1 //===-- RenderScriptRuntime.cpp ---------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 // C Includes 11 // C++ Includes 12 // Other libraries and framework includes 13 #include "llvm/ADT/StringSwitch.h" 14 15 // Project includes 16 #include "RenderScriptRuntime.h" 17 #include "RenderScriptScriptGroup.h" 18 19 #include "lldb/Breakpoint/StoppointCallbackContext.h" 20 #include "lldb/Core/Debugger.h" 21 #include "lldb/Core/DumpDataExtractor.h" 22 #include "lldb/Core/PluginManager.h" 23 #include "lldb/Core/ValueObjectVariable.h" 24 #include "lldb/DataFormatters/DumpValueObjectOptions.h" 25 #include "lldb/Expression/UserExpression.h" 26 #include "lldb/Host/OptionParser.h" 27 #include "lldb/Host/StringConvert.h" 28 #include "lldb/Interpreter/Args.h" 29 #include "lldb/Interpreter/CommandInterpreter.h" 30 #include "lldb/Interpreter/CommandObjectMultiword.h" 31 #include "lldb/Interpreter/CommandReturnObject.h" 32 #include "lldb/Interpreter/Options.h" 33 #include "lldb/Symbol/Function.h" 34 #include "lldb/Symbol/Symbol.h" 35 #include "lldb/Symbol/Type.h" 36 #include "lldb/Symbol/VariableList.h" 37 #include "lldb/Target/Process.h" 38 #include "lldb/Target/RegisterContext.h" 39 #include "lldb/Target/SectionLoadList.h" 40 #include "lldb/Target/Target.h" 41 #include "lldb/Target/Thread.h" 42 #include "lldb/Utility/ConstString.h" 43 #include "lldb/Utility/DataBufferLLVM.h" 44 #include "lldb/Utility/Error.h" 45 #include "lldb/Utility/Log.h" 46 #include "lldb/Utility/RegularExpression.h" 47 48 using namespace lldb; 49 using namespace lldb_private; 50 using namespace lldb_renderscript; 51 52 #define FMT_COORD "(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ")" 53 54 namespace { 55 56 // The empirical_type adds a basic level of validation to arbitrary data 57 // allowing us to track if data has been discovered and stored or not. An 58 // empirical_type will be marked as valid only if it has been explicitly 59 // assigned to. 60 template <typename type_t> class empirical_type { 61 public: 62 // Ctor. Contents is invalid when constructed. 63 empirical_type() : valid(false) {} 64 65 // Return true and copy contents to out if valid, else return false. 66 bool get(type_t &out) const { 67 if (valid) 68 out = data; 69 return valid; 70 } 71 72 // Return a pointer to the contents or nullptr if it was not valid. 73 const type_t *get() const { return valid ? &data : nullptr; } 74 75 // Assign data explicitly. 76 void set(const type_t in) { 77 data = in; 78 valid = true; 79 } 80 81 // Mark contents as invalid. 82 void invalidate() { valid = false; } 83 84 // Returns true if this type contains valid data. 85 bool isValid() const { return valid; } 86 87 // Assignment operator. 88 empirical_type<type_t> &operator=(const type_t in) { 89 set(in); 90 return *this; 91 } 92 93 // Dereference operator returns contents. 94 // Warning: Will assert if not valid so use only when you know data is valid. 95 const type_t &operator*() const { 96 assert(valid); 97 return data; 98 } 99 100 protected: 101 bool valid; 102 type_t data; 103 }; 104 105 // ArgItem is used by the GetArgs() function when reading function arguments 106 // from the target. 107 struct ArgItem { 108 enum { ePointer, eInt32, eInt64, eLong, eBool } type; 109 110 uint64_t value; 111 112 explicit operator uint64_t() const { return value; } 113 }; 114 115 // Context structure to be passed into GetArgsXXX(), argument reading functions 116 // below. 117 struct GetArgsCtx { 118 RegisterContext *reg_ctx; 119 Process *process; 120 }; 121 122 bool GetArgsX86(const GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 123 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 124 125 Error err; 126 127 // get the current stack pointer 128 uint64_t sp = ctx.reg_ctx->GetSP(); 129 130 for (size_t i = 0; i < num_args; ++i) { 131 ArgItem &arg = arg_list[i]; 132 // advance up the stack by one argument 133 sp += sizeof(uint32_t); 134 // get the argument type size 135 size_t arg_size = sizeof(uint32_t); 136 // read the argument from memory 137 arg.value = 0; 138 Error err; 139 size_t read = 140 ctx.process->ReadMemory(sp, &arg.value, sizeof(uint32_t), err); 141 if (read != arg_size || !err.Success()) { 142 if (log) 143 log->Printf("%s - error reading argument: %" PRIu64 " '%s'", 144 __FUNCTION__, uint64_t(i), err.AsCString()); 145 return false; 146 } 147 } 148 return true; 149 } 150 151 bool GetArgsX86_64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 152 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 153 154 // number of arguments passed in registers 155 static const uint32_t args_in_reg = 6; 156 // register passing order 157 static const std::array<const char *, args_in_reg> reg_names{ 158 {"rdi", "rsi", "rdx", "rcx", "r8", "r9"}}; 159 // argument type to size mapping 160 static const std::array<size_t, 5> arg_size{{ 161 8, // ePointer, 162 4, // eInt32, 163 8, // eInt64, 164 8, // eLong, 165 4, // eBool, 166 }}; 167 168 Error err; 169 170 // get the current stack pointer 171 uint64_t sp = ctx.reg_ctx->GetSP(); 172 // step over the return address 173 sp += sizeof(uint64_t); 174 175 // check the stack alignment was correct (16 byte aligned) 176 if ((sp & 0xf) != 0x0) { 177 if (log) 178 log->Printf("%s - stack misaligned", __FUNCTION__); 179 return false; 180 } 181 182 // find the start of arguments on the stack 183 uint64_t sp_offset = 0; 184 for (uint32_t i = args_in_reg; i < num_args; ++i) { 185 sp_offset += arg_size[arg_list[i].type]; 186 } 187 // round up to multiple of 16 188 sp_offset = (sp_offset + 0xf) & 0xf; 189 sp += sp_offset; 190 191 for (size_t i = 0; i < num_args; ++i) { 192 bool success = false; 193 ArgItem &arg = arg_list[i]; 194 // arguments passed in registers 195 if (i < args_in_reg) { 196 const RegisterInfo *reg = 197 ctx.reg_ctx->GetRegisterInfoByName(reg_names[i]); 198 RegisterValue reg_val; 199 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 200 arg.value = reg_val.GetAsUInt64(0, &success); 201 } 202 // arguments passed on the stack 203 else { 204 // get the argument type size 205 const size_t size = arg_size[arg_list[i].type]; 206 // read the argument from memory 207 arg.value = 0; 208 // note: due to little endian layout reading 4 or 8 bytes will give the 209 // correct value. 210 size_t read = ctx.process->ReadMemory(sp, &arg.value, size, err); 211 success = (err.Success() && read == size); 212 // advance past this argument 213 sp -= size; 214 } 215 // fail if we couldn't read this argument 216 if (!success) { 217 if (log) 218 log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s", 219 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 220 return false; 221 } 222 } 223 return true; 224 } 225 226 bool GetArgsArm(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 227 // number of arguments passed in registers 228 static const uint32_t args_in_reg = 4; 229 230 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 231 232 Error err; 233 234 // get the current stack pointer 235 uint64_t sp = ctx.reg_ctx->GetSP(); 236 237 for (size_t i = 0; i < num_args; ++i) { 238 bool success = false; 239 ArgItem &arg = arg_list[i]; 240 // arguments passed in registers 241 if (i < args_in_reg) { 242 const RegisterInfo *reg = ctx.reg_ctx->GetRegisterInfoAtIndex(i); 243 RegisterValue reg_val; 244 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 245 arg.value = reg_val.GetAsUInt32(0, &success); 246 } 247 // arguments passed on the stack 248 else { 249 // get the argument type size 250 const size_t arg_size = sizeof(uint32_t); 251 // clear all 64bits 252 arg.value = 0; 253 // read this argument from memory 254 size_t bytes_read = 255 ctx.process->ReadMemory(sp, &arg.value, arg_size, err); 256 success = (err.Success() && bytes_read == arg_size); 257 // advance the stack pointer 258 sp += sizeof(uint32_t); 259 } 260 // fail if we couldn't read this argument 261 if (!success) { 262 if (log) 263 log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s", 264 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 265 return false; 266 } 267 } 268 return true; 269 } 270 271 bool GetArgsAarch64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 272 // number of arguments passed in registers 273 static const uint32_t args_in_reg = 8; 274 275 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 276 277 for (size_t i = 0; i < num_args; ++i) { 278 bool success = false; 279 ArgItem &arg = arg_list[i]; 280 // arguments passed in registers 281 if (i < args_in_reg) { 282 const RegisterInfo *reg = ctx.reg_ctx->GetRegisterInfoAtIndex(i); 283 RegisterValue reg_val; 284 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 285 arg.value = reg_val.GetAsUInt64(0, &success); 286 } 287 // arguments passed on the stack 288 else { 289 if (log) 290 log->Printf("%s - reading arguments spilled to stack not implemented", 291 __FUNCTION__); 292 } 293 // fail if we couldn't read this argument 294 if (!success) { 295 if (log) 296 log->Printf("%s - error reading argument: %" PRIu64, __FUNCTION__, 297 uint64_t(i)); 298 return false; 299 } 300 } 301 return true; 302 } 303 304 bool GetArgsMipsel(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 305 // number of arguments passed in registers 306 static const uint32_t args_in_reg = 4; 307 // register file offset to first argument 308 static const uint32_t reg_offset = 4; 309 310 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 311 312 Error err; 313 314 // find offset to arguments on the stack (+16 to skip over a0-a3 shadow space) 315 uint64_t sp = ctx.reg_ctx->GetSP() + 16; 316 317 for (size_t i = 0; i < num_args; ++i) { 318 bool success = false; 319 ArgItem &arg = arg_list[i]; 320 // arguments passed in registers 321 if (i < args_in_reg) { 322 const RegisterInfo *reg = 323 ctx.reg_ctx->GetRegisterInfoAtIndex(i + reg_offset); 324 RegisterValue reg_val; 325 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 326 arg.value = reg_val.GetAsUInt64(0, &success); 327 } 328 // arguments passed on the stack 329 else { 330 const size_t arg_size = sizeof(uint32_t); 331 arg.value = 0; 332 size_t bytes_read = 333 ctx.process->ReadMemory(sp, &arg.value, arg_size, err); 334 success = (err.Success() && bytes_read == arg_size); 335 // advance the stack pointer 336 sp += arg_size; 337 } 338 // fail if we couldn't read this argument 339 if (!success) { 340 if (log) 341 log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s", 342 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 343 return false; 344 } 345 } 346 return true; 347 } 348 349 bool GetArgsMips64el(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 350 // number of arguments passed in registers 351 static const uint32_t args_in_reg = 8; 352 // register file offset to first argument 353 static const uint32_t reg_offset = 4; 354 355 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 356 357 Error err; 358 359 // get the current stack pointer 360 uint64_t sp = ctx.reg_ctx->GetSP(); 361 362 for (size_t i = 0; i < num_args; ++i) { 363 bool success = false; 364 ArgItem &arg = arg_list[i]; 365 // arguments passed in registers 366 if (i < args_in_reg) { 367 const RegisterInfo *reg = 368 ctx.reg_ctx->GetRegisterInfoAtIndex(i + reg_offset); 369 RegisterValue reg_val; 370 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 371 arg.value = reg_val.GetAsUInt64(0, &success); 372 } 373 // arguments passed on the stack 374 else { 375 // get the argument type size 376 const size_t arg_size = sizeof(uint64_t); 377 // clear all 64bits 378 arg.value = 0; 379 // read this argument from memory 380 size_t bytes_read = 381 ctx.process->ReadMemory(sp, &arg.value, arg_size, err); 382 success = (err.Success() && bytes_read == arg_size); 383 // advance the stack pointer 384 sp += arg_size; 385 } 386 // fail if we couldn't read this argument 387 if (!success) { 388 if (log) 389 log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s", 390 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 391 return false; 392 } 393 } 394 return true; 395 } 396 397 bool GetArgs(ExecutionContext &exe_ctx, ArgItem *arg_list, size_t num_args) { 398 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 399 400 // verify that we have a target 401 if (!exe_ctx.GetTargetPtr()) { 402 if (log) 403 log->Printf("%s - invalid target", __FUNCTION__); 404 return false; 405 } 406 407 GetArgsCtx ctx = {exe_ctx.GetRegisterContext(), exe_ctx.GetProcessPtr()}; 408 assert(ctx.reg_ctx && ctx.process); 409 410 // dispatch based on architecture 411 switch (exe_ctx.GetTargetPtr()->GetArchitecture().GetMachine()) { 412 case llvm::Triple::ArchType::x86: 413 return GetArgsX86(ctx, arg_list, num_args); 414 415 case llvm::Triple::ArchType::x86_64: 416 return GetArgsX86_64(ctx, arg_list, num_args); 417 418 case llvm::Triple::ArchType::arm: 419 return GetArgsArm(ctx, arg_list, num_args); 420 421 case llvm::Triple::ArchType::aarch64: 422 return GetArgsAarch64(ctx, arg_list, num_args); 423 424 case llvm::Triple::ArchType::mipsel: 425 return GetArgsMipsel(ctx, arg_list, num_args); 426 427 case llvm::Triple::ArchType::mips64el: 428 return GetArgsMips64el(ctx, arg_list, num_args); 429 430 default: 431 // unsupported architecture 432 if (log) { 433 log->Printf( 434 "%s - architecture not supported: '%s'", __FUNCTION__, 435 exe_ctx.GetTargetRef().GetArchitecture().GetArchitectureName()); 436 } 437 return false; 438 } 439 } 440 441 bool IsRenderScriptScriptModule(ModuleSP module) { 442 if (!module) 443 return false; 444 return module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), 445 eSymbolTypeData) != nullptr; 446 } 447 448 bool ParseCoordinate(llvm::StringRef coord_s, RSCoordinate &coord) { 449 // takes an argument of the form 'num[,num][,num]'. 450 // Where 'coord_s' is a comma separated 1,2 or 3-dimensional coordinate 451 // with the whitespace trimmed. 452 // Missing coordinates are defaulted to zero. 453 // If parsing of any elements fails the contents of &coord are undefined 454 // and `false` is returned, `true` otherwise 455 456 RegularExpression regex; 457 RegularExpression::Match regex_match(3); 458 459 bool matched = false; 460 if (regex.Compile(llvm::StringRef("^([0-9]+),([0-9]+),([0-9]+)$")) && 461 regex.Execute(coord_s, ®ex_match)) 462 matched = true; 463 else if (regex.Compile(llvm::StringRef("^([0-9]+),([0-9]+)$")) && 464 regex.Execute(coord_s, ®ex_match)) 465 matched = true; 466 else if (regex.Compile(llvm::StringRef("^([0-9]+)$")) && 467 regex.Execute(coord_s, ®ex_match)) 468 matched = true; 469 470 if (!matched) 471 return false; 472 473 auto get_index = [&](int idx, uint32_t &i) -> bool { 474 std::string group; 475 errno = 0; 476 if (regex_match.GetMatchAtIndex(coord_s.str().c_str(), idx + 1, group)) 477 return !llvm::StringRef(group).getAsInteger<uint32_t>(10, i); 478 return true; 479 }; 480 481 return get_index(0, coord.x) && get_index(1, coord.y) && 482 get_index(2, coord.z); 483 } 484 485 bool SkipPrologue(lldb::ModuleSP &module, Address &addr) { 486 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 487 SymbolContext sc; 488 uint32_t resolved_flags = 489 module->ResolveSymbolContextForAddress(addr, eSymbolContextFunction, sc); 490 if (resolved_flags & eSymbolContextFunction) { 491 if (sc.function) { 492 const uint32_t offset = sc.function->GetPrologueByteSize(); 493 ConstString name = sc.GetFunctionName(); 494 if (offset) 495 addr.Slide(offset); 496 if (log) 497 log->Printf("%s: Prologue offset for %s is %" PRIu32, __FUNCTION__, 498 name.AsCString(), offset); 499 } 500 return true; 501 } else 502 return false; 503 } 504 } // anonymous namespace 505 506 // The ScriptDetails class collects data associated with a single script 507 // instance. 508 struct RenderScriptRuntime::ScriptDetails { 509 ~ScriptDetails() = default; 510 511 enum ScriptType { eScript, eScriptC }; 512 513 // The derived type of the script. 514 empirical_type<ScriptType> type; 515 // The name of the original source file. 516 empirical_type<std::string> res_name; 517 // Path to script .so file on the device. 518 empirical_type<std::string> shared_lib; 519 // Directory where kernel objects are cached on device. 520 empirical_type<std::string> cache_dir; 521 // Pointer to the context which owns this script. 522 empirical_type<lldb::addr_t> context; 523 // Pointer to the script object itself. 524 empirical_type<lldb::addr_t> script; 525 }; 526 527 // This Element class represents the Element object in RS, defining the type 528 // associated with an Allocation. 529 struct RenderScriptRuntime::Element { 530 // Taken from rsDefines.h 531 enum DataKind { 532 RS_KIND_USER, 533 RS_KIND_PIXEL_L = 7, 534 RS_KIND_PIXEL_A, 535 RS_KIND_PIXEL_LA, 536 RS_KIND_PIXEL_RGB, 537 RS_KIND_PIXEL_RGBA, 538 RS_KIND_PIXEL_DEPTH, 539 RS_KIND_PIXEL_YUV, 540 RS_KIND_INVALID = 100 541 }; 542 543 // Taken from rsDefines.h 544 enum DataType { 545 RS_TYPE_NONE = 0, 546 RS_TYPE_FLOAT_16, 547 RS_TYPE_FLOAT_32, 548 RS_TYPE_FLOAT_64, 549 RS_TYPE_SIGNED_8, 550 RS_TYPE_SIGNED_16, 551 RS_TYPE_SIGNED_32, 552 RS_TYPE_SIGNED_64, 553 RS_TYPE_UNSIGNED_8, 554 RS_TYPE_UNSIGNED_16, 555 RS_TYPE_UNSIGNED_32, 556 RS_TYPE_UNSIGNED_64, 557 RS_TYPE_BOOLEAN, 558 559 RS_TYPE_UNSIGNED_5_6_5, 560 RS_TYPE_UNSIGNED_5_5_5_1, 561 RS_TYPE_UNSIGNED_4_4_4_4, 562 563 RS_TYPE_MATRIX_4X4, 564 RS_TYPE_MATRIX_3X3, 565 RS_TYPE_MATRIX_2X2, 566 567 RS_TYPE_ELEMENT = 1000, 568 RS_TYPE_TYPE, 569 RS_TYPE_ALLOCATION, 570 RS_TYPE_SAMPLER, 571 RS_TYPE_SCRIPT, 572 RS_TYPE_MESH, 573 RS_TYPE_PROGRAM_FRAGMENT, 574 RS_TYPE_PROGRAM_VERTEX, 575 RS_TYPE_PROGRAM_RASTER, 576 RS_TYPE_PROGRAM_STORE, 577 RS_TYPE_FONT, 578 579 RS_TYPE_INVALID = 10000 580 }; 581 582 std::vector<Element> children; // Child Element fields for structs 583 empirical_type<lldb::addr_t> 584 element_ptr; // Pointer to the RS Element of the Type 585 empirical_type<DataType> 586 type; // Type of each data pointer stored by the allocation 587 empirical_type<DataKind> 588 type_kind; // Defines pixel type if Allocation is created from an image 589 empirical_type<uint32_t> 590 type_vec_size; // Vector size of each data point, e.g '4' for uchar4 591 empirical_type<uint32_t> field_count; // Number of Subelements 592 empirical_type<uint32_t> datum_size; // Size of a single Element with padding 593 empirical_type<uint32_t> padding; // Number of padding bytes 594 empirical_type<uint32_t> 595 array_size; // Number of items in array, only needed for strucrs 596 ConstString type_name; // Name of type, only needed for structs 597 598 static const ConstString & 599 GetFallbackStructName(); // Print this as the type name of a struct Element 600 // If we can't resolve the actual struct name 601 602 bool ShouldRefresh() const { 603 const bool valid_ptr = element_ptr.isValid() && *element_ptr.get() != 0x0; 604 const bool valid_type = 605 type.isValid() && type_vec_size.isValid() && type_kind.isValid(); 606 return !valid_ptr || !valid_type || !datum_size.isValid(); 607 } 608 }; 609 610 // This AllocationDetails class collects data associated with a single 611 // allocation instance. 612 struct RenderScriptRuntime::AllocationDetails { 613 struct Dimension { 614 uint32_t dim_1; 615 uint32_t dim_2; 616 uint32_t dim_3; 617 uint32_t cube_map; 618 619 Dimension() { 620 dim_1 = 0; 621 dim_2 = 0; 622 dim_3 = 0; 623 cube_map = 0; 624 } 625 }; 626 627 // The FileHeader struct specifies the header we use for writing allocations 628 // to a binary file. Our format begins with the ASCII characters "RSAD", 629 // identifying the file as an allocation dump. Member variables dims and 630 // hdr_size are then written consecutively, immediately followed by an 631 // instance of the ElementHeader struct. Because Elements can contain 632 // subelements, there may be more than one instance of the ElementHeader 633 // struct. With this first instance being the root element, and the other 634 // instances being the root's descendants. To identify which instances are an 635 // ElementHeader's children, each struct is immediately followed by a sequence 636 // of consecutive offsets to the start of its child structs. These offsets are 637 // 4 bytes in size, and the 0 offset signifies no more children. 638 struct FileHeader { 639 uint8_t ident[4]; // ASCII 'RSAD' identifying the file 640 uint32_t dims[3]; // Dimensions 641 uint16_t hdr_size; // Header size in bytes, including all element headers 642 }; 643 644 struct ElementHeader { 645 uint16_t type; // DataType enum 646 uint32_t kind; // DataKind enum 647 uint32_t element_size; // Size of a single element, including padding 648 uint16_t vector_size; // Vector width 649 uint32_t array_size; // Number of elements in array 650 }; 651 652 // Monotonically increasing from 1 653 static uint32_t ID; 654 655 // Maps Allocation DataType enum and vector size to printable strings 656 // using mapping from RenderScript numerical types summary documentation 657 static const char *RsDataTypeToString[][4]; 658 659 // Maps Allocation DataKind enum to printable strings 660 static const char *RsDataKindToString[]; 661 662 // Maps allocation types to format sizes for printing. 663 static const uint32_t RSTypeToFormat[][3]; 664 665 // Give each allocation an ID as a way 666 // for commands to reference it. 667 const uint32_t id; 668 669 // Allocation Element type 670 RenderScriptRuntime::Element element; 671 // Dimensions of the Allocation 672 empirical_type<Dimension> dimension; 673 // Pointer to address of the RS Allocation 674 empirical_type<lldb::addr_t> address; 675 // Pointer to the data held by the Allocation 676 empirical_type<lldb::addr_t> data_ptr; 677 // Pointer to the RS Type of the Allocation 678 empirical_type<lldb::addr_t> type_ptr; 679 // Pointer to the RS Context of the Allocation 680 empirical_type<lldb::addr_t> context; 681 // Size of the allocation 682 empirical_type<uint32_t> size; 683 // Stride between rows of the allocation 684 empirical_type<uint32_t> stride; 685 686 // Give each allocation an id, so we can reference it in user commands. 