1 //===-- RenderScriptRuntime.cpp ---------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "RenderScriptRuntime.h" 10 #include "RenderScriptScriptGroup.h" 11 12 #include "lldb/Breakpoint/StoppointCallbackContext.h" 13 #include "lldb/Core/Debugger.h" 14 #include "lldb/Core/DumpDataExtractor.h" 15 #include "lldb/Core/PluginManager.h" 16 #include "lldb/Core/ValueObjectVariable.h" 17 #include "lldb/DataFormatters/DumpValueObjectOptions.h" 18 #include "lldb/Expression/UserExpression.h" 19 #include "lldb/Host/OptionParser.h" 20 #include "lldb/Host/StringConvert.h" 21 #include "lldb/Interpreter/CommandInterpreter.h" 22 #include "lldb/Interpreter/CommandObjectMultiword.h" 23 #include "lldb/Interpreter/CommandReturnObject.h" 24 #include "lldb/Interpreter/Options.h" 25 #include "lldb/Symbol/Function.h" 26 #include "lldb/Symbol/Symbol.h" 27 #include "lldb/Symbol/Type.h" 28 #include "lldb/Symbol/VariableList.h" 29 #include "lldb/Target/Process.h" 30 #include "lldb/Target/RegisterContext.h" 31 #include "lldb/Target/SectionLoadList.h" 32 #include "lldb/Target/Target.h" 33 #include "lldb/Target/Thread.h" 34 #include "lldb/Utility/Args.h" 35 #include "lldb/Utility/ConstString.h" 36 #include "lldb/Utility/Log.h" 37 #include "lldb/Utility/RegisterValue.h" 38 #include "lldb/Utility/RegularExpression.h" 39 #include "lldb/Utility/Status.h" 40 41 #include "llvm/ADT/StringSwitch.h" 42 43 #include <memory> 44 45 using namespace lldb; 46 using namespace lldb_private; 47 using namespace lldb_renderscript; 48 49 #define FMT_COORD "(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ")" 50 51 char RenderScriptRuntime::ID = 0; 52 53 namespace { 54 55 // The empirical_type adds a basic level of validation to arbitrary data 56 // allowing us to track if data has been discovered and stored or not. An 57 // empirical_type will be marked as valid only if it has been explicitly 58 // assigned to. 59 template <typename type_t> class empirical_type { 60 public: 61 // Ctor. Contents is invalid when constructed. 62 empirical_type() : valid(false) {} 63 64 // Return true and copy contents to out if valid, else return false. 65 bool get(type_t &out) const { 66 if (valid) 67 out = data; 68 return valid; 69 } 70 71 // Return a pointer to the contents or nullptr if it was not valid. 72 const type_t *get() const { return valid ? &data : nullptr; } 73 74 // Assign data explicitly. 75 void set(const type_t in) { 76 data = in; 77 valid = true; 78 } 79 80 // Mark contents as invalid. 81 void invalidate() { valid = false; } 82 83 // Returns true if this type contains valid data. 84 bool isValid() const { return valid; } 85 86 // Assignment operator. 87 empirical_type<type_t> &operator=(const type_t in) { 88 set(in); 89 return *this; 90 } 91 92 // Dereference operator returns contents. 93 // Warning: Will assert if not valid so use only when you know data is valid. 94 const type_t &operator*() const { 95 assert(valid); 96 return data; 97 } 98 99 protected: 100 bool valid; 101 type_t data; 102 }; 103 104 // ArgItem is used by the GetArgs() function when reading function arguments 105 // from the target. 106 struct ArgItem { 107 enum { ePointer, eInt32, eInt64, eLong, eBool } type; 108 109 uint64_t value; 110 111 explicit operator uint64_t() const { return value; } 112 }; 113 114 // Context structure to be passed into GetArgsXXX(), argument reading functions 115 // below. 116 struct GetArgsCtx { 117 RegisterContext *reg_ctx; 118 Process *process; 119 }; 120 121 bool GetArgsX86(const GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 122 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 123 124 Status err; 125 126 // get the current stack pointer 127 uint64_t sp = ctx.reg_ctx->GetSP(); 128 129 for (size_t i = 0; i < num_args; ++i) { 130 ArgItem &arg = arg_list[i]; 131 // advance up the stack by one argument 132 sp += sizeof(uint32_t); 133 // get the argument type size 134 size_t arg_size = sizeof(uint32_t); 135 // read the argument from memory 136 arg.value = 0; 137 Status err; 138 size_t read = 139 ctx.process->ReadMemory(sp, &arg.value, sizeof(uint32_t), err); 140 if (read != arg_size || !err.Success()) { 141 LLDB_LOGF(log, "%s - error reading argument: %" PRIu64 " '%s'", 142 __FUNCTION__, uint64_t(i), err.AsCString()); 143 return false; 144 } 145 } 146 return true; 147 } 148 149 bool GetArgsX86_64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 150 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 151 152 // number of arguments passed in registers 153 static const uint32_t args_in_reg = 6; 154 // register passing order 155 static const std::array<const char *, args_in_reg> reg_names{ 156 {"rdi", "rsi", "rdx", "rcx", "r8", "r9"}}; 157 // argument type to size mapping 158 static const std::array<size_t, 5> arg_size{{ 159 8, // ePointer, 160 4, // eInt32, 161 8, // eInt64, 162 8, // eLong, 163 4, // eBool, 164 }}; 165 166 Status err; 167 168 // get the current stack pointer 169 uint64_t sp = ctx.reg_ctx->GetSP(); 170 // step over the return address 171 sp += sizeof(uint64_t); 172 173 // check the stack alignment was correct (16 byte aligned) 174 if ((sp & 0xf) != 0x0) { 175 LLDB_LOGF(log, "%s - stack misaligned", __FUNCTION__); 176 return false; 177 } 178 179 // find the start of arguments on the stack 180 uint64_t sp_offset = 0; 181 for (uint32_t i = args_in_reg; i < num_args; ++i) { 182 sp_offset += arg_size[arg_list[i].type]; 183 } 184 // round up to multiple of 16 185 sp_offset = (sp_offset + 0xf) & 0xf; 186 sp += sp_offset; 187 188 for (size_t i = 0; i < num_args; ++i) { 189 bool success = false; 190 ArgItem &arg = arg_list[i]; 191 // arguments passed in registers 192 if (i < args_in_reg) { 193 const RegisterInfo *reg = 194 ctx.reg_ctx->GetRegisterInfoByName(reg_names[i]); 195 RegisterValue reg_val; 196 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 197 arg.value = reg_val.GetAsUInt64(0, &success); 198 } 199 // arguments passed on the stack 200 else { 201 // get the argument type size 202 const size_t size = arg_size[arg_list[i].type]; 203 // read the argument from memory 204 arg.value = 0; 205 // note: due to little endian layout reading 4 or 8 bytes will give the 206 // correct value. 207 size_t read = ctx.process->ReadMemory(sp, &arg.value, size, err); 208 success = (err.Success() && read == size); 209 // advance past this argument 210 sp -= size; 211 } 212 // fail if we couldn't read this argument 213 if (!success) { 214 LLDB_LOGF(log, "%s - error reading argument: %" PRIu64 ", reason: %s", 215 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 216 return false; 217 } 218 } 219 return true; 220 } 221 222 bool GetArgsArm(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 223 // number of arguments passed in registers 224 static const uint32_t args_in_reg = 4; 225 226 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 227 228 Status err; 229 230 // get the current stack pointer 231 uint64_t sp = ctx.reg_ctx->GetSP(); 232 233 for (size_t i = 0; i < num_args; ++i) { 234 bool success = false; 235 ArgItem &arg = arg_list[i]; 236 // arguments passed in registers 237 if (i < args_in_reg) { 238 const RegisterInfo *reg = ctx.reg_ctx->GetRegisterInfoAtIndex(i); 239 RegisterValue reg_val; 240 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 241 arg.value = reg_val.GetAsUInt32(0, &success); 242 } 243 // arguments passed on the stack 244 else { 245 // get the argument type size 246 const size_t arg_size = sizeof(uint32_t); 247 // clear all 64bits 248 arg.value = 0; 249 // read this argument from memory 250 size_t bytes_read = 251 ctx.process->ReadMemory(sp, &arg.value, arg_size, err); 252 success = (err.Success() && bytes_read == arg_size); 253 // advance the stack pointer 254 sp += sizeof(uint32_t); 255 } 256 // fail if we couldn't read this argument 257 if (!success) { 258 LLDB_LOGF(log, "%s - error reading argument: %" PRIu64 ", reason: %s", 259 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 260 return false; 261 } 262 } 263 return true; 264 } 265 266 bool GetArgsAarch64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 267 // number of arguments passed in registers 268 static const uint32_t args_in_reg = 8; 269 270 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 271 272 for (size_t i = 0; i < num_args; ++i) { 273 bool success = false; 274 ArgItem &arg = arg_list[i]; 275 // arguments passed in registers 276 if (i < args_in_reg) { 277 const RegisterInfo *reg = ctx.reg_ctx->GetRegisterInfoAtIndex(i); 278 RegisterValue reg_val; 279 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 280 arg.value = reg_val.GetAsUInt64(0, &success); 281 } 282 // arguments passed on the stack 283 else { 284 LLDB_LOGF(log, "%s - reading arguments spilled to stack not implemented", 285 __FUNCTION__); 286 } 287 // fail if we couldn't read this argument 288 if (!success) { 289 LLDB_LOGF(log, "%s - error reading argument: %" PRIu64, __FUNCTION__, 290 uint64_t(i)); 291 return false; 292 } 293 } 294 return true; 295 } 296 297 bool GetArgsMipsel(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 298 // number of arguments passed in registers 299 static const uint32_t args_in_reg = 4; 300 // register file offset to first argument 301 static const uint32_t reg_offset = 4; 302 303 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 304 305 Status err; 306 307 // find offset to arguments on the stack (+16 to skip over a0-a3 shadow 308 // space) 309 uint64_t sp = ctx.reg_ctx->GetSP() + 16; 310 311 for (size_t i = 0; i < num_args; ++i) { 312 bool success = false; 313 ArgItem &arg = arg_list[i]; 314 // arguments passed in registers 315 if (i < args_in_reg) { 316 const RegisterInfo *reg = 317 ctx.reg_ctx->GetRegisterInfoAtIndex(i + reg_offset); 318 RegisterValue reg_val; 319 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 320 arg.value = reg_val.GetAsUInt64(0, &success); 321 } 322 // arguments passed on the stack 323 else { 324 const size_t arg_size = sizeof(uint32_t); 325 arg.value = 0; 326 size_t bytes_read = 327 ctx.process->ReadMemory(sp, &arg.value, arg_size, err); 328 success = (err.Success() && bytes_read == arg_size); 329 // advance the stack pointer 330 sp += arg_size; 331 } 332 // fail if we couldn't read this argument 333 if (!success) { 334 LLDB_LOGF(log, "%s - error reading argument: %" PRIu64 ", reason: %s", 335 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 336 return false; 337 } 338 } 339 return true; 340 } 341 342 bool GetArgsMips64el(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 343 // number of arguments passed in registers 344 static const uint32_t args_in_reg = 8; 345 // register file offset to first argument 346 static const uint32_t reg_offset = 4; 347 348 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 349 350 Status err; 351 352 // get the current stack pointer 353 uint64_t sp = ctx.reg_ctx->GetSP(); 354 355 for (size_t i = 0; i < num_args; ++i) { 356 bool success = false; 357 ArgItem &arg = arg_list[i]; 358 // arguments passed in registers 359 if (i < args_in_reg) { 360 const RegisterInfo *reg = 361 ctx.reg_ctx->GetRegisterInfoAtIndex(i + reg_offset); 362 RegisterValue reg_val; 363 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 364 arg.value = reg_val.GetAsUInt64(0, &success); 365 } 366 // arguments passed on the stack 367 else { 368 // get the argument type size 369 const size_t arg_size = sizeof(uint64_t); 370 // clear all 64bits 371 arg.value = 0; 372 // read this argument from memory 373 size_t bytes_read = 374 ctx.process->ReadMemory(sp, &arg.value, arg_size, err); 375 success = (err.Success() && bytes_read == arg_size); 376 // advance the stack pointer 377 sp += arg_size; 378 } 379 // fail if we couldn't read this argument 380 if (!success) { 381 LLDB_LOGF(log, "%s - error reading argument: %" PRIu64 ", reason: %s", 382 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 383 return false; 384 } 385 } 386 return true; 387 } 388 389 bool GetArgs(ExecutionContext &exe_ctx, ArgItem *arg_list, size_t num_args) { 390 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 391 392 // verify that we have a target 393 if (!exe_ctx.GetTargetPtr()) { 394 LLDB_LOGF(log, "%s - invalid target", __FUNCTION__); 395 return false; 396 } 397 398 GetArgsCtx ctx = {exe_ctx.GetRegisterContext(), exe_ctx.GetProcessPtr()}; 399 assert(ctx.reg_ctx && ctx.process); 400 401 // dispatch based on architecture 402 switch (exe_ctx.GetTargetPtr()->GetArchitecture().GetMachine()) { 403 case llvm::Triple::ArchType::x86: 404 return GetArgsX86(ctx, arg_list, num_args); 405 406 case llvm::Triple::ArchType::x86_64: 407 return GetArgsX86_64(ctx, arg_list, num_args); 408 409 case llvm::Triple::ArchType::arm: 410 return GetArgsArm(ctx, arg_list, num_args); 411 412 case llvm::Triple::ArchType::aarch64: 413 return GetArgsAarch64(ctx, arg_list, num_args); 414 415 case llvm::Triple::ArchType::mipsel: 416 return GetArgsMipsel(ctx, arg_list, num_args); 417 418 case llvm::Triple::ArchType::mips64el: 419 return GetArgsMips64el(ctx, arg_list, num_args); 420 421 default: 422 // unsupported architecture 423 if (log) { 424 LLDB_LOGF(log, "%s - architecture not supported: '%s'", __FUNCTION__, 425 exe_ctx.GetTargetRef().GetArchitecture().GetArchitectureName()); 426 } 427 return false; 428 } 429 } 430 431 bool IsRenderScriptScriptModule(ModuleSP module) { 432 if (!module) 433 return false; 434 return module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), 435 eSymbolTypeData) != nullptr; 436 } 437 438 bool ParseCoordinate(llvm::StringRef coord_s, RSCoordinate &coord) { 439 // takes an argument of the form 'num[,num][,num]'. Where 'coord_s' is a 440 // comma separated 1,2 or 3-dimensional coordinate with the whitespace 441 // trimmed. Missing coordinates are defaulted to zero. If parsing of any 442 // elements fails the contents of &coord are undefined and `false` is 443 // returned, `true` otherwise 444 445 llvm::SmallVector<llvm::StringRef, 4> matches; 446 447 if (!RegularExpression("^([0-9]+),([0-9]+),([0-9]+)$") 448 .Execute(coord_s, &matches) && 449 !RegularExpression("^([0-9]+),([0-9]+)$").Execute(coord_s, &matches) && 450 !RegularExpression("^([0-9]+)$").Execute(coord_s, &matches)) 451 return false; 452 453 auto get_index = [&](size_t idx, uint32_t &i) -> bool { 454 std::string group; 455 errno = 0; 456 if (idx + 1 < matches.size()) { 457 return !llvm::StringRef(matches[idx + 1]).getAsInteger<uint32_t>(10, i); 458 } 459 return true; 460 }; 461 462 return get_index(0, coord.x) && get_index(1, coord.y) && 463 get_index(2, coord.z); 464 } 465 466 bool SkipPrologue(lldb::ModuleSP &module, Address &addr) { 467 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 468 SymbolContext sc; 469 uint32_t resolved_flags = 470 module->ResolveSymbolContextForAddress(addr, eSymbolContextFunction, sc); 471 if (resolved_flags & eSymbolContextFunction) { 472 if (sc.function) { 473 const uint32_t offset = sc.function->GetPrologueByteSize(); 474 ConstString name = sc.GetFunctionName(); 475 if (offset) 476 addr.Slide(offset); 477 LLDB_LOGF(log, "%s: Prologue offset for %s is %" PRIu32, __FUNCTION__, 478 name.AsCString(), offset); 479 } 480 return true; 481 } else 482 return false; 483 } 484 } // anonymous namespace 485 486 // The ScriptDetails class collects data associated with a single script 487 // instance. 488 struct RenderScriptRuntime::ScriptDetails { 489 ~ScriptDetails() = default; 490 491 enum ScriptType { eScript, eScriptC }; 492 493 // The derived type of the script. 494 empirical_type<ScriptType> type; 495 // The name of the original source file. 496 empirical_type<std::string> res_name; 497 // Path to script .so file on the device. 498 empirical_type<std::string> shared_lib; 499 // Directory where kernel objects are cached on device. 500 empirical_type<std::string> cache_dir; 501 // Pointer to the context which owns this script. 502 empirical_type<lldb::addr_t> context; 503 // Pointer to the script object itself. 504 empirical_type<lldb::addr_t> script; 505 }; 506 507 // This Element class represents the Element object in RS, defining the type 508 // associated with an Allocation. 509 struct RenderScriptRuntime::Element { 510 // Taken from rsDefines.h 511 enum DataKind { 512 RS_KIND_USER, 513 RS_KIND_PIXEL_L = 7, 514 RS_KIND_PIXEL_A, 515 RS_KIND_PIXEL_LA, 516 RS_KIND_PIXEL_RGB, 517 RS_KIND_PIXEL_RGBA, 518 RS_KIND_PIXEL_DEPTH, 519 RS_KIND_PIXEL_YUV, 520 RS_KIND_INVALID = 100 521 }; 522 523 // Taken from rsDefines.h 524 enum DataType { 525 RS_TYPE_NONE = 0, 526 RS_TYPE_FLOAT_16, 527 RS_TYPE_FLOAT_32, 528 RS_TYPE_FLOAT_64, 529 RS_TYPE_SIGNED_8, 530 RS_TYPE_SIGNED_16, 531 RS_TYPE_SIGNED_32, 532 RS_TYPE_SIGNED_64, 533 RS_TYPE_UNSIGNED_8, 534 RS_TYPE_UNSIGNED_16, 535 RS_TYPE_UNSIGNED_32, 536 RS_TYPE_UNSIGNED_64, 537 RS_TYPE_BOOLEAN, 538 539 RS_TYPE_UNSIGNED_5_6_5, 540 RS_TYPE_UNSIGNED_5_5_5_1, 541 RS_TYPE_UNSIGNED_4_4_4_4, 542 543 RS_TYPE_MATRIX_4X4, 544 RS_TYPE_MATRIX_3X3, 545 RS_TYPE_MATRIX_2X2, 546 547 RS_TYPE_ELEMENT = 1000, 548 RS_TYPE_TYPE, 549 RS_TYPE_ALLOCATION, 550 RS_TYPE_SAMPLER, 551 RS_TYPE_SCRIPT, 552 RS_TYPE_MESH, 553 RS_TYPE_PROGRAM_FRAGMENT, 554 RS_TYPE_PROGRAM_VERTEX, 555 RS_TYPE_PROGRAM_RASTER, 556 RS_TYPE_PROGRAM_STORE, 557 RS_TYPE_FONT, 558 559 RS_TYPE_INVALID = 10000 560 }; 561 562 std::vector<Element> children; // Child Element fields for structs 563 empirical_type<lldb::addr_t> 564 element_ptr; // Pointer to the RS Element of the Type 565 empirical_type<DataType> 566 type; // Type of each data pointer stored by the allocation 567 empirical_type<DataKind> 568 type_kind; // Defines pixel type if Allocation is created from an image 569 empirical_type<uint32_t> 570 type_vec_size; // Vector size of each data point, e.g '4' for uchar4 571 empirical_type<uint32_t> field_count; // Number of Subelements 572 empirical_type<uint32_t> datum_size; // Size of a single Element with padding 573 empirical_type<uint32_t> padding; // Number of padding bytes 574 empirical_type<uint32_t> 575 array_size; // Number of items in array, only needed for structs 576 ConstString type_name; // Name of type, only needed for structs 577 578 static ConstString 579 GetFallbackStructName(); // Print this as the type name of a struct Element 580 // If we can't resolve the actual struct name 581 582 bool ShouldRefresh() const { 583 const bool valid_ptr = element_ptr.isValid() && *element_ptr.get() != 0x0; 584 const bool valid_type = 585 type.isValid() && type_vec_size.isValid() && type_kind.isValid(); 586 return !valid_ptr || !valid_type || !datum_size.isValid(); 587 } 588 }; 589 590 // This AllocationDetails class collects data associated with a single 591 // allocation instance. 592 struct RenderScriptRuntime::AllocationDetails { 593 struct Dimension { 594 uint32_t dim_1; 595 uint32_t dim_2; 596 uint32_t dim_3; 597 uint32_t cube_map; 598 599 Dimension() { 600 dim_1 = 0; 601 dim_2 = 0; 602 dim_3 = 0; 603 cube_map = 0; 604 } 605 }; 606 607 // The FileHeader struct specifies the header we use for writing allocations 608 // to a binary file. Our format begins with the ASCII characters "RSAD", 609 // identifying the file as an allocation dump. Member variables dims and 610 // hdr_size are then written consecutively, immediately followed by an 611 // instance of the ElementHeader struct. Because Elements can contain 612 // subelements, there may be more than one instance of the ElementHeader 613 // struct. With this first instance being the root element, and the other 614 // instances being the root's descendants. To identify which instances are an 615 // ElementHeader's children, each struct is immediately followed by a 616 // sequence of consecutive offsets to the start of its child structs. These 617 // offsets are 618 // 4 bytes in size, and the 0 offset signifies no more children. 619 struct FileHeader { 620 uint8_t ident[4]; // ASCII 'RSAD' identifying the file 621 uint32_t dims[3]; // Dimensions 622 uint16_t hdr_size; // Header size in bytes, including all element headers 623 }; 624 625 struct ElementHeader { 626 uint16_t type; // DataType enum 627 uint32_t kind; // DataKind enum 628 uint32_t element_size; // Size of a single element, including padding 629 uint16_t vector_size; // Vector width 630 uint32_t array_size; // Number of elements in array 631 }; 632 633 // Monotonically increasing from 1 634 static uint32_t ID; 635 636 // Maps Allocation DataType enum and vector size to printable strings using 637 // mapping from RenderScript numerical types summary documentation 638 static const char *RsDataTypeToString[][4]; 639 640 // Maps Allocation DataKind enum to printable strings 641 static const char *RsDataKindToString[]; 642 643 // Maps allocation types to format sizes for printing. 644 static const uint32_t RSTypeToFormat[][3]; 645 646 // Give each allocation an ID as a way 647 // for commands to reference it. 648 const uint32_t id; 649 650 // Allocation Element type 651 RenderScriptRuntime::Element element; 652 // Dimensions of the Allocation 653 empirical_type<Dimension> dimension; 654 // Pointer to address of the RS Allocation 655 empirical_type<lldb::addr_t> address; 656 // Pointer to the data held by the Allocation 657 empirical_type<lldb::addr_t> data_ptr; 658 // Pointer to the RS Type of the Allocation 659 empirical_type<lldb::addr_t> type_ptr; 660 // Pointer to the RS Context of the Allocation 661 empirical_type<lldb::addr_t> context; 662 // Size of the allocation 663 empirical_type<uint32_t> size; 664 // Stride between rows of the allocation 665 empirical_type<uint32_t> stride; 666 667 // Give each allocation an id, so we can reference it in user commands. 