1 //===-- RenderScriptRuntime.cpp ---------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 // C Includes 11 // C++ Includes 12 // Other libraries and framework includes 13 #include "llvm/ADT/StringSwitch.h" 14 15 // Project includes 16 #include "RenderScriptRuntime.h" 17 #include "RenderScriptScriptGroup.h" 18 19 #include "lldb/Breakpoint/StoppointCallbackContext.h" 20 #include "lldb/Core/Debugger.h" 21 #include "lldb/Core/Log.h" 22 #include "lldb/Core/PluginManager.h" 23 #include "lldb/Core/ValueObjectVariable.h" 24 #include "lldb/DataFormatters/DumpValueObjectOptions.h" 25 #include "lldb/Expression/UserExpression.h" 26 #include "lldb/Host/StringConvert.h" 27 #include "lldb/Interpreter/Args.h" 28 #include "lldb/Interpreter/CommandInterpreter.h" 29 #include "lldb/Interpreter/CommandObjectMultiword.h" 30 #include "lldb/Interpreter/CommandReturnObject.h" 31 #include "lldb/Interpreter/Options.h" 32 #include "lldb/Symbol/Function.h" 33 #include "lldb/Symbol/Symbol.h" 34 #include "lldb/Symbol/Type.h" 35 #include "lldb/Symbol/VariableList.h" 36 #include "lldb/Target/Process.h" 37 #include "lldb/Target/RegisterContext.h" 38 #include "lldb/Target/SectionLoadList.h" 39 #include "lldb/Target/Target.h" 40 #include "lldb/Target/Thread.h" 41 #include "lldb/Utility/ConstString.h" 42 #include "lldb/Utility/Error.h" 43 #include "lldb/Utility/RegularExpression.h" 44 45 using namespace lldb; 46 using namespace lldb_private; 47 using namespace lldb_renderscript; 48 49 #define FMT_COORD "(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ")" 50 51 namespace { 52 53 // The empirical_type adds a basic level of validation to arbitrary data 54 // allowing us to track if data has been discovered and stored or not. An 55 // empirical_type will be marked as valid only if it has been explicitly 56 // assigned to. 57 template <typename type_t> class empirical_type { 58 public: 59 // Ctor. Contents is invalid when constructed. 60 empirical_type() : valid(false) {} 61 62 // Return true and copy contents to out if valid, else return false. 63 bool get(type_t &out) const { 64 if (valid) 65 out = data; 66 return valid; 67 } 68 69 // Return a pointer to the contents or nullptr if it was not valid. 70 const type_t *get() const { return valid ? &data : nullptr; } 71 72 // Assign data explicitly. 73 void set(const type_t in) { 74 data = in; 75 valid = true; 76 } 77 78 // Mark contents as invalid. 79 void invalidate() { valid = false; } 80 81 // Returns true if this type contains valid data. 82 bool isValid() const { return valid; } 83 84 // Assignment operator. 85 empirical_type<type_t> &operator=(const type_t in) { 86 set(in); 87 return *this; 88 } 89 90 // Dereference operator returns contents. 91 // Warning: Will assert if not valid so use only when you know data is valid. 92 const type_t &operator*() const { 93 assert(valid); 94 return data; 95 } 96 97 protected: 98 bool valid; 99 type_t data; 100 }; 101 102 // ArgItem is used by the GetArgs() function when reading function arguments 103 // from the target. 104 struct ArgItem { 105 enum { ePointer, eInt32, eInt64, eLong, eBool } type; 106 107 uint64_t value; 108 109 explicit operator uint64_t() const { return value; } 110 }; 111 112 // Context structure to be passed into GetArgsXXX(), argument reading functions 113 // below. 114 struct GetArgsCtx { 115 RegisterContext *reg_ctx; 116 Process *process; 117 }; 118 119 bool GetArgsX86(const GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 120 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 121 122 Error err; 123 124 // get the current stack pointer 125 uint64_t sp = ctx.reg_ctx->GetSP(); 126 127 for (size_t i = 0; i < num_args; ++i) { 128 ArgItem &arg = arg_list[i]; 129 // advance up the stack by one argument 130 sp += sizeof(uint32_t); 131 // get the argument type size 132 size_t arg_size = sizeof(uint32_t); 133 // read the argument from memory 134 arg.value = 0; 135 Error err; 136 size_t read = 137 ctx.process->ReadMemory(sp, &arg.value, sizeof(uint32_t), err); 138 if (read != arg_size || !err.Success()) { 139 if (log) 140 log->Printf("%s - error reading argument: %" PRIu64 " '%s'", 141 __FUNCTION__, uint64_t(i), err.AsCString()); 142 return false; 143 } 144 } 145 return true; 146 } 147 148 bool GetArgsX86_64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 149 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 150 151 // number of arguments passed in registers 152 static const uint32_t args_in_reg = 6; 153 // register passing order 154 static const std::array<const char *, args_in_reg> reg_names{ 155 {"rdi", "rsi", "rdx", "rcx", "r8", "r9"}}; 156 // argument type to size mapping 157 static const std::array<size_t, 5> arg_size{{ 158 8, // ePointer, 159 4, // eInt32, 160 8, // eInt64, 161 8, // eLong, 162 4, // eBool, 163 }}; 164 165 Error err; 166 167 // get the current stack pointer 168 uint64_t sp = ctx.reg_ctx->GetSP(); 169 // step over the return address 170 sp += sizeof(uint64_t); 171 172 // check the stack alignment was correct (16 byte aligned) 173 if ((sp & 0xf) != 0x0) { 174 if (log) 175 log->Printf("%s - stack misaligned", __FUNCTION__); 176 return false; 177 } 178 179 // find the start of arguments on the stack 180 uint64_t sp_offset = 0; 181 for (uint32_t i = args_in_reg; i < num_args; ++i) { 182 sp_offset += arg_size[arg_list[i].type]; 183 } 184 // round up to multiple of 16 185 sp_offset = (sp_offset + 0xf) & 0xf; 186 sp += sp_offset; 187 188 for (size_t i = 0; i < num_args; ++i) { 189 bool success = false; 190 ArgItem &arg = arg_list[i]; 191 // arguments passed in registers 192 if (i < args_in_reg) { 193 const RegisterInfo *reg = 194 ctx.reg_ctx->GetRegisterInfoByName(reg_names[i]); 195 RegisterValue reg_val; 196 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 197 arg.value = reg_val.GetAsUInt64(0, &success); 198 } 199 // arguments passed on the stack 200 else { 201 // get the argument type size 202 const size_t size = arg_size[arg_list[i].type]; 203 // read the argument from memory 204 arg.value = 0; 205 // note: due to little endian layout reading 4 or 8 bytes will give the 206 // correct value. 207 size_t read = ctx.process->ReadMemory(sp, &arg.value, size, err); 208 success = (err.Success() && read == size); 209 // advance past this argument 210 sp -= size; 211 } 212 // fail if we couldn't read this argument 213 if (!success) { 214 if (log) 215 log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s", 216 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 217 return false; 218 } 219 } 220 return true; 221 } 222 223 bool GetArgsArm(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 224 // number of arguments passed in registers 225 static const uint32_t args_in_reg = 4; 226 227 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 228 229 Error err; 230 231 // get the current stack pointer 232 uint64_t sp = ctx.reg_ctx->GetSP(); 233 234 for (size_t i = 0; i < num_args; ++i) { 235 bool success = false; 236 ArgItem &arg = arg_list[i]; 237 // arguments passed in registers 238 if (i < args_in_reg) { 239 const RegisterInfo *reg = ctx.reg_ctx->GetRegisterInfoAtIndex(i); 240 RegisterValue reg_val; 241 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 242 arg.value = reg_val.GetAsUInt32(0, &success); 243 } 244 // arguments passed on the stack 245 else { 246 // get the argument type size 247 const size_t arg_size = sizeof(uint32_t); 248 // clear all 64bits 249 arg.value = 0; 250 // read this argument from memory 251 size_t bytes_read = 252 ctx.process->ReadMemory(sp, &arg.value, arg_size, err); 253 success = (err.Success() && bytes_read == arg_size); 254 // advance the stack pointer 255 sp += sizeof(uint32_t); 256 } 257 // fail if we couldn't read this argument 258 if (!success) { 259 if (log) 260 log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s", 261 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 262 return false; 263 } 264 } 265 return true; 266 } 267 268 bool GetArgsAarch64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 269 // number of arguments passed in registers 270 static const uint32_t args_in_reg = 8; 271 272 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 273 274 for (size_t i = 0; i < num_args; ++i) { 275 bool success = false; 276 ArgItem &arg = arg_list[i]; 277 // arguments passed in registers 278 if (i < args_in_reg) { 279 const RegisterInfo *reg = ctx.reg_ctx->GetRegisterInfoAtIndex(i); 280 RegisterValue reg_val; 281 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 282 arg.value = reg_val.GetAsUInt64(0, &success); 283 } 284 // arguments passed on the stack 285 else { 286 if (log) 287 log->Printf("%s - reading arguments spilled to stack not implemented", 288 __FUNCTION__); 289 } 290 // fail if we couldn't read this argument 291 if (!success) { 292 if (log) 293 log->Printf("%s - error reading argument: %" PRIu64, __FUNCTION__, 294 uint64_t(i)); 295 return false; 296 } 297 } 298 return true; 299 } 300 301 bool GetArgsMipsel(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 302 // number of arguments passed in registers 303 static const uint32_t args_in_reg = 4; 304 // register file offset to first argument 305 static const uint32_t reg_offset = 4; 306 307 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 308 309 Error err; 310 311 // find offset to arguments on the stack (+16 to skip over a0-a3 shadow space) 312 uint64_t sp = ctx.reg_ctx->GetSP() + 16; 313 314 for (size_t i = 0; i < num_args; ++i) { 315 bool success = false; 316 ArgItem &arg = arg_list[i]; 317 // arguments passed in registers 318 if (i < args_in_reg) { 319 const RegisterInfo *reg = 320 ctx.reg_ctx->GetRegisterInfoAtIndex(i + reg_offset); 321 RegisterValue reg_val; 322 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 323 arg.value = reg_val.GetAsUInt64(0, &success); 324 } 325 // arguments passed on the stack 326 else { 327 const size_t arg_size = sizeof(uint32_t); 328 arg.value = 0; 329 size_t bytes_read = 330 ctx.process->ReadMemory(sp, &arg.value, arg_size, err); 331 success = (err.Success() && bytes_read == arg_size); 332 // advance the stack pointer 333 sp += arg_size; 334 } 335 // fail if we couldn't read this argument 336 if (!success) { 337 if (log) 338 log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s", 339 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 340 return false; 341 } 342 } 343 return true; 344 } 345 346 bool GetArgsMips64el(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 347 // number of arguments passed in registers 348 static const uint32_t args_in_reg = 8; 349 // register file offset to first argument 350 static const uint32_t reg_offset = 4; 351 352 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 353 354 Error err; 355 356 // get the current stack pointer 357 uint64_t sp = ctx.reg_ctx->GetSP(); 358 359 for (size_t i = 0; i < num_args; ++i) { 360 bool success = false; 361 ArgItem &arg = arg_list[i]; 362 // arguments passed in registers 363 if (i < args_in_reg) { 364 const RegisterInfo *reg = 365 ctx.reg_ctx->GetRegisterInfoAtIndex(i + reg_offset); 366 RegisterValue reg_val; 367 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 368 arg.value = reg_val.GetAsUInt64(0, &success); 369 } 370 // arguments passed on the stack 371 else { 372 // get the argument type size 373 const size_t arg_size = sizeof(uint64_t); 374 // clear all 64bits 375 arg.value = 0; 376 // read this argument from memory 377 size_t bytes_read = 378 ctx.process->ReadMemory(sp, &arg.value, arg_size, err); 379 success = (err.Success() && bytes_read == arg_size); 380 // advance the stack pointer 381 sp += arg_size; 382 } 383 // fail if we couldn't read this argument 384 if (!success) { 385 if (log) 386 log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s", 387 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 388 return false; 389 } 390 } 391 return true; 392 } 393 394 bool GetArgs(ExecutionContext &exe_ctx, ArgItem *arg_list, size_t num_args) { 395 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 396 397 // verify that we have a target 398 if (!exe_ctx.GetTargetPtr()) { 399 if (log) 400 log->Printf("%s - invalid target", __FUNCTION__); 401 return false; 402 } 403 404 GetArgsCtx ctx = {exe_ctx.GetRegisterContext(), exe_ctx.GetProcessPtr()}; 405 assert(ctx.reg_ctx && ctx.process); 406 407 // dispatch based on architecture 408 switch (exe_ctx.GetTargetPtr()->GetArchitecture().GetMachine()) { 409 case llvm::Triple::ArchType::x86: 410 return GetArgsX86(ctx, arg_list, num_args); 411 412 case llvm::Triple::ArchType::x86_64: 413 return GetArgsX86_64(ctx, arg_list, num_args); 414 415 case llvm::Triple::ArchType::arm: 416 return GetArgsArm(ctx, arg_list, num_args); 417 418 case llvm::Triple::ArchType::aarch64: 419 return GetArgsAarch64(ctx, arg_list, num_args); 420 421 case llvm::Triple::ArchType::mipsel: 422 return GetArgsMipsel(ctx, arg_list, num_args); 423 424 case llvm::Triple::ArchType::mips64el: 425 return GetArgsMips64el(ctx, arg_list, num_args); 426 427 default: 428 // unsupported architecture 429 if (log) { 430 log->Printf( 431 "%s - architecture not supported: '%s'", __FUNCTION__, 432 exe_ctx.GetTargetRef().GetArchitecture().GetArchitectureName()); 433 } 434 return false; 435 } 436 } 437 438 bool IsRenderScriptScriptModule(ModuleSP module) { 439 if (!module) 440 return false; 441 return module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), 442 eSymbolTypeData) != nullptr; 443 } 444 445 bool ParseCoordinate(llvm::StringRef coord_s, RSCoordinate &coord) { 446 // takes an argument of the form 'num[,num][,num]'. 447 // Where 'coord_s' is a comma separated 1,2 or 3-dimensional coordinate 448 // with the whitespace trimmed. 449 // Missing coordinates are defaulted to zero. 450 // If parsing of any elements fails the contents of &coord are undefined 451 // and `false` is returned, `true` otherwise 452 453 RegularExpression regex; 454 RegularExpression::Match regex_match(3); 455 456 bool matched = false; 457 if (regex.Compile(llvm::StringRef("^([0-9]+),([0-9]+),([0-9]+)$")) && 458 regex.Execute(coord_s, ®ex_match)) 459 matched = true; 460 else if (regex.Compile(llvm::StringRef("^([0-9]+),([0-9]+)$")) && 461 regex.Execute(coord_s, ®ex_match)) 462 matched = true; 463 else if (regex.Compile(llvm::StringRef("^([0-9]+)$")) && 464 regex.Execute(coord_s, ®ex_match)) 465 matched = true; 466 467 if (!matched) 468 return false; 469 470 auto get_index = [&](int idx, uint32_t &i) -> bool { 471 std::string group; 472 errno = 0; 473 if (regex_match.GetMatchAtIndex(coord_s.str().c_str(), idx + 1, group)) 474 return !llvm::StringRef(group).getAsInteger<uint32_t>(10, i); 475 return true; 476 }; 477 478 return get_index(0, coord.x) && get_index(1, coord.y) && 479 get_index(2, coord.z); 480 } 481 482 bool SkipPrologue(lldb::ModuleSP &module, Address &addr) { 483 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 484 SymbolContext sc; 485 uint32_t resolved_flags = 486 module->ResolveSymbolContextForAddress(addr, eSymbolContextFunction, sc); 487 if (resolved_flags & eSymbolContextFunction) { 488 if (sc.function) { 489 const uint32_t offset = sc.function->GetPrologueByteSize(); 490 ConstString name = sc.GetFunctionName(); 491 if (offset) 492 addr.Slide(offset); 493 if (log) 494 log->Printf("%s: Prologue offset for %s is %" PRIu32, __FUNCTION__, 495 name.AsCString(), offset); 496 } 497 return true; 498 } else 499 return false; 500 } 501 } // anonymous namespace 502 503 // The ScriptDetails class collects data associated with a single script 504 // instance. 505 struct RenderScriptRuntime::ScriptDetails { 506 ~ScriptDetails() = default; 507 508 enum ScriptType { eScript, eScriptC }; 509 510 // The derived type of the script. 511 empirical_type<ScriptType> type; 512 // The name of the original source file. 513 empirical_type<std::string> res_name; 514 // Path to script .so file on the device. 515 empirical_type<std::string> shared_lib; 516 // Directory where kernel objects are cached on device. 517 empirical_type<std::string> cache_dir; 518 // Pointer to the context which owns this script. 519 empirical_type<lldb::addr_t> context; 520 // Pointer to the script object itself. 521 empirical_type<lldb::addr_t> script; 522 }; 523 524 // This Element class represents the Element object in RS, defining the type 525 // associated with an Allocation. 526 struct RenderScriptRuntime::Element { 527 // Taken from rsDefines.h 528 enum DataKind { 529 RS_KIND_USER, 530 RS_KIND_PIXEL_L = 7, 531 RS_KIND_PIXEL_A, 532 RS_KIND_PIXEL_LA, 533 RS_KIND_PIXEL_RGB, 534 RS_KIND_PIXEL_RGBA, 535 RS_KIND_PIXEL_DEPTH, 536 RS_KIND_PIXEL_YUV, 537 RS_KIND_INVALID = 100 538 }; 539 540 // Taken from rsDefines.h 541 enum DataType { 542 RS_TYPE_NONE = 0, 543 RS_TYPE_FLOAT_16, 544 RS_TYPE_FLOAT_32, 545 RS_TYPE_FLOAT_64, 546 RS_TYPE_SIGNED_8, 547 RS_TYPE_SIGNED_16, 548 RS_TYPE_SIGNED_32, 549 RS_TYPE_SIGNED_64, 550 RS_TYPE_UNSIGNED_8, 551 RS_TYPE_UNSIGNED_16, 552 RS_TYPE_UNSIGNED_32, 553 RS_TYPE_UNSIGNED_64, 554 RS_TYPE_BOOLEAN, 555 556 RS_TYPE_UNSIGNED_5_6_5, 557 RS_TYPE_UNSIGNED_5_5_5_1, 558 RS_TYPE_UNSIGNED_4_4_4_4, 559 560 RS_TYPE_MATRIX_4X4, 561 RS_TYPE_MATRIX_3X3, 562 RS_TYPE_MATRIX_2X2, 563 564 RS_TYPE_ELEMENT = 1000, 565 RS_TYPE_TYPE, 566 RS_TYPE_ALLOCATION, 567 RS_TYPE_SAMPLER, 568 RS_TYPE_SCRIPT, 569 RS_TYPE_MESH, 570 RS_TYPE_PROGRAM_FRAGMENT, 571 RS_TYPE_PROGRAM_VERTEX, 572 RS_TYPE_PROGRAM_RASTER, 573 RS_TYPE_PROGRAM_STORE, 574 RS_TYPE_FONT, 575 576 RS_TYPE_INVALID = 10000 577 }; 578 579 std::vector<Element> children; // Child Element fields for structs 580 empirical_type<lldb::addr_t> 581 element_ptr; // Pointer to the RS Element of the Type 582 empirical_type<DataType> 583 type; // Type of each data pointer stored by the allocation 584 empirical_type<DataKind> 585 type_kind; // Defines pixel type if Allocation is created from an image 586 empirical_type<uint32_t> 587 type_vec_size; // Vector size of each data point, e.g '4' for uchar4 588 empirical_type<uint32_t> field_count; // Number of Subelements 589 empirical_type<uint32_t> datum_size; // Size of a single Element with padding 590 empirical_type<uint32_t> padding; // Number of padding bytes 591 empirical_type<uint32_t> 592 array_size; // Number of items in array, only needed for strucrs 593 ConstString type_name; // Name of type, only needed for structs 594 595 static const ConstString & 596 GetFallbackStructName(); // Print this as the type name of a struct Element 597 // If we can't resolve the actual struct name 598 599 bool ShouldRefresh() const { 600 const bool valid_ptr = element_ptr.isValid() && *element_ptr.get() != 0x0; 601 const bool valid_type = 602 type.isValid() && type_vec_size.isValid() && type_kind.isValid(); 603 return !valid_ptr || !valid_type || !datum_size.isValid(); 604 } 605 }; 606 607 // This AllocationDetails class collects data associated with a single 608 // allocation instance. 609 struct RenderScriptRuntime::AllocationDetails { 610 struct Dimension { 611 uint32_t dim_1; 612 uint32_t dim_2; 613 uint32_t dim_3; 614 uint32_t cube_map; 615 616 Dimension() { 617 dim_1 = 0; 618 dim_2 = 0; 619 dim_3 = 0; 620 cube_map = 0; 621 } 622 }; 623 624 // The FileHeader struct specifies the header we use for writing allocations 625 // to a binary file. Our format begins with the ASCII characters "RSAD", 626 // identifying the file as an allocation dump. Member variables dims and 627 // hdr_size are then written consecutively, immediately followed by an 628 // instance of the ElementHeader struct. Because Elements can contain 629 // subelements, there may be more than one instance of the ElementHeader 630 // struct. With this first instance being the root element, and the other 631 // instances being the root's descendants. To identify which instances are an 632 // ElementHeader's children, each struct is immediately followed by a sequence 633 // of consecutive offsets to the start of its child structs. These offsets are 634 // 4 bytes in size, and the 0 offset signifies no more children. 635 struct FileHeader { 636 uint8_t ident[4]; // ASCII 'RSAD' identifying the file 637 uint32_t dims[3]; // Dimensions 638 uint16_t hdr_size; // Header size in bytes, including all element headers 639 }; 640 641 struct ElementHeader { 642 uint16_t type; // DataType enum 643 uint32_t kind; // DataKind enum 644 uint32_t element_size; // Size of a single element, including padding 645 uint16_t vector_size; // Vector width 646 uint32_t array_size; // Number of elements in array 647 }; 648 649 // Monotonically increasing from 1 650 static uint32_t ID; 651 652 // Maps Allocation DataType enum and vector size to printable strings 653 // using mapping from RenderScript numerical types summary documentation 654 static const char *RsDataTypeToString[][4]; 655 656 // Maps Allocation DataKind enum to printable strings 657 static const char *RsDataKindToString[]; 658 659 // Maps allocation types to format sizes for printing. 660 static const uint32_t RSTypeToFormat[][3]; 661 662 // Give each allocation an ID as a way 663 // for commands to reference it. 664 const uint32_t id; 665 666 // Allocation Element type 667 RenderScriptRuntime::Element element; 668 // Dimensions of the Allocation 669 empirical_type<Dimension> dimension; 670 // Pointer to address of the RS Allocation 671 empirical_type<lldb::addr_t> address; 672 // Pointer to the data held by the Allocation 673 empirical_type<lldb::addr_t> data_ptr; 674 // Pointer to the RS Type of the Allocation 675 empirical_type<lldb::addr_t> type_ptr; 676 // Pointer to the RS Context of the Allocation 677 empirical_type<lldb::addr_t> context; 678 // Size of the allocation 679 empirical_type<uint32_t> size; 680 // Stride between rows of the allocation 681 empirical_type<uint32_t> stride; 682 683 // Give each allocation an id, so we can reference it in user commands. 