1 //===-- RenderScriptRuntime.cpp ---------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 // C Includes 11 // C++ Includes 12 // Other libraries and framework includes 13 #include "llvm/ADT/StringSwitch.h" 14 15 // Project includes 16 #include "RenderScriptRuntime.h" 17 #include "RenderScriptScriptGroup.h" 18 19 #include "lldb/Breakpoint/StoppointCallbackContext.h" 20 #include "lldb/Core/Debugger.h" 21 #include "lldb/Core/DumpDataExtractor.h" 22 #include "lldb/Core/PluginManager.h" 23 #include "lldb/Core/ValueObjectVariable.h" 24 #include "lldb/DataFormatters/DumpValueObjectOptions.h" 25 #include "lldb/Expression/UserExpression.h" 26 #include "lldb/Host/StringConvert.h" 27 #include "lldb/Interpreter/Args.h" 28 #include "lldb/Interpreter/CommandInterpreter.h" 29 #include "lldb/Interpreter/CommandObjectMultiword.h" 30 #include "lldb/Interpreter/CommandReturnObject.h" 31 #include "lldb/Interpreter/Options.h" 32 #include "lldb/Symbol/Function.h" 33 #include "lldb/Symbol/Symbol.h" 34 #include "lldb/Symbol/Type.h" 35 #include "lldb/Symbol/VariableList.h" 36 #include "lldb/Target/Process.h" 37 #include "lldb/Target/RegisterContext.h" 38 #include "lldb/Target/SectionLoadList.h" 39 #include "lldb/Target/Target.h" 40 #include "lldb/Target/Thread.h" 41 #include "lldb/Utility/ConstString.h" 42 #include "lldb/Utility/Error.h" 43 #include "lldb/Utility/Log.h" 44 #include "lldb/Utility/RegularExpression.h" 45 46 using namespace lldb; 47 using namespace lldb_private; 48 using namespace lldb_renderscript; 49 50 #define FMT_COORD "(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ")" 51 52 namespace { 53 54 // The empirical_type adds a basic level of validation to arbitrary data 55 // allowing us to track if data has been discovered and stored or not. An 56 // empirical_type will be marked as valid only if it has been explicitly 57 // assigned to. 58 template <typename type_t> class empirical_type { 59 public: 60 // Ctor. Contents is invalid when constructed. 61 empirical_type() : valid(false) {} 62 63 // Return true and copy contents to out if valid, else return false. 64 bool get(type_t &out) const { 65 if (valid) 66 out = data; 67 return valid; 68 } 69 70 // Return a pointer to the contents or nullptr if it was not valid. 71 const type_t *get() const { return valid ? &data : nullptr; } 72 73 // Assign data explicitly. 74 void set(const type_t in) { 75 data = in; 76 valid = true; 77 } 78 79 // Mark contents as invalid. 80 void invalidate() { valid = false; } 81 82 // Returns true if this type contains valid data. 83 bool isValid() const { return valid; } 84 85 // Assignment operator. 86 empirical_type<type_t> &operator=(const type_t in) { 87 set(in); 88 return *this; 89 } 90 91 // Dereference operator returns contents. 92 // Warning: Will assert if not valid so use only when you know data is valid. 93 const type_t &operator*() const { 94 assert(valid); 95 return data; 96 } 97 98 protected: 99 bool valid; 100 type_t data; 101 }; 102 103 // ArgItem is used by the GetArgs() function when reading function arguments 104 // from the target. 105 struct ArgItem { 106 enum { ePointer, eInt32, eInt64, eLong, eBool } type; 107 108 uint64_t value; 109 110 explicit operator uint64_t() const { return value; } 111 }; 112 113 // Context structure to be passed into GetArgsXXX(), argument reading functions 114 // below. 115 struct GetArgsCtx { 116 RegisterContext *reg_ctx; 117 Process *process; 118 }; 119 120 bool GetArgsX86(const GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 121 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 122 123 Error err; 124 125 // get the current stack pointer 126 uint64_t sp = ctx.reg_ctx->GetSP(); 127 128 for (size_t i = 0; i < num_args; ++i) { 129 ArgItem &arg = arg_list[i]; 130 // advance up the stack by one argument 131 sp += sizeof(uint32_t); 132 // get the argument type size 133 size_t arg_size = sizeof(uint32_t); 134 // read the argument from memory 135 arg.value = 0; 136 Error err; 137 size_t read = 138 ctx.process->ReadMemory(sp, &arg.value, sizeof(uint32_t), err); 139 if (read != arg_size || !err.Success()) { 140 if (log) 141 log->Printf("%s - error reading argument: %" PRIu64 " '%s'", 142 __FUNCTION__, uint64_t(i), err.AsCString()); 143 return false; 144 } 145 } 146 return true; 147 } 148 149 bool GetArgsX86_64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 150 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 151 152 // number of arguments passed in registers 153 static const uint32_t args_in_reg = 6; 154 // register passing order 155 static const std::array<const char *, args_in_reg> reg_names{ 156 {"rdi", "rsi", "rdx", "rcx", "r8", "r9"}}; 157 // argument type to size mapping 158 static const std::array<size_t, 5> arg_size{{ 159 8, // ePointer, 160 4, // eInt32, 161 8, // eInt64, 162 8, // eLong, 163 4, // eBool, 164 }}; 165 166 Error err; 167 168 // get the current stack pointer 169 uint64_t sp = ctx.reg_ctx->GetSP(); 170 // step over the return address 171 sp += sizeof(uint64_t); 172 173 // check the stack alignment was correct (16 byte aligned) 174 if ((sp & 0xf) != 0x0) { 175 if (log) 176 log->Printf("%s - stack misaligned", __FUNCTION__); 177 return false; 178 } 179 180 // find the start of arguments on the stack 181 uint64_t sp_offset = 0; 182 for (uint32_t i = args_in_reg; i < num_args; ++i) { 183 sp_offset += arg_size[arg_list[i].type]; 184 } 185 // round up to multiple of 16 186 sp_offset = (sp_offset + 0xf) & 0xf; 187 sp += sp_offset; 188 189 for (size_t i = 0; i < num_args; ++i) { 190 bool success = false; 191 ArgItem &arg = arg_list[i]; 192 // arguments passed in registers 193 if (i < args_in_reg) { 194 const RegisterInfo *reg = 195 ctx.reg_ctx->GetRegisterInfoByName(reg_names[i]); 196 RegisterValue reg_val; 197 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 198 arg.value = reg_val.GetAsUInt64(0, &success); 199 } 200 // arguments passed on the stack 201 else { 202 // get the argument type size 203 const size_t size = arg_size[arg_list[i].type]; 204 // read the argument from memory 205 arg.value = 0; 206 // note: due to little endian layout reading 4 or 8 bytes will give the 207 // correct value. 208 size_t read = ctx.process->ReadMemory(sp, &arg.value, size, err); 209 success = (err.Success() && read == size); 210 // advance past this argument 211 sp -= size; 212 } 213 // fail if we couldn't read this argument 214 if (!success) { 215 if (log) 216 log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s", 217 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 218 return false; 219 } 220 } 221 return true; 222 } 223 224 bool GetArgsArm(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 225 // number of arguments passed in registers 226 static const uint32_t args_in_reg = 4; 227 228 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 229 230 Error err; 231 232 // get the current stack pointer 233 uint64_t sp = ctx.reg_ctx->GetSP(); 234 235 for (size_t i = 0; i < num_args; ++i) { 236 bool success = false; 237 ArgItem &arg = arg_list[i]; 238 // arguments passed in registers 239 if (i < args_in_reg) { 240 const RegisterInfo *reg = ctx.reg_ctx->GetRegisterInfoAtIndex(i); 241 RegisterValue reg_val; 242 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 243 arg.value = reg_val.GetAsUInt32(0, &success); 244 } 245 // arguments passed on the stack 246 else { 247 // get the argument type size 248 const size_t arg_size = sizeof(uint32_t); 249 // clear all 64bits 250 arg.value = 0; 251 // read this argument from memory 252 size_t bytes_read = 253 ctx.process->ReadMemory(sp, &arg.value, arg_size, err); 254 success = (err.Success() && bytes_read == arg_size); 255 // advance the stack pointer 256 sp += sizeof(uint32_t); 257 } 258 // fail if we couldn't read this argument 259 if (!success) { 260 if (log) 261 log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s", 262 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 263 return false; 264 } 265 } 266 return true; 267 } 268 269 bool GetArgsAarch64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 270 // number of arguments passed in registers 271 static const uint32_t args_in_reg = 8; 272 273 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 274 275 for (size_t i = 0; i < num_args; ++i) { 276 bool success = false; 277 ArgItem &arg = arg_list[i]; 278 // arguments passed in registers 279 if (i < args_in_reg) { 280 const RegisterInfo *reg = ctx.reg_ctx->GetRegisterInfoAtIndex(i); 281 RegisterValue reg_val; 282 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 283 arg.value = reg_val.GetAsUInt64(0, &success); 284 } 285 // arguments passed on the stack 286 else { 287 if (log) 288 log->Printf("%s - reading arguments spilled to stack not implemented", 289 __FUNCTION__); 290 } 291 // fail if we couldn't read this argument 292 if (!success) { 293 if (log) 294 log->Printf("%s - error reading argument: %" PRIu64, __FUNCTION__, 295 uint64_t(i)); 296 return false; 297 } 298 } 299 return true; 300 } 301 302 bool GetArgsMipsel(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 303 // number of arguments passed in registers 304 static const uint32_t args_in_reg = 4; 305 // register file offset to first argument 306 static const uint32_t reg_offset = 4; 307 308 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 309 310 Error err; 311 312 // find offset to arguments on the stack (+16 to skip over a0-a3 shadow space) 313 uint64_t sp = ctx.reg_ctx->GetSP() + 16; 314 315 for (size_t i = 0; i < num_args; ++i) { 316 bool success = false; 317 ArgItem &arg = arg_list[i]; 318 // arguments passed in registers 319 if (i < args_in_reg) { 320 const RegisterInfo *reg = 321 ctx.reg_ctx->GetRegisterInfoAtIndex(i + reg_offset); 322 RegisterValue reg_val; 323 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 324 arg.value = reg_val.GetAsUInt64(0, &success); 325 } 326 // arguments passed on the stack 327 else { 328 const size_t arg_size = sizeof(uint32_t); 329 arg.value = 0; 330 size_t bytes_read = 331 ctx.process->ReadMemory(sp, &arg.value, arg_size, err); 332 success = (err.Success() && bytes_read == arg_size); 333 // advance the stack pointer 334 sp += arg_size; 335 } 336 // fail if we couldn't read this argument 337 if (!success) { 338 if (log) 339 log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s", 340 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 341 return false; 342 } 343 } 344 return true; 345 } 346 347 bool GetArgsMips64el(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 348 // number of arguments passed in registers 349 static const uint32_t args_in_reg = 8; 350 // register file offset to first argument 351 static const uint32_t reg_offset = 4; 352 353 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 354 355 Error err; 356 357 // get the current stack pointer 358 uint64_t sp = ctx.reg_ctx->GetSP(); 359 360 for (size_t i = 0; i < num_args; ++i) { 361 bool success = false; 362 ArgItem &arg = arg_list[i]; 363 // arguments passed in registers 364 if (i < args_in_reg) { 365 const RegisterInfo *reg = 366 ctx.reg_ctx->GetRegisterInfoAtIndex(i + reg_offset); 367 RegisterValue reg_val; 368 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 369 arg.value = reg_val.GetAsUInt64(0, &success); 370 } 371 // arguments passed on the stack 372 else { 373 // get the argument type size 374 const size_t arg_size = sizeof(uint64_t); 375 // clear all 64bits 376 arg.value = 0; 377 // read this argument from memory 378 size_t bytes_read = 379 ctx.process->ReadMemory(sp, &arg.value, arg_size, err); 380 success = (err.Success() && bytes_read == arg_size); 381 // advance the stack pointer 382 sp += arg_size; 383 } 384 // fail if we couldn't read this argument 385 if (!success) { 386 if (log) 387 log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s", 388 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 389 return false; 390 } 391 } 392 return true; 393 } 394 395 bool GetArgs(ExecutionContext &exe_ctx, ArgItem *arg_list, size_t num_args) { 396 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 397 398 // verify that we have a target 399 if (!exe_ctx.GetTargetPtr()) { 400 if (log) 401 log->Printf("%s - invalid target", __FUNCTION__); 402 return false; 403 } 404 405 GetArgsCtx ctx = {exe_ctx.GetRegisterContext(), exe_ctx.GetProcessPtr()}; 406 assert(ctx.reg_ctx && ctx.process); 407 408 // dispatch based on architecture 409 switch (exe_ctx.GetTargetPtr()->GetArchitecture().GetMachine()) { 410 case llvm::Triple::ArchType::x86: 411 return GetArgsX86(ctx, arg_list, num_args); 412 413 case llvm::Triple::ArchType::x86_64: 414 return GetArgsX86_64(ctx, arg_list, num_args); 415 416 case llvm::Triple::ArchType::arm: 417 return GetArgsArm(ctx, arg_list, num_args); 418 419 case llvm::Triple::ArchType::aarch64: 420 return GetArgsAarch64(ctx, arg_list, num_args); 421 422 case llvm::Triple::ArchType::mipsel: 423 return GetArgsMipsel(ctx, arg_list, num_args); 424 425 case llvm::Triple::ArchType::mips64el: 426 return GetArgsMips64el(ctx, arg_list, num_args); 427 428 default: 429 // unsupported architecture 430 if (log) { 431 log->Printf( 432 "%s - architecture not supported: '%s'", __FUNCTION__, 433 exe_ctx.GetTargetRef().GetArchitecture().GetArchitectureName()); 434 } 435 return false; 436 } 437 } 438 439 bool IsRenderScriptScriptModule(ModuleSP module) { 440 if (!module) 441 return false; 442 return module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), 443 eSymbolTypeData) != nullptr; 444 } 445 446 bool ParseCoordinate(llvm::StringRef coord_s, RSCoordinate &coord) { 447 // takes an argument of the form 'num[,num][,num]'. 448 // Where 'coord_s' is a comma separated 1,2 or 3-dimensional coordinate 449 // with the whitespace trimmed. 450 // Missing coordinates are defaulted to zero. 451 // If parsing of any elements fails the contents of &coord are undefined 452 // and `false` is returned, `true` otherwise 453 454 RegularExpression regex; 455 RegularExpression::Match regex_match(3); 456 457 bool matched = false; 458 if (regex.Compile(llvm::StringRef("^([0-9]+),([0-9]+),([0-9]+)$")) && 459 regex.Execute(coord_s, ®ex_match)) 460 matched = true; 461 else if (regex.Compile(llvm::StringRef("^([0-9]+),([0-9]+)$")) && 462 regex.Execute(coord_s, ®ex_match)) 463 matched = true; 464 else if (regex.Compile(llvm::StringRef("^([0-9]+)$")) && 465 regex.Execute(coord_s, ®ex_match)) 466 matched = true; 467 468 if (!matched) 469 return false; 470 471 auto get_index = [&](int idx, uint32_t &i) -> bool { 472 std::string group; 473 errno = 0; 474 if (regex_match.GetMatchAtIndex(coord_s.str().c_str(), idx + 1, group)) 475 return !llvm::StringRef(group).getAsInteger<uint32_t>(10, i); 476 return true; 477 }; 478 479 return get_index(0, coord.x) && get_index(1, coord.y) && 480 get_index(2, coord.z); 481 } 482 483 bool SkipPrologue(lldb::ModuleSP &module, Address &addr) { 484 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 485 SymbolContext sc; 486 uint32_t resolved_flags = 487 module->ResolveSymbolContextForAddress(addr, eSymbolContextFunction, sc); 488 if (resolved_flags & eSymbolContextFunction) { 489 if (sc.function) { 490 const uint32_t offset = sc.function->GetPrologueByteSize(); 491 ConstString name = sc.GetFunctionName(); 492 if (offset) 493 addr.Slide(offset); 494 if (log) 495 log->Printf("%s: Prologue offset for %s is %" PRIu32, __FUNCTION__, 496 name.AsCString(), offset); 497 } 498 return true; 499 } else 500 return false; 501 } 502 } // anonymous namespace 503 504 // The ScriptDetails class collects data associated with a single script 505 // instance. 506 struct RenderScriptRuntime::ScriptDetails { 507 ~ScriptDetails() = default; 508 509 enum ScriptType { eScript, eScriptC }; 510 511 // The derived type of the script. 512 empirical_type<ScriptType> type; 513 // The name of the original source file. 514 empirical_type<std::string> res_name; 515 // Path to script .so file on the device. 516 empirical_type<std::string> shared_lib; 517 // Directory where kernel objects are cached on device. 518 empirical_type<std::string> cache_dir; 519 // Pointer to the context which owns this script. 520 empirical_type<lldb::addr_t> context; 521 // Pointer to the script object itself. 522 empirical_type<lldb::addr_t> script; 523 }; 524 525 // This Element class represents the Element object in RS, defining the type 526 // associated with an Allocation. 527 struct RenderScriptRuntime::Element { 528 // Taken from rsDefines.h 529 enum DataKind { 530 RS_KIND_USER, 531 RS_KIND_PIXEL_L = 7, 532 RS_KIND_PIXEL_A, 533 RS_KIND_PIXEL_LA, 534 RS_KIND_PIXEL_RGB, 535 RS_KIND_PIXEL_RGBA, 536 RS_KIND_PIXEL_DEPTH, 537 RS_KIND_PIXEL_YUV, 538 RS_KIND_INVALID = 100 539 }; 540 541 // Taken from rsDefines.h 542 enum DataType { 543 RS_TYPE_NONE = 0, 544 RS_TYPE_FLOAT_16, 545 RS_TYPE_FLOAT_32, 546 RS_TYPE_FLOAT_64, 547 RS_TYPE_SIGNED_8, 548 RS_TYPE_SIGNED_16, 549 RS_TYPE_SIGNED_32, 550 RS_TYPE_SIGNED_64, 551 RS_TYPE_UNSIGNED_8, 552 RS_TYPE_UNSIGNED_16, 553 RS_TYPE_UNSIGNED_32, 554 RS_TYPE_UNSIGNED_64, 555 RS_TYPE_BOOLEAN, 556 557 RS_TYPE_UNSIGNED_5_6_5, 558 RS_TYPE_UNSIGNED_5_5_5_1, 559 RS_TYPE_UNSIGNED_4_4_4_4, 560 561 RS_TYPE_MATRIX_4X4, 562 RS_TYPE_MATRIX_3X3, 563 RS_TYPE_MATRIX_2X2, 564 565 RS_TYPE_ELEMENT = 1000, 566 RS_TYPE_TYPE, 567 RS_TYPE_ALLOCATION, 568 RS_TYPE_SAMPLER, 569 RS_TYPE_SCRIPT, 570 RS_TYPE_MESH, 571 RS_TYPE_PROGRAM_FRAGMENT, 572 RS_TYPE_PROGRAM_VERTEX, 573 RS_TYPE_PROGRAM_RASTER, 574 RS_TYPE_PROGRAM_STORE, 575 RS_TYPE_FONT, 576 577 RS_TYPE_INVALID = 10000 578 }; 579 580 std::vector<Element> children; // Child Element fields for structs 581 empirical_type<lldb::addr_t> 582 element_ptr; // Pointer to the RS Element of the Type 583 empirical_type<DataType> 584 type; // Type of each data pointer stored by the allocation 585 empirical_type<DataKind> 586 type_kind; // Defines pixel type if Allocation is created from an image 587 empirical_type<uint32_t> 588 type_vec_size; // Vector size of each data point, e.g '4' for uchar4 589 empirical_type<uint32_t> field_count; // Number of Subelements 590 empirical_type<uint32_t> datum_size; // Size of a single Element with padding 591 empirical_type<uint32_t> padding; // Number of padding bytes 592 empirical_type<uint32_t> 593 array_size; // Number of items in array, only needed for strucrs 594 ConstString type_name; // Name of type, only needed for structs 595 596 static const ConstString & 597 GetFallbackStructName(); // Print this as the type name of a struct Element 598 // If we can't resolve the actual struct name 599 600 bool ShouldRefresh() const { 601 const bool valid_ptr = element_ptr.isValid() && *element_ptr.get() != 0x0; 602 const bool valid_type = 603 type.isValid() && type_vec_size.isValid() && type_kind.isValid(); 604 return !valid_ptr || !valid_type || !datum_size.isValid(); 605 } 606 }; 607 608 // This AllocationDetails class collects data associated with a single 609 // allocation instance. 610 struct RenderScriptRuntime::AllocationDetails { 611 struct Dimension { 612 uint32_t dim_1; 613 uint32_t dim_2; 614 uint32_t dim_3; 615 uint32_t cube_map; 616 617 Dimension() { 618 dim_1 = 0; 619 dim_2 = 0; 620 dim_3 = 0; 621 cube_map = 0; 622 } 623 }; 624 625 // The FileHeader struct specifies the header we use for writing allocations 626 // to a binary file. Our format begins with the ASCII characters "RSAD", 627 // identifying the file as an allocation dump. Member variables dims and 628 // hdr_size are then written consecutively, immediately followed by an 629 // instance of the ElementHeader struct. Because Elements can contain 630 // subelements, there may be more than one instance of the ElementHeader 631 // struct. With this first instance being the root element, and the other 632 // instances being the root's descendants. To identify which instances are an 633 // ElementHeader's children, each struct is immediately followed by a sequence 634 // of consecutive offsets to the start of its child structs. These offsets are 635 // 4 bytes in size, and the 0 offset signifies no more children. 636 struct FileHeader { 637 uint8_t ident[4]; // ASCII 'RSAD' identifying the file 638 uint32_t dims[3]; // Dimensions 639 uint16_t hdr_size; // Header size in bytes, including all element headers 640 }; 641 642 struct ElementHeader { 643 uint16_t type; // DataType enum 644 uint32_t kind; // DataKind enum 645 uint32_t element_size; // Size of a single element, including padding 646 uint16_t vector_size; // Vector width 647 uint32_t array_size; // Number of elements in array 648 }; 649 650 // Monotonically increasing from 1 651 static uint32_t ID; 652 653 // Maps Allocation DataType enum and vector size to printable strings 654 // using mapping from RenderScript numerical types summary documentation 655 static const char *RsDataTypeToString[][4]; 656 657 // Maps Allocation DataKind enum to printable strings 658 static const char *RsDataKindToString[]; 659 660 // Maps allocation types to format sizes for printing. 661 static const uint32_t RSTypeToFormat[][3]; 662 663 // Give each allocation an ID as a way 664 // for commands to reference it. 665 const uint32_t id; 666 667 // Allocation Element type 668 RenderScriptRuntime::Element element; 669 // Dimensions of the Allocation 670 empirical_type<Dimension> dimension; 671 // Pointer to address of the RS Allocation 672 empirical_type<lldb::addr_t> address; 673 // Pointer to the data held by the Allocation 674 empirical_type<lldb::addr_t> data_ptr; 675 // Pointer to the RS Type of the Allocation 676 empirical_type<lldb::addr_t> type_ptr; 677 // Pointer to the RS Context of the Allocation 678 empirical_type<lldb::addr_t> context; 679 // Size of the allocation 680 empirical_type<uint32_t> size; 681 // Stride between rows of the allocation 682 empirical_type<uint32_t> stride; 683 684 // Give each allocation an id, so we can reference it in user commands. 