1 //===-- RenderScriptRuntime.cpp ---------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 // C Includes 11 // C++ Includes 12 // Other libraries and framework includes 13 #include "llvm/ADT/StringSwitch.h" 14 15 // Project includes 16 #include "RenderScriptRuntime.h" 17 #include "RenderScriptScriptGroup.h" 18 19 #include "lldb/Breakpoint/StoppointCallbackContext.h" 20 #include "lldb/Core/ConstString.h" 21 #include "lldb/Core/Debugger.h" 22 #include "lldb/Core/Error.h" 23 #include "lldb/Core/Log.h" 24 #include "lldb/Core/PluginManager.h" 25 #include "lldb/Core/RegularExpression.h" 26 #include "lldb/Core/ValueObjectVariable.h" 27 #include "lldb/DataFormatters/DumpValueObjectOptions.h" 28 #include "lldb/Expression/UserExpression.h" 29 #include "lldb/Host/StringConvert.h" 30 #include "lldb/Interpreter/Args.h" 31 #include "lldb/Interpreter/CommandInterpreter.h" 32 #include "lldb/Interpreter/CommandObjectMultiword.h" 33 #include "lldb/Interpreter/CommandReturnObject.h" 34 #include "lldb/Interpreter/Options.h" 35 #include "lldb/Symbol/Function.h" 36 #include "lldb/Symbol/Symbol.h" 37 #include "lldb/Symbol/Type.h" 38 #include "lldb/Symbol/VariableList.h" 39 #include "lldb/Target/Process.h" 40 #include "lldb/Target/RegisterContext.h" 41 #include "lldb/Target/SectionLoadList.h" 42 #include "lldb/Target/Target.h" 43 #include "lldb/Target/Thread.h" 44 45 using namespace lldb; 46 using namespace lldb_private; 47 using namespace lldb_renderscript; 48 49 #define FMT_COORD "(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ")" 50 51 namespace { 52 53 // The empirical_type adds a basic level of validation to arbitrary data 54 // allowing us to track if data has been discovered and stored or not. An 55 // empirical_type will be marked as valid only if it has been explicitly 56 // assigned to. 57 template <typename type_t> class empirical_type { 58 public: 59 // Ctor. Contents is invalid when constructed. 60 empirical_type() : valid(false) {} 61 62 // Return true and copy contents to out if valid, else return false. 63 bool get(type_t &out) const { 64 if (valid) 65 out = data; 66 return valid; 67 } 68 69 // Return a pointer to the contents or nullptr if it was not valid. 70 const type_t *get() const { return valid ? &data : nullptr; } 71 72 // Assign data explicitly. 73 void set(const type_t in) { 74 data = in; 75 valid = true; 76 } 77 78 // Mark contents as invalid. 79 void invalidate() { valid = false; } 80 81 // Returns true if this type contains valid data. 82 bool isValid() const { return valid; } 83 84 // Assignment operator. 85 empirical_type<type_t> &operator=(const type_t in) { 86 set(in); 87 return *this; 88 } 89 90 // Dereference operator returns contents. 91 // Warning: Will assert if not valid so use only when you know data is valid. 92 const type_t &operator*() const { 93 assert(valid); 94 return data; 95 } 96 97 protected: 98 bool valid; 99 type_t data; 100 }; 101 102 // ArgItem is used by the GetArgs() function when reading function arguments 103 // from the target. 104 struct ArgItem { 105 enum { ePointer, eInt32, eInt64, eLong, eBool } type; 106 107 uint64_t value; 108 109 explicit operator uint64_t() const { return value; } 110 }; 111 112 // Context structure to be passed into GetArgsXXX(), argument reading functions 113 // below. 114 struct GetArgsCtx { 115 RegisterContext *reg_ctx; 116 Process *process; 117 }; 118 119 bool GetArgsX86(const GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 120 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 121 122 Error err; 123 124 // get the current stack pointer 125 uint64_t sp = ctx.reg_ctx->GetSP(); 126 127 for (size_t i = 0; i < num_args; ++i) { 128 ArgItem &arg = arg_list[i]; 129 // advance up the stack by one argument 130 sp += sizeof(uint32_t); 131 // get the argument type size 132 size_t arg_size = sizeof(uint32_t); 133 // read the argument from memory 134 arg.value = 0; 135 Error err; 136 size_t read = 137 ctx.process->ReadMemory(sp, &arg.value, sizeof(uint32_t), err); 138 if (read != arg_size || !err.Success()) { 139 if (log) 140 log->Printf("%s - error reading argument: %" PRIu64 " '%s'", 141 __FUNCTION__, uint64_t(i), err.AsCString()); 142 return false; 143 } 144 } 145 return true; 146 } 147 148 bool GetArgsX86_64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 149 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 150 151 // number of arguments passed in registers 152 static const uint32_t args_in_reg = 6; 153 // register passing order 154 static const std::array<const char *, args_in_reg> reg_names{ 155 {"rdi", "rsi", "rdx", "rcx", "r8", "r9"}}; 156 // argument type to size mapping 157 static const std::array<size_t, 5> arg_size{{ 158 8, // ePointer, 159 4, // eInt32, 160 8, // eInt64, 161 8, // eLong, 162 4, // eBool, 163 }}; 164 165 Error err; 166 167 // get the current stack pointer 168 uint64_t sp = ctx.reg_ctx->GetSP(); 169 // step over the return address 170 sp += sizeof(uint64_t); 171 172 // check the stack alignment was correct (16 byte aligned) 173 if ((sp & 0xf) != 0x0) { 174 if (log) 175 log->Printf("%s - stack misaligned", __FUNCTION__); 176 return false; 177 } 178 179 // find the start of arguments on the stack 180 uint64_t sp_offset = 0; 181 for (uint32_t i = args_in_reg; i < num_args; ++i) { 182 sp_offset += arg_size[arg_list[i].type]; 183 } 184 // round up to multiple of 16 185 sp_offset = (sp_offset + 0xf) & 0xf; 186 sp += sp_offset; 187 188 for (size_t i = 0; i < num_args; ++i) { 189 bool success = false; 190 ArgItem &arg = arg_list[i]; 191 // arguments passed in registers 192 if (i < args_in_reg) { 193 const RegisterInfo *reg = 194 ctx.reg_ctx->GetRegisterInfoByName(reg_names[i]); 195 RegisterValue reg_val; 196 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 197 arg.value = reg_val.GetAsUInt64(0, &success); 198 } 199 // arguments passed on the stack 200 else { 201 // get the argument type size 202 const size_t size = arg_size[arg_list[i].type]; 203 // read the argument from memory 204 arg.value = 0; 205 // note: due to little endian layout reading 4 or 8 bytes will give the 206 // correct value. 207 size_t read = ctx.process->ReadMemory(sp, &arg.value, size, err); 208 success = (err.Success() && read == size); 209 // advance past this argument 210 sp -= size; 211 } 212 // fail if we couldn't read this argument 213 if (!success) { 214 if (log) 215 log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s", 216 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 217 return false; 218 } 219 } 220 return true; 221 } 222 223 bool GetArgsArm(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 224 // number of arguments passed in registers 225 static const uint32_t args_in_reg = 4; 226 227 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 228 229 Error err; 230 231 // get the current stack pointer 232 uint64_t sp = ctx.reg_ctx->GetSP(); 233 234 for (size_t i = 0; i < num_args; ++i) { 235 bool success = false; 236 ArgItem &arg = arg_list[i]; 237 // arguments passed in registers 238 if (i < args_in_reg) { 239 const RegisterInfo *reg = ctx.reg_ctx->GetRegisterInfoAtIndex(i); 240 RegisterValue reg_val; 241 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 242 arg.value = reg_val.GetAsUInt32(0, &success); 243 } 244 // arguments passed on the stack 245 else { 246 // get the argument type size 247 const size_t arg_size = sizeof(uint32_t); 248 // clear all 64bits 249 arg.value = 0; 250 // read this argument from memory 251 size_t bytes_read = 252 ctx.process->ReadMemory(sp, &arg.value, arg_size, err); 253 success = (err.Success() && bytes_read == arg_size); 254 // advance the stack pointer 255 sp += sizeof(uint32_t); 256 } 257 // fail if we couldn't read this argument 258 if (!success) { 259 if (log) 260 log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s", 261 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 262 return false; 263 } 264 } 265 return true; 266 } 267 268 bool GetArgsAarch64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 269 // number of arguments passed in registers 270 static const uint32_t args_in_reg = 8; 271 272 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 273 274 for (size_t i = 0; i < num_args; ++i) { 275 bool success = false; 276 ArgItem &arg = arg_list[i]; 277 // arguments passed in registers 278 if (i < args_in_reg) { 279 const RegisterInfo *reg = ctx.reg_ctx->GetRegisterInfoAtIndex(i); 280 RegisterValue reg_val; 281 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 282 arg.value = reg_val.GetAsUInt64(0, &success); 283 } 284 // arguments passed on the stack 285 else { 286 if (log) 287 log->Printf("%s - reading arguments spilled to stack not implemented", 288 __FUNCTION__); 289 } 290 // fail if we couldn't read this argument 291 if (!success) { 292 if (log) 293 log->Printf("%s - error reading argument: %" PRIu64, __FUNCTION__, 294 uint64_t(i)); 295 return false; 296 } 297 } 298 return true; 299 } 300 301 bool GetArgsMipsel(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 302 // number of arguments passed in registers 303 static const uint32_t args_in_reg = 4; 304 // register file offset to first argument 305 static const uint32_t reg_offset = 4; 306 307 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 308 309 Error err; 310 311 // find offset to arguments on the stack (+16 to skip over a0-a3 shadow space) 312 uint64_t sp = ctx.reg_ctx->GetSP() + 16; 313 314 for (size_t i = 0; i < num_args; ++i) { 315 bool success = false; 316 ArgItem &arg = arg_list[i]; 317 // arguments passed in registers 318 if (i < args_in_reg) { 319 const RegisterInfo *reg = 320 ctx.reg_ctx->GetRegisterInfoAtIndex(i + reg_offset); 321 RegisterValue reg_val; 322 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 323 arg.value = reg_val.GetAsUInt64(0, &success); 324 } 325 // arguments passed on the stack 326 else { 327 const size_t arg_size = sizeof(uint32_t); 328 arg.value = 0; 329 size_t bytes_read = 330 ctx.process->ReadMemory(sp, &arg.value, arg_size, err); 331 success = (err.Success() && bytes_read == arg_size); 332 // advance the stack pointer 333 sp += arg_size; 334 } 335 // fail if we couldn't read this argument 336 if (!success) { 337 if (log) 338 log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s", 339 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 340 return false; 341 } 342 } 343 return true; 344 } 345 346 bool GetArgsMips64el(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 347 // number of arguments passed in registers 348 static const uint32_t args_in_reg = 8; 349 // register file offset to first argument 350 static const uint32_t reg_offset = 4; 351 352 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 353 354 Error err; 355 356 // get the current stack pointer 357 uint64_t sp = ctx.reg_ctx->GetSP(); 358 359 for (size_t i = 0; i < num_args; ++i) { 360 bool success = false; 361 ArgItem &arg = arg_list[i]; 362 // arguments passed in registers 363 if (i < args_in_reg) { 364 const RegisterInfo *reg = 365 ctx.reg_ctx->GetRegisterInfoAtIndex(i + reg_offset); 366 RegisterValue reg_val; 367 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 368 arg.value = reg_val.GetAsUInt64(0, &success); 369 } 370 // arguments passed on the stack 371 else { 372 // get the argument type size 373 const size_t arg_size = sizeof(uint64_t); 374 // clear all 64bits 375 arg.value = 0; 376 // read this argument from memory 377 size_t bytes_read = 378 ctx.process->ReadMemory(sp, &arg.value, arg_size, err); 379 success = (err.Success() && bytes_read == arg_size); 380 // advance the stack pointer 381 sp += arg_size; 382 } 383 // fail if we couldn't read this argument 384 if (!success) { 385 if (log) 386 log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s", 387 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 388 return false; 389 } 390 } 391 return true; 392 } 393 394 bool GetArgs(ExecutionContext &exe_ctx, ArgItem *arg_list, size_t num_args) { 395 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 396 397 // verify that we have a target 398 if (!exe_ctx.GetTargetPtr()) { 399 if (log) 400 log->Printf("%s - invalid target", __FUNCTION__); 401 return false; 402 } 403 404 GetArgsCtx ctx = {exe_ctx.GetRegisterContext(), exe_ctx.GetProcessPtr()}; 405 assert(ctx.reg_ctx && ctx.process); 406 407 // dispatch based on architecture 408 switch (exe_ctx.GetTargetPtr()->GetArchitecture().GetMachine()) { 409 case llvm::Triple::ArchType::x86: 410 return GetArgsX86(ctx, arg_list, num_args); 411 412 case llvm::Triple::ArchType::x86_64: 413 return GetArgsX86_64(ctx, arg_list, num_args); 414 415 case llvm::Triple::ArchType::arm: 416 return GetArgsArm(ctx, arg_list, num_args); 417 418 case llvm::Triple::ArchType::aarch64: 419 return GetArgsAarch64(ctx, arg_list, num_args); 420 421 case llvm::Triple::ArchType::mipsel: 422 return GetArgsMipsel(ctx, arg_list, num_args); 423 424 case llvm::Triple::ArchType::mips64el: 425 return GetArgsMips64el(ctx, arg_list, num_args); 426 427 default: 428 // unsupported architecture 429 if (log) { 430 log->Printf( 431 "%s - architecture not supported: '%s'", __FUNCTION__, 432 exe_ctx.GetTargetRef().GetArchitecture().GetArchitectureName()); 433 } 434 return false; 435 } 436 } 437 438 bool IsRenderScriptScriptModule(ModuleSP module) { 439 if (!module) 440 return false; 441 return module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), 442 eSymbolTypeData) != nullptr; 443 } 444 445 bool ParseCoordinate(llvm::StringRef coord_s, RSCoordinate &coord) { 446 // takes an argument of the form 'num[,num][,num]'. 447 // Where 'coord_s' is a comma separated 1,2 or 3-dimensional coordinate 448 // with the whitespace trimmed. 449 // Missing coordinates are defaulted to zero. 450 // If parsing of any elements fails the contents of &coord are undefined 451 // and `false` is returned, `true` otherwise 452 453 RegularExpression regex; 454 RegularExpression::Match regex_match(3); 455 456 bool matched = false; 457 if (regex.Compile(llvm::StringRef("^([0-9]+),([0-9]+),([0-9]+)$")) && 458 regex.Execute(coord_s, ®ex_match)) 459 matched = true; 460 else if (regex.Compile(llvm::StringRef("^([0-9]+),([0-9]+)$")) && 461 regex.Execute(coord_s, ®ex_match)) 462 matched = true; 463 else if (regex.Compile(llvm::StringRef("^([0-9]+)$")) && 464 regex.Execute(coord_s, ®ex_match)) 465 matched = true; 466 467 if (!matched) 468 return false; 469 470 auto get_index = [&](int idx, uint32_t &i) -> bool { 471 std::string group; 472 errno = 0; 473 if (regex_match.GetMatchAtIndex(coord_s.str().c_str(), idx + 1, group)) 474 return !llvm::StringRef(group).getAsInteger<uint32_t>(10, i); 475 return true; 476 }; 477 478 return get_index(0, coord.x) && get_index(1, coord.y) && 479 get_index(2, coord.z); 480 } 481 482 bool SkipPrologue(lldb::ModuleSP &module, Address &addr) { 483 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 484 SymbolContext sc; 485 uint32_t resolved_flags = 486 module->ResolveSymbolContextForAddress(addr, eSymbolContextFunction, sc); 487 if (resolved_flags & eSymbolContextFunction) { 488 if (sc.function) { 489 const uint32_t offset = sc.function->GetPrologueByteSize(); 490 ConstString name = sc.GetFunctionName(); 491 if (offset) 492 addr.Slide(offset); 493 if (log) 494 log->Printf("%s: Prologue offset for %s is %" PRIu32, __FUNCTION__, 495 name.AsCString(), offset); 496 } 497 return true; 498 } else 499 return false; 500 } 501 } // anonymous namespace 502 503 // The ScriptDetails class collects data associated with a single script 504 // instance. 505 struct RenderScriptRuntime::ScriptDetails { 506 ~ScriptDetails() = default; 507 508 enum ScriptType { eScript, eScriptC }; 509 510 // The derived type of the script. 511 empirical_type<ScriptType> type; 512 // The name of the original source file. 513 empirical_type<std::string> res_name; 514 // Path to script .so file on the device. 515 empirical_type<std::string> shared_lib; 516 // Directory where kernel objects are cached on device. 517 empirical_type<std::string> cache_dir; 518 // Pointer to the context which owns this script. 519 empirical_type<lldb::addr_t> context; 520 // Pointer to the script object itself. 521 empirical_type<lldb::addr_t> script; 522 }; 523 524 // This Element class represents the Element object in RS, defining the type 525 // associated with an Allocation. 526 struct RenderScriptRuntime::Element { 527 // Taken from rsDefines.h 528 enum DataKind { 529 RS_KIND_USER, 530 RS_KIND_PIXEL_L = 7, 531 RS_KIND_PIXEL_A, 532 RS_KIND_PIXEL_LA, 533 RS_KIND_PIXEL_RGB, 534 RS_KIND_PIXEL_RGBA, 535 RS_KIND_PIXEL_DEPTH, 536 RS_KIND_PIXEL_YUV, 537 RS_KIND_INVALID = 100 538 }; 539 540 // Taken from rsDefines.h 541 enum DataType { 542 RS_TYPE_NONE = 0, 543 RS_TYPE_FLOAT_16, 544 RS_TYPE_FLOAT_32, 545 RS_TYPE_FLOAT_64, 546 RS_TYPE_SIGNED_8, 547 RS_TYPE_SIGNED_16, 548 RS_TYPE_SIGNED_32, 549 RS_TYPE_SIGNED_64, 550 RS_TYPE_UNSIGNED_8, 551 RS_TYPE_UNSIGNED_16, 552 RS_TYPE_UNSIGNED_32, 553 RS_TYPE_UNSIGNED_64, 554 RS_TYPE_BOOLEAN, 555 556 RS_TYPE_UNSIGNED_5_6_5, 557 RS_TYPE_UNSIGNED_5_5_5_1, 558 RS_TYPE_UNSIGNED_4_4_4_4, 559 560 RS_TYPE_MATRIX_4X4, 561 RS_TYPE_MATRIX_3X3, 562 RS_TYPE_MATRIX_2X2, 563 564 RS_TYPE_ELEMENT = 1000, 565 RS_TYPE_TYPE, 566 RS_TYPE_ALLOCATION, 567 RS_TYPE_SAMPLER, 568 RS_TYPE_SCRIPT, 569 RS_TYPE_MESH, 570 RS_TYPE_PROGRAM_FRAGMENT, 571 RS_TYPE_PROGRAM_VERTEX, 572 RS_TYPE_PROGRAM_RASTER, 573 RS_TYPE_PROGRAM_STORE, 574 RS_TYPE_FONT, 575 576 RS_TYPE_INVALID = 10000 577 }; 578 579 std::vector<Element> children; // Child Element fields for structs 580 empirical_type<lldb::addr_t> 581 element_ptr; // Pointer to the RS Element of the Type 582 empirical_type<DataType> 583 type; // Type of each data pointer stored by the allocation 584 empirical_type<DataKind> 585 type_kind; // Defines pixel type if Allocation is created from an image 586 empirical_type<uint32_t> 587 type_vec_size; // Vector size of each data point, e.g '4' for uchar4 588 empirical_type<uint32_t> field_count; // Number of Subelements 589 empirical_type<uint32_t> datum_size; // Size of a single Element with padding 590 empirical_type<uint32_t> padding; // Number of padding bytes 591 empirical_type<uint32_t> 592 array_size; // Number of items in array, only needed for strucrs 593 ConstString type_name; // Name of type, only needed for structs 594 595 static const ConstString & 596 GetFallbackStructName(); // Print this as the type name of a struct Element 597 // If we can't resolve the actual struct name 598 599 bool ShouldRefresh() const { 600 const bool valid_ptr = element_ptr.isValid() && *element_ptr.get() != 0x0; 601 const bool valid_type = 602 type.isValid() && type_vec_size.isValid() && type_kind.isValid(); 603 return !valid_ptr || !valid_type || !datum_size.isValid(); 604 } 605 }; 606 607 // This AllocationDetails class collects data associated with a single 608 // allocation instance. 609 struct RenderScriptRuntime::AllocationDetails { 610 struct Dimension { 611 uint32_t dim_1; 612 uint32_t dim_2; 613 uint32_t dim_3; 614 uint32_t cube_map; 615 616 Dimension() { 617 dim_1 = 0; 618 dim_2 = 0; 619 dim_3 = 0; 620 cube_map = 0; 621 } 622 }; 623 624 // The FileHeader struct specifies the header we use for writing allocations 625 // to a binary file. Our format begins with the ASCII characters "RSAD", 626 // identifying the file as an allocation dump. Member variables dims and 627 // hdr_size are then written consecutively, immediately followed by an 628 // instance of the ElementHeader struct. Because Elements can contain 629 // subelements, there may be more than one instance of the ElementHeader 630 // struct. With this first instance being the root element, and the other 631 // instances being the root's descendants. To identify which instances are an 632 // ElementHeader's children, each struct is immediately followed by a sequence 633 // of consecutive offsets to the start of its child structs. These offsets are 634 // 4 bytes in size, and the 0 offset signifies no more children. 635 struct FileHeader { 636 uint8_t ident[4]; // ASCII 'RSAD' identifying the file 637 uint32_t dims[3]; // Dimensions 638 uint16_t hdr_size; // Header size in bytes, including all element headers 639 }; 640 641 struct ElementHeader { 642 uint16_t type; // DataType enum 643 uint32_t kind; // DataKind enum 644 uint32_t element_size; // Size of a single element, including padding 645 uint16_t vector_size; // Vector width 646 uint32_t array_size; // Number of elements in array 647 }; 648 649 // Monotonically increasing from 1 650 static uint32_t ID; 651 652 // Maps Allocation DataType enum and vector size to printable strings 653 // using mapping from RenderScript numerical types summary documentation 654 static const char *RsDataTypeToString[][4]; 655 656 // Maps Allocation DataKind enum to printable strings 657 static const char *RsDataKindToString[]; 658 659 // Maps allocation types to format sizes for printing. 660 static const uint32_t RSTypeToFormat[][3]; 661 662 // Give each allocation an ID as a way 663 // for commands to reference it. 664 const uint32_t id; 665 666 // Allocation Element type 667 RenderScriptRuntime::Element element; 668 // Dimensions of the Allocation 669 empirical_type<Dimension> dimension; 670 // Pointer to address of the RS Allocation 671 empirical_type<lldb::addr_t> address; 672 // Pointer to the data held by the Allocation 673 empirical_type<lldb::addr_t> data_ptr; 674 // Pointer to the RS Type of the Allocation 675 empirical_type<lldb::addr_t> type_ptr; 676 // Pointer to the RS Context of the Allocation 677 empirical_type<lldb::addr_t> context; 678 // Size of the allocation 679 empirical_type<uint32_t> size; 680 // Stride between rows of the allocation 681 empirical_type<uint32_t> stride; 682 683 // Give each allocation an id, so we can reference it in user commands. 