684 AllocationDetails() : id(ID++) {} 685 686 bool ShouldRefresh() const { 687 bool valid_ptrs = data_ptr.isValid() && *data_ptr.get() != 0x0; 688 valid_ptrs = valid_ptrs && type_ptr.isValid() && *type_ptr.get() != 0x0; 689 return !valid_ptrs || !dimension.isValid() || !size.isValid() || 690 element.ShouldRefresh(); 691 } 692 }; 693 694 const ConstString &RenderScriptRuntime::Element::GetFallbackStructName() { 695 static const ConstString FallbackStructName("struct"); 696 return FallbackStructName; 697 } 698 699 uint32_t RenderScriptRuntime::AllocationDetails::ID = 1; 700 701 const char *RenderScriptRuntime::AllocationDetails::RsDataKindToString[] = { 702 "User", "Undefined", "Undefined", "Undefined", 703 "Undefined", "Undefined", "Undefined", // Enum jumps from 0 to 7 704 "L Pixel", "A Pixel", "LA Pixel", "RGB Pixel", 705 "RGBA Pixel", "Pixel Depth", "YUV Pixel"}; 706 707 const char *RenderScriptRuntime::AllocationDetails::RsDataTypeToString[][4] = { 708 {"None", "None", "None", "None"}, 709 {"half", "half2", "half3", "half4"}, 710 {"float", "float2", "float3", "float4"}, 711 {"double", "double2", "double3", "double4"}, 712 {"char", "char2", "char3", "char4"}, 713 {"short", "short2", "short3", "short4"}, 714 {"int", "int2", "int3", "int4"}, 715 {"long", "long2", "long3", "long4"}, 716 {"uchar", "uchar2", "uchar3", "uchar4"}, 717 {"ushort", "ushort2", "ushort3", "ushort4"}, 718 {"uint", "uint2", "uint3", "uint4"}, 719 {"ulong", "ulong2", "ulong3", "ulong4"}, 720 {"bool", "bool2", "bool3", "bool4"}, 721 {"packed_565", "packed_565", "packed_565", "packed_565"}, 722 {"packed_5551", "packed_5551", "packed_5551", "packed_5551"}, 723 {"packed_4444", "packed_4444", "packed_4444", "packed_4444"}, 724 {"rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4"}, 725 {"rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3"}, 726 {"rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2"}, 727 728 // Handlers 729 {"RS Element", "RS Element", "RS Element", "RS Element"}, 730 {"RS Type", "RS Type", "RS Type", "RS Type"}, 731 {"RS Allocation", "RS Allocation", "RS Allocation", "RS Allocation"}, 732 {"RS Sampler", "RS Sampler", "RS Sampler", "RS Sampler"}, 733 {"RS Script", "RS Script", "RS Script", "RS Script"}, 734 735 // Deprecated 736 {"RS Mesh", "RS Mesh", "RS Mesh", "RS Mesh"}, 737 {"RS Program Fragment", "RS Program Fragment", "RS Program Fragment", 738 "RS Program Fragment"}, 739 {"RS Program Vertex", "RS Program Vertex", "RS Program Vertex", 740 "RS Program Vertex"}, 741 {"RS Program Raster", "RS Program Raster", "RS Program Raster", 742 "RS Program Raster"}, 743 {"RS Program Store", "RS Program Store", "RS Program Store", 744 "RS Program Store"}, 745 {"RS Font", "RS Font", "RS Font", "RS Font"}}; 746 747 // Used as an index into the RSTypeToFormat array elements 748 enum TypeToFormatIndex { eFormatSingle = 0, eFormatVector, eElementSize }; 749 750 // { format enum of single element, format enum of element vector, size of 751 // element} 752 const uint32_t RenderScriptRuntime::AllocationDetails::RSTypeToFormat[][3] = { 753 // RS_TYPE_NONE 754 {eFormatHex, eFormatHex, 1}, 755 // RS_TYPE_FLOAT_16 756 {eFormatFloat, eFormatVectorOfFloat16, 2}, 757 // RS_TYPE_FLOAT_32 758 {eFormatFloat, eFormatVectorOfFloat32, sizeof(float)}, 759 // RS_TYPE_FLOAT_64 760 {eFormatFloat, eFormatVectorOfFloat64, sizeof(double)}, 761 // RS_TYPE_SIGNED_8 762 {eFormatDecimal, eFormatVectorOfSInt8, sizeof(int8_t)}, 763 // RS_TYPE_SIGNED_16 764 {eFormatDecimal, eFormatVectorOfSInt16, sizeof(int16_t)}, 765 // RS_TYPE_SIGNED_32 766 {eFormatDecimal, eFormatVectorOfSInt32, sizeof(int32_t)}, 767 // RS_TYPE_SIGNED_64 768 {eFormatDecimal, eFormatVectorOfSInt64, sizeof(int64_t)}, 769 // RS_TYPE_UNSIGNED_8 770 {eFormatDecimal, eFormatVectorOfUInt8, sizeof(uint8_t)}, 771 // RS_TYPE_UNSIGNED_16 772 {eFormatDecimal, eFormatVectorOfUInt16, sizeof(uint16_t)}, 773 // RS_TYPE_UNSIGNED_32 774 {eFormatDecimal, eFormatVectorOfUInt32, sizeof(uint32_t)}, 775 // RS_TYPE_UNSIGNED_64 776 {eFormatDecimal, eFormatVectorOfUInt64, sizeof(uint64_t)}, 777 // RS_TYPE_BOOL 778 {eFormatBoolean, eFormatBoolean, 1}, 779 // RS_TYPE_UNSIGNED_5_6_5 780 {eFormatHex, eFormatHex, sizeof(uint16_t)}, 781 // RS_TYPE_UNSIGNED_5_5_5_1 782 {eFormatHex, eFormatHex, sizeof(uint16_t)}, 783 // RS_TYPE_UNSIGNED_4_4_4_4 784 {eFormatHex, eFormatHex, sizeof(uint16_t)}, 785 // RS_TYPE_MATRIX_4X4 786 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 16}, 787 // RS_TYPE_MATRIX_3X3 788 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 9}, 789 // RS_TYPE_MATRIX_2X2 790 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 4}}; 791 792 //------------------------------------------------------------------ 793 // Static Functions 794 //------------------------------------------------------------------ 795 LanguageRuntime * 796 RenderScriptRuntime::CreateInstance(Process *process, 797 lldb::LanguageType language) { 798 799 if (language == eLanguageTypeExtRenderScript) 800 return new RenderScriptRuntime(process); 801 else 802 return nullptr; 803 } 804 805 // Callback with a module to search for matching symbols. We first check that 806 // the module contains RS kernels. Then look for a symbol which matches our 807 // kernel name. The breakpoint address is finally set using the address of this 808 // symbol. 809 Searcher::CallbackReturn 810 RSBreakpointResolver::SearchCallback(SearchFilter &filter, 811 SymbolContext &context, Address *, bool) { 812 ModuleSP module = context.module_sp; 813 814 if (!module || !IsRenderScriptScriptModule(module)) 815 return Searcher::eCallbackReturnContinue; 816 817 // Attempt to set a breakpoint on the kernel name symbol within the module 818 // library. If it's not found, it's likely debug info is unavailable - try to 819 // set a breakpoint on <name>.expand. 820 const Symbol *kernel_sym = 821 module->FindFirstSymbolWithNameAndType(m_kernel_name, eSymbolTypeCode); 822 if (!kernel_sym) { 823 std::string kernel_name_expanded(m_kernel_name.AsCString()); 824 kernel_name_expanded.append(".expand"); 825 kernel_sym = module->FindFirstSymbolWithNameAndType( 826 ConstString(kernel_name_expanded.c_str()), eSymbolTypeCode); 827 } 828 829 if (kernel_sym) { 830 Address bp_addr = kernel_sym->GetAddress(); 831 if (filter.AddressPasses(bp_addr)) 832 m_breakpoint->AddLocation(bp_addr); 833 } 834 835 return Searcher::eCallbackReturnContinue; 836 } 837 838 Searcher::CallbackReturn 839 RSReduceBreakpointResolver::SearchCallback(lldb_private::SearchFilter &filter, 840 lldb_private::SymbolContext &context, 841 Address *, bool) { 842 // We need to have access to the list of reductions currently parsed, as 843 // reduce names don't actually exist as 844 // symbols in a module. They are only identifiable by parsing the .rs.info 845 // packet, or finding the expand symbol. We 846 // therefore need access to the list of parsed rs modules to properly resolve 847 // reduction names. 848 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 849 ModuleSP module = context.module_sp; 850 851 if (!module || !IsRenderScriptScriptModule(module)) 852 return Searcher::eCallbackReturnContinue; 853 854 if (!m_rsmodules) 855 return Searcher::eCallbackReturnContinue; 856 857 for (const auto &module_desc : *m_rsmodules) { 858 if (module_desc->m_module != module) 859 continue; 860 861 for (const auto &reduction : module_desc->m_reductions) { 862 if (reduction.m_reduce_name != m_reduce_name) 863 continue; 864 865 std::array<std::pair<ConstString, int>, 5> funcs{ 866 {{reduction.m_init_name, eKernelTypeInit}, 867 {reduction.m_accum_name, eKernelTypeAccum}, 868 {reduction.m_comb_name, eKernelTypeComb}, 869 {reduction.m_outc_name, eKernelTypeOutC}, 870 {reduction.m_halter_name, eKernelTypeHalter}}}; 871 872 for (const auto &kernel : funcs) { 873 // Skip constituent functions that don't match our spec 874 if (!(m_kernel_types & kernel.second)) 875 continue; 876 877 const auto kernel_name = kernel.first; 878 const auto symbol = module->FindFirstSymbolWithNameAndType( 879 kernel_name, eSymbolTypeCode); 880 if (!symbol) 881 continue; 882 883 auto address = symbol->GetAddress(); 884 if (filter.AddressPasses(address)) { 885 bool new_bp; 886 if (!SkipPrologue(module, address)) { 887 if (log) 888 log->Printf("%s: Error trying to skip prologue", __FUNCTION__); 889 } 890 m_breakpoint->AddLocation(address, &new_bp); 891 if (log) 892 log->Printf("%s: %s reduction breakpoint on %s in %s", __FUNCTION__, 893 new_bp ? "new" : "existing", kernel_name.GetCString(), 894 address.GetModule()->GetFileSpec().GetCString()); 895 } 896 } 897 } 898 } 899 return eCallbackReturnContinue; 900 } 901 902 Searcher::CallbackReturn RSScriptGroupBreakpointResolver::SearchCallback( 903 SearchFilter &filter, SymbolContext &context, Address *addr, 904 bool containing) { 905 906 if (!m_breakpoint) 907 return eCallbackReturnContinue; 908 909 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 910 ModuleSP &module = context.module_sp; 911 912 if (!module || !IsRenderScriptScriptModule(module)) 913 return Searcher::eCallbackReturnContinue; 914 915 std::vector<std::string> names; 916 m_breakpoint->GetNames(names); 917 if (names.empty()) 918 return eCallbackReturnContinue; 919 920 for (auto &name : names) { 921 const RSScriptGroupDescriptorSP sg = FindScriptGroup(ConstString(name)); 922 if (!sg) { 923 if (log) 924 log->Printf("%s: could not find script group for %s", __FUNCTION__, 925 name.c_str()); 926 continue; 927 } 928 929 if (log) 930 log->Printf("%s: Found ScriptGroup for %s", __FUNCTION__, name.c_str()); 931 932 for (const RSScriptGroupDescriptor::Kernel &k : sg->m_kernels) { 933 if (log) { 934 log->Printf("%s: Adding breakpoint for %s", __FUNCTION__, 935 k.m_name.AsCString()); 936 log->Printf("%s: Kernel address 0x%" PRIx64, __FUNCTION__, k.m_addr); 937 } 938 939 const lldb_private::Symbol *sym = 940 module->FindFirstSymbolWithNameAndType(k.m_name, eSymbolTypeCode); 941 if (!sym) { 942 if (log) 943 log->Printf("%s: Unable to find symbol for %s", __FUNCTION__, 944 k.m_name.AsCString()); 945 continue; 946 } 947 948 if (log) { 949 log->Printf("%s: Found symbol name is %s", __FUNCTION__, 950 sym->GetName().AsCString()); 951 } 952 953 auto address = sym->GetAddress(); 954 if (!SkipPrologue(module, address)) { 955 if (log) 956 log->Printf("%s: Error trying to skip prologue", __FUNCTION__); 957 } 958 959 bool new_bp; 960 m_breakpoint->AddLocation(address, &new_bp); 961 962 if (log) 963 log->Printf("%s: Placed %sbreakpoint on %s", __FUNCTION__, 964 new_bp ? "new " : "", k.m_name.AsCString()); 965 966 // exit after placing the first breakpoint if we do not intend to stop 967 // on all kernels making up this script group 968 if (!m_stop_on_all) 969 break; 970 } 971 } 972 973 return eCallbackReturnContinue; 974 } 975 976 void RenderScriptRuntime::Initialize() { 977 PluginManager::RegisterPlugin(GetPluginNameStatic(), 978 "RenderScript language support", CreateInstance, 979 GetCommandObject); 980 } 981 982 void RenderScriptRuntime::Terminate() { 983 PluginManager::UnregisterPlugin(CreateInstance); 984 } 985 986 lldb_private::ConstString RenderScriptRuntime::GetPluginNameStatic() { 987 static ConstString plugin_name("renderscript"); 988 return plugin_name; 989 } 990 991 RenderScriptRuntime::ModuleKind 992 RenderScriptRuntime::GetModuleKind(const lldb::ModuleSP &module_sp) { 993 if (module_sp) { 994 if (IsRenderScriptScriptModule(module_sp)) 995 return eModuleKindKernelObj; 996 997 // Is this the main RS runtime library 998 const ConstString rs_lib("libRS.so"); 999 if (module_sp->GetFileSpec().GetFilename() == rs_lib) { 1000 return eModuleKindLibRS; 1001 } 1002 1003 const ConstString rs_driverlib("libRSDriver.so"); 1004 if (module_sp->GetFileSpec().GetFilename() == rs_driverlib) { 1005 return eModuleKindDriver; 1006 } 1007 1008 const ConstString rs_cpureflib("libRSCpuRef.so"); 1009 if (module_sp->GetFileSpec().GetFilename() == rs_cpureflib) { 1010 return eModuleKindImpl; 1011 } 1012 } 1013 return eModuleKindIgnored; 1014 } 1015 1016 bool RenderScriptRuntime::IsRenderScriptModule( 1017 const lldb::ModuleSP &module_sp) { 1018 return GetModuleKind(module_sp) != eModuleKindIgnored; 1019 } 1020 1021 void RenderScriptRuntime::ModulesDidLoad(const ModuleList &module_list) { 1022 std::lock_guard<std::recursive_mutex> guard(module_list.GetMutex()); 1023 1024 size_t num_modules = module_list.GetSize(); 1025 for (size_t i = 0; i < num_modules; i++) { 1026 auto mod = module_list.GetModuleAtIndex(i); 1027 if (IsRenderScriptModule(mod)) { 1028 LoadModule(mod); 1029 } 1030 } 1031 } 1032 1033 //------------------------------------------------------------------ 1034 // PluginInterface protocol 1035 //------------------------------------------------------------------ 1036 lldb_private::ConstString RenderScriptRuntime::GetPluginName() { 1037 return GetPluginNameStatic(); 1038 } 1039 1040 uint32_t RenderScriptRuntime::GetPluginVersion() { return 1; } 1041 1042 bool RenderScriptRuntime::IsVTableName(const char *name) { return false; } 1043 1044 bool RenderScriptRuntime::GetDynamicTypeAndAddress( 1045 ValueObject &in_value, lldb::DynamicValueType use_dynamic, 1046 TypeAndOrName &class_type_or_name, Address &address, 1047 Value::ValueType &value_type) { 1048 return false; 1049 } 1050 1051 TypeAndOrName 1052 RenderScriptRuntime::FixUpDynamicType(const TypeAndOrName &type_and_or_name, 1053 ValueObject &static_value) { 1054 return type_and_or_name; 1055 } 1056 1057 bool RenderScriptRuntime::CouldHaveDynamicValue(ValueObject &in_value) { 1058 return false; 1059 } 1060 1061 lldb::BreakpointResolverSP 1062 RenderScriptRuntime::CreateExceptionResolver(Breakpoint *bp, bool catch_bp, 1063 bool throw_bp) { 1064 BreakpointResolverSP resolver_sp; 1065 return resolver_sp; 1066 } 1067 1068 const RenderScriptRuntime::HookDefn RenderScriptRuntime::s_runtimeHookDefns[] = 1069 { 1070 // rsdScript 1071 {"rsdScriptInit", "_Z13rsdScriptInitPKN7android12renderscript7ContextEP" 1072 "NS0_7ScriptCEPKcS7_PKhjj", 1073 "_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_" 1074 "7ScriptCEPKcS7_PKhmj", 1075 0, RenderScriptRuntime::eModuleKindDriver, 1076 &lldb_private::RenderScriptRuntime::CaptureScriptInit}, 1077 {"rsdScriptInvokeForEachMulti", 1078 "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0" 1079 "_6ScriptEjPPKNS0_10AllocationEjPS6_PKvjPK12RsScriptCall", 1080 "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0" 1081 "_6ScriptEjPPKNS0_10AllocationEmPS6_PKvmPK12RsScriptCall", 1082 0, RenderScriptRuntime::eModuleKindDriver, 1083 &lldb_private::RenderScriptRuntime::CaptureScriptInvokeForEachMulti}, 1084 {"rsdScriptSetGlobalVar", "_Z21rsdScriptSetGlobalVarPKN7android12render" 1085 "script7ContextEPKNS0_6ScriptEjPvj", 1086 "_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_" 1087 "6ScriptEjPvm", 1088 0, RenderScriptRuntime::eModuleKindDriver, 1089 &lldb_private::RenderScriptRuntime::CaptureSetGlobalVar}, 1090 1091 // rsdAllocation 1092 {"rsdAllocationInit", "_Z17rsdAllocationInitPKN7android12renderscript7C" 1093 "ontextEPNS0_10AllocationEb", 1094 "_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_" 1095 "10AllocationEb", 1096 0, RenderScriptRuntime::eModuleKindDriver, 1097 &lldb_private::RenderScriptRuntime::CaptureAllocationInit}, 1098 {"rsdAllocationRead2D", 1099 "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_" 1100 "10AllocationEjjj23RsAllocationCubemapFacejjPvjj", 1101 "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_" 1102 "10AllocationEjjj23RsAllocationCubemapFacejjPvmm", 1103 0, RenderScriptRuntime::eModuleKindDriver, nullptr}, 1104 {"rsdAllocationDestroy", "_Z20rsdAllocationDestroyPKN7android12rendersc" 1105 "ript7ContextEPNS0_10AllocationE", 1106 "_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_" 1107 "10AllocationE", 1108 0, RenderScriptRuntime::eModuleKindDriver, 1109 &lldb_private::RenderScriptRuntime::CaptureAllocationDestroy}, 1110 1111 // renderscript script groups 1112 {"rsdDebugHintScriptGroup2", "_ZN7android12renderscript21debugHintScrip" 1113 "tGroup2EPKcjPKPFvPK24RsExpandKernelDriver" 1114 "InfojjjEj", 1115 "_ZN7android12renderscript21debugHintScriptGroup2EPKcjPKPFvPK24RsExpan" 1116 "dKernelDriverInfojjjEj", 1117 0, RenderScriptRuntime::eModuleKindImpl, 1118 &lldb_private::RenderScriptRuntime::CaptureDebugHintScriptGroup2}}; 1119 1120 const size_t RenderScriptRuntime::s_runtimeHookCount = 1121 sizeof(s_runtimeHookDefns) / sizeof(s_runtimeHookDefns[0]); 1122 1123 bool RenderScriptRuntime::HookCallback(void *baton, 1124 StoppointCallbackContext *ctx, 1125 lldb::user_id_t break_id, 1126 lldb::user_id_t break_loc_id) { 1127 RuntimeHook *hook = (RuntimeHook *)baton; 1128 ExecutionContext exe_ctx(ctx->exe_ctx_ref); 1129 1130 RenderScriptRuntime *lang_rt = 1131 (RenderScriptRuntime *)exe_ctx.GetProcessPtr()->GetLanguageRuntime( 1132 eLanguageTypeExtRenderScript); 1133 1134 lang_rt->HookCallback(hook, exe_ctx); 1135 1136 return false; 1137 } 1138 1139 void RenderScriptRuntime::HookCallback(RuntimeHook *hook, 1140 ExecutionContext &exe_ctx) { 1141 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1142 1143 if (log) 1144 log->Printf("%s - '%s'", __FUNCTION__, hook->defn->name); 1145 1146 if (hook->defn->grabber) { 1147 (this->*(hook->defn->grabber))(hook, exe_ctx); 1148 } 1149 } 1150 1151 void RenderScriptRuntime::CaptureDebugHintScriptGroup2( 1152 RuntimeHook *hook_info, ExecutionContext &context) { 1153 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1154 1155 enum { 1156 eGroupName = 0, 1157 eGroupNameSize, 1158 eKernel, 1159 eKernelCount, 1160 }; 1161 1162 std::array<ArgItem, 4> args{{ 1163 {ArgItem::ePointer, 0}, // const char *groupName 1164 {ArgItem::eInt32, 0}, // const uint32_t groupNameSize 1165 {ArgItem::ePointer, 0}, // const ExpandFuncTy *kernel 1166 {ArgItem::eInt32, 0}, // const uint32_t kernelCount 1167 }}; 1168 1169 if (!GetArgs(context, args.data(), args.size())) { 1170 if (log) 1171 log->Printf("%s - Error while reading the function parameters", 1172 __FUNCTION__); 1173 return; 1174 } else if (log) { 1175 log->Printf("%s - groupName : 0x%" PRIx64, __FUNCTION__, 1176 addr_t(args[eGroupName])); 1177 log->Printf("%s - groupNameSize: %" PRIu64, __FUNCTION__, 1178 uint64_t(args[eGroupNameSize])); 1179 log->Printf("%s - kernel : 0x%" PRIx64, __FUNCTION__, 1180 addr_t(args[eKernel])); 1181 log->Printf("%s - kernelCount : %" PRIu64, __FUNCTION__, 1182 uint64_t(args[eKernelCount])); 1183 } 1184 1185 // parse script group name 1186 ConstString group_name; 1187 { 1188 Error err; 1189 const uint64_t len = uint64_t(args[eGroupNameSize]); 1190 std::unique_ptr<char[]> buffer(new char[uint32_t(len + 1)]); 1191 m_process->ReadMemory(addr_t(args[eGroupName]), buffer.get(), len, err); 1192 buffer.get()[len] = '\0'; 1193 if (!err.Success()) { 1194 if (log) 1195 log->Printf("Error reading scriptgroup name from target"); 1196 return; 1197 } else { 1198 if (log) 1199 log->Printf("Extracted scriptgroup name %s", buffer.get()); 1200 } 1201 // write back the script group name 1202 group_name.SetCString(buffer.get()); 1203 } 1204 1205 // create or access existing script group 1206 RSScriptGroupDescriptorSP group; 1207 { 1208 // search for existing script group 1209 for (auto sg : m_scriptGroups) { 1210 if (sg->m_name == group_name) { 1211 group = sg; 1212 break; 1213 } 1214 } 1215 if (!group) { 1216 group.reset(new RSScriptGroupDescriptor); 1217 group->m_name = group_name; 1218 m_scriptGroups.push_back(group); 1219 } else { 1220 // already have this script group 1221 if (log) 1222 log->Printf("Attempt to add duplicate script group %s", 1223 group_name.AsCString()); 1224 return; 1225 } 1226 } 1227 assert(group); 1228 1229 const uint32_t target_ptr_size = m_process->GetAddressByteSize(); 1230 std::vector<addr_t> kernels; 1231 // parse kernel addresses in script group 1232 for (uint64_t i = 0; i < uint64_t(args[eKernelCount]); ++i) { 1233 RSScriptGroupDescriptor::Kernel kernel; 1234 // extract script group kernel addresses from the target 1235 const addr_t ptr_addr = addr_t(args[eKernel]) + i * target_ptr_size; 1236 uint64_t kernel_addr = 0; 1237 Error err; 1238 size_t read = 1239 m_process->ReadMemory(ptr_addr, &kernel_addr, target_ptr_size, err); 1240 if (!err.Success() || read != target_ptr_size) { 1241 if (log) 1242 log->Printf("Error parsing kernel address %" PRIu64 " in script group", 1243 i); 1244 return; 1245 } 1246 if (log) 1247 log->Printf("Extracted scriptgroup kernel address - 0x%" PRIx64, 1248 kernel_addr); 1249 kernel.m_addr = kernel_addr; 1250 1251 // try to resolve the associated kernel name 1252 if (!ResolveKernelName(kernel.m_addr, kernel.m_name)) { 1253 if (log) 1254 log->Printf("Parsed scriptgroup kernel %" PRIu64 " - 0x%" PRIx64, i, 1255 kernel_addr); 1256 return; 1257 } 1258 1259 // try to find the non '.expand' function 1260 { 1261 const llvm::StringRef expand(".expand"); 1262 const llvm::StringRef name_ref = kernel.m_name.GetStringRef(); 1263 if (name_ref.endswith(expand)) { 1264 const ConstString base_kernel(name_ref.drop_back(expand.size())); 1265 // verify this function is a valid kernel 1266 if (IsKnownKernel(base_kernel)) { 1267 kernel.m_name = base_kernel; 1268 if (log) 1269 log->Printf("%s - found non expand version '%s'", __FUNCTION__, 1270 base_kernel.GetCString()); 1271 } 1272 } 1273 } 1274 // add to a list of script group kernels we know about 1275 group->m_kernels.push_back(kernel); 1276 } 1277 1278 // Resolve any pending scriptgroup breakpoints 1279 { 1280 Target &target = m_process->GetTarget(); 1281 const BreakpointList &list = target.GetBreakpointList(); 1282 const size_t num_breakpoints = list.GetSize(); 1283 if (log) 1284 log->Printf("Resolving %zu breakpoints", num_breakpoints); 1285 for (size_t i = 0; i < num_breakpoints; ++i) { 1286 const BreakpointSP bp = list.GetBreakpointAtIndex(i); 1287 if (bp) { 1288 if (bp->MatchesName(group_name.AsCString())) { 1289 if (log) 1290 log->Printf("Found breakpoint with name %s", 1291 group_name.AsCString()); 1292 bp->ResolveBreakpoint(); 1293 } 1294 } 1295 } 1296 } 1297 } 1298 1299 void RenderScriptRuntime::CaptureScriptInvokeForEachMulti( 1300 RuntimeHook *hook, ExecutionContext &exe_ctx) { 1301 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1302 1303 enum { 1304 eRsContext = 0, 1305 eRsScript, 1306 eRsSlot, 1307 eRsAIns, 1308 eRsInLen, 1309 eRsAOut, 1310 eRsUsr, 1311 eRsUsrLen, 1312 eRsSc, 1313 }; 1314 1315 std::array<ArgItem, 9> args{{ 1316 ArgItem{ArgItem::ePointer, 0}, // const Context *rsc 1317 ArgItem{ArgItem::ePointer, 0}, // Script *s 1318 ArgItem{ArgItem::eInt32, 0}, // uint32_t slot 1319 ArgItem{ArgItem::ePointer, 0}, // const Allocation **aIns 1320 ArgItem{ArgItem::eInt32, 0}, // size_t inLen 1321 ArgItem{ArgItem::ePointer, 0}, // Allocation *aout 1322 ArgItem{ArgItem::ePointer, 0}, // const void *usr 1323 ArgItem{ArgItem::eInt32, 0}, // size_t usrLen 1324 ArgItem{ArgItem::ePointer, 0}, // const RsScriptCall *sc 1325 }}; 1326 1327 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1328 if (!success) { 1329 if (log) 1330 log->Printf("%s - Error while reading the function parameters", 1331 __FUNCTION__); 1332 return; 1333 } 1334 1335 const uint32_t target_ptr_size = m_process->GetAddressByteSize(); 1336 Error err; 1337 std::vector<uint64_t> allocs; 1338 1339 // traverse allocation list 1340 for (uint64_t i = 0; i < uint64_t(args[eRsInLen]); ++i) { 1341 // calculate offest to allocation pointer 1342 const addr_t addr = addr_t(args[eRsAIns]) + i * target_ptr_size; 1343 1344 // Note: due to little endian layout, reading 32bits or 64bits into res 1345 // will give the correct results. 