1 //===-- RenderScriptRuntime.cpp -------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "RenderScriptRuntime.h" 10 #include "RenderScriptScriptGroup.h" 11 12 #include "lldb/Breakpoint/StoppointCallbackContext.h" 13 #include "lldb/Core/Debugger.h" 14 #include "lldb/Core/DumpDataExtractor.h" 15 #include "lldb/Core/PluginManager.h" 16 #include "lldb/Core/ValueObjectVariable.h" 17 #include "lldb/DataFormatters/DumpValueObjectOptions.h" 18 #include "lldb/Expression/UserExpression.h" 19 #include "lldb/Host/OptionParser.h" 20 #include "lldb/Interpreter/CommandInterpreter.h" 21 #include "lldb/Interpreter/CommandObjectMultiword.h" 22 #include "lldb/Interpreter/CommandReturnObject.h" 23 #include "lldb/Interpreter/Options.h" 24 #include "lldb/Symbol/Function.h" 25 #include "lldb/Symbol/Symbol.h" 26 #include "lldb/Symbol/Type.h" 27 #include "lldb/Symbol/VariableList.h" 28 #include "lldb/Target/Process.h" 29 #include "lldb/Target/RegisterContext.h" 30 #include "lldb/Target/SectionLoadList.h" 31 #include "lldb/Target/Target.h" 32 #include "lldb/Target/Thread.h" 33 #include "lldb/Utility/Args.h" 34 #include "lldb/Utility/ConstString.h" 35 #include "lldb/Utility/LLDBLog.h" 36 #include "lldb/Utility/Log.h" 37 #include "lldb/Utility/RegisterValue.h" 38 #include "lldb/Utility/RegularExpression.h" 39 #include "lldb/Utility/Status.h" 40 41 #include "llvm/ADT/StringSwitch.h" 42 43 #include <memory> 44 45 using namespace lldb; 46 using namespace lldb_private; 47 using namespace lldb_renderscript; 48 49 LLDB_PLUGIN_DEFINE(RenderScriptRuntime) 50 51 #define FMT_COORD "(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ")" 52 53 char RenderScriptRuntime::ID = 0; 54 55 namespace { 56 57 // The empirical_type adds a basic level of validation to arbitrary data 58 // allowing us to track if data has been discovered and stored or not. An 59 // empirical_type will be marked as valid only if it has been explicitly 60 // assigned to. 61 template <typename type_t> class empirical_type { 62 public: 63 // Ctor. Contents is invalid when constructed. 64 empirical_type() = default; 65 66 // Return true and copy contents to out if valid, else return false. 67 bool get(type_t &out) const { 68 if (valid) 69 out = data; 70 return valid; 71 } 72 73 // Return a pointer to the contents or nullptr if it was not valid. 74 const type_t *get() const { return valid ? &data : nullptr; } 75 76 // Assign data explicitly. 77 void set(const type_t in) { 78 data = in; 79 valid = true; 80 } 81 82 // Mark contents as invalid. 83 void invalidate() { valid = false; } 84 85 // Returns true if this type contains valid data. 86 bool isValid() const { return valid; } 87 88 // Assignment operator. 89 empirical_type<type_t> &operator=(const type_t in) { 90 set(in); 91 return *this; 92 } 93 94 // Dereference operator returns contents. 95 // Warning: Will assert if not valid so use only when you know data is valid. 96 const type_t &operator*() const { 97 assert(valid); 98 return data; 99 } 100 101 protected: 102 bool valid = false; 103 type_t data; 104 }; 105 106 // ArgItem is used by the GetArgs() function when reading function arguments 107 // from the target. 108 struct ArgItem { 109 enum { ePointer, eInt32, eInt64, eLong, eBool } type; 110 111 uint64_t value; 112 113 explicit operator uint64_t() const { return value; } 114 }; 115 116 // Context structure to be passed into GetArgsXXX(), argument reading functions 117 // below. 118 struct GetArgsCtx { 119 RegisterContext *reg_ctx; 120 Process *process; 121 }; 122 123 bool GetArgsX86(const GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 124 Log *log = GetLog(LLDBLog::Language); 125 126 Status err; 127 128 // get the current stack pointer 129 uint64_t sp = ctx.reg_ctx->GetSP(); 130 131 for (size_t i = 0; i < num_args; ++i) { 132 ArgItem &arg = arg_list[i]; 133 // advance up the stack by one argument 134 sp += sizeof(uint32_t); 135 // get the argument type size 136 size_t arg_size = sizeof(uint32_t); 137 // read the argument from memory 138 arg.value = 0; 139 Status err; 140 size_t read = 141 ctx.process->ReadMemory(sp, &arg.value, sizeof(uint32_t), err); 142 if (read != arg_size || !err.Success()) { 143 LLDB_LOGF(log, "%s - error reading argument: %" PRIu64 " '%s'", 144 __FUNCTION__, uint64_t(i), err.AsCString()); 145 return false; 146 } 147 } 148 return true; 149 } 150 151 bool GetArgsX86_64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 152 Log *log = GetLog(LLDBLog::Language); 153 154 // number of arguments passed in registers 155 static const uint32_t args_in_reg = 6; 156 // register passing order 157 static const std::array<const char *, args_in_reg> reg_names{ 158 {"rdi", "rsi", "rdx", "rcx", "r8", "r9"}}; 159 // argument type to size mapping 160 static const std::array<size_t, 5> arg_size{{ 161 8, // ePointer, 162 4, // eInt32, 163 8, // eInt64, 164 8, // eLong, 165 4, // eBool, 166 }}; 167 168 Status err; 169 170 // get the current stack pointer 171 uint64_t sp = ctx.reg_ctx->GetSP(); 172 // step over the return address 173 sp += sizeof(uint64_t); 174 175 // check the stack alignment was correct (16 byte aligned) 176 if ((sp & 0xf) != 0x0) { 177 LLDB_LOGF(log, "%s - stack misaligned", __FUNCTION__); 178 return false; 179 } 180 181 // find the start of arguments on the stack 182 uint64_t sp_offset = 0; 183 for (uint32_t i = args_in_reg; i < num_args; ++i) { 184 sp_offset += arg_size[arg_list[i].type]; 185 } 186 // round up to multiple of 16 187 sp_offset = (sp_offset + 0xf) & 0xf; 188 sp += sp_offset; 189 190 for (size_t i = 0; i < num_args; ++i) { 191 bool success = false; 192 ArgItem &arg = arg_list[i]; 193 // arguments passed in registers 194 if (i < args_in_reg) { 195 const RegisterInfo *reg = 196 ctx.reg_ctx->GetRegisterInfoByName(reg_names[i]); 197 RegisterValue reg_val; 198 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 199 arg.value = reg_val.GetAsUInt64(0, &success); 200 } 201 // arguments passed on the stack 202 else { 203 // get the argument type size 204 const size_t size = arg_size[arg_list[i].type]; 205 // read the argument from memory 206 arg.value = 0; 207 // note: due to little endian layout reading 4 or 8 bytes will give the 208 // correct value. 209 size_t read = ctx.process->ReadMemory(sp, &arg.value, size, err); 210 success = (err.Success() && read == size); 211 // advance past this argument 212 sp -= size; 213 } 214 // fail if we couldn't read this argument 215 if (!success) { 216 LLDB_LOGF(log, "%s - error reading argument: %" PRIu64 ", reason: %s", 217 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 218 return false; 219 } 220 } 221 return true; 222 } 223 224 bool GetArgsArm(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 225 // number of arguments passed in registers 226 static const uint32_t args_in_reg = 4; 227 228 Log *log = GetLog(LLDBLog::Language); 229 230 Status err; 231 232 // get the current stack pointer 233 uint64_t sp = ctx.reg_ctx->GetSP(); 234 235 for (size_t i = 0; i < num_args; ++i) { 236 bool success = false; 237 ArgItem &arg = arg_list[i]; 238 // arguments passed in registers 239 if (i < args_in_reg) { 240 const RegisterInfo *reg = ctx.reg_ctx->GetRegisterInfoAtIndex(i); 241 RegisterValue reg_val; 242 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 243 arg.value = reg_val.GetAsUInt32(0, &success); 244 } 245 // arguments passed on the stack 246 else { 247 // get the argument type size 248 const size_t arg_size = sizeof(uint32_t); 249 // clear all 64bits 250 arg.value = 0; 251 // read this argument from memory 252 size_t bytes_read = 253 ctx.process->ReadMemory(sp, &arg.value, arg_size, err); 254 success = (err.Success() && bytes_read == arg_size); 255 // advance the stack pointer 256 sp += sizeof(uint32_t); 257 } 258 // fail if we couldn't read this argument 259 if (!success) { 260 LLDB_LOGF(log, "%s - error reading argument: %" PRIu64 ", reason: %s", 261 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 262 return false; 263 } 264 } 265 return true; 266 } 267 268 bool GetArgsAarch64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 269 // number of arguments passed in registers 270 static const uint32_t args_in_reg = 8; 271 272 Log *log = GetLog(LLDBLog::Language); 273 274 for (size_t i = 0; i < num_args; ++i) { 275 bool success = false; 276 ArgItem &arg = arg_list[i]; 277 // arguments passed in registers 278 if (i < args_in_reg) { 279 const RegisterInfo *reg = ctx.reg_ctx->GetRegisterInfoAtIndex(i); 280 RegisterValue reg_val; 281 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 282 arg.value = reg_val.GetAsUInt64(0, &success); 283 } 284 // arguments passed on the stack 285 else { 286 LLDB_LOGF(log, "%s - reading arguments spilled to stack not implemented", 287 __FUNCTION__); 288 } 289 // fail if we couldn't read this argument 290 if (!success) { 291 LLDB_LOGF(log, "%s - error reading argument: %" PRIu64, __FUNCTION__, 292 uint64_t(i)); 293 return false; 294 } 295 } 296 return true; 297 } 298 299 bool GetArgsMipsel(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 300 // number of arguments passed in registers 301 static const uint32_t args_in_reg = 4; 302 // register file offset to first argument 303 static const uint32_t reg_offset = 4; 304 305 Log *log = GetLog(LLDBLog::Language); 306 307 Status err; 308 309 // find offset to arguments on the stack (+16 to skip over a0-a3 shadow 310 // space) 311 uint64_t sp = ctx.reg_ctx->GetSP() + 16; 312 313 for (size_t i = 0; i < num_args; ++i) { 314 bool success = false; 315 ArgItem &arg = arg_list[i]; 316 // arguments passed in registers 317 if (i < args_in_reg) { 318 const RegisterInfo *reg = 319 ctx.reg_ctx->GetRegisterInfoAtIndex(i + reg_offset); 320 RegisterValue reg_val; 321 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 322 arg.value = reg_val.GetAsUInt64(0, &success); 323 } 324 // arguments passed on the stack 325 else { 326 const size_t arg_size = sizeof(uint32_t); 327 arg.value = 0; 328 size_t bytes_read = 329 ctx.process->ReadMemory(sp, &arg.value, arg_size, err); 330 success = (err.Success() && bytes_read == arg_size); 331 // advance the stack pointer 332 sp += arg_size; 333 } 334 // fail if we couldn't read this argument 335 if (!success) { 336 LLDB_LOGF(log, "%s - error reading argument: %" PRIu64 ", reason: %s", 337 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 338 return false; 339 } 340 } 341 return true; 342 } 343 344 bool GetArgsMips64el(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 345 // number of arguments passed in registers 346 static const uint32_t args_in_reg = 8; 347 // register file offset to first argument 348 static const uint32_t reg_offset = 4; 349 350 Log *log = GetLog(LLDBLog::Language); 351 352 Status err; 353 354 // get the current stack pointer 355 uint64_t sp = ctx.reg_ctx->GetSP(); 356 357 for (size_t i = 0; i < num_args; ++i) { 358 bool success = false; 359 ArgItem &arg = arg_list[i]; 360 // arguments passed in registers 361 if (i < args_in_reg) { 362 const RegisterInfo *reg = 363 ctx.reg_ctx->GetRegisterInfoAtIndex(i + reg_offset); 364 RegisterValue reg_val; 365 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 366 arg.value = reg_val.GetAsUInt64(0, &success); 367 } 368 // arguments passed on the stack 369 else { 370 // get the argument type size 371 const size_t arg_size = sizeof(uint64_t); 372 // clear all 64bits 373 arg.value = 0; 374 // read this argument from memory 375 size_t bytes_read = 376 ctx.process->ReadMemory(sp, &arg.value, arg_size, err); 377 success = (err.Success() && bytes_read == arg_size); 378 // advance the stack pointer 379 sp += arg_size; 380 } 381 // fail if we couldn't read this argument 382 if (!success) { 383 LLDB_LOGF(log, "%s - error reading argument: %" PRIu64 ", reason: %s", 384 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 385 return false; 386 } 387 } 388 return true; 389 } 390 391 bool GetArgs(ExecutionContext &exe_ctx, ArgItem *arg_list, size_t num_args) { 392 Log *log = GetLog(LLDBLog::Language); 393 394 // verify that we have a target 395 if (!exe_ctx.GetTargetPtr()) { 396 LLDB_LOGF(log, "%s - invalid target", __FUNCTION__); 397 return false; 398 } 399 400 GetArgsCtx ctx = {exe_ctx.GetRegisterContext(), exe_ctx.GetProcessPtr()}; 401 assert(ctx.reg_ctx && ctx.process); 402 403 // dispatch based on architecture 404 switch (exe_ctx.GetTargetPtr()->GetArchitecture().GetMachine()) { 405 case llvm::Triple::ArchType::x86: 406 return GetArgsX86(ctx, arg_list, num_args); 407 408 case llvm::Triple::ArchType::x86_64: 409 return GetArgsX86_64(ctx, arg_list, num_args); 410 411 case llvm::Triple::ArchType::arm: 412 return GetArgsArm(ctx, arg_list, num_args); 413 414 case llvm::Triple::ArchType::aarch64: 415 return GetArgsAarch64(ctx, arg_list, num_args); 416 417 case llvm::Triple::ArchType::mipsel: 418 return GetArgsMipsel(ctx, arg_list, num_args); 419 420 case llvm::Triple::ArchType::mips64el: 421 return GetArgsMips64el(ctx, arg_list, num_args); 422 423 default: 424 // unsupported architecture 425 if (log) { 426 LLDB_LOGF(log, "%s - architecture not supported: '%s'", __FUNCTION__, 427 exe_ctx.GetTargetRef().GetArchitecture().GetArchitectureName()); 428 } 429 return false; 430 } 431 } 432 433 bool IsRenderScriptScriptModule(ModuleSP module) { 434 if (!module) 435 return false; 436 return module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), 437 eSymbolTypeData) != nullptr; 438 } 439 440 bool ParseCoordinate(llvm::StringRef coord_s, RSCoordinate &coord) { 441 // takes an argument of the form 'num[,num][,num]'. Where 'coord_s' is a 442 // comma separated 1,2 or 3-dimensional coordinate with the whitespace 443 // trimmed. Missing coordinates are defaulted to zero. If parsing of any 444 // elements fails the contents of &coord are undefined and `false` is 445 // returned, `true` otherwise 446 447 llvm::SmallVector<llvm::StringRef, 4> matches; 448 449 if (!RegularExpression("^([0-9]+),([0-9]+),([0-9]+)$") 450 .Execute(coord_s, &matches) && 451 !RegularExpression("^([0-9]+),([0-9]+)$").Execute(coord_s, &matches) && 452 !RegularExpression("^([0-9]+)$").Execute(coord_s, &matches)) 453 return false; 454 455 auto get_index = [&](size_t idx, uint32_t &i) -> bool { 456 std::string group; 457 errno = 0; 458 if (idx + 1 < matches.size()) { 459 return !llvm::StringRef(matches[idx + 1]).getAsInteger<uint32_t>(10, i); 460 } 461 return true; 462 }; 463 464 return get_index(0, coord.x) && get_index(1, coord.y) && 465 get_index(2, coord.z); 466 } 467 468 bool SkipPrologue(lldb::ModuleSP &module, Address &addr) { 469 Log *log = GetLog(LLDBLog::Language); 470 SymbolContext sc; 471 uint32_t resolved_flags = 472 module->ResolveSymbolContextForAddress(addr, eSymbolContextFunction, sc); 473 if (resolved_flags & eSymbolContextFunction) { 474 if (sc.function) { 475 const uint32_t offset = sc.function->GetPrologueByteSize(); 476 ConstString name = sc.GetFunctionName(); 477 if (offset) 478 addr.Slide(offset); 479 LLDB_LOGF(log, "%s: Prologue offset for %s is %" PRIu32, __FUNCTION__, 480 name.AsCString(), offset); 481 } 482 return true; 483 } else 484 return false; 485 } 486 } // anonymous namespace 487 488 // The ScriptDetails class collects data associated with a single script 489 // instance. 490 struct RenderScriptRuntime::ScriptDetails { 491 ~ScriptDetails() = default; 492 493 enum ScriptType { eScript, eScriptC }; 494 495 // The derived type of the script. 496 empirical_type<ScriptType> type; 497 // The name of the original source file. 498 empirical_type<std::string> res_name; 499 // Path to script .so file on the device. 500 empirical_type<std::string> shared_lib; 501 // Directory where kernel objects are cached on device. 502 empirical_type<std::string> cache_dir; 503 // Pointer to the context which owns this script. 504 empirical_type<lldb::addr_t> context; 505 // Pointer to the script object itself. 506 empirical_type<lldb::addr_t> script; 507 }; 508 509 // This Element class represents the Element object in RS, defining the type 510 // associated with an Allocation. 511 struct RenderScriptRuntime::Element { 512 // Taken from rsDefines.h 513 enum DataKind { 514 RS_KIND_USER, 515 RS_KIND_PIXEL_L = 7, 516 RS_KIND_PIXEL_A, 517 RS_KIND_PIXEL_LA, 518 RS_KIND_PIXEL_RGB, 519 RS_KIND_PIXEL_RGBA, 520 RS_KIND_PIXEL_DEPTH, 521 RS_KIND_PIXEL_YUV, 522 RS_KIND_INVALID = 100 523 }; 524 525 // Taken from rsDefines.h 526 enum DataType { 527 RS_TYPE_NONE = 0, 528 RS_TYPE_FLOAT_16, 529 RS_TYPE_FLOAT_32, 530 RS_TYPE_FLOAT_64, 531 RS_TYPE_SIGNED_8, 532 RS_TYPE_SIGNED_16, 533 RS_TYPE_SIGNED_32, 534 RS_TYPE_SIGNED_64, 535 RS_TYPE_UNSIGNED_8, 536 RS_TYPE_UNSIGNED_16, 537 RS_TYPE_UNSIGNED_32, 538 RS_TYPE_UNSIGNED_64, 539 RS_TYPE_BOOLEAN, 540 541 RS_TYPE_UNSIGNED_5_6_5, 542 RS_TYPE_UNSIGNED_5_5_5_1, 543 RS_TYPE_UNSIGNED_4_4_4_4, 544 545 RS_TYPE_MATRIX_4X4, 546 RS_TYPE_MATRIX_3X3, 547 RS_TYPE_MATRIX_2X2, 548 549 RS_TYPE_ELEMENT = 1000, 550 RS_TYPE_TYPE, 551 RS_TYPE_ALLOCATION, 552 RS_TYPE_SAMPLER, 553 RS_TYPE_SCRIPT, 554 RS_TYPE_MESH, 555 RS_TYPE_PROGRAM_FRAGMENT, 556 RS_TYPE_PROGRAM_VERTEX, 557 RS_TYPE_PROGRAM_RASTER, 558 RS_TYPE_PROGRAM_STORE, 559 RS_TYPE_FONT, 560 561 RS_TYPE_INVALID = 10000 562 }; 563 564 std::vector<Element> children; // Child Element fields for structs 565 empirical_type<lldb::addr_t> 566 element_ptr; // Pointer to the RS Element of the Type 567 empirical_type<DataType> 568 type; // Type of each data pointer stored by the allocation 569 empirical_type<DataKind> 570 type_kind; // Defines pixel type if Allocation is created from an image 571 empirical_type<uint32_t> 572 type_vec_size; // Vector size of each data point, e.g '4' for uchar4 573 empirical_type<uint32_t> field_count; // Number of Subelements 574 empirical_type<uint32_t> datum_size; // Size of a single Element with padding 575 empirical_type<uint32_t> padding; // Number of padding bytes 576 empirical_type<uint32_t> 577 array_size; // Number of items in array, only needed for structs 578 ConstString type_name; // Name of type, only needed for structs 579 580 static ConstString 581 GetFallbackStructName(); // Print this as the type name of a struct Element 582 // If we can't resolve the actual struct name 583 584 bool ShouldRefresh() const { 585 const bool valid_ptr = element_ptr.isValid() && *element_ptr.get() != 0x0; 586 const bool valid_type = 587 type.isValid() && type_vec_size.isValid() && type_kind.isValid(); 588 return !valid_ptr || !valid_type || !datum_size.isValid(); 589 } 590 }; 591 592 // This AllocationDetails class collects data associated with a single 593 // allocation instance. 594 struct RenderScriptRuntime::AllocationDetails { 595 struct Dimension { 596 uint32_t dim_1; 597 uint32_t dim_2; 598 uint32_t dim_3; 599 uint32_t cube_map; 600 601 Dimension() { 602 dim_1 = 0; 603 dim_2 = 0; 604 dim_3 = 0; 605 cube_map = 0; 606 } 607 }; 608 609 // The FileHeader struct specifies the header we use for writing allocations 610 // to a binary file. Our format begins with the ASCII characters "RSAD", 611 // identifying the file as an allocation dump. Member variables dims and 612 // hdr_size are then written consecutively, immediately followed by an 613 // instance of the ElementHeader struct. Because Elements can contain 614 // subelements, there may be more than one instance of the ElementHeader 615 // struct. With this first instance being the root element, and the other 616 // instances being the root's descendants. To identify which instances are an 617 // ElementHeader's children, each struct is immediately followed by a 618 // sequence of consecutive offsets to the start of its child structs. These 619 // offsets are 620 // 4 bytes in size, and the 0 offset signifies no more children. 621 struct FileHeader { 622 uint8_t ident[4]; // ASCII 'RSAD' identifying the file 623 uint32_t dims[3]; // Dimensions 624 uint16_t hdr_size; // Header size in bytes, including all element headers 625 }; 626 627 struct ElementHeader { 628 uint16_t type; // DataType enum 629 uint32_t kind; // DataKind enum 630 uint32_t element_size; // Size of a single element, including padding 631 uint16_t vector_size; // Vector width 632 uint32_t array_size; // Number of elements in array 633 }; 634 635 // Monotonically increasing from 1 636 static uint32_t ID; 637 638 // Maps Allocation DataType enum and vector size to printable strings using 639 // mapping from RenderScript numerical types summary documentation 640 static const char *RsDataTypeToString[][4]; 641 642 // Maps Allocation DataKind enum to printable strings 643 static const char *RsDataKindToString[]; 644 645 // Maps allocation types to format sizes for printing. 646 static const uint32_t RSTypeToFormat[][3]; 647 648 // Give each allocation an ID as a way 649 // for commands to reference it. 650 const uint32_t id; 651 652 // Allocation Element type 653 RenderScriptRuntime::Element element; 654 // Dimensions of the Allocation 655 empirical_type<Dimension> dimension; 656 // Pointer to address of the RS Allocation 657 empirical_type<lldb::addr_t> address; 658 // Pointer to the data held by the Allocation 659 empirical_type<lldb::addr_t> data_ptr; 660 // Pointer to the RS Type of the Allocation 661 empirical_type<lldb::addr_t> type_ptr; 662 // Pointer to the RS Context of the Allocation 663 empirical_type<lldb::addr_t> context; 664 // Size of the allocation 665 empirical_type<uint32_t> size; 666 // Stride between rows of the allocation 667 empirical_type<uint32_t> stride; 668 669 // Give each allocation an id, so we can reference it in user commands. 