1 //===-- RenderScriptRuntime.cpp ---------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 // C Includes 11 // C++ Includes 12 // Other libraries and framework includes 13 // Project includes 14 #include "RenderScriptRuntime.h" 15 16 #include "lldb/Breakpoint/StoppointCallbackContext.h" 17 #include "lldb/Core/ConstString.h" 18 #include "lldb/Core/Debugger.h" 19 #include "lldb/Core/Error.h" 20 #include "lldb/Core/Log.h" 21 #include "lldb/Core/PluginManager.h" 22 #include "lldb/Core/RegularExpression.h" 23 #include "lldb/Core/ValueObjectVariable.h" 24 #include "lldb/DataFormatters/DumpValueObjectOptions.h" 25 #include "lldb/Expression/UserExpression.h" 26 #include "lldb/Host/StringConvert.h" 27 #include "lldb/Interpreter/Args.h" 28 #include "lldb/Interpreter/CommandInterpreter.h" 29 #include "lldb/Interpreter/CommandObjectMultiword.h" 30 #include "lldb/Interpreter/CommandReturnObject.h" 31 #include "lldb/Interpreter/Options.h" 32 #include "lldb/Symbol/Symbol.h" 33 #include "lldb/Symbol/Type.h" 34 #include "lldb/Symbol/VariableList.h" 35 #include "lldb/Target/Process.h" 36 #include "lldb/Target/RegisterContext.h" 37 #include "lldb/Target/Target.h" 38 #include "lldb/Target/Thread.h" 39 40 using namespace lldb; 41 using namespace lldb_private; 42 using namespace lldb_renderscript; 43 44 namespace 45 { 46 47 // The empirical_type adds a basic level of validation to arbitrary data 48 // allowing us to track if data has been discovered and stored or not. 49 // An empirical_type will be marked as valid only if it has been explicitly assigned to. 50 template <typename type_t> class empirical_type 51 { 52 public: 53 // Ctor. Contents is invalid when constructed. 54 empirical_type() : valid(false) {} 55 56 // Return true and copy contents to out if valid, else return false. 57 bool 58 get(type_t &out) const 59 { 60 if (valid) 61 out = data; 62 return valid; 63 } 64 65 // Return a pointer to the contents or nullptr if it was not valid. 66 const type_t * 67 get() const 68 { 69 return valid ? &data : nullptr; 70 } 71 72 // Assign data explicitly. 73 void 74 set(const type_t in) 75 { 76 data = in; 77 valid = true; 78 } 79 80 // Mark contents as invalid. 81 void 82 invalidate() 83 { 84 valid = false; 85 } 86 87 // Returns true if this type contains valid data. 88 bool 89 isValid() const 90 { 91 return valid; 92 } 93 94 // Assignment operator. 95 empirical_type<type_t> & 96 operator=(const type_t in) 97 { 98 set(in); 99 return *this; 100 } 101 102 // Dereference operator returns contents. 103 // Warning: Will assert if not valid so use only when you know data is valid. 104 const type_t &operator*() const 105 { 106 assert(valid); 107 return data; 108 } 109 110 protected: 111 bool valid; 112 type_t data; 113 }; 114 115 // ArgItem is used by the GetArgs() function when reading function arguments from the target. 116 struct ArgItem 117 { 118 enum 119 { 120 ePointer, 121 eInt32, 122 eInt64, 123 eLong, 124 eBool 125 } type; 126 127 uint64_t value; 128 129 explicit operator uint64_t() const { return value; } 130 }; 131 132 // Context structure to be passed into GetArgsXXX(), argument reading functions below. 133 struct GetArgsCtx 134 { 135 RegisterContext *reg_ctx; 136 Process *process; 137 }; 138 139 bool 140 GetArgsX86(const GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) 141 { 142 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 143 144 // get the current stack pointer 145 uint64_t sp = ctx.reg_ctx->GetSP(); 146 147 for (size_t i = 0; i < num_args; ++i) 148 { 149 ArgItem &arg = arg_list[i]; 150 // advance up the stack by one argument 151 sp += sizeof(uint32_t); 152 // get the argument type size 153 size_t arg_size = sizeof(uint32_t); 154 // read the argument from memory 155 arg.value = 0; 156 Error error; 157 size_t read = ctx.process->ReadMemory(sp, &arg.value, sizeof(uint32_t), error); 158 if (read != arg_size || !error.Success()) 159 { 160 if (log) 161 log->Printf("%s - error reading argument: %" PRIu64 " '%s'", __FUNCTION__, uint64_t(i), 162 error.AsCString()); 163 return false; 164 } 165 } 166 return true; 167 } 168 169 bool 170 GetArgsX86_64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) 171 { 172 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 173 174 // number of arguments passed in registers 175 static const uint32_t c_args_in_reg = 6; 176 // register passing order 177 static const std::array<const char *, c_args_in_reg> c_reg_names{{"rdi", "rsi", "rdx", "rcx", "r8", "r9"}}; 178 // argument type to size mapping 179 static const std::array<size_t, 5> arg_size{{ 180 8, // ePointer, 181 4, // eInt32, 182 8, // eInt64, 183 8, // eLong, 184 4, // eBool, 185 }}; 186 187 // get the current stack pointer 188 uint64_t sp = ctx.reg_ctx->GetSP(); 189 // step over the return address 190 sp += sizeof(uint64_t); 191 192 // check the stack alignment was correct (16 byte aligned) 193 if ((sp & 0xf) != 0x0) 194 { 195 if (log) 196 log->Printf("%s - stack misaligned", __FUNCTION__); 197 return false; 198 } 199 200 // find the start of arguments on the stack 201 uint64_t sp_offset = 0; 202 for (uint32_t i = c_args_in_reg; i < num_args; ++i) 203 { 204 sp_offset += arg_size[arg_list[i].type]; 205 } 206 // round up to multiple of 16 207 sp_offset = (sp_offset + 0xf) & 0xf; 208 sp += sp_offset; 209 210 for (size_t i = 0; i < num_args; ++i) 211 { 212 bool success = false; 213 ArgItem &arg = arg_list[i]; 214 // arguments passed in registers 215 if (i < c_args_in_reg) 216 { 217 const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoByName(c_reg_names[i]); 218 RegisterValue rVal; 219 if (ctx.reg_ctx->ReadRegister(rArg, rVal)) 220 arg.value = rVal.GetAsUInt64(0, &success); 221 } 222 // arguments passed on the stack 223 else 224 { 225 // get the argument type size 226 const size_t size = arg_size[arg_list[i].type]; 227 // read the argument from memory 228 arg.value = 0; 229 // note: due to little endian layout reading 4 or 8 bytes will give the correct value. 230 Error error; 231 size_t read = ctx.process->ReadMemory(sp, &arg.value, size, error); 232 success = (error.Success() && read==size); 233 // advance past this argument 234 sp -= size; 235 } 236 // fail if we couldn't read this argument 237 if (!success) 238 { 239 if (log) 240 log->Printf("%s - error reading argument: %" PRIu64, __FUNCTION__, uint64_t(i)); 241 return false; 242 } 243 } 244 return true; 245 } 246 247 bool 248 GetArgsArm(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) 249 { 250 // number of arguments passed in registers 251 static const uint32_t c_args_in_reg = 4; 252 253 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 254 255 // get the current stack pointer 256 uint64_t sp = ctx.reg_ctx->GetSP(); 257 258 for (size_t i = 0; i < num_args; ++i) 259 { 260 bool success = false; 261 ArgItem &arg = arg_list[i]; 262 // arguments passed in registers 263 if (i < c_args_in_reg) 264 { 265 const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoAtIndex(i); 266 RegisterValue rVal; 267 if (ctx.reg_ctx->ReadRegister(rArg, rVal)) 268 arg.value = rVal.GetAsUInt32(0, &success); 269 } 270 // arguments passed on the stack 271 else 272 { 273 // get the argument type size 274 const size_t arg_size = sizeof(uint32_t); 275 // clear all 64bits 276 arg.value = 0; 277 // read this argument from memory 278 Error error; 279 size_t bytes_read = ctx.process->ReadMemory(sp, &arg.value, arg_size, error); 280 success = (error.Success() && bytes_read == arg_size); 281 // advance the stack pointer 282 sp += sizeof(uint32_t); 283 } 284 // fail if we couldn't read this argument 285 if (!success) 286 { 287 if (log) 288 log->Printf("%s - error reading argument: %" PRIu64, __FUNCTION__, uint64_t(i)); 289 return false; 290 } 291 } 292 return true; 293 } 294 295 bool 296 GetArgsAarch64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) 297 { 298 // number of arguments passed in registers 299 static const uint32_t c_args_in_reg = 8; 300 301 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 302 303 for (size_t i = 0; i < num_args; ++i) 304 { 305 bool success = false; 306 ArgItem &arg = arg_list[i]; 307 // arguments passed in registers 308 if (i < c_args_in_reg) 309 { 310 const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoAtIndex(i); 311 RegisterValue rVal; 312 if (ctx.reg_ctx->ReadRegister(rArg, rVal)) 313 arg.value = rVal.GetAsUInt64(0, &success); 314 } 315 // arguments passed on the stack 316 else 317 { 318 if (log) 319 log->Printf("%s - reading arguments spilled to stack not implemented", __FUNCTION__); 320 } 321 // fail if we couldn't read this argument 322 if (!success) 323 { 324 if (log) 325 log->Printf("%s - error reading argument: %" PRIu64, __FUNCTION__, 326 uint64_t(i)); 327 return false; 328 } 329 } 330 return true; 331 } 332 333 bool 334 GetArgsMipsel(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) 335 { 336 // number of arguments passed in registers 337 static const uint32_t c_args_in_reg = 4; 338 // register file offset to first argument 339 static const uint32_t c_reg_offset = 4; 340 341 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 342 343 for (size_t i = 0; i < num_args; ++i) 344 { 345 bool success = false; 346 ArgItem &arg = arg_list[i]; 347 // arguments passed in registers 348 if (i < c_args_in_reg) 349 { 350 const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoAtIndex(i + c_reg_offset); 351 RegisterValue rVal; 352 if (ctx.reg_ctx->ReadRegister(rArg, rVal)) 353 arg.value = rVal.GetAsUInt64(0, &success); 354 } 355 // arguments passed on the stack 356 else 357 { 358 if (log) 359 log->Printf("%s - reading arguments spilled to stack not implemented.", __FUNCTION__); 360 } 361 // fail if we couldn't read this argument 362 if (!success) 363 { 364 if (log) 365 log->Printf("%s - error reading argument: %" PRIu64, __FUNCTION__, uint64_t(i)); 366 return false; 367 } 368 } 369 return true; 370 } 371 372 bool 373 GetArgsMips64el(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) 374 { 375 // number of arguments passed in registers 376 static const uint32_t c_args_in_reg = 8; 377 // register file offset to first argument 378 static const uint32_t c_reg_offset = 4; 379 380 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 381 382 // get the current stack pointer 383 uint64_t sp = ctx.reg_ctx->GetSP(); 384 385 for (size_t i = 0; i < num_args; ++i) 386 { 387 bool success = false; 388 ArgItem &arg = arg_list[i]; 389 // arguments passed in registers 390 if (i < c_args_in_reg) 391 { 392 const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoAtIndex(i + c_reg_offset); 393 RegisterValue rVal; 394 if (ctx.reg_ctx->ReadRegister(rArg, rVal)) 395 arg.value = rVal.GetAsUInt64(0, &success); 396 } 397 // arguments passed on the stack 398 else 399 { 400 // get the argument type size 401 const size_t arg_size = sizeof(uint64_t); 402 // clear all 64bits 403 arg.value = 0; 404 // read this argument from memory 405 Error error; 406 size_t bytes_read = ctx.process->ReadMemory(sp, &arg.value, arg_size, error); 407 success = (error.Success() && bytes_read == arg_size); 408 // advance the stack pointer 409 sp += arg_size; 410 } 411 // fail if we couldn't read this argument 412 if (!success) 413 { 414 if (log) 415 log->Printf("%s - error reading argument: %" PRIu64, __FUNCTION__, uint64_t(i)); 416 return false; 417 } 418 } 419 return true; 420 } 421 422 bool 423 GetArgs(ExecutionContext &context, ArgItem *arg_list, size_t num_args) 424 { 425 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 426 427 // verify that we have a target 428 if (!context.GetTargetPtr()) 429 { 430 if (log) 431 log->Printf("%s - invalid target", __FUNCTION__); 432 return false; 433 } 434 435 GetArgsCtx ctx = {context.GetRegisterContext(), context.GetProcessPtr()}; 436 assert(ctx.reg_ctx && ctx.process); 437 438 // dispatch based on architecture 439 switch (context.GetTargetPtr()->GetArchitecture().GetMachine()) 440 { 441 case llvm::Triple::ArchType::x86: 442 return GetArgsX86(ctx, arg_list, num_args); 443 444 case llvm::Triple::ArchType::x86_64: 445 return GetArgsX86_64(ctx, arg_list, num_args); 446 447 case llvm::Triple::ArchType::arm: 448 return GetArgsArm(ctx, arg_list, num_args); 449 450 case llvm::Triple::ArchType::aarch64: 451 return GetArgsAarch64(ctx, arg_list, num_args); 452 453 case llvm::Triple::ArchType::mipsel: 454 return GetArgsMipsel(ctx, arg_list, num_args); 455 456 case llvm::Triple::ArchType::mips64el: 457 return GetArgsMips64el(ctx, arg_list, num_args); 458 459 default: 460 // unsupported architecture 461 if (log) 462 { 463 log->Printf("%s - architecture not supported: '%s'", __FUNCTION__, 464 context.GetTargetRef().GetArchitecture().GetArchitectureName()); 465 } 466 return false; 467 } 468 } 469 } // anonymous namespace 470 471 // The ScriptDetails class collects data associated with a single script instance. 472 struct RenderScriptRuntime::ScriptDetails 473 { 474 ~ScriptDetails() = default; 475 476 enum ScriptType 477 { 478 eScript, 479 eScriptC 480 }; 481 482 // The derived type of the script. 483 empirical_type<ScriptType> type; 484 // The name of the original source file. 485 empirical_type<std::string> resName; 486 // Path to script .so file on the device. 487 empirical_type<std::string> scriptDyLib; 488 // Directory where kernel objects are cached on device. 489 empirical_type<std::string> cacheDir; 490 // Pointer to the context which owns this script. 491 empirical_type<lldb::addr_t> context; 492 // Pointer to the script object itself. 493 empirical_type<lldb::addr_t> script; 494 }; 495 496 // This Element class represents the Element object in RS, 497 // defining the type associated with an Allocation. 498 struct RenderScriptRuntime::Element 499 { 500 // Taken from rsDefines.h 501 enum DataKind 502 { 503 RS_KIND_USER, 504 RS_KIND_PIXEL_L = 7, 505 RS_KIND_PIXEL_A, 506 RS_KIND_PIXEL_LA, 507 RS_KIND_PIXEL_RGB, 508 RS_KIND_PIXEL_RGBA, 509 RS_KIND_PIXEL_DEPTH, 510 RS_KIND_PIXEL_YUV, 511 RS_KIND_INVALID = 100 512 }; 513 514 // Taken from rsDefines.h 515 enum DataType 516 { 517 RS_TYPE_NONE = 0, 518 RS_TYPE_FLOAT_16, 519 RS_TYPE_FLOAT_32, 520 RS_TYPE_FLOAT_64, 521 RS_TYPE_SIGNED_8, 522 RS_TYPE_SIGNED_16, 523 RS_TYPE_SIGNED_32, 524 RS_TYPE_SIGNED_64, 525 RS_TYPE_UNSIGNED_8, 526 RS_TYPE_UNSIGNED_16, 527 RS_TYPE_UNSIGNED_32, 528 RS_TYPE_UNSIGNED_64, 529 RS_TYPE_BOOLEAN, 530 531 RS_TYPE_UNSIGNED_5_6_5, 532 RS_TYPE_UNSIGNED_5_5_5_1, 533 RS_TYPE_UNSIGNED_4_4_4_4, 534 535 RS_TYPE_MATRIX_4X4, 536 RS_TYPE_MATRIX_3X3, 537 RS_TYPE_MATRIX_2X2, 538 539 RS_TYPE_ELEMENT = 1000, 540 RS_TYPE_TYPE, 541 RS_TYPE_ALLOCATION, 542 RS_TYPE_SAMPLER, 543 RS_TYPE_SCRIPT, 544 RS_TYPE_MESH, 545 RS_TYPE_PROGRAM_FRAGMENT, 546 RS_TYPE_PROGRAM_VERTEX, 547 RS_TYPE_PROGRAM_RASTER, 548 RS_TYPE_PROGRAM_STORE, 549 RS_TYPE_FONT, 550 551 RS_TYPE_INVALID = 10000 552 }; 553 554 std::vector<Element> children; // Child Element fields for structs 555 empirical_type<lldb::addr_t> element_ptr; // Pointer to the RS Element of the Type 556 empirical_type<DataType> type; // Type of each data pointer stored by the allocation 557 empirical_type<DataKind> type_kind; // Defines pixel type if Allocation is created from an image 558 empirical_type<uint32_t> type_vec_size; // Vector size of each data point, e.g '4' for uchar4 559 empirical_type<uint32_t> field_count; // Number of Subelements 560 empirical_type<uint32_t> datum_size; // Size of a single Element with padding 561 empirical_type<uint32_t> padding; // Number of padding bytes 562 empirical_type<uint32_t> array_size; // Number of items in array, only needed for strucrs 563 ConstString type_name; // Name of type, only needed for structs 564 565 static const ConstString & 566 GetFallbackStructName(); // Print this as the type name of a struct Element 567 // If we can't resolve the actual struct name 568 569 bool 570 shouldRefresh() const 571 { 572 const bool valid_ptr = element_ptr.isValid() && *element_ptr.get() != 0x0; 573 const bool valid_type = type.isValid() && type_vec_size.isValid() && type_kind.isValid(); 574 return !valid_ptr || !valid_type || !datum_size.isValid(); 575 } 576 }; 577 578 // This AllocationDetails class collects data associated with a single 579 // allocation instance. 580 struct RenderScriptRuntime::AllocationDetails 581 { 582 struct Dimension 583 { 584 uint32_t dim_1; 585 uint32_t dim_2; 586 uint32_t dim_3; 587 uint32_t cubeMap; 588 589 Dimension() 590 { 591 dim_1 = 0; 592 dim_2 = 0; 593 dim_3 = 0; 594 cubeMap = 0; 595 } 596 }; 597 598 // The FileHeader struct specifies the header we use for writing allocations to a binary file. 599 // Our format begins with the ASCII characters "RSAD", identifying the file as an allocation dump. 600 // Member variables dims and hdr_size are then written consecutively, immediately followed by an instance of 601 // the ElementHeader struct. Because Elements can contain subelements, there may be more than one instance 602 // of the ElementHeader struct. With this first instance being the root element, and the other instances being 603 // the root's descendants. To identify which instances are an ElementHeader's children, each struct 604 // is immediately followed by a sequence of consecutive offsets to the start of its child structs. 605 // These offsets are 4 bytes in size, and the 0 offset signifies no more children. 606 struct FileHeader 607 { 608 uint8_t ident[4]; // ASCII 'RSAD' identifying the file 609 uint32_t dims[3]; // Dimensions 610 uint16_t hdr_size; // Header size in bytes, including all element headers 611 }; 612 613 struct ElementHeader 614 { 615 uint16_t type; // DataType enum 616 uint32_t kind; // DataKind enum 617 uint32_t element_size; // Size of a single element, including padding 618 uint16_t vector_size; // Vector width 619 uint32_t array_size; // Number of elements in array 620 }; 621 622 // Monotonically increasing from 1 623 static uint32_t ID; 624 625 // Maps Allocation DataType enum and vector size to printable strings 626 // using mapping from RenderScript numerical types summary documentation 627 static const char *RsDataTypeToString[][4]; 628 629 // Maps Allocation DataKind enum to printable strings 630 static const char *RsDataKindToString[]; 631 632 // Maps allocation types to format sizes for printing. 