687 AllocationDetails() : id(ID++) {} 688 689 bool ShouldRefresh() const { 690 bool valid_ptrs = data_ptr.isValid() && *data_ptr.get() != 0x0; 691 valid_ptrs = valid_ptrs && type_ptr.isValid() && *type_ptr.get() != 0x0; 692 return !valid_ptrs || !dimension.isValid() || !size.isValid() || 693 element.ShouldRefresh(); 694 } 695 }; 696 697 const ConstString &RenderScriptRuntime::Element::GetFallbackStructName() { 698 static const ConstString FallbackStructName("struct"); 699 return FallbackStructName; 700 } 701 702 uint32_t RenderScriptRuntime::AllocationDetails::ID = 1; 703 704 const char *RenderScriptRuntime::AllocationDetails::RsDataKindToString[] = { 705 "User", "Undefined", "Undefined", "Undefined", 706 "Undefined", "Undefined", "Undefined", // Enum jumps from 0 to 7 707 "L Pixel", "A Pixel", "LA Pixel", "RGB Pixel", 708 "RGBA Pixel", "Pixel Depth", "YUV Pixel"}; 709 710 const char *RenderScriptRuntime::AllocationDetails::RsDataTypeToString[][4] = { 711 {"None", "None", "None", "None"}, 712 {"half", "half2", "half3", "half4"}, 713 {"float", "float2", "float3", "float4"}, 714 {"double", "double2", "double3", "double4"}, 715 {"char", "char2", "char3", "char4"}, 716 {"short", "short2", "short3", "short4"}, 717 {"int", "int2", "int3", "int4"}, 718 {"long", "long2", "long3", "long4"}, 719 {"uchar", "uchar2", "uchar3", "uchar4"}, 720 {"ushort", "ushort2", "ushort3", "ushort4"}, 721 {"uint", "uint2", "uint3", "uint4"}, 722 {"ulong", "ulong2", "ulong3", "ulong4"}, 723 {"bool", "bool2", "bool3", "bool4"}, 724 {"packed_565", "packed_565", "packed_565", "packed_565"}, 725 {"packed_5551", "packed_5551", "packed_5551", "packed_5551"}, 726 {"packed_4444", "packed_4444", "packed_4444", "packed_4444"}, 727 {"rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4"}, 728 {"rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3"}, 729 {"rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2"}, 730 731 // Handlers 732 {"RS Element", "RS Element", "RS Element", "RS Element"}, 733 {"RS Type", "RS Type", "RS Type", "RS Type"}, 734 {"RS Allocation", "RS Allocation", "RS Allocation", "RS Allocation"}, 735 {"RS Sampler", "RS Sampler", "RS Sampler", "RS Sampler"}, 736 {"RS Script", "RS Script", "RS Script", "RS Script"}, 737 738 // Deprecated 739 {"RS Mesh", "RS Mesh", "RS Mesh", "RS Mesh"}, 740 {"RS Program Fragment", "RS Program Fragment", "RS Program Fragment", 741 "RS Program Fragment"}, 742 {"RS Program Vertex", "RS Program Vertex", "RS Program Vertex", 743 "RS Program Vertex"}, 744 {"RS Program Raster", "RS Program Raster", "RS Program Raster", 745 "RS Program Raster"}, 746 {"RS Program Store", "RS Program Store", "RS Program Store", 747 "RS Program Store"}, 748 {"RS Font", "RS Font", "RS Font", "RS Font"}}; 749 750 // Used as an index into the RSTypeToFormat array elements 751 enum TypeToFormatIndex { eFormatSingle = 0, eFormatVector, eElementSize }; 752 753 // { format enum of single element, format enum of element vector, size of 754 // element} 755 const uint32_t RenderScriptRuntime::AllocationDetails::RSTypeToFormat[][3] = { 756 // RS_TYPE_NONE 757 {eFormatHex, eFormatHex, 1}, 758 // RS_TYPE_FLOAT_16 759 {eFormatFloat, eFormatVectorOfFloat16, 2}, 760 // RS_TYPE_FLOAT_32 761 {eFormatFloat, eFormatVectorOfFloat32, sizeof(float)}, 762 // RS_TYPE_FLOAT_64 763 {eFormatFloat, eFormatVectorOfFloat64, sizeof(double)}, 764 // RS_TYPE_SIGNED_8 765 {eFormatDecimal, eFormatVectorOfSInt8, sizeof(int8_t)}, 766 // RS_TYPE_SIGNED_16 767 {eFormatDecimal, eFormatVectorOfSInt16, sizeof(int16_t)}, 768 // RS_TYPE_SIGNED_32 769 {eFormatDecimal, eFormatVectorOfSInt32, sizeof(int32_t)}, 770 // RS_TYPE_SIGNED_64 771 {eFormatDecimal, eFormatVectorOfSInt64, sizeof(int64_t)}, 772 // RS_TYPE_UNSIGNED_8 773 {eFormatDecimal, eFormatVectorOfUInt8, sizeof(uint8_t)}, 774 // RS_TYPE_UNSIGNED_16 775 {eFormatDecimal, eFormatVectorOfUInt16, sizeof(uint16_t)}, 776 // RS_TYPE_UNSIGNED_32 777 {eFormatDecimal, eFormatVectorOfUInt32, sizeof(uint32_t)}, 778 // RS_TYPE_UNSIGNED_64 779 {eFormatDecimal, eFormatVectorOfUInt64, sizeof(uint64_t)}, 780 // RS_TYPE_BOOL 781 {eFormatBoolean, eFormatBoolean, 1}, 782 // RS_TYPE_UNSIGNED_5_6_5 783 {eFormatHex, eFormatHex, sizeof(uint16_t)}, 784 // RS_TYPE_UNSIGNED_5_5_5_1 785 {eFormatHex, eFormatHex, sizeof(uint16_t)}, 786 // RS_TYPE_UNSIGNED_4_4_4_4 787 {eFormatHex, eFormatHex, sizeof(uint16_t)}, 788 // RS_TYPE_MATRIX_4X4 789 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 16}, 790 // RS_TYPE_MATRIX_3X3 791 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 9}, 792 // RS_TYPE_MATRIX_2X2 793 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 4}}; 794 795 //------------------------------------------------------------------ 796 // Static Functions 797 //------------------------------------------------------------------ 798 LanguageRuntime * 799 RenderScriptRuntime::CreateInstance(Process *process, 800 lldb::LanguageType language) { 801 802 if (language == eLanguageTypeExtRenderScript) 803 return new RenderScriptRuntime(process); 804 else 805 return nullptr; 806 } 807 808 // Callback with a module to search for matching symbols. We first check that 809 // the module contains RS kernels. Then look for a symbol which matches our 810 // kernel name. The breakpoint address is finally set using the address of this 811 // symbol. 812 Searcher::CallbackReturn 813 RSBreakpointResolver::SearchCallback(SearchFilter &filter, 814 SymbolContext &context, Address *, bool) { 815 ModuleSP module = context.module_sp; 816 817 if (!module || !IsRenderScriptScriptModule(module)) 818 return Searcher::eCallbackReturnContinue; 819 820 // Attempt to set a breakpoint on the kernel name symbol within the module 821 // library. If it's not found, it's likely debug info is unavailable - try to 822 // set a breakpoint on <name>.expand. 823 const Symbol *kernel_sym = 824 module->FindFirstSymbolWithNameAndType(m_kernel_name, eSymbolTypeCode); 825 if (!kernel_sym) { 826 std::string kernel_name_expanded(m_kernel_name.AsCString()); 827 kernel_name_expanded.append(".expand"); 828 kernel_sym = module->FindFirstSymbolWithNameAndType( 829 ConstString(kernel_name_expanded.c_str()), eSymbolTypeCode); 830 } 831 832 if (kernel_sym) { 833 Address bp_addr = kernel_sym->GetAddress(); 834 if (filter.AddressPasses(bp_addr)) 835 m_breakpoint->AddLocation(bp_addr); 836 } 837 838 return Searcher::eCallbackReturnContinue; 839 } 840 841 Searcher::CallbackReturn 842 RSReduceBreakpointResolver::SearchCallback(lldb_private::SearchFilter &filter, 843 lldb_private::SymbolContext &context, 844 Address *, bool) { 845 // We need to have access to the list of reductions currently parsed, as 846 // reduce names don't actually exist as 847 // symbols in a module. They are only identifiable by parsing the .rs.info 848 // packet, or finding the expand symbol. We 849 // therefore need access to the list of parsed rs modules to properly resolve 850 // reduction names. 851 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 852 ModuleSP module = context.module_sp; 853 854 if (!module || !IsRenderScriptScriptModule(module)) 855 return Searcher::eCallbackReturnContinue; 856 857 if (!m_rsmodules) 858 return Searcher::eCallbackReturnContinue; 859 860 for (const auto &module_desc : *m_rsmodules) { 861 if (module_desc->m_module != module) 862 continue; 863 864 for (const auto &reduction : module_desc->m_reductions) { 865 if (reduction.m_reduce_name != m_reduce_name) 866 continue; 867 868 std::array<std::pair<ConstString, int>, 5> funcs{ 869 {{reduction.m_init_name, eKernelTypeInit}, 870 {reduction.m_accum_name, eKernelTypeAccum}, 871 {reduction.m_comb_name, eKernelTypeComb}, 872 {reduction.m_outc_name, eKernelTypeOutC}, 873 {reduction.m_halter_name, eKernelTypeHalter}}}; 874 875 for (const auto &kernel : funcs) { 876 // Skip constituent functions that don't match our spec 877 if (!(m_kernel_types & kernel.second)) 878 continue; 879 880 const auto kernel_name = kernel.first; 881 const auto symbol = module->FindFirstSymbolWithNameAndType( 882 kernel_name, eSymbolTypeCode); 883 if (!symbol) 884 continue; 885 886 auto address = symbol->GetAddress(); 887 if (filter.AddressPasses(address)) { 888 bool new_bp; 889 if (!SkipPrologue(module, address)) { 890 if (log) 891 log->Printf("%s: Error trying to skip prologue", __FUNCTION__); 892 } 893 m_breakpoint->AddLocation(address, &new_bp); 894 if (log) 895 log->Printf("%s: %s reduction breakpoint on %s in %s", __FUNCTION__, 896 new_bp ? "new" : "existing", kernel_name.GetCString(), 897 address.GetModule()->GetFileSpec().GetCString()); 898 } 899 } 900 } 901 } 902 return eCallbackReturnContinue; 903 } 904 905 Searcher::CallbackReturn RSScriptGroupBreakpointResolver::SearchCallback( 906 SearchFilter &filter, SymbolContext &context, Address *addr, 907 bool containing) { 908 909 if (!m_breakpoint) 910 return eCallbackReturnContinue; 911 912 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 913 ModuleSP &module = context.module_sp; 914 915 if (!module || !IsRenderScriptScriptModule(module)) 916 return Searcher::eCallbackReturnContinue; 917 918 std::vector<std::string> names; 919 m_breakpoint->GetNames(names); 920 if (names.empty()) 921 return eCallbackReturnContinue; 922 923 for (auto &name : names) { 924 const RSScriptGroupDescriptorSP sg = FindScriptGroup(ConstString(name)); 925 if (!sg) { 926 if (log) 927 log->Printf("%s: could not find script group for %s", __FUNCTION__, 928 name.c_str()); 929 continue; 930 } 931 932 if (log) 933 log->Printf("%s: Found ScriptGroup for %s", __FUNCTION__, name.c_str()); 934 935 for (const RSScriptGroupDescriptor::Kernel &k : sg->m_kernels) { 936 if (log) { 937 log->Printf("%s: Adding breakpoint for %s", __FUNCTION__, 938 k.m_name.AsCString()); 939 log->Printf("%s: Kernel address 0x%" PRIx64, __FUNCTION__, k.m_addr); 940 } 941 942 const lldb_private::Symbol *sym = 943 module->FindFirstSymbolWithNameAndType(k.m_name, eSymbolTypeCode); 944 if (!sym) { 945 if (log) 946 log->Printf("%s: Unable to find symbol for %s", __FUNCTION__, 947 k.m_name.AsCString()); 948 continue; 949 } 950 951 if (log) { 952 log->Printf("%s: Found symbol name is %s", __FUNCTION__, 953 sym->GetName().AsCString()); 954 } 955 956 auto address = sym->GetAddress(); 957 if (!SkipPrologue(module, address)) { 958 if (log) 959 log->Printf("%s: Error trying to skip prologue", __FUNCTION__); 960 } 961 962 bool new_bp; 963 m_breakpoint->AddLocation(address, &new_bp); 964 965 if (log) 966 log->Printf("%s: Placed %sbreakpoint on %s", __FUNCTION__, 967 new_bp ? "new " : "", k.m_name.AsCString()); 968 969 // exit after placing the first breakpoint if we do not intend to stop 970 // on all kernels making up this script group 971 if (!m_stop_on_all) 972 break; 973 } 974 } 975 976 return eCallbackReturnContinue; 977 } 978 979 void RenderScriptRuntime::Initialize() { 980 PluginManager::RegisterPlugin(GetPluginNameStatic(), 981 "RenderScript language support", CreateInstance, 982 GetCommandObject); 983 } 984 985 void RenderScriptRuntime::Terminate() { 986 PluginManager::UnregisterPlugin(CreateInstance); 987 } 988 989 lldb_private::ConstString RenderScriptRuntime::GetPluginNameStatic() { 990 static ConstString plugin_name("renderscript"); 991 return plugin_name; 992 } 993 994 RenderScriptRuntime::ModuleKind 995 RenderScriptRuntime::GetModuleKind(const lldb::ModuleSP &module_sp) { 996 if (module_sp) { 997 if (IsRenderScriptScriptModule(module_sp)) 998 return eModuleKindKernelObj; 999 1000 // Is this the main RS runtime library 1001 const ConstString rs_lib("libRS.so"); 1002 if (module_sp->GetFileSpec().GetFilename() == rs_lib) { 1003 return eModuleKindLibRS; 1004 } 1005 1006 const ConstString rs_driverlib("libRSDriver.so"); 1007 if (module_sp->GetFileSpec().GetFilename() == rs_driverlib) { 1008 return eModuleKindDriver; 1009 } 1010 1011 const ConstString rs_cpureflib("libRSCpuRef.so"); 1012 if (module_sp->GetFileSpec().GetFilename() == rs_cpureflib) { 1013 return eModuleKindImpl; 1014 } 1015 } 1016 return eModuleKindIgnored; 1017 } 1018 1019 bool RenderScriptRuntime::IsRenderScriptModule( 1020 const lldb::ModuleSP &module_sp) { 1021 return GetModuleKind(module_sp) != eModuleKindIgnored; 1022 } 1023 1024 void RenderScriptRuntime::ModulesDidLoad(const ModuleList &module_list) { 1025 std::lock_guard<std::recursive_mutex> guard(module_list.GetMutex()); 1026 1027 size_t num_modules = module_list.GetSize(); 1028 for (size_t i = 0; i < num_modules; i++) { 1029 auto mod = module_list.GetModuleAtIndex(i); 1030 if (IsRenderScriptModule(mod)) { 1031 LoadModule(mod); 1032 } 1033 } 1034 } 1035 1036 //------------------------------------------------------------------ 1037 // PluginInterface protocol 1038 //------------------------------------------------------------------ 1039 lldb_private::ConstString RenderScriptRuntime::GetPluginName() { 1040 return GetPluginNameStatic(); 1041 } 1042 1043 uint32_t RenderScriptRuntime::GetPluginVersion() { return 1; } 1044 1045 bool RenderScriptRuntime::IsVTableName(const char *name) { return false; } 1046 1047 bool RenderScriptRuntime::GetDynamicTypeAndAddress( 1048 ValueObject &in_value, lldb::DynamicValueType use_dynamic, 1049 TypeAndOrName &class_type_or_name, Address &address, 1050 Value::ValueType &value_type) { 1051 return false; 1052 } 1053 1054 TypeAndOrName 1055 RenderScriptRuntime::FixUpDynamicType(const TypeAndOrName &type_and_or_name, 1056 ValueObject &static_value) { 1057 return type_and_or_name; 1058 } 1059 1060 bool RenderScriptRuntime::CouldHaveDynamicValue(ValueObject &in_value) { 1061 return false; 1062 } 1063 1064 lldb::BreakpointResolverSP 1065 RenderScriptRuntime::CreateExceptionResolver(Breakpoint *bp, bool catch_bp, 1066 bool throw_bp) { 1067 BreakpointResolverSP resolver_sp; 1068 return resolver_sp; 1069 } 1070 1071 const RenderScriptRuntime::HookDefn RenderScriptRuntime::s_runtimeHookDefns[] = 1072 { 1073 // rsdScript 1074 {"rsdScriptInit", "_Z13rsdScriptInitPKN7android12renderscript7ContextEP" 1075 "NS0_7ScriptCEPKcS7_PKhjj", 1076 "_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_" 1077 "7ScriptCEPKcS7_PKhmj", 1078 0, RenderScriptRuntime::eModuleKindDriver, 1079 &lldb_private::RenderScriptRuntime::CaptureScriptInit}, 1080 {"rsdScriptInvokeForEachMulti", 1081 "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0" 1082 "_6ScriptEjPPKNS0_10AllocationEjPS6_PKvjPK12RsScriptCall", 1083 "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0" 1084 "_6ScriptEjPPKNS0_10AllocationEmPS6_PKvmPK12RsScriptCall", 1085 0, RenderScriptRuntime::eModuleKindDriver, 1086 &lldb_private::RenderScriptRuntime::CaptureScriptInvokeForEachMulti}, 1087 {"rsdScriptSetGlobalVar", "_Z21rsdScriptSetGlobalVarPKN7android12render" 1088 "script7ContextEPKNS0_6ScriptEjPvj", 1089 "_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_" 1090 "6ScriptEjPvm", 1091 0, RenderScriptRuntime::eModuleKindDriver, 1092 &lldb_private::RenderScriptRuntime::CaptureSetGlobalVar}, 1093 1094 // rsdAllocation 1095 {"rsdAllocationInit", "_Z17rsdAllocationInitPKN7android12renderscript7C" 1096 "ontextEPNS0_10AllocationEb", 1097 "_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_" 1098 "10AllocationEb", 1099 0, RenderScriptRuntime::eModuleKindDriver, 1100 &lldb_private::RenderScriptRuntime::CaptureAllocationInit}, 1101 {"rsdAllocationRead2D", 1102 "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_" 1103 "10AllocationEjjj23RsAllocationCubemapFacejjPvjj", 1104 "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_" 1105 "10AllocationEjjj23RsAllocationCubemapFacejjPvmm", 1106 0, RenderScriptRuntime::eModuleKindDriver, nullptr}, 1107 {"rsdAllocationDestroy", "_Z20rsdAllocationDestroyPKN7android12rendersc" 1108 "ript7ContextEPNS0_10AllocationE", 1109 "_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_" 1110 "10AllocationE", 1111 0, RenderScriptRuntime::eModuleKindDriver, 1112 &lldb_private::RenderScriptRuntime::CaptureAllocationDestroy}, 1113 1114 // renderscript script groups 1115 {"rsdDebugHintScriptGroup2", "_ZN7android12renderscript21debugHintScrip" 1116 "tGroup2EPKcjPKPFvPK24RsExpandKernelDriver" 1117 "InfojjjEj", 1118 "_ZN7android12renderscript21debugHintScriptGroup2EPKcjPKPFvPK24RsExpan" 1119 "dKernelDriverInfojjjEj", 1120 0, RenderScriptRuntime::eModuleKindImpl, 1121 &lldb_private::RenderScriptRuntime::CaptureDebugHintScriptGroup2}}; 1122 1123 const size_t RenderScriptRuntime::s_runtimeHookCount = 1124 sizeof(s_runtimeHookDefns) / sizeof(s_runtimeHookDefns[0]); 1125 1126 bool RenderScriptRuntime::HookCallback(void *baton, 1127 StoppointCallbackContext *ctx, 1128 lldb::user_id_t break_id, 1129 lldb::user_id_t break_loc_id) { 1130 RuntimeHook *hook = (RuntimeHook *)baton; 1131 ExecutionContext exe_ctx(ctx->exe_ctx_ref); 1132 1133 RenderScriptRuntime *lang_rt = 1134 (RenderScriptRuntime *)exe_ctx.GetProcessPtr()->GetLanguageRuntime( 1135 eLanguageTypeExtRenderScript); 1136 1137 lang_rt->HookCallback(hook, exe_ctx); 1138 1139 return false; 1140 } 1141 1142 void RenderScriptRuntime::HookCallback(RuntimeHook *hook, 1143 ExecutionContext &exe_ctx) { 1144 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1145 1146 if (log) 1147 log->Printf("%s - '%s'", __FUNCTION__, hook->defn->name); 1148 1149 if (hook->defn->grabber) { 1150 (this->*(hook->defn->grabber))(hook, exe_ctx); 1151 } 1152 } 1153 1154 void RenderScriptRuntime::CaptureDebugHintScriptGroup2( 1155 RuntimeHook *hook_info, ExecutionContext &context) { 1156 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1157 1158 enum { 1159 eGroupName = 0, 1160 eGroupNameSize, 1161 eKernel, 1162 eKernelCount, 1163 }; 1164 1165 std::array<ArgItem, 4> args{{ 1166 {ArgItem::ePointer, 0}, // const char *groupName 1167 {ArgItem::eInt32, 0}, // const uint32_t groupNameSize 1168 {ArgItem::ePointer, 0}, // const ExpandFuncTy *kernel 1169 {ArgItem::eInt32, 0}, // const uint32_t kernelCount 1170 }}; 1171 1172 if (!GetArgs(context, args.data(), args.size())) { 1173 if (log) 1174 log->Printf("%s - Error while reading the function parameters", 1175 __FUNCTION__); 1176 return; 1177 } else if (log) { 1178 log->Printf("%s - groupName : 0x%" PRIx64, __FUNCTION__, 1179 addr_t(args[eGroupName])); 1180 log->Printf("%s - groupNameSize: %" PRIu64, __FUNCTION__, 1181 uint64_t(args[eGroupNameSize])); 1182 log->Printf("%s - kernel : 0x%" PRIx64, __FUNCTION__, 1183 addr_t(args[eKernel])); 1184 log->Printf("%s - kernelCount : %" PRIu64, __FUNCTION__, 1185 uint64_t(args[eKernelCount])); 1186 } 1187 1188 // parse script group name 1189 ConstString group_name; 1190 { 1191 Error err; 1192 const uint64_t len = uint64_t(args[eGroupNameSize]); 1193 std::unique_ptr<char[]> buffer(new char[uint32_t(len + 1)]); 1194 m_process->ReadMemory(addr_t(args[eGroupName]), buffer.get(), len, err); 1195 buffer.get()[len] = '\0'; 1196 if (!err.Success()) { 1197 if (log) 1198 log->Printf("Error reading scriptgroup name from target"); 1199 return; 1200 } else { 1201 if (log) 1202 log->Printf("Extracted scriptgroup name %s", buffer.get()); 1203 } 1204 // write back the script group name 1205 group_name.SetCString(buffer.get()); 1206 } 1207 1208 // create or access existing script group 1209 RSScriptGroupDescriptorSP group; 1210 { 1211 // search for existing script group 1212 for (auto sg : m_scriptGroups) { 1213 if (sg->m_name == group_name) { 1214 group = sg; 1215 break; 1216 } 1217 } 1218 if (!group) { 1219 group.reset(new RSScriptGroupDescriptor); 1220 group->m_name = group_name; 1221 m_scriptGroups.push_back(group); 1222 } else { 1223 // already have this script group 1224 if (log) 1225 log->Printf("Attempt to add duplicate script group %s", 1226 group_name.AsCString()); 1227 return; 1228 } 1229 } 1230 assert(group); 1231 1232 const uint32_t target_ptr_size = m_process->GetAddressByteSize(); 1233 std::vector<addr_t> kernels; 1234 // parse kernel addresses in script group 1235 for (uint64_t i = 0; i < uint64_t(args[eKernelCount]); ++i) { 1236 RSScriptGroupDescriptor::Kernel kernel; 1237 // extract script group kernel addresses from the target 1238 const addr_t ptr_addr = addr_t(args[eKernel]) + i * target_ptr_size; 1239 uint64_t kernel_addr = 0; 1240 Error err; 1241 size_t read = 1242 m_process->ReadMemory(ptr_addr, &kernel_addr, target_ptr_size, err); 1243 if (!err.Success() || read != target_ptr_size) { 1244 if (log) 1245 log->Printf("Error parsing kernel address %" PRIu64 " in script group", 1246 i); 1247 return; 1248 } 1249 if (log) 1250 log->Printf("Extracted scriptgroup kernel address - 0x%" PRIx64, 1251 kernel_addr); 1252 kernel.m_addr = kernel_addr; 1253 1254 // try to resolve the associated kernel name 1255 if (!ResolveKernelName(kernel.m_addr, kernel.m_name)) { 1256 if (log) 1257 log->Printf("Parsed scriptgroup kernel %" PRIu64 " - 0x%" PRIx64, i, 1258 kernel_addr); 1259 return; 1260 } 1261 1262 // try to find the non '.expand' function 1263 { 1264 const llvm::StringRef expand(".expand"); 1265 const llvm::StringRef name_ref = kernel.m_name.GetStringRef(); 1266 if (name_ref.endswith(expand)) { 1267 const ConstString base_kernel(name_ref.drop_back(expand.size())); 1268 // verify this function is a valid kernel 1269 if (IsKnownKernel(base_kernel)) { 1270 kernel.m_name = base_kernel; 1271 if (log) 1272 log->Printf("%s - found non expand version '%s'", __FUNCTION__, 1273 base_kernel.GetCString()); 1274 } 1275 } 1276 } 1277 // add to a list of script group kernels we know about 1278 group->m_kernels.push_back(kernel); 1279 } 1280 1281 // Resolve any pending scriptgroup breakpoints 1282 { 1283 Target &target = m_process->GetTarget(); 1284 const BreakpointList &list = target.GetBreakpointList(); 1285 const size_t num_breakpoints = list.GetSize(); 1286 if (log) 1287 log->Printf("Resolving %zu breakpoints", num_breakpoints); 1288 for (size_t i = 0; i < num_breakpoints; ++i) { 1289 const BreakpointSP bp = list.GetBreakpointAtIndex(i); 1290 if (bp) { 1291 if (bp->MatchesName(group_name.AsCString())) { 1292 if (log) 1293 log->Printf("Found breakpoint with name %s", 1294 group_name.AsCString()); 1295 bp->ResolveBreakpoint(); 1296 } 1297 } 1298 } 1299 } 1300 } 1301 1302 void RenderScriptRuntime::CaptureScriptInvokeForEachMulti( 1303 RuntimeHook *hook, ExecutionContext &exe_ctx) { 1304 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1305 1306 enum { 1307 eRsContext = 0, 1308 eRsScript, 1309 eRsSlot, 1310 eRsAIns, 1311 eRsInLen, 1312 eRsAOut, 1313 eRsUsr, 1314 eRsUsrLen, 1315 eRsSc, 1316 }; 1317 1318 std::array<ArgItem, 9> args{{ 1319 ArgItem{ArgItem::ePointer, 0}, // const Context *rsc 1320 ArgItem{ArgItem::ePointer, 0}, // Script *s 1321 ArgItem{ArgItem::eInt32, 0}, // uint32_t slot 1322 ArgItem{ArgItem::ePointer, 0}, // const Allocation **aIns 1323 ArgItem{ArgItem::eInt32, 0}, // size_t inLen 1324 ArgItem{ArgItem::ePointer, 0}, // Allocation *aout 1325 ArgItem{ArgItem::ePointer, 0}, // const void *usr 1326 ArgItem{ArgItem::eInt32, 0}, // size_t usrLen 1327 ArgItem{ArgItem::ePointer, 0}, // const RsScriptCall *sc 1328 }}; 1329 1330 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1331 if (!success) { 1332 if (log) 1333 log->Printf("%s - Error while reading the function parameters", 1334 __FUNCTION__); 1335 return; 1336 } 1337 1338 const uint32_t target_ptr_size = m_process->GetAddressByteSize(); 1339 Error err; 1340 std::vector<uint64_t> allocs; 1341 1342 // traverse allocation list 1343 for (uint64_t i = 0; i < uint64_t(args[eRsInLen]); ++i) { 1344 // calculate offest to allocation pointer 1345 const addr_t addr = addr_t(args[eRsAIns]) + i * target_ptr_size; 1346 1347 // Note: due to little endian layout, reading 32bits or 64bits into res 1348 // will give the correct results. 