670 AllocationDetails() : id(ID++) {} 671 672 bool ShouldRefresh() const { 673 bool valid_ptrs = data_ptr.isValid() && *data_ptr.get() != 0x0; 674 valid_ptrs = valid_ptrs && type_ptr.isValid() && *type_ptr.get() != 0x0; 675 return !valid_ptrs || !dimension.isValid() || !size.isValid() || 676 element.ShouldRefresh(); 677 } 678 }; 679 680 ConstString RenderScriptRuntime::Element::GetFallbackStructName() { 681 static const ConstString FallbackStructName("struct"); 682 return FallbackStructName; 683 } 684 685 uint32_t RenderScriptRuntime::AllocationDetails::ID = 1; 686 687 const char *RenderScriptRuntime::AllocationDetails::RsDataKindToString[] = { 688 "User", "Undefined", "Undefined", "Undefined", 689 "Undefined", "Undefined", "Undefined", // Enum jumps from 0 to 7 690 "L Pixel", "A Pixel", "LA Pixel", "RGB Pixel", 691 "RGBA Pixel", "Pixel Depth", "YUV Pixel"}; 692 693 const char *RenderScriptRuntime::AllocationDetails::RsDataTypeToString[][4] = { 694 {"None", "None", "None", "None"}, 695 {"half", "half2", "half3", "half4"}, 696 {"float", "float2", "float3", "float4"}, 697 {"double", "double2", "double3", "double4"}, 698 {"char", "char2", "char3", "char4"}, 699 {"short", "short2", "short3", "short4"}, 700 {"int", "int2", "int3", "int4"}, 701 {"long", "long2", "long3", "long4"}, 702 {"uchar", "uchar2", "uchar3", "uchar4"}, 703 {"ushort", "ushort2", "ushort3", "ushort4"}, 704 {"uint", "uint2", "uint3", "uint4"}, 705 {"ulong", "ulong2", "ulong3", "ulong4"}, 706 {"bool", "bool2", "bool3", "bool4"}, 707 {"packed_565", "packed_565", "packed_565", "packed_565"}, 708 {"packed_5551", "packed_5551", "packed_5551", "packed_5551"}, 709 {"packed_4444", "packed_4444", "packed_4444", "packed_4444"}, 710 {"rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4"}, 711 {"rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3"}, 712 {"rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2"}, 713 714 // Handlers 715 {"RS Element", "RS Element", "RS Element", "RS Element"}, 716 {"RS Type", "RS Type", "RS Type", "RS Type"}, 717 {"RS Allocation", "RS Allocation", "RS Allocation", "RS Allocation"}, 718 {"RS Sampler", "RS Sampler", "RS Sampler", "RS Sampler"}, 719 {"RS Script", "RS Script", "RS Script", "RS Script"}, 720 721 // Deprecated 722 {"RS Mesh", "RS Mesh", "RS Mesh", "RS Mesh"}, 723 {"RS Program Fragment", "RS Program Fragment", "RS Program Fragment", 724 "RS Program Fragment"}, 725 {"RS Program Vertex", "RS Program Vertex", "RS Program Vertex", 726 "RS Program Vertex"}, 727 {"RS Program Raster", "RS Program Raster", "RS Program Raster", 728 "RS Program Raster"}, 729 {"RS Program Store", "RS Program Store", "RS Program Store", 730 "RS Program Store"}, 731 {"RS Font", "RS Font", "RS Font", "RS Font"}}; 732 733 // Used as an index into the RSTypeToFormat array elements 734 enum TypeToFormatIndex { eFormatSingle = 0, eFormatVector, eElementSize }; 735 736 // { format enum of single element, format enum of element vector, size of 737 // element} 738 const uint32_t RenderScriptRuntime::AllocationDetails::RSTypeToFormat[][3] = { 739 // RS_TYPE_NONE 740 {eFormatHex, eFormatHex, 1}, 741 // RS_TYPE_FLOAT_16 742 {eFormatFloat, eFormatVectorOfFloat16, 2}, 743 // RS_TYPE_FLOAT_32 744 {eFormatFloat, eFormatVectorOfFloat32, sizeof(float)}, 745 // RS_TYPE_FLOAT_64 746 {eFormatFloat, eFormatVectorOfFloat64, sizeof(double)}, 747 // RS_TYPE_SIGNED_8 748 {eFormatDecimal, eFormatVectorOfSInt8, sizeof(int8_t)}, 749 // RS_TYPE_SIGNED_16 750 {eFormatDecimal, eFormatVectorOfSInt16, sizeof(int16_t)}, 751 // RS_TYPE_SIGNED_32 752 {eFormatDecimal, eFormatVectorOfSInt32, sizeof(int32_t)}, 753 // RS_TYPE_SIGNED_64 754 {eFormatDecimal, eFormatVectorOfSInt64, sizeof(int64_t)}, 755 // RS_TYPE_UNSIGNED_8 756 {eFormatDecimal, eFormatVectorOfUInt8, sizeof(uint8_t)}, 757 // RS_TYPE_UNSIGNED_16 758 {eFormatDecimal, eFormatVectorOfUInt16, sizeof(uint16_t)}, 759 // RS_TYPE_UNSIGNED_32 760 {eFormatDecimal, eFormatVectorOfUInt32, sizeof(uint32_t)}, 761 // RS_TYPE_UNSIGNED_64 762 {eFormatDecimal, eFormatVectorOfUInt64, sizeof(uint64_t)}, 763 // RS_TYPE_BOOL 764 {eFormatBoolean, eFormatBoolean, 1}, 765 // RS_TYPE_UNSIGNED_5_6_5 766 {eFormatHex, eFormatHex, sizeof(uint16_t)}, 767 // RS_TYPE_UNSIGNED_5_5_5_1 768 {eFormatHex, eFormatHex, sizeof(uint16_t)}, 769 // RS_TYPE_UNSIGNED_4_4_4_4 770 {eFormatHex, eFormatHex, sizeof(uint16_t)}, 771 // RS_TYPE_MATRIX_4X4 772 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 16}, 773 // RS_TYPE_MATRIX_3X3 774 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 9}, 775 // RS_TYPE_MATRIX_2X2 776 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 4}}; 777 778 // Static Functions 779 LanguageRuntime * 780 RenderScriptRuntime::CreateInstance(Process *process, 781 lldb::LanguageType language) { 782 783 if (language == eLanguageTypeExtRenderScript) 784 return new RenderScriptRuntime(process); 785 else 786 return nullptr; 787 } 788 789 // Callback with a module to search for matching symbols. We first check that 790 // the module contains RS kernels. Then look for a symbol which matches our 791 // kernel name. The breakpoint address is finally set using the address of this 792 // symbol. 793 Searcher::CallbackReturn 794 RSBreakpointResolver::SearchCallback(SearchFilter &filter, 795 SymbolContext &context, Address *) { 796 BreakpointSP breakpoint_sp = GetBreakpoint(); 797 assert(breakpoint_sp); 798 799 ModuleSP module = context.module_sp; 800 801 if (!module || !IsRenderScriptScriptModule(module)) 802 return Searcher::eCallbackReturnContinue; 803 804 // Attempt to set a breakpoint on the kernel name symbol within the module 805 // library. If it's not found, it's likely debug info is unavailable - try to 806 // set a breakpoint on <name>.expand. 807 const Symbol *kernel_sym = 808 module->FindFirstSymbolWithNameAndType(m_kernel_name, eSymbolTypeCode); 809 if (!kernel_sym) { 810 std::string kernel_name_expanded(m_kernel_name.AsCString()); 811 kernel_name_expanded.append(".expand"); 812 kernel_sym = module->FindFirstSymbolWithNameAndType( 813 ConstString(kernel_name_expanded.c_str()), eSymbolTypeCode); 814 } 815 816 if (kernel_sym) { 817 Address bp_addr = kernel_sym->GetAddress(); 818 if (filter.AddressPasses(bp_addr)) 819 breakpoint_sp->AddLocation(bp_addr); 820 } 821 822 return Searcher::eCallbackReturnContinue; 823 } 824 825 Searcher::CallbackReturn 826 RSReduceBreakpointResolver::SearchCallback(lldb_private::SearchFilter &filter, 827 lldb_private::SymbolContext &context, 828 Address *) { 829 BreakpointSP breakpoint_sp = GetBreakpoint(); 830 assert(breakpoint_sp); 831 832 // We need to have access to the list of reductions currently parsed, as 833 // reduce names don't actually exist as symbols in a module. They are only 834 // identifiable by parsing the .rs.info packet, or finding the expand symbol. 835 // We therefore need access to the list of parsed rs modules to properly 836 // resolve reduction names. 837 Log *log = GetLog(LLDBLog::Breakpoints); 838 ModuleSP module = context.module_sp; 839 840 if (!module || !IsRenderScriptScriptModule(module)) 841 return Searcher::eCallbackReturnContinue; 842 843 if (!m_rsmodules) 844 return Searcher::eCallbackReturnContinue; 845 846 for (const auto &module_desc : *m_rsmodules) { 847 if (module_desc->m_module != module) 848 continue; 849 850 for (const auto &reduction : module_desc->m_reductions) { 851 if (reduction.m_reduce_name != m_reduce_name) 852 continue; 853 854 std::array<std::pair<ConstString, int>, 5> funcs{ 855 {{reduction.m_init_name, eKernelTypeInit}, 856 {reduction.m_accum_name, eKernelTypeAccum}, 857 {reduction.m_comb_name, eKernelTypeComb}, 858 {reduction.m_outc_name, eKernelTypeOutC}, 859 {reduction.m_halter_name, eKernelTypeHalter}}}; 860 861 for (const auto &kernel : funcs) { 862 // Skip constituent functions that don't match our spec 863 if (!(m_kernel_types & kernel.second)) 864 continue; 865 866 const auto kernel_name = kernel.first; 867 const auto symbol = module->FindFirstSymbolWithNameAndType( 868 kernel_name, eSymbolTypeCode); 869 if (!symbol) 870 continue; 871 872 auto address = symbol->GetAddress(); 873 if (filter.AddressPasses(address)) { 874 bool new_bp; 875 if (!SkipPrologue(module, address)) { 876 LLDB_LOGF(log, "%s: Error trying to skip prologue", __FUNCTION__); 877 } 878 breakpoint_sp->AddLocation(address, &new_bp); 879 LLDB_LOGF(log, "%s: %s reduction breakpoint on %s in %s", 880 __FUNCTION__, new_bp ? "new" : "existing", 881 kernel_name.GetCString(), 882 address.GetModule()->GetFileSpec().GetCString()); 883 } 884 } 885 } 886 } 887 return eCallbackReturnContinue; 888 } 889 890 Searcher::CallbackReturn RSScriptGroupBreakpointResolver::SearchCallback( 891 SearchFilter &filter, SymbolContext &context, Address *addr) { 892 893 BreakpointSP breakpoint_sp = GetBreakpoint(); 894 if (!breakpoint_sp) 895 return eCallbackReturnContinue; 896 897 Log *log = GetLog(LLDBLog::Breakpoints); 898 ModuleSP &module = context.module_sp; 899 900 if (!module || !IsRenderScriptScriptModule(module)) 901 return Searcher::eCallbackReturnContinue; 902 903 std::vector<std::string> names; 904 Breakpoint& breakpoint = *breakpoint_sp; 905 breakpoint.GetNames(names); 906 if (names.empty()) 907 return eCallbackReturnContinue; 908 909 for (auto &name : names) { 910 const RSScriptGroupDescriptorSP sg = FindScriptGroup(ConstString(name)); 911 if (!sg) { 912 LLDB_LOGF(log, "%s: could not find script group for %s", __FUNCTION__, 913 name.c_str()); 914 continue; 915 } 916 917 LLDB_LOGF(log, "%s: Found ScriptGroup for %s", __FUNCTION__, name.c_str()); 918 919 for (const RSScriptGroupDescriptor::Kernel &k : sg->m_kernels) { 920 if (log) { 921 LLDB_LOGF(log, "%s: Adding breakpoint for %s", __FUNCTION__, 922 k.m_name.AsCString()); 923 LLDB_LOGF(log, "%s: Kernel address 0x%" PRIx64, __FUNCTION__, k.m_addr); 924 } 925 926 const lldb_private::Symbol *sym = 927 module->FindFirstSymbolWithNameAndType(k.m_name, eSymbolTypeCode); 928 if (!sym) { 929 LLDB_LOGF(log, "%s: Unable to find symbol for %s", __FUNCTION__, 930 k.m_name.AsCString()); 931 continue; 932 } 933 934 if (log) { 935 LLDB_LOGF(log, "%s: Found symbol name is %s", __FUNCTION__, 936 sym->GetName().AsCString()); 937 } 938 939 auto address = sym->GetAddress(); 940 if (!SkipPrologue(module, address)) { 941 LLDB_LOGF(log, "%s: Error trying to skip prologue", __FUNCTION__); 942 } 943 944 bool new_bp; 945 breakpoint.AddLocation(address, &new_bp); 946 947 LLDB_LOGF(log, "%s: Placed %sbreakpoint on %s", __FUNCTION__, 948 new_bp ? "new " : "", k.m_name.AsCString()); 949 950 // exit after placing the first breakpoint if we do not intend to stop on 951 // all kernels making up this script group 952 if (!m_stop_on_all) 953 break; 954 } 955 } 956 957 return eCallbackReturnContinue; 958 } 959 960 void RenderScriptRuntime::Initialize() { 961 PluginManager::RegisterPlugin(GetPluginNameStatic(), 962 "RenderScript language support", CreateInstance, 963 GetCommandObject); 964 } 965 966 void RenderScriptRuntime::Terminate() { 967 PluginManager::UnregisterPlugin(CreateInstance); 968 } 969 970 RenderScriptRuntime::ModuleKind 971 RenderScriptRuntime::GetModuleKind(const lldb::ModuleSP &module_sp) { 972 if (module_sp) { 973 if (IsRenderScriptScriptModule(module_sp)) 974 return eModuleKindKernelObj; 975 976 // Is this the main RS runtime library 977 const ConstString rs_lib("libRS.so"); 978 if (module_sp->GetFileSpec().GetFilename() == rs_lib) { 979 return eModuleKindLibRS; 980 } 981 982 const ConstString rs_driverlib("libRSDriver.so"); 983 if (module_sp->GetFileSpec().GetFilename() == rs_driverlib) { 984 return eModuleKindDriver; 985 } 986 987 const ConstString rs_cpureflib("libRSCpuRef.so"); 988 if (module_sp->GetFileSpec().GetFilename() == rs_cpureflib) { 989 return eModuleKindImpl; 990 } 991 } 992 return eModuleKindIgnored; 993 } 994 995 bool RenderScriptRuntime::IsRenderScriptModule( 996 const lldb::ModuleSP &module_sp) { 997 return GetModuleKind(module_sp) != eModuleKindIgnored; 998 } 999 1000 void RenderScriptRuntime::ModulesDidLoad(const ModuleList &module_list) { 1001 std::lock_guard<std::recursive_mutex> guard(module_list.GetMutex()); 1002 1003 size_t num_modules = module_list.GetSize(); 1004 for (size_t i = 0; i < num_modules; i++) { 1005 auto mod = module_list.GetModuleAtIndex(i); 1006 if (IsRenderScriptModule(mod)) { 1007 LoadModule(mod); 1008 } 1009 } 1010 } 1011 1012 bool RenderScriptRuntime::GetDynamicTypeAndAddress( 1013 ValueObject &in_value, lldb::DynamicValueType use_dynamic, 1014 TypeAndOrName &class_type_or_name, Address &address, 1015 Value::ValueType &value_type) { 1016 return false; 1017 } 1018 1019 TypeAndOrName 1020 RenderScriptRuntime::FixUpDynamicType(const TypeAndOrName &type_and_or_name, 1021 ValueObject &static_value) { 1022 return type_and_or_name; 1023 } 1024 1025 bool RenderScriptRuntime::CouldHaveDynamicValue(ValueObject &in_value) { 1026 return false; 1027 } 1028 1029 lldb::BreakpointResolverSP 1030 RenderScriptRuntime::CreateExceptionResolver(const lldb::BreakpointSP &bp, 1031 bool catch_bp, bool throw_bp) { 1032 BreakpointResolverSP resolver_sp; 1033 return resolver_sp; 1034 } 1035 1036 const RenderScriptRuntime::HookDefn RenderScriptRuntime::s_runtimeHookDefns[] = 1037 { 1038 // rsdScript 1039 {"rsdScriptInit", "_Z13rsdScriptInitPKN7android12renderscript7ContextEP" 1040 "NS0_7ScriptCEPKcS7_PKhjj", 1041 "_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_" 1042 "7ScriptCEPKcS7_PKhmj", 1043 0, RenderScriptRuntime::eModuleKindDriver, 1044 &lldb_private::RenderScriptRuntime::CaptureScriptInit}, 1045 {"rsdScriptInvokeForEachMulti", 1046 "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0" 1047 "_6ScriptEjPPKNS0_10AllocationEjPS6_PKvjPK12RsScriptCall", 1048 "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0" 1049 "_6ScriptEjPPKNS0_10AllocationEmPS6_PKvmPK12RsScriptCall", 1050 0, RenderScriptRuntime::eModuleKindDriver, 1051 &lldb_private::RenderScriptRuntime::CaptureScriptInvokeForEachMulti}, 1052 {"rsdScriptSetGlobalVar", "_Z21rsdScriptSetGlobalVarPKN7android12render" 1053 "script7ContextEPKNS0_6ScriptEjPvj", 1054 "_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_" 1055 "6ScriptEjPvm", 1056 0, RenderScriptRuntime::eModuleKindDriver, 1057 &lldb_private::RenderScriptRuntime::CaptureSetGlobalVar}, 1058 1059 // rsdAllocation 1060 {"rsdAllocationInit", "_Z17rsdAllocationInitPKN7android12renderscript7C" 1061 "ontextEPNS0_10AllocationEb", 1062 "_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_" 1063 "10AllocationEb", 1064 0, RenderScriptRuntime::eModuleKindDriver, 1065 &lldb_private::RenderScriptRuntime::CaptureAllocationInit}, 1066 {"rsdAllocationRead2D", 1067 "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_" 1068 "10AllocationEjjj23RsAllocationCubemapFacejjPvjj", 1069 "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_" 1070 "10AllocationEjjj23RsAllocationCubemapFacejjPvmm", 1071 0, RenderScriptRuntime::eModuleKindDriver, nullptr}, 1072 {"rsdAllocationDestroy", "_Z20rsdAllocationDestroyPKN7android12rendersc" 1073 "ript7ContextEPNS0_10AllocationE", 1074 "_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_" 1075 "10AllocationE", 1076 0, RenderScriptRuntime::eModuleKindDriver, 1077 &lldb_private::RenderScriptRuntime::CaptureAllocationDestroy}, 1078 1079 // renderscript script groups 1080 {"rsdDebugHintScriptGroup2", "_ZN7android12renderscript21debugHintScrip" 1081 "tGroup2EPKcjPKPFvPK24RsExpandKernelDriver" 1082 "InfojjjEj", 1083 "_ZN7android12renderscript21debugHintScriptGroup2EPKcjPKPFvPK24RsExpan" 1084 "dKernelDriverInfojjjEj", 1085 0, RenderScriptRuntime::eModuleKindImpl, 1086 &lldb_private::RenderScriptRuntime::CaptureDebugHintScriptGroup2}}; 1087 1088 const size_t RenderScriptRuntime::s_runtimeHookCount = 1089 sizeof(s_runtimeHookDefns) / sizeof(s_runtimeHookDefns[0]); 1090 1091 bool RenderScriptRuntime::HookCallback(void *baton, 1092 StoppointCallbackContext *ctx, 1093 lldb::user_id_t break_id, 1094 lldb::user_id_t break_loc_id) { 1095 RuntimeHook *hook = (RuntimeHook *)baton; 1096 ExecutionContext exe_ctx(ctx->exe_ctx_ref); 1097 1098 RenderScriptRuntime *lang_rt = llvm::cast<RenderScriptRuntime>( 1099 exe_ctx.GetProcessPtr()->GetLanguageRuntime( 1100 eLanguageTypeExtRenderScript)); 1101 1102 lang_rt->HookCallback(hook, exe_ctx); 1103 1104 return false; 1105 } 1106 1107 void RenderScriptRuntime::HookCallback(RuntimeHook *hook, 1108 ExecutionContext &exe_ctx) { 1109 Log *log = GetLog(LLDBLog::Language); 1110 1111 LLDB_LOGF(log, "%s - '%s'", __FUNCTION__, hook->defn->name); 1112 1113 if (hook->defn->grabber) { 1114 (this->*(hook->defn->grabber))(hook, exe_ctx); 1115 } 1116 } 1117 1118 void RenderScriptRuntime::CaptureDebugHintScriptGroup2( 1119 RuntimeHook *hook_info, ExecutionContext &context) { 1120 Log *log = GetLog(LLDBLog::Language); 1121 1122 enum { 1123 eGroupName = 0, 1124 eGroupNameSize, 1125 eKernel, 1126 eKernelCount, 1127 }; 1128 1129 std::array<ArgItem, 4> args{{ 1130 {ArgItem::ePointer, 0}, // const char *groupName 1131 {ArgItem::eInt32, 0}, // const uint32_t groupNameSize 1132 {ArgItem::ePointer, 0}, // const ExpandFuncTy *kernel 1133 {ArgItem::eInt32, 0}, // const uint32_t kernelCount 1134 }}; 1135 1136 if (!GetArgs(context, args.data(), args.size())) { 1137 LLDB_LOGF(log, "%s - Error while reading the function parameters", 1138 __FUNCTION__); 1139 return; 1140 } else if (log) { 1141 LLDB_LOGF(log, "%s - groupName : 0x%" PRIx64, __FUNCTION__, 1142 addr_t(args[eGroupName])); 1143 LLDB_LOGF(log, "%s - groupNameSize: %" PRIu64, __FUNCTION__, 1144 uint64_t(args[eGroupNameSize])); 1145 LLDB_LOGF(log, "%s - kernel : 0x%" PRIx64, __FUNCTION__, 1146 addr_t(args[eKernel])); 1147 LLDB_LOGF(log, "%s - kernelCount : %" PRIu64, __FUNCTION__, 1148 uint64_t(args[eKernelCount])); 1149 } 1150 1151 // parse script group name 1152 ConstString group_name; 1153 { 1154 Status err; 1155 const uint64_t len = uint64_t(args[eGroupNameSize]); 1156 std::unique_ptr<char[]> buffer(new char[uint32_t(len + 1)]); 1157 m_process->ReadMemory(addr_t(args[eGroupName]), buffer.get(), len, err); 1158 buffer.get()[len] = '\0'; 1159 if (!err.Success()) { 1160 LLDB_LOGF(log, "Error reading scriptgroup name from target"); 1161 return; 1162 } else { 1163 LLDB_LOGF(log, "Extracted scriptgroup name %s", buffer.get()); 1164 } 1165 // write back the script group name 1166 group_name.SetCString(buffer.get()); 1167 } 1168 1169 // create or access existing script group 1170 RSScriptGroupDescriptorSP group; 1171 { 1172 // search for existing script group 1173 for (auto sg : m_scriptGroups) { 1174 if (sg->m_name == group_name) { 1175 group = sg; 1176 break; 1177 } 1178 } 1179 if (!group) { 1180 group = std::make_shared<RSScriptGroupDescriptor>(); 1181 group->m_name = group_name; 1182 m_scriptGroups.push_back(group); 1183 } else { 1184 // already have this script group 1185 LLDB_LOGF(log, "Attempt to add duplicate script group %s", 1186 group_name.AsCString()); 1187 return; 1188 } 1189 } 1190 assert(group); 1191 1192 const uint32_t target_ptr_size = m_process->GetAddressByteSize(); 1193 std::vector<addr_t> kernels; 1194 // parse kernel addresses in script group 1195 for (uint64_t i = 0; i < uint64_t(args[eKernelCount]); ++i) { 1196 RSScriptGroupDescriptor::Kernel kernel; 1197 // extract script group kernel addresses from the target 1198 const addr_t ptr_addr = addr_t(args[eKernel]) + i * target_ptr_size; 1199 uint64_t kernel_addr = 0; 1200 Status err; 1201 size_t read = 1202 m_process->ReadMemory(ptr_addr, &kernel_addr, target_ptr_size, err); 1203 if (!err.Success() || read != target_ptr_size) { 1204 LLDB_LOGF(log, "Error parsing kernel address %" PRIu64 " in script group", 1205 i); 1206 return; 1207 } 1208 LLDB_LOGF(log, "Extracted scriptgroup kernel address - 0x%" PRIx64, 1209 kernel_addr); 1210 kernel.m_addr = kernel_addr; 1211 1212 // try to resolve the associated kernel name 1213 if (!ResolveKernelName(kernel.m_addr, kernel.m_name)) { 1214 LLDB_LOGF(log, "Parsed scriptgroup kernel %" PRIu64 " - 0x%" PRIx64, i, 1215 kernel_addr); 1216 return; 1217 } 1218 1219 // try to find the non '.expand' function 1220 { 1221 const llvm::StringRef expand(".expand"); 1222 const llvm::StringRef name_ref = kernel.m_name.GetStringRef(); 1223 if (name_ref.endswith(expand)) { 1224 const ConstString base_kernel(name_ref.drop_back(expand.size())); 1225 // verify this function is a valid kernel 1226 if (IsKnownKernel(base_kernel)) { 1227 kernel.m_name = base_kernel; 1228 LLDB_LOGF(log, "%s - found non expand version '%s'", __FUNCTION__, 1229 base_kernel.GetCString()); 1230 } 1231 } 1232 } 1233 // add to a list of script group kernels we know about 1234 group->m_kernels.push_back(kernel); 1235 } 1236 1237 // Resolve any pending scriptgroup breakpoints 1238 { 1239 Target &target = m_process->GetTarget(); 1240 const BreakpointList &list = target.GetBreakpointList(); 1241 const size_t num_breakpoints = list.GetSize(); 1242 LLDB_LOGF(log, "Resolving %zu breakpoints", num_breakpoints); 1243 for (size_t i = 0; i < num_breakpoints; ++i) { 1244 const BreakpointSP bp = list.GetBreakpointAtIndex(i); 1245 if (bp) { 1246 if (bp->MatchesName(group_name.AsCString())) { 1247 LLDB_LOGF(log, "Found breakpoint with name %s", 1248 group_name.AsCString()); 1249 bp->ResolveBreakpoint(); 1250 } 1251 } 1252 } 1253 } 1254 } 1255 1256 void RenderScriptRuntime::CaptureScriptInvokeForEachMulti( 1257 RuntimeHook *hook, ExecutionContext &exe_ctx) { 1258 Log *log = GetLog(LLDBLog::Language); 1259 1260 enum { 1261 eRsContext = 0, 1262 eRsScript, 1263 eRsSlot, 1264 eRsAIns, 1265 eRsInLen, 1266 eRsAOut, 1267 eRsUsr, 1268 eRsUsrLen, 1269 eRsSc, 1270 }; 1271 1272 std::array<ArgItem, 9> args{{ 1273 ArgItem{ArgItem::ePointer, 0}, // const Context *rsc 1274 ArgItem{ArgItem::ePointer, 0}, // Script *s 1275 ArgItem{ArgItem::eInt32, 0}, // uint32_t slot 1276 ArgItem{ArgItem::ePointer, 0}, // const Allocation **aIns 1277 ArgItem{ArgItem::eInt32, 0}, // size_t inLen 1278 ArgItem{ArgItem::ePointer, 0}, // Allocation *aout 1279 ArgItem{ArgItem::ePointer, 0}, // const void *usr 1280 ArgItem{ArgItem::eInt32, 0}, // size_t usrLen 1281 ArgItem{ArgItem::ePointer, 0}, // const RsScriptCall *sc 1282 }}; 1283 1284 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1285 if (!success) { 1286 LLDB_LOGF(log, "%s - Error while reading the function parameters", 1287 __FUNCTION__); 1288 return; 1289 } 1290 1291 const uint32_t target_ptr_size = m_process->GetAddressByteSize(); 1292 Status err; 1293 std::vector<uint64_t> allocs; 1294 1295 // traverse allocation list 1296 for (uint64_t i = 0; i < uint64_t(args[eRsInLen]); ++i) { 1297 // calculate offest to allocation pointer 1298 const addr_t addr = addr_t(args[eRsAIns]) + i * target_ptr_size; 1299 1300 // Note: due to little endian layout, reading 32bits or 64bits into res 1301 // will give the correct results. 