1 //===-- RenderScriptRuntime.cpp ---------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 // C Includes 11 // C++ Includes 12 // Other libraries and framework includes 13 #include "llvm/ADT/StringSwitch.h" 14 15 // Project includes 16 #include "RenderScriptRuntime.h" 17 #include "RenderScriptScriptGroup.h" 18 19 #include "lldb/Breakpoint/StoppointCallbackContext.h" 20 #include "lldb/Core/Debugger.h" 21 #include "lldb/Core/DumpDataExtractor.h" 22 #include "lldb/Core/PluginManager.h" 23 #include "lldb/Core/RegisterValue.h" 24 #include "lldb/Core/ValueObjectVariable.h" 25 #include "lldb/DataFormatters/DumpValueObjectOptions.h" 26 #include "lldb/Expression/UserExpression.h" 27 #include "lldb/Host/OptionParser.h" 28 #include "lldb/Host/StringConvert.h" 29 #include "lldb/Interpreter/Args.h" 30 #include "lldb/Interpreter/CommandInterpreter.h" 31 #include "lldb/Interpreter/CommandObjectMultiword.h" 32 #include "lldb/Interpreter/CommandReturnObject.h" 33 #include "lldb/Interpreter/Options.h" 34 #include "lldb/Symbol/Function.h" 35 #include "lldb/Symbol/Symbol.h" 36 #include "lldb/Symbol/Type.h" 37 #include "lldb/Symbol/VariableList.h" 38 #include "lldb/Target/Process.h" 39 #include "lldb/Target/RegisterContext.h" 40 #include "lldb/Target/SectionLoadList.h" 41 #include "lldb/Target/Target.h" 42 #include "lldb/Target/Thread.h" 43 #include "lldb/Utility/ConstString.h" 44 #include "lldb/Utility/DataBufferLLVM.h" 45 #include "lldb/Utility/Error.h" 46 #include "lldb/Utility/Log.h" 47 #include "lldb/Utility/RegularExpression.h" 48 49 using namespace lldb; 50 using namespace lldb_private; 51 using namespace lldb_renderscript; 52 53 #define FMT_COORD "(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ")" 54 55 namespace { 56 57 // The empirical_type adds a basic level of validation to arbitrary data 58 // allowing us to track if data has been discovered and stored or not. An 59 // empirical_type will be marked as valid only if it has been explicitly 60 // assigned to. 61 template <typename type_t> class empirical_type { 62 public: 63 // Ctor. Contents is invalid when constructed. 64 empirical_type() : valid(false) {} 65 66 // Return true and copy contents to out if valid, else return false. 67 bool get(type_t &out) const { 68 if (valid) 69 out = data; 70 return valid; 71 } 72 73 // Return a pointer to the contents or nullptr if it was not valid. 74 const type_t *get() const { return valid ? &data : nullptr; } 75 76 // Assign data explicitly. 77 void set(const type_t in) { 78 data = in; 79 valid = true; 80 } 81 82 // Mark contents as invalid. 83 void invalidate() { valid = false; } 84 85 // Returns true if this type contains valid data. 86 bool isValid() const { return valid; } 87 88 // Assignment operator. 89 empirical_type<type_t> &operator=(const type_t in) { 90 set(in); 91 return *this; 92 } 93 94 // Dereference operator returns contents. 95 // Warning: Will assert if not valid so use only when you know data is valid. 96 const type_t &operator*() const { 97 assert(valid); 98 return data; 99 } 100 101 protected: 102 bool valid; 103 type_t data; 104 }; 105 106 // ArgItem is used by the GetArgs() function when reading function arguments 107 // from the target. 108 struct ArgItem { 109 enum { ePointer, eInt32, eInt64, eLong, eBool } type; 110 111 uint64_t value; 112 113 explicit operator uint64_t() const { return value; } 114 }; 115 116 // Context structure to be passed into GetArgsXXX(), argument reading functions 117 // below. 118 struct GetArgsCtx { 119 RegisterContext *reg_ctx; 120 Process *process; 121 }; 122 123 bool GetArgsX86(const GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 124 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 125 126 Error err; 127 128 // get the current stack pointer 129 uint64_t sp = ctx.reg_ctx->GetSP(); 130 131 for (size_t i = 0; i < num_args; ++i) { 132 ArgItem &arg = arg_list[i]; 133 // advance up the stack by one argument 134 sp += sizeof(uint32_t); 135 // get the argument type size 136 size_t arg_size = sizeof(uint32_t); 137 // read the argument from memory 138 arg.value = 0; 139 Error err; 140 size_t read = 141 ctx.process->ReadMemory(sp, &arg.value, sizeof(uint32_t), err); 142 if (read != arg_size || !err.Success()) { 143 if (log) 144 log->Printf("%s - error reading argument: %" PRIu64 " '%s'", 145 __FUNCTION__, uint64_t(i), err.AsCString()); 146 return false; 147 } 148 } 149 return true; 150 } 151 152 bool GetArgsX86_64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 153 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 154 155 // number of arguments passed in registers 156 static const uint32_t args_in_reg = 6; 157 // register passing order 158 static const std::array<const char *, args_in_reg> reg_names{ 159 {"rdi", "rsi", "rdx", "rcx", "r8", "r9"}}; 160 // argument type to size mapping 161 static const std::array<size_t, 5> arg_size{{ 162 8, // ePointer, 163 4, // eInt32, 164 8, // eInt64, 165 8, // eLong, 166 4, // eBool, 167 }}; 168 169 Error err; 170 171 // get the current stack pointer 172 uint64_t sp = ctx.reg_ctx->GetSP(); 173 // step over the return address 174 sp += sizeof(uint64_t); 175 176 // check the stack alignment was correct (16 byte aligned) 177 if ((sp & 0xf) != 0x0) { 178 if (log) 179 log->Printf("%s - stack misaligned", __FUNCTION__); 180 return false; 181 } 182 183 // find the start of arguments on the stack 184 uint64_t sp_offset = 0; 185 for (uint32_t i = args_in_reg; i < num_args; ++i) { 186 sp_offset += arg_size[arg_list[i].type]; 187 } 188 // round up to multiple of 16 189 sp_offset = (sp_offset + 0xf) & 0xf; 190 sp += sp_offset; 191 192 for (size_t i = 0; i < num_args; ++i) { 193 bool success = false; 194 ArgItem &arg = arg_list[i]; 195 // arguments passed in registers 196 if (i < args_in_reg) { 197 const RegisterInfo *reg = 198 ctx.reg_ctx->GetRegisterInfoByName(reg_names[i]); 199 RegisterValue reg_val; 200 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 201 arg.value = reg_val.GetAsUInt64(0, &success); 202 } 203 // arguments passed on the stack 204 else { 205 // get the argument type size 206 const size_t size = arg_size[arg_list[i].type]; 207 // read the argument from memory 208 arg.value = 0; 209 // note: due to little endian layout reading 4 or 8 bytes will give the 210 // correct value. 211 size_t read = ctx.process->ReadMemory(sp, &arg.value, size, err); 212 success = (err.Success() && read == size); 213 // advance past this argument 214 sp -= size; 215 } 216 // fail if we couldn't read this argument 217 if (!success) { 218 if (log) 219 log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s", 220 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 221 return false; 222 } 223 } 224 return true; 225 } 226 227 bool GetArgsArm(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 228 // number of arguments passed in registers 229 static const uint32_t args_in_reg = 4; 230 231 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 232 233 Error err; 234 235 // get the current stack pointer 236 uint64_t sp = ctx.reg_ctx->GetSP(); 237 238 for (size_t i = 0; i < num_args; ++i) { 239 bool success = false; 240 ArgItem &arg = arg_list[i]; 241 // arguments passed in registers 242 if (i < args_in_reg) { 243 const RegisterInfo *reg = ctx.reg_ctx->GetRegisterInfoAtIndex(i); 244 RegisterValue reg_val; 245 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 246 arg.value = reg_val.GetAsUInt32(0, &success); 247 } 248 // arguments passed on the stack 249 else { 250 // get the argument type size 251 const size_t arg_size = sizeof(uint32_t); 252 // clear all 64bits 253 arg.value = 0; 254 // read this argument from memory 255 size_t bytes_read = 256 ctx.process->ReadMemory(sp, &arg.value, arg_size, err); 257 success = (err.Success() && bytes_read == arg_size); 258 // advance the stack pointer 259 sp += sizeof(uint32_t); 260 } 261 // fail if we couldn't read this argument 262 if (!success) { 263 if (log) 264 log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s", 265 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 266 return false; 267 } 268 } 269 return true; 270 } 271 272 bool GetArgsAarch64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 273 // number of arguments passed in registers 274 static const uint32_t args_in_reg = 8; 275 276 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 277 278 for (size_t i = 0; i < num_args; ++i) { 279 bool success = false; 280 ArgItem &arg = arg_list[i]; 281 // arguments passed in registers 282 if (i < args_in_reg) { 283 const RegisterInfo *reg = ctx.reg_ctx->GetRegisterInfoAtIndex(i); 284 RegisterValue reg_val; 285 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 286 arg.value = reg_val.GetAsUInt64(0, &success); 287 } 288 // arguments passed on the stack 289 else { 290 if (log) 291 log->Printf("%s - reading arguments spilled to stack not implemented", 292 __FUNCTION__); 293 } 294 // fail if we couldn't read this argument 295 if (!success) { 296 if (log) 297 log->Printf("%s - error reading argument: %" PRIu64, __FUNCTION__, 298 uint64_t(i)); 299 return false; 300 } 301 } 302 return true; 303 } 304 305 bool GetArgsMipsel(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 306 // number of arguments passed in registers 307 static const uint32_t args_in_reg = 4; 308 // register file offset to first argument 309 static const uint32_t reg_offset = 4; 310 311 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 312 313 Error err; 314 315 // find offset to arguments on the stack (+16 to skip over a0-a3 shadow space) 316 uint64_t sp = ctx.reg_ctx->GetSP() + 16; 317 318 for (size_t i = 0; i < num_args; ++i) { 319 bool success = false; 320 ArgItem &arg = arg_list[i]; 321 // arguments passed in registers 322 if (i < args_in_reg) { 323 const RegisterInfo *reg = 324 ctx.reg_ctx->GetRegisterInfoAtIndex(i + reg_offset); 325 RegisterValue reg_val; 326 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 327 arg.value = reg_val.GetAsUInt64(0, &success); 328 } 329 // arguments passed on the stack 330 else { 331 const size_t arg_size = sizeof(uint32_t); 332 arg.value = 0; 333 size_t bytes_read = 334 ctx.process->ReadMemory(sp, &arg.value, arg_size, err); 335 success = (err.Success() && bytes_read == arg_size); 336 // advance the stack pointer 337 sp += arg_size; 338 } 339 // fail if we couldn't read this argument 340 if (!success) { 341 if (log) 342 log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s", 343 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 344 return false; 345 } 346 } 347 return true; 348 } 349 350 bool GetArgsMips64el(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 351 // number of arguments passed in registers 352 static const uint32_t args_in_reg = 8; 353 // register file offset to first argument 354 static const uint32_t reg_offset = 4; 355 356 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 357 358 Error err; 359 360 // get the current stack pointer 361 uint64_t sp = ctx.reg_ctx->GetSP(); 362 363 for (size_t i = 0; i < num_args; ++i) { 364 bool success = false; 365 ArgItem &arg = arg_list[i]; 366 // arguments passed in registers 367 if (i < args_in_reg) { 368 const RegisterInfo *reg = 369 ctx.reg_ctx->GetRegisterInfoAtIndex(i + reg_offset); 370 RegisterValue reg_val; 371 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 372 arg.value = reg_val.GetAsUInt64(0, &success); 373 } 374 // arguments passed on the stack 375 else { 376 // get the argument type size 377 const size_t arg_size = sizeof(uint64_t); 378 // clear all 64bits 379 arg.value = 0; 380 // read this argument from memory 381 size_t bytes_read = 382 ctx.process->ReadMemory(sp, &arg.value, arg_size, err); 383 success = (err.Success() && bytes_read == arg_size); 384 // advance the stack pointer 385 sp += arg_size; 386 } 387 // fail if we couldn't read this argument 388 if (!success) { 389 if (log) 390 log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s", 391 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 392 return false; 393 } 394 } 395 return true; 396 } 397 398 bool GetArgs(ExecutionContext &exe_ctx, ArgItem *arg_list, size_t num_args) { 399 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 400 401 // verify that we have a target 402 if (!exe_ctx.GetTargetPtr()) { 403 if (log) 404 log->Printf("%s - invalid target", __FUNCTION__); 405 return false; 406 } 407 408 GetArgsCtx ctx = {exe_ctx.GetRegisterContext(), exe_ctx.GetProcessPtr()}; 409 assert(ctx.reg_ctx && ctx.process); 410 411 // dispatch based on architecture 412 switch (exe_ctx.GetTargetPtr()->GetArchitecture().GetMachine()) { 413 case llvm::Triple::ArchType::x86: 414 return GetArgsX86(ctx, arg_list, num_args); 415 416 case llvm::Triple::ArchType::x86_64: 417 return GetArgsX86_64(ctx, arg_list, num_args); 418 419 case llvm::Triple::ArchType::arm: 420 return GetArgsArm(ctx, arg_list, num_args); 421 422 case llvm::Triple::ArchType::aarch64: 423 return GetArgsAarch64(ctx, arg_list, num_args); 424 425 case llvm::Triple::ArchType::mipsel: 426 return GetArgsMipsel(ctx, arg_list, num_args); 427 428 case llvm::Triple::ArchType::mips64el: 429 return GetArgsMips64el(ctx, arg_list, num_args); 430 431 default: 432 // unsupported architecture 433 if (log) { 434 log->Printf( 435 "%s - architecture not supported: '%s'", __FUNCTION__, 436 exe_ctx.GetTargetRef().GetArchitecture().GetArchitectureName()); 437 } 438 return false; 439 } 440 } 441 442 bool IsRenderScriptScriptModule(ModuleSP module) { 443 if (!module) 444 return false; 445 return module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), 446 eSymbolTypeData) != nullptr; 447 } 448 449 bool ParseCoordinate(llvm::StringRef coord_s, RSCoordinate &coord) { 450 // takes an argument of the form 'num[,num][,num]'. 451 // Where 'coord_s' is a comma separated 1,2 or 3-dimensional coordinate 452 // with the whitespace trimmed. 453 // Missing coordinates are defaulted to zero. 454 // If parsing of any elements fails the contents of &coord are undefined 455 // and `false` is returned, `true` otherwise 456 457 RegularExpression regex; 458 RegularExpression::Match regex_match(3); 459 460 bool matched = false; 461 if (regex.Compile(llvm::StringRef("^([0-9]+),([0-9]+),([0-9]+)$")) && 462 regex.Execute(coord_s, ®ex_match)) 463 matched = true; 464 else if (regex.Compile(llvm::StringRef("^([0-9]+),([0-9]+)$")) && 465 regex.Execute(coord_s, ®ex_match)) 466 matched = true; 467 else if (regex.Compile(llvm::StringRef("^([0-9]+)$")) && 468 regex.Execute(coord_s, ®ex_match)) 469 matched = true; 470 471 if (!matched) 472 return false; 473 474 auto get_index = [&](int idx, uint32_t &i) -> bool { 475 std::string group; 476 errno = 0; 477 if (regex_match.GetMatchAtIndex(coord_s.str().c_str(), idx + 1, group)) 478 return !llvm::StringRef(group).getAsInteger<uint32_t>(10, i); 479 return true; 480 }; 481 482 return get_index(0, coord.x) && get_index(1, coord.y) && 483 get_index(2, coord.z); 484 } 485 486 bool SkipPrologue(lldb::ModuleSP &module, Address &addr) { 487 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 488 SymbolContext sc; 489 uint32_t resolved_flags = 490 module->ResolveSymbolContextForAddress(addr, eSymbolContextFunction, sc); 491 if (resolved_flags & eSymbolContextFunction) { 492 if (sc.function) { 493 const uint32_t offset = sc.function->GetPrologueByteSize(); 494 ConstString name = sc.GetFunctionName(); 495 if (offset) 496 addr.Slide(offset); 497 if (log) 498 log->Printf("%s: Prologue offset for %s is %" PRIu32, __FUNCTION__, 499 name.AsCString(), offset); 500 } 501 return true; 502 } else 503 return false; 504 } 505 } // anonymous namespace 506 507 // The ScriptDetails class collects data associated with a single script 508 // instance. 509 struct RenderScriptRuntime::ScriptDetails { 510 ~ScriptDetails() = default; 511 512 enum ScriptType { eScript, eScriptC }; 513 514 // The derived type of the script. 515 empirical_type<ScriptType> type; 516 // The name of the original source file. 517 empirical_type<std::string> res_name; 518 // Path to script .so file on the device. 519 empirical_type<std::string> shared_lib; 520 // Directory where kernel objects are cached on device. 521 empirical_type<std::string> cache_dir; 522 // Pointer to the context which owns this script. 523 empirical_type<lldb::addr_t> context; 524 // Pointer to the script object itself. 525 empirical_type<lldb::addr_t> script; 526 }; 527 528 // This Element class represents the Element object in RS, defining the type 529 // associated with an Allocation. 530 struct RenderScriptRuntime::Element { 531 // Taken from rsDefines.h 532 enum DataKind { 533 RS_KIND_USER, 534 RS_KIND_PIXEL_L = 7, 535 RS_KIND_PIXEL_A, 536 RS_KIND_PIXEL_LA, 537 RS_KIND_PIXEL_RGB, 538 RS_KIND_PIXEL_RGBA, 539 RS_KIND_PIXEL_DEPTH, 540 RS_KIND_PIXEL_YUV, 541 RS_KIND_INVALID = 100 542 }; 543 544 // Taken from rsDefines.h 545 enum DataType { 546 RS_TYPE_NONE = 0, 547 RS_TYPE_FLOAT_16, 548 RS_TYPE_FLOAT_32, 549 RS_TYPE_FLOAT_64, 550 RS_TYPE_SIGNED_8, 551 RS_TYPE_SIGNED_16, 552 RS_TYPE_SIGNED_32, 553 RS_TYPE_SIGNED_64, 554 RS_TYPE_UNSIGNED_8, 555 RS_TYPE_UNSIGNED_16, 556 RS_TYPE_UNSIGNED_32, 557 RS_TYPE_UNSIGNED_64, 558 RS_TYPE_BOOLEAN, 559 560 RS_TYPE_UNSIGNED_5_6_5, 561 RS_TYPE_UNSIGNED_5_5_5_1, 562 RS_TYPE_UNSIGNED_4_4_4_4, 563 564 RS_TYPE_MATRIX_4X4, 565 RS_TYPE_MATRIX_3X3, 566 RS_TYPE_MATRIX_2X2, 567 568 RS_TYPE_ELEMENT = 1000, 569 RS_TYPE_TYPE, 570 RS_TYPE_ALLOCATION, 571 RS_TYPE_SAMPLER, 572 RS_TYPE_SCRIPT, 573 RS_TYPE_MESH, 574 RS_TYPE_PROGRAM_FRAGMENT, 575 RS_TYPE_PROGRAM_VERTEX, 576 RS_TYPE_PROGRAM_RASTER, 577 RS_TYPE_PROGRAM_STORE, 578 RS_TYPE_FONT, 579 580 RS_TYPE_INVALID = 10000 581 }; 582 583 std::vector<Element> children; // Child Element fields for structs 584 empirical_type<lldb::addr_t> 585 element_ptr; // Pointer to the RS Element of the Type 586 empirical_type<DataType> 587 type; // Type of each data pointer stored by the allocation 588 empirical_type<DataKind> 589 type_kind; // Defines pixel type if Allocation is created from an image 590 empirical_type<uint32_t> 591 type_vec_size; // Vector size of each data point, e.g '4' for uchar4 592 empirical_type<uint32_t> field_count; // Number of Subelements 593 empirical_type<uint32_t> datum_size; // Size of a single Element with padding 594 empirical_type<uint32_t> padding; // Number of padding bytes 595 empirical_type<uint32_t> 596 array_size; // Number of items in array, only needed for strucrs 597 ConstString type_name; // Name of type, only needed for structs 598 599 static const ConstString & 600 GetFallbackStructName(); // Print this as the type name of a struct Element 601 // If we can't resolve the actual struct name 602 603 bool ShouldRefresh() const { 604 const bool valid_ptr = element_ptr.isValid() && *element_ptr.get() != 0x0; 605 const bool valid_type = 606 type.isValid() && type_vec_size.isValid() && type_kind.isValid(); 607 return !valid_ptr || !valid_type || !datum_size.isValid(); 608 } 609 }; 610 611 // This AllocationDetails class collects data associated with a single 612 // allocation instance. 613 struct RenderScriptRuntime::AllocationDetails { 614 struct Dimension { 615 uint32_t dim_1; 616 uint32_t dim_2; 617 uint32_t dim_3; 618 uint32_t cube_map; 619 620 Dimension() { 621 dim_1 = 0; 622 dim_2 = 0; 623 dim_3 = 0; 624 cube_map = 0; 625 } 626 }; 627 628 // The FileHeader struct specifies the header we use for writing allocations 629 // to a binary file. Our format begins with the ASCII characters "RSAD", 630 // identifying the file as an allocation dump. Member variables dims and 631 // hdr_size are then written consecutively, immediately followed by an 632 // instance of the ElementHeader struct. Because Elements can contain 633 // subelements, there may be more than one instance of the ElementHeader 634 // struct. With this first instance being the root element, and the other 635 // instances being the root's descendants. To identify which instances are an 636 // ElementHeader's children, each struct is immediately followed by a sequence 637 // of consecutive offsets to the start of its child structs. These offsets are 638 // 4 bytes in size, and the 0 offset signifies no more children. 639 struct FileHeader { 640 uint8_t ident[4]; // ASCII 'RSAD' identifying the file 641 uint32_t dims[3]; // Dimensions 642 uint16_t hdr_size; // Header size in bytes, including all element headers 643 }; 644 645 struct ElementHeader { 646 uint16_t type; // DataType enum 647 uint32_t kind; // DataKind enum 648 uint32_t element_size; // Size of a single element, including padding 649 uint16_t vector_size; // Vector width 650 uint32_t array_size; // Number of elements in array 651 }; 652 653 // Monotonically increasing from 1 654 static uint32_t ID; 655 656 // Maps Allocation DataType enum and vector size to printable strings 657 // using mapping from RenderScript numerical types summary documentation 658 static const char *RsDataTypeToString[][4]; 659 660 // Maps Allocation DataKind enum to printable strings 661 static const char *RsDataKindToString[]; 662 663 // Maps allocation types to format sizes for printing. 664 static const uint32_t RSTypeToFormat[][3]; 665 666 // Give each allocation an ID as a way 667 // for commands to reference it. 668 const uint32_t id; 669 670 // Allocation Element type 671 RenderScriptRuntime::Element element; 672 // Dimensions of the Allocation 673 empirical_type<Dimension> dimension; 674 // Pointer to address of the RS Allocation 675 empirical_type<lldb::addr_t> address; 676 // Pointer to the data held by the Allocation 677 empirical_type<lldb::addr_t> data_ptr; 678 // Pointer to the RS Type of the Allocation 679 empirical_type<lldb::addr_t> type_ptr; 680 // Pointer to the RS Context of the Allocation 681 empirical_type<lldb::addr_t> context; 682 // Size of the allocation 683 empirical_type<uint32_t> size; 684 // Stride between rows of the allocation 685 empirical_type<uint32_t> stride; 686 687 // Give each allocation an id, so we can reference it in user commands. 