1349 uint64_t result = 0; 1350 size_t read = m_process->ReadMemory(addr, &result, target_ptr_size, err); 1351 if (read != target_ptr_size || !err.Success()) { 1352 if (log) 1353 log->Printf( 1354 "%s - Error while reading allocation list argument %" PRIu64, 1355 __FUNCTION__, i); 1356 } else { 1357 allocs.push_back(result); 1358 } 1359 } 1360 1361 // if there is an output allocation track it 1362 if (uint64_t alloc_out = uint64_t(args[eRsAOut])) { 1363 allocs.push_back(alloc_out); 1364 } 1365 1366 // for all allocations we have found 1367 for (const uint64_t alloc_addr : allocs) { 1368 AllocationDetails *alloc = LookUpAllocation(alloc_addr); 1369 if (!alloc) 1370 alloc = CreateAllocation(alloc_addr); 1371 1372 if (alloc) { 1373 // save the allocation address 1374 if (alloc->address.isValid()) { 1375 // check the allocation address we already have matches 1376 assert(*alloc->address.get() == alloc_addr); 1377 } else { 1378 alloc->address = alloc_addr; 1379 } 1380 1381 // save the context 1382 if (log) { 1383 if (alloc->context.isValid() && 1384 *alloc->context.get() != addr_t(args[eRsContext])) 1385 log->Printf("%s - Allocation used by multiple contexts", 1386 __FUNCTION__); 1387 } 1388 alloc->context = addr_t(args[eRsContext]); 1389 } 1390 } 1391 1392 // make sure we track this script object 1393 if (lldb_private::RenderScriptRuntime::ScriptDetails *script = 1394 LookUpScript(addr_t(args[eRsScript]), true)) { 1395 if (log) { 1396 if (script->context.isValid() && 1397 *script->context.get() != addr_t(args[eRsContext])) 1398 log->Printf("%s - Script used by multiple contexts", __FUNCTION__); 1399 } 1400 script->context = addr_t(args[eRsContext]); 1401 } 1402 } 1403 1404 void RenderScriptRuntime::CaptureSetGlobalVar(RuntimeHook *hook, 1405 ExecutionContext &context) { 1406 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1407 1408 enum { 1409 eRsContext, 1410 eRsScript, 1411 eRsId, 1412 eRsData, 1413 eRsLength, 1414 }; 1415 1416 std::array<ArgItem, 5> args{{ 1417 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1418 ArgItem{ArgItem::ePointer, 0}, // eRsScript 1419 ArgItem{ArgItem::eInt32, 0}, // eRsId 1420 ArgItem{ArgItem::ePointer, 0}, // eRsData 1421 ArgItem{ArgItem::eInt32, 0}, // eRsLength 1422 }}; 1423 1424 bool success = GetArgs(context, &args[0], args.size()); 1425 if (!success) { 1426 if (log) 1427 log->Printf("%s - error reading the function parameters.", __FUNCTION__); 1428 return; 1429 } 1430 1431 if (log) { 1432 log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " slot %" PRIu64 " = 0x%" PRIx64 1433 ":%" PRIu64 "bytes.", 1434 __FUNCTION__, uint64_t(args[eRsContext]), 1435 uint64_t(args[eRsScript]), uint64_t(args[eRsId]), 1436 uint64_t(args[eRsData]), uint64_t(args[eRsLength])); 1437 1438 addr_t script_addr = addr_t(args[eRsScript]); 1439 if (m_scriptMappings.find(script_addr) != m_scriptMappings.end()) { 1440 auto rsm = m_scriptMappings[script_addr]; 1441 if (uint64_t(args[eRsId]) < rsm->m_globals.size()) { 1442 auto rsg = rsm->m_globals[uint64_t(args[eRsId])]; 1443 log->Printf("%s - Setting of '%s' within '%s' inferred", __FUNCTION__, 1444 rsg.m_name.AsCString(), 1445 rsm->m_module->GetFileSpec().GetFilename().AsCString()); 1446 } 1447 } 1448 } 1449 } 1450 1451 void RenderScriptRuntime::CaptureAllocationInit(RuntimeHook *hook, 1452 ExecutionContext &exe_ctx) { 1453 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1454 1455 enum { eRsContext, eRsAlloc, eRsForceZero }; 1456 1457 std::array<ArgItem, 3> args{{ 1458 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1459 ArgItem{ArgItem::ePointer, 0}, // eRsAlloc 1460 ArgItem{ArgItem::eBool, 0}, // eRsForceZero 1461 }}; 1462 1463 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1464 if (!success) { 1465 if (log) 1466 log->Printf("%s - error while reading the function parameters", 1467 __FUNCTION__); 1468 return; 1469 } 1470 1471 if (log) 1472 log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 ",0x%" PRIx64 " .", 1473 __FUNCTION__, uint64_t(args[eRsContext]), 1474 uint64_t(args[eRsAlloc]), uint64_t(args[eRsForceZero])); 1475 1476 AllocationDetails *alloc = CreateAllocation(uint64_t(args[eRsAlloc])); 1477 if (alloc) 1478 alloc->context = uint64_t(args[eRsContext]); 1479 } 1480 1481 void RenderScriptRuntime::CaptureAllocationDestroy(RuntimeHook *hook, 1482 ExecutionContext &exe_ctx) { 1483 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1484 1485 enum { 1486 eRsContext, 1487 eRsAlloc, 1488 }; 1489 1490 std::array<ArgItem, 2> args{{ 1491 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1492 ArgItem{ArgItem::ePointer, 0}, // eRsAlloc 1493 }}; 1494 1495 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1496 if (!success) { 1497 if (log) 1498 log->Printf("%s - error while reading the function parameters.", 1499 __FUNCTION__); 1500 return; 1501 } 1502 1503 if (log) 1504 log->Printf("%s - 0x%" PRIx64 ", 0x%" PRIx64 ".", __FUNCTION__, 1505 uint64_t(args[eRsContext]), uint64_t(args[eRsAlloc])); 1506 1507 for (auto iter = m_allocations.begin(); iter != m_allocations.end(); ++iter) { 1508 auto &allocation_ap = *iter; // get the unique pointer 1509 if (allocation_ap->address.isValid() && 1510 *allocation_ap->address.get() == addr_t(args[eRsAlloc])) { 1511 m_allocations.erase(iter); 1512 if (log) 1513 log->Printf("%s - deleted allocation entry.", __FUNCTION__); 1514 return; 1515 } 1516 } 1517 1518 if (log) 1519 log->Printf("%s - couldn't find destroyed allocation.", __FUNCTION__); 1520 } 1521 1522 void RenderScriptRuntime::CaptureScriptInit(RuntimeHook *hook, 1523 ExecutionContext &exe_ctx) { 1524 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1525 1526 Error err; 1527 Process *process = exe_ctx.GetProcessPtr(); 1528 1529 enum { eRsContext, eRsScript, eRsResNamePtr, eRsCachedDirPtr }; 1530 1531 std::array<ArgItem, 4> args{ 1532 {ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}, 1533 ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}}}; 1534 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1535 if (!success) { 1536 if (log) 1537 log->Printf("%s - error while reading the function parameters.", 1538 __FUNCTION__); 1539 return; 1540 } 1541 1542 std::string res_name; 1543 process->ReadCStringFromMemory(addr_t(args[eRsResNamePtr]), res_name, err); 1544 if (err.Fail()) { 1545 if (log) 1546 log->Printf("%s - error reading res_name: %s.", __FUNCTION__, 1547 err.AsCString()); 1548 } 1549 1550 std::string cache_dir; 1551 process->ReadCStringFromMemory(addr_t(args[eRsCachedDirPtr]), cache_dir, err); 1552 if (err.Fail()) { 1553 if (log) 1554 log->Printf("%s - error reading cache_dir: %s.", __FUNCTION__, 1555 err.AsCString()); 1556 } 1557 1558 if (log) 1559 log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " => '%s' at '%s' .", 1560 __FUNCTION__, uint64_t(args[eRsContext]), 1561 uint64_t(args[eRsScript]), res_name.c_str(), cache_dir.c_str()); 1562 1563 if (res_name.size() > 0) { 1564 StreamString strm; 1565 strm.Printf("librs.%s.so", res_name.c_str()); 1566 1567 ScriptDetails *script = LookUpScript(addr_t(args[eRsScript]), true); 1568 if (script) { 1569 script->type = ScriptDetails::eScriptC; 1570 script->cache_dir = cache_dir; 1571 script->res_name = res_name; 1572 script->shared_lib = strm.GetString(); 1573 script->context = addr_t(args[eRsContext]); 1574 } 1575 1576 if (log) 1577 log->Printf("%s - '%s' tagged with context 0x%" PRIx64 1578 " and script 0x%" PRIx64 ".", 1579 __FUNCTION__, strm.GetData(), uint64_t(args[eRsContext]), 1580 uint64_t(args[eRsScript])); 1581 } else if (log) { 1582 log->Printf("%s - resource name invalid, Script not tagged.", __FUNCTION__); 1583 } 1584 } 1585 1586 void RenderScriptRuntime::LoadRuntimeHooks(lldb::ModuleSP module, 1587 ModuleKind kind) { 1588 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1589 1590 if (!module) { 1591 return; 1592 } 1593 1594 Target &target = GetProcess()->GetTarget(); 1595 const llvm::Triple::ArchType machine = target.GetArchitecture().GetMachine(); 1596 1597 if (machine != llvm::Triple::ArchType::x86 && 1598 machine != llvm::Triple::ArchType::arm && 1599 machine != llvm::Triple::ArchType::aarch64 && 1600 machine != llvm::Triple::ArchType::mipsel && 1601 machine != llvm::Triple::ArchType::mips64el && 1602 machine != llvm::Triple::ArchType::x86_64) { 1603 if (log) 1604 log->Printf("%s - unable to hook runtime functions.", __FUNCTION__); 1605 return; 1606 } 1607 1608 const uint32_t target_ptr_size = 1609 target.GetArchitecture().GetAddressByteSize(); 1610 1611 std::array<bool, s_runtimeHookCount> hook_placed; 1612 hook_placed.fill(false); 1613 1614 for (size_t idx = 0; idx < s_runtimeHookCount; idx++) { 1615 const HookDefn *hook_defn = &s_runtimeHookDefns[idx]; 1616 if (hook_defn->kind != kind) { 1617 continue; 1618 } 1619 1620 const char *symbol_name = (target_ptr_size == 4) 1621 ? hook_defn->symbol_name_m32 1622 : hook_defn->symbol_name_m64; 1623 1624 const Symbol *sym = module->FindFirstSymbolWithNameAndType( 1625 ConstString(symbol_name), eSymbolTypeCode); 1626 if (!sym) { 1627 if (log) { 1628 log->Printf("%s - symbol '%s' related to the function %s not found", 1629 __FUNCTION__, symbol_name, hook_defn->name); 1630 } 1631 continue; 1632 } 1633 1634 addr_t addr = sym->GetLoadAddress(&target); 1635 if (addr == LLDB_INVALID_ADDRESS) { 1636 if (log) 1637 log->Printf("%s - unable to resolve the address of hook function '%s' " 1638 "with symbol '%s'.", 1639 __FUNCTION__, hook_defn->name, symbol_name); 1640 continue; 1641 } else { 1642 if (log) 1643 log->Printf("%s - function %s, address resolved at 0x%" PRIx64, 1644 __FUNCTION__, hook_defn->name, addr); 1645 } 1646 1647 RuntimeHookSP hook(new RuntimeHook()); 1648 hook->address = addr; 1649 hook->defn = hook_defn; 1650 hook->bp_sp = target.CreateBreakpoint(addr, true, false); 1651 hook->bp_sp->SetCallback(HookCallback, hook.get(), true); 1652 m_runtimeHooks[addr] = hook; 1653 if (log) { 1654 log->Printf("%s - successfully hooked '%s' in '%s' version %" PRIu64 1655 " at 0x%" PRIx64 ".", 1656 __FUNCTION__, hook_defn->name, 1657 module->GetFileSpec().GetFilename().AsCString(), 1658 (uint64_t)hook_defn->version, (uint64_t)addr); 1659 } 1660 hook_placed[idx] = true; 1661 } 1662 1663 // log any unhooked function 1664 if (log) { 1665 for (size_t i = 0; i < hook_placed.size(); ++i) { 1666 if (hook_placed[i]) 1667 continue; 1668 const HookDefn &hook_defn = s_runtimeHookDefns[i]; 1669 if (hook_defn.kind != kind) 1670 continue; 1671 log->Printf("%s - function %s was not hooked", __FUNCTION__, 1672 hook_defn.name); 1673 } 1674 } 1675 } 1676 1677 void RenderScriptRuntime::FixupScriptDetails(RSModuleDescriptorSP rsmodule_sp) { 1678 if (!rsmodule_sp) 1679 return; 1680 1681 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1682 1683 const ModuleSP module = rsmodule_sp->m_module; 1684 const FileSpec &file = module->GetPlatformFileSpec(); 1685 1686 // Iterate over all of the scripts that we currently know of. 1687 // Note: We cant push or pop to m_scripts here or it may invalidate rs_script. 1688 for (const auto &rs_script : m_scripts) { 1689 // Extract the expected .so file path for this script. 1690 std::string shared_lib; 1691 if (!rs_script->shared_lib.get(shared_lib)) 1692 continue; 1693 1694 // Only proceed if the module that has loaded corresponds to this script. 1695 if (file.GetFilename() != ConstString(shared_lib.c_str())) 1696 continue; 1697 1698 // Obtain the script address which we use as a key. 1699 lldb::addr_t script; 1700 if (!rs_script->script.get(script)) 1701 continue; 1702 1703 // If we have a script mapping for the current script. 1704 if (m_scriptMappings.find(script) != m_scriptMappings.end()) { 1705 // if the module we have stored is different to the one we just received. 1706 if (m_scriptMappings[script] != rsmodule_sp) { 1707 if (log) 1708 log->Printf( 1709 "%s - script %" PRIx64 " wants reassigned to new rsmodule '%s'.", 1710 __FUNCTION__, (uint64_t)script, 1711 rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString()); 1712 } 1713 } 1714 // We don't have a script mapping for the current script. 1715 else { 1716 // Obtain the script resource name. 1717 std::string res_name; 1718 if (rs_script->res_name.get(res_name)) 1719 // Set the modules resource name. 1720 rsmodule_sp->m_resname = res_name; 1721 // Add Script/Module pair to map. 1722 m_scriptMappings[script] = rsmodule_sp; 1723 if (log) 1724 log->Printf( 1725 "%s - script %" PRIx64 " associated with rsmodule '%s'.", 1726 __FUNCTION__, (uint64_t)script, 1727 rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString()); 1728 } 1729 } 1730 } 1731 1732 // Uses the Target API to evaluate the expression passed as a parameter to the 1733 // function The result of that expression is returned an unsigned 64 bit int, 1734 // via the result* parameter. Function returns true on success, and false on 1735 // failure 1736 bool RenderScriptRuntime::EvalRSExpression(const char *expr, 1737 StackFrame *frame_ptr, 1738 uint64_t *result) { 1739 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1740 if (log) 1741 log->Printf("%s(%s)", __FUNCTION__, expr); 1742 1743 ValueObjectSP expr_result; 1744 EvaluateExpressionOptions options; 1745 options.SetLanguage(lldb::eLanguageTypeC_plus_plus); 1746 // Perform the actual expression evaluation 1747 auto &target = GetProcess()->GetTarget(); 1748 target.EvaluateExpression(expr, frame_ptr, expr_result, options); 1749 1750 if (!expr_result) { 1751 if (log) 1752 log->Printf("%s: couldn't evaluate expression.", __FUNCTION__); 1753 return false; 1754 } 1755 1756 // The result of the expression is invalid 1757 if (!expr_result->GetError().Success()) { 1758 Error err = expr_result->GetError(); 1759 // Expression returned is void, so this is actually a success 1760 if (err.GetError() == UserExpression::kNoResult) { 1761 if (log) 1762 log->Printf("%s - expression returned void.", __FUNCTION__); 1763 1764 result = nullptr; 1765 return true; 1766 } 1767 1768 if (log) 1769 log->Printf("%s - error evaluating expression result: %s", __FUNCTION__, 1770 err.AsCString()); 1771 return false; 1772 } 1773 1774 bool success = false; 1775 // We only read the result as an uint32_t. 1776 *result = expr_result->GetValueAsUnsigned(0, &success); 1777 1778 if (!success) { 1779 if (log) 1780 log->Printf("%s - couldn't convert expression result to uint32_t", 1781 __FUNCTION__); 1782 return false; 1783 } 1784 1785 return true; 1786 } 1787 1788 namespace { 1789 // Used to index expression format strings 1790 enum ExpressionStrings { 1791 eExprGetOffsetPtr = 0, 1792 eExprAllocGetType, 1793 eExprTypeDimX, 1794 eExprTypeDimY, 1795 eExprTypeDimZ, 1796 eExprTypeElemPtr, 1797 eExprElementType, 1798 eExprElementKind, 1799 eExprElementVec, 1800 eExprElementFieldCount, 1801 eExprSubelementsId, 1802 eExprSubelementsName, 1803 eExprSubelementsArrSize, 1804 1805 _eExprLast // keep at the end, implicit size of the array runtime_expressions 1806 }; 1807 1808 // max length of an expanded expression 1809 const int jit_max_expr_size = 512; 1810 1811 // Retrieve the string to JIT for the given expression 1812 const char *JITTemplate(ExpressionStrings e) { 1813 // Format strings containing the expressions we may need to evaluate. 1814 static std::array<const char *, _eExprLast> runtime_expressions = { 1815 {// Mangled GetOffsetPointer(Allocation*, xoff, yoff, zoff, lod, cubemap) 1816 "(int*)_" 1817 "Z12GetOffsetPtrPKN7android12renderscript10AllocationEjjjj23RsAllocation" 1818 "CubemapFace" 1819 "(0x%" PRIx64 ", %" PRIu32 ", %" PRIu32 ", %" PRIu32 ", 0, 0)", 1820 1821 // Type* rsaAllocationGetType(Context*, Allocation*) 1822 "(void*)rsaAllocationGetType(0x%" PRIx64 ", 0x%" PRIx64 ")", 1823 1824 // rsaTypeGetNativeData(Context*, Type*, void* typeData, size) Pack the 1825 // data in the following way mHal.state.dimX; mHal.state.dimY; 1826 // mHal.state.dimZ; mHal.state.lodCount; mHal.state.faces; mElement; into 1827 // typeData Need to specify 32 or 64 bit for uint_t since this differs 1828 // between devices 1829 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 1830 ", 0x%" PRIx64 ", data, 6); data[0]", // X dim 1831 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 1832 ", 0x%" PRIx64 ", data, 6); data[1]", // Y dim 1833 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 1834 ", 0x%" PRIx64 ", data, 6); data[2]", // Z dim 1835 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 1836 ", 0x%" PRIx64 ", data, 6); data[5]", // Element ptr 1837 1838 // rsaElementGetNativeData(Context*, Element*, uint32_t* elemData,size) 1839 // Pack mType; mKind; mNormalized; mVectorSize; NumSubElements into 1840 // elemData 1841 "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 1842 ", 0x%" PRIx64 ", data, 5); data[0]", // Type 1843 "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 1844 ", 0x%" PRIx64 ", data, 5); data[1]", // Kind 1845 "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 1846 ", 0x%" PRIx64 ", data, 5); data[3]", // Vector Size 1847 "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 1848 ", 0x%" PRIx64 ", data, 5); data[4]", // Field Count 1849 1850 // rsaElementGetSubElements(RsContext con, RsElement elem, uintptr_t 1851 // *ids, const char **names, size_t *arraySizes, uint32_t dataSize) 1852 // Needed for Allocations of structs to gather details about 1853 // fields/Subelements Element* of field 1854 "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 1855 "]; size_t arr_size[%" PRIu32 "];" 1856 "(void*)rsaElementGetSubElements(0x%" PRIx64 ", 0x%" PRIx64 1857 ", ids, names, arr_size, %" PRIu32 "); ids[%" PRIu32 "]", 1858 1859 // Name of field 1860 "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 1861 "]; size_t arr_size[%" PRIu32 "];" 1862 "(void*)rsaElementGetSubElements(0x%" PRIx64 ", 0x%" PRIx64 1863 ", ids, names, arr_size, %" PRIu32 "); names[%" PRIu32 "]", 1864 1865 // Array size of field 1866 "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 1867 "]; size_t arr_size[%" PRIu32 "];" 1868 "(void*)rsaElementGetSubElements(0x%" PRIx64 ", 0x%" PRIx64 1869 ", ids, names, arr_size, %" PRIu32 "); arr_size[%" PRIu32 "]"}}; 1870 1871 return runtime_expressions[e]; 1872 } 1873 } // end of the anonymous namespace 1874 1875 // JITs the RS runtime for the internal data pointer of an allocation. Is passed 1876 // x,y,z coordinates for the pointer to a specific element. Then sets the 1877 // data_ptr member in Allocation with the result. Returns true on success, false 1878 // otherwise 1879 bool RenderScriptRuntime::JITDataPointer(AllocationDetails *alloc, 1880 StackFrame *frame_ptr, uint32_t x, 1881 uint32_t y, uint32_t z) { 1882 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1883 1884 if (!alloc->address.isValid()) { 1885 if (log) 1886 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1887 return false; 1888 } 1889 1890 const char *fmt_str = JITTemplate(eExprGetOffsetPtr); 1891 char expr_buf[jit_max_expr_size]; 1892 1893 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 1894 *alloc->address.get(), x, y, z); 1895 if (written < 0) { 1896 if (log) 1897 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1898 return false; 1899 } else if (written >= jit_max_expr_size) { 1900 if (log) 1901 log->Printf("%s - expression too long.", __FUNCTION__); 1902 return false; 1903 } 1904 1905 uint64_t result = 0; 1906 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 1907 return false; 1908 1909 addr_t data_ptr = static_cast<lldb::addr_t>(result); 1910 alloc->data_ptr = data_ptr; 1911 1912 return true; 1913 } 1914 1915 // JITs the RS runtime for the internal pointer to the RS Type of an allocation 1916 // Then sets the type_ptr member in Allocation with the result. Returns true on 1917 // success, false otherwise 1918 bool RenderScriptRuntime::JITTypePointer(AllocationDetails *alloc, 1919 StackFrame *frame_ptr) { 1920 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1921 1922 if (!alloc->address.isValid() || !alloc->context.isValid()) { 1923 if (log) 1924 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1925 return false; 1926 } 1927 1928 const char *fmt_str = JITTemplate(eExprAllocGetType); 1929 char expr_buf[jit_max_expr_size]; 1930 1931 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 1932 *alloc->context.get(), *alloc->address.get()); 1933 if (written < 0) { 1934 if (log) 1935 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1936 return false; 1937 } else if (written >= jit_max_expr_size) { 1938 if (log) 1939 log->Printf("%s - expression too long.", __FUNCTION__); 1940 return false; 1941 } 1942 1943 uint64_t result = 0; 1944 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 1945 return false; 1946 1947 addr_t type_ptr = static_cast<lldb::addr_t>(result); 1948 alloc->type_ptr = type_ptr; 1949 1950 return true; 1951 } 1952 1953 // JITs the RS runtime for information about the dimensions and type of an 1954 // allocation Then sets dimension and element_ptr members in Allocation with the 1955 // result. Returns true on success, false otherwise 1956 bool RenderScriptRuntime::JITTypePacked(AllocationDetails *alloc, 1957 StackFrame *frame_ptr) { 1958 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1959 1960 if (!alloc->type_ptr.isValid() || !alloc->context.isValid()) { 1961 if (log) 1962 log->Printf("%s - Failed to find allocation details.", __FUNCTION__); 1963 return false; 1964 } 1965 1966 // Expression is different depending on if device is 32 or 64 bit 1967 uint32_t target_ptr_size = 1968 GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 1969 const uint32_t bits = target_ptr_size == 4 ? 