1302 uint64_t result = 0; 1303 size_t read = m_process->ReadMemory(addr, &result, target_ptr_size, err); 1304 if (read != target_ptr_size || !err.Success()) { 1305 LLDB_LOGF(log, 1306 "%s - Error while reading allocation list argument %" PRIu64, 1307 __FUNCTION__, i); 1308 } else { 1309 allocs.push_back(result); 1310 } 1311 } 1312 1313 // if there is an output allocation track it 1314 if (uint64_t alloc_out = uint64_t(args[eRsAOut])) { 1315 allocs.push_back(alloc_out); 1316 } 1317 1318 // for all allocations we have found 1319 for (const uint64_t alloc_addr : allocs) { 1320 AllocationDetails *alloc = LookUpAllocation(alloc_addr); 1321 if (!alloc) 1322 alloc = CreateAllocation(alloc_addr); 1323 1324 if (alloc) { 1325 // save the allocation address 1326 if (alloc->address.isValid()) { 1327 // check the allocation address we already have matches 1328 assert(*alloc->address.get() == alloc_addr); 1329 } else { 1330 alloc->address = alloc_addr; 1331 } 1332 1333 // save the context 1334 if (log) { 1335 if (alloc->context.isValid() && 1336 *alloc->context.get() != addr_t(args[eRsContext])) 1337 LLDB_LOGF(log, "%s - Allocation used by multiple contexts", 1338 __FUNCTION__); 1339 } 1340 alloc->context = addr_t(args[eRsContext]); 1341 } 1342 } 1343 1344 // make sure we track this script object 1345 if (lldb_private::RenderScriptRuntime::ScriptDetails *script = 1346 LookUpScript(addr_t(args[eRsScript]), true)) { 1347 if (log) { 1348 if (script->context.isValid() && 1349 *script->context.get() != addr_t(args[eRsContext])) 1350 LLDB_LOGF(log, "%s - Script used by multiple contexts", __FUNCTION__); 1351 } 1352 script->context = addr_t(args[eRsContext]); 1353 } 1354 } 1355 1356 void RenderScriptRuntime::CaptureSetGlobalVar(RuntimeHook *hook, 1357 ExecutionContext &context) { 1358 Log *log = GetLog(LLDBLog::Language); 1359 1360 enum { 1361 eRsContext, 1362 eRsScript, 1363 eRsId, 1364 eRsData, 1365 eRsLength, 1366 }; 1367 1368 std::array<ArgItem, 5> args{{ 1369 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1370 ArgItem{ArgItem::ePointer, 0}, // eRsScript 1371 ArgItem{ArgItem::eInt32, 0}, // eRsId 1372 ArgItem{ArgItem::ePointer, 0}, // eRsData 1373 ArgItem{ArgItem::eInt32, 0}, // eRsLength 1374 }}; 1375 1376 bool success = GetArgs(context, &args[0], args.size()); 1377 if (!success) { 1378 LLDB_LOGF(log, "%s - error reading the function parameters.", __FUNCTION__); 1379 return; 1380 } 1381 1382 if (log) { 1383 LLDB_LOGF(log, 1384 "%s - 0x%" PRIx64 ",0x%" PRIx64 " slot %" PRIu64 " = 0x%" PRIx64 1385 ":%" PRIu64 "bytes.", 1386 __FUNCTION__, uint64_t(args[eRsContext]), 1387 uint64_t(args[eRsScript]), uint64_t(args[eRsId]), 1388 uint64_t(args[eRsData]), uint64_t(args[eRsLength])); 1389 1390 addr_t script_addr = addr_t(args[eRsScript]); 1391 if (m_scriptMappings.find(script_addr) != m_scriptMappings.end()) { 1392 auto rsm = m_scriptMappings[script_addr]; 1393 if (uint64_t(args[eRsId]) < rsm->m_globals.size()) { 1394 auto rsg = rsm->m_globals[uint64_t(args[eRsId])]; 1395 LLDB_LOGF(log, "%s - Setting of '%s' within '%s' inferred", 1396 __FUNCTION__, rsg.m_name.AsCString(), 1397 rsm->m_module->GetFileSpec().GetFilename().AsCString()); 1398 } 1399 } 1400 } 1401 } 1402 1403 void RenderScriptRuntime::CaptureAllocationInit(RuntimeHook *hook, 1404 ExecutionContext &exe_ctx) { 1405 Log *log = GetLog(LLDBLog::Language); 1406 1407 enum { eRsContext, eRsAlloc, eRsForceZero }; 1408 1409 std::array<ArgItem, 3> args{{ 1410 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1411 ArgItem{ArgItem::ePointer, 0}, // eRsAlloc 1412 ArgItem{ArgItem::eBool, 0}, // eRsForceZero 1413 }}; 1414 1415 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1416 if (!success) { 1417 LLDB_LOGF(log, "%s - error while reading the function parameters", 1418 __FUNCTION__); 1419 return; 1420 } 1421 1422 LLDB_LOGF(log, "%s - 0x%" PRIx64 ",0x%" PRIx64 ",0x%" PRIx64 " .", 1423 __FUNCTION__, uint64_t(args[eRsContext]), uint64_t(args[eRsAlloc]), 1424 uint64_t(args[eRsForceZero])); 1425 1426 AllocationDetails *alloc = CreateAllocation(uint64_t(args[eRsAlloc])); 1427 if (alloc) 1428 alloc->context = uint64_t(args[eRsContext]); 1429 } 1430 1431 void RenderScriptRuntime::CaptureAllocationDestroy(RuntimeHook *hook, 1432 ExecutionContext &exe_ctx) { 1433 Log *log = GetLog(LLDBLog::Language); 1434 1435 enum { 1436 eRsContext, 1437 eRsAlloc, 1438 }; 1439 1440 std::array<ArgItem, 2> args{{ 1441 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1442 ArgItem{ArgItem::ePointer, 0}, // eRsAlloc 1443 }}; 1444 1445 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1446 if (!success) { 1447 LLDB_LOGF(log, "%s - error while reading the function parameters.", 1448 __FUNCTION__); 1449 return; 1450 } 1451 1452 LLDB_LOGF(log, "%s - 0x%" PRIx64 ", 0x%" PRIx64 ".", __FUNCTION__, 1453 uint64_t(args[eRsContext]), uint64_t(args[eRsAlloc])); 1454 1455 for (auto iter = m_allocations.begin(); iter != m_allocations.end(); ++iter) { 1456 auto &allocation_up = *iter; // get the unique pointer 1457 if (allocation_up->address.isValid() && 1458 *allocation_up->address.get() == addr_t(args[eRsAlloc])) { 1459 m_allocations.erase(iter); 1460 LLDB_LOGF(log, "%s - deleted allocation entry.", __FUNCTION__); 1461 return; 1462 } 1463 } 1464 1465 LLDB_LOGF(log, "%s - couldn't find destroyed allocation.", __FUNCTION__); 1466 } 1467 1468 void RenderScriptRuntime::CaptureScriptInit(RuntimeHook *hook, 1469 ExecutionContext &exe_ctx) { 1470 Log *log = GetLog(LLDBLog::Language); 1471 1472 Status err; 1473 Process *process = exe_ctx.GetProcessPtr(); 1474 1475 enum { eRsContext, eRsScript, eRsResNamePtr, eRsCachedDirPtr }; 1476 1477 std::array<ArgItem, 4> args{ 1478 {ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}, 1479 ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}}}; 1480 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1481 if (!success) { 1482 LLDB_LOGF(log, "%s - error while reading the function parameters.", 1483 __FUNCTION__); 1484 return; 1485 } 1486 1487 std::string res_name; 1488 process->ReadCStringFromMemory(addr_t(args[eRsResNamePtr]), res_name, err); 1489 if (err.Fail()) { 1490 LLDB_LOGF(log, "%s - error reading res_name: %s.", __FUNCTION__, 1491 err.AsCString()); 1492 } 1493 1494 std::string cache_dir; 1495 process->ReadCStringFromMemory(addr_t(args[eRsCachedDirPtr]), cache_dir, err); 1496 if (err.Fail()) { 1497 LLDB_LOGF(log, "%s - error reading cache_dir: %s.", __FUNCTION__, 1498 err.AsCString()); 1499 } 1500 1501 LLDB_LOGF(log, "%s - 0x%" PRIx64 ",0x%" PRIx64 " => '%s' at '%s' .", 1502 __FUNCTION__, uint64_t(args[eRsContext]), uint64_t(args[eRsScript]), 1503 res_name.c_str(), cache_dir.c_str()); 1504 1505 if (res_name.size() > 0) { 1506 StreamString strm; 1507 strm.Printf("librs.%s.so", res_name.c_str()); 1508 1509 ScriptDetails *script = LookUpScript(addr_t(args[eRsScript]), true); 1510 if (script) { 1511 script->type = ScriptDetails::eScriptC; 1512 script->cache_dir = cache_dir; 1513 script->res_name = res_name; 1514 script->shared_lib = std::string(strm.GetString()); 1515 script->context = addr_t(args[eRsContext]); 1516 } 1517 1518 LLDB_LOGF(log, 1519 "%s - '%s' tagged with context 0x%" PRIx64 1520 " and script 0x%" PRIx64 ".", 1521 __FUNCTION__, strm.GetData(), uint64_t(args[eRsContext]), 1522 uint64_t(args[eRsScript])); 1523 } else if (log) { 1524 LLDB_LOGF(log, "%s - resource name invalid, Script not tagged.", 1525 __FUNCTION__); 1526 } 1527 } 1528 1529 void RenderScriptRuntime::LoadRuntimeHooks(lldb::ModuleSP module, 1530 ModuleKind kind) { 1531 Log *log = GetLog(LLDBLog::Language); 1532 1533 if (!module) { 1534 return; 1535 } 1536 1537 Target &target = GetProcess()->GetTarget(); 1538 const llvm::Triple::ArchType machine = target.GetArchitecture().GetMachine(); 1539 1540 if (machine != llvm::Triple::ArchType::x86 && 1541 machine != llvm::Triple::ArchType::arm && 1542 machine != llvm::Triple::ArchType::aarch64 && 1543 machine != llvm::Triple::ArchType::mipsel && 1544 machine != llvm::Triple::ArchType::mips64el && 1545 machine != llvm::Triple::ArchType::x86_64) { 1546 LLDB_LOGF(log, "%s - unable to hook runtime functions.", __FUNCTION__); 1547 return; 1548 } 1549 1550 const uint32_t target_ptr_size = 1551 target.GetArchitecture().GetAddressByteSize(); 1552 1553 std::array<bool, s_runtimeHookCount> hook_placed; 1554 hook_placed.fill(false); 1555 1556 for (size_t idx = 0; idx < s_runtimeHookCount; idx++) { 1557 const HookDefn *hook_defn = &s_runtimeHookDefns[idx]; 1558 if (hook_defn->kind != kind) { 1559 continue; 1560 } 1561 1562 const char *symbol_name = (target_ptr_size == 4) 1563 ? hook_defn->symbol_name_m32 1564 : hook_defn->symbol_name_m64; 1565 1566 const Symbol *sym = module->FindFirstSymbolWithNameAndType( 1567 ConstString(symbol_name), eSymbolTypeCode); 1568 if (!sym) { 1569 if (log) { 1570 LLDB_LOGF(log, "%s - symbol '%s' related to the function %s not found", 1571 __FUNCTION__, symbol_name, hook_defn->name); 1572 } 1573 continue; 1574 } 1575 1576 addr_t addr = sym->GetLoadAddress(&target); 1577 if (addr == LLDB_INVALID_ADDRESS) { 1578 LLDB_LOGF(log, 1579 "%s - unable to resolve the address of hook function '%s' " 1580 "with symbol '%s'.", 1581 __FUNCTION__, hook_defn->name, symbol_name); 1582 continue; 1583 } else { 1584 LLDB_LOGF(log, "%s - function %s, address resolved at 0x%" PRIx64, 1585 __FUNCTION__, hook_defn->name, addr); 1586 } 1587 1588 RuntimeHookSP hook(new RuntimeHook()); 1589 hook->address = addr; 1590 hook->defn = hook_defn; 1591 hook->bp_sp = target.CreateBreakpoint(addr, true, false); 1592 hook->bp_sp->SetCallback(HookCallback, hook.get(), true); 1593 m_runtimeHooks[addr] = hook; 1594 if (log) { 1595 LLDB_LOGF(log, 1596 "%s - successfully hooked '%s' in '%s' version %" PRIu64 1597 " at 0x%" PRIx64 ".", 1598 __FUNCTION__, hook_defn->name, 1599 module->GetFileSpec().GetFilename().AsCString(), 1600 (uint64_t)hook_defn->version, (uint64_t)addr); 1601 } 1602 hook_placed[idx] = true; 1603 } 1604 1605 // log any unhooked function 1606 if (log) { 1607 for (size_t i = 0; i < hook_placed.size(); ++i) { 1608 if (hook_placed[i]) 1609 continue; 1610 const HookDefn &hook_defn = s_runtimeHookDefns[i]; 1611 if (hook_defn.kind != kind) 1612 continue; 1613 LLDB_LOGF(log, "%s - function %s was not hooked", __FUNCTION__, 1614 hook_defn.name); 1615 } 1616 } 1617 } 1618 1619 void RenderScriptRuntime::FixupScriptDetails(RSModuleDescriptorSP rsmodule_sp) { 1620 if (!rsmodule_sp) 1621 return; 1622 1623 Log *log = GetLog(LLDBLog::Language); 1624 1625 const ModuleSP module = rsmodule_sp->m_module; 1626 const FileSpec &file = module->GetPlatformFileSpec(); 1627 1628 // Iterate over all of the scripts that we currently know of. Note: We cant 1629 // push or pop to m_scripts here or it may invalidate rs_script. 1630 for (const auto &rs_script : m_scripts) { 1631 // Extract the expected .so file path for this script. 1632 std::string shared_lib; 1633 if (!rs_script->shared_lib.get(shared_lib)) 1634 continue; 1635 1636 // Only proceed if the module that has loaded corresponds to this script. 1637 if (file.GetFilename() != ConstString(shared_lib.c_str())) 1638 continue; 1639 1640 // Obtain the script address which we use as a key. 1641 lldb::addr_t script; 1642 if (!rs_script->script.get(script)) 1643 continue; 1644 1645 // If we have a script mapping for the current script. 1646 if (m_scriptMappings.find(script) != m_scriptMappings.end()) { 1647 // if the module we have stored is different to the one we just received. 1648 if (m_scriptMappings[script] != rsmodule_sp) { 1649 LLDB_LOGF( 1650 log, 1651 "%s - script %" PRIx64 " wants reassigned to new rsmodule '%s'.", 1652 __FUNCTION__, (uint64_t)script, 1653 rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString()); 1654 } 1655 } 1656 // We don't have a script mapping for the current script. 1657 else { 1658 // Obtain the script resource name. 1659 std::string res_name; 1660 if (rs_script->res_name.get(res_name)) 1661 // Set the modules resource name. 1662 rsmodule_sp->m_resname = res_name; 1663 // Add Script/Module pair to map. 1664 m_scriptMappings[script] = rsmodule_sp; 1665 LLDB_LOGF(log, "%s - script %" PRIx64 " associated with rsmodule '%s'.", 1666 __FUNCTION__, (uint64_t)script, 1667 rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString()); 1668 } 1669 } 1670 } 1671 1672 // Uses the Target API to evaluate the expression passed as a parameter to the 1673 // function The result of that expression is returned an unsigned 64 bit int, 1674 // via the result* parameter. Function returns true on success, and false on 1675 // failure 1676 bool RenderScriptRuntime::EvalRSExpression(const char *expr, 1677 StackFrame *frame_ptr, 1678 uint64_t *result) { 1679 Log *log = GetLog(LLDBLog::Language); 1680 LLDB_LOGF(log, "%s(%s)", __FUNCTION__, expr); 1681 1682 ValueObjectSP expr_result; 1683 EvaluateExpressionOptions options; 1684 options.SetLanguage(lldb::eLanguageTypeC_plus_plus); 1685 // Perform the actual expression evaluation 1686 auto &target = GetProcess()->GetTarget(); 1687 target.EvaluateExpression(expr, frame_ptr, expr_result, options); 1688 1689 if (!expr_result) { 1690 LLDB_LOGF(log, "%s: couldn't evaluate expression.", __FUNCTION__); 1691 return false; 1692 } 1693 1694 // The result of the expression is invalid 1695 if (!expr_result->GetError().Success()) { 1696 Status err = expr_result->GetError(); 1697 // Expression returned is void, so this is actually a success 1698 if (err.GetError() == UserExpression::kNoResult) { 1699 LLDB_LOGF(log, "%s - expression returned void.", __FUNCTION__); 1700 1701 result = nullptr; 1702 return true; 1703 } 1704 1705 LLDB_LOGF(log, "%s - error evaluating expression result: %s", __FUNCTION__, 1706 err.AsCString()); 1707 return false; 1708 } 1709 1710 bool success = false; 1711 // We only read the result as an uint32_t. 1712 *result = expr_result->GetValueAsUnsigned(0, &success); 1713 1714 if (!success) { 1715 LLDB_LOGF(log, "%s - couldn't convert expression result to uint32_t", 1716 __FUNCTION__); 1717 return false; 1718 } 1719 1720 return true; 1721 } 1722 1723 namespace { 1724 // Used to index expression format strings 1725 enum ExpressionStrings { 1726 eExprGetOffsetPtr = 0, 1727 eExprAllocGetType, 1728 eExprTypeDimX, 1729 eExprTypeDimY, 1730 eExprTypeDimZ, 1731 eExprTypeElemPtr, 1732 eExprElementType, 1733 eExprElementKind, 1734 eExprElementVec, 1735 eExprElementFieldCount, 1736 eExprSubelementsId, 1737 eExprSubelementsName, 1738 eExprSubelementsArrSize, 1739 1740 _eExprLast // keep at the end, implicit size of the array runtime_expressions 1741 }; 1742 1743 // max length of an expanded expression 1744 const int jit_max_expr_size = 512; 1745 1746 // Retrieve the string to JIT for the given expression 1747 #define JIT_TEMPLATE_CONTEXT "void* ctxt = (void*)rsDebugGetContextWrapper(0x%" PRIx64 "); " 1748 const char *JITTemplate(ExpressionStrings e) { 1749 // Format strings containing the expressions we may need to evaluate. 1750 static std::array<const char *, _eExprLast> runtime_expressions = { 1751 {// Mangled GetOffsetPointer(Allocation*, xoff, yoff, zoff, lod, cubemap) 1752 "(int*)_" 1753 "Z12GetOffsetPtrPKN7android12renderscript10AllocationEjjjj23RsAllocation" 1754 "CubemapFace" 1755 "(0x%" PRIx64 ", %" PRIu32 ", %" PRIu32 ", %" PRIu32 ", 0, 0)", // eExprGetOffsetPtr 1756 1757 // Type* rsaAllocationGetType(Context*, Allocation*) 1758 JIT_TEMPLATE_CONTEXT "(void*)rsaAllocationGetType(ctxt, 0x%" PRIx64 ")", // eExprAllocGetType 1759 1760 // rsaTypeGetNativeData(Context*, Type*, void* typeData, size) Pack the 1761 // data in the following way mHal.state.dimX; mHal.state.dimY; 1762 // mHal.state.dimZ; mHal.state.lodCount; mHal.state.faces; mElement; 1763 // into typeData Need to specify 32 or 64 bit for uint_t since this 1764 // differs between devices 1765 JIT_TEMPLATE_CONTEXT 1766 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt" 1767 ", 0x%" PRIx64 ", data, 6); data[0]", // eExprTypeDimX 1768 JIT_TEMPLATE_CONTEXT 1769 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt" 1770 ", 0x%" PRIx64 ", data, 6); data[1]", // eExprTypeDimY 1771 JIT_TEMPLATE_CONTEXT 1772 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt" 1773 ", 0x%" PRIx64 ", data, 6); data[2]", // eExprTypeDimZ 1774 JIT_TEMPLATE_CONTEXT 1775 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt" 1776 ", 0x%" PRIx64 ", data, 6); data[5]", // eExprTypeElemPtr 1777 1778 // rsaElementGetNativeData(Context*, Element*, uint32_t* elemData,size) 1779 // Pack mType; mKind; mNormalized; mVectorSize; NumSubElements into 1780 // elemData 1781 JIT_TEMPLATE_CONTEXT 1782 "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt" 1783 ", 0x%" PRIx64 ", data, 5); data[0]", // eExprElementType 1784 JIT_TEMPLATE_CONTEXT 1785 "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt" 1786 ", 0x%" PRIx64 ", data, 5); data[1]", // eExprElementKind 1787 JIT_TEMPLATE_CONTEXT 1788 "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt" 1789 ", 0x%" PRIx64 ", data, 5); data[3]", // eExprElementVec 1790 JIT_TEMPLATE_CONTEXT 1791 "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt" 1792 ", 0x%" PRIx64 ", data, 5); data[4]", // eExprElementFieldCount 1793 1794 // rsaElementGetSubElements(RsContext con, RsElement elem, uintptr_t 1795 // *ids, const char **names, size_t *arraySizes, uint32_t dataSize) 1796 // Needed for Allocations of structs to gather details about 1797 // fields/Subelements Element* of field 1798 JIT_TEMPLATE_CONTEXT "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 1799 "]; size_t arr_size[%" PRIu32 "];" 1800 "(void*)rsaElementGetSubElements(ctxt, 0x%" PRIx64 1801 ", ids, names, arr_size, %" PRIu32 "); ids[%" PRIu32 "]", // eExprSubelementsId 1802 1803 // Name of field 1804 JIT_TEMPLATE_CONTEXT "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 1805 "]; size_t arr_size[%" PRIu32 "];" 1806 "(void*)rsaElementGetSubElements(ctxt, 0x%" PRIx64 1807 ", ids, names, arr_size, %" PRIu32 "); names[%" PRIu32 "]", // eExprSubelementsName 1808 1809 // Array size of field 1810 JIT_TEMPLATE_CONTEXT "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 1811 "]; size_t arr_size[%" PRIu32 "];" 1812 "(void*)rsaElementGetSubElements(ctxt, 0x%" PRIx64 1813 ", ids, names, arr_size, %" PRIu32 "); arr_size[%" PRIu32 "]"}}; // eExprSubelementsArrSize 1814 1815 return runtime_expressions[e]; 1816 } 1817 } // end of the anonymous namespace 1818 1819 // JITs the RS runtime for the internal data pointer of an allocation. Is 1820 // passed x,y,z coordinates for the pointer to a specific element. Then sets 1821 // the data_ptr member in Allocation with the result. Returns true on success, 1822 // false otherwise 1823 bool RenderScriptRuntime::JITDataPointer(AllocationDetails *alloc, 1824 StackFrame *frame_ptr, uint32_t x, 1825 uint32_t y, uint32_t z) { 1826 Log *log = GetLog(LLDBLog::Language); 1827 1828 if (!alloc->address.isValid()) { 1829 LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__); 1830 return false; 1831 } 1832 1833 const char *fmt_str = JITTemplate(eExprGetOffsetPtr); 1834 char expr_buf[jit_max_expr_size]; 1835 1836 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 1837 *alloc->address.get(), x, y, z); 1838 if (written < 0) { 1839 LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__); 1840 return false; 1841 } else if (written >= jit_max_expr_size) { 1842 LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__); 1843 return false; 1844 } 1845 1846 uint64_t result = 0; 1847 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 1848 return false; 1849 1850 addr_t data_ptr = static_cast<lldb::addr_t>(result); 1851 alloc->data_ptr = data_ptr; 1852 1853 return true; 1854 } 1855 1856 // JITs the RS runtime for the internal pointer to the RS Type of an allocation 1857 // Then sets the type_ptr member in Allocation with the result. Returns true on 1858 // success, false otherwise 1859 bool RenderScriptRuntime::JITTypePointer(AllocationDetails *alloc, 1860 StackFrame *frame_ptr) { 1861 Log *log = GetLog(LLDBLog::Language); 1862 1863 if (!alloc->address.isValid() || !alloc->context.isValid()) { 1864 LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__); 1865 return false; 1866 } 1867 1868 const char *fmt_str = JITTemplate(eExprAllocGetType); 1869 char expr_buf[jit_max_expr_size]; 1870 1871 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 1872 *alloc->context.get(), *alloc->address.get()); 1873 if (written < 0) { 1874 LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__); 1875 return false; 1876 } else if (written >= jit_max_expr_size) { 1877 LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__); 1878 return false; 1879 } 1880 1881 uint64_t result = 0; 1882 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 1883 return false; 1884 1885 addr_t type_ptr = static_cast<lldb::addr_t>(result); 1886 alloc->type_ptr = type_ptr; 1887 1888 return true; 1889 } 1890 1891 // JITs the RS runtime for information about the dimensions and type of an 1892 // allocation Then sets dimension and element_ptr members in Allocation with 1893 // the result. Returns true on success, false otherwise 1894 bool RenderScriptRuntime::JITTypePacked(AllocationDetails *alloc, 1895 StackFrame *frame_ptr) { 1896 Log *log = GetLog(LLDBLog::Language); 1897 1898 if (!alloc->type_ptr.isValid() || !alloc->context.isValid()) { 1899 LLDB_LOGF(log, "%s - Failed to find allocation details.", __FUNCTION__); 1900 return false; 1901 } 1902 1903 // Expression is different depending on if device is 32 or 64 bit 1904 uint32_t target_ptr_size = 1905 GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 1906 const uint32_t bits = target_ptr_size == 4 ? 