688 AllocationDetails() : id(ID++) {} 689 690 bool ShouldRefresh() const { 691 bool valid_ptrs = data_ptr.isValid() && *data_ptr.get() != 0x0; 692 valid_ptrs = valid_ptrs && type_ptr.isValid() && *type_ptr.get() != 0x0; 693 return !valid_ptrs || !dimension.isValid() || !size.isValid() || 694 element.ShouldRefresh(); 695 } 696 }; 697 698 const ConstString &RenderScriptRuntime::Element::GetFallbackStructName() { 699 static const ConstString FallbackStructName("struct"); 700 return FallbackStructName; 701 } 702 703 uint32_t RenderScriptRuntime::AllocationDetails::ID = 1; 704 705 const char *RenderScriptRuntime::AllocationDetails::RsDataKindToString[] = { 706 "User", "Undefined", "Undefined", "Undefined", 707 "Undefined", "Undefined", "Undefined", // Enum jumps from 0 to 7 708 "L Pixel", "A Pixel", "LA Pixel", "RGB Pixel", 709 "RGBA Pixel", "Pixel Depth", "YUV Pixel"}; 710 711 const char *RenderScriptRuntime::AllocationDetails::RsDataTypeToString[][4] = { 712 {"None", "None", "None", "None"}, 713 {"half", "half2", "half3", "half4"}, 714 {"float", "float2", "float3", "float4"}, 715 {"double", "double2", "double3", "double4"}, 716 {"char", "char2", "char3", "char4"}, 717 {"short", "short2", "short3", "short4"}, 718 {"int", "int2", "int3", "int4"}, 719 {"long", "long2", "long3", "long4"}, 720 {"uchar", "uchar2", "uchar3", "uchar4"}, 721 {"ushort", "ushort2", "ushort3", "ushort4"}, 722 {"uint", "uint2", "uint3", "uint4"}, 723 {"ulong", "ulong2", "ulong3", "ulong4"}, 724 {"bool", "bool2", "bool3", "bool4"}, 725 {"packed_565", "packed_565", "packed_565", "packed_565"}, 726 {"packed_5551", "packed_5551", "packed_5551", "packed_5551"}, 727 {"packed_4444", "packed_4444", "packed_4444", "packed_4444"}, 728 {"rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4"}, 729 {"rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3"}, 730 {"rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2"}, 731 732 // Handlers 733 {"RS Element", "RS Element", "RS Element", "RS Element"}, 734 {"RS Type", "RS Type", "RS Type", "RS Type"}, 735 {"RS Allocation", "RS Allocation", "RS Allocation", "RS Allocation"}, 736 {"RS Sampler", "RS Sampler", "RS Sampler", "RS Sampler"}, 737 {"RS Script", "RS Script", "RS Script", "RS Script"}, 738 739 // Deprecated 740 {"RS Mesh", "RS Mesh", "RS Mesh", "RS Mesh"}, 741 {"RS Program Fragment", "RS Program Fragment", "RS Program Fragment", 742 "RS Program Fragment"}, 743 {"RS Program Vertex", "RS Program Vertex", "RS Program Vertex", 744 "RS Program Vertex"}, 745 {"RS Program Raster", "RS Program Raster", "RS Program Raster", 746 "RS Program Raster"}, 747 {"RS Program Store", "RS Program Store", "RS Program Store", 748 "RS Program Store"}, 749 {"RS Font", "RS Font", "RS Font", "RS Font"}}; 750 751 // Used as an index into the RSTypeToFormat array elements 752 enum TypeToFormatIndex { eFormatSingle = 0, eFormatVector, eElementSize }; 753 754 // { format enum of single element, format enum of element vector, size of 755 // element} 756 const uint32_t RenderScriptRuntime::AllocationDetails::RSTypeToFormat[][3] = { 757 // RS_TYPE_NONE 758 {eFormatHex, eFormatHex, 1}, 759 // RS_TYPE_FLOAT_16 760 {eFormatFloat, eFormatVectorOfFloat16, 2}, 761 // RS_TYPE_FLOAT_32 762 {eFormatFloat, eFormatVectorOfFloat32, sizeof(float)}, 763 // RS_TYPE_FLOAT_64 764 {eFormatFloat, eFormatVectorOfFloat64, sizeof(double)}, 765 // RS_TYPE_SIGNED_8 766 {eFormatDecimal, eFormatVectorOfSInt8, sizeof(int8_t)}, 767 // RS_TYPE_SIGNED_16 768 {eFormatDecimal, eFormatVectorOfSInt16, sizeof(int16_t)}, 769 // RS_TYPE_SIGNED_32 770 {eFormatDecimal, eFormatVectorOfSInt32, sizeof(int32_t)}, 771 // RS_TYPE_SIGNED_64 772 {eFormatDecimal, eFormatVectorOfSInt64, sizeof(int64_t)}, 773 // RS_TYPE_UNSIGNED_8 774 {eFormatDecimal, eFormatVectorOfUInt8, sizeof(uint8_t)}, 775 // RS_TYPE_UNSIGNED_16 776 {eFormatDecimal, eFormatVectorOfUInt16, sizeof(uint16_t)}, 777 // RS_TYPE_UNSIGNED_32 778 {eFormatDecimal, eFormatVectorOfUInt32, sizeof(uint32_t)}, 779 // RS_TYPE_UNSIGNED_64 780 {eFormatDecimal, eFormatVectorOfUInt64, sizeof(uint64_t)}, 781 // RS_TYPE_BOOL 782 {eFormatBoolean, eFormatBoolean, 1}, 783 // RS_TYPE_UNSIGNED_5_6_5 784 {eFormatHex, eFormatHex, sizeof(uint16_t)}, 785 // RS_TYPE_UNSIGNED_5_5_5_1 786 {eFormatHex, eFormatHex, sizeof(uint16_t)}, 787 // RS_TYPE_UNSIGNED_4_4_4_4 788 {eFormatHex, eFormatHex, sizeof(uint16_t)}, 789 // RS_TYPE_MATRIX_4X4 790 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 16}, 791 // RS_TYPE_MATRIX_3X3 792 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 9}, 793 // RS_TYPE_MATRIX_2X2 794 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 4}}; 795 796 //------------------------------------------------------------------ 797 // Static Functions 798 //------------------------------------------------------------------ 799 LanguageRuntime * 800 RenderScriptRuntime::CreateInstance(Process *process, 801 lldb::LanguageType language) { 802 803 if (language == eLanguageTypeExtRenderScript) 804 return new RenderScriptRuntime(process); 805 else 806 return nullptr; 807 } 808 809 // Callback with a module to search for matching symbols. We first check that 810 // the module contains RS kernels. Then look for a symbol which matches our 811 // kernel name. The breakpoint address is finally set using the address of this 812 // symbol. 813 Searcher::CallbackReturn 814 RSBreakpointResolver::SearchCallback(SearchFilter &filter, 815 SymbolContext &context, Address *, bool) { 816 ModuleSP module = context.module_sp; 817 818 if (!module || !IsRenderScriptScriptModule(module)) 819 return Searcher::eCallbackReturnContinue; 820 821 // Attempt to set a breakpoint on the kernel name symbol within the module 822 // library. If it's not found, it's likely debug info is unavailable - try to 823 // set a breakpoint on <name>.expand. 824 const Symbol *kernel_sym = 825 module->FindFirstSymbolWithNameAndType(m_kernel_name, eSymbolTypeCode); 826 if (!kernel_sym) { 827 std::string kernel_name_expanded(m_kernel_name.AsCString()); 828 kernel_name_expanded.append(".expand"); 829 kernel_sym = module->FindFirstSymbolWithNameAndType( 830 ConstString(kernel_name_expanded.c_str()), eSymbolTypeCode); 831 } 832 833 if (kernel_sym) { 834 Address bp_addr = kernel_sym->GetAddress(); 835 if (filter.AddressPasses(bp_addr)) 836 m_breakpoint->AddLocation(bp_addr); 837 } 838 839 return Searcher::eCallbackReturnContinue; 840 } 841 842 Searcher::CallbackReturn 843 RSReduceBreakpointResolver::SearchCallback(lldb_private::SearchFilter &filter, 844 lldb_private::SymbolContext &context, 845 Address *, bool) { 846 // We need to have access to the list of reductions currently parsed, as 847 // reduce names don't actually exist as 848 // symbols in a module. They are only identifiable by parsing the .rs.info 849 // packet, or finding the expand symbol. We 850 // therefore need access to the list of parsed rs modules to properly resolve 851 // reduction names. 852 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 853 ModuleSP module = context.module_sp; 854 855 if (!module || !IsRenderScriptScriptModule(module)) 856 return Searcher::eCallbackReturnContinue; 857 858 if (!m_rsmodules) 859 return Searcher::eCallbackReturnContinue; 860 861 for (const auto &module_desc : *m_rsmodules) { 862 if (module_desc->m_module != module) 863 continue; 864 865 for (const auto &reduction : module_desc->m_reductions) { 866 if (reduction.m_reduce_name != m_reduce_name) 867 continue; 868 869 std::array<std::pair<ConstString, int>, 5> funcs{ 870 {{reduction.m_init_name, eKernelTypeInit}, 871 {reduction.m_accum_name, eKernelTypeAccum}, 872 {reduction.m_comb_name, eKernelTypeComb}, 873 {reduction.m_outc_name, eKernelTypeOutC}, 874 {reduction.m_halter_name, eKernelTypeHalter}}}; 875 876 for (const auto &kernel : funcs) { 877 // Skip constituent functions that don't match our spec 878 if (!(m_kernel_types & kernel.second)) 879 continue; 880 881 const auto kernel_name = kernel.first; 882 const auto symbol = module->FindFirstSymbolWithNameAndType( 883 kernel_name, eSymbolTypeCode); 884 if (!symbol) 885 continue; 886 887 auto address = symbol->GetAddress(); 888 if (filter.AddressPasses(address)) { 889 bool new_bp; 890 if (!SkipPrologue(module, address)) { 891 if (log) 892 log->Printf("%s: Error trying to skip prologue", __FUNCTION__); 893 } 894 m_breakpoint->AddLocation(address, &new_bp); 895 if (log) 896 log->Printf("%s: %s reduction breakpoint on %s in %s", __FUNCTION__, 897 new_bp ? "new" : "existing", kernel_name.GetCString(), 898 address.GetModule()->GetFileSpec().GetCString()); 899 } 900 } 901 } 902 } 903 return eCallbackReturnContinue; 904 } 905 906 Searcher::CallbackReturn RSScriptGroupBreakpointResolver::SearchCallback( 907 SearchFilter &filter, SymbolContext &context, Address *addr, 908 bool containing) { 909 910 if (!m_breakpoint) 911 return eCallbackReturnContinue; 912 913 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 914 ModuleSP &module = context.module_sp; 915 916 if (!module || !IsRenderScriptScriptModule(module)) 917 return Searcher::eCallbackReturnContinue; 918 919 std::vector<std::string> names; 920 m_breakpoint->GetNames(names); 921 if (names.empty()) 922 return eCallbackReturnContinue; 923 924 for (auto &name : names) { 925 const RSScriptGroupDescriptorSP sg = FindScriptGroup(ConstString(name)); 926 if (!sg) { 927 if (log) 928 log->Printf("%s: could not find script group for %s", __FUNCTION__, 929 name.c_str()); 930 continue; 931 } 932 933 if (log) 934 log->Printf("%s: Found ScriptGroup for %s", __FUNCTION__, name.c_str()); 935 936 for (const RSScriptGroupDescriptor::Kernel &k : sg->m_kernels) { 937 if (log) { 938 log->Printf("%s: Adding breakpoint for %s", __FUNCTION__, 939 k.m_name.AsCString()); 940 log->Printf("%s: Kernel address 0x%" PRIx64, __FUNCTION__, k.m_addr); 941 } 942 943 const lldb_private::Symbol *sym = 944 module->FindFirstSymbolWithNameAndType(k.m_name, eSymbolTypeCode); 945 if (!sym) { 946 if (log) 947 log->Printf("%s: Unable to find symbol for %s", __FUNCTION__, 948 k.m_name.AsCString()); 949 continue; 950 } 951 952 if (log) { 953 log->Printf("%s: Found symbol name is %s", __FUNCTION__, 954 sym->GetName().AsCString()); 955 } 956 957 auto address = sym->GetAddress(); 958 if (!SkipPrologue(module, address)) { 959 if (log) 960 log->Printf("%s: Error trying to skip prologue", __FUNCTION__); 961 } 962 963 bool new_bp; 964 m_breakpoint->AddLocation(address, &new_bp); 965 966 if (log) 967 log->Printf("%s: Placed %sbreakpoint on %s", __FUNCTION__, 968 new_bp ? "new " : "", k.m_name.AsCString()); 969 970 // exit after placing the first breakpoint if we do not intend to stop 971 // on all kernels making up this script group 972 if (!m_stop_on_all) 973 break; 974 } 975 } 976 977 return eCallbackReturnContinue; 978 } 979 980 void RenderScriptRuntime::Initialize() { 981 PluginManager::RegisterPlugin(GetPluginNameStatic(), 982 "RenderScript language support", CreateInstance, 983 GetCommandObject); 984 } 985 986 void RenderScriptRuntime::Terminate() { 987 PluginManager::UnregisterPlugin(CreateInstance); 988 } 989 990 lldb_private::ConstString RenderScriptRuntime::GetPluginNameStatic() { 991 static ConstString plugin_name("renderscript"); 992 return plugin_name; 993 } 994 995 RenderScriptRuntime::ModuleKind 996 RenderScriptRuntime::GetModuleKind(const lldb::ModuleSP &module_sp) { 997 if (module_sp) { 998 if (IsRenderScriptScriptModule(module_sp)) 999 return eModuleKindKernelObj; 1000 1001 // Is this the main RS runtime library 1002 const ConstString rs_lib("libRS.so"); 1003 if (module_sp->GetFileSpec().GetFilename() == rs_lib) { 1004 return eModuleKindLibRS; 1005 } 1006 1007 const ConstString rs_driverlib("libRSDriver.so"); 1008 if (module_sp->GetFileSpec().GetFilename() == rs_driverlib) { 1009 return eModuleKindDriver; 1010 } 1011 1012 const ConstString rs_cpureflib("libRSCpuRef.so"); 1013 if (module_sp->GetFileSpec().GetFilename() == rs_cpureflib) { 1014 return eModuleKindImpl; 1015 } 1016 } 1017 return eModuleKindIgnored; 1018 } 1019 1020 bool RenderScriptRuntime::IsRenderScriptModule( 1021 const lldb::ModuleSP &module_sp) { 1022 return GetModuleKind(module_sp) != eModuleKindIgnored; 1023 } 1024 1025 void RenderScriptRuntime::ModulesDidLoad(const ModuleList &module_list) { 1026 std::lock_guard<std::recursive_mutex> guard(module_list.GetMutex()); 1027 1028 size_t num_modules = module_list.GetSize(); 1029 for (size_t i = 0; i < num_modules; i++) { 1030 auto mod = module_list.GetModuleAtIndex(i); 1031 if (IsRenderScriptModule(mod)) { 1032 LoadModule(mod); 1033 } 1034 } 1035 } 1036 1037 //------------------------------------------------------------------ 1038 // PluginInterface protocol 1039 //------------------------------------------------------------------ 1040 lldb_private::ConstString RenderScriptRuntime::GetPluginName() { 1041 return GetPluginNameStatic(); 1042 } 1043 1044 uint32_t RenderScriptRuntime::GetPluginVersion() { return 1; } 1045 1046 bool RenderScriptRuntime::IsVTableName(const char *name) { return false; } 1047 1048 bool RenderScriptRuntime::GetDynamicTypeAndAddress( 1049 ValueObject &in_value, lldb::DynamicValueType use_dynamic, 1050 TypeAndOrName &class_type_or_name, Address &address, 1051 Value::ValueType &value_type) { 1052 return false; 1053 } 1054 1055 TypeAndOrName 1056 RenderScriptRuntime::FixUpDynamicType(const TypeAndOrName &type_and_or_name, 1057 ValueObject &static_value) { 1058 return type_and_or_name; 1059 } 1060 1061 bool RenderScriptRuntime::CouldHaveDynamicValue(ValueObject &in_value) { 1062 return false; 1063 } 1064 1065 lldb::BreakpointResolverSP 1066 RenderScriptRuntime::CreateExceptionResolver(Breakpoint *bp, bool catch_bp, 1067 bool throw_bp) { 1068 BreakpointResolverSP resolver_sp; 1069 return resolver_sp; 1070 } 1071 1072 const RenderScriptRuntime::HookDefn RenderScriptRuntime::s_runtimeHookDefns[] = 1073 { 1074 // rsdScript 1075 {"rsdScriptInit", "_Z13rsdScriptInitPKN7android12renderscript7ContextEP" 1076 "NS0_7ScriptCEPKcS7_PKhjj", 1077 "_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_" 1078 "7ScriptCEPKcS7_PKhmj", 1079 0, RenderScriptRuntime::eModuleKindDriver, 1080 &lldb_private::RenderScriptRuntime::CaptureScriptInit}, 1081 {"rsdScriptInvokeForEachMulti", 1082 "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0" 1083 "_6ScriptEjPPKNS0_10AllocationEjPS6_PKvjPK12RsScriptCall", 1084 "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0" 1085 "_6ScriptEjPPKNS0_10AllocationEmPS6_PKvmPK12RsScriptCall", 1086 0, RenderScriptRuntime::eModuleKindDriver, 1087 &lldb_private::RenderScriptRuntime::CaptureScriptInvokeForEachMulti}, 1088 {"rsdScriptSetGlobalVar", "_Z21rsdScriptSetGlobalVarPKN7android12render" 1089 "script7ContextEPKNS0_6ScriptEjPvj", 1090 "_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_" 1091 "6ScriptEjPvm", 1092 0, RenderScriptRuntime::eModuleKindDriver, 1093 &lldb_private::RenderScriptRuntime::CaptureSetGlobalVar}, 1094 1095 // rsdAllocation 1096 {"rsdAllocationInit", "_Z17rsdAllocationInitPKN7android12renderscript7C" 1097 "ontextEPNS0_10AllocationEb", 1098 "_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_" 1099 "10AllocationEb", 1100 0, RenderScriptRuntime::eModuleKindDriver, 1101 &lldb_private::RenderScriptRuntime::CaptureAllocationInit}, 1102 {"rsdAllocationRead2D", 1103 "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_" 1104 "10AllocationEjjj23RsAllocationCubemapFacejjPvjj", 1105 "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_" 1106 "10AllocationEjjj23RsAllocationCubemapFacejjPvmm", 1107 0, RenderScriptRuntime::eModuleKindDriver, nullptr}, 1108 {"rsdAllocationDestroy", "_Z20rsdAllocationDestroyPKN7android12rendersc" 1109 "ript7ContextEPNS0_10AllocationE", 1110 "_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_" 1111 "10AllocationE", 1112 0, RenderScriptRuntime::eModuleKindDriver, 1113 &lldb_private::RenderScriptRuntime::CaptureAllocationDestroy}, 1114 1115 // renderscript script groups 1116 {"rsdDebugHintScriptGroup2", "_ZN7android12renderscript21debugHintScrip" 1117 "tGroup2EPKcjPKPFvPK24RsExpandKernelDriver" 1118 "InfojjjEj", 1119 "_ZN7android12renderscript21debugHintScriptGroup2EPKcjPKPFvPK24RsExpan" 1120 "dKernelDriverInfojjjEj", 1121 0, RenderScriptRuntime::eModuleKindImpl, 1122 &lldb_private::RenderScriptRuntime::CaptureDebugHintScriptGroup2}}; 1123 1124 const size_t RenderScriptRuntime::s_runtimeHookCount = 1125 sizeof(s_runtimeHookDefns) / sizeof(s_runtimeHookDefns[0]); 1126 1127 bool RenderScriptRuntime::HookCallback(void *baton, 1128 StoppointCallbackContext *ctx, 1129 lldb::user_id_t break_id, 1130 lldb::user_id_t break_loc_id) { 1131 RuntimeHook *hook = (RuntimeHook *)baton; 1132 ExecutionContext exe_ctx(ctx->exe_ctx_ref); 1133 1134 RenderScriptRuntime *lang_rt = 1135 (RenderScriptRuntime *)exe_ctx.GetProcessPtr()->GetLanguageRuntime( 1136 eLanguageTypeExtRenderScript); 1137 1138 lang_rt->HookCallback(hook, exe_ctx); 1139 1140 return false; 1141 } 1142 1143 void RenderScriptRuntime::HookCallback(RuntimeHook *hook, 1144 ExecutionContext &exe_ctx) { 1145 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1146 1147 if (log) 1148 log->Printf("%s - '%s'", __FUNCTION__, hook->defn->name); 1149 1150 if (hook->defn->grabber) { 1151 (this->*(hook->defn->grabber))(hook, exe_ctx); 1152 } 1153 } 1154 1155 void RenderScriptRuntime::CaptureDebugHintScriptGroup2( 1156 RuntimeHook *hook_info, ExecutionContext &context) { 1157 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1158 1159 enum { 1160 eGroupName = 0, 1161 eGroupNameSize, 1162 eKernel, 1163 eKernelCount, 1164 }; 1165 1166 std::array<ArgItem, 4> args{{ 1167 {ArgItem::ePointer, 0}, // const char *groupName 1168 {ArgItem::eInt32, 0}, // const uint32_t groupNameSize 1169 {ArgItem::ePointer, 0}, // const ExpandFuncTy *kernel 1170 {ArgItem::eInt32, 0}, // const uint32_t kernelCount 1171 }}; 1172 1173 if (!GetArgs(context, args.data(), args.size())) { 1174 if (log) 1175 log->Printf("%s - Error while reading the function parameters", 1176 __FUNCTION__); 1177 return; 1178 } else if (log) { 1179 log->Printf("%s - groupName : 0x%" PRIx64, __FUNCTION__, 1180 addr_t(args[eGroupName])); 1181 log->Printf("%s - groupNameSize: %" PRIu64, __FUNCTION__, 1182 uint64_t(args[eGroupNameSize])); 1183 log->Printf("%s - kernel : 0x%" PRIx64, __FUNCTION__, 1184 addr_t(args[eKernel])); 1185 log->Printf("%s - kernelCount : %" PRIu64, __FUNCTION__, 1186 uint64_t(args[eKernelCount])); 1187 } 1188 1189 // parse script group name 1190 ConstString group_name; 1191 { 1192 Error err; 1193 const uint64_t len = uint64_t(args[eGroupNameSize]); 1194 std::unique_ptr<char[]> buffer(new char[uint32_t(len + 1)]); 1195 m_process->ReadMemory(addr_t(args[eGroupName]), buffer.get(), len, err); 1196 buffer.get()[len] = '\0'; 1197 if (!err.Success()) { 1198 if (log) 1199 log->Printf("Error reading scriptgroup name from target"); 1200 return; 1201 } else { 1202 if (log) 1203 log->Printf("Extracted scriptgroup name %s", buffer.get()); 1204 } 1205 // write back the script group name 1206 group_name.SetCString(buffer.get()); 1207 } 1208 1209 // create or access existing script group 1210 RSScriptGroupDescriptorSP group; 1211 { 1212 // search for existing script group 1213 for (auto sg : m_scriptGroups) { 1214 if (sg->m_name == group_name) { 1215 group = sg; 1216 break; 1217 } 1218 } 1219 if (!group) { 1220 group.reset(new RSScriptGroupDescriptor); 1221 group->m_name = group_name; 1222 m_scriptGroups.push_back(group); 1223 } else { 1224 // already have this script group 1225 if (log) 1226 log->Printf("Attempt to add duplicate script group %s", 1227 group_name.AsCString()); 1228 return; 1229 } 1230 } 1231 assert(group); 1232 1233 const uint32_t target_ptr_size = m_process->GetAddressByteSize(); 1234 std::vector<addr_t> kernels; 1235 // parse kernel addresses in script group 1236 for (uint64_t i = 0; i < uint64_t(args[eKernelCount]); ++i) { 1237 RSScriptGroupDescriptor::Kernel kernel; 1238 // extract script group kernel addresses from the target 1239 const addr_t ptr_addr = addr_t(args[eKernel]) + i * target_ptr_size; 1240 uint64_t kernel_addr = 0; 1241 Error err; 1242 size_t read = 1243 m_process->ReadMemory(ptr_addr, &kernel_addr, target_ptr_size, err); 1244 if (!err.Success() || read != target_ptr_size) { 1245 if (log) 1246 log->Printf("Error parsing kernel address %" PRIu64 " in script group", 1247 i); 1248 return; 1249 } 1250 if (log) 1251 log->Printf("Extracted scriptgroup kernel address - 0x%" PRIx64, 1252 kernel_addr); 1253 kernel.m_addr = kernel_addr; 1254 1255 // try to resolve the associated kernel name 1256 if (!ResolveKernelName(kernel.m_addr, kernel.m_name)) { 1257 if (log) 1258 log->Printf("Parsed scriptgroup kernel %" PRIu64 " - 0x%" PRIx64, i, 1259 kernel_addr); 1260 return; 1261 } 1262 1263 // try to find the non '.expand' function 1264 { 1265 const llvm::StringRef expand(".expand"); 1266 const llvm::StringRef name_ref = kernel.m_name.GetStringRef(); 1267 if (name_ref.endswith(expand)) { 1268 const ConstString base_kernel(name_ref.drop_back(expand.size())); 1269 // verify this function is a valid kernel 1270 if (IsKnownKernel(base_kernel)) { 1271 kernel.m_name = base_kernel; 1272 if (log) 1273 log->Printf("%s - found non expand version '%s'", __FUNCTION__, 1274 base_kernel.GetCString()); 1275 } 1276 } 1277 } 1278 // add to a list of script group kernels we know about 1279 group->m_kernels.push_back(kernel); 1280 } 1281 1282 // Resolve any pending scriptgroup breakpoints 1283 { 1284 Target &target = m_process->GetTarget(); 1285 const BreakpointList &list = target.GetBreakpointList(); 1286 const size_t num_breakpoints = list.GetSize(); 1287 if (log) 1288 log->Printf("Resolving %zu breakpoints", num_breakpoints); 1289 for (size_t i = 0; i < num_breakpoints; ++i) { 1290 const BreakpointSP bp = list.GetBreakpointAtIndex(i); 1291 if (bp) { 1292 if (bp->MatchesName(group_name.AsCString())) { 1293 if (log) 1294 log->Printf("Found breakpoint with name %s", 1295 group_name.AsCString()); 1296 bp->ResolveBreakpoint(); 1297 } 1298 } 1299 } 1300 } 1301 } 1302 1303 void RenderScriptRuntime::CaptureScriptInvokeForEachMulti( 1304 RuntimeHook *hook, ExecutionContext &exe_ctx) { 1305 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1306 1307 enum { 1308 eRsContext = 0, 1309 eRsScript, 1310 eRsSlot, 1311 eRsAIns, 1312 eRsInLen, 1313 eRsAOut, 1314 eRsUsr, 1315 eRsUsrLen, 1316 eRsSc, 1317 }; 1318 1319 std::array<ArgItem, 9> args{{ 1320 ArgItem{ArgItem::ePointer, 0}, // const Context *rsc 1321 ArgItem{ArgItem::ePointer, 0}, // Script *s 1322 ArgItem{ArgItem::eInt32, 0}, // uint32_t slot 1323 ArgItem{ArgItem::ePointer, 0}, // const Allocation **aIns 1324 ArgItem{ArgItem::eInt32, 0}, // size_t inLen 1325 ArgItem{ArgItem::ePointer, 0}, // Allocation *aout 1326 ArgItem{ArgItem::ePointer, 0}, // const void *usr 1327 ArgItem{ArgItem::eInt32, 0}, // size_t usrLen 1328 ArgItem{ArgItem::ePointer, 0}, // const RsScriptCall *sc 1329 }}; 1330 1331 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1332 if (!success) { 1333 if (log) 1334 log->Printf("%s - Error while reading the function parameters", 1335 __FUNCTION__); 1336 return; 1337 } 1338 1339 const uint32_t target_ptr_size = m_process->GetAddressByteSize(); 1340 Error err; 1341 std::vector<uint64_t> allocs; 1342 1343 // traverse allocation list 1344 for (uint64_t i = 0; i < uint64_t(args[eRsInLen]); ++i) { 1345 // calculate offest to allocation pointer 1346 const addr_t addr = addr_t(args[eRsAIns]) + i * target_ptr_size; 1347 1348 // Note: due to little endian layout, reading 32bits or 64bits into res 1349 // will give the correct results. 