685 AllocationDetails() : id(ID++) {} 686 687 bool ShouldRefresh() const { 688 bool valid_ptrs = data_ptr.isValid() && *data_ptr.get() != 0x0; 689 valid_ptrs = valid_ptrs && type_ptr.isValid() && *type_ptr.get() != 0x0; 690 return !valid_ptrs || !dimension.isValid() || !size.isValid() || 691 element.ShouldRefresh(); 692 } 693 }; 694 695 const ConstString &RenderScriptRuntime::Element::GetFallbackStructName() { 696 static const ConstString FallbackStructName("struct"); 697 return FallbackStructName; 698 } 699 700 uint32_t RenderScriptRuntime::AllocationDetails::ID = 1; 701 702 const char *RenderScriptRuntime::AllocationDetails::RsDataKindToString[] = { 703 "User", "Undefined", "Undefined", "Undefined", 704 "Undefined", "Undefined", "Undefined", // Enum jumps from 0 to 7 705 "L Pixel", "A Pixel", "LA Pixel", "RGB Pixel", 706 "RGBA Pixel", "Pixel Depth", "YUV Pixel"}; 707 708 const char *RenderScriptRuntime::AllocationDetails::RsDataTypeToString[][4] = { 709 {"None", "None", "None", "None"}, 710 {"half", "half2", "half3", "half4"}, 711 {"float", "float2", "float3", "float4"}, 712 {"double", "double2", "double3", "double4"}, 713 {"char", "char2", "char3", "char4"}, 714 {"short", "short2", "short3", "short4"}, 715 {"int", "int2", "int3", "int4"}, 716 {"long", "long2", "long3", "long4"}, 717 {"uchar", "uchar2", "uchar3", "uchar4"}, 718 {"ushort", "ushort2", "ushort3", "ushort4"}, 719 {"uint", "uint2", "uint3", "uint4"}, 720 {"ulong", "ulong2", "ulong3", "ulong4"}, 721 {"bool", "bool2", "bool3", "bool4"}, 722 {"packed_565", "packed_565", "packed_565", "packed_565"}, 723 {"packed_5551", "packed_5551", "packed_5551", "packed_5551"}, 724 {"packed_4444", "packed_4444", "packed_4444", "packed_4444"}, 725 {"rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4"}, 726 {"rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3"}, 727 {"rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2"}, 728 729 // Handlers 730 {"RS Element", "RS Element", "RS Element", "RS Element"}, 731 {"RS Type", "RS Type", "RS Type", "RS Type"}, 732 {"RS Allocation", "RS Allocation", "RS Allocation", "RS Allocation"}, 733 {"RS Sampler", "RS Sampler", "RS Sampler", "RS Sampler"}, 734 {"RS Script", "RS Script", "RS Script", "RS Script"}, 735 736 // Deprecated 737 {"RS Mesh", "RS Mesh", "RS Mesh", "RS Mesh"}, 738 {"RS Program Fragment", "RS Program Fragment", "RS Program Fragment", 739 "RS Program Fragment"}, 740 {"RS Program Vertex", "RS Program Vertex", "RS Program Vertex", 741 "RS Program Vertex"}, 742 {"RS Program Raster", "RS Program Raster", "RS Program Raster", 743 "RS Program Raster"}, 744 {"RS Program Store", "RS Program Store", "RS Program Store", 745 "RS Program Store"}, 746 {"RS Font", "RS Font", "RS Font", "RS Font"}}; 747 748 // Used as an index into the RSTypeToFormat array elements 749 enum TypeToFormatIndex { eFormatSingle = 0, eFormatVector, eElementSize }; 750 751 // { format enum of single element, format enum of element vector, size of 752 // element} 753 const uint32_t RenderScriptRuntime::AllocationDetails::RSTypeToFormat[][3] = { 754 // RS_TYPE_NONE 755 {eFormatHex, eFormatHex, 1}, 756 // RS_TYPE_FLOAT_16 757 {eFormatFloat, eFormatVectorOfFloat16, 2}, 758 // RS_TYPE_FLOAT_32 759 {eFormatFloat, eFormatVectorOfFloat32, sizeof(float)}, 760 // RS_TYPE_FLOAT_64 761 {eFormatFloat, eFormatVectorOfFloat64, sizeof(double)}, 762 // RS_TYPE_SIGNED_8 763 {eFormatDecimal, eFormatVectorOfSInt8, sizeof(int8_t)}, 764 // RS_TYPE_SIGNED_16 765 {eFormatDecimal, eFormatVectorOfSInt16, sizeof(int16_t)}, 766 // RS_TYPE_SIGNED_32 767 {eFormatDecimal, eFormatVectorOfSInt32, sizeof(int32_t)}, 768 // RS_TYPE_SIGNED_64 769 {eFormatDecimal, eFormatVectorOfSInt64, sizeof(int64_t)}, 770 // RS_TYPE_UNSIGNED_8 771 {eFormatDecimal, eFormatVectorOfUInt8, sizeof(uint8_t)}, 772 // RS_TYPE_UNSIGNED_16 773 {eFormatDecimal, eFormatVectorOfUInt16, sizeof(uint16_t)}, 774 // RS_TYPE_UNSIGNED_32 775 {eFormatDecimal, eFormatVectorOfUInt32, sizeof(uint32_t)}, 776 // RS_TYPE_UNSIGNED_64 777 {eFormatDecimal, eFormatVectorOfUInt64, sizeof(uint64_t)}, 778 // RS_TYPE_BOOL 779 {eFormatBoolean, eFormatBoolean, 1}, 780 // RS_TYPE_UNSIGNED_5_6_5 781 {eFormatHex, eFormatHex, sizeof(uint16_t)}, 782 // RS_TYPE_UNSIGNED_5_5_5_1 783 {eFormatHex, eFormatHex, sizeof(uint16_t)}, 784 // RS_TYPE_UNSIGNED_4_4_4_4 785 {eFormatHex, eFormatHex, sizeof(uint16_t)}, 786 // RS_TYPE_MATRIX_4X4 787 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 16}, 788 // RS_TYPE_MATRIX_3X3 789 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 9}, 790 // RS_TYPE_MATRIX_2X2 791 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 4}}; 792 793 //------------------------------------------------------------------ 794 // Static Functions 795 //------------------------------------------------------------------ 796 LanguageRuntime * 797 RenderScriptRuntime::CreateInstance(Process *process, 798 lldb::LanguageType language) { 799 800 if (language == eLanguageTypeExtRenderScript) 801 return new RenderScriptRuntime(process); 802 else 803 return nullptr; 804 } 805 806 // Callback with a module to search for matching symbols. We first check that 807 // the module contains RS kernels. Then look for a symbol which matches our 808 // kernel name. The breakpoint address is finally set using the address of this 809 // symbol. 810 Searcher::CallbackReturn 811 RSBreakpointResolver::SearchCallback(SearchFilter &filter, 812 SymbolContext &context, Address *, bool) { 813 ModuleSP module = context.module_sp; 814 815 if (!module || !IsRenderScriptScriptModule(module)) 816 return Searcher::eCallbackReturnContinue; 817 818 // Attempt to set a breakpoint on the kernel name symbol within the module 819 // library. If it's not found, it's likely debug info is unavailable - try to 820 // set a breakpoint on <name>.expand. 821 const Symbol *kernel_sym = 822 module->FindFirstSymbolWithNameAndType(m_kernel_name, eSymbolTypeCode); 823 if (!kernel_sym) { 824 std::string kernel_name_expanded(m_kernel_name.AsCString()); 825 kernel_name_expanded.append(".expand"); 826 kernel_sym = module->FindFirstSymbolWithNameAndType( 827 ConstString(kernel_name_expanded.c_str()), eSymbolTypeCode); 828 } 829 830 if (kernel_sym) { 831 Address bp_addr = kernel_sym->GetAddress(); 832 if (filter.AddressPasses(bp_addr)) 833 m_breakpoint->AddLocation(bp_addr); 834 } 835 836 return Searcher::eCallbackReturnContinue; 837 } 838 839 Searcher::CallbackReturn 840 RSReduceBreakpointResolver::SearchCallback(lldb_private::SearchFilter &filter, 841 lldb_private::SymbolContext &context, 842 Address *, bool) { 843 // We need to have access to the list of reductions currently parsed, as 844 // reduce names don't actually exist as 845 // symbols in a module. They are only identifiable by parsing the .rs.info 846 // packet, or finding the expand symbol. We 847 // therefore need access to the list of parsed rs modules to properly resolve 848 // reduction names. 849 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 850 ModuleSP module = context.module_sp; 851 852 if (!module || !IsRenderScriptScriptModule(module)) 853 return Searcher::eCallbackReturnContinue; 854 855 if (!m_rsmodules) 856 return Searcher::eCallbackReturnContinue; 857 858 for (const auto &module_desc : *m_rsmodules) { 859 if (module_desc->m_module != module) 860 continue; 861 862 for (const auto &reduction : module_desc->m_reductions) { 863 if (reduction.m_reduce_name != m_reduce_name) 864 continue; 865 866 std::array<std::pair<ConstString, int>, 5> funcs{ 867 {{reduction.m_init_name, eKernelTypeInit}, 868 {reduction.m_accum_name, eKernelTypeAccum}, 869 {reduction.m_comb_name, eKernelTypeComb}, 870 {reduction.m_outc_name, eKernelTypeOutC}, 871 {reduction.m_halter_name, eKernelTypeHalter}}}; 872 873 for (const auto &kernel : funcs) { 874 // Skip constituent functions that don't match our spec 875 if (!(m_kernel_types & kernel.second)) 876 continue; 877 878 const auto kernel_name = kernel.first; 879 const auto symbol = module->FindFirstSymbolWithNameAndType( 880 kernel_name, eSymbolTypeCode); 881 if (!symbol) 882 continue; 883 884 auto address = symbol->GetAddress(); 885 if (filter.AddressPasses(address)) { 886 bool new_bp; 887 if (!SkipPrologue(module, address)) { 888 if (log) 889 log->Printf("%s: Error trying to skip prologue", __FUNCTION__); 890 } 891 m_breakpoint->AddLocation(address, &new_bp); 892 if (log) 893 log->Printf("%s: %s reduction breakpoint on %s in %s", __FUNCTION__, 894 new_bp ? "new" : "existing", kernel_name.GetCString(), 895 address.GetModule()->GetFileSpec().GetCString()); 896 } 897 } 898 } 899 } 900 return eCallbackReturnContinue; 901 } 902 903 Searcher::CallbackReturn RSScriptGroupBreakpointResolver::SearchCallback( 904 SearchFilter &filter, SymbolContext &context, Address *addr, 905 bool containing) { 906 907 if (!m_breakpoint) 908 return eCallbackReturnContinue; 909 910 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 911 ModuleSP &module = context.module_sp; 912 913 if (!module || !IsRenderScriptScriptModule(module)) 914 return Searcher::eCallbackReturnContinue; 915 916 std::vector<std::string> names; 917 m_breakpoint->GetNames(names); 918 if (names.empty()) 919 return eCallbackReturnContinue; 920 921 for (auto &name : names) { 922 const RSScriptGroupDescriptorSP sg = FindScriptGroup(ConstString(name)); 923 if (!sg) { 924 if (log) 925 log->Printf("%s: could not find script group for %s", __FUNCTION__, 926 name.c_str()); 927 continue; 928 } 929 930 if (log) 931 log->Printf("%s: Found ScriptGroup for %s", __FUNCTION__, name.c_str()); 932 933 for (const RSScriptGroupDescriptor::Kernel &k : sg->m_kernels) { 934 if (log) { 935 log->Printf("%s: Adding breakpoint for %s", __FUNCTION__, 936 k.m_name.AsCString()); 937 log->Printf("%s: Kernel address 0x%" PRIx64, __FUNCTION__, k.m_addr); 938 } 939 940 const lldb_private::Symbol *sym = 941 module->FindFirstSymbolWithNameAndType(k.m_name, eSymbolTypeCode); 942 if (!sym) { 943 if (log) 944 log->Printf("%s: Unable to find symbol for %s", __FUNCTION__, 945 k.m_name.AsCString()); 946 continue; 947 } 948 949 if (log) { 950 log->Printf("%s: Found symbol name is %s", __FUNCTION__, 951 sym->GetName().AsCString()); 952 } 953 954 auto address = sym->GetAddress(); 955 if (!SkipPrologue(module, address)) { 956 if (log) 957 log->Printf("%s: Error trying to skip prologue", __FUNCTION__); 958 } 959 960 bool new_bp; 961 m_breakpoint->AddLocation(address, &new_bp); 962 963 if (log) 964 log->Printf("%s: Placed %sbreakpoint on %s", __FUNCTION__, 965 new_bp ? "new " : "", k.m_name.AsCString()); 966 967 // exit after placing the first breakpoint if we do not intend to stop 968 // on all kernels making up this script group 969 if (!m_stop_on_all) 970 break; 971 } 972 } 973 974 return eCallbackReturnContinue; 975 } 976 977 void RenderScriptRuntime::Initialize() { 978 PluginManager::RegisterPlugin(GetPluginNameStatic(), 979 "RenderScript language support", CreateInstance, 980 GetCommandObject); 981 } 982 983 void RenderScriptRuntime::Terminate() { 984 PluginManager::UnregisterPlugin(CreateInstance); 985 } 986 987 lldb_private::ConstString RenderScriptRuntime::GetPluginNameStatic() { 988 static ConstString plugin_name("renderscript"); 989 return plugin_name; 990 } 991 992 RenderScriptRuntime::ModuleKind 993 RenderScriptRuntime::GetModuleKind(const lldb::ModuleSP &module_sp) { 994 if (module_sp) { 995 if (IsRenderScriptScriptModule(module_sp)) 996 return eModuleKindKernelObj; 997 998 // Is this the main RS runtime library 999 const ConstString rs_lib("libRS.so"); 1000 if (module_sp->GetFileSpec().GetFilename() == rs_lib) { 1001 return eModuleKindLibRS; 1002 } 1003 1004 const ConstString rs_driverlib("libRSDriver.so"); 1005 if (module_sp->GetFileSpec().GetFilename() == rs_driverlib) { 1006 return eModuleKindDriver; 1007 } 1008 1009 const ConstString rs_cpureflib("libRSCpuRef.so"); 1010 if (module_sp->GetFileSpec().GetFilename() == rs_cpureflib) { 1011 return eModuleKindImpl; 1012 } 1013 } 1014 return eModuleKindIgnored; 1015 } 1016 1017 bool RenderScriptRuntime::IsRenderScriptModule( 1018 const lldb::ModuleSP &module_sp) { 1019 return GetModuleKind(module_sp) != eModuleKindIgnored; 1020 } 1021 1022 void RenderScriptRuntime::ModulesDidLoad(const ModuleList &module_list) { 1023 std::lock_guard<std::recursive_mutex> guard(module_list.GetMutex()); 1024 1025 size_t num_modules = module_list.GetSize(); 1026 for (size_t i = 0; i < num_modules; i++) { 1027 auto mod = module_list.GetModuleAtIndex(i); 1028 if (IsRenderScriptModule(mod)) { 1029 LoadModule(mod); 1030 } 1031 } 1032 } 1033 1034 //------------------------------------------------------------------ 1035 // PluginInterface protocol 1036 //------------------------------------------------------------------ 1037 lldb_private::ConstString RenderScriptRuntime::GetPluginName() { 1038 return GetPluginNameStatic(); 1039 } 1040 1041 uint32_t RenderScriptRuntime::GetPluginVersion() { return 1; } 1042 1043 bool RenderScriptRuntime::IsVTableName(const char *name) { return false; } 1044 1045 bool RenderScriptRuntime::GetDynamicTypeAndAddress( 1046 ValueObject &in_value, lldb::DynamicValueType use_dynamic, 1047 TypeAndOrName &class_type_or_name, Address &address, 1048 Value::ValueType &value_type) { 1049 return false; 1050 } 1051 1052 TypeAndOrName 1053 RenderScriptRuntime::FixUpDynamicType(const TypeAndOrName &type_and_or_name, 1054 ValueObject &static_value) { 1055 return type_and_or_name; 1056 } 1057 1058 bool RenderScriptRuntime::CouldHaveDynamicValue(ValueObject &in_value) { 1059 return false; 1060 } 1061 1062 lldb::BreakpointResolverSP 1063 RenderScriptRuntime::CreateExceptionResolver(Breakpoint *bp, bool catch_bp, 1064 bool throw_bp) { 1065 BreakpointResolverSP resolver_sp; 1066 return resolver_sp; 1067 } 1068 1069 const RenderScriptRuntime::HookDefn RenderScriptRuntime::s_runtimeHookDefns[] = 1070 { 1071 // rsdScript 1072 {"rsdScriptInit", "_Z13rsdScriptInitPKN7android12renderscript7ContextEP" 1073 "NS0_7ScriptCEPKcS7_PKhjj", 1074 "_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_" 1075 "7ScriptCEPKcS7_PKhmj", 1076 0, RenderScriptRuntime::eModuleKindDriver, 1077 &lldb_private::RenderScriptRuntime::CaptureScriptInit}, 1078 {"rsdScriptInvokeForEachMulti", 1079 "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0" 1080 "_6ScriptEjPPKNS0_10AllocationEjPS6_PKvjPK12RsScriptCall", 1081 "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0" 1082 "_6ScriptEjPPKNS0_10AllocationEmPS6_PKvmPK12RsScriptCall", 1083 0, RenderScriptRuntime::eModuleKindDriver, 1084 &lldb_private::RenderScriptRuntime::CaptureScriptInvokeForEachMulti}, 1085 {"rsdScriptSetGlobalVar", "_Z21rsdScriptSetGlobalVarPKN7android12render" 1086 "script7ContextEPKNS0_6ScriptEjPvj", 1087 "_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_" 1088 "6ScriptEjPvm", 1089 0, RenderScriptRuntime::eModuleKindDriver, 1090 &lldb_private::RenderScriptRuntime::CaptureSetGlobalVar}, 1091 1092 // rsdAllocation 1093 {"rsdAllocationInit", "_Z17rsdAllocationInitPKN7android12renderscript7C" 1094 "ontextEPNS0_10AllocationEb", 1095 "_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_" 1096 "10AllocationEb", 1097 0, RenderScriptRuntime::eModuleKindDriver, 1098 &lldb_private::RenderScriptRuntime::CaptureAllocationInit}, 1099 {"rsdAllocationRead2D", 1100 "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_" 1101 "10AllocationEjjj23RsAllocationCubemapFacejjPvjj", 1102 "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_" 1103 "10AllocationEjjj23RsAllocationCubemapFacejjPvmm", 1104 0, RenderScriptRuntime::eModuleKindDriver, nullptr}, 1105 {"rsdAllocationDestroy", "_Z20rsdAllocationDestroyPKN7android12rendersc" 1106 "ript7ContextEPNS0_10AllocationE", 1107 "_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_" 1108 "10AllocationE", 1109 0, RenderScriptRuntime::eModuleKindDriver, 1110 &lldb_private::RenderScriptRuntime::CaptureAllocationDestroy}, 1111 1112 // renderscript script groups 1113 {"rsdDebugHintScriptGroup2", "_ZN7android12renderscript21debugHintScrip" 1114 "tGroup2EPKcjPKPFvPK24RsExpandKernelDriver" 1115 "InfojjjEj", 1116 "_ZN7android12renderscript21debugHintScriptGroup2EPKcjPKPFvPK24RsExpan" 1117 "dKernelDriverInfojjjEj", 1118 0, RenderScriptRuntime::eModuleKindImpl, 1119 &lldb_private::RenderScriptRuntime::CaptureDebugHintScriptGroup2}}; 1120 1121 const size_t RenderScriptRuntime::s_runtimeHookCount = 1122 sizeof(s_runtimeHookDefns) / sizeof(s_runtimeHookDefns[0]); 1123 1124 bool RenderScriptRuntime::HookCallback(void *baton, 1125 StoppointCallbackContext *ctx, 1126 lldb::user_id_t break_id, 1127 lldb::user_id_t break_loc_id) { 1128 RuntimeHook *hook = (RuntimeHook *)baton; 1129 ExecutionContext exe_ctx(ctx->exe_ctx_ref); 1130 1131 RenderScriptRuntime *lang_rt = 1132 (RenderScriptRuntime *)exe_ctx.GetProcessPtr()->GetLanguageRuntime( 1133 eLanguageTypeExtRenderScript); 1134 1135 lang_rt->HookCallback(hook, exe_ctx); 1136 1137 return false; 1138 } 1139 1140 void RenderScriptRuntime::HookCallback(RuntimeHook *hook, 1141 ExecutionContext &exe_ctx) { 1142 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1143 1144 if (log) 1145 log->Printf("%s - '%s'", __FUNCTION__, hook->defn->name); 1146 1147 if (hook->defn->grabber) { 1148 (this->*(hook->defn->grabber))(hook, exe_ctx); 1149 } 1150 } 1151 1152 void RenderScriptRuntime::CaptureDebugHintScriptGroup2( 1153 RuntimeHook *hook_info, ExecutionContext &context) { 1154 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1155 1156 enum { 1157 eGroupName = 0, 1158 eGroupNameSize, 1159 eKernel, 1160 eKernelCount, 1161 }; 1162 1163 std::array<ArgItem, 4> args{{ 1164 {ArgItem::ePointer, 0}, // const char *groupName 1165 {ArgItem::eInt32, 0}, // const uint32_t groupNameSize 1166 {ArgItem::ePointer, 0}, // const ExpandFuncTy *kernel 1167 {ArgItem::eInt32, 0}, // const uint32_t kernelCount 1168 }}; 1169 1170 if (!GetArgs(context, args.data(), args.size())) { 1171 if (log) 1172 log->Printf("%s - Error while reading the function parameters", 1173 __FUNCTION__); 1174 return; 1175 } else if (log) { 1176 log->Printf("%s - groupName : 0x%" PRIx64, __FUNCTION__, 1177 addr_t(args[eGroupName])); 1178 log->Printf("%s - groupNameSize: %" PRIu64, __FUNCTION__, 1179 uint64_t(args[eGroupNameSize])); 1180 log->Printf("%s - kernel : 0x%" PRIx64, __FUNCTION__, 1181 addr_t(args[eKernel])); 1182 log->Printf("%s - kernelCount : %" PRIu64, __FUNCTION__, 1183 uint64_t(args[eKernelCount])); 1184 } 1185 1186 // parse script group name 1187 ConstString group_name; 1188 { 1189 Error err; 1190 const uint64_t len = uint64_t(args[eGroupNameSize]); 1191 std::unique_ptr<char[]> buffer(new char[uint32_t(len + 1)]); 1192 m_process->ReadMemory(addr_t(args[eGroupName]), buffer.get(), len, err); 1193 buffer.get()[len] = '\0'; 1194 if (!err.Success()) { 1195 if (log) 1196 log->Printf("Error reading scriptgroup name from target"); 1197 return; 1198 } else { 1199 if (log) 1200 log->Printf("Extracted scriptgroup name %s", buffer.get()); 1201 } 1202 // write back the script group name 1203 group_name.SetCString(buffer.get()); 1204 } 1205 1206 // create or access existing script group 1207 RSScriptGroupDescriptorSP group; 1208 { 1209 // search for existing script group 1210 for (auto sg : m_scriptGroups) { 1211 if (sg->m_name == group_name) { 1212 group = sg; 1213 break; 1214 } 1215 } 1216 if (!group) { 1217 group.reset(new RSScriptGroupDescriptor); 1218 group->m_name = group_name; 1219 m_scriptGroups.push_back(group); 1220 } else { 1221 // already have this script group 1222 if (log) 1223 log->Printf("Attempt to add duplicate script group %s", 1224 group_name.AsCString()); 1225 return; 1226 } 1227 } 1228 assert(group); 1229 1230 const uint32_t target_ptr_size = m_process->GetAddressByteSize(); 1231 std::vector<addr_t> kernels; 1232 // parse kernel addresses in script group 1233 for (uint64_t i = 0; i < uint64_t(args[eKernelCount]); ++i) { 1234 RSScriptGroupDescriptor::Kernel kernel; 1235 // extract script group kernel addresses from the target 1236 const addr_t ptr_addr = addr_t(args[eKernel]) + i * target_ptr_size; 1237 uint64_t kernel_addr = 0; 1238 Error err; 1239 size_t read = 1240 m_process->ReadMemory(ptr_addr, &kernel_addr, target_ptr_size, err); 1241 if (!err.Success() || read != target_ptr_size) { 1242 if (log) 1243 log->Printf("Error parsing kernel address %" PRIu64 " in script group", 1244 i); 1245 return; 1246 } 1247 if (log) 1248 log->Printf("Extracted scriptgroup kernel address - 0x%" PRIx64, 1249 kernel_addr); 1250 kernel.m_addr = kernel_addr; 1251 1252 // try to resolve the associated kernel name 1253 if (!ResolveKernelName(kernel.m_addr, kernel.m_name)) { 1254 if (log) 1255 log->Printf("Parsed scriptgroup kernel %" PRIu64 " - 0x%" PRIx64, i, 1256 kernel_addr); 1257 return; 1258 } 1259 1260 // try to find the non '.expand' function 1261 { 1262 const llvm::StringRef expand(".expand"); 1263 const llvm::StringRef name_ref = kernel.m_name.GetStringRef(); 1264 if (name_ref.endswith(expand)) { 1265 const ConstString base_kernel(name_ref.drop_back(expand.size())); 1266 // verify this function is a valid kernel 1267 if (IsKnownKernel(base_kernel)) { 1268 kernel.m_name = base_kernel; 1269 if (log) 1270 log->Printf("%s - found non expand version '%s'", __FUNCTION__, 1271 base_kernel.GetCString()); 1272 } 1273 } 1274 } 1275 // add to a list of script group kernels we know about 1276 group->m_kernels.push_back(kernel); 1277 } 1278 1279 // Resolve any pending scriptgroup breakpoints 1280 { 1281 Target &target = m_process->GetTarget(); 1282 const BreakpointList &list = target.GetBreakpointList(); 1283 const size_t num_breakpoints = list.GetSize(); 1284 if (log) 1285 log->Printf("Resolving %zu breakpoints", num_breakpoints); 1286 for (size_t i = 0; i < num_breakpoints; ++i) { 1287 const BreakpointSP bp = list.GetBreakpointAtIndex(i); 1288 if (bp) { 1289 if (bp->MatchesName(group_name.AsCString())) { 1290 if (log) 1291 log->Printf("Found breakpoint with name %s", 1292 group_name.AsCString()); 1293 bp->ResolveBreakpoint(); 1294 } 1295 } 1296 } 1297 } 1298 } 1299 1300 void RenderScriptRuntime::CaptureScriptInvokeForEachMulti( 1301 RuntimeHook *hook, ExecutionContext &exe_ctx) { 1302 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1303 1304 enum { 1305 eRsContext = 0, 1306 eRsScript, 1307 eRsSlot, 1308 eRsAIns, 1309 eRsInLen, 1310 eRsAOut, 1311 eRsUsr, 1312 eRsUsrLen, 1313 eRsSc, 1314 }; 1315 1316 std::array<ArgItem, 9> args{{ 1317 ArgItem{ArgItem::ePointer, 0}, // const Context *rsc 1318 ArgItem{ArgItem::ePointer, 0}, // Script *s 1319 ArgItem{ArgItem::eInt32, 0}, // uint32_t slot 1320 ArgItem{ArgItem::ePointer, 0}, // const Allocation **aIns 1321 ArgItem{ArgItem::eInt32, 0}, // size_t inLen 1322 ArgItem{ArgItem::ePointer, 0}, // Allocation *aout 1323 ArgItem{ArgItem::ePointer, 0}, // const void *usr 1324 ArgItem{ArgItem::eInt32, 0}, // size_t usrLen 1325 ArgItem{ArgItem::ePointer, 0}, // const RsScriptCall *sc 1326 }}; 1327 1328 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1329 if (!success) { 1330 if (log) 1331 log->Printf("%s - Error while reading the function parameters", 1332 __FUNCTION__); 1333 return; 1334 } 1335 1336 const uint32_t target_ptr_size = m_process->GetAddressByteSize(); 1337 Error err; 1338 std::vector<uint64_t> allocs; 1339 1340 // traverse allocation list 1341 for (uint64_t i = 0; i < uint64_t(args[eRsInLen]); ++i) { 1342 // calculate offest to allocation pointer 1343 const addr_t addr = addr_t(args[eRsAIns]) + i * target_ptr_size; 1344 1345 // Note: due to little endian layout, reading 32bits or 64bits into res 1346 // will give the correct results. 