1 //===-- RenderScriptRuntime.cpp ---------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 // C Includes
11 // C++ Includes
12 // Other libraries and framework includes
13 #include "llvm/ADT/StringSwitch.h"
14 
15 // Project includes
16 #include "RenderScriptRuntime.h"
17 #include "RenderScriptScriptGroup.h"
18 
19 #include "lldb/Breakpoint/StoppointCallbackContext.h"
20 #include "lldb/Core/Debugger.h"
21 #include "lldb/Core/DumpDataExtractor.h"
22 #include "lldb/Core/PluginManager.h"
23 #include "lldb/Core/ValueObjectVariable.h"
24 #include "lldb/DataFormatters/DumpValueObjectOptions.h"
25 #include "lldb/Expression/UserExpression.h"
26 #include "lldb/Host/OptionParser.h"
27 #include "lldb/Host/StringConvert.h"
28 #include "lldb/Interpreter/CommandInterpreter.h"
29 #include "lldb/Interpreter/CommandObjectMultiword.h"
30 #include "lldb/Interpreter/CommandReturnObject.h"
31 #include "lldb/Interpreter/Options.h"
32 #include "lldb/Symbol/Function.h"
33 #include "lldb/Symbol/Symbol.h"
34 #include "lldb/Symbol/Type.h"
35 #include "lldb/Symbol/VariableList.h"
36 #include "lldb/Target/Process.h"
37 #include "lldb/Target/RegisterContext.h"
38 #include "lldb/Target/SectionLoadList.h"
39 #include "lldb/Target/Target.h"
40 #include "lldb/Target/Thread.h"
41 #include "lldb/Utility/Args.h"
42 #include "lldb/Utility/ConstString.h"
43 #include "lldb/Utility/Log.h"
44 #include "lldb/Utility/RegisterValue.h"
45 #include "lldb/Utility/RegularExpression.h"
46 #include "lldb/Utility/Status.h"
47 
48 using namespace lldb;
49 using namespace lldb_private;
50 using namespace lldb_renderscript;
51 
52 #define FMT_COORD "(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ")"
53 
54 namespace {
55 
56 // The empirical_type adds a basic level of validation to arbitrary data
57 // allowing us to track if data has been discovered and stored or not. An
58 // empirical_type will be marked as valid only if it has been explicitly
59 // assigned to.
60 template <typename type_t> class empirical_type {
61 public:
62   // Ctor. Contents is invalid when constructed.
63   empirical_type() : valid(false) {}
64 
65   // Return true and copy contents to out if valid, else return false.
66   bool get(type_t &out) const {
67     if (valid)
68       out = data;
69     return valid;
70   }
71 
72   // Return a pointer to the contents or nullptr if it was not valid.
73   const type_t *get() const { return valid ? &data : nullptr; }
74 
75   // Assign data explicitly.
76   void set(const type_t in) {
77     data = in;
78     valid = true;
79   }
80 
81   // Mark contents as invalid.
82   void invalidate() { valid = false; }
83 
84   // Returns true if this type contains valid data.
85   bool isValid() const { return valid; }
86 
87   // Assignment operator.
88   empirical_type<type_t> &operator=(const type_t in) {
89     set(in);
90     return *this;
91   }
92 
93   // Dereference operator returns contents.
94   // Warning: Will assert if not valid so use only when you know data is valid.
95   const type_t &operator*() const {
96     assert(valid);
97     return data;
98   }
99 
100 protected:
101   bool valid;
102   type_t data;
103 };
104 
105 // ArgItem is used by the GetArgs() function when reading function arguments
106 // from the target.
107 struct ArgItem {
108   enum { ePointer, eInt32, eInt64, eLong, eBool } type;
109 
110   uint64_t value;
111 
112   explicit operator uint64_t() const { return value; }
113 };
114 
115 // Context structure to be passed into GetArgsXXX(), argument reading functions
116 // below.
117 struct GetArgsCtx {
118   RegisterContext *reg_ctx;
119   Process *process;
120 };
121 
122 bool GetArgsX86(const GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
123   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
124 
125   Status err;
126 
127   // get the current stack pointer
128   uint64_t sp = ctx.reg_ctx->GetSP();
129 
130   for (size_t i = 0; i < num_args; ++i) {
131     ArgItem &arg = arg_list[i];
132     // advance up the stack by one argument
133     sp += sizeof(uint32_t);
134     // get the argument type size
135     size_t arg_size = sizeof(uint32_t);
136     // read the argument from memory
137     arg.value = 0;
138     Status err;
139     size_t read =
140         ctx.process->ReadMemory(sp, &arg.value, sizeof(uint32_t), err);
141     if (read != arg_size || !err.Success()) {
142       if (log)
143         log->Printf("%s - error reading argument: %" PRIu64 " '%s'",
144                     __FUNCTION__, uint64_t(i), err.AsCString());
145       return false;
146     }
147   }
148   return true;
149 }
150 
151 bool GetArgsX86_64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
152   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
153 
154   // number of arguments passed in registers
155   static const uint32_t args_in_reg = 6;
156   // register passing order
157   static const std::array<const char *, args_in_reg> reg_names{
158       {"rdi", "rsi", "rdx", "rcx", "r8", "r9"}};
159   // argument type to size mapping
160   static const std::array<size_t, 5> arg_size{{
161       8, // ePointer,
162       4, // eInt32,
163       8, // eInt64,
164       8, // eLong,
165       4, // eBool,
166   }};
167 
168   Status err;
169 
170   // get the current stack pointer
171   uint64_t sp = ctx.reg_ctx->GetSP();
172   // step over the return address
173   sp += sizeof(uint64_t);
174 
175   // check the stack alignment was correct (16 byte aligned)
176   if ((sp & 0xf) != 0x0) {
177     if (log)
178       log->Printf("%s - stack misaligned", __FUNCTION__);
179     return false;
180   }
181 
182   // find the start of arguments on the stack
183   uint64_t sp_offset = 0;
184   for (uint32_t i = args_in_reg; i < num_args; ++i) {
185     sp_offset += arg_size[arg_list[i].type];
186   }
187   // round up to multiple of 16
188   sp_offset = (sp_offset + 0xf) & 0xf;
189   sp += sp_offset;
190 
191   for (size_t i = 0; i < num_args; ++i) {
192     bool success = false;
193     ArgItem &arg = arg_list[i];
194     // arguments passed in registers
195     if (i < args_in_reg) {
196       const RegisterInfo *reg =
197           ctx.reg_ctx->GetRegisterInfoByName(reg_names[i]);
198       RegisterValue reg_val;
199       if (ctx.reg_ctx->ReadRegister(reg, reg_val))
200         arg.value = reg_val.GetAsUInt64(0, &success);
201     }
202     // arguments passed on the stack
203     else {
204       // get the argument type size
205       const size_t size = arg_size[arg_list[i].type];
206       // read the argument from memory
207       arg.value = 0;
208       // note: due to little endian layout reading 4 or 8 bytes will give the
209       // correct value.
210       size_t read = ctx.process->ReadMemory(sp, &arg.value, size, err);
211       success = (err.Success() && read == size);
212       // advance past this argument
213       sp -= size;
214     }
215     // fail if we couldn't read this argument
216     if (!success) {
217       if (log)
218         log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s",
219                     __FUNCTION__, uint64_t(i), err.AsCString("n/a"));
220       return false;
221     }
222   }
223   return true;
224 }
225 
226 bool GetArgsArm(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
227   // number of arguments passed in registers
228   static const uint32_t args_in_reg = 4;
229 
230   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
231 
232   Status err;
233 
234   // get the current stack pointer
235   uint64_t sp = ctx.reg_ctx->GetSP();
236 
237   for (size_t i = 0; i < num_args; ++i) {
238     bool success = false;
239     ArgItem &arg = arg_list[i];
240     // arguments passed in registers
241     if (i < args_in_reg) {
242       const RegisterInfo *reg = ctx.reg_ctx->GetRegisterInfoAtIndex(i);
243       RegisterValue reg_val;
244       if (ctx.reg_ctx->ReadRegister(reg, reg_val))
245         arg.value = reg_val.GetAsUInt32(0, &success);
246     }
247     // arguments passed on the stack
248     else {
249       // get the argument type size
250       const size_t arg_size = sizeof(uint32_t);
251       // clear all 64bits
252       arg.value = 0;
253       // read this argument from memory
254       size_t bytes_read =
255           ctx.process->ReadMemory(sp, &arg.value, arg_size, err);
256       success = (err.Success() && bytes_read == arg_size);
257       // advance the stack pointer
258       sp += sizeof(uint32_t);
259     }
260     // fail if we couldn't read this argument
261     if (!success) {
262       if (log)
263         log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s",
264                     __FUNCTION__, uint64_t(i), err.AsCString("n/a"));
265       return false;
266     }
267   }
268   return true;
269 }
270 
271 bool GetArgsAarch64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
272   // number of arguments passed in registers
273   static const uint32_t args_in_reg = 8;
274 
275   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
276 
277   for (size_t i = 0; i < num_args; ++i) {
278     bool success = false;
279     ArgItem &arg = arg_list[i];
280     // arguments passed in registers
281     if (i < args_in_reg) {
282       const RegisterInfo *reg = ctx.reg_ctx->GetRegisterInfoAtIndex(i);
283       RegisterValue reg_val;
284       if (ctx.reg_ctx->ReadRegister(reg, reg_val))
285         arg.value = reg_val.GetAsUInt64(0, &success);
286     }
287     // arguments passed on the stack
288     else {
289       if (log)
290         log->Printf("%s - reading arguments spilled to stack not implemented",
291                     __FUNCTION__);
292     }
293     // fail if we couldn't read this argument
294     if (!success) {
295       if (log)
296         log->Printf("%s - error reading argument: %" PRIu64, __FUNCTION__,
297                     uint64_t(i));
298       return false;
299     }
300   }
301   return true;
302 }
303 
304 bool GetArgsMipsel(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
305   // number of arguments passed in registers
306   static const uint32_t args_in_reg = 4;
307   // register file offset to first argument
308   static const uint32_t reg_offset = 4;
309 
310   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
311 
312   Status err;
313 
314   // find offset to arguments on the stack (+16 to skip over a0-a3 shadow
315   // space)
316   uint64_t sp = ctx.reg_ctx->GetSP() + 16;
317 
318   for (size_t i = 0; i < num_args; ++i) {
319     bool success = false;
320     ArgItem &arg = arg_list[i];
321     // arguments passed in registers
322     if (i < args_in_reg) {
323       const RegisterInfo *reg =
324           ctx.reg_ctx->GetRegisterInfoAtIndex(i + reg_offset);
325       RegisterValue reg_val;
326       if (ctx.reg_ctx->ReadRegister(reg, reg_val))
327         arg.value = reg_val.GetAsUInt64(0, &success);
328     }
329     // arguments passed on the stack
330     else {
331       const size_t arg_size = sizeof(uint32_t);
332       arg.value = 0;
333       size_t bytes_read =
334           ctx.process->ReadMemory(sp, &arg.value, arg_size, err);
335       success = (err.Success() && bytes_read == arg_size);
336       // advance the stack pointer
337       sp += arg_size;
338     }
339     // fail if we couldn't read this argument
340     if (!success) {
341       if (log)
342         log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s",
343                     __FUNCTION__, uint64_t(i), err.AsCString("n/a"));
344       return false;
345     }
346   }
347   return true;
348 }
349 
350 bool GetArgsMips64el(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
351   // number of arguments passed in registers
352   static const uint32_t args_in_reg = 8;
353   // register file offset to first argument
354   static const uint32_t reg_offset = 4;
355 
356   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
357 
358   Status err;
359 
360   // get the current stack pointer
361   uint64_t sp = ctx.reg_ctx->GetSP();
362 
363   for (size_t i = 0; i < num_args; ++i) {
364     bool success = false;
365     ArgItem &arg = arg_list[i];
366     // arguments passed in registers
367     if (i < args_in_reg) {
368       const RegisterInfo *reg =
369           ctx.reg_ctx->GetRegisterInfoAtIndex(i + reg_offset);
370       RegisterValue reg_val;
371       if (ctx.reg_ctx->ReadRegister(reg, reg_val))
372         arg.value = reg_val.GetAsUInt64(0, &success);
373     }
374     // arguments passed on the stack
375     else {
376       // get the argument type size
377       const size_t arg_size = sizeof(uint64_t);
378       // clear all 64bits
379       arg.value = 0;
380       // read this argument from memory
381       size_t bytes_read =
382           ctx.process->ReadMemory(sp, &arg.value, arg_size, err);
383       success = (err.Success() && bytes_read == arg_size);
384       // advance the stack pointer
385       sp += arg_size;
386     }
387     // fail if we couldn't read this argument
388     if (!success) {
389       if (log)
390         log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s",
391                     __FUNCTION__, uint64_t(i), err.AsCString("n/a"));
392       return false;
393     }
394   }
395   return true;
396 }
397 
398 bool GetArgs(ExecutionContext &exe_ctx, ArgItem *arg_list, size_t num_args) {
399   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
400 
401   // verify that we have a target
402   if (!exe_ctx.GetTargetPtr()) {
403     if (log)
404       log->Printf("%s - invalid target", __FUNCTION__);
405     return false;
406   }
407 
408   GetArgsCtx ctx = {exe_ctx.GetRegisterContext(), exe_ctx.GetProcessPtr()};
409   assert(ctx.reg_ctx && ctx.process);
410 
411   // dispatch based on architecture
412   switch (exe_ctx.GetTargetPtr()->GetArchitecture().GetMachine()) {
413   case llvm::Triple::ArchType::x86:
414     return GetArgsX86(ctx, arg_list, num_args);
415 
416   case llvm::Triple::ArchType::x86_64:
417     return GetArgsX86_64(ctx, arg_list, num_args);
418 
419   case llvm::Triple::ArchType::arm:
420     return GetArgsArm(ctx, arg_list, num_args);
421 
422   case llvm::Triple::ArchType::aarch64:
423     return GetArgsAarch64(ctx, arg_list, num_args);
424 
425   case llvm::Triple::ArchType::mipsel:
426     return GetArgsMipsel(ctx, arg_list, num_args);
427 
428   case llvm::Triple::ArchType::mips64el:
429     return GetArgsMips64el(ctx, arg_list, num_args);
430 
431   default:
432     // unsupported architecture
433     if (log) {
434       log->Printf(
435           "%s - architecture not supported: '%s'", __FUNCTION__,
436           exe_ctx.GetTargetRef().GetArchitecture().GetArchitectureName());
437     }
438     return false;
439   }
440 }
441 
442 bool IsRenderScriptScriptModule(ModuleSP module) {
443   if (!module)
444     return false;
445   return module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"),
446                                                 eSymbolTypeData) != nullptr;
447 }
448 
449 bool ParseCoordinate(llvm::StringRef coord_s, RSCoordinate &coord) {
450   // takes an argument of the form 'num[,num][,num]'. Where 'coord_s' is a
451   // comma separated 1,2 or 3-dimensional coordinate with the whitespace
452   // trimmed. Missing coordinates are defaulted to zero. If parsing of any
453   // elements fails the contents of &coord are undefined and `false` is
454   // returned, `true` otherwise
455 
456   RegularExpression regex;
457   RegularExpression::Match regex_match(3);
458 
459   bool matched = false;
460   if (regex.Compile(llvm::StringRef("^([0-9]+),([0-9]+),([0-9]+)$")) &&
461       regex.Execute(coord_s, &regex_match))
462     matched = true;
463   else if (regex.Compile(llvm::StringRef("^([0-9]+),([0-9]+)$")) &&
464            regex.Execute(coord_s, &regex_match))
465     matched = true;
466   else if (regex.Compile(llvm::StringRef("^([0-9]+)$")) &&
467            regex.Execute(coord_s, &regex_match))
468     matched = true;
469 
470   if (!matched)
471     return false;
472 
473   auto get_index = [&](int idx, uint32_t &i) -> bool {
474     std::string group;
475     errno = 0;
476     if (regex_match.GetMatchAtIndex(coord_s.str().c_str(), idx + 1, group))
477       return !llvm::StringRef(group).getAsInteger<uint32_t>(10, i);
478     return true;
479   };
480 
481   return get_index(0, coord.x) && get_index(1, coord.y) &&
482          get_index(2, coord.z);
483 }
484 
485 bool SkipPrologue(lldb::ModuleSP &module, Address &addr) {
486   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
487   SymbolContext sc;
488   uint32_t resolved_flags =
489       module->ResolveSymbolContextForAddress(addr, eSymbolContextFunction, sc);
490   if (resolved_flags & eSymbolContextFunction) {
491     if (sc.function) {
492       const uint32_t offset = sc.function->GetPrologueByteSize();
493       ConstString name = sc.GetFunctionName();
494       if (offset)
495         addr.Slide(offset);
496       if (log)
497         log->Printf("%s: Prologue offset for %s is %" PRIu32, __FUNCTION__,
498                     name.AsCString(), offset);
499     }
500     return true;
501   } else
502     return false;
503 }
504 } // anonymous namespace
505 
506 // The ScriptDetails class collects data associated with a single script
507 // instance.
508 struct RenderScriptRuntime::ScriptDetails {
509   ~ScriptDetails() = default;
510 
511   enum ScriptType { eScript, eScriptC };
512 
513   // The derived type of the script.
514   empirical_type<ScriptType> type;
515   // The name of the original source file.
516   empirical_type<std::string> res_name;
517   // Path to script .so file on the device.
518   empirical_type<std::string> shared_lib;
519   // Directory where kernel objects are cached on device.
520   empirical_type<std::string> cache_dir;
521   // Pointer to the context which owns this script.
522   empirical_type<lldb::addr_t> context;
523   // Pointer to the script object itself.
524   empirical_type<lldb::addr_t> script;
525 };
526 
527 // This Element class represents the Element object in RS, defining the type
528 // associated with an Allocation.
529 struct RenderScriptRuntime::Element {
530   // Taken from rsDefines.h
531   enum DataKind {
532     RS_KIND_USER,
533     RS_KIND_PIXEL_L = 7,
534     RS_KIND_PIXEL_A,
535     RS_KIND_PIXEL_LA,
536     RS_KIND_PIXEL_RGB,
537     RS_KIND_PIXEL_RGBA,
538     RS_KIND_PIXEL_DEPTH,
539     RS_KIND_PIXEL_YUV,
540     RS_KIND_INVALID = 100
541   };
542 
543   // Taken from rsDefines.h
544   enum DataType {
545     RS_TYPE_NONE = 0,
546     RS_TYPE_FLOAT_16,
547     RS_TYPE_FLOAT_32,
548     RS_TYPE_FLOAT_64,
549     RS_TYPE_SIGNED_8,
550     RS_TYPE_SIGNED_16,
551     RS_TYPE_SIGNED_32,
552     RS_TYPE_SIGNED_64,
553     RS_TYPE_UNSIGNED_8,
554     RS_TYPE_UNSIGNED_16,
555     RS_TYPE_UNSIGNED_32,
556     RS_TYPE_UNSIGNED_64,
557     RS_TYPE_BOOLEAN,
558 
559     RS_TYPE_UNSIGNED_5_6_5,
560     RS_TYPE_UNSIGNED_5_5_5_1,
561     RS_TYPE_UNSIGNED_4_4_4_4,
562 
563     RS_TYPE_MATRIX_4X4,
564     RS_TYPE_MATRIX_3X3,
565     RS_TYPE_MATRIX_2X2,
566 
567     RS_TYPE_ELEMENT = 1000,
568     RS_TYPE_TYPE,
569     RS_TYPE_ALLOCATION,
570     RS_TYPE_SAMPLER,
571     RS_TYPE_SCRIPT,
572     RS_TYPE_MESH,
573     RS_TYPE_PROGRAM_FRAGMENT,
574     RS_TYPE_PROGRAM_VERTEX,
575     RS_TYPE_PROGRAM_RASTER,
576     RS_TYPE_PROGRAM_STORE,
577     RS_TYPE_FONT,
578 
579     RS_TYPE_INVALID = 10000
580   };
581 
582   std::vector<Element> children; // Child Element fields for structs
583   empirical_type<lldb::addr_t>
584       element_ptr; // Pointer to the RS Element of the Type
585   empirical_type<DataType>
586       type; // Type of each data pointer stored by the allocation
587   empirical_type<DataKind>
588       type_kind; // Defines pixel type if Allocation is created from an image
589   empirical_type<uint32_t>
590       type_vec_size; // Vector size of each data point, e.g '4' for uchar4
591   empirical_type<uint32_t> field_count; // Number of Subelements
592   empirical_type<uint32_t> datum_size;  // Size of a single Element with padding
593   empirical_type<uint32_t> padding;     // Number of padding bytes
594   empirical_type<uint32_t>
595       array_size;        // Number of items in array, only needed for structs
596   ConstString type_name; // Name of type, only needed for structs
597 
598   static const ConstString &
599   GetFallbackStructName(); // Print this as the type name of a struct Element
600                            // If we can't resolve the actual struct name
601 
602   bool ShouldRefresh() const {
603     const bool valid_ptr = element_ptr.isValid() && *element_ptr.get() != 0x0;
604     const bool valid_type =
605         type.isValid() && type_vec_size.isValid() && type_kind.isValid();
606     return !valid_ptr || !valid_type || !datum_size.isValid();
607   }
608 };
609 
610 // This AllocationDetails class collects data associated with a single
611 // allocation instance.
612 struct RenderScriptRuntime::AllocationDetails {
613   struct Dimension {
614     uint32_t dim_1;
615     uint32_t dim_2;
616     uint32_t dim_3;
617     uint32_t cube_map;
618 
619     Dimension() {
620       dim_1 = 0;
621       dim_2 = 0;
622       dim_3 = 0;
623       cube_map = 0;
624     }
625   };
626 
627   // The FileHeader struct specifies the header we use for writing allocations
628   // to a binary file. Our format begins with the ASCII characters "RSAD",
629   // identifying the file as an allocation dump. Member variables dims and
630   // hdr_size are then written consecutively, immediately followed by an
631   // instance of the ElementHeader struct. Because Elements can contain
632   // subelements, there may be more than one instance of the ElementHeader
633   // struct. With this first instance being the root element, and the other
634   // instances being the root's descendants. To identify which instances are an
635   // ElementHeader's children, each struct is immediately followed by a
636   // sequence of consecutive offsets to the start of its child structs. These
637   // offsets are
638   // 4 bytes in size, and the 0 offset signifies no more children.
639   struct FileHeader {
640     uint8_t ident[4];  // ASCII 'RSAD' identifying the file
641     uint32_t dims[3];  // Dimensions
642     uint16_t hdr_size; // Header size in bytes, including all element headers
643   };
644 
645   struct ElementHeader {
646     uint16_t type;         // DataType enum
647     uint32_t kind;         // DataKind enum
648     uint32_t element_size; // Size of a single element, including padding
649     uint16_t vector_size;  // Vector width
650     uint32_t array_size;   // Number of elements in array
651   };
652 
653   // Monotonically increasing from 1
654   static uint32_t ID;
655 
656   // Maps Allocation DataType enum and vector size to printable strings using
657   // mapping from RenderScript numerical types summary documentation
658   static const char *RsDataTypeToString[][4];
659 
660   // Maps Allocation DataKind enum to printable strings
661   static const char *RsDataKindToString[];
662 
663   // Maps allocation types to format sizes for printing.
664   static const uint32_t RSTypeToFormat[][3];
665 
666   // Give each allocation an ID as a way
667   // for commands to reference it.
668   const uint32_t id;
669 
670   // Allocation Element type
671   RenderScriptRuntime::Element element;
672   // Dimensions of the Allocation
673   empirical_type<Dimension> dimension;
674   // Pointer to address of the RS Allocation
675   empirical_type<lldb::addr_t> address;
676   // Pointer to the data held by the Allocation
677   empirical_type<lldb::addr_t> data_ptr;
678   // Pointer to the RS Type of the Allocation
679   empirical_type<lldb::addr_t> type_ptr;
680   // Pointer to the RS Context of the Allocation
681   empirical_type<lldb::addr_t> context;
682   // Size of the allocation
683   empirical_type<uint32_t> size;
684   // Stride between rows of the allocation
685   empirical_type<uint32_t> stride;
686 
687   // Give each allocation an id, so we can reference it in user commands.