633 static const uint32_t RSTypeToFormat[][3]; 634 635 // Give each allocation an ID as a way 636 // for commands to reference it. 637 const uint32_t id; 638 639 RenderScriptRuntime::Element element; // Allocation Element type 640 empirical_type<Dimension> dimension; // Dimensions of the Allocation 641 empirical_type<lldb::addr_t> address; // Pointer to address of the RS Allocation 642 empirical_type<lldb::addr_t> data_ptr; // Pointer to the data held by the Allocation 643 empirical_type<lldb::addr_t> type_ptr; // Pointer to the RS Type of the Allocation 644 empirical_type<lldb::addr_t> context; // Pointer to the RS Context of the Allocation 645 empirical_type<uint32_t> size; // Size of the allocation 646 empirical_type<uint32_t> stride; // Stride between rows of the allocation 647 648 // Give each allocation an id, so we can reference it in user commands. 649 AllocationDetails() : id(ID++) {} 650 651 bool 652 shouldRefresh() const 653 { 654 bool valid_ptrs = data_ptr.isValid() && *data_ptr.get() != 0x0; 655 valid_ptrs = valid_ptrs && type_ptr.isValid() && *type_ptr.get() != 0x0; 656 return !valid_ptrs || !dimension.isValid() || !size.isValid() || element.shouldRefresh(); 657 } 658 }; 659 660 const ConstString & 661 RenderScriptRuntime::Element::GetFallbackStructName() 662 { 663 static const ConstString FallbackStructName("struct"); 664 return FallbackStructName; 665 } 666 667 uint32_t RenderScriptRuntime::AllocationDetails::ID = 1; 668 669 const char *RenderScriptRuntime::AllocationDetails::RsDataKindToString[] = { 670 "User", 671 "Undefined", "Undefined", "Undefined", "Undefined", "Undefined", "Undefined", // Enum jumps from 0 to 7 672 "L Pixel", "A Pixel", "LA Pixel", "RGB Pixel", 673 "RGBA Pixel", "Pixel Depth", "YUV Pixel"}; 674 675 const char *RenderScriptRuntime::AllocationDetails::RsDataTypeToString[][4] = { 676 {"None", "None", "None", "None"}, 677 {"half", "half2", "half3", "half4"}, 678 {"float", "float2", "float3", "float4"}, 679 {"double", "double2", "double3", "double4"}, 680 {"char", "char2", "char3", "char4"}, 681 {"short", "short2", "short3", "short4"}, 682 {"int", "int2", "int3", "int4"}, 683 {"long", "long2", "long3", "long4"}, 684 {"uchar", "uchar2", "uchar3", "uchar4"}, 685 {"ushort", "ushort2", "ushort3", "ushort4"}, 686 {"uint", "uint2", "uint3", "uint4"}, 687 {"ulong", "ulong2", "ulong3", "ulong4"}, 688 {"bool", "bool2", "bool3", "bool4"}, 689 {"packed_565", "packed_565", "packed_565", "packed_565"}, 690 {"packed_5551", "packed_5551", "packed_5551", "packed_5551"}, 691 {"packed_4444", "packed_4444", "packed_4444", "packed_4444"}, 692 {"rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4"}, 693 {"rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3"}, 694 {"rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2"}, 695 696 // Handlers 697 {"RS Element", "RS Element", "RS Element", "RS Element"}, 698 {"RS Type", "RS Type", "RS Type", "RS Type"}, 699 {"RS Allocation", "RS Allocation", "RS Allocation", "RS Allocation"}, 700 {"RS Sampler", "RS Sampler", "RS Sampler", "RS Sampler"}, 701 {"RS Script", "RS Script", "RS Script", "RS Script"}, 702 703 // Deprecated 704 {"RS Mesh", "RS Mesh", "RS Mesh", "RS Mesh"}, 705 {"RS Program Fragment", "RS Program Fragment", "RS Program Fragment", "RS Program Fragment"}, 706 {"RS Program Vertex", "RS Program Vertex", "RS Program Vertex", "RS Program Vertex"}, 707 {"RS Program Raster", "RS Program Raster", "RS Program Raster", "RS Program Raster"}, 708 {"RS Program Store", "RS Program Store", "RS Program Store", "RS Program Store"}, 709 {"RS Font", "RS Font", "RS Font", "RS Font"}}; 710 711 // Used as an index into the RSTypeToFormat array elements 712 enum TypeToFormatIndex 713 { 714 eFormatSingle = 0, 715 eFormatVector, 716 eElementSize 717 }; 718 719 // { format enum of single element, format enum of element vector, size of element} 720 const uint32_t RenderScriptRuntime::AllocationDetails::RSTypeToFormat[][3] = { 721 {eFormatHex, eFormatHex, 1}, // RS_TYPE_NONE 722 {eFormatFloat, eFormatVectorOfFloat16, 2}, // RS_TYPE_FLOAT_16 723 {eFormatFloat, eFormatVectorOfFloat32, sizeof(float)}, // RS_TYPE_FLOAT_32 724 {eFormatFloat, eFormatVectorOfFloat64, sizeof(double)}, // RS_TYPE_FLOAT_64 725 {eFormatDecimal, eFormatVectorOfSInt8, sizeof(int8_t)}, // RS_TYPE_SIGNED_8 726 {eFormatDecimal, eFormatVectorOfSInt16, sizeof(int16_t)}, // RS_TYPE_SIGNED_16 727 {eFormatDecimal, eFormatVectorOfSInt32, sizeof(int32_t)}, // RS_TYPE_SIGNED_32 728 {eFormatDecimal, eFormatVectorOfSInt64, sizeof(int64_t)}, // RS_TYPE_SIGNED_64 729 {eFormatDecimal, eFormatVectorOfUInt8, sizeof(uint8_t)}, // RS_TYPE_UNSIGNED_8 730 {eFormatDecimal, eFormatVectorOfUInt16, sizeof(uint16_t)}, // RS_TYPE_UNSIGNED_16 731 {eFormatDecimal, eFormatVectorOfUInt32, sizeof(uint32_t)}, // RS_TYPE_UNSIGNED_32 732 {eFormatDecimal, eFormatVectorOfUInt64, sizeof(uint64_t)}, // RS_TYPE_UNSIGNED_64 733 {eFormatBoolean, eFormatBoolean, 1}, // RS_TYPE_BOOL 734 {eFormatHex, eFormatHex, sizeof(uint16_t)}, // RS_TYPE_UNSIGNED_5_6_5 735 {eFormatHex, eFormatHex, sizeof(uint16_t)}, // RS_TYPE_UNSIGNED_5_5_5_1 736 {eFormatHex, eFormatHex, sizeof(uint16_t)}, // RS_TYPE_UNSIGNED_4_4_4_4 737 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 16}, // RS_TYPE_MATRIX_4X4 738 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 9}, // RS_TYPE_MATRIX_3X3 739 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 4} // RS_TYPE_MATRIX_2X2 740 }; 741 742 const std::string RenderScriptRuntime::s_runtimeExpandSuffix(".expand"); 743 const std::array<const char *, 3> RenderScriptRuntime::s_runtimeCoordVars{{"rsIndex", "p->current.y", "p->current.z"}}; 744 //------------------------------------------------------------------ 745 // Static Functions 746 //------------------------------------------------------------------ 747 LanguageRuntime * 748 RenderScriptRuntime::CreateInstance(Process *process, lldb::LanguageType language) 749 { 750 751 if (language == eLanguageTypeExtRenderScript) 752 return new RenderScriptRuntime(process); 753 else 754 return nullptr; 755 } 756 757 // Callback with a module to search for matching symbols. 758 // We first check that the module contains RS kernels. 759 // Then look for a symbol which matches our kernel name. 760 // The breakpoint address is finally set using the address of this symbol. 761 Searcher::CallbackReturn 762 RSBreakpointResolver::SearchCallback(SearchFilter &filter, SymbolContext &context, Address *, bool) 763 { 764 ModuleSP module = context.module_sp; 765 766 if (!module) 767 return Searcher::eCallbackReturnContinue; 768 769 // Is this a module containing renderscript kernels? 770 if (nullptr == module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), eSymbolTypeData)) 771 return Searcher::eCallbackReturnContinue; 772 773 // Attempt to set a breakpoint on the kernel name symbol within the module library. 774 // If it's not found, it's likely debug info is unavailable - try to set a 775 // breakpoint on <name>.expand. 776 777 const Symbol *kernel_sym = module->FindFirstSymbolWithNameAndType(m_kernel_name, eSymbolTypeCode); 778 if (!kernel_sym) 779 { 780 std::string kernel_name_expanded(m_kernel_name.AsCString()); 781 kernel_name_expanded.append(".expand"); 782 kernel_sym = module->FindFirstSymbolWithNameAndType(ConstString(kernel_name_expanded.c_str()), eSymbolTypeCode); 783 } 784 785 if (kernel_sym) 786 { 787 Address bp_addr = kernel_sym->GetAddress(); 788 if (filter.AddressPasses(bp_addr)) 789 m_breakpoint->AddLocation(bp_addr); 790 } 791 792 return Searcher::eCallbackReturnContinue; 793 } 794 795 void 796 RenderScriptRuntime::Initialize() 797 { 798 PluginManager::RegisterPlugin(GetPluginNameStatic(), "RenderScript language support", CreateInstance, 799 GetCommandObject); 800 } 801 802 void 803 RenderScriptRuntime::Terminate() 804 { 805 PluginManager::UnregisterPlugin(CreateInstance); 806 } 807 808 lldb_private::ConstString 809 RenderScriptRuntime::GetPluginNameStatic() 810 { 811 static ConstString g_name("renderscript"); 812 return g_name; 813 } 814 815 RenderScriptRuntime::ModuleKind 816 RenderScriptRuntime::GetModuleKind(const lldb::ModuleSP &module_sp) 817 { 818 if (module_sp) 819 { 820 // Is this a module containing renderscript kernels? 821 const Symbol *info_sym = module_sp->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), eSymbolTypeData); 822 if (info_sym) 823 { 824 return eModuleKindKernelObj; 825 } 826 827 // Is this the main RS runtime library 828 const ConstString rs_lib("libRS.so"); 829 if (module_sp->GetFileSpec().GetFilename() == rs_lib) 830 { 831 return eModuleKindLibRS; 832 } 833 834 const ConstString rs_driverlib("libRSDriver.so"); 835 if (module_sp->GetFileSpec().GetFilename() == rs_driverlib) 836 { 837 return eModuleKindDriver; 838 } 839 840 const ConstString rs_cpureflib("libRSCpuRef.so"); 841 if (module_sp->GetFileSpec().GetFilename() == rs_cpureflib) 842 { 843 return eModuleKindImpl; 844 } 845 } 846 return eModuleKindIgnored; 847 } 848 849 bool 850 RenderScriptRuntime::IsRenderScriptModule(const lldb::ModuleSP &module_sp) 851 { 852 return GetModuleKind(module_sp) != eModuleKindIgnored; 853 } 854 855 void 856 RenderScriptRuntime::ModulesDidLoad(const ModuleList &module_list) 857 { 858 Mutex::Locker locker(module_list.GetMutex()); 859 860 size_t num_modules = module_list.GetSize(); 861 for (size_t i = 0; i < num_modules; i++) 862 { 863 auto mod = module_list.GetModuleAtIndex(i); 864 if (IsRenderScriptModule(mod)) 865 { 866 LoadModule(mod); 867 } 868 } 869 } 870 871 //------------------------------------------------------------------ 872 // PluginInterface protocol 873 //------------------------------------------------------------------ 874 lldb_private::ConstString 875 RenderScriptRuntime::GetPluginName() 876 { 877 return GetPluginNameStatic(); 878 } 879 880 uint32_t 881 RenderScriptRuntime::GetPluginVersion() 882 { 883 return 1; 884 } 885 886 bool 887 RenderScriptRuntime::IsVTableName(const char *name) 888 { 889 return false; 890 } 891 892 bool 893 RenderScriptRuntime::GetDynamicTypeAndAddress(ValueObject &in_value, lldb::DynamicValueType use_dynamic, 894 TypeAndOrName &class_type_or_name, Address &address, 895 Value::ValueType &value_type) 896 { 897 return false; 898 } 899 900 TypeAndOrName 901 RenderScriptRuntime::FixUpDynamicType(const TypeAndOrName &type_and_or_name, ValueObject &static_value) 902 { 903 return type_and_or_name; 904 } 905 906 bool 907 RenderScriptRuntime::CouldHaveDynamicValue(ValueObject &in_value) 908 { 909 return false; 910 } 911 912 lldb::BreakpointResolverSP 913 RenderScriptRuntime::CreateExceptionResolver(Breakpoint *bkpt, bool catch_bp, bool throw_bp) 914 { 915 BreakpointResolverSP resolver_sp; 916 return resolver_sp; 917 } 918 919 const RenderScriptRuntime::HookDefn RenderScriptRuntime::s_runtimeHookDefns[] = { 920 // rsdScript 921 { 922 "rsdScriptInit", 923 "_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_7ScriptCEPKcS7_PKhjj", 924 "_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_7ScriptCEPKcS7_PKhmj", 925 0, 926 RenderScriptRuntime::eModuleKindDriver, 927 &lldb_private::RenderScriptRuntime::CaptureScriptInit 928 }, 929 { 930 "rsdScriptInvokeForEachMulti", 931 "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0_6ScriptEjPPKNS0_10AllocationEjPS6_PKvjPK12RsScriptCall", 932 "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0_6ScriptEjPPKNS0_10AllocationEmPS6_PKvmPK12RsScriptCall", 933 0, 934 RenderScriptRuntime::eModuleKindDriver, 935 &lldb_private::RenderScriptRuntime::CaptureScriptInvokeForEachMulti 936 }, 937 { 938 "rsdScriptSetGlobalVar", 939 "_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_6ScriptEjPvj", 940 "_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_6ScriptEjPvm", 941 0, 942 RenderScriptRuntime::eModuleKindDriver, 943 &lldb_private::RenderScriptRuntime::CaptureSetGlobalVar 944 }, 945 946 // rsdAllocation 947 { 948 "rsdAllocationInit", 949 "_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_10AllocationEb", 950 "_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_10AllocationEb", 951 0, 952 RenderScriptRuntime::eModuleKindDriver, 953 &lldb_private::RenderScriptRuntime::CaptureAllocationInit 954 }, 955 { 956 "rsdAllocationRead2D", 957 "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_10AllocationEjjj23RsAllocationCubemapFacejjPvjj", 958 "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_10AllocationEjjj23RsAllocationCubemapFacejjPvmm", 959 0, 960 RenderScriptRuntime::eModuleKindDriver, 961 nullptr 962 }, 963 { 964 "rsdAllocationDestroy", 965 "_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_10AllocationE", 966 "_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_10AllocationE", 967 0, 968 RenderScriptRuntime::eModuleKindDriver, 969 &lldb_private::RenderScriptRuntime::CaptureAllocationDestroy 970 }, 971 }; 972 973 const size_t RenderScriptRuntime::s_runtimeHookCount = sizeof(s_runtimeHookDefns) / sizeof(s_runtimeHookDefns[0]); 974 975 bool 976 RenderScriptRuntime::HookCallback(void *baton, StoppointCallbackContext *ctx, lldb::user_id_t break_id, 977 lldb::user_id_t break_loc_id) 978 { 979 RuntimeHook *hook_info = (RuntimeHook *)baton; 980 ExecutionContext context(ctx->exe_ctx_ref); 981 982 RenderScriptRuntime *lang_rt = 983 (RenderScriptRuntime *)context.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript); 984 985 lang_rt->HookCallback(hook_info, context); 986 987 return false; 988 } 989 990 void 991 RenderScriptRuntime::HookCallback(RuntimeHook *hook_info, ExecutionContext &context) 992 { 993 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 994 995 if (log) 996 log->Printf("%s - '%s'", __FUNCTION__, hook_info->defn->name); 997 998 if (hook_info->defn->grabber) 999 { 1000 (this->*(hook_info->defn->grabber))(hook_info, context); 1001 } 1002 } 1003 1004 void 1005 RenderScriptRuntime::CaptureScriptInvokeForEachMulti(RuntimeHook* hook_info, 1006 ExecutionContext& context) 1007 { 1008 Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1009 1010 enum 1011 { 1012 eRsContext = 0, 1013 eRsScript, 1014 eRsSlot, 1015 eRsAIns, 1016 eRsInLen, 1017 eRsAOut, 1018 eRsUsr, 1019 eRsUsrLen, 1020 eRsSc, 1021 }; 1022 1023 std::array<ArgItem, 9> args{{ 1024 ArgItem{ArgItem::ePointer, 0}, // const Context *rsc 1025 ArgItem{ArgItem::ePointer, 0}, // Script *s 1026 ArgItem{ArgItem::eInt32, 0}, // uint32_t slot 1027 ArgItem{ArgItem::ePointer, 0}, // const Allocation **aIns 1028 ArgItem{ArgItem::eInt32, 0}, // size_t inLen 1029 ArgItem{ArgItem::ePointer, 0}, // Allocation *aout 1030 ArgItem{ArgItem::ePointer, 0}, // const void *usr 1031 ArgItem{ArgItem::eInt32, 0}, // size_t usrLen 1032 ArgItem{ArgItem::ePointer, 0}, // const RsScriptCall *sc 1033 }}; 1034 1035 bool success = GetArgs(context, &args[0], args.size()); 1036 if (!success) 1037 { 1038 if (log) 1039 log->Printf("%s - Error while reading the function parameters", __FUNCTION__); 1040 return; 1041 } 1042 1043 const uint32_t target_ptr_size = m_process->GetAddressByteSize(); 1044 Error error; 1045 std::vector<uint64_t> allocs; 1046 1047 // traverse allocation list 1048 for (uint64_t i = 0; i < uint64_t(args[eRsInLen]); ++i) 1049 { 1050 // calculate offest to allocation pointer 1051 const addr_t addr = addr_t(args[eRsAIns]) + i * target_ptr_size; 1052 1053 // Note: due to little endian layout, reading 32bits or 64bits into res64 will 1054 // give the correct results. 