1350 uint64_t result = 0; 1351 size_t read = m_process->ReadMemory(addr, &result, target_ptr_size, err); 1352 if (read != target_ptr_size || !err.Success()) { 1353 if (log) 1354 log->Printf( 1355 "%s - Error while reading allocation list argument %" PRIu64, 1356 __FUNCTION__, i); 1357 } else { 1358 allocs.push_back(result); 1359 } 1360 } 1361 1362 // if there is an output allocation track it 1363 if (uint64_t alloc_out = uint64_t(args[eRsAOut])) { 1364 allocs.push_back(alloc_out); 1365 } 1366 1367 // for all allocations we have found 1368 for (const uint64_t alloc_addr : allocs) { 1369 AllocationDetails *alloc = LookUpAllocation(alloc_addr); 1370 if (!alloc) 1371 alloc = CreateAllocation(alloc_addr); 1372 1373 if (alloc) { 1374 // save the allocation address 1375 if (alloc->address.isValid()) { 1376 // check the allocation address we already have matches 1377 assert(*alloc->address.get() == alloc_addr); 1378 } else { 1379 alloc->address = alloc_addr; 1380 } 1381 1382 // save the context 1383 if (log) { 1384 if (alloc->context.isValid() && 1385 *alloc->context.get() != addr_t(args[eRsContext])) 1386 log->Printf("%s - Allocation used by multiple contexts", 1387 __FUNCTION__); 1388 } 1389 alloc->context = addr_t(args[eRsContext]); 1390 } 1391 } 1392 1393 // make sure we track this script object 1394 if (lldb_private::RenderScriptRuntime::ScriptDetails *script = 1395 LookUpScript(addr_t(args[eRsScript]), true)) { 1396 if (log) { 1397 if (script->context.isValid() && 1398 *script->context.get() != addr_t(args[eRsContext])) 1399 log->Printf("%s - Script used by multiple contexts", __FUNCTION__); 1400 } 1401 script->context = addr_t(args[eRsContext]); 1402 } 1403 } 1404 1405 void RenderScriptRuntime::CaptureSetGlobalVar(RuntimeHook *hook, 1406 ExecutionContext &context) { 1407 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1408 1409 enum { 1410 eRsContext, 1411 eRsScript, 1412 eRsId, 1413 eRsData, 1414 eRsLength, 1415 }; 1416 1417 std::array<ArgItem, 5> args{{ 1418 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1419 ArgItem{ArgItem::ePointer, 0}, // eRsScript 1420 ArgItem{ArgItem::eInt32, 0}, // eRsId 1421 ArgItem{ArgItem::ePointer, 0}, // eRsData 1422 ArgItem{ArgItem::eInt32, 0}, // eRsLength 1423 }}; 1424 1425 bool success = GetArgs(context, &args[0], args.size()); 1426 if (!success) { 1427 if (log) 1428 log->Printf("%s - error reading the function parameters.", __FUNCTION__); 1429 return; 1430 } 1431 1432 if (log) { 1433 log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " slot %" PRIu64 " = 0x%" PRIx64 1434 ":%" PRIu64 "bytes.", 1435 __FUNCTION__, uint64_t(args[eRsContext]), 1436 uint64_t(args[eRsScript]), uint64_t(args[eRsId]), 1437 uint64_t(args[eRsData]), uint64_t(args[eRsLength])); 1438 1439 addr_t script_addr = addr_t(args[eRsScript]); 1440 if (m_scriptMappings.find(script_addr) != m_scriptMappings.end()) { 1441 auto rsm = m_scriptMappings[script_addr]; 1442 if (uint64_t(args[eRsId]) < rsm->m_globals.size()) { 1443 auto rsg = rsm->m_globals[uint64_t(args[eRsId])]; 1444 log->Printf("%s - Setting of '%s' within '%s' inferred", __FUNCTION__, 1445 rsg.m_name.AsCString(), 1446 rsm->m_module->GetFileSpec().GetFilename().AsCString()); 1447 } 1448 } 1449 } 1450 } 1451 1452 void RenderScriptRuntime::CaptureAllocationInit(RuntimeHook *hook, 1453 ExecutionContext &exe_ctx) { 1454 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1455 1456 enum { eRsContext, eRsAlloc, eRsForceZero }; 1457 1458 std::array<ArgItem, 3> args{{ 1459 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1460 ArgItem{ArgItem::ePointer, 0}, // eRsAlloc 1461 ArgItem{ArgItem::eBool, 0}, // eRsForceZero 1462 }}; 1463 1464 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1465 if (!success) { 1466 if (log) 1467 log->Printf("%s - error while reading the function parameters", 1468 __FUNCTION__); 1469 return; 1470 } 1471 1472 if (log) 1473 log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 ",0x%" PRIx64 " .", 1474 __FUNCTION__, uint64_t(args[eRsContext]), 1475 uint64_t(args[eRsAlloc]), uint64_t(args[eRsForceZero])); 1476 1477 AllocationDetails *alloc = CreateAllocation(uint64_t(args[eRsAlloc])); 1478 if (alloc) 1479 alloc->context = uint64_t(args[eRsContext]); 1480 } 1481 1482 void RenderScriptRuntime::CaptureAllocationDestroy(RuntimeHook *hook, 1483 ExecutionContext &exe_ctx) { 1484 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1485 1486 enum { 1487 eRsContext, 1488 eRsAlloc, 1489 }; 1490 1491 std::array<ArgItem, 2> args{{ 1492 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1493 ArgItem{ArgItem::ePointer, 0}, // eRsAlloc 1494 }}; 1495 1496 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1497 if (!success) { 1498 if (log) 1499 log->Printf("%s - error while reading the function parameters.", 1500 __FUNCTION__); 1501 return; 1502 } 1503 1504 if (log) 1505 log->Printf("%s - 0x%" PRIx64 ", 0x%" PRIx64 ".", __FUNCTION__, 1506 uint64_t(args[eRsContext]), uint64_t(args[eRsAlloc])); 1507 1508 for (auto iter = m_allocations.begin(); iter != m_allocations.end(); ++iter) { 1509 auto &allocation_ap = *iter; // get the unique pointer 1510 if (allocation_ap->address.isValid() && 1511 *allocation_ap->address.get() == addr_t(args[eRsAlloc])) { 1512 m_allocations.erase(iter); 1513 if (log) 1514 log->Printf("%s - deleted allocation entry.", __FUNCTION__); 1515 return; 1516 } 1517 } 1518 1519 if (log) 1520 log->Printf("%s - couldn't find destroyed allocation.", __FUNCTION__); 1521 } 1522 1523 void RenderScriptRuntime::CaptureScriptInit(RuntimeHook *hook, 1524 ExecutionContext &exe_ctx) { 1525 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1526 1527 Error err; 1528 Process *process = exe_ctx.GetProcessPtr(); 1529 1530 enum { eRsContext, eRsScript, eRsResNamePtr, eRsCachedDirPtr }; 1531 1532 std::array<ArgItem, 4> args{ 1533 {ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}, 1534 ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}}}; 1535 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1536 if (!success) { 1537 if (log) 1538 log->Printf("%s - error while reading the function parameters.", 1539 __FUNCTION__); 1540 return; 1541 } 1542 1543 std::string res_name; 1544 process->ReadCStringFromMemory(addr_t(args[eRsResNamePtr]), res_name, err); 1545 if (err.Fail()) { 1546 if (log) 1547 log->Printf("%s - error reading res_name: %s.", __FUNCTION__, 1548 err.AsCString()); 1549 } 1550 1551 std::string cache_dir; 1552 process->ReadCStringFromMemory(addr_t(args[eRsCachedDirPtr]), cache_dir, err); 1553 if (err.Fail()) { 1554 if (log) 1555 log->Printf("%s - error reading cache_dir: %s.", __FUNCTION__, 1556 err.AsCString()); 1557 } 1558 1559 if (log) 1560 log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " => '%s' at '%s' .", 1561 __FUNCTION__, uint64_t(args[eRsContext]), 1562 uint64_t(args[eRsScript]), res_name.c_str(), cache_dir.c_str()); 1563 1564 if (res_name.size() > 0) { 1565 StreamString strm; 1566 strm.Printf("librs.%s.so", res_name.c_str()); 1567 1568 ScriptDetails *script = LookUpScript(addr_t(args[eRsScript]), true); 1569 if (script) { 1570 script->type = ScriptDetails::eScriptC; 1571 script->cache_dir = cache_dir; 1572 script->res_name = res_name; 1573 script->shared_lib = strm.GetString(); 1574 script->context = addr_t(args[eRsContext]); 1575 } 1576 1577 if (log) 1578 log->Printf("%s - '%s' tagged with context 0x%" PRIx64 1579 " and script 0x%" PRIx64 ".", 1580 __FUNCTION__, strm.GetData(), uint64_t(args[eRsContext]), 1581 uint64_t(args[eRsScript])); 1582 } else if (log) { 1583 log->Printf("%s - resource name invalid, Script not tagged.", __FUNCTION__); 1584 } 1585 } 1586 1587 void RenderScriptRuntime::LoadRuntimeHooks(lldb::ModuleSP module, 1588 ModuleKind kind) { 1589 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1590 1591 if (!module) { 1592 return; 1593 } 1594 1595 Target &target = GetProcess()->GetTarget(); 1596 const llvm::Triple::ArchType machine = target.GetArchitecture().GetMachine(); 1597 1598 if (machine != llvm::Triple::ArchType::x86 && 1599 machine != llvm::Triple::ArchType::arm && 1600 machine != llvm::Triple::ArchType::aarch64 && 1601 machine != llvm::Triple::ArchType::mipsel && 1602 machine != llvm::Triple::ArchType::mips64el && 1603 machine != llvm::Triple::ArchType::x86_64) { 1604 if (log) 1605 log->Printf("%s - unable to hook runtime functions.", __FUNCTION__); 1606 return; 1607 } 1608 1609 const uint32_t target_ptr_size = 1610 target.GetArchitecture().GetAddressByteSize(); 1611 1612 std::array<bool, s_runtimeHookCount> hook_placed; 1613 hook_placed.fill(false); 1614 1615 for (size_t idx = 0; idx < s_runtimeHookCount; idx++) { 1616 const HookDefn *hook_defn = &s_runtimeHookDefns[idx]; 1617 if (hook_defn->kind != kind) { 1618 continue; 1619 } 1620 1621 const char *symbol_name = (target_ptr_size == 4) 1622 ? hook_defn->symbol_name_m32 1623 : hook_defn->symbol_name_m64; 1624 1625 const Symbol *sym = module->FindFirstSymbolWithNameAndType( 1626 ConstString(symbol_name), eSymbolTypeCode); 1627 if (!sym) { 1628 if (log) { 1629 log->Printf("%s - symbol '%s' related to the function %s not found", 1630 __FUNCTION__, symbol_name, hook_defn->name); 1631 } 1632 continue; 1633 } 1634 1635 addr_t addr = sym->GetLoadAddress(&target); 1636 if (addr == LLDB_INVALID_ADDRESS) { 1637 if (log) 1638 log->Printf("%s - unable to resolve the address of hook function '%s' " 1639 "with symbol '%s'.", 1640 __FUNCTION__, hook_defn->name, symbol_name); 1641 continue; 1642 } else { 1643 if (log) 1644 log->Printf("%s - function %s, address resolved at 0x%" PRIx64, 1645 __FUNCTION__, hook_defn->name, addr); 1646 } 1647 1648 RuntimeHookSP hook(new RuntimeHook()); 1649 hook->address = addr; 1650 hook->defn = hook_defn; 1651 hook->bp_sp = target.CreateBreakpoint(addr, true, false); 1652 hook->bp_sp->SetCallback(HookCallback, hook.get(), true); 1653 m_runtimeHooks[addr] = hook; 1654 if (log) { 1655 log->Printf("%s - successfully hooked '%s' in '%s' version %" PRIu64 1656 " at 0x%" PRIx64 ".", 1657 __FUNCTION__, hook_defn->name, 1658 module->GetFileSpec().GetFilename().AsCString(), 1659 (uint64_t)hook_defn->version, (uint64_t)addr); 1660 } 1661 hook_placed[idx] = true; 1662 } 1663 1664 // log any unhooked function 1665 if (log) { 1666 for (size_t i = 0; i < hook_placed.size(); ++i) { 1667 if (hook_placed[i]) 1668 continue; 1669 const HookDefn &hook_defn = s_runtimeHookDefns[i]; 1670 if (hook_defn.kind != kind) 1671 continue; 1672 log->Printf("%s - function %s was not hooked", __FUNCTION__, 1673 hook_defn.name); 1674 } 1675 } 1676 } 1677 1678 void RenderScriptRuntime::FixupScriptDetails(RSModuleDescriptorSP rsmodule_sp) { 1679 if (!rsmodule_sp) 1680 return; 1681 1682 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1683 1684 const ModuleSP module = rsmodule_sp->m_module; 1685 const FileSpec &file = module->GetPlatformFileSpec(); 1686 1687 // Iterate over all of the scripts that we currently know of. 1688 // Note: We cant push or pop to m_scripts here or it may invalidate rs_script. 1689 for (const auto &rs_script : m_scripts) { 1690 // Extract the expected .so file path for this script. 1691 std::string shared_lib; 1692 if (!rs_script->shared_lib.get(shared_lib)) 1693 continue; 1694 1695 // Only proceed if the module that has loaded corresponds to this script. 1696 if (file.GetFilename() != ConstString(shared_lib.c_str())) 1697 continue; 1698 1699 // Obtain the script address which we use as a key. 1700 lldb::addr_t script; 1701 if (!rs_script->script.get(script)) 1702 continue; 1703 1704 // If we have a script mapping for the current script. 1705 if (m_scriptMappings.find(script) != m_scriptMappings.end()) { 1706 // if the module we have stored is different to the one we just received. 1707 if (m_scriptMappings[script] != rsmodule_sp) { 1708 if (log) 1709 log->Printf( 1710 "%s - script %" PRIx64 " wants reassigned to new rsmodule '%s'.", 1711 __FUNCTION__, (uint64_t)script, 1712 rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString()); 1713 } 1714 } 1715 // We don't have a script mapping for the current script. 1716 else { 1717 // Obtain the script resource name. 1718 std::string res_name; 1719 if (rs_script->res_name.get(res_name)) 1720 // Set the modules resource name. 1721 rsmodule_sp->m_resname = res_name; 1722 // Add Script/Module pair to map. 1723 m_scriptMappings[script] = rsmodule_sp; 1724 if (log) 1725 log->Printf( 1726 "%s - script %" PRIx64 " associated with rsmodule '%s'.", 1727 __FUNCTION__, (uint64_t)script, 1728 rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString()); 1729 } 1730 } 1731 } 1732 1733 // Uses the Target API to evaluate the expression passed as a parameter to the 1734 // function The result of that expression is returned an unsigned 64 bit int, 1735 // via the result* parameter. Function returns true on success, and false on 1736 // failure 1737 bool RenderScriptRuntime::EvalRSExpression(const char *expr, 1738 StackFrame *frame_ptr, 1739 uint64_t *result) { 1740 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1741 if (log) 1742 log->Printf("%s(%s)", __FUNCTION__, expr); 1743 1744 ValueObjectSP expr_result; 1745 EvaluateExpressionOptions options; 1746 options.SetLanguage(lldb::eLanguageTypeC_plus_plus); 1747 // Perform the actual expression evaluation 1748 auto &target = GetProcess()->GetTarget(); 1749 target.EvaluateExpression(expr, frame_ptr, expr_result, options); 1750 1751 if (!expr_result) { 1752 if (log) 1753 log->Printf("%s: couldn't evaluate expression.", __FUNCTION__); 1754 return false; 1755 } 1756 1757 // The result of the expression is invalid 1758 if (!expr_result->GetError().Success()) { 1759 Error err = expr_result->GetError(); 1760 // Expression returned is void, so this is actually a success 1761 if (err.GetError() == UserExpression::kNoResult) { 1762 if (log) 1763 log->Printf("%s - expression returned void.", __FUNCTION__); 1764 1765 result = nullptr; 1766 return true; 1767 } 1768 1769 if (log) 1770 log->Printf("%s - error evaluating expression result: %s", __FUNCTION__, 1771 err.AsCString()); 1772 return false; 1773 } 1774 1775 bool success = false; 1776 // We only read the result as an uint32_t. 1777 *result = expr_result->GetValueAsUnsigned(0, &success); 1778 1779 if (!success) { 1780 if (log) 1781 log->Printf("%s - couldn't convert expression result to uint32_t", 1782 __FUNCTION__); 1783 return false; 1784 } 1785 1786 return true; 1787 } 1788 1789 namespace { 1790 // Used to index expression format strings 1791 enum ExpressionStrings { 1792 eExprGetOffsetPtr = 0, 1793 eExprAllocGetType, 1794 eExprTypeDimX, 1795 eExprTypeDimY, 1796 eExprTypeDimZ, 1797 eExprTypeElemPtr, 1798 eExprElementType, 1799 eExprElementKind, 1800 eExprElementVec, 1801 eExprElementFieldCount, 1802 eExprSubelementsId, 1803 eExprSubelementsName, 1804 eExprSubelementsArrSize, 1805 1806 _eExprLast // keep at the end, implicit size of the array runtime_expressions 1807 }; 1808 1809 // max length of an expanded expression 1810 const int jit_max_expr_size = 512; 1811 1812 // Retrieve the string to JIT for the given expression 1813 #define JIT_TEMPLATE_CONTEXT "void* ctxt = (void*)rsDebugGetContextWrapper(0x%" PRIx64 "); " 1814 const char *JITTemplate(ExpressionStrings e) { 1815 // Format strings containing the expressions we may need to evaluate. 1816 static std::array<const char *, _eExprLast> runtime_expressions = { 1817 {// Mangled GetOffsetPointer(Allocation*, xoff, yoff, zoff, lod, cubemap) 1818 "(int*)_" 1819 "Z12GetOffsetPtrPKN7android12renderscript10AllocationEjjjj23RsAllocation" 1820 "CubemapFace" 1821 "(0x%" PRIx64 ", %" PRIu32 ", %" PRIu32 ", %" PRIu32 ", 0, 0)", // eExprGetOffsetPtr 1822 1823 // Type* rsaAllocationGetType(Context*, Allocation*) 1824 JIT_TEMPLATE_CONTEXT "(void*)rsaAllocationGetType(ctxt, 0x%" PRIx64 ")", // eExprAllocGetType 1825 1826 // rsaTypeGetNativeData(Context*, Type*, void* typeData, size) Pack the 1827 // data in the following way mHal.state.dimX; mHal.state.dimY; 1828 // mHal.state.dimZ; mHal.state.lodCount; mHal.state.faces; mElement; into 1829 // typeData Need to specify 32 or 64 bit for uint_t since this differs 1830 // between devices 1831 JIT_TEMPLATE_CONTEXT 1832 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt" 1833 ", 0x%" PRIx64 ", data, 6); data[0]", // eExprTypeDimX 1834 JIT_TEMPLATE_CONTEXT 1835 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt" 1836 ", 0x%" PRIx64 ", data, 6); data[1]", // eExprTypeDimY 1837 JIT_TEMPLATE_CONTEXT 1838 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt" 1839 ", 0x%" PRIx64 ", data, 6); data[2]", // eExprTypeDimZ 1840 JIT_TEMPLATE_CONTEXT 1841 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt" 1842 ", 0x%" PRIx64 ", data, 6); data[5]", // eExprTypeElemPtr 1843 1844 // rsaElementGetNativeData(Context*, Element*, uint32_t* elemData,size) 1845 // Pack mType; mKind; mNormalized; mVectorSize; NumSubElements into 1846 // elemData 1847 JIT_TEMPLATE_CONTEXT 1848 "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt" 1849 ", 0x%" PRIx64 ", data, 5); data[0]", // eExprElementType 1850 JIT_TEMPLATE_CONTEXT 1851 "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt" 1852 ", 0x%" PRIx64 ", data, 5); data[1]", // eExprElementKind 1853 JIT_TEMPLATE_CONTEXT 1854 "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt" 1855 ", 0x%" PRIx64 ", data, 5); data[3]", // eExprElementVec 1856 JIT_TEMPLATE_CONTEXT 1857 "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt" 1858 ", 0x%" PRIx64 ", data, 5); data[4]", // eExprElementFieldCount 1859 1860 // rsaElementGetSubElements(RsContext con, RsElement elem, uintptr_t 1861 // *ids, const char **names, size_t *arraySizes, uint32_t dataSize) 1862 // Needed for Allocations of structs to gather details about 1863 // fields/Subelements Element* of field 1864 JIT_TEMPLATE_CONTEXT "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 1865 "]; size_t arr_size[%" PRIu32 "];" 1866 "(void*)rsaElementGetSubElements(ctxt, 0x%" PRIx64 1867 ", ids, names, arr_size, %" PRIu32 "); ids[%" PRIu32 "]", // eExprSubelementsId 1868 1869 // Name of field 1870 JIT_TEMPLATE_CONTEXT "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 1871 "]; size_t arr_size[%" PRIu32 "];" 1872 "(void*)rsaElementGetSubElements(ctxt, 0x%" PRIx64 1873 ", ids, names, arr_size, %" PRIu32 "); names[%" PRIu32 "]", // eExprSubelementsName 1874 1875 // Array size of field 1876 JIT_TEMPLATE_CONTEXT "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 1877 "]; size_t arr_size[%" PRIu32 "];" 1878 "(void*)rsaElementGetSubElements(ctxt, 0x%" PRIx64 1879 ", ids, names, arr_size, %" PRIu32 "); arr_size[%" PRIu32 "]"}}; // eExprSubelementsArrSize 1880 1881 return runtime_expressions[e]; 1882 } 1883 } // end of the anonymous namespace 1884 1885 // JITs the RS runtime for the internal data pointer of an allocation. Is passed 1886 // x,y,z coordinates for the pointer to a specific element. Then sets the 1887 // data_ptr member in Allocation with the result. Returns true on success, false 1888 // otherwise 1889 bool RenderScriptRuntime::JITDataPointer(AllocationDetails *alloc, 1890 StackFrame *frame_ptr, uint32_t x, 1891 uint32_t y, uint32_t z) { 1892 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1893 1894 if (!alloc->address.isValid()) { 1895 if (log) 1896 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1897 return false; 1898 } 1899 1900 const char *fmt_str = JITTemplate(eExprGetOffsetPtr); 1901 char expr_buf[jit_max_expr_size]; 1902 1903 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 1904 *alloc->address.get(), x, y, z); 1905 if (written < 0) { 1906 if (log) 1907 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1908 return false; 1909 } else if (written >= jit_max_expr_size) { 1910 if (log) 1911 log->Printf("%s - expression too long.", __FUNCTION__); 1912 return false; 1913 } 1914 1915 uint64_t result = 0; 1916 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 1917 return false; 1918 1919 addr_t data_ptr = static_cast<lldb::addr_t>(result); 1920 alloc->data_ptr = data_ptr; 1921 1922 return true; 1923 } 1924 1925 // JITs the RS runtime for the internal pointer to the RS Type of an allocation 1926 // Then sets the type_ptr member in Allocation with the result. Returns true on 1927 // success, false otherwise 1928 bool RenderScriptRuntime::JITTypePointer(AllocationDetails *alloc, 1929 StackFrame *frame_ptr) { 1930 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1931 1932 if (!alloc->address.isValid() || !alloc->context.isValid()) { 1933 if (log) 1934 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1935 return false; 1936 } 1937 1938 const char *fmt_str = JITTemplate(eExprAllocGetType); 1939 char expr_buf[jit_max_expr_size]; 1940 1941 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 1942 *alloc->context.get(), *alloc->address.get()); 1943 if (written < 0) { 1944 if (log) 1945 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1946 return false; 1947 } else if (written >= jit_max_expr_size) { 1948 if (log) 1949 log->Printf("%s - expression too long.", __FUNCTION__); 1950 return false; 1951 } 1952 1953 uint64_t result = 0; 1954 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 1955 return false; 1956 1957 addr_t type_ptr = static_cast<lldb::addr_t>(result); 1958 alloc->type_ptr = type_ptr; 1959 1960 return true; 1961 } 1962 1963 // JITs the RS runtime for information about the dimensions and type of an 1964 // allocation Then sets dimension and element_ptr members in Allocation with the 1965 // result. Returns true on success, false otherwise 1966 bool RenderScriptRuntime::JITTypePacked(AllocationDetails *alloc, 1967 StackFrame *frame_ptr) { 1968 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1969 1970 if (!alloc->type_ptr.isValid() || !alloc->context.isValid()) { 1971 if (log) 1972 log->Printf("%s - Failed to find allocation details.", __FUNCTION__); 1973 return false; 1974 } 1975 1976 // Expression is different depending on if device is 32 or 64 bit 1977 uint32_t target_ptr_size = 1978 GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 1979 const uint32_t bits = target_ptr_size == 4 ? 