668 AllocationDetails() : id(ID++) {} 669 670 bool ShouldRefresh() const { 671 bool valid_ptrs = data_ptr.isValid() && *data_ptr.get() != 0x0; 672 valid_ptrs = valid_ptrs && type_ptr.isValid() && *type_ptr.get() != 0x0; 673 return !valid_ptrs || !dimension.isValid() || !size.isValid() || 674 element.ShouldRefresh(); 675 } 676 }; 677 678 ConstString RenderScriptRuntime::Element::GetFallbackStructName() { 679 static const ConstString FallbackStructName("struct"); 680 return FallbackStructName; 681 } 682 683 uint32_t RenderScriptRuntime::AllocationDetails::ID = 1; 684 685 const char *RenderScriptRuntime::AllocationDetails::RsDataKindToString[] = { 686 "User", "Undefined", "Undefined", "Undefined", 687 "Undefined", "Undefined", "Undefined", // Enum jumps from 0 to 7 688 "L Pixel", "A Pixel", "LA Pixel", "RGB Pixel", 689 "RGBA Pixel", "Pixel Depth", "YUV Pixel"}; 690 691 const char *RenderScriptRuntime::AllocationDetails::RsDataTypeToString[][4] = { 692 {"None", "None", "None", "None"}, 693 {"half", "half2", "half3", "half4"}, 694 {"float", "float2", "float3", "float4"}, 695 {"double", "double2", "double3", "double4"}, 696 {"char", "char2", "char3", "char4"}, 697 {"short", "short2", "short3", "short4"}, 698 {"int", "int2", "int3", "int4"}, 699 {"long", "long2", "long3", "long4"}, 700 {"uchar", "uchar2", "uchar3", "uchar4"}, 701 {"ushort", "ushort2", "ushort3", "ushort4"}, 702 {"uint", "uint2", "uint3", "uint4"}, 703 {"ulong", "ulong2", "ulong3", "ulong4"}, 704 {"bool", "bool2", "bool3", "bool4"}, 705 {"packed_565", "packed_565", "packed_565", "packed_565"}, 706 {"packed_5551", "packed_5551", "packed_5551", "packed_5551"}, 707 {"packed_4444", "packed_4444", "packed_4444", "packed_4444"}, 708 {"rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4"}, 709 {"rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3"}, 710 {"rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2"}, 711 712 // Handlers 713 {"RS Element", "RS Element", "RS Element", "RS Element"}, 714 {"RS Type", "RS Type", "RS Type", "RS Type"}, 715 {"RS Allocation", "RS Allocation", "RS Allocation", "RS Allocation"}, 716 {"RS Sampler", "RS Sampler", "RS Sampler", "RS Sampler"}, 717 {"RS Script", "RS Script", "RS Script", "RS Script"}, 718 719 // Deprecated 720 {"RS Mesh", "RS Mesh", "RS Mesh", "RS Mesh"}, 721 {"RS Program Fragment", "RS Program Fragment", "RS Program Fragment", 722 "RS Program Fragment"}, 723 {"RS Program Vertex", "RS Program Vertex", "RS Program Vertex", 724 "RS Program Vertex"}, 725 {"RS Program Raster", "RS Program Raster", "RS Program Raster", 726 "RS Program Raster"}, 727 {"RS Program Store", "RS Program Store", "RS Program Store", 728 "RS Program Store"}, 729 {"RS Font", "RS Font", "RS Font", "RS Font"}}; 730 731 // Used as an index into the RSTypeToFormat array elements 732 enum TypeToFormatIndex { eFormatSingle = 0, eFormatVector, eElementSize }; 733 734 // { format enum of single element, format enum of element vector, size of 735 // element} 736 const uint32_t RenderScriptRuntime::AllocationDetails::RSTypeToFormat[][3] = { 737 // RS_TYPE_NONE 738 {eFormatHex, eFormatHex, 1}, 739 // RS_TYPE_FLOAT_16 740 {eFormatFloat, eFormatVectorOfFloat16, 2}, 741 // RS_TYPE_FLOAT_32 742 {eFormatFloat, eFormatVectorOfFloat32, sizeof(float)}, 743 // RS_TYPE_FLOAT_64 744 {eFormatFloat, eFormatVectorOfFloat64, sizeof(double)}, 745 // RS_TYPE_SIGNED_8 746 {eFormatDecimal, eFormatVectorOfSInt8, sizeof(int8_t)}, 747 // RS_TYPE_SIGNED_16 748 {eFormatDecimal, eFormatVectorOfSInt16, sizeof(int16_t)}, 749 // RS_TYPE_SIGNED_32 750 {eFormatDecimal, eFormatVectorOfSInt32, sizeof(int32_t)}, 751 // RS_TYPE_SIGNED_64 752 {eFormatDecimal, eFormatVectorOfSInt64, sizeof(int64_t)}, 753 // RS_TYPE_UNSIGNED_8 754 {eFormatDecimal, eFormatVectorOfUInt8, sizeof(uint8_t)}, 755 // RS_TYPE_UNSIGNED_16 756 {eFormatDecimal, eFormatVectorOfUInt16, sizeof(uint16_t)}, 757 // RS_TYPE_UNSIGNED_32 758 {eFormatDecimal, eFormatVectorOfUInt32, sizeof(uint32_t)}, 759 // RS_TYPE_UNSIGNED_64 760 {eFormatDecimal, eFormatVectorOfUInt64, sizeof(uint64_t)}, 761 // RS_TYPE_BOOL 762 {eFormatBoolean, eFormatBoolean, 1}, 763 // RS_TYPE_UNSIGNED_5_6_5 764 {eFormatHex, eFormatHex, sizeof(uint16_t)}, 765 // RS_TYPE_UNSIGNED_5_5_5_1 766 {eFormatHex, eFormatHex, sizeof(uint16_t)}, 767 // RS_TYPE_UNSIGNED_4_4_4_4 768 {eFormatHex, eFormatHex, sizeof(uint16_t)}, 769 // RS_TYPE_MATRIX_4X4 770 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 16}, 771 // RS_TYPE_MATRIX_3X3 772 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 9}, 773 // RS_TYPE_MATRIX_2X2 774 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 4}}; 775 776 // Static Functions 777 LanguageRuntime * 778 RenderScriptRuntime::CreateInstance(Process *process, 779 lldb::LanguageType language) { 780 781 if (language == eLanguageTypeExtRenderScript) 782 return new RenderScriptRuntime(process); 783 else 784 return nullptr; 785 } 786 787 // Callback with a module to search for matching symbols. We first check that 788 // the module contains RS kernels. Then look for a symbol which matches our 789 // kernel name. The breakpoint address is finally set using the address of this 790 // symbol. 791 Searcher::CallbackReturn 792 RSBreakpointResolver::SearchCallback(SearchFilter &filter, 793 SymbolContext &context, Address *, bool) { 794 ModuleSP module = context.module_sp; 795 796 if (!module || !IsRenderScriptScriptModule(module)) 797 return Searcher::eCallbackReturnContinue; 798 799 // Attempt to set a breakpoint on the kernel name symbol within the module 800 // library. If it's not found, it's likely debug info is unavailable - try to 801 // set a breakpoint on <name>.expand. 802 const Symbol *kernel_sym = 803 module->FindFirstSymbolWithNameAndType(m_kernel_name, eSymbolTypeCode); 804 if (!kernel_sym) { 805 std::string kernel_name_expanded(m_kernel_name.AsCString()); 806 kernel_name_expanded.append(".expand"); 807 kernel_sym = module->FindFirstSymbolWithNameAndType( 808 ConstString(kernel_name_expanded.c_str()), eSymbolTypeCode); 809 } 810 811 if (kernel_sym) { 812 Address bp_addr = kernel_sym->GetAddress(); 813 if (filter.AddressPasses(bp_addr)) 814 m_breakpoint->AddLocation(bp_addr); 815 } 816 817 return Searcher::eCallbackReturnContinue; 818 } 819 820 Searcher::CallbackReturn 821 RSReduceBreakpointResolver::SearchCallback(lldb_private::SearchFilter &filter, 822 lldb_private::SymbolContext &context, 823 Address *, bool) { 824 // We need to have access to the list of reductions currently parsed, as 825 // reduce names don't actually exist as symbols in a module. They are only 826 // identifiable by parsing the .rs.info packet, or finding the expand symbol. 827 // We therefore need access to the list of parsed rs modules to properly 828 // resolve reduction names. 829 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 830 ModuleSP module = context.module_sp; 831 832 if (!module || !IsRenderScriptScriptModule(module)) 833 return Searcher::eCallbackReturnContinue; 834 835 if (!m_rsmodules) 836 return Searcher::eCallbackReturnContinue; 837 838 for (const auto &module_desc : *m_rsmodules) { 839 if (module_desc->m_module != module) 840 continue; 841 842 for (const auto &reduction : module_desc->m_reductions) { 843 if (reduction.m_reduce_name != m_reduce_name) 844 continue; 845 846 std::array<std::pair<ConstString, int>, 5> funcs{ 847 {{reduction.m_init_name, eKernelTypeInit}, 848 {reduction.m_accum_name, eKernelTypeAccum}, 849 {reduction.m_comb_name, eKernelTypeComb}, 850 {reduction.m_outc_name, eKernelTypeOutC}, 851 {reduction.m_halter_name, eKernelTypeHalter}}}; 852 853 for (const auto &kernel : funcs) { 854 // Skip constituent functions that don't match our spec 855 if (!(m_kernel_types & kernel.second)) 856 continue; 857 858 const auto kernel_name = kernel.first; 859 const auto symbol = module->FindFirstSymbolWithNameAndType( 860 kernel_name, eSymbolTypeCode); 861 if (!symbol) 862 continue; 863 864 auto address = symbol->GetAddress(); 865 if (filter.AddressPasses(address)) { 866 bool new_bp; 867 if (!SkipPrologue(module, address)) { 868 LLDB_LOGF(log, "%s: Error trying to skip prologue", __FUNCTION__); 869 } 870 m_breakpoint->AddLocation(address, &new_bp); 871 LLDB_LOGF(log, "%s: %s reduction breakpoint on %s in %s", 872 __FUNCTION__, new_bp ? "new" : "existing", 873 kernel_name.GetCString(), 874 address.GetModule()->GetFileSpec().GetCString()); 875 } 876 } 877 } 878 } 879 return eCallbackReturnContinue; 880 } 881 882 Searcher::CallbackReturn RSScriptGroupBreakpointResolver::SearchCallback( 883 SearchFilter &filter, SymbolContext &context, Address *addr, 884 bool containing) { 885 886 if (!m_breakpoint) 887 return eCallbackReturnContinue; 888 889 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 890 ModuleSP &module = context.module_sp; 891 892 if (!module || !IsRenderScriptScriptModule(module)) 893 return Searcher::eCallbackReturnContinue; 894 895 std::vector<std::string> names; 896 m_breakpoint->GetNames(names); 897 if (names.empty()) 898 return eCallbackReturnContinue; 899 900 for (auto &name : names) { 901 const RSScriptGroupDescriptorSP sg = FindScriptGroup(ConstString(name)); 902 if (!sg) { 903 LLDB_LOGF(log, "%s: could not find script group for %s", __FUNCTION__, 904 name.c_str()); 905 continue; 906 } 907 908 LLDB_LOGF(log, "%s: Found ScriptGroup for %s", __FUNCTION__, name.c_str()); 909 910 for (const RSScriptGroupDescriptor::Kernel &k : sg->m_kernels) { 911 if (log) { 912 LLDB_LOGF(log, "%s: Adding breakpoint for %s", __FUNCTION__, 913 k.m_name.AsCString()); 914 LLDB_LOGF(log, "%s: Kernel address 0x%" PRIx64, __FUNCTION__, k.m_addr); 915 } 916 917 const lldb_private::Symbol *sym = 918 module->FindFirstSymbolWithNameAndType(k.m_name, eSymbolTypeCode); 919 if (!sym) { 920 LLDB_LOGF(log, "%s: Unable to find symbol for %s", __FUNCTION__, 921 k.m_name.AsCString()); 922 continue; 923 } 924 925 if (log) { 926 LLDB_LOGF(log, "%s: Found symbol name is %s", __FUNCTION__, 927 sym->GetName().AsCString()); 928 } 929 930 auto address = sym->GetAddress(); 931 if (!SkipPrologue(module, address)) { 932 LLDB_LOGF(log, "%s: Error trying to skip prologue", __FUNCTION__); 933 } 934 935 bool new_bp; 936 m_breakpoint->AddLocation(address, &new_bp); 937 938 LLDB_LOGF(log, "%s: Placed %sbreakpoint on %s", __FUNCTION__, 939 new_bp ? "new " : "", k.m_name.AsCString()); 940 941 // exit after placing the first breakpoint if we do not intend to stop on 942 // all kernels making up this script group 943 if (!m_stop_on_all) 944 break; 945 } 946 } 947 948 return eCallbackReturnContinue; 949 } 950 951 void RenderScriptRuntime::Initialize() { 952 PluginManager::RegisterPlugin(GetPluginNameStatic(), 953 "RenderScript language support", CreateInstance, 954 GetCommandObject); 955 } 956 957 void RenderScriptRuntime::Terminate() { 958 PluginManager::UnregisterPlugin(CreateInstance); 959 } 960 961 lldb_private::ConstString RenderScriptRuntime::GetPluginNameStatic() { 962 static ConstString plugin_name("renderscript"); 963 return plugin_name; 964 } 965 966 RenderScriptRuntime::ModuleKind 967 RenderScriptRuntime::GetModuleKind(const lldb::ModuleSP &module_sp) { 968 if (module_sp) { 969 if (IsRenderScriptScriptModule(module_sp)) 970 return eModuleKindKernelObj; 971 972 // Is this the main RS runtime library 973 const ConstString rs_lib("libRS.so"); 974 if (module_sp->GetFileSpec().GetFilename() == rs_lib) { 975 return eModuleKindLibRS; 976 } 977 978 const ConstString rs_driverlib("libRSDriver.so"); 979 if (module_sp->GetFileSpec().GetFilename() == rs_driverlib) { 980 return eModuleKindDriver; 981 } 982 983 const ConstString rs_cpureflib("libRSCpuRef.so"); 984 if (module_sp->GetFileSpec().GetFilename() == rs_cpureflib) { 985 return eModuleKindImpl; 986 } 987 } 988 return eModuleKindIgnored; 989 } 990 991 bool RenderScriptRuntime::IsRenderScriptModule( 992 const lldb::ModuleSP &module_sp) { 993 return GetModuleKind(module_sp) != eModuleKindIgnored; 994 } 995 996 void RenderScriptRuntime::ModulesDidLoad(const ModuleList &module_list) { 997 std::lock_guard<std::recursive_mutex> guard(module_list.GetMutex()); 998 999 size_t num_modules = module_list.GetSize(); 1000 for (size_t i = 0; i < num_modules; i++) { 1001 auto mod = module_list.GetModuleAtIndex(i); 1002 if (IsRenderScriptModule(mod)) { 1003 LoadModule(mod); 1004 } 1005 } 1006 } 1007 1008 // PluginInterface protocol 1009 lldb_private::ConstString RenderScriptRuntime::GetPluginName() { 1010 return GetPluginNameStatic(); 1011 } 1012 1013 uint32_t RenderScriptRuntime::GetPluginVersion() { return 1; } 1014 1015 bool RenderScriptRuntime::GetDynamicTypeAndAddress( 1016 ValueObject &in_value, lldb::DynamicValueType use_dynamic, 1017 TypeAndOrName &class_type_or_name, Address &address, 1018 Value::ValueType &value_type) { 1019 return false; 1020 } 1021 1022 TypeAndOrName 1023 RenderScriptRuntime::FixUpDynamicType(const TypeAndOrName &type_and_or_name, 1024 ValueObject &static_value) { 1025 return type_and_or_name; 1026 } 1027 1028 bool RenderScriptRuntime::CouldHaveDynamicValue(ValueObject &in_value) { 1029 return false; 1030 } 1031 1032 lldb::BreakpointResolverSP 1033 RenderScriptRuntime::CreateExceptionResolver(Breakpoint *bp, bool catch_bp, 1034 bool throw_bp) { 1035 BreakpointResolverSP resolver_sp; 1036 return resolver_sp; 1037 } 1038 1039 const RenderScriptRuntime::HookDefn RenderScriptRuntime::s_runtimeHookDefns[] = 1040 { 1041 // rsdScript 1042 {"rsdScriptInit", "_Z13rsdScriptInitPKN7android12renderscript7ContextEP" 1043 "NS0_7ScriptCEPKcS7_PKhjj", 1044 "_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_" 1045 "7ScriptCEPKcS7_PKhmj", 1046 0, RenderScriptRuntime::eModuleKindDriver, 1047 &lldb_private::RenderScriptRuntime::CaptureScriptInit}, 1048 {"rsdScriptInvokeForEachMulti", 1049 "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0" 1050 "_6ScriptEjPPKNS0_10AllocationEjPS6_PKvjPK12RsScriptCall", 1051 "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0" 1052 "_6ScriptEjPPKNS0_10AllocationEmPS6_PKvmPK12RsScriptCall", 1053 0, RenderScriptRuntime::eModuleKindDriver, 1054 &lldb_private::RenderScriptRuntime::CaptureScriptInvokeForEachMulti}, 1055 {"rsdScriptSetGlobalVar", "_Z21rsdScriptSetGlobalVarPKN7android12render" 1056 "script7ContextEPKNS0_6ScriptEjPvj", 1057 "_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_" 1058 "6ScriptEjPvm", 1059 0, RenderScriptRuntime::eModuleKindDriver, 1060 &lldb_private::RenderScriptRuntime::CaptureSetGlobalVar}, 1061 1062 // rsdAllocation 1063 {"rsdAllocationInit", "_Z17rsdAllocationInitPKN7android12renderscript7C" 1064 "ontextEPNS0_10AllocationEb", 1065 "_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_" 1066 "10AllocationEb", 1067 0, RenderScriptRuntime::eModuleKindDriver, 1068 &lldb_private::RenderScriptRuntime::CaptureAllocationInit}, 1069 {"rsdAllocationRead2D", 1070 "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_" 1071 "10AllocationEjjj23RsAllocationCubemapFacejjPvjj", 1072 "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_" 1073 "10AllocationEjjj23RsAllocationCubemapFacejjPvmm", 1074 0, RenderScriptRuntime::eModuleKindDriver, nullptr}, 1075 {"rsdAllocationDestroy", "_Z20rsdAllocationDestroyPKN7android12rendersc" 1076 "ript7ContextEPNS0_10AllocationE", 1077 "_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_" 1078 "10AllocationE", 1079 0, RenderScriptRuntime::eModuleKindDriver, 1080 &lldb_private::RenderScriptRuntime::CaptureAllocationDestroy}, 1081 1082 // renderscript script groups 1083 {"rsdDebugHintScriptGroup2", "_ZN7android12renderscript21debugHintScrip" 1084 "tGroup2EPKcjPKPFvPK24RsExpandKernelDriver" 1085 "InfojjjEj", 1086 "_ZN7android12renderscript21debugHintScriptGroup2EPKcjPKPFvPK24RsExpan" 1087 "dKernelDriverInfojjjEj", 1088 0, RenderScriptRuntime::eModuleKindImpl, 1089 &lldb_private::RenderScriptRuntime::CaptureDebugHintScriptGroup2}}; 1090 1091 const size_t RenderScriptRuntime::s_runtimeHookCount = 1092 sizeof(s_runtimeHookDefns) / sizeof(s_runtimeHookDefns[0]); 1093 1094 bool RenderScriptRuntime::HookCallback(void *baton, 1095 StoppointCallbackContext *ctx, 1096 lldb::user_id_t break_id, 1097 lldb::user_id_t break_loc_id) { 1098 RuntimeHook *hook = (RuntimeHook *)baton; 1099 ExecutionContext exe_ctx(ctx->exe_ctx_ref); 1100 1101 RenderScriptRuntime *lang_rt = llvm::cast<RenderScriptRuntime>( 1102 exe_ctx.GetProcessPtr()->GetLanguageRuntime( 1103 eLanguageTypeExtRenderScript)); 1104 1105 lang_rt->HookCallback(hook, exe_ctx); 1106 1107 return false; 1108 } 1109 1110 void RenderScriptRuntime::HookCallback(RuntimeHook *hook, 1111 ExecutionContext &exe_ctx) { 1112 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1113 1114 LLDB_LOGF(log, "%s - '%s'", __FUNCTION__, hook->defn->name); 1115 1116 if (hook->defn->grabber) { 1117 (this->*(hook->defn->grabber))(hook, exe_ctx); 1118 } 1119 } 1120 1121 void RenderScriptRuntime::CaptureDebugHintScriptGroup2( 1122 RuntimeHook *hook_info, ExecutionContext &context) { 1123 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1124 1125 enum { 1126 eGroupName = 0, 1127 eGroupNameSize, 1128 eKernel, 1129 eKernelCount, 1130 }; 1131 1132 std::array<ArgItem, 4> args{{ 1133 {ArgItem::ePointer, 0}, // const char *groupName 1134 {ArgItem::eInt32, 0}, // const uint32_t groupNameSize 1135 {ArgItem::ePointer, 0}, // const ExpandFuncTy *kernel 1136 {ArgItem::eInt32, 0}, // const uint32_t kernelCount 1137 }}; 1138 1139 if (!GetArgs(context, args.data(), args.size())) { 1140 LLDB_LOGF(log, "%s - Error while reading the function parameters", 1141 __FUNCTION__); 1142 return; 1143 } else if (log) { 1144 LLDB_LOGF(log, "%s - groupName : 0x%" PRIx64, __FUNCTION__, 1145 addr_t(args[eGroupName])); 1146 LLDB_LOGF(log, "%s - groupNameSize: %" PRIu64, __FUNCTION__, 1147 uint64_t(args[eGroupNameSize])); 1148 LLDB_LOGF(log, "%s - kernel : 0x%" PRIx64, __FUNCTION__, 1149 addr_t(args[eKernel])); 1150 LLDB_LOGF(log, "%s - kernelCount : %" PRIu64, __FUNCTION__, 1151 uint64_t(args[eKernelCount])); 1152 } 1153 1154 // parse script group name 1155 ConstString group_name; 1156 { 1157 Status err; 1158 const uint64_t len = uint64_t(args[eGroupNameSize]); 1159 std::unique_ptr<char[]> buffer(new char[uint32_t(len + 1)]); 1160 m_process->ReadMemory(addr_t(args[eGroupName]), buffer.get(), len, err); 1161 buffer.get()[len] = '\0'; 1162 if (!err.Success()) { 1163 LLDB_LOGF(log, "Error reading scriptgroup name from target"); 1164 return; 1165 } else { 1166 LLDB_LOGF(log, "Extracted scriptgroup name %s", buffer.get()); 1167 } 1168 // write back the script group name 1169 group_name.SetCString(buffer.get()); 1170 } 1171 1172 // create or access existing script group 1173 RSScriptGroupDescriptorSP group; 1174 { 1175 // search for existing script group 1176 for (auto sg : m_scriptGroups) { 1177 if (sg->m_name == group_name) { 1178 group = sg; 1179 break; 1180 } 1181 } 1182 if (!group) { 1183 group = std::make_shared<RSScriptGroupDescriptor>(); 1184 group->m_name = group_name; 1185 m_scriptGroups.push_back(group); 1186 } else { 1187 // already have this script group 1188 LLDB_LOGF(log, "Attempt to add duplicate script group %s", 1189 group_name.AsCString()); 1190 return; 1191 } 1192 } 1193 assert(group); 1194 1195 const uint32_t target_ptr_size = m_process->GetAddressByteSize(); 1196 std::vector<addr_t> kernels; 1197 // parse kernel addresses in script group 1198 for (uint64_t i = 0; i < uint64_t(args[eKernelCount]); ++i) { 1199 RSScriptGroupDescriptor::Kernel kernel; 1200 // extract script group kernel addresses from the target 1201 const addr_t ptr_addr = addr_t(args[eKernel]) + i * target_ptr_size; 1202 uint64_t kernel_addr = 0; 1203 Status err; 1204 size_t read = 1205 m_process->ReadMemory(ptr_addr, &kernel_addr, target_ptr_size, err); 1206 if (!err.Success() || read != target_ptr_size) { 1207 LLDB_LOGF(log, "Error parsing kernel address %" PRIu64 " in script group", 1208 i); 1209 return; 1210 } 1211 LLDB_LOGF(log, "Extracted scriptgroup kernel address - 0x%" PRIx64, 1212 kernel_addr); 1213 kernel.m_addr = kernel_addr; 1214 1215 // try to resolve the associated kernel name 1216 if (!ResolveKernelName(kernel.m_addr, kernel.m_name)) { 1217 LLDB_LOGF(log, "Parsed scriptgroup kernel %" PRIu64 " - 0x%" PRIx64, i, 1218 kernel_addr); 1219 return; 1220 } 1221 1222 // try to find the non '.expand' function 1223 { 1224 const llvm::StringRef expand(".expand"); 1225 const llvm::StringRef name_ref = kernel.m_name.GetStringRef(); 1226 if (name_ref.endswith(expand)) { 1227 const ConstString base_kernel(name_ref.drop_back(expand.size())); 1228 // verify this function is a valid kernel 1229 if (IsKnownKernel(base_kernel)) { 1230 kernel.m_name = base_kernel; 1231 LLDB_LOGF(log, "%s - found non expand version '%s'", __FUNCTION__, 1232 base_kernel.GetCString()); 1233 } 1234 } 1235 } 1236 // add to a list of script group kernels we know about 1237 group->m_kernels.push_back(kernel); 1238 } 1239 1240 // Resolve any pending scriptgroup breakpoints 1241 { 1242 Target &target = m_process->GetTarget(); 1243 const BreakpointList &list = target.GetBreakpointList(); 1244 const size_t num_breakpoints = list.GetSize(); 1245 LLDB_LOGF(log, "Resolving %zu breakpoints", num_breakpoints); 1246 for (size_t i = 0; i < num_breakpoints; ++i) { 1247 const BreakpointSP bp = list.GetBreakpointAtIndex(i); 1248 if (bp) { 1249 if (bp->MatchesName(group_name.AsCString())) { 1250 LLDB_LOGF(log, "Found breakpoint with name %s", 1251 group_name.AsCString()); 1252 bp->ResolveBreakpoint(); 1253 } 1254 } 1255 } 1256 } 1257 } 1258 1259 void RenderScriptRuntime::CaptureScriptInvokeForEachMulti( 1260 RuntimeHook *hook, ExecutionContext &exe_ctx) { 1261 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1262 1263 enum { 1264 eRsContext = 0, 1265 eRsScript, 1266 eRsSlot, 1267 eRsAIns, 1268 eRsInLen, 1269 eRsAOut, 1270 eRsUsr, 1271 eRsUsrLen, 1272 eRsSc, 1273 }; 1274 1275 std::array<ArgItem, 9> args{{ 1276 ArgItem{ArgItem::ePointer, 0}, // const Context *rsc 1277 ArgItem{ArgItem::ePointer, 0}, // Script *s 1278 ArgItem{ArgItem::eInt32, 0}, // uint32_t slot 1279 ArgItem{ArgItem::ePointer, 0}, // const Allocation **aIns 1280 ArgItem{ArgItem::eInt32, 0}, // size_t inLen 1281 ArgItem{ArgItem::ePointer, 0}, // Allocation *aout 1282 ArgItem{ArgItem::ePointer, 0}, // const void *usr 1283 ArgItem{ArgItem::eInt32, 0}, // size_t usrLen 1284 ArgItem{ArgItem::ePointer, 0}, // const RsScriptCall *sc 1285 }}; 1286 1287 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1288 if (!success) { 1289 LLDB_LOGF(log, "%s - Error while reading the function parameters", 1290 __FUNCTION__); 1291 return; 1292 } 1293 1294 const uint32_t target_ptr_size = m_process->GetAddressByteSize(); 1295 Status err; 1296 std::vector<uint64_t> allocs; 1297 1298 // traverse allocation list 1299 for (uint64_t i = 0; i < uint64_t(args[eRsInLen]); ++i) { 1300 // calculate offest to allocation pointer 1301 const addr_t addr = addr_t(args[eRsAIns]) + i * target_ptr_size; 1302 1303 // Note: due to little endian layout, reading 32bits or 64bits into res 1304 // will give the correct results. 