32 : 64; 1907 1908 // We want 4 elements from packed data 1909 const uint32_t num_exprs = 4; 1910 static_assert(num_exprs == (eExprTypeElemPtr - eExprTypeDimX + 1), 1911 "Invalid number of expressions"); 1912 1913 char expr_bufs[num_exprs][jit_max_expr_size]; 1914 uint64_t results[num_exprs]; 1915 1916 for (uint32_t i = 0; i < num_exprs; ++i) { 1917 const char *fmt_str = JITTemplate(ExpressionStrings(eExprTypeDimX + i)); 1918 int written = snprintf(expr_bufs[i], jit_max_expr_size, fmt_str, 1919 *alloc->context.get(), bits, *alloc->type_ptr.get()); 1920 if (written < 0) { 1921 LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__); 1922 return false; 1923 } else if (written >= jit_max_expr_size) { 1924 LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__); 1925 return false; 1926 } 1927 1928 // Perform expression evaluation 1929 if (!EvalRSExpression(expr_bufs[i], frame_ptr, &results[i])) 1930 return false; 1931 } 1932 1933 // Assign results to allocation members 1934 AllocationDetails::Dimension dims; 1935 dims.dim_1 = static_cast<uint32_t>(results[0]); 1936 dims.dim_2 = static_cast<uint32_t>(results[1]); 1937 dims.dim_3 = static_cast<uint32_t>(results[2]); 1938 alloc->dimension = dims; 1939 1940 addr_t element_ptr = static_cast<lldb::addr_t>(results[3]); 1941 alloc->element.element_ptr = element_ptr; 1942 1943 LLDB_LOGF(log, 1944 "%s - dims (%" PRIu32 ", %" PRIu32 ", %" PRIu32 1945 ") Element*: 0x%" PRIx64 ".", 1946 __FUNCTION__, dims.dim_1, dims.dim_2, dims.dim_3, element_ptr); 1947 1948 return true; 1949 } 1950 1951 // JITs the RS runtime for information about the Element of an allocation Then 1952 // sets type, type_vec_size, field_count and type_kind members in Element with 1953 // the result. Returns true on success, false otherwise 1954 bool RenderScriptRuntime::JITElementPacked(Element &elem, 1955 const lldb::addr_t context, 1956 StackFrame *frame_ptr) { 1957 Log *log = GetLog(LLDBLog::Language); 1958 1959 if (!elem.element_ptr.isValid()) { 1960 LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__); 1961 return false; 1962 } 1963 1964 // We want 4 elements from packed data 1965 const uint32_t num_exprs = 4; 1966 static_assert(num_exprs == (eExprElementFieldCount - eExprElementType + 1), 1967 "Invalid number of expressions"); 1968 1969 char expr_bufs[num_exprs][jit_max_expr_size]; 1970 uint64_t results[num_exprs]; 1971 1972 for (uint32_t i = 0; i < num_exprs; i++) { 1973 const char *fmt_str = JITTemplate(ExpressionStrings(eExprElementType + i)); 1974 int written = snprintf(expr_bufs[i], jit_max_expr_size, fmt_str, context, 1975 *elem.element_ptr.get()); 1976 if (written < 0) { 1977 LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__); 1978 return false; 1979 } else if (written >= jit_max_expr_size) { 1980 LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__); 1981 return false; 1982 } 1983 1984 // Perform expression evaluation 1985 if (!EvalRSExpression(expr_bufs[i], frame_ptr, &results[i])) 1986 return false; 1987 } 1988 1989 // Assign results to allocation members 1990 elem.type = static_cast<RenderScriptRuntime::Element::DataType>(results[0]); 1991 elem.type_kind = 1992 static_cast<RenderScriptRuntime::Element::DataKind>(results[1]); 1993 elem.type_vec_size = static_cast<uint32_t>(results[2]); 1994 elem.field_count = static_cast<uint32_t>(results[3]); 1995 1996 LLDB_LOGF(log, 1997 "%s - data type %" PRIu32 ", pixel type %" PRIu32 1998 ", vector size %" PRIu32 ", field count %" PRIu32, 1999 __FUNCTION__, *elem.type.get(), *elem.type_kind.get(), 2000 *elem.type_vec_size.get(), *elem.field_count.get()); 2001 2002 // If this Element has subelements then JIT rsaElementGetSubElements() for 2003 // details about its fields 2004 return !(*elem.field_count.get() > 0 && 2005 !JITSubelements(elem, context, frame_ptr)); 2006 } 2007 2008 // JITs the RS runtime for information about the subelements/fields of a struct 2009 // allocation This is necessary for infering the struct type so we can pretty 2010 // print the allocation's contents. Returns true on success, false otherwise 2011 bool RenderScriptRuntime::JITSubelements(Element &elem, 2012 const lldb::addr_t context, 2013 StackFrame *frame_ptr) { 2014 Log *log = GetLog(LLDBLog::Language); 2015 2016 if (!elem.element_ptr.isValid() || !elem.field_count.isValid()) { 2017 LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__); 2018 return false; 2019 } 2020 2021 const short num_exprs = 3; 2022 static_assert(num_exprs == (eExprSubelementsArrSize - eExprSubelementsId + 1), 2023 "Invalid number of expressions"); 2024 2025 char expr_buffer[jit_max_expr_size]; 2026 uint64_t results; 2027 2028 // Iterate over struct fields. 2029 const uint32_t field_count = *elem.field_count.get(); 2030 for (uint32_t field_index = 0; field_index < field_count; ++field_index) { 2031 Element child; 2032 for (uint32_t expr_index = 0; expr_index < num_exprs; ++expr_index) { 2033 const char *fmt_str = 2034 JITTemplate(ExpressionStrings(eExprSubelementsId + expr_index)); 2035 int written = snprintf(expr_buffer, jit_max_expr_size, fmt_str, 2036 context, field_count, field_count, field_count, 2037 *elem.element_ptr.get(), field_count, field_index); 2038 if (written < 0) { 2039 LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__); 2040 return false; 2041 } else if (written >= jit_max_expr_size) { 2042 LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__); 2043 return false; 2044 } 2045 2046 // Perform expression evaluation 2047 if (!EvalRSExpression(expr_buffer, frame_ptr, &results)) 2048 return false; 2049 2050 LLDB_LOGF(log, "%s - expr result 0x%" PRIx64 ".", __FUNCTION__, results); 2051 2052 switch (expr_index) { 2053 case 0: // Element* of child 2054 child.element_ptr = static_cast<addr_t>(results); 2055 break; 2056 case 1: // Name of child 2057 { 2058 lldb::addr_t address = static_cast<addr_t>(results); 2059 Status err; 2060 std::string name; 2061 GetProcess()->ReadCStringFromMemory(address, name, err); 2062 if (!err.Fail()) 2063 child.type_name = ConstString(name); 2064 else { 2065 LLDB_LOGF(log, "%s - warning: Couldn't read field name.", 2066 __FUNCTION__); 2067 } 2068 break; 2069 } 2070 case 2: // Array size of child 2071 child.array_size = static_cast<uint32_t>(results); 2072 break; 2073 } 2074 } 2075 2076 // We need to recursively JIT each Element field of the struct since 2077 // structs can be nested inside structs. 2078 if (!JITElementPacked(child, context, frame_ptr)) 2079 return false; 2080 elem.children.push_back(child); 2081 } 2082 2083 // Try to infer the name of the struct type so we can pretty print the 2084 // allocation contents. 2085 FindStructTypeName(elem, frame_ptr); 2086 2087 return true; 2088 } 2089 2090 // JITs the RS runtime for the address of the last element in the allocation. 2091 // The `elem_size` parameter represents the size of a single element, including 2092 // padding. Which is needed as an offset from the last element pointer. Using 2093 // this offset minus the starting address we can calculate the size of the 2094 // allocation. Returns true on success, false otherwise 2095 bool RenderScriptRuntime::JITAllocationSize(AllocationDetails *alloc, 2096 StackFrame *frame_ptr) { 2097 Log *log = GetLog(LLDBLog::Language); 2098 2099 if (!alloc->address.isValid() || !alloc->dimension.isValid() || 2100 !alloc->data_ptr.isValid() || !alloc->element.datum_size.isValid()) { 2101 LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__); 2102 return false; 2103 } 2104 2105 // Find dimensions 2106 uint32_t dim_x = alloc->dimension.get()->dim_1; 2107 uint32_t dim_y = alloc->dimension.get()->dim_2; 2108 uint32_t dim_z = alloc->dimension.get()->dim_3; 2109 2110 // Our plan of jitting the last element address doesn't seem to work for 2111 // struct Allocations` Instead try to infer the size ourselves without any 2112 // inter element padding. 2113 if (alloc->element.children.size() > 0) { 2114 if (dim_x == 0) 2115 dim_x = 1; 2116 if (dim_y == 0) 2117 dim_y = 1; 2118 if (dim_z == 0) 2119 dim_z = 1; 2120 2121 alloc->size = dim_x * dim_y * dim_z * *alloc->element.datum_size.get(); 2122 2123 LLDB_LOGF(log, "%s - inferred size of struct allocation %" PRIu32 ".", 2124 __FUNCTION__, *alloc->size.get()); 2125 return true; 2126 } 2127 2128 const char *fmt_str = JITTemplate(eExprGetOffsetPtr); 2129 char expr_buf[jit_max_expr_size]; 2130 2131 // Calculate last element 2132 dim_x = dim_x == 0 ? 0 : dim_x - 1; 2133 dim_y = dim_y == 0 ? 0 : dim_y - 1; 2134 dim_z = dim_z == 0 ? 0 : dim_z - 1; 2135 2136 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 2137 *alloc->address.get(), dim_x, dim_y, dim_z); 2138 if (written < 0) { 2139 LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__); 2140 return false; 2141 } else if (written >= jit_max_expr_size) { 2142 LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__); 2143 return false; 2144 } 2145 2146 uint64_t result = 0; 2147 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 2148 return false; 2149 2150 addr_t mem_ptr = static_cast<lldb::addr_t>(result); 2151 // Find pointer to last element and add on size of an element 2152 alloc->size = static_cast<uint32_t>(mem_ptr - *alloc->data_ptr.get()) + 2153 *alloc->element.datum_size.get(); 2154 2155 return true; 2156 } 2157 2158 // JITs the RS runtime for information about the stride between rows in the 2159 // allocation. This is done to detect padding, since allocated memory is 2160 // 16-byte aligned. Returns true on success, false otherwise 2161 bool RenderScriptRuntime::JITAllocationStride(AllocationDetails *alloc, 2162 StackFrame *frame_ptr) { 2163 Log *log = GetLog(LLDBLog::Language); 2164 2165 if (!alloc->address.isValid() || !alloc->data_ptr.isValid()) { 2166 LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__); 2167 return false; 2168 } 2169 2170 const char *fmt_str = JITTemplate(eExprGetOffsetPtr); 2171 char expr_buf[jit_max_expr_size]; 2172 2173 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 2174 *alloc->address.get(), 0, 1, 0); 2175 if (written < 0) { 2176 LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__); 2177 return false; 2178 } else if (written >= jit_max_expr_size) { 2179 LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__); 2180 return false; 2181 } 2182 2183 uint64_t result = 0; 2184 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 2185 return false; 2186 2187 addr_t mem_ptr = static_cast<lldb::addr_t>(result); 2188 alloc->stride = static_cast<uint32_t>(mem_ptr - *alloc->data_ptr.get()); 2189 2190 return true; 2191 } 2192 2193 // JIT all the current runtime info regarding an allocation 2194 bool RenderScriptRuntime::RefreshAllocation(AllocationDetails *alloc, 2195 StackFrame *frame_ptr) { 2196 // GetOffsetPointer() 2197 if (!JITDataPointer(alloc, frame_ptr)) 2198 return false; 2199 2200 // rsaAllocationGetType() 2201 if (!JITTypePointer(alloc, frame_ptr)) 2202 return false; 2203 2204 // rsaTypeGetNativeData() 2205 if (!JITTypePacked(alloc, frame_ptr)) 2206 return false; 2207 2208 // rsaElementGetNativeData() 2209 if (!JITElementPacked(alloc->element, *alloc->context.get(), frame_ptr)) 2210 return false; 2211 2212 // Sets the datum_size member in Element 2213 SetElementSize(alloc->element); 2214 2215 // Use GetOffsetPointer() to infer size of the allocation 2216 return JITAllocationSize(alloc, frame_ptr); 2217 } 2218 2219 // Function attempts to set the type_name member of the parameterised Element 2220 // object. This string should be the name of the struct type the Element 2221 // represents. We need this string for pretty printing the Element to users. 2222 void RenderScriptRuntime::FindStructTypeName(Element &elem, 2223 StackFrame *frame_ptr) { 2224 Log *log = GetLog(LLDBLog::Language); 2225 2226 if (!elem.type_name.IsEmpty()) // Name already set 2227 return; 2228 else 2229 elem.type_name = Element::GetFallbackStructName(); // Default type name if 2230 // we don't succeed 2231 2232 // Find all the global variables from the script rs modules 2233 VariableList var_list; 2234 for (auto module_sp : m_rsmodules) 2235 module_sp->m_module->FindGlobalVariables( 2236 RegularExpression(llvm::StringRef(".")), UINT32_MAX, var_list); 2237 2238 // Iterate over all the global variables looking for one with a matching type 2239 // to the Element. We make the assumption a match exists since there needs to 2240 // be a global variable to reflect the struct type back into java host code. 2241 for (const VariableSP &var_sp : var_list) { 2242 if (!var_sp) 2243 continue; 2244 2245 ValueObjectSP valobj_sp = ValueObjectVariable::Create(frame_ptr, var_sp); 2246 if (!valobj_sp) 2247 continue; 2248 2249 // Find the number of variable fields. 2250 // If it has no fields, or more fields than our Element, then it can't be 2251 // the struct we're looking for. Don't check for equality since RS can add 2252 // extra struct members for padding. 2253 size_t num_children = valobj_sp->GetNumChildren(); 2254 if (num_children > elem.children.size() || num_children == 0) 2255 continue; 2256 2257 // Iterate over children looking for members with matching field names. If 2258 // all the field names match, this is likely the struct we want. 2259 // TODO: This could be made more robust by also checking children data 2260 // sizes, or array size 2261 bool found = true; 2262 for (size_t i = 0; i < num_children; ++i) { 2263 ValueObjectSP child = valobj_sp->GetChildAtIndex(i, true); 2264 if (!child || (child->GetName() != elem.children[i].type_name)) { 2265 found = false; 2266 break; 2267 } 2268 } 2269 2270 // RS can add extra struct members for padding in the format 2271 // '#rs_padding_[0-9]+' 2272 if (found && num_children < elem.children.size()) { 2273 const uint32_t size_diff = elem.children.size() - num_children; 2274 LLDB_LOGF(log, "%s - %" PRIu32 " padding struct entries", __FUNCTION__, 2275 size_diff); 2276 2277 for (uint32_t i = 0; i < size_diff; ++i) { 2278 ConstString name = elem.children[num_children + i].type_name; 2279 if (strcmp(name.AsCString(), "#rs_padding") < 0) 2280 found = false; 2281 } 2282 } 2283 2284 // We've found a global variable with matching type 2285 if (found) { 2286 // Dereference since our Element type isn't a pointer. 2287 if (valobj_sp->IsPointerType()) { 2288 Status err; 2289 ValueObjectSP deref_valobj = valobj_sp->Dereference(err); 2290 if (!err.Fail()) 2291 valobj_sp = deref_valobj; 2292 } 2293 2294 // Save name of variable in Element. 2295 elem.type_name = valobj_sp->GetTypeName(); 2296 LLDB_LOGF(log, "%s - element name set to %s", __FUNCTION__, 2297 elem.type_name.AsCString()); 2298 2299 return; 2300 } 2301 } 2302 } 2303 2304 // Function sets the datum_size member of Element. Representing the size of a 2305 // single instance including padding. Assumes the relevant allocation 2306 // information has already been jitted. 2307 void RenderScriptRuntime::SetElementSize(Element &elem) { 2308 Log *log = GetLog(LLDBLog::Language); 2309 const Element::DataType type = *elem.type.get(); 2310 assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && 2311 "Invalid allocation type"); 2312 2313 const uint32_t vec_size = *elem.type_vec_size.get(); 2314 uint32_t data_size = 0; 2315 uint32_t padding = 0; 2316 2317 // Element is of a struct type, calculate size recursively. 2318 if ((type == Element::RS_TYPE_NONE) && (elem.children.size() > 0)) { 2319 for (Element &child : elem.children) { 2320 SetElementSize(child); 2321 const uint32_t array_size = 2322 child.array_size.isValid() ? *child.array_size.get() : 1; 2323 data_size += *child.datum_size.get() * array_size; 2324 } 2325 } 2326 // These have been packed already 2327 else if (type == Element::RS_TYPE_UNSIGNED_5_6_5 || 2328 type == Element::RS_TYPE_UNSIGNED_5_5_5_1 || 2329 type == Element::RS_TYPE_UNSIGNED_4_4_4_4) { 2330 data_size = AllocationDetails::RSTypeToFormat[type][eElementSize]; 2331 } else if (type < Element::RS_TYPE_ELEMENT) { 2332 data_size = 2333 vec_size * AllocationDetails::RSTypeToFormat[type][eElementSize]; 2334 if (vec_size == 3) 2335 padding = AllocationDetails::RSTypeToFormat[type][eElementSize]; 2336 } else 2337 data_size = 2338 GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 2339 2340 elem.padding = padding; 2341 elem.datum_size = data_size + padding; 2342 LLDB_LOGF(log, "%s - element size set to %" PRIu32, __FUNCTION__, 2343 data_size + padding); 2344 } 2345 2346 // Given an allocation, this function copies the allocation contents from 2347 // device into a buffer on the heap. Returning a shared pointer to the buffer 2348 // containing the data. 2349 std::shared_ptr<uint8_t> 2350 RenderScriptRuntime::GetAllocationData(AllocationDetails *alloc, 2351 StackFrame *frame_ptr) { 2352 Log *log = GetLog(LLDBLog::Language); 2353 2354 // JIT all the allocation details 2355 if (alloc->ShouldRefresh()) { 2356 LLDB_LOGF(log, "%s - allocation details not calculated yet, jitting info", 2357 __FUNCTION__); 2358 2359 if (!RefreshAllocation(alloc, frame_ptr)) { 2360 LLDB_LOGF(log, "%s - couldn't JIT allocation details", __FUNCTION__); 2361 return nullptr; 2362 } 2363 } 2364 2365 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && 2366 alloc->element.type_vec_size.isValid() && alloc->size.isValid() && 2367 "Allocation information not available"); 2368 2369 // Allocate a buffer to copy data into 2370 const uint32_t size = *alloc->size.get(); 2371 std::shared_ptr<uint8_t> buffer(new uint8_t[size]); 2372 if (!buffer) { 2373 LLDB_LOGF(log, "%s - couldn't allocate a %" PRIu32 " byte buffer", 2374 __FUNCTION__, size); 2375 return nullptr; 2376 } 2377 2378 // Read the inferior memory 2379 Status err; 2380 lldb::addr_t data_ptr = *alloc->data_ptr.get(); 2381 GetProcess()->ReadMemory(data_ptr, buffer.get(), size, err); 2382 if (err.Fail()) { 2383 LLDB_LOGF(log, 2384 "%s - '%s' Couldn't read %" PRIu32 2385 " bytes of allocation data from 0x%" PRIx64, 2386 __FUNCTION__, err.AsCString(), size, data_ptr); 2387 return nullptr; 2388 } 2389 2390 return buffer; 2391 } 2392 2393 // Function copies data from a binary file into an allocation. There is a 2394 // header at the start of the file, FileHeader, before the data content itself. 