1347 uint64_t result = 0; 1348 size_t read = m_process->ReadMemory(addr, &result, target_ptr_size, err); 1349 if (read != target_ptr_size || !err.Success()) { 1350 if (log) 1351 log->Printf( 1352 "%s - Error while reading allocation list argument %" PRIu64, 1353 __FUNCTION__, i); 1354 } else { 1355 allocs.push_back(result); 1356 } 1357 } 1358 1359 // if there is an output allocation track it 1360 if (uint64_t alloc_out = uint64_t(args[eRsAOut])) { 1361 allocs.push_back(alloc_out); 1362 } 1363 1364 // for all allocations we have found 1365 for (const uint64_t alloc_addr : allocs) { 1366 AllocationDetails *alloc = LookUpAllocation(alloc_addr); 1367 if (!alloc) 1368 alloc = CreateAllocation(alloc_addr); 1369 1370 if (alloc) { 1371 // save the allocation address 1372 if (alloc->address.isValid()) { 1373 // check the allocation address we already have matches 1374 assert(*alloc->address.get() == alloc_addr); 1375 } else { 1376 alloc->address = alloc_addr; 1377 } 1378 1379 // save the context 1380 if (log) { 1381 if (alloc->context.isValid() && 1382 *alloc->context.get() != addr_t(args[eRsContext])) 1383 log->Printf("%s - Allocation used by multiple contexts", 1384 __FUNCTION__); 1385 } 1386 alloc->context = addr_t(args[eRsContext]); 1387 } 1388 } 1389 1390 // make sure we track this script object 1391 if (lldb_private::RenderScriptRuntime::ScriptDetails *script = 1392 LookUpScript(addr_t(args[eRsScript]), true)) { 1393 if (log) { 1394 if (script->context.isValid() && 1395 *script->context.get() != addr_t(args[eRsContext])) 1396 log->Printf("%s - Script used by multiple contexts", __FUNCTION__); 1397 } 1398 script->context = addr_t(args[eRsContext]); 1399 } 1400 } 1401 1402 void RenderScriptRuntime::CaptureSetGlobalVar(RuntimeHook *hook, 1403 ExecutionContext &context) { 1404 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1405 1406 enum { 1407 eRsContext, 1408 eRsScript, 1409 eRsId, 1410 eRsData, 1411 eRsLength, 1412 }; 1413 1414 std::array<ArgItem, 5> args{{ 1415 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1416 ArgItem{ArgItem::ePointer, 0}, // eRsScript 1417 ArgItem{ArgItem::eInt32, 0}, // eRsId 1418 ArgItem{ArgItem::ePointer, 0}, // eRsData 1419 ArgItem{ArgItem::eInt32, 0}, // eRsLength 1420 }}; 1421 1422 bool success = GetArgs(context, &args[0], args.size()); 1423 if (!success) { 1424 if (log) 1425 log->Printf("%s - error reading the function parameters.", __FUNCTION__); 1426 return; 1427 } 1428 1429 if (log) { 1430 log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " slot %" PRIu64 " = 0x%" PRIx64 1431 ":%" PRIu64 "bytes.", 1432 __FUNCTION__, uint64_t(args[eRsContext]), 1433 uint64_t(args[eRsScript]), uint64_t(args[eRsId]), 1434 uint64_t(args[eRsData]), uint64_t(args[eRsLength])); 1435 1436 addr_t script_addr = addr_t(args[eRsScript]); 1437 if (m_scriptMappings.find(script_addr) != m_scriptMappings.end()) { 1438 auto rsm = m_scriptMappings[script_addr]; 1439 if (uint64_t(args[eRsId]) < rsm->m_globals.size()) { 1440 auto rsg = rsm->m_globals[uint64_t(args[eRsId])]; 1441 log->Printf("%s - Setting of '%s' within '%s' inferred", __FUNCTION__, 1442 rsg.m_name.AsCString(), 1443 rsm->m_module->GetFileSpec().GetFilename().AsCString()); 1444 } 1445 } 1446 } 1447 } 1448 1449 void RenderScriptRuntime::CaptureAllocationInit(RuntimeHook *hook, 1450 ExecutionContext &exe_ctx) { 1451 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1452 1453 enum { eRsContext, eRsAlloc, eRsForceZero }; 1454 1455 std::array<ArgItem, 3> args{{ 1456 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1457 ArgItem{ArgItem::ePointer, 0}, // eRsAlloc 1458 ArgItem{ArgItem::eBool, 0}, // eRsForceZero 1459 }}; 1460 1461 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1462 if (!success) { 1463 if (log) 1464 log->Printf("%s - error while reading the function parameters", 1465 __FUNCTION__); 1466 return; 1467 } 1468 1469 if (log) 1470 log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 ",0x%" PRIx64 " .", 1471 __FUNCTION__, uint64_t(args[eRsContext]), 1472 uint64_t(args[eRsAlloc]), uint64_t(args[eRsForceZero])); 1473 1474 AllocationDetails *alloc = CreateAllocation(uint64_t(args[eRsAlloc])); 1475 if (alloc) 1476 alloc->context = uint64_t(args[eRsContext]); 1477 } 1478 1479 void RenderScriptRuntime::CaptureAllocationDestroy(RuntimeHook *hook, 1480 ExecutionContext &exe_ctx) { 1481 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1482 1483 enum { 1484 eRsContext, 1485 eRsAlloc, 1486 }; 1487 1488 std::array<ArgItem, 2> args{{ 1489 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1490 ArgItem{ArgItem::ePointer, 0}, // eRsAlloc 1491 }}; 1492 1493 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1494 if (!success) { 1495 if (log) 1496 log->Printf("%s - error while reading the function parameters.", 1497 __FUNCTION__); 1498 return; 1499 } 1500 1501 if (log) 1502 log->Printf("%s - 0x%" PRIx64 ", 0x%" PRIx64 ".", __FUNCTION__, 1503 uint64_t(args[eRsContext]), uint64_t(args[eRsAlloc])); 1504 1505 for (auto iter = m_allocations.begin(); iter != m_allocations.end(); ++iter) { 1506 auto &allocation_ap = *iter; // get the unique pointer 1507 if (allocation_ap->address.isValid() && 1508 *allocation_ap->address.get() == addr_t(args[eRsAlloc])) { 1509 m_allocations.erase(iter); 1510 if (log) 1511 log->Printf("%s - deleted allocation entry.", __FUNCTION__); 1512 return; 1513 } 1514 } 1515 1516 if (log) 1517 log->Printf("%s - couldn't find destroyed allocation.", __FUNCTION__); 1518 } 1519 1520 void RenderScriptRuntime::CaptureScriptInit(RuntimeHook *hook, 1521 ExecutionContext &exe_ctx) { 1522 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1523 1524 Error err; 1525 Process *process = exe_ctx.GetProcessPtr(); 1526 1527 enum { eRsContext, eRsScript, eRsResNamePtr, eRsCachedDirPtr }; 1528 1529 std::array<ArgItem, 4> args{ 1530 {ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}, 1531 ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}}}; 1532 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1533 if (!success) { 1534 if (log) 1535 log->Printf("%s - error while reading the function parameters.", 1536 __FUNCTION__); 1537 return; 1538 } 1539 1540 std::string res_name; 1541 process->ReadCStringFromMemory(addr_t(args[eRsResNamePtr]), res_name, err); 1542 if (err.Fail()) { 1543 if (log) 1544 log->Printf("%s - error reading res_name: %s.", __FUNCTION__, 1545 err.AsCString()); 1546 } 1547 1548 std::string cache_dir; 1549 process->ReadCStringFromMemory(addr_t(args[eRsCachedDirPtr]), cache_dir, err); 1550 if (err.Fail()) { 1551 if (log) 1552 log->Printf("%s - error reading cache_dir: %s.", __FUNCTION__, 1553 err.AsCString()); 1554 } 1555 1556 if (log) 1557 log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " => '%s' at '%s' .", 1558 __FUNCTION__, uint64_t(args[eRsContext]), 1559 uint64_t(args[eRsScript]), res_name.c_str(), cache_dir.c_str()); 1560 1561 if (res_name.size() > 0) { 1562 StreamString strm; 1563 strm.Printf("librs.%s.so", res_name.c_str()); 1564 1565 ScriptDetails *script = LookUpScript(addr_t(args[eRsScript]), true); 1566 if (script) { 1567 script->type = ScriptDetails::eScriptC; 1568 script->cache_dir = cache_dir; 1569 script->res_name = res_name; 1570 script->shared_lib = strm.GetString(); 1571 script->context = addr_t(args[eRsContext]); 1572 } 1573 1574 if (log) 1575 log->Printf("%s - '%s' tagged with context 0x%" PRIx64 1576 " and script 0x%" PRIx64 ".", 1577 __FUNCTION__, strm.GetData(), uint64_t(args[eRsContext]), 1578 uint64_t(args[eRsScript])); 1579 } else if (log) { 1580 log->Printf("%s - resource name invalid, Script not tagged.", __FUNCTION__); 1581 } 1582 } 1583 1584 void RenderScriptRuntime::LoadRuntimeHooks(lldb::ModuleSP module, 1585 ModuleKind kind) { 1586 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1587 1588 if (!module) { 1589 return; 1590 } 1591 1592 Target &target = GetProcess()->GetTarget(); 1593 const llvm::Triple::ArchType machine = target.GetArchitecture().GetMachine(); 1594 1595 if (machine != llvm::Triple::ArchType::x86 && 1596 machine != llvm::Triple::ArchType::arm && 1597 machine != llvm::Triple::ArchType::aarch64 && 1598 machine != llvm::Triple::ArchType::mipsel && 1599 machine != llvm::Triple::ArchType::mips64el && 1600 machine != llvm::Triple::ArchType::x86_64) { 1601 if (log) 1602 log->Printf("%s - unable to hook runtime functions.", __FUNCTION__); 1603 return; 1604 } 1605 1606 const uint32_t target_ptr_size = 1607 target.GetArchitecture().GetAddressByteSize(); 1608 1609 std::array<bool, s_runtimeHookCount> hook_placed; 1610 hook_placed.fill(false); 1611 1612 for (size_t idx = 0; idx < s_runtimeHookCount; idx++) { 1613 const HookDefn *hook_defn = &s_runtimeHookDefns[idx]; 1614 if (hook_defn->kind != kind) { 1615 continue; 1616 } 1617 1618 const char *symbol_name = (target_ptr_size == 4) 1619 ? hook_defn->symbol_name_m32 1620 : hook_defn->symbol_name_m64; 1621 1622 const Symbol *sym = module->FindFirstSymbolWithNameAndType( 1623 ConstString(symbol_name), eSymbolTypeCode); 1624 if (!sym) { 1625 if (log) { 1626 log->Printf("%s - symbol '%s' related to the function %s not found", 1627 __FUNCTION__, symbol_name, hook_defn->name); 1628 } 1629 continue; 1630 } 1631 1632 addr_t addr = sym->GetLoadAddress(&target); 1633 if (addr == LLDB_INVALID_ADDRESS) { 1634 if (log) 1635 log->Printf("%s - unable to resolve the address of hook function '%s' " 1636 "with symbol '%s'.", 1637 __FUNCTION__, hook_defn->name, symbol_name); 1638 continue; 1639 } else { 1640 if (log) 1641 log->Printf("%s - function %s, address resolved at 0x%" PRIx64, 1642 __FUNCTION__, hook_defn->name, addr); 1643 } 1644 1645 RuntimeHookSP hook(new RuntimeHook()); 1646 hook->address = addr; 1647 hook->defn = hook_defn; 1648 hook->bp_sp = target.CreateBreakpoint(addr, true, false); 1649 hook->bp_sp->SetCallback(HookCallback, hook.get(), true); 1650 m_runtimeHooks[addr] = hook; 1651 if (log) { 1652 log->Printf("%s - successfully hooked '%s' in '%s' version %" PRIu64 1653 " at 0x%" PRIx64 ".", 1654 __FUNCTION__, hook_defn->name, 1655 module->GetFileSpec().GetFilename().AsCString(), 1656 (uint64_t)hook_defn->version, (uint64_t)addr); 1657 } 1658 hook_placed[idx] = true; 1659 } 1660 1661 // log any unhooked function 1662 if (log) { 1663 for (size_t i = 0; i < hook_placed.size(); ++i) { 1664 if (hook_placed[i]) 1665 continue; 1666 const HookDefn &hook_defn = s_runtimeHookDefns[i]; 1667 if (hook_defn.kind != kind) 1668 continue; 1669 log->Printf("%s - function %s was not hooked", __FUNCTION__, 1670 hook_defn.name); 1671 } 1672 } 1673 } 1674 1675 void RenderScriptRuntime::FixupScriptDetails(RSModuleDescriptorSP rsmodule_sp) { 1676 if (!rsmodule_sp) 1677 return; 1678 1679 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1680 1681 const ModuleSP module = rsmodule_sp->m_module; 1682 const FileSpec &file = module->GetPlatformFileSpec(); 1683 1684 // Iterate over all of the scripts that we currently know of. 1685 // Note: We cant push or pop to m_scripts here or it may invalidate rs_script. 1686 for (const auto &rs_script : m_scripts) { 1687 // Extract the expected .so file path for this script. 1688 std::string shared_lib; 1689 if (!rs_script->shared_lib.get(shared_lib)) 1690 continue; 1691 1692 // Only proceed if the module that has loaded corresponds to this script. 1693 if (file.GetFilename() != ConstString(shared_lib.c_str())) 1694 continue; 1695 1696 // Obtain the script address which we use as a key. 1697 lldb::addr_t script; 1698 if (!rs_script->script.get(script)) 1699 continue; 1700 1701 // If we have a script mapping for the current script. 1702 if (m_scriptMappings.find(script) != m_scriptMappings.end()) { 1703 // if the module we have stored is different to the one we just received. 1704 if (m_scriptMappings[script] != rsmodule_sp) { 1705 if (log) 1706 log->Printf( 1707 "%s - script %" PRIx64 " wants reassigned to new rsmodule '%s'.", 1708 __FUNCTION__, (uint64_t)script, 1709 rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString()); 1710 } 1711 } 1712 // We don't have a script mapping for the current script. 1713 else { 1714 // Obtain the script resource name. 1715 std::string res_name; 1716 if (rs_script->res_name.get(res_name)) 1717 // Set the modules resource name. 1718 rsmodule_sp->m_resname = res_name; 1719 // Add Script/Module pair to map. 1720 m_scriptMappings[script] = rsmodule_sp; 1721 if (log) 1722 log->Printf( 1723 "%s - script %" PRIx64 " associated with rsmodule '%s'.", 1724 __FUNCTION__, (uint64_t)script, 1725 rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString()); 1726 } 1727 } 1728 } 1729 1730 // Uses the Target API to evaluate the expression passed as a parameter to the 1731 // function The result of that expression is returned an unsigned 64 bit int, 1732 // via the result* parameter. Function returns true on success, and false on 1733 // failure 1734 bool RenderScriptRuntime::EvalRSExpression(const char *expr, 1735 StackFrame *frame_ptr, 1736 uint64_t *result) { 1737 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1738 if (log) 1739 log->Printf("%s(%s)", __FUNCTION__, expr); 1740 1741 ValueObjectSP expr_result; 1742 EvaluateExpressionOptions options; 1743 options.SetLanguage(lldb::eLanguageTypeC_plus_plus); 1744 // Perform the actual expression evaluation 1745 auto &target = GetProcess()->GetTarget(); 1746 target.EvaluateExpression(expr, frame_ptr, expr_result, options); 1747 1748 if (!expr_result) { 1749 if (log) 1750 log->Printf("%s: couldn't evaluate expression.", __FUNCTION__); 1751 return false; 1752 } 1753 1754 // The result of the expression is invalid 1755 if (!expr_result->GetError().Success()) { 1756 Error err = expr_result->GetError(); 1757 // Expression returned is void, so this is actually a success 1758 if (err.GetError() == UserExpression::kNoResult) { 1759 if (log) 1760 log->Printf("%s - expression returned void.", __FUNCTION__); 1761 1762 result = nullptr; 1763 return true; 1764 } 1765 1766 if (log) 1767 log->Printf("%s - error evaluating expression result: %s", __FUNCTION__, 1768 err.AsCString()); 1769 return false; 1770 } 1771 1772 bool success = false; 1773 // We only read the result as an uint32_t. 1774 *result = expr_result->GetValueAsUnsigned(0, &success); 1775 1776 if (!success) { 1777 if (log) 1778 log->Printf("%s - couldn't convert expression result to uint32_t", 1779 __FUNCTION__); 1780 return false; 1781 } 1782 1783 return true; 1784 } 1785 1786 namespace { 1787 // Used to index expression format strings 1788 enum ExpressionStrings { 1789 eExprGetOffsetPtr = 0, 1790 eExprAllocGetType, 1791 eExprTypeDimX, 1792 eExprTypeDimY, 1793 eExprTypeDimZ, 1794 eExprTypeElemPtr, 1795 eExprElementType, 1796 eExprElementKind, 1797 eExprElementVec, 1798 eExprElementFieldCount, 1799 eExprSubelementsId, 1800 eExprSubelementsName, 1801 eExprSubelementsArrSize, 1802 1803 _eExprLast // keep at the end, implicit size of the array runtime_expressions 1804 }; 1805 1806 // max length of an expanded expression 1807 const int jit_max_expr_size = 512; 1808 1809 // Retrieve the string to JIT for the given expression 1810 const char *JITTemplate(ExpressionStrings e) { 1811 // Format strings containing the expressions we may need to evaluate. 1812 static std::array<const char *, _eExprLast> runtime_expressions = { 1813 {// Mangled GetOffsetPointer(Allocation*, xoff, yoff, zoff, lod, cubemap) 1814 "(int*)_" 1815 "Z12GetOffsetPtrPKN7android12renderscript10AllocationEjjjj23RsAllocation" 1816 "CubemapFace" 1817 "(0x%" PRIx64 ", %" PRIu32 ", %" PRIu32 ", %" PRIu32 ", 0, 0)", 1818 1819 // Type* rsaAllocationGetType(Context*, Allocation*) 1820 "(void*)rsaAllocationGetType(0x%" PRIx64 ", 0x%" PRIx64 ")", 1821 1822 // rsaTypeGetNativeData(Context*, Type*, void* typeData, size) Pack the 1823 // data in the following way mHal.state.dimX; mHal.state.dimY; 1824 // mHal.state.dimZ; mHal.state.lodCount; mHal.state.faces; mElement; into 1825 // typeData Need to specify 32 or 64 bit for uint_t since this differs 1826 // between devices 1827 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 1828 ", 0x%" PRIx64 ", data, 6); data[0]", // X dim 1829 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 1830 ", 0x%" PRIx64 ", data, 6); data[1]", // Y dim 1831 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 1832 ", 0x%" PRIx64 ", data, 6); data[2]", // Z dim 1833 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 1834 ", 0x%" PRIx64 ", data, 6); data[5]", // Element ptr 1835 1836 // rsaElementGetNativeData(Context*, Element*, uint32_t* elemData,size) 1837 // Pack mType; mKind; mNormalized; mVectorSize; NumSubElements into 1838 // elemData 1839 "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 1840 ", 0x%" PRIx64 ", data, 5); data[0]", // Type 1841 "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 1842 ", 0x%" PRIx64 ", data, 5); data[1]", // Kind 1843 "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 1844 ", 0x%" PRIx64 ", data, 5); data[3]", // Vector Size 1845 "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 1846 ", 0x%" PRIx64 ", data, 5); data[4]", // Field Count 1847 1848 // rsaElementGetSubElements(RsContext con, RsElement elem, uintptr_t 1849 // *ids, const char **names, size_t *arraySizes, uint32_t dataSize) 1850 // Needed for Allocations of structs to gather details about 1851 // fields/Subelements Element* of field 1852 "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 1853 "]; size_t arr_size[%" PRIu32 "];" 1854 "(void*)rsaElementGetSubElements(0x%" PRIx64 ", 0x%" PRIx64 1855 ", ids, names, arr_size, %" PRIu32 "); ids[%" PRIu32 "]", 1856 1857 // Name of field 1858 "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 1859 "]; size_t arr_size[%" PRIu32 "];" 1860 "(void*)rsaElementGetSubElements(0x%" PRIx64 ", 0x%" PRIx64 1861 ", ids, names, arr_size, %" PRIu32 "); names[%" PRIu32 "]", 1862 1863 // Array size of field 1864 "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 1865 "]; size_t arr_size[%" PRIu32 "];" 1866 "(void*)rsaElementGetSubElements(0x%" PRIx64 ", 0x%" PRIx64 1867 ", ids, names, arr_size, %" PRIu32 "); arr_size[%" PRIu32 "]"}}; 1868 1869 return runtime_expressions[e]; 1870 } 1871 } // end of the anonymous namespace 1872 1873 // JITs the RS runtime for the internal data pointer of an allocation. Is passed 1874 // x,y,z coordinates for the pointer to a specific element. Then sets the 1875 // data_ptr member in Allocation with the result. Returns true on success, false 1876 // otherwise 1877 bool RenderScriptRuntime::JITDataPointer(AllocationDetails *alloc, 1878 StackFrame *frame_ptr, uint32_t x, 1879 uint32_t y, uint32_t z) { 1880 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1881 1882 if (!alloc->address.isValid()) { 1883 if (log) 1884 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1885 return false; 1886 } 1887 1888 const char *fmt_str = JITTemplate(eExprGetOffsetPtr); 1889 char expr_buf[jit_max_expr_size]; 1890 1891 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 1892 *alloc->address.get(), x, y, z); 1893 if (written < 0) { 1894 if (log) 1895 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1896 return false; 1897 } else if (written >= jit_max_expr_size) { 1898 if (log) 1899 log->Printf("%s - expression too long.", __FUNCTION__); 1900 return false; 1901 } 1902 1903 uint64_t result = 0; 1904 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 1905 return false; 1906 1907 addr_t data_ptr = static_cast<lldb::addr_t>(result); 1908 alloc->data_ptr = data_ptr; 1909 1910 return true; 1911 } 1912 1913 // JITs the RS runtime for the internal pointer to the RS Type of an allocation 1914 // Then sets the type_ptr member in Allocation with the result. Returns true on 1915 // success, false otherwise 1916 bool RenderScriptRuntime::JITTypePointer(AllocationDetails *alloc, 1917 StackFrame *frame_ptr) { 1918 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1919 1920 if (!alloc->address.isValid() || !alloc->context.isValid()) { 1921 if (log) 1922 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1923 return false; 1924 } 1925 1926 const char *fmt_str = JITTemplate(eExprAllocGetType); 1927 char expr_buf[jit_max_expr_size]; 1928 1929 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 1930 *alloc->context.get(), *alloc->address.get()); 1931 if (written < 0) { 1932 if (log) 1933 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1934 return false; 1935 } else if (written >= jit_max_expr_size) { 1936 if (log) 1937 log->Printf("%s - expression too long.", __FUNCTION__); 1938 return false; 1939 } 1940 1941 uint64_t result = 0; 1942 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 1943 return false; 1944 1945 addr_t type_ptr = static_cast<lldb::addr_t>(result); 1946 alloc->type_ptr = type_ptr; 1947 1948 return true; 1949 } 1950 1951 // JITs the RS runtime for information about the dimensions and type of an 1952 // allocation Then sets dimension and element_ptr members in Allocation with the 1953 // result. Returns true on success, false otherwise 1954 bool RenderScriptRuntime::JITTypePacked(AllocationDetails *alloc, 1955 StackFrame *frame_ptr) { 1956 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1957 1958 if (!alloc->type_ptr.isValid() || !alloc->context.isValid()) { 1959 if (log) 1960 log->Printf("%s - Failed to find allocation details.", __FUNCTION__); 1961 return false; 1962 } 1963 1964 // Expression is different depending on if device is 32 or 64 bit 1965 uint32_t target_ptr_size = 1966 GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 1967 const uint32_t bits = target_ptr_size == 4 ? 