2154     // structs can be nested inside structs.
2155     if (!JITElementPacked(child, context, frame_ptr))
2156       return false;
2157     elem.children.push_back(child);
2158   }
2159 
2160   // Try to infer the name of the struct type so we can pretty print the
2161   // allocation contents.
2162   FindStructTypeName(elem, frame_ptr);
2163 
2164   return true;
2165 }
2166 
2167 // JITs the RS runtime for the address of the last element in the allocation.
2168 // The `elem_size` parameter represents the size of a single element, including
2169 // padding. Which is needed as an offset from the last element pointer. Using
2170 // this offset minus the starting address we can calculate the size of the
2171 // allocation. Returns true on success, false otherwise
2172 bool RenderScriptRuntime::JITAllocationSize(AllocationDetails *alloc,
2173                                             StackFrame *frame_ptr) {
2174   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2175 
2176   if (!alloc->address.isValid() || !alloc->dimension.isValid() ||
2177       !alloc->data_ptr.isValid() || !alloc->element.datum_size.isValid()) {
2178     if (log)
2179       log->Printf("%s - failed to find allocation details.", __FUNCTION__);
2180     return false;
2181   }
2182 
2183   // Find dimensions
2184   uint32_t dim_x = alloc->dimension.get()->dim_1;
2185   uint32_t dim_y = alloc->dimension.get()->dim_2;
2186   uint32_t dim_z = alloc->dimension.get()->dim_3;
2187 
2188   // Our plan of jitting the last element address doesn't seem to work for
2189   // struct Allocations` Instead try to infer the size ourselves without any
2190   // inter element padding.
2191   if (alloc->element.children.size() > 0) {
2192     if (dim_x == 0)
2193       dim_x = 1;
2194     if (dim_y == 0)
2195       dim_y = 1;
2196     if (dim_z == 0)
2197       dim_z = 1;
2198 
2199     alloc->size = dim_x * dim_y * dim_z * *alloc->element.datum_size.get();
2200 
2201     if (log)
2202       log->Printf("%s - inferred size of struct allocation %" PRIu32 ".",
2203                   __FUNCTION__, *alloc->size.get());
2204     return true;
2205   }
2206 
2207   const char *fmt_str = JITTemplate(eExprGetOffsetPtr);
2208   char expr_buf[jit_max_expr_size];
2209 
2210   // Calculate last element
2211   dim_x = dim_x == 0 ? 0 : dim_x - 1;
2212   dim_y = dim_y == 0 ? 0 : dim_y - 1;
2213   dim_z = dim_z == 0 ? 0 : dim_z - 1;
2214 
2215   int written = snprintf(expr_buf, jit_max_expr_size, fmt_str,
2216                          *alloc->address.get(), dim_x, dim_y, dim_z);
2217   if (written < 0) {
2218     if (log)
2219       log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
2220     return false;
2221   } else if (written >= jit_max_expr_size) {
2222     if (log)
2223       log->Printf("%s - expression too long.", __FUNCTION__);
2224     return false;
2225   }
2226 
2227   uint64_t result = 0;
2228   if (!EvalRSExpression(expr_buf, frame_ptr, &result))
2229     return false;
2230 
2231   addr_t mem_ptr = static_cast<lldb::addr_t>(result);
2232   // Find pointer to last element and add on size of an element
2233   alloc->size = static_cast<uint32_t>(mem_ptr - *alloc->data_ptr.get()) +
2234                 *alloc->element.datum_size.get();
2235 
2236   return true;
2237 }
2238 
2239 // JITs the RS runtime for information about the stride between rows in the
2240 // allocation. This is done to detect padding, since allocated memory is
2241 // 16-byte aligned. Returns true on success, false otherwise
2242 bool RenderScriptRuntime::JITAllocationStride(AllocationDetails *alloc,
2243                                               StackFrame *frame_ptr) {
2244   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2245 
2246   if (!alloc->address.isValid() || !alloc->data_ptr.isValid()) {
2247     if (log)
2248       log->Printf("%s - failed to find allocation details.", __FUNCTION__);
2249     return false;
2250   }
2251 
2252   const char *fmt_str = JITTemplate(eExprGetOffsetPtr);
2253   char expr_buf[jit_max_expr_size];
2254 
2255   int written = snprintf(expr_buf, jit_max_expr_size, fmt_str,
2256                          *alloc->address.get(), 0, 1, 0);
2257   if (written < 0) {
2258     if (log)
2259       log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
2260     return false;
2261   } else if (written >= jit_max_expr_size) {
2262     if (log)
2263       log->Printf("%s - expression too long.", __FUNCTION__);
2264     return false;
2265   }
2266 
2267   uint64_t result = 0;
2268   if (!EvalRSExpression(expr_buf, frame_ptr, &result))
2269     return false;
2270 
2271   addr_t mem_ptr = static_cast<lldb::addr_t>(result);
2272   alloc->stride = static_cast<uint32_t>(mem_ptr - *alloc->data_ptr.get());
2273 
2274   return true;
2275 }
2276 
2277 // JIT all the current runtime info regarding an allocation
2278 bool RenderScriptRuntime::RefreshAllocation(AllocationDetails *alloc,
2279                                             StackFrame *frame_ptr) {
2280   // GetOffsetPointer()
2281   if (!JITDataPointer(alloc, frame_ptr))
2282     return false;
2283 
2284   // rsaAllocationGetType()
2285   if (!JITTypePointer(alloc, frame_ptr))
2286     return false;
2287 
2288   // rsaTypeGetNativeData()
2289   if (!JITTypePacked(alloc, frame_ptr))
2290     return false;
2291 
2292   // rsaElementGetNativeData()
2293   if (!JITElementPacked(alloc->element, *alloc->context.get(), frame_ptr))
2294     return false;
2295 
2296   // Sets the datum_size member in Element
2297   SetElementSize(alloc->element);
2298 
2299   // Use GetOffsetPointer() to infer size of the allocation
2300   return JITAllocationSize(alloc, frame_ptr);
2301 }
2302 
2303 // Function attempts to set the type_name member of the paramaterised Element
2304 // object. This string should be the name of the struct type the Element
2305 // represents. We need this string for pretty printing the Element to users.
2306 void RenderScriptRuntime::FindStructTypeName(Element &elem,
2307                                              StackFrame *frame_ptr) {
2308   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2309 
2310   if (!elem.type_name.IsEmpty()) // Name already set
2311     return;
2312   else
2313     elem.type_name = Element::GetFallbackStructName(); // Default type name if
2314                                                        // we don't succeed
2315 
2316   // Find all the global variables from the script rs modules
2317   VariableList var_list;
2318   for (auto module_sp : m_rsmodules)
2319     module_sp->m_module->FindGlobalVariables(
2320         RegularExpression(llvm::StringRef(".")), UINT32_MAX, var_list);
2321 
2322   // Iterate over all the global variables looking for one with a matching type
2323   // to the Element. We make the assumption a match exists since there needs to
2324   // be a global variable to reflect the struct type back into java host code.
2325   for (uint32_t i = 0; i < var_list.GetSize(); ++i) {
2326     const VariableSP var_sp(var_list.GetVariableAtIndex(i));
2327     if (!var_sp)
2328       continue;
2329 
2330     ValueObjectSP valobj_sp = ValueObjectVariable::Create(frame_ptr, var_sp);
2331     if (!valobj_sp)
2332       continue;
2333 
2334     // Find the number of variable fields.
2335     // If it has no fields, or more fields than our Element, then it can't be
2336     // the struct we're looking for. Don't check for equality since RS can add
2337     // extra struct members for padding.
2338     size_t num_children = valobj_sp->GetNumChildren();
2339     if (num_children > elem.children.size() || num_children == 0)
2340       continue;
2341 
2342     // Iterate over children looking for members with matching field names. If
2343     // all the field names match, this is likely the struct we want.
2344     //   TODO: This could be made more robust by also checking children data
2345     //   sizes, or array size
2346     bool found = true;
2347     for (size_t i = 0; i < num_children; ++i) {
2348       ValueObjectSP child = valobj_sp->GetChildAtIndex(i, true);
2349       if (!child || (child->GetName() != elem.children[i].type_name)) {
2350         found = false;
2351         break;
2352       }
2353     }
2354 
2355     // RS can add extra struct members for padding in the format
2356     // '#rs_padding_[0-9]+'
2357     if (found && num_children < elem.children.size()) {
2358       const uint32_t size_diff = elem.children.size() - num_children;
2359       if (log)
2360         log->Printf("%s - %" PRIu32 " padding struct entries", __FUNCTION__,
2361                     size_diff);
2362 
2363       for (uint32_t i = 0; i < size_diff; ++i) {
2364         const ConstString &name = elem.children[num_children + i].type_name;
2365         if (strcmp(name.AsCString(), "#rs_padding") < 0)
2366           found = false;
2367       }
2368     }
2369 
2370     // We've found a global variable with matching type
2371     if (found) {
2372       // Dereference since our Element type isn't a pointer.
2373       if (valobj_sp->IsPointerType()) {
2374         Status err;
2375         ValueObjectSP deref_valobj = valobj_sp->Dereference(err);
2376         if (!err.Fail())
2377           valobj_sp = deref_valobj;
2378       }
2379 
2380       // Save name of variable in Element.
2381       elem.type_name = valobj_sp->GetTypeName();
2382       if (log)
2383         log->Printf("%s - element name set to %s", __FUNCTION__,
2384                     elem.type_name.AsCString());
2385 
2386       return;
2387     }
2388   }
2389 }
2390 
2391 // Function sets the datum_size member of Element. Representing the size of a
2392 // single instance including padding. Assumes the relevant allocation
2393 // information has already been jitted.
2394 void RenderScriptRuntime::SetElementSize(Element &elem) {
2395   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2396   const Element::DataType type = *elem.type.get();
2397   assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT &&
2398          "Invalid allocation type");
2399 
2400   const uint32_t vec_size = *elem.type_vec_size.get();
2401   uint32_t data_size = 0;
2402   uint32_t padding = 0;
2403 
2404   // Element is of a struct type, calculate size recursively.
2405   if ((type == Element::RS_TYPE_NONE) && (elem.children.size() > 0)) {
2406     for (Element &child : elem.children) {
2407       SetElementSize(child);
2408       const uint32_t array_size =
2409           child.array_size.isValid() ? *child.array_size.get() : 1;
2410       data_size += *child.datum_size.get() * array_size;
2411     }
2412   }
2413   // These have been packed already
2414   else if (type == Element::RS_TYPE_UNSIGNED_5_6_5 ||
2415            type == Element::RS_TYPE_UNSIGNED_5_5_5_1 ||
2416            type == Element::RS_TYPE_UNSIGNED_4_4_4_4) {
2417     data_size = AllocationDetails::RSTypeToFormat[type][eElementSize];
2418   } else if (type < Element::RS_TYPE_ELEMENT) {
2419     data_size =
2420         vec_size * AllocationDetails::RSTypeToFormat[type][eElementSize];
2421     if (vec_size == 3)
2422       padding = AllocationDetails::RSTypeToFormat[type][eElementSize];
2423   } else
2424     data_size =
2425         GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
2426 
2427   elem.padding = padding;
2428   elem.datum_size = data_size + padding;
2429   if (log)
2430     log->Printf("%s - element size set to %" PRIu32, __FUNCTION__,
2431                 data_size + padding);
2432 }
2433 
2434 // Given an allocation, this function copies the allocation contents from
2435 // device into a buffer on the heap. Returning a shared pointer to the buffer
2436 // containing the data.
2437 std::shared_ptr<uint8_t>
2438 RenderScriptRuntime::GetAllocationData(AllocationDetails *alloc,
2439                                        StackFrame *frame_ptr) {
2440   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2441 
2442   // JIT all the allocation details
2443   if (alloc->ShouldRefresh()) {
2444     if (log)
2445       log->Printf("%s - allocation details not calculated yet, jitting info",
2446                   __FUNCTION__);
2447 
2448     if (!RefreshAllocation(alloc, frame_ptr)) {
2449       if (log)
2450         log->Printf("%s - couldn't JIT allocation details", __FUNCTION__);
2451       return nullptr;
2452     }
2453   }
2454 
2455   assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() &&
2456          alloc->element.type_vec_size.isValid() && alloc->size.isValid() &&
2457          "Allocation information not available");
2458 
2459   // Allocate a buffer to copy data into
2460   const uint32_t size = *alloc->size.get();
2461   std::shared_ptr<uint8_t> buffer(new uint8_t[size]);
2462   if (!buffer) {
2463     if (log)
2464       log->Printf("%s - couldn't allocate a %" PRIu32 " byte buffer",
2465                   __FUNCTION__, size);
2466     return nullptr;
2467   }
2468 
2469   // Read the inferior memory
2470   Status err;
2471   lldb::addr_t data_ptr = *alloc->data_ptr.get();
2472   GetProcess()->ReadMemory(data_ptr, buffer.get(), size, err);
2473   if (err.Fail()) {
2474     if (log)
2475       log->Printf("%s - '%s' Couldn't read %" PRIu32
2476                   " bytes of allocation data from 0x%" PRIx64,
2477                   __FUNCTION__, err.AsCString(), size, data_ptr);
2478     return nullptr;
2479   }
2480 
2481   return buffer;
2482 }
2483 
2484 // Function copies data from a binary file into an allocation. There is a
2485 // header at the start of the file, FileHeader, before the data content itself.
