1 //===-- RenderScriptRuntime.cpp ---------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "RenderScriptRuntime.h" 10 #include "RenderScriptScriptGroup.h" 11 12 #include "lldb/Breakpoint/StoppointCallbackContext.h" 13 #include "lldb/Core/Debugger.h" 14 #include "lldb/Core/DumpDataExtractor.h" 15 #include "lldb/Core/PluginManager.h" 16 #include "lldb/Core/ValueObjectVariable.h" 17 #include "lldb/DataFormatters/DumpValueObjectOptions.h" 18 #include "lldb/Expression/UserExpression.h" 19 #include "lldb/Host/OptionParser.h" 20 #include "lldb/Host/StringConvert.h" 21 #include "lldb/Interpreter/CommandInterpreter.h" 22 #include "lldb/Interpreter/CommandObjectMultiword.h" 23 #include "lldb/Interpreter/CommandReturnObject.h" 24 #include "lldb/Interpreter/Options.h" 25 #include "lldb/Symbol/Function.h" 26 #include "lldb/Symbol/Symbol.h" 27 #include "lldb/Symbol/Type.h" 28 #include "lldb/Symbol/VariableList.h" 29 #include "lldb/Target/Process.h" 30 #include "lldb/Target/RegisterContext.h" 31 #include "lldb/Target/SectionLoadList.h" 32 #include "lldb/Target/Target.h" 33 #include "lldb/Target/Thread.h" 34 #include "lldb/Utility/Args.h" 35 #include "lldb/Utility/ConstString.h" 36 #include "lldb/Utility/Log.h" 37 #include "lldb/Utility/RegisterValue.h" 38 #include "lldb/Utility/RegularExpression.h" 39 #include "lldb/Utility/Status.h" 40 41 #include "llvm/ADT/StringSwitch.h" 42 43 #include <memory> 44 45 using namespace lldb; 46 using namespace lldb_private; 47 using namespace lldb_renderscript; 48 49 #define FMT_COORD "(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ")" 50 51 char RenderScriptRuntime::ID = 0; 52 53 namespace { 54 55 // The empirical_type adds a basic level of validation to arbitrary data 56 // allowing us to track if data has been discovered and stored or not. An 57 // empirical_type will be marked as valid only if it has been explicitly 58 // assigned to. 59 template <typename type_t> class empirical_type { 60 public: 61 // Ctor. Contents is invalid when constructed. 62 empirical_type() : valid(false) {} 63 64 // Return true and copy contents to out if valid, else return false. 65 bool get(type_t &out) const { 66 if (valid) 67 out = data; 68 return valid; 69 } 70 71 // Return a pointer to the contents or nullptr if it was not valid. 72 const type_t *get() const { return valid ? &data : nullptr; } 73 74 // Assign data explicitly. 75 void set(const type_t in) { 76 data = in; 77 valid = true; 78 } 79 80 // Mark contents as invalid. 81 void invalidate() { valid = false; } 82 83 // Returns true if this type contains valid data. 84 bool isValid() const { return valid; } 85 86 // Assignment operator. 87 empirical_type<type_t> &operator=(const type_t in) { 88 set(in); 89 return *this; 90 } 91 92 // Dereference operator returns contents. 93 // Warning: Will assert if not valid so use only when you know data is valid. 94 const type_t &operator*() const { 95 assert(valid); 96 return data; 97 } 98 99 protected: 100 bool valid; 101 type_t data; 102 }; 103 104 // ArgItem is used by the GetArgs() function when reading function arguments 105 // from the target. 106 struct ArgItem { 107 enum { ePointer, eInt32, eInt64, eLong, eBool } type; 108 109 uint64_t value; 110 111 explicit operator uint64_t() const { return value; } 112 }; 113 114 // Context structure to be passed into GetArgsXXX(), argument reading functions 115 // below. 116 struct GetArgsCtx { 117 RegisterContext *reg_ctx; 118 Process *process; 119 }; 120 121 bool GetArgsX86(const GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 122 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 123 124 Status err; 125 126 // get the current stack pointer 127 uint64_t sp = ctx.reg_ctx->GetSP(); 128 129 for (size_t i = 0; i < num_args; ++i) { 130 ArgItem &arg = arg_list[i]; 131 // advance up the stack by one argument 132 sp += sizeof(uint32_t); 133 // get the argument type size 134 size_t arg_size = sizeof(uint32_t); 135 // read the argument from memory 136 arg.value = 0; 137 Status err; 138 size_t read = 139 ctx.process->ReadMemory(sp, &arg.value, sizeof(uint32_t), err); 140 if (read != arg_size || !err.Success()) { 141 LLDB_LOGF(log, "%s - error reading argument: %" PRIu64 " '%s'", 142 __FUNCTION__, uint64_t(i), err.AsCString()); 143 return false; 144 } 145 } 146 return true; 147 } 148 149 bool GetArgsX86_64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 150 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 151 152 // number of arguments passed in registers 153 static const uint32_t args_in_reg = 6; 154 // register passing order 155 static const std::array<const char *, args_in_reg> reg_names{ 156 {"rdi", "rsi", "rdx", "rcx", "r8", "r9"}}; 157 // argument type to size mapping 158 static const std::array<size_t, 5> arg_size{{ 159 8, // ePointer, 160 4, // eInt32, 161 8, // eInt64, 162 8, // eLong, 163 4, // eBool, 164 }}; 165 166 Status err; 167 168 // get the current stack pointer 169 uint64_t sp = ctx.reg_ctx->GetSP(); 170 // step over the return address 171 sp += sizeof(uint64_t); 172 173 // check the stack alignment was correct (16 byte aligned) 174 if ((sp & 0xf) != 0x0) { 175 LLDB_LOGF(log, "%s - stack misaligned", __FUNCTION__); 176 return false; 177 } 178 179 // find the start of arguments on the stack 180 uint64_t sp_offset = 0; 181 for (uint32_t i = args_in_reg; i < num_args; ++i) { 182 sp_offset += arg_size[arg_list[i].type]; 183 } 184 // round up to multiple of 16 185 sp_offset = (sp_offset + 0xf) & 0xf; 186 sp += sp_offset; 187 188 for (size_t i = 0; i < num_args; ++i) { 189 bool success = false; 190 ArgItem &arg = arg_list[i]; 191 // arguments passed in registers 192 if (i < args_in_reg) { 193 const RegisterInfo *reg = 194 ctx.reg_ctx->GetRegisterInfoByName(reg_names[i]); 195 RegisterValue reg_val; 196 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 197 arg.value = reg_val.GetAsUInt64(0, &success); 198 } 199 // arguments passed on the stack 200 else { 201 // get the argument type size 202 const size_t size = arg_size[arg_list[i].type]; 203 // read the argument from memory 204 arg.value = 0; 205 // note: due to little endian layout reading 4 or 8 bytes will give the 206 // correct value. 207 size_t read = ctx.process->ReadMemory(sp, &arg.value, size, err); 208 success = (err.Success() && read == size); 209 // advance past this argument 210 sp -= size; 211 } 212 // fail if we couldn't read this argument 213 if (!success) { 214 LLDB_LOGF(log, "%s - error reading argument: %" PRIu64 ", reason: %s", 215 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 216 return false; 217 } 218 } 219 return true; 220 } 221 222 bool GetArgsArm(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 223 // number of arguments passed in registers 224 static const uint32_t args_in_reg = 4; 225 226 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 227 228 Status err; 229 230 // get the current stack pointer 231 uint64_t sp = ctx.reg_ctx->GetSP(); 232 233 for (size_t i = 0; i < num_args; ++i) { 234 bool success = false; 235 ArgItem &arg = arg_list[i]; 236 // arguments passed in registers 237 if (i < args_in_reg) { 238 const RegisterInfo *reg = ctx.reg_ctx->GetRegisterInfoAtIndex(i); 239 RegisterValue reg_val; 240 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 241 arg.value = reg_val.GetAsUInt32(0, &success); 242 } 243 // arguments passed on the stack 244 else { 245 // get the argument type size 246 const size_t arg_size = sizeof(uint32_t); 247 // clear all 64bits 248 arg.value = 0; 249 // read this argument from memory 250 size_t bytes_read = 251 ctx.process->ReadMemory(sp, &arg.value, arg_size, err); 252 success = (err.Success() && bytes_read == arg_size); 253 // advance the stack pointer 254 sp += sizeof(uint32_t); 255 } 256 // fail if we couldn't read this argument 257 if (!success) { 258 LLDB_LOGF(log, "%s - error reading argument: %" PRIu64 ", reason: %s", 259 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 260 return false; 261 } 262 } 263 return true; 264 } 265 266 bool GetArgsAarch64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 267 // number of arguments passed in registers 268 static const uint32_t args_in_reg = 8; 269 270 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 271 272 for (size_t i = 0; i < num_args; ++i) { 273 bool success = false; 274 ArgItem &arg = arg_list[i]; 275 // arguments passed in registers 276 if (i < args_in_reg) { 277 const RegisterInfo *reg = ctx.reg_ctx->GetRegisterInfoAtIndex(i); 278 RegisterValue reg_val; 279 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 280 arg.value = reg_val.GetAsUInt64(0, &success); 281 } 282 // arguments passed on the stack 283 else { 284 LLDB_LOGF(log, "%s - reading arguments spilled to stack not implemented", 285 __FUNCTION__); 286 } 287 // fail if we couldn't read this argument 288 if (!success) { 289 LLDB_LOGF(log, "%s - error reading argument: %" PRIu64, __FUNCTION__, 290 uint64_t(i)); 291 return false; 292 } 293 } 294 return true; 295 } 296 297 bool GetArgsMipsel(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 298 // number of arguments passed in registers 299 static const uint32_t args_in_reg = 4; 300 // register file offset to first argument 301 static const uint32_t reg_offset = 4; 302 303 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 304 305 Status err; 306 307 // find offset to arguments on the stack (+16 to skip over a0-a3 shadow 308 // space) 309 uint64_t sp = ctx.reg_ctx->GetSP() + 16; 310 311 for (size_t i = 0; i < num_args; ++i) { 312 bool success = false; 313 ArgItem &arg = arg_list[i]; 314 // arguments passed in registers 315 if (i < args_in_reg) { 316 const RegisterInfo *reg = 317 ctx.reg_ctx->GetRegisterInfoAtIndex(i + reg_offset); 318 RegisterValue reg_val; 319 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 320 arg.value = reg_val.GetAsUInt64(0, &success); 321 } 322 // arguments passed on the stack 323 else { 324 const size_t arg_size = sizeof(uint32_t); 325 arg.value = 0; 326 size_t bytes_read = 327 ctx.process->ReadMemory(sp, &arg.value, arg_size, err); 328 success = (err.Success() && bytes_read == arg_size); 329 // advance the stack pointer 330 sp += arg_size; 331 } 332 // fail if we couldn't read this argument 333 if (!success) { 334 LLDB_LOGF(log, "%s - error reading argument: %" PRIu64 ", reason: %s", 335 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 336 return false; 337 } 338 } 339 return true; 340 } 341 342 bool GetArgsMips64el(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 343 // number of arguments passed in registers 344 static const uint32_t args_in_reg = 8; 345 // register file offset to first argument 346 static const uint32_t reg_offset = 4; 347 348 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 349 350 Status err; 351 352 // get the current stack pointer 353 uint64_t sp = ctx.reg_ctx->GetSP(); 354 355 for (size_t i = 0; i < num_args; ++i) { 356 bool success = false; 357 ArgItem &arg = arg_list[i]; 358 // arguments passed in registers 359 if (i < args_in_reg) { 360 const RegisterInfo *reg = 361 ctx.reg_ctx->GetRegisterInfoAtIndex(i + reg_offset); 362 RegisterValue reg_val; 363 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 364 arg.value = reg_val.GetAsUInt64(0, &success); 365 } 366 // arguments passed on the stack 367 else { 368 // get the argument type size 369 const size_t arg_size = sizeof(uint64_t); 370 // clear all 64bits 371 arg.value = 0; 372 // read this argument from memory 373 size_t bytes_read = 374 ctx.process->ReadMemory(sp, &arg.value, arg_size, err); 375 success = (err.Success() && bytes_read == arg_size); 376 // advance the stack pointer 377 sp += arg_size; 378 } 379 // fail if we couldn't read this argument 380 if (!success) { 381 LLDB_LOGF(log, "%s - error reading argument: %" PRIu64 ", reason: %s", 382 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 383 return false; 384 } 385 } 386 return true; 387 } 388 389 bool GetArgs(ExecutionContext &exe_ctx, ArgItem *arg_list, size_t num_args) { 390 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 391 392 // verify that we have a target 393 if (!exe_ctx.GetTargetPtr()) { 394 LLDB_LOGF(log, "%s - invalid target", __FUNCTION__); 395 return false; 396 } 397 398 GetArgsCtx ctx = {exe_ctx.GetRegisterContext(), exe_ctx.GetProcessPtr()}; 399 assert(ctx.reg_ctx && ctx.process); 400 401 // dispatch based on architecture 402 switch (exe_ctx.GetTargetPtr()->GetArchitecture().GetMachine()) { 403 case llvm::Triple::ArchType::x86: 404 return GetArgsX86(ctx, arg_list, num_args); 405 406 case llvm::Triple::ArchType::x86_64: 407 return GetArgsX86_64(ctx, arg_list, num_args); 408 409 case llvm::Triple::ArchType::arm: 410 return GetArgsArm(ctx, arg_list, num_args); 411 412 case llvm::Triple::ArchType::aarch64: 413 return GetArgsAarch64(ctx, arg_list, num_args); 414 415 case llvm::Triple::ArchType::mipsel: 416 return GetArgsMipsel(ctx, arg_list, num_args); 417 418 case llvm::Triple::ArchType::mips64el: 419 return GetArgsMips64el(ctx, arg_list, num_args); 420 421 default: 422 // unsupported architecture 423 if (log) { 424 LLDB_LOGF(log, "%s - architecture not supported: '%s'", __FUNCTION__, 425 exe_ctx.GetTargetRef().GetArchitecture().GetArchitectureName()); 426 } 427 return false; 428 } 429 } 430 431 bool IsRenderScriptScriptModule(ModuleSP module) { 432 if (!module) 433 return false; 434 return module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), 435 eSymbolTypeData) != nullptr; 436 } 437 438 bool ParseCoordinate(llvm::StringRef coord_s, RSCoordinate &coord) { 439 // takes an argument of the form 'num[,num][,num]'. Where 'coord_s' is a 440 // comma separated 1,2 or 3-dimensional coordinate with the whitespace 441 // trimmed. Missing coordinates are defaulted to zero. If parsing of any 442 // elements fails the contents of &coord are undefined and `false` is 443 // returned, `true` otherwise 444 445 RegularExpression regex; 446 llvm::SmallVector<llvm::StringRef, 4> matches; 447 448 bool matched = false; 449 if (regex.Compile(llvm::StringRef("^([0-9]+),([0-9]+),([0-9]+)$")) && 450 regex.Execute(coord_s, &matches)) 451 matched = true; 452 else if (regex.Compile(llvm::StringRef("^([0-9]+),([0-9]+)$")) && 453 regex.Execute(coord_s, &matches)) 454 matched = true; 455 else if (regex.Compile(llvm::StringRef("^([0-9]+)$")) && 456 regex.Execute(coord_s, &matches)) 457 matched = true; 458 459 if (!matched) 460 return false; 461 462 auto get_index = [&](size_t idx, uint32_t &i) -> bool { 463 std::string group; 464 errno = 0; 465 if (idx + 1 < matches.size()) { 466 return !llvm::StringRef(matches[idx + 1]).getAsInteger<uint32_t>(10, i); 467 } 468 return true; 469 }; 470 471 return get_index(0, coord.x) && get_index(1, coord.y) && 472 get_index(2, coord.z); 473 } 474 475 bool SkipPrologue(lldb::ModuleSP &module, Address &addr) { 476 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 477 SymbolContext sc; 478 uint32_t resolved_flags = 479 module->ResolveSymbolContextForAddress(addr, eSymbolContextFunction, sc); 480 if (resolved_flags & eSymbolContextFunction) { 481 if (sc.function) { 482 const uint32_t offset = sc.function->GetPrologueByteSize(); 483 ConstString name = sc.GetFunctionName(); 484 if (offset) 485 addr.Slide(offset); 486 LLDB_LOGF(log, "%s: Prologue offset for %s is %" PRIu32, __FUNCTION__, 487 name.AsCString(), offset); 488 } 489 return true; 490 } else 491 return false; 492 } 493 } // anonymous namespace 494 495 // The ScriptDetails class collects data associated with a single script 496 // instance. 497 struct RenderScriptRuntime::ScriptDetails { 498 ~ScriptDetails() = default; 499 500 enum ScriptType { eScript, eScriptC }; 501 502 // The derived type of the script. 503 empirical_type<ScriptType> type; 504 // The name of the original source file. 505 empirical_type<std::string> res_name; 506 // Path to script .so file on the device. 507 empirical_type<std::string> shared_lib; 508 // Directory where kernel objects are cached on device. 509 empirical_type<std::string> cache_dir; 510 // Pointer to the context which owns this script. 511 empirical_type<lldb::addr_t> context; 512 // Pointer to the script object itself. 513 empirical_type<lldb::addr_t> script; 514 }; 515 516 // This Element class represents the Element object in RS, defining the type 517 // associated with an Allocation. 518 struct RenderScriptRuntime::Element { 519 // Taken from rsDefines.h 520 enum DataKind { 521 RS_KIND_USER, 522 RS_KIND_PIXEL_L = 7, 523 RS_KIND_PIXEL_A, 524 RS_KIND_PIXEL_LA, 525 RS_KIND_PIXEL_RGB, 526 RS_KIND_PIXEL_RGBA, 527 RS_KIND_PIXEL_DEPTH, 528 RS_KIND_PIXEL_YUV, 529 RS_KIND_INVALID = 100 530 }; 531 532 // Taken from rsDefines.h 533 enum DataType { 534 RS_TYPE_NONE = 0, 535 RS_TYPE_FLOAT_16, 536 RS_TYPE_FLOAT_32, 537 RS_TYPE_FLOAT_64, 538 RS_TYPE_SIGNED_8, 539 RS_TYPE_SIGNED_16, 540 RS_TYPE_SIGNED_32, 541 RS_TYPE_SIGNED_64, 542 RS_TYPE_UNSIGNED_8, 543 RS_TYPE_UNSIGNED_16, 544 RS_TYPE_UNSIGNED_32, 545 RS_TYPE_UNSIGNED_64, 546 RS_TYPE_BOOLEAN, 547 548 RS_TYPE_UNSIGNED_5_6_5, 549 RS_TYPE_UNSIGNED_5_5_5_1, 550 RS_TYPE_UNSIGNED_4_4_4_4, 551 552 RS_TYPE_MATRIX_4X4, 553 RS_TYPE_MATRIX_3X3, 554 RS_TYPE_MATRIX_2X2, 555 556 RS_TYPE_ELEMENT = 1000, 557 RS_TYPE_TYPE, 558 RS_TYPE_ALLOCATION, 559 RS_TYPE_SAMPLER, 560 RS_TYPE_SCRIPT, 561 RS_TYPE_MESH, 562 RS_TYPE_PROGRAM_FRAGMENT, 563 RS_TYPE_PROGRAM_VERTEX, 564 RS_TYPE_PROGRAM_RASTER, 565 RS_TYPE_PROGRAM_STORE, 566 RS_TYPE_FONT, 567 568 RS_TYPE_INVALID = 10000 569 }; 570 571 std::vector<Element> children; // Child Element fields for structs 572 empirical_type<lldb::addr_t> 573 element_ptr; // Pointer to the RS Element of the Type 574 empirical_type<DataType> 575 type; // Type of each data pointer stored by the allocation 576 empirical_type<DataKind> 577 type_kind; // Defines pixel type if Allocation is created from an image 578 empirical_type<uint32_t> 579 type_vec_size; // Vector size of each data point, e.g '4' for uchar4 580 empirical_type<uint32_t> field_count; // Number of Subelements 581 empirical_type<uint32_t> datum_size; // Size of a single Element with padding 582 empirical_type<uint32_t> padding; // Number of padding bytes 583 empirical_type<uint32_t> 584 array_size; // Number of items in array, only needed for structs 585 ConstString type_name; // Name of type, only needed for structs 586 587 static ConstString 588 GetFallbackStructName(); // Print this as the type name of a struct Element 589 // If we can't resolve the actual struct name 590 591 bool ShouldRefresh() const { 592 const bool valid_ptr = element_ptr.isValid() && *element_ptr.get() != 0x0; 593 const bool valid_type = 594 type.isValid() && type_vec_size.isValid() && type_kind.isValid(); 595 return !valid_ptr || !valid_type || !datum_size.isValid(); 596 } 597 }; 598 599 // This AllocationDetails class collects data associated with a single 600 // allocation instance. 601 struct RenderScriptRuntime::AllocationDetails { 602 struct Dimension { 603 uint32_t dim_1; 604 uint32_t dim_2; 605 uint32_t dim_3; 606 uint32_t cube_map; 607 608 Dimension() { 609 dim_1 = 0; 610 dim_2 = 0; 611 dim_3 = 0; 612 cube_map = 0; 613 } 614 }; 615 616 // The FileHeader struct specifies the header we use for writing allocations 617 // to a binary file. Our format begins with the ASCII characters "RSAD", 618 // identifying the file as an allocation dump. Member variables dims and 619 // hdr_size are then written consecutively, immediately followed by an 620 // instance of the ElementHeader struct. Because Elements can contain 621 // subelements, there may be more than one instance of the ElementHeader 622 // struct. With this first instance being the root element, and the other 623 // instances being the root's descendants. To identify which instances are an 624 // ElementHeader's children, each struct is immediately followed by a 625 // sequence of consecutive offsets to the start of its child structs. These 626 // offsets are 627 // 4 bytes in size, and the 0 offset signifies no more children. 628 struct FileHeader { 629 uint8_t ident[4]; // ASCII 'RSAD' identifying the file 630 uint32_t dims[3]; // Dimensions 631 uint16_t hdr_size; // Header size in bytes, including all element headers 632 }; 633 634 struct ElementHeader { 635 uint16_t type; // DataType enum 636 uint32_t kind; // DataKind enum 637 uint32_t element_size; // Size of a single element, including padding 638 uint16_t vector_size; // Vector width 639 uint32_t array_size; // Number of elements in array 640 }; 641 642 // Monotonically increasing from 1 643 static uint32_t ID; 644 645 // Maps Allocation DataType enum and vector size to printable strings using 646 // mapping from RenderScript numerical types summary documentation 647 static const char *RsDataTypeToString[][4]; 648 649 // Maps Allocation DataKind enum to printable strings 650 static const char *RsDataKindToString[]; 651 652 // Maps allocation types to format sizes for printing. 653 static const uint32_t RSTypeToFormat[][3]; 654 655 // Give each allocation an ID as a way 656 // for commands to reference it. 657 const uint32_t id; 658 659 // Allocation Element type 660 RenderScriptRuntime::Element element; 661 // Dimensions of the Allocation 662 empirical_type<Dimension> dimension; 663 // Pointer to address of the RS Allocation 664 empirical_type<lldb::addr_t> address; 665 // Pointer to the data held by the Allocation 666 empirical_type<lldb::addr_t> data_ptr; 667 // Pointer to the RS Type of the Allocation 668 empirical_type<lldb::addr_t> type_ptr; 669 // Pointer to the RS Context of the Allocation 670 empirical_type<lldb::addr_t> context; 671 // Size of the allocation 672 empirical_type<uint32_t> size; 673 // Stride between rows of the allocation 674 empirical_type<uint32_t> stride; 675 676 // Give each allocation an id, so we can reference it in user commands. 