1055 1056 uint64_t res64 = 0; 1057 size_t read = m_process->ReadMemory(addr, &res64, target_ptr_size, error); 1058 if (read != target_ptr_size || !error.Success()) 1059 { 1060 if (log) 1061 log->Printf("%s - Error while reading allocation list argument %" PRIu64, __FUNCTION__, i); 1062 } 1063 else 1064 { 1065 allocs.push_back(res64); 1066 } 1067 } 1068 1069 // if there is an output allocation track it 1070 if (uint64_t aOut = uint64_t(args[eRsAOut])) 1071 { 1072 allocs.push_back(aOut); 1073 } 1074 1075 // for all allocations we have found 1076 for (const uint64_t alloc_addr : allocs) 1077 { 1078 AllocationDetails* alloc = LookUpAllocation(alloc_addr, true); 1079 if (alloc) 1080 { 1081 // save the allocation address 1082 if (alloc->address.isValid()) 1083 { 1084 // check the allocation address we already have matches 1085 assert(*alloc->address.get() == alloc_addr); 1086 } 1087 else 1088 { 1089 alloc->address = alloc_addr; 1090 } 1091 1092 // save the context 1093 if (log) 1094 { 1095 if (alloc->context.isValid() && *alloc->context.get() != addr_t(args[eRsContext])) 1096 log->Printf("%s - Allocation used by multiple contexts", __FUNCTION__); 1097 } 1098 alloc->context = addr_t(args[eRsContext]); 1099 } 1100 } 1101 1102 // make sure we track this script object 1103 if (lldb_private::RenderScriptRuntime::ScriptDetails *script = LookUpScript(addr_t(args[eRsScript]), true)) 1104 { 1105 if (log) 1106 { 1107 if (script->context.isValid() && *script->context.get() != addr_t(args[eRsContext])) 1108 log->Printf("%s - Script used by multiple contexts", __FUNCTION__); 1109 } 1110 script->context = addr_t(args[eRsContext]); 1111 } 1112 } 1113 1114 void 1115 RenderScriptRuntime::CaptureSetGlobalVar(RuntimeHook *hook_info, ExecutionContext &context) 1116 { 1117 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1118 1119 enum 1120 { 1121 eRsContext, 1122 eRsScript, 1123 eRsId, 1124 eRsData, 1125 eRsLength, 1126 }; 1127 1128 std::array<ArgItem, 5> args{{ 1129 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1130 ArgItem{ArgItem::ePointer, 0}, // eRsScript 1131 ArgItem{ArgItem::eInt32, 0}, // eRsId 1132 ArgItem{ArgItem::ePointer, 0}, // eRsData 1133 ArgItem{ArgItem::eInt32, 0}, // eRsLength 1134 }}; 1135 1136 bool success = GetArgs(context, &args[0], args.size()); 1137 if (!success) 1138 { 1139 if (log) 1140 log->Printf("%s - error reading the function parameters.", __FUNCTION__); 1141 return; 1142 } 1143 1144 if (log) 1145 { 1146 log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " slot %" PRIu64 " = 0x%" PRIx64 ":%" PRIu64 "bytes.", __FUNCTION__, 1147 uint64_t(args[eRsContext]), uint64_t(args[eRsScript]), uint64_t(args[eRsId]), 1148 uint64_t(args[eRsData]), uint64_t(args[eRsLength])); 1149 1150 addr_t script_addr = addr_t(args[eRsScript]); 1151 if (m_scriptMappings.find(script_addr) != m_scriptMappings.end()) 1152 { 1153 auto rsm = m_scriptMappings[script_addr]; 1154 if (uint64_t(args[eRsId]) < rsm->m_globals.size()) 1155 { 1156 auto rsg = rsm->m_globals[uint64_t(args[eRsId])]; 1157 log->Printf("%s - Setting of '%s' within '%s' inferred", __FUNCTION__, rsg.m_name.AsCString(), 1158 rsm->m_module->GetFileSpec().GetFilename().AsCString()); 1159 } 1160 } 1161 } 1162 } 1163 1164 void 1165 RenderScriptRuntime::CaptureAllocationInit(RuntimeHook *hook_info, ExecutionContext &context) 1166 { 1167 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1168 1169 enum 1170 { 1171 eRsContext, 1172 eRsAlloc, 1173 eRsForceZero 1174 }; 1175 1176 std::array<ArgItem, 3> args{{ 1177 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1178 ArgItem{ArgItem::ePointer, 0}, // eRsAlloc 1179 ArgItem{ArgItem::eBool, 0}, // eRsForceZero 1180 }}; 1181 1182 bool success = GetArgs(context, &args[0], args.size()); 1183 if (!success) // error case 1184 { 1185 if (log) 1186 log->Printf("%s - error while reading the function parameters", __FUNCTION__); 1187 return; // abort 1188 } 1189 1190 if (log) 1191 log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 ",0x%" PRIx64 " .", __FUNCTION__, uint64_t(args[eRsContext]), 1192 uint64_t(args[eRsAlloc]), uint64_t(args[eRsForceZero])); 1193 1194 AllocationDetails *alloc = LookUpAllocation(uint64_t(args[eRsAlloc]), true); 1195 if (alloc) 1196 alloc->context = uint64_t(args[eRsContext]); 1197 } 1198 1199 void 1200 RenderScriptRuntime::CaptureAllocationDestroy(RuntimeHook *hook_info, ExecutionContext &context) 1201 { 1202 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1203 1204 enum 1205 { 1206 eRsContext, 1207 eRsAlloc, 1208 }; 1209 1210 std::array<ArgItem, 2> args{{ 1211 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1212 ArgItem{ArgItem::ePointer, 0}, // eRsAlloc 1213 }}; 1214 1215 bool success = GetArgs(context, &args[0], args.size()); 1216 if (!success) 1217 { 1218 if (log) 1219 log->Printf("%s - error while reading the function parameters.", __FUNCTION__); 1220 return; 1221 } 1222 1223 if (log) 1224 log->Printf("%s - 0x%" PRIx64 ", 0x%" PRIx64 ".", __FUNCTION__, uint64_t(args[eRsContext]), 1225 uint64_t(args[eRsAlloc])); 1226 1227 for (auto iter = m_allocations.begin(); iter != m_allocations.end(); ++iter) 1228 { 1229 auto &allocation_ap = *iter; // get the unique pointer 1230 if (allocation_ap->address.isValid() && *allocation_ap->address.get() == addr_t(args[eRsAlloc])) 1231 { 1232 m_allocations.erase(iter); 1233 if (log) 1234 log->Printf("%s - deleted allocation entry.", __FUNCTION__); 1235 return; 1236 } 1237 } 1238 1239 if (log) 1240 log->Printf("%s - couldn't find destroyed allocation.", __FUNCTION__); 1241 } 1242 1243 void 1244 RenderScriptRuntime::CaptureScriptInit(RuntimeHook *hook_info, ExecutionContext &context) 1245 { 1246 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1247 1248 Error error; 1249 Process *process = context.GetProcessPtr(); 1250 1251 enum 1252 { 1253 eRsContext, 1254 eRsScript, 1255 eRsResNamePtr, 1256 eRsCachedDirPtr 1257 }; 1258 1259 std::array<ArgItem, 4> args{{ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}, 1260 ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}}}; 1261 bool success = GetArgs(context, &args[0], args.size()); 1262 if (!success) 1263 { 1264 if (log) 1265 log->Printf("%s - error while reading the function parameters.", __FUNCTION__); 1266 return; 1267 } 1268 1269 std::string resname; 1270 process->ReadCStringFromMemory(addr_t(args[eRsResNamePtr]), resname, error); 1271 if (error.Fail()) 1272 { 1273 if (log) 1274 log->Printf("%s - error reading resname: %s.", __FUNCTION__, error.AsCString()); 1275 } 1276 1277 std::string cachedir; 1278 process->ReadCStringFromMemory(addr_t(args[eRsCachedDirPtr]), cachedir, error); 1279 if (error.Fail()) 1280 { 1281 if (log) 1282 log->Printf("%s - error reading cachedir: %s.", __FUNCTION__, error.AsCString()); 1283 } 1284 1285 if (log) 1286 log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " => '%s' at '%s' .", __FUNCTION__, uint64_t(args[eRsContext]), 1287 uint64_t(args[eRsScript]), resname.c_str(), cachedir.c_str()); 1288 1289 if (resname.size() > 0) 1290 { 1291 StreamString strm; 1292 strm.Printf("librs.%s.so", resname.c_str()); 1293 1294 ScriptDetails *script = LookUpScript(addr_t(args[eRsScript]), true); 1295 if (script) 1296 { 1297 script->type = ScriptDetails::eScriptC; 1298 script->cacheDir = cachedir; 1299 script->resName = resname; 1300 script->scriptDyLib = strm.GetData(); 1301 script->context = addr_t(args[eRsContext]); 1302 } 1303 1304 if (log) 1305 log->Printf("%s - '%s' tagged with context 0x%" PRIx64 " and script 0x%" PRIx64 ".", __FUNCTION__, 1306 strm.GetData(), uint64_t(args[eRsContext]), uint64_t(args[eRsScript])); 1307 } 1308 else if (log) 1309 { 1310 log->Printf("%s - resource name invalid, Script not tagged.", __FUNCTION__); 1311 } 1312 } 1313 1314 void 1315 RenderScriptRuntime::LoadRuntimeHooks(lldb::ModuleSP module, ModuleKind kind) 1316 { 1317 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1318 1319 if (!module) 1320 { 1321 return; 1322 } 1323 1324 Target &target = GetProcess()->GetTarget(); 1325 llvm::Triple::ArchType targetArchType = target.GetArchitecture().GetMachine(); 1326 1327 if (targetArchType != llvm::Triple::ArchType::x86 && 1328 targetArchType != llvm::Triple::ArchType::arm && 1329 targetArchType != llvm::Triple::ArchType::aarch64 && 1330 targetArchType != llvm::Triple::ArchType::mipsel && 1331 targetArchType != llvm::Triple::ArchType::mips64el && 1332 targetArchType != llvm::Triple::ArchType::x86_64) 1333 { 1334 if (log) 1335 log->Printf("%s - unable to hook runtime functions.", __FUNCTION__); 1336 return; 1337 } 1338 1339 uint32_t archByteSize = target.GetArchitecture().GetAddressByteSize(); 1340 1341 for (size_t idx = 0; idx < s_runtimeHookCount; idx++) 1342 { 1343 const HookDefn *hook_defn = &s_runtimeHookDefns[idx]; 1344 if (hook_defn->kind != kind) 1345 { 1346 continue; 1347 } 1348 1349 const char *symbol_name = (archByteSize == 4) ? hook_defn->symbol_name_m32 : hook_defn->symbol_name_m64; 1350 1351 const Symbol *sym = module->FindFirstSymbolWithNameAndType(ConstString(symbol_name), eSymbolTypeCode); 1352 if (!sym) 1353 { 1354 if (log) 1355 { 1356 log->Printf("%s - symbol '%s' related to the function %s not found", 1357 __FUNCTION__, symbol_name, hook_defn->name); 1358 } 1359 continue; 1360 } 1361 1362 addr_t addr = sym->GetLoadAddress(&target); 1363 if (addr == LLDB_INVALID_ADDRESS) 1364 { 1365 if (log) 1366 log->Printf("%s - unable to resolve the address of hook function '%s' with symbol '%s'.", 1367 __FUNCTION__, hook_defn->name, symbol_name); 1368 continue; 1369 } 1370 else 1371 { 1372 if (log) 1373 log->Printf("%s - function %s, address resolved at 0x%" PRIx64, 1374 __FUNCTION__, hook_defn->name, addr); 1375 } 1376 1377 RuntimeHookSP hook(new RuntimeHook()); 1378 hook->address = addr; 1379 hook->defn = hook_defn; 1380 hook->bp_sp = target.CreateBreakpoint(addr, true, false); 1381 hook->bp_sp->SetCallback(HookCallback, hook.get(), true); 1382 m_runtimeHooks[addr] = hook; 1383 if (log) 1384 { 1385 log->Printf("%s - successfully hooked '%s' in '%s' version %" PRIu64 " at 0x%" PRIx64 ".", 1386 __FUNCTION__, hook_defn->name, module->GetFileSpec().GetFilename().AsCString(), 1387 (uint64_t)hook_defn->version, (uint64_t)addr); 1388 } 1389 } 1390 } 1391 1392 void 1393 RenderScriptRuntime::FixupScriptDetails(RSModuleDescriptorSP rsmodule_sp) 1394 { 1395 if (!rsmodule_sp) 1396 return; 1397 1398 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1399 1400 const ModuleSP module = rsmodule_sp->m_module; 1401 const FileSpec &file = module->GetPlatformFileSpec(); 1402 1403 // Iterate over all of the scripts that we currently know of. 1404 // Note: We cant push or pop to m_scripts here or it may invalidate rs_script. 1405 for (const auto &rs_script : m_scripts) 1406 { 1407 // Extract the expected .so file path for this script. 1408 std::string dylib; 1409 if (!rs_script->scriptDyLib.get(dylib)) 1410 continue; 1411 1412 // Only proceed if the module that has loaded corresponds to this script. 1413 if (file.GetFilename() != ConstString(dylib.c_str())) 1414 continue; 1415 1416 // Obtain the script address which we use as a key. 1417 lldb::addr_t script; 1418 if (!rs_script->script.get(script)) 1419 continue; 1420 1421 // If we have a script mapping for the current script. 1422 if (m_scriptMappings.find(script) != m_scriptMappings.end()) 1423 { 1424 // if the module we have stored is different to the one we just received. 1425 if (m_scriptMappings[script] != rsmodule_sp) 1426 { 1427 if (log) 1428 log->Printf("%s - script %" PRIx64 " wants reassigned to new rsmodule '%s'.", __FUNCTION__, 1429 (uint64_t)script, rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString()); 1430 } 1431 } 1432 // We don't have a script mapping for the current script. 1433 else 1434 { 1435 // Obtain the script resource name. 1436 std::string resName; 1437 if (rs_script->resName.get(resName)) 1438 // Set the modules resource name. 1439 rsmodule_sp->m_resname = resName; 1440 // Add Script/Module pair to map. 1441 m_scriptMappings[script] = rsmodule_sp; 1442 if (log) 1443 log->Printf("%s - script %" PRIx64 " associated with rsmodule '%s'.", __FUNCTION__, 1444 (uint64_t)script, rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString()); 1445 } 1446 } 1447 } 1448 1449 // Uses the Target API to evaluate the expression passed as a parameter to the function 1450 // The result of that expression is returned an unsigned 64 bit int, via the result* paramter. 1451 // Function returns true on success, and false on failure 1452 bool 1453 RenderScriptRuntime::EvalRSExpression(const char *expression, StackFrame *frame_ptr, uint64_t *result) 1454 { 1455 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1456 if (log) 1457 log->Printf("%s(%s)", __FUNCTION__, expression); 1458 1459 ValueObjectSP expr_result; 1460 // Perform the actual expression evaluation 1461 GetProcess()->GetTarget().EvaluateExpression(expression, frame_ptr, expr_result); 1462 1463 if (!expr_result) 1464 { 1465 if (log) 1466 log->Printf("%s: couldn't evaluate expression.", __FUNCTION__); 1467 return false; 1468 } 1469 1470 // The result of the expression is invalid 1471 if (!expr_result->GetError().Success()) 1472 { 1473 Error err = expr_result->GetError(); 1474 if (err.GetError() == UserExpression::kNoResult) // Expression returned void, so this is actually a success 1475 { 1476 if (log) 1477 log->Printf("%s - expression returned void.", __FUNCTION__); 1478 1479 result = nullptr; 1480 return true; 1481 } 1482 1483 if (log) 1484 log->Printf("%s - error evaluating expression result: %s", __FUNCTION__, 1485 err.AsCString()); 1486 return false; 1487 } 1488 1489 bool success = false; 1490 *result = expr_result->GetValueAsUnsigned(0, &success); // We only read the result as an uint32_t. 1491 1492 if (!success) 1493 { 1494 if (log) 1495 log->Printf("%s - couldn't convert expression result to uint32_t", __FUNCTION__); 1496 return false; 1497 } 1498 1499 return true; 1500 } 1501 1502 namespace 1503 { 1504 // Used to index expression format strings 1505 enum ExpressionStrings 1506 { 1507 eExprGetOffsetPtr = 0, 1508 eExprAllocGetType, 1509 eExprTypeDimX, 1510 eExprTypeDimY, 1511 eExprTypeDimZ, 1512 eExprTypeElemPtr, 1513 eExprElementType, 1514 eExprElementKind, 1515 eExprElementVec, 1516 eExprElementFieldCount, 1517 eExprSubelementsId, 1518 eExprSubelementsName, 1519 eExprSubelementsArrSize, 1520 1521 _eExprLast // keep at the end, implicit size of the array runtimeExpressions 1522 }; 1523 1524 // max length of an expanded expression 1525 const int jit_max_expr_size = 512; 1526 1527 // Retrieve the string to JIT for the given expression 1528 const char* 1529 JITTemplate(ExpressionStrings e) 1530 { 1531 // Format strings containing the expressions we may need to evaluate. 1532 static std::array<const char*, _eExprLast> runtimeExpressions = {{ 1533 // Mangled GetOffsetPointer(Allocation*, xoff, yoff, zoff, lod, cubemap) 1534 "(int*)_Z12GetOffsetPtrPKN7android12renderscript10AllocationEjjjj23RsAllocationCubemapFace(0x%lx, %u, %u, %u, 0, 0)", 1535 1536 // Type* rsaAllocationGetType(Context*, Allocation*) 1537 "(void*)rsaAllocationGetType(0x%lx, 0x%lx)", 1538 1539 // rsaTypeGetNativeData(Context*, Type*, void* typeData, size) 1540 // Pack the data in the following way mHal.state.dimX; mHal.state.dimY; mHal.state.dimZ; 1541 // mHal.state.lodCount; mHal.state.faces; mElement; into typeData 1542 // Need to specify 32 or 64 bit for uint_t since this differs between devices 1543 "uint%u_t data[6]; (void*)rsaTypeGetNativeData(0x%lx, 0x%lx, data, 6); data[0]", // X dim 1544 "uint%u_t data[6]; (void*)rsaTypeGetNativeData(0x%lx, 0x%lx, data, 6); data[1]", // Y dim 1545 "uint%u_t data[6]; (void*)rsaTypeGetNativeData(0x%lx, 0x%lx, data, 6); data[2]", // Z dim 1546 "uint%u_t data[6]; (void*)rsaTypeGetNativeData(0x%lx, 0x%lx, data, 6); data[5]", // Element ptr 1547 1548 // rsaElementGetNativeData(Context*, Element*, uint32_t* elemData,size) 1549 // Pack mType; mKind; mNormalized; mVectorSize; NumSubElements into elemData 1550 "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%lx, 0x%lx, data, 5); data[0]", // Type 1551 "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%lx, 0x%lx, data, 5); data[1]", // Kind 1552 "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%lx, 0x%lx, data, 5); data[3]", // Vector Size 1553 "uint32_t data[5]; (void*)rsaElementGetNativeData(0x%lx, 0x%lx, data, 5); data[4]", // Field Count 1554 1555 // rsaElementGetSubElements(RsContext con, RsElement elem, uintptr_t *ids, const char **names, 1556 // size_t *arraySizes, uint32_t dataSize) 1557 // Needed for Allocations of structs to gather details about fields/Subelements 1558 "void *ids[%u]; const char *names[%u]; size_t arr_size[%u];" 1559 "(void*)rsaElementGetSubElements(0x%lx, 0x%lx, ids, names, arr_size, %u); ids[%u]", // Element* of field 1560 1561 "void *ids[%u]; const char *names[%u]; size_t arr_size[%u];" 1562 "(void*)rsaElementGetSubElements(0x%lx, 0x%lx, ids, names, arr_size, %u); names[%u]", // Name of field 1563 1564 "void *ids[%u]; const char *names[%u]; size_t arr_size[%u];" 1565 "(void*)rsaElementGetSubElements(0x%lx, 0x%lx, ids, names, arr_size, %u); arr_size[%u]" // Array size of field 1566 }}; 1567 1568 return runtimeExpressions[e]; 1569 } 1570 } // end of the anonymous namespace 1571 1572 1573 // JITs the RS runtime for the internal data pointer of an allocation. 1574 // Is passed x,y,z coordinates for the pointer to a specific element. 1575 // Then sets the data_ptr member in Allocation with the result. 1576 // Returns true on success, false otherwise 1577 bool 1578 RenderScriptRuntime::JITDataPointer(AllocationDetails *allocation, StackFrame *frame_ptr, uint32_t x, 1579 uint32_t y, uint32_t z) 1580 { 1581 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1582 1583 if (!allocation->address.isValid()) 1584 { 1585 if (log) 1586 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1587 return false; 1588 } 1589 1590 const char *expr_cstr = JITTemplate(eExprGetOffsetPtr); 1591 char buffer[jit_max_expr_size]; 1592 1593 int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->address.get(), x, y, z); 1594 if (chars_written < 0) 1595 { 1596 if (log) 1597 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1598 return false; 1599 } 1600 else if (chars_written >= jit_max_expr_size) 1601 { 1602 if (log) 1603 log->Printf("%s - expression too long.", __FUNCTION__); 1604 return false; 1605 } 1606 1607 uint64_t result = 0; 1608 if (!EvalRSExpression(buffer, frame_ptr, &result)) 1609 return false; 1610 1611 addr_t mem_ptr = static_cast<lldb::addr_t>(result); 1612 allocation->data_ptr = mem_ptr; 1613 1614 return true; 1615 } 1616 1617 // JITs the RS runtime for the internal pointer to the RS Type of an allocation 1618 // Then sets the type_ptr member in Allocation with the result. 1619 // Returns true on success, false otherwise 1620 bool 1621 RenderScriptRuntime::JITTypePointer(AllocationDetails *allocation, StackFrame *frame_ptr) 1622 { 1623 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1624 1625 if (!allocation->address.isValid() || !allocation->context.isValid()) 1626 { 1627 if (log) 1628 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1629 return false; 1630 } 1631 1632 const char *expr_cstr = JITTemplate(eExprAllocGetType); 1633 char buffer[jit_max_expr_size]; 1634 1635 int chars_written = 1636 snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->context.get(), *allocation->address.get()); 1637 if (chars_written < 0) 1638 { 1639 if (log) 1640 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1641 return false; 1642 } 1643 else if (chars_written >= jit_max_expr_size) 1644 { 1645 if (log) 1646 log->Printf("%s - expression too long.", __FUNCTION__); 1647 return false; 1648 } 1649 1650 uint64_t result = 0; 1651 if (!EvalRSExpression(buffer, frame_ptr, &result)) 1652 return false; 1653 1654 addr_t type_ptr = static_cast<lldb::addr_t>(result); 1655 allocation->type_ptr = type_ptr; 1656 1657 return true; 1658 } 1659 1660 // JITs the RS runtime for information about the dimensions and type of an allocation 1661 // Then sets dimension and element_ptr members in Allocation with the result. 1662 // Returns true on success, false otherwise 1663 bool 1664 RenderScriptRuntime::JITTypePacked(AllocationDetails *allocation, StackFrame *frame_ptr) 1665 { 1666 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1667 1668 if (!allocation->type_ptr.isValid() || !allocation->context.isValid()) 1669 { 1670 if (log) 1671 log->Printf("%s - Failed to find allocation details.", __FUNCTION__); 1672 return false; 1673 } 1674 1675 // Expression is different depending on if device is 32 or 64 bit 1676 uint32_t archByteSize = GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 1677 const uint32_t bits = archByteSize == 4 ? 