2486 // Information from this header is used to display warnings to the user about
2487 // incompatibilities
2488 bool RenderScriptRuntime::LoadAllocation(Stream &strm, const uint32_t alloc_id,
2489                                          const char *path,
2490                                          StackFrame *frame_ptr) {
2491   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2492 
2493   // Find allocation with the given id
2494   AllocationDetails *alloc = FindAllocByID(strm, alloc_id);
2495   if (!alloc)
2496     return false;
2497 
2498   if (log)
2499     log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__,
2500                 *alloc->address.get());
2501 
2502   // JIT all the allocation details
2503   if (alloc->ShouldRefresh()) {
2504     if (log)
2505       log->Printf("%s - allocation details not calculated yet, jitting info.",
2506                   __FUNCTION__);
2507 
2508     if (!RefreshAllocation(alloc, frame_ptr)) {
2509       if (log)
2510         log->Printf("%s - couldn't JIT allocation details", __FUNCTION__);
2511       return false;
2512     }
2513   }
2514 
2515   assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() &&
2516          alloc->element.type_vec_size.isValid() && alloc->size.isValid() &&
2517          alloc->element.datum_size.isValid() &&
2518          "Allocation information not available");
2519 
2520   // Check we can read from file
2521   FileSpec file(path);
2522   FileSystem::Instance().Resolve(file);
2523   if (!FileSystem::Instance().Exists(file)) {
2524     strm.Printf("Error: File %s does not exist", path);
2525     strm.EOL();
2526     return false;
2527   }
2528 
2529   if (!FileSystem::Instance().Readable(file)) {
2530     strm.Printf("Error: File %s does not have readable permissions", path);
2531     strm.EOL();
2532     return false;
2533   }
2534 
2535   // Read file into data buffer
2536   auto data_sp = FileSystem::Instance().CreateDataBuffer(file.GetPath());
2537 
2538   // Cast start of buffer to FileHeader and use pointer to read metadata
2539   void *file_buf = data_sp->GetBytes();
2540   if (file_buf == nullptr ||
2541       data_sp->GetByteSize() < (sizeof(AllocationDetails::FileHeader) +
2542                                 sizeof(AllocationDetails::ElementHeader))) {
2543     strm.Printf("Error: File %s does not contain enough data for header", path);
2544     strm.EOL();
2545     return false;
2546   }
2547   const AllocationDetails::FileHeader *file_header =
2548       static_cast<AllocationDetails::FileHeader *>(file_buf);
2549 
2550   // Check file starts with ascii characters "RSAD"
2551   if (memcmp(file_header->ident, "RSAD", 4)) {
2552     strm.Printf("Error: File doesn't contain identifier for an RS allocation "
2553                 "dump. Are you sure this is the correct file?");
2554     strm.EOL();
2555     return false;
2556   }
2557 
2558   // Look at the type of the root element in the header
2559   AllocationDetails::ElementHeader root_el_hdr;
2560   memcpy(&root_el_hdr, static_cast<uint8_t *>(file_buf) +
2561                            sizeof(AllocationDetails::FileHeader),
2562          sizeof(AllocationDetails::ElementHeader));
2563 
2564   if (log)
2565     log->Printf("%s - header type %" PRIu32 ", element size %" PRIu32,
2566                 __FUNCTION__, root_el_hdr.type, root_el_hdr.element_size);
2567 
2568   // Check if the target allocation and file both have the same number of bytes
2569   // for an Element
2570   if (*alloc->element.datum_size.get() != root_el_hdr.element_size) {
2571     strm.Printf("Warning: Mismatched Element sizes - file %" PRIu32
2572                 " bytes, allocation %" PRIu32 " bytes",
2573                 root_el_hdr.element_size, *alloc->element.datum_size.get());
2574     strm.EOL();
2575   }
2576 
2577   // Check if the target allocation and file both have the same type
2578   const uint32_t alloc_type = static_cast<uint32_t>(*alloc->element.type.get());
2579   const uint32_t file_type = root_el_hdr.type;
2580 
2581   if (file_type > Element::RS_TYPE_FONT) {
2582     strm.Printf("Warning: File has unknown allocation type");
2583     strm.EOL();
2584   } else if (alloc_type != file_type) {
2585     // Enum value isn't monotonous, so doesn't always index RsDataTypeToString
2586     // array
2587     uint32_t target_type_name_idx = alloc_type;
2588     uint32_t head_type_name_idx = file_type;
2589     if (alloc_type >= Element::RS_TYPE_ELEMENT &&
2590         alloc_type <= Element::RS_TYPE_FONT)
2591       target_type_name_idx = static_cast<Element::DataType>(
2592           (alloc_type - Element::RS_TYPE_ELEMENT) +
2593           Element::RS_TYPE_MATRIX_2X2 + 1);
2594 
2595     if (file_type >= Element::RS_TYPE_ELEMENT &&
2596         file_type <= Element::RS_TYPE_FONT)
2597       head_type_name_idx = static_cast<Element::DataType>(
2598           (file_type - Element::RS_TYPE_ELEMENT) + Element::RS_TYPE_MATRIX_2X2 +
2599           1);
2600 
2601     const char *head_type_name =
2602         AllocationDetails::RsDataTypeToString[head_type_name_idx][0];
2603     const char *target_type_name =
2604         AllocationDetails::RsDataTypeToString[target_type_name_idx][0];
2605 
2606     strm.Printf(
2607         "Warning: Mismatched Types - file '%s' type, allocation '%s' type",
2608         head_type_name, target_type_name);
2609     strm.EOL();
2610   }
2611 
2612   // Advance buffer past header
2613   file_buf = static_cast<uint8_t *>(file_buf) + file_header->hdr_size;
2614 
2615   // Calculate size of allocation data in file
2616   size_t size = data_sp->GetByteSize() - file_header->hdr_size;
2617 
2618   // Check if the target allocation and file both have the same total data
2619   // size.
2620   const uint32_t alloc_size = *alloc->size.get();
2621   if (alloc_size != size) {
2622     strm.Printf("Warning: Mismatched allocation sizes - file 0x%" PRIx64
2623                 " bytes, allocation 0x%" PRIx32 " bytes",
2624                 (uint64_t)size, alloc_size);
2625     strm.EOL();
2626     // Set length to copy to minimum
2627     size = alloc_size < size ? alloc_size : size;
2628   }
2629 
2630   // Copy file data from our buffer into the target allocation.
2631   lldb::addr_t alloc_data = *alloc->data_ptr.get();
2632   Status err;
2633   size_t written = GetProcess()->WriteMemory(alloc_data, file_buf, size, err);
2634   if (!err.Success() || written != size) {
2635     strm.Printf("Error: Couldn't write data to allocation %s", err.AsCString());
2636     strm.EOL();
2637     return false;
2638   }
2639 
2640   strm.Printf("Contents of file '%s' read into allocation %" PRIu32, path,
2641               alloc->id);
2642   strm.EOL();
2643 
2644   return true;
2645 }
2646 
2647 // Function takes as parameters a byte buffer, which will eventually be written
2648 // to file as the element header, an offset into that buffer, and an Element
2649 // that will be saved into the buffer at the parametrised offset. Return value
2650 // is the new offset after writing the element into the buffer. Elements are
2651 // saved to the file as the ElementHeader struct followed by offsets to the
2652 // structs of all the element's children.
2653 size_t RenderScriptRuntime::PopulateElementHeaders(
2654     const std::shared_ptr<uint8_t> header_buffer, size_t offset,
2655     const Element &elem) {
2656   // File struct for an element header with all the relevant details copied
2657   // from elem. We assume members are valid already.
2658   AllocationDetails::ElementHeader elem_header;
2659   elem_header.type = *elem.type.get();
2660   elem_header.kind = *elem.type_kind.get();
2661   elem_header.element_size = *elem.datum_size.get();
2662   elem_header.vector_size = *elem.type_vec_size.get();
2663   elem_header.array_size =
2664       elem.array_size.isValid() ? *elem.array_size.get() : 0;
2665   const size_t elem_header_size = sizeof(AllocationDetails::ElementHeader);
2666 
2667   // Copy struct into buffer and advance offset We assume that header_buffer
2668   // has been checked for nullptr before this method is called
2669   memcpy(header_buffer.get() + offset, &elem_header, elem_header_size);
2670   offset += elem_header_size;
2671 
2672   // Starting offset of child ElementHeader struct
2673   size_t child_offset =
2674       offset + ((elem.children.size() + 1) * sizeof(uint32_t));
2675   for (const RenderScriptRuntime::Element &child : elem.children) {
2676     // Recursively populate the buffer with the element header structs of
2677     // children. Then save the offsets where they were set after the parent
2678     // element header.
2679     memcpy(header_buffer.get() + offset, &child_offset, sizeof(uint32_t));
2680     offset += sizeof(uint32_t);
2681 
2682     child_offset = PopulateElementHeaders(header_buffer, child_offset, child);
2683   }
2684 
2685   // Zero indicates no more children
2686   memset(header_buffer.get() + offset, 0, sizeof(uint32_t));
2687 
2688   return child_offset;
2689 }
2690 
2691 // Given an Element object this function returns the total size needed in the
2692 // file header to store the element's details. Taking into account the size of
2693 // the element header struct, plus the offsets to all the element's children.
2694 // Function is recursive so that the size of all ancestors is taken into
2695 // account.
2696 size_t RenderScriptRuntime::CalculateElementHeaderSize(const Element &elem) {
2697   // Offsets to children plus zero terminator
2698   size_t size = (elem.children.size() + 1) * sizeof(uint32_t);
2699   // Size of header struct with type details
2700   size += sizeof(AllocationDetails::ElementHeader);
2701 
2702   // Calculate recursively for all descendants
2703   for (const Element &child : elem.children)
2704     size += CalculateElementHeaderSize(child);
2705 
2706   return size;
2707 }
2708 
2709 // Function copies allocation contents into a binary file. This file can then
2710 // be loaded later into a different allocation. There is a header, FileHeader,
2711 // before the allocation data containing meta-data.
2712 bool RenderScriptRuntime::SaveAllocation(Stream &strm, const uint32_t alloc_id,
2713                                          const char *path,
2714                                          StackFrame *frame_ptr) {
2715   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2716 
2717   // Find allocation with the given id
2718   AllocationDetails *alloc = FindAllocByID(strm, alloc_id);
2719   if (!alloc)
2720     return false;
2721 
2722   if (log)
2723     log->Printf("%s - found allocation 0x%" PRIx64 ".", __FUNCTION__,
2724                 *alloc->address.get());
2725 
2726   // JIT all the allocation details
2727   if (alloc->ShouldRefresh()) {
2728     if (log)
2729       log->Printf("%s - allocation details not calculated yet, jitting info.",
2730                   __FUNCTION__);
2731 
2732     if (!RefreshAllocation(alloc, frame_ptr)) {
2733       if (log)
2734         log->Printf("%s - couldn't JIT allocation details.", __FUNCTION__);
2735       return false;
2736     }
2737   }
2738 
2739   assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() &&
2740          alloc->element.type_vec_size.isValid() &&
2741          alloc->element.datum_size.get() &&
2742          alloc->element.type_kind.isValid() && alloc->dimension.isValid() &&
2743          "Allocation information not available");
2744 
2745   // Check we can create writable file
2746   FileSpec file_spec(path);
2747   FileSystem::Instance().Resolve(file_spec);
2748   File file;
2749   FileSystem::Instance().Open(file, file_spec,
2750                               File::eOpenOptionWrite |
2751                                   File::eOpenOptionCanCreate |
2752                                   File::eOpenOptionTruncate);
2753 
2754   if (!file) {
2755     strm.Printf("Error: Failed to open '%s' for writing", path);
2756     strm.EOL();
2757     return false;
2758   }
2759 
2760   // Read allocation into buffer of heap memory
2761   const std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr);
2762   if (!buffer) {
2763     strm.Printf("Error: Couldn't read allocation data into buffer");
2764     strm.EOL();
2765     return false;
2766   }
2767 
2768   // Create the file header
2769   AllocationDetails::FileHeader head;
2770   memcpy(head.ident, "RSAD", 4);
2771   head.dims[0] = static_cast<uint32_t>(alloc->dimension.get()->dim_1);
2772   head.dims[1] = static_cast<uint32_t>(alloc->dimension.get()->dim_2);
2773   head.dims[2] = static_cast<uint32_t>(alloc->dimension.get()->dim_3);
2774 
2775   const size_t element_header_size = CalculateElementHeaderSize(alloc->element);
2776   assert((sizeof(AllocationDetails::FileHeader) + element_header_size) <
2777              UINT16_MAX &&
2778          "Element header too large");
2779   head.hdr_size = static_cast<uint16_t>(sizeof(AllocationDetails::FileHeader) +
2780                                         element_header_size);
2781 
2782   // Write the file header
2783   size_t num_bytes = sizeof(AllocationDetails::FileHeader);
2784   if (log)
2785     log->Printf("%s - writing File Header, 0x%" PRIx64 " bytes", __FUNCTION__,
2786                 (uint64_t)num_bytes);
2787 
2788   Status err = file.Write(&head, num_bytes);
2789   if (!err.Success()) {
2790     strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path);
2791     strm.EOL();
2792     return false;
2793   }
2794 
2795   // Create the headers describing the element type of the allocation.
2796   std::shared_ptr<uint8_t> element_header_buffer(
2797       new uint8_t[element_header_size]);
2798   if (element_header_buffer == nullptr) {
2799     strm.Printf("Internal Error: Couldn't allocate %" PRIu64
2800                 " bytes on the heap",
2801                 (uint64_t)element_header_size);
2802     strm.EOL();
2803     return false;
2804   }
2805 
2806   PopulateElementHeaders(element_header_buffer, 0, alloc->element);
2807 
2808   // Write headers for allocation element type to file
2809   num_bytes = element_header_size;
2810   if (log)
2811     log->Printf("%s - writing element headers, 0x%" PRIx64 " bytes.",
2812                 __FUNCTION__, (uint64_t)num_bytes);
2813 
2814   err = file.Write(element_header_buffer.get(), num_bytes);
2815   if (!err.Success()) {
2816     strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path);
2817     strm.EOL();
2818     return false;
2819   }
2820 
2821   // Write allocation data to file
2822   num_bytes = static_cast<size_t>(*alloc->size.get());
2823   if (log)
2824     log->Printf("%s - writing 0x%" PRIx64 " bytes", __FUNCTION__,
2825                 (uint64_t)num_bytes);
2826 
2827   err = file.Write(buffer.get(), num_bytes);
2828   if (!err.Success()) {
2829     strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path);
2830     strm.EOL();
2831     return false;
2832   }
2833 
2834   strm.Printf("Allocation written to file '%s'", path);
2835   strm.EOL();
2836   return true;
2837 }
2838 
2839 bool RenderScriptRuntime::LoadModule(const lldb::ModuleSP &module_sp) {
2840   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2841 
2842   if (module_sp) {
2843     for (const auto &rs_module : m_rsmodules) {
2844       if (rs_module->m_module == module_sp) {
2845         // Check if the user has enabled automatically breaking on all RS
2846         // kernels.