688   AllocationDetails() : id(ID++) {}
689 
690   bool ShouldRefresh() const {
691     bool valid_ptrs = data_ptr.isValid() && *data_ptr.get() != 0x0;
692     valid_ptrs = valid_ptrs && type_ptr.isValid() && *type_ptr.get() != 0x0;
693     return !valid_ptrs || !dimension.isValid() || !size.isValid() ||
694            element.ShouldRefresh();
695   }
696 };
697 
698 const ConstString &RenderScriptRuntime::Element::GetFallbackStructName() {
699   static const ConstString FallbackStructName("struct");
700   return FallbackStructName;
701 }
702 
703 uint32_t RenderScriptRuntime::AllocationDetails::ID = 1;
704 
705 const char *RenderScriptRuntime::AllocationDetails::RsDataKindToString[] = {
706     "User",       "Undefined",   "Undefined", "Undefined",
707     "Undefined",  "Undefined",   "Undefined", // Enum jumps from 0 to 7
708     "L Pixel",    "A Pixel",     "LA Pixel",  "RGB Pixel",
709     "RGBA Pixel", "Pixel Depth", "YUV Pixel"};
710 
711 const char *RenderScriptRuntime::AllocationDetails::RsDataTypeToString[][4] = {
712     {"None", "None", "None", "None"},
713     {"half", "half2", "half3", "half4"},
714     {"float", "float2", "float3", "float4"},
715     {"double", "double2", "double3", "double4"},
716     {"char", "char2", "char3", "char4"},
717     {"short", "short2", "short3", "short4"},
718     {"int", "int2", "int3", "int4"},
719     {"long", "long2", "long3", "long4"},
720     {"uchar", "uchar2", "uchar3", "uchar4"},
721     {"ushort", "ushort2", "ushort3", "ushort4"},
722     {"uint", "uint2", "uint3", "uint4"},
723     {"ulong", "ulong2", "ulong3", "ulong4"},
724     {"bool", "bool2", "bool3", "bool4"},
725     {"packed_565", "packed_565", "packed_565", "packed_565"},
726     {"packed_5551", "packed_5551", "packed_5551", "packed_5551"},
727     {"packed_4444", "packed_4444", "packed_4444", "packed_4444"},
728     {"rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4"},
729     {"rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3"},
730     {"rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2"},
731 
732     // Handlers
733     {"RS Element", "RS Element", "RS Element", "RS Element"},
734     {"RS Type", "RS Type", "RS Type", "RS Type"},
735     {"RS Allocation", "RS Allocation", "RS Allocation", "RS Allocation"},
736     {"RS Sampler", "RS Sampler", "RS Sampler", "RS Sampler"},
737     {"RS Script", "RS Script", "RS Script", "RS Script"},
738 
739     // Deprecated
740     {"RS Mesh", "RS Mesh", "RS Mesh", "RS Mesh"},
741     {"RS Program Fragment", "RS Program Fragment", "RS Program Fragment",
742      "RS Program Fragment"},
743     {"RS Program Vertex", "RS Program Vertex", "RS Program Vertex",
744      "RS Program Vertex"},
745     {"RS Program Raster", "RS Program Raster", "RS Program Raster",
746      "RS Program Raster"},
747     {"RS Program Store", "RS Program Store", "RS Program Store",
748      "RS Program Store"},
749     {"RS Font", "RS Font", "RS Font", "RS Font"}};
750 
751 // Used as an index into the RSTypeToFormat array elements
752 enum TypeToFormatIndex { eFormatSingle = 0, eFormatVector, eElementSize };
753 
754 // { format enum of single element, format enum of element vector, size of
755 // element}
756 const uint32_t RenderScriptRuntime::AllocationDetails::RSTypeToFormat[][3] = {
757     // RS_TYPE_NONE
758     {eFormatHex, eFormatHex, 1},
759     // RS_TYPE_FLOAT_16
760     {eFormatFloat, eFormatVectorOfFloat16, 2},
761     // RS_TYPE_FLOAT_32
762     {eFormatFloat, eFormatVectorOfFloat32, sizeof(float)},
763     // RS_TYPE_FLOAT_64
764     {eFormatFloat, eFormatVectorOfFloat64, sizeof(double)},
765     // RS_TYPE_SIGNED_8
766     {eFormatDecimal, eFormatVectorOfSInt8, sizeof(int8_t)},
767     // RS_TYPE_SIGNED_16
768     {eFormatDecimal, eFormatVectorOfSInt16, sizeof(int16_t)},
769     // RS_TYPE_SIGNED_32
770     {eFormatDecimal, eFormatVectorOfSInt32, sizeof(int32_t)},
771     // RS_TYPE_SIGNED_64
772     {eFormatDecimal, eFormatVectorOfSInt64, sizeof(int64_t)},
773     // RS_TYPE_UNSIGNED_8
774     {eFormatDecimal, eFormatVectorOfUInt8, sizeof(uint8_t)},
775     // RS_TYPE_UNSIGNED_16
776     {eFormatDecimal, eFormatVectorOfUInt16, sizeof(uint16_t)},
777     // RS_TYPE_UNSIGNED_32
778     {eFormatDecimal, eFormatVectorOfUInt32, sizeof(uint32_t)},
779     // RS_TYPE_UNSIGNED_64
780     {eFormatDecimal, eFormatVectorOfUInt64, sizeof(uint64_t)},
781     // RS_TYPE_BOOL
782     {eFormatBoolean, eFormatBoolean, 1},
783     // RS_TYPE_UNSIGNED_5_6_5
784     {eFormatHex, eFormatHex, sizeof(uint16_t)},
785     // RS_TYPE_UNSIGNED_5_5_5_1
786     {eFormatHex, eFormatHex, sizeof(uint16_t)},
787     // RS_TYPE_UNSIGNED_4_4_4_4
788     {eFormatHex, eFormatHex, sizeof(uint16_t)},
789     // RS_TYPE_MATRIX_4X4
790     {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 16},
791     // RS_TYPE_MATRIX_3X3
792     {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 9},
793     // RS_TYPE_MATRIX_2X2
794     {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 4}};
795 
796 //------------------------------------------------------------------
797 // Static Functions
798 //------------------------------------------------------------------
799 LanguageRuntime *
800 RenderScriptRuntime::CreateInstance(Process *process,
801                                     lldb::LanguageType language) {
802 
803   if (language == eLanguageTypeExtRenderScript)
804     return new RenderScriptRuntime(process);
805   else
806     return nullptr;
807 }
808 
809 // Callback with a module to search for matching symbols. We first check that
810 // the module contains RS kernels. Then look for a symbol which matches our
811 // kernel name. The breakpoint address is finally set using the address of this
812 // symbol.
813 Searcher::CallbackReturn
814 RSBreakpointResolver::SearchCallback(SearchFilter &filter,
815                                      SymbolContext &context, Address *, bool) {
816   ModuleSP module = context.module_sp;
817 
818   if (!module || !IsRenderScriptScriptModule(module))
819     return Searcher::eCallbackReturnContinue;
820 
821   // Attempt to set a breakpoint on the kernel name symbol within the module
822   // library. If it's not found, it's likely debug info is unavailable - try to
823   // set a breakpoint on <name>.expand.
824   const Symbol *kernel_sym =
825       module->FindFirstSymbolWithNameAndType(m_kernel_name, eSymbolTypeCode);
826   if (!kernel_sym) {
827     std::string kernel_name_expanded(m_kernel_name.AsCString());
828     kernel_name_expanded.append(".expand");
829     kernel_sym = module->FindFirstSymbolWithNameAndType(
830         ConstString(kernel_name_expanded.c_str()), eSymbolTypeCode);
831   }
832 
833   if (kernel_sym) {
834     Address bp_addr = kernel_sym->GetAddress();
835     if (filter.AddressPasses(bp_addr))
836       m_breakpoint->AddLocation(bp_addr);
837   }
838 
839   return Searcher::eCallbackReturnContinue;
840 }
841 
842 Searcher::CallbackReturn
843 RSReduceBreakpointResolver::SearchCallback(lldb_private::SearchFilter &filter,
844                                            lldb_private::SymbolContext &context,
845                                            Address *, bool) {
846   // We need to have access to the list of reductions currently parsed, as
847   // reduce names don't actually exist as symbols in a module. They are only
848   // identifiable by parsing the .rs.info packet, or finding the expand symbol.
849   // We therefore need access to the list of parsed rs modules to properly
850   // resolve reduction names.
851   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_BREAKPOINTS));
852   ModuleSP module = context.module_sp;
853 
854   if (!module || !IsRenderScriptScriptModule(module))
855     return Searcher::eCallbackReturnContinue;
856 
857   if (!m_rsmodules)
858     return Searcher::eCallbackReturnContinue;
859 
860   for (const auto &module_desc : *m_rsmodules) {
861     if (module_desc->m_module != module)
862       continue;
863 
864     for (const auto &reduction : module_desc->m_reductions) {
865       if (reduction.m_reduce_name != m_reduce_name)
866         continue;
867 
868       std::array<std::pair<ConstString, int>, 5> funcs{
869           {{reduction.m_init_name, eKernelTypeInit},
870            {reduction.m_accum_name, eKernelTypeAccum},
871            {reduction.m_comb_name, eKernelTypeComb},
872            {reduction.m_outc_name, eKernelTypeOutC},
873            {reduction.m_halter_name, eKernelTypeHalter}}};
874 
875       for (const auto &kernel : funcs) {
876         // Skip constituent functions that don't match our spec
877         if (!(m_kernel_types & kernel.second))
878           continue;
879 
880         const auto kernel_name = kernel.first;
881         const auto symbol = module->FindFirstSymbolWithNameAndType(
882             kernel_name, eSymbolTypeCode);
883         if (!symbol)
884           continue;
885 
886         auto address = symbol->GetAddress();
887         if (filter.AddressPasses(address)) {
888           bool new_bp;
889           if (!SkipPrologue(module, address)) {
890             if (log)
891               log->Printf("%s: Error trying to skip prologue", __FUNCTION__);
892           }
893           m_breakpoint->AddLocation(address, &new_bp);
894           if (log)
895             log->Printf("%s: %s reduction breakpoint on %s in %s", __FUNCTION__,
896                         new_bp ? "new" : "existing", kernel_name.GetCString(),
897                         address.GetModule()->GetFileSpec().GetCString());
898         }
899       }
900     }
901   }
902   return eCallbackReturnContinue;
903 }
904 
905 Searcher::CallbackReturn RSScriptGroupBreakpointResolver::SearchCallback(
906     SearchFilter &filter, SymbolContext &context, Address *addr,
907     bool containing) {
908 
909   if (!m_breakpoint)
910     return eCallbackReturnContinue;
911 
912   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_BREAKPOINTS));
913   ModuleSP &module = context.module_sp;
914 
915   if (!module || !IsRenderScriptScriptModule(module))
916     return Searcher::eCallbackReturnContinue;
917 
918   std::vector<std::string> names;
919   m_breakpoint->GetNames(names);
920   if (names.empty())
921     return eCallbackReturnContinue;
922 
923   for (auto &name : names) {
924     const RSScriptGroupDescriptorSP sg = FindScriptGroup(ConstString(name));
925     if (!sg) {
926       if (log)
927         log->Printf("%s: could not find script group for %s", __FUNCTION__,
928                     name.c_str());
929       continue;
930     }
931 
932     if (log)
933       log->Printf("%s: Found ScriptGroup for %s", __FUNCTION__, name.c_str());
934 
935     for (const RSScriptGroupDescriptor::Kernel &k : sg->m_kernels) {
936       if (log) {
937         log->Printf("%s: Adding breakpoint for %s", __FUNCTION__,
938                     k.m_name.AsCString());
939         log->Printf("%s: Kernel address 0x%" PRIx64, __FUNCTION__, k.m_addr);
940       }
941 
942       const lldb_private::Symbol *sym =
943           module->FindFirstSymbolWithNameAndType(k.m_name, eSymbolTypeCode);
944       if (!sym) {
945         if (log)
946           log->Printf("%s: Unable to find symbol for %s", __FUNCTION__,
947                       k.m_name.AsCString());
948         continue;
949       }
950 
951       if (log) {
952         log->Printf("%s: Found symbol name is %s", __FUNCTION__,
953                     sym->GetName().AsCString());
954       }
955 
956       auto address = sym->GetAddress();
957       if (!SkipPrologue(module, address)) {
958         if (log)
959           log->Printf("%s: Error trying to skip prologue", __FUNCTION__);
960       }
961 
962       bool new_bp;
963       m_breakpoint->AddLocation(address, &new_bp);
964 
965       if (log)
966         log->Printf("%s: Placed %sbreakpoint on %s", __FUNCTION__,
967                     new_bp ? "new " : "", k.m_name.AsCString());
968 
969       // exit after placing the first breakpoint if we do not intend to stop on
970       // all kernels making up this script group
971       if (!m_stop_on_all)
972         break;
973     }
974   }
975 
976   return eCallbackReturnContinue;
977 }
978 
979 void RenderScriptRuntime::Initialize() {
980   PluginManager::RegisterPlugin(GetPluginNameStatic(),
981                                 "RenderScript language support", CreateInstance,
982                                 GetCommandObject);
983 }
984 
985 void RenderScriptRuntime::Terminate() {
986   PluginManager::UnregisterPlugin(CreateInstance);
987 }
988 
989 lldb_private::ConstString RenderScriptRuntime::GetPluginNameStatic() {
990   static ConstString plugin_name("renderscript");
991   return plugin_name;
992 }
993 
994 RenderScriptRuntime::ModuleKind
995 RenderScriptRuntime::GetModuleKind(const lldb::ModuleSP &module_sp) {
996   if (module_sp) {
997     if (IsRenderScriptScriptModule(module_sp))
998       return eModuleKindKernelObj;
999 
1000     // Is this the main RS runtime library
1001     const ConstString rs_lib("libRS.so");
1002     if (module_sp->GetFileSpec().GetFilename() == rs_lib) {
1003       return eModuleKindLibRS;
1004     }
1005 
1006     const ConstString rs_driverlib("libRSDriver.so");
1007     if (module_sp->GetFileSpec().GetFilename() == rs_driverlib) {
1008       return eModuleKindDriver;
1009     }
1010 
1011     const ConstString rs_cpureflib("libRSCpuRef.so");
1012     if (module_sp->GetFileSpec().GetFilename() == rs_cpureflib) {
1013       return eModuleKindImpl;
1014     }
1015   }
1016   return eModuleKindIgnored;
1017 }
1018 
1019 bool RenderScriptRuntime::IsRenderScriptModule(
1020     const lldb::ModuleSP &module_sp) {
1021   return GetModuleKind(module_sp) != eModuleKindIgnored;
1022 }
1023 
1024 void RenderScriptRuntime::ModulesDidLoad(const ModuleList &module_list) {
1025   std::lock_guard<std::recursive_mutex> guard(module_list.GetMutex());
1026 
1027   size_t num_modules = module_list.GetSize();
1028   for (size_t i = 0; i < num_modules; i++) {
1029     auto mod = module_list.GetModuleAtIndex(i);
1030     if (IsRenderScriptModule(mod)) {
1031       LoadModule(mod);
1032     }
1033   }
1034 }
1035 
1036 //------------------------------------------------------------------
1037 // PluginInterface protocol
1038 //------------------------------------------------------------------
1039 lldb_private::ConstString RenderScriptRuntime::GetPluginName() {
1040   return GetPluginNameStatic();
1041 }
1042 
1043 uint32_t RenderScriptRuntime::GetPluginVersion() { return 1; }
1044 
1045 bool RenderScriptRuntime::IsVTableName(const char *name) { return false; }
1046 
1047 bool RenderScriptRuntime::GetDynamicTypeAndAddress(
1048     ValueObject &in_value, lldb::DynamicValueType use_dynamic,
1049     TypeAndOrName &class_type_or_name, Address &address,
1050     Value::ValueType &value_type) {
1051   return false;
1052 }
1053 
1054 TypeAndOrName
1055 RenderScriptRuntime::FixUpDynamicType(const TypeAndOrName &type_and_or_name,
1056                                       ValueObject &static_value) {
1057   return type_and_or_name;
1058 }
1059 
1060 bool RenderScriptRuntime::CouldHaveDynamicValue(ValueObject &in_value) {
1061   return false;
1062 }
1063 
1064 lldb::BreakpointResolverSP
1065 RenderScriptRuntime::CreateExceptionResolver(Breakpoint *bp, bool catch_bp,
1066                                              bool throw_bp) {
1067   BreakpointResolverSP resolver_sp;
1068   return resolver_sp;
1069 }
1070 
1071 const RenderScriptRuntime::HookDefn RenderScriptRuntime::s_runtimeHookDefns[] =
1072     {
1073         // rsdScript
1074         {"rsdScriptInit", "_Z13rsdScriptInitPKN7android12renderscript7ContextEP"
1075                           "NS0_7ScriptCEPKcS7_PKhjj",
1076          "_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_"
1077          "7ScriptCEPKcS7_PKhmj",
1078          0, RenderScriptRuntime::eModuleKindDriver,
1079          &lldb_private::RenderScriptRuntime::CaptureScriptInit},
1080         {"rsdScriptInvokeForEachMulti",
1081          "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0"
1082          "_6ScriptEjPPKNS0_10AllocationEjPS6_PKvjPK12RsScriptCall",
1083          "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0"
1084          "_6ScriptEjPPKNS0_10AllocationEmPS6_PKvmPK12RsScriptCall",
1085          0, RenderScriptRuntime::eModuleKindDriver,
1086          &lldb_private::RenderScriptRuntime::CaptureScriptInvokeForEachMulti},
1087         {"rsdScriptSetGlobalVar", "_Z21rsdScriptSetGlobalVarPKN7android12render"
1088                                   "script7ContextEPKNS0_6ScriptEjPvj",
1089          "_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_"
1090          "6ScriptEjPvm",
1091          0, RenderScriptRuntime::eModuleKindDriver,
1092          &lldb_private::RenderScriptRuntime::CaptureSetGlobalVar},
1093 
1094         // rsdAllocation
1095         {"rsdAllocationInit", "_Z17rsdAllocationInitPKN7android12renderscript7C"
1096                               "ontextEPNS0_10AllocationEb",
1097          "_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_"
1098          "10AllocationEb",
1099          0, RenderScriptRuntime::eModuleKindDriver,
1100          &lldb_private::RenderScriptRuntime::CaptureAllocationInit},
1101         {"rsdAllocationRead2D",
1102          "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_"
1103          "10AllocationEjjj23RsAllocationCubemapFacejjPvjj",
1104          "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_"
1105          "10AllocationEjjj23RsAllocationCubemapFacejjPvmm",
1106          0, RenderScriptRuntime::eModuleKindDriver, nullptr},
1107         {"rsdAllocationDestroy", "_Z20rsdAllocationDestroyPKN7android12rendersc"
1108                                  "ript7ContextEPNS0_10AllocationE",
1109          "_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_"
1110          "10AllocationE",
1111          0, RenderScriptRuntime::eModuleKindDriver,
1112          &lldb_private::RenderScriptRuntime::CaptureAllocationDestroy},
1113 
1114         // renderscript script groups
1115         {"rsdDebugHintScriptGroup2", "_ZN7android12renderscript21debugHintScrip"
1116                                      "tGroup2EPKcjPKPFvPK24RsExpandKernelDriver"
1117                                      "InfojjjEj",
1118          "_ZN7android12renderscript21debugHintScriptGroup2EPKcjPKPFvPK24RsExpan"
1119          "dKernelDriverInfojjjEj",
1120          0, RenderScriptRuntime::eModuleKindImpl,
1121          &lldb_private::RenderScriptRuntime::CaptureDebugHintScriptGroup2}};
1122 
1123 const size_t RenderScriptRuntime::s_runtimeHookCount =
1124     sizeof(s_runtimeHookDefns) / sizeof(s_runtimeHookDefns[0]);
1125 
1126 bool RenderScriptRuntime::HookCallback(void *baton,
1127                                        StoppointCallbackContext *ctx,
1128                                        lldb::user_id_t break_id,
1129                                        lldb::user_id_t break_loc_id) {
1130   RuntimeHook *hook = (RuntimeHook *)baton;
1131   ExecutionContext exe_ctx(ctx->exe_ctx_ref);
1132 
1133   RenderScriptRuntime *lang_rt =
1134       (RenderScriptRuntime *)exe_ctx.GetProcessPtr()->GetLanguageRuntime(
1135           eLanguageTypeExtRenderScript);
1136 
1137   lang_rt->HookCallback(hook, exe_ctx);
1138 
1139   return false;
1140 }
1141 
1142 void RenderScriptRuntime::HookCallback(RuntimeHook *hook,
1143                                        ExecutionContext &exe_ctx) {
1144   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1145 
1146   if (log)
1147     log->Printf("%s - '%s'", __FUNCTION__, hook->defn->name);
1148 
1149   if (hook->defn->grabber) {
1150     (this->*(hook->defn->grabber))(hook, exe_ctx);
1151   }
1152 }
1153 
1154 void RenderScriptRuntime::CaptureDebugHintScriptGroup2(
1155     RuntimeHook *hook_info, ExecutionContext &context) {
1156   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1157 
1158   enum {
1159     eGroupName = 0,
1160     eGroupNameSize,
1161     eKernel,
1162     eKernelCount,
1163   };
1164 
1165   std::array<ArgItem, 4> args{{
1166       {ArgItem::ePointer, 0}, // const char         *groupName
1167       {ArgItem::eInt32, 0},   // const uint32_t      groupNameSize
1168       {ArgItem::ePointer, 0}, // const ExpandFuncTy *kernel
1169       {ArgItem::eInt32, 0},   // const uint32_t      kernelCount
1170   }};
1171 
1172   if (!GetArgs(context, args.data(), args.size())) {
1173     if (log)
1174       log->Printf("%s - Error while reading the function parameters",
1175                   __FUNCTION__);
1176     return;
1177   } else if (log) {
1178     log->Printf("%s - groupName    : 0x%" PRIx64, __FUNCTION__,
1179                 addr_t(args[eGroupName]));
1180     log->Printf("%s - groupNameSize: %" PRIu64, __FUNCTION__,
1181                 uint64_t(args[eGroupNameSize]));
1182     log->Printf("%s - kernel       : 0x%" PRIx64, __FUNCTION__,
1183                 addr_t(args[eKernel]));
1184     log->Printf("%s - kernelCount  : %" PRIu64, __FUNCTION__,
1185                 uint64_t(args[eKernelCount]));
1186   }
1187 
1188   // parse script group name
1189   ConstString group_name;
1190   {
1191     Status err;
1192     const uint64_t len = uint64_t(args[eGroupNameSize]);
1193     std::unique_ptr<char[]> buffer(new char[uint32_t(len + 1)]);
1194     m_process->ReadMemory(addr_t(args[eGroupName]), buffer.get(), len, err);
1195     buffer.get()[len] = '\0';
1196     if (!err.Success()) {
1197       if (log)
1198         log->Printf("Error reading scriptgroup name from target");
1199       return;
1200     } else {
1201       if (log)
1202         log->Printf("Extracted scriptgroup name %s", buffer.get());
1203     }
1204     // write back the script group name
1205     group_name.SetCString(buffer.get());
1206   }
1207 
1208   // create or access existing script group
1209   RSScriptGroupDescriptorSP group;
1210   {
1211     // search for existing script group
1212     for (auto sg : m_scriptGroups) {
1213       if (sg->m_name == group_name) {
1214         group = sg;
1215         break;
1216       }
1217     }
1218     if (!group) {
1219       group.reset(new RSScriptGroupDescriptor);
1220       group->m_name = group_name;
1221       m_scriptGroups.push_back(group);
1222     } else {
1223       // already have this script group
1224       if (log)
1225         log->Printf("Attempt to add duplicate script group %s",
1226                     group_name.AsCString());
1227       return;
1228     }
1229   }
1230   assert(group);
1231 
1232   const uint32_t target_ptr_size = m_process->GetAddressByteSize();
1233   std::vector<addr_t> kernels;
1234   // parse kernel addresses in script group
1235   for (uint64_t i = 0; i < uint64_t(args[eKernelCount]); ++i) {
1236     RSScriptGroupDescriptor::Kernel kernel;
1237     // extract script group kernel addresses from the target
1238     const addr_t ptr_addr = addr_t(args[eKernel]) + i * target_ptr_size;
1239     uint64_t kernel_addr = 0;
1240     Status err;
1241     size_t read =
1242         m_process->ReadMemory(ptr_addr, &kernel_addr, target_ptr_size, err);
1243     if (!err.Success() || read != target_ptr_size) {
1244       if (log)
1245         log->Printf("Error parsing kernel address %" PRIu64 " in script group",
1246                     i);
1247       return;
1248     }
1249     if (log)
1250       log->Printf("Extracted scriptgroup kernel address - 0x%" PRIx64,
1251                   kernel_addr);
1252     kernel.m_addr = kernel_addr;
1253 
1254     // try to resolve the associated kernel name
1255     if (!ResolveKernelName(kernel.m_addr, kernel.m_name)) {
1256       if (log)
1257         log->Printf("Parsed scriptgroup kernel %" PRIu64 " - 0x%" PRIx64, i,
1258                     kernel_addr);
1259       return;
1260     }
1261 
1262     // try to find the non '.expand' function
1263     {
1264       const llvm::StringRef expand(".expand");
1265       const llvm::StringRef name_ref = kernel.m_name.GetStringRef();
1266       if (name_ref.endswith(expand)) {
1267         const ConstString base_kernel(name_ref.drop_back(expand.size()));
1268         // verify this function is a valid kernel
1269         if (IsKnownKernel(base_kernel)) {
1270           kernel.m_name = base_kernel;
1271           if (log)
1272             log->Printf("%s - found non expand version '%s'", __FUNCTION__,
1273                         base_kernel.GetCString());
1274         }
1275       }
1276     }
1277     // add to a list of script group kernels we know about
1278     group->m_kernels.push_back(kernel);
1279   }
1280 
1281   // Resolve any pending scriptgroup breakpoints
1282   {
1283     Target &target = m_process->GetTarget();
1284     const BreakpointList &list = target.GetBreakpointList();
1285     const size_t num_breakpoints = list.GetSize();
1286     if (log)
1287       log->Printf("Resolving %zu breakpoints", num_breakpoints);
1288     for (size_t i = 0; i < num_breakpoints; ++i) {
1289       const BreakpointSP bp = list.GetBreakpointAtIndex(i);
1290       if (bp) {
1291         if (bp->MatchesName(group_name.AsCString())) {
1292           if (log)
1293             log->Printf("Found breakpoint with name %s",
1294                         group_name.AsCString());
1295           bp->ResolveBreakpoint();
1296         }
1297       }
1298     }
1299   }
1300 }
1301 
1302 void RenderScriptRuntime::CaptureScriptInvokeForEachMulti(
1303     RuntimeHook *hook, ExecutionContext &exe_ctx) {
1304   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1305 
1306   enum {
1307     eRsContext = 0,
1308     eRsScript,
1309     eRsSlot,
1310     eRsAIns,
1311     eRsInLen,
1312     eRsAOut,
1313     eRsUsr,
1314     eRsUsrLen,
1315     eRsSc,
1316   };
1317 
1318   std::array<ArgItem, 9> args{{
1319       ArgItem{ArgItem::ePointer, 0}, // const Context       *rsc
1320       ArgItem{ArgItem::ePointer, 0}, // Script              *s
1321       ArgItem{ArgItem::eInt32, 0},   // uint32_t             slot
1322       ArgItem{ArgItem::ePointer, 0}, // const Allocation   **aIns
1323       ArgItem{ArgItem::eInt32, 0},   // size_t               inLen
1324       ArgItem{ArgItem::ePointer, 0}, // Allocation          *aout
1325       ArgItem{ArgItem::ePointer, 0}, // const void          *usr
1326       ArgItem{ArgItem::eInt32, 0},   // size_t               usrLen
1327       ArgItem{ArgItem::ePointer, 0}, // const RsScriptCall  *sc
1328   }};
1329 
1330   bool success = GetArgs(exe_ctx, &args[0], args.size());
1331   if (!success) {
1332     if (log)
1333       log->Printf("%s - Error while reading the function parameters",
1334                   __FUNCTION__);
1335     return;
1336   }
1337 
1338   const uint32_t target_ptr_size = m_process->GetAddressByteSize();
1339   Status err;
1340   std::vector<uint64_t> allocs;
1341 
1342   // traverse allocation list
1343   for (uint64_t i = 0; i < uint64_t(args[eRsInLen]); ++i) {
1344     // calculate offest to allocation pointer
1345     const addr_t addr = addr_t(args[eRsAIns]) + i * target_ptr_size;
1346 
1347     // Note: due to little endian layout, reading 32bits or 64bits into res
1348     // will give the correct results.