32 : 64; 1968 1969 // We want 4 elements from packed data 1970 const uint32_t num_exprs = 4; 1971 assert(num_exprs == (eExprTypeElemPtr - eExprTypeDimX + 1) && 1972 "Invalid number of expressions"); 1973 1974 char expr_bufs[num_exprs][jit_max_expr_size]; 1975 uint64_t results[num_exprs]; 1976 1977 for (uint32_t i = 0; i < num_exprs; ++i) { 1978 const char *fmt_str = JITTemplate(ExpressionStrings(eExprTypeDimX + i)); 1979 int written = snprintf(expr_bufs[i], jit_max_expr_size, fmt_str, bits, 1980 *alloc->context.get(), *alloc->type_ptr.get()); 1981 if (written < 0) { 1982 if (log) 1983 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1984 return false; 1985 } else if (written >= jit_max_expr_size) { 1986 if (log) 1987 log->Printf("%s - expression too long.", __FUNCTION__); 1988 return false; 1989 } 1990 1991 // Perform expression evaluation 1992 if (!EvalRSExpression(expr_bufs[i], frame_ptr, &results[i])) 1993 return false; 1994 } 1995 1996 // Assign results to allocation members 1997 AllocationDetails::Dimension dims; 1998 dims.dim_1 = static_cast<uint32_t>(results[0]); 1999 dims.dim_2 = static_cast<uint32_t>(results[1]); 2000 dims.dim_3 = static_cast<uint32_t>(results[2]); 2001 alloc->dimension = dims; 2002 2003 addr_t element_ptr = static_cast<lldb::addr_t>(results[3]); 2004 alloc->element.element_ptr = element_ptr; 2005 2006 if (log) 2007 log->Printf("%s - dims (%" PRIu32 ", %" PRIu32 ", %" PRIu32 2008 ") Element*: 0x%" PRIx64 ".", 2009 __FUNCTION__, dims.dim_1, dims.dim_2, dims.dim_3, element_ptr); 2010 2011 return true; 2012 } 2013 2014 // JITs the RS runtime for information about the Element of an allocation Then 2015 // sets type, type_vec_size, field_count and type_kind members in Element with 2016 // the result. Returns true on success, false otherwise 2017 bool RenderScriptRuntime::JITElementPacked(Element &elem, 2018 const lldb::addr_t context, 2019 StackFrame *frame_ptr) { 2020 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2021 2022 if (!elem.element_ptr.isValid()) { 2023 if (log) 2024 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 2025 return false; 2026 } 2027 2028 // We want 4 elements from packed data 2029 const uint32_t num_exprs = 4; 2030 assert(num_exprs == (eExprElementFieldCount - eExprElementType + 1) && 2031 "Invalid number of expressions"); 2032 2033 char expr_bufs[num_exprs][jit_max_expr_size]; 2034 uint64_t results[num_exprs]; 2035 2036 for (uint32_t i = 0; i < num_exprs; i++) { 2037 const char *fmt_str = JITTemplate(ExpressionStrings(eExprElementType + i)); 2038 int written = snprintf(expr_bufs[i], jit_max_expr_size, fmt_str, context, 2039 *elem.element_ptr.get()); 2040 if (written < 0) { 2041 if (log) 2042 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 2043 return false; 2044 } else if (written >= jit_max_expr_size) { 2045 if (log) 2046 log->Printf("%s - expression too long.", __FUNCTION__); 2047 return false; 2048 } 2049 2050 // Perform expression evaluation 2051 if (!EvalRSExpression(expr_bufs[i], frame_ptr, &results[i])) 2052 return false; 2053 } 2054 2055 // Assign results to allocation members 2056 elem.type = static_cast<RenderScriptRuntime::Element::DataType>(results[0]); 2057 elem.type_kind = 2058 static_cast<RenderScriptRuntime::Element::DataKind>(results[1]); 2059 elem.type_vec_size = static_cast<uint32_t>(results[2]); 2060 elem.field_count = static_cast<uint32_t>(results[3]); 2061 2062 if (log) 2063 log->Printf("%s - data type %" PRIu32 ", pixel type %" PRIu32 2064 ", vector size %" PRIu32 ", field count %" PRIu32, 2065 __FUNCTION__, *elem.type.get(), *elem.type_kind.get(), 2066 *elem.type_vec_size.get(), *elem.field_count.get()); 2067 2068 // If this Element has subelements then JIT rsaElementGetSubElements() for 2069 // details about its fields 2070 if (*elem.field_count.get() > 0 && !JITSubelements(elem, context, frame_ptr)) 2071 return false; 2072 2073 return true; 2074 } 2075 2076 // JITs the RS runtime for information about the subelements/fields of a struct 2077 // allocation This is necessary for infering the struct type so we can pretty 2078 // print the allocation's contents. Returns true on success, false otherwise 2079 bool RenderScriptRuntime::JITSubelements(Element &elem, 2080 const lldb::addr_t context, 2081 StackFrame *frame_ptr) { 2082 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2083 2084 if (!elem.element_ptr.isValid() || !elem.field_count.isValid()) { 2085 if (log) 2086 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 2087 return false; 2088 } 2089 2090 const short num_exprs = 3; 2091 assert(num_exprs == (eExprSubelementsArrSize - eExprSubelementsId + 1) && 2092 "Invalid number of expressions"); 2093 2094 char expr_buffer[jit_max_expr_size]; 2095 uint64_t results; 2096 2097 // Iterate over struct fields. 2098 const uint32_t field_count = *elem.field_count.get(); 2099 for (uint32_t field_index = 0; field_index < field_count; ++field_index) { 2100 Element child; 2101 for (uint32_t expr_index = 0; expr_index < num_exprs; ++expr_index) { 2102 const char *fmt_str = 2103 JITTemplate(ExpressionStrings(eExprSubelementsId + expr_index)); 2104 int written = snprintf(expr_buffer, jit_max_expr_size, fmt_str, 2105 field_count, field_count, field_count, context, 2106 *elem.element_ptr.get(), field_count, field_index); 2107 if (written < 0) { 2108 if (log) 2109 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 2110 return false; 2111 } else if (written >= jit_max_expr_size) { 2112 if (log) 2113 log->Printf("%s - expression too long.", __FUNCTION__); 2114 return false; 2115 } 2116 2117 // Perform expression evaluation 2118 if (!EvalRSExpression(expr_buffer, frame_ptr, &results)) 2119 return false; 2120 2121 if (log) 2122 log->Printf("%s - expr result 0x%" PRIx64 ".", __FUNCTION__, results); 2123 2124 switch (expr_index) { 2125 case 0: // Element* of child 2126 child.element_ptr = static_cast<addr_t>(results); 2127 break; 2128 case 1: // Name of child 2129 { 2130 lldb::addr_t address = static_cast<addr_t>(results); 2131 Error err; 2132 std::string name; 2133 GetProcess()->ReadCStringFromMemory(address, name, err); 2134 if (!err.Fail()) 2135 child.type_name = ConstString(name); 2136 else { 2137 if (log) 2138 log->Printf("%s - warning: Couldn't read field name.", 2139 __FUNCTION__); 2140 } 2141 break; 2142 } 2143 case 2: // Array size of child 2144 child.array_size = static_cast<uint32_t>(results); 2145 break; 2146 } 2147 } 2148 2149 // We need to recursively JIT each Element field of the struct since 2150 // structs can be nested inside structs. 2151 if (!JITElementPacked(child, context, frame_ptr)) 2152 return false; 2153 elem.children.push_back(child); 2154 } 2155 2156 // Try to infer the name of the struct type so we can pretty print the 2157 // allocation contents. 2158 FindStructTypeName(elem, frame_ptr); 2159 2160 return true; 2161 } 2162 2163 // JITs the RS runtime for the address of the last element in the allocation. 2164 // The `elem_size` parameter represents the size of a single element, including 2165 // padding. Which is needed as an offset from the last element pointer. Using 2166 // this offset minus the starting address we can calculate the size of the 2167 // allocation. Returns true on success, false otherwise 2168 bool RenderScriptRuntime::JITAllocationSize(AllocationDetails *alloc, 2169 StackFrame *frame_ptr) { 2170 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2171 2172 if (!alloc->address.isValid() || !alloc->dimension.isValid() || 2173 !alloc->data_ptr.isValid() || !alloc->element.datum_size.isValid()) { 2174 if (log) 2175 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 2176 return false; 2177 } 2178 2179 // Find dimensions 2180 uint32_t dim_x = alloc->dimension.get()->dim_1; 2181 uint32_t dim_y = alloc->dimension.get()->dim_2; 2182 uint32_t dim_z = alloc->dimension.get()->dim_3; 2183 2184 // Our plan of jitting the last element address doesn't seem to work for 2185 // struct Allocations` Instead try to infer the size ourselves without any 2186 // inter element padding. 2187 if (alloc->element.children.size() > 0) { 2188 if (dim_x == 0) 2189 dim_x = 1; 2190 if (dim_y == 0) 2191 dim_y = 1; 2192 if (dim_z == 0) 2193 dim_z = 1; 2194 2195 alloc->size = dim_x * dim_y * dim_z * *alloc->element.datum_size.get(); 2196 2197 if (log) 2198 log->Printf("%s - inferred size of struct allocation %" PRIu32 ".", 2199 __FUNCTION__, *alloc->size.get()); 2200 return true; 2201 } 2202 2203 const char *fmt_str = JITTemplate(eExprGetOffsetPtr); 2204 char expr_buf[jit_max_expr_size]; 2205 2206 // Calculate last element 2207 dim_x = dim_x == 0 ? 0 : dim_x - 1; 2208 dim_y = dim_y == 0 ? 0 : dim_y - 1; 2209 dim_z = dim_z == 0 ? 0 : dim_z - 1; 2210 2211 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 2212 *alloc->address.get(), dim_x, dim_y, dim_z); 2213 if (written < 0) { 2214 if (log) 2215 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 2216 return false; 2217 } else if (written >= jit_max_expr_size) { 2218 if (log) 2219 log->Printf("%s - expression too long.", __FUNCTION__); 2220 return false; 2221 } 2222 2223 uint64_t result = 0; 2224 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 2225 return false; 2226 2227 addr_t mem_ptr = static_cast<lldb::addr_t>(result); 2228 // Find pointer to last element and add on size of an element 2229 alloc->size = static_cast<uint32_t>(mem_ptr - *alloc->data_ptr.get()) + 2230 *alloc->element.datum_size.get(); 2231 2232 return true; 2233 } 2234 2235 // JITs the RS runtime for information about the stride between rows in the 2236 // allocation. This is done to detect padding, since allocated memory is 16-byte 2237 // aligned. 2238 // Returns true on success, false otherwise 2239 bool RenderScriptRuntime::JITAllocationStride(AllocationDetails *alloc, 2240 StackFrame *frame_ptr) { 2241 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2242 2243 if (!alloc->address.isValid() || !alloc->data_ptr.isValid()) { 2244 if (log) 2245 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 2246 return false; 2247 } 2248 2249 const char *fmt_str = JITTemplate(eExprGetOffsetPtr); 2250 char expr_buf[jit_max_expr_size]; 2251 2252 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 2253 *alloc->address.get(), 0, 1, 0); 2254 if (written < 0) { 2255 if (log) 2256 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 2257 return false; 2258 } else if (written >= jit_max_expr_size) { 2259 if (log) 2260 log->Printf("%s - expression too long.", __FUNCTION__); 2261 return false; 2262 } 2263 2264 uint64_t result = 0; 2265 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 2266 return false; 2267 2268 addr_t mem_ptr = static_cast<lldb::addr_t>(result); 2269 alloc->stride = static_cast<uint32_t>(mem_ptr - *alloc->data_ptr.get()); 2270 2271 return true; 2272 } 2273 2274 // JIT all the current runtime info regarding an allocation 2275 bool RenderScriptRuntime::RefreshAllocation(AllocationDetails *alloc, 2276 StackFrame *frame_ptr) { 2277 // GetOffsetPointer() 2278 if (!JITDataPointer(alloc, frame_ptr)) 2279 return false; 2280 2281 // rsaAllocationGetType() 2282 if (!JITTypePointer(alloc, frame_ptr)) 2283 return false; 2284 2285 // rsaTypeGetNativeData() 2286 if (!JITTypePacked(alloc, frame_ptr)) 2287 return false; 2288 2289 // rsaElementGetNativeData() 2290 if (!JITElementPacked(alloc->element, *alloc->context.get(), frame_ptr)) 2291 return false; 2292 2293 // Sets the datum_size member in Element 2294 SetElementSize(alloc->element); 2295 2296 // Use GetOffsetPointer() to infer size of the allocation 2297 if (!JITAllocationSize(alloc, frame_ptr)) 2298 return false; 2299 2300 return true; 2301 } 2302 2303 // Function attempts to set the type_name member of the paramaterised Element 2304 // object. 2305 // This string should be the name of the struct type the Element represents. 2306 // We need this string for pretty printing the Element to users. 2307 void RenderScriptRuntime::FindStructTypeName(Element &elem, 2308 StackFrame *frame_ptr) { 2309 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2310 2311 if (!elem.type_name.IsEmpty()) // Name already set 2312 return; 2313 else 2314 elem.type_name = Element::GetFallbackStructName(); // Default type name if 2315 // we don't succeed 2316 2317 // Find all the global variables from the script rs modules 2318 VariableList var_list; 2319 for (auto module_sp : m_rsmodules) 2320 module_sp->m_module->FindGlobalVariables( 2321 RegularExpression(llvm::StringRef(".")), true, UINT32_MAX, var_list); 2322 2323 // Iterate over all the global variables looking for one with a matching type 2324 // to the Element. 2325 // We make the assumption a match exists since there needs to be a global 2326 // variable to reflect the struct type back into java host code. 2327 for (uint32_t i = 0; i < var_list.GetSize(); ++i) { 2328 const VariableSP var_sp(var_list.GetVariableAtIndex(i)); 2329 if (!var_sp) 2330 continue; 2331 2332 ValueObjectSP valobj_sp = ValueObjectVariable::Create(frame_ptr, var_sp); 2333 if (!valobj_sp) 2334 continue; 2335 2336 // Find the number of variable fields. 2337 // If it has no fields, or more fields than our Element, then it can't be 2338 // the struct we're looking for. 2339 // Don't check for equality since RS can add extra struct members for 2340 // padding. 2341 size_t num_children = valobj_sp->GetNumChildren(); 2342 if (num_children > elem.children.size() || num_children == 0) 2343 continue; 2344 2345 // Iterate over children looking for members with matching field names. 2346 // If all the field names match, this is likely the struct we want. 2347 // TODO: This could be made more robust by also checking children data 2348 // sizes, or array size 2349 bool found = true; 2350 for (size_t i = 0; i < num_children; ++i) { 2351 ValueObjectSP child = valobj_sp->GetChildAtIndex(i, true); 2352 if (!child || (child->GetName() != elem.children[i].type_name)) { 2353 found = false; 2354 break; 2355 } 2356 } 2357 2358 // RS can add extra struct members for padding in the format 2359 // '#rs_padding_[0-9]+' 2360 if (found && num_children < elem.children.size()) { 2361 const uint32_t size_diff = elem.children.size() - num_children; 2362 if (log) 2363 log->Printf("%s - %" PRIu32 " padding struct entries", __FUNCTION__, 2364 size_diff); 2365 2366 for (uint32_t i = 0; i < size_diff; ++i) { 2367 const ConstString &name = elem.children[num_children + i].type_name; 2368 if (strcmp(name.AsCString(), "#rs_padding") < 0) 2369 found = false; 2370 } 2371 } 2372 2373 // We've found a global variable with matching type 2374 if (found) { 2375 // Dereference since our Element type isn't a pointer. 2376 if (valobj_sp->IsPointerType()) { 2377 Error err; 2378 ValueObjectSP deref_valobj = valobj_sp->Dereference(err); 2379 if (!err.Fail()) 2380 valobj_sp = deref_valobj; 2381 } 2382 2383 // Save name of variable in Element. 2384 elem.type_name = valobj_sp->GetTypeName(); 2385 if (log) 2386 log->Printf("%s - element name set to %s", __FUNCTION__, 2387 elem.type_name.AsCString()); 2388 2389 return; 2390 } 2391 } 2392 } 2393 2394 // Function sets the datum_size member of Element. Representing the size of a 2395 // single instance including padding. 2396 // Assumes the relevant allocation information has already been jitted. 2397 void RenderScriptRuntime::SetElementSize(Element &elem) { 2398 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2399 const Element::DataType type = *elem.type.get(); 2400 assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && 2401 "Invalid allocation type"); 2402 2403 const uint32_t vec_size = *elem.type_vec_size.get(); 2404 uint32_t data_size = 0; 2405 uint32_t padding = 0; 2406 2407 // Element is of a struct type, calculate size recursively. 2408 if ((type == Element::RS_TYPE_NONE) && (elem.children.size() > 0)) { 2409 for (Element &child : elem.children) { 2410 SetElementSize(child); 2411 const uint32_t array_size = 2412 child.array_size.isValid() ? *child.array_size.get() : 1; 2413 data_size += *child.datum_size.get() * array_size; 2414 } 2415 } 2416 // These have been packed already 2417 else if (type == Element::RS_TYPE_UNSIGNED_5_6_5 || 2418 type == Element::RS_TYPE_UNSIGNED_5_5_5_1 || 2419 type == Element::RS_TYPE_UNSIGNED_4_4_4_4) { 2420 data_size = AllocationDetails::RSTypeToFormat[type][eElementSize]; 2421 } else if (type < Element::RS_TYPE_ELEMENT) { 2422 data_size = 2423 vec_size * AllocationDetails::RSTypeToFormat[type][eElementSize]; 2424 if (vec_size == 3) 2425 padding = AllocationDetails::RSTypeToFormat[type][eElementSize]; 2426 } else 2427 data_size = 2428 GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 2429 2430 elem.padding = padding; 2431 elem.datum_size = data_size + padding; 2432 if (log) 2433 log->Printf("%s - element size set to %" PRIu32, __FUNCTION__, 2434 data_size + padding); 2435 } 2436 2437 // Given an allocation, this function copies the allocation contents from device 2438 // into a buffer on the heap. 2439 // Returning a shared pointer to the buffer containing the data. 2440 std::shared_ptr<uint8_t> 2441 RenderScriptRuntime::GetAllocationData(AllocationDetails *alloc, 2442 StackFrame *frame_ptr) { 2443 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2444 2445 // JIT all the allocation details 2446 if (alloc->ShouldRefresh()) { 2447 if (log) 2448 log->Printf("%s - allocation details not calculated yet, jitting info", 2449 __FUNCTION__); 2450 2451 if (!RefreshAllocation(alloc, frame_ptr)) { 2452 if (log) 2453 log->Printf("%s - couldn't JIT allocation details", __FUNCTION__); 2454 return nullptr; 2455 } 2456 } 2457 2458 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && 2459 alloc->element.type_vec_size.isValid() && alloc->size.isValid() && 2460 "Allocation information not available"); 2461 2462 // Allocate a buffer to copy data into 2463 const uint32_t size = *alloc->size.get(); 2464 std::shared_ptr<uint8_t> buffer(new uint8_t[size]); 2465 if (!buffer) { 2466 if (log) 2467 log->Printf("%s - couldn't allocate a %" PRIu32 " byte buffer", 2468 __FUNCTION__, size); 2469 return nullptr; 2470 } 2471 2472 // Read the inferior memory 2473 Error err; 2474 lldb::addr_t data_ptr = *alloc->data_ptr.get(); 2475 GetProcess()->ReadMemory(data_ptr, buffer.get(), size, err); 2476 if (err.Fail()) { 2477 if (log) 2478 log->Printf("%s - '%s' Couldn't read %" PRIu32 2479 " bytes of allocation data from 0x%" PRIx64, 2480 __FUNCTION__, err.AsCString(), size, data_ptr); 2481 return nullptr; 2482 } 2483 2484 return buffer; 2485 } 2486 2487 // Function copies data from a binary file into an allocation. 2488 // There is a header at the start of the file, FileHeader, before the data 2489 // content itself. 