677 AllocationDetails() : id(ID++) {} 678 679 bool ShouldRefresh() const { 680 bool valid_ptrs = data_ptr.isValid() && *data_ptr.get() != 0x0; 681 valid_ptrs = valid_ptrs && type_ptr.isValid() && *type_ptr.get() != 0x0; 682 return !valid_ptrs || !dimension.isValid() || !size.isValid() || 683 element.ShouldRefresh(); 684 } 685 }; 686 687 ConstString RenderScriptRuntime::Element::GetFallbackStructName() { 688 static const ConstString FallbackStructName("struct"); 689 return FallbackStructName; 690 } 691 692 uint32_t RenderScriptRuntime::AllocationDetails::ID = 1; 693 694 const char *RenderScriptRuntime::AllocationDetails::RsDataKindToString[] = { 695 "User", "Undefined", "Undefined", "Undefined", 696 "Undefined", "Undefined", "Undefined", // Enum jumps from 0 to 7 697 "L Pixel", "A Pixel", "LA Pixel", "RGB Pixel", 698 "RGBA Pixel", "Pixel Depth", "YUV Pixel"}; 699 700 const char *RenderScriptRuntime::AllocationDetails::RsDataTypeToString[][4] = { 701 {"None", "None", "None", "None"}, 702 {"half", "half2", "half3", "half4"}, 703 {"float", "float2", "float3", "float4"}, 704 {"double", "double2", "double3", "double4"}, 705 {"char", "char2", "char3", "char4"}, 706 {"short", "short2", "short3", "short4"}, 707 {"int", "int2", "int3", "int4"}, 708 {"long", "long2", "long3", "long4"}, 709 {"uchar", "uchar2", "uchar3", "uchar4"}, 710 {"ushort", "ushort2", "ushort3", "ushort4"}, 711 {"uint", "uint2", "uint3", "uint4"}, 712 {"ulong", "ulong2", "ulong3", "ulong4"}, 713 {"bool", "bool2", "bool3", "bool4"}, 714 {"packed_565", "packed_565", "packed_565", "packed_565"}, 715 {"packed_5551", "packed_5551", "packed_5551", "packed_5551"}, 716 {"packed_4444", "packed_4444", "packed_4444", "packed_4444"}, 717 {"rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4"}, 718 {"rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3"}, 719 {"rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2"}, 720 721 // Handlers 722 {"RS Element", "RS Element", "RS Element", "RS Element"}, 723 {"RS Type", "RS Type", "RS Type", "RS Type"}, 724 {"RS Allocation", "RS Allocation", "RS Allocation", "RS Allocation"}, 725 {"RS Sampler", "RS Sampler", "RS Sampler", "RS Sampler"}, 726 {"RS Script", "RS Script", "RS Script", "RS Script"}, 727 728 // Deprecated 729 {"RS Mesh", "RS Mesh", "RS Mesh", "RS Mesh"}, 730 {"RS Program Fragment", "RS Program Fragment", "RS Program Fragment", 731 "RS Program Fragment"}, 732 {"RS Program Vertex", "RS Program Vertex", "RS Program Vertex", 733 "RS Program Vertex"}, 734 {"RS Program Raster", "RS Program Raster", "RS Program Raster", 735 "RS Program Raster"}, 736 {"RS Program Store", "RS Program Store", "RS Program Store", 737 "RS Program Store"}, 738 {"RS Font", "RS Font", "RS Font", "RS Font"}}; 739 740 // Used as an index into the RSTypeToFormat array elements 741 enum TypeToFormatIndex { eFormatSingle = 0, eFormatVector, eElementSize }; 742 743 // { format enum of single element, format enum of element vector, size of 744 // element} 745 const uint32_t RenderScriptRuntime::AllocationDetails::RSTypeToFormat[][3] = { 746 // RS_TYPE_NONE 747 {eFormatHex, eFormatHex, 1}, 748 // RS_TYPE_FLOAT_16 749 {eFormatFloat, eFormatVectorOfFloat16, 2}, 750 // RS_TYPE_FLOAT_32 751 {eFormatFloat, eFormatVectorOfFloat32, sizeof(float)}, 752 // RS_TYPE_FLOAT_64 753 {eFormatFloat, eFormatVectorOfFloat64, sizeof(double)}, 754 // RS_TYPE_SIGNED_8 755 {eFormatDecimal, eFormatVectorOfSInt8, sizeof(int8_t)}, 756 // RS_TYPE_SIGNED_16 757 {eFormatDecimal, eFormatVectorOfSInt16, sizeof(int16_t)}, 758 // RS_TYPE_SIGNED_32 759 {eFormatDecimal, eFormatVectorOfSInt32, sizeof(int32_t)}, 760 // RS_TYPE_SIGNED_64 761 {eFormatDecimal, eFormatVectorOfSInt64, sizeof(int64_t)}, 762 // RS_TYPE_UNSIGNED_8 763 {eFormatDecimal, eFormatVectorOfUInt8, sizeof(uint8_t)}, 764 // RS_TYPE_UNSIGNED_16 765 {eFormatDecimal, eFormatVectorOfUInt16, sizeof(uint16_t)}, 766 // RS_TYPE_UNSIGNED_32 767 {eFormatDecimal, eFormatVectorOfUInt32, sizeof(uint32_t)}, 768 // RS_TYPE_UNSIGNED_64 769 {eFormatDecimal, eFormatVectorOfUInt64, sizeof(uint64_t)}, 770 // RS_TYPE_BOOL 771 {eFormatBoolean, eFormatBoolean, 1}, 772 // RS_TYPE_UNSIGNED_5_6_5 773 {eFormatHex, eFormatHex, sizeof(uint16_t)}, 774 // RS_TYPE_UNSIGNED_5_5_5_1 775 {eFormatHex, eFormatHex, sizeof(uint16_t)}, 776 // RS_TYPE_UNSIGNED_4_4_4_4 777 {eFormatHex, eFormatHex, sizeof(uint16_t)}, 778 // RS_TYPE_MATRIX_4X4 779 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 16}, 780 // RS_TYPE_MATRIX_3X3 781 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 9}, 782 // RS_TYPE_MATRIX_2X2 783 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 4}}; 784 785 // Static Functions 786 LanguageRuntime * 787 RenderScriptRuntime::CreateInstance(Process *process, 788 lldb::LanguageType language) { 789 790 if (language == eLanguageTypeExtRenderScript) 791 return new RenderScriptRuntime(process); 792 else 793 return nullptr; 794 } 795 796 // Callback with a module to search for matching symbols. We first check that 797 // the module contains RS kernels. Then look for a symbol which matches our 798 // kernel name. The breakpoint address is finally set using the address of this 799 // symbol. 800 Searcher::CallbackReturn 801 RSBreakpointResolver::SearchCallback(SearchFilter &filter, 802 SymbolContext &context, Address *, bool) { 803 ModuleSP module = context.module_sp; 804 805 if (!module || !IsRenderScriptScriptModule(module)) 806 return Searcher::eCallbackReturnContinue; 807 808 // Attempt to set a breakpoint on the kernel name symbol within the module 809 // library. If it's not found, it's likely debug info is unavailable - try to 810 // set a breakpoint on <name>.expand. 811 const Symbol *kernel_sym = 812 module->FindFirstSymbolWithNameAndType(m_kernel_name, eSymbolTypeCode); 813 if (!kernel_sym) { 814 std::string kernel_name_expanded(m_kernel_name.AsCString()); 815 kernel_name_expanded.append(".expand"); 816 kernel_sym = module->FindFirstSymbolWithNameAndType( 817 ConstString(kernel_name_expanded.c_str()), eSymbolTypeCode); 818 } 819 820 if (kernel_sym) { 821 Address bp_addr = kernel_sym->GetAddress(); 822 if (filter.AddressPasses(bp_addr)) 823 m_breakpoint->AddLocation(bp_addr); 824 } 825 826 return Searcher::eCallbackReturnContinue; 827 } 828 829 Searcher::CallbackReturn 830 RSReduceBreakpointResolver::SearchCallback(lldb_private::SearchFilter &filter, 831 lldb_private::SymbolContext &context, 832 Address *, bool) { 833 // We need to have access to the list of reductions currently parsed, as 834 // reduce names don't actually exist as symbols in a module. They are only 835 // identifiable by parsing the .rs.info packet, or finding the expand symbol. 836 // We therefore need access to the list of parsed rs modules to properly 837 // resolve reduction names. 838 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 839 ModuleSP module = context.module_sp; 840 841 if (!module || !IsRenderScriptScriptModule(module)) 842 return Searcher::eCallbackReturnContinue; 843 844 if (!m_rsmodules) 845 return Searcher::eCallbackReturnContinue; 846 847 for (const auto &module_desc : *m_rsmodules) { 848 if (module_desc->m_module != module) 849 continue; 850 851 for (const auto &reduction : module_desc->m_reductions) { 852 if (reduction.m_reduce_name != m_reduce_name) 853 continue; 854 855 std::array<std::pair<ConstString, int>, 5> funcs{ 856 {{reduction.m_init_name, eKernelTypeInit}, 857 {reduction.m_accum_name, eKernelTypeAccum}, 858 {reduction.m_comb_name, eKernelTypeComb}, 859 {reduction.m_outc_name, eKernelTypeOutC}, 860 {reduction.m_halter_name, eKernelTypeHalter}}}; 861 862 for (const auto &kernel : funcs) { 863 // Skip constituent functions that don't match our spec 864 if (!(m_kernel_types & kernel.second)) 865 continue; 866 867 const auto kernel_name = kernel.first; 868 const auto symbol = module->FindFirstSymbolWithNameAndType( 869 kernel_name, eSymbolTypeCode); 870 if (!symbol) 871 continue; 872 873 auto address = symbol->GetAddress(); 874 if (filter.AddressPasses(address)) { 875 bool new_bp; 876 if (!SkipPrologue(module, address)) { 877 LLDB_LOGF(log, "%s: Error trying to skip prologue", __FUNCTION__); 878 } 879 m_breakpoint->AddLocation(address, &new_bp); 880 LLDB_LOGF(log, "%s: %s reduction breakpoint on %s in %s", 881 __FUNCTION__, new_bp ? "new" : "existing", 882 kernel_name.GetCString(), 883 address.GetModule()->GetFileSpec().GetCString()); 884 } 885 } 886 } 887 } 888 return eCallbackReturnContinue; 889 } 890 891 Searcher::CallbackReturn RSScriptGroupBreakpointResolver::SearchCallback( 892 SearchFilter &filter, SymbolContext &context, Address *addr, 893 bool containing) { 894 895 if (!m_breakpoint) 896 return eCallbackReturnContinue; 897 898 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 899 ModuleSP &module = context.module_sp; 900 901 if (!module || !IsRenderScriptScriptModule(module)) 902 return Searcher::eCallbackReturnContinue; 903 904 std::vector<std::string> names; 905 m_breakpoint->GetNames(names); 906 if (names.empty()) 907 return eCallbackReturnContinue; 908 909 for (auto &name : names) { 910 const RSScriptGroupDescriptorSP sg = FindScriptGroup(ConstString(name)); 911 if (!sg) { 912 LLDB_LOGF(log, "%s: could not find script group for %s", __FUNCTION__, 913 name.c_str()); 914 continue; 915 } 916 917 LLDB_LOGF(log, "%s: Found ScriptGroup for %s", __FUNCTION__, name.c_str()); 918 919 for (const RSScriptGroupDescriptor::Kernel &k : sg->m_kernels) { 920 if (log) { 921 LLDB_LOGF(log, "%s: Adding breakpoint for %s", __FUNCTION__, 922 k.m_name.AsCString()); 923 LLDB_LOGF(log, "%s: Kernel address 0x%" PRIx64, __FUNCTION__, k.m_addr); 924 } 925 926 const lldb_private::Symbol *sym = 927 module->FindFirstSymbolWithNameAndType(k.m_name, eSymbolTypeCode); 928 if (!sym) { 929 LLDB_LOGF(log, "%s: Unable to find symbol for %s", __FUNCTION__, 930 k.m_name.AsCString()); 931 continue; 932 } 933 934 if (log) { 935 LLDB_LOGF(log, "%s: Found symbol name is %s", __FUNCTION__, 936 sym->GetName().AsCString()); 937 } 938 939 auto address = sym->GetAddress(); 940 if (!SkipPrologue(module, address)) { 941 LLDB_LOGF(log, "%s: Error trying to skip prologue", __FUNCTION__); 942 } 943 944 bool new_bp; 945 m_breakpoint->AddLocation(address, &new_bp); 946 947 LLDB_LOGF(log, "%s: Placed %sbreakpoint on %s", __FUNCTION__, 948 new_bp ? "new " : "", k.m_name.AsCString()); 949 950 // exit after placing the first breakpoint if we do not intend to stop on 951 // all kernels making up this script group 952 if (!m_stop_on_all) 953 break; 954 } 955 } 956 957 return eCallbackReturnContinue; 958 } 959 960 void RenderScriptRuntime::Initialize() { 961 PluginManager::RegisterPlugin(GetPluginNameStatic(), 962 "RenderScript language support", CreateInstance, 963 GetCommandObject); 964 } 965 966 void RenderScriptRuntime::Terminate() { 967 PluginManager::UnregisterPlugin(CreateInstance); 968 } 969 970 lldb_private::ConstString RenderScriptRuntime::GetPluginNameStatic() { 971 static ConstString plugin_name("renderscript"); 972 return plugin_name; 973 } 974 975 RenderScriptRuntime::ModuleKind 976 RenderScriptRuntime::GetModuleKind(const lldb::ModuleSP &module_sp) { 977 if (module_sp) { 978 if (IsRenderScriptScriptModule(module_sp)) 979 return eModuleKindKernelObj; 980 981 // Is this the main RS runtime library 982 const ConstString rs_lib("libRS.so"); 983 if (module_sp->GetFileSpec().GetFilename() == rs_lib) { 984 return eModuleKindLibRS; 985 } 986 987 const ConstString rs_driverlib("libRSDriver.so"); 988 if (module_sp->GetFileSpec().GetFilename() == rs_driverlib) { 989 return eModuleKindDriver; 990 } 991 992 const ConstString rs_cpureflib("libRSCpuRef.so"); 993 if (module_sp->GetFileSpec().GetFilename() == rs_cpureflib) { 994 return eModuleKindImpl; 995 } 996 } 997 return eModuleKindIgnored; 998 } 999 1000 bool RenderScriptRuntime::IsRenderScriptModule( 1001 const lldb::ModuleSP &module_sp) { 1002 return GetModuleKind(module_sp) != eModuleKindIgnored; 1003 } 1004 1005 void RenderScriptRuntime::ModulesDidLoad(const ModuleList &module_list) { 1006 std::lock_guard<std::recursive_mutex> guard(module_list.GetMutex()); 1007 1008 size_t num_modules = module_list.GetSize(); 1009 for (size_t i = 0; i < num_modules; i++) { 1010 auto mod = module_list.GetModuleAtIndex(i); 1011 if (IsRenderScriptModule(mod)) { 1012 LoadModule(mod); 1013 } 1014 } 1015 } 1016 1017 // PluginInterface protocol 1018 lldb_private::ConstString RenderScriptRuntime::GetPluginName() { 1019 return GetPluginNameStatic(); 1020 } 1021 1022 uint32_t RenderScriptRuntime::GetPluginVersion() { return 1; } 1023 1024 bool RenderScriptRuntime::GetDynamicTypeAndAddress( 1025 ValueObject &in_value, lldb::DynamicValueType use_dynamic, 1026 TypeAndOrName &class_type_or_name, Address &address, 1027 Value::ValueType &value_type) { 1028 return false; 1029 } 1030 1031 TypeAndOrName 1032 RenderScriptRuntime::FixUpDynamicType(const TypeAndOrName &type_and_or_name, 1033 ValueObject &static_value) { 1034 return type_and_or_name; 1035 } 1036 1037 bool RenderScriptRuntime::CouldHaveDynamicValue(ValueObject &in_value) { 1038 return false; 1039 } 1040 1041 lldb::BreakpointResolverSP 1042 RenderScriptRuntime::CreateExceptionResolver(Breakpoint *bp, bool catch_bp, 1043 bool throw_bp) { 1044 BreakpointResolverSP resolver_sp; 1045 return resolver_sp; 1046 } 1047 1048 const RenderScriptRuntime::HookDefn RenderScriptRuntime::s_runtimeHookDefns[] = 1049 { 1050 // rsdScript 1051 {"rsdScriptInit", "_Z13rsdScriptInitPKN7android12renderscript7ContextEP" 1052 "NS0_7ScriptCEPKcS7_PKhjj", 1053 "_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_" 1054 "7ScriptCEPKcS7_PKhmj", 1055 0, RenderScriptRuntime::eModuleKindDriver, 1056 &lldb_private::RenderScriptRuntime::CaptureScriptInit}, 1057 {"rsdScriptInvokeForEachMulti", 1058 "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0" 1059 "_6ScriptEjPPKNS0_10AllocationEjPS6_PKvjPK12RsScriptCall", 1060 "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0" 1061 "_6ScriptEjPPKNS0_10AllocationEmPS6_PKvmPK12RsScriptCall", 1062 0, RenderScriptRuntime::eModuleKindDriver, 1063 &lldb_private::RenderScriptRuntime::CaptureScriptInvokeForEachMulti}, 1064 {"rsdScriptSetGlobalVar", "_Z21rsdScriptSetGlobalVarPKN7android12render" 1065 "script7ContextEPKNS0_6ScriptEjPvj", 1066 "_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_" 1067 "6ScriptEjPvm", 1068 0, RenderScriptRuntime::eModuleKindDriver, 1069 &lldb_private::RenderScriptRuntime::CaptureSetGlobalVar}, 1070 1071 // rsdAllocation 1072 {"rsdAllocationInit", "_Z17rsdAllocationInitPKN7android12renderscript7C" 1073 "ontextEPNS0_10AllocationEb", 1074 "_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_" 1075 "10AllocationEb", 1076 0, RenderScriptRuntime::eModuleKindDriver, 1077 &lldb_private::RenderScriptRuntime::CaptureAllocationInit}, 1078 {"rsdAllocationRead2D", 1079 "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_" 1080 "10AllocationEjjj23RsAllocationCubemapFacejjPvjj", 1081 "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_" 1082 "10AllocationEjjj23RsAllocationCubemapFacejjPvmm", 1083 0, RenderScriptRuntime::eModuleKindDriver, nullptr}, 1084 {"rsdAllocationDestroy", "_Z20rsdAllocationDestroyPKN7android12rendersc" 1085 "ript7ContextEPNS0_10AllocationE", 1086 "_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_" 1087 "10AllocationE", 1088 0, RenderScriptRuntime::eModuleKindDriver, 1089 &lldb_private::RenderScriptRuntime::CaptureAllocationDestroy}, 1090 1091 // renderscript script groups 1092 {"rsdDebugHintScriptGroup2", "_ZN7android12renderscript21debugHintScrip" 1093 "tGroup2EPKcjPKPFvPK24RsExpandKernelDriver" 1094 "InfojjjEj", 1095 "_ZN7android12renderscript21debugHintScriptGroup2EPKcjPKPFvPK24RsExpan" 1096 "dKernelDriverInfojjjEj", 1097 0, RenderScriptRuntime::eModuleKindImpl, 1098 &lldb_private::RenderScriptRuntime::CaptureDebugHintScriptGroup2}}; 1099 1100 const size_t RenderScriptRuntime::s_runtimeHookCount = 1101 sizeof(s_runtimeHookDefns) / sizeof(s_runtimeHookDefns[0]); 1102 1103 bool RenderScriptRuntime::HookCallback(void *baton, 1104 StoppointCallbackContext *ctx, 1105 lldb::user_id_t break_id, 1106 lldb::user_id_t break_loc_id) { 1107 RuntimeHook *hook = (RuntimeHook *)baton; 1108 ExecutionContext exe_ctx(ctx->exe_ctx_ref); 1109 1110 RenderScriptRuntime *lang_rt = llvm::cast<RenderScriptRuntime>( 1111 exe_ctx.GetProcessPtr()->GetLanguageRuntime( 1112 eLanguageTypeExtRenderScript)); 1113 1114 lang_rt->HookCallback(hook, exe_ctx); 1115 1116 return false; 1117 } 1118 1119 void RenderScriptRuntime::HookCallback(RuntimeHook *hook, 1120 ExecutionContext &exe_ctx) { 1121 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1122 1123 LLDB_LOGF(log, "%s - '%s'", __FUNCTION__, hook->defn->name); 1124 1125 if (hook->defn->grabber) { 1126 (this->*(hook->defn->grabber))(hook, exe_ctx); 1127 } 1128 } 1129 1130 void RenderScriptRuntime::CaptureDebugHintScriptGroup2( 1131 RuntimeHook *hook_info, ExecutionContext &context) { 1132 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1133 1134 enum { 1135 eGroupName = 0, 1136 eGroupNameSize, 1137 eKernel, 1138 eKernelCount, 1139 }; 1140 1141 std::array<ArgItem, 4> args{{ 1142 {ArgItem::ePointer, 0}, // const char *groupName 1143 {ArgItem::eInt32, 0}, // const uint32_t groupNameSize 1144 {ArgItem::ePointer, 0}, // const ExpandFuncTy *kernel 1145 {ArgItem::eInt32, 0}, // const uint32_t kernelCount 1146 }}; 1147 1148 if (!GetArgs(context, args.data(), args.size())) { 1149 LLDB_LOGF(log, "%s - Error while reading the function parameters", 1150 __FUNCTION__); 1151 return; 1152 } else if (log) { 1153 LLDB_LOGF(log, "%s - groupName : 0x%" PRIx64, __FUNCTION__, 1154 addr_t(args[eGroupName])); 1155 LLDB_LOGF(log, "%s - groupNameSize: %" PRIu64, __FUNCTION__, 1156 uint64_t(args[eGroupNameSize])); 1157 LLDB_LOGF(log, "%s - kernel : 0x%" PRIx64, __FUNCTION__, 1158 addr_t(args[eKernel])); 1159 LLDB_LOGF(log, "%s - kernelCount : %" PRIu64, __FUNCTION__, 1160 uint64_t(args[eKernelCount])); 1161 } 1162 1163 // parse script group name 1164 ConstString group_name; 1165 { 1166 Status err; 1167 const uint64_t len = uint64_t(args[eGroupNameSize]); 1168 std::unique_ptr<char[]> buffer(new char[uint32_t(len + 1)]); 1169 m_process->ReadMemory(addr_t(args[eGroupName]), buffer.get(), len, err); 1170 buffer.get()[len] = '\0'; 1171 if (!err.Success()) { 1172 LLDB_LOGF(log, "Error reading scriptgroup name from target"); 1173 return; 1174 } else { 1175 LLDB_LOGF(log, "Extracted scriptgroup name %s", buffer.get()); 1176 } 1177 // write back the script group name 1178 group_name.SetCString(buffer.get()); 1179 } 1180 1181 // create or access existing script group 1182 RSScriptGroupDescriptorSP group; 1183 { 1184 // search for existing script group 1185 for (auto sg : m_scriptGroups) { 1186 if (sg->m_name == group_name) { 1187 group = sg; 1188 break; 1189 } 1190 } 1191 if (!group) { 1192 group = std::make_shared<RSScriptGroupDescriptor>(); 1193 group->m_name = group_name; 1194 m_scriptGroups.push_back(group); 1195 } else { 1196 // already have this script group 1197 LLDB_LOGF(log, "Attempt to add duplicate script group %s", 1198 group_name.AsCString()); 1199 return; 1200 } 1201 } 1202 assert(group); 1203 1204 const uint32_t target_ptr_size = m_process->GetAddressByteSize(); 1205 std::vector<addr_t> kernels; 1206 // parse kernel addresses in script group 1207 for (uint64_t i = 0; i < uint64_t(args[eKernelCount]); ++i) { 1208 RSScriptGroupDescriptor::Kernel kernel; 1209 // extract script group kernel addresses from the target 1210 const addr_t ptr_addr = addr_t(args[eKernel]) + i * target_ptr_size; 1211 uint64_t kernel_addr = 0; 1212 Status err; 1213 size_t read = 1214 m_process->ReadMemory(ptr_addr, &kernel_addr, target_ptr_size, err); 1215 if (!err.Success() || read != target_ptr_size) { 1216 LLDB_LOGF(log, "Error parsing kernel address %" PRIu64 " in script group", 1217 i); 1218 return; 1219 } 1220 LLDB_LOGF(log, "Extracted scriptgroup kernel address - 0x%" PRIx64, 1221 kernel_addr); 1222 kernel.m_addr = kernel_addr; 1223 1224 // try to resolve the associated kernel name 1225 if (!ResolveKernelName(kernel.m_addr, kernel.m_name)) { 1226 LLDB_LOGF(log, "Parsed scriptgroup kernel %" PRIu64 " - 0x%" PRIx64, i, 1227 kernel_addr); 1228 return; 1229 } 1230 1231 // try to find the non '.expand' function 1232 { 1233 const llvm::StringRef expand(".expand"); 1234 const llvm::StringRef name_ref = kernel.m_name.GetStringRef(); 1235 if (name_ref.endswith(expand)) { 1236 const ConstString base_kernel(name_ref.drop_back(expand.size())); 1237 // verify this function is a valid kernel 1238 if (IsKnownKernel(base_kernel)) { 1239 kernel.m_name = base_kernel; 1240 LLDB_LOGF(log, "%s - found non expand version '%s'", __FUNCTION__, 1241 base_kernel.GetCString()); 1242 } 1243 } 1244 } 1245 // add to a list of script group kernels we know about 1246 group->m_kernels.push_back(kernel); 1247 } 1248 1249 // Resolve any pending scriptgroup breakpoints 1250 { 1251 Target &target = m_process->GetTarget(); 1252 const BreakpointList &list = target.GetBreakpointList(); 1253 const size_t num_breakpoints = list.GetSize(); 1254 LLDB_LOGF(log, "Resolving %zu breakpoints", num_breakpoints); 1255 for (size_t i = 0; i < num_breakpoints; ++i) { 1256 const BreakpointSP bp = list.GetBreakpointAtIndex(i); 1257 if (bp) { 1258 if (bp->MatchesName(group_name.AsCString())) { 1259 LLDB_LOGF(log, "Found breakpoint with name %s", 1260 group_name.AsCString()); 1261 bp->ResolveBreakpoint(); 1262 } 1263 } 1264 } 1265 } 1266 } 1267 1268 void RenderScriptRuntime::CaptureScriptInvokeForEachMulti( 1269 RuntimeHook *hook, ExecutionContext &exe_ctx) { 1270 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1271 1272 enum { 1273 eRsContext = 0, 1274 eRsScript, 1275 eRsSlot, 1276 eRsAIns, 1277 eRsInLen, 1278 eRsAOut, 1279 eRsUsr, 1280 eRsUsrLen, 1281 eRsSc, 1282 }; 1283 1284 std::array<ArgItem, 9> args{{ 1285 ArgItem{ArgItem::ePointer, 0}, // const Context *rsc 1286 ArgItem{ArgItem::ePointer, 0}, // Script *s 1287 ArgItem{ArgItem::eInt32, 0}, // uint32_t slot 1288 ArgItem{ArgItem::ePointer, 0}, // const Allocation **aIns 1289 ArgItem{ArgItem::eInt32, 0}, // size_t inLen 1290 ArgItem{ArgItem::ePointer, 0}, // Allocation *aout 1291 ArgItem{ArgItem::ePointer, 0}, // const void *usr 1292 ArgItem{ArgItem::eInt32, 0}, // size_t usrLen 1293 ArgItem{ArgItem::ePointer, 0}, // const RsScriptCall *sc 1294 }}; 1295 1296 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1297 if (!success) { 1298 LLDB_LOGF(log, "%s - Error while reading the function parameters", 1299 __FUNCTION__); 1300 return; 1301 } 1302 1303 const uint32_t target_ptr_size = m_process->GetAddressByteSize(); 1304 Status err; 1305 std::vector<uint64_t> allocs; 1306 1307 // traverse allocation list 1308 for (uint64_t i = 0; i < uint64_t(args[eRsInLen]); ++i) { 1309 // calculate offest to allocation pointer 1310 const addr_t addr = addr_t(args[eRsAIns]) + i * target_ptr_size; 1311 1312 // Note: due to little endian layout, reading 32bits or 64bits into res 1313 // will give the correct results. 