1349     uint64_t result = 0;
1350     size_t read = m_process->ReadMemory(addr, &result, target_ptr_size, err);
1351     if (read != target_ptr_size || !err.Success()) {
1352       if (log)
1353         log->Printf(
1354             "%s - Error while reading allocation list argument %" PRIu64,
1355             __FUNCTION__, i);
1356     } else {
1357       allocs.push_back(result);
1358     }
1359   }
1360 
1361   // if there is an output allocation track it
1362   if (uint64_t alloc_out = uint64_t(args[eRsAOut])) {
1363     allocs.push_back(alloc_out);
1364   }
1365 
1366   // for all allocations we have found
1367   for (const uint64_t alloc_addr : allocs) {
1368     AllocationDetails *alloc = LookUpAllocation(alloc_addr);
1369     if (!alloc)
1370       alloc = CreateAllocation(alloc_addr);
1371 
1372     if (alloc) {
1373       // save the allocation address
1374       if (alloc->address.isValid()) {
1375         // check the allocation address we already have matches
1376         assert(*alloc->address.get() == alloc_addr);
1377       } else {
1378         alloc->address = alloc_addr;
1379       }
1380 
1381       // save the context
1382       if (log) {
1383         if (alloc->context.isValid() &&
1384             *alloc->context.get() != addr_t(args[eRsContext]))
1385           log->Printf("%s - Allocation used by multiple contexts",
1386                       __FUNCTION__);
1387       }
1388       alloc->context = addr_t(args[eRsContext]);
1389     }
1390   }
1391 
1392   // make sure we track this script object
1393   if (lldb_private::RenderScriptRuntime::ScriptDetails *script =
1394           LookUpScript(addr_t(args[eRsScript]), true)) {
1395     if (log) {
1396       if (script->context.isValid() &&
1397           *script->context.get() != addr_t(args[eRsContext]))
1398         log->Printf("%s - Script used by multiple contexts", __FUNCTION__);
1399     }
1400     script->context = addr_t(args[eRsContext]);
1401   }
1402 }
1403 
1404 void RenderScriptRuntime::CaptureSetGlobalVar(RuntimeHook *hook,
1405                                               ExecutionContext &context) {
1406   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1407 
1408   enum {
1409     eRsContext,
1410     eRsScript,
1411     eRsId,
1412     eRsData,
1413     eRsLength,
1414   };
1415 
1416   std::array<ArgItem, 5> args{{
1417       ArgItem{ArgItem::ePointer, 0}, // eRsContext
1418       ArgItem{ArgItem::ePointer, 0}, // eRsScript
1419       ArgItem{ArgItem::eInt32, 0},   // eRsId
1420       ArgItem{ArgItem::ePointer, 0}, // eRsData
1421       ArgItem{ArgItem::eInt32, 0},   // eRsLength
1422   }};
1423 
1424   bool success = GetArgs(context, &args[0], args.size());
1425   if (!success) {
1426     if (log)
1427       log->Printf("%s - error reading the function parameters.", __FUNCTION__);
1428     return;
1429   }
1430 
1431   if (log) {
1432     log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " slot %" PRIu64 " = 0x%" PRIx64
1433                 ":%" PRIu64 "bytes.",
1434                 __FUNCTION__, uint64_t(args[eRsContext]),
1435                 uint64_t(args[eRsScript]), uint64_t(args[eRsId]),
1436                 uint64_t(args[eRsData]), uint64_t(args[eRsLength]));
1437 
1438     addr_t script_addr = addr_t(args[eRsScript]);
1439     if (m_scriptMappings.find(script_addr) != m_scriptMappings.end()) {
1440       auto rsm = m_scriptMappings[script_addr];
1441       if (uint64_t(args[eRsId]) < rsm->m_globals.size()) {
1442         auto rsg = rsm->m_globals[uint64_t(args[eRsId])];
1443         log->Printf("%s - Setting of '%s' within '%s' inferred", __FUNCTION__,
1444                     rsg.m_name.AsCString(),
1445                     rsm->m_module->GetFileSpec().GetFilename().AsCString());
1446       }
1447     }
1448   }
1449 }
1450 
1451 void RenderScriptRuntime::CaptureAllocationInit(RuntimeHook *hook,
1452                                                 ExecutionContext &exe_ctx) {
1453   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1454 
1455   enum { eRsContext, eRsAlloc, eRsForceZero };
1456 
1457   std::array<ArgItem, 3> args{{
1458       ArgItem{ArgItem::ePointer, 0}, // eRsContext
1459       ArgItem{ArgItem::ePointer, 0}, // eRsAlloc
1460       ArgItem{ArgItem::eBool, 0},    // eRsForceZero
1461   }};
1462 
1463   bool success = GetArgs(exe_ctx, &args[0], args.size());
1464   if (!success) {
1465     if (log)
1466       log->Printf("%s - error while reading the function parameters",
1467                   __FUNCTION__);
1468     return;
1469   }
1470 
1471   if (log)
1472     log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 ",0x%" PRIx64 " .",
1473                 __FUNCTION__, uint64_t(args[eRsContext]),
1474                 uint64_t(args[eRsAlloc]), uint64_t(args[eRsForceZero]));
1475 
1476   AllocationDetails *alloc = CreateAllocation(uint64_t(args[eRsAlloc]));
1477   if (alloc)
1478     alloc->context = uint64_t(args[eRsContext]);
1479 }
1480 
1481 void RenderScriptRuntime::CaptureAllocationDestroy(RuntimeHook *hook,
1482                                                    ExecutionContext &exe_ctx) {
1483   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1484 
1485   enum {
1486     eRsContext,
1487     eRsAlloc,
1488   };
1489 
1490   std::array<ArgItem, 2> args{{
1491       ArgItem{ArgItem::ePointer, 0}, // eRsContext
1492       ArgItem{ArgItem::ePointer, 0}, // eRsAlloc
1493   }};
1494 
1495   bool success = GetArgs(exe_ctx, &args[0], args.size());
1496   if (!success) {
1497     if (log)
1498       log->Printf("%s - error while reading the function parameters.",
1499                   __FUNCTION__);
1500     return;
1501   }
1502 
1503   if (log)
1504     log->Printf("%s - 0x%" PRIx64 ", 0x%" PRIx64 ".", __FUNCTION__,
1505                 uint64_t(args[eRsContext]), uint64_t(args[eRsAlloc]));
1506 
1507   for (auto iter = m_allocations.begin(); iter != m_allocations.end(); ++iter) {
1508     auto &allocation_ap = *iter; // get the unique pointer
1509     if (allocation_ap->address.isValid() &&
1510         *allocation_ap->address.get() == addr_t(args[eRsAlloc])) {
1511       m_allocations.erase(iter);
1512       if (log)
1513         log->Printf("%s - deleted allocation entry.", __FUNCTION__);
1514       return;
1515     }
1516   }
1517 
1518   if (log)
1519     log->Printf("%s - couldn't find destroyed allocation.", __FUNCTION__);
1520 }
1521 
1522 void RenderScriptRuntime::CaptureScriptInit(RuntimeHook *hook,
1523                                             ExecutionContext &exe_ctx) {
1524   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1525 
1526   Status err;
1527   Process *process = exe_ctx.GetProcessPtr();
1528 
1529   enum { eRsContext, eRsScript, eRsResNamePtr, eRsCachedDirPtr };
1530 
1531   std::array<ArgItem, 4> args{
1532       {ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0},
1533        ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}}};
1534   bool success = GetArgs(exe_ctx, &args[0], args.size());
1535   if (!success) {
1536     if (log)
1537       log->Printf("%s - error while reading the function parameters.",
1538                   __FUNCTION__);
1539     return;
1540   }
1541 
1542   std::string res_name;
1543   process->ReadCStringFromMemory(addr_t(args[eRsResNamePtr]), res_name, err);
1544   if (err.Fail()) {
1545     if (log)
1546       log->Printf("%s - error reading res_name: %s.", __FUNCTION__,
1547                   err.AsCString());
1548   }
1549 
1550   std::string cache_dir;
1551   process->ReadCStringFromMemory(addr_t(args[eRsCachedDirPtr]), cache_dir, err);
1552   if (err.Fail()) {
1553     if (log)
1554       log->Printf("%s - error reading cache_dir: %s.", __FUNCTION__,
1555                   err.AsCString());
1556   }
1557 
1558   if (log)
1559     log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " => '%s' at '%s' .",
1560                 __FUNCTION__, uint64_t(args[eRsContext]),
1561                 uint64_t(args[eRsScript]), res_name.c_str(), cache_dir.c_str());
1562 
1563   if (res_name.size() > 0) {
1564     StreamString strm;
1565     strm.Printf("librs.%s.so", res_name.c_str());
1566 
1567     ScriptDetails *script = LookUpScript(addr_t(args[eRsScript]), true);
1568     if (script) {
1569       script->type = ScriptDetails::eScriptC;
1570       script->cache_dir = cache_dir;
1571       script->res_name = res_name;
1572       script->shared_lib = strm.GetString();
1573       script->context = addr_t(args[eRsContext]);
1574     }
1575 
1576     if (log)
1577       log->Printf("%s - '%s' tagged with context 0x%" PRIx64
1578                   " and script 0x%" PRIx64 ".",
1579                   __FUNCTION__, strm.GetData(), uint64_t(args[eRsContext]),
1580                   uint64_t(args[eRsScript]));
1581   } else if (log) {
1582     log->Printf("%s - resource name invalid, Script not tagged.", __FUNCTION__);
1583   }
1584 }
1585 
1586 void RenderScriptRuntime::LoadRuntimeHooks(lldb::ModuleSP module,
1587                                            ModuleKind kind) {
1588   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1589 
1590   if (!module) {
1591     return;
1592   }
1593 
1594   Target &target = GetProcess()->GetTarget();
1595   const llvm::Triple::ArchType machine = target.GetArchitecture().GetMachine();
1596 
1597   if (machine != llvm::Triple::ArchType::x86 &&
1598       machine != llvm::Triple::ArchType::arm &&
1599       machine != llvm::Triple::ArchType::aarch64 &&
1600       machine != llvm::Triple::ArchType::mipsel &&
1601       machine != llvm::Triple::ArchType::mips64el &&
1602       machine != llvm::Triple::ArchType::x86_64) {
1603     if (log)
1604       log->Printf("%s - unable to hook runtime functions.", __FUNCTION__);
1605     return;
1606   }
1607 
1608   const uint32_t target_ptr_size =
1609       target.GetArchitecture().GetAddressByteSize();
1610 
1611   std::array<bool, s_runtimeHookCount> hook_placed;
1612   hook_placed.fill(false);
1613 
1614   for (size_t idx = 0; idx < s_runtimeHookCount; idx++) {
1615     const HookDefn *hook_defn = &s_runtimeHookDefns[idx];
1616     if (hook_defn->kind != kind) {
1617       continue;
1618     }
1619 
1620     const char *symbol_name = (target_ptr_size == 4)
1621                                   ? hook_defn->symbol_name_m32
1622                                   : hook_defn->symbol_name_m64;
1623 
1624     const Symbol *sym = module->FindFirstSymbolWithNameAndType(
1625         ConstString(symbol_name), eSymbolTypeCode);
1626     if (!sym) {
1627       if (log) {
1628         log->Printf("%s - symbol '%s' related to the function %s not found",
1629                     __FUNCTION__, symbol_name, hook_defn->name);
1630       }
1631       continue;
1632     }
1633 
1634     addr_t addr = sym->GetLoadAddress(&target);
1635     if (addr == LLDB_INVALID_ADDRESS) {
1636       if (log)
1637         log->Printf("%s - unable to resolve the address of hook function '%s' "
1638                     "with symbol '%s'.",
1639                     __FUNCTION__, hook_defn->name, symbol_name);
1640       continue;
1641     } else {
1642       if (log)
1643         log->Printf("%s - function %s, address resolved at 0x%" PRIx64,
1644                     __FUNCTION__, hook_defn->name, addr);
1645     }
1646 
1647     RuntimeHookSP hook(new RuntimeHook());
1648     hook->address = addr;
1649     hook->defn = hook_defn;
1650     hook->bp_sp = target.CreateBreakpoint(addr, true, false);
1651     hook->bp_sp->SetCallback(HookCallback, hook.get(), true);
1652     m_runtimeHooks[addr] = hook;
1653     if (log) {
1654       log->Printf("%s - successfully hooked '%s' in '%s' version %" PRIu64
1655                   " at 0x%" PRIx64 ".",
1656                   __FUNCTION__, hook_defn->name,
1657                   module->GetFileSpec().GetFilename().AsCString(),
1658                   (uint64_t)hook_defn->version, (uint64_t)addr);
1659     }
1660     hook_placed[idx] = true;
1661   }
1662 
1663   // log any unhooked function
1664   if (log) {
1665     for (size_t i = 0; i < hook_placed.size(); ++i) {
1666       if (hook_placed[i])
1667         continue;
1668       const HookDefn &hook_defn = s_runtimeHookDefns[i];
1669       if (hook_defn.kind != kind)
1670         continue;
1671       log->Printf("%s - function %s was not hooked", __FUNCTION__,
1672                   hook_defn.name);
1673     }
1674   }
1675 }
1676 
1677 void RenderScriptRuntime::FixupScriptDetails(RSModuleDescriptorSP rsmodule_sp) {
1678   if (!rsmodule_sp)
1679     return;
1680 
1681   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1682 
1683   const ModuleSP module = rsmodule_sp->m_module;
1684   const FileSpec &file = module->GetPlatformFileSpec();
1685 
1686   // Iterate over all of the scripts that we currently know of. Note: We cant
1687   // push or pop to m_scripts here or it may invalidate rs_script.
1688   for (const auto &rs_script : m_scripts) {
1689     // Extract the expected .so file path for this script.
1690     std::string shared_lib;
1691     if (!rs_script->shared_lib.get(shared_lib))
1692       continue;
1693 
1694     // Only proceed if the module that has loaded corresponds to this script.
1695     if (file.GetFilename() != ConstString(shared_lib.c_str()))
1696       continue;
1697 
1698     // Obtain the script address which we use as a key.
1699     lldb::addr_t script;
1700     if (!rs_script->script.get(script))
1701       continue;
1702 
1703     // If we have a script mapping for the current script.
1704     if (m_scriptMappings.find(script) != m_scriptMappings.end()) {
1705       // if the module we have stored is different to the one we just received.
1706       if (m_scriptMappings[script] != rsmodule_sp) {
1707         if (log)
1708           log->Printf(
1709               "%s - script %" PRIx64 " wants reassigned to new rsmodule '%s'.",
1710               __FUNCTION__, (uint64_t)script,
1711               rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString());
1712       }
1713     }
1714     // We don't have a script mapping for the current script.
1715     else {
1716       // Obtain the script resource name.
1717       std::string res_name;
1718       if (rs_script->res_name.get(res_name))
1719         // Set the modules resource name.
1720         rsmodule_sp->m_resname = res_name;
1721       // Add Script/Module pair to map.
1722       m_scriptMappings[script] = rsmodule_sp;
1723       if (log)
1724         log->Printf(
1725             "%s - script %" PRIx64 " associated with rsmodule '%s'.",
1726             __FUNCTION__, (uint64_t)script,
1727             rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString());
1728     }
1729   }
1730 }
1731 
1732 // Uses the Target API to evaluate the expression passed as a parameter to the
1733 // function The result of that expression is returned an unsigned 64 bit int,
1734 // via the result* parameter. Function returns true on success, and false on
1735 // failure
1736 bool RenderScriptRuntime::EvalRSExpression(const char *expr,
1737                                            StackFrame *frame_ptr,
1738                                            uint64_t *result) {
1739   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1740   if (log)
1741     log->Printf("%s(%s)", __FUNCTION__, expr);
1742 
1743   ValueObjectSP expr_result;
1744   EvaluateExpressionOptions options;
1745   options.SetLanguage(lldb::eLanguageTypeC_plus_plus);
1746   // Perform the actual expression evaluation
1747   auto &target = GetProcess()->GetTarget();
1748   target.EvaluateExpression(expr, frame_ptr, expr_result, options);
1749 
1750   if (!expr_result) {
1751     if (log)
1752       log->Printf("%s: couldn't evaluate expression.", __FUNCTION__);
1753     return false;
1754   }
1755 
1756   // The result of the expression is invalid
1757   if (!expr_result->GetError().Success()) {
1758     Status err = expr_result->GetError();
1759     // Expression returned is void, so this is actually a success
1760     if (err.GetError() == UserExpression::kNoResult) {
1761       if (log)
1762         log->Printf("%s - expression returned void.", __FUNCTION__);
1763 
1764       result = nullptr;
1765       return true;
1766     }
1767 
1768     if (log)
1769       log->Printf("%s - error evaluating expression result: %s", __FUNCTION__,
1770                   err.AsCString());
1771     return false;
1772   }
1773 
1774   bool success = false;
1775   // We only read the result as an uint32_t.
1776   *result = expr_result->GetValueAsUnsigned(0, &success);
1777 
1778   if (!success) {
1779     if (log)
1780       log->Printf("%s - couldn't convert expression result to uint32_t",
1781                   __FUNCTION__);
1782     return false;
1783   }
1784 
1785   return true;
1786 }
1787 
1788 namespace {
1789 // Used to index expression format strings
1790 enum ExpressionStrings {
1791   eExprGetOffsetPtr = 0,
1792   eExprAllocGetType,
1793   eExprTypeDimX,
1794   eExprTypeDimY,
1795   eExprTypeDimZ,
1796   eExprTypeElemPtr,
1797   eExprElementType,
1798   eExprElementKind,
1799   eExprElementVec,
1800   eExprElementFieldCount,
1801   eExprSubelementsId,
1802   eExprSubelementsName,
1803   eExprSubelementsArrSize,
1804 
1805   _eExprLast // keep at the end, implicit size of the array runtime_expressions
1806 };
1807 
1808 // max length of an expanded expression
1809 const int jit_max_expr_size = 512;
1810 
1811 // Retrieve the string to JIT for the given expression
1812 #define JIT_TEMPLATE_CONTEXT "void* ctxt = (void*)rsDebugGetContextWrapper(0x%" PRIx64 "); "
1813 const char *JITTemplate(ExpressionStrings e) {
1814   // Format strings containing the expressions we may need to evaluate.