1305 uint64_t result = 0; 1306 size_t read = m_process->ReadMemory(addr, &result, target_ptr_size, err); 1307 if (read != target_ptr_size || !err.Success()) { 1308 LLDB_LOGF(log, 1309 "%s - Error while reading allocation list argument %" PRIu64, 1310 __FUNCTION__, i); 1311 } else { 1312 allocs.push_back(result); 1313 } 1314 } 1315 1316 // if there is an output allocation track it 1317 if (uint64_t alloc_out = uint64_t(args[eRsAOut])) { 1318 allocs.push_back(alloc_out); 1319 } 1320 1321 // for all allocations we have found 1322 for (const uint64_t alloc_addr : allocs) { 1323 AllocationDetails *alloc = LookUpAllocation(alloc_addr); 1324 if (!alloc) 1325 alloc = CreateAllocation(alloc_addr); 1326 1327 if (alloc) { 1328 // save the allocation address 1329 if (alloc->address.isValid()) { 1330 // check the allocation address we already have matches 1331 assert(*alloc->address.get() == alloc_addr); 1332 } else { 1333 alloc->address = alloc_addr; 1334 } 1335 1336 // save the context 1337 if (log) { 1338 if (alloc->context.isValid() && 1339 *alloc->context.get() != addr_t(args[eRsContext])) 1340 LLDB_LOGF(log, "%s - Allocation used by multiple contexts", 1341 __FUNCTION__); 1342 } 1343 alloc->context = addr_t(args[eRsContext]); 1344 } 1345 } 1346 1347 // make sure we track this script object 1348 if (lldb_private::RenderScriptRuntime::ScriptDetails *script = 1349 LookUpScript(addr_t(args[eRsScript]), true)) { 1350 if (log) { 1351 if (script->context.isValid() && 1352 *script->context.get() != addr_t(args[eRsContext])) 1353 LLDB_LOGF(log, "%s - Script used by multiple contexts", __FUNCTION__); 1354 } 1355 script->context = addr_t(args[eRsContext]); 1356 } 1357 } 1358 1359 void RenderScriptRuntime::CaptureSetGlobalVar(RuntimeHook *hook, 1360 ExecutionContext &context) { 1361 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1362 1363 enum { 1364 eRsContext, 1365 eRsScript, 1366 eRsId, 1367 eRsData, 1368 eRsLength, 1369 }; 1370 1371 std::array<ArgItem, 5> args{{ 1372 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1373 ArgItem{ArgItem::ePointer, 0}, // eRsScript 1374 ArgItem{ArgItem::eInt32, 0}, // eRsId 1375 ArgItem{ArgItem::ePointer, 0}, // eRsData 1376 ArgItem{ArgItem::eInt32, 0}, // eRsLength 1377 }}; 1378 1379 bool success = GetArgs(context, &args[0], args.size()); 1380 if (!success) { 1381 LLDB_LOGF(log, "%s - error reading the function parameters.", __FUNCTION__); 1382 return; 1383 } 1384 1385 if (log) { 1386 LLDB_LOGF(log, 1387 "%s - 0x%" PRIx64 ",0x%" PRIx64 " slot %" PRIu64 " = 0x%" PRIx64 1388 ":%" PRIu64 "bytes.", 1389 __FUNCTION__, uint64_t(args[eRsContext]), 1390 uint64_t(args[eRsScript]), uint64_t(args[eRsId]), 1391 uint64_t(args[eRsData]), uint64_t(args[eRsLength])); 1392 1393 addr_t script_addr = addr_t(args[eRsScript]); 1394 if (m_scriptMappings.find(script_addr) != m_scriptMappings.end()) { 1395 auto rsm = m_scriptMappings[script_addr]; 1396 if (uint64_t(args[eRsId]) < rsm->m_globals.size()) { 1397 auto rsg = rsm->m_globals[uint64_t(args[eRsId])]; 1398 LLDB_LOGF(log, "%s - Setting of '%s' within '%s' inferred", 1399 __FUNCTION__, rsg.m_name.AsCString(), 1400 rsm->m_module->GetFileSpec().GetFilename().AsCString()); 1401 } 1402 } 1403 } 1404 } 1405 1406 void RenderScriptRuntime::CaptureAllocationInit(RuntimeHook *hook, 1407 ExecutionContext &exe_ctx) { 1408 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1409 1410 enum { eRsContext, eRsAlloc, eRsForceZero }; 1411 1412 std::array<ArgItem, 3> args{{ 1413 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1414 ArgItem{ArgItem::ePointer, 0}, // eRsAlloc 1415 ArgItem{ArgItem::eBool, 0}, // eRsForceZero 1416 }}; 1417 1418 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1419 if (!success) { 1420 LLDB_LOGF(log, "%s - error while reading the function parameters", 1421 __FUNCTION__); 1422 return; 1423 } 1424 1425 LLDB_LOGF(log, "%s - 0x%" PRIx64 ",0x%" PRIx64 ",0x%" PRIx64 " .", 1426 __FUNCTION__, uint64_t(args[eRsContext]), uint64_t(args[eRsAlloc]), 1427 uint64_t(args[eRsForceZero])); 1428 1429 AllocationDetails *alloc = CreateAllocation(uint64_t(args[eRsAlloc])); 1430 if (alloc) 1431 alloc->context = uint64_t(args[eRsContext]); 1432 } 1433 1434 void RenderScriptRuntime::CaptureAllocationDestroy(RuntimeHook *hook, 1435 ExecutionContext &exe_ctx) { 1436 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1437 1438 enum { 1439 eRsContext, 1440 eRsAlloc, 1441 }; 1442 1443 std::array<ArgItem, 2> args{{ 1444 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1445 ArgItem{ArgItem::ePointer, 0}, // eRsAlloc 1446 }}; 1447 1448 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1449 if (!success) { 1450 LLDB_LOGF(log, "%s - error while reading the function parameters.", 1451 __FUNCTION__); 1452 return; 1453 } 1454 1455 LLDB_LOGF(log, "%s - 0x%" PRIx64 ", 0x%" PRIx64 ".", __FUNCTION__, 1456 uint64_t(args[eRsContext]), uint64_t(args[eRsAlloc])); 1457 1458 for (auto iter = m_allocations.begin(); iter != m_allocations.end(); ++iter) { 1459 auto &allocation_up = *iter; // get the unique pointer 1460 if (allocation_up->address.isValid() && 1461 *allocation_up->address.get() == addr_t(args[eRsAlloc])) { 1462 m_allocations.erase(iter); 1463 LLDB_LOGF(log, "%s - deleted allocation entry.", __FUNCTION__); 1464 return; 1465 } 1466 } 1467 1468 LLDB_LOGF(log, "%s - couldn't find destroyed allocation.", __FUNCTION__); 1469 } 1470 1471 void RenderScriptRuntime::CaptureScriptInit(RuntimeHook *hook, 1472 ExecutionContext &exe_ctx) { 1473 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1474 1475 Status err; 1476 Process *process = exe_ctx.GetProcessPtr(); 1477 1478 enum { eRsContext, eRsScript, eRsResNamePtr, eRsCachedDirPtr }; 1479 1480 std::array<ArgItem, 4> args{ 1481 {ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}, 1482 ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}}}; 1483 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1484 if (!success) { 1485 LLDB_LOGF(log, "%s - error while reading the function parameters.", 1486 __FUNCTION__); 1487 return; 1488 } 1489 1490 std::string res_name; 1491 process->ReadCStringFromMemory(addr_t(args[eRsResNamePtr]), res_name, err); 1492 if (err.Fail()) { 1493 LLDB_LOGF(log, "%s - error reading res_name: %s.", __FUNCTION__, 1494 err.AsCString()); 1495 } 1496 1497 std::string cache_dir; 1498 process->ReadCStringFromMemory(addr_t(args[eRsCachedDirPtr]), cache_dir, err); 1499 if (err.Fail()) { 1500 LLDB_LOGF(log, "%s - error reading cache_dir: %s.", __FUNCTION__, 1501 err.AsCString()); 1502 } 1503 1504 LLDB_LOGF(log, "%s - 0x%" PRIx64 ",0x%" PRIx64 " => '%s' at '%s' .", 1505 __FUNCTION__, uint64_t(args[eRsContext]), uint64_t(args[eRsScript]), 1506 res_name.c_str(), cache_dir.c_str()); 1507 1508 if (res_name.size() > 0) { 1509 StreamString strm; 1510 strm.Printf("librs.%s.so", res_name.c_str()); 1511 1512 ScriptDetails *script = LookUpScript(addr_t(args[eRsScript]), true); 1513 if (script) { 1514 script->type = ScriptDetails::eScriptC; 1515 script->cache_dir = cache_dir; 1516 script->res_name = res_name; 1517 script->shared_lib = strm.GetString(); 1518 script->context = addr_t(args[eRsContext]); 1519 } 1520 1521 LLDB_LOGF(log, 1522 "%s - '%s' tagged with context 0x%" PRIx64 1523 " and script 0x%" PRIx64 ".", 1524 __FUNCTION__, strm.GetData(), uint64_t(args[eRsContext]), 1525 uint64_t(args[eRsScript])); 1526 } else if (log) { 1527 LLDB_LOGF(log, "%s - resource name invalid, Script not tagged.", 1528 __FUNCTION__); 1529 } 1530 } 1531 1532 void RenderScriptRuntime::LoadRuntimeHooks(lldb::ModuleSP module, 1533 ModuleKind kind) { 1534 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1535 1536 if (!module) { 1537 return; 1538 } 1539 1540 Target &target = GetProcess()->GetTarget(); 1541 const llvm::Triple::ArchType machine = target.GetArchitecture().GetMachine(); 1542 1543 if (machine != llvm::Triple::ArchType::x86 && 1544 machine != llvm::Triple::ArchType::arm && 1545 machine != llvm::Triple::ArchType::aarch64 && 1546 machine != llvm::Triple::ArchType::mipsel && 1547 machine != llvm::Triple::ArchType::mips64el && 1548 machine != llvm::Triple::ArchType::x86_64) { 1549 LLDB_LOGF(log, "%s - unable to hook runtime functions.", __FUNCTION__); 1550 return; 1551 } 1552 1553 const uint32_t target_ptr_size = 1554 target.GetArchitecture().GetAddressByteSize(); 1555 1556 std::array<bool, s_runtimeHookCount> hook_placed; 1557 hook_placed.fill(false); 1558 1559 for (size_t idx = 0; idx < s_runtimeHookCount; idx++) { 1560 const HookDefn *hook_defn = &s_runtimeHookDefns[idx]; 1561 if (hook_defn->kind != kind) { 1562 continue; 1563 } 1564 1565 const char *symbol_name = (target_ptr_size == 4) 1566 ? hook_defn->symbol_name_m32 1567 : hook_defn->symbol_name_m64; 1568 1569 const Symbol *sym = module->FindFirstSymbolWithNameAndType( 1570 ConstString(symbol_name), eSymbolTypeCode); 1571 if (!sym) { 1572 if (log) { 1573 LLDB_LOGF(log, "%s - symbol '%s' related to the function %s not found", 1574 __FUNCTION__, symbol_name, hook_defn->name); 1575 } 1576 continue; 1577 } 1578 1579 addr_t addr = sym->GetLoadAddress(&target); 1580 if (addr == LLDB_INVALID_ADDRESS) { 1581 LLDB_LOGF(log, 1582 "%s - unable to resolve the address of hook function '%s' " 1583 "with symbol '%s'.", 1584 __FUNCTION__, hook_defn->name, symbol_name); 1585 continue; 1586 } else { 1587 LLDB_LOGF(log, "%s - function %s, address resolved at 0x%" PRIx64, 1588 __FUNCTION__, hook_defn->name, addr); 1589 } 1590 1591 RuntimeHookSP hook(new RuntimeHook()); 1592 hook->address = addr; 1593 hook->defn = hook_defn; 1594 hook->bp_sp = target.CreateBreakpoint(addr, true, false); 1595 hook->bp_sp->SetCallback(HookCallback, hook.get(), true); 1596 m_runtimeHooks[addr] = hook; 1597 if (log) { 1598 LLDB_LOGF(log, 1599 "%s - successfully hooked '%s' in '%s' version %" PRIu64 1600 " at 0x%" PRIx64 ".", 1601 __FUNCTION__, hook_defn->name, 1602 module->GetFileSpec().GetFilename().AsCString(), 1603 (uint64_t)hook_defn->version, (uint64_t)addr); 1604 } 1605 hook_placed[idx] = true; 1606 } 1607 1608 // log any unhooked function 1609 if (log) { 1610 for (size_t i = 0; i < hook_placed.size(); ++i) { 1611 if (hook_placed[i]) 1612 continue; 1613 const HookDefn &hook_defn = s_runtimeHookDefns[i]; 1614 if (hook_defn.kind != kind) 1615 continue; 1616 LLDB_LOGF(log, "%s - function %s was not hooked", __FUNCTION__, 1617 hook_defn.name); 1618 } 1619 } 1620 } 1621 1622 void RenderScriptRuntime::FixupScriptDetails(RSModuleDescriptorSP rsmodule_sp) { 1623 if (!rsmodule_sp) 1624 return; 1625 1626 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1627 1628 const ModuleSP module = rsmodule_sp->m_module; 1629 const FileSpec &file = module->GetPlatformFileSpec(); 1630 1631 // Iterate over all of the scripts that we currently know of. Note: We cant 1632 // push or pop to m_scripts here or it may invalidate rs_script. 1633 for (const auto &rs_script : m_scripts) { 1634 // Extract the expected .so file path for this script. 1635 std::string shared_lib; 1636 if (!rs_script->shared_lib.get(shared_lib)) 1637 continue; 1638 1639 // Only proceed if the module that has loaded corresponds to this script. 1640 if (file.GetFilename() != ConstString(shared_lib.c_str())) 1641 continue; 1642 1643 // Obtain the script address which we use as a key. 1644 lldb::addr_t script; 1645 if (!rs_script->script.get(script)) 1646 continue; 1647 1648 // If we have a script mapping for the current script. 1649 if (m_scriptMappings.find(script) != m_scriptMappings.end()) { 1650 // if the module we have stored is different to the one we just received. 1651 if (m_scriptMappings[script] != rsmodule_sp) { 1652 LLDB_LOGF( 1653 log, 1654 "%s - script %" PRIx64 " wants reassigned to new rsmodule '%s'.", 1655 __FUNCTION__, (uint64_t)script, 1656 rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString()); 1657 } 1658 } 1659 // We don't have a script mapping for the current script. 1660 else { 1661 // Obtain the script resource name. 1662 std::string res_name; 1663 if (rs_script->res_name.get(res_name)) 1664 // Set the modules resource name. 1665 rsmodule_sp->m_resname = res_name; 1666 // Add Script/Module pair to map. 1667 m_scriptMappings[script] = rsmodule_sp; 1668 LLDB_LOGF(log, "%s - script %" PRIx64 " associated with rsmodule '%s'.", 1669 __FUNCTION__, (uint64_t)script, 1670 rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString()); 1671 } 1672 } 1673 } 1674 1675 // Uses the Target API to evaluate the expression passed as a parameter to the 1676 // function The result of that expression is returned an unsigned 64 bit int, 1677 // via the result* parameter. Function returns true on success, and false on 1678 // failure 1679 bool RenderScriptRuntime::EvalRSExpression(const char *expr, 1680 StackFrame *frame_ptr, 1681 uint64_t *result) { 1682 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1683 LLDB_LOGF(log, "%s(%s)", __FUNCTION__, expr); 1684 1685 ValueObjectSP expr_result; 1686 EvaluateExpressionOptions options; 1687 options.SetLanguage(lldb::eLanguageTypeC_plus_plus); 1688 // Perform the actual expression evaluation 1689 auto &target = GetProcess()->GetTarget(); 1690 target.EvaluateExpression(expr, frame_ptr, expr_result, options); 1691 1692 if (!expr_result) { 1693 LLDB_LOGF(log, "%s: couldn't evaluate expression.", __FUNCTION__); 1694 return false; 1695 } 1696 1697 // The result of the expression is invalid 1698 if (!expr_result->GetError().Success()) { 1699 Status err = expr_result->GetError(); 1700 // Expression returned is void, so this is actually a success 1701 if (err.GetError() == UserExpression::kNoResult) { 1702 LLDB_LOGF(log, "%s - expression returned void.", __FUNCTION__); 1703 1704 result = nullptr; 1705 return true; 1706 } 1707 1708 LLDB_LOGF(log, "%s - error evaluating expression result: %s", __FUNCTION__, 1709 err.AsCString()); 1710 return false; 1711 } 1712 1713 bool success = false; 1714 // We only read the result as an uint32_t. 1715 *result = expr_result->GetValueAsUnsigned(0, &success); 1716 1717 if (!success) { 1718 LLDB_LOGF(log, "%s - couldn't convert expression result to uint32_t", 1719 __FUNCTION__); 1720 return false; 1721 } 1722 1723 return true; 1724 } 1725 1726 namespace { 1727 // Used to index expression format strings 1728 enum ExpressionStrings { 1729 eExprGetOffsetPtr = 0, 1730 eExprAllocGetType, 1731 eExprTypeDimX, 1732 eExprTypeDimY, 1733 eExprTypeDimZ, 1734 eExprTypeElemPtr, 1735 eExprElementType, 1736 eExprElementKind, 1737 eExprElementVec, 1738 eExprElementFieldCount, 1739 eExprSubelementsId, 1740 eExprSubelementsName, 1741 eExprSubelementsArrSize, 1742 1743 _eExprLast // keep at the end, implicit size of the array runtime_expressions 1744 }; 1745 1746 // max length of an expanded expression 1747 const int jit_max_expr_size = 512; 1748 1749 // Retrieve the string to JIT for the given expression 1750 #define JIT_TEMPLATE_CONTEXT "void* ctxt = (void*)rsDebugGetContextWrapper(0x%" PRIx64 "); " 1751 const char *JITTemplate(ExpressionStrings e) { 1752 // Format strings containing the expressions we may need to evaluate. 1753 static std::array<const char *, _eExprLast> runtime_expressions = { 1754 {// Mangled GetOffsetPointer(Allocation*, xoff, yoff, zoff, lod, cubemap) 1755 "(int*)_" 1756 "Z12GetOffsetPtrPKN7android12renderscript10AllocationEjjjj23RsAllocation" 1757 "CubemapFace" 1758 "(0x%" PRIx64 ", %" PRIu32 ", %" PRIu32 ", %" PRIu32 ", 0, 0)", // eExprGetOffsetPtr 1759 1760 // Type* rsaAllocationGetType(Context*, Allocation*) 1761 JIT_TEMPLATE_CONTEXT "(void*)rsaAllocationGetType(ctxt, 0x%" PRIx64 ")", // eExprAllocGetType 1762 1763 // rsaTypeGetNativeData(Context*, Type*, void* typeData, size) Pack the 1764 // data in the following way mHal.state.dimX; mHal.state.dimY; 1765 // mHal.state.dimZ; mHal.state.lodCount; mHal.state.faces; mElement; 1766 // into typeData Need to specify 32 or 64 bit for uint_t since this 1767 // differs between devices 1768 JIT_TEMPLATE_CONTEXT 1769 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt" 1770 ", 0x%" PRIx64 ", data, 6); data[0]", // eExprTypeDimX 1771 JIT_TEMPLATE_CONTEXT 1772 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt" 1773 ", 0x%" PRIx64 ", data, 6); data[1]", // eExprTypeDimY 1774 JIT_TEMPLATE_CONTEXT 1775 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt" 1776 ", 0x%" PRIx64 ", data, 6); data[2]", // eExprTypeDimZ 1777 JIT_TEMPLATE_CONTEXT 1778 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt" 1779 ", 0x%" PRIx64 ", data, 6); data[5]", // eExprTypeElemPtr 1780 1781 // rsaElementGetNativeData(Context*, Element*, uint32_t* elemData,size) 1782 // Pack mType; mKind; mNormalized; mVectorSize; NumSubElements into 1783 // elemData 1784 JIT_TEMPLATE_CONTEXT 1785 "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt" 1786 ", 0x%" PRIx64 ", data, 5); data[0]", // eExprElementType 1787 JIT_TEMPLATE_CONTEXT 1788 "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt" 1789 ", 0x%" PRIx64 ", data, 5); data[1]", // eExprElementKind 1790 JIT_TEMPLATE_CONTEXT 1791 "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt" 1792 ", 0x%" PRIx64 ", data, 5); data[3]", // eExprElementVec 1793 JIT_TEMPLATE_CONTEXT 1794 "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt" 1795 ", 0x%" PRIx64 ", data, 5); data[4]", // eExprElementFieldCount 1796 1797 // rsaElementGetSubElements(RsContext con, RsElement elem, uintptr_t 1798 // *ids, const char **names, size_t *arraySizes, uint32_t dataSize) 1799 // Needed for Allocations of structs to gather details about 1800 // fields/Subelements Element* of field 1801 JIT_TEMPLATE_CONTEXT "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 1802 "]; size_t arr_size[%" PRIu32 "];" 1803 "(void*)rsaElementGetSubElements(ctxt, 0x%" PRIx64 1804 ", ids, names, arr_size, %" PRIu32 "); ids[%" PRIu32 "]", // eExprSubelementsId 1805 1806 // Name of field 1807 JIT_TEMPLATE_CONTEXT "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 1808 "]; size_t arr_size[%" PRIu32 "];" 1809 "(void*)rsaElementGetSubElements(ctxt, 0x%" PRIx64 1810 ", ids, names, arr_size, %" PRIu32 "); names[%" PRIu32 "]", // eExprSubelementsName 1811 1812 // Array size of field 1813 JIT_TEMPLATE_CONTEXT "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 1814 "]; size_t arr_size[%" PRIu32 "];" 1815 "(void*)rsaElementGetSubElements(ctxt, 0x%" PRIx64 1816 ", ids, names, arr_size, %" PRIu32 "); arr_size[%" PRIu32 "]"}}; // eExprSubelementsArrSize 1817 1818 return runtime_expressions[e]; 1819 } 1820 } // end of the anonymous namespace 1821 1822 // JITs the RS runtime for the internal data pointer of an allocation. Is 1823 // passed x,y,z coordinates for the pointer to a specific element. Then sets 1824 // the data_ptr member in Allocation with the result. Returns true on success, 1825 // false otherwise 1826 bool RenderScriptRuntime::JITDataPointer(AllocationDetails *alloc, 1827 StackFrame *frame_ptr, uint32_t x, 1828 uint32_t y, uint32_t z) { 1829 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1830 1831 if (!alloc->address.isValid()) { 1832 LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__); 1833 return false; 1834 } 1835 1836 const char *fmt_str = JITTemplate(eExprGetOffsetPtr); 1837 char expr_buf[jit_max_expr_size]; 1838 1839 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 1840 *alloc->address.get(), x, y, z); 1841 if (written < 0) { 1842 LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__); 1843 return false; 1844 } else if (written >= jit_max_expr_size) { 1845 LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__); 1846 return false; 1847 } 1848 1849 uint64_t result = 0; 1850 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 1851 return false; 1852 1853 addr_t data_ptr = static_cast<lldb::addr_t>(result); 1854 alloc->data_ptr = data_ptr; 1855 1856 return true; 1857 } 1858 1859 // JITs the RS runtime for the internal pointer to the RS Type of an allocation 1860 // Then sets the type_ptr member in Allocation with the result. Returns true on 1861 // success, false otherwise 1862 bool RenderScriptRuntime::JITTypePointer(AllocationDetails *alloc, 1863 StackFrame *frame_ptr) { 1864 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1865 1866 if (!alloc->address.isValid() || !alloc->context.isValid()) { 1867 LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__); 1868 return false; 1869 } 1870 1871 const char *fmt_str = JITTemplate(eExprAllocGetType); 1872 char expr_buf[jit_max_expr_size]; 1873 1874 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 1875 *alloc->context.get(), *alloc->address.get()); 1876 if (written < 0) { 1877 LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__); 1878 return false; 1879 } else if (written >= jit_max_expr_size) { 1880 LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__); 1881 return false; 1882 } 1883 1884 uint64_t result = 0; 1885 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 1886 return false; 1887 1888 addr_t type_ptr = static_cast<lldb::addr_t>(result); 1889 alloc->type_ptr = type_ptr; 1890 1891 return true; 1892 } 1893 1894 // JITs the RS runtime for information about the dimensions and type of an 1895 // allocation Then sets dimension and element_ptr members in Allocation with 1896 // the result. Returns true on success, false otherwise 1897 bool RenderScriptRuntime::JITTypePacked(AllocationDetails *alloc, 1898 StackFrame *frame_ptr) { 1899 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1900 1901 if (!alloc->type_ptr.isValid() || !alloc->context.isValid()) { 1902 LLDB_LOGF(log, "%s - Failed to find allocation details.", __FUNCTION__); 1903 return false; 1904 } 1905 1906 // Expression is different depending on if device is 32 or 64 bit 1907 uint32_t target_ptr_size = 1908 GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 1909 const uint32_t bits = target_ptr_size == 4 ? 