684 AllocationDetails() : id(ID++) {} 685 686 bool ShouldRefresh() const { 687 bool valid_ptrs = data_ptr.isValid() && *data_ptr.get() != 0x0; 688 valid_ptrs = valid_ptrs && type_ptr.isValid() && *type_ptr.get() != 0x0; 689 return !valid_ptrs || !dimension.isValid() || !size.isValid() || 690 element.ShouldRefresh(); 691 } 692 }; 693 694 const ConstString &RenderScriptRuntime::Element::GetFallbackStructName() { 695 static const ConstString FallbackStructName("struct"); 696 return FallbackStructName; 697 } 698 699 uint32_t RenderScriptRuntime::AllocationDetails::ID = 1; 700 701 const char *RenderScriptRuntime::AllocationDetails::RsDataKindToString[] = { 702 "User", "Undefined", "Undefined", "Undefined", 703 "Undefined", "Undefined", "Undefined", // Enum jumps from 0 to 7 704 "L Pixel", "A Pixel", "LA Pixel", "RGB Pixel", 705 "RGBA Pixel", "Pixel Depth", "YUV Pixel"}; 706 707 const char *RenderScriptRuntime::AllocationDetails::RsDataTypeToString[][4] = { 708 {"None", "None", "None", "None"}, 709 {"half", "half2", "half3", "half4"}, 710 {"float", "float2", "float3", "float4"}, 711 {"double", "double2", "double3", "double4"}, 712 {"char", "char2", "char3", "char4"}, 713 {"short", "short2", "short3", "short4"}, 714 {"int", "int2", "int3", "int4"}, 715 {"long", "long2", "long3", "long4"}, 716 {"uchar", "uchar2", "uchar3", "uchar4"}, 717 {"ushort", "ushort2", "ushort3", "ushort4"}, 718 {"uint", "uint2", "uint3", "uint4"}, 719 {"ulong", "ulong2", "ulong3", "ulong4"}, 720 {"bool", "bool2", "bool3", "bool4"}, 721 {"packed_565", "packed_565", "packed_565", "packed_565"}, 722 {"packed_5551", "packed_5551", "packed_5551", "packed_5551"}, 723 {"packed_4444", "packed_4444", "packed_4444", "packed_4444"}, 724 {"rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4"}, 725 {"rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3"}, 726 {"rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2"}, 727 728 // Handlers 729 {"RS Element", "RS Element", "RS Element", "RS Element"}, 730 {"RS Type", "RS Type", "RS Type", "RS Type"}, 731 {"RS Allocation", "RS Allocation", "RS Allocation", "RS Allocation"}, 732 {"RS Sampler", "RS Sampler", "RS Sampler", "RS Sampler"}, 733 {"RS Script", "RS Script", "RS Script", "RS Script"}, 734 735 // Deprecated 736 {"RS Mesh", "RS Mesh", "RS Mesh", "RS Mesh"}, 737 {"RS Program Fragment", "RS Program Fragment", "RS Program Fragment", 738 "RS Program Fragment"}, 739 {"RS Program Vertex", "RS Program Vertex", "RS Program Vertex", 740 "RS Program Vertex"}, 741 {"RS Program Raster", "RS Program Raster", "RS Program Raster", 742 "RS Program Raster"}, 743 {"RS Program Store", "RS Program Store", "RS Program Store", 744 "RS Program Store"}, 745 {"RS Font", "RS Font", "RS Font", "RS Font"}}; 746 747 // Used as an index into the RSTypeToFormat array elements 748 enum TypeToFormatIndex { eFormatSingle = 0, eFormatVector, eElementSize }; 749 750 // { format enum of single element, format enum of element vector, size of 751 // element} 752 const uint32_t RenderScriptRuntime::AllocationDetails::RSTypeToFormat[][3] = { 753 // RS_TYPE_NONE 754 {eFormatHex, eFormatHex, 1}, 755 // RS_TYPE_FLOAT_16 756 {eFormatFloat, eFormatVectorOfFloat16, 2}, 757 // RS_TYPE_FLOAT_32 758 {eFormatFloat, eFormatVectorOfFloat32, sizeof(float)}, 759 // RS_TYPE_FLOAT_64 760 {eFormatFloat, eFormatVectorOfFloat64, sizeof(double)}, 761 // RS_TYPE_SIGNED_8 762 {eFormatDecimal, eFormatVectorOfSInt8, sizeof(int8_t)}, 763 // RS_TYPE_SIGNED_16 764 {eFormatDecimal, eFormatVectorOfSInt16, sizeof(int16_t)}, 765 // RS_TYPE_SIGNED_32 766 {eFormatDecimal, eFormatVectorOfSInt32, sizeof(int32_t)}, 767 // RS_TYPE_SIGNED_64 768 {eFormatDecimal, eFormatVectorOfSInt64, sizeof(int64_t)}, 769 // RS_TYPE_UNSIGNED_8 770 {eFormatDecimal, eFormatVectorOfUInt8, sizeof(uint8_t)}, 771 // RS_TYPE_UNSIGNED_16 772 {eFormatDecimal, eFormatVectorOfUInt16, sizeof(uint16_t)}, 773 // RS_TYPE_UNSIGNED_32 774 {eFormatDecimal, eFormatVectorOfUInt32, sizeof(uint32_t)}, 775 // RS_TYPE_UNSIGNED_64 776 {eFormatDecimal, eFormatVectorOfUInt64, sizeof(uint64_t)}, 777 // RS_TYPE_BOOL 778 {eFormatBoolean, eFormatBoolean, 1}, 779 // RS_TYPE_UNSIGNED_5_6_5 780 {eFormatHex, eFormatHex, sizeof(uint16_t)}, 781 // RS_TYPE_UNSIGNED_5_5_5_1 782 {eFormatHex, eFormatHex, sizeof(uint16_t)}, 783 // RS_TYPE_UNSIGNED_4_4_4_4 784 {eFormatHex, eFormatHex, sizeof(uint16_t)}, 785 // RS_TYPE_MATRIX_4X4 786 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 16}, 787 // RS_TYPE_MATRIX_3X3 788 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 9}, 789 // RS_TYPE_MATRIX_2X2 790 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 4}}; 791 792 //------------------------------------------------------------------ 793 // Static Functions 794 //------------------------------------------------------------------ 795 LanguageRuntime * 796 RenderScriptRuntime::CreateInstance(Process *process, 797 lldb::LanguageType language) { 798 799 if (language == eLanguageTypeExtRenderScript) 800 return new RenderScriptRuntime(process); 801 else 802 return nullptr; 803 } 804 805 // Callback with a module to search for matching symbols. We first check that 806 // the module contains RS kernels. Then look for a symbol which matches our 807 // kernel name. The breakpoint address is finally set using the address of this 808 // symbol. 809 Searcher::CallbackReturn 810 RSBreakpointResolver::SearchCallback(SearchFilter &filter, 811 SymbolContext &context, Address *, bool) { 812 ModuleSP module = context.module_sp; 813 814 if (!module || !IsRenderScriptScriptModule(module)) 815 return Searcher::eCallbackReturnContinue; 816 817 // Attempt to set a breakpoint on the kernel name symbol within the module 818 // library. If it's not found, it's likely debug info is unavailable - try to 819 // set a breakpoint on <name>.expand. 820 const Symbol *kernel_sym = 821 module->FindFirstSymbolWithNameAndType(m_kernel_name, eSymbolTypeCode); 822 if (!kernel_sym) { 823 std::string kernel_name_expanded(m_kernel_name.AsCString()); 824 kernel_name_expanded.append(".expand"); 825 kernel_sym = module->FindFirstSymbolWithNameAndType( 826 ConstString(kernel_name_expanded.c_str()), eSymbolTypeCode); 827 } 828 829 if (kernel_sym) { 830 Address bp_addr = kernel_sym->GetAddress(); 831 if (filter.AddressPasses(bp_addr)) 832 m_breakpoint->AddLocation(bp_addr); 833 } 834 835 return Searcher::eCallbackReturnContinue; 836 } 837 838 Searcher::CallbackReturn 839 RSReduceBreakpointResolver::SearchCallback(lldb_private::SearchFilter &filter, 840 lldb_private::SymbolContext &context, 841 Address *, bool) { 842 // We need to have access to the list of reductions currently parsed, as 843 // reduce names don't actually exist as 844 // symbols in a module. They are only identifiable by parsing the .rs.info 845 // packet, or finding the expand symbol. We 846 // therefore need access to the list of parsed rs modules to properly resolve 847 // reduction names. 848 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 849 ModuleSP module = context.module_sp; 850 851 if (!module || !IsRenderScriptScriptModule(module)) 852 return Searcher::eCallbackReturnContinue; 853 854 if (!m_rsmodules) 855 return Searcher::eCallbackReturnContinue; 856 857 for (const auto &module_desc : *m_rsmodules) { 858 if (module_desc->m_module != module) 859 continue; 860 861 for (const auto &reduction : module_desc->m_reductions) { 862 if (reduction.m_reduce_name != m_reduce_name) 863 continue; 864 865 std::array<std::pair<ConstString, int>, 5> funcs{ 866 {{reduction.m_init_name, eKernelTypeInit}, 867 {reduction.m_accum_name, eKernelTypeAccum}, 868 {reduction.m_comb_name, eKernelTypeComb}, 869 {reduction.m_outc_name, eKernelTypeOutC}, 870 {reduction.m_halter_name, eKernelTypeHalter}}}; 871 872 for (const auto &kernel : funcs) { 873 // Skip constituent functions that don't match our spec 874 if (!(m_kernel_types & kernel.second)) 875 continue; 876 877 const auto kernel_name = kernel.first; 878 const auto symbol = module->FindFirstSymbolWithNameAndType( 879 kernel_name, eSymbolTypeCode); 880 if (!symbol) 881 continue; 882 883 auto address = symbol->GetAddress(); 884 if (filter.AddressPasses(address)) { 885 bool new_bp; 886 m_breakpoint->AddLocation(address, &new_bp); 887 if (log) 888 log->Printf("%s: %s reduction breakpoint on %s in %s", __FUNCTION__, 889 new_bp ? "new" : "existing", kernel_name.GetCString(), 890 address.GetModule()->GetFileSpec().GetCString()); 891 } 892 } 893 } 894 } 895 return eCallbackReturnContinue; 896 } 897 898 Searcher::CallbackReturn RSScriptGroupBreakpointResolver::SearchCallback( 899 SearchFilter &filter, SymbolContext &context, Address *addr, 900 bool containing) { 901 902 if (!m_breakpoint) 903 return eCallbackReturnContinue; 904 905 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 906 ModuleSP &module = context.module_sp; 907 908 if (!module || !IsRenderScriptScriptModule(module)) 909 return Searcher::eCallbackReturnContinue; 910 911 std::vector<std::string> names; 912 m_breakpoint->GetNames(names); 913 if (names.empty()) 914 return eCallbackReturnContinue; 915 916 for (auto &name : names) { 917 const RSScriptGroupDescriptorSP sg = FindScriptGroup(ConstString(name)); 918 if (!sg) { 919 if (log) 920 log->Printf("%s: could not find script group for %s", __FUNCTION__, 921 name.c_str()); 922 continue; 923 } 924 925 if (log) 926 log->Printf("%s: Found ScriptGroup for %s", __FUNCTION__, name.c_str()); 927 928 for (const RSScriptGroupDescriptor::Kernel &k : sg->m_kernels) { 929 if (log) { 930 log->Printf("%s: Adding breakpoint for %s", __FUNCTION__, 931 k.m_name.AsCString()); 932 log->Printf("%s: Kernel address 0x%" PRIx64, __FUNCTION__, k.m_addr); 933 } 934 935 const lldb_private::Symbol *sym = 936 module->FindFirstSymbolWithNameAndType(k.m_name, eSymbolTypeCode); 937 if (!sym) { 938 if (log) 939 log->Printf("%s: Unable to find symbol for %s", __FUNCTION__, 940 k.m_name.AsCString()); 941 continue; 942 } 943 944 if (log) { 945 log->Printf("%s: Found symbol name is %s", __FUNCTION__, 946 sym->GetName().AsCString()); 947 } 948 949 auto address = sym->GetAddress(); 950 if (!SkipPrologue(module, address)) { 951 if (log) 952 log->Printf("%s: Error trying to skip prologue", __FUNCTION__); 953 } 954 955 bool new_bp; 956 m_breakpoint->AddLocation(address, &new_bp); 957 958 if (log) 959 log->Printf("%s: Placed %sbreakpoint on %s", __FUNCTION__, 960 new_bp ? "new " : "", k.m_name.AsCString()); 961 962 // exit after placing the first breakpoint if we do not intend to stop 963 // on all kernels making up this script group 964 if (!m_stop_on_all) 965 break; 966 } 967 } 968 969 return eCallbackReturnContinue; 970 } 971 972 void RenderScriptRuntime::Initialize() { 973 PluginManager::RegisterPlugin(GetPluginNameStatic(), 974 "RenderScript language support", CreateInstance, 975 GetCommandObject); 976 } 977 978 void RenderScriptRuntime::Terminate() { 979 PluginManager::UnregisterPlugin(CreateInstance); 980 } 981 982 lldb_private::ConstString RenderScriptRuntime::GetPluginNameStatic() { 983 static ConstString plugin_name("renderscript"); 984 return plugin_name; 985 } 986 987 RenderScriptRuntime::ModuleKind 988 RenderScriptRuntime::GetModuleKind(const lldb::ModuleSP &module_sp) { 989 if (module_sp) { 990 if (IsRenderScriptScriptModule(module_sp)) 991 return eModuleKindKernelObj; 992 993 // Is this the main RS runtime library 994 const ConstString rs_lib("libRS.so"); 995 if (module_sp->GetFileSpec().GetFilename() == rs_lib) { 996 return eModuleKindLibRS; 997 } 998 999 const ConstString rs_driverlib("libRSDriver.so"); 1000 if (module_sp->GetFileSpec().GetFilename() == rs_driverlib) { 1001 return eModuleKindDriver; 1002 } 1003 1004 const ConstString rs_cpureflib("libRSCpuRef.so"); 1005 if (module_sp->GetFileSpec().GetFilename() == rs_cpureflib) { 1006 return eModuleKindImpl; 1007 } 1008 } 1009 return eModuleKindIgnored; 1010 } 1011 1012 bool RenderScriptRuntime::IsRenderScriptModule( 1013 const lldb::ModuleSP &module_sp) { 1014 return GetModuleKind(module_sp) != eModuleKindIgnored; 1015 } 1016 1017 void RenderScriptRuntime::ModulesDidLoad(const ModuleList &module_list) { 1018 std::lock_guard<std::recursive_mutex> guard(module_list.GetMutex()); 1019 1020 size_t num_modules = module_list.GetSize(); 1021 for (size_t i = 0; i < num_modules; i++) { 1022 auto mod = module_list.GetModuleAtIndex(i); 1023 if (IsRenderScriptModule(mod)) { 1024 LoadModule(mod); 1025 } 1026 } 1027 } 1028 1029 //------------------------------------------------------------------ 1030 // PluginInterface protocol 1031 //------------------------------------------------------------------ 1032 lldb_private::ConstString RenderScriptRuntime::GetPluginName() { 1033 return GetPluginNameStatic(); 1034 } 1035 1036 uint32_t RenderScriptRuntime::GetPluginVersion() { return 1; } 1037 1038 bool RenderScriptRuntime::IsVTableName(const char *name) { return false; } 1039 1040 bool RenderScriptRuntime::GetDynamicTypeAndAddress( 1041 ValueObject &in_value, lldb::DynamicValueType use_dynamic, 1042 TypeAndOrName &class_type_or_name, Address &address, 1043 Value::ValueType &value_type) { 1044 return false; 1045 } 1046 1047 TypeAndOrName 1048 RenderScriptRuntime::FixUpDynamicType(const TypeAndOrName &type_and_or_name, 1049 ValueObject &static_value) { 1050 return type_and_or_name; 1051 } 1052 1053 bool RenderScriptRuntime::CouldHaveDynamicValue(ValueObject &in_value) { 1054 return false; 1055 } 1056 1057 lldb::BreakpointResolverSP 1058 RenderScriptRuntime::CreateExceptionResolver(Breakpoint *bp, bool catch_bp, 1059 bool throw_bp) { 1060 BreakpointResolverSP resolver_sp; 1061 return resolver_sp; 1062 } 1063 1064 const RenderScriptRuntime::HookDefn RenderScriptRuntime::s_runtimeHookDefns[] = 1065 { 1066 // rsdScript 1067 {"rsdScriptInit", "_Z13rsdScriptInitPKN7android12renderscript7ContextEP" 1068 "NS0_7ScriptCEPKcS7_PKhjj", 1069 "_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_" 1070 "7ScriptCEPKcS7_PKhmj", 1071 0, RenderScriptRuntime::eModuleKindDriver, 1072 &lldb_private::RenderScriptRuntime::CaptureScriptInit}, 1073 {"rsdScriptInvokeForEachMulti", 1074 "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0" 1075 "_6ScriptEjPPKNS0_10AllocationEjPS6_PKvjPK12RsScriptCall", 1076 "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0" 1077 "_6ScriptEjPPKNS0_10AllocationEmPS6_PKvmPK12RsScriptCall", 1078 0, RenderScriptRuntime::eModuleKindDriver, 1079 &lldb_private::RenderScriptRuntime::CaptureScriptInvokeForEachMulti}, 1080 {"rsdScriptSetGlobalVar", "_Z21rsdScriptSetGlobalVarPKN7android12render" 1081 "script7ContextEPKNS0_6ScriptEjPvj", 1082 "_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_" 1083 "6ScriptEjPvm", 1084 0, RenderScriptRuntime::eModuleKindDriver, 1085 &lldb_private::RenderScriptRuntime::CaptureSetGlobalVar}, 1086 1087 // rsdAllocation 1088 {"rsdAllocationInit", "_Z17rsdAllocationInitPKN7android12renderscript7C" 1089 "ontextEPNS0_10AllocationEb", 1090 "_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_" 1091 "10AllocationEb", 1092 0, RenderScriptRuntime::eModuleKindDriver, 1093 &lldb_private::RenderScriptRuntime::CaptureAllocationInit}, 1094 {"rsdAllocationRead2D", 1095 "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_" 1096 "10AllocationEjjj23RsAllocationCubemapFacejjPvjj", 1097 "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_" 1098 "10AllocationEjjj23RsAllocationCubemapFacejjPvmm", 1099 0, RenderScriptRuntime::eModuleKindDriver, nullptr}, 1100 {"rsdAllocationDestroy", "_Z20rsdAllocationDestroyPKN7android12rendersc" 1101 "ript7ContextEPNS0_10AllocationE", 1102 "_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_" 1103 "10AllocationE", 1104 0, RenderScriptRuntime::eModuleKindDriver, 1105 &lldb_private::RenderScriptRuntime::CaptureAllocationDestroy}, 1106 1107 // renderscript script groups 1108 {"rsdDebugHintScriptGroup2", "_ZN7android12renderscript21debugHintScrip" 1109 "tGroup2EPKcjPKPFvPK24RsExpandKernelDriver" 1110 "InfojjjEj", 1111 "_ZN7android12renderscript21debugHintScriptGroup2EPKcjPKPFvPK24RsExpan" 1112 "dKernelDriverInfojjjEj", 1113 0, RenderScriptRuntime::eModuleKindImpl, 1114 &lldb_private::RenderScriptRuntime::CaptureDebugHintScriptGroup2}}; 1115 1116 const size_t RenderScriptRuntime::s_runtimeHookCount = 1117 sizeof(s_runtimeHookDefns) / sizeof(s_runtimeHookDefns[0]); 1118 1119 bool RenderScriptRuntime::HookCallback(void *baton, 1120 StoppointCallbackContext *ctx, 1121 lldb::user_id_t break_id, 1122 lldb::user_id_t break_loc_id) { 1123 RuntimeHook *hook = (RuntimeHook *)baton; 1124 ExecutionContext exe_ctx(ctx->exe_ctx_ref); 1125 1126 RenderScriptRuntime *lang_rt = 1127 (RenderScriptRuntime *)exe_ctx.GetProcessPtr()->GetLanguageRuntime( 1128 eLanguageTypeExtRenderScript); 1129 1130 lang_rt->HookCallback(hook, exe_ctx); 1131 1132 return false; 1133 } 1134 1135 void RenderScriptRuntime::HookCallback(RuntimeHook *hook, 1136 ExecutionContext &exe_ctx) { 1137 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1138 1139 if (log) 1140 log->Printf("%s - '%s'", __FUNCTION__, hook->defn->name); 1141 1142 if (hook->defn->grabber) { 1143 (this->*(hook->defn->grabber))(hook, exe_ctx); 1144 } 1145 } 1146 1147 void RenderScriptRuntime::CaptureDebugHintScriptGroup2( 1148 RuntimeHook *hook_info, ExecutionContext &context) { 1149 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1150 1151 enum { 1152 eGroupName = 0, 1153 eGroupNameSize, 1154 eKernel, 1155 eKernelCount, 1156 }; 1157 1158 std::array<ArgItem, 4> args{{ 1159 {ArgItem::ePointer, 0}, // const char *groupName 1160 {ArgItem::eInt32, 0}, // const uint32_t groupNameSize 1161 {ArgItem::ePointer, 0}, // const ExpandFuncTy *kernel 1162 {ArgItem::eInt32, 0}, // const uint32_t kernelCount 1163 }}; 1164 1165 if (!GetArgs(context, args.data(), args.size())) { 1166 if (log) 1167 log->Printf("%s - Error while reading the function parameters", 1168 __FUNCTION__); 1169 return; 1170 } else if (log) { 1171 log->Printf("%s - groupName : 0x%" PRIx64, __FUNCTION__, 1172 addr_t(args[eGroupName])); 1173 log->Printf("%s - groupNameSize: %" PRIu64, __FUNCTION__, 1174 uint64_t(args[eGroupNameSize])); 1175 log->Printf("%s - kernel : 0x%" PRIx64, __FUNCTION__, 1176 addr_t(args[eKernel])); 1177 log->Printf("%s - kernelCount : %" PRIu64, __FUNCTION__, 1178 uint64_t(args[eKernelCount])); 1179 } 1180 1181 // parse script group name 1182 ConstString group_name; 1183 { 1184 Error err; 1185 const uint64_t len = uint64_t(args[eGroupNameSize]); 1186 std::unique_ptr<char[]> buffer(new char[uint32_t(len + 1)]); 1187 m_process->ReadMemory(addr_t(args[eGroupName]), buffer.get(), len, err); 1188 buffer.get()[len] = '\0'; 1189 if (!err.Success()) { 1190 if (log) 1191 log->Printf("Error reading scriptgroup name from target"); 1192 return; 1193 } else { 1194 if (log) 1195 log->Printf("Extracted scriptgroup name %s", buffer.get()); 1196 } 1197 // write back the script group name 1198 group_name.SetCString(buffer.get()); 1199 } 1200 1201 // create or access existing script group 1202 RSScriptGroupDescriptorSP group; 1203 { 1204 // search for existing script group 1205 for (auto sg : m_scriptGroups) { 1206 if (sg->m_name == group_name) { 1207 group = sg; 1208 break; 1209 } 1210 } 1211 if (!group) { 1212 group.reset(new RSScriptGroupDescriptor); 1213 group->m_name = group_name; 1214 m_scriptGroups.push_back(group); 1215 } else { 1216 // already have this script group 1217 if (log) 1218 log->Printf("Attempt to add duplicate script group %s", 1219 group_name.AsCString()); 1220 return; 1221 } 1222 } 1223 assert(group); 1224 1225 const uint32_t target_ptr_size = m_process->GetAddressByteSize(); 1226 std::vector<addr_t> kernels; 1227 // parse kernel addresses in script group 1228 for (uint64_t i = 0; i < uint64_t(args[eKernelCount]); ++i) { 1229 RSScriptGroupDescriptor::Kernel kernel; 1230 // extract script group kernel addresses from the target 1231 const addr_t ptr_addr = addr_t(args[eKernel]) + i * target_ptr_size; 1232 uint64_t kernel_addr = 0; 1233 Error err; 1234 size_t read = 1235 m_process->ReadMemory(ptr_addr, &kernel_addr, target_ptr_size, err); 1236 if (!err.Success() || read != target_ptr_size) { 1237 if (log) 1238 log->Printf("Error parsing kernel address %" PRIu64 " in script group", 1239 i); 1240 return; 1241 } 1242 if (log) 1243 log->Printf("Extracted scriptgroup kernel address - 0x%" PRIx64, 1244 kernel_addr); 1245 kernel.m_addr = kernel_addr; 1246 1247 // try to resolve the associated kernel name 1248 if (!ResolveKernelName(kernel.m_addr, kernel.m_name)) { 1249 if (log) 1250 log->Printf("Parsed scriptgroup kernel %" PRIu64 " - 0x%" PRIx64, i, 1251 kernel_addr); 1252 return; 1253 } 1254 1255 // try to find the non '.expand' function 1256 { 1257 const llvm::StringRef expand(".expand"); 1258 const llvm::StringRef name_ref = kernel.m_name.GetStringRef(); 1259 if (name_ref.endswith(expand)) { 1260 const ConstString base_kernel(name_ref.drop_back(expand.size())); 1261 // verify this function is a valid kernel 1262 if (IsKnownKernel(base_kernel)) { 1263 kernel.m_name = base_kernel; 1264 if (log) 1265 log->Printf("%s - found non expand version '%s'", __FUNCTION__, 1266 base_kernel.GetCString()); 1267 } 1268 } 1269 } 1270 // add to a list of script group kernels we know about 1271 group->m_kernels.push_back(kernel); 1272 } 1273 1274 // Resolve any pending scriptgroup breakpoints 1275 { 1276 Target &target = m_process->GetTarget(); 1277 const BreakpointList &list = target.GetBreakpointList(); 1278 const size_t num_breakpoints = list.GetSize(); 1279 if (log) 1280 log->Printf("Resolving %zu breakpoints", num_breakpoints); 1281 for (size_t i = 0; i < num_breakpoints; ++i) { 1282 const BreakpointSP bp = list.GetBreakpointAtIndex(i); 1283 if (bp) { 1284 if (bp->MatchesName(group_name.AsCString())) { 1285 if (log) 1286 log->Printf("Found breakpoint with name %s", 1287 group_name.AsCString()); 1288 bp->ResolveBreakpoint(); 1289 } 1290 } 1291 } 1292 } 1293 } 1294 1295 void RenderScriptRuntime::CaptureScriptInvokeForEachMulti( 1296 RuntimeHook *hook, ExecutionContext &exe_ctx) { 1297 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1298 1299 enum { 1300 eRsContext = 0, 1301 eRsScript, 1302 eRsSlot, 1303 eRsAIns, 1304 eRsInLen, 1305 eRsAOut, 1306 eRsUsr, 1307 eRsUsrLen, 1308 eRsSc, 1309 }; 1310 1311 std::array<ArgItem, 9> args{{ 1312 ArgItem{ArgItem::ePointer, 0}, // const Context *rsc 1313 ArgItem{ArgItem::ePointer, 0}, // Script *s 1314 ArgItem{ArgItem::eInt32, 0}, // uint32_t slot 1315 ArgItem{ArgItem::ePointer, 0}, // const Allocation **aIns 1316 ArgItem{ArgItem::eInt32, 0}, // size_t inLen 1317 ArgItem{ArgItem::ePointer, 0}, // Allocation *aout 1318 ArgItem{ArgItem::ePointer, 0}, // const void *usr 1319 ArgItem{ArgItem::eInt32, 0}, // size_t usrLen 1320 ArgItem{ArgItem::ePointer, 0}, // const RsScriptCall *sc 1321 }}; 1322 1323 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1324 if (!success) { 1325 if (log) 1326 log->Printf("%s - Error while reading the function parameters", 1327 __FUNCTION__); 1328 return; 1329 } 1330 1331 const uint32_t target_ptr_size = m_process->GetAddressByteSize(); 1332 Error err; 1333 std::vector<uint64_t> allocs; 1334 1335 // traverse allocation list 1336 for (uint64_t i = 0; i < uint64_t(args[eRsInLen]); ++i) { 1337 // calculate offest to allocation pointer 1338 const addr_t addr = addr_t(args[eRsAIns]) + i * target_ptr_size; 1339 1340 // Note: due to little endian layout, reading 32bits or 64bits into res 1341 // will give the correct results. 