2490 // Information from this header is used to display warnings to the user about 2491 // incompatibilities 2492 bool RenderScriptRuntime::LoadAllocation(Stream &strm, const uint32_t alloc_id, 2493 const char *path, 2494 StackFrame *frame_ptr) { 2495 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2496 2497 // Find allocation with the given id 2498 AllocationDetails *alloc = FindAllocByID(strm, alloc_id); 2499 if (!alloc) 2500 return false; 2501 2502 if (log) 2503 log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__, 2504 *alloc->address.get()); 2505 2506 // JIT all the allocation details 2507 if (alloc->ShouldRefresh()) { 2508 if (log) 2509 log->Printf("%s - allocation details not calculated yet, jitting info.", 2510 __FUNCTION__); 2511 2512 if (!RefreshAllocation(alloc, frame_ptr)) { 2513 if (log) 2514 log->Printf("%s - couldn't JIT allocation details", __FUNCTION__); 2515 return false; 2516 } 2517 } 2518 2519 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && 2520 alloc->element.type_vec_size.isValid() && alloc->size.isValid() && 2521 alloc->element.datum_size.isValid() && 2522 "Allocation information not available"); 2523 2524 // Check we can read from file 2525 FileSpec file(path, true); 2526 if (!file.Exists()) { 2527 strm.Printf("Error: File %s does not exist", path); 2528 strm.EOL(); 2529 return false; 2530 } 2531 2532 if (!file.Readable()) { 2533 strm.Printf("Error: File %s does not have readable permissions", path); 2534 strm.EOL(); 2535 return false; 2536 } 2537 2538 // Read file into data buffer 2539 DataBufferSP data_sp(file.ReadFileContents()); 2540 2541 // Cast start of buffer to FileHeader and use pointer to read metadata 2542 void *file_buf = data_sp->GetBytes(); 2543 if (file_buf == nullptr || 2544 data_sp->GetByteSize() < (sizeof(AllocationDetails::FileHeader) + 2545 sizeof(AllocationDetails::ElementHeader))) { 2546 strm.Printf("Error: File %s does not contain enough data for header", path); 2547 strm.EOL(); 2548 return false; 2549 } 2550 const AllocationDetails::FileHeader *file_header = 2551 static_cast<AllocationDetails::FileHeader *>(file_buf); 2552 2553 // Check file starts with ascii characters "RSAD" 2554 if (memcmp(file_header->ident, "RSAD", 4)) { 2555 strm.Printf("Error: File doesn't contain identifier for an RS allocation " 2556 "dump. Are you sure this is the correct file?"); 2557 strm.EOL(); 2558 return false; 2559 } 2560 2561 // Look at the type of the root element in the header 2562 AllocationDetails::ElementHeader root_el_hdr; 2563 memcpy(&root_el_hdr, static_cast<uint8_t *>(file_buf) + 2564 sizeof(AllocationDetails::FileHeader), 2565 sizeof(AllocationDetails::ElementHeader)); 2566 2567 if (log) 2568 log->Printf("%s - header type %" PRIu32 ", element size %" PRIu32, 2569 __FUNCTION__, root_el_hdr.type, root_el_hdr.element_size); 2570 2571 // Check if the target allocation and file both have the same number of bytes 2572 // for an Element 2573 if (*alloc->element.datum_size.get() != root_el_hdr.element_size) { 2574 strm.Printf("Warning: Mismatched Element sizes - file %" PRIu32 2575 " bytes, allocation %" PRIu32 " bytes", 2576 root_el_hdr.element_size, *alloc->element.datum_size.get()); 2577 strm.EOL(); 2578 } 2579 2580 // Check if the target allocation and file both have the same type 2581 const uint32_t alloc_type = static_cast<uint32_t>(*alloc->element.type.get()); 2582 const uint32_t file_type = root_el_hdr.type; 2583 2584 if (file_type > Element::RS_TYPE_FONT) { 2585 strm.Printf("Warning: File has unknown allocation type"); 2586 strm.EOL(); 2587 } else if (alloc_type != file_type) { 2588 // Enum value isn't monotonous, so doesn't always index RsDataTypeToString 2589 // array 2590 uint32_t target_type_name_idx = alloc_type; 2591 uint32_t head_type_name_idx = file_type; 2592 if (alloc_type >= Element::RS_TYPE_ELEMENT && 2593 alloc_type <= Element::RS_TYPE_FONT) 2594 target_type_name_idx = static_cast<Element::DataType>( 2595 (alloc_type - Element::RS_TYPE_ELEMENT) + 2596 Element::RS_TYPE_MATRIX_2X2 + 1); 2597 2598 if (file_type >= Element::RS_TYPE_ELEMENT && 2599 file_type <= Element::RS_TYPE_FONT) 2600 head_type_name_idx = static_cast<Element::DataType>( 2601 (file_type - Element::RS_TYPE_ELEMENT) + Element::RS_TYPE_MATRIX_2X2 + 2602 1); 2603 2604 const char *head_type_name = 2605 AllocationDetails::RsDataTypeToString[head_type_name_idx][0]; 2606 const char *target_type_name = 2607 AllocationDetails::RsDataTypeToString[target_type_name_idx][0]; 2608 2609 strm.Printf( 2610 "Warning: Mismatched Types - file '%s' type, allocation '%s' type", 2611 head_type_name, target_type_name); 2612 strm.EOL(); 2613 } 2614 2615 // Advance buffer past header 2616 file_buf = static_cast<uint8_t *>(file_buf) + file_header->hdr_size; 2617 2618 // Calculate size of allocation data in file 2619 size_t size = data_sp->GetByteSize() - file_header->hdr_size; 2620 2621 // Check if the target allocation and file both have the same total data size. 2622 const uint32_t alloc_size = *alloc->size.get(); 2623 if (alloc_size != size) { 2624 strm.Printf("Warning: Mismatched allocation sizes - file 0x%" PRIx64 2625 " bytes, allocation 0x%" PRIx32 " bytes", 2626 (uint64_t)size, alloc_size); 2627 strm.EOL(); 2628 // Set length to copy to minimum 2629 size = alloc_size < size ? alloc_size : size; 2630 } 2631 2632 // Copy file data from our buffer into the target allocation. 2633 lldb::addr_t alloc_data = *alloc->data_ptr.get(); 2634 Error err; 2635 size_t written = GetProcess()->WriteMemory(alloc_data, file_buf, size, err); 2636 if (!err.Success() || written != size) { 2637 strm.Printf("Error: Couldn't write data to allocation %s", err.AsCString()); 2638 strm.EOL(); 2639 return false; 2640 } 2641 2642 strm.Printf("Contents of file '%s' read into allocation %" PRIu32, path, 2643 alloc->id); 2644 strm.EOL(); 2645 2646 return true; 2647 } 2648 2649 // Function takes as parameters a byte buffer, which will eventually be written 2650 // to file as the element header, an offset into that buffer, and an Element 2651 // that will be saved into the buffer at the parametrised offset. 2652 // Return value is the new offset after writing the element into the buffer. 2653 // Elements are saved to the file as the ElementHeader struct followed by 2654 // offsets to the structs of all the element's children. 2655 size_t RenderScriptRuntime::PopulateElementHeaders( 2656 const std::shared_ptr<uint8_t> header_buffer, size_t offset, 2657 const Element &elem) { 2658 // File struct for an element header with all the relevant details copied from 2659 // elem. We assume members are valid already. 2660 AllocationDetails::ElementHeader elem_header; 2661 elem_header.type = *elem.type.get(); 2662 elem_header.kind = *elem.type_kind.get(); 2663 elem_header.element_size = *elem.datum_size.get(); 2664 elem_header.vector_size = *elem.type_vec_size.get(); 2665 elem_header.array_size = 2666 elem.array_size.isValid() ? *elem.array_size.get() : 0; 2667 const size_t elem_header_size = sizeof(AllocationDetails::ElementHeader); 2668 2669 // Copy struct into buffer and advance offset 2670 // We assume that header_buffer has been checked for nullptr before this 2671 // method is called 2672 memcpy(header_buffer.get() + offset, &elem_header, elem_header_size); 2673 offset += elem_header_size; 2674 2675 // Starting offset of child ElementHeader struct 2676 size_t child_offset = 2677 offset + ((elem.children.size() + 1) * sizeof(uint32_t)); 2678 for (const RenderScriptRuntime::Element &child : elem.children) { 2679 // Recursively populate the buffer with the element header structs of 2680 // children. Then save the offsets where they were set after the parent 2681 // element header. 2682 memcpy(header_buffer.get() + offset, &child_offset, sizeof(uint32_t)); 2683 offset += sizeof(uint32_t); 2684 2685 child_offset = PopulateElementHeaders(header_buffer, child_offset, child); 2686 } 2687 2688 // Zero indicates no more children 2689 memset(header_buffer.get() + offset, 0, sizeof(uint32_t)); 2690 2691 return child_offset; 2692 } 2693 2694 // Given an Element object this function returns the total size needed in the 2695 // file header to store the element's details. Taking into account the size of 2696 // the element header struct, plus the offsets to all the element's children. 2697 // Function is recursive so that the size of all ancestors is taken into 2698 // account. 2699 size_t RenderScriptRuntime::CalculateElementHeaderSize(const Element &elem) { 2700 // Offsets to children plus zero terminator 2701 size_t size = (elem.children.size() + 1) * sizeof(uint32_t); 2702 // Size of header struct with type details 2703 size += sizeof(AllocationDetails::ElementHeader); 2704 2705 // Calculate recursively for all descendants 2706 for (const Element &child : elem.children) 2707 size += CalculateElementHeaderSize(child); 2708 2709 return size; 2710 } 2711 2712 // Function copies allocation contents into a binary file. This file can then be 2713 // loaded later into a different allocation. There is a header, FileHeader, 2714 // before the allocation data containing meta-data. 2715 bool RenderScriptRuntime::SaveAllocation(Stream &strm, const uint32_t alloc_id, 2716 const char *path, 2717 StackFrame *frame_ptr) { 2718 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2719 2720 // Find allocation with the given id 2721 AllocationDetails *alloc = FindAllocByID(strm, alloc_id); 2722 if (!alloc) 2723 return false; 2724 2725 if (log) 2726 log->Printf("%s - found allocation 0x%" PRIx64 ".", __FUNCTION__, 2727 *alloc->address.get()); 2728 2729 // JIT all the allocation details 2730 if (alloc->ShouldRefresh()) { 2731 if (log) 2732 log->Printf("%s - allocation details not calculated yet, jitting info.", 2733 __FUNCTION__); 2734 2735 if (!RefreshAllocation(alloc, frame_ptr)) { 2736 if (log) 2737 log->Printf("%s - couldn't JIT allocation details.", __FUNCTION__); 2738 return false; 2739 } 2740 } 2741 2742 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && 2743 alloc->element.type_vec_size.isValid() && 2744 alloc->element.datum_size.get() && 2745 alloc->element.type_kind.isValid() && alloc->dimension.isValid() && 2746 "Allocation information not available"); 2747 2748 // Check we can create writable file 2749 FileSpec file_spec(path, true); 2750 File file(file_spec, File::eOpenOptionWrite | File::eOpenOptionCanCreate | 2751 File::eOpenOptionTruncate); 2752 if (!file) { 2753 strm.Printf("Error: Failed to open '%s' for writing", path); 2754 strm.EOL(); 2755 return false; 2756 } 2757 2758 // Read allocation into buffer of heap memory 2759 const std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr); 2760 if (!buffer) { 2761 strm.Printf("Error: Couldn't read allocation data into buffer"); 2762 strm.EOL(); 2763 return false; 2764 } 2765 2766 // Create the file header 2767 AllocationDetails::FileHeader head; 2768 memcpy(head.ident, "RSAD", 4); 2769 head.dims[0] = static_cast<uint32_t>(alloc->dimension.get()->dim_1); 2770 head.dims[1] = static_cast<uint32_t>(alloc->dimension.get()->dim_2); 2771 head.dims[2] = static_cast<uint32_t>(alloc->dimension.get()->dim_3); 2772 2773 const size_t element_header_size = CalculateElementHeaderSize(alloc->element); 2774 assert((sizeof(AllocationDetails::FileHeader) + element_header_size) < 2775 UINT16_MAX && 2776 "Element header too large"); 2777 head.hdr_size = static_cast<uint16_t>(sizeof(AllocationDetails::FileHeader) + 2778 element_header_size); 2779 2780 // Write the file header 2781 size_t num_bytes = sizeof(AllocationDetails::FileHeader); 2782 if (log) 2783 log->Printf("%s - writing File Header, 0x%" PRIx64 " bytes", __FUNCTION__, 2784 (uint64_t)num_bytes); 2785 2786 Error err = file.Write(&head, num_bytes); 2787 if (!err.Success()) { 2788 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path); 2789 strm.EOL(); 2790 return false; 2791 } 2792 2793 // Create the headers describing the element type of the allocation. 2794 std::shared_ptr<uint8_t> element_header_buffer( 2795 new uint8_t[element_header_size]); 2796 if (element_header_buffer == nullptr) { 2797 strm.Printf("Internal Error: Couldn't allocate %" PRIu64 2798 " bytes on the heap", 2799 (uint64_t)element_header_size); 2800 strm.EOL(); 2801 return false; 2802 } 2803 2804 PopulateElementHeaders(element_header_buffer, 0, alloc->element); 2805 2806 // Write headers for allocation element type to file 2807 num_bytes = element_header_size; 2808 if (log) 2809 log->Printf("%s - writing element headers, 0x%" PRIx64 " bytes.", 2810 __FUNCTION__, (uint64_t)num_bytes); 2811 2812 err = file.Write(element_header_buffer.get(), num_bytes); 2813 if (!err.Success()) { 2814 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path); 2815 strm.EOL(); 2816 return false; 2817 } 2818 2819 // Write allocation data to file 2820 num_bytes = static_cast<size_t>(*alloc->size.get()); 2821 if (log) 2822 log->Printf("%s - writing 0x%" PRIx64 " bytes", __FUNCTION__, 2823 (uint64_t)num_bytes); 2824 2825 err = file.Write(buffer.get(), num_bytes); 2826 if (!err.Success()) { 2827 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path); 2828 strm.EOL(); 2829 return false; 2830 } 2831 2832 strm.Printf("Allocation written to file '%s'", path); 2833 strm.EOL(); 2834 return true; 2835 } 2836 2837 bool RenderScriptRuntime::LoadModule(const lldb::ModuleSP &module_sp) { 2838 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2839 2840 if (module_sp) { 2841 for (const auto &rs_module : m_rsmodules) { 2842 if (rs_module->m_module == module_sp) { 2843 // Check if the user has enabled automatically breaking on 2844 // all RS kernels. 2845 if (m_breakAllKernels) 2846 BreakOnModuleKernels(rs_module); 2847 2848 return false; 2849 } 2850 } 2851 bool module_loaded = false; 2852 switch (GetModuleKind(module_sp)) { 2853 case eModuleKindKernelObj: { 2854 RSModuleDescriptorSP module_desc; 2855 module_desc.reset(new RSModuleDescriptor(module_sp)); 2856 if (module_desc->ParseRSInfo()) { 2857 m_rsmodules.push_back(module_desc); 2858 module_desc->WarnIfVersionMismatch(GetProcess() 2859 ->GetTarget() 2860 .GetDebugger() 2861 .GetAsyncOutputStream() 2862 .get()); 2863 module_loaded = true; 2864 } 2865 if (module_loaded) { 2866 FixupScriptDetails(module_desc); 2867 } 2868 break; 2869 } 2870 case eModuleKindDriver: { 2871 if (!m_libRSDriver) { 2872 m_libRSDriver = module_sp; 2873 LoadRuntimeHooks(m_libRSDriver, RenderScriptRuntime::eModuleKindDriver); 2874 } 2875 break; 2876 } 2877 case eModuleKindImpl: { 2878 if (!m_libRSCpuRef) { 2879 m_libRSCpuRef = module_sp; 2880 LoadRuntimeHooks(m_libRSCpuRef, RenderScriptRuntime::eModuleKindImpl); 2881 } 2882 break; 2883 } 2884 case eModuleKindLibRS: { 2885 if (!m_libRS) { 2886 m_libRS = module_sp; 2887 static ConstString gDbgPresentStr("gDebuggerPresent"); 2888 const Symbol *debug_present = m_libRS->FindFirstSymbolWithNameAndType( 2889 gDbgPresentStr, eSymbolTypeData); 2890 if (debug_present) { 2891 Error err; 2892 uint32_t flag = 0x00000001U; 2893 Target &target = GetProcess()->GetTarget(); 2894 addr_t addr = debug_present->GetLoadAddress(&target); 2895 GetProcess()->WriteMemory(addr, &flag, sizeof(flag), err); 2896 if (err.Success()) { 2897 if (log) 2898 log->Printf("%s - debugger present flag set on debugee.", 2899 __FUNCTION__); 2900 2901 m_debuggerPresentFlagged = true; 2902 } else if (log) { 2903 log->Printf("%s - error writing debugger present flags '%s' ", 2904 __FUNCTION__, err.AsCString()); 2905 } 2906 } else if (log) { 2907 log->Printf( 2908 "%s - error writing debugger present flags - symbol not found", 2909 __FUNCTION__); 2910 } 2911 } 2912 break; 2913 } 2914 default: 2915 break; 2916 } 2917 if (module_loaded) 2918 Update(); 2919 return module_loaded; 2920 } 2921 return false; 2922 } 2923 2924 void RenderScriptRuntime::Update() { 2925 if (m_rsmodules.size() > 0) { 2926 if (!m_initiated) { 2927 Initiate(); 2928 } 2929 } 2930 } 2931 2932 void RSModuleDescriptor::WarnIfVersionMismatch(lldb_private::Stream *s) const { 2933 if (!s) 2934 return; 2935 2936 if (m_slang_version.empty() || m_bcc_version.empty()) { 2937 s->PutCString("WARNING: Unknown bcc or slang (llvm-rs-cc) version; debug " 2938 "experience may be unreliable"); 2939 s->EOL(); 2940 } else if (m_slang_version != m_bcc_version) { 2941 s->Printf("WARNING: The debug info emitted by the slang frontend " 2942 "(llvm-rs-cc) used to build this module (%s) does not match the " 2943 "version of bcc used to generate the debug information (%s). " 2944 "This is an unsupported configuration and may result in a poor " 2945 "debugging experience; proceed with caution", 2946 m_slang_version.c_str(), m_bcc_version.c_str()); 2947 s->EOL(); 2948 } 2949 } 2950 2951 bool RSModuleDescriptor::ParsePragmaCount(llvm::StringRef *lines, 2952 size_t n_lines) { 2953 // Skip the pragma prototype line 2954 ++lines; 2955 for (; n_lines--; ++lines) { 2956 const auto kv_pair = lines->split(" - "); 2957 m_pragmas[kv_pair.first.trim().str()] = kv_pair.second.trim().str(); 2958 } 2959 return true; 2960 } 2961 2962 bool RSModuleDescriptor::ParseExportReduceCount(llvm::StringRef *lines, 2963 size_t n_lines) { 2964 // The list of reduction kernels in the `.rs.info` symbol is of the form 2965 // "signature - accumulatordatasize - reduction_name - initializer_name - 2966 // accumulator_name - combiner_name - 2967 // outconverter_name - halter_name" 2968 // Where a function is not explicitly named by the user, or is not generated 2969 // by the compiler, it is named "." so the 2970 // dash separated list should always be 8 items long 2971 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 2972 // Skip the exportReduceCount line 2973 ++lines; 2974 for (; n_lines--; ++lines) { 2975 llvm::SmallVector<llvm::StringRef, 8> spec; 2976 lines->split(spec, " - "); 2977 if (spec.size() != 8) { 2978 if (spec.size() < 8) { 2979 if (log) 2980 log->Error("Error parsing RenderScript reduction spec. wrong number " 2981 "of fields"); 2982 return false; 2983 } else if (log) 2984 log->Warning("Extraneous members in reduction spec: '%s'", 2985 lines->str().c_str()); 2986 } 2987 2988 const auto sig_s = spec[0]; 2989 uint32_t sig; 2990 if (sig_s.getAsInteger(10, sig)) { 2991 if (log) 2992 log->Error("Error parsing Renderscript reduction spec: invalid kernel " 2993 "signature: '%s'", 2994 sig_s.str().c_str()); 2995 return false; 2996 } 2997 2998 const auto accum_data_size_s = spec[1]; 2999 uint32_t accum_data_size; 3000 if (accum_data_size_s.getAsInteger(10, accum_data_size)) { 3001 if (log) 3002 log->Error("Error parsing Renderscript reduction spec: invalid " 3003 "accumulator data size %s", 3004 accum_data_size_s.str().c_str()); 3005 return false; 3006 } 3007 3008 if (log) 3009 log->Printf("Found RenderScript reduction '%s'", spec[2].str().c_str()); 3010 3011 m_reductions.push_back(RSReductionDescriptor(this, sig, accum_data_size, 3012 spec[2], spec[3], spec[4], 3013 spec[5], spec[6], spec[7])); 3014 } 3015 return true; 3016 } 3017 3018 bool RSModuleDescriptor::ParseVersionInfo(llvm::StringRef *lines, 3019 size_t n_lines) { 3020 // Skip the versionInfo line 3021 ++lines; 3022 for (; n_lines--; ++lines) { 3023 // We're only interested in bcc and slang versions, and ignore all other 3024 // versionInfo lines 3025 const auto kv_pair = lines->split(" - "); 3026 if (kv_pair.first == "slang") 3027 m_slang_version = kv_pair.second.str(); 3028 else if (kv_pair.first == "bcc") 3029 m_bcc_version = kv_pair.second.str(); 3030 } 3031 return true; 3032 } 3033 3034 bool RSModuleDescriptor::ParseExportForeachCount(llvm::StringRef *lines, 3035 size_t n_lines) { 3036 // Skip the exportForeachCount line 3037 ++lines; 3038 for (; n_lines--; ++lines) { 3039 uint32_t slot; 3040 // `forEach` kernels are listed in the `.rs.info` packet as a "slot - name" 3041 // pair per line 3042 const auto kv_pair = lines->split(" - "); 3043 if (kv_pair.first.getAsInteger(10, slot)) 3044 return false; 3045 m_kernels.push_back(RSKernelDescriptor(this, kv_pair.second, slot)); 3046 } 3047 return true; 3048 } 3049 3050 bool RSModuleDescriptor::ParseExportVarCount(llvm::StringRef *lines, 3051 size_t n_lines) { 3052 // Skip the ExportVarCount line 3053 ++lines; 3054 for (; n_lines--; ++lines) 3055 m_globals.push_back(RSGlobalDescriptor(this, *lines)); 3056 return true; 3057 } 3058 3059 // The .rs.info symbol in renderscript modules contains a string which needs to 3060 // be parsed. 3061 // The string is basic and is parsed on a line by line basis. 3062 bool RSModuleDescriptor::ParseRSInfo() { 3063 assert(m_module); 3064 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3065 const Symbol *info_sym = m_module->FindFirstSymbolWithNameAndType( 3066 ConstString(".rs.info"), eSymbolTypeData); 3067 if (!info_sym) 3068 return false; 3069 3070 const addr_t addr = info_sym->GetAddressRef().GetFileAddress(); 3071 if (addr == LLDB_INVALID_ADDRESS) 3072 return false; 3073 3074 const addr_t size = info_sym->GetByteSize(); 3075 const FileSpec fs = m_module->GetFileSpec(); 3076 3077 const DataBufferSP buffer = fs.ReadFileContents(addr, size); 3078 if (!buffer) 3079 return false; 3080 3081 // split rs.info. contents into lines 3082 llvm::SmallVector<llvm::StringRef, 128> info_lines; 3083 { 3084 const llvm::StringRef raw_rs_info((const char *)buffer->GetBytes()); 3085 raw_rs_info.split(info_lines, '\n'); 3086 if (log) 3087 log->Printf("'.rs.info symbol for '%s':\n%s", 3088 m_module->GetFileSpec().GetCString(), 3089 raw_rs_info.str().c_str()); 3090 } 3091 3092 enum { 3093 eExportVar, 3094 eExportForEach, 3095 eExportReduce, 3096 ePragma, 3097 eBuildChecksum, 3098 eObjectSlot, 3099 eVersionInfo, 3100 }; 3101 3102 const auto rs_info_handler = [](llvm::StringRef name) -> int { 3103 return llvm::StringSwitch<int>(name) 3104 // The number of visible global variables in the script 3105 .Case("exportVarCount", eExportVar) 3106 // The number of RenderScrip `forEach` kernels __attribute__((kernel)) 3107 .Case("exportForEachCount", eExportForEach) 3108 // The number of generalreductions: This marked in the script by 3109 // `#pragma reduce()` 3110 .Case("exportReduceCount", eExportReduce) 3111 // Total count of all RenderScript specific `#pragmas` used in the 3112 // script 3113 .Case("pragmaCount", ePragma) 3114 .Case("objectSlotCount", eObjectSlot) 3115 .Case("versionInfo", eVersionInfo) 3116 .Default(-1); 3117 }; 3118 3119 // parse all text lines of .rs.info 3120 for (auto line = info_lines.begin(); line != info_lines.end(); ++line) { 3121 const auto kv_pair = line->split(": "); 3122 const auto key = kv_pair.first; 3123 const auto val = kv_pair.second.trim(); 3124 3125 const auto handler = rs_info_handler(key); 3126 if (handler == -1) 3127 continue; 3128 // getAsInteger returns `true` on an error condition - we're only interested 3129 // in numeric fields at the moment 3130 uint64_t n_lines; 3131 if (val.getAsInteger(10, n_lines)) { 3132 LLDB_LOGV(log, "Failed to parse non-numeric '.rs.info' section {0}", 3133 line->str()); 3134 continue; 3135 } 3136 if (info_lines.end() - (line + 1) < (ptrdiff_t)n_lines) 3137 return false; 3138 3139 bool success = false; 3140 switch (handler) { 3141 case eExportVar: 3142 success = ParseExportVarCount(line, n_lines); 3143 break; 3144 case eExportForEach: 3145 success = ParseExportForeachCount(line, n_lines); 3146 break; 3147 case eExportReduce: 3148 success = ParseExportReduceCount(line, n_lines); 3149 break; 3150 case ePragma: 3151 success = ParsePragmaCount(line, n_lines); 3152 break; 3153 case eVersionInfo: 3154 success = ParseVersionInfo(line, n_lines); 3155 break; 3156 default: { 3157 if (log) 3158 log->Printf("%s - skipping .rs.info field '%s'", __FUNCTION__, 3159 line->str().c_str()); 3160 continue; 3161 } 3162 } 3163 if (!success) 3164 return false; 3165 line += n_lines; 3166 } 3167 return info_lines.size() > 0; 3168 } 3169 3170 void RenderScriptRuntime::Status(Stream &strm) const { 3171 if (m_libRS) { 3172 strm.Printf("Runtime Library discovered."); 3173 strm.EOL(); 3174 } 3175 if (m_libRSDriver) { 3176 strm.Printf("Runtime Driver discovered."); 3177 strm.EOL(); 3178 } 3179 if (m_libRSCpuRef) { 3180 strm.Printf("CPU Reference Implementation discovered."); 3181 strm.EOL(); 3182 } 3183 3184 if (m_runtimeHooks.size()) { 3185 strm.Printf("Runtime functions hooked:"); 3186 strm.EOL(); 3187 for (auto b : m_runtimeHooks) { 3188 strm.Indent(b.second->defn->name); 3189 strm.EOL(); 3190 } 3191 } else { 3192 strm.Printf("Runtime is not hooked."); 3193 strm.EOL(); 3194 } 3195 } 3196 3197 void RenderScriptRuntime::DumpContexts(Stream &strm) const { 3198 strm.Printf("Inferred RenderScript Contexts:"); 3199 strm.EOL(); 3200 strm.IndentMore(); 3201 3202 std::map<addr_t, uint64_t> contextReferences; 3203 3204 // Iterate over all of the currently discovered scripts. 