32 : 64; 1910 1911 // We want 4 elements from packed data 1912 const uint32_t num_exprs = 4; 1913 static_assert(num_exprs == (eExprTypeElemPtr - eExprTypeDimX + 1), 1914 "Invalid number of expressions"); 1915 1916 char expr_bufs[num_exprs][jit_max_expr_size]; 1917 uint64_t results[num_exprs]; 1918 1919 for (uint32_t i = 0; i < num_exprs; ++i) { 1920 const char *fmt_str = JITTemplate(ExpressionStrings(eExprTypeDimX + i)); 1921 int written = snprintf(expr_bufs[i], jit_max_expr_size, fmt_str, 1922 *alloc->context.get(), bits, *alloc->type_ptr.get()); 1923 if (written < 0) { 1924 LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__); 1925 return false; 1926 } else if (written >= jit_max_expr_size) { 1927 LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__); 1928 return false; 1929 } 1930 1931 // Perform expression evaluation 1932 if (!EvalRSExpression(expr_bufs[i], frame_ptr, &results[i])) 1933 return false; 1934 } 1935 1936 // Assign results to allocation members 1937 AllocationDetails::Dimension dims; 1938 dims.dim_1 = static_cast<uint32_t>(results[0]); 1939 dims.dim_2 = static_cast<uint32_t>(results[1]); 1940 dims.dim_3 = static_cast<uint32_t>(results[2]); 1941 alloc->dimension = dims; 1942 1943 addr_t element_ptr = static_cast<lldb::addr_t>(results[3]); 1944 alloc->element.element_ptr = element_ptr; 1945 1946 LLDB_LOGF(log, 1947 "%s - dims (%" PRIu32 ", %" PRIu32 ", %" PRIu32 1948 ") Element*: 0x%" PRIx64 ".", 1949 __FUNCTION__, dims.dim_1, dims.dim_2, dims.dim_3, element_ptr); 1950 1951 return true; 1952 } 1953 1954 // JITs the RS runtime for information about the Element of an allocation Then 1955 // sets type, type_vec_size, field_count and type_kind members in Element with 1956 // the result. Returns true on success, false otherwise 1957 bool RenderScriptRuntime::JITElementPacked(Element &elem, 1958 const lldb::addr_t context, 1959 StackFrame *frame_ptr) { 1960 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1961 1962 if (!elem.element_ptr.isValid()) { 1963 LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__); 1964 return false; 1965 } 1966 1967 // We want 4 elements from packed data 1968 const uint32_t num_exprs = 4; 1969 static_assert(num_exprs == (eExprElementFieldCount - eExprElementType + 1), 1970 "Invalid number of expressions"); 1971 1972 char expr_bufs[num_exprs][jit_max_expr_size]; 1973 uint64_t results[num_exprs]; 1974 1975 for (uint32_t i = 0; i < num_exprs; i++) { 1976 const char *fmt_str = JITTemplate(ExpressionStrings(eExprElementType + i)); 1977 int written = snprintf(expr_bufs[i], jit_max_expr_size, fmt_str, context, 1978 *elem.element_ptr.get()); 1979 if (written < 0) { 1980 LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__); 1981 return false; 1982 } else if (written >= jit_max_expr_size) { 1983 LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__); 1984 return false; 1985 } 1986 1987 // Perform expression evaluation 1988 if (!EvalRSExpression(expr_bufs[i], frame_ptr, &results[i])) 1989 return false; 1990 } 1991 1992 // Assign results to allocation members 1993 elem.type = static_cast<RenderScriptRuntime::Element::DataType>(results[0]); 1994 elem.type_kind = 1995 static_cast<RenderScriptRuntime::Element::DataKind>(results[1]); 1996 elem.type_vec_size = static_cast<uint32_t>(results[2]); 1997 elem.field_count = static_cast<uint32_t>(results[3]); 1998 1999 LLDB_LOGF(log, 2000 "%s - data type %" PRIu32 ", pixel type %" PRIu32 2001 ", vector size %" PRIu32 ", field count %" PRIu32, 2002 __FUNCTION__, *elem.type.get(), *elem.type_kind.get(), 2003 *elem.type_vec_size.get(), *elem.field_count.get()); 2004 2005 // If this Element has subelements then JIT rsaElementGetSubElements() for 2006 // details about its fields 2007 return !(*elem.field_count.get() > 0 && 2008 !JITSubelements(elem, context, frame_ptr)); 2009 } 2010 2011 // JITs the RS runtime for information about the subelements/fields of a struct 2012 // allocation This is necessary for infering the struct type so we can pretty 2013 // print the allocation's contents. Returns true on success, false otherwise 2014 bool RenderScriptRuntime::JITSubelements(Element &elem, 2015 const lldb::addr_t context, 2016 StackFrame *frame_ptr) { 2017 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2018 2019 if (!elem.element_ptr.isValid() || !elem.field_count.isValid()) { 2020 LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__); 2021 return false; 2022 } 2023 2024 const short num_exprs = 3; 2025 static_assert(num_exprs == (eExprSubelementsArrSize - eExprSubelementsId + 1), 2026 "Invalid number of expressions"); 2027 2028 char expr_buffer[jit_max_expr_size]; 2029 uint64_t results; 2030 2031 // Iterate over struct fields. 2032 const uint32_t field_count = *elem.field_count.get(); 2033 for (uint32_t field_index = 0; field_index < field_count; ++field_index) { 2034 Element child; 2035 for (uint32_t expr_index = 0; expr_index < num_exprs; ++expr_index) { 2036 const char *fmt_str = 2037 JITTemplate(ExpressionStrings(eExprSubelementsId + expr_index)); 2038 int written = snprintf(expr_buffer, jit_max_expr_size, fmt_str, 2039 context, field_count, field_count, field_count, 2040 *elem.element_ptr.get(), field_count, field_index); 2041 if (written < 0) { 2042 LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__); 2043 return false; 2044 } else if (written >= jit_max_expr_size) { 2045 LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__); 2046 return false; 2047 } 2048 2049 // Perform expression evaluation 2050 if (!EvalRSExpression(expr_buffer, frame_ptr, &results)) 2051 return false; 2052 2053 LLDB_LOGF(log, "%s - expr result 0x%" PRIx64 ".", __FUNCTION__, results); 2054 2055 switch (expr_index) { 2056 case 0: // Element* of child 2057 child.element_ptr = static_cast<addr_t>(results); 2058 break; 2059 case 1: // Name of child 2060 { 2061 lldb::addr_t address = static_cast<addr_t>(results); 2062 Status err; 2063 std::string name; 2064 GetProcess()->ReadCStringFromMemory(address, name, err); 2065 if (!err.Fail()) 2066 child.type_name = ConstString(name); 2067 else { 2068 LLDB_LOGF(log, "%s - warning: Couldn't read field name.", 2069 __FUNCTION__); 2070 } 2071 break; 2072 } 2073 case 2: // Array size of child 2074 child.array_size = static_cast<uint32_t>(results); 2075 break; 2076 } 2077 } 2078 2079 // We need to recursively JIT each Element field of the struct since 2080 // structs can be nested inside structs. 2081 if (!JITElementPacked(child, context, frame_ptr)) 2082 return false; 2083 elem.children.push_back(child); 2084 } 2085 2086 // Try to infer the name of the struct type so we can pretty print the 2087 // allocation contents. 2088 FindStructTypeName(elem, frame_ptr); 2089 2090 return true; 2091 } 2092 2093 // JITs the RS runtime for the address of the last element in the allocation. 2094 // The `elem_size` parameter represents the size of a single element, including 2095 // padding. Which is needed as an offset from the last element pointer. Using 2096 // this offset minus the starting address we can calculate the size of the 2097 // allocation. Returns true on success, false otherwise 2098 bool RenderScriptRuntime::JITAllocationSize(AllocationDetails *alloc, 2099 StackFrame *frame_ptr) { 2100 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2101 2102 if (!alloc->address.isValid() || !alloc->dimension.isValid() || 2103 !alloc->data_ptr.isValid() || !alloc->element.datum_size.isValid()) { 2104 LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__); 2105 return false; 2106 } 2107 2108 // Find dimensions 2109 uint32_t dim_x = alloc->dimension.get()->dim_1; 2110 uint32_t dim_y = alloc->dimension.get()->dim_2; 2111 uint32_t dim_z = alloc->dimension.get()->dim_3; 2112 2113 // Our plan of jitting the last element address doesn't seem to work for 2114 // struct Allocations` Instead try to infer the size ourselves without any 2115 // inter element padding. 2116 if (alloc->element.children.size() > 0) { 2117 if (dim_x == 0) 2118 dim_x = 1; 2119 if (dim_y == 0) 2120 dim_y = 1; 2121 if (dim_z == 0) 2122 dim_z = 1; 2123 2124 alloc->size = dim_x * dim_y * dim_z * *alloc->element.datum_size.get(); 2125 2126 LLDB_LOGF(log, "%s - inferred size of struct allocation %" PRIu32 ".", 2127 __FUNCTION__, *alloc->size.get()); 2128 return true; 2129 } 2130 2131 const char *fmt_str = JITTemplate(eExprGetOffsetPtr); 2132 char expr_buf[jit_max_expr_size]; 2133 2134 // Calculate last element 2135 dim_x = dim_x == 0 ? 0 : dim_x - 1; 2136 dim_y = dim_y == 0 ? 0 : dim_y - 1; 2137 dim_z = dim_z == 0 ? 0 : dim_z - 1; 2138 2139 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 2140 *alloc->address.get(), dim_x, dim_y, dim_z); 2141 if (written < 0) { 2142 LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__); 2143 return false; 2144 } else if (written >= jit_max_expr_size) { 2145 LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__); 2146 return false; 2147 } 2148 2149 uint64_t result = 0; 2150 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 2151 return false; 2152 2153 addr_t mem_ptr = static_cast<lldb::addr_t>(result); 2154 // Find pointer to last element and add on size of an element 2155 alloc->size = static_cast<uint32_t>(mem_ptr - *alloc->data_ptr.get()) + 2156 *alloc->element.datum_size.get(); 2157 2158 return true; 2159 } 2160 2161 // JITs the RS runtime for information about the stride between rows in the 2162 // allocation. This is done to detect padding, since allocated memory is 2163 // 16-byte aligned. Returns true on success, false otherwise 2164 bool RenderScriptRuntime::JITAllocationStride(AllocationDetails *alloc, 2165 StackFrame *frame_ptr) { 2166 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2167 2168 if (!alloc->address.isValid() || !alloc->data_ptr.isValid()) { 2169 LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__); 2170 return false; 2171 } 2172 2173 const char *fmt_str = JITTemplate(eExprGetOffsetPtr); 2174 char expr_buf[jit_max_expr_size]; 2175 2176 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 2177 *alloc->address.get(), 0, 1, 0); 2178 if (written < 0) { 2179 LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__); 2180 return false; 2181 } else if (written >= jit_max_expr_size) { 2182 LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__); 2183 return false; 2184 } 2185 2186 uint64_t result = 0; 2187 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 2188 return false; 2189 2190 addr_t mem_ptr = static_cast<lldb::addr_t>(result); 2191 alloc->stride = static_cast<uint32_t>(mem_ptr - *alloc->data_ptr.get()); 2192 2193 return true; 2194 } 2195 2196 // JIT all the current runtime info regarding an allocation 2197 bool RenderScriptRuntime::RefreshAllocation(AllocationDetails *alloc, 2198 StackFrame *frame_ptr) { 2199 // GetOffsetPointer() 2200 if (!JITDataPointer(alloc, frame_ptr)) 2201 return false; 2202 2203 // rsaAllocationGetType() 2204 if (!JITTypePointer(alloc, frame_ptr)) 2205 return false; 2206 2207 // rsaTypeGetNativeData() 2208 if (!JITTypePacked(alloc, frame_ptr)) 2209 return false; 2210 2211 // rsaElementGetNativeData() 2212 if (!JITElementPacked(alloc->element, *alloc->context.get(), frame_ptr)) 2213 return false; 2214 2215 // Sets the datum_size member in Element 2216 SetElementSize(alloc->element); 2217 2218 // Use GetOffsetPointer() to infer size of the allocation 2219 return JITAllocationSize(alloc, frame_ptr); 2220 } 2221 2222 // Function attempts to set the type_name member of the paramaterised Element 2223 // object. This string should be the name of the struct type the Element 2224 // represents. We need this string for pretty printing the Element to users. 2225 void RenderScriptRuntime::FindStructTypeName(Element &elem, 2226 StackFrame *frame_ptr) { 2227 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2228 2229 if (!elem.type_name.IsEmpty()) // Name already set 2230 return; 2231 else 2232 elem.type_name = Element::GetFallbackStructName(); // Default type name if 2233 // we don't succeed 2234 2235 // Find all the global variables from the script rs modules 2236 VariableList var_list; 2237 for (auto module_sp : m_rsmodules) 2238 module_sp->m_module->FindGlobalVariables( 2239 RegularExpression(llvm::StringRef(".")), UINT32_MAX, var_list); 2240 2241 // Iterate over all the global variables looking for one with a matching type 2242 // to the Element. We make the assumption a match exists since there needs to 2243 // be a global variable to reflect the struct type back into java host code. 2244 for (uint32_t i = 0; i < var_list.GetSize(); ++i) { 2245 const VariableSP var_sp(var_list.GetVariableAtIndex(i)); 2246 if (!var_sp) 2247 continue; 2248 2249 ValueObjectSP valobj_sp = ValueObjectVariable::Create(frame_ptr, var_sp); 2250 if (!valobj_sp) 2251 continue; 2252 2253 // Find the number of variable fields. 2254 // If it has no fields, or more fields than our Element, then it can't be 2255 // the struct we're looking for. Don't check for equality since RS can add 2256 // extra struct members for padding. 2257 size_t num_children = valobj_sp->GetNumChildren(); 2258 if (num_children > elem.children.size() || num_children == 0) 2259 continue; 2260 2261 // Iterate over children looking for members with matching field names. If 2262 // all the field names match, this is likely the struct we want. 2263 // TODO: This could be made more robust by also checking children data 2264 // sizes, or array size 2265 bool found = true; 2266 for (size_t i = 0; i < num_children; ++i) { 2267 ValueObjectSP child = valobj_sp->GetChildAtIndex(i, true); 2268 if (!child || (child->GetName() != elem.children[i].type_name)) { 2269 found = false; 2270 break; 2271 } 2272 } 2273 2274 // RS can add extra struct members for padding in the format 2275 // '#rs_padding_[0-9]+' 2276 if (found && num_children < elem.children.size()) { 2277 const uint32_t size_diff = elem.children.size() - num_children; 2278 LLDB_LOGF(log, "%s - %" PRIu32 " padding struct entries", __FUNCTION__, 2279 size_diff); 2280 2281 for (uint32_t i = 0; i < size_diff; ++i) { 2282 ConstString name = elem.children[num_children + i].type_name; 2283 if (strcmp(name.AsCString(), "#rs_padding") < 0) 2284 found = false; 2285 } 2286 } 2287 2288 // We've found a global variable with matching type 2289 if (found) { 2290 // Dereference since our Element type isn't a pointer. 2291 if (valobj_sp->IsPointerType()) { 2292 Status err; 2293 ValueObjectSP deref_valobj = valobj_sp->Dereference(err); 2294 if (!err.Fail()) 2295 valobj_sp = deref_valobj; 2296 } 2297 2298 // Save name of variable in Element. 2299 elem.type_name = valobj_sp->GetTypeName(); 2300 LLDB_LOGF(log, "%s - element name set to %s", __FUNCTION__, 2301 elem.type_name.AsCString()); 2302 2303 return; 2304 } 2305 } 2306 } 2307 2308 // Function sets the datum_size member of Element. Representing the size of a 2309 // single instance including padding. Assumes the relevant allocation 2310 // information has already been jitted. 2311 void RenderScriptRuntime::SetElementSize(Element &elem) { 2312 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2313 const Element::DataType type = *elem.type.get(); 2314 assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && 2315 "Invalid allocation type"); 2316 2317 const uint32_t vec_size = *elem.type_vec_size.get(); 2318 uint32_t data_size = 0; 2319 uint32_t padding = 0; 2320 2321 // Element is of a struct type, calculate size recursively. 2322 if ((type == Element::RS_TYPE_NONE) && (elem.children.size() > 0)) { 2323 for (Element &child : elem.children) { 2324 SetElementSize(child); 2325 const uint32_t array_size = 2326 child.array_size.isValid() ? *child.array_size.get() : 1; 2327 data_size += *child.datum_size.get() * array_size; 2328 } 2329 } 2330 // These have been packed already 2331 else if (type == Element::RS_TYPE_UNSIGNED_5_6_5 || 2332 type == Element::RS_TYPE_UNSIGNED_5_5_5_1 || 2333 type == Element::RS_TYPE_UNSIGNED_4_4_4_4) { 2334 data_size = AllocationDetails::RSTypeToFormat[type][eElementSize]; 2335 } else if (type < Element::RS_TYPE_ELEMENT) { 2336 data_size = 2337 vec_size * AllocationDetails::RSTypeToFormat[type][eElementSize]; 2338 if (vec_size == 3) 2339 padding = AllocationDetails::RSTypeToFormat[type][eElementSize]; 2340 } else 2341 data_size = 2342 GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 2343 2344 elem.padding = padding; 2345 elem.datum_size = data_size + padding; 2346 LLDB_LOGF(log, "%s - element size set to %" PRIu32, __FUNCTION__, 2347 data_size + padding); 2348 } 2349 2350 // Given an allocation, this function copies the allocation contents from 2351 // device into a buffer on the heap. Returning a shared pointer to the buffer 2352 // containing the data. 2353 std::shared_ptr<uint8_t> 2354 RenderScriptRuntime::GetAllocationData(AllocationDetails *alloc, 2355 StackFrame *frame_ptr) { 2356 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2357 2358 // JIT all the allocation details 2359 if (alloc->ShouldRefresh()) { 2360 LLDB_LOGF(log, "%s - allocation details not calculated yet, jitting info", 2361 __FUNCTION__); 2362 2363 if (!RefreshAllocation(alloc, frame_ptr)) { 2364 LLDB_LOGF(log, "%s - couldn't JIT allocation details", __FUNCTION__); 2365 return nullptr; 2366 } 2367 } 2368 2369 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && 2370 alloc->element.type_vec_size.isValid() && alloc->size.isValid() && 2371 "Allocation information not available"); 2372 2373 // Allocate a buffer to copy data into 2374 const uint32_t size = *alloc->size.get(); 2375 std::shared_ptr<uint8_t> buffer(new uint8_t[size]); 2376 if (!buffer) { 2377 LLDB_LOGF(log, "%s - couldn't allocate a %" PRIu32 " byte buffer", 2378 __FUNCTION__, size); 2379 return nullptr; 2380 } 2381 2382 // Read the inferior memory 2383 Status err; 2384 lldb::addr_t data_ptr = *alloc->data_ptr.get(); 2385 GetProcess()->ReadMemory(data_ptr, buffer.get(), size, err); 2386 if (err.Fail()) { 2387 LLDB_LOGF(log, 2388 "%s - '%s' Couldn't read %" PRIu32 2389 " bytes of allocation data from 0x%" PRIx64, 2390 __FUNCTION__, err.AsCString(), size, data_ptr); 2391 return nullptr; 2392 } 2393 2394 return buffer; 2395 } 2396 2397 // Function copies data from a binary file into an allocation. There is a 2398 // header at the start of the file, FileHeader, before the data content itself. 