32 : 64; 1970 1971 // We want 4 elements from packed data 1972 const uint32_t num_exprs = 4; 1973 assert(num_exprs == (eExprTypeElemPtr - eExprTypeDimX + 1) && 1974 "Invalid number of expressions"); 1975 1976 char expr_bufs[num_exprs][jit_max_expr_size]; 1977 uint64_t results[num_exprs]; 1978 1979 for (uint32_t i = 0; i < num_exprs; ++i) { 1980 const char *fmt_str = JITTemplate(ExpressionStrings(eExprTypeDimX + i)); 1981 int written = snprintf(expr_bufs[i], jit_max_expr_size, fmt_str, bits, 1982 *alloc->context.get(), *alloc->type_ptr.get()); 1983 if (written < 0) { 1984 if (log) 1985 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1986 return false; 1987 } else if (written >= jit_max_expr_size) { 1988 if (log) 1989 log->Printf("%s - expression too long.", __FUNCTION__); 1990 return false; 1991 } 1992 1993 // Perform expression evaluation 1994 if (!EvalRSExpression(expr_bufs[i], frame_ptr, &results[i])) 1995 return false; 1996 } 1997 1998 // Assign results to allocation members 1999 AllocationDetails::Dimension dims; 2000 dims.dim_1 = static_cast<uint32_t>(results[0]); 2001 dims.dim_2 = static_cast<uint32_t>(results[1]); 2002 dims.dim_3 = static_cast<uint32_t>(results[2]); 2003 alloc->dimension = dims; 2004 2005 addr_t element_ptr = static_cast<lldb::addr_t>(results[3]); 2006 alloc->element.element_ptr = element_ptr; 2007 2008 if (log) 2009 log->Printf("%s - dims (%" PRIu32 ", %" PRIu32 ", %" PRIu32 2010 ") Element*: 0x%" PRIx64 ".", 2011 __FUNCTION__, dims.dim_1, dims.dim_2, dims.dim_3, element_ptr); 2012 2013 return true; 2014 } 2015 2016 // JITs the RS runtime for information about the Element of an allocation Then 2017 // sets type, type_vec_size, field_count and type_kind members in Element with 2018 // the result. Returns true on success, false otherwise 2019 bool RenderScriptRuntime::JITElementPacked(Element &elem, 2020 const lldb::addr_t context, 2021 StackFrame *frame_ptr) { 2022 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2023 2024 if (!elem.element_ptr.isValid()) { 2025 if (log) 2026 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 2027 return false; 2028 } 2029 2030 // We want 4 elements from packed data 2031 const uint32_t num_exprs = 4; 2032 assert(num_exprs == (eExprElementFieldCount - eExprElementType + 1) && 2033 "Invalid number of expressions"); 2034 2035 char expr_bufs[num_exprs][jit_max_expr_size]; 2036 uint64_t results[num_exprs]; 2037 2038 for (uint32_t i = 0; i < num_exprs; i++) { 2039 const char *fmt_str = JITTemplate(ExpressionStrings(eExprElementType + i)); 2040 int written = snprintf(expr_bufs[i], jit_max_expr_size, fmt_str, context, 2041 *elem.element_ptr.get()); 2042 if (written < 0) { 2043 if (log) 2044 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 2045 return false; 2046 } else if (written >= jit_max_expr_size) { 2047 if (log) 2048 log->Printf("%s - expression too long.", __FUNCTION__); 2049 return false; 2050 } 2051 2052 // Perform expression evaluation 2053 if (!EvalRSExpression(expr_bufs[i], frame_ptr, &results[i])) 2054 return false; 2055 } 2056 2057 // Assign results to allocation members 2058 elem.type = static_cast<RenderScriptRuntime::Element::DataType>(results[0]); 2059 elem.type_kind = 2060 static_cast<RenderScriptRuntime::Element::DataKind>(results[1]); 2061 elem.type_vec_size = static_cast<uint32_t>(results[2]); 2062 elem.field_count = static_cast<uint32_t>(results[3]); 2063 2064 if (log) 2065 log->Printf("%s - data type %" PRIu32 ", pixel type %" PRIu32 2066 ", vector size %" PRIu32 ", field count %" PRIu32, 2067 __FUNCTION__, *elem.type.get(), *elem.type_kind.get(), 2068 *elem.type_vec_size.get(), *elem.field_count.get()); 2069 2070 // If this Element has subelements then JIT rsaElementGetSubElements() for 2071 // details about its fields 2072 if (*elem.field_count.get() > 0 && !JITSubelements(elem, context, frame_ptr)) 2073 return false; 2074 2075 return true; 2076 } 2077 2078 // JITs the RS runtime for information about the subelements/fields of a struct 2079 // allocation This is necessary for infering the struct type so we can pretty 2080 // print the allocation's contents. Returns true on success, false otherwise 2081 bool RenderScriptRuntime::JITSubelements(Element &elem, 2082 const lldb::addr_t context, 2083 StackFrame *frame_ptr) { 2084 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2085 2086 if (!elem.element_ptr.isValid() || !elem.field_count.isValid()) { 2087 if (log) 2088 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 2089 return false; 2090 } 2091 2092 const short num_exprs = 3; 2093 assert(num_exprs == (eExprSubelementsArrSize - eExprSubelementsId + 1) && 2094 "Invalid number of expressions"); 2095 2096 char expr_buffer[jit_max_expr_size]; 2097 uint64_t results; 2098 2099 // Iterate over struct fields. 2100 const uint32_t field_count = *elem.field_count.get(); 2101 for (uint32_t field_index = 0; field_index < field_count; ++field_index) { 2102 Element child; 2103 for (uint32_t expr_index = 0; expr_index < num_exprs; ++expr_index) { 2104 const char *fmt_str = 2105 JITTemplate(ExpressionStrings(eExprSubelementsId + expr_index)); 2106 int written = snprintf(expr_buffer, jit_max_expr_size, fmt_str, 2107 field_count, field_count, field_count, context, 2108 *elem.element_ptr.get(), field_count, field_index); 2109 if (written < 0) { 2110 if (log) 2111 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 2112 return false; 2113 } else if (written >= jit_max_expr_size) { 2114 if (log) 2115 log->Printf("%s - expression too long.", __FUNCTION__); 2116 return false; 2117 } 2118 2119 // Perform expression evaluation 2120 if (!EvalRSExpression(expr_buffer, frame_ptr, &results)) 2121 return false; 2122 2123 if (log) 2124 log->Printf("%s - expr result 0x%" PRIx64 ".", __FUNCTION__, results); 2125 2126 switch (expr_index) { 2127 case 0: // Element* of child 2128 child.element_ptr = static_cast<addr_t>(results); 2129 break; 2130 case 1: // Name of child 2131 { 2132 lldb::addr_t address = static_cast<addr_t>(results); 2133 Error err; 2134 std::string name; 2135 GetProcess()->ReadCStringFromMemory(address, name, err); 2136 if (!err.Fail()) 2137 child.type_name = ConstString(name); 2138 else { 2139 if (log) 2140 log->Printf("%s - warning: Couldn't read field name.", 2141 __FUNCTION__); 2142 } 2143 break; 2144 } 2145 case 2: // Array size of child 2146 child.array_size = static_cast<uint32_t>(results); 2147 break; 2148 } 2149 } 2150 2151 // We need to recursively JIT each Element field of the struct since 2152 // structs can be nested inside structs. 2153 if (!JITElementPacked(child, context, frame_ptr)) 2154 return false; 2155 elem.children.push_back(child); 2156 } 2157 2158 // Try to infer the name of the struct type so we can pretty print the 2159 // allocation contents. 2160 FindStructTypeName(elem, frame_ptr); 2161 2162 return true; 2163 } 2164 2165 // JITs the RS runtime for the address of the last element in the allocation. 2166 // The `elem_size` parameter represents the size of a single element, including 2167 // padding. Which is needed as an offset from the last element pointer. Using 2168 // this offset minus the starting address we can calculate the size of the 2169 // allocation. Returns true on success, false otherwise 2170 bool RenderScriptRuntime::JITAllocationSize(AllocationDetails *alloc, 2171 StackFrame *frame_ptr) { 2172 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2173 2174 if (!alloc->address.isValid() || !alloc->dimension.isValid() || 2175 !alloc->data_ptr.isValid() || !alloc->element.datum_size.isValid()) { 2176 if (log) 2177 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 2178 return false; 2179 } 2180 2181 // Find dimensions 2182 uint32_t dim_x = alloc->dimension.get()->dim_1; 2183 uint32_t dim_y = alloc->dimension.get()->dim_2; 2184 uint32_t dim_z = alloc->dimension.get()->dim_3; 2185 2186 // Our plan of jitting the last element address doesn't seem to work for 2187 // struct Allocations` Instead try to infer the size ourselves without any 2188 // inter element padding. 2189 if (alloc->element.children.size() > 0) { 2190 if (dim_x == 0) 2191 dim_x = 1; 2192 if (dim_y == 0) 2193 dim_y = 1; 2194 if (dim_z == 0) 2195 dim_z = 1; 2196 2197 alloc->size = dim_x * dim_y * dim_z * *alloc->element.datum_size.get(); 2198 2199 if (log) 2200 log->Printf("%s - inferred size of struct allocation %" PRIu32 ".", 2201 __FUNCTION__, *alloc->size.get()); 2202 return true; 2203 } 2204 2205 const char *fmt_str = JITTemplate(eExprGetOffsetPtr); 2206 char expr_buf[jit_max_expr_size]; 2207 2208 // Calculate last element 2209 dim_x = dim_x == 0 ? 0 : dim_x - 1; 2210 dim_y = dim_y == 0 ? 0 : dim_y - 1; 2211 dim_z = dim_z == 0 ? 0 : dim_z - 1; 2212 2213 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 2214 *alloc->address.get(), dim_x, dim_y, dim_z); 2215 if (written < 0) { 2216 if (log) 2217 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 2218 return false; 2219 } else if (written >= jit_max_expr_size) { 2220 if (log) 2221 log->Printf("%s - expression too long.", __FUNCTION__); 2222 return false; 2223 } 2224 2225 uint64_t result = 0; 2226 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 2227 return false; 2228 2229 addr_t mem_ptr = static_cast<lldb::addr_t>(result); 2230 // Find pointer to last element and add on size of an element 2231 alloc->size = static_cast<uint32_t>(mem_ptr - *alloc->data_ptr.get()) + 2232 *alloc->element.datum_size.get(); 2233 2234 return true; 2235 } 2236 2237 // JITs the RS runtime for information about the stride between rows in the 2238 // allocation. This is done to detect padding, since allocated memory is 16-byte 2239 // aligned. 2240 // Returns true on success, false otherwise 2241 bool RenderScriptRuntime::JITAllocationStride(AllocationDetails *alloc, 2242 StackFrame *frame_ptr) { 2243 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2244 2245 if (!alloc->address.isValid() || !alloc->data_ptr.isValid()) { 2246 if (log) 2247 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 2248 return false; 2249 } 2250 2251 const char *fmt_str = JITTemplate(eExprGetOffsetPtr); 2252 char expr_buf[jit_max_expr_size]; 2253 2254 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 2255 *alloc->address.get(), 0, 1, 0); 2256 if (written < 0) { 2257 if (log) 2258 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 2259 return false; 2260 } else if (written >= jit_max_expr_size) { 2261 if (log) 2262 log->Printf("%s - expression too long.", __FUNCTION__); 2263 return false; 2264 } 2265 2266 uint64_t result = 0; 2267 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 2268 return false; 2269 2270 addr_t mem_ptr = static_cast<lldb::addr_t>(result); 2271 alloc->stride = static_cast<uint32_t>(mem_ptr - *alloc->data_ptr.get()); 2272 2273 return true; 2274 } 2275 2276 // JIT all the current runtime info regarding an allocation 2277 bool RenderScriptRuntime::RefreshAllocation(AllocationDetails *alloc, 2278 StackFrame *frame_ptr) { 2279 // GetOffsetPointer() 2280 if (!JITDataPointer(alloc, frame_ptr)) 2281 return false; 2282 2283 // rsaAllocationGetType() 2284 if (!JITTypePointer(alloc, frame_ptr)) 2285 return false; 2286 2287 // rsaTypeGetNativeData() 2288 if (!JITTypePacked(alloc, frame_ptr)) 2289 return false; 2290 2291 // rsaElementGetNativeData() 2292 if (!JITElementPacked(alloc->element, *alloc->context.get(), frame_ptr)) 2293 return false; 2294 2295 // Sets the datum_size member in Element 2296 SetElementSize(alloc->element); 2297 2298 // Use GetOffsetPointer() to infer size of the allocation 2299 if (!JITAllocationSize(alloc, frame_ptr)) 2300 return false; 2301 2302 return true; 2303 } 2304 2305 // Function attempts to set the type_name member of the paramaterised Element 2306 // object. 2307 // This string should be the name of the struct type the Element represents. 2308 // We need this string for pretty printing the Element to users. 2309 void RenderScriptRuntime::FindStructTypeName(Element &elem, 2310 StackFrame *frame_ptr) { 2311 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2312 2313 if (!elem.type_name.IsEmpty()) // Name already set 2314 return; 2315 else 2316 elem.type_name = Element::GetFallbackStructName(); // Default type name if 2317 // we don't succeed 2318 2319 // Find all the global variables from the script rs modules 2320 VariableList var_list; 2321 for (auto module_sp : m_rsmodules) 2322 module_sp->m_module->FindGlobalVariables( 2323 RegularExpression(llvm::StringRef(".")), true, UINT32_MAX, var_list); 2324 2325 // Iterate over all the global variables looking for one with a matching type 2326 // to the Element. 2327 // We make the assumption a match exists since there needs to be a global 2328 // variable to reflect the struct type back into java host code. 2329 for (uint32_t i = 0; i < var_list.GetSize(); ++i) { 2330 const VariableSP var_sp(var_list.GetVariableAtIndex(i)); 2331 if (!var_sp) 2332 continue; 2333 2334 ValueObjectSP valobj_sp = ValueObjectVariable::Create(frame_ptr, var_sp); 2335 if (!valobj_sp) 2336 continue; 2337 2338 // Find the number of variable fields. 2339 // If it has no fields, or more fields than our Element, then it can't be 2340 // the struct we're looking for. 2341 // Don't check for equality since RS can add extra struct members for 2342 // padding. 2343 size_t num_children = valobj_sp->GetNumChildren(); 2344 if (num_children > elem.children.size() || num_children == 0) 2345 continue; 2346 2347 // Iterate over children looking for members with matching field names. 2348 // If all the field names match, this is likely the struct we want. 2349 // TODO: This could be made more robust by also checking children data 2350 // sizes, or array size 2351 bool found = true; 2352 for (size_t i = 0; i < num_children; ++i) { 2353 ValueObjectSP child = valobj_sp->GetChildAtIndex(i, true); 2354 if (!child || (child->GetName() != elem.children[i].type_name)) { 2355 found = false; 2356 break; 2357 } 2358 } 2359 2360 // RS can add extra struct members for padding in the format 2361 // '#rs_padding_[0-9]+' 2362 if (found && num_children < elem.children.size()) { 2363 const uint32_t size_diff = elem.children.size() - num_children; 2364 if (log) 2365 log->Printf("%s - %" PRIu32 " padding struct entries", __FUNCTION__, 2366 size_diff); 2367 2368 for (uint32_t i = 0; i < size_diff; ++i) { 2369 const ConstString &name = elem.children[num_children + i].type_name; 2370 if (strcmp(name.AsCString(), "#rs_padding") < 0) 2371 found = false; 2372 } 2373 } 2374 2375 // We've found a global variable with matching type 2376 if (found) { 2377 // Dereference since our Element type isn't a pointer. 2378 if (valobj_sp->IsPointerType()) { 2379 Error err; 2380 ValueObjectSP deref_valobj = valobj_sp->Dereference(err); 2381 if (!err.Fail()) 2382 valobj_sp = deref_valobj; 2383 } 2384 2385 // Save name of variable in Element. 2386 elem.type_name = valobj_sp->GetTypeName(); 2387 if (log) 2388 log->Printf("%s - element name set to %s", __FUNCTION__, 2389 elem.type_name.AsCString()); 2390 2391 return; 2392 } 2393 } 2394 } 2395 2396 // Function sets the datum_size member of Element. Representing the size of a 2397 // single instance including padding. 2398 // Assumes the relevant allocation information has already been jitted. 2399 void RenderScriptRuntime::SetElementSize(Element &elem) { 2400 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2401 const Element::DataType type = *elem.type.get(); 2402 assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && 2403 "Invalid allocation type"); 2404 2405 const uint32_t vec_size = *elem.type_vec_size.get(); 2406 uint32_t data_size = 0; 2407 uint32_t padding = 0; 2408 2409 // Element is of a struct type, calculate size recursively. 2410 if ((type == Element::RS_TYPE_NONE) && (elem.children.size() > 0)) { 2411 for (Element &child : elem.children) { 2412 SetElementSize(child); 2413 const uint32_t array_size = 2414 child.array_size.isValid() ? *child.array_size.get() : 1; 2415 data_size += *child.datum_size.get() * array_size; 2416 } 2417 } 2418 // These have been packed already 2419 else if (type == Element::RS_TYPE_UNSIGNED_5_6_5 || 2420 type == Element::RS_TYPE_UNSIGNED_5_5_5_1 || 2421 type == Element::RS_TYPE_UNSIGNED_4_4_4_4) { 2422 data_size = AllocationDetails::RSTypeToFormat[type][eElementSize]; 2423 } else if (type < Element::RS_TYPE_ELEMENT) { 2424 data_size = 2425 vec_size * AllocationDetails::RSTypeToFormat[type][eElementSize]; 2426 if (vec_size == 3) 2427 padding = AllocationDetails::RSTypeToFormat[type][eElementSize]; 2428 } else 2429 data_size = 2430 GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 2431 2432 elem.padding = padding; 2433 elem.datum_size = data_size + padding; 2434 if (log) 2435 log->Printf("%s - element size set to %" PRIu32, __FUNCTION__, 2436 data_size + padding); 2437 } 2438 2439 // Given an allocation, this function copies the allocation contents from device 2440 // into a buffer on the heap. 2441 // Returning a shared pointer to the buffer containing the data. 2442 std::shared_ptr<uint8_t> 2443 RenderScriptRuntime::GetAllocationData(AllocationDetails *alloc, 2444 StackFrame *frame_ptr) { 2445 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2446 2447 // JIT all the allocation details 2448 if (alloc->ShouldRefresh()) { 2449 if (log) 2450 log->Printf("%s - allocation details not calculated yet, jitting info", 2451 __FUNCTION__); 2452 2453 if (!RefreshAllocation(alloc, frame_ptr)) { 2454 if (log) 2455 log->Printf("%s - couldn't JIT allocation details", __FUNCTION__); 2456 return nullptr; 2457 } 2458 } 2459 2460 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && 2461 alloc->element.type_vec_size.isValid() && alloc->size.isValid() && 2462 "Allocation information not available"); 2463 2464 // Allocate a buffer to copy data into 2465 const uint32_t size = *alloc->size.get(); 2466 std::shared_ptr<uint8_t> buffer(new uint8_t[size]); 2467 if (!buffer) { 2468 if (log) 2469 log->Printf("%s - couldn't allocate a %" PRIu32 " byte buffer", 2470 __FUNCTION__, size); 2471 return nullptr; 2472 } 2473 2474 // Read the inferior memory 2475 Error err; 2476 lldb::addr_t data_ptr = *alloc->data_ptr.get(); 2477 GetProcess()->ReadMemory(data_ptr, buffer.get(), size, err); 2478 if (err.Fail()) { 2479 if (log) 2480 log->Printf("%s - '%s' Couldn't read %" PRIu32 2481 " bytes of allocation data from 0x%" PRIx64, 2482 __FUNCTION__, err.AsCString(), size, data_ptr); 2483 return nullptr; 2484 } 2485 2486 return buffer; 2487 } 2488 2489 // Function copies data from a binary file into an allocation. 2490 // There is a header at the start of the file, FileHeader, before the data 2491 // content itself. 