1346 uint64_t result = 0; 1347 size_t read = m_process->ReadMemory(addr, &result, target_ptr_size, err); 1348 if (read != target_ptr_size || !err.Success()) { 1349 if (log) 1350 log->Printf( 1351 "%s - Error while reading allocation list argument %" PRIu64, 1352 __FUNCTION__, i); 1353 } else { 1354 allocs.push_back(result); 1355 } 1356 } 1357 1358 // if there is an output allocation track it 1359 if (uint64_t alloc_out = uint64_t(args[eRsAOut])) { 1360 allocs.push_back(alloc_out); 1361 } 1362 1363 // for all allocations we have found 1364 for (const uint64_t alloc_addr : allocs) { 1365 AllocationDetails *alloc = LookUpAllocation(alloc_addr); 1366 if (!alloc) 1367 alloc = CreateAllocation(alloc_addr); 1368 1369 if (alloc) { 1370 // save the allocation address 1371 if (alloc->address.isValid()) { 1372 // check the allocation address we already have matches 1373 assert(*alloc->address.get() == alloc_addr); 1374 } else { 1375 alloc->address = alloc_addr; 1376 } 1377 1378 // save the context 1379 if (log) { 1380 if (alloc->context.isValid() && 1381 *alloc->context.get() != addr_t(args[eRsContext])) 1382 log->Printf("%s - Allocation used by multiple contexts", 1383 __FUNCTION__); 1384 } 1385 alloc->context = addr_t(args[eRsContext]); 1386 } 1387 } 1388 1389 // make sure we track this script object 1390 if (lldb_private::RenderScriptRuntime::ScriptDetails *script = 1391 LookUpScript(addr_t(args[eRsScript]), true)) { 1392 if (log) { 1393 if (script->context.isValid() && 1394 *script->context.get() != addr_t(args[eRsContext])) 1395 log->Printf("%s - Script used by multiple contexts", __FUNCTION__); 1396 } 1397 script->context = addr_t(args[eRsContext]); 1398 } 1399 } 1400 1401 void RenderScriptRuntime::CaptureSetGlobalVar(RuntimeHook *hook, 1402 ExecutionContext &context) { 1403 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1404 1405 enum { 1406 eRsContext, 1407 eRsScript, 1408 eRsId, 1409 eRsData, 1410 eRsLength, 1411 }; 1412 1413 std::array<ArgItem, 5> args{{ 1414 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1415 ArgItem{ArgItem::ePointer, 0}, // eRsScript 1416 ArgItem{ArgItem::eInt32, 0}, // eRsId 1417 ArgItem{ArgItem::ePointer, 0}, // eRsData 1418 ArgItem{ArgItem::eInt32, 0}, // eRsLength 1419 }}; 1420 1421 bool success = GetArgs(context, &args[0], args.size()); 1422 if (!success) { 1423 if (log) 1424 log->Printf("%s - error reading the function parameters.", __FUNCTION__); 1425 return; 1426 } 1427 1428 if (log) { 1429 log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " slot %" PRIu64 " = 0x%" PRIx64 1430 ":%" PRIu64 "bytes.", 1431 __FUNCTION__, uint64_t(args[eRsContext]), 1432 uint64_t(args[eRsScript]), uint64_t(args[eRsId]), 1433 uint64_t(args[eRsData]), uint64_t(args[eRsLength])); 1434 1435 addr_t script_addr = addr_t(args[eRsScript]); 1436 if (m_scriptMappings.find(script_addr) != m_scriptMappings.end()) { 1437 auto rsm = m_scriptMappings[script_addr]; 1438 if (uint64_t(args[eRsId]) < rsm->m_globals.size()) { 1439 auto rsg = rsm->m_globals[uint64_t(args[eRsId])]; 1440 log->Printf("%s - Setting of '%s' within '%s' inferred", __FUNCTION__, 1441 rsg.m_name.AsCString(), 1442 rsm->m_module->GetFileSpec().GetFilename().AsCString()); 1443 } 1444 } 1445 } 1446 } 1447 1448 void RenderScriptRuntime::CaptureAllocationInit(RuntimeHook *hook, 1449 ExecutionContext &exe_ctx) { 1450 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1451 1452 enum { eRsContext, eRsAlloc, eRsForceZero }; 1453 1454 std::array<ArgItem, 3> args{{ 1455 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1456 ArgItem{ArgItem::ePointer, 0}, // eRsAlloc 1457 ArgItem{ArgItem::eBool, 0}, // eRsForceZero 1458 }}; 1459 1460 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1461 if (!success) { 1462 if (log) 1463 log->Printf("%s - error while reading the function parameters", 1464 __FUNCTION__); 1465 return; 1466 } 1467 1468 if (log) 1469 log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 ",0x%" PRIx64 " .", 1470 __FUNCTION__, uint64_t(args[eRsContext]), 1471 uint64_t(args[eRsAlloc]), uint64_t(args[eRsForceZero])); 1472 1473 AllocationDetails *alloc = CreateAllocation(uint64_t(args[eRsAlloc])); 1474 if (alloc) 1475 alloc->context = uint64_t(args[eRsContext]); 1476 } 1477 1478 void RenderScriptRuntime::CaptureAllocationDestroy(RuntimeHook *hook, 1479 ExecutionContext &exe_ctx) { 1480 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1481 1482 enum { 1483 eRsContext, 1484 eRsAlloc, 1485 }; 1486 1487 std::array<ArgItem, 2> args{{ 1488 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1489 ArgItem{ArgItem::ePointer, 0}, // eRsAlloc 1490 }}; 1491 1492 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1493 if (!success) { 1494 if (log) 1495 log->Printf("%s - error while reading the function parameters.", 1496 __FUNCTION__); 1497 return; 1498 } 1499 1500 if (log) 1501 log->Printf("%s - 0x%" PRIx64 ", 0x%" PRIx64 ".", __FUNCTION__, 1502 uint64_t(args[eRsContext]), uint64_t(args[eRsAlloc])); 1503 1504 for (auto iter = m_allocations.begin(); iter != m_allocations.end(); ++iter) { 1505 auto &allocation_ap = *iter; // get the unique pointer 1506 if (allocation_ap->address.isValid() && 1507 *allocation_ap->address.get() == addr_t(args[eRsAlloc])) { 1508 m_allocations.erase(iter); 1509 if (log) 1510 log->Printf("%s - deleted allocation entry.", __FUNCTION__); 1511 return; 1512 } 1513 } 1514 1515 if (log) 1516 log->Printf("%s - couldn't find destroyed allocation.", __FUNCTION__); 1517 } 1518 1519 void RenderScriptRuntime::CaptureScriptInit(RuntimeHook *hook, 1520 ExecutionContext &exe_ctx) { 1521 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1522 1523 Error err; 1524 Process *process = exe_ctx.GetProcessPtr(); 1525 1526 enum { eRsContext, eRsScript, eRsResNamePtr, eRsCachedDirPtr }; 1527 1528 std::array<ArgItem, 4> args{ 1529 {ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}, 1530 ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}}}; 1531 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1532 if (!success) { 1533 if (log) 1534 log->Printf("%s - error while reading the function parameters.", 1535 __FUNCTION__); 1536 return; 1537 } 1538 1539 std::string res_name; 1540 process->ReadCStringFromMemory(addr_t(args[eRsResNamePtr]), res_name, err); 1541 if (err.Fail()) { 1542 if (log) 1543 log->Printf("%s - error reading res_name: %s.", __FUNCTION__, 1544 err.AsCString()); 1545 } 1546 1547 std::string cache_dir; 1548 process->ReadCStringFromMemory(addr_t(args[eRsCachedDirPtr]), cache_dir, err); 1549 if (err.Fail()) { 1550 if (log) 1551 log->Printf("%s - error reading cache_dir: %s.", __FUNCTION__, 1552 err.AsCString()); 1553 } 1554 1555 if (log) 1556 log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " => '%s' at '%s' .", 1557 __FUNCTION__, uint64_t(args[eRsContext]), 1558 uint64_t(args[eRsScript]), res_name.c_str(), cache_dir.c_str()); 1559 1560 if (res_name.size() > 0) { 1561 StreamString strm; 1562 strm.Printf("librs.%s.so", res_name.c_str()); 1563 1564 ScriptDetails *script = LookUpScript(addr_t(args[eRsScript]), true); 1565 if (script) { 1566 script->type = ScriptDetails::eScriptC; 1567 script->cache_dir = cache_dir; 1568 script->res_name = res_name; 1569 script->shared_lib = strm.GetString(); 1570 script->context = addr_t(args[eRsContext]); 1571 } 1572 1573 if (log) 1574 log->Printf("%s - '%s' tagged with context 0x%" PRIx64 1575 " and script 0x%" PRIx64 ".", 1576 __FUNCTION__, strm.GetData(), uint64_t(args[eRsContext]), 1577 uint64_t(args[eRsScript])); 1578 } else if (log) { 1579 log->Printf("%s - resource name invalid, Script not tagged.", __FUNCTION__); 1580 } 1581 } 1582 1583 void RenderScriptRuntime::LoadRuntimeHooks(lldb::ModuleSP module, 1584 ModuleKind kind) { 1585 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1586 1587 if (!module) { 1588 return; 1589 } 1590 1591 Target &target = GetProcess()->GetTarget(); 1592 const llvm::Triple::ArchType machine = target.GetArchitecture().GetMachine(); 1593 1594 if (machine != llvm::Triple::ArchType::x86 && 1595 machine != llvm::Triple::ArchType::arm && 1596 machine != llvm::Triple::ArchType::aarch64 && 1597 machine != llvm::Triple::ArchType::mipsel && 1598 machine != llvm::Triple::ArchType::mips64el && 1599 machine != llvm::Triple::ArchType::x86_64) { 1600 if (log) 1601 log->Printf("%s - unable to hook runtime functions.", __FUNCTION__); 1602 return; 1603 } 1604 1605 const uint32_t target_ptr_size = 1606 target.GetArchitecture().GetAddressByteSize(); 1607 1608 std::array<bool, s_runtimeHookCount> hook_placed; 1609 hook_placed.fill(false); 1610 1611 for (size_t idx = 0; idx < s_runtimeHookCount; idx++) { 1612 const HookDefn *hook_defn = &s_runtimeHookDefns[idx]; 1613 if (hook_defn->kind != kind) { 1614 continue; 1615 } 1616 1617 const char *symbol_name = (target_ptr_size == 4) 1618 ? hook_defn->symbol_name_m32 1619 : hook_defn->symbol_name_m64; 1620 1621 const Symbol *sym = module->FindFirstSymbolWithNameAndType( 1622 ConstString(symbol_name), eSymbolTypeCode); 1623 if (!sym) { 1624 if (log) { 1625 log->Printf("%s - symbol '%s' related to the function %s not found", 1626 __FUNCTION__, symbol_name, hook_defn->name); 1627 } 1628 continue; 1629 } 1630 1631 addr_t addr = sym->GetLoadAddress(&target); 1632 if (addr == LLDB_INVALID_ADDRESS) { 1633 if (log) 1634 log->Printf("%s - unable to resolve the address of hook function '%s' " 1635 "with symbol '%s'.", 1636 __FUNCTION__, hook_defn->name, symbol_name); 1637 continue; 1638 } else { 1639 if (log) 1640 log->Printf("%s - function %s, address resolved at 0x%" PRIx64, 1641 __FUNCTION__, hook_defn->name, addr); 1642 } 1643 1644 RuntimeHookSP hook(new RuntimeHook()); 1645 hook->address = addr; 1646 hook->defn = hook_defn; 1647 hook->bp_sp = target.CreateBreakpoint(addr, true, false); 1648 hook->bp_sp->SetCallback(HookCallback, hook.get(), true); 1649 m_runtimeHooks[addr] = hook; 1650 if (log) { 1651 log->Printf("%s - successfully hooked '%s' in '%s' version %" PRIu64 1652 " at 0x%" PRIx64 ".", 1653 __FUNCTION__, hook_defn->name, 1654 module->GetFileSpec().GetFilename().AsCString(), 1655 (uint64_t)hook_defn->version, (uint64_t)addr); 1656 } 1657 hook_placed[idx] = true; 1658 } 1659 1660 // log any unhooked function 1661 if (log) { 1662 for (size_t i = 0; i < hook_placed.size(); ++i) { 1663 if (hook_placed[i]) 1664 continue; 1665 const HookDefn &hook_defn = s_runtimeHookDefns[i]; 1666 if (hook_defn.kind != kind) 1667 continue; 1668 log->Printf("%s - function %s was not hooked", __FUNCTION__, 1669 hook_defn.name); 1670 } 1671 } 1672 } 1673 1674 void RenderScriptRuntime::FixupScriptDetails(RSModuleDescriptorSP rsmodule_sp) { 1675 if (!rsmodule_sp) 1676 return; 1677 1678 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1679 1680 const ModuleSP module = rsmodule_sp->m_module; 1681 const FileSpec &file = module->GetPlatformFileSpec(); 1682 1683 // Iterate over all of the scripts that we currently know of. 1684 // Note: We cant push or pop to m_scripts here or it may invalidate rs_script. 1685 for (const auto &rs_script : m_scripts) { 1686 // Extract the expected .so file path for this script. 1687 std::string shared_lib; 1688 if (!rs_script->shared_lib.get(shared_lib)) 1689 continue; 1690 1691 // Only proceed if the module that has loaded corresponds to this script. 1692 if (file.GetFilename() != ConstString(shared_lib.c_str())) 1693 continue; 1694 1695 // Obtain the script address which we use as a key. 1696 lldb::addr_t script; 1697 if (!rs_script->script.get(script)) 1698 continue; 1699 1700 // If we have a script mapping for the current script. 1701 if (m_scriptMappings.find(script) != m_scriptMappings.end()) { 1702 // if the module we have stored is different to the one we just received. 1703 if (m_scriptMappings[script] != rsmodule_sp) { 1704 if (log) 1705 log->Printf( 1706 "%s - script %" PRIx64 " wants reassigned to new rsmodule '%s'.", 1707 __FUNCTION__, (uint64_t)script, 1708 rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString()); 1709 } 1710 } 1711 // We don't have a script mapping for the current script. 1712 else { 1713 // Obtain the script resource name. 1714 std::string res_name; 1715 if (rs_script->res_name.get(res_name)) 1716 // Set the modules resource name. 1717 rsmodule_sp->m_resname = res_name; 1718 // Add Script/Module pair to map. 1719 m_scriptMappings[script] = rsmodule_sp; 1720 if (log) 1721 log->Printf( 1722 "%s - script %" PRIx64 " associated with rsmodule '%s'.", 1723 __FUNCTION__, (uint64_t)script, 1724 rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString()); 1725 } 1726 } 1727 } 1728 1729 // Uses the Target API to evaluate the expression passed as a parameter to the 1730 // function The result of that expression is returned an unsigned 64 bit int, 1731 // via the result* parameter. Function returns true on success, and false on 1732 // failure 1733 bool RenderScriptRuntime::EvalRSExpression(const char *expr, 1734 StackFrame *frame_ptr, 1735 uint64_t *result) { 1736 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1737 if (log) 1738 log->Printf("%s(%s)", __FUNCTION__, expr); 1739 1740 ValueObjectSP expr_result; 1741 EvaluateExpressionOptions options; 1742 options.SetLanguage(lldb::eLanguageTypeC_plus_plus); 1743 // Perform the actual expression evaluation 1744 auto &target = GetProcess()->GetTarget(); 1745 target.EvaluateExpression(expr, frame_ptr, expr_result, options); 1746 1747 if (!expr_result) { 1748 if (log) 1749 log->Printf("%s: couldn't evaluate expression.", __FUNCTION__); 1750 return false; 1751 } 1752 1753 // The result of the expression is invalid 1754 if (!expr_result->GetError().Success()) { 1755 Error err = expr_result->GetError(); 1756 // Expression returned is void, so this is actually a success 1757 if (err.GetError() == UserExpression::kNoResult) { 1758 if (log) 1759 log->Printf("%s - expression returned void.", __FUNCTION__); 1760 1761 result = nullptr; 1762 return true; 1763 } 1764 1765 if (log) 1766 log->Printf("%s - error evaluating expression result: %s", __FUNCTION__, 1767 err.AsCString()); 1768 return false; 1769 } 1770 1771 bool success = false; 1772 // We only read the result as an uint32_t. 1773 *result = expr_result->GetValueAsUnsigned(0, &success); 1774 1775 if (!success) { 1776 if (log) 1777 log->Printf("%s - couldn't convert expression result to uint32_t", 1778 __FUNCTION__); 1779 return false; 1780 } 1781 1782 return true; 1783 } 1784 1785 namespace { 1786 // Used to index expression format strings 1787 enum ExpressionStrings { 1788 eExprGetOffsetPtr = 0, 1789 eExprAllocGetType, 1790 eExprTypeDimX, 1791 eExprTypeDimY, 1792 eExprTypeDimZ, 1793 eExprTypeElemPtr, 1794 eExprElementType, 1795 eExprElementKind, 1796 eExprElementVec, 1797 eExprElementFieldCount, 1798 eExprSubelementsId, 1799 eExprSubelementsName, 1800 eExprSubelementsArrSize, 1801 1802 _eExprLast // keep at the end, implicit size of the array runtime_expressions 1803 }; 1804 1805 // max length of an expanded expression 1806 const int jit_max_expr_size = 512; 1807 1808 // Retrieve the string to JIT for the given expression 1809 const char *JITTemplate(ExpressionStrings e) { 1810 // Format strings containing the expressions we may need to evaluate. 1811 static std::array<const char *, _eExprLast> runtime_expressions = { 1812 {// Mangled GetOffsetPointer(Allocation*, xoff, yoff, zoff, lod, cubemap) 1813 "(int*)_" 1814 "Z12GetOffsetPtrPKN7android12renderscript10AllocationEjjjj23RsAllocation" 1815 "CubemapFace" 1816 "(0x%" PRIx64 ", %" PRIu32 ", %" PRIu32 ", %" PRIu32 ", 0, 0)", 1817 1818 // Type* rsaAllocationGetType(Context*, Allocation*) 1819 "(void*)rsaAllocationGetType(0x%" PRIx64 ", 0x%" PRIx64 ")", 1820 1821 // rsaTypeGetNativeData(Context*, Type*, void* typeData, size) Pack the 1822 // data in the following way mHal.state.dimX; mHal.state.dimY; 1823 // mHal.state.dimZ; mHal.state.lodCount; mHal.state.faces; mElement; into 1824 // typeData Need to specify 32 or 64 bit for uint_t since this differs 1825 // between devices 1826 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 1827 ", 0x%" PRIx64 ", data, 6); data[0]", // X dim 1828 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 1829 ", 0x%" PRIx64 ", data, 6); data[1]", // Y dim 1830 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 1831 ", 0x%" PRIx64 ", data, 6); data[2]", // Z dim 1832 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 1833 ", 0x%" PRIx64 ", data, 6); data[5]", // Element ptr 1834 1835 // rsaElementGetNativeData(Context*, Element*, uint32_t* elemData,size) 1836 // Pack mType; mKind; mNormalized; mVectorSize; NumSubElements into 1837 // elemData 1838 "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 1839 ", 0x%" PRIx64 ", data, 5); data[0]", // Type 1840 "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 1841 ", 0x%" PRIx64 ", data, 5); data[1]", // Kind 1842 "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 1843 ", 0x%" PRIx64 ", data, 5); data[3]", // Vector Size 1844 "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 1845 ", 0x%" PRIx64 ", data, 5); data[4]", // Field Count 1846 1847 // rsaElementGetSubElements(RsContext con, RsElement elem, uintptr_t 1848 // *ids, const char **names, size_t *arraySizes, uint32_t dataSize) 1849 // Needed for Allocations of structs to gather details about 1850 // fields/Subelements Element* of field 1851 "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 1852 "]; size_t arr_size[%" PRIu32 "];" 1853 "(void*)rsaElementGetSubElements(0x%" PRIx64 ", 0x%" PRIx64 1854 ", ids, names, arr_size, %" PRIu32 "); ids[%" PRIu32 "]", 1855 1856 // Name of field 1857 "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 1858 "]; size_t arr_size[%" PRIu32 "];" 1859 "(void*)rsaElementGetSubElements(0x%" PRIx64 ", 0x%" PRIx64 1860 ", ids, names, arr_size, %" PRIu32 "); names[%" PRIu32 "]", 1861 1862 // Array size of field 1863 "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 1864 "]; size_t arr_size[%" PRIu32 "];" 1865 "(void*)rsaElementGetSubElements(0x%" PRIx64 ", 0x%" PRIx64 1866 ", ids, names, arr_size, %" PRIu32 "); arr_size[%" PRIu32 "]"}}; 1867 1868 return runtime_expressions[e]; 1869 } 1870 } // end of the anonymous namespace 1871 1872 // JITs the RS runtime for the internal data pointer of an allocation. Is passed 1873 // x,y,z coordinates for the pointer to a specific element. Then sets the 1874 // data_ptr member in Allocation with the result. Returns true on success, false 1875 // otherwise 1876 bool RenderScriptRuntime::JITDataPointer(AllocationDetails *alloc, 1877 StackFrame *frame_ptr, uint32_t x, 1878 uint32_t y, uint32_t z) { 1879 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1880 1881 if (!alloc->address.isValid()) { 1882 if (log) 1883 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1884 return false; 1885 } 1886 1887 const char *fmt_str = JITTemplate(eExprGetOffsetPtr); 1888 char expr_buf[jit_max_expr_size]; 1889 1890 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 1891 *alloc->address.get(), x, y, z); 1892 if (written < 0) { 1893 if (log) 1894 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1895 return false; 1896 } else if (written >= jit_max_expr_size) { 1897 if (log) 1898 log->Printf("%s - expression too long.", __FUNCTION__); 1899 return false; 1900 } 1901 1902 uint64_t result = 0; 1903 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 1904 return false; 1905 1906 addr_t data_ptr = static_cast<lldb::addr_t>(result); 1907 alloc->data_ptr = data_ptr; 1908 1909 return true; 1910 } 1911 1912 // JITs the RS runtime for the internal pointer to the RS Type of an allocation 1913 // Then sets the type_ptr member in Allocation with the result. Returns true on 1914 // success, false otherwise 1915 bool RenderScriptRuntime::JITTypePointer(AllocationDetails *alloc, 1916 StackFrame *frame_ptr) { 1917 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1918 1919 if (!alloc->address.isValid() || !alloc->context.isValid()) { 1920 if (log) 1921 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1922 return false; 1923 } 1924 1925 const char *fmt_str = JITTemplate(eExprAllocGetType); 1926 char expr_buf[jit_max_expr_size]; 1927 1928 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 1929 *alloc->context.get(), *alloc->address.get()); 1930 if (written < 0) { 1931 if (log) 1932 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1933 return false; 1934 } else if (written >= jit_max_expr_size) { 1935 if (log) 1936 log->Printf("%s - expression too long.", __FUNCTION__); 1937 return false; 1938 } 1939 1940 uint64_t result = 0; 1941 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 1942 return false; 1943 1944 addr_t type_ptr = static_cast<lldb::addr_t>(result); 1945 alloc->type_ptr = type_ptr; 1946 1947 return true; 1948 } 1949 1950 // JITs the RS runtime for information about the dimensions and type of an 1951 // allocation Then sets dimension and element_ptr members in Allocation with the 1952 // result. Returns true on success, false otherwise 1953 bool RenderScriptRuntime::JITTypePacked(AllocationDetails *alloc, 1954 StackFrame *frame_ptr) { 1955 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1956 1957 if (!alloc->type_ptr.isValid() || !alloc->context.isValid()) { 1958 if (log) 1959 log->Printf("%s - Failed to find allocation details.", __FUNCTION__); 1960 return false; 1961 } 1962 1963 // Expression is different depending on if device is 32 or 64 bit 1964 uint32_t target_ptr_size = 1965 GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 1966 const uint32_t bits = target_ptr_size == 4 ? 