2399 // Information from this header is used to display warnings to the user about 2400 // incompatibilities 2401 bool RenderScriptRuntime::LoadAllocation(Stream &strm, const uint32_t alloc_id, 2402 const char *path, 2403 StackFrame *frame_ptr) { 2404 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2405 2406 // Find allocation with the given id 2407 AllocationDetails *alloc = FindAllocByID(strm, alloc_id); 2408 if (!alloc) 2409 return false; 2410 2411 LLDB_LOGF(log, "%s - found allocation 0x%" PRIx64, __FUNCTION__, 2412 *alloc->address.get()); 2413 2414 // JIT all the allocation details 2415 if (alloc->ShouldRefresh()) { 2416 LLDB_LOGF(log, "%s - allocation details not calculated yet, jitting info.", 2417 __FUNCTION__); 2418 2419 if (!RefreshAllocation(alloc, frame_ptr)) { 2420 LLDB_LOGF(log, "%s - couldn't JIT allocation details", __FUNCTION__); 2421 return false; 2422 } 2423 } 2424 2425 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && 2426 alloc->element.type_vec_size.isValid() && alloc->size.isValid() && 2427 alloc->element.datum_size.isValid() && 2428 "Allocation information not available"); 2429 2430 // Check we can read from file 2431 FileSpec file(path); 2432 FileSystem::Instance().Resolve(file); 2433 if (!FileSystem::Instance().Exists(file)) { 2434 strm.Printf("Error: File %s does not exist", path); 2435 strm.EOL(); 2436 return false; 2437 } 2438 2439 if (!FileSystem::Instance().Readable(file)) { 2440 strm.Printf("Error: File %s does not have readable permissions", path); 2441 strm.EOL(); 2442 return false; 2443 } 2444 2445 // Read file into data buffer 2446 auto data_sp = FileSystem::Instance().CreateDataBuffer(file.GetPath()); 2447 2448 // Cast start of buffer to FileHeader and use pointer to read metadata 2449 void *file_buf = data_sp->GetBytes(); 2450 if (file_buf == nullptr || 2451 data_sp->GetByteSize() < (sizeof(AllocationDetails::FileHeader) + 2452 sizeof(AllocationDetails::ElementHeader))) { 2453 strm.Printf("Error: File %s does not contain enough data for header", path); 2454 strm.EOL(); 2455 return false; 2456 } 2457 const AllocationDetails::FileHeader *file_header = 2458 static_cast<AllocationDetails::FileHeader *>(file_buf); 2459 2460 // Check file starts with ascii characters "RSAD" 2461 if (memcmp(file_header->ident, "RSAD", 4)) { 2462 strm.Printf("Error: File doesn't contain identifier for an RS allocation " 2463 "dump. Are you sure this is the correct file?"); 2464 strm.EOL(); 2465 return false; 2466 } 2467 2468 // Look at the type of the root element in the header 2469 AllocationDetails::ElementHeader root_el_hdr; 2470 memcpy(&root_el_hdr, static_cast<uint8_t *>(file_buf) + 2471 sizeof(AllocationDetails::FileHeader), 2472 sizeof(AllocationDetails::ElementHeader)); 2473 2474 LLDB_LOGF(log, "%s - header type %" PRIu32 ", element size %" PRIu32, 2475 __FUNCTION__, root_el_hdr.type, root_el_hdr.element_size); 2476 2477 // Check if the target allocation and file both have the same number of bytes 2478 // for an Element 2479 if (*alloc->element.datum_size.get() != root_el_hdr.element_size) { 2480 strm.Printf("Warning: Mismatched Element sizes - file %" PRIu32 2481 " bytes, allocation %" PRIu32 " bytes", 2482 root_el_hdr.element_size, *alloc->element.datum_size.get()); 2483 strm.EOL(); 2484 } 2485 2486 // Check if the target allocation and file both have the same type 2487 const uint32_t alloc_type = static_cast<uint32_t>(*alloc->element.type.get()); 2488 const uint32_t file_type = root_el_hdr.type; 2489 2490 if (file_type > Element::RS_TYPE_FONT) { 2491 strm.Printf("Warning: File has unknown allocation type"); 2492 strm.EOL(); 2493 } else if (alloc_type != file_type) { 2494 // Enum value isn't monotonous, so doesn't always index RsDataTypeToString 2495 // array 2496 uint32_t target_type_name_idx = alloc_type; 2497 uint32_t head_type_name_idx = file_type; 2498 if (alloc_type >= Element::RS_TYPE_ELEMENT && 2499 alloc_type <= Element::RS_TYPE_FONT) 2500 target_type_name_idx = static_cast<Element::DataType>( 2501 (alloc_type - Element::RS_TYPE_ELEMENT) + 2502 Element::RS_TYPE_MATRIX_2X2 + 1); 2503 2504 if (file_type >= Element::RS_TYPE_ELEMENT && 2505 file_type <= Element::RS_TYPE_FONT) 2506 head_type_name_idx = static_cast<Element::DataType>( 2507 (file_type - Element::RS_TYPE_ELEMENT) + Element::RS_TYPE_MATRIX_2X2 + 2508 1); 2509 2510 const char *head_type_name = 2511 AllocationDetails::RsDataTypeToString[head_type_name_idx][0]; 2512 const char *target_type_name = 2513 AllocationDetails::RsDataTypeToString[target_type_name_idx][0]; 2514 2515 strm.Printf( 2516 "Warning: Mismatched Types - file '%s' type, allocation '%s' type", 2517 head_type_name, target_type_name); 2518 strm.EOL(); 2519 } 2520 2521 // Advance buffer past header 2522 file_buf = static_cast<uint8_t *>(file_buf) + file_header->hdr_size; 2523 2524 // Calculate size of allocation data in file 2525 size_t size = data_sp->GetByteSize() - file_header->hdr_size; 2526 2527 // Check if the target allocation and file both have the same total data 2528 // size. 2529 const uint32_t alloc_size = *alloc->size.get(); 2530 if (alloc_size != size) { 2531 strm.Printf("Warning: Mismatched allocation sizes - file 0x%" PRIx64 2532 " bytes, allocation 0x%" PRIx32 " bytes", 2533 (uint64_t)size, alloc_size); 2534 strm.EOL(); 2535 // Set length to copy to minimum 2536 size = alloc_size < size ? alloc_size : size; 2537 } 2538 2539 // Copy file data from our buffer into the target allocation. 2540 lldb::addr_t alloc_data = *alloc->data_ptr.get(); 2541 Status err; 2542 size_t written = GetProcess()->WriteMemory(alloc_data, file_buf, size, err); 2543 if (!err.Success() || written != size) { 2544 strm.Printf("Error: Couldn't write data to allocation %s", err.AsCString()); 2545 strm.EOL(); 2546 return false; 2547 } 2548 2549 strm.Printf("Contents of file '%s' read into allocation %" PRIu32, path, 2550 alloc->id); 2551 strm.EOL(); 2552 2553 return true; 2554 } 2555 2556 // Function takes as parameters a byte buffer, which will eventually be written 2557 // to file as the element header, an offset into that buffer, and an Element 2558 // that will be saved into the buffer at the parametrised offset. Return value 2559 // is the new offset after writing the element into the buffer. Elements are 2560 // saved to the file as the ElementHeader struct followed by offsets to the 2561 // structs of all the element's children. 2562 size_t RenderScriptRuntime::PopulateElementHeaders( 2563 const std::shared_ptr<uint8_t> header_buffer, size_t offset, 2564 const Element &elem) { 2565 // File struct for an element header with all the relevant details copied 2566 // from elem. We assume members are valid already. 2567 AllocationDetails::ElementHeader elem_header; 2568 elem_header.type = *elem.type.get(); 2569 elem_header.kind = *elem.type_kind.get(); 2570 elem_header.element_size = *elem.datum_size.get(); 2571 elem_header.vector_size = *elem.type_vec_size.get(); 2572 elem_header.array_size = 2573 elem.array_size.isValid() ? *elem.array_size.get() : 0; 2574 const size_t elem_header_size = sizeof(AllocationDetails::ElementHeader); 2575 2576 // Copy struct into buffer and advance offset We assume that header_buffer 2577 // has been checked for nullptr before this method is called 2578 memcpy(header_buffer.get() + offset, &elem_header, elem_header_size); 2579 offset += elem_header_size; 2580 2581 // Starting offset of child ElementHeader struct 2582 size_t child_offset = 2583 offset + ((elem.children.size() + 1) * sizeof(uint32_t)); 2584 for (const RenderScriptRuntime::Element &child : elem.children) { 2585 // Recursively populate the buffer with the element header structs of 2586 // children. Then save the offsets where they were set after the parent 2587 // element header. 2588 memcpy(header_buffer.get() + offset, &child_offset, sizeof(uint32_t)); 2589 offset += sizeof(uint32_t); 2590 2591 child_offset = PopulateElementHeaders(header_buffer, child_offset, child); 2592 } 2593 2594 // Zero indicates no more children 2595 memset(header_buffer.get() + offset, 0, sizeof(uint32_t)); 2596 2597 return child_offset; 2598 } 2599 2600 // Given an Element object this function returns the total size needed in the 2601 // file header to store the element's details. Taking into account the size of 2602 // the element header struct, plus the offsets to all the element's children. 2603 // Function is recursive so that the size of all ancestors is taken into 2604 // account. 2605 size_t RenderScriptRuntime::CalculateElementHeaderSize(const Element &elem) { 2606 // Offsets to children plus zero terminator 2607 size_t size = (elem.children.size() + 1) * sizeof(uint32_t); 2608 // Size of header struct with type details 2609 size += sizeof(AllocationDetails::ElementHeader); 2610 2611 // Calculate recursively for all descendants 2612 for (const Element &child : elem.children) 2613 size += CalculateElementHeaderSize(child); 2614 2615 return size; 2616 } 2617 2618 // Function copies allocation contents into a binary file. This file can then 2619 // be loaded later into a different allocation. There is a header, FileHeader, 2620 // before the allocation data containing meta-data. 2621 bool RenderScriptRuntime::SaveAllocation(Stream &strm, const uint32_t alloc_id, 2622 const char *path, 2623 StackFrame *frame_ptr) { 2624 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2625 2626 // Find allocation with the given id 2627 AllocationDetails *alloc = FindAllocByID(strm, alloc_id); 2628 if (!alloc) 2629 return false; 2630 2631 LLDB_LOGF(log, "%s - found allocation 0x%" PRIx64 ".", __FUNCTION__, 2632 *alloc->address.get()); 2633 2634 // JIT all the allocation details 2635 if (alloc->ShouldRefresh()) { 2636 LLDB_LOGF(log, "%s - allocation details not calculated yet, jitting info.", 2637 __FUNCTION__); 2638 2639 if (!RefreshAllocation(alloc, frame_ptr)) { 2640 LLDB_LOGF(log, "%s - couldn't JIT allocation details.", __FUNCTION__); 2641 return false; 2642 } 2643 } 2644 2645 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && 2646 alloc->element.type_vec_size.isValid() && 2647 alloc->element.datum_size.get() && 2648 alloc->element.type_kind.isValid() && alloc->dimension.isValid() && 2649 "Allocation information not available"); 2650 2651 // Check we can create writable file 2652 FileSpec file_spec(path); 2653 FileSystem::Instance().Resolve(file_spec); 2654 auto file = FileSystem::Instance().Open( 2655 file_spec, File::eOpenOptionWrite | File::eOpenOptionCanCreate | 2656 File::eOpenOptionTruncate); 2657 2658 if (!file) { 2659 std::string error = llvm::toString(file.takeError()); 2660 strm.Printf("Error: Failed to open '%s' for writing: %s", path, 2661 error.c_str()); 2662 strm.EOL(); 2663 return false; 2664 } 2665 2666 // Read allocation into buffer of heap memory 2667 const std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr); 2668 if (!buffer) { 2669 strm.Printf("Error: Couldn't read allocation data into buffer"); 2670 strm.EOL(); 2671 return false; 2672 } 2673 2674 // Create the file header 2675 AllocationDetails::FileHeader head; 2676 memcpy(head.ident, "RSAD", 4); 2677 head.dims[0] = static_cast<uint32_t>(alloc->dimension.get()->dim_1); 2678 head.dims[1] = static_cast<uint32_t>(alloc->dimension.get()->dim_2); 2679 head.dims[2] = static_cast<uint32_t>(alloc->dimension.get()->dim_3); 2680 2681 const size_t element_header_size = CalculateElementHeaderSize(alloc->element); 2682 assert((sizeof(AllocationDetails::FileHeader) + element_header_size) < 2683 UINT16_MAX && 2684 "Element header too large"); 2685 head.hdr_size = static_cast<uint16_t>(sizeof(AllocationDetails::FileHeader) + 2686 element_header_size); 2687 2688 // Write the file header 2689 size_t num_bytes = sizeof(AllocationDetails::FileHeader); 2690 LLDB_LOGF(log, "%s - writing File Header, 0x%" PRIx64 " bytes", __FUNCTION__, 2691 (uint64_t)num_bytes); 2692 2693 Status err = file.get()->Write(&head, num_bytes); 2694 if (!err.Success()) { 2695 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path); 2696 strm.EOL(); 2697 return false; 2698 } 2699 2700 // Create the headers describing the element type of the allocation. 2701 std::shared_ptr<uint8_t> element_header_buffer( 2702 new uint8_t[element_header_size]); 2703 if (element_header_buffer == nullptr) { 2704 strm.Printf("Internal Error: Couldn't allocate %" PRIu64 2705 " bytes on the heap", 2706 (uint64_t)element_header_size); 2707 strm.EOL(); 2708 return false; 2709 } 2710 2711 PopulateElementHeaders(element_header_buffer, 0, alloc->element); 2712 2713 // Write headers for allocation element type to file 2714 num_bytes = element_header_size; 2715 LLDB_LOGF(log, "%s - writing element headers, 0x%" PRIx64 " bytes.", 2716 __FUNCTION__, (uint64_t)num_bytes); 2717 2718 err = file.get()->Write(element_header_buffer.get(), num_bytes); 2719 if (!err.Success()) { 2720 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path); 2721 strm.EOL(); 2722 return false; 2723 } 2724 2725 // Write allocation data to file 2726 num_bytes = static_cast<size_t>(*alloc->size.get()); 2727 LLDB_LOGF(log, "%s - writing 0x%" PRIx64 " bytes", __FUNCTION__, 2728 (uint64_t)num_bytes); 2729 2730 err = file.get()->Write(buffer.get(), num_bytes); 2731 if (!err.Success()) { 2732 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path); 2733 strm.EOL(); 2734 return false; 2735 } 2736 2737 strm.Printf("Allocation written to file '%s'", path); 2738 strm.EOL(); 2739 return true; 2740 } 2741 2742 bool RenderScriptRuntime::LoadModule(const lldb::ModuleSP &module_sp) { 2743 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2744 2745 if (module_sp) { 2746 for (const auto &rs_module : m_rsmodules) { 2747 if (rs_module->m_module == module_sp) { 2748 // Check if the user has enabled automatically breaking on all RS 2749 // kernels. 2750 if (m_breakAllKernels) 2751 BreakOnModuleKernels(rs_module); 2752 2753 return false; 2754 } 2755 } 2756 bool module_loaded = false; 2757 switch (GetModuleKind(module_sp)) { 2758 case eModuleKindKernelObj: { 2759 RSModuleDescriptorSP module_desc; 2760 module_desc = std::make_shared<RSModuleDescriptor>(module_sp); 2761 if (module_desc->ParseRSInfo()) { 2762 m_rsmodules.push_back(module_desc); 2763 module_desc->WarnIfVersionMismatch(GetProcess() 2764 ->GetTarget() 2765 .GetDebugger() 2766 .GetAsyncOutputStream() 2767 .get()); 2768 module_loaded = true; 2769 } 2770 if (module_loaded) { 2771 FixupScriptDetails(module_desc); 2772 } 2773 break; 2774 } 2775 case eModuleKindDriver: { 2776 if (!m_libRSDriver) { 2777 m_libRSDriver = module_sp; 2778 LoadRuntimeHooks(m_libRSDriver, RenderScriptRuntime::eModuleKindDriver); 2779 } 2780 break; 2781 } 2782 case eModuleKindImpl: { 2783 if (!m_libRSCpuRef) { 2784 m_libRSCpuRef = module_sp; 2785 LoadRuntimeHooks(m_libRSCpuRef, RenderScriptRuntime::eModuleKindImpl); 2786 } 2787 break; 2788 } 2789 case eModuleKindLibRS: { 2790 if (!m_libRS) { 2791 m_libRS = module_sp; 2792 static ConstString gDbgPresentStr("gDebuggerPresent"); 2793 const Symbol *debug_present = m_libRS->FindFirstSymbolWithNameAndType( 2794 gDbgPresentStr, eSymbolTypeData); 2795 if (debug_present) { 2796 Status err; 2797 uint32_t flag = 0x00000001U; 2798 Target &target = GetProcess()->GetTarget(); 2799 addr_t addr = debug_present->GetLoadAddress(&target); 2800 GetProcess()->WriteMemory(addr, &flag, sizeof(flag), err); 2801 if (err.Success()) { 2802 LLDB_LOGF(log, "%s - debugger present flag set on debugee.", 2803 __FUNCTION__); 2804 2805 m_debuggerPresentFlagged = true; 2806 } else if (log) { 2807 LLDB_LOGF(log, "%s - error writing debugger present flags '%s' ", 2808 __FUNCTION__, err.AsCString()); 2809 } 2810 } else if (log) { 2811 LLDB_LOGF( 2812 log, 2813 "%s - error writing debugger present flags - symbol not found", 2814 __FUNCTION__); 2815 } 2816 } 2817 break; 2818 } 2819 default: 2820 break; 2821 } 2822 if (module_loaded) 2823 Update(); 2824 return module_loaded; 2825 } 2826 return false; 2827 } 2828 2829 void RenderScriptRuntime::Update() { 2830 if (m_rsmodules.size() > 0) { 2831 if (!m_initiated) { 2832 Initiate(); 2833 } 2834 } 2835 } 2836 2837 void RSModuleDescriptor::WarnIfVersionMismatch(lldb_private::Stream *s) const { 2838 if (!s) 2839 return; 2840 2841 if (m_slang_version.empty() || m_bcc_version.empty()) { 2842 s->PutCString("WARNING: Unknown bcc or slang (llvm-rs-cc) version; debug " 2843 "experience may be unreliable"); 2844 s->EOL(); 2845 } else if (m_slang_version != m_bcc_version) { 2846 s->Printf("WARNING: The debug info emitted by the slang frontend " 2847 "(llvm-rs-cc) used to build this module (%s) does not match the " 2848 "version of bcc used to generate the debug information (%s). " 2849 "This is an unsupported configuration and may result in a poor " 2850 "debugging experience; proceed with caution", 2851 m_slang_version.c_str(), m_bcc_version.c_str()); 2852 s->EOL(); 2853 } 2854 } 2855 2856 bool RSModuleDescriptor::ParsePragmaCount(llvm::StringRef *lines, 2857 size_t n_lines) { 2858 // Skip the pragma prototype line 2859 ++lines; 2860 for (; n_lines--; ++lines) { 2861 const auto kv_pair = lines->split(" - "); 2862 m_pragmas[kv_pair.first.trim().str()] = kv_pair.second.trim().str(); 2863 } 2864 return true; 2865 } 2866 2867 bool RSModuleDescriptor::ParseExportReduceCount(llvm::StringRef *lines, 2868 size_t n_lines) { 2869 // The list of reduction kernels in the `.rs.info` symbol is of the form 2870 // "signature - accumulatordatasize - reduction_name - initializer_name - 2871 // accumulator_name - combiner_name - outconverter_name - halter_name" Where 2872 // a function is not explicitly named by the user, or is not generated by the 2873 // compiler, it is named "." so the dash separated list should always be 8 2874 // items long 2875 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 2876 // Skip the exportReduceCount line 2877 ++lines; 2878 for (; n_lines--; ++lines) { 2879 llvm::SmallVector<llvm::StringRef, 8> spec; 2880 lines->split(spec, " - "); 2881 if (spec.size() != 8) { 2882 if (spec.size() < 8) { 2883 if (log) 2884 log->Error("Error parsing RenderScript reduction spec. wrong number " 2885 "of fields"); 2886 return false; 2887 } else if (log) 2888 log->Warning("Extraneous members in reduction spec: '%s'", 2889 lines->str().c_str()); 2890 } 2891 2892 const auto sig_s = spec[0]; 2893 uint32_t sig; 2894 if (sig_s.getAsInteger(10, sig)) { 2895 if (log) 2896 log->Error("Error parsing Renderscript reduction spec: invalid kernel " 2897 "signature: '%s'", 2898 sig_s.str().c_str()); 2899 return false; 2900 } 2901 2902 const auto accum_data_size_s = spec[1]; 2903 uint32_t accum_data_size; 2904 if (accum_data_size_s.getAsInteger(10, accum_data_size)) { 2905 if (log) 2906 log->Error("Error parsing Renderscript reduction spec: invalid " 2907 "accumulator data size %s", 2908 accum_data_size_s.str().c_str()); 2909 return false; 2910 } 2911 2912 LLDB_LOGF(log, "Found RenderScript reduction '%s'", spec[2].str().c_str()); 2913 2914 m_reductions.push_back(RSReductionDescriptor(this, sig, accum_data_size, 2915 spec[2], spec[3], spec[4], 2916 spec[5], spec[6], spec[7])); 2917 } 2918 return true; 2919 } 2920 2921 bool RSModuleDescriptor::ParseVersionInfo(llvm::StringRef *lines, 2922 size_t n_lines) { 2923 // Skip the versionInfo line 2924 ++lines; 2925 for (; n_lines--; ++lines) { 2926 // We're only interested in bcc and slang versions, and ignore all other 2927 // versionInfo lines 2928 const auto kv_pair = lines->split(" - "); 2929 if (kv_pair.first == "slang") 2930 m_slang_version = kv_pair.second.str(); 2931 else if (kv_pair.first == "bcc") 2932 m_bcc_version = kv_pair.second.str(); 2933 } 2934 return true; 2935 } 2936 2937 bool RSModuleDescriptor::ParseExportForeachCount(llvm::StringRef *lines, 2938 size_t n_lines) { 2939 // Skip the exportForeachCount line 2940 ++lines; 2941 for (; n_lines--; ++lines) { 2942 uint32_t slot; 2943 // `forEach` kernels are listed in the `.rs.info` packet as a "slot - name" 2944 // pair per line 2945 const auto kv_pair = lines->split(" - "); 2946 if (kv_pair.first.getAsInteger(10, slot)) 2947 return false; 2948 m_kernels.push_back(RSKernelDescriptor(this, kv_pair.second, slot)); 2949 } 2950 return true; 2951 } 2952 2953 bool RSModuleDescriptor::ParseExportVarCount(llvm::StringRef *lines, 2954 size_t n_lines) { 2955 // Skip the ExportVarCount line 2956 ++lines; 2957 for (; n_lines--; ++lines) 2958 m_globals.push_back(RSGlobalDescriptor(this, *lines)); 2959 return true; 2960 } 2961 2962 // The .rs.info symbol in renderscript modules contains a string which needs to 2963 // be parsed. The string is basic and is parsed on a line by line basis. 2964 bool RSModuleDescriptor::ParseRSInfo() { 2965 assert(m_module); 2966 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2967 const Symbol *info_sym = m_module->FindFirstSymbolWithNameAndType( 2968 ConstString(".rs.info"), eSymbolTypeData); 2969 if (!info_sym) 2970 return false; 2971 2972 const addr_t addr = info_sym->GetAddressRef().GetFileAddress(); 2973 if (addr == LLDB_INVALID_ADDRESS) 2974 return false; 2975 2976 const addr_t size = info_sym->GetByteSize(); 2977 const FileSpec fs = m_module->GetFileSpec(); 2978 2979 auto buffer = 2980 FileSystem::Instance().CreateDataBuffer(fs.GetPath(), size, addr); 2981 if (!buffer) 2982 return false; 2983 2984 // split rs.info. contents into lines 2985 llvm::SmallVector<llvm::StringRef, 128> info_lines; 2986 { 2987 const llvm::StringRef raw_rs_info((const char *)buffer->GetBytes()); 2988 raw_rs_info.split(info_lines, '\n'); 2989 LLDB_LOGF(log, "'.rs.info symbol for '%s':\n%s", 2990 m_module->GetFileSpec().GetCString(), raw_rs_info.str().c_str()); 2991 } 2992 2993 enum { 2994 eExportVar, 2995 eExportForEach, 2996 eExportReduce, 2997 ePragma, 2998 eBuildChecksum, 2999 eObjectSlot, 3000 eVersionInfo, 3001 }; 3002 3003 const auto rs_info_handler = [](llvm::StringRef name) -> int { 3004 return llvm::StringSwitch<int>(name) 3005 // The number of visible global variables in the script 3006 .Case("exportVarCount", eExportVar) 3007 // The number of RenderScrip `forEach` kernels __attribute__((kernel)) 3008 .Case("exportForEachCount", eExportForEach) 3009 // The number of generalreductions: This marked in the script by 3010 // `#pragma reduce()` 3011 .Case("exportReduceCount", eExportReduce) 3012 // Total count of all RenderScript specific `#pragmas` used in the 3013 // script 3014 .Case("pragmaCount", ePragma) 3015 .Case("objectSlotCount", eObjectSlot) 3016 .Case("versionInfo", eVersionInfo) 3017 .Default(-1); 3018 }; 3019 3020 // parse all text lines of .rs.info 3021 for (auto line = info_lines.begin(); line != info_lines.end(); ++line) { 3022 const auto kv_pair = line->split(": "); 3023 const auto key = kv_pair.first; 3024 const auto val = kv_pair.second.trim(); 3025 3026 const auto handler = rs_info_handler(key); 3027 if (handler == -1) 3028 continue; 3029 // getAsInteger returns `true` on an error condition - we're only 3030 // interested in numeric fields at the moment 3031 uint64_t n_lines; 3032 if (val.getAsInteger(10, n_lines)) { 3033 LLDB_LOGV(log, "Failed to parse non-numeric '.rs.info' section {0}", 3034 line->str()); 3035 continue; 3036 } 3037 if (info_lines.end() - (line + 1) < (ptrdiff_t)n_lines) 3038 return false; 3039 3040 bool success = false; 3041 switch (handler) { 3042 case eExportVar: 3043 success = ParseExportVarCount(line, n_lines); 3044 break; 3045 case eExportForEach: 3046 success = ParseExportForeachCount(line, n_lines); 3047 break; 3048 case eExportReduce: 3049 success = ParseExportReduceCount(line, n_lines); 3050 break; 3051 case ePragma: 3052 success = ParsePragmaCount(line, n_lines); 3053 break; 3054 case eVersionInfo: 3055 success = ParseVersionInfo(line, n_lines); 3056 break; 3057 default: { 3058 LLDB_LOGF(log, "%s - skipping .rs.info field '%s'", __FUNCTION__, 3059 line->str().c_str()); 3060 continue; 3061 } 3062 } 3063 if (!success) 3064 return false; 3065 line += n_lines; 3066 } 3067 return info_lines.size() > 0; 3068 } 3069 3070 void RenderScriptRuntime::DumpStatus(Stream &strm) const { 3071 if (m_libRS) { 3072 strm.Printf("Runtime Library discovered."); 3073 strm.EOL(); 3074 } 3075 if (m_libRSDriver) { 3076 strm.Printf("Runtime Driver discovered."); 3077 strm.EOL(); 3078 } 3079 if (m_libRSCpuRef) { 3080 strm.Printf("CPU Reference Implementation discovered."); 3081 strm.EOL(); 3082 } 3083 3084 if (m_runtimeHooks.size()) { 3085 strm.Printf("Runtime functions hooked:"); 3086 strm.EOL(); 3087 for (auto b : m_runtimeHooks) { 3088 strm.Indent(b.second->defn->name); 3089 strm.EOL(); 3090 } 3091 } else { 3092 strm.Printf("Runtime is not hooked."); 3093 strm.EOL(); 3094 } 3095 } 3096 3097 void RenderScriptRuntime::DumpContexts(Stream &strm) const { 3098 strm.Printf("Inferred RenderScript Contexts:"); 3099 strm.EOL(); 3100 strm.IndentMore(); 3101 3102 std::map<addr_t, uint64_t> contextReferences; 3103 3104 // Iterate over all of the currently discovered scripts. Note: We cant push 3105 // or pop from m_scripts inside this loop or it may invalidate script. 