2492 // Information from this header is used to display warnings to the user about 2493 // incompatibilities 2494 bool RenderScriptRuntime::LoadAllocation(Stream &strm, const uint32_t alloc_id, 2495 const char *path, 2496 StackFrame *frame_ptr) { 2497 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2498 2499 // Find allocation with the given id 2500 AllocationDetails *alloc = FindAllocByID(strm, alloc_id); 2501 if (!alloc) 2502 return false; 2503 2504 if (log) 2505 log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__, 2506 *alloc->address.get()); 2507 2508 // JIT all the allocation details 2509 if (alloc->ShouldRefresh()) { 2510 if (log) 2511 log->Printf("%s - allocation details not calculated yet, jitting info.", 2512 __FUNCTION__); 2513 2514 if (!RefreshAllocation(alloc, frame_ptr)) { 2515 if (log) 2516 log->Printf("%s - couldn't JIT allocation details", __FUNCTION__); 2517 return false; 2518 } 2519 } 2520 2521 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && 2522 alloc->element.type_vec_size.isValid() && alloc->size.isValid() && 2523 alloc->element.datum_size.isValid() && 2524 "Allocation information not available"); 2525 2526 // Check we can read from file 2527 FileSpec file(path, true); 2528 if (!file.Exists()) { 2529 strm.Printf("Error: File %s does not exist", path); 2530 strm.EOL(); 2531 return false; 2532 } 2533 2534 if (!file.Readable()) { 2535 strm.Printf("Error: File %s does not have readable permissions", path); 2536 strm.EOL(); 2537 return false; 2538 } 2539 2540 // Read file into data buffer 2541 auto data_sp = DataBufferLLVM::CreateFromPath(file.GetPath()); 2542 2543 // Cast start of buffer to FileHeader and use pointer to read metadata 2544 void *file_buf = data_sp->GetBytes(); 2545 if (file_buf == nullptr || 2546 data_sp->GetByteSize() < (sizeof(AllocationDetails::FileHeader) + 2547 sizeof(AllocationDetails::ElementHeader))) { 2548 strm.Printf("Error: File %s does not contain enough data for header", path); 2549 strm.EOL(); 2550 return false; 2551 } 2552 const AllocationDetails::FileHeader *file_header = 2553 static_cast<AllocationDetails::FileHeader *>(file_buf); 2554 2555 // Check file starts with ascii characters "RSAD" 2556 if (memcmp(file_header->ident, "RSAD", 4)) { 2557 strm.Printf("Error: File doesn't contain identifier for an RS allocation " 2558 "dump. Are you sure this is the correct file?"); 2559 strm.EOL(); 2560 return false; 2561 } 2562 2563 // Look at the type of the root element in the header 2564 AllocationDetails::ElementHeader root_el_hdr; 2565 memcpy(&root_el_hdr, static_cast<uint8_t *>(file_buf) + 2566 sizeof(AllocationDetails::FileHeader), 2567 sizeof(AllocationDetails::ElementHeader)); 2568 2569 if (log) 2570 log->Printf("%s - header type %" PRIu32 ", element size %" PRIu32, 2571 __FUNCTION__, root_el_hdr.type, root_el_hdr.element_size); 2572 2573 // Check if the target allocation and file both have the same number of bytes 2574 // for an Element 2575 if (*alloc->element.datum_size.get() != root_el_hdr.element_size) { 2576 strm.Printf("Warning: Mismatched Element sizes - file %" PRIu32 2577 " bytes, allocation %" PRIu32 " bytes", 2578 root_el_hdr.element_size, *alloc->element.datum_size.get()); 2579 strm.EOL(); 2580 } 2581 2582 // Check if the target allocation and file both have the same type 2583 const uint32_t alloc_type = static_cast<uint32_t>(*alloc->element.type.get()); 2584 const uint32_t file_type = root_el_hdr.type; 2585 2586 if (file_type > Element::RS_TYPE_FONT) { 2587 strm.Printf("Warning: File has unknown allocation type"); 2588 strm.EOL(); 2589 } else if (alloc_type != file_type) { 2590 // Enum value isn't monotonous, so doesn't always index RsDataTypeToString 2591 // array 2592 uint32_t target_type_name_idx = alloc_type; 2593 uint32_t head_type_name_idx = file_type; 2594 if (alloc_type >= Element::RS_TYPE_ELEMENT && 2595 alloc_type <= Element::RS_TYPE_FONT) 2596 target_type_name_idx = static_cast<Element::DataType>( 2597 (alloc_type - Element::RS_TYPE_ELEMENT) + 2598 Element::RS_TYPE_MATRIX_2X2 + 1); 2599 2600 if (file_type >= Element::RS_TYPE_ELEMENT && 2601 file_type <= Element::RS_TYPE_FONT) 2602 head_type_name_idx = static_cast<Element::DataType>( 2603 (file_type - Element::RS_TYPE_ELEMENT) + Element::RS_TYPE_MATRIX_2X2 + 2604 1); 2605 2606 const char *head_type_name = 2607 AllocationDetails::RsDataTypeToString[head_type_name_idx][0]; 2608 const char *target_type_name = 2609 AllocationDetails::RsDataTypeToString[target_type_name_idx][0]; 2610 2611 strm.Printf( 2612 "Warning: Mismatched Types - file '%s' type, allocation '%s' type", 2613 head_type_name, target_type_name); 2614 strm.EOL(); 2615 } 2616 2617 // Advance buffer past header 2618 file_buf = static_cast<uint8_t *>(file_buf) + file_header->hdr_size; 2619 2620 // Calculate size of allocation data in file 2621 size_t size = data_sp->GetByteSize() - file_header->hdr_size; 2622 2623 // Check if the target allocation and file both have the same total data size. 2624 const uint32_t alloc_size = *alloc->size.get(); 2625 if (alloc_size != size) { 2626 strm.Printf("Warning: Mismatched allocation sizes - file 0x%" PRIx64 2627 " bytes, allocation 0x%" PRIx32 " bytes", 2628 (uint64_t)size, alloc_size); 2629 strm.EOL(); 2630 // Set length to copy to minimum 2631 size = alloc_size < size ? alloc_size : size; 2632 } 2633 2634 // Copy file data from our buffer into the target allocation. 2635 lldb::addr_t alloc_data = *alloc->data_ptr.get(); 2636 Error err; 2637 size_t written = GetProcess()->WriteMemory(alloc_data, file_buf, size, err); 2638 if (!err.Success() || written != size) { 2639 strm.Printf("Error: Couldn't write data to allocation %s", err.AsCString()); 2640 strm.EOL(); 2641 return false; 2642 } 2643 2644 strm.Printf("Contents of file '%s' read into allocation %" PRIu32, path, 2645 alloc->id); 2646 strm.EOL(); 2647 2648 return true; 2649 } 2650 2651 // Function takes as parameters a byte buffer, which will eventually be written 2652 // to file as the element header, an offset into that buffer, and an Element 2653 // that will be saved into the buffer at the parametrised offset. 2654 // Return value is the new offset after writing the element into the buffer. 2655 // Elements are saved to the file as the ElementHeader struct followed by 2656 // offsets to the structs of all the element's children. 2657 size_t RenderScriptRuntime::PopulateElementHeaders( 2658 const std::shared_ptr<uint8_t> header_buffer, size_t offset, 2659 const Element &elem) { 2660 // File struct for an element header with all the relevant details copied from 2661 // elem. We assume members are valid already. 2662 AllocationDetails::ElementHeader elem_header; 2663 elem_header.type = *elem.type.get(); 2664 elem_header.kind = *elem.type_kind.get(); 2665 elem_header.element_size = *elem.datum_size.get(); 2666 elem_header.vector_size = *elem.type_vec_size.get(); 2667 elem_header.array_size = 2668 elem.array_size.isValid() ? *elem.array_size.get() : 0; 2669 const size_t elem_header_size = sizeof(AllocationDetails::ElementHeader); 2670 2671 // Copy struct into buffer and advance offset 2672 // We assume that header_buffer has been checked for nullptr before this 2673 // method is called 2674 memcpy(header_buffer.get() + offset, &elem_header, elem_header_size); 2675 offset += elem_header_size; 2676 2677 // Starting offset of child ElementHeader struct 2678 size_t child_offset = 2679 offset + ((elem.children.size() + 1) * sizeof(uint32_t)); 2680 for (const RenderScriptRuntime::Element &child : elem.children) { 2681 // Recursively populate the buffer with the element header structs of 2682 // children. Then save the offsets where they were set after the parent 2683 // element header. 2684 memcpy(header_buffer.get() + offset, &child_offset, sizeof(uint32_t)); 2685 offset += sizeof(uint32_t); 2686 2687 child_offset = PopulateElementHeaders(header_buffer, child_offset, child); 2688 } 2689 2690 // Zero indicates no more children 2691 memset(header_buffer.get() + offset, 0, sizeof(uint32_t)); 2692 2693 return child_offset; 2694 } 2695 2696 // Given an Element object this function returns the total size needed in the 2697 // file header to store the element's details. Taking into account the size of 2698 // the element header struct, plus the offsets to all the element's children. 2699 // Function is recursive so that the size of all ancestors is taken into 2700 // account. 2701 size_t RenderScriptRuntime::CalculateElementHeaderSize(const Element &elem) { 2702 // Offsets to children plus zero terminator 2703 size_t size = (elem.children.size() + 1) * sizeof(uint32_t); 2704 // Size of header struct with type details 2705 size += sizeof(AllocationDetails::ElementHeader); 2706 2707 // Calculate recursively for all descendants 2708 for (const Element &child : elem.children) 2709 size += CalculateElementHeaderSize(child); 2710 2711 return size; 2712 } 2713 2714 // Function copies allocation contents into a binary file. This file can then be 2715 // loaded later into a different allocation. There is a header, FileHeader, 2716 // before the allocation data containing meta-data. 2717 bool RenderScriptRuntime::SaveAllocation(Stream &strm, const uint32_t alloc_id, 2718 const char *path, 2719 StackFrame *frame_ptr) { 2720 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2721 2722 // Find allocation with the given id 2723 AllocationDetails *alloc = FindAllocByID(strm, alloc_id); 2724 if (!alloc) 2725 return false; 2726 2727 if (log) 2728 log->Printf("%s - found allocation 0x%" PRIx64 ".", __FUNCTION__, 2729 *alloc->address.get()); 2730 2731 // JIT all the allocation details 2732 if (alloc->ShouldRefresh()) { 2733 if (log) 2734 log->Printf("%s - allocation details not calculated yet, jitting info.", 2735 __FUNCTION__); 2736 2737 if (!RefreshAllocation(alloc, frame_ptr)) { 2738 if (log) 2739 log->Printf("%s - couldn't JIT allocation details.", __FUNCTION__); 2740 return false; 2741 } 2742 } 2743 2744 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && 2745 alloc->element.type_vec_size.isValid() && 2746 alloc->element.datum_size.get() && 2747 alloc->element.type_kind.isValid() && alloc->dimension.isValid() && 2748 "Allocation information not available"); 2749 2750 // Check we can create writable file 2751 FileSpec file_spec(path, true); 2752 File file(file_spec, File::eOpenOptionWrite | File::eOpenOptionCanCreate | 2753 File::eOpenOptionTruncate); 2754 if (!file) { 2755 strm.Printf("Error: Failed to open '%s' for writing", path); 2756 strm.EOL(); 2757 return false; 2758 } 2759 2760 // Read allocation into buffer of heap memory 2761 const std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr); 2762 if (!buffer) { 2763 strm.Printf("Error: Couldn't read allocation data into buffer"); 2764 strm.EOL(); 2765 return false; 2766 } 2767 2768 // Create the file header 2769 AllocationDetails::FileHeader head; 2770 memcpy(head.ident, "RSAD", 4); 2771 head.dims[0] = static_cast<uint32_t>(alloc->dimension.get()->dim_1); 2772 head.dims[1] = static_cast<uint32_t>(alloc->dimension.get()->dim_2); 2773 head.dims[2] = static_cast<uint32_t>(alloc->dimension.get()->dim_3); 2774 2775 const size_t element_header_size = CalculateElementHeaderSize(alloc->element); 2776 assert((sizeof(AllocationDetails::FileHeader) + element_header_size) < 2777 UINT16_MAX && 2778 "Element header too large"); 2779 head.hdr_size = static_cast<uint16_t>(sizeof(AllocationDetails::FileHeader) + 2780 element_header_size); 2781 2782 // Write the file header 2783 size_t num_bytes = sizeof(AllocationDetails::FileHeader); 2784 if (log) 2785 log->Printf("%s - writing File Header, 0x%" PRIx64 " bytes", __FUNCTION__, 2786 (uint64_t)num_bytes); 2787 2788 Error err = file.Write(&head, num_bytes); 2789 if (!err.Success()) { 2790 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path); 2791 strm.EOL(); 2792 return false; 2793 } 2794 2795 // Create the headers describing the element type of the allocation. 2796 std::shared_ptr<uint8_t> element_header_buffer( 2797 new uint8_t[element_header_size]); 2798 if (element_header_buffer == nullptr) { 2799 strm.Printf("Internal Error: Couldn't allocate %" PRIu64 2800 " bytes on the heap", 2801 (uint64_t)element_header_size); 2802 strm.EOL(); 2803 return false; 2804 } 2805 2806 PopulateElementHeaders(element_header_buffer, 0, alloc->element); 2807 2808 // Write headers for allocation element type to file 2809 num_bytes = element_header_size; 2810 if (log) 2811 log->Printf("%s - writing element headers, 0x%" PRIx64 " bytes.", 2812 __FUNCTION__, (uint64_t)num_bytes); 2813 2814 err = file.Write(element_header_buffer.get(), num_bytes); 2815 if (!err.Success()) { 2816 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path); 2817 strm.EOL(); 2818 return false; 2819 } 2820 2821 // Write allocation data to file 2822 num_bytes = static_cast<size_t>(*alloc->size.get()); 2823 if (log) 2824 log->Printf("%s - writing 0x%" PRIx64 " bytes", __FUNCTION__, 2825 (uint64_t)num_bytes); 2826 2827 err = file.Write(buffer.get(), num_bytes); 2828 if (!err.Success()) { 2829 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path); 2830 strm.EOL(); 2831 return false; 2832 } 2833 2834 strm.Printf("Allocation written to file '%s'", path); 2835 strm.EOL(); 2836 return true; 2837 } 2838 2839 bool RenderScriptRuntime::LoadModule(const lldb::ModuleSP &module_sp) { 2840 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2841 2842 if (module_sp) { 2843 for (const auto &rs_module : m_rsmodules) { 2844 if (rs_module->m_module == module_sp) { 2845 // Check if the user has enabled automatically breaking on 2846 // all RS kernels. 2847 if (m_breakAllKernels) 2848 BreakOnModuleKernels(rs_module); 2849 2850 return false; 2851 } 2852 } 2853 bool module_loaded = false; 2854 switch (GetModuleKind(module_sp)) { 2855 case eModuleKindKernelObj: { 2856 RSModuleDescriptorSP module_desc; 2857 module_desc.reset(new RSModuleDescriptor(module_sp)); 2858 if (module_desc->ParseRSInfo()) { 2859 m_rsmodules.push_back(module_desc); 2860 module_desc->WarnIfVersionMismatch(GetProcess() 2861 ->GetTarget() 2862 .GetDebugger() 2863 .GetAsyncOutputStream() 2864 .get()); 2865 module_loaded = true; 2866 } 2867 if (module_loaded) { 2868 FixupScriptDetails(module_desc); 2869 } 2870 break; 2871 } 2872 case eModuleKindDriver: { 2873 if (!m_libRSDriver) { 2874 m_libRSDriver = module_sp; 2875 LoadRuntimeHooks(m_libRSDriver, RenderScriptRuntime::eModuleKindDriver); 2876 } 2877 break; 2878 } 2879 case eModuleKindImpl: { 2880 if (!m_libRSCpuRef) { 2881 m_libRSCpuRef = module_sp; 2882 LoadRuntimeHooks(m_libRSCpuRef, RenderScriptRuntime::eModuleKindImpl); 2883 } 2884 break; 2885 } 2886 case eModuleKindLibRS: { 2887 if (!m_libRS) { 2888 m_libRS = module_sp; 2889 static ConstString gDbgPresentStr("gDebuggerPresent"); 2890 const Symbol *debug_present = m_libRS->FindFirstSymbolWithNameAndType( 2891 gDbgPresentStr, eSymbolTypeData); 2892 if (debug_present) { 2893 Error err; 2894 uint32_t flag = 0x00000001U; 2895 Target &target = GetProcess()->GetTarget(); 2896 addr_t addr = debug_present->GetLoadAddress(&target); 2897 GetProcess()->WriteMemory(addr, &flag, sizeof(flag), err); 2898 if (err.Success()) { 2899 if (log) 2900 log->Printf("%s - debugger present flag set on debugee.", 2901 __FUNCTION__); 2902 2903 m_debuggerPresentFlagged = true; 2904 } else if (log) { 2905 log->Printf("%s - error writing debugger present flags '%s' ", 2906 __FUNCTION__, err.AsCString()); 2907 } 2908 } else if (log) { 2909 log->Printf( 2910 "%s - error writing debugger present flags - symbol not found", 2911 __FUNCTION__); 2912 } 2913 } 2914 break; 2915 } 2916 default: 2917 break; 2918 } 2919 if (module_loaded) 2920 Update(); 2921 return module_loaded; 2922 } 2923 return false; 2924 } 2925 2926 void RenderScriptRuntime::Update() { 2927 if (m_rsmodules.size() > 0) { 2928 if (!m_initiated) { 2929 Initiate(); 2930 } 2931 } 2932 } 2933 2934 void RSModuleDescriptor::WarnIfVersionMismatch(lldb_private::Stream *s) const { 2935 if (!s) 2936 return; 2937 2938 if (m_slang_version.empty() || m_bcc_version.empty()) { 2939 s->PutCString("WARNING: Unknown bcc or slang (llvm-rs-cc) version; debug " 2940 "experience may be unreliable"); 2941 s->EOL(); 2942 } else if (m_slang_version != m_bcc_version) { 2943 s->Printf("WARNING: The debug info emitted by the slang frontend " 2944 "(llvm-rs-cc) used to build this module (%s) does not match the " 2945 "version of bcc used to generate the debug information (%s). " 2946 "This is an unsupported configuration and may result in a poor " 2947 "debugging experience; proceed with caution", 2948 m_slang_version.c_str(), m_bcc_version.c_str()); 2949 s->EOL(); 2950 } 2951 } 2952 2953 bool RSModuleDescriptor::ParsePragmaCount(llvm::StringRef *lines, 2954 size_t n_lines) { 2955 // Skip the pragma prototype line 2956 ++lines; 2957 for (; n_lines--; ++lines) { 2958 const auto kv_pair = lines->split(" - "); 2959 m_pragmas[kv_pair.first.trim().str()] = kv_pair.second.trim().str(); 2960 } 2961 return true; 2962 } 2963 2964 bool RSModuleDescriptor::ParseExportReduceCount(llvm::StringRef *lines, 2965 size_t n_lines) { 2966 // The list of reduction kernels in the `.rs.info` symbol is of the form 2967 // "signature - accumulatordatasize - reduction_name - initializer_name - 2968 // accumulator_name - combiner_name - 2969 // outconverter_name - halter_name" 2970 // Where a function is not explicitly named by the user, or is not generated 2971 // by the compiler, it is named "." so the 2972 // dash separated list should always be 8 items long 2973 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 2974 // Skip the exportReduceCount line 2975 ++lines; 2976 for (; n_lines--; ++lines) { 2977 llvm::SmallVector<llvm::StringRef, 8> spec; 2978 lines->split(spec, " - "); 2979 if (spec.size() != 8) { 2980 if (spec.size() < 8) { 2981 if (log) 2982 log->Error("Error parsing RenderScript reduction spec. wrong number " 2983 "of fields"); 2984 return false; 2985 } else if (log) 2986 log->Warning("Extraneous members in reduction spec: '%s'", 2987 lines->str().c_str()); 2988 } 2989 2990 const auto sig_s = spec[0]; 2991 uint32_t sig; 2992 if (sig_s.getAsInteger(10, sig)) { 2993 if (log) 2994 log->Error("Error parsing Renderscript reduction spec: invalid kernel " 2995 "signature: '%s'", 2996 sig_s.str().c_str()); 2997 return false; 2998 } 2999 3000 const auto accum_data_size_s = spec[1]; 3001 uint32_t accum_data_size; 3002 if (accum_data_size_s.getAsInteger(10, accum_data_size)) { 3003 if (log) 3004 log->Error("Error parsing Renderscript reduction spec: invalid " 3005 "accumulator data size %s", 3006 accum_data_size_s.str().c_str()); 3007 return false; 3008 } 3009 3010 if (log) 3011 log->Printf("Found RenderScript reduction '%s'", spec[2].str().c_str()); 3012 3013 m_reductions.push_back(RSReductionDescriptor(this, sig, accum_data_size, 3014 spec[2], spec[3], spec[4], 3015 spec[5], spec[6], spec[7])); 3016 } 3017 return true; 3018 } 3019 3020 bool RSModuleDescriptor::ParseVersionInfo(llvm::StringRef *lines, 3021 size_t n_lines) { 3022 // Skip the versionInfo line 3023 ++lines; 3024 for (; n_lines--; ++lines) { 3025 // We're only interested in bcc and slang versions, and ignore all other 3026 // versionInfo lines 3027 const auto kv_pair = lines->split(" - "); 3028 if (kv_pair.first == "slang") 3029 m_slang_version = kv_pair.second.str(); 3030 else if (kv_pair.first == "bcc") 3031 m_bcc_version = kv_pair.second.str(); 3032 } 3033 return true; 3034 } 3035 3036 bool RSModuleDescriptor::ParseExportForeachCount(llvm::StringRef *lines, 3037 size_t n_lines) { 3038 // Skip the exportForeachCount line 3039 ++lines; 3040 for (; n_lines--; ++lines) { 3041 uint32_t slot; 3042 // `forEach` kernels are listed in the `.rs.info` packet as a "slot - name" 3043 // pair per line 3044 const auto kv_pair = lines->split(" - "); 3045 if (kv_pair.first.getAsInteger(10, slot)) 3046 return false; 3047 m_kernels.push_back(RSKernelDescriptor(this, kv_pair.second, slot)); 3048 } 3049 return true; 3050 } 3051 3052 bool RSModuleDescriptor::ParseExportVarCount(llvm::StringRef *lines, 3053 size_t n_lines) { 3054 // Skip the ExportVarCount line 3055 ++lines; 3056 for (; n_lines--; ++lines) 3057 m_globals.push_back(RSGlobalDescriptor(this, *lines)); 3058 return true; 3059 } 3060 3061 // The .rs.info symbol in renderscript modules contains a string which needs to 3062 // be parsed. 3063 // The string is basic and is parsed on a line by line basis. 3064 bool RSModuleDescriptor::ParseRSInfo() { 3065 assert(m_module); 3066 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3067 const Symbol *info_sym = m_module->FindFirstSymbolWithNameAndType( 3068 ConstString(".rs.info"), eSymbolTypeData); 3069 if (!info_sym) 3070 return false; 3071 3072 const addr_t addr = info_sym->GetAddressRef().GetFileAddress(); 3073 if (addr == LLDB_INVALID_ADDRESS) 3074 return false; 3075 3076 const addr_t size = info_sym->GetByteSize(); 3077 const FileSpec fs = m_module->GetFileSpec(); 3078 3079 auto buffer = DataBufferLLVM::CreateSliceFromPath(fs.GetPath(), size, addr); 3080 if (!buffer) 3081 return false; 3082 3083 // split rs.info. contents into lines 3084 llvm::SmallVector<llvm::StringRef, 128> info_lines; 3085 { 3086 const llvm::StringRef raw_rs_info((const char *)buffer->GetBytes()); 3087 raw_rs_info.split(info_lines, '\n'); 3088 if (log) 3089 log->Printf("'.rs.info symbol for '%s':\n%s", 3090 m_module->GetFileSpec().GetCString(), 3091 raw_rs_info.str().c_str()); 3092 } 3093 3094 enum { 3095 eExportVar, 3096 eExportForEach, 3097 eExportReduce, 3098 ePragma, 3099 eBuildChecksum, 3100 eObjectSlot, 3101 eVersionInfo, 3102 }; 3103 3104 const auto rs_info_handler = [](llvm::StringRef name) -> int { 3105 return llvm::StringSwitch<int>(name) 3106 // The number of visible global variables in the script 3107 .Case("exportVarCount", eExportVar) 3108 // The number of RenderScrip `forEach` kernels __attribute__((kernel)) 3109 .Case("exportForEachCount", eExportForEach) 3110 // The number of generalreductions: This marked in the script by 3111 // `#pragma reduce()` 3112 .Case("exportReduceCount", eExportReduce) 3113 // Total count of all RenderScript specific `#pragmas` used in the 3114 // script 3115 .Case("pragmaCount", ePragma) 3116 .Case("objectSlotCount", eObjectSlot) 3117 .Case("versionInfo", eVersionInfo) 3118 .Default(-1); 3119 }; 3120 3121 // parse all text lines of .rs.info 3122 for (auto line = info_lines.begin(); line != info_lines.end(); ++line) { 3123 const auto kv_pair = line->split(": "); 3124 const auto key = kv_pair.first; 3125 const auto val = kv_pair.second.trim(); 3126 3127 const auto handler = rs_info_handler(key); 3128 if (handler == -1) 3129 continue; 3130 // getAsInteger returns `true` on an error condition - we're only interested 3131 // in numeric fields at the moment 3132 uint64_t n_lines; 3133 if (val.getAsInteger(10, n_lines)) { 3134 LLDB_LOGV(log, "Failed to parse non-numeric '.rs.info' section {0}", 3135 line->str()); 3136 continue; 3137 } 3138 if (info_lines.end() - (line + 1) < (ptrdiff_t)n_lines) 3139 return false; 3140 3141 bool success = false; 3142 switch (handler) { 3143 case eExportVar: 3144 success = ParseExportVarCount(line, n_lines); 3145 break; 3146 case eExportForEach: 3147 success = ParseExportForeachCount(line, n_lines); 3148 break; 3149 case eExportReduce: 3150 success = ParseExportReduceCount(line, n_lines); 3151 break; 3152 case ePragma: 3153 success = ParsePragmaCount(line, n_lines); 3154 break; 3155 case eVersionInfo: 3156 success = ParseVersionInfo(line, n_lines); 3157 break; 3158 default: { 3159 if (log) 3160 log->Printf("%s - skipping .rs.info field '%s'", __FUNCTION__, 3161 line->str().c_str()); 3162 continue; 3163 } 3164 } 3165 if (!success) 3166 return false; 3167 line += n_lines; 3168 } 3169 return info_lines.size() > 0; 3170 } 3171 3172 void RenderScriptRuntime::Status(Stream &strm) const { 3173 if (m_libRS) { 3174 strm.Printf("Runtime Library discovered."); 3175 strm.EOL(); 3176 } 3177 if (m_libRSDriver) { 3178 strm.Printf("Runtime Driver discovered."); 3179 strm.EOL(); 3180 } 3181 if (m_libRSCpuRef) { 3182 strm.Printf("CPU Reference Implementation discovered."); 3183 strm.EOL(); 3184 } 3185 3186 if (m_runtimeHooks.size()) { 3187 strm.Printf("Runtime functions hooked:"); 3188 strm.EOL(); 3189 for (auto b : m_runtimeHooks) { 3190 strm.Indent(b.second->defn->name); 3191 strm.EOL(); 3192 } 3193 } else { 3194 strm.Printf("Runtime is not hooked."); 3195 strm.EOL(); 3196 } 3197 } 3198 3199 void RenderScriptRuntime::DumpContexts(Stream &strm) const { 3200 strm.Printf("Inferred RenderScript Contexts:"); 3201 strm.EOL(); 3202 strm.IndentMore(); 3203 3204 std::map<addr_t, uint64_t> contextReferences; 3205 3206 // Iterate over all of the currently discovered scripts. 