1314 uint64_t result = 0; 1315 size_t read = m_process->ReadMemory(addr, &result, target_ptr_size, err); 1316 if (read != target_ptr_size || !err.Success()) { 1317 LLDB_LOGF(log, 1318 "%s - Error while reading allocation list argument %" PRIu64, 1319 __FUNCTION__, i); 1320 } else { 1321 allocs.push_back(result); 1322 } 1323 } 1324 1325 // if there is an output allocation track it 1326 if (uint64_t alloc_out = uint64_t(args[eRsAOut])) { 1327 allocs.push_back(alloc_out); 1328 } 1329 1330 // for all allocations we have found 1331 for (const uint64_t alloc_addr : allocs) { 1332 AllocationDetails *alloc = LookUpAllocation(alloc_addr); 1333 if (!alloc) 1334 alloc = CreateAllocation(alloc_addr); 1335 1336 if (alloc) { 1337 // save the allocation address 1338 if (alloc->address.isValid()) { 1339 // check the allocation address we already have matches 1340 assert(*alloc->address.get() == alloc_addr); 1341 } else { 1342 alloc->address = alloc_addr; 1343 } 1344 1345 // save the context 1346 if (log) { 1347 if (alloc->context.isValid() && 1348 *alloc->context.get() != addr_t(args[eRsContext])) 1349 LLDB_LOGF(log, "%s - Allocation used by multiple contexts", 1350 __FUNCTION__); 1351 } 1352 alloc->context = addr_t(args[eRsContext]); 1353 } 1354 } 1355 1356 // make sure we track this script object 1357 if (lldb_private::RenderScriptRuntime::ScriptDetails *script = 1358 LookUpScript(addr_t(args[eRsScript]), true)) { 1359 if (log) { 1360 if (script->context.isValid() && 1361 *script->context.get() != addr_t(args[eRsContext])) 1362 LLDB_LOGF(log, "%s - Script used by multiple contexts", __FUNCTION__); 1363 } 1364 script->context = addr_t(args[eRsContext]); 1365 } 1366 } 1367 1368 void RenderScriptRuntime::CaptureSetGlobalVar(RuntimeHook *hook, 1369 ExecutionContext &context) { 1370 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1371 1372 enum { 1373 eRsContext, 1374 eRsScript, 1375 eRsId, 1376 eRsData, 1377 eRsLength, 1378 }; 1379 1380 std::array<ArgItem, 5> args{{ 1381 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1382 ArgItem{ArgItem::ePointer, 0}, // eRsScript 1383 ArgItem{ArgItem::eInt32, 0}, // eRsId 1384 ArgItem{ArgItem::ePointer, 0}, // eRsData 1385 ArgItem{ArgItem::eInt32, 0}, // eRsLength 1386 }}; 1387 1388 bool success = GetArgs(context, &args[0], args.size()); 1389 if (!success) { 1390 LLDB_LOGF(log, "%s - error reading the function parameters.", __FUNCTION__); 1391 return; 1392 } 1393 1394 if (log) { 1395 LLDB_LOGF(log, 1396 "%s - 0x%" PRIx64 ",0x%" PRIx64 " slot %" PRIu64 " = 0x%" PRIx64 1397 ":%" PRIu64 "bytes.", 1398 __FUNCTION__, uint64_t(args[eRsContext]), 1399 uint64_t(args[eRsScript]), uint64_t(args[eRsId]), 1400 uint64_t(args[eRsData]), uint64_t(args[eRsLength])); 1401 1402 addr_t script_addr = addr_t(args[eRsScript]); 1403 if (m_scriptMappings.find(script_addr) != m_scriptMappings.end()) { 1404 auto rsm = m_scriptMappings[script_addr]; 1405 if (uint64_t(args[eRsId]) < rsm->m_globals.size()) { 1406 auto rsg = rsm->m_globals[uint64_t(args[eRsId])]; 1407 LLDB_LOGF(log, "%s - Setting of '%s' within '%s' inferred", 1408 __FUNCTION__, rsg.m_name.AsCString(), 1409 rsm->m_module->GetFileSpec().GetFilename().AsCString()); 1410 } 1411 } 1412 } 1413 } 1414 1415 void RenderScriptRuntime::CaptureAllocationInit(RuntimeHook *hook, 1416 ExecutionContext &exe_ctx) { 1417 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1418 1419 enum { eRsContext, eRsAlloc, eRsForceZero }; 1420 1421 std::array<ArgItem, 3> args{{ 1422 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1423 ArgItem{ArgItem::ePointer, 0}, // eRsAlloc 1424 ArgItem{ArgItem::eBool, 0}, // eRsForceZero 1425 }}; 1426 1427 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1428 if (!success) { 1429 LLDB_LOGF(log, "%s - error while reading the function parameters", 1430 __FUNCTION__); 1431 return; 1432 } 1433 1434 LLDB_LOGF(log, "%s - 0x%" PRIx64 ",0x%" PRIx64 ",0x%" PRIx64 " .", 1435 __FUNCTION__, uint64_t(args[eRsContext]), uint64_t(args[eRsAlloc]), 1436 uint64_t(args[eRsForceZero])); 1437 1438 AllocationDetails *alloc = CreateAllocation(uint64_t(args[eRsAlloc])); 1439 if (alloc) 1440 alloc->context = uint64_t(args[eRsContext]); 1441 } 1442 1443 void RenderScriptRuntime::CaptureAllocationDestroy(RuntimeHook *hook, 1444 ExecutionContext &exe_ctx) { 1445 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1446 1447 enum { 1448 eRsContext, 1449 eRsAlloc, 1450 }; 1451 1452 std::array<ArgItem, 2> args{{ 1453 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1454 ArgItem{ArgItem::ePointer, 0}, // eRsAlloc 1455 }}; 1456 1457 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1458 if (!success) { 1459 LLDB_LOGF(log, "%s - error while reading the function parameters.", 1460 __FUNCTION__); 1461 return; 1462 } 1463 1464 LLDB_LOGF(log, "%s - 0x%" PRIx64 ", 0x%" PRIx64 ".", __FUNCTION__, 1465 uint64_t(args[eRsContext]), uint64_t(args[eRsAlloc])); 1466 1467 for (auto iter = m_allocations.begin(); iter != m_allocations.end(); ++iter) { 1468 auto &allocation_up = *iter; // get the unique pointer 1469 if (allocation_up->address.isValid() && 1470 *allocation_up->address.get() == addr_t(args[eRsAlloc])) { 1471 m_allocations.erase(iter); 1472 LLDB_LOGF(log, "%s - deleted allocation entry.", __FUNCTION__); 1473 return; 1474 } 1475 } 1476 1477 LLDB_LOGF(log, "%s - couldn't find destroyed allocation.", __FUNCTION__); 1478 } 1479 1480 void RenderScriptRuntime::CaptureScriptInit(RuntimeHook *hook, 1481 ExecutionContext &exe_ctx) { 1482 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1483 1484 Status err; 1485 Process *process = exe_ctx.GetProcessPtr(); 1486 1487 enum { eRsContext, eRsScript, eRsResNamePtr, eRsCachedDirPtr }; 1488 1489 std::array<ArgItem, 4> args{ 1490 {ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}, 1491 ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}}}; 1492 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1493 if (!success) { 1494 LLDB_LOGF(log, "%s - error while reading the function parameters.", 1495 __FUNCTION__); 1496 return; 1497 } 1498 1499 std::string res_name; 1500 process->ReadCStringFromMemory(addr_t(args[eRsResNamePtr]), res_name, err); 1501 if (err.Fail()) { 1502 LLDB_LOGF(log, "%s - error reading res_name: %s.", __FUNCTION__, 1503 err.AsCString()); 1504 } 1505 1506 std::string cache_dir; 1507 process->ReadCStringFromMemory(addr_t(args[eRsCachedDirPtr]), cache_dir, err); 1508 if (err.Fail()) { 1509 LLDB_LOGF(log, "%s - error reading cache_dir: %s.", __FUNCTION__, 1510 err.AsCString()); 1511 } 1512 1513 LLDB_LOGF(log, "%s - 0x%" PRIx64 ",0x%" PRIx64 " => '%s' at '%s' .", 1514 __FUNCTION__, uint64_t(args[eRsContext]), uint64_t(args[eRsScript]), 1515 res_name.c_str(), cache_dir.c_str()); 1516 1517 if (res_name.size() > 0) { 1518 StreamString strm; 1519 strm.Printf("librs.%s.so", res_name.c_str()); 1520 1521 ScriptDetails *script = LookUpScript(addr_t(args[eRsScript]), true); 1522 if (script) { 1523 script->type = ScriptDetails::eScriptC; 1524 script->cache_dir = cache_dir; 1525 script->res_name = res_name; 1526 script->shared_lib = strm.GetString(); 1527 script->context = addr_t(args[eRsContext]); 1528 } 1529 1530 LLDB_LOGF(log, 1531 "%s - '%s' tagged with context 0x%" PRIx64 1532 " and script 0x%" PRIx64 ".", 1533 __FUNCTION__, strm.GetData(), uint64_t(args[eRsContext]), 1534 uint64_t(args[eRsScript])); 1535 } else if (log) { 1536 LLDB_LOGF(log, "%s - resource name invalid, Script not tagged.", 1537 __FUNCTION__); 1538 } 1539 } 1540 1541 void RenderScriptRuntime::LoadRuntimeHooks(lldb::ModuleSP module, 1542 ModuleKind kind) { 1543 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1544 1545 if (!module) { 1546 return; 1547 } 1548 1549 Target &target = GetProcess()->GetTarget(); 1550 const llvm::Triple::ArchType machine = target.GetArchitecture().GetMachine(); 1551 1552 if (machine != llvm::Triple::ArchType::x86 && 1553 machine != llvm::Triple::ArchType::arm && 1554 machine != llvm::Triple::ArchType::aarch64 && 1555 machine != llvm::Triple::ArchType::mipsel && 1556 machine != llvm::Triple::ArchType::mips64el && 1557 machine != llvm::Triple::ArchType::x86_64) { 1558 LLDB_LOGF(log, "%s - unable to hook runtime functions.", __FUNCTION__); 1559 return; 1560 } 1561 1562 const uint32_t target_ptr_size = 1563 target.GetArchitecture().GetAddressByteSize(); 1564 1565 std::array<bool, s_runtimeHookCount> hook_placed; 1566 hook_placed.fill(false); 1567 1568 for (size_t idx = 0; idx < s_runtimeHookCount; idx++) { 1569 const HookDefn *hook_defn = &s_runtimeHookDefns[idx]; 1570 if (hook_defn->kind != kind) { 1571 continue; 1572 } 1573 1574 const char *symbol_name = (target_ptr_size == 4) 1575 ? hook_defn->symbol_name_m32 1576 : hook_defn->symbol_name_m64; 1577 1578 const Symbol *sym = module->FindFirstSymbolWithNameAndType( 1579 ConstString(symbol_name), eSymbolTypeCode); 1580 if (!sym) { 1581 if (log) { 1582 LLDB_LOGF(log, "%s - symbol '%s' related to the function %s not found", 1583 __FUNCTION__, symbol_name, hook_defn->name); 1584 } 1585 continue; 1586 } 1587 1588 addr_t addr = sym->GetLoadAddress(&target); 1589 if (addr == LLDB_INVALID_ADDRESS) { 1590 LLDB_LOGF(log, 1591 "%s - unable to resolve the address of hook function '%s' " 1592 "with symbol '%s'.", 1593 __FUNCTION__, hook_defn->name, symbol_name); 1594 continue; 1595 } else { 1596 LLDB_LOGF(log, "%s - function %s, address resolved at 0x%" PRIx64, 1597 __FUNCTION__, hook_defn->name, addr); 1598 } 1599 1600 RuntimeHookSP hook(new RuntimeHook()); 1601 hook->address = addr; 1602 hook->defn = hook_defn; 1603 hook->bp_sp = target.CreateBreakpoint(addr, true, false); 1604 hook->bp_sp->SetCallback(HookCallback, hook.get(), true); 1605 m_runtimeHooks[addr] = hook; 1606 if (log) { 1607 LLDB_LOGF(log, 1608 "%s - successfully hooked '%s' in '%s' version %" PRIu64 1609 " at 0x%" PRIx64 ".", 1610 __FUNCTION__, hook_defn->name, 1611 module->GetFileSpec().GetFilename().AsCString(), 1612 (uint64_t)hook_defn->version, (uint64_t)addr); 1613 } 1614 hook_placed[idx] = true; 1615 } 1616 1617 // log any unhooked function 1618 if (log) { 1619 for (size_t i = 0; i < hook_placed.size(); ++i) { 1620 if (hook_placed[i]) 1621 continue; 1622 const HookDefn &hook_defn = s_runtimeHookDefns[i]; 1623 if (hook_defn.kind != kind) 1624 continue; 1625 LLDB_LOGF(log, "%s - function %s was not hooked", __FUNCTION__, 1626 hook_defn.name); 1627 } 1628 } 1629 } 1630 1631 void RenderScriptRuntime::FixupScriptDetails(RSModuleDescriptorSP rsmodule_sp) { 1632 if (!rsmodule_sp) 1633 return; 1634 1635 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1636 1637 const ModuleSP module = rsmodule_sp->m_module; 1638 const FileSpec &file = module->GetPlatformFileSpec(); 1639 1640 // Iterate over all of the scripts that we currently know of. Note: We cant 1641 // push or pop to m_scripts here or it may invalidate rs_script. 1642 for (const auto &rs_script : m_scripts) { 1643 // Extract the expected .so file path for this script. 1644 std::string shared_lib; 1645 if (!rs_script->shared_lib.get(shared_lib)) 1646 continue; 1647 1648 // Only proceed if the module that has loaded corresponds to this script. 1649 if (file.GetFilename() != ConstString(shared_lib.c_str())) 1650 continue; 1651 1652 // Obtain the script address which we use as a key. 1653 lldb::addr_t script; 1654 if (!rs_script->script.get(script)) 1655 continue; 1656 1657 // If we have a script mapping for the current script. 1658 if (m_scriptMappings.find(script) != m_scriptMappings.end()) { 1659 // if the module we have stored is different to the one we just received. 1660 if (m_scriptMappings[script] != rsmodule_sp) { 1661 LLDB_LOGF( 1662 log, 1663 "%s - script %" PRIx64 " wants reassigned to new rsmodule '%s'.", 1664 __FUNCTION__, (uint64_t)script, 1665 rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString()); 1666 } 1667 } 1668 // We don't have a script mapping for the current script. 1669 else { 1670 // Obtain the script resource name. 1671 std::string res_name; 1672 if (rs_script->res_name.get(res_name)) 1673 // Set the modules resource name. 1674 rsmodule_sp->m_resname = res_name; 1675 // Add Script/Module pair to map. 1676 m_scriptMappings[script] = rsmodule_sp; 1677 LLDB_LOGF(log, "%s - script %" PRIx64 " associated with rsmodule '%s'.", 1678 __FUNCTION__, (uint64_t)script, 1679 rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString()); 1680 } 1681 } 1682 } 1683 1684 // Uses the Target API to evaluate the expression passed as a parameter to the 1685 // function The result of that expression is returned an unsigned 64 bit int, 1686 // via the result* parameter. Function returns true on success, and false on 1687 // failure 1688 bool RenderScriptRuntime::EvalRSExpression(const char *expr, 1689 StackFrame *frame_ptr, 1690 uint64_t *result) { 1691 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1692 LLDB_LOGF(log, "%s(%s)", __FUNCTION__, expr); 1693 1694 ValueObjectSP expr_result; 1695 EvaluateExpressionOptions options; 1696 options.SetLanguage(lldb::eLanguageTypeC_plus_plus); 1697 // Perform the actual expression evaluation 1698 auto &target = GetProcess()->GetTarget(); 1699 target.EvaluateExpression(expr, frame_ptr, expr_result, options); 1700 1701 if (!expr_result) { 1702 LLDB_LOGF(log, "%s: couldn't evaluate expression.", __FUNCTION__); 1703 return false; 1704 } 1705 1706 // The result of the expression is invalid 1707 if (!expr_result->GetError().Success()) { 1708 Status err = expr_result->GetError(); 1709 // Expression returned is void, so this is actually a success 1710 if (err.GetError() == UserExpression::kNoResult) { 1711 LLDB_LOGF(log, "%s - expression returned void.", __FUNCTION__); 1712 1713 result = nullptr; 1714 return true; 1715 } 1716 1717 LLDB_LOGF(log, "%s - error evaluating expression result: %s", __FUNCTION__, 1718 err.AsCString()); 1719 return false; 1720 } 1721 1722 bool success = false; 1723 // We only read the result as an uint32_t. 1724 *result = expr_result->GetValueAsUnsigned(0, &success); 1725 1726 if (!success) { 1727 LLDB_LOGF(log, "%s - couldn't convert expression result to uint32_t", 1728 __FUNCTION__); 1729 return false; 1730 } 1731 1732 return true; 1733 } 1734 1735 namespace { 1736 // Used to index expression format strings 1737 enum ExpressionStrings { 1738 eExprGetOffsetPtr = 0, 1739 eExprAllocGetType, 1740 eExprTypeDimX, 1741 eExprTypeDimY, 1742 eExprTypeDimZ, 1743 eExprTypeElemPtr, 1744 eExprElementType, 1745 eExprElementKind, 1746 eExprElementVec, 1747 eExprElementFieldCount, 1748 eExprSubelementsId, 1749 eExprSubelementsName, 1750 eExprSubelementsArrSize, 1751 1752 _eExprLast // keep at the end, implicit size of the array runtime_expressions 1753 }; 1754 1755 // max length of an expanded expression 1756 const int jit_max_expr_size = 512; 1757 1758 // Retrieve the string to JIT for the given expression 1759 #define JIT_TEMPLATE_CONTEXT "void* ctxt = (void*)rsDebugGetContextWrapper(0x%" PRIx64 "); " 1760 const char *JITTemplate(ExpressionStrings e) { 1761 // Format strings containing the expressions we may need to evaluate. 1762 static std::array<const char *, _eExprLast> runtime_expressions = { 1763 {// Mangled GetOffsetPointer(Allocation*, xoff, yoff, zoff, lod, cubemap) 1764 "(int*)_" 1765 "Z12GetOffsetPtrPKN7android12renderscript10AllocationEjjjj23RsAllocation" 1766 "CubemapFace" 1767 "(0x%" PRIx64 ", %" PRIu32 ", %" PRIu32 ", %" PRIu32 ", 0, 0)", // eExprGetOffsetPtr 1768 1769 // Type* rsaAllocationGetType(Context*, Allocation*) 1770 JIT_TEMPLATE_CONTEXT "(void*)rsaAllocationGetType(ctxt, 0x%" PRIx64 ")", // eExprAllocGetType 1771 1772 // rsaTypeGetNativeData(Context*, Type*, void* typeData, size) Pack the 1773 // data in the following way mHal.state.dimX; mHal.state.dimY; 1774 // mHal.state.dimZ; mHal.state.lodCount; mHal.state.faces; mElement; 1775 // into typeData Need to specify 32 or 64 bit for uint_t since this 1776 // differs between devices 1777 JIT_TEMPLATE_CONTEXT 1778 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt" 1779 ", 0x%" PRIx64 ", data, 6); data[0]", // eExprTypeDimX 1780 JIT_TEMPLATE_CONTEXT 1781 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt" 1782 ", 0x%" PRIx64 ", data, 6); data[1]", // eExprTypeDimY 1783 JIT_TEMPLATE_CONTEXT 1784 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt" 1785 ", 0x%" PRIx64 ", data, 6); data[2]", // eExprTypeDimZ 1786 JIT_TEMPLATE_CONTEXT 1787 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt" 1788 ", 0x%" PRIx64 ", data, 6); data[5]", // eExprTypeElemPtr 1789 1790 // rsaElementGetNativeData(Context*, Element*, uint32_t* elemData,size) 1791 // Pack mType; mKind; mNormalized; mVectorSize; NumSubElements into 1792 // elemData 1793 JIT_TEMPLATE_CONTEXT 1794 "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt" 1795 ", 0x%" PRIx64 ", data, 5); data[0]", // eExprElementType 1796 JIT_TEMPLATE_CONTEXT 1797 "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt" 1798 ", 0x%" PRIx64 ", data, 5); data[1]", // eExprElementKind 1799 JIT_TEMPLATE_CONTEXT 1800 "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt" 1801 ", 0x%" PRIx64 ", data, 5); data[3]", // eExprElementVec 1802 JIT_TEMPLATE_CONTEXT 1803 "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt" 1804 ", 0x%" PRIx64 ", data, 5); data[4]", // eExprElementFieldCount 1805 1806 // rsaElementGetSubElements(RsContext con, RsElement elem, uintptr_t 1807 // *ids, const char **names, size_t *arraySizes, uint32_t dataSize) 1808 // Needed for Allocations of structs to gather details about 1809 // fields/Subelements Element* of field 1810 JIT_TEMPLATE_CONTEXT "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 1811 "]; size_t arr_size[%" PRIu32 "];" 1812 "(void*)rsaElementGetSubElements(ctxt, 0x%" PRIx64 1813 ", ids, names, arr_size, %" PRIu32 "); ids[%" PRIu32 "]", // eExprSubelementsId 1814 1815 // Name of field 1816 JIT_TEMPLATE_CONTEXT "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 1817 "]; size_t arr_size[%" PRIu32 "];" 1818 "(void*)rsaElementGetSubElements(ctxt, 0x%" PRIx64 1819 ", ids, names, arr_size, %" PRIu32 "); names[%" PRIu32 "]", // eExprSubelementsName 1820 1821 // Array size of field 1822 JIT_TEMPLATE_CONTEXT "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 1823 "]; size_t arr_size[%" PRIu32 "];" 1824 "(void*)rsaElementGetSubElements(ctxt, 0x%" PRIx64 1825 ", ids, names, arr_size, %" PRIu32 "); arr_size[%" PRIu32 "]"}}; // eExprSubelementsArrSize 1826 1827 return runtime_expressions[e]; 1828 } 1829 } // end of the anonymous namespace 1830 1831 // JITs the RS runtime for the internal data pointer of an allocation. Is 1832 // passed x,y,z coordinates for the pointer to a specific element. Then sets 1833 // the data_ptr member in Allocation with the result. Returns true on success, 1834 // false otherwise 1835 bool RenderScriptRuntime::JITDataPointer(AllocationDetails *alloc, 1836 StackFrame *frame_ptr, uint32_t x, 1837 uint32_t y, uint32_t z) { 1838 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1839 1840 if (!alloc->address.isValid()) { 1841 LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__); 1842 return false; 1843 } 1844 1845 const char *fmt_str = JITTemplate(eExprGetOffsetPtr); 1846 char expr_buf[jit_max_expr_size]; 1847 1848 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 1849 *alloc->address.get(), x, y, z); 1850 if (written < 0) { 1851 LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__); 1852 return false; 1853 } else if (written >= jit_max_expr_size) { 1854 LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__); 1855 return false; 1856 } 1857 1858 uint64_t result = 0; 1859 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 1860 return false; 1861 1862 addr_t data_ptr = static_cast<lldb::addr_t>(result); 1863 alloc->data_ptr = data_ptr; 1864 1865 return true; 1866 } 1867 1868 // JITs the RS runtime for the internal pointer to the RS Type of an allocation 1869 // Then sets the type_ptr member in Allocation with the result. Returns true on 1870 // success, false otherwise 1871 bool RenderScriptRuntime::JITTypePointer(AllocationDetails *alloc, 1872 StackFrame *frame_ptr) { 1873 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1874 1875 if (!alloc->address.isValid() || !alloc->context.isValid()) { 1876 LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__); 1877 return false; 1878 } 1879 1880 const char *fmt_str = JITTemplate(eExprAllocGetType); 1881 char expr_buf[jit_max_expr_size]; 1882 1883 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 1884 *alloc->context.get(), *alloc->address.get()); 1885 if (written < 0) { 1886 LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__); 1887 return false; 1888 } else if (written >= jit_max_expr_size) { 1889 LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__); 1890 return false; 1891 } 1892 1893 uint64_t result = 0; 1894 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 1895 return false; 1896 1897 addr_t type_ptr = static_cast<lldb::addr_t>(result); 1898 alloc->type_ptr = type_ptr; 1899 1900 return true; 1901 } 1902 1903 // JITs the RS runtime for information about the dimensions and type of an 1904 // allocation Then sets dimension and element_ptr members in Allocation with 1905 // the result. Returns true on success, false otherwise 1906 bool RenderScriptRuntime::JITTypePacked(AllocationDetails *alloc, 1907 StackFrame *frame_ptr) { 1908 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1909 1910 if (!alloc->type_ptr.isValid() || !alloc->context.isValid()) { 1911 LLDB_LOGF(log, "%s - Failed to find allocation details.", __FUNCTION__); 1912 return false; 1913 } 1914 1915 // Expression is different depending on if device is 32 or 64 bit 1916 uint32_t target_ptr_size = 1917 GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 1918 const uint32_t bits = target_ptr_size == 4 ? 