1342 uint64_t result = 0; 1343 size_t read = m_process->ReadMemory(addr, &result, target_ptr_size, err); 1344 if (read != target_ptr_size || !err.Success()) { 1345 if (log) 1346 log->Printf( 1347 "%s - Error while reading allocation list argument %" PRIu64, 1348 __FUNCTION__, i); 1349 } else { 1350 allocs.push_back(result); 1351 } 1352 } 1353 1354 // if there is an output allocation track it 1355 if (uint64_t alloc_out = uint64_t(args[eRsAOut])) { 1356 allocs.push_back(alloc_out); 1357 } 1358 1359 // for all allocations we have found 1360 for (const uint64_t alloc_addr : allocs) { 1361 AllocationDetails *alloc = LookUpAllocation(alloc_addr); 1362 if (!alloc) 1363 alloc = CreateAllocation(alloc_addr); 1364 1365 if (alloc) { 1366 // save the allocation address 1367 if (alloc->address.isValid()) { 1368 // check the allocation address we already have matches 1369 assert(*alloc->address.get() == alloc_addr); 1370 } else { 1371 alloc->address = alloc_addr; 1372 } 1373 1374 // save the context 1375 if (log) { 1376 if (alloc->context.isValid() && 1377 *alloc->context.get() != addr_t(args[eRsContext])) 1378 log->Printf("%s - Allocation used by multiple contexts", 1379 __FUNCTION__); 1380 } 1381 alloc->context = addr_t(args[eRsContext]); 1382 } 1383 } 1384 1385 // make sure we track this script object 1386 if (lldb_private::RenderScriptRuntime::ScriptDetails *script = 1387 LookUpScript(addr_t(args[eRsScript]), true)) { 1388 if (log) { 1389 if (script->context.isValid() && 1390 *script->context.get() != addr_t(args[eRsContext])) 1391 log->Printf("%s - Script used by multiple contexts", __FUNCTION__); 1392 } 1393 script->context = addr_t(args[eRsContext]); 1394 } 1395 } 1396 1397 void RenderScriptRuntime::CaptureSetGlobalVar(RuntimeHook *hook, 1398 ExecutionContext &context) { 1399 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1400 1401 enum { 1402 eRsContext, 1403 eRsScript, 1404 eRsId, 1405 eRsData, 1406 eRsLength, 1407 }; 1408 1409 std::array<ArgItem, 5> args{{ 1410 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1411 ArgItem{ArgItem::ePointer, 0}, // eRsScript 1412 ArgItem{ArgItem::eInt32, 0}, // eRsId 1413 ArgItem{ArgItem::ePointer, 0}, // eRsData 1414 ArgItem{ArgItem::eInt32, 0}, // eRsLength 1415 }}; 1416 1417 bool success = GetArgs(context, &args[0], args.size()); 1418 if (!success) { 1419 if (log) 1420 log->Printf("%s - error reading the function parameters.", __FUNCTION__); 1421 return; 1422 } 1423 1424 if (log) { 1425 log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " slot %" PRIu64 " = 0x%" PRIx64 1426 ":%" PRIu64 "bytes.", 1427 __FUNCTION__, uint64_t(args[eRsContext]), 1428 uint64_t(args[eRsScript]), uint64_t(args[eRsId]), 1429 uint64_t(args[eRsData]), uint64_t(args[eRsLength])); 1430 1431 addr_t script_addr = addr_t(args[eRsScript]); 1432 if (m_scriptMappings.find(script_addr) != m_scriptMappings.end()) { 1433 auto rsm = m_scriptMappings[script_addr]; 1434 if (uint64_t(args[eRsId]) < rsm->m_globals.size()) { 1435 auto rsg = rsm->m_globals[uint64_t(args[eRsId])]; 1436 log->Printf("%s - Setting of '%s' within '%s' inferred", __FUNCTION__, 1437 rsg.m_name.AsCString(), 1438 rsm->m_module->GetFileSpec().GetFilename().AsCString()); 1439 } 1440 } 1441 } 1442 } 1443 1444 void RenderScriptRuntime::CaptureAllocationInit(RuntimeHook *hook, 1445 ExecutionContext &exe_ctx) { 1446 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1447 1448 enum { eRsContext, eRsAlloc, eRsForceZero }; 1449 1450 std::array<ArgItem, 3> args{{ 1451 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1452 ArgItem{ArgItem::ePointer, 0}, // eRsAlloc 1453 ArgItem{ArgItem::eBool, 0}, // eRsForceZero 1454 }}; 1455 1456 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1457 if (!success) { 1458 if (log) 1459 log->Printf("%s - error while reading the function parameters", 1460 __FUNCTION__); 1461 return; 1462 } 1463 1464 if (log) 1465 log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 ",0x%" PRIx64 " .", 1466 __FUNCTION__, uint64_t(args[eRsContext]), 1467 uint64_t(args[eRsAlloc]), uint64_t(args[eRsForceZero])); 1468 1469 AllocationDetails *alloc = CreateAllocation(uint64_t(args[eRsAlloc])); 1470 if (alloc) 1471 alloc->context = uint64_t(args[eRsContext]); 1472 } 1473 1474 void RenderScriptRuntime::CaptureAllocationDestroy(RuntimeHook *hook, 1475 ExecutionContext &exe_ctx) { 1476 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1477 1478 enum { 1479 eRsContext, 1480 eRsAlloc, 1481 }; 1482 1483 std::array<ArgItem, 2> args{{ 1484 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1485 ArgItem{ArgItem::ePointer, 0}, // eRsAlloc 1486 }}; 1487 1488 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1489 if (!success) { 1490 if (log) 1491 log->Printf("%s - error while reading the function parameters.", 1492 __FUNCTION__); 1493 return; 1494 } 1495 1496 if (log) 1497 log->Printf("%s - 0x%" PRIx64 ", 0x%" PRIx64 ".", __FUNCTION__, 1498 uint64_t(args[eRsContext]), uint64_t(args[eRsAlloc])); 1499 1500 for (auto iter = m_allocations.begin(); iter != m_allocations.end(); ++iter) { 1501 auto &allocation_ap = *iter; // get the unique pointer 1502 if (allocation_ap->address.isValid() && 1503 *allocation_ap->address.get() == addr_t(args[eRsAlloc])) { 1504 m_allocations.erase(iter); 1505 if (log) 1506 log->Printf("%s - deleted allocation entry.", __FUNCTION__); 1507 return; 1508 } 1509 } 1510 1511 if (log) 1512 log->Printf("%s - couldn't find destroyed allocation.", __FUNCTION__); 1513 } 1514 1515 void RenderScriptRuntime::CaptureScriptInit(RuntimeHook *hook, 1516 ExecutionContext &exe_ctx) { 1517 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1518 1519 Error err; 1520 Process *process = exe_ctx.GetProcessPtr(); 1521 1522 enum { eRsContext, eRsScript, eRsResNamePtr, eRsCachedDirPtr }; 1523 1524 std::array<ArgItem, 4> args{ 1525 {ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}, 1526 ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}}}; 1527 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1528 if (!success) { 1529 if (log) 1530 log->Printf("%s - error while reading the function parameters.", 1531 __FUNCTION__); 1532 return; 1533 } 1534 1535 std::string res_name; 1536 process->ReadCStringFromMemory(addr_t(args[eRsResNamePtr]), res_name, err); 1537 if (err.Fail()) { 1538 if (log) 1539 log->Printf("%s - error reading res_name: %s.", __FUNCTION__, 1540 err.AsCString()); 1541 } 1542 1543 std::string cache_dir; 1544 process->ReadCStringFromMemory(addr_t(args[eRsCachedDirPtr]), cache_dir, err); 1545 if (err.Fail()) { 1546 if (log) 1547 log->Printf("%s - error reading cache_dir: %s.", __FUNCTION__, 1548 err.AsCString()); 1549 } 1550 1551 if (log) 1552 log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " => '%s' at '%s' .", 1553 __FUNCTION__, uint64_t(args[eRsContext]), 1554 uint64_t(args[eRsScript]), res_name.c_str(), cache_dir.c_str()); 1555 1556 if (res_name.size() > 0) { 1557 StreamString strm; 1558 strm.Printf("librs.%s.so", res_name.c_str()); 1559 1560 ScriptDetails *script = LookUpScript(addr_t(args[eRsScript]), true); 1561 if (script) { 1562 script->type = ScriptDetails::eScriptC; 1563 script->cache_dir = cache_dir; 1564 script->res_name = res_name; 1565 script->shared_lib = strm.GetData(); 1566 script->context = addr_t(args[eRsContext]); 1567 } 1568 1569 if (log) 1570 log->Printf("%s - '%s' tagged with context 0x%" PRIx64 1571 " and script 0x%" PRIx64 ".", 1572 __FUNCTION__, strm.GetData(), uint64_t(args[eRsContext]), 1573 uint64_t(args[eRsScript])); 1574 } else if (log) { 1575 log->Printf("%s - resource name invalid, Script not tagged.", __FUNCTION__); 1576 } 1577 } 1578 1579 void RenderScriptRuntime::LoadRuntimeHooks(lldb::ModuleSP module, 1580 ModuleKind kind) { 1581 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1582 1583 if (!module) { 1584 return; 1585 } 1586 1587 Target &target = GetProcess()->GetTarget(); 1588 const llvm::Triple::ArchType machine = target.GetArchitecture().GetMachine(); 1589 1590 if (machine != llvm::Triple::ArchType::x86 && 1591 machine != llvm::Triple::ArchType::arm && 1592 machine != llvm::Triple::ArchType::aarch64 && 1593 machine != llvm::Triple::ArchType::mipsel && 1594 machine != llvm::Triple::ArchType::mips64el && 1595 machine != llvm::Triple::ArchType::x86_64) { 1596 if (log) 1597 log->Printf("%s - unable to hook runtime functions.", __FUNCTION__); 1598 return; 1599 } 1600 1601 const uint32_t target_ptr_size = 1602 target.GetArchitecture().GetAddressByteSize(); 1603 1604 std::array<bool, s_runtimeHookCount> hook_placed; 1605 hook_placed.fill(false); 1606 1607 for (size_t idx = 0; idx < s_runtimeHookCount; idx++) { 1608 const HookDefn *hook_defn = &s_runtimeHookDefns[idx]; 1609 if (hook_defn->kind != kind) { 1610 continue; 1611 } 1612 1613 const char *symbol_name = (target_ptr_size == 4) 1614 ? hook_defn->symbol_name_m32 1615 : hook_defn->symbol_name_m64; 1616 1617 const Symbol *sym = module->FindFirstSymbolWithNameAndType( 1618 ConstString(symbol_name), eSymbolTypeCode); 1619 if (!sym) { 1620 if (log) { 1621 log->Printf("%s - symbol '%s' related to the function %s not found", 1622 __FUNCTION__, symbol_name, hook_defn->name); 1623 } 1624 continue; 1625 } 1626 1627 addr_t addr = sym->GetLoadAddress(&target); 1628 if (addr == LLDB_INVALID_ADDRESS) { 1629 if (log) 1630 log->Printf("%s - unable to resolve the address of hook function '%s' " 1631 "with symbol '%s'.", 1632 __FUNCTION__, hook_defn->name, symbol_name); 1633 continue; 1634 } else { 1635 if (log) 1636 log->Printf("%s - function %s, address resolved at 0x%" PRIx64, 1637 __FUNCTION__, hook_defn->name, addr); 1638 } 1639 1640 RuntimeHookSP hook(new RuntimeHook()); 1641 hook->address = addr; 1642 hook->defn = hook_defn; 1643 hook->bp_sp = target.CreateBreakpoint(addr, true, false); 1644 hook->bp_sp->SetCallback(HookCallback, hook.get(), true); 1645 m_runtimeHooks[addr] = hook; 1646 if (log) { 1647 log->Printf("%s - successfully hooked '%s' in '%s' version %" PRIu64 1648 " at 0x%" PRIx64 ".", 1649 __FUNCTION__, hook_defn->name, 1650 module->GetFileSpec().GetFilename().AsCString(), 1651 (uint64_t)hook_defn->version, (uint64_t)addr); 1652 } 1653 hook_placed[idx] = true; 1654 } 1655 1656 // log any unhooked function 1657 if (log) { 1658 for (size_t i = 0; i < hook_placed.size(); ++i) { 1659 if (hook_placed[i]) 1660 continue; 1661 const HookDefn &hook_defn = s_runtimeHookDefns[i]; 1662 if (hook_defn.kind != kind) 1663 continue; 1664 log->Printf("%s - function %s was not hooked", __FUNCTION__, 1665 hook_defn.name); 1666 } 1667 } 1668 } 1669 1670 void RenderScriptRuntime::FixupScriptDetails(RSModuleDescriptorSP rsmodule_sp) { 1671 if (!rsmodule_sp) 1672 return; 1673 1674 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1675 1676 const ModuleSP module = rsmodule_sp->m_module; 1677 const FileSpec &file = module->GetPlatformFileSpec(); 1678 1679 // Iterate over all of the scripts that we currently know of. 1680 // Note: We cant push or pop to m_scripts here or it may invalidate rs_script. 1681 for (const auto &rs_script : m_scripts) { 1682 // Extract the expected .so file path for this script. 1683 std::string shared_lib; 1684 if (!rs_script->shared_lib.get(shared_lib)) 1685 continue; 1686 1687 // Only proceed if the module that has loaded corresponds to this script. 1688 if (file.GetFilename() != ConstString(shared_lib.c_str())) 1689 continue; 1690 1691 // Obtain the script address which we use as a key. 1692 lldb::addr_t script; 1693 if (!rs_script->script.get(script)) 1694 continue; 1695 1696 // If we have a script mapping for the current script. 1697 if (m_scriptMappings.find(script) != m_scriptMappings.end()) { 1698 // if the module we have stored is different to the one we just received. 1699 if (m_scriptMappings[script] != rsmodule_sp) { 1700 if (log) 1701 log->Printf( 1702 "%s - script %" PRIx64 " wants reassigned to new rsmodule '%s'.", 1703 __FUNCTION__, (uint64_t)script, 1704 rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString()); 1705 } 1706 } 1707 // We don't have a script mapping for the current script. 1708 else { 1709 // Obtain the script resource name. 1710 std::string res_name; 1711 if (rs_script->res_name.get(res_name)) 1712 // Set the modules resource name. 1713 rsmodule_sp->m_resname = res_name; 1714 // Add Script/Module pair to map. 1715 m_scriptMappings[script] = rsmodule_sp; 1716 if (log) 1717 log->Printf( 1718 "%s - script %" PRIx64 " associated with rsmodule '%s'.", 1719 __FUNCTION__, (uint64_t)script, 1720 rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString()); 1721 } 1722 } 1723 } 1724 1725 // Uses the Target API to evaluate the expression passed as a parameter to the 1726 // function The result of that expression is returned an unsigned 64 bit int, 1727 // via the result* parameter. Function returns true on success, and false on 1728 // failure 1729 bool RenderScriptRuntime::EvalRSExpression(const char *expr, 1730 StackFrame *frame_ptr, 1731 uint64_t *result) { 1732 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1733 if (log) 1734 log->Printf("%s(%s)", __FUNCTION__, expr); 1735 1736 ValueObjectSP expr_result; 1737 EvaluateExpressionOptions options; 1738 options.SetLanguage(lldb::eLanguageTypeC_plus_plus); 1739 // Perform the actual expression evaluation 1740 auto &target = GetProcess()->GetTarget(); 1741 target.EvaluateExpression(expr, frame_ptr, expr_result, options); 1742 1743 if (!expr_result) { 1744 if (log) 1745 log->Printf("%s: couldn't evaluate expression.", __FUNCTION__); 1746 return false; 1747 } 1748 1749 // The result of the expression is invalid 1750 if (!expr_result->GetError().Success()) { 1751 Error err = expr_result->GetError(); 1752 // Expression returned is void, so this is actually a success 1753 if (err.GetError() == UserExpression::kNoResult) { 1754 if (log) 1755 log->Printf("%s - expression returned void.", __FUNCTION__); 1756 1757 result = nullptr; 1758 return true; 1759 } 1760 1761 if (log) 1762 log->Printf("%s - error evaluating expression result: %s", __FUNCTION__, 1763 err.AsCString()); 1764 return false; 1765 } 1766 1767 bool success = false; 1768 // We only read the result as an uint32_t. 1769 *result = expr_result->GetValueAsUnsigned(0, &success); 1770 1771 if (!success) { 1772 if (log) 1773 log->Printf("%s - couldn't convert expression result to uint32_t", 1774 __FUNCTION__); 1775 return false; 1776 } 1777 1778 return true; 1779 } 1780 1781 namespace { 1782 // Used to index expression format strings 1783 enum ExpressionStrings { 1784 eExprGetOffsetPtr = 0, 1785 eExprAllocGetType, 1786 eExprTypeDimX, 1787 eExprTypeDimY, 1788 eExprTypeDimZ, 1789 eExprTypeElemPtr, 1790 eExprElementType, 1791 eExprElementKind, 1792 eExprElementVec, 1793 eExprElementFieldCount, 1794 eExprSubelementsId, 1795 eExprSubelementsName, 1796 eExprSubelementsArrSize, 1797 1798 _eExprLast // keep at the end, implicit size of the array runtime_expressions 1799 }; 1800 1801 // max length of an expanded expression 1802 const int jit_max_expr_size = 512; 1803 1804 // Retrieve the string to JIT for the given expression 1805 const char *JITTemplate(ExpressionStrings e) { 1806 // Format strings containing the expressions we may need to evaluate. 1807 static std::array<const char *, _eExprLast> runtime_expressions = { 1808 {// Mangled GetOffsetPointer(Allocation*, xoff, yoff, zoff, lod, cubemap) 1809 "(int*)_" 1810 "Z12GetOffsetPtrPKN7android12renderscript10AllocationEjjjj23RsAllocation" 1811 "CubemapFace" 1812 "(0x%" PRIx64 ", %" PRIu32 ", %" PRIu32 ", %" PRIu32 ", 0, 0)", 1813 1814 // Type* rsaAllocationGetType(Context*, Allocation*) 1815 "(void*)rsaAllocationGetType(0x%" PRIx64 ", 0x%" PRIx64 ")", 1816 1817 // rsaTypeGetNativeData(Context*, Type*, void* typeData, size) Pack the 1818 // data in the following way mHal.state.dimX; mHal.state.dimY; 1819 // mHal.state.dimZ; mHal.state.lodCount; mHal.state.faces; mElement; into 1820 // typeData Need to specify 32 or 64 bit for uint_t since this differs 1821 // between devices 1822 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 1823 ", 0x%" PRIx64 ", data, 6); data[0]", // X dim 1824 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 1825 ", 0x%" PRIx64 ", data, 6); data[1]", // Y dim 1826 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 1827 ", 0x%" PRIx64 ", data, 6); data[2]", // Z dim 1828 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64 1829 ", 0x%" PRIx64 ", data, 6); data[5]", // Element ptr 1830 1831 // rsaElementGetNativeData(Context*, Element*, uint32_t* elemData,size) 1832 // Pack mType; mKind; mNormalized; mVectorSize; NumSubElements into 1833 // elemData 1834 "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 1835 ", 0x%" PRIx64 ", data, 5); data[0]", // Type 1836 "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 1837 ", 0x%" PRIx64 ", data, 5); data[1]", // Kind 1838 "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 1839 ", 0x%" PRIx64 ", data, 5); data[3]", // Vector Size 1840 "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64 1841 ", 0x%" PRIx64 ", data, 5); data[4]", // Field Count 1842 1843 // rsaElementGetSubElements(RsContext con, RsElement elem, uintptr_t 1844 // *ids, const char **names, size_t *arraySizes, uint32_t dataSize) 1845 // Needed for Allocations of structs to gather details about 1846 // fields/Subelements Element* of field 1847 "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 1848 "]; size_t arr_size[%" PRIu32 "];" 1849 "(void*)rsaElementGetSubElements(0x%" PRIx64 ", 0x%" PRIx64 1850 ", ids, names, arr_size, %" PRIu32 "); ids[%" PRIu32 "]", 1851 1852 // Name of field 1853 "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 1854 "]; size_t arr_size[%" PRIu32 "];" 1855 "(void*)rsaElementGetSubElements(0x%" PRIx64 ", 0x%" PRIx64 1856 ", ids, names, arr_size, %" PRIu32 "); names[%" PRIu32 "]", 1857 1858 // Array size of field 1859 "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 1860 "]; size_t arr_size[%" PRIu32 "];" 1861 "(void*)rsaElementGetSubElements(0x%" PRIx64 ", 0x%" PRIx64 1862 ", ids, names, arr_size, %" PRIu32 "); arr_size[%" PRIu32 "]"}}; 1863 1864 return runtime_expressions[e]; 1865 } 1866 } // end of the anonymous namespace 1867 1868 // JITs the RS runtime for the internal data pointer of an allocation. Is passed 1869 // x,y,z coordinates for the pointer to a specific element. Then sets the 1870 // data_ptr member in Allocation with the result. Returns true on success, false 1871 // otherwise 1872 bool RenderScriptRuntime::JITDataPointer(AllocationDetails *alloc, 1873 StackFrame *frame_ptr, uint32_t x, 1874 uint32_t y, uint32_t z) { 1875 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1876 1877 if (!alloc->address.isValid()) { 1878 if (log) 1879 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1880 return false; 1881 } 1882 1883 const char *fmt_str = JITTemplate(eExprGetOffsetPtr); 1884 char expr_buf[jit_max_expr_size]; 1885 1886 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 1887 *alloc->address.get(), x, y, z); 1888 if (written < 0) { 1889 if (log) 1890 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1891 return false; 1892 } else if (written >= jit_max_expr_size) { 1893 if (log) 1894 log->Printf("%s - expression too long.", __FUNCTION__); 1895 return false; 1896 } 1897 1898 uint64_t result = 0; 1899 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 1900 return false; 1901 1902 addr_t data_ptr = static_cast<lldb::addr_t>(result); 1903 alloc->data_ptr = data_ptr; 1904 1905 return true; 1906 } 1907 1908 // JITs the RS runtime for the internal pointer to the RS Type of an allocation 1909 // Then sets the type_ptr member in Allocation with the result. Returns true on 1910 // success, false otherwise 1911 bool RenderScriptRuntime::JITTypePointer(AllocationDetails *alloc, 1912 StackFrame *frame_ptr) { 1913 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1914 1915 if (!alloc->address.isValid() || !alloc->context.isValid()) { 1916 if (log) 1917 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1918 return false; 1919 } 1920 1921 const char *fmt_str = JITTemplate(eExprAllocGetType); 1922 char expr_buf[jit_max_expr_size]; 1923 1924 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 1925 *alloc->context.get(), *alloc->address.get()); 1926 if (written < 0) { 1927 if (log) 1928 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1929 return false; 1930 } else if (written >= jit_max_expr_size) { 1931 if (log) 1932 log->Printf("%s - expression too long.", __FUNCTION__); 1933 return false; 1934 } 1935 1936 uint64_t result = 0; 1937 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 1938 return false; 1939 1940 addr_t type_ptr = static_cast<lldb::addr_t>(result); 1941 alloc->type_ptr = type_ptr; 1942 1943 return true; 1944 } 1945 1946 // JITs the RS runtime for information about the dimensions and type of an 1947 // allocation Then sets dimension and element_ptr members in Allocation with the 1948 // result. Returns true on success, false otherwise 1949 bool RenderScriptRuntime::JITTypePacked(AllocationDetails *alloc, 1950 StackFrame *frame_ptr) { 1951 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1952 1953 if (!alloc->type_ptr.isValid() || !alloc->context.isValid()) { 1954 if (log) 1955 log->Printf("%s - Failed to find allocation details.", __FUNCTION__); 1956 return false; 1957 } 1958 1959 // Expression is different depending on if device is 32 or 64 bit 1960 uint32_t target_ptr_size = 1961 GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 1962 const uint32_t bits = target_ptr_size == 4 ? 