32 : 64; 1980 1981 // We want 4 elements from packed data 1982 const uint32_t num_exprs = 4; 1983 assert(num_exprs == (eExprTypeElemPtr - eExprTypeDimX + 1) && 1984 "Invalid number of expressions"); 1985 1986 char expr_bufs[num_exprs][jit_max_expr_size]; 1987 uint64_t results[num_exprs]; 1988 1989 for (uint32_t i = 0; i < num_exprs; ++i) { 1990 const char *fmt_str = JITTemplate(ExpressionStrings(eExprTypeDimX + i)); 1991 int written = snprintf(expr_bufs[i], jit_max_expr_size, fmt_str, 1992 *alloc->context.get(), bits, *alloc->type_ptr.get()); 1993 if (written < 0) { 1994 if (log) 1995 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1996 return false; 1997 } else if (written >= jit_max_expr_size) { 1998 if (log) 1999 log->Printf("%s - expression too long.", __FUNCTION__); 2000 return false; 2001 } 2002 2003 // Perform expression evaluation 2004 if (!EvalRSExpression(expr_bufs[i], frame_ptr, &results[i])) 2005 return false; 2006 } 2007 2008 // Assign results to allocation members 2009 AllocationDetails::Dimension dims; 2010 dims.dim_1 = static_cast<uint32_t>(results[0]); 2011 dims.dim_2 = static_cast<uint32_t>(results[1]); 2012 dims.dim_3 = static_cast<uint32_t>(results[2]); 2013 alloc->dimension = dims; 2014 2015 addr_t element_ptr = static_cast<lldb::addr_t>(results[3]); 2016 alloc->element.element_ptr = element_ptr; 2017 2018 if (log) 2019 log->Printf("%s - dims (%" PRIu32 ", %" PRIu32 ", %" PRIu32 2020 ") Element*: 0x%" PRIx64 ".", 2021 __FUNCTION__, dims.dim_1, dims.dim_2, dims.dim_3, element_ptr); 2022 2023 return true; 2024 } 2025 2026 // JITs the RS runtime for information about the Element of an allocation Then 2027 // sets type, type_vec_size, field_count and type_kind members in Element with 2028 // the result. Returns true on success, false otherwise 2029 bool RenderScriptRuntime::JITElementPacked(Element &elem, 2030 const lldb::addr_t context, 2031 StackFrame *frame_ptr) { 2032 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2033 2034 if (!elem.element_ptr.isValid()) { 2035 if (log) 2036 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 2037 return false; 2038 } 2039 2040 // We want 4 elements from packed data 2041 const uint32_t num_exprs = 4; 2042 assert(num_exprs == (eExprElementFieldCount - eExprElementType + 1) && 2043 "Invalid number of expressions"); 2044 2045 char expr_bufs[num_exprs][jit_max_expr_size]; 2046 uint64_t results[num_exprs]; 2047 2048 for (uint32_t i = 0; i < num_exprs; i++) { 2049 const char *fmt_str = JITTemplate(ExpressionStrings(eExprElementType + i)); 2050 int written = snprintf(expr_bufs[i], jit_max_expr_size, fmt_str, context, 2051 *elem.element_ptr.get()); 2052 if (written < 0) { 2053 if (log) 2054 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 2055 return false; 2056 } else if (written >= jit_max_expr_size) { 2057 if (log) 2058 log->Printf("%s - expression too long.", __FUNCTION__); 2059 return false; 2060 } 2061 2062 // Perform expression evaluation 2063 if (!EvalRSExpression(expr_bufs[i], frame_ptr, &results[i])) 2064 return false; 2065 } 2066 2067 // Assign results to allocation members 2068 elem.type = static_cast<RenderScriptRuntime::Element::DataType>(results[0]); 2069 elem.type_kind = 2070 static_cast<RenderScriptRuntime::Element::DataKind>(results[1]); 2071 elem.type_vec_size = static_cast<uint32_t>(results[2]); 2072 elem.field_count = static_cast<uint32_t>(results[3]); 2073 2074 if (log) 2075 log->Printf("%s - data type %" PRIu32 ", pixel type %" PRIu32 2076 ", vector size %" PRIu32 ", field count %" PRIu32, 2077 __FUNCTION__, *elem.type.get(), *elem.type_kind.get(), 2078 *elem.type_vec_size.get(), *elem.field_count.get()); 2079 2080 // If this Element has subelements then JIT rsaElementGetSubElements() for 2081 // details about its fields 2082 if (*elem.field_count.get() > 0 && !JITSubelements(elem, context, frame_ptr)) 2083 return false; 2084 2085 return true; 2086 } 2087 2088 // JITs the RS runtime for information about the subelements/fields of a struct 2089 // allocation This is necessary for infering the struct type so we can pretty 2090 // print the allocation's contents. Returns true on success, false otherwise 2091 bool RenderScriptRuntime::JITSubelements(Element &elem, 2092 const lldb::addr_t context, 2093 StackFrame *frame_ptr) { 2094 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2095 2096 if (!elem.element_ptr.isValid() || !elem.field_count.isValid()) { 2097 if (log) 2098 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 2099 return false; 2100 } 2101 2102 const short num_exprs = 3; 2103 assert(num_exprs == (eExprSubelementsArrSize - eExprSubelementsId + 1) && 2104 "Invalid number of expressions"); 2105 2106 char expr_buffer[jit_max_expr_size]; 2107 uint64_t results; 2108 2109 // Iterate over struct fields. 2110 const uint32_t field_count = *elem.field_count.get(); 2111 for (uint32_t field_index = 0; field_index < field_count; ++field_index) { 2112 Element child; 2113 for (uint32_t expr_index = 0; expr_index < num_exprs; ++expr_index) { 2114 const char *fmt_str = 2115 JITTemplate(ExpressionStrings(eExprSubelementsId + expr_index)); 2116 int written = snprintf(expr_buffer, jit_max_expr_size, fmt_str, 2117 context, field_count, field_count, field_count, 2118 *elem.element_ptr.get(), field_count, field_index); 2119 if (written < 0) { 2120 if (log) 2121 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 2122 return false; 2123 } else if (written >= jit_max_expr_size) { 2124 if (log) 2125 log->Printf("%s - expression too long.", __FUNCTION__); 2126 return false; 2127 } 2128 2129 // Perform expression evaluation 2130 if (!EvalRSExpression(expr_buffer, frame_ptr, &results)) 2131 return false; 2132 2133 if (log) 2134 log->Printf("%s - expr result 0x%" PRIx64 ".", __FUNCTION__, results); 2135 2136 switch (expr_index) { 2137 case 0: // Element* of child 2138 child.element_ptr = static_cast<addr_t>(results); 2139 break; 2140 case 1: // Name of child 2141 { 2142 lldb::addr_t address = static_cast<addr_t>(results); 2143 Error err; 2144 std::string name; 2145 GetProcess()->ReadCStringFromMemory(address, name, err); 2146 if (!err.Fail()) 2147 child.type_name = ConstString(name); 2148 else { 2149 if (log) 2150 log->Printf("%s - warning: Couldn't read field name.", 2151 __FUNCTION__); 2152 } 2153 break; 2154 } 2155 case 2: // Array size of child 2156 child.array_size = static_cast<uint32_t>(results); 2157 break; 2158 } 2159 } 2160 2161 // We need to recursively JIT each Element field of the struct since 2162 // structs can be nested inside structs. 2163 if (!JITElementPacked(child, context, frame_ptr)) 2164 return false; 2165 elem.children.push_back(child); 2166 } 2167 2168 // Try to infer the name of the struct type so we can pretty print the 2169 // allocation contents. 2170 FindStructTypeName(elem, frame_ptr); 2171 2172 return true; 2173 } 2174 2175 // JITs the RS runtime for the address of the last element in the allocation. 2176 // The `elem_size` parameter represents the size of a single element, including 2177 // padding. Which is needed as an offset from the last element pointer. Using 2178 // this offset minus the starting address we can calculate the size of the 2179 // allocation. Returns true on success, false otherwise 2180 bool RenderScriptRuntime::JITAllocationSize(AllocationDetails *alloc, 2181 StackFrame *frame_ptr) { 2182 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2183 2184 if (!alloc->address.isValid() || !alloc->dimension.isValid() || 2185 !alloc->data_ptr.isValid() || !alloc->element.datum_size.isValid()) { 2186 if (log) 2187 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 2188 return false; 2189 } 2190 2191 // Find dimensions 2192 uint32_t dim_x = alloc->dimension.get()->dim_1; 2193 uint32_t dim_y = alloc->dimension.get()->dim_2; 2194 uint32_t dim_z = alloc->dimension.get()->dim_3; 2195 2196 // Our plan of jitting the last element address doesn't seem to work for 2197 // struct Allocations` Instead try to infer the size ourselves without any 2198 // inter element padding. 2199 if (alloc->element.children.size() > 0) { 2200 if (dim_x == 0) 2201 dim_x = 1; 2202 if (dim_y == 0) 2203 dim_y = 1; 2204 if (dim_z == 0) 2205 dim_z = 1; 2206 2207 alloc->size = dim_x * dim_y * dim_z * *alloc->element.datum_size.get(); 2208 2209 if (log) 2210 log->Printf("%s - inferred size of struct allocation %" PRIu32 ".", 2211 __FUNCTION__, *alloc->size.get()); 2212 return true; 2213 } 2214 2215 const char *fmt_str = JITTemplate(eExprGetOffsetPtr); 2216 char expr_buf[jit_max_expr_size]; 2217 2218 // Calculate last element 2219 dim_x = dim_x == 0 ? 0 : dim_x - 1; 2220 dim_y = dim_y == 0 ? 0 : dim_y - 1; 2221 dim_z = dim_z == 0 ? 0 : dim_z - 1; 2222 2223 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 2224 *alloc->address.get(), dim_x, dim_y, dim_z); 2225 if (written < 0) { 2226 if (log) 2227 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 2228 return false; 2229 } else if (written >= jit_max_expr_size) { 2230 if (log) 2231 log->Printf("%s - expression too long.", __FUNCTION__); 2232 return false; 2233 } 2234 2235 uint64_t result = 0; 2236 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 2237 return false; 2238 2239 addr_t mem_ptr = static_cast<lldb::addr_t>(result); 2240 // Find pointer to last element and add on size of an element 2241 alloc->size = static_cast<uint32_t>(mem_ptr - *alloc->data_ptr.get()) + 2242 *alloc->element.datum_size.get(); 2243 2244 return true; 2245 } 2246 2247 // JITs the RS runtime for information about the stride between rows in the 2248 // allocation. This is done to detect padding, since allocated memory is 16-byte 2249 // aligned. 2250 // Returns true on success, false otherwise 2251 bool RenderScriptRuntime::JITAllocationStride(AllocationDetails *alloc, 2252 StackFrame *frame_ptr) { 2253 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2254 2255 if (!alloc->address.isValid() || !alloc->data_ptr.isValid()) { 2256 if (log) 2257 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 2258 return false; 2259 } 2260 2261 const char *fmt_str = JITTemplate(eExprGetOffsetPtr); 2262 char expr_buf[jit_max_expr_size]; 2263 2264 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 2265 *alloc->address.get(), 0, 1, 0); 2266 if (written < 0) { 2267 if (log) 2268 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 2269 return false; 2270 } else if (written >= jit_max_expr_size) { 2271 if (log) 2272 log->Printf("%s - expression too long.", __FUNCTION__); 2273 return false; 2274 } 2275 2276 uint64_t result = 0; 2277 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 2278 return false; 2279 2280 addr_t mem_ptr = static_cast<lldb::addr_t>(result); 2281 alloc->stride = static_cast<uint32_t>(mem_ptr - *alloc->data_ptr.get()); 2282 2283 return true; 2284 } 2285 2286 // JIT all the current runtime info regarding an allocation 2287 bool RenderScriptRuntime::RefreshAllocation(AllocationDetails *alloc, 2288 StackFrame *frame_ptr) { 2289 // GetOffsetPointer() 2290 if (!JITDataPointer(alloc, frame_ptr)) 2291 return false; 2292 2293 // rsaAllocationGetType() 2294 if (!JITTypePointer(alloc, frame_ptr)) 2295 return false; 2296 2297 // rsaTypeGetNativeData() 2298 if (!JITTypePacked(alloc, frame_ptr)) 2299 return false; 2300 2301 // rsaElementGetNativeData() 2302 if (!JITElementPacked(alloc->element, *alloc->context.get(), frame_ptr)) 2303 return false; 2304 2305 // Sets the datum_size member in Element 2306 SetElementSize(alloc->element); 2307 2308 // Use GetOffsetPointer() to infer size of the allocation 2309 if (!JITAllocationSize(alloc, frame_ptr)) 2310 return false; 2311 2312 return true; 2313 } 2314 2315 // Function attempts to set the type_name member of the paramaterised Element 2316 // object. 2317 // This string should be the name of the struct type the Element represents. 2318 // We need this string for pretty printing the Element to users. 2319 void RenderScriptRuntime::FindStructTypeName(Element &elem, 2320 StackFrame *frame_ptr) { 2321 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2322 2323 if (!elem.type_name.IsEmpty()) // Name already set 2324 return; 2325 else 2326 elem.type_name = Element::GetFallbackStructName(); // Default type name if 2327 // we don't succeed 2328 2329 // Find all the global variables from the script rs modules 2330 VariableList var_list; 2331 for (auto module_sp : m_rsmodules) 2332 module_sp->m_module->FindGlobalVariables( 2333 RegularExpression(llvm::StringRef(".")), true, UINT32_MAX, var_list); 2334 2335 // Iterate over all the global variables looking for one with a matching type 2336 // to the Element. 2337 // We make the assumption a match exists since there needs to be a global 2338 // variable to reflect the struct type back into java host code. 2339 for (uint32_t i = 0; i < var_list.GetSize(); ++i) { 2340 const VariableSP var_sp(var_list.GetVariableAtIndex(i)); 2341 if (!var_sp) 2342 continue; 2343 2344 ValueObjectSP valobj_sp = ValueObjectVariable::Create(frame_ptr, var_sp); 2345 if (!valobj_sp) 2346 continue; 2347 2348 // Find the number of variable fields. 2349 // If it has no fields, or more fields than our Element, then it can't be 2350 // the struct we're looking for. 2351 // Don't check for equality since RS can add extra struct members for 2352 // padding. 2353 size_t num_children = valobj_sp->GetNumChildren(); 2354 if (num_children > elem.children.size() || num_children == 0) 2355 continue; 2356 2357 // Iterate over children looking for members with matching field names. 2358 // If all the field names match, this is likely the struct we want. 2359 // TODO: This could be made more robust by also checking children data 2360 // sizes, or array size 2361 bool found = true; 2362 for (size_t i = 0; i < num_children; ++i) { 2363 ValueObjectSP child = valobj_sp->GetChildAtIndex(i, true); 2364 if (!child || (child->GetName() != elem.children[i].type_name)) { 2365 found = false; 2366 break; 2367 } 2368 } 2369 2370 // RS can add extra struct members for padding in the format 2371 // '#rs_padding_[0-9]+' 2372 if (found && num_children < elem.children.size()) { 2373 const uint32_t size_diff = elem.children.size() - num_children; 2374 if (log) 2375 log->Printf("%s - %" PRIu32 " padding struct entries", __FUNCTION__, 2376 size_diff); 2377 2378 for (uint32_t i = 0; i < size_diff; ++i) { 2379 const ConstString &name = elem.children[num_children + i].type_name; 2380 if (strcmp(name.AsCString(), "#rs_padding") < 0) 2381 found = false; 2382 } 2383 } 2384 2385 // We've found a global variable with matching type 2386 if (found) { 2387 // Dereference since our Element type isn't a pointer. 2388 if (valobj_sp->IsPointerType()) { 2389 Error err; 2390 ValueObjectSP deref_valobj = valobj_sp->Dereference(err); 2391 if (!err.Fail()) 2392 valobj_sp = deref_valobj; 2393 } 2394 2395 // Save name of variable in Element. 2396 elem.type_name = valobj_sp->GetTypeName(); 2397 if (log) 2398 log->Printf("%s - element name set to %s", __FUNCTION__, 2399 elem.type_name.AsCString()); 2400 2401 return; 2402 } 2403 } 2404 } 2405 2406 // Function sets the datum_size member of Element. Representing the size of a 2407 // single instance including padding. 2408 // Assumes the relevant allocation information has already been jitted. 2409 void RenderScriptRuntime::SetElementSize(Element &elem) { 2410 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2411 const Element::DataType type = *elem.type.get(); 2412 assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && 2413 "Invalid allocation type"); 2414 2415 const uint32_t vec_size = *elem.type_vec_size.get(); 2416 uint32_t data_size = 0; 2417 uint32_t padding = 0; 2418 2419 // Element is of a struct type, calculate size recursively. 2420 if ((type == Element::RS_TYPE_NONE) && (elem.children.size() > 0)) { 2421 for (Element &child : elem.children) { 2422 SetElementSize(child); 2423 const uint32_t array_size = 2424 child.array_size.isValid() ? *child.array_size.get() : 1; 2425 data_size += *child.datum_size.get() * array_size; 2426 } 2427 } 2428 // These have been packed already 2429 else if (type == Element::RS_TYPE_UNSIGNED_5_6_5 || 2430 type == Element::RS_TYPE_UNSIGNED_5_5_5_1 || 2431 type == Element::RS_TYPE_UNSIGNED_4_4_4_4) { 2432 data_size = AllocationDetails::RSTypeToFormat[type][eElementSize]; 2433 } else if (type < Element::RS_TYPE_ELEMENT) { 2434 data_size = 2435 vec_size * AllocationDetails::RSTypeToFormat[type][eElementSize]; 2436 if (vec_size == 3) 2437 padding = AllocationDetails::RSTypeToFormat[type][eElementSize]; 2438 } else 2439 data_size = 2440 GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 2441 2442 elem.padding = padding; 2443 elem.datum_size = data_size + padding; 2444 if (log) 2445 log->Printf("%s - element size set to %" PRIu32, __FUNCTION__, 2446 data_size + padding); 2447 } 2448 2449 // Given an allocation, this function copies the allocation contents from device 2450 // into a buffer on the heap. 2451 // Returning a shared pointer to the buffer containing the data. 2452 std::shared_ptr<uint8_t> 2453 RenderScriptRuntime::GetAllocationData(AllocationDetails *alloc, 2454 StackFrame *frame_ptr) { 2455 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2456 2457 // JIT all the allocation details 2458 if (alloc->ShouldRefresh()) { 2459 if (log) 2460 log->Printf("%s - allocation details not calculated yet, jitting info", 2461 __FUNCTION__); 2462 2463 if (!RefreshAllocation(alloc, frame_ptr)) { 2464 if (log) 2465 log->Printf("%s - couldn't JIT allocation details", __FUNCTION__); 2466 return nullptr; 2467 } 2468 } 2469 2470 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && 2471 alloc->element.type_vec_size.isValid() && alloc->size.isValid() && 2472 "Allocation information not available"); 2473 2474 // Allocate a buffer to copy data into 2475 const uint32_t size = *alloc->size.get(); 2476 std::shared_ptr<uint8_t> buffer(new uint8_t[size]); 2477 if (!buffer) { 2478 if (log) 2479 log->Printf("%s - couldn't allocate a %" PRIu32 " byte buffer", 2480 __FUNCTION__, size); 2481 return nullptr; 2482 } 2483 2484 // Read the inferior memory 2485 Error err; 2486 lldb::addr_t data_ptr = *alloc->data_ptr.get(); 2487 GetProcess()->ReadMemory(data_ptr, buffer.get(), size, err); 2488 if (err.Fail()) { 2489 if (log) 2490 log->Printf("%s - '%s' Couldn't read %" PRIu32 2491 " bytes of allocation data from 0x%" PRIx64, 2492 __FUNCTION__, err.AsCString(), size, data_ptr); 2493 return nullptr; 2494 } 2495 2496 return buffer; 2497 } 2498 2499 // Function copies data from a binary file into an allocation. 2500 // There is a header at the start of the file, FileHeader, before the data 2501 // content itself. 