32 : 64; 1967 1968 // We want 4 elements from packed data 1969 const uint32_t num_exprs = 4; 1970 assert(num_exprs == (eExprTypeElemPtr - eExprTypeDimX + 1) && 1971 "Invalid number of expressions"); 1972 1973 char expr_bufs[num_exprs][jit_max_expr_size]; 1974 uint64_t results[num_exprs]; 1975 1976 for (uint32_t i = 0; i < num_exprs; ++i) { 1977 const char *fmt_str = JITTemplate(ExpressionStrings(eExprTypeDimX + i)); 1978 int written = snprintf(expr_bufs[i], jit_max_expr_size, fmt_str, bits, 1979 *alloc->context.get(), *alloc->type_ptr.get()); 1980 if (written < 0) { 1981 if (log) 1982 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1983 return false; 1984 } else if (written >= jit_max_expr_size) { 1985 if (log) 1986 log->Printf("%s - expression too long.", __FUNCTION__); 1987 return false; 1988 } 1989 1990 // Perform expression evaluation 1991 if (!EvalRSExpression(expr_bufs[i], frame_ptr, &results[i])) 1992 return false; 1993 } 1994 1995 // Assign results to allocation members 1996 AllocationDetails::Dimension dims; 1997 dims.dim_1 = static_cast<uint32_t>(results[0]); 1998 dims.dim_2 = static_cast<uint32_t>(results[1]); 1999 dims.dim_3 = static_cast<uint32_t>(results[2]); 2000 alloc->dimension = dims; 2001 2002 addr_t element_ptr = static_cast<lldb::addr_t>(results[3]); 2003 alloc->element.element_ptr = element_ptr; 2004 2005 if (log) 2006 log->Printf("%s - dims (%" PRIu32 ", %" PRIu32 ", %" PRIu32 2007 ") Element*: 0x%" PRIx64 ".", 2008 __FUNCTION__, dims.dim_1, dims.dim_2, dims.dim_3, element_ptr); 2009 2010 return true; 2011 } 2012 2013 // JITs the RS runtime for information about the Element of an allocation Then 2014 // sets type, type_vec_size, field_count and type_kind members in Element with 2015 // the result. Returns true on success, false otherwise 2016 bool RenderScriptRuntime::JITElementPacked(Element &elem, 2017 const lldb::addr_t context, 2018 StackFrame *frame_ptr) { 2019 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2020 2021 if (!elem.element_ptr.isValid()) { 2022 if (log) 2023 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 2024 return false; 2025 } 2026 2027 // We want 4 elements from packed data 2028 const uint32_t num_exprs = 4; 2029 assert(num_exprs == (eExprElementFieldCount - eExprElementType + 1) && 2030 "Invalid number of expressions"); 2031 2032 char expr_bufs[num_exprs][jit_max_expr_size]; 2033 uint64_t results[num_exprs]; 2034 2035 for (uint32_t i = 0; i < num_exprs; i++) { 2036 const char *fmt_str = JITTemplate(ExpressionStrings(eExprElementType + i)); 2037 int written = snprintf(expr_bufs[i], jit_max_expr_size, fmt_str, context, 2038 *elem.element_ptr.get()); 2039 if (written < 0) { 2040 if (log) 2041 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 2042 return false; 2043 } else if (written >= jit_max_expr_size) { 2044 if (log) 2045 log->Printf("%s - expression too long.", __FUNCTION__); 2046 return false; 2047 } 2048 2049 // Perform expression evaluation 2050 if (!EvalRSExpression(expr_bufs[i], frame_ptr, &results[i])) 2051 return false; 2052 } 2053 2054 // Assign results to allocation members 2055 elem.type = static_cast<RenderScriptRuntime::Element::DataType>(results[0]); 2056 elem.type_kind = 2057 static_cast<RenderScriptRuntime::Element::DataKind>(results[1]); 2058 elem.type_vec_size = static_cast<uint32_t>(results[2]); 2059 elem.field_count = static_cast<uint32_t>(results[3]); 2060 2061 if (log) 2062 log->Printf("%s - data type %" PRIu32 ", pixel type %" PRIu32 2063 ", vector size %" PRIu32 ", field count %" PRIu32, 2064 __FUNCTION__, *elem.type.get(), *elem.type_kind.get(), 2065 *elem.type_vec_size.get(), *elem.field_count.get()); 2066 2067 // If this Element has subelements then JIT rsaElementGetSubElements() for 2068 // details about its fields 2069 if (*elem.field_count.get() > 0 && !JITSubelements(elem, context, frame_ptr)) 2070 return false; 2071 2072 return true; 2073 } 2074 2075 // JITs the RS runtime for information about the subelements/fields of a struct 2076 // allocation This is necessary for infering the struct type so we can pretty 2077 // print the allocation's contents. Returns true on success, false otherwise 2078 bool RenderScriptRuntime::JITSubelements(Element &elem, 2079 const lldb::addr_t context, 2080 StackFrame *frame_ptr) { 2081 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2082 2083 if (!elem.element_ptr.isValid() || !elem.field_count.isValid()) { 2084 if (log) 2085 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 2086 return false; 2087 } 2088 2089 const short num_exprs = 3; 2090 assert(num_exprs == (eExprSubelementsArrSize - eExprSubelementsId + 1) && 2091 "Invalid number of expressions"); 2092 2093 char expr_buffer[jit_max_expr_size]; 2094 uint64_t results; 2095 2096 // Iterate over struct fields. 2097 const uint32_t field_count = *elem.field_count.get(); 2098 for (uint32_t field_index = 0; field_index < field_count; ++field_index) { 2099 Element child; 2100 for (uint32_t expr_index = 0; expr_index < num_exprs; ++expr_index) { 2101 const char *fmt_str = 2102 JITTemplate(ExpressionStrings(eExprSubelementsId + expr_index)); 2103 int written = snprintf(expr_buffer, jit_max_expr_size, fmt_str, 2104 field_count, field_count, field_count, context, 2105 *elem.element_ptr.get(), field_count, field_index); 2106 if (written < 0) { 2107 if (log) 2108 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 2109 return false; 2110 } else if (written >= jit_max_expr_size) { 2111 if (log) 2112 log->Printf("%s - expression too long.", __FUNCTION__); 2113 return false; 2114 } 2115 2116 // Perform expression evaluation 2117 if (!EvalRSExpression(expr_buffer, frame_ptr, &results)) 2118 return false; 2119 2120 if (log) 2121 log->Printf("%s - expr result 0x%" PRIx64 ".", __FUNCTION__, results); 2122 2123 switch (expr_index) { 2124 case 0: // Element* of child 2125 child.element_ptr = static_cast<addr_t>(results); 2126 break; 2127 case 1: // Name of child 2128 { 2129 lldb::addr_t address = static_cast<addr_t>(results); 2130 Error err; 2131 std::string name; 2132 GetProcess()->ReadCStringFromMemory(address, name, err); 2133 if (!err.Fail()) 2134 child.type_name = ConstString(name); 2135 else { 2136 if (log) 2137 log->Printf("%s - warning: Couldn't read field name.", 2138 __FUNCTION__); 2139 } 2140 break; 2141 } 2142 case 2: // Array size of child 2143 child.array_size = static_cast<uint32_t>(results); 2144 break; 2145 } 2146 } 2147 2148 // We need to recursively JIT each Element field of the struct since 2149 // structs can be nested inside structs. 2150 if (!JITElementPacked(child, context, frame_ptr)) 2151 return false; 2152 elem.children.push_back(child); 2153 } 2154 2155 // Try to infer the name of the struct type so we can pretty print the 2156 // allocation contents. 2157 FindStructTypeName(elem, frame_ptr); 2158 2159 return true; 2160 } 2161 2162 // JITs the RS runtime for the address of the last element in the allocation. 2163 // The `elem_size` parameter represents the size of a single element, including 2164 // padding. Which is needed as an offset from the last element pointer. Using 2165 // this offset minus the starting address we can calculate the size of the 2166 // allocation. Returns true on success, false otherwise 2167 bool RenderScriptRuntime::JITAllocationSize(AllocationDetails *alloc, 2168 StackFrame *frame_ptr) { 2169 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2170 2171 if (!alloc->address.isValid() || !alloc->dimension.isValid() || 2172 !alloc->data_ptr.isValid() || !alloc->element.datum_size.isValid()) { 2173 if (log) 2174 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 2175 return false; 2176 } 2177 2178 // Find dimensions 2179 uint32_t dim_x = alloc->dimension.get()->dim_1; 2180 uint32_t dim_y = alloc->dimension.get()->dim_2; 2181 uint32_t dim_z = alloc->dimension.get()->dim_3; 2182 2183 // Our plan of jitting the last element address doesn't seem to work for 2184 // struct Allocations` Instead try to infer the size ourselves without any 2185 // inter element padding. 2186 if (alloc->element.children.size() > 0) { 2187 if (dim_x == 0) 2188 dim_x = 1; 2189 if (dim_y == 0) 2190 dim_y = 1; 2191 if (dim_z == 0) 2192 dim_z = 1; 2193 2194 alloc->size = dim_x * dim_y * dim_z * *alloc->element.datum_size.get(); 2195 2196 if (log) 2197 log->Printf("%s - inferred size of struct allocation %" PRIu32 ".", 2198 __FUNCTION__, *alloc->size.get()); 2199 return true; 2200 } 2201 2202 const char *fmt_str = JITTemplate(eExprGetOffsetPtr); 2203 char expr_buf[jit_max_expr_size]; 2204 2205 // Calculate last element 2206 dim_x = dim_x == 0 ? 0 : dim_x - 1; 2207 dim_y = dim_y == 0 ? 0 : dim_y - 1; 2208 dim_z = dim_z == 0 ? 0 : dim_z - 1; 2209 2210 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 2211 *alloc->address.get(), dim_x, dim_y, dim_z); 2212 if (written < 0) { 2213 if (log) 2214 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 2215 return false; 2216 } else if (written >= jit_max_expr_size) { 2217 if (log) 2218 log->Printf("%s - expression too long.", __FUNCTION__); 2219 return false; 2220 } 2221 2222 uint64_t result = 0; 2223 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 2224 return false; 2225 2226 addr_t mem_ptr = static_cast<lldb::addr_t>(result); 2227 // Find pointer to last element and add on size of an element 2228 alloc->size = static_cast<uint32_t>(mem_ptr - *alloc->data_ptr.get()) + 2229 *alloc->element.datum_size.get(); 2230 2231 return true; 2232 } 2233 2234 // JITs the RS runtime for information about the stride between rows in the 2235 // allocation. This is done to detect padding, since allocated memory is 16-byte 2236 // aligned. 2237 // Returns true on success, false otherwise 2238 bool RenderScriptRuntime::JITAllocationStride(AllocationDetails *alloc, 2239 StackFrame *frame_ptr) { 2240 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2241 2242 if (!alloc->address.isValid() || !alloc->data_ptr.isValid()) { 2243 if (log) 2244 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 2245 return false; 2246 } 2247 2248 const char *fmt_str = JITTemplate(eExprGetOffsetPtr); 2249 char expr_buf[jit_max_expr_size]; 2250 2251 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 2252 *alloc->address.get(), 0, 1, 0); 2253 if (written < 0) { 2254 if (log) 2255 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 2256 return false; 2257 } else if (written >= jit_max_expr_size) { 2258 if (log) 2259 log->Printf("%s - expression too long.", __FUNCTION__); 2260 return false; 2261 } 2262 2263 uint64_t result = 0; 2264 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 2265 return false; 2266 2267 addr_t mem_ptr = static_cast<lldb::addr_t>(result); 2268 alloc->stride = static_cast<uint32_t>(mem_ptr - *alloc->data_ptr.get()); 2269 2270 return true; 2271 } 2272 2273 // JIT all the current runtime info regarding an allocation 2274 bool RenderScriptRuntime::RefreshAllocation(AllocationDetails *alloc, 2275 StackFrame *frame_ptr) { 2276 // GetOffsetPointer() 2277 if (!JITDataPointer(alloc, frame_ptr)) 2278 return false; 2279 2280 // rsaAllocationGetType() 2281 if (!JITTypePointer(alloc, frame_ptr)) 2282 return false; 2283 2284 // rsaTypeGetNativeData() 2285 if (!JITTypePacked(alloc, frame_ptr)) 2286 return false; 2287 2288 // rsaElementGetNativeData() 2289 if (!JITElementPacked(alloc->element, *alloc->context.get(), frame_ptr)) 2290 return false; 2291 2292 // Sets the datum_size member in Element 2293 SetElementSize(alloc->element); 2294 2295 // Use GetOffsetPointer() to infer size of the allocation 2296 if (!JITAllocationSize(alloc, frame_ptr)) 2297 return false; 2298 2299 return true; 2300 } 2301 2302 // Function attempts to set the type_name member of the paramaterised Element 2303 // object. 2304 // This string should be the name of the struct type the Element represents. 2305 // We need this string for pretty printing the Element to users. 2306 void RenderScriptRuntime::FindStructTypeName(Element &elem, 2307 StackFrame *frame_ptr) { 2308 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2309 2310 if (!elem.type_name.IsEmpty()) // Name already set 2311 return; 2312 else 2313 elem.type_name = Element::GetFallbackStructName(); // Default type name if 2314 // we don't succeed 2315 2316 // Find all the global variables from the script rs modules 2317 VariableList var_list; 2318 for (auto module_sp : m_rsmodules) 2319 module_sp->m_module->FindGlobalVariables( 2320 RegularExpression(llvm::StringRef(".")), true, UINT32_MAX, var_list); 2321 2322 // Iterate over all the global variables looking for one with a matching type 2323 // to the Element. 2324 // We make the assumption a match exists since there needs to be a global 2325 // variable to reflect the struct type back into java host code. 2326 for (uint32_t i = 0; i < var_list.GetSize(); ++i) { 2327 const VariableSP var_sp(var_list.GetVariableAtIndex(i)); 2328 if (!var_sp) 2329 continue; 2330 2331 ValueObjectSP valobj_sp = ValueObjectVariable::Create(frame_ptr, var_sp); 2332 if (!valobj_sp) 2333 continue; 2334 2335 // Find the number of variable fields. 2336 // If it has no fields, or more fields than our Element, then it can't be 2337 // the struct we're looking for. 2338 // Don't check for equality since RS can add extra struct members for 2339 // padding. 2340 size_t num_children = valobj_sp->GetNumChildren(); 2341 if (num_children > elem.children.size() || num_children == 0) 2342 continue; 2343 2344 // Iterate over children looking for members with matching field names. 2345 // If all the field names match, this is likely the struct we want. 2346 // TODO: This could be made more robust by also checking children data 2347 // sizes, or array size 2348 bool found = true; 2349 for (size_t i = 0; i < num_children; ++i) { 2350 ValueObjectSP child = valobj_sp->GetChildAtIndex(i, true); 2351 if (!child || (child->GetName() != elem.children[i].type_name)) { 2352 found = false; 2353 break; 2354 } 2355 } 2356 2357 // RS can add extra struct members for padding in the format 2358 // '#rs_padding_[0-9]+' 2359 if (found && num_children < elem.children.size()) { 2360 const uint32_t size_diff = elem.children.size() - num_children; 2361 if (log) 2362 log->Printf("%s - %" PRIu32 " padding struct entries", __FUNCTION__, 2363 size_diff); 2364 2365 for (uint32_t i = 0; i < size_diff; ++i) { 2366 const ConstString &name = elem.children[num_children + i].type_name; 2367 if (strcmp(name.AsCString(), "#rs_padding") < 0) 2368 found = false; 2369 } 2370 } 2371 2372 // We've found a global variable with matching type 2373 if (found) { 2374 // Dereference since our Element type isn't a pointer. 2375 if (valobj_sp->IsPointerType()) { 2376 Error err; 2377 ValueObjectSP deref_valobj = valobj_sp->Dereference(err); 2378 if (!err.Fail()) 2379 valobj_sp = deref_valobj; 2380 } 2381 2382 // Save name of variable in Element. 2383 elem.type_name = valobj_sp->GetTypeName(); 2384 if (log) 2385 log->Printf("%s - element name set to %s", __FUNCTION__, 2386 elem.type_name.AsCString()); 2387 2388 return; 2389 } 2390 } 2391 } 2392 2393 // Function sets the datum_size member of Element. Representing the size of a 2394 // single instance including padding. 2395 // Assumes the relevant allocation information has already been jitted. 2396 void RenderScriptRuntime::SetElementSize(Element &elem) { 2397 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2398 const Element::DataType type = *elem.type.get(); 2399 assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && 2400 "Invalid allocation type"); 2401 2402 const uint32_t vec_size = *elem.type_vec_size.get(); 2403 uint32_t data_size = 0; 2404 uint32_t padding = 0; 2405 2406 // Element is of a struct type, calculate size recursively. 2407 if ((type == Element::RS_TYPE_NONE) && (elem.children.size() > 0)) { 2408 for (Element &child : elem.children) { 2409 SetElementSize(child); 2410 const uint32_t array_size = 2411 child.array_size.isValid() ? *child.array_size.get() : 1; 2412 data_size += *child.datum_size.get() * array_size; 2413 } 2414 } 2415 // These have been packed already 2416 else if (type == Element::RS_TYPE_UNSIGNED_5_6_5 || 2417 type == Element::RS_TYPE_UNSIGNED_5_5_5_1 || 2418 type == Element::RS_TYPE_UNSIGNED_4_4_4_4) { 2419 data_size = AllocationDetails::RSTypeToFormat[type][eElementSize]; 2420 } else if (type < Element::RS_TYPE_ELEMENT) { 2421 data_size = 2422 vec_size * AllocationDetails::RSTypeToFormat[type][eElementSize]; 2423 if (vec_size == 3) 2424 padding = AllocationDetails::RSTypeToFormat[type][eElementSize]; 2425 } else 2426 data_size = 2427 GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 2428 2429 elem.padding = padding; 2430 elem.datum_size = data_size + padding; 2431 if (log) 2432 log->Printf("%s - element size set to %" PRIu32, __FUNCTION__, 2433 data_size + padding); 2434 } 2435 2436 // Given an allocation, this function copies the allocation contents from device 2437 // into a buffer on the heap. 2438 // Returning a shared pointer to the buffer containing the data. 2439 std::shared_ptr<uint8_t> 2440 RenderScriptRuntime::GetAllocationData(AllocationDetails *alloc, 2441 StackFrame *frame_ptr) { 2442 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2443 2444 // JIT all the allocation details 2445 if (alloc->ShouldRefresh()) { 2446 if (log) 2447 log->Printf("%s - allocation details not calculated yet, jitting info", 2448 __FUNCTION__); 2449 2450 if (!RefreshAllocation(alloc, frame_ptr)) { 2451 if (log) 2452 log->Printf("%s - couldn't JIT allocation details", __FUNCTION__); 2453 return nullptr; 2454 } 2455 } 2456 2457 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && 2458 alloc->element.type_vec_size.isValid() && alloc->size.isValid() && 2459 "Allocation information not available"); 2460 2461 // Allocate a buffer to copy data into 2462 const uint32_t size = *alloc->size.get(); 2463 std::shared_ptr<uint8_t> buffer(new uint8_t[size]); 2464 if (!buffer) { 2465 if (log) 2466 log->Printf("%s - couldn't allocate a %" PRIu32 " byte buffer", 2467 __FUNCTION__, size); 2468 return nullptr; 2469 } 2470 2471 // Read the inferior memory 2472 Error err; 2473 lldb::addr_t data_ptr = *alloc->data_ptr.get(); 2474 GetProcess()->ReadMemory(data_ptr, buffer.get(), size, err); 2475 if (err.Fail()) { 2476 if (log) 2477 log->Printf("%s - '%s' Couldn't read %" PRIu32 2478 " bytes of allocation data from 0x%" PRIx64, 2479 __FUNCTION__, err.AsCString(), size, data_ptr); 2480 return nullptr; 2481 } 2482 2483 return buffer; 2484 } 2485 2486 // Function copies data from a binary file into an allocation. 2487 // There is a header at the start of the file, FileHeader, before the data 2488 // content itself. 