32 : 64; 1919 1920 // We want 4 elements from packed data 1921 const uint32_t num_exprs = 4; 1922 static_assert(num_exprs == (eExprTypeElemPtr - eExprTypeDimX + 1), 1923 "Invalid number of expressions"); 1924 1925 char expr_bufs[num_exprs][jit_max_expr_size]; 1926 uint64_t results[num_exprs]; 1927 1928 for (uint32_t i = 0; i < num_exprs; ++i) { 1929 const char *fmt_str = JITTemplate(ExpressionStrings(eExprTypeDimX + i)); 1930 int written = snprintf(expr_bufs[i], jit_max_expr_size, fmt_str, 1931 *alloc->context.get(), bits, *alloc->type_ptr.get()); 1932 if (written < 0) { 1933 LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__); 1934 return false; 1935 } else if (written >= jit_max_expr_size) { 1936 LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__); 1937 return false; 1938 } 1939 1940 // Perform expression evaluation 1941 if (!EvalRSExpression(expr_bufs[i], frame_ptr, &results[i])) 1942 return false; 1943 } 1944 1945 // Assign results to allocation members 1946 AllocationDetails::Dimension dims; 1947 dims.dim_1 = static_cast<uint32_t>(results[0]); 1948 dims.dim_2 = static_cast<uint32_t>(results[1]); 1949 dims.dim_3 = static_cast<uint32_t>(results[2]); 1950 alloc->dimension = dims; 1951 1952 addr_t element_ptr = static_cast<lldb::addr_t>(results[3]); 1953 alloc->element.element_ptr = element_ptr; 1954 1955 LLDB_LOGF(log, 1956 "%s - dims (%" PRIu32 ", %" PRIu32 ", %" PRIu32 1957 ") Element*: 0x%" PRIx64 ".", 1958 __FUNCTION__, dims.dim_1, dims.dim_2, dims.dim_3, element_ptr); 1959 1960 return true; 1961 } 1962 1963 // JITs the RS runtime for information about the Element of an allocation Then 1964 // sets type, type_vec_size, field_count and type_kind members in Element with 1965 // the result. Returns true on success, false otherwise 1966 bool RenderScriptRuntime::JITElementPacked(Element &elem, 1967 const lldb::addr_t context, 1968 StackFrame *frame_ptr) { 1969 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1970 1971 if (!elem.element_ptr.isValid()) { 1972 LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__); 1973 return false; 1974 } 1975 1976 // We want 4 elements from packed data 1977 const uint32_t num_exprs = 4; 1978 static_assert(num_exprs == (eExprElementFieldCount - eExprElementType + 1), 1979 "Invalid number of expressions"); 1980 1981 char expr_bufs[num_exprs][jit_max_expr_size]; 1982 uint64_t results[num_exprs]; 1983 1984 for (uint32_t i = 0; i < num_exprs; i++) { 1985 const char *fmt_str = JITTemplate(ExpressionStrings(eExprElementType + i)); 1986 int written = snprintf(expr_bufs[i], jit_max_expr_size, fmt_str, context, 1987 *elem.element_ptr.get()); 1988 if (written < 0) { 1989 LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__); 1990 return false; 1991 } else if (written >= jit_max_expr_size) { 1992 LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__); 1993 return false; 1994 } 1995 1996 // Perform expression evaluation 1997 if (!EvalRSExpression(expr_bufs[i], frame_ptr, &results[i])) 1998 return false; 1999 } 2000 2001 // Assign results to allocation members 2002 elem.type = static_cast<RenderScriptRuntime::Element::DataType>(results[0]); 2003 elem.type_kind = 2004 static_cast<RenderScriptRuntime::Element::DataKind>(results[1]); 2005 elem.type_vec_size = static_cast<uint32_t>(results[2]); 2006 elem.field_count = static_cast<uint32_t>(results[3]); 2007 2008 LLDB_LOGF(log, 2009 "%s - data type %" PRIu32 ", pixel type %" PRIu32 2010 ", vector size %" PRIu32 ", field count %" PRIu32, 2011 __FUNCTION__, *elem.type.get(), *elem.type_kind.get(), 2012 *elem.type_vec_size.get(), *elem.field_count.get()); 2013 2014 // If this Element has subelements then JIT rsaElementGetSubElements() for 2015 // details about its fields 2016 return !(*elem.field_count.get() > 0 && 2017 !JITSubelements(elem, context, frame_ptr)); 2018 } 2019 2020 // JITs the RS runtime for information about the subelements/fields of a struct 2021 // allocation This is necessary for infering the struct type so we can pretty 2022 // print the allocation's contents. Returns true on success, false otherwise 2023 bool RenderScriptRuntime::JITSubelements(Element &elem, 2024 const lldb::addr_t context, 2025 StackFrame *frame_ptr) { 2026 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2027 2028 if (!elem.element_ptr.isValid() || !elem.field_count.isValid()) { 2029 LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__); 2030 return false; 2031 } 2032 2033 const short num_exprs = 3; 2034 static_assert(num_exprs == (eExprSubelementsArrSize - eExprSubelementsId + 1), 2035 "Invalid number of expressions"); 2036 2037 char expr_buffer[jit_max_expr_size]; 2038 uint64_t results; 2039 2040 // Iterate over struct fields. 2041 const uint32_t field_count = *elem.field_count.get(); 2042 for (uint32_t field_index = 0; field_index < field_count; ++field_index) { 2043 Element child; 2044 for (uint32_t expr_index = 0; expr_index < num_exprs; ++expr_index) { 2045 const char *fmt_str = 2046 JITTemplate(ExpressionStrings(eExprSubelementsId + expr_index)); 2047 int written = snprintf(expr_buffer, jit_max_expr_size, fmt_str, 2048 context, field_count, field_count, field_count, 2049 *elem.element_ptr.get(), field_count, field_index); 2050 if (written < 0) { 2051 LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__); 2052 return false; 2053 } else if (written >= jit_max_expr_size) { 2054 LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__); 2055 return false; 2056 } 2057 2058 // Perform expression evaluation 2059 if (!EvalRSExpression(expr_buffer, frame_ptr, &results)) 2060 return false; 2061 2062 LLDB_LOGF(log, "%s - expr result 0x%" PRIx64 ".", __FUNCTION__, results); 2063 2064 switch (expr_index) { 2065 case 0: // Element* of child 2066 child.element_ptr = static_cast<addr_t>(results); 2067 break; 2068 case 1: // Name of child 2069 { 2070 lldb::addr_t address = static_cast<addr_t>(results); 2071 Status err; 2072 std::string name; 2073 GetProcess()->ReadCStringFromMemory(address, name, err); 2074 if (!err.Fail()) 2075 child.type_name = ConstString(name); 2076 else { 2077 LLDB_LOGF(log, "%s - warning: Couldn't read field name.", 2078 __FUNCTION__); 2079 } 2080 break; 2081 } 2082 case 2: // Array size of child 2083 child.array_size = static_cast<uint32_t>(results); 2084 break; 2085 } 2086 } 2087 2088 // We need to recursively JIT each Element field of the struct since 2089 // structs can be nested inside structs. 2090 if (!JITElementPacked(child, context, frame_ptr)) 2091 return false; 2092 elem.children.push_back(child); 2093 } 2094 2095 // Try to infer the name of the struct type so we can pretty print the 2096 // allocation contents. 2097 FindStructTypeName(elem, frame_ptr); 2098 2099 return true; 2100 } 2101 2102 // JITs the RS runtime for the address of the last element in the allocation. 2103 // The `elem_size` parameter represents the size of a single element, including 2104 // padding. Which is needed as an offset from the last element pointer. Using 2105 // this offset minus the starting address we can calculate the size of the 2106 // allocation. Returns true on success, false otherwise 2107 bool RenderScriptRuntime::JITAllocationSize(AllocationDetails *alloc, 2108 StackFrame *frame_ptr) { 2109 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2110 2111 if (!alloc->address.isValid() || !alloc->dimension.isValid() || 2112 !alloc->data_ptr.isValid() || !alloc->element.datum_size.isValid()) { 2113 LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__); 2114 return false; 2115 } 2116 2117 // Find dimensions 2118 uint32_t dim_x = alloc->dimension.get()->dim_1; 2119 uint32_t dim_y = alloc->dimension.get()->dim_2; 2120 uint32_t dim_z = alloc->dimension.get()->dim_3; 2121 2122 // Our plan of jitting the last element address doesn't seem to work for 2123 // struct Allocations` Instead try to infer the size ourselves without any 2124 // inter element padding. 2125 if (alloc->element.children.size() > 0) { 2126 if (dim_x == 0) 2127 dim_x = 1; 2128 if (dim_y == 0) 2129 dim_y = 1; 2130 if (dim_z == 0) 2131 dim_z = 1; 2132 2133 alloc->size = dim_x * dim_y * dim_z * *alloc->element.datum_size.get(); 2134 2135 LLDB_LOGF(log, "%s - inferred size of struct allocation %" PRIu32 ".", 2136 __FUNCTION__, *alloc->size.get()); 2137 return true; 2138 } 2139 2140 const char *fmt_str = JITTemplate(eExprGetOffsetPtr); 2141 char expr_buf[jit_max_expr_size]; 2142 2143 // Calculate last element 2144 dim_x = dim_x == 0 ? 0 : dim_x - 1; 2145 dim_y = dim_y == 0 ? 0 : dim_y - 1; 2146 dim_z = dim_z == 0 ? 0 : dim_z - 1; 2147 2148 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 2149 *alloc->address.get(), dim_x, dim_y, dim_z); 2150 if (written < 0) { 2151 LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__); 2152 return false; 2153 } else if (written >= jit_max_expr_size) { 2154 LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__); 2155 return false; 2156 } 2157 2158 uint64_t result = 0; 2159 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 2160 return false; 2161 2162 addr_t mem_ptr = static_cast<lldb::addr_t>(result); 2163 // Find pointer to last element and add on size of an element 2164 alloc->size = static_cast<uint32_t>(mem_ptr - *alloc->data_ptr.get()) + 2165 *alloc->element.datum_size.get(); 2166 2167 return true; 2168 } 2169 2170 // JITs the RS runtime for information about the stride between rows in the 2171 // allocation. This is done to detect padding, since allocated memory is 2172 // 16-byte aligned. Returns true on success, false otherwise 2173 bool RenderScriptRuntime::JITAllocationStride(AllocationDetails *alloc, 2174 StackFrame *frame_ptr) { 2175 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2176 2177 if (!alloc->address.isValid() || !alloc->data_ptr.isValid()) { 2178 LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__); 2179 return false; 2180 } 2181 2182 const char *fmt_str = JITTemplate(eExprGetOffsetPtr); 2183 char expr_buf[jit_max_expr_size]; 2184 2185 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 2186 *alloc->address.get(), 0, 1, 0); 2187 if (written < 0) { 2188 LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__); 2189 return false; 2190 } else if (written >= jit_max_expr_size) { 2191 LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__); 2192 return false; 2193 } 2194 2195 uint64_t result = 0; 2196 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 2197 return false; 2198 2199 addr_t mem_ptr = static_cast<lldb::addr_t>(result); 2200 alloc->stride = static_cast<uint32_t>(mem_ptr - *alloc->data_ptr.get()); 2201 2202 return true; 2203 } 2204 2205 // JIT all the current runtime info regarding an allocation 2206 bool RenderScriptRuntime::RefreshAllocation(AllocationDetails *alloc, 2207 StackFrame *frame_ptr) { 2208 // GetOffsetPointer() 2209 if (!JITDataPointer(alloc, frame_ptr)) 2210 return false; 2211 2212 // rsaAllocationGetType() 2213 if (!JITTypePointer(alloc, frame_ptr)) 2214 return false; 2215 2216 // rsaTypeGetNativeData() 2217 if (!JITTypePacked(alloc, frame_ptr)) 2218 return false; 2219 2220 // rsaElementGetNativeData() 2221 if (!JITElementPacked(alloc->element, *alloc->context.get(), frame_ptr)) 2222 return false; 2223 2224 // Sets the datum_size member in Element 2225 SetElementSize(alloc->element); 2226 2227 // Use GetOffsetPointer() to infer size of the allocation 2228 return JITAllocationSize(alloc, frame_ptr); 2229 } 2230 2231 // Function attempts to set the type_name member of the paramaterised Element 2232 // object. This string should be the name of the struct type the Element 2233 // represents. We need this string for pretty printing the Element to users. 2234 void RenderScriptRuntime::FindStructTypeName(Element &elem, 2235 StackFrame *frame_ptr) { 2236 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2237 2238 if (!elem.type_name.IsEmpty()) // Name already set 2239 return; 2240 else 2241 elem.type_name = Element::GetFallbackStructName(); // Default type name if 2242 // we don't succeed 2243 2244 // Find all the global variables from the script rs modules 2245 VariableList var_list; 2246 for (auto module_sp : m_rsmodules) 2247 module_sp->m_module->FindGlobalVariables( 2248 RegularExpression(llvm::StringRef(".")), UINT32_MAX, var_list); 2249 2250 // Iterate over all the global variables looking for one with a matching type 2251 // to the Element. We make the assumption a match exists since there needs to 2252 // be a global variable to reflect the struct type back into java host code. 2253 for (uint32_t i = 0; i < var_list.GetSize(); ++i) { 2254 const VariableSP var_sp(var_list.GetVariableAtIndex(i)); 2255 if (!var_sp) 2256 continue; 2257 2258 ValueObjectSP valobj_sp = ValueObjectVariable::Create(frame_ptr, var_sp); 2259 if (!valobj_sp) 2260 continue; 2261 2262 // Find the number of variable fields. 2263 // If it has no fields, or more fields than our Element, then it can't be 2264 // the struct we're looking for. Don't check for equality since RS can add 2265 // extra struct members for padding. 2266 size_t num_children = valobj_sp->GetNumChildren(); 2267 if (num_children > elem.children.size() || num_children == 0) 2268 continue; 2269 2270 // Iterate over children looking for members with matching field names. If 2271 // all the field names match, this is likely the struct we want. 2272 // TODO: This could be made more robust by also checking children data 2273 // sizes, or array size 2274 bool found = true; 2275 for (size_t i = 0; i < num_children; ++i) { 2276 ValueObjectSP child = valobj_sp->GetChildAtIndex(i, true); 2277 if (!child || (child->GetName() != elem.children[i].type_name)) { 2278 found = false; 2279 break; 2280 } 2281 } 2282 2283 // RS can add extra struct members for padding in the format 2284 // '#rs_padding_[0-9]+' 2285 if (found && num_children < elem.children.size()) { 2286 const uint32_t size_diff = elem.children.size() - num_children; 2287 LLDB_LOGF(log, "%s - %" PRIu32 " padding struct entries", __FUNCTION__, 2288 size_diff); 2289 2290 for (uint32_t i = 0; i < size_diff; ++i) { 2291 ConstString name = elem.children[num_children + i].type_name; 2292 if (strcmp(name.AsCString(), "#rs_padding") < 0) 2293 found = false; 2294 } 2295 } 2296 2297 // We've found a global variable with matching type 2298 if (found) { 2299 // Dereference since our Element type isn't a pointer. 2300 if (valobj_sp->IsPointerType()) { 2301 Status err; 2302 ValueObjectSP deref_valobj = valobj_sp->Dereference(err); 2303 if (!err.Fail()) 2304 valobj_sp = deref_valobj; 2305 } 2306 2307 // Save name of variable in Element. 2308 elem.type_name = valobj_sp->GetTypeName(); 2309 LLDB_LOGF(log, "%s - element name set to %s", __FUNCTION__, 2310 elem.type_name.AsCString()); 2311 2312 return; 2313 } 2314 } 2315 } 2316 2317 // Function sets the datum_size member of Element. Representing the size of a 2318 // single instance including padding. Assumes the relevant allocation 2319 // information has already been jitted. 2320 void RenderScriptRuntime::SetElementSize(Element &elem) { 2321 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2322 const Element::DataType type = *elem.type.get(); 2323 assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && 2324 "Invalid allocation type"); 2325 2326 const uint32_t vec_size = *elem.type_vec_size.get(); 2327 uint32_t data_size = 0; 2328 uint32_t padding = 0; 2329 2330 // Element is of a struct type, calculate size recursively. 2331 if ((type == Element::RS_TYPE_NONE) && (elem.children.size() > 0)) { 2332 for (Element &child : elem.children) { 2333 SetElementSize(child); 2334 const uint32_t array_size = 2335 child.array_size.isValid() ? *child.array_size.get() : 1; 2336 data_size += *child.datum_size.get() * array_size; 2337 } 2338 } 2339 // These have been packed already 2340 else if (type == Element::RS_TYPE_UNSIGNED_5_6_5 || 2341 type == Element::RS_TYPE_UNSIGNED_5_5_5_1 || 2342 type == Element::RS_TYPE_UNSIGNED_4_4_4_4) { 2343 data_size = AllocationDetails::RSTypeToFormat[type][eElementSize]; 2344 } else if (type < Element::RS_TYPE_ELEMENT) { 2345 data_size = 2346 vec_size * AllocationDetails::RSTypeToFormat[type][eElementSize]; 2347 if (vec_size == 3) 2348 padding = AllocationDetails::RSTypeToFormat[type][eElementSize]; 2349 } else 2350 data_size = 2351 GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 2352 2353 elem.padding = padding; 2354 elem.datum_size = data_size + padding; 2355 LLDB_LOGF(log, "%s - element size set to %" PRIu32, __FUNCTION__, 2356 data_size + padding); 2357 } 2358 2359 // Given an allocation, this function copies the allocation contents from 2360 // device into a buffer on the heap. Returning a shared pointer to the buffer 2361 // containing the data. 2362 std::shared_ptr<uint8_t> 2363 RenderScriptRuntime::GetAllocationData(AllocationDetails *alloc, 2364 StackFrame *frame_ptr) { 2365 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2366 2367 // JIT all the allocation details 2368 if (alloc->ShouldRefresh()) { 2369 LLDB_LOGF(log, "%s - allocation details not calculated yet, jitting info", 2370 __FUNCTION__); 2371 2372 if (!RefreshAllocation(alloc, frame_ptr)) { 2373 LLDB_LOGF(log, "%s - couldn't JIT allocation details", __FUNCTION__); 2374 return nullptr; 2375 } 2376 } 2377 2378 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && 2379 alloc->element.type_vec_size.isValid() && alloc->size.isValid() && 2380 "Allocation information not available"); 2381 2382 // Allocate a buffer to copy data into 2383 const uint32_t size = *alloc->size.get(); 2384 std::shared_ptr<uint8_t> buffer(new uint8_t[size]); 2385 if (!buffer) { 2386 LLDB_LOGF(log, "%s - couldn't allocate a %" PRIu32 " byte buffer", 2387 __FUNCTION__, size); 2388 return nullptr; 2389 } 2390 2391 // Read the inferior memory 2392 Status err; 2393 lldb::addr_t data_ptr = *alloc->data_ptr.get(); 2394 GetProcess()->ReadMemory(data_ptr, buffer.get(), size, err); 2395 if (err.Fail()) { 2396 LLDB_LOGF(log, 2397 "%s - '%s' Couldn't read %" PRIu32 2398 " bytes of allocation data from 0x%" PRIx64, 2399 __FUNCTION__, err.AsCString(), size, data_ptr); 2400 return nullptr; 2401 } 2402 2403 return buffer; 2404 } 2405 2406 // Function copies data from a binary file into an allocation. There is a 2407 // header at the start of the file, FileHeader, before the data content itself. 