2847         if (m_breakAllKernels)
2848           BreakOnModuleKernels(rs_module);
2849 
2850         return false;
2851       }
2852     }
2853     bool module_loaded = false;
2854     switch (GetModuleKind(module_sp)) {
2855     case eModuleKindKernelObj: {
2856       RSModuleDescriptorSP module_desc;
2857       module_desc.reset(new RSModuleDescriptor(module_sp));
2858       if (module_desc->ParseRSInfo()) {
2859         m_rsmodules.push_back(module_desc);
2860         module_desc->WarnIfVersionMismatch(GetProcess()
2861                                                ->GetTarget()
2862                                                .GetDebugger()
2863                                                .GetAsyncOutputStream()
2864                                                .get());
2865         module_loaded = true;
2866       }
2867       if (module_loaded) {
2868         FixupScriptDetails(module_desc);
2869       }
2870       break;
2871     }
2872     case eModuleKindDriver: {
2873       if (!m_libRSDriver) {
2874         m_libRSDriver = module_sp;
2875         LoadRuntimeHooks(m_libRSDriver, RenderScriptRuntime::eModuleKindDriver);
2876       }
2877       break;
2878     }
2879     case eModuleKindImpl: {
2880       if (!m_libRSCpuRef) {
2881         m_libRSCpuRef = module_sp;
2882         LoadRuntimeHooks(m_libRSCpuRef, RenderScriptRuntime::eModuleKindImpl);
2883       }
2884       break;
2885     }
2886     case eModuleKindLibRS: {
2887       if (!m_libRS) {
2888         m_libRS = module_sp;
2889         static ConstString gDbgPresentStr("gDebuggerPresent");
2890         const Symbol *debug_present = m_libRS->FindFirstSymbolWithNameAndType(
2891             gDbgPresentStr, eSymbolTypeData);
2892         if (debug_present) {
2893           Status err;
2894           uint32_t flag = 0x00000001U;
2895           Target &target = GetProcess()->GetTarget();
2896           addr_t addr = debug_present->GetLoadAddress(&target);
2897           GetProcess()->WriteMemory(addr, &flag, sizeof(flag), err);
2898           if (err.Success()) {
2899             if (log)
2900               log->Printf("%s - debugger present flag set on debugee.",
2901                           __FUNCTION__);
2902 
2903             m_debuggerPresentFlagged = true;
2904           } else if (log) {
2905             log->Printf("%s - error writing debugger present flags '%s' ",
2906                         __FUNCTION__, err.AsCString());
2907           }
2908         } else if (log) {
2909           log->Printf(
2910               "%s - error writing debugger present flags - symbol not found",
2911               __FUNCTION__);
2912         }
2913       }
2914       break;
2915     }
2916     default:
2917       break;
2918     }
2919     if (module_loaded)
2920       Update();
2921     return module_loaded;
2922   }
2923   return false;
2924 }
2925 
2926 void RenderScriptRuntime::Update() {
2927   if (m_rsmodules.size() > 0) {
2928     if (!m_initiated) {
2929       Initiate();
2930     }
2931   }
2932 }
2933 
2934 void RSModuleDescriptor::WarnIfVersionMismatch(lldb_private::Stream *s) const {
2935   if (!s)
2936     return;
2937 
2938   if (m_slang_version.empty() || m_bcc_version.empty()) {
2939     s->PutCString("WARNING: Unknown bcc or slang (llvm-rs-cc) version; debug "
2940                   "experience may be unreliable");
2941     s->EOL();
2942   } else if (m_slang_version != m_bcc_version) {
2943     s->Printf("WARNING: The debug info emitted by the slang frontend "
2944               "(llvm-rs-cc) used to build this module (%s) does not match the "
2945               "version of bcc used to generate the debug information (%s). "
2946               "This is an unsupported configuration and may result in a poor "
2947               "debugging experience; proceed with caution",
2948               m_slang_version.c_str(), m_bcc_version.c_str());
2949     s->EOL();
2950   }
2951 }
2952 
2953 bool RSModuleDescriptor::ParsePragmaCount(llvm::StringRef *lines,
2954                                           size_t n_lines) {
2955   // Skip the pragma prototype line
2956   ++lines;
2957   for (; n_lines--; ++lines) {
2958     const auto kv_pair = lines->split(" - ");
2959     m_pragmas[kv_pair.first.trim().str()] = kv_pair.second.trim().str();
2960   }
2961   return true;
2962 }
2963 
2964 bool RSModuleDescriptor::ParseExportReduceCount(llvm::StringRef *lines,
2965                                                 size_t n_lines) {
2966   // The list of reduction kernels in the `.rs.info` symbol is of the form
2967   // "signature - accumulatordatasize - reduction_name - initializer_name -
2968   // accumulator_name - combiner_name - outconverter_name - halter_name" Where
2969   // a function is not explicitly named by the user, or is not generated by the
2970   // compiler, it is named "." so the dash separated list should always be 8
2971   // items long
2972   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
2973   // Skip the exportReduceCount line
2974   ++lines;
2975   for (; n_lines--; ++lines) {
2976     llvm::SmallVector<llvm::StringRef, 8> spec;
2977     lines->split(spec, " - ");
2978     if (spec.size() != 8) {
2979       if (spec.size() < 8) {
2980         if (log)
2981           log->Error("Error parsing RenderScript reduction spec. wrong number "
2982                      "of fields");
2983         return false;
2984       } else if (log)
2985         log->Warning("Extraneous members in reduction spec: '%s'",
2986                      lines->str().c_str());
2987     }
2988 
2989     const auto sig_s = spec[0];
2990     uint32_t sig;
2991     if (sig_s.getAsInteger(10, sig)) {
2992       if (log)
2993         log->Error("Error parsing Renderscript reduction spec: invalid kernel "
2994                    "signature: '%s'",
2995                    sig_s.str().c_str());
2996       return false;
2997     }
2998 
2999     const auto accum_data_size_s = spec[1];
3000     uint32_t accum_data_size;
3001     if (accum_data_size_s.getAsInteger(10, accum_data_size)) {
3002       if (log)
3003         log->Error("Error parsing Renderscript reduction spec: invalid "
3004                    "accumulator data size %s",
3005                    accum_data_size_s.str().c_str());
3006       return false;
3007     }
3008 
3009     if (log)
3010       log->Printf("Found RenderScript reduction '%s'", spec[2].str().c_str());
3011 
3012     m_reductions.push_back(RSReductionDescriptor(this, sig, accum_data_size,
3013                                                  spec[2], spec[3], spec[4],
3014                                                  spec[5], spec[6], spec[7]));
3015   }
3016   return true;
3017 }
3018 
3019 bool RSModuleDescriptor::ParseVersionInfo(llvm::StringRef *lines,
3020                                           size_t n_lines) {
3021   // Skip the versionInfo line
3022   ++lines;
3023   for (; n_lines--; ++lines) {
3024     // We're only interested in bcc and slang versions, and ignore all other
3025     // versionInfo lines
3026     const auto kv_pair = lines->split(" - ");
3027     if (kv_pair.first == "slang")
3028       m_slang_version = kv_pair.second.str();
3029     else if (kv_pair.first == "bcc")
3030       m_bcc_version = kv_pair.second.str();
3031   }
3032   return true;
3033 }
3034 
3035 bool RSModuleDescriptor::ParseExportForeachCount(llvm::StringRef *lines,
3036                                                  size_t n_lines) {
3037   // Skip the exportForeachCount line
3038   ++lines;
3039   for (; n_lines--; ++lines) {
3040     uint32_t slot;
3041     // `forEach` kernels are listed in the `.rs.info` packet as a "slot - name"
3042     // pair per line
3043     const auto kv_pair = lines->split(" - ");
3044     if (kv_pair.first.getAsInteger(10, slot))
3045       return false;
3046     m_kernels.push_back(RSKernelDescriptor(this, kv_pair.second, slot));
3047   }
3048   return true;
3049 }
3050 
3051 bool RSModuleDescriptor::ParseExportVarCount(llvm::StringRef *lines,
3052                                              size_t n_lines) {
3053   // Skip the ExportVarCount line
3054   ++lines;
3055   for (; n_lines--; ++lines)
3056     m_globals.push_back(RSGlobalDescriptor(this, *lines));
3057   return true;
3058 }
3059 
3060 // The .rs.info symbol in renderscript modules contains a string which needs to
3061 // be parsed. The string is basic and is parsed on a line by line basis.
3062 bool RSModuleDescriptor::ParseRSInfo() {
3063   assert(m_module);
3064   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
3065   const Symbol *info_sym = m_module->FindFirstSymbolWithNameAndType(
3066       ConstString(".rs.info"), eSymbolTypeData);
3067   if (!info_sym)
3068     return false;
3069 
3070   const addr_t addr = info_sym->GetAddressRef().GetFileAddress();
3071   if (addr == LLDB_INVALID_ADDRESS)
3072     return false;
3073 
3074   const addr_t size = info_sym->GetByteSize();
3075   const FileSpec fs = m_module->GetFileSpec();
3076 
3077   auto buffer =
3078       FileSystem::Instance().CreateDataBuffer(fs.GetPath(), size, addr);
3079   if (!buffer)
3080     return false;
3081 
3082   // split rs.info. contents into lines
3083   llvm::SmallVector<llvm::StringRef, 128> info_lines;
3084   {
3085     const llvm::StringRef raw_rs_info((const char *)buffer->GetBytes());
3086     raw_rs_info.split(info_lines, '\n');
3087     if (log)
3088       log->Printf("'.rs.info symbol for '%s':\n%s",
3089                   m_module->GetFileSpec().GetCString(),
3090                   raw_rs_info.str().c_str());
3091   }
3092 
3093   enum {
3094     eExportVar,
3095     eExportForEach,
3096     eExportReduce,
3097     ePragma,
3098     eBuildChecksum,
3099     eObjectSlot,
3100     eVersionInfo,
3101   };
3102 
3103   const auto rs_info_handler = [](llvm::StringRef name) -> int {
3104     return llvm::StringSwitch<int>(name)
3105         // The number of visible global variables in the script
3106         .Case("exportVarCount", eExportVar)
3107         // The number of RenderScrip `forEach` kernels __attribute__((kernel))
3108         .Case("exportForEachCount", eExportForEach)
3109         // The number of generalreductions: This marked in the script by
3110         // `#pragma reduce()`
3111         .Case("exportReduceCount", eExportReduce)
3112         // Total count of all RenderScript specific `#pragmas` used in the
3113         // script
3114         .Case("pragmaCount", ePragma)
3115         .Case("objectSlotCount", eObjectSlot)
3116         .Case("versionInfo", eVersionInfo)
3117         .Default(-1);
3118   };
3119 
3120   // parse all text lines of .rs.info
3121   for (auto line = info_lines.begin(); line != info_lines.end(); ++line) {
3122     const auto kv_pair = line->split(": ");
3123     const auto key = kv_pair.first;
3124     const auto val = kv_pair.second.trim();
3125 
3126     const auto handler = rs_info_handler(key);
3127     if (handler == -1)
3128       continue;
3129     // getAsInteger returns `true` on an error condition - we're only
3130     // interested in numeric fields at the moment
3131     uint64_t n_lines;
3132     if (val.getAsInteger(10, n_lines)) {
3133       LLDB_LOGV(log, "Failed to parse non-numeric '.rs.info' section {0}",
3134                 line->str());
3135       continue;
3136     }
3137     if (info_lines.end() - (line + 1) < (ptrdiff_t)n_lines)
3138       return false;
3139 
3140     bool success = false;
3141     switch (handler) {
3142     case eExportVar:
3143       success = ParseExportVarCount(line, n_lines);
3144       break;
3145     case eExportForEach:
3146       success = ParseExportForeachCount(line, n_lines);
3147       break;
3148     case eExportReduce:
3149       success = ParseExportReduceCount(line, n_lines);
3150       break;
3151     case ePragma:
3152       success = ParsePragmaCount(line, n_lines);
3153       break;
3154     case eVersionInfo:
3155       success = ParseVersionInfo(line, n_lines);
3156       break;
3157     default: {
3158       if (log)
3159         log->Printf("%s - skipping .rs.info field '%s'", __FUNCTION__,
3160                     line->str().c_str());
3161       continue;
3162     }
3163     }
3164     if (!success)
3165       return false;
3166     line += n_lines;
3167   }
3168   return info_lines.size() > 0;
3169 }
3170 
3171 void RenderScriptRuntime::DumpStatus(Stream &strm) const {
3172   if (m_libRS) {
3173     strm.Printf("Runtime Library discovered.");
3174     strm.EOL();
3175   }
3176   if (m_libRSDriver) {
3177     strm.Printf("Runtime Driver discovered.");
3178     strm.EOL();
3179   }
3180   if (m_libRSCpuRef) {
3181     strm.Printf("CPU Reference Implementation discovered.");
3182     strm.EOL();
3183   }
3184 
3185   if (m_runtimeHooks.size()) {
3186     strm.Printf("Runtime functions hooked:");
3187     strm.EOL();
3188     for (auto b : m_runtimeHooks) {
3189       strm.Indent(b.second->defn->name);
3190       strm.EOL();
3191     }
3192   } else {
3193     strm.Printf("Runtime is not hooked.");
3194     strm.EOL();
3195   }
3196 }
3197 
3198 void RenderScriptRuntime::DumpContexts(Stream &strm) const {
3199   strm.Printf("Inferred RenderScript Contexts:");
3200   strm.EOL();
3201   strm.IndentMore();
3202 
3203   std::map<addr_t, uint64_t> contextReferences;
3204 
3205   // Iterate over all of the currently discovered scripts. Note: We cant push
3206   // or pop from m_scripts inside this loop or it may invalidate script.