3106 for (const auto &script : m_scripts) { 3107 if (!script->context.isValid()) 3108 continue; 3109 lldb::addr_t context = *script->context; 3110 3111 if (contextReferences.find(context) != contextReferences.end()) { 3112 contextReferences[context]++; 3113 } else { 3114 contextReferences[context] = 1; 3115 } 3116 } 3117 3118 for (const auto &cRef : contextReferences) { 3119 strm.Printf("Context 0x%" PRIx64 ": %" PRIu64 " script instances", 3120 cRef.first, cRef.second); 3121 strm.EOL(); 3122 } 3123 strm.IndentLess(); 3124 } 3125 3126 void RenderScriptRuntime::DumpKernels(Stream &strm) const { 3127 strm.Printf("RenderScript Kernels:"); 3128 strm.EOL(); 3129 strm.IndentMore(); 3130 for (const auto &module : m_rsmodules) { 3131 strm.Printf("Resource '%s':", module->m_resname.c_str()); 3132 strm.EOL(); 3133 for (const auto &kernel : module->m_kernels) { 3134 strm.Indent(kernel.m_name.AsCString()); 3135 strm.EOL(); 3136 } 3137 } 3138 strm.IndentLess(); 3139 } 3140 3141 RenderScriptRuntime::AllocationDetails * 3142 RenderScriptRuntime::FindAllocByID(Stream &strm, const uint32_t alloc_id) { 3143 AllocationDetails *alloc = nullptr; 3144 3145 // See if we can find allocation using id as an index; 3146 if (alloc_id <= m_allocations.size() && alloc_id != 0 && 3147 m_allocations[alloc_id - 1]->id == alloc_id) { 3148 alloc = m_allocations[alloc_id - 1].get(); 3149 return alloc; 3150 } 3151 3152 // Fallback to searching 3153 for (const auto &a : m_allocations) { 3154 if (a->id == alloc_id) { 3155 alloc = a.get(); 3156 break; 3157 } 3158 } 3159 3160 if (alloc == nullptr) { 3161 strm.Printf("Error: Couldn't find allocation with id matching %" PRIu32, 3162 alloc_id); 3163 strm.EOL(); 3164 } 3165 3166 return alloc; 3167 } 3168 3169 // Prints the contents of an allocation to the output stream, which may be a 3170 // file 3171 bool RenderScriptRuntime::DumpAllocation(Stream &strm, StackFrame *frame_ptr, 3172 const uint32_t id) { 3173 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3174 3175 // Check we can find the desired allocation 3176 AllocationDetails *alloc = FindAllocByID(strm, id); 3177 if (!alloc) 3178 return false; // FindAllocByID() will print error message for us here 3179 3180 LLDB_LOGF(log, "%s - found allocation 0x%" PRIx64, __FUNCTION__, 3181 *alloc->address.get()); 3182 3183 // Check we have information about the allocation, if not calculate it 3184 if (alloc->ShouldRefresh()) { 3185 LLDB_LOGF(log, "%s - allocation details not calculated yet, jitting info.", 3186 __FUNCTION__); 3187 3188 // JIT all the allocation information 3189 if (!RefreshAllocation(alloc, frame_ptr)) { 3190 strm.Printf("Error: Couldn't JIT allocation details"); 3191 strm.EOL(); 3192 return false; 3193 } 3194 } 3195 3196 // Establish format and size of each data element 3197 const uint32_t vec_size = *alloc->element.type_vec_size.get(); 3198 const Element::DataType type = *alloc->element.type.get(); 3199 3200 assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && 3201 "Invalid allocation type"); 3202 3203 lldb::Format format; 3204 if (type >= Element::RS_TYPE_ELEMENT) 3205 format = eFormatHex; 3206 else 3207 format = vec_size == 1 3208 ? static_cast<lldb::Format>( 3209 AllocationDetails::RSTypeToFormat[type][eFormatSingle]) 3210 : static_cast<lldb::Format>( 3211 AllocationDetails::RSTypeToFormat[type][eFormatVector]); 3212 3213 const uint32_t data_size = *alloc->element.datum_size.get(); 3214 3215 LLDB_LOGF(log, "%s - element size %" PRIu32 " bytes, including padding", 3216 __FUNCTION__, data_size); 3217 3218 // Allocate a buffer to copy data into 3219 std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr); 3220 if (!buffer) { 3221 strm.Printf("Error: Couldn't read allocation data"); 3222 strm.EOL(); 3223 return false; 3224 } 3225 3226 // Calculate stride between rows as there may be padding at end of rows since 3227 // allocated memory is 16-byte aligned 3228 if (!alloc->stride.isValid()) { 3229 if (alloc->dimension.get()->dim_2 == 0) // We only have one dimension 3230 alloc->stride = 0; 3231 else if (!JITAllocationStride(alloc, frame_ptr)) { 3232 strm.Printf("Error: Couldn't calculate allocation row stride"); 3233 strm.EOL(); 3234 return false; 3235 } 3236 } 3237 const uint32_t stride = *alloc->stride.get(); 3238 const uint32_t size = *alloc->size.get(); // Size of whole allocation 3239 const uint32_t padding = 3240 alloc->element.padding.isValid() ? *alloc->element.padding.get() : 0; 3241 LLDB_LOGF(log, 3242 "%s - stride %" PRIu32 " bytes, size %" PRIu32 3243 " bytes, padding %" PRIu32, 3244 __FUNCTION__, stride, size, padding); 3245 3246 // Find dimensions used to index loops, so need to be non-zero 3247 uint32_t dim_x = alloc->dimension.get()->dim_1; 3248 dim_x = dim_x == 0 ? 1 : dim_x; 3249 3250 uint32_t dim_y = alloc->dimension.get()->dim_2; 3251 dim_y = dim_y == 0 ? 1 : dim_y; 3252 3253 uint32_t dim_z = alloc->dimension.get()->dim_3; 3254 dim_z = dim_z == 0 ? 1 : dim_z; 3255 3256 // Use data extractor to format output 3257 const uint32_t target_ptr_size = 3258 GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 3259 DataExtractor alloc_data(buffer.get(), size, GetProcess()->GetByteOrder(), 3260 target_ptr_size); 3261 3262 uint32_t offset = 0; // Offset in buffer to next element to be printed 3263 uint32_t prev_row = 0; // Offset to the start of the previous row 3264 3265 // Iterate over allocation dimensions, printing results to user 3266 strm.Printf("Data (X, Y, Z):"); 3267 for (uint32_t z = 0; z < dim_z; ++z) { 3268 for (uint32_t y = 0; y < dim_y; ++y) { 3269 // Use stride to index start of next row. 3270 if (!(y == 0 && z == 0)) 3271 offset = prev_row + stride; 3272 prev_row = offset; 3273 3274 // Print each element in the row individually 3275 for (uint32_t x = 0; x < dim_x; ++x) { 3276 strm.Printf("\n(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ") = ", x, y, z); 3277 if ((type == Element::RS_TYPE_NONE) && 3278 (alloc->element.children.size() > 0) && 3279 (alloc->element.type_name != Element::GetFallbackStructName())) { 3280 // Here we are dumping an Element of struct type. This is done using 3281 // expression evaluation with the name of the struct type and pointer 3282 // to element. Don't print the name of the resulting expression, 3283 // since this will be '$[0-9]+' 3284 DumpValueObjectOptions expr_options; 3285 expr_options.SetHideName(true); 3286 3287 // Setup expression as dereferencing a pointer cast to element 3288 // address. 3289 char expr_char_buffer[jit_max_expr_size]; 3290 int written = 3291 snprintf(expr_char_buffer, jit_max_expr_size, "*(%s*) 0x%" PRIx64, 3292 alloc->element.type_name.AsCString(), 3293 *alloc->data_ptr.get() + offset); 3294 3295 if (written < 0 || written >= jit_max_expr_size) { 3296 LLDB_LOGF(log, "%s - error in snprintf().", __FUNCTION__); 3297 continue; 3298 } 3299 3300 // Evaluate expression 3301 ValueObjectSP expr_result; 3302 GetProcess()->GetTarget().EvaluateExpression(expr_char_buffer, 3303 frame_ptr, expr_result); 3304 3305 // Print the results to our stream. 3306 expr_result->Dump(strm, expr_options); 3307 } else { 3308 DumpDataExtractor(alloc_data, &strm, offset, format, 3309 data_size - padding, 1, 1, LLDB_INVALID_ADDRESS, 0, 3310 0); 3311 } 3312 offset += data_size; 3313 } 3314 } 3315 } 3316 strm.EOL(); 3317 3318 return true; 3319 } 3320 3321 // Function recalculates all our cached information about allocations by 3322 // jitting the RS runtime regarding each allocation we know about. Returns true 3323 // if all allocations could be recomputed, false otherwise. 3324 bool RenderScriptRuntime::RecomputeAllAllocations(Stream &strm, 3325 StackFrame *frame_ptr) { 3326 bool success = true; 3327 for (auto &alloc : m_allocations) { 3328 // JIT current allocation information 3329 if (!RefreshAllocation(alloc.get(), frame_ptr)) { 3330 strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32 3331 "\n", 3332 alloc->id); 3333 success = false; 3334 } 3335 } 3336 3337 if (success) 3338 strm.Printf("All allocations successfully recomputed"); 3339 strm.EOL(); 3340 3341 return success; 3342 } 3343 3344 // Prints information regarding currently loaded allocations. These details are 3345 // gathered by jitting the runtime, which has as latency. Index parameter 3346 // specifies a single allocation ID to print, or a zero value to print them all 3347 void RenderScriptRuntime::ListAllocations(Stream &strm, StackFrame *frame_ptr, 3348 const uint32_t index) { 3349 strm.Printf("RenderScript Allocations:"); 3350 strm.EOL(); 3351 strm.IndentMore(); 3352 3353 for (auto &alloc : m_allocations) { 3354 // index will only be zero if we want to print all allocations 3355 if (index != 0 && index != alloc->id) 3356 continue; 3357 3358 // JIT current allocation information 3359 if (alloc->ShouldRefresh() && !RefreshAllocation(alloc.get(), frame_ptr)) { 3360 strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32, 3361 alloc->id); 3362 strm.EOL(); 3363 continue; 3364 } 3365 3366 strm.Printf("%" PRIu32 ":", alloc->id); 3367 strm.EOL(); 3368 strm.IndentMore(); 3369 3370 strm.Indent("Context: "); 3371 if (!alloc->context.isValid()) 3372 strm.Printf("unknown\n"); 3373 else 3374 strm.Printf("0x%" PRIx64 "\n", *alloc->context.get()); 3375 3376 strm.Indent("Address: "); 3377 if (!alloc->address.isValid()) 3378 strm.Printf("unknown\n"); 3379 else 3380 strm.Printf("0x%" PRIx64 "\n", *alloc->address.get()); 3381 3382 strm.Indent("Data pointer: "); 3383 if (!alloc->data_ptr.isValid()) 3384 strm.Printf("unknown\n"); 3385 else 3386 strm.Printf("0x%" PRIx64 "\n", *alloc->data_ptr.get()); 3387 3388 strm.Indent("Dimensions: "); 3389 if (!alloc->dimension.isValid()) 3390 strm.Printf("unknown\n"); 3391 else 3392 strm.Printf("(%" PRId32 ", %" PRId32 ", %" PRId32 ")\n", 3393 alloc->dimension.get()->dim_1, alloc->dimension.get()->dim_2, 3394 alloc->dimension.get()->dim_3); 3395 3396 strm.Indent("Data Type: "); 3397 if (!alloc->element.type.isValid() || 3398 !alloc->element.type_vec_size.isValid()) 3399 strm.Printf("unknown\n"); 3400 else { 3401 const int vector_size = *alloc->element.type_vec_size.get(); 3402 Element::DataType type = *alloc->element.type.get(); 3403 3404 if (!alloc->element.type_name.IsEmpty()) 3405 strm.Printf("%s\n", alloc->element.type_name.AsCString()); 3406 else { 3407 // Enum value isn't monotonous, so doesn't always index 3408 // RsDataTypeToString array 3409 if (type >= Element::RS_TYPE_ELEMENT && type <= Element::RS_TYPE_FONT) 3410 type = 3411 static_cast<Element::DataType>((type - Element::RS_TYPE_ELEMENT) + 3412 Element::RS_TYPE_MATRIX_2X2 + 1); 3413 3414 if (type >= (sizeof(AllocationDetails::RsDataTypeToString) / 3415 sizeof(AllocationDetails::RsDataTypeToString[0])) || 3416 vector_size > 4 || vector_size < 1) 3417 strm.Printf("invalid type\n"); 3418 else 3419 strm.Printf( 3420 "%s\n", 3421 AllocationDetails::RsDataTypeToString[static_cast<uint32_t>(type)] 3422 [vector_size - 1]); 3423 } 3424 } 3425 3426 strm.Indent("Data Kind: "); 3427 if (!alloc->element.type_kind.isValid()) 3428 strm.Printf("unknown\n"); 3429 else { 3430 const Element::DataKind kind = *alloc->element.type_kind.get(); 3431 if (kind < Element::RS_KIND_USER || kind > Element::RS_KIND_PIXEL_YUV) 3432 strm.Printf("invalid kind\n"); 3433 else 3434 strm.Printf( 3435 "%s\n", 3436 AllocationDetails::RsDataKindToString[static_cast<uint32_t>(kind)]); 3437 } 3438 3439 strm.EOL(); 3440 strm.IndentLess(); 3441 } 3442 strm.IndentLess(); 3443 } 3444 3445 // Set breakpoints on every kernel found in RS module 3446 void RenderScriptRuntime::BreakOnModuleKernels( 3447 const RSModuleDescriptorSP rsmodule_sp) { 3448 for (const auto &kernel : rsmodule_sp->m_kernels) { 3449 // Don't set breakpoint on 'root' kernel 3450 if (strcmp(kernel.m_name.AsCString(), "root") == 0) 3451 continue; 3452 3453 CreateKernelBreakpoint(kernel.m_name); 3454 } 3455 } 3456 3457 // Method is internally called by the 'kernel breakpoint all' command to enable 3458 // or disable breaking on all kernels. When do_break is true we want to enable 3459 // this functionality. When do_break is false we want to disable it. 3460 void RenderScriptRuntime::SetBreakAllKernels(bool do_break, TargetSP target) { 3461 Log *log( 3462 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3463 3464 InitSearchFilter(target); 3465 3466 // Set breakpoints on all the kernels 3467 if (do_break && !m_breakAllKernels) { 3468 m_breakAllKernels = true; 3469 3470 for (const auto &module : m_rsmodules) 3471 BreakOnModuleKernels(module); 3472 3473 LLDB_LOGF(log, 3474 "%s(True) - breakpoints set on all currently loaded kernels.", 3475 __FUNCTION__); 3476 } else if (!do_break && 3477 m_breakAllKernels) // Breakpoints won't be set on any new kernels. 3478 { 3479 m_breakAllKernels = false; 3480 3481 LLDB_LOGF(log, "%s(False) - breakpoints no longer automatically set.", 3482 __FUNCTION__); 3483 } 3484 } 3485 3486 // Given the name of a kernel this function creates a breakpoint using our own 3487 // breakpoint resolver, and returns the Breakpoint shared pointer. 3488 BreakpointSP 3489 RenderScriptRuntime::CreateKernelBreakpoint(ConstString name) { 3490 Log *log( 3491 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3492 3493 if (!m_filtersp) { 3494 LLDB_LOGF(log, "%s - error, no breakpoint search filter set.", 3495 __FUNCTION__); 3496 return nullptr; 3497 } 3498 3499 BreakpointResolverSP resolver_sp(new RSBreakpointResolver(nullptr, name)); 3500 Target &target = GetProcess()->GetTarget(); 3501 BreakpointSP bp = target.CreateBreakpoint( 3502 m_filtersp, resolver_sp, false, false, false); 3503 3504 // Give RS breakpoints a specific name, so the user can manipulate them as a 3505 // group. 3506 Status err; 3507 target.AddNameToBreakpoint(bp, "RenderScriptKernel", err); 3508 if (err.Fail() && log) 3509 LLDB_LOGF(log, "%s - error setting break name, '%s'.", __FUNCTION__, 3510 err.AsCString()); 3511 3512 return bp; 3513 } 3514 3515 BreakpointSP 3516 RenderScriptRuntime::CreateReductionBreakpoint(ConstString name, 3517 int kernel_types) { 3518 Log *log( 3519 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3520 3521 if (!m_filtersp) { 3522 LLDB_LOGF(log, "%s - error, no breakpoint search filter set.", 3523 __FUNCTION__); 3524 return nullptr; 3525 } 3526 3527 BreakpointResolverSP resolver_sp(new RSReduceBreakpointResolver( 3528 nullptr, name, &m_rsmodules, kernel_types)); 3529 Target &target = GetProcess()->GetTarget(); 3530 BreakpointSP bp = target.CreateBreakpoint( 3531 m_filtersp, resolver_sp, false, false, false); 3532 3533 // Give RS breakpoints a specific name, so the user can manipulate them as a 3534 // group. 3535 Status err; 3536 target.AddNameToBreakpoint(bp, "RenderScriptReduction", err); 3537 if (err.Fail() && log) 3538 LLDB_LOGF(log, "%s - error setting break name, '%s'.", __FUNCTION__, 3539 err.AsCString()); 3540 3541 return bp; 3542 } 3543 3544 // Given an expression for a variable this function tries to calculate the 3545 // variable's value. If this is possible it returns true and sets the uint64_t 3546 // parameter to the variables unsigned value. Otherwise function returns false. 3547 bool RenderScriptRuntime::GetFrameVarAsUnsigned(const StackFrameSP frame_sp, 3548 const char *var_name, 3549 uint64_t &val) { 3550 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3551 Status err; 3552 VariableSP var_sp; 3553 3554 // Find variable in stack frame 3555 ValueObjectSP value_sp(frame_sp->GetValueForVariableExpressionPath( 3556 var_name, eNoDynamicValues, 3557 StackFrame::eExpressionPathOptionCheckPtrVsMember | 3558 StackFrame::eExpressionPathOptionsAllowDirectIVarAccess, 3559 var_sp, err)); 3560 if (!err.Success()) { 3561 LLDB_LOGF(log, "%s - error, couldn't find '%s' in frame", __FUNCTION__, 3562 var_name); 3563 return false; 3564 } 3565 3566 // Find the uint32_t value for the variable 3567 bool success = false; 3568 val = value_sp->GetValueAsUnsigned(0, &success); 3569 if (!success) { 3570 LLDB_LOGF(log, "%s - error, couldn't parse '%s' as an uint32_t.", 3571 __FUNCTION__, var_name); 3572 return false; 3573 } 3574 3575 return true; 3576 } 3577 3578 // Function attempts to find the current coordinate of a kernel invocation by 3579 // investigating the values of frame variables in the .expand function. These 3580 // coordinates are returned via the coord array reference parameter. Returns 3581 // true if the coordinates could be found, and false otherwise. 3582 bool RenderScriptRuntime::GetKernelCoordinate(RSCoordinate &coord, 3583 Thread *thread_ptr) { 3584 static const char *const x_expr = "rsIndex"; 3585 static const char *const y_expr = "p->current.y"; 3586 static const char *const z_expr = "p->current.z"; 3587 3588 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3589 3590 if (!thread_ptr) { 3591 LLDB_LOGF(log, "%s - Error, No thread pointer", __FUNCTION__); 3592 3593 return false; 3594 } 3595 3596 // Walk the call stack looking for a function whose name has the suffix 3597 // '.expand' and contains the variables we're looking for. 3598 for (uint32_t i = 0; i < thread_ptr->GetStackFrameCount(); ++i) { 3599 if (!thread_ptr->SetSelectedFrameByIndex(i)) 3600 continue; 3601 3602 StackFrameSP frame_sp = thread_ptr->GetSelectedFrame(); 3603 if (!frame_sp) 3604 continue; 3605 3606 // Find the function name 3607 const SymbolContext sym_ctx = 3608 frame_sp->GetSymbolContext(eSymbolContextFunction); 3609 const ConstString func_name = sym_ctx.GetFunctionName(); 3610 if (!func_name) 3611 continue; 3612 3613 LLDB_LOGF(log, "%s - Inspecting function '%s'", __FUNCTION__, 3614 func_name.GetCString()); 3615 3616 // Check if function name has .expand suffix 3617 if (!func_name.GetStringRef().endswith(".expand")) 3618 continue; 3619 3620 LLDB_LOGF(log, "%s - Found .expand function '%s'", __FUNCTION__, 3621 func_name.GetCString()); 3622 3623 // Get values for variables in .expand frame that tell us the current 3624 // kernel invocation 3625 uint64_t x, y, z; 3626 bool found = GetFrameVarAsUnsigned(frame_sp, x_expr, x) && 3627 GetFrameVarAsUnsigned(frame_sp, y_expr, y) && 3628 GetFrameVarAsUnsigned(frame_sp, z_expr, z); 3629 3630 if (found) { 3631 // The RenderScript runtime uses uint32_t for these vars. If they're not 3632 // within bounds, our frame parsing is garbage 3633 assert(x <= UINT32_MAX && y <= UINT32_MAX && z <= UINT32_MAX); 3634 coord.x = (uint32_t)x; 3635 coord.y = (uint32_t)y; 3636 coord.z = (uint32_t)z; 3637 return true; 3638 } 3639 } 3640 return false; 3641 } 3642 3643 // Callback when a kernel breakpoint hits and we're looking for a specific 3644 // coordinate. Baton parameter contains a pointer to the target coordinate we 3645 // want to break on. Function then checks the .expand frame for the current 3646 // coordinate and breaks to user if it matches. Parameter 'break_id' is the id 3647 // of the Breakpoint which made the callback. Parameter 'break_loc_id' is the 3648 // id for the BreakpointLocation which was hit, a single logical breakpoint can 3649 // have multiple addresses. 3650 bool RenderScriptRuntime::KernelBreakpointHit(void *baton, 3651 StoppointCallbackContext *ctx, 3652 user_id_t break_id, 3653 user_id_t break_loc_id) { 3654 Log *log( 3655 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3656 3657 assert(baton && 3658 "Error: null baton in conditional kernel breakpoint callback"); 3659 3660 // Coordinate we want to stop on 3661 RSCoordinate target_coord = *static_cast<RSCoordinate *>(baton); 3662 3663 LLDB_LOGF(log, "%s - Break ID %" PRIu64 ", " FMT_COORD, __FUNCTION__, 3664 break_id, target_coord.x, target_coord.y, target_coord.z); 3665 3666 // Select current thread 3667 ExecutionContext context(ctx->exe_ctx_ref); 3668 Thread *thread_ptr = context.GetThreadPtr(); 3669 assert(thread_ptr && "Null thread pointer"); 3670 3671 // Find current kernel invocation from .expand frame variables 3672 RSCoordinate current_coord{}; 3673 if (!GetKernelCoordinate(current_coord, thread_ptr)) { 3674 LLDB_LOGF(log, "%s - Error, couldn't select .expand stack frame", 3675 __FUNCTION__); 3676 return false; 3677 } 3678 3679 LLDB_LOGF(log, "%s - " FMT_COORD, __FUNCTION__, current_coord.x, 3680 current_coord.y, current_coord.z); 3681 3682 // Check if the current kernel invocation coordinate matches our target 3683 // coordinate 3684 if (target_coord == current_coord) { 3685 LLDB_LOGF(log, "%s, BREAKING " FMT_COORD, __FUNCTION__, current_coord.x, 3686 current_coord.y, current_coord.z); 3687 3688 BreakpointSP breakpoint_sp = 3689 context.GetTargetPtr()->GetBreakpointByID(break_id); 3690 assert(breakpoint_sp != nullptr && 3691 "Error: Couldn't find breakpoint matching break id for callback"); 3692 breakpoint_sp->SetEnabled(false); // Optimise since conditional breakpoint 3693 // should only be hit once. 3694 return true; 3695 } 3696 3697 // No match on coordinate 3698 return false; 3699 } 3700 3701 void RenderScriptRuntime::SetConditional(BreakpointSP bp, Stream &messages, 3702 const RSCoordinate &coord) { 3703 messages.Printf("Conditional kernel breakpoint on coordinate " FMT_COORD, 3704 coord.x, coord.y, coord.z); 3705 messages.EOL(); 3706 3707 // Allocate memory for the baton, and copy over coordinate 3708 RSCoordinate *baton = new RSCoordinate(coord); 3709 3710 // Create a callback that will be invoked every time the breakpoint is hit. 3711 // The baton object passed to the handler is the target coordinate we want to 3712 // break on. 3713 bp->SetCallback(KernelBreakpointHit, baton, true); 3714 3715 // Store a shared pointer to the baton, so the memory will eventually be 3716 // cleaned up after destruction 3717 m_conditional_breaks[bp->GetID()] = std::unique_ptr<RSCoordinate>(baton); 3718 } 3719 3720 // Tries to set a breakpoint on the start of a kernel, resolved using the 3721 // kernel name. Argument 'coords', represents a three dimensional coordinate 3722 // which can be used to specify a single kernel instance to break on. If this 3723 // is set then we add a callback to the breakpoint. 