3205 // Note: We cant push or pop from m_scripts inside this loop or it may 3206 // invalidate script. 3207 for (const auto &script : m_scripts) { 3208 if (!script->context.isValid()) 3209 continue; 3210 lldb::addr_t context = *script->context; 3211 3212 if (contextReferences.find(context) != contextReferences.end()) { 3213 contextReferences[context]++; 3214 } else { 3215 contextReferences[context] = 1; 3216 } 3217 } 3218 3219 for (const auto &cRef : contextReferences) { 3220 strm.Printf("Context 0x%" PRIx64 ": %" PRIu64 " script instances", 3221 cRef.first, cRef.second); 3222 strm.EOL(); 3223 } 3224 strm.IndentLess(); 3225 } 3226 3227 void RenderScriptRuntime::DumpKernels(Stream &strm) const { 3228 strm.Printf("RenderScript Kernels:"); 3229 strm.EOL(); 3230 strm.IndentMore(); 3231 for (const auto &module : m_rsmodules) { 3232 strm.Printf("Resource '%s':", module->m_resname.c_str()); 3233 strm.EOL(); 3234 for (const auto &kernel : module->m_kernels) { 3235 strm.Indent(kernel.m_name.AsCString()); 3236 strm.EOL(); 3237 } 3238 } 3239 strm.IndentLess(); 3240 } 3241 3242 RenderScriptRuntime::AllocationDetails * 3243 RenderScriptRuntime::FindAllocByID(Stream &strm, const uint32_t alloc_id) { 3244 AllocationDetails *alloc = nullptr; 3245 3246 // See if we can find allocation using id as an index; 3247 if (alloc_id <= m_allocations.size() && alloc_id != 0 && 3248 m_allocations[alloc_id - 1]->id == alloc_id) { 3249 alloc = m_allocations[alloc_id - 1].get(); 3250 return alloc; 3251 } 3252 3253 // Fallback to searching 3254 for (const auto &a : m_allocations) { 3255 if (a->id == alloc_id) { 3256 alloc = a.get(); 3257 break; 3258 } 3259 } 3260 3261 if (alloc == nullptr) { 3262 strm.Printf("Error: Couldn't find allocation with id matching %" PRIu32, 3263 alloc_id); 3264 strm.EOL(); 3265 } 3266 3267 return alloc; 3268 } 3269 3270 // Prints the contents of an allocation to the output stream, which may be a 3271 // file 3272 bool RenderScriptRuntime::DumpAllocation(Stream &strm, StackFrame *frame_ptr, 3273 const uint32_t id) { 3274 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3275 3276 // Check we can find the desired allocation 3277 AllocationDetails *alloc = FindAllocByID(strm, id); 3278 if (!alloc) 3279 return false; // FindAllocByID() will print error message for us here 3280 3281 if (log) 3282 log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__, 3283 *alloc->address.get()); 3284 3285 // Check we have information about the allocation, if not calculate it 3286 if (alloc->ShouldRefresh()) { 3287 if (log) 3288 log->Printf("%s - allocation details not calculated yet, jitting info.", 3289 __FUNCTION__); 3290 3291 // JIT all the allocation information 3292 if (!RefreshAllocation(alloc, frame_ptr)) { 3293 strm.Printf("Error: Couldn't JIT allocation details"); 3294 strm.EOL(); 3295 return false; 3296 } 3297 } 3298 3299 // Establish format and size of each data element 3300 const uint32_t vec_size = *alloc->element.type_vec_size.get(); 3301 const Element::DataType type = *alloc->element.type.get(); 3302 3303 assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && 3304 "Invalid allocation type"); 3305 3306 lldb::Format format; 3307 if (type >= Element::RS_TYPE_ELEMENT) 3308 format = eFormatHex; 3309 else 3310 format = vec_size == 1 3311 ? static_cast<lldb::Format>( 3312 AllocationDetails::RSTypeToFormat[type][eFormatSingle]) 3313 : static_cast<lldb::Format>( 3314 AllocationDetails::RSTypeToFormat[type][eFormatVector]); 3315 3316 const uint32_t data_size = *alloc->element.datum_size.get(); 3317 3318 if (log) 3319 log->Printf("%s - element size %" PRIu32 " bytes, including padding", 3320 __FUNCTION__, data_size); 3321 3322 // Allocate a buffer to copy data into 3323 std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr); 3324 if (!buffer) { 3325 strm.Printf("Error: Couldn't read allocation data"); 3326 strm.EOL(); 3327 return false; 3328 } 3329 3330 // Calculate stride between rows as there may be padding at end of rows since 3331 // allocated memory is 16-byte aligned 3332 if (!alloc->stride.isValid()) { 3333 if (alloc->dimension.get()->dim_2 == 0) // We only have one dimension 3334 alloc->stride = 0; 3335 else if (!JITAllocationStride(alloc, frame_ptr)) { 3336 strm.Printf("Error: Couldn't calculate allocation row stride"); 3337 strm.EOL(); 3338 return false; 3339 } 3340 } 3341 const uint32_t stride = *alloc->stride.get(); 3342 const uint32_t size = *alloc->size.get(); // Size of whole allocation 3343 const uint32_t padding = 3344 alloc->element.padding.isValid() ? *alloc->element.padding.get() : 0; 3345 if (log) 3346 log->Printf("%s - stride %" PRIu32 " bytes, size %" PRIu32 3347 " bytes, padding %" PRIu32, 3348 __FUNCTION__, stride, size, padding); 3349 3350 // Find dimensions used to index loops, so need to be non-zero 3351 uint32_t dim_x = alloc->dimension.get()->dim_1; 3352 dim_x = dim_x == 0 ? 1 : dim_x; 3353 3354 uint32_t dim_y = alloc->dimension.get()->dim_2; 3355 dim_y = dim_y == 0 ? 1 : dim_y; 3356 3357 uint32_t dim_z = alloc->dimension.get()->dim_3; 3358 dim_z = dim_z == 0 ? 1 : dim_z; 3359 3360 // Use data extractor to format output 3361 const uint32_t target_ptr_size = 3362 GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 3363 DataExtractor alloc_data(buffer.get(), size, GetProcess()->GetByteOrder(), 3364 target_ptr_size); 3365 3366 uint32_t offset = 0; // Offset in buffer to next element to be printed 3367 uint32_t prev_row = 0; // Offset to the start of the previous row 3368 3369 // Iterate over allocation dimensions, printing results to user 3370 strm.Printf("Data (X, Y, Z):"); 3371 for (uint32_t z = 0; z < dim_z; ++z) { 3372 for (uint32_t y = 0; y < dim_y; ++y) { 3373 // Use stride to index start of next row. 3374 if (!(y == 0 && z == 0)) 3375 offset = prev_row + stride; 3376 prev_row = offset; 3377 3378 // Print each element in the row individually 3379 for (uint32_t x = 0; x < dim_x; ++x) { 3380 strm.Printf("\n(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ") = ", x, y, z); 3381 if ((type == Element::RS_TYPE_NONE) && 3382 (alloc->element.children.size() > 0) && 3383 (alloc->element.type_name != Element::GetFallbackStructName())) { 3384 // Here we are dumping an Element of struct type. 3385 // This is done using expression evaluation with the name of the 3386 // struct type and pointer to element. 3387 // Don't print the name of the resulting expression, since this will 3388 // be '$[0-9]+' 3389 DumpValueObjectOptions expr_options; 3390 expr_options.SetHideName(true); 3391 3392 // Setup expression as derefrencing a pointer cast to element address. 3393 char expr_char_buffer[jit_max_expr_size]; 3394 int written = 3395 snprintf(expr_char_buffer, jit_max_expr_size, "*(%s*) 0x%" PRIx64, 3396 alloc->element.type_name.AsCString(), 3397 *alloc->data_ptr.get() + offset); 3398 3399 if (written < 0 || written >= jit_max_expr_size) { 3400 if (log) 3401 log->Printf("%s - error in snprintf().", __FUNCTION__); 3402 continue; 3403 } 3404 3405 // Evaluate expression 3406 ValueObjectSP expr_result; 3407 GetProcess()->GetTarget().EvaluateExpression(expr_char_buffer, 3408 frame_ptr, expr_result); 3409 3410 // Print the results to our stream. 3411 expr_result->Dump(strm, expr_options); 3412 } else { 3413 DumpDataExtractor(alloc_data, &strm, offset, format, 3414 data_size - padding, 1, 1, LLDB_INVALID_ADDRESS, 0, 3415 0); 3416 } 3417 offset += data_size; 3418 } 3419 } 3420 } 3421 strm.EOL(); 3422 3423 return true; 3424 } 3425 3426 // Function recalculates all our cached information about allocations by jitting 3427 // the RS runtime regarding each allocation we know about. Returns true if all 3428 // allocations could be recomputed, false otherwise. 3429 bool RenderScriptRuntime::RecomputeAllAllocations(Stream &strm, 3430 StackFrame *frame_ptr) { 3431 bool success = true; 3432 for (auto &alloc : m_allocations) { 3433 // JIT current allocation information 3434 if (!RefreshAllocation(alloc.get(), frame_ptr)) { 3435 strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32 3436 "\n", 3437 alloc->id); 3438 success = false; 3439 } 3440 } 3441 3442 if (success) 3443 strm.Printf("All allocations successfully recomputed"); 3444 strm.EOL(); 3445 3446 return success; 3447 } 3448 3449 // Prints information regarding currently loaded allocations. These details are 3450 // gathered by jitting the runtime, which has as latency. Index parameter 3451 // specifies a single allocation ID to print, or a zero value to print them all 3452 void RenderScriptRuntime::ListAllocations(Stream &strm, StackFrame *frame_ptr, 3453 const uint32_t index) { 3454 strm.Printf("RenderScript Allocations:"); 3455 strm.EOL(); 3456 strm.IndentMore(); 3457 3458 for (auto &alloc : m_allocations) { 3459 // index will only be zero if we want to print all allocations 3460 if (index != 0 && index != alloc->id) 3461 continue; 3462 3463 // JIT current allocation information 3464 if (alloc->ShouldRefresh() && !RefreshAllocation(alloc.get(), frame_ptr)) { 3465 strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32, 3466 alloc->id); 3467 strm.EOL(); 3468 continue; 3469 } 3470 3471 strm.Printf("%" PRIu32 ":", alloc->id); 3472 strm.EOL(); 3473 strm.IndentMore(); 3474 3475 strm.Indent("Context: "); 3476 if (!alloc->context.isValid()) 3477 strm.Printf("unknown\n"); 3478 else 3479 strm.Printf("0x%" PRIx64 "\n", *alloc->context.get()); 3480 3481 strm.Indent("Address: "); 3482 if (!alloc->address.isValid()) 3483 strm.Printf("unknown\n"); 3484 else 3485 strm.Printf("0x%" PRIx64 "\n", *alloc->address.get()); 3486 3487 strm.Indent("Data pointer: "); 3488 if (!alloc->data_ptr.isValid()) 3489 strm.Printf("unknown\n"); 3490 else 3491 strm.Printf("0x%" PRIx64 "\n", *alloc->data_ptr.get()); 3492 3493 strm.Indent("Dimensions: "); 3494 if (!alloc->dimension.isValid()) 3495 strm.Printf("unknown\n"); 3496 else 3497 strm.Printf("(%" PRId32 ", %" PRId32 ", %" PRId32 ")\n", 3498 alloc->dimension.get()->dim_1, alloc->dimension.get()->dim_2, 3499 alloc->dimension.get()->dim_3); 3500 3501 strm.Indent("Data Type: "); 3502 if (!alloc->element.type.isValid() || 3503 !alloc->element.type_vec_size.isValid()) 3504 strm.Printf("unknown\n"); 3505 else { 3506 const int vector_size = *alloc->element.type_vec_size.get(); 3507 Element::DataType type = *alloc->element.type.get(); 3508 3509 if (!alloc->element.type_name.IsEmpty()) 3510 strm.Printf("%s\n", alloc->element.type_name.AsCString()); 3511 else { 3512 // Enum value isn't monotonous, so doesn't always index 3513 // RsDataTypeToString array 3514 if (type >= Element::RS_TYPE_ELEMENT && type <= Element::RS_TYPE_FONT) 3515 type = 3516 static_cast<Element::DataType>((type - Element::RS_TYPE_ELEMENT) + 3517 Element::RS_TYPE_MATRIX_2X2 + 1); 3518 3519 if (type >= (sizeof(AllocationDetails::RsDataTypeToString) / 3520 sizeof(AllocationDetails::RsDataTypeToString[0])) || 3521 vector_size > 4 || vector_size < 1) 3522 strm.Printf("invalid type\n"); 3523 else 3524 strm.Printf( 3525 "%s\n", 3526 AllocationDetails::RsDataTypeToString[static_cast<uint32_t>(type)] 3527 [vector_size - 1]); 3528 } 3529 } 3530 3531 strm.Indent("Data Kind: "); 3532 if (!alloc->element.type_kind.isValid()) 3533 strm.Printf("unknown\n"); 3534 else { 3535 const Element::DataKind kind = *alloc->element.type_kind.get(); 3536 if (kind < Element::RS_KIND_USER || kind > Element::RS_KIND_PIXEL_YUV) 3537 strm.Printf("invalid kind\n"); 3538 else 3539 strm.Printf( 3540 "%s\n", 3541 AllocationDetails::RsDataKindToString[static_cast<uint32_t>(kind)]); 3542 } 3543 3544 strm.EOL(); 3545 strm.IndentLess(); 3546 } 3547 strm.IndentLess(); 3548 } 3549 3550 // Set breakpoints on every kernel found in RS module 3551 void RenderScriptRuntime::BreakOnModuleKernels( 3552 const RSModuleDescriptorSP rsmodule_sp) { 3553 for (const auto &kernel : rsmodule_sp->m_kernels) { 3554 // Don't set breakpoint on 'root' kernel 3555 if (strcmp(kernel.m_name.AsCString(), "root") == 0) 3556 continue; 3557 3558 CreateKernelBreakpoint(kernel.m_name); 3559 } 3560 } 3561 3562 // Method is internally called by the 'kernel breakpoint all' command to enable 3563 // or disable breaking on all kernels. When do_break is true we want to enable 3564 // this functionality. When do_break is false we want to disable it. 3565 void RenderScriptRuntime::SetBreakAllKernels(bool do_break, TargetSP target) { 3566 Log *log( 3567 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3568 3569 InitSearchFilter(target); 3570 3571 // Set breakpoints on all the kernels 3572 if (do_break && !m_breakAllKernels) { 3573 m_breakAllKernels = true; 3574 3575 for (const auto &module : m_rsmodules) 3576 BreakOnModuleKernels(module); 3577 3578 if (log) 3579 log->Printf("%s(True) - breakpoints set on all currently loaded kernels.", 3580 __FUNCTION__); 3581 } else if (!do_break && 3582 m_breakAllKernels) // Breakpoints won't be set on any new kernels. 3583 { 3584 m_breakAllKernels = false; 3585 3586 if (log) 3587 log->Printf("%s(False) - breakpoints no longer automatically set.", 3588 __FUNCTION__); 3589 } 3590 } 3591 3592 // Given the name of a kernel this function creates a breakpoint using our 3593 // own breakpoint resolver, and returns the Breakpoint shared pointer. 3594 BreakpointSP 3595 RenderScriptRuntime::CreateKernelBreakpoint(const ConstString &name) { 3596 Log *log( 3597 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3598 3599 if (!m_filtersp) { 3600 if (log) 3601 log->Printf("%s - error, no breakpoint search filter set.", __FUNCTION__); 3602 return nullptr; 3603 } 3604 3605 BreakpointResolverSP resolver_sp(new RSBreakpointResolver(nullptr, name)); 3606 BreakpointSP bp = GetProcess()->GetTarget().CreateBreakpoint( 3607 m_filtersp, resolver_sp, false, false, false); 3608 3609 // Give RS breakpoints a specific name, so the user can manipulate them as a 3610 // group. 3611 Error err; 3612 if (!bp->AddName("RenderScriptKernel", err)) 3613 if (log) 3614 log->Printf("%s - error setting break name, '%s'.", __FUNCTION__, 3615 err.AsCString()); 3616 3617 return bp; 3618 } 3619 3620 BreakpointSP 3621 RenderScriptRuntime::CreateReductionBreakpoint(const ConstString &name, 3622 int kernel_types) { 3623 Log *log( 3624 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3625 3626 if (!m_filtersp) { 3627 if (log) 3628 log->Printf("%s - error, no breakpoint search filter set.", __FUNCTION__); 3629 return nullptr; 3630 } 3631 3632 BreakpointResolverSP resolver_sp(new RSReduceBreakpointResolver( 3633 nullptr, name, &m_rsmodules, kernel_types)); 3634 BreakpointSP bp = GetProcess()->GetTarget().CreateBreakpoint( 3635 m_filtersp, resolver_sp, false, false, false); 3636 3637 // Give RS breakpoints a specific name, so the user can manipulate them as a 3638 // group. 3639 Error err; 3640 if (!bp->AddName("RenderScriptReduction", err)) 3641 if (log) 3642 log->Printf("%s - error setting break name, '%s'.", __FUNCTION__, 3643 err.AsCString()); 3644 3645 return bp; 3646 } 3647 3648 // Given an expression for a variable this function tries to calculate the 3649 // variable's value. If this is possible it returns true and sets the uint64_t 3650 // parameter to the variables unsigned value. Otherwise function returns false. 3651 bool RenderScriptRuntime::GetFrameVarAsUnsigned(const StackFrameSP frame_sp, 3652 const char *var_name, 3653 uint64_t &val) { 3654 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3655 Error err; 3656 VariableSP var_sp; 3657 3658 // Find variable in stack frame 3659 ValueObjectSP value_sp(frame_sp->GetValueForVariableExpressionPath( 3660 var_name, eNoDynamicValues, 3661 StackFrame::eExpressionPathOptionCheckPtrVsMember | 3662 StackFrame::eExpressionPathOptionsAllowDirectIVarAccess, 3663 var_sp, err)); 3664 if (!err.Success()) { 3665 if (log) 3666 log->Printf("%s - error, couldn't find '%s' in frame", __FUNCTION__, 3667 var_name); 3668 return false; 3669 } 3670 3671 // Find the uint32_t value for the variable 3672 bool success = false; 3673 val = value_sp->GetValueAsUnsigned(0, &success); 3674 if (!success) { 3675 if (log) 3676 log->Printf("%s - error, couldn't parse '%s' as an uint32_t.", 3677 __FUNCTION__, var_name); 3678 return false; 3679 } 3680 3681 return true; 3682 } 3683 3684 // Function attempts to find the current coordinate of a kernel invocation by 3685 // investigating the values of frame variables in the .expand function. These 3686 // coordinates are returned via the coord array reference parameter. Returns 3687 // true if the coordinates could be found, and false otherwise. 3688 bool RenderScriptRuntime::GetKernelCoordinate(RSCoordinate &coord, 3689 Thread *thread_ptr) { 3690 static const char *const x_expr = "rsIndex"; 3691 static const char *const y_expr = "p->current.y"; 3692 static const char *const z_expr = "p->current.z"; 3693 3694 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3695 3696 if (!thread_ptr) { 3697 if (log) 3698 log->Printf("%s - Error, No thread pointer", __FUNCTION__); 3699 3700 return false; 3701 } 3702 3703 // Walk the call stack looking for a function whose name has the suffix 3704 // '.expand' and contains the variables we're looking for. 3705 for (uint32_t i = 0; i < thread_ptr->GetStackFrameCount(); ++i) { 3706 if (!thread_ptr->SetSelectedFrameByIndex(i)) 3707 continue; 3708 3709 StackFrameSP frame_sp = thread_ptr->GetSelectedFrame(); 3710 if (!frame_sp) 3711 continue; 3712 3713 // Find the function name 3714 const SymbolContext sym_ctx = frame_sp->GetSymbolContext(false); 3715 const ConstString func_name = sym_ctx.GetFunctionName(); 3716 if (!func_name) 3717 continue; 3718 3719 if (log) 3720 log->Printf("%s - Inspecting function '%s'", __FUNCTION__, 3721 func_name.GetCString()); 3722 3723 // Check if function name has .expand suffix 3724 if (!func_name.GetStringRef().endswith(".expand")) 3725 continue; 3726 3727 if (log) 3728 log->Printf("%s - Found .expand function '%s'", __FUNCTION__, 3729 func_name.GetCString()); 3730 3731 // Get values for variables in .expand frame that tell us the current kernel 3732 // invocation 3733 uint64_t x, y, z; 3734 bool found = GetFrameVarAsUnsigned(frame_sp, x_expr, x) && 3735 GetFrameVarAsUnsigned(frame_sp, y_expr, y) && 3736 GetFrameVarAsUnsigned(frame_sp, z_expr, z); 3737 3738 if (found) { 3739 // The RenderScript runtime uses uint32_t for these vars. If they're not 3740 // within bounds, our frame parsing is garbage 3741 assert(x <= UINT32_MAX && y <= UINT32_MAX && z <= UINT32_MAX); 3742 coord.x = (uint32_t)x; 3743 coord.y = (uint32_t)y; 3744 coord.z = (uint32_t)z; 3745 return true; 3746 } 3747 } 3748 return false; 3749 } 3750 3751 // Callback when a kernel breakpoint hits and we're looking for a specific 3752 // coordinate. Baton parameter contains a pointer to the target coordinate we 3753 // want to break on. 3754 // Function then checks the .expand frame for the current coordinate and breaks 3755 // to user if it matches. 3756 // Parameter 'break_id' is the id of the Breakpoint which made the callback. 3757 // Parameter 'break_loc_id' is the id for the BreakpointLocation which was hit, 3758 // a single logical breakpoint can have multiple addresses. 