2502 // Information from this header is used to display warnings to the user about 2503 // incompatibilities 2504 bool RenderScriptRuntime::LoadAllocation(Stream &strm, const uint32_t alloc_id, 2505 const char *path, 2506 StackFrame *frame_ptr) { 2507 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2508 2509 // Find allocation with the given id 2510 AllocationDetails *alloc = FindAllocByID(strm, alloc_id); 2511 if (!alloc) 2512 return false; 2513 2514 if (log) 2515 log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__, 2516 *alloc->address.get()); 2517 2518 // JIT all the allocation details 2519 if (alloc->ShouldRefresh()) { 2520 if (log) 2521 log->Printf("%s - allocation details not calculated yet, jitting info.", 2522 __FUNCTION__); 2523 2524 if (!RefreshAllocation(alloc, frame_ptr)) { 2525 if (log) 2526 log->Printf("%s - couldn't JIT allocation details", __FUNCTION__); 2527 return false; 2528 } 2529 } 2530 2531 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && 2532 alloc->element.type_vec_size.isValid() && alloc->size.isValid() && 2533 alloc->element.datum_size.isValid() && 2534 "Allocation information not available"); 2535 2536 // Check we can read from file 2537 FileSpec file(path, true); 2538 if (!file.Exists()) { 2539 strm.Printf("Error: File %s does not exist", path); 2540 strm.EOL(); 2541 return false; 2542 } 2543 2544 if (!file.Readable()) { 2545 strm.Printf("Error: File %s does not have readable permissions", path); 2546 strm.EOL(); 2547 return false; 2548 } 2549 2550 // Read file into data buffer 2551 auto data_sp = DataBufferLLVM::CreateFromPath(file.GetPath()); 2552 2553 // Cast start of buffer to FileHeader and use pointer to read metadata 2554 void *file_buf = data_sp->GetBytes(); 2555 if (file_buf == nullptr || 2556 data_sp->GetByteSize() < (sizeof(AllocationDetails::FileHeader) + 2557 sizeof(AllocationDetails::ElementHeader))) { 2558 strm.Printf("Error: File %s does not contain enough data for header", path); 2559 strm.EOL(); 2560 return false; 2561 } 2562 const AllocationDetails::FileHeader *file_header = 2563 static_cast<AllocationDetails::FileHeader *>(file_buf); 2564 2565 // Check file starts with ascii characters "RSAD" 2566 if (memcmp(file_header->ident, "RSAD", 4)) { 2567 strm.Printf("Error: File doesn't contain identifier for an RS allocation " 2568 "dump. Are you sure this is the correct file?"); 2569 strm.EOL(); 2570 return false; 2571 } 2572 2573 // Look at the type of the root element in the header 2574 AllocationDetails::ElementHeader root_el_hdr; 2575 memcpy(&root_el_hdr, static_cast<uint8_t *>(file_buf) + 2576 sizeof(AllocationDetails::FileHeader), 2577 sizeof(AllocationDetails::ElementHeader)); 2578 2579 if (log) 2580 log->Printf("%s - header type %" PRIu32 ", element size %" PRIu32, 2581 __FUNCTION__, root_el_hdr.type, root_el_hdr.element_size); 2582 2583 // Check if the target allocation and file both have the same number of bytes 2584 // for an Element 2585 if (*alloc->element.datum_size.get() != root_el_hdr.element_size) { 2586 strm.Printf("Warning: Mismatched Element sizes - file %" PRIu32 2587 " bytes, allocation %" PRIu32 " bytes", 2588 root_el_hdr.element_size, *alloc->element.datum_size.get()); 2589 strm.EOL(); 2590 } 2591 2592 // Check if the target allocation and file both have the same type 2593 const uint32_t alloc_type = static_cast<uint32_t>(*alloc->element.type.get()); 2594 const uint32_t file_type = root_el_hdr.type; 2595 2596 if (file_type > Element::RS_TYPE_FONT) { 2597 strm.Printf("Warning: File has unknown allocation type"); 2598 strm.EOL(); 2599 } else if (alloc_type != file_type) { 2600 // Enum value isn't monotonous, so doesn't always index RsDataTypeToString 2601 // array 2602 uint32_t target_type_name_idx = alloc_type; 2603 uint32_t head_type_name_idx = file_type; 2604 if (alloc_type >= Element::RS_TYPE_ELEMENT && 2605 alloc_type <= Element::RS_TYPE_FONT) 2606 target_type_name_idx = static_cast<Element::DataType>( 2607 (alloc_type - Element::RS_TYPE_ELEMENT) + 2608 Element::RS_TYPE_MATRIX_2X2 + 1); 2609 2610 if (file_type >= Element::RS_TYPE_ELEMENT && 2611 file_type <= Element::RS_TYPE_FONT) 2612 head_type_name_idx = static_cast<Element::DataType>( 2613 (file_type - Element::RS_TYPE_ELEMENT) + Element::RS_TYPE_MATRIX_2X2 + 2614 1); 2615 2616 const char *head_type_name = 2617 AllocationDetails::RsDataTypeToString[head_type_name_idx][0]; 2618 const char *target_type_name = 2619 AllocationDetails::RsDataTypeToString[target_type_name_idx][0]; 2620 2621 strm.Printf( 2622 "Warning: Mismatched Types - file '%s' type, allocation '%s' type", 2623 head_type_name, target_type_name); 2624 strm.EOL(); 2625 } 2626 2627 // Advance buffer past header 2628 file_buf = static_cast<uint8_t *>(file_buf) + file_header->hdr_size; 2629 2630 // Calculate size of allocation data in file 2631 size_t size = data_sp->GetByteSize() - file_header->hdr_size; 2632 2633 // Check if the target allocation and file both have the same total data size. 2634 const uint32_t alloc_size = *alloc->size.get(); 2635 if (alloc_size != size) { 2636 strm.Printf("Warning: Mismatched allocation sizes - file 0x%" PRIx64 2637 " bytes, allocation 0x%" PRIx32 " bytes", 2638 (uint64_t)size, alloc_size); 2639 strm.EOL(); 2640 // Set length to copy to minimum 2641 size = alloc_size < size ? alloc_size : size; 2642 } 2643 2644 // Copy file data from our buffer into the target allocation. 2645 lldb::addr_t alloc_data = *alloc->data_ptr.get(); 2646 Error err; 2647 size_t written = GetProcess()->WriteMemory(alloc_data, file_buf, size, err); 2648 if (!err.Success() || written != size) { 2649 strm.Printf("Error: Couldn't write data to allocation %s", err.AsCString()); 2650 strm.EOL(); 2651 return false; 2652 } 2653 2654 strm.Printf("Contents of file '%s' read into allocation %" PRIu32, path, 2655 alloc->id); 2656 strm.EOL(); 2657 2658 return true; 2659 } 2660 2661 // Function takes as parameters a byte buffer, which will eventually be written 2662 // to file as the element header, an offset into that buffer, and an Element 2663 // that will be saved into the buffer at the parametrised offset. 2664 // Return value is the new offset after writing the element into the buffer. 2665 // Elements are saved to the file as the ElementHeader struct followed by 2666 // offsets to the structs of all the element's children. 2667 size_t RenderScriptRuntime::PopulateElementHeaders( 2668 const std::shared_ptr<uint8_t> header_buffer, size_t offset, 2669 const Element &elem) { 2670 // File struct for an element header with all the relevant details copied from 2671 // elem. We assume members are valid already. 2672 AllocationDetails::ElementHeader elem_header; 2673 elem_header.type = *elem.type.get(); 2674 elem_header.kind = *elem.type_kind.get(); 2675 elem_header.element_size = *elem.datum_size.get(); 2676 elem_header.vector_size = *elem.type_vec_size.get(); 2677 elem_header.array_size = 2678 elem.array_size.isValid() ? *elem.array_size.get() : 0; 2679 const size_t elem_header_size = sizeof(AllocationDetails::ElementHeader); 2680 2681 // Copy struct into buffer and advance offset 2682 // We assume that header_buffer has been checked for nullptr before this 2683 // method is called 2684 memcpy(header_buffer.get() + offset, &elem_header, elem_header_size); 2685 offset += elem_header_size; 2686 2687 // Starting offset of child ElementHeader struct 2688 size_t child_offset = 2689 offset + ((elem.children.size() + 1) * sizeof(uint32_t)); 2690 for (const RenderScriptRuntime::Element &child : elem.children) { 2691 // Recursively populate the buffer with the element header structs of 2692 // children. Then save the offsets where they were set after the parent 2693 // element header. 2694 memcpy(header_buffer.get() + offset, &child_offset, sizeof(uint32_t)); 2695 offset += sizeof(uint32_t); 2696 2697 child_offset = PopulateElementHeaders(header_buffer, child_offset, child); 2698 } 2699 2700 // Zero indicates no more children 2701 memset(header_buffer.get() + offset, 0, sizeof(uint32_t)); 2702 2703 return child_offset; 2704 } 2705 2706 // Given an Element object this function returns the total size needed in the 2707 // file header to store the element's details. Taking into account the size of 2708 // the element header struct, plus the offsets to all the element's children. 2709 // Function is recursive so that the size of all ancestors is taken into 2710 // account. 2711 size_t RenderScriptRuntime::CalculateElementHeaderSize(const Element &elem) { 2712 // Offsets to children plus zero terminator 2713 size_t size = (elem.children.size() + 1) * sizeof(uint32_t); 2714 // Size of header struct with type details 2715 size += sizeof(AllocationDetails::ElementHeader); 2716 2717 // Calculate recursively for all descendants 2718 for (const Element &child : elem.children) 2719 size += CalculateElementHeaderSize(child); 2720 2721 return size; 2722 } 2723 2724 // Function copies allocation contents into a binary file. This file can then be 2725 // loaded later into a different allocation. There is a header, FileHeader, 2726 // before the allocation data containing meta-data. 2727 bool RenderScriptRuntime::SaveAllocation(Stream &strm, const uint32_t alloc_id, 2728 const char *path, 2729 StackFrame *frame_ptr) { 2730 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2731 2732 // Find allocation with the given id 2733 AllocationDetails *alloc = FindAllocByID(strm, alloc_id); 2734 if (!alloc) 2735 return false; 2736 2737 if (log) 2738 log->Printf("%s - found allocation 0x%" PRIx64 ".", __FUNCTION__, 2739 *alloc->address.get()); 2740 2741 // JIT all the allocation details 2742 if (alloc->ShouldRefresh()) { 2743 if (log) 2744 log->Printf("%s - allocation details not calculated yet, jitting info.", 2745 __FUNCTION__); 2746 2747 if (!RefreshAllocation(alloc, frame_ptr)) { 2748 if (log) 2749 log->Printf("%s - couldn't JIT allocation details.", __FUNCTION__); 2750 return false; 2751 } 2752 } 2753 2754 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && 2755 alloc->element.type_vec_size.isValid() && 2756 alloc->element.datum_size.get() && 2757 alloc->element.type_kind.isValid() && alloc->dimension.isValid() && 2758 "Allocation information not available"); 2759 2760 // Check we can create writable file 2761 FileSpec file_spec(path, true); 2762 File file(file_spec, File::eOpenOptionWrite | File::eOpenOptionCanCreate | 2763 File::eOpenOptionTruncate); 2764 if (!file) { 2765 strm.Printf("Error: Failed to open '%s' for writing", path); 2766 strm.EOL(); 2767 return false; 2768 } 2769 2770 // Read allocation into buffer of heap memory 2771 const std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr); 2772 if (!buffer) { 2773 strm.Printf("Error: Couldn't read allocation data into buffer"); 2774 strm.EOL(); 2775 return false; 2776 } 2777 2778 // Create the file header 2779 AllocationDetails::FileHeader head; 2780 memcpy(head.ident, "RSAD", 4); 2781 head.dims[0] = static_cast<uint32_t>(alloc->dimension.get()->dim_1); 2782 head.dims[1] = static_cast<uint32_t>(alloc->dimension.get()->dim_2); 2783 head.dims[2] = static_cast<uint32_t>(alloc->dimension.get()->dim_3); 2784 2785 const size_t element_header_size = CalculateElementHeaderSize(alloc->element); 2786 assert((sizeof(AllocationDetails::FileHeader) + element_header_size) < 2787 UINT16_MAX && 2788 "Element header too large"); 2789 head.hdr_size = static_cast<uint16_t>(sizeof(AllocationDetails::FileHeader) + 2790 element_header_size); 2791 2792 // Write the file header 2793 size_t num_bytes = sizeof(AllocationDetails::FileHeader); 2794 if (log) 2795 log->Printf("%s - writing File Header, 0x%" PRIx64 " bytes", __FUNCTION__, 2796 (uint64_t)num_bytes); 2797 2798 Error err = file.Write(&head, num_bytes); 2799 if (!err.Success()) { 2800 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path); 2801 strm.EOL(); 2802 return false; 2803 } 2804 2805 // Create the headers describing the element type of the allocation. 2806 std::shared_ptr<uint8_t> element_header_buffer( 2807 new uint8_t[element_header_size]); 2808 if (element_header_buffer == nullptr) { 2809 strm.Printf("Internal Error: Couldn't allocate %" PRIu64 2810 " bytes on the heap", 2811 (uint64_t)element_header_size); 2812 strm.EOL(); 2813 return false; 2814 } 2815 2816 PopulateElementHeaders(element_header_buffer, 0, alloc->element); 2817 2818 // Write headers for allocation element type to file 2819 num_bytes = element_header_size; 2820 if (log) 2821 log->Printf("%s - writing element headers, 0x%" PRIx64 " bytes.", 2822 __FUNCTION__, (uint64_t)num_bytes); 2823 2824 err = file.Write(element_header_buffer.get(), num_bytes); 2825 if (!err.Success()) { 2826 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path); 2827 strm.EOL(); 2828 return false; 2829 } 2830 2831 // Write allocation data to file 2832 num_bytes = static_cast<size_t>(*alloc->size.get()); 2833 if (log) 2834 log->Printf("%s - writing 0x%" PRIx64 " bytes", __FUNCTION__, 2835 (uint64_t)num_bytes); 2836 2837 err = file.Write(buffer.get(), num_bytes); 2838 if (!err.Success()) { 2839 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path); 2840 strm.EOL(); 2841 return false; 2842 } 2843 2844 strm.Printf("Allocation written to file '%s'", path); 2845 strm.EOL(); 2846 return true; 2847 } 2848 2849 bool RenderScriptRuntime::LoadModule(const lldb::ModuleSP &module_sp) { 2850 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2851 2852 if (module_sp) { 2853 for (const auto &rs_module : m_rsmodules) { 2854 if (rs_module->m_module == module_sp) { 2855 // Check if the user has enabled automatically breaking on 2856 // all RS kernels. 2857 if (m_breakAllKernels) 2858 BreakOnModuleKernels(rs_module); 2859 2860 return false; 2861 } 2862 } 2863 bool module_loaded = false; 2864 switch (GetModuleKind(module_sp)) { 2865 case eModuleKindKernelObj: { 2866 RSModuleDescriptorSP module_desc; 2867 module_desc.reset(new RSModuleDescriptor(module_sp)); 2868 if (module_desc->ParseRSInfo()) { 2869 m_rsmodules.push_back(module_desc); 2870 module_desc->WarnIfVersionMismatch(GetProcess() 2871 ->GetTarget() 2872 .GetDebugger() 2873 .GetAsyncOutputStream() 2874 .get()); 2875 module_loaded = true; 2876 } 2877 if (module_loaded) { 2878 FixupScriptDetails(module_desc); 2879 } 2880 break; 2881 } 2882 case eModuleKindDriver: { 2883 if (!m_libRSDriver) { 2884 m_libRSDriver = module_sp; 2885 LoadRuntimeHooks(m_libRSDriver, RenderScriptRuntime::eModuleKindDriver); 2886 } 2887 break; 2888 } 2889 case eModuleKindImpl: { 2890 if (!m_libRSCpuRef) { 2891 m_libRSCpuRef = module_sp; 2892 LoadRuntimeHooks(m_libRSCpuRef, RenderScriptRuntime::eModuleKindImpl); 2893 } 2894 break; 2895 } 2896 case eModuleKindLibRS: { 2897 if (!m_libRS) { 2898 m_libRS = module_sp; 2899 static ConstString gDbgPresentStr("gDebuggerPresent"); 2900 const Symbol *debug_present = m_libRS->FindFirstSymbolWithNameAndType( 2901 gDbgPresentStr, eSymbolTypeData); 2902 if (debug_present) { 2903 Error err; 2904 uint32_t flag = 0x00000001U; 2905 Target &target = GetProcess()->GetTarget(); 2906 addr_t addr = debug_present->GetLoadAddress(&target); 2907 GetProcess()->WriteMemory(addr, &flag, sizeof(flag), err); 2908 if (err.Success()) { 2909 if (log) 2910 log->Printf("%s - debugger present flag set on debugee.", 2911 __FUNCTION__); 2912 2913 m_debuggerPresentFlagged = true; 2914 } else if (log) { 2915 log->Printf("%s - error writing debugger present flags '%s' ", 2916 __FUNCTION__, err.AsCString()); 2917 } 2918 } else if (log) { 2919 log->Printf( 2920 "%s - error writing debugger present flags - symbol not found", 2921 __FUNCTION__); 2922 } 2923 } 2924 break; 2925 } 2926 default: 2927 break; 2928 } 2929 if (module_loaded) 2930 Update(); 2931 return module_loaded; 2932 } 2933 return false; 2934 } 2935 2936 void RenderScriptRuntime::Update() { 2937 if (m_rsmodules.size() > 0) { 2938 if (!m_initiated) { 2939 Initiate(); 2940 } 2941 } 2942 } 2943 2944 void RSModuleDescriptor::WarnIfVersionMismatch(lldb_private::Stream *s) const { 2945 if (!s) 2946 return; 2947 2948 if (m_slang_version.empty() || m_bcc_version.empty()) { 2949 s->PutCString("WARNING: Unknown bcc or slang (llvm-rs-cc) version; debug " 2950 "experience may be unreliable"); 2951 s->EOL(); 2952 } else if (m_slang_version != m_bcc_version) { 2953 s->Printf("WARNING: The debug info emitted by the slang frontend " 2954 "(llvm-rs-cc) used to build this module (%s) does not match the " 2955 "version of bcc used to generate the debug information (%s). " 2956 "This is an unsupported configuration and may result in a poor " 2957 "debugging experience; proceed with caution", 2958 m_slang_version.c_str(), m_bcc_version.c_str()); 2959 s->EOL(); 2960 } 2961 } 2962 2963 bool RSModuleDescriptor::ParsePragmaCount(llvm::StringRef *lines, 2964 size_t n_lines) { 2965 // Skip the pragma prototype line 2966 ++lines; 2967 for (; n_lines--; ++lines) { 2968 const auto kv_pair = lines->split(" - "); 2969 m_pragmas[kv_pair.first.trim().str()] = kv_pair.second.trim().str(); 2970 } 2971 return true; 2972 } 2973 2974 bool RSModuleDescriptor::ParseExportReduceCount(llvm::StringRef *lines, 2975 size_t n_lines) { 2976 // The list of reduction kernels in the `.rs.info` symbol is of the form 2977 // "signature - accumulatordatasize - reduction_name - initializer_name - 2978 // accumulator_name - combiner_name - 2979 // outconverter_name - halter_name" 2980 // Where a function is not explicitly named by the user, or is not generated 2981 // by the compiler, it is named "." so the 2982 // dash separated list should always be 8 items long 2983 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 2984 // Skip the exportReduceCount line 2985 ++lines; 2986 for (; n_lines--; ++lines) { 2987 llvm::SmallVector<llvm::StringRef, 8> spec; 2988 lines->split(spec, " - "); 2989 if (spec.size() != 8) { 2990 if (spec.size() < 8) { 2991 if (log) 2992 log->Error("Error parsing RenderScript reduction spec. wrong number " 2993 "of fields"); 2994 return false; 2995 } else if (log) 2996 log->Warning("Extraneous members in reduction spec: '%s'", 2997 lines->str().c_str()); 2998 } 2999 3000 const auto sig_s = spec[0]; 3001 uint32_t sig; 3002 if (sig_s.getAsInteger(10, sig)) { 3003 if (log) 3004 log->Error("Error parsing Renderscript reduction spec: invalid kernel " 3005 "signature: '%s'", 3006 sig_s.str().c_str()); 3007 return false; 3008 } 3009 3010 const auto accum_data_size_s = spec[1]; 3011 uint32_t accum_data_size; 3012 if (accum_data_size_s.getAsInteger(10, accum_data_size)) { 3013 if (log) 3014 log->Error("Error parsing Renderscript reduction spec: invalid " 3015 "accumulator data size %s", 3016 accum_data_size_s.str().c_str()); 3017 return false; 3018 } 3019 3020 if (log) 3021 log->Printf("Found RenderScript reduction '%s'", spec[2].str().c_str()); 3022 3023 m_reductions.push_back(RSReductionDescriptor(this, sig, accum_data_size, 3024 spec[2], spec[3], spec[4], 3025 spec[5], spec[6], spec[7])); 3026 } 3027 return true; 3028 } 3029 3030 bool RSModuleDescriptor::ParseVersionInfo(llvm::StringRef *lines, 3031 size_t n_lines) { 3032 // Skip the versionInfo line 3033 ++lines; 3034 for (; n_lines--; ++lines) { 3035 // We're only interested in bcc and slang versions, and ignore all other 3036 // versionInfo lines 3037 const auto kv_pair = lines->split(" - "); 3038 if (kv_pair.first == "slang") 3039 m_slang_version = kv_pair.second.str(); 3040 else if (kv_pair.first == "bcc") 3041 m_bcc_version = kv_pair.second.str(); 3042 } 3043 return true; 3044 } 3045 3046 bool RSModuleDescriptor::ParseExportForeachCount(llvm::StringRef *lines, 3047 size_t n_lines) { 3048 // Skip the exportForeachCount line 3049 ++lines; 3050 for (; n_lines--; ++lines) { 3051 uint32_t slot; 3052 // `forEach` kernels are listed in the `.rs.info` packet as a "slot - name" 3053 // pair per line 3054 const auto kv_pair = lines->split(" - "); 3055 if (kv_pair.first.getAsInteger(10, slot)) 3056 return false; 3057 m_kernels.push_back(RSKernelDescriptor(this, kv_pair.second, slot)); 3058 } 3059 return true; 3060 } 3061 3062 bool RSModuleDescriptor::ParseExportVarCount(llvm::StringRef *lines, 3063 size_t n_lines) { 3064 // Skip the ExportVarCount line 3065 ++lines; 3066 for (; n_lines--; ++lines) 3067 m_globals.push_back(RSGlobalDescriptor(this, *lines)); 3068 return true; 3069 } 3070 3071 // The .rs.info symbol in renderscript modules contains a string which needs to 3072 // be parsed. 3073 // The string is basic and is parsed on a line by line basis. 3074 bool RSModuleDescriptor::ParseRSInfo() { 3075 assert(m_module); 3076 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3077 const Symbol *info_sym = m_module->FindFirstSymbolWithNameAndType( 3078 ConstString(".rs.info"), eSymbolTypeData); 3079 if (!info_sym) 3080 return false; 3081 3082 const addr_t addr = info_sym->GetAddressRef().GetFileAddress(); 3083 if (addr == LLDB_INVALID_ADDRESS) 3084 return false; 3085 3086 const addr_t size = info_sym->GetByteSize(); 3087 const FileSpec fs = m_module->GetFileSpec(); 3088 3089 auto buffer = DataBufferLLVM::CreateSliceFromPath(fs.GetPath(), size, addr); 3090 if (!buffer) 3091 return false; 3092 3093 // split rs.info. contents into lines 3094 llvm::SmallVector<llvm::StringRef, 128> info_lines; 3095 { 3096 const llvm::StringRef raw_rs_info((const char *)buffer->GetBytes()); 3097 raw_rs_info.split(info_lines, '\n'); 3098 if (log) 3099 log->Printf("'.rs.info symbol for '%s':\n%s", 3100 m_module->GetFileSpec().GetCString(), 3101 raw_rs_info.str().c_str()); 3102 } 3103 3104 enum { 3105 eExportVar, 3106 eExportForEach, 3107 eExportReduce, 3108 ePragma, 3109 eBuildChecksum, 3110 eObjectSlot, 3111 eVersionInfo, 3112 }; 3113 3114 const auto rs_info_handler = [](llvm::StringRef name) -> int { 3115 return llvm::StringSwitch<int>(name) 3116 // The number of visible global variables in the script 3117 .Case("exportVarCount", eExportVar) 3118 // The number of RenderScrip `forEach` kernels __attribute__((kernel)) 3119 .Case("exportForEachCount", eExportForEach) 3120 // The number of generalreductions: This marked in the script by 3121 // `#pragma reduce()` 3122 .Case("exportReduceCount", eExportReduce) 3123 // Total count of all RenderScript specific `#pragmas` used in the 3124 // script 3125 .Case("pragmaCount", ePragma) 3126 .Case("objectSlotCount", eObjectSlot) 3127 .Case("versionInfo", eVersionInfo) 3128 .Default(-1); 3129 }; 3130 3131 // parse all text lines of .rs.info 3132 for (auto line = info_lines.begin(); line != info_lines.end(); ++line) { 3133 const auto kv_pair = line->split(": "); 3134 const auto key = kv_pair.first; 3135 const auto val = kv_pair.second.trim(); 3136 3137 const auto handler = rs_info_handler(key); 3138 if (handler == -1) 3139 continue; 3140 // getAsInteger returns `true` on an error condition - we're only interested 3141 // in numeric fields at the moment 3142 uint64_t n_lines; 3143 if (val.getAsInteger(10, n_lines)) { 3144 LLDB_LOGV(log, "Failed to parse non-numeric '.rs.info' section {0}", 3145 line->str()); 3146 continue; 3147 } 3148 if (info_lines.end() - (line + 1) < (ptrdiff_t)n_lines) 3149 return false; 3150 3151 bool success = false; 3152 switch (handler) { 3153 case eExportVar: 3154 success = ParseExportVarCount(line, n_lines); 3155 break; 3156 case eExportForEach: 3157 success = ParseExportForeachCount(line, n_lines); 3158 break; 3159 case eExportReduce: 3160 success = ParseExportReduceCount(line, n_lines); 3161 break; 3162 case ePragma: 3163 success = ParsePragmaCount(line, n_lines); 3164 break; 3165 case eVersionInfo: 3166 success = ParseVersionInfo(line, n_lines); 3167 break; 3168 default: { 3169 if (log) 3170 log->Printf("%s - skipping .rs.info field '%s'", __FUNCTION__, 3171 line->str().c_str()); 3172 continue; 3173 } 3174 } 3175 if (!success) 3176 return false; 3177 line += n_lines; 3178 } 3179 return info_lines.size() > 0; 3180 } 3181 3182 void RenderScriptRuntime::Status(Stream &strm) const { 3183 if (m_libRS) { 3184 strm.Printf("Runtime Library discovered."); 3185 strm.EOL(); 3186 } 3187 if (m_libRSDriver) { 3188 strm.Printf("Runtime Driver discovered."); 3189 strm.EOL(); 3190 } 3191 if (m_libRSCpuRef) { 3192 strm.Printf("CPU Reference Implementation discovered."); 3193 strm.EOL(); 3194 } 3195 3196 if (m_runtimeHooks.size()) { 3197 strm.Printf("Runtime functions hooked:"); 3198 strm.EOL(); 3199 for (auto b : m_runtimeHooks) { 3200 strm.Indent(b.second->defn->name); 3201 strm.EOL(); 3202 } 3203 } else { 3204 strm.Printf("Runtime is not hooked."); 3205 strm.EOL(); 3206 } 3207 } 3208 3209 void RenderScriptRuntime::DumpContexts(Stream &strm) const { 3210 strm.Printf("Inferred RenderScript Contexts:"); 3211 strm.EOL(); 3212 strm.IndentMore(); 3213 3214 std::map<addr_t, uint64_t> contextReferences; 3215 3216 // Iterate over all of the currently discovered scripts. 