32 : 64; 1963 1964 // We want 4 elements from packed data 1965 const uint32_t num_exprs = 4; 1966 assert(num_exprs == (eExprTypeElemPtr - eExprTypeDimX + 1) && 1967 "Invalid number of expressions"); 1968 1969 char expr_bufs[num_exprs][jit_max_expr_size]; 1970 uint64_t results[num_exprs]; 1971 1972 for (uint32_t i = 0; i < num_exprs; ++i) { 1973 const char *fmt_str = JITTemplate(ExpressionStrings(eExprTypeDimX + i)); 1974 int written = snprintf(expr_bufs[i], jit_max_expr_size, fmt_str, bits, 1975 *alloc->context.get(), *alloc->type_ptr.get()); 1976 if (written < 0) { 1977 if (log) 1978 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1979 return false; 1980 } else if (written >= jit_max_expr_size) { 1981 if (log) 1982 log->Printf("%s - expression too long.", __FUNCTION__); 1983 return false; 1984 } 1985 1986 // Perform expression evaluation 1987 if (!EvalRSExpression(expr_bufs[i], frame_ptr, &results[i])) 1988 return false; 1989 } 1990 1991 // Assign results to allocation members 1992 AllocationDetails::Dimension dims; 1993 dims.dim_1 = static_cast<uint32_t>(results[0]); 1994 dims.dim_2 = static_cast<uint32_t>(results[1]); 1995 dims.dim_3 = static_cast<uint32_t>(results[2]); 1996 alloc->dimension = dims; 1997 1998 addr_t element_ptr = static_cast<lldb::addr_t>(results[3]); 1999 alloc->element.element_ptr = element_ptr; 2000 2001 if (log) 2002 log->Printf("%s - dims (%" PRIu32 ", %" PRIu32 ", %" PRIu32 2003 ") Element*: 0x%" PRIx64 ".", 2004 __FUNCTION__, dims.dim_1, dims.dim_2, dims.dim_3, element_ptr); 2005 2006 return true; 2007 } 2008 2009 // JITs the RS runtime for information about the Element of an allocation Then 2010 // sets type, type_vec_size, field_count and type_kind members in Element with 2011 // the result. Returns true on success, false otherwise 2012 bool RenderScriptRuntime::JITElementPacked(Element &elem, 2013 const lldb::addr_t context, 2014 StackFrame *frame_ptr) { 2015 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2016 2017 if (!elem.element_ptr.isValid()) { 2018 if (log) 2019 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 2020 return false; 2021 } 2022 2023 // We want 4 elements from packed data 2024 const uint32_t num_exprs = 4; 2025 assert(num_exprs == (eExprElementFieldCount - eExprElementType + 1) && 2026 "Invalid number of expressions"); 2027 2028 char expr_bufs[num_exprs][jit_max_expr_size]; 2029 uint64_t results[num_exprs]; 2030 2031 for (uint32_t i = 0; i < num_exprs; i++) { 2032 const char *fmt_str = JITTemplate(ExpressionStrings(eExprElementType + i)); 2033 int written = snprintf(expr_bufs[i], jit_max_expr_size, fmt_str, context, 2034 *elem.element_ptr.get()); 2035 if (written < 0) { 2036 if (log) 2037 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 2038 return false; 2039 } else if (written >= jit_max_expr_size) { 2040 if (log) 2041 log->Printf("%s - expression too long.", __FUNCTION__); 2042 return false; 2043 } 2044 2045 // Perform expression evaluation 2046 if (!EvalRSExpression(expr_bufs[i], frame_ptr, &results[i])) 2047 return false; 2048 } 2049 2050 // Assign results to allocation members 2051 elem.type = static_cast<RenderScriptRuntime::Element::DataType>(results[0]); 2052 elem.type_kind = 2053 static_cast<RenderScriptRuntime::Element::DataKind>(results[1]); 2054 elem.type_vec_size = static_cast<uint32_t>(results[2]); 2055 elem.field_count = static_cast<uint32_t>(results[3]); 2056 2057 if (log) 2058 log->Printf("%s - data type %" PRIu32 ", pixel type %" PRIu32 2059 ", vector size %" PRIu32 ", field count %" PRIu32, 2060 __FUNCTION__, *elem.type.get(), *elem.type_kind.get(), 2061 *elem.type_vec_size.get(), *elem.field_count.get()); 2062 2063 // If this Element has subelements then JIT rsaElementGetSubElements() for 2064 // details about its fields 2065 if (*elem.field_count.get() > 0 && !JITSubelements(elem, context, frame_ptr)) 2066 return false; 2067 2068 return true; 2069 } 2070 2071 // JITs the RS runtime for information about the subelements/fields of a struct 2072 // allocation This is necessary for infering the struct type so we can pretty 2073 // print the allocation's contents. Returns true on success, false otherwise 2074 bool RenderScriptRuntime::JITSubelements(Element &elem, 2075 const lldb::addr_t context, 2076 StackFrame *frame_ptr) { 2077 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2078 2079 if (!elem.element_ptr.isValid() || !elem.field_count.isValid()) { 2080 if (log) 2081 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 2082 return false; 2083 } 2084 2085 const short num_exprs = 3; 2086 assert(num_exprs == (eExprSubelementsArrSize - eExprSubelementsId + 1) && 2087 "Invalid number of expressions"); 2088 2089 char expr_buffer[jit_max_expr_size]; 2090 uint64_t results; 2091 2092 // Iterate over struct fields. 2093 const uint32_t field_count = *elem.field_count.get(); 2094 for (uint32_t field_index = 0; field_index < field_count; ++field_index) { 2095 Element child; 2096 for (uint32_t expr_index = 0; expr_index < num_exprs; ++expr_index) { 2097 const char *fmt_str = 2098 JITTemplate(ExpressionStrings(eExprSubelementsId + expr_index)); 2099 int written = snprintf(expr_buffer, jit_max_expr_size, fmt_str, 2100 field_count, field_count, field_count, context, 2101 *elem.element_ptr.get(), field_count, field_index); 2102 if (written < 0) { 2103 if (log) 2104 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 2105 return false; 2106 } else if (written >= jit_max_expr_size) { 2107 if (log) 2108 log->Printf("%s - expression too long.", __FUNCTION__); 2109 return false; 2110 } 2111 2112 // Perform expression evaluation 2113 if (!EvalRSExpression(expr_buffer, frame_ptr, &results)) 2114 return false; 2115 2116 if (log) 2117 log->Printf("%s - expr result 0x%" PRIx64 ".", __FUNCTION__, results); 2118 2119 switch (expr_index) { 2120 case 0: // Element* of child 2121 child.element_ptr = static_cast<addr_t>(results); 2122 break; 2123 case 1: // Name of child 2124 { 2125 lldb::addr_t address = static_cast<addr_t>(results); 2126 Error err; 2127 std::string name; 2128 GetProcess()->ReadCStringFromMemory(address, name, err); 2129 if (!err.Fail()) 2130 child.type_name = ConstString(name); 2131 else { 2132 if (log) 2133 log->Printf("%s - warning: Couldn't read field name.", 2134 __FUNCTION__); 2135 } 2136 break; 2137 } 2138 case 2: // Array size of child 2139 child.array_size = static_cast<uint32_t>(results); 2140 break; 2141 } 2142 } 2143 2144 // We need to recursively JIT each Element field of the struct since 2145 // structs can be nested inside structs. 2146 if (!JITElementPacked(child, context, frame_ptr)) 2147 return false; 2148 elem.children.push_back(child); 2149 } 2150 2151 // Try to infer the name of the struct type so we can pretty print the 2152 // allocation contents. 2153 FindStructTypeName(elem, frame_ptr); 2154 2155 return true; 2156 } 2157 2158 // JITs the RS runtime for the address of the last element in the allocation. 2159 // The `elem_size` parameter represents the size of a single element, including 2160 // padding. Which is needed as an offset from the last element pointer. Using 2161 // this offset minus the starting address we can calculate the size of the 2162 // allocation. Returns true on success, false otherwise 2163 bool RenderScriptRuntime::JITAllocationSize(AllocationDetails *alloc, 2164 StackFrame *frame_ptr) { 2165 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2166 2167 if (!alloc->address.isValid() || !alloc->dimension.isValid() || 2168 !alloc->data_ptr.isValid() || !alloc->element.datum_size.isValid()) { 2169 if (log) 2170 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 2171 return false; 2172 } 2173 2174 // Find dimensions 2175 uint32_t dim_x = alloc->dimension.get()->dim_1; 2176 uint32_t dim_y = alloc->dimension.get()->dim_2; 2177 uint32_t dim_z = alloc->dimension.get()->dim_3; 2178 2179 // Our plan of jitting the last element address doesn't seem to work for 2180 // struct Allocations` Instead try to infer the size ourselves without any 2181 // inter element padding. 2182 if (alloc->element.children.size() > 0) { 2183 if (dim_x == 0) 2184 dim_x = 1; 2185 if (dim_y == 0) 2186 dim_y = 1; 2187 if (dim_z == 0) 2188 dim_z = 1; 2189 2190 alloc->size = dim_x * dim_y * dim_z * *alloc->element.datum_size.get(); 2191 2192 if (log) 2193 log->Printf("%s - inferred size of struct allocation %" PRIu32 ".", 2194 __FUNCTION__, *alloc->size.get()); 2195 return true; 2196 } 2197 2198 const char *fmt_str = JITTemplate(eExprGetOffsetPtr); 2199 char expr_buf[jit_max_expr_size]; 2200 2201 // Calculate last element 2202 dim_x = dim_x == 0 ? 0 : dim_x - 1; 2203 dim_y = dim_y == 0 ? 0 : dim_y - 1; 2204 dim_z = dim_z == 0 ? 0 : dim_z - 1; 2205 2206 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 2207 *alloc->address.get(), dim_x, dim_y, dim_z); 2208 if (written < 0) { 2209 if (log) 2210 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 2211 return false; 2212 } else if (written >= jit_max_expr_size) { 2213 if (log) 2214 log->Printf("%s - expression too long.", __FUNCTION__); 2215 return false; 2216 } 2217 2218 uint64_t result = 0; 2219 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 2220 return false; 2221 2222 addr_t mem_ptr = static_cast<lldb::addr_t>(result); 2223 // Find pointer to last element and add on size of an element 2224 alloc->size = static_cast<uint32_t>(mem_ptr - *alloc->data_ptr.get()) + 2225 *alloc->element.datum_size.get(); 2226 2227 return true; 2228 } 2229 2230 // JITs the RS runtime for information about the stride between rows in the 2231 // allocation. This is done to detect padding, since allocated memory is 16-byte 2232 // aligned. 2233 // Returns true on success, false otherwise 2234 bool RenderScriptRuntime::JITAllocationStride(AllocationDetails *alloc, 2235 StackFrame *frame_ptr) { 2236 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2237 2238 if (!alloc->address.isValid() || !alloc->data_ptr.isValid()) { 2239 if (log) 2240 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 2241 return false; 2242 } 2243 2244 const char *fmt_str = JITTemplate(eExprGetOffsetPtr); 2245 char expr_buf[jit_max_expr_size]; 2246 2247 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 2248 *alloc->address.get(), 0, 1, 0); 2249 if (written < 0) { 2250 if (log) 2251 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 2252 return false; 2253 } else if (written >= jit_max_expr_size) { 2254 if (log) 2255 log->Printf("%s - expression too long.", __FUNCTION__); 2256 return false; 2257 } 2258 2259 uint64_t result = 0; 2260 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 2261 return false; 2262 2263 addr_t mem_ptr = static_cast<lldb::addr_t>(result); 2264 alloc->stride = static_cast<uint32_t>(mem_ptr - *alloc->data_ptr.get()); 2265 2266 return true; 2267 } 2268 2269 // JIT all the current runtime info regarding an allocation 2270 bool RenderScriptRuntime::RefreshAllocation(AllocationDetails *alloc, 2271 StackFrame *frame_ptr) { 2272 // GetOffsetPointer() 2273 if (!JITDataPointer(alloc, frame_ptr)) 2274 return false; 2275 2276 // rsaAllocationGetType() 2277 if (!JITTypePointer(alloc, frame_ptr)) 2278 return false; 2279 2280 // rsaTypeGetNativeData() 2281 if (!JITTypePacked(alloc, frame_ptr)) 2282 return false; 2283 2284 // rsaElementGetNativeData() 2285 if (!JITElementPacked(alloc->element, *alloc->context.get(), frame_ptr)) 2286 return false; 2287 2288 // Sets the datum_size member in Element 2289 SetElementSize(alloc->element); 2290 2291 // Use GetOffsetPointer() to infer size of the allocation 2292 if (!JITAllocationSize(alloc, frame_ptr)) 2293 return false; 2294 2295 return true; 2296 } 2297 2298 // Function attempts to set the type_name member of the paramaterised Element 2299 // object. 2300 // This string should be the name of the struct type the Element represents. 2301 // We need this string for pretty printing the Element to users. 2302 void RenderScriptRuntime::FindStructTypeName(Element &elem, 2303 StackFrame *frame_ptr) { 2304 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2305 2306 if (!elem.type_name.IsEmpty()) // Name already set 2307 return; 2308 else 2309 elem.type_name = Element::GetFallbackStructName(); // Default type name if 2310 // we don't succeed 2311 2312 // Find all the global variables from the script rs modules 2313 VariableList var_list; 2314 for (auto module_sp : m_rsmodules) 2315 module_sp->m_module->FindGlobalVariables( 2316 RegularExpression(llvm::StringRef(".")), true, UINT32_MAX, var_list); 2317 2318 // Iterate over all the global variables looking for one with a matching type 2319 // to the Element. 2320 // We make the assumption a match exists since there needs to be a global 2321 // variable to reflect the struct type back into java host code. 2322 for (uint32_t i = 0; i < var_list.GetSize(); ++i) { 2323 const VariableSP var_sp(var_list.GetVariableAtIndex(i)); 2324 if (!var_sp) 2325 continue; 2326 2327 ValueObjectSP valobj_sp = ValueObjectVariable::Create(frame_ptr, var_sp); 2328 if (!valobj_sp) 2329 continue; 2330 2331 // Find the number of variable fields. 2332 // If it has no fields, or more fields than our Element, then it can't be 2333 // the struct we're looking for. 2334 // Don't check for equality since RS can add extra struct members for 2335 // padding. 2336 size_t num_children = valobj_sp->GetNumChildren(); 2337 if (num_children > elem.children.size() || num_children == 0) 2338 continue; 2339 2340 // Iterate over children looking for members with matching field names. 2341 // If all the field names match, this is likely the struct we want. 2342 // TODO: This could be made more robust by also checking children data 2343 // sizes, or array size 2344 bool found = true; 2345 for (size_t i = 0; i < num_children; ++i) { 2346 ValueObjectSP child = valobj_sp->GetChildAtIndex(i, true); 2347 if (!child || (child->GetName() != elem.children[i].type_name)) { 2348 found = false; 2349 break; 2350 } 2351 } 2352 2353 // RS can add extra struct members for padding in the format 2354 // '#rs_padding_[0-9]+' 2355 if (found && num_children < elem.children.size()) { 2356 const uint32_t size_diff = elem.children.size() - num_children; 2357 if (log) 2358 log->Printf("%s - %" PRIu32 " padding struct entries", __FUNCTION__, 2359 size_diff); 2360 2361 for (uint32_t i = 0; i < size_diff; ++i) { 2362 const ConstString &name = elem.children[num_children + i].type_name; 2363 if (strcmp(name.AsCString(), "#rs_padding") < 0) 2364 found = false; 2365 } 2366 } 2367 2368 // We've found a global variable with matching type 2369 if (found) { 2370 // Dereference since our Element type isn't a pointer. 2371 if (valobj_sp->IsPointerType()) { 2372 Error err; 2373 ValueObjectSP deref_valobj = valobj_sp->Dereference(err); 2374 if (!err.Fail()) 2375 valobj_sp = deref_valobj; 2376 } 2377 2378 // Save name of variable in Element. 2379 elem.type_name = valobj_sp->GetTypeName(); 2380 if (log) 2381 log->Printf("%s - element name set to %s", __FUNCTION__, 2382 elem.type_name.AsCString()); 2383 2384 return; 2385 } 2386 } 2387 } 2388 2389 // Function sets the datum_size member of Element. Representing the size of a 2390 // single instance including padding. 2391 // Assumes the relevant allocation information has already been jitted. 2392 void RenderScriptRuntime::SetElementSize(Element &elem) { 2393 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2394 const Element::DataType type = *elem.type.get(); 2395 assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && 2396 "Invalid allocation type"); 2397 2398 const uint32_t vec_size = *elem.type_vec_size.get(); 2399 uint32_t data_size = 0; 2400 uint32_t padding = 0; 2401 2402 // Element is of a struct type, calculate size recursively. 2403 if ((type == Element::RS_TYPE_NONE) && (elem.children.size() > 0)) { 2404 for (Element &child : elem.children) { 2405 SetElementSize(child); 2406 const uint32_t array_size = 2407 child.array_size.isValid() ? *child.array_size.get() : 1; 2408 data_size += *child.datum_size.get() * array_size; 2409 } 2410 } 2411 // These have been packed already 2412 else if (type == Element::RS_TYPE_UNSIGNED_5_6_5 || 2413 type == Element::RS_TYPE_UNSIGNED_5_5_5_1 || 2414 type == Element::RS_TYPE_UNSIGNED_4_4_4_4) { 2415 data_size = AllocationDetails::RSTypeToFormat[type][eElementSize]; 2416 } else if (type < Element::RS_TYPE_ELEMENT) { 2417 data_size = 2418 vec_size * AllocationDetails::RSTypeToFormat[type][eElementSize]; 2419 if (vec_size == 3) 2420 padding = AllocationDetails::RSTypeToFormat[type][eElementSize]; 2421 } else 2422 data_size = 2423 GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 2424 2425 elem.padding = padding; 2426 elem.datum_size = data_size + padding; 2427 if (log) 2428 log->Printf("%s - element size set to %" PRIu32, __FUNCTION__, 2429 data_size + padding); 2430 } 2431 2432 // Given an allocation, this function copies the allocation contents from device 2433 // into a buffer on the heap. 2434 // Returning a shared pointer to the buffer containing the data. 2435 std::shared_ptr<uint8_t> 2436 RenderScriptRuntime::GetAllocationData(AllocationDetails *alloc, 2437 StackFrame *frame_ptr) { 2438 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2439 2440 // JIT all the allocation details 2441 if (alloc->ShouldRefresh()) { 2442 if (log) 2443 log->Printf("%s - allocation details not calculated yet, jitting info", 2444 __FUNCTION__); 2445 2446 if (!RefreshAllocation(alloc, frame_ptr)) { 2447 if (log) 2448 log->Printf("%s - couldn't JIT allocation details", __FUNCTION__); 2449 return nullptr; 2450 } 2451 } 2452 2453 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && 2454 alloc->element.type_vec_size.isValid() && alloc->size.isValid() && 2455 "Allocation information not available"); 2456 2457 // Allocate a buffer to copy data into 2458 const uint32_t size = *alloc->size.get(); 2459 std::shared_ptr<uint8_t> buffer(new uint8_t[size]); 2460 if (!buffer) { 2461 if (log) 2462 log->Printf("%s - couldn't allocate a %" PRIu32 " byte buffer", 2463 __FUNCTION__, size); 2464 return nullptr; 2465 } 2466 2467 // Read the inferior memory 2468 Error err; 2469 lldb::addr_t data_ptr = *alloc->data_ptr.get(); 2470 GetProcess()->ReadMemory(data_ptr, buffer.get(), size, err); 2471 if (err.Fail()) { 2472 if (log) 2473 log->Printf("%s - '%s' Couldn't read %" PRIu32 2474 " bytes of allocation data from 0x%" PRIx64, 2475 __FUNCTION__, err.AsCString(), size, data_ptr); 2476 return nullptr; 2477 } 2478 2479 return buffer; 2480 } 2481 2482 // Function copies data from a binary file into an allocation. 2483 // There is a header at the start of the file, FileHeader, before the data 2484 // content itself. 