3724 bool RenderScriptRuntime::PlaceBreakpointOnKernel(TargetSP target, 3725 Stream &messages, 3726 const char *name, 3727 const RSCoordinate *coord) { 3728 if (!name) 3729 return false; 3730 3731 InitSearchFilter(target); 3732 3733 ConstString kernel_name(name); 3734 BreakpointSP bp = CreateKernelBreakpoint(kernel_name); 3735 if (!bp) 3736 return false; 3737 3738 // We have a conditional breakpoint on a specific coordinate 3739 if (coord) 3740 SetConditional(bp, messages, *coord); 3741 3742 bp->GetDescription(&messages, lldb::eDescriptionLevelInitial, false); 3743 3744 return true; 3745 } 3746 3747 BreakpointSP 3748 RenderScriptRuntime::CreateScriptGroupBreakpoint(ConstString name, 3749 bool stop_on_all) { 3750 Log *log( 3751 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3752 3753 if (!m_filtersp) { 3754 LLDB_LOGF(log, "%s - error, no breakpoint search filter set.", 3755 __FUNCTION__); 3756 return nullptr; 3757 } 3758 3759 BreakpointResolverSP resolver_sp(new RSScriptGroupBreakpointResolver( 3760 nullptr, name, m_scriptGroups, stop_on_all)); 3761 Target &target = GetProcess()->GetTarget(); 3762 BreakpointSP bp = target.CreateBreakpoint( 3763 m_filtersp, resolver_sp, false, false, false); 3764 // Give RS breakpoints a specific name, so the user can manipulate them as a 3765 // group. 3766 Status err; 3767 target.AddNameToBreakpoint(bp, name.GetCString(), err); 3768 if (err.Fail() && log) 3769 LLDB_LOGF(log, "%s - error setting break name, '%s'.", __FUNCTION__, 3770 err.AsCString()); 3771 // ask the breakpoint to resolve itself 3772 bp->ResolveBreakpoint(); 3773 return bp; 3774 } 3775 3776 bool RenderScriptRuntime::PlaceBreakpointOnScriptGroup(TargetSP target, 3777 Stream &strm, 3778 ConstString name, 3779 bool multi) { 3780 InitSearchFilter(target); 3781 BreakpointSP bp = CreateScriptGroupBreakpoint(name, multi); 3782 if (bp) 3783 bp->GetDescription(&strm, lldb::eDescriptionLevelInitial, false); 3784 return bool(bp); 3785 } 3786 3787 bool RenderScriptRuntime::PlaceBreakpointOnReduction(TargetSP target, 3788 Stream &messages, 3789 const char *reduce_name, 3790 const RSCoordinate *coord, 3791 int kernel_types) { 3792 if (!reduce_name) 3793 return false; 3794 3795 InitSearchFilter(target); 3796 BreakpointSP bp = 3797 CreateReductionBreakpoint(ConstString(reduce_name), kernel_types); 3798 if (!bp) 3799 return false; 3800 3801 if (coord) 3802 SetConditional(bp, messages, *coord); 3803 3804 bp->GetDescription(&messages, lldb::eDescriptionLevelInitial, false); 3805 3806 return true; 3807 } 3808 3809 void RenderScriptRuntime::DumpModules(Stream &strm) const { 3810 strm.Printf("RenderScript Modules:"); 3811 strm.EOL(); 3812 strm.IndentMore(); 3813 for (const auto &module : m_rsmodules) { 3814 module->Dump(strm); 3815 } 3816 strm.IndentLess(); 3817 } 3818 3819 RenderScriptRuntime::ScriptDetails * 3820 RenderScriptRuntime::LookUpScript(addr_t address, bool create) { 3821 for (const auto &s : m_scripts) { 3822 if (s->script.isValid()) 3823 if (*s->script == address) 3824 return s.get(); 3825 } 3826 if (create) { 3827 std::unique_ptr<ScriptDetails> s(new ScriptDetails); 3828 s->script = address; 3829 m_scripts.push_back(std::move(s)); 3830 return m_scripts.back().get(); 3831 } 3832 return nullptr; 3833 } 3834 3835 RenderScriptRuntime::AllocationDetails * 3836 RenderScriptRuntime::LookUpAllocation(addr_t address) { 3837 for (const auto &a : m_allocations) { 3838 if (a->address.isValid()) 3839 if (*a->address == address) 3840 return a.get(); 3841 } 3842 return nullptr; 3843 } 3844 3845 RenderScriptRuntime::AllocationDetails * 3846 RenderScriptRuntime::CreateAllocation(addr_t address) { 3847 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 3848 3849 // Remove any previous allocation which contains the same address 3850 auto it = m_allocations.begin(); 3851 while (it != m_allocations.end()) { 3852 if (*((*it)->address) == address) { 3853 LLDB_LOGF(log, "%s - Removing allocation id: %d, address: 0x%" PRIx64, 3854 __FUNCTION__, (*it)->id, address); 3855 3856 it = m_allocations.erase(it); 3857 } else { 3858 it++; 3859 } 3860 } 3861 3862 std::unique_ptr<AllocationDetails> a(new AllocationDetails); 3863 a->address = address; 3864 m_allocations.push_back(std::move(a)); 3865 return m_allocations.back().get(); 3866 } 3867 3868 bool RenderScriptRuntime::ResolveKernelName(lldb::addr_t kernel_addr, 3869 ConstString &name) { 3870 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS); 3871 3872 Target &target = GetProcess()->GetTarget(); 3873 Address resolved; 3874 // RenderScript module 3875 if (!target.GetSectionLoadList().ResolveLoadAddress(kernel_addr, resolved)) { 3876 LLDB_LOGF(log, "%s: unable to resolve 0x%" PRIx64 " to a loaded symbol", 3877 __FUNCTION__, kernel_addr); 3878 return false; 3879 } 3880 3881 Symbol *sym = resolved.CalculateSymbolContextSymbol(); 3882 if (!sym) 3883 return false; 3884 3885 name = sym->GetName(); 3886 assert(IsRenderScriptModule(resolved.CalculateSymbolContextModule())); 3887 LLDB_LOGF(log, "%s: 0x%" PRIx64 " resolved to the symbol '%s'", __FUNCTION__, 3888 kernel_addr, name.GetCString()); 3889 return true; 3890 } 3891 3892 void RSModuleDescriptor::Dump(Stream &strm) const { 3893 int indent = strm.GetIndentLevel(); 3894 3895 strm.Indent(); 3896 m_module->GetFileSpec().Dump(&strm); 3897 strm.Indent(m_module->GetNumCompileUnits() ? "Debug info loaded." 3898 : "Debug info does not exist."); 3899 strm.EOL(); 3900 strm.IndentMore(); 3901 3902 strm.Indent(); 3903 strm.Printf("Globals: %" PRIu64, static_cast<uint64_t>(m_globals.size())); 3904 strm.EOL(); 3905 strm.IndentMore(); 3906 for (const auto &global : m_globals) { 3907 global.Dump(strm); 3908 } 3909 strm.IndentLess(); 3910 3911 strm.Indent(); 3912 strm.Printf("Kernels: %" PRIu64, static_cast<uint64_t>(m_kernels.size())); 3913 strm.EOL(); 3914 strm.IndentMore(); 3915 for (const auto &kernel : m_kernels) { 3916 kernel.Dump(strm); 3917 } 3918 strm.IndentLess(); 3919 3920 strm.Indent(); 3921 strm.Printf("Pragmas: %" PRIu64, static_cast<uint64_t>(m_pragmas.size())); 3922 strm.EOL(); 3923 strm.IndentMore(); 3924 for (const auto &key_val : m_pragmas) { 3925 strm.Indent(); 3926 strm.Printf("%s: %s", key_val.first.c_str(), key_val.second.c_str()); 3927 strm.EOL(); 3928 } 3929 strm.IndentLess(); 3930 3931 strm.Indent(); 3932 strm.Printf("Reductions: %" PRIu64, 3933 static_cast<uint64_t>(m_reductions.size())); 3934 strm.EOL(); 3935 strm.IndentMore(); 3936 for (const auto &reduction : m_reductions) { 3937 reduction.Dump(strm); 3938 } 3939 3940 strm.SetIndentLevel(indent); 3941 } 3942 3943 void RSGlobalDescriptor::Dump(Stream &strm) const { 3944 strm.Indent(m_name.AsCString()); 3945 VariableList var_list; 3946 m_module->m_module->FindGlobalVariables(m_name, nullptr, 1U, var_list); 3947 if (var_list.GetSize() == 1) { 3948 auto var = var_list.GetVariableAtIndex(0); 3949 auto type = var->GetType(); 3950 if (type) { 3951 strm.Printf(" - "); 3952 type->DumpTypeName(&strm); 3953 } else { 3954 strm.Printf(" - Unknown Type"); 3955 } 3956 } else { 3957 strm.Printf(" - variable identified, but not found in binary"); 3958 const Symbol *s = m_module->m_module->FindFirstSymbolWithNameAndType( 3959 m_name, eSymbolTypeData); 3960 if (s) { 3961 strm.Printf(" (symbol exists) "); 3962 } 3963 } 3964 3965 strm.EOL(); 3966 } 3967 3968 void RSKernelDescriptor::Dump(Stream &strm) const { 3969 strm.Indent(m_name.AsCString()); 3970 strm.EOL(); 3971 } 3972 3973 void RSReductionDescriptor::Dump(lldb_private::Stream &stream) const { 3974 stream.Indent(m_reduce_name.AsCString()); 3975 stream.IndentMore(); 3976 stream.EOL(); 3977 stream.Indent(); 3978 stream.Printf("accumulator: %s", m_accum_name.AsCString()); 3979 stream.EOL(); 3980 stream.Indent(); 3981 stream.Printf("initializer: %s", m_init_name.AsCString()); 3982 stream.EOL(); 3983 stream.Indent(); 3984 stream.Printf("combiner: %s", m_comb_name.AsCString()); 3985 stream.EOL(); 3986 stream.Indent(); 3987 stream.Printf("outconverter: %s", m_outc_name.AsCString()); 3988 stream.EOL(); 3989 // XXX This is currently unspecified by RenderScript, and unused 3990 // stream.Indent(); 3991 // stream.Printf("halter: '%s'", m_init_name.AsCString()); 3992 // stream.EOL(); 3993 stream.IndentLess(); 3994 } 3995 3996 class CommandObjectRenderScriptRuntimeModuleDump : public CommandObjectParsed { 3997 public: 3998 CommandObjectRenderScriptRuntimeModuleDump(CommandInterpreter &interpreter) 3999 : CommandObjectParsed( 4000 interpreter, "renderscript module dump", 4001 "Dumps renderscript specific information for all modules.", 4002 "renderscript module dump", 4003 eCommandRequiresProcess | eCommandProcessMustBeLaunched) {} 4004 4005 ~CommandObjectRenderScriptRuntimeModuleDump() override = default; 4006 4007 bool DoExecute(Args &command, CommandReturnObject &result) override { 4008 RenderScriptRuntime *runtime = llvm::cast<RenderScriptRuntime>( 4009 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4010 eLanguageTypeExtRenderScript)); 4011 runtime->DumpModules(result.GetOutputStream()); 4012 result.SetStatus(eReturnStatusSuccessFinishResult); 4013 return true; 4014 } 4015 }; 4016 4017 class CommandObjectRenderScriptRuntimeModule : public CommandObjectMultiword { 4018 public: 4019 CommandObjectRenderScriptRuntimeModule(CommandInterpreter &interpreter) 4020 : CommandObjectMultiword(interpreter, "renderscript module", 4021 "Commands that deal with RenderScript modules.", 4022 nullptr) { 4023 LoadSubCommand( 4024 "dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeModuleDump( 4025 interpreter))); 4026 } 4027 4028 ~CommandObjectRenderScriptRuntimeModule() override = default; 4029 }; 4030 4031 class CommandObjectRenderScriptRuntimeKernelList : public CommandObjectParsed { 4032 public: 4033 CommandObjectRenderScriptRuntimeKernelList(CommandInterpreter &interpreter) 4034 : CommandObjectParsed( 4035 interpreter, "renderscript kernel list", 4036 "Lists renderscript kernel names and associated script resources.", 4037 "renderscript kernel list", 4038 eCommandRequiresProcess | eCommandProcessMustBeLaunched) {} 4039 4040 ~CommandObjectRenderScriptRuntimeKernelList() override = default; 4041 4042 bool DoExecute(Args &command, CommandReturnObject &result) override { 4043 RenderScriptRuntime *runtime = llvm::cast<RenderScriptRuntime>( 4044 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4045 eLanguageTypeExtRenderScript)); 4046 runtime->DumpKernels(result.GetOutputStream()); 4047 result.SetStatus(eReturnStatusSuccessFinishResult); 4048 return true; 4049 } 4050 }; 4051 4052 static constexpr OptionDefinition g_renderscript_reduction_bp_set_options[] = { 4053 {LLDB_OPT_SET_1, false, "function-role", 't', 4054 OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeOneLiner, 4055 "Break on a comma separated set of reduction kernel types " 4056 "(accumulator,outcoverter,combiner,initializer"}, 4057 {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument, 4058 nullptr, {}, 0, eArgTypeValue, 4059 "Set a breakpoint on a single invocation of the kernel with specified " 4060 "coordinate.\n" 4061 "Coordinate takes the form 'x[,y][,z] where x,y,z are positive " 4062 "integers representing kernel dimensions. " 4063 "Any unset dimensions will be defaulted to zero."}}; 4064 4065 class CommandObjectRenderScriptRuntimeReductionBreakpointSet 4066 : public CommandObjectParsed { 4067 public: 4068 CommandObjectRenderScriptRuntimeReductionBreakpointSet( 4069 CommandInterpreter &interpreter) 4070 : CommandObjectParsed( 4071 interpreter, "renderscript reduction breakpoint set", 4072 "Set a breakpoint on named RenderScript general reductions", 4073 "renderscript reduction breakpoint set <kernel_name> [-t " 4074 "<reduction_kernel_type,...>]", 4075 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4076 eCommandProcessMustBePaused), 4077 m_options(){}; 4078 4079 class CommandOptions : public Options { 4080 public: 4081 CommandOptions() 4082 : Options(), 4083 m_kernel_types(RSReduceBreakpointResolver::eKernelTypeAll) {} 4084 4085 ~CommandOptions() override = default; 4086 4087 Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg, 4088 ExecutionContext *exe_ctx) override { 4089 Status err; 4090 StreamString err_str; 4091 const int short_option = m_getopt_table[option_idx].val; 4092 switch (short_option) { 4093 case 't': 4094 if (!ParseReductionTypes(option_arg, err_str)) 4095 err.SetErrorStringWithFormat( 4096 "Unable to deduce reduction types for %s: %s", 4097 option_arg.str().c_str(), err_str.GetData()); 4098 break; 4099 case 'c': { 4100 auto coord = RSCoordinate{}; 4101 if (!ParseCoordinate(option_arg, coord)) 4102 err.SetErrorStringWithFormat("unable to parse coordinate for %s", 4103 option_arg.str().c_str()); 4104 else { 4105 m_have_coord = true; 4106 m_coord = coord; 4107 } 4108 break; 4109 } 4110 default: 4111 err.SetErrorStringWithFormat("Invalid option '-%c'", short_option); 4112 } 4113 return err; 4114 } 4115 4116 void OptionParsingStarting(ExecutionContext *exe_ctx) override { 4117 m_have_coord = false; 4118 } 4119 4120 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4121 return llvm::makeArrayRef(g_renderscript_reduction_bp_set_options); 4122 } 4123 4124 bool ParseReductionTypes(llvm::StringRef option_val, 4125 StreamString &err_str) { 4126 m_kernel_types = RSReduceBreakpointResolver::eKernelTypeNone; 4127 const auto reduce_name_to_type = [](llvm::StringRef name) -> int { 4128 return llvm::StringSwitch<int>(name) 4129 .Case("accumulator", RSReduceBreakpointResolver::eKernelTypeAccum) 4130 .Case("initializer", RSReduceBreakpointResolver::eKernelTypeInit) 4131 .Case("outconverter", RSReduceBreakpointResolver::eKernelTypeOutC) 4132 .Case("combiner", RSReduceBreakpointResolver::eKernelTypeComb) 4133 .Case("all", RSReduceBreakpointResolver::eKernelTypeAll) 4134 // Currently not exposed by the runtime 4135 // .Case("halter", RSReduceBreakpointResolver::eKernelTypeHalter) 4136 .Default(0); 4137 }; 4138 4139 // Matching a comma separated list of known words is fairly 4140 // straightforward with PCRE, but we're using ERE, so we end up with a 4141 // little ugliness... 4142 RegularExpression match_type_list( 4143 llvm::StringRef("^([[:alpha:]]+)(,[[:alpha:]]+){0,4}$")); 4144 4145 assert(match_type_list.IsValid()); 4146 4147 if (!match_type_list.Execute(option_val)) { 4148 err_str.PutCString( 4149 "a comma-separated list of kernel types is required"); 4150 return false; 4151 } 4152 4153 // splitting on commas is much easier with llvm::StringRef than regex 4154 llvm::SmallVector<llvm::StringRef, 5> type_names; 4155 llvm::StringRef(option_val).split(type_names, ','); 4156 4157 for (const auto &name : type_names) { 4158 const int type = reduce_name_to_type(name); 4159 if (!type) { 4160 err_str.Printf("unknown kernel type name %s", name.str().c_str()); 4161 return false; 4162 } 4163 m_kernel_types |= type; 4164 } 4165 4166 return true; 4167 } 4168 4169 int m_kernel_types; 4170 llvm::StringRef m_reduce_name; 4171 RSCoordinate m_coord; 4172 bool m_have_coord; 4173 }; 4174 4175 Options *GetOptions() override { return &m_options; } 4176 4177 bool DoExecute(Args &command, CommandReturnObject &result) override { 4178 const size_t argc = command.GetArgumentCount(); 4179 if (argc < 1) { 4180 result.AppendErrorWithFormat("'%s' takes 1 argument of reduction name, " 4181 "and an optional kernel type list", 4182 m_cmd_name.c_str()); 4183 result.SetStatus(eReturnStatusFailed); 4184 return false; 4185 } 4186 4187 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4188 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4189 eLanguageTypeExtRenderScript)); 4190 4191 auto &outstream = result.GetOutputStream(); 4192 auto name = command.GetArgumentAtIndex(0); 4193 auto &target = m_exe_ctx.GetTargetSP(); 4194 auto coord = m_options.m_have_coord ? &m_options.m_coord : nullptr; 4195 if (!runtime->PlaceBreakpointOnReduction(target, outstream, name, coord, 4196 m_options.m_kernel_types)) { 4197 result.SetStatus(eReturnStatusFailed); 4198 result.AppendError("Error: unable to place breakpoint on reduction"); 4199 return false; 4200 } 4201 result.AppendMessage("Breakpoint(s) created"); 4202 result.SetStatus(eReturnStatusSuccessFinishResult); 4203 return true; 4204 } 4205 4206 private: 4207 CommandOptions m_options; 4208 }; 4209 4210 static constexpr OptionDefinition g_renderscript_kernel_bp_set_options[] = { 4211 {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument, 4212 nullptr, {}, 0, eArgTypeValue, 4213 "Set a breakpoint on a single invocation of the kernel with specified " 4214 "coordinate.\n" 4215 "Coordinate takes the form 'x[,y][,z] where x,y,z are positive " 4216 "integers representing kernel dimensions. " 4217 "Any unset dimensions will be defaulted to zero."}}; 4218 4219 class CommandObjectRenderScriptRuntimeKernelBreakpointSet 4220 : public CommandObjectParsed { 4221 public: 4222 CommandObjectRenderScriptRuntimeKernelBreakpointSet( 4223 CommandInterpreter &interpreter) 4224 : CommandObjectParsed( 4225 interpreter, "renderscript kernel breakpoint set", 4226 "Sets a breakpoint on a renderscript kernel.", 4227 "renderscript kernel breakpoint set <kernel_name> [-c x,y,z]", 4228 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4229 eCommandProcessMustBePaused), 4230 m_options() {} 4231 4232 ~CommandObjectRenderScriptRuntimeKernelBreakpointSet() override = default; 4233 4234 Options *GetOptions() override { return &m_options; } 4235 4236 class CommandOptions : public Options { 4237 public: 4238 CommandOptions() : Options() {} 4239 4240 ~CommandOptions() override = default; 4241 4242 Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg, 4243 ExecutionContext *exe_ctx) override { 4244 Status err; 4245 const int short_option = m_getopt_table[option_idx].val; 4246 4247 switch (short_option) { 4248 case 'c': { 4249 auto coord = RSCoordinate{}; 4250 if (!ParseCoordinate(option_arg, coord)) 4251 err.SetErrorStringWithFormat( 4252 "Couldn't parse coordinate '%s', should be in format 'x,y,z'.", 4253 option_arg.str().c_str()); 4254 else { 4255 m_have_coord = true; 4256 m_coord = coord; 4257 } 4258 break; 4259 } 4260 default: 4261 err.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 4262 break; 4263 } 4264 return err; 4265 } 4266 4267 void OptionParsingStarting(ExecutionContext *exe_ctx) override { 4268 m_have_coord = false; 4269 } 4270 4271 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4272 return llvm::makeArrayRef(g_renderscript_kernel_bp_set_options); 4273 } 4274 4275 RSCoordinate m_coord; 4276 bool m_have_coord; 4277 }; 4278 4279 bool DoExecute(Args &command, CommandReturnObject &result) override { 4280 const size_t argc = command.GetArgumentCount(); 4281 if (argc < 1) { 4282 result.AppendErrorWithFormat( 4283 "'%s' takes 1 argument of kernel name, and an optional coordinate.", 4284 m_cmd_name.c_str()); 4285 result.SetStatus(eReturnStatusFailed); 4286 return false; 4287 } 4288 4289 RenderScriptRuntime *runtime = llvm::cast<RenderScriptRuntime>( 4290 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4291 eLanguageTypeExtRenderScript)); 4292 4293 auto &outstream = result.GetOutputStream(); 4294 auto &target = m_exe_ctx.GetTargetSP(); 4295 auto name = command.GetArgumentAtIndex(0); 4296 auto coord = m_options.m_have_coord ? &m_options.m_coord : nullptr; 4297 if (!runtime->PlaceBreakpointOnKernel(target, outstream, name, coord)) { 4298 result.SetStatus(eReturnStatusFailed); 4299 result.AppendErrorWithFormat( 4300 "Error: unable to set breakpoint on kernel '%s'", name); 4301 return false; 4302 } 4303 4304 result.AppendMessage("Breakpoint(s) created"); 4305 result.SetStatus(eReturnStatusSuccessFinishResult); 4306 return true; 4307 } 4308 4309 private: 4310 CommandOptions m_options; 4311 }; 4312 4313 class CommandObjectRenderScriptRuntimeKernelBreakpointAll 4314 : public CommandObjectParsed { 4315 public: 4316 CommandObjectRenderScriptRuntimeKernelBreakpointAll( 4317 CommandInterpreter &interpreter) 4318 : CommandObjectParsed( 4319 interpreter, "renderscript kernel breakpoint all", 4320 "Automatically sets a breakpoint on all renderscript kernels that " 4321 "are or will be loaded.