2408 // Information from this header is used to display warnings to the user about 2409 // incompatibilities 2410 bool RenderScriptRuntime::LoadAllocation(Stream &strm, const uint32_t alloc_id, 2411 const char *path, 2412 StackFrame *frame_ptr) { 2413 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2414 2415 // Find allocation with the given id 2416 AllocationDetails *alloc = FindAllocByID(strm, alloc_id); 2417 if (!alloc) 2418 return false; 2419 2420 LLDB_LOGF(log, "%s - found allocation 0x%" PRIx64, __FUNCTION__, 2421 *alloc->address.get()); 2422 2423 // JIT all the allocation details 2424 if (alloc->ShouldRefresh()) { 2425 LLDB_LOGF(log, "%s - allocation details not calculated yet, jitting info.", 2426 __FUNCTION__); 2427 2428 if (!RefreshAllocation(alloc, frame_ptr)) { 2429 LLDB_LOGF(log, "%s - couldn't JIT allocation details", __FUNCTION__); 2430 return false; 2431 } 2432 } 2433 2434 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && 2435 alloc->element.type_vec_size.isValid() && alloc->size.isValid() && 2436 alloc->element.datum_size.isValid() && 2437 "Allocation information not available"); 2438 2439 // Check we can read from file 2440 FileSpec file(path); 2441 FileSystem::Instance().Resolve(file); 2442 if (!FileSystem::Instance().Exists(file)) { 2443 strm.Printf("Error: File %s does not exist", path); 2444 strm.EOL(); 2445 return false; 2446 } 2447 2448 if (!FileSystem::Instance().Readable(file)) { 2449 strm.Printf("Error: File %s does not have readable permissions", path); 2450 strm.EOL(); 2451 return false; 2452 } 2453 2454 // Read file into data buffer 2455 auto data_sp = FileSystem::Instance().CreateDataBuffer(file.GetPath()); 2456 2457 // Cast start of buffer to FileHeader and use pointer to read metadata 2458 void *file_buf = data_sp->GetBytes(); 2459 if (file_buf == nullptr || 2460 data_sp->GetByteSize() < (sizeof(AllocationDetails::FileHeader) + 2461 sizeof(AllocationDetails::ElementHeader))) { 2462 strm.Printf("Error: File %s does not contain enough data for header", path); 2463 strm.EOL(); 2464 return false; 2465 } 2466 const AllocationDetails::FileHeader *file_header = 2467 static_cast<AllocationDetails::FileHeader *>(file_buf); 2468 2469 // Check file starts with ascii characters "RSAD" 2470 if (memcmp(file_header->ident, "RSAD", 4)) { 2471 strm.Printf("Error: File doesn't contain identifier for an RS allocation " 2472 "dump. Are you sure this is the correct file?"); 2473 strm.EOL(); 2474 return false; 2475 } 2476 2477 // Look at the type of the root element in the header 2478 AllocationDetails::ElementHeader root_el_hdr; 2479 memcpy(&root_el_hdr, static_cast<uint8_t *>(file_buf) + 2480 sizeof(AllocationDetails::FileHeader), 2481 sizeof(AllocationDetails::ElementHeader)); 2482 2483 LLDB_LOGF(log, "%s - header type %" PRIu32 ", element size %" PRIu32, 2484 __FUNCTION__, root_el_hdr.type, root_el_hdr.element_size); 2485 2486 // Check if the target allocation and file both have the same number of bytes 2487 // for an Element 2488 if (*alloc->element.datum_size.get() != root_el_hdr.element_size) { 2489 strm.Printf("Warning: Mismatched Element sizes - file %" PRIu32 2490 " bytes, allocation %" PRIu32 " bytes", 2491 root_el_hdr.element_size, *alloc->element.datum_size.get()); 2492 strm.EOL(); 2493 } 2494 2495 // Check if the target allocation and file both have the same type 2496 const uint32_t alloc_type = static_cast<uint32_t>(*alloc->element.type.get()); 2497 const uint32_t file_type = root_el_hdr.type; 2498 2499 if (file_type > Element::RS_TYPE_FONT) { 2500 strm.Printf("Warning: File has unknown allocation type"); 2501 strm.EOL(); 2502 } else if (alloc_type != file_type) { 2503 // Enum value isn't monotonous, so doesn't always index RsDataTypeToString 2504 // array 2505 uint32_t target_type_name_idx = alloc_type; 2506 uint32_t head_type_name_idx = file_type; 2507 if (alloc_type >= Element::RS_TYPE_ELEMENT && 2508 alloc_type <= Element::RS_TYPE_FONT) 2509 target_type_name_idx = static_cast<Element::DataType>( 2510 (alloc_type - Element::RS_TYPE_ELEMENT) + 2511 Element::RS_TYPE_MATRIX_2X2 + 1); 2512 2513 if (file_type >= Element::RS_TYPE_ELEMENT && 2514 file_type <= Element::RS_TYPE_FONT) 2515 head_type_name_idx = static_cast<Element::DataType>( 2516 (file_type - Element::RS_TYPE_ELEMENT) + Element::RS_TYPE_MATRIX_2X2 + 2517 1); 2518 2519 const char *head_type_name = 2520 AllocationDetails::RsDataTypeToString[head_type_name_idx][0]; 2521 const char *target_type_name = 2522 AllocationDetails::RsDataTypeToString[target_type_name_idx][0]; 2523 2524 strm.Printf( 2525 "Warning: Mismatched Types - file '%s' type, allocation '%s' type", 2526 head_type_name, target_type_name); 2527 strm.EOL(); 2528 } 2529 2530 // Advance buffer past header 2531 file_buf = static_cast<uint8_t *>(file_buf) + file_header->hdr_size; 2532 2533 // Calculate size of allocation data in file 2534 size_t size = data_sp->GetByteSize() - file_header->hdr_size; 2535 2536 // Check if the target allocation and file both have the same total data 2537 // size. 2538 const uint32_t alloc_size = *alloc->size.get(); 2539 if (alloc_size != size) { 2540 strm.Printf("Warning: Mismatched allocation sizes - file 0x%" PRIx64 2541 " bytes, allocation 0x%" PRIx32 " bytes", 2542 (uint64_t)size, alloc_size); 2543 strm.EOL(); 2544 // Set length to copy to minimum 2545 size = alloc_size < size ? alloc_size : size; 2546 } 2547 2548 // Copy file data from our buffer into the target allocation. 2549 lldb::addr_t alloc_data = *alloc->data_ptr.get(); 2550 Status err; 2551 size_t written = GetProcess()->WriteMemory(alloc_data, file_buf, size, err); 2552 if (!err.Success() || written != size) { 2553 strm.Printf("Error: Couldn't write data to allocation %s", err.AsCString()); 2554 strm.EOL(); 2555 return false; 2556 } 2557 2558 strm.Printf("Contents of file '%s' read into allocation %" PRIu32, path, 2559 alloc->id); 2560 strm.EOL(); 2561 2562 return true; 2563 } 2564 2565 // Function takes as parameters a byte buffer, which will eventually be written 2566 // to file as the element header, an offset into that buffer, and an Element 2567 // that will be saved into the buffer at the parametrised offset. Return value 2568 // is the new offset after writing the element into the buffer. Elements are 2569 // saved to the file as the ElementHeader struct followed by offsets to the 2570 // structs of all the element's children. 2571 size_t RenderScriptRuntime::PopulateElementHeaders( 2572 const std::shared_ptr<uint8_t> header_buffer, size_t offset, 2573 const Element &elem) { 2574 // File struct for an element header with all the relevant details copied 2575 // from elem. We assume members are valid already. 2576 AllocationDetails::ElementHeader elem_header; 2577 elem_header.type = *elem.type.get(); 2578 elem_header.kind = *elem.type_kind.get(); 2579 elem_header.element_size = *elem.datum_size.get(); 2580 elem_header.vector_size = *elem.type_vec_size.get(); 2581 elem_header.array_size = 2582 elem.array_size.isValid() ? *elem.array_size.get() : 0; 2583 const size_t elem_header_size = sizeof(AllocationDetails::ElementHeader); 2584 2585 // Copy struct into buffer and advance offset We assume that header_buffer 2586 // has been checked for nullptr before this method is called 2587 memcpy(header_buffer.get() + offset, &elem_header, elem_header_size); 2588 offset += elem_header_size; 2589 2590 // Starting offset of child ElementHeader struct 2591 size_t child_offset = 2592 offset + ((elem.children.size() + 1) * sizeof(uint32_t)); 2593 for (const RenderScriptRuntime::Element &child : elem.children) { 2594 // Recursively populate the buffer with the element header structs of 2595 // children. Then save the offsets where they were set after the parent 2596 // element header. 2597 memcpy(header_buffer.get() + offset, &child_offset, sizeof(uint32_t)); 2598 offset += sizeof(uint32_t); 2599 2600 child_offset = PopulateElementHeaders(header_buffer, child_offset, child); 2601 } 2602 2603 // Zero indicates no more children 2604 memset(header_buffer.get() + offset, 0, sizeof(uint32_t)); 2605 2606 return child_offset; 2607 } 2608 2609 // Given an Element object this function returns the total size needed in the 2610 // file header to store the element's details. Taking into account the size of 2611 // the element header struct, plus the offsets to all the element's children. 2612 // Function is recursive so that the size of all ancestors is taken into 2613 // account. 2614 size_t RenderScriptRuntime::CalculateElementHeaderSize(const Element &elem) { 2615 // Offsets to children plus zero terminator 2616 size_t size = (elem.children.size() + 1) * sizeof(uint32_t); 2617 // Size of header struct with type details 2618 size += sizeof(AllocationDetails::ElementHeader); 2619 2620 // Calculate recursively for all descendants 2621 for (const Element &child : elem.children) 2622 size += CalculateElementHeaderSize(child); 2623 2624 return size; 2625 } 2626 2627 // Function copies allocation contents into a binary file. This file can then 2628 // be loaded later into a different allocation. There is a header, FileHeader, 2629 // before the allocation data containing meta-data. 2630 bool RenderScriptRuntime::SaveAllocation(Stream &strm, const uint32_t alloc_id, 2631 const char *path, 2632 StackFrame *frame_ptr) { 2633 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2634 2635 // Find allocation with the given id 2636 AllocationDetails *alloc = FindAllocByID(strm, alloc_id); 2637 if (!alloc) 2638 return false; 2639 2640 LLDB_LOGF(log, "%s - found allocation 0x%" PRIx64 ".", __FUNCTION__, 2641 *alloc->address.get()); 2642 2643 // JIT all the allocation details 2644 if (alloc->ShouldRefresh()) { 2645 LLDB_LOGF(log, "%s - allocation details not calculated yet, jitting info.", 2646 __FUNCTION__); 2647 2648 if (!RefreshAllocation(alloc, frame_ptr)) { 2649 LLDB_LOGF(log, "%s - couldn't JIT allocation details.", __FUNCTION__); 2650 return false; 2651 } 2652 } 2653 2654 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && 2655 alloc->element.type_vec_size.isValid() && 2656 alloc->element.datum_size.get() && 2657 alloc->element.type_kind.isValid() && alloc->dimension.isValid() && 2658 "Allocation information not available"); 2659 2660 // Check we can create writable file 2661 FileSpec file_spec(path); 2662 FileSystem::Instance().Resolve(file_spec); 2663 File file; 2664 FileSystem::Instance().Open(file, file_spec, 2665 File::eOpenOptionWrite | 2666 File::eOpenOptionCanCreate | 2667 File::eOpenOptionTruncate); 2668 2669 if (!file) { 2670 strm.Printf("Error: Failed to open '%s' for writing", path); 2671 strm.EOL(); 2672 return false; 2673 } 2674 2675 // Read allocation into buffer of heap memory 2676 const std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr); 2677 if (!buffer) { 2678 strm.Printf("Error: Couldn't read allocation data into buffer"); 2679 strm.EOL(); 2680 return false; 2681 } 2682 2683 // Create the file header 2684 AllocationDetails::FileHeader head; 2685 memcpy(head.ident, "RSAD", 4); 2686 head.dims[0] = static_cast<uint32_t>(alloc->dimension.get()->dim_1); 2687 head.dims[1] = static_cast<uint32_t>(alloc->dimension.get()->dim_2); 2688 head.dims[2] = static_cast<uint32_t>(alloc->dimension.get()->dim_3); 2689 2690 const size_t element_header_size = CalculateElementHeaderSize(alloc->element); 2691 assert((sizeof(AllocationDetails::FileHeader) + element_header_size) < 2692 UINT16_MAX && 2693 "Element header too large"); 2694 head.hdr_size = static_cast<uint16_t>(sizeof(AllocationDetails::FileHeader) + 2695 element_header_size); 2696 2697 // Write the file header 2698 size_t num_bytes = sizeof(AllocationDetails::FileHeader); 2699 LLDB_LOGF(log, "%s - writing File Header, 0x%" PRIx64 " bytes", __FUNCTION__, 2700 (uint64_t)num_bytes); 2701 2702 Status err = file.Write(&head, num_bytes); 2703 if (!err.Success()) { 2704 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path); 2705 strm.EOL(); 2706 return false; 2707 } 2708 2709 // Create the headers describing the element type of the allocation. 2710 std::shared_ptr<uint8_t> element_header_buffer( 2711 new uint8_t[element_header_size]); 2712 if (element_header_buffer == nullptr) { 2713 strm.Printf("Internal Error: Couldn't allocate %" PRIu64 2714 " bytes on the heap", 2715 (uint64_t)element_header_size); 2716 strm.EOL(); 2717 return false; 2718 } 2719 2720 PopulateElementHeaders(element_header_buffer, 0, alloc->element); 2721 2722 // Write headers for allocation element type to file 2723 num_bytes = element_header_size; 2724 LLDB_LOGF(log, "%s - writing element headers, 0x%" PRIx64 " bytes.", 2725 __FUNCTION__, (uint64_t)num_bytes); 2726 2727 err = file.Write(element_header_buffer.get(), num_bytes); 2728 if (!err.Success()) { 2729 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path); 2730 strm.EOL(); 2731 return false; 2732 } 2733 2734 // Write allocation data to file 2735 num_bytes = static_cast<size_t>(*alloc->size.get()); 2736 LLDB_LOGF(log, "%s - writing 0x%" PRIx64 " bytes", __FUNCTION__, 2737 (uint64_t)num_bytes); 2738 2739 err = file.Write(buffer.get(), num_bytes); 2740 if (!err.Success()) { 2741 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path); 2742 strm.EOL(); 2743 return false; 2744 } 2745 2746 strm.Printf("Allocation written to file '%s'", path); 2747 strm.EOL(); 2748 return true; 2749 } 2750 2751 bool RenderScriptRuntime::LoadModule(const lldb::ModuleSP &module_sp) { 2752 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2753 2754 if (module_sp) { 2755 for (const auto &rs_module : m_rsmodules) { 2756 if (rs_module->m_module == module_sp) { 2757 // Check if the user has enabled automatically breaking on all RS 2758 // kernels. 2759 if (m_breakAllKernels) 2760 BreakOnModuleKernels(rs_module); 2761 2762 return false; 2763 } 2764 } 2765 bool module_loaded = false; 2766 switch (GetModuleKind(module_sp)) { 2767 case eModuleKindKernelObj: { 2768 RSModuleDescriptorSP module_desc; 2769 module_desc = std::make_shared<RSModuleDescriptor>(module_sp); 2770 if (module_desc->ParseRSInfo()) { 2771 m_rsmodules.push_back(module_desc); 2772 module_desc->WarnIfVersionMismatch(GetProcess() 2773 ->GetTarget() 2774 .GetDebugger() 2775 .GetAsyncOutputStream() 2776 .get()); 2777 module_loaded = true; 2778 } 2779 if (module_loaded) { 2780 FixupScriptDetails(module_desc); 2781 } 2782 break; 2783 } 2784 case eModuleKindDriver: { 2785 if (!m_libRSDriver) { 2786 m_libRSDriver = module_sp; 2787 LoadRuntimeHooks(m_libRSDriver, RenderScriptRuntime::eModuleKindDriver); 2788 } 2789 break; 2790 } 2791 case eModuleKindImpl: { 2792 if (!m_libRSCpuRef) { 2793 m_libRSCpuRef = module_sp; 2794 LoadRuntimeHooks(m_libRSCpuRef, RenderScriptRuntime::eModuleKindImpl); 2795 } 2796 break; 2797 } 2798 case eModuleKindLibRS: { 2799 if (!m_libRS) { 2800 m_libRS = module_sp; 2801 static ConstString gDbgPresentStr("gDebuggerPresent"); 2802 const Symbol *debug_present = m_libRS->FindFirstSymbolWithNameAndType( 2803 gDbgPresentStr, eSymbolTypeData); 2804 if (debug_present) { 2805 Status err; 2806 uint32_t flag = 0x00000001U; 2807 Target &target = GetProcess()->GetTarget(); 2808 addr_t addr = debug_present->GetLoadAddress(&target); 2809 GetProcess()->WriteMemory(addr, &flag, sizeof(flag), err); 2810 if (err.Success()) { 2811 LLDB_LOGF(log, "%s - debugger present flag set on debugee.", 2812 __FUNCTION__); 2813 2814 m_debuggerPresentFlagged = true; 2815 } else if (log) { 2816 LLDB_LOGF(log, "%s - error writing debugger present flags '%s' ", 2817 __FUNCTION__, err.AsCString()); 2818 } 2819 } else if (log) { 2820 LLDB_LOGF( 2821 log, 2822 "%s - error writing debugger present flags - symbol not found", 2823 __FUNCTION__); 2824 } 2825 } 2826 break; 2827 } 2828 default: 2829 break; 2830 } 2831 if (module_loaded) 2832 Update(); 2833 return module_loaded; 2834 } 2835 return false; 2836 } 2837 2838 void RenderScriptRuntime::Update() { 2839 if (m_rsmodules.size() > 0) { 2840 if (!m_initiated) { 2841 Initiate(); 2842 } 2843 } 2844 } 2845 2846 void RSModuleDescriptor::WarnIfVersionMismatch(lldb_private::Stream *s) const { 2847 if (!s) 2848 return; 2849 2850 if (m_slang_version.empty() || m_bcc_version.empty()) { 2851 s->PutCString("WARNING: Unknown bcc or slang (llvm-rs-cc) version; debug " 2852 "experience may be unreliable"); 2853 s->EOL(); 2854 } else if (m_slang_version != m_bcc_version) { 2855 s->Printf("WARNING: The debug info emitted by the slang frontend " 2856 "(llvm-rs-cc) used to build this module (%s) does not match the " 2857 "version of bcc used to generate the debug information (%s). " 2858 "This is an unsupported configuration and may result in a poor " 2859 "debugging experience; proceed with caution", 2860 m_slang_version.c_str(), m_bcc_version.c_str()); 2861 s->EOL(); 2862 } 2863 } 2864 2865 bool RSModuleDescriptor::ParsePragmaCount(llvm::StringRef *lines, 2866 size_t n_lines) { 2867 // Skip the pragma prototype line 2868 ++lines; 2869 for (; n_lines--; ++lines) { 2870 const auto kv_pair = lines->split(" - "); 2871 m_pragmas[kv_pair.first.trim().str()] = kv_pair.second.trim().str(); 2872 } 2873 return true; 2874 } 2875 2876 bool RSModuleDescriptor::ParseExportReduceCount(llvm::StringRef *lines, 2877 size_t n_lines) { 2878 // The list of reduction kernels in the `.rs.info` symbol is of the form 2879 // "signature - accumulatordatasize - reduction_name - initializer_name - 2880 // accumulator_name - combiner_name - outconverter_name - halter_name" Where 2881 // a function is not explicitly named by the user, or is not generated by the 2882 // compiler, it is named "." so the dash separated list should always be 8 2883 // items long 2884 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 2885 // Skip the exportReduceCount line 2886 ++lines; 2887 for (; n_lines--; ++lines) { 2888 llvm::SmallVector<llvm::StringRef, 8> spec; 2889 lines->split(spec, " - "); 2890 if (spec.size() != 8) { 2891 if (spec.size() < 8) { 2892 if (log) 2893 log->Error("Error parsing RenderScript reduction spec. wrong number " 2894 "of fields"); 2895 return false; 2896 } else if (log) 2897 log->Warning("Extraneous members in reduction spec: '%s'", 2898 lines->str().c_str()); 2899 } 2900 2901 const auto sig_s = spec[0]; 2902 uint32_t sig; 2903 if (sig_s.getAsInteger(10, sig)) { 2904 if (log) 2905 log->Error("Error parsing Renderscript reduction spec: invalid kernel " 2906 "signature: '%s'", 2907 sig_s.str().c_str()); 2908 return false; 2909 } 2910 2911 const auto accum_data_size_s = spec[1]; 2912 uint32_t accum_data_size; 2913 if (accum_data_size_s.getAsInteger(10, accum_data_size)) { 2914 if (log) 2915 log->Error("Error parsing Renderscript reduction spec: invalid " 2916 "accumulator data size %s", 2917 accum_data_size_s.str().c_str()); 2918 return false; 2919 } 2920 2921 LLDB_LOGF(log, "Found RenderScript reduction '%s'", spec[2].str().c_str()); 2922 2923 m_reductions.push_back(RSReductionDescriptor(this, sig, accum_data_size, 2924 spec[2], spec[3], spec[4], 2925 spec[5], spec[6], spec[7])); 2926 } 2927 return true; 2928 } 2929 2930 bool RSModuleDescriptor::ParseVersionInfo(llvm::StringRef *lines, 2931 size_t n_lines) { 2932 // Skip the versionInfo line 2933 ++lines; 2934 for (; n_lines--; ++lines) { 2935 // We're only interested in bcc and slang versions, and ignore all other 2936 // versionInfo lines 2937 const auto kv_pair = lines->split(" - "); 2938 if (kv_pair.first == "slang") 2939 m_slang_version = kv_pair.second.str(); 2940 else if (kv_pair.first == "bcc") 2941 m_bcc_version = kv_pair.second.str(); 2942 } 2943 return true; 2944 } 2945 2946 bool RSModuleDescriptor::ParseExportForeachCount(llvm::StringRef *lines, 2947 size_t n_lines) { 2948 // Skip the exportForeachCount line 2949 ++lines; 2950 for (; n_lines--; ++lines) { 2951 uint32_t slot; 2952 // `forEach` kernels are listed in the `.rs.info` packet as a "slot - name" 2953 // pair per line 2954 const auto kv_pair = lines->split(" - "); 2955 if (kv_pair.first.getAsInteger(10, slot)) 2956 return false; 2957 m_kernels.push_back(RSKernelDescriptor(this, kv_pair.second, slot)); 2958 } 2959 return true; 2960 } 2961 2962 bool RSModuleDescriptor::ParseExportVarCount(llvm::StringRef *lines, 2963 size_t n_lines) { 2964 // Skip the ExportVarCount line 2965 ++lines; 2966 for (; n_lines--; ++lines) 2967 m_globals.push_back(RSGlobalDescriptor(this, *lines)); 2968 return true; 2969 } 2970 2971 // The .rs.info symbol in renderscript modules contains a string which needs to 2972 // be parsed. The string is basic and is parsed on a line by line basis. 2973 bool RSModuleDescriptor::ParseRSInfo() { 2974 assert(m_module); 2975 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2976 const Symbol *info_sym = m_module->FindFirstSymbolWithNameAndType( 2977 ConstString(".rs.info"), eSymbolTypeData); 2978 if (!info_sym) 2979 return false; 2980 2981 const addr_t addr = info_sym->GetAddressRef().GetFileAddress(); 2982 if (addr == LLDB_INVALID_ADDRESS) 2983 return false; 2984 2985 const addr_t size = info_sym->GetByteSize(); 2986 const FileSpec fs = m_module->GetFileSpec(); 2987 2988 auto buffer = 2989 FileSystem::Instance().CreateDataBuffer(fs.GetPath(), size, addr); 2990 if (!buffer) 2991 return false; 2992 2993 // split rs.info. contents into lines 2994 llvm::SmallVector<llvm::StringRef, 128> info_lines; 2995 { 2996 const llvm::StringRef raw_rs_info((const char *)buffer->GetBytes()); 2997 raw_rs_info.split(info_lines, '\n'); 2998 LLDB_LOGF(log, "'.rs.info symbol for '%s':\n%s", 2999 m_module->GetFileSpec().GetCString(), raw_rs_info.str().c_str()); 3000 } 3001 3002 enum { 3003 eExportVar, 3004 eExportForEach, 3005 eExportReduce, 3006 ePragma, 3007 eBuildChecksum, 3008 eObjectSlot, 3009 eVersionInfo, 3010 }; 3011 3012 const auto rs_info_handler = [](llvm::StringRef name) -> int { 3013 return llvm::StringSwitch<int>(name) 3014 // The number of visible global variables in the script 3015 .Case("exportVarCount", eExportVar) 3016 // The number of RenderScrip `forEach` kernels __attribute__((kernel)) 3017 .Case("exportForEachCount", eExportForEach) 3018 // The number of generalreductions: This marked in the script by 3019 // `#pragma reduce()` 3020 .Case("exportReduceCount", eExportReduce) 3021 // Total count of all RenderScript specific `#pragmas` used in the 3022 // script 3023 .Case("pragmaCount", ePragma) 3024 .Case("objectSlotCount", eObjectSlot) 3025 .Case("versionInfo", eVersionInfo) 3026 .Default(-1); 3027 }; 3028 3029 // parse all text lines of .rs.info 3030 for (auto line = info_lines.begin(); line != info_lines.end(); ++line) { 3031 const auto kv_pair = line->split(": "); 3032 const auto key = kv_pair.first; 3033 const auto val = kv_pair.second.trim(); 3034 3035 const auto handler = rs_info_handler(key); 3036 if (handler == -1) 3037 continue; 3038 // getAsInteger returns `true` on an error condition - we're only 3039 // interested in numeric fields at the moment 3040 uint64_t n_lines; 3041 if (val.getAsInteger(10, n_lines)) { 3042 LLDB_LOGV(log, "Failed to parse non-numeric '.rs.info' section {0}", 3043 line->str()); 3044 continue; 3045 } 3046 if (info_lines.end() - (line + 1) < (ptrdiff_t)n_lines) 3047 return false; 3048 3049 bool success = false; 3050 switch (handler) { 3051 case eExportVar: 3052 success = ParseExportVarCount(line, n_lines); 3053 break; 3054 case eExportForEach: 3055 success = ParseExportForeachCount(line, n_lines); 3056 break; 3057 case eExportReduce: 3058 success = ParseExportReduceCount(line, n_lines); 3059 break; 3060 case ePragma: 3061 success = ParsePragmaCount(line, n_lines); 3062 break; 3063 case eVersionInfo: 3064 success = ParseVersionInfo(line, n_lines); 3065 break; 3066 default: { 3067 LLDB_LOGF(log, "%s - skipping .rs.info field '%s'", __FUNCTION__, 3068 line->str().c_str()); 3069 continue; 3070 } 3071 } 3072 if (!success) 3073 return false; 3074 line += n_lines; 3075 } 3076 return info_lines.size() > 0; 3077 } 3078 3079 void RenderScriptRuntime::DumpStatus(Stream &strm) const { 3080 if (m_libRS) { 3081 strm.Printf("Runtime Library discovered."); 3082 strm.EOL(); 3083 } 3084 if (m_libRSDriver) { 3085 strm.Printf("Runtime Driver discovered."); 3086 strm.EOL(); 3087 } 3088 if (m_libRSCpuRef) { 3089 strm.Printf("CPU Reference Implementation discovered."); 3090 strm.EOL(); 3091 } 3092 3093 if (m_runtimeHooks.size()) { 3094 strm.Printf("Runtime functions hooked:"); 3095 strm.EOL(); 3096 for (auto b : m_runtimeHooks) { 3097 strm.Indent(b.second->defn->name); 3098 strm.EOL(); 3099 } 3100 } else { 3101 strm.Printf("Runtime is not hooked."); 3102 strm.EOL(); 3103 } 3104 } 3105 3106 void RenderScriptRuntime::DumpContexts(Stream &strm) const { 3107 strm.Printf("Inferred RenderScript Contexts:"); 3108 strm.EOL(); 3109 strm.IndentMore(); 3110 3111 std::map<addr_t, uint64_t> contextReferences; 3112 3113 // Iterate over all of the currently discovered scripts. Note: We cant push 3114 // or pop from m_scripts inside this loop or it may invalidate script. 