32 : 64; 1678 1679 // We want 4 elements from packed data 1680 const uint32_t num_exprs = 4; 1681 assert(num_exprs == (eExprTypeElemPtr - eExprTypeDimX + 1) && "Invalid number of expressions"); 1682 1683 char buffer[num_exprs][jit_max_expr_size]; 1684 uint64_t results[num_exprs]; 1685 1686 for (uint32_t i = 0; i < num_exprs; ++i) 1687 { 1688 const char *expr_cstr = JITTemplate(ExpressionStrings(eExprTypeDimX + i)); 1689 int chars_written = snprintf(buffer[i], jit_max_expr_size, expr_cstr, bits, *allocation->context.get(), 1690 *allocation->type_ptr.get()); 1691 if (chars_written < 0) 1692 { 1693 if (log) 1694 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1695 return false; 1696 } 1697 else if (chars_written >= jit_max_expr_size) 1698 { 1699 if (log) 1700 log->Printf("%s - expression too long.", __FUNCTION__); 1701 return false; 1702 } 1703 1704 // Perform expression evaluation 1705 if (!EvalRSExpression(buffer[i], frame_ptr, &results[i])) 1706 return false; 1707 } 1708 1709 // Assign results to allocation members 1710 AllocationDetails::Dimension dims; 1711 dims.dim_1 = static_cast<uint32_t>(results[0]); 1712 dims.dim_2 = static_cast<uint32_t>(results[1]); 1713 dims.dim_3 = static_cast<uint32_t>(results[2]); 1714 allocation->dimension = dims; 1715 1716 addr_t elem_ptr = static_cast<lldb::addr_t>(results[3]); 1717 allocation->element.element_ptr = elem_ptr; 1718 1719 if (log) 1720 log->Printf("%s - dims (%" PRIu32 ", %" PRIu32 ", %" PRIu32 ") Element*: 0x%" PRIx64 ".", __FUNCTION__, 1721 dims.dim_1, dims.dim_2, dims.dim_3, elem_ptr); 1722 1723 return true; 1724 } 1725 1726 // JITs the RS runtime for information about the Element of an allocation 1727 // Then sets type, type_vec_size, field_count and type_kind members in Element with the result. 1728 // Returns true on success, false otherwise 1729 bool 1730 RenderScriptRuntime::JITElementPacked(Element &elem, const lldb::addr_t context, StackFrame *frame_ptr) 1731 { 1732 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1733 1734 if (!elem.element_ptr.isValid()) 1735 { 1736 if (log) 1737 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1738 return false; 1739 } 1740 1741 // We want 4 elements from packed data 1742 const uint32_t num_exprs = 4; 1743 assert(num_exprs == (eExprElementFieldCount - eExprElementType + 1) && "Invalid number of expressions"); 1744 1745 char buffer[num_exprs][jit_max_expr_size]; 1746 uint64_t results[num_exprs]; 1747 1748 for (uint32_t i = 0; i < num_exprs; i++) 1749 { 1750 const char *expr_cstr = JITTemplate(ExpressionStrings(eExprElementType + i)); 1751 int chars_written = snprintf(buffer[i], jit_max_expr_size, expr_cstr, context, *elem.element_ptr.get()); 1752 if (chars_written < 0) 1753 { 1754 if (log) 1755 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1756 return false; 1757 } 1758 else if (chars_written >= jit_max_expr_size) 1759 { 1760 if (log) 1761 log->Printf("%s - expression too long.", __FUNCTION__); 1762 return false; 1763 } 1764 1765 // Perform expression evaluation 1766 if (!EvalRSExpression(buffer[i], frame_ptr, &results[i])) 1767 return false; 1768 } 1769 1770 // Assign results to allocation members 1771 elem.type = static_cast<RenderScriptRuntime::Element::DataType>(results[0]); 1772 elem.type_kind = static_cast<RenderScriptRuntime::Element::DataKind>(results[1]); 1773 elem.type_vec_size = static_cast<uint32_t>(results[2]); 1774 elem.field_count = static_cast<uint32_t>(results[3]); 1775 1776 if (log) 1777 log->Printf("%s - data type %" PRIu32 ", pixel type %" PRIu32 ", vector size %" PRIu32 ", field count %" PRIu32, 1778 __FUNCTION__, *elem.type.get(), *elem.type_kind.get(), *elem.type_vec_size.get(), *elem.field_count.get()); 1779 1780 // If this Element has subelements then JIT rsaElementGetSubElements() for details about its fields 1781 if (*elem.field_count.get() > 0 && !JITSubelements(elem, context, frame_ptr)) 1782 return false; 1783 1784 return true; 1785 } 1786 1787 // JITs the RS runtime for information about the subelements/fields of a struct allocation 1788 // This is necessary for infering the struct type so we can pretty print the allocation's contents. 1789 // Returns true on success, false otherwise 1790 bool 1791 RenderScriptRuntime::JITSubelements(Element &elem, const lldb::addr_t context, StackFrame *frame_ptr) 1792 { 1793 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1794 1795 if (!elem.element_ptr.isValid() || !elem.field_count.isValid()) 1796 { 1797 if (log) 1798 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1799 return false; 1800 } 1801 1802 const short num_exprs = 3; 1803 assert(num_exprs == (eExprSubelementsArrSize - eExprSubelementsId + 1) && "Invalid number of expressions"); 1804 1805 char expr_buffer[jit_max_expr_size]; 1806 uint64_t results; 1807 1808 // Iterate over struct fields. 1809 const uint32_t field_count = *elem.field_count.get(); 1810 for (uint32_t field_index = 0; field_index < field_count; ++field_index) 1811 { 1812 Element child; 1813 for (uint32_t expr_index = 0; expr_index < num_exprs; ++expr_index) 1814 { 1815 const char *expr_cstr = JITTemplate(ExpressionStrings(eExprSubelementsId + expr_index)); 1816 int chars_written = snprintf(expr_buffer, jit_max_expr_size, expr_cstr, 1817 field_count, field_count, field_count, 1818 context, *elem.element_ptr.get(), field_count, field_index); 1819 if (chars_written < 0) 1820 { 1821 if (log) 1822 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1823 return false; 1824 } 1825 else if (chars_written >= jit_max_expr_size) 1826 { 1827 if (log) 1828 log->Printf("%s - expression too long.", __FUNCTION__); 1829 return false; 1830 } 1831 1832 // Perform expression evaluation 1833 if (!EvalRSExpression(expr_buffer, frame_ptr, &results)) 1834 return false; 1835 1836 if (log) 1837 log->Printf("%s - expr result 0x%" PRIx64 ".", __FUNCTION__, results); 1838 1839 switch (expr_index) 1840 { 1841 case 0: // Element* of child 1842 child.element_ptr = static_cast<addr_t>(results); 1843 break; 1844 case 1: // Name of child 1845 { 1846 lldb::addr_t address = static_cast<addr_t>(results); 1847 Error err; 1848 std::string name; 1849 GetProcess()->ReadCStringFromMemory(address, name, err); 1850 if (!err.Fail()) 1851 child.type_name = ConstString(name); 1852 else 1853 { 1854 if (log) 1855 log->Printf("%s - warning: Couldn't read field name.", __FUNCTION__); 1856 } 1857 break; 1858 } 1859 case 2: // Array size of child 1860 child.array_size = static_cast<uint32_t>(results); 1861 break; 1862 } 1863 } 1864 1865 // We need to recursively JIT each Element field of the struct since 1866 // structs can be nested inside structs. 1867 if (!JITElementPacked(child, context, frame_ptr)) 1868 return false; 1869 elem.children.push_back(child); 1870 } 1871 1872 // Try to infer the name of the struct type so we can pretty print the allocation contents. 1873 FindStructTypeName(elem, frame_ptr); 1874 1875 return true; 1876 } 1877 1878 // JITs the RS runtime for the address of the last element in the allocation. 1879 // The `elem_size` paramter represents the size of a single element, including padding. 1880 // Which is needed as an offset from the last element pointer. 1881 // Using this offset minus the starting address we can calculate the size of the allocation. 1882 // Returns true on success, false otherwise 1883 bool 1884 RenderScriptRuntime::JITAllocationSize(AllocationDetails *allocation, StackFrame *frame_ptr) 1885 { 1886 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1887 1888 if (!allocation->address.isValid() || !allocation->dimension.isValid() || !allocation->data_ptr.isValid() || 1889 !allocation->element.datum_size.isValid()) 1890 { 1891 if (log) 1892 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1893 return false; 1894 } 1895 1896 // Find dimensions 1897 uint32_t dim_x = allocation->dimension.get()->dim_1; 1898 uint32_t dim_y = allocation->dimension.get()->dim_2; 1899 uint32_t dim_z = allocation->dimension.get()->dim_3; 1900 1901 // Our plan of jitting the last element address doesn't seem to work for struct Allocations 1902 // Instead try to infer the size ourselves without any inter element padding. 1903 if (allocation->element.children.size() > 0) 1904 { 1905 if (dim_x == 0) dim_x = 1; 1906 if (dim_y == 0) dim_y = 1; 1907 if (dim_z == 0) dim_z = 1; 1908 1909 allocation->size = dim_x * dim_y * dim_z * *allocation->element.datum_size.get(); 1910 1911 if (log) 1912 log->Printf("%s - infered size of struct allocation %" PRIu32 ".", __FUNCTION__, 1913 *allocation->size.get()); 1914 return true; 1915 } 1916 1917 const char *expr_cstr = JITTemplate(eExprGetOffsetPtr); 1918 char buffer[jit_max_expr_size]; 1919 1920 // Calculate last element 1921 dim_x = dim_x == 0 ? 0 : dim_x - 1; 1922 dim_y = dim_y == 0 ? 0 : dim_y - 1; 1923 dim_z = dim_z == 0 ? 0 : dim_z - 1; 1924 1925 int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->address.get(), dim_x, dim_y, dim_z); 1926 if (chars_written < 0) 1927 { 1928 if (log) 1929 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1930 return false; 1931 } 1932 else if (chars_written >= jit_max_expr_size) 1933 { 1934 if (log) 1935 log->Printf("%s - expression too long.", __FUNCTION__); 1936 return false; 1937 } 1938 1939 uint64_t result = 0; 1940 if (!EvalRSExpression(buffer, frame_ptr, &result)) 1941 return false; 1942 1943 addr_t mem_ptr = static_cast<lldb::addr_t>(result); 1944 // Find pointer to last element and add on size of an element 1945 allocation->size = 1946 static_cast<uint32_t>(mem_ptr - *allocation->data_ptr.get()) + *allocation->element.datum_size.get(); 1947 1948 return true; 1949 } 1950 1951 // JITs the RS runtime for information about the stride between rows in the allocation. 1952 // This is done to detect padding, since allocated memory is 16-byte aligned. 1953 // Returns true on success, false otherwise 1954 bool 1955 RenderScriptRuntime::JITAllocationStride(AllocationDetails *allocation, StackFrame *frame_ptr) 1956 { 1957 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1958 1959 if (!allocation->address.isValid() || !allocation->data_ptr.isValid()) 1960 { 1961 if (log) 1962 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1963 return false; 1964 } 1965 1966 const char *expr_cstr = JITTemplate(eExprGetOffsetPtr); 1967 char buffer[jit_max_expr_size]; 1968 1969 int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->address.get(), 0, 1, 0); 1970 if (chars_written < 0) 1971 { 1972 if (log) 1973 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1974 return false; 1975 } 1976 else if (chars_written >= jit_max_expr_size) 1977 { 1978 if (log) 1979 log->Printf("%s - expression too long.", __FUNCTION__); 1980 return false; 1981 } 1982 1983 uint64_t result = 0; 1984 if (!EvalRSExpression(buffer, frame_ptr, &result)) 1985 return false; 1986 1987 addr_t mem_ptr = static_cast<lldb::addr_t>(result); 1988 allocation->stride = static_cast<uint32_t>(mem_ptr - *allocation->data_ptr.get()); 1989 1990 return true; 1991 } 1992 1993 // JIT all the current runtime info regarding an allocation 1994 bool 1995 RenderScriptRuntime::RefreshAllocation(AllocationDetails *allocation, StackFrame *frame_ptr) 1996 { 1997 // GetOffsetPointer() 1998 if (!JITDataPointer(allocation, frame_ptr)) 1999 return false; 2000 2001 // rsaAllocationGetType() 2002 if (!JITTypePointer(allocation, frame_ptr)) 2003 return false; 2004 2005 // rsaTypeGetNativeData() 2006 if (!JITTypePacked(allocation, frame_ptr)) 2007 return false; 2008 2009 // rsaElementGetNativeData() 2010 if (!JITElementPacked(allocation->element, *allocation->context.get(), frame_ptr)) 2011 return false; 2012 2013 // Sets the datum_size member in Element 2014 SetElementSize(allocation->element); 2015 2016 // Use GetOffsetPointer() to infer size of the allocation 2017 if (!JITAllocationSize(allocation, frame_ptr)) 2018 return false; 2019 2020 return true; 2021 } 2022 2023 // Function attempts to set the type_name member of the paramaterised Element object. 2024 // This string should be the name of the struct type the Element represents. 2025 // We need this string for pretty printing the Element to users. 2026 void 2027 RenderScriptRuntime::FindStructTypeName(Element &elem, StackFrame *frame_ptr) 2028 { 2029 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2030 2031 if (!elem.type_name.IsEmpty()) // Name already set 2032 return; 2033 else 2034 elem.type_name = Element::GetFallbackStructName(); // Default type name if we don't succeed 2035 2036 // Find all the global variables from the script rs modules 2037 VariableList variable_list; 2038 for (auto module_sp : m_rsmodules) 2039 module_sp->m_module->FindGlobalVariables(RegularExpression("."), true, UINT32_MAX, variable_list); 2040 2041 // Iterate over all the global variables looking for one with a matching type to the Element. 2042 // We make the assumption a match exists since there needs to be a global variable to reflect the 2043 // struct type back into java host code. 2044 for (uint32_t var_index = 0; var_index < variable_list.GetSize(); ++var_index) 2045 { 2046 const VariableSP var_sp(variable_list.GetVariableAtIndex(var_index)); 2047 if (!var_sp) 2048 continue; 2049 2050 ValueObjectSP valobj_sp = ValueObjectVariable::Create(frame_ptr, var_sp); 2051 if (!valobj_sp) 2052 continue; 2053 2054 // Find the number of variable fields. 2055 // If it has no fields, or more fields than our Element, then it can't be the struct we're looking for. 2056 // Don't check for equality since RS can add extra struct members for padding. 2057 size_t num_children = valobj_sp->GetNumChildren(); 2058 if (num_children > elem.children.size() || num_children == 0) 2059 continue; 2060 2061 // Iterate over children looking for members with matching field names. 2062 // If all the field names match, this is likely the struct we want. 2063 // 2064 // TODO: This could be made more robust by also checking children data sizes, or array size 2065 bool found = true; 2066 for (size_t child_index = 0; child_index < num_children; ++child_index) 2067 { 2068 ValueObjectSP child = valobj_sp->GetChildAtIndex(child_index, true); 2069 if (!child || (child->GetName() != elem.children[child_index].type_name)) 2070 { 2071 found = false; 2072 break; 2073 } 2074 } 2075 2076 // RS can add extra struct members for padding in the format '#rs_padding_[0-9]+' 2077 if (found && num_children < elem.children.size()) 2078 { 2079 const uint32_t size_diff = elem.children.size() - num_children; 2080 if (log) 2081 log->Printf("%s - %" PRIu32 " padding struct entries", __FUNCTION__, size_diff); 2082 2083 for (uint32_t padding_index = 0; padding_index < size_diff; ++padding_index) 2084 { 2085 const ConstString &name = elem.children[num_children + padding_index].type_name; 2086 if (strcmp(name.AsCString(), "#rs_padding") < 0) 2087 found = false; 2088 } 2089 } 2090 2091 // We've found a global var with matching type 2092 if (found) 2093 { 2094 // Dereference since our Element type isn't a pointer. 2095 if (valobj_sp->IsPointerType()) 2096 { 2097 Error err; 2098 ValueObjectSP deref_valobj = valobj_sp->Dereference(err); 2099 if (!err.Fail()) 2100 valobj_sp = deref_valobj; 2101 } 2102 2103 // Save name of variable in Element. 2104 elem.type_name = valobj_sp->GetTypeName(); 2105 if (log) 2106 log->Printf("%s - element name set to %s", __FUNCTION__, elem.type_name.AsCString()); 2107 2108 return; 2109 } 2110 } 2111 } 2112 2113 // Function sets the datum_size member of Element. Representing the size of a single instance including padding. 2114 // Assumes the relevant allocation information has already been jitted. 2115 void 2116 RenderScriptRuntime::SetElementSize(Element &elem) 2117 { 2118 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2119 const Element::DataType type = *elem.type.get(); 2120 assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && "Invalid allocation type"); 2121 2122 const uint32_t vec_size = *elem.type_vec_size.get(); 2123 uint32_t data_size = 0; 2124 uint32_t padding = 0; 2125 2126 // Element is of a struct type, calculate size recursively. 2127 if ((type == Element::RS_TYPE_NONE) && (elem.children.size() > 0)) 2128 { 2129 for (Element &child : elem.children) 2130 { 2131 SetElementSize(child); 2132 const uint32_t array_size = child.array_size.isValid() ? *child.array_size.get() : 1; 2133 data_size += *child.datum_size.get() * array_size; 2134 } 2135 } 2136 // These have been packed already 2137 else if (type == Element::RS_TYPE_UNSIGNED_5_6_5 || 2138 type == Element::RS_TYPE_UNSIGNED_5_5_5_1 || 2139 type == Element::RS_TYPE_UNSIGNED_4_4_4_4) 2140 { 2141 data_size = AllocationDetails::RSTypeToFormat[type][eElementSize]; 2142 } 2143 else if (type < Element::RS_TYPE_ELEMENT) 2144 { 2145 data_size = vec_size * AllocationDetails::RSTypeToFormat[type][eElementSize]; 2146 if (vec_size == 3) 2147 padding = AllocationDetails::RSTypeToFormat[type][eElementSize]; 2148 } 2149 else 2150 data_size = GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 2151 2152 elem.padding = padding; 2153 elem.datum_size = data_size + padding; 2154 if (log) 2155 log->Printf("%s - element size set to %" PRIu32, __FUNCTION__, data_size + padding); 2156 } 2157 2158 // Given an allocation, this function copies the allocation contents from device into a buffer on the heap. 2159 // Returning a shared pointer to the buffer containing the data. 2160 std::shared_ptr<uint8_t> 2161 RenderScriptRuntime::GetAllocationData(AllocationDetails *allocation, StackFrame *frame_ptr) 2162 { 2163 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2164 2165 // JIT all the allocation details 2166 if (allocation->shouldRefresh()) 2167 { 2168 if (log) 2169 log->Printf("%s - allocation details not calculated yet, jitting info", __FUNCTION__); 2170 2171 if (!RefreshAllocation(allocation, frame_ptr)) 2172 { 2173 if (log) 2174 log->Printf("%s - couldn't JIT allocation details", __FUNCTION__); 2175 return nullptr; 2176 } 2177 } 2178 2179 assert(allocation->data_ptr.isValid() && allocation->element.type.isValid() && 2180 allocation->element.type_vec_size.isValid() && allocation->size.isValid() && 2181 "Allocation information not available"); 2182 2183 // Allocate a buffer to copy data into 2184 const uint32_t size = *allocation->size.get(); 2185 std::shared_ptr<uint8_t> buffer(new uint8_t[size]); 2186 if (!buffer) 2187 { 2188 if (log) 2189 log->Printf("%s - couldn't allocate a %" PRIu32 " byte buffer", __FUNCTION__, size); 2190 return nullptr; 2191 } 2192 2193 // Read the inferior memory 2194 Error error; 2195 lldb::addr_t data_ptr = *allocation->data_ptr.get(); 2196 GetProcess()->ReadMemory(data_ptr, buffer.get(), size, error); 2197 if (error.Fail()) 2198 { 2199 if (log) 2200 log->Printf("%s - '%s' Couldn't read %" PRIu32 " bytes of allocation data from 0x%" PRIx64, 2201 __FUNCTION__, error.AsCString(), size, data_ptr); 2202 return nullptr; 2203 } 2204 2205 return buffer; 2206 } 2207 2208 // Function copies data from a binary file into an allocation. 