1815   static std::array<const char *, _eExprLast> runtime_expressions = {
1816       {// Mangled GetOffsetPointer(Allocation*, xoff, yoff, zoff, lod, cubemap)
1817        "(int*)_"
1818        "Z12GetOffsetPtrPKN7android12renderscript10AllocationEjjjj23RsAllocation"
1819        "CubemapFace"
1820        "(0x%" PRIx64 ", %" PRIu32 ", %" PRIu32 ", %" PRIu32 ", 0, 0)", // eExprGetOffsetPtr
1821 
1822        // Type* rsaAllocationGetType(Context*, Allocation*)
1823        JIT_TEMPLATE_CONTEXT "(void*)rsaAllocationGetType(ctxt, 0x%" PRIx64 ")", // eExprAllocGetType
1824 
1825        // rsaTypeGetNativeData(Context*, Type*, void* typeData, size) Pack the
1826        // data in the following way mHal.state.dimX; mHal.state.dimY;
1827        // mHal.state.dimZ; mHal.state.lodCount; mHal.state.faces; mElement;
1828        // into typeData Need to specify 32 or 64 bit for uint_t since this
1829        // differs between devices
1830        JIT_TEMPLATE_CONTEXT
1831        "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt"
1832        ", 0x%" PRIx64 ", data, 6); data[0]", // eExprTypeDimX
1833        JIT_TEMPLATE_CONTEXT
1834        "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt"
1835        ", 0x%" PRIx64 ", data, 6); data[1]", // eExprTypeDimY
1836        JIT_TEMPLATE_CONTEXT
1837        "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt"
1838        ", 0x%" PRIx64 ", data, 6); data[2]", // eExprTypeDimZ
1839        JIT_TEMPLATE_CONTEXT
1840        "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt"
1841        ", 0x%" PRIx64 ", data, 6); data[5]", // eExprTypeElemPtr
1842 
1843        // rsaElementGetNativeData(Context*, Element*, uint32_t* elemData,size)
1844        // Pack mType; mKind; mNormalized; mVectorSize; NumSubElements into
1845        // elemData
1846        JIT_TEMPLATE_CONTEXT
1847        "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt"
1848        ", 0x%" PRIx64 ", data, 5); data[0]", // eExprElementType
1849        JIT_TEMPLATE_CONTEXT
1850        "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt"
1851        ", 0x%" PRIx64 ", data, 5); data[1]", // eExprElementKind
1852        JIT_TEMPLATE_CONTEXT
1853        "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt"
1854        ", 0x%" PRIx64 ", data, 5); data[3]", // eExprElementVec
1855        JIT_TEMPLATE_CONTEXT
1856        "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt"
1857        ", 0x%" PRIx64 ", data, 5); data[4]", // eExprElementFieldCount
1858 
1859        // rsaElementGetSubElements(RsContext con, RsElement elem, uintptr_t
1860        // *ids, const char **names, size_t *arraySizes, uint32_t dataSize)
1861        // Needed for Allocations of structs to gather details about
1862        // fields/Subelements Element* of field
1863        JIT_TEMPLATE_CONTEXT "void* ids[%" PRIu32 "]; const char* names[%" PRIu32
1864        "]; size_t arr_size[%" PRIu32 "];"
1865        "(void*)rsaElementGetSubElements(ctxt, 0x%" PRIx64
1866        ", ids, names, arr_size, %" PRIu32 "); ids[%" PRIu32 "]", // eExprSubelementsId
1867 
1868        // Name of field
1869        JIT_TEMPLATE_CONTEXT "void* ids[%" PRIu32 "]; const char* names[%" PRIu32
1870        "]; size_t arr_size[%" PRIu32 "];"
1871        "(void*)rsaElementGetSubElements(ctxt, 0x%" PRIx64
1872        ", ids, names, arr_size, %" PRIu32 "); names[%" PRIu32 "]", // eExprSubelementsName
1873 
1874        // Array size of field
1875        JIT_TEMPLATE_CONTEXT "void* ids[%" PRIu32 "]; const char* names[%" PRIu32
1876        "]; size_t arr_size[%" PRIu32 "];"
1877        "(void*)rsaElementGetSubElements(ctxt, 0x%" PRIx64
1878        ", ids, names, arr_size, %" PRIu32 "); arr_size[%" PRIu32 "]"}}; // eExprSubelementsArrSize
1879 
1880   return runtime_expressions[e];
1881 }
1882 } // end of the anonymous namespace
1883 
1884 // JITs the RS runtime for the internal data pointer of an allocation. Is
1885 // passed x,y,z coordinates for the pointer to a specific element. Then sets
1886 // the data_ptr member in Allocation with the result. Returns true on success,
1887 // false otherwise
1888 bool RenderScriptRuntime::JITDataPointer(AllocationDetails *alloc,
1889                                          StackFrame *frame_ptr, uint32_t x,
1890                                          uint32_t y, uint32_t z) {
1891   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1892 
1893   if (!alloc->address.isValid()) {
1894     if (log)
1895       log->Printf("%s - failed to find allocation details.", __FUNCTION__);
1896     return false;
1897   }
1898 
1899   const char *fmt_str = JITTemplate(eExprGetOffsetPtr);
1900   char expr_buf[jit_max_expr_size];
1901 
1902   int written = snprintf(expr_buf, jit_max_expr_size, fmt_str,
1903                          *alloc->address.get(), x, y, z);
1904   if (written < 0) {
1905     if (log)
1906       log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
1907     return false;
1908   } else if (written >= jit_max_expr_size) {
1909     if (log)
1910       log->Printf("%s - expression too long.", __FUNCTION__);
1911     return false;
1912   }
1913 
1914   uint64_t result = 0;
1915   if (!EvalRSExpression(expr_buf, frame_ptr, &result))
1916     return false;
1917 
1918   addr_t data_ptr = static_cast<lldb::addr_t>(result);
1919   alloc->data_ptr = data_ptr;
1920 
1921   return true;
1922 }
1923 
1924 // JITs the RS runtime for the internal pointer to the RS Type of an allocation
1925 // Then sets the type_ptr member in Allocation with the result. Returns true on
1926 // success, false otherwise
1927 bool RenderScriptRuntime::JITTypePointer(AllocationDetails *alloc,
1928                                          StackFrame *frame_ptr) {
1929   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1930 
1931   if (!alloc->address.isValid() || !alloc->context.isValid()) {
1932     if (log)
1933       log->Printf("%s - failed to find allocation details.", __FUNCTION__);
1934     return false;
1935   }
1936 
1937   const char *fmt_str = JITTemplate(eExprAllocGetType);
1938   char expr_buf[jit_max_expr_size];
1939 
1940   int written = snprintf(expr_buf, jit_max_expr_size, fmt_str,
1941                          *alloc->context.get(), *alloc->address.get());
1942   if (written < 0) {
1943     if (log)
1944       log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
1945     return false;
1946   } else if (written >= jit_max_expr_size) {
1947     if (log)
1948       log->Printf("%s - expression too long.", __FUNCTION__);
1949     return false;
1950   }
1951 
1952   uint64_t result = 0;
1953   if (!EvalRSExpression(expr_buf, frame_ptr, &result))
1954     return false;
1955 
1956   addr_t type_ptr = static_cast<lldb::addr_t>(result);
1957   alloc->type_ptr = type_ptr;
1958 
1959   return true;
1960 }
1961 
1962 // JITs the RS runtime for information about the dimensions and type of an
1963 // allocation Then sets dimension and element_ptr members in Allocation with
1964 // the result. Returns true on success, false otherwise
1965 bool RenderScriptRuntime::JITTypePacked(AllocationDetails *alloc,
1966                                         StackFrame *frame_ptr) {
1967   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1968 
1969   if (!alloc->type_ptr.isValid() || !alloc->context.isValid()) {
1970     if (log)
1971       log->Printf("%s - Failed to find allocation details.", __FUNCTION__);
1972     return false;
1973   }
1974 
1975   // Expression is different depending on if device is 32 or 64 bit
1976   uint32_t target_ptr_size =
1977       GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
1978   const uint32_t bits = target_ptr_size == 4 ? 32 : 64;
1979 
1980   // We want 4 elements from packed data
1981   const uint32_t num_exprs = 4;
1982   assert(num_exprs == (eExprTypeElemPtr - eExprTypeDimX + 1) &&
1983          "Invalid number of expressions");
1984 
1985   char expr_bufs[num_exprs][jit_max_expr_size];
1986   uint64_t results[num_exprs];
1987 
1988   for (uint32_t i = 0; i < num_exprs; ++i) {
1989     const char *fmt_str = JITTemplate(ExpressionStrings(eExprTypeDimX + i));
1990     int written = snprintf(expr_bufs[i], jit_max_expr_size, fmt_str,
1991                            *alloc->context.get(), bits, *alloc->type_ptr.get());
1992     if (written < 0) {
1993       if (log)
1994         log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
1995       return false;
1996     } else if (written >= jit_max_expr_size) {
1997       if (log)
1998         log->Printf("%s - expression too long.", __FUNCTION__);
1999       return false;
2000     }
2001 
2002     // Perform expression evaluation
2003     if (!EvalRSExpression(expr_bufs[i], frame_ptr, &results[i]))
2004       return false;
2005   }
2006 
2007   // Assign results to allocation members
2008   AllocationDetails::Dimension dims;
2009   dims.dim_1 = static_cast<uint32_t>(results[0]);
2010   dims.dim_2 = static_cast<uint32_t>(results[1]);
2011   dims.dim_3 = static_cast<uint32_t>(results[2]);
2012   alloc->dimension = dims;
2013 
2014   addr_t element_ptr = static_cast<lldb::addr_t>(results[3]);
2015   alloc->element.element_ptr = element_ptr;
2016 
2017   if (log)
2018     log->Printf("%s - dims (%" PRIu32 ", %" PRIu32 ", %" PRIu32
2019                 ") Element*: 0x%" PRIx64 ".",
2020                 __FUNCTION__, dims.dim_1, dims.dim_2, dims.dim_3, element_ptr);
2021 
2022   return true;
2023 }
2024 
2025 // JITs the RS runtime for information about the Element of an allocation Then
2026 // sets type, type_vec_size, field_count and type_kind members in Element with
2027 // the result. Returns true on success, false otherwise
2028 bool RenderScriptRuntime::JITElementPacked(Element &elem,
2029                                            const lldb::addr_t context,
2030                                            StackFrame *frame_ptr) {
2031   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2032 
2033   if (!elem.element_ptr.isValid()) {
2034     if (log)
2035       log->Printf("%s - failed to find allocation details.", __FUNCTION__);
2036     return false;
2037   }
2038 
2039   // We want 4 elements from packed data
2040   const uint32_t num_exprs = 4;
2041   assert(num_exprs == (eExprElementFieldCount - eExprElementType + 1) &&
2042          "Invalid number of expressions");
2043 
2044   char expr_bufs[num_exprs][jit_max_expr_size];
2045   uint64_t results[num_exprs];
2046 
2047   for (uint32_t i = 0; i < num_exprs; i++) {
2048     const char *fmt_str = JITTemplate(ExpressionStrings(eExprElementType + i));
2049     int written = snprintf(expr_bufs[i], jit_max_expr_size, fmt_str, context,
2050                            *elem.element_ptr.get());
2051     if (written < 0) {
2052       if (log)
2053         log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
2054       return false;
2055     } else if (written >= jit_max_expr_size) {
2056       if (log)
2057         log->Printf("%s - expression too long.", __FUNCTION__);
2058       return false;
2059     }
2060 
2061     // Perform expression evaluation
2062     if (!EvalRSExpression(expr_bufs[i], frame_ptr, &results[i]))
2063       return false;
2064   }
2065 
2066   // Assign results to allocation members
2067   elem.type = static_cast<RenderScriptRuntime::Element::DataType>(results[0]);
2068   elem.type_kind =
2069       static_cast<RenderScriptRuntime::Element::DataKind>(results[1]);
2070   elem.type_vec_size = static_cast<uint32_t>(results[2]);
2071   elem.field_count = static_cast<uint32_t>(results[3]);
2072 
2073   if (log)
2074     log->Printf("%s - data type %" PRIu32 ", pixel type %" PRIu32
2075                 ", vector size %" PRIu32 ", field count %" PRIu32,
2076                 __FUNCTION__, *elem.type.get(), *elem.type_kind.get(),
2077                 *elem.type_vec_size.get(), *elem.field_count.get());
2078 
2079   // If this Element has subelements then JIT rsaElementGetSubElements() for
2080   // details about its fields
2081   if (*elem.field_count.get() > 0 && !JITSubelements(elem, context, frame_ptr))
2082     return false;
2083 
2084   return true;
2085 }
2086 
2087 // JITs the RS runtime for information about the subelements/fields of a struct
2088 // allocation This is necessary for infering the struct type so we can pretty
2089 // print the allocation's contents. Returns true on success, false otherwise
2090 bool RenderScriptRuntime::JITSubelements(Element &elem,
2091                                          const lldb::addr_t context,
2092                                          StackFrame *frame_ptr) {
2093   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2094 
2095   if (!elem.element_ptr.isValid() || !elem.field_count.isValid()) {
2096     if (log)
2097       log->Printf("%s - failed to find allocation details.", __FUNCTION__);
2098     return false;
2099   }
2100 
2101   const short num_exprs = 3;
2102   assert(num_exprs == (eExprSubelementsArrSize - eExprSubelementsId + 1) &&
2103          "Invalid number of expressions");
2104 
2105   char expr_buffer[jit_max_expr_size];
2106   uint64_t results;
2107 
2108   // Iterate over struct fields.
2109   const uint32_t field_count = *elem.field_count.get();
2110   for (uint32_t field_index = 0; field_index < field_count; ++field_index) {
2111     Element child;
2112     for (uint32_t expr_index = 0; expr_index < num_exprs; ++expr_index) {
2113       const char *fmt_str =
2114           JITTemplate(ExpressionStrings(eExprSubelementsId + expr_index));
2115       int written = snprintf(expr_buffer, jit_max_expr_size, fmt_str,
2116                              context, field_count, field_count, field_count,
2117                              *elem.element_ptr.get(), field_count, field_index);
2118       if (written < 0) {
2119         if (log)
2120           log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
2121         return false;
2122       } else if (written >= jit_max_expr_size) {
2123         if (log)
2124           log->Printf("%s - expression too long.", __FUNCTION__);
2125         return false;
2126       }
2127 
2128       // Perform expression evaluation
2129       if (!EvalRSExpression(expr_buffer, frame_ptr, &results))
2130         return false;
2131 
2132       if (log)
2133         log->Printf("%s - expr result 0x%" PRIx64 ".", __FUNCTION__, results);
2134 
2135       switch (expr_index) {
2136       case 0: // Element* of child
2137         child.element_ptr = static_cast<addr_t>(results);
2138         break;
2139       case 1: // Name of child
2140       {
2141         lldb::addr_t address = static_cast<addr_t>(results);
2142         Status err;
2143         std::string name;
2144         GetProcess()->ReadCStringFromMemory(address, name, err);
2145         if (!err.Fail())
2146           child.type_name = ConstString(name);
2147         else {
2148           if (log)
2149             log->Printf("%s - warning: Couldn't read field name.",
2150                         __FUNCTION__);
2151         }
2152         break;
2153       }
2154       case 2: // Array size of child
2155         child.array_size = static_cast<uint32_t>(results);
2156         break;
2157       }
2158     }
2159 
2160     // We need to recursively JIT each Element field of the struct since
2161     // structs can be nested inside structs.
2162     if (!JITElementPacked(child, context, frame_ptr))
2163       return false;
2164     elem.children.push_back(child);
2165   }
2166 
2167   // Try to infer the name of the struct type so we can pretty print the
2168   // allocation contents.
2169   FindStructTypeName(elem, frame_ptr);
2170 
2171   return true;
2172 }
2173 
2174 // JITs the RS runtime for the address of the last element in the allocation.
2175 // The `elem_size` parameter represents the size of a single element, including
2176 // padding. Which is needed as an offset from the last element pointer. Using
2177 // this offset minus the starting address we can calculate the size of the
2178 // allocation. Returns true on success, false otherwise
2179 bool RenderScriptRuntime::JITAllocationSize(AllocationDetails *alloc,
2180                                             StackFrame *frame_ptr) {
2181   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2182 
2183   if (!alloc->address.isValid() || !alloc->dimension.isValid() ||
2184       !alloc->data_ptr.isValid() || !alloc->element.datum_size.isValid()) {
2185     if (log)
2186       log->Printf("%s - failed to find allocation details.", __FUNCTION__);
2187     return false;
2188   }
2189 
2190   // Find dimensions
2191   uint32_t dim_x = alloc->dimension.get()->dim_1;
2192   uint32_t dim_y = alloc->dimension.get()->dim_2;
2193   uint32_t dim_z = alloc->dimension.get()->dim_3;
2194 
2195   // Our plan of jitting the last element address doesn't seem to work for
2196   // struct Allocations` Instead try to infer the size ourselves without any
2197   // inter element padding.
2198   if (alloc->element.children.size() > 0) {
2199     if (dim_x == 0)
2200       dim_x = 1;
2201     if (dim_y == 0)
2202       dim_y = 1;
2203     if (dim_z == 0)
2204       dim_z = 1;
2205 
2206     alloc->size = dim_x * dim_y * dim_z * *alloc->element.datum_size.get();
2207 
2208     if (log)
2209       log->Printf("%s - inferred size of struct allocation %" PRIu32 ".",
2210                   __FUNCTION__, *alloc->size.get());
2211     return true;
2212   }
2213 
2214   const char *fmt_str = JITTemplate(eExprGetOffsetPtr);
2215   char expr_buf[jit_max_expr_size];
2216 
2217   // Calculate last element
2218   dim_x = dim_x == 0 ? 0 : dim_x - 1;
2219   dim_y = dim_y == 0 ? 0 : dim_y - 1;
2220   dim_z = dim_z == 0 ? 0 : dim_z - 1;
2221 
2222   int written = snprintf(expr_buf, jit_max_expr_size, fmt_str,
2223                          *alloc->address.get(), dim_x, dim_y, dim_z);
2224   if (written < 0) {
2225     if (log)
2226       log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
2227     return false;
2228   } else if (written >= jit_max_expr_size) {
2229     if (log)
2230       log->Printf("%s - expression too long.", __FUNCTION__);
2231     return false;
2232   }
2233 
2234   uint64_t result = 0;
2235   if (!EvalRSExpression(expr_buf, frame_ptr, &result))
2236     return false;
2237 
2238   addr_t mem_ptr = static_cast<lldb::addr_t>(result);
2239   // Find pointer to last element and add on size of an element
2240   alloc->size = static_cast<uint32_t>(mem_ptr - *alloc->data_ptr.get()) +
2241                 *alloc->element.datum_size.get();
2242 
2243   return true;
2244 }
2245 
2246 // JITs the RS runtime for information about the stride between rows in the
2247 // allocation. This is done to detect padding, since allocated memory is
2248 // 16-byte aligned. Returns true on success, false otherwise
2249 bool RenderScriptRuntime::JITAllocationStride(AllocationDetails *alloc,
2250                                               StackFrame *frame_ptr) {
2251   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2252 
2253   if (!alloc->address.isValid() || !alloc->data_ptr.isValid()) {
2254     if (log)
2255       log->Printf("%s - failed to find allocation details.", __FUNCTION__);
2256     return false;
2257   }
2258 
2259   const char *fmt_str = JITTemplate(eExprGetOffsetPtr);
2260   char expr_buf[jit_max_expr_size];
2261 
2262   int written = snprintf(expr_buf, jit_max_expr_size, fmt_str,
2263                          *alloc->address.get(), 0, 1, 0);
2264   if (written < 0) {
2265     if (log)
2266       log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
2267     return false;
2268   } else if (written >= jit_max_expr_size) {
2269     if (log)
2270       log->Printf("%s - expression too long.", __FUNCTION__);
2271     return false;
2272   }
2273 
2274   uint64_t result = 0;
2275   if (!EvalRSExpression(expr_buf, frame_ptr, &result))
2276     return false;
2277 
2278   addr_t mem_ptr = static_cast<lldb::addr_t>(result);
2279   alloc->stride = static_cast<uint32_t>(mem_ptr - *alloc->data_ptr.get());
2280 
2281   return true;
2282 }
2283 
2284 // JIT all the current runtime info regarding an allocation
2285 bool RenderScriptRuntime::RefreshAllocation(AllocationDetails *alloc,
2286                                             StackFrame *frame_ptr) {
2287   // GetOffsetPointer()
2288   if (!JITDataPointer(alloc, frame_ptr))
2289     return false;
2290 
2291   // rsaAllocationGetType()
2292   if (!JITTypePointer(alloc, frame_ptr))
2293     return false;
2294 
2295   // rsaTypeGetNativeData()
2296   if (!JITTypePacked(alloc, frame_ptr))
2297     return false;
2298 
2299   // rsaElementGetNativeData()
2300   if (!JITElementPacked(alloc->element, *alloc->context.get(), frame_ptr))
2301     return false;
2302 
2303   // Sets the datum_size member in Element
2304   SetElementSize(alloc->element);
2305 
2306   // Use GetOffsetPointer() to infer size of the allocation
2307   if (!JITAllocationSize(alloc, frame_ptr))
2308     return false;
2309 
2310   return true;
2311 }
2312 
2313 // Function attempts to set the type_name member of the paramaterised Element
2314 // object. This string should be the name of the struct type the Element
2315 // represents. We need this string for pretty printing the Element to users.
2316 void RenderScriptRuntime::FindStructTypeName(Element &elem,
2317                                              StackFrame *frame_ptr) {
2318   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2319 
2320   if (!elem.type_name.IsEmpty()) // Name already set
2321     return;
2322   else
2323     elem.type_name = Element::GetFallbackStructName(); // Default type name if
2324                                                        // we don't succeed
2325 
2326   // Find all the global variables from the script rs modules
2327   VariableList var_list;
2328   for (auto module_sp : m_rsmodules)
2329     module_sp->m_module->FindGlobalVariables(
2330         RegularExpression(llvm::StringRef(".")), UINT32_MAX, var_list);
2331 
2332   // Iterate over all the global variables looking for one with a matching type
2333   // to the Element. We make the assumption a match exists since there needs to
2334   // be a global variable to reflect the struct type back into java host code.
2335   for (uint32_t i = 0; i < var_list.GetSize(); ++i) {
2336     const VariableSP var_sp(var_list.GetVariableAtIndex(i));
2337     if (!var_sp)
2338       continue;
2339 
2340     ValueObjectSP valobj_sp = ValueObjectVariable::Create(frame_ptr, var_sp);
2341     if (!valobj_sp)
2342       continue;
2343 
2344     // Find the number of variable fields.
2345     // If it has no fields, or more fields than our Element, then it can't be
2346     // the struct we're looking for. Don't check for equality since RS can add
2347     // extra struct members for padding.
2348     size_t num_children = valobj_sp->GetNumChildren();
2349     if (num_children > elem.children.size() || num_children == 0)
2350       continue;
2351 
2352     // Iterate over children looking for members with matching field names. If
2353     // all the field names match, this is likely the struct we want.
2354     //   TODO: This could be made more robust by also checking children data
2355     //   sizes, or array size
2356     bool found = true;
2357     for (size_t i = 0; i < num_children; ++i) {
2358       ValueObjectSP child = valobj_sp->GetChildAtIndex(i, true);
2359       if (!child || (child->GetName() != elem.children[i].type_name)) {
2360         found = false;
2361         break;
2362       }
2363     }
2364 
2365     // RS can add extra struct members for padding in the format
2366     // '#rs_padding_[0-9]+'
2367     if (found && num_children < elem.children.size()) {
2368       const uint32_t size_diff = elem.children.size() - num_children;
2369       if (log)
2370         log->Printf("%s - %" PRIu32 " padding struct entries", __FUNCTION__,
2371                     size_diff);
2372 
2373       for (uint32_t i = 0; i < size_diff; ++i) {
2374         const ConstString &name = elem.children[num_children + i].type_name;
2375         if (strcmp(name.AsCString(), "#rs_padding") < 0)
2376           found = false;
2377       }
2378     }
2379 
2380     // We've found a global variable with matching type
2381     if (found) {
2382       // Dereference since our Element type isn't a pointer.
2383       if (valobj_sp->IsPointerType()) {
2384         Status err;
2385         ValueObjectSP deref_valobj = valobj_sp->Dereference(err);
2386         if (!err.Fail())
2387           valobj_sp = deref_valobj;
2388       }
2389 
2390       // Save name of variable in Element.
2391       elem.type_name = valobj_sp->GetTypeName();
2392       if (log)
2393         log->Printf("%s - element name set to %s", __FUNCTION__,
2394                     elem.type_name.AsCString());
2395 
2396       return;
2397     }
2398   }
2399 }
2400 
2401 // Function sets the datum_size member of Element. Representing the size of a
2402 // single instance including padding. Assumes the relevant allocation
2403 // information has already been jitted.
2404 void RenderScriptRuntime::SetElementSize(Element &elem) {
2405   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2406   const Element::DataType type = *elem.type.get();
2407   assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT &&
2408          "Invalid allocation type");
2409 
2410   const uint32_t vec_size = *elem.type_vec_size.get();
2411   uint32_t data_size = 0;
2412   uint32_t padding = 0;
2413 
2414   // Element is of a struct type, calculate size recursively.
2415   if ((type == Element::RS_TYPE_NONE) && (elem.children.size() > 0)) {
2416     for (Element &child : elem.children) {
2417       SetElementSize(child);
2418       const uint32_t array_size =
2419           child.array_size.isValid() ? *child.array_size.get() : 1;
2420       data_size += *child.datum_size.get() * array_size;
2421     }
2422   }
2423   // These have been packed already
2424   else if (type == Element::RS_TYPE_UNSIGNED_5_6_5 ||
2425            type == Element::RS_TYPE_UNSIGNED_5_5_5_1 ||
2426            type == Element::RS_TYPE_UNSIGNED_4_4_4_4) {
2427     data_size = AllocationDetails::RSTypeToFormat[type][eElementSize];
2428   } else if (type < Element::RS_TYPE_ELEMENT) {
2429     data_size =
2430         vec_size * AllocationDetails::RSTypeToFormat[type][eElementSize];
2431     if (vec_size == 3)
2432       padding = AllocationDetails::RSTypeToFormat[type][eElementSize];
2433   } else
2434     data_size =
2435         GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
2436 
2437   elem.padding = padding;
2438   elem.datum_size = data_size + padding;
2439   if (log)
2440     log->Printf("%s - element size set to %" PRIu32, __FUNCTION__,
2441                 data_size + padding);
2442 }
2443 
2444 // Given an allocation, this function copies the allocation contents from
2445 // device into a buffer on the heap. Returning a shared pointer to the buffer
2446 // containing the data.
2447 std::shared_ptr<uint8_t>
2448 RenderScriptRuntime::GetAllocationData(AllocationDetails *alloc,
2449                                        StackFrame *frame_ptr) {
2450   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2451 
2452   // JIT all the allocation details
2453   if (alloc->ShouldRefresh()) {
2454     if (log)
2455       log->Printf("%s - allocation details not calculated yet, jitting info",
2456                   __FUNCTION__);
2457 
2458     if (!RefreshAllocation(alloc, frame_ptr)) {
2459       if (log)
2460         log->Printf("%s - couldn't JIT allocation details", __FUNCTION__);
2461       return nullptr;
2462     }
2463   }
2464 
2465   assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() &&
2466          alloc->element.type_vec_size.isValid() && alloc->size.isValid() &&
2467          "Allocation information not available");
2468 
2469   // Allocate a buffer to copy data into
2470   const uint32_t size = *alloc->size.get();
2471   std::shared_ptr<uint8_t> buffer(new uint8_t[size]);
2472   if (!buffer) {
2473     if (log)
2474       log->Printf("%s - couldn't allocate a %" PRIu32 " byte buffer",
2475                   __FUNCTION__, size);
2476     return nullptr;
2477   }
2478 
2479   // Read the inferior memory
2480   Status err;
2481   lldb::addr_t data_ptr = *alloc->data_ptr.get();
2482   GetProcess()->ReadMemory(data_ptr, buffer.get(), size, err);
2483   if (err.Fail()) {
2484     if (log)
2485       log->Printf("%s - '%s' Couldn't read %" PRIu32
2486                   " bytes of allocation data from 0x%" PRIx64,
2487                   __FUNCTION__, err.AsCString(), size, data_ptr);
2488     return nullptr;
2489   }
2490 
2491   return buffer;
2492 }
2493 
2494 // Function copies data from a binary file into an allocation. There is a
2495 // header at the start of the file, FileHeader, before the data content itself.