\n" 4322 "Disabling option means breakpoints will no longer be set on any " 4323 "kernels loaded in the future, " 4324 "but does not remove currently set breakpoints.", 4325 "renderscript kernel breakpoint all <enable/disable>", 4326 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4327 eCommandProcessMustBePaused) {} 4328 4329 ~CommandObjectRenderScriptRuntimeKernelBreakpointAll() override = default; 4330 4331 bool DoExecute(Args &command, CommandReturnObject &result) override { 4332 const size_t argc = command.GetArgumentCount(); 4333 if (argc != 1) { 4334 result.AppendErrorWithFormat( 4335 "'%s' takes 1 argument of 'enable' or 'disable'", m_cmd_name.c_str()); 4336 result.SetStatus(eReturnStatusFailed); 4337 return false; 4338 } 4339 4340 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4341 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4342 eLanguageTypeExtRenderScript)); 4343 4344 bool do_break = false; 4345 const char *argument = command.GetArgumentAtIndex(0); 4346 if (strcmp(argument, "enable") == 0) { 4347 do_break = true; 4348 result.AppendMessage("Breakpoints will be set on all kernels."); 4349 } else if (strcmp(argument, "disable") == 0) { 4350 do_break = false; 4351 result.AppendMessage("Breakpoints will not be set on any new kernels."); 4352 } else { 4353 result.AppendErrorWithFormat( 4354 "Argument must be either 'enable' or 'disable'"); 4355 result.SetStatus(eReturnStatusFailed); 4356 return false; 4357 } 4358 4359 runtime->SetBreakAllKernels(do_break, m_exe_ctx.GetTargetSP()); 4360 4361 result.SetStatus(eReturnStatusSuccessFinishResult); 4362 return true; 4363 } 4364 }; 4365 4366 class CommandObjectRenderScriptRuntimeReductionBreakpoint 4367 : public CommandObjectMultiword { 4368 public: 4369 CommandObjectRenderScriptRuntimeReductionBreakpoint( 4370 CommandInterpreter &interpreter) 4371 : CommandObjectMultiword(interpreter, "renderscript reduction breakpoint", 4372 "Commands that manipulate breakpoints on " 4373 "renderscript general reductions.", 4374 nullptr) { 4375 LoadSubCommand( 4376 "set", CommandObjectSP( 4377 new CommandObjectRenderScriptRuntimeReductionBreakpointSet( 4378 interpreter))); 4379 } 4380 4381 ~CommandObjectRenderScriptRuntimeReductionBreakpoint() override = default; 4382 }; 4383 4384 class CommandObjectRenderScriptRuntimeKernelCoordinate 4385 : public CommandObjectParsed { 4386 public: 4387 CommandObjectRenderScriptRuntimeKernelCoordinate( 4388 CommandInterpreter &interpreter) 4389 : CommandObjectParsed( 4390 interpreter, "renderscript kernel coordinate", 4391 "Shows the (x,y,z) coordinate of the current kernel invocation.", 4392 "renderscript kernel coordinate", 4393 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4394 eCommandProcessMustBePaused) {} 4395 4396 ~CommandObjectRenderScriptRuntimeKernelCoordinate() override = default; 4397 4398 bool DoExecute(Args &command, CommandReturnObject &result) override { 4399 RSCoordinate coord{}; 4400 bool success = RenderScriptRuntime::GetKernelCoordinate( 4401 coord, m_exe_ctx.GetThreadPtr()); 4402 Stream &stream = result.GetOutputStream(); 4403 4404 if (success) { 4405 stream.Printf("Coordinate: " FMT_COORD, coord.x, coord.y, coord.z); 4406 stream.EOL(); 4407 result.SetStatus(eReturnStatusSuccessFinishResult); 4408 } else { 4409 stream.Printf("Error: Coordinate could not be found."); 4410 stream.EOL(); 4411 result.SetStatus(eReturnStatusFailed); 4412 } 4413 return true; 4414 } 4415 }; 4416 4417 class CommandObjectRenderScriptRuntimeKernelBreakpoint 4418 : public CommandObjectMultiword { 4419 public: 4420 CommandObjectRenderScriptRuntimeKernelBreakpoint( 4421 CommandInterpreter &interpreter) 4422 : CommandObjectMultiword( 4423 interpreter, "renderscript kernel", 4424 "Commands that generate breakpoints on renderscript kernels.", 4425 nullptr) { 4426 LoadSubCommand( 4427 "set", 4428 CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointSet( 4429 interpreter))); 4430 LoadSubCommand( 4431 "all", 4432 CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointAll( 4433 interpreter))); 4434 } 4435 4436 ~CommandObjectRenderScriptRuntimeKernelBreakpoint() override = default; 4437 }; 4438 4439 class CommandObjectRenderScriptRuntimeKernel : public CommandObjectMultiword { 4440 public: 4441 CommandObjectRenderScriptRuntimeKernel(CommandInterpreter &interpreter) 4442 : CommandObjectMultiword(interpreter, "renderscript kernel", 4443 "Commands that deal with RenderScript kernels.", 4444 nullptr) { 4445 LoadSubCommand( 4446 "list", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelList( 4447 interpreter))); 4448 LoadSubCommand( 4449 "coordinate", 4450 CommandObjectSP( 4451 new CommandObjectRenderScriptRuntimeKernelCoordinate(interpreter))); 4452 LoadSubCommand( 4453 "breakpoint", 4454 CommandObjectSP( 4455 new CommandObjectRenderScriptRuntimeKernelBreakpoint(interpreter))); 4456 } 4457 4458 ~CommandObjectRenderScriptRuntimeKernel() override = default; 4459 }; 4460 4461 class CommandObjectRenderScriptRuntimeContextDump : public CommandObjectParsed { 4462 public: 4463 CommandObjectRenderScriptRuntimeContextDump(CommandInterpreter &interpreter) 4464 : CommandObjectParsed(interpreter, "renderscript context dump", 4465 "Dumps renderscript context information.", 4466 "renderscript context dump", 4467 eCommandRequiresProcess | 4468 eCommandProcessMustBeLaunched) {} 4469 4470 ~CommandObjectRenderScriptRuntimeContextDump() override = default; 4471 4472 bool DoExecute(Args &command, CommandReturnObject &result) override { 4473 RenderScriptRuntime *runtime = llvm::cast<RenderScriptRuntime>( 4474 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4475 eLanguageTypeExtRenderScript)); 4476 runtime->DumpContexts(result.GetOutputStream()); 4477 result.SetStatus(eReturnStatusSuccessFinishResult); 4478 return true; 4479 } 4480 }; 4481 4482 static constexpr OptionDefinition g_renderscript_runtime_alloc_dump_options[] = { 4483 {LLDB_OPT_SET_1, false, "file", 'f', OptionParser::eRequiredArgument, 4484 nullptr, {}, 0, eArgTypeFilename, 4485 "Print results to specified file instead of command line."}}; 4486 4487 class CommandObjectRenderScriptRuntimeContext : public CommandObjectMultiword { 4488 public: 4489 CommandObjectRenderScriptRuntimeContext(CommandInterpreter &interpreter) 4490 : CommandObjectMultiword(interpreter, "renderscript context", 4491 "Commands that deal with RenderScript contexts.", 4492 nullptr) { 4493 LoadSubCommand( 4494 "dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeContextDump( 4495 interpreter))); 4496 } 4497 4498 ~CommandObjectRenderScriptRuntimeContext() override = default; 4499 }; 4500 4501 class CommandObjectRenderScriptRuntimeAllocationDump 4502 : public CommandObjectParsed { 4503 public: 4504 CommandObjectRenderScriptRuntimeAllocationDump( 4505 CommandInterpreter &interpreter) 4506 : CommandObjectParsed(interpreter, "renderscript allocation dump", 4507 "Displays the contents of a particular allocation", 4508 "renderscript allocation dump <ID>", 4509 eCommandRequiresProcess | 4510 eCommandProcessMustBeLaunched), 4511 m_options() {} 4512 4513 ~CommandObjectRenderScriptRuntimeAllocationDump() override = default; 4514 4515 Options *GetOptions() override { return &m_options; } 4516 4517 class CommandOptions : public Options { 4518 public: 4519 CommandOptions() : Options() {} 4520 4521 ~CommandOptions() override = default; 4522 4523 Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg, 4524 ExecutionContext *exe_ctx) override { 4525 Status err; 4526 const int short_option = m_getopt_table[option_idx].val; 4527 4528 switch (short_option) { 4529 case 'f': 4530 m_outfile.SetFile(option_arg, FileSpec::Style::native); 4531 FileSystem::Instance().Resolve(m_outfile); 4532 if (FileSystem::Instance().Exists(m_outfile)) { 4533 m_outfile.Clear(); 4534 err.SetErrorStringWithFormat("file already exists: '%s'", 4535 option_arg.str().c_str()); 4536 } 4537 break; 4538 default: 4539 err.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 4540 break; 4541 } 4542 return err; 4543 } 4544 4545 void OptionParsingStarting(ExecutionContext *exe_ctx) override { 4546 m_outfile.Clear(); 4547 } 4548 4549 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4550 return llvm::makeArrayRef(g_renderscript_runtime_alloc_dump_options); 4551 } 4552 4553 FileSpec m_outfile; 4554 }; 4555 4556 bool DoExecute(Args &command, CommandReturnObject &result) override { 4557 const size_t argc = command.GetArgumentCount(); 4558 if (argc < 1) { 4559 result.AppendErrorWithFormat("'%s' takes 1 argument, an allocation ID. " 4560 "As well as an optional -f argument", 4561 m_cmd_name.c_str()); 4562 result.SetStatus(eReturnStatusFailed); 4563 return false; 4564 } 4565 4566 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4567 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4568 eLanguageTypeExtRenderScript)); 4569 4570 const char *id_cstr = command.GetArgumentAtIndex(0); 4571 bool success = false; 4572 const uint32_t id = 4573 StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success); 4574 if (!success) { 4575 result.AppendErrorWithFormat("invalid allocation id argument '%s'", 4576 id_cstr); 4577 result.SetStatus(eReturnStatusFailed); 4578 return false; 4579 } 4580 4581 Stream *output_stream_p = nullptr; 4582 std::unique_ptr<Stream> output_stream_storage; 4583 4584 const FileSpec &outfile_spec = 4585 m_options.m_outfile; // Dump allocation to file instead 4586 if (outfile_spec) { 4587 // Open output file 4588 std::string path = outfile_spec.GetPath(); 4589 auto file = FileSystem::Instance().Open( 4590 outfile_spec, File::eOpenOptionWrite | File::eOpenOptionCanCreate); 4591 if (file) { 4592 output_stream_storage = 4593 std::make_unique<StreamFile>(std::move(file.get())); 4594 output_stream_p = output_stream_storage.get(); 4595 result.GetOutputStream().Printf("Results written to '%s'", 4596 path.c_str()); 4597 result.GetOutputStream().EOL(); 4598 } else { 4599 std::string error = llvm::toString(file.takeError()); 4600 result.AppendErrorWithFormat("Couldn't open file '%s': %s", 4601 path.c_str(), error.c_str()); 4602 result.SetStatus(eReturnStatusFailed); 4603 return false; 4604 } 4605 } else 4606 output_stream_p = &result.GetOutputStream(); 4607 4608 assert(output_stream_p != nullptr); 4609 bool dumped = 4610 runtime->DumpAllocation(*output_stream_p, m_exe_ctx.GetFramePtr(), id); 4611 4612 if (dumped) 4613 result.SetStatus(eReturnStatusSuccessFinishResult); 4614 else 4615 result.SetStatus(eReturnStatusFailed); 4616 4617 return true; 4618 } 4619 4620 private: 4621 CommandOptions m_options; 4622 }; 4623 4624 static constexpr OptionDefinition g_renderscript_runtime_alloc_list_options[] = { 4625 {LLDB_OPT_SET_1, false, "id", 'i', OptionParser::eRequiredArgument, nullptr, 4626 {}, 0, eArgTypeIndex, 4627 "Only show details of a single allocation with specified id."}}; 4628 4629 class CommandObjectRenderScriptRuntimeAllocationList 4630 : public CommandObjectParsed { 4631 public: 4632 CommandObjectRenderScriptRuntimeAllocationList( 4633 CommandInterpreter &interpreter) 4634 : CommandObjectParsed( 4635 interpreter, "renderscript allocation list", 4636 "List renderscript allocations and their information.", 4637 "renderscript allocation list", 4638 eCommandRequiresProcess | eCommandProcessMustBeLaunched), 4639 m_options() {} 4640 4641 ~CommandObjectRenderScriptRuntimeAllocationList() override = default; 4642 4643 Options *GetOptions() override { return &m_options; } 4644 4645 class CommandOptions : public Options { 4646 public: 4647 CommandOptions() : Options(), m_id(0) {} 4648 4649 ~CommandOptions() override = default; 4650 4651 Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg, 4652 ExecutionContext *exe_ctx) override { 4653 Status err; 4654 const int short_option = m_getopt_table[option_idx].val; 4655 4656 switch (short_option) { 4657 case 'i': 4658 if (option_arg.getAsInteger(0, m_id)) 4659 err.SetErrorStringWithFormat("invalid integer value for option '%c'", 4660 short_option); 4661 break; 4662 default: 4663 err.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 4664 break; 4665 } 4666 return err; 4667 } 4668 4669 void OptionParsingStarting(ExecutionContext *exe_ctx) override { m_id = 0; } 4670 4671 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4672 return llvm::makeArrayRef(g_renderscript_runtime_alloc_list_options); 4673 } 4674 4675 uint32_t m_id; 4676 }; 4677 4678 bool DoExecute(Args &command, CommandReturnObject &result) override { 4679 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4680 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4681 eLanguageTypeExtRenderScript)); 4682 runtime->ListAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr(), 4683 m_options.m_id); 4684 result.SetStatus(eReturnStatusSuccessFinishResult); 4685 return true; 4686 } 4687 4688 private: 4689 CommandOptions m_options; 4690 }; 4691 4692 class CommandObjectRenderScriptRuntimeAllocationLoad 4693 : public CommandObjectParsed { 4694 public: 4695 CommandObjectRenderScriptRuntimeAllocationLoad( 4696 CommandInterpreter &interpreter) 4697 : CommandObjectParsed( 4698 interpreter, "renderscript allocation load", 4699 "Loads renderscript allocation contents from a file.", 4700 "renderscript allocation load <ID> <filename>", 4701 eCommandRequiresProcess | eCommandProcessMustBeLaunched) {} 4702 4703 ~CommandObjectRenderScriptRuntimeAllocationLoad() override = default; 4704 4705 bool DoExecute(Args &command, CommandReturnObject &result) override { 4706 const size_t argc = command.GetArgumentCount(); 4707 if (argc != 2) { 4708 result.AppendErrorWithFormat( 4709 "'%s' takes 2 arguments, an allocation ID and filename to read from.", 4710 m_cmd_name.c_str()); 4711 result.SetStatus(eReturnStatusFailed); 4712 return false; 4713 } 4714 4715 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4716 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4717 eLanguageTypeExtRenderScript)); 4718 4719 const char *id_cstr = command.GetArgumentAtIndex(0); 4720 bool success = false; 4721 const uint32_t id = 4722 StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success); 4723 if (!success) { 4724 result.AppendErrorWithFormat("invalid allocation id argument '%s'", 4725 id_cstr); 4726 result.SetStatus(eReturnStatusFailed); 4727 return false; 4728 } 4729 4730 const char *path = command.GetArgumentAtIndex(1); 4731 bool loaded = runtime->LoadAllocation(result.GetOutputStream(), id, path, 4732 m_exe_ctx.GetFramePtr()); 4733 4734 if (loaded) 4735 result.SetStatus(eReturnStatusSuccessFinishResult); 4736 else 4737 result.SetStatus(eReturnStatusFailed); 4738 4739 return true; 4740 } 4741 }; 4742 4743 class CommandObjectRenderScriptRuntimeAllocationSave 4744 : public CommandObjectParsed { 4745 public: 4746 CommandObjectRenderScriptRuntimeAllocationSave( 4747 CommandInterpreter &interpreter) 4748 : CommandObjectParsed(interpreter, "renderscript allocation save", 4749 "Write renderscript allocation contents to a file.", 4750 "renderscript allocation save <ID> <filename>", 4751 eCommandRequiresProcess | 4752 eCommandProcessMustBeLaunched) {} 4753 4754 ~CommandObjectRenderScriptRuntimeAllocationSave() override = default; 4755 4756 bool DoExecute(Args &command, CommandReturnObject &result) override { 4757 const size_t argc = command.GetArgumentCount(); 4758 if (argc != 2) { 4759 result.AppendErrorWithFormat( 4760 "'%s' takes 2 arguments, an allocation ID and filename to read from.", 4761 m_cmd_name.c_str()); 4762 result.SetStatus(eReturnStatusFailed); 4763 return false; 4764 } 4765 4766 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4767 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4768 eLanguageTypeExtRenderScript)); 4769 4770 const char *id_cstr = command.GetArgumentAtIndex(0); 4771 bool success = false; 4772 const uint32_t id = 4773 StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success); 4774 if (!success) { 4775 result.AppendErrorWithFormat("invalid allocation id argument '%s'", 4776 id_cstr); 4777 result.SetStatus(eReturnStatusFailed); 4778 return false; 4779 } 4780 4781 const char *path = command.GetArgumentAtIndex(1); 4782 bool saved = runtime->SaveAllocation(result.GetOutputStream(), id, path, 4783 m_exe_ctx.GetFramePtr()); 4784 4785 if (saved) 4786 result.SetStatus(eReturnStatusSuccessFinishResult); 4787 else 4788 result.SetStatus(eReturnStatusFailed); 4789 4790 return true; 4791 } 4792 }; 4793 4794 class CommandObjectRenderScriptRuntimeAllocationRefresh 4795 : public CommandObjectParsed { 4796 public: 4797 CommandObjectRenderScriptRuntimeAllocationRefresh( 4798 CommandInterpreter &interpreter) 4799 : CommandObjectParsed(interpreter, "renderscript allocation refresh", 4800 "Recomputes the details of all allocations.", 4801 "renderscript allocation refresh", 4802 eCommandRequiresProcess | 4803 eCommandProcessMustBeLaunched) {} 4804 4805 ~CommandObjectRenderScriptRuntimeAllocationRefresh() override = default; 4806 4807 bool DoExecute(Args &command, CommandReturnObject &result) override { 4808 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4809 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4810 eLanguageTypeExtRenderScript)); 4811 4812 bool success = runtime->RecomputeAllAllocations(result.GetOutputStream(), 4813 m_exe_ctx.GetFramePtr()); 4814 4815 if (success) { 4816 result.SetStatus(eReturnStatusSuccessFinishResult); 4817 return true; 4818 } else { 4819 result.SetStatus(eReturnStatusFailed); 4820 return false; 4821 } 4822 } 4823 }; 4824 4825 class CommandObjectRenderScriptRuntimeAllocation 4826 : public CommandObjectMultiword { 4827 public: 4828 CommandObjectRenderScriptRuntimeAllocation(CommandInterpreter &interpreter) 4829 : CommandObjectMultiword( 4830 interpreter, "renderscript allocation", 4831 "Commands that deal with RenderScript allocations.", nullptr) { 4832 LoadSubCommand( 4833 "list", 4834 CommandObjectSP( 4835 new CommandObjectRenderScriptRuntimeAllocationList(interpreter))); 4836 LoadSubCommand( 4837 "dump", 4838 CommandObjectSP( 4839 new CommandObjectRenderScriptRuntimeAllocationDump(interpreter))); 4840 LoadSubCommand( 4841 "save", 4842 CommandObjectSP( 4843 new CommandObjectRenderScriptRuntimeAllocationSave(interpreter))); 4844 LoadSubCommand( 4845 "load", 4846 CommandObjectSP( 4847 new CommandObjectRenderScriptRuntimeAllocationLoad(interpreter))); 4848 LoadSubCommand( 4849 "refresh", 4850 CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationRefresh( 4851 interpreter))); 4852 } 4853 4854 ~CommandObjectRenderScriptRuntimeAllocation() override = default; 4855 }; 4856 4857 class CommandObjectRenderScriptRuntimeStatus : public CommandObjectParsed { 4858 public: 4859 CommandObjectRenderScriptRuntimeStatus(CommandInterpreter &interpreter) 4860 : CommandObjectParsed(interpreter, "renderscript status", 4861 "Displays current RenderScript runtime status.", 4862 "renderscript status", 4863 eCommandRequiresProcess | 4864 eCommandProcessMustBeLaunched) {} 4865 4866 ~CommandObjectRenderScriptRuntimeStatus() override = default; 4867 4868 bool DoExecute(Args &command, CommandReturnObject &result) override { 4869 RenderScriptRuntime *runtime = llvm::cast<RenderScriptRuntime>( 4870 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4871 eLanguageTypeExtRenderScript)); 4872 runtime->DumpStatus(result.GetOutputStream()); 4873 result.SetStatus(eReturnStatusSuccessFinishResult); 4874 return true; 4875 } 4876 }; 4877 4878 class CommandObjectRenderScriptRuntimeReduction 4879 : public CommandObjectMultiword { 4880 public: 4881 CommandObjectRenderScriptRuntimeReduction(CommandInterpreter &interpreter) 4882 : CommandObjectMultiword(interpreter, "renderscript reduction", 4883 "Commands that handle general reduction kernels", 4884 nullptr) { 4885 LoadSubCommand( 4886 "breakpoint", 4887 CommandObjectSP(new CommandObjectRenderScriptRuntimeReductionBreakpoint( 4888 interpreter))); 4889 } 4890 ~CommandObjectRenderScriptRuntimeReduction() override = default; 4891 }; 4892 4893 class CommandObjectRenderScriptRuntime : public CommandObjectMultiword { 4894 public: 4895 CommandObjectRenderScriptRuntime(CommandInterpreter &interpreter) 4896 : CommandObjectMultiword( 4897 interpreter, "renderscript", 4898 "Commands for operating on the RenderScript runtime.", 4899 "renderscript <subcommand> [<subcommand-options>]") { 4900 LoadSubCommand( 4901 "module", CommandObjectSP( 4902 new CommandObjectRenderScriptRuntimeModule(interpreter))); 4903 LoadSubCommand( 4904 "status", CommandObjectSP( 4905 new CommandObjectRenderScriptRuntimeStatus(interpreter))); 4906 LoadSubCommand( 4907 "kernel", CommandObjectSP( 4908 new CommandObjectRenderScriptRuntimeKernel(interpreter))); 4909 LoadSubCommand("context", 4910 CommandObjectSP(new CommandObjectRenderScriptRuntimeContext( 4911 interpreter))); 4912 LoadSubCommand( 4913 "allocation", 4914 CommandObjectSP( 4915 new CommandObjectRenderScriptRuntimeAllocation(interpreter))); 4916 LoadSubCommand("scriptgroup", 4917 NewCommandObjectRenderScriptScriptGroup(interpreter)); 4918 LoadSubCommand( 4919 "reduction", 4920 CommandObjectSP( 4921 new CommandObjectRenderScriptRuntimeReduction(interpreter))); 4922 } 4923 4924 ~CommandObjectRenderScriptRuntime() override = default; 4925 }; 4926 4927 void RenderScriptRuntime::Initiate() { assert(!m_initiated); } 4928 4929 RenderScriptRuntime::RenderScriptRuntime(Process *process) 4930 : lldb_private::CPPLanguageRuntime(process), m_initiated(false), 4931 m_debuggerPresentFlagged(false), m_breakAllKernels(false), 4932 m_ir_passes(nullptr) { 4933 ModulesDidLoad(process->GetTarget().GetImages()); 4934 } 4935 4936 lldb::CommandObjectSP RenderScriptRuntime::GetCommandObject( 4937 lldb_private::CommandInterpreter &interpreter) { 4938 return CommandObjectSP(new CommandObjectRenderScriptRuntime(interpreter)); 4939 } 4940 4941 RenderScriptRuntime::~RenderScriptRuntime() = default; 4942