2485 // Information from this header is used to display warnings to the user about 2486 // incompatibilities 2487 bool RenderScriptRuntime::LoadAllocation(Stream &strm, const uint32_t alloc_id, 2488 const char *path, 2489 StackFrame *frame_ptr) { 2490 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2491 2492 // Find allocation with the given id 2493 AllocationDetails *alloc = FindAllocByID(strm, alloc_id); 2494 if (!alloc) 2495 return false; 2496 2497 if (log) 2498 log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__, 2499 *alloc->address.get()); 2500 2501 // JIT all the allocation details 2502 if (alloc->ShouldRefresh()) { 2503 if (log) 2504 log->Printf("%s - allocation details not calculated yet, jitting info.", 2505 __FUNCTION__); 2506 2507 if (!RefreshAllocation(alloc, frame_ptr)) { 2508 if (log) 2509 log->Printf("%s - couldn't JIT allocation details", __FUNCTION__); 2510 return false; 2511 } 2512 } 2513 2514 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && 2515 alloc->element.type_vec_size.isValid() && alloc->size.isValid() && 2516 alloc->element.datum_size.isValid() && 2517 "Allocation information not available"); 2518 2519 // Check we can read from file 2520 FileSpec file(path, true); 2521 if (!file.Exists()) { 2522 strm.Printf("Error: File %s does not exist", path); 2523 strm.EOL(); 2524 return false; 2525 } 2526 2527 if (!file.Readable()) { 2528 strm.Printf("Error: File %s does not have readable permissions", path); 2529 strm.EOL(); 2530 return false; 2531 } 2532 2533 // Read file into data buffer 2534 DataBufferSP data_sp(file.ReadFileContents()); 2535 2536 // Cast start of buffer to FileHeader and use pointer to read metadata 2537 void *file_buf = data_sp->GetBytes(); 2538 if (file_buf == nullptr || 2539 data_sp->GetByteSize() < (sizeof(AllocationDetails::FileHeader) + 2540 sizeof(AllocationDetails::ElementHeader))) { 2541 strm.Printf("Error: File %s does not contain enough data for header", path); 2542 strm.EOL(); 2543 return false; 2544 } 2545 const AllocationDetails::FileHeader *file_header = 2546 static_cast<AllocationDetails::FileHeader *>(file_buf); 2547 2548 // Check file starts with ascii characters "RSAD" 2549 if (memcmp(file_header->ident, "RSAD", 4)) { 2550 strm.Printf("Error: File doesn't contain identifier for an RS allocation " 2551 "dump. Are you sure this is the correct file?"); 2552 strm.EOL(); 2553 return false; 2554 } 2555 2556 // Look at the type of the root element in the header 2557 AllocationDetails::ElementHeader root_el_hdr; 2558 memcpy(&root_el_hdr, static_cast<uint8_t *>(file_buf) + 2559 sizeof(AllocationDetails::FileHeader), 2560 sizeof(AllocationDetails::ElementHeader)); 2561 2562 if (log) 2563 log->Printf("%s - header type %" PRIu32 ", element size %" PRIu32, 2564 __FUNCTION__, root_el_hdr.type, root_el_hdr.element_size); 2565 2566 // Check if the target allocation and file both have the same number of bytes 2567 // for an Element 2568 if (*alloc->element.datum_size.get() != root_el_hdr.element_size) { 2569 strm.Printf("Warning: Mismatched Element sizes - file %" PRIu32 2570 " bytes, allocation %" PRIu32 " bytes", 2571 root_el_hdr.element_size, *alloc->element.datum_size.get()); 2572 strm.EOL(); 2573 } 2574 2575 // Check if the target allocation and file both have the same type 2576 const uint32_t alloc_type = static_cast<uint32_t>(*alloc->element.type.get()); 2577 const uint32_t file_type = root_el_hdr.type; 2578 2579 if (file_type > Element::RS_TYPE_FONT) { 2580 strm.Printf("Warning: File has unknown allocation type"); 2581 strm.EOL(); 2582 } else if (alloc_type != file_type) { 2583 // Enum value isn't monotonous, so doesn't always index RsDataTypeToString 2584 // array 2585 uint32_t target_type_name_idx = alloc_type; 2586 uint32_t head_type_name_idx = file_type; 2587 if (alloc_type >= Element::RS_TYPE_ELEMENT && 2588 alloc_type <= Element::RS_TYPE_FONT) 2589 target_type_name_idx = static_cast<Element::DataType>( 2590 (alloc_type - Element::RS_TYPE_ELEMENT) + 2591 Element::RS_TYPE_MATRIX_2X2 + 1); 2592 2593 if (file_type >= Element::RS_TYPE_ELEMENT && 2594 file_type <= Element::RS_TYPE_FONT) 2595 head_type_name_idx = static_cast<Element::DataType>( 2596 (file_type - Element::RS_TYPE_ELEMENT) + Element::RS_TYPE_MATRIX_2X2 + 2597 1); 2598 2599 const char *head_type_name = 2600 AllocationDetails::RsDataTypeToString[head_type_name_idx][0]; 2601 const char *target_type_name = 2602 AllocationDetails::RsDataTypeToString[target_type_name_idx][0]; 2603 2604 strm.Printf( 2605 "Warning: Mismatched Types - file '%s' type, allocation '%s' type", 2606 head_type_name, target_type_name); 2607 strm.EOL(); 2608 } 2609 2610 // Advance buffer past header 2611 file_buf = static_cast<uint8_t *>(file_buf) + file_header->hdr_size; 2612 2613 // Calculate size of allocation data in file 2614 size_t size = data_sp->GetByteSize() - file_header->hdr_size; 2615 2616 // Check if the target allocation and file both have the same total data size. 2617 const uint32_t alloc_size = *alloc->size.get(); 2618 if (alloc_size != size) { 2619 strm.Printf("Warning: Mismatched allocation sizes - file 0x%" PRIx64 2620 " bytes, allocation 0x%" PRIx32 " bytes", 2621 (uint64_t)size, alloc_size); 2622 strm.EOL(); 2623 // Set length to copy to minimum 2624 size = alloc_size < size ? alloc_size : size; 2625 } 2626 2627 // Copy file data from our buffer into the target allocation. 2628 lldb::addr_t alloc_data = *alloc->data_ptr.get(); 2629 Error err; 2630 size_t written = GetProcess()->WriteMemory(alloc_data, file_buf, size, err); 2631 if (!err.Success() || written != size) { 2632 strm.Printf("Error: Couldn't write data to allocation %s", err.AsCString()); 2633 strm.EOL(); 2634 return false; 2635 } 2636 2637 strm.Printf("Contents of file '%s' read into allocation %" PRIu32, path, 2638 alloc->id); 2639 strm.EOL(); 2640 2641 return true; 2642 } 2643 2644 // Function takes as parameters a byte buffer, which will eventually be written 2645 // to file as the element header, an offset into that buffer, and an Element 2646 // that will be saved into the buffer at the parametrised offset. 2647 // Return value is the new offset after writing the element into the buffer. 2648 // Elements are saved to the file as the ElementHeader struct followed by 2649 // offsets to the structs of all the element's children. 2650 size_t RenderScriptRuntime::PopulateElementHeaders( 2651 const std::shared_ptr<uint8_t> header_buffer, size_t offset, 2652 const Element &elem) { 2653 // File struct for an element header with all the relevant details copied from 2654 // elem. We assume members are valid already. 2655 AllocationDetails::ElementHeader elem_header; 2656 elem_header.type = *elem.type.get(); 2657 elem_header.kind = *elem.type_kind.get(); 2658 elem_header.element_size = *elem.datum_size.get(); 2659 elem_header.vector_size = *elem.type_vec_size.get(); 2660 elem_header.array_size = 2661 elem.array_size.isValid() ? *elem.array_size.get() : 0; 2662 const size_t elem_header_size = sizeof(AllocationDetails::ElementHeader); 2663 2664 // Copy struct into buffer and advance offset 2665 // We assume that header_buffer has been checked for nullptr before this 2666 // method is called 2667 memcpy(header_buffer.get() + offset, &elem_header, elem_header_size); 2668 offset += elem_header_size; 2669 2670 // Starting offset of child ElementHeader struct 2671 size_t child_offset = 2672 offset + ((elem.children.size() + 1) * sizeof(uint32_t)); 2673 for (const RenderScriptRuntime::Element &child : elem.children) { 2674 // Recursively populate the buffer with the element header structs of 2675 // children. Then save the offsets where they were set after the parent 2676 // element header. 2677 memcpy(header_buffer.get() + offset, &child_offset, sizeof(uint32_t)); 2678 offset += sizeof(uint32_t); 2679 2680 child_offset = PopulateElementHeaders(header_buffer, child_offset, child); 2681 } 2682 2683 // Zero indicates no more children 2684 memset(header_buffer.get() + offset, 0, sizeof(uint32_t)); 2685 2686 return child_offset; 2687 } 2688 2689 // Given an Element object this function returns the total size needed in the 2690 // file header to store the element's details. Taking into account the size of 2691 // the element header struct, plus the offsets to all the element's children. 2692 // Function is recursive so that the size of all ancestors is taken into 2693 // account. 2694 size_t RenderScriptRuntime::CalculateElementHeaderSize(const Element &elem) { 2695 // Offsets to children plus zero terminator 2696 size_t size = (elem.children.size() + 1) * sizeof(uint32_t); 2697 // Size of header struct with type details 2698 size += sizeof(AllocationDetails::ElementHeader); 2699 2700 // Calculate recursively for all descendants 2701 for (const Element &child : elem.children) 2702 size += CalculateElementHeaderSize(child); 2703 2704 return size; 2705 } 2706 2707 // Function copies allocation contents into a binary file. This file can then be 2708 // loaded later into a different allocation. There is a header, FileHeader, 2709 // before the allocation data containing meta-data. 2710 bool RenderScriptRuntime::SaveAllocation(Stream &strm, const uint32_t alloc_id, 2711 const char *path, 2712 StackFrame *frame_ptr) { 2713 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2714 2715 // Find allocation with the given id 2716 AllocationDetails *alloc = FindAllocByID(strm, alloc_id); 2717 if (!alloc) 2718 return false; 2719 2720 if (log) 2721 log->Printf("%s - found allocation 0x%" PRIx64 ".", __FUNCTION__, 2722 *alloc->address.get()); 2723 2724 // JIT all the allocation details 2725 if (alloc->ShouldRefresh()) { 2726 if (log) 2727 log->Printf("%s - allocation details not calculated yet, jitting info.", 2728 __FUNCTION__); 2729 2730 if (!RefreshAllocation(alloc, frame_ptr)) { 2731 if (log) 2732 log->Printf("%s - couldn't JIT allocation details.", __FUNCTION__); 2733 return false; 2734 } 2735 } 2736 2737 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && 2738 alloc->element.type_vec_size.isValid() && 2739 alloc->element.datum_size.get() && 2740 alloc->element.type_kind.isValid() && alloc->dimension.isValid() && 2741 "Allocation information not available"); 2742 2743 // Check we can create writable file 2744 FileSpec file_spec(path, true); 2745 File file(file_spec, File::eOpenOptionWrite | File::eOpenOptionCanCreate | 2746 File::eOpenOptionTruncate); 2747 if (!file) { 2748 strm.Printf("Error: Failed to open '%s' for writing", path); 2749 strm.EOL(); 2750 return false; 2751 } 2752 2753 // Read allocation into buffer of heap memory 2754 const std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr); 2755 if (!buffer) { 2756 strm.Printf("Error: Couldn't read allocation data into buffer"); 2757 strm.EOL(); 2758 return false; 2759 } 2760 2761 // Create the file header 2762 AllocationDetails::FileHeader head; 2763 memcpy(head.ident, "RSAD", 4); 2764 head.dims[0] = static_cast<uint32_t>(alloc->dimension.get()->dim_1); 2765 head.dims[1] = static_cast<uint32_t>(alloc->dimension.get()->dim_2); 2766 head.dims[2] = static_cast<uint32_t>(alloc->dimension.get()->dim_3); 2767 2768 const size_t element_header_size = CalculateElementHeaderSize(alloc->element); 2769 assert((sizeof(AllocationDetails::FileHeader) + element_header_size) < 2770 UINT16_MAX && 2771 "Element header too large"); 2772 head.hdr_size = static_cast<uint16_t>(sizeof(AllocationDetails::FileHeader) + 2773 element_header_size); 2774 2775 // Write the file header 2776 size_t num_bytes = sizeof(AllocationDetails::FileHeader); 2777 if (log) 2778 log->Printf("%s - writing File Header, 0x%" PRIx64 " bytes", __FUNCTION__, 2779 (uint64_t)num_bytes); 2780 2781 Error err = file.Write(&head, num_bytes); 2782 if (!err.Success()) { 2783 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path); 2784 strm.EOL(); 2785 return false; 2786 } 2787 2788 // Create the headers describing the element type of the allocation. 2789 std::shared_ptr<uint8_t> element_header_buffer( 2790 new uint8_t[element_header_size]); 2791 if (element_header_buffer == nullptr) { 2792 strm.Printf("Internal Error: Couldn't allocate %" PRIu64 2793 " bytes on the heap", 2794 (uint64_t)element_header_size); 2795 strm.EOL(); 2796 return false; 2797 } 2798 2799 PopulateElementHeaders(element_header_buffer, 0, alloc->element); 2800 2801 // Write headers for allocation element type to file 2802 num_bytes = element_header_size; 2803 if (log) 2804 log->Printf("%s - writing element headers, 0x%" PRIx64 " bytes.", 2805 __FUNCTION__, (uint64_t)num_bytes); 2806 2807 err = file.Write(element_header_buffer.get(), num_bytes); 2808 if (!err.Success()) { 2809 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path); 2810 strm.EOL(); 2811 return false; 2812 } 2813 2814 // Write allocation data to file 2815 num_bytes = static_cast<size_t>(*alloc->size.get()); 2816 if (log) 2817 log->Printf("%s - writing 0x%" PRIx64 " bytes", __FUNCTION__, 2818 (uint64_t)num_bytes); 2819 2820 err = file.Write(buffer.get(), num_bytes); 2821 if (!err.Success()) { 2822 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path); 2823 strm.EOL(); 2824 return false; 2825 } 2826 2827 strm.Printf("Allocation written to file '%s'", path); 2828 strm.EOL(); 2829 return true; 2830 } 2831 2832 bool RenderScriptRuntime::LoadModule(const lldb::ModuleSP &module_sp) { 2833 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2834 2835 if (module_sp) { 2836 for (const auto &rs_module : m_rsmodules) { 2837 if (rs_module->m_module == module_sp) { 2838 // Check if the user has enabled automatically breaking on 2839 // all RS kernels. 2840 if (m_breakAllKernels) 2841 BreakOnModuleKernels(rs_module); 2842 2843 return false; 2844 } 2845 } 2846 bool module_loaded = false; 2847 switch (GetModuleKind(module_sp)) { 2848 case eModuleKindKernelObj: { 2849 RSModuleDescriptorSP module_desc; 2850 module_desc.reset(new RSModuleDescriptor(module_sp)); 2851 if (module_desc->ParseRSInfo()) { 2852 m_rsmodules.push_back(module_desc); 2853 module_loaded = true; 2854 } 2855 if (module_loaded) { 2856 FixupScriptDetails(module_desc); 2857 } 2858 break; 2859 } 2860 case eModuleKindDriver: { 2861 if (!m_libRSDriver) { 2862 m_libRSDriver = module_sp; 2863 LoadRuntimeHooks(m_libRSDriver, RenderScriptRuntime::eModuleKindDriver); 2864 } 2865 break; 2866 } 2867 case eModuleKindImpl: { 2868 if (!m_libRSCpuRef) { 2869 m_libRSCpuRef = module_sp; 2870 LoadRuntimeHooks(m_libRSCpuRef, RenderScriptRuntime::eModuleKindImpl); 2871 } 2872 break; 2873 } 2874 case eModuleKindLibRS: { 2875 if (!m_libRS) { 2876 m_libRS = module_sp; 2877 static ConstString gDbgPresentStr("gDebuggerPresent"); 2878 const Symbol *debug_present = m_libRS->FindFirstSymbolWithNameAndType( 2879 gDbgPresentStr, eSymbolTypeData); 2880 if (debug_present) { 2881 Error err; 2882 uint32_t flag = 0x00000001U; 2883 Target &target = GetProcess()->GetTarget(); 2884 addr_t addr = debug_present->GetLoadAddress(&target); 2885 GetProcess()->WriteMemory(addr, &flag, sizeof(flag), err); 2886 if (err.Success()) { 2887 if (log) 2888 log->Printf("%s - debugger present flag set on debugee.", 2889 __FUNCTION__); 2890 2891 m_debuggerPresentFlagged = true; 2892 } else if (log) { 2893 log->Printf("%s - error writing debugger present flags '%s' ", 2894 __FUNCTION__, err.AsCString()); 2895 } 2896 } else if (log) { 2897 log->Printf( 2898 "%s - error writing debugger present flags - symbol not found", 2899 __FUNCTION__); 2900 } 2901 } 2902 break; 2903 } 2904 default: 2905 break; 2906 } 2907 if (module_loaded) 2908 Update(); 2909 return module_loaded; 2910 } 2911 return false; 2912 } 2913 2914 void RenderScriptRuntime::Update() { 2915 if (m_rsmodules.size() > 0) { 2916 if (!m_initiated) { 2917 Initiate(); 2918 } 2919 } 2920 } 2921 2922 bool RSModuleDescriptor::ParsePragmaCount(llvm::StringRef *lines, 2923 size_t n_lines) { 2924 // Skip the pragma prototype line 2925 ++lines; 2926 for (; n_lines--; ++lines) { 2927 const auto kv_pair = lines->split(" - "); 2928 m_pragmas[kv_pair.first.trim().str()] = kv_pair.second.trim().str(); 2929 } 2930 return true; 2931 } 2932 2933 bool RSModuleDescriptor::ParseExportReduceCount(llvm::StringRef *lines, 2934 size_t n_lines) { 2935 // The list of reduction kernels in the `.rs.info` symbol is of the form 2936 // "signature - accumulatordatasize - reduction_name - initializer_name - 2937 // accumulator_name - combiner_name - 2938 // outconverter_name - halter_name" 2939 // Where a function is not explicitly named by the user, or is not generated 2940 // by the compiler, it is named "." so the 2941 // dash separated list should always be 8 items long 2942 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 2943 // Skip the exportReduceCount line 2944 ++lines; 2945 for (; n_lines--; ++lines) { 2946 llvm::SmallVector<llvm::StringRef, 8> spec; 2947 lines->split(spec, " - "); 2948 if (spec.size() != 8) { 2949 if (spec.size() < 8) { 2950 if (log) 2951 log->Error("Error parsing RenderScript reduction spec. wrong number " 2952 "of fields"); 2953 return false; 2954 } else if (log) 2955 log->Warning("Extraneous members in reduction spec: '%s'", 2956 lines->str().c_str()); 2957 } 2958 2959 const auto sig_s = spec[0]; 2960 uint32_t sig; 2961 if (sig_s.getAsInteger(10, sig)) { 2962 if (log) 2963 log->Error("Error parsing Renderscript reduction spec: invalid kernel " 2964 "signature: '%s'", 2965 sig_s.str().c_str()); 2966 return false; 2967 } 2968 2969 const auto accum_data_size_s = spec[1]; 2970 uint32_t accum_data_size; 2971 if (accum_data_size_s.getAsInteger(10, accum_data_size)) { 2972 if (log) 2973 log->Error("Error parsing Renderscript reduction spec: invalid " 2974 "accumulator data size %s", 2975 accum_data_size_s.str().c_str()); 2976 return false; 2977 } 2978 2979 if (log) 2980 log->Printf("Found RenderScript reduction '%s'", spec[2].str().c_str()); 2981 2982 m_reductions.push_back(RSReductionDescriptor(this, sig, accum_data_size, 2983 spec[2], spec[3], spec[4], 2984 spec[5], spec[6], spec[7])); 2985 } 2986 return true; 2987 } 2988 2989 bool RSModuleDescriptor::ParseExportForeachCount(llvm::StringRef *lines, 2990 size_t n_lines) { 2991 // Skip the exportForeachCount line 2992 ++lines; 2993 for (; n_lines--; ++lines) { 2994 uint32_t slot; 2995 // `forEach` kernels are listed in the `.rs.info` packet as a "slot - name" 2996 // pair per line 2997 const auto kv_pair = lines->split(" - "); 2998 if (kv_pair.first.getAsInteger(10, slot)) 2999 return false; 3000 m_kernels.push_back(RSKernelDescriptor(this, kv_pair.second, slot)); 3001 } 3002 return true; 3003 } 3004 3005 bool RSModuleDescriptor::ParseExportVarCount(llvm::StringRef *lines, 3006 size_t n_lines) { 3007 // Skip the ExportVarCount line 3008 ++lines; 3009 for (; n_lines--; ++lines) 3010 m_globals.push_back(RSGlobalDescriptor(this, *lines)); 3011 return true; 3012 } 3013 3014 // The .rs.info symbol in renderscript modules contains a string which needs to 3015 // be parsed. 3016 // The string is basic and is parsed on a line by line basis. 3017 bool RSModuleDescriptor::ParseRSInfo() { 3018 assert(m_module); 3019 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3020 const Symbol *info_sym = m_module->FindFirstSymbolWithNameAndType( 3021 ConstString(".rs.info"), eSymbolTypeData); 3022 if (!info_sym) 3023 return false; 3024 3025 const addr_t addr = info_sym->GetAddressRef().GetFileAddress(); 3026 if (addr == LLDB_INVALID_ADDRESS) 3027 return false; 3028 3029 const addr_t size = info_sym->GetByteSize(); 3030 const FileSpec fs = m_module->GetFileSpec(); 3031 3032 const DataBufferSP buffer = fs.ReadFileContents(addr, size); 3033 if (!buffer) 3034 return false; 3035 3036 // split rs.info. contents into lines 3037 llvm::SmallVector<llvm::StringRef, 128> info_lines; 3038 { 3039 const llvm::StringRef raw_rs_info((const char *)buffer->GetBytes()); 3040 raw_rs_info.split(info_lines, '\n'); 3041 if (log) 3042 log->Printf("'.rs.info symbol for '%s':\n%s", 3043 m_module->GetFileSpec().GetCString(), 3044 raw_rs_info.str().c_str()); 3045 } 3046 3047 enum { 3048 eExportVar, 3049 eExportForEach, 3050 eExportReduce, 3051 ePragma, 3052 eBuildChecksum, 3053 eObjectSlot 3054 }; 3055 3056 const auto rs_info_handler = [](llvm::StringRef name) -> int { 3057 return llvm::StringSwitch<int>(name) 3058 // The number of visible global variables in the script 3059 .Case("exportVarCount", eExportVar) 3060 // The number of RenderScrip `forEach` kernels __attribute__((kernel)) 3061 .Case("exportForEachCount", eExportForEach) 3062 // The number of generalreductions: This marked in the script by 3063 // `#pragma reduce()` 3064 .Case("exportReduceCount", eExportReduce) 3065 // Total count of all RenderScript specific `#pragmas` used in the 3066 // script 3067 .Case("pragmaCount", ePragma) 3068 .Case("objectSlotCount", eObjectSlot) 3069 .Default(-1); 3070 }; 3071 3072 // parse all text lines of .rs.info 3073 for (auto line = info_lines.begin(); line != info_lines.end(); ++line) { 3074 const auto kv_pair = line->split(": "); 3075 const auto key = kv_pair.first; 3076 const auto val = kv_pair.second.trim(); 3077 3078 const auto handler = rs_info_handler(key); 3079 if (handler == -1) 3080 continue; 3081 // getAsInteger returns `true` on an error condition - we're only interested 3082 // in numeric fields at the moment 3083 uint64_t n_lines; 3084 if (val.getAsInteger(10, n_lines)) { 3085 if (log) 3086 log->Debug("Failed to parse non-numeric '.rs.info' section %s", 3087 line->str().c_str()); 3088 continue; 3089 } 3090 if (info_lines.end() - (line + 1) < (ptrdiff_t)n_lines) 3091 return false; 3092 3093 bool success = false; 3094 switch (handler) { 3095 case eExportVar: 3096 success = ParseExportVarCount(line, n_lines); 3097 break; 3098 case eExportForEach: 3099 success = ParseExportForeachCount(line, n_lines); 3100 break; 3101 case eExportReduce: 3102 success = ParseExportReduceCount(line, n_lines); 3103 break; 3104 case ePragma: 3105 success = ParsePragmaCount(line, n_lines); 3106 break; 3107 default: { 3108 if (log) 3109 log->Printf("%s - skipping .rs.info field '%s'", __FUNCTION__, 3110 line->str().c_str()); 3111 continue; 3112 } 3113 } 3114 if (!success) 3115 return false; 3116 line += n_lines; 3117 } 3118 return info_lines.size() > 0; 3119 } 3120 3121 void RenderScriptRuntime::Status(Stream &strm) const { 3122 if (m_libRS) { 3123 strm.Printf("Runtime Library discovered."); 3124 strm.EOL(); 3125 } 3126 if (m_libRSDriver) { 3127 strm.Printf("Runtime Driver discovered."); 3128 strm.EOL(); 3129 } 3130 if (m_libRSCpuRef) { 3131 strm.Printf("CPU Reference Implementation discovered."); 3132 strm.EOL(); 3133 } 3134 3135 if (m_runtimeHooks.size()) { 3136 strm.Printf("Runtime functions hooked:"); 3137 strm.EOL(); 3138 for (auto b : m_runtimeHooks) { 3139 strm.Indent(b.second->defn->name); 3140 strm.EOL(); 3141 } 3142 } else { 3143 strm.Printf("Runtime is not hooked."); 3144 strm.EOL(); 3145 } 3146 } 3147 3148 void RenderScriptRuntime::DumpContexts(Stream &strm) const { 3149 strm.Printf("Inferred RenderScript Contexts:"); 3150 strm.EOL(); 3151 strm.IndentMore(); 3152 3153 std::map<addr_t, uint64_t> contextReferences; 3154 3155 // Iterate over all of the currently discovered scripts. 