3207   for (const auto &script : m_scripts) {
3208     if (!script->context.isValid())
3209       continue;
3210     lldb::addr_t context = *script->context;
3211 
3212     if (contextReferences.find(context) != contextReferences.end()) {
3213       contextReferences[context]++;
3214     } else {
3215       contextReferences[context] = 1;
3216     }
3217   }
3218 
3219   for (const auto &cRef : contextReferences) {
3220     strm.Printf("Context 0x%" PRIx64 ": %" PRIu64 " script instances",
3221                 cRef.first, cRef.second);
3222     strm.EOL();
3223   }
3224   strm.IndentLess();
3225 }
3226 
3227 void RenderScriptRuntime::DumpKernels(Stream &strm) const {
3228   strm.Printf("RenderScript Kernels:");
3229   strm.EOL();
3230   strm.IndentMore();
3231   for (const auto &module : m_rsmodules) {
3232     strm.Printf("Resource '%s':", module->m_resname.c_str());
3233     strm.EOL();
3234     for (const auto &kernel : module->m_kernels) {
3235       strm.Indent(kernel.m_name.AsCString());
3236       strm.EOL();
3237     }
3238   }
3239   strm.IndentLess();
3240 }
3241 
3242 RenderScriptRuntime::AllocationDetails *
3243 RenderScriptRuntime::FindAllocByID(Stream &strm, const uint32_t alloc_id) {
3244   AllocationDetails *alloc = nullptr;
3245 
3246   // See if we can find allocation using id as an index;
3247   if (alloc_id <= m_allocations.size() && alloc_id != 0 &&
3248       m_allocations[alloc_id - 1]->id == alloc_id) {
3249     alloc = m_allocations[alloc_id - 1].get();
3250     return alloc;
3251   }
3252 
3253   // Fallback to searching
3254   for (const auto &a : m_allocations) {
3255     if (a->id == alloc_id) {
3256       alloc = a.get();
3257       break;
3258     }
3259   }
3260 
3261   if (alloc == nullptr) {
3262     strm.Printf("Error: Couldn't find allocation with id matching %" PRIu32,
3263                 alloc_id);
3264     strm.EOL();
3265   }
3266 
3267   return alloc;
3268 }
3269 
3270 // Prints the contents of an allocation to the output stream, which may be a
3271 // file
3272 bool RenderScriptRuntime::DumpAllocation(Stream &strm, StackFrame *frame_ptr,
3273                                          const uint32_t id) {
3274   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
3275 
3276   // Check we can find the desired allocation
3277   AllocationDetails *alloc = FindAllocByID(strm, id);
3278   if (!alloc)
3279     return false; // FindAllocByID() will print error message for us here
3280 
3281   if (log)
3282     log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__,
3283                 *alloc->address.get());
3284 
3285   // Check we have information about the allocation, if not calculate it
3286   if (alloc->ShouldRefresh()) {
3287     if (log)
3288       log->Printf("%s - allocation details not calculated yet, jitting info.",
3289                   __FUNCTION__);
3290 
3291     // JIT all the allocation information
3292     if (!RefreshAllocation(alloc, frame_ptr)) {
3293       strm.Printf("Error: Couldn't JIT allocation details");
3294       strm.EOL();
3295       return false;
3296     }
3297   }
3298 
3299   // Establish format and size of each data element
3300   const uint32_t vec_size = *alloc->element.type_vec_size.get();
3301   const Element::DataType type = *alloc->element.type.get();
3302 
3303   assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT &&
3304          "Invalid allocation type");
3305 
3306   lldb::Format format;
3307   if (type >= Element::RS_TYPE_ELEMENT)
3308     format = eFormatHex;
3309   else
3310     format = vec_size == 1
3311                  ? static_cast<lldb::Format>(
3312                        AllocationDetails::RSTypeToFormat[type][eFormatSingle])
3313                  : static_cast<lldb::Format>(
3314                        AllocationDetails::RSTypeToFormat[type][eFormatVector]);
3315 
3316   const uint32_t data_size = *alloc->element.datum_size.get();
3317 
3318   if (log)
3319     log->Printf("%s - element size %" PRIu32 " bytes, including padding",
3320                 __FUNCTION__, data_size);
3321 
3322   // Allocate a buffer to copy data into
3323   std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr);
3324   if (!buffer) {
3325     strm.Printf("Error: Couldn't read allocation data");
3326     strm.EOL();
3327     return false;
3328   }
3329 
3330   // Calculate stride between rows as there may be padding at end of rows since
3331   // allocated memory is 16-byte aligned
3332   if (!alloc->stride.isValid()) {
3333     if (alloc->dimension.get()->dim_2 == 0) // We only have one dimension
3334       alloc->stride = 0;
3335     else if (!JITAllocationStride(alloc, frame_ptr)) {
3336       strm.Printf("Error: Couldn't calculate allocation row stride");
3337       strm.EOL();
3338       return false;
3339     }
3340   }
3341   const uint32_t stride = *alloc->stride.get();
3342   const uint32_t size = *alloc->size.get(); // Size of whole allocation
3343   const uint32_t padding =
3344       alloc->element.padding.isValid() ? *alloc->element.padding.get() : 0;
3345   if (log)
3346     log->Printf("%s - stride %" PRIu32 " bytes, size %" PRIu32
3347                 " bytes, padding %" PRIu32,
3348                 __FUNCTION__, stride, size, padding);
3349 
3350   // Find dimensions used to index loops, so need to be non-zero
3351   uint32_t dim_x = alloc->dimension.get()->dim_1;
3352   dim_x = dim_x == 0 ? 1 : dim_x;
3353 
3354   uint32_t dim_y = alloc->dimension.get()->dim_2;
3355   dim_y = dim_y == 0 ? 1 : dim_y;
3356 
3357   uint32_t dim_z = alloc->dimension.get()->dim_3;
3358   dim_z = dim_z == 0 ? 1 : dim_z;
3359 
3360   // Use data extractor to format output
3361   const uint32_t target_ptr_size =
3362       GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
3363   DataExtractor alloc_data(buffer.get(), size, GetProcess()->GetByteOrder(),
3364                            target_ptr_size);
3365 
3366   uint32_t offset = 0;   // Offset in buffer to next element to be printed
3367   uint32_t prev_row = 0; // Offset to the start of the previous row
3368 
3369   // Iterate over allocation dimensions, printing results to user
3370   strm.Printf("Data (X, Y, Z):");
3371   for (uint32_t z = 0; z < dim_z; ++z) {
3372     for (uint32_t y = 0; y < dim_y; ++y) {
3373       // Use stride to index start of next row.
3374       if (!(y == 0 && z == 0))
3375         offset = prev_row + stride;
3376       prev_row = offset;
3377 
3378       // Print each element in the row individually
3379       for (uint32_t x = 0; x < dim_x; ++x) {
3380         strm.Printf("\n(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ") = ", x, y, z);
3381         if ((type == Element::RS_TYPE_NONE) &&
3382             (alloc->element.children.size() > 0) &&
3383             (alloc->element.type_name != Element::GetFallbackStructName())) {
3384           // Here we are dumping an Element of struct type. This is done using
3385           // expression evaluation with the name of the struct type and pointer
3386           // to element. Don't print the name of the resulting expression,
3387           // since this will be '$[0-9]+'
3388           DumpValueObjectOptions expr_options;
3389           expr_options.SetHideName(true);
3390 
3391           // Setup expression as dereferencing a pointer cast to element
3392           // address.
3393           char expr_char_buffer[jit_max_expr_size];
3394           int written =
3395               snprintf(expr_char_buffer, jit_max_expr_size, "*(%s*) 0x%" PRIx64,
3396                        alloc->element.type_name.AsCString(),
3397                        *alloc->data_ptr.get() + offset);
3398 
3399           if (written < 0 || written >= jit_max_expr_size) {
3400             if (log)
3401               log->Printf("%s - error in snprintf().", __FUNCTION__);
3402             continue;
3403           }
3404 
3405           // Evaluate expression
3406           ValueObjectSP expr_result;
3407           GetProcess()->GetTarget().EvaluateExpression(expr_char_buffer,
3408                                                        frame_ptr, expr_result);
3409 
3410           // Print the results to our stream.
3411           expr_result->Dump(strm, expr_options);
3412         } else {
3413           DumpDataExtractor(alloc_data, &strm, offset, format,
3414                             data_size - padding, 1, 1, LLDB_INVALID_ADDRESS, 0,
3415                             0);
3416         }
3417         offset += data_size;
3418       }
3419     }
3420   }
3421   strm.EOL();
3422 
3423   return true;
3424 }
3425 
3426 // Function recalculates all our cached information about allocations by
3427 // jitting the RS runtime regarding each allocation we know about. Returns true
3428 // if all allocations could be recomputed, false otherwise.
3429 bool RenderScriptRuntime::RecomputeAllAllocations(Stream &strm,
3430                                                   StackFrame *frame_ptr) {
3431   bool success = true;
3432   for (auto &alloc : m_allocations) {
3433     // JIT current allocation information
3434     if (!RefreshAllocation(alloc.get(), frame_ptr)) {
3435       strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32
3436                   "\n",
3437                   alloc->id);
3438       success = false;
3439     }
3440   }
3441 
3442   if (success)
3443     strm.Printf("All allocations successfully recomputed");
3444   strm.EOL();
3445 
3446   return success;
3447 }
3448 
3449 // Prints information regarding currently loaded allocations. These details are
3450 // gathered by jitting the runtime, which has as latency. Index parameter
3451 // specifies a single allocation ID to print, or a zero value to print them all
3452 void RenderScriptRuntime::ListAllocations(Stream &strm, StackFrame *frame_ptr,
3453                                           const uint32_t index) {
3454   strm.Printf("RenderScript Allocations:");
3455   strm.EOL();
3456   strm.IndentMore();
3457 
3458   for (auto &alloc : m_allocations) {
3459     // index will only be zero if we want to print all allocations
3460     if (index != 0 && index != alloc->id)
3461       continue;
3462 
3463     // JIT current allocation information
3464     if (alloc->ShouldRefresh() && !RefreshAllocation(alloc.get(), frame_ptr)) {
3465       strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32,
3466                   alloc->id);
3467       strm.EOL();
3468       continue;
3469     }
3470 
3471     strm.Printf("%" PRIu32 ":", alloc->id);
3472     strm.EOL();
3473     strm.IndentMore();
3474 
3475     strm.Indent("Context: ");
3476     if (!alloc->context.isValid())
3477       strm.Printf("unknown\n");
3478     else
3479       strm.Printf("0x%" PRIx64 "\n", *alloc->context.get());
3480 
3481     strm.Indent("Address: ");
3482     if (!alloc->address.isValid())
3483       strm.Printf("unknown\n");
3484     else
3485       strm.Printf("0x%" PRIx64 "\n", *alloc->address.get());
3486 
3487     strm.Indent("Data pointer: ");
3488     if (!alloc->data_ptr.isValid())
3489       strm.Printf("unknown\n");
3490     else
3491       strm.Printf("0x%" PRIx64 "\n", *alloc->data_ptr.get());
3492 
3493     strm.Indent("Dimensions: ");
3494     if (!alloc->dimension.isValid())
3495       strm.Printf("unknown\n");
3496     else
3497       strm.Printf("(%" PRId32 ", %" PRId32 ", %" PRId32 ")\n",
3498                   alloc->dimension.get()->dim_1, alloc->dimension.get()->dim_2,
3499                   alloc->dimension.get()->dim_3);
3500 
3501     strm.Indent("Data Type: ");
3502     if (!alloc->element.type.isValid() ||
3503         !alloc->element.type_vec_size.isValid())
3504       strm.Printf("unknown\n");
3505     else {
3506       const int vector_size = *alloc->element.type_vec_size.get();
3507       Element::DataType type = *alloc->element.type.get();
3508 
3509       if (!alloc->element.type_name.IsEmpty())
3510         strm.Printf("%s\n", alloc->element.type_name.AsCString());
3511       else {
3512         // Enum value isn't monotonous, so doesn't always index
3513         // RsDataTypeToString array
3514         if (type >= Element::RS_TYPE_ELEMENT && type <= Element::RS_TYPE_FONT)
3515           type =
3516               static_cast<Element::DataType>((type - Element::RS_TYPE_ELEMENT) +
3517                                              Element::RS_TYPE_MATRIX_2X2 + 1);
3518 
3519         if (type >= (sizeof(AllocationDetails::RsDataTypeToString) /
3520                      sizeof(AllocationDetails::RsDataTypeToString[0])) ||
3521             vector_size > 4 || vector_size < 1)
3522           strm.Printf("invalid type\n");
3523         else
3524           strm.Printf(
3525               "%s\n",
3526               AllocationDetails::RsDataTypeToString[static_cast<uint32_t>(type)]
3527                                                    [vector_size - 1]);
3528       }
3529     }
3530 
3531     strm.Indent("Data Kind: ");
3532     if (!alloc->element.type_kind.isValid())
3533       strm.Printf("unknown\n");
3534     else {
3535       const Element::DataKind kind = *alloc->element.type_kind.get();
3536       if (kind < Element::RS_KIND_USER || kind > Element::RS_KIND_PIXEL_YUV)
3537         strm.Printf("invalid kind\n");
3538       else
3539         strm.Printf(
3540             "%s\n",
3541             AllocationDetails::RsDataKindToString[static_cast<uint32_t>(kind)]);
3542     }
3543 
3544     strm.EOL();
3545     strm.IndentLess();
3546   }
3547   strm.IndentLess();
3548 }
3549 
3550 // Set breakpoints on every kernel found in RS module
3551 void RenderScriptRuntime::BreakOnModuleKernels(
3552     const RSModuleDescriptorSP rsmodule_sp) {
3553   for (const auto &kernel : rsmodule_sp->m_kernels) {
3554     // Don't set breakpoint on 'root' kernel
3555     if (strcmp(kernel.m_name.AsCString(), "root") == 0)
3556       continue;
3557 
3558     CreateKernelBreakpoint(kernel.m_name);
3559   }
3560 }
3561 
3562 // Method is internally called by the 'kernel breakpoint all' command to enable
3563 // or disable breaking on all kernels. When do_break is true we want to enable
3564 // this functionality. When do_break is false we want to disable it.
3565 void RenderScriptRuntime::SetBreakAllKernels(bool do_break, TargetSP target) {
3566   Log *log(
3567       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
3568 
3569   InitSearchFilter(target);
3570 
3571   // Set breakpoints on all the kernels
3572   if (do_break && !m_breakAllKernels) {
3573     m_breakAllKernels = true;
3574 
3575     for (const auto &module : m_rsmodules)
3576       BreakOnModuleKernels(module);
3577 
3578     if (log)
3579       log->Printf("%s(True) - breakpoints set on all currently loaded kernels.",
3580                   __FUNCTION__);
3581   } else if (!do_break &&
3582              m_breakAllKernels) // Breakpoints won't be set on any new kernels.
3583   {
3584     m_breakAllKernels = false;
3585 
3586     if (log)
3587       log->Printf("%s(False) - breakpoints no longer automatically set.",
3588                   __FUNCTION__);
3589   }
3590 }
3591 
3592 // Given the name of a kernel this function creates a breakpoint using our own
3593 // breakpoint resolver, and returns the Breakpoint shared pointer.