2395 // Information from this header is used to display warnings to the user about 2396 // incompatibilities 2397 bool RenderScriptRuntime::LoadAllocation(Stream &strm, const uint32_t alloc_id, 2398 const char *path, 2399 StackFrame *frame_ptr) { 2400 Log *log = GetLog(LLDBLog::Language); 2401 2402 // Find allocation with the given id 2403 AllocationDetails *alloc = FindAllocByID(strm, alloc_id); 2404 if (!alloc) 2405 return false; 2406 2407 LLDB_LOGF(log, "%s - found allocation 0x%" PRIx64, __FUNCTION__, 2408 *alloc->address.get()); 2409 2410 // JIT all the allocation details 2411 if (alloc->ShouldRefresh()) { 2412 LLDB_LOGF(log, "%s - allocation details not calculated yet, jitting info.", 2413 __FUNCTION__); 2414 2415 if (!RefreshAllocation(alloc, frame_ptr)) { 2416 LLDB_LOGF(log, "%s - couldn't JIT allocation details", __FUNCTION__); 2417 return false; 2418 } 2419 } 2420 2421 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && 2422 alloc->element.type_vec_size.isValid() && alloc->size.isValid() && 2423 alloc->element.datum_size.isValid() && 2424 "Allocation information not available"); 2425 2426 // Check we can read from file 2427 FileSpec file(path); 2428 FileSystem::Instance().Resolve(file); 2429 if (!FileSystem::Instance().Exists(file)) { 2430 strm.Printf("Error: File %s does not exist", path); 2431 strm.EOL(); 2432 return false; 2433 } 2434 2435 if (!FileSystem::Instance().Readable(file)) { 2436 strm.Printf("Error: File %s does not have readable permissions", path); 2437 strm.EOL(); 2438 return false; 2439 } 2440 2441 // Read file into data buffer 2442 auto data_sp = FileSystem::Instance().CreateDataBuffer(file.GetPath()); 2443 2444 // Cast start of buffer to FileHeader and use pointer to read metadata 2445 const void *file_buf = data_sp->GetBytes(); 2446 if (file_buf == nullptr || 2447 data_sp->GetByteSize() < (sizeof(AllocationDetails::FileHeader) + 2448 sizeof(AllocationDetails::ElementHeader))) { 2449 strm.Printf("Error: File %s does not contain enough data for header", path); 2450 strm.EOL(); 2451 return false; 2452 } 2453 const AllocationDetails::FileHeader *file_header = 2454 static_cast<const AllocationDetails::FileHeader *>(file_buf); 2455 2456 // Check file starts with ascii characters "RSAD" 2457 if (memcmp(file_header->ident, "RSAD", 4)) { 2458 strm.Printf("Error: File doesn't contain identifier for an RS allocation " 2459 "dump. Are you sure this is the correct file?"); 2460 strm.EOL(); 2461 return false; 2462 } 2463 2464 // Look at the type of the root element in the header 2465 AllocationDetails::ElementHeader root_el_hdr; 2466 memcpy(&root_el_hdr, 2467 static_cast<const uint8_t *>(file_buf) + 2468 sizeof(AllocationDetails::FileHeader), 2469 sizeof(AllocationDetails::ElementHeader)); 2470 2471 LLDB_LOGF(log, "%s - header type %" PRIu32 ", element size %" PRIu32, 2472 __FUNCTION__, root_el_hdr.type, root_el_hdr.element_size); 2473 2474 // Check if the target allocation and file both have the same number of bytes 2475 // for an Element 2476 if (*alloc->element.datum_size.get() != root_el_hdr.element_size) { 2477 strm.Printf("Warning: Mismatched Element sizes - file %" PRIu32 2478 " bytes, allocation %" PRIu32 " bytes", 2479 root_el_hdr.element_size, *alloc->element.datum_size.get()); 2480 strm.EOL(); 2481 } 2482 2483 // Check if the target allocation and file both have the same type 2484 const uint32_t alloc_type = static_cast<uint32_t>(*alloc->element.type.get()); 2485 const uint32_t file_type = root_el_hdr.type; 2486 2487 if (file_type > Element::RS_TYPE_FONT) { 2488 strm.Printf("Warning: File has unknown allocation type"); 2489 strm.EOL(); 2490 } else if (alloc_type != file_type) { 2491 // Enum value isn't monotonous, so doesn't always index RsDataTypeToString 2492 // array 2493 uint32_t target_type_name_idx = alloc_type; 2494 uint32_t head_type_name_idx = file_type; 2495 if (alloc_type >= Element::RS_TYPE_ELEMENT && 2496 alloc_type <= Element::RS_TYPE_FONT) 2497 target_type_name_idx = static_cast<Element::DataType>( 2498 (alloc_type - Element::RS_TYPE_ELEMENT) + 2499 Element::RS_TYPE_MATRIX_2X2 + 1); 2500 2501 if (file_type >= Element::RS_TYPE_ELEMENT && 2502 file_type <= Element::RS_TYPE_FONT) 2503 head_type_name_idx = static_cast<Element::DataType>( 2504 (file_type - Element::RS_TYPE_ELEMENT) + Element::RS_TYPE_MATRIX_2X2 + 2505 1); 2506 2507 const char *head_type_name = 2508 AllocationDetails::RsDataTypeToString[head_type_name_idx][0]; 2509 const char *target_type_name = 2510 AllocationDetails::RsDataTypeToString[target_type_name_idx][0]; 2511 2512 strm.Printf( 2513 "Warning: Mismatched Types - file '%s' type, allocation '%s' type", 2514 head_type_name, target_type_name); 2515 strm.EOL(); 2516 } 2517 2518 // Advance buffer past header 2519 file_buf = static_cast<const uint8_t *>(file_buf) + file_header->hdr_size; 2520 2521 // Calculate size of allocation data in file 2522 size_t size = data_sp->GetByteSize() - file_header->hdr_size; 2523 2524 // Check if the target allocation and file both have the same total data 2525 // size. 2526 const uint32_t alloc_size = *alloc->size.get(); 2527 if (alloc_size != size) { 2528 strm.Printf("Warning: Mismatched allocation sizes - file 0x%" PRIx64 2529 " bytes, allocation 0x%" PRIx32 " bytes", 2530 (uint64_t)size, alloc_size); 2531 strm.EOL(); 2532 // Set length to copy to minimum 2533 size = alloc_size < size ? alloc_size : size; 2534 } 2535 2536 // Copy file data from our buffer into the target allocation. 2537 lldb::addr_t alloc_data = *alloc->data_ptr.get(); 2538 Status err; 2539 size_t written = GetProcess()->WriteMemory(alloc_data, file_buf, size, err); 2540 if (!err.Success() || written != size) { 2541 strm.Printf("Error: Couldn't write data to allocation %s", err.AsCString()); 2542 strm.EOL(); 2543 return false; 2544 } 2545 2546 strm.Printf("Contents of file '%s' read into allocation %" PRIu32, path, 2547 alloc->id); 2548 strm.EOL(); 2549 2550 return true; 2551 } 2552 2553 // Function takes as parameters a byte buffer, which will eventually be written 2554 // to file as the element header, an offset into that buffer, and an Element 2555 // that will be saved into the buffer at the parametrised offset. Return value 2556 // is the new offset after writing the element into the buffer. Elements are 2557 // saved to the file as the ElementHeader struct followed by offsets to the 2558 // structs of all the element's children. 2559 size_t RenderScriptRuntime::PopulateElementHeaders( 2560 const std::shared_ptr<uint8_t> header_buffer, size_t offset, 2561 const Element &elem) { 2562 // File struct for an element header with all the relevant details copied 2563 // from elem. We assume members are valid already. 2564 AllocationDetails::ElementHeader elem_header; 2565 elem_header.type = *elem.type.get(); 2566 elem_header.kind = *elem.type_kind.get(); 2567 elem_header.element_size = *elem.datum_size.get(); 2568 elem_header.vector_size = *elem.type_vec_size.get(); 2569 elem_header.array_size = 2570 elem.array_size.isValid() ? *elem.array_size.get() : 0; 2571 const size_t elem_header_size = sizeof(AllocationDetails::ElementHeader); 2572 2573 // Copy struct into buffer and advance offset We assume that header_buffer 2574 // has been checked for nullptr before this method is called 2575 memcpy(header_buffer.get() + offset, &elem_header, elem_header_size); 2576 offset += elem_header_size; 2577 2578 // Starting offset of child ElementHeader struct 2579 size_t child_offset = 2580 offset + ((elem.children.size() + 1) * sizeof(uint32_t)); 2581 for (const RenderScriptRuntime::Element &child : elem.children) { 2582 // Recursively populate the buffer with the element header structs of 2583 // children. Then save the offsets where they were set after the parent 2584 // element header. 2585 memcpy(header_buffer.get() + offset, &child_offset, sizeof(uint32_t)); 2586 offset += sizeof(uint32_t); 2587 2588 child_offset = PopulateElementHeaders(header_buffer, child_offset, child); 2589 } 2590 2591 // Zero indicates no more children 2592 memset(header_buffer.get() + offset, 0, sizeof(uint32_t)); 2593 2594 return child_offset; 2595 } 2596 2597 // Given an Element object this function returns the total size needed in the 2598 // file header to store the element's details. Taking into account the size of 2599 // the element header struct, plus the offsets to all the element's children. 2600 // Function is recursive so that the size of all ancestors is taken into 2601 // account. 2602 size_t RenderScriptRuntime::CalculateElementHeaderSize(const Element &elem) { 2603 // Offsets to children plus zero terminator 2604 size_t size = (elem.children.size() + 1) * sizeof(uint32_t); 2605 // Size of header struct with type details 2606 size += sizeof(AllocationDetails::ElementHeader); 2607 2608 // Calculate recursively for all descendants 2609 for (const Element &child : elem.children) 2610 size += CalculateElementHeaderSize(child); 2611 2612 return size; 2613 } 2614 2615 // Function copies allocation contents into a binary file. This file can then 2616 // be loaded later into a different allocation. There is a header, FileHeader, 2617 // before the allocation data containing meta-data. 2618 bool RenderScriptRuntime::SaveAllocation(Stream &strm, const uint32_t alloc_id, 2619 const char *path, 2620 StackFrame *frame_ptr) { 2621 Log *log = GetLog(LLDBLog::Language); 2622 2623 // Find allocation with the given id 2624 AllocationDetails *alloc = FindAllocByID(strm, alloc_id); 2625 if (!alloc) 2626 return false; 2627 2628 LLDB_LOGF(log, "%s - found allocation 0x%" PRIx64 ".", __FUNCTION__, 2629 *alloc->address.get()); 2630 2631 // JIT all the allocation details 2632 if (alloc->ShouldRefresh()) { 2633 LLDB_LOGF(log, "%s - allocation details not calculated yet, jitting info.", 2634 __FUNCTION__); 2635 2636 if (!RefreshAllocation(alloc, frame_ptr)) { 2637 LLDB_LOGF(log, "%s - couldn't JIT allocation details.", __FUNCTION__); 2638 return false; 2639 } 2640 } 2641 2642 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && 2643 alloc->element.type_vec_size.isValid() && 2644 alloc->element.datum_size.get() && 2645 alloc->element.type_kind.isValid() && alloc->dimension.isValid() && 2646 "Allocation information not available"); 2647 2648 // Check we can create writable file 2649 FileSpec file_spec(path); 2650 FileSystem::Instance().Resolve(file_spec); 2651 auto file = FileSystem::Instance().Open( 2652 file_spec, File::eOpenOptionWriteOnly | File::eOpenOptionCanCreate | 2653 File::eOpenOptionTruncate); 2654 2655 if (!file) { 2656 std::string error = llvm::toString(file.takeError()); 2657 strm.Printf("Error: Failed to open '%s' for writing: %s", path, 2658 error.c_str()); 2659 strm.EOL(); 2660 return false; 2661 } 2662 2663 // Read allocation into buffer of heap memory 2664 const std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr); 2665 if (!buffer) { 2666 strm.Printf("Error: Couldn't read allocation data into buffer"); 2667 strm.EOL(); 2668 return false; 2669 } 2670 2671 // Create the file header 2672 AllocationDetails::FileHeader head; 2673 memcpy(head.ident, "RSAD", 4); 2674 head.dims[0] = static_cast<uint32_t>(alloc->dimension.get()->dim_1); 2675 head.dims[1] = static_cast<uint32_t>(alloc->dimension.get()->dim_2); 2676 head.dims[2] = static_cast<uint32_t>(alloc->dimension.get()->dim_3); 2677 2678 const size_t element_header_size = CalculateElementHeaderSize(alloc->element); 2679 assert((sizeof(AllocationDetails::FileHeader) + element_header_size) < 2680 UINT16_MAX && 2681 "Element header too large"); 2682 head.hdr_size = static_cast<uint16_t>(sizeof(AllocationDetails::FileHeader) + 2683 element_header_size); 2684 2685 // Write the file header 2686 size_t num_bytes = sizeof(AllocationDetails::FileHeader); 2687 LLDB_LOGF(log, "%s - writing File Header, 0x%" PRIx64 " bytes", __FUNCTION__, 2688 (uint64_t)num_bytes); 2689 2690 Status err = file.get()->Write(&head, num_bytes); 2691 if (!err.Success()) { 2692 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path); 2693 strm.EOL(); 2694 return false; 2695 } 2696 2697 // Create the headers describing the element type of the allocation. 2698 std::shared_ptr<uint8_t> element_header_buffer( 2699 new uint8_t[element_header_size]); 2700 if (element_header_buffer == nullptr) { 2701 strm.Printf("Internal Error: Couldn't allocate %" PRIu64 2702 " bytes on the heap", 2703 (uint64_t)element_header_size); 2704 strm.EOL(); 2705 return false; 2706 } 2707 2708 PopulateElementHeaders(element_header_buffer, 0, alloc->element); 2709 2710 // Write headers for allocation element type to file 2711 num_bytes = element_header_size; 2712 LLDB_LOGF(log, "%s - writing element headers, 0x%" PRIx64 " bytes.", 2713 __FUNCTION__, (uint64_t)num_bytes); 2714 2715 err = file.get()->Write(element_header_buffer.get(), num_bytes); 2716 if (!err.Success()) { 2717 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path); 2718 strm.EOL(); 2719 return false; 2720 } 2721 2722 // Write allocation data to file 2723 num_bytes = static_cast<size_t>(*alloc->size.get()); 2724 LLDB_LOGF(log, "%s - writing 0x%" PRIx64 " bytes", __FUNCTION__, 2725 (uint64_t)num_bytes); 2726 2727 err = file.get()->Write(buffer.get(), num_bytes); 2728 if (!err.Success()) { 2729 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path); 2730 strm.EOL(); 2731 return false; 2732 } 2733 2734 strm.Printf("Allocation written to file '%s'", path); 2735 strm.EOL(); 2736 return true; 2737 } 2738 2739 bool RenderScriptRuntime::LoadModule(const lldb::ModuleSP &module_sp) { 2740 Log *log = GetLog(LLDBLog::Language); 2741 2742 if (module_sp) { 2743 for (const auto &rs_module : m_rsmodules) { 2744 if (rs_module->m_module == module_sp) { 2745 // Check if the user has enabled automatically breaking on all RS 2746 // kernels. 2747 if (m_breakAllKernels) 2748 BreakOnModuleKernels(rs_module); 2749 2750 return false; 2751 } 2752 } 2753 bool module_loaded = false; 2754 switch (GetModuleKind(module_sp)) { 2755 case eModuleKindKernelObj: { 2756 RSModuleDescriptorSP module_desc; 2757 module_desc = std::make_shared<RSModuleDescriptor>(module_sp); 2758 if (module_desc->ParseRSInfo()) { 2759 m_rsmodules.push_back(module_desc); 2760 module_desc->WarnIfVersionMismatch(GetProcess() 2761 ->GetTarget() 2762 .GetDebugger() 2763 .GetAsyncOutputStream() 2764 .get()); 2765 module_loaded = true; 2766 } 2767 if (module_loaded) { 2768 FixupScriptDetails(module_desc); 2769 } 2770 break; 2771 } 2772 case eModuleKindDriver: { 2773 if (!m_libRSDriver) { 2774 m_libRSDriver = module_sp; 2775 LoadRuntimeHooks(m_libRSDriver, RenderScriptRuntime::eModuleKindDriver); 2776 } 2777 break; 2778 } 2779 case eModuleKindImpl: { 2780 if (!m_libRSCpuRef) { 2781 m_libRSCpuRef = module_sp; 2782 LoadRuntimeHooks(m_libRSCpuRef, RenderScriptRuntime::eModuleKindImpl); 2783 } 2784 break; 2785 } 2786 case eModuleKindLibRS: { 2787 if (!m_libRS) { 2788 m_libRS = module_sp; 2789 static ConstString gDbgPresentStr("gDebuggerPresent"); 2790 const Symbol *debug_present = m_libRS->FindFirstSymbolWithNameAndType( 2791 gDbgPresentStr, eSymbolTypeData); 2792 if (debug_present) { 2793 Status err; 2794 uint32_t flag = 0x00000001U; 2795 Target &target = GetProcess()->GetTarget(); 2796 addr_t addr = debug_present->GetLoadAddress(&target); 2797 GetProcess()->WriteMemory(addr, &flag, sizeof(flag), err); 2798 if (err.Success()) { 2799 LLDB_LOGF(log, "%s - debugger present flag set on debugee.", 2800 __FUNCTION__); 2801 2802 m_debuggerPresentFlagged = true; 2803 } else if (log) { 2804 LLDB_LOGF(log, "%s - error writing debugger present flags '%s' ", 2805 __FUNCTION__, err.AsCString()); 2806 } 2807 } else if (log) { 2808 LLDB_LOGF( 2809 log, 2810 "%s - error writing debugger present flags - symbol not found", 2811 __FUNCTION__); 2812 } 2813 } 2814 break; 2815 } 2816 default: 2817 break; 2818 } 2819 if (module_loaded) 2820 Update(); 2821 return module_loaded; 2822 } 2823 return false; 2824 } 2825 2826 void RenderScriptRuntime::Update() { 2827 if (m_rsmodules.size() > 0) { 2828 if (!m_initiated) { 2829 Initiate(); 2830 } 2831 } 2832 } 2833 2834 void RSModuleDescriptor::WarnIfVersionMismatch(lldb_private::Stream *s) const { 2835 if (!s) 2836 return; 2837 2838 if (m_slang_version.empty() || m_bcc_version.empty()) { 2839 s->PutCString("WARNING: Unknown bcc or slang (llvm-rs-cc) version; debug " 2840 "experience may be unreliable"); 2841 s->EOL(); 2842 } else if (m_slang_version != m_bcc_version) { 2843 s->Printf("WARNING: The debug info emitted by the slang frontend " 2844 "(llvm-rs-cc) used to build this module (%s) does not match the " 2845 "version of bcc used to generate the debug information (%s). " 2846 "This is an unsupported configuration and may result in a poor " 2847 "debugging experience; proceed with caution", 2848 m_slang_version.c_str(), m_bcc_version.c_str()); 2849 s->EOL(); 2850 } 2851 } 2852 2853 bool RSModuleDescriptor::ParsePragmaCount(llvm::StringRef *lines, 2854 size_t n_lines) { 2855 // Skip the pragma prototype line 2856 ++lines; 2857 for (; n_lines--; ++lines) { 2858 const auto kv_pair = lines->split(" - "); 2859 m_pragmas[kv_pair.first.trim().str()] = kv_pair.second.trim().str(); 2860 } 2861 return true; 2862 } 2863 2864 bool RSModuleDescriptor::ParseExportReduceCount(llvm::StringRef *lines, 2865 size_t n_lines) { 2866 // The list of reduction kernels in the `.rs.info` symbol is of the form 2867 // "signature - accumulatordatasize - reduction_name - initializer_name - 2868 // accumulator_name - combiner_name - outconverter_name - halter_name" Where 2869 // a function is not explicitly named by the user, or is not generated by the 2870 // compiler, it is named "." so the dash separated list should always be 8 2871 // items long 2872 Log *log = GetLog(LLDBLog::Language); 2873 // Skip the exportReduceCount line 2874 ++lines; 2875 for (; n_lines--; ++lines) { 2876 llvm::SmallVector<llvm::StringRef, 8> spec; 2877 lines->split(spec, " - "); 2878 if (spec.size() != 8) { 2879 if (spec.size() < 8) { 2880 if (log) 2881 log->Error("Error parsing RenderScript reduction spec. wrong number " 2882 "of fields"); 2883 return false; 2884 } else if (log) 2885 log->Warning("Extraneous members in reduction spec: '%s'", 2886 lines->str().c_str()); 2887 } 2888 2889 const auto sig_s = spec[0]; 2890 uint32_t sig; 2891 if (sig_s.getAsInteger(10, sig)) { 2892 if (log) 2893 log->Error("Error parsing Renderscript reduction spec: invalid kernel " 2894 "signature: '%s'", 2895 sig_s.str().c_str()); 2896 return false; 2897 } 2898 2899 const auto accum_data_size_s = spec[1]; 2900 uint32_t accum_data_size; 2901 if (accum_data_size_s.getAsInteger(10, accum_data_size)) { 2902 if (log) 2903 log->Error("Error parsing Renderscript reduction spec: invalid " 2904 "accumulator data size %s", 2905 accum_data_size_s.str().c_str()); 2906 return false; 2907 } 2908 2909 LLDB_LOGF(log, "Found RenderScript reduction '%s'", spec[2].str().c_str()); 2910 2911 m_reductions.push_back(RSReductionDescriptor(this, sig, accum_data_size, 2912 spec[2], spec[3], spec[4], 2913 spec[5], spec[6], spec[7])); 2914 } 2915 return true; 2916 } 2917 2918 bool RSModuleDescriptor::ParseVersionInfo(llvm::StringRef *lines, 2919 size_t n_lines) { 2920 // Skip the versionInfo line 2921 ++lines; 2922 for (; n_lines--; ++lines) { 2923 // We're only interested in bcc and slang versions, and ignore all other 2924 // versionInfo lines 2925 const auto kv_pair = lines->split(" - "); 2926 if (kv_pair.first == "slang") 2927 m_slang_version = kv_pair.second.str(); 2928 else if (kv_pair.first == "bcc") 2929 m_bcc_version = kv_pair.second.str(); 2930 } 2931 return true; 2932 } 2933 2934 bool RSModuleDescriptor::ParseExportForeachCount(llvm::StringRef *lines, 2935 size_t n_lines) { 2936 // Skip the exportForeachCount line 2937 ++lines; 2938 for (; n_lines--; ++lines) { 2939 uint32_t slot; 2940 // `forEach` kernels are listed in the `.rs.info` packet as a "slot - name" 2941 // pair per line 2942 const auto kv_pair = lines->split(" - "); 2943 if (kv_pair.first.getAsInteger(10, slot)) 2944 return false; 2945 m_kernels.push_back(RSKernelDescriptor(this, kv_pair.second, slot)); 2946 } 2947 return true; 2948 } 2949 2950 bool RSModuleDescriptor::ParseExportVarCount(llvm::StringRef *lines, 2951 size_t n_lines) { 2952 // Skip the ExportVarCount line 2953 ++lines; 2954 for (; n_lines--; ++lines) 2955 m_globals.push_back(RSGlobalDescriptor(this, *lines)); 2956 return true; 2957 } 2958 2959 // The .rs.info symbol in renderscript modules contains a string which needs to 2960 // be parsed. The string is basic and is parsed on a line by line basis. 2961 bool RSModuleDescriptor::ParseRSInfo() { 2962 assert(m_module); 2963 Log *log = GetLog(LLDBLog::Language); 2964 const Symbol *info_sym = m_module->FindFirstSymbolWithNameAndType( 2965 ConstString(".rs.info"), eSymbolTypeData); 2966 if (!info_sym) 2967 return false; 2968 2969 const addr_t addr = info_sym->GetAddressRef().GetFileAddress(); 2970 if (addr == LLDB_INVALID_ADDRESS) 2971 return false; 2972 2973 const addr_t size = info_sym->GetByteSize(); 2974 const FileSpec fs = m_module->GetFileSpec(); 2975 2976 auto buffer = 2977 FileSystem::Instance().CreateDataBuffer(fs.GetPath(), size, addr); 2978 if (!buffer) 2979 return false; 2980 2981 // split rs.info. contents into lines 2982 llvm::SmallVector<llvm::StringRef, 128> info_lines; 2983 { 2984 const llvm::StringRef raw_rs_info((const char *)buffer->GetBytes()); 2985 raw_rs_info.split(info_lines, '\n'); 2986 LLDB_LOGF(log, "'.rs.info symbol for '%s':\n%s", 2987 m_module->GetFileSpec().GetCString(), raw_rs_info.str().c_str()); 2988 } 2989 2990 enum { 2991 eExportVar, 2992 eExportForEach, 2993 eExportReduce, 2994 ePragma, 2995 eBuildChecksum, 2996 eObjectSlot, 2997 eVersionInfo, 2998 }; 2999 3000 const auto rs_info_handler = [](llvm::StringRef name) -> int { 3001 return llvm::StringSwitch<int>(name) 3002 // The number of visible global variables in the script 3003 .Case("exportVarCount", eExportVar) 3004 // The number of RenderScrip `forEach` kernels __attribute__((kernel)) 3005 .Case("exportForEachCount", eExportForEach) 3006 // The number of generalreductions: This marked in the script by 3007 // `#pragma reduce()` 3008 .Case("exportReduceCount", eExportReduce) 3009 // Total count of all RenderScript specific `#pragmas` used in the 3010 // script 3011 .Case("pragmaCount", ePragma) 3012 .Case("objectSlotCount", eObjectSlot) 3013 .Case("versionInfo", eVersionInfo) 3014 .Default(-1); 3015 }; 3016 3017 // parse all text lines of .rs.info 3018 for (auto line = info_lines.begin(); line != info_lines.end(); ++line) { 3019 const auto kv_pair = line->split(": "); 3020 const auto key = kv_pair.first; 3021 const auto val = kv_pair.second.trim(); 3022 3023 const auto handler = rs_info_handler(key); 3024 if (handler == -1) 3025 continue; 3026 // getAsInteger returns `true` on an error condition - we're only 3027 // interested in numeric fields at the moment 3028 uint64_t n_lines; 3029 if (val.getAsInteger(10, n_lines)) { 3030 LLDB_LOGV(log, "Failed to parse non-numeric '.rs.info' section {0}", 3031 line->str()); 3032 continue; 3033 } 3034 if (info_lines.end() - (line + 1) < (ptrdiff_t)n_lines) 3035 return false; 3036 3037 bool success = false; 3038 switch (handler) { 3039 case eExportVar: 3040 success = ParseExportVarCount(line, n_lines); 3041 break; 3042 case eExportForEach: 3043 success = ParseExportForeachCount(line, n_lines); 3044 break; 3045 case eExportReduce: 3046 success = ParseExportReduceCount(line, n_lines); 3047 break; 3048 case ePragma: 3049 success = ParsePragmaCount(line, n_lines); 3050 break; 3051 case eVersionInfo: 3052 success = ParseVersionInfo(line, n_lines); 3053 break; 3054 default: { 3055 LLDB_LOGF(log, "%s - skipping .rs.info field '%s'", __FUNCTION__, 3056 line->str().c_str()); 3057 continue; 3058 } 3059 } 3060 if (!success) 3061 return false; 3062 line += n_lines; 3063 } 3064 return info_lines.size() > 0; 3065 } 3066 3067 void RenderScriptRuntime::DumpStatus(Stream &strm) const { 3068 if (m_libRS) { 3069 strm.Printf("Runtime Library discovered."); 3070 strm.EOL(); 3071 } 3072 if (m_libRSDriver) { 3073 strm.Printf("Runtime Driver discovered."); 3074 strm.EOL(); 3075 } 3076 if (m_libRSCpuRef) { 3077 strm.Printf("CPU Reference Implementation discovered."); 3078 strm.EOL(); 3079 } 3080 3081 if (m_runtimeHooks.size()) { 3082 strm.Printf("Runtime functions hooked:"); 3083 strm.EOL(); 3084 for (auto b : m_runtimeHooks) { 3085 strm.Indent(b.second->defn->name); 3086 strm.EOL(); 3087 } 3088 } else { 3089 strm.Printf("Runtime is not hooked."); 3090 strm.EOL(); 3091 } 3092 } 3093 3094 void RenderScriptRuntime::DumpContexts(Stream &strm) const { 3095 strm.Printf("Inferred RenderScript Contexts:"); 3096 strm.EOL(); 3097 strm.IndentMore(); 3098 3099 std::map<addr_t, uint64_t> contextReferences; 3100 3101 // Iterate over all of the currently discovered scripts. Note: We cant push 3102 // or pop from m_scripts inside this loop or it may invalidate script. 