3759 bool RenderScriptRuntime::KernelBreakpointHit(void *baton, 3760 StoppointCallbackContext *ctx, 3761 user_id_t break_id, 3762 user_id_t break_loc_id) { 3763 Log *log( 3764 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3765 3766 assert(baton && 3767 "Error: null baton in conditional kernel breakpoint callback"); 3768 3769 // Coordinate we want to stop on 3770 RSCoordinate target_coord = *static_cast<RSCoordinate *>(baton); 3771 3772 if (log) 3773 log->Printf("%s - Break ID %" PRIu64 ", " FMT_COORD, __FUNCTION__, break_id, 3774 target_coord.x, target_coord.y, target_coord.z); 3775 3776 // Select current thread 3777 ExecutionContext context(ctx->exe_ctx_ref); 3778 Thread *thread_ptr = context.GetThreadPtr(); 3779 assert(thread_ptr && "Null thread pointer"); 3780 3781 // Find current kernel invocation from .expand frame variables 3782 RSCoordinate current_coord{}; 3783 if (!GetKernelCoordinate(current_coord, thread_ptr)) { 3784 if (log) 3785 log->Printf("%s - Error, couldn't select .expand stack frame", 3786 __FUNCTION__); 3787 return false; 3788 } 3789 3790 if (log) 3791 log->Printf("%s - " FMT_COORD, __FUNCTION__, current_coord.x, 3792 current_coord.y, current_coord.z); 3793 3794 // Check if the current kernel invocation coordinate matches our target 3795 // coordinate 3796 if (target_coord == current_coord) { 3797 if (log) 3798 log->Printf("%s, BREAKING " FMT_COORD, __FUNCTION__, current_coord.x, 3799 current_coord.y, current_coord.z); 3800 3801 BreakpointSP breakpoint_sp = 3802 context.GetTargetPtr()->GetBreakpointByID(break_id); 3803 assert(breakpoint_sp != nullptr && 3804 "Error: Couldn't find breakpoint matching break id for callback"); 3805 breakpoint_sp->SetEnabled(false); // Optimise since conditional breakpoint 3806 // should only be hit once. 3807 return true; 3808 } 3809 3810 // No match on coordinate 3811 return false; 3812 } 3813 3814 void RenderScriptRuntime::SetConditional(BreakpointSP bp, Stream &messages, 3815 const RSCoordinate &coord) { 3816 messages.Printf("Conditional kernel breakpoint on coordinate " FMT_COORD, 3817 coord.x, coord.y, coord.z); 3818 messages.EOL(); 3819 3820 // Allocate memory for the baton, and copy over coordinate 3821 RSCoordinate *baton = new RSCoordinate(coord); 3822 3823 // Create a callback that will be invoked every time the breakpoint is hit. 3824 // The baton object passed to the handler is the target coordinate we want to 3825 // break on. 3826 bp->SetCallback(KernelBreakpointHit, baton, true); 3827 3828 // Store a shared pointer to the baton, so the memory will eventually be 3829 // cleaned up after destruction 3830 m_conditional_breaks[bp->GetID()] = std::unique_ptr<RSCoordinate>(baton); 3831 } 3832 3833 // Tries to set a breakpoint on the start of a kernel, resolved using the kernel 3834 // name. Argument 'coords', represents a three dimensional coordinate which can 3835 // be 3836 // used to specify a single kernel instance to break on. If this is set then we 3837 // add a callback 3838 // to the breakpoint. 3839 bool RenderScriptRuntime::PlaceBreakpointOnKernel(TargetSP target, 3840 Stream &messages, 3841 const char *name, 3842 const RSCoordinate *coord) { 3843 if (!name) 3844 return false; 3845 3846 InitSearchFilter(target); 3847 3848 ConstString kernel_name(name); 3849 BreakpointSP bp = CreateKernelBreakpoint(kernel_name); 3850 if (!bp) 3851 return false; 3852 3853 // We have a conditional breakpoint on a specific coordinate 3854 if (coord) 3855 SetConditional(bp, messages, *coord); 3856 3857 bp->GetDescription(&messages, lldb::eDescriptionLevelInitial, false); 3858 3859 return true; 3860 } 3861 3862 BreakpointSP 3863 RenderScriptRuntime::CreateScriptGroupBreakpoint(const ConstString &name, 3864 bool stop_on_all) { 3865 Log *log( 3866 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3867 3868 if (!m_filtersp) { 3869 if (log) 3870 log->Printf("%s - error, no breakpoint search filter set.", __FUNCTION__); 3871 return nullptr; 3872 } 3873 3874 BreakpointResolverSP resolver_sp(new RSScriptGroupBreakpointResolver( 3875 nullptr, name, m_scriptGroups, stop_on_all)); 3876 BreakpointSP bp = GetProcess()->GetTarget().CreateBreakpoint( 3877 m_filtersp, resolver_sp, false, false, false); 3878 // Give RS breakpoints a specific name, so the user can manipulate them as a 3879 // group. 3880 Error err; 3881 if (!bp->AddName(name.AsCString(), err)) 3882 if (log) 3883 log->Printf("%s - error setting break name, '%s'.", __FUNCTION__, 3884 err.AsCString()); 3885 // ask the breakpoint to resolve itself 3886 bp->ResolveBreakpoint(); 3887 return bp; 3888 } 3889 3890 bool RenderScriptRuntime::PlaceBreakpointOnScriptGroup(TargetSP target, 3891 Stream &strm, 3892 const ConstString &name, 3893 bool multi) { 3894 InitSearchFilter(target); 3895 BreakpointSP bp = CreateScriptGroupBreakpoint(name, multi); 3896 if (bp) 3897 bp->GetDescription(&strm, lldb::eDescriptionLevelInitial, false); 3898 return bool(bp); 3899 } 3900 3901 bool RenderScriptRuntime::PlaceBreakpointOnReduction(TargetSP target, 3902 Stream &messages, 3903 const char *reduce_name, 3904 const RSCoordinate *coord, 3905 int kernel_types) { 3906 if (!reduce_name) 3907 return false; 3908 3909 InitSearchFilter(target); 3910 BreakpointSP bp = 3911 CreateReductionBreakpoint(ConstString(reduce_name), kernel_types); 3912 if (!bp) 3913 return false; 3914 3915 if (coord) 3916 SetConditional(bp, messages, *coord); 3917 3918 bp->GetDescription(&messages, lldb::eDescriptionLevelInitial, false); 3919 3920 return true; 3921 } 3922 3923 void RenderScriptRuntime::DumpModules(Stream &strm) const { 3924 strm.Printf("RenderScript Modules:"); 3925 strm.EOL(); 3926 strm.IndentMore(); 3927 for (const auto &module : m_rsmodules) { 3928 module->Dump(strm); 3929 } 3930 strm.IndentLess(); 3931 } 3932 3933 RenderScriptRuntime::ScriptDetails * 3934 RenderScriptRuntime::LookUpScript(addr_t address, bool create) { 3935 for (const auto &s : m_scripts) { 3936 if (s->script.isValid()) 3937 if (*s->script == address) 3938 return s.get(); 3939 } 3940 if (create) { 3941 std::unique_ptr<ScriptDetails> s(new ScriptDetails); 3942 s->script = address; 3943 m_scripts.push_back(std::move(s)); 3944 return m_scripts.back().get(); 3945 } 3946 return nullptr; 3947 } 3948 3949 RenderScriptRuntime::AllocationDetails * 3950 RenderScriptRuntime::LookUpAllocation(addr_t address) { 3951 for (const auto &a : m_allocations) { 3952 if (a->address.isValid()) 3953 if (*a->address == address) 3954 return a.get(); 3955 } 3956 return nullptr; 3957 } 3958 3959 RenderScriptRuntime::AllocationDetails * 3960 RenderScriptRuntime::CreateAllocation(addr_t address) { 3961 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 3962 3963 // Remove any previous allocation which contains the same address 3964 auto it = m_allocations.begin(); 3965 while (it != m_allocations.end()) { 3966 if (*((*it)->address) == address) { 3967 if (log) 3968 log->Printf("%s - Removing allocation id: %d, address: 0x%" PRIx64, 3969 __FUNCTION__, (*it)->id, address); 3970 3971 it = m_allocations.erase(it); 3972 } else { 3973 it++; 3974 } 3975 } 3976 3977 std::unique_ptr<AllocationDetails> a(new AllocationDetails); 3978 a->address = address; 3979 m_allocations.push_back(std::move(a)); 3980 return m_allocations.back().get(); 3981 } 3982 3983 bool RenderScriptRuntime::ResolveKernelName(lldb::addr_t kernel_addr, 3984 ConstString &name) { 3985 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS); 3986 3987 Target &target = GetProcess()->GetTarget(); 3988 Address resolved; 3989 // RenderScript module 3990 if (!target.GetSectionLoadList().ResolveLoadAddress(kernel_addr, resolved)) { 3991 if (log) 3992 log->Printf("%s: unable to resolve 0x%" PRIx64 " to a loaded symbol", 3993 __FUNCTION__, kernel_addr); 3994 return false; 3995 } 3996 3997 Symbol *sym = resolved.CalculateSymbolContextSymbol(); 3998 if (!sym) 3999 return false; 4000 4001 name = sym->GetName(); 4002 assert(IsRenderScriptModule(resolved.CalculateSymbolContextModule())); 4003 if (log) 4004 log->Printf("%s: 0x%" PRIx64 " resolved to the symbol '%s'", __FUNCTION__, 4005 kernel_addr, name.GetCString()); 4006 return true; 4007 } 4008 4009 void RSModuleDescriptor::Dump(Stream &strm) const { 4010 int indent = strm.GetIndentLevel(); 4011 4012 strm.Indent(); 4013 m_module->GetFileSpec().Dump(&strm); 4014 strm.Indent(m_module->GetNumCompileUnits() ? "Debug info loaded." 4015 : "Debug info does not exist."); 4016 strm.EOL(); 4017 strm.IndentMore(); 4018 4019 strm.Indent(); 4020 strm.Printf("Globals: %" PRIu64, static_cast<uint64_t>(m_globals.size())); 4021 strm.EOL(); 4022 strm.IndentMore(); 4023 for (const auto &global : m_globals) { 4024 global.Dump(strm); 4025 } 4026 strm.IndentLess(); 4027 4028 strm.Indent(); 4029 strm.Printf("Kernels: %" PRIu64, static_cast<uint64_t>(m_kernels.size())); 4030 strm.EOL(); 4031 strm.IndentMore(); 4032 for (const auto &kernel : m_kernels) { 4033 kernel.Dump(strm); 4034 } 4035 strm.IndentLess(); 4036 4037 strm.Indent(); 4038 strm.Printf("Pragmas: %" PRIu64, static_cast<uint64_t>(m_pragmas.size())); 4039 strm.EOL(); 4040 strm.IndentMore(); 4041 for (const auto &key_val : m_pragmas) { 4042 strm.Indent(); 4043 strm.Printf("%s: %s", key_val.first.c_str(), key_val.second.c_str()); 4044 strm.EOL(); 4045 } 4046 strm.IndentLess(); 4047 4048 strm.Indent(); 4049 strm.Printf("Reductions: %" PRIu64, 4050 static_cast<uint64_t>(m_reductions.size())); 4051 strm.EOL(); 4052 strm.IndentMore(); 4053 for (const auto &reduction : m_reductions) { 4054 reduction.Dump(strm); 4055 } 4056 4057 strm.SetIndentLevel(indent); 4058 } 4059 4060 void RSGlobalDescriptor::Dump(Stream &strm) const { 4061 strm.Indent(m_name.AsCString()); 4062 VariableList var_list; 4063 m_module->m_module->FindGlobalVariables(m_name, nullptr, true, 1U, var_list); 4064 if (var_list.GetSize() == 1) { 4065 auto var = var_list.GetVariableAtIndex(0); 4066 auto type = var->GetType(); 4067 if (type) { 4068 strm.Printf(" - "); 4069 type->DumpTypeName(&strm); 4070 } else { 4071 strm.Printf(" - Unknown Type"); 4072 } 4073 } else { 4074 strm.Printf(" - variable identified, but not found in binary"); 4075 const Symbol *s = m_module->m_module->FindFirstSymbolWithNameAndType( 4076 m_name, eSymbolTypeData); 4077 if (s) { 4078 strm.Printf(" (symbol exists) "); 4079 } 4080 } 4081 4082 strm.EOL(); 4083 } 4084 4085 void RSKernelDescriptor::Dump(Stream &strm) const { 4086 strm.Indent(m_name.AsCString()); 4087 strm.EOL(); 4088 } 4089 4090 void RSReductionDescriptor::Dump(lldb_private::Stream &stream) const { 4091 stream.Indent(m_reduce_name.AsCString()); 4092 stream.IndentMore(); 4093 stream.EOL(); 4094 stream.Indent(); 4095 stream.Printf("accumulator: %s", m_accum_name.AsCString()); 4096 stream.EOL(); 4097 stream.Indent(); 4098 stream.Printf("initializer: %s", m_init_name.AsCString()); 4099 stream.EOL(); 4100 stream.Indent(); 4101 stream.Printf("combiner: %s", m_comb_name.AsCString()); 4102 stream.EOL(); 4103 stream.Indent(); 4104 stream.Printf("outconverter: %s", m_outc_name.AsCString()); 4105 stream.EOL(); 4106 // XXX This is currently unspecified by RenderScript, and unused 4107 // stream.Indent(); 4108 // stream.Printf("halter: '%s'", m_init_name.AsCString()); 4109 // stream.EOL(); 4110 stream.IndentLess(); 4111 } 4112 4113 class CommandObjectRenderScriptRuntimeModuleDump : public CommandObjectParsed { 4114 public: 4115 CommandObjectRenderScriptRuntimeModuleDump(CommandInterpreter &interpreter) 4116 : CommandObjectParsed( 4117 interpreter, "renderscript module dump", 4118 "Dumps renderscript specific information for all modules.", 4119 "renderscript module dump", 4120 eCommandRequiresProcess | eCommandProcessMustBeLaunched) {} 4121 4122 ~CommandObjectRenderScriptRuntimeModuleDump() override = default; 4123 4124 bool DoExecute(Args &command, CommandReturnObject &result) override { 4125 RenderScriptRuntime *runtime = 4126 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4127 eLanguageTypeExtRenderScript); 4128 runtime->DumpModules(result.GetOutputStream()); 4129 result.SetStatus(eReturnStatusSuccessFinishResult); 4130 return true; 4131 } 4132 }; 4133 4134 class CommandObjectRenderScriptRuntimeModule : public CommandObjectMultiword { 4135 public: 4136 CommandObjectRenderScriptRuntimeModule(CommandInterpreter &interpreter) 4137 : CommandObjectMultiword(interpreter, "renderscript module", 4138 "Commands that deal with RenderScript modules.", 4139 nullptr) { 4140 LoadSubCommand( 4141 "dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeModuleDump( 4142 interpreter))); 4143 } 4144 4145 ~CommandObjectRenderScriptRuntimeModule() override = default; 4146 }; 4147 4148 class CommandObjectRenderScriptRuntimeKernelList : public CommandObjectParsed { 4149 public: 4150 CommandObjectRenderScriptRuntimeKernelList(CommandInterpreter &interpreter) 4151 : CommandObjectParsed( 4152 interpreter, "renderscript kernel list", 4153 "Lists renderscript kernel names and associated script resources.", 4154 "renderscript kernel list", 4155 eCommandRequiresProcess | eCommandProcessMustBeLaunched) {} 4156 4157 ~CommandObjectRenderScriptRuntimeKernelList() override = default; 4158 4159 bool DoExecute(Args &command, CommandReturnObject &result) override { 4160 RenderScriptRuntime *runtime = 4161 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4162 eLanguageTypeExtRenderScript); 4163 runtime->DumpKernels(result.GetOutputStream()); 4164 result.SetStatus(eReturnStatusSuccessFinishResult); 4165 return true; 4166 } 4167 }; 4168 4169 static OptionDefinition g_renderscript_reduction_bp_set_options[] = { 4170 {LLDB_OPT_SET_1, false, "function-role", 't', 4171 OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeOneLiner, 4172 "Break on a comma separated set of reduction kernel types " 4173 "(accumulator,outcoverter,combiner,initializer"}, 4174 {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument, 4175 nullptr, nullptr, 0, eArgTypeValue, 4176 "Set a breakpoint on a single invocation of the kernel with specified " 4177 "coordinate.\n" 4178 "Coordinate takes the form 'x[,y][,z] where x,y,z are positive " 4179 "integers representing kernel dimensions. " 4180 "Any unset dimensions will be defaulted to zero."}}; 4181 4182 class CommandObjectRenderScriptRuntimeReductionBreakpointSet 4183 : public CommandObjectParsed { 4184 public: 4185 CommandObjectRenderScriptRuntimeReductionBreakpointSet( 4186 CommandInterpreter &interpreter) 4187 : CommandObjectParsed( 4188 interpreter, "renderscript reduction breakpoint set", 4189 "Set a breakpoint on named RenderScript general reductions", 4190 "renderscript reduction breakpoint set <kernel_name> [-t " 4191 "<reduction_kernel_type,...>]", 4192 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4193 eCommandProcessMustBePaused), 4194 m_options(){}; 4195 4196 class CommandOptions : public Options { 4197 public: 4198 CommandOptions() 4199 : Options(), 4200 m_kernel_types(RSReduceBreakpointResolver::eKernelTypeAll) {} 4201 4202 ~CommandOptions() override = default; 4203 4204 Error SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg, 4205 ExecutionContext *exe_ctx) override { 4206 Error err; 4207 StreamString err_str; 4208 const int short_option = m_getopt_table[option_idx].val; 4209 switch (short_option) { 4210 case 't': 4211 if (!ParseReductionTypes(option_arg, err_str)) 4212 err.SetErrorStringWithFormat( 4213 "Unable to deduce reduction types for %s: %s", 4214 option_arg.str().c_str(), err_str.GetData()); 4215 break; 4216 case 'c': { 4217 auto coord = RSCoordinate{}; 4218 if (!ParseCoordinate(option_arg, coord)) 4219 err.SetErrorStringWithFormat("unable to parse coordinate for %s", 4220 option_arg.str().c_str()); 4221 else { 4222 m_have_coord = true; 4223 m_coord = coord; 4224 } 4225 break; 4226 } 4227 default: 4228 err.SetErrorStringWithFormat("Invalid option '-%c'", short_option); 4229 } 4230 return err; 4231 } 4232 4233 void OptionParsingStarting(ExecutionContext *exe_ctx) override { 4234 m_have_coord = false; 4235 } 4236 4237 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4238 return llvm::makeArrayRef(g_renderscript_reduction_bp_set_options); 4239 } 4240 4241 bool ParseReductionTypes(llvm::StringRef option_val, 4242 StreamString &err_str) { 4243 m_kernel_types = RSReduceBreakpointResolver::eKernelTypeNone; 4244 const auto reduce_name_to_type = [](llvm::StringRef name) -> int { 4245 return llvm::StringSwitch<int>(name) 4246 .Case("accumulator", RSReduceBreakpointResolver::eKernelTypeAccum) 4247 .Case("initializer", RSReduceBreakpointResolver::eKernelTypeInit) 4248 .Case("outconverter", RSReduceBreakpointResolver::eKernelTypeOutC) 4249 .Case("combiner", RSReduceBreakpointResolver::eKernelTypeComb) 4250 .Case("all", RSReduceBreakpointResolver::eKernelTypeAll) 4251 // Currently not exposed by the runtime 4252 // .Case("halter", RSReduceBreakpointResolver::eKernelTypeHalter) 4253 .Default(0); 4254 }; 4255 4256 // Matching a comma separated list of known words is fairly 4257 // straightforward with PCRE, but we're 4258 // using ERE, so we end up with a little ugliness... 4259 RegularExpression::Match match(/* max_matches */ 5); 4260 RegularExpression match_type_list( 4261 llvm::StringRef("^([[:alpha:]]+)(,[[:alpha:]]+){0,4}$")); 4262 4263 assert(match_type_list.IsValid()); 4264 4265 if (!match_type_list.Execute(option_val, &match)) { 4266 err_str.PutCString( 4267 "a comma-separated list of kernel types is required"); 4268 return false; 4269 } 4270 4271 // splitting on commas is much easier with llvm::StringRef than regex 4272 llvm::SmallVector<llvm::StringRef, 5> type_names; 4273 llvm::StringRef(option_val).split(type_names, ','); 4274 4275 for (const auto &name : type_names) { 4276 const int type = reduce_name_to_type(name); 4277 if (!type) { 4278 err_str.Printf("unknown kernel type name %s", name.str().c_str()); 4279 return false; 4280 } 4281 m_kernel_types |= type; 4282 } 4283 4284 return true; 4285 } 4286 4287 int m_kernel_types; 4288 llvm::StringRef m_reduce_name; 4289 RSCoordinate m_coord; 4290 bool m_have_coord; 4291 }; 4292 4293 Options *GetOptions() override { return &m_options; } 4294 4295 bool DoExecute(Args &command, CommandReturnObject &result) override { 4296 const size_t argc = command.GetArgumentCount(); 4297 if (argc < 1) { 4298 result.AppendErrorWithFormat("'%s' takes 1 argument of reduction name, " 4299 "and an optional kernel type list", 4300 m_cmd_name.c_str()); 4301 result.SetStatus(eReturnStatusFailed); 4302 return false; 4303 } 4304 4305 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4306 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4307 eLanguageTypeExtRenderScript)); 4308 4309 auto &outstream = result.GetOutputStream(); 4310 auto name = command.GetArgumentAtIndex(0); 4311 auto &target = m_exe_ctx.GetTargetSP(); 4312 auto coord = m_options.m_have_coord ? &m_options.m_coord : nullptr; 4313 if (!runtime->PlaceBreakpointOnReduction(target, outstream, name, coord, 4314 m_options.m_kernel_types)) { 4315 result.SetStatus(eReturnStatusFailed); 4316 result.AppendError("Error: unable to place breakpoint on reduction"); 4317 return false; 4318 } 4319 result.AppendMessage("Breakpoint(s) created"); 4320 result.SetStatus(eReturnStatusSuccessFinishResult); 4321 return true; 4322 } 4323 4324 private: 4325 CommandOptions m_options; 4326 }; 4327 4328 static OptionDefinition g_renderscript_kernel_bp_set_options[] = { 4329 {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument, 4330 nullptr, nullptr, 0, eArgTypeValue, 4331 "Set a breakpoint on a single invocation of the kernel with specified " 4332 "coordinate.\n" 4333 "Coordinate takes the form 'x[,y][,z] where x,y,z are positive " 4334 "integers representing kernel dimensions. " 4335 "Any unset dimensions will be defaulted to zero."}}; 4336 4337 class CommandObjectRenderScriptRuntimeKernelBreakpointSet 4338 : public CommandObjectParsed { 4339 public: 4340 CommandObjectRenderScriptRuntimeKernelBreakpointSet( 4341 CommandInterpreter &interpreter) 4342 : CommandObjectParsed( 4343 interpreter, "renderscript kernel breakpoint set", 4344 "Sets a breakpoint on a renderscript kernel.", 4345 "renderscript kernel breakpoint set <kernel_name> [-c x,y,z]", 4346 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4347 eCommandProcessMustBePaused), 4348 m_options() {} 4349 4350 ~CommandObjectRenderScriptRuntimeKernelBreakpointSet() override = default; 4351 4352 Options *GetOptions() override { return &m_options; } 4353 4354 class CommandOptions : public Options { 4355 public: 4356 CommandOptions() : Options() {} 4357 4358 ~CommandOptions() override = default; 4359 4360 Error SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg, 4361 ExecutionContext *exe_ctx) override { 4362 Error err; 4363 const int short_option = m_getopt_table[option_idx].val; 4364 4365 switch (short_option) { 4366 case 'c': { 4367 auto coord = RSCoordinate{}; 4368 if (!ParseCoordinate(option_arg, coord)) 4369 err.SetErrorStringWithFormat( 4370 "Couldn't parse coordinate '%s', should be in format 'x,y,z'.", 4371 option_arg.str().c_str()); 4372 else { 4373 m_have_coord = true; 4374 m_coord = coord; 4375 } 4376 break; 4377 } 4378 default: 4379 err.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 4380 break; 4381 } 4382 return err; 4383 } 4384 4385 void OptionParsingStarting(ExecutionContext *exe_ctx) override { 4386 m_have_coord = false; 4387 } 4388 4389 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4390 return llvm::makeArrayRef(g_renderscript_kernel_bp_set_options); 4391 } 4392 4393 RSCoordinate m_coord; 4394 bool m_have_coord; 4395 }; 4396 4397 bool DoExecute(Args &command, CommandReturnObject &result) override { 4398 const size_t argc = command.GetArgumentCount(); 4399 if (argc < 1) { 4400 result.AppendErrorWithFormat( 4401 "'%s' takes 1 argument of kernel name, and an optional coordinate.", 4402 m_cmd_name.c_str()); 4403 result.SetStatus(eReturnStatusFailed); 4404 return false; 4405 } 4406 4407 RenderScriptRuntime *runtime = 4408 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4409 eLanguageTypeExtRenderScript); 4410 4411 auto &outstream = result.GetOutputStream(); 4412 auto &target = m_exe_ctx.GetTargetSP(); 4413 auto name = command.GetArgumentAtIndex(0); 4414 auto coord = m_options.m_have_coord ? &m_options.m_coord : nullptr; 4415 if (!runtime->PlaceBreakpointOnKernel(target, outstream, name, coord)) { 4416 result.SetStatus(eReturnStatusFailed); 4417 result.AppendErrorWithFormat( 4418 "Error: unable to set breakpoint on kernel '%s'", name); 4419 return false; 4420 } 4421 4422 result.AppendMessage("Breakpoint(s) created"); 4423 result.SetStatus(eReturnStatusSuccessFinishResult); 4424 return true; 4425 } 4426 4427 private: 4428 CommandOptions m_options; 4429 }; 4430 4431 class CommandObjectRenderScriptRuntimeKernelBreakpointAll 4432 : public CommandObjectParsed { 4433 public: 4434 CommandObjectRenderScriptRuntimeKernelBreakpointAll( 4435 CommandInterpreter &interpreter) 4436 : CommandObjectParsed( 4437 interpreter, "renderscript kernel breakpoint all", 4438 "Automatically sets a breakpoint on all renderscript kernels that " 4439 "are or will be loaded.