3156 // Note: We cant push or pop from m_scripts inside this loop or it may 3157 // invalidate script. 3158 for (const auto &script : m_scripts) { 3159 if (!script->context.isValid()) 3160 continue; 3161 lldb::addr_t context = *script->context; 3162 3163 if (contextReferences.find(context) != contextReferences.end()) { 3164 contextReferences[context]++; 3165 } else { 3166 contextReferences[context] = 1; 3167 } 3168 } 3169 3170 for (const auto &cRef : contextReferences) { 3171 strm.Printf("Context 0x%" PRIx64 ": %" PRIu64 " script instances", 3172 cRef.first, cRef.second); 3173 strm.EOL(); 3174 } 3175 strm.IndentLess(); 3176 } 3177 3178 void RenderScriptRuntime::DumpKernels(Stream &strm) const { 3179 strm.Printf("RenderScript Kernels:"); 3180 strm.EOL(); 3181 strm.IndentMore(); 3182 for (const auto &module : m_rsmodules) { 3183 strm.Printf("Resource '%s':", module->m_resname.c_str()); 3184 strm.EOL(); 3185 for (const auto &kernel : module->m_kernels) { 3186 strm.Indent(kernel.m_name.AsCString()); 3187 strm.EOL(); 3188 } 3189 } 3190 strm.IndentLess(); 3191 } 3192 3193 RenderScriptRuntime::AllocationDetails * 3194 RenderScriptRuntime::FindAllocByID(Stream &strm, const uint32_t alloc_id) { 3195 AllocationDetails *alloc = nullptr; 3196 3197 // See if we can find allocation using id as an index; 3198 if (alloc_id <= m_allocations.size() && alloc_id != 0 && 3199 m_allocations[alloc_id - 1]->id == alloc_id) { 3200 alloc = m_allocations[alloc_id - 1].get(); 3201 return alloc; 3202 } 3203 3204 // Fallback to searching 3205 for (const auto &a : m_allocations) { 3206 if (a->id == alloc_id) { 3207 alloc = a.get(); 3208 break; 3209 } 3210 } 3211 3212 if (alloc == nullptr) { 3213 strm.Printf("Error: Couldn't find allocation with id matching %" PRIu32, 3214 alloc_id); 3215 strm.EOL(); 3216 } 3217 3218 return alloc; 3219 } 3220 3221 // Prints the contents of an allocation to the output stream, which may be a 3222 // file 3223 bool RenderScriptRuntime::DumpAllocation(Stream &strm, StackFrame *frame_ptr, 3224 const uint32_t id) { 3225 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3226 3227 // Check we can find the desired allocation 3228 AllocationDetails *alloc = FindAllocByID(strm, id); 3229 if (!alloc) 3230 return false; // FindAllocByID() will print error message for us here 3231 3232 if (log) 3233 log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__, 3234 *alloc->address.get()); 3235 3236 // Check we have information about the allocation, if not calculate it 3237 if (alloc->ShouldRefresh()) { 3238 if (log) 3239 log->Printf("%s - allocation details not calculated yet, jitting info.", 3240 __FUNCTION__); 3241 3242 // JIT all the allocation information 3243 if (!RefreshAllocation(alloc, frame_ptr)) { 3244 strm.Printf("Error: Couldn't JIT allocation details"); 3245 strm.EOL(); 3246 return false; 3247 } 3248 } 3249 3250 // Establish format and size of each data element 3251 const uint32_t vec_size = *alloc->element.type_vec_size.get(); 3252 const Element::DataType type = *alloc->element.type.get(); 3253 3254 assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && 3255 "Invalid allocation type"); 3256 3257 lldb::Format format; 3258 if (type >= Element::RS_TYPE_ELEMENT) 3259 format = eFormatHex; 3260 else 3261 format = vec_size == 1 3262 ? static_cast<lldb::Format>( 3263 AllocationDetails::RSTypeToFormat[type][eFormatSingle]) 3264 : static_cast<lldb::Format>( 3265 AllocationDetails::RSTypeToFormat[type][eFormatVector]); 3266 3267 const uint32_t data_size = *alloc->element.datum_size.get(); 3268 3269 if (log) 3270 log->Printf("%s - element size %" PRIu32 " bytes, including padding", 3271 __FUNCTION__, data_size); 3272 3273 // Allocate a buffer to copy data into 3274 std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr); 3275 if (!buffer) { 3276 strm.Printf("Error: Couldn't read allocation data"); 3277 strm.EOL(); 3278 return false; 3279 } 3280 3281 // Calculate stride between rows as there may be padding at end of rows since 3282 // allocated memory is 16-byte aligned 3283 if (!alloc->stride.isValid()) { 3284 if (alloc->dimension.get()->dim_2 == 0) // We only have one dimension 3285 alloc->stride = 0; 3286 else if (!JITAllocationStride(alloc, frame_ptr)) { 3287 strm.Printf("Error: Couldn't calculate allocation row stride"); 3288 strm.EOL(); 3289 return false; 3290 } 3291 } 3292 const uint32_t stride = *alloc->stride.get(); 3293 const uint32_t size = *alloc->size.get(); // Size of whole allocation 3294 const uint32_t padding = 3295 alloc->element.padding.isValid() ? *alloc->element.padding.get() : 0; 3296 if (log) 3297 log->Printf("%s - stride %" PRIu32 " bytes, size %" PRIu32 3298 " bytes, padding %" PRIu32, 3299 __FUNCTION__, stride, size, padding); 3300 3301 // Find dimensions used to index loops, so need to be non-zero 3302 uint32_t dim_x = alloc->dimension.get()->dim_1; 3303 dim_x = dim_x == 0 ? 1 : dim_x; 3304 3305 uint32_t dim_y = alloc->dimension.get()->dim_2; 3306 dim_y = dim_y == 0 ? 1 : dim_y; 3307 3308 uint32_t dim_z = alloc->dimension.get()->dim_3; 3309 dim_z = dim_z == 0 ? 1 : dim_z; 3310 3311 // Use data extractor to format output 3312 const uint32_t target_ptr_size = 3313 GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 3314 DataExtractor alloc_data(buffer.get(), size, GetProcess()->GetByteOrder(), 3315 target_ptr_size); 3316 3317 uint32_t offset = 0; // Offset in buffer to next element to be printed 3318 uint32_t prev_row = 0; // Offset to the start of the previous row 3319 3320 // Iterate over allocation dimensions, printing results to user 3321 strm.Printf("Data (X, Y, Z):"); 3322 for (uint32_t z = 0; z < dim_z; ++z) { 3323 for (uint32_t y = 0; y < dim_y; ++y) { 3324 // Use stride to index start of next row. 3325 if (!(y == 0 && z == 0)) 3326 offset = prev_row + stride; 3327 prev_row = offset; 3328 3329 // Print each element in the row individually 3330 for (uint32_t x = 0; x < dim_x; ++x) { 3331 strm.Printf("\n(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ") = ", x, y, z); 3332 if ((type == Element::RS_TYPE_NONE) && 3333 (alloc->element.children.size() > 0) && 3334 (alloc->element.type_name != Element::GetFallbackStructName())) { 3335 // Here we are dumping an Element of struct type. 3336 // This is done using expression evaluation with the name of the 3337 // struct type and pointer to element. 3338 // Don't print the name of the resulting expression, since this will 3339 // be '$[0-9]+' 3340 DumpValueObjectOptions expr_options; 3341 expr_options.SetHideName(true); 3342 3343 // Setup expression as derefrencing a pointer cast to element address. 3344 char expr_char_buffer[jit_max_expr_size]; 3345 int written = 3346 snprintf(expr_char_buffer, jit_max_expr_size, "*(%s*) 0x%" PRIx64, 3347 alloc->element.type_name.AsCString(), 3348 *alloc->data_ptr.get() + offset); 3349 3350 if (written < 0 || written >= jit_max_expr_size) { 3351 if (log) 3352 log->Printf("%s - error in snprintf().", __FUNCTION__); 3353 continue; 3354 } 3355 3356 // Evaluate expression 3357 ValueObjectSP expr_result; 3358 GetProcess()->GetTarget().EvaluateExpression(expr_char_buffer, 3359 frame_ptr, expr_result); 3360 3361 // Print the results to our stream. 3362 expr_result->Dump(strm, expr_options); 3363 } else { 3364 alloc_data.Dump(&strm, offset, format, data_size - padding, 1, 1, 3365 LLDB_INVALID_ADDRESS, 0, 0); 3366 } 3367 offset += data_size; 3368 } 3369 } 3370 } 3371 strm.EOL(); 3372 3373 return true; 3374 } 3375 3376 // Function recalculates all our cached information about allocations by jitting 3377 // the RS runtime regarding each allocation we know about. Returns true if all 3378 // allocations could be recomputed, false otherwise. 3379 bool RenderScriptRuntime::RecomputeAllAllocations(Stream &strm, 3380 StackFrame *frame_ptr) { 3381 bool success = true; 3382 for (auto &alloc : m_allocations) { 3383 // JIT current allocation information 3384 if (!RefreshAllocation(alloc.get(), frame_ptr)) { 3385 strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32 3386 "\n", 3387 alloc->id); 3388 success = false; 3389 } 3390 } 3391 3392 if (success) 3393 strm.Printf("All allocations successfully recomputed"); 3394 strm.EOL(); 3395 3396 return success; 3397 } 3398 3399 // Prints information regarding currently loaded allocations. These details are 3400 // gathered by jitting the runtime, which has as latency. Index parameter 3401 // specifies a single allocation ID to print, or a zero value to print them all 3402 void RenderScriptRuntime::ListAllocations(Stream &strm, StackFrame *frame_ptr, 3403 const uint32_t index) { 3404 strm.Printf("RenderScript Allocations:"); 3405 strm.EOL(); 3406 strm.IndentMore(); 3407 3408 for (auto &alloc : m_allocations) { 3409 // index will only be zero if we want to print all allocations 3410 if (index != 0 && index != alloc->id) 3411 continue; 3412 3413 // JIT current allocation information 3414 if (alloc->ShouldRefresh() && !RefreshAllocation(alloc.get(), frame_ptr)) { 3415 strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32, 3416 alloc->id); 3417 strm.EOL(); 3418 continue; 3419 } 3420 3421 strm.Printf("%" PRIu32 ":", alloc->id); 3422 strm.EOL(); 3423 strm.IndentMore(); 3424 3425 strm.Indent("Context: "); 3426 if (!alloc->context.isValid()) 3427 strm.Printf("unknown\n"); 3428 else 3429 strm.Printf("0x%" PRIx64 "\n", *alloc->context.get()); 3430 3431 strm.Indent("Address: "); 3432 if (!alloc->address.isValid()) 3433 strm.Printf("unknown\n"); 3434 else 3435 strm.Printf("0x%" PRIx64 "\n", *alloc->address.get()); 3436 3437 strm.Indent("Data pointer: "); 3438 if (!alloc->data_ptr.isValid()) 3439 strm.Printf("unknown\n"); 3440 else 3441 strm.Printf("0x%" PRIx64 "\n", *alloc->data_ptr.get()); 3442 3443 strm.Indent("Dimensions: "); 3444 if (!alloc->dimension.isValid()) 3445 strm.Printf("unknown\n"); 3446 else 3447 strm.Printf("(%" PRId32 ", %" PRId32 ", %" PRId32 ")\n", 3448 alloc->dimension.get()->dim_1, alloc->dimension.get()->dim_2, 3449 alloc->dimension.get()->dim_3); 3450 3451 strm.Indent("Data Type: "); 3452 if (!alloc->element.type.isValid() || 3453 !alloc->element.type_vec_size.isValid()) 3454 strm.Printf("unknown\n"); 3455 else { 3456 const int vector_size = *alloc->element.type_vec_size.get(); 3457 Element::DataType type = *alloc->element.type.get(); 3458 3459 if (!alloc->element.type_name.IsEmpty()) 3460 strm.Printf("%s\n", alloc->element.type_name.AsCString()); 3461 else { 3462 // Enum value isn't monotonous, so doesn't always index 3463 // RsDataTypeToString array 3464 if (type >= Element::RS_TYPE_ELEMENT && type <= Element::RS_TYPE_FONT) 3465 type = 3466 static_cast<Element::DataType>((type - Element::RS_TYPE_ELEMENT) + 3467 Element::RS_TYPE_MATRIX_2X2 + 1); 3468 3469 if (type >= (sizeof(AllocationDetails::RsDataTypeToString) / 3470 sizeof(AllocationDetails::RsDataTypeToString[0])) || 3471 vector_size > 4 || vector_size < 1) 3472 strm.Printf("invalid type\n"); 3473 else 3474 strm.Printf( 3475 "%s\n", 3476 AllocationDetails::RsDataTypeToString[static_cast<uint32_t>(type)] 3477 [vector_size - 1]); 3478 } 3479 } 3480 3481 strm.Indent("Data Kind: "); 3482 if (!alloc->element.type_kind.isValid()) 3483 strm.Printf("unknown\n"); 3484 else { 3485 const Element::DataKind kind = *alloc->element.type_kind.get(); 3486 if (kind < Element::RS_KIND_USER || kind > Element::RS_KIND_PIXEL_YUV) 3487 strm.Printf("invalid kind\n"); 3488 else 3489 strm.Printf( 3490 "%s\n", 3491 AllocationDetails::RsDataKindToString[static_cast<uint32_t>(kind)]); 3492 } 3493 3494 strm.EOL(); 3495 strm.IndentLess(); 3496 } 3497 strm.IndentLess(); 3498 } 3499 3500 // Set breakpoints on every kernel found in RS module 3501 void RenderScriptRuntime::BreakOnModuleKernels( 3502 const RSModuleDescriptorSP rsmodule_sp) { 3503 for (const auto &kernel : rsmodule_sp->m_kernels) { 3504 // Don't set breakpoint on 'root' kernel 3505 if (strcmp(kernel.m_name.AsCString(), "root") == 0) 3506 continue; 3507 3508 CreateKernelBreakpoint(kernel.m_name); 3509 } 3510 } 3511 3512 // Method is internally called by the 'kernel breakpoint all' command to enable 3513 // or disable breaking on all kernels. When do_break is true we want to enable 3514 // this functionality. When do_break is false we want to disable it. 3515 void RenderScriptRuntime::SetBreakAllKernels(bool do_break, TargetSP target) { 3516 Log *log( 3517 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3518 3519 InitSearchFilter(target); 3520 3521 // Set breakpoints on all the kernels 3522 if (do_break && !m_breakAllKernels) { 3523 m_breakAllKernels = true; 3524 3525 for (const auto &module : m_rsmodules) 3526 BreakOnModuleKernels(module); 3527 3528 if (log) 3529 log->Printf("%s(True) - breakpoints set on all currently loaded kernels.", 3530 __FUNCTION__); 3531 } else if (!do_break && 3532 m_breakAllKernels) // Breakpoints won't be set on any new kernels. 3533 { 3534 m_breakAllKernels = false; 3535 3536 if (log) 3537 log->Printf("%s(False) - breakpoints no longer automatically set.", 3538 __FUNCTION__); 3539 } 3540 } 3541 3542 // Given the name of a kernel this function creates a breakpoint using our 3543 // own breakpoint resolver, and returns the Breakpoint shared pointer. 3544 BreakpointSP 3545 RenderScriptRuntime::CreateKernelBreakpoint(const ConstString &name) { 3546 Log *log( 3547 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3548 3549 if (!m_filtersp) { 3550 if (log) 3551 log->Printf("%s - error, no breakpoint search filter set.", __FUNCTION__); 3552 return nullptr; 3553 } 3554 3555 BreakpointResolverSP resolver_sp(new RSBreakpointResolver(nullptr, name)); 3556 BreakpointSP bp = GetProcess()->GetTarget().CreateBreakpoint( 3557 m_filtersp, resolver_sp, false, false, false); 3558 3559 // Give RS breakpoints a specific name, so the user can manipulate them as a 3560 // group. 3561 Error err; 3562 if (!bp->AddName("RenderScriptKernel", err)) 3563 if (log) 3564 log->Printf("%s - error setting break name, '%s'.", __FUNCTION__, 3565 err.AsCString()); 3566 3567 return bp; 3568 } 3569 3570 BreakpointSP 3571 RenderScriptRuntime::CreateReductionBreakpoint(const ConstString &name, 3572 int kernel_types) { 3573 Log *log( 3574 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3575 3576 if (!m_filtersp) { 3577 if (log) 3578 log->Printf("%s - error, no breakpoint search filter set.", __FUNCTION__); 3579 return nullptr; 3580 } 3581 3582 BreakpointResolverSP resolver_sp(new RSReduceBreakpointResolver( 3583 nullptr, name, &m_rsmodules, kernel_types)); 3584 BreakpointSP bp = GetProcess()->GetTarget().CreateBreakpoint( 3585 m_filtersp, resolver_sp, false, false, false); 3586 3587 // Give RS breakpoints a specific name, so the user can manipulate them as a 3588 // group. 3589 Error err; 3590 if (!bp->AddName("RenderScriptReduction", err)) 3591 if (log) 3592 log->Printf("%s - error setting break name, '%s'.", __FUNCTION__, 3593 err.AsCString()); 3594 3595 return bp; 3596 } 3597 3598 // Given an expression for a variable this function tries to calculate the 3599 // variable's value. If this is possible it returns true and sets the uint64_t 3600 // parameter to the variables unsigned value. Otherwise function returns false. 3601 bool RenderScriptRuntime::GetFrameVarAsUnsigned(const StackFrameSP frame_sp, 3602 const char *var_name, 3603 uint64_t &val) { 3604 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3605 Error err; 3606 VariableSP var_sp; 3607 3608 // Find variable in stack frame 3609 ValueObjectSP value_sp(frame_sp->GetValueForVariableExpressionPath( 3610 var_name, eNoDynamicValues, 3611 StackFrame::eExpressionPathOptionCheckPtrVsMember | 3612 StackFrame::eExpressionPathOptionsAllowDirectIVarAccess, 3613 var_sp, err)); 3614 if (!err.Success()) { 3615 if (log) 3616 log->Printf("%s - error, couldn't find '%s' in frame", __FUNCTION__, 3617 var_name); 3618 return false; 3619 } 3620 3621 // Find the uint32_t value for the variable 3622 bool success = false; 3623 val = value_sp->GetValueAsUnsigned(0, &success); 3624 if (!success) { 3625 if (log) 3626 log->Printf("%s - error, couldn't parse '%s' as an uint32_t.", 3627 __FUNCTION__, var_name); 3628 return false; 3629 } 3630 3631 return true; 3632 } 3633 3634 // Function attempts to find the current coordinate of a kernel invocation by 3635 // investigating the values of frame variables in the .expand function. These 3636 // coordinates are returned via the coord array reference parameter. Returns 3637 // true if the coordinates could be found, and false otherwise. 3638 bool RenderScriptRuntime::GetKernelCoordinate(RSCoordinate &coord, 3639 Thread *thread_ptr) { 3640 static const char *const x_expr = "rsIndex"; 3641 static const char *const y_expr = "p->current.y"; 3642 static const char *const z_expr = "p->current.z"; 3643 3644 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3645 3646 if (!thread_ptr) { 3647 if (log) 3648 log->Printf("%s - Error, No thread pointer", __FUNCTION__); 3649 3650 return false; 3651 } 3652 3653 // Walk the call stack looking for a function whose name has the suffix 3654 // '.expand' and contains the variables we're looking for. 3655 for (uint32_t i = 0; i < thread_ptr->GetStackFrameCount(); ++i) { 3656 if (!thread_ptr->SetSelectedFrameByIndex(i)) 3657 continue; 3658 3659 StackFrameSP frame_sp = thread_ptr->GetSelectedFrame(); 3660 if (!frame_sp) 3661 continue; 3662 3663 // Find the function name 3664 const SymbolContext sym_ctx = frame_sp->GetSymbolContext(false); 3665 const ConstString func_name = sym_ctx.GetFunctionName(); 3666 if (!func_name) 3667 continue; 3668 3669 if (log) 3670 log->Printf("%s - Inspecting function '%s'", __FUNCTION__, 3671 func_name.GetCString()); 3672 3673 // Check if function name has .expand suffix 3674 if (!func_name.GetStringRef().endswith(".expand")) 3675 continue; 3676 3677 if (log) 3678 log->Printf("%s - Found .expand function '%s'", __FUNCTION__, 3679 func_name.GetCString()); 3680 3681 // Get values for variables in .expand frame that tell us the current kernel 3682 // invocation 3683 uint64_t x, y, z; 3684 bool found = GetFrameVarAsUnsigned(frame_sp, x_expr, x) && 3685 GetFrameVarAsUnsigned(frame_sp, y_expr, y) && 3686 GetFrameVarAsUnsigned(frame_sp, z_expr, z); 3687 3688 if (found) { 3689 // The RenderScript runtime uses uint32_t for these vars. If they're not 3690 // within bounds, our frame parsing is garbage 3691 assert(x <= UINT32_MAX && y <= UINT32_MAX && z <= UINT32_MAX); 3692 coord.x = (uint32_t)x; 3693 coord.y = (uint32_t)y; 3694 coord.z = (uint32_t)z; 3695 return true; 3696 } 3697 } 3698 return false; 3699 } 3700 3701 // Callback when a kernel breakpoint hits and we're looking for a specific 3702 // coordinate. Baton parameter contains a pointer to the target coordinate we 3703 // want to break on. 3704 // Function then checks the .expand frame for the current coordinate and breaks 3705 // to user if it matches. 3706 // Parameter 'break_id' is the id of the Breakpoint which made the callback. 3707 // Parameter 'break_loc_id' is the id for the BreakpointLocation which was hit, 3708 // a single logical breakpoint can have multiple addresses. 