2489 // Information from this header is used to display warnings to the user about 2490 // incompatibilities 2491 bool RenderScriptRuntime::LoadAllocation(Stream &strm, const uint32_t alloc_id, 2492 const char *path, 2493 StackFrame *frame_ptr) { 2494 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2495 2496 // Find allocation with the given id 2497 AllocationDetails *alloc = FindAllocByID(strm, alloc_id); 2498 if (!alloc) 2499 return false; 2500 2501 if (log) 2502 log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__, 2503 *alloc->address.get()); 2504 2505 // JIT all the allocation details 2506 if (alloc->ShouldRefresh()) { 2507 if (log) 2508 log->Printf("%s - allocation details not calculated yet, jitting info.", 2509 __FUNCTION__); 2510 2511 if (!RefreshAllocation(alloc, frame_ptr)) { 2512 if (log) 2513 log->Printf("%s - couldn't JIT allocation details", __FUNCTION__); 2514 return false; 2515 } 2516 } 2517 2518 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && 2519 alloc->element.type_vec_size.isValid() && alloc->size.isValid() && 2520 alloc->element.datum_size.isValid() && 2521 "Allocation information not available"); 2522 2523 // Check we can read from file 2524 FileSpec file(path, true); 2525 if (!file.Exists()) { 2526 strm.Printf("Error: File %s does not exist", path); 2527 strm.EOL(); 2528 return false; 2529 } 2530 2531 if (!file.Readable()) { 2532 strm.Printf("Error: File %s does not have readable permissions", path); 2533 strm.EOL(); 2534 return false; 2535 } 2536 2537 // Read file into data buffer 2538 DataBufferSP data_sp(file.ReadFileContents()); 2539 2540 // Cast start of buffer to FileHeader and use pointer to read metadata 2541 void *file_buf = data_sp->GetBytes(); 2542 if (file_buf == nullptr || 2543 data_sp->GetByteSize() < (sizeof(AllocationDetails::FileHeader) + 2544 sizeof(AllocationDetails::ElementHeader))) { 2545 strm.Printf("Error: File %s does not contain enough data for header", path); 2546 strm.EOL(); 2547 return false; 2548 } 2549 const AllocationDetails::FileHeader *file_header = 2550 static_cast<AllocationDetails::FileHeader *>(file_buf); 2551 2552 // Check file starts with ascii characters "RSAD" 2553 if (memcmp(file_header->ident, "RSAD", 4)) { 2554 strm.Printf("Error: File doesn't contain identifier for an RS allocation " 2555 "dump. Are you sure this is the correct file?"); 2556 strm.EOL(); 2557 return false; 2558 } 2559 2560 // Look at the type of the root element in the header 2561 AllocationDetails::ElementHeader root_el_hdr; 2562 memcpy(&root_el_hdr, static_cast<uint8_t *>(file_buf) + 2563 sizeof(AllocationDetails::FileHeader), 2564 sizeof(AllocationDetails::ElementHeader)); 2565 2566 if (log) 2567 log->Printf("%s - header type %" PRIu32 ", element size %" PRIu32, 2568 __FUNCTION__, root_el_hdr.type, root_el_hdr.element_size); 2569 2570 // Check if the target allocation and file both have the same number of bytes 2571 // for an Element 2572 if (*alloc->element.datum_size.get() != root_el_hdr.element_size) { 2573 strm.Printf("Warning: Mismatched Element sizes - file %" PRIu32 2574 " bytes, allocation %" PRIu32 " bytes", 2575 root_el_hdr.element_size, *alloc->element.datum_size.get()); 2576 strm.EOL(); 2577 } 2578 2579 // Check if the target allocation and file both have the same type 2580 const uint32_t alloc_type = static_cast<uint32_t>(*alloc->element.type.get()); 2581 const uint32_t file_type = root_el_hdr.type; 2582 2583 if (file_type > Element::RS_TYPE_FONT) { 2584 strm.Printf("Warning: File has unknown allocation type"); 2585 strm.EOL(); 2586 } else if (alloc_type != file_type) { 2587 // Enum value isn't monotonous, so doesn't always index RsDataTypeToString 2588 // array 2589 uint32_t target_type_name_idx = alloc_type; 2590 uint32_t head_type_name_idx = file_type; 2591 if (alloc_type >= Element::RS_TYPE_ELEMENT && 2592 alloc_type <= Element::RS_TYPE_FONT) 2593 target_type_name_idx = static_cast<Element::DataType>( 2594 (alloc_type - Element::RS_TYPE_ELEMENT) + 2595 Element::RS_TYPE_MATRIX_2X2 + 1); 2596 2597 if (file_type >= Element::RS_TYPE_ELEMENT && 2598 file_type <= Element::RS_TYPE_FONT) 2599 head_type_name_idx = static_cast<Element::DataType>( 2600 (file_type - Element::RS_TYPE_ELEMENT) + Element::RS_TYPE_MATRIX_2X2 + 2601 1); 2602 2603 const char *head_type_name = 2604 AllocationDetails::RsDataTypeToString[head_type_name_idx][0]; 2605 const char *target_type_name = 2606 AllocationDetails::RsDataTypeToString[target_type_name_idx][0]; 2607 2608 strm.Printf( 2609 "Warning: Mismatched Types - file '%s' type, allocation '%s' type", 2610 head_type_name, target_type_name); 2611 strm.EOL(); 2612 } 2613 2614 // Advance buffer past header 2615 file_buf = static_cast<uint8_t *>(file_buf) + file_header->hdr_size; 2616 2617 // Calculate size of allocation data in file 2618 size_t size = data_sp->GetByteSize() - file_header->hdr_size; 2619 2620 // Check if the target allocation and file both have the same total data size. 2621 const uint32_t alloc_size = *alloc->size.get(); 2622 if (alloc_size != size) { 2623 strm.Printf("Warning: Mismatched allocation sizes - file 0x%" PRIx64 2624 " bytes, allocation 0x%" PRIx32 " bytes", 2625 (uint64_t)size, alloc_size); 2626 strm.EOL(); 2627 // Set length to copy to minimum 2628 size = alloc_size < size ? alloc_size : size; 2629 } 2630 2631 // Copy file data from our buffer into the target allocation. 2632 lldb::addr_t alloc_data = *alloc->data_ptr.get(); 2633 Error err; 2634 size_t written = GetProcess()->WriteMemory(alloc_data, file_buf, size, err); 2635 if (!err.Success() || written != size) { 2636 strm.Printf("Error: Couldn't write data to allocation %s", err.AsCString()); 2637 strm.EOL(); 2638 return false; 2639 } 2640 2641 strm.Printf("Contents of file '%s' read into allocation %" PRIu32, path, 2642 alloc->id); 2643 strm.EOL(); 2644 2645 return true; 2646 } 2647 2648 // Function takes as parameters a byte buffer, which will eventually be written 2649 // to file as the element header, an offset into that buffer, and an Element 2650 // that will be saved into the buffer at the parametrised offset. 2651 // Return value is the new offset after writing the element into the buffer. 2652 // Elements are saved to the file as the ElementHeader struct followed by 2653 // offsets to the structs of all the element's children. 2654 size_t RenderScriptRuntime::PopulateElementHeaders( 2655 const std::shared_ptr<uint8_t> header_buffer, size_t offset, 2656 const Element &elem) { 2657 // File struct for an element header with all the relevant details copied from 2658 // elem. We assume members are valid already. 2659 AllocationDetails::ElementHeader elem_header; 2660 elem_header.type = *elem.type.get(); 2661 elem_header.kind = *elem.type_kind.get(); 2662 elem_header.element_size = *elem.datum_size.get(); 2663 elem_header.vector_size = *elem.type_vec_size.get(); 2664 elem_header.array_size = 2665 elem.array_size.isValid() ? *elem.array_size.get() : 0; 2666 const size_t elem_header_size = sizeof(AllocationDetails::ElementHeader); 2667 2668 // Copy struct into buffer and advance offset 2669 // We assume that header_buffer has been checked for nullptr before this 2670 // method is called 2671 memcpy(header_buffer.get() + offset, &elem_header, elem_header_size); 2672 offset += elem_header_size; 2673 2674 // Starting offset of child ElementHeader struct 2675 size_t child_offset = 2676 offset + ((elem.children.size() + 1) * sizeof(uint32_t)); 2677 for (const RenderScriptRuntime::Element &child : elem.children) { 2678 // Recursively populate the buffer with the element header structs of 2679 // children. Then save the offsets where they were set after the parent 2680 // element header. 2681 memcpy(header_buffer.get() + offset, &child_offset, sizeof(uint32_t)); 2682 offset += sizeof(uint32_t); 2683 2684 child_offset = PopulateElementHeaders(header_buffer, child_offset, child); 2685 } 2686 2687 // Zero indicates no more children 2688 memset(header_buffer.get() + offset, 0, sizeof(uint32_t)); 2689 2690 return child_offset; 2691 } 2692 2693 // Given an Element object this function returns the total size needed in the 2694 // file header to store the element's details. Taking into account the size of 2695 // the element header struct, plus the offsets to all the element's children. 2696 // Function is recursive so that the size of all ancestors is taken into 2697 // account. 2698 size_t RenderScriptRuntime::CalculateElementHeaderSize(const Element &elem) { 2699 // Offsets to children plus zero terminator 2700 size_t size = (elem.children.size() + 1) * sizeof(uint32_t); 2701 // Size of header struct with type details 2702 size += sizeof(AllocationDetails::ElementHeader); 2703 2704 // Calculate recursively for all descendants 2705 for (const Element &child : elem.children) 2706 size += CalculateElementHeaderSize(child); 2707 2708 return size; 2709 } 2710 2711 // Function copies allocation contents into a binary file. This file can then be 2712 // loaded later into a different allocation. There is a header, FileHeader, 2713 // before the allocation data containing meta-data. 2714 bool RenderScriptRuntime::SaveAllocation(Stream &strm, const uint32_t alloc_id, 2715 const char *path, 2716 StackFrame *frame_ptr) { 2717 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2718 2719 // Find allocation with the given id 2720 AllocationDetails *alloc = FindAllocByID(strm, alloc_id); 2721 if (!alloc) 2722 return false; 2723 2724 if (log) 2725 log->Printf("%s - found allocation 0x%" PRIx64 ".", __FUNCTION__, 2726 *alloc->address.get()); 2727 2728 // JIT all the allocation details 2729 if (alloc->ShouldRefresh()) { 2730 if (log) 2731 log->Printf("%s - allocation details not calculated yet, jitting info.", 2732 __FUNCTION__); 2733 2734 if (!RefreshAllocation(alloc, frame_ptr)) { 2735 if (log) 2736 log->Printf("%s - couldn't JIT allocation details.", __FUNCTION__); 2737 return false; 2738 } 2739 } 2740 2741 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && 2742 alloc->element.type_vec_size.isValid() && 2743 alloc->element.datum_size.get() && 2744 alloc->element.type_kind.isValid() && alloc->dimension.isValid() && 2745 "Allocation information not available"); 2746 2747 // Check we can create writable file 2748 FileSpec file_spec(path, true); 2749 File file(file_spec, File::eOpenOptionWrite | File::eOpenOptionCanCreate | 2750 File::eOpenOptionTruncate); 2751 if (!file) { 2752 strm.Printf("Error: Failed to open '%s' for writing", path); 2753 strm.EOL(); 2754 return false; 2755 } 2756 2757 // Read allocation into buffer of heap memory 2758 const std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr); 2759 if (!buffer) { 2760 strm.Printf("Error: Couldn't read allocation data into buffer"); 2761 strm.EOL(); 2762 return false; 2763 } 2764 2765 // Create the file header 2766 AllocationDetails::FileHeader head; 2767 memcpy(head.ident, "RSAD", 4); 2768 head.dims[0] = static_cast<uint32_t>(alloc->dimension.get()->dim_1); 2769 head.dims[1] = static_cast<uint32_t>(alloc->dimension.get()->dim_2); 2770 head.dims[2] = static_cast<uint32_t>(alloc->dimension.get()->dim_3); 2771 2772 const size_t element_header_size = CalculateElementHeaderSize(alloc->element); 2773 assert((sizeof(AllocationDetails::FileHeader) + element_header_size) < 2774 UINT16_MAX && 2775 "Element header too large"); 2776 head.hdr_size = static_cast<uint16_t>(sizeof(AllocationDetails::FileHeader) + 2777 element_header_size); 2778 2779 // Write the file header 2780 size_t num_bytes = sizeof(AllocationDetails::FileHeader); 2781 if (log) 2782 log->Printf("%s - writing File Header, 0x%" PRIx64 " bytes", __FUNCTION__, 2783 (uint64_t)num_bytes); 2784 2785 Error err = file.Write(&head, num_bytes); 2786 if (!err.Success()) { 2787 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path); 2788 strm.EOL(); 2789 return false; 2790 } 2791 2792 // Create the headers describing the element type of the allocation. 2793 std::shared_ptr<uint8_t> element_header_buffer( 2794 new uint8_t[element_header_size]); 2795 if (element_header_buffer == nullptr) { 2796 strm.Printf("Internal Error: Couldn't allocate %" PRIu64 2797 " bytes on the heap", 2798 (uint64_t)element_header_size); 2799 strm.EOL(); 2800 return false; 2801 } 2802 2803 PopulateElementHeaders(element_header_buffer, 0, alloc->element); 2804 2805 // Write headers for allocation element type to file 2806 num_bytes = element_header_size; 2807 if (log) 2808 log->Printf("%s - writing element headers, 0x%" PRIx64 " bytes.", 2809 __FUNCTION__, (uint64_t)num_bytes); 2810 2811 err = file.Write(element_header_buffer.get(), num_bytes); 2812 if (!err.Success()) { 2813 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path); 2814 strm.EOL(); 2815 return false; 2816 } 2817 2818 // Write allocation data to file 2819 num_bytes = static_cast<size_t>(*alloc->size.get()); 2820 if (log) 2821 log->Printf("%s - writing 0x%" PRIx64 " bytes", __FUNCTION__, 2822 (uint64_t)num_bytes); 2823 2824 err = file.Write(buffer.get(), num_bytes); 2825 if (!err.Success()) { 2826 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path); 2827 strm.EOL(); 2828 return false; 2829 } 2830 2831 strm.Printf("Allocation written to file '%s'", path); 2832 strm.EOL(); 2833 return true; 2834 } 2835 2836 bool RenderScriptRuntime::LoadModule(const lldb::ModuleSP &module_sp) { 2837 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2838 2839 if (module_sp) { 2840 for (const auto &rs_module : m_rsmodules) { 2841 if (rs_module->m_module == module_sp) { 2842 // Check if the user has enabled automatically breaking on 2843 // all RS kernels. 2844 if (m_breakAllKernels) 2845 BreakOnModuleKernels(rs_module); 2846 2847 return false; 2848 } 2849 } 2850 bool module_loaded = false; 2851 switch (GetModuleKind(module_sp)) { 2852 case eModuleKindKernelObj: { 2853 RSModuleDescriptorSP module_desc; 2854 module_desc.reset(new RSModuleDescriptor(module_sp)); 2855 if (module_desc->ParseRSInfo()) { 2856 m_rsmodules.push_back(module_desc); 2857 module_desc->WarnIfVersionMismatch(GetProcess() 2858 ->GetTarget() 2859 .GetDebugger() 2860 .GetAsyncOutputStream() 2861 .get()); 2862 module_loaded = true; 2863 } 2864 if (module_loaded) { 2865 FixupScriptDetails(module_desc); 2866 } 2867 break; 2868 } 2869 case eModuleKindDriver: { 2870 if (!m_libRSDriver) { 2871 m_libRSDriver = module_sp; 2872 LoadRuntimeHooks(m_libRSDriver, RenderScriptRuntime::eModuleKindDriver); 2873 } 2874 break; 2875 } 2876 case eModuleKindImpl: { 2877 if (!m_libRSCpuRef) { 2878 m_libRSCpuRef = module_sp; 2879 LoadRuntimeHooks(m_libRSCpuRef, RenderScriptRuntime::eModuleKindImpl); 2880 } 2881 break; 2882 } 2883 case eModuleKindLibRS: { 2884 if (!m_libRS) { 2885 m_libRS = module_sp; 2886 static ConstString gDbgPresentStr("gDebuggerPresent"); 2887 const Symbol *debug_present = m_libRS->FindFirstSymbolWithNameAndType( 2888 gDbgPresentStr, eSymbolTypeData); 2889 if (debug_present) { 2890 Error err; 2891 uint32_t flag = 0x00000001U; 2892 Target &target = GetProcess()->GetTarget(); 2893 addr_t addr = debug_present->GetLoadAddress(&target); 2894 GetProcess()->WriteMemory(addr, &flag, sizeof(flag), err); 2895 if (err.Success()) { 2896 if (log) 2897 log->Printf("%s - debugger present flag set on debugee.", 2898 __FUNCTION__); 2899 2900 m_debuggerPresentFlagged = true; 2901 } else if (log) { 2902 log->Printf("%s - error writing debugger present flags '%s' ", 2903 __FUNCTION__, err.AsCString()); 2904 } 2905 } else if (log) { 2906 log->Printf( 2907 "%s - error writing debugger present flags - symbol not found", 2908 __FUNCTION__); 2909 } 2910 } 2911 break; 2912 } 2913 default: 2914 break; 2915 } 2916 if (module_loaded) 2917 Update(); 2918 return module_loaded; 2919 } 2920 return false; 2921 } 2922 2923 void RenderScriptRuntime::Update() { 2924 if (m_rsmodules.size() > 0) { 2925 if (!m_initiated) { 2926 Initiate(); 2927 } 2928 } 2929 } 2930 2931 void RSModuleDescriptor::WarnIfVersionMismatch(lldb_private::Stream *s) const { 2932 if (!s) 2933 return; 2934 2935 if (m_slang_version.empty() || m_bcc_version.empty()) { 2936 s->PutCString("WARNING: Unknown bcc or slang (llvm-rs-cc) version; debug " 2937 "experience may be unreliable"); 2938 s->EOL(); 2939 } else if (m_slang_version != m_bcc_version) { 2940 s->Printf("WARNING: The debug info emitted by the slang frontend " 2941 "(llvm-rs-cc) used to build this module (%s) does not match the " 2942 "version of bcc used to generate the debug information (%s). " 2943 "This is an unsupported configuration and may result in a poor " 2944 "debugging experience; proceed with caution", 2945 m_slang_version.c_str(), m_bcc_version.c_str()); 2946 s->EOL(); 2947 } 2948 } 2949 2950 bool RSModuleDescriptor::ParsePragmaCount(llvm::StringRef *lines, 2951 size_t n_lines) { 2952 // Skip the pragma prototype line 2953 ++lines; 2954 for (; n_lines--; ++lines) { 2955 const auto kv_pair = lines->split(" - "); 2956 m_pragmas[kv_pair.first.trim().str()] = kv_pair.second.trim().str(); 2957 } 2958 return true; 2959 } 2960 2961 bool RSModuleDescriptor::ParseExportReduceCount(llvm::StringRef *lines, 2962 size_t n_lines) { 2963 // The list of reduction kernels in the `.rs.info` symbol is of the form 2964 // "signature - accumulatordatasize - reduction_name - initializer_name - 2965 // accumulator_name - combiner_name - 2966 // outconverter_name - halter_name" 2967 // Where a function is not explicitly named by the user, or is not generated 2968 // by the compiler, it is named "." so the 2969 // dash separated list should always be 8 items long 2970 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 2971 // Skip the exportReduceCount line 2972 ++lines; 2973 for (; n_lines--; ++lines) { 2974 llvm::SmallVector<llvm::StringRef, 8> spec; 2975 lines->split(spec, " - "); 2976 if (spec.size() != 8) { 2977 if (spec.size() < 8) { 2978 if (log) 2979 log->Error("Error parsing RenderScript reduction spec. wrong number " 2980 "of fields"); 2981 return false; 2982 } else if (log) 2983 log->Warning("Extraneous members in reduction spec: '%s'", 2984 lines->str().c_str()); 2985 } 2986 2987 const auto sig_s = spec[0]; 2988 uint32_t sig; 2989 if (sig_s.getAsInteger(10, sig)) { 2990 if (log) 2991 log->Error("Error parsing Renderscript reduction spec: invalid kernel " 2992 "signature: '%s'", 2993 sig_s.str().c_str()); 2994 return false; 2995 } 2996 2997 const auto accum_data_size_s = spec[1]; 2998 uint32_t accum_data_size; 2999 if (accum_data_size_s.getAsInteger(10, accum_data_size)) { 3000 if (log) 3001 log->Error("Error parsing Renderscript reduction spec: invalid " 3002 "accumulator data size %s", 3003 accum_data_size_s.str().c_str()); 3004 return false; 3005 } 3006 3007 if (log) 3008 log->Printf("Found RenderScript reduction '%s'", spec[2].str().c_str()); 3009 3010 m_reductions.push_back(RSReductionDescriptor(this, sig, accum_data_size, 3011 spec[2], spec[3], spec[4], 3012 spec[5], spec[6], spec[7])); 3013 } 3014 return true; 3015 } 3016 3017 bool RSModuleDescriptor::ParseVersionInfo(llvm::StringRef *lines, 3018 size_t n_lines) { 3019 // Skip the versionInfo line 3020 ++lines; 3021 for (; n_lines--; ++lines) { 3022 // We're only interested in bcc and slang versions, and ignore all other 3023 // versionInfo lines 3024 const auto kv_pair = lines->split(" - "); 3025 if (kv_pair.first == "slang") 3026 m_slang_version = kv_pair.second.str(); 3027 else if (kv_pair.first == "bcc") 3028 m_bcc_version = kv_pair.second.str(); 3029 } 3030 return true; 3031 } 3032 3033 bool RSModuleDescriptor::ParseExportForeachCount(llvm::StringRef *lines, 3034 size_t n_lines) { 3035 // Skip the exportForeachCount line 3036 ++lines; 3037 for (; n_lines--; ++lines) { 3038 uint32_t slot; 3039 // `forEach` kernels are listed in the `.rs.info` packet as a "slot - name" 3040 // pair per line 3041 const auto kv_pair = lines->split(" - "); 3042 if (kv_pair.first.getAsInteger(10, slot)) 3043 return false; 3044 m_kernels.push_back(RSKernelDescriptor(this, kv_pair.second, slot)); 3045 } 3046 return true; 3047 } 3048 3049 bool RSModuleDescriptor::ParseExportVarCount(llvm::StringRef *lines, 3050 size_t n_lines) { 3051 // Skip the ExportVarCount line 3052 ++lines; 3053 for (; n_lines--; ++lines) 3054 m_globals.push_back(RSGlobalDescriptor(this, *lines)); 3055 return true; 3056 } 3057 3058 // The .rs.info symbol in renderscript modules contains a string which needs to 3059 // be parsed. 3060 // The string is basic and is parsed on a line by line basis. 3061 bool RSModuleDescriptor::ParseRSInfo() { 3062 assert(m_module); 3063 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3064 const Symbol *info_sym = m_module->FindFirstSymbolWithNameAndType( 3065 ConstString(".rs.info"), eSymbolTypeData); 3066 if (!info_sym) 3067 return false; 3068 3069 const addr_t addr = info_sym->GetAddressRef().GetFileAddress(); 3070 if (addr == LLDB_INVALID_ADDRESS) 3071 return false; 3072 3073 const addr_t size = info_sym->GetByteSize(); 3074 const FileSpec fs = m_module->GetFileSpec(); 3075 3076 const DataBufferSP buffer = fs.ReadFileContents(addr, size); 3077 if (!buffer) 3078 return false; 3079 3080 // split rs.info. contents into lines 3081 llvm::SmallVector<llvm::StringRef, 128> info_lines; 3082 { 3083 const llvm::StringRef raw_rs_info((const char *)buffer->GetBytes()); 3084 raw_rs_info.split(info_lines, '\n'); 3085 if (log) 3086 log->Printf("'.rs.info symbol for '%s':\n%s", 3087 m_module->GetFileSpec().GetCString(), 3088 raw_rs_info.str().c_str()); 3089 } 3090 3091 enum { 3092 eExportVar, 3093 eExportForEach, 3094 eExportReduce, 3095 ePragma, 3096 eBuildChecksum, 3097 eObjectSlot, 3098 eVersionInfo, 3099 }; 3100 3101 const auto rs_info_handler = [](llvm::StringRef name) -> int { 3102 return llvm::StringSwitch<int>(name) 3103 // The number of visible global variables in the script 3104 .Case("exportVarCount", eExportVar) 3105 // The number of RenderScrip `forEach` kernels __attribute__((kernel)) 3106 .Case("exportForEachCount", eExportForEach) 3107 // The number of generalreductions: This marked in the script by 3108 // `#pragma reduce()` 3109 .Case("exportReduceCount", eExportReduce) 3110 // Total count of all RenderScript specific `#pragmas` used in the 3111 // script 3112 .Case("pragmaCount", ePragma) 3113 .Case("objectSlotCount", eObjectSlot) 3114 .Case("versionInfo", eVersionInfo) 3115 .Default(-1); 3116 }; 3117 3118 // parse all text lines of .rs.info 3119 for (auto line = info_lines.begin(); line != info_lines.end(); ++line) { 3120 const auto kv_pair = line->split(": "); 3121 const auto key = kv_pair.first; 3122 const auto val = kv_pair.second.trim(); 3123 3124 const auto handler = rs_info_handler(key); 3125 if (handler == -1) 3126 continue; 3127 // getAsInteger returns `true` on an error condition - we're only interested 3128 // in numeric fields at the moment 3129 uint64_t n_lines; 3130 if (val.getAsInteger(10, n_lines)) { 3131 LLDB_LOGV(log, "Failed to parse non-numeric '.rs.info' section {0}", 3132 line->str()); 3133 continue; 3134 } 3135 if (info_lines.end() - (line + 1) < (ptrdiff_t)n_lines) 3136 return false; 3137 3138 bool success = false; 3139 switch (handler) { 3140 case eExportVar: 3141 success = ParseExportVarCount(line, n_lines); 3142 break; 3143 case eExportForEach: 3144 success = ParseExportForeachCount(line, n_lines); 3145 break; 3146 case eExportReduce: 3147 success = ParseExportReduceCount(line, n_lines); 3148 break; 3149 case ePragma: 3150 success = ParsePragmaCount(line, n_lines); 3151 break; 3152 case eVersionInfo: 3153 success = ParseVersionInfo(line, n_lines); 3154 break; 3155 default: { 3156 if (log) 3157 log->Printf("%s - skipping .rs.info field '%s'", __FUNCTION__, 3158 line->str().c_str()); 3159 continue; 3160 } 3161 } 3162 if (!success) 3163 return false; 3164 line += n_lines; 3165 } 3166 return info_lines.size() > 0; 3167 } 3168 3169 void RenderScriptRuntime::Status(Stream &strm) const { 3170 if (m_libRS) { 3171 strm.Printf("Runtime Library discovered."); 3172 strm.EOL(); 3173 } 3174 if (m_libRSDriver) { 3175 strm.Printf("Runtime Driver discovered."); 3176 strm.EOL(); 3177 } 3178 if (m_libRSCpuRef) { 3179 strm.Printf("CPU Reference Implementation discovered."); 3180 strm.EOL(); 3181 } 3182 3183 if (m_runtimeHooks.size()) { 3184 strm.Printf("Runtime functions hooked:"); 3185 strm.EOL(); 3186 for (auto b : m_runtimeHooks) { 3187 strm.Indent(b.second->defn->name); 3188 strm.EOL(); 3189 } 3190 } else { 3191 strm.Printf("Runtime is not hooked."); 3192 strm.EOL(); 3193 } 3194 } 3195 3196 void RenderScriptRuntime::DumpContexts(Stream &strm) const { 3197 strm.Printf("Inferred RenderScript Contexts:"); 3198 strm.EOL(); 3199 strm.IndentMore(); 3200 3201 std::map<addr_t, uint64_t> contextReferences; 3202 3203 // Iterate over all of the currently discovered scripts. 