3594 BreakpointSP
3595 RenderScriptRuntime::CreateKernelBreakpoint(const ConstString &name) {
3596   Log *log(
3597       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
3598 
3599   if (!m_filtersp) {
3600     if (log)
3601       log->Printf("%s - error, no breakpoint search filter set.", __FUNCTION__);
3602     return nullptr;
3603   }
3604 
3605   BreakpointResolverSP resolver_sp(new RSBreakpointResolver(nullptr, name));
3606   Target &target = GetProcess()->GetTarget();
3607   BreakpointSP bp = target.CreateBreakpoint(
3608       m_filtersp, resolver_sp, false, false, false);
3609 
3610   // Give RS breakpoints a specific name, so the user can manipulate them as a
3611   // group.
3612   Status err;
3613   target.AddNameToBreakpoint(bp, "RenderScriptKernel", err);
3614   if (err.Fail() && log)
3615     if (log)
3616       log->Printf("%s - error setting break name, '%s'.", __FUNCTION__,
3617                   err.AsCString());
3618 
3619   return bp;
3620 }
3621 
3622 BreakpointSP
3623 RenderScriptRuntime::CreateReductionBreakpoint(const ConstString &name,
3624                                                int kernel_types) {
3625   Log *log(
3626       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
3627 
3628   if (!m_filtersp) {
3629     if (log)
3630       log->Printf("%s - error, no breakpoint search filter set.", __FUNCTION__);
3631     return nullptr;
3632   }
3633 
3634   BreakpointResolverSP resolver_sp(new RSReduceBreakpointResolver(
3635       nullptr, name, &m_rsmodules, kernel_types));
3636   Target &target = GetProcess()->GetTarget();
3637   BreakpointSP bp = target.CreateBreakpoint(
3638       m_filtersp, resolver_sp, false, false, false);
3639 
3640   // Give RS breakpoints a specific name, so the user can manipulate them as a
3641   // group.
3642   Status err;
3643   target.AddNameToBreakpoint(bp, "RenderScriptReduction", err);
3644   if (err.Fail() && log)
3645       log->Printf("%s - error setting break name, '%s'.", __FUNCTION__,
3646                   err.AsCString());
3647 
3648   return bp;
3649 }
3650 
3651 // Given an expression for a variable this function tries to calculate the
3652 // variable's value. If this is possible it returns true and sets the uint64_t
3653 // parameter to the variables unsigned value. Otherwise function returns false.
3654 bool RenderScriptRuntime::GetFrameVarAsUnsigned(const StackFrameSP frame_sp,
3655                                                 const char *var_name,
3656                                                 uint64_t &val) {
3657   Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE));
3658   Status err;
3659   VariableSP var_sp;
3660 
3661   // Find variable in stack frame
3662   ValueObjectSP value_sp(frame_sp->GetValueForVariableExpressionPath(
3663       var_name, eNoDynamicValues,
3664       StackFrame::eExpressionPathOptionCheckPtrVsMember |
3665           StackFrame::eExpressionPathOptionsAllowDirectIVarAccess,
3666       var_sp, err));
3667   if (!err.Success()) {
3668     if (log)
3669       log->Printf("%s - error, couldn't find '%s' in frame", __FUNCTION__,
3670                   var_name);
3671     return false;
3672   }
3673 
3674   // Find the uint32_t value for the variable
3675   bool success = false;
3676   val = value_sp->GetValueAsUnsigned(0, &success);
3677   if (!success) {
3678     if (log)
3679       log->Printf("%s - error, couldn't parse '%s' as an uint32_t.",
3680                   __FUNCTION__, var_name);
3681     return false;
3682   }
3683 
3684   return true;
3685 }
3686 
3687 // Function attempts to find the current coordinate of a kernel invocation by
3688 // investigating the values of frame variables in the .expand function. These
3689 // coordinates are returned via the coord array reference parameter. Returns
3690 // true if the coordinates could be found, and false otherwise.
3691 bool RenderScriptRuntime::GetKernelCoordinate(RSCoordinate &coord,
3692                                               Thread *thread_ptr) {
3693   static const char *const x_expr = "rsIndex";
3694   static const char *const y_expr = "p->current.y";
3695   static const char *const z_expr = "p->current.z";
3696 
3697   Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE));
3698 
3699   if (!thread_ptr) {
3700     if (log)
3701       log->Printf("%s - Error, No thread pointer", __FUNCTION__);
3702 
3703     return false;
3704   }
3705 
3706   // Walk the call stack looking for a function whose name has the suffix
3707   // '.expand' and contains the variables we're looking for.
3708   for (uint32_t i = 0; i < thread_ptr->GetStackFrameCount(); ++i) {
3709     if (!thread_ptr->SetSelectedFrameByIndex(i))
3710       continue;
3711 
3712     StackFrameSP frame_sp = thread_ptr->GetSelectedFrame();
3713     if (!frame_sp)
3714       continue;
3715 
3716     // Find the function name
3717     const SymbolContext sym_ctx =
3718         frame_sp->GetSymbolContext(eSymbolContextFunction);
3719     const ConstString func_name = sym_ctx.GetFunctionName();
3720     if (!func_name)
3721       continue;
3722 
3723     if (log)
3724       log->Printf("%s - Inspecting function '%s'", __FUNCTION__,
3725                   func_name.GetCString());
3726 
3727     // Check if function name has .expand suffix
3728     if (!func_name.GetStringRef().endswith(".expand"))
3729       continue;
3730 
3731     if (log)
3732       log->Printf("%s - Found .expand function '%s'", __FUNCTION__,
3733                   func_name.GetCString());
3734 
3735     // Get values for variables in .expand frame that tell us the current
3736     // kernel invocation
3737     uint64_t x, y, z;
3738     bool found = GetFrameVarAsUnsigned(frame_sp, x_expr, x) &&
3739                  GetFrameVarAsUnsigned(frame_sp, y_expr, y) &&
3740                  GetFrameVarAsUnsigned(frame_sp, z_expr, z);
3741 
3742     if (found) {
3743       // The RenderScript runtime uses uint32_t for these vars. If they're not
3744       // within bounds, our frame parsing is garbage
3745       assert(x <= UINT32_MAX && y <= UINT32_MAX && z <= UINT32_MAX);
3746       coord.x = (uint32_t)x;
3747       coord.y = (uint32_t)y;
3748       coord.z = (uint32_t)z;
3749       return true;
3750     }
3751   }
3752   return false;
3753 }
3754 
3755 // Callback when a kernel breakpoint hits and we're looking for a specific
3756 // coordinate. Baton parameter contains a pointer to the target coordinate we
3757 // want to break on. Function then checks the .expand frame for the current
3758 // coordinate and breaks to user if it matches. Parameter 'break_id' is the id
3759 // of the Breakpoint which made the callback. Parameter 'break_loc_id' is the
3760 // id for the BreakpointLocation which was hit, a single logical breakpoint can
3761 // have multiple addresses.
3762 bool RenderScriptRuntime::KernelBreakpointHit(void *baton,
3763                                               StoppointCallbackContext *ctx,
3764                                               user_id_t break_id,
3765                                               user_id_t break_loc_id) {
3766   Log *log(
3767       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
3768 
3769   assert(baton &&
3770          "Error: null baton in conditional kernel breakpoint callback");
3771 
3772   // Coordinate we want to stop on
3773   RSCoordinate target_coord = *static_cast<RSCoordinate *>(baton);
3774 
3775   if (log)
3776     log->Printf("%s - Break ID %" PRIu64 ", " FMT_COORD, __FUNCTION__, break_id,
3777                 target_coord.x, target_coord.y, target_coord.z);
3778 
3779   // Select current thread
3780   ExecutionContext context(ctx->exe_ctx_ref);
3781   Thread *thread_ptr = context.GetThreadPtr();
3782   assert(thread_ptr && "Null thread pointer");
3783 
3784   // Find current kernel invocation from .expand frame variables
3785   RSCoordinate current_coord{};
3786   if (!GetKernelCoordinate(current_coord, thread_ptr)) {
3787     if (log)
3788       log->Printf("%s - Error, couldn't select .expand stack frame",
3789                   __FUNCTION__);
3790     return false;
3791   }
3792 
3793   if (log)
3794     log->Printf("%s - " FMT_COORD, __FUNCTION__, current_coord.x,
3795                 current_coord.y, current_coord.z);
3796 
3797   // Check if the current kernel invocation coordinate matches our target
3798   // coordinate
3799   if (target_coord == current_coord) {
3800     if (log)
3801       log->Printf("%s, BREAKING " FMT_COORD, __FUNCTION__, current_coord.x,
3802                   current_coord.y, current_coord.z);
3803 
3804     BreakpointSP breakpoint_sp =
3805         context.GetTargetPtr()->GetBreakpointByID(break_id);
3806     assert(breakpoint_sp != nullptr &&
3807            "Error: Couldn't find breakpoint matching break id for callback");
3808     breakpoint_sp->SetEnabled(false); // Optimise since conditional breakpoint
3809                                       // should only be hit once.
3810     return true;
3811   }
3812 
3813   // No match on coordinate
3814   return false;
3815 }
3816 
3817 void RenderScriptRuntime::SetConditional(BreakpointSP bp, Stream &messages,
3818                                          const RSCoordinate &coord) {
3819   messages.Printf("Conditional kernel breakpoint on coordinate " FMT_COORD,
3820                   coord.x, coord.y, coord.z);
3821   messages.EOL();
3822 
3823   // Allocate memory for the baton, and copy over coordinate
3824   RSCoordinate *baton = new RSCoordinate(coord);
3825 
3826   // Create a callback that will be invoked every time the breakpoint is hit.
3827   // The baton object passed to the handler is the target coordinate we want to
3828   // break on.
3829   bp->SetCallback(KernelBreakpointHit, baton, true);
3830 
3831   // Store a shared pointer to the baton, so the memory will eventually be
3832   // cleaned up after destruction
3833   m_conditional_breaks[bp->GetID()] = std::unique_ptr<RSCoordinate>(baton);
3834 }
3835 
3836 // Tries to set a breakpoint on the start of a kernel, resolved using the
3837 // kernel name. Argument 'coords', represents a three dimensional coordinate
3838 // which can be used to specify a single kernel instance to break on. If this
3839 // is set then we add a callback to the breakpoint.
3840 bool RenderScriptRuntime::PlaceBreakpointOnKernel(TargetSP target,
3841                                                   Stream &messages,
3842                                                   const char *name,
3843                                                   const RSCoordinate *coord) {
3844   if (!name)
3845     return false;
3846 
3847   InitSearchFilter(target);
3848 
3849   ConstString kernel_name(name);
3850   BreakpointSP bp = CreateKernelBreakpoint(kernel_name);
3851   if (!bp)
3852     return false;
3853 
3854   // We have a conditional breakpoint on a specific coordinate
3855   if (coord)
3856     SetConditional(bp, messages, *coord);
3857 
3858   bp->GetDescription(&messages, lldb::eDescriptionLevelInitial, false);
3859 
3860   return true;
3861 }
3862 
3863 BreakpointSP
3864 RenderScriptRuntime::CreateScriptGroupBreakpoint(const ConstString &name,
3865                                                  bool stop_on_all) {
3866   Log *log(
3867       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
3868 
3869   if (!m_filtersp) {
3870     if (log)
3871       log->Printf("%s - error, no breakpoint search filter set.", __FUNCTION__);
3872     return nullptr;
3873   }
3874 
3875   BreakpointResolverSP resolver_sp(new RSScriptGroupBreakpointResolver(
3876       nullptr, name, m_scriptGroups, stop_on_all));
3877   Target &target = GetProcess()->GetTarget();
3878   BreakpointSP bp = target.CreateBreakpoint(
3879       m_filtersp, resolver_sp, false, false, false);
3880   // Give RS breakpoints a specific name, so the user can manipulate them as a
3881   // group.
3882   Status err;
3883   target.AddNameToBreakpoint(bp, name.GetCString(), err);
3884   if (err.Fail() && log)
3885     log->Printf("%s - error setting break name, '%s'.", __FUNCTION__,
3886                 err.AsCString());
3887   // ask the breakpoint to resolve itself
3888   bp->ResolveBreakpoint();
3889   return bp;
3890 }
3891 
3892 bool RenderScriptRuntime::PlaceBreakpointOnScriptGroup(TargetSP target,
3893                                                        Stream &strm,
3894                                                        const ConstString &name,
3895                                                        bool multi) {
3896   InitSearchFilter(target);
3897   BreakpointSP bp = CreateScriptGroupBreakpoint(name, multi);
3898   if (bp)
3899     bp->GetDescription(&strm, lldb::eDescriptionLevelInitial, false);
3900   return bool(bp);
3901 }
3902 
3903 bool RenderScriptRuntime::PlaceBreakpointOnReduction(TargetSP target,
3904                                                      Stream &messages,
3905                                                      const char *reduce_name,
3906                                                      const RSCoordinate *coord,
3907                                                      int kernel_types) {
3908   if (!reduce_name)
3909     return false;
3910 
3911   InitSearchFilter(target);
3912   BreakpointSP bp =
3913       CreateReductionBreakpoint(ConstString(reduce_name), kernel_types);
3914   if (!bp)
3915     return false;
3916 
3917   if (coord)
3918     SetConditional(bp, messages, *coord);
3919 
3920   bp->GetDescription(&messages, lldb::eDescriptionLevelInitial, false);
3921 
3922   return true;
3923 }
3924 
3925 void RenderScriptRuntime::DumpModules(Stream &strm) const {
3926   strm.Printf("RenderScript Modules:");
3927   strm.EOL();
3928   strm.IndentMore();
3929   for (const auto &module : m_rsmodules) {
3930     module->Dump(strm);
3931   }
3932   strm.IndentLess();
3933 }
3934 
3935 RenderScriptRuntime::ScriptDetails *
3936 RenderScriptRuntime::LookUpScript(addr_t address, bool create) {
3937   for (const auto &s : m_scripts) {
3938     if (s->script.isValid())
3939       if (*s->script == address)
3940         return s.get();
3941   }
3942   if (create) {
3943     std::unique_ptr<ScriptDetails> s(new ScriptDetails);
3944     s->script = address;
3945     m_scripts.push_back(std::move(s));
3946     return m_scripts.back().get();
3947   }
3948   return nullptr;
3949 }
3950 
3951 RenderScriptRuntime::AllocationDetails *
3952 RenderScriptRuntime::LookUpAllocation(addr_t address) {
3953   for (const auto &a : m_allocations) {
3954     if (a->address.isValid())
3955       if (*a->address == address)
3956         return a.get();
3957   }
3958   return nullptr;
3959 }
3960 
3961 RenderScriptRuntime::AllocationDetails *
3962 RenderScriptRuntime::CreateAllocation(addr_t address) {
3963   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
3964 
3965   // Remove any previous allocation which contains the same address
3966   auto it = m_allocations.begin();
3967   while (it != m_allocations.end()) {
3968     if (*((*it)->address) == address) {
3969       if (log)
3970         log->Printf("%s - Removing allocation id: %d, address: 0x%" PRIx64,
3971                     __FUNCTION__, (*it)->id, address);
3972 
3973       it = m_allocations.erase(it);
3974     } else {
3975       it++;
3976     }
3977   }
3978 
3979   std::unique_ptr<AllocationDetails> a(new AllocationDetails);
3980   a->address = address;
3981   m_allocations.push_back(std::move(a));
3982   return m_allocations.back().get();
3983 }
3984 
3985 bool RenderScriptRuntime::ResolveKernelName(lldb::addr_t kernel_addr,
3986                                             ConstString &name) {
3987   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS);
3988 
3989   Target &target = GetProcess()->GetTarget();
3990   Address resolved;
3991   // RenderScript module
3992   if (!target.GetSectionLoadList().ResolveLoadAddress(kernel_addr, resolved)) {
3993     if (log)
3994       log->Printf("%s: unable to resolve 0x%" PRIx64 " to a loaded symbol",
3995                   __FUNCTION__, kernel_addr);
3996     return false;
3997   }
3998 
3999   Symbol *sym = resolved.CalculateSymbolContextSymbol();
4000   if (!sym)
4001     return false;
4002 
4003   name = sym->GetName();
4004   assert(IsRenderScriptModule(resolved.CalculateSymbolContextModule()));
4005   if (log)
4006     log->Printf("%s: 0x%" PRIx64 " resolved to the symbol '%s'", __FUNCTION__,
4007                 kernel_addr, name.GetCString());
4008   return true;
4009 }
4010 
4011 void RSModuleDescriptor::Dump(Stream &strm) const {
4012   int indent = strm.GetIndentLevel();
4013 
4014   strm.Indent();
4015   m_module->GetFileSpec().Dump(&strm);
4016   strm.Indent(m_module->GetNumCompileUnits() ? "Debug info loaded."