2496 // Information from this header is used to display warnings to the user about
2497 // incompatibilities
2498 bool RenderScriptRuntime::LoadAllocation(Stream &strm, const uint32_t alloc_id,
2499                                          const char *path,
2500                                          StackFrame *frame_ptr) {
2501   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2502 
2503   // Find allocation with the given id
2504   AllocationDetails *alloc = FindAllocByID(strm, alloc_id);
2505   if (!alloc)
2506     return false;
2507 
2508   if (log)
2509     log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__,
2510                 *alloc->address.get());
2511 
2512   // JIT all the allocation details
2513   if (alloc->ShouldRefresh()) {
2514     if (log)
2515       log->Printf("%s - allocation details not calculated yet, jitting info.",
2516                   __FUNCTION__);
2517 
2518     if (!RefreshAllocation(alloc, frame_ptr)) {
2519       if (log)
2520         log->Printf("%s - couldn't JIT allocation details", __FUNCTION__);
2521       return false;
2522     }
2523   }
2524 
2525   assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() &&
2526          alloc->element.type_vec_size.isValid() && alloc->size.isValid() &&
2527          alloc->element.datum_size.isValid() &&
2528          "Allocation information not available");
2529 
2530   // Check we can read from file
2531   FileSpec file(path);
2532   FileSystem::Instance().Resolve(file);
2533   if (!FileSystem::Instance().Exists(file)) {
2534     strm.Printf("Error: File %s does not exist", path);
2535     strm.EOL();
2536     return false;
2537   }
2538 
2539   if (!FileSystem::Instance().Readable(file)) {
2540     strm.Printf("Error: File %s does not have readable permissions", path);
2541     strm.EOL();
2542     return false;
2543   }
2544 
2545   // Read file into data buffer
2546   auto data_sp = FileSystem::Instance().CreateDataBuffer(file.GetPath());
2547 
2548   // Cast start of buffer to FileHeader and use pointer to read metadata
2549   void *file_buf = data_sp->GetBytes();
2550   if (file_buf == nullptr ||
2551       data_sp->GetByteSize() < (sizeof(AllocationDetails::FileHeader) +
2552                                 sizeof(AllocationDetails::ElementHeader))) {
2553     strm.Printf("Error: File %s does not contain enough data for header", path);
2554     strm.EOL();
2555     return false;
2556   }
2557   const AllocationDetails::FileHeader *file_header =
2558       static_cast<AllocationDetails::FileHeader *>(file_buf);
2559 
2560   // Check file starts with ascii characters "RSAD"
2561   if (memcmp(file_header->ident, "RSAD", 4)) {
2562     strm.Printf("Error: File doesn't contain identifier for an RS allocation "
2563                 "dump. Are you sure this is the correct file?");
2564     strm.EOL();
2565     return false;
2566   }
2567 
2568   // Look at the type of the root element in the header
2569   AllocationDetails::ElementHeader root_el_hdr;
2570   memcpy(&root_el_hdr, static_cast<uint8_t *>(file_buf) +
2571                            sizeof(AllocationDetails::FileHeader),
2572          sizeof(AllocationDetails::ElementHeader));
2573 
2574   if (log)
2575     log->Printf("%s - header type %" PRIu32 ", element size %" PRIu32,
2576                 __FUNCTION__, root_el_hdr.type, root_el_hdr.element_size);
2577 
2578   // Check if the target allocation and file both have the same number of bytes
2579   // for an Element
2580   if (*alloc->element.datum_size.get() != root_el_hdr.element_size) {
2581     strm.Printf("Warning: Mismatched Element sizes - file %" PRIu32
2582                 " bytes, allocation %" PRIu32 " bytes",
2583                 root_el_hdr.element_size, *alloc->element.datum_size.get());
2584     strm.EOL();
2585   }
2586 
2587   // Check if the target allocation and file both have the same type
2588   const uint32_t alloc_type = static_cast<uint32_t>(*alloc->element.type.get());
2589   const uint32_t file_type = root_el_hdr.type;
2590 
2591   if (file_type > Element::RS_TYPE_FONT) {
2592     strm.Printf("Warning: File has unknown allocation type");
2593     strm.EOL();
2594   } else if (alloc_type != file_type) {
2595     // Enum value isn't monotonous, so doesn't always index RsDataTypeToString
2596     // array
2597     uint32_t target_type_name_idx = alloc_type;
2598     uint32_t head_type_name_idx = file_type;
2599     if (alloc_type >= Element::RS_TYPE_ELEMENT &&
2600         alloc_type <= Element::RS_TYPE_FONT)
2601       target_type_name_idx = static_cast<Element::DataType>(
2602           (alloc_type - Element::RS_TYPE_ELEMENT) +
2603           Element::RS_TYPE_MATRIX_2X2 + 1);
2604 
2605     if (file_type >= Element::RS_TYPE_ELEMENT &&
2606         file_type <= Element::RS_TYPE_FONT)
2607       head_type_name_idx = static_cast<Element::DataType>(
2608           (file_type - Element::RS_TYPE_ELEMENT) + Element::RS_TYPE_MATRIX_2X2 +
2609           1);
2610 
2611     const char *head_type_name =
2612         AllocationDetails::RsDataTypeToString[head_type_name_idx][0];
2613     const char *target_type_name =
2614         AllocationDetails::RsDataTypeToString[target_type_name_idx][0];
2615 
2616     strm.Printf(
2617         "Warning: Mismatched Types - file '%s' type, allocation '%s' type",
2618         head_type_name, target_type_name);
2619     strm.EOL();
2620   }
2621 
2622   // Advance buffer past header
2623   file_buf = static_cast<uint8_t *>(file_buf) + file_header->hdr_size;
2624 
2625   // Calculate size of allocation data in file
2626   size_t size = data_sp->GetByteSize() - file_header->hdr_size;
2627 
2628   // Check if the target allocation and file both have the same total data
2629   // size.
2630   const uint32_t alloc_size = *alloc->size.get();
2631   if (alloc_size != size) {
2632     strm.Printf("Warning: Mismatched allocation sizes - file 0x%" PRIx64
2633                 " bytes, allocation 0x%" PRIx32 " bytes",
2634                 (uint64_t)size, alloc_size);
2635     strm.EOL();
2636     // Set length to copy to minimum
2637     size = alloc_size < size ? alloc_size : size;
2638   }
2639 
2640   // Copy file data from our buffer into the target allocation.
2641   lldb::addr_t alloc_data = *alloc->data_ptr.get();
2642   Status err;
2643   size_t written = GetProcess()->WriteMemory(alloc_data, file_buf, size, err);
2644   if (!err.Success() || written != size) {
2645     strm.Printf("Error: Couldn't write data to allocation %s", err.AsCString());
2646     strm.EOL();
2647     return false;
2648   }
2649 
2650   strm.Printf("Contents of file '%s' read into allocation %" PRIu32, path,
2651               alloc->id);
2652   strm.EOL();
2653 
2654   return true;
2655 }
2656 
2657 // Function takes as parameters a byte buffer, which will eventually be written
2658 // to file as the element header, an offset into that buffer, and an Element
2659 // that will be saved into the buffer at the parametrised offset. Return value
2660 // is the new offset after writing the element into the buffer. Elements are
2661 // saved to the file as the ElementHeader struct followed by offsets to the
2662 // structs of all the element's children.
2663 size_t RenderScriptRuntime::PopulateElementHeaders(
2664     const std::shared_ptr<uint8_t> header_buffer, size_t offset,
2665     const Element &elem) {
2666   // File struct for an element header with all the relevant details copied
2667   // from elem. We assume members are valid already.
2668   AllocationDetails::ElementHeader elem_header;
2669   elem_header.type = *elem.type.get();
2670   elem_header.kind = *elem.type_kind.get();
2671   elem_header.element_size = *elem.datum_size.get();
2672   elem_header.vector_size = *elem.type_vec_size.get();
2673   elem_header.array_size =
2674       elem.array_size.isValid() ? *elem.array_size.get() : 0;
2675   const size_t elem_header_size = sizeof(AllocationDetails::ElementHeader);
2676 
2677   // Copy struct into buffer and advance offset We assume that header_buffer
2678   // has been checked for nullptr before this method is called
2679   memcpy(header_buffer.get() + offset, &elem_header, elem_header_size);
2680   offset += elem_header_size;
2681 
2682   // Starting offset of child ElementHeader struct
2683   size_t child_offset =
2684       offset + ((elem.children.size() + 1) * sizeof(uint32_t));
2685   for (const RenderScriptRuntime::Element &child : elem.children) {
2686     // Recursively populate the buffer with the element header structs of
2687     // children. Then save the offsets where they were set after the parent
2688     // element header.
2689     memcpy(header_buffer.get() + offset, &child_offset, sizeof(uint32_t));
2690     offset += sizeof(uint32_t);
2691 
2692     child_offset = PopulateElementHeaders(header_buffer, child_offset, child);
2693   }
2694 
2695   // Zero indicates no more children
2696   memset(header_buffer.get() + offset, 0, sizeof(uint32_t));
2697 
2698   return child_offset;
2699 }
2700 
2701 // Given an Element object this function returns the total size needed in the
2702 // file header to store the element's details. Taking into account the size of
2703 // the element header struct, plus the offsets to all the element's children.
2704 // Function is recursive so that the size of all ancestors is taken into
2705 // account.
2706 size_t RenderScriptRuntime::CalculateElementHeaderSize(const Element &elem) {
2707   // Offsets to children plus zero terminator
2708   size_t size = (elem.children.size() + 1) * sizeof(uint32_t);
2709   // Size of header struct with type details
2710   size += sizeof(AllocationDetails::ElementHeader);
2711 
2712   // Calculate recursively for all descendants
2713   for (const Element &child : elem.children)
2714     size += CalculateElementHeaderSize(child);
2715 
2716   return size;
2717 }
2718 
2719 // Function copies allocation contents into a binary file. This file can then
2720 // be loaded later into a different allocation. There is a header, FileHeader,
2721 // before the allocation data containing meta-data.
2722 bool RenderScriptRuntime::SaveAllocation(Stream &strm, const uint32_t alloc_id,
2723                                          const char *path,
2724                                          StackFrame *frame_ptr) {
2725   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2726 
2727   // Find allocation with the given id
2728   AllocationDetails *alloc = FindAllocByID(strm, alloc_id);
2729   if (!alloc)
2730     return false;
2731 
2732   if (log)
2733     log->Printf("%s - found allocation 0x%" PRIx64 ".", __FUNCTION__,
2734                 *alloc->address.get());
2735 
2736   // JIT all the allocation details
2737   if (alloc->ShouldRefresh()) {
2738     if (log)
2739       log->Printf("%s - allocation details not calculated yet, jitting info.",
2740                   __FUNCTION__);
2741 
2742     if (!RefreshAllocation(alloc, frame_ptr)) {
2743       if (log)
2744         log->Printf("%s - couldn't JIT allocation details.", __FUNCTION__);
2745       return false;
2746     }
2747   }
2748 
2749   assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() &&
2750          alloc->element.type_vec_size.isValid() &&
2751          alloc->element.datum_size.get() &&
2752          alloc->element.type_kind.isValid() && alloc->dimension.isValid() &&
2753          "Allocation information not available");
2754 
2755   // Check we can create writable file
2756   FileSpec file_spec(path);
2757   FileSystem::Instance().Resolve(file_spec);
2758   File file;
2759   FileSystem::Instance().Open(file, file_spec,
2760                               File::eOpenOptionWrite |
2761                                   File::eOpenOptionCanCreate |
2762                                   File::eOpenOptionTruncate);
2763 
2764   if (!file) {
2765     strm.Printf("Error: Failed to open '%s' for writing", path);
2766     strm.EOL();
2767     return false;
2768   }
2769 
2770   // Read allocation into buffer of heap memory
2771   const std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr);
2772   if (!buffer) {
2773     strm.Printf("Error: Couldn't read allocation data into buffer");
2774     strm.EOL();
2775     return false;
2776   }
2777 
2778   // Create the file header
2779   AllocationDetails::FileHeader head;
2780   memcpy(head.ident, "RSAD", 4);
2781   head.dims[0] = static_cast<uint32_t>(alloc->dimension.get()->dim_1);
2782   head.dims[1] = static_cast<uint32_t>(alloc->dimension.get()->dim_2);
2783   head.dims[2] = static_cast<uint32_t>(alloc->dimension.get()->dim_3);
2784 
2785   const size_t element_header_size = CalculateElementHeaderSize(alloc->element);
2786   assert((sizeof(AllocationDetails::FileHeader) + element_header_size) <
2787              UINT16_MAX &&
2788          "Element header too large");
2789   head.hdr_size = static_cast<uint16_t>(sizeof(AllocationDetails::FileHeader) +
2790                                         element_header_size);
2791 
2792   // Write the file header
2793   size_t num_bytes = sizeof(AllocationDetails::FileHeader);
2794   if (log)
2795     log->Printf("%s - writing File Header, 0x%" PRIx64 " bytes", __FUNCTION__,
2796                 (uint64_t)num_bytes);
2797 
2798   Status err = file.Write(&head, num_bytes);
2799   if (!err.Success()) {
2800     strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path);
2801     strm.EOL();
2802     return false;
2803   }
2804 
2805   // Create the headers describing the element type of the allocation.
2806   std::shared_ptr<uint8_t> element_header_buffer(
2807       new uint8_t[element_header_size]);
2808   if (element_header_buffer == nullptr) {
2809     strm.Printf("Internal Error: Couldn't allocate %" PRIu64
2810                 " bytes on the heap",
2811                 (uint64_t)element_header_size);
2812     strm.EOL();
2813     return false;
2814   }
2815 
2816   PopulateElementHeaders(element_header_buffer, 0, alloc->element);
2817 
2818   // Write headers for allocation element type to file
2819   num_bytes = element_header_size;
2820   if (log)
2821     log->Printf("%s - writing element headers, 0x%" PRIx64 " bytes.",
2822                 __FUNCTION__, (uint64_t)num_bytes);
2823 
2824   err = file.Write(element_header_buffer.get(), num_bytes);
2825   if (!err.Success()) {
2826     strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path);
2827     strm.EOL();
2828     return false;
2829   }
2830 
2831   // Write allocation data to file
2832   num_bytes = static_cast<size_t>(*alloc->size.get());
2833   if (log)
2834     log->Printf("%s - writing 0x%" PRIx64 " bytes", __FUNCTION__,
2835                 (uint64_t)num_bytes);
2836 
2837   err = file.Write(buffer.get(), num_bytes);
2838   if (!err.Success()) {
2839     strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path);
2840     strm.EOL();
2841     return false;
2842   }
2843 
2844   strm.Printf("Allocation written to file '%s'", path);
2845   strm.EOL();
2846   return true;
2847 }
2848 
2849 bool RenderScriptRuntime::LoadModule(const lldb::ModuleSP &module_sp) {
2850   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2851 
2852   if (module_sp) {
2853     for (const auto &rs_module : m_rsmodules) {
2854       if (rs_module->m_module == module_sp) {
2855         // Check if the user has enabled automatically breaking on all RS
2856         // kernels.
2857         if (m_breakAllKernels)
2858           BreakOnModuleKernels(rs_module);
2859 
2860         return false;
2861       }
2862     }
2863     bool module_loaded = false;
2864     switch (GetModuleKind(module_sp)) {
2865     case eModuleKindKernelObj: {
2866       RSModuleDescriptorSP module_desc;
2867       module_desc.reset(new RSModuleDescriptor(module_sp));
2868       if (module_desc->ParseRSInfo()) {
2869         m_rsmodules.push_back(module_desc);
2870         module_desc->WarnIfVersionMismatch(GetProcess()
2871                                                ->GetTarget()
2872                                                .GetDebugger()
2873                                                .GetAsyncOutputStream()
2874                                                .get());
2875         module_loaded = true;
2876       }
2877       if (module_loaded) {
2878         FixupScriptDetails(module_desc);
2879       }
2880       break;
2881     }
2882     case eModuleKindDriver: {
2883       if (!m_libRSDriver) {
2884         m_libRSDriver = module_sp;
2885         LoadRuntimeHooks(m_libRSDriver, RenderScriptRuntime::eModuleKindDriver);
2886       }
2887       break;
2888     }
2889     case eModuleKindImpl: {
2890       if (!m_libRSCpuRef) {
2891         m_libRSCpuRef = module_sp;
2892         LoadRuntimeHooks(m_libRSCpuRef, RenderScriptRuntime::eModuleKindImpl);
2893       }
2894       break;
2895     }
2896     case eModuleKindLibRS: {
2897       if (!m_libRS) {
2898         m_libRS = module_sp;
2899         static ConstString gDbgPresentStr("gDebuggerPresent");
2900         const Symbol *debug_present = m_libRS->FindFirstSymbolWithNameAndType(
2901             gDbgPresentStr, eSymbolTypeData);
2902         if (debug_present) {
2903           Status err;
2904           uint32_t flag = 0x00000001U;
2905           Target &target = GetProcess()->GetTarget();
2906           addr_t addr = debug_present->GetLoadAddress(&target);
2907           GetProcess()->WriteMemory(addr, &flag, sizeof(flag), err);
2908           if (err.Success()) {
2909             if (log)
2910               log->Printf("%s - debugger present flag set on debugee.",
2911                           __FUNCTION__);
2912 
2913             m_debuggerPresentFlagged = true;
2914           } else if (log) {
2915             log->Printf("%s - error writing debugger present flags '%s' ",
2916                         __FUNCTION__, err.AsCString());
2917           }
2918         } else if (log) {
2919           log->Printf(
2920               "%s - error writing debugger present flags - symbol not found",
2921               __FUNCTION__);
2922         }
2923       }
2924       break;
2925     }
2926     default:
2927       break;
2928     }
2929     if (module_loaded)
2930       Update();
2931     return module_loaded;
2932   }
2933   return false;
2934 }
2935 
2936 void RenderScriptRuntime::Update() {
2937   if (m_rsmodules.size() > 0) {
2938     if (!m_initiated) {
2939       Initiate();
2940     }
2941   }
2942 }
2943 
2944 void RSModuleDescriptor::WarnIfVersionMismatch(lldb_private::Stream *s) const {
2945   if (!s)
2946     return;
2947 
2948   if (m_slang_version.empty() || m_bcc_version.empty()) {
2949     s->PutCString("WARNING: Unknown bcc or slang (llvm-rs-cc) version; debug "
2950                   "experience may be unreliable");
2951     s->EOL();
2952   } else if (m_slang_version != m_bcc_version) {
2953     s->Printf("WARNING: The debug info emitted by the slang frontend "
2954               "(llvm-rs-cc) used to build this module (%s) does not match the "
2955               "version of bcc used to generate the debug information (%s). "
2956               "This is an unsupported configuration and may result in a poor "
2957               "debugging experience; proceed with caution",
2958               m_slang_version.c_str(), m_bcc_version.c_str());
2959     s->EOL();
2960   }
2961 }
2962 
2963 bool RSModuleDescriptor::ParsePragmaCount(llvm::StringRef *lines,
2964                                           size_t n_lines) {
2965   // Skip the pragma prototype line
2966   ++lines;
2967   for (; n_lines--; ++lines) {
2968     const auto kv_pair = lines->split(" - ");
2969     m_pragmas[kv_pair.first.trim().str()] = kv_pair.second.trim().str();
2970   }
2971   return true;
2972 }
2973 
2974 bool RSModuleDescriptor::ParseExportReduceCount(llvm::StringRef *lines,
2975                                                 size_t n_lines) {
2976   // The list of reduction kernels in the `.rs.info` symbol is of the form
2977   // "signature - accumulatordatasize - reduction_name - initializer_name -
2978   // accumulator_name - combiner_name - outconverter_name - halter_name" Where
2979   // a function is not explicitly named by the user, or is not generated by the
2980   // compiler, it is named "." so the dash separated list should always be 8
2981   // items long
2982   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
2983   // Skip the exportReduceCount line
2984   ++lines;
2985   for (; n_lines--; ++lines) {
2986     llvm::SmallVector<llvm::StringRef, 8> spec;
2987     lines->split(spec, " - ");
2988     if (spec.size() != 8) {
2989       if (spec.size() < 8) {
2990         if (log)
2991           log->Error("Error parsing RenderScript reduction spec. wrong number "
2992                      "of fields");
2993         return false;
2994       } else if (log)
2995         log->Warning("Extraneous members in reduction spec: '%s'",
2996                      lines->str().c_str());
2997     }
2998 
2999     const auto sig_s = spec[0];
3000     uint32_t sig;
3001     if (sig_s.getAsInteger(10, sig)) {
3002       if (log)
3003         log->Error("Error parsing Renderscript reduction spec: invalid kernel "
3004                    "signature: '%s'",
3005                    sig_s.str().c_str());
3006       return false;
3007     }
3008 
3009     const auto accum_data_size_s = spec[1];
3010     uint32_t accum_data_size;
3011     if (accum_data_size_s.getAsInteger(10, accum_data_size)) {
3012       if (log)
3013         log->Error("Error parsing Renderscript reduction spec: invalid "
3014                    "accumulator data size %s",
3015                    accum_data_size_s.str().c_str());
3016       return false;
3017     }
3018 
3019     if (log)
3020       log->Printf("Found RenderScript reduction '%s'", spec[2].str().c_str());
3021 
3022     m_reductions.push_back(RSReductionDescriptor(this, sig, accum_data_size,
3023                                                  spec[2], spec[3], spec[4],
3024                                                  spec[5], spec[6], spec[7]));
3025   }
3026   return true;
3027 }
3028 
3029 bool RSModuleDescriptor::ParseVersionInfo(llvm::StringRef *lines,
3030                                           size_t n_lines) {
3031   // Skip the versionInfo line
3032   ++lines;
3033   for (; n_lines--; ++lines) {
3034     // We're only interested in bcc and slang versions, and ignore all other
3035     // versionInfo lines
3036     const auto kv_pair = lines->split(" - ");
3037     if (kv_pair.first == "slang")
3038       m_slang_version = kv_pair.second.str();
3039     else if (kv_pair.first == "bcc")
3040       m_bcc_version = kv_pair.second.str();
3041   }
3042   return true;
3043 }
3044 
3045 bool RSModuleDescriptor::ParseExportForeachCount(llvm::StringRef *lines,
3046                                                  size_t n_lines) {
3047   // Skip the exportForeachCount line
3048   ++lines;
3049   for (; n_lines--; ++lines) {
3050     uint32_t slot;
3051     // `forEach` kernels are listed in the `.rs.info` packet as a "slot - name"
3052     // pair per line
3053     const auto kv_pair = lines->split(" - ");
3054     if (kv_pair.first.getAsInteger(10, slot))
3055       return false;
3056     m_kernels.push_back(RSKernelDescriptor(this, kv_pair.second, slot));
3057   }
3058   return true;
3059 }
3060 
3061 bool RSModuleDescriptor::ParseExportVarCount(llvm::StringRef *lines,
3062                                              size_t n_lines) {
3063   // Skip the ExportVarCount line
3064   ++lines;
3065   for (; n_lines--; ++lines)
3066     m_globals.push_back(RSGlobalDescriptor(this, *lines));
3067   return true;
3068 }
3069 
3070 // The .rs.info symbol in renderscript modules contains a string which needs to
3071 // be parsed. The string is basic and is parsed on a line by line basis.