2209 // There is a header at the start of the file, FileHeader, before the data content itself. 2210 // Information from this header is used to display warnings to the user about incompatabilities 2211 bool 2212 RenderScriptRuntime::LoadAllocation(Stream &strm, const uint32_t alloc_id, const char *filename, StackFrame *frame_ptr) 2213 { 2214 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2215 2216 // Find allocation with the given id 2217 AllocationDetails *alloc = FindAllocByID(strm, alloc_id); 2218 if (!alloc) 2219 return false; 2220 2221 if (log) 2222 log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__, *alloc->address.get()); 2223 2224 // JIT all the allocation details 2225 if (alloc->shouldRefresh()) 2226 { 2227 if (log) 2228 log->Printf("%s - allocation details not calculated yet, jitting info.", __FUNCTION__); 2229 2230 if (!RefreshAllocation(alloc, frame_ptr)) 2231 { 2232 if (log) 2233 log->Printf("%s - couldn't JIT allocation details", __FUNCTION__); 2234 return false; 2235 } 2236 } 2237 2238 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && alloc->element.type_vec_size.isValid() && 2239 alloc->size.isValid() && alloc->element.datum_size.isValid() && "Allocation information not available"); 2240 2241 // Check we can read from file 2242 FileSpec file(filename, true); 2243 if (!file.Exists()) 2244 { 2245 strm.Printf("Error: File %s does not exist", filename); 2246 strm.EOL(); 2247 return false; 2248 } 2249 2250 if (!file.Readable()) 2251 { 2252 strm.Printf("Error: File %s does not have readable permissions", filename); 2253 strm.EOL(); 2254 return false; 2255 } 2256 2257 // Read file into data buffer 2258 DataBufferSP data_sp(file.ReadFileContents()); 2259 2260 // Cast start of buffer to FileHeader and use pointer to read metadata 2261 void *file_buffer = data_sp->GetBytes(); 2262 if (file_buffer == nullptr || 2263 data_sp->GetByteSize() < (sizeof(AllocationDetails::FileHeader) + sizeof(AllocationDetails::ElementHeader))) 2264 { 2265 strm.Printf("Error: File %s does not contain enough data for header", filename); 2266 strm.EOL(); 2267 return false; 2268 } 2269 const AllocationDetails::FileHeader *file_header = static_cast<AllocationDetails::FileHeader *>(file_buffer); 2270 2271 // Check file starts with ascii characters "RSAD" 2272 if (memcmp(file_header->ident, "RSAD", 4)) 2273 { 2274 strm.Printf("Error: File doesn't contain identifier for an RS allocation dump. Are you sure this is the correct file?"); 2275 strm.EOL(); 2276 return false; 2277 } 2278 2279 // Look at the type of the root element in the header 2280 AllocationDetails::ElementHeader root_element_header; 2281 memcpy(&root_element_header, static_cast<uint8_t *>(file_buffer) + sizeof(AllocationDetails::FileHeader), 2282 sizeof(AllocationDetails::ElementHeader)); 2283 2284 if (log) 2285 log->Printf("%s - header type %" PRIu32 ", element size %" PRIu32, __FUNCTION__, 2286 root_element_header.type, root_element_header.element_size); 2287 2288 // Check if the target allocation and file both have the same number of bytes for an Element 2289 if (*alloc->element.datum_size.get() != root_element_header.element_size) 2290 { 2291 strm.Printf("Warning: Mismatched Element sizes - file %" PRIu32 " bytes, allocation %" PRIu32 " bytes", 2292 root_element_header.element_size, *alloc->element.datum_size.get()); 2293 strm.EOL(); 2294 } 2295 2296 // Check if the target allocation and file both have the same type 2297 const uint32_t alloc_type = static_cast<uint32_t>(*alloc->element.type.get()); 2298 const uint32_t file_type = root_element_header.type; 2299 2300 if (file_type > Element::RS_TYPE_FONT) 2301 { 2302 strm.Printf("Warning: File has unknown allocation type"); 2303 strm.EOL(); 2304 } 2305 else if (alloc_type != file_type) 2306 { 2307 // Enum value isn't monotonous, so doesn't always index RsDataTypeToString array 2308 uint32_t printable_target_type_index = alloc_type; 2309 uint32_t printable_head_type_index = file_type; 2310 if (alloc_type >= Element::RS_TYPE_ELEMENT && alloc_type <= Element::RS_TYPE_FONT) 2311 printable_target_type_index = static_cast<Element::DataType>((alloc_type - Element::RS_TYPE_ELEMENT) + 2312 Element::RS_TYPE_MATRIX_2X2 + 1); 2313 2314 if (file_type >= Element::RS_TYPE_ELEMENT && file_type <= Element::RS_TYPE_FONT) 2315 printable_head_type_index = static_cast<Element::DataType>((file_type - Element::RS_TYPE_ELEMENT) + 2316 Element::RS_TYPE_MATRIX_2X2 + 1); 2317 2318 const char *file_type_cstr = AllocationDetails::RsDataTypeToString[printable_head_type_index][0]; 2319 const char *target_type_cstr = AllocationDetails::RsDataTypeToString[printable_target_type_index][0]; 2320 2321 strm.Printf("Warning: Mismatched Types - file '%s' type, allocation '%s' type", file_type_cstr, 2322 target_type_cstr); 2323 strm.EOL(); 2324 } 2325 2326 // Advance buffer past header 2327 file_buffer = static_cast<uint8_t *>(file_buffer) + file_header->hdr_size; 2328 2329 // Calculate size of allocation data in file 2330 size_t length = data_sp->GetByteSize() - file_header->hdr_size; 2331 2332 // Check if the target allocation and file both have the same total data size. 2333 const uint32_t alloc_size = *alloc->size.get(); 2334 if (alloc_size != length) 2335 { 2336 strm.Printf("Warning: Mismatched allocation sizes - file 0x%" PRIx64 " bytes, allocation 0x%" PRIx32 " bytes", 2337 (uint64_t)length, alloc_size); 2338 strm.EOL(); 2339 length = alloc_size < length ? alloc_size : length; // Set length to copy to minimum 2340 } 2341 2342 // Copy file data from our buffer into the target allocation. 2343 lldb::addr_t alloc_data = *alloc->data_ptr.get(); 2344 Error error; 2345 size_t bytes_written = GetProcess()->WriteMemory(alloc_data, file_buffer, length, error); 2346 if (!error.Success() || bytes_written != length) 2347 { 2348 strm.Printf("Error: Couldn't write data to allocation %s", error.AsCString()); 2349 strm.EOL(); 2350 return false; 2351 } 2352 2353 strm.Printf("Contents of file '%s' read into allocation %" PRIu32, filename, alloc->id); 2354 strm.EOL(); 2355 2356 return true; 2357 } 2358 2359 // Function takes as parameters a byte buffer, which will eventually be written to file as the element header, 2360 // an offset into that buffer, and an Element that will be saved into the buffer at the parametrised offset. 2361 // Return value is the new offset after writing the element into the buffer. 2362 // Elements are saved to the file as the ElementHeader struct followed by offsets to the structs of all the element's 2363 // children. 2364 size_t 2365 RenderScriptRuntime::PopulateElementHeaders(const std::shared_ptr<uint8_t> header_buffer, size_t offset, 2366 const Element &elem) 2367 { 2368 // File struct for an element header with all the relevant details copied from elem. 2369 // We assume members are valid already. 2370 AllocationDetails::ElementHeader elem_header; 2371 elem_header.type = *elem.type.get(); 2372 elem_header.kind = *elem.type_kind.get(); 2373 elem_header.element_size = *elem.datum_size.get(); 2374 elem_header.vector_size = *elem.type_vec_size.get(); 2375 elem_header.array_size = elem.array_size.isValid() ? *elem.array_size.get() : 0; 2376 const size_t elem_header_size = sizeof(AllocationDetails::ElementHeader); 2377 2378 // Copy struct into buffer and advance offset 2379 // We assume that header_buffer has been checked for nullptr before this method is called 2380 memcpy(header_buffer.get() + offset, &elem_header, elem_header_size); 2381 offset += elem_header_size; 2382 2383 // Starting offset of child ElementHeader struct 2384 size_t child_offset = offset + ((elem.children.size() + 1) * sizeof(uint32_t)); 2385 for (const RenderScriptRuntime::Element &child : elem.children) 2386 { 2387 // Recursively populate the buffer with the element header structs of children. 2388 // Then save the offsets where they were set after the parent element header. 2389 memcpy(header_buffer.get() + offset, &child_offset, sizeof(uint32_t)); 2390 offset += sizeof(uint32_t); 2391 2392 child_offset = PopulateElementHeaders(header_buffer, child_offset, child); 2393 } 2394 2395 // Zero indicates no more children 2396 memset(header_buffer.get() + offset, 0, sizeof(uint32_t)); 2397 2398 return child_offset; 2399 } 2400 2401 // Given an Element object this function returns the total size needed in the file header to store the element's 2402 // details. 2403 // Taking into account the size of the element header struct, plus the offsets to all the element's children. 2404 // Function is recursive so that the size of all ancestors is taken into account. 2405 size_t 2406 RenderScriptRuntime::CalculateElementHeaderSize(const Element &elem) 2407 { 2408 size_t size = (elem.children.size() + 1) * sizeof(uint32_t); // Offsets to children plus zero terminator 2409 size += sizeof(AllocationDetails::ElementHeader); // Size of header struct with type details 2410 2411 // Calculate recursively for all descendants 2412 for (const Element &child : elem.children) 2413 size += CalculateElementHeaderSize(child); 2414 2415 return size; 2416 } 2417 2418 // Function copies allocation contents into a binary file. 2419 // This file can then be loaded later into a different allocation. 2420 // There is a header, FileHeader, before the allocation data containing meta-data. 2421 bool 2422 RenderScriptRuntime::SaveAllocation(Stream &strm, const uint32_t alloc_id, const char *filename, StackFrame *frame_ptr) 2423 { 2424 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2425 2426 // Find allocation with the given id 2427 AllocationDetails *alloc = FindAllocByID(strm, alloc_id); 2428 if (!alloc) 2429 return false; 2430 2431 if (log) 2432 log->Printf("%s - found allocation 0x%" PRIx64 ".", __FUNCTION__, *alloc->address.get()); 2433 2434 // JIT all the allocation details 2435 if (alloc->shouldRefresh()) 2436 { 2437 if (log) 2438 log->Printf("%s - allocation details not calculated yet, jitting info.", __FUNCTION__); 2439 2440 if (!RefreshAllocation(alloc, frame_ptr)) 2441 { 2442 if (log) 2443 log->Printf("%s - couldn't JIT allocation details.", __FUNCTION__); 2444 return false; 2445 } 2446 } 2447 2448 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && alloc->element.type_vec_size.isValid() && 2449 alloc->element.datum_size.get() && alloc->element.type_kind.isValid() && alloc->dimension.isValid() && 2450 "Allocation information not available"); 2451 2452 // Check we can create writable file 2453 FileSpec file_spec(filename, true); 2454 File file(file_spec, File::eOpenOptionWrite | File::eOpenOptionCanCreate | File::eOpenOptionTruncate); 2455 if (!file) 2456 { 2457 strm.Printf("Error: Failed to open '%s' for writing", filename); 2458 strm.EOL(); 2459 return false; 2460 } 2461 2462 // Read allocation into buffer of heap memory 2463 const std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr); 2464 if (!buffer) 2465 { 2466 strm.Printf("Error: Couldn't read allocation data into buffer"); 2467 strm.EOL(); 2468 return false; 2469 } 2470 2471 // Create the file header 2472 AllocationDetails::FileHeader head; 2473 memcpy(head.ident, "RSAD", 4); 2474 head.dims[0] = static_cast<uint32_t>(alloc->dimension.get()->dim_1); 2475 head.dims[1] = static_cast<uint32_t>(alloc->dimension.get()->dim_2); 2476 head.dims[2] = static_cast<uint32_t>(alloc->dimension.get()->dim_3); 2477 2478 const size_t element_header_size = CalculateElementHeaderSize(alloc->element); 2479 assert((sizeof(AllocationDetails::FileHeader) + element_header_size) < UINT16_MAX && "Element header too large"); 2480 head.hdr_size = static_cast<uint16_t>(sizeof(AllocationDetails::FileHeader) + element_header_size); 2481 2482 // Write the file header 2483 size_t num_bytes = sizeof(AllocationDetails::FileHeader); 2484 if (log) 2485 log->Printf("%s - writing File Header, 0x%" PRIx64 " bytes", __FUNCTION__, num_bytes); 2486 2487 Error err = file.Write(&head, num_bytes); 2488 if (!err.Success()) 2489 { 2490 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), filename); 2491 strm.EOL(); 2492 return false; 2493 } 2494 2495 // Create the headers describing the element type of the allocation. 2496 std::shared_ptr<uint8_t> element_header_buffer(new uint8_t[element_header_size]); 2497 if (element_header_buffer == nullptr) 2498 { 2499 strm.Printf("Internal Error: Couldn't allocate %" PRIu64 " bytes on the heap", element_header_size); 2500 strm.EOL(); 2501 return false; 2502 } 2503 2504 PopulateElementHeaders(element_header_buffer, 0, alloc->element); 2505 2506 // Write headers for allocation element type to file 2507 num_bytes = element_header_size; 2508 if (log) 2509 log->Printf("%s - writing element headers, 0x%" PRIx64 " bytes.", __FUNCTION__, num_bytes); 2510 2511 err = file.Write(element_header_buffer.get(), num_bytes); 2512 if (!err.Success()) 2513 { 2514 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), filename); 2515 strm.EOL(); 2516 return false; 2517 } 2518 2519 // Write allocation data to file 2520 num_bytes = static_cast<size_t>(*alloc->size.get()); 2521 if (log) 2522 log->Printf("%s - writing 0x%" PRIx64 " bytes", __FUNCTION__, num_bytes); 2523 2524 err = file.Write(buffer.get(), num_bytes); 2525 if (!err.Success()) 2526 { 2527 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), filename); 2528 strm.EOL(); 2529 return false; 2530 } 2531 2532 strm.Printf("Allocation written to file '%s'", filename); 2533 strm.EOL(); 2534 return true; 2535 } 2536 2537 bool 2538 RenderScriptRuntime::LoadModule(const lldb::ModuleSP &module_sp) 2539 { 2540 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2541 2542 if (module_sp) 2543 { 2544 for (const auto &rs_module : m_rsmodules) 2545 { 2546 if (rs_module->m_module == module_sp) 2547 { 2548 // Check if the user has enabled automatically breaking on 2549 // all RS kernels. 2550 if (m_breakAllKernels) 2551 BreakOnModuleKernels(rs_module); 2552 2553 return false; 2554 } 2555 } 2556 bool module_loaded = false; 2557 switch (GetModuleKind(module_sp)) 2558 { 2559 case eModuleKindKernelObj: 2560 { 2561 RSModuleDescriptorSP module_desc; 2562 module_desc.reset(new RSModuleDescriptor(module_sp)); 2563 if (module_desc->ParseRSInfo()) 2564 { 2565 m_rsmodules.push_back(module_desc); 2566 module_loaded = true; 2567 } 2568 if (module_loaded) 2569 { 2570 FixupScriptDetails(module_desc); 2571 } 2572 break; 2573 } 2574 case eModuleKindDriver: 2575 { 2576 if (!m_libRSDriver) 2577 { 2578 m_libRSDriver = module_sp; 2579 LoadRuntimeHooks(m_libRSDriver, RenderScriptRuntime::eModuleKindDriver); 2580 } 2581 break; 2582 } 2583 case eModuleKindImpl: 2584 { 2585 m_libRSCpuRef = module_sp; 2586 break; 2587 } 2588 case eModuleKindLibRS: 2589 { 2590 if (!m_libRS) 2591 { 2592 m_libRS = module_sp; 2593 static ConstString gDbgPresentStr("gDebuggerPresent"); 2594 const Symbol *debug_present = 2595 m_libRS->FindFirstSymbolWithNameAndType(gDbgPresentStr, eSymbolTypeData); 2596 if (debug_present) 2597 { 2598 Error error; 2599 uint32_t flag = 0x00000001U; 2600 Target &target = GetProcess()->GetTarget(); 2601 addr_t addr = debug_present->GetLoadAddress(&target); 2602 GetProcess()->WriteMemory(addr, &flag, sizeof(flag), error); 2603 if (error.Success()) 2604 { 2605 if (log) 2606 log->Printf("%s - debugger present flag set on debugee.", __FUNCTION__); 2607 2608 m_debuggerPresentFlagged = true; 2609 } 2610 else if (log) 2611 { 2612 log->Printf("%s - error writing debugger present flags '%s' ", __FUNCTION__, 2613 error.AsCString()); 2614 } 2615 } 2616 else if (log) 2617 { 2618 log->Printf("%s - error writing debugger present flags - symbol not found", __FUNCTION__); 2619 } 2620 } 2621 break; 2622 } 2623 default: 2624 break; 2625 } 2626 if (module_loaded) 2627 Update(); 2628 return module_loaded; 2629 } 2630 return false; 2631 } 2632 2633 void 2634 RenderScriptRuntime::Update() 2635 { 2636 if (m_rsmodules.size() > 0) 2637 { 2638 if (!m_initiated) 2639 { 2640 Initiate(); 2641 } 2642 } 2643 } 2644 2645 // The maximum line length of an .rs.info packet 2646 #define MAXLINE 500 2647 2648 // The .rs.info symbol in renderscript modules contains a string which needs to be parsed. 2649 // The string is basic and is parsed on a line by line basis. 