4017                                              : "Debug info does not exist.");
4018   strm.EOL();
4019   strm.IndentMore();
4020 
4021   strm.Indent();
4022   strm.Printf("Globals: %" PRIu64, static_cast<uint64_t>(m_globals.size()));
4023   strm.EOL();
4024   strm.IndentMore();
4025   for (const auto &global : m_globals) {
4026     global.Dump(strm);
4027   }
4028   strm.IndentLess();
4029 
4030   strm.Indent();
4031   strm.Printf("Kernels: %" PRIu64, static_cast<uint64_t>(m_kernels.size()));
4032   strm.EOL();
4033   strm.IndentMore();
4034   for (const auto &kernel : m_kernels) {
4035     kernel.Dump(strm);
4036   }
4037   strm.IndentLess();
4038 
4039   strm.Indent();
4040   strm.Printf("Pragmas: %" PRIu64, static_cast<uint64_t>(m_pragmas.size()));
4041   strm.EOL();
4042   strm.IndentMore();
4043   for (const auto &key_val : m_pragmas) {
4044     strm.Indent();
4045     strm.Printf("%s: %s", key_val.first.c_str(), key_val.second.c_str());
4046     strm.EOL();
4047   }
4048   strm.IndentLess();
4049 
4050   strm.Indent();
4051   strm.Printf("Reductions: %" PRIu64,
4052               static_cast<uint64_t>(m_reductions.size()));
4053   strm.EOL();
4054   strm.IndentMore();
4055   for (const auto &reduction : m_reductions) {
4056     reduction.Dump(strm);
4057   }
4058 
4059   strm.SetIndentLevel(indent);
4060 }
4061 
4062 void RSGlobalDescriptor::Dump(Stream &strm) const {
4063   strm.Indent(m_name.AsCString());
4064   VariableList var_list;
4065   m_module->m_module->FindGlobalVariables(m_name, nullptr, 1U, var_list);
4066   if (var_list.GetSize() == 1) {
4067     auto var = var_list.GetVariableAtIndex(0);
4068     auto type = var->GetType();
4069     if (type) {
4070       strm.Printf(" - ");
4071       type->DumpTypeName(&strm);
4072     } else {
4073       strm.Printf(" - Unknown Type");
4074     }
4075   } else {
4076     strm.Printf(" - variable identified, but not found in binary");
4077     const Symbol *s = m_module->m_module->FindFirstSymbolWithNameAndType(
4078         m_name, eSymbolTypeData);
4079     if (s) {
4080       strm.Printf(" (symbol exists) ");
4081     }
4082   }
4083 
4084   strm.EOL();
4085 }
4086 
4087 void RSKernelDescriptor::Dump(Stream &strm) const {
4088   strm.Indent(m_name.AsCString());
4089   strm.EOL();
4090 }
4091 
4092 void RSReductionDescriptor::Dump(lldb_private::Stream &stream) const {
4093   stream.Indent(m_reduce_name.AsCString());
4094   stream.IndentMore();
4095   stream.EOL();
4096   stream.Indent();
4097   stream.Printf("accumulator: %s", m_accum_name.AsCString());
4098   stream.EOL();
4099   stream.Indent();
4100   stream.Printf("initializer: %s", m_init_name.AsCString());
4101   stream.EOL();
4102   stream.Indent();
4103   stream.Printf("combiner: %s", m_comb_name.AsCString());
4104   stream.EOL();
4105   stream.Indent();
4106   stream.Printf("outconverter: %s", m_outc_name.AsCString());
4107   stream.EOL();
4108   // XXX This is currently unspecified by RenderScript, and unused
4109   // stream.Indent();
4110   // stream.Printf("halter: '%s'", m_init_name.AsCString());
4111   // stream.EOL();
4112   stream.IndentLess();
4113 }
4114 
4115 class CommandObjectRenderScriptRuntimeModuleDump : public CommandObjectParsed {
4116 public:
4117   CommandObjectRenderScriptRuntimeModuleDump(CommandInterpreter &interpreter)
4118       : CommandObjectParsed(
4119             interpreter, "renderscript module dump",
4120             "Dumps renderscript specific information for all modules.",
4121             "renderscript module dump",
4122             eCommandRequiresProcess | eCommandProcessMustBeLaunched) {}
4123 
4124   ~CommandObjectRenderScriptRuntimeModuleDump() override = default;
4125 
4126   bool DoExecute(Args &command, CommandReturnObject &result) override {
4127     RenderScriptRuntime *runtime =
4128         (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4129             eLanguageTypeExtRenderScript);
4130     runtime->DumpModules(result.GetOutputStream());
4131     result.SetStatus(eReturnStatusSuccessFinishResult);
4132     return true;
4133   }
4134 };
4135 
4136 class CommandObjectRenderScriptRuntimeModule : public CommandObjectMultiword {
4137 public:
4138   CommandObjectRenderScriptRuntimeModule(CommandInterpreter &interpreter)
4139       : CommandObjectMultiword(interpreter, "renderscript module",
4140                                "Commands that deal with RenderScript modules.",
4141                                nullptr) {
4142     LoadSubCommand(
4143         "dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeModuleDump(
4144                     interpreter)));
4145   }
4146 
4147   ~CommandObjectRenderScriptRuntimeModule() override = default;
4148 };
4149 
4150 class CommandObjectRenderScriptRuntimeKernelList : public CommandObjectParsed {
4151 public:
4152   CommandObjectRenderScriptRuntimeKernelList(CommandInterpreter &interpreter)
4153       : CommandObjectParsed(
4154             interpreter, "renderscript kernel list",
4155             "Lists renderscript kernel names and associated script resources.",
4156             "renderscript kernel list",
4157             eCommandRequiresProcess | eCommandProcessMustBeLaunched) {}
4158 
4159   ~CommandObjectRenderScriptRuntimeKernelList() override = default;
4160 
4161   bool DoExecute(Args &command, CommandReturnObject &result) override {
4162     RenderScriptRuntime *runtime =
4163         (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4164             eLanguageTypeExtRenderScript);
4165     runtime->DumpKernels(result.GetOutputStream());
4166     result.SetStatus(eReturnStatusSuccessFinishResult);
4167     return true;
4168   }
4169 };
4170 
4171 static constexpr OptionDefinition g_renderscript_reduction_bp_set_options[] = {
4172     {LLDB_OPT_SET_1, false, "function-role", 't',
4173      OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeOneLiner,
4174      "Break on a comma separated set of reduction kernel types "
4175      "(accumulator,outcoverter,combiner,initializer"},
4176     {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument,
4177      nullptr, {}, 0, eArgTypeValue,
4178      "Set a breakpoint on a single invocation of the kernel with specified "
4179      "coordinate.\n"
4180      "Coordinate takes the form 'x[,y][,z] where x,y,z are positive "
4181      "integers representing kernel dimensions. "
4182      "Any unset dimensions will be defaulted to zero."}};
4183 
4184 class CommandObjectRenderScriptRuntimeReductionBreakpointSet
4185     : public CommandObjectParsed {
4186 public:
4187   CommandObjectRenderScriptRuntimeReductionBreakpointSet(
4188       CommandInterpreter &interpreter)
4189       : CommandObjectParsed(
4190             interpreter, "renderscript reduction breakpoint set",
4191             "Set a breakpoint on named RenderScript general reductions",
4192             "renderscript reduction breakpoint set  <kernel_name> [-t "
4193             "<reduction_kernel_type,...>]",
4194             eCommandRequiresProcess | eCommandProcessMustBeLaunched |
4195                 eCommandProcessMustBePaused),
4196         m_options(){};
4197 
4198   class CommandOptions : public Options {
4199   public:
4200     CommandOptions()
4201         : Options(),
4202           m_kernel_types(RSReduceBreakpointResolver::eKernelTypeAll) {}
4203 
4204     ~CommandOptions() override = default;
4205 
4206     Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg,
4207                           ExecutionContext *exe_ctx) override {
4208       Status err;
4209       StreamString err_str;
4210       const int short_option = m_getopt_table[option_idx].val;
4211       switch (short_option) {
4212       case 't':
4213         if (!ParseReductionTypes(option_arg, err_str))
4214           err.SetErrorStringWithFormat(
4215               "Unable to deduce reduction types for %s: %s",
4216               option_arg.str().c_str(), err_str.GetData());
4217         break;
4218       case 'c': {
4219         auto coord = RSCoordinate{};
4220         if (!ParseCoordinate(option_arg, coord))
4221           err.SetErrorStringWithFormat("unable to parse coordinate for %s",
4222                                        option_arg.str().c_str());
4223         else {
4224           m_have_coord = true;
4225           m_coord = coord;
4226         }
4227         break;
4228       }
4229       default:
4230         err.SetErrorStringWithFormat("Invalid option '-%c'", short_option);
4231       }
4232       return err;
4233     }
4234 
4235     void OptionParsingStarting(ExecutionContext *exe_ctx) override {
4236       m_have_coord = false;
4237     }
4238 
4239     llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
4240       return llvm::makeArrayRef(g_renderscript_reduction_bp_set_options);
4241     }
4242 
4243     bool ParseReductionTypes(llvm::StringRef option_val,
4244                              StreamString &err_str) {
4245       m_kernel_types = RSReduceBreakpointResolver::eKernelTypeNone;
4246       const auto reduce_name_to_type = [](llvm::StringRef name) -> int {
4247         return llvm::StringSwitch<int>(name)
4248             .Case("accumulator", RSReduceBreakpointResolver::eKernelTypeAccum)
4249             .Case("initializer", RSReduceBreakpointResolver::eKernelTypeInit)
4250             .Case("outconverter", RSReduceBreakpointResolver::eKernelTypeOutC)
4251             .Case("combiner", RSReduceBreakpointResolver::eKernelTypeComb)
4252             .Case("all", RSReduceBreakpointResolver::eKernelTypeAll)
4253             // Currently not exposed by the runtime
4254             // .Case("halter", RSReduceBreakpointResolver::eKernelTypeHalter)
4255             .Default(0);
4256       };
4257 
4258       // Matching a comma separated list of known words is fairly
4259       // straightforward with PCRE, but we're using ERE, so we end up with a
4260       // little ugliness...