3072 bool RSModuleDescriptor::ParseRSInfo() {
3073   assert(m_module);
3074   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
3075   const Symbol *info_sym = m_module->FindFirstSymbolWithNameAndType(
3076       ConstString(".rs.info"), eSymbolTypeData);
3077   if (!info_sym)
3078     return false;
3079 
3080   const addr_t addr = info_sym->GetAddressRef().GetFileAddress();
3081   if (addr == LLDB_INVALID_ADDRESS)
3082     return false;
3083 
3084   const addr_t size = info_sym->GetByteSize();
3085   const FileSpec fs = m_module->GetFileSpec();
3086 
3087   auto buffer =
3088       FileSystem::Instance().CreateDataBuffer(fs.GetPath(), size, addr);
3089   if (!buffer)
3090     return false;
3091 
3092   // split rs.info. contents into lines
3093   llvm::SmallVector<llvm::StringRef, 128> info_lines;
3094   {
3095     const llvm::StringRef raw_rs_info((const char *)buffer->GetBytes());
3096     raw_rs_info.split(info_lines, '\n');
3097     if (log)
3098       log->Printf("'.rs.info symbol for '%s':\n%s",
3099                   m_module->GetFileSpec().GetCString(),
3100                   raw_rs_info.str().c_str());
3101   }
3102 
3103   enum {
3104     eExportVar,
3105     eExportForEach,
3106     eExportReduce,
3107     ePragma,
3108     eBuildChecksum,
3109     eObjectSlot,
3110     eVersionInfo,
3111   };
3112 
3113   const auto rs_info_handler = [](llvm::StringRef name) -> int {
3114     return llvm::StringSwitch<int>(name)
3115         // The number of visible global variables in the script
3116         .Case("exportVarCount", eExportVar)
3117         // The number of RenderScrip `forEach` kernels __attribute__((kernel))
3118         .Case("exportForEachCount", eExportForEach)
3119         // The number of generalreductions: This marked in the script by
3120         // `#pragma reduce()`
3121         .Case("exportReduceCount", eExportReduce)
3122         // Total count of all RenderScript specific `#pragmas` used in the
3123         // script
3124         .Case("pragmaCount", ePragma)
3125         .Case("objectSlotCount", eObjectSlot)
3126         .Case("versionInfo", eVersionInfo)
3127         .Default(-1);
3128   };
3129 
3130   // parse all text lines of .rs.info
3131   for (auto line = info_lines.begin(); line != info_lines.end(); ++line) {
3132     const auto kv_pair = line->split(": ");
3133     const auto key = kv_pair.first;
3134     const auto val = kv_pair.second.trim();
3135 
3136     const auto handler = rs_info_handler(key);
3137     if (handler == -1)
3138       continue;
3139     // getAsInteger returns `true` on an error condition - we're only
3140     // interested in numeric fields at the moment
3141     uint64_t n_lines;
3142     if (val.getAsInteger(10, n_lines)) {
3143       LLDB_LOGV(log, "Failed to parse non-numeric '.rs.info' section {0}",
3144                 line->str());
3145       continue;
3146     }
3147     if (info_lines.end() - (line + 1) < (ptrdiff_t)n_lines)
3148       return false;
3149 
3150     bool success = false;
3151     switch (handler) {
3152     case eExportVar:
3153       success = ParseExportVarCount(line, n_lines);
3154       break;
3155     case eExportForEach:
3156       success = ParseExportForeachCount(line, n_lines);
3157       break;
3158     case eExportReduce:
3159       success = ParseExportReduceCount(line, n_lines);
3160       break;
3161     case ePragma:
3162       success = ParsePragmaCount(line, n_lines);
3163       break;
3164     case eVersionInfo:
3165       success = ParseVersionInfo(line, n_lines);
3166       break;
3167     default: {
3168       if (log)
3169         log->Printf("%s - skipping .rs.info field '%s'", __FUNCTION__,
3170                     line->str().c_str());
3171       continue;
3172     }
3173     }
3174     if (!success)
3175       return false;
3176     line += n_lines;
3177   }
3178   return info_lines.size() > 0;
3179 }
3180 
3181 void RenderScriptRuntime::DumpStatus(Stream &strm) const {
3182   if (m_libRS) {
3183     strm.Printf("Runtime Library discovered.");
3184     strm.EOL();
3185   }
3186   if (m_libRSDriver) {
3187     strm.Printf("Runtime Driver discovered.");
3188     strm.EOL();
3189   }
3190   if (m_libRSCpuRef) {
3191     strm.Printf("CPU Reference Implementation discovered.");
3192     strm.EOL();
3193   }
3194 
3195   if (m_runtimeHooks.size()) {
3196     strm.Printf("Runtime functions hooked:");
3197     strm.EOL();
3198     for (auto b : m_runtimeHooks) {
3199       strm.Indent(b.second->defn->name);
3200       strm.EOL();
3201     }
3202   } else {
3203     strm.Printf("Runtime is not hooked.");
3204     strm.EOL();
3205   }
3206 }
3207 
3208 void RenderScriptRuntime::DumpContexts(Stream &strm) const {
3209   strm.Printf("Inferred RenderScript Contexts:");
3210   strm.EOL();
3211   strm.IndentMore();
3212 
3213   std::map<addr_t, uint64_t> contextReferences;
3214 
3215   // Iterate over all of the currently discovered scripts. Note: We cant push
3216   // or pop from m_scripts inside this loop or it may invalidate script.
3217   for (const auto &script : m_scripts) {
3218     if (!script->context.isValid())
3219       continue;
3220     lldb::addr_t context = *script->context;
3221 
3222     if (contextReferences.find(context) != contextReferences.end()) {
3223       contextReferences[context]++;
3224     } else {
3225       contextReferences[context] = 1;
3226     }
3227   }
3228 
3229   for (const auto &cRef : contextReferences) {
3230     strm.Printf("Context 0x%" PRIx64 ": %" PRIu64 " script instances",
3231                 cRef.first, cRef.second);
3232     strm.EOL();
3233   }
3234   strm.IndentLess();
3235 }
3236 
3237 void RenderScriptRuntime::DumpKernels(Stream &strm) const {
3238   strm.Printf("RenderScript Kernels:");
3239   strm.EOL();
3240   strm.IndentMore();
3241   for (const auto &module : m_rsmodules) {
3242     strm.Printf("Resource '%s':", module->m_resname.c_str());
3243     strm.EOL();
3244     for (const auto &kernel : module->m_kernels) {
3245       strm.Indent(kernel.m_name.AsCString());
3246       strm.EOL();
3247     }
3248   }
3249   strm.IndentLess();
3250 }
3251 
3252 RenderScriptRuntime::AllocationDetails *
3253 RenderScriptRuntime::FindAllocByID(Stream &strm, const uint32_t alloc_id) {
3254   AllocationDetails *alloc = nullptr;
3255 
3256   // See if we can find allocation using id as an index;
3257   if (alloc_id <= m_allocations.size() && alloc_id != 0 &&
3258       m_allocations[alloc_id - 1]->id == alloc_id) {
3259     alloc = m_allocations[alloc_id - 1].get();
3260     return alloc;
3261   }
3262 
3263   // Fallback to searching
3264   for (const auto &a : m_allocations) {
3265     if (a->id == alloc_id) {
3266       alloc = a.get();
3267       break;
3268     }
3269   }
3270 
3271   if (alloc == nullptr) {
3272     strm.Printf("Error: Couldn't find allocation with id matching %" PRIu32,
3273                 alloc_id);
3274     strm.EOL();
3275   }
3276 
3277   return alloc;
3278 }
3279 
3280 // Prints the contents of an allocation to the output stream, which may be a
3281 // file
3282 bool RenderScriptRuntime::DumpAllocation(Stream &strm, StackFrame *frame_ptr,
3283                                          const uint32_t id) {
3284   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
3285 
3286   // Check we can find the desired allocation
3287   AllocationDetails *alloc = FindAllocByID(strm, id);
3288   if (!alloc)
3289     return false; // FindAllocByID() will print error message for us here
3290 
3291   if (log)
3292     log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__,
3293                 *alloc->address.get());
3294 
3295   // Check we have information about the allocation, if not calculate it
3296   if (alloc->ShouldRefresh()) {
3297     if (log)
3298       log->Printf("%s - allocation details not calculated yet, jitting info.",
3299                   __FUNCTION__);
3300 
3301     // JIT all the allocation information
3302     if (!RefreshAllocation(alloc, frame_ptr)) {
3303       strm.Printf("Error: Couldn't JIT allocation details");
3304       strm.EOL();
3305       return false;
3306     }
3307   }
3308 
3309   // Establish format and size of each data element
3310   const uint32_t vec_size = *alloc->element.type_vec_size.get();
3311   const Element::DataType type = *alloc->element.type.get();
3312 
3313   assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT &&
3314          "Invalid allocation type");
3315 
3316   lldb::Format format;
3317   if (type >= Element::RS_TYPE_ELEMENT)
3318     format = eFormatHex;
3319   else
3320     format = vec_size == 1
3321                  ? static_cast<lldb::Format>(
3322                        AllocationDetails::RSTypeToFormat[type][eFormatSingle])
3323                  : static_cast<lldb::Format>(
3324                        AllocationDetails::RSTypeToFormat[type][eFormatVector]);
3325 
3326   const uint32_t data_size = *alloc->element.datum_size.get();
3327 
3328   if (log)
3329     log->Printf("%s - element size %" PRIu32 " bytes, including padding",
3330                 __FUNCTION__, data_size);
3331 
3332   // Allocate a buffer to copy data into
3333   std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr);
3334   if (!buffer) {
3335     strm.Printf("Error: Couldn't read allocation data");
3336     strm.EOL();
3337     return false;
3338   }
3339 
3340   // Calculate stride between rows as there may be padding at end of rows since
3341   // allocated memory is 16-byte aligned
3342   if (!alloc->stride.isValid()) {
3343     if (alloc->dimension.get()->dim_2 == 0) // We only have one dimension
3344       alloc->stride = 0;
3345     else if (!JITAllocationStride(alloc, frame_ptr)) {
3346       strm.Printf("Error: Couldn't calculate allocation row stride");
3347       strm.EOL();
3348       return false;
3349     }
3350   }
3351   const uint32_t stride = *alloc->stride.get();
3352   const uint32_t size = *alloc->size.get(); // Size of whole allocation
3353   const uint32_t padding =
3354       alloc->element.padding.isValid() ? *alloc->element.padding.get() : 0;
3355   if (log)
3356     log->Printf("%s - stride %" PRIu32 " bytes, size %" PRIu32
3357                 " bytes, padding %" PRIu32,
3358                 __FUNCTION__, stride, size, padding);
3359 
3360   // Find dimensions used to index loops, so need to be non-zero
3361   uint32_t dim_x = alloc->dimension.get()->dim_1;
3362   dim_x = dim_x == 0 ? 1 : dim_x;
3363 
3364   uint32_t dim_y = alloc->dimension.get()->dim_2;
3365   dim_y = dim_y == 0 ? 1 : dim_y;
3366 
3367   uint32_t dim_z = alloc->dimension.get()->dim_3;
3368   dim_z = dim_z == 0 ? 1 : dim_z;
3369 
3370   // Use data extractor to format output
3371   const uint32_t target_ptr_size =
3372       GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
3373   DataExtractor alloc_data(buffer.get(), size, GetProcess()->GetByteOrder(),
3374                            target_ptr_size);
3375 
3376   uint32_t offset = 0;   // Offset in buffer to next element to be printed
3377   uint32_t prev_row = 0; // Offset to the start of the previous row
3378 
3379   // Iterate over allocation dimensions, printing results to user
3380   strm.Printf("Data (X, Y, Z):");
3381   for (uint32_t z = 0; z < dim_z; ++z) {
3382     for (uint32_t y = 0; y < dim_y; ++y) {
3383       // Use stride to index start of next row.
3384       if (!(y == 0 && z == 0))
3385         offset = prev_row + stride;
3386       prev_row = offset;
3387 
3388       // Print each element in the row individually
3389       for (uint32_t x = 0; x < dim_x; ++x) {
3390         strm.Printf("\n(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ") = ", x, y, z);
3391         if ((type == Element::RS_TYPE_NONE) &&
3392             (alloc->element.children.size() > 0) &&
3393             (alloc->element.type_name != Element::GetFallbackStructName())) {
3394           // Here we are dumping an Element of struct type. This is done using
3395           // expression evaluation with the name of the struct type and pointer
3396           // to element. Don't print the name of the resulting expression,
3397           // since this will be '$[0-9]+'
3398           DumpValueObjectOptions expr_options;
3399           expr_options.SetHideName(true);
3400 
3401           // Setup expression as dereferencing a pointer cast to element
3402           // address.
3403           char expr_char_buffer[jit_max_expr_size];
3404           int written =
3405               snprintf(expr_char_buffer, jit_max_expr_size, "*(%s*) 0x%" PRIx64,
3406                        alloc->element.type_name.AsCString(),
3407                        *alloc->data_ptr.get() + offset);
3408 
3409           if (written < 0 || written >= jit_max_expr_size) {
3410             if (log)
3411               log->Printf("%s - error in snprintf().", __FUNCTION__);
3412             continue;
3413           }
3414 
3415           // Evaluate expression
3416           ValueObjectSP expr_result;
3417           GetProcess()->GetTarget().EvaluateExpression(expr_char_buffer,
3418                                                        frame_ptr, expr_result);
3419 
3420           // Print the results to our stream.
3421           expr_result->Dump(strm, expr_options);
3422         } else {
3423           DumpDataExtractor(alloc_data, &strm, offset, format,
3424                             data_size - padding, 1, 1, LLDB_INVALID_ADDRESS, 0,
3425                             0);
3426         }
3427         offset += data_size;
3428       }
3429     }
3430   }
3431   strm.EOL();
3432 
3433   return true;
3434 }
3435 
3436 // Function recalculates all our cached information about allocations by
3437 // jitting the RS runtime regarding each allocation we know about. Returns true
3438 // if all allocations could be recomputed, false otherwise.
3439 bool RenderScriptRuntime::RecomputeAllAllocations(Stream &strm,
3440                                                   StackFrame *frame_ptr) {
3441   bool success = true;
3442   for (auto &alloc : m_allocations) {
3443     // JIT current allocation information
3444     if (!RefreshAllocation(alloc.get(), frame_ptr)) {
3445       strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32
3446                   "\n",
3447                   alloc->id);
3448       success = false;
3449     }
3450   }
3451 
3452   if (success)
3453     strm.Printf("All allocations successfully recomputed");
3454   strm.EOL();
3455 
3456   return success;
3457 }
3458 
3459 // Prints information regarding currently loaded allocations. These details are
3460 // gathered by jitting the runtime, which has as latency. Index parameter
3461 // specifies a single allocation ID to print, or a zero value to print them all
3462 void RenderScriptRuntime::ListAllocations(Stream &strm, StackFrame *frame_ptr,
3463                                           const uint32_t index) {
3464   strm.Printf("RenderScript Allocations:");
3465   strm.EOL();
3466   strm.IndentMore();
3467 
3468   for (auto &alloc : m_allocations) {
3469     // index will only be zero if we want to print all allocations
3470     if (index != 0 && index != alloc->id)
3471       continue;
3472 
3473     // JIT current allocation information
3474     if (alloc->ShouldRefresh() && !RefreshAllocation(alloc.get(), frame_ptr)) {
3475       strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32,
3476                   alloc->id);
3477       strm.EOL();
3478       continue;
3479     }
3480 
3481     strm.Printf("%" PRIu32 ":", alloc->id);
3482     strm.EOL();
3483     strm.IndentMore();
3484 
3485     strm.Indent("Context: ");
3486     if (!alloc->context.isValid())
3487       strm.Printf("unknown\n");
3488     else
3489       strm.Printf("0x%" PRIx64 "\n", *alloc->context.get());
3490 
3491     strm.Indent("Address: ");
3492     if (!alloc->address.isValid())
3493       strm.Printf("unknown\n");
3494     else
3495       strm.Printf("0x%" PRIx64 "\n", *alloc->address.get());
3496 
3497     strm.Indent("Data pointer: ");
3498     if (!alloc->data_ptr.isValid())
3499       strm.Printf("unknown\n");
3500     else
3501       strm.Printf("0x%" PRIx64 "\n", *alloc->data_ptr.get());
3502 
3503     strm.Indent("Dimensions: ");
3504     if (!alloc->dimension.isValid())
3505       strm.Printf("unknown\n");
3506     else
3507       strm.Printf("(%" PRId32 ", %" PRId32 ", %" PRId32 ")\n",
3508                   alloc->dimension.get()->dim_1, alloc->dimension.get()->dim_2,
3509                   alloc->dimension.get()->dim_3);
3510 
3511     strm.Indent("Data Type: ");
3512     if (!alloc->element.type.isValid() ||
3513         !alloc->element.type_vec_size.isValid())
3514       strm.Printf("unknown\n");
3515     else {
3516       const int vector_size = *alloc->element.type_vec_size.get();
3517       Element::DataType type = *alloc->element.type.get();
3518 
3519       if (!alloc->element.type_name.IsEmpty())
3520         strm.Printf("%s\n", alloc->element.type_name.AsCString());
3521       else {
3522         // Enum value isn't monotonous, so doesn't always index
3523         // RsDataTypeToString array
3524         if (type >= Element::RS_TYPE_ELEMENT && type <= Element::RS_TYPE_FONT)
3525           type =
3526               static_cast<Element::DataType>((type - Element::RS_TYPE_ELEMENT) +
3527                                              Element::RS_TYPE_MATRIX_2X2 + 1);
3528 
3529         if (type >= (sizeof(AllocationDetails::RsDataTypeToString) /
3530                      sizeof(AllocationDetails::RsDataTypeToString[0])) ||
3531             vector_size > 4 || vector_size < 1)
3532           strm.Printf("invalid type\n");
3533         else
3534           strm.Printf(
3535               "%s\n",
3536               AllocationDetails::RsDataTypeToString[static_cast<uint32_t>(type)]
3537                                                    [vector_size - 1]);
3538       }
3539     }
3540 
3541     strm.Indent("Data Kind: ");
3542     if (!alloc->element.type_kind.isValid())
3543       strm.Printf("unknown\n");
3544     else {
3545       const Element::DataKind kind = *alloc->element.type_kind.get();
3546       if (kind < Element::RS_KIND_USER || kind > Element::RS_KIND_PIXEL_YUV)
3547         strm.Printf("invalid kind\n");
3548       else
3549         strm.Printf(
3550             "%s\n",
3551             AllocationDetails::RsDataKindToString[static_cast<uint32_t>(kind)]);
3552     }
3553 
3554     strm.EOL();
3555     strm.IndentLess();
3556   }
3557   strm.IndentLess();
3558 }
3559 
3560 // Set breakpoints on every kernel found in RS module
3561 void RenderScriptRuntime::BreakOnModuleKernels(
3562     const RSModuleDescriptorSP rsmodule_sp) {
3563   for (const auto &kernel : rsmodule_sp->m_kernels) {
3564     // Don't set breakpoint on 'root' kernel
3565     if (strcmp(kernel.m_name.AsCString(), "root") == 0)
3566       continue;
3567 
3568     CreateKernelBreakpoint(kernel.m_name);
3569   }
3570 }
3571 
3572 // Method is internally called by the 'kernel breakpoint all' command to enable
3573 // or disable breaking on all kernels. When do_break is true we want to enable
3574 // this functionality. When do_break is false we want to disable it.
3575 void RenderScriptRuntime::SetBreakAllKernels(bool do_break, TargetSP target) {
3576   Log *log(
3577       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
3578 
3579   InitSearchFilter(target);
3580 
3581   // Set breakpoints on all the kernels
3582   if (do_break && !m_breakAllKernels) {
3583     m_breakAllKernels = true;
3584 
3585     for (const auto &module : m_rsmodules)
3586       BreakOnModuleKernels(module);
3587 
3588     if (log)
3589       log->Printf("%s(True) - breakpoints set on all currently loaded kernels.",
3590                   __FUNCTION__);
3591   } else if (!do_break &&
3592              m_breakAllKernels) // Breakpoints won't be set on any new kernels.
3593   {
3594     m_breakAllKernels = false;
3595 
3596     if (log)
3597       log->Printf("%s(False) - breakpoints no longer automatically set.",
3598                   __FUNCTION__);
3599   }
3600 }
3601 
3602 // Given the name of a kernel this function creates a breakpoint using our own
3603 // breakpoint resolver, and returns the Breakpoint shared pointer.
3604 BreakpointSP
3605 RenderScriptRuntime::CreateKernelBreakpoint(const ConstString &name) {
3606   Log *log(
3607       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
3608 
3609   if (!m_filtersp) {
3610     if (log)
3611       log->Printf("%s - error, no breakpoint search filter set.", __FUNCTION__);
3612     return nullptr;
3613   }
3614 
3615   BreakpointResolverSP resolver_sp(new RSBreakpointResolver(nullptr, name));
3616   Target &target = GetProcess()->GetTarget();
3617   BreakpointSP bp = target.CreateBreakpoint(
3618       m_filtersp, resolver_sp, false, false, false);
3619 
3620   // Give RS breakpoints a specific name, so the user can manipulate them as a
3621   // group.
3622   Status err;
3623   target.AddNameToBreakpoint(bp, "RenderScriptKernel", err);
3624   if (err.Fail() && log)
3625     if (log)
3626       log->Printf("%s - error setting break name, '%s'.", __FUNCTION__,
3627                   err.AsCString());
3628 
3629   return bp;
3630 }
3631 
3632 BreakpointSP
3633 RenderScriptRuntime::CreateReductionBreakpoint(const ConstString &name,
3634                                                int kernel_types) {
3635   Log *log(
3636       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
3637 
3638   if (!m_filtersp) {
3639     if (log)
3640       log->Printf("%s - error, no breakpoint search filter set.", __FUNCTION__);
3641     return nullptr;
3642   }
3643 
3644   BreakpointResolverSP resolver_sp(new RSReduceBreakpointResolver(
3645       nullptr, name, &m_rsmodules, kernel_types));
3646   Target &target = GetProcess()->GetTarget();
3647   BreakpointSP bp = target.CreateBreakpoint(
3648       m_filtersp, resolver_sp, false, false, false);
3649 
3650   // Give RS breakpoints a specific name, so the user can manipulate them as a
3651   // group.
3652   Status err;
3653   target.AddNameToBreakpoint(bp, "RenderScriptReduction", err);
3654   if (err.Fail() && log)
3655       log->Printf("%s - error setting break name, '%s'.", __FUNCTION__,
3656                   err.AsCString());
3657 
3658   return bp;
3659 }
3660 
3661 // Given an expression for a variable this function tries to calculate the
3662 // variable's value. If this is possible it returns true and sets the uint64_t
3663 // parameter to the variables unsigned value. Otherwise function returns false.
3664 bool RenderScriptRuntime::GetFrameVarAsUnsigned(const StackFrameSP frame_sp,
3665                                                 const char *var_name,
3666                                                 uint64_t &val) {
3667   Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE));
3668   Status err;
3669   VariableSP var_sp;
3670 
3671   // Find variable in stack frame
3672   ValueObjectSP value_sp(frame_sp->GetValueForVariableExpressionPath(
3673       var_name, eNoDynamicValues,
3674       StackFrame::eExpressionPathOptionCheckPtrVsMember |
3675           StackFrame::eExpressionPathOptionsAllowDirectIVarAccess,
3676       var_sp, err));
3677   if (!err.Success()) {
3678     if (log)
3679       log->Printf("%s - error, couldn't find '%s' in frame", __FUNCTION__,
3680                   var_name);
3681     return false;
3682   }
3683 
3684   // Find the uint32_t value for the variable
3685   bool success = false;
3686   val = value_sp->GetValueAsUnsigned(0, &success);
3687   if (!success) {
3688     if (log)
3689       log->Printf("%s - error, couldn't parse '%s' as an uint32_t.",
3690                   __FUNCTION__, var_name);
3691     return false;
3692   }
3693 
3694   return true;
3695 }
3696 
3697 // Function attempts to find the current coordinate of a kernel invocation by
3698 // investigating the values of frame variables in the .expand function. These
3699 // coordinates are returned via the coord array reference parameter. Returns
3700 // true if the coordinates could be found, and false otherwise.
3701 bool RenderScriptRuntime::GetKernelCoordinate(RSCoordinate &coord,
3702                                               Thread *thread_ptr) {
3703   static const char *const x_expr = "rsIndex";
3704   static const char *const y_expr = "p->current.y";
3705   static const char *const z_expr = "p->current.z";
3706 
3707   Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE));
3708 
3709   if (!thread_ptr) {
3710     if (log)
3711       log->Printf("%s - Error, No thread pointer", __FUNCTION__);
3712 
3713     return false;
3714   }
3715 
3716   // Walk the call stack looking for a function whose name has the suffix
3717   // '.expand' and contains the variables we're looking for.
3718   for (uint32_t i = 0; i < thread_ptr->GetStackFrameCount(); ++i) {
3719     if (!thread_ptr->SetSelectedFrameByIndex(i))
3720       continue;
3721 
3722     StackFrameSP frame_sp = thread_ptr->GetSelectedFrame();
3723     if (!frame_sp)
3724       continue;
3725 
3726     // Find the function name
3727     const SymbolContext sym_ctx =
3728         frame_sp->GetSymbolContext(eSymbolContextFunction);
3729     const ConstString func_name = sym_ctx.GetFunctionName();
3730     if (!func_name)
3731       continue;
3732 
3733     if (log)
3734       log->Printf("%s - Inspecting function '%s'", __FUNCTION__,
3735                   func_name.GetCString());
3736 
3737     // Check if function name has .expand suffix
3738     if (!func_name.GetStringRef().endswith(".expand"))
3739       continue;
3740 
3741     if (log)
3742       log->Printf("%s - Found .expand function '%s'", __FUNCTION__,
3743                   func_name.GetCString());
3744 
3745     // Get values for variables in .expand frame that tell us the current
3746     // kernel invocation
3747     uint64_t x, y, z;
3748     bool found = GetFrameVarAsUnsigned(frame_sp, x_expr, x) &&
3749                  GetFrameVarAsUnsigned(frame_sp, y_expr, y) &&
3750                  GetFrameVarAsUnsigned(frame_sp, z_expr, z);
3751 
3752     if (found) {
3753       // The RenderScript runtime uses uint32_t for these vars. If they're not
3754       // within bounds, our frame parsing is garbage
3755       assert(x <= UINT32_MAX && y <= UINT32_MAX && z <= UINT32_MAX);
3756       coord.x = (uint32_t)x;
3757       coord.y = (uint32_t)y;
3758       coord.z = (uint32_t)z;
3759       return true;
3760     }
3761   }
3762   return false;
3763 }
3764 
3765 // Callback when a kernel breakpoint hits and we're looking for a specific
3766 // coordinate. Baton parameter contains a pointer to the target coordinate we
3767 // want to break on. Function then checks the .expand frame for the current
3768 // coordinate and breaks to user if it matches. Parameter 'break_id' is the id
3769 // of the Breakpoint which made the callback. Parameter 'break_loc_id' is the
3770 // id for the BreakpointLocation which was hit, a single logical breakpoint can
3771 // have multiple addresses.