2650 bool 2651 RSModuleDescriptor::ParseRSInfo() 2652 { 2653 const Symbol *info_sym = m_module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), eSymbolTypeData); 2654 if (info_sym) 2655 { 2656 const addr_t addr = info_sym->GetAddressRef().GetFileAddress(); 2657 const addr_t size = info_sym->GetByteSize(); 2658 const FileSpec fs = m_module->GetFileSpec(); 2659 2660 DataBufferSP buffer = fs.ReadFileContents(addr, size); 2661 2662 if (!buffer) 2663 return false; 2664 2665 std::string info((const char *)buffer->GetBytes()); 2666 2667 std::vector<std::string> info_lines; 2668 size_t lpos = info.find('\n'); 2669 while (lpos != std::string::npos) 2670 { 2671 info_lines.push_back(info.substr(0, lpos)); 2672 info = info.substr(lpos + 1); 2673 lpos = info.find('\n'); 2674 } 2675 size_t offset = 0; 2676 while (offset < info_lines.size()) 2677 { 2678 std::string line = info_lines[offset]; 2679 // Parse directives 2680 uint32_t numDefns = 0; 2681 if (sscanf(line.c_str(), "exportVarCount: %" PRIu32 "", &numDefns) == 1) 2682 { 2683 while (numDefns--) 2684 m_globals.push_back(RSGlobalDescriptor(this, info_lines[++offset].c_str())); 2685 } 2686 else if (sscanf(line.c_str(), "exportFuncCount: %" PRIu32 "", &numDefns) == 1) 2687 { 2688 } 2689 else if (sscanf(line.c_str(), "exportForEachCount: %" PRIu32 "", &numDefns) == 1) 2690 { 2691 char name[MAXLINE]; 2692 while (numDefns--) 2693 { 2694 uint32_t slot = 0; 2695 name[0] = '\0'; 2696 if (sscanf(info_lines[++offset].c_str(), "%" PRIu32 " - %s", &slot, &name[0]) == 2) 2697 { 2698 m_kernels.push_back(RSKernelDescriptor(this, name, slot)); 2699 } 2700 } 2701 } 2702 else if (sscanf(line.c_str(), "pragmaCount: %" PRIu32 "", &numDefns) == 1) 2703 { 2704 char name[MAXLINE]; 2705 char value[MAXLINE]; 2706 while (numDefns--) 2707 { 2708 name[0] = '\0'; 2709 value[0] = '\0'; 2710 if (sscanf(info_lines[++offset].c_str(), "%s - %s", &name[0], &value[0]) != 0 && (name[0] != '\0')) 2711 { 2712 m_pragmas[std::string(name)] = value; 2713 } 2714 } 2715 } 2716 else if (sscanf(line.c_str(), "objectSlotCount: %" PRIu32 "", &numDefns) == 1) 2717 { 2718 } 2719 2720 offset++; 2721 } 2722 return m_kernels.size() > 0; 2723 } 2724 return false; 2725 } 2726 2727 void 2728 RenderScriptRuntime::Status(Stream &strm) const 2729 { 2730 if (m_libRS) 2731 { 2732 strm.Printf("Runtime Library discovered."); 2733 strm.EOL(); 2734 } 2735 if (m_libRSDriver) 2736 { 2737 strm.Printf("Runtime Driver discovered."); 2738 strm.EOL(); 2739 } 2740 if (m_libRSCpuRef) 2741 { 2742 strm.Printf("CPU Reference Implementation discovered."); 2743 strm.EOL(); 2744 } 2745 2746 if (m_runtimeHooks.size()) 2747 { 2748 strm.Printf("Runtime functions hooked:"); 2749 strm.EOL(); 2750 for (auto b : m_runtimeHooks) 2751 { 2752 strm.Indent(b.second->defn->name); 2753 strm.EOL(); 2754 } 2755 } 2756 else 2757 { 2758 strm.Printf("Runtime is not hooked."); 2759 strm.EOL(); 2760 } 2761 } 2762 2763 void 2764 RenderScriptRuntime::DumpContexts(Stream &strm) const 2765 { 2766 strm.Printf("Inferred RenderScript Contexts:"); 2767 strm.EOL(); 2768 strm.IndentMore(); 2769 2770 std::map<addr_t, uint64_t> contextReferences; 2771 2772 // Iterate over all of the currently discovered scripts. 2773 // Note: We cant push or pop from m_scripts inside this loop or it may invalidate script. 2774 for (const auto &script : m_scripts) 2775 { 2776 if (!script->context.isValid()) 2777 continue; 2778 lldb::addr_t context = *script->context; 2779 2780 if (contextReferences.find(context) != contextReferences.end()) 2781 { 2782 contextReferences[context]++; 2783 } 2784 else 2785 { 2786 contextReferences[context] = 1; 2787 } 2788 } 2789 2790 for (const auto &cRef : contextReferences) 2791 { 2792 strm.Printf("Context 0x%" PRIx64 ": %" PRIu64 " script instances", cRef.first, cRef.second); 2793 strm.EOL(); 2794 } 2795 strm.IndentLess(); 2796 } 2797 2798 void 2799 RenderScriptRuntime::DumpKernels(Stream &strm) const 2800 { 2801 strm.Printf("RenderScript Kernels:"); 2802 strm.EOL(); 2803 strm.IndentMore(); 2804 for (const auto &module : m_rsmodules) 2805 { 2806 strm.Printf("Resource '%s':", module->m_resname.c_str()); 2807 strm.EOL(); 2808 for (const auto &kernel : module->m_kernels) 2809 { 2810 strm.Indent(kernel.m_name.AsCString()); 2811 strm.EOL(); 2812 } 2813 } 2814 strm.IndentLess(); 2815 } 2816 2817 RenderScriptRuntime::AllocationDetails * 2818 RenderScriptRuntime::FindAllocByID(Stream &strm, const uint32_t alloc_id) 2819 { 2820 AllocationDetails *alloc = nullptr; 2821 2822 // See if we can find allocation using id as an index; 2823 if (alloc_id <= m_allocations.size() && alloc_id != 0 && m_allocations[alloc_id - 1]->id == alloc_id) 2824 { 2825 alloc = m_allocations[alloc_id - 1].get(); 2826 return alloc; 2827 } 2828 2829 // Fallback to searching 2830 for (const auto &a : m_allocations) 2831 { 2832 if (a->id == alloc_id) 2833 { 2834 alloc = a.get(); 2835 break; 2836 } 2837 } 2838 2839 if (alloc == nullptr) 2840 { 2841 strm.Printf("Error: Couldn't find allocation with id matching %" PRIu32, alloc_id); 2842 strm.EOL(); 2843 } 2844 2845 return alloc; 2846 } 2847 2848 // Prints the contents of an allocation to the output stream, which may be a file 2849 bool 2850 RenderScriptRuntime::DumpAllocation(Stream &strm, StackFrame *frame_ptr, const uint32_t id) 2851 { 2852 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2853 2854 // Check we can find the desired allocation 2855 AllocationDetails *alloc = FindAllocByID(strm, id); 2856 if (!alloc) 2857 return false; // FindAllocByID() will print error message for us here 2858 2859 if (log) 2860 log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__, *alloc->address.get()); 2861 2862 // Check we have information about the allocation, if not calculate it 2863 if (alloc->shouldRefresh()) 2864 { 2865 if (log) 2866 log->Printf("%s - allocation details not calculated yet, jitting info.", __FUNCTION__); 2867 2868 // JIT all the allocation information 2869 if (!RefreshAllocation(alloc, frame_ptr)) 2870 { 2871 strm.Printf("Error: Couldn't JIT allocation details"); 2872 strm.EOL(); 2873 return false; 2874 } 2875 } 2876 2877 // Establish format and size of each data element 2878 const uint32_t vec_size = *alloc->element.type_vec_size.get(); 2879 const Element::DataType type = *alloc->element.type.get(); 2880 2881 assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && "Invalid allocation type"); 2882 2883 lldb::Format format; 2884 if (type >= Element::RS_TYPE_ELEMENT) 2885 format = eFormatHex; 2886 else 2887 format = vec_size == 1 ? static_cast<lldb::Format>(AllocationDetails::RSTypeToFormat[type][eFormatSingle]) 2888 : static_cast<lldb::Format>(AllocationDetails::RSTypeToFormat[type][eFormatVector]); 2889 2890 const uint32_t data_size = *alloc->element.datum_size.get(); 2891 2892 if (log) 2893 log->Printf("%s - element size %" PRIu32 " bytes, including padding", __FUNCTION__, data_size); 2894 2895 // Allocate a buffer to copy data into 2896 std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr); 2897 if (!buffer) 2898 { 2899 strm.Printf("Error: Couldn't read allocation data"); 2900 strm.EOL(); 2901 return false; 2902 } 2903 2904 // Calculate stride between rows as there may be padding at end of rows since 2905 // allocated memory is 16-byte aligned 2906 if (!alloc->stride.isValid()) 2907 { 2908 if (alloc->dimension.get()->dim_2 == 0) // We only have one dimension 2909 alloc->stride = 0; 2910 else if (!JITAllocationStride(alloc, frame_ptr)) 2911 { 2912 strm.Printf("Error: Couldn't calculate allocation row stride"); 2913 strm.EOL(); 2914 return false; 2915 } 2916 } 2917 const uint32_t stride = *alloc->stride.get(); 2918 const uint32_t size = *alloc->size.get(); // Size of whole allocation 2919 const uint32_t padding = alloc->element.padding.isValid() ? *alloc->element.padding.get() : 0; 2920 if (log) 2921 log->Printf("%s - stride %" PRIu32 " bytes, size %" PRIu32 " bytes, padding %" PRIu32, 2922 __FUNCTION__, stride, size, padding); 2923 2924 // Find dimensions used to index loops, so need to be non-zero 2925 uint32_t dim_x = alloc->dimension.get()->dim_1; 2926 dim_x = dim_x == 0 ? 1 : dim_x; 2927 2928 uint32_t dim_y = alloc->dimension.get()->dim_2; 2929 dim_y = dim_y == 0 ? 1 : dim_y; 2930 2931 uint32_t dim_z = alloc->dimension.get()->dim_3; 2932 dim_z = dim_z == 0 ? 1 : dim_z; 2933 2934 // Use data extractor to format output 2935 const uint32_t archByteSize = GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 2936 DataExtractor alloc_data(buffer.get(), size, GetProcess()->GetByteOrder(), archByteSize); 2937 2938 uint32_t offset = 0; // Offset in buffer to next element to be printed 2939 uint32_t prev_row = 0; // Offset to the start of the previous row 2940 2941 // Iterate over allocation dimensions, printing results to user 2942 strm.Printf("Data (X, Y, Z):"); 2943 for (uint32_t z = 0; z < dim_z; ++z) 2944 { 2945 for (uint32_t y = 0; y < dim_y; ++y) 2946 { 2947 // Use stride to index start of next row. 2948 if (!(y == 0 && z == 0)) 2949 offset = prev_row + stride; 2950 prev_row = offset; 2951 2952 // Print each element in the row individually 2953 for (uint32_t x = 0; x < dim_x; ++x) 2954 { 2955 strm.Printf("\n(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ") = ", x, y, z); 2956 if ((type == Element::RS_TYPE_NONE) && (alloc->element.children.size() > 0) && 2957 (alloc->element.type_name != Element::GetFallbackStructName())) 2958 { 2959 // Here we are dumping an Element of struct type. 2960 // This is done using expression evaluation with the name of the struct type and pointer to element. 2961 2962 // Don't print the name of the resulting expression, since this will be '$[0-9]+' 2963 DumpValueObjectOptions expr_options; 2964 expr_options.SetHideName(true); 2965 2966 // Setup expression as derefrencing a pointer cast to element address. 2967 char expr_char_buffer[jit_max_expr_size]; 2968 int chars_written = snprintf(expr_char_buffer, jit_max_expr_size, "*(%s*) 0x%" PRIx64, 2969 alloc->element.type_name.AsCString(), *alloc->data_ptr.get() + offset); 2970 2971 if (chars_written < 0 || chars_written >= jit_max_expr_size) 2972 { 2973 if (log) 2974 log->Printf("%s - error in snprintf().", __FUNCTION__); 2975 continue; 2976 } 2977 2978 // Evaluate expression 2979 ValueObjectSP expr_result; 2980 GetProcess()->GetTarget().EvaluateExpression(expr_char_buffer, frame_ptr, expr_result); 2981 2982 // Print the results to our stream. 2983 expr_result->Dump(strm, expr_options); 2984 } 2985 else 2986 { 2987 alloc_data.Dump(&strm, offset, format, data_size - padding, 1, 1, LLDB_INVALID_ADDRESS, 0, 0); 2988 } 2989 offset += data_size; 2990 } 2991 } 2992 } 2993 strm.EOL(); 2994 2995 return true; 2996 } 2997 2998 // Function recalculates all our cached information about allocations by jitting the 2999 // RS runtime regarding each allocation we know about. 3000 // Returns true if all allocations could be recomputed, false otherwise. 3001 bool 3002 RenderScriptRuntime::RecomputeAllAllocations(Stream &strm, StackFrame *frame_ptr) 3003 { 3004 bool success = true; 3005 for (auto &alloc : m_allocations) 3006 { 3007 // JIT current allocation information 3008 if (!RefreshAllocation(alloc.get(), frame_ptr)) 3009 { 3010 strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32 "\n", alloc->id); 3011 success = false; 3012 } 3013 } 3014 3015 if (success) 3016 strm.Printf("All allocations successfully recomputed"); 3017 strm.EOL(); 3018 3019 return success; 3020 } 3021 3022 // Prints information regarding currently loaded allocations. 3023 // These details are gathered by jitting the runtime, which has as latency. 3024 // Index parameter specifies a single allocation ID to print, or a zero value to print them all 3025 void 3026 RenderScriptRuntime::ListAllocations(Stream &strm, StackFrame *frame_ptr, const uint32_t index) 3027 { 3028 strm.Printf("RenderScript Allocations:"); 3029 strm.EOL(); 3030 strm.IndentMore(); 3031 3032 for (auto &alloc : m_allocations) 3033 { 3034 // index will only be zero if we want to print all allocations 3035 if (index != 0 && index != alloc->id) 3036 continue; 3037 3038 // JIT current allocation information 3039 if (alloc->shouldRefresh() && !RefreshAllocation(alloc.get(), frame_ptr)) 3040 { 3041 strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32, alloc->id); 3042 strm.EOL(); 3043 continue; 3044 } 3045 3046 strm.Printf("%" PRIu32 ":", alloc->id); 3047 strm.EOL(); 3048 strm.IndentMore(); 3049 3050 strm.Indent("Context: "); 3051 if (!alloc->context.isValid()) 3052 strm.Printf("unknown\n"); 3053 else 3054 strm.Printf("0x%" PRIx64 "\n", *alloc->context.get()); 3055 3056 strm.Indent("Address: "); 3057 if (!alloc->address.isValid()) 3058 strm.Printf("unknown\n"); 3059 else 3060 strm.Printf("0x%" PRIx64 "\n", *alloc->address.get()); 3061 3062 strm.Indent("Data pointer: "); 3063 if (!alloc->data_ptr.isValid()) 3064 strm.Printf("unknown\n"); 3065 else 3066 strm.Printf("0x%" PRIx64 "\n", *alloc->data_ptr.get()); 3067 3068 strm.Indent("Dimensions: "); 3069 if (!alloc->dimension.isValid()) 3070 strm.Printf("unknown\n"); 3071 else 3072 strm.Printf("(%" PRId32 ", %" PRId32 ", %" PRId32 ")\n", 3073 alloc->dimension.get()->dim_1, alloc->dimension.get()->dim_2, alloc->dimension.get()->dim_3); 3074 3075 strm.Indent("Data Type: "); 3076 if (!alloc->element.type.isValid() || !alloc->element.type_vec_size.isValid()) 3077 strm.Printf("unknown\n"); 3078 else 3079 { 3080 const int vector_size = *alloc->element.type_vec_size.get(); 3081 Element::DataType type = *alloc->element.type.get(); 3082 3083 if (!alloc->element.type_name.IsEmpty()) 3084 strm.Printf("%s\n", alloc->element.type_name.AsCString()); 3085 else 3086 { 3087 // Enum value isn't monotonous, so doesn't always index RsDataTypeToString array 3088 if (type >= Element::RS_TYPE_ELEMENT && type <= Element::RS_TYPE_FONT) 3089 type = static_cast<Element::DataType>((type - Element::RS_TYPE_ELEMENT) + 3090 Element::RS_TYPE_MATRIX_2X2 + 1); 3091 3092 if (type >= (sizeof(AllocationDetails::RsDataTypeToString) / 3093 sizeof(AllocationDetails::RsDataTypeToString[0])) || 3094 vector_size > 4 || vector_size < 1) 3095 strm.Printf("invalid type\n"); 3096 else 3097 strm.Printf("%s\n", AllocationDetails::RsDataTypeToString[static_cast<uint32_t>(type)] 3098 [vector_size - 1]); 3099 } 3100 } 3101 3102 strm.Indent("Data Kind: "); 3103 if (!alloc->element.type_kind.isValid()) 3104 strm.Printf("unknown\n"); 3105 else 3106 { 3107 const Element::DataKind kind = *alloc->element.type_kind.get(); 3108 if (kind < Element::RS_KIND_USER || kind > Element::RS_KIND_PIXEL_YUV) 3109 strm.Printf("invalid kind\n"); 3110 else 3111 strm.Printf("%s\n", AllocationDetails::RsDataKindToString[static_cast<uint32_t>(kind)]); 3112 } 3113 3114 strm.EOL(); 3115 strm.IndentLess(); 3116 } 3117 strm.IndentLess(); 3118 } 3119 3120 // Set breakpoints on every kernel found in RS module 3121 void 3122 RenderScriptRuntime::BreakOnModuleKernels(const RSModuleDescriptorSP rsmodule_sp) 3123 { 3124 for (const auto &kernel : rsmodule_sp->m_kernels) 3125 { 3126 // Don't set breakpoint on 'root' kernel 3127 if (strcmp(kernel.m_name.AsCString(), "root") == 0) 3128 continue; 3129 3130 CreateKernelBreakpoint(kernel.m_name); 3131 } 3132 } 3133 3134 // Method is internally called by the 'kernel breakpoint all' command to 3135 // enable or disable breaking on all kernels. 3136 // 3137 // When do_break is true we want to enable this functionality. 3138 // When do_break is false we want to disable it. 3139 void 3140 RenderScriptRuntime::SetBreakAllKernels(bool do_break, TargetSP target) 3141 { 3142 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3143 3144 InitSearchFilter(target); 3145 3146 // Set breakpoints on all the kernels 3147 if (do_break && !m_breakAllKernels) 3148 { 3149 m_breakAllKernels = true; 3150 3151 for (const auto &module : m_rsmodules) 3152 BreakOnModuleKernels(module); 3153 3154 if (log) 3155 log->Printf("%s(True) - breakpoints set on all currently loaded kernels.", __FUNCTION__); 3156 } 3157 else if (!do_break && m_breakAllKernels) // Breakpoints won't be set on any new kernels. 3158 { 3159 m_breakAllKernels = false; 3160 3161 if (log) 3162 log->Printf("%s(False) - breakpoints no longer automatically set.", __FUNCTION__); 3163 } 3164 } 3165 3166 // Given the name of a kernel this function creates a breakpoint using our 3167 // own breakpoint resolver, and returns the Breakpoint shared pointer. 3168 BreakpointSP 3169 RenderScriptRuntime::CreateKernelBreakpoint(const ConstString &name) 3170 { 3171 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3172 3173 if (!m_filtersp) 3174 { 3175 if (log) 3176 log->Printf("%s - error, no breakpoint search filter set.", __FUNCTION__); 3177 return nullptr; 3178 } 3179 3180 BreakpointResolverSP resolver_sp(new RSBreakpointResolver(nullptr, name)); 3181 BreakpointSP bp = GetProcess()->GetTarget().CreateBreakpoint(m_filtersp, resolver_sp, false, false, false); 3182 3183 // Give RS breakpoints a specific name, so the user can manipulate them as a group. 3184 Error err; 3185 if (!bp->AddName("RenderScriptKernel", err) && log) 3186 log->Printf("%s - error setting break name, '%s'.", __FUNCTION__, err.AsCString()); 3187 3188 return bp; 3189 } 3190 3191 // Given an expression for a variable this function tries to calculate the variable's value. 3192 // If this is possible it returns true and sets the uint64_t parameter to the variables unsigned value. 3193 // Otherwise function returns false. 3194 bool 3195 RenderScriptRuntime::GetFrameVarAsUnsigned(const StackFrameSP frame_sp, const char *var_name, uint64_t &val) 3196 { 3197 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3198 Error error; 3199 VariableSP var_sp; 3200 3201 // Find variable in stack frame 3202 ValueObjectSP value_sp(frame_sp->GetValueForVariableExpressionPath( 3203 var_name, eNoDynamicValues, 3204 StackFrame::eExpressionPathOptionCheckPtrVsMember | StackFrame::eExpressionPathOptionsAllowDirectIVarAccess, 3205 var_sp, error)); 3206 if (!error.Success()) 3207 { 3208 if (log) 3209 log->Printf("%s - error, couldn't find '%s' in frame", __FUNCTION__, var_name); 3210 return false; 3211 } 3212 3213 // Find the uint32_t value for the variable 3214 bool success = false; 3215 val = value_sp->GetValueAsUnsigned(0, &success); 3216 if (!success) 3217 { 3218 if (log) 3219 log->Printf("%s - error, couldn't parse '%s' as an uint32_t.", __FUNCTION__, var_name); 3220 return false; 3221 } 3222 3223 return true; 3224 } 3225 3226 // Function attempts to find the current coordinate of a kernel invocation by investigating the 3227 // values of frame variables in the .expand function. These coordinates are returned via the coord 3228 // array reference parameter. Returns true if the coordinates could be found, and false otherwise. 