4261       RegularExpression::Match match(/* max_matches */ 5);
4262       RegularExpression match_type_list(
4263           llvm::StringRef("^([[:alpha:]]+)(,[[:alpha:]]+){0,4}$"));
4264 
4265       assert(match_type_list.IsValid());
4266 
4267       if (!match_type_list.Execute(option_val, &match)) {
4268         err_str.PutCString(
4269             "a comma-separated list of kernel types is required");
4270         return false;
4271       }
4272 
4273       // splitting on commas is much easier with llvm::StringRef than regex
4274       llvm::SmallVector<llvm::StringRef, 5> type_names;
4275       llvm::StringRef(option_val).split(type_names, ',');
4276 
4277       for (const auto &name : type_names) {
4278         const int type = reduce_name_to_type(name);
4279         if (!type) {
4280           err_str.Printf("unknown kernel type name %s", name.str().c_str());
4281           return false;
4282         }
4283         m_kernel_types |= type;
4284       }
4285 
4286       return true;
4287     }
4288 
4289     int m_kernel_types;
4290     llvm::StringRef m_reduce_name;
4291     RSCoordinate m_coord;
4292     bool m_have_coord;
4293   };
4294 
4295   Options *GetOptions() override { return &m_options; }
4296 
4297   bool DoExecute(Args &command, CommandReturnObject &result) override {
4298     const size_t argc = command.GetArgumentCount();
4299     if (argc < 1) {
4300       result.AppendErrorWithFormat("'%s' takes 1 argument of reduction name, "
4301                                    "and an optional kernel type list",
4302                                    m_cmd_name.c_str());
4303       result.SetStatus(eReturnStatusFailed);
4304       return false;
4305     }
4306 
4307     RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4308         m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4309             eLanguageTypeExtRenderScript));
4310 
4311     auto &outstream = result.GetOutputStream();
4312     auto name = command.GetArgumentAtIndex(0);
4313     auto &target = m_exe_ctx.GetTargetSP();
4314     auto coord = m_options.m_have_coord ? &m_options.m_coord : nullptr;
4315     if (!runtime->PlaceBreakpointOnReduction(target, outstream, name, coord,
4316                                              m_options.m_kernel_types)) {
4317       result.SetStatus(eReturnStatusFailed);
4318       result.AppendError("Error: unable to place breakpoint on reduction");
4319       return false;
4320     }
4321     result.AppendMessage("Breakpoint(s) created");
4322     result.SetStatus(eReturnStatusSuccessFinishResult);
4323     return true;
4324   }
4325 
4326 private:
4327   CommandOptions m_options;
4328 };
4329 
4330 static constexpr OptionDefinition g_renderscript_kernel_bp_set_options[] = {
4331     {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument,
4332      nullptr, {}, 0, eArgTypeValue,
4333      "Set a breakpoint on a single invocation of the kernel with specified "
4334      "coordinate.\n"
4335      "Coordinate takes the form 'x[,y][,z] where x,y,z are positive "
4336      "integers representing kernel dimensions. "
4337      "Any unset dimensions will be defaulted to zero."}};
4338 
4339 class CommandObjectRenderScriptRuntimeKernelBreakpointSet
4340     : public CommandObjectParsed {
4341 public:
4342   CommandObjectRenderScriptRuntimeKernelBreakpointSet(
4343       CommandInterpreter &interpreter)
4344       : CommandObjectParsed(
4345             interpreter, "renderscript kernel breakpoint set",
4346             "Sets a breakpoint on a renderscript kernel.",
4347             "renderscript kernel breakpoint set <kernel_name> [-c x,y,z]",
4348             eCommandRequiresProcess | eCommandProcessMustBeLaunched |
4349                 eCommandProcessMustBePaused),
4350         m_options() {}
4351 
4352   ~CommandObjectRenderScriptRuntimeKernelBreakpointSet() override = default;
4353 
4354   Options *GetOptions() override { return &m_options; }
4355 
4356   class CommandOptions : public Options {
4357   public:
4358     CommandOptions() : Options() {}
4359 
4360     ~CommandOptions() override = default;
4361 
4362     Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg,
4363                           ExecutionContext *exe_ctx) override {
4364       Status err;
4365       const int short_option = m_getopt_table[option_idx].val;
4366 
4367       switch (short_option) {
4368       case 'c': {
4369         auto coord = RSCoordinate{};
4370         if (!ParseCoordinate(option_arg, coord))
4371           err.SetErrorStringWithFormat(
4372               "Couldn't parse coordinate '%s', should be in format 'x,y,z'.",
4373               option_arg.str().c_str());
4374         else {
4375           m_have_coord = true;
4376           m_coord = coord;
4377         }
4378         break;
4379       }
4380       default:
4381         err.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
4382         break;
4383       }
4384       return err;
4385     }
4386 
4387     void OptionParsingStarting(ExecutionContext *exe_ctx) override {
4388       m_have_coord = false;
4389     }
4390 
4391     llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
4392       return llvm::makeArrayRef(g_renderscript_kernel_bp_set_options);
4393     }
4394 
4395     RSCoordinate m_coord;
4396     bool m_have_coord;
4397   };
4398 
4399   bool DoExecute(Args &command, CommandReturnObject &result) override {
4400     const size_t argc = command.GetArgumentCount();
4401     if (argc < 1) {
4402       result.AppendErrorWithFormat(
4403           "'%s' takes 1 argument of kernel name, and an optional coordinate.",
4404           m_cmd_name.c_str());
4405       result.SetStatus(eReturnStatusFailed);
4406       return false;
4407     }
4408 
4409     RenderScriptRuntime *runtime =
4410         (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4411             eLanguageTypeExtRenderScript);
4412 
4413     auto &outstream = result.GetOutputStream();
4414     auto &target = m_exe_ctx.GetTargetSP();
4415     auto name = command.GetArgumentAtIndex(0);
4416     auto coord = m_options.m_have_coord ? &m_options.m_coord : nullptr;
4417     if (!runtime->PlaceBreakpointOnKernel(target, outstream, name, coord)) {
4418       result.SetStatus(eReturnStatusFailed);
4419       result.AppendErrorWithFormat(
4420           "Error: unable to set breakpoint on kernel '%s'", name);
4421       return false;
4422     }
4423 
4424     result.AppendMessage("Breakpoint(s) created");
4425     result.SetStatus(eReturnStatusSuccessFinishResult);
4426     return true;
4427   }
4428 
4429 private:
4430   CommandOptions m_options;
4431 };
4432 
4433 class CommandObjectRenderScriptRuntimeKernelBreakpointAll
4434     : public CommandObjectParsed {
4435 public:
4436   CommandObjectRenderScriptRuntimeKernelBreakpointAll(
4437       CommandInterpreter &interpreter)
4438       : CommandObjectParsed(
4439             interpreter, "renderscript kernel breakpoint all",
4440             "Automatically sets a breakpoint on all renderscript kernels that "
4441             "are or will be loaded.\n"
4442             "Disabling option means breakpoints will no longer be set on any "
4443             "kernels loaded in the future, "
4444             "but does not remove currently set breakpoints.",
4445             "renderscript kernel breakpoint all <enable/disable>",
4446             eCommandRequiresProcess | eCommandProcessMustBeLaunched |
4447                 eCommandProcessMustBePaused) {}
4448 
4449   ~CommandObjectRenderScriptRuntimeKernelBreakpointAll() override = default;
4450 
4451   bool DoExecute(Args &command, CommandReturnObject &result) override {
4452     const size_t argc = command.GetArgumentCount();
4453     if (argc != 1) {
4454       result.AppendErrorWithFormat(
4455           "'%s' takes 1 argument of 'enable' or 'disable'", m_cmd_name.c_str());
4456       result.SetStatus(eReturnStatusFailed);
4457       return false;
4458     }
4459 
4460     RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4461         m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4462             eLanguageTypeExtRenderScript));
4463 
4464     bool do_break = false;
4465     const char *argument = command.GetArgumentAtIndex(0);
4466     if (strcmp(argument, "enable") == 0) {
4467       do_break = true;
4468       result.AppendMessage("Breakpoints will be set on all kernels.");
4469     } else if (strcmp(argument, "disable") == 0) {
4470       do_break = false;
4471       result.AppendMessage("Breakpoints will not be set on any new kernels.");
4472     } else {
4473       result.AppendErrorWithFormat(
4474           "Argument must be either 'enable' or 'disable'");
4475       result.SetStatus(eReturnStatusFailed);
4476       return false;
4477     }
4478 
4479     runtime->SetBreakAllKernels(do_break, m_exe_ctx.GetTargetSP());
4480 
4481     result.SetStatus(eReturnStatusSuccessFinishResult);
4482     return true;
4483   }
4484 };
4485 
4486 class CommandObjectRenderScriptRuntimeReductionBreakpoint
4487     : public CommandObjectMultiword {
4488 public:
4489   CommandObjectRenderScriptRuntimeReductionBreakpoint(
4490       CommandInterpreter &interpreter)
4491       : CommandObjectMultiword(interpreter, "renderscript reduction breakpoint",
4492                                "Commands that manipulate breakpoints on "
4493                                "renderscript general reductions.",
4494                                nullptr) {
4495     LoadSubCommand(
4496         "set", CommandObjectSP(
4497                    new CommandObjectRenderScriptRuntimeReductionBreakpointSet(
4498                        interpreter)));
4499   }
4500 
4501   ~CommandObjectRenderScriptRuntimeReductionBreakpoint() override = default;
4502 };
4503 
4504 class CommandObjectRenderScriptRuntimeKernelCoordinate
4505     : public CommandObjectParsed {
4506 public:
4507   CommandObjectRenderScriptRuntimeKernelCoordinate(
4508       CommandInterpreter &interpreter)
4509       : CommandObjectParsed(
4510             interpreter, "renderscript kernel coordinate",
4511             "Shows the (x,y,z) coordinate of the current kernel invocation.",
4512             "renderscript kernel coordinate",
4513             eCommandRequiresProcess | eCommandProcessMustBeLaunched |
4514                 eCommandProcessMustBePaused) {}
4515 
4516   ~CommandObjectRenderScriptRuntimeKernelCoordinate() override = default;
4517 
4518   bool DoExecute(Args &command, CommandReturnObject &result) override {
4519     RSCoordinate coord{};
4520     bool success = RenderScriptRuntime::GetKernelCoordinate(
4521         coord, m_exe_ctx.GetThreadPtr());
4522     Stream &stream = result.GetOutputStream();
4523 
4524     if (success) {
4525       stream.Printf("Coordinate: " FMT_COORD, coord.x, coord.y, coord.z);
4526       stream.EOL();
4527       result.SetStatus(eReturnStatusSuccessFinishResult);
4528     } else {
4529       stream.Printf("Error: Coordinate could not be found.");
4530       stream.EOL();
4531       result.SetStatus(eReturnStatusFailed);
4532     }
4533     return true;
4534   }
4535 };
4536 
4537 class CommandObjectRenderScriptRuntimeKernelBreakpoint
4538     : public CommandObjectMultiword {
4539 public:
4540   CommandObjectRenderScriptRuntimeKernelBreakpoint(
4541       CommandInterpreter &interpreter)
4542       : CommandObjectMultiword(
4543             interpreter, "renderscript kernel",
4544             "Commands that generate breakpoints on renderscript kernels.",
4545             nullptr) {
4546     LoadSubCommand(
4547         "set",
4548         CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointSet(
4549             interpreter)));
4550     LoadSubCommand(
4551         "all",
4552         CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointAll(
4553             interpreter)));
4554   }
4555 
4556   ~CommandObjectRenderScriptRuntimeKernelBreakpoint() override = default;
4557 };
4558 
4559 class CommandObjectRenderScriptRuntimeKernel : public CommandObjectMultiword {
4560 public:
4561   CommandObjectRenderScriptRuntimeKernel(CommandInterpreter &interpreter)
4562       : CommandObjectMultiword(interpreter, "renderscript kernel",
4563                                "Commands that deal with RenderScript kernels.",
4564                                nullptr) {
4565     LoadSubCommand(
4566         "list", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelList(
4567                     interpreter)));
4568     LoadSubCommand(
4569         "coordinate",
4570         CommandObjectSP(
4571             new CommandObjectRenderScriptRuntimeKernelCoordinate(interpreter)));
4572     LoadSubCommand(
4573         "breakpoint",
4574         CommandObjectSP(
4575             new CommandObjectRenderScriptRuntimeKernelBreakpoint(interpreter)));
4576   }
4577 
4578   ~CommandObjectRenderScriptRuntimeKernel() override = default;
4579 };
4580 
4581 class CommandObjectRenderScriptRuntimeContextDump : public CommandObjectParsed {
4582 public:
4583   CommandObjectRenderScriptRuntimeContextDump(CommandInterpreter &interpreter)
4584       : CommandObjectParsed(interpreter, "renderscript context dump",
4585                             "Dumps renderscript context information.",
4586                             "renderscript context dump",
4587                             eCommandRequiresProcess |
4588                                 eCommandProcessMustBeLaunched) {}
4589 
4590   ~CommandObjectRenderScriptRuntimeContextDump() override = default;
4591 
4592   bool DoExecute(Args &command, CommandReturnObject &result) override {
4593     RenderScriptRuntime *runtime =
4594         (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4595             eLanguageTypeExtRenderScript);
4596     runtime->DumpContexts(result.GetOutputStream());
4597     result.SetStatus(eReturnStatusSuccessFinishResult);
4598     return true;
4599   }
4600 };
4601 
4602 static constexpr OptionDefinition g_renderscript_runtime_alloc_dump_options[] = {
4603     {LLDB_OPT_SET_1, false, "file", 'f', OptionParser::eRequiredArgument,
4604      nullptr, {}, 0, eArgTypeFilename,
4605      "Print results to specified file instead of command line."}};
4606 
4607 class CommandObjectRenderScriptRuntimeContext : public CommandObjectMultiword {
4608 public:
4609   CommandObjectRenderScriptRuntimeContext(CommandInterpreter &interpreter)
4610       : CommandObjectMultiword(interpreter, "renderscript context",
4611                                "Commands that deal with RenderScript contexts.",
4612                                nullptr) {
4613     LoadSubCommand(
4614         "dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeContextDump(
4615                     interpreter)));
4616   }
4617 
4618   ~CommandObjectRenderScriptRuntimeContext() override = default;
4619 };
4620 
4621 class CommandObjectRenderScriptRuntimeAllocationDump
4622     : public CommandObjectParsed {
4623 public:
4624   CommandObjectRenderScriptRuntimeAllocationDump(
4625       CommandInterpreter &interpreter)
4626       : CommandObjectParsed(interpreter, "renderscript allocation dump",
4627                             "Displays the contents of a particular allocation",
4628                             "renderscript allocation dump <ID>",
4629                             eCommandRequiresProcess |
4630                                 eCommandProcessMustBeLaunched),
4631         m_options() {}
4632 
4633   ~CommandObjectRenderScriptRuntimeAllocationDump() override = default;
4634 
4635   Options *GetOptions() override { return &m_options; }
4636 
4637   class CommandOptions : public Options {
4638   public:
4639     CommandOptions() : Options() {}
4640 
4641     ~CommandOptions() override = default;
4642 
4643     Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg,
4644                           ExecutionContext *exe_ctx) override {
4645       Status err;
4646       const int short_option = m_getopt_table[option_idx].val;
4647 
4648       switch (short_option) {
4649       case 'f':
4650         m_outfile.SetFile(option_arg, FileSpec::Style::native);
4651         FileSystem::Instance().Resolve(m_outfile);
4652         if (FileSystem::Instance().Exists(m_outfile)) {
4653           m_outfile.Clear();
4654           err.SetErrorStringWithFormat("file already exists: '%s'",
4655                                        option_arg.str().c_str());