3115 for (const auto &script : m_scripts) { 3116 if (!script->context.isValid()) 3117 continue; 3118 lldb::addr_t context = *script->context; 3119 3120 if (contextReferences.find(context) != contextReferences.end()) { 3121 contextReferences[context]++; 3122 } else { 3123 contextReferences[context] = 1; 3124 } 3125 } 3126 3127 for (const auto &cRef : contextReferences) { 3128 strm.Printf("Context 0x%" PRIx64 ": %" PRIu64 " script instances", 3129 cRef.first, cRef.second); 3130 strm.EOL(); 3131 } 3132 strm.IndentLess(); 3133 } 3134 3135 void RenderScriptRuntime::DumpKernels(Stream &strm) const { 3136 strm.Printf("RenderScript Kernels:"); 3137 strm.EOL(); 3138 strm.IndentMore(); 3139 for (const auto &module : m_rsmodules) { 3140 strm.Printf("Resource '%s':", module->m_resname.c_str()); 3141 strm.EOL(); 3142 for (const auto &kernel : module->m_kernels) { 3143 strm.Indent(kernel.m_name.AsCString()); 3144 strm.EOL(); 3145 } 3146 } 3147 strm.IndentLess(); 3148 } 3149 3150 RenderScriptRuntime::AllocationDetails * 3151 RenderScriptRuntime::FindAllocByID(Stream &strm, const uint32_t alloc_id) { 3152 AllocationDetails *alloc = nullptr; 3153 3154 // See if we can find allocation using id as an index; 3155 if (alloc_id <= m_allocations.size() && alloc_id != 0 && 3156 m_allocations[alloc_id - 1]->id == alloc_id) { 3157 alloc = m_allocations[alloc_id - 1].get(); 3158 return alloc; 3159 } 3160 3161 // Fallback to searching 3162 for (const auto &a : m_allocations) { 3163 if (a->id == alloc_id) { 3164 alloc = a.get(); 3165 break; 3166 } 3167 } 3168 3169 if (alloc == nullptr) { 3170 strm.Printf("Error: Couldn't find allocation with id matching %" PRIu32, 3171 alloc_id); 3172 strm.EOL(); 3173 } 3174 3175 return alloc; 3176 } 3177 3178 // Prints the contents of an allocation to the output stream, which may be a 3179 // file 3180 bool RenderScriptRuntime::DumpAllocation(Stream &strm, StackFrame *frame_ptr, 3181 const uint32_t id) { 3182 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3183 3184 // Check we can find the desired allocation 3185 AllocationDetails *alloc = FindAllocByID(strm, id); 3186 if (!alloc) 3187 return false; // FindAllocByID() will print error message for us here 3188 3189 LLDB_LOGF(log, "%s - found allocation 0x%" PRIx64, __FUNCTION__, 3190 *alloc->address.get()); 3191 3192 // Check we have information about the allocation, if not calculate it 3193 if (alloc->ShouldRefresh()) { 3194 LLDB_LOGF(log, "%s - allocation details not calculated yet, jitting info.", 3195 __FUNCTION__); 3196 3197 // JIT all the allocation information 3198 if (!RefreshAllocation(alloc, frame_ptr)) { 3199 strm.Printf("Error: Couldn't JIT allocation details"); 3200 strm.EOL(); 3201 return false; 3202 } 3203 } 3204 3205 // Establish format and size of each data element 3206 const uint32_t vec_size = *alloc->element.type_vec_size.get(); 3207 const Element::DataType type = *alloc->element.type.get(); 3208 3209 assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && 3210 "Invalid allocation type"); 3211 3212 lldb::Format format; 3213 if (type >= Element::RS_TYPE_ELEMENT) 3214 format = eFormatHex; 3215 else 3216 format = vec_size == 1 3217 ? static_cast<lldb::Format>( 3218 AllocationDetails::RSTypeToFormat[type][eFormatSingle]) 3219 : static_cast<lldb::Format>( 3220 AllocationDetails::RSTypeToFormat[type][eFormatVector]); 3221 3222 const uint32_t data_size = *alloc->element.datum_size.get(); 3223 3224 LLDB_LOGF(log, "%s - element size %" PRIu32 " bytes, including padding", 3225 __FUNCTION__, data_size); 3226 3227 // Allocate a buffer to copy data into 3228 std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr); 3229 if (!buffer) { 3230 strm.Printf("Error: Couldn't read allocation data"); 3231 strm.EOL(); 3232 return false; 3233 } 3234 3235 // Calculate stride between rows as there may be padding at end of rows since 3236 // allocated memory is 16-byte aligned 3237 if (!alloc->stride.isValid()) { 3238 if (alloc->dimension.get()->dim_2 == 0) // We only have one dimension 3239 alloc->stride = 0; 3240 else if (!JITAllocationStride(alloc, frame_ptr)) { 3241 strm.Printf("Error: Couldn't calculate allocation row stride"); 3242 strm.EOL(); 3243 return false; 3244 } 3245 } 3246 const uint32_t stride = *alloc->stride.get(); 3247 const uint32_t size = *alloc->size.get(); // Size of whole allocation 3248 const uint32_t padding = 3249 alloc->element.padding.isValid() ? *alloc->element.padding.get() : 0; 3250 LLDB_LOGF(log, 3251 "%s - stride %" PRIu32 " bytes, size %" PRIu32 3252 " bytes, padding %" PRIu32, 3253 __FUNCTION__, stride, size, padding); 3254 3255 // Find dimensions used to index loops, so need to be non-zero 3256 uint32_t dim_x = alloc->dimension.get()->dim_1; 3257 dim_x = dim_x == 0 ? 1 : dim_x; 3258 3259 uint32_t dim_y = alloc->dimension.get()->dim_2; 3260 dim_y = dim_y == 0 ? 1 : dim_y; 3261 3262 uint32_t dim_z = alloc->dimension.get()->dim_3; 3263 dim_z = dim_z == 0 ? 1 : dim_z; 3264 3265 // Use data extractor to format output 3266 const uint32_t target_ptr_size = 3267 GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 3268 DataExtractor alloc_data(buffer.get(), size, GetProcess()->GetByteOrder(), 3269 target_ptr_size); 3270 3271 uint32_t offset = 0; // Offset in buffer to next element to be printed 3272 uint32_t prev_row = 0; // Offset to the start of the previous row 3273 3274 // Iterate over allocation dimensions, printing results to user 3275 strm.Printf("Data (X, Y, Z):"); 3276 for (uint32_t z = 0; z < dim_z; ++z) { 3277 for (uint32_t y = 0; y < dim_y; ++y) { 3278 // Use stride to index start of next row. 3279 if (!(y == 0 && z == 0)) 3280 offset = prev_row + stride; 3281 prev_row = offset; 3282 3283 // Print each element in the row individually 3284 for (uint32_t x = 0; x < dim_x; ++x) { 3285 strm.Printf("\n(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ") = ", x, y, z); 3286 if ((type == Element::RS_TYPE_NONE) && 3287 (alloc->element.children.size() > 0) && 3288 (alloc->element.type_name != Element::GetFallbackStructName())) { 3289 // Here we are dumping an Element of struct type. This is done using 3290 // expression evaluation with the name of the struct type and pointer 3291 // to element. Don't print the name of the resulting expression, 3292 // since this will be '$[0-9]+' 3293 DumpValueObjectOptions expr_options; 3294 expr_options.SetHideName(true); 3295 3296 // Setup expression as dereferencing a pointer cast to element 3297 // address. 3298 char expr_char_buffer[jit_max_expr_size]; 3299 int written = 3300 snprintf(expr_char_buffer, jit_max_expr_size, "*(%s*) 0x%" PRIx64, 3301 alloc->element.type_name.AsCString(), 3302 *alloc->data_ptr.get() + offset); 3303 3304 if (written < 0 || written >= jit_max_expr_size) { 3305 LLDB_LOGF(log, "%s - error in snprintf().", __FUNCTION__); 3306 continue; 3307 } 3308 3309 // Evaluate expression 3310 ValueObjectSP expr_result; 3311 GetProcess()->GetTarget().EvaluateExpression(expr_char_buffer, 3312 frame_ptr, expr_result); 3313 3314 // Print the results to our stream. 3315 expr_result->Dump(strm, expr_options); 3316 } else { 3317 DumpDataExtractor(alloc_data, &strm, offset, format, 3318 data_size - padding, 1, 1, LLDB_INVALID_ADDRESS, 0, 3319 0); 3320 } 3321 offset += data_size; 3322 } 3323 } 3324 } 3325 strm.EOL(); 3326 3327 return true; 3328 } 3329 3330 // Function recalculates all our cached information about allocations by 3331 // jitting the RS runtime regarding each allocation we know about. Returns true 3332 // if all allocations could be recomputed, false otherwise. 3333 bool RenderScriptRuntime::RecomputeAllAllocations(Stream &strm, 3334 StackFrame *frame_ptr) { 3335 bool success = true; 3336 for (auto &alloc : m_allocations) { 3337 // JIT current allocation information 3338 if (!RefreshAllocation(alloc.get(), frame_ptr)) { 3339 strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32 3340 "\n", 3341 alloc->id); 3342 success = false; 3343 } 3344 } 3345 3346 if (success) 3347 strm.Printf("All allocations successfully recomputed"); 3348 strm.EOL(); 3349 3350 return success; 3351 } 3352 3353 // Prints information regarding currently loaded allocations. These details are 3354 // gathered by jitting the runtime, which has as latency. Index parameter 3355 // specifies a single allocation ID to print, or a zero value to print them all 3356 void RenderScriptRuntime::ListAllocations(Stream &strm, StackFrame *frame_ptr, 3357 const uint32_t index) { 3358 strm.Printf("RenderScript Allocations:"); 3359 strm.EOL(); 3360 strm.IndentMore(); 3361 3362 for (auto &alloc : m_allocations) { 3363 // index will only be zero if we want to print all allocations 3364 if (index != 0 && index != alloc->id) 3365 continue; 3366 3367 // JIT current allocation information 3368 if (alloc->ShouldRefresh() && !RefreshAllocation(alloc.get(), frame_ptr)) { 3369 strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32, 3370 alloc->id); 3371 strm.EOL(); 3372 continue; 3373 } 3374 3375 strm.Printf("%" PRIu32 ":", alloc->id); 3376 strm.EOL(); 3377 strm.IndentMore(); 3378 3379 strm.Indent("Context: "); 3380 if (!alloc->context.isValid()) 3381 strm.Printf("unknown\n"); 3382 else 3383 strm.Printf("0x%" PRIx64 "\n", *alloc->context.get()); 3384 3385 strm.Indent("Address: "); 3386 if (!alloc->address.isValid()) 3387 strm.Printf("unknown\n"); 3388 else 3389 strm.Printf("0x%" PRIx64 "\n", *alloc->address.get()); 3390 3391 strm.Indent("Data pointer: "); 3392 if (!alloc->data_ptr.isValid()) 3393 strm.Printf("unknown\n"); 3394 else 3395 strm.Printf("0x%" PRIx64 "\n", *alloc->data_ptr.get()); 3396 3397 strm.Indent("Dimensions: "); 3398 if (!alloc->dimension.isValid()) 3399 strm.Printf("unknown\n"); 3400 else 3401 strm.Printf("(%" PRId32 ", %" PRId32 ", %" PRId32 ")\n", 3402 alloc->dimension.get()->dim_1, alloc->dimension.get()->dim_2, 3403 alloc->dimension.get()->dim_3); 3404 3405 strm.Indent("Data Type: "); 3406 if (!alloc->element.type.isValid() || 3407 !alloc->element.type_vec_size.isValid()) 3408 strm.Printf("unknown\n"); 3409 else { 3410 const int vector_size = *alloc->element.type_vec_size.get(); 3411 Element::DataType type = *alloc->element.type.get(); 3412 3413 if (!alloc->element.type_name.IsEmpty()) 3414 strm.Printf("%s\n", alloc->element.type_name.AsCString()); 3415 else { 3416 // Enum value isn't monotonous, so doesn't always index 3417 // RsDataTypeToString array 3418 if (type >= Element::RS_TYPE_ELEMENT && type <= Element::RS_TYPE_FONT) 3419 type = 3420 static_cast<Element::DataType>((type - Element::RS_TYPE_ELEMENT) + 3421 Element::RS_TYPE_MATRIX_2X2 + 1); 3422 3423 if (type >= (sizeof(AllocationDetails::RsDataTypeToString) / 3424 sizeof(AllocationDetails::RsDataTypeToString[0])) || 3425 vector_size > 4 || vector_size < 1) 3426 strm.Printf("invalid type\n"); 3427 else 3428 strm.Printf( 3429 "%s\n", 3430 AllocationDetails::RsDataTypeToString[static_cast<uint32_t>(type)] 3431 [vector_size - 1]); 3432 } 3433 } 3434 3435 strm.Indent("Data Kind: "); 3436 if (!alloc->element.type_kind.isValid()) 3437 strm.Printf("unknown\n"); 3438 else { 3439 const Element::DataKind kind = *alloc->element.type_kind.get(); 3440 if (kind < Element::RS_KIND_USER || kind > Element::RS_KIND_PIXEL_YUV) 3441 strm.Printf("invalid kind\n"); 3442 else 3443 strm.Printf( 3444 "%s\n", 3445 AllocationDetails::RsDataKindToString[static_cast<uint32_t>(kind)]); 3446 } 3447 3448 strm.EOL(); 3449 strm.IndentLess(); 3450 } 3451 strm.IndentLess(); 3452 } 3453 3454 // Set breakpoints on every kernel found in RS module 3455 void RenderScriptRuntime::BreakOnModuleKernels( 3456 const RSModuleDescriptorSP rsmodule_sp) { 3457 for (const auto &kernel : rsmodule_sp->m_kernels) { 3458 // Don't set breakpoint on 'root' kernel 3459 if (strcmp(kernel.m_name.AsCString(), "root") == 0) 3460 continue; 3461 3462 CreateKernelBreakpoint(kernel.m_name); 3463 } 3464 } 3465 3466 // Method is internally called by the 'kernel breakpoint all' command to enable 3467 // or disable breaking on all kernels. When do_break is true we want to enable 3468 // this functionality. When do_break is false we want to disable it. 3469 void RenderScriptRuntime::SetBreakAllKernels(bool do_break, TargetSP target) { 3470 Log *log( 3471 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3472 3473 InitSearchFilter(target); 3474 3475 // Set breakpoints on all the kernels 3476 if (do_break && !m_breakAllKernels) { 3477 m_breakAllKernels = true; 3478 3479 for (const auto &module : m_rsmodules) 3480 BreakOnModuleKernels(module); 3481 3482 LLDB_LOGF(log, 3483 "%s(True) - breakpoints set on all currently loaded kernels.", 3484 __FUNCTION__); 3485 } else if (!do_break && 3486 m_breakAllKernels) // Breakpoints won't be set on any new kernels. 3487 { 3488 m_breakAllKernels = false; 3489 3490 LLDB_LOGF(log, "%s(False) - breakpoints no longer automatically set.", 3491 __FUNCTION__); 3492 } 3493 } 3494 3495 // Given the name of a kernel this function creates a breakpoint using our own 3496 // breakpoint resolver, and returns the Breakpoint shared pointer. 3497 BreakpointSP 3498 RenderScriptRuntime::CreateKernelBreakpoint(ConstString name) { 3499 Log *log( 3500 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3501 3502 if (!m_filtersp) { 3503 LLDB_LOGF(log, "%s - error, no breakpoint search filter set.", 3504 __FUNCTION__); 3505 return nullptr; 3506 } 3507 3508 BreakpointResolverSP resolver_sp(new RSBreakpointResolver(nullptr, name)); 3509 Target &target = GetProcess()->GetTarget(); 3510 BreakpointSP bp = target.CreateBreakpoint( 3511 m_filtersp, resolver_sp, false, false, false); 3512 3513 // Give RS breakpoints a specific name, so the user can manipulate them as a 3514 // group. 3515 Status err; 3516 target.AddNameToBreakpoint(bp, "RenderScriptKernel", err); 3517 if (err.Fail() && log) 3518 LLDB_LOGF(log, "%s - error setting break name, '%s'.", __FUNCTION__, 3519 err.AsCString()); 3520 3521 return bp; 3522 } 3523 3524 BreakpointSP 3525 RenderScriptRuntime::CreateReductionBreakpoint(ConstString name, 3526 int kernel_types) { 3527 Log *log( 3528 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3529 3530 if (!m_filtersp) { 3531 LLDB_LOGF(log, "%s - error, no breakpoint search filter set.", 3532 __FUNCTION__); 3533 return nullptr; 3534 } 3535 3536 BreakpointResolverSP resolver_sp(new RSReduceBreakpointResolver( 3537 nullptr, name, &m_rsmodules, kernel_types)); 3538 Target &target = GetProcess()->GetTarget(); 3539 BreakpointSP bp = target.CreateBreakpoint( 3540 m_filtersp, resolver_sp, false, false, false); 3541 3542 // Give RS breakpoints a specific name, so the user can manipulate them as a 3543 // group. 3544 Status err; 3545 target.AddNameToBreakpoint(bp, "RenderScriptReduction", err); 3546 if (err.Fail() && log) 3547 LLDB_LOGF(log, "%s - error setting break name, '%s'.", __FUNCTION__, 3548 err.AsCString()); 3549 3550 return bp; 3551 } 3552 3553 // Given an expression for a variable this function tries to calculate the 3554 // variable's value. If this is possible it returns true and sets the uint64_t 3555 // parameter to the variables unsigned value. Otherwise function returns false. 3556 bool RenderScriptRuntime::GetFrameVarAsUnsigned(const StackFrameSP frame_sp, 3557 const char *var_name, 3558 uint64_t &val) { 3559 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3560 Status err; 3561 VariableSP var_sp; 3562 3563 // Find variable in stack frame 3564 ValueObjectSP value_sp(frame_sp->GetValueForVariableExpressionPath( 3565 var_name, eNoDynamicValues, 3566 StackFrame::eExpressionPathOptionCheckPtrVsMember | 3567 StackFrame::eExpressionPathOptionsAllowDirectIVarAccess, 3568 var_sp, err)); 3569 if (!err.Success()) { 3570 LLDB_LOGF(log, "%s - error, couldn't find '%s' in frame", __FUNCTION__, 3571 var_name); 3572 return false; 3573 } 3574 3575 // Find the uint32_t value for the variable 3576 bool success = false; 3577 val = value_sp->GetValueAsUnsigned(0, &success); 3578 if (!success) { 3579 LLDB_LOGF(log, "%s - error, couldn't parse '%s' as an uint32_t.", 3580 __FUNCTION__, var_name); 3581 return false; 3582 } 3583 3584 return true; 3585 } 3586 3587 // Function attempts to find the current coordinate of a kernel invocation by 3588 // investigating the values of frame variables in the .expand function. These 3589 // coordinates are returned via the coord array reference parameter. Returns 3590 // true if the coordinates could be found, and false otherwise. 3591 bool RenderScriptRuntime::GetKernelCoordinate(RSCoordinate &coord, 3592 Thread *thread_ptr) { 3593 static const char *const x_expr = "rsIndex"; 3594 static const char *const y_expr = "p->current.y"; 3595 static const char *const z_expr = "p->current.z"; 3596 3597 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3598 3599 if (!thread_ptr) { 3600 LLDB_LOGF(log, "%s - Error, No thread pointer", __FUNCTION__); 3601 3602 return false; 3603 } 3604 3605 // Walk the call stack looking for a function whose name has the suffix 3606 // '.expand' and contains the variables we're looking for. 3607 for (uint32_t i = 0; i < thread_ptr->GetStackFrameCount(); ++i) { 3608 if (!thread_ptr->SetSelectedFrameByIndex(i)) 3609 continue; 3610 3611 StackFrameSP frame_sp = thread_ptr->GetSelectedFrame(); 3612 if (!frame_sp) 3613 continue; 3614 3615 // Find the function name 3616 const SymbolContext sym_ctx = 3617 frame_sp->GetSymbolContext(eSymbolContextFunction); 3618 const ConstString func_name = sym_ctx.GetFunctionName(); 3619 if (!func_name) 3620 continue; 3621 3622 LLDB_LOGF(log, "%s - Inspecting function '%s'", __FUNCTION__, 3623 func_name.GetCString()); 3624 3625 // Check if function name has .expand suffix 3626 if (!func_name.GetStringRef().endswith(".expand")) 3627 continue; 3628 3629 LLDB_LOGF(log, "%s - Found .expand function '%s'", __FUNCTION__, 3630 func_name.GetCString()); 3631 3632 // Get values for variables in .expand frame that tell us the current 3633 // kernel invocation 3634 uint64_t x, y, z; 3635 bool found = GetFrameVarAsUnsigned(frame_sp, x_expr, x) && 3636 GetFrameVarAsUnsigned(frame_sp, y_expr, y) && 3637 GetFrameVarAsUnsigned(frame_sp, z_expr, z); 3638 3639 if (found) { 3640 // The RenderScript runtime uses uint32_t for these vars. If they're not 3641 // within bounds, our frame parsing is garbage 3642 assert(x <= UINT32_MAX && y <= UINT32_MAX && z <= UINT32_MAX); 3643 coord.x = (uint32_t)x; 3644 coord.y = (uint32_t)y; 3645 coord.z = (uint32_t)z; 3646 return true; 3647 } 3648 } 3649 return false; 3650 } 3651 3652 // Callback when a kernel breakpoint hits and we're looking for a specific 3653 // coordinate. Baton parameter contains a pointer to the target coordinate we 3654 // want to break on. Function then checks the .expand frame for the current 3655 // coordinate and breaks to user if it matches. Parameter 'break_id' is the id 3656 // of the Breakpoint which made the callback. Parameter 'break_loc_id' is the 3657 // id for the BreakpointLocation which was hit, a single logical breakpoint can 3658 // have multiple addresses. 