3229 bool 3230 RenderScriptRuntime::GetKernelCoordinate(RSCoordinate &coord, Thread *thread_ptr) 3231 { 3232 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3233 3234 if (!thread_ptr) 3235 { 3236 if (log) 3237 log->Printf("%s - Error, No thread pointer", __FUNCTION__); 3238 3239 return false; 3240 } 3241 3242 // Walk the call stack looking for a function whose name has the suffix '.expand' 3243 // and contains the variables we're looking for. 3244 for (uint32_t i = 0; i < thread_ptr->GetStackFrameCount(); ++i) 3245 { 3246 if (!thread_ptr->SetSelectedFrameByIndex(i)) 3247 continue; 3248 3249 StackFrameSP frame_sp = thread_ptr->GetSelectedFrame(); 3250 if (!frame_sp) 3251 continue; 3252 3253 // Find the function name 3254 const SymbolContext sym_ctx = frame_sp->GetSymbolContext(false); 3255 const char *func_name_cstr = sym_ctx.GetFunctionName().AsCString(); 3256 if (!func_name_cstr) 3257 continue; 3258 3259 if (log) 3260 log->Printf("%s - Inspecting function '%s'", __FUNCTION__, func_name_cstr); 3261 3262 // Check if function name has .expand suffix 3263 std::string func_name(func_name_cstr); 3264 const int length_difference = func_name.length() - RenderScriptRuntime::s_runtimeExpandSuffix.length(); 3265 if (length_difference <= 0) 3266 continue; 3267 3268 const int32_t has_expand_suffix = func_name.compare(length_difference, 3269 RenderScriptRuntime::s_runtimeExpandSuffix.length(), 3270 RenderScriptRuntime::s_runtimeExpandSuffix); 3271 3272 if (has_expand_suffix != 0) 3273 continue; 3274 3275 if (log) 3276 log->Printf("%s - Found .expand function '%s'", __FUNCTION__, func_name_cstr); 3277 3278 // Get values for variables in .expand frame that tell us the current kernel invocation 3279 bool found_coord_variables = true; 3280 assert(RenderScriptRuntime::s_runtimeCoordVars.size() == coord.size()); 3281 3282 for (uint32_t i = 0; i < coord.size(); ++i) 3283 { 3284 uint64_t value = 0; 3285 if (!GetFrameVarAsUnsigned(frame_sp, RenderScriptRuntime::s_runtimeCoordVars[i], value)) 3286 { 3287 found_coord_variables = false; 3288 break; 3289 } 3290 coord[i] = value; 3291 } 3292 3293 if (found_coord_variables) 3294 return true; 3295 } 3296 return false; 3297 } 3298 3299 // Callback when a kernel breakpoint hits and we're looking for a specific coordinate. 3300 // Baton parameter contains a pointer to the target coordinate we want to break on. 3301 // Function then checks the .expand frame for the current coordinate and breaks to user if it matches. 3302 // Parameter 'break_id' is the id of the Breakpoint which made the callback. 3303 // Parameter 'break_loc_id' is the id for the BreakpointLocation which was hit, 3304 // a single logical breakpoint can have multiple addresses. 3305 bool 3306 RenderScriptRuntime::KernelBreakpointHit(void *baton, StoppointCallbackContext *ctx, user_id_t break_id, 3307 user_id_t break_loc_id) 3308 { 3309 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3310 3311 assert(baton && "Error: null baton in conditional kernel breakpoint callback"); 3312 3313 // Coordinate we want to stop on 3314 const uint32_t *target_coord = static_cast<const uint32_t *>(baton); 3315 3316 if (log) 3317 log->Printf("%s - Break ID %" PRIu64 ", (%" PRIu32 ", %" PRIu32 ", %" PRIu32 ")", __FUNCTION__, break_id, 3318 target_coord[0], target_coord[1], target_coord[2]); 3319 3320 // Select current thread 3321 ExecutionContext context(ctx->exe_ctx_ref); 3322 Thread *thread_ptr = context.GetThreadPtr(); 3323 assert(thread_ptr && "Null thread pointer"); 3324 3325 // Find current kernel invocation from .expand frame variables 3326 RSCoordinate current_coord{}; // Zero initialise array 3327 if (!GetKernelCoordinate(current_coord, thread_ptr)) 3328 { 3329 if (log) 3330 log->Printf("%s - Error, couldn't select .expand stack frame", __FUNCTION__); 3331 return false; 3332 } 3333 3334 if (log) 3335 log->Printf("%s - (%" PRIu32 ",%" PRIu32 ",%" PRIu32 ")", __FUNCTION__, current_coord[0], current_coord[1], 3336 current_coord[2]); 3337 3338 // Check if the current kernel invocation coordinate matches our target coordinate 3339 if (current_coord[0] == target_coord[0] && 3340 current_coord[1] == target_coord[1] && 3341 current_coord[2] == target_coord[2]) 3342 { 3343 if (log) 3344 log->Printf("%s, BREAKING (%" PRIu32 ",%" PRIu32 ",%" PRIu32 ")", __FUNCTION__, current_coord[0], 3345 current_coord[1], current_coord[2]); 3346 3347 BreakpointSP breakpoint_sp = context.GetTargetPtr()->GetBreakpointByID(break_id); 3348 assert(breakpoint_sp != nullptr && "Error: Couldn't find breakpoint matching break id for callback"); 3349 breakpoint_sp->SetEnabled(false); // Optimise since conditional breakpoint should only be hit once. 3350 return true; 3351 } 3352 3353 // No match on coordinate 3354 return false; 3355 } 3356 3357 // Tries to set a breakpoint on the start of a kernel, resolved using the kernel name. 3358 // Argument 'coords', represents a three dimensional coordinate which can be used to specify 3359 // a single kernel instance to break on. If this is set then we add a callback to the breakpoint. 3360 void 3361 RenderScriptRuntime::PlaceBreakpointOnKernel(Stream &strm, const char *name, const std::array<int, 3> coords, 3362 Error &error, TargetSP target) 3363 { 3364 if (!name) 3365 { 3366 error.SetErrorString("invalid kernel name"); 3367 return; 3368 } 3369 3370 InitSearchFilter(target); 3371 3372 ConstString kernel_name(name); 3373 BreakpointSP bp = CreateKernelBreakpoint(kernel_name); 3374 3375 // We have a conditional breakpoint on a specific coordinate 3376 if (coords[0] != -1) 3377 { 3378 strm.Printf("Conditional kernel breakpoint on coordinate %" PRId32 ", %" PRId32 ", %" PRId32, 3379 coords[0], coords[1], coords[2]); 3380 strm.EOL(); 3381 3382 // Allocate memory for the baton, and copy over coordinate 3383 uint32_t *baton = new uint32_t[coords.size()]; 3384 baton[0] = coords[0]; baton[1] = coords[1]; baton[2] = coords[2]; 3385 3386 // Create a callback that will be invoked everytime the breakpoint is hit. 3387 // The baton object passed to the handler is the target coordinate we want to break on. 3388 bp->SetCallback(KernelBreakpointHit, baton, true); 3389 3390 // Store a shared pointer to the baton, so the memory will eventually be cleaned up after destruction 3391 m_conditional_breaks[bp->GetID()] = std::shared_ptr<uint32_t>(baton); 3392 } 3393 3394 if (bp) 3395 bp->GetDescription(&strm, lldb::eDescriptionLevelInitial, false); 3396 } 3397 3398 void 3399 RenderScriptRuntime::DumpModules(Stream &strm) const 3400 { 3401 strm.Printf("RenderScript Modules:"); 3402 strm.EOL(); 3403 strm.IndentMore(); 3404 for (const auto &module : m_rsmodules) 3405 { 3406 module->Dump(strm); 3407 } 3408 strm.IndentLess(); 3409 } 3410 3411 RenderScriptRuntime::ScriptDetails * 3412 RenderScriptRuntime::LookUpScript(addr_t address, bool create) 3413 { 3414 for (const auto &s : m_scripts) 3415 { 3416 if (s->script.isValid()) 3417 if (*s->script == address) 3418 return s.get(); 3419 } 3420 if (create) 3421 { 3422 std::unique_ptr<ScriptDetails> s(new ScriptDetails); 3423 s->script = address; 3424 m_scripts.push_back(std::move(s)); 3425 return m_scripts.back().get(); 3426 } 3427 return nullptr; 3428 } 3429 3430 RenderScriptRuntime::AllocationDetails * 3431 RenderScriptRuntime::LookUpAllocation(addr_t address, bool create) 3432 { 3433 for (const auto &a : m_allocations) 3434 { 3435 if (a->address.isValid()) 3436 if (*a->address == address) 3437 return a.get(); 3438 } 3439 if (create) 3440 { 3441 std::unique_ptr<AllocationDetails> a(new AllocationDetails); 3442 a->address = address; 3443 m_allocations.push_back(std::move(a)); 3444 return m_allocations.back().get(); 3445 } 3446 return nullptr; 3447 } 3448 3449 void 3450 RSModuleDescriptor::Dump(Stream &strm) const 3451 { 3452 strm.Indent(); 3453 m_module->GetFileSpec().Dump(&strm); 3454 if (m_module->GetNumCompileUnits()) 3455 { 3456 strm.Indent("Debug info loaded."); 3457 } 3458 else 3459 { 3460 strm.Indent("Debug info does not exist."); 3461 } 3462 strm.EOL(); 3463 strm.IndentMore(); 3464 strm.Indent(); 3465 strm.Printf("Globals: %" PRIu64, static_cast<uint64_t>(m_globals.size())); 3466 strm.EOL(); 3467 strm.IndentMore(); 3468 for (const auto &global : m_globals) 3469 { 3470 global.Dump(strm); 3471 } 3472 strm.IndentLess(); 3473 strm.Indent(); 3474 strm.Printf("Kernels: %" PRIu64, static_cast<uint64_t>(m_kernels.size())); 3475 strm.EOL(); 3476 strm.IndentMore(); 3477 for (const auto &kernel : m_kernels) 3478 { 3479 kernel.Dump(strm); 3480 } 3481 strm.Printf("Pragmas: %" PRIu64, static_cast<uint64_t>(m_pragmas.size())); 3482 strm.EOL(); 3483 strm.IndentMore(); 3484 for (const auto &key_val : m_pragmas) 3485 { 3486 strm.Printf("%s: %s", key_val.first.c_str(), key_val.second.c_str()); 3487 strm.EOL(); 3488 } 3489 strm.IndentLess(4); 3490 } 3491 3492 void 3493 RSGlobalDescriptor::Dump(Stream &strm) const 3494 { 3495 strm.Indent(m_name.AsCString()); 3496 VariableList var_list; 3497 m_module->m_module->FindGlobalVariables(m_name, nullptr, true, 1U, var_list); 3498 if (var_list.GetSize() == 1) 3499 { 3500 auto var = var_list.GetVariableAtIndex(0); 3501 auto type = var->GetType(); 3502 if (type) 3503 { 3504 strm.Printf(" - "); 3505 type->DumpTypeName(&strm); 3506 } 3507 else 3508 { 3509 strm.Printf(" - Unknown Type"); 3510 } 3511 } 3512 else 3513 { 3514 strm.Printf(" - variable identified, but not found in binary"); 3515 const Symbol *s = m_module->m_module->FindFirstSymbolWithNameAndType(m_name, eSymbolTypeData); 3516 if (s) 3517 { 3518 strm.Printf(" (symbol exists) "); 3519 } 3520 } 3521 3522 strm.EOL(); 3523 } 3524 3525 void 3526 RSKernelDescriptor::Dump(Stream &strm) const 3527 { 3528 strm.Indent(m_name.AsCString()); 3529 strm.EOL(); 3530 } 3531 3532 class CommandObjectRenderScriptRuntimeModuleDump : public CommandObjectParsed 3533 { 3534 public: 3535 CommandObjectRenderScriptRuntimeModuleDump(CommandInterpreter &interpreter) 3536 : CommandObjectParsed(interpreter, "renderscript module dump", 3537 "Dumps renderscript specific information for all modules.", "renderscript module dump", 3538 eCommandRequiresProcess | eCommandProcessMustBeLaunched) 3539 { 3540 } 3541 3542 ~CommandObjectRenderScriptRuntimeModuleDump() override = default; 3543 3544 bool 3545 DoExecute(Args &command, CommandReturnObject &result) override 3546 { 3547 RenderScriptRuntime *runtime = 3548 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript); 3549 runtime->DumpModules(result.GetOutputStream()); 3550 result.SetStatus(eReturnStatusSuccessFinishResult); 3551 return true; 3552 } 3553 }; 3554 3555 class CommandObjectRenderScriptRuntimeModule : public CommandObjectMultiword 3556 { 3557 public: 3558 CommandObjectRenderScriptRuntimeModule(CommandInterpreter &interpreter) 3559 : CommandObjectMultiword(interpreter, "renderscript module", "Commands that deal with renderscript modules.", 3560 nullptr) 3561 { 3562 LoadSubCommand("dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeModuleDump(interpreter))); 3563 } 3564 3565 ~CommandObjectRenderScriptRuntimeModule() override = default; 3566 }; 3567 3568 class CommandObjectRenderScriptRuntimeKernelList : public CommandObjectParsed 3569 { 3570 public: 3571 CommandObjectRenderScriptRuntimeKernelList(CommandInterpreter &interpreter) 3572 : CommandObjectParsed(interpreter, "renderscript kernel list", 3573 "Lists renderscript kernel names and associated script resources.", 3574 "renderscript kernel list", eCommandRequiresProcess | eCommandProcessMustBeLaunched) 3575 { 3576 } 3577 3578 ~CommandObjectRenderScriptRuntimeKernelList() override = default; 3579 3580 bool 3581 DoExecute(Args &command, CommandReturnObject &result) override 3582 { 3583 RenderScriptRuntime *runtime = 3584 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript); 3585 runtime->DumpKernels(result.GetOutputStream()); 3586 result.SetStatus(eReturnStatusSuccessFinishResult); 3587 return true; 3588 } 3589 }; 3590 3591 class CommandObjectRenderScriptRuntimeKernelBreakpointSet : public CommandObjectParsed 3592 { 3593 public: 3594 CommandObjectRenderScriptRuntimeKernelBreakpointSet(CommandInterpreter &interpreter) 3595 : CommandObjectParsed(interpreter, "renderscript kernel breakpoint set", 3596 "Sets a breakpoint on a renderscript kernel.", 3597 "renderscript kernel breakpoint set <kernel_name> [-c x,y,z]", 3598 eCommandRequiresProcess | eCommandProcessMustBeLaunched | eCommandProcessMustBePaused), 3599 m_options(interpreter) 3600 { 3601 } 3602 3603 ~CommandObjectRenderScriptRuntimeKernelBreakpointSet() override = default; 3604 3605 Options * 3606 GetOptions() override 3607 { 3608 return &m_options; 3609 } 3610 3611 class CommandOptions : public Options 3612 { 3613 public: 3614 CommandOptions(CommandInterpreter &interpreter) : Options(interpreter) {} 3615 3616 ~CommandOptions() override = default; 3617 3618 Error 3619 SetOptionValue(uint32_t option_idx, const char *option_arg) override 3620 { 3621 Error error; 3622 const int short_option = m_getopt_table[option_idx].val; 3623 3624 switch (short_option) 3625 { 3626 case 'c': 3627 if (!ParseCoordinate(option_arg)) 3628 error.SetErrorStringWithFormat("Couldn't parse coordinate '%s', should be in format 'x,y,z'.", 3629 option_arg); 3630 break; 3631 default: 3632 error.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 3633 break; 3634 } 3635 return error; 3636 } 3637 3638 // -c takes an argument of the form 'num[,num][,num]'. 3639 // Where 'id_cstr' is this argument with the whitespace trimmed. 3640 // Missing coordinates are defaulted to zero. 3641 bool 3642 ParseCoordinate(const char *id_cstr) 3643 { 3644 RegularExpression regex; 3645 RegularExpression::Match regex_match(3); 3646 3647 bool matched = false; 3648 if (regex.Compile("^([0-9]+),([0-9]+),([0-9]+)$") && regex.Execute(id_cstr, ®ex_match)) 3649 matched = true; 3650 else if (regex.Compile("^([0-9]+),([0-9]+)$") && regex.Execute(id_cstr, ®ex_match)) 3651 matched = true; 3652 else if (regex.Compile("^([0-9]+)$") && regex.Execute(id_cstr, ®ex_match)) 3653 matched = true; 3654 for (uint32_t i = 0; i < 3; i++) 3655 { 3656 std::string group; 3657 if (regex_match.GetMatchAtIndex(id_cstr, i + 1, group)) 3658 m_coord[i] = (uint32_t)strtoul(group.c_str(), nullptr, 0); 3659 else 3660 m_coord[i] = 0; 3661 } 3662 return matched; 3663 } 3664 3665 void 3666 OptionParsingStarting() override 3667 { 3668 // -1 means the -c option hasn't been set 3669 m_coord[0] = -1; 3670 m_coord[1] = -1; 3671 m_coord[2] = -1; 3672 } 3673 3674 const OptionDefinition * 3675 GetDefinitions() override 3676 { 3677 return g_option_table; 3678 } 3679 3680 static OptionDefinition g_option_table[]; 3681 std::array<int, 3> m_coord; 3682 }; 3683 3684 bool 3685 DoExecute(Args &command, CommandReturnObject &result) override 3686 { 3687 const size_t argc = command.GetArgumentCount(); 3688 if (argc < 1) 3689 { 3690 result.AppendErrorWithFormat("'%s' takes 1 argument of kernel name, and an optional coordinate.", 3691 m_cmd_name.c_str()); 3692 result.SetStatus(eReturnStatusFailed); 3693 return false; 3694 } 3695 3696 RenderScriptRuntime *runtime = 3697 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript); 3698 3699 Error error; 3700 runtime->PlaceBreakpointOnKernel(result.GetOutputStream(), command.GetArgumentAtIndex(0), m_options.m_coord, 3701 error, m_exe_ctx.GetTargetSP()); 3702 3703 if (error.Success()) 3704 { 3705 result.AppendMessage("Breakpoint(s) created"); 3706 result.SetStatus(eReturnStatusSuccessFinishResult); 3707 return true; 3708 } 3709 result.SetStatus(eReturnStatusFailed); 3710 result.AppendErrorWithFormat("Error: %s", error.AsCString()); 3711 return false; 3712 } 3713 3714 private: 3715 CommandOptions m_options; 3716 }; 3717 3718 OptionDefinition CommandObjectRenderScriptRuntimeKernelBreakpointSet::CommandOptions::g_option_table[] = { 3719 {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeValue, 3720 "Set a breakpoint on a single invocation of the kernel with specified coordinate.\n" 3721 "Coordinate takes the form 'x[,y][,z] where x,y,z are positive integers representing kernel dimensions. " 3722 "Any unset dimensions will be defaulted to zero."}, 3723 {0, false, nullptr, 0, 0, nullptr, nullptr, 0, eArgTypeNone, nullptr}}; 3724 3725 class CommandObjectRenderScriptRuntimeKernelBreakpointAll : public CommandObjectParsed 3726 { 3727 public: 3728 CommandObjectRenderScriptRuntimeKernelBreakpointAll(CommandInterpreter &interpreter) 3729 : CommandObjectParsed( 3730 interpreter, "renderscript kernel breakpoint all", 3731 "Automatically sets a breakpoint on all renderscript kernels that are or will be loaded.