4656         }
4657         break;
4658       default:
4659         err.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
4660         break;
4661       }
4662       return err;
4663     }
4664 
4665     void OptionParsingStarting(ExecutionContext *exe_ctx) override {
4666       m_outfile.Clear();
4667     }
4668 
4669     llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
4670       return llvm::makeArrayRef(g_renderscript_runtime_alloc_dump_options);
4671     }
4672 
4673     FileSpec m_outfile;
4674   };
4675 
4676   bool DoExecute(Args &command, CommandReturnObject &result) override {
4677     const size_t argc = command.GetArgumentCount();
4678     if (argc < 1) {
4679       result.AppendErrorWithFormat("'%s' takes 1 argument, an allocation ID. "
4680                                    "As well as an optional -f argument",
4681                                    m_cmd_name.c_str());
4682       result.SetStatus(eReturnStatusFailed);
4683       return false;
4684     }
4685 
4686     RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4687         m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4688             eLanguageTypeExtRenderScript));
4689 
4690     const char *id_cstr = command.GetArgumentAtIndex(0);
4691     bool success = false;
4692     const uint32_t id =
4693         StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success);
4694     if (!success) {
4695       result.AppendErrorWithFormat("invalid allocation id argument '%s'",
4696                                    id_cstr);
4697       result.SetStatus(eReturnStatusFailed);
4698       return false;
4699     }
4700 
4701     Stream *output_strm = nullptr;
4702     StreamFile outfile_stream;
4703     const FileSpec &outfile_spec =
4704         m_options.m_outfile; // Dump allocation to file instead
4705     if (outfile_spec) {
4706       // Open output file
4707       std::string path = outfile_spec.GetPath();
4708       auto error = FileSystem::Instance().Open(
4709           outfile_stream.GetFile(), outfile_spec,
4710           File::eOpenOptionWrite | File::eOpenOptionCanCreate);
4711       if (error.Success()) {
4712         output_strm = &outfile_stream;
4713         result.GetOutputStream().Printf("Results written to '%s'",
4714                                         path.c_str());
4715         result.GetOutputStream().EOL();
4716       } else {
4717         result.AppendErrorWithFormat("Couldn't open file '%s'", path.c_str());
4718         result.SetStatus(eReturnStatusFailed);
4719         return false;
4720       }
4721     } else
4722       output_strm = &result.GetOutputStream();
4723 
4724     assert(output_strm != nullptr);
4725     bool dumped =
4726         runtime->DumpAllocation(*output_strm, m_exe_ctx.GetFramePtr(), id);
4727 
4728     if (dumped)
4729       result.SetStatus(eReturnStatusSuccessFinishResult);
4730     else
4731       result.SetStatus(eReturnStatusFailed);
4732 
4733     return true;
4734   }
4735 
4736 private:
4737   CommandOptions m_options;
4738 };
4739 
4740 static constexpr OptionDefinition g_renderscript_runtime_alloc_list_options[] = {
4741     {LLDB_OPT_SET_1, false, "id", 'i', OptionParser::eRequiredArgument, nullptr,
4742      {}, 0, eArgTypeIndex,
4743      "Only show details of a single allocation with specified id."}};
4744 
4745 class CommandObjectRenderScriptRuntimeAllocationList
4746     : public CommandObjectParsed {
4747 public:
4748   CommandObjectRenderScriptRuntimeAllocationList(
4749       CommandInterpreter &interpreter)
4750       : CommandObjectParsed(
4751             interpreter, "renderscript allocation list",
4752             "List renderscript allocations and their information.",
4753             "renderscript allocation list",
4754             eCommandRequiresProcess | eCommandProcessMustBeLaunched),
4755         m_options() {}
4756 
4757   ~CommandObjectRenderScriptRuntimeAllocationList() override = default;
4758 
4759   Options *GetOptions() override { return &m_options; }
4760 
4761   class CommandOptions : public Options {
4762   public:
4763     CommandOptions() : Options(), m_id(0) {}
4764 
4765     ~CommandOptions() override = default;
4766 
4767     Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg,
4768                           ExecutionContext *exe_ctx) override {
4769       Status err;
4770       const int short_option = m_getopt_table[option_idx].val;
4771 
4772       switch (short_option) {
4773       case 'i':
4774         if (option_arg.getAsInteger(0, m_id))
4775           err.SetErrorStringWithFormat("invalid integer value for option '%c'",
4776                                        short_option);
4777         break;
4778       default:
4779         err.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
4780         break;
4781       }
4782       return err;
4783     }
4784 
4785     void OptionParsingStarting(ExecutionContext *exe_ctx) override { m_id = 0; }
4786 
4787     llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
4788       return llvm::makeArrayRef(g_renderscript_runtime_alloc_list_options);
4789     }
4790 
4791     uint32_t m_id;
4792   };
4793 
4794   bool DoExecute(Args &command, CommandReturnObject &result) override {
4795     RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4796         m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4797             eLanguageTypeExtRenderScript));
4798     runtime->ListAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr(),
4799                              m_options.m_id);
4800     result.SetStatus(eReturnStatusSuccessFinishResult);
4801     return true;
4802   }
4803 
4804 private:
4805   CommandOptions m_options;
4806 };
4807 
4808 class CommandObjectRenderScriptRuntimeAllocationLoad
4809     : public CommandObjectParsed {
4810 public:
4811   CommandObjectRenderScriptRuntimeAllocationLoad(
4812       CommandInterpreter &interpreter)
4813       : CommandObjectParsed(
4814             interpreter, "renderscript allocation load",
4815             "Loads renderscript allocation contents from a file.",
4816             "renderscript allocation load <ID> <filename>",
4817             eCommandRequiresProcess | eCommandProcessMustBeLaunched) {}
4818 
4819   ~CommandObjectRenderScriptRuntimeAllocationLoad() override = default;
4820 
4821   bool DoExecute(Args &command, CommandReturnObject &result) override {
4822     const size_t argc = command.GetArgumentCount();
4823     if (argc != 2) {
4824       result.AppendErrorWithFormat(
4825           "'%s' takes 2 arguments, an allocation ID and filename to read from.",
4826           m_cmd_name.c_str());
4827       result.SetStatus(eReturnStatusFailed);
4828       return false;
4829     }
4830 
4831     RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4832         m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4833             eLanguageTypeExtRenderScript));
4834 
4835     const char *id_cstr = command.GetArgumentAtIndex(0);
4836     bool success = false;
4837     const uint32_t id =
4838         StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success);
4839     if (!success) {
4840       result.AppendErrorWithFormat("invalid allocation id argument '%s'",
4841                                    id_cstr);
4842       result.SetStatus(eReturnStatusFailed);
4843       return false;
4844     }
4845 
4846     const char *path = command.GetArgumentAtIndex(1);
4847     bool loaded = runtime->LoadAllocation(result.GetOutputStream(), id, path,
4848                                           m_exe_ctx.GetFramePtr());
4849 
4850     if (loaded)
4851       result.SetStatus(eReturnStatusSuccessFinishResult);
4852     else
4853       result.SetStatus(eReturnStatusFailed);
4854 
4855     return true;
4856   }
4857 };
4858 
4859 class CommandObjectRenderScriptRuntimeAllocationSave
4860     : public CommandObjectParsed {
4861 public:
4862   CommandObjectRenderScriptRuntimeAllocationSave(
4863       CommandInterpreter &interpreter)
4864       : CommandObjectParsed(interpreter, "renderscript allocation save",
4865                             "Write renderscript allocation contents to a file.",
4866                             "renderscript allocation save <ID> <filename>",
4867                             eCommandRequiresProcess |
4868                                 eCommandProcessMustBeLaunched) {}
4869 
4870   ~CommandObjectRenderScriptRuntimeAllocationSave() override = default;
4871 
4872   bool DoExecute(Args &command, CommandReturnObject &result) override {
4873     const size_t argc = command.GetArgumentCount();
4874     if (argc != 2) {
4875       result.AppendErrorWithFormat(
4876           "'%s' takes 2 arguments, an allocation ID and filename to read from.",
4877           m_cmd_name.c_str());
4878       result.SetStatus(eReturnStatusFailed);
4879       return false;
4880     }
4881 
4882     RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4883         m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4884             eLanguageTypeExtRenderScript));
4885 
4886     const char *id_cstr = command.GetArgumentAtIndex(0);
4887     bool success = false;
4888     const uint32_t id =
4889         StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success);
4890     if (!success) {
4891       result.AppendErrorWithFormat("invalid allocation id argument '%s'",
4892                                    id_cstr);
4893       result.SetStatus(eReturnStatusFailed);
4894       return false;
4895     }
4896 
4897     const char *path = command.GetArgumentAtIndex(1);
4898     bool saved = runtime->SaveAllocation(result.GetOutputStream(), id, path,
4899                                          m_exe_ctx.GetFramePtr());
4900 
4901     if (saved)
4902       result.SetStatus(eReturnStatusSuccessFinishResult);
4903     else
4904       result.SetStatus(eReturnStatusFailed);
4905 
4906     return true;
4907   }
4908 };
4909 
4910 class CommandObjectRenderScriptRuntimeAllocationRefresh
4911     : public CommandObjectParsed {
4912 public:
4913   CommandObjectRenderScriptRuntimeAllocationRefresh(
4914       CommandInterpreter &interpreter)
4915       : CommandObjectParsed(interpreter, "renderscript allocation refresh",
4916                             "Recomputes the details of all allocations.",
4917                             "renderscript allocation refresh",
4918                             eCommandRequiresProcess |
4919                                 eCommandProcessMustBeLaunched) {}
4920 
4921   ~CommandObjectRenderScriptRuntimeAllocationRefresh() override = default;
4922 
4923   bool DoExecute(Args &command, CommandReturnObject &result) override {
4924     RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4925         m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4926             eLanguageTypeExtRenderScript));
4927 
4928     bool success = runtime->RecomputeAllAllocations(result.GetOutputStream(),
4929                                                     m_exe_ctx.GetFramePtr());
4930 
4931     if (success) {
4932       result.SetStatus(eReturnStatusSuccessFinishResult);
4933       return true;
4934     } else {
4935       result.SetStatus(eReturnStatusFailed);
4936       return false;
4937     }
4938   }
4939 };
4940 
4941 class CommandObjectRenderScriptRuntimeAllocation
4942     : public CommandObjectMultiword {
4943 public:
4944   CommandObjectRenderScriptRuntimeAllocation(CommandInterpreter &interpreter)
4945       : CommandObjectMultiword(
4946             interpreter, "renderscript allocation",
4947             "Commands that deal with RenderScript allocations.", nullptr) {
4948     LoadSubCommand(
4949         "list",
4950         CommandObjectSP(
4951             new CommandObjectRenderScriptRuntimeAllocationList(interpreter)));
4952     LoadSubCommand(
4953         "dump",
4954         CommandObjectSP(
4955             new CommandObjectRenderScriptRuntimeAllocationDump(interpreter)));
4956     LoadSubCommand(
4957         "save",
4958         CommandObjectSP(
4959             new CommandObjectRenderScriptRuntimeAllocationSave(interpreter)));
4960     LoadSubCommand(
4961         "load",
4962         CommandObjectSP(
4963             new CommandObjectRenderScriptRuntimeAllocationLoad(interpreter)));
4964     LoadSubCommand(
4965         "refresh",
4966         CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationRefresh(
4967             interpreter)));
4968   }
4969 
4970   ~CommandObjectRenderScriptRuntimeAllocation() override = default;
4971 };
4972 
4973 class CommandObjectRenderScriptRuntimeStatus : public CommandObjectParsed {
4974 public:
4975   CommandObjectRenderScriptRuntimeStatus(CommandInterpreter &interpreter)
4976       : CommandObjectParsed(interpreter, "renderscript status",
4977                             "Displays current RenderScript runtime status.",
4978                             "renderscript status",
4979                             eCommandRequiresProcess |
4980                                 eCommandProcessMustBeLaunched) {}
4981 
4982   ~CommandObjectRenderScriptRuntimeStatus() override = default;
4983 
4984   bool DoExecute(Args &command, CommandReturnObject &result) override {
4985     RenderScriptRuntime *runtime =
4986         (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4987             eLanguageTypeExtRenderScript);
4988     runtime->DumpStatus(result.GetOutputStream());
4989     result.SetStatus(eReturnStatusSuccessFinishResult);
4990     return true;
4991   }
4992 };
4993 
4994 class CommandObjectRenderScriptRuntimeReduction
4995     : public CommandObjectMultiword {
4996 public:
4997   CommandObjectRenderScriptRuntimeReduction(CommandInterpreter &interpreter)
4998       : CommandObjectMultiword(interpreter, "renderscript reduction",
4999                                "Commands that handle general reduction kernels",
5000                                nullptr) {
5001     LoadSubCommand(
5002         "breakpoint",
5003         CommandObjectSP(new CommandObjectRenderScriptRuntimeReductionBreakpoint(
5004             interpreter)));
5005   }
5006   ~CommandObjectRenderScriptRuntimeReduction() override = default;
5007 };
5008 
5009 class CommandObjectRenderScriptRuntime : public CommandObjectMultiword {
5010 public:
5011   CommandObjectRenderScriptRuntime(CommandInterpreter &interpreter)
5012       : CommandObjectMultiword(
5013             interpreter, "renderscript",
5014             "Commands for operating on the RenderScript runtime.",
5015             "renderscript <subcommand> [<subcommand-options>]") {
5016     LoadSubCommand(
5017         "module", CommandObjectSP(
5018                       new CommandObjectRenderScriptRuntimeModule(interpreter)));
5019     LoadSubCommand(
5020         "status", CommandObjectSP(
5021                       new CommandObjectRenderScriptRuntimeStatus(interpreter)));
5022     LoadSubCommand(
5023         "kernel", CommandObjectSP(
5024                       new CommandObjectRenderScriptRuntimeKernel(interpreter)));
5025     LoadSubCommand("context",
5026                    CommandObjectSP(new CommandObjectRenderScriptRuntimeContext(
5027                        interpreter)));
5028     LoadSubCommand(
5029         "allocation",
5030         CommandObjectSP(
5031             new CommandObjectRenderScriptRuntimeAllocation(interpreter)));
5032     LoadSubCommand("scriptgroup",
5033                    NewCommandObjectRenderScriptScriptGroup(interpreter));
5034     LoadSubCommand(
5035         "reduction",
5036         CommandObjectSP(
5037             new CommandObjectRenderScriptRuntimeReduction(interpreter)));
5038   }
5039 
5040   ~CommandObjectRenderScriptRuntime() override = default;
5041 };
5042 
5043 void RenderScriptRuntime::Initiate() { assert(!m_initiated); }
5044 
5045 RenderScriptRuntime::RenderScriptRuntime(Process *process)
5046     : lldb_private::CPPLanguageRuntime(process), m_initiated(false),
5047       m_debuggerPresentFlagged(false), m_breakAllKernels(false),
5048       m_ir_passes(nullptr) {
5049   ModulesDidLoad(process->GetTarget().GetImages());
5050 }
5051 
5052 lldb::CommandObjectSP RenderScriptRuntime::GetCommandObject(
5053     lldb_private::CommandInterpreter &interpreter) {
5054   return CommandObjectSP(new CommandObjectRenderScriptRuntime(interpreter));
5055 }
5056 
5057 RenderScriptRuntime::~RenderScriptRuntime() = default;
5058