3772 bool RenderScriptRuntime::KernelBreakpointHit(void *baton,
3773                                               StoppointCallbackContext *ctx,
3774                                               user_id_t break_id,
3775                                               user_id_t break_loc_id) {
3776   Log *log(
3777       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
3778 
3779   assert(baton &&
3780          "Error: null baton in conditional kernel breakpoint callback");
3781 
3782   // Coordinate we want to stop on
3783   RSCoordinate target_coord = *static_cast<RSCoordinate *>(baton);
3784 
3785   if (log)
3786     log->Printf("%s - Break ID %" PRIu64 ", " FMT_COORD, __FUNCTION__, break_id,
3787                 target_coord.x, target_coord.y, target_coord.z);
3788 
3789   // Select current thread
3790   ExecutionContext context(ctx->exe_ctx_ref);
3791   Thread *thread_ptr = context.GetThreadPtr();
3792   assert(thread_ptr && "Null thread pointer");
3793 
3794   // Find current kernel invocation from .expand frame variables
3795   RSCoordinate current_coord{};
3796   if (!GetKernelCoordinate(current_coord, thread_ptr)) {
3797     if (log)
3798       log->Printf("%s - Error, couldn't select .expand stack frame",
3799                   __FUNCTION__);
3800     return false;
3801   }
3802 
3803   if (log)
3804     log->Printf("%s - " FMT_COORD, __FUNCTION__, current_coord.x,
3805                 current_coord.y, current_coord.z);
3806 
3807   // Check if the current kernel invocation coordinate matches our target
3808   // coordinate
3809   if (target_coord == current_coord) {
3810     if (log)
3811       log->Printf("%s, BREAKING " FMT_COORD, __FUNCTION__, current_coord.x,
3812                   current_coord.y, current_coord.z);
3813 
3814     BreakpointSP breakpoint_sp =
3815         context.GetTargetPtr()->GetBreakpointByID(break_id);
3816     assert(breakpoint_sp != nullptr &&
3817            "Error: Couldn't find breakpoint matching break id for callback");
3818     breakpoint_sp->SetEnabled(false); // Optimise since conditional breakpoint
3819                                       // should only be hit once.
3820     return true;
3821   }
3822 
3823   // No match on coordinate
3824   return false;
3825 }
3826 
3827 void RenderScriptRuntime::SetConditional(BreakpointSP bp, Stream &messages,
3828                                          const RSCoordinate &coord) {
3829   messages.Printf("Conditional kernel breakpoint on coordinate " FMT_COORD,
3830                   coord.x, coord.y, coord.z);
3831   messages.EOL();
3832 
3833   // Allocate memory for the baton, and copy over coordinate
3834   RSCoordinate *baton = new RSCoordinate(coord);
3835 
3836   // Create a callback that will be invoked every time the breakpoint is hit.
3837   // The baton object passed to the handler is the target coordinate we want to
3838   // break on.
3839   bp->SetCallback(KernelBreakpointHit, baton, true);
3840 
3841   // Store a shared pointer to the baton, so the memory will eventually be
3842   // cleaned up after destruction
3843   m_conditional_breaks[bp->GetID()] = std::unique_ptr<RSCoordinate>(baton);
3844 }
3845 
3846 // Tries to set a breakpoint on the start of a kernel, resolved using the
3847 // kernel name. Argument 'coords', represents a three dimensional coordinate
3848 // which can be used to specify a single kernel instance to break on. If this
3849 // is set then we add a callback to the breakpoint.
3850 bool RenderScriptRuntime::PlaceBreakpointOnKernel(TargetSP target,
3851                                                   Stream &messages,
3852                                                   const char *name,
3853                                                   const RSCoordinate *coord) {
3854   if (!name)
3855     return false;
3856 
3857   InitSearchFilter(target);
3858 
3859   ConstString kernel_name(name);
3860   BreakpointSP bp = CreateKernelBreakpoint(kernel_name);
3861   if (!bp)
3862     return false;
3863 
3864   // We have a conditional breakpoint on a specific coordinate
3865   if (coord)
3866     SetConditional(bp, messages, *coord);
3867 
3868   bp->GetDescription(&messages, lldb::eDescriptionLevelInitial, false);
3869 
3870   return true;
3871 }
3872 
3873 BreakpointSP
3874 RenderScriptRuntime::CreateScriptGroupBreakpoint(const ConstString &name,
3875                                                  bool stop_on_all) {
3876   Log *log(
3877       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
3878 
3879   if (!m_filtersp) {
3880     if (log)
3881       log->Printf("%s - error, no breakpoint search filter set.", __FUNCTION__);
3882     return nullptr;
3883   }
3884 
3885   BreakpointResolverSP resolver_sp(new RSScriptGroupBreakpointResolver(
3886       nullptr, name, m_scriptGroups, stop_on_all));
3887   Target &target = GetProcess()->GetTarget();
3888   BreakpointSP bp = target.CreateBreakpoint(
3889       m_filtersp, resolver_sp, false, false, false);
3890   // Give RS breakpoints a specific name, so the user can manipulate them as a
3891   // group.
3892   Status err;
3893   target.AddNameToBreakpoint(bp, name.GetCString(), err);
3894   if (err.Fail() && log)
3895     log->Printf("%s - error setting break name, '%s'.", __FUNCTION__,
3896                 err.AsCString());
3897   // ask the breakpoint to resolve itself
3898   bp->ResolveBreakpoint();
3899   return bp;
3900 }
3901 
3902 bool RenderScriptRuntime::PlaceBreakpointOnScriptGroup(TargetSP target,
3903                                                        Stream &strm,
3904                                                        const ConstString &name,
3905                                                        bool multi) {
3906   InitSearchFilter(target);
3907   BreakpointSP bp = CreateScriptGroupBreakpoint(name, multi);
3908   if (bp)
3909     bp->GetDescription(&strm, lldb::eDescriptionLevelInitial, false);
3910   return bool(bp);
3911 }
3912 
3913 bool RenderScriptRuntime::PlaceBreakpointOnReduction(TargetSP target,
3914                                                      Stream &messages,
3915                                                      const char *reduce_name,
3916                                                      const RSCoordinate *coord,
3917                                                      int kernel_types) {
3918   if (!reduce_name)
3919     return false;
3920 
3921   InitSearchFilter(target);
3922   BreakpointSP bp =
3923       CreateReductionBreakpoint(ConstString(reduce_name), kernel_types);
3924   if (!bp)
3925     return false;
3926 
3927   if (coord)
3928     SetConditional(bp, messages, *coord);
3929 
3930   bp->GetDescription(&messages, lldb::eDescriptionLevelInitial, false);
3931 
3932   return true;
3933 }
3934 
3935 void RenderScriptRuntime::DumpModules(Stream &strm) const {
3936   strm.Printf("RenderScript Modules:");
3937   strm.EOL();
3938   strm.IndentMore();
3939   for (const auto &module : m_rsmodules) {
3940     module->Dump(strm);
3941   }
3942   strm.IndentLess();
3943 }
3944 
3945 RenderScriptRuntime::ScriptDetails *
3946 RenderScriptRuntime::LookUpScript(addr_t address, bool create) {
3947   for (const auto &s : m_scripts) {
3948     if (s->script.isValid())
3949       if (*s->script == address)
3950         return s.get();
3951   }
3952   if (create) {
3953     std::unique_ptr<ScriptDetails> s(new ScriptDetails);
3954     s->script = address;
3955     m_scripts.push_back(std::move(s));
3956     return m_scripts.back().get();
3957   }
3958   return nullptr;
3959 }
3960 
3961 RenderScriptRuntime::AllocationDetails *
3962 RenderScriptRuntime::LookUpAllocation(addr_t address) {
3963   for (const auto &a : m_allocations) {
3964     if (a->address.isValid())
3965       if (*a->address == address)
3966         return a.get();
3967   }
3968   return nullptr;
3969 }
3970 
3971 RenderScriptRuntime::AllocationDetails *
3972 RenderScriptRuntime::CreateAllocation(addr_t address) {
3973   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
3974 
3975   // Remove any previous allocation which contains the same address
3976   auto it = m_allocations.begin();
3977   while (it != m_allocations.end()) {
3978     if (*((*it)->address) == address) {
3979       if (log)
3980         log->Printf("%s - Removing allocation id: %d, address: 0x%" PRIx64,
3981                     __FUNCTION__, (*it)->id, address);
3982 
3983       it = m_allocations.erase(it);
3984     } else {
3985       it++;
3986     }
3987   }
3988 
3989   std::unique_ptr<AllocationDetails> a(new AllocationDetails);
3990   a->address = address;
3991   m_allocations.push_back(std::move(a));
3992   return m_allocations.back().get();
3993 }
3994 
3995 bool RenderScriptRuntime::ResolveKernelName(lldb::addr_t kernel_addr,
3996                                             ConstString &name) {
3997   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS);
3998 
3999   Target &target = GetProcess()->GetTarget();
4000   Address resolved;
4001   // RenderScript module
4002   if (!target.GetSectionLoadList().ResolveLoadAddress(kernel_addr, resolved)) {
4003     if (log)
4004       log->Printf("%s: unable to resolve 0x%" PRIx64 " to a loaded symbol",
4005                   __FUNCTION__, kernel_addr);
4006     return false;
4007   }
4008 
4009   Symbol *sym = resolved.CalculateSymbolContextSymbol();
4010   if (!sym)
4011     return false;
4012 
4013   name = sym->GetName();
4014   assert(IsRenderScriptModule(resolved.CalculateSymbolContextModule()));
4015   if (log)
4016     log->Printf("%s: 0x%" PRIx64 " resolved to the symbol '%s'", __FUNCTION__,
4017                 kernel_addr, name.GetCString());
4018   return true;
4019 }
4020 
4021 void RSModuleDescriptor::Dump(Stream &strm) const {
4022   int indent = strm.GetIndentLevel();
4023 
4024   strm.Indent();
4025   m_module->GetFileSpec().Dump(&strm);
4026   strm.Indent(m_module->GetNumCompileUnits() ? "Debug info loaded."
4027                                              : "Debug info does not exist.");
4028   strm.EOL();
4029   strm.IndentMore();
4030 
4031   strm.Indent();
4032   strm.Printf("Globals: %" PRIu64, static_cast<uint64_t>(m_globals.size()));
4033   strm.EOL();
4034   strm.IndentMore();
4035   for (const auto &global : m_globals) {
4036     global.Dump(strm);
4037   }
4038   strm.IndentLess();
4039 
4040   strm.Indent();
4041   strm.Printf("Kernels: %" PRIu64, static_cast<uint64_t>(m_kernels.size()));
4042   strm.EOL();
4043   strm.IndentMore();
4044   for (const auto &kernel : m_kernels) {
4045     kernel.Dump(strm);
4046   }
4047   strm.IndentLess();
4048 
4049   strm.Indent();
4050   strm.Printf("Pragmas: %" PRIu64, static_cast<uint64_t>(m_pragmas.size()));
4051   strm.EOL();
4052   strm.IndentMore();
4053   for (const auto &key_val : m_pragmas) {
4054     strm.Indent();
4055     strm.Printf("%s: %s", key_val.first.c_str(), key_val.second.c_str());
4056     strm.EOL();
4057   }
4058   strm.IndentLess();
4059 
4060   strm.Indent();
4061   strm.Printf("Reductions: %" PRIu64,
4062               static_cast<uint64_t>(m_reductions.size()));
4063   strm.EOL();
4064   strm.IndentMore();
4065   for (const auto &reduction : m_reductions) {
4066     reduction.Dump(strm);
4067   }
4068 
4069   strm.SetIndentLevel(indent);
4070 }
4071 
4072 void RSGlobalDescriptor::Dump(Stream &strm) const {
4073   strm.Indent(m_name.AsCString());
4074   VariableList var_list;
4075   m_module->m_module->FindGlobalVariables(m_name, nullptr, 1U, var_list);
4076   if (var_list.GetSize() == 1) {
4077     auto var = var_list.GetVariableAtIndex(0);
4078     auto type = var->GetType();
4079     if (type) {
4080       strm.Printf(" - ");
4081       type->DumpTypeName(&strm);
4082     } else {
4083       strm.Printf(" - Unknown Type");
4084     }
4085   } else {
4086     strm.Printf(" - variable identified, but not found in binary");
4087     const Symbol *s = m_module->m_module->FindFirstSymbolWithNameAndType(
4088         m_name, eSymbolTypeData);
4089     if (s) {
4090       strm.Printf(" (symbol exists) ");
4091     }
4092   }
4093 
4094   strm.EOL();
4095 }
4096 
4097 void RSKernelDescriptor::Dump(Stream &strm) const {
4098   strm.Indent(m_name.AsCString());
4099   strm.EOL();
4100 }
4101 
4102 void RSReductionDescriptor::Dump(lldb_private::Stream &stream) const {
4103   stream.Indent(m_reduce_name.AsCString());
4104   stream.IndentMore();
4105   stream.EOL();
4106   stream.Indent();
4107   stream.Printf("accumulator: %s", m_accum_name.AsCString());
4108   stream.EOL();
4109   stream.Indent();
4110   stream.Printf("initializer: %s", m_init_name.AsCString());
4111   stream.EOL();
4112   stream.Indent();
4113   stream.Printf("combiner: %s", m_comb_name.AsCString());
4114   stream.EOL();
4115   stream.Indent();
4116   stream.Printf("outconverter: %s", m_outc_name.AsCString());
4117   stream.EOL();
4118   // XXX This is currently unspecified by RenderScript, and unused
4119   // stream.Indent();
4120   // stream.Printf("halter: '%s'", m_init_name.AsCString());
4121   // stream.EOL();
4122   stream.IndentLess();
4123 }
4124 
4125 class CommandObjectRenderScriptRuntimeModuleDump : public CommandObjectParsed {
4126 public:
4127   CommandObjectRenderScriptRuntimeModuleDump(CommandInterpreter &interpreter)
4128       : CommandObjectParsed(
4129             interpreter, "renderscript module dump",
4130             "Dumps renderscript specific information for all modules.",
4131             "renderscript module dump",
4132             eCommandRequiresProcess | eCommandProcessMustBeLaunched) {}
4133 
4134   ~CommandObjectRenderScriptRuntimeModuleDump() override = default;
4135 
4136   bool DoExecute(Args &command, CommandReturnObject &result) override {
4137     RenderScriptRuntime *runtime =
4138         (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4139             eLanguageTypeExtRenderScript);
4140     runtime->DumpModules(result.GetOutputStream());
4141     result.SetStatus(eReturnStatusSuccessFinishResult);
4142     return true;
4143   }
4144 };
4145 
4146 class CommandObjectRenderScriptRuntimeModule : public CommandObjectMultiword {
4147 public:
4148   CommandObjectRenderScriptRuntimeModule(CommandInterpreter &interpreter)
4149       : CommandObjectMultiword(interpreter, "renderscript module",
4150                                "Commands that deal with RenderScript modules.",
4151                                nullptr) {
4152     LoadSubCommand(
4153         "dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeModuleDump(
4154                     interpreter)));
4155   }
4156 
4157   ~CommandObjectRenderScriptRuntimeModule() override = default;
4158 };
4159 
4160 class CommandObjectRenderScriptRuntimeKernelList : public CommandObjectParsed {
4161 public:
4162   CommandObjectRenderScriptRuntimeKernelList(CommandInterpreter &interpreter)
4163       : CommandObjectParsed(
4164             interpreter, "renderscript kernel list",
4165             "Lists renderscript kernel names and associated script resources.",
4166             "renderscript kernel list",
4167             eCommandRequiresProcess | eCommandProcessMustBeLaunched) {}
4168 
4169   ~CommandObjectRenderScriptRuntimeKernelList() override = default;
4170 
4171   bool DoExecute(Args &command, CommandReturnObject &result) override {
4172     RenderScriptRuntime *runtime =
4173         (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4174             eLanguageTypeExtRenderScript);
4175     runtime->DumpKernels(result.GetOutputStream());
4176     result.SetStatus(eReturnStatusSuccessFinishResult);
4177     return true;
4178   }
4179 };
4180 
4181 static constexpr OptionDefinition g_renderscript_reduction_bp_set_options[] = {
4182     {LLDB_OPT_SET_1, false, "function-role", 't',
4183      OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeOneLiner,
4184      "Break on a comma separated set of reduction kernel types "
4185      "(accumulator,outcoverter,combiner,initializer"},
4186     {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument,
4187      nullptr, {}, 0, eArgTypeValue,
4188      "Set a breakpoint on a single invocation of the kernel with specified "
4189      "coordinate.\n"
4190      "Coordinate takes the form 'x[,y][,z] where x,y,z are positive "
4191      "integers representing kernel dimensions. "
4192      "Any unset dimensions will be defaulted to zero."}};
4193 
4194 class CommandObjectRenderScriptRuntimeReductionBreakpointSet
4195     : public CommandObjectParsed {
4196 public:
4197   CommandObjectRenderScriptRuntimeReductionBreakpointSet(
4198       CommandInterpreter &interpreter)
4199       : CommandObjectParsed(
4200             interpreter, "renderscript reduction breakpoint set",
4201             "Set a breakpoint on named RenderScript general reductions",
4202             "renderscript reduction breakpoint set  <kernel_name> [-t "
4203             "<reduction_kernel_type,...>]",
4204             eCommandRequiresProcess | eCommandProcessMustBeLaunched |
4205                 eCommandProcessMustBePaused),
4206         m_options(){};
4207 
4208   class CommandOptions : public Options {
4209   public:
4210     CommandOptions()
4211         : Options(),
4212           m_kernel_types(RSReduceBreakpointResolver::eKernelTypeAll) {}
4213 
4214     ~CommandOptions() override = default;
4215 
4216     Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg,
4217                           ExecutionContext *exe_ctx) override {
4218       Status err;
4219       StreamString err_str;
4220       const int short_option = m_getopt_table[option_idx].val;
4221       switch (short_option) {
4222       case 't':
4223         if (!ParseReductionTypes(option_arg, err_str))
4224           err.SetErrorStringWithFormat(
4225               "Unable to deduce reduction types for %s: %s",
4226               option_arg.str().c_str(), err_str.GetData());
4227         break;
4228       case 'c': {
4229         auto coord = RSCoordinate{};
4230         if (!ParseCoordinate(option_arg, coord))
4231           err.SetErrorStringWithFormat("unable to parse coordinate for %s",
4232                                        option_arg.str().c_str());
4233         else {
4234           m_have_coord = true;
4235           m_coord = coord;
4236         }
4237         break;
4238       }
4239       default:
4240         err.SetErrorStringWithFormat("Invalid option '-%c'", short_option);
4241       }
4242       return err;
4243     }
4244 
4245     void OptionParsingStarting(ExecutionContext *exe_ctx) override {
4246       m_have_coord = false;
4247     }
4248 
4249     llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
4250       return llvm::makeArrayRef(g_renderscript_reduction_bp_set_options);
4251     }
4252 
4253     bool ParseReductionTypes(llvm::StringRef option_val,
4254                              StreamString &err_str) {
4255       m_kernel_types = RSReduceBreakpointResolver::eKernelTypeNone;
4256       const auto reduce_name_to_type = [](llvm::StringRef name) -> int {
4257         return llvm::StringSwitch<int>(name)
4258             .Case("accumulator", RSReduceBreakpointResolver::eKernelTypeAccum)
4259             .Case("initializer", RSReduceBreakpointResolver::eKernelTypeInit)
4260             .Case("outconverter", RSReduceBreakpointResolver::eKernelTypeOutC)
4261             .Case("combiner", RSReduceBreakpointResolver::eKernelTypeComb)
4262             .Case("all", RSReduceBreakpointResolver::eKernelTypeAll)
4263             // Currently not exposed by the runtime
4264             // .Case("halter", RSReduceBreakpointResolver::eKernelTypeHalter)
4265             .Default(0);
4266       };
4267 
4268       // Matching a comma separated list of known words is fairly
4269       // straightforward with PCRE, but we're using ERE, so we end up with a
4270       // little ugliness...