3659 bool RenderScriptRuntime::KernelBreakpointHit(void *baton, 3660 StoppointCallbackContext *ctx, 3661 user_id_t break_id, 3662 user_id_t break_loc_id) { 3663 Log *log( 3664 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3665 3666 assert(baton && 3667 "Error: null baton in conditional kernel breakpoint callback"); 3668 3669 // Coordinate we want to stop on 3670 RSCoordinate target_coord = *static_cast<RSCoordinate *>(baton); 3671 3672 LLDB_LOGF(log, "%s - Break ID %" PRIu64 ", " FMT_COORD, __FUNCTION__, 3673 break_id, target_coord.x, target_coord.y, target_coord.z); 3674 3675 // Select current thread 3676 ExecutionContext context(ctx->exe_ctx_ref); 3677 Thread *thread_ptr = context.GetThreadPtr(); 3678 assert(thread_ptr && "Null thread pointer"); 3679 3680 // Find current kernel invocation from .expand frame variables 3681 RSCoordinate current_coord{}; 3682 if (!GetKernelCoordinate(current_coord, thread_ptr)) { 3683 LLDB_LOGF(log, "%s - Error, couldn't select .expand stack frame", 3684 __FUNCTION__); 3685 return false; 3686 } 3687 3688 LLDB_LOGF(log, "%s - " FMT_COORD, __FUNCTION__, current_coord.x, 3689 current_coord.y, current_coord.z); 3690 3691 // Check if the current kernel invocation coordinate matches our target 3692 // coordinate 3693 if (target_coord == current_coord) { 3694 LLDB_LOGF(log, "%s, BREAKING " FMT_COORD, __FUNCTION__, current_coord.x, 3695 current_coord.y, current_coord.z); 3696 3697 BreakpointSP breakpoint_sp = 3698 context.GetTargetPtr()->GetBreakpointByID(break_id); 3699 assert(breakpoint_sp != nullptr && 3700 "Error: Couldn't find breakpoint matching break id for callback"); 3701 breakpoint_sp->SetEnabled(false); // Optimise since conditional breakpoint 3702 // should only be hit once. 3703 return true; 3704 } 3705 3706 // No match on coordinate 3707 return false; 3708 } 3709 3710 void RenderScriptRuntime::SetConditional(BreakpointSP bp, Stream &messages, 3711 const RSCoordinate &coord) { 3712 messages.Printf("Conditional kernel breakpoint on coordinate " FMT_COORD, 3713 coord.x, coord.y, coord.z); 3714 messages.EOL(); 3715 3716 // Allocate memory for the baton, and copy over coordinate 3717 RSCoordinate *baton = new RSCoordinate(coord); 3718 3719 // Create a callback that will be invoked every time the breakpoint is hit. 3720 // The baton object passed to the handler is the target coordinate we want to 3721 // break on. 3722 bp->SetCallback(KernelBreakpointHit, baton, true); 3723 3724 // Store a shared pointer to the baton, so the memory will eventually be 3725 // cleaned up after destruction 3726 m_conditional_breaks[bp->GetID()] = std::unique_ptr<RSCoordinate>(baton); 3727 } 3728 3729 // Tries to set a breakpoint on the start of a kernel, resolved using the 3730 // kernel name. Argument 'coords', represents a three dimensional coordinate 3731 // which can be used to specify a single kernel instance to break on. If this 3732 // is set then we add a callback to the breakpoint. 3733 bool RenderScriptRuntime::PlaceBreakpointOnKernel(TargetSP target, 3734 Stream &messages, 3735 const char *name, 3736 const RSCoordinate *coord) { 3737 if (!name) 3738 return false; 3739 3740 InitSearchFilter(target); 3741 3742 ConstString kernel_name(name); 3743 BreakpointSP bp = CreateKernelBreakpoint(kernel_name); 3744 if (!bp) 3745 return false; 3746 3747 // We have a conditional breakpoint on a specific coordinate 3748 if (coord) 3749 SetConditional(bp, messages, *coord); 3750 3751 bp->GetDescription(&messages, lldb::eDescriptionLevelInitial, false); 3752 3753 return true; 3754 } 3755 3756 BreakpointSP 3757 RenderScriptRuntime::CreateScriptGroupBreakpoint(ConstString name, 3758 bool stop_on_all) { 3759 Log *log( 3760 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3761 3762 if (!m_filtersp) { 3763 LLDB_LOGF(log, "%s - error, no breakpoint search filter set.", 3764 __FUNCTION__); 3765 return nullptr; 3766 } 3767 3768 BreakpointResolverSP resolver_sp(new RSScriptGroupBreakpointResolver( 3769 nullptr, name, m_scriptGroups, stop_on_all)); 3770 Target &target = GetProcess()->GetTarget(); 3771 BreakpointSP bp = target.CreateBreakpoint( 3772 m_filtersp, resolver_sp, false, false, false); 3773 // Give RS breakpoints a specific name, so the user can manipulate them as a 3774 // group. 3775 Status err; 3776 target.AddNameToBreakpoint(bp, name.GetCString(), err); 3777 if (err.Fail() && log) 3778 LLDB_LOGF(log, "%s - error setting break name, '%s'.", __FUNCTION__, 3779 err.AsCString()); 3780 // ask the breakpoint to resolve itself 3781 bp->ResolveBreakpoint(); 3782 return bp; 3783 } 3784 3785 bool RenderScriptRuntime::PlaceBreakpointOnScriptGroup(TargetSP target, 3786 Stream &strm, 3787 ConstString name, 3788 bool multi) { 3789 InitSearchFilter(target); 3790 BreakpointSP bp = CreateScriptGroupBreakpoint(name, multi); 3791 if (bp) 3792 bp->GetDescription(&strm, lldb::eDescriptionLevelInitial, false); 3793 return bool(bp); 3794 } 3795 3796 bool RenderScriptRuntime::PlaceBreakpointOnReduction(TargetSP target, 3797 Stream &messages, 3798 const char *reduce_name, 3799 const RSCoordinate *coord, 3800 int kernel_types) { 3801 if (!reduce_name) 3802 return false; 3803 3804 InitSearchFilter(target); 3805 BreakpointSP bp = 3806 CreateReductionBreakpoint(ConstString(reduce_name), kernel_types); 3807 if (!bp) 3808 return false; 3809 3810 if (coord) 3811 SetConditional(bp, messages, *coord); 3812 3813 bp->GetDescription(&messages, lldb::eDescriptionLevelInitial, false); 3814 3815 return true; 3816 } 3817 3818 void RenderScriptRuntime::DumpModules(Stream &strm) const { 3819 strm.Printf("RenderScript Modules:"); 3820 strm.EOL(); 3821 strm.IndentMore(); 3822 for (const auto &module : m_rsmodules) { 3823 module->Dump(strm); 3824 } 3825 strm.IndentLess(); 3826 } 3827 3828 RenderScriptRuntime::ScriptDetails * 3829 RenderScriptRuntime::LookUpScript(addr_t address, bool create) { 3830 for (const auto &s : m_scripts) { 3831 if (s->script.isValid()) 3832 if (*s->script == address) 3833 return s.get(); 3834 } 3835 if (create) { 3836 std::unique_ptr<ScriptDetails> s(new ScriptDetails); 3837 s->script = address; 3838 m_scripts.push_back(std::move(s)); 3839 return m_scripts.back().get(); 3840 } 3841 return nullptr; 3842 } 3843 3844 RenderScriptRuntime::AllocationDetails * 3845 RenderScriptRuntime::LookUpAllocation(addr_t address) { 3846 for (const auto &a : m_allocations) { 3847 if (a->address.isValid()) 3848 if (*a->address == address) 3849 return a.get(); 3850 } 3851 return nullptr; 3852 } 3853 3854 RenderScriptRuntime::AllocationDetails * 3855 RenderScriptRuntime::CreateAllocation(addr_t address) { 3856 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 3857 3858 // Remove any previous allocation which contains the same address 3859 auto it = m_allocations.begin(); 3860 while (it != m_allocations.end()) { 3861 if (*((*it)->address) == address) { 3862 LLDB_LOGF(log, "%s - Removing allocation id: %d, address: 0x%" PRIx64, 3863 __FUNCTION__, (*it)->id, address); 3864 3865 it = m_allocations.erase(it); 3866 } else { 3867 it++; 3868 } 3869 } 3870 3871 std::unique_ptr<AllocationDetails> a(new AllocationDetails); 3872 a->address = address; 3873 m_allocations.push_back(std::move(a)); 3874 return m_allocations.back().get(); 3875 } 3876 3877 bool RenderScriptRuntime::ResolveKernelName(lldb::addr_t kernel_addr, 3878 ConstString &name) { 3879 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS); 3880 3881 Target &target = GetProcess()->GetTarget(); 3882 Address resolved; 3883 // RenderScript module 3884 if (!target.GetSectionLoadList().ResolveLoadAddress(kernel_addr, resolved)) { 3885 LLDB_LOGF(log, "%s: unable to resolve 0x%" PRIx64 " to a loaded symbol", 3886 __FUNCTION__, kernel_addr); 3887 return false; 3888 } 3889 3890 Symbol *sym = resolved.CalculateSymbolContextSymbol(); 3891 if (!sym) 3892 return false; 3893 3894 name = sym->GetName(); 3895 assert(IsRenderScriptModule(resolved.CalculateSymbolContextModule())); 3896 LLDB_LOGF(log, "%s: 0x%" PRIx64 " resolved to the symbol '%s'", __FUNCTION__, 3897 kernel_addr, name.GetCString()); 3898 return true; 3899 } 3900 3901 void RSModuleDescriptor::Dump(Stream &strm) const { 3902 int indent = strm.GetIndentLevel(); 3903 3904 strm.Indent(); 3905 m_module->GetFileSpec().Dump(&strm); 3906 strm.Indent(m_module->GetNumCompileUnits() ? "Debug info loaded." 3907 : "Debug info does not exist."); 3908 strm.EOL(); 3909 strm.IndentMore(); 3910 3911 strm.Indent(); 3912 strm.Printf("Globals: %" PRIu64, static_cast<uint64_t>(m_globals.size())); 3913 strm.EOL(); 3914 strm.IndentMore(); 3915 for (const auto &global : m_globals) { 3916 global.Dump(strm); 3917 } 3918 strm.IndentLess(); 3919 3920 strm.Indent(); 3921 strm.Printf("Kernels: %" PRIu64, static_cast<uint64_t>(m_kernels.size())); 3922 strm.EOL(); 3923 strm.IndentMore(); 3924 for (const auto &kernel : m_kernels) { 3925 kernel.Dump(strm); 3926 } 3927 strm.IndentLess(); 3928 3929 strm.Indent(); 3930 strm.Printf("Pragmas: %" PRIu64, static_cast<uint64_t>(m_pragmas.size())); 3931 strm.EOL(); 3932 strm.IndentMore(); 3933 for (const auto &key_val : m_pragmas) { 3934 strm.Indent(); 3935 strm.Printf("%s: %s", key_val.first.c_str(), key_val.second.c_str()); 3936 strm.EOL(); 3937 } 3938 strm.IndentLess(); 3939 3940 strm.Indent(); 3941 strm.Printf("Reductions: %" PRIu64, 3942 static_cast<uint64_t>(m_reductions.size())); 3943 strm.EOL(); 3944 strm.IndentMore(); 3945 for (const auto &reduction : m_reductions) { 3946 reduction.Dump(strm); 3947 } 3948 3949 strm.SetIndentLevel(indent); 3950 } 3951 3952 void RSGlobalDescriptor::Dump(Stream &strm) const { 3953 strm.Indent(m_name.AsCString()); 3954 VariableList var_list; 3955 m_module->m_module->FindGlobalVariables(m_name, nullptr, 1U, var_list); 3956 if (var_list.GetSize() == 1) { 3957 auto var = var_list.GetVariableAtIndex(0); 3958 auto type = var->GetType(); 3959 if (type) { 3960 strm.Printf(" - "); 3961 type->DumpTypeName(&strm); 3962 } else { 3963 strm.Printf(" - Unknown Type"); 3964 } 3965 } else { 3966 strm.Printf(" - variable identified, but not found in binary"); 3967 const Symbol *s = m_module->m_module->FindFirstSymbolWithNameAndType( 3968 m_name, eSymbolTypeData); 3969 if (s) { 3970 strm.Printf(" (symbol exists) "); 3971 } 3972 } 3973 3974 strm.EOL(); 3975 } 3976 3977 void RSKernelDescriptor::Dump(Stream &strm) const { 3978 strm.Indent(m_name.AsCString()); 3979 strm.EOL(); 3980 } 3981 3982 void RSReductionDescriptor::Dump(lldb_private::Stream &stream) const { 3983 stream.Indent(m_reduce_name.AsCString()); 3984 stream.IndentMore(); 3985 stream.EOL(); 3986 stream.Indent(); 3987 stream.Printf("accumulator: %s", m_accum_name.AsCString()); 3988 stream.EOL(); 3989 stream.Indent(); 3990 stream.Printf("initializer: %s", m_init_name.AsCString()); 3991 stream.EOL(); 3992 stream.Indent(); 3993 stream.Printf("combiner: %s", m_comb_name.AsCString()); 3994 stream.EOL(); 3995 stream.Indent(); 3996 stream.Printf("outconverter: %s", m_outc_name.AsCString()); 3997 stream.EOL(); 3998 // XXX This is currently unspecified by RenderScript, and unused 3999 // stream.Indent(); 4000 // stream.Printf("halter: '%s'", m_init_name.AsCString()); 4001 // stream.EOL(); 4002 stream.IndentLess(); 4003 } 4004 4005 class CommandObjectRenderScriptRuntimeModuleDump : public CommandObjectParsed { 4006 public: 4007 CommandObjectRenderScriptRuntimeModuleDump(CommandInterpreter &interpreter) 4008 : CommandObjectParsed( 4009 interpreter, "renderscript module dump", 4010 "Dumps renderscript specific information for all modules.", 4011 "renderscript module dump", 4012 eCommandRequiresProcess | eCommandProcessMustBeLaunched) {} 4013 4014 ~CommandObjectRenderScriptRuntimeModuleDump() override = default; 4015 4016 bool DoExecute(Args &command, CommandReturnObject &result) override { 4017 RenderScriptRuntime *runtime = llvm::cast<RenderScriptRuntime>( 4018 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4019 eLanguageTypeExtRenderScript)); 4020 runtime->DumpModules(result.GetOutputStream()); 4021 result.SetStatus(eReturnStatusSuccessFinishResult); 4022 return true; 4023 } 4024 }; 4025 4026 class CommandObjectRenderScriptRuntimeModule : public CommandObjectMultiword { 4027 public: 4028 CommandObjectRenderScriptRuntimeModule(CommandInterpreter &interpreter) 4029 : CommandObjectMultiword(interpreter, "renderscript module", 4030 "Commands that deal with RenderScript modules.", 4031 nullptr) { 4032 LoadSubCommand( 4033 "dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeModuleDump( 4034 interpreter))); 4035 } 4036 4037 ~CommandObjectRenderScriptRuntimeModule() override = default; 4038 }; 4039 4040 class CommandObjectRenderScriptRuntimeKernelList : public CommandObjectParsed { 4041 public: 4042 CommandObjectRenderScriptRuntimeKernelList(CommandInterpreter &interpreter) 4043 : CommandObjectParsed( 4044 interpreter, "renderscript kernel list", 4045 "Lists renderscript kernel names and associated script resources.", 4046 "renderscript kernel list", 4047 eCommandRequiresProcess | eCommandProcessMustBeLaunched) {} 4048 4049 ~CommandObjectRenderScriptRuntimeKernelList() override = default; 4050 4051 bool DoExecute(Args &command, CommandReturnObject &result) override { 4052 RenderScriptRuntime *runtime = llvm::cast<RenderScriptRuntime>( 4053 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4054 eLanguageTypeExtRenderScript)); 4055 runtime->DumpKernels(result.GetOutputStream()); 4056 result.SetStatus(eReturnStatusSuccessFinishResult); 4057 return true; 4058 } 4059 }; 4060 4061 static constexpr OptionDefinition g_renderscript_reduction_bp_set_options[] = { 4062 {LLDB_OPT_SET_1, false, "function-role", 't', 4063 OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeOneLiner, 4064 "Break on a comma separated set of reduction kernel types " 4065 "(accumulator,outcoverter,combiner,initializer"}, 4066 {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument, 4067 nullptr, {}, 0, eArgTypeValue, 4068 "Set a breakpoint on a single invocation of the kernel with specified " 4069 "coordinate.\n" 4070 "Coordinate takes the form 'x[,y][,z] where x,y,z are positive " 4071 "integers representing kernel dimensions. " 4072 "Any unset dimensions will be defaulted to zero."}}; 4073 4074 class CommandObjectRenderScriptRuntimeReductionBreakpointSet 4075 : public CommandObjectParsed { 4076 public: 4077 CommandObjectRenderScriptRuntimeReductionBreakpointSet( 4078 CommandInterpreter &interpreter) 4079 : CommandObjectParsed( 4080 interpreter, "renderscript reduction breakpoint set", 4081 "Set a breakpoint on named RenderScript general reductions", 4082 "renderscript reduction breakpoint set <kernel_name> [-t " 4083 "<reduction_kernel_type,...>]", 4084 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4085 eCommandProcessMustBePaused), 4086 m_options(){}; 4087 4088 class CommandOptions : public Options { 4089 public: 4090 CommandOptions() 4091 : Options(), 4092 m_kernel_types(RSReduceBreakpointResolver::eKernelTypeAll) {} 4093 4094 ~CommandOptions() override = default; 4095 4096 Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg, 4097 ExecutionContext *exe_ctx) override { 4098 Status err; 4099 StreamString err_str; 4100 const int short_option = m_getopt_table[option_idx].val; 4101 switch (short_option) { 4102 case 't': 4103 if (!ParseReductionTypes(option_arg, err_str)) 4104 err.SetErrorStringWithFormat( 4105 "Unable to deduce reduction types for %s: %s", 4106 option_arg.str().c_str(), err_str.GetData()); 4107 break; 4108 case 'c': { 4109 auto coord = RSCoordinate{}; 4110 if (!ParseCoordinate(option_arg, coord)) 4111 err.SetErrorStringWithFormat("unable to parse coordinate for %s", 4112 option_arg.str().c_str()); 4113 else { 4114 m_have_coord = true; 4115 m_coord = coord; 4116 } 4117 break; 4118 } 4119 default: 4120 err.SetErrorStringWithFormat("Invalid option '-%c'", short_option); 4121 } 4122 return err; 4123 } 4124 4125 void OptionParsingStarting(ExecutionContext *exe_ctx) override { 4126 m_have_coord = false; 4127 } 4128 4129 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4130 return llvm::makeArrayRef(g_renderscript_reduction_bp_set_options); 4131 } 4132 4133 bool ParseReductionTypes(llvm::StringRef option_val, 4134 StreamString &err_str) { 4135 m_kernel_types = RSReduceBreakpointResolver::eKernelTypeNone; 4136 const auto reduce_name_to_type = [](llvm::StringRef name) -> int { 4137 return llvm::StringSwitch<int>(name) 4138 .Case("accumulator", RSReduceBreakpointResolver::eKernelTypeAccum) 4139 .Case("initializer", RSReduceBreakpointResolver::eKernelTypeInit) 4140 .Case("outconverter", RSReduceBreakpointResolver::eKernelTypeOutC) 4141 .Case("combiner", RSReduceBreakpointResolver::eKernelTypeComb) 4142 .Case("all", RSReduceBreakpointResolver::eKernelTypeAll) 4143 // Currently not exposed by the runtime 4144 // .Case("halter", RSReduceBreakpointResolver::eKernelTypeHalter) 4145 .Default(0); 4146 }; 4147 4148 // Matching a comma separated list of known words is fairly 4149 // straightforward with PCRE, but we're using ERE, so we end up with a 4150 // little ugliness... 4151 RegularExpression match_type_list( 4152 llvm::StringRef("^([[:alpha:]]+)(,[[:alpha:]]+){0,4}$")); 4153 4154 assert(match_type_list.IsValid()); 4155 4156 if (!match_type_list.Execute(option_val)) { 4157 err_str.PutCString( 4158 "a comma-separated list of kernel types is required"); 4159 return false; 4160 } 4161 4162 // splitting on commas is much easier with llvm::StringRef than regex 4163 llvm::SmallVector<llvm::StringRef, 5> type_names; 4164 llvm::StringRef(option_val).split(type_names, ','); 4165 4166 for (const auto &name : type_names) { 4167 const int type = reduce_name_to_type(name); 4168 if (!type) { 4169 err_str.Printf("unknown kernel type name %s", name.str().c_str()); 4170 return false; 4171 } 4172 m_kernel_types |= type; 4173 } 4174 4175 return true; 4176 } 4177 4178 int m_kernel_types; 4179 llvm::StringRef m_reduce_name; 4180 RSCoordinate m_coord; 4181 bool m_have_coord; 4182 }; 4183 4184 Options *GetOptions() override { return &m_options; } 4185 4186 bool DoExecute(Args &command, CommandReturnObject &result) override { 4187 const size_t argc = command.GetArgumentCount(); 4188 if (argc < 1) { 4189 result.AppendErrorWithFormat("'%s' takes 1 argument of reduction name, " 4190 "and an optional kernel type list", 4191 m_cmd_name.c_str()); 4192 result.SetStatus(eReturnStatusFailed); 4193 return false; 4194 } 4195 4196 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4197 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4198 eLanguageTypeExtRenderScript)); 4199 4200 auto &outstream = result.GetOutputStream(); 4201 auto name = command.GetArgumentAtIndex(0); 4202 auto &target = m_exe_ctx.GetTargetSP(); 4203 auto coord = m_options.m_have_coord ? &m_options.m_coord : nullptr; 4204 if (!runtime->PlaceBreakpointOnReduction(target, outstream, name, coord, 4205 m_options.m_kernel_types)) { 4206 result.SetStatus(eReturnStatusFailed); 4207 result.AppendError("Error: unable to place breakpoint on reduction"); 4208 return false; 4209 } 4210 result.AppendMessage("Breakpoint(s) created"); 4211 result.SetStatus(eReturnStatusSuccessFinishResult); 4212 return true; 4213 } 4214 4215 private: 4216 CommandOptions m_options; 4217 }; 4218 4219 static constexpr OptionDefinition g_renderscript_kernel_bp_set_options[] = { 4220 {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument, 4221 nullptr, {}, 0, eArgTypeValue, 4222 "Set a breakpoint on a single invocation of the kernel with specified " 4223 "coordinate.\n" 4224 "Coordinate takes the form 'x[,y][,z] where x,y,z are positive " 4225 "integers representing kernel dimensions. " 4226 "Any unset dimensions will be defaulted to zero."}}; 4227 4228 class CommandObjectRenderScriptRuntimeKernelBreakpointSet 4229 : public CommandObjectParsed { 4230 public: 4231 CommandObjectRenderScriptRuntimeKernelBreakpointSet( 4232 CommandInterpreter &interpreter) 4233 : CommandObjectParsed( 4234 interpreter, "renderscript kernel breakpoint set", 4235 "Sets a breakpoint on a renderscript kernel.", 4236 "renderscript kernel breakpoint set <kernel_name> [-c x,y,z]", 4237 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4238 eCommandProcessMustBePaused), 4239 m_options() {} 4240 4241 ~CommandObjectRenderScriptRuntimeKernelBreakpointSet() override = default; 4242 4243 Options *GetOptions() override { return &m_options; } 4244 4245 class CommandOptions : public Options { 4246 public: 4247 CommandOptions() : Options() {} 4248 4249 ~CommandOptions() override = default; 4250 4251 Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg, 4252 ExecutionContext *exe_ctx) override { 4253 Status err; 4254 const int short_option = m_getopt_table[option_idx].val; 4255 4256 switch (short_option) { 4257 case 'c': { 4258 auto coord = RSCoordinate{}; 4259 if (!ParseCoordinate(option_arg, coord)) 4260 err.SetErrorStringWithFormat( 4261 "Couldn't parse coordinate '%s', should be in format 'x,y,z'.", 4262 option_arg.str().c_str()); 4263 else { 4264 m_have_coord = true; 4265 m_coord = coord; 4266 } 4267 break; 4268 } 4269 default: 4270 err.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 4271 break; 4272 } 4273 return err; 4274 } 4275 4276 void OptionParsingStarting(ExecutionContext *exe_ctx) override { 4277 m_have_coord = false; 4278 } 4279 4280 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4281 return llvm::makeArrayRef(g_renderscript_kernel_bp_set_options); 4282 } 4283 4284 RSCoordinate m_coord; 4285 bool m_have_coord; 4286 }; 4287 4288 bool DoExecute(Args &command, CommandReturnObject &result) override { 4289 const size_t argc = command.GetArgumentCount(); 4290 if (argc < 1) { 4291 result.AppendErrorWithFormat( 4292 "'%s' takes 1 argument of kernel name, and an optional coordinate.", 4293 m_cmd_name.c_str()); 4294 result.SetStatus(eReturnStatusFailed); 4295 return false; 4296 } 4297 4298 RenderScriptRuntime *runtime = llvm::cast<RenderScriptRuntime>( 4299 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4300 eLanguageTypeExtRenderScript)); 4301 4302 auto &outstream = result.GetOutputStream(); 4303 auto &target = m_exe_ctx.GetTargetSP(); 4304 auto name = command.GetArgumentAtIndex(0); 4305 auto coord = m_options.m_have_coord ? &m_options.m_coord : nullptr; 4306 if (!runtime->PlaceBreakpointOnKernel(target, outstream, name, coord)) { 4307 result.SetStatus(eReturnStatusFailed); 4308 result.AppendErrorWithFormat( 4309 "Error: unable to set breakpoint on kernel '%s'", name); 4310 return false; 4311 } 4312 4313 result.AppendMessage("Breakpoint(s) created"); 4314 result.SetStatus(eReturnStatusSuccessFinishResult); 4315 return true; 4316 } 4317 4318 private: 4319 CommandOptions m_options; 4320 }; 4321 4322 class CommandObjectRenderScriptRuntimeKernelBreakpointAll 4323 : public CommandObjectParsed { 4324 public: 4325 CommandObjectRenderScriptRuntimeKernelBreakpointAll( 4326 CommandInterpreter &interpreter) 4327 : CommandObjectParsed( 4328 interpreter, "renderscript kernel breakpoint all", 4329 "Automatically sets a breakpoint on all renderscript kernels that " 4330 "are or will be loaded.