\n" 4440 "Disabling option means breakpoints will no longer be set on any " 4441 "kernels loaded in the future, " 4442 "but does not remove currently set breakpoints.", 4443 "renderscript kernel breakpoint all <enable/disable>", 4444 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4445 eCommandProcessMustBePaused) {} 4446 4447 ~CommandObjectRenderScriptRuntimeKernelBreakpointAll() override = default; 4448 4449 bool DoExecute(Args &command, CommandReturnObject &result) override { 4450 const size_t argc = command.GetArgumentCount(); 4451 if (argc != 1) { 4452 result.AppendErrorWithFormat( 4453 "'%s' takes 1 argument of 'enable' or 'disable'", m_cmd_name.c_str()); 4454 result.SetStatus(eReturnStatusFailed); 4455 return false; 4456 } 4457 4458 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4459 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4460 eLanguageTypeExtRenderScript)); 4461 4462 bool do_break = false; 4463 const char *argument = command.GetArgumentAtIndex(0); 4464 if (strcmp(argument, "enable") == 0) { 4465 do_break = true; 4466 result.AppendMessage("Breakpoints will be set on all kernels."); 4467 } else if (strcmp(argument, "disable") == 0) { 4468 do_break = false; 4469 result.AppendMessage("Breakpoints will not be set on any new kernels."); 4470 } else { 4471 result.AppendErrorWithFormat( 4472 "Argument must be either 'enable' or 'disable'"); 4473 result.SetStatus(eReturnStatusFailed); 4474 return false; 4475 } 4476 4477 runtime->SetBreakAllKernels(do_break, m_exe_ctx.GetTargetSP()); 4478 4479 result.SetStatus(eReturnStatusSuccessFinishResult); 4480 return true; 4481 } 4482 }; 4483 4484 class CommandObjectRenderScriptRuntimeReductionBreakpoint 4485 : public CommandObjectMultiword { 4486 public: 4487 CommandObjectRenderScriptRuntimeReductionBreakpoint( 4488 CommandInterpreter &interpreter) 4489 : CommandObjectMultiword(interpreter, "renderscript reduction breakpoint", 4490 "Commands that manipulate breakpoints on " 4491 "renderscript general reductions.", 4492 nullptr) { 4493 LoadSubCommand( 4494 "set", CommandObjectSP( 4495 new CommandObjectRenderScriptRuntimeReductionBreakpointSet( 4496 interpreter))); 4497 } 4498 4499 ~CommandObjectRenderScriptRuntimeReductionBreakpoint() override = default; 4500 }; 4501 4502 class CommandObjectRenderScriptRuntimeKernelCoordinate 4503 : public CommandObjectParsed { 4504 public: 4505 CommandObjectRenderScriptRuntimeKernelCoordinate( 4506 CommandInterpreter &interpreter) 4507 : CommandObjectParsed( 4508 interpreter, "renderscript kernel coordinate", 4509 "Shows the (x,y,z) coordinate of the current kernel invocation.", 4510 "renderscript kernel coordinate", 4511 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4512 eCommandProcessMustBePaused) {} 4513 4514 ~CommandObjectRenderScriptRuntimeKernelCoordinate() override = default; 4515 4516 bool DoExecute(Args &command, CommandReturnObject &result) override { 4517 RSCoordinate coord{}; 4518 bool success = RenderScriptRuntime::GetKernelCoordinate( 4519 coord, m_exe_ctx.GetThreadPtr()); 4520 Stream &stream = result.GetOutputStream(); 4521 4522 if (success) { 4523 stream.Printf("Coordinate: " FMT_COORD, coord.x, coord.y, coord.z); 4524 stream.EOL(); 4525 result.SetStatus(eReturnStatusSuccessFinishResult); 4526 } else { 4527 stream.Printf("Error: Coordinate could not be found."); 4528 stream.EOL(); 4529 result.SetStatus(eReturnStatusFailed); 4530 } 4531 return true; 4532 } 4533 }; 4534 4535 class CommandObjectRenderScriptRuntimeKernelBreakpoint 4536 : public CommandObjectMultiword { 4537 public: 4538 CommandObjectRenderScriptRuntimeKernelBreakpoint( 4539 CommandInterpreter &interpreter) 4540 : CommandObjectMultiword( 4541 interpreter, "renderscript kernel", 4542 "Commands that generate breakpoints on renderscript kernels.", 4543 nullptr) { 4544 LoadSubCommand( 4545 "set", 4546 CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointSet( 4547 interpreter))); 4548 LoadSubCommand( 4549 "all", 4550 CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointAll( 4551 interpreter))); 4552 } 4553 4554 ~CommandObjectRenderScriptRuntimeKernelBreakpoint() override = default; 4555 }; 4556 4557 class CommandObjectRenderScriptRuntimeKernel : public CommandObjectMultiword { 4558 public: 4559 CommandObjectRenderScriptRuntimeKernel(CommandInterpreter &interpreter) 4560 : CommandObjectMultiword(interpreter, "renderscript kernel", 4561 "Commands that deal with RenderScript kernels.", 4562 nullptr) { 4563 LoadSubCommand( 4564 "list", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelList( 4565 interpreter))); 4566 LoadSubCommand( 4567 "coordinate", 4568 CommandObjectSP( 4569 new CommandObjectRenderScriptRuntimeKernelCoordinate(interpreter))); 4570 LoadSubCommand( 4571 "breakpoint", 4572 CommandObjectSP( 4573 new CommandObjectRenderScriptRuntimeKernelBreakpoint(interpreter))); 4574 } 4575 4576 ~CommandObjectRenderScriptRuntimeKernel() override = default; 4577 }; 4578 4579 class CommandObjectRenderScriptRuntimeContextDump : public CommandObjectParsed { 4580 public: 4581 CommandObjectRenderScriptRuntimeContextDump(CommandInterpreter &interpreter) 4582 : CommandObjectParsed(interpreter, "renderscript context dump", 4583 "Dumps renderscript context information.", 4584 "renderscript context dump", 4585 eCommandRequiresProcess | 4586 eCommandProcessMustBeLaunched) {} 4587 4588 ~CommandObjectRenderScriptRuntimeContextDump() override = default; 4589 4590 bool DoExecute(Args &command, CommandReturnObject &result) override { 4591 RenderScriptRuntime *runtime = 4592 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4593 eLanguageTypeExtRenderScript); 4594 runtime->DumpContexts(result.GetOutputStream()); 4595 result.SetStatus(eReturnStatusSuccessFinishResult); 4596 return true; 4597 } 4598 }; 4599 4600 static OptionDefinition g_renderscript_runtime_alloc_dump_options[] = { 4601 {LLDB_OPT_SET_1, false, "file", 'f', OptionParser::eRequiredArgument, 4602 nullptr, nullptr, 0, eArgTypeFilename, 4603 "Print results to specified file instead of command line."}}; 4604 4605 class CommandObjectRenderScriptRuntimeContext : public CommandObjectMultiword { 4606 public: 4607 CommandObjectRenderScriptRuntimeContext(CommandInterpreter &interpreter) 4608 : CommandObjectMultiword(interpreter, "renderscript context", 4609 "Commands that deal with RenderScript contexts.", 4610 nullptr) { 4611 LoadSubCommand( 4612 "dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeContextDump( 4613 interpreter))); 4614 } 4615 4616 ~CommandObjectRenderScriptRuntimeContext() override = default; 4617 }; 4618 4619 class CommandObjectRenderScriptRuntimeAllocationDump 4620 : public CommandObjectParsed { 4621 public: 4622 CommandObjectRenderScriptRuntimeAllocationDump( 4623 CommandInterpreter &interpreter) 4624 : CommandObjectParsed(interpreter, "renderscript allocation dump", 4625 "Displays the contents of a particular allocation", 4626 "renderscript allocation dump <ID>", 4627 eCommandRequiresProcess | 4628 eCommandProcessMustBeLaunched), 4629 m_options() {} 4630 4631 ~CommandObjectRenderScriptRuntimeAllocationDump() override = default; 4632 4633 Options *GetOptions() override { return &m_options; } 4634 4635 class CommandOptions : public Options { 4636 public: 4637 CommandOptions() : Options() {} 4638 4639 ~CommandOptions() override = default; 4640 4641 Error SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg, 4642 ExecutionContext *exe_ctx) override { 4643 Error err; 4644 const int short_option = m_getopt_table[option_idx].val; 4645 4646 switch (short_option) { 4647 case 'f': 4648 m_outfile.SetFile(option_arg, true); 4649 if (m_outfile.Exists()) { 4650 m_outfile.Clear(); 4651 err.SetErrorStringWithFormat("file already exists: '%s'", 4652 option_arg.str().c_str()); 4653 } 4654 break; 4655 default: 4656 err.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 4657 break; 4658 } 4659 return err; 4660 } 4661 4662 void OptionParsingStarting(ExecutionContext *exe_ctx) override { 4663 m_outfile.Clear(); 4664 } 4665 4666 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4667 return llvm::makeArrayRef(g_renderscript_runtime_alloc_dump_options); 4668 } 4669 4670 FileSpec m_outfile; 4671 }; 4672 4673 bool DoExecute(Args &command, CommandReturnObject &result) override { 4674 const size_t argc = command.GetArgumentCount(); 4675 if (argc < 1) { 4676 result.AppendErrorWithFormat("'%s' takes 1 argument, an allocation ID. " 4677 "As well as an optional -f argument", 4678 m_cmd_name.c_str()); 4679 result.SetStatus(eReturnStatusFailed); 4680 return false; 4681 } 4682 4683 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4684 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4685 eLanguageTypeExtRenderScript)); 4686 4687 const char *id_cstr = command.GetArgumentAtIndex(0); 4688 bool success = false; 4689 const uint32_t id = 4690 StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success); 4691 if (!success) { 4692 result.AppendErrorWithFormat("invalid allocation id argument '%s'", 4693 id_cstr); 4694 result.SetStatus(eReturnStatusFailed); 4695 return false; 4696 } 4697 4698 Stream *output_strm = nullptr; 4699 StreamFile outfile_stream; 4700 const FileSpec &outfile_spec = 4701 m_options.m_outfile; // Dump allocation to file instead 4702 if (outfile_spec) { 4703 // Open output file 4704 char path[256]; 4705 outfile_spec.GetPath(path, sizeof(path)); 4706 if (outfile_stream.GetFile() 4707 .Open(path, File::eOpenOptionWrite | File::eOpenOptionCanCreate) 4708 .Success()) { 4709 output_strm = &outfile_stream; 4710 result.GetOutputStream().Printf("Results written to '%s'", path); 4711 result.GetOutputStream().EOL(); 4712 } else { 4713 result.AppendErrorWithFormat("Couldn't open file '%s'", path); 4714 result.SetStatus(eReturnStatusFailed); 4715 return false; 4716 } 4717 } else 4718 output_strm = &result.GetOutputStream(); 4719 4720 assert(output_strm != nullptr); 4721 bool dumped = 4722 runtime->DumpAllocation(*output_strm, m_exe_ctx.GetFramePtr(), id); 4723 4724 if (dumped) 4725 result.SetStatus(eReturnStatusSuccessFinishResult); 4726 else 4727 result.SetStatus(eReturnStatusFailed); 4728 4729 return true; 4730 } 4731 4732 private: 4733 CommandOptions m_options; 4734 }; 4735 4736 static OptionDefinition g_renderscript_runtime_alloc_list_options[] = { 4737 {LLDB_OPT_SET_1, false, "id", 'i', OptionParser::eRequiredArgument, nullptr, 4738 nullptr, 0, eArgTypeIndex, 4739 "Only show details of a single allocation with specified id."}}; 4740 4741 class CommandObjectRenderScriptRuntimeAllocationList 4742 : public CommandObjectParsed { 4743 public: 4744 CommandObjectRenderScriptRuntimeAllocationList( 4745 CommandInterpreter &interpreter) 4746 : CommandObjectParsed( 4747 interpreter, "renderscript allocation list", 4748 "List renderscript allocations and their information.", 4749 "renderscript allocation list", 4750 eCommandRequiresProcess | eCommandProcessMustBeLaunched), 4751 m_options() {} 4752 4753 ~CommandObjectRenderScriptRuntimeAllocationList() override = default; 4754 4755 Options *GetOptions() override { return &m_options; } 4756 4757 class CommandOptions : public Options { 4758 public: 4759 CommandOptions() : Options(), m_id(0) {} 4760 4761 ~CommandOptions() override = default; 4762 4763 Error SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg, 4764 ExecutionContext *exe_ctx) override { 4765 Error err; 4766 const int short_option = m_getopt_table[option_idx].val; 4767 4768 switch (short_option) { 4769 case 'i': 4770 if (option_arg.getAsInteger(0, m_id)) 4771 err.SetErrorStringWithFormat("invalid integer value for option '%c'", 4772 short_option); 4773 break; 4774 default: 4775 err.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 4776 break; 4777 } 4778 return err; 4779 } 4780 4781 void OptionParsingStarting(ExecutionContext *exe_ctx) override { m_id = 0; } 4782 4783 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4784 return llvm::makeArrayRef(g_renderscript_runtime_alloc_list_options); 4785 } 4786 4787 uint32_t m_id; 4788 }; 4789 4790 bool DoExecute(Args &command, CommandReturnObject &result) override { 4791 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4792 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4793 eLanguageTypeExtRenderScript)); 4794 runtime->ListAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr(), 4795 m_options.m_id); 4796 result.SetStatus(eReturnStatusSuccessFinishResult); 4797 return true; 4798 } 4799 4800 private: 4801 CommandOptions m_options; 4802 }; 4803 4804 class CommandObjectRenderScriptRuntimeAllocationLoad 4805 : public CommandObjectParsed { 4806 public: 4807 CommandObjectRenderScriptRuntimeAllocationLoad( 4808 CommandInterpreter &interpreter) 4809 : CommandObjectParsed( 4810 interpreter, "renderscript allocation load", 4811 "Loads renderscript allocation contents from a file.", 4812 "renderscript allocation load <ID> <filename>", 4813 eCommandRequiresProcess | eCommandProcessMustBeLaunched) {} 4814 4815 ~CommandObjectRenderScriptRuntimeAllocationLoad() override = default; 4816 4817 bool DoExecute(Args &command, CommandReturnObject &result) override { 4818 const size_t argc = command.GetArgumentCount(); 4819 if (argc != 2) { 4820 result.AppendErrorWithFormat( 4821 "'%s' takes 2 arguments, an allocation ID and filename to read from.", 4822 m_cmd_name.c_str()); 4823 result.SetStatus(eReturnStatusFailed); 4824 return false; 4825 } 4826 4827 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4828 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4829 eLanguageTypeExtRenderScript)); 4830 4831 const char *id_cstr = command.GetArgumentAtIndex(0); 4832 bool success = false; 4833 const uint32_t id = 4834 StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success); 4835 if (!success) { 4836 result.AppendErrorWithFormat("invalid allocation id argument '%s'", 4837 id_cstr); 4838 result.SetStatus(eReturnStatusFailed); 4839 return false; 4840 } 4841 4842 const char *path = command.GetArgumentAtIndex(1); 4843 bool loaded = runtime->LoadAllocation(result.GetOutputStream(), id, path, 4844 m_exe_ctx.GetFramePtr()); 4845 4846 if (loaded) 4847 result.SetStatus(eReturnStatusSuccessFinishResult); 4848 else 4849 result.SetStatus(eReturnStatusFailed); 4850 4851 return true; 4852 } 4853 }; 4854 4855 class CommandObjectRenderScriptRuntimeAllocationSave 4856 : public CommandObjectParsed { 4857 public: 4858 CommandObjectRenderScriptRuntimeAllocationSave( 4859 CommandInterpreter &interpreter) 4860 : CommandObjectParsed(interpreter, "renderscript allocation save", 4861 "Write renderscript allocation contents to a file.", 4862 "renderscript allocation save <ID> <filename>", 4863 eCommandRequiresProcess | 4864 eCommandProcessMustBeLaunched) {} 4865 4866 ~CommandObjectRenderScriptRuntimeAllocationSave() override = default; 4867 4868 bool DoExecute(Args &command, CommandReturnObject &result) override { 4869 const size_t argc = command.GetArgumentCount(); 4870 if (argc != 2) { 4871 result.AppendErrorWithFormat( 4872 "'%s' takes 2 arguments, an allocation ID and filename to read from.", 4873 m_cmd_name.c_str()); 4874 result.SetStatus(eReturnStatusFailed); 4875 return false; 4876 } 4877 4878 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4879 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4880 eLanguageTypeExtRenderScript)); 4881 4882 const char *id_cstr = command.GetArgumentAtIndex(0); 4883 bool success = false; 4884 const uint32_t id = 4885 StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success); 4886 if (!success) { 4887 result.AppendErrorWithFormat("invalid allocation id argument '%s'", 4888 id_cstr); 4889 result.SetStatus(eReturnStatusFailed); 4890 return false; 4891 } 4892 4893 const char *path = command.GetArgumentAtIndex(1); 4894 bool saved = runtime->SaveAllocation(result.GetOutputStream(), id, path, 4895 m_exe_ctx.GetFramePtr()); 4896 4897 if (saved) 4898 result.SetStatus(eReturnStatusSuccessFinishResult); 4899 else 4900 result.SetStatus(eReturnStatusFailed); 4901 4902 return true; 4903 } 4904 }; 4905 4906 class CommandObjectRenderScriptRuntimeAllocationRefresh 4907 : public CommandObjectParsed { 4908 public: 4909 CommandObjectRenderScriptRuntimeAllocationRefresh( 4910 CommandInterpreter &interpreter) 4911 : CommandObjectParsed(interpreter, "renderscript allocation refresh", 4912 "Recomputes the details of all allocations.", 4913 "renderscript allocation refresh", 4914 eCommandRequiresProcess | 4915 eCommandProcessMustBeLaunched) {} 4916 4917 ~CommandObjectRenderScriptRuntimeAllocationRefresh() override = default; 4918 4919 bool DoExecute(Args &command, CommandReturnObject &result) override { 4920 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4921 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4922 eLanguageTypeExtRenderScript)); 4923 4924 bool success = runtime->RecomputeAllAllocations(result.GetOutputStream(), 4925 m_exe_ctx.GetFramePtr()); 4926 4927 if (success) { 4928 result.SetStatus(eReturnStatusSuccessFinishResult); 4929 return true; 4930 } else { 4931 result.SetStatus(eReturnStatusFailed); 4932 return false; 4933 } 4934 } 4935 }; 4936 4937 class CommandObjectRenderScriptRuntimeAllocation 4938 : public CommandObjectMultiword { 4939 public: 4940 CommandObjectRenderScriptRuntimeAllocation(CommandInterpreter &interpreter) 4941 : CommandObjectMultiword( 4942 interpreter, "renderscript allocation", 4943 "Commands that deal with RenderScript allocations.", nullptr) { 4944 LoadSubCommand( 4945 "list", 4946 CommandObjectSP( 4947 new CommandObjectRenderScriptRuntimeAllocationList(interpreter))); 4948 LoadSubCommand( 4949 "dump", 4950 CommandObjectSP( 4951 new CommandObjectRenderScriptRuntimeAllocationDump(interpreter))); 4952 LoadSubCommand( 4953 "save", 4954 CommandObjectSP( 4955 new CommandObjectRenderScriptRuntimeAllocationSave(interpreter))); 4956 LoadSubCommand( 4957 "load", 4958 CommandObjectSP( 4959 new CommandObjectRenderScriptRuntimeAllocationLoad(interpreter))); 4960 LoadSubCommand( 4961 "refresh", 4962 CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationRefresh( 4963 interpreter))); 4964 } 4965 4966 ~CommandObjectRenderScriptRuntimeAllocation() override = default; 4967 }; 4968 4969 class CommandObjectRenderScriptRuntimeStatus : public CommandObjectParsed { 4970 public: 4971 CommandObjectRenderScriptRuntimeStatus(CommandInterpreter &interpreter) 4972 : CommandObjectParsed(interpreter, "renderscript status", 4973 "Displays current RenderScript runtime status.", 4974 "renderscript status", 4975 eCommandRequiresProcess | 4976 eCommandProcessMustBeLaunched) {} 4977 4978 ~CommandObjectRenderScriptRuntimeStatus() override = default; 4979 4980 bool DoExecute(Args &command, CommandReturnObject &result) override { 4981 RenderScriptRuntime *runtime = 4982 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4983 eLanguageTypeExtRenderScript); 4984 runtime->Status(result.GetOutputStream()); 4985 result.SetStatus(eReturnStatusSuccessFinishResult); 4986 return true; 4987 } 4988 }; 4989 4990 class CommandObjectRenderScriptRuntimeReduction 4991 : public CommandObjectMultiword { 4992 public: 4993 CommandObjectRenderScriptRuntimeReduction(CommandInterpreter &interpreter) 4994 : CommandObjectMultiword(interpreter, "renderscript reduction", 4995 "Commands that handle general reduction kernels", 4996 nullptr) { 4997 LoadSubCommand( 4998 "breakpoint", 4999 CommandObjectSP(new CommandObjectRenderScriptRuntimeReductionBreakpoint( 5000 interpreter))); 5001 } 5002 ~CommandObjectRenderScriptRuntimeReduction() override = default; 5003 }; 5004 5005 class CommandObjectRenderScriptRuntime : public CommandObjectMultiword { 5006 public: 5007 CommandObjectRenderScriptRuntime(CommandInterpreter &interpreter) 5008 : CommandObjectMultiword( 5009 interpreter, "renderscript", 5010 "Commands for operating on the RenderScript runtime.", 5011 "renderscript <subcommand> [<subcommand-options>]") { 5012 LoadSubCommand( 5013 "module", CommandObjectSP( 5014 new CommandObjectRenderScriptRuntimeModule(interpreter))); 5015 LoadSubCommand( 5016 "status", CommandObjectSP( 5017 new CommandObjectRenderScriptRuntimeStatus(interpreter))); 5018 LoadSubCommand( 5019 "kernel", CommandObjectSP( 5020 new CommandObjectRenderScriptRuntimeKernel(interpreter))); 5021 LoadSubCommand("context", 5022 CommandObjectSP(new CommandObjectRenderScriptRuntimeContext( 5023 interpreter))); 5024 LoadSubCommand( 5025 "allocation", 5026 CommandObjectSP( 5027 new CommandObjectRenderScriptRuntimeAllocation(interpreter))); 5028 LoadSubCommand("scriptgroup", 5029 NewCommandObjectRenderScriptScriptGroup(interpreter)); 5030 LoadSubCommand( 5031 "reduction", 5032 CommandObjectSP( 5033 new CommandObjectRenderScriptRuntimeReduction(interpreter))); 5034 } 5035 5036 ~CommandObjectRenderScriptRuntime() override = default; 5037 }; 5038 5039 void RenderScriptRuntime::Initiate() { assert(!m_initiated); } 5040 5041 RenderScriptRuntime::RenderScriptRuntime(Process *process) 5042 : lldb_private::CPPLanguageRuntime(process), m_initiated(false), 5043 m_debuggerPresentFlagged(false), m_breakAllKernels(false), 5044 m_ir_passes(nullptr) { 5045 ModulesDidLoad(process->GetTarget().GetImages()); 5046 } 5047 5048 lldb::CommandObjectSP RenderScriptRuntime::GetCommandObject( 5049 lldb_private::CommandInterpreter &interpreter) { 5050 return CommandObjectSP(new CommandObjectRenderScriptRuntime(interpreter)); 5051 } 5052 5053 RenderScriptRuntime::~RenderScriptRuntime() = default; 5054