4271       RegularExpression::Match match(/* max_matches */ 5);
4272       RegularExpression match_type_list(
4273           llvm::StringRef("^([[:alpha:]]+)(,[[:alpha:]]+){0,4}$"));
4274 
4275       assert(match_type_list.IsValid());
4276 
4277       if (!match_type_list.Execute(option_val, &match)) {
4278         err_str.PutCString(
4279             "a comma-separated list of kernel types is required");
4280         return false;
4281       }
4282 
4283       // splitting on commas is much easier with llvm::StringRef than regex
4284       llvm::SmallVector<llvm::StringRef, 5> type_names;
4285       llvm::StringRef(option_val).split(type_names, ',');
4286 
4287       for (const auto &name : type_names) {
4288         const int type = reduce_name_to_type(name);
4289         if (!type) {
4290           err_str.Printf("unknown kernel type name %s", name.str().c_str());
4291           return false;
4292         }
4293         m_kernel_types |= type;
4294       }
4295 
4296       return true;
4297     }
4298 
4299     int m_kernel_types;
4300     llvm::StringRef m_reduce_name;
4301     RSCoordinate m_coord;
4302     bool m_have_coord;
4303   };
4304 
4305   Options *GetOptions() override { return &m_options; }
4306 
4307   bool DoExecute(Args &command, CommandReturnObject &result) override {
4308     const size_t argc = command.GetArgumentCount();
4309     if (argc < 1) {
4310       result.AppendErrorWithFormat("'%s' takes 1 argument of reduction name, "
4311                                    "and an optional kernel type list",
4312                                    m_cmd_name.c_str());
4313       result.SetStatus(eReturnStatusFailed);
4314       return false;
4315     }
4316 
4317     RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4318         m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4319             eLanguageTypeExtRenderScript));
4320 
4321     auto &outstream = result.GetOutputStream();
4322     auto name = command.GetArgumentAtIndex(0);
4323     auto &target = m_exe_ctx.GetTargetSP();
4324     auto coord = m_options.m_have_coord ? &m_options.m_coord : nullptr;
4325     if (!runtime->PlaceBreakpointOnReduction(target, outstream, name, coord,
4326                                              m_options.m_kernel_types)) {
4327       result.SetStatus(eReturnStatusFailed);
4328       result.AppendError("Error: unable to place breakpoint on reduction");
4329       return false;
4330     }
4331     result.AppendMessage("Breakpoint(s) created");
4332     result.SetStatus(eReturnStatusSuccessFinishResult);
4333     return true;
4334   }
4335 
4336 private:
4337   CommandOptions m_options;
4338 };
4339 
4340 static constexpr OptionDefinition g_renderscript_kernel_bp_set_options[] = {
4341     {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument,
4342      nullptr, {}, 0, eArgTypeValue,
4343      "Set a breakpoint on a single invocation of the kernel with specified "
4344      "coordinate.\n"
4345      "Coordinate takes the form 'x[,y][,z] where x,y,z are positive "
4346      "integers representing kernel dimensions. "
4347      "Any unset dimensions will be defaulted to zero."}};
4348 
4349 class CommandObjectRenderScriptRuntimeKernelBreakpointSet
4350     : public CommandObjectParsed {
4351 public:
4352   CommandObjectRenderScriptRuntimeKernelBreakpointSet(
4353       CommandInterpreter &interpreter)
4354       : CommandObjectParsed(
4355             interpreter, "renderscript kernel breakpoint set",
4356             "Sets a breakpoint on a renderscript kernel.",
4357             "renderscript kernel breakpoint set <kernel_name> [-c x,y,z]",
4358             eCommandRequiresProcess | eCommandProcessMustBeLaunched |
4359                 eCommandProcessMustBePaused),
4360         m_options() {}
4361 
4362   ~CommandObjectRenderScriptRuntimeKernelBreakpointSet() override = default;
4363 
4364   Options *GetOptions() override { return &m_options; }
4365 
4366   class CommandOptions : public Options {
4367   public:
4368     CommandOptions() : Options() {}
4369 
4370     ~CommandOptions() override = default;
4371 
4372     Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg,
4373                           ExecutionContext *exe_ctx) override {
4374       Status err;
4375       const int short_option = m_getopt_table[option_idx].val;
4376 
4377       switch (short_option) {
4378       case 'c': {
4379         auto coord = RSCoordinate{};
4380         if (!ParseCoordinate(option_arg, coord))
4381           err.SetErrorStringWithFormat(
4382               "Couldn't parse coordinate '%s', should be in format 'x,y,z'.",
4383               option_arg.str().c_str());
4384         else {
4385           m_have_coord = true;
4386           m_coord = coord;
4387         }
4388         break;
4389       }
4390       default:
4391         err.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
4392         break;
4393       }
4394       return err;
4395     }
4396 
4397     void OptionParsingStarting(ExecutionContext *exe_ctx) override {
4398       m_have_coord = false;
4399     }
4400 
4401     llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
4402       return llvm::makeArrayRef(g_renderscript_kernel_bp_set_options);
4403     }
4404 
4405     RSCoordinate m_coord;
4406     bool m_have_coord;
4407   };
4408 
4409   bool DoExecute(Args &command, CommandReturnObject &result) override {
4410     const size_t argc = command.GetArgumentCount();
4411     if (argc < 1) {
4412       result.AppendErrorWithFormat(
4413           "'%s' takes 1 argument of kernel name, and an optional coordinate.",
4414           m_cmd_name.c_str());
4415       result.SetStatus(eReturnStatusFailed);
4416       return false;
4417     }
4418 
4419     RenderScriptRuntime *runtime =
4420         (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4421             eLanguageTypeExtRenderScript);
4422 
4423     auto &outstream = result.GetOutputStream();
4424     auto &target = m_exe_ctx.GetTargetSP();
4425     auto name = command.GetArgumentAtIndex(0);
4426     auto coord = m_options.m_have_coord ? &m_options.m_coord : nullptr;
4427     if (!runtime->PlaceBreakpointOnKernel(target, outstream, name, coord)) {
4428       result.SetStatus(eReturnStatusFailed);
4429       result.AppendErrorWithFormat(
4430           "Error: unable to set breakpoint on kernel '%s'", name);
4431       return false;
4432     }
4433 
4434     result.AppendMessage("Breakpoint(s) created");
4435     result.SetStatus(eReturnStatusSuccessFinishResult);
4436     return true;
4437   }
4438 
4439 private:
4440   CommandOptions m_options;
4441 };
4442 
4443 class CommandObjectRenderScriptRuntimeKernelBreakpointAll
4444     : public CommandObjectParsed {
4445 public:
4446   CommandObjectRenderScriptRuntimeKernelBreakpointAll(
4447       CommandInterpreter &interpreter)
4448       : CommandObjectParsed(
4449             interpreter, "renderscript kernel breakpoint all",
4450             "Automatically sets a breakpoint on all renderscript kernels that "
4451             "are or will be loaded.\n"
4452             "Disabling option means breakpoints will no longer be set on any "
4453             "kernels loaded in the future, "
4454             "but does not remove currently set breakpoints.",
4455             "renderscript kernel breakpoint all <enable/disable>",
4456             eCommandRequiresProcess | eCommandProcessMustBeLaunched |
4457                 eCommandProcessMustBePaused) {}
4458 
4459   ~CommandObjectRenderScriptRuntimeKernelBreakpointAll() override = default;
4460 
4461   bool DoExecute(Args &command, CommandReturnObject &result) override {
4462     const size_t argc = command.GetArgumentCount();
4463     if (argc != 1) {
4464       result.AppendErrorWithFormat(
4465           "'%s' takes 1 argument of 'enable' or 'disable'", m_cmd_name.c_str());
4466       result.SetStatus(eReturnStatusFailed);
4467       return false;
4468     }
4469 
4470     RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4471         m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4472             eLanguageTypeExtRenderScript));
4473 
4474     bool do_break = false;
4475     const char *argument = command.GetArgumentAtIndex(0);
4476     if (strcmp(argument, "enable") == 0) {
4477       do_break = true;
4478       result.AppendMessage("Breakpoints will be set on all kernels.");
4479     } else if (strcmp(argument, "disable") == 0) {
4480       do_break = false;
4481       result.AppendMessage("Breakpoints will not be set on any new kernels.");
4482     } else {
4483       result.AppendErrorWithFormat(
4484           "Argument must be either 'enable' or 'disable'");
4485       result.SetStatus(eReturnStatusFailed);
4486       return false;
4487     }
4488 
4489     runtime->SetBreakAllKernels(do_break, m_exe_ctx.GetTargetSP());
4490 
4491     result.SetStatus(eReturnStatusSuccessFinishResult);
4492     return true;
4493   }
4494 };
4495 
4496 class CommandObjectRenderScriptRuntimeReductionBreakpoint
4497     : public CommandObjectMultiword {
4498 public:
4499   CommandObjectRenderScriptRuntimeReductionBreakpoint(
4500       CommandInterpreter &interpreter)
4501       : CommandObjectMultiword(interpreter, "renderscript reduction breakpoint",
4502                                "Commands that manipulate breakpoints on "
4503                                "renderscript general reductions.",
4504                                nullptr) {
4505     LoadSubCommand(
4506         "set", CommandObjectSP(
4507                    new CommandObjectRenderScriptRuntimeReductionBreakpointSet(
4508                        interpreter)));
4509   }
4510 
4511   ~CommandObjectRenderScriptRuntimeReductionBreakpoint() override = default;
4512 };
4513 
4514 class CommandObjectRenderScriptRuntimeKernelCoordinate
4515     : public CommandObjectParsed {
4516 public:
4517   CommandObjectRenderScriptRuntimeKernelCoordinate(
4518       CommandInterpreter &interpreter)
4519       : CommandObjectParsed(
4520             interpreter, "renderscript kernel coordinate",
4521             "Shows the (x,y,z) coordinate of the current kernel invocation.",
4522             "renderscript kernel coordinate",
4523             eCommandRequiresProcess | eCommandProcessMustBeLaunched |
4524                 eCommandProcessMustBePaused) {}
4525 
4526   ~CommandObjectRenderScriptRuntimeKernelCoordinate() override = default;
4527 
4528   bool DoExecute(Args &command, CommandReturnObject &result) override {
4529     RSCoordinate coord{};
4530     bool success = RenderScriptRuntime::GetKernelCoordinate(
4531         coord, m_exe_ctx.GetThreadPtr());
4532     Stream &stream = result.GetOutputStream();
4533 
4534     if (success) {
4535       stream.Printf("Coordinate: " FMT_COORD, coord.x, coord.y, coord.z);
4536       stream.EOL();
4537       result.SetStatus(eReturnStatusSuccessFinishResult);
4538     } else {
4539       stream.Printf("Error: Coordinate could not be found.");
4540       stream.EOL();
4541       result.SetStatus(eReturnStatusFailed);
4542     }
4543     return true;
4544   }
4545 };
4546 
4547 class CommandObjectRenderScriptRuntimeKernelBreakpoint
4548     : public CommandObjectMultiword {
4549 public:
4550   CommandObjectRenderScriptRuntimeKernelBreakpoint(
4551       CommandInterpreter &interpreter)
4552       : CommandObjectMultiword(
4553             interpreter, "renderscript kernel",
4554             "Commands that generate breakpoints on renderscript kernels.",
4555             nullptr) {
4556     LoadSubCommand(
4557         "set",
4558         CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointSet(
4559             interpreter)));
4560     LoadSubCommand(
4561         "all",
4562         CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointAll(
4563             interpreter)));
4564   }
4565 
4566   ~CommandObjectRenderScriptRuntimeKernelBreakpoint() override = default;
4567 };
4568 
4569 class CommandObjectRenderScriptRuntimeKernel : public CommandObjectMultiword {
4570 public:
4571   CommandObjectRenderScriptRuntimeKernel(CommandInterpreter &interpreter)
4572       : CommandObjectMultiword(interpreter, "renderscript kernel",
4573                                "Commands that deal with RenderScript kernels.",
4574                                nullptr) {
4575     LoadSubCommand(
4576         "list", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelList(
4577                     interpreter)));
4578     LoadSubCommand(
4579         "coordinate",
4580         CommandObjectSP(
4581             new CommandObjectRenderScriptRuntimeKernelCoordinate(interpreter)));
4582     LoadSubCommand(
4583         "breakpoint",
4584         CommandObjectSP(
4585             new CommandObjectRenderScriptRuntimeKernelBreakpoint(interpreter)));
4586   }
4587 
4588   ~CommandObjectRenderScriptRuntimeKernel() override = default;
4589 };
4590 
4591 class CommandObjectRenderScriptRuntimeContextDump : public CommandObjectParsed {
4592 public:
4593   CommandObjectRenderScriptRuntimeContextDump(CommandInterpreter &interpreter)
4594       : CommandObjectParsed(interpreter, "renderscript context dump",
4595                             "Dumps renderscript context information.",
4596                             "renderscript context dump",
4597                             eCommandRequiresProcess |
4598                                 eCommandProcessMustBeLaunched) {}
4599 
4600   ~CommandObjectRenderScriptRuntimeContextDump() override = default;
4601 
4602   bool DoExecute(Args &command, CommandReturnObject &result) override {
4603     RenderScriptRuntime *runtime =
4604         (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4605             eLanguageTypeExtRenderScript);
4606     runtime->DumpContexts(result.GetOutputStream());
4607     result.SetStatus(eReturnStatusSuccessFinishResult);
4608     return true;
4609   }
4610 };
4611 
4612 static constexpr OptionDefinition g_renderscript_runtime_alloc_dump_options[] = {
4613     {LLDB_OPT_SET_1, false, "file", 'f', OptionParser::eRequiredArgument,
4614      nullptr, {}, 0, eArgTypeFilename,
4615      "Print results to specified file instead of command line."}};
4616 
4617 class CommandObjectRenderScriptRuntimeContext : public CommandObjectMultiword {
4618 public:
4619   CommandObjectRenderScriptRuntimeContext(CommandInterpreter &interpreter)
4620       : CommandObjectMultiword(interpreter, "renderscript context",
4621                                "Commands that deal with RenderScript contexts.",
4622                                nullptr) {
4623     LoadSubCommand(
4624         "dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeContextDump(
4625                     interpreter)));
4626   }
4627 
4628   ~CommandObjectRenderScriptRuntimeContext() override = default;
4629 };
4630 
4631 class CommandObjectRenderScriptRuntimeAllocationDump
4632     : public CommandObjectParsed {
4633 public:
4634   CommandObjectRenderScriptRuntimeAllocationDump(
4635       CommandInterpreter &interpreter)
4636       : CommandObjectParsed(interpreter, "renderscript allocation dump",
4637                             "Displays the contents of a particular allocation",
4638                             "renderscript allocation dump <ID>",
4639                             eCommandRequiresProcess |
4640                                 eCommandProcessMustBeLaunched),
4641         m_options() {}
4642 
4643   ~CommandObjectRenderScriptRuntimeAllocationDump() override = default;
4644 
4645   Options *GetOptions() override { return &m_options; }
4646 
4647   class CommandOptions : public Options {
4648   public:
4649     CommandOptions() : Options() {}
4650 
4651     ~CommandOptions() override = default;
4652 
4653     Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg,
4654                           ExecutionContext *exe_ctx) override {
4655       Status err;
4656       const int short_option = m_getopt_table[option_idx].val;
4657 
4658       switch (short_option) {
4659       case 'f':
4660         m_outfile.SetFile(option_arg, FileSpec::Style::native);
4661         FileSystem::Instance().Resolve(m_outfile);
4662         if (FileSystem::Instance().Exists(m_outfile)) {
4663           m_outfile.Clear();
4664           err.SetErrorStringWithFormat("file already exists: '%s'",
4665                                        option_arg.str().c_str());
4666         }
4667         break;
4668       default:
4669         err.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
4670         break;
4671       }
4672       return err;
4673     }
4674 
4675     void OptionParsingStarting(ExecutionContext *exe_ctx) override {
4676       m_outfile.Clear();
4677     }
4678 
4679     llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
4680       return llvm::makeArrayRef(g_renderscript_runtime_alloc_dump_options);
4681     }
4682 
4683     FileSpec m_outfile;
4684   };
4685 
4686   bool DoExecute(Args &command, CommandReturnObject &result) override {
4687     const size_t argc = command.GetArgumentCount();
4688     if (argc < 1) {
4689       result.AppendErrorWithFormat("'%s' takes 1 argument, an allocation ID. "
4690                                    "As well as an optional -f argument",
4691                                    m_cmd_name.c_str());
4692       result.SetStatus(eReturnStatusFailed);
4693       return false;
4694     }
4695 
4696     RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4697         m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4698             eLanguageTypeExtRenderScript));
4699 
4700     const char *id_cstr = command.GetArgumentAtIndex(0);
4701     bool success = false;
4702     const uint32_t id =
4703         StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success);
4704     if (!success) {
4705       result.AppendErrorWithFormat("invalid allocation id argument '%s'",
4706                                    id_cstr);
4707       result.SetStatus(eReturnStatusFailed);
4708       return false;
4709     }
4710 
4711     Stream *output_strm = nullptr;
4712     StreamFile outfile_stream;
4713     const FileSpec &outfile_spec =
4714         m_options.m_outfile; // Dump allocation to file instead
4715     if (outfile_spec) {
4716       // Open output file
4717       std::string path = outfile_spec.GetPath();
4718       auto error = FileSystem::Instance().Open(
4719           outfile_stream.GetFile(), outfile_spec,
4720           File::eOpenOptionWrite | File::eOpenOptionCanCreate);
4721       if (error.Success()) {
4722         output_strm = &outfile_stream;
4723         result.GetOutputStream().Printf("Results written to '%s'",
4724                                         path.c_str());
4725         result.GetOutputStream().EOL();
4726       } else {
4727         result.AppendErrorWithFormat("Couldn't open file '%s'", path.c_str());
4728         result.SetStatus(eReturnStatusFailed);
4729         return false;
4730       }
4731     } else
4732       output_strm = &result.GetOutputStream();
4733 
4734     assert(output_strm != nullptr);
4735     bool dumped =
4736         runtime->DumpAllocation(*output_strm, m_exe_ctx.GetFramePtr(), id);
4737 
4738     if (dumped)
4739       result.SetStatus(eReturnStatusSuccessFinishResult);
4740     else
4741       result.SetStatus(eReturnStatusFailed);
4742 
4743     return true;
4744   }
4745 
4746 private:
4747   CommandOptions m_options;
4748 };
4749 
4750 static constexpr OptionDefinition g_renderscript_runtime_alloc_list_options[] = {
4751     {LLDB_OPT_SET_1, false, "id", 'i', OptionParser::eRequiredArgument, nullptr,
4752      {}, 0, eArgTypeIndex,
4753      "Only show details of a single allocation with specified id."}};
4754 
4755 class CommandObjectRenderScriptRuntimeAllocationList
4756     : public CommandObjectParsed {
4757 public:
4758   CommandObjectRenderScriptRuntimeAllocationList(
4759       CommandInterpreter &interpreter)
4760       : CommandObjectParsed(
4761             interpreter, "renderscript allocation list",
4762             "List renderscript allocations and their information.",
4763             "renderscript allocation list",
4764             eCommandRequiresProcess | eCommandProcessMustBeLaunched),
4765         m_options() {}
4766 
4767   ~CommandObjectRenderScriptRuntimeAllocationList() override = default;
4768 
4769   Options *GetOptions() override { return &m_options; }
4770 
4771   class CommandOptions : public Options {
4772   public:
4773     CommandOptions() : Options(), m_id(0) {}
4774 
4775     ~CommandOptions() override = default;
4776 
4777     Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg,
4778                           ExecutionContext *exe_ctx) override {
4779       Status err;
4780       const int short_option = m_getopt_table[option_idx].val;
4781 
4782       switch (short_option) {
4783       case 'i':
4784         if (option_arg.getAsInteger(0, m_id))
4785           err.SetErrorStringWithFormat("invalid integer value for option '%c'",
4786                                        short_option);
4787         break;
4788       default:
4789         err.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
4790         break;
4791       }
4792       return err;
4793     }
4794 
4795     void OptionParsingStarting(ExecutionContext *exe_ctx) override { m_id = 0; }
4796 
4797     llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
4798       return llvm::makeArrayRef(g_renderscript_runtime_alloc_list_options);
4799     }
4800 
4801     uint32_t m_id;
4802   };
4803 
4804   bool DoExecute(Args &command, CommandReturnObject &result) override {
4805     RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4806         m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4807             eLanguageTypeExtRenderScript));
4808     runtime->ListAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr(),
4809                              m_options.m_id);
4810     result.SetStatus(eReturnStatusSuccessFinishResult);
4811     return true;
4812   }
4813 
4814 private:
4815   CommandOptions m_options;
4816 };
4817 
4818 class CommandObjectRenderScriptRuntimeAllocationLoad
4819     : public CommandObjectParsed {
4820 public:
4821   CommandObjectRenderScriptRuntimeAllocationLoad(
4822       CommandInterpreter &interpreter)
4823       : CommandObjectParsed(
4824             interpreter, "renderscript allocation load",
4825             "Loads renderscript allocation contents from a file.",
4826             "renderscript allocation load <ID> <filename>",
4827             eCommandRequiresProcess | eCommandProcessMustBeLaunched) {}
4828 
4829   ~CommandObjectRenderScriptRuntimeAllocationLoad() override = default;
4830 
4831   bool DoExecute(Args &command, CommandReturnObject &result) override {
4832     const size_t argc = command.GetArgumentCount();
4833     if (argc != 2) {
4834       result.AppendErrorWithFormat(
4835           "'%s' takes 2 arguments, an allocation ID and filename to read from.",
4836           m_cmd_name.c_str());
4837       result.SetStatus(eReturnStatusFailed);
4838       return false;
4839     }
4840 
4841     RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4842         m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4843             eLanguageTypeExtRenderScript));
4844 
4845     const char *id_cstr = command.GetArgumentAtIndex(0);
4846     bool success = false;
4847     const uint32_t id =
4848         StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success);
4849     if (!success) {
4850       result.AppendErrorWithFormat("invalid allocation id argument '%s'",
4851                                    id_cstr);
4852       result.SetStatus(eReturnStatusFailed);
4853       return false;
4854     }
4855 
4856     const char *path = command.GetArgumentAtIndex(1);
4857     bool loaded = runtime->LoadAllocation(result.GetOutputStream(), id, path,
4858                                           m_exe_ctx.GetFramePtr());
4859 
4860     if (loaded)
4861       result.SetStatus(eReturnStatusSuccessFinishResult);
4862     else
4863       result.SetStatus(eReturnStatusFailed);
4864 
4865     return true;
4866   }
4867 };
4868 
4869 class CommandObjectRenderScriptRuntimeAllocationSave
4870     : public CommandObjectParsed {
4871 public:
4872   CommandObjectRenderScriptRuntimeAllocationSave(
4873       CommandInterpreter &interpreter)
4874       : CommandObjectParsed(interpreter, "renderscript allocation save",
4875                             "Write renderscript allocation contents to a file.",
4876                             "renderscript allocation save <ID> <filename>",
4877                             eCommandRequiresProcess |
4878                                 eCommandProcessMustBeLaunched) {}
4879 
4880   ~CommandObjectRenderScriptRuntimeAllocationSave() override = default;
4881 
4882   bool DoExecute(Args &command, CommandReturnObject &result) override {
4883     const size_t argc = command.GetArgumentCount();
4884     if (argc != 2) {
4885       result.AppendErrorWithFormat(
4886           "'%s' takes 2 arguments, an allocation ID and filename to read from.",
4887           m_cmd_name.c_str());
4888       result.SetStatus(eReturnStatusFailed);
4889       return false;
4890     }
4891 
4892     RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4893         m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4894             eLanguageTypeExtRenderScript));
4895 
4896     const char *id_cstr = command.GetArgumentAtIndex(0);
4897     bool success = false;
4898     const uint32_t id =
4899         StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success);
4900     if (!success) {
4901       result.AppendErrorWithFormat("invalid allocation id argument '%s'",
4902                                    id_cstr);
4903       result.SetStatus(eReturnStatusFailed);
4904       return false;
4905     }
4906 
4907     const char *path = command.GetArgumentAtIndex(1);
4908     bool saved = runtime->SaveAllocation(result.GetOutputStream(), id, path,
4909                                          m_exe_ctx.GetFramePtr());
4910 
4911     if (saved)
4912       result.SetStatus(eReturnStatusSuccessFinishResult);
4913     else
4914       result.SetStatus(eReturnStatusFailed);
4915 
4916     return true;
4917   }
4918 };
4919 
4920 class CommandObjectRenderScriptRuntimeAllocationRefresh
4921     : public CommandObjectParsed {
4922 public:
4923   CommandObjectRenderScriptRuntimeAllocationRefresh(
4924       CommandInterpreter &interpreter)
4925       : CommandObjectParsed(interpreter, "renderscript allocation refresh",
4926                             "Recomputes the details of all allocations.",
4927                             "renderscript allocation refresh",
4928                             eCommandRequiresProcess |
4929                                 eCommandProcessMustBeLaunched) {}
4930 
4931   ~CommandObjectRenderScriptRuntimeAllocationRefresh() override = default;
4932 
4933   bool DoExecute(Args &command, CommandReturnObject &result) override {
4934     RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4935         m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4936             eLanguageTypeExtRenderScript));
4937 
4938     bool success = runtime->RecomputeAllAllocations(result.GetOutputStream(),
4939                                                     m_exe_ctx.GetFramePtr());
4940 
4941     if (success) {
4942       result.SetStatus(eReturnStatusSuccessFinishResult);
4943       return true;
4944     } else {
4945       result.SetStatus(eReturnStatusFailed);
4946       return false;
4947     }
4948   }
4949 };
4950 
4951 class CommandObjectRenderScriptRuntimeAllocation
4952     : public CommandObjectMultiword {
4953 public:
4954   CommandObjectRenderScriptRuntimeAllocation(CommandInterpreter &interpreter)
4955       : CommandObjectMultiword(
4956             interpreter, "renderscript allocation",
4957             "Commands that deal with RenderScript allocations.", nullptr) {
4958     LoadSubCommand(
4959         "list",
4960         CommandObjectSP(
4961             new CommandObjectRenderScriptRuntimeAllocationList(interpreter)));
4962     LoadSubCommand(
4963         "dump",
4964         CommandObjectSP(
4965             new CommandObjectRenderScriptRuntimeAllocationDump(interpreter)));
4966     LoadSubCommand(
4967         "save",
4968         CommandObjectSP(
4969             new CommandObjectRenderScriptRuntimeAllocationSave(interpreter)));
4970     LoadSubCommand(
4971         "load",
4972         CommandObjectSP(
4973             new CommandObjectRenderScriptRuntimeAllocationLoad(interpreter)));
4974     LoadSubCommand(
4975         "refresh",
4976         CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationRefresh(
4977             interpreter)));
4978   }
4979 
4980   ~CommandObjectRenderScriptRuntimeAllocation() override = default;
4981 };
4982 
4983 class CommandObjectRenderScriptRuntimeStatus : public CommandObjectParsed {
4984 public:
4985   CommandObjectRenderScriptRuntimeStatus(CommandInterpreter &interpreter)
4986       : CommandObjectParsed(interpreter, "renderscript status",
4987                             "Displays current RenderScript runtime status.",
4988                             "renderscript status",
4989                             eCommandRequiresProcess |
4990                                 eCommandProcessMustBeLaunched) {}
4991 
4992   ~CommandObjectRenderScriptRuntimeStatus() override = default;
4993 
4994   bool DoExecute(Args &command, CommandReturnObject &result) override {
4995     RenderScriptRuntime *runtime =
4996         (RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4997             eLanguageTypeExtRenderScript);
4998     runtime->DumpStatus(result.GetOutputStream());
4999     result.SetStatus(eReturnStatusSuccessFinishResult);
5000     return true;
5001   }
5002 };
5003 
5004 class CommandObjectRenderScriptRuntimeReduction
5005     : public CommandObjectMultiword {
5006 public:
5007   CommandObjectRenderScriptRuntimeReduction(CommandInterpreter &interpreter)
5008       : CommandObjectMultiword(interpreter, "renderscript reduction",
5009                                "Commands that handle general reduction kernels",
5010                                nullptr) {
5011     LoadSubCommand(
5012         "breakpoint",
5013         CommandObjectSP(new CommandObjectRenderScriptRuntimeReductionBreakpoint(
5014             interpreter)));
5015   }
5016   ~CommandObjectRenderScriptRuntimeReduction() override = default;
5017 };
5018 
5019 class CommandObjectRenderScriptRuntime : public CommandObjectMultiword {
5020 public:
5021   CommandObjectRenderScriptRuntime(CommandInterpreter &interpreter)
5022       : CommandObjectMultiword(
5023             interpreter, "renderscript",
5024             "Commands for operating on the RenderScript runtime.",
5025             "renderscript <subcommand> [<subcommand-options>]") {
5026     LoadSubCommand(
5027         "module", CommandObjectSP(
5028                       new CommandObjectRenderScriptRuntimeModule(interpreter)));
5029     LoadSubCommand(
5030         "status", CommandObjectSP(
5031                       new CommandObjectRenderScriptRuntimeStatus(interpreter)));
5032     LoadSubCommand(
5033         "kernel", CommandObjectSP(
5034                       new CommandObjectRenderScriptRuntimeKernel(interpreter)));
5035     LoadSubCommand("context",
5036                    CommandObjectSP(new CommandObjectRenderScriptRuntimeContext(
5037                        interpreter)));
5038     LoadSubCommand(
5039         "allocation",
5040         CommandObjectSP(
5041             new CommandObjectRenderScriptRuntimeAllocation(interpreter)));
5042     LoadSubCommand("scriptgroup",
5043                    NewCommandObjectRenderScriptScriptGroup(interpreter));
5044     LoadSubCommand(
5045         "reduction",
5046         CommandObjectSP(
5047             new CommandObjectRenderScriptRuntimeReduction(interpreter)));
5048   }
5049 
5050   ~CommandObjectRenderScriptRuntime() override = default;
5051 };
5052 
5053 void RenderScriptRuntime::Initiate() { assert(!m_initiated); }
5054 
5055 RenderScriptRuntime::RenderScriptRuntime(Process *process)
5056     : lldb_private::CPPLanguageRuntime(process), m_initiated(false),
5057       m_debuggerPresentFlagged(false), m_breakAllKernels(false),
5058       m_ir_passes(nullptr) {
5059   ModulesDidLoad(process->GetTarget().GetImages());
5060 }
5061 
5062 lldb::CommandObjectSP RenderScriptRuntime::GetCommandObject(
5063     lldb_private::CommandInterpreter &interpreter) {
5064   return CommandObjectSP(new CommandObjectRenderScriptRuntime(interpreter));
5065 }
5066 
5067 RenderScriptRuntime::~RenderScriptRuntime() = default;
5068