3204 // Note: We cant push or pop from m_scripts inside this loop or it may 3205 // invalidate script. 3206 for (const auto &script : m_scripts) { 3207 if (!script->context.isValid()) 3208 continue; 3209 lldb::addr_t context = *script->context; 3210 3211 if (contextReferences.find(context) != contextReferences.end()) { 3212 contextReferences[context]++; 3213 } else { 3214 contextReferences[context] = 1; 3215 } 3216 } 3217 3218 for (const auto &cRef : contextReferences) { 3219 strm.Printf("Context 0x%" PRIx64 ": %" PRIu64 " script instances", 3220 cRef.first, cRef.second); 3221 strm.EOL(); 3222 } 3223 strm.IndentLess(); 3224 } 3225 3226 void RenderScriptRuntime::DumpKernels(Stream &strm) const { 3227 strm.Printf("RenderScript Kernels:"); 3228 strm.EOL(); 3229 strm.IndentMore(); 3230 for (const auto &module : m_rsmodules) { 3231 strm.Printf("Resource '%s':", module->m_resname.c_str()); 3232 strm.EOL(); 3233 for (const auto &kernel : module->m_kernels) { 3234 strm.Indent(kernel.m_name.AsCString()); 3235 strm.EOL(); 3236 } 3237 } 3238 strm.IndentLess(); 3239 } 3240 3241 RenderScriptRuntime::AllocationDetails * 3242 RenderScriptRuntime::FindAllocByID(Stream &strm, const uint32_t alloc_id) { 3243 AllocationDetails *alloc = nullptr; 3244 3245 // See if we can find allocation using id as an index; 3246 if (alloc_id <= m_allocations.size() && alloc_id != 0 && 3247 m_allocations[alloc_id - 1]->id == alloc_id) { 3248 alloc = m_allocations[alloc_id - 1].get(); 3249 return alloc; 3250 } 3251 3252 // Fallback to searching 3253 for (const auto &a : m_allocations) { 3254 if (a->id == alloc_id) { 3255 alloc = a.get(); 3256 break; 3257 } 3258 } 3259 3260 if (alloc == nullptr) { 3261 strm.Printf("Error: Couldn't find allocation with id matching %" PRIu32, 3262 alloc_id); 3263 strm.EOL(); 3264 } 3265 3266 return alloc; 3267 } 3268 3269 // Prints the contents of an allocation to the output stream, which may be a 3270 // file 3271 bool RenderScriptRuntime::DumpAllocation(Stream &strm, StackFrame *frame_ptr, 3272 const uint32_t id) { 3273 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3274 3275 // Check we can find the desired allocation 3276 AllocationDetails *alloc = FindAllocByID(strm, id); 3277 if (!alloc) 3278 return false; // FindAllocByID() will print error message for us here 3279 3280 if (log) 3281 log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__, 3282 *alloc->address.get()); 3283 3284 // Check we have information about the allocation, if not calculate it 3285 if (alloc->ShouldRefresh()) { 3286 if (log) 3287 log->Printf("%s - allocation details not calculated yet, jitting info.", 3288 __FUNCTION__); 3289 3290 // JIT all the allocation information 3291 if (!RefreshAllocation(alloc, frame_ptr)) { 3292 strm.Printf("Error: Couldn't JIT allocation details"); 3293 strm.EOL(); 3294 return false; 3295 } 3296 } 3297 3298 // Establish format and size of each data element 3299 const uint32_t vec_size = *alloc->element.type_vec_size.get(); 3300 const Element::DataType type = *alloc->element.type.get(); 3301 3302 assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && 3303 "Invalid allocation type"); 3304 3305 lldb::Format format; 3306 if (type >= Element::RS_TYPE_ELEMENT) 3307 format = eFormatHex; 3308 else 3309 format = vec_size == 1 3310 ? static_cast<lldb::Format>( 3311 AllocationDetails::RSTypeToFormat[type][eFormatSingle]) 3312 : static_cast<lldb::Format>( 3313 AllocationDetails::RSTypeToFormat[type][eFormatVector]); 3314 3315 const uint32_t data_size = *alloc->element.datum_size.get(); 3316 3317 if (log) 3318 log->Printf("%s - element size %" PRIu32 " bytes, including padding", 3319 __FUNCTION__, data_size); 3320 3321 // Allocate a buffer to copy data into 3322 std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr); 3323 if (!buffer) { 3324 strm.Printf("Error: Couldn't read allocation data"); 3325 strm.EOL(); 3326 return false; 3327 } 3328 3329 // Calculate stride between rows as there may be padding at end of rows since 3330 // allocated memory is 16-byte aligned 3331 if (!alloc->stride.isValid()) { 3332 if (alloc->dimension.get()->dim_2 == 0) // We only have one dimension 3333 alloc->stride = 0; 3334 else if (!JITAllocationStride(alloc, frame_ptr)) { 3335 strm.Printf("Error: Couldn't calculate allocation row stride"); 3336 strm.EOL(); 3337 return false; 3338 } 3339 } 3340 const uint32_t stride = *alloc->stride.get(); 3341 const uint32_t size = *alloc->size.get(); // Size of whole allocation 3342 const uint32_t padding = 3343 alloc->element.padding.isValid() ? *alloc->element.padding.get() : 0; 3344 if (log) 3345 log->Printf("%s - stride %" PRIu32 " bytes, size %" PRIu32 3346 " bytes, padding %" PRIu32, 3347 __FUNCTION__, stride, size, padding); 3348 3349 // Find dimensions used to index loops, so need to be non-zero 3350 uint32_t dim_x = alloc->dimension.get()->dim_1; 3351 dim_x = dim_x == 0 ? 1 : dim_x; 3352 3353 uint32_t dim_y = alloc->dimension.get()->dim_2; 3354 dim_y = dim_y == 0 ? 1 : dim_y; 3355 3356 uint32_t dim_z = alloc->dimension.get()->dim_3; 3357 dim_z = dim_z == 0 ? 1 : dim_z; 3358 3359 // Use data extractor to format output 3360 const uint32_t target_ptr_size = 3361 GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 3362 DataExtractor alloc_data(buffer.get(), size, GetProcess()->GetByteOrder(), 3363 target_ptr_size); 3364 3365 uint32_t offset = 0; // Offset in buffer to next element to be printed 3366 uint32_t prev_row = 0; // Offset to the start of the previous row 3367 3368 // Iterate over allocation dimensions, printing results to user 3369 strm.Printf("Data (X, Y, Z):"); 3370 for (uint32_t z = 0; z < dim_z; ++z) { 3371 for (uint32_t y = 0; y < dim_y; ++y) { 3372 // Use stride to index start of next row. 3373 if (!(y == 0 && z == 0)) 3374 offset = prev_row + stride; 3375 prev_row = offset; 3376 3377 // Print each element in the row individually 3378 for (uint32_t x = 0; x < dim_x; ++x) { 3379 strm.Printf("\n(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ") = ", x, y, z); 3380 if ((type == Element::RS_TYPE_NONE) && 3381 (alloc->element.children.size() > 0) && 3382 (alloc->element.type_name != Element::GetFallbackStructName())) { 3383 // Here we are dumping an Element of struct type. 3384 // This is done using expression evaluation with the name of the 3385 // struct type and pointer to element. 3386 // Don't print the name of the resulting expression, since this will 3387 // be '$[0-9]+' 3388 DumpValueObjectOptions expr_options; 3389 expr_options.SetHideName(true); 3390 3391 // Setup expression as derefrencing a pointer cast to element address. 3392 char expr_char_buffer[jit_max_expr_size]; 3393 int written = 3394 snprintf(expr_char_buffer, jit_max_expr_size, "*(%s*) 0x%" PRIx64, 3395 alloc->element.type_name.AsCString(), 3396 *alloc->data_ptr.get() + offset); 3397 3398 if (written < 0 || written >= jit_max_expr_size) { 3399 if (log) 3400 log->Printf("%s - error in snprintf().", __FUNCTION__); 3401 continue; 3402 } 3403 3404 // Evaluate expression 3405 ValueObjectSP expr_result; 3406 GetProcess()->GetTarget().EvaluateExpression(expr_char_buffer, 3407 frame_ptr, expr_result); 3408 3409 // Print the results to our stream. 3410 expr_result->Dump(strm, expr_options); 3411 } else { 3412 alloc_data.Dump(&strm, offset, format, data_size - padding, 1, 1, 3413 LLDB_INVALID_ADDRESS, 0, 0); 3414 } 3415 offset += data_size; 3416 } 3417 } 3418 } 3419 strm.EOL(); 3420 3421 return true; 3422 } 3423 3424 // Function recalculates all our cached information about allocations by jitting 3425 // the RS runtime regarding each allocation we know about. Returns true if all 3426 // allocations could be recomputed, false otherwise. 3427 bool RenderScriptRuntime::RecomputeAllAllocations(Stream &strm, 3428 StackFrame *frame_ptr) { 3429 bool success = true; 3430 for (auto &alloc : m_allocations) { 3431 // JIT current allocation information 3432 if (!RefreshAllocation(alloc.get(), frame_ptr)) { 3433 strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32 3434 "\n", 3435 alloc->id); 3436 success = false; 3437 } 3438 } 3439 3440 if (success) 3441 strm.Printf("All allocations successfully recomputed"); 3442 strm.EOL(); 3443 3444 return success; 3445 } 3446 3447 // Prints information regarding currently loaded allocations. These details are 3448 // gathered by jitting the runtime, which has as latency. Index parameter 3449 // specifies a single allocation ID to print, or a zero value to print them all 3450 void RenderScriptRuntime::ListAllocations(Stream &strm, StackFrame *frame_ptr, 3451 const uint32_t index) { 3452 strm.Printf("RenderScript Allocations:"); 3453 strm.EOL(); 3454 strm.IndentMore(); 3455 3456 for (auto &alloc : m_allocations) { 3457 // index will only be zero if we want to print all allocations 3458 if (index != 0 && index != alloc->id) 3459 continue; 3460 3461 // JIT current allocation information 3462 if (alloc->ShouldRefresh() && !RefreshAllocation(alloc.get(), frame_ptr)) { 3463 strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32, 3464 alloc->id); 3465 strm.EOL(); 3466 continue; 3467 } 3468 3469 strm.Printf("%" PRIu32 ":", alloc->id); 3470 strm.EOL(); 3471 strm.IndentMore(); 3472 3473 strm.Indent("Context: "); 3474 if (!alloc->context.isValid()) 3475 strm.Printf("unknown\n"); 3476 else 3477 strm.Printf("0x%" PRIx64 "\n", *alloc->context.get()); 3478 3479 strm.Indent("Address: "); 3480 if (!alloc->address.isValid()) 3481 strm.Printf("unknown\n"); 3482 else 3483 strm.Printf("0x%" PRIx64 "\n", *alloc->address.get()); 3484 3485 strm.Indent("Data pointer: "); 3486 if (!alloc->data_ptr.isValid()) 3487 strm.Printf("unknown\n"); 3488 else 3489 strm.Printf("0x%" PRIx64 "\n", *alloc->data_ptr.get()); 3490 3491 strm.Indent("Dimensions: "); 3492 if (!alloc->dimension.isValid()) 3493 strm.Printf("unknown\n"); 3494 else 3495 strm.Printf("(%" PRId32 ", %" PRId32 ", %" PRId32 ")\n", 3496 alloc->dimension.get()->dim_1, alloc->dimension.get()->dim_2, 3497 alloc->dimension.get()->dim_3); 3498 3499 strm.Indent("Data Type: "); 3500 if (!alloc->element.type.isValid() || 3501 !alloc->element.type_vec_size.isValid()) 3502 strm.Printf("unknown\n"); 3503 else { 3504 const int vector_size = *alloc->element.type_vec_size.get(); 3505 Element::DataType type = *alloc->element.type.get(); 3506 3507 if (!alloc->element.type_name.IsEmpty()) 3508 strm.Printf("%s\n", alloc->element.type_name.AsCString()); 3509 else { 3510 // Enum value isn't monotonous, so doesn't always index 3511 // RsDataTypeToString array 3512 if (type >= Element::RS_TYPE_ELEMENT && type <= Element::RS_TYPE_FONT) 3513 type = 3514 static_cast<Element::DataType>((type - Element::RS_TYPE_ELEMENT) + 3515 Element::RS_TYPE_MATRIX_2X2 + 1); 3516 3517 if (type >= (sizeof(AllocationDetails::RsDataTypeToString) / 3518 sizeof(AllocationDetails::RsDataTypeToString[0])) || 3519 vector_size > 4 || vector_size < 1) 3520 strm.Printf("invalid type\n"); 3521 else 3522 strm.Printf( 3523 "%s\n", 3524 AllocationDetails::RsDataTypeToString[static_cast<uint32_t>(type)] 3525 [vector_size - 1]); 3526 } 3527 } 3528 3529 strm.Indent("Data Kind: "); 3530 if (!alloc->element.type_kind.isValid()) 3531 strm.Printf("unknown\n"); 3532 else { 3533 const Element::DataKind kind = *alloc->element.type_kind.get(); 3534 if (kind < Element::RS_KIND_USER || kind > Element::RS_KIND_PIXEL_YUV) 3535 strm.Printf("invalid kind\n"); 3536 else 3537 strm.Printf( 3538 "%s\n", 3539 AllocationDetails::RsDataKindToString[static_cast<uint32_t>(kind)]); 3540 } 3541 3542 strm.EOL(); 3543 strm.IndentLess(); 3544 } 3545 strm.IndentLess(); 3546 } 3547 3548 // Set breakpoints on every kernel found in RS module 3549 void RenderScriptRuntime::BreakOnModuleKernels( 3550 const RSModuleDescriptorSP rsmodule_sp) { 3551 for (const auto &kernel : rsmodule_sp->m_kernels) { 3552 // Don't set breakpoint on 'root' kernel 3553 if (strcmp(kernel.m_name.AsCString(), "root") == 0) 3554 continue; 3555 3556 CreateKernelBreakpoint(kernel.m_name); 3557 } 3558 } 3559 3560 // Method is internally called by the 'kernel breakpoint all' command to enable 3561 // or disable breaking on all kernels. When do_break is true we want to enable 3562 // this functionality. When do_break is false we want to disable it. 3563 void RenderScriptRuntime::SetBreakAllKernels(bool do_break, TargetSP target) { 3564 Log *log( 3565 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3566 3567 InitSearchFilter(target); 3568 3569 // Set breakpoints on all the kernels 3570 if (do_break && !m_breakAllKernels) { 3571 m_breakAllKernels = true; 3572 3573 for (const auto &module : m_rsmodules) 3574 BreakOnModuleKernels(module); 3575 3576 if (log) 3577 log->Printf("%s(True) - breakpoints set on all currently loaded kernels.", 3578 __FUNCTION__); 3579 } else if (!do_break && 3580 m_breakAllKernels) // Breakpoints won't be set on any new kernels. 3581 { 3582 m_breakAllKernels = false; 3583 3584 if (log) 3585 log->Printf("%s(False) - breakpoints no longer automatically set.", 3586 __FUNCTION__); 3587 } 3588 } 3589 3590 // Given the name of a kernel this function creates a breakpoint using our 3591 // own breakpoint resolver, and returns the Breakpoint shared pointer. 3592 BreakpointSP 3593 RenderScriptRuntime::CreateKernelBreakpoint(const ConstString &name) { 3594 Log *log( 3595 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3596 3597 if (!m_filtersp) { 3598 if (log) 3599 log->Printf("%s - error, no breakpoint search filter set.", __FUNCTION__); 3600 return nullptr; 3601 } 3602 3603 BreakpointResolverSP resolver_sp(new RSBreakpointResolver(nullptr, name)); 3604 BreakpointSP bp = GetProcess()->GetTarget().CreateBreakpoint( 3605 m_filtersp, resolver_sp, false, false, false); 3606 3607 // Give RS breakpoints a specific name, so the user can manipulate them as a 3608 // group. 3609 Error err; 3610 if (!bp->AddName("RenderScriptKernel", err)) 3611 if (log) 3612 log->Printf("%s - error setting break name, '%s'.", __FUNCTION__, 3613 err.AsCString()); 3614 3615 return bp; 3616 } 3617 3618 BreakpointSP 3619 RenderScriptRuntime::CreateReductionBreakpoint(const ConstString &name, 3620 int kernel_types) { 3621 Log *log( 3622 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3623 3624 if (!m_filtersp) { 3625 if (log) 3626 log->Printf("%s - error, no breakpoint search filter set.", __FUNCTION__); 3627 return nullptr; 3628 } 3629 3630 BreakpointResolverSP resolver_sp(new RSReduceBreakpointResolver( 3631 nullptr, name, &m_rsmodules, kernel_types)); 3632 BreakpointSP bp = GetProcess()->GetTarget().CreateBreakpoint( 3633 m_filtersp, resolver_sp, false, false, false); 3634 3635 // Give RS breakpoints a specific name, so the user can manipulate them as a 3636 // group. 3637 Error err; 3638 if (!bp->AddName("RenderScriptReduction", err)) 3639 if (log) 3640 log->Printf("%s - error setting break name, '%s'.", __FUNCTION__, 3641 err.AsCString()); 3642 3643 return bp; 3644 } 3645 3646 // Given an expression for a variable this function tries to calculate the 3647 // variable's value. If this is possible it returns true and sets the uint64_t 3648 // parameter to the variables unsigned value. Otherwise function returns false. 3649 bool RenderScriptRuntime::GetFrameVarAsUnsigned(const StackFrameSP frame_sp, 3650 const char *var_name, 3651 uint64_t &val) { 3652 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3653 Error err; 3654 VariableSP var_sp; 3655 3656 // Find variable in stack frame 3657 ValueObjectSP value_sp(frame_sp->GetValueForVariableExpressionPath( 3658 var_name, eNoDynamicValues, 3659 StackFrame::eExpressionPathOptionCheckPtrVsMember | 3660 StackFrame::eExpressionPathOptionsAllowDirectIVarAccess, 3661 var_sp, err)); 3662 if (!err.Success()) { 3663 if (log) 3664 log->Printf("%s - error, couldn't find '%s' in frame", __FUNCTION__, 3665 var_name); 3666 return false; 3667 } 3668 3669 // Find the uint32_t value for the variable 3670 bool success = false; 3671 val = value_sp->GetValueAsUnsigned(0, &success); 3672 if (!success) { 3673 if (log) 3674 log->Printf("%s - error, couldn't parse '%s' as an uint32_t.", 3675 __FUNCTION__, var_name); 3676 return false; 3677 } 3678 3679 return true; 3680 } 3681 3682 // Function attempts to find the current coordinate of a kernel invocation by 3683 // investigating the values of frame variables in the .expand function. These 3684 // coordinates are returned via the coord array reference parameter. Returns 3685 // true if the coordinates could be found, and false otherwise. 3686 bool RenderScriptRuntime::GetKernelCoordinate(RSCoordinate &coord, 3687 Thread *thread_ptr) { 3688 static const char *const x_expr = "rsIndex"; 3689 static const char *const y_expr = "p->current.y"; 3690 static const char *const z_expr = "p->current.z"; 3691 3692 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3693 3694 if (!thread_ptr) { 3695 if (log) 3696 log->Printf("%s - Error, No thread pointer", __FUNCTION__); 3697 3698 return false; 3699 } 3700 3701 // Walk the call stack looking for a function whose name has the suffix 3702 // '.expand' and contains the variables we're looking for. 3703 for (uint32_t i = 0; i < thread_ptr->GetStackFrameCount(); ++i) { 3704 if (!thread_ptr->SetSelectedFrameByIndex(i)) 3705 continue; 3706 3707 StackFrameSP frame_sp = thread_ptr->GetSelectedFrame(); 3708 if (!frame_sp) 3709 continue; 3710 3711 // Find the function name 3712 const SymbolContext sym_ctx = frame_sp->GetSymbolContext(false); 3713 const ConstString func_name = sym_ctx.GetFunctionName(); 3714 if (!func_name) 3715 continue; 3716 3717 if (log) 3718 log->Printf("%s - Inspecting function '%s'", __FUNCTION__, 3719 func_name.GetCString()); 3720 3721 // Check if function name has .expand suffix 3722 if (!func_name.GetStringRef().endswith(".expand")) 3723 continue; 3724 3725 if (log) 3726 log->Printf("%s - Found .expand function '%s'", __FUNCTION__, 3727 func_name.GetCString()); 3728 3729 // Get values for variables in .expand frame that tell us the current kernel 3730 // invocation 3731 uint64_t x, y, z; 3732 bool found = GetFrameVarAsUnsigned(frame_sp, x_expr, x) && 3733 GetFrameVarAsUnsigned(frame_sp, y_expr, y) && 3734 GetFrameVarAsUnsigned(frame_sp, z_expr, z); 3735 3736 if (found) { 3737 // The RenderScript runtime uses uint32_t for these vars. If they're not 3738 // within bounds, our frame parsing is garbage 3739 assert(x <= UINT32_MAX && y <= UINT32_MAX && z <= UINT32_MAX); 3740 coord.x = (uint32_t)x; 3741 coord.y = (uint32_t)y; 3742 coord.z = (uint32_t)z; 3743 return true; 3744 } 3745 } 3746 return false; 3747 } 3748 3749 // Callback when a kernel breakpoint hits and we're looking for a specific 3750 // coordinate. Baton parameter contains a pointer to the target coordinate we 3751 // want to break on. 3752 // Function then checks the .expand frame for the current coordinate and breaks 3753 // to user if it matches. 3754 // Parameter 'break_id' is the id of the Breakpoint which made the callback. 3755 // Parameter 'break_loc_id' is the id for the BreakpointLocation which was hit, 3756 // a single logical breakpoint can have multiple addresses. 