3207 // Note: We cant push or pop from m_scripts inside this loop or it may 3208 // invalidate script. 3209 for (const auto &script : m_scripts) { 3210 if (!script->context.isValid()) 3211 continue; 3212 lldb::addr_t context = *script->context; 3213 3214 if (contextReferences.find(context) != contextReferences.end()) { 3215 contextReferences[context]++; 3216 } else { 3217 contextReferences[context] = 1; 3218 } 3219 } 3220 3221 for (const auto &cRef : contextReferences) { 3222 strm.Printf("Context 0x%" PRIx64 ": %" PRIu64 " script instances", 3223 cRef.first, cRef.second); 3224 strm.EOL(); 3225 } 3226 strm.IndentLess(); 3227 } 3228 3229 void RenderScriptRuntime::DumpKernels(Stream &strm) const { 3230 strm.Printf("RenderScript Kernels:"); 3231 strm.EOL(); 3232 strm.IndentMore(); 3233 for (const auto &module : m_rsmodules) { 3234 strm.Printf("Resource '%s':", module->m_resname.c_str()); 3235 strm.EOL(); 3236 for (const auto &kernel : module->m_kernels) { 3237 strm.Indent(kernel.m_name.AsCString()); 3238 strm.EOL(); 3239 } 3240 } 3241 strm.IndentLess(); 3242 } 3243 3244 RenderScriptRuntime::AllocationDetails * 3245 RenderScriptRuntime::FindAllocByID(Stream &strm, const uint32_t alloc_id) { 3246 AllocationDetails *alloc = nullptr; 3247 3248 // See if we can find allocation using id as an index; 3249 if (alloc_id <= m_allocations.size() && alloc_id != 0 && 3250 m_allocations[alloc_id - 1]->id == alloc_id) { 3251 alloc = m_allocations[alloc_id - 1].get(); 3252 return alloc; 3253 } 3254 3255 // Fallback to searching 3256 for (const auto &a : m_allocations) { 3257 if (a->id == alloc_id) { 3258 alloc = a.get(); 3259 break; 3260 } 3261 } 3262 3263 if (alloc == nullptr) { 3264 strm.Printf("Error: Couldn't find allocation with id matching %" PRIu32, 3265 alloc_id); 3266 strm.EOL(); 3267 } 3268 3269 return alloc; 3270 } 3271 3272 // Prints the contents of an allocation to the output stream, which may be a 3273 // file 3274 bool RenderScriptRuntime::DumpAllocation(Stream &strm, StackFrame *frame_ptr, 3275 const uint32_t id) { 3276 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3277 3278 // Check we can find the desired allocation 3279 AllocationDetails *alloc = FindAllocByID(strm, id); 3280 if (!alloc) 3281 return false; // FindAllocByID() will print error message for us here 3282 3283 if (log) 3284 log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__, 3285 *alloc->address.get()); 3286 3287 // Check we have information about the allocation, if not calculate it 3288 if (alloc->ShouldRefresh()) { 3289 if (log) 3290 log->Printf("%s - allocation details not calculated yet, jitting info.", 3291 __FUNCTION__); 3292 3293 // JIT all the allocation information 3294 if (!RefreshAllocation(alloc, frame_ptr)) { 3295 strm.Printf("Error: Couldn't JIT allocation details"); 3296 strm.EOL(); 3297 return false; 3298 } 3299 } 3300 3301 // Establish format and size of each data element 3302 const uint32_t vec_size = *alloc->element.type_vec_size.get(); 3303 const Element::DataType type = *alloc->element.type.get(); 3304 3305 assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && 3306 "Invalid allocation type"); 3307 3308 lldb::Format format; 3309 if (type >= Element::RS_TYPE_ELEMENT) 3310 format = eFormatHex; 3311 else 3312 format = vec_size == 1 3313 ? static_cast<lldb::Format>( 3314 AllocationDetails::RSTypeToFormat[type][eFormatSingle]) 3315 : static_cast<lldb::Format>( 3316 AllocationDetails::RSTypeToFormat[type][eFormatVector]); 3317 3318 const uint32_t data_size = *alloc->element.datum_size.get(); 3319 3320 if (log) 3321 log->Printf("%s - element size %" PRIu32 " bytes, including padding", 3322 __FUNCTION__, data_size); 3323 3324 // Allocate a buffer to copy data into 3325 std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr); 3326 if (!buffer) { 3327 strm.Printf("Error: Couldn't read allocation data"); 3328 strm.EOL(); 3329 return false; 3330 } 3331 3332 // Calculate stride between rows as there may be padding at end of rows since 3333 // allocated memory is 16-byte aligned 3334 if (!alloc->stride.isValid()) { 3335 if (alloc->dimension.get()->dim_2 == 0) // We only have one dimension 3336 alloc->stride = 0; 3337 else if (!JITAllocationStride(alloc, frame_ptr)) { 3338 strm.Printf("Error: Couldn't calculate allocation row stride"); 3339 strm.EOL(); 3340 return false; 3341 } 3342 } 3343 const uint32_t stride = *alloc->stride.get(); 3344 const uint32_t size = *alloc->size.get(); // Size of whole allocation 3345 const uint32_t padding = 3346 alloc->element.padding.isValid() ? *alloc->element.padding.get() : 0; 3347 if (log) 3348 log->Printf("%s - stride %" PRIu32 " bytes, size %" PRIu32 3349 " bytes, padding %" PRIu32, 3350 __FUNCTION__, stride, size, padding); 3351 3352 // Find dimensions used to index loops, so need to be non-zero 3353 uint32_t dim_x = alloc->dimension.get()->dim_1; 3354 dim_x = dim_x == 0 ? 1 : dim_x; 3355 3356 uint32_t dim_y = alloc->dimension.get()->dim_2; 3357 dim_y = dim_y == 0 ? 1 : dim_y; 3358 3359 uint32_t dim_z = alloc->dimension.get()->dim_3; 3360 dim_z = dim_z == 0 ? 1 : dim_z; 3361 3362 // Use data extractor to format output 3363 const uint32_t target_ptr_size = 3364 GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 3365 DataExtractor alloc_data(buffer.get(), size, GetProcess()->GetByteOrder(), 3366 target_ptr_size); 3367 3368 uint32_t offset = 0; // Offset in buffer to next element to be printed 3369 uint32_t prev_row = 0; // Offset to the start of the previous row 3370 3371 // Iterate over allocation dimensions, printing results to user 3372 strm.Printf("Data (X, Y, Z):"); 3373 for (uint32_t z = 0; z < dim_z; ++z) { 3374 for (uint32_t y = 0; y < dim_y; ++y) { 3375 // Use stride to index start of next row. 3376 if (!(y == 0 && z == 0)) 3377 offset = prev_row + stride; 3378 prev_row = offset; 3379 3380 // Print each element in the row individually 3381 for (uint32_t x = 0; x < dim_x; ++x) { 3382 strm.Printf("\n(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ") = ", x, y, z); 3383 if ((type == Element::RS_TYPE_NONE) && 3384 (alloc->element.children.size() > 0) && 3385 (alloc->element.type_name != Element::GetFallbackStructName())) { 3386 // Here we are dumping an Element of struct type. 3387 // This is done using expression evaluation with the name of the 3388 // struct type and pointer to element. 3389 // Don't print the name of the resulting expression, since this will 3390 // be '$[0-9]+' 3391 DumpValueObjectOptions expr_options; 3392 expr_options.SetHideName(true); 3393 3394 // Setup expression as derefrencing a pointer cast to element address. 3395 char expr_char_buffer[jit_max_expr_size]; 3396 int written = 3397 snprintf(expr_char_buffer, jit_max_expr_size, "*(%s*) 0x%" PRIx64, 3398 alloc->element.type_name.AsCString(), 3399 *alloc->data_ptr.get() + offset); 3400 3401 if (written < 0 || written >= jit_max_expr_size) { 3402 if (log) 3403 log->Printf("%s - error in snprintf().", __FUNCTION__); 3404 continue; 3405 } 3406 3407 // Evaluate expression 3408 ValueObjectSP expr_result; 3409 GetProcess()->GetTarget().EvaluateExpression(expr_char_buffer, 3410 frame_ptr, expr_result); 3411 3412 // Print the results to our stream. 3413 expr_result->Dump(strm, expr_options); 3414 } else { 3415 DumpDataExtractor(alloc_data, &strm, offset, format, 3416 data_size - padding, 1, 1, LLDB_INVALID_ADDRESS, 0, 3417 0); 3418 } 3419 offset += data_size; 3420 } 3421 } 3422 } 3423 strm.EOL(); 3424 3425 return true; 3426 } 3427 3428 // Function recalculates all our cached information about allocations by jitting 3429 // the RS runtime regarding each allocation we know about. Returns true if all 3430 // allocations could be recomputed, false otherwise. 3431 bool RenderScriptRuntime::RecomputeAllAllocations(Stream &strm, 3432 StackFrame *frame_ptr) { 3433 bool success = true; 3434 for (auto &alloc : m_allocations) { 3435 // JIT current allocation information 3436 if (!RefreshAllocation(alloc.get(), frame_ptr)) { 3437 strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32 3438 "\n", 3439 alloc->id); 3440 success = false; 3441 } 3442 } 3443 3444 if (success) 3445 strm.Printf("All allocations successfully recomputed"); 3446 strm.EOL(); 3447 3448 return success; 3449 } 3450 3451 // Prints information regarding currently loaded allocations. These details are 3452 // gathered by jitting the runtime, which has as latency. Index parameter 3453 // specifies a single allocation ID to print, or a zero value to print them all 3454 void RenderScriptRuntime::ListAllocations(Stream &strm, StackFrame *frame_ptr, 3455 const uint32_t index) { 3456 strm.Printf("RenderScript Allocations:"); 3457 strm.EOL(); 3458 strm.IndentMore(); 3459 3460 for (auto &alloc : m_allocations) { 3461 // index will only be zero if we want to print all allocations 3462 if (index != 0 && index != alloc->id) 3463 continue; 3464 3465 // JIT current allocation information 3466 if (alloc->ShouldRefresh() && !RefreshAllocation(alloc.get(), frame_ptr)) { 3467 strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32, 3468 alloc->id); 3469 strm.EOL(); 3470 continue; 3471 } 3472 3473 strm.Printf("%" PRIu32 ":", alloc->id); 3474 strm.EOL(); 3475 strm.IndentMore(); 3476 3477 strm.Indent("Context: "); 3478 if (!alloc->context.isValid()) 3479 strm.Printf("unknown\n"); 3480 else 3481 strm.Printf("0x%" PRIx64 "\n", *alloc->context.get()); 3482 3483 strm.Indent("Address: "); 3484 if (!alloc->address.isValid()) 3485 strm.Printf("unknown\n"); 3486 else 3487 strm.Printf("0x%" PRIx64 "\n", *alloc->address.get()); 3488 3489 strm.Indent("Data pointer: "); 3490 if (!alloc->data_ptr.isValid()) 3491 strm.Printf("unknown\n"); 3492 else 3493 strm.Printf("0x%" PRIx64 "\n", *alloc->data_ptr.get()); 3494 3495 strm.Indent("Dimensions: "); 3496 if (!alloc->dimension.isValid()) 3497 strm.Printf("unknown\n"); 3498 else 3499 strm.Printf("(%" PRId32 ", %" PRId32 ", %" PRId32 ")\n", 3500 alloc->dimension.get()->dim_1, alloc->dimension.get()->dim_2, 3501 alloc->dimension.get()->dim_3); 3502 3503 strm.Indent("Data Type: "); 3504 if (!alloc->element.type.isValid() || 3505 !alloc->element.type_vec_size.isValid()) 3506 strm.Printf("unknown\n"); 3507 else { 3508 const int vector_size = *alloc->element.type_vec_size.get(); 3509 Element::DataType type = *alloc->element.type.get(); 3510 3511 if (!alloc->element.type_name.IsEmpty()) 3512 strm.Printf("%s\n", alloc->element.type_name.AsCString()); 3513 else { 3514 // Enum value isn't monotonous, so doesn't always index 3515 // RsDataTypeToString array 3516 if (type >= Element::RS_TYPE_ELEMENT && type <= Element::RS_TYPE_FONT) 3517 type = 3518 static_cast<Element::DataType>((type - Element::RS_TYPE_ELEMENT) + 3519 Element::RS_TYPE_MATRIX_2X2 + 1); 3520 3521 if (type >= (sizeof(AllocationDetails::RsDataTypeToString) / 3522 sizeof(AllocationDetails::RsDataTypeToString[0])) || 3523 vector_size > 4 || vector_size < 1) 3524 strm.Printf("invalid type\n"); 3525 else 3526 strm.Printf( 3527 "%s\n", 3528 AllocationDetails::RsDataTypeToString[static_cast<uint32_t>(type)] 3529 [vector_size - 1]); 3530 } 3531 } 3532 3533 strm.Indent("Data Kind: "); 3534 if (!alloc->element.type_kind.isValid()) 3535 strm.Printf("unknown\n"); 3536 else { 3537 const Element::DataKind kind = *alloc->element.type_kind.get(); 3538 if (kind < Element::RS_KIND_USER || kind > Element::RS_KIND_PIXEL_YUV) 3539 strm.Printf("invalid kind\n"); 3540 else 3541 strm.Printf( 3542 "%s\n", 3543 AllocationDetails::RsDataKindToString[static_cast<uint32_t>(kind)]); 3544 } 3545 3546 strm.EOL(); 3547 strm.IndentLess(); 3548 } 3549 strm.IndentLess(); 3550 } 3551 3552 // Set breakpoints on every kernel found in RS module 3553 void RenderScriptRuntime::BreakOnModuleKernels( 3554 const RSModuleDescriptorSP rsmodule_sp) { 3555 for (const auto &kernel : rsmodule_sp->m_kernels) { 3556 // Don't set breakpoint on 'root' kernel 3557 if (strcmp(kernel.m_name.AsCString(), "root") == 0) 3558 continue; 3559 3560 CreateKernelBreakpoint(kernel.m_name); 3561 } 3562 } 3563 3564 // Method is internally called by the 'kernel breakpoint all' command to enable 3565 // or disable breaking on all kernels. When do_break is true we want to enable 3566 // this functionality. When do_break is false we want to disable it. 3567 void RenderScriptRuntime::SetBreakAllKernels(bool do_break, TargetSP target) { 3568 Log *log( 3569 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3570 3571 InitSearchFilter(target); 3572 3573 // Set breakpoints on all the kernels 3574 if (do_break && !m_breakAllKernels) { 3575 m_breakAllKernels = true; 3576 3577 for (const auto &module : m_rsmodules) 3578 BreakOnModuleKernels(module); 3579 3580 if (log) 3581 log->Printf("%s(True) - breakpoints set on all currently loaded kernels.", 3582 __FUNCTION__); 3583 } else if (!do_break && 3584 m_breakAllKernels) // Breakpoints won't be set on any new kernels. 3585 { 3586 m_breakAllKernels = false; 3587 3588 if (log) 3589 log->Printf("%s(False) - breakpoints no longer automatically set.", 3590 __FUNCTION__); 3591 } 3592 } 3593 3594 // Given the name of a kernel this function creates a breakpoint using our 3595 // own breakpoint resolver, and returns the Breakpoint shared pointer. 3596 BreakpointSP 3597 RenderScriptRuntime::CreateKernelBreakpoint(const ConstString &name) { 3598 Log *log( 3599 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3600 3601 if (!m_filtersp) { 3602 if (log) 3603 log->Printf("%s - error, no breakpoint search filter set.", __FUNCTION__); 3604 return nullptr; 3605 } 3606 3607 BreakpointResolverSP resolver_sp(new RSBreakpointResolver(nullptr, name)); 3608 BreakpointSP bp = GetProcess()->GetTarget().CreateBreakpoint( 3609 m_filtersp, resolver_sp, false, false, false); 3610 3611 // Give RS breakpoints a specific name, so the user can manipulate them as a 3612 // group. 3613 Error err; 3614 if (!bp->AddName("RenderScriptKernel", err)) 3615 if (log) 3616 log->Printf("%s - error setting break name, '%s'.", __FUNCTION__, 3617 err.AsCString()); 3618 3619 return bp; 3620 } 3621 3622 BreakpointSP 3623 RenderScriptRuntime::CreateReductionBreakpoint(const ConstString &name, 3624 int kernel_types) { 3625 Log *log( 3626 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3627 3628 if (!m_filtersp) { 3629 if (log) 3630 log->Printf("%s - error, no breakpoint search filter set.", __FUNCTION__); 3631 return nullptr; 3632 } 3633 3634 BreakpointResolverSP resolver_sp(new RSReduceBreakpointResolver( 3635 nullptr, name, &m_rsmodules, kernel_types)); 3636 BreakpointSP bp = GetProcess()->GetTarget().CreateBreakpoint( 3637 m_filtersp, resolver_sp, false, false, false); 3638 3639 // Give RS breakpoints a specific name, so the user can manipulate them as a 3640 // group. 3641 Error err; 3642 if (!bp->AddName("RenderScriptReduction", err)) 3643 if (log) 3644 log->Printf("%s - error setting break name, '%s'.", __FUNCTION__, 3645 err.AsCString()); 3646 3647 return bp; 3648 } 3649 3650 // Given an expression for a variable this function tries to calculate the 3651 // variable's value. If this is possible it returns true and sets the uint64_t 3652 // parameter to the variables unsigned value. Otherwise function returns false. 3653 bool RenderScriptRuntime::GetFrameVarAsUnsigned(const StackFrameSP frame_sp, 3654 const char *var_name, 3655 uint64_t &val) { 3656 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3657 Error err; 3658 VariableSP var_sp; 3659 3660 // Find variable in stack frame 3661 ValueObjectSP value_sp(frame_sp->GetValueForVariableExpressionPath( 3662 var_name, eNoDynamicValues, 3663 StackFrame::eExpressionPathOptionCheckPtrVsMember | 3664 StackFrame::eExpressionPathOptionsAllowDirectIVarAccess, 3665 var_sp, err)); 3666 if (!err.Success()) { 3667 if (log) 3668 log->Printf("%s - error, couldn't find '%s' in frame", __FUNCTION__, 3669 var_name); 3670 return false; 3671 } 3672 3673 // Find the uint32_t value for the variable 3674 bool success = false; 3675 val = value_sp->GetValueAsUnsigned(0, &success); 3676 if (!success) { 3677 if (log) 3678 log->Printf("%s - error, couldn't parse '%s' as an uint32_t.", 3679 __FUNCTION__, var_name); 3680 return false; 3681 } 3682 3683 return true; 3684 } 3685 3686 // Function attempts to find the current coordinate of a kernel invocation by 3687 // investigating the values of frame variables in the .expand function. These 3688 // coordinates are returned via the coord array reference parameter. Returns 3689 // true if the coordinates could be found, and false otherwise. 3690 bool RenderScriptRuntime::GetKernelCoordinate(RSCoordinate &coord, 3691 Thread *thread_ptr) { 3692 static const char *const x_expr = "rsIndex"; 3693 static const char *const y_expr = "p->current.y"; 3694 static const char *const z_expr = "p->current.z"; 3695 3696 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3697 3698 if (!thread_ptr) { 3699 if (log) 3700 log->Printf("%s - Error, No thread pointer", __FUNCTION__); 3701 3702 return false; 3703 } 3704 3705 // Walk the call stack looking for a function whose name has the suffix 3706 // '.expand' and contains the variables we're looking for. 3707 for (uint32_t i = 0; i < thread_ptr->GetStackFrameCount(); ++i) { 3708 if (!thread_ptr->SetSelectedFrameByIndex(i)) 3709 continue; 3710 3711 StackFrameSP frame_sp = thread_ptr->GetSelectedFrame(); 3712 if (!frame_sp) 3713 continue; 3714 3715 // Find the function name 3716 const SymbolContext sym_ctx = frame_sp->GetSymbolContext(false); 3717 const ConstString func_name = sym_ctx.GetFunctionName(); 3718 if (!func_name) 3719 continue; 3720 3721 if (log) 3722 log->Printf("%s - Inspecting function '%s'", __FUNCTION__, 3723 func_name.GetCString()); 3724 3725 // Check if function name has .expand suffix 3726 if (!func_name.GetStringRef().endswith(".expand")) 3727 continue; 3728 3729 if (log) 3730 log->Printf("%s - Found .expand function '%s'", __FUNCTION__, 3731 func_name.GetCString()); 3732 3733 // Get values for variables in .expand frame that tell us the current kernel 3734 // invocation 3735 uint64_t x, y, z; 3736 bool found = GetFrameVarAsUnsigned(frame_sp, x_expr, x) && 3737 GetFrameVarAsUnsigned(frame_sp, y_expr, y) && 3738 GetFrameVarAsUnsigned(frame_sp, z_expr, z); 3739 3740 if (found) { 3741 // The RenderScript runtime uses uint32_t for these vars. If they're not 3742 // within bounds, our frame parsing is garbage 3743 assert(x <= UINT32_MAX && y <= UINT32_MAX && z <= UINT32_MAX); 3744 coord.x = (uint32_t)x; 3745 coord.y = (uint32_t)y; 3746 coord.z = (uint32_t)z; 3747 return true; 3748 } 3749 } 3750 return false; 3751 } 3752 3753 // Callback when a kernel breakpoint hits and we're looking for a specific 3754 // coordinate. Baton parameter contains a pointer to the target coordinate we 3755 // want to break on. 3756 // Function then checks the .expand frame for the current coordinate and breaks 3757 // to user if it matches. 3758 // Parameter 'break_id' is the id of the Breakpoint which made the callback. 3759 // Parameter 'break_loc_id' is the id for the BreakpointLocation which was hit, 3760 // a single logical breakpoint can have multiple addresses. 