3709 bool RenderScriptRuntime::KernelBreakpointHit(void *baton, 3710 StoppointCallbackContext *ctx, 3711 user_id_t break_id, 3712 user_id_t break_loc_id) { 3713 Log *log( 3714 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3715 3716 assert(baton && 3717 "Error: null baton in conditional kernel breakpoint callback"); 3718 3719 // Coordinate we want to stop on 3720 RSCoordinate target_coord = *static_cast<RSCoordinate *>(baton); 3721 3722 if (log) 3723 log->Printf("%s - Break ID %" PRIu64 ", " FMT_COORD, __FUNCTION__, break_id, 3724 target_coord.x, target_coord.y, target_coord.z); 3725 3726 // Select current thread 3727 ExecutionContext context(ctx->exe_ctx_ref); 3728 Thread *thread_ptr = context.GetThreadPtr(); 3729 assert(thread_ptr && "Null thread pointer"); 3730 3731 // Find current kernel invocation from .expand frame variables 3732 RSCoordinate current_coord{}; 3733 if (!GetKernelCoordinate(current_coord, thread_ptr)) { 3734 if (log) 3735 log->Printf("%s - Error, couldn't select .expand stack frame", 3736 __FUNCTION__); 3737 return false; 3738 } 3739 3740 if (log) 3741 log->Printf("%s - " FMT_COORD, __FUNCTION__, current_coord.x, 3742 current_coord.y, current_coord.z); 3743 3744 // Check if the current kernel invocation coordinate matches our target 3745 // coordinate 3746 if (target_coord == current_coord) { 3747 if (log) 3748 log->Printf("%s, BREAKING " FMT_COORD, __FUNCTION__, current_coord.x, 3749 current_coord.y, current_coord.z); 3750 3751 BreakpointSP breakpoint_sp = 3752 context.GetTargetPtr()->GetBreakpointByID(break_id); 3753 assert(breakpoint_sp != nullptr && 3754 "Error: Couldn't find breakpoint matching break id for callback"); 3755 breakpoint_sp->SetEnabled(false); // Optimise since conditional breakpoint 3756 // should only be hit once. 3757 return true; 3758 } 3759 3760 // No match on coordinate 3761 return false; 3762 } 3763 3764 void RenderScriptRuntime::SetConditional(BreakpointSP bp, Stream &messages, 3765 const RSCoordinate &coord) { 3766 messages.Printf("Conditional kernel breakpoint on coordinate " FMT_COORD, 3767 coord.x, coord.y, coord.z); 3768 messages.EOL(); 3769 3770 // Allocate memory for the baton, and copy over coordinate 3771 RSCoordinate *baton = new RSCoordinate(coord); 3772 3773 // Create a callback that will be invoked every time the breakpoint is hit. 3774 // The baton object passed to the handler is the target coordinate we want to 3775 // break on. 3776 bp->SetCallback(KernelBreakpointHit, baton, true); 3777 3778 // Store a shared pointer to the baton, so the memory will eventually be 3779 // cleaned up after destruction 3780 m_conditional_breaks[bp->GetID()] = std::unique_ptr<RSCoordinate>(baton); 3781 } 3782 3783 // Tries to set a breakpoint on the start of a kernel, resolved using the kernel 3784 // name. Argument 'coords', represents a three dimensional coordinate which can 3785 // be 3786 // used to specify a single kernel instance to break on. If this is set then we 3787 // add a callback 3788 // to the breakpoint. 3789 bool RenderScriptRuntime::PlaceBreakpointOnKernel(TargetSP target, 3790 Stream &messages, 3791 const char *name, 3792 const RSCoordinate *coord) { 3793 if (!name) 3794 return false; 3795 3796 InitSearchFilter(target); 3797 3798 ConstString kernel_name(name); 3799 BreakpointSP bp = CreateKernelBreakpoint(kernel_name); 3800 if (!bp) 3801 return false; 3802 3803 // We have a conditional breakpoint on a specific coordinate 3804 if (coord) 3805 SetConditional(bp, messages, *coord); 3806 3807 bp->GetDescription(&messages, lldb::eDescriptionLevelInitial, false); 3808 3809 return true; 3810 } 3811 3812 BreakpointSP 3813 RenderScriptRuntime::CreateScriptGroupBreakpoint(const ConstString &name, 3814 bool stop_on_all) { 3815 Log *log( 3816 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3817 3818 if (!m_filtersp) { 3819 if (log) 3820 log->Printf("%s - error, no breakpoint search filter set.", __FUNCTION__); 3821 return nullptr; 3822 } 3823 3824 BreakpointResolverSP resolver_sp(new RSScriptGroupBreakpointResolver( 3825 nullptr, name, m_scriptGroups, stop_on_all)); 3826 BreakpointSP bp = GetProcess()->GetTarget().CreateBreakpoint( 3827 m_filtersp, resolver_sp, false, false, false); 3828 // Give RS breakpoints a specific name, so the user can manipulate them as a 3829 // group. 3830 Error err; 3831 if (!bp->AddName(name.AsCString(), err)) 3832 if (log) 3833 log->Printf("%s - error setting break name, '%s'.", __FUNCTION__, 3834 err.AsCString()); 3835 // ask the breakpoint to resolve itself 3836 bp->ResolveBreakpoint(); 3837 return bp; 3838 } 3839 3840 bool RenderScriptRuntime::PlaceBreakpointOnScriptGroup(TargetSP target, 3841 Stream &strm, 3842 const ConstString &name, 3843 bool multi) { 3844 InitSearchFilter(target); 3845 BreakpointSP bp = CreateScriptGroupBreakpoint(name, multi); 3846 if (bp) 3847 bp->GetDescription(&strm, lldb::eDescriptionLevelInitial, false); 3848 return bool(bp); 3849 } 3850 3851 bool RenderScriptRuntime::PlaceBreakpointOnReduction(TargetSP target, 3852 Stream &messages, 3853 const char *reduce_name, 3854 const RSCoordinate *coord, 3855 int kernel_types) { 3856 if (!reduce_name) 3857 return false; 3858 3859 InitSearchFilter(target); 3860 BreakpointSP bp = 3861 CreateReductionBreakpoint(ConstString(reduce_name), kernel_types); 3862 if (!bp) 3863 return false; 3864 3865 if (coord) 3866 SetConditional(bp, messages, *coord); 3867 3868 bp->GetDescription(&messages, lldb::eDescriptionLevelInitial, false); 3869 3870 return true; 3871 } 3872 3873 void RenderScriptRuntime::DumpModules(Stream &strm) const { 3874 strm.Printf("RenderScript Modules:"); 3875 strm.EOL(); 3876 strm.IndentMore(); 3877 for (const auto &module : m_rsmodules) { 3878 module->Dump(strm); 3879 } 3880 strm.IndentLess(); 3881 } 3882 3883 RenderScriptRuntime::ScriptDetails * 3884 RenderScriptRuntime::LookUpScript(addr_t address, bool create) { 3885 for (const auto &s : m_scripts) { 3886 if (s->script.isValid()) 3887 if (*s->script == address) 3888 return s.get(); 3889 } 3890 if (create) { 3891 std::unique_ptr<ScriptDetails> s(new ScriptDetails); 3892 s->script = address; 3893 m_scripts.push_back(std::move(s)); 3894 return m_scripts.back().get(); 3895 } 3896 return nullptr; 3897 } 3898 3899 RenderScriptRuntime::AllocationDetails * 3900 RenderScriptRuntime::LookUpAllocation(addr_t address) { 3901 for (const auto &a : m_allocations) { 3902 if (a->address.isValid()) 3903 if (*a->address == address) 3904 return a.get(); 3905 } 3906 return nullptr; 3907 } 3908 3909 RenderScriptRuntime::AllocationDetails * 3910 RenderScriptRuntime::CreateAllocation(addr_t address) { 3911 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 3912 3913 // Remove any previous allocation which contains the same address 3914 auto it = m_allocations.begin(); 3915 while (it != m_allocations.end()) { 3916 if (*((*it)->address) == address) { 3917 if (log) 3918 log->Printf("%s - Removing allocation id: %d, address: 0x%" PRIx64, 3919 __FUNCTION__, (*it)->id, address); 3920 3921 it = m_allocations.erase(it); 3922 } else { 3923 it++; 3924 } 3925 } 3926 3927 std::unique_ptr<AllocationDetails> a(new AllocationDetails); 3928 a->address = address; 3929 m_allocations.push_back(std::move(a)); 3930 return m_allocations.back().get(); 3931 } 3932 3933 bool RenderScriptRuntime::ResolveKernelName(lldb::addr_t kernel_addr, 3934 ConstString &name) { 3935 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS); 3936 3937 Target &target = GetProcess()->GetTarget(); 3938 Address resolved; 3939 // RenderScript module 3940 if (!target.GetSectionLoadList().ResolveLoadAddress(kernel_addr, resolved)) { 3941 if (log) 3942 log->Printf("%s: unable to resolve 0x%" PRIx64 " to a loaded symbol", 3943 __FUNCTION__, kernel_addr); 3944 return false; 3945 } 3946 3947 Symbol *sym = resolved.CalculateSymbolContextSymbol(); 3948 if (!sym) 3949 return false; 3950 3951 name = sym->GetName(); 3952 assert(IsRenderScriptModule(resolved.CalculateSymbolContextModule())); 3953 if (log) 3954 log->Printf("%s: 0x%" PRIx64 " resolved to the symbol '%s'", __FUNCTION__, 3955 kernel_addr, name.GetCString()); 3956 return true; 3957 } 3958 3959 void RSModuleDescriptor::Dump(Stream &strm) const { 3960 int indent = strm.GetIndentLevel(); 3961 3962 strm.Indent(); 3963 m_module->GetFileSpec().Dump(&strm); 3964 strm.Indent(m_module->GetNumCompileUnits() ? "Debug info loaded." 3965 : "Debug info does not exist."); 3966 strm.EOL(); 3967 strm.IndentMore(); 3968 3969 strm.Indent(); 3970 strm.Printf("Globals: %" PRIu64, static_cast<uint64_t>(m_globals.size())); 3971 strm.EOL(); 3972 strm.IndentMore(); 3973 for (const auto &global : m_globals) { 3974 global.Dump(strm); 3975 } 3976 strm.IndentLess(); 3977 3978 strm.Indent(); 3979 strm.Printf("Kernels: %" PRIu64, static_cast<uint64_t>(m_kernels.size())); 3980 strm.EOL(); 3981 strm.IndentMore(); 3982 for (const auto &kernel : m_kernels) { 3983 kernel.Dump(strm); 3984 } 3985 strm.IndentLess(); 3986 3987 strm.Indent(); 3988 strm.Printf("Pragmas: %" PRIu64, static_cast<uint64_t>(m_pragmas.size())); 3989 strm.EOL(); 3990 strm.IndentMore(); 3991 for (const auto &key_val : m_pragmas) { 3992 strm.Indent(); 3993 strm.Printf("%s: %s", key_val.first.c_str(), key_val.second.c_str()); 3994 strm.EOL(); 3995 } 3996 strm.IndentLess(); 3997 3998 strm.Indent(); 3999 strm.Printf("Reductions: %" PRIu64, 4000 static_cast<uint64_t>(m_reductions.size())); 4001 strm.EOL(); 4002 strm.IndentMore(); 4003 for (const auto &reduction : m_reductions) { 4004 reduction.Dump(strm); 4005 } 4006 4007 strm.SetIndentLevel(indent); 4008 } 4009 4010 void RSGlobalDescriptor::Dump(Stream &strm) const { 4011 strm.Indent(m_name.AsCString()); 4012 VariableList var_list; 4013 m_module->m_module->FindGlobalVariables(m_name, nullptr, true, 1U, var_list); 4014 if (var_list.GetSize() == 1) { 4015 auto var = var_list.GetVariableAtIndex(0); 4016 auto type = var->GetType(); 4017 if (type) { 4018 strm.Printf(" - "); 4019 type->DumpTypeName(&strm); 4020 } else { 4021 strm.Printf(" - Unknown Type"); 4022 } 4023 } else { 4024 strm.Printf(" - variable identified, but not found in binary"); 4025 const Symbol *s = m_module->m_module->FindFirstSymbolWithNameAndType( 4026 m_name, eSymbolTypeData); 4027 if (s) { 4028 strm.Printf(" (symbol exists) "); 4029 } 4030 } 4031 4032 strm.EOL(); 4033 } 4034 4035 void RSKernelDescriptor::Dump(Stream &strm) const { 4036 strm.Indent(m_name.AsCString()); 4037 strm.EOL(); 4038 } 4039 4040 void RSReductionDescriptor::Dump(lldb_private::Stream &stream) const { 4041 stream.Indent(m_reduce_name.AsCString()); 4042 stream.IndentMore(); 4043 stream.EOL(); 4044 stream.Indent(); 4045 stream.Printf("accumulator: %s", m_accum_name.AsCString()); 4046 stream.EOL(); 4047 stream.Indent(); 4048 stream.Printf("initializer: %s", m_init_name.AsCString()); 4049 stream.EOL(); 4050 stream.Indent(); 4051 stream.Printf("combiner: %s", m_comb_name.AsCString()); 4052 stream.EOL(); 4053 stream.Indent(); 4054 stream.Printf("outconverter: %s", m_outc_name.AsCString()); 4055 stream.EOL(); 4056 // XXX This is currently unspecified by RenderScript, and unused 4057 // stream.Indent(); 4058 // stream.Printf("halter: '%s'", m_init_name.AsCString()); 4059 // stream.EOL(); 4060 stream.IndentLess(); 4061 } 4062 4063 class CommandObjectRenderScriptRuntimeModuleDump : public CommandObjectParsed { 4064 public: 4065 CommandObjectRenderScriptRuntimeModuleDump(CommandInterpreter &interpreter) 4066 : CommandObjectParsed( 4067 interpreter, "renderscript module dump", 4068 "Dumps renderscript specific information for all modules.", 4069 "renderscript module dump", 4070 eCommandRequiresProcess | eCommandProcessMustBeLaunched) {} 4071 4072 ~CommandObjectRenderScriptRuntimeModuleDump() override = default; 4073 4074 bool DoExecute(Args &command, CommandReturnObject &result) override { 4075 RenderScriptRuntime *runtime = 4076 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4077 eLanguageTypeExtRenderScript); 4078 runtime->DumpModules(result.GetOutputStream()); 4079 result.SetStatus(eReturnStatusSuccessFinishResult); 4080 return true; 4081 } 4082 }; 4083 4084 class CommandObjectRenderScriptRuntimeModule : public CommandObjectMultiword { 4085 public: 4086 CommandObjectRenderScriptRuntimeModule(CommandInterpreter &interpreter) 4087 : CommandObjectMultiword(interpreter, "renderscript module", 4088 "Commands that deal with RenderScript modules.", 4089 nullptr) { 4090 LoadSubCommand( 4091 "dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeModuleDump( 4092 interpreter))); 4093 } 4094 4095 ~CommandObjectRenderScriptRuntimeModule() override = default; 4096 }; 4097 4098 class CommandObjectRenderScriptRuntimeKernelList : public CommandObjectParsed { 4099 public: 4100 CommandObjectRenderScriptRuntimeKernelList(CommandInterpreter &interpreter) 4101 : CommandObjectParsed( 4102 interpreter, "renderscript kernel list", 4103 "Lists renderscript kernel names and associated script resources.", 4104 "renderscript kernel list", 4105 eCommandRequiresProcess | eCommandProcessMustBeLaunched) {} 4106 4107 ~CommandObjectRenderScriptRuntimeKernelList() override = default; 4108 4109 bool DoExecute(Args &command, CommandReturnObject &result) override { 4110 RenderScriptRuntime *runtime = 4111 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4112 eLanguageTypeExtRenderScript); 4113 runtime->DumpKernels(result.GetOutputStream()); 4114 result.SetStatus(eReturnStatusSuccessFinishResult); 4115 return true; 4116 } 4117 }; 4118 4119 static OptionDefinition g_renderscript_reduction_bp_set_options[] = { 4120 {LLDB_OPT_SET_1, false, "function-role", 't', 4121 OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeOneLiner, 4122 "Break on a comma separated set of reduction kernel types " 4123 "(accumulator,outcoverter,combiner,initializer"}, 4124 {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument, 4125 nullptr, nullptr, 0, eArgTypeValue, 4126 "Set a breakpoint on a single invocation of the kernel with specified " 4127 "coordinate.\n" 4128 "Coordinate takes the form 'x[,y][,z] where x,y,z are positive " 4129 "integers representing kernel dimensions. " 4130 "Any unset dimensions will be defaulted to zero."}}; 4131 4132 class CommandObjectRenderScriptRuntimeReductionBreakpointSet 4133 : public CommandObjectParsed { 4134 public: 4135 CommandObjectRenderScriptRuntimeReductionBreakpointSet( 4136 CommandInterpreter &interpreter) 4137 : CommandObjectParsed( 4138 interpreter, "renderscript reduction breakpoint set", 4139 "Set a breakpoint on named RenderScript general reductions", 4140 "renderscript reduction breakpoint set <kernel_name> [-t " 4141 "<reduction_kernel_type,...>]", 4142 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4143 eCommandProcessMustBePaused), 4144 m_options(){}; 4145 4146 class CommandOptions : public Options { 4147 public: 4148 CommandOptions() 4149 : Options(), 4150 m_kernel_types(RSReduceBreakpointResolver::eKernelTypeAll) {} 4151 4152 ~CommandOptions() override = default; 4153 4154 Error SetOptionValue(uint32_t option_idx, const char *option_val, 4155 ExecutionContext *exe_ctx) override { 4156 Error err; 4157 StreamString err_str; 4158 const int short_option = m_getopt_table[option_idx].val; 4159 switch (short_option) { 4160 case 't': 4161 if (!ParseReductionTypes(option_val, err_str)) 4162 err.SetErrorStringWithFormat( 4163 "Unable to deduce reduction types for %s: %s", option_val, 4164 err_str.GetData()); 4165 break; 4166 case 'c': { 4167 auto coord = RSCoordinate{}; 4168 if (!ParseCoordinate(option_val, coord)) 4169 err.SetErrorStringWithFormat("unable to parse coordinate for %s", 4170 option_val); 4171 else { 4172 m_have_coord = true; 4173 m_coord = coord; 4174 } 4175 break; 4176 } 4177 default: 4178 err.SetErrorStringWithFormat("Invalid option '-%c'", short_option); 4179 } 4180 return err; 4181 } 4182 4183 void OptionParsingStarting(ExecutionContext *exe_ctx) override { 4184 m_have_coord = false; 4185 } 4186 4187 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4188 return llvm::makeArrayRef(g_renderscript_reduction_bp_set_options); 4189 } 4190 4191 bool ParseReductionTypes(const char *option_val, StreamString &err_str) { 4192 m_kernel_types = RSReduceBreakpointResolver::eKernelTypeNone; 4193 const auto reduce_name_to_type = [](llvm::StringRef name) -> int { 4194 return llvm::StringSwitch<int>(name) 4195 .Case("accumulator", RSReduceBreakpointResolver::eKernelTypeAccum) 4196 .Case("initializer", RSReduceBreakpointResolver::eKernelTypeInit) 4197 .Case("outconverter", RSReduceBreakpointResolver::eKernelTypeOutC) 4198 .Case("combiner", RSReduceBreakpointResolver::eKernelTypeComb) 4199 .Case("all", RSReduceBreakpointResolver::eKernelTypeAll) 4200 // Currently not exposed by the runtime 4201 // .Case("halter", RSReduceBreakpointResolver::eKernelTypeHalter) 4202 .Default(0); 4203 }; 4204 4205 // Matching a comma separated list of known words is fairly 4206 // straightforward with PCRE, but we're 4207 // using ERE, so we end up with a little ugliness... 4208 RegularExpression::Match match(/* max_matches */ 5); 4209 RegularExpression match_type_list( 4210 llvm::StringRef("^([[:alpha:]]+)(,[[:alpha:]]+){0,4}$")); 4211 4212 assert(match_type_list.IsValid()); 4213 4214 if (!match_type_list.Execute(llvm::StringRef(option_val), &match)) { 4215 err_str.PutCString( 4216 "a comma-separated list of kernel types is required"); 4217 return false; 4218 } 4219 4220 // splitting on commas is much easier with llvm::StringRef than regex 4221 llvm::SmallVector<llvm::StringRef, 5> type_names; 4222 llvm::StringRef(option_val).split(type_names, ','); 4223 4224 for (const auto &name : type_names) { 4225 const int type = reduce_name_to_type(name); 4226 if (!type) { 4227 err_str.Printf("unknown kernel type name %s", name.str().c_str()); 4228 return false; 4229 } 4230 m_kernel_types |= type; 4231 } 4232 4233 return true; 4234 } 4235 4236 int m_kernel_types; 4237 llvm::StringRef m_reduce_name; 4238 RSCoordinate m_coord; 4239 bool m_have_coord; 4240 }; 4241 4242 Options *GetOptions() override { return &m_options; } 4243 4244 bool DoExecute(Args &command, CommandReturnObject &result) override { 4245 const size_t argc = command.GetArgumentCount(); 4246 if (argc < 1) { 4247 result.AppendErrorWithFormat("'%s' takes 1 argument of reduction name, " 4248 "and an optional kernel type list", 4249 m_cmd_name.c_str()); 4250 result.SetStatus(eReturnStatusFailed); 4251 return false; 4252 } 4253 4254 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4255 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4256 eLanguageTypeExtRenderScript)); 4257 4258 auto &outstream = result.GetOutputStream(); 4259 auto name = command.GetArgumentAtIndex(0); 4260 auto &target = m_exe_ctx.GetTargetSP(); 4261 auto coord = m_options.m_have_coord ? &m_options.m_coord : nullptr; 4262 if (!runtime->PlaceBreakpointOnReduction(target, outstream, name, coord, 4263 m_options.m_kernel_types)) { 4264 result.SetStatus(eReturnStatusFailed); 4265 result.AppendError("Error: unable to place breakpoint on reduction"); 4266 return false; 4267 } 4268 result.AppendMessage("Breakpoint(s) created"); 4269 result.SetStatus(eReturnStatusSuccessFinishResult); 4270 return true; 4271 } 4272 4273 private: 4274 CommandOptions m_options; 4275 }; 4276 4277 static OptionDefinition g_renderscript_kernel_bp_set_options[] = { 4278 {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument, 4279 nullptr, nullptr, 0, eArgTypeValue, 4280 "Set a breakpoint on a single invocation of the kernel with specified " 4281 "coordinate.\n" 4282 "Coordinate takes the form 'x[,y][,z] where x,y,z are positive " 4283 "integers representing kernel dimensions. " 4284 "Any unset dimensions will be defaulted to zero."}}; 4285 4286 class CommandObjectRenderScriptRuntimeKernelBreakpointSet 4287 : public CommandObjectParsed { 4288 public: 4289 CommandObjectRenderScriptRuntimeKernelBreakpointSet( 4290 CommandInterpreter &interpreter) 4291 : CommandObjectParsed( 4292 interpreter, "renderscript kernel breakpoint set", 4293 "Sets a breakpoint on a renderscript kernel.", 4294 "renderscript kernel breakpoint set <kernel_name> [-c x,y,z]", 4295 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4296 eCommandProcessMustBePaused), 4297 m_options() {} 4298 4299 ~CommandObjectRenderScriptRuntimeKernelBreakpointSet() override = default; 4300 4301 Options *GetOptions() override { return &m_options; } 4302 4303 class CommandOptions : public Options { 4304 public: 4305 CommandOptions() : Options() {} 4306 4307 ~CommandOptions() override = default; 4308 4309 Error SetOptionValue(uint32_t option_idx, const char *option_arg, 4310 ExecutionContext *exe_ctx) override { 4311 Error err; 4312 const int short_option = m_getopt_table[option_idx].val; 4313 4314 switch (short_option) { 4315 case 'c': { 4316 auto coord = RSCoordinate{}; 4317 if (!ParseCoordinate(option_arg, coord)) 4318 err.SetErrorStringWithFormat( 4319 "Couldn't parse coordinate '%s', should be in format 'x,y,z'.", 4320 option_arg); 4321 else { 4322 m_have_coord = true; 4323 m_coord = coord; 4324 } 4325 break; 4326 } 4327 default: 4328 err.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 4329 break; 4330 } 4331 return err; 4332 } 4333 4334 void OptionParsingStarting(ExecutionContext *exe_ctx) override { 4335 m_have_coord = false; 4336 } 4337 4338 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4339 return llvm::makeArrayRef(g_renderscript_kernel_bp_set_options); 4340 } 4341 4342 RSCoordinate m_coord; 4343 bool m_have_coord; 4344 }; 4345 4346 bool DoExecute(Args &command, CommandReturnObject &result) override { 4347 const size_t argc = command.GetArgumentCount(); 4348 if (argc < 1) { 4349 result.AppendErrorWithFormat( 4350 "'%s' takes 1 argument of kernel name, and an optional coordinate.", 4351 m_cmd_name.c_str()); 4352 result.SetStatus(eReturnStatusFailed); 4353 return false; 4354 } 4355 4356 RenderScriptRuntime *runtime = 4357 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4358 eLanguageTypeExtRenderScript); 4359 4360 auto &outstream = result.GetOutputStream(); 4361 auto &target = m_exe_ctx.GetTargetSP(); 4362 auto name = command.GetArgumentAtIndex(0); 4363 auto coord = m_options.m_have_coord ? &m_options.m_coord : nullptr; 4364 if (!runtime->PlaceBreakpointOnKernel(target, outstream, name, coord)) { 4365 result.SetStatus(eReturnStatusFailed); 4366 result.AppendErrorWithFormat( 4367 "Error: unable to set breakpoint on kernel '%s'", name); 4368 return false; 4369 } 4370 4371 result.AppendMessage("Breakpoint(s) created"); 4372 result.SetStatus(eReturnStatusSuccessFinishResult); 4373 return true; 4374 } 4375 4376 private: 4377 CommandOptions m_options; 4378 }; 4379 4380 class CommandObjectRenderScriptRuntimeKernelBreakpointAll 4381 : public CommandObjectParsed { 4382 public: 4383 CommandObjectRenderScriptRuntimeKernelBreakpointAll( 4384 CommandInterpreter &interpreter) 4385 : CommandObjectParsed( 4386 interpreter, "renderscript kernel breakpoint all", 4387 "Automatically sets a breakpoint on all renderscript kernels that " 4388 "are or will be loaded.