3757 bool RenderScriptRuntime::KernelBreakpointHit(void *baton, 3758 StoppointCallbackContext *ctx, 3759 user_id_t break_id, 3760 user_id_t break_loc_id) { 3761 Log *log( 3762 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3763 3764 assert(baton && 3765 "Error: null baton in conditional kernel breakpoint callback"); 3766 3767 // Coordinate we want to stop on 3768 RSCoordinate target_coord = *static_cast<RSCoordinate *>(baton); 3769 3770 if (log) 3771 log->Printf("%s - Break ID %" PRIu64 ", " FMT_COORD, __FUNCTION__, break_id, 3772 target_coord.x, target_coord.y, target_coord.z); 3773 3774 // Select current thread 3775 ExecutionContext context(ctx->exe_ctx_ref); 3776 Thread *thread_ptr = context.GetThreadPtr(); 3777 assert(thread_ptr && "Null thread pointer"); 3778 3779 // Find current kernel invocation from .expand frame variables 3780 RSCoordinate current_coord{}; 3781 if (!GetKernelCoordinate(current_coord, thread_ptr)) { 3782 if (log) 3783 log->Printf("%s - Error, couldn't select .expand stack frame", 3784 __FUNCTION__); 3785 return false; 3786 } 3787 3788 if (log) 3789 log->Printf("%s - " FMT_COORD, __FUNCTION__, current_coord.x, 3790 current_coord.y, current_coord.z); 3791 3792 // Check if the current kernel invocation coordinate matches our target 3793 // coordinate 3794 if (target_coord == current_coord) { 3795 if (log) 3796 log->Printf("%s, BREAKING " FMT_COORD, __FUNCTION__, current_coord.x, 3797 current_coord.y, current_coord.z); 3798 3799 BreakpointSP breakpoint_sp = 3800 context.GetTargetPtr()->GetBreakpointByID(break_id); 3801 assert(breakpoint_sp != nullptr && 3802 "Error: Couldn't find breakpoint matching break id for callback"); 3803 breakpoint_sp->SetEnabled(false); // Optimise since conditional breakpoint 3804 // should only be hit once. 3805 return true; 3806 } 3807 3808 // No match on coordinate 3809 return false; 3810 } 3811 3812 void RenderScriptRuntime::SetConditional(BreakpointSP bp, Stream &messages, 3813 const RSCoordinate &coord) { 3814 messages.Printf("Conditional kernel breakpoint on coordinate " FMT_COORD, 3815 coord.x, coord.y, coord.z); 3816 messages.EOL(); 3817 3818 // Allocate memory for the baton, and copy over coordinate 3819 RSCoordinate *baton = new RSCoordinate(coord); 3820 3821 // Create a callback that will be invoked every time the breakpoint is hit. 3822 // The baton object passed to the handler is the target coordinate we want to 3823 // break on. 3824 bp->SetCallback(KernelBreakpointHit, baton, true); 3825 3826 // Store a shared pointer to the baton, so the memory will eventually be 3827 // cleaned up after destruction 3828 m_conditional_breaks[bp->GetID()] = std::unique_ptr<RSCoordinate>(baton); 3829 } 3830 3831 // Tries to set a breakpoint on the start of a kernel, resolved using the kernel 3832 // name. Argument 'coords', represents a three dimensional coordinate which can 3833 // be 3834 // used to specify a single kernel instance to break on. If this is set then we 3835 // add a callback 3836 // to the breakpoint. 3837 bool RenderScriptRuntime::PlaceBreakpointOnKernel(TargetSP target, 3838 Stream &messages, 3839 const char *name, 3840 const RSCoordinate *coord) { 3841 if (!name) 3842 return false; 3843 3844 InitSearchFilter(target); 3845 3846 ConstString kernel_name(name); 3847 BreakpointSP bp = CreateKernelBreakpoint(kernel_name); 3848 if (!bp) 3849 return false; 3850 3851 // We have a conditional breakpoint on a specific coordinate 3852 if (coord) 3853 SetConditional(bp, messages, *coord); 3854 3855 bp->GetDescription(&messages, lldb::eDescriptionLevelInitial, false); 3856 3857 return true; 3858 } 3859 3860 BreakpointSP 3861 RenderScriptRuntime::CreateScriptGroupBreakpoint(const ConstString &name, 3862 bool stop_on_all) { 3863 Log *log( 3864 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3865 3866 if (!m_filtersp) { 3867 if (log) 3868 log->Printf("%s - error, no breakpoint search filter set.", __FUNCTION__); 3869 return nullptr; 3870 } 3871 3872 BreakpointResolverSP resolver_sp(new RSScriptGroupBreakpointResolver( 3873 nullptr, name, m_scriptGroups, stop_on_all)); 3874 BreakpointSP bp = GetProcess()->GetTarget().CreateBreakpoint( 3875 m_filtersp, resolver_sp, false, false, false); 3876 // Give RS breakpoints a specific name, so the user can manipulate them as a 3877 // group. 3878 Error err; 3879 if (!bp->AddName(name.AsCString(), err)) 3880 if (log) 3881 log->Printf("%s - error setting break name, '%s'.", __FUNCTION__, 3882 err.AsCString()); 3883 // ask the breakpoint to resolve itself 3884 bp->ResolveBreakpoint(); 3885 return bp; 3886 } 3887 3888 bool RenderScriptRuntime::PlaceBreakpointOnScriptGroup(TargetSP target, 3889 Stream &strm, 3890 const ConstString &name, 3891 bool multi) { 3892 InitSearchFilter(target); 3893 BreakpointSP bp = CreateScriptGroupBreakpoint(name, multi); 3894 if (bp) 3895 bp->GetDescription(&strm, lldb::eDescriptionLevelInitial, false); 3896 return bool(bp); 3897 } 3898 3899 bool RenderScriptRuntime::PlaceBreakpointOnReduction(TargetSP target, 3900 Stream &messages, 3901 const char *reduce_name, 3902 const RSCoordinate *coord, 3903 int kernel_types) { 3904 if (!reduce_name) 3905 return false; 3906 3907 InitSearchFilter(target); 3908 BreakpointSP bp = 3909 CreateReductionBreakpoint(ConstString(reduce_name), kernel_types); 3910 if (!bp) 3911 return false; 3912 3913 if (coord) 3914 SetConditional(bp, messages, *coord); 3915 3916 bp->GetDescription(&messages, lldb::eDescriptionLevelInitial, false); 3917 3918 return true; 3919 } 3920 3921 void RenderScriptRuntime::DumpModules(Stream &strm) const { 3922 strm.Printf("RenderScript Modules:"); 3923 strm.EOL(); 3924 strm.IndentMore(); 3925 for (const auto &module : m_rsmodules) { 3926 module->Dump(strm); 3927 } 3928 strm.IndentLess(); 3929 } 3930 3931 RenderScriptRuntime::ScriptDetails * 3932 RenderScriptRuntime::LookUpScript(addr_t address, bool create) { 3933 for (const auto &s : m_scripts) { 3934 if (s->script.isValid()) 3935 if (*s->script == address) 3936 return s.get(); 3937 } 3938 if (create) { 3939 std::unique_ptr<ScriptDetails> s(new ScriptDetails); 3940 s->script = address; 3941 m_scripts.push_back(std::move(s)); 3942 return m_scripts.back().get(); 3943 } 3944 return nullptr; 3945 } 3946 3947 RenderScriptRuntime::AllocationDetails * 3948 RenderScriptRuntime::LookUpAllocation(addr_t address) { 3949 for (const auto &a : m_allocations) { 3950 if (a->address.isValid()) 3951 if (*a->address == address) 3952 return a.get(); 3953 } 3954 return nullptr; 3955 } 3956 3957 RenderScriptRuntime::AllocationDetails * 3958 RenderScriptRuntime::CreateAllocation(addr_t address) { 3959 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 3960 3961 // Remove any previous allocation which contains the same address 3962 auto it = m_allocations.begin(); 3963 while (it != m_allocations.end()) { 3964 if (*((*it)->address) == address) { 3965 if (log) 3966 log->Printf("%s - Removing allocation id: %d, address: 0x%" PRIx64, 3967 __FUNCTION__, (*it)->id, address); 3968 3969 it = m_allocations.erase(it); 3970 } else { 3971 it++; 3972 } 3973 } 3974 3975 std::unique_ptr<AllocationDetails> a(new AllocationDetails); 3976 a->address = address; 3977 m_allocations.push_back(std::move(a)); 3978 return m_allocations.back().get(); 3979 } 3980 3981 bool RenderScriptRuntime::ResolveKernelName(lldb::addr_t kernel_addr, 3982 ConstString &name) { 3983 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS); 3984 3985 Target &target = GetProcess()->GetTarget(); 3986 Address resolved; 3987 // RenderScript module 3988 if (!target.GetSectionLoadList().ResolveLoadAddress(kernel_addr, resolved)) { 3989 if (log) 3990 log->Printf("%s: unable to resolve 0x%" PRIx64 " to a loaded symbol", 3991 __FUNCTION__, kernel_addr); 3992 return false; 3993 } 3994 3995 Symbol *sym = resolved.CalculateSymbolContextSymbol(); 3996 if (!sym) 3997 return false; 3998 3999 name = sym->GetName(); 4000 assert(IsRenderScriptModule(resolved.CalculateSymbolContextModule())); 4001 if (log) 4002 log->Printf("%s: 0x%" PRIx64 " resolved to the symbol '%s'", __FUNCTION__, 4003 kernel_addr, name.GetCString()); 4004 return true; 4005 } 4006 4007 void RSModuleDescriptor::Dump(Stream &strm) const { 4008 int indent = strm.GetIndentLevel(); 4009 4010 strm.Indent(); 4011 m_module->GetFileSpec().Dump(&strm); 4012 strm.Indent(m_module->GetNumCompileUnits() ? "Debug info loaded." 4013 : "Debug info does not exist."); 4014 strm.EOL(); 4015 strm.IndentMore(); 4016 4017 strm.Indent(); 4018 strm.Printf("Globals: %" PRIu64, static_cast<uint64_t>(m_globals.size())); 4019 strm.EOL(); 4020 strm.IndentMore(); 4021 for (const auto &global : m_globals) { 4022 global.Dump(strm); 4023 } 4024 strm.IndentLess(); 4025 4026 strm.Indent(); 4027 strm.Printf("Kernels: %" PRIu64, static_cast<uint64_t>(m_kernels.size())); 4028 strm.EOL(); 4029 strm.IndentMore(); 4030 for (const auto &kernel : m_kernels) { 4031 kernel.Dump(strm); 4032 } 4033 strm.IndentLess(); 4034 4035 strm.Indent(); 4036 strm.Printf("Pragmas: %" PRIu64, static_cast<uint64_t>(m_pragmas.size())); 4037 strm.EOL(); 4038 strm.IndentMore(); 4039 for (const auto &key_val : m_pragmas) { 4040 strm.Indent(); 4041 strm.Printf("%s: %s", key_val.first.c_str(), key_val.second.c_str()); 4042 strm.EOL(); 4043 } 4044 strm.IndentLess(); 4045 4046 strm.Indent(); 4047 strm.Printf("Reductions: %" PRIu64, 4048 static_cast<uint64_t>(m_reductions.size())); 4049 strm.EOL(); 4050 strm.IndentMore(); 4051 for (const auto &reduction : m_reductions) { 4052 reduction.Dump(strm); 4053 } 4054 4055 strm.SetIndentLevel(indent); 4056 } 4057 4058 void RSGlobalDescriptor::Dump(Stream &strm) const { 4059 strm.Indent(m_name.AsCString()); 4060 VariableList var_list; 4061 m_module->m_module->FindGlobalVariables(m_name, nullptr, true, 1U, var_list); 4062 if (var_list.GetSize() == 1) { 4063 auto var = var_list.GetVariableAtIndex(0); 4064 auto type = var->GetType(); 4065 if (type) { 4066 strm.Printf(" - "); 4067 type->DumpTypeName(&strm); 4068 } else { 4069 strm.Printf(" - Unknown Type"); 4070 } 4071 } else { 4072 strm.Printf(" - variable identified, but not found in binary"); 4073 const Symbol *s = m_module->m_module->FindFirstSymbolWithNameAndType( 4074 m_name, eSymbolTypeData); 4075 if (s) { 4076 strm.Printf(" (symbol exists) "); 4077 } 4078 } 4079 4080 strm.EOL(); 4081 } 4082 4083 void RSKernelDescriptor::Dump(Stream &strm) const { 4084 strm.Indent(m_name.AsCString()); 4085 strm.EOL(); 4086 } 4087 4088 void RSReductionDescriptor::Dump(lldb_private::Stream &stream) const { 4089 stream.Indent(m_reduce_name.AsCString()); 4090 stream.IndentMore(); 4091 stream.EOL(); 4092 stream.Indent(); 4093 stream.Printf("accumulator: %s", m_accum_name.AsCString()); 4094 stream.EOL(); 4095 stream.Indent(); 4096 stream.Printf("initializer: %s", m_init_name.AsCString()); 4097 stream.EOL(); 4098 stream.Indent(); 4099 stream.Printf("combiner: %s", m_comb_name.AsCString()); 4100 stream.EOL(); 4101 stream.Indent(); 4102 stream.Printf("outconverter: %s", m_outc_name.AsCString()); 4103 stream.EOL(); 4104 // XXX This is currently unspecified by RenderScript, and unused 4105 // stream.Indent(); 4106 // stream.Printf("halter: '%s'", m_init_name.AsCString()); 4107 // stream.EOL(); 4108 stream.IndentLess(); 4109 } 4110 4111 class CommandObjectRenderScriptRuntimeModuleDump : public CommandObjectParsed { 4112 public: 4113 CommandObjectRenderScriptRuntimeModuleDump(CommandInterpreter &interpreter) 4114 : CommandObjectParsed( 4115 interpreter, "renderscript module dump", 4116 "Dumps renderscript specific information for all modules.", 4117 "renderscript module dump", 4118 eCommandRequiresProcess | eCommandProcessMustBeLaunched) {} 4119 4120 ~CommandObjectRenderScriptRuntimeModuleDump() override = default; 4121 4122 bool DoExecute(Args &command, CommandReturnObject &result) override { 4123 RenderScriptRuntime *runtime = 4124 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4125 eLanguageTypeExtRenderScript); 4126 runtime->DumpModules(result.GetOutputStream()); 4127 result.SetStatus(eReturnStatusSuccessFinishResult); 4128 return true; 4129 } 4130 }; 4131 4132 class CommandObjectRenderScriptRuntimeModule : public CommandObjectMultiword { 4133 public: 4134 CommandObjectRenderScriptRuntimeModule(CommandInterpreter &interpreter) 4135 : CommandObjectMultiword(interpreter, "renderscript module", 4136 "Commands that deal with RenderScript modules.", 4137 nullptr) { 4138 LoadSubCommand( 4139 "dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeModuleDump( 4140 interpreter))); 4141 } 4142 4143 ~CommandObjectRenderScriptRuntimeModule() override = default; 4144 }; 4145 4146 class CommandObjectRenderScriptRuntimeKernelList : public CommandObjectParsed { 4147 public: 4148 CommandObjectRenderScriptRuntimeKernelList(CommandInterpreter &interpreter) 4149 : CommandObjectParsed( 4150 interpreter, "renderscript kernel list", 4151 "Lists renderscript kernel names and associated script resources.", 4152 "renderscript kernel list", 4153 eCommandRequiresProcess | eCommandProcessMustBeLaunched) {} 4154 4155 ~CommandObjectRenderScriptRuntimeKernelList() override = default; 4156 4157 bool DoExecute(Args &command, CommandReturnObject &result) override { 4158 RenderScriptRuntime *runtime = 4159 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4160 eLanguageTypeExtRenderScript); 4161 runtime->DumpKernels(result.GetOutputStream()); 4162 result.SetStatus(eReturnStatusSuccessFinishResult); 4163 return true; 4164 } 4165 }; 4166 4167 static OptionDefinition g_renderscript_reduction_bp_set_options[] = { 4168 {LLDB_OPT_SET_1, false, "function-role", 't', 4169 OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeOneLiner, 4170 "Break on a comma separated set of reduction kernel types " 4171 "(accumulator,outcoverter,combiner,initializer"}, 4172 {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument, 4173 nullptr, nullptr, 0, eArgTypeValue, 4174 "Set a breakpoint on a single invocation of the kernel with specified " 4175 "coordinate.\n" 4176 "Coordinate takes the form 'x[,y][,z] where x,y,z are positive " 4177 "integers representing kernel dimensions. " 4178 "Any unset dimensions will be defaulted to zero."}}; 4179 4180 class CommandObjectRenderScriptRuntimeReductionBreakpointSet 4181 : public CommandObjectParsed { 4182 public: 4183 CommandObjectRenderScriptRuntimeReductionBreakpointSet( 4184 CommandInterpreter &interpreter) 4185 : CommandObjectParsed( 4186 interpreter, "renderscript reduction breakpoint set", 4187 "Set a breakpoint on named RenderScript general reductions", 4188 "renderscript reduction breakpoint set <kernel_name> [-t " 4189 "<reduction_kernel_type,...>]", 4190 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4191 eCommandProcessMustBePaused), 4192 m_options(){}; 4193 4194 class CommandOptions : public Options { 4195 public: 4196 CommandOptions() 4197 : Options(), 4198 m_kernel_types(RSReduceBreakpointResolver::eKernelTypeAll) {} 4199 4200 ~CommandOptions() override = default; 4201 4202 Error SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg, 4203 ExecutionContext *exe_ctx) override { 4204 Error err; 4205 StreamString err_str; 4206 const int short_option = m_getopt_table[option_idx].val; 4207 switch (short_option) { 4208 case 't': 4209 if (!ParseReductionTypes(option_arg, err_str)) 4210 err.SetErrorStringWithFormat( 4211 "Unable to deduce reduction types for %s: %s", 4212 option_arg.str().c_str(), err_str.GetData()); 4213 break; 4214 case 'c': { 4215 auto coord = RSCoordinate{}; 4216 if (!ParseCoordinate(option_arg, coord)) 4217 err.SetErrorStringWithFormat("unable to parse coordinate for %s", 4218 option_arg.str().c_str()); 4219 else { 4220 m_have_coord = true; 4221 m_coord = coord; 4222 } 4223 break; 4224 } 4225 default: 4226 err.SetErrorStringWithFormat("Invalid option '-%c'", short_option); 4227 } 4228 return err; 4229 } 4230 4231 void OptionParsingStarting(ExecutionContext *exe_ctx) override { 4232 m_have_coord = false; 4233 } 4234 4235 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4236 return llvm::makeArrayRef(g_renderscript_reduction_bp_set_options); 4237 } 4238 4239 bool ParseReductionTypes(llvm::StringRef option_val, 4240 StreamString &err_str) { 4241 m_kernel_types = RSReduceBreakpointResolver::eKernelTypeNone; 4242 const auto reduce_name_to_type = [](llvm::StringRef name) -> int { 4243 return llvm::StringSwitch<int>(name) 4244 .Case("accumulator", RSReduceBreakpointResolver::eKernelTypeAccum) 4245 .Case("initializer", RSReduceBreakpointResolver::eKernelTypeInit) 4246 .Case("outconverter", RSReduceBreakpointResolver::eKernelTypeOutC) 4247 .Case("combiner", RSReduceBreakpointResolver::eKernelTypeComb) 4248 .Case("all", RSReduceBreakpointResolver::eKernelTypeAll) 4249 // Currently not exposed by the runtime 4250 // .Case("halter", RSReduceBreakpointResolver::eKernelTypeHalter) 4251 .Default(0); 4252 }; 4253 4254 // Matching a comma separated list of known words is fairly 4255 // straightforward with PCRE, but we're 4256 // using ERE, so we end up with a little ugliness... 4257 RegularExpression::Match match(/* max_matches */ 5); 4258 RegularExpression match_type_list( 4259 llvm::StringRef("^([[:alpha:]]+)(,[[:alpha:]]+){0,4}$")); 4260 4261 assert(match_type_list.IsValid()); 4262 4263 if (!match_type_list.Execute(option_val, &match)) { 4264 err_str.PutCString( 4265 "a comma-separated list of kernel types is required"); 4266 return false; 4267 } 4268 4269 // splitting on commas is much easier with llvm::StringRef than regex 4270 llvm::SmallVector<llvm::StringRef, 5> type_names; 4271 llvm::StringRef(option_val).split(type_names, ','); 4272 4273 for (const auto &name : type_names) { 4274 const int type = reduce_name_to_type(name); 4275 if (!type) { 4276 err_str.Printf("unknown kernel type name %s", name.str().c_str()); 4277 return false; 4278 } 4279 m_kernel_types |= type; 4280 } 4281 4282 return true; 4283 } 4284 4285 int m_kernel_types; 4286 llvm::StringRef m_reduce_name; 4287 RSCoordinate m_coord; 4288 bool m_have_coord; 4289 }; 4290 4291 Options *GetOptions() override { return &m_options; } 4292 4293 bool DoExecute(Args &command, CommandReturnObject &result) override { 4294 const size_t argc = command.GetArgumentCount(); 4295 if (argc < 1) { 4296 result.AppendErrorWithFormat("'%s' takes 1 argument of reduction name, " 4297 "and an optional kernel type list", 4298 m_cmd_name.c_str()); 4299 result.SetStatus(eReturnStatusFailed); 4300 return false; 4301 } 4302 4303 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4304 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4305 eLanguageTypeExtRenderScript)); 4306 4307 auto &outstream = result.GetOutputStream(); 4308 auto name = command.GetArgumentAtIndex(0); 4309 auto &target = m_exe_ctx.GetTargetSP(); 4310 auto coord = m_options.m_have_coord ? &m_options.m_coord : nullptr; 4311 if (!runtime->PlaceBreakpointOnReduction(target, outstream, name, coord, 4312 m_options.m_kernel_types)) { 4313 result.SetStatus(eReturnStatusFailed); 4314 result.AppendError("Error: unable to place breakpoint on reduction"); 4315 return false; 4316 } 4317 result.AppendMessage("Breakpoint(s) created"); 4318 result.SetStatus(eReturnStatusSuccessFinishResult); 4319 return true; 4320 } 4321 4322 private: 4323 CommandOptions m_options; 4324 }; 4325 4326 static OptionDefinition g_renderscript_kernel_bp_set_options[] = { 4327 {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument, 4328 nullptr, nullptr, 0, eArgTypeValue, 4329 "Set a breakpoint on a single invocation of the kernel with specified " 4330 "coordinate.\n" 4331 "Coordinate takes the form 'x[,y][,z] where x,y,z are positive " 4332 "integers representing kernel dimensions. " 4333 "Any unset dimensions will be defaulted to zero."}}; 4334 4335 class CommandObjectRenderScriptRuntimeKernelBreakpointSet 4336 : public CommandObjectParsed { 4337 public: 4338 CommandObjectRenderScriptRuntimeKernelBreakpointSet( 4339 CommandInterpreter &interpreter) 4340 : CommandObjectParsed( 4341 interpreter, "renderscript kernel breakpoint set", 4342 "Sets a breakpoint on a renderscript kernel.", 4343 "renderscript kernel breakpoint set <kernel_name> [-c x,y,z]", 4344 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4345 eCommandProcessMustBePaused), 4346 m_options() {} 4347 4348 ~CommandObjectRenderScriptRuntimeKernelBreakpointSet() override = default; 4349 4350 Options *GetOptions() override { return &m_options; } 4351 4352 class CommandOptions : public Options { 4353 public: 4354 CommandOptions() : Options() {} 4355 4356 ~CommandOptions() override = default; 4357 4358 Error SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg, 4359 ExecutionContext *exe_ctx) override { 4360 Error err; 4361 const int short_option = m_getopt_table[option_idx].val; 4362 4363 switch (short_option) { 4364 case 'c': { 4365 auto coord = RSCoordinate{}; 4366 if (!ParseCoordinate(option_arg, coord)) 4367 err.SetErrorStringWithFormat( 4368 "Couldn't parse coordinate '%s', should be in format 'x,y,z'.", 4369 option_arg.str().c_str()); 4370 else { 4371 m_have_coord = true; 4372 m_coord = coord; 4373 } 4374 break; 4375 } 4376 default: 4377 err.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 4378 break; 4379 } 4380 return err; 4381 } 4382 4383 void OptionParsingStarting(ExecutionContext *exe_ctx) override { 4384 m_have_coord = false; 4385 } 4386 4387 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4388 return llvm::makeArrayRef(g_renderscript_kernel_bp_set_options); 4389 } 4390 4391 RSCoordinate m_coord; 4392 bool m_have_coord; 4393 }; 4394 4395 bool DoExecute(Args &command, CommandReturnObject &result) override { 4396 const size_t argc = command.GetArgumentCount(); 4397 if (argc < 1) { 4398 result.AppendErrorWithFormat( 4399 "'%s' takes 1 argument of kernel name, and an optional coordinate.", 4400 m_cmd_name.c_str()); 4401 result.SetStatus(eReturnStatusFailed); 4402 return false; 4403 } 4404 4405 RenderScriptRuntime *runtime = 4406 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4407 eLanguageTypeExtRenderScript); 4408 4409 auto &outstream = result.GetOutputStream(); 4410 auto &target = m_exe_ctx.GetTargetSP(); 4411 auto name = command.GetArgumentAtIndex(0); 4412 auto coord = m_options.m_have_coord ? &m_options.m_coord : nullptr; 4413 if (!runtime->PlaceBreakpointOnKernel(target, outstream, name, coord)) { 4414 result.SetStatus(eReturnStatusFailed); 4415 result.AppendErrorWithFormat( 4416 "Error: unable to set breakpoint on kernel '%s'", name); 4417 return false; 4418 } 4419 4420 result.AppendMessage("Breakpoint(s) created"); 4421 result.SetStatus(eReturnStatusSuccessFinishResult); 4422 return true; 4423 } 4424 4425 private: 4426 CommandOptions m_options; 4427 }; 4428 4429 class CommandObjectRenderScriptRuntimeKernelBreakpointAll 4430 : public CommandObjectParsed { 4431 public: 4432 CommandObjectRenderScriptRuntimeKernelBreakpointAll( 4433 CommandInterpreter &interpreter) 4434 : CommandObjectParsed( 4435 interpreter, "renderscript kernel breakpoint all", 4436 "Automatically sets a breakpoint on all renderscript kernels that " 4437 "are or will be loaded.