\n" 4331 "Disabling option means breakpoints will no longer be set on any " 4332 "kernels loaded in the future, " 4333 "but does not remove currently set breakpoints.", 4334 "renderscript kernel breakpoint all <enable/disable>", 4335 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4336 eCommandProcessMustBePaused) {} 4337 4338 ~CommandObjectRenderScriptRuntimeKernelBreakpointAll() override = default; 4339 4340 bool DoExecute(Args &command, CommandReturnObject &result) override { 4341 const size_t argc = command.GetArgumentCount(); 4342 if (argc != 1) { 4343 result.AppendErrorWithFormat( 4344 "'%s' takes 1 argument of 'enable' or 'disable'", m_cmd_name.c_str()); 4345 result.SetStatus(eReturnStatusFailed); 4346 return false; 4347 } 4348 4349 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4350 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4351 eLanguageTypeExtRenderScript)); 4352 4353 bool do_break = false; 4354 const char *argument = command.GetArgumentAtIndex(0); 4355 if (strcmp(argument, "enable") == 0) { 4356 do_break = true; 4357 result.AppendMessage("Breakpoints will be set on all kernels."); 4358 } else if (strcmp(argument, "disable") == 0) { 4359 do_break = false; 4360 result.AppendMessage("Breakpoints will not be set on any new kernels."); 4361 } else { 4362 result.AppendErrorWithFormat( 4363 "Argument must be either 'enable' or 'disable'"); 4364 result.SetStatus(eReturnStatusFailed); 4365 return false; 4366 } 4367 4368 runtime->SetBreakAllKernels(do_break, m_exe_ctx.GetTargetSP()); 4369 4370 result.SetStatus(eReturnStatusSuccessFinishResult); 4371 return true; 4372 } 4373 }; 4374 4375 class CommandObjectRenderScriptRuntimeReductionBreakpoint 4376 : public CommandObjectMultiword { 4377 public: 4378 CommandObjectRenderScriptRuntimeReductionBreakpoint( 4379 CommandInterpreter &interpreter) 4380 : CommandObjectMultiword(interpreter, "renderscript reduction breakpoint", 4381 "Commands that manipulate breakpoints on " 4382 "renderscript general reductions.", 4383 nullptr) { 4384 LoadSubCommand( 4385 "set", CommandObjectSP( 4386 new CommandObjectRenderScriptRuntimeReductionBreakpointSet( 4387 interpreter))); 4388 } 4389 4390 ~CommandObjectRenderScriptRuntimeReductionBreakpoint() override = default; 4391 }; 4392 4393 class CommandObjectRenderScriptRuntimeKernelCoordinate 4394 : public CommandObjectParsed { 4395 public: 4396 CommandObjectRenderScriptRuntimeKernelCoordinate( 4397 CommandInterpreter &interpreter) 4398 : CommandObjectParsed( 4399 interpreter, "renderscript kernel coordinate", 4400 "Shows the (x,y,z) coordinate of the current kernel invocation.", 4401 "renderscript kernel coordinate", 4402 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4403 eCommandProcessMustBePaused) {} 4404 4405 ~CommandObjectRenderScriptRuntimeKernelCoordinate() override = default; 4406 4407 bool DoExecute(Args &command, CommandReturnObject &result) override { 4408 RSCoordinate coord{}; 4409 bool success = RenderScriptRuntime::GetKernelCoordinate( 4410 coord, m_exe_ctx.GetThreadPtr()); 4411 Stream &stream = result.GetOutputStream(); 4412 4413 if (success) { 4414 stream.Printf("Coordinate: " FMT_COORD, coord.x, coord.y, coord.z); 4415 stream.EOL(); 4416 result.SetStatus(eReturnStatusSuccessFinishResult); 4417 } else { 4418 stream.Printf("Error: Coordinate could not be found."); 4419 stream.EOL(); 4420 result.SetStatus(eReturnStatusFailed); 4421 } 4422 return true; 4423 } 4424 }; 4425 4426 class CommandObjectRenderScriptRuntimeKernelBreakpoint 4427 : public CommandObjectMultiword { 4428 public: 4429 CommandObjectRenderScriptRuntimeKernelBreakpoint( 4430 CommandInterpreter &interpreter) 4431 : CommandObjectMultiword( 4432 interpreter, "renderscript kernel", 4433 "Commands that generate breakpoints on renderscript kernels.", 4434 nullptr) { 4435 LoadSubCommand( 4436 "set", 4437 CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointSet( 4438 interpreter))); 4439 LoadSubCommand( 4440 "all", 4441 CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointAll( 4442 interpreter))); 4443 } 4444 4445 ~CommandObjectRenderScriptRuntimeKernelBreakpoint() override = default; 4446 }; 4447 4448 class CommandObjectRenderScriptRuntimeKernel : public CommandObjectMultiword { 4449 public: 4450 CommandObjectRenderScriptRuntimeKernel(CommandInterpreter &interpreter) 4451 : CommandObjectMultiword(interpreter, "renderscript kernel", 4452 "Commands that deal with RenderScript kernels.", 4453 nullptr) { 4454 LoadSubCommand( 4455 "list", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelList( 4456 interpreter))); 4457 LoadSubCommand( 4458 "coordinate", 4459 CommandObjectSP( 4460 new CommandObjectRenderScriptRuntimeKernelCoordinate(interpreter))); 4461 LoadSubCommand( 4462 "breakpoint", 4463 CommandObjectSP( 4464 new CommandObjectRenderScriptRuntimeKernelBreakpoint(interpreter))); 4465 } 4466 4467 ~CommandObjectRenderScriptRuntimeKernel() override = default; 4468 }; 4469 4470 class CommandObjectRenderScriptRuntimeContextDump : public CommandObjectParsed { 4471 public: 4472 CommandObjectRenderScriptRuntimeContextDump(CommandInterpreter &interpreter) 4473 : CommandObjectParsed(interpreter, "renderscript context dump", 4474 "Dumps renderscript context information.", 4475 "renderscript context dump", 4476 eCommandRequiresProcess | 4477 eCommandProcessMustBeLaunched) {} 4478 4479 ~CommandObjectRenderScriptRuntimeContextDump() override = default; 4480 4481 bool DoExecute(Args &command, CommandReturnObject &result) override { 4482 RenderScriptRuntime *runtime = llvm::cast<RenderScriptRuntime>( 4483 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4484 eLanguageTypeExtRenderScript)); 4485 runtime->DumpContexts(result.GetOutputStream()); 4486 result.SetStatus(eReturnStatusSuccessFinishResult); 4487 return true; 4488 } 4489 }; 4490 4491 static constexpr OptionDefinition g_renderscript_runtime_alloc_dump_options[] = { 4492 {LLDB_OPT_SET_1, false, "file", 'f', OptionParser::eRequiredArgument, 4493 nullptr, {}, 0, eArgTypeFilename, 4494 "Print results to specified file instead of command line."}}; 4495 4496 class CommandObjectRenderScriptRuntimeContext : public CommandObjectMultiword { 4497 public: 4498 CommandObjectRenderScriptRuntimeContext(CommandInterpreter &interpreter) 4499 : CommandObjectMultiword(interpreter, "renderscript context", 4500 "Commands that deal with RenderScript contexts.", 4501 nullptr) { 4502 LoadSubCommand( 4503 "dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeContextDump( 4504 interpreter))); 4505 } 4506 4507 ~CommandObjectRenderScriptRuntimeContext() override = default; 4508 }; 4509 4510 class CommandObjectRenderScriptRuntimeAllocationDump 4511 : public CommandObjectParsed { 4512 public: 4513 CommandObjectRenderScriptRuntimeAllocationDump( 4514 CommandInterpreter &interpreter) 4515 : CommandObjectParsed(interpreter, "renderscript allocation dump", 4516 "Displays the contents of a particular allocation", 4517 "renderscript allocation dump <ID>", 4518 eCommandRequiresProcess | 4519 eCommandProcessMustBeLaunched), 4520 m_options() {} 4521 4522 ~CommandObjectRenderScriptRuntimeAllocationDump() override = default; 4523 4524 Options *GetOptions() override { return &m_options; } 4525 4526 class CommandOptions : public Options { 4527 public: 4528 CommandOptions() : Options() {} 4529 4530 ~CommandOptions() override = default; 4531 4532 Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg, 4533 ExecutionContext *exe_ctx) override { 4534 Status err; 4535 const int short_option = m_getopt_table[option_idx].val; 4536 4537 switch (short_option) { 4538 case 'f': 4539 m_outfile.SetFile(option_arg, FileSpec::Style::native); 4540 FileSystem::Instance().Resolve(m_outfile); 4541 if (FileSystem::Instance().Exists(m_outfile)) { 4542 m_outfile.Clear(); 4543 err.SetErrorStringWithFormat("file already exists: '%s'", 4544 option_arg.str().c_str()); 4545 } 4546 break; 4547 default: 4548 err.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 4549 break; 4550 } 4551 return err; 4552 } 4553 4554 void OptionParsingStarting(ExecutionContext *exe_ctx) override { 4555 m_outfile.Clear(); 4556 } 4557 4558 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4559 return llvm::makeArrayRef(g_renderscript_runtime_alloc_dump_options); 4560 } 4561 4562 FileSpec m_outfile; 4563 }; 4564 4565 bool DoExecute(Args &command, CommandReturnObject &result) override { 4566 const size_t argc = command.GetArgumentCount(); 4567 if (argc < 1) { 4568 result.AppendErrorWithFormat("'%s' takes 1 argument, an allocation ID. " 4569 "As well as an optional -f argument", 4570 m_cmd_name.c_str()); 4571 result.SetStatus(eReturnStatusFailed); 4572 return false; 4573 } 4574 4575 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4576 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4577 eLanguageTypeExtRenderScript)); 4578 4579 const char *id_cstr = command.GetArgumentAtIndex(0); 4580 bool success = false; 4581 const uint32_t id = 4582 StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success); 4583 if (!success) { 4584 result.AppendErrorWithFormat("invalid allocation id argument '%s'", 4585 id_cstr); 4586 result.SetStatus(eReturnStatusFailed); 4587 return false; 4588 } 4589 4590 Stream *output_strm = nullptr; 4591 StreamFile outfile_stream; 4592 const FileSpec &outfile_spec = 4593 m_options.m_outfile; // Dump allocation to file instead 4594 if (outfile_spec) { 4595 // Open output file 4596 std::string path = outfile_spec.GetPath(); 4597 auto error = FileSystem::Instance().Open( 4598 outfile_stream.GetFile(), outfile_spec, 4599 File::eOpenOptionWrite | File::eOpenOptionCanCreate); 4600 if (error.Success()) { 4601 output_strm = &outfile_stream; 4602 result.GetOutputStream().Printf("Results written to '%s'", 4603 path.c_str()); 4604 result.GetOutputStream().EOL(); 4605 } else { 4606 result.AppendErrorWithFormat("Couldn't open file '%s'", path.c_str()); 4607 result.SetStatus(eReturnStatusFailed); 4608 return false; 4609 } 4610 } else 4611 output_strm = &result.GetOutputStream(); 4612 4613 assert(output_strm != nullptr); 4614 bool dumped = 4615 runtime->DumpAllocation(*output_strm, m_exe_ctx.GetFramePtr(), id); 4616 4617 if (dumped) 4618 result.SetStatus(eReturnStatusSuccessFinishResult); 4619 else 4620 result.SetStatus(eReturnStatusFailed); 4621 4622 return true; 4623 } 4624 4625 private: 4626 CommandOptions m_options; 4627 }; 4628 4629 static constexpr OptionDefinition g_renderscript_runtime_alloc_list_options[] = { 4630 {LLDB_OPT_SET_1, false, "id", 'i', OptionParser::eRequiredArgument, nullptr, 4631 {}, 0, eArgTypeIndex, 4632 "Only show details of a single allocation with specified id."}}; 4633 4634 class CommandObjectRenderScriptRuntimeAllocationList 4635 : public CommandObjectParsed { 4636 public: 4637 CommandObjectRenderScriptRuntimeAllocationList( 4638 CommandInterpreter &interpreter) 4639 : CommandObjectParsed( 4640 interpreter, "renderscript allocation list", 4641 "List renderscript allocations and their information.", 4642 "renderscript allocation list", 4643 eCommandRequiresProcess | eCommandProcessMustBeLaunched), 4644 m_options() {} 4645 4646 ~CommandObjectRenderScriptRuntimeAllocationList() override = default; 4647 4648 Options *GetOptions() override { return &m_options; } 4649 4650 class CommandOptions : public Options { 4651 public: 4652 CommandOptions() : Options(), m_id(0) {} 4653 4654 ~CommandOptions() override = default; 4655 4656 Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg, 4657 ExecutionContext *exe_ctx) override { 4658 Status err; 4659 const int short_option = m_getopt_table[option_idx].val; 4660 4661 switch (short_option) { 4662 case 'i': 4663 if (option_arg.getAsInteger(0, m_id)) 4664 err.SetErrorStringWithFormat("invalid integer value for option '%c'", 4665 short_option); 4666 break; 4667 default: 4668 err.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 4669 break; 4670 } 4671 return err; 4672 } 4673 4674 void OptionParsingStarting(ExecutionContext *exe_ctx) override { m_id = 0; } 4675 4676 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4677 return llvm::makeArrayRef(g_renderscript_runtime_alloc_list_options); 4678 } 4679 4680 uint32_t m_id; 4681 }; 4682 4683 bool DoExecute(Args &command, CommandReturnObject &result) override { 4684 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4685 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4686 eLanguageTypeExtRenderScript)); 4687 runtime->ListAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr(), 4688 m_options.m_id); 4689 result.SetStatus(eReturnStatusSuccessFinishResult); 4690 return true; 4691 } 4692 4693 private: 4694 CommandOptions m_options; 4695 }; 4696 4697 class CommandObjectRenderScriptRuntimeAllocationLoad 4698 : public CommandObjectParsed { 4699 public: 4700 CommandObjectRenderScriptRuntimeAllocationLoad( 4701 CommandInterpreter &interpreter) 4702 : CommandObjectParsed( 4703 interpreter, "renderscript allocation load", 4704 "Loads renderscript allocation contents from a file.", 4705 "renderscript allocation load <ID> <filename>", 4706 eCommandRequiresProcess | eCommandProcessMustBeLaunched) {} 4707 4708 ~CommandObjectRenderScriptRuntimeAllocationLoad() override = default; 4709 4710 bool DoExecute(Args &command, CommandReturnObject &result) override { 4711 const size_t argc = command.GetArgumentCount(); 4712 if (argc != 2) { 4713 result.AppendErrorWithFormat( 4714 "'%s' takes 2 arguments, an allocation ID and filename to read from.", 4715 m_cmd_name.c_str()); 4716 result.SetStatus(eReturnStatusFailed); 4717 return false; 4718 } 4719 4720 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4721 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4722 eLanguageTypeExtRenderScript)); 4723 4724 const char *id_cstr = command.GetArgumentAtIndex(0); 4725 bool success = false; 4726 const uint32_t id = 4727 StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success); 4728 if (!success) { 4729 result.AppendErrorWithFormat("invalid allocation id argument '%s'", 4730 id_cstr); 4731 result.SetStatus(eReturnStatusFailed); 4732 return false; 4733 } 4734 4735 const char *path = command.GetArgumentAtIndex(1); 4736 bool loaded = runtime->LoadAllocation(result.GetOutputStream(), id, path, 4737 m_exe_ctx.GetFramePtr()); 4738 4739 if (loaded) 4740 result.SetStatus(eReturnStatusSuccessFinishResult); 4741 else 4742 result.SetStatus(eReturnStatusFailed); 4743 4744 return true; 4745 } 4746 }; 4747 4748 class CommandObjectRenderScriptRuntimeAllocationSave 4749 : public CommandObjectParsed { 4750 public: 4751 CommandObjectRenderScriptRuntimeAllocationSave( 4752 CommandInterpreter &interpreter) 4753 : CommandObjectParsed(interpreter, "renderscript allocation save", 4754 "Write renderscript allocation contents to a file.", 4755 "renderscript allocation save <ID> <filename>", 4756 eCommandRequiresProcess | 4757 eCommandProcessMustBeLaunched) {} 4758 4759 ~CommandObjectRenderScriptRuntimeAllocationSave() override = default; 4760 4761 bool DoExecute(Args &command, CommandReturnObject &result) override { 4762 const size_t argc = command.GetArgumentCount(); 4763 if (argc != 2) { 4764 result.AppendErrorWithFormat( 4765 "'%s' takes 2 arguments, an allocation ID and filename to read from.", 4766 m_cmd_name.c_str()); 4767 result.SetStatus(eReturnStatusFailed); 4768 return false; 4769 } 4770 4771 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4772 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4773 eLanguageTypeExtRenderScript)); 4774 4775 const char *id_cstr = command.GetArgumentAtIndex(0); 4776 bool success = false; 4777 const uint32_t id = 4778 StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success); 4779 if (!success) { 4780 result.AppendErrorWithFormat("invalid allocation id argument '%s'", 4781 id_cstr); 4782 result.SetStatus(eReturnStatusFailed); 4783 return false; 4784 } 4785 4786 const char *path = command.GetArgumentAtIndex(1); 4787 bool saved = runtime->SaveAllocation(result.GetOutputStream(), id, path, 4788 m_exe_ctx.GetFramePtr()); 4789 4790 if (saved) 4791 result.SetStatus(eReturnStatusSuccessFinishResult); 4792 else 4793 result.SetStatus(eReturnStatusFailed); 4794 4795 return true; 4796 } 4797 }; 4798 4799 class CommandObjectRenderScriptRuntimeAllocationRefresh 4800 : public CommandObjectParsed { 4801 public: 4802 CommandObjectRenderScriptRuntimeAllocationRefresh( 4803 CommandInterpreter &interpreter) 4804 : CommandObjectParsed(interpreter, "renderscript allocation refresh", 4805 "Recomputes the details of all allocations.", 4806 "renderscript allocation refresh", 4807 eCommandRequiresProcess | 4808 eCommandProcessMustBeLaunched) {} 4809 4810 ~CommandObjectRenderScriptRuntimeAllocationRefresh() override = default; 4811 4812 bool DoExecute(Args &command, CommandReturnObject &result) override { 4813 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4814 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4815 eLanguageTypeExtRenderScript)); 4816 4817 bool success = runtime->RecomputeAllAllocations(result.GetOutputStream(), 4818 m_exe_ctx.GetFramePtr()); 4819 4820 if (success) { 4821 result.SetStatus(eReturnStatusSuccessFinishResult); 4822 return true; 4823 } else { 4824 result.SetStatus(eReturnStatusFailed); 4825 return false; 4826 } 4827 } 4828 }; 4829 4830 class CommandObjectRenderScriptRuntimeAllocation 4831 : public CommandObjectMultiword { 4832 public: 4833 CommandObjectRenderScriptRuntimeAllocation(CommandInterpreter &interpreter) 4834 : CommandObjectMultiword( 4835 interpreter, "renderscript allocation", 4836 "Commands that deal with RenderScript allocations.", nullptr) { 4837 LoadSubCommand( 4838 "list", 4839 CommandObjectSP( 4840 new CommandObjectRenderScriptRuntimeAllocationList(interpreter))); 4841 LoadSubCommand( 4842 "dump", 4843 CommandObjectSP( 4844 new CommandObjectRenderScriptRuntimeAllocationDump(interpreter))); 4845 LoadSubCommand( 4846 "save", 4847 CommandObjectSP( 4848 new CommandObjectRenderScriptRuntimeAllocationSave(interpreter))); 4849 LoadSubCommand( 4850 "load", 4851 CommandObjectSP( 4852 new CommandObjectRenderScriptRuntimeAllocationLoad(interpreter))); 4853 LoadSubCommand( 4854 "refresh", 4855 CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationRefresh( 4856 interpreter))); 4857 } 4858 4859 ~CommandObjectRenderScriptRuntimeAllocation() override = default; 4860 }; 4861 4862 class CommandObjectRenderScriptRuntimeStatus : public CommandObjectParsed { 4863 public: 4864 CommandObjectRenderScriptRuntimeStatus(CommandInterpreter &interpreter) 4865 : CommandObjectParsed(interpreter, "renderscript status", 4866 "Displays current RenderScript runtime status.", 4867 "renderscript status", 4868 eCommandRequiresProcess | 4869 eCommandProcessMustBeLaunched) {} 4870 4871 ~CommandObjectRenderScriptRuntimeStatus() override = default; 4872 4873 bool DoExecute(Args &command, CommandReturnObject &result) override { 4874 RenderScriptRuntime *runtime = llvm::cast<RenderScriptRuntime>( 4875 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4876 eLanguageTypeExtRenderScript)); 4877 runtime->DumpStatus(result.GetOutputStream()); 4878 result.SetStatus(eReturnStatusSuccessFinishResult); 4879 return true; 4880 } 4881 }; 4882 4883 class CommandObjectRenderScriptRuntimeReduction 4884 : public CommandObjectMultiword { 4885 public: 4886 CommandObjectRenderScriptRuntimeReduction(CommandInterpreter &interpreter) 4887 : CommandObjectMultiword(interpreter, "renderscript reduction", 4888 "Commands that handle general reduction kernels", 4889 nullptr) { 4890 LoadSubCommand( 4891 "breakpoint", 4892 CommandObjectSP(new CommandObjectRenderScriptRuntimeReductionBreakpoint( 4893 interpreter))); 4894 } 4895 ~CommandObjectRenderScriptRuntimeReduction() override = default; 4896 }; 4897 4898 class CommandObjectRenderScriptRuntime : public CommandObjectMultiword { 4899 public: 4900 CommandObjectRenderScriptRuntime(CommandInterpreter &interpreter) 4901 : CommandObjectMultiword( 4902 interpreter, "renderscript", 4903 "Commands for operating on the RenderScript runtime.", 4904 "renderscript <subcommand> [<subcommand-options>]") { 4905 LoadSubCommand( 4906 "module", CommandObjectSP( 4907 new CommandObjectRenderScriptRuntimeModule(interpreter))); 4908 LoadSubCommand( 4909 "status", CommandObjectSP( 4910 new CommandObjectRenderScriptRuntimeStatus(interpreter))); 4911 LoadSubCommand( 4912 "kernel", CommandObjectSP( 4913 new CommandObjectRenderScriptRuntimeKernel(interpreter))); 4914 LoadSubCommand("context", 4915 CommandObjectSP(new CommandObjectRenderScriptRuntimeContext( 4916 interpreter))); 4917 LoadSubCommand( 4918 "allocation", 4919 CommandObjectSP( 4920 new CommandObjectRenderScriptRuntimeAllocation(interpreter))); 4921 LoadSubCommand("scriptgroup", 4922 NewCommandObjectRenderScriptScriptGroup(interpreter)); 4923 LoadSubCommand( 4924 "reduction", 4925 CommandObjectSP( 4926 new CommandObjectRenderScriptRuntimeReduction(interpreter))); 4927 } 4928 4929 ~CommandObjectRenderScriptRuntime() override = default; 4930 }; 4931 4932 void RenderScriptRuntime::Initiate() { assert(!m_initiated); } 4933 4934 RenderScriptRuntime::RenderScriptRuntime(Process *process) 4935 : lldb_private::CPPLanguageRuntime(process), m_initiated(false), 4936 m_debuggerPresentFlagged(false), m_breakAllKernels(false), 4937 m_ir_passes(nullptr) { 4938 ModulesDidLoad(process->GetTarget().GetImages()); 4939 } 4940 4941 lldb::CommandObjectSP RenderScriptRuntime::GetCommandObject( 4942 lldb_private::CommandInterpreter &interpreter) { 4943 return CommandObjectSP(new CommandObjectRenderScriptRuntime(interpreter)); 4944 } 4945 4946 RenderScriptRuntime::~RenderScriptRuntime() = default; 4947