3103 for (const auto &script : m_scripts) { 3104 if (!script->context.isValid()) 3105 continue; 3106 lldb::addr_t context = *script->context; 3107 3108 if (contextReferences.find(context) != contextReferences.end()) { 3109 contextReferences[context]++; 3110 } else { 3111 contextReferences[context] = 1; 3112 } 3113 } 3114 3115 for (const auto &cRef : contextReferences) { 3116 strm.Printf("Context 0x%" PRIx64 ": %" PRIu64 " script instances", 3117 cRef.first, cRef.second); 3118 strm.EOL(); 3119 } 3120 strm.IndentLess(); 3121 } 3122 3123 void RenderScriptRuntime::DumpKernels(Stream &strm) const { 3124 strm.Printf("RenderScript Kernels:"); 3125 strm.EOL(); 3126 strm.IndentMore(); 3127 for (const auto &module : m_rsmodules) { 3128 strm.Printf("Resource '%s':", module->m_resname.c_str()); 3129 strm.EOL(); 3130 for (const auto &kernel : module->m_kernels) { 3131 strm.Indent(kernel.m_name.GetStringRef()); 3132 strm.EOL(); 3133 } 3134 } 3135 strm.IndentLess(); 3136 } 3137 3138 RenderScriptRuntime::AllocationDetails * 3139 RenderScriptRuntime::FindAllocByID(Stream &strm, const uint32_t alloc_id) { 3140 AllocationDetails *alloc = nullptr; 3141 3142 // See if we can find allocation using id as an index; 3143 if (alloc_id <= m_allocations.size() && alloc_id != 0 && 3144 m_allocations[alloc_id - 1]->id == alloc_id) { 3145 alloc = m_allocations[alloc_id - 1].get(); 3146 return alloc; 3147 } 3148 3149 // Fallback to searching 3150 for (const auto &a : m_allocations) { 3151 if (a->id == alloc_id) { 3152 alloc = a.get(); 3153 break; 3154 } 3155 } 3156 3157 if (alloc == nullptr) { 3158 strm.Printf("Error: Couldn't find allocation with id matching %" PRIu32, 3159 alloc_id); 3160 strm.EOL(); 3161 } 3162 3163 return alloc; 3164 } 3165 3166 // Prints the contents of an allocation to the output stream, which may be a 3167 // file 3168 bool RenderScriptRuntime::DumpAllocation(Stream &strm, StackFrame *frame_ptr, 3169 const uint32_t id) { 3170 Log *log = GetLog(LLDBLog::Language); 3171 3172 // Check we can find the desired allocation 3173 AllocationDetails *alloc = FindAllocByID(strm, id); 3174 if (!alloc) 3175 return false; // FindAllocByID() will print error message for us here 3176 3177 LLDB_LOGF(log, "%s - found allocation 0x%" PRIx64, __FUNCTION__, 3178 *alloc->address.get()); 3179 3180 // Check we have information about the allocation, if not calculate it 3181 if (alloc->ShouldRefresh()) { 3182 LLDB_LOGF(log, "%s - allocation details not calculated yet, jitting info.", 3183 __FUNCTION__); 3184 3185 // JIT all the allocation information 3186 if (!RefreshAllocation(alloc, frame_ptr)) { 3187 strm.Printf("Error: Couldn't JIT allocation details"); 3188 strm.EOL(); 3189 return false; 3190 } 3191 } 3192 3193 // Establish format and size of each data element 3194 const uint32_t vec_size = *alloc->element.type_vec_size.get(); 3195 const Element::DataType type = *alloc->element.type.get(); 3196 3197 assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && 3198 "Invalid allocation type"); 3199 3200 lldb::Format format; 3201 if (type >= Element::RS_TYPE_ELEMENT) 3202 format = eFormatHex; 3203 else 3204 format = vec_size == 1 3205 ? static_cast<lldb::Format>( 3206 AllocationDetails::RSTypeToFormat[type][eFormatSingle]) 3207 : static_cast<lldb::Format>( 3208 AllocationDetails::RSTypeToFormat[type][eFormatVector]); 3209 3210 const uint32_t data_size = *alloc->element.datum_size.get(); 3211 3212 LLDB_LOGF(log, "%s - element size %" PRIu32 " bytes, including padding", 3213 __FUNCTION__, data_size); 3214 3215 // Allocate a buffer to copy data into 3216 std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr); 3217 if (!buffer) { 3218 strm.Printf("Error: Couldn't read allocation data"); 3219 strm.EOL(); 3220 return false; 3221 } 3222 3223 // Calculate stride between rows as there may be padding at end of rows since 3224 // allocated memory is 16-byte aligned 3225 if (!alloc->stride.isValid()) { 3226 if (alloc->dimension.get()->dim_2 == 0) // We only have one dimension 3227 alloc->stride = 0; 3228 else if (!JITAllocationStride(alloc, frame_ptr)) { 3229 strm.Printf("Error: Couldn't calculate allocation row stride"); 3230 strm.EOL(); 3231 return false; 3232 } 3233 } 3234 const uint32_t stride = *alloc->stride.get(); 3235 const uint32_t size = *alloc->size.get(); // Size of whole allocation 3236 const uint32_t padding = 3237 alloc->element.padding.isValid() ? *alloc->element.padding.get() : 0; 3238 LLDB_LOGF(log, 3239 "%s - stride %" PRIu32 " bytes, size %" PRIu32 3240 " bytes, padding %" PRIu32, 3241 __FUNCTION__, stride, size, padding); 3242 3243 // Find dimensions used to index loops, so need to be non-zero 3244 uint32_t dim_x = alloc->dimension.get()->dim_1; 3245 dim_x = dim_x == 0 ? 1 : dim_x; 3246 3247 uint32_t dim_y = alloc->dimension.get()->dim_2; 3248 dim_y = dim_y == 0 ? 1 : dim_y; 3249 3250 uint32_t dim_z = alloc->dimension.get()->dim_3; 3251 dim_z = dim_z == 0 ? 1 : dim_z; 3252 3253 // Use data extractor to format output 3254 const uint32_t target_ptr_size = 3255 GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 3256 DataExtractor alloc_data(buffer.get(), size, GetProcess()->GetByteOrder(), 3257 target_ptr_size); 3258 3259 uint32_t offset = 0; // Offset in buffer to next element to be printed 3260 uint32_t prev_row = 0; // Offset to the start of the previous row 3261 3262 // Iterate over allocation dimensions, printing results to user 3263 strm.Printf("Data (X, Y, Z):"); 3264 for (uint32_t z = 0; z < dim_z; ++z) { 3265 for (uint32_t y = 0; y < dim_y; ++y) { 3266 // Use stride to index start of next row. 3267 if (!(y == 0 && z == 0)) 3268 offset = prev_row + stride; 3269 prev_row = offset; 3270 3271 // Print each element in the row individually 3272 for (uint32_t x = 0; x < dim_x; ++x) { 3273 strm.Printf("\n(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ") = ", x, y, z); 3274 if ((type == Element::RS_TYPE_NONE) && 3275 (alloc->element.children.size() > 0) && 3276 (alloc->element.type_name != Element::GetFallbackStructName())) { 3277 // Here we are dumping an Element of struct type. This is done using 3278 // expression evaluation with the name of the struct type and pointer 3279 // to element. Don't print the name of the resulting expression, 3280 // since this will be '$[0-9]+' 3281 DumpValueObjectOptions expr_options; 3282 expr_options.SetHideName(true); 3283 3284 // Setup expression as dereferencing a pointer cast to element 3285 // address. 3286 char expr_char_buffer[jit_max_expr_size]; 3287 int written = 3288 snprintf(expr_char_buffer, jit_max_expr_size, "*(%s*) 0x%" PRIx64, 3289 alloc->element.type_name.AsCString(), 3290 *alloc->data_ptr.get() + offset); 3291 3292 if (written < 0 || written >= jit_max_expr_size) { 3293 LLDB_LOGF(log, "%s - error in snprintf().", __FUNCTION__); 3294 continue; 3295 } 3296 3297 // Evaluate expression 3298 ValueObjectSP expr_result; 3299 GetProcess()->GetTarget().EvaluateExpression(expr_char_buffer, 3300 frame_ptr, expr_result); 3301 3302 // Print the results to our stream. 3303 expr_result->Dump(strm, expr_options); 3304 } else { 3305 DumpDataExtractor(alloc_data, &strm, offset, format, 3306 data_size - padding, 1, 1, LLDB_INVALID_ADDRESS, 0, 3307 0); 3308 } 3309 offset += data_size; 3310 } 3311 } 3312 } 3313 strm.EOL(); 3314 3315 return true; 3316 } 3317 3318 // Function recalculates all our cached information about allocations by 3319 // jitting the RS runtime regarding each allocation we know about. Returns true 3320 // if all allocations could be recomputed, false otherwise. 3321 bool RenderScriptRuntime::RecomputeAllAllocations(Stream &strm, 3322 StackFrame *frame_ptr) { 3323 bool success = true; 3324 for (auto &alloc : m_allocations) { 3325 // JIT current allocation information 3326 if (!RefreshAllocation(alloc.get(), frame_ptr)) { 3327 strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32 3328 "\n", 3329 alloc->id); 3330 success = false; 3331 } 3332 } 3333 3334 if (success) 3335 strm.Printf("All allocations successfully recomputed"); 3336 strm.EOL(); 3337 3338 return success; 3339 } 3340 3341 // Prints information regarding currently loaded allocations. These details are 3342 // gathered by jitting the runtime, which has as latency. Index parameter 3343 // specifies a single allocation ID to print, or a zero value to print them all 3344 void RenderScriptRuntime::ListAllocations(Stream &strm, StackFrame *frame_ptr, 3345 const uint32_t index) { 3346 strm.Printf("RenderScript Allocations:"); 3347 strm.EOL(); 3348 strm.IndentMore(); 3349 3350 for (auto &alloc : m_allocations) { 3351 // index will only be zero if we want to print all allocations 3352 if (index != 0 && index != alloc->id) 3353 continue; 3354 3355 // JIT current allocation information 3356 if (alloc->ShouldRefresh() && !RefreshAllocation(alloc.get(), frame_ptr)) { 3357 strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32, 3358 alloc->id); 3359 strm.EOL(); 3360 continue; 3361 } 3362 3363 strm.Printf("%" PRIu32 ":", alloc->id); 3364 strm.EOL(); 3365 strm.IndentMore(); 3366 3367 strm.Indent("Context: "); 3368 if (!alloc->context.isValid()) 3369 strm.Printf("unknown\n"); 3370 else 3371 strm.Printf("0x%" PRIx64 "\n", *alloc->context.get()); 3372 3373 strm.Indent("Address: "); 3374 if (!alloc->address.isValid()) 3375 strm.Printf("unknown\n"); 3376 else 3377 strm.Printf("0x%" PRIx64 "\n", *alloc->address.get()); 3378 3379 strm.Indent("Data pointer: "); 3380 if (!alloc->data_ptr.isValid()) 3381 strm.Printf("unknown\n"); 3382 else 3383 strm.Printf("0x%" PRIx64 "\n", *alloc->data_ptr.get()); 3384 3385 strm.Indent("Dimensions: "); 3386 if (!alloc->dimension.isValid()) 3387 strm.Printf("unknown\n"); 3388 else 3389 strm.Printf("(%" PRId32 ", %" PRId32 ", %" PRId32 ")\n", 3390 alloc->dimension.get()->dim_1, alloc->dimension.get()->dim_2, 3391 alloc->dimension.get()->dim_3); 3392 3393 strm.Indent("Data Type: "); 3394 if (!alloc->element.type.isValid() || 3395 !alloc->element.type_vec_size.isValid()) 3396 strm.Printf("unknown\n"); 3397 else { 3398 const int vector_size = *alloc->element.type_vec_size.get(); 3399 Element::DataType type = *alloc->element.type.get(); 3400 3401 if (!alloc->element.type_name.IsEmpty()) 3402 strm.Printf("%s\n", alloc->element.type_name.AsCString()); 3403 else { 3404 // Enum value isn't monotonous, so doesn't always index 3405 // RsDataTypeToString array 3406 if (type >= Element::RS_TYPE_ELEMENT && type <= Element::RS_TYPE_FONT) 3407 type = 3408 static_cast<Element::DataType>((type - Element::RS_TYPE_ELEMENT) + 3409 Element::RS_TYPE_MATRIX_2X2 + 1); 3410 3411 if (type >= (sizeof(AllocationDetails::RsDataTypeToString) / 3412 sizeof(AllocationDetails::RsDataTypeToString[0])) || 3413 vector_size > 4 || vector_size < 1) 3414 strm.Printf("invalid type\n"); 3415 else 3416 strm.Printf( 3417 "%s\n", 3418 AllocationDetails::RsDataTypeToString[static_cast<uint32_t>(type)] 3419 [vector_size - 1]); 3420 } 3421 } 3422 3423 strm.Indent("Data Kind: "); 3424 if (!alloc->element.type_kind.isValid()) 3425 strm.Printf("unknown\n"); 3426 else { 3427 const Element::DataKind kind = *alloc->element.type_kind.get(); 3428 if (kind < Element::RS_KIND_USER || kind > Element::RS_KIND_PIXEL_YUV) 3429 strm.Printf("invalid kind\n"); 3430 else 3431 strm.Printf( 3432 "%s\n", 3433 AllocationDetails::RsDataKindToString[static_cast<uint32_t>(kind)]); 3434 } 3435 3436 strm.EOL(); 3437 strm.IndentLess(); 3438 } 3439 strm.IndentLess(); 3440 } 3441 3442 // Set breakpoints on every kernel found in RS module 3443 void RenderScriptRuntime::BreakOnModuleKernels( 3444 const RSModuleDescriptorSP rsmodule_sp) { 3445 for (const auto &kernel : rsmodule_sp->m_kernels) { 3446 // Don't set breakpoint on 'root' kernel 3447 if (strcmp(kernel.m_name.AsCString(), "root") == 0) 3448 continue; 3449 3450 CreateKernelBreakpoint(kernel.m_name); 3451 } 3452 } 3453 3454 // Method is internally called by the 'kernel breakpoint all' command to enable 3455 // or disable breaking on all kernels. When do_break is true we want to enable 3456 // this functionality. When do_break is false we want to disable it. 3457 void RenderScriptRuntime::SetBreakAllKernels(bool do_break, TargetSP target) { 3458 Log *log = GetLog(LLDBLog::Language | LLDBLog::Breakpoints); 3459 3460 InitSearchFilter(target); 3461 3462 // Set breakpoints on all the kernels 3463 if (do_break && !m_breakAllKernels) { 3464 m_breakAllKernels = true; 3465 3466 for (const auto &module : m_rsmodules) 3467 BreakOnModuleKernels(module); 3468 3469 LLDB_LOGF(log, 3470 "%s(True) - breakpoints set on all currently loaded kernels.", 3471 __FUNCTION__); 3472 } else if (!do_break && 3473 m_breakAllKernels) // Breakpoints won't be set on any new kernels. 3474 { 3475 m_breakAllKernels = false; 3476 3477 LLDB_LOGF(log, "%s(False) - breakpoints no longer automatically set.", 3478 __FUNCTION__); 3479 } 3480 } 3481 3482 // Given the name of a kernel this function creates a breakpoint using our own 3483 // breakpoint resolver, and returns the Breakpoint shared pointer. 3484 BreakpointSP 3485 RenderScriptRuntime::CreateKernelBreakpoint(ConstString name) { 3486 Log *log = GetLog(LLDBLog::Language | LLDBLog::Breakpoints); 3487 3488 if (!m_filtersp) { 3489 LLDB_LOGF(log, "%s - error, no breakpoint search filter set.", 3490 __FUNCTION__); 3491 return nullptr; 3492 } 3493 3494 BreakpointResolverSP resolver_sp(new RSBreakpointResolver(nullptr, name)); 3495 Target &target = GetProcess()->GetTarget(); 3496 BreakpointSP bp = target.CreateBreakpoint( 3497 m_filtersp, resolver_sp, false, false, false); 3498 3499 // Give RS breakpoints a specific name, so the user can manipulate them as a 3500 // group. 3501 Status err; 3502 target.AddNameToBreakpoint(bp, "RenderScriptKernel", err); 3503 if (err.Fail() && log) 3504 LLDB_LOGF(log, "%s - error setting break name, '%s'.", __FUNCTION__, 3505 err.AsCString()); 3506 3507 return bp; 3508 } 3509 3510 BreakpointSP 3511 RenderScriptRuntime::CreateReductionBreakpoint(ConstString name, 3512 int kernel_types) { 3513 Log *log = GetLog(LLDBLog::Language | LLDBLog::Breakpoints); 3514 3515 if (!m_filtersp) { 3516 LLDB_LOGF(log, "%s - error, no breakpoint search filter set.", 3517 __FUNCTION__); 3518 return nullptr; 3519 } 3520 3521 BreakpointResolverSP resolver_sp(new RSReduceBreakpointResolver( 3522 nullptr, name, &m_rsmodules, kernel_types)); 3523 Target &target = GetProcess()->GetTarget(); 3524 BreakpointSP bp = target.CreateBreakpoint( 3525 m_filtersp, resolver_sp, false, false, false); 3526 3527 // Give RS breakpoints a specific name, so the user can manipulate them as a 3528 // group. 3529 Status err; 3530 target.AddNameToBreakpoint(bp, "RenderScriptReduction", err); 3531 if (err.Fail() && log) 3532 LLDB_LOGF(log, "%s - error setting break name, '%s'.", __FUNCTION__, 3533 err.AsCString()); 3534 3535 return bp; 3536 } 3537 3538 // Given an expression for a variable this function tries to calculate the 3539 // variable's value. If this is possible it returns true and sets the uint64_t 3540 // parameter to the variables unsigned value. Otherwise function returns false. 3541 bool RenderScriptRuntime::GetFrameVarAsUnsigned(const StackFrameSP frame_sp, 3542 const char *var_name, 3543 uint64_t &val) { 3544 Log *log = GetLog(LLDBLog::Language); 3545 Status err; 3546 VariableSP var_sp; 3547 3548 // Find variable in stack frame 3549 ValueObjectSP value_sp(frame_sp->GetValueForVariableExpressionPath( 3550 var_name, eNoDynamicValues, 3551 StackFrame::eExpressionPathOptionCheckPtrVsMember | 3552 StackFrame::eExpressionPathOptionsAllowDirectIVarAccess, 3553 var_sp, err)); 3554 if (!err.Success()) { 3555 LLDB_LOGF(log, "%s - error, couldn't find '%s' in frame", __FUNCTION__, 3556 var_name); 3557 return false; 3558 } 3559 3560 // Find the uint32_t value for the variable 3561 bool success = false; 3562 val = value_sp->GetValueAsUnsigned(0, &success); 3563 if (!success) { 3564 LLDB_LOGF(log, "%s - error, couldn't parse '%s' as an uint32_t.", 3565 __FUNCTION__, var_name); 3566 return false; 3567 } 3568 3569 return true; 3570 } 3571 3572 // Function attempts to find the current coordinate of a kernel invocation by 3573 // investigating the values of frame variables in the .expand function. These 3574 // coordinates are returned via the coord array reference parameter. Returns 3575 // true if the coordinates could be found, and false otherwise. 3576 bool RenderScriptRuntime::GetKernelCoordinate(RSCoordinate &coord, 3577 Thread *thread_ptr) { 3578 static const char *const x_expr = "rsIndex"; 3579 static const char *const y_expr = "p->current.y"; 3580 static const char *const z_expr = "p->current.z"; 3581 3582 Log *log = GetLog(LLDBLog::Language); 3583 3584 if (!thread_ptr) { 3585 LLDB_LOGF(log, "%s - Error, No thread pointer", __FUNCTION__); 3586 3587 return false; 3588 } 3589 3590 // Walk the call stack looking for a function whose name has the suffix 3591 // '.expand' and contains the variables we're looking for. 3592 for (uint32_t i = 0; i < thread_ptr->GetStackFrameCount(); ++i) { 3593 if (!thread_ptr->SetSelectedFrameByIndex(i)) 3594 continue; 3595 3596 StackFrameSP frame_sp = thread_ptr->GetSelectedFrame(); 3597 if (!frame_sp) 3598 continue; 3599 3600 // Find the function name 3601 const SymbolContext sym_ctx = 3602 frame_sp->GetSymbolContext(eSymbolContextFunction); 3603 const ConstString func_name = sym_ctx.GetFunctionName(); 3604 if (!func_name) 3605 continue; 3606 3607 LLDB_LOGF(log, "%s - Inspecting function '%s'", __FUNCTION__, 3608 func_name.GetCString()); 3609 3610 // Check if function name has .expand suffix 3611 if (!func_name.GetStringRef().endswith(".expand")) 3612 continue; 3613 3614 LLDB_LOGF(log, "%s - Found .expand function '%s'", __FUNCTION__, 3615 func_name.GetCString()); 3616 3617 // Get values for variables in .expand frame that tell us the current 3618 // kernel invocation 3619 uint64_t x, y, z; 3620 bool found = GetFrameVarAsUnsigned(frame_sp, x_expr, x) && 3621 GetFrameVarAsUnsigned(frame_sp, y_expr, y) && 3622 GetFrameVarAsUnsigned(frame_sp, z_expr, z); 3623 3624 if (found) { 3625 // The RenderScript runtime uses uint32_t for these vars. If they're not 3626 // within bounds, our frame parsing is garbage 3627 assert(x <= UINT32_MAX && y <= UINT32_MAX && z <= UINT32_MAX); 3628 coord.x = (uint32_t)x; 3629 coord.y = (uint32_t)y; 3630 coord.z = (uint32_t)z; 3631 return true; 3632 } 3633 } 3634 return false; 3635 } 3636 3637 // Callback when a kernel breakpoint hits and we're looking for a specific 3638 // coordinate. Baton parameter contains a pointer to the target coordinate we 3639 // want to break on. Function then checks the .expand frame for the current 3640 // coordinate and breaks to user if it matches. Parameter 'break_id' is the id 3641 // of the Breakpoint which made the callback. Parameter 'break_loc_id' is the 3642 // id for the BreakpointLocation which was hit, a single logical breakpoint can 3643 // have multiple addresses. 3644 bool RenderScriptRuntime::KernelBreakpointHit(void *baton, 3645 StoppointCallbackContext *ctx, 3646 user_id_t break_id, 3647 user_id_t break_loc_id) { 3648 Log *log = GetLog(LLDBLog::Language | LLDBLog::Breakpoints); 3649 3650 assert(baton && 3651 "Error: null baton in conditional kernel breakpoint callback"); 3652 3653 // Coordinate we want to stop on 3654 RSCoordinate target_coord = *static_cast<RSCoordinate *>(baton); 3655 3656 LLDB_LOGF(log, "%s - Break ID %" PRIu64 ", " FMT_COORD, __FUNCTION__, 3657 break_id, target_coord.x, target_coord.y, target_coord.z); 3658 3659 // Select current thread 3660 ExecutionContext context(ctx->exe_ctx_ref); 3661 Thread *thread_ptr = context.GetThreadPtr(); 3662 assert(thread_ptr && "Null thread pointer"); 3663 3664 // Find current kernel invocation from .expand frame variables 3665 RSCoordinate current_coord{}; 3666 if (!GetKernelCoordinate(current_coord, thread_ptr)) { 3667 LLDB_LOGF(log, "%s - Error, couldn't select .expand stack frame", 3668 __FUNCTION__); 3669 return false; 3670 } 3671 3672 LLDB_LOGF(log, "%s - " FMT_COORD, __FUNCTION__, current_coord.x, 3673 current_coord.y, current_coord.z); 3674 3675 // Check if the current kernel invocation coordinate matches our target 3676 // coordinate 3677 if (target_coord == current_coord) { 3678 LLDB_LOGF(log, "%s, BREAKING " FMT_COORD, __FUNCTION__, current_coord.x, 3679 current_coord.y, current_coord.z); 3680 3681 BreakpointSP breakpoint_sp = 3682 context.GetTargetPtr()->GetBreakpointByID(break_id); 3683 assert(breakpoint_sp != nullptr && 3684 "Error: Couldn't find breakpoint matching break id for callback"); 3685 breakpoint_sp->SetEnabled(false); // Optimise since conditional breakpoint 3686 // should only be hit once. 3687 return true; 3688 } 3689 3690 // No match on coordinate 3691 return false; 3692 } 3693 3694 void RenderScriptRuntime::SetConditional(BreakpointSP bp, Stream &messages, 3695 const RSCoordinate &coord) { 3696 messages.Printf("Conditional kernel breakpoint on coordinate " FMT_COORD, 3697 coord.x, coord.y, coord.z); 3698 messages.EOL(); 3699 3700 // Allocate memory for the baton, and copy over coordinate 3701 RSCoordinate *baton = new RSCoordinate(coord); 3702 3703 // Create a callback that will be invoked every time the breakpoint is hit. 3704 // The baton object passed to the handler is the target coordinate we want to 3705 // break on. 3706 bp->SetCallback(KernelBreakpointHit, baton, true); 3707 3708 // Store a shared pointer to the baton, so the memory will eventually be 3709 // cleaned up after destruction 3710 m_conditional_breaks[bp->GetID()] = std::unique_ptr<RSCoordinate>(baton); 3711 } 3712 3713 // Tries to set a breakpoint on the start of a kernel, resolved using the 3714 // kernel name. Argument 'coords', represents a three dimensional coordinate 3715 // which can be used to specify a single kernel instance to break on. If this 3716 // is set then we add a callback to the breakpoint. 