\n" 4438 "Disabling option means breakpoints will no longer be set on any " 4439 "kernels loaded in the future, " 4440 "but does not remove currently set breakpoints.", 4441 "renderscript kernel breakpoint all <enable/disable>", 4442 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4443 eCommandProcessMustBePaused) {} 4444 4445 ~CommandObjectRenderScriptRuntimeKernelBreakpointAll() override = default; 4446 4447 bool DoExecute(Args &command, CommandReturnObject &result) override { 4448 const size_t argc = command.GetArgumentCount(); 4449 if (argc != 1) { 4450 result.AppendErrorWithFormat( 4451 "'%s' takes 1 argument of 'enable' or 'disable'", m_cmd_name.c_str()); 4452 result.SetStatus(eReturnStatusFailed); 4453 return false; 4454 } 4455 4456 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4457 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4458 eLanguageTypeExtRenderScript)); 4459 4460 bool do_break = false; 4461 const char *argument = command.GetArgumentAtIndex(0); 4462 if (strcmp(argument, "enable") == 0) { 4463 do_break = true; 4464 result.AppendMessage("Breakpoints will be set on all kernels."); 4465 } else if (strcmp(argument, "disable") == 0) { 4466 do_break = false; 4467 result.AppendMessage("Breakpoints will not be set on any new kernels."); 4468 } else { 4469 result.AppendErrorWithFormat( 4470 "Argument must be either 'enable' or 'disable'"); 4471 result.SetStatus(eReturnStatusFailed); 4472 return false; 4473 } 4474 4475 runtime->SetBreakAllKernels(do_break, m_exe_ctx.GetTargetSP()); 4476 4477 result.SetStatus(eReturnStatusSuccessFinishResult); 4478 return true; 4479 } 4480 }; 4481 4482 class CommandObjectRenderScriptRuntimeReductionBreakpoint 4483 : public CommandObjectMultiword { 4484 public: 4485 CommandObjectRenderScriptRuntimeReductionBreakpoint( 4486 CommandInterpreter &interpreter) 4487 : CommandObjectMultiword(interpreter, "renderscript reduction breakpoint", 4488 "Commands that manipulate breakpoints on " 4489 "renderscript general reductions.", 4490 nullptr) { 4491 LoadSubCommand( 4492 "set", CommandObjectSP( 4493 new CommandObjectRenderScriptRuntimeReductionBreakpointSet( 4494 interpreter))); 4495 } 4496 4497 ~CommandObjectRenderScriptRuntimeReductionBreakpoint() override = default; 4498 }; 4499 4500 class CommandObjectRenderScriptRuntimeKernelCoordinate 4501 : public CommandObjectParsed { 4502 public: 4503 CommandObjectRenderScriptRuntimeKernelCoordinate( 4504 CommandInterpreter &interpreter) 4505 : CommandObjectParsed( 4506 interpreter, "renderscript kernel coordinate", 4507 "Shows the (x,y,z) coordinate of the current kernel invocation.", 4508 "renderscript kernel coordinate", 4509 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4510 eCommandProcessMustBePaused) {} 4511 4512 ~CommandObjectRenderScriptRuntimeKernelCoordinate() override = default; 4513 4514 bool DoExecute(Args &command, CommandReturnObject &result) override { 4515 RSCoordinate coord{}; 4516 bool success = RenderScriptRuntime::GetKernelCoordinate( 4517 coord, m_exe_ctx.GetThreadPtr()); 4518 Stream &stream = result.GetOutputStream(); 4519 4520 if (success) { 4521 stream.Printf("Coordinate: " FMT_COORD, coord.x, coord.y, coord.z); 4522 stream.EOL(); 4523 result.SetStatus(eReturnStatusSuccessFinishResult); 4524 } else { 4525 stream.Printf("Error: Coordinate could not be found."); 4526 stream.EOL(); 4527 result.SetStatus(eReturnStatusFailed); 4528 } 4529 return true; 4530 } 4531 }; 4532 4533 class CommandObjectRenderScriptRuntimeKernelBreakpoint 4534 : public CommandObjectMultiword { 4535 public: 4536 CommandObjectRenderScriptRuntimeKernelBreakpoint( 4537 CommandInterpreter &interpreter) 4538 : CommandObjectMultiword( 4539 interpreter, "renderscript kernel", 4540 "Commands that generate breakpoints on renderscript kernels.", 4541 nullptr) { 4542 LoadSubCommand( 4543 "set", 4544 CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointSet( 4545 interpreter))); 4546 LoadSubCommand( 4547 "all", 4548 CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointAll( 4549 interpreter))); 4550 } 4551 4552 ~CommandObjectRenderScriptRuntimeKernelBreakpoint() override = default; 4553 }; 4554 4555 class CommandObjectRenderScriptRuntimeKernel : public CommandObjectMultiword { 4556 public: 4557 CommandObjectRenderScriptRuntimeKernel(CommandInterpreter &interpreter) 4558 : CommandObjectMultiword(interpreter, "renderscript kernel", 4559 "Commands that deal with RenderScript kernels.", 4560 nullptr) { 4561 LoadSubCommand( 4562 "list", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelList( 4563 interpreter))); 4564 LoadSubCommand( 4565 "coordinate", 4566 CommandObjectSP( 4567 new CommandObjectRenderScriptRuntimeKernelCoordinate(interpreter))); 4568 LoadSubCommand( 4569 "breakpoint", 4570 CommandObjectSP( 4571 new CommandObjectRenderScriptRuntimeKernelBreakpoint(interpreter))); 4572 } 4573 4574 ~CommandObjectRenderScriptRuntimeKernel() override = default; 4575 }; 4576 4577 class CommandObjectRenderScriptRuntimeContextDump : public CommandObjectParsed { 4578 public: 4579 CommandObjectRenderScriptRuntimeContextDump(CommandInterpreter &interpreter) 4580 : CommandObjectParsed(interpreter, "renderscript context dump", 4581 "Dumps renderscript context information.", 4582 "renderscript context dump", 4583 eCommandRequiresProcess | 4584 eCommandProcessMustBeLaunched) {} 4585 4586 ~CommandObjectRenderScriptRuntimeContextDump() override = default; 4587 4588 bool DoExecute(Args &command, CommandReturnObject &result) override { 4589 RenderScriptRuntime *runtime = 4590 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4591 eLanguageTypeExtRenderScript); 4592 runtime->DumpContexts(result.GetOutputStream()); 4593 result.SetStatus(eReturnStatusSuccessFinishResult); 4594 return true; 4595 } 4596 }; 4597 4598 static OptionDefinition g_renderscript_runtime_alloc_dump_options[] = { 4599 {LLDB_OPT_SET_1, false, "file", 'f', OptionParser::eRequiredArgument, 4600 nullptr, nullptr, 0, eArgTypeFilename, 4601 "Print results to specified file instead of command line."}}; 4602 4603 class CommandObjectRenderScriptRuntimeContext : public CommandObjectMultiword { 4604 public: 4605 CommandObjectRenderScriptRuntimeContext(CommandInterpreter &interpreter) 4606 : CommandObjectMultiword(interpreter, "renderscript context", 4607 "Commands that deal with RenderScript contexts.", 4608 nullptr) { 4609 LoadSubCommand( 4610 "dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeContextDump( 4611 interpreter))); 4612 } 4613 4614 ~CommandObjectRenderScriptRuntimeContext() override = default; 4615 }; 4616 4617 class CommandObjectRenderScriptRuntimeAllocationDump 4618 : public CommandObjectParsed { 4619 public: 4620 CommandObjectRenderScriptRuntimeAllocationDump( 4621 CommandInterpreter &interpreter) 4622 : CommandObjectParsed(interpreter, "renderscript allocation dump", 4623 "Displays the contents of a particular allocation", 4624 "renderscript allocation dump <ID>", 4625 eCommandRequiresProcess | 4626 eCommandProcessMustBeLaunched), 4627 m_options() {} 4628 4629 ~CommandObjectRenderScriptRuntimeAllocationDump() override = default; 4630 4631 Options *GetOptions() override { return &m_options; } 4632 4633 class CommandOptions : public Options { 4634 public: 4635 CommandOptions() : Options() {} 4636 4637 ~CommandOptions() override = default; 4638 4639 Error SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg, 4640 ExecutionContext *exe_ctx) override { 4641 Error err; 4642 const int short_option = m_getopt_table[option_idx].val; 4643 4644 switch (short_option) { 4645 case 'f': 4646 m_outfile.SetFile(option_arg, true); 4647 if (m_outfile.Exists()) { 4648 m_outfile.Clear(); 4649 err.SetErrorStringWithFormat("file already exists: '%s'", 4650 option_arg.str().c_str()); 4651 } 4652 break; 4653 default: 4654 err.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 4655 break; 4656 } 4657 return err; 4658 } 4659 4660 void OptionParsingStarting(ExecutionContext *exe_ctx) override { 4661 m_outfile.Clear(); 4662 } 4663 4664 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4665 return llvm::makeArrayRef(g_renderscript_runtime_alloc_dump_options); 4666 } 4667 4668 FileSpec m_outfile; 4669 }; 4670 4671 bool DoExecute(Args &command, CommandReturnObject &result) override { 4672 const size_t argc = command.GetArgumentCount(); 4673 if (argc < 1) { 4674 result.AppendErrorWithFormat("'%s' takes 1 argument, an allocation ID. " 4675 "As well as an optional -f argument", 4676 m_cmd_name.c_str()); 4677 result.SetStatus(eReturnStatusFailed); 4678 return false; 4679 } 4680 4681 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4682 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4683 eLanguageTypeExtRenderScript)); 4684 4685 const char *id_cstr = command.GetArgumentAtIndex(0); 4686 bool success = false; 4687 const uint32_t id = 4688 StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success); 4689 if (!success) { 4690 result.AppendErrorWithFormat("invalid allocation id argument '%s'", 4691 id_cstr); 4692 result.SetStatus(eReturnStatusFailed); 4693 return false; 4694 } 4695 4696 Stream *output_strm = nullptr; 4697 StreamFile outfile_stream; 4698 const FileSpec &outfile_spec = 4699 m_options.m_outfile; // Dump allocation to file instead 4700 if (outfile_spec) { 4701 // Open output file 4702 char path[256]; 4703 outfile_spec.GetPath(path, sizeof(path)); 4704 if (outfile_stream.GetFile() 4705 .Open(path, File::eOpenOptionWrite | File::eOpenOptionCanCreate) 4706 .Success()) { 4707 output_strm = &outfile_stream; 4708 result.GetOutputStream().Printf("Results written to '%s'", path); 4709 result.GetOutputStream().EOL(); 4710 } else { 4711 result.AppendErrorWithFormat("Couldn't open file '%s'", path); 4712 result.SetStatus(eReturnStatusFailed); 4713 return false; 4714 } 4715 } else 4716 output_strm = &result.GetOutputStream(); 4717 4718 assert(output_strm != nullptr); 4719 bool dumped = 4720 runtime->DumpAllocation(*output_strm, m_exe_ctx.GetFramePtr(), id); 4721 4722 if (dumped) 4723 result.SetStatus(eReturnStatusSuccessFinishResult); 4724 else 4725 result.SetStatus(eReturnStatusFailed); 4726 4727 return true; 4728 } 4729 4730 private: 4731 CommandOptions m_options; 4732 }; 4733 4734 static OptionDefinition g_renderscript_runtime_alloc_list_options[] = { 4735 {LLDB_OPT_SET_1, false, "id", 'i', OptionParser::eRequiredArgument, nullptr, 4736 nullptr, 0, eArgTypeIndex, 4737 "Only show details of a single allocation with specified id."}}; 4738 4739 class CommandObjectRenderScriptRuntimeAllocationList 4740 : public CommandObjectParsed { 4741 public: 4742 CommandObjectRenderScriptRuntimeAllocationList( 4743 CommandInterpreter &interpreter) 4744 : CommandObjectParsed( 4745 interpreter, "renderscript allocation list", 4746 "List renderscript allocations and their information.", 4747 "renderscript allocation list", 4748 eCommandRequiresProcess | eCommandProcessMustBeLaunched), 4749 m_options() {} 4750 4751 ~CommandObjectRenderScriptRuntimeAllocationList() override = default; 4752 4753 Options *GetOptions() override { return &m_options; } 4754 4755 class CommandOptions : public Options { 4756 public: 4757 CommandOptions() : Options(), m_id(0) {} 4758 4759 ~CommandOptions() override = default; 4760 4761 Error SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg, 4762 ExecutionContext *exe_ctx) override { 4763 Error err; 4764 const int short_option = m_getopt_table[option_idx].val; 4765 4766 switch (short_option) { 4767 case 'i': 4768 if (option_arg.getAsInteger(0, m_id)) 4769 err.SetErrorStringWithFormat("invalid integer value for option '%c'", 4770 short_option); 4771 break; 4772 default: 4773 err.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 4774 break; 4775 } 4776 return err; 4777 } 4778 4779 void OptionParsingStarting(ExecutionContext *exe_ctx) override { m_id = 0; } 4780 4781 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4782 return llvm::makeArrayRef(g_renderscript_runtime_alloc_list_options); 4783 } 4784 4785 uint32_t m_id; 4786 }; 4787 4788 bool DoExecute(Args &command, CommandReturnObject &result) override { 4789 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4790 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4791 eLanguageTypeExtRenderScript)); 4792 runtime->ListAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr(), 4793 m_options.m_id); 4794 result.SetStatus(eReturnStatusSuccessFinishResult); 4795 return true; 4796 } 4797 4798 private: 4799 CommandOptions m_options; 4800 }; 4801 4802 class CommandObjectRenderScriptRuntimeAllocationLoad 4803 : public CommandObjectParsed { 4804 public: 4805 CommandObjectRenderScriptRuntimeAllocationLoad( 4806 CommandInterpreter &interpreter) 4807 : CommandObjectParsed( 4808 interpreter, "renderscript allocation load", 4809 "Loads renderscript allocation contents from a file.", 4810 "renderscript allocation load <ID> <filename>", 4811 eCommandRequiresProcess | eCommandProcessMustBeLaunched) {} 4812 4813 ~CommandObjectRenderScriptRuntimeAllocationLoad() override = default; 4814 4815 bool DoExecute(Args &command, CommandReturnObject &result) override { 4816 const size_t argc = command.GetArgumentCount(); 4817 if (argc != 2) { 4818 result.AppendErrorWithFormat( 4819 "'%s' takes 2 arguments, an allocation ID and filename to read from.", 4820 m_cmd_name.c_str()); 4821 result.SetStatus(eReturnStatusFailed); 4822 return false; 4823 } 4824 4825 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4826 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4827 eLanguageTypeExtRenderScript)); 4828 4829 const char *id_cstr = command.GetArgumentAtIndex(0); 4830 bool success = false; 4831 const uint32_t id = 4832 StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success); 4833 if (!success) { 4834 result.AppendErrorWithFormat("invalid allocation id argument '%s'", 4835 id_cstr); 4836 result.SetStatus(eReturnStatusFailed); 4837 return false; 4838 } 4839 4840 const char *path = command.GetArgumentAtIndex(1); 4841 bool loaded = runtime->LoadAllocation(result.GetOutputStream(), id, path, 4842 m_exe_ctx.GetFramePtr()); 4843 4844 if (loaded) 4845 result.SetStatus(eReturnStatusSuccessFinishResult); 4846 else 4847 result.SetStatus(eReturnStatusFailed); 4848 4849 return true; 4850 } 4851 }; 4852 4853 class CommandObjectRenderScriptRuntimeAllocationSave 4854 : public CommandObjectParsed { 4855 public: 4856 CommandObjectRenderScriptRuntimeAllocationSave( 4857 CommandInterpreter &interpreter) 4858 : CommandObjectParsed(interpreter, "renderscript allocation save", 4859 "Write renderscript allocation contents to a file.", 4860 "renderscript allocation save <ID> <filename>", 4861 eCommandRequiresProcess | 4862 eCommandProcessMustBeLaunched) {} 4863 4864 ~CommandObjectRenderScriptRuntimeAllocationSave() override = default; 4865 4866 bool DoExecute(Args &command, CommandReturnObject &result) override { 4867 const size_t argc = command.GetArgumentCount(); 4868 if (argc != 2) { 4869 result.AppendErrorWithFormat( 4870 "'%s' takes 2 arguments, an allocation ID and filename to read from.", 4871 m_cmd_name.c_str()); 4872 result.SetStatus(eReturnStatusFailed); 4873 return false; 4874 } 4875 4876 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4877 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4878 eLanguageTypeExtRenderScript)); 4879 4880 const char *id_cstr = command.GetArgumentAtIndex(0); 4881 bool success = false; 4882 const uint32_t id = 4883 StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success); 4884 if (!success) { 4885 result.AppendErrorWithFormat("invalid allocation id argument '%s'", 4886 id_cstr); 4887 result.SetStatus(eReturnStatusFailed); 4888 return false; 4889 } 4890 4891 const char *path = command.GetArgumentAtIndex(1); 4892 bool saved = runtime->SaveAllocation(result.GetOutputStream(), id, path, 4893 m_exe_ctx.GetFramePtr()); 4894 4895 if (saved) 4896 result.SetStatus(eReturnStatusSuccessFinishResult); 4897 else 4898 result.SetStatus(eReturnStatusFailed); 4899 4900 return true; 4901 } 4902 }; 4903 4904 class CommandObjectRenderScriptRuntimeAllocationRefresh 4905 : public CommandObjectParsed { 4906 public: 4907 CommandObjectRenderScriptRuntimeAllocationRefresh( 4908 CommandInterpreter &interpreter) 4909 : CommandObjectParsed(interpreter, "renderscript allocation refresh", 4910 "Recomputes the details of all allocations.", 4911 "renderscript allocation refresh", 4912 eCommandRequiresProcess | 4913 eCommandProcessMustBeLaunched) {} 4914 4915 ~CommandObjectRenderScriptRuntimeAllocationRefresh() override = default; 4916 4917 bool DoExecute(Args &command, CommandReturnObject &result) override { 4918 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4919 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4920 eLanguageTypeExtRenderScript)); 4921 4922 bool success = runtime->RecomputeAllAllocations(result.GetOutputStream(), 4923 m_exe_ctx.GetFramePtr()); 4924 4925 if (success) { 4926 result.SetStatus(eReturnStatusSuccessFinishResult); 4927 return true; 4928 } else { 4929 result.SetStatus(eReturnStatusFailed); 4930 return false; 4931 } 4932 } 4933 }; 4934 4935 class CommandObjectRenderScriptRuntimeAllocation 4936 : public CommandObjectMultiword { 4937 public: 4938 CommandObjectRenderScriptRuntimeAllocation(CommandInterpreter &interpreter) 4939 : CommandObjectMultiword( 4940 interpreter, "renderscript allocation", 4941 "Commands that deal with RenderScript allocations.", nullptr) { 4942 LoadSubCommand( 4943 "list", 4944 CommandObjectSP( 4945 new CommandObjectRenderScriptRuntimeAllocationList(interpreter))); 4946 LoadSubCommand( 4947 "dump", 4948 CommandObjectSP( 4949 new CommandObjectRenderScriptRuntimeAllocationDump(interpreter))); 4950 LoadSubCommand( 4951 "save", 4952 CommandObjectSP( 4953 new CommandObjectRenderScriptRuntimeAllocationSave(interpreter))); 4954 LoadSubCommand( 4955 "load", 4956 CommandObjectSP( 4957 new CommandObjectRenderScriptRuntimeAllocationLoad(interpreter))); 4958 LoadSubCommand( 4959 "refresh", 4960 CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationRefresh( 4961 interpreter))); 4962 } 4963 4964 ~CommandObjectRenderScriptRuntimeAllocation() override = default; 4965 }; 4966 4967 class CommandObjectRenderScriptRuntimeStatus : public CommandObjectParsed { 4968 public: 4969 CommandObjectRenderScriptRuntimeStatus(CommandInterpreter &interpreter) 4970 : CommandObjectParsed(interpreter, "renderscript status", 4971 "Displays current RenderScript runtime status.", 4972 "renderscript status", 4973 eCommandRequiresProcess | 4974 eCommandProcessMustBeLaunched) {} 4975 4976 ~CommandObjectRenderScriptRuntimeStatus() override = default; 4977 4978 bool DoExecute(Args &command, CommandReturnObject &result) override { 4979 RenderScriptRuntime *runtime = 4980 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4981 eLanguageTypeExtRenderScript); 4982 runtime->Status(result.GetOutputStream()); 4983 result.SetStatus(eReturnStatusSuccessFinishResult); 4984 return true; 4985 } 4986 }; 4987 4988 class CommandObjectRenderScriptRuntimeReduction 4989 : public CommandObjectMultiword { 4990 public: 4991 CommandObjectRenderScriptRuntimeReduction(CommandInterpreter &interpreter) 4992 : CommandObjectMultiword(interpreter, "renderscript reduction", 4993 "Commands that handle general reduction kernels", 4994 nullptr) { 4995 LoadSubCommand( 4996 "breakpoint", 4997 CommandObjectSP(new CommandObjectRenderScriptRuntimeReductionBreakpoint( 4998 interpreter))); 4999 } 5000 ~CommandObjectRenderScriptRuntimeReduction() override = default; 5001 }; 5002 5003 class CommandObjectRenderScriptRuntime : public CommandObjectMultiword { 5004 public: 5005 CommandObjectRenderScriptRuntime(CommandInterpreter &interpreter) 5006 : CommandObjectMultiword( 5007 interpreter, "renderscript", 5008 "Commands for operating on the RenderScript runtime.", 5009 "renderscript <subcommand> [<subcommand-options>]") { 5010 LoadSubCommand( 5011 "module", CommandObjectSP( 5012 new CommandObjectRenderScriptRuntimeModule(interpreter))); 5013 LoadSubCommand( 5014 "status", CommandObjectSP( 5015 new CommandObjectRenderScriptRuntimeStatus(interpreter))); 5016 LoadSubCommand( 5017 "kernel", CommandObjectSP( 5018 new CommandObjectRenderScriptRuntimeKernel(interpreter))); 5019 LoadSubCommand("context", 5020 CommandObjectSP(new CommandObjectRenderScriptRuntimeContext( 5021 interpreter))); 5022 LoadSubCommand( 5023 "allocation", 5024 CommandObjectSP( 5025 new CommandObjectRenderScriptRuntimeAllocation(interpreter))); 5026 LoadSubCommand("scriptgroup", 5027 NewCommandObjectRenderScriptScriptGroup(interpreter)); 5028 LoadSubCommand( 5029 "reduction", 5030 CommandObjectSP( 5031 new CommandObjectRenderScriptRuntimeReduction(interpreter))); 5032 } 5033 5034 ~CommandObjectRenderScriptRuntime() override = default; 5035 }; 5036 5037 void RenderScriptRuntime::Initiate() { assert(!m_initiated); } 5038 5039 RenderScriptRuntime::RenderScriptRuntime(Process *process) 5040 : lldb_private::CPPLanguageRuntime(process), m_initiated(false), 5041 m_debuggerPresentFlagged(false), m_breakAllKernels(false), 5042 m_ir_passes(nullptr) { 5043 ModulesDidLoad(process->GetTarget().GetImages()); 5044 } 5045 5046 lldb::CommandObjectSP RenderScriptRuntime::GetCommandObject( 5047 lldb_private::CommandInterpreter &interpreter) { 5048 return CommandObjectSP(new CommandObjectRenderScriptRuntime(interpreter)); 5049 } 5050 5051 RenderScriptRuntime::~RenderScriptRuntime() = default; 5052