3761 bool RenderScriptRuntime::KernelBreakpointHit(void *baton, 3762 StoppointCallbackContext *ctx, 3763 user_id_t break_id, 3764 user_id_t break_loc_id) { 3765 Log *log( 3766 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3767 3768 assert(baton && 3769 "Error: null baton in conditional kernel breakpoint callback"); 3770 3771 // Coordinate we want to stop on 3772 RSCoordinate target_coord = *static_cast<RSCoordinate *>(baton); 3773 3774 if (log) 3775 log->Printf("%s - Break ID %" PRIu64 ", " FMT_COORD, __FUNCTION__, break_id, 3776 target_coord.x, target_coord.y, target_coord.z); 3777 3778 // Select current thread 3779 ExecutionContext context(ctx->exe_ctx_ref); 3780 Thread *thread_ptr = context.GetThreadPtr(); 3781 assert(thread_ptr && "Null thread pointer"); 3782 3783 // Find current kernel invocation from .expand frame variables 3784 RSCoordinate current_coord{}; 3785 if (!GetKernelCoordinate(current_coord, thread_ptr)) { 3786 if (log) 3787 log->Printf("%s - Error, couldn't select .expand stack frame", 3788 __FUNCTION__); 3789 return false; 3790 } 3791 3792 if (log) 3793 log->Printf("%s - " FMT_COORD, __FUNCTION__, current_coord.x, 3794 current_coord.y, current_coord.z); 3795 3796 // Check if the current kernel invocation coordinate matches our target 3797 // coordinate 3798 if (target_coord == current_coord) { 3799 if (log) 3800 log->Printf("%s, BREAKING " FMT_COORD, __FUNCTION__, current_coord.x, 3801 current_coord.y, current_coord.z); 3802 3803 BreakpointSP breakpoint_sp = 3804 context.GetTargetPtr()->GetBreakpointByID(break_id); 3805 assert(breakpoint_sp != nullptr && 3806 "Error: Couldn't find breakpoint matching break id for callback"); 3807 breakpoint_sp->SetEnabled(false); // Optimise since conditional breakpoint 3808 // should only be hit once. 3809 return true; 3810 } 3811 3812 // No match on coordinate 3813 return false; 3814 } 3815 3816 void RenderScriptRuntime::SetConditional(BreakpointSP bp, Stream &messages, 3817 const RSCoordinate &coord) { 3818 messages.Printf("Conditional kernel breakpoint on coordinate " FMT_COORD, 3819 coord.x, coord.y, coord.z); 3820 messages.EOL(); 3821 3822 // Allocate memory for the baton, and copy over coordinate 3823 RSCoordinate *baton = new RSCoordinate(coord); 3824 3825 // Create a callback that will be invoked every time the breakpoint is hit. 3826 // The baton object passed to the handler is the target coordinate we want to 3827 // break on. 3828 bp->SetCallback(KernelBreakpointHit, baton, true); 3829 3830 // Store a shared pointer to the baton, so the memory will eventually be 3831 // cleaned up after destruction 3832 m_conditional_breaks[bp->GetID()] = std::unique_ptr<RSCoordinate>(baton); 3833 } 3834 3835 // Tries to set a breakpoint on the start of a kernel, resolved using the kernel 3836 // name. Argument 'coords', represents a three dimensional coordinate which can 3837 // be 3838 // used to specify a single kernel instance to break on. If this is set then we 3839 // add a callback 3840 // to the breakpoint. 3841 bool RenderScriptRuntime::PlaceBreakpointOnKernel(TargetSP target, 3842 Stream &messages, 3843 const char *name, 3844 const RSCoordinate *coord) { 3845 if (!name) 3846 return false; 3847 3848 InitSearchFilter(target); 3849 3850 ConstString kernel_name(name); 3851 BreakpointSP bp = CreateKernelBreakpoint(kernel_name); 3852 if (!bp) 3853 return false; 3854 3855 // We have a conditional breakpoint on a specific coordinate 3856 if (coord) 3857 SetConditional(bp, messages, *coord); 3858 3859 bp->GetDescription(&messages, lldb::eDescriptionLevelInitial, false); 3860 3861 return true; 3862 } 3863 3864 BreakpointSP 3865 RenderScriptRuntime::CreateScriptGroupBreakpoint(const ConstString &name, 3866 bool stop_on_all) { 3867 Log *log( 3868 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3869 3870 if (!m_filtersp) { 3871 if (log) 3872 log->Printf("%s - error, no breakpoint search filter set.", __FUNCTION__); 3873 return nullptr; 3874 } 3875 3876 BreakpointResolverSP resolver_sp(new RSScriptGroupBreakpointResolver( 3877 nullptr, name, m_scriptGroups, stop_on_all)); 3878 BreakpointSP bp = GetProcess()->GetTarget().CreateBreakpoint( 3879 m_filtersp, resolver_sp, false, false, false); 3880 // Give RS breakpoints a specific name, so the user can manipulate them as a 3881 // group. 3882 Error err; 3883 if (!bp->AddName(name.AsCString(), err)) 3884 if (log) 3885 log->Printf("%s - error setting break name, '%s'.", __FUNCTION__, 3886 err.AsCString()); 3887 // ask the breakpoint to resolve itself 3888 bp->ResolveBreakpoint(); 3889 return bp; 3890 } 3891 3892 bool RenderScriptRuntime::PlaceBreakpointOnScriptGroup(TargetSP target, 3893 Stream &strm, 3894 const ConstString &name, 3895 bool multi) { 3896 InitSearchFilter(target); 3897 BreakpointSP bp = CreateScriptGroupBreakpoint(name, multi); 3898 if (bp) 3899 bp->GetDescription(&strm, lldb::eDescriptionLevelInitial, false); 3900 return bool(bp); 3901 } 3902 3903 bool RenderScriptRuntime::PlaceBreakpointOnReduction(TargetSP target, 3904 Stream &messages, 3905 const char *reduce_name, 3906 const RSCoordinate *coord, 3907 int kernel_types) { 3908 if (!reduce_name) 3909 return false; 3910 3911 InitSearchFilter(target); 3912 BreakpointSP bp = 3913 CreateReductionBreakpoint(ConstString(reduce_name), kernel_types); 3914 if (!bp) 3915 return false; 3916 3917 if (coord) 3918 SetConditional(bp, messages, *coord); 3919 3920 bp->GetDescription(&messages, lldb::eDescriptionLevelInitial, false); 3921 3922 return true; 3923 } 3924 3925 void RenderScriptRuntime::DumpModules(Stream &strm) const { 3926 strm.Printf("RenderScript Modules:"); 3927 strm.EOL(); 3928 strm.IndentMore(); 3929 for (const auto &module : m_rsmodules) { 3930 module->Dump(strm); 3931 } 3932 strm.IndentLess(); 3933 } 3934 3935 RenderScriptRuntime::ScriptDetails * 3936 RenderScriptRuntime::LookUpScript(addr_t address, bool create) { 3937 for (const auto &s : m_scripts) { 3938 if (s->script.isValid()) 3939 if (*s->script == address) 3940 return s.get(); 3941 } 3942 if (create) { 3943 std::unique_ptr<ScriptDetails> s(new ScriptDetails); 3944 s->script = address; 3945 m_scripts.push_back(std::move(s)); 3946 return m_scripts.back().get(); 3947 } 3948 return nullptr; 3949 } 3950 3951 RenderScriptRuntime::AllocationDetails * 3952 RenderScriptRuntime::LookUpAllocation(addr_t address) { 3953 for (const auto &a : m_allocations) { 3954 if (a->address.isValid()) 3955 if (*a->address == address) 3956 return a.get(); 3957 } 3958 return nullptr; 3959 } 3960 3961 RenderScriptRuntime::AllocationDetails * 3962 RenderScriptRuntime::CreateAllocation(addr_t address) { 3963 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 3964 3965 // Remove any previous allocation which contains the same address 3966 auto it = m_allocations.begin(); 3967 while (it != m_allocations.end()) { 3968 if (*((*it)->address) == address) { 3969 if (log) 3970 log->Printf("%s - Removing allocation id: %d, address: 0x%" PRIx64, 3971 __FUNCTION__, (*it)->id, address); 3972 3973 it = m_allocations.erase(it); 3974 } else { 3975 it++; 3976 } 3977 } 3978 3979 std::unique_ptr<AllocationDetails> a(new AllocationDetails); 3980 a->address = address; 3981 m_allocations.push_back(std::move(a)); 3982 return m_allocations.back().get(); 3983 } 3984 3985 bool RenderScriptRuntime::ResolveKernelName(lldb::addr_t kernel_addr, 3986 ConstString &name) { 3987 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS); 3988 3989 Target &target = GetProcess()->GetTarget(); 3990 Address resolved; 3991 // RenderScript module 3992 if (!target.GetSectionLoadList().ResolveLoadAddress(kernel_addr, resolved)) { 3993 if (log) 3994 log->Printf("%s: unable to resolve 0x%" PRIx64 " to a loaded symbol", 3995 __FUNCTION__, kernel_addr); 3996 return false; 3997 } 3998 3999 Symbol *sym = resolved.CalculateSymbolContextSymbol(); 4000 if (!sym) 4001 return false; 4002 4003 name = sym->GetName(); 4004 assert(IsRenderScriptModule(resolved.CalculateSymbolContextModule())); 4005 if (log) 4006 log->Printf("%s: 0x%" PRIx64 " resolved to the symbol '%s'", __FUNCTION__, 4007 kernel_addr, name.GetCString()); 4008 return true; 4009 } 4010 4011 void RSModuleDescriptor::Dump(Stream &strm) const { 4012 int indent = strm.GetIndentLevel(); 4013 4014 strm.Indent(); 4015 m_module->GetFileSpec().Dump(&strm); 4016 strm.Indent(m_module->GetNumCompileUnits() ? "Debug info loaded." 4017 : "Debug info does not exist."); 4018 strm.EOL(); 4019 strm.IndentMore(); 4020 4021 strm.Indent(); 4022 strm.Printf("Globals: %" PRIu64, static_cast<uint64_t>(m_globals.size())); 4023 strm.EOL(); 4024 strm.IndentMore(); 4025 for (const auto &global : m_globals) { 4026 global.Dump(strm); 4027 } 4028 strm.IndentLess(); 4029 4030 strm.Indent(); 4031 strm.Printf("Kernels: %" PRIu64, static_cast<uint64_t>(m_kernels.size())); 4032 strm.EOL(); 4033 strm.IndentMore(); 4034 for (const auto &kernel : m_kernels) { 4035 kernel.Dump(strm); 4036 } 4037 strm.IndentLess(); 4038 4039 strm.Indent(); 4040 strm.Printf("Pragmas: %" PRIu64, static_cast<uint64_t>(m_pragmas.size())); 4041 strm.EOL(); 4042 strm.IndentMore(); 4043 for (const auto &key_val : m_pragmas) { 4044 strm.Indent(); 4045 strm.Printf("%s: %s", key_val.first.c_str(), key_val.second.c_str()); 4046 strm.EOL(); 4047 } 4048 strm.IndentLess(); 4049 4050 strm.Indent(); 4051 strm.Printf("Reductions: %" PRIu64, 4052 static_cast<uint64_t>(m_reductions.size())); 4053 strm.EOL(); 4054 strm.IndentMore(); 4055 for (const auto &reduction : m_reductions) { 4056 reduction.Dump(strm); 4057 } 4058 4059 strm.SetIndentLevel(indent); 4060 } 4061 4062 void RSGlobalDescriptor::Dump(Stream &strm) const { 4063 strm.Indent(m_name.AsCString()); 4064 VariableList var_list; 4065 m_module->m_module->FindGlobalVariables(m_name, nullptr, true, 1U, var_list); 4066 if (var_list.GetSize() == 1) { 4067 auto var = var_list.GetVariableAtIndex(0); 4068 auto type = var->GetType(); 4069 if (type) { 4070 strm.Printf(" - "); 4071 type->DumpTypeName(&strm); 4072 } else { 4073 strm.Printf(" - Unknown Type"); 4074 } 4075 } else { 4076 strm.Printf(" - variable identified, but not found in binary"); 4077 const Symbol *s = m_module->m_module->FindFirstSymbolWithNameAndType( 4078 m_name, eSymbolTypeData); 4079 if (s) { 4080 strm.Printf(" (symbol exists) "); 4081 } 4082 } 4083 4084 strm.EOL(); 4085 } 4086 4087 void RSKernelDescriptor::Dump(Stream &strm) const { 4088 strm.Indent(m_name.AsCString()); 4089 strm.EOL(); 4090 } 4091 4092 void RSReductionDescriptor::Dump(lldb_private::Stream &stream) const { 4093 stream.Indent(m_reduce_name.AsCString()); 4094 stream.IndentMore(); 4095 stream.EOL(); 4096 stream.Indent(); 4097 stream.Printf("accumulator: %s", m_accum_name.AsCString()); 4098 stream.EOL(); 4099 stream.Indent(); 4100 stream.Printf("initializer: %s", m_init_name.AsCString()); 4101 stream.EOL(); 4102 stream.Indent(); 4103 stream.Printf("combiner: %s", m_comb_name.AsCString()); 4104 stream.EOL(); 4105 stream.Indent(); 4106 stream.Printf("outconverter: %s", m_outc_name.AsCString()); 4107 stream.EOL(); 4108 // XXX This is currently unspecified by RenderScript, and unused 4109 // stream.Indent(); 4110 // stream.Printf("halter: '%s'", m_init_name.AsCString()); 4111 // stream.EOL(); 4112 stream.IndentLess(); 4113 } 4114 4115 class CommandObjectRenderScriptRuntimeModuleDump : public CommandObjectParsed { 4116 public: 4117 CommandObjectRenderScriptRuntimeModuleDump(CommandInterpreter &interpreter) 4118 : CommandObjectParsed( 4119 interpreter, "renderscript module dump", 4120 "Dumps renderscript specific information for all modules.", 4121 "renderscript module dump", 4122 eCommandRequiresProcess | eCommandProcessMustBeLaunched) {} 4123 4124 ~CommandObjectRenderScriptRuntimeModuleDump() override = default; 4125 4126 bool DoExecute(Args &command, CommandReturnObject &result) override { 4127 RenderScriptRuntime *runtime = 4128 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4129 eLanguageTypeExtRenderScript); 4130 runtime->DumpModules(result.GetOutputStream()); 4131 result.SetStatus(eReturnStatusSuccessFinishResult); 4132 return true; 4133 } 4134 }; 4135 4136 class CommandObjectRenderScriptRuntimeModule : public CommandObjectMultiword { 4137 public: 4138 CommandObjectRenderScriptRuntimeModule(CommandInterpreter &interpreter) 4139 : CommandObjectMultiword(interpreter, "renderscript module", 4140 "Commands that deal with RenderScript modules.", 4141 nullptr) { 4142 LoadSubCommand( 4143 "dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeModuleDump( 4144 interpreter))); 4145 } 4146 4147 ~CommandObjectRenderScriptRuntimeModule() override = default; 4148 }; 4149 4150 class CommandObjectRenderScriptRuntimeKernelList : public CommandObjectParsed { 4151 public: 4152 CommandObjectRenderScriptRuntimeKernelList(CommandInterpreter &interpreter) 4153 : CommandObjectParsed( 4154 interpreter, "renderscript kernel list", 4155 "Lists renderscript kernel names and associated script resources.", 4156 "renderscript kernel list", 4157 eCommandRequiresProcess | eCommandProcessMustBeLaunched) {} 4158 4159 ~CommandObjectRenderScriptRuntimeKernelList() override = default; 4160 4161 bool DoExecute(Args &command, CommandReturnObject &result) override { 4162 RenderScriptRuntime *runtime = 4163 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4164 eLanguageTypeExtRenderScript); 4165 runtime->DumpKernels(result.GetOutputStream()); 4166 result.SetStatus(eReturnStatusSuccessFinishResult); 4167 return true; 4168 } 4169 }; 4170 4171 static OptionDefinition g_renderscript_reduction_bp_set_options[] = { 4172 {LLDB_OPT_SET_1, false, "function-role", 't', 4173 OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeOneLiner, 4174 "Break on a comma separated set of reduction kernel types " 4175 "(accumulator,outcoverter,combiner,initializer"}, 4176 {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument, 4177 nullptr, nullptr, 0, eArgTypeValue, 4178 "Set a breakpoint on a single invocation of the kernel with specified " 4179 "coordinate.\n" 4180 "Coordinate takes the form 'x[,y][,z] where x,y,z are positive " 4181 "integers representing kernel dimensions. " 4182 "Any unset dimensions will be defaulted to zero."}}; 4183 4184 class CommandObjectRenderScriptRuntimeReductionBreakpointSet 4185 : public CommandObjectParsed { 4186 public: 4187 CommandObjectRenderScriptRuntimeReductionBreakpointSet( 4188 CommandInterpreter &interpreter) 4189 : CommandObjectParsed( 4190 interpreter, "renderscript reduction breakpoint set", 4191 "Set a breakpoint on named RenderScript general reductions", 4192 "renderscript reduction breakpoint set <kernel_name> [-t " 4193 "<reduction_kernel_type,...>]", 4194 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4195 eCommandProcessMustBePaused), 4196 m_options(){}; 4197 4198 class CommandOptions : public Options { 4199 public: 4200 CommandOptions() 4201 : Options(), 4202 m_kernel_types(RSReduceBreakpointResolver::eKernelTypeAll) {} 4203 4204 ~CommandOptions() override = default; 4205 4206 Error SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg, 4207 ExecutionContext *exe_ctx) override { 4208 Error err; 4209 StreamString err_str; 4210 const int short_option = m_getopt_table[option_idx].val; 4211 switch (short_option) { 4212 case 't': 4213 if (!ParseReductionTypes(option_arg, err_str)) 4214 err.SetErrorStringWithFormat( 4215 "Unable to deduce reduction types for %s: %s", 4216 option_arg.str().c_str(), err_str.GetData()); 4217 break; 4218 case 'c': { 4219 auto coord = RSCoordinate{}; 4220 if (!ParseCoordinate(option_arg, coord)) 4221 err.SetErrorStringWithFormat("unable to parse coordinate for %s", 4222 option_arg.str().c_str()); 4223 else { 4224 m_have_coord = true; 4225 m_coord = coord; 4226 } 4227 break; 4228 } 4229 default: 4230 err.SetErrorStringWithFormat("Invalid option '-%c'", short_option); 4231 } 4232 return err; 4233 } 4234 4235 void OptionParsingStarting(ExecutionContext *exe_ctx) override { 4236 m_have_coord = false; 4237 } 4238 4239 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4240 return llvm::makeArrayRef(g_renderscript_reduction_bp_set_options); 4241 } 4242 4243 bool ParseReductionTypes(llvm::StringRef option_val, 4244 StreamString &err_str) { 4245 m_kernel_types = RSReduceBreakpointResolver::eKernelTypeNone; 4246 const auto reduce_name_to_type = [](llvm::StringRef name) -> int { 4247 return llvm::StringSwitch<int>(name) 4248 .Case("accumulator", RSReduceBreakpointResolver::eKernelTypeAccum) 4249 .Case("initializer", RSReduceBreakpointResolver::eKernelTypeInit) 4250 .Case("outconverter", RSReduceBreakpointResolver::eKernelTypeOutC) 4251 .Case("combiner", RSReduceBreakpointResolver::eKernelTypeComb) 4252 .Case("all", RSReduceBreakpointResolver::eKernelTypeAll) 4253 // Currently not exposed by the runtime 4254 // .Case("halter", RSReduceBreakpointResolver::eKernelTypeHalter) 4255 .Default(0); 4256 }; 4257 4258 // Matching a comma separated list of known words is fairly 4259 // straightforward with PCRE, but we're 4260 // using ERE, so we end up with a little ugliness... 4261 RegularExpression::Match match(/* max_matches */ 5); 4262 RegularExpression match_type_list( 4263 llvm::StringRef("^([[:alpha:]]+)(,[[:alpha:]]+){0,4}$")); 4264 4265 assert(match_type_list.IsValid()); 4266 4267 if (!match_type_list.Execute(option_val, &match)) { 4268 err_str.PutCString( 4269 "a comma-separated list of kernel types is required"); 4270 return false; 4271 } 4272 4273 // splitting on commas is much easier with llvm::StringRef than regex 4274 llvm::SmallVector<llvm::StringRef, 5> type_names; 4275 llvm::StringRef(option_val).split(type_names, ','); 4276 4277 for (const auto &name : type_names) { 4278 const int type = reduce_name_to_type(name); 4279 if (!type) { 4280 err_str.Printf("unknown kernel type name %s", name.str().c_str()); 4281 return false; 4282 } 4283 m_kernel_types |= type; 4284 } 4285 4286 return true; 4287 } 4288 4289 int m_kernel_types; 4290 llvm::StringRef m_reduce_name; 4291 RSCoordinate m_coord; 4292 bool m_have_coord; 4293 }; 4294 4295 Options *GetOptions() override { return &m_options; } 4296 4297 bool DoExecute(Args &command, CommandReturnObject &result) override { 4298 const size_t argc = command.GetArgumentCount(); 4299 if (argc < 1) { 4300 result.AppendErrorWithFormat("'%s' takes 1 argument of reduction name, " 4301 "and an optional kernel type list", 4302 m_cmd_name.c_str()); 4303 result.SetStatus(eReturnStatusFailed); 4304 return false; 4305 } 4306 4307 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4308 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4309 eLanguageTypeExtRenderScript)); 4310 4311 auto &outstream = result.GetOutputStream(); 4312 auto name = command.GetArgumentAtIndex(0); 4313 auto &target = m_exe_ctx.GetTargetSP(); 4314 auto coord = m_options.m_have_coord ? &m_options.m_coord : nullptr; 4315 if (!runtime->PlaceBreakpointOnReduction(target, outstream, name, coord, 4316 m_options.m_kernel_types)) { 4317 result.SetStatus(eReturnStatusFailed); 4318 result.AppendError("Error: unable to place breakpoint on reduction"); 4319 return false; 4320 } 4321 result.AppendMessage("Breakpoint(s) created"); 4322 result.SetStatus(eReturnStatusSuccessFinishResult); 4323 return true; 4324 } 4325 4326 private: 4327 CommandOptions m_options; 4328 }; 4329 4330 static OptionDefinition g_renderscript_kernel_bp_set_options[] = { 4331 {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument, 4332 nullptr, nullptr, 0, eArgTypeValue, 4333 "Set a breakpoint on a single invocation of the kernel with specified " 4334 "coordinate.\n" 4335 "Coordinate takes the form 'x[,y][,z] where x,y,z are positive " 4336 "integers representing kernel dimensions. " 4337 "Any unset dimensions will be defaulted to zero."}}; 4338 4339 class CommandObjectRenderScriptRuntimeKernelBreakpointSet 4340 : public CommandObjectParsed { 4341 public: 4342 CommandObjectRenderScriptRuntimeKernelBreakpointSet( 4343 CommandInterpreter &interpreter) 4344 : CommandObjectParsed( 4345 interpreter, "renderscript kernel breakpoint set", 4346 "Sets a breakpoint on a renderscript kernel.", 4347 "renderscript kernel breakpoint set <kernel_name> [-c x,y,z]", 4348 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4349 eCommandProcessMustBePaused), 4350 m_options() {} 4351 4352 ~CommandObjectRenderScriptRuntimeKernelBreakpointSet() override = default; 4353 4354 Options *GetOptions() override { return &m_options; } 4355 4356 class CommandOptions : public Options { 4357 public: 4358 CommandOptions() : Options() {} 4359 4360 ~CommandOptions() override = default; 4361 4362 Error SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg, 4363 ExecutionContext *exe_ctx) override { 4364 Error err; 4365 const int short_option = m_getopt_table[option_idx].val; 4366 4367 switch (short_option) { 4368 case 'c': { 4369 auto coord = RSCoordinate{}; 4370 if (!ParseCoordinate(option_arg, coord)) 4371 err.SetErrorStringWithFormat( 4372 "Couldn't parse coordinate '%s', should be in format 'x,y,z'.", 4373 option_arg.str().c_str()); 4374 else { 4375 m_have_coord = true; 4376 m_coord = coord; 4377 } 4378 break; 4379 } 4380 default: 4381 err.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 4382 break; 4383 } 4384 return err; 4385 } 4386 4387 void OptionParsingStarting(ExecutionContext *exe_ctx) override { 4388 m_have_coord = false; 4389 } 4390 4391 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4392 return llvm::makeArrayRef(g_renderscript_kernel_bp_set_options); 4393 } 4394 4395 RSCoordinate m_coord; 4396 bool m_have_coord; 4397 }; 4398 4399 bool DoExecute(Args &command, CommandReturnObject &result) override { 4400 const size_t argc = command.GetArgumentCount(); 4401 if (argc < 1) { 4402 result.AppendErrorWithFormat( 4403 "'%s' takes 1 argument of kernel name, and an optional coordinate.", 4404 m_cmd_name.c_str()); 4405 result.SetStatus(eReturnStatusFailed); 4406 return false; 4407 } 4408 4409 RenderScriptRuntime *runtime = 4410 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4411 eLanguageTypeExtRenderScript); 4412 4413 auto &outstream = result.GetOutputStream(); 4414 auto &target = m_exe_ctx.GetTargetSP(); 4415 auto name = command.GetArgumentAtIndex(0); 4416 auto coord = m_options.m_have_coord ? &m_options.m_coord : nullptr; 4417 if (!runtime->PlaceBreakpointOnKernel(target, outstream, name, coord)) { 4418 result.SetStatus(eReturnStatusFailed); 4419 result.AppendErrorWithFormat( 4420 "Error: unable to set breakpoint on kernel '%s'", name); 4421 return false; 4422 } 4423 4424 result.AppendMessage("Breakpoint(s) created"); 4425 result.SetStatus(eReturnStatusSuccessFinishResult); 4426 return true; 4427 } 4428 4429 private: 4430 CommandOptions m_options; 4431 }; 4432 4433 class CommandObjectRenderScriptRuntimeKernelBreakpointAll 4434 : public CommandObjectParsed { 4435 public: 4436 CommandObjectRenderScriptRuntimeKernelBreakpointAll( 4437 CommandInterpreter &interpreter) 4438 : CommandObjectParsed( 4439 interpreter, "renderscript kernel breakpoint all", 4440 "Automatically sets a breakpoint on all renderscript kernels that " 4441 "are or will be loaded.