3717 bool RenderScriptRuntime::PlaceBreakpointOnKernel(TargetSP target, 3718 Stream &messages, 3719 const char *name, 3720 const RSCoordinate *coord) { 3721 if (!name) 3722 return false; 3723 3724 InitSearchFilter(target); 3725 3726 ConstString kernel_name(name); 3727 BreakpointSP bp = CreateKernelBreakpoint(kernel_name); 3728 if (!bp) 3729 return false; 3730 3731 // We have a conditional breakpoint on a specific coordinate 3732 if (coord) 3733 SetConditional(bp, messages, *coord); 3734 3735 bp->GetDescription(&messages, lldb::eDescriptionLevelInitial, false); 3736 3737 return true; 3738 } 3739 3740 BreakpointSP 3741 RenderScriptRuntime::CreateScriptGroupBreakpoint(ConstString name, 3742 bool stop_on_all) { 3743 Log *log = GetLog(LLDBLog::Language | LLDBLog::Breakpoints); 3744 3745 if (!m_filtersp) { 3746 LLDB_LOGF(log, "%s - error, no breakpoint search filter set.", 3747 __FUNCTION__); 3748 return nullptr; 3749 } 3750 3751 BreakpointResolverSP resolver_sp(new RSScriptGroupBreakpointResolver( 3752 nullptr, name, m_scriptGroups, stop_on_all)); 3753 Target &target = GetProcess()->GetTarget(); 3754 BreakpointSP bp = target.CreateBreakpoint( 3755 m_filtersp, resolver_sp, false, false, false); 3756 // Give RS breakpoints a specific name, so the user can manipulate them as a 3757 // group. 3758 Status err; 3759 target.AddNameToBreakpoint(bp, name.GetCString(), err); 3760 if (err.Fail() && log) 3761 LLDB_LOGF(log, "%s - error setting break name, '%s'.", __FUNCTION__, 3762 err.AsCString()); 3763 // ask the breakpoint to resolve itself 3764 bp->ResolveBreakpoint(); 3765 return bp; 3766 } 3767 3768 bool RenderScriptRuntime::PlaceBreakpointOnScriptGroup(TargetSP target, 3769 Stream &strm, 3770 ConstString name, 3771 bool multi) { 3772 InitSearchFilter(target); 3773 BreakpointSP bp = CreateScriptGroupBreakpoint(name, multi); 3774 if (bp) 3775 bp->GetDescription(&strm, lldb::eDescriptionLevelInitial, false); 3776 return bool(bp); 3777 } 3778 3779 bool RenderScriptRuntime::PlaceBreakpointOnReduction(TargetSP target, 3780 Stream &messages, 3781 const char *reduce_name, 3782 const RSCoordinate *coord, 3783 int kernel_types) { 3784 if (!reduce_name) 3785 return false; 3786 3787 InitSearchFilter(target); 3788 BreakpointSP bp = 3789 CreateReductionBreakpoint(ConstString(reduce_name), kernel_types); 3790 if (!bp) 3791 return false; 3792 3793 if (coord) 3794 SetConditional(bp, messages, *coord); 3795 3796 bp->GetDescription(&messages, lldb::eDescriptionLevelInitial, false); 3797 3798 return true; 3799 } 3800 3801 void RenderScriptRuntime::DumpModules(Stream &strm) const { 3802 strm.Printf("RenderScript Modules:"); 3803 strm.EOL(); 3804 strm.IndentMore(); 3805 for (const auto &module : m_rsmodules) { 3806 module->Dump(strm); 3807 } 3808 strm.IndentLess(); 3809 } 3810 3811 RenderScriptRuntime::ScriptDetails * 3812 RenderScriptRuntime::LookUpScript(addr_t address, bool create) { 3813 for (const auto &s : m_scripts) { 3814 if (s->script.isValid()) 3815 if (*s->script == address) 3816 return s.get(); 3817 } 3818 if (create) { 3819 std::unique_ptr<ScriptDetails> s(new ScriptDetails); 3820 s->script = address; 3821 m_scripts.push_back(std::move(s)); 3822 return m_scripts.back().get(); 3823 } 3824 return nullptr; 3825 } 3826 3827 RenderScriptRuntime::AllocationDetails * 3828 RenderScriptRuntime::LookUpAllocation(addr_t address) { 3829 for (const auto &a : m_allocations) { 3830 if (a->address.isValid()) 3831 if (*a->address == address) 3832 return a.get(); 3833 } 3834 return nullptr; 3835 } 3836 3837 RenderScriptRuntime::AllocationDetails * 3838 RenderScriptRuntime::CreateAllocation(addr_t address) { 3839 Log *log = GetLog(LLDBLog::Language); 3840 3841 // Remove any previous allocation which contains the same address 3842 auto it = m_allocations.begin(); 3843 while (it != m_allocations.end()) { 3844 if (*((*it)->address) == address) { 3845 LLDB_LOGF(log, "%s - Removing allocation id: %d, address: 0x%" PRIx64, 3846 __FUNCTION__, (*it)->id, address); 3847 3848 it = m_allocations.erase(it); 3849 } else { 3850 it++; 3851 } 3852 } 3853 3854 std::unique_ptr<AllocationDetails> a(new AllocationDetails); 3855 a->address = address; 3856 m_allocations.push_back(std::move(a)); 3857 return m_allocations.back().get(); 3858 } 3859 3860 bool RenderScriptRuntime::ResolveKernelName(lldb::addr_t kernel_addr, 3861 ConstString &name) { 3862 Log *log = GetLog(LLDBLog::Symbols); 3863 3864 Target &target = GetProcess()->GetTarget(); 3865 Address resolved; 3866 // RenderScript module 3867 if (!target.GetSectionLoadList().ResolveLoadAddress(kernel_addr, resolved)) { 3868 LLDB_LOGF(log, "%s: unable to resolve 0x%" PRIx64 " to a loaded symbol", 3869 __FUNCTION__, kernel_addr); 3870 return false; 3871 } 3872 3873 Symbol *sym = resolved.CalculateSymbolContextSymbol(); 3874 if (!sym) 3875 return false; 3876 3877 name = sym->GetName(); 3878 assert(IsRenderScriptModule(resolved.CalculateSymbolContextModule())); 3879 LLDB_LOGF(log, "%s: 0x%" PRIx64 " resolved to the symbol '%s'", __FUNCTION__, 3880 kernel_addr, name.GetCString()); 3881 return true; 3882 } 3883 3884 void RSModuleDescriptor::Dump(Stream &strm) const { 3885 int indent = strm.GetIndentLevel(); 3886 3887 strm.Indent(); 3888 m_module->GetFileSpec().Dump(strm.AsRawOstream()); 3889 strm.Indent(m_module->GetNumCompileUnits() ? "Debug info loaded." 3890 : "Debug info does not exist."); 3891 strm.EOL(); 3892 strm.IndentMore(); 3893 3894 strm.Indent(); 3895 strm.Printf("Globals: %" PRIu64, static_cast<uint64_t>(m_globals.size())); 3896 strm.EOL(); 3897 strm.IndentMore(); 3898 for (const auto &global : m_globals) { 3899 global.Dump(strm); 3900 } 3901 strm.IndentLess(); 3902 3903 strm.Indent(); 3904 strm.Printf("Kernels: %" PRIu64, static_cast<uint64_t>(m_kernels.size())); 3905 strm.EOL(); 3906 strm.IndentMore(); 3907 for (const auto &kernel : m_kernels) { 3908 kernel.Dump(strm); 3909 } 3910 strm.IndentLess(); 3911 3912 strm.Indent(); 3913 strm.Printf("Pragmas: %" PRIu64, static_cast<uint64_t>(m_pragmas.size())); 3914 strm.EOL(); 3915 strm.IndentMore(); 3916 for (const auto &key_val : m_pragmas) { 3917 strm.Indent(); 3918 strm.Printf("%s: %s", key_val.first.c_str(), key_val.second.c_str()); 3919 strm.EOL(); 3920 } 3921 strm.IndentLess(); 3922 3923 strm.Indent(); 3924 strm.Printf("Reductions: %" PRIu64, 3925 static_cast<uint64_t>(m_reductions.size())); 3926 strm.EOL(); 3927 strm.IndentMore(); 3928 for (const auto &reduction : m_reductions) { 3929 reduction.Dump(strm); 3930 } 3931 3932 strm.SetIndentLevel(indent); 3933 } 3934 3935 void RSGlobalDescriptor::Dump(Stream &strm) const { 3936 strm.Indent(m_name.GetStringRef()); 3937 VariableList var_list; 3938 m_module->m_module->FindGlobalVariables(m_name, CompilerDeclContext(), 1U, 3939 var_list); 3940 if (var_list.GetSize() == 1) { 3941 auto var = var_list.GetVariableAtIndex(0); 3942 auto type = var->GetType(); 3943 if (type) { 3944 strm.Printf(" - "); 3945 type->DumpTypeName(&strm); 3946 } else { 3947 strm.Printf(" - Unknown Type"); 3948 } 3949 } else { 3950 strm.Printf(" - variable identified, but not found in binary"); 3951 const Symbol *s = m_module->m_module->FindFirstSymbolWithNameAndType( 3952 m_name, eSymbolTypeData); 3953 if (s) { 3954 strm.Printf(" (symbol exists) "); 3955 } 3956 } 3957 3958 strm.EOL(); 3959 } 3960 3961 void RSKernelDescriptor::Dump(Stream &strm) const { 3962 strm.Indent(m_name.GetStringRef()); 3963 strm.EOL(); 3964 } 3965 3966 void RSReductionDescriptor::Dump(lldb_private::Stream &stream) const { 3967 stream.Indent(m_reduce_name.GetStringRef()); 3968 stream.IndentMore(); 3969 stream.EOL(); 3970 stream.Indent(); 3971 stream.Printf("accumulator: %s", m_accum_name.AsCString()); 3972 stream.EOL(); 3973 stream.Indent(); 3974 stream.Printf("initializer: %s", m_init_name.AsCString()); 3975 stream.EOL(); 3976 stream.Indent(); 3977 stream.Printf("combiner: %s", m_comb_name.AsCString()); 3978 stream.EOL(); 3979 stream.Indent(); 3980 stream.Printf("outconverter: %s", m_outc_name.AsCString()); 3981 stream.EOL(); 3982 // XXX This is currently unspecified by RenderScript, and unused 3983 // stream.Indent(); 3984 // stream.Printf("halter: '%s'", m_init_name.AsCString()); 3985 // stream.EOL(); 3986 stream.IndentLess(); 3987 } 3988 3989 class CommandObjectRenderScriptRuntimeModuleDump : public CommandObjectParsed { 3990 public: 3991 CommandObjectRenderScriptRuntimeModuleDump(CommandInterpreter &interpreter) 3992 : CommandObjectParsed( 3993 interpreter, "renderscript module dump", 3994 "Dumps renderscript specific information for all modules.", 3995 "renderscript module dump", 3996 eCommandRequiresProcess | eCommandProcessMustBeLaunched) {} 3997 3998 ~CommandObjectRenderScriptRuntimeModuleDump() override = default; 3999 4000 bool DoExecute(Args &command, CommandReturnObject &result) override { 4001 RenderScriptRuntime *runtime = llvm::cast<RenderScriptRuntime>( 4002 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4003 eLanguageTypeExtRenderScript)); 4004 runtime->DumpModules(result.GetOutputStream()); 4005 result.SetStatus(eReturnStatusSuccessFinishResult); 4006 return true; 4007 } 4008 }; 4009 4010 class CommandObjectRenderScriptRuntimeModule : public CommandObjectMultiword { 4011 public: 4012 CommandObjectRenderScriptRuntimeModule(CommandInterpreter &interpreter) 4013 : CommandObjectMultiword(interpreter, "renderscript module", 4014 "Commands that deal with RenderScript modules.", 4015 nullptr) { 4016 LoadSubCommand( 4017 "dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeModuleDump( 4018 interpreter))); 4019 } 4020 4021 ~CommandObjectRenderScriptRuntimeModule() override = default; 4022 }; 4023 4024 class CommandObjectRenderScriptRuntimeKernelList : public CommandObjectParsed { 4025 public: 4026 CommandObjectRenderScriptRuntimeKernelList(CommandInterpreter &interpreter) 4027 : CommandObjectParsed( 4028 interpreter, "renderscript kernel list", 4029 "Lists renderscript kernel names and associated script resources.", 4030 "renderscript kernel list", 4031 eCommandRequiresProcess | eCommandProcessMustBeLaunched) {} 4032 4033 ~CommandObjectRenderScriptRuntimeKernelList() override = default; 4034 4035 bool DoExecute(Args &command, CommandReturnObject &result) override { 4036 RenderScriptRuntime *runtime = llvm::cast<RenderScriptRuntime>( 4037 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4038 eLanguageTypeExtRenderScript)); 4039 runtime->DumpKernels(result.GetOutputStream()); 4040 result.SetStatus(eReturnStatusSuccessFinishResult); 4041 return true; 4042 } 4043 }; 4044 4045 static constexpr OptionDefinition g_renderscript_reduction_bp_set_options[] = { 4046 {LLDB_OPT_SET_1, false, "function-role", 't', 4047 OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeOneLiner, 4048 "Break on a comma separated set of reduction kernel types " 4049 "(accumulator,outcoverter,combiner,initializer"}, 4050 {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument, 4051 nullptr, {}, 0, eArgTypeValue, 4052 "Set a breakpoint on a single invocation of the kernel with specified " 4053 "coordinate.\n" 4054 "Coordinate takes the form 'x[,y][,z] where x,y,z are positive " 4055 "integers representing kernel dimensions. " 4056 "Any unset dimensions will be defaulted to zero."}}; 4057 4058 class CommandObjectRenderScriptRuntimeReductionBreakpointSet 4059 : public CommandObjectParsed { 4060 public: 4061 CommandObjectRenderScriptRuntimeReductionBreakpointSet( 4062 CommandInterpreter &interpreter) 4063 : CommandObjectParsed( 4064 interpreter, "renderscript reduction breakpoint set", 4065 "Set a breakpoint on named RenderScript general reductions", 4066 "renderscript reduction breakpoint set <kernel_name> [-t " 4067 "<reduction_kernel_type,...>]", 4068 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4069 eCommandProcessMustBePaused), 4070 m_options() { 4071 CommandArgumentData name_arg{eArgTypeName, eArgRepeatPlain}; 4072 m_arguments.push_back({name_arg}); 4073 }; 4074 4075 class CommandOptions : public Options { 4076 public: 4077 CommandOptions() : Options() {} 4078 4079 ~CommandOptions() override = default; 4080 4081 Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg, 4082 ExecutionContext *exe_ctx) override { 4083 Status err; 4084 StreamString err_str; 4085 const int short_option = m_getopt_table[option_idx].val; 4086 switch (short_option) { 4087 case 't': 4088 if (!ParseReductionTypes(option_arg, err_str)) 4089 err.SetErrorStringWithFormat( 4090 "Unable to deduce reduction types for %s: %s", 4091 option_arg.str().c_str(), err_str.GetData()); 4092 break; 4093 case 'c': { 4094 auto coord = RSCoordinate{}; 4095 if (!ParseCoordinate(option_arg, coord)) 4096 err.SetErrorStringWithFormat("unable to parse coordinate for %s", 4097 option_arg.str().c_str()); 4098 else { 4099 m_have_coord = true; 4100 m_coord = coord; 4101 } 4102 break; 4103 } 4104 default: 4105 err.SetErrorStringWithFormat("Invalid option '-%c'", short_option); 4106 } 4107 return err; 4108 } 4109 4110 void OptionParsingStarting(ExecutionContext *exe_ctx) override { 4111 m_have_coord = false; 4112 } 4113 4114 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4115 return llvm::makeArrayRef(g_renderscript_reduction_bp_set_options); 4116 } 4117 4118 bool ParseReductionTypes(llvm::StringRef option_val, 4119 StreamString &err_str) { 4120 m_kernel_types = RSReduceBreakpointResolver::eKernelTypeNone; 4121 const auto reduce_name_to_type = [](llvm::StringRef name) -> int { 4122 return llvm::StringSwitch<int>(name) 4123 .Case("accumulator", RSReduceBreakpointResolver::eKernelTypeAccum) 4124 .Case("initializer", RSReduceBreakpointResolver::eKernelTypeInit) 4125 .Case("outconverter", RSReduceBreakpointResolver::eKernelTypeOutC) 4126 .Case("combiner", RSReduceBreakpointResolver::eKernelTypeComb) 4127 .Case("all", RSReduceBreakpointResolver::eKernelTypeAll) 4128 // Currently not exposed by the runtime 4129 // .Case("halter", RSReduceBreakpointResolver::eKernelTypeHalter) 4130 .Default(0); 4131 }; 4132 4133 // Matching a comma separated list of known words is fairly 4134 // straightforward with PCRE, but we're using ERE, so we end up with a 4135 // little ugliness... 4136 RegularExpression match_type_list( 4137 llvm::StringRef("^([[:alpha:]]+)(,[[:alpha:]]+){0,4}$")); 4138 4139 assert(match_type_list.IsValid()); 4140 4141 if (!match_type_list.Execute(option_val)) { 4142 err_str.PutCString( 4143 "a comma-separated list of kernel types is required"); 4144 return false; 4145 } 4146 4147 // splitting on commas is much easier with llvm::StringRef than regex 4148 llvm::SmallVector<llvm::StringRef, 5> type_names; 4149 llvm::StringRef(option_val).split(type_names, ','); 4150 4151 for (const auto &name : type_names) { 4152 const int type = reduce_name_to_type(name); 4153 if (!type) { 4154 err_str.Printf("unknown kernel type name %s", name.str().c_str()); 4155 return false; 4156 } 4157 m_kernel_types |= type; 4158 } 4159 4160 return true; 4161 } 4162 4163 int m_kernel_types = RSReduceBreakpointResolver::eKernelTypeAll; 4164 llvm::StringRef m_reduce_name; 4165 RSCoordinate m_coord; 4166 bool m_have_coord; 4167 }; 4168 4169 Options *GetOptions() override { return &m_options; } 4170 4171 bool DoExecute(Args &command, CommandReturnObject &result) override { 4172 const size_t argc = command.GetArgumentCount(); 4173 if (argc < 1) { 4174 result.AppendErrorWithFormat("'%s' takes 1 argument of reduction name, " 4175 "and an optional kernel type list", 4176 m_cmd_name.c_str()); 4177 return false; 4178 } 4179 4180 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4181 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4182 eLanguageTypeExtRenderScript)); 4183 4184 auto &outstream = result.GetOutputStream(); 4185 auto name = command.GetArgumentAtIndex(0); 4186 auto &target = m_exe_ctx.GetTargetSP(); 4187 auto coord = m_options.m_have_coord ? &m_options.m_coord : nullptr; 4188 if (!runtime->PlaceBreakpointOnReduction(target, outstream, name, coord, 4189 m_options.m_kernel_types)) { 4190 result.AppendError("Error: unable to place breakpoint on reduction"); 4191 return false; 4192 } 4193 result.AppendMessage("Breakpoint(s) created"); 4194 result.SetStatus(eReturnStatusSuccessFinishResult); 4195 return true; 4196 } 4197 4198 private: 4199 CommandOptions m_options; 4200 }; 4201 4202 static constexpr OptionDefinition g_renderscript_kernel_bp_set_options[] = { 4203 {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument, 4204 nullptr, {}, 0, eArgTypeValue, 4205 "Set a breakpoint on a single invocation of the kernel with specified " 4206 "coordinate.\n" 4207 "Coordinate takes the form 'x[,y][,z] where x,y,z are positive " 4208 "integers representing kernel dimensions. " 4209 "Any unset dimensions will be defaulted to zero."}}; 4210 4211 class CommandObjectRenderScriptRuntimeKernelBreakpointSet 4212 : public CommandObjectParsed { 4213 public: 4214 CommandObjectRenderScriptRuntimeKernelBreakpointSet( 4215 CommandInterpreter &interpreter) 4216 : CommandObjectParsed( 4217 interpreter, "renderscript kernel breakpoint set", 4218 "Sets a breakpoint on a renderscript kernel.", 4219 "renderscript kernel breakpoint set <kernel_name> [-c x,y,z]", 4220 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4221 eCommandProcessMustBePaused), 4222 m_options() { 4223 CommandArgumentData name_arg{eArgTypeName, eArgRepeatPlain}; 4224 m_arguments.push_back({name_arg}); 4225 } 4226 4227 ~CommandObjectRenderScriptRuntimeKernelBreakpointSet() override = default; 4228 4229 Options *GetOptions() override { return &m_options; } 4230 4231 class CommandOptions : public Options { 4232 public: 4233 CommandOptions() : Options() {} 4234 4235 ~CommandOptions() override = default; 4236 4237 Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg, 4238 ExecutionContext *exe_ctx) override { 4239 Status err; 4240 const int short_option = m_getopt_table[option_idx].val; 4241 4242 switch (short_option) { 4243 case 'c': { 4244 auto coord = RSCoordinate{}; 4245 if (!ParseCoordinate(option_arg, coord)) 4246 err.SetErrorStringWithFormat( 4247 "Couldn't parse coordinate '%s', should be in format 'x,y,z'.", 4248 option_arg.str().c_str()); 4249 else { 4250 m_have_coord = true; 4251 m_coord = coord; 4252 } 4253 break; 4254 } 4255 default: 4256 err.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 4257 break; 4258 } 4259 return err; 4260 } 4261 4262 void OptionParsingStarting(ExecutionContext *exe_ctx) override { 4263 m_have_coord = false; 4264 } 4265 4266 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4267 return llvm::makeArrayRef(g_renderscript_kernel_bp_set_options); 4268 } 4269 4270 RSCoordinate m_coord; 4271 bool m_have_coord; 4272 }; 4273 4274 bool DoExecute(Args &command, CommandReturnObject &result) override { 4275 const size_t argc = command.GetArgumentCount(); 4276 if (argc < 1) { 4277 result.AppendErrorWithFormat( 4278 "'%s' takes 1 argument of kernel name, and an optional coordinate.", 4279 m_cmd_name.c_str()); 4280 return false; 4281 } 4282 4283 RenderScriptRuntime *runtime = llvm::cast<RenderScriptRuntime>( 4284 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4285 eLanguageTypeExtRenderScript)); 4286 4287 auto &outstream = result.GetOutputStream(); 4288 auto &target = m_exe_ctx.GetTargetSP(); 4289 auto name = command.GetArgumentAtIndex(0); 4290 auto coord = m_options.m_have_coord ? &m_options.m_coord : nullptr; 4291 if (!runtime->PlaceBreakpointOnKernel(target, outstream, name, coord)) { 4292 result.AppendErrorWithFormat( 4293 "Error: unable to set breakpoint on kernel '%s'", name); 4294 return false; 4295 } 4296 4297 result.AppendMessage("Breakpoint(s) created"); 4298 result.SetStatus(eReturnStatusSuccessFinishResult); 4299 return true; 4300 } 4301 4302 private: 4303 CommandOptions m_options; 4304 }; 4305 4306 class CommandObjectRenderScriptRuntimeKernelBreakpointAll 4307 : public CommandObjectParsed { 4308 public: 4309 CommandObjectRenderScriptRuntimeKernelBreakpointAll( 4310 CommandInterpreter &interpreter) 4311 : CommandObjectParsed( 4312 interpreter, "renderscript kernel breakpoint all", 4313 "Automatically sets a breakpoint on all renderscript kernels that " 4314 "are or will be loaded.