3217 // Note: We cant push or pop from m_scripts inside this loop or it may 3218 // invalidate script. 3219 for (const auto &script : m_scripts) { 3220 if (!script->context.isValid()) 3221 continue; 3222 lldb::addr_t context = *script->context; 3223 3224 if (contextReferences.find(context) != contextReferences.end()) { 3225 contextReferences[context]++; 3226 } else { 3227 contextReferences[context] = 1; 3228 } 3229 } 3230 3231 for (const auto &cRef : contextReferences) { 3232 strm.Printf("Context 0x%" PRIx64 ": %" PRIu64 " script instances", 3233 cRef.first, cRef.second); 3234 strm.EOL(); 3235 } 3236 strm.IndentLess(); 3237 } 3238 3239 void RenderScriptRuntime::DumpKernels(Stream &strm) const { 3240 strm.Printf("RenderScript Kernels:"); 3241 strm.EOL(); 3242 strm.IndentMore(); 3243 for (const auto &module : m_rsmodules) { 3244 strm.Printf("Resource '%s':", module->m_resname.c_str()); 3245 strm.EOL(); 3246 for (const auto &kernel : module->m_kernels) { 3247 strm.Indent(kernel.m_name.AsCString()); 3248 strm.EOL(); 3249 } 3250 } 3251 strm.IndentLess(); 3252 } 3253 3254 RenderScriptRuntime::AllocationDetails * 3255 RenderScriptRuntime::FindAllocByID(Stream &strm, const uint32_t alloc_id) { 3256 AllocationDetails *alloc = nullptr; 3257 3258 // See if we can find allocation using id as an index; 3259 if (alloc_id <= m_allocations.size() && alloc_id != 0 && 3260 m_allocations[alloc_id - 1]->id == alloc_id) { 3261 alloc = m_allocations[alloc_id - 1].get(); 3262 return alloc; 3263 } 3264 3265 // Fallback to searching 3266 for (const auto &a : m_allocations) { 3267 if (a->id == alloc_id) { 3268 alloc = a.get(); 3269 break; 3270 } 3271 } 3272 3273 if (alloc == nullptr) { 3274 strm.Printf("Error: Couldn't find allocation with id matching %" PRIu32, 3275 alloc_id); 3276 strm.EOL(); 3277 } 3278 3279 return alloc; 3280 } 3281 3282 // Prints the contents of an allocation to the output stream, which may be a 3283 // file 3284 bool RenderScriptRuntime::DumpAllocation(Stream &strm, StackFrame *frame_ptr, 3285 const uint32_t id) { 3286 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3287 3288 // Check we can find the desired allocation 3289 AllocationDetails *alloc = FindAllocByID(strm, id); 3290 if (!alloc) 3291 return false; // FindAllocByID() will print error message for us here 3292 3293 if (log) 3294 log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__, 3295 *alloc->address.get()); 3296 3297 // Check we have information about the allocation, if not calculate it 3298 if (alloc->ShouldRefresh()) { 3299 if (log) 3300 log->Printf("%s - allocation details not calculated yet, jitting info.", 3301 __FUNCTION__); 3302 3303 // JIT all the allocation information 3304 if (!RefreshAllocation(alloc, frame_ptr)) { 3305 strm.Printf("Error: Couldn't JIT allocation details"); 3306 strm.EOL(); 3307 return false; 3308 } 3309 } 3310 3311 // Establish format and size of each data element 3312 const uint32_t vec_size = *alloc->element.type_vec_size.get(); 3313 const Element::DataType type = *alloc->element.type.get(); 3314 3315 assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && 3316 "Invalid allocation type"); 3317 3318 lldb::Format format; 3319 if (type >= Element::RS_TYPE_ELEMENT) 3320 format = eFormatHex; 3321 else 3322 format = vec_size == 1 3323 ? static_cast<lldb::Format>( 3324 AllocationDetails::RSTypeToFormat[type][eFormatSingle]) 3325 : static_cast<lldb::Format>( 3326 AllocationDetails::RSTypeToFormat[type][eFormatVector]); 3327 3328 const uint32_t data_size = *alloc->element.datum_size.get(); 3329 3330 if (log) 3331 log->Printf("%s - element size %" PRIu32 " bytes, including padding", 3332 __FUNCTION__, data_size); 3333 3334 // Allocate a buffer to copy data into 3335 std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr); 3336 if (!buffer) { 3337 strm.Printf("Error: Couldn't read allocation data"); 3338 strm.EOL(); 3339 return false; 3340 } 3341 3342 // Calculate stride between rows as there may be padding at end of rows since 3343 // allocated memory is 16-byte aligned 3344 if (!alloc->stride.isValid()) { 3345 if (alloc->dimension.get()->dim_2 == 0) // We only have one dimension 3346 alloc->stride = 0; 3347 else if (!JITAllocationStride(alloc, frame_ptr)) { 3348 strm.Printf("Error: Couldn't calculate allocation row stride"); 3349 strm.EOL(); 3350 return false; 3351 } 3352 } 3353 const uint32_t stride = *alloc->stride.get(); 3354 const uint32_t size = *alloc->size.get(); // Size of whole allocation 3355 const uint32_t padding = 3356 alloc->element.padding.isValid() ? *alloc->element.padding.get() : 0; 3357 if (log) 3358 log->Printf("%s - stride %" PRIu32 " bytes, size %" PRIu32 3359 " bytes, padding %" PRIu32, 3360 __FUNCTION__, stride, size, padding); 3361 3362 // Find dimensions used to index loops, so need to be non-zero 3363 uint32_t dim_x = alloc->dimension.get()->dim_1; 3364 dim_x = dim_x == 0 ? 1 : dim_x; 3365 3366 uint32_t dim_y = alloc->dimension.get()->dim_2; 3367 dim_y = dim_y == 0 ? 1 : dim_y; 3368 3369 uint32_t dim_z = alloc->dimension.get()->dim_3; 3370 dim_z = dim_z == 0 ? 1 : dim_z; 3371 3372 // Use data extractor to format output 3373 const uint32_t target_ptr_size = 3374 GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 3375 DataExtractor alloc_data(buffer.get(), size, GetProcess()->GetByteOrder(), 3376 target_ptr_size); 3377 3378 uint32_t offset = 0; // Offset in buffer to next element to be printed 3379 uint32_t prev_row = 0; // Offset to the start of the previous row 3380 3381 // Iterate over allocation dimensions, printing results to user 3382 strm.Printf("Data (X, Y, Z):"); 3383 for (uint32_t z = 0; z < dim_z; ++z) { 3384 for (uint32_t y = 0; y < dim_y; ++y) { 3385 // Use stride to index start of next row. 3386 if (!(y == 0 && z == 0)) 3387 offset = prev_row + stride; 3388 prev_row = offset; 3389 3390 // Print each element in the row individually 3391 for (uint32_t x = 0; x < dim_x; ++x) { 3392 strm.Printf("\n(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ") = ", x, y, z); 3393 if ((type == Element::RS_TYPE_NONE) && 3394 (alloc->element.children.size() > 0) && 3395 (alloc->element.type_name != Element::GetFallbackStructName())) { 3396 // Here we are dumping an Element of struct type. 3397 // This is done using expression evaluation with the name of the 3398 // struct type and pointer to element. 3399 // Don't print the name of the resulting expression, since this will 3400 // be '$[0-9]+' 3401 DumpValueObjectOptions expr_options; 3402 expr_options.SetHideName(true); 3403 3404 // Setup expression as derefrencing a pointer cast to element address. 3405 char expr_char_buffer[jit_max_expr_size]; 3406 int written = 3407 snprintf(expr_char_buffer, jit_max_expr_size, "*(%s*) 0x%" PRIx64, 3408 alloc->element.type_name.AsCString(), 3409 *alloc->data_ptr.get() + offset); 3410 3411 if (written < 0 || written >= jit_max_expr_size) { 3412 if (log) 3413 log->Printf("%s - error in snprintf().", __FUNCTION__); 3414 continue; 3415 } 3416 3417 // Evaluate expression 3418 ValueObjectSP expr_result; 3419 GetProcess()->GetTarget().EvaluateExpression(expr_char_buffer, 3420 frame_ptr, expr_result); 3421 3422 // Print the results to our stream. 3423 expr_result->Dump(strm, expr_options); 3424 } else { 3425 DumpDataExtractor(alloc_data, &strm, offset, format, 3426 data_size - padding, 1, 1, LLDB_INVALID_ADDRESS, 0, 3427 0); 3428 } 3429 offset += data_size; 3430 } 3431 } 3432 } 3433 strm.EOL(); 3434 3435 return true; 3436 } 3437 3438 // Function recalculates all our cached information about allocations by jitting 3439 // the RS runtime regarding each allocation we know about. Returns true if all 3440 // allocations could be recomputed, false otherwise. 3441 bool RenderScriptRuntime::RecomputeAllAllocations(Stream &strm, 3442 StackFrame *frame_ptr) { 3443 bool success = true; 3444 for (auto &alloc : m_allocations) { 3445 // JIT current allocation information 3446 if (!RefreshAllocation(alloc.get(), frame_ptr)) { 3447 strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32 3448 "\n", 3449 alloc->id); 3450 success = false; 3451 } 3452 } 3453 3454 if (success) 3455 strm.Printf("All allocations successfully recomputed"); 3456 strm.EOL(); 3457 3458 return success; 3459 } 3460 3461 // Prints information regarding currently loaded allocations. These details are 3462 // gathered by jitting the runtime, which has as latency. Index parameter 3463 // specifies a single allocation ID to print, or a zero value to print them all 3464 void RenderScriptRuntime::ListAllocations(Stream &strm, StackFrame *frame_ptr, 3465 const uint32_t index) { 3466 strm.Printf("RenderScript Allocations:"); 3467 strm.EOL(); 3468 strm.IndentMore(); 3469 3470 for (auto &alloc : m_allocations) { 3471 // index will only be zero if we want to print all allocations 3472 if (index != 0 && index != alloc->id) 3473 continue; 3474 3475 // JIT current allocation information 3476 if (alloc->ShouldRefresh() && !RefreshAllocation(alloc.get(), frame_ptr)) { 3477 strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32, 3478 alloc->id); 3479 strm.EOL(); 3480 continue; 3481 } 3482 3483 strm.Printf("%" PRIu32 ":", alloc->id); 3484 strm.EOL(); 3485 strm.IndentMore(); 3486 3487 strm.Indent("Context: "); 3488 if (!alloc->context.isValid()) 3489 strm.Printf("unknown\n"); 3490 else 3491 strm.Printf("0x%" PRIx64 "\n", *alloc->context.get()); 3492 3493 strm.Indent("Address: "); 3494 if (!alloc->address.isValid()) 3495 strm.Printf("unknown\n"); 3496 else 3497 strm.Printf("0x%" PRIx64 "\n", *alloc->address.get()); 3498 3499 strm.Indent("Data pointer: "); 3500 if (!alloc->data_ptr.isValid()) 3501 strm.Printf("unknown\n"); 3502 else 3503 strm.Printf("0x%" PRIx64 "\n", *alloc->data_ptr.get()); 3504 3505 strm.Indent("Dimensions: "); 3506 if (!alloc->dimension.isValid()) 3507 strm.Printf("unknown\n"); 3508 else 3509 strm.Printf("(%" PRId32 ", %" PRId32 ", %" PRId32 ")\n", 3510 alloc->dimension.get()->dim_1, alloc->dimension.get()->dim_2, 3511 alloc->dimension.get()->dim_3); 3512 3513 strm.Indent("Data Type: "); 3514 if (!alloc->element.type.isValid() || 3515 !alloc->element.type_vec_size.isValid()) 3516 strm.Printf("unknown\n"); 3517 else { 3518 const int vector_size = *alloc->element.type_vec_size.get(); 3519 Element::DataType type = *alloc->element.type.get(); 3520 3521 if (!alloc->element.type_name.IsEmpty()) 3522 strm.Printf("%s\n", alloc->element.type_name.AsCString()); 3523 else { 3524 // Enum value isn't monotonous, so doesn't always index 3525 // RsDataTypeToString array 3526 if (type >= Element::RS_TYPE_ELEMENT && type <= Element::RS_TYPE_FONT) 3527 type = 3528 static_cast<Element::DataType>((type - Element::RS_TYPE_ELEMENT) + 3529 Element::RS_TYPE_MATRIX_2X2 + 1); 3530 3531 if (type >= (sizeof(AllocationDetails::RsDataTypeToString) / 3532 sizeof(AllocationDetails::RsDataTypeToString[0])) || 3533 vector_size > 4 || vector_size < 1) 3534 strm.Printf("invalid type\n"); 3535 else 3536 strm.Printf( 3537 "%s\n", 3538 AllocationDetails::RsDataTypeToString[static_cast<uint32_t>(type)] 3539 [vector_size - 1]); 3540 } 3541 } 3542 3543 strm.Indent("Data Kind: "); 3544 if (!alloc->element.type_kind.isValid()) 3545 strm.Printf("unknown\n"); 3546 else { 3547 const Element::DataKind kind = *alloc->element.type_kind.get(); 3548 if (kind < Element::RS_KIND_USER || kind > Element::RS_KIND_PIXEL_YUV) 3549 strm.Printf("invalid kind\n"); 3550 else 3551 strm.Printf( 3552 "%s\n", 3553 AllocationDetails::RsDataKindToString[static_cast<uint32_t>(kind)]); 3554 } 3555 3556 strm.EOL(); 3557 strm.IndentLess(); 3558 } 3559 strm.IndentLess(); 3560 } 3561 3562 // Set breakpoints on every kernel found in RS module 3563 void RenderScriptRuntime::BreakOnModuleKernels( 3564 const RSModuleDescriptorSP rsmodule_sp) { 3565 for (const auto &kernel : rsmodule_sp->m_kernels) { 3566 // Don't set breakpoint on 'root' kernel 3567 if (strcmp(kernel.m_name.AsCString(), "root") == 0) 3568 continue; 3569 3570 CreateKernelBreakpoint(kernel.m_name); 3571 } 3572 } 3573 3574 // Method is internally called by the 'kernel breakpoint all' command to enable 3575 // or disable breaking on all kernels. When do_break is true we want to enable 3576 // this functionality. When do_break is false we want to disable it. 3577 void RenderScriptRuntime::SetBreakAllKernels(bool do_break, TargetSP target) { 3578 Log *log( 3579 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3580 3581 InitSearchFilter(target); 3582 3583 // Set breakpoints on all the kernels 3584 if (do_break && !m_breakAllKernels) { 3585 m_breakAllKernels = true; 3586 3587 for (const auto &module : m_rsmodules) 3588 BreakOnModuleKernels(module); 3589 3590 if (log) 3591 log->Printf("%s(True) - breakpoints set on all currently loaded kernels.", 3592 __FUNCTION__); 3593 } else if (!do_break && 3594 m_breakAllKernels) // Breakpoints won't be set on any new kernels. 3595 { 3596 m_breakAllKernels = false; 3597 3598 if (log) 3599 log->Printf("%s(False) - breakpoints no longer automatically set.", 3600 __FUNCTION__); 3601 } 3602 } 3603 3604 // Given the name of a kernel this function creates a breakpoint using our 3605 // own breakpoint resolver, and returns the Breakpoint shared pointer. 3606 BreakpointSP 3607 RenderScriptRuntime::CreateKernelBreakpoint(const ConstString &name) { 3608 Log *log( 3609 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3610 3611 if (!m_filtersp) { 3612 if (log) 3613 log->Printf("%s - error, no breakpoint search filter set.", __FUNCTION__); 3614 return nullptr; 3615 } 3616 3617 BreakpointResolverSP resolver_sp(new RSBreakpointResolver(nullptr, name)); 3618 BreakpointSP bp = GetProcess()->GetTarget().CreateBreakpoint( 3619 m_filtersp, resolver_sp, false, false, false); 3620 3621 // Give RS breakpoints a specific name, so the user can manipulate them as a 3622 // group. 3623 Error err; 3624 if (!bp->AddName("RenderScriptKernel", err)) 3625 if (log) 3626 log->Printf("%s - error setting break name, '%s'.", __FUNCTION__, 3627 err.AsCString()); 3628 3629 return bp; 3630 } 3631 3632 BreakpointSP 3633 RenderScriptRuntime::CreateReductionBreakpoint(const ConstString &name, 3634 int kernel_types) { 3635 Log *log( 3636 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3637 3638 if (!m_filtersp) { 3639 if (log) 3640 log->Printf("%s - error, no breakpoint search filter set.", __FUNCTION__); 3641 return nullptr; 3642 } 3643 3644 BreakpointResolverSP resolver_sp(new RSReduceBreakpointResolver( 3645 nullptr, name, &m_rsmodules, kernel_types)); 3646 BreakpointSP bp = GetProcess()->GetTarget().CreateBreakpoint( 3647 m_filtersp, resolver_sp, false, false, false); 3648 3649 // Give RS breakpoints a specific name, so the user can manipulate them as a 3650 // group. 3651 Error err; 3652 if (!bp->AddName("RenderScriptReduction", err)) 3653 if (log) 3654 log->Printf("%s - error setting break name, '%s'.", __FUNCTION__, 3655 err.AsCString()); 3656 3657 return bp; 3658 } 3659 3660 // Given an expression for a variable this function tries to calculate the 3661 // variable's value. If this is possible it returns true and sets the uint64_t 3662 // parameter to the variables unsigned value. Otherwise function returns false. 3663 bool RenderScriptRuntime::GetFrameVarAsUnsigned(const StackFrameSP frame_sp, 3664 const char *var_name, 3665 uint64_t &val) { 3666 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3667 Error err; 3668 VariableSP var_sp; 3669 3670 // Find variable in stack frame 3671 ValueObjectSP value_sp(frame_sp->GetValueForVariableExpressionPath( 3672 var_name, eNoDynamicValues, 3673 StackFrame::eExpressionPathOptionCheckPtrVsMember | 3674 StackFrame::eExpressionPathOptionsAllowDirectIVarAccess, 3675 var_sp, err)); 3676 if (!err.Success()) { 3677 if (log) 3678 log->Printf("%s - error, couldn't find '%s' in frame", __FUNCTION__, 3679 var_name); 3680 return false; 3681 } 3682 3683 // Find the uint32_t value for the variable 3684 bool success = false; 3685 val = value_sp->GetValueAsUnsigned(0, &success); 3686 if (!success) { 3687 if (log) 3688 log->Printf("%s - error, couldn't parse '%s' as an uint32_t.", 3689 __FUNCTION__, var_name); 3690 return false; 3691 } 3692 3693 return true; 3694 } 3695 3696 // Function attempts to find the current coordinate of a kernel invocation by 3697 // investigating the values of frame variables in the .expand function. These 3698 // coordinates are returned via the coord array reference parameter. Returns 3699 // true if the coordinates could be found, and false otherwise. 3700 bool RenderScriptRuntime::GetKernelCoordinate(RSCoordinate &coord, 3701 Thread *thread_ptr) { 3702 static const char *const x_expr = "rsIndex"; 3703 static const char *const y_expr = "p->current.y"; 3704 static const char *const z_expr = "p->current.z"; 3705 3706 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3707 3708 if (!thread_ptr) { 3709 if (log) 3710 log->Printf("%s - Error, No thread pointer", __FUNCTION__); 3711 3712 return false; 3713 } 3714 3715 // Walk the call stack looking for a function whose name has the suffix 3716 // '.expand' and contains the variables we're looking for. 3717 for (uint32_t i = 0; i < thread_ptr->GetStackFrameCount(); ++i) { 3718 if (!thread_ptr->SetSelectedFrameByIndex(i)) 3719 continue; 3720 3721 StackFrameSP frame_sp = thread_ptr->GetSelectedFrame(); 3722 if (!frame_sp) 3723 continue; 3724 3725 // Find the function name 3726 const SymbolContext sym_ctx = frame_sp->GetSymbolContext(false); 3727 const ConstString func_name = sym_ctx.GetFunctionName(); 3728 if (!func_name) 3729 continue; 3730 3731 if (log) 3732 log->Printf("%s - Inspecting function '%s'", __FUNCTION__, 3733 func_name.GetCString()); 3734 3735 // Check if function name has .expand suffix 3736 if (!func_name.GetStringRef().endswith(".expand")) 3737 continue; 3738 3739 if (log) 3740 log->Printf("%s - Found .expand function '%s'", __FUNCTION__, 3741 func_name.GetCString()); 3742 3743 // Get values for variables in .expand frame that tell us the current kernel 3744 // invocation 3745 uint64_t x, y, z; 3746 bool found = GetFrameVarAsUnsigned(frame_sp, x_expr, x) && 3747 GetFrameVarAsUnsigned(frame_sp, y_expr, y) && 3748 GetFrameVarAsUnsigned(frame_sp, z_expr, z); 3749 3750 if (found) { 3751 // The RenderScript runtime uses uint32_t for these vars. If they're not 3752 // within bounds, our frame parsing is garbage 3753 assert(x <= UINT32_MAX && y <= UINT32_MAX && z <= UINT32_MAX); 3754 coord.x = (uint32_t)x; 3755 coord.y = (uint32_t)y; 3756 coord.z = (uint32_t)z; 3757 return true; 3758 } 3759 } 3760 return false; 3761 } 3762 3763 // Callback when a kernel breakpoint hits and we're looking for a specific 3764 // coordinate. Baton parameter contains a pointer to the target coordinate we 3765 // want to break on. 3766 // Function then checks the .expand frame for the current coordinate and breaks 3767 // to user if it matches. 3768 // Parameter 'break_id' is the id of the Breakpoint which made the callback. 3769 // Parameter 'break_loc_id' is the id for the BreakpointLocation which was hit, 3770 // a single logical breakpoint can have multiple addresses. 