\n" 4442 "Disabling option means breakpoints will no longer be set on any " 4443 "kernels loaded in the future, " 4444 "but does not remove currently set breakpoints.", 4445 "renderscript kernel breakpoint all <enable/disable>", 4446 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4447 eCommandProcessMustBePaused) {} 4448 4449 ~CommandObjectRenderScriptRuntimeKernelBreakpointAll() override = default; 4450 4451 bool DoExecute(Args &command, CommandReturnObject &result) override { 4452 const size_t argc = command.GetArgumentCount(); 4453 if (argc != 1) { 4454 result.AppendErrorWithFormat( 4455 "'%s' takes 1 argument of 'enable' or 'disable'", m_cmd_name.c_str()); 4456 result.SetStatus(eReturnStatusFailed); 4457 return false; 4458 } 4459 4460 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4461 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4462 eLanguageTypeExtRenderScript)); 4463 4464 bool do_break = false; 4465 const char *argument = command.GetArgumentAtIndex(0); 4466 if (strcmp(argument, "enable") == 0) { 4467 do_break = true; 4468 result.AppendMessage("Breakpoints will be set on all kernels."); 4469 } else if (strcmp(argument, "disable") == 0) { 4470 do_break = false; 4471 result.AppendMessage("Breakpoints will not be set on any new kernels."); 4472 } else { 4473 result.AppendErrorWithFormat( 4474 "Argument must be either 'enable' or 'disable'"); 4475 result.SetStatus(eReturnStatusFailed); 4476 return false; 4477 } 4478 4479 runtime->SetBreakAllKernels(do_break, m_exe_ctx.GetTargetSP()); 4480 4481 result.SetStatus(eReturnStatusSuccessFinishResult); 4482 return true; 4483 } 4484 }; 4485 4486 class CommandObjectRenderScriptRuntimeReductionBreakpoint 4487 : public CommandObjectMultiword { 4488 public: 4489 CommandObjectRenderScriptRuntimeReductionBreakpoint( 4490 CommandInterpreter &interpreter) 4491 : CommandObjectMultiword(interpreter, "renderscript reduction breakpoint", 4492 "Commands that manipulate breakpoints on " 4493 "renderscript general reductions.", 4494 nullptr) { 4495 LoadSubCommand( 4496 "set", CommandObjectSP( 4497 new CommandObjectRenderScriptRuntimeReductionBreakpointSet( 4498 interpreter))); 4499 } 4500 4501 ~CommandObjectRenderScriptRuntimeReductionBreakpoint() override = default; 4502 }; 4503 4504 class CommandObjectRenderScriptRuntimeKernelCoordinate 4505 : public CommandObjectParsed { 4506 public: 4507 CommandObjectRenderScriptRuntimeKernelCoordinate( 4508 CommandInterpreter &interpreter) 4509 : CommandObjectParsed( 4510 interpreter, "renderscript kernel coordinate", 4511 "Shows the (x,y,z) coordinate of the current kernel invocation.", 4512 "renderscript kernel coordinate", 4513 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4514 eCommandProcessMustBePaused) {} 4515 4516 ~CommandObjectRenderScriptRuntimeKernelCoordinate() override = default; 4517 4518 bool DoExecute(Args &command, CommandReturnObject &result) override { 4519 RSCoordinate coord{}; 4520 bool success = RenderScriptRuntime::GetKernelCoordinate( 4521 coord, m_exe_ctx.GetThreadPtr()); 4522 Stream &stream = result.GetOutputStream(); 4523 4524 if (success) { 4525 stream.Printf("Coordinate: " FMT_COORD, coord.x, coord.y, coord.z); 4526 stream.EOL(); 4527 result.SetStatus(eReturnStatusSuccessFinishResult); 4528 } else { 4529 stream.Printf("Error: Coordinate could not be found."); 4530 stream.EOL(); 4531 result.SetStatus(eReturnStatusFailed); 4532 } 4533 return true; 4534 } 4535 }; 4536 4537 class CommandObjectRenderScriptRuntimeKernelBreakpoint 4538 : public CommandObjectMultiword { 4539 public: 4540 CommandObjectRenderScriptRuntimeKernelBreakpoint( 4541 CommandInterpreter &interpreter) 4542 : CommandObjectMultiword( 4543 interpreter, "renderscript kernel", 4544 "Commands that generate breakpoints on renderscript kernels.", 4545 nullptr) { 4546 LoadSubCommand( 4547 "set", 4548 CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointSet( 4549 interpreter))); 4550 LoadSubCommand( 4551 "all", 4552 CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointAll( 4553 interpreter))); 4554 } 4555 4556 ~CommandObjectRenderScriptRuntimeKernelBreakpoint() override = default; 4557 }; 4558 4559 class CommandObjectRenderScriptRuntimeKernel : public CommandObjectMultiword { 4560 public: 4561 CommandObjectRenderScriptRuntimeKernel(CommandInterpreter &interpreter) 4562 : CommandObjectMultiword(interpreter, "renderscript kernel", 4563 "Commands that deal with RenderScript kernels.", 4564 nullptr) { 4565 LoadSubCommand( 4566 "list", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelList( 4567 interpreter))); 4568 LoadSubCommand( 4569 "coordinate", 4570 CommandObjectSP( 4571 new CommandObjectRenderScriptRuntimeKernelCoordinate(interpreter))); 4572 LoadSubCommand( 4573 "breakpoint", 4574 CommandObjectSP( 4575 new CommandObjectRenderScriptRuntimeKernelBreakpoint(interpreter))); 4576 } 4577 4578 ~CommandObjectRenderScriptRuntimeKernel() override = default; 4579 }; 4580 4581 class CommandObjectRenderScriptRuntimeContextDump : public CommandObjectParsed { 4582 public: 4583 CommandObjectRenderScriptRuntimeContextDump(CommandInterpreter &interpreter) 4584 : CommandObjectParsed(interpreter, "renderscript context dump", 4585 "Dumps renderscript context information.", 4586 "renderscript context dump", 4587 eCommandRequiresProcess | 4588 eCommandProcessMustBeLaunched) {} 4589 4590 ~CommandObjectRenderScriptRuntimeContextDump() override = default; 4591 4592 bool DoExecute(Args &command, CommandReturnObject &result) override { 4593 RenderScriptRuntime *runtime = 4594 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4595 eLanguageTypeExtRenderScript); 4596 runtime->DumpContexts(result.GetOutputStream()); 4597 result.SetStatus(eReturnStatusSuccessFinishResult); 4598 return true; 4599 } 4600 }; 4601 4602 static OptionDefinition g_renderscript_runtime_alloc_dump_options[] = { 4603 {LLDB_OPT_SET_1, false, "file", 'f', OptionParser::eRequiredArgument, 4604 nullptr, nullptr, 0, eArgTypeFilename, 4605 "Print results to specified file instead of command line."}}; 4606 4607 class CommandObjectRenderScriptRuntimeContext : public CommandObjectMultiword { 4608 public: 4609 CommandObjectRenderScriptRuntimeContext(CommandInterpreter &interpreter) 4610 : CommandObjectMultiword(interpreter, "renderscript context", 4611 "Commands that deal with RenderScript contexts.", 4612 nullptr) { 4613 LoadSubCommand( 4614 "dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeContextDump( 4615 interpreter))); 4616 } 4617 4618 ~CommandObjectRenderScriptRuntimeContext() override = default; 4619 }; 4620 4621 class CommandObjectRenderScriptRuntimeAllocationDump 4622 : public CommandObjectParsed { 4623 public: 4624 CommandObjectRenderScriptRuntimeAllocationDump( 4625 CommandInterpreter &interpreter) 4626 : CommandObjectParsed(interpreter, "renderscript allocation dump", 4627 "Displays the contents of a particular allocation", 4628 "renderscript allocation dump <ID>", 4629 eCommandRequiresProcess | 4630 eCommandProcessMustBeLaunched), 4631 m_options() {} 4632 4633 ~CommandObjectRenderScriptRuntimeAllocationDump() override = default; 4634 4635 Options *GetOptions() override { return &m_options; } 4636 4637 class CommandOptions : public Options { 4638 public: 4639 CommandOptions() : Options() {} 4640 4641 ~CommandOptions() override = default; 4642 4643 Error SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg, 4644 ExecutionContext *exe_ctx) override { 4645 Error err; 4646 const int short_option = m_getopt_table[option_idx].val; 4647 4648 switch (short_option) { 4649 case 'f': 4650 m_outfile.SetFile(option_arg, true); 4651 if (m_outfile.Exists()) { 4652 m_outfile.Clear(); 4653 err.SetErrorStringWithFormat("file already exists: '%s'", 4654 option_arg.str().c_str()); 4655 } 4656 break; 4657 default: 4658 err.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 4659 break; 4660 } 4661 return err; 4662 } 4663 4664 void OptionParsingStarting(ExecutionContext *exe_ctx) override { 4665 m_outfile.Clear(); 4666 } 4667 4668 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4669 return llvm::makeArrayRef(g_renderscript_runtime_alloc_dump_options); 4670 } 4671 4672 FileSpec m_outfile; 4673 }; 4674 4675 bool DoExecute(Args &command, CommandReturnObject &result) override { 4676 const size_t argc = command.GetArgumentCount(); 4677 if (argc < 1) { 4678 result.AppendErrorWithFormat("'%s' takes 1 argument, an allocation ID. " 4679 "As well as an optional -f argument", 4680 m_cmd_name.c_str()); 4681 result.SetStatus(eReturnStatusFailed); 4682 return false; 4683 } 4684 4685 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4686 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4687 eLanguageTypeExtRenderScript)); 4688 4689 const char *id_cstr = command.GetArgumentAtIndex(0); 4690 bool success = false; 4691 const uint32_t id = 4692 StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success); 4693 if (!success) { 4694 result.AppendErrorWithFormat("invalid allocation id argument '%s'", 4695 id_cstr); 4696 result.SetStatus(eReturnStatusFailed); 4697 return false; 4698 } 4699 4700 Stream *output_strm = nullptr; 4701 StreamFile outfile_stream; 4702 const FileSpec &outfile_spec = 4703 m_options.m_outfile; // Dump allocation to file instead 4704 if (outfile_spec) { 4705 // Open output file 4706 char path[256]; 4707 outfile_spec.GetPath(path, sizeof(path)); 4708 if (outfile_stream.GetFile() 4709 .Open(path, File::eOpenOptionWrite | File::eOpenOptionCanCreate) 4710 .Success()) { 4711 output_strm = &outfile_stream; 4712 result.GetOutputStream().Printf("Results written to '%s'", path); 4713 result.GetOutputStream().EOL(); 4714 } else { 4715 result.AppendErrorWithFormat("Couldn't open file '%s'", path); 4716 result.SetStatus(eReturnStatusFailed); 4717 return false; 4718 } 4719 } else 4720 output_strm = &result.GetOutputStream(); 4721 4722 assert(output_strm != nullptr); 4723 bool dumped = 4724 runtime->DumpAllocation(*output_strm, m_exe_ctx.GetFramePtr(), id); 4725 4726 if (dumped) 4727 result.SetStatus(eReturnStatusSuccessFinishResult); 4728 else 4729 result.SetStatus(eReturnStatusFailed); 4730 4731 return true; 4732 } 4733 4734 private: 4735 CommandOptions m_options; 4736 }; 4737 4738 static OptionDefinition g_renderscript_runtime_alloc_list_options[] = { 4739 {LLDB_OPT_SET_1, false, "id", 'i', OptionParser::eRequiredArgument, nullptr, 4740 nullptr, 0, eArgTypeIndex, 4741 "Only show details of a single allocation with specified id."}}; 4742 4743 class CommandObjectRenderScriptRuntimeAllocationList 4744 : public CommandObjectParsed { 4745 public: 4746 CommandObjectRenderScriptRuntimeAllocationList( 4747 CommandInterpreter &interpreter) 4748 : CommandObjectParsed( 4749 interpreter, "renderscript allocation list", 4750 "List renderscript allocations and their information.", 4751 "renderscript allocation list", 4752 eCommandRequiresProcess | eCommandProcessMustBeLaunched), 4753 m_options() {} 4754 4755 ~CommandObjectRenderScriptRuntimeAllocationList() override = default; 4756 4757 Options *GetOptions() override { return &m_options; } 4758 4759 class CommandOptions : public Options { 4760 public: 4761 CommandOptions() : Options(), m_id(0) {} 4762 4763 ~CommandOptions() override = default; 4764 4765 Error SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg, 4766 ExecutionContext *exe_ctx) override { 4767 Error err; 4768 const int short_option = m_getopt_table[option_idx].val; 4769 4770 switch (short_option) { 4771 case 'i': 4772 if (option_arg.getAsInteger(0, m_id)) 4773 err.SetErrorStringWithFormat("invalid integer value for option '%c'", 4774 short_option); 4775 break; 4776 default: 4777 err.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 4778 break; 4779 } 4780 return err; 4781 } 4782 4783 void OptionParsingStarting(ExecutionContext *exe_ctx) override { m_id = 0; } 4784 4785 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4786 return llvm::makeArrayRef(g_renderscript_runtime_alloc_list_options); 4787 } 4788 4789 uint32_t m_id; 4790 }; 4791 4792 bool DoExecute(Args &command, CommandReturnObject &result) override { 4793 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4794 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4795 eLanguageTypeExtRenderScript)); 4796 runtime->ListAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr(), 4797 m_options.m_id); 4798 result.SetStatus(eReturnStatusSuccessFinishResult); 4799 return true; 4800 } 4801 4802 private: 4803 CommandOptions m_options; 4804 }; 4805 4806 class CommandObjectRenderScriptRuntimeAllocationLoad 4807 : public CommandObjectParsed { 4808 public: 4809 CommandObjectRenderScriptRuntimeAllocationLoad( 4810 CommandInterpreter &interpreter) 4811 : CommandObjectParsed( 4812 interpreter, "renderscript allocation load", 4813 "Loads renderscript allocation contents from a file.", 4814 "renderscript allocation load <ID> <filename>", 4815 eCommandRequiresProcess | eCommandProcessMustBeLaunched) {} 4816 4817 ~CommandObjectRenderScriptRuntimeAllocationLoad() override = default; 4818 4819 bool DoExecute(Args &command, CommandReturnObject &result) override { 4820 const size_t argc = command.GetArgumentCount(); 4821 if (argc != 2) { 4822 result.AppendErrorWithFormat( 4823 "'%s' takes 2 arguments, an allocation ID and filename to read from.", 4824 m_cmd_name.c_str()); 4825 result.SetStatus(eReturnStatusFailed); 4826 return false; 4827 } 4828 4829 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4830 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4831 eLanguageTypeExtRenderScript)); 4832 4833 const char *id_cstr = command.GetArgumentAtIndex(0); 4834 bool success = false; 4835 const uint32_t id = 4836 StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success); 4837 if (!success) { 4838 result.AppendErrorWithFormat("invalid allocation id argument '%s'", 4839 id_cstr); 4840 result.SetStatus(eReturnStatusFailed); 4841 return false; 4842 } 4843 4844 const char *path = command.GetArgumentAtIndex(1); 4845 bool loaded = runtime->LoadAllocation(result.GetOutputStream(), id, path, 4846 m_exe_ctx.GetFramePtr()); 4847 4848 if (loaded) 4849 result.SetStatus(eReturnStatusSuccessFinishResult); 4850 else 4851 result.SetStatus(eReturnStatusFailed); 4852 4853 return true; 4854 } 4855 }; 4856 4857 class CommandObjectRenderScriptRuntimeAllocationSave 4858 : public CommandObjectParsed { 4859 public: 4860 CommandObjectRenderScriptRuntimeAllocationSave( 4861 CommandInterpreter &interpreter) 4862 : CommandObjectParsed(interpreter, "renderscript allocation save", 4863 "Write renderscript allocation contents to a file.", 4864 "renderscript allocation save <ID> <filename>", 4865 eCommandRequiresProcess | 4866 eCommandProcessMustBeLaunched) {} 4867 4868 ~CommandObjectRenderScriptRuntimeAllocationSave() override = default; 4869 4870 bool DoExecute(Args &command, CommandReturnObject &result) override { 4871 const size_t argc = command.GetArgumentCount(); 4872 if (argc != 2) { 4873 result.AppendErrorWithFormat( 4874 "'%s' takes 2 arguments, an allocation ID and filename to read from.", 4875 m_cmd_name.c_str()); 4876 result.SetStatus(eReturnStatusFailed); 4877 return false; 4878 } 4879 4880 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4881 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4882 eLanguageTypeExtRenderScript)); 4883 4884 const char *id_cstr = command.GetArgumentAtIndex(0); 4885 bool success = false; 4886 const uint32_t id = 4887 StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success); 4888 if (!success) { 4889 result.AppendErrorWithFormat("invalid allocation id argument '%s'", 4890 id_cstr); 4891 result.SetStatus(eReturnStatusFailed); 4892 return false; 4893 } 4894 4895 const char *path = command.GetArgumentAtIndex(1); 4896 bool saved = runtime->SaveAllocation(result.GetOutputStream(), id, path, 4897 m_exe_ctx.GetFramePtr()); 4898 4899 if (saved) 4900 result.SetStatus(eReturnStatusSuccessFinishResult); 4901 else 4902 result.SetStatus(eReturnStatusFailed); 4903 4904 return true; 4905 } 4906 }; 4907 4908 class CommandObjectRenderScriptRuntimeAllocationRefresh 4909 : public CommandObjectParsed { 4910 public: 4911 CommandObjectRenderScriptRuntimeAllocationRefresh( 4912 CommandInterpreter &interpreter) 4913 : CommandObjectParsed(interpreter, "renderscript allocation refresh", 4914 "Recomputes the details of all allocations.", 4915 "renderscript allocation refresh", 4916 eCommandRequiresProcess | 4917 eCommandProcessMustBeLaunched) {} 4918 4919 ~CommandObjectRenderScriptRuntimeAllocationRefresh() override = default; 4920 4921 bool DoExecute(Args &command, CommandReturnObject &result) override { 4922 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4923 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4924 eLanguageTypeExtRenderScript)); 4925 4926 bool success = runtime->RecomputeAllAllocations(result.GetOutputStream(), 4927 m_exe_ctx.GetFramePtr()); 4928 4929 if (success) { 4930 result.SetStatus(eReturnStatusSuccessFinishResult); 4931 return true; 4932 } else { 4933 result.SetStatus(eReturnStatusFailed); 4934 return false; 4935 } 4936 } 4937 }; 4938 4939 class CommandObjectRenderScriptRuntimeAllocation 4940 : public CommandObjectMultiword { 4941 public: 4942 CommandObjectRenderScriptRuntimeAllocation(CommandInterpreter &interpreter) 4943 : CommandObjectMultiword( 4944 interpreter, "renderscript allocation", 4945 "Commands that deal with RenderScript allocations.", nullptr) { 4946 LoadSubCommand( 4947 "list", 4948 CommandObjectSP( 4949 new CommandObjectRenderScriptRuntimeAllocationList(interpreter))); 4950 LoadSubCommand( 4951 "dump", 4952 CommandObjectSP( 4953 new CommandObjectRenderScriptRuntimeAllocationDump(interpreter))); 4954 LoadSubCommand( 4955 "save", 4956 CommandObjectSP( 4957 new CommandObjectRenderScriptRuntimeAllocationSave(interpreter))); 4958 LoadSubCommand( 4959 "load", 4960 CommandObjectSP( 4961 new CommandObjectRenderScriptRuntimeAllocationLoad(interpreter))); 4962 LoadSubCommand( 4963 "refresh", 4964 CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationRefresh( 4965 interpreter))); 4966 } 4967 4968 ~CommandObjectRenderScriptRuntimeAllocation() override = default; 4969 }; 4970 4971 class CommandObjectRenderScriptRuntimeStatus : public CommandObjectParsed { 4972 public: 4973 CommandObjectRenderScriptRuntimeStatus(CommandInterpreter &interpreter) 4974 : CommandObjectParsed(interpreter, "renderscript status", 4975 "Displays current RenderScript runtime status.", 4976 "renderscript status", 4977 eCommandRequiresProcess | 4978 eCommandProcessMustBeLaunched) {} 4979 4980 ~CommandObjectRenderScriptRuntimeStatus() override = default; 4981 4982 bool DoExecute(Args &command, CommandReturnObject &result) override { 4983 RenderScriptRuntime *runtime = 4984 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4985 eLanguageTypeExtRenderScript); 4986 runtime->Status(result.GetOutputStream()); 4987 result.SetStatus(eReturnStatusSuccessFinishResult); 4988 return true; 4989 } 4990 }; 4991 4992 class CommandObjectRenderScriptRuntimeReduction 4993 : public CommandObjectMultiword { 4994 public: 4995 CommandObjectRenderScriptRuntimeReduction(CommandInterpreter &interpreter) 4996 : CommandObjectMultiword(interpreter, "renderscript reduction", 4997 "Commands that handle general reduction kernels", 4998 nullptr) { 4999 LoadSubCommand( 5000 "breakpoint", 5001 CommandObjectSP(new CommandObjectRenderScriptRuntimeReductionBreakpoint( 5002 interpreter))); 5003 } 5004 ~CommandObjectRenderScriptRuntimeReduction() override = default; 5005 }; 5006 5007 class CommandObjectRenderScriptRuntime : public CommandObjectMultiword { 5008 public: 5009 CommandObjectRenderScriptRuntime(CommandInterpreter &interpreter) 5010 : CommandObjectMultiword( 5011 interpreter, "renderscript", 5012 "Commands for operating on the RenderScript runtime.", 5013 "renderscript <subcommand> [<subcommand-options>]") { 5014 LoadSubCommand( 5015 "module", CommandObjectSP( 5016 new CommandObjectRenderScriptRuntimeModule(interpreter))); 5017 LoadSubCommand( 5018 "status", CommandObjectSP( 5019 new CommandObjectRenderScriptRuntimeStatus(interpreter))); 5020 LoadSubCommand( 5021 "kernel", CommandObjectSP( 5022 new CommandObjectRenderScriptRuntimeKernel(interpreter))); 5023 LoadSubCommand("context", 5024 CommandObjectSP(new CommandObjectRenderScriptRuntimeContext( 5025 interpreter))); 5026 LoadSubCommand( 5027 "allocation", 5028 CommandObjectSP( 5029 new CommandObjectRenderScriptRuntimeAllocation(interpreter))); 5030 LoadSubCommand("scriptgroup", 5031 NewCommandObjectRenderScriptScriptGroup(interpreter)); 5032 LoadSubCommand( 5033 "reduction", 5034 CommandObjectSP( 5035 new CommandObjectRenderScriptRuntimeReduction(interpreter))); 5036 } 5037 5038 ~CommandObjectRenderScriptRuntime() override = default; 5039 }; 5040 5041 void RenderScriptRuntime::Initiate() { assert(!m_initiated); } 5042 5043 RenderScriptRuntime::RenderScriptRuntime(Process *process) 5044 : lldb_private::CPPLanguageRuntime(process), m_initiated(false), 5045 m_debuggerPresentFlagged(false), m_breakAllKernels(false), 5046 m_ir_passes(nullptr) { 5047 ModulesDidLoad(process->GetTarget().GetImages()); 5048 } 5049 5050 lldb::CommandObjectSP RenderScriptRuntime::GetCommandObject( 5051 lldb_private::CommandInterpreter &interpreter) { 5052 return CommandObjectSP(new CommandObjectRenderScriptRuntime(interpreter)); 5053 } 5054 5055 RenderScriptRuntime::~RenderScriptRuntime() = default; 5056