\n" 3732 "Disabling option means breakpoints will no longer be set on any kernels loaded in the future, " 3733 "but does not remove currently set breakpoints.", 3734 "renderscript kernel breakpoint all <enable/disable>", 3735 eCommandRequiresProcess | eCommandProcessMustBeLaunched | eCommandProcessMustBePaused) 3736 { 3737 } 3738 3739 ~CommandObjectRenderScriptRuntimeKernelBreakpointAll() override = default; 3740 3741 bool 3742 DoExecute(Args &command, CommandReturnObject &result) override 3743 { 3744 const size_t argc = command.GetArgumentCount(); 3745 if (argc != 1) 3746 { 3747 result.AppendErrorWithFormat("'%s' takes 1 argument of 'enable' or 'disable'", m_cmd_name.c_str()); 3748 result.SetStatus(eReturnStatusFailed); 3749 return false; 3750 } 3751 3752 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 3753 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript)); 3754 3755 bool do_break = false; 3756 const char *argument = command.GetArgumentAtIndex(0); 3757 if (strcmp(argument, "enable") == 0) 3758 { 3759 do_break = true; 3760 result.AppendMessage("Breakpoints will be set on all kernels."); 3761 } 3762 else if (strcmp(argument, "disable") == 0) 3763 { 3764 do_break = false; 3765 result.AppendMessage("Breakpoints will not be set on any new kernels."); 3766 } 3767 else 3768 { 3769 result.AppendErrorWithFormat("Argument must be either 'enable' or 'disable'"); 3770 result.SetStatus(eReturnStatusFailed); 3771 return false; 3772 } 3773 3774 runtime->SetBreakAllKernels(do_break, m_exe_ctx.GetTargetSP()); 3775 3776 result.SetStatus(eReturnStatusSuccessFinishResult); 3777 return true; 3778 } 3779 }; 3780 3781 class CommandObjectRenderScriptRuntimeKernelCoordinate : public CommandObjectParsed 3782 { 3783 public: 3784 CommandObjectRenderScriptRuntimeKernelCoordinate(CommandInterpreter &interpreter) 3785 : CommandObjectParsed(interpreter, "renderscript kernel coordinate", 3786 "Shows the (x,y,z) coordinate of the current kernel invocation.", 3787 "renderscript kernel coordinate", 3788 eCommandRequiresProcess | eCommandProcessMustBeLaunched | eCommandProcessMustBePaused) 3789 { 3790 } 3791 3792 ~CommandObjectRenderScriptRuntimeKernelCoordinate() override = default; 3793 3794 bool 3795 DoExecute(Args &command, CommandReturnObject &result) override 3796 { 3797 RSCoordinate coord{}; // Zero initialize array 3798 bool success = RenderScriptRuntime::GetKernelCoordinate(coord, m_exe_ctx.GetThreadPtr()); 3799 Stream &stream = result.GetOutputStream(); 3800 3801 if (success) 3802 { 3803 stream.Printf("Coordinate: (%" PRIu32 ", %" PRIu32 ", %" PRIu32 ")", coord[0], coord[1], coord[2]); 3804 stream.EOL(); 3805 result.SetStatus(eReturnStatusSuccessFinishResult); 3806 } 3807 else 3808 { 3809 stream.Printf("Error: Coordinate could not be found."); 3810 stream.EOL(); 3811 result.SetStatus(eReturnStatusFailed); 3812 } 3813 return true; 3814 } 3815 }; 3816 3817 class CommandObjectRenderScriptRuntimeKernelBreakpoint : public CommandObjectMultiword 3818 { 3819 public: 3820 CommandObjectRenderScriptRuntimeKernelBreakpoint(CommandInterpreter &interpreter) 3821 : CommandObjectMultiword(interpreter, "renderscript kernel", 3822 "Commands that generate breakpoints on renderscript kernels.", nullptr) 3823 { 3824 LoadSubCommand("set", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointSet(interpreter))); 3825 LoadSubCommand("all", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointAll(interpreter))); 3826 } 3827 3828 ~CommandObjectRenderScriptRuntimeKernelBreakpoint() override = default; 3829 }; 3830 3831 class CommandObjectRenderScriptRuntimeKernel : public CommandObjectMultiword 3832 { 3833 public: 3834 CommandObjectRenderScriptRuntimeKernel(CommandInterpreter &interpreter) 3835 : CommandObjectMultiword(interpreter, "renderscript kernel", "Commands that deal with renderscript kernels.", 3836 nullptr) 3837 { 3838 LoadSubCommand("list", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelList(interpreter))); 3839 LoadSubCommand("coordinate", 3840 CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelCoordinate(interpreter))); 3841 LoadSubCommand("breakpoint", 3842 CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpoint(interpreter))); 3843 } 3844 3845 ~CommandObjectRenderScriptRuntimeKernel() override = default; 3846 }; 3847 3848 class CommandObjectRenderScriptRuntimeContextDump : public CommandObjectParsed 3849 { 3850 public: 3851 CommandObjectRenderScriptRuntimeContextDump(CommandInterpreter &interpreter) 3852 : CommandObjectParsed(interpreter, "renderscript context dump", "Dumps renderscript context information.", 3853 "renderscript context dump", eCommandRequiresProcess | eCommandProcessMustBeLaunched) 3854 { 3855 } 3856 3857 ~CommandObjectRenderScriptRuntimeContextDump() override = default; 3858 3859 bool 3860 DoExecute(Args &command, CommandReturnObject &result) override 3861 { 3862 RenderScriptRuntime *runtime = 3863 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript); 3864 runtime->DumpContexts(result.GetOutputStream()); 3865 result.SetStatus(eReturnStatusSuccessFinishResult); 3866 return true; 3867 } 3868 }; 3869 3870 class CommandObjectRenderScriptRuntimeContext : public CommandObjectMultiword 3871 { 3872 public: 3873 CommandObjectRenderScriptRuntimeContext(CommandInterpreter &interpreter) 3874 : CommandObjectMultiword(interpreter, "renderscript context", "Commands that deal with renderscript contexts.", 3875 nullptr) 3876 { 3877 LoadSubCommand("dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeContextDump(interpreter))); 3878 } 3879 3880 ~CommandObjectRenderScriptRuntimeContext() override = default; 3881 }; 3882 3883 class CommandObjectRenderScriptRuntimeAllocationDump : public CommandObjectParsed 3884 { 3885 public: 3886 CommandObjectRenderScriptRuntimeAllocationDump(CommandInterpreter &interpreter) 3887 : CommandObjectParsed(interpreter, "renderscript allocation dump", 3888 "Displays the contents of a particular allocation", "renderscript allocation dump <ID>", 3889 eCommandRequiresProcess | eCommandProcessMustBeLaunched), 3890 m_options(interpreter) 3891 { 3892 } 3893 3894 ~CommandObjectRenderScriptRuntimeAllocationDump() override = default; 3895 3896 Options * 3897 GetOptions() override 3898 { 3899 return &m_options; 3900 } 3901 3902 class CommandOptions : public Options 3903 { 3904 public: 3905 CommandOptions(CommandInterpreter &interpreter) : Options(interpreter) {} 3906 3907 ~CommandOptions() override = default; 3908 3909 Error 3910 SetOptionValue(uint32_t option_idx, const char *option_arg) override 3911 { 3912 Error error; 3913 const int short_option = m_getopt_table[option_idx].val; 3914 3915 switch (short_option) 3916 { 3917 case 'f': 3918 m_outfile.SetFile(option_arg, true); 3919 if (m_outfile.Exists()) 3920 { 3921 m_outfile.Clear(); 3922 error.SetErrorStringWithFormat("file already exists: '%s'", option_arg); 3923 } 3924 break; 3925 default: 3926 error.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 3927 break; 3928 } 3929 return error; 3930 } 3931 3932 void 3933 OptionParsingStarting() override 3934 { 3935 m_outfile.Clear(); 3936 } 3937 3938 const OptionDefinition * 3939 GetDefinitions() override 3940 { 3941 return g_option_table; 3942 } 3943 3944 static OptionDefinition g_option_table[]; 3945 FileSpec m_outfile; 3946 }; 3947 3948 bool 3949 DoExecute(Args &command, CommandReturnObject &result) override 3950 { 3951 const size_t argc = command.GetArgumentCount(); 3952 if (argc < 1) 3953 { 3954 result.AppendErrorWithFormat("'%s' takes 1 argument, an allocation ID. As well as an optional -f argument", 3955 m_cmd_name.c_str()); 3956 result.SetStatus(eReturnStatusFailed); 3957 return false; 3958 } 3959 3960 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 3961 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript)); 3962 3963 const char *id_cstr = command.GetArgumentAtIndex(0); 3964 bool convert_complete = false; 3965 const uint32_t id = StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete); 3966 if (!convert_complete) 3967 { 3968 result.AppendErrorWithFormat("invalid allocation id argument '%s'", id_cstr); 3969 result.SetStatus(eReturnStatusFailed); 3970 return false; 3971 } 3972 3973 Stream *output_strm = nullptr; 3974 StreamFile outfile_stream; 3975 const FileSpec &outfile_spec = m_options.m_outfile; // Dump allocation to file instead 3976 if (outfile_spec) 3977 { 3978 // Open output file 3979 char path[256]; 3980 outfile_spec.GetPath(path, sizeof(path)); 3981 if (outfile_stream.GetFile().Open(path, File::eOpenOptionWrite | File::eOpenOptionCanCreate).Success()) 3982 { 3983 output_strm = &outfile_stream; 3984 result.GetOutputStream().Printf("Results written to '%s'", path); 3985 result.GetOutputStream().EOL(); 3986 } 3987 else 3988 { 3989 result.AppendErrorWithFormat("Couldn't open file '%s'", path); 3990 result.SetStatus(eReturnStatusFailed); 3991 return false; 3992 } 3993 } 3994 else 3995 output_strm = &result.GetOutputStream(); 3996 3997 assert(output_strm != nullptr); 3998 bool success = runtime->DumpAllocation(*output_strm, m_exe_ctx.GetFramePtr(), id); 3999 4000 if (success) 4001 result.SetStatus(eReturnStatusSuccessFinishResult); 4002 else 4003 result.SetStatus(eReturnStatusFailed); 4004 4005 return true; 4006 } 4007 4008 private: 4009 CommandOptions m_options; 4010 }; 4011 4012 OptionDefinition CommandObjectRenderScriptRuntimeAllocationDump::CommandOptions::g_option_table[] = { 4013 {LLDB_OPT_SET_1, false, "file", 'f', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeFilename, 4014 "Print results to specified file instead of command line."}, 4015 {0, false, nullptr, 0, 0, nullptr, nullptr, 0, eArgTypeNone, nullptr}}; 4016 4017 class CommandObjectRenderScriptRuntimeAllocationList : public CommandObjectParsed 4018 { 4019 public: 4020 CommandObjectRenderScriptRuntimeAllocationList(CommandInterpreter &interpreter) 4021 : CommandObjectParsed(interpreter, "renderscript allocation list", 4022 "List renderscript allocations and their information.", "renderscript allocation list", 4023 eCommandRequiresProcess | eCommandProcessMustBeLaunched), 4024 m_options(interpreter) 4025 { 4026 } 4027 4028 ~CommandObjectRenderScriptRuntimeAllocationList() override = default; 4029 4030 Options * 4031 GetOptions() override 4032 { 4033 return &m_options; 4034 } 4035 4036 class CommandOptions : public Options 4037 { 4038 public: 4039 CommandOptions(CommandInterpreter &interpreter) : Options(interpreter), m_id(0) {} 4040 4041 ~CommandOptions() override = default; 4042 4043 Error 4044 SetOptionValue(uint32_t option_idx, const char *option_arg) override 4045 { 4046 Error error; 4047 const int short_option = m_getopt_table[option_idx].val; 4048 4049 switch (short_option) 4050 { 4051 case 'i': 4052 bool success; 4053 m_id = StringConvert::ToUInt32(option_arg, 0, 0, &success); 4054 if (!success) 4055 error.SetErrorStringWithFormat("invalid integer value for option '%c'", short_option); 4056 break; 4057 default: 4058 error.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 4059 break; 4060 } 4061 return error; 4062 } 4063 4064 void 4065 OptionParsingStarting() override 4066 { 4067 m_id = 0; 4068 } 4069 4070 const OptionDefinition * 4071 GetDefinitions() override 4072 { 4073 return g_option_table; 4074 } 4075 4076 static OptionDefinition g_option_table[]; 4077 uint32_t m_id; 4078 }; 4079 4080 bool 4081 DoExecute(Args &command, CommandReturnObject &result) override 4082 { 4083 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4084 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript)); 4085 runtime->ListAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr(), m_options.m_id); 4086 result.SetStatus(eReturnStatusSuccessFinishResult); 4087 return true; 4088 } 4089 4090 private: 4091 CommandOptions m_options; 4092 }; 4093 4094 OptionDefinition CommandObjectRenderScriptRuntimeAllocationList::CommandOptions::g_option_table[] = { 4095 {LLDB_OPT_SET_1, false, "id", 'i', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeIndex, 4096 "Only show details of a single allocation with specified id."}, 4097 {0, false, nullptr, 0, 0, nullptr, nullptr, 0, eArgTypeNone, nullptr}}; 4098 4099 class CommandObjectRenderScriptRuntimeAllocationLoad : public CommandObjectParsed 4100 { 4101 public: 4102 CommandObjectRenderScriptRuntimeAllocationLoad(CommandInterpreter &interpreter) 4103 : CommandObjectParsed( 4104 interpreter, "renderscript allocation load", "Loads renderscript allocation contents from a file.", 4105 "renderscript allocation load <ID> <filename>", eCommandRequiresProcess | eCommandProcessMustBeLaunched) 4106 { 4107 } 4108 4109 ~CommandObjectRenderScriptRuntimeAllocationLoad() override = default; 4110 4111 bool 4112 DoExecute(Args &command, CommandReturnObject &result) override 4113 { 4114 const size_t argc = command.GetArgumentCount(); 4115 if (argc != 2) 4116 { 4117 result.AppendErrorWithFormat("'%s' takes 2 arguments, an allocation ID and filename to read from.", 4118 m_cmd_name.c_str()); 4119 result.SetStatus(eReturnStatusFailed); 4120 return false; 4121 } 4122 4123 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4124 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript)); 4125 4126 const char *id_cstr = command.GetArgumentAtIndex(0); 4127 bool convert_complete = false; 4128 const uint32_t id = StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete); 4129 if (!convert_complete) 4130 { 4131 result.AppendErrorWithFormat("invalid allocation id argument '%s'", id_cstr); 4132 result.SetStatus(eReturnStatusFailed); 4133 return false; 4134 } 4135 4136 const char *filename = command.GetArgumentAtIndex(1); 4137 bool success = runtime->LoadAllocation(result.GetOutputStream(), id, filename, m_exe_ctx.GetFramePtr()); 4138 4139 if (success) 4140 result.SetStatus(eReturnStatusSuccessFinishResult); 4141 else 4142 result.SetStatus(eReturnStatusFailed); 4143 4144 return true; 4145 } 4146 }; 4147 4148 class CommandObjectRenderScriptRuntimeAllocationSave : public CommandObjectParsed 4149 { 4150 public: 4151 CommandObjectRenderScriptRuntimeAllocationSave(CommandInterpreter &interpreter) 4152 : CommandObjectParsed( 4153 interpreter, "renderscript allocation save", "Write renderscript allocation contents to a file.", 4154 "renderscript allocation save <ID> <filename>", eCommandRequiresProcess | eCommandProcessMustBeLaunched) 4155 { 4156 } 4157 4158 ~CommandObjectRenderScriptRuntimeAllocationSave() override = default; 4159 4160 bool 4161 DoExecute(Args &command, CommandReturnObject &result) override 4162 { 4163 const size_t argc = command.GetArgumentCount(); 4164 if (argc != 2) 4165 { 4166 result.AppendErrorWithFormat("'%s' takes 2 arguments, an allocation ID and filename to read from.", 4167 m_cmd_name.c_str()); 4168 result.SetStatus(eReturnStatusFailed); 4169 return false; 4170 } 4171 4172 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4173 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript)); 4174 4175 const char *id_cstr = command.GetArgumentAtIndex(0); 4176 bool convert_complete = false; 4177 const uint32_t id = StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete); 4178 if (!convert_complete) 4179 { 4180 result.AppendErrorWithFormat("invalid allocation id argument '%s'", id_cstr); 4181 result.SetStatus(eReturnStatusFailed); 4182 return false; 4183 } 4184 4185 const char *filename = command.GetArgumentAtIndex(1); 4186 bool success = runtime->SaveAllocation(result.GetOutputStream(), id, filename, m_exe_ctx.GetFramePtr()); 4187 4188 if (success) 4189 result.SetStatus(eReturnStatusSuccessFinishResult); 4190 else 4191 result.SetStatus(eReturnStatusFailed); 4192 4193 return true; 4194 } 4195 }; 4196 4197 class CommandObjectRenderScriptRuntimeAllocationRefresh : public CommandObjectParsed 4198 { 4199 public: 4200 CommandObjectRenderScriptRuntimeAllocationRefresh(CommandInterpreter &interpreter) 4201 : CommandObjectParsed(interpreter, "renderscript allocation refresh", 4202 "Recomputes the details of all allocations.", "renderscript allocation refresh", 4203 eCommandRequiresProcess | eCommandProcessMustBeLaunched) 4204 { 4205 } 4206 4207 ~CommandObjectRenderScriptRuntimeAllocationRefresh() override = default; 4208 4209 bool 4210 DoExecute(Args &command, CommandReturnObject &result) override 4211 { 4212 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4213 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript)); 4214 4215 bool success = runtime->RecomputeAllAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr()); 4216 4217 if (success) 4218 { 4219 result.SetStatus(eReturnStatusSuccessFinishResult); 4220 return true; 4221 } 4222 else 4223 { 4224 result.SetStatus(eReturnStatusFailed); 4225 return false; 4226 } 4227 } 4228 }; 4229 4230 class CommandObjectRenderScriptRuntimeAllocation : public CommandObjectMultiword 4231 { 4232 public: 4233 CommandObjectRenderScriptRuntimeAllocation(CommandInterpreter &interpreter) 4234 : CommandObjectMultiword(interpreter, "renderscript allocation", 4235 "Commands that deal with renderscript allocations.", nullptr) 4236 { 4237 LoadSubCommand("list", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationList(interpreter))); 4238 LoadSubCommand("dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationDump(interpreter))); 4239 LoadSubCommand("save", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationSave(interpreter))); 4240 LoadSubCommand("load", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationLoad(interpreter))); 4241 LoadSubCommand("refresh", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationRefresh(interpreter))); 4242 } 4243 4244 ~CommandObjectRenderScriptRuntimeAllocation() override = default; 4245 }; 4246 4247 class CommandObjectRenderScriptRuntimeStatus : public CommandObjectParsed 4248 { 4249 public: 4250 CommandObjectRenderScriptRuntimeStatus(CommandInterpreter &interpreter) 4251 : CommandObjectParsed(interpreter, "renderscript status", "Displays current renderscript runtime status.", 4252 "renderscript status", eCommandRequiresProcess | eCommandProcessMustBeLaunched) 4253 { 4254 } 4255 4256 ~CommandObjectRenderScriptRuntimeStatus() override = default; 4257 4258 bool 4259 DoExecute(Args &command, CommandReturnObject &result) override 4260 { 4261 RenderScriptRuntime *runtime = 4262 (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript); 4263 runtime->Status(result.GetOutputStream()); 4264 result.SetStatus(eReturnStatusSuccessFinishResult); 4265 return true; 4266 } 4267 }; 4268 4269 class CommandObjectRenderScriptRuntime : public CommandObjectMultiword 4270 { 4271 public: 4272 CommandObjectRenderScriptRuntime(CommandInterpreter &interpreter) 4273 : CommandObjectMultiword(interpreter, "renderscript", "A set of commands for operating on renderscript.", 4274 "renderscript <subcommand> [<subcommand-options>]") 4275 { 4276 LoadSubCommand("module", CommandObjectSP(new CommandObjectRenderScriptRuntimeModule(interpreter))); 4277 LoadSubCommand("status", CommandObjectSP(new CommandObjectRenderScriptRuntimeStatus(interpreter))); 4278 LoadSubCommand("kernel", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernel(interpreter))); 4279 LoadSubCommand("context", CommandObjectSP(new CommandObjectRenderScriptRuntimeContext(interpreter))); 4280 LoadSubCommand("allocation", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocation(interpreter))); 4281 } 4282 4283 ~CommandObjectRenderScriptRuntime() override = default; 4284 }; 4285 4286 void 4287 RenderScriptRuntime::Initiate() 4288 { 4289 assert(!m_initiated); 4290 } 4291 4292 RenderScriptRuntime::RenderScriptRuntime(Process *process) 4293 : lldb_private::CPPLanguageRuntime(process), 4294 m_initiated(false), 4295 m_debuggerPresentFlagged(false), 4296 m_breakAllKernels(false) 4297 { 4298 ModulesDidLoad(process->GetTarget().GetImages()); 4299 } 4300 4301 lldb::CommandObjectSP 4302 RenderScriptRuntime::GetCommandObject(lldb_private::CommandInterpreter &interpreter) 4303 { 4304 return CommandObjectSP(new CommandObjectRenderScriptRuntime(interpreter)); 4305 } 4306 4307 RenderScriptRuntime::~RenderScriptRuntime() = default; 4308