3771 bool RenderScriptRuntime::KernelBreakpointHit(void *baton, 3772 StoppointCallbackContext *ctx, 3773 user_id_t break_id, 3774 user_id_t break_loc_id) { 3775 Log *log( 3776 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3777 3778 assert(baton && 3779 "Error: null baton in conditional kernel breakpoint callback"); 3780 3781 // Coordinate we want to stop on 3782 RSCoordinate target_coord = *static_cast<RSCoordinate *>(baton); 3783 3784 if (log) 3785 log->Printf("%s - Break ID %" PRIu64 ", " FMT_COORD, __FUNCTION__, break_id, 3786 target_coord.x, target_coord.y, target_coord.z); 3787 3788 // Select current thread 3789 ExecutionContext context(ctx->exe_ctx_ref); 3790 Thread *thread_ptr = context.GetThreadPtr(); 3791 assert(thread_ptr && "Null thread pointer"); 3792 3793 // Find current kernel invocation from .expand frame variables 3794 RSCoordinate current_coord{}; 3795 if (!GetKernelCoordinate(current_coord, thread_ptr)) { 3796 if (log) 3797 log->Printf("%s - Error, couldn't select .expand stack frame", 3798 __FUNCTION__); 3799 return false; 3800 } 3801 3802 if (log) 3803 log->Printf("%s - " FMT_COORD, __FUNCTION__, current_coord.x, 3804 current_coord.y, current_coord.z); 3805 3806 // Check if the current kernel invocation coordinate matches our target 3807 // coordinate 3808 if (target_coord == current_coord) { 3809 if (log) 3810 log->Printf("%s, BREAKING " FMT_COORD, __FUNCTION__, current_coord.x, 3811 current_coord.y, current_coord.z); 3812 3813 BreakpointSP breakpoint_sp = 3814 context.GetTargetPtr()->GetBreakpointByID(break_id); 3815 assert(breakpoint_sp != nullptr && 3816 "Error: Couldn't find breakpoint matching break id for callback"); 3817 breakpoint_sp->SetEnabled(false); // Optimise since conditional breakpoint 3818 // should only be hit once. 3819 return true; 3820 } 3821 3822 // No match on coordinate 3823 return false; 3824 } 3825 3826 void RenderScriptRuntime::SetConditional(BreakpointSP bp, Stream &messages, 3827 const RSCoordinate &coord) { 3828 messages.Printf("Conditional kernel breakpoint on coordinate " FMT_COORD, 3829 coord.x, coord.y, coord.z); 3830 messages.EOL(); 3831 3832 // Allocate memory for the baton, and copy over coordinate 3833 RSCoordinate *baton = new RSCoordinate(coord); 3834 3835 // Create a callback that will be invoked every time the breakpoint is hit. 3836 // The baton object passed to the handler is the target coordinate we want to 3837 // break on. 3838 bp->SetCallback(KernelBreakpointHit, baton, true); 3839 3840 // Store a shared pointer to the baton, so the memory will eventually be 3841 // cleaned up after destruction 3842 m_conditional_breaks[bp->GetID()] = std::unique_ptr<RSCoordinate>(baton); 3843 } 3844 3845 // Tries to set a breakpoint on the start of a kernel, resolved using the kernel 3846 // name. Argument 'coords', represents a three dimensional coordinate which can 3847 // be 3848 // used to specify a single kernel instance to break on. If this is set then we 3849 // add a callback 3850 // to the breakpoint. 3851 bool RenderScriptRuntime::PlaceBreakpointOnKernel(TargetSP target, 3852 Stream &messages, 3853 const char *name, 3854 const RSCoordinate *coord) { 3855 if (!name) 3856 return false; 3857 3858 InitSearchFilter(target); 3859 3860 ConstString kernel_name(name); 3861 BreakpointSP bp = CreateKernelBreakpoint(kernel_name); 3862 if (!bp) 3863 return false; 3864 3865 // We have a conditional breakpoint on a specific coordinate 3866 if (coord) 3867 SetConditional(bp, messages, *coord); 3868 3869 bp->GetDescription(&messages, lldb::eDescriptionLevelInitial, false); 3870 3871 return true; 3872 } 3873 3874 BreakpointSP 3875 RenderScriptRuntime::CreateScriptGroupBreakpoint(const ConstString &name, 3876 bool stop_on_all) { 3877 Log *log( 3878 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3879 3880 if (!m_filtersp) { 3881 if (log) 3882 log->Printf("%s - error, no breakpoint search filter set.", __FUNCTION__); 3883 return nullptr; 3884 } 3885 3886 BreakpointResolverSP resolver_sp(new RSScriptGroupBreakpointResolver( 3887 nullptr, name, m_scriptGroups, stop_on_all)); 3888 BreakpointSP bp = GetProcess()->GetTarget().CreateBreakpoint( 3889 m_filtersp, resolver_sp, false, false, false); 3890 // Give RS breakpoints a specific name, so the user can manipulate them as a 3891 // group. 3892 Error err; 3893 if (!bp->AddName(name.AsCString(), err)) 3894 if (log) 3895 log->Printf("%s - error setting break name, '%s'.", __FUNCTION__, 3896 err.AsCString()); 3897 // ask the breakpoint to resolve itself 3898 bp->ResolveBreakpoint(); 3899 return bp; 3900 } 3901 3902 bool RenderScriptRuntime::PlaceBreakpointOnScriptGroup(TargetSP target, 3903 Stream &strm, 3904 const ConstString &name, 3905 bool multi) { 3906 InitSearchFilter(target); 3907 BreakpointSP bp = CreateScriptGroupBreakpoint(name, multi); 3908 if (bp) 3909 bp->GetDescription(&strm, lldb::eDescriptionLevelInitial, false); 3910 return bool(bp); 3911 } 3912 3913 bool RenderScriptRuntime::PlaceBreakpointOnReduction(TargetSP target, 3914 Stream &messages, 3915 const char *reduce_name, 3916 const RSCoordinate *coord, 3917 int kernel_types) { 3918 if (!reduce_name) 3919 return false; 3920 3921 InitSearchFilter(target); 3922 BreakpointSP bp = 3923 CreateReductionBreakpoint(ConstString(reduce_name), kernel_types); 3924 if (!bp) 3925 return false; 3926 3927 if (coord) 3928 SetConditional(bp, messages, *coord); 3929 3930 bp->GetDescription(&messages, lldb::eDescriptionLevelInitial, false); 3931 3932 return true; 3933 } 3934 3935 void RenderScriptRuntime::DumpModules(Stream &strm) const { 3936 strm.Printf("RenderScript Modules:"); 3937 strm.EOL(); 3938 strm.IndentMore(); 3939 for (const auto &module : m_rsmodules) { 3940 module->Dump(strm); 3941 } 3942 strm.IndentLess(); 3943 } 3944 3945 RenderScriptRuntime::ScriptDetails * 3946 RenderScriptRuntime::LookUpScript(addr_t address, bool create) { 3947 for (const auto &s : m_scripts) { 3948 if (s->script.isValid()) 3949 if (*s->script == address) 3950 return s.get(); 3951 } 3952 if (create) { 3953 std::unique_ptr<ScriptDetails> s(new ScriptDetails); 3954 s->script = address; 3955 m_scripts.push_back(std::move(s)); 3956 return m_scripts.back().get(); 3957 } 3958 return nullptr; 3959 } 3960 3961 RenderScriptRuntime::AllocationDetails * 3962 RenderScriptRuntime::LookUpAllocation(addr_t address) { 3963 for (const auto &a : m_allocations) { 3964 if (a->address.isValid()) 3965 if (*a->address == address) 3966 return a.get(); 3967 } 3968 return nullptr; 3969 } 3970 3971 RenderScriptRuntime::AllocationDetails * 3972 RenderScriptRuntime::CreateAllocation(addr_t address) { 3973 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 3974 3975 // Remove any previous allocation which contains the same address 3976 auto it = m_allocations.begin(); 3977 while (it != m_allocations.end()) { 3978 if (*((*it)->address) == address) { 3979 if (log) 3980 log->Printf("%s - Removing allocation id: %d, address: 0x%" PRIx64, 3981 __FUNCTION__, (*it)->id, address); 3982 3983 it = m_allocations.erase(it); 3984 } else { 3985 it++; 3986 } 3987 } 3988 3989 std::unique_ptr<AllocationDetails> a(new AllocationDetails); 3990 a->address = address; 3991 m_allocations.push_back(std::move(a)); 3992 return m_allocations.back().get(); 3993 } 3994 3995 bool RenderScriptRuntime::ResolveKernelName(lldb::addr_t kernel_addr, 3996 ConstString &name) { 3997 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS); 3998 3999 Target &target = GetProcess()->GetTarget(); 4000 Address resolved; 4001 // RenderScript module 4002 if (!target.GetSectionLoadList().ResolveLoadAddress(kernel_addr, resolved)) { 4003 if (log) 4004 log->Printf("%s: unable to resolve 0x%" PRIx64 " to a loaded symbol", 4005 __FUNCTION__, kernel_addr); 4006 return false; 4007 } 4008 4009 Symbol *sym = resolved.CalculateSymbolContextSymbol(); 4010 if (!sym) 4011 return false; 4012 4013 name = sym->GetName(); 4014 assert(IsRenderScriptModule(resolved.CalculateSymbolContextModule())); 4015 if (log) 4016 log->Printf("%s: 0x%" PRIx64 " resolved to the symbol '%s'", __FUNCTION__, 4017 kernel_addr, name.GetCString()); 4018 return true; 4019 } 4020 4021 void RSModuleDescriptor::Dump(Stream &strm) const { 4022 int indent = strm.GetIndentLevel(); 4023 4024 strm.Indent(); 4025 m_module->GetFileSpec().Dump(&strm); 4026 strm.Indent(m_module->GetNumCompileUnits() ? "Debug info loaded." 4027 : "Debug info does not exist."); 4028 strm.EOL(); 4029 strm.IndentMore(); 4030 4031 strm.Indent(); 4032 strm.Printf("Globals: %" PRIu64, static_cast<uint64_t>(m_globals.size())); 4033 strm.EOL(); 4034 strm.IndentMore(); 4035 for (const auto &global : m_globals) { 4036 global.Dump(strm); 4037 } 4038 strm.IndentLess(); 4039 4040 strm.Indent(); 4041 strm.Printf("Kernels: %" PRIu64, static_cast<uint64_t>(m_kernels.size())); 4042 strm.EOL(); 4043 strm.IndentMore(); 4044 for (const auto &kernel : m_kernels) { 4045 kernel.Dump(strm); 4046 } 4047 strm.IndentLess(); 4048 4049 strm.Indent(); 4050 strm.Printf("Pragmas: %" PRIu64, static_cast<uint64_t>(m_pragmas.size())); 4051 strm.EOL(); 4052 strm.IndentMore(); 4053 for (const auto &key_val : m_pragmas) { 4054 strm.Indent(); 4055 strm.Printf("%s: %s", key_val.first.c_str(), key_val.second.c_str()); 4056 strm.EOL(); 4057 } 4058 strm.IndentLess(); 4059 4060 strm.Indent(); 4061 strm.Printf("Reductions: %" PRIu64, 4062 static_cast<uint64_t>(m_reductions.size())); 4063 strm.EOL(); 4064 strm.IndentMore(); 4065 for (const auto &reduction : m_reductions) { 4066 reduction.Dump(strm); 4067 } 4068 4069 strm.SetIndentLevel(indent); 4070 } 4071 4072 void RSGlobalDescriptor::Dump(Stream &strm) const { 4073 strm.Indent(m_name.AsCString()); 4074 VariableList var_list; 4075 m_module->m_module->FindGlobalVariables(m_name, nullptr, true, 1U, var_list); 4076 if (var_list.GetSize() == 1) { 4077 auto var = var_list.GetVariableAtIndex(0); 4078 auto type = var->GetType(); 4079 if (type) { 4080 strm.Printf(" - "); 4081 type->DumpTypeName(&strm); 4082 } else { 4083 strm.Printf(" - Unknown Type"); 4084 } 4085 } else { 4086 strm.Printf(" - variable identified, but not found in binary"); 4087 const Symbol *s = m_module->m_module->FindFirstSymbolWithNameAndType( 4088 m_name, eSymbolTypeData); 4089 if (s) { 4090 strm.Printf(" (symbol exists) "); 4091 } 4092 } 4093 4094 strm.EOL(); 4095 } 4096 4097 void RSKernelDescriptor::Dump(Stream &strm) const { 4098 strm.Indent(m_name.AsCString()); 4099 strm.EOL(); 4100 } 4101 4102 void RSReductionDescriptor::Dump(lldb_private::Stream &stream) const { 4103 stream.Indent(m_reduce_name.AsCString()); 4104 stream.IndentMore(); 4105 stream.EOL(); 4106 stream.Indent(); 4107 stream.Printf("accumulator: %s", m_accum_name.AsCString()); 4108 stream.EOL(); 4109 stream.Indent(); 4110 stream.Printf("initializer: %s", m_init_name.AsCString()); 4111 stream.EOL(); 4112 stream.Indent(); 4113 stream.Printf("combiner: %s", m_comb_name.AsCString()); 4114 stream.EOL(); 4115 stream.Indent(); 4116 stream.Printf("outconverter: %s", m_outc_name.AsCString()); 4117 stream.EOL(); 4118 // XXX This is currently unspecified by RenderScript, and unused 4119 // stream.Indent(); 4120 // stream.Printf("halter: '%s'", m_init_name.AsCString()); 4121 // stream.EOL(); 4122 stream.IndentLess(); 4123 } 4124 4125 class CommandObjectRenderScriptRuntimeModuleDump : public CommandObjectParsed { 4126 public: 4127 CommandObjectRenderScriptRuntimeModuleDump(CommandInterpreter &interpreter) 4128 : CommandObjectParsed( 4129 interpreter, "renderscript module dump", 4130 "Dumps renderscript specific information for all modules.", 4131 "renderscript module dump", 4132 eCommandRequiresProcess | eCommandProcessMustBeLaunched) {} 4133 4134 ~CommandObjectRenderScriptRuntimeModuleDump() override = default; 4135 4136 bool DoExecute(Args &command, CommandReturnObject &result) override { 4137 RenderScriptRuntime *runtime = 4138 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4139 eLanguageTypeExtRenderScript); 4140 runtime->DumpModules(result.GetOutputStream()); 4141 result.SetStatus(eReturnStatusSuccessFinishResult); 4142 return true; 4143 } 4144 }; 4145 4146 class CommandObjectRenderScriptRuntimeModule : public CommandObjectMultiword { 4147 public: 4148 CommandObjectRenderScriptRuntimeModule(CommandInterpreter &interpreter) 4149 : CommandObjectMultiword(interpreter, "renderscript module", 4150 "Commands that deal with RenderScript modules.", 4151 nullptr) { 4152 LoadSubCommand( 4153 "dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeModuleDump( 4154 interpreter))); 4155 } 4156 4157 ~CommandObjectRenderScriptRuntimeModule() override = default; 4158 }; 4159 4160 class CommandObjectRenderScriptRuntimeKernelList : public CommandObjectParsed { 4161 public: 4162 CommandObjectRenderScriptRuntimeKernelList(CommandInterpreter &interpreter) 4163 : CommandObjectParsed( 4164 interpreter, "renderscript kernel list", 4165 "Lists renderscript kernel names and associated script resources.", 4166 "renderscript kernel list", 4167 eCommandRequiresProcess | eCommandProcessMustBeLaunched) {} 4168 4169 ~CommandObjectRenderScriptRuntimeKernelList() override = default; 4170 4171 bool DoExecute(Args &command, CommandReturnObject &result) override { 4172 RenderScriptRuntime *runtime = 4173 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4174 eLanguageTypeExtRenderScript); 4175 runtime->DumpKernels(result.GetOutputStream()); 4176 result.SetStatus(eReturnStatusSuccessFinishResult); 4177 return true; 4178 } 4179 }; 4180 4181 static OptionDefinition g_renderscript_reduction_bp_set_options[] = { 4182 {LLDB_OPT_SET_1, false, "function-role", 't', 4183 OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeOneLiner, 4184 "Break on a comma separated set of reduction kernel types " 4185 "(accumulator,outcoverter,combiner,initializer"}, 4186 {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument, 4187 nullptr, nullptr, 0, eArgTypeValue, 4188 "Set a breakpoint on a single invocation of the kernel with specified " 4189 "coordinate.\n" 4190 "Coordinate takes the form 'x[,y][,z] where x,y,z are positive " 4191 "integers representing kernel dimensions. " 4192 "Any unset dimensions will be defaulted to zero."}}; 4193 4194 class CommandObjectRenderScriptRuntimeReductionBreakpointSet 4195 : public CommandObjectParsed { 4196 public: 4197 CommandObjectRenderScriptRuntimeReductionBreakpointSet( 4198 CommandInterpreter &interpreter) 4199 : CommandObjectParsed( 4200 interpreter, "renderscript reduction breakpoint set", 4201 "Set a breakpoint on named RenderScript general reductions", 4202 "renderscript reduction breakpoint set <kernel_name> [-t " 4203 "<reduction_kernel_type,...>]", 4204 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4205 eCommandProcessMustBePaused), 4206 m_options(){}; 4207 4208 class CommandOptions : public Options { 4209 public: 4210 CommandOptions() 4211 : Options(), 4212 m_kernel_types(RSReduceBreakpointResolver::eKernelTypeAll) {} 4213 4214 ~CommandOptions() override = default; 4215 4216 Error SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg, 4217 ExecutionContext *exe_ctx) override { 4218 Error err; 4219 StreamString err_str; 4220 const int short_option = m_getopt_table[option_idx].val; 4221 switch (short_option) { 4222 case 't': 4223 if (!ParseReductionTypes(option_arg, err_str)) 4224 err.SetErrorStringWithFormat( 4225 "Unable to deduce reduction types for %s: %s", 4226 option_arg.str().c_str(), err_str.GetData()); 4227 break; 4228 case 'c': { 4229 auto coord = RSCoordinate{}; 4230 if (!ParseCoordinate(option_arg, coord)) 4231 err.SetErrorStringWithFormat("unable to parse coordinate for %s", 4232 option_arg.str().c_str()); 4233 else { 4234 m_have_coord = true; 4235 m_coord = coord; 4236 } 4237 break; 4238 } 4239 default: 4240 err.SetErrorStringWithFormat("Invalid option '-%c'", short_option); 4241 } 4242 return err; 4243 } 4244 4245 void OptionParsingStarting(ExecutionContext *exe_ctx) override { 4246 m_have_coord = false; 4247 } 4248 4249 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4250 return llvm::makeArrayRef(g_renderscript_reduction_bp_set_options); 4251 } 4252 4253 bool ParseReductionTypes(llvm::StringRef option_val, 4254 StreamString &err_str) { 4255 m_kernel_types = RSReduceBreakpointResolver::eKernelTypeNone; 4256 const auto reduce_name_to_type = [](llvm::StringRef name) -> int { 4257 return llvm::StringSwitch<int>(name) 4258 .Case("accumulator", RSReduceBreakpointResolver::eKernelTypeAccum) 4259 .Case("initializer", RSReduceBreakpointResolver::eKernelTypeInit) 4260 .Case("outconverter", RSReduceBreakpointResolver::eKernelTypeOutC) 4261 .Case("combiner", RSReduceBreakpointResolver::eKernelTypeComb) 4262 .Case("all", RSReduceBreakpointResolver::eKernelTypeAll) 4263 // Currently not exposed by the runtime 4264 // .Case("halter", RSReduceBreakpointResolver::eKernelTypeHalter) 4265 .Default(0); 4266 }; 4267 4268 // Matching a comma separated list of known words is fairly 4269 // straightforward with PCRE, but we're 4270 // using ERE, so we end up with a little ugliness... 4271 RegularExpression::Match match(/* max_matches */ 5); 4272 RegularExpression match_type_list( 4273 llvm::StringRef("^([[:alpha:]]+)(,[[:alpha:]]+){0,4}$")); 4274 4275 assert(match_type_list.IsValid()); 4276 4277 if (!match_type_list.Execute(option_val, &match)) { 4278 err_str.PutCString( 4279 "a comma-separated list of kernel types is required"); 4280 return false; 4281 } 4282 4283 // splitting on commas is much easier with llvm::StringRef than regex 4284 llvm::SmallVector<llvm::StringRef, 5> type_names; 4285 llvm::StringRef(option_val).split(type_names, ','); 4286 4287 for (const auto &name : type_names) { 4288 const int type = reduce_name_to_type(name); 4289 if (!type) { 4290 err_str.Printf("unknown kernel type name %s", name.str().c_str()); 4291 return false; 4292 } 4293 m_kernel_types |= type; 4294 } 4295 4296 return true; 4297 } 4298 4299 int m_kernel_types; 4300 llvm::StringRef m_reduce_name; 4301 RSCoordinate m_coord; 4302 bool m_have_coord; 4303 }; 4304 4305 Options *GetOptions() override { return &m_options; } 4306 4307 bool DoExecute(Args &command, CommandReturnObject &result) override { 4308 const size_t argc = command.GetArgumentCount(); 4309 if (argc < 1) { 4310 result.AppendErrorWithFormat("'%s' takes 1 argument of reduction name, " 4311 "and an optional kernel type list", 4312 m_cmd_name.c_str()); 4313 result.SetStatus(eReturnStatusFailed); 4314 return false; 4315 } 4316 4317 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4318 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4319 eLanguageTypeExtRenderScript)); 4320 4321 auto &outstream = result.GetOutputStream(); 4322 auto name = command.GetArgumentAtIndex(0); 4323 auto &target = m_exe_ctx.GetTargetSP(); 4324 auto coord = m_options.m_have_coord ? &m_options.m_coord : nullptr; 4325 if (!runtime->PlaceBreakpointOnReduction(target, outstream, name, coord, 4326 m_options.m_kernel_types)) { 4327 result.SetStatus(eReturnStatusFailed); 4328 result.AppendError("Error: unable to place breakpoint on reduction"); 4329 return false; 4330 } 4331 result.AppendMessage("Breakpoint(s) created"); 4332 result.SetStatus(eReturnStatusSuccessFinishResult); 4333 return true; 4334 } 4335 4336 private: 4337 CommandOptions m_options; 4338 }; 4339 4340 static OptionDefinition g_renderscript_kernel_bp_set_options[] = { 4341 {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument, 4342 nullptr, nullptr, 0, eArgTypeValue, 4343 "Set a breakpoint on a single invocation of the kernel with specified " 4344 "coordinate.\n" 4345 "Coordinate takes the form 'x[,y][,z] where x,y,z are positive " 4346 "integers representing kernel dimensions. " 4347 "Any unset dimensions will be defaulted to zero."}}; 4348 4349 class CommandObjectRenderScriptRuntimeKernelBreakpointSet 4350 : public CommandObjectParsed { 4351 public: 4352 CommandObjectRenderScriptRuntimeKernelBreakpointSet( 4353 CommandInterpreter &interpreter) 4354 : CommandObjectParsed( 4355 interpreter, "renderscript kernel breakpoint set", 4356 "Sets a breakpoint on a renderscript kernel.", 4357 "renderscript kernel breakpoint set <kernel_name> [-c x,y,z]", 4358 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4359 eCommandProcessMustBePaused), 4360 m_options() {} 4361 4362 ~CommandObjectRenderScriptRuntimeKernelBreakpointSet() override = default; 4363 4364 Options *GetOptions() override { return &m_options; } 4365 4366 class CommandOptions : public Options { 4367 public: 4368 CommandOptions() : Options() {} 4369 4370 ~CommandOptions() override = default; 4371 4372 Error SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg, 4373 ExecutionContext *exe_ctx) override { 4374 Error err; 4375 const int short_option = m_getopt_table[option_idx].val; 4376 4377 switch (short_option) { 4378 case 'c': { 4379 auto coord = RSCoordinate{}; 4380 if (!ParseCoordinate(option_arg, coord)) 4381 err.SetErrorStringWithFormat( 4382 "Couldn't parse coordinate '%s', should be in format 'x,y,z'.", 4383 option_arg.str().c_str()); 4384 else { 4385 m_have_coord = true; 4386 m_coord = coord; 4387 } 4388 break; 4389 } 4390 default: 4391 err.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 4392 break; 4393 } 4394 return err; 4395 } 4396 4397 void OptionParsingStarting(ExecutionContext *exe_ctx) override { 4398 m_have_coord = false; 4399 } 4400 4401 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4402 return llvm::makeArrayRef(g_renderscript_kernel_bp_set_options); 4403 } 4404 4405 RSCoordinate m_coord; 4406 bool m_have_coord; 4407 }; 4408 4409 bool DoExecute(Args &command, CommandReturnObject &result) override { 4410 const size_t argc = command.GetArgumentCount(); 4411 if (argc < 1) { 4412 result.AppendErrorWithFormat( 4413 "'%s' takes 1 argument of kernel name, and an optional coordinate.", 4414 m_cmd_name.c_str()); 4415 result.SetStatus(eReturnStatusFailed); 4416 return false; 4417 } 4418 4419 RenderScriptRuntime *runtime = 4420 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4421 eLanguageTypeExtRenderScript); 4422 4423 auto &outstream = result.GetOutputStream(); 4424 auto &target = m_exe_ctx.GetTargetSP(); 4425 auto name = command.GetArgumentAtIndex(0); 4426 auto coord = m_options.m_have_coord ? &m_options.m_coord : nullptr; 4427 if (!runtime->PlaceBreakpointOnKernel(target, outstream, name, coord)) { 4428 result.SetStatus(eReturnStatusFailed); 4429 result.AppendErrorWithFormat( 4430 "Error: unable to set breakpoint on kernel '%s'", name); 4431 return false; 4432 } 4433 4434 result.AppendMessage("Breakpoint(s) created"); 4435 result.SetStatus(eReturnStatusSuccessFinishResult); 4436 return true; 4437 } 4438 4439 private: 4440 CommandOptions m_options; 4441 }; 4442 4443 class CommandObjectRenderScriptRuntimeKernelBreakpointAll 4444 : public CommandObjectParsed { 4445 public: 4446 CommandObjectRenderScriptRuntimeKernelBreakpointAll( 4447 CommandInterpreter &interpreter) 4448 : CommandObjectParsed( 4449 interpreter, "renderscript kernel breakpoint all", 4450 "Automatically sets a breakpoint on all renderscript kernels that " 4451 "are or will be loaded.