\n" 4315 "Disabling option means breakpoints will no longer be set on any " 4316 "kernels loaded in the future, " 4317 "but does not remove currently set breakpoints.", 4318 "renderscript kernel breakpoint all <enable/disable>", 4319 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4320 eCommandProcessMustBePaused) { 4321 CommandArgumentData enable_arg{eArgTypeNone, eArgRepeatPlain}; 4322 m_arguments.push_back({enable_arg}); 4323 } 4324 4325 ~CommandObjectRenderScriptRuntimeKernelBreakpointAll() override = default; 4326 4327 bool DoExecute(Args &command, CommandReturnObject &result) override { 4328 const size_t argc = command.GetArgumentCount(); 4329 if (argc != 1) { 4330 result.AppendErrorWithFormat( 4331 "'%s' takes 1 argument of 'enable' or 'disable'", m_cmd_name.c_str()); 4332 return false; 4333 } 4334 4335 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4336 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4337 eLanguageTypeExtRenderScript)); 4338 4339 bool do_break = false; 4340 const char *argument = command.GetArgumentAtIndex(0); 4341 if (strcmp(argument, "enable") == 0) { 4342 do_break = true; 4343 result.AppendMessage("Breakpoints will be set on all kernels."); 4344 } else if (strcmp(argument, "disable") == 0) { 4345 do_break = false; 4346 result.AppendMessage("Breakpoints will not be set on any new kernels."); 4347 } else { 4348 result.AppendErrorWithFormat( 4349 "Argument must be either 'enable' or 'disable'"); 4350 return false; 4351 } 4352 4353 runtime->SetBreakAllKernels(do_break, m_exe_ctx.GetTargetSP()); 4354 4355 result.SetStatus(eReturnStatusSuccessFinishResult); 4356 return true; 4357 } 4358 }; 4359 4360 class CommandObjectRenderScriptRuntimeReductionBreakpoint 4361 : public CommandObjectMultiword { 4362 public: 4363 CommandObjectRenderScriptRuntimeReductionBreakpoint( 4364 CommandInterpreter &interpreter) 4365 : CommandObjectMultiword(interpreter, "renderscript reduction breakpoint", 4366 "Commands that manipulate breakpoints on " 4367 "renderscript general reductions.", 4368 nullptr) { 4369 LoadSubCommand( 4370 "set", CommandObjectSP( 4371 new CommandObjectRenderScriptRuntimeReductionBreakpointSet( 4372 interpreter))); 4373 } 4374 4375 ~CommandObjectRenderScriptRuntimeReductionBreakpoint() override = default; 4376 }; 4377 4378 class CommandObjectRenderScriptRuntimeKernelCoordinate 4379 : public CommandObjectParsed { 4380 public: 4381 CommandObjectRenderScriptRuntimeKernelCoordinate( 4382 CommandInterpreter &interpreter) 4383 : CommandObjectParsed( 4384 interpreter, "renderscript kernel coordinate", 4385 "Shows the (x,y,z) coordinate of the current kernel invocation.", 4386 "renderscript kernel coordinate", 4387 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4388 eCommandProcessMustBePaused) {} 4389 4390 ~CommandObjectRenderScriptRuntimeKernelCoordinate() override = default; 4391 4392 bool DoExecute(Args &command, CommandReturnObject &result) override { 4393 RSCoordinate coord{}; 4394 bool success = RenderScriptRuntime::GetKernelCoordinate( 4395 coord, m_exe_ctx.GetThreadPtr()); 4396 Stream &stream = result.GetOutputStream(); 4397 4398 if (success) { 4399 stream.Printf("Coordinate: " FMT_COORD, coord.x, coord.y, coord.z); 4400 stream.EOL(); 4401 result.SetStatus(eReturnStatusSuccessFinishResult); 4402 } else { 4403 stream.Printf("Error: Coordinate could not be found."); 4404 stream.EOL(); 4405 result.SetStatus(eReturnStatusFailed); 4406 } 4407 return true; 4408 } 4409 }; 4410 4411 class CommandObjectRenderScriptRuntimeKernelBreakpoint 4412 : public CommandObjectMultiword { 4413 public: 4414 CommandObjectRenderScriptRuntimeKernelBreakpoint( 4415 CommandInterpreter &interpreter) 4416 : CommandObjectMultiword( 4417 interpreter, "renderscript kernel", 4418 "Commands that generate breakpoints on renderscript kernels.", 4419 nullptr) { 4420 LoadSubCommand( 4421 "set", 4422 CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointSet( 4423 interpreter))); 4424 LoadSubCommand( 4425 "all", 4426 CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointAll( 4427 interpreter))); 4428 } 4429 4430 ~CommandObjectRenderScriptRuntimeKernelBreakpoint() override = default; 4431 }; 4432 4433 class CommandObjectRenderScriptRuntimeKernel : public CommandObjectMultiword { 4434 public: 4435 CommandObjectRenderScriptRuntimeKernel(CommandInterpreter &interpreter) 4436 : CommandObjectMultiword(interpreter, "renderscript kernel", 4437 "Commands that deal with RenderScript kernels.", 4438 nullptr) { 4439 LoadSubCommand( 4440 "list", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelList( 4441 interpreter))); 4442 LoadSubCommand( 4443 "coordinate", 4444 CommandObjectSP( 4445 new CommandObjectRenderScriptRuntimeKernelCoordinate(interpreter))); 4446 LoadSubCommand( 4447 "breakpoint", 4448 CommandObjectSP( 4449 new CommandObjectRenderScriptRuntimeKernelBreakpoint(interpreter))); 4450 } 4451 4452 ~CommandObjectRenderScriptRuntimeKernel() override = default; 4453 }; 4454 4455 class CommandObjectRenderScriptRuntimeContextDump : public CommandObjectParsed { 4456 public: 4457 CommandObjectRenderScriptRuntimeContextDump(CommandInterpreter &interpreter) 4458 : CommandObjectParsed(interpreter, "renderscript context dump", 4459 "Dumps renderscript context information.", 4460 "renderscript context dump", 4461 eCommandRequiresProcess | 4462 eCommandProcessMustBeLaunched) {} 4463 4464 ~CommandObjectRenderScriptRuntimeContextDump() override = default; 4465 4466 bool DoExecute(Args &command, CommandReturnObject &result) override { 4467 RenderScriptRuntime *runtime = llvm::cast<RenderScriptRuntime>( 4468 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4469 eLanguageTypeExtRenderScript)); 4470 runtime->DumpContexts(result.GetOutputStream()); 4471 result.SetStatus(eReturnStatusSuccessFinishResult); 4472 return true; 4473 } 4474 }; 4475 4476 static constexpr OptionDefinition g_renderscript_runtime_alloc_dump_options[] = { 4477 {LLDB_OPT_SET_1, false, "file", 'f', OptionParser::eRequiredArgument, 4478 nullptr, {}, 0, eArgTypeFilename, 4479 "Print results to specified file instead of command line."}}; 4480 4481 class CommandObjectRenderScriptRuntimeContext : public CommandObjectMultiword { 4482 public: 4483 CommandObjectRenderScriptRuntimeContext(CommandInterpreter &interpreter) 4484 : CommandObjectMultiword(interpreter, "renderscript context", 4485 "Commands that deal with RenderScript contexts.", 4486 nullptr) { 4487 LoadSubCommand( 4488 "dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeContextDump( 4489 interpreter))); 4490 } 4491 4492 ~CommandObjectRenderScriptRuntimeContext() override = default; 4493 }; 4494 4495 class CommandObjectRenderScriptRuntimeAllocationDump 4496 : public CommandObjectParsed { 4497 public: 4498 CommandObjectRenderScriptRuntimeAllocationDump( 4499 CommandInterpreter &interpreter) 4500 : CommandObjectParsed(interpreter, "renderscript allocation dump", 4501 "Displays the contents of a particular allocation", 4502 "renderscript allocation dump <ID>", 4503 eCommandRequiresProcess | 4504 eCommandProcessMustBeLaunched), 4505 m_options() { 4506 CommandArgumentData id_arg{eArgTypeUnsignedInteger, eArgRepeatPlain}; 4507 m_arguments.push_back({id_arg}); 4508 } 4509 4510 ~CommandObjectRenderScriptRuntimeAllocationDump() override = default; 4511 4512 Options *GetOptions() override { return &m_options; } 4513 4514 class CommandOptions : public Options { 4515 public: 4516 CommandOptions() : Options() {} 4517 4518 ~CommandOptions() override = default; 4519 4520 Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg, 4521 ExecutionContext *exe_ctx) override { 4522 Status err; 4523 const int short_option = m_getopt_table[option_idx].val; 4524 4525 switch (short_option) { 4526 case 'f': 4527 m_outfile.SetFile(option_arg, FileSpec::Style::native); 4528 FileSystem::Instance().Resolve(m_outfile); 4529 if (FileSystem::Instance().Exists(m_outfile)) { 4530 m_outfile.Clear(); 4531 err.SetErrorStringWithFormat("file already exists: '%s'", 4532 option_arg.str().c_str()); 4533 } 4534 break; 4535 default: 4536 err.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 4537 break; 4538 } 4539 return err; 4540 } 4541 4542 void OptionParsingStarting(ExecutionContext *exe_ctx) override { 4543 m_outfile.Clear(); 4544 } 4545 4546 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4547 return llvm::makeArrayRef(g_renderscript_runtime_alloc_dump_options); 4548 } 4549 4550 FileSpec m_outfile; 4551 }; 4552 4553 bool DoExecute(Args &command, CommandReturnObject &result) override { 4554 const size_t argc = command.GetArgumentCount(); 4555 if (argc < 1) { 4556 result.AppendErrorWithFormat("'%s' takes 1 argument, an allocation ID. " 4557 "As well as an optional -f argument", 4558 m_cmd_name.c_str()); 4559 return false; 4560 } 4561 4562 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4563 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4564 eLanguageTypeExtRenderScript)); 4565 4566 const char *id_cstr = command.GetArgumentAtIndex(0); 4567 uint32_t id; 4568 if (!llvm::to_integer(id_cstr, id)) { 4569 result.AppendErrorWithFormat("invalid allocation id argument '%s'", 4570 id_cstr); 4571 return false; 4572 } 4573 4574 Stream *output_stream_p = nullptr; 4575 std::unique_ptr<Stream> output_stream_storage; 4576 4577 const FileSpec &outfile_spec = 4578 m_options.m_outfile; // Dump allocation to file instead 4579 if (outfile_spec) { 4580 // Open output file 4581 std::string path = outfile_spec.GetPath(); 4582 auto file = FileSystem::Instance().Open(outfile_spec, 4583 File::eOpenOptionWriteOnly | 4584 File::eOpenOptionCanCreate); 4585 if (file) { 4586 output_stream_storage = 4587 std::make_unique<StreamFile>(std::move(file.get())); 4588 output_stream_p = output_stream_storage.get(); 4589 result.GetOutputStream().Printf("Results written to '%s'", 4590 path.c_str()); 4591 result.GetOutputStream().EOL(); 4592 } else { 4593 std::string error = llvm::toString(file.takeError()); 4594 result.AppendErrorWithFormat("Couldn't open file '%s': %s", 4595 path.c_str(), error.c_str()); 4596 return false; 4597 } 4598 } else 4599 output_stream_p = &result.GetOutputStream(); 4600 4601 assert(output_stream_p != nullptr); 4602 bool dumped = 4603 runtime->DumpAllocation(*output_stream_p, m_exe_ctx.GetFramePtr(), id); 4604 4605 if (dumped) 4606 result.SetStatus(eReturnStatusSuccessFinishResult); 4607 else 4608 result.SetStatus(eReturnStatusFailed); 4609 4610 return true; 4611 } 4612 4613 private: 4614 CommandOptions m_options; 4615 }; 4616 4617 static constexpr OptionDefinition g_renderscript_runtime_alloc_list_options[] = { 4618 {LLDB_OPT_SET_1, false, "id", 'i', OptionParser::eRequiredArgument, nullptr, 4619 {}, 0, eArgTypeIndex, 4620 "Only show details of a single allocation with specified id."}}; 4621 4622 class CommandObjectRenderScriptRuntimeAllocationList 4623 : public CommandObjectParsed { 4624 public: 4625 CommandObjectRenderScriptRuntimeAllocationList( 4626 CommandInterpreter &interpreter) 4627 : CommandObjectParsed( 4628 interpreter, "renderscript allocation list", 4629 "List renderscript allocations and their information.", 4630 "renderscript allocation list", 4631 eCommandRequiresProcess | eCommandProcessMustBeLaunched), 4632 m_options() {} 4633 4634 ~CommandObjectRenderScriptRuntimeAllocationList() override = default; 4635 4636 Options *GetOptions() override { return &m_options; } 4637 4638 class CommandOptions : public Options { 4639 public: 4640 CommandOptions() : Options() {} 4641 4642 ~CommandOptions() override = default; 4643 4644 Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg, 4645 ExecutionContext *exe_ctx) override { 4646 Status err; 4647 const int short_option = m_getopt_table[option_idx].val; 4648 4649 switch (short_option) { 4650 case 'i': 4651 if (option_arg.getAsInteger(0, m_id)) 4652 err.SetErrorStringWithFormat("invalid integer value for option '%c'", 4653 short_option); 4654 break; 4655 default: 4656 err.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 4657 break; 4658 } 4659 return err; 4660 } 4661 4662 void OptionParsingStarting(ExecutionContext *exe_ctx) override { m_id = 0; } 4663 4664 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4665 return llvm::makeArrayRef(g_renderscript_runtime_alloc_list_options); 4666 } 4667 4668 uint32_t m_id = 0; 4669 }; 4670 4671 bool DoExecute(Args &command, CommandReturnObject &result) override { 4672 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4673 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4674 eLanguageTypeExtRenderScript)); 4675 runtime->ListAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr(), 4676 m_options.m_id); 4677 result.SetStatus(eReturnStatusSuccessFinishResult); 4678 return true; 4679 } 4680 4681 private: 4682 CommandOptions m_options; 4683 }; 4684 4685 class CommandObjectRenderScriptRuntimeAllocationLoad 4686 : public CommandObjectParsed { 4687 public: 4688 CommandObjectRenderScriptRuntimeAllocationLoad( 4689 CommandInterpreter &interpreter) 4690 : CommandObjectParsed( 4691 interpreter, "renderscript allocation load", 4692 "Loads renderscript allocation contents from a file.", 4693 "renderscript allocation load <ID> <filename>", 4694 eCommandRequiresProcess | eCommandProcessMustBeLaunched) { 4695 CommandArgumentData id_arg{eArgTypeUnsignedInteger, eArgRepeatPlain}; 4696 CommandArgumentData name_arg{eArgTypeFilename, eArgRepeatPlain}; 4697 m_arguments.push_back({id_arg}); 4698 m_arguments.push_back({name_arg}); 4699 } 4700 4701 ~CommandObjectRenderScriptRuntimeAllocationLoad() override = default; 4702 4703 bool DoExecute(Args &command, CommandReturnObject &result) override { 4704 const size_t argc = command.GetArgumentCount(); 4705 if (argc != 2) { 4706 result.AppendErrorWithFormat( 4707 "'%s' takes 2 arguments, an allocation ID and filename to read from.", 4708 m_cmd_name.c_str()); 4709 return false; 4710 } 4711 4712 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4713 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4714 eLanguageTypeExtRenderScript)); 4715 4716 const char *id_cstr = command.GetArgumentAtIndex(0); 4717 uint32_t id; 4718 if (!llvm::to_integer(id_cstr, id)) { 4719 result.AppendErrorWithFormat("invalid allocation id argument '%s'", 4720 id_cstr); 4721 return false; 4722 } 4723 4724 const char *path = command.GetArgumentAtIndex(1); 4725 bool loaded = runtime->LoadAllocation(result.GetOutputStream(), id, path, 4726 m_exe_ctx.GetFramePtr()); 4727 4728 if (loaded) 4729 result.SetStatus(eReturnStatusSuccessFinishResult); 4730 else 4731 result.SetStatus(eReturnStatusFailed); 4732 4733 return true; 4734 } 4735 }; 4736 4737 class CommandObjectRenderScriptRuntimeAllocationSave 4738 : public CommandObjectParsed { 4739 public: 4740 CommandObjectRenderScriptRuntimeAllocationSave( 4741 CommandInterpreter &interpreter) 4742 : CommandObjectParsed(interpreter, "renderscript allocation save", 4743 "Write renderscript allocation contents to a file.", 4744 "renderscript allocation save <ID> <filename>", 4745 eCommandRequiresProcess | 4746 eCommandProcessMustBeLaunched) { 4747 CommandArgumentData id_arg{eArgTypeUnsignedInteger, eArgRepeatPlain}; 4748 CommandArgumentData name_arg{eArgTypeFilename, eArgRepeatPlain}; 4749 m_arguments.push_back({id_arg}); 4750 m_arguments.push_back({name_arg}); 4751 } 4752 4753 ~CommandObjectRenderScriptRuntimeAllocationSave() override = default; 4754 4755 bool DoExecute(Args &command, CommandReturnObject &result) override { 4756 const size_t argc = command.GetArgumentCount(); 4757 if (argc != 2) { 4758 result.AppendErrorWithFormat( 4759 "'%s' takes 2 arguments, an allocation ID and filename to read from.", 4760 m_cmd_name.c_str()); 4761 return false; 4762 } 4763 4764 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4765 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4766 eLanguageTypeExtRenderScript)); 4767 4768 const char *id_cstr = command.GetArgumentAtIndex(0); 4769 uint32_t id; 4770 if (!llvm::to_integer(id_cstr, id)) { 4771 result.AppendErrorWithFormat("invalid allocation id argument '%s'", 4772 id_cstr); 4773 return false; 4774 } 4775 4776 const char *path = command.GetArgumentAtIndex(1); 4777 bool saved = runtime->SaveAllocation(result.GetOutputStream(), id, path, 4778 m_exe_ctx.GetFramePtr()); 4779 4780 if (saved) 4781 result.SetStatus(eReturnStatusSuccessFinishResult); 4782 else 4783 result.SetStatus(eReturnStatusFailed); 4784 4785 return true; 4786 } 4787 }; 4788 4789 class CommandObjectRenderScriptRuntimeAllocationRefresh 4790 : public CommandObjectParsed { 4791 public: 4792 CommandObjectRenderScriptRuntimeAllocationRefresh( 4793 CommandInterpreter &interpreter) 4794 : CommandObjectParsed(interpreter, "renderscript allocation refresh", 4795 "Recomputes the details of all allocations.", 4796 "renderscript allocation refresh", 4797 eCommandRequiresProcess | 4798 eCommandProcessMustBeLaunched) {} 4799 4800 ~CommandObjectRenderScriptRuntimeAllocationRefresh() override = default; 4801 4802 bool DoExecute(Args &command, CommandReturnObject &result) override { 4803 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4804 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4805 eLanguageTypeExtRenderScript)); 4806 4807 bool success = runtime->RecomputeAllAllocations(result.GetOutputStream(), 4808 m_exe_ctx.GetFramePtr()); 4809 4810 if (success) { 4811 result.SetStatus(eReturnStatusSuccessFinishResult); 4812 return true; 4813 } else { 4814 result.SetStatus(eReturnStatusFailed); 4815 return false; 4816 } 4817 } 4818 }; 4819 4820 class CommandObjectRenderScriptRuntimeAllocation 4821 : public CommandObjectMultiword { 4822 public: 4823 CommandObjectRenderScriptRuntimeAllocation(CommandInterpreter &interpreter) 4824 : CommandObjectMultiword( 4825 interpreter, "renderscript allocation", 4826 "Commands that deal with RenderScript allocations.", nullptr) { 4827 LoadSubCommand( 4828 "list", 4829 CommandObjectSP( 4830 new CommandObjectRenderScriptRuntimeAllocationList(interpreter))); 4831 LoadSubCommand( 4832 "dump", 4833 CommandObjectSP( 4834 new CommandObjectRenderScriptRuntimeAllocationDump(interpreter))); 4835 LoadSubCommand( 4836 "save", 4837 CommandObjectSP( 4838 new CommandObjectRenderScriptRuntimeAllocationSave(interpreter))); 4839 LoadSubCommand( 4840 "load", 4841 CommandObjectSP( 4842 new CommandObjectRenderScriptRuntimeAllocationLoad(interpreter))); 4843 LoadSubCommand( 4844 "refresh", 4845 CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationRefresh( 4846 interpreter))); 4847 } 4848 4849 ~CommandObjectRenderScriptRuntimeAllocation() override = default; 4850 }; 4851 4852 class CommandObjectRenderScriptRuntimeStatus : public CommandObjectParsed { 4853 public: 4854 CommandObjectRenderScriptRuntimeStatus(CommandInterpreter &interpreter) 4855 : CommandObjectParsed(interpreter, "renderscript status", 4856 "Displays current RenderScript runtime status.", 4857 "renderscript status", 4858 eCommandRequiresProcess | 4859 eCommandProcessMustBeLaunched) {} 4860 4861 ~CommandObjectRenderScriptRuntimeStatus() override = default; 4862 4863 bool DoExecute(Args &command, CommandReturnObject &result) override { 4864 RenderScriptRuntime *runtime = llvm::cast<RenderScriptRuntime>( 4865 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4866 eLanguageTypeExtRenderScript)); 4867 runtime->DumpStatus(result.GetOutputStream()); 4868 result.SetStatus(eReturnStatusSuccessFinishResult); 4869 return true; 4870 } 4871 }; 4872 4873 class CommandObjectRenderScriptRuntimeReduction 4874 : public CommandObjectMultiword { 4875 public: 4876 CommandObjectRenderScriptRuntimeReduction(CommandInterpreter &interpreter) 4877 : CommandObjectMultiword(interpreter, "renderscript reduction", 4878 "Commands that handle general reduction kernels", 4879 nullptr) { 4880 LoadSubCommand( 4881 "breakpoint", 4882 CommandObjectSP(new CommandObjectRenderScriptRuntimeReductionBreakpoint( 4883 interpreter))); 4884 } 4885 ~CommandObjectRenderScriptRuntimeReduction() override = default; 4886 }; 4887 4888 class CommandObjectRenderScriptRuntime : public CommandObjectMultiword { 4889 public: 4890 CommandObjectRenderScriptRuntime(CommandInterpreter &interpreter) 4891 : CommandObjectMultiword( 4892 interpreter, "renderscript", 4893 "Commands for operating on the RenderScript runtime.", 4894 "renderscript <subcommand> [<subcommand-options>]") { 4895 LoadSubCommand( 4896 "module", CommandObjectSP( 4897 new CommandObjectRenderScriptRuntimeModule(interpreter))); 4898 LoadSubCommand( 4899 "status", CommandObjectSP( 4900 new CommandObjectRenderScriptRuntimeStatus(interpreter))); 4901 LoadSubCommand( 4902 "kernel", CommandObjectSP( 4903 new CommandObjectRenderScriptRuntimeKernel(interpreter))); 4904 LoadSubCommand("context", 4905 CommandObjectSP(new CommandObjectRenderScriptRuntimeContext( 4906 interpreter))); 4907 LoadSubCommand( 4908 "allocation", 4909 CommandObjectSP( 4910 new CommandObjectRenderScriptRuntimeAllocation(interpreter))); 4911 LoadSubCommand("scriptgroup", 4912 NewCommandObjectRenderScriptScriptGroup(interpreter)); 4913 LoadSubCommand( 4914 "reduction", 4915 CommandObjectSP( 4916 new CommandObjectRenderScriptRuntimeReduction(interpreter))); 4917 } 4918 4919 ~CommandObjectRenderScriptRuntime() override = default; 4920 }; 4921 4922 void RenderScriptRuntime::Initiate() { assert(!m_initiated); } 4923 4924 RenderScriptRuntime::RenderScriptRuntime(Process *process) 4925 : lldb_private::CPPLanguageRuntime(process), m_initiated(false), 4926 m_debuggerPresentFlagged(false), m_breakAllKernels(false), 4927 m_ir_passes(nullptr) { 4928 ModulesDidLoad(process->GetTarget().GetImages()); 4929 } 4930 4931 lldb::CommandObjectSP RenderScriptRuntime::GetCommandObject( 4932 lldb_private::CommandInterpreter &interpreter) { 4933 return CommandObjectSP(new CommandObjectRenderScriptRuntime(interpreter)); 4934 } 4935 4936 RenderScriptRuntime::~RenderScriptRuntime() = default; 4937