\n" 4389 "Disabling option means breakpoints will no longer be set on any " 4390 "kernels loaded in the future, " 4391 "but does not remove currently set breakpoints.", 4392 "renderscript kernel breakpoint all <enable/disable>", 4393 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4394 eCommandProcessMustBePaused) {} 4395 4396 ~CommandObjectRenderScriptRuntimeKernelBreakpointAll() override = default; 4397 4398 bool DoExecute(Args &command, CommandReturnObject &result) override { 4399 const size_t argc = command.GetArgumentCount(); 4400 if (argc != 1) { 4401 result.AppendErrorWithFormat( 4402 "'%s' takes 1 argument of 'enable' or 'disable'", m_cmd_name.c_str()); 4403 result.SetStatus(eReturnStatusFailed); 4404 return false; 4405 } 4406 4407 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4408 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4409 eLanguageTypeExtRenderScript)); 4410 4411 bool do_break = false; 4412 const char *argument = command.GetArgumentAtIndex(0); 4413 if (strcmp(argument, "enable") == 0) { 4414 do_break = true; 4415 result.AppendMessage("Breakpoints will be set on all kernels."); 4416 } else if (strcmp(argument, "disable") == 0) { 4417 do_break = false; 4418 result.AppendMessage("Breakpoints will not be set on any new kernels."); 4419 } else { 4420 result.AppendErrorWithFormat( 4421 "Argument must be either 'enable' or 'disable'"); 4422 result.SetStatus(eReturnStatusFailed); 4423 return false; 4424 } 4425 4426 runtime->SetBreakAllKernels(do_break, m_exe_ctx.GetTargetSP()); 4427 4428 result.SetStatus(eReturnStatusSuccessFinishResult); 4429 return true; 4430 } 4431 }; 4432 4433 class CommandObjectRenderScriptRuntimeReductionBreakpoint 4434 : public CommandObjectMultiword { 4435 public: 4436 CommandObjectRenderScriptRuntimeReductionBreakpoint( 4437 CommandInterpreter &interpreter) 4438 : CommandObjectMultiword(interpreter, "renderscript reduction breakpoint", 4439 "Commands that manipulate breakpoints on " 4440 "renderscript general reductions.", 4441 nullptr) { 4442 LoadSubCommand( 4443 "set", CommandObjectSP( 4444 new CommandObjectRenderScriptRuntimeReductionBreakpointSet( 4445 interpreter))); 4446 } 4447 4448 ~CommandObjectRenderScriptRuntimeReductionBreakpoint() override = default; 4449 }; 4450 4451 class CommandObjectRenderScriptRuntimeKernelCoordinate 4452 : public CommandObjectParsed { 4453 public: 4454 CommandObjectRenderScriptRuntimeKernelCoordinate( 4455 CommandInterpreter &interpreter) 4456 : CommandObjectParsed( 4457 interpreter, "renderscript kernel coordinate", 4458 "Shows the (x,y,z) coordinate of the current kernel invocation.", 4459 "renderscript kernel coordinate", 4460 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4461 eCommandProcessMustBePaused) {} 4462 4463 ~CommandObjectRenderScriptRuntimeKernelCoordinate() override = default; 4464 4465 bool DoExecute(Args &command, CommandReturnObject &result) override { 4466 RSCoordinate coord{}; 4467 bool success = RenderScriptRuntime::GetKernelCoordinate( 4468 coord, m_exe_ctx.GetThreadPtr()); 4469 Stream &stream = result.GetOutputStream(); 4470 4471 if (success) { 4472 stream.Printf("Coordinate: " FMT_COORD, coord.x, coord.y, coord.z); 4473 stream.EOL(); 4474 result.SetStatus(eReturnStatusSuccessFinishResult); 4475 } else { 4476 stream.Printf("Error: Coordinate could not be found."); 4477 stream.EOL(); 4478 result.SetStatus(eReturnStatusFailed); 4479 } 4480 return true; 4481 } 4482 }; 4483 4484 class CommandObjectRenderScriptRuntimeKernelBreakpoint 4485 : public CommandObjectMultiword { 4486 public: 4487 CommandObjectRenderScriptRuntimeKernelBreakpoint( 4488 CommandInterpreter &interpreter) 4489 : CommandObjectMultiword( 4490 interpreter, "renderscript kernel", 4491 "Commands that generate breakpoints on renderscript kernels.", 4492 nullptr) { 4493 LoadSubCommand( 4494 "set", 4495 CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointSet( 4496 interpreter))); 4497 LoadSubCommand( 4498 "all", 4499 CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointAll( 4500 interpreter))); 4501 } 4502 4503 ~CommandObjectRenderScriptRuntimeKernelBreakpoint() override = default; 4504 }; 4505 4506 class CommandObjectRenderScriptRuntimeKernel : public CommandObjectMultiword { 4507 public: 4508 CommandObjectRenderScriptRuntimeKernel(CommandInterpreter &interpreter) 4509 : CommandObjectMultiword(interpreter, "renderscript kernel", 4510 "Commands that deal with RenderScript kernels.", 4511 nullptr) { 4512 LoadSubCommand( 4513 "list", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelList( 4514 interpreter))); 4515 LoadSubCommand( 4516 "coordinate", 4517 CommandObjectSP( 4518 new CommandObjectRenderScriptRuntimeKernelCoordinate(interpreter))); 4519 LoadSubCommand( 4520 "breakpoint", 4521 CommandObjectSP( 4522 new CommandObjectRenderScriptRuntimeKernelBreakpoint(interpreter))); 4523 } 4524 4525 ~CommandObjectRenderScriptRuntimeKernel() override = default; 4526 }; 4527 4528 class CommandObjectRenderScriptRuntimeContextDump : public CommandObjectParsed { 4529 public: 4530 CommandObjectRenderScriptRuntimeContextDump(CommandInterpreter &interpreter) 4531 : CommandObjectParsed(interpreter, "renderscript context dump", 4532 "Dumps renderscript context information.", 4533 "renderscript context dump", 4534 eCommandRequiresProcess | 4535 eCommandProcessMustBeLaunched) {} 4536 4537 ~CommandObjectRenderScriptRuntimeContextDump() override = default; 4538 4539 bool DoExecute(Args &command, CommandReturnObject &result) override { 4540 RenderScriptRuntime *runtime = 4541 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4542 eLanguageTypeExtRenderScript); 4543 runtime->DumpContexts(result.GetOutputStream()); 4544 result.SetStatus(eReturnStatusSuccessFinishResult); 4545 return true; 4546 } 4547 }; 4548 4549 static OptionDefinition g_renderscript_runtime_alloc_dump_options[] = { 4550 {LLDB_OPT_SET_1, false, "file", 'f', OptionParser::eRequiredArgument, 4551 nullptr, nullptr, 0, eArgTypeFilename, 4552 "Print results to specified file instead of command line."}}; 4553 4554 class CommandObjectRenderScriptRuntimeContext : public CommandObjectMultiword { 4555 public: 4556 CommandObjectRenderScriptRuntimeContext(CommandInterpreter &interpreter) 4557 : CommandObjectMultiword(interpreter, "renderscript context", 4558 "Commands that deal with RenderScript contexts.", 4559 nullptr) { 4560 LoadSubCommand( 4561 "dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeContextDump( 4562 interpreter))); 4563 } 4564 4565 ~CommandObjectRenderScriptRuntimeContext() override = default; 4566 }; 4567 4568 class CommandObjectRenderScriptRuntimeAllocationDump 4569 : public CommandObjectParsed { 4570 public: 4571 CommandObjectRenderScriptRuntimeAllocationDump( 4572 CommandInterpreter &interpreter) 4573 : CommandObjectParsed(interpreter, "renderscript allocation dump", 4574 "Displays the contents of a particular allocation", 4575 "renderscript allocation dump <ID>", 4576 eCommandRequiresProcess | 4577 eCommandProcessMustBeLaunched), 4578 m_options() {} 4579 4580 ~CommandObjectRenderScriptRuntimeAllocationDump() override = default; 4581 4582 Options *GetOptions() override { return &m_options; } 4583 4584 class CommandOptions : public Options { 4585 public: 4586 CommandOptions() : Options() {} 4587 4588 ~CommandOptions() override = default; 4589 4590 Error SetOptionValue(uint32_t option_idx, const char *option_arg, 4591 ExecutionContext *exe_ctx) override { 4592 Error err; 4593 const int short_option = m_getopt_table[option_idx].val; 4594 4595 switch (short_option) { 4596 case 'f': 4597 m_outfile.SetFile(option_arg, true); 4598 if (m_outfile.Exists()) { 4599 m_outfile.Clear(); 4600 err.SetErrorStringWithFormat("file already exists: '%s'", option_arg); 4601 } 4602 break; 4603 default: 4604 err.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 4605 break; 4606 } 4607 return err; 4608 } 4609 4610 void OptionParsingStarting(ExecutionContext *exe_ctx) override { 4611 m_outfile.Clear(); 4612 } 4613 4614 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4615 return llvm::makeArrayRef(g_renderscript_runtime_alloc_dump_options); 4616 } 4617 4618 FileSpec m_outfile; 4619 }; 4620 4621 bool DoExecute(Args &command, CommandReturnObject &result) override { 4622 const size_t argc = command.GetArgumentCount(); 4623 if (argc < 1) { 4624 result.AppendErrorWithFormat("'%s' takes 1 argument, an allocation ID. " 4625 "As well as an optional -f argument", 4626 m_cmd_name.c_str()); 4627 result.SetStatus(eReturnStatusFailed); 4628 return false; 4629 } 4630 4631 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4632 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4633 eLanguageTypeExtRenderScript)); 4634 4635 const char *id_cstr = command.GetArgumentAtIndex(0); 4636 bool success = false; 4637 const uint32_t id = 4638 StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success); 4639 if (!success) { 4640 result.AppendErrorWithFormat("invalid allocation id argument '%s'", 4641 id_cstr); 4642 result.SetStatus(eReturnStatusFailed); 4643 return false; 4644 } 4645 4646 Stream *output_strm = nullptr; 4647 StreamFile outfile_stream; 4648 const FileSpec &outfile_spec = 4649 m_options.m_outfile; // Dump allocation to file instead 4650 if (outfile_spec) { 4651 // Open output file 4652 char path[256]; 4653 outfile_spec.GetPath(path, sizeof(path)); 4654 if (outfile_stream.GetFile() 4655 .Open(path, File::eOpenOptionWrite | File::eOpenOptionCanCreate) 4656 .Success()) { 4657 output_strm = &outfile_stream; 4658 result.GetOutputStream().Printf("Results written to '%s'", path); 4659 result.GetOutputStream().EOL(); 4660 } else { 4661 result.AppendErrorWithFormat("Couldn't open file '%s'", path); 4662 result.SetStatus(eReturnStatusFailed); 4663 return false; 4664 } 4665 } else 4666 output_strm = &result.GetOutputStream(); 4667 4668 assert(output_strm != nullptr); 4669 bool dumped = 4670 runtime->DumpAllocation(*output_strm, m_exe_ctx.GetFramePtr(), id); 4671 4672 if (dumped) 4673 result.SetStatus(eReturnStatusSuccessFinishResult); 4674 else 4675 result.SetStatus(eReturnStatusFailed); 4676 4677 return true; 4678 } 4679 4680 private: 4681 CommandOptions m_options; 4682 }; 4683 4684 static OptionDefinition g_renderscript_runtime_alloc_list_options[] = { 4685 {LLDB_OPT_SET_1, false, "id", 'i', OptionParser::eRequiredArgument, nullptr, 4686 nullptr, 0, eArgTypeIndex, 4687 "Only show details of a single allocation with specified id."}}; 4688 4689 class CommandObjectRenderScriptRuntimeAllocationList 4690 : public CommandObjectParsed { 4691 public: 4692 CommandObjectRenderScriptRuntimeAllocationList( 4693 CommandInterpreter &interpreter) 4694 : CommandObjectParsed( 4695 interpreter, "renderscript allocation list", 4696 "List renderscript allocations and their information.", 4697 "renderscript allocation list", 4698 eCommandRequiresProcess | eCommandProcessMustBeLaunched), 4699 m_options() {} 4700 4701 ~CommandObjectRenderScriptRuntimeAllocationList() override = default; 4702 4703 Options *GetOptions() override { return &m_options; } 4704 4705 class CommandOptions : public Options { 4706 public: 4707 CommandOptions() : Options(), m_id(0) {} 4708 4709 ~CommandOptions() override = default; 4710 4711 Error SetOptionValue(uint32_t option_idx, const char *option_arg, 4712 ExecutionContext *exe_ctx) override { 4713 Error err; 4714 const int short_option = m_getopt_table[option_idx].val; 4715 4716 switch (short_option) { 4717 case 'i': 4718 bool success; 4719 m_id = StringConvert::ToUInt32(option_arg, 0, 0, &success); 4720 if (!success) 4721 err.SetErrorStringWithFormat("invalid integer value for option '%c'", 4722 short_option); 4723 break; 4724 default: 4725 err.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 4726 break; 4727 } 4728 return err; 4729 } 4730 4731 void OptionParsingStarting(ExecutionContext *exe_ctx) override { m_id = 0; } 4732 4733 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4734 return llvm::makeArrayRef(g_renderscript_runtime_alloc_list_options); 4735 } 4736 4737 uint32_t m_id; 4738 }; 4739 4740 bool DoExecute(Args &command, CommandReturnObject &result) override { 4741 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4742 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4743 eLanguageTypeExtRenderScript)); 4744 runtime->ListAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr(), 4745 m_options.m_id); 4746 result.SetStatus(eReturnStatusSuccessFinishResult); 4747 return true; 4748 } 4749 4750 private: 4751 CommandOptions m_options; 4752 }; 4753 4754 class CommandObjectRenderScriptRuntimeAllocationLoad 4755 : public CommandObjectParsed { 4756 public: 4757 CommandObjectRenderScriptRuntimeAllocationLoad( 4758 CommandInterpreter &interpreter) 4759 : CommandObjectParsed( 4760 interpreter, "renderscript allocation load", 4761 "Loads renderscript allocation contents from a file.", 4762 "renderscript allocation load <ID> <filename>", 4763 eCommandRequiresProcess | eCommandProcessMustBeLaunched) {} 4764 4765 ~CommandObjectRenderScriptRuntimeAllocationLoad() override = default; 4766 4767 bool DoExecute(Args &command, CommandReturnObject &result) override { 4768 const size_t argc = command.GetArgumentCount(); 4769 if (argc != 2) { 4770 result.AppendErrorWithFormat( 4771 "'%s' takes 2 arguments, an allocation ID and filename to read from.", 4772 m_cmd_name.c_str()); 4773 result.SetStatus(eReturnStatusFailed); 4774 return false; 4775 } 4776 4777 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4778 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4779 eLanguageTypeExtRenderScript)); 4780 4781 const char *id_cstr = command.GetArgumentAtIndex(0); 4782 bool success = false; 4783 const uint32_t id = 4784 StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success); 4785 if (!success) { 4786 result.AppendErrorWithFormat("invalid allocation id argument '%s'", 4787 id_cstr); 4788 result.SetStatus(eReturnStatusFailed); 4789 return false; 4790 } 4791 4792 const char *path = command.GetArgumentAtIndex(1); 4793 bool loaded = runtime->LoadAllocation(result.GetOutputStream(), id, path, 4794 m_exe_ctx.GetFramePtr()); 4795 4796 if (loaded) 4797 result.SetStatus(eReturnStatusSuccessFinishResult); 4798 else 4799 result.SetStatus(eReturnStatusFailed); 4800 4801 return true; 4802 } 4803 }; 4804 4805 class CommandObjectRenderScriptRuntimeAllocationSave 4806 : public CommandObjectParsed { 4807 public: 4808 CommandObjectRenderScriptRuntimeAllocationSave( 4809 CommandInterpreter &interpreter) 4810 : CommandObjectParsed(interpreter, "renderscript allocation save", 4811 "Write renderscript allocation contents to a file.", 4812 "renderscript allocation save <ID> <filename>", 4813 eCommandRequiresProcess | 4814 eCommandProcessMustBeLaunched) {} 4815 4816 ~CommandObjectRenderScriptRuntimeAllocationSave() override = default; 4817 4818 bool DoExecute(Args &command, CommandReturnObject &result) override { 4819 const size_t argc = command.GetArgumentCount(); 4820 if (argc != 2) { 4821 result.AppendErrorWithFormat( 4822 "'%s' takes 2 arguments, an allocation ID and filename to read from.", 4823 m_cmd_name.c_str()); 4824 result.SetStatus(eReturnStatusFailed); 4825 return false; 4826 } 4827 4828 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4829 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4830 eLanguageTypeExtRenderScript)); 4831 4832 const char *id_cstr = command.GetArgumentAtIndex(0); 4833 bool success = false; 4834 const uint32_t id = 4835 StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success); 4836 if (!success) { 4837 result.AppendErrorWithFormat("invalid allocation id argument '%s'", 4838 id_cstr); 4839 result.SetStatus(eReturnStatusFailed); 4840 return false; 4841 } 4842 4843 const char *path = command.GetArgumentAtIndex(1); 4844 bool saved = runtime->SaveAllocation(result.GetOutputStream(), id, path, 4845 m_exe_ctx.GetFramePtr()); 4846 4847 if (saved) 4848 result.SetStatus(eReturnStatusSuccessFinishResult); 4849 else 4850 result.SetStatus(eReturnStatusFailed); 4851 4852 return true; 4853 } 4854 }; 4855 4856 class CommandObjectRenderScriptRuntimeAllocationRefresh 4857 : public CommandObjectParsed { 4858 public: 4859 CommandObjectRenderScriptRuntimeAllocationRefresh( 4860 CommandInterpreter &interpreter) 4861 : CommandObjectParsed(interpreter, "renderscript allocation refresh", 4862 "Recomputes the details of all allocations.", 4863 "renderscript allocation refresh", 4864 eCommandRequiresProcess | 4865 eCommandProcessMustBeLaunched) {} 4866 4867 ~CommandObjectRenderScriptRuntimeAllocationRefresh() override = default; 4868 4869 bool DoExecute(Args &command, CommandReturnObject &result) override { 4870 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4871 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4872 eLanguageTypeExtRenderScript)); 4873 4874 bool success = runtime->RecomputeAllAllocations(result.GetOutputStream(), 4875 m_exe_ctx.GetFramePtr()); 4876 4877 if (success) { 4878 result.SetStatus(eReturnStatusSuccessFinishResult); 4879 return true; 4880 } else { 4881 result.SetStatus(eReturnStatusFailed); 4882 return false; 4883 } 4884 } 4885 }; 4886 4887 class CommandObjectRenderScriptRuntimeAllocation 4888 : public CommandObjectMultiword { 4889 public: 4890 CommandObjectRenderScriptRuntimeAllocation(CommandInterpreter &interpreter) 4891 : CommandObjectMultiword( 4892 interpreter, "renderscript allocation", 4893 "Commands that deal with RenderScript allocations.", nullptr) { 4894 LoadSubCommand( 4895 "list", 4896 CommandObjectSP( 4897 new CommandObjectRenderScriptRuntimeAllocationList(interpreter))); 4898 LoadSubCommand( 4899 "dump", 4900 CommandObjectSP( 4901 new CommandObjectRenderScriptRuntimeAllocationDump(interpreter))); 4902 LoadSubCommand( 4903 "save", 4904 CommandObjectSP( 4905 new CommandObjectRenderScriptRuntimeAllocationSave(interpreter))); 4906 LoadSubCommand( 4907 "load", 4908 CommandObjectSP( 4909 new CommandObjectRenderScriptRuntimeAllocationLoad(interpreter))); 4910 LoadSubCommand( 4911 "refresh", 4912 CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationRefresh( 4913 interpreter))); 4914 } 4915 4916 ~CommandObjectRenderScriptRuntimeAllocation() override = default; 4917 }; 4918 4919 class CommandObjectRenderScriptRuntimeStatus : public CommandObjectParsed { 4920 public: 4921 CommandObjectRenderScriptRuntimeStatus(CommandInterpreter &interpreter) 4922 : CommandObjectParsed(interpreter, "renderscript status", 4923 "Displays current RenderScript runtime status.", 4924 "renderscript status", 4925 eCommandRequiresProcess | 4926 eCommandProcessMustBeLaunched) {} 4927 4928 ~CommandObjectRenderScriptRuntimeStatus() override = default; 4929 4930 bool DoExecute(Args &command, CommandReturnObject &result) override { 4931 RenderScriptRuntime *runtime = 4932 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4933 eLanguageTypeExtRenderScript); 4934 runtime->Status(result.GetOutputStream()); 4935 result.SetStatus(eReturnStatusSuccessFinishResult); 4936 return true; 4937 } 4938 }; 4939 4940 class CommandObjectRenderScriptRuntimeReduction 4941 : public CommandObjectMultiword { 4942 public: 4943 CommandObjectRenderScriptRuntimeReduction(CommandInterpreter &interpreter) 4944 : CommandObjectMultiword(interpreter, "renderscript reduction", 4945 "Commands that handle general reduction kernels", 4946 nullptr) { 4947 LoadSubCommand( 4948 "breakpoint", 4949 CommandObjectSP(new CommandObjectRenderScriptRuntimeReductionBreakpoint( 4950 interpreter))); 4951 } 4952 ~CommandObjectRenderScriptRuntimeReduction() override = default; 4953 }; 4954 4955 class CommandObjectRenderScriptRuntime : public CommandObjectMultiword { 4956 public: 4957 CommandObjectRenderScriptRuntime(CommandInterpreter &interpreter) 4958 : CommandObjectMultiword( 4959 interpreter, "renderscript", 4960 "Commands for operating on the RenderScript runtime.", 4961 "renderscript <subcommand> [<subcommand-options>]") { 4962 LoadSubCommand( 4963 "module", CommandObjectSP( 4964 new CommandObjectRenderScriptRuntimeModule(interpreter))); 4965 LoadSubCommand( 4966 "status", CommandObjectSP( 4967 new CommandObjectRenderScriptRuntimeStatus(interpreter))); 4968 LoadSubCommand( 4969 "kernel", CommandObjectSP( 4970 new CommandObjectRenderScriptRuntimeKernel(interpreter))); 4971 LoadSubCommand("context", 4972 CommandObjectSP(new CommandObjectRenderScriptRuntimeContext( 4973 interpreter))); 4974 LoadSubCommand( 4975 "allocation", 4976 CommandObjectSP( 4977 new CommandObjectRenderScriptRuntimeAllocation(interpreter))); 4978 LoadSubCommand("scriptgroup", 4979 NewCommandObjectRenderScriptScriptGroup(interpreter)); 4980 LoadSubCommand( 4981 "reduction", 4982 CommandObjectSP( 4983 new CommandObjectRenderScriptRuntimeReduction(interpreter))); 4984 } 4985 4986 ~CommandObjectRenderScriptRuntime() override = default; 4987 }; 4988 4989 void RenderScriptRuntime::Initiate() { assert(!m_initiated); } 4990 4991 RenderScriptRuntime::RenderScriptRuntime(Process *process) 4992 : lldb_private::CPPLanguageRuntime(process), m_initiated(false), 4993 m_debuggerPresentFlagged(false), m_breakAllKernels(false), 4994 m_ir_passes(nullptr) { 4995 ModulesDidLoad(process->GetTarget().GetImages()); 4996 } 4997 4998 lldb::CommandObjectSP RenderScriptRuntime::GetCommandObject( 4999 lldb_private::CommandInterpreter &interpreter) { 5000 return CommandObjectSP(new CommandObjectRenderScriptRuntime(interpreter)); 5001 } 5002 5003 RenderScriptRuntime::~RenderScriptRuntime() = default; 5004