\n" 4452 "Disabling option means breakpoints will no longer be set on any " 4453 "kernels loaded in the future, " 4454 "but does not remove currently set breakpoints.", 4455 "renderscript kernel breakpoint all <enable/disable>", 4456 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4457 eCommandProcessMustBePaused) {} 4458 4459 ~CommandObjectRenderScriptRuntimeKernelBreakpointAll() override = default; 4460 4461 bool DoExecute(Args &command, CommandReturnObject &result) override { 4462 const size_t argc = command.GetArgumentCount(); 4463 if (argc != 1) { 4464 result.AppendErrorWithFormat( 4465 "'%s' takes 1 argument of 'enable' or 'disable'", m_cmd_name.c_str()); 4466 result.SetStatus(eReturnStatusFailed); 4467 return false; 4468 } 4469 4470 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4471 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4472 eLanguageTypeExtRenderScript)); 4473 4474 bool do_break = false; 4475 const char *argument = command.GetArgumentAtIndex(0); 4476 if (strcmp(argument, "enable") == 0) { 4477 do_break = true; 4478 result.AppendMessage("Breakpoints will be set on all kernels."); 4479 } else if (strcmp(argument, "disable") == 0) { 4480 do_break = false; 4481 result.AppendMessage("Breakpoints will not be set on any new kernels."); 4482 } else { 4483 result.AppendErrorWithFormat( 4484 "Argument must be either 'enable' or 'disable'"); 4485 result.SetStatus(eReturnStatusFailed); 4486 return false; 4487 } 4488 4489 runtime->SetBreakAllKernels(do_break, m_exe_ctx.GetTargetSP()); 4490 4491 result.SetStatus(eReturnStatusSuccessFinishResult); 4492 return true; 4493 } 4494 }; 4495 4496 class CommandObjectRenderScriptRuntimeReductionBreakpoint 4497 : public CommandObjectMultiword { 4498 public: 4499 CommandObjectRenderScriptRuntimeReductionBreakpoint( 4500 CommandInterpreter &interpreter) 4501 : CommandObjectMultiword(interpreter, "renderscript reduction breakpoint", 4502 "Commands that manipulate breakpoints on " 4503 "renderscript general reductions.", 4504 nullptr) { 4505 LoadSubCommand( 4506 "set", CommandObjectSP( 4507 new CommandObjectRenderScriptRuntimeReductionBreakpointSet( 4508 interpreter))); 4509 } 4510 4511 ~CommandObjectRenderScriptRuntimeReductionBreakpoint() override = default; 4512 }; 4513 4514 class CommandObjectRenderScriptRuntimeKernelCoordinate 4515 : public CommandObjectParsed { 4516 public: 4517 CommandObjectRenderScriptRuntimeKernelCoordinate( 4518 CommandInterpreter &interpreter) 4519 : CommandObjectParsed( 4520 interpreter, "renderscript kernel coordinate", 4521 "Shows the (x,y,z) coordinate of the current kernel invocation.", 4522 "renderscript kernel coordinate", 4523 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4524 eCommandProcessMustBePaused) {} 4525 4526 ~CommandObjectRenderScriptRuntimeKernelCoordinate() override = default; 4527 4528 bool DoExecute(Args &command, CommandReturnObject &result) override { 4529 RSCoordinate coord{}; 4530 bool success = RenderScriptRuntime::GetKernelCoordinate( 4531 coord, m_exe_ctx.GetThreadPtr()); 4532 Stream &stream = result.GetOutputStream(); 4533 4534 if (success) { 4535 stream.Printf("Coordinate: " FMT_COORD, coord.x, coord.y, coord.z); 4536 stream.EOL(); 4537 result.SetStatus(eReturnStatusSuccessFinishResult); 4538 } else { 4539 stream.Printf("Error: Coordinate could not be found."); 4540 stream.EOL(); 4541 result.SetStatus(eReturnStatusFailed); 4542 } 4543 return true; 4544 } 4545 }; 4546 4547 class CommandObjectRenderScriptRuntimeKernelBreakpoint 4548 : public CommandObjectMultiword { 4549 public: 4550 CommandObjectRenderScriptRuntimeKernelBreakpoint( 4551 CommandInterpreter &interpreter) 4552 : CommandObjectMultiword( 4553 interpreter, "renderscript kernel", 4554 "Commands that generate breakpoints on renderscript kernels.", 4555 nullptr) { 4556 LoadSubCommand( 4557 "set", 4558 CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointSet( 4559 interpreter))); 4560 LoadSubCommand( 4561 "all", 4562 CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointAll( 4563 interpreter))); 4564 } 4565 4566 ~CommandObjectRenderScriptRuntimeKernelBreakpoint() override = default; 4567 }; 4568 4569 class CommandObjectRenderScriptRuntimeKernel : public CommandObjectMultiword { 4570 public: 4571 CommandObjectRenderScriptRuntimeKernel(CommandInterpreter &interpreter) 4572 : CommandObjectMultiword(interpreter, "renderscript kernel", 4573 "Commands that deal with RenderScript kernels.", 4574 nullptr) { 4575 LoadSubCommand( 4576 "list", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelList( 4577 interpreter))); 4578 LoadSubCommand( 4579 "coordinate", 4580 CommandObjectSP( 4581 new CommandObjectRenderScriptRuntimeKernelCoordinate(interpreter))); 4582 LoadSubCommand( 4583 "breakpoint", 4584 CommandObjectSP( 4585 new CommandObjectRenderScriptRuntimeKernelBreakpoint(interpreter))); 4586 } 4587 4588 ~CommandObjectRenderScriptRuntimeKernel() override = default; 4589 }; 4590 4591 class CommandObjectRenderScriptRuntimeContextDump : public CommandObjectParsed { 4592 public: 4593 CommandObjectRenderScriptRuntimeContextDump(CommandInterpreter &interpreter) 4594 : CommandObjectParsed(interpreter, "renderscript context dump", 4595 "Dumps renderscript context information.", 4596 "renderscript context dump", 4597 eCommandRequiresProcess | 4598 eCommandProcessMustBeLaunched) {} 4599 4600 ~CommandObjectRenderScriptRuntimeContextDump() override = default; 4601 4602 bool DoExecute(Args &command, CommandReturnObject &result) override { 4603 RenderScriptRuntime *runtime = 4604 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4605 eLanguageTypeExtRenderScript); 4606 runtime->DumpContexts(result.GetOutputStream()); 4607 result.SetStatus(eReturnStatusSuccessFinishResult); 4608 return true; 4609 } 4610 }; 4611 4612 static OptionDefinition g_renderscript_runtime_alloc_dump_options[] = { 4613 {LLDB_OPT_SET_1, false, "file", 'f', OptionParser::eRequiredArgument, 4614 nullptr, nullptr, 0, eArgTypeFilename, 4615 "Print results to specified file instead of command line."}}; 4616 4617 class CommandObjectRenderScriptRuntimeContext : public CommandObjectMultiword { 4618 public: 4619 CommandObjectRenderScriptRuntimeContext(CommandInterpreter &interpreter) 4620 : CommandObjectMultiword(interpreter, "renderscript context", 4621 "Commands that deal with RenderScript contexts.", 4622 nullptr) { 4623 LoadSubCommand( 4624 "dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeContextDump( 4625 interpreter))); 4626 } 4627 4628 ~CommandObjectRenderScriptRuntimeContext() override = default; 4629 }; 4630 4631 class CommandObjectRenderScriptRuntimeAllocationDump 4632 : public CommandObjectParsed { 4633 public: 4634 CommandObjectRenderScriptRuntimeAllocationDump( 4635 CommandInterpreter &interpreter) 4636 : CommandObjectParsed(interpreter, "renderscript allocation dump", 4637 "Displays the contents of a particular allocation", 4638 "renderscript allocation dump <ID>", 4639 eCommandRequiresProcess | 4640 eCommandProcessMustBeLaunched), 4641 m_options() {} 4642 4643 ~CommandObjectRenderScriptRuntimeAllocationDump() override = default; 4644 4645 Options *GetOptions() override { return &m_options; } 4646 4647 class CommandOptions : public Options { 4648 public: 4649 CommandOptions() : Options() {} 4650 4651 ~CommandOptions() override = default; 4652 4653 Error SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg, 4654 ExecutionContext *exe_ctx) override { 4655 Error err; 4656 const int short_option = m_getopt_table[option_idx].val; 4657 4658 switch (short_option) { 4659 case 'f': 4660 m_outfile.SetFile(option_arg, true); 4661 if (m_outfile.Exists()) { 4662 m_outfile.Clear(); 4663 err.SetErrorStringWithFormat("file already exists: '%s'", 4664 option_arg.str().c_str()); 4665 } 4666 break; 4667 default: 4668 err.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 4669 break; 4670 } 4671 return err; 4672 } 4673 4674 void OptionParsingStarting(ExecutionContext *exe_ctx) override { 4675 m_outfile.Clear(); 4676 } 4677 4678 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4679 return llvm::makeArrayRef(g_renderscript_runtime_alloc_dump_options); 4680 } 4681 4682 FileSpec m_outfile; 4683 }; 4684 4685 bool DoExecute(Args &command, CommandReturnObject &result) override { 4686 const size_t argc = command.GetArgumentCount(); 4687 if (argc < 1) { 4688 result.AppendErrorWithFormat("'%s' takes 1 argument, an allocation ID. " 4689 "As well as an optional -f argument", 4690 m_cmd_name.c_str()); 4691 result.SetStatus(eReturnStatusFailed); 4692 return false; 4693 } 4694 4695 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4696 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4697 eLanguageTypeExtRenderScript)); 4698 4699 const char *id_cstr = command.GetArgumentAtIndex(0); 4700 bool success = false; 4701 const uint32_t id = 4702 StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success); 4703 if (!success) { 4704 result.AppendErrorWithFormat("invalid allocation id argument '%s'", 4705 id_cstr); 4706 result.SetStatus(eReturnStatusFailed); 4707 return false; 4708 } 4709 4710 Stream *output_strm = nullptr; 4711 StreamFile outfile_stream; 4712 const FileSpec &outfile_spec = 4713 m_options.m_outfile; // Dump allocation to file instead 4714 if (outfile_spec) { 4715 // Open output file 4716 char path[256]; 4717 outfile_spec.GetPath(path, sizeof(path)); 4718 if (outfile_stream.GetFile() 4719 .Open(path, File::eOpenOptionWrite | File::eOpenOptionCanCreate) 4720 .Success()) { 4721 output_strm = &outfile_stream; 4722 result.GetOutputStream().Printf("Results written to '%s'", path); 4723 result.GetOutputStream().EOL(); 4724 } else { 4725 result.AppendErrorWithFormat("Couldn't open file '%s'", path); 4726 result.SetStatus(eReturnStatusFailed); 4727 return false; 4728 } 4729 } else 4730 output_strm = &result.GetOutputStream(); 4731 4732 assert(output_strm != nullptr); 4733 bool dumped = 4734 runtime->DumpAllocation(*output_strm, m_exe_ctx.GetFramePtr(), id); 4735 4736 if (dumped) 4737 result.SetStatus(eReturnStatusSuccessFinishResult); 4738 else 4739 result.SetStatus(eReturnStatusFailed); 4740 4741 return true; 4742 } 4743 4744 private: 4745 CommandOptions m_options; 4746 }; 4747 4748 static OptionDefinition g_renderscript_runtime_alloc_list_options[] = { 4749 {LLDB_OPT_SET_1, false, "id", 'i', OptionParser::eRequiredArgument, nullptr, 4750 nullptr, 0, eArgTypeIndex, 4751 "Only show details of a single allocation with specified id."}}; 4752 4753 class CommandObjectRenderScriptRuntimeAllocationList 4754 : public CommandObjectParsed { 4755 public: 4756 CommandObjectRenderScriptRuntimeAllocationList( 4757 CommandInterpreter &interpreter) 4758 : CommandObjectParsed( 4759 interpreter, "renderscript allocation list", 4760 "List renderscript allocations and their information.", 4761 "renderscript allocation list", 4762 eCommandRequiresProcess | eCommandProcessMustBeLaunched), 4763 m_options() {} 4764 4765 ~CommandObjectRenderScriptRuntimeAllocationList() override = default; 4766 4767 Options *GetOptions() override { return &m_options; } 4768 4769 class CommandOptions : public Options { 4770 public: 4771 CommandOptions() : Options(), m_id(0) {} 4772 4773 ~CommandOptions() override = default; 4774 4775 Error SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg, 4776 ExecutionContext *exe_ctx) override { 4777 Error err; 4778 const int short_option = m_getopt_table[option_idx].val; 4779 4780 switch (short_option) { 4781 case 'i': 4782 if (option_arg.getAsInteger(0, m_id)) 4783 err.SetErrorStringWithFormat("invalid integer value for option '%c'", 4784 short_option); 4785 break; 4786 default: 4787 err.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 4788 break; 4789 } 4790 return err; 4791 } 4792 4793 void OptionParsingStarting(ExecutionContext *exe_ctx) override { m_id = 0; } 4794 4795 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4796 return llvm::makeArrayRef(g_renderscript_runtime_alloc_list_options); 4797 } 4798 4799 uint32_t m_id; 4800 }; 4801 4802 bool DoExecute(Args &command, CommandReturnObject &result) override { 4803 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4804 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4805 eLanguageTypeExtRenderScript)); 4806 runtime->ListAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr(), 4807 m_options.m_id); 4808 result.SetStatus(eReturnStatusSuccessFinishResult); 4809 return true; 4810 } 4811 4812 private: 4813 CommandOptions m_options; 4814 }; 4815 4816 class CommandObjectRenderScriptRuntimeAllocationLoad 4817 : public CommandObjectParsed { 4818 public: 4819 CommandObjectRenderScriptRuntimeAllocationLoad( 4820 CommandInterpreter &interpreter) 4821 : CommandObjectParsed( 4822 interpreter, "renderscript allocation load", 4823 "Loads renderscript allocation contents from a file.", 4824 "renderscript allocation load <ID> <filename>", 4825 eCommandRequiresProcess | eCommandProcessMustBeLaunched) {} 4826 4827 ~CommandObjectRenderScriptRuntimeAllocationLoad() override = default; 4828 4829 bool DoExecute(Args &command, CommandReturnObject &result) override { 4830 const size_t argc = command.GetArgumentCount(); 4831 if (argc != 2) { 4832 result.AppendErrorWithFormat( 4833 "'%s' takes 2 arguments, an allocation ID and filename to read from.", 4834 m_cmd_name.c_str()); 4835 result.SetStatus(eReturnStatusFailed); 4836 return false; 4837 } 4838 4839 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4840 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4841 eLanguageTypeExtRenderScript)); 4842 4843 const char *id_cstr = command.GetArgumentAtIndex(0); 4844 bool success = false; 4845 const uint32_t id = 4846 StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success); 4847 if (!success) { 4848 result.AppendErrorWithFormat("invalid allocation id argument '%s'", 4849 id_cstr); 4850 result.SetStatus(eReturnStatusFailed); 4851 return false; 4852 } 4853 4854 const char *path = command.GetArgumentAtIndex(1); 4855 bool loaded = runtime->LoadAllocation(result.GetOutputStream(), id, path, 4856 m_exe_ctx.GetFramePtr()); 4857 4858 if (loaded) 4859 result.SetStatus(eReturnStatusSuccessFinishResult); 4860 else 4861 result.SetStatus(eReturnStatusFailed); 4862 4863 return true; 4864 } 4865 }; 4866 4867 class CommandObjectRenderScriptRuntimeAllocationSave 4868 : public CommandObjectParsed { 4869 public: 4870 CommandObjectRenderScriptRuntimeAllocationSave( 4871 CommandInterpreter &interpreter) 4872 : CommandObjectParsed(interpreter, "renderscript allocation save", 4873 "Write renderscript allocation contents to a file.", 4874 "renderscript allocation save <ID> <filename>", 4875 eCommandRequiresProcess | 4876 eCommandProcessMustBeLaunched) {} 4877 4878 ~CommandObjectRenderScriptRuntimeAllocationSave() override = default; 4879 4880 bool DoExecute(Args &command, CommandReturnObject &result) override { 4881 const size_t argc = command.GetArgumentCount(); 4882 if (argc != 2) { 4883 result.AppendErrorWithFormat( 4884 "'%s' takes 2 arguments, an allocation ID and filename to read from.", 4885 m_cmd_name.c_str()); 4886 result.SetStatus(eReturnStatusFailed); 4887 return false; 4888 } 4889 4890 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4891 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4892 eLanguageTypeExtRenderScript)); 4893 4894 const char *id_cstr = command.GetArgumentAtIndex(0); 4895 bool success = false; 4896 const uint32_t id = 4897 StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success); 4898 if (!success) { 4899 result.AppendErrorWithFormat("invalid allocation id argument '%s'", 4900 id_cstr); 4901 result.SetStatus(eReturnStatusFailed); 4902 return false; 4903 } 4904 4905 const char *path = command.GetArgumentAtIndex(1); 4906 bool saved = runtime->SaveAllocation(result.GetOutputStream(), id, path, 4907 m_exe_ctx.GetFramePtr()); 4908 4909 if (saved) 4910 result.SetStatus(eReturnStatusSuccessFinishResult); 4911 else 4912 result.SetStatus(eReturnStatusFailed); 4913 4914 return true; 4915 } 4916 }; 4917 4918 class CommandObjectRenderScriptRuntimeAllocationRefresh 4919 : public CommandObjectParsed { 4920 public: 4921 CommandObjectRenderScriptRuntimeAllocationRefresh( 4922 CommandInterpreter &interpreter) 4923 : CommandObjectParsed(interpreter, "renderscript allocation refresh", 4924 "Recomputes the details of all allocations.", 4925 "renderscript allocation refresh", 4926 eCommandRequiresProcess | 4927 eCommandProcessMustBeLaunched) {} 4928 4929 ~CommandObjectRenderScriptRuntimeAllocationRefresh() override = default; 4930 4931 bool DoExecute(Args &command, CommandReturnObject &result) override { 4932 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4933 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4934 eLanguageTypeExtRenderScript)); 4935 4936 bool success = runtime->RecomputeAllAllocations(result.GetOutputStream(), 4937 m_exe_ctx.GetFramePtr()); 4938 4939 if (success) { 4940 result.SetStatus(eReturnStatusSuccessFinishResult); 4941 return true; 4942 } else { 4943 result.SetStatus(eReturnStatusFailed); 4944 return false; 4945 } 4946 } 4947 }; 4948 4949 class CommandObjectRenderScriptRuntimeAllocation 4950 : public CommandObjectMultiword { 4951 public: 4952 CommandObjectRenderScriptRuntimeAllocation(CommandInterpreter &interpreter) 4953 : CommandObjectMultiword( 4954 interpreter, "renderscript allocation", 4955 "Commands that deal with RenderScript allocations.", nullptr) { 4956 LoadSubCommand( 4957 "list", 4958 CommandObjectSP( 4959 new CommandObjectRenderScriptRuntimeAllocationList(interpreter))); 4960 LoadSubCommand( 4961 "dump", 4962 CommandObjectSP( 4963 new CommandObjectRenderScriptRuntimeAllocationDump(interpreter))); 4964 LoadSubCommand( 4965 "save", 4966 CommandObjectSP( 4967 new CommandObjectRenderScriptRuntimeAllocationSave(interpreter))); 4968 LoadSubCommand( 4969 "load", 4970 CommandObjectSP( 4971 new CommandObjectRenderScriptRuntimeAllocationLoad(interpreter))); 4972 LoadSubCommand( 4973 "refresh", 4974 CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationRefresh( 4975 interpreter))); 4976 } 4977 4978 ~CommandObjectRenderScriptRuntimeAllocation() override = default; 4979 }; 4980 4981 class CommandObjectRenderScriptRuntimeStatus : public CommandObjectParsed { 4982 public: 4983 CommandObjectRenderScriptRuntimeStatus(CommandInterpreter &interpreter) 4984 : CommandObjectParsed(interpreter, "renderscript status", 4985 "Displays current RenderScript runtime status.", 4986 "renderscript status", 4987 eCommandRequiresProcess | 4988 eCommandProcessMustBeLaunched) {} 4989 4990 ~CommandObjectRenderScriptRuntimeStatus() override = default; 4991 4992 bool DoExecute(Args &command, CommandReturnObject &result) override { 4993 RenderScriptRuntime *runtime = 4994 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4995 eLanguageTypeExtRenderScript); 4996 runtime->Status(result.GetOutputStream()); 4997 result.SetStatus(eReturnStatusSuccessFinishResult); 4998 return true; 4999 } 5000 }; 5001 5002 class CommandObjectRenderScriptRuntimeReduction 5003 : public CommandObjectMultiword { 5004 public: 5005 CommandObjectRenderScriptRuntimeReduction(CommandInterpreter &interpreter) 5006 : CommandObjectMultiword(interpreter, "renderscript reduction", 5007 "Commands that handle general reduction kernels", 5008 nullptr) { 5009 LoadSubCommand( 5010 "breakpoint", 5011 CommandObjectSP(new CommandObjectRenderScriptRuntimeReductionBreakpoint( 5012 interpreter))); 5013 } 5014 ~CommandObjectRenderScriptRuntimeReduction() override = default; 5015 }; 5016 5017 class CommandObjectRenderScriptRuntime : public CommandObjectMultiword { 5018 public: 5019 CommandObjectRenderScriptRuntime(CommandInterpreter &interpreter) 5020 : CommandObjectMultiword( 5021 interpreter, "renderscript", 5022 "Commands for operating on the RenderScript runtime.", 5023 "renderscript <subcommand> [<subcommand-options>]") { 5024 LoadSubCommand( 5025 "module", CommandObjectSP( 5026 new CommandObjectRenderScriptRuntimeModule(interpreter))); 5027 LoadSubCommand( 5028 "status", CommandObjectSP( 5029 new CommandObjectRenderScriptRuntimeStatus(interpreter))); 5030 LoadSubCommand( 5031 "kernel", CommandObjectSP( 5032 new CommandObjectRenderScriptRuntimeKernel(interpreter))); 5033 LoadSubCommand("context", 5034 CommandObjectSP(new CommandObjectRenderScriptRuntimeContext( 5035 interpreter))); 5036 LoadSubCommand( 5037 "allocation", 5038 CommandObjectSP( 5039 new CommandObjectRenderScriptRuntimeAllocation(interpreter))); 5040 LoadSubCommand("scriptgroup", 5041 NewCommandObjectRenderScriptScriptGroup(interpreter)); 5042 LoadSubCommand( 5043 "reduction", 5044 CommandObjectSP( 5045 new CommandObjectRenderScriptRuntimeReduction(interpreter))); 5046 } 5047 5048 ~CommandObjectRenderScriptRuntime() override = default; 5049 }; 5050 5051 void RenderScriptRuntime::Initiate() { assert(!m_initiated); } 5052 5053 RenderScriptRuntime::RenderScriptRuntime(Process *process) 5054 : lldb_private::CPPLanguageRuntime(process), m_initiated(false), 5055 m_debuggerPresentFlagged(false), m_breakAllKernels(false), 5056 m_ir_passes(nullptr) { 5057 ModulesDidLoad(process->GetTarget().GetImages()); 5058 } 5059 5060 lldb::CommandObjectSP RenderScriptRuntime::GetCommandObject( 5061 lldb_private::CommandInterpreter &interpreter) { 5062 return CommandObjectSP(new CommandObjectRenderScriptRuntime(interpreter)); 5063 } 5064 5065 RenderScriptRuntime::~RenderScriptRuntime() = default; 5066